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2.1 INTRODUCTION

The fundamental problem of structural analysis is the prediction of the ability of
machine components to provide reliable service under its applied loads and tempera-
ture. The basis of the solution is the calculation of certain performance indices, such
as stress (force per unit area), strain (deformation per unit length), or gross deforma-
tion, which can then be compared to allowable values of these parameters. The allow-
able values of the parameters are determined by the component function (deformation
constraints) or by the material limitations (yield strength, ultimate strength, fatigue
strength, etc.). Further constraints on the allowable values of the performance indices
are often imposed through the application of factors of safety.

This chapter, “Mechanics of Materials,” deals with the calculation of performance
indices under statically applied loads and temperature distributions. The extension of
the theory to dynamically loaded structures, i.e., to the response of structures to shock
and vibration loading, is treated elsewhere in this handbook.

The calculations of “Mechanics of Materials” are based on the concepts of force
equilibrium (which relates the applied load to the internal reactions, or stress, in the
body), material observation (which relates the stress at a point to the internal deforma-
tion, or strain, at the point), and kinematics (which relates the strain to the gross defor-
mation of the body). In its simplest form, the solution assumes linear relationships
between the components of stress and the components of strain (hookean material
models) and that the deformations of the body are sufficiently small that linear rela-
tionships exist between the components of strain and the components of deformation.
This linear elastic model of structural behavior remains the predominant tool used
today for the design analysis of machine components, and is the principal subject of
this chapter.

It must be noted that many materials retain considerable load-carrying ability when
stressed beyond the level at which stress and strain remain proportional. The modifica-
tion of the material model to allow for nonlinear relationships between stress and
strain is the principal feature of the theory of plasticity. Plastic design allows more
effective material utilization at the expense of an acceptable permanent deformation of
the structure and smaller (but still controlled) design margins. Plastic design is often
used in the design of civil structures, and in the analysis of machine structures under
emergency load conditions. Practical introductions to the subject are presented in
Refs. 6, 7, and 8.

Another important and practical extension of elastic theory includes a material
model in which the stress-strain relationship is a function of time and temperature.
This “creep” of components is an important consideration in the design of machines
for use in a high-temperature environment. Reference 11 discusses the theory of creep
design. The set of equations which comprise the linear elastic structural model do not
have a comprehensive, exact solution for a general geometric shape. Two approaches
are used to yield solutions:

The geometry of the structure is simplified to a form for which an exact solution is
available. Such simplified structures are generally characterized as being a level
surface in the solution coordinate system. Examples of such simplified structures
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include rods, beams, rectangular plates, circular plates, cylindrical shells, and
spherical shells. Since these shapes are all level surfaces in different coordinate
systems, e.g., a sphere is the surface r = constant in spherical coordinates, it is a
great convenience to express the equations of linear elastic theory in a coordinate
invariant form. General tensor notation is used to accomplish this task.

The governing equations are solved through numerical analysis on a case-by-case
basis. This method is used when the component geometry is such that none of the
available beam, rectangular plate, etc., simplifications are appropriate. Although
several classes of numerical procedures are widely used, the predominant procedure
for the solution of problems in the “Mechanics of Materials” is the finite-element
method.

2.2 STRESS

2.2.1 Definition?

“Stress” is defined as the force per unit area acting on an “elemental” plane in the
body. Engineering units of stress are generally pounds per square inch. If the force is
normal to the plane the stress is termed “tensile” or “compressive,” depending upon
whether the force tends to extend or shorten the element. If the force acts parallel to
the elemental plane, the stress is termed “shear.”” Shear tends to deform by causing
neighboring elements to slide relative to one another.

2.2.2 Components of Stress?

A complete description of the internal forces (stress distributions) requires that stress
be defined on three perpendicular faces of an interior element of a structure. In Fig. 2.1
a small element is shown, and, omitting higher-order effects, the stress resultant on
any face can be considered as acting at the center of the area.

The direction and type of stress at a point are described by subscripts to the stress
symbol o or 7. The first subscript defines the plane on which the stress acts and the
second indicates the direction in which it
acts. The plane on which the stress acts is
indicated by the normal axis to that
plane; e.g., the x plane is normal to the x
axis. Conventional notation omits the
second subscript for the normal stress
and replaces the o by a 7 for the shear
stresses. The “stress components” can
thus be represented as follows:

Normal stress:

Txy

‘\
Y

o, =0,
o,=0, 2.1)
o =0

Shear stress:

FIG. 2.1 Stress components. g =T o =T
xy xy vz vz
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sz = sz sz = T:x (22)
O =T O_=T1T

o, T T
x xy Xz
;=T o, T, (2.3)
T, T o,
x 2y z

Stress is “positive” if it acts in the “positive-coordinate direction” on those element
faces farthest from the origin, and in the “negative-coordinate direction” on those
faces closest to the origin. Figure 2.1 indicates the direction of all positive stresses,
wherein it is seen that tensile stresses are positive and compressive stresses negative.
The total load acting on the element of Fig. 2.1 can be completely defined by the
stress components shown, subject only to the restriction that the coordinate axes are
mutually orthogonal. Thus the three normal stress symbols o, o, o, and six shear-
stress symbols Tow Teo Ty Tyw Tov Toy “define the stresses of the element However, from

x2 lyx ly? e

equilibrium cons1derat10ns T, = ’T}, T, = T, T, = 7. This reduces the necessary

7y’ Rod

number of symbols required to define the stress state to 0' 0,0, T, T,T

vz

2.2.3 Simple Uniaxial States of Stress!

Consider a simple bar subjected to axial loads only. The forces acting at a transverse
section are all directed normal to the section. The uniaxial normal stress at the section
is obtained from

o=PIA (2.4)

where P = total force and A = cross-sectional area.

“Uniaxial shear” occurs in a circular cylinder, loaded as in Fig. 2.2a, with a radius
which is large compared to the wall thickness. This member is subjected to a torque
distributed about the upper edge:

T=3XPr (2.5)

{b)

FIG. 2.2 Uniaxial shear basic element.
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Now consider a surface element (assumed plane) and examine the stresses acting. The
stresses T which act on surfaces a-a and b-b in Fig. 2.2b tend to distort the original
rectangular shape of the element into the parallelogram shown (dotted shape). This
type of action of a force along or tangent to a surface produces shear within the ele-
ment, the intensity of which is the “shear stress.”

2.2.4 Nonuniform States of Stress'

In considering elements of differential size, it is permissible to assume that the force
acts on any side of the element concentrated at the center of the area of that side, and
that the stress is the average force divided by the side area. Hence it has been implied
thus far that the stress is uniform. In members of finite size, however, a variable stress
intensity usually exists across any given surface of the member. An example of a body
which develops a distributed stress pattern across a transverse cross section is a simple
beam subjected to a bending load as shown in Fig. 2.3a. If a section is then taken at
a-a, F” must be the internal force acting along a-a to maintain equilibrium. Forces F,
and F’, constitute a couple which tends to rotate the element in a clockwise direction,
and therefore a resisting couple must be developed at a-a (see Fig. 2.3b). The internal
effect at a-a is a stress distribution with the upper portion of the beam in tension and
the lower portion in compression, as in Fig. 2.3¢. The line of zero stress on the trans-
verse cross section is the “neutral axis” and passes through the centroid of the area.

¢ 15 Fy
- i
4 | o
{ = = NA
: —4 %
7 & Fy
{a) {b) {¢)

FIG. 2.3 Distributed stress on a simple beam subjected to a bending load.

2.2.5 Combined States of Stress

Tension-Torsion. A body loaded simultaneously in direct tension and torsion, such
as a rotating vertical shaft, is subject to a combined state of stress. Figure 2.4a depicts
such a shaft with end load W, and constant torque 7 applied to maintain uniform rota-
tional velocity. With reference to a-a, considering each load separately, a force system

0;

z Tzx

) s
a Q

a— - —-~a szT@‘sz

¥ 0z ~——7

Tzx

¢—-{-]--0
w

(a) {b) {c)

FIG. 2.4 Body loaded in direct tension and torsion.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



MECHANICS OF MATERIALS

2.6 MECHANICAL DESIGN FUNDAMENTALS

as shown in Fig. 2.2b and c is developed at the internal surface a-a for the weight load
and torque, respectively. These two stress patterns may be superposed to determine the
“combined” stress situation for a shaft element.

Flexure-Torsion. If in the above case the load W were horizontal instead of vertical,
the combined stress picture would be altered. From previous considerations of a simple
beam, the stress distribution varies linearly across section a-a of the shaft of Fig. 2.5a.
The stress pattern due to flexure then depends upon the location of the element in ques-
tion; e.g., if the element is at the outside (element x) then it is undergoing maximum
tensile stress (Fig. 2.5b), and the tensile stress is zero if the element is located on the
horizontal center line (element y) (Fig. 2.5¢). The shearing stress is still constant at a
given element, as before (Fig. 2.5d). Thus the “combined” or “superposed” stress state
for this condition of loading varies across the entire transverse cross section.

A

T

Element x  Element y

{b) {c) (d)
FIG. 2.5 Body loaded in flexure and torsion.

2.2.6 Stress Equilibrium

“Equilibrium” relations must be satisfied by each element in a structure. These are sat-
isfied if the resultant of all forces acting on each element equals zero in each of three
mutually orthogonal directions on that element. The above applies to all situations of
“static equilibrium.” In the event that some elements are in motion an inertia term
must be added to the equilibrium equation. The inertia term is the elemental mass mul-
tiplied by the absolute acceleration taken along each of the mutually perpendicular
axes. The equations which specify this latter case are called “dynamic-equilibrium
equations” (see Chap. 4).

Three-Dimensional Case.>'? The equilibrium equations can be derived by separately
summing all x, y, and z forces acting on a differential element accounting for the incre-
mental variation of stress (see Fig. 2.6). Thus the normal forces acting on areas dz dy
are o _dz dy and [0+ (do /0x) dx] dz dy. Writing x force-equilibrium equations, and
by a similar process y and z force-equilibrium equations, and canceling higher-order
terms, the following three “cartesian equilibrium equations” result:

do /ox + BTXy/ay + 07, /0z=0 (2.6)
80},/3y + a'ryz/az + 87»{/8x =0 2.7)
do /dz + o7 /ox + aﬂrzy/ay =0 (2.8)
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0tyz

Tyz + a_z-dl

e Lj;; T J\

FIG. 2.6 Incremental element (dx, dy, dz) with
incremental variation of stress.

or, in cartesian stress-tensor notation,
g.. =0 i,j = X,),2 (2.9)
and, in general tensor form,
g"k(r[jvk =0 (2.10)

where g'* is the contravariant metric tensor.
“Cylindrical-coordinate” equilibrium considerations lead to the following set of
equations (Fig. 2.7):

do for + (1/r)(07,,/d8) + o7 [0z + (o, — o ))/ir =0 (2.11)
07,4/0r + (1/r)(do/d0) + d1, [0z + 27 /r =0 (2.12)
o7, for + (1/r)(d7, /d0) + d, /oz + 7 /r =0 (2.13)

The corresponding “spherical polar-coordinate” equilibrium equations are (Fig. 2.8)

900, (19 (1 )\
or r 09 rsin®) od

+ l(Zcr —0,— 0, tT1,c0t0) =0 (2.14)
r

oty 1 doy, 1 97y,
or " r 00 +< )

1
S + [(o, — o) coth +37,]=0 (2.15)

rsin 0

Oy

FIG. 2.7 Stresses on a cylindrical element. FIG. 2.8 Stresses on a spherical element.
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ot 1 0T 1 Jdo
b L T ed J+—3 +2 cot0) =0 2.16
r o9 (rsin(i)) o r(T Too ) 2.16)

The general orthogonal curvilinear-coordinate equilibrium equations are

0 O a T Jd T Jd 1
h,h,h @ 4 2 o 4 T o ye )y oopp——
123(3 hh, OB hih, Oy hlhz) Tap2 98

iy 2 Bhth%hiz—oyhlh3%h%=0 @.17)
h i, (% +ai%+a%hl;i> hh3aa ;

+TmBh2h]a%hi2—cyhzh3%hl3—am , ]%hilzo 2.18)
hhh3(a—ifi+%hﬁzi+a—%ihﬁl)+Twh3hlaihi

O A Sy A A S A R 1

B«,szth m3la,yhl B328’yh2

where the a, B, vy specify the coordinates of a point and the distance between two
coordinate points ds is specified by

(ds)* = (da/h))* + (dB/h,)* + (dvy/h,)* (2.20)

which allows the determination of %, h,, and h, in any specific case.
Thus, in cylindrical coordinates,

(ds)? = (dr)* + (r dB)* + (dz)? (2.21)
so that a=r h, =1

B=6  h=1/r

y=z =
In spherical polar coordinates,

(ds)* = (dr)* + (r d6)* + (r sin 0 dd)? (2.22)
so that a=r h =1

B=26 h, = 1r
vy=d hy = 1/(r sin 0)

All the above equilibrium equations define the conditions which must be satisfied by each
interior element of a body. In addition, these stresses must satisfy all surface-stress-
boundary conditions. In addition to the cartesian-, cylindrical-, and spherical-coordinate
systems, others may be found in the current literature or obtained by reduction from the
general curvilinear-coordinate equations given above.
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In many applications it is useful to integrate the stresses over a finite thickness and
express the resultant in terms of zero or nonzero force or moment resultants as in the
beam, plate, or shell theories.

Two-Dimensional Case—Plane Stress.”> 1In the special but useful case where the
stresses in one of the coordinate directions are negligibly small (o, = 7_=17_= 0)
the general cartesian-coordinate equilibrium equations reduce to ’

do /ox + a'rxy/By =0 (2.23)
ch/ay + a’ryx/ax =0 (2.24)

The corresponding cylindrical-coordinate equi-
librium equations become

9o [or + (1/r)(d7,/d0) + (o, — a)/r =0 (2.25)
At Jor + (1/r)@,/00) + 2t Jr) =0  (2.26)

This situation arises in “thin slabs,” as indicated
in Fig. 2.9, which are essentially two-dimensional
problems. Because these equations are used in
FIG. 2.9 Plane stress on a thin slab. formulations which allow only stresses in the
“plane” of the slab, they are classified as “plane-
stress” equations.

2.2.7 Stress Transformation: Three-Dimensional Case*’

It is frequently necessary to determine the stresses at a point in an element which is
rotated with respect to the x, y, z coordinate system, i.e., in an orthogonal x”, y°, 7" sys-
tem. Using equilibrium concepts and measuring the angle between any specific origi-
nal and rotated coordinate by the direction cosines (cosine of the angle between the
two axes) the following transformation equations result:

o= [o cos (x'x) + T, COS (x7y) + 7, cos (x'7)] cos (x"x)

+ [’Txy cos (x'x) + o, cos (x7y) + T, COs (x2)] cos (x7y)

+ [sz cos (x'x) + T, COs x7y) + g, cos (x"z)] cos (x7) (2.27)
o= [0, cos (y'x) + 7,, COs (¥y) + 7, cos (yz)] cos (y'x)

+ [Txy cos (y'x) + o, cos Oy + T, COS 'z)] cos (vy)

+ [, cos (y'x) + T, COS (y) + o, cos (y2)] cos (yz) (2.28)
o, = [o, cos (z7x) + T,, COs (z'y) + 7 cos (z'2)] cos (z'x)

+ [1,,c08 (z7x) + 0 cos (27y) + T_cos (27)] cos (27y)

+ [Tu cos (z°x) + T, COS (z7y) + g, cos (z'2)] cos (z2°2) (2.29)
Ty = [o, cos (yx) + T, COS (O’y) + 7, cos (y2)] cos (x"x)

+ [Txy cos (y'x) + o, cos Oy + T, COS (yz)] cos (x7y)

+ [, cos (yx) + T, cos (’y) + o, cos (yz)] cos (xz) (2.30)
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T = [0, cos (z'x) + 7,08 (z'y) + 7, cos (z'z)] cos (yx)
+ [’Tx)_ cos (z'x) + o, cos Z7y) + T, 08 (z°z)] cos (y"y)
+[7_ cos (%) + 7 cos (zy) + o_cos (z'2)] cos (y'2) (2.31)
T = [0, cos (xx) + 7,, COs (x7y) + 7, cos (xZ)] cos (z7x)
+ [TXy cos (x'x) + o, oS (xy) + T,. COS (x"2)] cos (z7y)
+ [, cos (x"x) + T, COS (xy) + o, cos (x2)] cos (z2) (2.32)
In tensor notation these can be abbreviated as
Ter = AL AvnTom (2.33)
where Aij = cos (ij) mn — X,,2 kU —xy 7

A special but very useful coordinate rotation occurs when the direction cosines are
so selected that all the shear stresses vanish. The remaining mutually perpendicular
“normal stresses” are called “principal stresses.”

The magnitudes of the principal stresses o, o, o_are the three roots of the cubic
equations associated with the determinant '

oo 1. |=0 (2.34)

where o,..., 7 ... are the general nonprincipal stresses which exist on an element.

The direction cosines of the principal axes x”, y” z” with respect to the x, y, z axes
are obtained from the simultaneous solution of the following three equations consider-
ing separately the cases where n = x”, y" z":

T,, COs (xn) + (0), —o,)cos (yn) + T,. COS (zn) =0 (2.35)
T, COS (xn) + T, COs (yn) + (O'Z —o)cos(zn) =0 (2.36)
cos? (xn) + cos? (yn) + cos® (zn) = 1 (2.37)

2.2.8 Stress Transformation: Two-Dimensional Case*

Selecting an arbitrary coordinate direction in which the stress components vanish, it
can be shown, either by equilibrium considerations or by general transformation for-
mulas, that the two-dimensional stress-transformation equations become

o, = [(o + 0},)/2] + [(o, — 0 )/2] cos 2a + T, sin 2« (2.38)
7, = (0, — 0 )/2] sin 2a — 7_ cos 2a (2.39)
where the directions are defined in Figs. 2.10 and 2.11 (7, = — 7, a = 0).

The principal directions are obtained from the condition that
7,=0 or tan 2o = ZTXV/(O' e 0):) (2.40)

where the two lowest roots of (first and second quadrants) are taken. It can be easily
seen that the first and second principal directions differ by 90°. It can be shown that
the principal stresses are also the “maximum” or “minimum normal stresses.” The
“plane of maximum shear” is defined by
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%
-
‘ \Zn\ y n % \\

X
Oy Tnt o
Txy 3 Txy
Tyy l
%
FIG. 2.10 Two-dimensional plane stress. FIG. 2.11 Plane of maximum shear.
tan 2a = — (o — ay)/ZTXy (2.41)

These are also represented by planes which are 90° apart and are displaced from the
principal stress planes by 45° (Fig. 2.11).

2.2.9 Mohr’s Circle

Mohr’s circle is a convenient representation of the previously indicated transformation
equations. Considering the x, y directions as positive in Fig. 2.11, the stress condition on
any elemental plane can be represented as a point in the “Mohr diagram” (clockwise shear
taken positive). The Mohr’s circle is constructed by connecting the two stress points and
drawing a circle through them with center on the o axis. The stress state of any basic ele-
ment can be represented by the stress coordinates at the intersection of the circle with an
arbitrarily directed line through the circle center. Note that point x for positive 7_ is below
the o axis and vice versa. The element is taken as rotated counterclockwise by an angle o
with respect to the x-y element when the line is rotated counterclockwise an angle 2« with
respect to the x-y line, and vice versa (Fig. 2.12).

oy 0y
i 17
y 1T
- 0’y 0
{ ! 27y
2a 7
1
=~ ] Positive____Y
to rofation
x Ty
2 Negative
rotation n

x—y element General positive rotation

FIG. 2.12 Stress state of basic element.
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2.3 STRAIN

2.3.1 Definition?

Extensional strain € is defined as the extensional deformation of an element divided by
the basic elemental length, € = w/l,.

In large-strain considerations, [, must represent the
instantaneous elemental length and the definitions of strain

must be given in incremental fashion. In small strain consid-
% Ty erations, to which the following discussion is limited, it is
v . only necessary to consider the original elemental length [;
Xy and its change of length u. Extensional strain is taken posi-
/ / tive or negative depending on whether the element increases
or decreases in extent. The units of strain are dimensionless

— /ﬁ (inches/inch).

“Shear strain” vy is defined as the angular distortion of an
FIG. 2.13 = Shear-strain-  original right-angle element. The direction of positive shear
deformed element. strain is taken to correspond to that produced by a positive
shear stress (and vice versa) (see Fig. 2.13). Shear strain vy

is equal to y, + ,. The “units” of shear strain are dimensionless (radians).

2.3.2 Components of Strain®

A complete description of strain requires the establishment of three orthogonal exten-
sional and shear strains. In cartesian stress nomenclature, the strain components are

Extensional strain:

eXX = €¥
€, =€ (2.42)
EZZ = eZ
Shear strain:
e =€ =Y
xy VX 2’yxy
€. =€ = l/ﬁw (2.43)

m
|

— 1
T €. /Z'YZ_’C

where positive €, €, Or €, corresponds to a positive stretching in the x, y, z directions
and positive vy, yw, Y. refers to positive shearing displacements in the xy, yz, and zx
planes. In tensor notatlon the strain components are

ex %'yxy %’yzx
e, =| v, € %, (2.44)
Ny AV, €

2.3.3 Simple and Nonuniform States of Strain?

Corresponding to each of the stress states previously illustrated there exists either a
simple or nonuniform strain state.
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In addition to these, a state of “uniform dilatation” exists when the shear strain
vanishes and all the extensional strains are equal in sign and magnitude. Dilatation is
defined as

A=e +e+e (2.45)

and represents the change of volume per increment volume.
In uniform dilatation,

A=3e = 3ey = 3e, (2.46)

2.3.4 Strain-Displacement Relationships*>!3

Considering only small strain, and the previous definitions, it is possible to express the
strain components at a point in terms of the associated displacements and their deriva-
tives in the coordinate directions (e.g., u, v, w are displacements in the x, y, z coordi-
nate system).

Thus, in a “cartesian system” (x, y, 2),

€ = Julox Vo = ov/dx + duldy
€ = ov/dy Y, = ow/dy + dv/dz (2.47)
€, = ow/oz Y,, = ou/dz + ow/ox

or, in stress-tensor notation,

2¢,=u,  tu, Ij = xX),2 (2.48)
In addition the dilatation
A = Ju/dx + dv/dy + dw/dz (2.49)
or, in tensor form,
A= U I = X,),2 (2.50)

Finally, all incremental displacements can be composed of a “pure strain” involving
all the above components, plus “rigid-body” rotational components. That is, in general

U=eX+hy Y+hyZ-wY+oZ (2.51)
X Xy X z Yy

V=sy X+te¥+hyZ-wZ+oX (2.52)

W=ly X+%y Y+teZ-oX+oY (2.53)

where U, V, W represent the incremental displacement of the pointx + X, y + ¥,z + Z
in excess of that of the point x, y, z where X, ¥, Z are taken as the sides of the incre-
mental element. The rotational components are given by

2w = ow/dy — dv/dz
26y = du/dz — dw/dx (2.54)
2w, = dv/dx — duldy
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or, in tensor notation,

2617 =uu, Ij = xXy.2 (2.55)
0 =00 =0,0 =0,
In cylindrical coordinates,
€, = du /or Yo, = (1/r)(0u /08 + duy/oz
€, = (1/r)(Quy/08) + u /r Y,, = 0u/dz + dufor (2.56)
€, = du/oz Yo = Oug/or — uy/r + (1/r)(0u /06)
The dilatation is
A = (UR@r)(ru) + (1/r)Qu,fd8) + dufdz (2.57)

and the rotation components are
20, = (1/r)(9u/3) — du,/0z
2w, = du,/dz — du for (2.58)
2w, = (1/r)@/9r)(ru,) — (1/r)(du,/06)

In spherical polar coordinates,

ou_ 1| ou 1 ou
=—* =—|=%—u,cotf|+ —L
& or Yoo r[ae y €0 } rsin® od
_1% 1 X
“T 90 - yd)’_rsinﬁ ob  or r (2.59)
1 du, Uy lau,

Jdu u u
_ 4] [} r — _
€, = +—cot0 + =
®  rsin® b - r Yo T or ror a9

The dilatation is
A = (1/r sin ©)[(9/9r)(ru, sin 0) + (9/06)(ru, sin 0) + (I/0b)(ru,)] (2.60)
The rotation components are
20, = (1/r sin 0)[(9/90)(ru,, sin 6) — (9/dd)(ruy)]
204 = (1/r sin 6)[du,/0d — (9/dr)(ru,, sin 6)] (2.61)
264) = (Un)[(0/dr)(ruy) — du /06]
In general orthogonal curvilinear coordinates,
€, = h,(Qu,foa) + h h,u,(9/0B)(1/h,) + hyhu (9/dv)(1/h,))
€5 = hy(Juy/oR) + hyhau (0/0)(1/hy) + hhyu, (9/0o)(1/h,y)
€, = hy(0u /0y) + hyhu (9/00)(1/hy) + hyhsug(0/0B)(1/hy) (2.62)
Yoy = (hyfh3)(0/0B)(hyu,) + (hyfhy))(0/0y) ()
Vyo = (he/h)(010Y)(hyu,) + (hy/hy)(0/0e)(hyu.)
Yap = (hy/h,)(0/0c)(hug) + (hy/h )(0/0B)(h,u,)

o

B
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A = I hyhy[(99e)(u Jhyhs) + (DIOB)(ug/hsh,) + (1) (ufh, )] (2.63)
2w, = hyh,[IOB)u Jhy) — Ay (uy/hy)]
26, = hyh, [@0y)u /h,) — @) (u fhy)] (2.64)
2w = h,h,[(0/00)(uylh,) — (0/OB)(u,/h)]

where the quantities h,, h,, h, have been discussed with reference to the equilibrium
equations.

In the event that one deflection (i.e., w) is constant or zero and the displacements
are a function of x, y only, a special and useful class of problems arises termed “plane
strain,” which are analogous to the “plane-stress” problems. A typical case of plane
strain occurs in slabs rigidly clamped on their faces so as to restrict all axial deforma-
tion. Although all the stresses may be nonzero, and the general equilibrium equations
apply, it can be shown that, after combining all the necessary stress and strain relation-
ships, both classes of plane problems yield the same form of equations. From this, one
solution suffices for both the related plane-stress and plane-strain problems, provided
that the elasticity constants are suitably modified. In particular the applicable strain-
displacement relationships reduce in cartesian coordinates to

€ = du/ox
€= ov/dy (2.65)
Vo = ov/dx + duldy
and in cylindrical coordinates to
€ = du/or
€, = (1/r)(Quy/08) + u /r (2.66)
Yo = Oug/or — uylr + (1/r)(0u /06)

2.3.5 Compatibility Relationships>*>

In the event that a single-valued continuous-displacement field (u, v, w) is not explicitly
specified, it becomes necessary to ensure its existence in solution of the stress, strain,
and stress-strain relationships. By writing the strain-displacement relationships and
manipulating them to eliminate displacements, it can be shown that the following six
equations are both necessary and sufficient to ensure compatibility:

9% /0z* + %€ /dy* = ™y, /Iy 0z

2(d% /dy dz) = (a/ax)(—B'yyZ/Bx-i- dy /oy + a«/xy/az) (2.67)
0% /0x* + 0% /07 = d*y_/ox 9z
2(826/81 ox) = (a/ay)(+ayﬂ/ax — dy,fdy + ayxy/az) (2.68)
d% /oy + a2e),/ax2 = 82yx",/8x dy
2(d% Jox dy) = (a/az)(+ayﬂ/ax + dvy, /oy — ayxylaz) (2.69)
In tensor notation the most general compatibility equations are
€ut €y € € =0 ij.kl = xy.z (2.70)

which represents 81 equations. Only the above six equations are essential.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



MECHANICS OF MATERIALS

2.16 MECHANICAL DESIGN FUNDAMENTALS

In addition to satisfying these conditions everywhere in the body under considera-
tion, it is also necessary that all surface strain or displacement boundary conditions be
satisfied.

2.3.6 Strain Transformation*’

As with stress, it is frequently necessary to refer strains to a rotated orthogonal coordi-
nate system (x”, y”, z*). In this event it can be shown that the stress and strain tensors
transform in an identical manner.

1 1

o, €. o, € Ty AY, i T, /2'\/va
1 1

o€, o, € T =AY T, AY,
1 1

o, €. 0, € Too =AYy T, =AY,

In tensor notation the strain transformation can be written as

mn—x,y,2
e, =ALA. € Ik =y 7 @2.71)

k’l I'n’ “k'm~mn

As a result the stress and strain principal directions are coincident, so that all remarks
made for the principal stress and maximum shear components and their directions

rof—

General state
of strain

~

& y
{principal)—

Y2

™~
1}
1
\
\

-

\
\
S~

~-3

General state
of strain

Maximum shear strain

FIG. 2.14 Strain transformation.
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apply equally well to strain tensor components. Note that in the use of Mohr’s circle in
the two-dimensional case one must be careful to substitute "4y for T in the ordinate
and € for o in the abscissa (Fig. 2.14).

2.4 STRESS-STRAIN RELATIONSHIPS

2.4.1 Introduction?

It can be experimentally demonstrated that a one-to-one relationship exists between
uniaxial stress and strain during a single loading. Further, if the material is always
loaded within its elastic or reversible range, a one-to-one relationship exists for all
loading and unloading cycles.

For stresses below a certain characteristic value termed the “proportional limit,” the
stress-strain relationship is very nearly linear. The stress beyond which the stress-
strain relationship is no longer reversible is called the “elastic limit.” In most materials
the proportional and elastic limits are identical. Because the departure from linearity is
very gradual it is often necessary to prescribe arbitrarily an “apparent” or “offset elas-
tic limit.” This is obtained as the intersection of the stress-strain curve with a line par-
allel to the linear stress-strain curve, but offset by a prescribed amount, e.g., 0.02 per-
cent (see Fig. 2.15a). The “yield point” is the value of stress at which continued
deformation of the bar takes place with little or no further increase in load, and the
“ultimate limit” is the maximum stress that the specimen can withstand.

Note that some materials may show no clear difference between the apparent elas-
tic, inelastic, and proportional limits or may not show clearly defined yield points
(Fig. 2.15b).

The concept that a useful linear range exists for most materials and that a simple
mathematical law can be formulated to describe the relationship between stress and
strain in this range is termed “Hooke’s law.” It is an essential starting point in the
“small-strain theory of elasticity” and the associated mechanics of materials. In the
above-described tensile specimen, the law is expressed as

o = Ee (2.72)

T . . .
Tt /Uh‘imme stress 94 Ultimate limit
c,ieb ——————————— Rupture
LI SR Yield stress
% _’1::_‘ \Appurenf elastic limit Elastic limit
o Elastic limit

/! Proportional limit
/l
’

/!
-~ |-offset € €
{a) (b}
FIG. 2.15 Stress-strain relationship.
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as in the analogous torsional specimen
T =Gy (2.73)

where E and G are the slope of the appropriate stress-strain diagrams and are called
the “Young’s modulus” and the “shear modulus” of elasticity, respectively.

2.4.2 General Stress-Strain Relationship>*°

The one-dimensional concepts discussed above can be generalized for both small and
large strain and elastic and nonelastic materials. The following discussion will be lim-
ited to small-strain elastic materials consistent with much engineering design. Based
upon the above, Hooke’s law is expressed as

e = (/B)o, — V(O'y + o)l Yo T TX)’/G
€= UBlo, ~ v+ o)l 3, =7/G e
. =WUBlo, ~vo, o)l v, =[G

where v is “Poisson’s ratio,” the ratio between longitudinal strain and lateral contrac-
tion in a simple tensile test.
In cartesian tension form Eq. (2.74) is expressed as

€, = [(1 + v)/Elo, — (VE)S 0, i,j.k = x,y.2 (2.75)
where 5. = ,0 i#]
i C
1 i=j

The stress-strain laws appear in inverted form as

o =2Ge +\A
o, = 2Gey+ NA
o, =2Ge+ \A
T, = Gy, (2.76)
T, = nyz
7. =G,
where A =v/E/(1 +v)(1 — 2v)
A=e + €T e
G =ER1 +v)
In cartesian tensor form Eq. (2.76) is written as
0, =2Ge; + N A Sij i,j =xy.2 (2.77)
and in general tensor form as
o, =2Ge, + N Ag, (2.78)
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where g; is the “covariant metric tensor” and these coefficients (stress modulus) are often
referred to as “Lamé’s constants,” and A = g""€

n

2.5 STRESS-LEVEL EVALUATION

2.5.1 Introduction'®

The detailed elastic and plastic behavior, yield and failure criterion, etc., are repeatable
and simply describable for a simple loading state, as in a tensile or torsional specimen.
Under any complex loading state, however, no single stress or strain component can be
used to describe the stress state uniquely; that is, the yield, flow, or rupture criterion must
be obtained by some combination of all the stress and/or strain components, their deriva-
tives, and loading history. In elastic theory the “yield criterion” is related to an “equiva-
lent stress,” or “equivalent strain.” It is conventional to treat the stress criteria.

An “equivalent stress” is defined in terms of the “stress components” such that
plastic flow will commence in the body at any position at which this equivalent stress
just exceeds the one-dimensional yield-stress value, for the material under considera-
tion. That is, yielding commences when

(on

=
Gequivalem - E

The “elastic safety factor” at a point is defined as the ratio of the one-dimensional
yield stress to the equivalent stress at that position, i.e.,

ni = O-I:/O-equivalem (279)
and the elastic safety factor for the entire structure under any specific loading state is
taken as the lowest safety factor of consequence that exists anywhere in the structure.

The “margin of safety,” defined as n — 1, is another measure of the proximity of any
structure to yielding. When n > 1, the structure has a positive margin of safety and will
not yield. When n = 1, the margin of safety is zero and the structure just yields. When n
<1, the margin of safety is negative and the structure is considered unsafe. Note that
highly localized yielding is often permitted in ductile materials if it is of such nature as to
redistribute stresses without failure, building up a “residual stress state” which allows all
subsequent loadings to be accomplished with elastic-stress states. This is the basic concept
used in the “autofrettage process” in the strengthening of gun tubes, and it also explains
why ductile materials often have low “notch sensitivity” (see Chap. 6).

2.5.2 Effective Stress'®

The concept of effective stress is very closely connected with yield criteria.
Geometrically it can be shown that a unique surface can be constructed in stress space
in terms of principal stresses (0, 0,, o) such that all nonyielding states of stress lie
within that surface, and yielding states lie on or outside the surface. For ductile mate-
rials the yield surface may be taken as an infinitely long right cylinder having a center
axis defined by o, = o, = 0,. Because the yield criterion is represented by a right
cylinder it is adequate to define the yield curve, which is the intersection with a plane
normal to the axis of the cylinder. Many yield criteria exist; among these, the “Mises
criterion” takes this curve as a circle, and the “Tresca criterion” as a regular hexagon
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FIG. 2.16 Tresca and Mises criteria. (a) General yield criteria. (b) One
principal stress constant.

(see Fig. 2.16). The former is often referred to by names such as “Hencky,” “Hencky-
Mises,” or “distortion-energy criterion” and the latter by “shear criterion.”

Considering any one of the principal stresses as constant, the “yield locus™ can be
represented by the intersection of the plane o, = constant with the cylindrical yield
surface, which is represented as an ellipse for the Mises criterion and an elongated
hexagon for the Tresca criterion (Fig. 2.16b).

In general the yield criteria indicate, upon experimental evidence for a ductile mate-
rial, that yielding is essentially independent of “hydrostatic compression” or tension for
the loadings usually considered in engineering problems. That is, yielding depends only
on the “deviatoric” stress component. In general, this can be represented as

o, =0,— Ko, +o,+a,) (2.80)

where o is the principal deviatoric stress component and o the actual principal stress.
In tensor form

(2.81)

P
o,=0, %0,,0

i

The analytical representation of the yield criteria can be shown to be a function of the
“deviatoric stress-tensor invariants.” In component form these can be expressed as fol-
lows, where o is the yield stress in simple tension:

Mises:

o, = (V2 V(e, — 0+ (0, — 0 + (0, — ) (2.82)

where o, 0,, 0, are principal stresses.

o, = (1/\/5)\/(% —0)+ (o, —0)+ (o, o) +o6( +T+1) (283
or, in tensor form,
%ol = o0 (2.84)
Tresca:
o, =0, — 0, (2.85)
where o, > 0, > 0, or, in general symmetric terms,

[(o, = 0 = ogll(o, = 0))* = ogllo; — 0, —a3] =0 (2.86)
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2.6 FORMULATION OF GENERAL
MECHANICS-OF-MATERIAL PROBLEM

2.6.1 Introduction**>

Generally the mechanics-of-material problem is stated as follows: Given a prescribed
structural configuration, and surface tractions and/or displacements, find the stresses
and/or displacements at any, or all, positions in the body. Additionally it is often
desired to use the derived stress information to determine the maximum load-carrying
capacity of the structure, prior to yielding. This is usually referred to as the problem
of analysis. Alternatively the problem may be inverted and stated: Given a set of sur-
face tractions and/or displacements, find the geometrical configuration for a constraint
such as minimum weight, subject to the yield criterion (or some other general stress or
strain limitation). This latter is referred to as the design problem.

2.6.2 Classical Formulation?*?

The classical formulation of the equation for the problem of mechanics of materials is
as follows: It is necessary to evaluate the six stress components o, six strain compo-
nents €,, and three displacement quantities u, which satisfy the three equilibrium equa-
tions, six strain-displacement relationships, and six stress-strain relationships, all sub-
ject to the appropriate stress and/or displacement boundary conditions.

Based on the above discussion and the previous derivations, the most general three-
dimensional formulation in cartesian coordinates is

3o Jox + 91 [y + 97, /0z = 0
8(ry/8y + a'ryzlaz + aTyx/ax =0 (equilibrium) (2.87)
9o /z + 3t_fx + dr_foy = 0

€, = ufdx v, = vlox + duldy

e, =dvdy v, =0owly+ dvidz [ (strain-displacement) (2.47)

€. = owldz vy, = duldz + dwldx

\
€ = (I/E)[O'X — v((ry + 0'2)]

¢, = (UB)o, — v(o,+ )]
€, = (1/B)lo, — v(o +o )] ((stress-strain relationships) (2.88)
Y, = 1/G)T,,
v,. = (/G)T,

Y., = /G, )

In cartesian tensor form these appear as
0,;=0 (equilibrium) (2.89)

26’./. =u,;tu, ij = x,y,2 (strain-displacement) (2.48)
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€, =[(1 +v)/Elo, - (VIE)d, 0,  (stress-strain) (2.90)

y

All are subject to appropriate boundary conditions.

If the boundary conditions are on displacements, then we can define the displace-
ment field, the six components of strain, and the six components of stress uniquely,
using the fifteen equations shown above. If the boundary conditions are on stresses,
then the solution process yields six strain components from which three unique dis-
placement components must be determined. In order to assure uniqueness, three con-
straints must be placed on the strain field. These constraints are provided by the com-
patibility relationships: \

e Oy’ + Pe Jx = dy, fx dy

Pe 077 + Pefoy* = Iy, JAy

PeJox® + 0P JAz? = Oy, Jdz O
2(% /Ay 0z) = (9/dx)(—dv, Jox + dy, Jy + v, /02)
2% /0z 9x) = (Idy)(dy, Jox — v, Jy + B, /)
23 Jox dy) = (@02)(D, fox + Iy, Jy — Dy, /7))

(compatibility)  (2.91)

In cartesian tensor form,

+ e

€im T Sy T € €

gt~ € =0 (compatibility) (2.92)

Of the six compatibility equations listed, only three are independent. Therefore, the
system can be uniquely solved for the displacement field.

It is possible to simplify the above sets of equations considerably by combining
and eliminating many of the unknowns. One such reduction is obtained by eliminating
stress and strain:

V2u + [1/(1 — 2v)](0A/0x) = 0
V2 + [1/(1 = 2v)](9A/dy) = 0 (2.93)
V2w + [1/(1 — 2v)](dA/dz) = 0

where V2 is the laplacian operator which in cartesian coordinates is 0%/dx*> + 9*/dy* +
0%/0z%; and A is the dilatation, which in cartesian coordinates is du/dx + dv/dy +
ow/oz.

Using the above general principles, it is possible to formulate completely many of
the technical problems of mechanics of materials which appear under special classifi-
cations such as “beam theory” and “shell theory.” These formulations and their solu-
tions will be treated under “Special Applications.”

2.6.3 Energy Formulations?>*>

Alternative useful approaches exist for the problem of mechanics of materials. These
are referred to as “energy,” “extremum,” or “variational” formulations. From a strictly
formalistic point of view these could be obtained by establishing the analogous inte-
gral equations, subject to various restrictions, such that they reduce to a minimum.
This is not the usual approach; instead energy functions U, W are established so that
the stress-strain laws are replaced by
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o, = d0U/de, T, =0Uldy
o, = BU/ae}, T = BU/B'\/lVZ

vz
o, = dUlde, T, =0Uldy,,
or .. = dU/oe..
J y
and € = JdW/da, Y, = aW/aT”
€= E)W/a(rv Yy, = Z)W/aﬂrvZ
€, = dWldo, Y, = OW/oT,
or e. = dW/do ..
ij ij
The energy functions are given by

U="%2GE+ e+ )+ Ne, + e+ €)*+ Giy2+ v+ )] (2.94)

xy

W= l/2[(1/E)(0')C2 +ol+0)— (E(oco,+00,+00)
+ (1/G)(t 2+ sz+7;)] (2.95)

The variational principle for strains, or theorem of minimum potential energy, is
stated as follows: Among all states of strain which satisfy the strain-displacement rela-
tionships and displacement boundary conditions the associated stress state, derivable
through the stress-strain relationships, which also satisfies the equilibrium equations,
is determined by the minimization of II where

- |

volume

UdV—J

(pu+ ]_)yv + pw) dS (2.96)
surface
where p , 1_7‘,, 132 are the x, y, z components of any prescribed surface stresses.

The analogous variational principle for stresses, or principle of least work, is:
Among all the states of stress which satisfy the equilibrium equations and stress
boundary conditions, the associated strain state, derivable through the stress-strain
relationships, which also satisfies the compatibility equations, is determined by the
minimization of I, where

-

volume

wav - |

~ (pu+py+pw)ads (2.97)
surface
where u, v, w are the x, y, z components of any prescribed surface displacements and
Py P, P, are the surface stresses.

In the above theorems I . and I, replace the equilibrium and compatibility rela-
tionships, respectively. Their most powerful advantage arises in obtaining approximate
solutions to problems which are generally intractable by exact techniques. In this, one
usually introduces a limited class of assumed stress or displacement functions for min-
imization, which in themselves satisfy all other requirements imposed in the statement
of the respective theorems. Then with the use of these theorems it is possible to find
the best solution in that limited class which provides the best minimum to the associ-
ated II or I function. This in reality does not satisfy the missing equilibrium or com-
patibility equation, but it does it as well as possible for the class of function assumed
to describe the stress or strain in the body, within the framework of the principle estab-
lished above. It has been shown that most reasonable assumptions, regardless of their
simplicity, provide useful solutions to most problems of mechanics of materials.
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2.6.4 Example: Energy Techniques®*>

It can be shown that for beams the variational principle for strains reduces to

min

L
I, = { [} vaEry = aax - ZPiy[} (2.98)

where EI is the flexural rigidity of the beam at any position x, / is the moment of iner-
tia of the beam, y is the deflection of the beam, the y” refers to x derivative of y, g is
the distributed loading, the P;’s represent concentrated loads, and L is the span length.

If the minimization is carried out, subject to the restrictions of the variational prin-
ciple for strains, the beam equation results. However, it is both useful and instructive
to utilize the above principle to obtain two approximate solutions to a specific problem
and then compare these with the exact solutions obtained by other means.

First a centrally loaded, simple-support beam problem will be examined. The func-
tion of minimization becomes

L2
II = EI(Y")* dx — Py, (2.99)
0
Select the class of displacement functions described by
y = Ax(4HL2 — x?) 0=x=<1Ln (2.100)
This satisfies the boundary conditions
y(0) = y"(0) =y (L12) = 0

In this A is an arbitrary parameter to be determined from the minimization of I1.
Properly introducing the value of y, y” into the expression for II and integrating,
then minimizing II with respect to the open parameter by setting

dll/0A = 0
yields
y = (Px/12EI) (/L2 — x?) 0=x=1L12 (2.101)

It is coincidental that this is the exact solution to the above problem.
A second class of deflection function is now selected

y = A sin (mx/L) 0=x=L (2.102)
which satisfies the boundary conditions

¥(0) =y"(0) = y(L) =y"(L) =0
which is intuitively the expected deflection shape. Additionally, y(L/2) = A.

Introducing the above information into the expression for Il and minimizing as before
yields

y = (PLYED|[(2/m*) sin (wx/L)] (2.103)

The ratio of the approximate to the exact central deflection is 0.9855, which indicates
that the approximation is of sufficient accuracy for most applications.
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MECHANICS OF MATERIALS 2.25

2.7 FORMULATION OF GENERAL
THERMOELASTIC PROBLEM?>®

A nonuniform temperature distribution or a nonuniform material distribution with uni-
form temperature change introduces additional stresses and/or strains, even in the
absence of external tractions.

Within the confines of the linear theory of elasticity and neglecting small coupling
effects between the temperature-distribution problem and the thermoelastic problem it
is possible to solve the general mechanics-of-material problem as the superposition of
the previously defined mechanics-of-materials problem and an initially traction-free
thermoelastic problem.

Taking the same consistent definition of stress and strain as previously presented it
can be shown that the strain-displacement, stress-equilibrium, and compatibility rela-
tionships remain unchanged in the thermoelastic problem. However, because a struc-
tural material can change its size even in the absence of stress, it is necessary to modify
the stress-strain laws to account for the additional strain due to temperature (a7). Thus
Hooke’s law is modified as follows:

e = (I/B)lo, —v(o + (rz)] + oT
e, = (/B)lo,— v(o_+ o)l + al (2.104)
€. = (I/E)lo, —v(o, + 0)] + af
The shear strain-stress relationships remain unchanged. « is the coefficient of ther-
mal expansion and 7 the temperature rise above the ambient stress-free state. In uni-
form, nonconstrained structures this ambient base temperature is arbitrary, but in prob-
lems associated with nonuniform material or constraint this base temperature is quite
important.
Expressed in cartesian tensor form the stress-strain relationships become
€= [(1+ 'I))/E]O'U - (v/E)SUo'kk + OLTBU (2.105)
In inverted form the modified stress-strain relationships are
o =2Ge + NA — 3\ + 2G)aT
0, =2Ge, + NA — 3\ + 2G)aT (2.106)
0, = 2Ge + NA — 3\ + 2G)aT
or, in cartesian tensor form,

o, = ZGEij + NA BU — (3N + 2G)0LT6U (2.107)

Considering the equilibrium compatibility formulations, it can be shown that the anal-
ogous thermoelastic displacement formulations result in

(N + G)@QAAX) + GV2u — B\ + 2G)a(dT/x) = 0
(N + G)(QAy) + GV — 3\ + 2G)a(dT/dy) = 0 (2.108)
N + G)QAAZ) + GV2w — (3N + 2G)a(dT/Az) = 0
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2.26 MECHANICAL DESIGN FUNDAMENTALS

A useful alternate stress formulation is

(1+v)V2(rx+aa?+ E(ltvva ax>
(1 +v) Ve + %%+ E(i—f—" VT + %5) =
(1 + Vo + CAC AN " VT OT\ _ (2.109)
072 1- 072

1+ v)VZT'W + 020/0x dy + aE(9*T/dx dy) = 0
1+ V)vayz + 020/dy 9z + aE(d*T/dy dz) = 0
(1 +v)V31_ + 0°0/dz dx + aE(d*T/dz dz) = 0

where © = o+ o, to.

2.8 CLASSIFICATION OF PROBLEM TYPES

In mechanics of materials it is frequently desirable to classify problems in terms of
their geometric configurations and/or assumptions that will permit their codification
and ease of solution. As a result there exist problems in plane stress or strain, beam
theory, curved-beam theory, plates, shells, etc. Although the defining equations can be
obtained directly from the general theory together with the associated assumptions, it
is often instructive and convenient to obtain them directly from physical considera-
tions. The difference between these two approaches marks one of the principal distin-
guishing differences between the theory of elasticity and mechanics of materials.

2.9 BEAM THEORY

2.9.1 Mechanics of Materials Approach!

The following assumptions are basic in the development of elementary beam theory:

1. Beam sections, originally plane, remain plane and normal to the “neutral axis.”
2. The beam is originally straight and all bending displacements are small.

3. The beam cross section is symmetrical with respect to the loading plane, an
assumption that is usually removed in the general theory.

4. The beam material obeys Hooke’s

:O_OZP E law, and the moduli of elasticity in
1 tension and compression are equal.
:I M Consider the beam portion loaded as
Ripa Bl B shown in Fig. 2.17a.

—'—"-—x’l lv For static equilibrium, the internal
y actions required at section B which are
() (b) supplied by the immediately adjacent
section to the right must consist of a ver-
FIG. 2.17 Internal reactions due to externally tical shearing force V and an internal

applied loads. (a) External loading of beam moment M, as shown in Fig. 2.17b.

segment. (b) Internal moment and shear.
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The evaluation of the shear V is accomplished by noting, from equilibrium 2.F . =0,
V=R—-P —P, (for this example) (2.110)

The algebraic sum of all the shearing forces at one side of the section is called the
shearing force at that section. The moment M is obtained from >M = 0:

M=Rx— P/(x—a)— P(x—a,) (2.111)

The algebraic sum of the moments of all external loads to one side of the section is
called the bending moment at the section.
Note the sign conventions employed thus far:

1. Shearing force is positive if the right portion of the beam tends to shear downward
with respect to the left.

2. Bending moment is positive if it produces bending of the beam concave upward.

3. Loading w is positive if it acts in the positive direction of the y axis.

In Fig. 2.18a a portion of one of the beams previously discussed is shown with the
bending moment M applied to the element.

!
L \{.\\j T o5

NA oy -

€may 0% - AR
e ST =T

dx -

W
(a) (b) (c)

FIG. 2.18 Beam bending with externally applied load. (a) Beam element. (b) Cross
section. (c) Bending-stress pattern at section B—D.

Equilibrium conditions require that the sum of the normal stresses o on a cross sec-
tion must equal zero, a condition satisfied only if the “neutral axis,” defined as the
plane or axis of zero normal stress, is also the centroidal axis of the cross section.

+c “+c
f obdyzif bydy =0 (2.112)
—_ y —c

c

where o/y = (e/ly) E = (e [y, . )E = const.
Further, if the moments of the stresses acting on the element dy of the figure are
summed over the height of the beam,

+c +c
sz obydy =2 bydy=21 (2.113)
—c y J—c y

where y = distance from neutral axis to point on cross section being investigated, and

+c
1= by? dy

—c
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is the area moment of inertia about the centroidal axis of the cross section. Equation
(2.113) defines the flexural stress in a beam subject to moment M:

o= Myl (2.114)
Thus O = Mcll (2.115)

ma:

To develop the equations for shear
< 7 stress T, the general case of the element
' of the beam subjected to a varying bend-
ing moment is taken as in Fig. 2.19.

A Applying axial-equilibrium conditions
r i T to the shaded area of Fig. 2.19 yields the

¢

i

1 = T following general expression for the hori-
= |
- !

zontal shear stress at the lower surface of
the shaded area:

o +do
M pe—dx—= M+dM <
T=d—MLJ‘ ydA (2.116)
FIG. 2.19 Shear-stress diagram for beam sub- dx Ib ¥y
jected to varying bending moment.
or, in familiar terms,
Vv f ¢ Vv
T=— dA = — 2.117
), A= 2 (2.117)

where O = moment of area of cross section about neutral axis for the shaded area
above the surface under investigation
V = net vertical shearing force
b = width of beam at surface under investigation

Equilibrium considerations of a small element at the surface where 7 is computed will
reveal that this value represents both the vertical and horizontal shear.

For a rectangular beam, the vertical shear-stress distribution across a section of the
beam is parabolic. The maximum value of this stress (which occurs at the neutral axis)
is 1.5 times the average value of the stress obtained by dividing the shear force V by
the cross-sectional area.

For many typical structural shapes the maximum value of the shear stress is
approximately 1.2 times the average shear stress.

To develop the governing equation for bending deformations of beams, consider
again Fig. 2.18. From geometry,

(€/2) dx _ dx/2

(2.118)
y p
Combining Eqs. (2.118), (2.114), and (2.72) yields
1/p = MIEI (2.119)
Since l/p = — d¥yldx* = —y” (2.120)
Therefore v’ = —MIEI (Bernoulli-Euler equation) (2.121)

In Fig. 2.20 the element of the beam subjected to an arbitrary load w(x) is shown
together with the shears and bending moments as applied by the adjacent cross sections
of the beam. Neglecting higher-order terms, moment summation leads to the following
result for the moments acting on the element:
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w(x) dMldx =V (2.122)

Differentiation of the Bernoulli-Euler
equation yields

' M+ dM V"= —VIEI (2.123)

Vv V+dv In similar manner, the summation of
transverse forces in equilibrium yields

dx dVidx = —w(x) (2.124)
FIG. 2.20 Shear and bending moments for a v W)
beam with load w(x) applied. or EI (2.125)

where due attention has been given to
the proper sign convention.
See Table 2.1 for typical shear, moment, and deflection formulas for beams.

2.9.2 Energy Considerations

The total strain energy of bending is

L
U =| ——d 2.126
’ jo 261 (2120
The strain energy due to shear is
Loy
U=| —d 2.127
"l 26a ™ 2.127)

In calculating the deflections by the energy techniques, shear-strain contributions
need not be included unless the beam is short and deep.

The deflections can then be obtained by the application of Castigliano’s theorem,
of which a general statement is: The partial derivative of the total strain energy of any
structure with respect to any one generalized load is equal to the generalized deflec-
tion at the point of application of the load, and is in the direction of the load. The gen-
eralized loads can be forces or moments and the associated generalized deflections are
displacements or rotations:

Y, = dUIoP, (2.128)

8, = QU/OM, (2.129)

where U = total strain energy of bending of the beam

P, = load at point a

M, = moment at point a

Y, = deflection of beam at point a
6 = rotation of beam at point a

2

Thus

L L
:a_U:i Mzﬂ: Ma_de (2.130)
“ 9P, dP o 2EI o EI 0P,
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I L
_oU _ 9d_ A _ ("M M (2.131)

0 = = =
“ oM, oM, o 2EI Yo EI oM,

An important restriction on the use of this theorem is that the deflection of the beam
or structure must be a linear function of the load; i.e., geometrical changes and other
nonlinear effects must be neglected.

A second theorem of Castigliano states that

P, =3U/Y, (2.132)
M, = dUI/de, (2.133)

and is just the inverse of the first theorem. Because it does not have a “linearity”
requirement, it is quite useful in special problems.

To illustrate, the deflection y at the center of wire of length 2L due to a central load
P will be found.

From geometry, the extension & of each half of the wire is, for small deflections,

d =~ y2L (2.134)
The strain energy absorbed in the system is
U = 24(AEIL)? = (AE/AL?)y* (2.135)

Then, by the second theorem,

P = Uy = (AEIL})y (2.136)
or the deflection is
y = LVP/AE (2.137)

Among the other useful energy theorems are:

Theorem of Virtual Work. 1f a beam which is in equilibrium under a system of exter-
nal loads is given a small deformation (“virtual deformation”), the work done by the
load system during this deformation is equal to the increase in internal strain energy.

Principle of Least Work. For beams with statically indeterminate reactions, the par-
tial derivative of the total strain energy with respect to the unknown reactions must be
Zero.

QUIOP, =0  QUIM, =0 (2.138)

depending on the type of support. (This follows directly from Castigliano’s theorems.)
The magnitudes of the reactions thus determined are such as to minimize the strain
energy of the system.

2.9.3 Elasticity Approach?

In developing the conventional equations for beam theory from the basic equations of
elastic theory (i.e., stress equilibrium, strain compatibility, and stress-strain relations)
the beam problem is considered a plane-stress problem. The equilibrium equations for
plane stress are
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0o /ox + d7_/dy =0 (2.139)
Bcry/ay + aTxy/Bx =0 (2.140)

By using an “Airy stress function” (s, defined as follows:

o, = dA/dy* o, = 0*Y/ox? T = —0dX/dx dy (2.141)

Xy

and the compatibility equation for strain, as set forth previously, the governing equa-
tions for beams can be developed.
The only compatibility equation not identically satisfied in this case is

0% [0y* + d%€ Jox* = &>y, /ox Iy (2.142)

Substituting the stress-strain relationships into the compatibility equations and intro-
ducing the Airy stress function yields

/Xt + 20492 dy? + Myt = V4 = 0 (2.143)

which is the “biharmonic” equation where V2 is the Laplace operator.

To illustrate the utility of this equation consider a uniform-thickness cantilever
beam (Fig. 2.21) with end load P. The boundary conditions are o, =T, = 0 on the
surfaces y = * ¢, and the summation of shearing forces must be equal to the external
load P at the loaded end,

fﬂ ’Txyb dy =P

—c

P }
L >

b PW
z 2c Of——x — ]

y A
FIG. 2.21 Cantilever beam with end load P.
The solution for o is
o, = 0R/dy* = cxy (2.144)

Introducing b(2¢)3/12 = I, the final expressions for the stress components are

o = —Pxyll = —Myll

x

o =0 (2.145)
T =—P(*— y2)/21

xy

To extend the theory further to determine the displacements of the beam, the defin-
itions of the strain components are

€ = ou/dx = o JE = —PxylEI
€ = ovldy = —vo /E = vPxy/EI (2.146)
Y,, = 0uldy + oviox = [2(1 + v)/ElT = [(1 + V)P/EI(c* — y?)
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Solving explicitly for the # and v subject to the boundary conditions
u=v=09uldx=0 atx=Landy =0
there results
v = vPxy*2EIl + Px3/6EI — PL*x/2EI + PL*/3EI (2.147)
The equation of the deflection curve aty = 0 is
W),_o= (PI6ED(x* — 3L%x + 2L%) (2.148)
The curvature of the deflection curve is therefore the Bernoulli-Euler equation

/p=— (9%/0%),_, = — PxIEl = MIEI = — y" (2.149)

EXAMPLE 1 The moment at any point x along a simply supported uniformly loaded
beam (w 1b/ft) of span L is

M = wLx/2—wx*/2 (2.150)

Integrating Eq. (2.121) and employing the boundary conditions y(0) = y(L) = 0, the
solution for the elastic or deflection curve becomes

y = (WL*24ED(x/L)[1 — 2(x/L)> + (x/L)*] (2.151)

EXAMPLE 2 In order to obtain the general deflection curve, a fictitious load P, is placed
at a distance a from the left support of the previously described uniformly loaded beam.

M = —wx*2 + wLx/2 + [P x(L — a)l/L O<x<a

(2.152)
M = —wx*2 + wLx/2 + [P a(L — x)]/L a<x<L
From Castigliano’s theorem,
y, = 3—;{ = ()L%g—gdx (2.153)
and therefore
y, = (VED(Yawa* — VowLa® + YawaL?) (2.154)

The elastic curve of the beam is obtained by substituting x for a in Eq. (2.154), result-
ing in the same expression as obtained by the double-integration technique.

EXAMPLE 3 It can be shown, considering stresses away from the beam ends, and essen-
tially considering temperature variations only in the direction perpendicular to the beam
axis (or in two or more directions by superposition) that the traction-free thermoelastic
stress distribution is given by

+c

+c
WET dy + =2 | k1 ay (2.155)

-
= —aET + — Y
I o 2c 2¢3

—c

Since this stress distribution results in a net axial force-free, and moment-free, distrib-
ution but nonzero bending displacements and slopes, it would be necessary to super-
pose any additional stresses associated with actual boundary constraints.
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Because the stress distribution is independent of any linear temperature gradient, it
is always possible to add an arbitrary linear distribution 7”, such that 7, = T + T~
and [T dy =]T_ydy = 0.

Thus

o = — aFT, (2.156)

tot

In general 7° can be chosen with sufficient accuracy by visual examination of the tem-
perature distribution to make the “total-temperature integral” and its “first moment”
equal zero. Thus the simplified formula together with its interpretation presents a use-
ful graphical thermoelastic solution for beam and slab problems.

For the beam with temperature distribution 7 = a(c* — y?) and a is an arbitrary con-
stant, superimpose a temperature distribution 7" such that A, = —A,., where A, refers
to the area under the temperature distribution curve. Evidently

T = — %ac*
and T,=T+T =a(?—y>) — %ac

and ij[ dy = ijy dy = 0, evident from the selection of 7° and symmetry. The stress

is therefore

o= —aET _ = — aEla(c* — y*) — %ac? (2.157)

tot

2.10 CURVED-BEAM THEORY'

A “curved beam” (see Fig. 2.22) is defined as a beam in which the line joining the
centroid of the cross sections (hereafter referred to as the “center line”) is a curve. In
the standard developments of the equations for the stresses and deflections for curved
beams the following assumptions are usually made and represent the restrictions on
the applicability of curved-beam theory:

The sections of the beam originally plane and normal to the center line of the beam
remain so after bending.

{a} (b) {c)

FIG. 2.22 Bending of curved beam element. (a) Beam element. (b) Cross section.
(c) Bending-stress pattern at section C-D.
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All cross sections have an axis of symmetry in the plane of the center line.
The beam is subjected to forces and moments acting in the plane of symmetry.

2.10.1 Equilibrium Approach

In Fig. 2.22 a “positive bending” moment is taken as one which tends to decrease the
curvature of the beam. If R denotes the curvature of the beam at the centroid of a sec-
tion, then it can be shown that the neutral axis is displaced from R a distance toward
the center of curvature. As with straight beams, the “neutral axis” is defined as that
axis about which the integrated tangential force is zero, when the external traction is
restricted to a bending moment. This distance y may be computed from
_A

[ dam

where A = cross-section area of beam, v the distance from the center of curvature to
the incremental area; and the integration f dA/v is carried out over the entire section of
the beam.

The flexural stress at any point a distance y from the neutral axis is

y=R-— (2.158)

o = Ee = Ey(Add)/(r — y) dd (2.159)

which shows that the normal stress distribution over a cross section is not linear, as
would be the case in simple beam theory, but hyperbolic in shape. Equating the sum of
the moments of each of these segments of normal stress to the applied bending
moment on the element,

f dA = E(Add’) YdA _ (2.160)
r—y

yields the resulting expression for the stress
o = MylAy(r — y) (2.161)
with the stresses at the extreme fibers, points 1 and 2, expressed by
o, = Mh /Aya (tensile) o, = Mh,/Ayb (compressive) (2.162)

The above-described stresses result from pure bending only. If a more general load-
ing condition is given, it must be reduced to the statically equivalent couple and a
normal force through the centroid of the section in question.” Then the extensional
stresses resulting from the normal force are superposed on the flexural stresses due to
the couple.

The development of the governing equation for the displacement of a curved beam,
for small deflections with a circular center line, depends on the differential quantities
shown in Fig. 2.23, where 1/r and 1/r, are the respective curvatures of the undeflected
and the deflected beam.

Note that the radial displacement u is taken positive inward in these relations. A
comparison of the changes in length A ds and central angle A d¢ due to deformation
leads to

Ur, — Ur = ulr*+ dulds* (2.163)

“This also applies in the general case when a shearing force also may be acting on this section.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2.43

2
——g ds (angle between deformed and undeformed
center lines at position n,)

~—Beam element
after deformation

% {angle between deformed e

and undeformed center
lines at position my)

Beam efement before deformation

FIG. 2.23 Curved beam with circular center line.

If the thickness of the beam is small compared with the curvature, then
Ur,— 1/r = —MIEI (2.164)

and the differential equation for the deflection curve of a curved beam, which is
entirely analogous to that of simple-beam theory, becomes

d*ulds* + ulr* = —MIEI (2.165)

For an infinitely large r this reduces to the Bernoulli-Euler equation for simple beams.

2.10.2 Energy Approach

A second and more powerful approach, which does not require that the center line of
the beam be circular, is essentially the application of Castigliano’s theorem. The
expression for the strain energy in bending of a curved beam is similar to that of simple-
beam theory,

2.166
2EI ( )

where the integration is over the entire length of the beam. The deflection (or rotation)
of the beam at a point under a concentrated load (or moment), is

8, = oUIJP, (2.167)

The utility of Eqgs. (2.166) and (2.167) in calculating the deflection of curved
beams can best be shown by example.
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-
\

FIG. 2.24 Simple curved beam with verti- X .
cal load P. FIG. 2.25 Circular ring.

EXAMPLE 1 The curved beam shown in Fig. 2.24 has a uniform cross section. To deter-
mine the horizontal and vertical deflections and rotations, at point B fictitious load Q and
M are assumed to act. At any point s on the beam,

M, = —[Prcos 6 + Qr(1 — sin 0) + M] (2.168)
OMJOP = —rcos®  OM/IQ = —r(1 —sin®)  IMJ/OM = —1 (2.169)

Substituting Q = 0, M = 0 in the expression M_we have, for the three deformations
with ds = r do,

s M aM /2

5 = U|,, = (22, P—0052 odo =T (2.170)

y T 9P | vw o EI oP 4 EI

|, M, om 2 pp3
5 = = Mas = | - 1 - do = 2.171
* 30| o J;) El 90 J:) gy cos 01 —sin®)do = 2E1 2.171)
U s M, oM, ™2 pr PP

= =gy = I o =T 2172
O=omls fo 5o Y fo g cos0dv =" 2172

EXAMPLE 2 Circular Ring-Energy Approach. The circular ring is subjected to equal and
opposite forces P as shown in Fig. 2.25. From symmetry considerations an equivalent
model may be constructed where the load on the horizontal section is denoted by
moment M, and force P/2. From symmetry, there is no rotation of the horizontal section
at point A. Therefore, by Castigliano’s theorem,

6, =0UlOM, =0 (2.173)
The moment at any point s is given by
M_= M, — (PI2)r(1 — cos 0) and oM /oM, = 1 (2.174)
Substituting in Eq. (2.173) and imposing the condition of zero rotation,

U _ "M oM,
oM, o EI aM

6,=0=

/2 1
N = f [M — —(1 — cos 6)]r do (2.175)
which leads to

= (Pr2)(1 — 2/m) (2.176)
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which yields the moment expression
M_ = (Pr/2)(cos 6 —2/m) (2.177)

The total strain energy for the entire ring is four times that of the quadrant consid-
ered. To obtain the total increase in the vertical diameter, the following steps are
taken:

w2 M2
U:4J;) ZESIrdG (2.178)
8,=a—U=i 1TQM(BA/IS);’dG:P—'JF/Z(cosf)—£>2d() (2.179)
Y dP El) 5\ oP EI Yo T
5, = % (% - %) (2.180)
Equilibrium Approach: The basic equation for this problem is
d*ulds® + ulr* = — M JEI (2.181)
Substituting Eq. (2.177) yields

r> dPulds* + u = (Pr3/2ED(2/m — cos 0) (2.182)

The boundary conditions, derived from the symmetry of the ring, are
uw@=0=u®=m/2)=0

The general solution of Eq. (2.182) is

u=Acos0 + Bsin 0 + Pr’/Elw — (Pr/4EI) 0 sin 0 (2.183)
A = — Pr/4EI and B=0 (2.184)
Then u = Pr3/Elw — (Pr’/AEI) cos § — (Pr3/4ED0 sin 0

The increase in the vertical radius (point B at § = 7/2) becomes

u(® = w/2) = (PP/ED(1/7 — /8) (2.185)
Thus the total increase in the vertical diameter 8 is
d, = — 2u(b = m/2) = (PPIED)(m/4 — 2/w) (2.186)

which is in agreement with Eq. (2.180).

2.11 THEORY OF COLUMNS!

The equilibrium approach for slender symmetrical columns is based on two sets of
assumptions:

1. All the basic assumptions inherent in the derivation of the Bernoulli-Euler equation
apply to columns also.

2. The transverse deflection of the column at the point of load application is not small
when compared with the eccentricity of the applied load.
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This theory is best described with the aid of a typical column, taken with a built-in
support and subjected to an eccentric load, as illustrated in Fig. 2.26.
The moment at any section a distance x from the base is

M=—-PB+e—Yy) (2.187)

where the negative sign is in accordance with the sign convention for simple beams.
Writing the Bernoulli-Euler equation for the bending deflection of this member with
the aid of the substitution p?> = P/EI gives

Y+ py=p@te) (2.188)
The general solution of Eq. (2.188) is
y=Asinpx+ Bcospx+3d +e (2.189)
From the boundary conditions for a built-in end
y0)=y(0)=0
the equation for the deflection curve is
y = + e)(1 — cos px) (2.190)
The deflection at the end of the column at x = L is seen to be
d = e(1 — cos pL)/(cos pL) (2.191)

The complete description of the deflection curve for any point in the column thus
becomes

y = e(1 — cos px)/(cos pL) (2.192)

These results can easily be extended to cover a column hinged at both ends by redefin-
ing terms as indicated in Fig. 2.27. Thus, from symmetry, the relation of the deflection
at the mid-span can be written directly from the previous results:

S = e{l—cos (%)]/ cos (%) (2.193)

o

Z%(SH—y) N
. L
| il

P

FIG. 2.26 Column subjected to an eccentric
load. FIG. 2.27 Column hinged at both ends.
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In applying these equations note that the deflection is not proportional to the com-
pressive load P. Hence the method of superposing a compressive deflection due to P
and a bending deflection due to the couple Pe cannot be used for column action.

In considering column action the concept of “critical load” is of fundamental
importance. As the argument of the cosine in the equations for the maximum deflec-
tion approaches a value of /2, the deflection & increases without bound and in actual
practice the column will fail in a buckling regardless of the eccentricity e. Substituting
the value pL = /2 and pL/2 = m/2 back into p* = P/EI will yield

P, = wEI4L? for the single built-in support (2.194)
P, = wEIL? for the hinged ends (2.195)
P, = 4m?EI/[? for the both ends built-in (2.196)

The above equations for the critical load (Euler’s loads) depend only on the dimen-
sions of the column (I//L?) and the modulus of the material E. If the moment of inertia
is written I = Ak?, where k is the radius of gyration, the critical-load expressions take
the form

P = C,mAE 2.197
CR — (L/k)? @. )
where the dependence is now on the material and a slenderness ratio L/k.
The “critical stress” for a column with hinged ends is given by
P 2F
_lter _ ™
O'CR = T = (L/k)2 (2198)
A plot of o, vs. L/k is hyperbolic in form, as shown in Fig. 2.28.
Long column range
40,000 ~
= 1 N
< \ \
bf‘) 30,000 ‘v\ Proportional limit of mild steel ——
2 [ ]
@ Long column range
£ 20000 St AL
—_ € €”/8
2 Proportional L cy Lurye fo
£ 10000 — f ~Lve fo—rt [Mild spoer]
S g limit of O alym: Y Stee]
175-T clloy/ W\-
0 1
0 50 100 150 200 250

Slenderness ratio Lk

FIG. 2.28 Curve of critical stress vs. slenderness ratio for a column with hinged ends.

The horizontal line in Fig. 2.28 indicates the compressive yield stress of a typical
structural steel. For analysis purposes, one uses the compressive yield stress as the
design criterion for small slenderness ratios and the Euler curve for higher ratios.

Much column design, especially in heavy structural engineering, is accomplished
by means of the application of empirical formulas developed as a result of experimental
work and practical experience. Several of these formulas are presented below, for
hinged bars. Straight-line formulas for structural-steel bars:
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g = Poi/A = 48,000 — 210(L/k) (2.199)
Parabolic formula for structural steels:
0 = 40,000 — 1.35(L/k)? (2.200)

Gordon-Rankine formula for main members with 120 < L/k < 200:
_ 18,000 L
o = 6 —
© 1+ L*18,000k? 200k
where o is a working stress.

(2.201)

2.12 SHAFTS, TORSION, AND
COMBINED STRESS!

2.12.1 Torsion of Solid Circular Shafts

When a solid circular shaft is subjected to a pure torsional load, the reaction of the
shaft for small angles of twist is assumed to be subject to the following restraints:

1. Circular cross sections remain circular and their diameters remain unchanged.
2. The axial distances between adjacent cross sections do not change.
3. A lateral surface element of the shaft is in a state of pure shear.

The shearing stresses acting on an element a distance » from the axis are

T=Grb (2.202)

where 6 = angle of twist per unit length of shaft
G = modulus of rigidity = E/2(1 + v)

The shear stress, maximum at the surface is

Towx = AGOD (2.203)

ma:

where D = diameter of the shaft.
The total torque acting on the shaft can be expressed as

T= f r(tdA) = f G2 dA = GOJ (2.204)
A A

T=K0 (2.205)

where J = polar moment of inertia of the circular cross section and K = torsional
rigidity = GJ for circular shafts. Therefore, the most useful relations in dealing with
circular-shaft torsional problems are

7. = TD2] = 16T/wD? (2.206)

ma

& = TLIGJ = TLIK (2.207)

where ¢ = total angle of twist for the shaft of length L.
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2.12.2 Shafts of Rectangular Cross Section
For a shaft of rectangular cross section,
T = (TIh)[3 + 1.8(t/h)] (h>1) (2.208)
b =TL/IK (2.209)

where K = Bh’G and the constant B is 0.141, 0.249, and 0.333 for various ratios of
h/t of 1.0, 2.5, and o, respectively.

2.12.3 Single-Cell Tubular-Section Shaft

In Fig. 2.29 a general tubular shape is
subjected to a pure torque load; the
resultant angular rotations will be
about point 0. Considering a slice of
the tube of length L, the “shear flow”
g can be shown to be constant around
the tube. In thin-walled-tube problems
the shear is expressed in terms of
force per unit length and is thought of
as “flowing” from source to sink in

q = shear flow=1

r = mean rodius much the same manner as in hydrody-
of tube wall . .
namics problems. Thus it can be
FIG. 2.29 Shaft with general tubular shape. shown that
q =TRA (2.210)

where A = area enclosed by the median line of the section = 77?2 for a circular tubular
section of mean radius 7. The total strain energy and total angle of twist (with no warp-
ing) for the tube is

U = ¢ (¢*L/2(G) ds (2.211)
& = QUIOT = (TLIAAZG) § dslt

= (LI2AG) § (g/t) ds (2.212)
The unit angle of twist is
0 = ¢/L = (1/2AG) $ (g/1) ds (2.213)

The torsional rigidity of the tubular section may then be defined as

_4n
K= 5 © (2.214)

For a circular pipe of mean diameter D, , the value of the rigidity becomes

K = (mD3 14)G (2.215)
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2.12.4 Combined Stresses

Frequently problems in shafts involve combined torsion and bending. If the weight of
the shaft is neglected relative to load P, there are two major components contributing
to the maximum stress:

1. Torsional stress 7, which is a maximum at any point on the surface of the shaft
2. Flexural stress o, which is a maximum at the built-in end on an element most
remote from the shaft axis

The direct stresses due to shear are not significant, since they are a maximum at the
axis of the shaft where the flexural stress is zero. The loads on the element at the built-

inend are 7 = Prand M = —PL, and the stresses may be evaluated as follows:
T = TD/2J = PrD/2J] (2.216)
o = Mc/l = = PLD/2] (2.217)
where r = load offset distance
D = shaft diameter
L = shaft length
The maximum principle stress on the element in tension is
o, =02+ BVo2+ 472 (2.218)

Noting that for a circular shaft the polar moment is twice the area moment about a
diameter (J = 2I):

o =DM + VM + T2 = (PLD/AD[1 + V1 + (/L)] (2.219)
where I = wD*/64
The maximum shear stress on the element is
7. = DIAI VM2 + T2 = (PLDI4) V1 + (rIL)? (2.220)
EXAMPLE 1 For a hollow circular shaft the loads and stresses are
T = Pr T = PrD/2]
M = PL o = PLD/2]
. __16DPL {1 . \/1_+<__7_ﬂ
" w(Dy = D) L (2.221)
gt | ]
For the angular deflection,
K = wD*%G/4
0 = T/IK = 4Pr/nD%G (2.222)
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& = 0L = 4PrLimD*G

}, where D = (D, + D)/2.
% EXAMPLE 2 The shear stresses and angular
4 deflection of a box as shown in Fig. 2.30 will

L —i now be investigated.
The shear flow is given by

FIG.2.30 Rectangular thin-walled section. q=TPA (2.223)
where A = plane area (b—1)(h—1t). The shear stress
T =qlt = T2t(b—1t)(h—1) (2.224)
The steps in obtaining the torsional rigidity are
$dslt = 1t[2(b — t) + 2(h—1)] (2.225)

_ 4A°G _ 26t — p(h — HI?
é dslt b—0+h-—-1

(2.226)

_ oy _TL _ TL(b =0+ (h= 1]
b=0L=" 2G1(b — Hh — DI (2.227)

2.13 PLATE THEORY?'

2.13.1 Fundamental Governing Equation

In deriving the first-order differential equation for a plate under action of a transverse
load, the following assumptions are usually made:

1. The plate material is homogeneous, isotropic, and elastic.

2. The least lateral dimension (length or width) of the plate is at least 10 times the
thickness A.

3. At the boundary, the edges of the plate are unrestrained in the plane of the plate;
thus the reactions at the edges are taken transverse to the plate.

4. The normal to the original middle surface remains normal to the distorted middle
surface after bending.

5. Extensional strain in the middle surface is neglected.

The deflected shape of a simply supported plate due to a normal load ¢ is illustrated
in Fig. 2.31, which also defines the coordinate system. The positive shears, twists, and
moments which act on an element of the plate are depicted in Fig. 2.32.

Application of the equations of equilibrium and Hooke’s law to the differential ele-
ment leads to the following relations:

oM /ox + oM Jdy = Q

X

Mw = D(1 — v)(d*w/dx dy) = _1”v

x

an/ay + anx/ax =0, M_ = —D(9*w/ox* + vd*w/dy?) (2.228)
dQ,/ox + 0Q /dy = —q M = —D(9*w/9y* + vd*w/ox?)
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FIG. 2.32 Shears, twists, and moments on a

FIG. 2.31 Simply supported plate subjected to
plate element.

normal load g.

where D = ER*/12(1 — v?) = plate stiffness and is analogous to the flexural rigidity
per unit width (EI) of beam theory.

Properly combining Eqs. (2.228) leads to the basic differential equation of plate
theory

Viw = o*wlox* + 2(9*w/d*x 0%y) + d*w/dy* = q/D (2.229)
This may be compared with the similar equation for beams
d*yldx* = g/EI (2.230)

The solution of a specific plate problem involves finding a function w which satis-
fies Eq. (2.229) and the boundary conditions. With w known, the stresses may be eval-
uated by employing

o, = * 6M/n’

ma

0, = = 6M /R (2.231)

it

Ty = 6M)0/h2

2.13.2 Boundary Conditions

The usual support conditions and the associated boundary conditions are as follows:
Simply supported plate:

w=0 (zero deflection)

M=0 (zero moment)
Built-in plate:

w=0 (zero deflection)

w =0 (zero slope)
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Free boundary:
M=0 (zero moment)
V=0 (zero reactive shear)

where it is noted that

V=0 - BMX},/ay = —D[PW/ox> + (2 — v)(Pw/ox dy?)]

2.232
V=0~ aMxy/ax = —D[PW/Iy’ + (2 — v)(*w/dy 9x?)] ( )

where positive V is directed similar to positive Q.
Note that two boundary conditions are necessary and sufficient to solve the prob-
lem of bending for plates with transverse loads.

= a

EXAMPLE 1 For this problem the loading
on a simply supported plate is taken to be
_} 5 . distributed uniformly over the surface of
b
2

that plate, and the coordinate axes are
redefined as indicated in Fig. 2.33.
The deflection solution must satisfy
Eq. (2.229) and the boundary condi-
y
tions

FIG. 2.33 Rectangular plate, simply supported.

w=0 and Pwloxr =0 atx =0, a
w=0 and *w/dy* = 0 aty = * b/2

A series solution of the form

oo

w = Y sin
m

mmx

(2.233)

m=1

is assumed, and after manipulation, the following general expression results for the
deflection surface:

dgat & 1 ( o, tanh o + 2 2a,y
= Z —|1- co

= S
RS m=T3.. M 2cosh o, b
% 2y . 200\ . mmx
—=sinh —=— sin 2.234
2cosha, b ) ( )

where o = mmb/a. The maximum deflection occurs at x = a/2 and y = 0:

max

4ga* o (—1)m=Dn (1 o, tanha, +2
- _

4
_ oaga
= 2.235
) D ( )

TFSD m=13, . m 2 cosh OLm

where a = a(b/a). The maximum moments M __  and M . may be expressed by
Bga® and B,ga?, respectively, where 3 and 3, are functions of b/a.

The final group of plate problems deals with edge reactions which are distributed
along the edge and the concentrated forces at the corners to keep the corners of the
plate from rising, as shown in Fig. 2.34.

Note that the V and V| are negative in sign, whereas R is positive and directed down
in accordance with the adopted sign convention for plates.
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The maximum value of V, V and R may be
expressed by dqa, 3 qa, and nqa respectively,
where 8, 8,, and m have the same basic functional
relation as the earlier defined coefficients.

Figure 2.35 presents curves of the important
R vy R plate coefficients.

FIG. 2.34 Edge reactions of simply EXAMPLE 2 The solution for the simple-support

supported plate. uniform-load problem as illustrated above is used as
the basis for the solution for a built-in-edge problem.
Transposing coordinates as in Fig. 2.36,

S (—)mhR a tanho +2
_ 4za Z (=1 : cos mux( - cosh /T
°D m=1,3,... m a 2 cosh OL”I
L mmy Gop 2y ) (2.236)
2cosha, a a
0.15 l
10a
/Aﬁ-"" ;-
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FIG. 2.35 Deflection and moment coefficients ~ FIG.2.36 Rectangular plate with built-in edges.
for rectangular plate on simple supports.

To satisfy the edge restrictions imposed by built-in supports, the deflection of a
plate with moments distributed along the edges is superposed on this simple-support
solution. These moments are then adjusted to satisfy the built-in boundary condition
ow/on = 0. The procedure finally results in a solution for the maximum deflection at
the center of the plate of the form

w_ = a'qa*/D (2.237)

max

The coefficient o can be evaluated as a function of b/a.
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0.10 Similar expressions for the moments
at the center of the plate and at two edges
8 are as follows:
// Edge: M _= —p’gd? M, = —Biqa*
. (2.238a)
// B, ]
7T Center: M =v'qa*> M, =y qd’
0.05 - ) )
Yo Lo (2.238D)
, Figure 2.37 presents o, B*, B1, v, v,
/ﬂ"f_ e = ] in graphical form.
L4
] B ] S EXAMPLE 3 We shall use a numerical
method to solve the simple-support uniform-
0 pl load problem. The following expressions
1.0 4 1.8 b 2.2 define the finite-difference form for the

Ratio ¢ second-order partial derivatives in question
(see Fig. 2.38).

FIG. 2.37 Deflection and moment coefficients
for rectangular plate with built-in edges.

Pw| Wi T 2wt w Pw|  We T 2wt w. 2939
a2l h? Wi K (2:239)
—f i fm

Yit

Deflection
surface

FIG. 2.38 Grid of rectangular plate, simply supported.

For the grid, h = k,

Viw = (BDYw,  +wep Fw_ +w._ —4w) (2.240)
Utilizing
¢ = (V2w)D (2.241)
and Vi = (1) (b + by T b+ b, — 4d) (2.242)
The governing equation is
Vi =gq (2.243)
Consider now a square plate coarsely divided into four segments. Then evidently & =
k=a2andw,  =w.,, =w_, =w,__ = 0since these points are on the boundary.
Also V2w, = V2w, = 0and, using the last of the above equations, we find

by = =b,=¢, =0
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Therefore, Vip = —4¢/h? = q (2.244)
Substituting back into the original equation yields

Viw, = ¢/D = —4w /h* = —qa*/16D (2.245)

w, = (1/256)(ga*/D) (2.246)

This is approximately 3.5 percent below the maximum deflection obtained by analyti-
cal means:

w,_ .= 0.00406(¢ga*/D) (2.247)

ma:

Thus, even with this crude grid, the center deflection can be obtained with reasonable
accuracy. Since the stress is obtained by combinations of higher derivatives, however,
a finer grid is required for a correspondingly accurate stress evaluation.

2.14 SHELL THEORY?*'?

2.14.1 Membrane Theory: Basic Equation

The general problem of determining stresses in shells may be subdivided into two dis-
tinct categories. The first of these is a moment-free “membrane” state of stress, which
often predominates over a major portion of the shell. The second, associated with
bending effects, is the “discontinuity stress,” which affects the shell for a limited seg-
ment in the vicinity of a load or profile discontinuity. The final solution often consists
of the membrane solution, corrected locally in the regions of the boundaries for the
discontinuity effects.

The “membrane solution” for shells in the form of surfaces of revolution, and
loaded symmetrically with respect to the axis, often requires the following simplifying
assumptions:

1. The thickness & of the shell is small compared with other dimensions of the shell,
and the radii of curvature.

2. Linear elements which are normal to the undisturbed middle surface remain
straight and normal to the deflected middle surface of the shell.

3. Bending stresses are small and can be neglected; so that only the direct stresses due
to strains in the middle surface need be considered.

The basic element for a shell of revolution when subjected to axisymmetric loading
is shown in Fig. 2.39. From conditions of static equilibrium the following equations
may be derived:

(dldd)(N ry) = Nyr, cos & + Yrirg=0 (2.248)
Nyt Nyr, sind + Zrir, =0 (2.249)

where Y and Z are the components of the external load parallel to the two-coordinate
axis, respectively. Thus, in general, if these components of the load are known and the
geometry of the shell is specified, the forces N, and N, can be calculated.

If now the conditions of static equilibrium are applied to a portion of a shell above
a parallel circle instead of an element as indicated in Fig. 2.40, then the following
equations result:
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597

FIG. 2.39 Element of shell of revolution. FIG. 2.40 Shell portion above parallel circle.
21N, sind + R =0 (2.250)
N Jr,+ Nyfr, = =2 (2.251)

where R is the resultant of the total load on that part of the shell in question. Again
these two equations suffice for the determination of the two forces N, and N,,.
The associated principal stresses for these members are then

o, =N/h and o, = Ny/h (2.252)

To complete the consideration of membrane action for shells with axisymmetric
loading, the concomitant displacements must be computed. The procedure indicated
below applies for symmetrical deformations, in which the displacement (along a
meridian) is indicated by v and the displacement in the radial direction is w (with an
inward displacement taken as positive).

From geometry and Hooke’s law,

dvldd — v cot b = fid) (2.253)
where Ad) = (UERIN,(r, + vr,) = Ny(r, + vr))]
The solution of Eq. (2.253) is
v = sin &{[[f(b)/sin bldd + C} (2.254)

The constant C is evaluated from the boundary conditions of the problem. The radial
displacement is then determined from the following:

w =vcot b — (r/EH)N, — vN,) (2.255)

A similar analysis on a cylindrical shell without the restriction of symmetric load-
ing will yield the basic equations

N fox + (1NN, ,/ad) = —X (2.256)
IN,/0x + (1/1)(INJdb) = —Y (2.257)
N, = —Zr (2.258)

where the coordinate axes are redefined in Fig. 2.41 to be consistent with usual prac-
tice and Egs. (2.254) and (2.255) are suitably modified.
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2.14.2 Example of Spherical Shell Subjected to Internal Pressure

For a hemispherical section of radius q,
the forces N, distributed along the edges
X are requireg to maintain equilibrium.
These may be determined from the previ-

i y ous equations. Now
2maN, sind + R =0 (2.259)

FIG. 2.41 Cylindrical shell.

where R = —ma’p sin ¢ = sin (7/2) = 1
so that N¢ = pal2 (2.260)
From the other equation of equilibrium,

Nd)/a + Nja=-Z=p (2.261)
where N, = pal2

The stresses may now be written as

o, = 0, = pal2h (2.262)

¢

From loading symmetry, it is concluded that v = 0 and the increase in the radial direc-
tion is given by

w = (—alER)(N, = vN,) (2.263)
w = (—pa®2Eh)(1 — v) (2.264)

2.14.3 Example of Cylindrical Shell Subjected to Internal Pressure

Using a procedure similar to that outlined above, the following relationships are
derived:
For open-ended cylinder:

o, = palh (2.265)
w = —pa?/Eh (2.266)
For closed-ended cylinder:
o, = palh (2.267)
o = pal2h (2.268)
w = —(pa*Eh)(1 — v/2) (2.269)

2.14.4 Discontinuity Analysis

The membrane solution does not usually satisfy all “edge” conditions, and it is there-
fore often necessary to superpose a second, “edge-loaded” shell in order to obtain a
complete solution.
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To develop the general equations for the
cylindrical shell with axisymmetric load, con-
de sider an element as shown in Fig. 2.42, where
Ny bending moments are assumed acting. The
I dx  coordinate system is as defined in Fig. 2.41.
All forces and moments are shown in their
—2X4x  positive directions. Referring to Fig. 2.42, O
is the shear force per unit length, M is the
axial moment per unit length, M, is the cir-
cumferential moment per unit length, and N,
FIG. 2.42 Cylindrical-shell element. N, are the normal forces defined in the discus-

sion of membrane theory.

Applying the equations of equilibrium
and Hooke’s law and expressing the curvature as a function of moment (as was done
in developing the plate equations), the following basic shell differential equation is
obtained:

d*wldx* + 4B*w = ZID (2.270)
where D = ER3/12(1 — v?)
4= 3(1 — v¥)/a*h?
w = radial deflection of shell (positive inward)

The solution of the above equation in any particu-
lar case depends on the specific boundary condi-

Qq tions at the ends of the cylinder.
M One very useful solution is for the case of a
0 . . . :
( long cylinder, without radial pressure, subjected to

uniformly distributed forces and moments along

the edge, x = 0. The assumed positive directions of

3 these loads are as shown in Fig. 2.43. The resultant
expression for the deflection is

K-/’Mo w = (e P/2B3D)[BM(sin Px—cos Bx)—Q, cos Bx]
(2.271)

FIG. 2.43 Long-cylinder section.
The maximum deflection occurs at the loaded end
and is evaluated as

w._, = —(12B°D)BM, + Q,) (2.272)

x=0

The accompanying slope at the loaded end is

w_, = (1128*D)2BM, + Qp) = (dwldx) 2.273)

x=0 x=0

The successive derivatives of the above expression for deflection can be written in the
following simplified form:

w = —(112B°D)[BM(Bx) + O 0(Bx)]
w’ = (128°D)[2BMB(Bx) + Qyb(Bx)] (2.274)
w” = —(1/12BD)[2BM,b(Bx) + 20,E(Bx)]
w" = (UD)2BMEBx) — Qb(B)]
where b(Bx) = e P (cos B + sin Bx)
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Bx FIG. 2.45 Short shell. (a) Bending by shears.
FIG. 2.44 Slope and deflection functions. (b) Bending by moments.

P(Bx) = e P¥(cos x — sin Bx)
0(Bx) = e P cos Bx
{(Bx) = e P¥sin Bx

Figure 2.44 is a plot of ¢, ¥, 0, { as a function of Bx. Because each function
decreases in absolute magnitude with increasing x, in most engineering applications
the effect of edge loads may be neglected at locations for which Bx > .

For the short shell, for which opposite end conditions interact, the following results
are obtained. For the case of bending by uniformly distributed shearing forces, as
shown in Fig. 2.454, the slope and deflection are given by

W, _o, = —(20,Ba*/Eh)x,(B]) (2.275)
W o, = (20, BaEh)X,(B) (2.276)
where Xl(Bl) = (cosh Bl + cos BI)/(sinh Bl + sin B/)

X,(BD) = (sinh B/ — sin B/)/(sinh B/ + sin B)

For the case of bending by uniformly distributed moments M, (as shown in Fig. 2.45b),
the slope and deflection are given by

W oo = —(2M B*a*Eh)x,(BD) (2.277)
W', _ o, = T(@AMBPa*ER)X,(BD) (2.278)
where X;(BD) = (cosh Bl—cos B1)/(sinh B + sin B))

Figure 2.46 is a plot of the functions x, x,, and X, as a function of B/. The axial bending
moment at any location is given by
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30 M_= —Dw” (2.279)
1 and the maximum stress which occurs at the
\ inside and outside surfaces of the shell,
20
\x! O bonting = £(O6M /) (2.280)
X
X Likewise the shear force at any point is given
10 7;:: by
A Q = —Dw"” (2.281)
% )
0 ! and the associated maximum shear stress is
U 13 4 3 7= 30 /2h, which occurs midway between
B the inner and outer surfaces; the shear stress
FIG. 2.46 Slope and deflection functions. at the surface is zero.

EXAMPLE Examine the case of a long cylinder subjected to an internal pressure and
fixed at the ends as depicted in Fig. 2.47a; axial pressure is taken to be zero.

The stress and deformation of this shell can be obtained by the superposition of two
distinct problems, the membrane and edge-loaded cylinders. The first presupposes free
ends and a membrane action as indicated in Fig. 2.47b. The built-in ends resist this
membrane deflection at the edges through a system of forces Q) and moments M,
which are required to enforce the boundary conditions of zero deflection and rotation,
as shown in Fig. 2.47c.

The increase in the radius due to membrane action, as a result of pressure, is then
obtained from the membrane solution

—w,=8= pa*lEh (2.282)

The boundary conditions for the edge-loaded problem, based on the actual built-in
ends, become

w, =29 and w o _,=0
Hence 8 = (12*D)(BM, + Q) (2.283)
0= (1/2[32D)(2[3M0 +0,) (2.284)

Solving Egs. (2.283) and (2.284), using Eq. (2.282)
= pl2p? and 0,=—plB (2.285)

Q
T Fli I M°(lf‘—*——

N T N M ‘_*‘Ea

P
B 2 2 N T

ot o g e e et B M‘(r
(o} ()

FIG. 2.47 Long cylinder with fixed ends. (a) Action of internal pressure. (b) Membrane action.
(c) Discontinuity forces for boundary conditions.
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Thus the complete solution for the deflection is
w = —(1/4B*D)[py(Bx) — 2p6(Bx)] — pa*/Eh (2.286)
The axial stresses are given by
o, = *(6M/h?) (2.287)
where M, = —Dw" = (p/2B)[d(Bx) —2£(Bx)]
The mean circumferential stress can be evaluated from

= —Ewla (2.288)

Ud),direct

and the added component of flexural stress due to the Poisson effect is

(2.289)

—Vva

o-d).bending = x,bending

so that + (2.290)

Gd),lotal = O-d).direct o-dx,bending

2.15 CONTACT STRESSES: HERTZIAN THEORY*

As discussed in the writings of Hertz (the contact stresses presented here are often
termed hertzian stresses), the maximum pressure ¢ due to a compressive force P is
given by

q = 3P2ma? (2.291)

and is taken to have a spherical distribution as shown in Fig. 2.48, where

N R R 1—v2 1 -2
_ of3p KRR ! s (2.292)
4 R+R,\ E E

2

a
1

These expressions may be simplified, if both spheres are composed of identical
materials. For Poisson’s ratio v of approximately 0.3, which is common to steel, iron,
aluminum, and most structural materials, there results

a = LIIV(PIEIRR/(R, + R,)] (2.292a)

qmux

AN

a
Plan view at

interface

(b) (c)

FIG. 2.48 Two spheres in contact. (a), (b), (c) Contact pressure distribution.
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and q = 0.388V/PEX[(R, + R,)/R R, (2.292b)

The general stress levels in the spheres can now be presented based on the above rela-
tions. Maximum compressive stress, which occurs at point O, is

0,=—q (2.293)

The maximum tensile stress in the radial direction, which occurs on the periphery of
the surface of contact at radius a, is

o, = [(1-2v)/3]q (2.294)
Maximum shear stress, which occurs under point O of Fig. 2.48b, at a depth
z, = 047a

is approximately
T=%q (2.295)

and is in a plane inclined to the z axis. This latter stress is usually the governing crite-
rion in the design for bodies in contact, fabricated from ductile materials. A compila-
tion of important contact-stress cases is given in Table 2.2. Other important cases,
associated with rolling-element bearings, are discussed in Chap. 15.

2.16 FINITE-ELEMENT NUMERICAL
ANALYSIS!15.16

2.16.1 Introduction

The chapter thus far has dealt with exact solutions to sets of equations which predict
the deformation and internal stress distribution of particular bodies such as beams,
columns, thin plates, and thin shells. These sets of equations are derived from the
same concepts (equilibrium, kinematics, material observation) used to derive the gen-
eral equations of elastic theory [Eqgs. (2.47), (2.76), and (2.87)]. The particular equa-
tions for beams, plates, and shells are, in fact, derivable from the general equation by
imposing the appropriate limitations with respect to thickness, etc.

In dealing with the more complex structural shapes typical of actual machinery it
becomes increasingly difficult to derive appropriate sets of equations for which exact
solutions may be found. For such structures predictions of deformation and stress can
be effected through numerical solutions of the general equations. Three general
numerical techniques are widely used to effect numerical solutions in structural
mechanics: transfer-matrix techniques, finite-difference techniques, and finite-element
techniques.

Transfer-matrix approaches are typically used to effect solutions in one-dimensional
structures. These approaches are widely used in the solution of vibrating shafts and
turbine foils. Typical transfer-matrix approaches include, among others, the Holzer
method for torsional vibration and the Prohl-Miklestad (Chap. 4) procedure for lateral
shaft vibration.

Finite-difference methods!” are widely used to effect deformation and stress solu-
tions to multidimensional structures. In this technique, the differential operators of the
governing equations are replaced with difference operators which relate the values of
the unknowns at a gridwork of points in the structure. Example 3 of Sec. 2.13.2 pre-
sents a simple illustration of a finite-difference method. The well-known relaxation
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method for the solution of the governing equation of multidimensional heat-transfer
analysis is an example of a finite-difference solution.

Since the 1960s finite-element methods have become the preeminent tool for the
numerical solution of deformation and stress problems in structural mechanics. This
popularity arises from the ease with which the most general of structural geometries
can be considered. Finite-element analysis replaces the exact structure to be consid-
ered with a set of simple structural elements (blocks, plates, shells, etc.) interconnected
at a finite set of node points. The set of governing equations for this approximate
structure can be solved exactly.

Finite-element analysis deals with the spatial approximation of complex structural
shapes. It can be used directly to yield solutions in static elasticity or combined with
other numerical techniques to obtain the response of structures with nonlinear material
properties (plasticity, creep, relaxation), undergoing finite deformation, or subject to
shock and vibration excitation. The finite-element technique has also found a wide
application in the analysis of heat transfer and fluid flow in complex multidimensional
applications.

Many users of the finite-element method do so through the application of large-
scale, general-purpose computer codes.'320 These codes are widely available, highly
user-oriented, and simple to use. They are also easy to misuse. The consequences of
misuse are excess expense and, more important, invalid predictions of the state of
stress and deformation of the structure due to the applied loading.

The discussion herein introduces the process of finite-element analysis to enable
the prospective user to have a suitable understanding of the calculations being per-
formed. The discussion is limited to the stiffness approach, which is the most widely
used basis of finite elements. Further, for ease of understanding, the presentation deals
with structures of two dimensions. The generalization to three dimensions follows
directly.

2.16.2 The Concept of Stiffness

The governing equations of the theory of elasticity relate the loads applied externally
to a body to the resulting deformation of that body, using the stress equilibrium equa-
tions to relate external forces to internal forces, i.e., stresses. The stress-strain rela-
tions relate internal forces to internal strains. The strain-displacement equations relate
internal strains to observed deformations. The whole solution process can be stated by
the relationship

F =kd (2.296)

where F' = externally applied forces
8 = observed deformation
k = stiffness of the structure

Thus, all the material and geometric information for the structure is contained in the
stiffness term.

Numerical procedures involve relating the observed deformation at a discrete num-
ber of points of the body to the forces applied at these points. The relationship
between force and displacement is then expressed most effectively in terms of matrix
notation.

{F} = [k]{3} (2.297)

Thus F becomes the vector of applied forces, 8 the vector of displacement response,
and k the stiffness matrix of the structure.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2.67

Stiffness of Simple Discrete Elements. For simple structures, relationships of the
type of Eq. (2.297) can be derived directly.

EXAMPLE 1 The governing equation for the simple spring in Fig. 2.49 is
F,=k®, -3,
F,=k®,—3)

which in matrix notation becomes

Mg 2

where k is the stiffness of the spring, F; and F, the applied forces at nodes 1 and 2,
and 8, and 3, the resulting displacements at nodes and 1 and 2.

EXAMPLE 2 The truss element in Fig. 2.50 is limited to stretching-compression
response under its applied loads. The general governing equation is

F = (AE/L) AL

where A is the cross-sectional area, E is Young’s modulus, and L is the length. AL is
the change in L under the action of the forces. A series of relationships of the form

F.=k.3.
i i

may be developed where F, is the force at node i and 8/. is the displacement of node j.
The resulting set of relationships is

F,. cos? a cos o sin a —cos’a  —cosasina | |8

F, | _ AE| cosasina sin® a —cosasino  —sin®a 3, (2.299)
F, L —cos’a —Cos a sin a cos’ a cos a sin a 5, [

F,, —cosasino  —sin®a cos a sin « sin? o 3,

which is the form of Eq. (2.297). In general terms, Eq. (2.299) has the form

glx ill 212 il} 11214 glx
ly = 21 22 23 24 ly (2300)
F2x k3 1 k32 k?% k34 82:(
F2 y k4 1 k42 k43 k44 ® 2y
Fay,O2y
2 H Fax »82:

)

\('F"81 ]—F1x181x
» X

FIG. 2.49 Simple spring finite element. FIG. 2.50 Tension-compression finite element.
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Stiffness of a Complex Structure. The simple
structures of these examples often comprise the
elements of a more complex structure. Thus, the
governing equation of the truss of Fig. 2.51 can
be developed by combining the relationships of
the individual truss elements from Example 2.
One simple procedure is to insert the stiffness
contribution from each row and column of each
truss element to the stiffness of the appropriate
row and column of the complex structure. For
the truss of Fig. 2.51 the resulting relationship is
shown in Eq. (2.301).

FIG. 2.51 Finite-element model of a
simple truss.

\ ke
fR kyt ki, klL+ k2 kl k] A
Ix kl+k 1 2 1 b kas
R, aT Ky kL4 k ky, k] 3
v k! el T kL e K 5 b
Py, k3'1 ksy BT T kgt kit kg k3
P, 4 kp kTR R S R KD 2 k3 kS 4 k6
0 k3 ] k322 k?l i3 323 333 lsl 161
{ > k3 K2 k> 2 kit kit kot kg
3y | = 41 2 41 k} k3
0 0 0 k4 2‘12 i
31 k k>
0 0 0 K 'y o
41 k* k6
0 0 0 0 82 3
R, 0 0 0 0 &
o)L 1)
k§4 0 0 0 0 0
k234 0 0 0 0 0
2134 kl} kljzt 0 0 5,,
ek o i . >
[ENTE N S v i 6 R L
44 44k5 nT Kn \ kzg , . ki; ; k273 k274 83,\,
2 k343+ k_?+ k]7 A R I k173 k174 3,
k462 k43Jr k473Jr k21 kf4+ k454+ k272 6k23 ; 6k24 ; 64v
k362 k371 A k363+ k373 k36 L+ k37 n 85;,
kg) k, k472 kpt kjy kot Ky, \ 0 y

(2.301)

2.16.3 Basic Procedure of Finite-Element Analysis

Equation (2.301) comprises 10 linear algebraic equations in 10 unknowns. The
unknowns include the forces of reaction R, , R, , RSV and the displacements 3, , 82‘,, S,
83},, 3, 84),, 9. Many procedures for the solution of sets of simultaneous, linear alge-
braic equations are available. One well-known approach is Gauss-Jordan elimination.!”

Once the nodal displacements are known, the forces acting on each truss element
can be determined by solution of the set of equations (2.300) applicable to that element.

The procedure used to determine the displacements and internal forces of the truss
of Fig. 2.51 illustrates the procedure used to determine the response to applied load
inherent in the stiffness finite-element procedure. These steps include:
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1. Divide the structure into an appropriate number of discrete (or finite) elements
connected only at a finite set of points in the structure.

2. Develop a load-deflection relationship of the form of Eq. (2.300) for each finite
element.

3. Sum up the load-deflection relationships for each element to obtain the load-
deflection relationship for the entire structure, as in Eq. (2.301).

4. Obtain the deformation pattern for the entire structure using conventional procedures.

5. Determine the internal force distribution for each element from the known defor-
mations using the element force-deflection relationships.

The key steps in finite-element analysis are the discretization of the structure and
the development of load-deflection relationships for the finite element. The subse-
quent assembly of the structure load-deflection relationship, the solution of the result-
ing set of simultaneous algebraic equations, and the subsequent determination of inter-
nal forces are straightforward mechanical procedures. Thus, it remains to illustrate the
approximations associated with developing finite elements to the analysis of complex
structures.

FIG. 2.52 Finite-element model of pressure-vessel head.
(Courtesy of Imo Industries Inc.)

The truss represents a simplified structure relative to those for which solutions are
usually required. A structure such as the pressure-vessel head modeled in Fig. 2.52 is
more typical of the component analysis associated with finite-element modeling.

Finite Elements by the Direct Approach. The direct approach to the development of
finite elements requires that a complete set of relationships between the internal and
externally applied forces be known a priori. For many structural analyses this is not
readily available; i.e., the available equilibrium equations are not sufficient. Therefore,
the applicability of the direct approach is limited.

The procedure for development of the load-deflection relationships includes:

1. Define the internal displacement field of the element in terms of the nodal dis-
placements. This requires the assumption of a relationship. Usually polynomial
expansions are used.
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2. Relate the internal displacement field to the internal force field through the strain-
displacement and stress-strain equations.

3. Relate the internal force field to the external forces through the force-equilibrium
relations.

4. Combine the results of steps 1-4 to obtain a relationship of the form of Eq. (2.300).

EXAMPLE 1 The beam of Fig. 2.53 has length L, Young’s modulus E, and area moment
of inertia I. At nodes 1 and 2 it is acted upon by external forces and moments F, F,, M,
M,. As aresult, the nodal displacements and rotations are w,w,, 0,0,

M,,B _
1271 Mg 92

B U

F1awy Fa,wa2

FIG. 2.53 Beam finite element.

Within the beam the deformation pattern is characterized by lateral deflection w(x)
and rotation 0(x), where

_dw
dx
Assume that the internal displacement field is governed by the polynomial

0=

wx) = ax*+ o+ ax+ o, (2.302)

The a’s are determined from the boundary conditions on w(x), namely

w(0) = w,
0(0) =6, = _%x:()
w(l) = w,
L) =8, = _%le

The number of terms in the polynomial expansion for w(x) is, in general, limited to
the number of nodal degrees of freedom. With the a’s known, Eq. (2.300) becomes

2 —-L -2 -L

7L 3.2 _3L 2L2 3L L2
we) =P x 0l T s Ty (2.303)
» 0 0 0
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For the special case of a beam, the internal moments are related to the internal dis-
placement field by the Bernoulli-Euler equation

M(x) = EI (dPwld:®) (2.304)
Further, at the nodes

M) =M, =M, (2.305)

ML) =M, = —M, (2.306)

For the beam to be in equilibrium under the applied forces and moments it is neces-
sary that

FL=M,+ M, (2.307)
FL=-M—M, (2.308)
Therefore
FL=M,— M, (2.309)
FIL=M,— M, (2.310)

Expressing Egs. (2.305), (2.306), (2.309), and (2.310), in matrix format

F, —UL 1L

M{_| 1 0o [[Mm

F, UL —1/L {Mj @310
M 0 -1

2
Combining Eqgs. (2.303), (2.304), and (2.311) yields

F 6 —3L -6 —3L] [w,
M | 2Er| 3L 22 3L 12| e
F, (T | -6 3 6 3L|)w (2312)
M 3L 12 3L 212 |

which is the required load/deflection relationship.

Finite Elements by Energy Minimization. The principle of stationary potential
energy states that, for equilibrium to be ensured, the total potential energy must be sta-
tionary with respect to variations of admissible displacement fields. An “admissible
displacement field” is one which satisfies the natural boundary conditions of the struc-
ture, typically those boundary conditions that constrain displacements and slopes. The
exact displacement field will result in the minimum value of potential energy.

This energy principle allows the development of a general load-deflection relation-
ship which, in turn, allows the development of a wide variety of finite elements directly
from the assumed displacement field. The total potential energy is, in general,
defined by

[T, v, w) = Uu, v, w) — V(u, v, w) (2.313)

where [] = total potential energy
U = strain energy of deformation
V = work done by applied loads
u, v, w = components of displacement field within the element
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For [T to be stationary it is necessary that

A _, d_, dd_,

i =1 2314
du, I, ow, ! o’ (2.314)

where the subscript i denotes the ith node of the finite element, and r is the number of
nodes. Further, the energy over the volume of the element is

U=f U, dv (2.315)

vol
V= {8}7{F} (2.316)

where U = strain energy of a unit volume of material
{F} = matrix of nodal forces on the element
{8} = matrix of nodal displacements

If we further express the stress-strain and strain-displacement equations [Egs. (2.76)
and (2.47)] in matrix format:

{o} = [D]{e} (2.317)
{e} = [BI{8} (2.318)

where the element [B] are differential operators, then
U, = %{e}[Dl{e} (2.319)

Combining Egs. (2.313) to (2.319) and performing the indicated operations leads to a
relationship of the form

(7 =

AY

[BI"[DI[B] dv {3} (2.320)
ol

Equation (2.320) constitutes a general load-deflection relationship which can be par-
ticularized to define a wide variety of finite elements.

y EXAMPLE 1 The displacement field within the
4 triangular element in Fig. 2.54 is assumed to be
Frym 3
u=a +ox+ay
(2.321)
v=o,t o ooy

The six a’s may be determined in terms of the
b2 six nodal displacement components as was done
for the beam element, whence

[N, O N, O N, O
_[01 N, O N, O NJ{B} (2.322)

» x
u
FIG. 2.54 Planar finite element. {v}

where {8} = {u, v, u, v, uyvy}" (2.323)
N, = (a,+ bx + cy)2A (2.324)

The factors a, b, c, and A are constants which evolve from the algebraic manipula-
tions. Continuing, for the two-dimensional case
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€, oulox
(e} =1¢€ = ov/dy (2.325)
€ ou/dy + dv/ox
Substituting Eq. (2.322) into Eq. (2.325) yields
{e} = [BI{3} (2.326)
where
1 b, 0 b, 0 b, O
[B] = A 0 ¢, 0 ¢, 0 ¢ (2.327)
¢, by ¢, by ¢c5 by
Finally, for the element of Fig. 2.58
()-X EX
{o} =1 0, =Dl (2.328)
xy ’yxy
where, for plane strain
_ 1 /(1 —v) 0
pj=—LEL=Y gy 0 (2.329)
I+vd =2 0 (1—-2v)2(1—v)

Therefore, all the terms in Eq. (2.320) have been defined and so the load-deflection
relationship for this element is established.

Since all the terms under the integral in Eq. (2.320) are constants, the integral may
be evaluated exactly. Note that the resulting matrix equation contains six simultaneous
algebraic equations, corresponding to the six degrees of freedom associated with the
triangular element of Fig. 2.54.

EXAMPLE 2 The displacement function for the
axisymmetric element of Fig. 2.55 is

u=al+a2r+a3z
(2.330)
V= (x4+ a5r+ oz

Following the same procedure as in Example 1

we find
€, ov/oz
_J e | _ Jdu/or
(e} = @ (" ulr (2.331)
Y, Ju/dz + ovlor
FIG. 2.55 Axisymmetric finite element. whence
0 ¢, 0 ¢, 0 ¢
_|15 05D, 0 b, O
B] e, 0 e, 0 e O (2.332)
¢, b ¢, by ¢; b

[N)
)
w
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where e, = a,/r + b, + c(z/r). Further,

1 v —v) vi(l—v) 0
- Ed-v) | v -v 1 vi(l — v) 0
1= o = 2| vt = v) vl =) 1 0 (2.333)
0 0 0 (1-212(1—-v)

The integral in Eq. (2.320) now has the form
2 J' [BIT[D][B]r dr dz
vol

However, [B] is no longer a constant array, i.e., [B] = [B(xz)] so that integration is a
complex process. For many elements, the integrand is sufficiently complex that the
integration must be carried out numerically. This numerical integration is a wholly dif-
ferent problem from the numerical analysis that is the finite-element method.

The three-dimensional analog to the triangle element of Example 1 is a four-node
tetrahedron. A basic feature of these elements is that the strain field within the element
is constant. Thus, to model a structure in which the strains vary considerably through-
out the body, a large number of elements are required. Constant-strain elements are
most useful for modeling thick-walled bodies in which the main action is stretching.
Analysis of more flexible bodies in which bending is significant requires elements in
which the strain can vary. These higher-order elements contain higher-order terms in
the polynomial displacement expressions, e.g., Eq. (2.321).

Higher-Order Elements. The key ingredient in the development of a finite element
is the selection of the shape function, that function which relates the internal-element
displacement field to the nodal displacement field, e.g., Eq. (2.322). The remainder of
the development is a mechanical process.

The shape function may be selected directly to establish some desired element
characteristics or it may evolve from the selection of the displacement function as in
the elements developed above. If the dis-
placement function approach is used then the
size of the polynomial is limited by the num-
— ber of nodal degrees of freedom of the ele-

ment, since the ¥’s must be uniquely

expressed in terms of the nodal degrees of

freedom. Thus, in the examples above, the

beam element is limited to a cubic polynomi-

y al, the triangular plane elements to linear
1 polynomials. Higher-order polynomials
—u require the insertion of additional nodes in

the elements or of additional degrees of free-

dom at the existing nodes. Some typical

higher-order elements involving additional

nodes are shown in Fig. 2.56. An element

v involving additional nodal degrees of free-
T dom is shown in Fig. 2.57. This latter type is

—
<

Y commonly used to model shell- and plate-
type structures.
A widely used class of elements in
which the shape function is chosen directly is
FIG. 2.56 Higher-order finite elements. the isoparametric elements. The key feature
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Linear
Quadratic
s 4} 5 4) Cubic
¢>,a— —
x dy
FIG. 2.57 Shell-type finite element. FIG. 2.58 Isoparametric finite elements.

of isoparametric elements is that the elements can have curved sides (Fig. 2.58). This
feature allows the element to follow the flow of the structure more readily so that sig-
nificantly fewer elements are needed to achieve a successful model.

2.16.4 Nature of the Solution

Unless the displacement function used constitutes the exact solution, the equilibrium
equation applied within the finite element, or to the total structure, will not be satis-
fied, i.e., only the exact solution satisfies the equilibrium equations. Further, equilibrium
is not satisfied across element boundaries. For example, two adjacent constant-strain
(and hence constant-stress) elements cannot correctly represent a continuously varying
strain field. Given the approximate nature of the solution, it is appropriate to question
whether the response to applied load is at least approximately correct. It can, in fact,
be shown that, subject to certain conditions on the finite elements, that the solution
will converge to the exact solution with increasing grid refinement. Thus, if questions
of accuracy in the analysis of a structure exist, one need only subdivide the critical
areas into successively finer element grids. The solutions from these refined analyses
will converge toward the correct answer.

The conditions on the elements to assure convergence can be satisfied if the dis-
placement functions used are continuous polynomials of at least the first order within
the element and if the elements are compatible. Compatibility requires that at least the
nodal variables vary continuously along the boundary between adjacent elements, e.g.,
the displacement along edge 1-2 of the triangle element of Fig. 2.54 must be the same
as along the edge of any other similar element attached to nodes 1 and 2. For the trian-
gular element, since the displacements along edges are straight lines, compatibility is
assured.

The above discussion does not preclude the successful use of nonpolynomial dis-
placement functions or nonconverging elements or incompatible elements. However,
such elements must be used with great care.
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2.16.5 Finite-Element Modeling Guidelines

General rules for finite-element modeling do not exist. However, some reasonable
guidelines have evolved to aid the analyst in developing a model which will yield
accurate results with a reasonable effort. The more important of these guidelines
include:

1. If at all possible, use converging, compatible elements.

2. Grids can be relatively coarse in regions where the state of strain varies slowly. In
regions where strains change rapidly, e.g., strain concentrations and structural dis-
continuities, the grid should be refined.

3. Quadrilateral elements should be used wherever possible in place of triangular
elements.

4. Accurate determination of forces and displacements can be accomplished with a
more coarse grid than needed for accurate determination of strains and stresses.

5. Prediction of modes of vibration requires a more refined grid than that needed for
prediction of natural frequencies.

6. Higher-order elements are generally preferable to constant strain elements.

7. Aspect ratios of multisided two- or three-dimensional elements should be kept
below 5.

8. When the accuracy of the solution from a grid is in doubt, the grid should be
refined in the critical regions and the analysis rerun.

2.16.6 Generalizations of the Applications

The finite-element method has applications in mechanics of materials beyond the static,
linear elastic, isothermal, small-strain class of analyses discussed herein. The general-
izations can be classified as related to generalizations of the stress-strain equations
and generalizations of the equilibrium equations.

Generalizations of the Stress-Strain Relations. A more general statement of the
stress-strain relations of linear elasticity (Eq. 2.74) is

e —e'—a(T—T)=U/E) (o, —0 — v[(()'y - (ry“) + (o, — 0'10)]}
€~ ey" —(T =Ty = (I/E){(O')_ — o'y") —vl(o, — O'Z()) + (o, — o]}

€ —€'—a(T—T)=UE)](,—d”) —vilo,—a)+ (0, 0')_0)]}

Y, — Y%= (1/G)(T, — ) (2.334)
¥, — ¥%= (/G)(r,, — 9,
Yo ~ Vo= (VG — 7

The strain terms with a superscript O represent a possible general state of initial strain. The
stress terms with a superscript O represent a possible general state of initial stress. The
strain terms (7 — T,) represent a possible state of temperature-induced strain. Inclusion
of these terms in the development of the finite-element results in a set of additional terms
in the load-deflection relationship, which takes on the form

(Flyot (Fl+ (Fl,+ (F) = | (BVIDIB] &5 (3) (2.335)
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where {F},,= f [B1"{c"} dv
vol
{(Flo,=— ' [BI"[D]{€"} dv

and similarly for {F} ,.
Nonlinear stress-strain relationships, i.e.,

[o] = Fle] (2.336)

are generally incorporated into finite-element analysis in terms of the incremental
plasticity formulation (see Refs. 6 to 8). Solutions are effected by applying load to the
structure in additive increments. For each load increment a modified linear analysis is
performed. Thus the numerical analysis in the space defined by the finite-element
model is supplemented by a numerical analysis in the load dimension to yield an
analysis of the total problem.

Similarly, creep problems, for which the stress-strain relation is of the form

[o] = fle], [De/o1]) (2.337)

are solved using a numerical analysis in the time domain to supplement the finite-
element models in space.

Generalizations of the Equilibrium Equations. The equilibrium equations, with the
addition of body force terms, such as gravitational or inertia, have the form

3o Jox + O1 [y + 7 Joz + F, = 0
90 /Oy + 01 Jdz + 07 Jax + F, = 0 (2.338)

90 /dz + d_Jx + d7_fdy + F. = 0

With these terms, the load-deflection relationship now has the form

(Fly + (FY = [ [BYIDIBI 65 () (2.339)

where {FYy=— J' [NI{F} dv
vol

[N]T = shape-function matrix, analogous to Eq. (2.322)

If {F},, represents an acceleration force per unit volume, then
[F) g = pINIO*0P)(3) (2.340)

where p is the mass per unit volume.
If we further define

[M] = p f _INVIN)

(2.341)
= BB &
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then Eq. (2.297) takes the form
[M]{3} + [k]{d} = {F} (2.342)

which is the matrix statement of the general vibration problem discussed in Chap. 4.
Therefore, all the solution techniques noted therein are applicable to the spatial finite-
element model. A damping force vector can also be developed for Eq. (2.342).

2.16.7 Finite-Element Codes

Structural analysis by the finite-element method contains two major engineering steps:
the design of the grid and the use of an appropriate finite element. Finite elements
have been developed to represent a broad range of structural configurations, including
constant strain and higher-order two- and three-dimensional solids, shells, plates,
beams, bars, springs, masses, damping elements, contact elements, fracture mechanics
elements, and many others. Elements have been designed for static and dynamic
analysis, linear and nonlinear material models, linear and nonlinear deformations.

The finite element depends upon the selection of an appropriate shape or displace-
ment function. The remainder of the analysis is a mechanical process. The element
stiffness matrix calculations, including any numerical integrations required, the assembly
of the structural load-deflection relationship, the solution of the structure equations for
loads and deflections, and the back substitution into the individual element relation-
ships to obtain stress and strain fields require a huge number of calculations but no
engineering judgment. The calculation procedure is clearly suited to the “number
crunching” digital computer. Effective use of the computer for models of any substan-
tial size requires that efficient computer-oriented numerical integration and simultane-
ous equation solvers be incorporated into the solution process.

To this end many large, general-purpose, finite-element-based computer codes have
been developed!®1920 and are available in the marketplace. These codes feature large
element libraries, extremely efficient solution algorithms, and a broad range of appli-
cations. The code developers strive to make these codes “user friendly” to minimize
the effort required to assemble the computer input once the engineering decisions of
grid design and element selection from the element library have been made.

Many special-purpose codes with unique finite elements are available to solve
problems beyond the range of the general-purpose codes. Beyond the contents of the
marketplace, the creation of a finite-element program for any particular application is
a relatively simple process once the required finite element has been designed.
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