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PREFACE

viii

This text is an introduction to engineering heat transfer. The philosophy of the text is
based on the development of an inductive approach, earlier introduced by the author
(Conduction Heat Transfer, 1966), to the formulation and solution of applied problems.
Since the greatest difficulty a student faces is how to formulate rather than how to solve
a problem, the formulation of problems is stressed from the beginning and through-
out the entire text. This is done by first noting that heat transfer rests on but goes
beyond thermodynamics, and taking as a basis the well-known form of the first law of
thermodynamics for a system,

Es— E1 = AQ — AW |

developing the rate of the first law for a control volume,

dEcv

dt
R

[ —
Energy rate Enthalpy flow

N
= Z Mk + Qov —  Wev \
= Heat flux Work rate

in Chapter 1. Then, the discussion of every problem in the text begins with the inter-
pretation of this law in terms of an appropriate control volume (or a system). After
stressing the fact that thermodynamics provides no information about Qcv, the three
(conduction, convection and radiation) laws of heat transfer are introduced by relating
Qcv to temperature. This philosophy is different from that of most existing textbooks.



Preface  ix

The aim constantly is, not to obtain a speedy general formulation, but to teach mastery
of a few basic and simple tools by which each problem can be individually formulated.

Although the present text is much less voluminous, though well within the range
of other textbooks on the subject, still the material is more than can be covered inan
introductory one-semester course. This was done purposely (1) to trigger the curiosity
of students who are interested in furthering themselves beyond the minimum require-
ments, (2) to leave some flexibility to instructors in the selection of the material, and
(3) to speculate and incorporate now some of the future material. For a one-semester
introductory course, we suggest

1. exclusion of a chapter or a section of a chapter marked with P,
2. partial coverage of sections marked with O in a chapter to fit personal taste.

With addition of this material, the text may be considered for an intermediate course.

The text has a pumber of novel parts:

The concept behind the two key problems of corivection (cooling with a film coef-
ficient of fluids flowing in 2 pipe and heating with an applied heat flux of fluids flowing
in a pipe) is demonstrated in Chapter 2. Thermocouple selection for the measuring of
unsteady temperatures, depending on the time constant of the problem under consid-
eration, and the concept of analog solution based on active electric-circuit elements,
are discussed in Chapter 3. In an introductory text, numerical methods are usually
explored in terms of the finite-difference method, which is relatively less involved and
easier to learn than others. Among these, for example, a finite-element method based
on variational calculus is beyond the scope of the text, but the finite-element method
based on an integral formulation is quite straightforward and is introduced in Chapter 4.
This informs the student about the availability of other numerical methods for future
considerations. With boundary-layer (penetration-depth) concepts introduced to con-
duction, the transition to convection boundary layers is facilitated in Chapter 5. Also,
complexities involving higher-order velocity and temperature profiles in boundary-layer
analyses are eliminated by using first-order profiles which often lead to reasonably accu-
rate solutions. The difficulties encountered in the application of the [T-Theorem to the
dimensional analysis of heat transfer problems are avoided by considering successive
rather than the simultaneous elimination of the fundamental units. As an alternative
method, the application of physical similitude to dimensional analysis of heat transfer
problems is explored. Among a few casual possibilities, the most physically significant
nondimensionalization of natural convection leads, in terms of Rayleigh and Prandti
numbers, to

Nu = f(Ra, Pr).
A fundamental dimensionless number based on a combination of Ra and Pr,
o Ra
YUl et

is introduced in Chapter 6 and is used to correlate the data on natural convection.
A five-step approach to the use of correlations is demonstrated in terms of two for
forced convection and two for natural convection, leaving the rest of the literature to
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an appendix. A rapid mastery to be gained with a minimum number of correlations
can easily be extended to other correlations. Original relations for the heat transfer
area and for the ratio of mass flows in heat exchangers involving two-phase flows are
introduced in Chapter 7. The solid angle relation between thermomechanics and optics,

Thermomechanics = '[ (Optics) df2,
Q

usually overlooked among other relations resulting from extensive manipulations, is
emphasized in Chapter 8. A five-step approach to the solution of enclosure radiation
problems is utilized in Chapter 9. In view of the extensive contemporary research on
gas radiation, an introduction to this timely subject is provided in Chapter 10. The use
of the dimensionless number for natural convection, [Ty, is extended to film boiling in
Chapter 11.

A great majority of the examples worked in the text and the problems left to
the students, in particular those clearing and extending a fundamental point, are our
own invention. In general, problems are designed to supplement and extend the text.
Repetitive problems are avoided. One of the difficulties of our educational system is the
selection of the system of units. There is no bigger obstacle to learning than a text which
suggests the use of rore than one system of units. The system of units used throughout
the world, and in most of our educational institutions, is the metric International System,
which is also used in this text. Furthermore, a contemporary danger to the learning
process is the temptation to rely on commercial software programs before mastering a
subject. A proficiency developed via the repetitive use of a program, resting on a shaky
background, leads to a rapid obsoleteness. Yet, a judicious use of these programs is
essential to contemporary learning. Individual FORTRAN programs are developed for
some of the illustrative examples in the text, The interested readers may parametrically
study these examples by changing various values of the given data.

The text is a result of about four decades of teaching an introductory heat trans-
fer course at the University of Michigan. Our goal was to produce an undergraduate
“textbook™ rather than a voluminous “handbook.” During the past decade, Dr. Ahmet
Selamet was instrumental in the earlier improvement of my original class notes. The
manuscript could not have been completed, however, without Dr. Shu-Hsin Kao, who,
with unusual dedication, helped me prepare the final form of the text. ‘We are grateful
to Dr. Laila Guessous for her numerous suggestions, which led to significant improve-
ments, and to the reviewers for their useful comments on the several parts of the final
manuscript.

VEDAT S. ARPACI
Ann Arbor, Michigan



FOUNDATIONS OF HEAT
TRANSFER

The foundations of an engineering discipline may be best understood by considering
the place of that discipline in relation to other engineering disciplines. Therefore, our
first concern in this chapter will be to determine the place of heat transfer among
engineering disciplines. Next, we shall proceed to a review of the general principles
needed for heat transfer, Finally, we shall discuss the three modes of heat transfer—
conduction, convection, and radiation—and introduce a five-step methodology for an
inductive formulation.

1.1  PLACE OF HEAT TRANSFER IN ENGINEERING

Let us first review a well-known problem taken from mechanics. For this problem let
us consider two formulations, based on different assumptions. Our concern will be
with the nature of the physical laws employed in these formulations. (At this stage our
discussion will be somewhat conventional; the philosophy of the text will be set forth
at the end of this chapter).

Example: Free fall of abody. Consider 2 body of mass m in a vacuum falling freely
under the effect of the gravitational field g. We wish to determine the instantaneous
location of this body.

Formulation of the prablem. Newton’s second law of motion,

F = ma, (1.1)

1



2 Chap. 1 Foundations of Heat Transfer

F being the sum of external forces and a the acceleration vector, gives in terms of
vertical distance x
d’x 12)
mg = m—; .
& dr?

subject to appropriate initial conditions.

In our second formulation of the problem, let us include the resistance to the
motion of the body from the surroundings. With this consideration, we have

d%x

mg - R =
which is not complete without further information about the resistance force R. If,
for example, this force is assumed to be proportional to the square of velocity of the
body,~- that is, if

R dx\?
SZ=(= 14
m k (dz) (14)
—then Eq. (1.3) gives
(& P 05
g dr = dI2 ) -

where k is a constant.

As demonstrated by the foregoing two formulations, some problems taken from
mechanics can be formulated by using only Newton’s laws of motion; these are called
mechanically determined problems. The dynamics of rigid bodies in the absence of
friction, statically determined problems of rigid bodies, and mechanics of ideal fluids
provide examples of this class. Some other mechanics problems, however, require
knowledge beyond Newton’s laws of motion. These are called mechanically unde-
termined problems. The dynamics of rigid bodies with friction and the mechanics of
deformable bodies provide examples of this class.

Thermal problems may be similarly divided into two classes. Some of these can be
solved by employing only the laws of thermodynamics; they are called thermodynam-
ically determined problems. Some others, however, require knowledge beyond these
laws; these are called thermodynamically undetermined problems. Gas dynamics and
heat transfer are two major thermodynamically undetermined disciplines. In addition -
to the general laws of thermodynamics and fluid mechanics, gas dynamics depends on
equation of state while heat transfer requires knowledge on conduction, convection, and
radiation phenomena, which we shall now introduce. Each of these phenomena relates
heat to temperature, the same way that stress must be related to strain in mechanics.

Phenomenologically speaking, conduction is the transfer of thermal energy from
a point of higher temperature to an adjacent point of lower temperature in matter.
At the microscopic level, the mechanism of conduction is visualized as an exchange of
energy between adjacent matter particles. Consequently, conduction is local and, being
directional, is irreversible, and it can only happen through matter. Burning a hand on
a hot plate is a result of conduction.
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Heat Transfer

v ' Y

l Two Modes I————[ Conduction l l Radiation ]
v
In Moving Media Fluid Mechanics
1

¥

Third Mode I——{ Convection

Figure 1.1 Three modes of heat transfer.

Again, phenomenclogically speaking, radiation is the transfer of thermal energy
by electromagnetic waves in a particular wavelength range from a point of higher tem-
perature to a distant point of lower temperature in matter. At the microscopiclevel, the
mechanism of radiation is visualized as the transport of energy by radiation partlc}es
(photons) traveling with the speed of light. Acting at a distance, radiation is global, and
is reversible through vacuum. Feeling warm before an open fire is a result of radiation.
From a conceptual viewpoint, convection is not a basicmode of heat transfer, but, rather,
is conduction and/or radiation in moving media. Blowing on food to cool it is a process
of convection. Therefore, fluid mechanics plays an important role in convection. For
only customary reasons, we shall hereafter refer to conduction of heat in moving (or
stationary) rigid media as conduction and to conduction in moving deformable media
as convection (Fig. 1.1}

Having gained some appreciation of the three modes of heat transfer we proceed
now to the methodology adopted in this text. We shall return to the three modes of
heat transfer in Section 1.5, elaborate on conduction, and make further remarks on
convection and radiation.

1.2 FORMULATION OF HEAT TRANSFER

In the preceding section we established the place of heat transfer among the engineering
disciplines and distinguished the modes of heat transfer—conduction, convection, and
radiation. We proceed now to the formulation of heat transfer.

The formulation of an engineering discipline such as heat transfer is based on
definitions of concepts and statements of natural laws in terms of these concepts. The
natural laws of heat transfer, like those of other disciplines, can be neither proved
nor disproved but are arrived at inductively, on the basis of evidence collected from
a wide variety of experiments. As we continue to increase our understanding of the
universe, the present statements of natural laws will be refined and generalized, For
the time being, however, we shall refer to these statemnents as the available approxi-
mate descriptions of nature and employ them for the solution of current problems of
engineering.
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Chap. 1 Foundations of Heat Transfer

The natural laws may be classified as (1) general laws, and (2) particular laws.
A general law is independent of the nature of the medium. Examples are the law of
conservation of mass, Newton's laws of motion, the first and second laws of thermo-
dynamics, Lorentz’s force law, Ampere’s circuit law, and Faraday’s induction law. The
problems of nature which can be formulated completely by using only general laws are
called mechanically, thermodynamically, or electromagnetically determined problems.
On the other hand, the problems which can not be formulated completely by means of
general laws alone are called mechanically, thermodynamically, or electromagnetically
undetermined problems. Each problem of the latter category requires, in addition to the
general laws, one or more conditions stated in the form of particular laws. A particular
law depends on the nature of a medium. Examples are Hooke’s law of elasticity, New-
ton’s law of viscosity, the ideal gas law, Fourier’s law of conduction, Stefan-Boltzmann's
law of radiation, and Ohm’s law of electricity.

In this text we shall employ two general laws,

(a) the conservation of mass,
{b) the first law of thermodynarnics,
and three particular laws, '

() Fourier’s law of conduction,
(d) Newton’s definition of convection,
(e) Stefan-Boltzmann's law of radiation,

cach with a different degree of importance. Since all thermal problems (thermodynam-
ically determined or undetermined) begin with the general laws of thermodynamics,
and since the first law of thermodynamics is vitally important for heat transfer, the next
section is devoted primarily to a review of this law. The conservation of mass, because
of its lesser significance, will be mentioned briefly. We shall assume that the definition
of concepts such as system, control volume, property, state, process, cycle, work, heat,
temperature and others are known to the student (see, for example, Van Wylen, Sonntag
and Borgnakkel).

FIRST LAW OF THERMODYNAMICS

The first step in the statement of the first law (or any general law) is the selection of a
system or control volume. Without this step it is meaningless to speak of such concepts
as heat, work, internal energy, and others, which are the terms used in statements of
the first law. Although the well-known, simple form of the first law is always written
for a system, the use of this form of the law becomes inconvenient when dealing with
continua in motion, because it is often difficult to identify the boundaries of a moving
system for any appreciable length of time. The control-volume approach is therefore
generally preferred for continua in motion.

! Reference S.
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Consider a thermal machine consisting of an insulated piston-cylinder assembly
attached to a container as shown in Fig. 1.2. Initially, the matter in the cylinder is
separated from that of the container by a partition. The partition 1s ruptured and,
following an infinitesimal process, the mass Am; within the cylinder is slowly pushed by
the piston into the container. Assume the container to be a control velume. During this
process, the heat received and the shaft work done by the control volume, respectively,
are AQ., and AW, subscript cv denoting the control volume. We wish to find the
rate of the first law of thermodynarmics for this contrel volume,

Since the well-known familiar forms of general principles have been deduced and
always written for a system, consider first a system coinciding with the control volume
at the final state while including in the initial state the piston-cylinder assembly as well
as the control volume. Let Ey, E; and E.,, E7, denote the initial and final values of
the total energy of the system and the control volume, respectively. The first law of
thermodynamics for the system undergoing a differential process is?

Ey — Ey = AQ — AW, (1.6)

Container

Q
s
Shaft work
Deformation

work
Wm

T ™) S}'Stﬂm
[} ]
] ]
]
p"AV".q ! I
ez oy : EEEe AW,
:
4 i
1 H
b L
] £ —
State (f) -——-sisﬁ......__l cv
pir AV, 5 AQ,,
18 Ami,

Figure 1.2 The first law for a control volume.

? Mere explicitly, By — Ey = AQ - (::AW), where the minus sign in parenthesis is for work done on
the system, and the plus sign for work done by the system.
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where AQ and AW denote respectively the heat received and the work done by the
system. Here, after neglecting the heat loss from the piston-cylinder assembly,

AQ = AQw, AW = AWg — piAV;, (1.7)

E, = E"

cv?

£ = E::v + Amge;, (18)

subscript i denoting a property (or a quantity’) associated with mass Am; in state i,
p;AV; denoting the deformation work done by the piston-cylinder assembly. Now,
rearranging Eq. (1.6) in terms of Egs. (1.7) and (1.8), and rearranging p; AV, with
AV; = v Amy, gives

Egv — E(’:v = Amle; + pivi) + AQq — AW . (1.9)
Finally, introducing the definition of stagnation enthalpy
h® = e+ pv,

assuming N differential masses enter or leave the control volume, letting El, —E =
AE, dividing each term of Eq. (1.6) by At, and letting Ar — 0, we get the rate of the
first law of thermodynamics for a control volume,

dE N , .
— = > k! + Qo = W, (1.10)

=]

where enthalpy flow intoe the control volume is assumed to be positive and enthalpy
flow out of the control volume is to be megative, #; is the mass flow rate, O is the
rate of net heat received by the control volume, and W,y is the power (rate of net work)
done by the control volume. Explicitly,

d Ecv
. o . I
e = Z minhiu - § :mOUthout
dt in out
S e’ [ —
Rate of cl?angc Enthalpy flow Enthalpy flow
of energy in CV into CV out of CV

+ (ch)in - (ch)out + (ch)in - (Wc'v)out- (1-11)
(o] [daniulodiniets et N

Heatreceived  Heatrcjected  Workdone  Work done
by CV by CV on CV by CV

Recall from thermodynamics that the total energy E includes internal, kinetic, potential,
chemical and nuclear energy,

1
E=U-+ imvz + mgz + Uhem + Uaudls (112)

3 quantity = nonproperty.
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the stagnation enthalpy k° is
1
! R =h+ EVZ + gz, (1.13)

h being the enthalpy, and the power W is composed of displacement, shaft, and electrical
power, o
W= Wy + W, + W, (1.14)

Note that p/p, V2/2, and gz have units of m?/s>=J/kg=energy/mass, while p, p¥?%/2,
and pgz have N/m?=J/m3=¢nergy/volume, p = 1/v being the density. Since the electric
epergy U, generated in a system is thermodynamically equivalent to work done on the
systerm,

W, = —U.. (1.15)

For the rate of the first law of thermodynamics for a system, rz; = 0 and Eq. (1.10) is
reduced to

dE;

— =0, — W . (1.16)

Anintegration of Eq. (1.16) over a time interval converts this equation back to Eq. (1.6).
The conservation of mass, the balance of momentum, and the second law of ther-

modynamics also may play, although to a reasonably lesser degree of importance, a role

in heat transfer. In terms of Fig. 1.2, the conservation of mass for a control volume is

dmes_ > (1.17)

or, explicitly,

—dmcv = M — Hlgut -
dt -
m

out

[S— N
Raze of change Mass flow  Mass flow
of mass in CV into CV out of CV

We proceed now to a couple of examples ilfustrating the application of the conservation
of mass and/or the first law.

Exameie 1.1 Steady one-dimensional flow

Consider the steady one-dimensional flow of a frictionless incompressible fluid through 2 pipe
of constant cross section and a diffuser of the same length (Fig. 1.3). The pipe and diffuser are
subjected to the same uniform heat flux ¢” (W/m?). The inlet diameter and intet velocity of the
diffuser are identical to those of the pipe.

1. We wish to determine whether the exit temperature of the diffuser is higher or lower than
that of the pipe on the basis of physical reasoning rather than mathematics.

2. We wish to support our conclusion with a simple analysis.
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q l ~
e == Y === o | CV
| iy | "/
D, _lcl:_._i/ ........ -55 D, Tﬁm ........... :)5 D,
e | L. 1
-----'—J g

Figure 1.3 Control-volume configuration.

1. The exit temperature of the diffuser is higher because of the higher heat input resulting
from the larger peripheral area of the diffuser. The slowdown of the diffuser velocity has a minor
effect which will be discussed later in the next part.

2. Let us follow, for the time being somewhat informally, a couple of basic steps in the
formulation of the problem‘.1 As a fixst step, consider the control volumes shown in Fig. 1.3. Asa,
second step, consider the conservation of mass and the first law for these control volumes. The
conservation of mass (Eq. 1.17) gives, for steady flow of an incompressible fluid,

m = pAV = Const, {1.18)
which reduces for the pipe to
i=1V (1.19)
and for the diffuser to
A1V, = Az Ve (1.20)

Under steady conditions, the first law given by Eq. (1.10), noting also the absence of any power
terms, vields

0= m(hg - hg) + ch. (1.21)
{Since m = Const. for both cases, the slowdown of flow in the diffuser does have a minor effect
on temperature only through the kinetic energy in the stagnation enthalpy.)
Recalling from Eq. (1.13)

R =k + V2 (122)
and, for an incompressible flow through a short pipe or diffuser, neglecting the effect of pressure
drop,

dh = cdT

and with
Ap = j P(x)dx, Qo = q"4p, (1.23)

4 Atthe end of this chapter, these steps together with three more steps will be formalized as an inductive
method based on a five-step formulation.
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where A, is the peripheral area, Eq. (1.21) may be rearranged for the diffuser as

-
3

1
0 = me(Ty — To) + 5ril(vf — V2 + ¢" A, g,

which readily gives

1 (1 .
-1 = — |:—rh(V12 — Vf) + q”AP'diﬂjl . (1.24)
me | 2

For the pipe, Eq. (1.19) and the fact that A, gir — Ap pipe Simplifies Eq. (1.24) into
1
L-nh= __(q”Ap.pipc)~ (125)
mc
For the diffuser, since Az > A, Eq. (1.20) yvields ¥z < V;. Then
1
En‘z(Vf — sz) > 0 andalso Aparr > Ap.pipe,

and, it follows from the comparison of Egs. (1.24) and (1.25),
(T — Tagr > (T2 — Tidgige-
As a practical application? let
Dy =5cm, Dy =25cm, L=10m,
T, = 300K, W, =2mis, g¢" = i0kWim’,
p = 1,000kg/m®, ¢ = 4,000 Jkg K.
Introduce
AT, = %(q”Ap),

1
AT, = —(VF — VD),
2c

where subscripts ¢ and m derote thermal and mechanical contributions, respectively. To deter-
mine AT, in the diffuser, we need ¥, which foliows from Eq. (1.20)

2

Vi

Vo=W|-—] = — = 0.08m/s.
Dy 23

Then
1

AT, =
2 % 4,000 kg-m2/s?/kg-K

[2% — (0.08)*]m’/s* =2 5 x W0 K.

To evaluate AT; in the pipe and diffuser, we need i, Apgige, 20d Aparr. Recalling
Egq. (1.18),
m = pAiVi{= pAzVa),

5 The FORTRAN program EX1-1.F is listed in the appendix of this chapter.
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_ ,  w(0.05m)’
m = 1,000 kg/m’ x ._,_4_. x 2m/s = 3.927 kg/s.

Peripheral areas,
Apgipe = TI1L,

L L x
f mD{x)dx = [ n [Dl + (D ~ D) | dx
0 0 L

1 1
D L + EJ'I‘(DQ — Dy} = Eﬂ(Dl + D)L,

Ap,diff

Accordingly,
Appipe = 70.05m x 10m = 1.57 m?,

Apare = 0.57(0.05 4 0.25) m x 10m = 471 m",
which, for this case, implies A Tigir = 3ATrpipe. Then
ATy = L € Ay ) = 10,000 W/m? x 1.57 m* o1k
me 3.927 keg/s x 4,000 W-s/ke K
ATgs =3 x1=3K

Note that in the diffuser

AT, 3 X
= ra— = 6 x 10 y
AT, 3 x 10

demonstrating that the effect of kinetic energy on temperature compared to that of imposed heat
flux is negligible. However, this may not always be the case. L 2

Examrie 1.2 An unsteady problem

A thermally insulated electric wire of diameter D, length £, density p, specificheat ¢ and electrical
resistance R isinitially at ambient temperature T,. Lot electric potential V* be suddenly applied
to this wire. We wish to find the time required for the wire to reach its melting temperature, T,

Thermal insulatdon

{ j

dE/MT
2% 2
% . System

W, é
-7;_-—;—__

7

Figure 1.4 Electrically heated wire.
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Step 1: Assume the entire wire be the system, as shown inFig. 1.4.
Step 2: In the absence of heat loss to the ambient, the first law given by Eq. (1.16) is reduced to

! dE .
8 _ W (126)
dr

Furthermore, for a solid, assume p and o are uniform, and
dE = medT, (1.27)

where m = pV,and m and V are the mass and the volume of the wire, respectively. Also, recall
that electric energy generated in the wire is thermodynamically identical to power applied to the
system, and

W = ~W,, (1.28)
where
W, = V*I = I?’R = V**/R. (1.29)
Then Eq. (1.26) becomes
daT "
pcV—&— = V¥/R. (1.30)
I

Contrary to the algebraic nature of the preceding example, here we end up with a differential
equation. Apparently, when the two steps of formulationlead to a differential equation, we need
another step to determine the integration constant of the equation (we shall elaborate this step
later). The wire is initially at temperature

T©0) = Tw- (131)

Equation (1.30) together with Eq. (1.31) completes the formulation of our problem.
The integration of Eq. (1.30) with Eq. (1.31) gives the solution

ViR
T — T, = ( / ):, {132)
pVe

where V = (x D*/4)L.
As a practical application? let us consider a copper wire with the following specifications:

£=1m, D = 1Imm,

Tw = 270K, T. & 1,400 K,

V* = 100 volt, R* = R/£ = 0.1 ohm/m,
p = 9,000 kg/m?, ¢ = 400 Wkg K

Solving for ¢ in Eq. (1.32) and substituting R and V explicitly,

V2 /R*E 3 D? Ty — Too
t = (Tn — 7. — 7 = pe—=—2 1,
( m OO)/ ]TDZ pC 4 ( V*Z/R*
pc~——4 £

% The FORTRAN program EX1-2.F is listed in the appendix of this chapter.
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1,400 — 270K
1007/0.1 W-m '

(1l x 107H?
t = 9,000 kg/m® x 400 J/kg-K x -(~——4—)— m® x *m® x

P32 x107%s

1.4 CONTROL SURFACE

In the preceding section we developed the first law of thermodynamics for a control
volume, In this section we wish to develop the same law for a comtrol surface.

Define a control surface as a control volume with zero volume surrounding a
moving interface or a stationary boundary (Fig. 1.5). The first law of thermodynamics
for this control surface can be readily obtained by eliminating the volumetric term,
d Ec,/dt, replacing the stagnation enthalpy with enthalpy in Eq. (1.10), and interpreting
the remaining terms with Fig. 1.5. Thus, in the absence of Wey,

0 = — h2) + 01 — O (1.33)
The application of Eq. {1.33) to a stationary boundary readily gives
0= 01~ Qa (1.34)

(1 and O, will be later related to temperature. The application of Eq. (1.33) to a
moving interface is illustrated below.

Control surface

Y NN NP Ao

———————————— — - —— —

f;lhl Q.I Interface

Figure 1.5 First law for a moving interface.

Exameiz 1.3 Unsteady one-dimensional flow

Consider an interface separating a saturated liquid layer from its vapor, as shown in Fig. 1.6. The

bottom of the fluid layer is insulated, while its top absorbs a specified heat flow 0 acting at a

distance. The initial thickness of the layer is X, The liquid and its vapor are at the saturation

temperature T,. We wish to determine the unsteady thickness X (¢) of the evaporating liquid.
For an observer fixed to the interface, Eq. (1.33) yields

0 = iy — hy) + O, (135)

where subscripts f and g stand for liquid and vapor, respectively, Also, the conservation of mass
at the interface gives

prAVr = p AV, = m = Const,, ’ (1.36)
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SRRNRARRRE

T,

v Initial level
P fenaxs v
x| %o
“ 7 L

K Insulation

(a)
kg
Contro} surface
e S ST
I mhy Interface

b
Figure 1.6 (a) Evaporating liquid layer,
(b) first law for a control surface.

where

dX

V= (1.37)

Io terms of the latent heat of evaporation kp, = hy — iy and g" = 0/ A, Egs. (1.35)-(1.37) lead
to

dx
0= prhg——+ q". (1.38)

The tnitial value of the liquid layer thickness is
X0y = Xy. (1.39)
The integration of Eq. (1.38) readily gives, after the consideration of Eq. (1.39),

"

X = Xo — f, (1.40)

Prhgy
which shows the linear decrease of the thickness of the fluid layer with time. &

1.5 ORIGIN OF HEAT TRANSFER. PARTICULAR LAWS

Tn Section 1.1 we classified the problems of mechanics, extended this classification to
thermal problems, and distinguished between thermodynamically determined and un-
determined problems. Then we stated the need for particular laws of heat transfer for
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thermodynamically undetermined problems. Here, in terms of the original problem of
conduction, we shall demonstrate why for a thermodynamically undetermined thermal
problem some knowledge beyond thermodynamics is needed.

1.5.1 Original Problem of Conduction

Consider a flat plate of thickness £ whose surfaces are kept at temperatures Ty and 5.
‘We wish to find the steady heat transfer through this plate.

Under steady conditions, and in the absence of any mass flow and power input,
the first law stated by Eq. (1.16) reduces to

O(Net) = 0. (1.41)
Interpretation of this result for the differential system shown in Fig. 1.7(a), gives

dx

a0

1

I T
2

|

|

/’"—'—“‘\.__L_/ ™~ Differential

[ ! system

Qi(:ij
5T,
L T —
| ]
r I I
)]

Figure 1.7 (a) Origin of
conduction, (b) Fourier’s law of
conduction.
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or
: ———dx = (1.42)

which integrates to .
¢ = Const, {1.43)

That is, the heat flux is constant at any cross section of the plate. However, for the size
of a heat transfer device, say for a heater providing this flux through the walls of a room
to be heated, we need the specific value of this constant. Thermodynamnzics is silent to
this need, The attempt to find an answer for this need is the origin of (conduction)
heat transfer. Since the statement of our example specifies the temperatures of two
surfaces, we need a relation between heat flow and temperature, O = f(7T), which is
phenomenologically provided by heat transfer. Observations show that any relation of
this nature is dependent on the medium it applies to and, consequently, is a particular
law. The remainder of this section is devoted to particular laws of heat transfer. We
begin with the particular law associated with our illustrative example.

1.5.2 Fourier's Law of Conduction

Experimental observations on different solids lead us to the temperature dependence
of Eq. (1.43) as

¢ T, — T
%zk_lm.__z , (1.44)

"= ;

which is Foorier’s law for homogeneous media [Fig. 1.7(b)]. The proportionality con-
stant k is called the thermal conductivity of the plate material and has units of W/m-K.
Equation (1.44) continues to be valid for a fluid (liquid or gas) placed between two
plates separated a distance £ apart, provided suitable precautions are taken to elimi-
nate convection and radiation.

Exampie 1.4 Conduction heat loss

Consider a human being with a total feet area A = 2 % 10 x 30 em? standing on the ground. The
thickness of the shoe leather soles is £ = 0.5 cm. Assuming the temperature of the feet to be
Ty = 37 °C and the temperature of the ground to be T = 0 °C, we wish to determine the heat
loss to ground. Assume kjeqmer = 0.0135 Wim-K.

The first two steps of formulation are identical to those of the original conduction problem,
which leads to

2 = Const. (1.45)

Here, we need a third step for the evaluation of the particular value of this constant in terms of
temperature. Fourier’s Iaw,
Qx h—-o

= — =%k
qx A

= Const. (1.46)

provides this step.7

7 Actually, there is a hidden fourth step in Eq. (1.46). This step will be clarified in Section 1.8.
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In terms of the total area A,

A =2 x10 x 30cm® x 10~* m?/em* = 0.06 m?,

the total heat transfer
, 37 -0K 2
Ok = qxd = 0.0135 W/m-K x 05 % 10, x 0.06 m*,
Ox = 6W.
Note that the total heat transfer from a human body is approximately 200 W. +

Thermal conductivity may be helpful for thermal classification of media. A
medium is said to be thermally homogeneous if its conductivity does not vary from point
to point within the medium, and thermally heterogeneous if there is such a variation. A
medium is said to be thermally isotropic if its conductivity is the same in all directions
and thermally anisotropic if there exists directional variation. It becomes clear after
the foregoing classifications that solids used in experiments which suggest Fourier’s law
stated by Eq. (1.44) must necessarily be homogeneous. Also, 2 homogeneous mate-
rial must necessarily be isotropic, but an isotropic material may be homogeneous or
heterogeneous.

Let us see now what happens to Eq. (1.44) for heterogeneous and isotropic media.
Assuming a globally heterogeneous material to be locally homogeneous, Eq. (1.44) can
be used for a plate thickness of Ax as Ax ~» 0. In terms of Fig. 1.8, letting Ty = T and
T. =T + AT in Eg. (1.44), we get

AT 3T
gy = —k im — = —k——

(1.47)
Ax-+Q AX ax

which is Fourier’s law for heterogeneous isotropic media. Note that Eq. (1.47) holds
regardless of the actual temperature distribution. For example, in Fig. 1.9(a) we have
gx > 0 for 8T/8x < 0, in Fig. 1.9(b) we have ¢, < 0 for 87 /3x > 0, and both cases
agree with the second law of thermodynamics, which states that the heat is transferred
in a direction from higher to lower temperatures. Fourier’s Yaw for anisotropic media

G e wtl

T T+ AT
1

Ix 1
1
1 |~ material

|
!
1
1 Heterogeneous
1

e

I
=
/._H__‘\l_b\ Assumed locaily

homogeneous

Figure 1.8 Fourier’s law for
heterogeneous material.
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dx e —
Conduction
+x +x
0 0

@ ()
Figure 1.9 Sign of Fourier’s law.

requires nine components for thermal conductivity and goes beyond the scope of the
text.

1.5.3 Thermal Conductivity

It is appropriate here to make some remarks on the physical foundations of thermal
conductivity. The dependence of thermal conductivity on temperature has been experi-
mentally recognized. However, there is no universal theory explaining this dependence.
Gases, liquids, conducting and insulating solids can each be explained with somewhat
different microscopic considerations. Although the text is on the continuum aspects of
heat transfer, the following remarks are made for some appreciation of the microscopic
aspects of thermal conductivity.

For dilute gases, molecules are assumed to be independent from each other, and
thermal conductivity is explained by means of kinetic theory, which analytically leads
to k ~ T2 Experimental results, however, indicate that for real gases

ko~ T" (1.48)

n being greater than 1/2 and depending on the nature of the gas.

In solids the interaction between particles is strong and the system of particles
become arranged in a lattice of definite crystalline structure. The collective motions in-
volving many particles are then interpreted as sound waves propagating through solids.
The quantized sound waves act like weakly interacting quasi-particles called phonons.
Electron scattering by phonons becomes predominant at higher temperatures. Ateven
higher temperatures the effect of scattered electrons continues to make a major contri-
bution to conductivity, while a secondary effect appears from phonon scattering by the
lattice. Thus

k=0Cy + 9 R (1.49)
T
where the constant term of the righthand side (known as the Wiedeman-Franz law)
gives the electron contribution and the second one the phonon contribution. Figure 1.10
shows asketch of Eq. (1.49) as well as other forms of dependence of thermal conductivity
on temperature.
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k Low T Moderate to
high T
1
T+ ?

Metals (conductors)

b 1
heS C+—

r° ~
el

Insulators o "
- - T c

Alleys

Figure 1.10 Thermal conductivity of
solids.

The temperature dependence of thermal conductivity for liquids, metal alloys,
and nonconducting solids is more complicated than those mentioned above. Because
of these complexities, the temperature dependence of thermal conductivity for a number
of materials, as illustrated in Fig. 1.11, does not show a uniform trend. Typical ranges
for the thermal conductivity of these materials are given in Table 1.1. We now proceed
to a discussion of the foundations of convective and radiative heat transfer.

Table 1.1 Typical values of thermal conductivity.

Material k (—W—)
m-K

at atmospheric pressure 0.007-0.2

Gases

Insulation material 0.03-02
Nonmetallic liquids 0.08-0.7
Nonmetalic solids

brick, stone, cement 0.03-3
Liquid metals 9-80
Alloys 14-120

Pure metals 50-400
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Figure 1.11 Thermal conductivity of some materials.

1.5.4 Newton's Definition of Convection

Consider two solid bodies each with a flat surface, kept at temperatures 77 and 7. Let
the flat surfaces be separated by a distance £. If the space between the flat surfaces
were (ideally) fitted with a solid or filled with a stagnant fluid, the heat from one body
to the other, as we already learned, would be transferred by conduction (Fig. 1.12), as
stated by Eq. (1.44).

Let the medium between the flat surfaces of two bodies (now a fluid because of
practical reasons) flow with a mean velocity V (Fig. 1.13). This flow results from either
an imposed pressure drop or aninduced buoyancy, respectively called forced and natural
convection. Let the inlet temperature of the fluid be T5. (Note that the fluid temperature
need not be Tp. Selection of T3 for this temperature eliminates temperature gradient
near plate 2 and simplifies the following development.) The convection heat transfer
from plate 1 is defined as the conduction in the fluid next to plate 1 (in view of the fact
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.

Solid or stagnant fiuid '

/

Figure 1.12 Conduction in
homogeneous medium.

that the fluid next to the plates remains stagnant because of friction),

aT
gc = (qilw = —k (?) ) (1.50)
Y/

where y denotes the coordinate normal to the walls, and subscript w refers to location
y = 0. It would be convenient to describe the same convection in terms of a heat

1

™/

5

vir

Figure 1.13 Nusselt number in terms of
wall gradient of fluid temperature or in
terms of thermal boundary-layer
thickness.
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transfer coefficient & and the temperatures 77 and T; as

r

ie = 2wz - 1), (151

which is known as Newton’s law of coeling. Equating Eqgs. (1.50) and (1.51), we get

aT
gc = —k (—) =n(hy — T) (1.52)
et ay w et bttt
Convection ——— Definition
Foundation

which can be rearranged with the help of Fig. 1.13 as

d /1 —-T
_ Uxd =k—( ! ) (1.53)
-1 iy\h-%/,

or, in terms of a characteristic length £ {say the distance between the plates), as

ke 3 (T =T '
ht _ _( 1 ) = e Y (154)
kK \fi-%), K&- Wt 2
In terms of Eq. (1.44), this result may be interpreted as
hi
Ny = — — @K _ qc (1.55)

k qx qx

Here g5 denotes the conduction in stagnant fluid, (gg),, the wall value of conduction
in moving fluid, and their ratio introduces the definition of the Nusselt number, which
is dimensionless.

Clearly, in each convection problem, the Nusselt number is the wall gradient of
the dimensionless fluid temperature, which needs to be analytically or computatlonally
evaluated or to be experimentally determined from

(Q'K )w

B 1.56
k(T — T2)/E (L36)

with the measured values of (gx)., T1, and 7.

In reality the variation of the fluid temperature under the influence of motion is
confined to a thin thermal boundary layer §. Then,

-1
6 3

(157)
N

]
—(h - =
ay(l )
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and Eqgs. (1.53) and (1.55) are reduced to

and

where

and, consequently,

h = k
==
Nu = £
u = 3
& = f(fiow),
h = F{flow).

(1.58)

(1.59)

© (1.60)

(1.61)

Thus, unlike k (which is a thermal property),  is merely a definition and depends on
flow (conditions). That is, unlike thermal conductivity, the heat transfer coefficient
cannot be tabulated and needs to be determined for each flow condition. Accordingly,
Chapters 5 and 6 are devoted to elaboration of Egs. (1.60) and (1.61) and the solution of

_ convection problems in terms of a heat transfer coefficient. Here, for some appreciation,

an order-of-magnitude range of each heat transfer coefficient corresponding to natural
or forced convection in different fluids is given in Table 1.2. The order-of-magnitude
difference between the 4 values for natural convection and forced convection resulting
from flow of the same fluid should be noted.

Table 1.2 Typical values of heat transfer coefficient.

Condition n (;:—K)
Gases 5-12
Natural Oils 10-129
Convection Water 100-1,200
Liquid metals 1,000-7,000
Gases 10-300
Forced Qils 501,200
Convection Water 300-12,000
Liquid metals 5,000-120,000
Phase Boiling 3,000-50,000
Change Condensation 5,000-120,0¢0
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Exampe 1.5 Convection heat foss

An engine delivers 100 hp to a transmission. The efficiency of this transmission is 95% and its
outer surface area is A = 0.6 m?. The ambient air temperature is Ty, = 25 °C and the coefficient
of heat transfer is # = 150 W/m* K. We wish to determine the steady surface temperature of
the transmission. -
Step 1: Let the entire transmission box be the system as illustrated in Fig, 1.14.

Step 2: Under steady operation, the first law, Eq. (1.16), applied to this system reduces to

0=0—W,

where, for the transmission box above,

0= —0c

and ) ) _
W =W, + W,

W; and W_g respectively being the rates of incoming and outgoing shaft work. The relationship
between W; and W, is described in terms of the efficiency 7 as

Wy = W, = 0.95%,.
Substitution into first law readily gives
0=(@1—-mW - Qe
Step 3: Employ Newton’s law of cooling as the particular law (Eg. 1.51),
Qc = hA(Ts — T,
Step 4: Combine the preceding two steps to obtain the governing equation
hA(Ty = To) = (1~ MWe.
In terms of the given data, this relation yields
150 W/m*K x 0.6 m* x (T, — 25°C) = 0.05 x 100 hp x 745.7 W/hp,
T, = 66°C.

Oc

Transmission

From To differential
engine Iy eearbox
W,

[T ———

Figure 1.14 System configuration.
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1.5.5 Stefan-Boltzmann's Law of Radiation

So far, we have talked about conduction in solids and stagnant fluids and convection
in moving fluids. These modes of heat transfer depend on matter, and they disappear
in the absence of matter. A third and final mode of heat transfer is thermal radiation.
This mode of heat transfer, unlike conduction and convection, is hindered by matter
and is at its best in a vacuum. Some aspects of thermal radiation, being 2 manifestation
of the wide spectrum of natural phenomena including AM-FM radio waves, UHF-VHF
television waves, optics, X-rays, y-rays, cosmic rays, etc., can be explained in terms
of electromagnetic waves. Other aspects of this radiation, being a manifestation of
the many forms of particle interaction, can be explained in terms of radiation quanta
(photons). As a theoretical (electromagnetic or quantum) and/or experimental fact,
assume an ideal surface at absolute temperature T emitting thermal radiation energy
E according to the Stefan-Boltzmann law [Fig. 1.15(a)],

Ey = oT* (1.62)

which defines the surface of a black body. Here E is called the black-body emissive
power, and .

o = 5.67 x 1078 W/m?.K* (1.63)

is the Stefan-Boltzmann constant. Black-body emissive power represents the maximum
amount of heat that can be radiated by a body with a temperature T. A justification of
this fact requires background on isotropic versus anisotropic radiation which is beyond
the scope of this text. Surfaces other than that of a black body emit a fraction of this
Energy. :

So far, we have introduced three parameters, , , and o, in the statement of the
three particular laws of heat transfer. Note the fundamental difference among these
parameters: k is 2 thermophysical property, & is a definition depending on flow, and o
is a universal constant.

Now reconsider two bodies each with a flat black surface at absolute temperatures
Ty and T, separated £ distance apart in a vacuum, as shown in Fig. 1.15(b). Surface 1 has
emissive power Ey, surface 2 has emissive power 7, and the radiation heat transfer
between these bodies is

Or
r=—= = Ep — Ep (1.64)
ot, in terms of the Stefan-Boltzmann law,
Qr
R =~ = (T} — 1) | (1.65)
In general,
gr = Fio (T — 150, (1.66)

where the correction factor Fi, characterizes surfaces other than those of a black body
and their relative position.
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'
il

Figure 1.15 (a) The Stefan-Boltzmann
law, (b) radiation heat transfer between
two parallel black surfaces.

When there is a transparent medium between two bodies, Eq. (1.66) continues to
apply, but the total heat transfer g7 now includes the effect of gx (or g¢ ) as well as gx.
The total Nusselt number in the latter case is

Nur = Nu(l + qR/qK), (167)

Nu being the usual definition of the Nusselt number. When there is an absorbing
medium, gz includes the radiation effect of the medium as well as that of the surrounding
surfaces. These facts will be elaborated in Chapters 8 and 9 on radiation.

For small temperature differences, expanding both T{ and T} inio a Taylor series
about 2 characteristic temperature T and subtracting,

T — Tp = 4T3(0 — To), (1.68)
Eq. (1.66) may be approximated as
gr = 40Tg Fp(Th — T) (1.69)
or, introducing a radiative heat transfer coefficient

hr = 40T Fia, (1.70)
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as
qr = hr(hy — D). (L71)

Although not valid for large temperature differences, this linearized form of the ra-
diative heat flux is frequently used because of its convenience, especially in problems
dealing with a combination of all three modes of heat transfer.

Examrie 1.6  Radiation heat loss

A satellite in space is required to dissipate 5,000 W/m? at a steady rate. Determine the steady
temperature of the satellite, assuming that the satellite behaves as a black body.

Step 1: System consisting of the satellite as shown in Fig. 1.16.
Step 2: First law from Eq. {1.16), noting that the process is steady and no motion is involved

0=0—-W.

Step 3: Space may be considered as a vacuum at a temperature of 0 K, hence the only possible
mode of heat transfer is radiation. Then take the particular law from Eg. (1.65),

Or = cA(T) - 0),

which is related to () simply as
0 = —0r.

Step 4: Combination of the two preceding steps readily gives

AT = —(=5,000W/m®) x A(m?).

Satellite

Figure 1.16 System configuration.
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Eliminating A’s from both sides and inserting & = 5.67 x 10~% W/m?-K* from Eq. (1.63)
P 5,000 W/m?

.= ————— = 8.82 x 10M K*.
5.67 x 107° W/m*.K

Solving for T,
Ty = 545K(= 272°C).

HEAT TRANSFER MODES COMBINED

In the preceding section we learned about the three modes of heat transfer. In practical
situations, as in the cases of fossil fuel and nuclear power plants, internal combustion
engines, jet engines, and rocket motors (Fig. 1.17), heat is transferred by an appropriate
combination of these modes. As to be expected, each part of a power plant, engine, or
motor is more involved than the schematic representation shown in the figure. For ex-
ample, a boiler includes also a superheater, an economizer, and an air heater (Fig. 1.18).
In the boiler of a conventional power plant, hot gases resulting from combustion evap-
orate the water to its saturation temperature. Since the temperature of the hot gases
is much higher than this saturation temperature, steam is superheated by passing these
gases through a heat exchanger called a superheater. Also, with the remaining thermal
energy in the hot gases, the feed water from the condenser and the air intake are heated

Turbine Heat exchanger
Boiler R
~ eacior
™~
_’.
—tn.
Fuel Generator
Air
Purnp
Condenser
Fossil fuel power plant Nuclear power plant
! Coolant Combust;
ombustion
B Nozzle
Compressor Turbine
Internal combustion engine Jet engine

Figure 1.17 Examples involving combined modes of heat transfer.
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-
Superheater
=
=
Economizer
Fumace
-0
i
————— Air heater
frvmsrpie- A LT
= Fuel

~ Figure 1.18 Components of a boiler,

through heat exchangers respectively called economizer and air heater. Figure 1.19
shows the design details of a contemporary boiler. In all of these cases, a chemical
or nuclear fuel is converted into heat, which is transferred through a wall (or clad) to
a carrier fluid or coolant (Fig. 1.20a). Products of the chemical reaction may involve
gases such as CO, CO», and H, O vapor, which appreciably emit and absorb radiation,
or temperatures may reach levels at which radiation compared to convection becomes
important-maybe even the dominant mode of heat transfer.

Examrie 1.7 Combined-mode heat transfer

Let a flat wall of thickness £ separate a hot (combusting) ambient at temperature 7; from a
coolant at temperature T. In addition to convection, include the effect of radiation on both
sides. We wish to determine the heat transfer to the coolant.

Step 1: Consider the two systems shown in Fig. 1.20(b).

Step 2: After neglecting unsteady and power terms, apply the first Jaw of thermodynantics,
Eq. (1.16), to these systems. The result is

(Qc+ Qrl = Ox = (Qc + Q)0 = 0. (1.72)

O denoting the constant value of heat at cach cross section (which cannot be determined by
thermodynamical considerations).
Step 3: Recall the particolar laws of heat transfer, Eqs. (1.44), (1.51), and (1.71),

(Qc + Qrli = (B + he) AT — T0), (1.73)
Ox = kA(T, — T)/2, (1.74)
(Qc + Qrdo = (h + k) AT = To). (1.75)
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Figure 1.19 Details of a contemporary boiler (from
Babcock & Wilcox [12]).
Step 4: Combine steps 2 and 3 to get
(h + kAT — T7)
kA .
~£—(Tx - B) =g (1.76)

h+ hadoA(T — To)

which completes the formulation. Since 71 and T3 are unknown, we wish to solve for @ in terms
of given T; and Tp.

For the solution, rearrange each relation in terms of its temperature difference as
e

T "'Tl) = m.



30 Chap. 1 Foundations of Heat Transfer

Conversion of Removal of heat
chemical energy by carrier fluid
or nuclear energy or coolant

into heat

O]

Figure 1.20 (a) A model for combined modes of heat transfer,
(b) two systems for the model.

0
T—T) = —, 177
(T 2) A (1.77)
£
0
(Tp = T) = oo,
(7 + hplod
Add both sides of Eq. (1.77) to get
T — Ty = ! + i + ! o
T T RanA | kA (h + haded
or,
. -1
- , 1.78
Q 1 7 ] (1.78)

(h+heiiA kA (B4 hghA



Sec. 1.6 Heat Transfer Modes Combined 3

)]
Figure 1.21 (a) Actual circuit, (b) equivalent
circuit.
which can be rewritten as,
. T, — T
Q= (1.79)
R+ Re+ Ry
where
1
R} = —————, total (convective + radiative) inside resistance,
(h + hg) A
£ . )
Ry = —, conductive resistance,
kA
Ry = —————, total (convective + radiative) outside resistance.
(h + hadA

The relative magnitude of these resistances varies over a large range. For example, &; < kg and
ho 33> kg, in the case of radial heat transfer from the vertical tubes of a boiler furnace and from
the walls of a rocket engine.

Clearly, Eq. (1.79) readily admits an interpretation in terms of the electric-circuit theory
as shown in Fig. 1.21, where temperatures are analogous to potentials (voltages) and heat flux is
analogous to electric current. In Section 2.2 of Chapter 2 dealing with composite structures we
shall again utilize this analogy. L4

So far, we have determined the place of heat transfer as a thermodynamically
undetermined subject among thermal disciplines, thus learning the need of knowledge
beyond thermodynamics. Having established the three modes of heat transfer for this
need, we are ready for an individual study of these modes. Here, let us set forth the
method we shall follow in this text.
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METHODS OF FORMULATION

In the formulation of a specific problem, we have the choice of following a method
of reduction or of induction. The method of reduction is based on a simplification
of the general formulation in accordance with the particular nature of the problem.
Although desirable from an advanced point of view, the formalism involved with this
method makesitinconvenient for use in anintroductory text. By contrast, the method of
induction treats each problem individually from the beginning with special emphasis on
physics at each step of the formulation, and it is suitable for our objective. For example,
in the thermodynamically determined problems discussed in Section 1.3, we recognized
the important fact that a general law (such as the first law of thermodynamics) can
be correctly applied only when it is considered for a clearly defined system oz control
volume. Then in that section, we carefully defined an appropriate system and two
control volumes as a first step in the formulation of the problems in Exs. 1.1, 1.2, and
1.3. Then as a second step, we expressed the first law in terms of these system and
control volumes.

_ For thermodynamically undetermined problems, however, we need to know a
Q = f(T) relation to relate @ of the first law to temperature. So far, we have learned
three O = F(T) relations as the three modes of heat transfer (or as particular laws)
which need to be considered as a third step in the formulation of these problems. In
Exs. 1.4 through 1.7, inserting the particular laws into the first law (a general law), we
obtained as a fourth step the governing equation of the formulation. If this step leads
to an algebraic equation (as in the case of Exs. 1.4, 1.5, and 1.6), or to a set of algebraic
equations (as in the case of Ex. 1.7), the formulation of the problem is completed with
thisstep, to be followed by the solutien of algebraic equations. However, inheat transfer
problems, the fourth step most frequently leads to a differential equation (as in the
cases of Exs. 1.2 and 1.3) or to a set of differential equations. The formulation of these
problems requires as a fifth step the specification of some initial and boundary conditions
for the evaluation of the integration constants resulting from the temporal and spatial
integrations of the differential equations. For convenience and later reference, the
method of formulation by induction, elaborated in terms of the foregoing five steps, is
summarized below:

1. Define a system or control volume.
2. State general law(s) for (I).
3. State particular law(s) for (2).
4. Obtain governing equation by inserting (3) into (2).
5. Specify initial and/or boundary conditions pertinent to (4).
As an illustration for the use of these steps, let us reconsider the original problem of

conduction. This time, however, we wish to know the temperature distribution in, as
well as the heat transfer through, the plate.

FIVE-STEP INDUCTIVE FORMULATION
Step 1: Consider a differential system because of the distributed nature of the problem.
Since distributed problems are always in terms of a coordinate system, select a cartesian
coordinate normal to the plate (Fig. 1.22).
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(

(qx+ ff: dx)A

gA

dx

Figure 1.22 First law for a
differential system.

Step 2: The general law, Eq. (1.16), is reduced, in terms of Fig. 1.22, to

dgx
0 = +g:4 — (qx + idx) A (1.80)
dx
or
dgx
_% g, - 1.81
Ix (1.81)

Since this result does not lead to a temperature distribution for the plate, the
problem is thermodynamically undetermined and needs a particular law.
Step 3: The particular law, Eq. (1.47),

4aT
= —k— 1.47
g o (1.47)

relates g, to T
Step 4: Insert Eq. (1.47) into Eq. (1.81) to obtain the equation governing the temperature

distribution,
d ar
— (k=] =0 1.32
dx ( dx) (1.82)
or, for k = Const.,
a*T
— = 0. 1.83
dx? (1.83)

Step 5: Up to this step there is no need to decide on the origin of the coordinate system.
Let now this origin be at the surface with temperature 73. Then

TOy=T, TO =1 (1.84)

are boundary conditions.
Equation (1.82) or (1.83) subject to Eq. (1.84) completes the formulation of our
problem. Next we consider its solution.



34 Chap. 1 Foundations of Heat Transfer

SOLUTION
Integrate twice the homogeneous case given by Eq. (1.83). The result,
T = Cix + Cy, (1.85)
combined with Eq. (1.84) yields
Ty = G,
Th=Cé+ T (1.86)
In terms of Eq. (1.86), Eq. (1.85) becomes
T —T
LAY (1.87)
-1 £

which shows that the temperature varies linearly between Ty and T; across the plate.
Also, inserting Eq. (1.87) into Eq. (1.47), we get the heat flux,

-
E ’

e = k

which recovers the experimental result stated by Eq. (1.44).

So far, we have learned the foundations of heat transfer. We are now ready to
proceed to individual probleros controlled by conduction, which is the simplest of the
three modes.
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1.9 COMPUTER PROGRAM APPENDIX

U o

C EXL-1.F (START)

c ____________________________________
PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-2)
PI=4*ATAN(1.)

WRITEC*,*) 'EXAMPLE 1.1....°
: Cmm e e S
C  INPUT DATA
e m e i e e e

JWRITE(*,*) "INPUT THE FOLLOWING DATA...'
WRITE(C*,*) 'D.1: om'
READ(*,*) D1

WRITEC*,*) 'D.2: cm’
READ(*,*) D2

WRITE(*,*) 'Lt m’
READ(*,%) L

WRITEC®,*) 'T-1: K’
READ(C*,*} T1

WRITE(*,*) "V.1: m/m’
READ(*,*) V1

WRITEC®,*) 'Q: kW/mA2’
READ(¥,*) Q

WRITEC*,*> "RHO: kg/ma3’
READC*,*) RHO
WRITECY,*) 'C: J/kg.K'
READ(*,*) C

C UNIT CONVERSION

Com ot et s R P e e bt P
D1=0.01*D1
D2=0.01*D2
Q=1000*Q

[ T —_—— e ———————— -

VZuV1#(D1,/D2) *%2
DTM=(VL1**2-v2#%2) / (2%C)
AL=PT*D1*%2/4

DOTM=RHO*AL "L
APPIPE=PI*D1*L
APDIFF=PI*(01+02)*L/2
DTTPIPE=Q*APPIPE/ (DOTM*C)
DTTDIFF=APDIFF/APPIPE*DTTPIPE
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WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITEC*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(™,*)
sTop

END

"TEMPERATURE RISE DUE TC THE MECHANTCAL CONTRIBUTICN®
"QF THE DIFFUSER IS’

D™, K’

"TEMPERATURE RISE DUE TO THE THERMAL CONTRIBUTION'
'OF THE DIFFUSER IS'

DTTDIFF, " K’

"TEMPERATURE RISE DUE TO THE THERMAL CONTRIBUTION’
'OF THE PIPE IS’

DTTPIPE,' K'

PROGRAM MAIN
IMPLICIT REAL*§ (A-H,K-Z}
PI=4*ATAN(C1.)

WRITE(Y,*)

WRITE(Y,*)
WRITE(*,*)

TEXAMPLE 1.2....'

"INPUT THE FOLLOWING DATA...'
o

READ(*,*) L

WRITE(*, *)

'D: mm’

READ(*,*)

WRITE(*,*)

"TINFTY: K’

READ(*,*) TINFTY

WRITE(*,*)

'TM: K’

READ(*,*) TM

WRITE(*,*)

VAR volt!

READ(¥*, ") V5

WRITE(*, *)

'RA¥: ohm/m’

READ(*,*) RS

WRITE(*,*)

'RHO: kg/mA3’

READ{*,*} RHC

WRITE(*, %>

'C: 3/kg. K

READ(*,") C

e mmmmmmmm e e
T=RHO*CHPIAQw 2% | *# 2+ (TM-TINFTY) / (44VS*#2 /RS)

C
C ANSWER
Cem-

WRITE(*",*)
WRITE(*,™)
STOP

END

'TIME REQUIRED TO REACH MELTING TEMPERATURE IS'
T,* 3
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g EXERCISES

i

11

12

1.3

1.4

L5

[
The heat flux through a wall 10 cm thick is 20 W/m?. The thermat conductivity is 0.1 Wim-K
and the outer (cold) surface temperature of the wallis 0°C. (a) Calculate the inner surface
temperature of the wall. (b) Repeat the calculation for a different wall material with &
thermal conductivity of 0.04 W/m-K.

The most common method of determining the conductivity of insulating and building
materials that are available in the form of large plates is the so-called twin-plate method.
It consists of placing a fat electrical heater between two identical flat plates made of
the material to be tested. The plates and the heater are then placed between two flat
coolers (Fig. 1P-1). In an experiment performed with two 3-cm-thick square (30 em x 30
cm) ffat plates, the temperature at the interface between the heater and the plates is 80 °C
and the temperature at the interface between the plates and the coolers is 20 °C. These
temperatures are maintained with 140 W supplied to the electric heater. Determine the
thermal conductivity and, by the help of Table 1.1, the material type of these plates.

[ I I T 34— Ccolant

Figure 1P-1

A commercially available instrument, used to measure the heat flux directly, isknownasa
plug-type heat flux meter. The incident heat is conducted through the plug of area A and
conductivity k to the cooling water on the other surface. Two thermocouples embedded
a distance £ apart measure temperatures as 7 and 73, What is the total heat incident on
the plug face?

Fstimate the temperature of the battom surface of a thin metal cup in which water under
atmospheric conditions is boiled with a heat flux of 300,000 W/m?®. Assume a value of
30,000 W/m?-K for the heat transfer coefficient.

A 10 kW/m?® electric heater is surrounded by an ambient at 20 °C.

(a) Estimate the surface temperature of the heater for the following conditions:

Condition | Fluid h[Wm?-X]
Adr 10
Stagnant 0Oil 100
Water 1,000
Adr 250
Flowing Oil 1,000
Water 10,000

(b) Compare the foregoing values of the heat transfer coefficient with those given in
Table 1.2.
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A particular kind of quantum detector (or photodetector) used in laboratories and industry
is known as the thermopile detector. In an experiment, it is desired to measure the radiation
from a black flat plate extending to infinity. A detector has been placed parallel to the plate.
The catalog of the detector indicates that the maximum allowable incident radiation is 200
mW/cm?, Determine the highest tolerable plate temperature which will not damage the
thermopile detector, Neglect the radiation emitied by the detector itsell

A thin horizontal flat plate receives 1,200 W/m? of radiant heat from the sun. The upward
and downward heat transfer coefficients are 10 and 2.5 W/m?-K. Determine the steady
temperature of the plate if placed in ambient air at a temperature of 25 °C.

Draw the electric circuit for Prob. 1.7. Show the effect of the plate conductivity on the
circuit.

A wall 10 ¢m thick separates an ambient at 150 °C from another ambient at 20 °C. The
thermral conductivity of the wall is 0.6 W/m-K and the heat transfer coefficient on both
sides of the wall is 10 W/m?.K, Evaluate the heat loss from the warm ambient to the cold
ambient.

Adr at 25 °C is blown past a thick wall whose surface is at 85 °C. The coefficient of heat
transfer between the air and the surface is 100 W/m? K. The thermal conductivity of the
wall for three different materials is 0.3, 30, 300 W/m-K. Evaluate the temperature of the
wall 2 cm from the surface for each material. Neglect the effect of radiation.

Consider a 20 cm thick brick wall separating a room at T; = 25 °C from the outside air
at Ty = —3 °C. The heat transfer coefficient on both sides of the wall is 10 Wim?-K. The
thermal conductivity of the brick is 0.7 W/m-X. Neglect the effect of radiation.

(a) Evaluate the inner surface temperature of the wall, T;. ’

() Now, let the outer coefficient of heat transfer be increased to 100 Wim2.Kduetoa
change in the condition of air cutside from stagnant to windy. Reevaluate the inner
surface temperature.

{c) Assume that a human standing in the room can be approximated as a cylinder 1.8
m tall, 30 coo in diameter. Evaluate the steady heat loss from the human being by
means of convection both for (a} and (b).

(2) Reevaluate (c) by including the effect of radiation as well as that of convection.

Steam is condensing inside a pipe at 2 atm (abs). The heat transfer coefficient on the
steam side is &; = 6,000 W/m? K and on the outer surface is kg = 10 W/m? K. The thermal
conductivity and the wall thickness of the pipe are k =20 W/m-K and § =2 mm, respectively.
The pipe is suspended in a room at 25 °C. (a} Show the relative importance of the radial
temperature drop inside, outside and through the pipe. Neglect the effect of curvature.
(b) Evaluate the heat loss per meter length of pipe. (c) Find the change of steam quality
per 10 m length of a 20 mm OD and 16 mm ID pipe for a steam velocity of 3 m/s.
Reconsider Prob. 1.9. The heat loss will now be eliminated by attaching a flat-plate heater
to the cold surface of the wall. The heat transfer coefficient between the heater and the coid
ambient is also 10 W/m?-K. Evaluate the power need in Wim?. Sketch the temperature
distribution.
Power P per unit area is generated in a horizontal fiat plate. The heat loss from the lower
surface of the plate is-reduced to a large extent by an insulator of thickness £. Find the
upward and downward heat transfer. Evaluate the temperature of the plate and the lower
surface temperature of the insulator. Data; F =100 Wim?, £ =4 om, k = 0.4 Wim-X, hy
=10 Wim? K, by =25 Wm? K, T =25°C.

%
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Two vertical black plates are separated by a vacuum space. One of the plates is in contact
with water at 90 °C while the other is exposed to ambient air at 0 °C. Estimate the heat
loss from the water to the ambient air, Justify your assumption on the convection effects.

A thermocouple is used to measure the temperature of the gas flow in a combustor. The
thermocouple reading is 1000 °C. The walls of the combustor are at 200 °C. The heat
transfer coefficient between the thermocouple and the hot gases is 200 W/m?-K. Evaluate
the actual temperature of the hot gases.

Evaluate the heat loss by natural convection, forced convection, and radiation from a
flat plate at 2 uniform temperature T, to ambient air or water at a temperature Teo.
The temperature difference between the wall and ambient is 100 K. The heat transfer
coefficients for natural and forced convection in air are 10 and 200 W/m? K, and in water
are 500 and 10,000 Wim? -K, respectively. Plot the various heat losses from the plate as a
function of T /(T — Too) for Toe =0, 400, 800, and 1200 XK. Note the effect of convection
relative to radiation as a function of temperature.

In a laboratory experiment, the horizontal surface of a plastic material with an area of
0.3 x 0.3 m* is deliberately set on fire. For combustion to take place, the solid plastic has
to be gasified first. Following the initial external firing, this gasification energy is supplied
to the surface by the hot flame region through convection g¢ and radiation gg. Duetoa

" relatively high temperature, the surface at 400 °C also reradiates ggy back to the ambient

at 30 ° C. The heat of gasification of this plastic is known to be 1.60 kJ/g and gg is measured
to be 20 kW/m?. Assuming the hot gases above the burning plastic pool te be at 1,200 K,
and the heat transfer coefficient to be 10 W/m?-¥, and neglecting the conduction to the
solid plastic, determine (a) the burning rate 72 of plasticin g/m?:5. (b) the change in height
of the stationary plastic block in 2 hours.
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In this chapter we shall consider steady conduction in one-dimensional geometry, Al-
though the main objective is conduction, convection described in terms of an assumed
heat transfer coefficient will be included whenever it is pertinent. This may be the
case when the heat transfer is desired in terms of ambient temperatures (Section 2.2)
or when heat loss normal to the direction of conduction is essential, as in the case of
extended surfaces (Section 2.4). Here we continue to employ the five-step formulation
but somewhat less explicitly than the way we used it in Chapter 1. Each reader should
tailor the degree of etaboration of this formulation to his or her particular needs.

VARIABLE CONDUCTIVITY AND VARIABLE AREA

In the development of the one-dimensional temperature distribution in a flat plate
(Section 1.8), we assumed that the thermal conductivity, k, and the cross sectional area,
A, were constant. However, as mentioned in Section 1.5, conductivity usually depends
on the temperature. Also, except for cartesian geometry, the area of a geometry varies
in the direction of heat transfer. We wish to examine now the steady, one-dimensional
conduction, including the effects of varjable conductivity and variable heat transfer
area.

Consider part of a shell of constant wall thickness as shown in Fig. 2.1. Let the
inner and outer surface temperatures be 77 and 73, respectively, and the thickness of the
shell be £ = x; — x;. Following the five-step formulation, we assume first a differential
system (Step 1). The first law of thermodynamics for this system (Step 2) yields

—dQg =0 or Qg = Const. (2.1)
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Figure 2.1 Variable area.

Fourier’s law of conduction (Step 3) in light of Eq. (2.1) givés the governing equation
(Step 4) as

. aT
O = —k(T)A(x)E— = Const., 22)
X
subject to boundary conditions (Step 5),
T(xl) =T and T(xz) = 1. (23)
After separating variables, integration of Eq. (2.2) yields, in terms of Eq. (2.3),
) 2 dx j‘ ki
=— | K(I)dT. (2.4
Ok fx v . )
Introducing an average keat transfer area
; %2
1! [ ax 2.5)
A £/ Alx)
and an average thermal conductivity ‘
ke ! Tzk d (2.6
k= ——r T)YdT, .
AT Jr (1) )
AT denoting T; — T», we may rearrange Eq. (2.4) as
. - - AT AT :
= kA— = —, 2.7
Ok 7 Re 2.7}
where
£
P f dx/A(x)
Ry = == = — | =2——— | AT, 2.8
K =7z (2.8
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which shows that the conductive resistance depends on both temperature and geometry.
Note that, in terms of an average thermal conductivity and average heat transfer area,
Ea. (2.7) is identical to Eq. (1.44) introduced for a flat plate with constant thermal
conductivity. For a constant conductivity, Eq. (2.8) reduces to

1 o dx
Ry = Ej; e (2.9)

and, for a constant heat transfer area (cartesian geometry) reduces to

£ AT
Ry = —Z'——T;——“—- (2.10)

f k(YydT
b

We now proceed to a successive study of the effects of variable conductivity and heat
transfer area.

2.1.1 Variable Conductivity

et the temperature variation in a problem be large enough so that the assumption of
a uniform conductivity is no longer valid. A first approximation may be

k= ke(1 + BT), (2.11)

where ky denotes the value of thermal conductivity at T =0 and § is the temperature
coefficient of conductivity. Inserting Eq. (2.11) into Eg. (2.6),

_ ——ko I
k= (1 + BTydT,
h—TJn A
which yields
- ko 1o 2]
k = - T -8 (T — T,
Tz_Tl[(z 1)+2}3(2 1)

e
k= ko1 + BT), (2.12)

— 1 . .
where T = E(TI + T») is the arithmetic mean of 73 and T5. Equation (2.11) is a

good approximation for the conductivity of alloys at sufficiently low and high tempera-
tures (recall Fig, 1.11). For small intervals of temperature, it may also approximate the
conductivity of some other sclids.

A more involved approximation,

k= ko [1 +y (?)] (2.13)
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adequately describes the conductivity of metals at sufficiently high temperatures (again
recall Fig. 1.11). Then, in terms of Eq. (2.6),

A T2[1+ (TO)]dT
(i —-TJn Y\T '

——~k0——[(T -1+ TID(E)]
T (B - T ? Vi T

k =k [1 +y (%ﬂ (2.14)

where T = (T3 — T3}/ In(Ty/ T2) is the logarithmic average of Ty and 3.

which yields

bl

or

2.1.2 Variable Area

Radial transfer of heat through a hollow cylinder and a hollow sphere are two important
applications of variable heat transfer area and are considered here.
For a hollow cylinder of length L, rearranging Eq. (2.5)-according to Fig. 2.2, we

have .
1 1 z dr
. [ , (215)
A o — I Jn 2arL

where £ = r, — ry is the thickness and L is the axial length of the cylinder. Integration
of Bg. (2.15) yields
i 2m(ry — )L
n(rz/r1)

Figure 2.2 A hollow cylinder or a
hollow sphere.
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which may be rearranged, after multiplying the numerator and denominator of the
logarithmic term by 27 L, and noting A) = 2mrr L and Ay =27 L, as

Ao 22T crlin (2.16)
———, 0T a g erx. .
m(A/AD)

Equation (2.16) denotes the logarithmic-mean average of A; and A;. For constant
thermal conductivity, noting £ = r, — ry = (A2 — A1)/2w L, we have from Ry = £/ kA
for a hollow cylinder

In(4z2/41) _ In(ra/n)

Re = = . 217
= 27kl 27k (2.17)

For a hollow sphere, rearranging Eq. (2.5) according to Fig. 2.2, we have

_ !t f”i, (2.18)

1
A _ 2
A 2 " rn 411’!‘

where £ = r, — r; is the thickness of the sphere. Integration of Eq. (2.18) gives
A = 4w,
which may be rearranged, in terms of Ay = 4mrr} and Ap = dnrZ, as
= (A1A2)"?, for a sphere. (2.19)

Equation (2.19) denotes the geometric-mean average of A; and Aj. For constant

‘thermal conductivity, Rg = £/kA for a hollow sphere becomes

ﬁ Py — R
Ryp = = . 220
K WA A Awkrir, (2.20)

For convenience, the average heat transfer area and the conductive resistance for the
foregoing three configurations are summarized in Table 2.1.

Table 2.1 Average heat transfer area and
conductive resistance,

Ox =45 Rie=5 (W]
Geometry A Ry
Flat Plate A =
Cylinder f‘fn:;%t Blnin)

1
Sphere (AL ADY? i
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It can be shown by appropriate series expansions in terms of powers of AA/A; =
(Ay — A1)/ A, that Eqs. (2.16) and (2.19) both approach the arithmetic-mean average,

.1
A= S+ 4), (2.21)

as Ay — Aj (and AA/A; — 0). When Az/A; < 2, Eq. (2.21) can be used to approxi-
mate Eq. (2.16) for a cylinder within an error of < 4% and Eq. (2.19) for asphere within
an error of < 6%. We now proceed to one-dimensional conduction through composite
structures and to the concept of critical radius.

2.2 COMPOSITE STRUCTURES. CRITICAL RADIUS

In many practical problems heat transfer takes place through a medium composed
of several parallel layers, each with a different thickness and a different conductivity.
For example, a typical brick house wall is usually composed of a layer of dry wall (or
plaster), a layer of insulation, and a layer of bricks. Each one of these parailel layers
has a different thickness and a different thermal conductivity. Heat is transferred by
conduction through each layer of material and by convection to/from the inside/outside
ambient ajr. If one wishes to determine the heat transfer from the inside of the house
to the outside through the walls, typical information that might be provided are the
dimensions and properties of each layer, the inside and outside air temperatures, and
the convective heat transfer coefficients. Usually, the air temperatures are given because
they are more meaningful and easier to measure than surface temperatures. This type of
situation is not unique to brick walls. In fact, in many practical problems, heat transfer
takes place through a medium of several parallel layers, each with a different thickness
and a different thermal conductivity. These are all composite-structure problems, and
the specific examples of heat transfer through layers of slabs, cylinders, and spheres are
the subject matter of this section.

2.2.1 Composite Slabs

Consider a composite wall made of three parallel siabs of cross-sectional area A (Fig. 2.3).
The thickness and thermal conductivity of these slabs are £1, £3, £3 and Xy, ka, k3, 1E-
spectively. Heat is transferred from a hot fiuid at temperature T; through this composite
wall to a cold fluid at temperature Tg. Coefficients of heat transfer on the hot and cold
sides are h; and hg, respectively.

Electric analogy or the five-step formulation elaborated in Ex. 1.7 readily leads to

] T —To
g = 3 , (222)
R; + Z Rg + Ro
K=1

where R; = I/h,'A, Ry = 1/h0A, R1 = El/klA, Ry = ﬂg/kgA, and Ry = £3/k3A are
the convective and conductive resistances.
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&5

Figure 2.3 Composite wall.

Actually, there exists a thermal resistance, the so-called contact resistance, through
each interface of a composite structure. This resistance depends on the contact pressure,
the roughness of two surfaces, and the fluid in which these surfaces are pressed together,
For more information on the subject the reader is referred to Reference 6 (and the
references cited therein).

ExampLe 2.1

A glass plate is to be bonded to a plastic plate by melting a layer of powdered glue of negligible
thickness between the plates. Assume the glass to be transparent and the plastic to be opaque
to the radiant energy source ¢”. The melting temperature of the glue is 7,,. The thickness and
thermal conductivity of the glass and plastic are £1, £, and k, k,, respectively. The upward and
downward heat transfer coefficients are k; and hy. We wish to determine the radiant heat flux
needed for this process,

q, |‘1" ]hl-Tw

Boundary
system

q, iy, Too

' Figore 2.4 First law for interface.
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ks 1h

Lk, Vi,

Fignre 2.5 Analog for Ex. 2.1.

For a boundary system (Step 1) at the interface of two plates (Fig. 2.4}, the first law of
thermodynamics (Step 2) vields

0=¢"—q1— g (2.23)
With Fourier’s conduction and Newton's cooling laws (Step 3), expressing g1 and gz now in terms

of total (conductive plus convective) resistances over the temperature drop T, — T on both
sides, we have

T. — T, T, — T
qi= = —— (2.24)
fky + 1/ Lfky + 1)k
Insertion of Eq. (2.24) into Eq. (2.23) gives the governing equation (Step 4):
d ! + L (T, Tos) {225}
T\ Um Bl 1) '

which is the power need (per unit area) for the bonding process. The electric circuit analogous
to the thermal problem is shown in Fig. 2.5.
In terms of following data,!

T =2 25°C, T.=175°C,

21 = (.5 cm, -eg =1lcm,

b =14Wn-K, l=04WnK,
Ry =100Wm* K, hy=4Wm?K,

we obtain
£ 1 0.005 m 1
i = + = 0.104 m> K/ W
ky k1 14 Wm-K 10 Wm?.X
£ 1 0.0lm

= 0.275 m? . X/W

G = +
ka o hy  04WmK  4WmPK

and, inserting these total resistances into Eq. (2.25),

1 1
L _ — W mz.K x (175 — ZHK
7 (0.104 0.275) / ( )

1 The FORTRAN program EX2-1 F is listed in the appendix of this chapter.
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or

g" = (9.66 + 3.64) x 150 W/m?,

or

q" = 2kW/m?,
%

In practice, a series-parallel combination of conduction paths is also encountered
quite frequently. A typical example is a wall constructed from concrete blocks (Fig. 2.6).
Note that the problem is actually two-dimensional but will be approximated here as one-
dimensional. This is a simplified model useful for approximate heat-loss calculations in
the building industry.

In terms of the electric analogy, the total (convective + conductive) resistance is

1
R =K+ —1—'—'—-— + Rs + Ry, (2.26)

where R; = 1/lA, Ry = {1/kiA1, Ry = £1/kaAz, Rs = £2/ka(A), Ro = 1/hoA,
A1 =B L, Ay = b;L, and L is the thickness.

L
Figure 2.6 Composite (series and parallel)
wall,
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2.2.2 Composite Cylinders

Consider radial heat transfer through two concentric cylinders of length L, different
thickness and different conductivity (Fig. 2.7). A typical example is the heat loss from
an insulated pipe. Let the inside and outside fluid temperatures and the inside and
outside heat transfer coefficients be T;, Tp and A;, kg, respectively.

The electric analogy gives, in terms of resistances,

T~ Tp

) = 2.27
e R+ R+ R+ Ry @27
or
Q= Lo h (2.28)
B N L1 s 1 ’ )
h,;A]_ klgllz szzg hDAB
where
R = 11 o n(n/r)
P h;’A;l - errthj’ L= kIAIZ ZJTLkl ’
Ry = —323 _ 1]1(?‘3/!‘2) _ 1 . 1
2= kgz:lz_g a 2n Lk ’ 0= hoAs - ZrraLhg’

Figure 2.7 Composite cylinder or sphere.
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Then, explicitly,
o = L-To : (229)
1 In(rz/ry)  In(rs/ra) 1
2w Lh 2m Lk 2m Lk 2mrsLhg
and, in terms of an overall heat transfer coefficient based on the outer heat transfer
e O = UAs(I; - Tp), Az = 2wrl, (2.30)
where

1 rsfry  rsln(rz/r)  r3ln(es/ra) 1
= —. 2.31
U h; * Ky + ks + ko ¢ )

Exampie 2.22

Steam at 2 atm (saturation temperature 7, = 120 °C) is condensing in a 1-inch (r; = 1.33 cm
and r; = 1.67 cm) stainless stee} pipe. The inside and outside heat transfer coefficients are
h; = 100,000 Wm?-K and hy = 10 W/m?-K, respectively. The thermal conductivity of the
pipe is k£ = 15 W/m-K. The pipe is suspended in a room at 20 °C. (a) We wish to evaluate the
radial temperature drop inside, outside, and across the thickness of the pipe walls. (b) The pipe is
insulated with a fiberglass (& = 0.04 W/m-K) layer of thickness 15 mm. Evaluate the reduction
in the heat loss per unit length of pipe.

(a) For the bare pipe, in terms of convective and conductive resistances,

o = T — Tu
R+ Ry + Rg'
where
1 1 1.2 x 107%
F— = ) o] rn°K/W
hi2rrn L 100,000 W/m?- K x 27 x 1.33 x 107 m x L L
and, in view of
A
202 =05 <0,
A n
2 £ m-n (167 — 1.33) x 107 m
VT XA T kw0l 15W/mK x 7167 + 1.33) x 107 m x L
2.4 x 1077
= mK/W
and
1 1 0.953
Ry = mK/W

= hodwral  10W/ miK x27 x 167 x 02mx L L

2 The FORTRAN program EX2-2.F is listed in the appendix of this chapter.
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The heat loss per unit length of pipe is then

o, (120 — 20) K
L (12 x 107+ 24 x 107 + 0.953) m-K/W

"= 105 W/m.

Note that the conductive and inside convective resistances are negligibly small compared
with the outside convective resistance, Thus the temperature drop in the steam and that
across the pipe walls,

T, — T = QR = 105W/m x 1.2 x 107 m-K/W = 0.01X,
Twi — Two = ORy = 105 W/m x 24 x 102 m-K/W = 03K,

are negligibly small, and the entire temperature drop between the steam and outside is
confined to that between the pipe and outside.

(b) For the insulated pipe, neglecting R; and Ry {of pipe walls),

I::"'Tco

o=l
Rz -+ Ry

R, being the conductive resistance of insulation. The radius of insulation is

rs =r+15cm = 1.67 + 1.50 = 3.17cm.

In view of
Az r3 317 cm
— = = = = 1.9 < 2,
Ay 167cm
R ¢ ., n-n (317 — 1.67) x W0 m
T kAm  kmis + )l 004 W/ mKxx x 317+ 167 x 1077m x L
2.47
= 2 mK/W.
L
Also,
1 1 0.50
Ry = = . =~ 27 m KW,
ho2rrsl 10W/m?-K x 27 x 317 x 0™ m x L L
Then

’ 120 - 20 K
e _ ¢ ) = 337 W/m.
L 247+ 050) mEK/W

The insulation turns out to be reducing the heat loss by 68% approximately.

Inspection of Eq. (2.29) reveals that the conductive resistance of insulation increases logarith-
mically and the outside convective resistance decreases hyperbolically as the thickness of the
insulation increases. This suggests the possibility of an extremum for the sum of these resis-
tances, which we explore next. ¢
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2.2.3 Critical Thickness for Cylindric Insuiation

Consider now the heat loss from an insulated pipe as a function of the insulation thick-
ness. Note from the preceding example that the conductive resistivity of the pipe walls,
compared with the conductive resistivity of the insulation, and the inner convective
resistivity, compared with the outer convective resistivity, can be neglected. Conse-
quently, the inner surface of the insulation assumes approximately the temperature of
the inner fluid, 7;.

For notational convenience let the thermal conductivity and inner and outer radii
of the insulation be k, r;, r, respectively, and the outer heat transfer coefficient be %.
Equation (2.29) may be then rearranged as

. ' .
g = : (2.32)
2wk L(T; — To) k r
In(r/riy + [}/ =
hr ¥
For an extremum of Eq. (2.32},
)y
_Q =0,
dr
which gives
1
~ [1 - (r/r-)Bi]
3 . =0
1
(r/ri) |:En(r/r;) + m:l
leading, because of the positive denominator, to
1 k
(1) = | or |ro==2l (2.33)
ri/c Bi h
where
hf,' .
Bi = — 2.34
P= = (234)

introduces the definition of Biot nmmber in cylindrical geometry. The physical signifi-
cance of this number will be elaborated in Section 2.3.1.
The heat loss corresponding to the eritical radius, inserting Eq. (2.33) into Eq. (2.32),
is found to be
0 1

WEL(T — To) N
wkL(T; — To) 1+1n(—)
hr;

(2.35)
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Insulation

A l )  : hh (O

Figure 2.8 Critical radius.

It can also be shown that
d*Q

2

< 0,
rc:k,/h

indicating that the heat loss given by Eq. (2.33) is a maximum. That is, the heat loss
from a pipe may be increased by insulating the pipe! This fact may be clarified further
by a sketch (Fig. 2.8) which shows the denominator of Eq. (2.32). The sum of the two
terms comprising this denominator assumes a minimum value at the critical radius.
Figure (2.8) also shows that for (»/r;),, the heat transfer with insulation is the same as
that without insulation. Thus, if the goal of insulating a pipe is to reduce the amount of
heat transfer, an insulation-layer thickness of (r/r;} > (r/r;), must be used. In Fig. 2.9
the heat loss from an insulated pipe is plotted against the insulation thickness for various
values of 1/Bi == k/hr;. The critical radius finds also an electrical application. A
thickness of insulation in the neighborhood of the critical radius provides more cooling
for an insulated wire than for a bare wire. The lower the temperature of a wire, the
lower its electrical resistance® and, in turn, the lower the Joulean heat loss of electrical
energy from it.

3 Note an approximate relation such as R = Ry(1 + 87).
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Figure 2.9 Heat Jloss against insulation thickness.

ExameLe 2.3

Reconsider Ex. 2.2 for (1) fiberglass {k = 0.04 W/m-K), (2) plaster (gypsum) (k = 0.20 W/m-K),
For each material we wish to determine the thickness of insulation for which the heat loss from
the pipe is (a) maximum, (b} equal to that from the bare-pipe analysis,

(a) We learned with Eq. (2.33) that rc = k/h yields the maximum heat loss. For fiberglass

insulation,
0.04 Wim-K
rc = —————— = {.00dm = 04cm
10 W/m?-K
and
re 0.4 cm
— = =024 <1
n 1.67 cm

The minimum of total resistance is at a radius less than the outside radius of pipe! So there
is no physically realizable critical radius. The total resistance increases with increasing
insulation and reduces the heat loss.
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On the other hand, for plaster (gypsum) insulation,

k 020 Wim-K

rc=—-=———-—=002m=2am,
h 10 W/m*-K
and, because
¥ 2
.£ _ cm &9 e iy
T 1.67 cm Bi

re —rp =2 — 167 =033 cm.

Thus, a 0.33-cm-thick insulation results in the maximum heat loss from the pipe.

(b) For the insulation thickness r yielding the same heat loss as the bare pipe, equating the
bare and insulated pipe resistances,

1 1 In(r/r)
k2mrl  R2nrL k2wl
or
1
1 Bi I/
= /s
Bi r/r,-
or, in terms of Bi = 1/1.2,
1.2 12 4 In(r/r;)
= riry),
(r/r:)
After some trial and exror,
r/r; & 1.45,
which, in view of r; = 1.67 cm, gives
r = 242cm

or
F—r = 2.42 —1.67 = 0.75 cm,

as the thickness of plaster insulation leading to 2 total resistance equal to the convective
resistance of the bare pipe. 4

Exampie 2.4

A solid shaft rotates steadily with angular velocity @ in a sleeve [Fig. 2.10{a)]. The pressure and
the coefficient of dry friction between the shaft and sleeve are p and p, respectively, We wish
to determine the steady temperature of the interface and find the specific vatue of r when this
temperature has the lowest value.
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b mpord,
q4;
— S
h T hTw

e paamammane ot
1[5
i
t 1 Boundary system

(b)
Figare 2.10 (a) Rotating shaft (b) the first law.

Here, some elaboration on friction power may be useful. First, recall the definitions of
work and power:

work = force x displacement

and its rate,
power = force x velocity.

Anormal force P acting on an interface between two solids (Fig. 2.11) creates a tangential friction
force u P, i being the (dynamic) coetficient of friction. Then, the friction power is

Power = uPV,
V béing the velocity. If the motion is rotational rather than being rectilinear,
V = or,
w being the angular velocity and r the radius of motion,
Power = pPowr.

More specifically, in terms of interface pressure p = F/A, A = 2nrL being the peripheral area
of the cylindrical surface of longitudinal length L,

Power = ppwrA.

This power dissipates into heat within the interface.

wP

T ez 7
Figure 211 Friction power.
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Consider a boundary system (Step 1) at the interface between the shaft and the sleeve
[Fig. 2.10(b)]. Under steady conditions, the shaft temperature is uniform (why?) and all energy
generated at the interface is transferred to the ambient. The first faw of thermodynamics (Step 2)
then yields '

0 = —qA; + pporid;, {2.36)
A; = 27r; L being the interface area, and the second term denoting the friction power dissipated

into heat, With Fourier's conduction and Newton’s cooling laws (Step 3), expressing the outward
¢ in terms of total (conductive plus convective) resistances over the temperature drop T; — T,

T}_Too

== 237
L/kA + 1/ hA

qA

where £ = r —r;, A = 2n{r —r;)L/In(r/7;) is the mean area, and A =2xrL is the outer surface
area of sleeve. Insertion of Eq. (2.37) into Eq. (2.36) gives the govemning equation (Step 4),
T — T
2 pporil = i (238)
Inn (r/r;) 1
2akL 2mhrL

or, the interface temperature relative to ambient,

In(r/r;) 1
T — Too = .u,pa)r?li (k/ + E]' (2.39)

The total resistance in brackets assumes a minimum value for ro = &/ k. This radius, coupled
with Eq. (2.39), gives the lowest interface temperature

2
T, — T = “P:’r‘ (1 — tn Bi), (2.40)

where Bi = hr;fk. 4

2.2.4 Composite Spheres. Critical Thickness for Spherical Insulation

Stress considerations make the spherical geometry most convenient for the construction
of calorimetric bombs, chemical containers, etc. For an insulated spherical shell, the
electric analogy gives, in terms of Fig, 2.7 and Eq. (2.30),

0 = UAs(T; — Ty)
or, explicitly,

L -1
1 rn—r Fa — Iz 1
4nrih;  Annmnk o dmnrsky o 4w r2hg

0 = , (2.41)
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where Ay = 4?'«:‘?'% and

1 (ra/r)* réz (I 1 r32 1 1 1
= 3D L2 (-2 = 2.42
U h; h\n r + ko \ o r3 + ho ( )
Also, the critical radius for spherical insulation is
(rfrye = 2( ) = 2 — 2% (2.43)
e =S\ ) T e T AR '

2.3 ENERGY GENERATICN (HEAT SOURCE)

Generation of interpal energy finds many important applications in engineering. Ex-
amples are electric heaters, nuclear reactors, exothermic chemical reactions, etc, In this
section we shall consider variable as well as uniform energy generation in flat plates,
cylinders, and spheres. Also, the conductivity will be assumed variable in some of these
considerations.

2.3.1 Flat Plate (Key Problem)

Let the rate of energy per unit volume #™(x) be generated in a flat plate and let the
thickness and the thermal conductivity of the plate be 2£ and k{T'), respectively. Under
steady conditions, the total energy generated in the plate is transferred, with 2 heat
transfer coefficient k, to an ambient at temperature Too. This plate could be one of the
fuel plates of a nuclear reactor core or one of the elements of an electric heater.*

Following the five steps of formulation, first we consider the differential system
(Step 1) shown in Fg. 2.12(a). The first law of thermodynamics (Step 2), Eq. (1.16)
interpreted in terms of Fig. 2.12(b), yields

d
0 = gy A — (qx + dQ'x dx) A+ u" Adx
X
or
d
0= _% W, (2.44)
where ¥ Adx = —W, can be identified as a power resulting from the electric work

done on the system. An alternative form of Eq. (2.44) is

dg;

L —
u(x) ey

(2.45)

# For electrical applications, /2R = I2Ry(1 + 8T) and the energy generation is more conveniently
represented by u”'(T}.
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b Lumade
1 I
x 39
Figure 2.12 (a) Flat plate with P
energy generation, (b) first law
for the system of flat plate. ®

where —u"” Adx = dUpyer/dt or dUpem/dt can be identified as a decrease of nuclear
or chemical internal energy within the system, Fourier’s law of conduction (Step 3),

daT

o 2.46
. (2.46)

g = —k

introduced into Eqs. (2.44)-(2.45) gives the governing equation (Step 4),
£ () 2 = oo
which, for a constant k, may be rearranged as
&1 u”
o T E
In the last step of our formulation, we need the origin of the coordinate axis. Because

of the geometric as well as the thermal symmetry of the problem, this origin is assumed
to be oun the midplane. Then, the first boundary condition is (Step 5)

aT0) —0
&

=0. (2.48)

(2.49)
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which is a result of the foregoing symmetries. A plane of symmetry is equivalent to an
insulated surface. The second boundary condition is the result of the first four steps
of formulation applied to a boundary system shown in Fig. 2.13 [recall Fig. 1.1 and
Eqg. (1.33)] as follows. For the boundary system of Fig. 2.13 (Step 1), consider the first
law (Step 2},

+qr=t — gc = 0.

Insert Fourier’s and Newton’s laws (Step 3),
daT
dx = _kd—’ gc = T — To),
X

into Step 2 to obtain (Step 4) the second boundary condition as

ar(8)
~k——= = R{T() = To]. (2.50)

Equation (2.47) or (2.48) together with Eqgs. (2.49) and (2.50) complete the formulation
of our problem. Next, we proceed to its solution.
For a distributed energy generation and a variable thermal conductivity, multiply-
ing Eq. (2.47) by dx and integrating the result gives :
dar

k= - [ W"dx + CI, (2.51)

and repeating the integration process once more,

fk(T)dT = —f ([ u”’(x)dx) dx + Cix + CJ. (2.52)

Thus, the solution of a problem with k(") and u" (x} is reduced to a straightforward
integration process.

Boundary system

Figure 2.13 Boundary
condition.



Sec. 2.3 Energy Generation (Heat Source) 61

For a uniform energy generation and a constant thermal conductivity, we get>from
Eq. (2.52), or from twice integration of Eq. (2.43),

umxz

2k

Tr=-

+ Cix + Ca. (2.53)

Here on we continue the solution process in terms of Eq. (2.53). The problem is sym-
metric with respect to the midplane, and the temperature distribution should be made
of even functions. This fact makes C; = 0. The same result follows also from insertion
of Eq. (2.53) into Eq. (2.49). The total power generated within the plate is transferred
from its surfaces to the ambient,

u" A28 = 2RA(T(£) — Tw]. (2.54)

Insertion of Eq. (2.53) into Eq. (2.54) gives, after letting C; =0,

WE = h( ure 4 C—T )
= - 2 T Lfoo

umg u/ffﬁz
T

or

Cy =

+ Teo-

The same result follows also from the insertion of Eq. (2.53) into Eq. (2.50). In terms
of Cy and Cy, Eq. (2.53) becomes

" Ht

L7 S N
T(x) = Too = 5 (& = %) + ——. (2.55)

Letting x = 0 in Eq. (2.55), we get the midplane temperature of the flat plate relative
to the ambient temperature,
" Ez um 7

TQ) —Too = = + = (2.56)

where u”£/h denotes the difference between the plate surface and ambient tempera-
tures [recall Eq. (2.54)],
M.’Hz

TE) — Ty = e (2.57)

and 1"#? /2k denotes the difference between the midplane temperature and the surface
temperature,

u.w £2 um ¢

TO-T® = 5= = 20/%)

(2.58)

3 Note that €y = C}/k and C; = C3/k.
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Figure 2.14 Temperature distribution in
a flat plate with energy generation.

as shown in Fig. 2.14. Finally, Eq. (2.55) may be nondimensibnalized as

TE) —Tw 1 50 1
umez/k - 2(1 ‘E ) + BI s (259)

where § = x/{ is the dimensionless distance, and Bi = h£/k is the Biot nwmber.

Here we wish to examine the ternperature distribution depending on geometry,
thermal conductivity, and heat transfer coefficient. For a fixed energy generation, hold-
ing k/£ constant while letting 2 — oo in Eq. (2.57) eliminates the temperature dif-
ference between the plate surface and the ambient; holding £ constant while letting
k/& — oo in BEq. (2.58) eliminates the temperature difference between the midplane
and the plate surface, thus leading to a uniform temperature on the plate; letting both
k/€ — oo and A — co eliminates the entire temperature distribution, and the plate
temperature becomes 7,,. Actually, the effects of /£ and h are combined together
in the definition of the Biot number. Nondimensionalization of Eq, (2.50) in terms of
£ = x /& readily yields

arq) . _
~— =B [T — T (2.60)

The foregoing three special cases, and the general case, corresponding to moderate
values of k and %, are sketched and interpreted with the Biot number in Fig. 2.15. In
summary, a large Bi {(say 10) simplifies a boundary condition by reducing Fq. (2.50) to
T(£) = Toy; asmall Bi (say 1071) simplifies a governing equation by reducing Eq. (2.59)
to a uniform 7. We shall refer to these facts on many later occasions.
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The apparent similarity of and the conceptual difference between the Nusselt and
Biot numbers should be noted. Both numbers result from dimensional interpretation
of a relation between conduction and convection,

Ok ~ Qc.
However, Q is evaluated from the solid side for Bi and from the fluid side for Nu.
Thus, Bi is a measure for the magnitude of temperature change in the solid side relative
to the fluid side of a boundary while Nu is a measure for heat transfer from a boundary
to a fluid in motion. These important concepts will be further clarified in the following

chapters. We proceed now to three examples illustrating the effect of energy generation
on flat plates.

T

Figure 2.15 Effect of Biot number.

Exampre 2.5 &

A flat plate of thickness £ separates two ambients at temperatures 7; and Tp(< T;). The heat
transfer coefficient on both sides is k. 'We wish to eliminate the heat loss from the warm ambient.

‘We learned in Section 2.2 that the total resistance between two ambients can be increased
by adding insulation to one or both surfaces of the plate. Regardless of the thickness and material
of the insulation, however, the heat loss from the warm ambient cannot be completely eliminated
by such an insulation. On the other hand, a proper amount of uniform internal energy generated
electrically in the p[ate6 may reduce the heat loss to zero. The problem is then reduced to finding

e

the appropriate value of 4.

51¢ the plate is not an electrical conductor er if electric current through the plate is undesirable,
another clectrically heated plate {(guard heater), electrically insulated from but in goed thermal contact
with the original plate, can be utilized.
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Figure 2.16 The principle of superposition. (a} first problem, {b) second
problem, (c) two problems superimposed.

For asolution, consider the superposition7 of two problems, one involving only the tempera-
ture difference T; - Tp, the other invoiving only the internal energy generation [Figs. 2.16(a),(b)].
As we bave seen in Section 1.6, the heat transfer at any cross section of the first problem 1is
constant, and according to Eg. {1.78) with no radiation

i — T

= h gk

(2.61)

The second corresponds to our key problem for the flat plate (of thickness £). Because of the
symmetry with respect to the middie plane, each surface of the plate transfers one-half of the
energy generated within the plate, that is,

ut (2.62)
gz = 5 .

To eliminate the heat loss from the left surface of the plate,
g —q@ =0,
which vields, in terms of Egs. (2.61) and (2.62)
-1 u”f
Uk + k2
or, the particular value of the energy generation,

, k(T — To)/t
TE[L + 20/ k)]

(2.63)

7 The concept of superposition finds important application in linear problems. However, rather than
its casual use for some appreciation as done in this example, it requires efaboration beyond the scope of this
text.
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This energy generation eliminates the heat transfer from the left surface but doubles the heat
transfer from the right surface of the plate (note that the objective was the complete elimination
of heat transfer in one direction without other considerations). Also, for the first problem,
expressing g1 of Eq. (2.61) in terms of the temperature of the plate surface (on the T; suic)
relative to the ambient, say AT,

T — T AT
= = —, (2.64)
2/h+ ek 1/h

which may be rearranged as

-1
= — (2.65)
24+ hifk
For the second problem, from Eq. (2.57), for an £-thick plate, we have
un’.’.’e
AT = , (2.66)
2h

which, in view of Eq. (2.63}, is identical to Eq. (2.65). In other words, the energy generation
eliminates AT of the left side but doubles AT of the right side [Fig. 2.16(c)]. &

Examre 2.6 D

Our objective in Ex. 1.3 wasthe demonstration of a moving (evaporating or condensing) boundary
in terms of a simple problem. Accordingly, we assumed the entire solar energy to be absorbed
at the top surface of a liquid layer. In the more realistic case associated with solar ponds, this
energy is absorbed over a thickness which may even extend beyond the depth of the pond. The
present example deals with a simple problem for this case based on the assumption of a constant
depth.

Let the solar flux decay as g = gpe™* in a solar pond (or a liquid layer) of thickness
£ [Fig. 2.17(a)]. The lower surface of the pond is conductively insulated but radiatively trans-
parent, while its upper surface loses heat to the ambient with a heat transfer coefficient k. The
entire system is at temperature T, in the absence of solar flux. (a) We wish to determine the
steady temperature of the pond. (b) What would happen to this temperature if the lower sur-
face were radiatively opaque? (c) Find the difference between the bottom surface temperature
corresponding to parts (a) and (b).

{a) For a differential system (Step 1) as shown in Fig, 2.17(b), the first law of thermodynamics
(Step 2) yields
d d "
0= 2 94 {2.67)
dx dx

In terms of Fourier’s law and the radiation law (Step 3),

ar
gx = mkg;, q) = gpe?", (2.68)

Equation (2.67) results in the governing equation (Step 4)

2 "
a“T + Zq_oe_w

- = 0, 2,69
dx? k (2:69)
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Figure 2.17 (a) Solar pond, (b) first law
for solar pond.

where

"
Yo eV = u’”(x)

effectively being a volumetric energy generation. Now, we proceed to boundary conditions
(Step 5) in terms of the x coordinate fixed to the top suxface of the solar pond. For the top

surface (Fig. 2.18),

daT(0)
b = R{T(0) — Teo]- (2.70)
dx
9
Top surface
e LT ECE T T T

7 -\ Boundary system

x
qx:O

Figure 2.18 First law for top surface.
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For the radiatively transparent but conductively insulated bottom surface,

aT (&)
dx

=0, (271)

which completes Step 5 and the formulation of the first case.
From the first integration of Eq. (2.69),

d—T = -q&e'” + ¢y, (2.72)
dx k
and from the second integration,
— qg -¥x
T =——7+Cix+ 0 (2.73}
yk
Equation (2.72) subject to Eq. (2.71) gives
"
G = —%e_”e. 2.74)

MNow, rearrange Eqs. (2.72) and (2.73) with Eq. (2.74) and insert the resulting T and d7/dx into

Eq. (2.70) to get
_ % L)
vk

Cz . (L — &™) 4 e+ T (2.75)

For the boundary system (Step 1), consider the first law (Step 2),
—gx=n — gc = 0.

Insert the particular laws (Step 3},

ar

gx = —k—.  qc = 2[T(0) - Too],

dx

into the first law to get the governing equation (Step 4) for the upper surface,
aT ()
ke = B{T(0) — Tl = 0
dx

or Eq. (2.70), which is a boundary condition (Step 5) for the solar pond.

Then, Eq. (2.73) gives, in terms of Eqgs. (2.74) and (2.75), the first temperature distribution in the
solar pond,

k
=1 - — yxe %(1 - ey, (2.76)

where h/yk is a Biot number based on the characteristic length 1/y.
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Figore 2.19 First law for bottom surface.

(b) For the radiatively opaque and conductively insulated bottom surface (Fig. 2.19),

ar{¢
—H'c—(2 = gfe, 2.77)
dx

which, together with Eq. (2.70) completes Step 5 and the formulation of second case. Equa-
tion (2.72) subject to BEq. (2.77) gives

Cy =0, (278)
Now, simplify Eqs. (2.72) and (2.73) with Eq. {2.78) and insext the results into Eq. (2.70) to get
i k_
=21+, (2.79)
vk h

For the boundary system (Step 1), consider the first law (Step 2),
+x-e + qr = 0.

Insert the particular law (Step 3) into the first law to get the governing equation (Step 4)
for the bottom surface

or Eq. (2.77), which is a boundary condition (Step 5) for the solar pend.

Then, Eq. (2.73) gives, in terms of Eqgs. (2.78) and (2.79), the second temperature distribution in
the solar pond,

L) — T, k
_2_("_3_“"’ =1—er s L (2.80)
9o /vk k

Agtually, this temperature distribution is a special case of the first temperature distribution and
it can be directly obtained from Eq. (2.78) by eliminating the terms involving e”*¢ [note the
difference between Egs. {2.71) and (2.77)].

(€) Because of the radiative, as well as conductive, insulation of the bottom surface, tem-
perature levels are higher in the second case than the first case. The difference is

T8y ~ T1(E k hE

LR tONES L ¥ PUNEGA PEZ) @381)
q0/vk h k

(Why is this difference linear?) 2
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Figure 2.20 A flat-plate fuel element

ExampLe 2.7

The core of a pool reactor is composed of flat fuel plates of thickness 2¢. Both sides of each plate
are covered with fiat clads, each of thickness L. Assume that the gap between the fuel plates and
the clads is negligible. Nuclear energy 4™ is generated only in the fuel plates (Fig. 2.20). Under
steady conditions, this energy is transferred, with a heat transfer coefficient &, from the clads to
an ambient at temperature T,,. We wish to know the maximuzm temperature in the fuel plates,

Under steady conditions, the total energy u” A2 generated in the fuel plate is transferred
to the ambient through the outside surface A of each clad [note the use of the same arguzment
for Eq. (2.54) in the case of a single fiat plate]. Let 7, be the outside surface temperature of the
clads. This gives

W A2 = BIA(T, — Top)

or, the outside surface ternperature of clads relative to the ambient temperature,
Ty — Too = —. (2.82)

This is the same result as the one found for the flat-plate key problem, Eq. (2.57)! Adding the
clads has no effect on the outside surface temperature for flat-plate fuel elements (what about
¢ylindricel elements?). Let us now look at the inside temperatures. Since the same total energy
balances the heat flux at any cross section of clads,

Ti—Tw

r

u A2 = 2kcA

and the temperature of the interface relative to the outside surface temperature of the clads is

ullfgL
T T, = . (2.83)
ke
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Also, Eq. (2.58) of the flat plate key problem gives the temperature of the midplane relative to
the temperature of the interface,
um 22

2k

-1 = (2.84)
which is the location of the maximum temperature. The sum of Egs. (2.82)-(2.84) yields the
midplane temperature of the fuel plate relative to the ambient temperature,

it

1
T — T = T(l + Bip + EBif), (2.35)

where Bic = hL/ ke and Bi; = hi/k; are the Biotnumbers related to conductivity and thickness
of the clad and fuel, respectively. Thus, adding clads of thickness L to the flat plate increases the
midplane temperature by ("£/ k) Bic.

Having learned the effect of energy generation on flat plates, we proceed now to the effect
of energy generation on. cylinders and spheres. ®

2.3.2 Cylinder and Sphere (Key Problem)

Let the rate of energy per unit volume generated in a solid cylinder or 2 solid sphere be
u™(r) = u”, the radius and the thermal conductivity of the cylinder or the sphere be R
and B(T) = ky (alternate notations u',” and kr are used for convenience in the following
formulation). Under steady conditions, the total enexgy generated in the cylinder or
sphere is transferred, with a heat transfer coefficient k, to an ambient at temperature
Teo. ‘This cylinder could be one of the fuel rods of a reactor core, or one of the elements
of an electric heater, and the cylinder or sphere could be a bare, homogeneous reactor
core. We wish to determine the radial temperature distribution.

Following the five steps of formulation, first we consider the differential system
(Step 1) shown in Fig. 2.21(a). The first law of thermodynamics (Step 2), Eq. (1.16)
interpreted in terms of Fig. 2.21(b), yields

d M
¢ = +g: 4, — [QrAr + E(QrAr)dr] + u, Acdr

N urh dr
A=A, X

“—._‘_._‘}\ \\
1

A+ '5,‘ (W-_dr

1
i
I
,
!
i

’_’{/—- Systern

Figure 2.21 (a) Cylindrical or spherical differential system, (b) the first law.
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or

d "
0 = ——(g:4r) +u/ Ar. (2.86)

Note variable A, is kept inside the derivative. Fourier’s law of conduction (Step 3), .
dr

qr = —~krd—r, (2.87)
introduced into Eq. (2.86) gives the governing equation (Step 4),
4 (kTArfz) +u A =0, (2.88)
dr dr
which, for a constant &£, may be rearranged as
57 (A,Z—Z) + %A, =0, (2.89)

where A, = 27rL for a cylinder and A, = 4mrr? for a sphere, L being the axial length
of the cylinder. Equations (2.88) and (2.89) require two boundary conditions (Step 5)

aTO _ 4 o T(0) = Finite, - (2.90)
dr
EB RIT(R) — Too]. (2.91)

r

The alternate condition in Eq. (2.90), T (0} == Finite, turns out to be more convenient to
use than dT(0)/dr = 0 in cases involving curvature. Note that mathematical solutions
that would lead to an infinite temperature at the center are not physically meaningful.

For a distributed energy generation and a variable thermal conductivity, integrat-
ing Eq. (2.88) twice results in

1 " dr
fkTa'T = —f— fur Audr ) dr + C{‘[— + C3, (2.92)
4, Y

which, depending on the particular explicit forms of k7, u:', Ay =2arLor A, = 4nr?,
is reduced to a straightforward integration process.

For a uniform energy generation and constant thermal conductivity, from Eq. (2.92)
with A, = 2rrL or from twice integration of Eq. (2.89) with A, =2xrL, '

d [ dT u”
L (R WP Y 2.93
ar (” dr) % 293)
we get, for a cylinder,?
u 2
T = — " + Cilor + Co. (2.94)

8 Note that C; = €} /2 Lk and Cy = C3/k.
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Also from Eq. (2.92) with A, = 4r?, or from twice integration of Eq. (2.89) with

Ay = 4nr?,
aay R Lo B 2o 2.95
— r‘ — — = .
ar \\ ar PR (2.95)
we get, for a sphere,
umr2 C1
T =— w— 4 . 2.9
6k * r G (2.96)

For a solid cylinder and for a solid sphere, the condition of a finite center temperature
readily gives C; = 0 (note that using d7°(0)/dr = 0 leads to the same result).

For a solid cylinder, the second boundary condition, Eq. (2.91), or the fact that
the total energy generated in the cylinder is transferred to the ambient, gives

W RPL = h2n RL[T(R) — T), (2.97)
which, in terms of Eq. (2.94) with C; = 0, results in

umR uf-ﬂ' Rz

Cy == —— Tocs
Y Tl
and the temperature of the cylinder,
uh‘l m R
— Ty = —(R? ~rH) + — |- 2.98
T oo T ({ r) + Tk ( )
The same way, for a sphere,
4
u%ﬁ%wwwmm—mL (2.99)

which, in terms of Eq. (2.96) with C; =0, yields

umR umRz
Cp = —
2= 5 T e

and the temperature of the sphere,

i e

T = Too = -L;—k(RZ- - )+ = (2.100)

The temperature distribution in a flat plate, solid cylinder, and solid sphere with internal
energy generation given respectively by Eqgs. (2.55), (2.98), and (2.100) are sketched in
Fig. 2.22 for £ = R. For the same 1™, the temperature levels in the cylinder and sphere
respectively are 1/2 and 1/3 of those in the flat plate. Increasing the effect of curvature
increases the heat loss, as expected.

Having learned the effect of energy generation on the solid cylinder and solid
sphere, we proceed now to an example on hollow cylinders in which C; # 0.
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Figure 222 Comparison of temperatures.

Exameie 2.8 D

The local heat transfer coefficient for forced convection inside tubes is determined from experi-
ments conducted with electrically heated tubes. This coefficient requires that the inner temper-
ature of the tube walls 7; be known. However, T; turns out 10 be more difficult to measure than
the outer temperature of the tube walls, 75, The usual practice is to measure T and relate itto
T; by an analytical expression. We wish to obtain this expression in terms of a tube with an inner
radius Ry, an outer radius Ry, and internal energy generation u™,

Let the internal energy u be uniformly generated within the tube walls, and the tube be
insulated (Fig. 2.23}. The boundary conditions are

dT(Rz)
dr

=0 and T(R;) = T,(measured). (2.101)

; 7 i 1, (meastxed)
/ L Iy Insulated
/ Il R /

Figure 2.23 Electrically heated tube.
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Applying the first law to a radially differential system within the pipe walls leads to the same
governing equation as for the solid cylinder, with different boundary conditions. The solution
given by Eq. (2.94), inserted into the first condition, gives

ulfl R%
1

Ch1 =
T T

and into the second condition yields, after the use of Cy,

"
u.w R% um Ri

Cy =Th +
PEAT T 2%

in Rz.

In terms of €y and Cz, Eq. (2.94) results in

. r— umR%l R2 u”’R% rz
poom T = —=1n— — 1 . (2.102)

% o r & \ R

The temperature difference across the thickness of the tube walls is then

WRE[ Ry 1 R:
AT = n—~—=-|(1-—=1]|. (2.103)
2% R 2 R;

where AT == Tp — T; and Ty = T(Ry). <

2.4 EXTENDED SURFACES (FINS, PINS)

The purpose of an extended surface such as a fin or a pin is to increase heat transfer
from a surface to an ambient. This way we control the size and cost of a heat transfer
device. For example, the design of a heat exchanger may be based on achieving the
smallest possible heat transfer area (for lightness and compactness of moving vehicles)
or it may be based on demanding the largest possible amount of heat transfer from a
given size heat exchanger (for cost and compactness of stationary power plants).

Let us now search for means of increasing heat transfer from a surface. For this
purpose, consider a surface at temperature T, transferring heat by convection to an
ambient at temperature T, (Fig. 2.24). As we learned in Chapter 1, the rate of heat
transfer from this surface may be evaluated in terms of Newton’s coolinglaw [Eq. (1.53)],

QC = hA{Ty — Too). (2.104)

Clearly, (¢ may be increased by increasing the temperature difference AT, by increas-
ing the heat transfer coefficient, or by increasing the heat transfer area. The temperature
difference is usually dictated by the nature of practical problems and cannot be altered;
the control of the heat transfer coefficient by using different fluids and/or increased flow
of these fluids is the subject of the convection heat transfer; the increase of the heat
transfer area is the concern of this section.
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Figure 2.24 Convection con-
trol.

Extended surfaces are usually constricted in two ways: they are either extensions
of the base material, obtained by a casting or extruding process [Fig. 2.25(a)], or they are
attached to the base by pressing, soldering, or welding; in the latter case, they may or may
not be made from the base material [Fig. 2.25(b)]. Generally weight and/or cost dictate
the way of construction. The most common types of extended surfaces are straight fins,
annular fins and pin fins [Fig. 2.26(a},(b),(c)]. Well-known applications are heating or
cooling radiators, resistance heaters, liquid-to-gas or gas-to-gas heat exchangers, boilers,
and air-cooled engines (Fig. 2.27).

Having learned the purpose, construction, types, and application of extended sur-
faces, we proceed now to the main objective of this section, the study of heat transfer
from extended surfaces. Because of transversal convection, the temperature in ex-
tended surfaces varies longitudinally, and Eq. (2.104) cannot be used directly. We must
first evaluate the temperature distribution, and then the heat transfer in terms of this
temperature distribution.

Consider an extended surface with variable cross section [Fig. 2.28(a)]. Assume

Figure 2.25 Manufacture of
extended surfaces. (a) cast
or extended, (b) welded, sol-
dered, or pressed.

TN

{b)
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Figure 2.26 Types of extended swifaces.
(a) Straight fin, (b) annular fin, () pin fin.

that the Biot number based on a transversal characteristic length £ is small,

he
Bi=— <1, (2.105)

such that the transversal temperature distribution is negligible [recall Fig. 2.15(b)].
Fins are typically thin, thus making this assumption quite realistic. Accordingly, as-
sume a transversally lumped and longitudinally differential system (Step 1). Under
steady conditions, the first law of thermodynamics (Step 2), interpreted for this system

CITIT]]

\l_muu-llllll

Figure 2.27 Fins of an air-
cooled engine.
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(b)
Fignre 2.28 (a) Mixed (transversally
lumped + axially differential) system,
(b) the first law.

[Fig. 2.28(b)], results in

d
0 =g, A— [qu + a(qu)dx:l — qcPdx + u" Adx

or

d
0= _E—(qu) —gcP +u"A4, (2.106)
%

where P is the local perimeter and «™ is the imposed internal energy geperation.
Fourier’s conduction: law and Newton’s cooling law (Step 3},

dT

= gc = k(T — T), £2.107)
dx

gr = —k
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inserted into Eq. (2.106) give the governing equation (Step 4),

d dT 1
S kA== —hP(T —Toe) +u"A =0, (2.108)
dx dx

where the generation term applies to problems involving electric, nuclear, or chemical
energy. Equation (2.108) is a second-order differential equation with variable coeffi-
cients. Almost all forms of this equation lead to solutions in terms of Bessel functions.
Since these functions are beyond the scope of this text, and since the variation of cross
section does not affect our understanding of extended surfaces, hereafter we will con-
sider only extended surfaces with constant cross section.

For a constant A (and a constant k), Eq. (2.108) reduces to

d&*T  hP u”

which may be rearranged, in terms of ¢ = T — T and 2P/ kA = m?, as

d29 "
= e+ ”? ~0 (2.110)
x
or, for a constant u™, in terms of
UIA
©=6— “hp (2.111)
as
<o,
—Z e =0, (2.112)
X

subject to appropriate boundary conditions (Step 5), one related to the base and the
other to the tip of the extended surface (note that the introduction of 6 and @ is done
solely to simplify the mathematics).

On dimensional grounds, Eq. (2.112) yields

]
2
E—me@
or
i kA
£~ == 2113
m hP (2113)

which is a characteristic length for extended surfaces, In terms of thislength, Eq. (2.105)

becomes
Bi Rt = ha 2,114
i=— = (2.114)
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The general solution® of Eq. (2.112) can be expressed as
Ox) = Cr1e™ + Cre™™ (2.115)

or, equivalently, : )
O(x) = Cssinhmx + Cqcoshmx, {2.116)

where sinhmx = (g™ — ¢~™¥)/2 and coshmx = (™ + ¢7™%) /2, Clearly, ®{x) =
9(x), when #” = 0. Although these solutions equally apply to all cases, Eq. (2.115)
turns cut to be convenient for problems with infinite geometry, and Eq. (2.116) for
problems with finite geometry. For a nonuniform »", depending on the explicit form of
u™(x), particular solutions need to be constructed from the theory of nonhomogeneous
differential equations. After the foregoing general considerations, we proceed now to
a number of llustrative examples.

ExampLe 2.9

Consider an infinitely long fin with a specified base temperature Ty (Fig. 229). We wish to find
the temperature distribution in and the heat transfer from the fin.

Assuming the base of the fin to be the origin of the x coordinate, and noting that the
temperature of the fin approaches the temperature of the ambient as x — 00, the boundary
conditions may be written as

8(0) = 6y, (2.117)
lim 8(x) — 0, (2.118)

where 8 = Ty — Too. Equation (2.115) satisfies Eq. (2.118) only when C; = 0. The result,
combined with Eq. (2.117), gives the temperature distribution in the fin,

6) _

e, 2,119
% (2.119)

hTs

—

Figure 2.29 Infinitely long fin.

9 Recall that linear differential equations with censtant coefficients accept exponential solutions.
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The heat transfer from the fin may be now evaluated in terms of Eg. {2.119) by simply
integrating the local convection along the fin:

(2] (4]
Oc = ] hPodx = hPo, f e dx = GolhPEA)Y2, {2.120)
0 a

Since the total heat transferred by convection from the fin is supplied by conduction through the
base of the fin, the same result may be obtained from
: de
Qx = —kA (E;) = —kABy (~me™™} _, = Bo(hPkAY. (2121)
x=)
The second appreach, requiring a simple differentiation, will be preferred hereafter for heat loss
calculations from extended surfaces. A 4

2.4.1 Thermal Length

Reconsider the infinite fin of the preceding example. Since only a finite amount of
energy is supplied by conduction through the base of this fin, the transversal heat loss
by convection continuously decreases with increasing x, and for all practical purposes,
it diminishes beyond a certain length of the fin. We wish to determine this length, say
the thermal length of 2 fin, § (this concept is identical to that of thermal bowndary-layer
or penetration depth introduced in Section 1.5.4 on convection). Using a fin of length
greater than 4 does not effectively increase the amount of heat transfer (compared to
a fin of length §) and is thus a waste of material.

Consider a transversally lumped and axjally integral system (Step 1) as shown in
Fig. 2.30. For this system, the first law of thermodynarmics (Step 2) gives

5
—Agy=s — f gcPdx = 0, (2.122)
0

where x is measured from thé location a distance 5 away from the base!? There is no
appreciable conduction beyond 4. Employing the particular (Fourier’s conduction and
Newton’s cooling) laws (Step 3),

gx = —kdT/dx, gc = R(T —~ T,
rearrange Eq. (2.122) to get the governing equation (Step 4):

dT &
kA— = hPf (T — Too)dx
dx b 0
or
il = Zfaed 2.123
i =m i x. (2.123)

Note that Eq. (2.123) includes the effect of boundaries (Step 5). That is, a governing
equation resulting from an integral formulation always combines Steps 4 and 5. In the

10 This coordinate leads to the simplest form for the approximate temperature profile to be developed
below.
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Figure 2.30 The thermal length.

absence of any energy generation, integration of Eq. (2.110) over the interval (0, 8)
yields the same result, as expected.

Consider now an approximate temperature profile satisfying the apparent physics
of the problem—thatis, satisfying (0) = 0, 49(0)/dx = 0,a0d 8(8) = &y (seeFig. 2.30).
For example, a parabola,

8(x) = Ax* + Bx + C,

can be rearranged to satisfy these conditions. The first of these conditions gives C = 0,
the second, B = 0: and the third, 6, = A$2. Thus,

6(x)/8y = (x/8)°. (2.124)

Clearly, the origin for x selected in Fig. 2.30 leads to the simplest possible form of this
parabola. Inserting Eq. (2.124) into Eq. (2.123) results in

2 2

)

il
3
Ll o

or, the thermal length

(2.125)

s
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This distance denotes approximately the longitudinal penetration depth {boundary
layer) of heat by conduction through the fin. Also, on dimensional grounds, replac-
ing £ with § in Eq. (2.113), we have the same distance within a numerical constant,

5 1 kA
m VAP

For a thickness £ and width L, A = £L and P = 2L +2£{ = 2L, hence m =
JRPJEA = /2RJkE and § = /3kE]h. Assume the engine fins of a motorbike have
£ = 02 cm, k = 180 W/m-K (an aluminum alloy), and & = 300 Wim?-X (forced
convection to air). These give § & 6 cm. However, the fin is usually cut somewhat
shorter than §; consequently some material and weight are saved without appreciably
affecting the heat transfer from the fin. (In Fig. 2.30 note the slope of the parabola,
which is a measure of the heat loss near the origin.)

ExampLe 2.10

Consider a fin of finite length £ < . The base temperature To of the fin is specified and the tip
of the fin is insulated (Fig. 2.31). We wish to find the temperature distribution in and the heat
transfer from the fin.

Here the tip of the fin, being a point of symmetry, is more convenient for the origin of x.
The boundary conditions are then

460) =0, (2.126)
dx
(&) = 0Oy, (2.127)

where, as before, 8 = Tp — To. Since the fin is finite in length, we refer to the general solution
given by Eq. (2.116). The use of Eq. (2.126), or, equivalently, the fact that the temperature :
distribution is symmetric with respect to x, hence is composed of even functions only, yields :
C; = 0. Next, the consideration of Eq. (2.127) gives Cs = 6o/ coshmf. Thus, ;

8{x) cosh mx 2.128)
& " coshmé’ )
7 -jié
|~ Base Insu}atcd :
tip
1 hTe ] :
B i ‘
X et 'f :
o]
i
Z

Figure 2.31 Finite fin with insulated tip.
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The total heat loss from the fin, evaluated from conduction at the base of the {in, is
, {dé kA6,
~0x =kal—) =——

(msinh mx) ey = Gp(hPkA)Y? tanh mé, (2.129)
X
Xozf

coshmé

Since tanh x — 1 as x — oo, Eq. (2.129) approaches™® Eq. (2.120) as m£ ~> oc. That is, the heat
transfer from a finite fin approaches that from an infinite fin as the length of finite fin increases
indefinitely. This statement is independent of the boundary condition employed at the tip of the
fin, since the effect of the tip diminishes as £ — co.
The heat loss from the tip of a fin is usually negligible. The ratio of this loss relative to
peripheral loss is .
QO hAATL

0,  hyA,AT,

subscripts ¢ and p respectively indicating tip and periphery, AT, being an average temperature
difference. In cooling fins,

AT, = AT,.
Also, as we shall learn in the chapters on convection, h; ~ k. Consequently,
‘ D A
O !
Cr Ay )
and the heat from the tip of a fin can be safely neglected. L 4

Exampere 2.11

Let a spoon in a cup of tea be approximated by a thin rod of constant cross section (Fig. 2.32). The
thermal conductivity, length, periphery, and cross-sectional area of the spoon are k, 2¢, P, and
A, respectively. The heat wansfer coefficients are k1 and hy. Assume one-half of the spoon to be
in the tea, the temperature of the tea to remain constant at Ty, and the ends of the spoon to be
insulated. We wish to determine the steady temperature distribution in the spoon and to discuss
the results in terms of the following data: 2£ = 10 cm, A = 0.2 cm?, P = 2cm, k= 15 Wim-K
(stainlesssteel) or k = 400 W/m-K (silver), Ay = 1,000 W/m?- K, by = 10 W/m?-K, T, = 20°C,
To = 80°C.

Figure 2.32 Cup of tea.

12 The condition mé — oo may also be interpreted as m — oo for a given £. This case, as readily seen
from the definition of m = (AP kA)2, corresponds to h — oo or k — Q.
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The Biot numbers [recall (Eq. 2.114)] for the half of the steel or silver spoor in the tea are,
respectively,

. ha\'"? (1,000 W/mEK x 02 x 10~ m?
Bh_ = ?j)—— =

172
= (.26; 0.05
(15, 400) W/ m-K x 2 x 1072 m)

and for the other halves in air are

‘ A\ 10W/m? K x 02 x 10~ m? |
B = [22) = - — 0.026: 0.005,
kP (15: 400) Wim K % 2 x 1072 m

and the spoon temperatures can be transversally lumped, each with a different degree of approxi-
mation. Because of iy 3£ s and Ty # Tis, the problem needs a two-domain formulation. Before
this formulation, however, let us look into some physical facts.

Under steady conditions, neglecting the heat loss from the ends, the heat transfer from the
tea to the spoon is balanced with that from the spoon to the air. That is

q = hlAAT1 = thATz,

A = PZ being one-half of the peripheral area of the spoor, ATy =1 — T and AT, =15 — T
respectively denoting the mean temperature difference between the tea and the spoon, and the
spoon and the air (Fig. 2.33). Since hy 3 k2,

AT & AT,

and the temperature diffsrence between the tea and the spoon can be neglected. Over the
penetration depths & and 8; the spoon temperature drops continuously from T3 to Ty. For the
same geometry and material (same A, P, and k),

& ha
B A M
or, in view of the fact that k; > k3,
8
— & 1.
32

Also, the equality of the interface heat fluxes yields, for the same material,
nh-T -5
& &

or

that is, T; is much closer 1o Ty than T; (Fig. 2.34). The foregoing considerations suggest a spoon
temperature in the tea approximately equal to the temperature of the tea. The spoon temperature
in the air may then be evaluated with Eq. (2.128) in terms of a coordinate (say §) measured from
the uppet tip downward,

L&) - Tw coshmaf

T — Too . coshmaf

(2.130)
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AL

! {

Figore 2.33 Averaged spoon temperature
relative to tea and air.

where mq = Bz E/kA. Actually, ignoring only the heat loss from the lower tip of the spoon, we
may obtain a temperature distribution for the part of the spoon in the tea. For a coordinate (say
x) measured from the lower tip,

Tiix) — T _ coshmyx
T,— Ty  coshmt

(2.131)

Equality of temperatures and heat fluxes of Ti(x) and Tz(£) at (x=4£,& =2)yields

Tomy tanh mq€ -+ Teetnz tanh mok

T =
! my tanh my £ + my tanhmaf

In terms of the given data, we have for stainless steel,
my = 2582m™*, my =258w™h, T; = 753°C,

and for silver,

my = 50m™, my;=5m™, T =785C

FRIR:

AT[ e O R e T

{ {
Figure 2.34 Penetration depths.
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which proves our earlier assumption of a spoon temperature in tea approximately equal to the
temperature of the tea.

Equipped with the insight gained on this problem, we now proceed to a problem with

energy generation. L 4

Exameie 2.12 &

Uniform internal energy u” is generated electrically in a vertical rod—say, an element of a
heater (Fig. 2.35). The upper part, of leagth L, of this rod is in a stagnant ambieat (say air) at
temperature T, the lower part, of length £, is in another stagnant ambient (say water) at the
same temperature. Let the heat transfer coefficient for the lower and upper parts be ky and Az,
respectively. The cross section, periphery, and diameter of the rod are A, P, and [}, We wish
to determine the steady temperature distribution in the rod and to discuss the results in terms
of the following data: £ = 15 cm, L = 5 em, D =1cm, k = 15 W/m-X (stainiess steel) or
k = 400 W/m K (copper), ky = 1,000 W/m?-K, hy =10 W/m? K, Too == 20 °C.

Assume the radial Biot numbers are small enough to allow a radially humped analysis.
Neglecting the keat loss from the ends and ignoring, for the time being, conduction across the
interface, the energy generated at each part is balanced by the convective heat loss to the water
and air. Thus,

WAL = ki PEATy, u"AL = hyPLAT,

or
ATy = u"A/mP and AT, = " AR P, (2.132)

uA
Pz

] —| Rl

T 8,

u"A
h P

Figure 2.35 Encrgy generation in a rod.
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which shows the average temperature difference between the rod and water or air (Fig. 2.35).
In the actual case, the rod temperature drops continuously over the penetration depths &; and
8. Since & <« 8,'the rod temperature in water may be assumed uniform (recall the preceding
example). A better approximation, however, is to assume some temperature distribution for the
part of the rod in water, Because of the lesser importance of this distribution relative to the
temperature of the rod in air, we may further assume the rod length in water to be infinite. A
maodel based on this approximation is given below.

A model. Thetemperature of the rod in air satisfying the insulated upper-tip boundary con-
dition may be written, in terms of the coordinate axis measured from this tip downward (Fig 2.36),

as
"

u
&(E) = —— + Cycoshmaé, (2.133)
ho P
Also, the temperature of the rod in the water, satisfying the condition of finite temperature at
the lower tip (assumed extending to infinity), may be written, in terms of the coordinate axis
measured from the interface downward, as

m

& = —— + Cje”™*, 2.134
1(x) P 1€ ( )

A

P

An approximate model

Figure 2.36 An approximate model for
rod with energy generation.



88 Chap.2 Steady Conduction

The equality of interface heat fluxes,

d6(Q) _ d8(L)
dx  dt '
gives
—m1C1 == mzCz sinhmzL
or
C
G =2 —2—. (2.135)
mo } sinhmoL
The equality of interface temperatures,
81(0) = (L),
vields
quIA Hr
— + = — + CycoshmzL
mP N mP
or, in terms of Eq. (2.135)
u" A u"A (m1/m2)
rom— = —— — coshmz L
hlP ha P sinh mgL
or
ul’l.'A uﬂfA
mP
L = he?  mF (2.136)
my/ma
tanh mz L
which in turn gives, in terms of Eq. (2.135},
u!ﬂA uh’lA
Cr = — (mi/ma) hP  mP
27 sinhmal my/my
tanh mz L
or
m‘A i
(%_F - ﬁ) / coshmgL
G o= -2 . : (2.137)

tanhmzL

my/ms
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In terms of Eqs. (2.136) and (2.137), we obtain the entire rod temperature from Egs. (2.133)
and (2.134),

61{x) — ﬂ
hP g~m*

A WA mifmy (2.138)

hP  hP tanh m; L
A
b P ~ &6) coshmak /[ coshmy L

— — = (2.139)
uA_uA 1+tanhmgL
h, P P myfms

<@

2.4.2 Performance

Here a basis may be introduced for the evaluation and comparison of extended surfaces.
Such a basis is usually given in terms of one of the two following customary definitions:
(1) extended surface effectiveness described as

_ Actual heat transfer from extended surface

* , 2.140
n Heat transfer from wall without fin ¢ )
or, (2) extended surface efficiency described as
‘ Actual heat transfer from extended surface
n (2.141)

~ Heat transfer from extended surface at baseT'

The denominator of Eq. (2.140) denotes the heat transfer from an area of the wall
equivalent to the base area of the extended surface; the heat transfer to be evaluated in
the numerator and denominator is based on the same temperature difference, T — Teo.
Since the temperature of a wall and the heat transfer coefficient between the wall and
the ambient are somewhat changed when an extended surface is attached to the wall,
the effectiveness defined by Eq. (2.140) is quite approximate. The error involved in this
approximation depends on the length of and the space between the extended surfaces.
Since the changesin the wall temperature and the heat transfer coefficient affect both the
numerator and the denominator of Eq. (2.141), the efficiency defined by this equationis
more realistic and is often preferred in practice. Furthermore, rather than using it only
for one type of extended surface, this efficiency may be better utilized in the comparison
of different extended surfaces. The particular value of the latter efficiency for Ex. 2-10
is

8y(APkAY/*tanhm¢  tanhmd

a Boh P2  ome

In Fig. 2.37 this efficiency is compared with the efficiency of four different fins with
variable cross section. Note that cost and manufacturing convenience may be more

important factors than a 5-10% more efficient fin. For this reason, the efficiency of
extended surfaces will not be further elaborated (for a detailed treatment see Ref 7).

(2.142)
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Figure 2.37 Efficiency of fins with variable cross section (from
Gardner [7]).

In terms of the knowledge gained so far, we are ready now for a study of two key
prebiems which will be utilized frequently in the chapters on convection.

TWO KEY PROBLEMS OF CONVECTION

A constant property fluid having velocity V and upstream temperature Tp flows steadily
through an infinitely long tube of cross sectional area A and periphery P. The upstream
half of the tube is insulated, while the downstream half either transfers heat with a co-
efficient  to an ambient at temperature Too [Fig. 2.38(a)] oris subjected to a peripheral
heat flux ¢” [Fig. 2.38(b)]. The wall thickness of the tube is negligible. Based on 2
radially lumped analysis, we wish to know the axial temperature distribution in the
fluid.

2.5.1 First Key Problem

Consider the problem involving peripheral heat transfer to an ambient. Assume a
radially lumped and axially differential control volume (Step 1) shown in Fig. 2.38(a).
The first law!3 for this control volume (Step 2), interpreted in terms of Fig. 2.39 and
with the conservation of mass,

pAV = Const,, (2.143)

13 The first law conserves the total energy, which, in the present case, involves the thermomechanical
energy. The mechanical part of this energy leads, under certain conditions, to the Bernoulli equation, which
can directly be obtained from Newton’s law.




Figure 2.38 Two key problems
of convection. (a) Heat trans-
fer to ambient, (b) prescribed
heat flux.

gives

dh
0 = +pAVH® -+ pAV (h" +—

Sec. 2.5

Two Key Problems of Convection 91

Control
volume b To

T--» ] T i
e

. SRRNNNRE

Ty —tm V cv ’ IA

a

A

]

d
dx) + g4 — (qx + E"q—xdx) A — gqcPdx
x

X
ar
dan’ d
0= —pavl _ aZ% _ ep. (2.144)
dx dx
Separately, the definition of the stagnation enthalpy,
12
ha = h + EV -+ 8%, (2.145)
dg, = q.P dx
qu‘ : (gx + % dx) A
———————, r o
1
I
! 0, 410
pAVA® | PAVET Y g
———D—I [} -
Figure 2.3¢ The firstlawfor == be———— -‘l\ Control vohume
the first key problem of con- -
vection. * dx
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yields

dh’ dh d /1
= — 4+ —(=V? . 2.146
dx dx + dx (2 + gz) ( )

For an incompressible fluid, the conservation of mass for flow of this fluid through a tube
of constant cross section implies V = Constant. Furthermore, if the tube is horizontal,
then z = Constant. Thus
dh®  dh
dx  dx’

(2.147)

Also, for this fluid, neglecting the small and usually ignored difference between the
specific heat at constant pressure, ¢, and at constant volume, ¢,,

Cp =0Cy = ¢

and
dh = cdT. (2.148)
Now Eq. (2.144) becomes, in terms of Eqs. (2.147) and (2.148),
4T dgx
= —pcAV— — A —geP. 2.149
peAV — 2. (2.149)

Inserting the particular laws (Step 3), g« = —kdT/dx and gc = U(T — T), into
Eq. (2.149), we get the governing equation (Step 4)

daT aT
kA——f - pcAV— —UP(T —~ Iy) =0, (2.150)
dx dx
where
1
Vs ———mo,
Ri+ R+ R

U being the total heat transfer coefficient, R; the inside convective resistance, Ry the
conductive resistance of pipe walls, and Ry the outside convective resistance. This result
may be rearranged in terms of the characteristiclength 1/m = /kA/ U P for fins [recall
Eq. (2.113)], the thermal diffasivity,

k
o= —, (2.151)

and @ =T — T as

d*e  V(l/m)de _
FTR E_G =0, (2.152)

where

V(l/m) _ pe

- (2.153)
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is a dimensionless parameter called the Peclet mumber and & = x/(1/m). This param-
eter is a measure of the importance of axial enthalpy flow relative to axial conduction,
* Enthalpy Flow pcAVE  V(1/m)
Axial Conduction 8 a
(1/m)

As Pe — o0, the contribution of axial conduction relative to axial enthalpy flow be-

comes negligible in Egs. (2.150) and (2.152). For all practical problems
Pe > 1, (2.155)

and the axial conduction can be neglected in the formulation of these problems. For
example, for two fluids at temperature 7 = 95 °C flowing with velocity V = lmfsina
pipe of diameter D = 2 cm, Table 2.2 gives typical values for the Peclet number. This
table shows that, except for slow-moving liquid metals, axial conduction does not play
any appreciable role in convection problems. Then, Eq. (2.150) may be approximated by

(2.154)

do
pcAVa + P8 =0, (2.136)

subject to (Step 5)
6(0) = 6 = Ty — Toor - (2.157)

Table 2.2 Range of Peclet number

Fluid R [Wim?. K] k [Wim K] m [m™] « [m?fs] Pe[-]
Water 10* 0.678 1,718 168 x 1077 | 3,500
Sodivm 10° 86.2 482 671 x 1077 30

The solution of Bq. (2.156) may be readily obtained by the separation of variabies,

a9 up
— = — dx,
) PCAV
whose integration gives
Ing ve 4+ C
= — x
pcAV L
or P
x
9 =C - . 2.158
ew(-25) (2.158)
For the inlet condition [stated by Eq. (2.157)], Eq. (2.158) is reduced to
By = C. {2.159)

Then, the solution for the first key problem in terms of T is

T — T UPx
— = — . 2.160
Ty — Too exp( ,ocAv) (2.10)
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Exanrie 2.13%

Water pressurized to 2 atm (abs) flows steadily with inlet velocity V == 1 m/s and inlet temperature
T, = 97 °C in an industrial heater made of i-inch stainless steel pipes (D = 2.66 cm and
Dy = 3.34 cm), elbowed and connected as shown in Fig. 2.40. The total pipe length is L = 100
m. Several of these heaters are attached to the side walls of an industrial plant to be kept at
temperature To, = 27 °C. The inside and outside heat transfer coefficients are k; = 10,000
W/m?-K and by = 10 W/m?®-K, respectively. The thermal conductivity of the pipe is & = 15
W/m-K. We wish to determine the exit temperature of the water.

Noting that &; 3 kg and
R, « Rg,
R; can be neglected relative to Ry. Also,
Rx Ln/kAn ket f Ax
Ro  1/hoAs k \An/
which, in view of 81 = 1 — ry, and Ayz = (4 -+ A2)/2 because of

AsfAy = Dy/Dy = 3.34/2.66 = 1.26 < 2,

gives

Rg  2hory(p—r)  heDp (D2 — D1} 1
Ry  k (m+rn) &k \Di+D 396"
and Ry can be neglected relative to Rq. Thus, for the present problem,

U = hg

To proceed further, we need o and ¢ of water and P and A of pipe. Since only the inlet
temperature and velocity are given, for 7; = 97 +273 = 370 K, from Table B.3 for water,

o = 961kg/m’, ¢, = 4214 x 10° Vkg K.

Te=27°C hy= 10 Wim? - K

T,=97°C
el e e i .
V=1ms )

1 inch {nominal)

Figure 2.40 An industrial heater.

14 The FORTRAN program EX2-13.F is listed in the appendix of this chapter.
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Note that p AV = Constant along the pipe because of the conservation of mass, and this constant
can be evaluated at any location in the pipe. Also, from the pipe geometry,
f

P oo Dy =7 x 334 % 1072 m = 0.105m,

A=nD/d = m x (266 x 107224 = 0.556 x 107 m?.

Then,
10 x 0.105m x 100 m
hoPL m?-K
= 3 = —— = 0.0466
pcp AV 961 kg/m® x 4.214 x 10° J/kg-K x 0.556 x 107 m” x 1m/s
and
T, — 27
< = ¢ 0046 — () 934,
97 — 27
which gives
T, = 94°C.

A temperature drop of only 3 °C along a pipe 100 m long may be a surprising result,
especially in view of a slow water velocity of 1 m/s! However, recognition of the fact that natural
convection in a gas leads to very low heat transfer coefficients eliminates the initial surprise.
For all practical purposes, a stagnapt gas acts like an insulator. By using the computer program
provided, the interested reader may parametrically study the exit temperature for various values
of ; and hy taken from Table 1.2.

We proceed now to the second key problem. In view of the foregoing discussion, the axial
conduction will be excluded from the beginning. %

2.5.2 Second Key Problem

Reconsider the control volume used for the first key problem. Since the axial conduction
is neglected and the peripheral flux is specified, there is no need for any particular law.
We now have a thermodynamically determined problem. The first law applied to the
control volume shown in Fig. 2.41 directly gives the governing equation subject to the
inlet boundary condition. The formulation is then

aT
—pcAV——+¢'P =0, T(0) =T (2.161)
X

The separation of variables followed by a simple integration readily yields the solution

of Eq. (2.161) as
-1 (E)x =4 (f_) (2.162)
q" /ocV A D

Figure 2.42 shows this (linear) temperature distribution.
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-
| 1
{ i
l | ar
pCAVT | ! pcAV(T + de)
| I -
I |
i |
1
Figure 2.41  The first law for L e — _Jl\ Control volame
the second key praoblem of | —
convection. : * ax
T-T,

Figure 2.42 The second key
problem of convection (ex- _ 0 (P)x - 4( 3 )
cluding axial conduction).

Exampie 2.14%5

Water pressurized to 2 atm (abs) flows steadily with inlet velocity V = 0.05 m/s and inlet tem-
perature 7; = 20 °C in an industrial evaporator made of a 1 inch (nominal) diameter and 20 m
long insulated pipe (Fig. 2.43). The pipe is heated electrically. We wish to determine the power
need for which the water evaporates completely at the exit of the pipe and the fraction of pipe
length at which the water begins to evaporate.

Assume axial conduction to be negligible. Then, all electrical energy generated in the pipe
walls is transferred to the fluid. For a control volume involving the entire fiuid (Fig. 2.44), the
first law of thermodynamics yields, after recognizing the fact that there is no change in kinetic
and potential energies along the pipe,

0 = riyhy — fche + W, (2.163)

W, being the electrical power input. Clearly, this power is related to the peripheral heat flux g”
and the rate of energy generation per unit volume u™ a3

W, = g"Pé = u" AL, (2.164)

where P is the inside perimeter and A, the cross-sectional area of the pipe.

15 The FORTRAN program EX2-14.F is listed in the appendix of this chapter.
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Power

il

Insulation

I~

Heater Evaporator

Figore 2.43 An industrial evaporator.

Also, the conservation of mass applied to the same control volume gives
,O;AV; = pcAVc

or
my = m, =m = Const. (2.163)

Then, from the combination of Egs. (2.163) and (2.165),
Wc = ’h(he - hl)

or, explicitly, ]
W, = [(cpele — cpuTi) + ey — hew)] (2.166)

hoy and k., denoting the enthalpy of vapor and liquid water at the saturation temperature 7.
Assuming
Cpe = Cpi = ¢p = Const,

letting
T, — T = AT,

and in terms of the usual notation of steam tables,
Bipy — Bey = hy — hp = hyg,
Eq. (2.166) may be rearranged as
W, = 12 (c, AT + hyg) (2.167)

where the first and second terrs on the right side respectively denote the sensible and latent
parts of the enthalpy change. Also, the same two terms respectively correspond to the heater and
evaporator parts of the pipe (sec Fig. 2.43).
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For the heater part of the pipe alone

Weo = i (c, AT), (2.168)

W,, being the fraction of electrical power input for heating. The ratio of Egs. (2.167) and (2.168)
gives, in terms of Eq. (2.164),

W ¢'Pl (e AT)

W.  q"PE (AT + hyy)

or, the fraction of pipe length corresponding to the heater part of the pipe,

Weo fo 1
W, £ 14 hp/oAT

(2.169)

Beyond length £y, the water begins to evaporate. For 2 atm (abs), the steam tables give
the saturation temperature, T, = 120 °C, and the latent heat for this temperature, Ay, = 2,201
kJ/kg. Appendix B respectively gives for 20 °Cand 120 °C water,
o = 998 kg/m?,
cp = 4.182kIkgK and ¢, = 4244 kI/kg'K

or, approximately,

¢p = 42kIkg-K.
Also, from the geometry of the pipe (D; = 2.66 cm),
A = D4 = 7 x (266 x 1079%/4 = 0.556 x 107> m’.

In terms of the foregoing results, the mass flow is

f2

M= pAYV = 98kg/m’® x 0556 x 107 m® x 0.05m/s = 2.77 x 107" kg/s.

" T ™

[ 1

Figure 2.44 First Law for pipe control volume.
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Also, noting

AT =T, - T; = 120 — 20 = 100°C,
the need of electrical power is found from Eq. (2.167)
W, = 2.77 x 1072 kg/s (4.2 x 100 + 2,201) kI/kg = 73 kW,

and, the fraction of this power and of the pipe length for the heater section is obtzined from

Eq. (2.169),
Weo 30 1
n = — = = 0.16
W, £ 1+ 2,201/42 % 100
which gives
W, = 0.16 x 73 = 11.7kW
and

30 = 0,16 x 20 = 3.2 m.

We clearly know from Eq. (2.162) that the temperature increases linearly in the heater part of the
pipe. Once it begins to evaporate, the temperature remains constant and equal to the saturation
temperature.

Tke knowledge accumulated so far on steady, one-dimensional conduction, especially that
of Sections 2.3 (energy generation) and 2.4 {extended surfaces), finds important applications in
solar collectors and in (nuclear) reactor cores, whick we consider next. %

2.6 SOLAR COLLECTOR b

First consider the solar collector because of its relative simplicity. A solar collector may
be demonstrated in terms of a pipe or channel fiow heated by a distant energy source
{(solar radiation). Depending on direct or concentrated use of the epergy source, we
distinguish between flat-plate and concentrating collectors. In a flat-plate collector the
area absorbing solar radiation is the same as the area intercepting this radiation. In
a concentrating collector the (pipe or channel) area absorbing solar radiation is much
smaller than the (reflector) area intercepting and focusing this radiation.

Here, we consider a concentrating collector as shown in Fig, 2.45(a), With proper
interpretation, however, the formulation given below may be applied to flat-plate as
well as concentrating collectors.

Neglecting the effect of axial conduction, considering a radially lumped analysis,
and assuming a peripherally uniform ¢”, this formulation [obtained by an appropri-
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- L ‘Jl\ Control volume
Figure 2.45 (a) A concentrat- | 5
ing collector, (b) the first law * dx
for a collector. (b)

ate combination of the first and second key problems of convection or by the help of
Fig. 2.45(b)] may be written as

ar
peAV—— —¢"P + hP(T = T0) = 0, (2.170)

T) = Tp (2.i71)

[a direct superposition of the two key problems does not lead to Eq. (2.170)]. For a
solution, rearrange Eq. (2.170) as

dT qﬂ
pCAV = + hP (T T — 7) =0 (2.172)
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or, in terms of

@(x)=r—rm—%,

as
il + hP & =0 2.173
dx pCAV - 2173)
subject to
q
B =T ~ Tx — e (2.174)

We have already learmed the solution of Eq. (2.173) in connection with the first key
problem. From the development leading to Eq. (2.158), we have

" h
®=T—Tmm%—=Cexp(—- x), (2.175)
which gives, for Eq. {(2.174),
OO) = Ty — Ty — % = C. (2.176)

The combination of Eqgs. {2.175) and (2.176) yields the temperature distribution in the
solar collector,

g
T — Too — —
® h hPx
- = exp | — . (2.177)
q pcAV
BT =7

which can be rearranged as follows:

T() = Too = (Tp — Too) RPxN L 4T ( hPx ):| (2.178)
* o0 = 140 ™ Loa) EXP pcAV +71" P ocAV /|’ )

where the first righthand term gives the temperature distribution resulting from the
difference between the fluid inlet and the ambient temperatures, Ty — Too, and the
second righthand term gives the temperature distribution resulting from the distant
heat flux, ¢”. Note that the first term is the solution of the first key problem but the
second term is not the solution of the second key problem. The reason for this difference
isthat ¢” ofthe second key problem acts on the pipe and disallows any convection, while
g” of the present problem acts at 2 distance and allows convection.
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2.7 REACTOR CORE &

A nuclear power reactor produces heat for the thermal cycle of a steam power plant that
generates electrical energy. A schematic diagram of such plant isshown in Fig. 2.46. The
thermal analysis involving the temperature distribution and heat transfer in a core (like
the one shown in Fig. 2.47) plays an important role in reactor design. The core design
raust provide the desired thermal power without exceeding temperature limitations on
core components that might lead to fuel failure and the release of radioactive material
into the coolant. More specifically, the capacity of a cooling system limits the core power
density, which determines the core size necessary to mect the desired reactor output of
thermal power.

Spray headers

Steam generator
; Removable shielding
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Figure 246 A schematic diagram of a nuclear power
plant (from Babcock & Wilcox [8]).




Sec. 2.7 Reactor Core & 103

The energy released by nuclear fission reactions appears primarily as kinetic en-
ergy of the various fission products. Most of this fission energy is converted rapidly
to internal energy in the neighboring fuel material. This energy is then transferred by
conduction through the fuel element, through the gap separating the fuel from the clad,
and then through the clad to the clad surface. It is then transferred by convection from
the clad surface to a coolant (Fig. 2.48). The moving coolant then carries the thermal

energy up and out of the reactor core, either as sensible heat (increased temperature)
or latent heat (boiling).

Control Rod Drive
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Control Rod
Assembly Studs
Internals
Vent Valve
Plenum ;
Control Rod
Assembly Guide Tube
@ @ £ Core Support
gi Shield
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g one of 4
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for iliustration) S I i L £ get Assembly
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Holder 'ru‘b_e—'""—w \ N /Thermal Shield
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N i iy
N LN : N Guide Lugs
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\“~= ——— - 1 N
Flow Distributor [ N In-Core Instrurnent
I~ Guide Tube

Figare 2.47 Core of a nuclear reactor (from Babcock &
Wilcox [8]).
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The simplest model for fission energy generation corresponds to a bare, homo-
geneous core. The geometry of most practical importance is the cylindrical core, for
which the distribution of (radial and axial) energy generation is given by

" X
" = uy Iy (2.405;%) sin e (H_s) (2.179)

where Jp is the Bessel function of the first kind of order zero, and rg and Hg are the
effective core dimensions. Figure 2.49 shows a sketch of the fission energy distribution.
How this energy distribution is related to the neutron flux is the concern of the nuclear
engineer. Here, we are interested in the temperature distribution in a core resulting
from energy generation.

The assumptions to be made in the formulation are:

1. The temperature of the coolant is lumped radially.

2. The cross section of a fuel element is small compared with that of the core and
the energy generation affecting the fuel element is uniform radially.

3. Axial conduction in the coolant is negligible compared to axial enthalpy flow.

i | Fuel i

7 Gap
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flow
Figure 2.48 Fuel elements of a nuclear
core.
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- 10(2.405 r—)
: P 534\

Figure 2.49 Fission energy distribution in a nuclear core.

4. The axial temperature gradient is an order of magnitude smaller than the radial
temperature gradient, hence the axial conduction in the fuel, gap, and clad is
negligible.

5. Radial and axial extrapolation of energy generation is negligible, hence rg = rr
and H, E =H.

6. The gap thickness and the clad thickness dre small compared to the radius of the
fuel

Under steady conditions and assumption (4), the first law applied to lumped sys-
tems for the fuel, gap, and clad states that all the fission energy «” generated in the
fuel is transferred from the fuel, through the gap and through the clad, to the coolant.
Hence,

WA = giPr = qoPg = q¢Pc = Const. (2.180)



106 Chap.2 Steady Conduction

Insulation

Fue{ +H Ll X
/ # =uy sin (E)

—t Coolant

- @ ]

Figure 2.50 Control volume for coolant.

The first law applied to the control volume for the coolant shown in Fig. 2.50 yields, in
terms of Fig. 2.51 (the second key problem of convection),

R dTC " "
_— Pr = A‘
me— qcFPc = u

peAcVe (T + % &)

I !

? a j

Control é/ i i :
volume e et 4
% | acPcax | ,
e

7 | :

t pCAC Ve T E :

Figure 2.51 The first law for
coolant.
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which may be rearranged, after ignoring the radial distribution of energy generation, as

. dTC " . X
me—= = ugAsin (=), Te@©) = Te, (2.18%)

where m = pcAcV is the mass flow rate of the coolant.
Separation of variables followed by an integration readily gives the solution of

Eq. (2.181) as
. i H X
mc(TC —Tci) = qu ; 1 - COSTZ'E),

which, in terms of the outlet temperature of the coolant, obtained by letting x = H and
also noting cosw = —1,

#Hr H
J’hC(TCo - ch) = 2u0 A (;) N (2182)
gives the dimensionless coolant temperature

Teo — Tei 2

Te — Tou _1
H

1- cosrri) . (2.183)

Under assumption (6), Eq. (2.180) first expressed in terms of Newton’s law, A ATcoolant»
vields the temperature drop in the coolant,

u.’”A

— 2184
hPp ( )

ATcoolant =

next expressed in terms of Fourier’s law for the clad, koA Tome/ e, ke and ¢ being the
thermal conductivity and thickness of the clad, yields the temperature drop across the
clad,

uA tc
Towg = 2 (). 2.185
ATciad 7, ( kc) ( )

finally expressed in terms of the total heat transfer coefficient Ug for the gap yields the
temperature drop across the gap,

uﬂ'ﬂA
UsPr

ATGap = (2.186)
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Also, the temperature drop in the fuel (recall Fig. 2.22) is

w2 "
w'ry  WrrA
AT — = 2.
Fuel = = 5 (2.187)

kg being the thermal conductivity of the fuel and A/ Pp = rp/2.

The sum of Eqs. {2.184)-(2.187) results in the temperature drop between the fuel
center and the coolant:

A Thuel center - Cootlant = ATkgel + ATGap + ATcid + ATcoclant

_u”’A(rp+l+rc+1)
T Pp \2y Ug ke R}’

which, after nondimensionalizing in terms of Eq. (2.182), using «™ /up = sinnx(x/H),
and rearranging, gives

ATFuel center « Coolant

Teo — T
me kF fad k}:‘ k}:‘ X
—_ 1+2 2—— +2— |sinm—. 2.18
8Hkr ( + -+ + sz - (2.188)

UGrp rr kc . hrp

The axial temperature rise in the coolant, Eq. (2.183), the radial temperature drop
and the axial temperature distribution in the fuel, the gap, the clad, and the coolant,
Eq. (2.188), are sketched in Fig. 2.52. Some typical values encountered in practice
for the radial temperature drop are: AZpye ~ 1500 °C, ATgy ~ 150 — 300 °C,
ATerad ~ 50°C, and ATgoala ~ 5 °C (for water). Also, some values for the geometry,
thermal conductivity and heat transfer coefficient are:

g ~ 0.005cm, ¢ ~ 0.05 cm,
kF ~ 4W/m-K, kc ~ 15 W,"III-K,
Ug ~ 6,000 — 12,000 W/m>K, h ~ 30,000 — 60,000 W/m?-K.

The reader should keep in mind the rather approximate nature of the foregoing
consideration. Variable properties, fuel swelling, nonuniform fission energy generation
resulting from loading or age, radial depression of the energy generation in the fuel
resulting from self-shielding, coolant phase change, etc., may play a significant role in
actual cases.
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2.8 COMPUTER PROGRAM APPENDIX

Comem - - -

C EX2-1.F (START)

PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-Z)

PL=4*ATANCL.D

WRITE(*,*) 'EXAMPLE 2.1....°'

[ e E T [P
C INPUT DATA

Lot e e e - —— —_——
WRITE(*,*) 'INPUT THE FOLLOWING DATA...'
WRITE(™,*) 'TINFTY: C'

READC*,*) TINFTY

WRITEC*,*) 'TM: C'

READC*,*) ™

WRITE(*,*) 'L1: cm’

READC*,*) L1

WRITE(*,*) 'L.2: cm'

READ{™,*) L2

WRITEC* ,*) 'K 1: W/m.K'

READ{*,*) K1

WRITEC™,*) 'K2: W/m.K'

READ(*,*) K2

WRITEC®,*) "H1l: W/mAZ.K’

READ(*, %} H1

WRITE(®,*) 'H2: W/mA2.K’

READ(C*,*) H2

e e e e
LI=0.01¥L1
L2=0.01*L2

C CALCULATION

R1=L1/K1+1/H1
R2=12/K2+1/H2
RT=1/(1/R1+1/R2)
Q=(TM-TINFTY) /RT

€ ANSWER
Commrerrm e e e -
WRITEC*,*) ’'RADIANT HEAT FLUX NEEDED FOR THIS PROCESS IS’
WRITEC*,*) Q/1000,' Kkh/mAZ'*

STOP

END

PROGRAM MAIN

IMPLICIT REAL*E (A-H,K-Z)
PI=4*ATAN(1.)

WRITE(*,*) 'EXAMPLE 2.2....°
Cormmm e —
C INPUT DATA




WRITE(*,*} 'INPUT THE FOLLOWING DATA...®

WRITECY, %) "R1:,cn'
READ{*,*) R1

WRITEC*,*) "R 2: om’
READ(*,*) R2

WRITE(*,*) ’HI: W/mAZ.K'
READ(* ,*) HI

WRITEC*,*) "H.O0: W/mA2.K'
READ(* , *) HO

WRITE(*,*) "K: W/m.K’
READC*,*) K

WRITE(*,*) *TINFTY: C'
READ(*,*) TINFTY
WRITE(*,*) "K.FIBER: W/m.K'
READ(*,*> KFIBER
WRITE(*,*) 'L_FIBER: mm’'
READ(*,*) LFIBER

R1l=0.0L*R1
R2=0.01*R2
LFIBER=0.001*L FEBER

RI=1/CHI*2*PI*R1)
R1=(R2-R1}/(K*PI*(R2+R1))
RO=1/ (HO*2*PI*R2)
Q1=(120-20) / (RI+R1+R0)
R3=RZ+LFIBER
R2=(R3-R2)/(KFIBER*PI*(R3+R2})
RO=1/(HO*2*PI*R3)

Q2=(120-20) /(R2+R0)

Sec. 2.8 Computer Program Appendix

WRITE(*,*) "HEAT LOSS PER UNIT LENGTH OF BARE PIPE IS’

WRITE(*,*) Q1," wW/m’

WRITE(*,*) "HEAT LOSS PER UNIT LENGCTH OF INSULATED PIPE IS’

WRITEC¥,*) @2, W/m'
STOP

END
o -

C EX2-1.F (END}

PROGRAM MAIN

IMPLICIT REAL*§ (A-H,K-Z)
PI=4"ATAN(1.)

WRITE(*,*) 'EXAMPLE 2.13....°7

Conmnmnasa - U

C INPUT DATA

11



112

Chap, 2 Steady Conduction

R PR TR R P LR S R
WRITEC*,*) 'INPUT THE FQLLOWING DATA...'
WRITE(*,*) "V: m/s’

READC*, %) V

WRITE(*,*) ‘T.I: C'

READ(*,*) TI

WRITEC*,*) 'D.1: em'

READC*,*) D1

WRITE(*,*) 'D2: cm’

READ(*,*) D2

WRITEC*,*) 't:m’

READC*,*) L

WRITEC*,*) 'TJINFTY: C°

READ(*,*) TINFTY

WRITE(*,*) 'H.I: W/mAZ.K'

READC®,*) HI

WRITE(*,*} "H.0: W/mAZ.K'

READ(*,*) HO

WRITECY, ) 'K: W/m.K'

READ(*,*) K

WRTTEC*,*) 'DENSITY (ko/mA3) OF WATER AT ',Ti+273,° K'
READ(*,*) RHO .
WRITEC*,*) 'SPECIFIC HEAT (J/kg.K) OF WATER AT ', TI4273," K
READ(C*,*) CP

C UNLIT CONVERSION

[ — e ——————— - -
D1=0.01*D1
D2=0.01%D2

C _______________ —m—— o i o e o

oo e
P=pPI*D2Z
A=PI*D1%%2/4
TE=TINFTY+CTL-TINFTY) *EXP(-HO*PL/ (RHO*CP*A*V))

Comsmmmm e e e - e —
WRITE(*,*) "EXIT TEMPERATURE OF THE WATER IS’
WRITEC*,*) TE,' C'
sTOP
END

[ R -

C EX2-13.F (END)

PROGRAM MAIN
IMPLICIT REAL*8 (A-H,K-Z)
PI=4*ATAN(L.)
WRITECY,*) 'EXAMPLE 2.14....7
Comsrmm e e e ———— -

9 INPUT DATA
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WRITE(*,*) "INPUT THE FOLLOWING DATA...'
WRITE(*.,*) 'V: m/s’

READ(*,*) V '

WRITE(C*,*) '"T.I: C'

READ(*,*) T1

WRITEC*,*) 'D.I: cm’

READ(*,*) DI

WRITE(C*,*) ’L: m'

READ(*,*) L

WRITE(*,*) "T.E: C (SATURATION TEMPERATURE OF WATER AT 2 ATM)’
READC* ,*) TE

WRITE(*,*) 'LATENT HEAT (kl/kg) QF WATER AT T.E’
READ(*,*) HFG

WRITE(*,*) °AVERAGE DENSITY (kg/mA3) OF WATER'
READ{* , *) RHO

WRITE(Y,*) 'AVERAGE SPECIFIC HEAT {kJ/kg.K) OF WATER'
READ(*,*) CP

e e e e e e —— —
C UNIT CONVERSION

C o o ot e e e e e e
DI=0.03*DT

HFG=1000*HFG

CP=1000%CP

AT=PI*DI**2/4
DOTM=RHO®AT*Y

DT=TE-TI

DOTWE=DQTM* (CP*DT+HFG)
DOTWEQ=DOTM*CP*DT
LO=L*DOTWEQ/DOTWE

WRITEC*,*) "POWER NEEDED TG EVAPORATE WATER COMPLETELY IS’
WRITEC*,*) DOTWE/1000," ki’

WRITEC*,*) "FRACTION OF PIPE WITH WATER STARTING TO EVAPORATE’
WRITEC*,*) 10, m'

sTop

END

Qe mm e ——— -

8 EXERCISES

113

21 A heat flux ¢ maintains the surfaces of a plate 3 cm thick at temperatures 77 and T:.

Consider the following two cases:
(a) g = 25,000 W/m?*, T3 =200 °C, T = 100 °C
(b) g = 30,000 Wim*, T, =300 °C, T = 200 °C

Evaluate the thermal conductivity of the slab from each case. What is your conclusion?

Establish an approximate expression for the conductivity.
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2.2

2.3

2.5

2.6

The cross section of the wall of a wooden house is shown in Fig. 2P-1. To save heating
costs, the outside wood is to be replaced with a brick wall. Find the reduction in heat
loss from the house. Date: Conductivities for drywall, insulation, wood, and brick are
ke =02,k =01k, =02,and & =07 W/m-K, the inside and outside coefficients of
heat transfer are h; = 10, and Ao = 30 W/m*-K.

10 cm 10em 20 cm

Zcm—-l I‘_‘"“! |—-—2cm 20m-—-—i I['* 1
Drywa]lA;(; ; :

Brick

Wood

Insulatton —

_

@ ()

Figure 2P-1: (a) Wooden house, {b) brick hause.

A family, realizing that they could not afford the cost of a brick wall, recently covered
their wooden house with cork 2 cm thick. The conductivity of cork is k, = 0.04 W/m-K.
Compute the reduction in the heat loss from the wooden house of the preceding problem.

The interior of a refrigerator, having inside dimensions of 0.4 m by 0.4 m base area and
1.2 m height, is to be maintained at 4 °C, The walls of the refrigerator are constructed
of two mild-steel sheets 4 mm thick with 6 cm of glass-wool insulation between them.
The inside and outside coefficients of heat transfer are 10 and 15 Wim?-K, respectively.
Evaluate the rate at which heat must be removed from the interior to maintain the specified
temperature in a kitchen at 25 ¢, What will the temperature at the outer surface of the
wall be? Assuming a 30% efficiency for the compressor, estimate the power need for the
refrigerator.

Molten lead at 430 °C is stored in a welded stainless steel tank with walls 0.6 cm thick and
insulated on the outside with 2.5 cm of 85% magnesia insulation. The melting point of lead
is 327 °C. The heat transfer coefficient between the insulation and the air may be taken as
10 W/m2-X, and that at the interface between liquid lead and frozen lead may be taken as
20 W/m?-K. The ambient air temperature is 20 °C. Estimate the steady thickness of the
layer of lead which will freeze on the inside surfaces of the tank. What is your conclusion?

In a manufacturing operation, a sheet of plastic 1 cm thick is to be glued to a sheet of
cork board 3 cm thick (Fig. 2P-2). To affect a bond, the glue is to be maintained at a
temperature of 30 °Cfor a considerable period of time. This is accomplished by a source
of radiant heat, applied uniformly over the surface of the plastic. The exposed sides of the
cork and the plastic have a heat transfer coefficient by convection of 10 Wim?- K, and the
room temperature during the operation is 25 °C. Estimate the rate at which heat must be
supplied to the surface of the plastic to obtain the required temperature at the interface.
The thermal resistance of the glue may be neglected. The thermal conductivities of plastic
and of cork are 2.3 and 0.042 W/m-K, respectively. Draw the thermal circuit for the system.
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Plastic Cork
Gi

Figure 2P-2

Neglecting the effect of curvature, assume that an industrial brake system may be simulated
by a ftat plate (brake drum) moving on a composite plate (brake shoe) with a ¢onstant
velocity V (Fig. 2P-3). The constant and uniform interface pressure is p. The coefficient
of dry friction is g, the ambient temperature is T, and the heat transfer coefficients are
hy, hy. The thermal conductivities and the thicknesses of the plates are k1, kz, and £;, &3,
respectively. (a) Find the heat transfer to the drum and to the shoe. (b) Find the maximum
temperature of the brake. (¢) Draw the analogous electrical circuit for part (a).

hi, Ton

g - B
8

Shoc

hz, T»
Figure 2P-3

A vertical boiler pipe of inner radius R; and outer radius Ry is subjected to a uniform heat
flux 7 (Fig. 2P-4). A water flow evaporates through this pipe. The inside heat transfer
coefficient k is very large. Neglecting axial conduction in the pipe, (a) evaluate the local

‘temperature difference between the inner and outer surfaces of the pipe, (b) evaluate

the local difference between the bulk temperature of the water and the inner surface
temperature of the pipe. Data: Pipe diameters Dy = 12 cm and Dy = 10 cm. Furnace
temperature T, = 1400 °C. Evaporating water pressure in the pipe p = 10 MPa. Thermal
conductivity of steel pipe &k = 20 W/m-K.
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2.9

2.10
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A section of a carbon steel pipe 5 m long (12 cm OD and 10 em ID) is insulated with
20-cm-OD 85% magnesia insulation. Saturated steam at 25 psi is admitted at one end,
condensation occurs within the pipe, and saturated liquid is removed at the other end by
a steam trap (Fig. 2P-3).

Steam

Insuiation

Figure 2P-5

It is desired to calculate the capacity of this steam trap in kg per hour of liquid
flow, assuming that a constant pressure of 175 kPa is maintained in the pipe while heat is
transferred to an ambient at To = 25 °C, The end effects may be neglected, The heat
transfer coefficient on the inside of the pipe is 5,000 W/m?-K and that on the outside of
the insulation is 10 W/m?.X. The following properties of steam may be used:

r T Vs Vg hy Ay

175kPa | 116°C | 0.001057m’/kg | 1.0036m’/kg | 487kV/kg | 2,700.6kl/kg

A tube with 5 cm OD is maintained at —30 °C by a refrigerant boiling inside the tube.
The tube is placed in water, and ice forms on it. The water temperature is 10 °C and the
heat transfer coefficient between the ice and the liquid water is 60 W/ m?-K. Estimate the
thickness of the layer of ice on the tube at steady state. The conductivity of ice is k = 0.2
Wim-K.

ST P
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A brake system consists of a hollow cylinder and a sleeve of negligible thickness (Fig. 2P-6).
The relative angular velocity, pressure, and coefficient of dry friction between the cylinder
and sleeve are w, p, and u, respectively. Find (a) the steady interface temperature, (b) the
radius R corresponding to the lowest interface temperature.

P

. TDO

Bgr Too

R

Sleve

Figure 2P-6

Electrical power W, is generated in a hollow sphere of radii R; and Ry (Fig. 2P-7). Under
steady conditions, evaluate (a) the temperature drop across the thickness of sphere, (b) the
outer surface temperature of the sphere. Data: B, = 5 em, Rg = § cm, W, = 750 W,
Too =20 °C, k = 20 Wim-K, h = 10 Wim?. K.

Figure 2P-7

A spherical liquid oxygen (LOX) tank has a diameter of 3 m. The boiling point of LOX
is —183 °C, Estimate the thickness of insulation which will reduce the boil-off rate in the
steady state to no more than 0.005 kg/s. The heat of vaporization of LOX is 214 kJ/kg. The
conductivity of the insulation is £ = 0.01 W/m-K. The coefficient of outside heat transfer
is h = 10 W/m?.X, and the ambient temperature is T = 20 °C.

The shield of a nuclear reactor can be idealized by a large flat plate 25 cm thick having a
thermal conductivity of 4 W/m-K. Radiation from the interior of the reactor penetrates
the shield and generates energy in the shield which decreases exponentially from a value
of 200 kW/m? at the inner surface to a value of 20 k'W/m® at a distance of 12.5 ¢m from
the interior surface. For the case where the exterior surface is kept at 40 °C by forced
convection, determine the temperature at the inner surface of the shield,
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2.19

2.20

A 12-gage (2 mm diameter) wire with a resistance of 0.05 chms/m carries a 15-ampere
current and is insulated with rubber (k = 0.013 W/m-K}. The heat transfer coefficient for
the outer surface is 10 W/m?-K. Consider the wire temperature 10 be uniform and the
ambient temperature to be 25 °C. Find (a) the thickness of insulation which will result in
the lowest operating temperature of the wire, (b) the temperature of the outer surface of
the rubber insulation.

Consider a fin 2¢ long. One-half of the fin is peripherally insulated. The end temperature
T,, of this half is specified. The other half trazsfers heat with a coefficient 4 toan ambient at
temperature T, < Ty, The end of this half is insulated (Fig- 2P-8). Find the temperature
of the middle plane and of the insulated end of the fin.

A Tos

| Ty=? T
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o’

' ET,:?
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Figure 2P-8

Consider a stainless steel rod 2.5 cm in diameter and 1 m long mounted between two
supports maintained at 50 °C. The rod is in air at temperature T, =300 °C. The thermal
conductivity of the rod is k = 20 wim-K. For two values of the transfer coefficient
corresponding to / = 5 and 50 W/ m2-K, evaluate (a) the temperature of the rod half way
between the ends, (b) the rate of heat transfer from the air to the rod.

Consider a stainless steel turbine blade with height A = 5 cm, periphery P = 8 cm, and
cross-sectional area A = 2.5 x 107* mZ. The conductivity of the blade is k = 20 Wimn-K.
The base temperature of the blade is Ty = 600 °C. The blade is exposed, as a part of 2
steam ot a gas turbine, to superheated steam or hot gases at a temperature T = 1,000
o(>. The heat transfer coefficient may be assumed to be 300 and 200 W/m?-K, respectively.
Find the tip temperature of and the heat transfer to the blade for each case,

A wall separates a gas from a liguid. The temperature of the gas, Ty, is different from that
of the fluid, T;. It is proposed to increase the heat transfer between the gas and the liquid
by adding fins to either the gas side or the liquid side. To which side must the fins be added
for the best result? Data: Brass wall, k = 100 W/m-K, rectangular brass fins, 1 mm thick,
2.5 cm long, and spaced 2 mm apart. The gas-side and the liquid-side coefficients of heat
transfer are k, = 10 and h, = 1,000 W/m® K, respectively.

A solid rod (2€ = 20 cm) with cross-sectional area A and perimeter P is insulated periph-
erally (Fig. 2P-9). Uniform internal energy w' = 500 k'W/m? is generated in the rod. The
thermal conductivity of the rod is k = 50 W/m-K. The end temperatures of the rod are
7y = 0 °Cand Ty = 100 °C. (a) Find the temperature of the rod at x = £. (b) Sketch the
temperature distribution of the rod.
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221 Consider an infinitely long fin. Internal energy 1" is steadily generated in a part of the

2.22

2.23

2.24

fin 2¢ long (Fig. 2P-10). The entire fin transfers heat with a coefficient 2 to an ambient
at temperature Top. (a) Find the temperature distribution within the fin. (b} Resolve the
problem for a fin 2(€ 4 L) long with insulated ends. The internal energy continues to be
generated in the 2£ long central part of the fin.

Figure 2P-10

Uniform internal energy & is generated in a semi-infinite rod of cross-sectional area A
and periphery P (Fig. 2P-11). The peripheral and tip heat transfer coefficients are the
same, say k. The ambient temperature is T, If heat loss from the tip is neglected, the
temperature of the rod is uniform, T — T = u”A/hP. Find the distance § over which
the effect of heat loss from the tip is appreciable.

Ay Ton

2
<—¥g—/ A N et b, T
I -

Figure 2P-11

In the process of constructing a thermocouple, two thin wires of different thermal conduc-
tivity are soldered with a heat flux g” applied locally. Express g” in terms of the melting
temperature of the solder. Date: Wire diameter 4 = 1 mm, ambient air temperature
Toe = 20 °C, melting temperature T, = 260 °C, conductivity of the wires &y = 20, k3 = 60
W/m-K, heat transfer coefficient z = 10 Wim?- K.

Electrical energy u™ is generated uniformly in an infinite rod (Fig. 2P-12). The upper half
of the rod transfers heat with a coefficient ky to an ambient, while the lower half with
coefficient A (> h;) exchanges heat with another ambient. Both ambients have the same
temperature, say Ty. Find the steady temperature of the rod. Reconsider the problem for
two ambients at different temperatures, say 7y and 7. Find the relation between Ty and
T; such that the rod temperature remains approximately constant.
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Figure 2P-12

Reconsider Ex. 2.12. Resolve the probiem assuming (a) that the heat loss from the part of
the rod in air is negligible, (b) a finite rod with both ends insulated.

A fluid fiows steadily with velocity ¥ through a thick wall pipe of length £ (Fig. 2P-13).
The inlet temperature of the pipe is 7p. The effect of axial conduction is negligible. Under
steady conditions, find (a) the outlet temperature of the fluid, (b) the axial vaniation in the
inside and outside temperatures of the pipe wall. (¢) Now, let the pipe be at the focus of
a concentrating collector so that it receives uniform peripheral heat flux ¢” from the sun.
Resolve (a) and (b).

T

A h, k T
7;/ ;/ o

Figure 2P—13

In an industrial drawing process, a metal sheet of thickness & steadily moves on rollers.
This metal sheet is subjected to uniform heat flux g” (Fig. 2P-14). (a) Neglecting the
effect of axial conduction, find the steady axial temperature of the sheet. (b} A specific
temperature, say Tg, is desired at location x = £. Determine the angular velocity of the
rollers required to achieve this temperature.
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Figure 2P-14

2.28 An electrical conductor 2 cm in diameter fits closely inside a long hollow cylinder having
an inside diameter of 2 cm and an outside diameter of 6 cm. The material from which the
cylinder is made has a temperature-dependent thermal conductivity (Fig, 2P-15). The outer
swrface of the cylinder is maintained at 160 °C, and the electrical conductor dissipates 500
W per m of length. Compute the temperature at the inside surface of the hollow cylinder.

kK, Wim- K

0 | | | | i | J
140 180 220 260
r°C
Figure 2P-15

229 A liquid is heated by flowing through a heat exchanger made of a heating rod co-axially
placed in a closed cylindrical shell {Fig. 2P-16). The effect of axial conduction is negligible.
Find the steady axial ternperature distribution of the system, Repeat the problem including
the effect of {a) the radial temperature distribution of the rod, (b) a large heat transfer
coefficient.
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Figure 2P-16

230 A liquid enters the bottom of a large insulated pipe of diameter D and length L ata
temperature Tp, flows slowly upward with velocity V, and then spills over the top in a thin
layer (Fig. 2P-17). A radiation heat flux ' is incident on the upper surface of the liquid

and is absorbed within the liquid such that the fiux at any point within the liquid is given
by '

gy = qroe "
The heat transfer between the upper surface of the liquid and the ambient is negligible.
(a) Find the temperature of the liquid spilling over the top of the container. (b) Determine
analytically an expression for the heat transfer coefficient at the underside of the upper

liquid surface.

Figure 2P-17

2.31 In an experiment designed to measure the power output from a combustion process, two

eylindrical shells of diameters D; and Dy and length ¢ have been placed concentrically
around a flame (Fig. 2P-18). This process yields an axisymmetric heat flux on the walls of

the inside cylinder of the form
q" = qox(£ — XN g"in [Whn?], gqoin[Wim®].
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Water flows between the cylinders with inlet temperature 7; and velocity I/. The water
temperature at the exit is measured to be 7,. The outer cylinder is insufated externally.
(a) Determine the total power output from the flames. (b) Determine g5.

Figure 2P-18

232 A rotary heat exchanger can be idealized as a sleeve of radius R, width £, and thickness
§ rotating steadily with angular frequency w (Fig. 2P-19). One-half of the sleeve is in 2n
ambient at temperature T7; the second half is in another ambient at temperature T5. Find
the temperature distribution of and the heat transfer from the exchanger.

Figure 2P-19

2.33 An electrically heated screen is placed across a steady flow streaming with velocity U
(Fig. 2P-20). Including the effect of axial conduction and assuming specified (a) screen

temperature T, or (b) power supply to the screen P, determine the steady temperature
distribution within the flow.
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Figure 2P-20

Reconsider the second key problem of convection. Find the temperature of the fluid
including the effect of axial conduction.

An electrical wire will be coated in a continuous process (Fig. 2P-21). The wire is pulled
with a uniform velocity V while it is heated over a length L by a peripheral heat flux g”.
The wire goes through a coating powder of very low conductivity. (2) Sketch the wire
temperature in the three regions shown in the figure. (b) Find the wire temperature in
these regions.

LT

fy Teo

@ T Bar;l wire

LT

An insulated thin-walled vessel initially contains saturated water vapor at temperature
T, (Fig. 2P-22). The external surface of the bottom of the vessel is exposed to the sur-
rounding air at a temperature Too (Toe < T;). Determine the instantanecus thickness
X (r} of the condensate.

Coating powder

L

Coated wire

Figure 2P-21
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Figure 2P-22




CHAPTER

UNSTEADY/STEADY,
MULTIDIMENSIONAL
CONDUCTION

In Chapter 2 we learned how to interpret the spatial temperature distribution of steady
problemms in terms of the Biot number (recall Fig. 2.15). Here we extend this interpre-
tation to the spatial temperature distribution of unsteady problems. Consider a solid
transferring heat unsteadily with a coefficient / to an ambient at temperature T,. Let
the instantaneous surface temperature be Ty, and the temperature of the solid relative
to this temperature be AT in the neighborhood of the surface (Fig. 3.1).

Figure 3.1 First law for a
boundary system.

125
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Chap.3 Unsteady/steady, Multidimensional Conduction

In this and the following chapters we continue to employ the five steps of forma-
lation but no longer make explicit reference to each step.

For a boundary system, the first law of thermodynamics reduces to

qn = 4c¢

which, in terms of Fourier’s law and Newton's law, and a characteristic length £ for the
solid, may be dimensionally expressed as

AT
ke ~ R (Ty = Too)

or, in terms of the Biot number, as

hé AT

— = Bi ~ ————. (3.1)
For a small Biot number, say 0.1,

AT & (Tw — T},

and the temperature drop across the solid can be neglected when compared with the
temperature drop in the ambient. Consequently, for unsteady problerms,

implies a spatiaily lumped instantaneous temperature for the solid (the same criterion
may also be used for steady problems). Since the elimination of spacewise temperature
variation considerably simplifies unsteady problems, we examine first these (lumped)
problems.

LUMPED PROBLEMS (Bi < 0.1)

An illustrative example for these problems is the cooling of a small metal ball (or billet)
in a constant-temperature (large) bath. Let the ball, heated to a uniform temperature
Ty, be quenched into the bath at temperature 7.

Consider the entire ball to be a lumped system. The first law of thermodynamics, -

Eq. (1.10), applied to this system yields (Fig. 3.2),
au

= 32
dr chw ( )

where U is proportional to the total energy and A is the surface area of the ball. Now
we may relate U and T by referring to thermodynamics.
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Balf at
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Large bath at 7, a_ v er
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Figure 3.2 An illustrative example for
lumped problems.

First, we have, by definition,

dU = mdu = pVdu,

p and V being the density and volume of the ball. Next, we may recall from thermo-
dynamics that u (v, T) and 2(p, T) for a pure substance and write

ou du

du = (—) ar + (—) dv
oT /, v/,
ah ah

dh = (M> dT -+ (—) dp.
aT R ap/r

Then, in terms of the definitions of specific heat at constant volume and at constant

preSSUIe,
Su ok
“=\ar) = \57r/)”
v P

we have, for a constant-volume process,

du = ¢,dT,

and

and, for a constant-pressure process,
dh = cpdT.
Also, from the definition of enthalpy,
h=u+ pv,
we get, for a constant-volume and a constant-pressure process,
dh = du

or
€p = Cy = C.
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That is why we usually refer to the specific heat for solids and liquids without any
reference to volume OF Pressure [a fact already used in the development leading to

Egs. (2.148) and (2.149)]. Thus,

dU = pVdu = pcVdT,

and Egq. (3.2) may be rearranged as
v dar 4
cyY— = — R
PV T e (3.3)
Tinally, Newton's law, inserted into Eq. (3.3), gives the governing equation,
ar _
peV— + RA(T — Tog) = 0 (34)

subject to the initial condition
T0) = To. (35)

The solution of Eq. (3.4) satisfying Eq. (3.5) is!

T(r)““Too__ex ( hAt
T — T P\ pev (3.6)
or
T® ~Too _ (1
o= T P\TZ) 3.7)
where
r = pcV/hA 3.8)

is called the time constant” (Fig. 3.3). This practical measure here for the cooling time
of the lumped ball may also be obtained from the tangent of Eq. (3.6) at t = 0 by letting

T(r) — T hA
=1—|—1]tr =0,
T — T pcV

1 e solution of Bg. (34) is obtained in a manmer identical to that of Eq. (2.156).

: o T
2 Alse, on dimensional grounds, Eq. (3.4) readily gives pcV — ~ hAT, or 7 ~ 0eV/hA.
T
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A better approximation for the cooling time, say 1), may be obtained from an
integral approach in a manper similar to the concept of penetration depth considered
in Ex. 2.11, the cooling time being approximately the time the ball takes to reach tem-
perature T,. Now integrate Eq. (3.4) over the cooling time,

Too

o .
pcVT| = —hA / (T — Too)dt, (3.9)
i) .

Tp
and select (as sketched in Fig. 3.4) an approximate temperature profile satisfying the
apparent physics of the problem, that is,

dT (4
TO) =Ty, T{t) = Ty and di") =0

In terms of polynomials, for example, the parabola 8 = Cy + €yt + Cst? that satisfies

these conditions yields .
T{) ~ Tog t
—_— ={1-=] . 3.10

Ty — Ty ( Io) ( )
Inserting Eq. (3.10) into Eq. (3.9) gives

1
V(T — To) = hA(Tp — Too) (—gro)

or
ty = 3pcV/RA) (3.11)
or, in view of
14 D3 1
_— T é froand —D’
A aD*, 0

ty = %(pcD/h). (3.12)
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Approximate parabola

T~ T

Tp-Te Exact exponential

| .|
i

Figure 3.4 Exact and approximate temperatures.
Now, consider a steel or copper ball 4 cm in diameter to be dropped into a stagnant
gas, oil, water, or liquid metal bath. From Appendix B1,

0s = 8,000 kg/m?, ce =2 500 Vkg-X, k, = 10 Wm-K,
00 = 9,000 kg/m®, c. = 400 Tkg-K, k. = 400 Wm-K,

12 iR

Also assume psc; = pcCe, and refer to Table 1.2 for the heat transfer coefficients. The
cooling time of these balls is given in Table 3.1. Clearly, since Bi > 0.1 for three of
the steel cases and one copper case, the cooling time needs to be evaluated from a
distributed solution in those cases.

Table 3.1 The cooling time of different balls

hR
Fluid h Bi= - (-] 1o [s]
W
5 Steel Copper Steel and Copper
m--K
Gas 10 2% 107 5x 10~ 8,000
Oil 100 2 x 107! 5% 1077 800
Water 1,000 2 5x1072 - 80
Liquid metal 5,000 20 5% 107! 8

In Table 3.1 we used the radius of the sphere as the characteristic length. For
axially symmetric cooling (or heating), the radius of a sphere or a long cylinder is the
obvious choice for this length. For irregular bodies,

L =2—3(V/A) (3.13)

may be used as a characteristic length, where 2 and 3 denote the number of finite
dimensions. Bquation (3.13) yields L = R for both sphere and cylinder. For cooling
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{or heating) excluding any symmetry, the characteristic length for conduction should
be the length use{d in the Biot number.
ExampLe 3.1

A thermocouple is needed to record a transient thermal process in which a fluid temperature
rises from Tp = 20 °C to T = 1400 °C (or drops from T, to Tp) over a time interval of ry = 100
ms. The heat transfer coefficient is 2 = 6,000 W/m?. K. We wish to determine the characteristics
{type and size) of the thermocouple.

The thermocouple characteristics can be determined with the knowledge gained in the
foregoing illustrative example. The heating or cooling response time of the thermocouple needs
to be an order of magnitude smaller than ¢, that is,

= 3t & 1y,

say,
fh = 0.1z,. (314)

Assuming the thermocouple to be a spherical bead, we have from Egs. (3.12) and (3.14)
1
E(pCD/h) = 0.1y

or

D = 0.20(kt,/ pc). (3.15)
If the thermocouple were to be assumed cylindrical, noting V/A = D/4, we get from the combi-
nation of Eqs. (3.11) and (3.14),

3
;CPCD/ h) = 0.1y

or
D = 0.13(kty/ pc). (3.16)
For thermocouple wires,
pc = (3tod) x 1087/ m* K. 317
Then, the combination of Eqs. (3.15)-(3.17) gives
m-K W
D[m] == (0.33 to 0.67) x 1077 h £4]8)- (3.18)
) m*-K

For a disturbance time £; = 100 ms in a hot fluid flow with & = 6,000 W/m2-K,
D = 0.02 - 0.04 mm, (3.19)

which is a measure for the diameter of the thermocouple wire. For a temperature range of
20 — 1400 °C, Table 3.2 suggests,” for example, platinum (10 or 13)% rhodium-platinum as the
thermocouple material. L

3 For further details (envirorumental limitations, average sensitivities, etc.} see Ref, 2,
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Table 3.2 Reference [2]

Thermocouple material Temperature range °C
Copper-Constantan —200-350
Iron-Constantan 0-750
Chromel-Constantan —200-900
Chromel-Alumel ~200-1250
Platinum 10% Rhodium-Platinum 0--1450
Platinum 13% Rhodium-Platinum 0-1450
Tungsten-Tungsten 26% Rhenium 0-2320

ExampLe 3.2

Reconsider Ex. 1.2 for an uninsulated wire, We wish to determine the unsteady temperature of
the wire.

For the lumped wire, the first law of thermodynamics, now combined with Newton’s law,
yields the governing equation,

a7
,OCVE' = —hA(T — Tn) + W'V (3.20)

subject ta
TO) = To- (321

Here the generation of electrical power per unit volume, «”, and the total resistance of the wire
are related by

u"V = V**/R.
In terms of
@ T T uﬂlv
B Y
Eq. (3.20) reduces to
ae hA
— Gt ]—— ]8O =0 (3.22)
dt pcV
subject to
00 = -~ (3.23)
T hA

The solution of Eq. (3.22),

el ()]
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becomes with Eq. (3.23),

'V hA
! Q= ———exp|—|— ¢
hA peV

or,interms of T and 7,

=1-e"", (3.24)

Exampie 3.3

Consider the drum-shoe brake system of a car (Fig. 3.5). The density, heat capacity, and thickness
of the brake shoes and drum are (p1, g), (¢4, ¢2), and (81, 8;), respectively. The initial temper-
ature of the system is uniform, say T. During 2 stopping time #, the pressure p between the
shoes and drum, as well as the coefficient of dry friction 1, are assumed constant and the angular
velocity «(t) is specified. We wish to determine the unsteady temperature of the brake system.

Assume that Biot numbers for the inner and outer surfaces satisfy the conditions k8;/k <
0.1 and A8/ k2 < 0.1, and lumped conditions prevail. Also, in view of the fact that §; and §; are
small compared with the mean radius R of the brake system, neglect the effect of curvature. For
the lumped system shown in Fig. 3.6, the first law of thermodynamics combined with Newton’s
law for the outer and inner surfaces results in the governing equation for the brake system,

ar
{(p1c1d1 + p2c2da) = = 1pV () ~ (1 ++ )T — Ty) (3:25)

subject to initial condition
T(0) = T (3.26)

Here T denotes the common lumped temperature of the drum and shoes, V (¢} = w{f)R the
tangential velocity, and ppV the friction power per unit area. Note that, for the system chosen,
this power term should be interpreted as an internal energy generation. (Study the formulation of

Figure 3.5 Brake system of a car.
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Figure 3.6 Model for the brake system.
the present problem in terms of two systems, one for the drum, the other for the shoes. Interpret
the friction power in terms of these systems.)

Introducing 8 = T — Toe, m = (k1 +h2)/ (16181 + p2¢282), and n = up/(o16181 + p2c2d),
Eqs. (3.25) and (3.26) may be rearranged as

46
Z +mb = nV({), 60) =0 (3.27)
The general solution for the homogeneous part of Eq. (3.27) is
6(t) = Cye™. (3.28)

Now, following the method of the variation: of parameters,4 assume Cy to be time dependent and
insert Eq. (3.28) into Eq. (3.27). The result, after some rearrangement, is

dCy
— = nV()e™. (3.29)
dt

The integration of Eq. (3.29), for an arbitrary V (1}, gives
Cit) = Cr +n j t V()™ dr*, (3.30)
where €5 is a constant, Inserting Eq. (3.30) inte Eq. (3.28), we have
5(t) = Cre™ +n f ‘ V(e (3.31)
Writing Eq. (3.31) for the initial condition, Eq. (3.27), multiplying the result by exp (—mt) and

subtracting it from Eq. (3.31) yields the unsteady temperature of the brake system for an arbitrary
velocity, .

8@) = n f Ve ™ 4, (3.32)
A !

The integration of this equation for a particular variation in velocity presents no difficulty. For a
linear decrease in velocity over a stopping time z,

Vi) =W (1 - ri) , (333

5

4 See a text on differential equations.
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Figure 3.7 Unsteady brake temperature,

where Vj is the initial value of the velocity. In terms of this velocity, Eq. (3.32) may be written as

H * "
8{t) = RV()f (1 - —) oMU gk
Q ts

The integration of the first term of the integrand directly and the second term by parts, or the use
of a text on integral tables, or the selection of appropriate functions for the nonhomogeneous
part yields the unsteady temperature of the brake system for a linearly decreasing velocity,

0w [(1 _emy L [i —{1- e—rfr)“, (3.34)

ntVy L]t

where T = m™! and the terms in brackets show the effect of the decrease in velocity. Equa-
tion (3.34) for various t/1,; is plotted in Fig. 3.7. Note that the brake velocity becomes zero at
t = ;. Afterwards the brake system cools down. This is a new problem with V = 0, and A4, &2
are different (usually smaller) from the original heat transfer coefficients.

&
Exampre 3.4 & |

Reconsider the illustrative example involving®a small metal ball to be dropped into a constant-
temperature bath. Let the bath volume bé small now and its temperature no longer remain
constant during the cooling of the ball. Also, for simplicity, let the bath be insulated. We wish to
determine the unsteady temperature of the ball and that of the bath,

Assume that the Biot number for the ball is small and that the bath is slowly stirred.
Consequently, both the ball and bath temperatures are instantanecusly uniform. For the lumped
ball and the lumped bath, the first law of thermodynamics combined with Newton’s law yields
the governing equations,

4T

— = —my(fy — To), (3.35)
dt



Chap.3 Unsteady/steady, Multidimensional Conduyction

dn
A% Ty — T, 336
o ma(Ty — T2) (3.36)

subject to
T =T, B0 = Tw. (3.37)

Here subscripts 1 and 2 refer respectively to the ball and bath, m; = hA/pictVy and m2 =

hA/meVa.
In terms of operator D = d/dt, Eqs. (3.35) and (3.36) may be rearranged as

(D+m)h —mh =0 (3.38)
—myTy + (D +m)y = 0. (339)
The solution of this set, either by the theory of determinants,
[(D-’rfm) —m;y 'J [7'1] -0
-my (D + ma) n ’
or, by the usual method of elimination [solving, for example, Ty from Eq. (3.39) in terms of T3
and inserting the result into Eq. (3.38)], yields
[DZ + (m1 + M2)D} Tia =0

or
d*T; ar;
d;’z + (my + ma) dlr'z = 0. (3.40)
The solution of Eq. (3.40) is
Ty = Ap + Be™", (3.41)
T, = Az + Bpe 7, (3.42)

where © = (m; +mz)~%. Introducing these equations into Ea. (3.35) or (3.36), say into Eq. (335},
and letting n = ma/m, results in the identity

A+ MBe™ = (A — Ag) + (B — Be™
which can only be satisfied at each instant in time whenever
A —-Ay =0, (1+mB=bB—5
or
Ay = Ay, By = —nbBy
Introducing these into Eq. (3.42), we have
Ty, = Ay — Bt (3.43)

Equations (3.41) and (3.43), in view of the initial conditions, Eq. (3.37), yield
Ty = A1 + B1,

Tm = A]_ - ?]'Bp
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Figure 3.8 Ball and bath temperatures versus time.

Solving this algebraic set for A; and By, we get

Too + 1T} T, — T
g =TT g T
1479 I+7

where, for convenience, A; may be arranged by the addition of £7T, /(1 + 1) as

T + n7i T Ty — T,
770:1:77 _Toc+7?0 o0

A = = .
' 147 147 141

Inserting A; and B into Eqs. (3.41) and (3.43) gives, after some rearrangement, the unsteady
lumped temperature of the ball and that of the bath,

91(1‘) i -/t
—— — 3.44
% p n(n + 7' (344)
and
) _ _m (1 — etly). (3.45)
o i+n

where 813 = T} 3 — Ty and 8y = Ty — T The steady temperature of the system is

8

ar_ " (3.46)

90 1+ n
Clearly, as 7 — 0, 62(#) — 0 (corresponding to a constant bath temperature of T ), and
Eq. (3.44) is reduced to Eq, (3.7). Equations (3.44) and (3.45) versus ¢ /¢ for some values of
are plotted in Fig. 3.8.

L4
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Exampe 3.5 &

Reconsider Ex. 2.14. Let the uniform electrical power per unit volume »* be suddenly generated
within the pipe walls, Assume no evaporation in the water, and neglect the radial distribution of
the wall temperature and the axjal conduction both in the pipe walls and in the water. We wish
to determine the unsteady wall and bulk water temperatures.

Consider a radially lumped and axially differential system and control volume for the pipe
walls and the water flow, respectively (Fig. 3.9). The first law of thermodynamics applied to the
system and control volume yields, after the use of Newton’s law,

aTP H

Pocphp—t = —hP(Ty = T) + u"4,. (3.47)
aT al

pCAY — + V— ) = +hP(T, — T). (3.48)
ar ax

where the subscript p refers to the pipe walls, A is the cross-sectional area, P the inner perimeter
of the pipe walls and V' the water velocity. Introducing
hP hP w" A,

m=—

. omy = , n= :
pcA Ppcpip Ppcpip

Eqgs. (3.47) and (3.48) may be rearranged as

aT, :
? -+ m,,(Tp e T) = n, (3.49)
ar ar
v+ mT-T) =0 (3.50)
ot ax

Cot e i

RN

dx

Figure 3.9 Pipe system and fluid
control volume.
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subject to
L0 =70 =70, =T. {(3.51)

The Comglete solution of these (coupled, partial differential) equations is beyond the scope of
this text.” Here we seek out a simple intuitive solution.
For example, consider the time interval

x
0=tr=¢t" = —

For ¢t < t*, or before the arrival of the inlet water to (any) location x, the physics of each location
is independent of x. That is, 7 /8x = 0, and Eq. (3.50) reduces to

»

8T
¢

<

The solution of Egs. (3.49) and (3.52) subject to Eq. (3.51) can be found in 2 manner similar to
that of Egs. (3.35) and (3.36). The details of this solution are left to the reader. The result is

Tx, 1y —T; t
e % L ga-e, (3.53)
n/m(l +n) T
Tix,t) —T; t
L“‘z = — — (1 — e, (3.54)
n/m(l + n) T

where n=m,/m and v = (m + mp}‘l The wall and fluid temperatures versus time for various

n are plotted in Fig. 3.10. As n — 0 (that is, negligible heat transfer to the fluid), Eqgs. (3. 53)
and {3.54) are reduced to

Tx.t) — T H

- _ ; (3.55)
T@O=0 _t (39
n/im T ‘

which are valid only for small values of time.
For water (¢ = 1,000 kg/m?, ¢, = 4,200 J’kg-K) flowing steadily with velodity V = 1 m/s
in a steel pipe of 1 in. diameter (D; = 1.049 in. = 2.66 cm, Dy = 1,315 in. = 3.34 cm),

P=nD =x x 266 = 836cm,

A

i

nD¥4 = 7w x (2.66)2/4 = 5.56 cm®,

A, = n(D} — DD/4 = m x (3.34% ~ 2.66%)/4 = 3.2cm?,

3 See pp. 360-363 of Conduction Heat Transfer by Arpac [1] for this solution,
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Figare 3.10 Unsteady temperatures in electrically
heated flow in pipe.
and, assuming® = 10,000 W/m? K, we get
hP 10,000 W/m?K x 836 x 107 m & 0361
—_ e = = U, 5
pcA 1,000 kg/m® x 4,200 3/kgK x 556 x 107 m®
and
hP 10,000 W/m2-K x 8.36 x 1077 m - N
mp = = 3 — 3 = 0.65s
ppC A, 8,000 kg/m® x 500 F/kg-K x 3.2 x 107" m
n = mp/m = 0.65/0.36 = 1.81 =2
and

T = (m+mp)" = (036 + 0657 = 1s.

In Fig. 3.10, the unsteady temperature of the pi}:;e walls and that of the water flow are respectively
given by the solid line for # = 2 and the broken line, For any axial location, these temperatures
are valid up to time ¢t = x/V, or t/7 =x/Vr,whichyieldsfor V=1m/sand r =15,

Before proceeding to unsteady distributed problems, we next consider a class of
unsteady lumped problems periodically depending on time. These problems (lumped

= X.

|-

or distributed) find many practical applications.

6 See Table 1.2,
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PERIODIC PROBLEMS &

In this chapter we'have already classified unsteady problems with respect to their depen-
dence on space (as lumped or distributed) and have so far studied the lumped problerms.
Now we may also classify these problems with respect to their dependence on time (as
transient or periodic). Consequently

. lumped, Bi < 0.1,
spacewise {distributed, Bi > 0.,
An unsteady problem may be
. . { transient,
timewise . g
periodic,

where each transient or periodic problem involves a starting, a steady, and an ending
time interval as shown in Fig. 3.11. In the preceding section we demonstrated the
transient lumped case in terms of some examples. Here we illustrate the periodic case in
terms of a lumped example, Periodic disturbances need not be harmonic. The linearity
of conduction problems allows any periodic disturbance to be expressed in terms of its
harmonics and reduces these problems to ones having harmonic disturbances.

Starting Steady Ending
transient transient

(2}

KT T |
N

~

Starting Steady Ending
periodic periodic periodic
(b)

Figure 3.11 (2) Transient and (b) periodic variation.



Chap.3  Unsteady/steady, Multidimensional Conduction

ExampLe 3.6
Reconsider Ex. 3.2. Let the rate of electrical energy per unit volume of the wire,
#"(@) = uy (1 + coswt),

be generated from the initial condition of the wire, T(0) = T.. We wish to determine the
temperature fluctuations in the wire,

The solution of the problem may be conveniently wntten as the superp051t10n of two
problems, the first one being suddenly subjected to uniform “o and the second one to “n COSe!.
The first problem is identical to Ex. 3.2. Its solution is given then by Eq. (3.24}. The formulation of
the second problem, obtained from Eqgs. (3.20) and (3.21) intermsof § = T — T, m = hA/pcV,
andn = u;'/pc, is

dé
o + mf = ncoswt (3.57)

subject to
90y = 0. (3.58)

Since Eq. (3.57) is a special form of Eq. (3.27), its solution may be directly written by letting
V(t*) = coswt*. Thus

: t
8(t) = ne™™ [ €™ cos wr*dr*. (3.59)
0
For the integral of this equation, we usually refer to a text on integral tables (or employ integration
by parts twice). Here we follow a novel third approach, which will prove convenient later.
Consider a complementary problem with oscillation u™(r) = “0 sin wt. Let the tempera-

ture of this problem be §%(r). An inspection of the solution procedure for the original problem
readily reveals the solution of the complementary problem,

s
§*(r) = ne~™ f ™" sinweds’. (3.60)
0

Multiplying this equation by the imaginary unit { of complex variables, adding the result to
Eq. (3.59), and recalling Euler’s formula

? = cos B + ising,
we get the complex temperatare v,

i
W) = 6 +i8* = ne™ f e gy 3.61)
0

which may be readily integrated to give

P = (e — &™), (3.62)

m+iw
Recalling the refation between the cartesian and polar forms of a complex number,

m+iw = ye#, (3.63)

7 Recall the use of the same concept in connection with a steady problem in Ex. 2.5.
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Imaginary
axis

m+ fw = yelB

L]

Real axis

¥
B
e

Figure 3.12 Cartesian and polar forms of a
complex number.

where, according to Fig. 3.12,
2
y = m and tanf = —,
m
Equation (3.62) may be conveniently rearranged in terms of Eq. (3.63) as
W) = e _ gmgmif] (3.64)
14
The real part of this equation is the starting periodic solution of the original problem,
n
8(t) = — [cos(wt — B) — ™™ cos 8],
'
or, explicitly,®
() = %(m coswt + wsinwt — me™™). (3.65)
m° 4+ w
(The imaginary part of Eq. 3.64 is the starting periodic solution of the complementary problem.}
As t -» 00, the last term in parentheses approaches zero, and Eq. (3.65) reduces to the steady

periodic solution,

e{r) = f-cos(w: -5
4

or, explicitly,

n
8(t) = ———=(mcoswt + wsinwr). 3.66
©) = ——— (3.66)

® The total solution is obtaized by the superposition of Eqs. (3.24) and (3.65).
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For distributed problems, the complete (starting or ending) periodic solution is difficult to
obtain; in practical situations it may not even be needed. For example, stresses corresponding
to the steady part of periodic temperatures are maximum in the cylinder walls of an engine.
Therefore, a simple procedure which yields only the steady part of a periodic solution is quite
important. This procedure may conveniently be described here in terms of the foregoing example.

Reconsider the governing equation of Ex. 3.6,

d6

— 4+ mf = ncoswt. (3.57)
dt

Assume the governing equation for the complementary problem to be

de* .
— + mf* = nsinewt. (3.67)
dt '

(Recall the only difference between the original and complementary problems: cosine oscillations
of the former are replaced by sine oscillations in the latter or vice versa). Multiplying Eq. (3.67) by
the imaginary unit { and adding the result to Eq. (3.57) yields, in terms of the complex temperature
=06+t

dr .

L+ my = ne'. 3.68

” ¥ (3.68)
For linear problems, the input 2nd response have the same harmonic variation. A steady periodic

solution must then have the form

() = ¢, (3.69)

where ¢ is a parameter to be determined (for distributed problems ¢ is a function of space). This
solution, being only valid as + — oo, need not satisfy the initial condition stated by Eqg. (3.58).
Inserting Eq. (3.69) into Eq. (3.68), recalling Eq. (3.63), and rearranging give

n

§ = =

n
m+iw ¥

e

or, in view of Eq. (3.69),
Yy = e, (3.70)
i

which is the steady periodic part of Eq. (3.64). The real part of Eq. (3.70), being Eqg. (3.66}, or
Eq. (3.65) for t — oc, is the steady periodic solution of the original problem. The imaginary part
of Eg. (3.70) is the steady periodic solution of the complementary problem. <

Having completed our discussion of unsteady lumped problems, we proceed now
to unsteady distributed problems. :

DISTRIBUTED PROBLEMS (Bi > 0.1). DIFFERENTIAL FORMULATION

In Chapter 2 we studied steady, one-dimensional conduction. In many realistic prob-
lems, however, conduction is two or even three dimensional. Examples are composite
walls involving parallel paths (Fig. 2.6), extended surfaces with a transversally large
Biot number, corners of a room (Fig. 3.13), etc. Accordingly, in this section we proceed
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One dimensional

e

Two dimensional L _\ —
L

Figure 3.13 Two-dimensional corner.

to a study of unsteady multidimensional conduction. For convenience, multidimen-
sional concepts are illustrated first in terms of two-dimensional problems and later are
extended to three-dimensional problems.

Consider a two-dimensional geometry, say, a long cylinder of arbitrary cross sec-
tion [Fig. 3.14(a)]. Let the rate of internal energy generation per unit volume be ™,
Neglect the axial temperature variation. We wish to formulate the unsteady, two-
dimensional conduction for the cross section of this cylinder.

The first law of thermodynamics, Eq. (1.16), applied to the two-dimensional dif-
ferential system shown in Fig. 3.14(a), and interpreted in terms of Fig. 3.14(b), gives
{per unit length of the cylinder)

3 3 3
;rm'xafya—i;£ = +qxdy — (qx + ffdx) dy + gydx — (qy + ;ldy) dx + u"dxdy,
x ' y

or, after relating u to T in a manner similar to the development in Section 3.1 for the
rate of internal energy of a lumped system, and dividing each term by dxdy,

aT dgy gy

It ol u'™. 3.71
e ax oy (3:71)
The two-dimensional Fourier’s law of conduction,
ol oT
gy = -—ka, gy = —kg)—’-, (3.72)

inserted into Eq. (3.71) vields, after the third dimension is included by inspection, the
governing equation for unsteady, three-dimensional conduction in cartesian coordi-

nates,
oT i) oT a aT a oT
—_ = —lbk— )+ —bk— ]+ —{k— | + " 373
'Ocar ax( Bx) By( ay) Bz( az) 373)
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For 2 uniform thermal conductivity, recalling the definition of thermal diffusivity « =

k/pc, Bq. (3.73) may be reduced to

18T a*T &1 9'r "

— = — 5t 5
o 3t ax>  9yr 8 k
or, in terms of the Laplacian operator V2,
1 aT N H
—— = VT + -,
o dt + k

where

Figure 3.14 First law for a
two-dimensional system. (b

(3.74)

(3.75)

(3.76)

Lo et
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System
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dé -]

dar s

(2) (b)
Figure 3.15 Cylindrical and spherical systems.

Many problems of conduction, however, may be more conveniently handled in terms
of a cylindrical or spherical coordinate system. The Laplacian for a three-dimensional
cylinder [Fig. 3.15(a)] is

val2 0y, 10 © (377)
= Far\ar 2 agr 872 )

and for a three-dimensional sphere [Fig. 3.15(b)] is

V= 2 (Pe) + e (o) + o (378)
= —— | r-— — —_— - .
P2or \ ar r2 sin ¢ ¢ o 2 sin? ¢ 9y

For an application of the foregoing general considerations, reconsider the flat plate
(key problem) of Section 2.3. Let the uniform internal energy u™ be suddenly generated
and thereafter held constant in the plate which has a uniform initial temperature Te.

The governing equation for a variable conductivity, obtained from the one-dim-
ensional form of Eq. (3.73), is

ar 3 oT
—_— = — | k— 4 3.79
pe or ox ( ax) +u (3.79)

which is the unsteady form of Eq. (2.47). The governing equation for a uniform con-
ductivity, obtained from the one-dimensional form of Eq. (3.74), is

13T  8*T u”
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which is the unsteady form of Eq. (2.48). The initial condition and boundary conditions
to be satisfied by Eq. (3.79) or Eq. (3.80) are

T(x,0) = Tonr (3.81)
8TOD _ (3.82)
0x
and®
—kaT(i‘ D R[T( 1) — Too)- (3.83)

The solution of this formulation, including the foregoing partial differential equation,
is beyond the scope of this book.

Having learned the general formulation of unsteady, three-dimensional problems
and its illustration in terms of the foregoing one-dimensional example, we proceed now
to a simplified formulation of these problems.

Consider a flat plate of thickness & (Fig. 3.16). Let the temperature distribution
in the plate be time dependent. The upward and downward heat transfer coefficients
respectively are hy and hq, and the Riot numbers based on these coefficients allow a
transversally lumped formulation.

H 2-D thin system

Figure 3.16 First law for
a thin plate. (b

9 Equations (3.82) and (3.83) are the unsteady forms of Egs. (2.49) and {2.50), respectively.
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The first law applied to the transversally lumped, otherwise differential system
shown in Fig. 3.16(a), and interpreted in terms of Fig, 3.16(b), yields

" bu dg; g,

b = =Bt §L gy — )
pi— P 3y gc1 — gc2 + 1’8 (384)

Relating u to T, employing two-dimensional Fourier’s Jaw and Newton’s law for upward
and downward convection, Eq. (3.84) may be rearranged to give

13T  #°T 9T B+ ks u”
= — 4+ — — | ———
o ot x> ay2

o T~ T) + - (3.85)

For an application of this formulation, reconsider Ex. 2.9. Let the fin have a
uniform initial temperature T, and let the base temperature be suddenly raised to
temperature Ip and held constant thereafter.

‘We have from Eq. (3.85), after eliminating the energy generation and the y de-
pendence of temperature, and introducing m? = (hy + hy)/ k8,

19T 3T 2T - T 386
o Bt - axz m o3 ( . )
subject to the initial condition
T(x,0) = T, (3.87)
and boundary conditions
TO,1) = T, lim T(x, 1) = To. (3.88)
X0

As we learned in this chapter, the formulation of unsteady distributed problems
leads to partial differential equations. The solution of these equations is much more
involved than that of ordinary differential equations. Among the techniques available,
the analytical and computational methods are most frequently referred to. Exact ana-
Iytical methods such as separation of variables and transform calculus are beyond the
scope of the text. However, the method of complex temperature and the use of charts
based on exact analytical solutions, being useful for some practical problems, are re-
spectively discussed in Sections 3.4 and 3.6. Among approximate analytical methods,
the integral method, already introduced in Sections 2.4 and 3.1, is further discussed in
Section 3.5. The analog solution technique is also briefly treated in Section 3.7.

3.4 STEADY PERIODIC SOLUTION &

In Section 3.2 we focused on the unsteady solution and its steady part for periodic
lumped problems. Welearned then the practical importance of steady periodicsclutions
and, in terms of the method of complex temperature, an easy way of obtaining only
the steady part of periodic solutions. In this section we apply the method of complex
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temperature to the steady periodic solution of distributed problems.*?Since the method
equally applies to both lumped and distributed problems, we proceed directly to an
illustrative example for distributed problerns.

Exampie 3.7
Consider a semi-infinite solid whose surface temperature is oscillating as & cos w relative to an

ambient at temperature Ty,. We wish to determine the steady periodic temperature of this solid.

Since the solution of interest is to be valid only for large values of time, there is no need
for an initial condition. Then, in terms of 8 = T — T, the formulations of the original and
complementary problems are, respectively,

198 8% 136 3%

e Z = , 3.89

o 0t 3x? o ot 8x* (3.89)
8(0,t) = Gycoswt, 6*(0,1) = Gysinwt (3.90)
gloo,t) = 0, (oo, 1) = 0. (3.91)

Now, the complementary problem multiphied by { and added to the original problem yields the
problem satisfied by the complex temperature, ¥ = & + i8*,

2
¥r(0, 1) = Boe™, (3.93)
¥{co, 1) = 0. (3.94)
The steady periodic solution,

Yix, 1) = d(x)e™, (3.95)

with ¢ now depending on x, introduced into Eqs. (3.92)-(3.94), gives

& fes

e (;) =0, (3.96)
$(0) = b, (3.97)
¢loo) = 0. (3.98)

Tke solution of Eq. (3.96) subject to Egs. {3.97) and (3.98) is

cavz Tl
¢ iew
—=exp|—~|—]| =x{. (3.99)
90 o

10 The unsteady solution of these problems (see, for example, Ex. 7.28 of Reference 1) is beyond the
scope of this text.

TP |
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Finally, inserting Eq. (3.99) into Eq. (3.95), and noting that i*/? = (1+1)/2/%, we get the complex
temperature,

&) el (2 " i AN 3.100
o = ) Tl \m) | O

and from its real part, the steady periodic temperature of the original problem,

8(x.1) (w)”z } [ (w)m jl
= exp|—|— xicos|wt — | — x|. (3.101)
6y 2o 2o

This equation is perspectively sketched in Fig. 3.17. Ata given depth x, the temperature oscillates
with amplitude exp [- (w/20)V2 x] relative to the amplitude of the disturbance and has the time
lag x/(2aw)¥? relative to the disturbance.

The penetration depth of this disturbance, obtained in terms of an approximate profile

(x/87,1s
& x 2 o0 w vz
j(; (3) dx.=[0 exp l:— (Z) xi| ax

!

Figure 3.17 Amplitude and phase of temperature
oscillations.
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or,

)

12

24
4 |- (3.102)
[

For a reciprocating engine (with 2 = 100 to 4,000 rpm) the approximate range of w in view of
w = 27n/60 ~ n/10is 10 to 400 s~1. Assuming & = 20 % 10~¢ for a cast iron cylinder block, we
have § = 5-1 mm. %

INTEGRAL FORMULATION. APPROXIMATE SOLUTION &

The integral formulation is a convenient tool for obtaining approximate solutions and,
consequently, is suitable to problems having complicated exact solutions and is indis-
pensable for complex problems having no exact solution. This formulation is obtained
by integrating the differential form of the general laws over the entire geometry of a
given problem. Next, an approximate profile is constructed for the dependent variable,
say the temperature, involving a product of one-dimensional functions, each depending
on one of the independent variables. Leaving one of these functions unknown and to
be determined by the integral formulation, the other functions are written in terms of
polynomials satisfying the conditions (initial or boundary) of problem. So far, we have
employed the integral formulation in connection with the penetration depth (of heat) in
a steady fin problem (Section 2.4.1) and the cooling time of a lunped ball (Section 3.1).
Here, we extend the use of this formulation to unsteady distributed problems in terms
of a couple of illustrative examples.

ExampLe 3.8

Constder a flat plate of thickness 2£. For a suddenly generated internal energy u” we wish to
obtain the integral formulation and its solution by approximate profiles.

Noting that the problem is symmetric relative to the midplane {equivalent to an insulated
surface) and following the five steps of formulation, we apply the first law of thermodynamics to
the system shown in Fig. 3.18 and, assuming the energy is generated electrically, get

du .

— = ~guA + Ve

dt
Evaluating 407/dt and U, by integrating the corresponding differential terms (Fig. 3.18), we
obtain

d rt ¢
———[ pcTdx = —Gume +[ w” (x)dx, (3.103)
dr Jo o
where from Fourier’s law,
aT
Gume = —Kk (—-—) . (3.104)
dx x=8

Inserting Eq. (3.104) into Eq. (3.103), we obtain the governing integral equation,

d ot aT ¢
— | peTdx = k (-3"—) +[ u"(x)dx. (3.105)
x x=£

dt Jo 0
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!
1 1... |/ W) dx
0

!
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i Ochcix

Figure 3.18 First law for an integral system.

The initial and boundary conditions are identical to those of the differential formulation. Hence
Eq. (3.105), subject to Eqgs. (3.81)-(3.83), completes the integral formulation of the problem.

An approach for an approximate solution is to assume the plate temperature to be 2 product
of one-dimensional functions,

T, 1) — Too = X(x)T(0). (3.106)

If an unsteady temperature distribution resembles its ultimate steady limit, we may select X (x)
to be the steady solution of the problem. Thus, in view of Eq. (2.59), an approximate unsteady -
solution may be written as

' A\ 2
T(x,2) — T = 1—-1=} += ). 3.107
(., 1) — Teo % ( g) 3 T(?) (3.107)
Inserting Eq. (3.107) into Eq. (3.105), and integrating the latter, we obtain the differential equation
& + (B { =0 (3.108)
—_— T — =0, .
d #\B+3
subject to the initial condition
(0) = 0. (3.109)

‘The solution of Eq. (3.108), fixst satisfied by Eq. (3.109), next introduced into Eq. (3.107), gives
the approximate solution

2
T(x,t) - T 1 x 2 3 B
= 1=(5) 4= | |1 —exp{ - ——1]]. 3.110
Wk 2 (z) B [ Xp( .eZB+3)] G110

[What happens to Eq. (3.110) as B — 00? Recall Fig. 2.15.] <
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ExampLe 3.9

Reconsider a semi-infinite plate. Let the initial temperature of the plate be uniform, say Tp, and
the surface temperature be suddenly changed to T, We wish to develop the integral formulation
of this problem and its solution by approximate profiles.

This problem can be best described in terms of the concept of penetration depth of heat,
&(1), shown in Fig. 3.19. The first law of thermodynamics applied to the comtrol volume of
thickness 8 yields

au ds
—m = pcA—Ty ~ g A. (3.111)
dt dr

Note that the moving penetration depth carries an enthalpy flow into the expanding control
volume. The coordinate axis measured from the moving penetration depth proves convenient in

the construction of approximate profites. Evaluating the internal energy of the control volume
by integrating the differential internal energy, Eq. (3.111) becomes

d oo ds
Efo peTdx = .OCTOZ; = Gu=s

or, alternatively,

d (1)
:i_tf pc(T — Tp)dx = —gxm=s- (3.112)
0

Fourier’s law,

1 Integral control
volume

Tw fferential

&(5)

Figure 3.19 Penetration depth.
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inserted into Eq. (3.112) yields the governing integral equation,

d fstf) aT
' —_ (T — Tp)dx = k| — . 3.113
=L P ( b ) (3.113)
The initial and boundary conditions are
ar,:
Tx,0) =Ty TE.1) = To ; ) =0 (3.114)
x

The steady solution of the problem (corresponding to z — o0) is T = Ty, Any scaling of
the steady solution does not appear to resemble the unsteady temperature distribution. This fact
suggests a second approach for the construction of approximate profiles, one that requires the
selection of polynomials satisfying the boundary conditions. For example, a parabola satisfying
the boundary conditions of Eq. (3.114) gives

2
TG, 8 — Ty = (Too ~ Th) (%) . (3.115)

Introducing Eq. (3.115) into Eq. (3.113), and integrating the latter with the assumption of constant
properties, we obtain

1 dé 2k

Zpe— = 2-

37 T %
or,

dé* = 12udt (3.116)
subject to

&) = 0. (3.117)

The solution of Eq. (3.116) which satisfies Eq. (3.117) is the unsteady penetration depth,

& = +/12ur. (3.118)

Now, the time required for heat to penetrate to & distance £ in a solid can be readily evaluated
from Eq. (3.118) as'!
o = £2/12¢ (3.119)

The penetration time of heat to £ = 4 cm in steel and copper are shown in Table 3.3 (based
on the numerical values used in Section 3.1). For convenience, the numbers in the last column
are somewhat rounded. Copper conducts heat much better than steel, thus has a much shorter
penetration time. -

Table 3.3 Penetration time for steel and copper

k 0 c o tg

Solid [W/m-K] [kg/m?] T/kg-K] [m?/s] 5]
Steel 10 8,000 500 2.5 %1075 50
Copper 400 9,000 400 1.1 x 104 1

Urpe type of boundary condition affects the numerical constant of Eq. (3.119).
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Inserting Eq. (3.118) into Eq. (3.116), we have the approximate unsteady temperature

Teo-h _1(2 (3.120)
Tw — T 12 \at ]’

&

CHARTED EXACT SOLUTIONS

Tn the preceding section we studied the formulation of unsteady distributed problems
and indicated the somewhat involved nature of their solutions. This section is devoted
to the use of charts obtained from these solutions without actually working out the
solutions.

3.6.1 Flat Plate (Key Problem)

Consider an infinitely long fiat plate of thickness 24, initially having a uniform temper-
ature, say To. From this condition, the plate is suddenly tmmersed in a fluid at constant
temperature To. The plate exchanges heat with the fluid with a heat transfer coefficient
h.

The governing equation, obtained from the one-dimensional form of Eq. (3.80)
in the absence of any energy generation, is

2
1317 87T (3121
o at ax?

subject to initial condition,
Tx,0=" (3.122)

and the boundary conditions relative to the x coordinate measured from the middle
plane,
ar©,1) aT (L, 1)

0, -k = h[T{, 1) — Tol. (3.123)
ax ax

The exact analytical solution of this problem is (see, for example, Ex. 5.3 of Reference 1)

oo .
T-Te 23 ( sin ) 9P cos (3.124)
Ty — T =7 \Mn + sint f4, COS Ly

where ¢ = x/f, Fo = «t/£ (Fourier number), u, are the 100ts of fi sin jt, =
Bicos iy, and Bi = hi/k. As can be readily seen from Eg. (3.124), or from the
nondimensionalization of the foregoing formulation, the dimensionless temperature
depends on the dimensionless distance, £, dimensionless time, Fo, and the ratio of
internal resistance to external resistance, (£/k)/(1/h) = he/k = B,

T_Too

m = f(&',Fo,Bt)

I |
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In Fig. 3.20 this temperature is plotted against Fo for the middle plane (¢ = 0) and
surface (§ = 1) of the plate, with 1/Bi as a parameter.'?

A useful quantity may be the heat transfer @ between half the plate and the
ambient over a time interval (0, ). This beat transfer relative to the initial internal
energy of the plate, Qo = pcAL(Ty — T), A being one surface area, is ‘

dt

xz={

;|
——kAf —(T — Txo)
Dax

o PeAL(Ty — Too)

FLAT PLATE

1.0 I
0.8

0.6

i
&
(=]
T
I

3
|
g
o
L
T

02

T £=000 Bi \\
0.t | | | ! |

0.0 0.2 0.4 0.6 [12:3 1.0 1.2 1.4

1.0
0.8

0.6

T-T, 04
-
TomTe 4

02

Figare 3.20 Middle plane and surface temperatures,

12 Figures 3.20, 3.22, 3.24, 3.26, 3.27 from Boelter et al. [5] (see Appendix D for more detailed charts
from Heisler [8])
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FLAT PLATE

1.0 : , : i

08 |

0.6}~ 0002 f001 f 005 f 02 1 R
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S Bi=0.001/ fooosfooz fol ] 05
s
0.4 / -
0z ‘ -
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(B)2Fo = (WkYlout

Figure 3.21 Heat transfer over terval {0, 7).

or, in termns of Eq. (3.124),

9] ad sin? £, 2
= =2 - 1 — e #aFo) . 3.125
Qo ; o, (g, =+ I fiy, COS [4n) ( ) G12)

In Fig. 321 this equation is plotted against (Bi)*Fo for some values of Bi.® Equa-
tion (3.125) could also be ploited as a function of Bi and Fo. The difference in these
arrangements is mainly due to the fact that Figs. 3.20 and 3.21 are taken from two sepa-
rate sources. Note, however, that both parameters in the (Bi, Fo) combination depend
on £, while only one parameter in the [Bi, (Bi)?Fo] combination depends on £. The
following examples jllustrate the use of these charts.

ExampLs 3,10

Asteel plate of thickness 2£ = § cm, heated toa uniforminitial temperature Ty = 550°Cforaheat
treatment process, is plunged into a water bath at constant temperature Too = 50°C. The density,
specific heat, and thermal conductivity of the plate are p = 8 x 103 kg/m?, ¢, = 420 J/kg:K, and
k = 17 W/m-K, respectively. The heat transfer coefficient is & = 340 W/m* K.

We wish to determine the middle plane and surface temperatures of the plate and the heat
loss from the plate after two minutes.

The needed numerical values for the dimensionless numbers are
hi 340 x (0.05/2)

Bi = — = =1/2, — =2
k 17 Bi
k 17
e o 506 x105md/s 5.0 x 107 w?/5 ),
pc, 8 x 107 x 420

13 Figures 3.21,3.23,3.25 from H. Grober, Erk, and Grigut [6]
14 The FORTRAN program EX3-10.F is listed in the appendix of this chapter.
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poo @ _S0XWx10 I ? L os
0= = = (.96 = 1, =1= = U.2.
Z (0.05/2)? RS Y e
I
Then, from the chart of Fig. 3.20 for £ =0,
T-T.
I g,
To — Too

which gives
Tnia = (550 — 50) x 0.72 4+ 50 = 410°C.

From the chart of the same figure for £ = 1,

T -T.
~ "= 5,
TD - Too
which gives
Tour = (550 — 50} % 0.56 + 50 = 330°C.

By using the computer program provided, the interested reader may compute Bi and Fo for a
parametric study of Thg and Ty: of some steel and iron plates plunged into different liquids. |
Also, from Fig. 3.21, for Bi = 1/2 and Bi?Fo = 0.25,

-g- = 0.30.
0

Then,

0o ; 0.05 )
= = 00ptlTs = Tee) = 8% 10° x 420 3 { ~= | x 500 = 42,000 kJ/mn?,

= 0.3 x 42,000 = 12,600 kJ/m?> lost from each surface.

= ho

%

One-dimensional charts find an important application in the solution of multi-
dimensional problems. It can be shown (see, for example, Section 5.2 of Ref. 1) that
the dimensionless unsteady temperature of an infinitely long rod of rectangular cross
section 2¢ x 2L may be expressed as the product of the dimensionless temperature of
an infinite flat plate of thickness 2£ times the dimensionless temperature of an infinite
flat plate of thickness 2L, ’

T —-T T -T T~ T
(_w) _ (_ﬁ) . (_°°) . (3126)
To — T 2£x2L.10d To — Tno 2¢,plate I — T 2L,plate
Also, the dimensionless unsteady temperature of a rod of finite height 2H and of rect-
angular cross section 2£ x 2L may be written as

(T—Tm) M(T-——Tm) X(T—Tm) X(T—TOQ)
Ty — T 2£x2L x2H, rod o~ T 2¢,plate T~ Teo 2L.plate I - T 2H,plate

(3.127)
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ExameLe 3.11

Reconsider the preceding example for a long rod with square cross section (5 cm x 5em).

For the axis of the rod,

T -T
knd = 0.72 x 0.72 = 0.52,
I —Tn §=0,t=0

which gives
Turis = (350 — 50) x 0.52 4+ 50 = 310°C,

For the middle of each surface,

T —Tw
= (0,72 x 0.56 = 040,
Ib e Too Faa) F]

which gives
Tmiddie == (550 — 50) x 0.40 + 50 = 250°C.

For a comer,
T -
( °°) = 0.56 x 0.56 = 0.31,
T — T £l
which gives
Teomer = (550 — 50) x 0.31 + 50 = 205°C.
ExameLe 3.12

Reconsider Bx. 3.10 for a cube (5 cm x 5 em x 5 cm),

For the center of the cube,

T-T
( °°) =072 x 0.72 x 0.72 = 0.37,
To = Tn / g pmt gm0

which gives
Teenter = (350 = 50) x 0.37 4 50 = 235°C,

For the corner of the cube,

T-T,
( °°) = 0.56 x 0.56 x 0.56 = (.18,
To — T Feml f=lg=l

which gives
Toomer = (350 — 50y x 0.18 + 50 = 140°C.
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3.6.2 Solid Cylinder (Key Problem)

Reconsider the flat plate (key problem} now for an infinitely long cylinder of diam-
eter 2R. The exact apalytical solution of this problem (see, for example, Ex. 5. 8 of
Reference 1) may be implicitly expressed as

T - T

— % — f(o, Fo, Bi), 312
T f(p, Fo, Bi) (3.128)

where p =r/R, Fo = at/R?, and Bi = hR/k. In Fig. 3.22 this temperature is plotted
against Fo for the center (o = () and surface (p = 1) of the cylinder, with 1/Bi as a
parameter.

CYLINDER
10~ ' | 1 1 —
08 L1 X0 T —— |
N 60 e ]
4,0 ]
08 - 3.0 Q
T-T, 041 2.0 =
H-Tw 03 1.5 Q
0.2 - =
p=0.0 1.0
n L=o00 025 0:50 075 -
Bi \
0.1 | ] ! ] | ]
0.0 02 04 0.6 0.8 1.0 12 14
Fo
0-8 19‘0 !
04 60 e |
40
3.0
T-T, 04 T—
~To g4 2.0 \_
0 1.5 .
’ p=10 \
~§~;— Q25 0.50 075 1o
0.1 1 \ L |\\ ! \ I T |
0.0 02 0.4 0.6 0.8 1.0 1.2 1.4
Fo

Figure 322 Centerline and surface temperatures.
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CYLINDER

/(e

g Bi=0001f 0005 fo0z f o
A
0.4 -
02 -
0 ] 1 i
s 10t 103 102 10+ 1 10 102 10? 10

(BD2Fp = (Aot

Figure 3.23 Heat transfer over interval (0, ¢).

The heat transfer Q over a time interval (0, t) and per unit length of this cylinder
relative to the initial internal energy of the cylinder per unit length,

Qo = et R (Ty — Too),

is plotted against (Bi)?Fo in Fig. 3.23 for some values of Bi.

The one-dimensional charts for a flat plate and an infinitely long cylinder can be
used to determine the temperature of a cylinder of finite length. It can be shown that
the dimensionless unsteady temperature of a solid cylinder of height 2K and diameter
2R may be expressed as the product of the dimensionless temperature of a flat plate of
thickness 2H and the temperature of an infinitely long cylinder of diameter 2K,

(Tme) _.(T—Tw) X(T—«Tw)
To = Too / 4 x2R finite cylinder To— T 2H plate To = Teo 2R eylinder

(3.129)

ExampLe 3.13

Reconsider Ex. 3.10 for an infinitely long cylinder of diameter 2R = 5 om.

For at/R? =1 and Bi = hR/k = 0.5, from Fig. 322 for p =0,
T-T,
( °°) =~ 0.47,
TO - Too o=0

Taxis = (550 — 50) x 0.47 + 30 = 285°C,

which gives the axis temperature,
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T~T,
(—‘i‘i) = 0.37,
To — Teq o=t

which gives the surface temperature,

From Fig. 322 forp =1,

Tourtace = (350 — 30) x 0.37 + 50 = 235°C.

Compare these temperatures with those obtained in Ex. 3.10. %

ExampLe 3.14
Reconsider Ex. 3.10 for a finite solid cylinder of height 2H = 5 cm and diameter 2R = 5 cm.

We have already obtained, for a flat plate of thickness 2H = 5 cm,

T —T, y g
I = = 072 and i = 0.56
o — T £t To — T P

and for an infinitely long cylinder of diameter 2R = 5 cm,

T - T, T —T
( m) = 0,47 and ( m)
Ty — T e I~ T et

The hottest spot of this cylinder is at location (§ = 0, p = 0). Then, for this spot,

1l

0.37.

T - T,
L) = 072 x 047 = 034,
To— Too ) s g pms

which gives
Thotest = (550 — 50) x 0.34 + 50 = 220°C.

For the coldest spot of the cylinder,

T-T.
= = 0.56 x 0.37 = 0.21,
To—Too ) oy ps

which gives
Teottese = (350 — 50) x 0.21 4 50 = 155°C.

3.6.3 Solid Sphere (Key Problem)

Reconsider the flat plate (key problem) now for solid sphere of diameter 2R. The
exact analytical solution of this problem (see, for example, Ex. 5.10 of Reference 1) is
parametrically identical to Eq. {(3.128). In Fig. 3.24 the unsteady temperature of the
sphere is plotted against Fe for the center (o = 0) and surface (p = 1) of the sphere,
with Bi as parameter, where Fo = at/R? and Bi = hR/k.
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Figore 3.24 Centerline and surface temperatures.

The heat transfer Q from the sphere over a time interval (0, 1), relative to the

initial internal energy of the sphere,

4 o
Qo = PCER’R (To — Teo),

Fo

is plotted against (Bi)2Fo in Fig. 3.25 for some values of Bi.

ExameLe 3.15

Reconsider Ex. 3.10 for a solid sphere of diameter 2R == 5 cm.

From Fig. 324 for p =0,

(

T —Te

TO _‘Too

) = 0.30,
p=l)
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Figure 3.25 Heat transfer over interval (0, r).

which gives

Teenter = (550 — 50) x 0.30 + 50 = 200°C,

T -1
( °°) = 0.23,
To—Tw/,.,

which gives the surface temperature,

From Fig. 3.24 for p = 1,

Tourtace = (550 — 50) % 0.23 4+ 50 = 165°C.

Compare these temperatures with the hottest and coldest temperatures of the cube of Ex. 3.12
and the finite cylinder of Ex. 3.13. Justify the results with physical reasoning. ¢

The foregoing considerations for finite geometry are now extended to semi-infinite
geometry.

3.6.4 Semi-infinite Plate

Consider a semi-infinite plate at a uniform initial temperature 7. From this condition,
the ambient temperature is suddenly changed to a temperature To,. The heat transfer
coefficient is /.

The unsteady temperature of the plate corresponding to an infinite heat transfer

coefficient is
T - T,
(———"i) = erfo| ——1, (3.130)
To — T x 2+ et
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and that corresponding to a finite heat transfer coefficient is

(225 —ao(2) o 22 (2 o 2+ 2
T — T/, o\2dar) TP TR YT Ve T e |
(3.131)
where erfc is the complementary error function [see, for example, Chapter 7 of Ref-
erence 1 for an exact method of solution leading to Equations (3.130) and (3.131)].
In Fig. 3.26, Eq. (3.130) is plotted against x/(+/at). In Fig. 3.27(a),(b), Eq. (3.131) is
plotted against different values of the local Biot modulus, Bi, = hx/k, with (h/ k)t
as a parameter.

By referring to Eqgs. (3.130) and (3.131), we may write the temperature of two-
and three-dimensional corners in the form

(T—Tw) “(T——Tm) X(T—Tm)
Hh—Te £y Ty —Tx/, TomTwy

T —-T T — T T —T. T - T
To — Two Xz T — T . T — T y To — T P

Similarly, the temperature of a semi-infinite rod of diameter 2R may be obtained from

(T—Tm) (T—Too) ><(T—Tm)
To ~ T/ 3z, To — Too/ 2p To-Tw/,

where [(T — Tw)/(Ta — Teo))2r is given by Eq. (3.128), and is plotted in Figure 3.22,

(3.132)

and

(3.134)

0.2 ] I | ! ! ] | ! !
0.0 0.2 0.4 0.6 0.8 1.0 12 14 1.6 1.8 2.0

x2Var
Figure 326 Semi-infinite solid with infinite &.




167

Sec. 3.6 Charted Exact Solutions

(hk)zar
|

\ P
e
\ \\\\0
" = o =
o S o —
S.hic.h
“L-1I

18

16

14

12

10

Bi,

(@

m \Xxm&hi\ \\\\ \\.M\
S 4147V 48 VAl R S A A
q%ﬁ\wm S ANV
[ \\\\fum\\
RN/ /7o a sl v
o o P4
S AT
WA
I/ A/ /)
A~ 7
M 717 7177 717 7}
iy /s /s L S
mriry/ VA SVAY. AN
NN AIVAVAVAY
s ea N
::\mmmmw\u
Wi L
WL
3 S S 3 3 2
“r-% B
*I-z

10

1.0

0.10

0.0

Bi,
(b)

Figure 327 Semi-infinite solid with finite 2. (a) Linear Bi,, (b} logarithmic

Bi,.



168

3.7

Chap.3 Unsteady/steady, Multidimensional Conducticn

MIXED {DIFEERENTIAL-DIFFERENCE) FORMULATION. ANALOG SOLUTIONO

As we have seen in the preceding sections, the solution of unsteady conduction prob-
lems is, in general, not mathematically simple, and one must usually resort to a number
of solution methods to evaluate the unsteady temperature distribution. 'We have also
learned how to obtain solutions by using the available charts for a class of analytical
results. In Chapter 4 we will explore the use of numerical computations to evaluate
multidimensional and unsteady conduction problems. These computations require ap-
proximate difference formulations to represent time and spatiat derivatives. Actually
there exists a third and hybrid {analog)} method that allows us to evaluate the tempera-
ture distribution in a conduction problem by using a timewise differential and spacewise
difference formulation. This method utilizes electrical circuits to represent unsteady
conduction problems. The circuits are selected in such a way that the voltages (repre-
senting temperatures) obey the same differential equations as the temperature.

An analog solution of conduction problems requires a circuit capable of perform-
ing multiplication by a constant, addition, integration, and differentiation. Electric
circuits that can accomplish these operations are called passive circuits if they include
only fixed resistors and capacitors and possibly inductors and transformers. They are
called active circuits if, like electronic amplifiers, they involve additional elements draw-
ing energy from an external source. All passive circuit elements suffer from loading
errors. In general, these elements operate correctly only if the impedance at the out-
put of the circuit element is very high. Since active circuit elements such as electronic
amplifiers have input impedances often in excess of several megaohms, the coupling of
a passive circuit element with an amplifier eliminates the loading error on the element.
Of course, the use of amplifiers increases both the first cost and the operating cost of the
analog circuit. However, this expense may be well justified by the increased accuracy
of the solution. For most general-purpose analog computation utilize the high-gain DC
amplifier, which is discussed in the next section. In general, AC-based analog computa-
tions are less expensive to build and require simpler auxiliaries. The phase shifts in AC
cireuits, however, tend to make this type of computer less accurate than DC computers.

3.7.1 Active Circuit Elements. High-Gain DC Amplifiers

The most commonly employed active elements are high-gain DC amplifiers, function
generators, and function multiplier-dividers. We shall consider only amplifiers.

The design of amplifiers and the function of their components are beyond the scope
ofthe text, Interested readers may consult the references at the end of this chapter. Here
we picture the amplifier simply as a black box (Fig. 3.28) and discuss only those amplifier
characteristics conceptually important for analog computer solutions. Designating the
input and output potentials relative to the ground by ¢; and ey, respectively, we first
define the gain A of the of amplifier by the ratio!?

€0
A= ——.
&i

15 The sign of this ratio will be discussed in connection with Fig. 3.29.
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[e2 o O lo] iy
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Figure 3.28 Amplifier. (a) Schematic,
{b) symbolic.

o

The basic requirement of the amplifier is to have as high a gain as possible. The practical
range of this gain is 10*-10°. Assuming that, for the purpose of recording, the output
potential is to be kept between £100 volts, we obtain a maximum possible value of 0.01
volts for the input potential. Since this potential is usually connected to a grid which
has an extremely high impedance, the input current is very small. Hence the three basic
properties required from the amplifier as an analog component are: (1) a very high gain
A, (2) approximately zero input potential ¢;, and (3) negligibly small input current 7.
There are other important properties required from the amplifier, such as linear output
over a wide range, flat frequency response, low noise level, etc. These, however, are
means for improved accuracy, rather than basic requirements for the amplifier.

Let us now consider a circuit consisting of a high-gain DC amplifier, an input
resistor Ry, and a feedback resistor Ry (Fig. 3.29). A potential, say ¢1, is applied to the
input of the amplifier through the resistor ;. Since i ¢ = 0 according to property (3),
Kirchoff’s law applied to the input of the amplifier gives

i +ip = 0.

Then, relating currents to potentials by Ohm’s law, and noting that ¢; = 0 because of
property (2}, we obtain

€1 €
— e — =0,
Ry Ry
which may be rearranged in the form
R
e = — (E%) e (3.135)

Thus we have shown that the circuit element given by Fig. 3.29 is a multiplier. Clearly,
the same circuit can be used as a sign changer by taking the ratio Ry/R; equal to unity.

o—W
& R,

Figure 3.29 Multiplier.
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Figere 3.30 Adder.

Note that in analog computer applications the DC amplifier always includes a
feedback circuit, as exemplified by Fig, 3.29. It is for this reason that the amplifier gain
A has to be negative. If it were positive, an increase at the output potential would
increase the input potential, which, in turn, would further increase the output potential,
causing instability. The sign of amplifier gain is made negative by using an odd number
of amplification stages. This is a problem of electronics, however, and is not our concern.
Note, moreover, that this sign has nothing to do with that of Eq. (3.135).

Let us now reconsider the circuit element given by Fig. 3.29 and replace the input
resistor by three parallel resistors, as shown in Fig. 3.30. Again, Kirchoff’s law applied
to the input of the amplifier in the light of property (3), and rearranged by Ohm’s law
and property (2), gives

P e e
a,.2,.2 “@ 0,
R, R, R Ry
which yields
Ryg Ry Ry
= — | —e + =2 + —e&3 ] . 3,136
eo ( 7 R;ez 2 3) ( )

We learn from Eq. (3.136) that the circuit element of Fig. 3.30 can be used as an adder,
as clearly seen from the special case Ro/ Ry = Ro/Ry; = Ro/Rs =1,

We now return once more to the circuit element given by Fig. 3.29, this time
replacing the feedback element by a capacitor C as indicated in Fig. 3.31. Kirchoff’s
Jaw applied to the input of the amplifier and rearranged by Ohm'’s and Coulomb’s laws
then gives

e deo
—+C-— =0,
R + dt

which, by integration, may be rearranged in the form

1 3
2y = —-EE]O edt + ep(D), (3.137)
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Figure 3.31 Integrator.

where ¢;(0) is the initial condition, the potential to which the capacitor is charged at
t = 0. Equation (3.137) indicates that the circuit element of Fig. 3.31 can be employed
as an integrator.

Clearly, a DC amplifier may also be used as a differentiator. However, whenever
possible this operation should be avoided because of noise. So far, we have seen the use
of the DC amplifier as a multiplier, a sign changer, an adder, and an integrator.¢ This
background is sufficient for solving unsteady lumped problems, which are illustrated
next.

Exampre 3.16

Reconsider the lumped brake system of Ex. 3.3 for a sudden jump in unit velocity.

Letting V() = 1 in Eq. (3.27), the temperature difference 8 == T' — Ty, satisfies

da
R +mf =n, €0) =0 {(3.138)
t

We wish to build an electrical circuit such that a voltage E (representing §) obeys a similar
differential equation. A time derivative is obtained through the use of a capacitor, and a term
directly related to voltage is obtained using a resistor. The analog formulation corresponding to
Eg. (3.138) obtained applying Kirchoff’s current law to point O (zero potential) is

dE E  (~Ep)
C—+ =+
dt R Ry

=0. (3.139)

An active circuit which satisfies Eq. (3.139) at the inlet node of the DC amplifier provides the
required analog solution (Fig. 3.32). The values of Ry, R, and C are selected by considering
the proportionality of m to 1/RC and that of n to Ey/RyC. Note that Ey is a variable source
proportional to V{r). L 4

16 The two other important active circuit elements, function generators and function multiplier-dividers,
require a somewhat lengthy and special treatment and will not be considered here. The interested reader
may consult the references cited at the end of this chapter.
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Figure 3.32 Electrical circuit.
ExampLe 3.17

Reconsider Ex. 3.5 and its lumped formulation

— = -m{Ty — ), (3.35)
dt

ar; '
22 = (- T, (336)
dt
subject to
T1{0) = T, T2(0) = T (3.37)

‘We wish to solve this problem in termus of electrical analogy.
Simulating T; by E and T; by e, we find that the corresponding analog equations are

dE E g
Ci— + — + L 0, (3.140)
dr Ry R

0,2 Lo -E) _
2t "R R,
EQ) = Ep, e(0) = Eu. (3.142)

Although the first two terms of Eqgs. (3.140) and (3.141) are easily satisfied at the input of two DC
amplifiers, the third term of each equation requires the minus vaiue of the potential associated
with the first two terms of the other equation. Thus the use of another amplificr as a sign changer
at the output of each of the first two amplifiers is needed. However, by simply changing the sign
of Eq. (3.140) or (3.141), we can climinate the amplifiers employed as sign changers. Multiplying
one of these equations, say the latter, by —1 gives
d(—e) (—e) E

C, 7 + 7 + ) 0, (3.143)
Now we need only E and —e. In fact, the circuit indicated in Fig. 3.33 satisfies Eqs. (3.140)
and (3.143). Note that capacitors must initially be loaded according to Eqs. (3.142). Also, the
values of Ry, R, C1, and C; must be selected such that m is proportional to 1/R, C; and m; to
1/RaCs. <

0, (3.141)
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€

E /’ Eq. (3.140)

Eq. (3.143) {/ —

G

Figure 3.33 Example 3.17

Havinglearned the analog solution of unsteady lurnped problems, we proceed now
to the analog solution of unsteady distributed problems. The analog computer, although
capable of a continucus integration in time, is silent to any space imtegration. For
example, cousider the unsteady, one-dimensional governing equation for conduction,

197 T
vl L (3.144)
Explicitly, this equation is differential both in time and space. Since the analog computer
can handle only the timewise integration of Eq. (3.144), we have to use other means
for its spacewise integration. For example, we may replace the space differential with a
difference approximation. We have then a mixed (timewise differential and spacewise
difference) formulation which follows. A difference formulation involves the selection
of a given set of spatial locations (nodes) and approximation of derivatives using linear
interpolation. Here we somewhat loosely use this formulation and save a rigorous
treatment to the next chapter.

Consider the finite difference system shown in Fig. 3.34. Let T; represent the
temperature at node ¢ and g;_1 ; represent the heat flux from node i — 1 tonode i. The
first law applied to this system,

dT;
,oc(AAx)-&—;- = Gi-1,;A + qi+1,i 4,

rearranged by the help of Fourier’s law, now written in difference forms
-1, Tiva — T

i1 =k . Qi =k
gi—1, Ak Git+1, Ax

H
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— System

dar.
I pe(A A —L
pe(A Ax) &

di-

i+1

[
|
i
i
i
]
G

Ax

h

1

i

b

!

Figure 3.34 First law for a
one-dimensional difference system.

gives the governing mixed equation for node i,

(Ax)* dT;
o dt

= Tiyq + Tiq — 21, (3.145)

where @ = k/pc. The analog of this equation is

d(~E)Y  Ex  Eiy  (—EY
C —
& TR TR " Ep

0. (3.146)

The circuit element shown in Fig, 3.35 satisfies this equation. Extension to two-dimen-
sional geometry (Fig. 3.36), to three-dimensional geometry, boundary conditions, and
1o other physics presents no difficulty.

R
Eip 1 o——AWN ;IE

R
Ei 1 oW AN

Figure 3.35 Unsteady, one-dimensional
conduction.
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R c
E_y;
! R
E i |
2 By
By I
R
EI. J+1 R4
Fignre 3.36 Unsteady, two-dimensional
conduction.

ExampLe 3.18

Consider a flat plate of thickness £, initially in an ambient at uniform temperature 7,,. From this
condition, one surface is subjected to uniform flux ¢”. Heat is transferred from the other surface
with coefficient A.

For a demonstration rather than an accurate solution, consider a coarse subdivision based
on four equal parts. For the typical inner node we may use the circuit element in Fig. 3.35;
however, we need to develop the circuit elements corresponding to the boundary nodes.

In terms of Fig. 3.37, the differentiai-difference formulation of the boundary associated
with the imposed heat flux is

(Ax)? dT; g"Ax
LR N .
e dt T

(3.147)

Since (Ax)?/w has been made proportional to RC in connection with the inner nodes, the analog
of Eq. (3.147) gives

BB R AR (3.148)

R/2  R/2 R dt

Figure 3.37 Heat-flux boundary.
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Figure 3.38 Convection boundary.

where E” is proportional to ¢”Ax/k. The circuit element that satisfies Eq. (3.148) is given in
Fig. 3.39.

In terms of Fig. 3.38, the differential-difference formulation of the boundary that transfers
heat to the ambient is

(AJC)2 a7y
— = T3 — Ta+ AB{Tw — 1), (3.149)
20 dt

where AB = hAx/k is a cell Biot number. The analog of Eq. (3.149) yields

E; Ex (—Es) C d(—Eq) _

. 0, 3.150
R/2 * R/2ZAB * R/2(1 + AB) dt (3.150)

where Eq is proportional to To,. The circuit element indicated in Fig, 3.40 satisfies Eq. (3.150). If
the numerical value of A B requires a fraction of an available resistance, any necessary adjustment
can be made by means of a potentiometer.

E,

"

E
R2 Ri2

Figare 3.39 Boundary with specified
flux.

— .
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When the appropriate circuit elements are assigned to nodes, the existence of both plus
and minus potentials requires the use of additional amplifiers as sign changers. However, these
amplifiers can be eliminated, as in the preceding example, by simply multiplying the potentials
of alternate circuit elements by —1. The analog solution thus obtained is shown in Fig. 3.41.
The circuit operates as follows: initially the input and output potentiais have the same value.
£, which may conveniently be assumed zero; then the input potential is suddenly changed to
E". 4

Here we conclude our study of the analog computer by the following general
remarks:

Units commonly employed in practice are the megaohm (10° ohms}) for resistors
and the microfarad (10~ farad) for capacitors. The product RC is then expressed in

RC = ohm x farad = second.

Variables of conduction and related analog solutions have limitations on their
possible magnitudes and rates of change with time; hence in practice the corresponding
thermal and analog variables must be related by amplitude- and time-scale factors.
More specifically, an amplitude-scale factor is needed because the computer variable,
the output potential of a DC amplifier, is limited, often to =100 volts; to measure
a temperature variation over a range greater than £100 °C, we would need a scale
factor between potentials and temperatures. Similarly, the use of a time-scale factor
becomes necessary when the transient time of a problem is too short or too long; for
short transients the components of the computer and of the recording equipment may
not function adequately; for long transients amplifier drift and capacitor leakage may
introduce appreciable errors. Furthermore, for reasons of economy, we often prefer to
use the computer for a shorter time than the actual time. An extensive treatment of
scale factors may be found in Chapter 3 of Ref. 7.

RPRAB CI
|

B o—AWy, A
Ri2

Figure 3.40 Convective boundary.
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£
Figure 3.41 Example 3.18.
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3.8 COMPUTER PROGRAM APPENDIX

PROGRAM MATN

IMPLICIT REAL*E (A-H,K-Z)
PY=4*ATAN(L.)

WRITE(*,*) 'EXAMPLE 3.10....°"

WRITE(®,*) 'INPUT THE FOLLOWING DATA...'
WRITE(*,*) "2L: cm’
READ(*,*) L

WRITE(*,*) 'T_0: C'
READCH,*) TO

WRITEC*,*) "TINFTY: C’
READC* ,*) TINFTY
WRITE(",*) "RHO: kg/mA3’
READ(C™,*} RHO
WRITE(*,*) 'C.P: 1/kg.K’
READ(*,*) CP

WRITE(*,*) "K: W/m.K'
READ(*,*) K

WRITE(C*,*) 'H: W/mA2.K'
READ(*,*> H

WRITE(*,*) *T: min’
READ(* ™) T

€ UNIT CONVERSION

C.,.._ —_—
1=0,01"L/2
T=60*T

SR —_ —— e

Com e e e
BI=H*L/K
ALPHA=K/(RHO*CP)
FO=ALPHA®T/L**2

[ - - -

C CHART READINGS
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WRITEC*,*) *INPUT (T—T_INFP()/(T_O—T;.INF:TY} READING FIG. 3.20°

WRITE(*,*3

'WITH 1/8I=",1/8T," AND FO=',FQ,’

READ{*,*) READL
WRITEC*,*) 'INPUT (T-T-INFTY)/(T_0-T_INFTY} READING FIG. 3.20’

WRITE(*,*)

"WITH 1/BI=',1/8L,' AND FO=',FC,'

READ(*,*) READZ

WRITE(*,™)
WRITE(™,*)

*INPUT Q/0Q.0 BY LOOKING UP FIG. 3.21'
'WITH BI=',BI,' AND BIAZ*FO=',BI%*2%FQ

READ(*,*} READ3

WRITE(*,*)

TMID= (TO-TINFTY) *READL+TINFTY
TSURF=(TO-TINFTY) *READ2+TINFTY
Q0=RHO*CP*L* {TO-TINFTY}

Q=READ3*Q0

WRITE(*,*)
WRITEC*,*)
WRITEC™,*)
WRITEC*,*)
WRITE(™,*)
WRITE(*,*)
STO0?

*TEMPERATURE AT THE MIDDLE PLANE IS’
T™ID, " C°

'"TEMPERATURE AT THE SURFACE IS’
TSURF,” C'

AT XI=0’

AT XI=1"

"HEAT LOSS FROM THE PLATE AFTER *,T," MIN IS’

Q/1000," k1/mA2 EACH SURFACE’

B EXERCISES

3.1 Two square plates are to be glued together by means of a radiant heat source, ¢, acting
on one plate (Fig. 3P-1). The glue becomes cffective at a temperature T,,. The ambient
temperature is Too. It may be assumed that 8; and & are small, k1 and k; are large, so that
lumped conditions prevail. Find the time required to obtain a bond between the plates.

T

oo Ky

ARat

Ak T
A

4

]
1

P2. €20 k2

Figure 3P-1

sl Lt 3;
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3.2 Aliquid metal flowing with a uniform velocity V through a pipe of periphery P and cross
section A is electrically heated at the rate of & over a length £ of the pipe (Fig. 3P-2).
The inlet temperature of the liquid is equal to the ambient temperature Ty, The outside
heat transfer coefficient is . Neglecting the effect of axial conduction:.

b To
| T F
—V—-?——- J) Toa ! &IA
N o
0 [rivermdme 3 u
I
il
L ! |
{ 1
Figure 3P-2

(a) Find the steady axial temperature distribution of the liquid metal,

(b} The flow of the liquid metal is suddenly stopped because of a pump failure. Find the
unsteady temperature of the liquid metal.

3.3  Nuclear power per unit volume

I X
" = uy cosmw | —
2H

is steadily generated in a rod of height 2H (fig. 3P-3). Let the power generation be
suddenly stopped. Neglect the effect of axial conduction and the heat loss from the ends.
Determine the temperature decay in the rod.

o L
X
Lwe s ()
H * System
5 dx
0 A, T
S el
H
| ~P *
EX G-
/7
r
(a) (b}

Figure 3P-3
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34

35
3.6

3.7

3.8

3.10

3

Consider a flat plate steadily oscillating with velocity V; sin et on top of another flat plate
(Fig. 3P—4). The pressure and dry friction coefficient between the plate are p and i,
respectively. Find the steady periodic temperature fluctuations in the system.

T
Vo sin wt

hy
P €} [Ty 4 |
i

vl [ 5 ¢

Figare 3P-4

Reconsider Ex. 3.9 for a suddenly applied heat flux ¢”.

Extend the steady thermal length discussed in Section 2.4.1 to an unsteady length resulting
from asuddenly changed base temperature.

A 2-kg houschold “iron™ is made of aluminum and has a 500-W heating element. The
ambient is at 20 °C, and the surface area of the iron is 0.05 m?, while the heat transfer
coefficient may be assumed constant at 10 W/m? - K. How long will it take the iron to reach
100 °C after being turned on?

A fireproof safe is to be constructed. Its walls consist of two 2-mm steel sheets with a
layer of asbestos board between them. Using the chart for a slab, estimate the thickness of
asbestos required to give 1 hr of fire protection on the basis that, for an outside temperature
of 800 °C, the inside temperature is not to rise above 120 °C during this period. The heat
transfer coefficient at the exterior surface is 25 W/m?-K.

Reconsider Ex, 3.15 after replacing steel with (a) aluminum, (b) copper. What conclusions
can you make?

A large steel plate {with a thermal diffusivity of 1.3 x 10~ m%/s and a thermal conductivity
of 40 W/m-K) is 3 cm thick. At zero time it begins to receive heat on one side at the
rate of 100 kW/m? while the other side is exposed to a fluid at —20 ° Cwith a heat transfer
coefficient of 500 W/m?-K. ¥f the initial temperature of the entire plate is 40 °C, determine
the temperature at the midplane after 5s.

A cylindrical mild steel billet, 3 em OD by'10 cm long, initialty at 500 °C, is plunged into
a large container filled with oil at 100 °C. The average heat transfer coefficient between
the steel and oil is 500 W/m®-K. Find the time required to cool (a) the center and (b) the
surface of the billet to 250 °C. Assume that (i) the billet is lumped, (ii} the biliet is not
fumped, and (iii) the billet is very long. Comment on the comparison of these results.
Consider a thermopile infrared detector having an active surface area A and initially at
the ambient temperature T, (Fig. 3P-5). The active sensing element (or, active junction,
equivalently) of the detector consists of two very thin layers (§; +8; ~ 107° em) of bismuth
and telluzium formed by vacuum deposition onto a film of Mylar. The upper surface is
suddenly subjected to a heat flux of g” [W/m?]. The heat transferred from the detector to
asink at a temperature Ty Via a connection may be approximated as @ = Qo(T — Txink
[W1,where Qo is a known quantity and T isthe temperature of the detector active junction.
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Bismuth
P11 8y

Figure 3P-5

For a lumped detector active junction (bismuth and tellurium layers of thickness
8 and &, respectively, and surface area A), neglecting the conductive loss to the Mylar
as well as the convective and radiative losses to the ambijent, determine (2) the steady
temperature, (b} the unsteady temperature, and (¢) the time constant of the thermopile.
313 Reconsider Ex. 3.3. Devise an electric circuit for linearly decreasing emergy function of
the brake. What is the analog solution of this problem?
3.14 Reconsider Ex. 3.7. Devise an electric circuit for harmonically oscillating energy genera-
tion. What is the analog solution of this problem?

3.15 Draw the analog circuit element for unsteady extended surfaces.
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So far, we have learned the formulation of steady one-dimensional problems which lead
to ordinary differential equations, and the formulation of unsteady one-dimensional
and (steady and unsteady) multidimensional problems which lead to partial differential
equations. In the formulation of multidimensional problems we simply extended the
one-dimensional development. However, the solution methods available for partial
differential equations are not usually obtained by extending those svitable to ordinary
differential equations. They need to be developed separately. Among the methods
available for partial differential equations are a variety of analytical and numerical
techniques. The former apply only to problems involving regular geometry, which
may not be appropriate for practical and/or technological problems; the latter apply to
irregular as well as regular geometries and they are suited to these problems. In this
text we shall consider only the numerical methods. The most important feature of these
methods is the discrete formulation.

DISCRETE FORMULATION

There are a number of approaches to diserete formulation; some are illustrated here in
terms of a steady one-dimensional fin problem (recall Ex. 2.9). For an infinitely long
fin, with a specified base temperature Ty, transferring heat with a coefficient 4 to an
ambient at temperature T, an exact solution for temperature is

80) _

% , (4.1)
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Figure 4.1 Discrete system.

where @ = T — T, and m = (hP/kAY2. Now, for a discrete formulation, subdivide
the fin into a number (say n) of equal (or unequal) intervals (grids, cells) of length
Ax = x4 —x;, 1 = 1,2,...,n, and assign a discrete femperature 6; to each grid
point, hereafter called node, located at x; = (i — DAx,i =1,2,...,n+ 1 (Fig 4.1).
The numerical solution is based on determining these discrete temperatures. Here,
we need not consider the whole problem yet and will confine our attention only to an
element {difference system or control volume) involving three inner nodes (i.¢., nodes
away from boundaries). We limit our discussion hereafter to equal intervals except for
Section 4.2.1, where the extension to uneven intervals will be explored.

4.1.1 Exact Discrete Formulation

The analytical solution [Eq. (4.1)] written for each of the three nodes at x;_y, x;, and
Xi+1 gives

Oim1 = Gpe N, 6 = Gee ™, B = Gpe THI,
After letting x; 1 = x; — Ax and x;4q = x; + Ax, the sum

—m(x;—AX) + e—mlntax) -

[
Gicy + Gy = 26 3
Ax —tAx
+ e
= 28pe~ ™
o€ )
= 20; coshmAx

yields the exact discrete formulation relating three nodal temperatures as

i1 — RcoshmAx)f; + 841 = 0,
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System
P oo, i
/
% A
-
i-1 j - V// s Li«t- 1
Q0 1
7%
—ti]
Ax Ax
Figure 4.2 First law
(difference system).
or, in terms of the cell Biot number,
hP
B = (mAx)? = —(Ax)? 42
(mAx) P A( x) (4.2)
as
61 — 2cosh/B)6; + 6121 = 0. (4.3)

We shall use Eq. (4.3) as a base for the following approximate discrete formulations.

4.1.2 Finite-Difference/Finite-Volume Formulation

The five steps of formulation considered in the preceding chapters for differential for-
mulation are now applied to a finite-difference formulation:

Step 1. Assign a difference system with length Ax to each node, as shown in Fig. 4.1.
Let the system be centered around the node.

Step 2. State the first law, Eq. (1.16), in terms of the system assigned to each node. Since
all terms of Eq. (1.16) other than the net heat flux are absent, the first law reduces to a
heat balance. For node i, we have in terms of Fig. 4.2,

Oi-1s + Qivri + Qoo = 0, (4.4)

where Qi—l.i represents the heat transfer fromnode { —1 to i and Qoo‘,- represents the
convection heat transfer from the ambient to node i. Note that the order of subscripts
indicates the direction of the heat transfer, all arbitrarily assumed to be toward the
system, so that we conveniently have the same (plus) sign for each flux. The numerical
values obtained at the end determine the actual direction of each fux.

Step 3. For the system around node 1, express Fourier’s law:

Tiea — Ti Tim — T
AT O = A~ (4.5)

i1 = kA ,
Qi-t. Ax Ax

and Newton’s law . -
Qi = hPAx(Te — T2). (4.6)
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Step 4. Obtain the governing (finite-difference) equation by inserting Egs. (4.5) and (4.6)
into Eq. (4.4),

4

LA Ty — T

i-1— T
+ kA +hPAX(Tw — T}) = 0,
Ax

Ax

which may be rearranged, multiplying each term by Ax/kA, and in view of Eq. (4.2),
as

i1 —-C+BTNi+Tn+Ble=0
or,interms of @ = T — T, as
i1~ 24+ BY; + 6 = 0. 4.7)

Equation (4.7) applies to all inner nodes of the fin. Note that the difference between
Eqgs. (4.3} and (4.7) is confined to the coefficient of 8;. The Maclaurin expansion of

1 1
h+/B =1+ -B+ —B? ...
cos +2 +24 +

indicates that the coefficient of §; in the finite-difference formulation corresponds to
a truncated Maclaurin expansion of the exact coefficient. Boundary conditions and
Step 3 for finite-difference formulations are discussed later. Next, we investigate this
difference by another discrete formulation.

Suppose we repeat the foregoing development by following an integral formula-
tion in terms of a piecewise linear profile shown in Fig. 4.3. The differential equation
governing the temperature distribution is given by Eq. (2.112) with & = 0. Integrating
Eq. (2.112) from x;_1p2 = x: — Ax/2t0 Xi11p2 = x; + Ax /2 gives

de Xi+AxX[2

xi+hxf2
- m? f f(x)dx =0 (4.8)
xi—Axj2

PO - 3 ‘

2 Yoz

sz -1 Ixf' TJ‘: +1

Figure 4.3 Piece-wise linear
temperature profile.
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or

Gy — 6 O —61 m[(Bi1+6 6; 4 641\ Bx
- - — |l —+é& 8+ ———}| = =0
Ax Ax 2 2 + + * 2 2 0

which, in view of Eq. (4.2), leads to a finite-volume formulation:

8 4+ 3B
B:—1 —-2(8_3)9; + 8iy1 = 0. {4.9)

Note that an expansion of

8 + 3B _1+119+ 1'32+
8§~ B 2 16

reproduces the first two terms of the exact coefficient expansion.

A final method, the so-called finite-element formulation, requiring a variational
formulation or the Galerkin method of weighted residuals, is beyond the scope of the
text (see, for example, Arpaci and Larsen 1984, ch. 7).

Table 4.1 compares the results of the foregoing discrete formulations for a typical
inner node. Since Egs. (4.3), (4.7), and (4.9) differ only in the coefficient of &, these
coefficients, their percent error relative to the exact coefficient, and their series expan-
sions for small values of B are given in Table 4.1. Figure 4.4 shows the coefficients
for larger values of B. As the number of grids n(= £/Ax) is increased, the cell Biot
number B decreases, and all formulations approach the exact one.

As demonstrated by the foregoing example, the finite difference is the simplest
of the difference formulations, and it will be employed throughout this chapter. We

demonstrate the numerical solution of a finite~difference formulation in the following
example.

& 6
o
=]
=
L4
2
=
2 Finite
S difference
0 t | |
¢ 1 2 3 4
Cell Biot number B

Figure 44 Coefficient of —6;
versus cell Biot number for
different discretizations.
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Table 4.1 Coefficients of —8; for internal nodes.

Procedure Equation Expansion for Percent Error
and Profile Number | Coefficient small B for B=1
Exact 43 2cosh+/B | 24+ B+ B2/12+ - 0.0
Finite difference 47 2+ B 2+ B ~2.79
Finite volume 49 288 | 2+ B+ B8+ ... 1.84
Exameie 4.1

In terms of Ex. 2.10 (a cylindrical fin of finite length £, with a specified base temperature and an
insulated tip) with T(0) = T} = 120°C, T, = 20°C, £ = 10cm, D = 1em, k = 20 W/m-K,
h = 250 W/m2-K, and the fin divided into N = 5 elements of equal size with N + 1 = 6 nodes
{Fig. 4.5}, we wish to determine numerically the temperature distribution and heat transfer rate
and to comment on the accuracy.

The finite-difference formulation for inner nodes (2, 3, 4, 5) is given by Eq. (4.7). A similar
formulation for the boundary nodes needs to be developed. Here, the temperature of the base is
specified and only the insulated tip (node 6) needs to be analyzed. Note that the finite-difference
formulation of a boundary condition is related to a finite-difference volume. Accordingly, an
application of the first four steps of our formulation procedure to the boundary (difference)
system of length Ax/2 shown in Fig. 4.6 gives

Ts — T A,
A2 "5 wp 2T, — Ty =0, (4.10)
x 2
which may be rearranged as
1 1
Is — 5(2 + BYTs + EBTm =0 (4.11)
or, in terms of @,
i
b5 — 5(2 + B)gs = 0. (4.12)
Inner system Boundary system

Ax Ax Ax Ax Ax %

Figure 4.5 Finite-difference systems.
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S
S Insulation

Figure 4.6
Boundary-difference
system.

Since 8, is already specified, no finite-difference equation is written for node 1. Table 4.2 shows
the finite-difference equations for nodes 1 through 6.

‘[able 4.2 Finite-difference equations
Node

Number Finite-Difference Equation

Boundary 1 6, specified
2 Q2+ B)h+63=—6
3 6 — (24 B)p3+8,=0
Internal 4 & —(2+ B)By+8=0
5
6

94—(2+B)95+96=0

Boundary

65——%(2-1—8)96:0

By expressing Table 4.2 in terms of a matrix, the finite-difference formulation of the fin becomes

-2+ B) 1 0 0 0 8 -8
1 —~(2 + B) 1 0 0 B 0
0 1 -2+ B) 1 0 G4 | = o I,
0 0 1 -2+ B) 1 b5 0
0 0 ] 1 ~@2+ B)/2] Lo 0

(4.13)
where the “known” temperatures are placed on the righthand side. This leads to a matrix equation
of the form AX = C, which can then be solved for X.

For the given data, the grid size is

2 10cm
Ax = — = —— = 2cm,
N
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and, noting P/A = 4/D for a circular fin, the cell Biot number is

4 x 250 W/m*K
T 20 W/mK x 0.01m

f

(0.02m)y* = 2, (4.14)

and the base boundary condition is
6 =11 — T = 120°C — 20°C = 100°C.

Equation (4.13) now becomes

—4 1 0 078 ~100

1 -4 1 0 0|6 0

0 1 -4 1 o flal|=] 0o |. (4.15)
0 0 1 —4 1 |68 0

0o o o0 1 —2)l6 0

This matrix equation can be easily solved using a mathematical software package such as Matlab
or Maple.

One may wish to solve the matrix manually rather than utilizing a software. A matrix of
this form (because of the fact that the coefficient matrix has a nonzero main diagonal as well
as two nonzero neighboring upper and lower diagonals) is called tridiagonal. A technique for
efficiently solving a tridiagonal system of linear algebraic equations is due to Thomas (1949). This
particular algorithm has a wide variety of applications and is explained here.

Divide the first row of Eq. (4.15) by 4 (the absohute value of the first diagonal element) and
add to row 2. The resulting matrix is

-1 025 0 0 076 25

0 =375 1 0 0 ||6& —25

0 1 -4 1 0 fle|=] 0 (4.16)
o 0 1 —4 1 ||6s 0

o o o0 1 -2]L6 0

Next, divide the second row of Eq. {4.16) by 3.75 (the absclute value of the second diagonal
element) and add to row 3:

~1 025 ¢ ¢ 0 8 ~25
0 ~—1 026667 0 O &5 —6.6667
0 0 373333 1 0 By | = | --6.6667 |. 4.17)
0 0 1 —4 1 Bs 0
a o 0 1 2116 0
In a similar manner, divide the third row of Eq. (4.17) by 3.73333 and add to row 4
-1 025 0 0 -0 &2 -25
0 -1 0.26667 0 0 03 —6.6667
0 0 -1 02678 0 By | = | 17857 |. (4.18)
0 0 0 ~3.73214 1 s —1.7857
0 0 0 1 -2 L6 0
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Finally, divide the fourth row of Eq. (4.18) by 3.73214 and add to row 5:

-1 025 0 0 0 & -25

0 -1 026667 0 0 65 —6.6667

0 0 -1 0.26786 0 0:; | = | —1.7857 (4.19)
0 0 0 -1 0.26754 s --0.4785

0 0 0 0 —1.73206 6 —0.4785

The last row of Eq. (4.19) readily gives
6 = — 085 o 6.
— 1.73206

Then, a backward substitution gives the other unknowns. From the fourth row of Eq. (4.19);

85 = 0.267948; + 0.4785 = 0.26794 x 0.276 + 0.4785 = 0.552Z;
from the third row,

64 = 0.2679485 + 1.7857 = 0.26794 x 0.552 + 1.7857 = 1.93;
from the second row, . '

s = 0.2666784 + 6.6667 = 0.26667 x 1.93 + 6.6667 = 7.18,
and, finally, from the first row,
8 = 0.256; +25 = 025 x 7.18 4- 25 = 26.8

Having found the discrete solution 6;, i = 1,2, ..., 6, we can now calculate the total heat
transfer from the fin. Consider the difference system for base node 1 as shown in Fig. 4.7. The
first four steps of our formulation procedure applied to this system yield

L -1

A

Ax
which may be arranged, by dividing with A and in view of 8 = T - T, as

E[1
@ = [E 2+ B)oy — 82] , (4.20)

Figure 4.7 Boundary-difference
system.
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where g is the heat fiux at the base. Inserting ¢; and &; into Eqg. (4.20), we get

20wWmK[1
g = ———— | =(4)100 ~ 26.80 | °C
0.02m 2
or
g = 173,200 W/m?.

The FORTRAN program EX4-1.F is listed in the Appendix for the numerical procedure dis-
cussed here.

The analytical {exact) solution for the temperature distribution is given, in view of Eq. (2.128),
by

@ coshm(é — x)

&y . coshmi

for x measured from the base, and the heat flux, in view of Eq. (2.129), by

nPE\"?
gL = & T tanh mé.

A comparison of the numerical and exact solutions in Table 4.3 shows alarge discrepancy between
the solutions, especially as one moves away from the base grid point. In the next example, accuracy
is improved by using a smaller grid size. +

Table 4.3 Numerical vs, exact solution (B = 2)

Node Number | x[m] | ExactSolution | Numerical Solution | Error %
1 .00 160.00 100.00 .00
2 02 24.31 26.80 10.22
3 04 5.91 7.18 21.49
4 .06 1.44 1.93 34.10
5 08 37 .55 49.32
6 .10 17 28 62.63

Heat Flux

at the base J414E+06 1732E4-06 22.49
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N=10; Ax=0.0lm
¢ r s e g3 46 g1 98 o8 ow du
N=20; Ax=0.005m

1020 e G e b oot gt

Figure 4.8 Finite-difference systems.

3
Lr

ExampLe 4.2

Reconsider Ex. 4.1 with N =10, i.e,, Ax = 0.01 mand N = 20, i.e, Ax = 0.005 m (Fig. 4.8).
We wish to determine the effect of the grid size.

In view of Eq. (4.14), for Ax = 0.01 m,
B = 0.5,

and for Ax = 0.005 m,
B = (.125,

and the rest of the parameters of Ex. 4.1 remain the same. We can utilize the same matrix ma-
nipulation through Egs. (4.15) to (4.19). However, it becomes tedious to handie the mathematics
manually when N is large. The computer program EX4-2.F, listed in the Appendix, solves the
problem. The comparison between the exact and numerical solutions is summarized in Table 4.4.
As to be expected, the accuracy is significantly improved when a smaller B corresponding to a
smaller grid size is utilized. Other numerical schemes such as finite volume, or a higher-order
approximation, may be employed to improve the accuracy further. <

4.2 MULTIDIMENSIONAL FORMULATION

Reconsider the infinitely long cylinder of Section 3.3 (Fig. 3.14). Subdivide the cross
section of the cylinder by straight lines separated both vertically and horizontally A£
distance apart, forming the so-called square network [Fig. 4.9(a)]. Significant differences
in temperature gradients (37/dx and 37 /8y) or geometry may dictate the use of a
rectangular network instead (i.e., the use of Ax £ Ay).

The first law applied to the two-dimensional difference system shown in Fig. 4.9(a),
and interpreted in terms of Fig. 4.9(b), gives per-unit thickness of the cylinder:

Q1o + O + Q30 + Quo + u”(AL)? = 0. (4.21)
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Table 4.4 Numerical vs. exact solution (B = 0.5 and 0.125)

Node Number x [m] Exact Solution Numerical Solution Error %
1 .00 100.00 100.00 .00
2 M 49.31 50.00 141
3 .02 2431 25.00 2.83
4 .03 11.99 12.50 428
5 .04 5.91 6.25 5.75
6 .05 2.92 3.13 724
7 .06 1.44 1.57 8.78
8 07 T2 .79 10.40
9 .08 37 A2 12.17
10 .09 21 24 14.01
11 .10 17 20 14.98
Heat Flux
at the base 1414 E4-06 1500E+06 6.07
1 .00 100.00 100.00 00
2 005 7022 70.35 18
3 01 49.3%1 48.49 36
4 015 34.62 34.81 55
5 02 24.31 24.49 A3
6 025 17.07 17.23 91
7 .03 11.99 12.12 1.10
8 035 8.42 8.53 1.28
9 04 591 6.00 1.46
10 045 4.15 422 1.65
11 05 2.92 297 1.84
12 055 2.05 2.09 2.02
13 .06 1.44 1.47 2.21
14 065 1.02 1.04 241
15 07 72 .74 2.61
16 075 51 .53 2.81
17 .08 37 .38 3.03
18 083 27 28 3.26
19 .09 21 22 3.47
20 095 18 .19 3.64
21 A0 17 18 3.70
Heat Flux
at the base 1414 E 406 1436 E4-06 1.55

195
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Figure 4.9 The first law for a two-dimensional difference system.

Fourier’s law appropriate for the unit thickness of Fig. 4.9,

T —To T—Th . T—Ty . Ta—To
B Qu = kAL I Qa0 = kAL IV Qu = kAl——,

(4.22)
inserted into Eq. (4.21) yields, after dividing each term by k, the governing equation
for node 0,

Q10 = kAL

W (ALY
T1+T2+T3+T4—4To+“'~”——k =0 (4.23)
or
T+ +T5G4+ T ALY
Ty = - 2:3 “+uik). (424)

Eq. (4.24) being convenient for an iteration method. Note that Egs. (4.23) and (4.24)
apply equally to all inmexr nodes.

For the statement of boundary conditions we begin with regular boundaries and
consider the finite-difference systems shown in Fig, 4.10(a) for a corner node and a side
node. We consider three types of boundary conditions: specified temperature, specified
heat flux, and heat transfer to ambient.

For boundaries with a specified temperature distribution there is no need to con-
sider corner or side nodes. Governing equations for neighboring inner nodes involve
the specified temperature of the boundaries. For boundaries subject to a specified heat
flux, the first four steps of formulation give, for the corner node [Fig. 4.10(b)],

M7 -1 AT —Tp

n " Al
Z AL 2 AL

+ (gt +47) 5T 0,
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Corner system

4l | —Side system

\
s
d

1 O =qpan
1 Q‘w Q[ =Q;'AU2

<

Al

_ (@ (e)
Figare 4.10 The first law for a corner and a side
systern.

which may be rearranged as

l(T+T)—T~+~(”+ ”)ff=o
5 1 2 0 Ui 5] & »

and, for the side node [Fig. 4.10(c)],

n—-I ALTH — T ALT, — T
1-f  BME—-T L Afl— T

kAL
A AL 2 Al 2 AL

“+ g AL = 0,

197

(4.25)
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which may be rearranged as

g AL

1
T+ §(T2 + Ty — 2T + = (. (4.26)
Clearly, for ¢/ andfor g — 0, Egs. (4.25) and (4.26) give boundary conditions for an
insulated corner or side node.

For boundaries transferring heat with 2 specified coefficient &, the four steps of
formulation give, for the corner node [Fig. 4.10(d)],

AT — T AT - T
[ 0 Roti2T 0

AL
h Ry (T — To) = 0,
> AL AL + (b1 + 2)2(00 0)

which may be rearranged as
1 Al Al
S0+ o) — [1 + (b + hz)-ﬂ:l To + (h + k)5 Too = O, (427)

and, for the side node [Fig. 4.10{e)],

T — T kﬁTz—To ‘A_£T4""'T0

£
ka Al 2 AL 2 AL

+ AT — To) = 0,

which may be rearranged as

To = 0. (4.28)

1 hiAL hiAl
T1+£(T2+T4)— 24+ o +

k

‘What happens as ; and/or hz — 07 Note that Eqs. (4.27) and (4.28) may conveniently
be written in terms of @ = T — T 28

19 1 h h MGHO 4,29
5(1+92)—[+(1+ 2)‘2?:]0— (4.29)

and

1 h1AL
& + 5(92 + 64— |2+ —“E“-“ Gy = 0. (4.30)

Next, we consider irregular boundaries such as turbine blades. These boundaries
may be approximated in terms of, say, a cartesian coordinate system [Fig. 4.11(a)]. A
more accurate formulation, however, requires the construction of modified difference
equations. The four steps applied to the difference system shown in Fig, 4.11(b) give

2 T+ e T+ z L+ 2 T; (1+1)T+um(M)2
A+ N 1an T et T aa e T NE T ) k

As £ — 1and n = 1, Eq. (4.31) reduces to Eq. (4.24), as expected.

=0.
(4.31)
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System

£

|
Y ' Al )
{a) (b)

Figore 411 Irregular boundary.

For a simplified finite-difference formulation of steady, multidimensional prob-
lems, reconsider the flat plate of thickness § (Fig. 3.16). The four steps of formula-
tion, interpreted now in terms of the two-dimensional finite difference system shown in
Fig. 4.12 yield

nh -1 L—-1 ;- 1o Ty~ T

kSAL + k8AL + kéAL + k8AL 7

+ (B1 + ) (ALY (Too — To) + w"8(AEP? = 0,

which may be rearranged as

(AL)? (ae)? u" (AL
N+Lh+TL+Ty— |4+ (b + ha)

Tt h h T =0
o+ (k1 +h2) 7 oo + A

k8

(4.32)

2™ 8(AD?

Al

L
/ A£2 (e

Figure 4.12 The first law for a two-dimensional
difference system for a plate.
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or, in terms of &,

0.

AD? N
B+ 6 + 6 +94w|:4+(h1+h2)(k5) ]90 5‘-—(16—) =

As (hy + ky) — 0, Eq. (4.32) reduces to Eq. (4.24), as expected. Boundary condi-
tions associated with Eq. (4.32) will not be elaborated here because of space consid-
erations. Having studied the finite-difference formulation of steady, multidimensional
problems, we illustrate now a numerical solution of this formulation in terms of an
iteration method.

Examrre 4.3

Three surfaces of a square rod are kept at 0 °C and the remaining surface at 100 °C. We wish to
find the temperature distribution and the effect of the grid size on this rod.

Let us consider the network shown in Fig. 4.13. Our primary objective is to demonstrate
the selection of an initial set of estimates for iteration rather than accuracy. Because of the
horizonta] symmetry of the problem, T2 = Ta2, oz = Tya, Tog = Tuq, weneed to consider
only the temperature of the six locations indicated in the figure by solid circles. In view of
Eq. (4.24} with u™ = 0, the corresponding difference equations are

Tsy = (100 + Taz + B33 + Too)/4 = 25 + 2Tz + T33)/4
T3z = (Tap + Tuz + Ta + Bsl/d = (Bip + 20 o+ Thad/4,
Tia = (B3 + Tis + 0+ Tg)/4 = (T3 + 214/4,

Tap = (100 + 0 + Tz + T32)/4 = 25 + (Ta3 + Ta2)/4,

Tig = (Taz + 0+ Taa + Taa)/d = (Taz + Do + T33)/4
Toa = (Taz + 0+ 0+ Ba)/4 = (Tuz + T34)/4,

0°C

2,2 |23 2.4
32 |33 134
100°C 0°C

42 143 |44

0°C

Figure 413 Square rod.
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Figure 414 Temperatures of the square
rod.

where the first and second subscripts identify the x and y locations of a node, respectively. Now,
we may start by guessing the temperature of locations (3,2), (3,3), 3,4), (4. 2), 4,3), and
{4,4). The exact temperature of node (3,3) is T33 = 25 °C (note that if four sides have the
same temperature, say 100 °C, then T35 = 100 °C) (Fig. 4.14). A linear interpolation gives
Ty = 62°C, T4 212°C, Ty2 £31°C, Tas £ 12°C, and Ty 4 = 6 °C. The iterations are given
in Table 4.5. For the interested reader a FORTRAN program, EX4-3.F, is listed in the Appendix
for this iteration.

Table 4.5 Iteration table for temperature distribution of two-dimensional

rod
Iteration
Step Tia T33 T34 Ty Tis Tis

Guess 62.00 25.00 12.00 31.00 12.00 6.00
1 49.88 23.12 9.20 40.47 17.40 6.65

2 5143 24.06 9.39 4221 1823 6.91

3 52.17 24.53 9.59 42.60 18.51 7.03

4 52.44 24.77 9.70 42.74 18.63 7.08

5 52.56 2488 9.76 42.80 18.69 7.11

6 52.62 24.94 9.79 42.83 18.72 713

7 52.65 24.97 9.81 42.84 18.74 7.14

8 52.66 24.99 a.81 42.85 18.74 7.14

9 52.67 24.99 9.82 42.85 18.75 7.14

10 52.67 25.00 9.82 42.86 18.75 7.14
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The foregoing problem, which has an exact analytical solution, was used here for illustration
of a computational solution. However, the problem of the next example has no analytical solution.
Its computational solution is indispensable. ¢

ExampLe 4.4

The inner and outer surfaces of a chimney are kept at 100 °C and 0 °C, respactively. The ratio
between the outer and inner sides is 4 to 1. We wish to find the temperature distribution in the
chimney.

100°C

Figure 415 Chimney.

Because of the thermal symmetry, we need to consider only one-eighth of the chimney
(Fig. 4.15) which leads to

G1="T3 Di1=D5i hs=Ts Nai=Dh3 TNs=1Ti
In view of Fig. 4.9 and Eq. (4.24) with 4™ = 0, the appropriate iterative equation is

7 Ticvg + Tojer + Ty + Tgnr
Lj = .
4

fort=23and j =2,3,4,5. Next we guess the node temperatures. Again, following a linear
interpolation, we assume T3y = T34 = T33 = 66 °Cand I = Ths=Toa = To4 =33°C. The
FORTRAN program EX4-4.F listed in the Appendix is utilized to solve this problem, and the
iteration results are shown in Table 4.6. +

4.2.1 Nonuniform Grid Spacing ©

The methods discussed in the preceding sections apply also to nonuniform grids. A
nonuniform grid spacing may yield a more accurate solution than a uniform grid for
the same number of grid points, provided the grid is strained to be “problem fitted”
in some manner. The derivation of difference operators is based on the Taylor-series
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faxpansions for Tiyy = T(x; + Ax;) and Ty = T (x; — Ax;—1), where Ax;/Ax;_1 = 5
Is a measure of the local straining of the grid (Fig. 4.16). In general, s; is a function of

location, but forra geometric progression s; is a constant. For notational convenience

let 5; = 5 and Ax;_: = A. Then, repIacmg Ax; by s A and Ax;—; by A in the truncated
Taylor expansion of 7,44 and T;_; gives

dl (sAY (d*T
Tp=T+sAl— | + ——|—= .
i+ i (dx ),. 2 (dx2 .' (433)

. dT (A
11_1—T-A(dx) + (dx) (4.34)

Table 4.6 Iteration table for temperature distribution of two-dimensional Chimney

ITteration

tep 22 D3 Tra s Tz T3 T34
/Guess 33.00 33.00 33.00 33.00 66.00 66.00 66.00
1 33.00 33.00 33.00 8.25 66.25 66.31 41.33
2 33.06 33.09 20.67 10.33 66.42 60.21 41.96
3 33.15 2851 20.20 10.38 63.39 58.47 40.05
4 30.10 27.19 1941 10.07 61.76 57.25 39.00
5 29.04 26,42 18.87 9.57 60.88 56.58 38.02
6 2843 25.97 18.39 9.27 60.40 56.10 37.44
7 28.08 25.64 18.09 9.09 60.07 55.79 37.06
8 2784 2543 17.90 8.98 5985 55.539 36.83
9 27.68 2529 17.77 891 59.71 55.46 36.67
10 2157 2520 17.70 8.86 59.62 5537 36.57
11 27.51 25.14 17.64 8.83 59.56 5532 36.50
12 2746 25.11 17.61 8.81 59.53 55.28 36.46
13 2743 25.08 1759 8.80 59.50 5526 36.43
14 2742 25.07 17.57 879 59.48 5525 36.42
15 27.40 25.06 17.57 878 5947 5524 36.41
16 2740 25.05 17.56 8.78 59.47 55.23 36.40
17 27.39 25.05 17.56 8.78 59.46 55.23 36.39
18 27.39 25.04 17.55 8.78 5946 55.22 36.39
19 2739 25.04 17.55 8.78 59.46 55.22 36.39
20 27.39 25.04 17.55 878 5946 55.22 36.39
21 2738 25.04 17.55 878 59.46 5522 36.39
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| A SEA

- S
i-1 i+l

]
‘|Iz

| Ax_y

Ax;

Figure 4.16 Nonuniform grid spacing.

and multiplying Eq. (4.34) by s? and subtracting it from Eq. (4.33) yields the second-
order central difference for the first derivative at node i,

(dT) I il Y B ST (435)
i

dx s+ DA

Next, the sum of Eq. (4.34) multiplied by s and Eq. (4.33) gives the second-order
central-difference form of the second derivative at node I,

(4.36)

ETY _ Ta — 6+ DT+ 5T
dx? ; - s(s + 1)A2/2 )

Some of the basic difference formulas now have lower accuracy dueto straining, suggest-
ing the need to limit the magnitude of the straining. The use of polynomial interpolation
for boundary conditions follows the previous development but usually leads to more
elaborate expressions.

ExampLe 4.5
Consider a square rod with boundaries at 0 °C and a circuiar hole inside which is maintained at

a temperature of 100 °C as shown in Fig. 4.17. We wish to determine the steady temperature
distribution.

The governing differential equation of this problem,

T +_dQT 0
dx? dyz -
in view of Eq. (4.36) and Fig. 4,17, leads to

Tipny — & + DTy + 5Ty | Ty — (5 + DT+ 5T _
si(s; + a2 s;(s + DAG/2
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3D

Figure 417 Square rod with a circular hole.

or

T 1 + 1 | Tay+siliay | T+ 5Ty
" S,‘A? SJA? J‘,’(S,’ + I)A[z Sj(ﬁ‘j -+ I)A}

wherei =2,3,4and j = 2,..., 6. Note that
T1=Ts Bi1=Ts Ta=Ts Tss=D3 T =T

With an initial temperature guess T, ; = 0, the FORTRAN program EX4-3.F solves the problem.
Tteration results are shown in Tabie. 4.7, 4

So far, we have demonstrated how to utilize numerical techniques to solve two-

dimensional steady conduction problems. We now proceed to problems involving en-
thalpy flow.
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Table 4.7 Iteration table for temperature distribution of two-dimensional rod

Iteration

Step Too Tz Ta Ts T Ta Ta  Ba  Ts Tis  Taa
1 .00 00 00 00 08 18.00 576 1.88 47 1522 2189
2 324 207 1.08 41 26 2227 2164 1210 441 8006 47.9%
3 534 595 464 233 1.08 32.81 2985 2210 990 8451 54.65
4 9.71 097 856 489 225 3886 3651 27.89 3463 8620 5846
5 1337 1339 1161 712 337 4377 4090 3217 1820 §&738 62.37
6 1658 1638 1399 889 429 4716 4406 3521 2095 88.15 6451
7 18.97 1848 1575 1025 503 4961 4634 3746 2304 8871 66.04
8 20776 2002 17.08 1129 561 5139 48.00 39.13 2463 8912 67.18
g 2207 2117 1806 12.07 605 5270 4924 4437 2581 8942 68.03
10 23.03 2201 1880 1266 638 53.66 50.15 41.30 26.70 B9.65 68.65
11 2375 2264 1934 13.10 6.62 5437 50.83 4199 2736 8381 69.12
12 2428 2311 19.75 1343 680 5490 5133 4250 2785 89.94 69.46
13 2467 2345 2006 13.68 694 5529 5170 42,80 2821 9003 6972
14 2496 2371 2028 1386 7.04 5558 5198 4317 2848 90.09 6991
15 2518 2391 2045 1399 7.2 35580 5219 4338 2868 9015 70.05
16 9534 2405 2057 1409 7.7 5596 5234 4354 2883 9018 7016
17 2546 2415 2067 1417 771 5608 5246 43.65 2894 5021 70.23
18 2555 2423 2074 1422 724 56.17 5254 4374 29.02 9023 7029
19 9562 2429 20079 1426 727 5624 5261 43.80 29.08 9025 7034
20 2567 2434 20.83 1429 198 5629 5265 43.85 29.13 9026 70.37
21 2571 2437 2085 1432 730 5633 5269 43.89 29.16 9027 7039
22 9573 2439 2088 1433 731 5635 5272 4391 29.19 9027 7041
23 2575 2441 2089 1435 731 5637 5273 4393 2921 9028 7042
24 5877 2442 2090 1436 732 5639 52775 4395 2922 9028 7043
25 7578 2443 2091 1436 132 5640 5276 4396 2923 9028 7044
26 2379 2444 i0.92 1437 733 5641 5277 4397 2924 9029 7045
27 2580 2445 2092 1437 133 5641 5277 4397 72924 6029 7045
28 2580 2445 2093 1437 733 5642 5278 4398 2925 9029 7045
29 2580 2445 2093 1438 733 5642 5278 4398 2925 5029 7045
30 2581 2446 2093 1438 733 5642 5278 4398 2925 9029 7046
3 2581 2446 2093 1438 733 5643 5279 4398 2926 9029 7046
32 2581 2446 2093 1438 733 5643 5279 4398 2926 9029 7046
33 2581 2446 2093 1438 733 5643 5279 4399 2926 9029 7046
34 2581 2446 2093 1438 733 5643 5279 4399 2926 9029 7046
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4.2.2 Effect of Enthalpy Flow &

Reconsider the formulation of the key problems discussed in Section 2.5,
———— == =0, (4.37)

with convective heat loss to the ambient [recall Eq. (2.152)], and
d  vde N g"P
dx* wadx kA

= 0, (4.38)

with a specified heat flux. In Section 4.1 we discussed the finite-difference formulation
of the conduction and source terms of these equations. Here, we consider the convective
terms by using the upstream (upwind) finite-difference. For V' > 0, the temperature
at node @ is influenced by the upstream temperature at node { — 1. Then the finite-
difference formulation for Eq. (4.37) is

Oio1 — 26 + 600 V(G ~ 6i_1) hPH

(Ax)* aAx kA

= 0, {4.39)

and for Eq. (4.38) is
i1 — 26 + 61 VO ~08-1) 4¢P

(Ax)y? eAx kA

= 0. (4.40)

The next example demonstrates the procedure for a numerical solution of this problem.

ExameLe 4.6
Consider the problem involving a combination of the two key problems as shown in Fig. 4.18. We
wish to determine the steady temperature distribution.

The governing differential formulation interms of 4 =7 ~ T is

d*¢ Vv ds "
___._.._._..,i..i.q,,,zo_ 0<x < ¥,
dx° @ dx kD

cv Ccv \

T e
KT}"’"""”‘%’] P2 15 %4 +s;_f§1+7 s 19 '{’wL_qu A =mD4
T : '

I }
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and

46 Vde 4ho
— == =0, £ <x <
dx adx kD _

subject to boundary conditions
dé
(0 = 8y, —(x =26 =0.
dx )

Rearranging Eq. (4.40) for the first domain in terms of Pe = V Ax/w, we obtain

2 4 Pe 1 4g" Ax?
g = | —— &+ ——bn = __“___?_,__’
1+ Pe 1+ Pe kD(l + Pe)

for i =2, 3,4, 5, and rearranging Eq. (4.39) for the second domain,

dhAxt
2+ Pe +

g — | —— g+
=t 1+ Pe T L Pe

9!'-{-1 = Ov

fori =7,8,9,10. For the interface between two domains (i = 6), from the first law
2

2h
24 Pe+ 2
2q.’IAx
oy — | ————— | &+ Opg = ————————
1+ Pe 1+ Pe kD(1 4+ Pe)
The boundary conditions take the form of
2
24 Pe +
6 = 6y, 0 D L lon =0
L 1+ Pe . 14 Pe ne
The matrix representation of this problem is then
r-M N 0 ¢ 0 0 0 0 0 0 176 My — D
1-M N O 0 0 0 0 0 0 83 -0
0 1-M N O 0 0 0 0 0 64 -
0 0 1-M N 0 0 0 0 0 s -
0 ¢ 0 1-M N 0 0 0 _ 0 O _ ~D'/2
¢ 0 0 0 1-M" N 0 O 0 & | 0
¢ 0 o 0 0 1-M" N 0 0 O 0
c 0 0 0 ¢ 0 1-M" N 0 N 0
0o 0 0 0o O 0 0 1 —M" N f10 0
L c 0 ¢ 0 0 0 0 0 1 —~(M — NYJ L6 L ¢
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300 T T T
250 1 _
! 200 -
O 1s0]- i
[==]
100 | .
50 k- n
0 ! L | | !
0 2 4 6 8 10 12
Node
Figure 419 Temperature of the
moving rod.
where
1 dg" Ax?
N = , D= L’
14 Pe kD(L + Pe)
2hAx* 4hAxE
24 Pe+ 24 Pe -
2 + PE Mr Mﬂ
T 1+ P - 1+ Pe ’ - 1+ Pe

The node temperatures are obtained by solving this matrix equation. For an illustration, let
6 = 100°C, o = 107 m%s, V = 0.0l /s, Ax = 0.1 m, & = 250 Wim?-K, k = 20 Wm-K,
g" = 20,000 W/m?, D = 0.1 m; then

1 , 400 12 , 1S5 , 17

Pew 10, N= —, D m e, Moo 2, M o= 2 M = .

11 11 11 1 11
The steady temperature distribution is shown in Fig. 4.19. For the interested reader, the FOR-
TRAN program EX4-6.F listed in the Appendix solves the problem.

<

TRUNCATION ERROR

The inductive approach generally followed in this chapter, which is based on the five
steps of formulation, directly leads to the discrete formulation of a given problem.
However, it does not provide information on the accuracy of this formulation. In this
section we deal with the error involved with discrete formulations, which is usually
called the truncation error.

Consider two Taylor series expansions of T'(x) near x;, yielding at x; + Ax and
x; — Ax, respectively,

Tt = TG+ Ax) = T 4 A dT +(Ax)z a*T +(Ax)3 3T
i+l = X xX) = iy X I !, o EE i T E;g i+...’
(4.41)
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2 /1 3 /0
T 1=T; — Ax) =T; — Ax (d—T) + (A_x) (d T) - (Ax) (d T) +
i i i

dx 2t \ax? 3t \ds®
(4.42)
From Eq. (4.41) we obtain for node i at x; the first-order forward ditference,
ar Tiyp — T
—_—) =2 — 4 oA 4.43
( dx)f 1 4 oqan, (4.43)
from Eq. (4.42) the first-order backward difference,
(dr) ke SRYINS (4.44)
dx ), Ax ’ )

from the difference between Eqs. (4.41) and (4.42) the second-order central difference,

dr Tip1 — T 5
) =2 T oax)?, 4.45
(dx)l. 2Ax + 0(Ax) (445)

and, finally, from the sum of Eqs. (4.41) and (4.42) the second-order central difference,

T iy —-2T + T
( ) = I L oax. (4.46)
i

dx? (Ax)?

Other linear combinations of Taylor series expansions yield other difference operators.
The foregoing results are of the form

D = FD + TE, (4.47)

The derivative (D) being approximated by the finite-difference operator (FD) to within
a truncation error (TE) (or, discretization error). The foregoing mathematical consid-
eration provides an estimate of the accuracy of the discretization of the difference
operators. It shows that TE is of the order of (Ax)? for the central difference, but
only O(Ax) for the forward and backward difference operators of first order. Equa-
tions (4.41) and (4.42) involve 2 or 3 nodes around node i at x;, leading to 2- and 3-
point difference operators. Considering additional Taylor series expansions extending
to nodes i 42 and i — 2 etc., located at x; 4+ 2Ax and x; — 2Ax, etc., respectively, one
may derive 4- and 5-point difference formulas with associated truncation errors. Results
summarized in Table 4.8 show that a TE of O(Ax)* can be achieved in this manner.
The penalty for this increased aceuracy is the increased complexity of the coefficient
matrix of the resulting system of equations.

We demonstrate now the truncation error in terms of the fin example of Section 4.1
Using Eq. (4.46) for d20/dx* and 6; for 6, we obtain

&9, 61— 26+ 6

o 6 = o ~ m%9; + 0(Ax)%. (4.48)
— . -~ TE

ODE FDA
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Table 4.8 2-, 3-) 4- and 5-point difference formulas

Number of Difference
Points Difference formula Type
T T
L L O (Ax) Forward
2 dx ax
Ty T=Ti_q .
—L = 1 0(ax) Backward
dx Ax
4t SETiHAT T
o TITT I L 0(Ax)? Forward
dx 24x
dT; 3T —ATi_y+T;_
=TT L o(ax)? Backward
dx 28x
d7; Trp-Tie
— = HTEE 4 o(Axy? Center
dx 2ax
T Tiya—2Ti g +T;
D IR L 0(AX) Ferward
3 dx? (ax)e
a7 T—2T 14T
o TR L 0(Ax) Backward
dx2 {axy
2T T 2T+T
L HITETIEL oA Center
dx? {ax)2
4T, —Tipq+8T; q—8T;_y+Ti_:
L. +2 T3 1) + O(AX)4 Center
dx 12{ax)
a2 T g ATy g —5T; 4y 42T,
4 L. i+3 i+2 i+l i + O(Ax)z Forward
dx? (axy?
BT AR5+ —=Ti
O ST L o(Ax)? Backward
dx? (axy?
5 AT Vi HST 304167, - Ty +0(Ax)* | Center
dx? 12(ax)?

In solving the finite-difference approximation, we let FDA = 0 and, in fact, do not
solve the differential equation, but rather the difference between the ODE and TE.
For example, in Table 4.3, the deviation of the numerical results from those of the exact
solution is caused by the truncation error, since Ax is not small enough to eliminate the
effect of the truncated terms.

As {llustrated in the foregoing discussion, the numerical solution is expected to
approach the exact solution as we use more refined discretizations. In reality, however,
computer solutions may be somewhat limited in accuracy by the number of digits em-
ployed by the processor. This restriction associated with rounding to a finite number of
digits results in round-off errors. These errors increase with the number of arithmetic
operations required to produce a solution, hence with the number of grid points. The
latter depends on the size of the problem and the degree to which the discretization is
refined. The ultimate accuracy of a numerical solution can therefore be expected to be
achieved in a trade-off between truncation errors and round-off errors. The effect of
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round-off errors on a given numerical solution is readily demonstrated by running the
program in single and in double precision, respectively.

Having established the foundations of numerical conduction in terms of some
steady problems, we now proceed to its application to unsteady problems.

4.4 UNSTEADY CONDUCTION
4.4.1 Explicit Finite-Difference Formulation

As a simple illustration, we wish to develop the unsteady one-dimensional finite-differ-
ence formulation for a flat plate of thickness £ having an initial temperature difference
AT = T: — T, between its surfaces. Assume the surface of the plate with temperature
71 is suddenly insulated.

Applying the first law of thermodynamics to the system shown in Fig. 4.20 (a
uniform grid is assumed), and relating the result to temperatures by means of the Fourier
law, we obtain

T‘n+1 —T" T TP A
Ax 4 Eo_ k i—1 i i i+1 i , 4.49
re AXx * Ax ( )
and, after some arrangement,
TP - I0 = F(TE - 20 + T) (4-50)
or
T = F[T8, + A/F = DT + Ty, (4.51)
™ System
F>1/2
F=172
' ATH’H!X
AT
Felf2
Tr'n+l
i+1
Ax Ax 1

Figure 4.20 Finite-difference approximation.
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where, as before, subscripts denote locations, the newly introduced superscripts denote
time intervals—thatis, ;" = T (x;, £), T7%y = T(x; + Ax, 1), T = T(x;, ta + AD—,

f

a At
T (ax)?

(4.52)

is the celi Fourier mumber and o = k/pc the thermal diffusivity. Clearly, choosing
some values for the intervals Ax and Az, and referring to a table of properties, we
can evaluate F. With known F, as well as the temperatures from a time step t,, 777,
i=1,..., N +1, the temperature at location ¢ for subsequent time n + 1 is obtained
from Eq. (4.51). This is an explicit tire marching scheme which allows direct calculation
of the unknowns at each time step from the preceding step. However, under certain

conditions the scheme may be mathematically unstable, which we consider next.

4.4.2 Stability of Explicit Scheme

Let us see what happens when we carry out the calculations for two slightly different
values of F, say 5/11 and 5/9. This corresponds to slightly different values for the
time intervals if the plate is divided into equal space steps (grids), say 10, for both
cases (Figs. 4.21 and 4.22). Inspection of these figures reveals that although the results
for F = 5/11 are quite satisfactory, those for F = 5/9 are affected by some sort of
accumulated and amplified error, the so-called instability. This error has nothing to
do with the truncation or round-off error, which can be made negligibly small in the
present example; it is, rather, a property of difference equations, and it increases with
successively smaller values of Ax unless Ar is also reduced accordingly. We therefore
learn the important fact that the explicit difference formulation of an unsteady problem
is never complete without the statement of a stability criterion. Formal but somewhat
lengthy mathematical proofs may be found in the literature (see, for example, Anderson
et al., 1984). Here we give a simple physical argument based on the fact that the steady
one-dimensional temperature distribution in a plate of constant thermal conductivity
is a straight line. Consequently, the maximum attainable by temperature 17"[.""“1 is its
steady limit Tf‘:‘ 1. From the steady limit of Eq. (4.50) which is independent of the
initial temperature 7;*, which corresponds to F = 1/2, we have then

1
i = 2 (T + Tha), (4.53)
or, by subtracting 7/ from both sides,
1
T -1 = o (T - 20 + Th)- (454

Note that the steady value may also be obtained when the lefthand side of Eq. (4.50) is
set to zero. From the ratio of Egs. (4.50) and (4.54)

Tin-H. _ Tin

= 2F, (4.55)
1
T -
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which, in view of
n+1 n rn+l n
- =T T

3

(see Fig. 4.20), gives the stability criterion as

F oz (4.56)

2=

The reason for the selection of 5/11 and 5/9 for F in Figs. 421 and 4.22 now becomes
clear. That is, the case of F > 1/2, which causes instability in the difference equations,
violates the physics of the problem by leading to a temperature that exceeds its steady
value.} This stability criterion can also be obtained by requiring that the coefficient of
T" in Eq. (4.51) be positive.

Consider next the effect of enthalpy flow on the stability at inner nodes. The
governing equation now becomes

108 8% Vad
S = e — e (4.57)

o dt axr o« dx
where 8 = T — T. Using forward difference in time, the first-order backward dif-
ference for convection, and the second-order central difference for conduction, the

1.0 I l
F=5/11 (A0
08 3
/4
= 06 15
1 e
—~f =
=4 / v
E’ 0.4 A/ 20
o 25
o=
. [
0‘00.0 02 0.4 0.6 0.8 10

x/
Figure 4.21 Stable solution.

L Note that the steady limit, which corresponds to F = 1/2 and yields temperature T/t given by

Eq. (4.53), readily admits a graphical interpretation as follows. The temperature change 7}, at location i
in the time interval (z + 1)Af — 1At is the arithmetic mean of the neighboring temperatures T;” and T},
taken from the previous time step; thus the intersection of the straight fine connecting 7", and T}, with
the isothermal plane of location i gives T3 (Fig. 4.20). This is the basis of the Binder-Schmidt graphical
method.
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1.0 , , ,
F=5/9, atf(AxR =5
0.8 -
f‘\‘ 1.6
T | |
=106 Va F=5/9, at(Ax)? = 15
Al 7 14 |
= <]
2l 04 n
12 !
02
1.0
000 0z 04 06 08 1o 08 A
- ; I
|
10 , , , <[5 06
F=5/9, atf(Axy? = o 1]
08 0.4
08 / 0.2 /A/’I/\
I
<& . Q V \ \
| 04 b 0.0 N— Y
02 -02
0000z o0& 06 08 10 40 0z o4 08 08 10
l xfl
Figure 4.22 Unstable solutions.
finite-difference form of this equation becomes
n+1 n
1677 —6" 6L, — 29;‘n2+ 6 VO -6 _ 0 (4.58)
o At {Ax) o Ax
or
ortt —or = F[(L+ P)f; — @+ PY] + 6044]. (4.59)
where

s

is the Peclet number for an inner cell. Following the physical approach 9[.”'3'1 must be
bounded between 6 and the steady solution obtained by setting the lefthand side of
Eq. (4.59) to zero,

0=+ P, — 2+ P + 60,
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which may be rearranged as
1+ P, -2+ P! + 6,

grt — gr 4.61
LS i 2 + P ( )
The ratio of Eqgs. (4.59) and (4.61) yields the stability criterion

9n+1 . pn

i i

£,5 1
or

1
24+ P

After rearranging Eq. (4.59) for 9{‘“, the same criterion can again be recovered by
setting the coefficient of 8] positive. We learn from this result that the presence of en-
thalpy flow further restricts the size of the time step for a given spatial discretization. A
constant source term, say «” / k, however, has no effect on the stability of the numerical
scheme.

Finally, let us consider a boundary node—for example, the boundary of a flat
plate—now subject to convective heat transfer to an ambient at temperature Too- The
discretized balance of thermal energy and the Fourier law of conduction applied to a
Ax /2-thick boundary difference system (Fig. 4.23) yields for 8 = T — Too

Ax\ e — or or — gr
pcA (T) 1_5__3_ = +kA2—Ax—l — hAB] (4.63)
Boundary System

i

Ax/2

Figure 423 Discretized balance of
boundary thermal energy.
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or
. oyt —or = 2F [67 — (1 + B)&Y], (4.64)
or .
o+t = 2F {6f + [1/2F — (1 + B4}, (4.65)
where |

6

denotes the boundary-cell Biot number.” For the limiting steady solution which is in-
dependent of the initial temperature 87 and corresponds to 1/2F = (1 + B), we have

n+1 GZH
61, = 138 (4.67)
or, by subtracting 67" from both sides,
67 — (1 + Byey
ot — o = W. (4.68)
From the ratio of Egs. (4.64) and (4.68),
1
A 2F(1 + B)
grtl _ pgr - ’
1.5 1
which, in view of the fact that
8?1-{-1 —_or < 91’!+1 —g"
1 1= Vg 1
(see Fig. 4.20), vields the stability criterion,
Fe_t (4.69)
=201+ By ’

which is more restrictive relative to that of Eq. (4.56) for inner nodes. Since the stabil-
ity criteria for inner and boundary nodes are different, the more restrictive boundary
criterion must be selected to ensure overall stability. It may readily be shown that the
stability for a boundary node for which temperature is specified is not more restrictive
than that of an inner node.

2 Note different definitions for B in Egs. (4.2} and (4.66).
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4.4.3 Truncation Error of Explicit Scheme

With the Taylor expansions given by Egs. (4.41) and (4.42) and similar expansions in
time, we employ the forward difference in time and the central difference in space to
get

a7 T T -1 TR, 2T + T

B aﬁ - At - (Ax)? -
TTPDE FDA )
L (az—T)n At + — (ﬂ)n (Ax): + 0(AD? + 0(Ax)* (4.70)
2\ ox? ; 12 \ ax* . ’ ’
« = .

Equation (4.70) indicates that the governing partial differential equation (PDE) equals
the finite-difference approximation (FDA) to within a truncation error (TE) which is of
OfAt, (Ax)?]. Clearly, the first-order forward difference has only first-order accuracy
[recall Eq. (4.43)]. However, differentiating 97 /8t = od2T/9x* twice with respect to
x and once with respect to ¢, Tespectively, shows that the first two terms of TE can be
combined into one,

a {3 T\ 2 2 4

Thus, for the particular choice of F = 1/6 the explicit scheme has TE of O[(Ar)z,
(Ax)*], which assures a higher accuracy. However, the choice At = (Ax)?/(6a) implies
time steps too small to be of practical interest in most cases. Irrespective of the size
of the time step relative to that of the space step, TE — 0, hence FDA — PDE, as
At — 0 and Ax — 0, which shows the discrete formulation to be consistent.

Examreie 4.7

A flat plate with thickness £ = 10 cm and diffusivity @ = 1 x 107 m*/s is initially at temperature
of ¢ °C. One surface of the plate is kept at a temperature of 0 °C while the other is suddenly
raised to 100 *C. We wish to determine the transient temperature distribution within the plate
by using an explicit numerical scheme.

Tn this example, the grid system of Ex. 4.1 is employed, i.e, N = 5 and Ax = 0.02 m. In
view of Egs. (4.51) and (4.56), the time step is specified as
(Ax)?
2o

Ar < = 2s.

Here, we let At = 15, ie, F =0.25, to ensure the stability. The FORTRAN program EX4-7F
solves this problem. Table 4.9 gives the iteration results. L



Table 4.9 Iteration table for transient temperature distribution (explicit)
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Step | Time T T T T Ts T
1 1.0 10000 -~ 25.00 00 00 00 00
2 20 10000 3750 625 00 00 00
3 30 10000 4531 1250 156 00 00
4 40 10000 5078  17.97 . 3.9% 39 00
5 50 10000 5488 2266 654 117 00
6 60 10000 5811 2668 923 222 00
7 70 10000 6072 3018 1184 342 00
8 80 10000 6291 3323 1432 467 00
9 9.0 10000 6476 3592 1663 591 00
10 100 10000 6636 3831 1878 712 00
11 1.0 10000 6776 4044 2074 8325 00
12 120 10000 6899 4234 2254 931 00
13 13.0 10000 7008 4406 2419 1029 00
14 140. 10000 7105 4559 2568 1119 00
15 150 10000 7193 4698 2704 1202 .00
16 160 10000 7271 4823 2827 1277 .00
17 170 10000 7341 4936 2938 1345 .00
18 180 10000 7405 5038 3039  14.07 .00
19 190 10000 7462 5130 3131 1463 .00
20 200 10000 7513 5213 3214 1514 .00
21 210 10000 7560 5288 3289 1561 .00
22 220 10000 7602  53.56 3357 16,03 00
23 230 10000 7640 5418 3418 1640 .00
24 240 10000 7675 5473 3474 1675 00
25 250 10000  77.06 5524 3524  17.06 00
26 260 10000 7734 5569 3569 1734 00
27 270 10000 7759 5610 3610  17.59 00
28 280 10000 77.82 5648 3648 1782 00
29 290  100.00 7803 568F 3681  18.03 00
30 300 10000 7822 5712 3712 1822 .00
31 31,0 10000 7839 5739 3739 1839 00
32 320 10000 7854 5764 3764 1854 00
3 330 10000 7868  57.87 3787 1868 .00
34 340 10000 7881 5807 3807 1881 .00
35 350 10000 7892 5825 3825 1892 00
36 360 10000  79.02 5842 3842 19.02 00
37 370 10000 7902 5857 3857 1912 00
38 380 10000 7920 5871 3871 1920 00
39 | 390 10000 79.28 5883 3883 1928 00
40 400  100.00 7935 5894 3894 1935 00

219
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4.4.4 \mplicit Scheme

So far, we have considered the explicit scheme of finite-difference formulations and its
stability criterion for an illustrative example. The use of the explicit scheme becomes
somewhat cumbersome when a rather small Ax is selected to eliminate the truncation
error for accuracy. The At allowed then by the stability criterion may be so small that
an enormous amount of calculations may be required. We now intend to eliminate this
difficulty by giving different forms to the equations resulting from the finite-difference
formulation. Let us take the case of one-dimensional conduction in unsteady problems,
for which we obtained the difference equation given by Eq. (4.50). Consider a formula-
tion of the problem in terms of backward rather than forward differences in time. That
is, decrease the time from 2,41 = (n + 1)At 10 #;, = nAr. Thus we obtain

T}n+1 - T}n = F (T;n—-lil _ 2T£n+1 + I;r_l.:l-l) ) (472)

Subtracting from this relation its initjal steady value given by Eq. (4.53) yields
-1 = F (1 - m) w2 (1 - 1) + (B - 7))

Since all differences in Eq. (4.73) are positive according to Fig. 4.20,3 this equation is
satisfied under all circumstances. Therefore, it is unconditionally stable. We obtain
this stability, however, at the cost of a new algebraic complexity. Recall Eq. (4.50), in
which all temperatures except T}”'*”l are known, and the latter is obtained by solution
of the equation. By contrast, in Eq. (4.72) only 7;* is known, and the application of
this equation to the nodes yields a tridiagonal matrix which then can be solved by the
method discussed in Ex. 4.1.

Exampie 4.8

Reconsider Ex. 4.7. We wish to determine the transient temperature distribution of the flat plate
by using an implicit numerical scheme.

In view of Eq. (4.72), we can write a matrix representation for each inner node as

[Clrr* = (11 (4.74)
or, explicitly,
-2+ FY 1 0 0 e —-100 — T;F!
1 —2 4+ F""l) 1 0 T3n+1 B —T3"F_1
0 1 -2+ F™ 1 ryac ~TpF!
0 0 1 @+ FHlLmt ~TrF!
75)

This tridiagonal matrix is identical in form to Eq. (4.13) of Ex. 4.1 and can be solved in a similar
manner. The FORTRAN program EX4-8.F listed in the Appendixsolves the probiem. Table 4.10
shows the iteration results. ¢

3 The only other possibility is a downward concave temperature distribution for which all differences
are negative, and Eq. (4.73) is again unconditionally satisfied.
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Table 4.10 Iteration table for transient temperature distribution {implicit)

Step Time n 1 I Ty T T;

1 F 1.0 100.60 17.16 2.94 50 .08 .00

2 2.0 100.00 2929 7.11 1.57 32 .00

3 3.0 100.00 38.13 11.61 3.11 73 .00

4 4.0 100.00 4476 16.03 4.96 1.31 A0

5 5.0 100.00 49.86 20.16 7.01 2.04 .00

6 6.0 100.00 53.90 23.95 9.14 2.89 00

7 7.0 100.00 57.16 27.38 11.29 3.81 00

8 8.0 100.00 59.85 30.46 13.40 477 {00

9 9.0 100.00 62.11 33.23 15.43 575 .00
10 10.0 100.00 64.02 3572 17.36 6.73 00
11 11.0 100.00 65.67 37.95 19.138 7.68 00
12 12.0 100.00 67.11 39.97 20.88 8.60 .00
13 13.0 100.00 68.37 41.78 22.47 9.48 00
14 14.0 100.00 69.49 4343 23.93 1031 {00
15 15.0 100.00 7048 44.91 25.29 11.09 00
16 16.0 100.00 71.36 46.26 26.54 11.81 00
17 17.0 100.00 72.15 4748 27.69 12.49 00
18 18.0 100.00 72.87 48.59 28.74 13.12 B0
19 19.0 100.00 73.51 49.59 2971 13.70 00
20 20.0 100.00 74.09 50.51 30.60 14.23 00
21 21.0 100.00 74.62 51.35 3141 14.72 00
22 22.0 100.00 75.10 52.10 32.15 15.17 .00
23 23.0 100.00 7553 52.80 32.83 15.59 .00
24 240 100.00 75.93 5343 3345 15.97 .00
25 25.0 100.00 76.28 54.00 3402 1632 .00
26 26.0 100.00 76.61 54.53 34.54 16.63 00
27 FARY 100.00 76.91 55.01 35.02 16.93 00
28 28.0 100.00 77.18 5544 3545 17.19 00
29 29.0 100.00 7743 55.84 35.85 1744 00
30 30.0 100.00 77.65 5620 3621 17.66 .00
31 31.0 100.00 77.86 56.53 36.54 17.86 00
32 320 100.00 78.04 56.84 36.84 18.05 00
33 33.0 100.00 78.21 57.11 37.11 1822 00
34 34.0 100.00 78.37 57.36 3737 18.37 00
35 35.0 100.00 78.51 37.59 37.60 18.51 .00
36 36.0 100.00 78.64 57.80 37.80 18.64 .00
37 370 100.00 78.76 58.00 38.00 18.76 .00
38 38.0 100.00 78.87 58.17 38.17 18.87 .00
39 39.0 100.00 78.97 58.33 38.33 18.97 {00
46 40.0 100.60 79.06 58.48 38.48 19.06 00
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4.4.5 Crank-Nicclson Method

Although there is only one explicit formulation for a given problem, the implicit formu-
lation may be written in a number of forms. For example, we may express the righthand
side of Eq. (4.72) as

T{n+1 . T;n — ; [(T;n_-i]-.l _ 21-}11-{-1 + 1’}1—4‘;1) + (T;’i.]_ _ ZTER + irjrl)] , (4.76)
which is known as the Crank-Nicolson scheme. The reader is referred to Anderson et
al. (1984) for further discussion on this aspect.

Note that unsteady problems are initial-value problems. The solution of their
explicit difference formulation is trivial; it amounts to the evaluation of the temperature
change at each node and at each time step in terms of the temperature of the same node
and the neighboring nodes taken from the preceding time step; the procedure is carried
out step by step to subsequent intervals. The solution of the implicit finite-difference
formulation reduces at each node and time step to an algebraic equation involving the
temperature of the same node and the neighboring nodes expressed in terms of the
next time interval; thus we obtain a set of algebraic equations to be solved by a direct
or iteration method as discussed in Section 4.2. Note that steady problems, in general,
are boundary-value problems, but those having motion and negligible conduction in a
given direction are conceptually initial-value problems and can be solved in a manner
similar to unsteady preblems.

ExampLE 4.9

Reconsider Ex. 4.7. We now wish to determine the transient temperature distribution of the flat
plate by using the Crank-Nicolson implicit scheme.

In view of Eq. (4.76), the proper difference equation for each inner node is

1}n_+1 —2(1 + F—I)Tinﬁ-l -+ Tn+1 — -Tan—-'l. +2(1 — F—l)]}n _ ]:J‘lﬂ = D,

i+1
which has the same form as Eq. (4.74). This set of equations can be solved in the same way

as described in the previous example. The FORTRAN program EX4-2.F solves the problem.
Table. 4.11 shows the iteration results.

<

So far, we have employed three different numerical schemes (explicit, implicit,
Crank-Nicolson) to solve a one-dimensional unsteady conduction problem. Pros and
cons for these schemes are:

1. The explicit scheme is very easy to implement in a computer program, must satisfy
a restrictive stability criterion, and is first-order accurate in time.

2. Writing a computer program for an implicit scheme requires some matrix ma-
nipulations and is somewhat involved. It is also first-order accurate in time but
unconditionally stable.

3. The Crank-Nicolson scheme improves the accuracy of the implicit scheme to
second-order accuracy in time but still requires the usual matrix manipulations
of that scheme.



Table 4.11 Iteration table for transient temperature distribution (Crank-Nicolson)

Sec. 4.5 Euler's Method

Time

Step ¥l T T T4 Ts Ts

1 1.0 100.00 20.20 2.04 21 02 .00

2 2.0 100.00 32.99 6.67 1.01 A3 00

3 3.0 100.00 41.64 11.82 2.51 43 00

4 4.0 100.00 47.84 16.74 4.50 .96 00

5 5.0 100.00 52.50 21.20 6.76 1,70 .00

6 6.0 100.00 56.14 25.17 9.13 2.61 .00

7 7.0 100.00 59.07 28.69 11.49 3.63 .00

8 8.0 100.00 61.49 3179 13.77 470 .00

9 9.0 100.00 63.53 34.55 15.95 579 00
10 10.0 100.00 6527 37.00 17.99 6.87 .00
11 11.0 100.00 66.78 3920 19.89 7.91 .00
12 12.0 100.00 68.11 41.16 21.65 8.90 .00
13 13.0 100.60 69.27 42.93 23.27 9.83 .00
14 14.0 100.00 7031 44.52 24.76 10.70 .00
15 15.0 100.00 71.23 45.95 26.13 11.51 .00
16 16.0 100.00 72.06 4725 27.37 12.26 .00
17 17.0 100.00 72.80 4843 28.51 12.94 00
18 18.0 100.00 73.47 49.49 29.55 13.57 .00
19 19.0 100.00 74.08 5045 30.50 14.15 .00
20 20.0 100.00 74.62 51.33 31.36 14.67 .00
21 21.0 100.60 75.12 52.12 3214 15.15 .00
22 220 100.04 75.57 52.84 32.86 15.59 .00
23 23.0 100.00 75.97 53.50 3351 15.99 00
24 24.0 100.00 76.34 54.09 34.10 16.36 00
25 25.0 100.00 76.68 54.63 34.63 16.69 .00
26 26.0 100.00 76.98 55.12 35.12 16.99 A0
27 270 100.00 77.26 35.56 35.57 17.26 A0
28 28.0 100.00 77.51 55.97 35.97 17.51 .00
29 200 100.00 T1.73 56.34 36.34 17.74 00
30 30.0 100.00 77.94 56.67 36.67 17.94 A0
31 31.0 100.00 78.13 56.97 36.97 18.13 .00
32 32.0 100.00 78.30 5725 37.25 18.3¢ GO
33 33.0 100.00 78.45 57.50 37.50 18.46 (0
34 34.0 100.00 78.60 5773 37.73 18.60 .00
35 35.0 100.00 78.72 57.94 37.94 18.72 L0
36 36.0 100.00 78.84 58.12 38.12 18.84 00
37 37.0 106.00 78.95 58.29 38.29 18.95 .60
38 38.0 100.00 79.04 5345 38.45 19.04 20
39 390 100.00 79.13 . 58.59 38.59 19.13 .00
40 40.0 100.00 79.21 58.72 38.72 19.21 .00
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EULER’S METHOD

The timewise integration of lumped problems leading to ordinary differential equa-

tion(s) needs a treatment different from the timewise integration of distributed prob-

lems involving partial differential equation(s) considered in Section 4.4. Here, we

demonstrate this integration in terms of Euler’s method applied to Exs. 4.10 and 4.11.
Reconsider the lumped brake problem of Ex. 3.3 with

B ome=nve(1- 2 (4.77)
dr e s R t )

subject to the initial condition

80y = 0,
m, n, Vy, and 1, being known constants, and 8 = T — To. Rearranging Eq. (4.77) by
leaving the derivative term alone on the lefthand side,

4D _ g+ av 1 t) (4.78)
dz_m+n° )’ ‘

which may be expressed in a general form as

de

= =f6 6) (4.79)

where

f = f@¢6) =-mb+nW (1 - }r—) . (4.80)

¥

Now, consider an instant i where the solution is known and introduce a time-step size
T = At = fjs1 — I (4.81)

Inserting known r; and §; into Eq. (4.80) gives f:, 6). Interms of f(1;, 8:), prescribed
time-step size 7, and Eq. (4.79), we determine 6;+; at t;41 from Taylor’s expansion,

de!  t* d%
Biny = 6 = _—— e} 3 s 4.82
+1 9‘+Tdf‘.+2d1‘2,+ (‘E) ( )
or, in view of Eq. (4.79), from
o df

Biar = 6 + T, 6) + = —1| + 0. (4.83)

2 dr

i
Neglecting O (r?) and higher-order terms, Eq. (4.83) is usually approximated by
Bir1 = 6 + Tf (4, 60, (4.84)

which is known as Euler’s method. In the following example we use this method to
solve Eq. (3.27).
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Exampie 4.10
Reconsider Ex. 3.3. Let
8 = 0decm, & =05cm, p =03 p=10KkPa, V;=25mbs, ¢ =10s,
o = 4,000kg/m®, ¢ = 600T/kgK, p = 8,000kg/m®, ¢ = 450 J/kgK,
hy = hy = 30W/mAK, &k = 02W/mK, k=I15WmnkK

We wish to numerically determine the unsteady temperature of the brake and compare the
numercal solution with the analytical solution.

From the foregoing data we have, for
Ry A+ kg
pi1eid + peads’
60 W/m*-K
T (4,000 x 600 % 0.4 x 1072 4 8,000 x 450 x 0.5 x 107%) J/m* K

60 P
= 4=2><10 s,
3 x 10

and, for
L
p16181 + prcabs’
0.3 x 10* N/m®
n=—————— = 01K/m.
3 x 10°I/m~-K

Thern, from Eq. (4.84), we have

1
Oy =6+ [—Q x 107%6; + 2.5 (1 — E)}

For a time interval of 10 s we pick 7 = Ar = 0.1 s. The time history of & is shown in Fig, 4.24 and
compared with the exact solution, Eq. (3.34). For the interested reader, the FORTRAN program
EX4-10.F for this problem is listed in the Appendix. L2

=== Numerical

8
6
4l wwss— BExact
2
0

VU S U S S A
01 23 435 6 7 8 910
Ls

Figure 4.24 Tiansient temperature.
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100

80~ -

~—— Exact
W === Numerical

(41740 DO N VW R VU N |
61 2 3 45 6 7 8 910
t

Figure 425 Temperatures of the ball
and the bath.

Exameie 4.11

Reconsider Ex, 3.4. We wish to simultaneously determine the unsteady lumped ball and bath
temperatures.

The governing equations of this problem are [recall Egs. (335)-(3.37)]

46,
. —m1(6y — 62), G1(0)= 6o,

df;
o= ma(f —~ ), 6(0)=0,

and the exact solutions are given by Egs. (3.44) and (3.45). Here, let my = 0.1, mp = 0.2,
G = Ty — Top = 100, 7 = ma/my = 2, T = 1/(my +mz) = 10/3, and 7 = Az = 0.1. The
difference equations are

B = (Bo)i — Ty (B — Gk
and
(Baier = (Badi + tma(By — Bo)i-

The numerical solution is shown in Fig. 4.25 against the exact solution. For the interested reader,
the FORTRAN program EX4-11.F of this problem is listed in the Appendix. +

CONCLUDING REMARKS

In this chapter we introduced numerical techniques to solve two-dimensional steady/un-
steady conduction, one-dimensional convection, and the time integration of lumped
problems which are discussed and solved analytically in Chapters 2 and 3. An extensive
reference list is provided at the end of this chapter for interested readers regarding
accuracy, stability, efficiency, and geometry concerns. Some FORTRAN programs listed
in the Appendix are useful for students not familiar with computer languages. These
programs are easy to modify for the solution of exercise problems of this chapter.



REFERENCES 227

@ REFERENCES

4.1

42
4.3

4.4

4.5

4.6

4.7

48

4.9

410
411

4.12

4.13

414

415

4.16

4.17

4.18

419

4.20

421

4.22

4.23
4.24

4.25

M. Abramowitz and L. A. Stegun, Handbook of Mathematical Functions. Dover, New
York, 1972.

V. 8. Arpaal, Conduction Heat Transfer. Addison-Wesley, Reading, Massachusetts, 1966.,
V.5. Arpact, and P. 8. Larsen, Convection Heat Transfer, Prentice-Hall, Englewood Cliffs,
New Jersey, 1985.

R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical Analysis. PWS, Boston, MA,
1981.

B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods. Wiley, New
York, 1969.

B. Carnahan and J. O. Wilkes, Fortran 77 with MTS and the IBM-PC, The University of
Michigan, Ann Arbor, 1984a.

B. Carnahan and J. O, Wilkes, The IBM Personal Computers and the Michigan Terminal
System. The University of Michigan, Ann Arbor, 1984b.

G. Dahlquist and A. Bjorck, Numerical Methods. Prentice-Hall, Englewood Cliffs, New
Jersey, 1974,

A. D. Gosman, B. E. Launder, and G. J. Reece, Computer-Aided Engincering, Hear
Transfer and Fluid Flow, Ellis Horwood/Wiley, New York, 1985. )

IMSL FORTRAN 77 Library {User’s manual), Houston, TX, 1982.

Y. Jaluria and K. E. Torrance, Computational Heat Transfer. Hemisphere, Washington,
DC, 1986.

W. J. Minkowycz, E. M. Sparrow, G. E. Schneider, and R. H. Pletcher, Handbook of
Numerical Hear Transfer. Wiley, New York, 1988.

G. E. Myers, Analytical Methods in Conduction Heat Tmnsfe::. McGraw-Hill, New York,
1971.

S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC,
1930.

R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow. Springer-Verlag,
New York, 1985.

R. D. Richtmyer and K. W, Morton, Difference Methods for Initial-value Problems. 2d
ed. Interscience/Wilsy, New York, 1967.

P.J. Roache, Computational Fluid Dynamics. Hermosa, Albuquerque, New Mexico, 1983,
D. B. Spalding, Ine. J. Num. Methods Eng., 4,551,1972.

D). A. Anderson, I C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics
and Heat Transfer. Hemisphere/ McGraw-Hill, New York, 1984

J. Boyd, Spectral Methods-Lecture Notes for AQS 555,2 vols. The University of Michigan,
Ann Arbor, 1986.

D. Gottlieb and 3. A. Orszag, Numerical Analysis of Spectral Methods: Theory and
Applications. J. W. Arrowsmith, Bristol, England, 1981.

L. Fox and I B. Parker, Chebyshev Polynomials in Numerical Analysis. Oxford Univer-
sity, London, 1968

S. A. Orszag and M. Istaeli, Ann. Rev, Fluid Mech., 6,281, 1974

A.J. Baker, Finite Element Computational Fluid Mechanics. Hemisphere/McGraw-Hill,
New York, 1983,

N. Kikuchi, Finite Element Methods in Mechanics. Cambridge University, 1985,



228 Chap. 4 Computational Conduction

4.7 COMPUTER PROGRAM APPENDIX

Cmmm e e -
< EX4-1.F (START)

PROGRAM MAIN
IMPLICIT REAL*S (A-H,0-Z)
DIMENSION C(&,€),T(6),D(6)

D0 10 }=l,6
T(I)=0.
B{3)=0.
0o 20 I=1,6
C(I,20=0.
20 CONTINUE
10 CONTINUE

DO 30 I=2,5
C(I,I)=-4,
C(I,I-1)=1.
C(I, I+1D=1.
30 CONTINUE
C(5,6)=1.
C(6,6)m-2.
D(2)=-100.

DO 40 I=2,5
CCT, T+1)=CCT, 41}/ (-CLL, 1))
DCI)=D(X) /(-C(T,I)D
CLT+1, T+ =CCT+1, T+1D+CCT, T41D
D{T+1)=0(T+1)+DCL)

40 CONTINUE

T(2)=100.

T{6)=D{6)/C(E,6)

DO 50 Te5,2,-1

T(ID=C(T, I+1) *T(T+1)-D(1)
50 CONTINUE

WRITEC*, 700)
700  FORMAT(2X, 'Node Number',2X,'X [m]’,2X,'Exact Sol ution® ,2X,
+"Numerical Solution’,2X, 'Error %')
Do 60 I=1,6
Xea(I-1.3%0.02
TEXACT=100 . *COSH(~SQRT(5000.)*{0.1-X)) /COSH{-SQRT(5000.)*0.1)
ERR=ABS(T(I)~TEXACT) /TEXACT*104.
WRITE(*,710) I,X,TEXACT,T(I),ERR
210  FORMAT(SX,I3,6X,F5.2,5X,F6.2,12X,F6.2,8X,F6.2)
e CONTINUE
Ql=1000.*(2.*T(1}-T(2))
QLEXACT=T (1) *SQRT(4.%250.%20/0.01) *TANH (SQRT{5000.)*%0.1)
ERR=ABS (Q1-QLEXACT) /QLEXALT*100.
WRITE(™,720) QLEXACT,QL,ERR
720  FORMAT(2X, 'Heat flux',/,2X,’at the base',8X,E12.4,4X,E12.4,

+7X,F6.2)

STOP

END
Commmmm e O
C EX4-1.F (END)
[ e
Cmmmemmr e e i ———
C EX4-2.F (START)
[ - -

PROGRAM MATIN

IMPLICIT REAL*S (A-H,0-2)
PARAMETER (NMAX=101)
DIMENSION CONMAX,NMAX), TCNMAX) , DCNMAX)



Sec. 4.7 Computer Pregram Appendix 229

Nall
B=0.5

00 10 J=1,N '
T()=0.
D(I3=0.
DO 20 I=1,N
C(X,1)=0.

20 CONTINUE

10 CONTINUE

DO 30 Im2,M-1
CCI, D) =-(2.+B)
€(I,I-1)=1.
C(T,T+1)ul.

30 CONTINUE
CN-3,N)=1.

CON N)=-(2.4+B) /2.
D(2)=~100.

0O 40 I=2,N-1
C{T, T+1)=C(T, I+1) /(-C(I,E))
D(I)=D(1}/(-C(T, 1)
C(I+1, I+1)=C(I+1, I+1D+C (T, I+1)
D{I+1) =D (I+1)+D{I)

40 CONTINUE

T(1=100.

TN=D(N) /CCN,N)

DO 50 I=N-1,2,-1

T(I)=C(T, T+1) *T(I+1)-D(I)
50 CONTINUE

WRITE(¥,700)
700  FORMAT{ZX, 'Nede Number’,2X,'X [m]’,2X,'Exact Solution’,2X,
+’Numerical Solution’,2X,'Error %')
0O 60 I=1,N
¥=(I-1.)/(N-1.)*0.1
TEXACT=100. *COSH{-$QRT(5000.)*{0.1-X)) /COSH(-SQRT(5000.)*0. 1
ERR=ABS (T (1) ~-TEXACT) /TEXACT*100.
WRITE(*,710) T,X,TEXACT,T(I),ERR
710 FORMAT(8X,13,6X,F5.2,5%,F6.2,12X, F6.2,8X,F6.2)
&0 CONTINUE
Q1=20,%10, *(N-1)* (0. 5*(2+B)*T(1)-T(2))
QLEXACT=T{1)*SQRT(4.%250.%20/C, 01) *TANH (SQRT(5000.)%C.1)
ERR=ABS{Q1-QLEXACT) /Q1EXACT*100.
WRITE(*,720) QLEXACT,QL,ERR
720  FORMAT(2X, 'Heat flux',/,2X,'at the base’,8X,Fl2.4,4X,E12.4,

+7X,F6.2}
s5TO0P
END
[ttt Lol bt bl i
C EX4-2.F (END)
(o m o m o
e e m e e m
C EX4-3.F {(START)
Commmmmmmmmm———mmm i — et
PROGRAM MAIN
IMPLICIT REAL*8 (A-H,0-Z}
DIMENSION T(5,5)
DC 10 J=1,5
00 10 I=1,5
TCI,ID=0.
10 CONTINUE
DO 20 I=1,5

T(I,1)=100.



230 Chap.4 Computational Conduction

20 CONTINUE

T(3,3)=25.

T(3,2)=62.

T(3,4)=12.

T(4,2)=31.

T(4,3)=12.

TC4,4)=6.

T(2,2)=7(4,2)

T(2,3)=T(4,3}

TC2,4)=T(4,4)

DO 30 ITER=1,100

TCONV=1

DO 40 3=2,4

DO 40 I=2,4

TOLD=T(I, )

TCL, D =CTCT, I-D)+TCI+1, 1) +T¢E, J+1)+T(L-1,1)) /4.

ERR=ABS(T(I,1)-TOLD)

IF(ERR.GT.0.001) ICONV=0
40 CONTINUE

WRITEC*, 700) ITER,{(T(I,1),1=2,4) ,I=2,4)
700 FORMAT(SX,I3,5X,6F8.2)

IFCICONV.EQ.1) GOTO 900
30 CONTINUE

900  STOP
END
c ____________ e e e ok ke
c EX4-3.F (END)
e e e
Cmmm et
C EX4-4.F (START)
c ____________________________________
PROGRAM MAIN

IMPLICIT REAL*S (A-H.0-2)
DIMENSION T(4,6)

0O 10 J=1,6

B0 10 I=1,4

T(T,3)=0.
10 CONTINUE

T(4,2)=100.
T(4,3)=100.
T(3,23=66.
T(3,3)=66.
T(3,4)=66.
T(2,2)=33.
T(2,3)=33.
T(2,4)=33.
T(2,5)=33.

DO 20 ITER=1,100
TCONV=1
T, D=T(2,3)
T(3,1)=T(3,3)
T{4,9)=T(2,3)
T(4,4)=T(3,3)
DO 40 1=2,5
DC 40 I=2,3
ToLD=T¢I, 1)
TCL, D=CTCT, I-104TCT+1, D+T(T, J+1)+TCI-1,13) /4,
ERR=ABS (T(T,])-TOLD)
IF(ERR.GT.0.001) ICONV=0
40  CONTINUE
WRITE(*, 7007 ITER,((T(I,3),3=2,5),1=2,3)
700 FORMAT(3X,13,3X,8F7.2)
IFCICONV.EQ.1) GATO 900
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CONTINUE

STOP
END r

10

20

30

40

50

60

80
700

70

EX4-4.F (END)

EX4-5.F (START)

PROGRAM MAIN

IMPLICYT REAL*S (A-~H,0-Z)

DIMENSION T(5,6),X(6),Y(73,0I(5,6),51(5,6),D3(5,6),53(5,6)
D=1,

DO 10 J=1,6
DO 10 T=1,5
TLI,1)=0.
CONTINUE

£O 20 I=1,4
X(D=CI-1.)*D/3.

CONTINUE

DO 30 ¥=S,6

X(II=X(4)+(I~4.)*D/4.

CONTINUE

DO 40 1=1,4

Y(13=(J1-1.)*D/4.

CONTINUE

Do 50 1=5,7

Y(2)=Y(4)+(1-4.0*D/3.

CONTINUE

Do 60 J=2,6

Do 60 I=2,4

DICI,)=X{T)-X(I-1)

S, 13=(X(T+1) =X (D) / (XCEY -X{I-1))
DI(E,1x=Y(D-Y(I-1)

SICT, =Y (I+1) =YD /(YLD -Y(I-1))
CONTINUE
SI(4,3)=3,%(2.~SQRT(3.))/4.

T{4,2)=100.
T(5,3)=100.

D0 70 ITER=1,100

ICONV=]

T2, 1=T(2,3)

T(3,13=T(3,3)

T(5,4)=T(4,3)

T(5,5)=T(3,3)

T(5,6)=T(2,3)

DO 80 J1=2,6

00 80 I=2,4

IF((I.EQ.4).AND.(J.EQ.2)) GOTO 80

TOLD=T(ZL,1)

C0=1. /(ST(T, I)*0ICT, ) **2)+1. /(SI(T,II*DI(T, 1) **2)

Cle= (T (I+1, 1D+SICL, I3*TCE-1, 1)) /(SI(T, 1) *(SI(T, D) +1.}*DL(L, 13 #*2)
Q=(T (L, H1+53 (T, I*T(L, I-13) /(SI(T, I *(SICT, I)+1. 3*DI(T, I) **2)
T(I, 1)=(C1+L2) /CO.

ERR=ABS (T{I,2)-TOLD)

IF(ERR.CT.0.001) ICONV=D

CONTINUE

WRITE(*,700) ITER,(¥(Z,3),3=2,6),(T(3,3),1=2,5),(T(4,3),3u3,4)
FORMAT(3X,13,3X,11F6.2)

TF{ICONV.EQ.1) GOTO 900

CONTINUE

231
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$00 sTop
END
C ____________________________________
C EX4-5.F (END)
PSR PP L
(oo o e ot bt e
C EX4-6.F (START)
(et mmm s s i e
PROGRAM MAIN

IMPLICIT REAL*8 (A-H,0-Z)
REAL M,M1,M2,N,D1
DIMENSION C(11,11),0(11),T(11)

PE=10.

N=1./(1+PE)

M= (2, +FE}/ (L.+PE)
M1=(2.+PE+2.5) /(1. +PE)}
MZu(2 . +PE+5.) /(1. +PE)
D1=400. /{1.+PE)

00 10 3=1,11
D(I=0.
T(3)=0.

B0 20 I=1,11
(L, 7)=0.

20 CONTENUE

10 CONTINUE
T(1)=100.

Do 30 I=2,10
IF(T.LE.5) THENM
C(T, I)=-M
ELSEIF(I.GE.7) THEN
C(T, Dy=-M2
ELSE
(T, Dm-M1
ENDIF
C{T,I-D=1.
C(L, T+1)=N
30 CONTINUE
CC1L, KE) m-(M1=N)
C({11,103=1.

D{2)=~T(1)-D1
DO 50 I=3,5
D(I)=-D1
50 CONTINUE
b(6)=-D1/2.
DO 60 I=2,10
T (T, I+ =T, T+ /(-C(T, I))
D(I)=D(T)/{-C(L,I))
CCI+1, T+1)=C(I+1, T+1)+C(T, I+1)
OCT+1)=D (T+1)+D(T)
60 CONTINUE

T(11)=D(11)/C(1L,11)
DO 70 I=10,2,-1
TCI)=C(T, T+1) *T (T+1)-D(T)
70 CONTINUE
40 CONTINUE

WRITEC*,*) ' NODE’,' TEMPERATURE'
DO 80 I=l,il
WRITE(*, 700} I,7(D)

80 CONTINUE

700  FORMAT(2X,14,F10.4)
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10

30

700

PROGRAM MATN
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION TN(6),TN1(E)

DTw],.
F=0.25

D¢ 10 J=1,6
TN(I)=0.
CONTINUE
TN(1)=100,

0O 20 N=1,50

TN1(1)=100.

TNL(E)=0.

D0 30 I=2,5

TNL(ID=F* (TNCT-1)+ (1. /F-2. ) *TN(T)+TN(I+1))
CONTINUE

T=N*DT

WRITE(*,700) N,T,(TN1(L),I=1,6)
FORMAT (2X,T4,2X,F6.1,2X,6F7.2)
DO 40 I=1,6

TN{I)=TN1(T)

CONTINUE

CONTINUE

STOP
END

EX4-7.F (END)

EX4-8.F (START)

20

30

PROGRAM MAIN
IMPLICIT REAL*S (A-H,0-2Z)
DIMENSION C(6,6),0(6},TN(6) . TN1(E)

DT=l.,
F=0.25

DO 10 I=1,6
TN(I)=0.
TN1(I)=0.

DO 20 I=1,6
(T, 1=0.
CONTINUE
CONTINUE
TN(1)=100,
TNL(1)=100.
DG 40 N=1,50

DO 30 I=2,5
(T, D=-(2.+1./F)
C(L,I-1)=1,

€¢I, I+1)=1.
CONTINUE
D(2)=-TN(1)-TN(2) /F
DO 50 13,5
B(I)=-TN(I)/F

Computer Program Appendix
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50

60

70

700

20
10

30

50

60

CONTINUE

DO 60 I=2,.4

(T, I+1)=CCT, I+1) /{-C(1, D)
D=0/ (-C(X, 1)

CCT+1, T+1) =C(TaL, T+1)+C (T, I+1)
D{TI+1)=D{I+1D+D(1)

CONTINUE

TNL{S)=D(5)/C(5,5)

DO 70 I=4,2,-1
TNLCD)=C(T, T+1) *TNL(T+1) DY)
CONTINUE

T=N*DT

WRITEC*, 700) N,T,{TNLCT),I=1,6)
FORMAT (2X, I4,2X,F6.1,2X,6F7.2)
DO 80 I=1,6

TN(T3=TNL1(I>

CONTINUE

CONTINUE

EX4-9.F (STARTD

PROGRAM MATN
IMPLICIT REAL*E (A-H,0-Z)
DIMENSION €(6,6),D(6),TN(E),TNL(E)

DT=1.
F=0.25

pO 10 1=1,6
TNCI)=0.
TNL(D)=0.
D0 20 I=1,6
C(T,1)=0.
CONTINUE
CONTINUE
TNCL)=100.
TNL(L)=100.

DG 40 N=1,50

DO 30 I=2,5

C(L,D=-(2.42./F)

C(I,I-13=1.

C(I,I+1)=1.

CONTINUE

D(2)=-2, *TN{1)+2.*{L. ~1./F)*TN(2)-TN(3)
Do 50 I=3,4
DCT)=-TN(I=D)+2. * (1. -1, /FY¥TN{I) ~TN(T+1)
CONTINUE

DESY=-TN(4)+2.*(1.-1. /FI*TN(5)

DO 60 I=2,4

€T, T+1)=C(L, T+1)/ (~C(I, 1)
D(D)=D(I}/(-C(T, 1)

CCT4L, T+ =C(T+L, T+1+C (T, T+1)
D(T+1}=D (T+1)+0(E)

CONTENUE

TNLCS)=D(5)/C(5.5)

0O 70 I=4,2,-1

TNLCI)=C(E, T+1)*TNL(T+1)-D (D)
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700

80
40

700
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CONTINUE

T=N*DT

WRITE(*,700) N,T, (TNL(I),1I=1,6)
FORMAT (2X,14,2X,F6.1,2X,6F7.2)
DO 80 I=1,6

TN(ID=TN1(I)

CONTINUE

CONTINUE

stToP

PROGRAM MATIN
IMPLICIT REAL*S (A-H,0-2)
DIMENSION T(101)

T(L=0.
H=0.1

WRITE(*,700)
FORMAT(" TIME  NUMERICAL EXACT")

D0 10 I=1,100

TIME={I-1.}*H

F=-0.002%T(I)+2,5%(1.~-TIME/10.)

TCI+1)=T(I)+H*F

TEXACT=1250.* (1. -EXP(-TIME/500))-62500 . *
+(TIME/300- (1. -EXP(~-TIME/500))}

WRITE(*,710) TIME,T(I),TEXACT

CONTINUE

FORMAT (1X,F4.1,2F10.2)

sToe

END

700

PROGRAM MATIN

IMPLICIT REAL*8 (A-H,0-2)
REAL M1,M2,ETA,TAU
DIMENSION T1{101),T2(101)

M1=0.1

M2=0.2

TO=100.
ETA=MZ /M1
TAU=1,. /(M1+M2)
T1(1)=TO
T2(1)=0.

H=0.1

WRITE(*, 700}
FORMAT(' TIME NUMERICAL  EXACT  NUMERICAL

Computer Program Appendix
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10
710

DO 10 I=1,100

TIME=(I-1.)*H

Fl=—M1*(T1(I}-T2(1])

F2=M2* (TL(I)-T2 (1))

TL{I+1)=TL{II+H*F1

T2 (T+1)=T2 (1) +H*F2

TEXACT1=TO/ (1. +ETAY * (ETA+EXP (~TIME/TAU})
TEXACTZ=T0*ETA/ (1. +ETAY* (L. ~EXP(-TIME/TALD)
WRITEC*,710) TIME,TL(E),TEXACTL, T2(I),TEXACT2
CONTINUE

FORMAT(1X,F4.%,4F10.2)

STOP

END

@ EXERCISES

41

4.2

4.3

4.4

Reconsider Ex. 4.3. Use a parabolic interpolation for the initial temperatures. Comment
on the number of iteration steps.

Determine the effect of a finite heat transfer coefficient on Ex. 4.4. Use £ = 10 Wim? K
for both inner and outer surface.

Cansider a bar of square cross section. Write the finite-difference formulation of the

problem for the grid shown in Fig. 4P-1. Solve these equations by (a) iteration, (b} direct

elimination. Data: & = 10° W/m3, L = 20 mm, k = 20 W/m-K, k = 700 W/m* K,
e =25°C.

pe e
L k
L e——ip
R, e
L L
Figure 4P=1

The steady temperature distribution of a rod of square cross section is desired using a finite-
difference formulation and an iteration solution (Fig. 4P-2). Employ the largest possible
netwark, but do not lump the whole cross section, Data: ¢” = 40,000 W/m?, L = 50 mm,
k=20 Wim-K, & = 1,500 W/m?-K, T, =0°C.
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BT =0
| I
— L S
—_ L S
B —— l O
h, Tnu
Figure 4P-2

4.5 Thesteady temperature distribution of a square plate of thickness & in an ambient at 0°C
and with side boundary temperatures of & °C and 100 °C is desired using a finite-difference
formulation and an iteration solution (Fig. 4P-3). Employ the largest possible network,
but do not lump the whole cross section. Data: I = 50 mm, § = 3 mm, k = 15 W/m-K,
hy = 200 Wim? K, ky = 40 W/m?.K.

By O

k20 100

Figure 4P-3

4.6  Thesteady temperature distribution of a thin square plate is desired using a finite-difference
formulation and an iteration solution (Fig, 4P—4), Employ a network finer than the coarsest
possible network. Data: L = 40 mm, § = 2 mm, & = 400 W/m-K, & = 1,000 W/m?2.K,
w" =107 W?, T, = 20°C,

Figure 4P—4
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4.7

4.8

4.9

410
411

412
4.13

The upper and lower surfaces of a triangular fin of length 90 mm transfer heat with a coef-
ficient = 200 W/m?-K to an ambient at temperature T, = 20 °C. The base temperature
of the fin is maintained at Ty = 120 °C (Fig. 4P-5). The thermal conductivity of the fin
material is ¥ = 50 W/m-K. Write the finite-difference formulation of the problem by
considering a nodal spacing of 15 mm. Determine the tip temperature of and the heat
transfer to the fin, and the efficiency of the fin, by the method of iteration.

Ty=120°C

|
= 90 mun

Figure 4P-5

Consider a rod with a trapezoidal cross section as shown in Fig. 4-P6 with the specified
temperature boundary conditions. Determine the steady cross sectional temperature dis-
tribution.

/2

=

100 0

!
Figure 4P—6

Consider an infinitely long pipe with diameter D = 0.2 m. The upstream half of the pipe is
insulated and the downstream half is subjected to a uniform heat flux ¢ = 10 kW/m®. A
liquid metal (& = § x 10~5 m?/s) with bulk velocity ¥ = 0.01 m/s flows slowly through the
pipe. Including the effect of axial conduction, determine the axial temperature distribution
within the liquid metal.

Determine the stability criterion for the explicit scheme of an unsteady fin.

Reconsider Ex. 4.7. Assume that the surface that was kept at constant temperature of
0 °C now transfers heat with a coefficient & to an ambient at 0 *C. Determine the transient
temperature distribution within the plate for k = 10, 100, 1,000 W/m?-K by using an
explicit scheme.

Repeat Prob. 4.11 by an implicit scheme.
Repeat Prob. 4.11 by the Crank-Nicolson scheme.
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4.14 Consider a thin flat plate (of thickness §; = 1 cm, density o; = 8,000 kg/m?®, and specific
heat ¢; = 500 J/kg-K)} next to an ambient (of thickness d; = 5 cm, density oz = 1,000
kg/m?, and specific heat ¢; = 4,000 J/kg-K) at an initial temperature T, = 0°Cwith b =
200 W/m* K (Fig. 4P-7). One side of the plate and one side of the ambient are insulated, .
From this condition, electrical energy u" = 2 k'W/m?® begins to be generated within the
plate, Determine the unsteady lumped temperatures of the plate and the ambient.

"

U

Figure 4P-7
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In Chapter 1 we distinguished between the three modes of heat transfer, and so far we
have studied the conduction mode. From the definition of these modes, we introduced
convection as being conduction (and/or radiation) in a moving medium (solid as well as
fluid). However, solids are not suited for transport of energy, because they cannot be
piped and branched while in motion. Also, radiation in a moving fiuid, besides being
rather involved, is less frequent in technological problems. It will be briefly introduced
in Chapter 10. Hereafter in this text, unless otherwise specified, we assume convection
to be conduction in 2 moving fluid.

The formulation of convection problems, to be outlined by including the effect
of fluid motion into conduction, presents no real difficulties. Let us proceed to the
formulation of these problems by the help of some conduction problems formulated in
the preceding chapters. Recall the original conduction problem,

a7
0 = = (1.83)

In Chapter 2, we added energy generation,

ar

0= —
dx?

ulh‘
-, 2.48
+— (2.48)
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and the bulk motion (enthalpy flow) of an incompressible fluid (recall Section 2.5),
' wdl  &°T  u”

= — 5.1
o dx dx® + Kk’ 1)

# being the bulk velocity in the x direction and « the thermal diffusivity. In Chapter 3
we included two-dimensional conduction,

B ar T W

0= — + —5 + —. 52
axt Ay k $2)
From Egs. (5.1) and (5.2), and with two-dimensional motion, we have
1/ 8T 8T *r T W
—lu— — =+ — + —, 53
a(u3x+v8y) 8x2+8y2+ k (:3)

where (, v) are the x and y components of the velocity V. In terms of the symbolic
(vector) notation, and with extension to three dimensions, Eq. (5.3) may be generalized
to

L

1
SVYT = VT + X (5.4)
o k

Further extension to the unsteady case presents no difficulty but need not be considered
here. .

Suppose we now wish to determine the temperature of a fluid in motion from
Eq. (5.4). First we need to know the local velocity of the fluid. It can be shown, in a
manner similar to the development leading to Eq. (5.4), but starting with Newton’s law
of motion,

4 (mV) =F
—(m = .
dr .
that the steady motion of an incompressible viscous fluid is governed by
1 2 1
-V-VV = V'V + —(-Vp), (5.5)
v 24

where v and 1 denote the kinematic and dynamic viscosities, respectively, and Vp
denotes the pressure gradient. The details of the development leading to Eq. (5.5) are
not important for the present discussion. Note, however, the term-by-term similarity
between Eqs. (5.4) and (5.5).

For a constant-property fluid, Eq. (5.5) is decoupled from Eq. (5.4) and is the only
equation needed for velocity. Then, Eq. (5.4) in terms of the velocity obtained from
Eq. (5.5) gives the steady temperature of an incompressible fluid in motion. Keep in
mind, in addition to fluid temperatures, that convection studies are ultimately and more
importantly concerned with heat transfer through a solid-fluid interface. In terms of a
heat transfer coefficient £, this heat transfer is

qgc = h{Ty — Toa)y (56)
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where T,, and Tw denote the interface and ambient temperatures, respectively. Also,
expressing gc by means of conduction in the fuid (Fig. 5 .1}, Eq. (5.6) may be written as

ar
—k (_._) = h(Ty — Teo): (5.7)
3y /.,
or, in terms of a characteristic length £ for the fluid, as
3] 3 Ty — T
Ny = — = — (_E—""'—) 1 y* = Z‘r (5'8)
k 8y" \Tw — T/, £

where k is the conductivity of the fluid and Nu is the Nusselt number.! Thus, the
convection heat transfer through an interface is the wall gradient of the dimensiorless
finid ¢temperature. For all practical purposes, the distribution of the fluid temperature
is confined to a narrow region (boundary layer) next to the wall. So, as we have done in
Chapter 1 (recall Fig. 1.13), this wall gradient may closely be approximated by a thermal
boundary layer,

Nu ~ § (1.59)

Figure 51 Iiustration of the

convection concept.

1 Clearly, gc may also be expressed by means of conduction in the selid, which teads to the definition
of the Biot number [recall Eq, (3.1)]. Nate the fundamental difference in the use of Eqs. (3.1) and (5.8). In
conduction problems, k and T, are given, and Eq. (3.1) is employed as a boundary condition. Because of
their complexity, however, convection problems are usually solved in terms of simpler boundary conditions
unrelated to h (such as specified temperature or heat flux), and Eq. (5.8) is utilized for the evaluation of 4.
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We now proceed to a brief review of the three methods available for the evaluation of
convection heat transfer:

¢

1. Analytical solution of the fiuid teraperature distribation. The wall gradient of
this distribution gives the heat transfer coefficient. The exact analytical solution’
of convection problems is rather involved and is beyond the scope of this text.
The concept of boundary layer (penetration depth) provides a convenient tool for
approximate analytical solutions and will be considered in Sections 5.1 and 5.2.

2. Analogy between heat and momentum transfer The analogy coupled with wall-
friction calculations or measurements provides the heat transfer coefficient. In
Section 5.1 we develop this analogy for a particular problem which leads, in terms
of the wall-friction coefficient of this problem, to the heat transfer coefficient.

3. Dimensional analysis. In the absence of an analytical solution or analogy be-
tween heat and momentum transfer, the (dimensionless) heat transfer coefficient
may be obtained from the correlation of experimental data in terms of appropri-
ate dimensionless numbers obtained from a dimensional analysis. In Section 5.3
we shall review the foundations of dimensional analysis in a manner particularty
suited to heat transfer studies.

Actually, convection heat transfer in nature occurs in two different forms, the so-called
natural convection and forced convection. A simple illustration is the motion of air
around an ordinary light bulb. When the effect of temperature on the air density is
taken into account, the air heated around the bulb gets lighter and rises relative to
cold and denser air far from the bulb [Fig. 5.2(a)]. The buoyant force is the driving
mechanism of natural convection., The most frequently encountered buoyancy is asso-
ciated with gravity. Examples are the cooling of mechanical devices (such as heating,
air conditioning, refrigeration equipment, etc.), the cooling of electrical systems (such
as transmission lines, transistors, transformers, electric furnaces, etc.), and the comfort
of humans and animals in a quiescent atmosphere. Other sources of natural convec-
tion are centrifugal forces which provide the internal cooling of turbine blades, inertial
forces which affect cryogenic liquids in accelerating rockets, etc. Note that the rates of
heat transfer by natural convection (resulting from gravity) are set by buoyancy and to a
large extent are beyond our control. When heat transfer by natural convection is inad-
equate, fluid motion may be increased mechanically, say by a pump or fan [Fig. 5.2(b)].
Rates of heat transfer are then controlled largely by the power driving the pump or
fan and consequently are within our control. This form of convection, known as forced
convection, is of great technological importance and finds many appiications. Examples
are the cooling of gasoline and diesel engines, gas turbines, and various heat exchangers
in conventional and nuclear power plants, etc.

Natural convection and forced convection, depending respectively on the magni-
tude of buoyancy and the power of the pump or fan, tay be laminar or tarbulent. As
we know from fluid mechanics, the streamlines of a laminar fiow behave in an orderly
manner, while the streamlines of a turbulent flow fluctuate irregularly about a mean
flow. In this chapter, we shall deal with laminar convection. Turbulent convection will
be left to Chapter 6,
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Figure 5.2 (a) Natural and (b) forced
convection.

5.4 BOUNDARY-LAYER CONCEPT. LAMINAR FORCED CONVECTION O

In Chapters 2 and 3 we have already introduced the concept of penetration depth for
an approximate solution of conduction problems (recall Section 2.4.1, and Exs. 2.11
and 3.9). This concept, which we utilized to determine the steady or unsteady pene-
tration depth of heat (or thermal boundary layer) in solids and stagnant fluids, actually
applies to all diffusion processes, such as diffusion of momentum, mass, electricity,
and neutromns, as well as diffusion (or conduction) of heat. It is a convenient tool for
an approximate solution of conduction problems and is indispensable for convection
problems, which are considerably more complicated than conduction problems.
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1g

1)

X

Figure 5.3 Linear temperature 5
profile.

For example, in terms of a parabolic profile approximating the temperature dis-
tribution in an infinite fin, we obtained in Section 2.4.1

§ = 6/m, (2.125)

which is an illustration of constant penetration depth (or boundarylayer). By definition,
the effect of conduction is negligible beyond the penetration depth. This effect increases
monotonically from naught at the edge of the penetration depth to a maximum at the
base of fin. Now consider a further approximation, replacing the parabola with a linear
profile (Fig. 5.3),

f{x) x
LA 5.9
o 5 (5.9)
Inserting Eq. (5.9) into Eq. (2.123) results in
1
L}
) 2
or
5 = ~2/m. (5.10)

Clearly, except for a numerical constant depending on the assumed approximate pro-
files, Eqgs. (2.125) and (5.10) for the penetration depths are identical.

Separately, on dimensional grounds, we have from the first law applied to a system
of § extent (Fig. 5.4),

6
kA< ~ h(P5)E (5.11)

m]ml
Y
§
——4
e

Figure 5.4 Schematic of the control
volume.
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or
8§~ 1/m, (5.12)

which is silent to the numerical constant but otherwise identical to the preceding results.
For another illustration of the penetration-depth concept, using 2 parabolicprofile,
we obtained in Ex. 3.9

5 = (12a0)'?,

which is an unsteady penetration depth in a semi-infinite plate. In terms of a linear
profile, following the procedure used in Ex. 3.9, we get

§ = (dan)!?,

a result identical to Eq. (3.118) except for the numerical constant.
Again, on dimensional grounds, we have from the first law (applied this time to a
control volume? of § extent as shown in Fig. 5.5),

5 8
peAB= ~ kAx (5.13)

Qr
5 ~ (ar)’?, (5.14)

which is silent to the numerical constant but otherwise identical to the results obtained
in terms of the assumed approximate profiles.

The foregoing examples clearly demonstrate that the boundary layer/penetration
depth associated with a problem can be obtained from strict dimensional considerations
except for the numerical constant involved with it. The nomerical value of the constant
requires the integration of the governing equation in terms of an approximate profile.

A

5
pcA8 T

1
i
i
1
i
}
I
]
!
]
]
!

Figure 5.5 Schematic of the
control volume.

2 Note that mass fiow pA{d3/dt) into the contrel volume carries no enthalpy because of assumed
fa = 0.
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8

\\
=

7
7 i
Observer
.
~ /
_’_Equal time
41T  increments
0 T

7

Figure 5.6 Thermal boundary layer
relative to a moving observer.

In the present problem, an observer moving with constant velocity U paraliel to
the surface of the solid observes the boundary layer shown in Fig. 5.6. Replacing ¢ of
Eq. (3.118) with x /U, .

§ = (12ax/NY2, (5.15)
which is a spatial boundary layer. Note that in terms of the ¢ = x/U transformation,
197 8T
-— = — (5.16)
o ot 3y
becomes
Uar  @T
—— = —7, (5.17)
o ox Ay

by which the present problem may be interpreted as a semi-infinite solid at temperature
To; moving at constant velocity U relative to a wall kept at temperature T, [Fig. 5.7(a)].

Also, from the first law applied to the control volume shown in Fig. 5.7(b), we
have, on dimensional grounds,

1
0 ~ pclls [Too - E(Tw + Too)r] + qux
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—— ]
T

§ ~ (o TH2

et ek iann s

G
(b)
Figure 5.7 (a) Thermal boundary layer, (b)
thermal energy balance.
or
1
E'GCUB(TW — Too) ~ qux. (5.18)

However, an estimate on g, is not readily available. Note that gy, = co asx —> 0
(why?) and

T, = T,
qu ~ k= (5.19)
for any x far from x = 0. Inserting Eq. (5.19) into Eq. (5.18) gives
1 T, — T
5PCUS(Ty — Teo) ~ kxw—a-ﬁ (5.20)
or
§ ~ (ax/U)*? (5.21)
or '
T~ pel (5.22)
) ¥ '

Pe, = Ux /o being the local Peclet number.
Now, we wish to determine the local heat transfer from the boundary of the semi-
infinite solid (or an inviscid fluid). In Chapter 1 we defined convection as

gc = (g@x)fuid boundariess
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and, in terms of the local heat transfer coefficient® (Newton’s cooling law),

; gc = h(Ty ~ Tao), {5.23)
we gbtained
Tw — T,
ATy — Too) ~ k—ts-f-
or
k
B~ — 5.24
: (524)
or
hx x
'? - Nux o~ E, (525)

Nuy being the local Nusselt number (or dimensionless heat transfer coefficient). In
terms of Eq. (5.22) we have, from Eq. (5.25),

Nu; ~ Pel2, (5.26)

For the constant involved with Eqs. (5.22) and (5.26), actual temperature distributions
are needed. In what follows is a first-order approximation in terms of assumed linear
profiles.

Exameie 5.1

Consider the control volume shown in Fig. 5.8.

The first law applied to this control volume gives

'] 34
pe [ u(r - Ty = f g dx. (5:27)
0 0

T

Figure 5.8 Schematic of the control
volume,

3 In Chapter 1 we overlooked the local nature of this coefficient.
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which, in terms of the Fourier law, leads to the governing equation*

&
f w(T = T dy
Q

For a uniform U, Eq. (5.28) becomes

ar
dx.
ay .

I x
Uf (TuTm)dyx—af
i 0
With a linear temperature profile shown in Fig. 5.8,
T~ Too 1 ¥y
Ty— T 8
Eg. (5.29) yields
Nuy = % = 0.5,

Table 5.1 shows the numerical constants resulting from the use of higher-order profiles.

Table 5.1 Constants from various temperature profiles

Constants Linear

Parabolic

Cubic

Exact

NuyPel | 0,500

0.577

0.530

0.565

In Chapter 1 we learned the implicit relation

Nu = f(Motion).

(528)

(5.29)

(5.30)

(5.31)

Here, we obtain with Eqg. (5.31) an explicit form of this relation. Note that the foregoing devel-
opment leading to Eq. (5.26} is for (a semi-infinite solid moving with) uniform velocity U. As
shown in Table 5.1, the use of higher-order profiles in general but not always gives more accurate
results. These considerations are beyond the scope of this text (see, for example, Arpac, 1966,

or Arpact and Larsen,1984).

4 Integrated governing equations include also the boundary conditions.

%
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v

X

Figure 5.9 Actual velocity profiles.

In actual convection problems dealing with fluids, viscous forces retard the flow
across a momentum boundary layer 8 and bring the velocity down to zere on the bound-
ary. ‘Then, the flow becomes two dimensional because of conservation of mass (Fig. 5.9).
The momentum boundary layer is usually different from the thermal boundary layer,®
To evaluate the heat transfer in fluids near a boundary, first the velocity boundary layer
needs to be determined.

For an incompressible fluid, the conservation of mass for the control volume shown
in Fig. 5.9 gives, on dimensional grounds,

1 1
UGS ~ EpUmﬁ + -z-pVx. (5.32)

The momentum balance for the same control volume yields

2 1, 1
pULE — Z,oUma - EprVx ~ TyX

or, in terms of Eq. {5.32),
1
ZpUOZQB ~ TyX. (5.33)
Note that 7, — o0 as x — 0 [recall the discussion leading to Eq. 5.19)] and assume
for a Newtonian fluid
Uoo

Ty ™~ M Y (534)

for any x far from x = 0. Inserting Eq. (5.34) into Eq. (5.33) gives

1 U

ZpU;a ~ ,Lwa—gi (5.35)
or

§ ~ (ux/Um)'? (5.36)

5 When dealing with problems involving two boundary layers, § is used for momentum and §; for
thermal energy. .
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or
x
5~ Rel?, (5.37)
Re, = U,x/v being the local Reynolds number.
Here, the wall friction (resulting from the momentum flow retarded in the bound-
ary layer) may be evaluated from

1 Tw
—f = —=, 5.38
3= (s38)/
fx being the local friction coefficient. Then, in terms of Eq. (5.34),
1 v v X
—fy ~ = - 5.39
2f" Ud  Uox (a) (539
which yields, in view of Eq. (5.37),
1 1
2~ R (5:40)

For the constant involved with Egs. (5.37) and (5.40), the actual velocity distribution is
needed. In what follows is a first-order approximation based on linear profiles.

ExampeLe 5.2

Consider the control volume shown in Fig. 5.10.

U U

(b)

Figure 5.10 (a) Velocity boundary layer,
(b) momentum balance.
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The conservation of mass for this control volume gives
8 x
pUS = pf udy -{—p[ vdx.
0 0
The momentum balance for the same control volume yields
& x x
oU%s — ,of wdy — onof vdx = [ Ty dx
[ 0 0

or, in terms of Eq. (5.41),

4§ x
p[ u(Up — u)dy = f Tw 4X.
0 0

For a Newtonian fluid, Eq. (5.43) leads to the governing equation®

§ LT
f WUy — ) dy = u] -] dx.
0 o \dy/

In terms of a first-order linear profile shown in Fig. 5.10,

u

z 2
U &
Eq. (5.44) yields
Unb f‘ dx
—_— =Y ——
6 a &
or, after differentiating with respect to x,
dé v
$— = G,
dx U
which can be rearranged as
ds* v
—_— = 12—
dx o

Integration of this result readily gives

vx 2
§=3464( —
co
and
x e 1, 0289
E = 0.289R6’x N Ef:t = E;{/—i.

Table 5.2 shows the numerical constants resulting from the use of higher-order profiles.

6 Integrated governing equations include also the boundary conditions.
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(5.48)

(5.49)

(5.50)
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Table 5.2 Constants from various velocity profiles.

Constants Linear Parabolic Cubic Exact

1 .
3 FeRel? 0.289 0.365 0.323 0332

To evaluate the heat transfer in fluids with different thermal and momentum
boundary layers, we have to examire the velocity of the enthalpy flow. First, consider
the case, § > 8. Later we shall comment on the cases § ~ & and 8 « 8. Note
from Fig. 5.11 that, assuming linear profiles for § > &, the velocity appropriate for the
enthalpy flow is

U = Uxk(8s/8), (5.51)
and the enthalpy flow of Eq. (5.20) in terms of this velocity yields
82(80/8) ~ ax/Us (5.52)
or, in view of Eq. (5.36),
8o ~ (Ux/Uso)S(ax/ Us)? (5.53)
or
ia ~ Rel2psf3, (5.54)
U

Ua(B4/3) T Ty

Figure 5.11 Similar velocity
and temperature profiles.



Sec. 5.1 Boundary-Layer Concept. Laminar Forced Convection ) 255

Pr = v/a = Pe,/Re; being the Prandfl number. Note from the ratio of Egs. (5.37)
and (5.54) that

" 5
5~ Prif3, (5.55)

That is, & and 8z change along x, but their ratio is a fluid property and does not depend
on x. This is an important result which needs more attention.

Another approach leading to Eq. (5.55) and based on the analogy hetween mo-
mentum and heat assumes’

) Axial momentum flow Axial enthalpy flow
Change in )

Transversal momentum flux ~ Transversal heat flux

which in terms of Fig. 5.11 yields

U g\ Tpo — T,
VP2 e, (Um_?_) To = Tu
X X

8
- (5.56)
Uog kToq - Tw
e 52
or

]
— = prif|, (5.57)
8y

Thus, under analogy between momentum and heat transfer, the unknown constant of
Eq. (5.55) becomes unity.

The heat transfer coefficient in the present case (corresponding to § > &) is
readily obtained by inserting Eq. (5.54) into Eq. (5.25). The result is

Nu, ~ Rel?prtf3, (5.58)
Dividing this result by Re, Pr, introducing the local Stanton number,
Nu, Nu,

Sty = = .
* 7 Pey T Re.Pr

(5.59)

and employing the definition of the friction coefficient, an alternative form of Eq. (5.58)
is found to be

1
St Prif® ~ 5 Fe- (5.60)

7 When two different fields have similar governing equations and boundary conditions they are called
analogous. A majority of momentum and thermal boundary layers, however, are not analogous. For
example, a pressure gradient in the momentum boundary layer or an energy generation in the thermal
boundary layer, or an incompatibility between momentum and thermal boundary conditions, eliminates
this analogy. :
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Actually, with the analogy between momentum and heat, we have the equality
qu _ k(T — Tu)/%
Tw ulUso /8

because the proportionality constant involved with gy, is identical to that involved with
1,,. In terms of the heat transfer coefficient and the friction coefficient, Eq. (5.61) may
be rearranged as

(5.61)

1

Bk 178
= —| = 5.62
Uso/V 2(%)ﬁ 62
or, in view of Eq. (5.57), as
1
Sty Pril? = 5 fels (5.63)

which implies a proportionality constant of unity in Eq. (5.60). This result (of analogy)
coupled with computations (or measurements) only on the skin friction (available from
isothermal studies) provides indirect information about heat transfer in forced laminar
flow over a horizoatal plate. This is an important result, because isothermal flows are
easier to study analytically or experimentally than thermal flows.

For the constant involved with Eq. (5.58), actual velocity and temperature dis-
tributions are needed. In what follows is a first-order approximation based on linear
profiles.

ExampLe 5.3
Reconsider the governing equation given by Eq. (5.28).

In terms of assumed linear profiles,

|7
= 22 (5.64)
3
and
T-T,
Bl Y S 4 (5.65)
Tu = To 5

Eq. (5.28) becomes
' v fﬁy 1-2)a fzdx (5.66)
- = =@ | — .
“h i\ %)k

or, after the integration of the lefthand side with respectto y,
Uood2 * dx
20 | . (5.67)
68 1} 89

Now, assuming §/85 to be constant for similar velocity and temperature profiles, taking the deriva-

" tive on both sides of Eq. (5.67) with respect to x leads to

ds 5
520 6 (—‘1) Z, (5.68)
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which can be fcarrangcd as
r da; [+4 &
— =12(—]—. (5.69)
dx

Integration of this result readily gives

ox V2 8 2
8g = 3.464 (m) (--) , (5.70)
Us b

and the ratio of Eq. (5.49) and (5.70),.

172
) 5
— = pA22) (5.71)
L) 3
which is
8 1/3
— = Pri3, (5.57)
&y
Then, inserting Eq. (5.57) into Eq. (5.70) and inverting the result relative to x yields
2 = 0.289ReV2 P, (5.72)
G
In terms of the assumed linear temperature profile, the heat transfer is
Nip = = = (2} 2 (5.73)
y = — = [—-]— .
g 5/ 8
or, in view of BEq. (5.72) or the product of Eqs. (5.50) and {(3.57),
Nu, = 0.289Re}*pri3, (5.74)

Table 5.3 shows the numerical constants resulting from the use of higher order profiles. ¢

Table 5.3 Constants from various profiles.

Constants Lingar | Parabolic | Cubic | Exact

NuyRe[12 pr=if3 0.289 03685 0.323 0.332
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4}/%

////l“ % /

Figure 5.12 Prandtl number ranges for various fluids.

So far, we have considered the case § > 8. Equation (5.57) indicates that §/8p =
P73/ and & can only be greater than & if Pr > 1. However, as shown in Fig. 5.12, the
Prandtl number for various boundary layers changes over the wide range

0 < Pr<co

and corresponds to §/8g < 1 for liquid metals, 5/ ~ 1 for gases, §/3s > 1 for water,
and &/8¢ > 1 for viscous oils. Accordingly, Eqs. (5.57) and (5.63) apply to viscous oils,
water, and approximately to gases; Eq. (5.26) applies to liquid metals.

Here we terminate laminar forced convection and proceed to laminar natural
convection.

5.2 LAMINAR NATURAL CONVECTION O

Consider a heated vertical plate in a quiescent fluid. The plate heats the fluid in its
neighborhood, which then becomes lighter and moves upward. The force resulting
from the product of gravity and density difference and causing this upward motion is
called buoyancy. The fluid moving under the effect of buoyancy develops a vertical
boundary layer about the plate. Within the boundary layer the temperature decreases
from the plate temperature to the fluid temperature, while the velocity vanishes on the
plate walls and beyond the boundary layer and has a maximum in between (Fig. 5.13).
Actually, in 2 manner similar to forced convection, the momentum boundary layer
of natural convection is expected to be thicker for larger Prandtl numbers than the
thermal boundary layer. However, the characteristic velocity for the enthalpy flow
across 8z should be scaled relative to 8y rather than 3.

In the preceding study on forced convection we neglected the buoyancy force
relative to the inertial force. Here, we neglect the inertial force relative to the buoyancy
force. The momentum balance for the control volume involving a fiuid of height x and
thickness § (Fig. 5.14) gives then

xBgAp ~ Tyx. {(5.75)
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Figure 513 Velocity and temperature of natural .

convection about a vertical plate.

For an estimate on 7, in a manner similar to the estimate on g, [recall Eq. (5.19)], we
may assumne, in terms of a mean velocity U for the upward motion,

U
Inserting Eq. (5.76) into Eq. (5.75) yields
A
v~E& (—p) 52, (5.77)
v p

Twx

Figure 514 Momentum bal-
ance for natural convection.

¥y 2ipix
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Fwx

Figure 515 Thermal energy
balance for natural
convection.

For the thermal energy, consider the balance between the axial enthalpy flow and
the transversal convection for the control volume shown in Fig. 5.15. Thus,

1 Tw — Teo Ty — Too
—pe U6 ~ k \ 5.78
2.0 yl 8 x 59 ( )
from which we obtain
ox
U~ —. (5.79)
83

Elimination of U between Egs. (5.77) and (5.79), with the assumption® that the
difference between & and 8y is of secondary importance for heat transfer, yields

ax g fApN ,
.......2... A~ | e 59
35 v\ p

x g (bp )
5 va\p

X+ Rat*, (5.80)

or

or

8 introduced by Squire [14].
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where

A,
Ray = - (—p) x (5.81)
va \ p

is the local Rayleigh number.
A measure of the heat transfer from the vertical plate [recall Eq. (5.25}] is

X

Nu, ~ —,
X 59

(5.82)

which gives, in terms of Eq. (5.80),
Nu, ~ RaX*, (5.83)

Next, we neglect the viscous force rather than the inertial force. The momentum
balance for the control volume shown in Fig. 5.15 now gives [recall Eq. (5.75)]

1
x8gAp ~ E,oUZB (5.84)
or .
A
Ut~ g (—pf) X (5.85)

Equations (5.78) and (5.79) continue to hold for the thermal energy. Then, elimination
of U between Eqs. (5.85) and (5.79) yields

g (%ﬁ) X~ (%)2 (5.86)

.8 (ﬁ)_ (5.87)

8 ot \p

After multiplying and dividing the righthand side of Eq. (5.87) by U and recalling the
definition of Prandtl number (Pr = v/a),

or

X (PrRap' (5.88)
ba .
and’
Nuy ~ (PrRa)'™. (5.89)
Now the implicit heat transfer relation,
Nu = f(Motion), (1.62)

introduced in Chapter 1 becomes, in terms of Eq. (5.83) or (5.89),
Nu = f(Buoyancy).

? PrRa, issometimes called the Boussinesq number, Bo,. In terms of this number, Eq. {5.89) becomes
Nu, ~ Boi*.
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For the constant involved with Egs. (5.83) and (5.89), actual velocity and temperature
distributions are needed. In what foilows is a first-order approximation based on linear
profiles.

ExampLE 5.4

Consider the control volume shown in Fig. 5.16.

The momentum balance given by Eq.(5.44), noting U, = 0 and including the buoyancy
term, now becomes

x 3 Ap & 2 * { du
—f f gl =2 dydx:[ u dy+u[ bl B (5.90)
o Jo o 0 o \¥/ .

For small temperature differences, assume

d d
Ap = p— pa = (-E;?:) (T — To) = (Z;") AT, (5.91)

which may be rearranged in terms of the coefficient of thermal expansion, A= —{1/p)(do/dT).
as

Ap = —BpAT. (5.92)

Therefore, Eqg. (5.90) becomes

X oy 89 * f du
f f BT — To)dydx = f wrdy +v f —_— dx. (5.93)
0 Jo 0 ¢ \3y/

¥

&
Figure 5.16
Schematic of the

control volume for
Pr>1.
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For Pr > 1 (which includes water, viscous oils, and approximately gases) the inertial effect is
neglected. Then, after eliminating the common integrals in x, Eq. (5.93) is reduced to
¢

% du
f g8(T — Toddy = v 7 . (5.94)
0 Y wall
The first law applied to this control volume leading to Eq. (5.28) continues to hold in terms of 8;:
L L
f u( — To)dy = -—-uzf — ] dx. (5.95)
0 ¢ \dy y
With assumed linear profiles as shown in Fig. 5.16,
w=vl (5.96)
8p
and
T-T
L R (5.97)
Tw — Ta s

Equations'(5.94) and (5.95) yield, in terms of 8, and U,

U
52 = e, (5.98)
gBAT
and
us, 5 d
oo E. (5.99)
& T

Elimination of ¥/ between Eqgs. (5.98) and (5.99) gives

ATS8} *d
sBATS; f ax (5.100)
12av a dg
or, after differentiating with respect to x,
ds,
A Wi (5.101)
dx EBAT
which can be rearranged as
ds}
2% _ 15— (5.102)
dax gBAT
Integration of this result readily gives
1/4
avx
Bp = 2 . (5.103)
’ (sﬁar)
Therefore, the local Nusselt number is
ox
Nu, = — = 0.5Ra}*, (5.104)

8y
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For Pr < 1 (which includes liquid metals), the viscous force is neglected. Then, Eq. (5.93)

is reduced to

3y px by
f f gB(T = Too)dzdy =f 2 dy.
Q 1] Q

(5.105)

Also, the first law applied to this control volume leading to Eq. (5.28) continues to hold in terms

of 8g:

foseu(T-—Tm)dy = —oc.[: (3

(5.106)

Because of the neglected viscosity, the velocity is no longer zero on the wall. Then, with a uniform

velocity
u=1U

and a linear temperature profile, as shown in Fig. 5.17,

T —Tx Y

=1-=.

T, —Tw %

In terms of these profiles, Eqs. (5.105) and (5.106) yield

gBAT
and
Ubg f“ dx
—_— ey —_
2 M) 55

Figure 5.17 Schematic of the

control volume for Pr < 1.

Ll

Te

(5.107)

(5.108)

(5.109)

(5.110)
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which are nonlinear integrodifferential equations and in general are difficult to solve. However,
on dimensional grm(mds, Eq. (5.109) leads to

U~ x'? (5.111)
and Eq. (5.110) leads to -
Us; ~ x (5.112)
or, their combination, to
By ~ x4, (5.113)
Then, in terms of
U = Cx**and 8, = Dx'/*, (5.114)
Egs. (5.109) and (5.110) yield, respectively,
2 VE
C = (ggﬁAT) (5.115)
s 2 8
CD* = -?:a, (5.116)
and their ratic ” '
160a®
D= * . (5.117)
9gBAT
Consequently,
o ux "
8p = 2.053| — ) (5.118)
v gBAT
and the local Nusselt number is
Nug = g— — 0.487(PrRa)". (5.119)
a
Table 5.4 shows the numerical constants resulting from the use of higher-order profiles. ¢

Table 5.4 Constants from various profiles

Constants Linear | Squire’s Exact

Nu,Rag'* 0.500 0.508 0.503

Nuy (PrRax)‘”‘:‘T 0.487 0.514 0.600
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The concept of analogy between momentum and heat does not apply to natural
convection. In forced convection, momentum is independent of thermal energy, and
the temperature distribution may or may not be similar to the velocity distribution. In
natural convection, momentum and thermal energy are coupled; although the velocity
and temperature distributions are determined simultanecusly, they are not similar.

So far, we have learned the evaluation of heat transfer by analytical means and
by the analogy between heat and momentum transfer. When an analytical solution is
beyond our reach, or when there exists no analogy between momentum and heat, we
rely on experimental measurements. Dimensional analysis provides an effective way of
organizing experimental data. The next section is devoted to a review of the methods of
dimensional analysis, arrangedin a manner particularly suitable to heat transfer studies.

DIMENSIONAL ANALYSIS O

When we have a complete understanding of the physics of a problem and have no
difficulty with the formulation but are mathematically stuck on the solution, we refer
to dimensional analysis for a functional (implicit) form of the solution. Three distinct
methods exist for dimensional analysis:

1) Formulation (nondimensionalized): Whenever a formulation is readily available,
a term-by-term nondimensionalization of this formulation leads directly to the related
dimensionless numbers. The procedure is not suitable to problems which cannot be
readily formulated.

2) T-Theorem:'® If a formulation is not readily accessible but all physical and geo-
metric quantities which characterize a physical situation are clearly known, we write an
implicit relation among these quantities,

f(@1,Qz2,...,Cn) = 0. (5.120)

Expressing these quantities in terms of appropriate fundamental units, and making Eq.
(5.120) independent of these fundamental units by an appropriate combination of Q’s,
yields the dimensionless numbers.

3) Physical similitude: Ratios established from the individual terms of the appropriate
general principles (force balance, energy balance) give the physically relevant dimen-
sionless numbers. The great convenience of this method is that there is no need to
worry about an éxplicit formulation (required for the first method), except for a clear
understanding of the terms comprising a general principle. Also, there is no need to go
through the nondimensionalization process (required for the second method), since a
ratio between any two terms of a general principle is automatically dimensionless.

Let us illustrate the application of the foregoing methods in terms of an example
based on a simple oscillating pendutum of length £ and mass m (in a vacuum). Let ¢y
be the initial angle displacement. We wish to determine the period of this pendulum by
dimensional analysis.

19 Dyimensionless numbers obtained by this method are usually called IT’s,
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Figure 5.18 Simple pendulum.

Newton’s law states that F = ma, where F is the weight of the pendulum and a
its acceleration. The projections of F and « in the directions along and normal to £ are
shown in Fig. 5.18. From the normal component of Newton’s law of motion, we have
the governing equation,

¢ g
:i.r_z_ + —Esmqb = 0. (5.121)

For the first method, we have, from the nondimensionalization of Eq. (5.121) in
terms of period T,
d2¢ + ( 28

awrre A" —) e =5

£
which suggests the functional (implicit) relationship

¢ =f (% TZ%). (5.122)

However, we are not interested in the instantaneous position ¢ (of the pendulum) but
rather its extremum ¢g, for which t/7 assumes integer values, 1,2,3,.... Conse-

quently,
g
= 7?2},
o f( 5)

Inverting this functional relationship, and expressing the result in terms of the period

rather than its square, we have
g
T {E = fldg). (5.123)
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For the second method (the IT-theorem) we recall that the tangential momentum
is balanced by the tangential component of the gravitational body force, and from the
inspection of this balance we conclude that

T = fom, gL ), (5.124)

where m, g, £, and ¢y all are independent quantities. In terms of three fundamental
units of mechanics [M], [L], [T]*} Eq. (5.124) may be expressed as

[T} = f [M, }%,L,O:I. (5.125)

Now we begin rearranging Eq. (5.124) in such a way that, with each arrangement, it be-
comes independent of one fundamental unit. First of all, the dimensional homogeneity
in [M] suggests

T = fl(ga‘e»¢0)

or, in terms of the fundamental units,

I .
TI= A 1:—1:5, L,O] .

Eliminating [L], for example, by the ratio g/£ yields

T =" (%,4‘»0)

or, in terms of the fundamental units, ,
1
f 2 F ; 0].

Finally, eliminating [T] by the product T ‘/% gives the dimensionless relation

T\/ij = fi(¢o).

which is identical to Eq. (5.123). Note that the number of steps in the foregoing nondi-
mensionalization procedure is equal to the number of fundamental uaits. Consequently,
the number of dimensionless numbers is equal to the difference between the number
of dimensional quantities in the original statement of a problem and the number of
fundamental units. That is, Eq. (5.124) is in terms of 5 quantities, and, since there are 3
fundamental units, the result involves 5 — 3 = 2 dimensionless numbers.

I

(7]

1 or (], (L], (7).
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For the third method (physical similitude) consider the tangentia! balance between
the inertial and gravitational forces, Fy ~ Fj, or the ratio

Fi/F, ~ 1. (5.126)

From Fig. 5.18 the normal compaonent of the gravitational force is mg sin ¢, which, on
dimensional grounds, indicates that F, ~ mgfy(¢y), where fo(dp) shows the angle
dependence. The normal component of acceleration is dV/dt = £(d%¢/dr*). On
dimensional grounds, the inertial force becomes Fy = ma ~ m&(¢o/T2). Then

F /17
Fy 2foldo)

T\/% = f{do), (5.123)

f () replacing [¢o/ fo(d0) ]/ for notational convenience. Thus, by three distinet meth-
ods we are able to show that the dimensionless period of a simple pendulum in a vacuum
depends only on its initial displacement. Now, combining Eq. (5.123) with a simple ex-
periment to be performed by one pendulum with a number of ¢g’s (Fig. 5,19}, we can
determine the explicit form of Eq. (5.123).

As is well known, for small displacements, ¢, from equilibrium, assuming sin ¢ =
¢, Eq. (5.121) is reduced to

which leads to

d’¢ g
—_— 4 2 =0 5.127
% + £¢ s ( )
g
N
Measurements '

2mC —

I

Figure 519 Experiments with a simple pendulum.
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which characterizes a harmonic motion with angular frequency @ = +/g/¢. Conse-
quently, for small displacements,

= 2m |-, (5.328)

which turns out to be independent of ¢o because of the assumed small oscillations.

As we have seen with this pendulum example, dimensional analysis, when done
properly, yields the correct dimensionless parameters that characterize a problem. Most
technologically significant problems are much more complex than a simple pendulum
problem and thus cannot be solved using simple mathematics. For such problems,
dimensional analysis can yield the appropriate dimensionless parameters. Experiments
can then be conducted to relate these parameters for a wide range of values and thus
develop useful correlations that can be used in engineering problems. Our ultimate
goal in the following chapter will be to determine values of the heat transfer coefficient
%. With that in mind, we now proceed to examples incrementally more relevant to our
convection studies, starting with an isothermal flow problem which will be useful for
the enthalpy terms of our convection problems.

5.4 AFORCED FLOW O

Let a solid sphere of diameter D be immersed and held stationary in an incompressible
fluid streaming by steadily with a uniform velocity V' (Fig. 5.20). The density and
viscosity of the fluid are p and u, respectively. The sphere is restrained from moving in
any direction. We wish to determine the drag force F on the sphere.

Since the differential formulation of a viscous flow near a sphere is beyond the
scope of this text, we proceed with the Il-theorem. In view of the fact that the drag
force is balanced by the inertial and viscous forces, we assume

F = f(V.D,p, ), (5129)

Figure 5.20 Forced flow over a sphere.
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which may be expressed in terms of the fundamental units as

- foe52]

T T 13 LT

Now we begin rearranging Eq. (5.129) by making it independent of one fundamental
unit at a time. Since the mass dependence is the simplest one, we begin with mass. To
eliminate [M], we pick any one of the mass dependent terms on the righthand side,
o or p. Let us pick w, for example (later we comment on what would happen if we

would have picked p instead), and combine it with F and p In such a way that the mass
dependence disappears. Thus

g = fi (V, D, ,E) (5.130)

which may be expressed in terms of the remaining fundamental units as

[5]-4[+3]

Clearly, the time dependence of Eq. (5.130) is simpter than its length dependence. To
eliminate [T}, we pick any one of the time dependent terms on the righthand side, V
or p/u. Since the final dimensionless numbers will ultimately involve all quantities
describing Eq. (5.129), and since we have already manipulated with u, let us pick V
this time and combine it with F/p and p/u in such a way that the time dependence
disappears. Thus

I a(n2). s

prv M

which, in terms of the length unit, may be expressed as
1
[L] = f2 L, E .

Finally, eliminating [L] by combining D with the other terms of Eq. (5.131), we get

F pVD
= = f3(Re), 5.132
5= A(22) = pre (512)
where Re = pV D/u is the Reynolds oumber.
Now;, let us go back to Eq. (5.129) and this time make this equation independent
of [M] by manipulating the mass-dependent terms with o rather than x. This leads to

F “
—_— = = Re). 5.133
VIR fa (pVD) fa(Re) {5.133)
Since dimensional analysis can provide only a functional (implicit) relationship between
dimensionless numbers, Eqs. (5.132) and (5.133) are synonymous dimensionless results.
That is, by suitable transformations, a dimensionless result can be made identical to
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another dimensionless result. However, Eq. (5.132), representing the ratio of drag
force and the viscous force, would be most useful in flows dominated by viscous forces,
while Eq. (5.133), representing the ratio of drag force and inertial force, would be most
useful in flows dominated by inertial forces.

Dimensional analysis offers no clue as to which one of Egs. (3.132) and (5.133)
may be most convenient. Aside from the obvious fact that the dependent variable F
should be included in only one dimensionless number, it is necessary to rely on past
experience and physical insight in the selection of one of these relations.

Next, we proceed to the dimensional analysis of the same problem by the method
of physical similitude. Since the force F on the sphere exerted by the moving fluid is
balanced by the inertial and viscous forces,

F = f(Fy, Fy),

from which we may establish ratios

F F F '
— o~ = , (5.134)
Fy Du(v/D) wvVD
F, D¥*(V%/D VD :
—-’—~p2( /D) _ pYD _ g, (5.135)
Fy  D*w(V/D) 2

and

F F F
— (5.136)

Fi | pDX(V/D)y  pVID*

Clearly, from F; = m{dV/dt) we have F; ~ mV/r and (in view of m ~ pD? and
t ~ D/V)get Fr ~ pD*(V?/D) = pV2D?. Also, for a Newtonian fluid, from 7 =
w(dU/dy) we have Fy ~ tA ~ D*u(V/D) = uwV D. Equations (5.134) and (5.135)
are the dimensionless numbers associated with Eq. (5.132), and Eqs. (5.135) and (5.136)
are those associated with Eq. (5.133).

One advantage of using physical similitude is that, working with the forces in-
vyolved in a problem, one does not have to worry about a long list of relevant properties.
In developing the list for the I1-theorem, one could easily overlook and exclude certain
properties which prevent a successful completion of dimensional arguments. The phys-
ical similitude becomes also quite useful for experiments to be conducted with scaled
models rather than the actual prototype. Physical similitude is said to exist between two
systems if the corresponding dimensionless numbers have the same value. Geometric
similitude is a prerequisite for physical similitude. Further elaborations on similitude,
however, belong to texts on fluid mechanics.

Having learned the dimensionless numbers associated with forced flows, we pro-
ceed next to the dimensionless numbers associated with buoyancy driven flows.
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55 AFREE FALL O

Consider the solid sphere of the preceding example. Let the sphere now fall, under
the effect of gravity, in a fluid of density p and viscosity u (Fig. 5.21). The difference
between the density of the sphere and that of the fluid is Ap. ‘We wish to determine the.
terminal velocity of the sphere.

In a manner similar to the preceding problem, we begin with the I-theorem.
' First, replacing F of Eq. (5.129) with the buoyant force per unit volume gAp, we write

ghp = f(V,D, p, u),

and, because ¥V now is the dependent variable, rearrange for V,

V = f(gbp, D, p, ). (5.137)

In terms of the fundamental units, Eq. (5.137) is equivalent to

L M M M
H = f[W’L' o ﬁ]'

Next, we begin rearranging Eq. (5.137) so that it becomes suitable to the elimination of
one fundamental unit at a time. To eliminate [M], we pick p, for example, and combine
it with gAp and p in such a way that the mass dependence disappears. Thus

Fa¥ol u)
V = —, D, -], 5.128)
A (8’ P y (

which, in terms of the remaining fundamental units, is equivalent to

LT _ 4 LLLZ-
T_'iTz? FT

!

f Fg~gAp
Figure 521 Freefall of a
sphere.
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To eliminate [T] we pick /p == v, for example, and combine it with V and g(&0/0)
in such a way that the time dependence disappears. Thus

PV o_ e [E(2r
” —fz(vz(p),p), (5.139)

which, in terms of the length unit, is equivalent to

sl

Finally, eliminating [L] by combining D with the other terms of Eq. (5.139), we get

vD A,
e -h (% (_Fl) D3) . (5.140)
I AN
where
fa .
£ (_ﬂ) D = Gr (5.141)
ve\ p

is the Grashof number. Thus, the terminal velocity of a buoyancy-driven body is found
to be governed by the dimensionless relation

Re = f(Gr). (5.142)

Next, we proceed to the dimensional analysis of the same problem by the method
of physical similitude. For the sphere, the buoyant force is balanced by the viscous
force,1? and for the fluid, the viscous force is balanced by the inertial force,

Sphere | Fluid
Fgp~ Fy ~Fp,

\

which lead to the following force ratios:

o PP e (5.135)

Fz ghpD®  ghoD?
Fv  wV/D)D*  uV '

(5.143)

Now, we refer to the general fact that the physics of any problem may be described by
one dimensionless number for the unknown quantity depending on other dimensionless
number(s) composed only of independent quantities. For the present problem, velocity
is unknown and

Velocity = f(Buoyancy).

12 At the terminal velocity, the acceleration of the sphere is zero.
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In the final form of this relation we have only one V to appear in one dimensionless
number. Velocity is nondimensionalized with Re, and with the following combination,

obtained from the product of Eqs. (5.135) and (5. 143) buoyancy is nondimensionalized
with

Fg Fr gA;:OD2 pVD g (Ap

X X D? = Gr,
Fy Fy nv 7 A L )

which is independent of velocity. Thus the physical similitude leads us to a relation

among force ratios

F F, F

L= f(Jl x -’-), (5.144)
Fy

which is identical to Eq. (5.142), the result already obtained by employing the IT-
theorem.

Now we are ready for the dimensional analysis of convection problems. We begin
with forced convection because of its relative simplicity.

5.6 FORCED CONVECTION

In this chapter we have already learned in terms of Fig. 5.1 that the Nusselt num-
ber is the dimensionless wall gradient of fluid temperature. Ignoring the method of
nondimensionalized governing equations because of its complexity, we proceed with

the [T-theorem.
Consider, for example, 2 steady two-dimensional problem with temperature dis-
tribution
T T .
T =&y Ca . Q)
cp (V7 P 1 lu') k

Q4 being the enthalpy flow and Qx the conduction. Then

T eV k)
_ T = x’ ? L T 2 C 7 -
Ty — T Y £, Cp
The wall gradient of this temperature gives the local heat transfer coefficient,
hx = f('x) Vy prpu's cpvk)?

whose average over distance D (or £) gives the (average) heat transfer coefficient,

h = f(D,V,p,pepk), (5.145)
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where the righthand side is composed only of independent quantities. For thermal
problems, a fourth fundamental unit is needed in addition to the three fundamental
units of mechanics. This unit is usually assumed to be temperature [6].7 In terms of
the four fundamental units, Eq. (5.145) may be expressed as

ML L MM L* ML

0| T LY LT T2 T% |
(For the units of ¢,, recall the definition of stagnation enthalpy,' RO =h+V?/2+ gz,
and use k ~ c,T ~ V2/2, which gives c,[8] ~ [L?/T%]; for the units of &, use g ~
Power/Area = Force x Velocity/Area, which yields A[8] ~[ML/T?][L/TY/[L?]; and for
the units of k, note that A[L] ~ k.) We proceed now to the dimensionless numbers
associated with forced convection by successively eliminating the fundamental units
from Eq. (5.145).

Again we begin the elimination process by mass. Combining p, for example, with
other mass-dependent quantities, we have from Eq. (5.145)

h k
- = fi (D, V,v, cp, —) , {(5.146)
o I

where v = p/p is the kinematic viscosity (or momentum diffusivity). In terms of the
fundamental units, Eq. (5.146) is equivalent to

I? L 1?2 r*
A E fl Ll ......, H‘ __! —'3_— .
T?0 T T 1% T°9
Now the temperature dependence appears to be the simplest one. Elimination of (8]

from Eq. (5.146) by combining c,, for example, with other temperature-dependent
guantities yields

h
— = folD,V,v, ), (5.147)
PCp

where o = k/pc, is the thermal diffusivity. Equation (5.147) is equivalent to

L L 1?2 1?
== L, =, —, =1.
[T] fz['T’T T]

Time dependence of Eq. (5.147) is somewhat easier than its length dependence. Elim-
inating [T] by combining V, for example, with other time-dependent quantities’® gives

vV Vv
= f3 (D, -, —), (5.148)
pepV v

13 Or hear transfer [ (3]
14 £ used for enthalpy, should not be confused with heat transfer coefficient 4.
15 Also [T} may be eliminated with either & or v.
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which is equivalent to

.« o) = £ [L, - ﬂ

where 0 corresponds to a dimensionless quantity, Finally, elininating [L], we have

h vD VD
= fil —, —
pcpV

v o
or
St = fi(Re, Pe), (5.149)

where St = h/pc,V is the Stanton mumber and Pe = V D/ is the Peclet mumber (or
thermal Reynolds number). Noting that

Pe = RePr,
St = Nu/Pe = Nu/RePr,

where Pr = v/c is the Prandtl number, and Nu = hD/k is the Nusselt number,
Eq. {5.149) may be written alternatively as

| Nu = f(Re, Pr) ] (5.150)

where Re is the only dimensionless number involving the effect of velocity. This is
the form used most frequently. The following arguments will clarify the fundamental
reason for using Pr rather than Pe.

Next, we proceed to dimensional analysis of the same problem by the method of
physical similitude. From the definition of

Convection = Conduction in moving media .
S et
Inertial, Viscous forceg
Qu
we have ) ) )
QC = f(Ffs FV? QH:QK)! (5151)

where Oc¢ denotes convection, Qg enthalpy flow, (% conduction, F; inertial force,
and Fy viscous force. Next, we establish the ratios

' hD% kD
—.Q—C ~——— = — = Nu, (5.152)
Qx  kD*(8/D) k
F, VD
L 22 < Re, (5.135)
Fy v

: c,VD* VD
Cu _, P VD0 4 -2 _ pe (5.153)
Ox kD“(8/D) o
where Nu is the heat transfer coefficient nondimensionalized relative to conduction and
Re and Pe are obtained from the nondimensionalization of momentum and thermal
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energy, respectively. For an incompressible flow, momentum is decoupled from energy
and is characterized by Re. However, energy is coupled to momentum through enthalpy
flow, and the Pe number is silent to this coupling. Eliminating the velocity between
Egs. (5.135) and (5.153), we obtain
Qo B v _ b, (5.154)
Q K F ! o +
which describes the coupling of energy to momentum. Also, Pr characterizes the
diffusion of momentum relative to that of heat and is the only dimensionless number
in terms of physical properties.

Experimental data associated with gases, water, and viscous oils may be correlated
with Eq. (5.150) as shown in Fig. 5.22(a), where Re, denotes the critical Reynolds
number at which the laminar flow is unstable. Beyond Re, the forced convection
eventually becomes turbulent. Equation (5.150) does not correlate the liquid metal
data. For liquid metals, viscous forces are small, the momentum equation degenerates
to a limit of uniform velocity, and the importance of the Reynolds number diminishes.
Consequently, as shown in Fig. 5.22(b),

5159

correlates the data on liquid metals [recall Eq. 5.26)].
Having learned the dimensionless numbers associated with forced convection we
now proceed to those for natural convection.

NATURAL CONVECTION

So far, we have learned that the correlation of forced convection, begins'with
h = f(D> V; pv )u‘v Cp, k): (5.145)

where the righthand terms are made up only of independent quantities. Since the
velocity of natural convection depends on buoyancy and is not a “given” parameter, we
may utilize Eq. (5.145) for natural convection after replacing V' with a buoyancy term.

Nu Nu

1
|
|
|
Increasing Pr :
!
/
1
|

Tarbulent Larninar i Turbulent
Rec Re Pee
(a} (b)
Figure 522 Correlation of forced convection data on (a) gases, water, and
viscous oils, (b) liquid metals.

Pe
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The buoyancy force/volume is
gAp.

¢

For small temperature differences, assume

Ap = ula AT
0 = aT s

which may be rearranged in terms of the coefficient of thermal expansion, 8 =
—(1/pXdp/dT), as

Ap ~ BpAT.
Consequently, the buoyancy force/volume becomes

§PPAT.

Noting that Eq. (5.145) already involves p because of the inertial force, and now re-
placing V of this equation with g8AT, we have

h = f(D,gBAT, p, i, cp, k). (5.156)

Consider first the I1-theorem and, accordingly, express Eq. (5.156) in terms of the
four fundamental units as

M . L MM L ML
g | TP LY LY T8 T9

and begin the elimination process with the mass-dependent terms. We have already
used wx (in connection with flow around a sphere) and p (in connection with forced
convection) for this elimination. Let us see what happens when we eliminate [M] by
combining k with other mass-dependent quantities:

h Pt
E - .fl (D, gﬁAT, Er E, Cp) 3 (5-157)

which, in terms of fundamental units, is equivalent to

1 Iy L L T T L?
L] - TTE Te |
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At thisstage the temperature dependence appears to be the simplest one. Elimipation of

(6] from Eq. (5.157) by combining ¢,, for example, with other temperature-dependent
quantities yields ‘

h
7= f2(D, gBAT, a, Pr), (5.158)

where o = k/pcp is the thermal diffusivity and Pr = pep/ k = v/« is the Prandil
number. Equation (5.158) is equivalent to .

1_ .| E I}O
[E]=f2 :—T_Ea?r -

Eliminating the time dependence from Eq. (5.158) by combining, for examplé, o with

gBAT , we get
h AT
Pl f (D. —*——Hgﬁ T Pr) , (5.159)
o 4
17 1
—I: = f3 Lv _]-_TB-,O .

hD ATD?
_....--:'..ﬁ‘_(g-------——-JS 2 ,P?‘)

which is equivalent to

Finally, eliminating [L] yields

o
or
Nu = £(II, Pr), (5.160)
where TT = gBAT D?/¢? is a dimensionless number. Noting that
I ATD?
I _ ePoIh _ g, (5.161)
Pr v

Eq. (5.160) may be rearranged in terms of Ra as

[ Nu = f(Ra, Pr)), (5.162)

where Ra is the Rayleighnumber. The following arguments will clarify the fundamental
reason for using Ra rather than IT.

Next, we proceed to the dimensional analysis of the same problem by the method
of physical similitude. The fluid motion now involves inertial, viscous, and buoyant
forces (Fr, Fy, and Fg). From the definition of

Natural Convection = Conduction in  moving media
LEUSE—

Buoyant, Inertial, Viscous forces

Ox
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we have
, Qc = f(Fs, F1. Fy, Qu, Ox).

Next we establish the following ratios:

Qc hD
=L B = N, 5152
O p ( )
B .YD _ g 5135
Fy v & (5.135)
F, AT ATD
L S Y (5.163)
Fr  mVD Vv
- VD
g VD _ o, (5.153)
Ok o

Here, we recall that dimensionless numbers are composed only of independent quan-
tities, and note that V is not an independent quantity for natural convection. Conse-
quently, Eqgs. (5.135), (5.153), and (5.163) may describe natural convection after they
are combined and made independent of V. For example, the following combination of
Eqgs. (5.135), (5.163), and (5.153)

F, : AT)D? VD
Is 2n @AD" VD _ 8 saryDd — Ra (5.164)
Fy Ox vV o vel

which is independent of velocity, shows how the momentum is coupled to thermal energy
through its buoyancy. Also, the following combination of Egs. (5.135) and (5.153),

Oy Fy VD v

—~— N

QK F[ o 75

2 = pr, (5.154)
o

which also is independent of velocity, shows how the thermal erergy is coupled to
momentum through its enthalpy flow.
For Pr > 1, the inertial effect is negligible and Eq. (5.162) is reduced to

Nu = f(Ra). ) (5.165)

Accordingly, the experimental data on gases, water, and viscous oils are correlated with
Eq. (5.165) as shown in Fig. 5.23(a).
For Pr « 1 the viscous effect is negligible, and Eq. (5.160) is reduced to

Nu = f(II}, Il = RaPr. (5.166)

Experimental data on liquid metals are correlated with Eq. (5.166) as shown in
Fig. 523(b). :
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Nu Nu
I I
Laminar !  Turbulent Laminar |  Turbulent
L - Ra 1. — Ra Pr
RaC (Ra Pl')c
(a) (b)

Figure 5.23 Correlation of natural convection data on {a) gases, water,
and viscous oils, (b) Hquid metals.

1t is important to note here the conceptual difference between the Reynolds num-
ber of forced convection and the Rayleigh number of natural convection. Re results
from the nondimensionalized momentum (of forced convection) which is uncoupled
from thermal energy of incompressible (and constant property) fiuids. On the other

. hand, Ra characterizes the coupling (through buoyancy) of momentum to energy.*s

Having learned the functional (implicit) relation among the dimensionless num-
bers of forced convection and of natural convection, we proceed to Chapter 6 for explicit
relations among these numbers
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@ EXERCISES

51  For forced convection, consider the hybrid (differential in x and integral in y} control
volume shown in Fig. 5P-1. Write the conservation of mass, the balance of momentum
in terms of the momentum boundary-layer thickness § and the conservation of thermal
energy in terms of the thermal boundary-layer thickness &;. Compare the results with
Eqgs. (5.44) and (5.28).

Figure 5P-1
5.2 For forced convection of liquid metals (Pr <« 1) over a horizontal flat plate subject to a
uniform heat flux g, evaluate the Nusselt number based on 2 uniform velocity and linear

temperature profiles (Fig. 5P-2).

Ve T

T,

Figurce SP-2

5.3 For forced convection of any fluid having Pr = 1 over a horizontal flat plate subject to a
uniform heat flux g,,, evaluate the Nusselt number based on linear velocity and temperature
profiles (Fig. 5P-3).

e



4

Chap.5 Foundations of Convection

5.4

5.5

5.6

5.7

:]Kﬂ

Figure SP-3

For natural convection, consider the hybrid (differential in x and integral in y) control
volume shown in Fig, 5P-4. Write the conservation of mass, the balance of momentum in
terms of 8, and the conservation of thermal energy in terms of ds. Compare the results
with Eqs. (5.90) and (5.95).

Hybrid
control
volume

Figure 5P—4

In terms of a linear velocity profile, we have already obtained the constant involved with
Eq. (5.40) to be C = 0.289 (see Table 5.2). Also, the exact relationship is known to be

1. 0.332
27 T Re}ﬂ.

For both cases, evaluate the mean friction coefficient by averaging the local coefficient
over & length £.

In terms of a linear temperature profile, we have already obtained the constant involved
with Eq. (5.58) to be C = 0.289 (sec Table 53). Also, the exact relation is known to be

Nu, = 0332Re}?Prif.

For both cases, evaluate the mean Nusselt number by averaging the local Nusselt number
over a length £.

Find the loca! Nusselt number for free convection of a vertical plate subjected to a constant
wall heat flux by using linear profiles for cases Pr > 1 (Fig. 5P-5). Compare the result
with Eq. (5.104).
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—— )r
Figore 5P-5

Find the local Nusselt number for free convection of a vertical plate subjected to a constant
wall heat flux by using linear profiles for cases Pr < 1 (Fig, 5P-6). Compare the result
with Eq. (5.119).

Figure 5P-6

Consider the natural convection for Pr > 1 from a vertical plate at a temperature T, in
an ambient at temperature T,o. Evaluate the local heat transfer for the following three
cases. (a) linear temperature, parabolic velocity profiles, (b) parabolic temperature, linear
velocity profiles, (¢) parabolic temperature and velocity profiles. Compare the results with
Ea. (5.104).

Assuming a parabolic temperature and cubic velocity for natural convection from a vertical
plate at temperature 7,, in an ambient air temperature T, show that for any Prandtl

number
Pr e
Nuy = 0508 ———— | Ral*
0.952 + Pr
or
R
Nu, = 0.5080Y4 I, = — %
1+ 0.952/Pr

Repeat Prob. 5.10 for the limit Pr — 0 and Pr — co.

Determine the numerical constant obtained from averaging the local friction and heat
transfer coefficients over a longitudinat length, say £. Use only the exact solution given by
Tables 5.1, 5.2, 5.3, and 5.4.
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5.16

5.17

5.18

5.19
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From Fy ~ F; + Fy, Qn ~ Q. Show that

Ra

=Tr e Nu = f(Ily).

Hy

Repeat Prob. 5.13 for the limit Pr — 0 and Pr — 0.

Reconsider the problem stated in Section 5.4. Including the effect of gravity g and surface
tension o (forceflength), now assume ‘

F = f(V.D,p, 1.8, 9).

Show by the TT-theorem and by physical similitude that the drag force may be nondimen-
sionalized to give
‘ F

W = f(Re, Fr, We),

where Fr = V//gD is the Froude number and We = pViD /o is the Weber number.
Ciearly explain the physics characterized by these numbers.

Adding the effect of surface tension ¢ to Eq. (5.137), extend the problem stated in Sec-
tion 5.5 to a gas bubble rising in a liquid. For the terminal velocity of the bubble, assume

V = f(gAPaD:P-U'.O')-

Show by the Il-theorem and by physical similitude that the velocity may be nondimen-
sionalized to give
Re = f(Gr, Bo),

where Bo = gApD?/o is the Bond number.

Expressin terms of the appropriate dimensionless numbers the diameter of droplets formed
by a liquid discharging with a specified velocity {or under the effect of a pressure gradient}
from a horizontal tube.

Express in terms of the appropriate dimensionless numbers the diameter of droplets formed
by a liquid discharging under the effect of gravity from a vertical tube.

Consider the flow between two coaxial cylinders in relative rotation (Fig. 5P-7). Write a
dimensionless relation between torque and angular frequency.

=

R,

i

. ”

p

w

Figure 5P-7
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520 A wooden sphere is held by a string in a water stream (Fig. SP-8). Determine the string
force by means of a dimensional analysis.
i

Figure 5P-8

5.21 What are the dimensionless numbers of combined forced-natural convection?

5.22 Consider the natural convection from a horizontal cylinder rotating with an angular fre-
quency w {Fig. 5P-9). The peripheral surface temperature of the cylinder is T, and the
ambient temperature is T, The diameter of the cylinder is D. Assuming that the natural
convection resulting from rotation and that from gravity can be superimposed, express the
Nusselt number in terms of the appropriate dimensionless numbers.

Figure 5P-9

5.23 Discuss the physics of a hot air balloon in terms of the appropriate dimensionless numbers.
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CORRELATIONS FOR
CONVECTION

88

In Chapter 5, we learned the foundations of convection. Integrating the governing
equations for laminar boundary layers, we obtained expressions for the heat transfer
associated with forced convection over a horizontal plate and natural convection about
a vertical plate. We also found analytically, as well as by the analogy between beat and
momentum, that the thermal and momentum characteristics of laminar flow over a flat
plate are related by

1
StPrif = - f|, (5.63)

provided that any pressure gradient in momentum and dissipation in energy are ncg-
ligible. Actually, Eq. (5.63) is a fundamental relation independent of flow conditions,
holding for turbulent as well as laminar flow. However, jts validity for turbulent flow can-
not be shown within the scope of this text. Equation (5.63) is instrumental in providing
indirect information on heat transfer from (an analytical or experimental) knowledge
on friction. Consequently, the first section of this chapter is devoted to the friction
involved with two classes of frequently encountered problems: flow through pipes and
flow over sumerged bodies. Pipe fiow is usually characterized by pressure drop or its
dimensionless form, the friction coefficient, while external flow is usually characterized
by drag force or its dimensionless form, the drag coefficient. The subsequent sections
are devoted to heat transfer correlations for forced and natural convection.




6.1

Sec, 6.1 Friction Coefficient, Drag Coefficient ) 289

P_if/)z: walls Control volume
[ linbiakiniy e 3
T : TWPL {/
1
PA 1 p| 1 (p+apA
—............_.....: [ N —_
' l
I
1 1
: 1
________________ |
l I
I L |

Figure 6.1 Steady, fully developed
momentum for lumped control volume.,

FRICTION COEFFICIENT, DRAG COEFFICIENT C

First consider steady, fully developed pipe flow. The conservation of momentur for the
control volume shown in Fig. 6.1, noting that momentum flow pAV? does not change
in fully developed flow, gives

—ApA + tyPL = 0, (6.1}
where Ap is the pressure drop over a length L of the pipe, 7, is the wall shear stress,

A = wD?*/4,and P = D, D being the diameter of pipe. The friction coefficient,
defined as

f= T (6.2)
~pV?
5 r
may be rearranged in terms of Eq. (6.1), as
Ap
f = {6.3)

———
4(L/D) (EpV )

Equation (6.2) is suitable for the evaluation of the friction coefficient by analytical
means, while Equation (6.3) is most useful when experimental data on pressure drop
is available. For the fully developed pipe flow under consideration, the differential
control volume shown in Fig. 6.2 yields

d dp
—— —_ = 0. 6.4
dr o) + rdx 0 (6.4)

To proceed further, we need to know the flow conditions. Since an analytical approach
to turbulent flow is beyond the scope of this text, let the flow be laminar for the time
being. What we learn from laminar flow will be helpful for the interpretation of the
experimental data on turbulent flows. For laminar flow of incompressible viscous fluids,



Chap. & Correlations For Convection

21|t +ir(r-r)d'r]dx
S —————

d)
T V(. d
H i (p + 22 dx) 2urdr
plmrdr 1 dx
dr :.q.______-.u
b m e -4
| e N
1[ T2wrdr \
1
: : Control volume
r : |
1 1
1 1
' ;
! 1
| -
x ] dx i

Figure 6.2 Steady, fully developed
momentum for differential control
volume.

Newton’s law’ states that

T = p— ' (6.5)

Inserting Eq. (6.5) into Eq. (6.4), assuming the viscosity to be constant, and rearranging

gives
d [ du 1 /dp

Integrating Eq. (6.6) twice relative to r, and evaluating the resulting constants by
the boundary conditions,

2(0) = finite, «(R) = 0, (6.7)
yields? _ _
u = ZIE (—%) (R? — r?), (68)

This result may be rearranged in terms of a bulk velocity
1 R
V=—s w(rY2mrdr. : 6.9
n.RZ ﬁ; ( ) rar ( )
Inserting Eq. (6.8) into Eq. (6.9) yields

1 dp
V = — | —— | R%, 6.10
8@( dx) (610)

L This law on the diffusion of momenturn and the Fourier law of conduction (on the diffusion of heat)
are special cases of diffusion phenomena, :

2 Note that the fully developed laminar flow in a pipe which leads to Eq. (6.8) is identical in form to
the one-~dimensional cylindrical conduction with energy generation governed by Eq. (2.93) for & — co,

i
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Eliminating the pressure gradient between Eqgs. (6.8) and (6.10) gives

o 2

Inserting wall shear stress,

into Eq. (6.2) results in
= (6.12)

where Re = pVD/u is the Reynolds number based on the bulk velocity. Equa-
tion (6.12) gives the exact expression for the friction coefficient in steady, fully developed
laminar flow in a smooth pipe.

Most pipe flows are turbulent and involve rough pipes. For fully developed laminar
or turbulent flow in a pipe, noting Bq. (6.12), and introducing a characteristic length e as
a measure for the surface roughness of the pipe, the friction factor may be functionally
expressed as

f = F(Re, e/D). (6.13)

Figure 6.3 shows the explicit form of Eq. (6.13), obtained from experimental data on
fully developed pipe flow. Data in the laminar region agree with Eq. (6.12) and are
independent of surface roughness. Two linear approximations for data on turbulent
flows, drawn by dotted lines in Fig. 6.3, are

0.079
= =T 3 x 10° < Re < 10°, (6.14)
and
0.046
f = Ei'[—s, Re > 2% 104 B (6‘15)

‘We have so far discussed friction in pipe flow. Actually, the simplest case of turbulent
friction is that of flow over a flat plate with negligible pressure gradient. This case applies
to many important technological problems, such as drag on ships, airplanes, turbines,
compressors, and propellers. An approximate analytical approach, which is beyond the
scope of this text, leads to
0.072
E—_ {6.16)
L= P
for turbulent flow past a horizontal plate, where Rep = Vi L /v is the Reynolds number
based on the free-stream velocity (far away from the plate) and the length of the plate,
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gure 6.3 Friction coefficient for flow in circular pipes (from Moody [41]).

Equation (6.16) agrees well with experimental data for Re < 107 (Fig. 6.4). When
Re;, exceeds this value, the deviation of Eq. (6.16) from experimental data becomes
significant. A more elaborate analysis leads to a logarithmic relation shown in Fig. 6.4.
Also, included in the same figure is the Jaminar friction evaluated anatytically in Chapter
5.

We now proceed to the drag coefficient, which provides the drag force on a body
moving steadily through an infinite fiuid or, equivalently, the drag force on a stationary
body in an infinite fluid streaming with uniform velocity Veo. The drag coefficient is
defined as

(6.17)

where Fp is the total drag force on the body. It results from the difference between
the pressure forces which act on the front and back projected area of the body, plus
the friction force over the surface of the body. For blunt objects such as cylinders
and spheres, A is customarily assumed to be the projected area normal to the flow.

(177 *sseugdnal aATiR[RY
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Figure 6.4 Friction coefficient for smooth flat plate (from Rohsenow & Choi [14]).

Consequently, Fp/A has the dimensions of stress but is not an average of the true
stress over the body. It can be shown, in 2 manner similar to the discussion leading to
Eq. (6.13), that

Cp = f(Re, e/D),

Figure 6.5 shows Cp for a few common shapes with polished (smooth) surfaces (i.e., with
negligible ¢/ D). Variation of the drag coefficient as a function of the Reynolds number
depends on boundary-layer separation and, relative to this separation, the transition to
turbulence. These aspects are beyond the scope of this text.

At very low Reynolds numbers no flow separation occurs. In Chapter 5 the
Reynolds number was shown to represent a ratio of inertial and viscous forces. At
very low Reynolds numbers the inertial forces are small, and the inertial terms of the
momentum equation become negligibly small compared to the viscous terms. Under
these conditions the drag force on a sphere of diameter D is found to be

Fp = 37 DuVe, (6.18)
which may be combined with Eq. (6.17) to yield

24
Cp = —. 6.19
b= (619)

Details of the development leading to Eq. (6.19) are again beyond the scope of this text.
As shown in Fig. 6.5, Eq. (6.19) agrees well with experimental data when Rep < 1.
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Figure 6.5 Drag coefficient for some common shapes (from Eisner [40]).

So far, we have studied the friction factor and the drag coefficient associated
with a number of common cases. We may now utilize the analogy between heat and
momentumn transfer, obtaining the heat transfer indirectly from the friction associated
with these cases. Combining Eq. (6.15) with Eq. (5.63) yields a relation for the heat
transfer in fully developed turbulent pipe flow,

Nup = 0.023Re’ Prif2. (6.20)

The analogy between heat and momentum does not account for the pressure drop in
pipes and is not, strictly speaking, valid for pipe flow. However, the effect of pressure
drop on this analogy appears to remain within the uncertainty of the available experi-
mental data and is usually ignored. Next, introducing Eq. (6.16} into Eq. (5.63) gives

the heat transfer in fully developed turbulent flow over a flat plate,
Nuy = 0.036Res” Prif3, ' (6.21)

where Nu; and Rey respectively are the Nusselt and Reynolds numbers based on
the plate length. Since Eg. (5.63) holds exactly in this case, Eq. (6.21) agrees very
well with experimental data. It is, however, important to keep in mind the fact that
the analogy between heat and momentum transfer is not universal and applies only
to a few (including the foregoing two) special cases. In general, flows in most real
cases are much more complicated, and heat transfer expressions cannot be obtained
analytically. Instead, correlations are developed by relating experimental data with the
help of the appropriate dimensionless numbers introduced in Chapter 5. The remainder
of this chapter is devoted to heat transfer correlations for a number of different flow
conditions.
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6.2 FORCED CONVECTION

In Section 5.3 of the preceding chapter we learned from dimensional considerations
that forced-conyection heat transfer is described by

Nu = f(Re, Pr). (5.15.0)

Also, from Section 5.1 of the same chapter dealing analytically with laminar forced
convection, and from the analogy between heat and momentum discussed in Section 6.1,
we found that Eq. (5.150) explicitly becomes

Nu = CRe™Pr", (6.22)

where the unknown parameter and exponents depend on the flow conditions. What
remain to be specified are the specific values of C, m, and n for a number of common
cases classified as internal flow through a pipe or duct and external flow over an object,

6.2.1 Internal Flow

The prevalence of pipe flows in engineering (heating, cooling, power plants, water trans-
port, etc.) makes pipe flow the most important application of internal flows. Because of
this importance, there exist a number of correlations of experimental data on pipe flow.
Before listing these correlations, however, let us recall Eq. (6:20), obtained from the
analogy between heat and momentum transfer. All of the physical properties associ-
ated with the dimensionless numbers of this equation depend on the fluid temperature.
Therefore a reference temperature is needed for the evaluation of the properties, A
commonly used temperature for this purpose is the bulk temperature 7}, associated with
the enthalpy flow in the first law [recall 3 mi; ¢ of Eq. (1.10)],

pcp AV, = f pep(A)T(A)dA, (6.23)
A
whtich, for a constant-property fluid, reduces to
AVT, = f u(A)T(A)dA, (6.24)
A

where A is the cross-sectional area of the pipe, and V is the bulk velocity defined by
Eq. (6.9).

Although the bulk temperature is a measure for the fluid temperature averaged
over the cross section of a pipe, it does not distinguish between the cases T,, < T
or Ty > T;, where T, is the temperature of the pipe walls. Note that, because of
the dependence of viscosity on temperature, cold or warm walls relative to the bulk
temperature make viscosity near the walls heavy or light, which affects the heat transfer.
The film temperature Ty, defined as

1
Iy = 5 Ty + Ty), (6.25)
not only takes into account the effect of 7, s T,, but also represents a more meaningful

temperature for the physical properties. We now proceed to heat transfer correlations
for pipe flow in terms of 7}, and/or Iy,
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Actually, the first relation is the interpretation, say with T, of the analogy between
heat and momentum transfer [recall Eq. (6.20)],

Nup = 0.023Re33Pri?, L/D = 60. (6.26)

Two improved versions of Eq. (6.26), which incorporate the effect of variable properties
by considering the wall temperature relative to the fluid bulk temperature, are given in
Table 6.1, L being the length of the pipe. All properties for these correlations are eval-
wated at 7. The Prandtl-number exponent of the first correlation and the {4/ fty) ratio
of the second correlation take into account the temperature dependence of viscosity.
Note that, because of condition L/D > 60, Eq. (6.26) applies only to fully developed
flow. For shorter pipes the entrance effect associated with the development of the flow
needs to be taken into account. One correlation including this effect, and correlated
with Ty, is

Nup = 0.036RSEPr3(D /L)%, (6.27)

valid for
10 < L/D < 400,

Note that these correlations evaluate an average heat transfer coefficient. The
heat transfer coefficient actually varies along the length of the pipe. In the next section,
a procedure for the evaluation of the heat transfer coefficient is given in terms of five
computational steps suitable to one of the correlations of Table 6.1.

Table 6.1 Correlation of internal forced convection

Farced Convection (Internal)

T, = Const
Ve, Tp D 0.7 < Pr <160
- Rep = 10% )
Tw ‘ L/D = 60
£ T, for properties
Nu = 0.023Re}E Prm Lo>T, n=04
Tw <Tp n=103

Property Corrected 0.7 2 Pr < 16,700
Rep = 104
014
Nu = 0.027Re% Prif3 (i) L/D = 60
n
N Ty except Ty, for py
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6.2.2 Computation of the Heat Transfer Coefficient of Internal Flow

Key Problem.

4

Given: Bulk temperature T}, and velocity V of fluid flowing through a pipe with specified
wall temperature 7T,,. ‘

Required: Heat transfer coefficient.
Computational Steps.

1. Adjust the bulk temperature to the closest temperature of the related property
table.

2. Read the following five properties from Tables B.2 and B.3 in the Appendix for
the fluid at the bulk temperature 7Tj:

Y3
W k kI
v [n'";—] R Pr [Dimensionless], k [H] + P I:m"'—gsil . Cp [kg—-K] . (6.28)

For a first trial, pick the numerical values corresponding to the listed temperature
closest to the available 7. Note that, to evaluate the heat transfer coefficient, one
needs only the first three properties. The last two are used in the enthalpy flow
terms of an energy balance, if they are needed.

3. Using V, v, and D, compute the Reynolds number

VD
ReD _ . (629)
v
4. From Table 6.1 pick the power of Pr,n = 03 for Ty, < T}, and n = 0.4 for
Ty > Ty, and compute Nu from

Nu = 0.023Re%8Prm. (6.30)
5. Employing Nu, k, and D, compute the heat transfer coefficient from
w
\i4 k [m K]
h = Nu[Dimensionless] ————. 6.31
l:mz-K] [ ] D [m] (6.31)

ExampLE 6.1°

Consider water at a bulk temperature T}, = 40 °C flowing with a velocity V = 3 m/s through a
pipe of diameter D = 2 cm in a condensing steam bath at a temperature T, = 120 °C (Fig. 6.6).
We wish to determine (a) the rate of heat transfer from the steam bath to the water flow, (b) the
temperature rise in the water flow per unit length of pipe.

3 The FORTRAN program EX6-1.F is listed in the appendix of this chapter.
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Figare 6.6 Water flow through = 120°C
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a) Neglecting the effect of pipe wall curvature, the total heat transfer coefficient between
the steam bath and water flow is given by

11
— ==+

= — +
U  h

3 1
ky i
hy being the outside (or steam side) and k; the inside (or water side) heat transfer coefficient, &
the thickness of pipe, and k,, the pipe conductivity. Note from Table 1.2 that

hp > hy

(kg for condensation, A; forforced convection in water) and the effect of /g on U is thus negligible.
Since there is no information about the thickness of the pipe walls, we also neglect 8/ k,,, which
usually turns out to be small. Thus U = #; and T, = T, and we then need only compute the
water-side coefficient k; to determine the heat transfer between the steam bath and water flow.

Computation of heat transfer coefficient.  Following the five computational steps:

1. Adjust T, = 40 ++ 273 = 313 to 315 K (closest list temperature).
2. From Table B3 in the Appendix, for water (saturated liquid), read the following five ther-

momechanical properties,
v = 0.637 x 10~%m?/s
Pr=416
Water at k =063 W/m-K

T,=315K | p =991kg/m’
cp =4,179 J/kg'’K

3. Compute the Reynolds number,

VD Imis x 0.02m

— =T = 0.94 x 10,
v 0.637 x 0% m%/s

Reo =

4. From Table 6.1, pick n = 0.4 for T,, = Tx > T}, and compute Nu,
Nup = 0.023(94,000)5(4.16)°* = 387.
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5. Compute A,
b — kNup _ 0.634 W/m-K x 387

, D 0.02 m

v

B = 12,268 W/mz.ﬂ ,

which agrees with the upper bound expected for forced convection in a water How (see
Table 1.2). A posteriori, we learn from this numerical result that the present convection
problem is highly turbulent.

The heat transfer from the steam bath to the water flow, assuming T, = Constant over £, is
Q = b PUTe — Tp)
or, per unit length,

O/ = b D(Teo — Ty) = 12,268 W/m2K x 7 x 0.02m x (120 — 40) K,

IPIETE KWim .

b) Neglecting the effect of axial corduction, we balance the inerease in the water enthalpy
flow with the heat received by the water,*

Py VAAT = ki PUTy — Ty),

which gives
AT 4R(Te — T)
£ pc,VD
or
AT 4 x 12,268 W/m?- K x (120 — 40) K

F 991 kg/m> x 4,179 I/kg-K % 3m/s x 0.02m

12

158K (or °C)/m.

Note the appreciable temperature rise over 1 m length of the pipe. In calculating k;, we evaluated
the properties at T, thus neglecting any temperature variation of the fluid along the length of
the pipe. By using the computer program provided, the interested reader may evaluate AT/£
for a number of fuids.

Let us see how this rise in temperature affects the heat transfer. The bulk exit temperature
is-

Tpe = 40 + 158 = 56°C == 329K = 330K.

We wish now to recompute the heat transfer coefficient based on this exit temperature.

Again, from Table B.3 in the Appendix,

Water at v o= 0.497 x 1075 m? /s
Te = 330K Pr=3.15
kE =0.650W/m-K

% We assume the reader follows the five steps of formulation. -
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Then, for
vD 3mfs x 0.02m 5
Rep = —— = ————ee— = 1.2 % 10°,
0.497 x 10™° m*/s
we have
Nup = 0.023(120,000)°8(3.15)%4 = 421,
and from

_ kNup 0.650 Wim-K x 421

h; =
D 0.02m

By = 13,683 W/mK |.

For the Jongitudinally averaged heat transfer coefficient
12,268 + 13,683 2
h = — = 12,976 W/m*-K
and the longitudinally averaged bulk temperature

40 4 56
2

= 48°C,

b:

we have
0/f = 12,976 x 7 x 0.02 x (120 — 48)

or

[ 0/e =588 KWim |,

As a rule of thumb, the uncertainty involved with a heat transfer coefficient is usually assumed to
be about £30%. In view of this uncertainty, the difference between the first and second estimates
of /¢ is negligible, and there is no need to carry out the computations based on the averaged
values, Had the answers differed by more than 30%, the heat transfer coefficient, heat transfer,
and exit temperature would have had to be reevaluated based on the averaged T,. <

For flows through noncircular cross sections and ducts, the heat transfer correla-
tions developed for pipes can be used based on a hydraunlic diameter,

Flow cross sectional area

Dy = (632)

Wetted perimeter

For example, for a rectangular duct of side dimensions « and &, the hydraulic diameter

is
4ab 2ab

- 2a + b) T a+b
The correlations that we have studied so far are valid only for Pr > 0.7, which ex-

clude liquid metals (recall Fig. 5.12). As we learned in Chapter 5, the forced-convection
heat transfer associated with liquid metals is described by the relation

Nu = f(Pe), (5.155)

Dy,
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where Pe = RePr is the Peclet number. In general, liquid metals have small Peclet
numbers, resulting from their high conductivity. This allows for the removal of larger
heat fluxes than those in other liquids and gases. Since high levels of energy, relative to
conventional systems, are generated in the core of nuclear reactors, liquid metals are
suitable for the cooling of such systems. .

For fully developed turbulent flow in tubes subject to a uniform heat flux, the
experimental data are correlated with

Nup = 0.625P&", (6.33)

under conditions
100 < Pep < 10,000, L/D > 60,

provided all properties are evaluated at the bulk temperature T,. No correlation is
available in the literature for shorter pipes with L/D < 60. The correction factor

D L
1+2-m= :
(+ LlnD), (6.34)

obtained from the averaging of the local Nusselt number may be utilized until a more
accurate relation becomes available. Having learned the correlations for internal flows
through pipes and ducts, we now proceed to correlations for external flows.

6.2.3 External Flow

We learned in Chapter 1 that the heat transfer involved with thermal systems is com-
posed of a convective internal resistance, conductive resistance(s), and a convective
external resistance,

1

=

L1
U #o

| S

or, for a significant curvature effect,

| (Ag) 5 (Ao) 1

===+ -l=])+ -,

[ h; \A; k\V A hy
where U, h;, and kg are the total, inside, and outside cocfficients of heat transfer, § and
k are the wall thickness and conductivity, and A;, Ag, and A are the inner, outer and
mean surface area of the walls of the thermal system. Consequently, the convection heat
transfer from the outer surfaces of cylinders, spheres, tube banks, nozzles, combustors,
engines, etc. is also important in technological problems.

Since the flow conditions strongly influence the heat transfer (recall Nu ~ Rel/2
forlaminar flows and Nu ~ Re%2 for turbulent flows over a flat plate not involving liquid
metals), let us recall from fluid mechanics the results of experimental observations on
flow around a oylinder, which are sketched in Fig. 6.7. We learn from this figure that
the flow around a cylinder may assume different forms, depending on the Reynolds
number. The separation, beginning with the second sketch from the top, is associated
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Figure 6.7 Flow regimes around a
cylinder.

with an adverse pressure gradient. This gradient results from the fact that the upstream
velocity (at location I) is greater than the downstream velocity (at location 1I) because
of the conservation of mass, while the pressure at I is smaller than the pressure at Il
because of the Bernoulli theorem. Under the influence of the pressure gradient, the
transition from laminar flow to turbulent flow occurs apparently in several steps, gach
corresponding to a different flow regime.

For each regime involving separation, the characteristics of the downstream flow
separated from the cylinder are quite different from the characteristics of the upstream
flow that is attached to the cylinder. This difference is also reflected in the upstream
and downstream heat transfers. Figure 6.8 shows, for free-stream Reynolds numbers
between 70,000 and 220,000, the change in the local Nusselt number.as a function of
angular distance from the stagnation point. Note the difference between the maximum
and minimum Nusselt number, as well as the location of maximum heat transfer. -

For most problems of technological importance, however, we usually need the
average heat transfer coefficient. For example, the experimental data for air flowing
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Figure 6.8 Circumferential variation of k for cross
flow of air over a cylinder (from Giedt {42]).

normal to a single cylinder yields the average Nusselt number versus the Reynolds num-
ber, as shown in Fig. 6.9. Because of the aforementioned different flow regimes, these
data plotted on a log-log scale fall on a curve rather than on a straight line, indicating
different power laws (i.e., Reynolds-number exponents). However, approximating this
curve by piecewise straight lines, the data are correlated by the usual form given by
Eq. (6.22). For each straight line and n = 1/3, € and m assume a different set of
values: Nu = CReRPri/?. In terms of the foregoing arguments, the experimental
data for ordinary fluids as well as gases including air are correlated by the relation
given in Table 6.2. In this table, Rep = VD/vy is the Reynolds number based
on the free-stream velocity, and all properties are evaluated at the film temperature
Ty = (Ty + T} /2. Equation (6.22) continues to apply for flow over a noncircular
cylinder, provided n = 1/3, the values of C and m are now taken from Table 6.3, and
the Reynolds number is evaluated based on the appropriate D,, and properties at the
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Figure 6.9 Average heat transfer coefficient versus Reynolds number for a
circular cylinder in cross flow with air (from McAdams 251).

film temperature.

Table 6.2 C and » for circular tubes

’V Nup = CRePri/? T for properties
Rep = Voo D/vy C m
0.4-4 0.989 0.330
4-40 0.911 0.385
404,000 0.683 0.466
4,000-40,000 0193 0.618
40,000-400,000 0.0266 0.805

For flow over spheres, experimental data is correlated by
w4
Nup =2 + (04Ref” + 0.06Re}) Pro¢ (—u) (6.35)
Hw
under conditions
35 < Rep < 8 x 10, 0.7 < Pr < 380,

where all properties, except for ., at T, are evaluated at the free-stream temperature
Tea-
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Table 6.3 C and m for flow over noncircular tubes (from Jakob [43]).

Geometry Re = Voo D fv m C
Veo b 5,000-100,000 0.588 0222
m—— e 2,500-7,500 0.624 0261
2,500-15,000 0.612 0.224
5,000-100,000 0.638 0.138
5,000-19,500 0.638 0.144
19,500-100,000 0.782 0.035
Ve
—_— D, 2,500-8,000 0.699 0.160
v -
Z - D,|  4.000-15,000 0.731 0.205
Ve D 3,000-15,000 0.504 0.085
—. ¢

In the next section a procedure for the evaluation of the heat transfer coefficient is
given in terms of five computational steps suitable to one of the correlations of Table 6.2.

6.2.4 Computation of the Heat Transfer Coefficient for External Flow

Key Problem.

Given: Free-stream velocity Vi, and temperature T,,, and temperature Ty, of the object.

Required: Heat loss g,, from or energy generation #” within the object.
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Computational Steps.

1. Compute the film terperature

1

Ty = ST + L) (6.36)

2. From Table B2 for gases or Table B.3 for liquids in the Appendix, read the fol-
Jowing three properties for ambient fluid at the film temperature Ty:

m? . . W
v|— 1|, Pr[Dimensionless], k|——|- {6.37)
s m-K .
Do not use any interpolation; pick available numerical values closest to Ty.
3, Using Ve, v, and a characteristic length D, compute the Reynolds number

Voo D
Rep = ——, (6.38)
v

where D is the length of the object in the direction of the flow (circular cylinder
diameter or appropriate D, from Table 6.3 for noncircular cylinder).

4. Depending on the Rep range that the numerical value of Rep falls within, pick
appropriate C and m from Table 6.2 or 6.3 and compute Nu.

5. Employing Nu, k,and D (or D), compute the heat transfer coefficient z from

(5%

D[m] -

(6.39)

w
h{ 5 ] = Nu [Dimensionless]
m™-K

Exampie 6.2°

Air at 1 atm and Ty = 25 °C flowing with a velocity V = 50 m/s crosses an industrial heater
made of a long solid rod of diameter D = 2 cm. The surface temperature of the heater is to be
kept no higher than T, = 425 °C. We wish to determine the allowable electrical power density
" [W/m?] within the heater.

Computation of heat transfer coefficient.  Following the procedure described in Sec-
tion 6.2.4:

1. Compute the film temperature

T, + Tos 425425
T, = 22 = AT D msec = 500K
! 2 2

5 The FORTRAN program EX6-2.F is Iisted in the appendix of this chapter.
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2. The three thermomechanical air properties at this temperature are

Adr at v =3879 x 10~5m?/s
Ty = 500K Pr=10.684
k=407 x 107°W/m-K

3. The Reynolds number

vD S0mfs x 0.02m

= —— " 7 95780
v 38.79 % 107%m?/s

ReD =
is within
4 x 10° < Rep < 4 x 10¢,
corresponding from Table 6.2 to

C =0.193 and m = 0.618.
4. From Table 6.2,

Nu = 01938558 prii3
or

Nu = 0.193(25,780)%48(0.684)1 = 90.5,
5. Then

ENu 407 x 107 Wim-K x 90.5
- D 0.02m

| h = 14 W/t K.

i

]

307

Note that the foregoing Rep = 25,780 corresponds approximately to the fow regime
for Re ~ 10* sketched in Fig. 6.7, which is not fully turbulent. Accordingly, the above
heat transfer coefficient, being less than the upper bound of 300 for forced air flow (recall

Table 1.2}, is justified. The allowable electrical power density within the heater is

W = 4%(% — T} = 4 x 184 W/m? K x (425 — 25 K/0.02 m

= 147 x 10* kW/m®

By using the computer program provided, the interested reader may parametrically study

the effect of fluid velocity on allowable energy generation.

ExampLe 6.36

L3

Hot air 2t 1 atm and T}, == 325 °C flows with a velocity V = 20 m/s through a pipe of diameter
D =5 cm while cooling ambient air at 1 atm and 7, = 25 °C, flowing with a stream velocity
Voo = 40 m/s across the pipe (Fig. 6.10). We wish to determine the heat loss per unit length of

pipe.

6 The FORTRAN program EX6-3.F is listed in the appendix of this chapter.
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' = 40 mfs
T =25°C

Ty Ambient

. /Vb=20m/s
2)
~2~Yn,<~ Ty =325°C

Figure 6.10 System configuration.

Computation of inside heat transfer coefficient.  The inside heat transfer coefficient
involves internal forced convection in a circular pipe, and thus the use of Table 6.1. Following
the five computational steps:

1. Adjust T, =325 +273 =598 to 600 K.

2. From Table B.2 in the Appendix for air, read the following three thermomechanical prop-
erties:

Air at y =52.69 x 1075 m?/s
T, =600K | Pr=0.685
¥ =469 x 1073 W/m-K

3. Compute the Reynolds number,

. VD Wmisx005m o
ep = —— Tm ———————— = L. X -
? 52.69 x 10~ m¥/s

4. From Table 6.1, pick n = 0.3 for T, < T, and compute Nu,

Nu = 0.023(19,000)°%(0.685)%* = 54.4.

5. Compute &,
_ kNu _ 469 x 107 Wim-K x 54.4

B = -
‘T p 0.05m

for the inside heat transfer coefficient,

EEE W/t K|,

which remains well within the range (10 — 300) for forced gas flow given in Table 1.2.
However, for a turbulent flow, this result is considerably smaller than the expected value,
which should be claser to the upper rather than the lower bound. We will return to this
issue in the next example.
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Computation of outside heat transfer coefficient.  For the outside heat transfer coef-
ficient (flow over circular cylinder, Table 6.2), we need the wall temperature, which is unknown.
As afirst trial, letting & ~ V (rather than V°¥) and noting that the outside fiow velocity is twice
the tnside flow velocity, we may assume kg ~ 2k; and’

hi(Ty — Tu) = ho(Ty ~ Teo)
and get an estimate for

T + 2T 325 + 50
T, = 3 = 3 == 125°C,

Note that this type of reasoning applies only because both flows involve the same type of liquid.
Had one of the fluids been water, for example, we would need to use Table 1.2 as a guide to
estimate the order of magnitude of &;.

Following the procedure deseribed in Section 6.2.4:

1. Compute the film temperature

_Twt+Tw 1254325
=t

T; = 75°C = 350K.

2. Read from Table B.2 in the Appendix for air; -

Adr at v =20.92 x 10~ m%/s
T; =350K | Pr=0.7
k =30 x 107 W/m-K

3. Then, for
Ve D 40m's x 0.05m
v 2092 x 1075 m?/s

Rep = = 0,956 x 10°,

Table 6.2 corresponding to
4 x 10" < Rep < 4 x 10°
gives
C = 0.0266 and m = 0.805.

Note that, for a specified pipe wall thickness, the inside and cutside Reynolds numbers
should respectively be based on D; and Dy,

4. Compute Nusselt number from
Nu = 0.0266 R pris3,

which gives
Nu = 0.0266(95,600)*¥ (0.1 =2 241,
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5, Then, from

o kNu 30 x 1077 Wim- K x 241
= 7 0.05m ’

[ o =145 W/ K| .

As a second trial, in view of g/ h; = 2.84, one may assumme hg ~ 3h; and get for the wall
temperature

LT +3Te 325475

w = 7 = 100°C

rather than T,, = 125 °C obtained as a first trial. However, a wall temperature difference
of AT, =25 °C does not significantly affect sy and will not be taken into account.
In terms of the total heat transfer coefficient,

1 1 1
U

2

1 1
= — = R
A R 51 145 38

ﬁ = 38 W/m?K |,

we have
Q6 = aDU(T, — Toa)
or
0/¢ =7 x 0.05m x 38 W/m* X (325 — 25)K
or
/e = 1,91 Wim!.
>3
ExameLe 6.4
Reconsider Ex. 6.3 for the bot air fiow now pressurized to p, = 10 atm and the cold air flow to
Doc = 3 atm.

For a compressible fluid at constant temperature,
Z . Constant,
0

and we now have a tenfold increase in the density of the hot air flow compared to the preceding
example. Accordingly, the Reynolds number becomes

Rep = 1.9 x 10°,
the Nusselt number for this Rep gives

Nu = 0.023(190,000)"%(0.685)%% = 343,

*
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and the heat transfer coefficient becomes

kNu 469 x 107 Wim-K x 343

ki -
D 0.05m

[

B =322 W/mPK |,

which now corresponds to the upper bound for a gas flow given in Table 1.2.

In the preceding example we already bad a lower heat transfer coefficient for the inside flow
than for the outside flow. With an increased pressure, the inside coefficient will be considerably
higher. Accordingly, as a first trial, asswme kg ~ k;. Then

T, + Ty 3254725
g”“;°°= T2 yrsec,

w

Now, in terms of the five steps of computation:

1. Compute the film temperature

T+ Te  175+325
= > =

= 100°C.= 375 K.

Ty

2. Read from Appendix B-2 for air:

Alr at v =23.62 x 1075 m?/s
Tr=375K | Pr=0.695
Pr=lam | k£ =319x107?W/mK

3. Then, for
Voo D 3 x40m/s x 0.05m 5
Rep = = —— = 2.54 x 10°,
v 23.62 x 107" m*/s
Table 6.2 corresponding to
4% 10" < Rep < 4% 10°
gives

€ = 0.0266 and n = 0.805.
4. Compute Nusselt number from

Nu = 0.0266Re%¥ pri/?,
which gives .
Nu = 0.0266(254,000)%%%9(0.695)%° = 528.6.

5. Then, from
kNu 319 x 107 Wim-K x 528.6

hoﬁm—v—mz

D 0.05m

1

o = 337 W/mPK |,
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which turns out to be quite close to our initial assumption. Then, with
1 1 1 1 1 1

S = b X
U W ke 322 337 165

(7

0/8 = wDU(Ty ~ T}

i

165 W/ml K |.

we have

or
O/e = m % 0.05m x 165W/m K x (325 - 25) K

or

[8/¢ = 7,775 W,

The comparison of this result for (/£ with that obtained in the preceding example shows
the importance of pressure for gas flows.

NATURAL CONVECTION

In Chapter 5, foliowing some dimensional arguments, we learned that the independent
dimensionless numbers characterizing buoyancy driven flows are the Rayleigh number
and the Prandtl number (Ra, Pr), and the heat transfer in (Nusselt number Nu for)
natural convection is governed by

[Nu = f(Ra, Pr). (5.162)

A recently proposed dimensionless number (see Arpaci and co-worker references at
the end of the chapter) describes these flows by a combination of Ra and Pr, and needs
to be considered here.

Let a buoyancy-driven momentum balance be

where Fg, F7, and Fy respectively denote buoyant, inertial, and viscous forces. Also,
let the associated thermal epergy balance be

Qn ~ Ox, (6.41)

where Qg and Oy respectively denote enthalpy flow and conduction. Then, the fol-
lowing ratios from Eq. (6.40), -

P _ BBy (6.42)
Fi +Fy  Fi/Fy+1 '
and, from Eq. (6.41},

Ou/ Ok (6.43)
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can be formed, the numeral 1 in Eq. (6.42) implying order of magnitude. The actual
value of this numeral depends on the geometry and the flow conditions of the problem.
Although the force ratios of Eq. (6.42) and the energy ratio of Eq. (6.43) are dimen-
sionless, they ar'e usually expressed in terms of velocity, which is a dependent variable -
in buoyancy-driven flows:

F ApYEEF Ve Ve
Fs g(Ap) , L pVE Qr pe , (6.44)
Fy uV Fy ® Ok k

where £ is a characteristic length, the rest of the notation being conventional. The only
combination of Eq. (6.42) and (6.43) independent of velocity is

(FB/FY) Q;{/ Ok (6.43)
(F1/Fv)Qk/Q8 + 1
or
Iy ~ Ra _ PrRa . (6.46)

1+ Pt 1+ Pr

whichis the appropriate dimensionless number for natural convection in any fluid {recall
Prob. 5.13). Two limits of ITy are

lim [y — Ra (6.47)
Pr—co
and
lim Ty — RaPr. (6.48)
Pr—0

Now, Eq. (5.162) can be written more explicitly in terms of [Ty as

Nu = Ff(IIy) {0.49)
and two of its limits as
im Nu = f(Ra), (5.165)
Pr—oo

which correfates data on most fluids (gas, light and heavy liquids) except for liguid
metals, and .

lim Nu = f(RaPr), {5.166)
Pr—0
which correlates data on liquid metals.

The rest of the chapter introduces a new correlation based on Eq. (6.49) and
outlined in Table 6.4, and reviews an existing correlation related to Eq. (5.165) and
outlined in Table 6.7. We demonstrate the use of these tables for the computation of
the heat transfer coefficient in terms of two key problems.
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6.3.1 Computation of the Heat Transfer Coefficient for Given T,

First Key Problem.

Given: Temperature T, of an object and ambient temperature Teo-
Required: Heat loss g, from or energy generation u” within object.

Computational Steps.

1. Compute the film temperature

1
Ty = S(Tw + Teo). _ (6.50)

Do not use any interpolation. For a first trial, pick available numerical values
closest to 7.

2. Read from Tables B.2 through B.4 in the Appendix the following three properties
for ambient fiuid at film temperature Ty:

861 1 Pr [Dimensionless], k| —— ] (6.51)
— , r nsionless], . .
ve { m> K s oK
3. Using gB/ve, (Tw — To), 2nd 2 characteristic length L, compute the Rayleigh
number
g8 3
Ra = —(Tw — T}, {6.52)
v

where L is the height of the object in the direction of gravity unless otherwise
specified.

4, Depending on the geometry and orientation of the object, pick the numerical
value of Cp from Table 6.4 and compute the fundamental dimensionless number
for natural convection,

R
My = ___“_C.O_ (6.53)
1 —
+ Pr

and, using the range that the numerical value of Tl falls within, pick € and n of
Nu = CII} {6.54)

from Table 6.4 and compute Nu.
5. Employing Nu, k, and L, compute the heat transfer coefficient from

T (6.55)

W
h \:Til = Nu [Dimensionless]
m“-K

e



Table 6.4 Natural convection correlations.
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NATURAL CONVECTION Ty = Const.
< Prc<o
_ " _ Ra
Nu= CIG - Ty = 1o 7pr Ty
Geometry Range Correlation
1 Co C n
L
10* < Iy < 109 0.670 1/4
0.492
L
107 < Oy < 1012 0.150 1/3
/ 10 5 My < 10 0518 | 14
0.559
o
107 < Iy < 1012 0.150 113
106 < Iy < 109 0.589 1/4
D 0.469
10% < Iy < 1012 0.150 /3

ExameLE 6.57

315

An electrically heated, square (0.4 m % 0.4 m x 0.005 m), vertical flat plate is to be kept at
T, == 95 °Cin an ambient at T, = 25 °C. We wish to determine the power supply to the plate
in ambient (a) air, {b) water, oil, or mercury.

Assuming the plate temperature to be uniform, consider a system for the entire plate. The
first law of thermodynamics for this system is

0= —-20c + W,

Q¢ being the rate of convective heat loss,

Qc = hAT, — Tx),

7 The FORTRAN program EX6-5.F is listed in the appendix of this chapter,

(656)

(657
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from one side of the plate and W, the electric power supply. Insert Eq. (6.57) into Eq. (6.56) for
the governing equation,
W, = 28A4(Ty — Too)- (6.58)

Because of the assumed lumped system, the governing equation is algebraic rather than differ-
ential. No boundary conditions are needed, and Eq. (6.58} is also the solution of the problem.

Computation of heat transfer coefficient.
(a) Air: Following the procedure described in Section 6.3.1:

1. Film temperature is
1
T = —?:(95 +25) = 60°C(333K).

The temperature closest to Ty in the air table of Appendix B2 is
T; = 350 K.

2. Three thermomechanical air properties at this temperature are

Air at 8 _ 44.8 x 106 |:m3-K:|“l
vor
Ty = 350K Pr =07

k=30 x 10 W/mK

3. For a vertical plate, the appropriate length to be used is L. The Rayleigh number is
Ra, = 5’?-(12,, — T3 = 44.8 x 10595 — 25)(0.4)° = 2.01 x 108,
Ve

4. For a vertical plate, Cq = 0.492 from Table 6.4 and
2.01 x 108 2.01 x 10°

My = = = 118 x 10° < 10%,
0.492 1.70
14—
0.7
The flow is laminar. From Table 6.4, for buoyancy-driven laminar flow mext to a vertical
plate,
1
C=0670,n=-,
4
and

Nu = 0.670TT4* = 0.670(1.18 x 10%* = 69.8.

5. The heat transfer coefficient is then

k 30 x 107 s
h=Nul=] = 698——— = 52W/m"K
L 0.4
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Solution: From Eq. (6.58),
i W, = 2 x 52(0.4)2(95 — 25) & 116 W

or

W,
— = 52(95 — 25) 2 364 W/m®
24

is the power need to keep the plate at T, = 95 °C in air at T, = 25 °C.

Repeat the foregoing calculations for Ty = 300 K and 325 K. What is your conclusion? By
using the computer program provided, the interested reader may parametrically study the effect
of T, on the power supply.

(b) The problem may also be repeated by considering water, oil, and mercury as the ambient
fluid. Table 6.5 summarizes the results obtained for these cases. Note the several orders of
magnitude difference between the power need for each case, Note also the agreement between
the computed h values given in Table 6.5 with the orders of magnitude, suggested in Table 1.2,

This comparison assures the reader about the soundness of the computed values. €
Table 6.5
Air Water oil Mercury
Iy [K] 350 335 330 350
Table Table B2 TableB3  TableB3  Table B4
1 ‘
-‘S:E I: 3 :| 44.8 x 10° 7138 x 10° 0.888 x 10° 3.66 x 10°
va | m*-K
Pr 0.7 2.88 1,205 0.0196
w
k |:—] 30 %107 656 x 31073 141 %107 9,180 x 1072
mK
Ra 201 x 10 3.19x 10" 398 x10° 1.64 x 109
Co 0492 0.492 0.492 0.492
Oy 118 x 108 273 x 10" 398 x10° 6.28 x 108
Flow Laminar  Turbulent Turbulent Laminar
C 0.670 0.150 0.150 0.670
" : ; ) !
Nu 69.8 973 238 106
W
k [ = } 52 1,600 g4 2,433
m--K
W, [kW] 0116 358 1.88 54.5

W, [ kw
[——} 0364 112 5.88 170
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ExameLe 6.6
Reconsider Ex. 6.5 for an infinitely long horizontal cylinder of diameter D = 0.4 mto be kept at
T, = 95°Cin an ambient To = 25°C.

Computation of heat transfer coefficient.
(a) Air: The first three steps of the computation are identical to those of the precedihg example,
leading to

Rap = 2.01 x 10%.

4. For a horizontal cylinder, Cy = 0.55% from Table 6.4 and

201 x 10° 201 x 10° . 5
My = ——— = “——— = 112 x I* < 10%

The flow is laminar, From Table 64, for a horizontal cylinder,

1
C =058 n=-
4
and
Nu = 0.518T1Y* = 0.518(1.12 x 10%)Y¢ = 533.
5. Then,
k 30 x 1072 )
b= Nul|l—] =533%—— =400 W/m K.
D 0.4
Solution:

For the power need per L = 0.4 m length of the cylinder,

W, = hA(T, — T). A = aDL,

W, = 400 x 7 x 0.4 x 0.4(95 - 25) = W1W,

we have
W, N 5
71- = 400095 — 25) = 280 W/m",

which keeps the cylinder at T, = 95°Cinairat T, = 25°C.

Note that the total power need for the cylinder is greater than that for the flat plate while
the power/area need for the cylinder is smaller than that for the flat plate. (Why?) The problem
may also be repeated by considering water, cil, and mercury as the ambient fluid. Table 6.6
summarizes the results obtained for these cases. Note the several orders of magnitude difference
between the power need of each case. ¢
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Table 6.6
Alr Water Oil Mercury
T; [K] 350 335 330 350
Pr 0.7 2.88 1,205 0.0196
W .
k [——} 30 x 107° 656 x 1070 141 % 10~% 9,180 x 1072
m-K
Ra 201 x 108 319 x 10" 3983 % 10°  1.64 x 100
Cy 0.559 0.559 0.559 0.559
My 112 x 105 2.67 % 10" 398 x 10°  5.56 x 1¢8
Flow Laminar Turbulent  Turbulent ILaminar
C 0.518 0.150 0.150 0.518
1 1 1 1
n z : - z
4 3 3 4
Nu 53.3 966 238 79.5
W
h [ > } 4.00 1,580 84 1,825
m“K
W, [kW] | 0141 55.6 2.96 64.2
W, [ xw
— | = || 0280 111 5.88 128
A | m

Exampie 6.7

Reconsider Ex. 2.13, in which the heat transfer coefficients are given. Here, we wish to compute
the outer heat transfer coefficient.

Computation of heat transfer coefficient.

Following the procedure described in Section 6.3.1:

1. Film temperature:

Since #; 3> ho (forced convection in water > natural convection in air), the internal
convective resistance and the radial temperature change are negligible, and

T, 2T, U Z hy

We also tlearned in Ex. 2.13 that the longitudinal change in the water temperature is small.
Accordingty,

1 1
Ty &= Ech + Too) = 5(97 +27) = 62°C(335K)

can safely be used in the computation of kg. The temperature closest to 77 in the air table
of Appendix Bis Ty = 350 K.
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2. We have already used this temperature in Exs. 6.5 and 6.6 for the thermomechanical prop-
erties of air:

Alr at 8 a8 %108 [m3‘K]_1
o

T, =350K | Pr=07
k =30 x 1073 W/mK

3. Here, the Rayleigh number

Rap = §E(T,,, — T.D% = 448 x 10597 — 27)(0.0334)° = 1.17 x 10°
v

is different from those in Exs. 6.5 and 6.6 because of the geometry difference.
4. For a horizontal pipe (cylinder), Cy = 0.559 from Table 6.4 and

1.17 x 10° . 10°
my = A7 XA T XD s g 651 x 10° < 10°
s 0.559 1.80
0.7

The flow is laminar. From Table 6.4, for buoyancy-driven laminar flow around a horizontal

cylinder,
1
C = 0518 n = =,
4
and
Nu = 0.518T1* = 0.518(0.651 x 10°)"* = 83.
5. Then, from
k 30 x 1072
By = Nu|—) = 83——,
D 0.0334
we have

[ 1o = 7.5 W/mt K|,

which is somewhat less than the assumed value of Ay = 10 W/m?.K in Ex. 2.13. With the
new value of A, the exit temperature becomes slightly higher, with the computation {using
the result from the first key problem of Section 2.5) leading to T, = 94.5°C.

6.3.2 Computation of the Heat Transfer Coefficient for Given g,

Second Key Problem.

Given: Power generation W, within an object and ambient temperature To,.

Required: Temperature T,, of the object.
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Computational Steps.

1. Assume flow to be turbulent, which is the case for most practical situations. The laminar
cases of Exs. 6.6 and 6.7 are exceptions, provided for illustration. The computation of A
requires knowledge of 7,,, which is the question. For an initial estimate of T,,, pick an
from Table 1.2 corresponding to the upper limit of natural convection in the ambient fluid.

2. Make an initial estimate of T, from

We = hA(Ty — T), {(6.59)

A being the total heat transfer area (212 for square plate).
3. Follow the five steps of the first key problem to obtain k.

4. Tterate the problem until the difference between the assumed and found k& becomes negli-
gible.

5. Evaluate T, with the final value of k. 4

ExampLe 6.88

Electrical power W, = 2 kW is steadily applied to a square (0.4 m x 0.4 m x 0.005 m) vertical
piate kept in an engine oil ambient at 25 °C. We wish to determine the surface temperature 7,
of the plate,

Following the computational steps above:

1. From Table 1.2, assume h = 100 W/m?-K, which is close to the upper limit for turbulent
natural convection in an oil.

2. From
W, = hA(Ty — Teo).

2kW = 0.1kW/mPK x 2 x 04 x 0.8m? x (T, —29) K

make an initial estimate of
T, = 88°C.

3. Now, following the five steps of the first key problem:
@
1
T = 5(88 + 25) = 57°C(330K).

(b) From Table B.3 in the Appendix, the three thermomechanical properties of engine
oil are:

Engine oil at 56 _ 0.888 x 10° [ K]
v
T, =330K | Pr=1,205

k=141 x 107 W/mK

8 The FORTRAN program EX6-8.F is listed in the appendix of this chapter.
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(c) The Rayleigh number is

Ra; = gE(1:,, — T L% = 0.888 x 10°(88 — 25)(0.4)° = 3.58 x 10°.
v

(d) For a vertical plate, Co = 0.492 from Table 6.4 and

3.58 x 10°

My = ———— =358 x 10° > 10°.
. 0.492
1205
The flow is turbulent. From Table §.4, for beoyancy-driven turbulent flow next to a
vertical plate,
1
C =10150, n = -,
3
and

Nu = 0,150 = 0.150(3.58 x 10°)'/% = 229.

(e) From

k 141 x 107° )
ho=Nuf=|=229—-— Z 8 WmK
L 0.4

We assumed & = 100 W/m?K and found k = 81 W/m? K. Averaging the assumed and
found values of k,

1
ho= 5(100 + 81) = 90 W/mP K,

recompute the vaiue of Ty,

2EW = 0.09kW/m?K x (2 x 0.4 x 04 m? x (Ty —29) K,

T, = 94°C.

4. Since T, = 88 °C obtained by the assumed # is quite close to Ty, = 94°C obtained by the
computed &, no iteration is needed. +

Examete 6.9°

Ethylene giycol is pumped through a pipeline of diameter I = 0.4 m which runs across 2 lake
£ = 200 mwide (Fig, 6.11). Thevelocity and inlet temperature ofthe oil are 2.0m/sand T; = 50°C.
The temperature of the lake water is Too = 5 °C. Evaluate the exit temperature of the oil

% The FORTRAN program EX6-9.F is listed in the appendix of this chapter.
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Figare 6.11 System configuration.

For an initial estimate, use Table 1.2 to approximate the values of heat transfer coefficient:
ho = 1,000 W/m* K for forced oil,
By = 1,000 W/m2.K  for stagnant water,

and use the inlet oil temperature for properties from Table B3 in the Appendix:

Ethylene glycolat | o = 1,096 kg/m’
T, 320K ¢, =2.505 I/kg K

Then, the exit oil temperature may be evaluated from Eq, (2.160):

T, — T aUe
= & - .
T —To P\ pc,VD

where
oy, 1
U ks ks 1,000 1,000
U = 500 W/m2K,
and
4y 4 x 500 W/m?K x 200 m

- = 0.147.
pc, VD 1,096 kg/m® x 2,505 J/kg:K x 2.5m/s x 0.4m

Then, Eq. (2.160) gives

zo :i = W = 0.864
or
T, = 5+ 45 x 0.864 = 44°C
and

i —-7T.=50-#4=6°C.
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This small temperature drop along the length of the pipe does not significantly affect the property
values of oil and water. Accordingly, we evaluate kg and k,, at the inlet conditions.

Forced convection in oil.

L Adjust T, 2 T; = 50°Cto 320 K.
2. From Table B.3 in the Appendix, read

Ethylene glycol at v =691 x 10~ m?/s
T, =320K Pr=735
k=0.258W/m-K

3. Compute the Reynolds number: -

VD 2m/s x 0.4m

e — =116 x 10°,
vp 6.91 x 107 m*/s

Re =
The flow is turbulent.
4. From Table 6.1 for T > Ty, pick n = 0.3,
Nu = 0.023Re58Pr0% = 0.023(116,000)°%(73.5)%% = 940.
5. Then,

k 0.258
hg = Nul — | = 940—o,
D 0.4

[ ko = 606 W/m K |

Natural convection in water.

1. Because we assumed ky, = hg,
1 1 ~ a
Ty = ~2'(T.' + Too) = 5(50+5) = 28°C

and

1 1
Ty = 5+ T) = 508 +5) = 17°C 290 K).

2. From Table B.3 in the Appendix, read

Water at #_ 11.03 x 16° [m* K]?

va
Ty =290K | Pr=756

k = 0.598 W/m-K




Sec. 6.3 Natural Convection 325
3. The Rayleigh number is
8f 3 o 3 9
Rap = — (T, — To)D® = 11.03 x 10°(28 - 5)(0.4)° = 16.24 x 10°.
v
4. For a horizontal pipe, Cy = 0.559 from Table 6.4 and

1624 x 10° 1624 x 10° s o
= = = 15.18 x 10° > 10°.

w

0559 107
7.56
The flow is turbulent.
5. From Table 6.4, for buoyancy-driven turbulent flow around a horizontal pipe,
1
C = 0.150, n=-,
3
and
Nu = 0.150M} = 0.150(15.18 x 109 = 371,
6. Then, from
k 0.598
By = Nul—| =3711——
D 0.4
we have

| hy = 555 W/mbK B

Our initial assumption of &, = hy turns out to be holding approximately, and no iterations
are needed for better values. However, the calculated heat transfer coefficients are about
one-half of the assumed coefficients, so the exit temperature must be recalculated. For
these new values,

1 1 . 1 1 N 1
U kg hy, 606 555
U = 290 W/m> K,
and
40 290
= 0.147 x =—— = 0.085.
pc, VD 500
Then, Eq. (2.160) gives
7, -5
s = U0 >~ 018
505

or
T, =5+45 x 0.918 = 46°C,

which is quite close to the initial estimate of T, = 44 °C. By using the computer program
provided, the interested reader may parametrically study the exit temperature for a number
of fluids under different conditions. &
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“[able 6.7 Natural convection correlations for horizantal plates

Natural Convection T, = Const.
Pr=07
- Nu=C Ra" Ty
Geometry Range (o n
Hot (T, > Two) horizontal surface facing up, or, 10° < Ra <107 .| 0.54 1/4
Cold (T, < Tu) horizontal surface facing down 107 < Ra<10° | 015 | 1/3
Hot (7, > Te) horizontal surface facing down, or, | 10° £ Ra = 10 | 027 | 1/4
Cold (1), < Teo) horizontal surface facing up

FOR HORIZONTAL SURFACES:

The characteristic length is one side of a square plate,
the mean of the two sides of a rectangular plate,

0.9 diameter of a circular disk, and

4 area/perimeter of an odd surface.

So {ar, for computation of heat transfer from vertical flat plates and cylinders,
horizontal cylinders and spheres, we have used Table 6.4 correlations in the form of

Nu = CIT}, (6.54)

which applies for any Prandtl number. For computation of heat transfer from horizontal
plates, the only correlations available are in the form of

Nu = CRa", (6.60)

which applies for Pr > 1. These correlations are collected in Table 6.7. Due to different
buoyancy effects, the top and bottom heat transfer coefficients of a horizontal plate are
different. Before we illustrate the use of this table, let us demonstrate the shortcomings
of correlations based on the Rayleigh number by rearranging Eq. (6.46) as

My i
Dok O 6.61
Ra 1+ Prt (6561)
The definition of Prandil number,
‘ F,
pr=28, 0 (5.154)

o Fv
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shows that Pr—! is a measure of the inertial effect on natural convection. For viscous
oils, Pr~! « 1 and the inertial effect is negligible. For liquid metals, Pr~! > 1 and the
inertial effect dominates (recall Fig. 5.12). A correlation based on Eq. (6.60) applies
strictly to viscous oils, water and somewhat approximately to gases but not to liquid
metals. Now, we proceed to the use of Table 6.7 correlations based on Eq. (6.60) for the
two key problems associated with horizontal plates. Since these problems are special
cases of the previous key problems, and require only the computation of Ra rather than
Ty, they are illustrated in terms of the following two examples,

Exameie 6.10

We wish to reconsider Ex. 6.5 for a horizontal plate in ambient air. Equation (6.58) continues to
be valid for the present case provided the upward and downward coefficients are distinguished.
Thus

: W, = (b1 + h2) A(Tw — Too). (6.62)

Computation of heat transfer coefficient.

1. Film temperature closest to 7 in the air table of Appendix B2 is
Ty == 350 K.

2. Three thermomechanica! air properties, already used in Ex. 6.6, are

Airat LNPPIT (K]~
v
Tr=350K Pr =07

k=30x10" W/mK

3. The Rayleigh number is
Ra = 2.01 x 10%

4. The plate temperature T,, is higher than the ambient temperature T,,. Table 6.7 gives for
the upward heat transfer cocfficient,

C=015n=

t

(SR ]

indicating turbulent conditions, and gives for the downward heat transfer coefficient,

1
C =027 n= —
4

indicating laminar conditions. Then we have for the upward heat transfer
Nuy = 0.15Ra'”? = 0.15(2.01 x 1052 = §7.9
and for the downward heat transfer

Niup = 027RaY* = 027(2.01 x 109Y* = 32.1.
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5. The heat transfer coefficients are

k 30 x 1072 \
hy = Nuy| — ) =879 o 2 6.6 Wt K

and

k 30 x 107 s
hy = Nua | =] = 321 ~ 2.4 W/m" K.
L 0.4

As a rule of thumb, keep in mind that the downward heat transfer coefficient usually turns
out to be 20-30% of the upward heat transfer coefficient.

Solution: From Eq. (6.62),
W, = {66+ 2.4)(0.4)%(95 — 25) = 101'W
is the power needed to keep the horizontal plate at T, = 95 °C in air at Too = 25°C. 4

Exampte 6.11

Example 6.8is reconsidered for ahorizontal flat plate. We wish to determine the wall temperature
of the plate.

Computational Steps.

1. Equation (6.62),
Ws =+ hZ)A(Tw — Ty (6'62)

obtained from the first four steps of formulation, continues to apply. To determine Ty, we
need to know Ay and hy, which in tum depend on T,,. Weuse a trial-and-erTor procedure
as follows.

First, based on the insight gained in the preceding example, assume the downward
heat transfer coefficient to be about 30% of the upward coefficient,

hy = 03hy,
and, as an estimate for the upward coefficient, pick from Table 1.2
By = 120 KW/m* K,
which is the upper bound for buoyant oil flows.

2. From Eq. (6.62), .
W, = 13 ATy — Too)

or
2,000 W = 1.3 x 120 W/m*K x (0.4 x 0.4) m x (Ty — 259K

we get an estimate
T, = 165°C.

3. The problem is reduced, in terms of the assumed A, and hj, to the first key problem to be
carmied out for T, = 105°C.
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(a) The film temperature is

¢

T, + T 1
T = ~‘"Tff. = 5(105+.25) > §5°C = 340 K.

{b) The thermomechanical properties are

Engneolat | 20— 1.428 % 10° [m3K]™
vo
Ty = 340K k= 139 x 1072 W/m K

For the correlations in Table 6.7, no Prandt] number is needed because of the ne-
glected inertial effect.

(¢) The Rayleigh number is
Ra; = ;f_fi(Tw — To)L? = 1.428 x 10°(105 — 25)(0.4)° = 7.31 x 10°.
v .

(d) Table 6.7 suggests, for this Rayleigh number, turbulent upward heating,
Nup = 0.15Ra;” = 0.15(7.31 x 10)Y? = 291,
and downward laminar heating,
Nuz = 027Ra)* = 027(7.31 x 10%%* = 79.

(e} We can then get

k 139 x 107° 5
hy = Nug | — | = 2917 = 101 W/n’ K,
L 0.4

k 139 x 107
By = Nua (—) =79"" " - =27TW/m*K.
L 0.4

We assumed k1 + 22 = 156 W/m?-K, and with a temperature T,;, = 105 *Cresulting
from this assumption, obtained the foregoing hy + hy = 128 Wim?-K. Actual
coefficients are expected to be in between the assumed and computed values, say

156 + 128
B4 hy = — = 142 W/mk K,
which yields
T, = 113°C.

4. This temperature is close enough to the assumed temperature T,, = 105 °C, and no further
iteration is needed, *>
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In this chapter we learned, in terms of a few selected correlations, how to use a given
correlation rather than exploring the entire literature on cortelations. Appendix A
contains a list of correlations available in the literature. The reader may refer to any
one of these correlations particularly suited to a problem under consideration.
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4 COMPUTER PROGRAM APPENDIX

Cmmmmrm e - -

C EX6-1.F (START)

P UG ——e
PROGRAM MATN

IMPLICIT REAL*8 (A-H,K-Z)
PL=4*ATAN(C1.)

WRITE(*,*) 'EXAMPLE 6.1....°
Cmmmmmmmmmmm " — PSR
C INPUT DATA
C - B b e

WRITEC*,*) *INPUT THE FOLLOWING DATA...'
WRITE(*,*) 'T.B: C'

READ(*,*) TB

WRITEC(H,*) 'V: m/s'

READ(*,*) V

WRITECY,*) 'D: cm’

READ(*,*) D

WRITE(*,*) 'T.INFTY: C'

READC*,*) TINFTY

o et e R o
C UNIT CONVERSEION

C- — e e e i it =
D=0.01*D

Commmm—— e - —_ —
C CHART READINGS

Comme e mdm e ——— —— ——

WRITEC*, %)} 'ADJUST TB=',TB+273,' K’

WRITEC*.*) 'TO THE CLOSEST LISTED TEMPERATURE T_C ON Appendix B3'
WRITE(*,*) 'READ FROM Appendix B3 FOR WATER PROPERTIES AT T.C'
WRITE(*, %) 'INPUT NU: mA2/s’

READ{*,*) NU

WRITE(*,*) 'INPUT PR’

READ(*,*) PR

WRITEC®,*) "INPUT K: W/m.K'

READC*, % K

WRITEC*,*) 'INPUT RHO: kg/mA3?

READ(*,*) RHO

WRITEC® ,*) "INPUT CP: 3/kg.K'

READ(*,*) CP

C

CALCULATION

Commmm - e

RER=V*D/NU

WRITE(*,*) 'PICK N FROM TABLE 6.1’
WRITE(*,*) "INPUT N’
READC*, ™) N

CALCULATTON

|J
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NU=Q.023*RED*¥0, B*PR¥*N
H=K*NU/D ¢

DOTQeH* PL*D* (TINFTY-TB)

DT=4*H* (TINFTY-TB) / (RHO*CP*V*D)
TE=TB+DT

C ANSWER

e et e e e —— e — A
WRITE(*,*) 'HEAT TRANSFER FROM STEAM TO WATER IS’
WRITE(*,*) DOTQ/1000," kw/mAZz PER UNIT LENGTH’

WRITE(C*,*) 'TEMPERATURE RISE IN THE WATER IS’

WRITEC*,*) DT,' K/m PER UNET LENGTH'

WRITEC*,*) '"EXIT TEMPERATURE OF WATER FOR 1 M LONG TUBE 1S’
WRETE(*, ") TE+273,' K’

S ——— -

[ S —_— ——— —-—

WRITE(*,*) 'ADJUST TBE=',TE+273,' K’

WRITE(C*,*) 'TO THE CLOSEST LISTED TEMPERATURE T_C ON Appendix B3'
WRITE{*,*) 'READ FROM Appendix 83 FOR WATER PROPERYIES AT T.C'
WRITE{*,*) "INPUT NU: mAZ/s’ '

READ(*,*) NU

WRITE(*,*) "INPUT PR’

READ(*,*} PR

WRITE(*,*) "INPUT K: W/m.K'

READC*, %} K

RED=V*D/NU

NUm0 . 023*RED**(, 8*PR**(, 4
HI=K*NU/D

HAVE=(H-+HI) /2

TRAVE=(TB+TE)} /2
DOTQ=HAVE*PT*D* (TINFTY-TBAVE)

WRITE(*,*) "HEAT TRANSFER FROM STEAM TO WATER IS’
WRITE(C*,*) DOTQ/1000,' kW/mA2 PER UNIT LENGYH'
STOP

END

C- —— —

PROGRAM MAIN

IMPLICIT REAL*3 (A-H,K-Z}

PI=4*ATAN(1.)

WRITE(*,*) '"EXAMPLE 6.2....°"

Crm e e S
c INPUT DATA

333
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WRITE(*,*) '"INPUT THE FOLLOWING DATA...’
WRITE(®,*) 'TINFTY: ct

READ(¥,*) TINFTY

WRITE(®,*) °V: m/s'

READ(* , %) V

WRITE(*,%) 'D: cm’

READ(*,*) B

WRITEC*,™) 'TMW: O

READ(*,*) TW

WRITEC*,*) TADIUST TF=',TF+273,7 K’

WRITE(*,¥) 'TO THE CLOSEST LISTED TEMPERATURE T_C ON Appendix B2’
WRITEC*,*) 'READ FROM Appendix B2 FOR AIR PROPERTIES AT T.C’
WRITE(®,*) "INPUT NU: mA2/s’

READ(*,*) NU

WRITEC*,*) 'INPUT PR’

READ(*,*) PR

WRITEL®,*) INPUT K: W/m.K'

READ(*,*) K

C CHART READINGS

WRITEC*,*) 'READ FROM TABLE 6.2 FOR C AND N WITH’
WRITE(*,*) 'REYNOLDS NUMBER=',RED

WRITE(¥,*) "INPUT C'

READ(*,*) C

WRITE(®,*) "INPUT N’

READ{*,*) N

C CALCULATION
Comamimm . e ——— -
NU=C*RED¥**N*PR** (1, /3.)

Heal*NU /D

U= (4, *H/D) (TW-TINFTY)

WRITEC®,*) "ALLOWABLE ELECTRICAL POWER DENSLTY IS’
WRITEC*, %) U/1000," kW/mA3’
STOP

C EX6-3.F (START)
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PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-Z)
PI=4*ATAN(CL.)

WRITE(*,*) 'EXAMPLE 6.3....°

Commmmmmm — S

c [,
WRITEC*,*) "INPUT THE FOLLOWING DATA...'
WRITE(*,*) 'T.B: C

READC*,*) TB

WRITE{*,*) 'V: m/s'

READ(*,*)} V

WRITEC*,*) 'D: cm’

READ(*,*} O

WRITE(*,*) 'TINFTY: C°

READ(*,*) TINFTY

WRITE(*,*) 'VINFTY: m/s’

READ(* %) VINFTY

Cmmimm e m e - ——

C UNIT CONVERSION

oo s o e R P e e e
D=0.01*D

Commrmt i e o o e i e e e
C CHART READINGS

Commmmm—rmm—m e - i ———

WRITE(C*,*) 'ADJUST TB=',TB+273," K'

WRITEC*,*) "TO THE CLOSEST LISTED TEMPERATURE T.C ON Appendix B2’
WRITE(*,*} 'READ FROM Appendix B2 FOR AIR PROPERTLES AT T.C'
WRITE(*,*) "INPUT NU: mA2/s’

READ(*,*) NU

WRITE(*,*) 'INPUT PR’

READ(*,*) PR

WRITE(*,*) "EINPUT K: W/m.K’

READ(*,*) K

C CALCULATION
C — - _— - ———

RED=V*D/NU

C CHART READINGS
C- ——— — e

WRITE(*,*) 'PICK N FROM TABLE 6.1°

WRITE(*,*) "INPUT N’

READ(™, ¥} N

[ —— e e

LCummomm— e e ——— an——
NU=0.023*RED**0. §*PR**N
HI=K*NU/D
[ o —-—— 1 e e e i o ket e e
C TW ESTIMATE
Cm _—— —- -
WRITE(*,*) 'ESTIMATE HO=N*HI'
WRITE(*,*) 'INPUT N’ :
READ(*,*3 N
TW= CTBHN*TINFTY) /(N+1)
Tr=(TW+TINFTY) /2
C ——— - - J—— -

C CHART READINGS
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WRITEC*,*) 'ADIUST TFa',TF+273," K’

WRITEC*,¥) 'TO THE CLOSEST LISTED TEMPERATURE T_C ON Appendix B2'
WRITE(*,*) 'READ FROM Appendix B2 FOR AIR PROPERTIES AT 7.C°
WRITEC*,*) "INPUT NU: mA2/s’

READ(*,*) NU '

WRITEC*,*) *INPUT PR’

READ(*,*3 PR

WRITEC*, %) "INPUT K: W/m.K'

RED=VINFTY*D/NU

(oo e s i e e S m S
C CHART READINCS
o mmmmmdmmmmmmemSom oSS SMmImooones

WRITEC*,*) 'READ FROM TABLE 6.2 FOR C AND N WITH'
WRTTE(*,*) *REYNOLDS NUMBER=',RED

WRITE(®,*) 'INPUT C'

READ(*,*) C

WRITE(*,*) 'INPUT N

READ{*,*) N

NU=C*RED**N*PR** (1. /3.)

HO=K*NU/D

Um1/ (1/HI+1/HO)
DOTQ=PL*D*U* (TB-TINFTY)

C __________________________________________________
WRITE(*,*) "HEAT 0SS OF THE PIPE 15°

WRITEC®,*) DOTQ,' W/m PER UNIT LENGTH'

STOP

PROGRAM MAIN
IMPLICIT REAL*8 (A-H,K-Z)
PI=4*ATAN(L.D

WRITEC*,*) 'EXAMPLE 6.5....°
L i
C INPUT DATA
Tl

WRITE(*,*) INPUT THE FOLLOWING DATA...'
WRITE(*,*) ’VERTICAL HEIGHT L: m’
READ(*,*) L

WRITEC*,*) 'TM:

READ(*,*) Tw

WRITEC®,*) 'TINFTY: C

READ(*,*) TINFTY

PR

C CALCULATION

et i a i i
TF= (TW-TINFTY /2

e

C CHART READINGS
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C _ - o o o

WRITE(*,*) 'ADJUST TF=',TF+273," K’

WRITEC*,*)'TO THE CLOSEST LISTED TEMPERATURE T.C ON Appendix B2,3’
WRITEC*,*) 'READ FROM Appendix B2,3 FOR PROPERTIES AT T.C'
WRITECY,*) "INPUT (G*BETA/NU#ALPHAY: 1/mA3.K’

READ{*,*) GBETA

WRITE(¥,*> "INPUT PR’

READ(*,*) PR

WRITEC#,*) "INPUT K: W/m.K'

READ{* ,*) K

€ CALCULATION
[ S ——
RA=GBETA* (TW-TINFTY) #L*+3

C CHART READINGS

Commmmmmmm e

WRITE(®,*) 'PICK CO FROM TABLE 6.4 FOR A VERTICAL PLATE'
WRITE(*,*) "INPUT CO'

READ(*,*} CO

Lot st s m mmmmmm e i ———— ——

C CALCULATION

C J— i = oy oy =
PIN=RA/(1+{0/PR)

[ o— - . _—

C CHART READINGS

WRITE(*,*) 'PICK C AND N FROM TABLE 6.4 FOR A VERTICAL PLATE'
WRITE(*,*) 'ACCORDING TO PIN=", PIN

WRITE(*,*) 'INPUT C'

READC*,*) C

WRITE(,*) "INPUT N’

READ(*‘*) N

C CALCULATION

Cmmmm - A e e
NU=C*PTN**N
H=K*NU/L
DOTWE=H* {TW-TINFTY}

Cmmm e e

WRITE(*,*) 'POWER NEED IS'

WRITE(*,*) DOTWE,' W/mAZ PER UNIT AREA'
STOP

END

C EX6-8.F {START)
[ TR et o i

PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-Z)

PL=4*ATAN(1.)

WRITE(*,*) "EXAMPLE 6.8....'
C e i —
C INPUT DATA

337
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o e ——— _
WRITEC*,*) 'INPUT THE FOLLOWING DATA...'
WRITE(*,*) 'DOTWE: KW’

READ(Y,*) DOTWE

WRITE(*,*) 'VERTICAL HEIGHT L: o
READ(*,*} L

WRITE(*,*) "WIDTH Wi m'

READ(*,*) W

WRITEC*,*} 'TINFTY: €'~
READ(*,*) TINFTY

DOTWE=1000*DOTWE

Cm e L e -

C ESTIMATE H

Cmmmmimm e —
WRITEC*,*> "INPUT H (W/mA2.K) ACCORDING TO TABLE 1.2°
READ(*,*) H

Comummm e e o i e
Am2¥LAW
TWe=TINFTY+DOTWE/ (A*H)
TFa{ TW+TINFTY) /2

L I e ——————— _—

WRITE(*,*) 'ADIUST TF=',TF+273," K’

WRITEC*,*)'TO THE CLOSEST LISTED TEMPERATURE T_C ON Appendix B3'
WRITE(*,*) 'READ FROM Appendix B3 FOR OIL PROPERTIES AT T.C'
WRITEC*,*) *INPUT (G¥BETA/NU*ALPHA): 1/mA3.K* '
READC*,*) GBETA

WRITE(*,*) "INPUT PR’

READ(*,*) PR

WRITEC*,*) 'INPUT K: W/m.K’

READ(*,*) K
oo - -—
o CALCULATION
Comrrmmmm e - S U
RA=GBETA* (TW-TINFTY)¥L**3
[ — - -

C CHART READINGS

Commm ——— e e
WRITEC*,*} *PICK CO FROM TABLE 6.4 FOR A VERTICAL PLATE'
WRITECY,*) "INPUT <O’

READ(*,¥*) CO

Cmm e e e e _—

C CALCULATION

C--—- -
PIN=RA/(1+C0/PR)

C CHART READINGS

[ —— —— - ——
WRITEC*,*) 'PICK C AND N FROM TABLE 6.4 FOR A VERTICAL PLATE"
WRITE(*,*) 'ACCORDING TO PIN=', PIN

WRITE(*,*) 'INPUT C’

READ(C, ™) C

WRITE(*,*) "INPUT N’

READ(*,*) N

Cmmmmm -—— - -

C CALCULATION




NU=C*PIN#*N
Hi=K*NU/L
HAVE= (H+H1) /2
TWaTINFTY+DOTWE/ (A*HAVE)

¢

Sec. 6.4 Computer Program Appendix

WRITE(*,*} 'SURFACE TEMPERATURE OF THE PLATE IS'

WRITE(™,*) TW," C’
sToP
END

PROGRAM MAIN
IMPLICIT REAL¥S (A-H,K-Z)
PI=4*ATAN(L.)

WRITE(*,*) "EXAMPLE 6.9....°'

. ——

WRITE(*,*) 'D: m’
READ(*,*} D

WRITEC*,*) 'L:m’
READ(C*,*) L

WRITE(Y,*) *V: m/s’
READ(®,*) V

WRITE(*,*) "T.I: C'
READ(*,*) TI
WRITE(*,*) 'T_EINFTY: C’
READ(*,*) TINFTY

WRITEC*,*) "INPUT HC (W/mAZ.K) ACCORDING TO TABLE 1.2°

READ(*,*) HO

WRITE(™,*) "INPUT HW (W/mA2.K) ACCORDING TO TABLE 1.2°

READ(*,*) HW

WRITE(¥,*) ’ADIUST TI=",TI+273," K’

WRITE(*,*) ' TO THE CLOSEST LISTED TEMPERATURE T_C ON Appendix
WRITE(¥,*) "READ FROM Appendix B2'

WRITEC*,*) "FOR ETHYLENE GLYCOL PROPERTIES AT TC'

WRITEC*,*> 'INPUT RHO: kg/mA3’

READ(*,*) RHO

WRITEC*,*) "INPUT CP: 1/kg.K'

READ(*,*} CP

U=1/(1/HO+1/HW)

TE=TINFTY+{TI-TINFTY)*EXP(-4*U*L/ (RHO*CP*V*D))

C CHART READINGS

B2'

339



10

Chap.6 Correlations For Convection-

WRITE(*,*) 'ADIUST TB=',TI+273," X'

WRITEC*,*)'TO THE CLOSEST LISTED TEMPERATURE T.C ON Appendix B2"
WRITE(C*,*) 'READ FROM Appendix B2’

WRITEC*,*) 'FOR ETHYLENE GLYCOL PROPERTIES AT TL

WRITEC*,*) 'INPUT NU: mA2/s'

READ(*,*) NU

WRITE(*,*) "INPUT PR’

READ(*,*) PR

WRITEC*,*) *INPUT K: W/m.K'

READ(*,*) K

C ________ ——— - —_—
RED=V*D/NU

C— —

C CHART READINGS

WRITE(*,*) 'PICK N FROM TABLE 6.1'
WRITE{*,*) “INPUT N'
READ(*,*) N

Commmmmmem - JES U,

NUe=0 , 023*RED#**0  8*PR**N
HO=K*NU/D
TW=(TI+TINFTY) /2

TFa= (TWATINFTY) /2

Cm o e e S S S S

WRITE(*,*) 'ADIUST TF=',TF+273." K'

WRITE(*,*)’'TO THE CLOSEST LISTED TEMPERATURE T.C ON Appendix 82'
WRITEC®,*} "READ FROM Appendix B2 FOR WATER PROPERTIES AT T.C'
WRITE(*,*) "INPUT (G*BETA/NU*ALPHA}: 1/mA3. K"

READ(*,*) GBETA

WRITEC*,*) TINPUT PR’

READ(*, *) PR

WRITECY,*) *INPUT K: W/m.K’

CALCULATION

aNaEn

RA=GBETA* (TW-TINFTY)*D**3

9 CHART READINGS

e S s oy — R e o ——
WRITEC*,*) 'PICK CO FROM TABLE 6.4 FOR A HORILZONTAL. PIPE’
WRITE(*®,*) "INPUT CD°

READ(*,*) CO

C —— - e et o i

C CALCULATION

o it e et

WRTTEC®,*) 'PICK C AND N FROM TABLE 6.4 FOR A HORTZONTAL PIPE"
WRITE(*,*) 'ACCORDING TO PIN=', PIN

WRITEC*,*} INPUT C'

READC*,*) €

WRITECY,*) TINPUT N’

READ(*,*) N
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CALCULATION

NU=C*PIN*#N ,
Hw=K*NU /D

Us1/(1/HO+1/HW)
TE=TINFTY+(TI-TINETY)*EXP(-4*U*L/ (RHO*CP*V*D) )

WRITE(*,*) "EXIT TEMPERATURE OF THE OIL IS'
WRITECY,*) TE,” '

STOP
END

EXERCISES

6.1

6.3

6.4

6.5

6.6

6.7

6.3

Steam at atmospheric pressure condenses on the outside of an £ = 5 m long tube of
diameter D = 0.3 m. Water at temperature I; = 20 °C flows, with a mass flow rate of 0.2
kg/s, inside the tube. Find the mass flow rate of the condensing steam. Forsteam: p =1
atm, I, = 100°C, hy, = 2.257 ki/kg.

Ajr at T = 20 °C with velocity Vo, = 80 m/s crosses aver a pipe (D = 5 cm) filled with
condensing steam at p = 1 atm. Determine the heat transfer from the steam to the air.

Each element of an air heater is made of a solid cylinder (k = 400 W/m.K) of diameter
D =2 cmandlength L =1 m. Alir at temperature T, == 27 °C crosses over this cylinder
with free-stream velocity Vi == 50 m/s. The maximum allowable temperature for heating
elements is Ty = 827 °C. Find the rate of energy generation for each element.

A solid spherical nucleus (D = 0.4 m) is kept at 95 °C in an ambient at 25 °C. We wish
to determine the nuclear power generation within the sphere in ambient (a) air, (b) water,
(c) oil or {d) mercury.

Consider a horizontal flat plate (1 m x 1m) in stagnant air at 2 temperature T, = 20°C.
The upper surface of the plate is subjected to a solar flux g% = 600 W/m?. Determine the
steady temperature of the plate.

High-voltage electric power transmitted to a city is dropped to a low voltage in a trans-
former before use. To keep the transformer at a steady temperature, Joulean power dissi-
pation (recall £/ = I?R) needs to be transferred to an ambient. Assume the transformer
to be a vertical cylinder (D = 0.4 m, L = 1 m) whose walls are kept at 90 °C in a stagnant
water bath at 15 °C. Determine the maximum allowable power dissipation.

Repeat Prob. 6.6 for a stagnant oil bath and compare the results. Why is oil rather than
water used in commercial transformers?

Repeat Prob. 6.6 for a horizontal cylinder and compare the results. What is your conclu-
sion?
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69 Hydrogea at 500kPa (gage) and T} = 40°C flows with ¥ = 60 m/s in an insulated tube of
square cross section (Fig 6P-1)- Electrical energy «” = 0.5 MW/m® is dissipated within
the tube'® The thermal conductivity of the tube walls is k = 350 W/m-K. Compute (a) the
increase of the bulk hydrogen temperature per unit length of pipe, (b) the inner surface
temperature of the tube walls, and (¢) the outer surface temperature of the tube walls.

00777

e

U

12.5 mm |

25mm

12.5 mm

Fignre 6F-1

610 Water at a temperature T, == 77 °C flows with a velocity ¥V = 6 m/s through a horizontal
tube. Air at temperature To = 27 °C crosses the tube with a velocity Voo = 30 mys
(Fig, 6P-2). Find the exit temperatuse of thewaterat L = 1 m.

Vo = 30 mfs

Water

7,=77°C Adr
V=6m's Tw=27°C
Figure 6F-2

611 Bismuth at a temperature T, = 400 o C flows with velocity V == 2 m/s through a horizontal
tube of diameter D = 2.5 cm and walt thickness § = 1.5 mm. Water at temperature Toe =
40° C crosses the tube with velocity Ve = 2 mys. The system is sufficiently pressurized to

prevent boiling. Calculate the rate of heat transfer between the bismuth and the water.

612 Assume that an industrial burner made of a tube of diameter D = 40 cm is internally
exposed to a uniform heat flux g’ =124 KW/m? resulting from combustion in the tube
(Fig, 6P-2). The heat fluxistobe transferred to the surrounding stagnant air at temperature
Too = 25 °C by convective means.

10 This problem is related to the clectric-generator conduits of 2 modern power plant. Hollow conduits
are cooled with a gas flow.
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Air b To

T

Flame D

EENNNRRERNNY

Figure 6P-3

(a) Determine the outside heat transfer coefficient kg and wall temperature T,,.

(b} Due to material restrictions, T,, cannot be allowed to exceed 1000 °C. Keeping the
geometry and fluid the same, what do you propose to reduce T,,? How do you go
about determining 7, this time?

For a calorimeter experiment, an insulated cylindrical shell of diameter Dg = 102 em is
placed concentrically around a 2¢ = 2 m long furnace of diameter D; = 100 cm (Fig. 6P-
4). The distribution of flame heat flux g”(x) [W/m?] acting axisymetrically on the inner
surface of the furnace wall is linear with a maximum of g = 210,000 W/m? in the middle
of the furnace. Heat is removed by water flowing coaxially between the furnace and the
shell. The water inlet temperature and velocity are 7; = 285 Kand V = 1 m/s, respectively.
Neglecting the furnace-wall thickness, determine (a) the heat transfer coefficient on the
outer surface of the furnace, (b) the longitudinal temperature of the furnace wall.

7, % 7% 77
—-

v 4{111{}“;p

v

O——;— Flame D, |D,
[¢]

bbb

% 7 %
| | |
| ! | l |

Fiyure 6P—4

Natural gas pressurized to 400 kPa at 500 K steadily flows with ¥V = 60 m/s through a
pipe of 0.3 m diameter lying in a lake (stagnant water) at 300 K. Determine the drop in
the bulk temperature of the gas per meter length of the pipe. Use the air table for the gas

. . 1
properties. Hint: Ppressurized = 40Tabre Vpressurized = Zv'i'hble-

Consider the exhaust manifold of an internal combustion engine running at 5500 rpm. The
exhaust gases enter the cylindrical exhaust duct of diameter 5 cm and length 2 m with a2
velocity of 100 m/s and an average inlet temperature of 1,100 K. Use air properties for the
exhaust gases. The stagnant air is at 27 °C. Neglecting the radiation effect, determine the
duct-wall temperature distribution.
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6.16

6.17

6.18

6.20

Inacertain segment of an Alaska pipeline the pipes are located above the ground. Pumping
stations are to be installed at intervals, where the oil is also heated to reduce pumping power
requirements. Estimate the distance between the pumping stations and the corresponding
pressure drop Ap. Data: A carbon steel pipe 1 m OD by 1 cm wall thickness is used,
insulated on the outside with a glass fiber blanket of density 32 kg/m? and thickness 1.3
em. The oil at Tp; = 95 °C leaves a pumping station with V = 1.5 m/s and arrives at the
next station at Tz = 40 °C. For properties of crude oil, use the properties of engine oil.
The design condition is for wind at —20 °C blowing cross country at 30 km/hr.

A tube of diameter D == 1.25 cm is placed at the focus of a parabalic solar collector. The
solar energy Teceived by the tube is g” = 12 kW/m? (Fig. 6P-5). Water is heated while
it flows with velocity V = 1 m/s through the tube. The ambient air temperature and the
inlet water temperature are the same, T = Toe = 25°C. Determine the length of the tube
(and the collector) at which the water temperature reaches 7, = 50 °C.

Control
volurne

Figure 685

A 40-Titer tank full of water at 15 °C s to be heated to 50 °C by means of a 1-cm-OD copper
steam coil having 10 turns of 30 cm diameter. The steam is at atmospheric pressure and its
thermal resistance is negligibly small. Neglecting the heat losses from the tank, estimate
the heating time required. (Hint: Assume the coil as a horizontal cylinder.)

Consider a spherical fuel element of diameter D = 5 cm in pressurized (p = 145 kPa,
T, 22 110 °C) stagnant water at temperature Too = 20°C.

(a) Compute the maximum possible (and radially averaged) energy generation u™ with-
out boiling the water.

() Repeat part (a) for a coolant velocity Vo = 1 m/s.

(c) Assuming kpe = 20 W/m-K, determine the temperature of the center of the fuel
for {a) and (b).

Steam having 2 quality of 96% at a pressure of 175 kPa is flowing at 10 m/s through a
steel pipe with inner and outer diameters of 20 mm and 26 mum, respectively. The thermal
conductivity of the pipe is 40 W/m-K, and the temperature of the ambient air is 20°C.
Estimate the change of steam quality per 10 m length of pipe for (a) stagnant ambient air,
(b) ambient air at 10 m/s. (c) Repeat (a) and (b} for oils. {d} Repeat (2) and (b) for water,
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Uniform internal energy 4 = 6 MW/m? is generated in a long, vertical, oylindrical fuel
element (D = 5 cm, k = 20 W/m-K) immersed in a stagnant water pool at T, = 40 °C.
Assuming the water is pressurized (no boiling), determine (a) the surface temperature of
the fuel element and (b) the center temperature of the fuel element. () Repeat (a) and
(b) for a water flow with Vo = 5 m/s. .
A water heater is to be constructed by an electrically heated copperrod (D = 1¢m, £ = 1
m} surrounded by an insulated cylindrical shell (D = 3 c¢m) as shown in Fig, 6P-6. The
water inlet temperature is T; = 25 °C. Hot water at temperature Tp = 90 °C with steady
mass flow rate st = 1 kg/s Is required. Determine the electrical power need.

!

T

Figure 6P-6

A reactor core element is simulated by a coaxial sodium flow over a solid fuel rod. In
terms of the following data, v = 35 MWm®, D; = 25 mm, Dy = 37.5 mm, £ = 6 m,
T =90°C, V = 1.2 m/s, and kg rog = 9 W/m-K, evaluate (a) the exit temperature of
sodium, (b) the surface temperature of the fuel rod, and {c} the centerline temperature of
the fuel rod.
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A heat exchanger is a device in which heat is transferred from a fluid at a high temper-
ature to a fluid at a low temperature. The usual objective of this transfer is to control
the temperature of one of the fluids for a technological purpose. For example, the
coolant (water or antifreeze) used in a car engine is coaled in the radiator (heat ex-
changer) by air flowing over the radiator. From the standpoint of a radiator designer,
the coolant temperature drop through the radiator is of critical importance. Additional
mechanisms, such as a fan and a thermostat, help to control the coolant temperature.

Conceptually speaking, heat transfer from one fluid to another can be accom-
plished by mixing the fluids directly or, if mixing is undesirable, through a partition
between the fluids. A customary example for direct mixing is cream poured into a cup
of coffee. Of course, cream is added to coffee for palatal reasons rather than for heat
transfer. However, we are quite conscious of the associated heat transfer process which
lowers the temperature of the coffee. An example for heat transfer through a partition
is the aforementioned car radiator which keeps the coolant liquid separated from the
ambient air. Almost all technological heat exchange problems require a partition be-
cause of the need to keep one fluid separated from the other. The heat transfer between
the two fluids takes the form of convection on the fluid side and conduction through
the partition walls.

In practice, we encounter three types of heat exchangers, classified according to
the flow of one fluid relative to that of the other. In a parallel-fiow heat exchanger
both fluids flow in the same direction; in a counter-low heat exchanger the fluids flow
in opposite directions; and in a cross-flow heat exchanger the fluids flow at right angles
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Tube Shell
\ N\ e
; N\ [~
e
“L, - g

Parallel Counter

(a)

Figure 7.1 Heat exchanger
concepts. {a) Parallel-and
counter-flow concepts, (b) cross-
flow concept. (b

to cach other (Fig. 7.1). Furthermore, as a subclassification, the case in which both
fluids traverse the exchanger only once is called a single-pass heat exchanger. The
two exchangers sketched in Fig. 7.1 are of this type. Figure 7.2(a) shows an exchanger
with two passes on the tube side. One-half of this exchanger operates under parallel-
flow conditions and the other half under counter-flow conditions. Baffles (partitions)
improve the mixing (turbulence) and even out the heat transfer between the two fluids.

Figure 7.2 Heat exchanger
types. (a) Arrangement of one
shell pass and multiple of two
tube passes, (b) arrangement
of cross flow with unmixed flu-
ids.
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Cross-flow heat exchangers may also be classified as mixed and unmixed. In some flow
arrangements [such as the one illustrated in Fig. 7.2(b)] 2 fluid is partitioned and forced
to flow through individual channels, thus making the fluid stream unmixed. In other
flow configurations, a fluid is not partitioned and is said to be mixed. We will comment
later on the relative merits of the different types of heat exchangers. Among their many
applications we may cite heaters (in addition to the already mentioned car radiator),
air conditioners, refrigerators, and conventional and nuclear power plants (Fig. 7.3).
Having learned their purpose, types, and applications, we now proceed to the
design of heat exchangers, which follows three stages: thermal design, mechanijcal de-
sign, and manufacturing design. Thermal design involves the selection of the type of
exchanger and the evaluation of the required heat transfer area between the two fluids.
Mechanical design is associated with the pressure drop in and the corrosive properties of

Fuel
Alr o
heater

Condenser

Low-pressure bleed heaters
Deaerating heater

Reactor I
1N
° !Il'
E"“"ﬂ N E"“"
High-pressure bleed heaters J" Low-pressure bleed heaters

Deaerating heater
(b)
Figure 7.3 Types of power plants. (a) Conventional power
plant, (b) nuclear power plant.
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both fluids, with provisions being made for thermal expansion and for thermal stresses
resulting from unavoidable constrictions. Manufacturing design is based on satisfying
the thermal and mechanical design requirements at the lowest cost. Also, to reduce the
costs further, one may select a standard (commercially available) heat exchanger which
fulfills the thermal and mechanical requirements of a particular situation. .

In this text we are mainly concerned with the thermal design of heat exchangers,
a topic treated in the next section. An important related problem, the performance of
an available heat exchanger under different conditions, is treated in Section 7.2.

7.1 THERMAL DESIGN. LMTD METHOD

In a typical heat-exchanger design problem, the desired temperature change of one of
the fiuids (say the hot fluid) is given as well as the inlet temperature of the other fluid.
The mass flow rate of each fluid is also specified. With this information in hand, we want
to evaluate the heat transfer area, A, required to achieve the necessary temperature
change. As in the previous chapters, we will make use of the steps of formulation to
relate the known parameters and heat transfer area. For simplicity, we first consider the
shell-and-tube heat exchanger shown in Fig. 7.1(a). Following the formulation method
set forth in Section 1.7 and used throughout this text, we refer next to the five steps
of formulation. Since bulk temperatures are adequate for heat-exchanger problems,
consider a radially lumped and axially differential control volume for both the hot.and
cold fluids [Fig. 7.4(a)]. Let us assume that the hot fluid flows through the pipe and
the cold fluid through the shell,’ and the direction of the cold flow is changeable. We
will also carry the analysis for both parallel flows and counterflows simultaneously.
Furthermore, we will assume that the heat exchanger loses no heat to the ambient, i.e.,
that there is heat exchange only between the two fluids.

After neglecting the effect of axial conduction, the first law of thermodynamics
applied to the control volumes shown in Fig, 7.4(b) gives for the hot fluid

mh® |y — i (R + dR%)|, — gcPdx = 0,
which may be rewritten for constant cross section, and thus constant velocity, as
tepTy — (T + dT)p — qcPdx = 0, (7.1)

assuming that there is no phase change. Here subscript & refers to the hot fluid, and
the other nomenclature is as usual. For convenience, introducing the heat-capacity flow
rate?

ey = C,
Equation (7.1) may be rearranged as

—CpdT, —dQ =0, (7.2)

1 fn order to minimize heat losses to the ambient, this is typically the arrangement used in actual heat
exchangers.

2 Note that € alone does not have any physical significance,
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Control volumes

J ,/ 719,
T
A, "M"L' dd,=Pdx
A

Parallel
Counter

(®}

Figure 7.4 (2) Radially lumped axially differential
control volumes for both hot and cold fluids,
(b) the first law of thermodynamics for radially
lumped axially differential hot and cold fluids.

d @ denoting the heat transfer from the hot Auid to the cold fluid. Following the same
steps, we have for the case of the cold fiuid flowing parallel to the hot fluid,
~CdT. +dQ =0, (7.3)

where the subscript ¢ indicates the cold fluid. For the case of cold fluid® flowing in the
opposite direction (counter-flow configuration),

+C AT, +d0 = 0. (7.4)
Rearranging Eqs. (7.2)-(7.4), we obtain
dQ = —CpdTy = +CdT., (7.5)

where the =+ signs associated with the cold fiuid correspond respectively to parailel and
counter flows. Equation (7.5) summarizes the (differential) first law of thermodynamics

3 Note that T. 4+ dT, corresponds algebraicaily to A, +dA;.
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for parallel: and counter-flow heat exchangers. For convenience, rearrange the first
equality of Eq. (7.5) as

1 .
dTy = ——d(, (7.6)
Cy
the second equality of Eq. (7.5) as
1 .
dT, = +—d@, (7.7)
o
and the difference between Eq (7.6) and (7.7) as
AT —T) = - (= + =) dd (7.8)
h c; Ch Cc + -

where the =+ signs in parenthesis refer respectively to parallel and counter flows. To
proceed further, introduce the particular law

gc = Uy — T}, dQ = qcdA;, (7.9)

U being the total heat transfer coefficient and d A, = Pdx the differential heat transfer
area. Recalling Chapter 2, when the effect of pipe curvature is negligible, say ro/r; < 2,
the total heat transfer coefficient based on the mean of the inner and outer surface areas
of the pipe wall is given by

1 1 + 3 N 1

U™ ke k k'
and when the effect of curvature is appreciable, say ro/r; > 2, the total heat transfer
coefficient based on the pipe outer surface area is given by

1 A/Ap | 84 1

U Ry kA kg

or, explicitly,
L n/n + roln(ro/r:) + 1

U k R
where r; and ry are the inner and outer radii of the pipe walls and ryp — r; = § is the
pipe wall thickness [recall Eq. (2.17) and the development associated with Eq. (2.31)].
Inserting Eq. (7.9), into Eq. (7.8), and introducing AT = T, — T, we obtain
1 1
dAT = — | — £ — |UATdA,, 7.10

( Ch Cc) ( )
which is the (differential) equation governing parallel- and counter-flow heat exchang-
ers. Equation (7.10) subject to the specified AT at both ends of the parallel- and
counter-flow heat exchangers completes our formulation. We now proceed to its inte-
gration. For the time being, let U remain uniform® over the entire length of the heat

4 See Section 7.5 for some remarks on a variable U.
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Counter tiow

a b

Figure 7.5 Cold and hot fluid temperatures for
parallet and counter flows.

exchanger and integrate Eq. (7.10) from one end of the heat excﬁanger (say a) to the
other (say b). This gives, in terms of Fig. 7.5,

bAAT (1i1)UfbdA
. AT c.  C, P

or

(7.11)

¥

n2k Ly YN\ua
AT, C,  C.

where |, : dA, = A denotes the total heat transfer area between the hot and cold ftuids.
Equation (7.11) is one of the two important relations needed for the thermal design of
heat exchangers (developed here only for paralleland counter flows). We now proceed
to the development of the second relation.
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L C.T; (counter)

! Hot fluid CV 1 CTep {parallel)
-

=

] ChTho

—J

1
o
? C.T,; (parallel) \\\ Cold fluid CV

L €T (counter)

Figure 7.6 Control volumes for the entire hot and
cold fluids.

For the hot and cold fluids, consider again a radially lumped control volume,
extending this time over the entire length of the heat exchanger (Fig. 7.6). The first law
of thermodynamics applied to these control volumes gives for the hot fluid

Crh(Thi — Tho) — @ = 0

and for the cold fluid _
Cc(Tci - Tco) + Q = 0;

where @ is the (total) heat transfer from the hot to the cold fluid, and subscripts i and
o refer to inlet and outlet conditions. Then

[0 = Ch(Ti —~ Tho) = Collo — Tui) . (7.12)

which is the second relatior needed. Note that while Eq. (7.11) depends on the type of
heat exchanger, Eq. (7.12) is general and independent of the type used.

From Bq. (7.12), solving for 1/C; and 1/C, in terms of O and inserting these into
Eq. (7.11) yvields

AT UA
AT, = [(Thi — Tho) £ (Teo — Tei)] -E (7.13)

Recalling Fig. 7.5, the bracketed terms in Eq. (7. 13) may be rearranged for parallel flow
(+ sign between parentheses) as

(Thi = Tho) + (Teo — Tei} = (Tni — Tei) — Tho — Teo) = AT; — AT,
and for counter flow (— sign between parentheses) as

(Tui = Tho) — (Teo — Tei) = (Tni — Too) — (Tho — Tat) = DTz — ATp.
Accordingly, Eq. (7.13) becomes for both parallel and counter flows '

ATy
AT,

= —(AT, — AT)%
= a b Q
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or
O = UAATiv |, (7.14)
where
AT, — AT ATmax — ATm:
ATy = a b - max min (7.15)
AT, o ATgax
ATy AT in

is the logarithmic mean temperature difference. Because of this logarithmic difference,
the foregoing development is called the LMTD method. Here ATpay and ATmin respec-
tively refer to the larger and smaller value of AT, and AT,. When ATpax JATmin =2,
ATy may be replaced by the arithmetic mean temperature difference

1
ATay = E(Armin + ATmax)- (7.16)

The error involved with this approximation is < 4% [recall Eq. (2.21)]. In the case of a
counter-flow heat exchanger, equal values of AT, and AT}, result from € = C,, which
leads to ATy = AT, = ATy

We are now ready to solve problems related to heat-exchanger design with the
foregoing background. By solving for the heat transfer between the two fluids and the
one unknown temperature using Eq. (7.12), we can then obtain the heat transfer area
A using Eq. (7.14). The overall heat transfer coefficient U may be known or can be
calculated using the appropriate correlations given in Chapter 6. Note that Eq. (7.14)is
valid only for single-pass shell-and-tube heat exchangers. The use of the LMTD method
for other types of heat exchangers is the focus of the next section. Having learned the
LMTD method, we now proceed to an example.

ExameLe 7.16

In 2 heat exchanger, oil with 2 mass flow rate m, = 20 kg/s is to be cooled from Ty == 120 el
to The == 60 °C by the help of water with a flow rate sz, = 15 kg/s available at 7y = 10 °C.
The specific heats of oil and water are ¢, = 2 kl/kg-K and ¢,c = 4 kJ/kg K, respectively. The
total heat transfer coefficient is approximately U = 1,100 W/m® ‘K.B We wish to determine the
heat transfer area of this exchanger for (a) parallel-flow and counter-flow arrangements, and
{b) re-solve the problem for s, increased to 30 kg/s and Ty decreased to 100 °C. Assume that
U remains the same as in part (a).

Sy ¢y = C.,Eq.{7.12) can be rearranged as Ty — Top = Tho — T OF AT, = AT, for a counter-flow
heat exchanger.

¢ The FORTRAN program EX7-1F is listed in the appendix of this chapter.
7 The boiling temperature of viscous oils at atmospheri¢ pressure may be as high as 150-200 °C.

8 Note from Table 1.2 that £y = 1,200 W/m? K and k. = 12,000 W/m?-K are typical values for forced
convection in oil and water.
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120°C 120 °C
60°C
50°C
AT,
10°C
Figare 7.7 Parallel and counter flow temperatures.
(a) The heat-capacity flow rates are
Cyp = mypcpn = 20kg/s x 2kI/kg-K = 40 kW/K,

C. = mecpe = 15kg/s x 4kI/kg-K

Il

60 KW/K.
From Eq. (7.12), @ = Cy(Tw — Tio) = C(Tup ~ Tui),
Q = 40 kW/K x (120 — 60) K = 60 kW/K x (T, — 10} K = 2,400 kW

which gives
T.. = 50°C.

Sketched in Fig. 7.7 are the temperature distributions corresponding to parallel-and counter-flow
arrangements.

For parallel flow,
ATa = Tbi had Tcg - 120 - 10 = 110 0C,
ATy, =Ty — Tpp = 60 — 50 = 10°C,
and the LMTD is
AT, — AT, 110 — 10
AT = —2 b = = 417°C.
AT, 110
In In —
AT, 10

For counter flow,
AT, = Ty — T = 120 — 50 = 70°C,

ATy = Ty — Tt = 60 — 10 = 50°C,

and the LMTD is

AT, — AT, 70 — 50
ATy = —2 LA = 59.4°C.
AT, 70

In
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Accordingly, the respective areas follow from Eq. (7.14) as

3 Q 2,400,000 W
T UATm 1,100 W/mPK x (41.7:59.4) °C

or
A= { 523 m> for parallel flow,
367 m* for counier flow.

As a general tule, 2 counter-flow heat exchanger requires 20-30% Jess heat transfer area than a
parallel-fiow heat exchanger. For the present case, the actual percentage difference turns out to
be

52.3 —~ 367
——— x 100 = 30%.
523

That is why the parallel-flow arrangement is mot usually considered in indﬁsn—y.
(b) The new heat-capacity flow rate of the hat fluid is
Ch = s = 30kgss x 2kI/kg K = 60kW/K,
and the heat capacity flow rate of the cold fluid from part (a)is
€, = 60kW/K.
Employing Eq. (7.12),
O = 60 kKW/K x (100 — 60)°C = 60kW/K x (T, — 10)°C = 2,400 kW,

which gives
T, = 50°C.
The LMTD for parallel flow is
AT, — AT, 100 — 10) — (60 — 50 90 — 10
ATy = 22280 _ )~ ¢ ) . — 36.4°C.
AT, 100 — 10
In In—— In—
AT, 60 — 50 10

For the counter-flow heat exchanger, AT remains constag_t_,}hroughout the eaxchang&rg when
€, = C. [a fact readily shown by the rearrangement of Eq. t7.12)]. Then

ATy = AT, = AT, = AT.

Here, AT = 100 — 50 = 60— 10 =50 °C.
Accordingly, the respective areas follow from Eq. (7.14) as
Q 2,400,000 W
T UATm 1,100 W/mt K x (36.4; 50) °C

A

or
{ 50.9 m* for parallel flow,

43.6 m* for counter flow.

9 Note that any average of two identical numbers is equai to the numbers themselves.
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The comparison of the new areas reveals

59.9 — 438
' e % 100 = 27%,
59.9

which is consistent with our general rule. By the computer program provided, the interested
reader may parametrically study the heat transfer area depending on the total heat transfer
coefficient. L4

So far, we have considered parallel- and counter-flow heat exchangers. We now
proceed to heat exchangers with more complex flow arrangements.

ExameLe 7.2

Consider a cross-flow heat exchanger with both fluids mixed [Fig. 7.8(a)]. Let the velocity and
the inlet temperature of the hot and cold fiuids be (Vy, Tp) and (V4, 0), respectively. We wish to
determine the temperature distribution in the hot and cold fluids.

In terms of the differential control volumes shown in Fig, 7.8(b), the first law of thermody-
namics rearranged with Newton's cooling law yields for the hot fluid

ATy '
0= “916151‘/13—' UM — 1) {717
x

and for the cold fluid

a7
0 = ~pzczazvza—2 FUMT - T) (7.18)
Y

subject to the inlet (boundary) conditions
710, y) =Ty and Tp(x,0) = Q0. (7.19)

Introducing
b = UlpieiqiVi and by = U/peadr Vi,

Egs. (7.17) and (7.18) may be respectively rearranged as

aT;
0= = +b - T (720)
ax
and
T
= ——— + by(T1 — T) (7.21)
ay
or, in terms of
T
8§ = —, & =hx, and 1 = by,

%
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Hot fluid CV

——

8
e B
Cold fluid CV
(a)
Insulated
plai(d}')vp’-‘l'rl ,”:..""/'-/___ pgsg(dx)vzcz(n + _ﬂdy}
-~ ! ~a ay
\{, : /’;{
'["--:. H e /
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1 i
i
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A
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- L)
poB(dx}Vaeo Ty L
Insulated
()
Figure 7.8 System configuration.
as
36, )
0= — + (6 ~ &) (7.22)
3%
and
3%
0=—— + (4 —62) (7.23)
dn
subject to

60, =1 &EN=0 (7.24)
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We had no difficulty in formulating the problem. However, the solution process is considerably
involved and remains beyond the scope of this text. For example, the use of Laplace transforms
(see Chapter 7 of Conduction Heat Transfer by Arpaci) conveniently leads to

G ) = e NI [2Em2] + 6,6, ) (725)
and
$]
Baf. 1) = ot fo e I [2 "V dry, (7.26)

where I, is the modified Bessel function of the first kind. Also, the {dimensionless) local heat
transfer between the hot and cold fluids is

q/UTy = ¥ L 2667 (7.27)

Furthermore, the cross sectional average of the ¢; and 8, outlet temperatures and the average
of g over the heat transfer area are needed. All these manipulations show that the temperature
distributions and heat transfer in cross-flow heat exchanger are mathematically more complicated
than those in parallel-and counter-flow heat exchangers. Because of this fact, practical problems
associated with cross flow and other heat exchangers of similar complexity are handled by an
approximation of mathematical results such as Eqs. (7.26) and (7.27) or by simpler results obtained
from approximate formulations. These results are usually expressed in terms of a correction Factor
relative to the counter-flow (which is the most efficient) heat exchanger. ¢

7.2 CORRECTION FACTOR

In its simplest form, a shell-and-tube heat exchanger operates under mixed-flow condi-
tions as sketched in Fig. 7.9(a),(b). Consequently, a part of the shell fluid recirculates in
the heat exchanger, resulting in uneven and poor heat transfer. To improve and even
out the heat transfer, transverse baffles are placed in the heat exchanger as shown in
Fig. 7.10. These baffles provide alternatively ¢ross-flow and counter-flow conditions:

L—r_.lll Il
- W

Figure 7.9 Shell-and-tube heat exchangers
without baffles.
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Figure 7.0 Sheil-and-tube heat exchanger with
baffles.

they reduce the average cross section of the shell flow and increase its velocity, thus
improving the shell-side coefficient of heat transfer.1® Accordingly, the cross flow pro-
duced by baffles may be a more efficient arrangement than the counter flow without
baffles.

Conceptually, the procedure developed in Section 7.1 for the thermal design (heat
transfer area) of parallel- and counter-flow heat exchangers is general and applies also
to more complex heat exchangers as shown in Ex. 7.2. However, the algebra getsrather
involved and is beyond the scope of this text. Therefore, we are forced to follow an
alternative approach for the design of complex exchangers. Recalling Eq. (7.14), we
write for any heat exchanger

Q = UAATrM, (7.28)

where ATy denotes the true mean temperature difference. Normalizing ATry rel-
ative to ATiym Of a counter-fiow heat exchanger, we may introduce the definition of a
correction factor

F = ATry/ATIM, (7.29)

which is a measure of the degree of departure from counter-flow conditions. The in-
volved algebra we just talked about actually leads to ATry or F as a function of
parameters

PzTra_‘T!i and Rszi—Tsa_E_:

Di T s (7.30)
T — Ty Tio — T s

Here P indicates the effectiveness of the heat exchanger {to be elaborated in Section
7.4) and R (from its definition) is the ratio of the heat-capacity flow rates. Note the
change in nomenclature from subscripts h and ¢ to 7 and s, the latter two referring to
tube and shell, respectively. An important fact is that whether the hot {or cold) fluid is
flowing in the shell side or in the tubes has no effect on F as long as the heat transfer to
the ambient is negligible. Otherwise, the cold fluid should be in the shell side to reduce
heat losses. Combination of Egs. (7.28) and (7.29) gives

[0 = vasTinF (P, BY|. (7.31)

References 4 and 5 contain F(P, R) charts for heat exchangers encountered in practice.
Four of these charts, corresponding to the most common types used, are reproduced in

10 Erom Chapter 6 recall increase of & with V.
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Figmre 7.11 Correction-factor plot for exchanger with one shell pass
and two, four, or any multiple of two tube passes
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Figs. 7.11-7.14. The first two charts are associated with shell-and-tube heat exchangers
and the last two charts with cross-flow heat exchangers. Among these, the shell-and-
tube types are inherently heavy and are considered for stationary applications, while the
cross-flow types are inherently light and are considered for mobile applications. Here
we illustrate the use of the correction factor in terms of an example.
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Figure 7.12 Correction-factor plot for exchanger with two shell passes
and four, or any multiple of four tube passes
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! Figures 7.11 through 7.14 are from Jakob[3].
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Figure 7.13 Correction-factor plot for single-pass cross-flow exchanger
one fluid mixed, the other unmixed '
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Figure 7.14 Correction-factor plot for single-pass cross-low exchanger
both fluids unmixed ' :

Exampie 7.3

We wish to evaluate the heat transfer area of a (a) a one-shell pass and multiple of two-tube passes
heat exchanger, (b) a two-shell pass and multiple of four-tube passes heat exchanger, which would
satisfy the conditions of Ex. 7.1(a}.

Since the inlet and outlet temperatures and the flow rates remain the same, from Eqs. (7.14)
and (7.31) )
O = U1A1ATM = Uh A2 ATiMF (P R),




Sec. 7.2 Correction Factor 363

where subscript 1 indicates the counter-flow exchanger from the first part of Ex. 7.1 and subscript
2 the shell-and-tube exchanger. Consequently,

Ax = Ay(Uy/Uh)/F(P, R). (7.32)
For cold fluid (water) flowing in the shell side,

Do ~ T Tho— T _ 60—120 60 = 0.5
Ty —Tu  Ta—Ty 10—-120 110

and
C, Cy 40

—_— = — = 0.67.
C, C. 60

(2) Employing these parameters with Fig. 7.11 gives F = 0.87.1% Now, from Eq. (7.32) we
have
Ay = 115A,(U1/ Us).

If both the counter-flow and the shell-and-tube heat exchangers have the same total heat transfer
coefficient, the area of the shell-and-tube type turns out to be 15% more than that of the counter-
flow type.

(b) Figure 7.12 with the foregoing P and R values gives F = 0,98. Then, from Eq. (7.32)

Ay = LO2A,(U1/ Uy,

which is 2% more than the area of the counter-flow type if U is the same. L4

ExampLe 7.4

The efficiency of a gas turbine can be improved by increasing the intake air temperature to 210°C,
A counter-flow heat exchanger is to be designed using the exhaust gases of this turbine as the hot
fiuid to heat the air to the desired temperature. The flow rates are m, = m, = 10 kg/s, the heat
transfer coefficients are ky = k. = 150 W/m?-K, the specific heats are Con = Cpc = 1 klkg K,
and the three given temperatures are Ty, = 425°C, Ty = 25°C, and T, = 210°C. We wish to
determine the area of this heat exchanger.

Noting that both flow rates and specific heats of the hot and cold gases are identical, the
heat-capacity flow rates are found to be

Cp = C; = riep, = 10kgfs x 1kd/kg K = 10 kW/K.
From Eq. (7.12)

0 = 10kW/K x (425 — T;,,) °C = 10kW/K x (210 — 25) °C = 1,850 kW,

which gives
The = 240°C,

12 For the case of hot fluid (oil} flowing in the shell side we obtain the same result for F with P =

Tro—Ti Too—Ta 50—10 40 ¢, €. &0
pT e Zee i = =(36adR= — = — = — =15,
Ta— Ty Thi — Ty 120 — 10 110 C, C, 40

13 The FORTRAN program EX7—4.F is listed in the appendix of this chapter.
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The overail heat transfer coefficient is given by

1 1 1
o= I am e
U k. ke 150 150
or
U = 75 W/m-K.
Because of the fact that €, = C,, and AT, = AT, recalling Example 7.1(b), the LMTD is
ATy = 425 - 210 = 240 — 25 = 215°C.
Combining these into Eq. (7.14), we get
o 1,850,000 W

A= ——— = 2 2 115 m’.
UATwe 75 W/mPK x 215°C

_ ExampLe 7.5

Reconsider Bx. 7.4. We wish to determine the area of a cross-flow heat exchanger with (a) one
fluid unmixed and (b) both fluids unmixed, which would satisfy the conditions of Ex. 7.4.

‘We have the values for Q, U, and ATy from Ex. 74, Here, we need to evaluate the
correction factor F for cach case.
(a) For hot gas flowing through the tubes, Eq. (7.30) gives
Tio — T Tho — The 240 — 425 185

P = = = = — = 0.46
T — Tu Too = T 25 — 425 400

and

C c
R=-—‘-=«—-i_..—;1,
C,; C.

and we have from Fig. 7.13,
F(P,R) = F(0.46,1) = 0.88.

From Eqgs. (7.28) and (7.29), the area of any heat exchanger (excluding parallel flow) relative to
that of the counter flow is
A= Acountcr/F(P. R).

Accordingly,
A = 115m?/0.88 = 131 m®

for one fluid orixed.
(b) From Fig. 7.14,
F(P, R) = F(0.46,1) = 0.92

ﬁand
A= 115m%/0.92 = 125m”

for both fluids unmixed. L
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When the temperature of either fluid remains constant during the heat exchange
resulting from a change of phase {condensation or evaporation), the LMTD method
continues to apply, but it may be given 2 more convenient form. This is done in the next
section.

7.3 CONDENSER. EVAPORATOR (BOILER) O

In a condenser, vapor condenses at a constant temperature (and pressure) while heating
a cold fluid [Fig. 7.15(a)] and exits as a liquid. In an evaporator (or boiler), liquid
evaporates at a constant temperature while cooling a hot fluid [Fig. 7.15(b)] and exits as
a vapor, Two important features of condensers and evaporators are related to the fact
that the temperature remains constant in the two-phase (condensing or evaporating)
side:

1. The change of enthalpy flow in the two-phase side can no longer be expressed
in terms of CAT, because AT = 0. In this case the change of enthalpy flow is
mAh, i being the mass flow rate and Ak the difference between inlet and outlet

l d l

(a)

I 2 T

{b)

Figure 7.15 Cold and hot fluid
temperatures for condenser and
evaporator (boiler). (a) Condenser,
{b) evaporator (boiler).
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enthalpies. The enthalpy for a two-phase fluid is given by

h = xhy, + (1 — x)hy, (7.33)
h, being the enthalpy of saturated vapor,  the enthalpy of saturated liquid and
x the quality.

2. The change of enthalpy is much Jarger in the two-phase side. Consequently, the
mass flow rate is much smaller in the two-phase side. Assuming‘the two-phase
side to remain approximately stagnant, we may eliminate the effect of the type of
heat exchanger andset F =1,

In terms of a condenser, for example, we have from Eqs. (7.12) and (7 14)
milhi — ho) = (cp)e(Teo ~ Ta) = UAATM, (7.34)
where k; and kg are the inlet and outlet enthalpies of the hot (condensing) fluid, and

Teo — Tui
ATy = ——— 2, (7.35)

In ( T — T )
Th ~ T
Tn view of Eq. (7.33), h; = x;hg + (1 —xi)hy and ho = hy (no vapor at the outlet!},
and

hi — ho = xihgg, (7.36)

where kg, = h, — hy is the latent heat. Inserting Eq. (7.36) into the first equality of
Eq. (7.34), we obtain the ratio of mass flow rates in a condenser

E _ Cpc(Tco — T) (7.37)
J‘T"Lc x;hfg ’

Introducing Eq. (7.35) into the second equality of Eq. (7.34), we obtain for the heat

transfer area of a condenser
C Tn — Tt
A= —1In (,_’,‘.__C_') (7.38)
U Th — Teo

or, in terms of Egs. (7.34) and (7.36), alternatively,

ximphge
UATiym

(7.39)

We may wish to utilize an already built heat exchanger as a condenser. In this
case the heat transfer area is known and the exit temperature of the cold fiuid becomes
unknown. Rearranging Eq. (7.38},

’ = exp (~UA/Co) (7.40)
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and, subtracting each side of Eq. (7.40) from 1, we get the unknown exit teinperature,

H Tco - Tci

L Te g - . 4
T, — T exp(—UA/C,) (7.41)

‘We will return to this result in Section 7.4. Let us now illustrate the foregoing consid-
erations in terms of two examples.

ExampLe 7.6

A condenser for a small, conventional power plant is to be designed. The flow rate of steam
through this condenser is going to be my, = 10 kg/s. The conditions of the steam at the inlet of the
condenser are given in Fig. 7.16. The heat transfer coefficient on the cold-waterside s £, = 12,000
W/m? K. Steam will be condensed by water to be taken from a nearby river. The temperature of
the river is T,; = 10 °C. Ecological considerations suggest that the river temperature be raised
no more than 10 °C. We wish to determine (2) the heat transfer area of the condenser, (b) the
flow rate of the water to be taken from the river.

(a) First, from Eq. (7.35)

AT 0-30 ~ suesoc
M Ty T

In—
20

From Table 1.2, the heat transfer coefficient for condensation b, 2 120,000 Wm?.K is found to
be an order of magnitude greater than .. Thus, neglecting the effect of curvature, the conductive
resistance of the pipe walls, and the convective resistance of the steam, the overzll heat transfer
coefficient is U = A, = 12,000 W/m?.K. Then from Eq. (7.39)

_ xithphge 096 x 10 x 2,406,700 o 78

2
T UATw 12,000 x 24.66 '

Since the type of heat exchanger has negligible effect on A, the least expensive design should be
selected.

‘Vapor to condenser

p,=7.4kPa
Turbine T, = 40 °C
x=96%
h,=2574.3 k¥kg
By, =2406.7 Kl/kg
hy= 167.6 kiikg

Y,

Boiler

Condenser Riverat 10°C

Figure 716 Condenser design.
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(b} From Eq. (7.37), after letting ¢, % 4.19 kJ/kg K,

py el = T) 419X Q0—10) oo
me  xmhy, o 096 x 24067

‘That is, the mass flow rate of the steam is about 1.8% of the mass flow rate of the cooled water,
which is consistent with what was assumed previously. In view of m, = 10 kg/s,

me = 555 kgfs.
If the neighboring river (or lake) cannot supply this flow rate, a supplementary cooling-tower
system becomes necessary to achieve the required amount of cooling. %
ExampLe 7.7

Saturated water at 120 °C with a quality of x; = 0.2 and a mass flow rate m, = 10 kg's is to be
cooled to 60 °C with a water flow of sz, = 40 kg/s at 20 °C, The heat transfer coefficient for
liquid water is 1, = 8,000 W/m? K and for condensing water is 2, = 24,000 W/m? K. We wish
to determine the required heat transfer area of a counter-flow heat exchanger.

The saturated (hot) water will first condense at constant temperature {Tj, = 120 °C) until
there is no more vapor left. Then, by losing more heat to the cold water, its temperature wilk
proceed to drop down to the desired 60 °C. The solution thus needs to be treated in two parts, as
illustrated in Fig. 7.17. The first and second parts correspond to a counter-flow heat exchanger
and to a condenser, respectively.

Part I: Heat exchanger

We determine Ay from Eq. (7.14), which, in turn, requires the knowledge of 01, U, and
AT depending on T,,. For the heat-capacity flow rates, assuming cpp = ¢pc = 4,200 Jkg-K,
we get

Cy = rne, = 10kg/s »x 4,200 I/kg'K = 42,000 W/K,

C, = e, = 40kg/fs x 4,200 J/kg-K = 168,000 W/K.

Heat exchanger Condenser
120°C

2 61,3°C

g0°C

20°C 35°C

0 In
Figure 717 (I) Counter-flow
exchanger, (II) condenser.




Sec,7.3 Condenser. Evaporator (Boiler) ) 369

In view of Eq. (7.12},
01 = 42,000 W/K x (120 — 60) °C = 168,000 W/K x (T, — 20)°C = 2.52 % 105 W,

which also gives
Teo == 35°C.

Bath flows here involve liquid water. Thus by = k, = k,, = 8,000 W/m?-K. For the overali heat

transfer coefficient
1 1 1 1 1

Uy hy R, 80 8,000
or
Uy = 4,000 W/n* K,
and from Eq. (7.15) we have for the LMTD of the heat exchanger
AT, — AT, (120 — 35) — (60 — 20) 85 — 40
AT, 120 — 35 T 85

In wee——— In—
AT, 60 — 20 40

ATy = = 59.7°C.

In

In terms of this average, Eq. (7.14) yields, for the heat-exchanger area,

3 foR B 2,520,000 W
T U AT 4,000 W/m2K x 59.7°C

A = 10.6 m*.

Part IN: Condenser

Having determined the area of and the cold-fluid outlet temperature from the heat ex-
changer (which is also the inlet temperature for the condenser), we proceed to the area of the
condenser. Employing Eq. {7.34) and Eq. (7.36),

Qn = raxihgy = (hep)o(Teo — Tu) = UzdsATiv
with h, = 2,202.3 kl/kg (at 120 °C), we get
0 = 10kg/s x 0.2 x 2,202.3kJ/kg = 168 kW/K x (T, — 35)°C = 4.4 x 106 W,

which gives
T, = 681.2°C.

For ATy of the condenser, we have from Eq. (7.35)

Teo — Tai 61.2 — 35
ATive = - £ = = 71°C,

T — Ty 120 ~ 35

n{——— n—mm——

T, — 1o 120 — 61.2

and for the overall heat transfer coefficient, noting k, = h, = 24,000 Wim?-K,

1 1 1 1 1

Uy hy he 24,000 8,000

ar
Uy = 6,000 W/m*K.
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&

Finally, employing Eq. (7.39),
_ xoiwhy, 0.2 x 10kg/s x 2,202.3 x 10° J/kg
T AToe 6,000 W/m?-K x 71°C

which yields, for the condenser area,

Ay = 1034 m*,
Then, the tota! heat-exchanger area A is
A= A+ Ay = 10.6 + 1034 = 21 m",

Note that while the areas in both parts are about the same, the heat transfer in the condenser is
about 75% higher than that in the counter-flow exchanger. 2

Having learned the thermal design of heat exchangers, we now proceed to their
performance under different conditions.

7.4 PERFORMANCE. NTU METHOD

The thermal design of heat exchangers discussed in the preceding sections rests usually
on the following first key problem:

Given: Three temperatures (Thi, Tei, and one of the outlet temperatuges), Cp and C,,
and U (to be estimated if not given).

Determine: Heat transfer area A.

The usual procedure, based on the LMTD method, is to get the remaining outlet tem-
perature from Eq. (7.12), estimate U7 if not given, and determine the heat transfer area
from Eq. (7.31). The performance of an existing heat exchanger under different oper-
ating conditions, or the utilization of 2 heat exchanger for a purpose different than its
original design objective, is the second key problem. In this case:

Given: A, inlet temperatures T; and Tei, Cp and €, and U (to be estimated if not
given).
Determine; Outlet temperatures Ty, and Teo.

The outlet temperatures can be determined by trial and error using the LMTD method.
If one of the outlet temperatures is guessed, then the problem is reduced to the first
type. However, because this would not be the actual exit temperature, the heat transfer
values given by Egs. (7.12) and (7.31) willnot match. Asthe assumed value of the outlet
temperature approaches its actual value (through successive guesses), the difference
between Egs. (7.12) and (7.31) diminishes. Thisisa tedious trial-and-error procedure,
and a new method different from the LMTD method is needed. The so-called NTU
method ! eliminates the foregoing trial-and-error and is the topic of this section.

14 312 defimition of NTU will become clear with Eq. (7.45).
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Return to Eq. (7.12) and let this equation be equal to a product ¢ CAT, where
the proportionality constant € is the so-called heat-exchanger effectiveness and A7 is
a temperature difference. Since the inlet temperatures are given, let AT = Tj; — Ty,
which is the largest temperature difference in a heat exchanger. Cj or C, are two
possibilities for €. Consider the smaller of the two and designate it as Cpy,. Then, for
any heat exchanger, we have

_ CalTh —The) _ CelToo — Ti) ‘ (7.42)
Coin(Thi — Tet) Con(Twe — Te) | '

"This definition accepts an interpretation in terms of a counter-flow heat exchanger as

Actual HT rate in any heat exchanger
€ = : :
Maximum possible HT rate in a counter-flow heat exchanger

To demonstrate that Crpin(Th — Ty) 15 the maximum attainable heat transfer
with a counter-flow heat exchanger, consider Eq. (7.11) for a counter-low heat

exchanger,
In ATy 1 1 UA
AT, — \C, C. |

For Cp > Coor1/Cy < 1/C;, AT, — B as A — oo. In terms of Fig. 7.18(a),
AT, — 0 iIIlp].iCS Teo = Ty, and Cc(Tco - ch) — Cmin(Thi — Tc,’). Since Teo— T
is the largest temperature difference but €, is the smaller of two heat capacities,
C.(Ty; — Ty;) 1s the maximum realizable heat transfer with a counter-flow heat
exchanger.

Also, for C, < C. o1 1/Cp, > 1/C., AT, — 0 as A — oo, In terms of
Fig. 7.18(b), AT, — 0 implies Ty, — Ty, and Cu(Th — Tho) = Comin (T — Tei).
Now Tp; — Th, s the largest temperature difference and Cy, is the smaller of two

heat-capacity flow rates. For €y = C,, the foregoing interpretation does not
hold.

Now, we proceed to the evaluation of € depending on the type of heat exchanger.
Consider first a parallel-flow beat exchanger. From Eq. (7.11)

ATy 1 1
In =—|—=—+=—|UA
ATzz (Ck + CC)
or, in terms of Fig. 7.5,
Tho — Too ( 1 1 )
In — = —| —+ — | UA. 7.43
Ty — T Cy C. ( )

Also, from the first equality of Eq. (7.42)

min
T['_'Tis
Ch(h c)

Tho = Ty — €
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r C;,)'Cc

Ty J
) (a)
T
Tca Tho
Ck < Cc < Td
T
A—co
Tm w
L Ty

(b)
Figure 7.18 Counter flow as A — oo.
(a) Cp > C¢, (b) Cp =< Ce.

from the second equality of the same equation

C .
Too = Ty + G%(Tm - Teid,
. c
and from their difference, after dividing by Tp; — T,
Tho - Tco —1—¢ (Cmin + Cmin) )
Thi — Tet Cy C.

Inserting Eq. (7.44) into Eq. (7.43)
Cmin C win ( 1 1 )
- = | =+ — | UA
mlzl E( Ch * C. )] Cr * C.

Cmin ~ Cumin 1 1) :|
_ = =+ =\va
. E(ch M cc) e"p[ (CH"CC

or

AL

(7.44)

o
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NTU = UA/Cpye

Figure 719 Effectiveness for parallel-flow heat
exchanger.

1 1
1 —exp]— C_h + o UA
¢
B Crin + Cinin ’
Ch C.

or

Finally, noting that either Cp or C. is the smaller of the two heat-capacity flow rates,
redefining it as Cpin, and the other as Cpay, we have for a parallel-flow heat exchanger,

¢ = 1- €Xp [—" 1+ Cmin/cmax) UA/Cmin]

, 7.45
1+ Cmin/cmax ( )

where U A/ C mis is usually referred to as the number of transfer units, or NTU in short.}?
For convenience in heat-exchanger calculations, Eq. (7.45) is plotted in Fig. 7.19.
Following the same steps, we have for a counter-flow heat exchanger

B 1- exp [— (1 - Cmin/cmax) UA/Cmin]
" 1 — (Cuin/ Conax) &¥p [~ (1 = Conin/ Croax) UA/ Crmin]’

which is plotted in Fig. 7.20. The algebra gets quite involved for more complex heat
exchangers and is beyond the scope of this text.!® The effectivenesses of four of these
heat exchangers are reproduced in Figs. 7.21 through 7.25.

(7.46)

€

15 Actually U A/C min is 2 Stanton number based on the total heat transfer coefficient.
18 Figs 7.19 through 7.25 are from Kays and London{5].



74 Chap.7 Heat Exchangers

5

1.0
e 1 o
) e e e
08 0S8 05 T] et
’ F 7V 100~
V%
s /]
e /4
04 _y
o2 //
0
o 1 2 3 4 5
NTU = UA/Cpig

Figure 7.20 Effectiveness for counter-flow heat
exchanger.

For a condenser or evaporator, the flow rate i of the two-phase side is small but
finite. However, since the temperature remains constant on this side, C = Cmax —
oc for finite O = CAT (also from € = ric, we may conclude that ¢, — o and
the definition of ¢, is degenerate). Accordingly, Cuin/Cmax = 0 for a condenser or
evaporator. Since the type of heat exchanger is irrelevant because of negligibly small rir,
from Eq. (7.45) or Eq. (7.46) for Cryin/ Cmax = 0, we have the efficiency of condensers

1.0 —
Col o =0
05 ’ P 0257
// _,._-—Q.50
06 ;%:_/,/"“i’;;
I el 4
& /z/
04—~
0.2 //
0
0 1 2 3 4 5

Figure 7.21 Effectiveness for heat
exchanger with one shell pass and
multiple of two tube passes.
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NTU = UA/C

Figure 722 Effectiveness for heat exchanger

with two shell passes and multiple of four tube
passes.

and evaporators,
€ =1—exp(~UA/Cuin). (7.47)

For exarople, from Figs. 7.21 through 725, for Cpin/ Cmax = ¢ and for a fixed NTU, say
1.2, we read the same ¢ == 0.70.

1.0 T T T

B CCmi.x:d =0, o0 sl ) ] .25
unmixed i 4
\ / /ﬁ s e 4]
08 ' S
e N
/ e 075
St - 133
0.6 ;;/ f; -
c V/ /7N
ixed
7 el
0.4 / unmixed
r i
0.2 /
o]
0 1 2 3 4 5
NTU = UA/Cppyy

Figure 7.23 Effectiveness of one-fluid-mixed
cross-flow heat exchanger.
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Figure 7.24 Effectiveness of cross-flow heat -
exchanger with unmixed fluids.

b

In a typical gas-to-gas heat exchanger, the Chuin/Cmax ratio is approximately
equal to unity. From Eq. (7.45), the efficiency of a paraliel-flow heat exchanger for

Crin/Coax =118
1
€= 5 [1 — exp (_ZUA/Cmin)] s

(7.48)

and from the limit of Eq. (7.46) as Cmin/Cmax — 1, the efficiency of a counter-low

Lo —
Cross flow, fluids
Cross flow, unmtixed
08 one fiuid mixed /
/ -_’-—"-
I Counter — —
0.6 | flOW. < -
€ ’/""‘-— \
SN
04 ,/ Parallel flow Parallel-counter- —
/ fiow, 1 shell pass
02 / Cal :
Cronx
0
0 1 5 3 ; :
NTU= UNCmm

Figure 7.25 Effectiveness of heat exchangers.
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heat exchanger for Coin/Coax = 118

' UA/Cmin

€ = m. (7-49)

As UA/Crin — o0, the efficiency of a parallel-flow heat exchanger approaches 1/2
while that of a counter-flow heat exchanger approaches 1. The efficiency of more
complex heat exchangers is known to remain in between.

It is important to note that the NTU method, although devised for performance
under different conditions, equally applies to the design of heat exchangers. Therefore,
itisa more general method than the LMTD method. Here we recapitulate both methods
for a ready reference in heat-exchanger calculations:

Independent of type Dependent on type Method
UAATLMF (P, R) LMTD

Ch(Thx' — Tho) = Co(Teo — Ty) =

Crin(Thi — T)ely, ) NTU

(7.50)
where ¥ = Cupin/ Crax and § = NTU = U A/ C i are introduced for notational conve-
nience. We proceed now to a couple of examples which illustrate the use of the NTU
method in heat-exchanger operation and/or design.

Exameie 7.8Y7

A one-shell-pass and multiple-of-two-tube passes heat exchanger is to be used to cool 12 kg/s
of ofl with an equal flow rate of water. The heat transfer area of the heat exchanger is 40 m?.
The inlet temperatures of the oil and water are T, = 100 °C and T; = 20 °C, respectively. The
specific heats of the oil and water are 2.09 k)/kg-K and 4.18 kI/kg-K, respectively. The total heat
transfer coefficient is controlled by the oil side and is 1,000 W/m?.K, We wish to determine the
exit temperature of the oil and water.

The heat-capacity flow rates are
Cp o= 2.09 x 12 = 25kW/K = Cp,
C. =418 x 12 2 50kW/K = Cuax,
and
Crin/Crmax = 1/2.
The number of transfer units is

UAd 1,000 x 40

NTU = = = 1.6,
Cuin 25,000

Then, from Fig. 7.21,
€ = 0.65.

17 The FORTRAN program EX7-8.F is listed in the appendix of this chapter.
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Now, employing Eq. (7.42), we have
Cr(Tii — Tho) = CelTep ~ Tat) = €Crpin(Tni — Tat)
or
250100 — Tho) = 50(T,, — 20) = 0.65 x 25(100 — 20},

which gives
Ty = 48°C and T, = 46°C.

Using the computer program provided, the interested reader may parametrically study the effect
of the total heat transfer coefficients on the exit temperatures.

Tf one of these exit temperatures were specified from the beginning and the heat transfer
area were unknown, the foregoing problem would become one of design. In this case € and
€ in/ Cmax would be known, and from Fig. 7.21 we would get NTU and A. L2

Exampie 7.9

A cross-flow recuperator {usual heat exchanger for gas turbines) with both fluids unmixed is to be
designed under a set of conditions and to be operated under different conditions. The hot exhaust
gases fiow through tubes, and the cold intake air flows across these tubes. The wall thickness of the
tubes is negligibte. The heat exchanger is to be designed with mass flow rates ry = m, = 10kg/s,
heat transfer coefficients Ay = k., = 150 W/m?.K, and the three end temperatures Ty = 425°C,
T =25°C, and T, = 210 °C. We wish to determine (a) the heat transfer area of this exchanger,
and (b) the new outiet temperatures after doubling the flow of (1) the hot fluid, (2) the cold fluid,
while maintaining the same inlet temperatures,

(a) The heat—capacity flow rates, assuming equal heat capacity ¢, = 1 kJ/kg-X for both
fluids and noting the equal flow rates, are

€, = C. = 10kg/s x 1,000 J/kg-K = 10° W/K.
It follows from Eq. (7.12),
10 W/K x (425 — Ti,) °C = 10* W/K x (210 — 25) °C,

which gives
Tho = 240°C.

Recall that both the LMTD method and the NTU method are suitable to the evaluation of heat
transfer area. From Egs. (7.12) and (7.42)

0 = CrlTiy — Tho) = €Coin(Tur — T,

which yields
10* W/K x 185°C = e x 10 W/K x (425 — 25)°C
or
185
€ = — = 046
400
Also,
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Then, from Fig. 7.24 we read

: UA
NTU = = 0.95,
min
which gives
75W/m* K x A
095 = P W/mK x4
10* W/K
or, solving for the area,
A= 127m*

For comparison, let us evaluate the same area by the LMTD method. With

T — Ty 240 — 425 185""046
T, — T, 25—425 ~ 400

P =

and

c

R= — =1

C;

we have from Fig. 7.14 .
F(P,R) = F(046,1) = 0.93.
Then, from Eq. (7.31), in view of ATy = 215 °C, we get
10 W/K x 185°C = 75 W/m%K x Am? x 215°C x 0.93

Qar
A F 123m?,

379

which is slightly different from the area obtained by the NTU method. Clearly, this difference is

due to the uncertainty involved with reading from Figs. 7.14 and 7.24.

(b)-(1) As we learned in Chapter 6, forced-convection heat transfer coefficients depend
on the flow velocity and geometry. If the mass flow rate of the hot fluid is changed, then its
velocity, and consequently hy, will change also. The bot fluid flows through tubes. Since the
effect of Prandtl number on heat transfer in gases is small, then, neglecting this effect, we have

from Eq. (6.30)
s Ry~ VS,

where V,, is the velocity of the hot fluid, and for different velocities
(haf B = (Vof V)5,
The new hot-side heat transfer coefficient, after doubling ri,, is

hon = hyp2% = 150 W/m? K x 2%% = 261 W/m? K.
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Accordingly, from
11 + 1 1 + 1
U hy ke 261 150
we have
U= 95WmtK,
and the NTU is
UA % W/m?K x 127 m?
NTU = = / v m = 1.2
C s 10° W/K
Also, noting
Coio = 05,
. Cmax
we read from Fig. 7.24
¢ = 0.60

Then, from Eg. (7.42),

Co(Thi — Thol = Ce(Teo — Ty) = €Crnin(Thi — 1)
or

20425 — Tio) = (Tep — 25) = 0.60 x (425 — 25),
which yields

Il

1
Tio = 425 = - x 0.60 x 400 = 305°C,

T.. = 25+ 0.60 x 400 = 265°C.

The changes in the outlet temperatures resulting from the doubled flow rate of the hot fluid are
sketched in Fig, 7.26(a). Both outlet temperatures are higher because of the increased flow rate
of the hot fluid.

(b)—(2) Approximating the cold-side heat transfer with the flow over a single cylinder
{Fig. ‘7’.27),18 here we utilize Table 6.2. However, since the statement of the problem does not
provide the velocity over a single tube, we assume m ~ 0.6 from Table 6.2 with the assumption
that 4 x 10° < Rep < 4 x 10%.

Apain, neglecting the effect of Prandt! number, we have
(ha/hy)e = (Va/ VDS,
and the new cold-side heat transfer coefficient is

hoe = h12%8 = 150 x 206 = 227 W/m* K.

8 Actually the tubes are placed closely, and they affect the flow pattern and heat transfer, Yet 0.6
continues to represent closely the approximate value of m (see Appendix A for tube-bank correlations).
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11 N 1 1 1
U hy ke 150 227
U2 %0W/mhK

VA 90W/mtK x 127 m®

= - = 114.-
Crun 10" W/K
Cmin - 0-5‘
Crnax
425°C
265 °C
210°C 240 °C
25°C
425°C
210°C 240°C
57
25°C

(b}

Figure 7.26 Recuperator performance
a) Effect of doubled flow of hot fluid b)
Effect of doubled flow of cold finid.

381
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Dividers

Intake air

Exhaust gases
Figure 7.27 Recuperator idealized.

we read from Fig. 7.24
€ = 0.59.

Then, from Eq. (7.42),

(425 ~ Tpp) = 2(Ty — 25) = 0.59 x (425 — 25),
and we have

Tho = 425 — 0.39 x 400 = 188°C,

1
T =25+ 5 x 0.59 x 400 = 143°C.

The changes in the outiet temperatures resulting from the doubled flow rate of the cold fluid are
sketched in Fig. 7.26(b). Both outlet temperatures are lower because of the increased flow rate
of the cold fluid.

It is worth noting that in a gas-turbine recuperator, the flow rate of the intake air and that of
exhaust gases are interrelated and can only be changed simultaneously. However, to demonstrate
the effect of each flow separately, here we increased either the flow of the hot fluid or that of the
cold fluid. ¢

In terms of the foregoing examples, we have tried to improve and extend our
understanding of the foundations of heat exchangers. In practice, however, the thermal
design of a heat exchanger requires the evaluation of the heat transfer coefficients and
decisions on the size and length of tubes to be used. The following example deals with
these aspects of heat exchangers.
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Exampie 7.10

In terms of the cross-flow recuperator of the preceding example, we wish to evaluate the hot- and
cold-side heat transfer coefficients from appropriate correlation formulas and select the diameter,
Iength, number, and arrangement of the tubes.

An order of magnitude range for the gas velocity in tubes, pipes, conduits, and channels is
15 — 60 m/s (refer to an introductory fluid mechanics text). Also, in heat-exchanger technology,
the diameter of tubes used is usuaily in the range of 15 — 25 mm. Assume, for example, a
standard-size tube with 19 mm OD and 16.6 mm ID. Since the hot gases relative to the intake
air have a lower density, let, for the time being, V), 2 60 m/s be the veloclty corresponding to an
averaged temperature of the hot gases. Accordingly, from Table B.2 in Appendix, we have, for
airat Ty = (T + Tpo)/2 = (4254 240)/2 = 333°C = 606 K,

p = 0380 kg/m?

Adr at v =527 % 1075 m%/s

T, = 600K Pr=10.635

k =469 x 107 W/m-K

and )
ViD  60m/s x 16.6 x 1077 m

v 52.7 x 107 m?/s

Rep = = 18,900

Then, from Table 6.1,
Nups, = .023(18,900°%(0.685)% = 54,
where subscript # indicates hot fluid, and
k 46.9 x 107 W/m-K

hy = —Nup, = X 54 = 153 W/m* K.
PE 16.6 x 107 m /

For the cold side, let ¥, = 20 m/s, because the intake air has higher density relative to the
hot gases, and assume this velocity corresponding to inlet rather than to an averaged temperature
of the air flow. Also, let Tog = {Toi+75)/2 = (25+210)/2 = 118°C, T,y = (Ty+Tao) /2 = 225°C,
and Ty = (T}, + T0)/2 = 172°C = 443 K. From Table B2 in Appendix, we have

Alrat vy =32.39 x 107 m?/s
Tf =450 K P?’f: 0.686
kr =373 x 10 W/m-K

Since the cuter cold fluid flows through a tube grid rather than over a single tube, we will
employ tube-bank correlations for the external heat transfer coefficient. The use of these corre-
lations requires that some quantities such as § (the tube spacing), $7, and S, (see Appendix A)
be known. For the tube size selected, the eross sectional area is 4, = 2,16 x 10~* mZ. From the
total ffow rate of the hot gas inside the tubes we get, for the number of tubes,

Ty, 10 kg/s
n = - =
psA Ve 0580kg/m® x 2.16 x 10~* m® x 60 m/s

= 1,330
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36 tubes

N

l |

I )
N =37 tubes

Figure 7.28 Size of the heat exchanger a) Effect of
doubled flow of hot fluid b) Effect of doubled flow
of cold fluid.

or
n = 1330 ~ 36 x 37 = 1332 tubes approximately,

which yields, in turn, N = 37, the number of zigzag distances shown in Fig. 7.28. The peripheral
area of these tubes is A, = 0.0597 m?/m length. Assuming (for the time being) that the heat-
exchanger area determined in Ex. 7.9 is approximately the area that we need, then the length of
the tubes is

A 127 m*
f = ~— = 7 = 1.6m.
nd, 1332 x 0.0597 m*/m

Finally, we determine the spacing of tubes, 4, from the flow rate of cold air outside the tubes,

_ Hig 10kg/s

= = 3 = 1. 1lcm.
- Np LV, 37 x 0774 kg/m® x 1.6 m x 20m/s

The hot-fluid cross section of the heat exchanger may be now arranged as shown in Fig. 7.28.
Accordingly, for Sy the spacing of tubes results in

ST=DQ+5=1.9+1.1=3CH1.

which gives §r/D = 3/1.9 = 1.5. Also, assuming §;/D = 1.5 for staggered tube configuration,
we get € = 0.52 and m = (.562 from Appendix A, where

Nup = CRe} . P,
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The Reynolds number,

V.D  20m/s x 19 %107 m
v 3239 x 1078 m¥/s

t
Rep = = 11,732.

"l'hen,19 inserting C and m,
Nupe = 0.52(11,732)%%(0.686)/* = 88.8

and
k 373 x 1072 W/m-K

h, = —Nup, =
D 19 x 107 m

x 88.8 = 174 W/m*-K.

Note that the substantially lower velocity assumed for the cold air does not yield a comparably
low Reynolds number. Neglecting the conductive resistance of the tube walls, we have

1 1 1
7T
or
U =2 81 W/m*K,
which is quite close to the initially assumed U7 = 75 W/m?*-K. ¢

The present example shows how to go about determining the size of a heat ex-
changer. No further attempt will be made here to refine the foregoing calculations.
Clearly, like any problem of engineering design, this problem requires a number of
trials until the assumed and found values of unknowns coincide. For example, we im-
plicitly assumed atmospheric flow for both fluids. Otherwise the densities should be
adjusted accordingly. Also, to determine the size of pumps, we need to know the pres-
sure drop in the hot and cold fluids. The efficiency of our heat exchanger is reasonably
low, It can be improved at the expense of increased heat transfer area, which in turn
increases the pressure drop and the size of the pumps.

7.5 FOULING FACTOR. VARIABLE COEFFICIENT OF HEAT TRANSFER.
CLOSURE O

During the operation of a heat exchanger a film begins to form on both the hot and
cold sides of the heat transfer surface. This film may be dirt, silt or another chemical
depaosit, rust or another oxide resulting from the interaction of the exchanger fluids
with the solid material of the transfer surface. The effect of a film, called the fouling
factor, is to increase the thermal resistance between the exchanger fluids. Table 7.1,
taken from Ref. 4, gives typical values of the fouling resistance, Ry. The overall heat
transfer coefficient then needs to be reduced by this resistance.

In Chapter 6 we have learned that heat transfer coefficient varies with the distance
from the entrance of a pipe. However, so far in this chapter we have assumed a uni-
form coefficient throughout the exchanger. This assumption coupled with mean fluid
properties usually gives satisfactory answers. Yet in situations involving chain polymers

19 Since 2 % 10° < 11,732 < 4 x 109, the tables in Appendix A are appropriate for this problem.
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Table 7.1 Fouling resistances (From Ref. {4])

Fouling Resistance, Ry

Fluid [W/m* . K]!
Fuel oil 0.005
Transformer oil 0.001
Vegetable oils 0.003
Light gas oil 0.002
Heavy gas oil 0.003
Asphalt 0.005
Gasoline 0.001
Kerosene 0.001
Caustic solutions 0.002
Refrigerant liquids 0.001
Hydraulic fluid 0.001
Molten salts 0.0005
Engine exhaust gas 0.01
Steam {(non—oil bearing) 0.0005
Steam (oil-bearing) 0.001
Refrigerant vapors {oil-bearing) 0.002
Compressed air 0.002
Acid gas 0.001
Solvent vapors 0.001
Sea water 0.0005-0.001
Brackish water 0.001-0.003
Cooling tower water (treated) 0.001-0.002
Cooling tower water {untreated) 0.002-0.005
River water 0.001-0.004
Distilled or closed-cycle condensate water 0.0005
Treated boiler feedwater 0.0005-0.001

and viscous oils the strong temperature dependence of the fluid properties should be
taken into account. Accordingly, the heat transfer area is divided into a finite number
of area elements, each with an overall coefficient of heat transfer based on the local
temperature of the hot and cold fiuids.

In this chapter we studied the most commeonly encountered heat exchangers, some-
times called recuperators. Two other types of heat exchangers, the regenerator and
cooling tower, are also utilized, although much less frequently. In regenerators, the hot
fluid and cold fluid successively occupy the same space, and the exchange of heatis




Sec. 7.5 Fouling Factor. Variable Coefficient of Heat Transfer. Closure O

Table 7.2 Approximate overall coefficients for preliminary estimates (Ret [7])

387

' Heat Exchanger Duty UW/m?-K]

Gas to gas 10-30
Water to gas {e.g., gas cooler, gas boiler) 10-30
Condensing vapor-air (e.g., steam radiator, air heater) 5-50
Steam to heavy fuel oil 50-180
Water to water 800-2500
Water to other liquids 200-1000
Water to lubricating oil 100-350
Light organics to light organics 200450
Heavy organics to heavy organics 50-200
Alr-cooled condensors 50-200
Water-cooled steam condensors 10004000
‘Water-cooled ammonia condensors 800-1400
Water-cooled organic vapor condensors 300-1000
Steam boilers 10-40+radiation
Refrigerator evaporators 300-1000
Steam water evaporators 1500-6000
Steam-jacketed agitated vessels 1501000
Heating coil in vessel, water to water

Unstirred 50-250

Stirred 500-2000

unsteady. The theory associated with this unsteady process is beyond the scope of this
text (for extensive treatments see, for example, Refs. 3 and 6). In cooling towers, both
fluids (usually water and air) flow simultaneously through the same passage, and the
heat transfer is coupled with mass transfer.

As we learned with the examples of the present chapter, we need to know the
overall coefficient of heat transfer for the (thermal) design or performance of a heat
exchanger. Since this coefficient usually depends on unknown exit temperatures, we
are faced with a trial-and-error procedure. For a first trial, an order-of-magnitude value
of the heat transfer coefficient is usually satisfactory. Table 7.2, taken from Ref. 7, gives
the vatue of the overall coefficient for a number of frequently encountered cases. This
table, which includes the effect of a fouling factor, is more conservative than Table 1.2.

Finally, we tried in this chapter to leamn the most important and general aspects of
heat exchangers. For more detailed studies the reader is referred to special handbooks
and texts such as Refs. 5, 8 through 12, and the references cited therein.
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COMPUTER PROGRAM APPENDIX

Cmmmmm e

C EX7-1.F {START)

o P,
PROGRAM MAIN

IMPLICIT REAL*8 (A-H.K-Z)
PI=4*ATAN(L.)
WRTTE(C*,*) "EXAMPLE 7.1....°

WRITE(*,*) ’DOTMH: kg/s’
READC*,*) DOTMH
WRITEC*,*) 'THI: €'
READCH,*) THI

WRITE(*,*) 'THO: C
READ(*,%) THO

WRITEC*,*) 'DOTMC: ka/s'
READ(*,*) DOTMC
WRITECY,*) 'TCI: C'
READ(*,*) TCT

WRITE(*,*) "CPH: %J/kg.K*
READ(*,*) CPH

WRITEC*,*) 'CPC: k3/kg.K'
READ(*,*) CPC

WRITE(T,*) Ui W/mAZ.K'
READ(*,*) U

C--

C

UNIT CONVERSION

[ mm e ——

CPH=1000*CPH
CPC=1000*CPC

CALCULATION
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CH=DOTMH*CPH

CCaDOTMC*CPC !

DOTQ=CH* {THI-THO)
TCO=TCI+DOTQ/CC

DTA=THI-TCT

DTB=THO-TCO

EF(DTA.NE.DTB} THEN
DTPARA=(DTA-DTB) /LOG{DTA/DTB}
ELSE

DTPARA=DTA,

ENDIF

BTA=THE-TCO

DTB=THO-TCL

IF(DTA.NE.DTE) THEN
DTCOUN=(DTA-DTB) /LOG(DTA/DTES
ELSE

DTCOUN=DTA

ENDIF

APARA=DOTQ/ {U*DTPARA)
ACOUN=DOTQ/ (U*DTCOUN)

C ANSWER

o D SO
WRITE(*,*) "PARALLEL HEAT TRANSFER AREA IS’
WRITE(*,*) APARA,' mA2’

WRITE(*,*) "COUNTER HEAT TRANSFER AREA IS'
WRITE(*,*) ACOUN,’ mAZ’

STOP

€ EX7-4.F (START)
L= - e ko
PROGRAM MAT

IMPLICIT REAL*E {A-H,K-Z)
PI=4*ATAN(L.)

WRITE(*,*} 'EXAMPLE 7.4....°

WRITE(*,*) 'DOTMH: ko/s’
READ(*,*) DOTMH
WRITEC*,*) ‘DOTMC: kg/s'
READ(*,*} DOTMC
WRITE(C*,*) "HH: W/mAr2.K'
READ{*, %) HHY

WRITE(*,*) 'HC: W/ma2. K’
READC*,*) HC

WRITE{*,*) 'CPH: k1 /kg.¥K’
READ(*,*) CPH

WRITE(*,*) 'CPC: k12/kg.K'
READC*,*) CPC

WRITE(*,*) "THI: C°
READ{*,*) THI

WRITE(*,*) "TCI: C'
READ(¥,*) TCT

WRITE(*,*} 'TCO0: O’
READ(*,*) TCO

C UNIT CONVERSION

389
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CPH=1000*CPH
CPC=1000%CPC

Conmcnm e . SO

C CALCULATZION

CH=DOTMH*CPH
CC=DOTMC*CPC

DOTQ=CC* (TCO-TCTY
THO=THI~DOTQ/CH
DTA=THI-TCO
DTB=THO-TCL
TF(DTA.NE,DTB) THEN
DTCOUN={DTA-DTB) /LOG{DTA/DTE)
ELSE

DTCOUN=DTA

ENDIF

U=1/(1/HH+1/HC)
ACOUN=DOTQ/ (U*DTCOUN}

Cammmammmmm e - - — e

WRITEC*,*) *COUNTER HEAT TRANSFER AREA IS'
“WRITE(*,*) ACOUN,' mA2'
sTop

oo J_— ——

¢ EX7-8.F (START)
[ o — _— - ——
PROGRAM MAIN
IMPLICIT REAL*S (A-H,K-Z}
PI=4*ATANCL.)
WRITEC*,*) "EXAMPLE 7.8....°
Commmmm e e ————— —_—
C  INPUT DATA
C————— —_—
WRITE(*,*) 'DOTMH: kg/s’
READ(C*,*) DOTMH
WRITE(*,*) 'DOTMC: kg/s’
READ(*,*) DOTMC
WRITEC*,*) *A: mA2’
READCH,*) A
WRITEC*,*) 'THI: C'
READ(*,*) THI
WRITE(*,*) 'TCI: C'
READ(*,*) TCI
WRITE(*,*) 'CPH: k1/kg.K’
READ(*,*) CPH
WRITE(®,*) *CPC: kI/kg.K’
READ(*,*) CPC
WRITE(*,*} "HH: W/mA2.K’
READC*, *) HH

C UNIT CONVERSION

[ op— I —_——— —————————
CPH=1000*CPH
CPC=1000%CPC

C CALCULATION

T
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CH=DOTMH*CPH
CC=DOTMC*CPC !
IF(CH.GT.CCY THEN

CMIN

=(.C

(MAX=CH

ELSE

CMIN=CH

CMAX=CC

ENDIE
CRATTO=CHMIN/CMAX

NTU=

HH*A/CMIN

WRITE(*,*) 'PTCK EPSILON FROM FIG, 7.21 WITH'
WRITEC*,*) 'CMIN/CMAX=",CRATIO,’ NTU=",NTU
WRITE(*,*) 'INPUT EPSILON’

READ(*,¥) EPSILON

DOTQ=EPSILON*CMIN* (THI-TCI)
THO=THI-DOTQ/CH

TCO=TCI+DOTQ/CC
C __________________________________________________
C ANSWER
O —— -

WRITE(*,*) 'EXIT TEMPERATURE OF THE OIL IS’
WRITE(*,*) THO,” C’

WRITE(*,*) 'EXIT TEMPERATURE OF THE WATER IS’
WRITE(*,*) TCO,' C°

sTop
END

EXERCISES
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7.2

7.3

A one-shell-pass and multiple-of-two-tube-passes heat exchanger is to be designed. Water
with 7, = 20 kgfs (cpe = 4 kl/kg-K) and Ty = 20 °C flows in the tubes and cools hot
shell oil with ity = 80 kg's (cpr = 2 kl/kg-K) from Tp; = 100 °Cto Ty, = 80 °C. The
total heat transfer coefficient is U = 1.2 kW/m?.K. (a) Evaluate the heat transfer area.
(b) What type of heat exchanger will give the minimurn heat transfer area? Evaluate this
area. (c) What type of heat exchanger will give the maximum heat transfer area? Evaluate
this area. (d) Comment on the given heat transfer coefficient.

A counter-flow heat exchanger is wtilized to cool a 2.5 kg/s gas flow from 150°C 1o 100°C
by means of a 3 kg’s air flow which enters the exchanger at 10 °C, We wish to increase
the size of this exchanger and cool the gas to 90 °C rather than 100 °C, Assume that the
other conditions remain the same, and determine. the ratio of heat transfer areas for the
two cases. What is your conclusion?

The exhaust gases of an industrial gas turbine are utilized to heat the intake (air). Consider
across-flow heat exchanger with unmixed fluids under the following conditions: €y == C; =
1,500 W/K, Tjy = 315°C, Ty = 35°C, T, = 175°C, hy = k. = 100 W/m?-K. (a) Evaluate
the heat transfer area. {(b) One half of this exchanger is shut down for a periodic clean-up
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7.5

7.6

7.7

7.9

7.10

7.11

%

process. C; and C, are kept constant by increasing the pumping power. Find the new exit
temperatures.

A counter-flow heat exchanger is to be designed. Hot oil (s, = 600 kg/s, c,n = 2kI/kg-K)
flows in tubes while heating shell water (s, = 400 kg/s, cpc = 4 ki/kg-K}. The inlet and
outlet temperatures of the oil and the inlet temperature of the water are Ty = 110 °C,
T., = 70 °C, and T; = 20 °C, respectively. Also, Ay = 1,000 W/m*-K and #; ~ Vs,
(a) Find the heat transfer area. (b} Because of faulty manufacturing, 1/3 of the pipes are
sealed and the oil low is reduced to ry = 400 kg/s. Find the new exit temperatures.

A one-ghell pass and multiple-of-two-tube-passes heat exchanger will be designed. Water
flows at the rate of 360,000 kg/hr {V, = 3 m/s) in the tubes (2 cm ID, 2.5 ¢cm OD, k = 20
W/m-K). The inlet and outlet temperature of the water are T; = 10 °Cand T, == 65°C,
respectively. Ethylene giycol flows (V, = 1.5 m/s) through the shell at the rate of 720,000
kg/hr (¢, = 2 kl/kg-K), and its temperature decreases from T = 180 °C. Evaluate the
shell-side heat transfer coefficient on the basis of cross flow. (a) Caleulate the heat transfer
area. (b) Recalculate the exit temperatures after reducing the water flow rate to 240,000
kg/hr.

A high-temperature-condensing water flow is cooled by a low-temperature-evaporating
water flow in a counter-flow heat exchanger. (a) Calculate the exit quality of the evapo-
rating flow. (b) Calculate the heat transfer area of the heat exchanger. Data: T, =15°C,
hje = 62.98 kI/kg, he = 25289 kIkg, x = 0 %, Ty = 140°C, hyy = 589.11 ki/kg,
hgn = 2733.9 kJ/kg, xp = 100%, xz0 =0 %, My = pe = 600,000 kg/hr, cpn = ¢pe = 4.18
xJ/kg K, and hy, = h, = 500 W/m*-K.

For gas-turbine recuperators and for most gas-to-gas heat exchangers, the Cp/ Cmax 1ati0
is approximately equal to unity. Show for this case that the heat-exchanger effectiveness
for parallel flow is Eq. (7.48) and for counter flow is Eq. (7.49).

For condensers and evaporators the Cpin/ € max Fatio is negligibly small. Show for this case
that the effectiveness of any heat exchanger is given by Eq. (7.47).

The outlet vapor of a turbine is condensed by water fiow in a one-shefl-pass and multiple-
passes (1-2 parallel-counter-flow type) heat exchanger. The water flows in tubes. (a) Find
the water exit temperature. (b) Find the vapor flow rate. Data: A =3 m* U = 100
Wim?2-K, Tuapor = 50°C (hy = 204 kI/kg, hy = 2,550 KI/kg), Twater, intee = 15 °C, Hymter =
3,600 kg/hr, ¢pwater = 418 KIVkg-K, % {vapor quality) = 0.8, xp = 0.

A one-shell pass and multipie-of-two-tube-passes heat exchanger is to be designed. Water
flows at the rate of 60 kg/s and with velocity 2.5 m/s in tubes of 25 mm OD and 20 mm
ID. The thermal conductivity of the tubes is 20 W/m-K. The inlet and outlet temperatures
of the water are 120 °C and 65 °C, respectively. Oil flows through the shell at the rate of
120 kg/s and its temperature increases from 10 °C. The specific heat of oil is 2,100 J/kg-K.
Assume the shell-side heat transfer coefficient to be one-tenth of the tube-side heat transfer
coefficient. Determine the heat transfer area.

To increase the overall efficiency of a steam power plant, part of the expanding steam is
taken out from the turbine and used for heating (Fig. 7P-1). A heat exchanger in which
Jlow-pressure steam condenses at 120 °C while heating 20 kg/s of water flow from 65°C1o
90 °C will be designed for this purpose. The total heat transfer coefficient is 8,500 W/m?-K.
(a) Determine the type of heat exchanger that would provide the minimum heat transfer
area. (b) Evaluate this transfer area. (¢) ‘What flow rate of steam is to be drawn from the
turbine to the heat exchanger? The steam quality at the inlet of the exchanger isx; = 1.
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Boiler e
1
3 Condenser
Heat

exchanger

Figurce 7P-1

We wish to determine the condenser size (heat transfer area) in the preceding problem.
The vapor pressure and temperature at the inlet of the turbine are 12.5 MPa and 650 °C,
respectively. The output of the turbine is 100 MW. The vapor pressure and quality at the
inlet of the condenser are 50 kPa and 0.96, respectively. The temperature of the cooling
water at the inlet of the condenser is 10 °C, The overall coefficient of heat transfer is 6,000
Wim?-K. (a) Assume a flow-rate ratio between the condensing vapor and the cooling
water. (b) Evaluate the temperature of the cooling water at the outlet of the condenser.
{¢) Find the heat transfer area of the condenser.

Because of a slight leakage problem, the condenser pressure in the preceding problem
rises from 50 to 100 kPa. Assume the quality of the steam to remain the same at the inlet
of the condenser. (a) Find the reduction in the turbine output. (b) What are the means
of retaining the turbine output at 100 MW? (¢) Determine the heat transfer area of the
condenser corresponding to 3 in. Hg vacuum pressure.

Low-pressure steam is condensed at the rate of s = 10 kg/s by a pressurized and evaporat-
ing water flow in a multiple of two-tube passes heat exchanger. From the saturated-steam
tables, condensing steam at p; = 1.55 MPa and T, = 200°C, ky = 852 kl/kg, ks, = 1941
kI/kg, ke = 2,793 k)/kg, inlet quality 100%, outlet 0%; evaporating steam at p, = 0.2
MPa and T, = 120 °C, hy = 503 kl/kg, ky, = 2203 kl/kg, h, = 2706 kl/kg, and inlet
quality 0%. (a) Sketch the temperature of the condensing steam and evaporating water.
(b) Find the flow rate of water corresponding to 10% and %0% exit quality for the water.
{¢) Find the heat transfer area of the heat exchanger. (d) Which fluid should flow in tubes?
{e) Which heat transfer coefficient do you need to compute?

Modify Egs. (7.37), (7.39), and (7.41) for an evaporatar.

Vapor at a saturation pressure p; and superheat temperature T, is condensed by a counter
water flow in a heat exchanger of area A. The inlet temperature of the water is Tu.
The flow rates of the vapor and water are i, and iy, Assume the total heat transfer
coefficients to be Uy and Uy for parts 1 and 2 of the exchanger as shown in Fig. 7P-2. Log-
mean averages may be replaced by arithmetic averages. Determine the exit temperature
of the water and the exit quality of the vapor.
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7.17 Redesign the heat exchanger of Ex. 7.4 in terms of the design sketched in Fig. 7P-3.

Figure TP-3
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7.18 A small space heater is to be designed consisting of steel tubes of 20 mm diameter arranged

7.19

7.20

in equilateral, §taggered triangles (Fig. 7P—4). Steam at 110 °C condenses inside the tubes.
Air at the rate’of 8 m*/s delivered by a fan is heated from 10 °C to 60 °C. (a) Evaluate the
number and spacing of the tubes. (b) Estimate the pressure drop in the air flow.

Condensing

Alr flow

Figure 794

The exhaust steam of a turbine with quality x; = 0.98, saturation pressure p,, = 75 kPa,
and mass flow rate rizy = 1 kg/sis fully condensed (xp = 0.0} while transferring heat totiver
water which enters the condenser at T, = 10 °C with a mass flow rate of i1, = 8 kg/s. A
standard thermodynamic text yields a saturation temperature of Ty, = 91.9°Cand a latent
heat ks, == 2278.6 ki/kg. Assuminga total heat transfer coefficient U = 2,000 Wim?.K for
clean heat-exchanger surfaces, (a) determine the heat-exchanger area. (b) Due to residue
in the river water, dirt is formed, creating an additional thermal resistance, the so-calied
fouling resistance. This additional thermal resistance is 0.0002 m*-K/W. For fixed ry, A,
X0, X, T, Tu, determine the new exit temperature and the new mass flow rate of the
cooling water.

A heat exchanger with one shell and two tube passes is to be designed. Hot oil flowing
in tubes (riy, = 30 kg/s, cpp = 2 kI/kg-K) heats water (. = 20 kgfs, cpe = 4 kKI/kg-K).
The inlet and outlet temperatures of the water and the inlet temperature of the oil are
Ty = 20°C, T,y = 50 °C, Tj; = 100 °C, respectively. The heat transfer coefficients are
known to be by = 1,000 W/m?-X and k. = 9,000 W/m?-K for oil and water, respectively.
Find the heat transfer area of the heat exchanger.
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FOUNDATIONS OF RADIATION O

We have so far studied the conduction and convection modes of heat transfer. We
have learned that conduction depends on the properties of solids and fiuids and that
convection depends on the motion as well as the properties of fluids. In other words,
heat by conduction or convection can be transferred only in matter, not in a vacuum.
From our daily experience, however, we know that thermal energy can be transmitted
‘between a source and a distant sink without any intervening carrier. For example, life on
earth is supported by the energy radiated from sun. Feeling warm before an open fire is
also associated with the same form of energy transfer. The mechanism by which energy
is transmitted between a source and a distant sink is called radiation, a generic term
covering thermal as well as other forms of radiation. Unlike conduction and convection,
radiation. is-hindered by matter and is at its best in vacuum. So the atmosphere of the
earth and the air space around a fireplace hinder the propagation of radiation from sun
and fireplace, respectively. That is something that we should actually be thankful for.
Without the atmosphere, which acts as a radiation shield, too much radiation would
reach the surface of the earth, and life as we know it would be impossible.

8.1 ORIGIN OF RAD!AT!ON. ELECTROMAGNETIC WAVES O

The origin of radiation is electromagnetic and is based on three phenomenological facts:
The Ampere law, the Faraday law, and the Lorentz force (Fig. 8.1) which are usually
covered in a physics course. However, the usual form of Ampere’s law, which gives

3%
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I, Electric current

¢, Electric current

dd

Faraday law, ¢ = — &

Figure 8.1 Foundations of
electromagnetics.

the magnetic field generated by an electric current and is demonstrated by the simple
experiment of Fig. 8.1(a), ignores the unsteady effect and is not complete. Including
this effect to the Ampere law, and combining the result with the Faraday law, Maxwell
analytically showed the existence of electromagnetic waves, which were later confirmed

experimentally by Hertz. The velocity of eleciromagnetic waves in empty space turns
out to be that of light,

¢ =3 x 10¥m/s.

This fact originally led to the conviction that Maxwell’s electromagnetic waves furnished
atheory of light and that a variety of waves discovered following Hertz were of the same
type. These waves appear in nature for wavelengths over an almost unlimited range
(Fig. 8.2), and radiation takes on different names (optics, thermal, radio, x, and y rays,
etc.) depending on the wavelength., However, each form of radiation-is characterized
by electromagnetic waves within only a small part of this range. For example, the
wavelength range of thermal radiation (which is type of radiation that we are interested
in}is 0.1—100 pm, approximately. Outside this range, radiation does not manifest itself
in the form of heat (if this were not the case, human beings would be “cooked” by some
of these waves). The therma) range is divided into the ultraviolet, the visible, and the
infrared ranges. The radiation of one wavelength is called monochromatic radiation,
while the dependence of radiation on wavelength is termed spectral. The spectral
distribution of radiation depends on the temperature and the surface characteristics
of the source. For example, with an effective surface temperature of about 6,000 K,
the sun emits most of its energy at wavelengths below 3 jom, while at a temperature of
about 300 K the earth emits almost all of its energy at wavelengths above 3pm. This
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Figure 8.2 Electromagnetic spectrum with extended thermal and visible ranges.

difference between the spectral ranges results in the greenhouse’ effect. The glass of
a house permits radiation at wavelengths of the sun to pass but is almost opaque to
radiation in wavelengths of the house interior. Thus, solar radiation enters but cannot
leave the house, resulting in a warm inside even when the outside is cold.

The Lorentz force coupled with the Ampere law and the Faraday law leads to
the balance of electromagnetic momentum?® which involves the (divergence of) elec-
tromagnetic (Maxwell) stress. The isotropic limit of this stress is the electromagnetic

pressure
p = o, (8.1)

where u is the electromagnetic energy density. Isotropic radiation is also called black-
body radiation or ideal radiator. An example is a cavity surrounded by isothermal
walls. This cavity is filled with isotropic (equilibrium) radiation because of the thermal
equilibrium between the radiation and the walls. Radiation escaping the cavity through
a small hole is almost isotropic, because the hole disturbs the equilibrium only slightly.

Ta greenhouse is 2 glass-enclosed structure used for cultivating plants with controlled temperature
and humidity. )
2 The development of electromagnetic momentum is beyond the scope of this text.
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To an observer the hole appears to be black. The radiation escaping the cavity is also
black for reasons to be clarified in Section 8.4. Since the electromagnetic radiation is
altered by but not attached to an intervening medium, its energy « defined per unit
volume leads, for total internal energy, to

U =uV, (82)

V being the volume.?

Now, assume the thermal radiation to be a gas occupying volume V, and consider
a process involving an infinitesimal change in the volume of this gas. Then, rearranging
the thermodynamic relation,

dU = TdS — pdV, (8.3)
with Egs. (8.1) and (8.2), we have

14 4 fu .
ds = —d —{=1dV. .4
S T u—i—S(T) (8.4)

Furthermore, assuming the radiation to be an ideal gas, and recalling that u = «(T) for
an ideal gas, and du = (du/dT)dT, we may rearrange Eq. (8.4) as

s=7 (j;) aT + : (i"f) av. (8.5)

Since 4 is an exact differentiat, from Eg. (8.5),

SN 1)

which gives
du 4aT
= =4
u T
and, after integrating,
u~ T4 (8.6)
or, with a proportionality constant a (to be elaborated later),
u o= aT* (8.7

Exampre 8.1

We wish to determine (2) the behavior of radiation as a gas, (b} the specific heat (at constant
volume or pressure) of radiation, and (¢) the relation governing the isentropic process of radiation.

(a} The enthalpy per volume V of radiation,

H=U+pV, (8:8)

3 Recall that the internal energy of matter is defined per unit mass rather than per unit volume.
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which, in terms of Eqgs. (8.1) and (8.2), becomes

H=1y (8.9)
=3 .
or, per unit volume,
4
h= % (8.10)

Then, in view of Eq. (8.7), the internal energy and enthalpy of radiation depend only on its
temperature. Consequently, the radiation is an ideal gas. ’
(b) The usual definitions of specific heats,

o, = (Bu/dT)y, ¢, = (3h/3T),,

are reduced, for an ideal gas, to

¢y = dufdT, ¢, = dh/dT,
which give, in terms of Egs. (8.7) and (8.10),

le
6 = 4aT? ¢, = ?ar? (8.11)
(e} The isentropic process of any ideal gas is governed by
pV* = Const.,

where k = ¢,/c,. The ratio of specific heats of radiation, obtained either from Eq. (8.11), or
from the combination of
cpfey = dh/du

with Eq. (8.10), is
k= cpfe, = 4/3.

Then, the isentropic process of radiation is governed by
pV¥* = Const. (8.12)
{What matter gas satisfies the same relation?) 2

For later convenience we may now introduce a simplification which closely ap-
proximates the thermal radiation.

1.2 APPROXIMATION OF RADIATION. OPTICAL RAYS O

As we learned with Fig. 8.2, the major contribution of the electromagnetic spectrum
to thermal radiation is provided by waves in the range of wavelengths from about 0.1
to 100 wm. Consequently, employing the basic assumption of geometric optics (that is,
by letting A — 0), we may replace waves with rays and assume that thermal radiation
travels along straight lines. Then we speak of the color of a thermal ray, characterized
by the wavelength A (or frequency v) of the waves. However, in light of Eq. (8.2), 2
finite amount of energy can be attributed only to a volume, not to a single ray which
has no volume. To account for this energy, let us draw a cone in an arbitrary direction,
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20 =sin ¢ 20 do

8
Figure 8.3 Solid angle (infinitesimal).

having any point of the radiation (gas) as the vertex, and describe around this same point
a sphere of unit radius. This sphere intersects the cone in what is known as the solid
angle. The infinitesimal solid angle 422 (representing an infinitesimally small directional
volume, as shown in Fig, 8.3) defines the radiation in a direction, the so-called intensity
of radiation,
Intensity = ' Radiation energy _ ]
Solid angle x Area x Time

To find the effect of radiation on thermal problems, however, we need to interpret
the optical rays diverging in all directions in terms of thermal concepts such as energy
density and heat flux. First, introduce the definition of the energy density of radiation,

Radiation energy

Energy density = Vel = u,
olume

and express the flow of radiation energy from area dA, over a time intervat dt in terms
of the flux of radiation energy (Fig. 8.4),

udAp{cdt) = qdApdr, (8.13)

where g is the radiation flux {energy per unit area and time), ¢ is the speed of light
(recall that electromagnetic waves travel at the speed of light), and cdt is the distance
traveled over time interval dr. Since the intensity is the radiation flux per solid angle,
area, and time, differentiating Eq. (8.13) with respect to Q, we get

du dq
—_—= — = [ 8. 4
‘o= 1! (814)
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l Thermal flow = Radiation flux
1 udA,c dt = gdA, dt

Figure 8.4 Optical and ther-
mal interpretation of radiation

energy. Optical sadiation ~ / I
or, after multiplying by 42 and integrating over £2,
1
U= mf I1dQ. (8.15)
cJa

For isotropic radiation, [ is independent of 2, and Eq. (8.15) for @ = 4x (the total
solid angle of a sphere) reduces to
4

0 = —

¢ (8.16)
Thermal | Optical

Now, introduce the emissive power £, or the radiation flux from an (actual) surface
dA, as shown in Fig. 8.5. It follows that

EdA = qdA,. (8.17)

Figuze 8.5 Emissive power and

flux of radiation.
£
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Differentiating Eq. (8.17) with respect to £, rearranging the result in terms of Eq. (8.14),
and noting dA, = dA cos ¢, we obtain

dE !
aa = foosd.
and, after integrating over (= 2m)*
E = f TcosgdS, (8.18)
2

where dQ2 = sin ¢ d¢p d6 (Fig. 8.3). For isotropic radiation, { is uniform, and Eq. (8.18)
introduces the emissive power of a black body,

27 /2
Ey, = If d@/ sin ¢ cos ¢ dep
0 0
or, after the integrations, to

Eyp = nrl

. (8.19)
Thermal | Optical

Equation (8.19), together with Eq. (8.16), show how thermal concepts such as « and E,
are related to the optical concept of /.

Finally, inserting Eq. (8.7) into Eq. (8.16) and the result into Eq. (8.19) vields the
Stefan-Boltzmann law,

E, = aT% (8.20)

where

o = 5.67 x 1078 W/m?.x*
is the universal Stefan-Boltzmann constant. This constant is related to the constant in
Eq. (8.7) by @ = 40/c. For the time being, we assume that the numerical value of 4

or ¢ is determined experimentally and Eq. (8.20) is phenomenological. Later, it will
theoretically be derived from quantum considerations.

ExampLe 8.2

Consider air at 300 K and 1 atm and the radiation gas at the same temperature. We wish to
compare (a) internal energies, and (b) pressures of both gases.

(a) In view of a = 4o/c, the internal energy of radiation follows from Eq. (8.7},

4o
up = —T7,
c

* Why are the integrations leading to Eqs, (8.16) and (8.19) over § = 4z and 2x, respectively? Note
that « is local and £ is directional,
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which gives
0\ W,
4 % 567 — <K
100/ m?-K
e = 3 x 108m/s
or

wp = 6.12 x 1078 J/m’.

For the internal energy of air per unit mass at 300 K and 1 atm {from air tables in a text on
thermodynamics)
uhy = 214.09kJI/kg

or the internal energy per unit volume
uy = pu’ = L1614kg/m’ x 214.09kI/kg,

which gives
Uy = 248.641(]/1113.

Then, the internal energy ratio

upg 612 x 1074 §/m®

v M X 1P 2:46 x 1071,
(b) The radiation gas pressure from Eq. (8.1),
1
Pr = guﬂ‘

yields, when combined with part {a),

x 6.12 x 10763/m® = 2 x 1079 Pa.

i

Pr =

Then the pressure ratio is

2 % 107°Pa
PR - — =2 x 107",
Da 1x 1013 x10°Pa

which explains why the effect of the radiation pressureis ignored in the momentum equation. ¢

ExampLe 8.3

Assume that the sun at Ts = 6,000 K, an incandescent bulb at 7y = 3,000 K, and the earth at
Tg = 300 K are all black bodies. We wish to determine their emissive power.

Equation (8.20) vields

) 6000\ w _, )
Es = oT¢ = 567 — K* 2 73,483 kW/m?,

4
— et 3,600 W s ~ o4 s 2
Er = o1y = 5.67 —— K" = 4,593 kW/m",
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and

! 4 300" 4 2
Er = ol = 567 — K* = 459W/m

100/ m2K*

for the radiative fluxes from the sun, an incandescent bulb, and the earth, respectively. Then
4 4
T 6,000
={Z —— | =2*=16
E; T; 3,000
Es

4 4
(T 6,000
Er \T: 300
¢

Aswelearned with Fig. 8.2, nature provides radiation over a wavelength spectrum.,
The energy of monochromatic radiation is the monochromatic emissive power E; , which
we consider next.

Es

[

and

24 = 16 x 10%

1
i

8.3 MONOCHROMATIC RADIATION. QUANTUM MECHANICS O

By definition, the relation between the monochromatic emissive power and the emissive
power is

o0
f E:dh = E. (8.21)
0
For a black body, from Eq. (8.20),
o0
f Epdi = Ep = oT* (8.22)
0

This result (being temperature dependent after integration over the wavelength spec-
trum) proves that Egy = Ep (A, T). Here, we are interested in the explicit form of Ep; .
Equation (8.22) implies that

Epd) ~ dE, ~ T34T. (8.23)

For an infinitesimal isentropic process of the radiation (gas), 45 = 0, and Eq. (8.3)
becomes
dU = —pdV, (8.24)

which, in terms of Egs. (8.1) and (8.2), may be rearranged to give

duV) = ——udV

or
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or, after integrating, and recalling Eq. (8.6),
o~ V_4f'3 o~ T4

or
T ~ V73, (8.25)

Also, for the wavelength of isotropic waves we have (from the radius-volume relation

of a sphere, for example)
A~ VA (8.26)

Elimination of V between Eqs. (8.25) and (8.26) yields

: (827)

which is Wien’s law. Differentiating Eq. (8.27), we get
xMT + Tdh = 0,

which may be rearranged as

A
s ~ —dT
T
or, in terms of Eq. (8.27), as
1
dr ~ —dT. (8.28)
Then, insertion of Eq. (8.28) into Eq. (8.23) results in
Ep ~ T3
or, in view of Eq. (8.27),
Eps
—T—’_S— ~ Const. = AT
or
Epa
-5 = FOT). (8.29)

Classical electromagnetics and Boltzmann statistics, respectively, lead to explicit forms
-of Ea, (8.29) for & -> oo and A — 0. However, both theories fail to provide the explicit
form for an arbitrary A. Extensive research for this explicit form eventually led Planck
to the discovery of quantum mechanics, which explains radiation in terms of particles
(photons) traveling with the speed of light. The energy and momentum assoclated with
each photon, respectively, are

U=hv and Ujc = hjA, (8.30)

where
h o= 6.6262 x 107 Fs

is the Planck constant, v is the frequency, and Av = ¢.

]
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For the constitution of a photon gas,” now reconsider Eq. (8.30) in terms of wave-
length,

¢

U = hea™?, (8.31)
which may be rearranged, in view of Eq. (8.26), as ‘

U~ v, (8.32)
An infinitesimal change in this energy is

Vs
Vv

1 1
au ~ ~3 dV = —Eudv, (8.33)

where u = U// V. For an infinitesimal isentropic process of any gas, Eq. (8.3) gives
dU = —pdV. (8.24)
Then, from a comparison of Egs. (8.33) with (8.24),

1

P = 5“, (8.1)

which is identical to the result already stated as the isotropic limit of electromagnetic
stress.

It can be shown® by applying quantum (Bose-Einstein) statistics and quantum
(Schrodinger) waves to photons that

C

(8.34)

which is the Planck law of black-body emissive power. Here
Ci = 2rhc® = 37415 x 1076 W.m?
and

mhc

Cp = = 14388 x 10°mK

are the first and second radiation constants, respectively, and

k = 1.3806 x 1072 J/K (8.35)

5 tn place of the constitution of matter gas, p = pRT.
¢ Details are beyond the scope of the text.
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Figure 8.6 Black-body monochromatic
emissive power.

is the Boltzmann constant. Equation (8.34), rearranged as

Eo _ G
TS T QT (e - 1)

(8.36)

is in terms of AT only and provides the explicit form of Eq. (8.29). Inserting Eq. (8.34)
into Eq. (8.22) and integrating, we get the Stefan-Boltzmann constant in terms of the
radiation constants or the Planck and Boltzmann constants,
4 54
x C 2k
0= e = S = 5.67 x 1078 W/m K",
1555 15kr°¢

Figure 8.6 shows Ep./ T3 versus AT, and Fig. 8.7 gives Ep, versus A, with T as a param-
eter. Note from Fig. 8.7 that, for higher temperatures, the maximum of Ep, is shifted to
shorter wavelengths. Equating the derivative of Eq. (8.36) with respect to AT to zero
gives the special value of the constant in Wien’s law,

C;

C3 = dmaxT = 1965 = = 2,897 8 umK, (8.37)
where Ay is the wavelength at which Ep, is a maximum and Cy is the third radiation
constant, The shift in this maximum explains the change in color of a body as it becomes
heated. Since the visible band of wavelengths lies approximately between 0.35 and
0.75 j2m, only a very small part of the low-temperature radiation energy is detected by
the human eye. When a solid body is heated, the maximum intensity of radiation is
shifted to shorter wavelengths, and the first visible sign of increased temperature is a
dark red color assumed by the body at about 700 °C. As the temperature is further
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T=1000K
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Apm)
Figure 8.7 Black-body monochromatic emissive
power at various temperatures.

increased, the color changes to bright red, then to bright vellow, and finally to white
at about 1,300 °C. A solid body appears also brighter at higher temperatures, since a
larger portion of its total radiation falls within the visible range.

ExampLe 8.4

Reconsider Ex. 8.3. For these radiation sources we wish to determine (a) the maximum monochro-
matic black-body emissive power and (b) the wavelength corresponding to the maximum emissive
power.

(a) Equation (8.36) coupled with Wien’s law given by Eq. (8.37),
rmaxT = 2,898 um-K = 2.898 x 107 mK,
yields, for the maximum of Ej,

(Ep)max 3.7415 x 1078 W.m®
5 (2.898 x 1079)° (mK)® x (M988x1077/2898x167% _ 1,

or

(EpYnax

75— = 12865 x 107 W/m*K®,
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Then, the maxima of monochromatic emissive power for the three sources are
(Ep)maes = 1.2865 x 1075 W/m> K x (6,000 K° = 10M W/m?,
(Epdmac = 12865 x 1075 W/m* K x (3,000°K° = 3.13 x 102 W/m?,

and
(Epmaxs = 1.2865 x 1075 W/m®>K x (300)° K5 = 3.13 x 107 W/m®.
(b} From Wien's law, [Eq. (8.37)], the peak wavelengths are
2,898 um-K
A = ————— 2 (.48 pm,
xS = T 000K K
N 2898 pmK oo
= — = . m,
sl = T3 000K #
and
N 2,898 pmK 0.6
- ——— = Im.
. 300K #

Note the substantial wavelength difference between the peaks of monochromatic radiation emit-
ted by the sun and earth. ¢

For probléms involving real surfaces it is useful to know the fraction of total
energy radiated over a wavelength interval (0, A) or (A1, A2), which is to be designated
by F(0 — A) or AF (A~ Az), respectively. For an interval (0, ), from

A
E,0,%) fo End)
b T
E}(0, 00) f Eoydh
0

where E,(0, oc) = Ep = o T, we have, in terms of AT,

Ey(0, AT 1 (ME
F@O — AT) = —bfﬁh—) = ;[0 %‘d(xr). (8.38)

Flt = A) =

This fraction depends on both wavelength and temperature. The fractional function
F(0 — AT) is plotted in Fig. 8.8 and, for computational convenience, tabulated in
Table 8.1. For an interval (A1, kz)
Ey(mT, 22T)  Ep(0.027)  Ep(0, MT)

oT* oT* oT* (8.39)

AF(OuT — WT) =

FO = 2:T) — F{0 - MT),

which is the difference of the ratios obtained from Fig. 8.8 or Table 8.1 for the intervals
{0, 22) and (0, A1).

.
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Table 8.1 Radiation functions (from Dunkle[5]).

AT B 105 AT B 108
oT3 TS

pm-K (prm- Ky Fon(T)  um-K (- K1 Fon (T
500 | 0.00000672 0 5500 | 10340 0.69088
600 0.0003269 0 5600 | 9.939 0.70102
700 0.004650 0 5700 | 9.553 0.71077
800 0.03114 0.000016 5800 | 9182 072013
900 0.1275 0.000087 5900 | 8827 0.72914
1000 0.3723 0.000321 6000 | 8.486 0.73779
1100 0.8550 0.000011 6100 | 8159 074611
1200 1.646 0.00213 6200 | 7.845 075411
1300 2774 0.00432 6300 | 7.544 0.76181
1400 | 47223 0.00779 6400 | 7256 0.76920
1500 5.934 0.01285 6500 | 6980 0.77632
1600 7.827 0.01972 6600 | 6716 0.78317
1700 9.811 0.02853 6700 | 6463 0.78976
1800 | 11.799 0.03934 6800 | 6220 0.79610
1900 | 13716 0.05211 6900 | 5.988 0.80230
2000 | 15501 0.06673 7000 | 5766 0.80808
2100 | 17113 0.08305 7100 | 5553 0.81373
2200 | 18524 0.10089 7200 | 5348 0.81918
2300 | 19720 012003 7300 | 5453 0.82443
2400 | 20,698 0.14026 7400 | 4.966 0.82949
2500 | 21.465 0.16136 7500 | 4786 0.83437
2600 | 22.031 0.18312 8000 | 3.905 0.85625
2700 | 22.412 020536 8500 | 3354 0.87457
2800 | 22.626 0.22789 9000 | 2832 0.88999
2900 | 22.692 0.25056 9500 | 2404 0.90304
3000 | 22.627 0.27323 10000 | 2.052 0.91416
3100 | 22.450 029578 10500 | 1761 0.92367
3200 | 22178 031810 11000 | 1518 0.93185
3300 | 21.827 034011 11500 | 1315 0.03892
3400 | 21.411 0.36173 12000 | 1145 0.94505
3500 | 20.942 0.38291 12500 | 1.000 0.95401
3600 | 20432 0.40360 13000 | 08779 0.95509
3700 | 19.891 0.42376 13500 | 07733 0.95921
3800 | 19327 0.44337 14000 | 06837 0.96285
3900 | 18748 0.46241 14500 | 06066 © 0.96607
4000 | 18.160 0.48087 15000 | 05399 0.96893
4100 | 17.568 0.49873 15500 | 0.4821 0.97149
4200 | 16.976 0.51600 16000 | 04317 0.97377
4300 | 16389 053268 16500 | 03877 0.97581
4400 | 15809 0.54378 17000 | 03492 0.67765
4500 | 15.240 0.56430 18000 | 02853 0.98081
4600 | 14.681 0.57926 19000 | 0.2353 0.98341
4700 | 14136 0.59367 20000 | 01958 0.98555
4800 | 13.606 0.60754 25000 | 0.0869 0.99217
4900 | 13.001 0.62089 30000 | 0.0441 0.99529
5000 | 12.591 0.63373 35000 | 0.0247 0.99695
5100 | 12.108 0.64608 40000 | 0.0149 0.99792
5200 | 11642 0.65795 45000 | 0.0095 0.99852
5300 | 11.191 0.66936 50000 | 0.0063 0.99890
5400 | 10.758 0.68034 55000 | 0.0044 0.99917
o 0 1.00000

41
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Figure 8.8 Fractional function F(0 — AT).

Exampe 8.5

Reconsider Exs. 8.3 and 8.4, For all three sources we wish to determine the percent of the emitted
energy that lies in the visible range.

Assume A = {0.35 — 0.75) wm for the visible range. The lower and upper limits of AT are,
for the sun,

H

MTs = 0.35um x 6,000K = 2,100 um K,

and

ATs = 0.75pm x 6,000K = 4,500 um K,

H

for the incandesceat bulb
}\.1T; = 1,050 p'.m'K, lzT] = 2,250‘u.m-K,

and for the earth
Ty = 105 pm-K, 22Ty = 225 umK,

For a source at a temperature Ty, the fraction of total emitted energy contained in the interval
{d1, Ag) is

[AFMT = 2Ty = [0 = 221 — KO = MD)]rug .
F being available from Table 8.1. Then for the sun, bulb, and earth, respectively,
AFs = 0.5643 - 0.0831 = (.481,
AF = 0.11046 — 0.00062 = 0.110,
AFg < 1073 =0,

This example illustrates the fact that, while 48% and 11% of the emitted energies from sun and
an incandescent bulb lie in the visible range, no energy is emitted from earth in the same range.
Actually, one could have anticipated these results by inspecting the locations of the maxima in
Ex. 8.4. *

7
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So far, we have studied the radiation energy associated with black bodies, How-
ever, real surfages do not behave like a black body. The next section is devoted to the
surface properties of real surfaces.

8.4 PROPERTIES OF RADIATION O

According to electromagnetics, the angle of reflection from an ideal (smooth) surface is
equal to the angle of incidence [Fig. 8.9(a)]. This reflection is called specular. In general,
reflection from highly polished surfaces approaches specular behavior. An ordinary
mirror reflects specularly in the visible range. Reflection from a real (rough) surface
is anisotropic [Fig. 8.9(b)]. An approximation of the real surface is the diffuse surface.
Reflection from this surface is isetropic [Fig. 8.9(c)]. Industrial (machined, painted, or
treated) surfaces may usually be assumed diffuse. Hereafter, unless otherwise specified,
we shall deal with diffuse surfaces,

Monocchromatic energy G, incident on a surface is partly absorbed, partly re-
flected, and partly transmitted (Fig. 8.10). Denoting each part by A,, Ry, and T,
respectively, we write

Ghn=A+ R+ T

or, after dividing each term by G,, and introducing the monochromatic absorptivity
@y = Ax/ G, monochromatic reflectivity p, = R)/G; and monochromatic transmis-
sivity 7, = T/ G,

1=+ o+ 0 (8.40)

Specular reflection

7 7 7

Irregular
(anisotropic)
reflection

Diffuse
(isotropic)
eflecti
Figure 8.9 Surface types, e
(a) Ideal (smooth) surface,
(b) real (rough) surface, 7 7 s

(c) diffuse surface. ()
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Au Ry i

G

3

Figure 8.10 Fractions of
radiation absorbed,
reflected, and transmitted.

For an opaque surface, 7). = 0 and Eq. (8.40) reduces to
1 = oy 4+ pa. (8.41)

Glass and many crystals are exceptions and, unless very thick, they are to a degres
transparent to radiation at certain wavelengths. For a transparent surface, o, = 0 and
Eq. (8.40) reduces to

1= +0. (8.42)

These properties depend on the wavelength of the incident radiation. Overall properties
can be defined by integrating over the whole wave spectrum. For example, the total

absorptivity is
oo oo
f a;, Gada f o EpadA
o= Jo_ _ 0 (843)
Ey
f GidA
0

if the incident radiation originates from a black body. Note that the overall propertics
depend on the temperature of the radiation source.

ExampLe 8.67

The living room of 2 modern house has a 4 m x 6 m glass siding. The transmissivity of glass
is 0.92 over the interval A = (3 x 1077 — 3 x 107%) m and it is opaque at other wavelengths
(Fig. 8.11). The interior of the room may be assumed a black body at 300 K. The glass is subject to
400 W/m? from the sun with a black-body temperature of 5,800 K. We wish to determine (a) the
total transmissivity of the siding to radiation from the sun, (b) the total transmissivity of the siding
to radiation from the room, {c) the energy of the sun transmitted through the siding, and (d) the
radiant energy from the room transmitted through the siding.

7 The FORTRAN program EX8-6.F is listed in the appendix of this chapter.
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™
092
i A ()
3%x107 3x10°
Figure 8.11

(a) The monochromatic transmissivity of the glass is zero over most of the wavelength
interval, except between Ay = 3 x 107 m and A, = 3 x 1075 m, where it is 0.92. The total
transmissivity to radiation from the sun is

A2

o0
f flEb,\_dl 0.92 Eb;\_d}\.
g A
T, = = 8.44
R Ebs Ebs ( )
or
Tssr = 0.92AF(}\.1T5 ~ A2T%), (8_45)

where Ts = 5,800 K is the temperature of the sun. The lower and upper bounds of the transmis-
sion interval in terms of AT are

MTs == 03 um x 5800K = 1,740 um-K
and
ATy = 3.0um x 5,800K = 17,400 um-K.
Then, the linear interpolation of fractional functions from Table 8.1,
[AF(T — loDlrar, = [F20 - WT) — RO — MD)]rer, .

gives
[AFQLT — 22 D))y = 0979 — 0.033 = 0.946.

The fractjon of the sun radiation reaching the room is
Total transmissivityg |, » = 75,z = 0.92 x 0.946 = (.87 = 87%.

(b) Here we repeat the same procedure as in part (a), but with the room temperature
Tr = 300 K. For the radiation from the room ata temperature of 300 K,

MTr = 03 um x 300K = 90 um-K

and
AT = 3. 0um x 300K = 900 um-K.

Inserting the fractional functions obtained from Table 8.1 into

[AFGUT — 3aDlror, = [BO ~ 2T) - AQ - mDlry,
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yields
[AFMT — }qT)]TﬂR = 0.000087 — 0 = 0.0087%.

Then, the fraction of room radiation transmitted through siding is
Th o oo = 0.92 x 0.000087 = 0.00008 = 0.008%.
(c) The sun radiation reaching the room is the amount transmitted through the glass,
Qf . r = Ty R4S, 2 A
which, coupled with the result for T5_, z from part (a), yields
0%, o = 0.87 x 400 W/m® x 4 x 6m’

or .
0% 5 = 835kW.

(d) The radiation from the room transmitted through the siding is
Q?z*m = TR—»ooqﬁﬂmA.

-Using part (b} for Tz o and noting that g5 _, , = ¢T3,

4
. 300
OR . = 0.00008 x 5.67W/m"-K' x ("{{ﬁ) K x 4 x 6m®
or i

Of | .. = 0.88W.

Comparison of the foregoing results reveals that glass siding allows the energy of sun to be
efficiently transmitted to a room while it practically prevents any radiative losses from the room.®
The winter advantages and summer disadvantages of this fact should be taken into account in
structures involving large glass areas (of buildings and cars).

By using the computer program provided, the interested reader may parametrically study
the problem for various values of the gas transmissivity. 4

ExampLe 8.7°

Heat-reflecting filters, also known as hot mirrors, are used for radiant-heat removal. These
filters remove the infrared light coming from a souree by reflection rather than by absorption
but preserve the integrity of the visible light. One such filter has a transmissivity of 70% in the
wavelength range A == (400 — 700) nm and is totally reflective outside this range. Such a filter is
placed between an observer and a tungsten-halogen lamp having a source temperature of 3,200
K. We wish to determine the fraction of the lamp radiation energy rejected by the filter.

The lower and upper limits of AT for the specified wavelength range and source tempera-
ture,
MT, = 400 x 1073 pm x 3,200K = 1,280 um-K

and :
2Ty = 700 x 107° pm x 3,200K = 2,240 um-K, 7

8 hiis illustrates numerically the greenhouse effect discussed in Section 8.1,
9 The FORTRAN program EX8-7.F is listed in the appendix of this chapter.
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coupled with Table 8.1, yield for the fractional energies, after linear interpolation,
FO — yuT) = 0004 and RO - ATp) = 0.109.
The fraction of the total energy contained between two wavelengths is
[AFT = 22Dy, = [RO = 22T) — O — MT)lray,

or
[AF(MT — D)lpay, = 0109 — 0004 = 0.105 = 10.5%.

Combining this result with the spectral transmissivity over the same wavelength range,
t(04pm — 0.7uem) = 0.7,
gives the fraction of the incident energy which penetrates through the filter,
Transmitted fraction = (.7 x 0.105 = 0.074 = 7.4%

and
Rejected fraction = (100 — 7.4)% = 92.6%.

417

By using the computer program provided, the interested reader may parametrically study

the problem for various filter transmissivities.

&

Now, consider an enclosure filled with monochromatic radiation G, and place
a monochromatically opaque (7, = 0) body into this enclosure (Fig. 8.12). Let the
monochromatic reflectivity and emissive power of the body be p;, and £y, respectively.
Under equilibrium, the first law of thermodynamics for the system enclosing the body

gives
+Gy — (0Gr + E)) = 0,

which, in terms of Eq. (8.41), leads to the Kirchhoff law,

. Const.
[£9%

Gy

Monochromatically
opaque body .Gy,

Figure 8.12 The Kirchhoff law.

(8.46)
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(. is usually called the irradiation of an enclosure or the incident radiation on a body.
For an ideal absorber (black body), «;, = 1, and the Kirchhotf law,

E E

i . (847)

[+5% 1 )
states that, at a given temperature, a black body has the maximum attainable emissive
power. Equation (8.47) provides another definition for the monochromatic absorptiv-
ity'? as the monochromatic emissive power of a surface relative to that of the black
body,

E,

o, = -,
Epa

which is valid enly under equilibrivm conditions. Furthermore, introducing the defini-
tion of the monochromatic emissivity of a surface,

E, .
& = —, 8.49
» =5 (849)
we have
nt, T) = elr, T). (8.50)

Since Eq. {8.50) holds only under equilibrium conditions, its use for nonequilibritum
problems may be justified only under the assumption of local equilibrium. As was done
with the other properties, a total emissivity (depending on the body temperature) can
be defined by integrating over the entire wavelength range.

ExameLe 8.8

The SiO-Al coated surface of a satellite is in earth orbit around the sun (Ts = 5,800 K) and
subject in the normal direction to solar flux of 1,400 W/m?, The other surface of the satellite
is thermally insulated. The spectral absorptivity of the coated surface can be approximated as
shown in Fig. 8.13(a). Find the satellite temperature.

G
' G

0.9 R i «
RS SR

(13 = i 7 & &

& |
1.5 A )
(2) ' (b)
Figure 8.13

10 Recall the definitions leading to Eq. (8.40).

(8.48)
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The first law for a system surrounding the satellite [Fig. 8.13(b)] results ina relation between
the absorbed incident energy, (G4, and emitted energy, g”,
G A= q”.

In view of the spectral behavior of @, , two distinct domains (¢ =eyfori < Ay and @ — oy for
A > A1) need to be considered separately. The absorbed energy, in terms of A; = 1.5 wm,

Ga=CGlmF0 < 1 < 1.5um) + o f(lsum < A < 00) ],

where 7 is the incident radiation (G =1,400 W/m?) and Ty = 5,800 K. The product

MTs = 1.5um x 5.800K = 8,700 um-K,
combined with an interpolated fractional function from Table 8.1 gives

F(0 — 3,T5) = 0.881
a.nd,‘since F(0— o0)=1by definition,
F(uls — 00) = 1 — 0.881 — 0.119,
Then, the absorbed incident energy (as well as the emitted energy)
Ga = LAOW/m® x (0.9 x 0.881 + 0.1 x 0.119)

or
Ga = L1267 W/m? = g".

In light of Eq. (8.50), which gives for spectral emissivities ¢; = oy and ¢; = oy, the emission may
be expressed as

"

q" =T [eF(0 < i < 15 um) + & Fa(l5um < A < rr,

or
" = 5.67 x 107°W/m> K* 1%, (K% [0.9F, + 01F] = 1,126.7 W/m?,

where T, is the surface temperature of the satellite. Since Tea 1s required for Fy and F, the
solution is a trial-and-error procedure,
As a first trial, let Ty, be 400 K. Then, for

MTa = 1.5um x 400K = 600 m-K,

Table 8.1 gives

F =0
Accordingly,

=10,
and, the emitted energy based on the assumed Tiar becomes

4
400 W
=567 — | ——K'0401 x1] = 145W m?,
? (100) ma ] /

which is substantially lower than 1,126.7 W/m?. Now assuming Fj and 7, approximately toretain
their initial values at somewhat higher temperatures,

¢ = L126TW/a? = 5.67 x 108 W/mK* x T% K x 0.1 x 1,
/

sat
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which gives a surface temperature of

T = 667.7K. :
Then, for .
AT = 1.5pm x 667.7K = 1,001.6 um-K,
Table 8.1 yields
F = 0.00032
and

B =1- F = 0.99968.
In terms of these fractions,

4
. W

g’ = 5.67 (-——) ——K* (0.9 x 0.00032 + 0.1 x 0.99968)
m2-K*

ar

g" = 1,129.8W/m?,

which is sufficiently close to 1,126.7 W/m?. Then the surface temperature of the satellite is,
approximately,
T & 668K,

Exampre 8.9

In a combustion experiment of a luminous hydrocarbon flame, it is desired to measure the total
irradiation received by a sensing device. The bright yellow color of the flame indicates that
the radiation emitted by the small soot particles obeys the Planck distribution. The optical
sensing device is a photomultiplier tube (PMT) which converts the photon interaction at the inlet
{photocathode) to an electric current at the outlet (anode). The PMT has 3 cm? of active sensor
area facing the flame and is placed 2 m away from the flame axis.

Assuming that the flame isotropically radiates a total of 20 kW at a flame temperature
of Tr = 1,800 K, we wish to determine the energy absorbed by the photocathode surface by
considering the typical approximate spectral response curve of the PMT given in Fig. 8.14 and
compare the absorbed energy to the typical power of 3 mW for an He-Ne laser beam,

10 -

Photocathode
response
(received energy
relative to
incident energy)

300 800 A (o)
Figure 8.14
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For isotropic emission, the radiative heat flux at an arbitrary radius r is

gf = al
d 4t

which gives, for r = £, £ being the distance between the flame and PMT,

AR

20,000W
¢ 7= T = 398 W/nm?,
4rl 4 % 2°m

eriz =
In terms of the active sensor area of A — 3om?, the total black-body radiation {spectrally inte-
grated from A =0 10 A — o0) reaching the PMT active surface area is
Oincidens = g A = 398W/m® x 3 x 10 m® = 0.119 W,

In view of the PMT response characteristics, only a fraction of this energy corresponding to the
wavelength range 300-800 nm is recognized. The lower and upper limits of AT for the specified
source temperature T,

MTr = 03um x 1,800K = 540 um-K
and

A2Tr = 0.8um x 1,800K = 1,440 pm K
yield, with interpolated fractional functions from Table 8.1,

FiQ0 = MT:) =0 and F(0 — A2 Tp) 2 0.0098,
which result in
[AFOUT - 2,1, 1o = [0 — T) - F0 MD)]r . 7, = 0.0098.

Then, the energy absorbed by the photocathode is

0.119W x 0.0098 = 0.00117W = 1.17mW
or

~

1
=7 He-Ne laser power.

Because the level of received black-body emission is comparable to that of the laser, special
attention needs to be given to the elimination of this emission in optical diagnostics. For example,
in scattering and extinction eXperiments, narrow-bandpass filters, combined with slits and shields
and/or lock-in amplifiers with chopped signals, are common practices. *

At a given temperature, if the ratio of the monochromatic emissive power of a
surface to the monochromatic emissive power of the black body at the same wavelength
remains constant over the entire wavelength spectrum,

E
al, T) = Eb—’“_ = ¢(T) = Const,, (8.51)
A
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T = Const.

Black surface,
e=¢ =1

Gray surface,
e=g <l

‘\ Real surface,

A
K '\ €€

Figure 8.15 Variety of surfaces. ?

the surface is said to be gray. The shape of the monochromatic emissive power of a
gray surface is similar to that of the black body at the same temperature, but the value
of the emissive power is reduced by the amount of the emissivity (Fig. 8.15).

For a gray surface, Eq. (8.40) may be written in terms of the (total} absorptivity
«, reflectivity o, and transmissivity ¢,

l=a+p+r, (8.52)
which reduces for an opaque gray surface to
1=a+p. (8.53)
Also, in terms of the (total) emissivity €, the Kirchhoff law becomes
a(T}y = ¢(T). (8.34)
For a transparent gray surface, Eq. (8.40) reduces to

l=o+r (8.55)

The emissivities of industrially important surfaces for four different temperatures
are given in Table 8.2. For more extensive tables see the references cited in Siegel
and Howell [3]. Also the effect of wavelength on the monochromatic emissivity of
electrical conductors and insulators is demonstrated in Figs. 8.16 and 8.17, respectively.
Figure 8.16 shows that polished metal surfaces usually have low monochromatic emis-
sivities, but with oxidation these emissivities appear to assume appreciably increased
values (Fig. 8.18). Furthermore, Fig. 8.17 illustrates the fact that electrical insulators
exhibit, as a group, a behavior opposite to that of electrical conductors and have high
monochromatic emissivities.



Table 8.2 Emissivity &f various surfaces

o0k [sc] 600K ]
tals

Me:

Aluminum
Smooth, polished
Smooth, oxidized
Rough, oxidized
Anodized

Brass
Highly polished
Polished
Oxidized

Chromium
Polished

Copper
Polished
Oxidized

Gold
Highly polished

Iron and steel
Iren, potished
Iron, oxidized
Stainless, polished
Stainless, oxidized
Mild steel, polished
Mild steel, oxidized
Lead
Polished
Oxidized
Mercury
Clean
Magnesium
Polished
Nichrome (wire)
Clean
Oxidized

Nickel
Polished
Oxidized

Platinum
Polished
Oxidized

Silver
Polished
Oxidized

Tin
Polished

Tungsten

Filament

0.04
011
02
0.9

0.1

0.6

0.08

0.04
0.87

0.02
0.06
0.6

0.1
0.5-0.8
0.1

0.8

0.05
0.6

0.1

.07

0.65
0.95

0.05
0.4

0.05
0.07

0.01
0.02

0.05

0.032

005 008 logo

012 018

0.3

07 106 |o3
0.03

01

005 lo1g (017

083 1077
0.035
008 loa 02
07 108
0.2
03
0.3
0.08
0.6

013 018 (024

071
0.98
0.07
0.5
0.1
0.1
002 |0.03
0.04
0.053

{from Brewster [6]}.

0.088 [0.35 (3500 K
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Metals
Zine

Polished 0.02 0.03
Oxidized 0.1
Galvanized 0.62-0.03

Noumetals

Aluminum oxide
Asbestos
Asphalt
Brick
Alumina refractory
Fireclay
Kaolin insulating
Magnesite refractory
Red, rough
Silica
Concrete (rough)
Glass
Graphite
Iee (273 K)
Smooth
Rough
Limestone
Marble (white)
Miea
Paints
Aluminized
Most others (incl. white)}
Paper
Porcelain (glazed)
Pyrex
Quartz
Rubber
Hard
Soft. grey, rough
Sand {silica)
Silicon carbide
Skin
Snow
Soil
Rocks
Teflon
Vegetation
Water (> 0.1 mm thick)
Wooed
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L0 UL
a: Polished aluminnm Pamay
08 b: Anodized aluminum 4
. (\ ¢: Polished copper /
P 0.6 n
i b
d 0.4 -
N [N\ /
02 N ~—
0 .._\-;' "'"/ < - T B

65 1 2 3 4 5 6 7 8 9um
Wavelength, A
Figure 8.16 Monochromatic emissivity of some electrical
conductors (from Kreith and Bohn [7]).

In addition to its variation with wavelength, the monochromatic ermissivity of
many surfaces is not isotropic and has directional properties. Experimental data on
these properties, however, are scarce. Frequently used mean values are €/¢, = 1.2 for
polished metallic surfaces and /¢, = 0.96 for insulators. Here ¢ denotes the average

hemispherical emissivity and e, the emissivity normal to the surface.

1.0
| ’n_-f"'h—f':‘:‘-:_ g
Wall plaster /\ ot N,
0.8 - - M
5 4 y .
: \I\X‘j l- % \
- i -
0.6 e " LN
& 1| - ~
B J l'll p Iy
P AY -
04 ‘ ‘l"\i\ SR
¢ T~ Tae, vlvhjte
0.2 Pz A1
P
‘.L/:’. I LA Fi.re-c]ay', white
0 | |
05 1 2 3 4 5 6 7 8 9 pm
Wavelength, A

Figure 8.17 Monochromatic emissivity of some electrical
insulators (from Kreith and Bohn [7]).
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1.0
f Black oxide
;:C 0.8 \\
g Heavily oxidized
% 06 |-
E Lightly oxidized
K]
2 04l
= 0
Q
B
=
o
2 ozl
)
&= .
Polished (purc/
0 | i { {

0 200 400 600 800 1000
Temperature T,, °F
[ I— | I | 'l ]
300 400 500 600 00 800

Temperature T}, °K

Figure 8.18 Effect of oxidation on emissivity
(from Siegel and Howell [3]).
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COMPUTER PROGRAM APPENDIX

PROGRAM MAIN

IMPLICIT REAL*E (A-H,K-Z)-
PI=4*ATANCL.)

WRITE(*,*) 'EXAMPLE 8.6....°

INPUT DATA
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e b ot i e
WRITEC* ,*) 'LENGTH: M’

READ(*,*) L

WRITE(®,*) 'WIDTH: M’

READ(*,¥) W

WRITE(*,*) "TAU: '

READ{*,*) TAU

WRITEC*,*) LAMBDAL: M*

READ(*,*) L1

WRITEC*,*) "LAMBDAZ: M’

READ(*, %} L2

WRITE(*,*) 'TR: K'

READ(*,*) TR

WRITE(*,*) 'QS_GLASS: W/mAZ'

READ(*,*) Q5G

WRITE(x,*) 'T.5: K’

READ(*,*) TS

e e e i e ————
c UNIT CONVERSION

C- - - -— -
Ll=1E6*L1

L2=1E6¥L2

LITS=L1*TS
LTSl 2%TS

Cmm e mmm A mm —- —
WRITEC*,*) 'READ FCO-->LAMBDA*T) FROM TABLE B.1 WITH'
WRITE(™,*) 'LAMBOA*T=* ,L2TS
WRITEC*,*) "INPUT F
READ(*, ¥} £2
WRITE(™,*) 'READ F(O-->LAMBDA*T) FROM TABLE 8.1 WITH'
WRITE(™,™) 'LAMBDA*T=',L1TS
WRITE(*,*) "INPUT F'

READC*,*) FL

o m i v e i e e ——
DTFuf2-F1
TTAU=TAU*DTF
DOTQSR=TTAUYQSGHL*W

Cr—————————— - -— -

Cormr v i —— —

WRITEC™,*) 'TOTAL TRANSMISSIVITY OF THE SIDING'
WRITE(*,*) "TO RADIATION FROM THE SUN IS’
WRITE(Y,*) TTAU

WRITE(*,*) 'RADIATION FROM THE SUN TO THE ROOM IS'
WRITEC*,*) DOTQSR/1000,' kW’

o - -
C CALCULATION
ot e e —
LiTR=L1*TR
L2TR=L2*TR
e mm e e - - ——

C CHART READINGS
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WRITE(*, *) (READ F(0-->LAMBDA*T) FROM TABLE 8,1 WITH’
WRITE(*,*) 'LAMBDA*T=" WL2TR

WRITE(*,*) "INPUT F'

READ(*,*) F2

WRITE(*,*) 'READ F(0-->LAMBDA*T) FROM TABLE 8.1 WITH'
WRITE(*,*) '[AMBDA*T' ,LITR

WRITE(*,*) "INPUT F*

READ(C*,*) F1L

TTAU=TAU*DTF
DOTQR=TTAU*5, 67E~g*TR¥*4+# LW

WRITEC¥,*) "TOTAL TRANSMISSIVITY OF THE SIDING'
WRITE(*,*} 'TO RADIATION FROM THE ROOM IS’
WRITE(*,*) TTAU i
WRITE(*,*) 'RADIATION OUT FROM THE ROOM IS®
WRITEC*,*) DOTGR,’ w'

sToP

END

IMPLICIT REAL*8 (A-H,K-2)
PI=4*ATANCL.)
WRITEC*,*) 'EXAMPLE 8.7....°

WRITE(*,*) 'TAy: *
READ(*,*) TAU
WRITEC* ,*) "LAMBDAL: nM’
READ(C*,*) L1

WRITEC*,*) 'LAMBDAZ: nM*
READ(* *) (2

WRITE(*,*) 'T.L: k-
READ(*, %) TL

L1=0.001%11
L2=0.001*L2

LITLml 1#TL
L2TLal2#+TL

C CHART READINGS

42



'8 Chap.8 Foundations of Radiation O

Coem

WRITE(*,*) "READ F(0-->LAMBDA*T) FROM TABLE 8.1 WETH’

WRIT

E(%,*) "LAMBDAT=',L2TL

WRITE(®,*) "INPUT F’

READ

(-ﬂ"*) Fz

WRITEC*,*) "READ F(0-->LAMBDA*T) FRCM TABLE 8.1 WITH'

WRIT!

EC*,*) 'LAMBDA*T=',L1TL

WRITE(*,*) "INPUT F'

READ

DTF=
TTAU

(*,*) F1

F2-F1
=TAUDTE

REFL=1-TTAU

WRITE(*,%) 'FRACTION OF ENERGY EJECTED IS’

WRIT!
STOP
END

EC*,*) REFL*100,'%’

B EXERCISES

81

8.2
83
84

8.5

8.6

8.8

8.9

Describe the fundamental differences between the conduction and radiation modes of heat
transfer.

What fact criginally prompted the electromagnetic nature of radiation?

Discuss the origin of radiation pressure and the important result this pressure provides.
What is the relation between optics and electromagnetics? Why are optical concepts such
as solid angle and intensity utilized in thermal radiation studies?

What are the limitations of classical theories, such as electromagnetics, optics, and thermo-
dynamics, for thermal radiation and what fact originally prompted the modern theory of
radiation? State briefly the foundations of the modern theory.

A tungsten filament is heated to 3,000 K. Find the wavelength corresponding to the maxi-
mum of the monochromatic radiation energy. Determine the fraction of the total radiation
energy in the visible range (0.4 to 0.7 pm), in the infrared range (1 to 20 pm), and in the
thermal range (0.1 to 100 gem).

The spectral emissivity of a paint is approximately 0.2 below 3 pm and 0.8 at longer
wavelengths. Determine the total emissivity of 2 surface covered with this paint at 300 K
and 800 K. What is your conclusion?

The paint of Prob, 8.7 is used to cover a surface which is maintained at 300 K. Let the
surface be subjected to (a) solar radiation, and (b) a black source at 800 K. Determine the
effective total absorptivity of the surface for these cases.

Show that Eq. (8.34) may also be expressed in terms of frequency as

2her®
Ep = IR




.10

Exercises 423

The monochromatic emissive power in terms of frequency proves convenient for spectral
integrations as well as for gas radiation (to be introduced in Chapter 10}.

The design drepanment of a major auto company plans to increase the glass window area
of new model cars by 1 m?, which creates an additional cocling load due to the greenhouse
effect, particularly in hot climates. According to the company’s engineers, the present
cooling system can provide an additional compressor power of 0.5 kW without major
changes in the cooling system. The spectral transmissivity of the window glass is given
in Fig. 8P-1. Assuming that the sun and the interior of the car radiate as black-bodies at
5,800 K and 300 K, respectively, and considering that the coefficient of performance 8 of
the cooling system, defined as

Heat extracted from interior of the car

Power input into the compressor

is 1.5, determine whether or not the additional load remains within the system capacity.
Assume that the intensity of solar radiation on earth is 1,000 W/m?.

T
g 09¢
=)
K]
fd
=
g
=
E
i
£
0
0 2.7 A [pm]

Wavelength of radiation

Figure 8P~1
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In the preceding chapter we learned the equilibrium aspects of radiation, including emis-
sive power and surface properties. In the present chapter we proceed to the nonequi-
librium or transport aspects of radiation.

At low temperatures most monatomic and diatomic gases, as well as air, are elec-
trically neutral. Consequently, in radiation problems involving enclosures filled with
neutral gases, the energy exchange among the enclosure surfaces is practically unaf-
fected by the presence of a gas. In other words, most gases at low enough temperatures
are transparent and do not influence the radiation-energy transfer. At elevated temper-
atures gases no longer remain electrically neutral, and they become dissociated or even
ionized, They then participate in radiative processes. In this chapter we study radiation
problems associated with enclosures in a vacuum or filled with a transparent gas. In the
next chapter we will deal with enclosures with a gas participating in the radiation heat
transfer.

Before proceeding to a general discussion, we flustrate enclosure radiation in
terms of the energy exchange between two closely located, large, parallel, and opaque
gray plates (Fig. 9.1). We begin by tracing the radiation energy €1 Ep; emitted by sur-
face 1, which travels back and forth between the two surfaces until it is finally absorbed.
Part aa(e1 Epy) of this energy is absorbed by surface 2 and part pa(e1 Ep) is reflected
back to surface 1. There part a; p2 (€1 Ep ) is absorbed, and part py p2 (61 Epy) is reflected
back to surface 2. Again, part a1 02(€1 Epr) is absorbed, part py p2 (€1 Epy) is reflected
back to surface 1, and so on. The radiation energy that has left surface 1 and been
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oy(e Ep,)

Pale £y )
“192(‘-1551)
P1pa(es By )

, P:P%(Elf-'b,)
2
ﬂlplpg(elEbl)
— %)
PfP%('ElEJ;,)
22
pipye By )

Figare 9.1 Bmjgsi
and reflection,

ap1pa(€rEy,)

on, multiple absorption,

absorbed by surface 2 is therefore

q1+2 = NH—?looaz(elEbl) (]_ =+ LrLO2 + p,f‘p% + e pivpév)’ (91)

- where

S=0m (Ut p1py + o202 + -+ p ol

is the sum of a geometric serjeg,

O Multiplying this series by py0, and subtractin the
result from the series itself we get £

for ;py < 1,

N+l N
S = lim 1—~p o)

— .
M=o 1= o1 1 — p1p2

+ 1

(92)

* Inserting Eq. (92) into Eq, (

. 9.1), assuming that surface 2 is in local equilibrium and
- letting o = €2 In accordance

With the Kirchoff law,! we obtain

€1€2
9y = ( )Eb . 93
1< oo 1 (9.3)

Similarly, we could trace the radiatiop, energy € Ey; emitted by surface 2, which travels
also to and fro between the two surfaces until it is finally absorbed. Accordingly, the

! Recall Eq. (8.50).
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interchange of the subscripts in Eq. (9.3) readily gives

€261
Grr1 = (-——"""—) Eyps. o4
1-papn
The net radiation between surfaces 1 and 2 is then

q12 = g1+2 — 421

or
( €1€7 )(E E )
2= bl — LEp2).
7 1-pme

Noting for opaque surfaces that a(= €) + p == 1, we can express oy and g in terms
of €; and €, and rearrange this equation, after dividing numerator and denominator by
€1€7, A8

Eyp — Ep

1 1 )
o — =1
€1 €2

d12 = (9.5)

Here, we utilize this result to demonstrate an important practical fact associated with
thermos bottles. :

Exampre 9.12

The sides of the two walls facing each other are silvered (Fig. 9.2). The emissivity of silver? is
€ 2= 0.02. The thermos bottle contains hot coffee at temperature Ty = 90 °C, and the ambient is
at a temperature T = § °C. We wish to determine the heat loss from a thermos bottle.

Vacuum
|~

Agsnbient

Silversd

Figure 9.2 Thermos bottle.

2 The FORTRAN program EX9-LF is listed in the appendix of this chapter.
3 See Table 8.2.
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First, neglecting the inner and outer convective resistances, we assume the inner wall to
be at the coffee temperature and the outer wall at the ambient temperature. Next recailing that
E, = o'T* and noting that &, = €, = ¢ < 1, we rearrange Eq. (9.5) as

1
g = 560{7'14 - T;),
which gives
1
g = o X 0.02 x 5.67 x 107° W/m>K*[(90 + 273)* — (5 + 273)*] K*

or
g1z = 6.5 W/ni.

We may now comment on the neglected convective resistances. Letting® k; = 100 W/m?2-K (for
stagnant liquids) and Ao = 10-100 W/m?-K {from stagnant to windy air), we find from ¢ = hAT
that the temperature drop due to convective resistance does not exceed 1 °C, and we can safely
neglect it, as we already have.

By using the computer program provided, the interested reader may parametncally study
the heat loss depending on the coffee temperature.

To demonstrate the effectiveness of the foregoing radiative insulation, we may evaluate,
for example, the conduction across a layer of cork which would have the same insulating effect.
Assummg5 k= 0.04 Wim-K, we obtain from ¢ = kAT /£, the required thickness of the cork,

90 - 5K
£ =kaT/g = 0.04 W/mK x — = 0.52 m!
6.5 W/m
This result clearly shows how important radiative insulation is. €

When we deal with enclosures made of more than two surfaces, the foregoing
method of tracing the radiation energy travel to and fro between the surfaces becomes
rather involved if not impossible. Two methods that are generally convenient for en-
closure radiation are those of electrical analogy and met radiation. However, before
proceeding to these methods, we need to explore the concepts of solid angle, intensity,
emissive power, radiosity, and view factor. We have already discussed the first three
of these concepts in Chapter 8. The last two, beginning with radiosity because of its
relative simplicity, are developed next.

Consider an opaque gray surface subject to incident radiation G. Employing the
definition of (total) emissivity, ¢ = E/Ej, reatrange the rate of radiation leaving this
surface per unit area as

B = pG + ¢Ej, (9.6)

4 gee Table 1.2.
5 See Table 1.1.
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oG teh

Figure 9.3 Radiosity of an
opaque gray surface.

which is called the radiosity® of an opaque gray surface (Fig. 9.3). For a surface having
some transparency, the radiosity also includes the transmitted, as well as reflected and
emitted, energy. Having defined the radiosity, we now proceed to the final concept, the
view factor.

VIEW FACTOR

Consider two surfaces A; and Az, as shown in Fig. 9.4. Let the length of the line
connecting surface elements dA; and d A, be r, the angles between r and the normals
to dA; and dA; be ¢ and ¢z, and the radiosities and the corresponding intensities of
the surfaces be By, Bz and I, Ir. We wish to determine the fraction of the radiation
energy propagating from A; thatis intercepted by Az.

Let us first concentrate on the part of the radiation energy from d A, that is inter-
cepted by dA,. Rearranging Eq. (8.14) as dg1»; = hdQq;, multiplying it by (dAn)1,
and noting (dA,); = dAj cos ¢, we have

20150 = dgsa(dAg)y = hdAqcos g1dQu,

Figure 9.4 View factor.

6 {1 the literature, J or W also is frequently used to denote the radiosity.
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7

&
25

.

Figure 9.5 Solid angle d82-dA
relation.

where szl_,.g is the amount of radiation emitted by d A4 that is intercepted by dA,.
In terms of d21p = d Az cos ¢y /r? (see Fig. 9.5) and Eq. (8.19) for radiosity” By = n Iy,

. dA1dA '
#2010 = B2 cosqbzz —. (9.7)
nr

Integrating Eq. (9.7) over A; and A,, and noting that J; and B; of a diffuse surface are
8

isotropic® and independent of the integration, we obtain
. cos ¢y cos gpdA1d Ag
Q12 = By f 3 . (©.8)
A1 4z ar

Now we are ready to introduce the concept of view factor between surfaces A; and A;,
and based on surface Ay, as the fraction Fy of the radiation energy B; A; propagating
from A; that is intercepted by As,

Q1—>2
Fip = .
12 Bi Al

(9.9)

"The view factor based on surface Aj, Fj, is obtained by changing the subscripts in
Eq. (9.9). Combining Eqs. (9.8) and (9.9), we get

co dAdA
A1F12=ff S¢1c0sfrdArd Ay (9.10)
Ay 4 A

rrrz

Interchanging the subscripts in Eq. (9.10), we obtain the important relation
MIFH = Aze1—|. (911)

which is known as the reciprocity rule.

7 Note that the intensities associated with B and E are different.
8 Reecall Fig. 8.9(c).
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Finally, noting that the sum of all fractions based on the same surface should add
up to unity, for any surface i of an enclosure made of N surfaces we have

N
Fy=1 i=12..N| (9.12)
=1

i

which is known to be the summation rule. Here Fj; denotes the fraction of the radiation
leaving surface i intercepted by itself. Clearly, Fi; = 0 if the surface i is flat or convex,
and Fy; s 0 if surface i is concave (or can see itself).

In general, a view factor defined by Eq. (9.10) requires the computation of the
surface integrals associated with A; and A;. However; considering the radiative sym-
metry of a particular enclosure, together with Eqgs. (9.11) and (9.12), turns out to be
sufficient for view factors of a number of enclosures. Here we consider some of these
cases:

e For two closely located large parallel plates [Fig. 9.6(a)] Fu = 0, and from
Eq. (9.12) Fi» = 1. This indicates that all of the radiation leaving surface 1 is
intercepted by surface 2. The reciprocity rule then states that Fiz = F31, which is
an expected result, given the symmetry of the problem.

e For a long cylinder surrounded by another cylinder [Fig. 9.6(b)] we have Fi; =0
(cylinder 1 does not see itself) and Fy; = 1. Then, from Eg- (9.11) we get Fn =
A1/Az, and from Eq. (9.12), or Fa + Fy =1, we get Fpp = 1 — A1/ 4z (surface 2
is concave and thus part Fy; of the radiation leaving surface 2 is intercepted by
itself: the rest, Fa, is intercepted by surface 1).

« Foralong enclosure with an equilateral triangular cross section [Fig. 9.6(c)}, noting
the symmetry Fy2 = Fy3, and coupling this fact with Fi» + Fi3 = 1, we get
Flo = Fj3 =1/2.

e For the same enclosure with a right isosceles triangular cross section [Fig. 9.6(d)],
noting the symmetry F3 = Fy = 1/2 and coupling this fact with A1 Fi3 = Az Fap,
we get Fi3 = 1/2(A3/A;). Inserting this result into Fpp + Fi3 = 1, we obtain
Fiz =1 —1/2(A3/A1)-

¢ For the same enclosure with a square cross section [Fig. 9.6(¢)] we can reduce
the problem to the preceding one by introducing an imaginary partition. Then
Fiz = 1 —1/2(Ap/A;). Furthermore, noting the symmetry, Fi2 = Fis, we have
2Fy + Flg=1and Fila = Ap/A1 — 1.

o For the enclosure with the cross section shown in Fig. 9.6(f), again introducing the
imaginary partition, wehave Fi3 = Fi, = 1/2(4p/A1) and Fyp = 1-1/2(4,/A1).

View factors of many other simple cases may be found in a similar manner. More
complicated cases, however, including all of the enclosures of Fig. 9.6, when they have
a finite depth, require the use of Eq. (9.10). Computation of the integrals involved with
Eq. (9.10) will be illustrated here in terms of an example.
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(@) F;=0, Fu=1

|
——
—
Y]

1 2 (B Fu=0 Fpp=1

Py =AyAy, Fyp=1-AA,

() Fi=0, Fp=F=12
A AN

’;’4 (d) Fiy=0, Fy =Fyp=12
3
w1 F,zzl—%-(AyAl):l—wfz_/Z
Fi= tagap =22
4
p © Fp=Fp=1-L@4)=1-Vin
2
} Fla=AjA - 1=+Z-1
1

-
O Fa=F,=3@4p=2n2
2 Fo=1-L@jap=1-v2n
1

Figure 9.6 View factors for a long
cylinder with various cross sections.

ExampLE 9.2

We wish to determine the view factor from a differential arez Ay toarectangulararea Ay = £x L,
dA; being parallel to and located at a distance H below one corner of Az, as shown in Fig, 9.7.

Since one of the areas is differential, the integration will be over Az only. Differentiating
Eq. (9.10) with respect to A, gives

1 Cos ¢ cos¢ad Ag
Fne = 7l ) )
r4

which may be rearranged in terms of ¢; = ¢ = ¢, cos¢ = Hir, 4 y?) + H = /2, and

dAz = dxdy as
F H? f’“f‘ dxdy
N A (H* + ¥ + 2H?
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Figure 9.7 View factor Faia.
or, in terms of H? 4 y* = K%, as

g ot dx
Fagy = 7]0‘ ./n -—~———(K2 gy dy. (9.13).

Assuming K constant for the x integration, evaluating the integral in brackets, and integrating
the result with respect to y while taking into account the fact that ¥ depends o y, results in

1 X Y Y X
Fam = 5= tan™ + tant | —=]. (814
27 | 1+ X2 J1+ X2 Vi4 ¥? V14 ¥?

where X = &/H and ¥ = L/H. Figure 9.8 shows Fyy () versus X for various valuesof Y. L 4

i
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Figure 9.8
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Figure 9.9

‘We learn with this simple example that the evaluation of a view factor, ajthough it
presents no conceptual problem, is usually lengthy and tedious. For later convenience, a
number of frequently encountered cases are shown in Figs. 9.8 through 9.13.° For more
cases the reader is referred to Jakob [1] or Sparrow and Cess [6] and the references
cited therein. However, many other cases remain for which no view-factor chatts are

Ratio, B=1.5 2 3 5 10 =
11 i

]

1
0.15 \\ \
0.8 HBTRE
0.06 —o09 L 1.0
C.05—og 2= e —
0.04 —¢ 7 “
0.03—o05 \ /;Z 0.4
oozl 05 A\ %//// o
' e !
a // o 0-2;
3 o0 AP AP 0.15
Y7 /’Q//;/ < .
0ps oA —
0.003 pd //
b
0.002 /// ~ i
{[ ¢
B=ba
0.001 / | I“A‘l =
0.0008
01 02 0304 06081 2 3 4 6 8§10 20

o
Figure 9.10

9 *Figures 9-8, 9-9, 9-12, 9-13 adapted from EM. Sparrow and R.D. Cess, Radiation Heat Transfer,
McGraw-Hill, New York, 1978. Used by permission. Figures 9-10, 9-11 adapted from M. Jakob, Heat
Transfer, Vol.2, Wiley, New York, 1957. Used by permission.
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Figure 9.11

available. These may be evaluated by an appropriate superposition of the available |
charts. The principle behind the evaluation of view factors by a superposition of charts |
is the conservation of energy. Here we illustrate the evaluation of some view factors by
this approach.

In Fig. 9.14(a), the radiation fraction dA; Fa1023) leaving dA; and intercepted by
Az + As; may be expressed as

dA1Fa03) = dA1Fnm + dA; Fd1{3), (915)

b %) 5

\

T
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Figure 9.13
where Fy1¢2) and Fy1(3) are available from Fig, 9.8. In Fig. 9.14(b), the radiation fraction
dA1Fgz) leaving dA; and intercepted by A, may be expressed as
dAr\Fapy = dA1Fq03) — dA1Fag),

which is Eq. (9.15) solved for dA; Fu1(2) and where Fy(3, is obtained from Fig. 0.8
In Fig. 9.15(a), for the radiation fraction A, Fi2 leaving A1 and intercepted by A,,
consider first the radiation A; F>(13) leaving A5 and intercepted by A; + A,

ArFa3) = AsFoy + A2Fn,
which may be rearranged by the reciprocity rule as
AanFuse = ArFiz + AsFp
or
ArFyp = Ay Fasp ~ AsFp,

where Fiiap and F; are available from Fig. 9.11. In Fig. 9.15(b), for the radiation
fraction A; Fy» leaving A; and intercepted by A,, first consider the radiation fraction

(@) &)
Figure 9.14 Two cases related to Fig. 9.8.
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Figure 9.15 Two cases related to Fg 9.11.

Aan Fases leaving A; + A3 and intercepted by Az + Ag,
Agg}F(13)(24) = A1 F3 + A Fy + AsFp + AsFa. (9.16)

Next consider Eq. (9.10) for Fiz and Fa4, and from an inspection of the integral limits
involved with Fj» and Fa4 obtain

A1F1p = As Fra. (9.17)

Rearranging Eq. (9.16) in terms of Eq. (9.17),
1
AFn = 5 (e Fosya = afae = AaFal, (9.18)

where Fi3yp4), F4,and F3; are available from Fig. 9.11. Equation (9.18) equally applies
to Fi, of Fig. 9.16, provided Fay4), Fia, and Fa are evaluated from Fig. 9.12.

With the evaluation of the view factor, in addition to the concepts of radiosity,
solid angle, intensity, and emissive power (the last three from Chapter &), we complete
the concepts needed for enclosure radiation problems. Now we proceed to the solution
methods for these problems: electrical analogy and net radiation.

N,
EPT———, PSR
N,

Figure 9.16 A case related to
Fig. 9.12.

f—
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’ o—— AN, o
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Figure 9.17 Network element
associated with surface
resistance.

ELECTRICAL ANALOGY

We have already encountered the application of electrical analogy to conduction. Now
we proceed to the use of electrical analogy for radiation. This method is based on two
circuit elements. For the first element, reconsider the opaque gray surface of Fig. 9.3.
The radiant heat flux from this surface is

Q — e _
~=¢=58-06, (9.19)

where G is the incident radiation. Now recall the definition of radiosity, )
B = pG + €Ep, {9.6)

and use it to solve for incident radiation G. Insert G into Eq. (9.19) and rearrange the
resultin terms of € = 1 — p to get

E,—B
o/Ae ’

which may be interpreted electrically as the current flow due to the potential drop E,— B
through a resistance p/Ae. For a black surface, o = 0 and E, = B. Consequently,
p/A¢ may be assumed as the surface resistance (color), which is a measure for the
degree of departure from the black surface. The circuit element associated with this
resistance is shown in Fig, 9.17.

For the second circuit element, consider the exchange of radiant energy between
two surfaces, say 1 and 2. Of the total radiation B;A; leaving surface 1, the amount
intercepted by surface 2 is BiA; Fiz. Similarly, of the total radiation B;A; leaving
surface 2, the amount intercepted by surface 1is B, A, Fo;. The net exchange of radiant
energy between surface 1 and surface 2 is then

Of) = BiA1Fy ~ B4y F,
which, in terms of the reciprocity rule, A; Fi; = Ag Fyy, yields
B1 — By
1A Fp’
where superscript B indicates the heat transfer between radiosities (B). This result
may be interpreted electrically as the current flow due to the potential drop By — B,
through 2 resistance 1/A1 Fi2. Furthermore, 1/4; Fi; may be interpreted as the view

resistance, which indicates the extent to which the surfaces see each other. The circuit
element associated with this resistance is shown in Fig, 9.18.

Q=

(9.20)

of = (9.21)
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o8
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Figure 9.18 Network element
associated with view resis- o A~ ©
tance. By LAF1 By
T, °C

Tw°C

Figure 9.19 An open Insutation

enclosure.

In terms of the foregoing two circuit elements, we are now ready to solve enclosure
problems. The five steps, illustrated in terms of an open enclosure with an arbitrary cross
section (Fig. 9.19), are helpful for the solution of these problems (Table 9.1).

ExampLe 9.3
Consider an enclosure made of two concave surfaces with specified temperatures and emissivities
(Fig. 9.20). We wish to determine the radiant heat transfer between these surfaces.
Combining in series two surface resistances and one view resistance, as shown in Fig. 9.20,

we have

: : : Ey — Ep :

B
Q= Qu =y = —, (9.22)
Rz

where

P 1 2
Rp = = +

Aer AFn e

iy
Q12
——

o—AV AWy
VAF, B plAye

Figure 9.20 Enclosure of two concave surfaces.
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Table 9.1 Five steps for electrical analogy

7,00

1Express the temperature of the surfaces with a spec.
ified temperature in the absolute scale (Kelvin),

2 Replace the missing surface of an Open enclosure
with a black surface at the ambient temperature,

3 Attach the appropriate surface {color) resistance o
each surface. Note that B — E} for a black surface
and for an insulated surface, 50 no surface resistance
needs to be attached to such surfaces. However, E,
of a black surface is given, while E, of an insulated
surface needs to be determined. Also, note that the
color of an insulated surface does not play any role in
the problem. Draw circuitry directly on the figure,

4 Connect the radiosity of each surface to the radios-
ity of all the surfaces that are in direct view of the
surface. Usea battery for the E, of each surface with
a specified temperature, Reduce multiple surfaces
with identical £, to 2 single node.

5 Determine the unknown potentials (emissive pow-
ers) and currents (heat fluxes) by the usual solution
procedures of electrical circuitry. Use summation and
reciprocity rules and choose the mostconvenient view
factors.

is the total resistance between emissive powers, Ey and E,. Note that Ry has the unit of
reciprocal area. In particular, if the surfaces were parallel and closely located, Fiz = 1 and
A1 =4, =4, and Eq. (9.22) reduces to Eq, (9.5), as expected. +*
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qr

®)
Figure 9.21 Hemispherical container.

ExampLe 9.4

A hemispherical container of radius  is subjected to a heat flux g” in an ambient at temperature
T, [Fig. 9:21(a})]. A simple collimator can be constructed by closing the container with a mirror
disk having a concentric hole of radius ry [Fig. 921(b)]. (a) We wish to determine the increase in
the temperature of the container and in the heat flux from the collimator. (b} Suppose that the -
mirror is replaced by a disk of emissivity €. ‘What happens to the beat flux through the hole?

(a) Firstconsider the case withoutdisk andreplace the opening by ablack surface at the ambient
temperature. In terms of the circuit shown in Fig. 9.22(a), the radiant heat transfer from
the container to the ambient Is

, Epw — Es
Qe = Zhw 7@

RWOQ

or, dividing both sides by A, (the hemispherical area) and in view of E, = oT?,

- ; 4 4
ol — T,
q” = Qwoc = ( hed oo}, (9.23)
Ay AwRuco
Container Q‘woc Ambient

Figure 9.22 Example 9.4,
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where Ruco is the total resistance between the hemispherical wall and the ambient deter-
mined from the figure as

Pu i
R =
o Ayey Aw Fu
or, multiplying both sides by A,, and noting that p, = 1 — ¢,
1 1
ApRyeg 2= [ — ~ 1] 4+ —, (9.24)
ew woo

The reciprocity relation between the wall and the black opening,
Awaoo = AooFocw' (9-25)

gives, in view of F.o,, = 1 (all of the radiation leaving the black “disk” is intercepted by
the hemisphere),

A
Fuoo = —, (9.26)
u
Since Ago = 77* and A, = 47r2/2,
A 1
-_— = -, 927
ol (9.27)
we obtain, in terms of Eq. (9.26), Fye = 1/2. Then, from Eq. (9.24)
1+e
AwRyoy = * w. (9.28)
€y

and combining with Eq. (9.23),

g = ( “ )a(rg-r;)

1+ ¢,

or, solving for the wall temperature,

i/4
1 ”
Ty = K ': e‘”) %— + T;,] . (9.29)

In terms of a system surrounding the container, the first law gives for the heat flux
through the opening

Ghw = q"Ay (9.30)

or, in terms of Eq. (9.27),
q = 24" (9.31)

Next we determine the wall temperature and the heat flux when the container is
closed with an ideal reflector (mirror surface with # = 1) having a concentric hole of
radius ry. Following steps 1 through 4 in Table 9.1, the equivalent circuit is constructed in
Fig. 9.22(b). For the mirror, p = 1 and the surface resistance becomes infinity, indicating
that, in view of Eq. (9.20), no net heat flows through the reflector. Thus, the branch B,,— By,
does not carry a net energy, Fig. 9.22(b) essentially simplifies to Fig. 9.22(a), and Eqgs. (9.23)
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through (9.26) continue to apply. The difference between the two cases is the modified
F00 due to the reflector. The area ratio is now

2 2
Ao _ TN _ Yy (932)
Ay Aarr=f2 2\r

which yields, in terms of Eq. (9.26),

or

2z
1+ey,
AR = +zl:(i) 1], (9.33)
€y Th

which shows the effect of the reflector on Eq. (9.28). Then, in terms of Eq. (9.23), the wall
temperature is

174

2
1+€ "
T, = ( ® 42 (_) —-1)2—-%1";, . (9:34)
€y Fn .o °

which is higher than the value of the wall temperature obtained in the absence of a mirror.
Combination of Eqs. (930) and (9.32) readily gives the heat flux through the hole,

2
g =2 (L) q", (9.33)

Th

exhibiting an enhancement of {(r/ r4)? relative to the case without a reflector (Eq. 9.31).

(b) Radiant energy now reaches also the ambient through the disk. The disk emits radiation on
both the inside and outside of the collimator. The equivalent circuitis shown in Fig. 9.23(a),
which can be reduced to the one shown in Fig. 9.23(b). The objective of this part is to
determine the heat flux through the hole. First we need to calculate 0. Atnode By, the
sum of the currents yields

Qo = Qa + Cn (9.36)
and the resistances connected in parallel between B, and B, are
1 Pd 1 1

Ry

== + 2 + , Ry = .
AwFud Ag€q AgFyo ApFueo
Note that Fyp =1, Foow = Fiy = 1, Fgn = 1, 2nd
AuFog = AdFin = Ady AvFuw = AxFauw = Ax = Ak

where Ag = n(r2 — r) and Ay = mr}.
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449
Inserting these view factors into R, and Ry, we get
1 l—¢ 1
Ri= —~[14+2—"41] = R = —. (9.37)
Ay € Ageq Ay :
From the equality of potential for the two parallel branches between B, and Ejy,
Q4Rs = Q4Ry
or
00 = R
d = z, &
and, in view of Eq. (9.36),
Op = Qo . (9.38)
R; 1
Ry

From Eq. (9.37)

Container

Figure 923 Example 9.4,
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which leads, in view of Eq. (9.38), O = g4y, and Queo = g7 Ay, 10

2z
2(1_) qn‘n‘
"
. . (9.39)
€ r
= (——) —1]+1
2 Th

Equation (2.39) shows, relative to Eq. (9.35), a decrease in the heat flux through the hole,
What would happen if the disk were a biack surface? How does this compare to the
container without a mirror?

q:

4

ExampLe 9.5

Consider two closely located parailel fat plates having temperatures Ti, Tz and emissivities &1,
€. Place between these plates (a} a third flat plate with emissivity &, (b) a fiat window screen,

. 1 being the total hole area relative to the apparent surface area. Determine the reduction in the
radiation heat transfer between the plates.

(a) Flat-plate partition.

The analogous electrical circuit is shown in Fig. 9.24. The resistance equivalent to
the six resistances coanected in series between potentials Ep and Ep is

1{p 1 b 1
Rp = o2y L2 B,
Al\a Fu g Fw e

which may be rearranged, in viewof Fjp=Fpp=lande+p =1,88

1|1 1 1
Rp=—|—+—+2[— -1
Aleg €z [1)

ox, in terms of

Figure 924 Flat-plate partition.
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as
R12="]“-" i._|__1_ =£ w .
Alew e AN\ e

Then

: Ep — Ep

Oz = ——— (9.22)

Ry

or

oz =

Qo [ €wen
A €10 + €20

) (Epy — E). (5.40)

The reduction in the radiation heat transfer resulting from the use of a partition,
after introducing 1/€12 = 1/¢; + 1/€; — 1 into Eq. (9.5), may be written as

- 1 €1pé:
q12 ™ g ] = — 10€20 ) (9_41)
q12 €12 \ €10 + €,

For a partition and plates with identical emissivities, €19 = &z = €12 and Eq. (9.41) reduces
to 1 —1/2 =1/2 of the original heat transfer involving no partition.

The temperature of the partition may be obtained by expressing the heat transfer
(electric current) between the two plates in terms of the potential drops Ey — Epp and
Ebg — Ep. Thus,

€10(En — Ew) = ex(Esp — Epa),
which may be rearranged for Ey, to give

€1Eyn + exEx

Ep =
€10 + €0
or, in terms of E, = o T4,
ely + €07y
y et S (9.42)
€10 + €20
For identical emissivities, €19 = &z and Eq. (9.42) reduces to
1
=@+ ). 943

the arithmetic mean of the fourth power of the absolute temperatures. Consequently, the
temperature of the partition is closer to that of the plate with higher temperature.

Window-screen partition.

Radiant energy incident on a partition with holes partly escapes the partition and is
partly absorbed by and reflected from the partition. Accordingly, the analogous electricai
cireuit, including the energy that escapes the partition, may be constructed as shown in
Fig. 9.25.
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E,
iH . |
Ey: LI 1 By o P B 1 B B

x
5|
b
¥
>
&

5
Fl®

Figure 9.25 'Window-screen partition.

The resistance equivaient to that of the lower circuit (involving four resistances con-
nected in series) between potentials B; and By is
1 Lo 1
2

AFy Aogy  AFy

where Ag is the solid area of the screen. If Apo/A = 7, then'dg/4 = 1 — 5. This
resistance connected in paralle] to the upper circuit (involving resistance 1/4 Fy, ) gives the
total resistance between the same potentials,

1

+ .
(1/AFy) + 2(o0/ Aoca) + (3/AFp)

AFy

Finally, this resistance connected in series to resistances pi/Ae; and p2/ A€ yields the total
resistance between potentials Eyy and Egp,

M 1

P

AE1 1 ' AGZ‘
AF +

(L/AFig) + 2{po/Agen) + (1/AF)

(9.44)

Noting that Fip = 7, Fio = Fyg = 1 ~ 5, and Ag/A = 1 — 5, Eq. (9.44) may be rearranged
as

m 1
A 42 - (9.45)
€ 1-7n €

+ —_—
200 + po/eo)

Rp =

|

or, in terms of 1 = ¢y + oy, a8

1]p 2
Rp=- |24+~ 21 (9.46)
Ala n+{1l-ma &

Equation (9.45) for 7 = 1 reduces to

1
R12=~(E+1+E). (9.47)
Ale €
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which corresponds to the radiative resistance between two parallel plates in the absence of
any partition, and for = 0 it reduces to
!

1{p 2
Ry = — (—1 + — + “,CE) . (948)
A\g €p &

which corresponds to the radiative resistance between two parallel plates with an opaque
partition in between. Note that a glass partition with negligible reflectivity is a special
case of the opaque partition with holes, Letting the transmissivity of the glass be 7, and
inserting py == ( and replacing n with 13 in Eq. (9.45), we have

1{m 2 yer)
Rp=~[Z+ +—1. 249
o= (24 i+ 2) 049

Then, the radiation heat transfer between two parallel plates separated by a partition is

Ey — Ep

(9.50)
Ry

Ql(D)Z =

where Ry is given by Eq. (9.45) or by its simplified forms [Eqgs. (9.47) or (5.48) or (9.49)],
depending on the nature of the partition.

We now proceed to the temperature of the partition. First, Ql(o)z expressed in terms
of the surface resistances of the two plates gives

Ey — By _ B &y

Qo2 = = . {9.51)
p/Aeg i Ae
Second, the Kirchoff current law applied to the node of potential By yields
Gion = Q12 + O
or, in terms of appropriate potential drops,
. Bl - Bz Bl — By
Qioz = {9.52)

1/AF;  1/AFyg + po/Aces

Solving Eq. (9.51) for B and B; in terms of (12, inserting By and B into Eq. (9.52), and
rearranging the result for E,p leads to the temperature of the partition. Details leading to
the explicit form of this temperature are left to the reader.

¢

In terms of the foregoing examples, we have so far tested our knowledge of the
fundamental aspects of enclosure radiation. In terms of the following examples we now
wish to develop some appreciation on the numerical aspects of enclosure radiation.
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ExampLe 9.610

A heat flux ¢” applied to a hot plate keeps the plate at T, = 600K in an ambient at T, = 300K
[Fig. 9.26(2)]. The emissivity of the plate surface is €, = 0.9. (a) We wish to evaluate g" (Wim?),
(b) The plate is covered by a hemispherical lid [Fig. 9.26(b)]. The inside and outside surface
emissivities of the lid are €} = 0.1 and €} = 0.8, respectively. The plate temperature is to be kept
the same at T, = 600 K. We wish to determine the reduction in ¢” and the temperature Tp of
the lid.

(a) Recalling Ex. 9.4(a) and in terms of the circuit shown in Fig. 9.27(a), we have

Epy — Epeo

Q o
v Ryoo

or, in terms of E, = o T4,

‘ 18— 1
go= Lo T m 1) (9.53)
Ay AwRues

where, in terms of Eq. (9.24),

AuRuoo = |~ =1} + !
T e Fuco,

T,=60K€,=09  Tu=300K

Wl e W

(a}
Tw=300K

(b)
Figure 9.26 Hot plate.

10 The FORTRAN program EX9-6.F is listed in the appendix bf this chapter,
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@
Figure 9.27 Hot plate.

which, in view of Fy o = 1, reduces to
ApRu = /€, = 1/0.5. (9.54)
Inserting Eq. (9.54) into Eq. (9.53), and noting that

W

4 —8
oT™ = 567 x 10 I

THKY = 5.67 x (L)4W/m2
) 100 ‘
we get
g" = 0.9 x 5.67 x (6% ~ 3*) = 6,200 W/m?,
(b) In terms of the circuit shown in Fig. 9.27(b), we have

i Ep, — E, Ew — E
e = bw boo - &0 boo, (9.55}
Rwoo ROoo

u 1 s A 1 & 5 1

= + , = —— 4 ——
A€y A Fuo AQE{) Aaeg Ao Fooe 0eo Ageg Ao Foes
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Dividing the first equality of Eq. {9.55) by A4,

fzgmﬁow—m)
Aw A—waoc

where

1 1 Ap (1 1 1
Ameoo= — -1 + — s — ‘—,““—1+~3—1+——,
€y FwO AO 56 B -1 Fﬂoo

which, in terms of Fug =1, Fooo = 1, and A, /4g = 1/2, may be rearranged as

ApR 1+11+1.‘1
PR T e 2\6 €

or, in view of €, = 0.9, ¢} = 0.1, and €] = 0.8, as

1+1 1) = 6.236
01 o8 T

W
g" = 0.16 x 5.67(6" — 3*)——K* ='1,102 W/m®
2 K4 :

1

ApRyss =
“ 7 09

LR ]

+

Then, the heat flux is

and the reduction in ¢” is

6,200 — 1,102
6,200

x 100 ~ 82%!

Cooking with a covered pot requires less energy input than with an uncovered pot.
For the temperature of the lid, dividing the second equality of Eq. (9.55) by A,

v G(T04 - T:o)
T AuRew
where
AuR Ae (14 + !
willoo = AQ 68 Fow
or, in view of Foeo = 1,
A R — Aw 1
witco — A{} 68

results in, for the heat flux,
. Ao
q" = —edo (T} - T,
Ay
which may be solved for T; to give

Ty = T + (g"/€30)(Au/ A0)
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or

4
T 1102 W/m? 1
(,o) = 3K + /m xggzoz,SK“.

0.8 x 5.67W/m*K*

Ty = 377 K.

How would the results change if inside ) = 0.8 and outside €{ = 0.1? What does this say
about the best type of pot lid surface?

By using the computer program provided, the interested reader may parametrically
study the ¢” reduction depending on various values of e{) and eg. &

Exampie 9.71

An electrically heated long solid rod is to be used for the heating of an industrial building. A
screen with a ratio of total hole area to total apparent (holes + screen) surface area of n = 0.9,
and inner and outer emissivities of €/ = 0.08 and €2 = 0.9, is to be placed around the heater to
shield the surroundings from the hot surface of the heater (Fig. 9.28). The ambient temperature
is Too = 27 °C. Assume the heater radius to be ry = 1 cm, emissivity ¢, = 0.8, the energy
generation #” = 3 MW/m?, and the radius of screen to be r; = 3 cm. Neglecting the effect
of convection, we wish to determine (a) the increase in the surface temperature of heater and
(b) the screen temperature,

(2) In the absence of the screen, the heat flow to the ambient from the heater of length £
[Fig. 9.29(a)] is
. Ey, — E,
Ques = u" Al = "'“"—'—bw b0 = quIUt
Ruea
Ry being the total resistance. Dividing by A, and noting E, = oT*, A = :rr:f’,, and
Ay = 2mr, £, thus AZL/A, = r, /2, and the heat flux to ambient is

wre o (Té —13)

2 Ay Ry
T
e *
)
oo i
e
=
e e
I
’ Solid rod

Figure 9.28 Example 9.7.

1 ‘the FORTRAN program EX9-7.F is listed in the appendix of this chapter.
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Figure 9.29 Example 9.7.

or, solving for the heater surface temperature,

1t 1/4
[2 20 &
Ty = [Awaoo ( "’) + T:°:| . (9.56)

Substituting Fue = 1 into Eq. (9.24) for the resistance, we get

) :
ApRyew = —. (9'57)

€y
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Inserting A, R, into Eq. (9.56) yields

‘ s 1/4
(17
Ty = +T4] (9.58)

€y 20 *

which gives, in terms of the given data,

r ( 3 % 10°W/m® x 0.0l m

1/4
3004 K*
0.8 x 2 x 5.67 x 1078 W/m?.K* + )

or
Ty = T62.9K.

Next we proceed to the heater surrounded by the screen. Following the first four
steps of Table 9.1, an equivalent electrical circuit is constructed as shown in Fig. 9.29(b).
Note that the heater sees the ambient through the holes of sereen and that the inner surface
of the screen sees the ambient through these holes as well, The outer surface of the screen
also sees the ambient. These facts respectively translate to the upper and lower branches
of the circuit shown in Fig. 9.29(b).

Combining the resistances for the lower branch {Fig. 9.29),

1 1 .
Ry 1 p; P 1
{ i t 0 + 0
AFl, Al AL T AP
or
! AN F o+ ! (9.59)
Ry =T 1 1| |
TrT o2t
63 6: P:mo

where superscripts i and 0 are used to distinguish the inner and outer surfaces of the
screen. Next, combining the resistances between B,; and B, for an equivalent resistance
[Fig. 9.29(d)],

1 1
— = ApFum + — (9.60)

R
2 Ry +

wa Wy
Then the total resistance is

Pu
Ay

Ryoo =

+ Ra. (9.61)

The three view factors involved with the foregoing resistances are
Ffm=1, Foes = 1, Fw.i':l_'ﬂ»

while F_ requires some manipulations as follows. The summation rule for the inner
surface of the screen gives ‘

Fs + Foy + Fiy = 1. (9.62)
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The reciprocity rule between the wall and the screen,
AsFoy = AuwFus,
vields, in view of A, = 2rrry,f and A; =2mr (1 — n)E,

Fog =2 (9.63)
r.‘l'

From Egs. (9.62) and (9.63), assuming that the holes are uniformly distributed over the

shell,
r . Fw
F:co=77(1__w)- Fn:(l_ﬂ)(l__)-
Ts re

Then Eqgs. (9.59), (9.60), and (9.61) result in

R 11——6.,,+ 1
won =

A, € 1
: “ “ Aun +

or, after some manipulations,

ApRyos = — 4+ ————— (9.64)
€.

which shows an increase in the total resistance relative to the case without screen, Eq. (9.57).

Inserting Ay Rue into Eq. (9.56), we get, for the given data,

- ) - i/4

10° W/m® x 0.01 1 12— 0.9}/3

T, = Ix /m sx 2m4 1 { ; )/ + 3004 K4
2 % 5.67 x 10 W/mEK* | 0.8 i
0.9 + ; :
—_—t — =1
L 0.08 0.9 ]
or

Te = T8 K.
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The screen increases the surface temperature of the heater, as expected. Note that for
solid screen (i = 0), Eq. (9.64) reduces to

1 1 1
€

i
€w s s

and, in view of Eq. (9.56), the surface temperature becomes
Ty = 1,097.5K.

In the absence of any screen, n = 1, 2nd Eq. (9.64) reduces to Eq. (9.57).

(b) To determine the screen temperature T, we need to know the heat flow O, through E,,
[Fig. 9.29(b)). However, there are several intermediate steps. First consider the radiation
through the holes, 2

H Bw ~ Ejoo
= ———— = A,n(By — Epo), 9.65
Qh 1/Awaog 77( W boo) ( )
where B, is determined from

Q Ebw - Bw A € {E B )
wee T pw/AwEw = iy e bw w

or, rearranging and noting 9y, = u AL,

I—ep)ur
By = Ebw - ( W) w;
[ 2

which gives, in terms of the data and 7, from part (a),

768\  , {1—08\ 3 x 10°W/m® x 001 m
By =567 x | o) Wyt — (2

0.8 2

or
By, = 15,970 W/m?. (9.66)

Inserting Eq. (9.66) into (9.65),

4
Qn = 270.01£ (m?) 0.9 [15.970 —5.67 (;‘2‘3) J (W/m?)

or
0, = 877.1¢ (W). (9.67)
Solving for @, from [Fig. 9.29(b),(c)],
. woa = uAL = Qﬁ + Q.\'

12 Note that, rather than obtaining (2, in terms of B,, from Eq. (9.65), we could have used the equality
of potentials for the two branches between B,, and Eyoo in Fig. 9.29(b),(c). However, we avoided this option
because of the need for manipwiations with a number of resistances.
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gives .
g, =3 x 10° (W/m®) w(0.01)*¢ (m®) — 877.1£ (W)
or :
O, = 6538L(W). (9.68)

This heat flow reaches the ambient partly through the screen material, O, and partly
through the holes, O, :

Q.\' = Qs.f + Qsh- . (9.69)
The radiation from the inner surface of the screen to the ambient through the holes is
. Bl — Epes
O = _:‘_._._‘__
1/A:Freg

or, in terms of A, = 27rr.£(1 — n) and Fl =n-ru/rs,

Qo = 2mr el = M~ ra/rs) (Bl = Eo) (9.70)
where B! is obtained from
Q: = —"“"——'Bw — B; .
1/ Ay Fus
which gives
B = B ___H_._l__._Q
s T e - mE

and, in terms of B,, and Q; from Egs. (9.66) and (9.68),

1
B = 15,970 W/m* — _ 6538 W/m
270.01m (1 - 0.9
Qr
B! = 5,564.6 W/, 9.71)

Inserting Eq. (9.71) into Eq. {9.70),

4
O = 2770.03 (m) 0.9 — 0.9)(1 ~ 1/3)¢ (m) \:5,564.6 —~ 567 x (392) ]W/mz

100
or .
Oy = 5TT4L(W). (9.72)
Equation (9.69) yields, in terms of Egs. (9.68) and (9.72},
0. = (6338 — STIHL(W) = T-64L (W), (9.73)

Finally, for T, expressing @, over the resistance between B! and Ey,,

. B! — E,
Qn = _'s“t____i_’_,
pszse_r.
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and, solving for E;;,

E. — oT* = B 1 /1 .
bs = O L —BJ—A_ T_l Oy
gives, in view of Eqs. (9.71) and (9.73),
1

1
Ey; = 5,564.6 W/m® — — —1}7.64W/m
0.08

2t x 0.03m (1l —- 0.9

or
Eps = 903.5 W/m>.

Then the screen temperature is

903.5 W/m? e
T, =
5.67 x 1078 W/m*-K*

or
I, = 355.3K.

463

If the emissivity of the inner surface of the screen were high—for example, &= e}] =109,
the screen temperature would become T, = 483.7 K, a substantial increase from 355.3 K.
The present example illustrates the need of a low inner-surface emissivity for a reasonably
lowscreen temperature. (What would happen to the screen temperature if the outer surface
of screen were highly reflective? The variation of the heater emissivity does not affect the

screen temperature. Why?)

By using the computer program provided, the interested reader may parametrically

study the effect of screen size and emissivity.

ExampLe 9.81%

¢

The surface temperature of a disk of diameter D = 0.5 mis kept at T,, = 230 °C. The emissivity
of the disk is €, = 0.8. (a) We wish to determine the radiant heat transfer from one side of the
disk to an ambient at a temperature T, = 25 °C, (b) Let the disk be attached to an insulated
cylindrical shell (D/L = 1), as shown in Fig. 9.30. We wish to evaluate the change in radiant heat

transfer from the disk, and the temperature of the shell,

(a) The electrical circuit appropriate for the first part of the problem is identical to that of Ex,

9.6. Consequently, we have from Eqgs. (9.53) and (9.54)
Qwoo = Awgwd(T:; - T:a)
or

. T
Queo = — % 0.52m? x 0.8 x 5.67 x (5.03° — 2.98%) W/m?,

I

which gives
Dues = 500W.

13 The FORTRAN program EX9-8.F is listed in the appendix of this chapter.

(9.74)
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Disk
T, =230°C

Hole

T,,=25°C Insulated shell

Figure 9.30 Disk and shell.

(b) For the second part of the problem, first we complete an enclosure by replacing the hole in
Fig. .30 with a black surface at the ambient temperature. Then, from the electric circuit

(Fig. 9.31) analogous to the radiation within the enclosure, we have

. Epy — Eboa
Queo = —————
woo Ruos ’

e

Py
Aufy

= : Hn

Ebw Pw Bw R] . Byp= Ebgo
Aves
(&

Figure 931 Disk and shell. (a) Actual circuit,
(b) equivalent circuit.

(9.75)
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where
f Pu
Rwoo = + Rl (976)
w€y .
and
= AuFue + : 9.77
R, Cwlue 1 et (9.77)

+
Awa.\' AWFOQ.T

Ry denoting the effective view resistance. Note that no “color” was attached to the shell,
given the fact that it is insulated, Noting that surfaces A, and A, do not sce themselves,
employing Fieo + Fyy = 1, Fogu + Foos = 1,and Ay Fuo = Agg Foc, Eq. (9.77) may be
rearranged as

1 Ag ~ Ay F?
— = L (9.78)
AuRi Ay 4 Ag — 244 Fues

or,inview of 4, = A, as

1 Au(l+ Fue) (9.79)
R 2 ' ’

which shows an effective increase in the overall view factor. Figure 9.32 illustrates this
increase in terms of four configurations. Finally, insertion of Eq. (9.79) into Eq. (9.76),
considering € + p = 1, gives

R Ly 14 —2 (9.80)
T Aw \fw 1+ Fo )’ ’

and rearranging Eq. (9.75) in terms of Eq. (9.80) results in

1+ Fus
1+€w+(1—6w)me

Ques = Aty ( )a(rgj - 7). (9.81)

For Fye = 0.17 (obtained from Fig. 9.13 for D/L =1)and ¢, = 0.8, together with A,
and (T, T), Eq_. (9.81) yields

1+0.17
1+08+02x0.17

Due = %O.S2 (m?) 0.8 ( )5.67(5.03“ ~ 2.98%) W/m?

or

Ouoe = 319 W,

(Is this an expected result? Why is there a reduction in the radiation?)
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planes, directly opposed

N/ 2% |

1 thru 4 — Direct radiation

7 i 5 thru 8 — Planes connected by
1 . nonconducting but
/ : reradiating wall, £
land 5 - Disks

02 " -2 and 6 - Squares
-3 md 7 - 21 Rectangle
‘4and § - Loag, nurow
o g : | rectangles

3 4 5 6 7
Smaller side or diameter
" Distance between planes

1.0
0.8 8 7’2/,——-’
7
| p /:g; % // /%
0.6 rid 7 == Radiation between parallel

Factor For F

=]
—
[

Figure 9.32 View factor F and interchange factor
T(=1/AwRy) for opposed parallel disks, squares, and
rectangles. Adapted from McAdams, Heat Transmission,
3d ed., McGraw-Hill, New York, 1954.

For the reduction in radiation from the disk, employing Egs. (9.74) and (9.81), we

have
1+ F /
1-— T foce % 100%
1+ €y + (1 — ) Fyen

or
€u{l — Fuyoo)
1+6w+(1_“€w)Fwoo

% 100%

or, in terms of €, = 0.8 and Fye = 0.17,

0.8(1 — 0.17)
1+08+02x017

x 100 = 36%.

We now proceed to the evaluation of the shell temperature. From the actual circuit
of Fig. 9.31 we have
: Epw— By ., .
Que = —— = @'+ O, ©0.82)
Puf Auty

where (' is the current from B,, directly to B, and O isthe current from B, via By t0 Boo.
Expressing these currents in terms of potential drop B, — By, and By — B, respectively,
we get :

Ebw_Bw_Bw—Boa Bw_'B.s

Due = - . .
v PufAuey 1/Aw Fue 1/ Ay Fus

(9.83)
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From the first equality of Eq. (9.83)

Qwoo Pw
B, = Epy — —,
w bw ( " ) P

r

which gives

I9W .
B, = 567 x 5.03%* W/m* - ————— x 92 = 3,223 W/m?.
(/D052 m* ~ 0.8

From the second equality of Eq. (9.83)
Qwoo = AyFu(By — Bo) + AyFu;(By — By,

which may be rearranged as

Fw.r w

1 Queo
B, = (Bw — FyeeBeo — —A—) - (984)

Noting that Be = Epee = 0T and Fyy = 1 = Fyeo = 0.83we obtain from Eq. (9.84)

B = ! 3,223 W/m® — 0.17 x 5.67 x 2.98* W/m? S W ~ 1,834 W/m®
T 083\ ' ’ ' @/H0Fmi ) ~ ’

which, in view of B; = Ejp; = orT“‘ for an insulated surface, gives

T, \*
183 = 5.67[ —-
100

T, & 424K = 151°C,

or, the shell temperature,

ExampLE 9.914

Reconsider the second part of the preceding example. Eliminate the insulation of the shell and
assume the inner and outer surfaces of the shell to have the same ernissivity, €; = 0.8, Evaluate
the radiant flux from the disk and the temperature of the shell. Compare this flux with that of
the preceding example.

3 The FORTRAN program-EX9-9.F is listed in the appendix of this chapter.,.
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1

AF
I
I o—hpy
H l Ebw Pw
Al

(#) Actual circuit

I

Ay

{b) Ecquivalent first cirenit

nH‘___O_JM_o—-\,w—:o——{Hu
By _Pw B, R ‘Bm=
Aty

(¢) Equivalent second circuit _
Figure 9.33 (a) Actual circuit, (b) equivalent first
cireuit, (c) equivalent second circuit.

The electric circuit analogous to the problem may be obtained by modifying the circuit of
Fig. 9.31 as shown in Fig. 9.33. The new circuit involves the inner and outer emissivities of the
shell, as well as the view factor between the outer surface of the shell and the ambient. Thus, we
have '
Epw — Eseo

Oue = T {(9.85)

where, in terms of the equivalent second circuit,

Ruso = = + Ry, | (9.86)
w€w .
in terms of the equivalent first circuit,
L AuFue + E (9.87)
Rz e wd woo 1 . El o
4Ry

Awal
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and, in terms of the actual circuit,

¢ 1 1
= A Pl A — (9.88)
Ry Ps 1
ot
A, | AFY

superscripts i and 0 denoting the inner and outer surfaces. Noting that Fi, = 1 — Fq, =
1— Fueo =0.83 and Ffw =1, Eq. (9.88) may be reduced to

1 A;JA
— = Ay | 083 + _Ad/Bo (9.89)
B 2 - e)/e
and, with A;/A, =4L/D =4 and ¢, = 0.8, t0
1
R = .
3.504
Thus, Eq. (9.87) becomes
L o AuFum et
Rz = Nyl yoe 1 1

+
ApFus 3504

which, in terms of Ay = Ay and Fy = 1 — F,o, may be rearranged as

1 350 + Fu(l — Fuw)
Ry Y 350+ (1 — Fu)
and with Fuee = 0.17 as
1
Ry = .
0.841A4,,

Inserting this result into Eq. (9.86}, we have

R 1 pw+ 1
YT A Ve | 0.841

or, in terms of g, = 0.2 and 6, == 0.8,
- 1
T 06954,

woo

Finally, from Eq. (9.85),
Quoo = 0.695A,0(T)) — T)
or
Ouoe = 0.695%0.52 m*5.67(5.03° — 2,989 W/m®

or
Oueo = 434 W.
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(Is this an expected result? Explainclearly!). Theradiant heat fluxrelative to that of the preceding

example is increased by
434 — 319

319

x 100 22 36%.

ExampLe 9,105

Consider two parallel square plates separated apart by a distance equal to the side of each plate
(Fig. 9.34). The temperature and the emissivity of the plates are 7; = 800 K, T; = 600 K, and
€ = (1.8, &3 = 0.5, respectively. The ambient temperature is T w = 300 K. We wish to determine
the radiant heat exchange between the plates.

The analogous electric circuit is shown in Fig. 9.35. The four black surfaces at the ambient
temperature that complete the enclosure are represented by‘a single node (Bs = Ej3). In terms
of the Maxwell loop currents!® 0y, (2, and 05 indicated on this figure, the Kirchoff voltage law
gives between potentials 1 and 2 :

. ../ , . )

Ep — Epp = + O—+ + - — 9.90
01— Epp = (O1+ Qs s O (AIFu) (@1 — Q2 s (9.90)

between potentials 2 and 3,

1
Eyp — Ep = (@2 ~ Q1)—-—-—- + Qz (9.91)
A2F23

and between potentials 3 and 1, :

Ep — Eyy = —03 — (@1 + Qs)‘*—"—“- (9.92)
A3F31 151
Tw=300K
T;=800K T,=60 K
g €=08 el «= 05

I ¢ |

Figure 9.34

15 The FORTRAN program EX9-10.F is listed in the appendix of this chapter.

16 Datails of the solution methads for electrical circuits by the Maxwell loop currents, A-Y conversions,
and the Kirchoff current and voltage laws are assumed to be known to the student. Otherwise, refer to a
standard textbook on electrical circuit theory.

ome
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Figure 9.35 Loop currents.

For convenience in algebra, the relation

. 1 . 1 i 1
o) eal) () o

obtained from the sum of the foregoing three equations is to be considered in place of Eq. (9.90).
Introducing g; = Q1/41, g2 = Q2/4z, and g3 = (3/A;, noting that A; = Ay == A;/4,

reading Fiz = 0.2 from Fig. 912, and accordingly, Fis = Fa3 = 1 ~ Fj3 = 0.8, Fy =

(A1/A3)F13 = 0.8/4 = 0.2, Eqs. (9.93), (5.91), and (9.92) may be rearranged to give

1+ 025g; — g3 =10
—q1 + 2.25g; = 6,889 W/m? (9.94)
0.25q; + 6g3 = 22,765 W/m®

This set of algebraic equations are now solved by an iteration method as shown in the FOR-
TRAN program EX9-10.F listed in the appendix of this chapter (the general matrix-inversion
method to solve this problem is beyond the scope of the current text). Because of the simplicity
of the problem, however, an exact solution by the usual elimination procedure is feasible. Thus,
we have

@ o= 2,627W/m?, g = 4220W/m?, g5 = 3,684 W/m".

In terms of these fluxes, the loss from plate 1is
ai = q1 + 43 = 2,627 + 4 x 3,684 = 17,363 W/m®
and the loss from plate 2 is
@ =g —q = 4,229 — 2,627 = 1,602 W/m?.

Clearly, plate 2 loses more energy to the ambient than it receives from plate 1.
By the computer program provided, the interested reader may parametrically study the
effect of plate separation on the problem. ¢

Having learned the method of electrical analogy and its application to a number
of examples, we proceed now to the second method, the method of net radiation, for
enclosure radiation problems.
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NET RADIATION

The method is demonstrated here in terms of an enclosure made of N opaque surfaces,
some being flat, some convex, and some concave (Fig. 9.36). First, complete an enclosure
by replacing any hole with a black surface at the ambient temperature as we have done
before for solutions by electrical analogy.
The net radiation from a typical surface, say i, written with the help of Fig. 9.3 and
Eq. (9.19)is .
—Q—i =g = Bj o G[, . (995)
A; :
which may be rearranged with Eq. (9.6), now expressed for surface i,
B = piGi + € Epi, (9.96)

to yield for a surface with specified temperature

€v
g = —(Ep — B) (9.97)
Pi _
and for a surface with specified heat flux
Pi :
Epi = gi (-é") + B;.: (9.98)
i ;

For known surface radiosity, Eq. (3.97) gives the radiation flux from a surface with a
specified temperature, and Eq. (9.98) gives the temperature of a surface with specified
heat flux. Thus, for both cases, the problem is reduced to the evaluation of surface
radiosities as follows. :

Consider a surface different from surface i, say surface j. The total radiation from
this surface is B; A;. The fraction of this radiation intercepted by surface i is B;A; Fji,
which may be rearranged in terms of the reciprocity relation [Eq. (9.11) for surfaces
i and j] A;F;; = A;Fj; to give BjA; Fyj. Thus, the total radiation leaving all surfaces
(including {) and intercepted by surface i is :

N _
AG; = Ay BiFy,i=12,....N, (9.99)
=1

Figure 9.36 N -surface enclo-
sure.
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where G, is the radiation flux incident on surface i. Then, the radiosity of surfaces with
specified temperature is found by inserting Eq. (9.99) into Eq. (9.96),
f

N
B = &Ep + p; Y BiFy, (9:100),
J=1

and the radiosity of surfaces with specified heat flux is found by inserting Eq. (9.99) into
Eq. (9.95),
N
By =g + ¥ BjFy. (9.101)
j=l

Thus, for each case, we end up with a set of N algebraic equations in terms of the un-
known radiosities, By, Ba, ..., By. These equations can be solved by using a numerical
iteration method as shown in the following example. For convenience, the solution pro-
cedure for enclosure radiation problems by the method of net radiation is summarized
in Table 9.2 in terms of five steps.

Table 9.2 Five steps for net radiation

1. Express the temperature of surfaces with specified temperature in the ab-
solute scale (Kelvin).

2. Replace the missing surface of an open enclosure with a black surface at
the ambient temperature.

3. For each surface with specified temperature, write

N

By = Ly + it ZBjﬂfl (9.100)
=1

and for each surface with specified heat flux write

N
B =g+ y BiFy, (9.101)
j=1
where q; = O/ A,
4. Solve the system of algebraic equations for radiosities given in step 3 by
hand (if feasible) or by computational iteration or matrix inversion.

5. Evaluate the radiant flux from a surface with specified temperature from
»

Pi

q = —(En — By) (9.97)

and the temperature of a surface with specified flux from

D,
En = q (6—’) + B, {9.98)
{

Next, we proceed to an example which illustrates the use of the method of net
radiation for enclosure problems.
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ExampLe 9.11Y7

Reconsider Ex. 9.10. Let the heat loss from plate 2 be given, e.g., g4 = 1,602 W/m?, rather than
its temperature. We wish to determine the heat loss from plate 1 and the temperature of plate 2.

Employing Eq. (9.100) for the radiosity of surfaces 1 and 3, and Eq. (9.101) for the radiosity
of surface 2, we have :

B = € Ey + p1(BoFia + BaFia)
By = g + B\Fy + ByFn
By = E3,
which may be rearranged as
By ~ (g Fu)By = €1Ep + (01 Fis) Ess
~FnBi + By = ¢ + FnEp

or,inviewof ey = 0.8, oy =02, Fo = Fjn = 0.2, Fiz = Fi3 = 0.8, as

B, — 0.04B; = 0.8 x 5.67(8" +io.2 % 3%

—02B: + By = 1,602 + 0.8 x 5.67 x 3*

or :
By — 0.04B, = 18,653

~02B; + By = 1,969,
which gives :
B, = 18,882 W/m?, B = 5,745 W/m®.
Now, from Eq. (9.97), the radiation from piate 1 is found to be

., Em— B 567x8 1888 2
a; = = : = 17,369 W/m",
P/ 1/4 j

and the temperature of plate 2 from

o = Ep — B
: pif€r
gives .
Ep = By + g3 (m/e)
Ep = 5745 + 1,602 x 1 = 7,347 W/m®
or :
5.67(T/100)" = 7,347
or :
T = 600K,
which recovers the results of Ex. 9.10, as expected. : %

17 7h¢ FORTRAN program EX9-11.F is listed in the appendix of this chaptet.
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9.4 COMBINED HEAT TRANSFER O

The present sect;on deals with a number of examples combining radiation with conduc-
tion and/or convection. Most problems involving more than one mode of heat transfer
are relatively involved, as they yield nonlinear differential equations and/or boundary
conditions whenever radiation is included. They are usually solved after a linearization
of the Stefan-Boltzmann law. During this process, however, the quantitative nature of
a problem gets lost.

ExampLe 9.12

Consider the production of vapor in a boiler tube surrounded by hot furnace gases., Neglecting
the effect of curvature, we wish to determine the inner and outer surface temperatures Ty and
T, (Fig. 9.37).

The large heat transfer coefficient on the evaporating water side provides an inner surface
temperature close to the vapor temperature. The small heat transfer coefficient on the gas side
suggests dominant radiation. Then, the first law for the system shown in Fig. 9.37 readily yields

—gx +gr =0 (9.102)

or
T, — Ty
k= ek (Tt -1d. (9.103)

Equation {9.103) may be reduced, in terms of the Planck number,

O’T:; Emission
P, = T ~ e (9.104)
2/L Conduction

to

4
Ty — T 1 — (To/T,
v = ep, (/%) (9.105)
T, - To 1- Ty/T,

Next, linearizing the right side of Eq. (9.103) using a Taylor expansion about T},

kTw""Ib

% deoT) (T; — Tu)

Vapor

Figure 9.37 Boiler tube wall.
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16

[ Eq.(9.105) —2000K. To3
L = Eq.(9.106) Ty=2000K, Ty=300K

Figure 9.38 Comparison between lineérized and
nonlinear solutions.

or, rearranging in view of Eq. (9.104), we obtain

Tu—T 4P (9.106)
T,—To 1+4eP, '

Figure 9,38 compares the nonlinear [Eq. (9.105)] and linear [Eq. (9.106)] solutions for 7y = 300K
and 7, = 400, 1000, and 2000 K. Higher conductivity lowers ¢ P; and allows T, to approach Tg.
Recall Fig. 2.15 and the definition of Bi introduced in Chapter 2. A g

ExameLe 9.13

The thermal boundary fayer about a flying object may to a first order be approximated by a
Couette flow. Let the velocity of the object be U and its surface emissivity be €, . The viscosity,
thermal conductivity, and temperature of the ambient are i, k, and T, respectively. Assume
the ambient to be transparent and the curvature effects to be negligible. We wish to determine
the steady surface temperature of the object. :

Newton’s law for the control volume shown in Fig. 9.39 gives

dar :
— =0, ; (9.107)
dy :

where 7 is the shear stress in the fluid. The mechanical energy associated with Eq. (8.107} is

Wit =0, (9.108)

The first law of thermodynamics for the control volume yields

dgy  d -
e 4 (zu) = 0. (9.109)
dy dy
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__________ Nestta
* 7 cv
_1.______/___
£ ay
—————— qy:[
ew’Tw
e 2
(2)
q
)
e A —— ¥
_ }y
S
d dg,
+—— (1) =y
TH (rcue) dly "qy-é-dy dy

(b)
Figure 9.39 (a) Model, (b) balance of
total energy.

For a transparent ambient, qf does not contribute to Eq. (9.109). In Chapter 10 we shall study
the effect of an absorbing ambient on the problem. Note that

d d
—(tu) = u— + v—, (9.110)
¥y

where the first term on the righthand side is identical to Eq. (9.108) and is the displaced mechan-
ical energy, while the second term is the mechanical energy dissipated into heat as a result of
deformation, du/dy. This dissipation must be balanced by an entropy production in the second
law of thermodynamics.

Now, consider the fundamental difference,

First law — Velocity x Newton’s law

or

Total (Thermal + Mechanical) Energy — Mechanical energy,
by subtracting Eq. (9.108) from Eq. (9.109), which yields the balance of thermal energy,

dgq¥ du
—_——

T— = 0. (9.111)
dy dy
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In terms of the Fourier and Newton laws,

B ar du

= —k—, T = p—,: 9112
gy 2 " ; (9.112)
Eq. (9.111) leads to
d { dT e\’ _
— k=] +ul—] =0 (5.113)
dy \ dy dy ;
which, for constant thermal conductivity, becomes :
a7 du -
o E(ZE) -0 (9.114)
dy k\dy :
Also, Eq. (9.107) coupled with Eq. (9.112) gives '
d*u -
— =0 ' 9.115
7 | (9.115)
subject to boundary conditions :
w(®) =0, ul®) = U, - (9.116)

£ being the boundary-layer thickness. The solution,

oy
- (2) 5 (9.117)

is the well-known velocity profile of the Couette flow. In terms of this velocity, Eq. (9.114) yields

T ut? -

-+ —= =0 (9.118)
dy k£

subject to thermal boundary conditions :
TO) = Toow T(&) =Ty {9.119)

The solution of Eq. (9.118) that satisfes Eq. (9.119) is '

y wlly{

T —Too = (T — Too)=+ —=11——]. 9.120
et () -

Clearly, depending on the viscous dissipation, the heat can be transferred to or from the wall with
a temperature higher than the ambient temperature (Fig, 9. 40) Between these cases, there is the
case of no heat transfer (insulated wall),

ar)
A : (9.121)
dy
for the case of neglected radiation, which yields the adiabaﬁ§ wall temperaiure
plU?
T = Too = —. : (9.122)

2k
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aT
al p
dy

>0

<0

&y

Figure 9.40 Adiabatic wall temperature.

This temperature may be considerably higher than the ambient temperature, depending on high
velocity (of space vehicles reaching the melting temperature of the material) or high viscosity (of
thrust bearings).
Now, we wish to determine the effect of radiation on T,. Under the influence of radiation,
the condition for insulation given by Eq. (9.121) needs to be replaced by (Fig. 9.41)
+af, - gt =0 (9.123)
or
dr
-—ch—()- — o (T} — Th) = 0. (9.124)
¥

Inserting Eq. (9.120) into Eq. (9.124), we get

k U?
-T2 )t -1 =0, (9.125)
£ 2k
For a qualitative answer, linearizing the radiation about a mean temperature Ty,
k wl? )
E Ta - Tm - '?k‘* + %waTM(Ta — Tw) = 0, (9.126)

and introducing the Planck number,

40T Emission
Py = ~ —, (9.127)
kT /8 Conduction
} 7 Ty=t qR
i %
g=0

Figure 9.41 Boundary
condition.
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<
0 1 2 3 4
&y
Figure 9.42 Radiation-affected adiabatic wall
temperature. 5
we obtain
.- T 1
LB . (9.128)
JU‘U / 2k 1 + €y P M
which shows the cooling cffect of radiation by lowering T, (Fig. 9.42). &
ExameiLe 9.14

A semi-infinite vapor layer is being condensed by convective heat loss through a partition sepa-
rating the vapor from a cold ambient (Fig. 9.43). Assuming the condensate to be transparent and
the vapor to be black, we wish to determine the rate of condensation.

In terms of Fig. 9.44, the formulation of the problem is.

181 @&T : 0129
o 8 8x? : '
T(x,0) =T(X,5) =T, (2.130)
3T (0, » :
+k = h[T(0,7) — Ty) (9.131)
+kar(x,r) A 4x | {9.132)
x| TRy '

where X is the instantaneous thickness of the condensate layer.

| [or
Cold ambient
Figure 9.43 Condensation. :
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Condensate I x X0

—

Cold ambient l 0 Partition
hy T

Figure 9.44 Unsteady condensate.

The solution of unsteady problems with moving boundaries is mathematically involved,
However, by recognizing the fact that condensation is generally a slow process, neglecting the
temporal variation of internal energy (and temperature) in Eq. {9.129), we may obtain a reason-

ab!y accurate quasi-steady solution. 'I'hLIS, Eq (9129) is replaced by
axz ( ' )

and the unsteadiness is now taken care of only via Eq. (9.132).
Equation (9.133) readily integrates to

i _ ol (9.134)
dx
T = Cx + G (9.135)
From the boundary condition of Eq. (9.130),
T, = CX + G, (9.136)
and between Egs. (9.135) and (9.136),
T~T,=Cx - X). (9.137)
o
WM
Figure 9.45 Boundary conditions. I T
{(a) Partition boundary condition, 7% Frnx

(b) interface boundary condition. (&
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Also, inserting Eq. (9.137) into Egs. {9.131) and (9.132) yields :

Ty — T

Cy = == 9.138
YT X vk (G128)
and
kT, — Twa) dax
—_— = php——, 9.139
X+kh T G159
which may be rearranged as
k kT, — T,
xax+ (S ax = K& T=) ) (9.140)
k phfs ;
The integration of Eq. (9.140), in view of X (0) = 0, yields
1 k KT, — Too)t
Ly (5)x - HT Tk = g (9.141)
2 h phfg :
whose positive root :
3 .
k k 2k(T, — Tt
x = —E g (B} 4 BT L (9.142)
h A phfg

is the instantaneous thickness of the condensate, In terms of the Biot, Jacob, and Fourier numbers
defined as

hX T, — T. % :
By =% g2 T 2
k Phyg : (k/ k)
Eq. (9.142) becomes

By = ~1+~1+2JF (9.143)
or, employing the binomial theorem for a small time £, :
By =2 JF. ; (9.144})

Now we wish to determine the effect of radiation on; the problem. For the partition

[Fig. 9:45(a)],
~gx— @m0 —gc =0 (9.45)
or

70, 1)

e [T} — T8O 0] + & -
X

= R[T(0, 1) ~ Tn], (9.146)
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and, for the (transparent) interface [Fig. 9.45(b)],

! ax
Gr=x T phfg_“ =0 (9147)
dr
or
aT (X, 1) ax
—k + php— = 0. (9.148)
ax dr

After linearization about Ty [say T, for small X, or Tj = (T + T2)/(1 + €) for large 4],
Eqgs. (9.146) and (9.148) become

ara,n

dec Ty [T, = T(O, )] + k = h[T(0,2) — T (9.149)
and
AT (X, 1) ax
k = phrg—. 9.150
ax s dt ( )

Now, insertion of Eqg. (9.137) into Eqgs. {9.149) and (9.150) yields

Ty — Too
€ = ————— (9.151)
{(L+ RX + k/h)
kC A ax (9.152)
1= pag dr * B
where
R = 4ecT3/h (9.153)

is the effect of radiation relative to convection. The elimination of C; between Eqs. (9.151)
and (9.152) leads to, after some rearrangement,

k(Tu - Too)

k
I+ RXdX + |~ 1dX =
h Ohry

dr, (9.154)
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100

10

By
0.1 ﬁ=l11 -~
\R=10
0.001 | i
0.01 0.1 1 10

Figure 9.46 Variation of By against JF.

which readily integrates to

1+ R)Bx =

B REFERENCES

JF

-1+ J/1+2(0+R)JF.

Figure 9.46 shows the variation of By versus JF for various R. For small time, Eg. (9.155) is
reduced to Eq. (9.144), as expected (why?). '

100
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1.5 COMPUTER PROGRAM APPENDIX

C ——— -
C EX9-1.F (START)

o e e e iy
PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-Z)
PI=4*ATANC1.)

SIGMA=5.67E-8

WRITE(*,*) 'EXAMPLE 9.1....'

Corwunn [ -

C INPUT DATA




Commrm o _—
WRITE(*,*) 'INPUT THE FOLLOWING DATA...'
WRITE(*,*) 'E: "

READ(*,*) E

WRITE(*,*) *T_1: C'

READC™,*) TL

WRITEC* ,*) 'T2: C'

READ(*,*) T2

[ ——— —

5ec. 9.5 Computer Program Appendix

C UNIT CONVERSION

T1=T14+273
T2=T2+273

c ANSWER

Coumim e e

WRITE(*,*) 'HEAT LOSS FROM THE BOTTLE IS’
WRITE(*,*) Q12,' W/mA2®

sToP

END

c- el ket e P

PROGRAM MATN

IMPLICIT REAL*8 (A-H,K-Z}
PI=4*ATAN(1.)

SIGMA=5 . 67E-8

WRITE(*,*) 'EXAMPLE 9.6....'

WRITEC*,*) "INPUT THE FOLLOWING DATA..."
WRITE(™,*) '"T.W: K'
READ(*,*) W
WRITEC*,*) 'TINFFY: K’
READ(*,*) TINFTY
WRITEC*,*) 'EW: '
READC*,*) EW
WRITE(*,¥) ’EQAL: '
READ(*,*) EOI
WRITE(*,*) "E_0AQ:
READ(*,*} EOO

ARWL=1/EW

Q1=STGMA* CTW**4-TINFTY**4) /ARW]
ARW2wL/EW(1/E0T+1/E00-1} /2

Q2=STCMA* (TW**4-TINFTY**4) /ARWZ
TO=(TINFTY**4+02 / (EO0* STGMA*2) ) #*0. 25
C — ——

C ANSWER

485
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Cmmm v e e e ok s - —
WRITE(*,*) 'HEAT FLUX REQUIRED FOR THE OPEN PLATE 1S’
WRITEC*,*) QL," W/mAZ' :
WRITE(*,*) 'HEAT FLUX REQUIRED FOR THE COVERED PLATE IS':
WRITECH,*) Q2,° W/mA2'

WRITE(*,*) 'LID TEMPERATURE 1S’

WRITEC*,*) T0," K’

sTOPR

END

e e ————

€ EX9-6.F (END)

Cocwa
C — e
€ EX9-7.F (START)

PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-Z)
PL=d*ATANCL.)

SIGMA=S .67E-8

WRITE(*,*) 'EXAMPLE 9.7....'

Commmmm —— a—

Crvmummun—————— -
WRITEC*,*) 'INPUT THE FOLLOWING DATA..."
WRITE(*,*) "ETA: *

READC*,*) ETA
WRITEC*,*) 'ESAL: '
READ(*, %) EST
WRITEC*,*) 'E.5AQ: °
READ(*,*) ESO
WRITEC*,*) 'TJINETY: C'
READCY,*) TINKFTY
WRITE(®,*) 'RW: an’
READ(*,*) RW
WRITE(*,*) *EW:
READ(*,*) EW
WRITEC*,*) 'U:s Mi/mA3’
READC*,*) U
WRITE(C*,*) 'RS: em’
READC*,*) RS

Cmmm e —— -

€ UNIT CONVERSION

C-n i mmm————
TINFTY=TINFTY+273
Rw=0, 01 *RW
UnlEG#U
RS=0,01*RS

C- —_— - ——— -

C CALCULATION
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(e e ———
ARW1=1/EW
TWL=CARWL*U*RW,/ (2*SIGMA) +TINFTY**4)**0 .25
ARW2=1/EW+(L-ETAY™* (RW/RS) / (ETA+1/(1/EST+1/ESO-1))
TW2=(ARW2 *U*RW/ (2*SIGMA) +TINFTY*#4) #*0 .25
EBW=SIGMA*TWZ **4
BW==EBW- (1-EW) /EW* (U*RW/2)
A2 *PT*RW
EBINFTY=SIGMA*TENFTY**4
UH=AW*ETA* (BW-EBINFTY)
QWINFTY=U*PT*Ru+*2
QS=QWINFTY-QH
BSI=BW-QS/ (AW* (1-ETAY)
AS=2*PT*RS* (1-ETA)
FSINFTYI=ETA* (1-RW/RS)
QSH=(BSI-EBINFTY) *AS*FSINFTYI
055=Q5-QSH
EB5=BSI~(1/EST-1)*Q5S/AS
TS=(EBS/SIGMAY*¥0, 25

L e e e ———
WRITE(*,*} "HEATER SURFACE TEMPERATURE WITHOUT SCREEN IS’
WRITEC*,*} Twl,' K’

WRITE(*,*) "HEATER SURFACE TEMPERATURE WITH SCREEN IS*
WRITE(®,*) Tw2,’ K’

WRETE(*,*) "TEMPERATURE RISE WITH SCREEN (ETA=",ETA,') IS’
WRITE(*, *) TW2-TWL,’ K*

WRITE(*,*) °$CREEN TEMPERATURE IS'

WRITE(*,*} TS,' K*

$TOP

END

e e e e e e

PROGRAM MAIN

IMPLICIT REAL*E (A-H,K-Z)
PI=4*ATAN(L.)}

SIGMA=S.67E~8

WRITE(*,*) 'EXAMPLE 9.8....°

C INPUT DATA

Camm et o -
WRETE(*,*) *INPUT THE FOLLOWING DATA...'
WRITEC*,*) 'D: m’

READC* ,*) D

WRITE(",*) "T.W: C"

READ(C*,*Y TW

WRITE(*,*) 'EW: '

READ(C*,*) EW

WRITE(*,*) *T_INFTY: C’

READC* *) TINFTY

o, —— ————

C UNIT CONVERSION

c- - - —— -
TwWe=TW+273

TINFTY=TINFTY+273

G CALCUILATION
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AW=PI*D**2/4

QWINL=AW*EW*STCMA* (TW**4~TINFTY**4)
FWINFTY=0.17

RWIN2=(1/EW-1+2/ (1+FWINFTY)) /AW
QWINZ=STGMA* (TW**4-TINFTY**4) /RWIN2
EBW=SIGMA*Tw*4

BW=EBW- CQWINZ /AW) * (L~EW) /EW
BINFTY=SIGMA¥TINFTY**4
FWS=1-FWINFTY
BS=(BW-FWINFTY*BINFTY-QWIN2/AW) /FWS
TS=(BS/SICMA) **0.25

C ANSWER

C e e St et i e e

WRITE(*,*)
WRITE(Y,*)
WRITE(*,*)
WRITE(C*,*)
WRITEC*,*)
WRITEC*,*)
WRITE(", ™)
WRITE(*,*)
STOP

END

'RADIANT HEAT TRANSFER FROM THE DISK TO THE AMBIENT'
"WITHOUT THE INSULATED SHELL IS'

QWINL,' W'

*RADIANT HEAT TRANSFER FROM THE DISK TO THE AMBIENT’
'WITH THE INSULATEP SHELL IS’

QWINZ,* W’

"SHELL TEMPERATURE IS’
T5-273," ¢’

C EX9-9.F (STARTY

c-

PROGRAM MAIN
IMPLICIT REAL*8 {A-H,K-Z}
PL=4"ATAN(CL.)
SICGMA=5 .67E-8

WRITE(*, %)

TEXAMPLE 9.9...."7

C INPUT DATA

Coem
WRITEC*,*)
WRITE(* %)

READC*,*) D

WRITE(*,*)

'INPUT T‘.‘-IE FOLLOWING DATA FROM EX, 9.8...°
N H

Tw: O

READC*,*) TW

WRITECH, *)

TEMW: !

READ(®,*) EW

WRITE(*,*)

TTANFTY: C7

READ(*,*) TINFTY

WRITE(*,™)
WRITEC*,*)

'INPUT THE FOLLOWING DATA FROM EX. 9.9...°
g g, 0

READ(*,*) ES

[

C UNIT CONVERSION

Cmmmm

TW=TW+273

TINFTY=TINFTY+273

C

C CALCULATICN
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AW=PT*D**2 /4
AINFTY=AW
AS=4*ATNFTY
FWINFTY=(0,17
FITYSI=1-FWINFTY
FSITYO=]
RHOS=1-ES
R1a1l/(AINFTY*FITYST+1/ (2*RHOS/ CAS*ES)+1/ (AS*FSITY0)))
FWS=1-FWINFTY

R2=1/ CAW*FWINFTY+1/ {1/ CAW*FWS)+R1))

RHOW=1-EW

RWINFTY=RHOW/ (AW*EW}+R2

EBW=STGMA*TW 4

EBINFTY=SIGMA*TINFTY#**4

QWINFTY=(EBW-EBINFTY) /RWINFTY

WRITE(*,*) 'RADIANT HEAT TRANSFER FROM THE DISK TO THE AMBIENT'
WRITE(*,*) 'WITH THE NON-INSULATED SHELL IS’

WRITEC*,*) QWINFTY,' W'

STOP

END

PROGRAM MATN
IMPLICIT REAL*S (A-H,K-7)

REAL A(3,3),Q(3).0Q0(3),B(3)

PI=4%ATAN(1.)

SIGMA=5 . 67E-8

WRITE(",*) "EXAMPLE $.10....°

C.___... ______________________

€ INPUT DATA

Cm—mmstmte e —— S
WRITEC*,*) "INPUT THE FOLLOWING DATA...'

WRITECH ,*) 'T_1: K’

READ(®,*) T1

WRITECY,*) 'T.2: K’

READ(*,*) T2

WRITE(*,*) "E_1r '

READ{*,*) E1

WRITE(*,*) 'E2: '

READ(*,*) E2

WRTTE(*, %) "TINFTY: K’

READC*,*) TINFTY

Crmmam e e - —_——
C  MATRIX: EQS. (9,93}, (9.91), AND (9.92) WITH AQ=B

489



Chap.9 Enclosure Radiation

oo e e ———

Fl2=0.2

Fl3=1-F12

F23=1-F12

F31=A1*F13/A3

ACL,1)=1/F12

A(L,2)=1/F23

A(L,3)=-1/F31

A(Z,1)=-(1-E2) /ER*(AL/A2)

AQZ,2)=(1-E2) /E2+1/F23

ACZ,3)=0

A(3,1)=-(1-E1}/E1

AC3,20=0.

A(3,3)=-1/F31-{1-EL) /E1*(A3/AL)
EBLaSIGMA%T LY ¥4

EB2=STCMANT2¥¥4

EB3=SIGMARTINFTY**4

B(1)=0

B(2)=EB2-EB3

B(3)<EB3-E8L
C ———— —
¢ ITERATION
Cormmmmmm ———— —_ —_——
Do 10 I=1,3

Q(I)=1.

QoCD=1.
10 CONTINUE

DO 20 I=l,1000

ERRMAX:a1E-10

QL= (B (1) -ALL, 2)*Q(2) -A(L, 3)*Q(3)) /ACL, 1)
QC2)=(B(2)-AC2,1)*QC1)-A(2,3)*Q(3)I/AL2, )
QCE)=(B(3)-AL3, 11 Q1) -A(3,2)*Q(2) /A3, )
DO 30 3=1,3

IF(Q0{3).NE.0) ERROR=ABS((Q{I)-Q0¢3))/Q0{IM
Q0 (23=Q(3)

IFCERROR.GT.ERRMAX) ERRMAX=ERROR

30 CONTINUE

IFCERRMAX.LT.0.0001) GOTG 939
20 CONTINUE
999 QPL=(AL*QCL)+A3*Q(3))/AL
QPZ=(A2*Q(2)-AL*Q(1) /A2

O - ——— - -

(e e I
WRITEC*,*) 'RADIANT HEAT FLUX Qi, Q2, AND Q3 ARE’
WRITEC*,*) Q(1),Q€2),Q(3)," w/mA2’

WRITEC*,*) 'RADIANT HEAT LOSS FROM PLATE 1 IS'
WRITE(*,*) QPL," W/ma2'

WRITEC*, %) *RADIANT HEAT LOSS FROM PLATE 2 IS'
WRETE(*,*) QP2," W/mAZ®

STOP

END

Cmmmim i —— -

C EX9-10.F (END)

(b cae. — ———

Commm -
C EX9-11.F (START)
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C....... __________________

PROGRAM MAIN

IMPLICIT REAL*8 (A-H,K-Z)

REAL F(3,3),E(3},8(3),B0(3)

Prad*ATANCL.)

SIGMA=S.67E-8

WRITE(*,*) 'EXAMPLE 9.11....°

C - P o et ety
C INPUT DATA
Lot o o o e e o 1 e —-— -
WRITEC*,*) 'INPUT THE FOLLOWING DATA FROM EX. 2.10...'
WRITEC*,*) 'T.1: K’

READ(%,%) T1

WRITECY,*) 'E1: '

READ(C*,*) E1

WRITE(®,*) "E2: '

READ(*,*) E2

WRITEC*,*) "TIINFTY: K*

READ(*,*) TINFTY

WRITEC*,*> "INPUT THE FOLLOWING DATA FROM EX. 9.11...°
WRITEC*,*) 'Q2: W/mAZ'

READ(*,*) Q2
T e S S p—

A3=4

F(1,1)=0

F(L,2)=0.2
F(1,3)=0.8
F(2,1)=0.2
F(2,2)=0.
F(2,3)=0.8
F(3,1)=F(1, 3)*A1/A3
F(3,2)=F(2,3) *AZ/A3
F(3,3)=0

E(1)=F1

E(2)=E2

E(3)=1
EB1=SYGMA*T1*¥4
EB3=STOMAYTINFTY#*4

. m—— —

Comm e —— —

DO 10 I=1,3

B(I)=1.

BO(I)=1.

10 CONTINUE

DO 20 I=1,1000

ERRMAX=1E~10

B{L)=EC1}*EB A+ (A-E(L)* (BLII*F(1, 1)+B(2)*F (1, 2)+B(3)*F(1,3))
BC2)=Q2+(BCL)*F(2,1)+BC2)*F(2,2)+B(3)*F(2,3))

B(3)=E(3) *EB3+(1-E(3))*(BCLI*F(3., 1)+B(2)*F (3, 2)+B{3I*F(3,3)
DO 30 J=1,3

IF(BO(I).NE.0) ERROR=ABS((B{J)-B0CI3)/B0O{I))

BO(I)=B(1)

IFCERROR.GT.ERRMAX) ERRMAX=ERROR

30 CONTINUE

TFCERRMAX.LT.0.0001) GOTO 999
20 CONTINUE

999 QP1=(EB1-B(1))/((1-EC1L))/E(1))

EB2=B (2)+Q2* (1-E(2)) /E(2)

T2=(EB2/SIGMA)**0 25

491
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WRITE(*,*) 'RADIOSITY Bi, B2, AND B3 ARE'
WRITEC*,*) BC1),B{2),B(3)," W/mAZ’

WRITE(*,*) "RADIANT HEAT LOSS FROM PLATE 1 IS”
WRITE(C*,*) QPL," W/mAZ'

WRITE(*,*) *SURFACE TEMPERATURE OF PLATE 2 IS'
WRITE(*,*) T2," K’

s5TOP

END

IXERCISES

9.1 The cover plate of a solar collector has negligible absorptivity (Fig. 9P-1). Show that the
fraction of the energy incident on the upper surface and transmitted through the lower
surface is (1 — p)/(1 + @).

N
(1-p) p(l-p)

\(1—9)2\

Figure 9P-1

$.2  Afraction of the solar energy incident on the lower surfacé of a cover plate is transmitted to
the absorber plate of a collector (Fig, 9P-2). Show that the fraction of the energy absorbed
by the absorber is Te/[1 — (1 — a)p].

Cover

TNl ~a)r Flow

77 T 7 Absarber
=N

Figure 9P-2




9.3

9.5

9.6

Exercises 493

What provides the effect of radiative insulation in Ex. 9.1? Repeat the example for ¢; =
€ = € == 1. What is your conclusion?

T
For an insulated surface, using the definitions of emissivity and radiosity, show that
B = G = E,.

What is the effect of € of this surface in an enclosure?

Reconsider the definition of view factor given by Eq. (9.10). Show that the view factor
between a differential surface dA; and surface A, is reduced to

.'ITI‘2

f COs ¢ cos ¢rd Az
Fp= | -7
Az
and the reciprocity relation becomes

dA1F2 = AdFoy.

Show that the view factor between two (one differential, one finite) parallel concentric
disks (Fig. 9P-3) is given by

Fupp = 282

_£2+R2.

/’-\/Ez + R%dr R?
3
¢ r

Figure 9P-3
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9.7  Discuss the view factors of the following cases (Fig. 9P—4) in terms of the available charts:

(&

Figure 9P-4

9.8 The view factors between parallel surfaces infinitely long in one direction may readily be
obtained by Hottel’s “string rule.” For two such surfaces (Fig. 9P-5),

(c+d)—(a+b).

Fiz =
12 245

where ¢ and d are the diagonal (crossed) strings between the extremities of the two sur-
faces, @ and b are the lateral (uncrossed) ones, and £ is the length of the first surface.
Use this method to determine Fiz for the following configurations: (a) parallel plates,
(b) perpendicular plates, {c) parallel cylinders.
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==
1
[]
b
I
1 2
i !
(@ ®
| ! 2
d=1
I 1 1‘2
© ]
!
|
Figure 9P-5

9.9  An optical instrument is modeled as a spherical cavity of diameter D, inside 2 metal block
at temperature T and surface emissivity ¢ (Fig. 9P-6). The cavity radiates to an ambient
at T through a small opening of diameter Dy and of negligible length. The effective
emissivity of the cavity, €.y is defined by

Radiation leaving cavity = €egAo(T* — T%),

where A; is the opening cross-sectional arez. Determine e as a function of ¢, D,, and

Dy. What happens to €. as D./Dy increases? What is the effect of an odd-shaped cavity
on the answer?
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910 The radiation from an infinitely long flat plate to an ambient is to be controlled by an
infinitely long and electrically heated flat screen (77 == Anotes/ Atotatarea). The plate and
ambient temperatures are T, and T, respectively (Fig. 9P-7). The emissivity of the plate
and screen are €, and ,, respectively. Show the effect of the screen on the radiant heat
transfer from the plate. :

M TP {"Y'V"V"\_'_
& &l
]
|
1
1m T -
t
'
1
1
Plate L : Screen
Pyt
Figure 92-7

911 Consider two large parallel plates with uniform temperature T3 and Tz and emissivity
¢. Place two flat partitions with the same emissivity between the plates. Show that the
radiation between the plates is reduced by a factor of 1/3. Generalize this result to the
case of n partitions. :

912 Consider two large parallel plates with uniform temperature 7; and T; (Fig. 9P-8). Place
two flat screens (7 = Ancles/ Atonalarea) between the plates. All surfaces have the same
emissivity, €. Determine the radiation between the plates refative to that without screens.

)

Figure 9P-§

9.13 Calculate the surface temperature of a hemispherical radiant source with ¢; == 0.8 losing
energy at the rate ¢ = 1 kW/m? to an ambient at temperature To, = 10°C (Fig. 9P-9).
Find the temperature of the refector,
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. w=10°C
—
g’ =1 KW/m?
e
Reflector

Figure 5P-9

9.34 Consider a cylindrical shell with D/H = 1 at a uniform temperature T,, = 300 °C (Fig. 9P—
10). The inside and outside emissivity of the shell is ¢ = 0.5. Calculate the radiant heat
transfer from this shell to the ambient at temperature T, = 20 °C.

Figure 9P-10

9.15 A thin metal plate of height £ is kept at a uniform temperature 73 = 800 °Cinan ambient at
temperature T, = 10°C (Fig. 9P-11). The emissivity of the plate is ¢; = 0.8, (a) Find the
net radiation between one side of the plate and the ambient. (b) The plate is surrounded
by an insulated semicylinder, as shown in Fig. 9P-11, with £/r = 1. Find the net radiation
between the whole plate and the ambient.

€=08 / Ur=1
T, =10°C —_

€11 &

T,=800°C

(a) (b)
Figore 9P-11
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9.16 Aheatflux g” is applied toa disk of diameter D and emissivity €. The ambient temperature

9.17

9.18

is T (Fig. 9P-12). Neglect the effect of convection. (a} Evaluate the temperature of the
plate. (b} Repeat part (2) after placing a hemispherical cup of diameter Dg and emdissivity
¢g on top of the disk as shown in Fig. 9P-12.

Tw

e, I'="?

(2)
Figure 9912

Electrical power 50 W is supplied to a plate of 0.1 m? area (Fig. 9P-13). The emissivity
of the plate is €, = 0.5. The ambient temperature is T, = 10 °C. Neglect the effect of
convection. (a) Find the temperature of the plate, T,,. (b) The same amount of power
is supplied to a screen of identical apparent area. The wire area of the screen is 4, and
A;/A = 0.2, The emissivity of the screen is ¢ = 0.5. Fiud the temperature of the screen
wire.

Hot gases at T, = 47 °C flow in a pipe of 5 cm diameter (Flg 9P-14). For safety reasons, a

radiative msulanon is being considered by covering the pipe with a thin concentric metal
shell. The emissivities of the pipe and shell are €, and ¢, respectively. The ambient
temperature is T, = 27 °C. (a) Neglecting the effect of convection, find the temperature
of the shell and the reduction in heat loss to the ambient for €, = ¢; = 0.1, and fore, =1
and ¢; = 0.1. (b) For the same reduction of part (a), detenmne the required thickness of
an asbestos insulation.
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Figure 9P-14

9.19 The inside emissivity of a closed, empty, cylindrical container is desired. A heat source
and some insulating material are available. Construct a simple experiment that would help
you evaluate this emissivity. Assume that the outside emissivity is known.

9.20 The surface temperature of a disk of diameter D; = 10 ¢m is kept at Ty = 500 K. The
emissivity of the disk is e; = 0.8 (Fig. 9P-15). (a} Find the radiant heat transfer from one
side of the disk to an ambient at temperature T, = 300 K. (b) The disk is attached to

an insulated cone section (Dq/D; = 1/2, L = 10 cm). Evaluate the change in the heat
transfer from the disk.

Insulated cone

T=30K

Dy

Figure 9P-15

9.21 The surface temperature of a cylinder of diameter D = 2R and emissivity €, is to be kept
at T, (Fig. 9P-16). (a) Find the radiant heat transfer from the cylinder to the ambient.
(b) Let three different insulated radiation shields separately surround the cylinder. For
each case, find the view factors and the radiant heat transfer.
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Figure 9P-16

922 A longsolid cylinder of radius R, emissivity ¢, and temperature T, radiates steadily to an
ambient at temperature Too. (2) Find the steady energy loss by radiation from the cylinder.
(b) Repeat part (a) after placing a radiation shield near theicylinder as shown in Fig. 9P-17.

Radiation
hield
SEENE

(a} (®)
Figure 9P-17
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A spherical satellite of diameter Dy, = 1 m and an emissivity €. = 0.7 is placed at a
distance of 1.5 x 10** m from the sun (D, = 1.4 x 10° m). The sun and space are at 5800
K and 0 K, respectively. (a) Show that the view factor is

.20
Faws = Slﬂz -

where ¢ is the angle between two tangents drawn from the center of the satellite to the
sun. (b) Replace the sun by a disk (D; = D;} facing the satellite and having the same
diameter as the sun. How does the view factor differ from that of part (a)? (c) Find the
temperature of the satellite.

The satellite of Prob. 9.23 is now placed 300 km above the dark side of the earth. Treating
the earth as a black body with diameter D, = 1.3 x 107 m and temperature T, = 300
K, (a} compare the exact view factor [Prob. 9.23(a)] with that of the disk assumption
[Prob, 9.23(b)], (b) Find the temperature of the satellite,

The sketch represents part of a system to be placed in orbit about the earth (Fig. 9P-18).
Surfaces 1 and 2 are long concentric cylinders with a vacuum in between. Surface 1 is
heated internally by an electrical heater and has an emissivity of ¢; = 0.7. Surface 2 is
a thin sheet metal with €5 = 0.9. The lower half of surface 2 is insulated on the outside,
while the upper surface is exposed to space, which may be considered black at 0 K. The
uninsulated upper surface of 2 is to be maintained at a temperature of 60 °C, {a) Find the
power input required per unit length of cylinder 1. (b) Find the operating temperature of
cylinder 1.

Figure 9P-18

For a lunar colony to.be established on the moon, the intensity of the solar radiation at
high noon is a concern (Fig. 9P-19). A “sun shade”, consisting of two thin metal plates
separated by insulation, is 4 m by 4 m square and is mounted parallel to and 2 m from the
lunar surface. The solar radiation is perpendicular to the lunar surface and parallel such
that a shadow 4 m x 4 mis cast beneath the shade. The moon’s surface acts as a reradiating
surface. The irradiation from the sun is G = 1,400 W/m?, while it may be assumed that
space behaves as a black body at 0 K. Find temperatures 7, T3, T3, and T3. T} is the
temperature of the lunar surface far from the shade.
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RRRRENSY

Insulation Metal plate (e, =04, T

G

! Sun shade (T7)

Lunar surface (g, = 0.6, T}

Figure 9P-19

9.27 Anoil pipeline (1 m O.D. with T cm thick wall) crosses a very large flat desert and is parallel
to and 1 m above the ground (Fig. 9P-20). Because of a system failure, the oil stops flowing
in the pipe. The effects of any supports may be neglected. (2) Find the steady temperature
of the sand surface, ignoring the presence of the pipe. (b} Assuming the sand behaves as
a black-body with a uniform temperature of 97 °C, find the steady temperature of the oil.

VL] ] e

S=1cm Dp=1m
Tyr=47°C
Oil
lm :
a={(.8 Desert sand
77 7 A
Figure 9P~20

9.28 large heat-rejection radiators (a heat exchanger or condenser) of advanced design are
needed for future systems where large amounts of power will be generated in space
(Fig. 9P-21). Because of their weight, the conventional flat plate, tube and fin heat ex-
changers severely limit maximum power levels and are discouraged from consideration
as a space power-generation technique, Accordingly, the development of novel low-mass
heat-rejection systems is of major importance for the future of high-power space systems.
The moving-belt radiator (MBRY} is an example for such systems. Evaluate the heat rejec-

tion from an MBR in terms of the nomenclature of the figure.
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9.29 Energy " = 10° W/m® is generated in a flat plate of thickness 2¢ = 2 cm (Fig. 9P-22).
‘This energy is steadily transferred by radiation to an ambient at temperature T, = 27 °C.
The thermal conductivity and surface emissivity of the plate are & = 40 Wim-K and
€y = 0.8, respectively. (a) Evaluate the surface and midplane temperatures of the plate
(say Ty, and Ty, respectively). (2) A solid screen with emissivity ¢g = 0.2 is placed on both
sides of the plate. Reevaluate 7, and Tj. (c¢) The screen of part (b) now has holes with
71 = 0.8 = Anoles/ Atotal screen area- Reevaluate T, and 7.

2!

(a)

21
)]

9.30 Airisflowing in a long metal duct 0.4 m in diameter at 5 m/s. The duct hasa temperature of
100 °C, and its emissivity is 0.9. A temperature-measuring device in the center of the duct
has the shape of a sphere 5 mm in diameter and has an emissivity of 0.7. Its temperature
is indicated to be 278 °C. For steady-state conditions, estimate the true temperature of the

air in the duct.
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9.31

9.32

A transparent spherical shell of inner radius 7; and outer radius g is filled with water. The
shell is suspended such that on one side and away from it is a very large wall of emissivity
€&, and temperature T,,. The water is at its freezing point, and the pressure inside the shell
is 1 atm. The ambientis at T,. For ry = 0.8 cm, 1y = 1.0 cm, T, = —50°C, ¢, = 0.8,
T, = —20°C, hyr = 333.4 ki/kg, determine the rate at which the water freezes (a) for
stagnant ambient, (b) for an air velocity of 10 m/s. '

A square copper plate of thickness § having the initial temperature Tp is dropped into an
evacuated vertical chamber (Fig. 9P-23) whose walls are maintained at a constant tem-
perature T, (3> To). Using the data given below, compute the temperature of the plate
when it reaches the bottom of the chamber. Ly == 10 em, Lz = 10 m, o = 8,000 kng’rn3

= 400 Jkg-K, €1 = 0.8, ¢ = 0.4, § = 0.5 cm, D2—3m T, =1,000°C, I =15°C,

= 6.81 m/s?.
s s 77
Ll
1~ L j
4
Ly
Evacuated chamber

D, ?
T R,

Figure 9P-23

RN

DR

I\

9.33 Consider an ordinary light bulb (Fig. 9P-24). For P = 200 W, p = 2,500 kg/m®, ¢, = 800

ke K, § = 0.4 mm, & = 0.10 (emissivity), T, = 20 °C, D = 8 cm. (a) Calculate the
steady surface temperature of the lighted bulb. (b) Find the time required for the surface
temperature of the bulb to reach this steady value. (c) How would you modify your analysis
for a fluorescent lamp?
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Figure $P-24

9.34 Two thin-walled glossy (shiny) metal cylindrical containers 10 em in diameter by 12 cm
long are suddenly filled with water at T = 95 °C. Assume that the temperature of the
water in each container always remains uniform. One container is covered with a layer of
asbestos 172 mm thick (k = 0.151 W/m-K). The ambient is at 20 °C. Find the temperature
in each container after 5 minutes.
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GAS RADIATION -~

In the preceding chapter we discussed radiation in enclosures filled with gases at low
temperatures. Recognizing that most monatomic and diatomic gases, as well as air, are
transparent at these temperatures, we assumed the radiation energy exchange among
the enclosure surfaces to be unaffected by the presence of these gases. At elevated
temperatures, gases no longer remain transparent and become to some degree opaque.
Then they start participating in the energy-exchange process by absorbing, and emit-
ting (and sometimes scattering) this energy. Important technological problems such as
the furnaces of steam boilers, diesel engines, nuclear explosions, plasma generators for
nuclear fusion, rocket propulsion, hypersonic shock at elevated temperatures, and ab-
lating systems involve the effect of gas radiation. Although some of these problems are
relatively new, the absorption of solar radiation in the atmosphere has been receiving
attention for about a century and is an example of gas radiation. The technological
importance of gas radiation was first recognized during the early part of this century
in connection with the heat transfer inside boiler furnaces. The radiation energy emit-
ted by flames in furnaces and in diesel-engine combustion chambers depends not only
on the gaseous emission but also on the heated carbon (soot) particles formed within
flames. :

Both technological and atmospheric radiation are mostly associated with water
vapor and carbon dioxide, which are significant emitters and absorbers. Other exam-
ples of gases of significant emission and absorption properties are carbon monoxide,
sulfur dioxide, ammonia, and hydrogen chloride. In general, radiation occurs over a
number of discrete bands of the electromagpetic spectrum (recall Fig. 8.2). However,
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Figure 1.1 Absorption bands of CO; and H,O
vapor (from Rohsenow and Choi [9]). Used by
permission.

there is a difference between the spectral behavior of opaque solids and gases. As
shown in Figs. 8.16 and 8.17, the wavelength dependence of radiation properties for
these solids is quite smooth, except for some cases which may be somewhat irregular.
Gas properties, on the other hand, exhibit a very irregular wavelength dependence.
Figure 10.1 illustrates this fact in terms of the absorption bands of carbon dioxide and
water vapor. Actually, the radiation emitted or absorbed by a solid happens within the
volume rather than the surface of the solid. The physics of radiation has consequently
a common foundation for all media. The spectral differences are caused by the variety
of energy transitions, which can best be explained in terms of quantum mechanics. This
goes, however, beyond the scope of this text.

For the radiation properties of gases, and for the effect of radiation on the balance
of thermal energy, we need to know the equation governing the balance of radiation
energy. The next section is devoted to the development of this equation.

BALANCE Of RADIATION ENERGY

Problems involving gas radiation are significantly more complicated than those involv-
ing conduction, convection, and/or enclosure radiation. Consequently, the following
discussion is restricted to one-dimensional problems.

Consider a one-dimensional optical system involving an absorbing and emitting
medium (Fig. 10.2). The effect of scattering, which may be important in combustion
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Figure 10.2 Balance of one-dimensional
monochromatic radiation energy.

problems, is neglected. The halance of monochromatic radiation energy for the optical
system gives :
8l

2 = E, — A, : ' (10.1)
as

where I, is the monochromaticintensity and E, and A, denote respectively the monochro-
matic emission and absorption of radiation per unit volume. Equation (10.1) applies
to unsteady as well as the steady problems. The effect of unsteadiness on Eq. (10.1),
being inversely proportional to the velocity of light, is negligible. Details of this fact,
however, are beyond the scope of this text. :

Introducing the monochromatic absorption coefficient,

Ky = Ay/I;, (10.2)
Eg. (10.1) may be rearranged as
ar, :
— = E, — L. 10.3
3s P R O (10.3)

Under radiative equilibrium, the radiation is uniform in space and 915 /8s = 0. Then
Eq. (10.3) reduces to o

Ex =l (10.4)

where I? = Ej, /n according to Eq. (8.19), and Ejp; is ;given by Eq. (8.34).
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For nonequilibrium problems involving radiation, assuming local equilibrium for
the emission of radiation and inserting Eq. (10.4) into Eq. (10.3) yields
' ol
—— L —1rn, 10.5
3% sex, (I3 k) (10.5)
which is the balance of monochromatic radiation energy (this balance is often referred to
as the transfer equation). Equation (10.5) plays a pivotal role in radiation problems. It
is useful for the evaluation of radiative properties and for the evaluation of the radiation
heat flux by which the thermal energy balance is modified.

RADIATION PROPERTIES OF GASES

The radiation properties of weakly absorbing fluids are usually determined by the ex-
perimental setup shown in Fig. 10.3. The fluid fills a container with two windows. One
of the windows faces a known radiation source (say a black body) and the other faces a
spectroscope which resolves the radiation beam. The container at a uniform pressure
and temperature provides a uniform density and absorption coefficient.

Under steady conditions, the integration of Eq. (10.5) results in

I} — Li(s) = Ce™, (10.6)
Yetting I) = L,(0) for s =0,
II—5LO)=C,
and using this result in Eq. (10.6) yields, after some rearrangement,
L(s) = I7 (1 — ™) + L(0)e™, (10.7)

Now, inserting s = L into Eq. (10.7) gives the monochromatic intensity of the radiation
at the container exit,

LAL) = I{ (1 — e7™5) + L(0)e™ 4, (10.8)

where the first and second righthand terms respectively show the emission and absorp-
tion of the radiation within the container (why?). If the temperature of the black body
is small compared to that of the container fluid, 1, (0} <« 77 and Eq. (10.8) reduces to
its emission term,

LL) 2 I7(1 = ek, (10.9)

Black body Specimen container

— \ . / al Resolution

—_I;_J Measuremment

Figure 10.3 Setup for measurement of
monochromatic radiation.
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If the temperature of the container fluid is small compared with the temperature of the
black bedy, I7 <« 1,(0) and Eq. (10.8) reduces to its absorption term,

L(L) 2 L©e™E, (10.10)

Defining the monochromatic emissivity €, as the ratio of the monochromatic
intensity of radiation leaving the fluid relative to the monochromatic intensity of the
black body at the same temperature, we have from Eq. (10.9}

6 = LI =1— ™k (10.11)

Also, defining monochromatic transmissivity 7, as the ratio of the monochromatic in-
tensity of radiation leaving the fluid relative to the monochromatic intensity of radiation
entering it, we get from Eq. (10.10) :

7 = L(L)/L0) = et (10.12)
Clearly, from Egs. (10.11) and (10.12), '
€, = 1 -1 =, (10.13)

where o, is the monochromatic absorptivity of the fluid, and the Kirchhofflaw continues
to hold for the fluid. :

Since gases are the most frequently encountered absorbing media in engineering
and environmental problems, further discussion on the radiation properties of fluids
is confined to gases. We are mainly interested in the total effect of radiation, which is
obtained by asummation of each wavelength of significance. Introducing the monochro-
maticmass-absorption coefficient «} = ,/0,andnotingthat p ~ p for gases at uniform
temperature,

s "
Ky = pK) = pKi.

Then, we have from Egs. (10.12) and (10.13) the total emissivity of the gas component

at partial pressure p, :
S L(@eaPE

* ;
Y no
- |

Hottel! has developed a series of charts from experimental data for the total emissivity
of various gases. Figures 10.4 and 10.6 show those for CO, and H, O vapor at 1 atm total
pressure and negligible partial pressure. Similar charts are available for CO, NHj and
SO,. The emissivities obtained from these figures are multiplied by the factors given
in Figs. 10.5 and 10.7, which correct for departures from 1 atm total pressure. Note that
these figures employ English (°F, ft) rather than SI (metric) unpits.

e=1-—

(10.14)

1 Figures 10.4 and 10.6 are adapted from H. C. Hottel and R. B. Egbert, AICHE Trans. 38, (1942).
Used by permission. Figures 10.5,10.7, and 10.8 are adapted from H.C. Hottel, Ch. 4 of Heat Transmission,
3d ed. By W. H. McAdams, McGraw-Hill, New York, 1954. Used by permission.
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Figure 10.4 Emissivity of CO, at 1 atm total pressure
and small partial pressure. From McAdams [25].

Now, consider a gas of thickness L and temperature T, exchanging radiant energy
with a black surface at temperature T;. The gas emissivity €, is obtained from Figs. 10.4
and 10.5 for CO; and Figs. 10.6 and 10.7 for H,O vapor. For example, the value of ¢,
(T;, pgl) from Fig. 10.4 multiplied by the correction factor C; from Fig. 10.5 includes
the effect of CO, pressure on the gas emissivity,

2.0

co
152 f‘f;
e
é‘g S pl-Z5fam
o o i 1.0
w—_——= —os
e =
i 005
0.4 )
03 — "] 0002
0.05 0.08 0.1 02 03 05 0810 20 3.0 50

p, Total pressure, atm
Figure 10.5 Correction factor for converting emissivity of CO3
at 1 atm total pressure to emissivity at P atm total pressure.
From McAdams [25].
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Figure 10.6 Emissivity of H,O vapor a;n 1 atm total
pressure and small partial pressure. From McAdams [25].

Under equilibrium, T, = 7; and ¢, = ¢,. Undér nonequilibrium, T, % T and
the following empirical relation holds: -

0.65 :
tes = C¢ (%) € (T.n pc;L %) (10.15)
18 H,O | ! Q
:: P L= 0005 ft a.t\m!z%
L2 7
Lo ] 1N/
Cw 0.8 / 0'25{ //
06\ oL
W 27/
02 ;// i 100/}
Oo 0.2 04 06 03 10 12
p,+P :
Ty

Figure 10.7 Correction factor for converting emissivity of H; O vapor at
1 atm total pressure to emissivity at P atm total pressure. From
McAdams [25]. :
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Figure 10.8 Correction to gas emissivity resulting from spectral
overlap of CO; and HyO vapor. From McAdarms {25].

for CO,, and

0.45

T : T

Qus = Cy (Fg) €w (T,, pr}i) {10.16)
& g

for H,O, where ¢, and ¢,, are obtained from Figs. 10.4 and 10.6 at T, and C,, C, are
the correction factors from Figs. 10.5 and 10.7. When both CO, and H, O vapor exist in
a mixture, the emissivity is less than the sum of emissivities evaluated for each gas alone
because of the overlap in bands. Figure 10.8 gives the amount of correction Ae¢ to be
subtracted from the sum of emissivities. Thus, for a mixture of CO; and H; O vapor,

€ = € + €y — Ac. (10.17)

ExameLe 10.1

The exhaust gases from a combustor burning a hydrocarbon fuel aré at p=4atmand T, =
1200 K. The exhaust-gas composition is 15% CQ,, 7.5% H3Q, and 77.5% N;. We wish to
determine the emissivity for a path length of L. = 1 m and the absorptivity for radiation from

a black wall at 7, = 600 K. Assume that the nitrogen is transparent and has no effect on the
radiation.

For T, = 1200 K = 1700 °F, the partial pressure of CO; is p, = 0.15 x 4 = 0.6 atm,
Pel = (.6atm x 1m = 0.6m.atm = 2ft-atm,
for the water vapor, p, = 0.075 x 4 = 0.3 atm,

1ft-atm.

1R

Pul = 03atm x 1m = 03m.atm
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In order to use Figs. 10.4-10.8 we need

(pe + pu)L = 3ftam

e+ pw 06403
Pt Po = 0.225

P :

0.3 :
Po = 0333

Pe + Pu 0.6 +03

w + 03+ 4 :

Po TP _ =215,

2 2

from Figs. 10.4 through 10.8,
€ =018 C.=11:

€, =019, C, =16

and
Ag 2 0.05.
Then :
eg == Ccfc + Cwew - Aé:
ar .

€ = 1.1 x 0.18 + 1.6 x 0.19 — 0.05 = 0.452.

In order to get the absorptivity, we need to use Eqs. (10.15) and (10.16), then correct the total
absorptivity using Ae from Fig. 10.8. For :

PeL(T/Ty) = Lft-atm, pyL(T,/T,) = 0.5ft-atm

0.65 045
B) opsoas, () oo o
I 1

from Figs. 10.4 through 10.8,

and

€ = 0.15, €n = 020

and :
g = 1.1 % 157 x 0.15 -+ 1.6 x 1.37 x 0.20 — 0.05 = 0.647.
- &
The foregoing charts are based on gases in a hemispherical container of radius
L radiating to differential area at the center of the base (Fig. 8.3). In terms of an
equivalent mean beam length, however, the use of these charts may be extended to
other gas shapes. It can be shown for irregular gas shapes that the mean length is
| L=4 Y | (10.18)
- A 1 .
where V is the volume and A is the peripheral area of gas. Details of this result are
beyond the scope of this text. Equation (10.18) is for gases at a uniform temperature
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Table 10.1 Mean beam length for gas radiation (from Rohsenow and Hartnett [24]).

Geomer.ry( L

Sphere % (diameter)

Infinite cylinder Diameter

Infinite paraliel planes 2 (distance between planes)
Semi-infinite cylinder Diameter

radiating to center of base
Right-circular cylinder, height = diameter:
Radiating to center of base Diameter
Radiating to whole surface % (diameter)
Infinite cylinder of half-circular cross section, Radius
radiating to spot in middle of flat side

Rectangular paraflelpipeds:
Cube _%, (edge)
1:1:4, radiating to 1 x 4 face 0.9 (shortest edge)
radiating to 1 x 1 face 0.86 (shortest edge)
radiating to all faces 0.89 (shortest edge)

Space outside infinite bank of tubes with
centers on equilateral triangles

Tube diameter = clearance 3.4 (clearance)

Tube diameter = 1/2 clearance 4.45 (clearance)

and small pL product. For not so small pL, the actual L is somewhat smaller than the
L obtained from Eq. (10.18). For most practical cases the actual L is about 85% of
Eq. (10.18). Table 10.1 gives values of L for various gas shapes.

So far, we have studied the evaluation of mean radiation properties. We may
employ these properties in enclosure problems involving lumped gas radiation. For an
opaque gray gas

€, =) = O = €

and
T=1—¢.

Now, assume this gas isothermally fills an enclosure made of gray surfaces. The resulting
enclosure problems can be treated by replacing the gas with a transparent solid partition
with negligible reflectivity.

ExameLe 10.2



Chap. 10 Gas Radiation er)

Two parallel black plates at temperature T; = 1,000 K and 7; =600 K are a distance £ = 15 cm
(~ 6 inch) apart in CO; at 1 atm. We wish to determine the radiant heat transfer between the
plates. '

The problem is a special case of Ex. 9.5. Replacing the glass transmissivity rp of Ex. 9.5
with a gas transmissivity 7i¢y, we have from Eq. (9.49), for black walls,

2 :
Rop = ~{—2 ) (10.19)
AN+ Ty

and, from Eq. (9.50),

. ) :
9”1,1@ = 2 {1+ mg) (B — B (10.20)

Thus, the problem is reduced to finding zage-
For the gas temperature, as a first trial, assume equthbnum and let ey, 2 €52 (gas emissivities
on the side of each wall}. This gives

= m(r“ + 5 = —(1 000* + 6004)

or
T, = 867K(~ 1,100 °F).

Also, the mean beam length is

v A x &2
L=0.85x4x;-=0.85><4x :
or
£ 085 x4x6
L=08xd4x - = ———— = (L.B51t,
z 12 x 2 :
which gives

peL = 0.85ft-atm.
Under equilibrium, for T, 21,100 °F and p L = 0.85 ft-atm, we have from Fig. 10.4,
€ =014 and 7, % 0.86.
Then, Eq. (10.20) yields :
- - 1
% = (1 + 0.86) x 5.67 x 108 W/m* K* x (1,000 — 600°) K*

or ) _
Q—Iflz- = 45.9kW/m?. (10.21)
In the actual case, €1, 7 €42, 61, between the hot wall and gas, and €7 between the gas and cold

wall need to be evaluated separately. However, the difference between the emissivities is not
expected to significantly affect Eq. {10.21). Demonstration of this fact is left to reader. L2

Having reduced the problems of lumped gas radiation to enclosure problems with
transparent partitions, we proceed next to problems of distributed gas radiation.
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DISTRIBUTED GAS RADIATION

In this section we restrict ourselves 1o gray gases, as we did in the foregoing brief
discussion on the lumped gas radiation. Spectral considerations, although important for
the quantitative effects of radiation, are beyond the scope of this text. Consequently, .
our objective is to gain some knowledge only on the qualitative foundations of gas
radiation.

Our starting point is the balance of radiation energy (transfer equation), obtained
from the average of Eq. (10.5) over the wavelength spectrum,

al
— = kg(lp — I. (10.22)
as

In terms of Fig. 10.9, the integration of this equation with respect to s yields
5
I(s) = 1(0)e~&0 4 f Lo(s")e T eds’, (10.23)
0

where 7(0) is the intensity at location s = 0, and 7(s, s’) is the optical thickness of the
medium

(s, §) = fs k(sMds". (10.24)

Clearly, Eq. (10.23) expresses the fact that the intensity at point s and in direction m
(Fig. 10.9) results from the emission of all the interior points such as s’ and from the
emission of the boundary s = 0, respectively reduced by factors e*¢ Y and e=7¢0 10
allow for the absorption by the intervening matter.

To simplify our discussion, we neglect for the time being the effect of the bound-
aries by eliminating 7(0)e~**? from Eq. (10.23). Then we have

5
I(s) = f Io(s")e™ " eds’. (10.25)
0

Direction
of intensity

Figure 10.9 Optical coordinate.
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Furthermore, we restrict ourselves to two limiting cases correspondmg tonegligible and
rapid decay of =74 i.e., thin and thick gases.

10.3.1 Thin Gas

In the first case, ¢~*¢+" ~ 1 and the absorption is negligible, so Eq. (10.25) becomes

5

1(s) = / lo(s"kds'. (10.26)

0 .

Clearly, the assumption of .
o > I _ (10.27)

reduces to

ar '
— = Iy, : (10.28)

as '

whose integration leads also to Eq. (10.26). The condjtifm stated by Eq. (10.27), that is,

I Emission > Absorption

is the definition of a thin gas.

Next we consider the heat flux associated with th1s gas. The derivative 3/8s in
Eg. (10.28) is the gradient in the direction of the propagation of radiation. In terms of
a cartesian coordinate, say x, noting from (Fig. 10.2) that

a _ a ox _ a (1029)
ds  dxds  Bx OOS¢_’ ’

Eq. (10.28) may be rearranged as

ar :
—cos¢ = klg. (10.30)
ax _

On the other hand, recalling Eq. (8.18),

E=gq% = f IcosqsdQ, (8.18)

differentiating this equation with respect to x and changmg the order of deferentIatlon
and integration yields

ar
— = — Q .
™ 3 cos ¢d (10.31)

‘This result may be rearranged with the help of Eq. (10.30) to give

BqR

- = fﬂ wlp(s")d <. | (10.32)
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Finally, noting that [ isindependent of the solid angle and that 7w Io(s") = E,Eq.(10.32)
may be reduced to
' R
9q
— = 4k E |, 10.33
9x i ( )

the heat flux associated with a thin gray gas. In terms of a characteristic length £ and
optical thickness T = «¢, Eq. (10.33) may be rearranged on dimensional grounds to
give

R

g® ~ tE, |, (10.34)

which will prove convenient later.

Sofar, we have considered one extreme case corresponding to the negligible decay
of e~*#7 which led us to the thin-gas limit. We proceed now to the other extreme
case corresponding to the rapid decay of ¢~7¢5),

10.3.2 Thick Gas

.In terms of a constant absorption coefficient x and v = ks and ' = x5/, first rearrange
Eq. (10.25) as

T
Ity = f Io(ze 4, (10.35)
0
Next, assurne that the absorption occurs over ashort distance because of large x and that
the equilibrium intensity at * may be approximated by its tangent about v (Fig. 10.10),

Iyt = Ly(t) + (%?) (' — 1), {10.36)

which is the two-term Taylor expansion about t/ = r. Inserting Egq. (10.36) into
Eq. (10.35), and noting that Iy(t) and (31p/37")r.; are constants with respect to the
integration in 77,

4 , 3L\ [* ., ,
I1(r) = Iy(r) f e e + (E{) f (7" — )Ty, (10.37)
0 0

\ I
Ig(1)
\
\ - Tangent
Io(r") for thick gas
T 7

Figure 10.10 Thick-gas approximation.



Chap. 10 Gas Radiation &2

By the help of an integral table,

k1 ; T . ; E
f e = e'“ff efdt’ =1
0 o :

T T (T,
[ (¢ — )T = 7" (f et dr’ — z‘f e’ dr’) = —1,
0 o Jo

Eq. (10.37) may be rearranged as

dla(t
1@ = Iofr) — 2@ (10.38)
ar
or, on dimensional grounds, :
1 .
I"-‘Io(l—--»-{—...), :
' :
which implies for t > 1 : .
I~ I : (10.39)

The condition stated by this result, that is,

(Emission ~ Absorption |,

is the definition of a thick gas.
Now, we consider the heat flux associated with this gas. Inserting Eq. (10.38) into
Eq. (8.18) gives '

1 /3] .
g® = Iof coS $dS2 — — (-——0) / cos pdS2. (10.40)
Q K ox o

Recalling d2 = d8 sin ¢d¢ from Fig. 8.3, the integrals of Eq. {10.40) may be rearranged
and evaluated, The result is :

21t T ’
fcosqbdﬂ = / dBf cos¢psin gpdegp = 0
) o 0 :

2r n : 4
/ cos? $pdQ = f de f cos® ¢ sin pdgp = -
[y 0 0 3

Employing this result and 7 fy = E}, we obtain from Eq. (10.40)

4 3E, '

R .
= e | 10.41
7 3k ox ( )

the heat flux associated with a thick gray gas. In terms of a characteristic length £ and
optical thickness v = k£, Eq. (10.41)} may be rearranged on dimensional grounds to
give :

Ey
g® ~

=1. 10.42
N 30 (10.42)
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‘ N /’\ 7 (thin gas)
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SN U3t {thick gas)

’/
1243 > \
Figure 10.11 Radiant heat flux

for thin gas, thick gas, and for N3 "
any optical thickness.

<

To find the heat flux resulting from radiating gases with an arbitrary optical thick-
ness, consider the heat flux given by Egs. (10.34) and (10.42) (Fig. 10.11). It can be
shown for an arbitrary optical thickness that the heat flux, based on the assumption of
isotropic radiation stress (pressure), is

R _"Eb
1+ 372

q (10.43)

Details leading to this equation are beyond the scope of this text. Note that the limits
of Eq. (10.43) for ¢ — 0 and v — oo respectively lead to Egs. (10.34) and (10.42), as
expected.

Finally, we may summarize what we have learned so far on the heat flux associated
with radiating gases. Figure 10.12 shows separately the effect of emission (a measure
of the hotness) and that of absorption {a measure of the optical thickness).

10.3.3 Effect of Boundaries

In the foregoing discussion we neglected the effect of boundaries. A knowledge of this
effect is needed before we can proceed to some illustrative examples. The behavior of
a thick gas near a boundary is beyond the scope of this text (the interested reader may
refer to Arpaci [15]; Arpaci and Larsen [16]; Lord and Arpaci [17]. However, most
fluids of technological importance may be adequately described by the assumption of
thin gas, and the behavior of thin gases near a boundary is the knowledge we need.
Because of its negligible absorption, the thin gas is usually influenced by the geometry
of the enclosures, and its behavior near a boundary depends on this geometry as well
as on the boundary itself,

Here, after some general remarks, we demonstrate the boundary and geometry
effects in terms of a thin gas between two parallel plates. First, reconsider the radia-
tion energy balance given by Eq. (10.22). The one-dimensional cartesian form of this
balance, obtained with the help of Eq. (10.29), is

ol
—cos¢ = k(ly — ). (10.44)
ox
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Ey

Hot ga:\ - /Th’ick gas
Cold gas\ o / Thln gas

Figure 10.12 Emission and absorption effects on
radiant heat flux.

Integrating this equation over the solid angle, employing Eq. (8.18), and noting that I
is isotropic and independent of the solid angle and that 7 fp = E}, yields

ag® :
s == 4 Ep, — x[ TdS2. (10.45)
ax Q-
Clearly, the difference between Eqs. (10.33) and (10:45),
f aq; (10.46)
Q

represents the effect of boundaries. Now, assume hemispherical isotropy, and re-
place the actual intensity with two-stream (outward and inward) intensities as shown in
Fig. 10.13. Then, Eq. (10.46) may be rearranged as '

[ 1dQ = 2n (It + i‘). (10.47)
Q i

Note that, for (spherical) isotropy, I1t = I~ = Iy, and Eq. (10.47) gives 4n Iy, as
expected. :

After the foregoing general considerations, we now consider two parallel plates.
In a manner similar to the development leading to Eq. (9.6), we obtain (see Fig. 10.14)

I = ely + pl7, (10.48)
I = &l + plIf. (10.49)
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{a) Actual

b—

X
I~ 1
&
Figure 10.13 Hemispherical
approximation of actual in-

tensity. (a) Actual, (b) hemi-
spherical. (b} Hemispherical

For a thin gas the absorption is neghigible, and I and 7~ remain uniform across the
thickness of the gas between the plates (Fig, 10.15). Consequently, /™ and I~ of surface
1 become identical respectively to I+ and I~ of surface 2. Now, solving Eqs. (10.48)
and (10.49) for I'™ and I~ yields

€1l + melyn

€ [ e d,
It = R Qle + paln (10.50)
1—pmm 1—pmp
Surface 1
’//
)';
Uy
In 7 €lo

Figure 10.14 Boundary intensities for
two parallel] plates.
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I'" = Coust,

I~ = Coust

RS

Figure 10.15 Hemispherical
intensities for thin gas between
parallel plates.

®

Summing these intensities, noting that p +¢€ =1 and that wly = Ep, we get
1 1 11
— ——|E — =~} E
(62 2) ot (61. 2) b
(1 1) + (1' 1
€2 2 61: 2

where Epy is an average emissive power, mtroduced for later convenience. For surfaces
with identical emissivities,

(It +I7) =4

= 4Fpu, {10.51)

1 i
Epm = —(Eb1 + Ebz),

as expected. Finally, inserting Eq. (10.51) into Eq. (10 47) and the resultinto Eq. {10.45)
gives

a2
% = 4 (Es ~ By | (1052)

The effect of the boundaries on a thin gas in a slot turns out to be Ej [recall Eq. (10.33)].
Now we proceed to a couple of illustrative examples involving thin gases.

ExameLe 10.3

Consider a stagnant thin gas between two vertical plates separated by a distance £. The tem-
perature and emissivity of the plates are 71, T; and €4, €, respectively. The conductivity and
absorptivity of the gas are k and x. We wish to determine the temperature distribution in the gas.

Consider the differential system shown in Fig. 10.16. The first law of thermodynamics
{conservation of total energy) applied to this system yields

., :
- (g + qz) =0, (10.53)

where ¢ and gf are the heat fluxes associated with conduction and radiation, respectively.

e
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mal (conduction + radiation)
energy.

{ I
i i
I I K
p K ! Logk iq'x—dx
! I ot Ty
.
R
I | R dqx
+—=dx
A | T
——t e
-
; :’,/ System
Figuare 10.16 Balance of ther- . i
-
I
|

&

To proceed further, we need the pérticular laws relating the heat fluxes to temperature, We
know from Chapter 1 and from the development preceding the present example that

dr
gf = —k— (10.54)
dx
d R
T _ 4B, — Eppp). (10.55)
dx

Inserting Egs. (10.54) and (10.55) into Eq. (10.53) and noting that E, = o7* gjves, for constant
properties, the governing equation,

4T . .
kz,; - dka(T* - Thy = 0, {10.56)

subject to the boundary conditions,
T(O) = Tl and T(f) =T, (1057)

There is no difficulty in the numerical integration of Eq. (10.56), and the mathematics of
Chapter 4 may easily be used here. However, rather than a numerical approach, we proceed by
assuming AT =T} — T .is small, and expand T about T;y into a Taylor series,

T = T + 4T3 — Tpg) o+ ---. (10.58)

In terms of this approximation, Eq, (10.56) reduces to the governing equation of extended surfaces
[Eq. (2.109) with & = 0],
&*7 3
x

Introducing a dimensionless distance £ = x/£, optical thickness t = «£, and the Planck number
based on temperature Ty,
4o T Radiation

Py = ~ , 10.60
M7 ke Conduction (10.60)
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and 4t Py = R?, Eqgs. (10.59) and (10.57) may be rearranged to yield

ar :

— — R(T —-Tp) =0 10.61

e ( M) (10.61)
with : '

T =T, TQ) = 0. (10.62)

Expressing the general solution of Eq. (10.61) in terms of hyperbolic functions (recall
Ex. 2.10), we have

T — Ty = Cycosh RE + Cpsinh RE. (10.63)
The use of the boundary conditions gives '
n-Tu=0C
Ty — Ty == Cicosh R + Cz.sinhR.

Obtaining C; and C; from these expressions and inserting them into Eq. (10.63} yields, after
some rearrangement, the temperature distribution in the gas

T —Tw _ sichR( = §) Tp — Ty \ sinh Ré
T, — Ty  sinhR Ty — T/ siohR

(10.64)

For t — 0 or Py — 0 (which implies Ty — 0), 21l of the hyperbolic functions approach their
arguments, and Eq. (10.64) reduces to the temperature distribution in the gas resulting from
conduction alone,

=1-—¢£. 10.65
o 3 (10:65)
Next, we proceed to another example, the so—calledf problem of aerodynamic heating, We
learned in Chapter 9 the effect of enclosure radiation on this problem. 24
ExampLe 10.4

The thermal boundary layer about a flying object may to afirst order be approximated by a Couette
flow. Let the velocity of the object be U and its surface emissivity be &,. The viscosity, thermal
canductivity, absorption, and temperature of the ambient are u, k, «, and Ty, respectively.
Curvature effects are negligible. We wish to determine the steady surface temperature of the
object.

The first law of thermodynamics applied to the differential system shown in Fig. 10.17,
including effects of conduction, radiation, and shear work done on the system, gives

d d :
K R
— + + —(nu) = 0, 10.66
™ ¢y +4a) dy( 1#) (10.66)

where 1; is the longitudinal shear stress. Noting that

( ) du + d‘l‘.‘l
—(nu} = tfg— + u4—,
dy ' 'dy dy
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and that the longitudinal momentum is

d 5l
dy

L]

Eg. (10.66) may be reduced to
du

= 0. 10.67
- (1087)

d K R
—E(qy +aq,)+mn

Particular laws associated with momentum and conduction are

du
T = p— {10.68)
dy
and
gt = —kﬁ. {10.69)
Y dy

However, the particular law for radiation needs some attention. Replacing the fluid beyond the
boundary layer with a black surface at the edge of boundary layer (Fig. 10.17), rearranging the
notation of Eq. (10.51) with €, = €5 = 1, €2 = €y, Ept = Eps and Epy = Epy, and following
some manipulations, we have

€
Epwr = Epoa + 'gi{Ebw — Epoo)- (10.70)
“““““ N
System
N\ A
e A ===
2 Ty
7 A

LR % (Ty) ey g+ iqldy
dg¥
Q'f"‘?yLdy
()
Figure 10.17 Example 10.4.
(a) Model, (b) balance of total
energy.
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Now, inserting Eq. (10.70) into Eq. (10.47) and the result into Eq. (10.45), and employing E, =
o T*, yields the particular radiation law

gt
—fy— = 4k (T — T) — 2ke,a (T — TS). (10.71)

Finally, in terms of Eqgs. (10.68), (10.69), and (10.71) and the Couette velocity u = U(y/£),
Eq. (10.67) may be rearranged to give the governing equation

4T

2
U B
kd —+ p (z) — ko (T* — T2) + 2ceuo(Th - T4) = 0 (10.72)

subject to .
T(0) =T and T(£) = T,. {10.73)
To proceed further, we assume that T, — T is small, and we expand both I and T,, about T,

T4

Too + 4TT — Too) + -+,
T4

w

fl

5 + 4T Ty — To) + -+,

Employing these linearizations, and the dimensionless distance = y/£, optical thickness v =
k£, Planck number Py = 40 T2 /(k/£) and 4z Py, = Rz_, Eg. (10.72) may be further rearranged

as .
a*r 1 Uk
——-RZ(T—[T + el —Tm)+“R/ D:o

d2

or, introducing

1 Uz/k
By = T + Eew(Tw Too) + (1074)
as
dz
- RYT - TM) =0 (10.75)
dr*
T() = T and T(l) =T, (10.76)

Clearly, except for the difference in notation, the formulation of the preceding example given
by Eq. (10.61) subject to Eq. (10.62) is identical to the foregoing formulation. Consequently,
the sclution of this formulation may be readily obtained from Eq. (10.64) by a notation change
involving ¢ — n, I} — Tw, L — Tw,and Py, = Py. Thus, we have

T —Ty _ sinhR(l —n) (Tw - TM) sinh Ry (1077

To— T«  sinhR Too = T/ sinhR’

the ambient temperature in terms of the surface temperature of the projectile. A d
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Actually, we wish to know the increase in the surface temperature of the projectile
resulting from viscous dissipation. Employing Eq. (10.77) with the steady condition of
zero heat flux across the projectile surface gives this increase. However, note that due
to radiation, the vanishing surface gradient of the fluid temperature no longer is the
condition of zero heat flux. We need to develop this condition for the combined case
of conduction and radiation. First reconsider Eq. (8.18),

q® = f I 005 pd2 (8.18)
2
or, in terms of dQ = sin ¢dpd? (recall Fig. 8.3),
gt = f I sin ¢ cos pdgpdB.
Q

Next, assume hemispherical isotropy, and replace the actual intensity with two-stream
intensities (recall Fig. 10.13). The explicit use of the § and ¢ limits leads to

2w n
g% =[ d@/ I sin¢g cos ¢dep
0 0
or, in terms of cos ¢ =

-1
g* = —erf lTudp
1

o -1
q"‘=—27r(1+f udu»+l"f udu«)-
1 0

Finally, carrying out the simple integrals, we get

or

[ g% = =t — 1)) (10.78)
or, in terms of the notation of the present example,
It — I = mwey{lye — Tow)
or
g* = €w(Epoo — Epu)- (10.79)

Now, the condition of zero heat flux (insulated surface) may be written as
Gyes + dpee = 0
or, in terms of Egs. (10.69) and (10.79), and By = ¢ T¢,
dT (&
-k-ma-i—l + €uo(Th - TH = 0. (10.80)
Linearizing the radiation flux as before, using 7 = y/{£ and Py = 40 T2 /(k/0) yields
ar()

—k—— = €Poc(Tyy — Tea), (10.81)
dn
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which is identical in form to a convection boundary condition in terms of a heat transfer
coefficient. '

Inserting Eq. (10.77) into Eq. (10.81), recalling Eq. (10.74), and following some
algebrajc manipulations, we get the temperature increase above the ambient tempera-
ture resulting from viscous dissipation,

2 ﬁ
— (cosh R — 1
Rig e )

Ty — Too = (10.82)

2k 1 + (1 1 bR + 60 P sinh R |’
— — 6 it
2ew 26w co; wPoa—

where the terms in brackets show the effect of thin gas and enclosure radiation. In
Fig. 10.18, (T,, — Teo)/ (tU?/2K) is plotted against © for some values of €, and Peg.

A gas becomes transparent as T — 0, or cold as P, — 0, and

RZ
sithR - R, coshR — 1+ TR

Pure conduction Pure conduction
1 . o1
0.8}~ :
0.8
0.6 )
0.6
T, Too Fe=1 Ty =To
wU2k WT
041 0.4
02+ [g,=1 02
P.=10 :
103 102 . 107! 1 S 1077 102 - 1071 1

(@) : (b}
Figure 10.18 Effect of gas emission and gas absorption on the
temperature of (a) adiabatic black surface, (b) adiabatic mirror surface.
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and Eq. (10.82) reduces to

u? 1
’ Ty — Too = & ( ) (10.83)

2k \1 4+ €yPu

where the terms in parentheses show the effect of enclosure radiation. Furthermore,
€, — 0 for a mirror surface, and Eq. (10.83) reduces to

ul?

Ty = Too = = (10.84)
which involves only the effect of conduction. In the literature, Eq. (10.84) is often

rearranged as

U? u? 1
p _ (ﬂ) v 1 (10.85)
k(T — Too) k) ep(Tw — Too) 2
where wcp/k is the Prandtl number and
UZ
e = Bg
cp(Tw — Too)

is the Eckert number. On dimensional grounds, Eq. (10.85) may be written as

w(U /Ly Dissipation
k(Ty — Too)/£2  Conduction

which shows the importance of viscous dissipation relative to conduction.

Examreie 10.5

Some of the features of a flame in a premixed combustible gas stream may be elucidated by
considering a fluid at temperature T., flowing with velocity V into a porous plug (approximating
the flame front) held at temperature T,,. To eliminate the attenuation in thin gas, let a black
porous plug with temperature T, be placed at a distance £ from the flame. We wish to determine
the temperature distribution in the flame.

Porous plugs
K
I3 Vet % g
Lo e
R | Ry “Hx
4% ' %t a
o ; s
acVT P pcVIT+ %T @)
1
i
]

7
Figure 10.19 The first law applied to the
control volume.
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The governing equation (adding enthalpy flow to, excluding viscous dissipation from, and
replacing y with x coordinate in the preceding example) can be written as

arr dT :
— —2M— — R(T — Ty) = 0, (10.86)
d dt _
where § = x/€, I1 = VE£/2e,
1 L
Ty = T + Eéw (Tw - Too), (1087)

and the remaining definitions are from the preceding example. The boundary conditions are
T =Ty and T{1) == T,. {10.88)

The solution of the problem, following the usual procedure and after some tedious manip-
ulations, is found to be

T — Ty 1 sinh (1 — &) —nigey { Tw = T \ sinh H§
= ¢ — g .
To = T sinh H T — Ty} sinhH

©(10.89)

where H = (I1? + R*)2, Equation (10.89) reduces, for I1 — 0, to Eq. (10.64), and for R — 6,
to '
T -T 1 - g2
R (10.90)
Ty — Ty 1-e¢

and for IT — 0 and R — 0 to Eq. (10.65), as expected. Elimination of Ty, between Egs. (10.87)
and (10.89) yields

T — Ty _ €w 1 ont sinh f’-!(l -~ &) _fEw 1) oo sinh H!;‘. (10.91)
Ty = T 2 sinh & 2 sinh H

Figure 10.20 shows the effect of thin gas and enclosure radiation on the gas flow between the two
porous phugs. : . L

[ e
08|
06 |-
T-Te I=0,R=10
T, ~ T
04 C=10,R=10 [
0.2 : -
T=10,R=0
| { | | ! | |

0 H
1 01 02 03 04 0506 07 08 05 10
£
Figure 10.20 Effect of thin gas and enclosure
radiation on the gas flow.
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An attempt has been made in this chapter to introduce the reader to gas radiation,
which is vitally important for current technological and environmental problems. How-
ever, because of the complexity of the subject, some of its aspects—such as thick gases
near boundaries, intermediate optical thicknesses, spectral effects, weighted nongray-
ness, multidimensional effects, and scattering—are left untreated. Readers interested
in these topics should consult the references of this chapter and the current literature,
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EXERCISES

16.1
10.2

10.3
10.4
10.5

106
10.7

Reconsider Ex. 10.1 for T, = 600 K and 7, = 1,200 K.

Determine the radiant heat transfer through atmosphenc CO; between two large parallel
black plates 10 cm apart at temperatures of 1,200 K and 600 K.

Repeat Prob. 10.2 for plates with emissivity € = 0.5.
Repeat Prob. 10.2 for CO, at pressure p = 3 atm.
Arpaci and Troy [22] approximates the effect of thin-gas attenuation on Eq. (10.71) by

dq
dy

Neglecting conduction, show for a semi-infinite thin gas next to a wall at temperature 7,
that :

= dka(T* — TY) — 2ewxa('.r“ — Ty,

Ep = Epeo _ €u ;_@y
Epw — Eps 2 '

T being the gas temperature far from the wall, Note that E,(0) #£ Ep,, indicating to a
temperature jump on the wall in the absence of conduction.

Reconsider Ex. 2.1 for attenuating thin gas.

Reconsider Ex. 2.3 for attenuating thin gas.



CHAPTER 1

PHASE CHANGE B

In Chapters 5 and 6 we studied convection heat transfer without phase change. We now
proceed to convection with phase change. In particular, we consider convection with
melting-solidification, and condensation-evaporation (boiling). Many environmental
processes as well as engineering problems involve phase change. Examples are the
freezing of lakes and the melting of snow in nature, evaporation and condensation
in a closed-loop power cycle of a conventional or nuclear power plant, closed-loop
refrigeration cycle of a home or commercial cooling system, etc.

The important difference between single-phase and two-phase flows is the inter-
face latent heat effect involved with the latter. Also, in cases with strong curvature
effects, surface tension needs to be taken into account. Because of latent heat, the heat
transfer rates in two-phase problems are an order of magnitude larger than those in
single phase.

Our approach to two-phase problems begins with an iflustrative example dealing
with solidification in a stagnant liquid.

AN ILLUSTRATIVE EXAMPLE

Consider a liquid initially ‘at temperature T, suddenly brought into contact with a
plane wall at constant temperature T,,. Here we consider the case of a liquid at the
melting point solidifying on an isothermal subcooled wall (Fig. 11.1). We wish to find
the thickness of the solidified layer, §(¢).

535
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3(8)

~ Figure 11.1 Configuration and control volume
of a solidification process at plane wall.

The problem is in terms of a clearly defined penetration depth (instantaneous
thickness of the solidified liquid}, and it is well suited for an integral formulation. For an
expanding control volume which encloses the solid, the conservation of mass becomes

d § .
E.[o pdy — w; =0, (11.1)

where w; is the mass flow per unit area of solidified material entering the control
volume at y = 0. The conservation of mass and balance of thermal energy for the
control volume enclosing the phase boundary give:

AT, ¢
wy — we = 0; Wik = —k ©.5
: ay

where hyy = hs — h; denotes the heat of fusion. In terms of w;, obtained by carrying
out the integration in Eq. (11.1}, :

. (11.2)

@ : 113
| p— = s, f (11.3)
Eq. (11.2) becomes
b = k(”) (114)
Pszdr— ayyzo' *
A first-order polynomial profile for the solid satisfying the boundary conditions
70,0 =Ty TG0 =T, (11.5)
yields
T-T,
B (11.6)
Tw - I:'.‘ s
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Eq. (11.8)

=
-
-

-
-
-
-
-

-

N 0S5 -
o Exact solation

G [
0 1 2

Ja

Figure 11.2 Comparison between the
quasi-steady solution and the exact
solution.

Inserting Eq. (11.6) into Eq. (11.4) leads to a formulation in terms of &(z),
ds.
= =k, 50) =0, (11.7)

where Ja = c(T; — Ty)/ hse denotes the Jakob number and ¢ = k/pc the thermal
diffusivity. The solution of Eq. (11.7) is

.8 Ja\
A= 22? - (;) . (11.8)

A comparison of our first-order approximation with the exact solution is shown
in Fig. 11.2.

The rest of the chapter follows our approach to Chapters 5 and 6. First, we
study laminar two-phase flow by approximate analytical means, Next, we consider the
dimensionless nurmbers appropriate for two-phase. Finally, we correlate experimental
data on turbulent two-phase in terms of these numbers.

LAMINAR TWO-PHASE

In the foregoing illustrative example we considered a two-phase problem with an un-
steadyinterface. Here, we deal with a problem involving a spatially developing interface.

Exampie 11.1

Filmwise condensation (or evaporation) involves heat transfer to the liquid-vapor interface as
well as convective flow in either or both phases. Here, we consider steady vapor condensation
at the saturation temperature T; which forms a liquid film while flowing down next to a vertical
isothermal wall at T, < 7; (Fig. 11.3). Assuming a continucus smooth film starting at x = 0, we
wish to determine the variation in film thickness 5(x) and the local Nusselt number.
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Liquid film Tnterface
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Figure 11.3 Filmwise condensation of saturated vapor
along a vertical isothermal wall. :

The control volume enclosing the liquid film (but excluding the interface)} increases in
thickness with x as vapor condenses at mass flow w,. An integral balance for the conservation
of mass and balance of momentum yields

d :
—f pudy —w, =0 (11.9)

dx Jo :

du
(1 - &) 088 = Tye| = p—| . (11.10)
P y=0 . 4 y=0

and the balance of thermal energy of the interface gives

—whe = (gy)ss (11.11)

where hy, = hy, — h; denotes the heat of evaporation, The remaining boundary conditions in y
are :

w(e,0) = 0 u(x,d) = u,(x); T(x0) =Ty T(.8 =T, (11.12)

where the upstream condition is 8(0) = 0 and u,(x) is to be determined.

For a first-order solution, assuming linear velocity and temperature profiles satistying
-Eq. (11.12), we have

u T-T,

=1-7, (11.13)
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with the notation u(x, 8§) = u,;(x), T{x, §) = T}, and 5 = y/&. Using the interfacial shear stress
from Eg. (11.10), we get

v, 882
o= (1= P& (11.14)
p v
and from Eq. (11.11),
- [¢'4
w, = %—Ja, (11.15)

where Ja = ¢(T; ~ T,,)/ by, denotes the Jakob number and & = k/pc the thermal diffusivity of
the liquid. Employing Eq, (11.13) in Eq. (11.9), carrying out the integration, and rearranging, we

obtain
1/4
8/3)avxla
x) = | —— 11.16
@ [a-pdpm} (19

and the local heat transfer,
hx (BT /3Nt X x

A S T (1.1
or
Ra, e
Nu, = . (11.18)
(8/3)Ja

where Ra, = (Ap/p)gx?/va, with Ap = p — p,, denotes the local Rayleigh number. Note
that Eq. (11.18) is valid only when Ja/Pr < 1 for the case of viscous oils, i.e, for large Pr, since

Ja « 1 for most practical cases.
For liquid metals, on the other hand, the rate of condensation is high, and the interfacial
shear stress causes a noticeable decrease in the Nusselt number as the parameter Ya/Pr increases.

For this case, the integral balance of momentum is

d [? o
———f pundy = |1 — — ! pg, (11.19)
dx Jo p

and the velocity profile may approximately be assumed a constant across the film, i.e., ¥ = u (x).
Substituting Eq. (11.13) with u/u; = 1 into (11.19) and carrying out the integration yields

%(ufa) - (1 _ %) 25 (11.20)

Next, on the basis of our experience on Ex. 5.4, we try a solution of the form
8(x) = C1x™;  u(x) = Cox”, (11.21)
which, in terms of Egs. (11.19) and (11.20), gives

(11.22)

™| s

1
moex =, p =
4



Chap. 11 Phase Change B

3
o
A

—~ Arpaci &
— Larsen [6]

o
]

| . Similarity solutions:

Nu,

[Ra /(8&/3)7]174
o
(=)

Pr :
Koh, Sparvow &
0.4 - B 0.030 ; |
< o ooy lartnett[S] .
0 © 0003 A S
0.1 1 10 100
Ja/Pr

Figure 11.4 Filmwise condensation
departure from the Nusselt theory for
liquid metals.

while the coefficients €; and C; satisfy the algebraic equations,

3 ey = a2 1123
= acl,; (11.23)
5
~CiCE = (1 — ﬁ) gC1, (1124)
4 p
leading to
@®/Davia Sl
Cy o= | = 7 (11.25)
(1 — pu/plg 6Pr

4 )
G = [— (1 _ ﬁ) g] . (11.26)
5 ol

The local Nusselt number for liquid metals is then

[ Ra, jll“
Nu, = o (11.27)

&/Mla

e s\
T \6Pr A

In Fig. 11.4 Eqgs. (11.18) and (11.27) are compared with more accurate results by Arpaa and

where

Larsen {1984} and a similarity solution by Koh, Sparrow, and Hartnett [5] for Pr = 0.03, 0.008,.

and 0.003: %

The present example shows how a strong cﬁupling among the conservation of
mass, balance of momentum, and energy equations arises in problems involving phase
change. Next we proceed to a dropwise film-beiling problem.
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Exampie 11.2

Consider dropwise film boiling on an isothermal horizontal plate. We wish to evaluate the heat
transfer coefficient.

Experiments show that a drop of liquid evaporates rapidly when placed on a horizontal sur-
face heated to a few degrees above the saturation temperature; the evaporation is siow, however,
if the surface is well above saturation. In the first case the liquid can wet the surface, creating
nucleate boiling with bubble formation, liquid film evaporation, and high rates of heat transfer.
In the second case the drop remains suspended on a poorly conducting vapor film, whick prevents
direct contact between the liquid and the hot surface. The latter is the Leidenfrost problem of
film boiling and is our concern here.

This is a difficult problem, involving complex geometry, unsteadiness, and an interface
boundary whose location is not known a priori. We make several assumptions but retain the
essential physics. First, we consider the evaporation to be quasi-steady. The weight of the drop
is then balanced by the surface integral of pressure forces. The excess pressure in the vapor film
arises from that required to maintain the outward viscous flow of vapor escaping from underneath
the drop. In addition, we use a quasi-developed integral formulation for the flow of vaper which
is generated from the drop by conduction through the vapor film. Since heat wansfer, vapor flow,
and excess pressure increase with decreasing film thickness, the drop tends to settle at a quasi-
steady film thickness to be determined as a part of the solution. We approximate the geometry
of an actual drop, which is determined by gravity, surface tension, and pressure distribution, by
a hemisphere (Fig. 11.5). The liquid is at rest and isothermal at the saturation temperature, 7,.
The heating surface is isothermal at T;,, which exceeds the Leidenfrost temperature.

A quasi-steady integral balance for the mass, momentum, and energy of the vapor film is

18 s
-— rf pudz) —~w; =0 (11.28)
0

rar
13 4 52
- (r [ puzdz) — ulr, SYws = ~——P) + Terlims — Terlz=o {(11.29)
rar 0 ror
18 é :
— (7 [ petiz) = ¢, 5w = ~giles + il (11.30)
rar 0
w; denoting the evaporating mass flow per unit area, subject to the boundary conditions
(i, =0 wrd) =0 TEO=T; Trd)=1T (11.31)
8 ar
Ty = ;g = —k— (1132)
az az
Liquid drop

AN
SIS, /){/ 7
Actual drop Vapor film

Figure 11.5 Liquid-drop modeling.
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Also, the balance of thermal enérgy at the liquid-vapor interface is

aT{r,z):
bfgwa = —'k ( ). (1133)

oz

where hy, denotes the heat of evaporation.

For a quasi-developed solution, ignoring the left 51dc of Eq. (11.30), we assume a linear
temperature distribution,

T-1;

=1- g (11.34)

also, neglecting the radial variation of the vapor film, assume a parabolic velocity distribution,

X o_6i 1 E), (1135)
U 8 3 :

where u,, (r) denotes the mean vapor velocity. A quasi-developed balance for both the momen-
tum and energy is justified by the Reynolds analogy, prowdcd that the Prandtl number is of order
unity and the pressure gradient is zero.

Using Eqgs. (11.34) and (11.35), eliminating w; by Eq. (11.33), we get from Eqs. (11.28)

and (11.29),
19 (raem) o:Ja (1136)
rar Timl = s . |
613 , , §18  T1ovu,
Cll ey = =22y = , 1137
Srar( =) prar(p)_ 5 (1137)

ra
AT L 7

Figure 11.6 Idealized drop evaporation.

-~



Sec. 11.1 Laminar Two-Phase 543

where Ja = ¢;(Ty, — T;) / By denotes the Jacob number. Using symmetry and denoting by p, the
pressure outside the drop, the boundary conditions become

f
dp(0)
i (0) = 0; T-v =0; p(R) = p;; & = Const. {11.38)
r .

Introducing «, = arJa/28, obtained from Eq. (11.36), into Eq. (11.37) and integrating once

viclds
R? 33 2
p(r) — ps = 2uala (a_“) (1 + 56"1%) [1 - (-}%) } , (11.39)

where Pr = v/« and the factor (3/20)Ja/Pr denotes the inertial effect,

Now, the vertical balance of momentum for the drop, ignoring the unsteadiness and mo-
mentum flow due to evaporation, gives

R 2
0=_[ 2r [p(r) — pldr — (o1 — P)gom R, (11.40)
o 3

where the subscript £ refers tothe liquid. Inserting Eq. (11.39) into Eq. (11.40), and using D = 2R
as the characteristic length, yields the film thickness

1/4
3 qulaD 33

5= | o—FBT 1+ 22}, (11.41)
4 g(oe —~ p) 20Pr

and the mean instantaneous heat transfer coefficient,

1 1

h(t) = —
® T, — T, =R

R
f 2rrgy(r, Odr {11.42}
0

or
1/4

_ROD _ |4 g — pD’

Nu = - (11.43)
k 3 sa {1+ 3Ja
alJa ——
g 20Pr
which may be rearranged in terms of
Ra/Ja
Y, = ......-31____ (11.44)
14+ —Ja/Pr
0
as -
4 174
Nu = (51'12) . (11.45)

&
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So far, we have studied a number of illustrative examples for two-phase laminaz
heat transfer following the analytical approach we used in Chapter 5. For two-phase
turbulent heat transfer we use an approach based on two-length scale dimensional
analysis and the correlation of experimental data in terms of dimensionless numbers
resulting from this analysis.

A DIMENSIONLESS NUMBER

Consider the control volume shown in Fig. 11.7. The balance between body and surface
forces acting on this control volume yields

F; + Fy ~ Fg, (11.46)

F; being the inertial force, Fy the viscous force, and Fp the buoyant force.
The balance of thermal energy for the same control volume gives

Qu + 02 ~ Ok, (11.47)

Q. being the longitudinal net enthalpy fiow, (O, the enthalpy. flow across the two-
phase interface, and Qg the conduction. In situations involving phase change, the
Jacob number denoting the ratio of sensible heat to latent heat,

Q H cp AT
Qz an

=Ja < 1, {11.48)

c, being the specific heat at constant pressure, AT a longitudinal temperature differ-
ence, and Ay, the latent heat, is customarily utilized. In view of Eq. (11.48), however,
Oy < O and Eq. (11.47) is reduced to

Qs ~ Q. (11.49)
Recalling Chapter 5, a dimensionless number resulting from Eq. (11.46) is
F ,
7 (11.50)
Fr 4+ Fy
Fa 4 Oy
PR, - P Interface
f L Fo | =1 &
i E : :i . Control
e _;; volume . .
-2+

(2) ()]
Figure 11.7 Configuration of a two-phase
control volume.
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or
fg/Fy
. —_— 11.51
Fr/Fy +1 ( )
Also, a dimensionless pumber associated with Eq. (11.49) is
02/ 0k (11.52)

On dimensional grounds

Fy g(Ap)E? Fr _ pVe & _ pVehg
Fy J7A% ’ Fy J72 ' QK EAT

where £ is a characteristic length and the rest of the notation is conventional. However,
the foregoing nondimensionalizations in terms of a characteristic velocity V are not
appropriate for buoyancy-driven flows. Velocityis now a dependent variable and should
not appear in the dimensionless numbers describing these flows, Accordingly, one
needs to combine Eq. (11.52) with Eq. (11.51) for a result independent of V. The only
combination which eliminates velocity between Eq. (11.51) and (11.52) is

(Fa/Fv)(@2/Qx)  Ray

AL — (11.53)
(Fi/Fy)(Qk/Q2) +1  Pryt +1
and its limit
lim I, ~ Rag, (11.54)
Pry—o0
where
F ‘ k
Pry ~ (l) 223 | g (11.55)
Fy Qx kAT
F, ' Ap)phsg8®
Ray ~ (_B) _Q_2 . 8(Bn)ohst” (11.56)
Fy/\Qk pk(AT}

which clearly demonstrate that [T does not include the Jacob number. This fact should
not be surprising in view of Eq. (11.48). Actually, either Pry or Raz would have been a
more appropriate definition for the Jacob number.

The heat transfer across a two-phase film is then represented by

Nu = f({Ily), . (11.57)
or its limit
lim Nu = f(Raj). (11.58)
Pra— oG

Note that a “two-phase specific heat,”
(ep)2 = hye/AT, (11.59)
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may be defined as the natural limit of (92/9T),, AT being the temperature jump across
the interface. In terms of this definition,

k v A
@ = ——, Pry=—, Ra= - (—’i) &, (11.60)
pcph o vez \ P

and Pr; and Ra; assume their conventional forms.
Here, for customary reasons only, Eqs. (11.55) and (11.56) are rearranged by O,

Fy\ { On Q2

Pra ('F;) <_QK) (—QH) (11.61)
Fg\ { Ou 02

=~ (7) (Q) (Q_) —

which, in'terms of the usual Prandtl and Rayleigh numbers,

and

F .
Pr ~ (—1) Quy Y (11.63)
F] QK [+4
and
F ' p)
Ra ~ (i) u) L& (—p) &, (11.64)
Fy Ok va \ o
become
Pry = Pr/Ja, Ra; = Ra/Ja. (11.65)
Then, Eq. (11.53) gives
n Ra/Ja (11.66)
2 Ta/Pr+1 '
and
lim [T, = Ra/Ja. (11.67)
Pr—oo

The foregoing dimensional analysis based on one-length scale arguments leads
to implicit relations such as Eqs. (11.57) and (11.38). For explicit relations such as
Eqs. (11.18), (11.27), and (11.45) we proceed to a dimensional analysis, to be illustrated
first for laminar flows and extended later to turbulent flows.

11.2.1 A Dimensional Approach

In terms of a flow scale £ (or x) and a diffusion scale 8, an explicit dimensionless form

of Eq. (11.46} is
u u Ap
u—ﬂ- + V-a-‘i' ~ (—p—) (11.68)



Sec. 11.2 A Dimensionless Nurmber 547

and an explicit dimensionless form of Eq. (11.49) is

. (uég) A k/_\T 1
p £ fg 56 ? ( 1.69)

where u8y /£ is the interface velocity of the transversal mass flow expressed in terms of
the longitudinal mass flow.

Noting that the thickness of the momentum and thermal boundary layers is about
the same,

& ~ B, (11.70)
and rearranging Eq. (11.68) in terms of Eq. (11.70) yields
U uég g [ Ap
1+ —]) ~=Z{—1. 11.71
85 ( i vﬂ) v ( o ( )
Separately, Eq. (11.69) gives
usy kAT (1172)
¢ phsy’ ‘
which may be rearranged in terms of Egs. (11.539) and (11.60) as
8 k
“o% = (11.73)
£ plcph
ar
£
o~ 2 (11.74)
8
Insertion of Eq. (11.74) into Eq. (11.71) leads to
A,
8y 14 Py
or, in terms of Eq. (11.53), to
L
— ~ m/* ~ Nu. (11.76)
)

As Pry (or Pr) — oo, the inertial effect becomes negligible and Eq. (11.76) is reduced
to
Nu ~ Ral/*. (11.77)

Clearly, Eq. (11.76) is identical to Eq. (11.45) except for a numerical constant, and
Eq. (11.77) to Eq. (11.18) in the same manner. Dimensional arguments lead, for the
case of turbulent two-phase films, to

Nu ~ IL” (11.78)

and to its iimit for Pr — o0,
Nu ~ Ral’. (11.79)
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The details of the development leading to these results, however, are beyond the in-
tended scope of this text.

For film boiling of cryogenic liquids at atmospheric pressure, correlating experi-
mental data for liquid nitrogen, Frederkin and Clark [9] recommend

’ 1/3 3
— (e — pu)ghy K — p)ghy, L
% = 0.15 [uf&'_" ) u‘ii’é’.— > 5 x 107, (11.80)

Vo (T — Taar) kg vy (T — Tae)

where h}g = hfp +0.5cp (T — Tit) and all properties are evaluated at the film tem-

perature. This correlation can readily be expressed in terms of Eq. (11.79), leading
1o

Nu = 0.15Ra}? Ray > 5 x 10. (11.81)

So far, we have dealt with cases of two-phase involving a continuous film. Next we
proceed to cases involving nucleation.

REGIMES OF BOILING

To identify different regimes of pool boiling, consider an electricaily heated horizontal
wire submerged in a pool of liquid at saturation temperature Ty, The heat flux through
the surface rather than the wall temperature is controlled and can be determined by
measuring the electrical current and potential drop through the wire. The temperature
of the wire is obtained by measuring its electrical resistance, which depends on temper-
ature. Figure 11.8 represents the typical boiling curve obtained from such experiments.
Initially, the wire temperature increases above the saturation temperature, and as long
as it is within 5 °C, L.e., AT, < 5 °C, no vapor bubbles are seen (free convection boil-
ing). When AT, is increased further, vapor bubbles grow and rise rapidly from nuclei at
favored spots on the metal surface and collapse as they project into the bulk subcooled
liquid. 'With further increases in AT, larger and more numercous bubbles are formed
and escape as jets or columps, which subsequently merge into slugs of vapor (nucleate
boiling). Additional heating causes the vapor stream upward so fast that the liquid
downflow to the surface is unable to sustain 2 higher evaporation rate and gives rise to a
peak heat flux g, Finally, an unstable film forms around the wire, and large bubbles
originate at the outer upper surface of the film (transition boiling regime). The heat flux
is reduced because of the poor conductivity of the vapor around the wire, and there is
a local minimum value g, referred to as the Leidenfrost point (recall Ex. 11.2). With
more heating, the wire surface is completely covered by a vapor blanket, which is stable
in the sense that it does not collapse and reform repeatedly (film boiling). Since the
temperature level is very high, radiation heat transfer across the vapor film becomes
significant. Transition boiling is difficult to obtain with electrical heating. Further heat-
ing after the input heat flux reaches gmax causes a large surface-temperature rise toward
point M and melts the wire. For this reason, point B is sometimes cailed the “burn-out
point.”
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Experimental studies show that the relation

between g/A and AT, depending on the cavity-size distribution, eventually leads, for

most commercially available surfaces, to?

q

(11.82)

(11.83)

i (AT .
For a dimensionless interpretation of this relation, consider the momentum balance
F; ~ Fy
and the thermal energy balance . .
Q2 ~ Qk-

On dimensional grounds, Eqs. (11.83) and (11.84) give

pViD? ~ uVD

and
heeV ~ k ar
,0 fg D "
Elimination of V between Eqs. (11.85) and (11.86} yields
EAT ~ phy,
or, a dimensionless number,
kAT
mhgg'

1 g/ A, the usual notation vsed in boiling, corresponds to {1/ A consistently used in this text.

(11.84)

(11.85)

(11.86)

(11.87)

(11.88)
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which, after multiplying its numerator and denominator by ¢, leads to

kepAT Ta 1

"_,chhfg = i;]:-: = E. (11.89)
Then, Eq. (11.82) may be nondimensionalized ag
g/A Ja\?
or, in terms of Egs. (11.86) and (11.87), as
3
g wh Ja
(),

where D is the unknown bubble diameter (to be distinguished by D) at its departure
from the heating surface. Actually, the rise velocity (say V) as well as Dy, of bubbles
are unknowns of nucleation and need to be determined depending on AT (or Ap for
an isothermal model). '

The dynamics of a bubble is governed by

Fg + Fs ~ Fr + Fy, (11.92)
Fs being the surface tension force. Before departure (or under equilibrium)
Fg ~ Fy (11.93)
or, on dimensional grounds,
gD} ~ oDy, _ (11.94)
which leads to an experimentally supported diameter,
/2
Dy ~ (L) . (11.95)
ghp
In terms of this result, the Rohsenow correlation for nucleate peol boiling becomes

or, with a slight Pr correction for some fluid-surface combinations,

glpe — PU)]UZ [Cp,E(Tw ~ Taar) 3
c Cs. phygPry ’

q
L — h
A e

(1L97)

where T, is the surface temperature, and C,,y and n depend on the surface-liquid
combination. All of the properties in Eq. (11.97) are evaluated at the saturation tem-
perature. Table 11.1 gives the numerical values for some C; ¢ and n combinations.
Tahie 11.2 is for surface tension, Mare extensive tables are available in the literature
(see Rohsenow and Hartnett, [4]).
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Table 11.I Fluid-Surface Combination

. Fhuid Surface Combination Csr n
. Water—copper
Scored 0.0068 1.0
Polished 0.0130 1.0
‘Water—stainless steel
Chemically etched 0.0130 1.0
Mechanically polished 0.0130 1.0
Ground and polished 0.0060 1.0
Water-brass 0.0060 1.0
Water—nickel 0.006 1.0
Water-platinum 0.0130 1.0
n-Pentane—copper
Polished 0.0154 1.7
Lapped 0.0049 17
Benzene—chromium 0.101 1.7
Ethyl zlcohol—<hromium 0.0027 1.7

Exanpie 11.3

Water at 1 atm boils under nucleate conditions on a mechanically polished flat stainless steel plate
kept at temperature T, = 395 K. We wish to determine the heat flux.

From Table B.3 in Appendix and Table 11.2, the thermomechanical water properties at
saturation temperature are

Cpe= 4217 KIikg K
Water at a=589 x10~% kg/m*
T, =373K pe= 958 kg/m>

e = 279 % 1075 N-s/m?

Pry=1.76

and from Table 11.1, for water boiling on a mechanically polished surface,
Coy =0013, n=1
With these vatues and kg, = 2.257 x 10° ki/kg,

cpe(Tw — Ta) 4217 kIkgK x (395 — 373)K
Cy.phyy Pl 0.013 x 2.257 x '10* kl/kg x 1.76
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Table 11.2 Surface tension

T o x 10° T o x10°
Fluid K N/m Fluid K N/m
Water 275 753 Refrigerant-12 180 25.6
280 74.8 190 24.0
290 73.7 200 22.4
300 7.7 210 20.9
310 70.0 220 194
320 683 230 17.9
330 66.6 240 16.5
340 64.9 250 i5.0
350 632 260 13.6
360 61.4 270 123
370 59.5 280 10.9
373.15 58.9 2580 9.66
380 576 300 839
390 55.6 310 7.15
400 53.6 320 5.97
420 49.4 Mercury 300 470
440 45.1 400 450
460 40.7 500 430
480 36.2 600 400
500 316 700 380
550 19.7 Potassium 400 110
600 84 500 105
647.30 0.0 600 97
700 90
Ammonia 220 39 800 83
240 34 900 76
260 30 Sodium 500 175
280 25 700 160
300 20 900 140
320 16 1100 120
and
2o — pu) ~ 9.81 m/s* x 958 kg/m’ 150 % 107 2.

o

Then, from Eq. (11.97),

>

or

58.9 x 1073 N/m

—3- = 1,464 KW /m?.

— 279 x 10~8 Nes/m? x 2.257 x 16 kl/kg % (159 x 10° m™)"? x (1.8)°
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Also,

A 1,464 kW/m?
pe A _ N 66,545 W/mP K.
T T T (% _3K |

which, in Table 1.2, corresponds to the upper bound of boiling water (note the £30% uncertainty.
involved usually with these coefficients). @

On the boiling curve (Fig. 11.8), the upper limit of nucleate boiling, (g/A)max,
and the lower limit of film boiling, (§/A)min, are important limits. Next, we review the
existing models for these limits.

Models for (q/A)max and (q/A)min (Kutatelatze, Zuber Correlations).
For the bubble-rise velocity Vj, reconsider Eq. (11.92) under the assumption of
Fg > Fgand F; > Fy,

FB -~ F[ (1198)
or, on dimensional grounds,
ghoD} ~ pVZDE, (11.99)
which gives
172
A,
Vy ~ [g (—p) Db:l (11.100)
Pl
or, in terms of the Dy, obtained from Eq. (11.95),
A\
a
vy ~ ( e ”) . (11.101)
fol

Then, the energy balance between the applied heat flux and the enthalpy flow of evap-
oration,

A (11.102)
coupled with Eq. (11.101) vields
' s 1/4
g g

or, with the experimentally determined numerical coefficients,

1/4

(3) = 0.149p,hy | T8~ 20 (11.104)

A/ max Py
and

( ov) e

q) ogloe — P

Y = 009p,hy, | ELE LY (11.105)

(A in *’[ (or + pa)? }
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B EXERCISES

L1

A reactor core clement is simulated by a coaxial sodium flow over a solid fuel rod
(Fig, 11P-1). In terms of the following data, »” = 35 MW/m®, D; = 25 mm, Dy =
37.5mm, £ =6m, T; = 90°C, V = 1.2 m/s, and kel rod = 9 W/m-K, evaluate (a) the
exit temperature of sodium, (b) the surface temperature of the fuel rod, (c) the center-line
temperature of the fuel rod.-

VT 4
L — 3

\
? Kenel rod & D; | D,

Figure 11P-1
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APPENDIX £

l}

CORRELATIONS

Fluid mechanics and heat transfer correlations involved with internal and external
forced convection and natural convection are summarized in this appendix. These
correlations are organized in the following manner:

First, whenever possible, a schematic configuration is shown. Features such as ge-
ometry, flow condition, flow regime, and working fluid are categorized to help the reader
find the equation number—(A.1), (A.2) etc—corresponding to the friction coefficient
or the Nusselt number for the particular problem of interest.

Second, a numbered table follows each schematic configuration. Each table has
five columns:

1. Eq.: the equation number found in the schematic.
2. Correlation: Correlations for the friction coefficient or the Nusselt number.
3. Condition: the condition to which the correlation applies.

4, Property: the temperature to be used to evaluate properties such as density p,
viscosity u, etc.

5. Ref: the number of the reference in which further details can be found.

Further details on using the appendix can be found in Chapter-€é.
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Convention used in the tables below is as follows:

. R
UuD T. T u{r)T(r)dr
Rep = ==, U= . Tf=i£. bz-jé—R(L
v pA 2 fy urydr
F = Ty 1—(dP/dx)Dy
o2 4 1pU?
D
Gz = —RepPbr
7 e
Du = 4 x Cross-sectional area -4 x A
' Wetted perimeter P
¢: Surface roughness
Table A.1 Correlation for forced convection
Forced Convection in Circular Pipes
Eq. Correlation Condition Property Ref.
1
(A1) f=—o 0 < Rep <2300 T 1]
RCD
0791
(A2) f= 97 2300 < Rep < 10° T; 11
ReD/
0.046
A3) fom —— Rep = 10° Ty [1]
(&3) Rel,fs
2\ A
(A4) (?) =25In |:Rep (E) i| ~+0.3393 Rep > 2300 Tr 2]
0.1250
(A3 F= 5 Rep > 2300 Ty
i 5.74 N e/D
O — —
& Re} = 37
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(Pr,f atTy)

Eq.  Correlation Condition Property Ref
(A6) Nup == 4.36 Pr>06 T, 3]
(A7) Nup = 3.66 Pr> 0.6 T, 3]
0.0668Gz
A8) Nup =3.664 ~——os Pr > 1,oranunheated T, 4
A8 ° 1+ 0.04G2* starting length b 4
D
Gz = —RepP
el
0.14
(A9) Nup = 1.86Gz'? (i) 0.48 < Pr < 16,700 7, [5]
[
I
00044 <« — < 9.75 (1t at Ty
Mo
.14
GzH? Ll =2
Ly
(A.10) Nup = 0.023Re " Pr'/? 0.7 < Pr < 160 T 6]
L
— > 60
D
Re = 10°
(Ad1) Nup = 0.023Re} pr" 0.7 < Pr < 160 T, 7]
L
T,>T, n=04 — =60
D
Tp<Ty, n=03 Re > 10*
0.14
(A.12) Nup = 0.027Re’ prl? (i) 0.7 < Pr < 16,700 T (5]
Hw
L
> = 60 (tw at Ty)
Re = 10°
2 n
(A13) Stp = 12 (£} 0s<pr<2000 iy 8]
107+ 127(F/ VAP — 1) \ ey
To>T, n=011 10* < Re < 5 x 10° (tp at Tp)
T, <Tp, n=025 0<X <4 (w2t Ty)
7
g, = constant or gases, n=0
(A.14) StpPr? = g Moody diagram y [61
(Stp at Tp)




App. A Correlations 559

Eq. Correlation Condition Property Ref.
(A.15) Nup = C +0.025P&%? —g— > 60 Ip ]
C =50, constant T, Pep > 107
C =740, constant g,
(A.16) Nuy = 0.625pe%’ % > 60 Ty [10]
10?2 < Pep < 104
(A17) Nup = 4.82 + 0.0185P%™ Pr = 0.0153 Ts (111
% > 60

3.6 x 10° < Rep < 9.05 x 10°
58 < Pep < 1.31 x 10*

(A.18) Nup = C; + C,Re4®Pr0% Pr < 0.1 T {12]
Cy=4.8, C;=0.0156, constant T, (Pr at T,)
Cy =63, C;=0.0167, constant gy {(Rep at Tp)
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Forced Convection of Fully Developed Laminar Flow in Ducts of Various Cross

Sections [13]
Nup, = hDyk
Cross Section| b/a | Dy Constant axial g,, Constant g, | Constant T, | fRep,,
Constant peripheral T,,
£
D O — | D 4.364 4.364 3.657 16.000
T
4
a O 1.11]-1.05a 5.099 435 3.66 18.700
-
b
4
a A 293} oA 3111 1.892 247 13333
T .
b
KN
a 1 a 3.608 3.091 2.976 14.227
i b
2 | 443 4123 3.007 3.391 15.548
a4 sas 5331 2.930 4439 | 18233
Th=
8 | 16al9 6.490 2.904 5.597 20.585
4
_‘;_ w | Za 8.235 8235 7.541 24.000
&
4 Insulated
a oo | 2g 5.385 — 4.681 24.000
F b
— | Ba 4.002 3.862 334 15.054
ot
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For[cia% Convection of Fully Developed Laminar Flow in Concentric Tube Annu-
us

Nusselt number for fully devel-
oped laminar flow in a circular

tu eagnul s‘ﬁritho esurface in-
sulated and the other at a con-

stant temperature
D,'/Dg NUL' Nuo
0 — 3.6
0.05 17.46 4.06
0.10 11.56 411
0.25 737 423
0.50 574 4.43
1.00 486 4.86

q;{I = hi(Ts.E —Tn)
q:f = ho(Tso — T

D
Nu; == dnatil
k
hoD
Nu, = o H
k
_ Am/ND; - DY DD
—_ = Lig — L7}
D, + D
Nuy;
Nui = H 4 o
1 —{g5/9)6;
Nu
Nua - 00

1 —{q/'/4583

Influence coefficients for fully devel-
oped laminar flow in a circular tube
annulus with uniform heat flux main-
tained at both surfaces

Dg/Do Nuyy; N‘Llw 67 93

i

0 — 4364 o0 0

0.05 17.81 4.792 218 0.0294
0.10 1191 4.834 1383 0.0362
0.20 8499 4.883 0.505 0.1041
0.40 6.583 4979 0.603 0.1823
0.60 5.912 5.099 0473 02453
0.80 558 524 0401 0.299
1.00 5.385 5.385 0346 0.346
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Forced Convection of Flow Over a Flat Plate

— U,T.

Geometry —— x
— T
—— S(X) /w
7.
|
Flow regime Laminar Turbulent
Boundary-layer thickness (B.1) (B4
Local friction coefficient (B2) (B.5)
Average friction coefficient (B.3) (B.6)
Local Nusselt number (B.8) (B.11)
Gases, water,
viscous oils Average Nusselt number (B.9)
Local Nusselt number (B.10)
Liquid metals
Ayerage Nusselt number
Flow regime Turbulent {Jaminar leading edge incuded)

Average friction coefficient

Gases, water,
viscous oils

Average Nusselt number
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Conventions used on the tables that foliow are listed below.

Tw,x

! fx=

1
A

(l/L)_[;] ‘rwxdx
F = —amevr, f Fedx

= Z’ [[ fx.lamdx +/ fx.turbdx]
¢} Xe

&: Momentum boundary-layer thickness

Uex
Re, = —=.
v

Re, .: Transition (critical)} Reynolds number

h.x Ugx
Nu; = —, Pe, = Re,Pr = ——
k «

1 L
~ [~ hedx | L
AL (fo") L /Nu,
Nu, = b2 o A~ z[(Nu)dx
0

k k X
Fe (Nu L /Ny
NUL = [ ( x,)'..am) dx + f ( x.‘Ihrb) dx
0 x % x
UpD Vs D hD
RBD = ad y PBD = RepPr = 2 R NuD = — -
v o k
Forced Convection of Flow Over a Flat Plate
Eq. Correlation Condition Property  Ref.
8 5
B.1 i 0 < Re, <5x10° T, 15
( ) X Re}/z r [ ]
0.664
1.328
B3 = 0 <Re, <510 T, [15]
( } f Reyz X f
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w

105 < Re;, < 5.5 x 105 (i, at Ty)

026 < [ 22} <35
Mo

Re,c=2x 10°

Eq. Correlation Condition Property Ref.
(B.4) é_ _0.,5% 5x10° < Re, <105 T [15]
X Re,
0.0592
(B3Y fe= = 5% 10° < Re, = 108 1, [15]
X
0.074 .
(BE f= P 5x10° < Re, <108 7T (15}
L
. 42
(BT f= @;‘; e Rey < 10% vy [15]
ReL" Rey,
Re; . =5 % 10°
(B8) Nu, = 0.332Rel?Pr'/? Pr=06 T; (6]
(B9) Nuy = 0.664Re} *Pri/? Pr>06 Ty (6]
(B.10) Nu, = 0.565P¢;" Pr < 0.05 T; 13]
(B.11) Nu, = 0.0296Re**pr/? 0.6 < Pr=<60 Ty (6]
(B.12) Nuy = (0.037Re}” — 8T1)Pr? 0.6 < Pr <60 Ty
RGL =< 108
Rey.=5% 10°
1/4
(B.13) Nuy = 0.036(Re}” — 9200)Pr> (%"i) 0.7 < Pr < 380 T [16]
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Geometry Correlation
Circular cylinder g?qstisé ‘I’]"la;gf oil and (C1-7)
Table C.1
ReD C m
0.4-4 0.989 0.330
_ 4-40 0.911 0.385
U, T 40-4x10® | 0.683 0.466
. D 4x10P-4%10* | 0.193 0.618
T 4x10° -4 x10° | 0.0266 0.805
) Table C2
ReD C m
1-40 0.75 04
40-10° 0.51 0.5
10° -2 x 10 0.26 0.6
2x10°-10° 0.076 0.7
Sphere Liquids (C.8)
Gases (C9)
U Teo D Water and oil {C.10)
Gases, water, and oil {(C11)
T, 3 Alr (C.12,13)
Liquid metal (C14)
Free falling liquid sphere
U: Terminal velocity
Idealized condition (C.15)
Droplet oscillations
and distortions (C.16)
accounted for
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Forced Convection Over Other Geometries

Eq. Correlation Condition Property Ref.
(C1) Nup = CRZPr Pr> 0.7 T; [17, 18]
{Table C.1) 04 < Rep <4 x10°
_ 1/4
C2) Nup = (04ReY? + 0.06RePro4 | £ 067 <Pr<300 T (16]
D 2] »
w
10 < Rep < 10° (1w 2t Tyy)
025 < Yoo <52
Hos
e\
(C3) Nup = CRe2Pr" (P °°) 0.7 < Pr < 500 To [19]
Tw
Pr<10, n=037 1 < Rep < 106 (Pr, at T,)
Pr=10, n=0.36
(Table C.2)
0.62Re}{*Pri Rep |
c4 =0. 1 P 0.2 T 20
(C4) Nup =03+ G E "\ 22,000 = d (20]
1+ —
5 4
10 < Rep <2x10°, m=-, n=-
8 5
1
4 % 10" < Rep < 4 x 108, m= n=1
1
(CHNup = Pep < 0.2 1 21]
- - D
1/4
Pr
(C.6) Nup = (0.43 + 0.50Re%*)Pr?3% (Fri) 1 <Rep <10° Ty for gases  [22]
w
T for liquids
pr \
(C.7) Nup = 0.25Re%ePr0% (i’—f-) 10° < Rep < 2 x 10° 7y forgases  [22]
fw -

T, for liquids

(C.8) Nup = (0.97 + 0.68RelyHPr® Liquids T; [23]
1<Rep < Zx 1%
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Eq. Correlation Condition Property Ref
C.9) Nup=037Re%S Gases T, 24
(C9) Nup b 17 < Rep < 7% 10* ! [24]
1/4
(C.10) Nup = (1.2 + 0.53Re}*)pr03 (“ﬁ) Water and cils T [25]
227
1< Rep <2x10° (iw at Tu)
1/4
(C.11) Nup = 2+ (0.4Re}{” + 0.06Re )P4 (&3) 0.71 < Pr < 380 Too [16]
My

35 <Rep <7.6%x10% (g at Ty)
10<{2=) <32 ‘

oy
(C12) Nup =2 + (0.25 + 3 x 107*Re}9) 172 Pr=0.71 s [26]
10% < Rep < 3 x 10°
(C.13} Nup = 430 + C1Rep + CzRe% + C5Re, Pr=0.71 T; [26]
Ci=5%x10"3, C;=025x%10"° 3 x 1% < Rep < 5 x 10°
Cy=-31x107V
(C.14) Nup = 2 +0.386P¢}/” Liquid metals T; [27]
35,600 < Rep < 152,500
(C.15) Nup =2 + 0.6Re*Pr'? T 28]
Va1 £\ Droplet oscillations and
{C.16) Nup =2+ 0.6Rey"Pr+/* | 25 > distortionsaccountedfor T [29]
{x is the distance from the initial position of rest)
U D
RCD = i
v
Uy D
Pep = RepPr = =
o4
hD
Nup = —
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Forced Convection: Tube Banks (30, 31, 32)

Figure shows tube arrangements in a bank. F‘L'{

EX

%

:
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8
|
|
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Forced Convection: Tube Banks [30, 31, 32]

Eq. [ Correlation ‘ Condition Property | Ref.
(1) [Nup = C1Rep , Pr'7* N=10 Tf [30]
2 x 10° < Rep max < 4 x 10¢
Pr=07
(2) | Nup)y<io = C2(Nup)nz10 N <10 Ty {30]
(3) | Nup = 4.03 + 0.228(Pep,max)0.67 | Liquid metals Ty 31]
2% 10* < Rep max < 8 x 104
Rep max = YmxD . N = number of tube rows
v

Constants of Eq. (1)

Sr/D
123 1.5 2.0 3.0

SL/D C1 m Cg_ m C1 m C1 m
In-line 125 0393 0592 0311 0.608 0113 0.704 0.0715 0.752

150 0415 0586 0283 0.620 0.114 0.702 0.0766 0.744

200 0472 0570 0338 0602 0259 0632 0224 0.643

300 0328 0.601 0403 0584 0423 0.581 0323 0.608
Staggered 0.600 — — — — — — 0.241  0.636

0.900 — — — — 0.504 0.571 0453 0.581
1.000 — — 0.562 0.558 — - — —
1.125 0.540 0.365 0585 0.360

1250 0.585 0556 057t 0.554 0586 0.556 0590 0.562
1.500 0510 0.568 0.520 0562 0511 0.568 0551 0.568
2.000 0457 0.572 0470 0568 0.545 0556 0507 0570
3.000 0350 0592 0402 0580 0402 0.562 0484 0574

Constant C; of Eq. (2) [32]

N 1. 2 3 4 5 6 7 8 9
In-line 064 080 087 090 092 094 09 098 099
Staggered 068 075 083 089 092 098 097 08 099
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Natural Convection For Several Geometeries

Geometry Condition Constant T,, | Constant g,
2 T Laminar DD (D.3)
Aldr and water
l Turbulent (D2) (D.4)
i’
Laminar and (D.5) (D.7)
T 1 Liquid metal, | Trbulent
gases, water
Wiscous ols
l l Laminar (D.6) (D.B)
1_\9/ \(e—t Adr Laminar (D12)
% / P Tarbulent (D14)
- Laminar and
Liquid metal, D.15 D.17,19,20
% %’%\\ Liquid metal, | Turbulent (B15) | ( )
VISCOUS OLiS | 1 2 minar (D.16) (D.18)
W )_\9/ . Laminar (D.12)
Ajr
4 \ y Turbulent (D.13)
S Laminar and
d metal D21
é’éggls, w%fe? » | Turbulent (D21)
/ Viscous olls [ aminar
/%/ Angle Correlation
6 =180 (D29)
I
H
g=0 (D.30)
T
6=90 (D31-34)
‘_\ 8
0: arbitra: 1.35-38
W =Width of i ( )
rectangular
enclosure
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Free Convection For Several Geometeries
I.?ngdhoﬁzonttgl plate Lfongdhgﬁzongl plate
of width I wi of width L wi
heated surface % / //// cooled surface
facing upward facing downward
Constant T, Constant T,
Laminar D.9) Laminar D.9)
Z
Turbulent | (D10} Turbulent | (D.10)
L?ngdt;}olﬁzontal plate Lfong hoﬁzonltal piate
of width L, with of width L wil
cooled surface ) heated suface
facing upward // ///% facing downward
Constant T, Constant T,
/ / Larninar Laminar
7% | and oL and (D.11)
Turbuleat Turbulent
Horizontal cylinders
122,23, 24} Inclined
Table D,1) cylinders
Spheres Con(lsjtazzstg
Ly
(D226)
Table D.1
Ra,{10-*® 107 102 10 167 1012
c 0.675 102 0.850 0.480 0.125
n 0.058 (.148 0.183 1/4 1/3
ConcentrictV Concentric®@
cylinders spheres
4 27, 29)
4
WE:
‘ . Zn'kgﬂ' " Dy
(1) ¢’ (per unitlength) = ~—~—(T; — Tp), Ra = py o
o 5 ._ -
w2 # (07 +p, )
2]
m DDy . Rag 28T — To)8®
(2) g =kett (i —To). Ra; = =

— 3!
0oL (D77 + D577

Vo
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g8 (Ty — Too)L3
ve

Ray = GroPr = ., (for constant 7,,)

Ra; = GriPr = (GrPr)Nu; = Ra;Nu, =

g ;3
ié-(-;"-‘sz-—, (for constant g,,)

Table A.2 Correlation for free convection.
Free Convection For Several Geometeries

Eq. Correlation Condition Property Ref
(D1) Nug =0.59Ra; 10° < Ray < 10° T (33]
(D2) Nug =0.10Ra}> 10° < Rap < 10V T [34]
{D3) Nu, = 0.60(Ra)/> Ty [35]
(D4) Nuy = 0.17(Rap!* 2x10% < Ra® <108 1 [35]
0.387Ral/*
(D.5) Nul =0.825 + Lg i 107! <Rag <102 Ty [36]
0492\
,.1.. —_—
0.670Ra}* , ¢
{(D.6) Nup = 0.68 + ety 0 < Ray <10 Ty [36]
0.492
14| ——
[ ( Pr ) }
0.387(Raj }/6 ’
(D7) NuYSoaul? - 0.825) = - e W0 <Ra <10 T [36]
0.437
1+ —
0.670(Ra})Y*
(D8) Nuj*(Nu —0.68) = B 916477 0 <Ra, <10° T [36]
0.437
1+ —
[ ( Pr ) 1
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Eq. Correlation Condition Property Ref,
(D9) Nu = 0.54Ra;" 105 < Ra, <107 Ty 7]
(D.10) Nuy, =0.15Ra}” 107 < Ra, < 109 Iy [37]
(D.11) Nug, = 0.27Ra}* 10° < Ray, < 1010 Ty [37]
(D.12) Nu, = 0.60{Ra’ cos§)/ 10° < Raj cos& < 101 Tr [38]
(D13} Nu, = 0.17(Ra% cos )4 109 < Ralcosf < 10% Ty [38]
(D.14) Nu, = 0.17(Raj, cos? §)1/4 10V < Ralcos? 6 <105  T; (38]

0.387(Ray )
(D.15) Nuy? = 0.825 + - e Ra, 2 10%, 8 <607 by [36]

0.492\""
1+

0.670(Ray, cos )14

(D.16) Nug = 0.68 + (Ray cos) e Rapcosé <10°, @ <60° Ty [36]
0452\ "
1+
( Pr ) .
0.387(Ra} cos &)1/
(D.17) Nuj*(Nu}” - 0.825) = (Raz 9/16) 7 Rar 2 10°, 9 <60° Ty [36]
0.492
14|~
Pr
0.670(Ra7 cos )

(D.18) Nuf*(Nuy —0.68) = (Rag - /11 5 Raccosd <10°, 0 <60° Ty [36]

0.492

[1 + ( ) }
Pr
Tu+T5
(D.19) Nu = 0.56(Ra cos8)** 10° < Racosg = 101 — [343
Too + T,
6 < 88° (8 at —”2—")
Tw+ T,
|020) Nu = 0.58RaYS 10 < Ra < 10M = . 34
Too + T
87% < 6 < 90° (8 at %—f)
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108 < Ray < 10?

Eq.  Correlation Condition Property Ref.
Tw+T,
D21) Nu = 0,14Pc* [Gr'? — Gr/?] + 0.56(Ra cos§)1/* 10° < Racosd < 101 Ty 39
¢ 2
Too + 7
g —15° —30° —600 —750 75 <6 < —15° B a =2
Grao 5x10° 2x10° 108 10°
For Gr, > Gr, Gr, = Gr
(D.22) Nup = CRaj, Gases, liquids, and oils Ty [40]
(Table D.1)
0.387Ral®
(D23) Nul> =06+ Dma o 105 < Rap < 1012 Ty
0.559
1+ —
Pr
(D:24) Nup = 0.53(RapPr)/* Liquid metal Ty [40]
(sin @)™
1/w-—2—~
{D.25) Nug == {0.60 — 0.488(sin )] Ra, Ray <2 x 108 T [41]
(8 at Tw)
174
Pr 4 ;
(D.26) Nup =2 +0.56 PP Ra} Laminar vy (42]
E + Pr
' 14
Pr T+ 7T
(D27 ket 0386 [ ———— ] (Raxi* 10? < Ra} = 107 L [42]
0.861 + Pr 2
14
Pr i+ 7,
(D.28) B _oqa 2 (Rasy/* 10? < Ra} <10} o (42]
k 0.861 + Pr 2
"+ 5
(D29) Nug =1 (pure conduction) 6 =180 or Ra, <170 — :
L L T+ T
(D.30) Nuy, = 0.069Ra}Pr0o §=0° (= and — small) [43]
H W 2
3x10° <« Ray < 7 x 107
H i+ %
(D31) Nug = 0.046Ra'? 1< =<4 : : - [43]
1<Pr<20
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Egq, Correlation Condition Property Ref
-03
H
(D32) Nu, = 0.42Ra}/*'proo0 (—-) 0<? <40 Ltk [43]
L L 2
1< Pr<2x10t
10° < Ra; < 107
Pr o H T, + T
(D33) Nug =0.18 Ray 1<— <2 LI
0.2+ Pr L 2
107? < Pr < 108
Ra,Pr
100 < —&
02+Pr
- 0.28 —1/4
Pr H H I+ T
(D38) Nug =022 Ra = 2<= <10 T2 [44)
0.2+4+Pr L L 2
Pr < 10°
Ra < 109
708 1 1708(sin 1.89)"$ H T+ T
(D35) Nup=1+144{1— 1 IO ] o<o<e, Do DR 4y
Ray cosé Ra; coséd L 2
Ray cos@ i
+il————] -1
5830
[ <0 setf{]*=0
N | a/6*
uL . H T+
(D36) Nug =Nug L Y 0 A §* <6 <90°, — <12 ——2 [44]
00 Nu:.‘ L 2
g
H/L: 1 3 6 12 " =12
gv. " 2% 53 600 67 T0°
T+ T
(D37) Nug=Nug| (sin@)¥* 90° < § < 180° LI, T
9=507 . 2
I ; h+5
(D38) Nug=1+|Nu,  —1|sing 90° < 0 < 1807 [47]
L f=90? A
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App. B Thermophysical Properties 579
Table B.1 Solids
Metallic Solids
' Properties at 300 K Properties at various temperatures (K)
Melting k, Wim-K/c,, Jkg-X
point  p Cp k.10 .
Composition K kg/m® JkgK Wim-K m?/s 100 200 400 600 800 1290
Aluminum
Pure 933 2762 903 237 87.1 302 237 240 231 218
482 798 949 1033 1146
Alloy 2024-T6 775 27m 873 117 730 65 163 i85 186
(4.5% Cu, 1.5% Mg, 473 787 925 1042
0.6% Mn)
Alloy 195 Cast 2790 883 168 68.2 174 185
{45% Cu) _ .
Beryllium 1550 1850 1825 200 592 990 301 161 126" 106 78.7
203 1114 2191 2604 2823 3227
Bismuth 545 9780 122 7.86 6.58 165 9.69 7.04
112 120 127
Boron 2573 2500 1107 270 9.76 190 55.5 16.8 10.6 9.60
128 600 1463 1892 2160
Cadmium 594 8650 231 068 484 203 99.3 94.7
198 222 242
Chromium - 2118 7160 449 937 2901 159 111 90.9 807 713 61.9
192 384 484 542 581 682
Cobalt 1769 8862 421 992 266 167 122 854 674 582 493
236 379 450 503 550 733
Copper
Pure 1358 8933 385 401 117 482 413 393 379 366 339
252 356 397 417 433 430
Commercial bronze 1293 8800 420 52 14 42 52 59
(90% Cu, 10% Al) 785 460 345
Phosphor gear bronze 1104 8780 355 54 17 41 65 74
(89% Cu, 11% Sn) — — —
Cartridge brass 1188 8530 380 110 33.¢ 75 95 137 149
(70% Cu, 30% Zn) — 360 395 425
Constantan 1493 89200 384 23 671 17 19
(55% Cu, 45% Ni 237 362
Germanium 1211 5360 322 599 347 232 96.8 432 27.3 19.8 174
190 280 337 348 357 395
Gold 1336 19300 129 317 127 327 323 311 298 284 255
109 124 131 135 140 155
Iridium 2720 22500 130 147 503 172 153 144 138 132 120 -
90 122 133 138 144 161
Iron
Pure 1810 7870 447 802 231 134 94.0 69.5 54,7 433 283
216 384 490 574 680 609
Armco (99.75% pure) T8N0 447 727 207 895.6 80.6 65,7 531 422 287
215 384 490 574 680 609
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Table B.1 Solids

Metallic Solids (cont)
Properties at 300 K Properties at various temperatures (K)
Melting EWim K/ e, Jkg K
point  p €y kK a-10°
Composition K kg/m® Jkg-K Wim-K m?/s 100 200 400 600 800 1200
Carbon steels
Plain carbon 7854 434 605 177 56.7 480 392
(Mn < 0.1%, 487 559 685
Si<0.1%)
AJST 1010 7832 434 639 183 587 488 392
487 559 685
Carbon-silicon. 7817 446 519 149 498 440 374
(Mn < 1%, 501 382 699
0.1% < 8 = 0.6%)
Carbon-manganese- 8151 434 410 116 422 397 330
silicon 487 539 683
(1% < Mn < 1.65%,
01% < 8 <0.6%)
Chromiumn (low) steels
Cr-Mo-81 7822 444 37 109 382 367 333
(0.18% C, 0.65% Cr, 492 375 688
0.23% Mo, 0.6% Si)
Cr-Mo 7858 442 423 122 420 3931 345
(0.16%C, 1% Cr, 492 375 688
0.54% Mo, 0.39% Si}
Cr-V 7836 443 489 141 468 421 363
(0.2% C, 1.02% Cr, 492 575 688
0.15% V)
Stainless stesls
AISI302 8055 480 151 391 173 200 228
512 559 583
AISI304 1670 7900 477 149 395 92 126 166 198 226 280
272 402 515 557 582 640
AJSI316 8238 468 134 348 152 183 213
504 550 576
AJSI 347 7978 480 142 371 158 189 219
513 559 585
Lead 601 11340 129 353 241 397 367 340 314
118 125 132 142
Magnesium 923 1740 1024 156 876 169 159 153 149 146
649 934 1074 1170 1267
Molybdenum 2894 10240 251 138 537 179 143 134 126 118 105
141 224 261 275 285 308
Nickel
Pure 1728 8900 444 907 230 164 107 802 656 €676 762
232 383 485 592 530 594
Nichrome 1672 8400 420 12 34 14 16 21
(80% Ni, 20% Cr) 480 525 345
Inconel X750 1665 8510 439 117 31 87 103 135 170 205 276
(73% Ni, 15% Cr, 6.7% Fe) — 372 473 510 546 —
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Table B.1 Solids
Metallic Solids {cont.}
. Properties at 300 K Properties at various temperatures (K}
Melting k, Wim-K / ¢,, Jkg-K
point . ¢y k o - 108
Composition K kgm® JhkgK WmK mihs 100 200 400 600 800 1200
Nicbium 2741 8570 265 537 236 552 526 552 582 6lL3 675
188 249 274 283 292 310
Palladium 1827 12020 244 71.8 245 765 M6 736 797 869 102
168 227 251 261 271 291
Platinum
Pure 2045 21450 133 716 251 775 726 T8 132 756 826
100 125 136 141 146 157
Alloy 60Pt—40Rb 1800 16630 162 47 174 52 59 65 73
(60% Pt, 40% R — —_ —_— —
Rhenium 3453 21100 136 479 16.7 589 510 461 442 441 457
97 127 139 145 151 162
Rhodium 2236 12450 243 150 49.6 186 154 146 136 127 116
147 220 253 274 293 327
Silicon 1685 2330 712 148 892 884 264 989 619 422 257
259 556 790 B6T 913 967
Tantalum 3269 16600 140 575 247 592 575 578 386 594 610
110 133 144 146 149 155
Thorium 2023 11700 118 540 391 598 546 3545 558 569 587
99 112 124 134 145 167
Tin 505 7310 227 66.6 401 852 733 622
188 215 243
Titanium 1953 4500 522 219 9.32 305 245 204 154 197 220
300 465 551 591 633 620
Tungsten 3660 19300 132 174 68.3 208 18 159 137 125 113
87 122 137 142 145 152
Uranium 1406 19070 116 27.6 12.5 217 251 296 3490 388 490
94 108 125 146 176 161
Vanadium 2192 6100 489 30.7 10.3 358 313 313 333 357 408
258 430 515 540 563 645
Zinc 693 7140 389 116 418 117 118 111 103
297 367 402 436
Zirconium 2125 6570 278 227 124 332 252 216 207 216 260
205 264 300 322 342 344
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Table B.1 Solids

Nonmetallic Solids.
Properties at 300 K Properties at various temperatures (K)
Melting k, Wm-XK / c,, Jkg-K
point g 5 ko oa-10°
Composition. K  kgm?® JkeK Wim-K m?s 100 200 400 600 800 1200
Aluminum oxide, 2323 3970 765 46 151 450 82 324 189 130
sapphire — — 940 1110 1180
Aluminum oxide, 2323 3970 745 36.0 119 133 55 264 158 104 655
polycrystalline — 940 1110 1180 —
Beryllium oxide 725 3000 1030 272 88.0 19% 111 70 33
1350 1690 1865 2055
Boron 2573 2500 1105 27.6 999 190 525 187 113 81 52
— — 1490 1880 2135 2555
Baren fiber epoxy 390 2080
(30% vol) composite
k, |l to fibers 229 210 223 228
k, L to fibers 0.59 037 049 0.60
c, 1122 364 757 1431
Carbon
Amorphous 1500 1950 — 1.60 — 067 118 1.89 219 237 284
Diamond, type Ila — 3500 509 2300 10000 4000 1540
insulator 21 194 853
Graphite, pyrolytic 2273 2210
k, |} to layers 1950 4970 3230 1390 892 667 448
k, L to layers 5.70 16.8 923 4.09 268 201 134
= 709 136 411 992 1406 1650 1890
Graphite fiber epoxy 450 1400
(25% vol) composite
k, heat flow
|| to fibezs 1.1 57 &7 130
k, heat flow
I to fibers 0.87 046 068 1.1
c,p 535 337 642 1216
Pyroceram 1623 2600 808 3.98 1.89 525 478 364 328 3.08 2.87
Corning 9606 — — 8908 1038 1122 1264
Silicon carbide 3100 3160 675 490 230 — - - 58
880 1050 1135 1243
Silicon dioxide, 1883 2650
crystalline
(quanz)
K, [l to ¢ axis 104 ¥ 164 76 30 42
k, 1 tocaxis ' 6.21 208 95 470 34 31
Cps 745 — — 885 1075 1230
silicon dioxide, 1883 2220 745 138 0834 069 114 151 175 217 400
polycrystalline — — 905 1040 1105 1195
(fused silica) -
Silicon nitride 2173 2400 691 16.0 9.65 - — 139 113 988 80
— 578 778 937 1063 1226
Sulphur 392 2070 708 0206 0141 0165 0.185
403 606
Thorium dioxide 3573 9110 235 13 6.1 102 66 47 312
255 274 285 303
Titanium dioxide, 2133 4157 710 84 2.8 701 502 394 328

polyerystaliine 805 830 910 945
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Table B.1 Solids
. Industrial Insulation Matcrials

¢ Max  Typical  Typical thermal conductivity, k(W/m-K)} at various temperatures (K)
service  density

Description/composition terep, K kg/m® 200 240 270 300 310 365 420 530 645 750
Blankets )
Blacket, mineral fiber, metal 920 96 152 0.038 0.046 0056 0.078
reinforced 815 40 96 0035 0.045 0.058 0.088
Blanket, mineral fiber, glass; 450 10 0.036 0.040 0048 0052 0076
fine fiber, organic bonded 12 0.035 0039 0046 0.049 0.069
16 0033 0036 0042 0046 0062
24 0.030 0,033 0039 0040 0.053
32 0,029 0032 0036 0038 0048
48 0.027 0030 0033 0.035 0.045 .
Blanket, alumina-silica fiber 1530 48 0.071 0105 0150
64 0.059 0.087 0.125
96 0.052 0.076 0100
128 0.04% 0.068 0.091
Felt, semi-rigid, organic bonded 480 50125 0.035 0038 0039 0.051 0.063
730 50 0.023 0.027 0030 0.033 0035 0051 0.079
Felt, laminated; no binder 920 120 0.051 0065 0.087
Blocks, boards, and
pipe insulations
Asbestos paper, laminated
and corrugated
4ply 20 190 0.078 0082 0098
6-ply 420 255 0,671 0.074 0.085
8-ply 420 300 0.068 0.071 0.082
Magnesia, 85% 590 185 0.051 0.055 0.061
Calcium silicate 920 190 0.055 0.059 0.063 0075 0.089 0.104
Cellular glass 700 145 0.048 0052 0.058 0062 0.069 0.079
Diatomaceous silica 1145 345 0.092 0.098 0.104
1310 385 0101 0100 0115
Polystyrane, rigid
Extruded {(R-12} 50 56 0023 0.023 0025 0027 0.029
Extruded (R-12) 350 35 0023 0023 0.026 0029
Molded beads 350 16 0.026 0033 0.03¢ 0.040
Rubber, rigid foamed 340 70 0.029 0.032 0.033
Insulating cement
Mineral fiber
(rock, slag or glass)
with clay binder 1255 430 0,071 0079 0088 0105 0123
with hydraulic setting binder 922 560 0108 0115 0123 0.137
Loose fill
Cellulose, wood or paper pulp — 45 0.039 0042
Perlite, expanded — 105 0,036 0.043 0049 0.053 0.056
Vermiculite, expanded — 122 0.058 0063 0.068 0.071

80 0.051 0.058 0063 0066




584 App. B Thermephysical Properties

Table B.1 Solids

Building Materials
Typical Properties at 300 K
Density, Thermal Specific
p Conductivity, k Heat, ¢,
Description/Composition kg/m* Wim- K Jkg K
Building Boards
Asbestos-cement board 1,920 0.58 —
Gypsum or plaster board 8OG 0.17 —
Plywood 545 0.12 1,215
Sheathing, regular density 290 0.055 1,300
Acoustic tile 290 0.058 1,340
Hardboard, siding 640 0.094 1,170
Hardboard, high density 1,010 0.15 1,380
Particle board, low density 590 0.078 1,300
Particle board, high density 1,000 0.170 1,300
Woods
Hardwoods {oak, maple} 720 0.16 1,255
Softwoods (fir, pine} - 510 0.12 1,380
Masonry Materials
Cement mortar 1,860 0.72 780
Brick, common 1,920 0.72 835
Brick, face - 2,083 1.3 —_—
Clay tile, hollow
1 cell deep, 10 om thick — 0.52 —_
3 cells deep, 30 cm thick e 0.69 —
Concrete block, 3 oval cores
sand/gravel, 20 cm thick — 1.0 —
cinder aggregate, 20 cm thick — 0.67 —
Concrete block, rectangular core
2 core, 20 cm thick, 16 kg — 1.1 —
same with filled cores — 0.60 —
Plastering Materials
Cement plaster, sand aggregate 1,860 0.72 o
Gypsum plaster, sand aggregate 1,680 0.22 1,085
Gypsum plaster, vermiculite 720 - 0.25 —

aggregate
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Table B.1 Solids

Insulation Materials
Typical Properties at 300 K
Density, Thermal Specific
p Conductivity, k Heat, ¢,
Description/Composition kg.m’ Wim-K kg - K
Blanket and Batt
Glass fiber, paper faced 16 0.046 e
28 0.038 —
40 0.035 —
Glass fiber, coated: duct liner 32 0.038 835
Board and Slab
Cellular glass 145 0.058 1,000
Glass fiber, organic bonded 105 0.036 795
Polystyrene, expanded
extruded (R~12) 55 0.027 1,210
molded beads 16 0.040 1,210
Mineral fiberboard: roofing 265 0.049 —
material
Wood, shredded/cemented 350 0.087 1,590
Cork, granulated 120 0.039 1,800
Loose Fill
Cork, granulated 160 0.045 —
Diatomaceous silica, coarse 350 0.069 —
powder
400 0.091 —
Diatomaceous silica, fine powder 200 0.052 -
275 0.061 —
Glass fiber, poured or blown 16 0.043 835
Vermiculite, flakes 80 0.068 835
160 0.063 1,000
Formed/Foamed-in-Place
Mineral wool granules with 190 0.046 —
asbestos/inorganic binders,
sprayed
Polyvinyl acetate cork mastic; — 0.100 —
sprayed or troweled
Urethane, two-part mixture; 70 0.026 1,045
rigid foam
Reflective
Aluminum foil separating fluffy 40 0.00016 —

glass mats: 10-12 layers; evacuated;
for cryogenic application (150 K}
Aluminum foil and glass paper 120 0.000017 —
laminate; 75-150 layers; evacuated,
for eryogenic application (150 K)
Typical silica powder/evacuated 160 0.0017 —
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Table B.1 Solids

Miscellaneous Materials
Density Thermal Specific
Temperature o Conductivity, k Heat, ¢,
Description/Composition K kg/m’ Wm-K  Jke- K
Asphalt 300 2,115 0.062 920
Bakelite 300 - 1,300 1.4 1,465
Brick, refractory
Carborundum 872 — 18.5 —
1,672 — 11.0 —
Chrome brick 473 3,010 2.3 835
823 2.5
1,173 2.0
Diatomaceous silica, fired 478 — 025 —_
1,145 — 0.30
Fire clay, burnt 1600 K T3 2,050 1.0 960
1,073 — 1.1
1,373 — 1.1
Fire clay, burnt 1725 K 713 2,325 "13 960
1,073 14
1373 14
Fire clay brick 478 2,645 1.0 960
922 1.5
1,478 18
Magnesite 478 — 38 1,130
922 — 2.8
1478 1.9
Clay 300 1460 1.3 380
Coal, Anthracite 300 1,350 0.26 1,260
Concrete (stone mix) 300 2,300 14 880
Cotton 300 80 0.06 1,300
Foodstuffs
Banana (75.7% water content) 300 980 0.481 3,350
Apple, red (75% water content) 300 840 0.513 3,600
Cake, batter 300 720 0.223 e
Cake, fully done 300 280 0121 —
Chicken meat, white 198 ‘ —_ 1.60 —
(74.4% water content) 233 — 1.49
253 . 1.35
263 1.20
273 0.476
283 0.480

293 0.48%
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Table B.1 Solids
Miscellaneous Materials (cont.}

‘ Density Thermal Specific
Temperature P Conductivity, k Heat, ¢,
Description/Cornposition K kg/m3 Wim - K Jkg K
Glass
Plate (soda lime) 300 2,500 14 750
Pyrex 300 2,225 14 835
Tee 273 920 0.188 2,040
253 — 0.203 1,945
Leather (sole)} 300 998 0.013 —
Paper 300 930 0.011 1,340
Paraffin 300 900 0.020 2,890
Rock
Granite, Barre 300 2,630 2.79 775
Limestone, Salem 300 2,320 215 810
Marble, Halston 300 2,680 2.80 830
Quartzite, Sioux 300 2,640 538 1,105
Sandstone, Berea " 300 2,150 2.90 745
Rubber, vulcanized
Soft 300 1,100 0.012 2,010
Hard 300 1,190 0.013 —
Sand 300 1,515 0.027 800
Soil 300 2,050 0.52 1,840
Snow 273 110 0.049 —
500 0.19G —
Teflon 300 2,200 0.35 —
400 045 —
Tissue, human
Skin 300 — 0.37 —_
Fat layer (adipose) 300 —— 0.2 —
Muscle 300 — 0.41 —
‘Wood, cross grain
Balsa 300 140 0.055 —
Cypress 300 465 0.097 —
Fir 300 415 011 2,720
Oak 300 545 0.17 2,385
Yellow pine 300 640 0.15 2,805
White pine 300 435 0.11 —
Wood, radial
Qak - 300 545 0.19 2,385

Fir 300 420 - 0.14 2,720
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Table B.2 Gases

Adx

T o Sy w107 x-10° v-106 o109 Pr (gB/va) . 1078
K] [kgm’] [kikg-K] [N-sm?] [Wm-K] [m’/s] [m%/s] [1/K - m’]

100 3.3562 1.032 711 934 2.0 254 0786 19,305

150 2.3364 1.012 103.4 13.8 4.426 584 0738 2529

200 1.7458 1.007 1325 181 7.590 103 0737 627.2

250 1.3947 1.006 159.6 223 11.44 159  0.720 215.7

300 11614 1.007 184.6 263 15.89 225 0707 91.43

350 0.9930 1.009 208.2 30.0 20.92 209 Q.7G0 44.80

400 0.8711 1.014 2301 338 2641 383 0.690 24.24

450 0.7740 1.021 250.7 373 32.39 472  0.686 14.26

500 0.6964 1.030 270.1 40.7 38.79 567  0.684 8.018

550  (.6329 1.040 2884 439 45.57 66.7 0.683 5.866

600  0.5804 1.051 305.8 46.9 52.69 769  0.685 4.034

630  0.5356 1.063 322.5 49.7 60.21 873 0.690 2.870

700 04975 1.075 338.8 524 €5.10 98 0.695 2.09%

750 0.4643 1.087 354.6 54.9 76.37 109 0.702 1.571

800 0.4354 1.099 369.8 573 8493 120 0.709 1.203

850 04097 1.110 3843 59.6 93.80 131 0.716 0.9390

900 0.3868 1.121 398.1 62.0 102.9 143 0.720 0.7405

950 03666 1.131 411.3 643 1122 155 0.723 0.5936
1000 03482 1.141 424.4 66.7 121.9 168 0.726 0.4789
1100 03166 1.159 449 715 141.8 195 0.728 0.3224
1200 0.2902 1.175 473 76.3 162.9 224 0.728 0.2240
1300 02679 1189 496 82 185.1 238 0.719 0.1712
1400 02488 1207 530 91 213 303 (0.703 0.1085
1560 02322 1.230 557 100 240 350 0.685 0.07783
1600 02177 1.248 584 106 268 390 0.688 0.05864
1706 02049 1.267 611 113 298 435 0.635 0.04450
1800  0.1935 1.286 €37 120 329 482 0.683 0.03436
1900  0.1833 1.307 663 128 362 534 0.677 0.02670
2000 01741 1.337 689 137 396 589 0.672 0.02102
2100 01658 1.372 715 147 431 646 0.667 0.01677
2200 0.1582 1417 740 160 468 714 0.655 0.01334
2300 (0.1513 1.478 766 175 506 783 0.647 0.61076
2400 (1448 1.558 792 196 547 869 0.630 0.008596
2500 (C.1389 1.665 818 222 589 960 0.613 0.006938
3000 01135 2726 935 486 841 1570 0.536 0.002476
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Table B.Z Gases
Ammonia {(NH3)
T o €5 w107 k107 v-10 @-105 Pr  (gB/ver) - 1076
K] _fkgm'] [kIkg-K] [N-s/m”] [Wim-K] [m?/s] [m?/s] (/K- m?]
300 0.6894 2,158 101.5 24.7 14.7 166  0.887 134
320 0.6448 2.170 109 272 16.9 194  0.870 93.48
340 0.6059 2.192 116.5 29.3 19.2 221 0872 67.98
360 05716 2221 124 316 21,7 249 0872 50.42
380 0.5410 2254 131 340 24.2 279 0869 3822
400  0.5136 27287 138 37.0 26.9 315  0.853 28.93
420 0.4888 2322 145 40.4 29.7 356 0833 22,08
440 0.4664 2.357 152.5 435 327 396  0.826 17.21
450  0.4460 2.393 159 463 35.7 434 082 13.76
480  0.4273 2430 166.5 492 39.0 474 0822 11.05
500 64101 2.467 173 525 422 519  0.813 8.955
520 03942 2.504 180 545 457 552 0.827 7476
540 03795 2.540 186.5 57.5 49.1 597 0.824 6.196
560 03708 2577 193 60.6 520 634 0827 5312
580  0.3533 2613 199.5 63.8 56.5 69.1 0.817 4,331
Table B.2 Gases
Carbon Dioxide (CQ-)
T o cp w107 k-10° v-105 «-105  Pr  (gd/vw)-107°
K] [kgm’] [kikg-K] [N-sim®] [Wim-K] [m/s] [m?/s] (/K - m’]
280  1.9022 0.830 140 15.20 7.36 963 0765 4942
300 1.7730 0.851 149 16.55 840 119 0766 353.8
320 1.6609 0.872 156 18.05 939 125 0754 261.1
40 1.5618 0.891 165 19.70 10.6 142 0.746 191.6
360 14743 0.908 173 212 11.7 158 0741 147.4
380 1.3961 0.926 181 2275 13.0 176 0737 112.8
400  1.3257 0.942 190 243 14.3 195 0.737 87.92
450  1.1782 0.981 210 283 17.8 245 0728 49.97
500 1.0594 1.02 231 325 21.8 01 0725 29.89
550 0.9625 1.05 251 36.6 26.1 62 0721 18.87
600 0.8826 1.08 270 407 30.6 427 0717 12.51
650  0.8143 1.10 258 4.5 35.4 497 0712 8.576
700 07564 1.13 305 431 403 563  0.717 6.173
750 0.7057 1.15 321 517 45.5 637 0714 4512
800  0.6614 1.17 337 55.1 51.0 712 0716 3.376
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App. B Thermophysical Properties

Carbon Monoxide (CO) .
T P cp w107 k- 107 ve108  @-105  Pr (gB/ve)-107°
K] {kg/m’®] [kkg-K] [N-sim’] [Wm-K] [m?%/s] [m?/s] [1/K - m*]
200 1.6888 1.045 127 17.0 7.52 9.63 0.781 6771
220 1.5341 1.044 137 19.0 893 119 0753 4195
240 14055 1.043 147 20.6 10.5 141 0744 276.0
260 1.2967 1.043 157 2.1 121 163 0741 1912
280 1.2038 1.042 166 23.6 13.8 188  0.733 135.0
300 1.1233 1.043 175 25.0 15.6 213 0730 98.38
320 1.0529 1.043 184 26.3 17.5 239 0730 7327
340 0.9909 1.044 193 278 19.5 269 0725 54.99
360 0.9357 1.045 202 29.1 21.6 298 0725 42.32
380 0.8864 1.047 210 30.5 23.7 329 0729 33.10
400  0.8421 1.049 218 31.8 25.9 360 0719 26.30
450 0.7483 1.055 237 35.0 317 43 0714 15.52
500 0.67352 1.065 254 38.1 37 531 0710 9.798
550 0.61226 1.076 271 411 443 624 0710 6.450
600  0.56126 1.088 286 44.0 51.0 721 0707 4445
650  0.51806 1101 301 47.0 58.1 824  0.705 3152
700 048102 1.114 315 50.0 65.5 933 0702 2.293
750 0.44899 1.127 329 52.8 733 104 0.702 1.715
800  0.42095 1.140 343 555 815 116 0.705 1.297
Table B.2 Gases
Helium (He)
T P <p - 107 k.10° ve10¢ w100 Pr (gB/va) - 107¢
K] [kgm®] [kikg-K| [N-sim®] [Wm-K} [m?/s] [m?/s] [1/K - m’]
100 04871 5.193 963 73.0 19.8 289 0686 1714
140 0.3481 5193 118 90.7 33.9 502 0.676 416
180 02708 5.193 139 107.2 51.3 762 0673 13.94
220 02216 5193 160 1231 722 107 0675 5770
260 01875 5.193 180 137 96.0 141 0682 2.787
300 0.1625 5.193 199 152 122 180 0.680 1.489
400 01219 5.193 243 187 199 295 0675 0.4176
500 0.09754 5.193 283 220 290 434 0668 0.1558
600 — 5193 320 252 — — — —
700 0.06969 5.193 350 278 502 768  0.654 0.03634
800  — 5.193 382 304 — —_ — —
1000 0.04879 5.193 446 354 914 1400 0.654 0.007664
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Table B2 Gases
Hydrogen (Hj)

T P Cp w107 k- 10° v-105  @-10°  Pr  (gB/va). 100
K| [kg/m’] [kike-K] [N-sm®] (Wim-K] fm/s] [m%/s] [1/K - o]
100 0.24255 1123 421 67.0 174 246 0707 2291
150 0.16156 12.60 56.0 101 347 496 0.699 37.99
200 012115 13.54 68.1 131 56.2 79.9 0704 10.92
250  0.09693 14.06 78.9 157 814 115 0.707 4,191
300 0.08078 14.31 896 183 111 158 0.701 1.864
350 0.06924 14.43 93.8 204 143 204 0.700 (.9605
400 (.06059 14.48 108.2 226 179 258 0.695 (0.5309
450  0.05386 14.50 117.2 247 218 316 0.689 0.3164
500 0.04848 14,52 126.4 266 261 378 0.691 0.1988
550  0.04407 14.53 1343 285 305 445 0.685 0.1314
600  0.04040 14.55 1424 305 352 519 0.678 0.08947
700 0.03463 1461 157.8 342 456 676 0.675 0.04545
800 0.03030 14.70 172.4 378 569 849 0.670 0.02538
900  0.02694 14.83 186.5 412 692 1030 0.671 0.01529
1000 0.02424 14.99 2013 448 830 1230 0.673 0.009606
1100  0.02204 15.17 213.0 488 966 1466 0.662 0.006321
1200  0.02020 15.37 2262 528 1120 1700 0.659 0.004292
1300 0.01865 15.59 2385 568 1279 1955 0.655 0.003017
1400  0.01732 15.81 250.7 610 1447 2230 0.650 0.002171
1500 0.01616 16.02 262.7 655 1626 2530 0.643 0.001589
1600  0.0152 16.28 2737 697 1801 2815 0.639 0.001209
1700  0.0143 16.58 284.9 742 1992 3130 0.637 0.0009252
1800  0.0135 16.96 206.1 786 2193 3435 0.639 0.0007233
1900 0.0128 17.49 3072 835 2400 3730 0.643 0.0005766
2000 0.0121 1825 3182 878 2630 3975 0.661 0.0004690
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Table B.2 Gases

Nitrogen (No)

T o <, - 107 k.10 v-100  @-106 Pr (gB/ve)-107°
(K]  [kefm®]  (kWkg-K[ [N.sm’] [Wim-.K] [m?/s] [m’/s] [1/K - m*]
100 34388 1.070 68.8 9.58 2.00 260 0768 18,860
150 2.2594 1.050 100.6 139 445 586 0.75% 2507
200  1.6883 1.043 129.2 183 7.65 104  0.736 6163
250  1.3488 1.042 154.9 222 1148 158  0.727 2162
300 11233 1.041 178.2 259 1586 221 0716 9327
350 0.9625 1.042 200.0 293 2078 292 o711 46.18
400 0.8425 1,045 2204 327 2616 371 0.704 25.26
450 07485 1.050 239.6 35.8 3201 456 0703 14.93
500 0.6739 1.056 2517 38.9 3824 547 0.700 9.377
550 0.6124 1.065 2747 41.7 4486 639 0702 6.220
600 0.5615 1.075 290.8 44.6 s179 739 0701 421
700 0.4812 1.098 321.0 439 66.71 944  Q.706 2.225
300 04211 1.122 349.1 54.8 8290 116 0.715 1.275
900 0.3743 1.146 375.3 59.7 1003 139 672 0.7816
1000 03368 1.167 399.9 64.7 1187 165 0.721 0.5007
1100 0.3062 1.187 4232 70.0 1382 193 0.718 0.3343
1200 0.2807 1.204 445.3 75.8 1586 224 0.707 0.2300
1300 02591 1.219 466.2 81.0 1799 236 0.701 0.1638
Table B.2 Gases
Oxygen (O2)
T 0 ¢, w107 %10 v.106 @-108  Pr  (gB/ve)-107°
(K]  (kgm®]  [kVkg Kl [N.sm®] [Wim K] [m?/s] [m®/s] (1/K - m’]
100 3.945 0.962 76.4 9.25 1.94 244 0796 20,718
150 2585 0.921 114.8 158 444 580 0.766 2539
200 1.930 0.913 147.5 153 7.64 104 0737 617.1
250 1542 0.915 178.6 2.6 1158 160  0.723 211.7
300 1.284 0.920 207.2 26.8 1614 227 071 89.22
350 1.100 0.929 2335 29.6 2123 290 0733 45,51
400 0.9620 0.942 258.2 33.0 2684 364 0737 25.09
450  0.8554 0.936 2814 36.3 3290 444 0741 14.92
506 0.7698 0.972 303.3 412 39.40 551 0716 9.035
550  0.6998 0.988 324.0 4.1 4630 638 0726 6.036
600  0.6414 1.003 243.7 413 5359 735 0729 4150
700  0.5498 1.031 380.8 528 6926 931 0744 2173
800 04510 1.054 4152 58.9 8632 116 0.743 1.224
900 0.4275 1.074 4472 64.9 1046 141 0.740 0.7388
1000 0.3848 1.090 4770 710 1240 169 0.733 0.4580
1100 .3498 1.103 505.5 75.8 445 196 0.736 0.3148
1200 0.3206 1.115 5325 819 1661 229 0.725 0.2149
1300 0.2960 1125 588.4 §7.1 1886 262 0.721 0.1527
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Table B.2 Gases
Water Vapor (Superheated)

T 0 c - 10% k108 ve108 @100 Pr (gB/va) - 107C
K] [kg/m’] [ikg K] [N-ym?] [Wim-K) fm?/s]  [m?/s] [1/K - m’]
380  0.5863 2.060 127.1 246 21.63 204 1.06 5835
400 0.5542 2014 134.4 26.1 2425 234 104 4321
450 0.4902 1.980 152.4 29.9 3111 308 101 2274
500 0.4405 1.985 170.4 33.9 38.68 388  0.998 13.07
550 0.4005 1.997 188.4 37.9 47.04 474 0993 7.997
600 03852 2.026 206.7 02 56.60 570 0.993 5.066
650 0.3380 2.056 2247 46.4 66.48 668  0.9% 3,397
700 03140 2.085 2426 50.5 77.26 771 1.0 2352
750 02931 2119 260.4 54.9 £8.84 884  1.00 1.665
800 02739 2152 278.6 59.2 1017 100 1.01 1.205
850  0.2579 2,186 296.9 63.7 1151 113 1.02 0.8871

‘Fable B.3 Liquids

Engine Oil (New) ‘

T o R w102 k-10° ve108 - 107 Pr (gB/var) - 1070
K] kg/m’] [kikg-K] [N-s/m®] [Wm-K] [m¥/s] [m?/s] [1/K - m]
273 899.1 1.796 385 147 4280 0910 47,000 0.01763
280 8953 1.827 217 144 2430 0.830 27,500 0.03210
290 $90.0 1.868 99.9 145 1120 0.872 12,900 0.07029
304 884.1 1.909 48.6 145 550 0.859 6400 0.1453
310 877.9 1.951 253 145 288 0.847 3400 0.2814
320 871.8 1.993 14.1 143 161 0.823 1965 0.5181
330 865.8 2.035 8.36 141 96.6 0.800 1205 0.8883
340 859.9 2.076 531 139 61.7 0.779 793 1.428
350 833.9 2,118 3.56 138 41.7 0.763 546 2,158
360 847.8 2.161 2.52 138 29.7 0.753 395 3.07¢
370 841.8 2.206 1.86 137 22.0 0.738 300 4228
380 836.0 2.250 141 136 16.9 0.723 233 5.618
390 830.6 2.294 1.10 135 133 0.709 187 7.280
400 825.1 2337 0.874 134 106 0.695 152 9.318
410 BI8Y9 2,381 0.698 133 852 0.682 125 11.814
420 §12.1 2427 0.564 133 6.94 0.675 103 14.654
430 806.5 2471 0.470 132 583  0.662 88 17.787
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ble B.3 Liquids
Ethylene Glycol (C;H4(OH)2)

T o c, p - 107 k.-10° v-10° «-107 Pr  (gB/ver} 1077
K] [kg/m’] [kkg K] [N-sm’) [Wm-K] [m/s] [m’/s] [1/K - m’]
173 11308 2294 6.51 242 576 0933 617 1.186
20 11258 2323 420 244 373 0.933 400 1.832
290 11188 2.368 2.47 248 22.1 0.936 236 3.082
300 11114 2.415 1.57 252 14.1 0939 151 4.815
310 11037 2.460 107 255 965 0939 103 7.035
320 10962 2.505 0.757 258 691 0940 735 9.814
330 1089.3 2.549 0.561 260 515 0936 350 13.224
340 1083.8 2.592 0.431 261 398 0929 428 17.241
350 1079.0 2.637 0342 261 317 0917 346 21.93
360 10740 2.682 0278 261 259 0906 286 27.17
370 1066.7 2728 0.228 262 214 0900 237 33.10
373 1058.5 2742 0.215 263 203 0506 224 34.66
ihle B3 Liquids

Glycerin (C3Hs(0H)3)

T P <, w102 k-1  v-105 «-100 Pr  (gB/ve)-1077
K] [kg/m®] [kifkg-K] [N-s/m’] [Wim-K] [m?/s]  [m?/s] [1/K - m’]
273 1276.0 2.261 1060 282 8310  0.977 85,000 0.00568
280 12719 2.298 534 284 4200 0.972 43200 0.0113
290 12658 2.367 185 286 1460 0955 15,300 0.0338
300 12599 2.427 79.9 286 634 0935 6780 0.0794
310 12539 2.490 352 286 281 0916 3060 0.1867

320 12472 2.564 21.0 287 168 0.897 1870 0.3254
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Freon-12 (R-12) (CClLF5)

Thermophysical Properties
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i

T P cs - 10 k-1 v 105 «-107 Pr (gB/va)-107°
(K] [kgm’] [kIkg-K] [N-s¢m’] [Wim-K] [m’/s] [m%s] (1/K - m]
230 15284 0.8816 0.0457 68 0299 0505 59 12016
240 1498.0 0.8923 0.0385 69 0257 0516 50 1405.1
250 1469.5 0.9037 0.0354 70 0241 0527 46 1544.3
260 1439.0 0.9163 0.0322 73 0224 0554 40 1659.6
270 14072 0.9301 0.0304 73 0216 0558 3.9 1830.8
280 13744 0.9450 0.0283 73 0206 0562 3.7 1990.7
290 13405 0.9609 0.0265 73 0198 0567 35 22276
300 1305.8 0.9781 0.0254 72 0195 0564 35 24522
310 12689 0.9963 0.0244 69 0192 0546 34 2853.3
320 1228.6 1.0155 0.0233 68 0190 0545 35 3314.8
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Iable B.3 Liquids

Water (Saturated Liquid) -

T P-10-3 P . w108 k.10° w108 w107 Pr (gB/va) 10~°

[X] [Pa] lkefr®)  [kifkg K] [N-sim?]  [Wm-K]  [wl/s]  [ml/s) [1/K- o]
273.15 0.00611 1000 2217 1750 659 1750 156  12.99 2.440
275 0.00697 1000 4211 1652 574 1.652 136 1222 1.426
280 000990 1000 4198 1422 582 1.422 139 1026 2.290
285 001387 1000 4,189 1225 590 1225 141 821 6.485
290 0.01917 999 4.184 1080 598 1.081 143 156 11.033
295 0.02617 993 4.181 959 606 0.961 1.45 6.62 15.987
360 0.03531 997 4179 855 613 0.858 1.47 5.83 21.46
305 0.04712 995 4178 769 620 0773 149 520 27.28
310 0.06221 995 4178 695 628 0.700 1.51 4.62 33.50
315 0.08132 991 4179 631 634 0.637 155 416 4029
320 0.1053 989 4180 517 640 0.583 1.55 377 4743
325 0.1351 987 4182 528 645 0535 156 342 5530
330 0.1719 984 4184 489 €50 0497 158 315 63.03
335 02167 482 4.186 453 656 0.461 160  2.88 7138
340 02713 979 4188 420 660 0.429 1.61 2.66 80.45
343 033712 976 4191 389 668 0398 1.63 2.45 89.81
350 0.4163 974 4195 365 668 0.375 164 229 99.86
355 0.5100 971 4199 343 671 0,353 1.65 2.14 1100
360 0.6209 967 4203 324 674 0335 166 202 1232
365 0.7514 963 4209 306 677 0317 167 - 131 130.8
370 0.5040 961 4214 289 €79 0301 1.68 1.80 141.6
37315 1.0133 958 4217 279 630 0261 1.68 176 150.0
75 1.0815 957 4220 214 61 0.286 1.69 1.70 154.6
330 12869 953 4226 260 683 0273 1.70 161 1671
385 1.5233 950 4732 248 685 0261 170 1.53 179.4
390 1794 945 4239 237 686 0.251 171 147 192.1
400 2.455 937 4256 217 688 0232 172 134 220.0
410 3.302 929 4278 200 688 0215 1.73 124 2502
420 4370 919 4302 185 688 0201 1.74 116 2828
430 5.699 010 4331 173 685 0.150¢ 174 1.09
440 7333 901 436 162 682 0180 174 1.04
430 9319 890 440 152 678 0171 173 0.99
460 1171 880 4.44 143 673 0.163 172 093
470 14.55 868 4.48 136 667 0157 172 052
480 17.50 857 4.53 129 €60 0.151 1.70 0.89
490 21.83 845 4.55 124 651 0.147 1.68 0.87
500 26.40 x| 4.66 118 642 0.142 166 086
510 31.66 818 474 113 631 0138 1.63 0.85
520 3770 804 4,84 108 621 0.134 1.60 0.84
530 44.58 789 4935 104 608 0.132 1.56 0.85
540 5238 773 5.08 101 594 0.131 1.51 0.86
550 61.19 756 524 7 580 0128 146 0.87
560 71.08 738 543 94 563 0127 141 0.90
570 82.16 718 5.68 91 548 0127 134 094
580 94.51 698 6.00 88 528 0,126 126 059
590 1083 675 6.41 84 513 0.125 1.19 1,05
600 123.5 649 7.00 81 497 0125 1.09 1.14
610 137.3 620 785 77 467 0124 0.56 1.30
620 - 159.1 587 9.35 72 444 0.123 0.81 1.52
625 169.1 562 106 T 430 0125 0.72 1.65
630 179.7 539 12.6 67 412 0124 0.61 2.0
635 190.9 517 164 64 392 0124 046 27
640 202.7 482 26 59 367 0122 029 42
645 215.2 425 90 54 331 0.127 014 12
6473 212 3138 oo 45 238 0.143 0.00 00
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Table B.4 Liquid Metals
Bismuth (Bi)

T. P Cp o - 107 k.10° v-108 - 107 Pr &8/ /ver) - 10-7

(K]  [kgm’] [k¥kg-K] [N.sm’] [Wim.K] [m?/s] [m?/s] (/K- m¥]

589 10,011 0.1445 0.1622 16,440 0.157 114 0.014 0.6411

700 9867 0.1495 0.1339 15,580 0.135 106 0.013 0.8361

811 9739 0.1545 0.1101 15,580 0.108 103 0.011 1.1108

922 9611 0.1595 0.0923 15,580 0.0903 101 0.009
1033 9467 0.1645 0.0789 15,580 0.0813 101 0.008

Table B.4 Liquid Metals
Mercury (Hg)

T 2 cp w107 k- 10° v-108 - 107 Pr (z8/va) - 107
K] fkgm’] (ke K] [N-s/m?] [Wim-K] [o?/s] [m%/s] [1/K - m?)
273 13,595 0.1404 0.1688 8180 0.1240  42.85  0.0290 3.341
300 13,529 0.1393 0.1523 8540 0.1125 4530 0.0248 3.483
350 13407 0.1377 0.1309 9180 0.0976 4975 (.0196 3.656
400 13,287 0.1365 0.1171 9800 0.0882 5405 (.0163 3723
450 13,167 0.1357 0.1075 10,400 0.0816 58.10 0.0140 3744
500 13,048 0.1353 0.1007 10,950 0.0771 6190 0.0125 3.740
550 12,929 0.1352 0.0953 11,450 0.0737 6555 0.0112 3.735
600 12,809 0.1355 0.0911 11,950 0.0711 68.80 0.0103 3.749

Table B4 Liquid Matals
Sodivwm (Na)

T P cp w107 k-103 v 100« 107 Pr (gB/va) - 1079
(K] [kegm’] [KIkg-K} [N-sm’] [Wim-K] [m’/s] [m?/s] (/K- m’]
367 929 1.382 0.0699 86,200 0.731 671 0.0110 0.0540
478 902 1.340 0.0432 80,300 0.460 671 0.0072 0.1144
644 860 1.298 0.0283 72,400 0.316 645 0.0051
811 820 1.256 0.0208 65,400 0244 619 0.0040
978 778 1.256 0.0179 59,700 0226 619 0.0038
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Table C.1 Fundamental Units

Quantity Name of Unit  Symbol

Length meter m
Mass kilogram kg
Time second 5
Electrical current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd
Amount of a substance mole mol
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Table C.2 Derived Units
Guantity Name of Unit Symbol
Acceleration meters per second squared m/s?
Area square meters m?
Capacitance farad F
Density kilogram per cubic meter keg/m?
Dynamic viscosity newton-second per square meter N.s/m*
Electrical resistance ohm L9
Force newton N
Frequency hertz Hz
Kinematic viscosity square meter per second m?/s
Plane angle radian rad
Potential difference volt v
Power watt w
Pressure pascal Pa
Radiant intensity watts per steradian W/sr
Solid angle steradian 5T
Specific heat joules per kilogram - kelvin J/kg-K
Thermal conductivity watts per meter - kelvin W/m-K
Velocity meters per second m/s
Volume cubic meter m’
Work, energy, heat joule J
Table C.3 Defined Units
Quantity Unit Defining Equation

Capacitance farad, F 1F=1A-8/V

Electrical resistance ohm, @ 18=1V/A

Force newton, N 1N =1kg -m/s’

Potential difference volt, V IV=1W/A

Power watt, W 1W=1J/s

Pressure pascal, Pa  1Pa=1N/m?

Temperature kelvin, K K=°"C+273.15

Work, heat, energy joule, J 1J=1N.m
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Table C.4 Prefixes

Multiplier ~ Symbol Prefix

108 T tera
10° G giga
108 M mega
10° k kilo
107 h hecto
10! da “deka
1071 d “deci
10-2 c “centi
103 m milli
10-$ @ - micro
100 n nano
10712 p pico
10718 f femto
10718 a atto
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Figure D.2 Instantaneous temperature at various locations of £ = x/¢
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Figure D.4 Instantaneous temperature at various locations of p = r/R
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Figure D.6 Instantaneous temperature at various locations of p = r/R






INDEX

A

Absorption coefficient, 515
monochromatic, 508

Absorptivity, 422

Averaged area,
logarithmic-mean, 44
geometric-mean, 44
arithmetic-mean, 45

B .
Black surface, 24

C

Composite structures, 45
cylinder, 49
slab, 45
sphere, 57
Conduction,
computational, 184
discrete formulation, 184
exact, 185
finite difference, 186
finite volume, 186
Euler’s method, 224
multidimensional, 194
enthalpy flow, 207

non-uniform grid, 202
truncation error, 209
unsteady, 212
Crank-Nicolson method, 222
explicit finite difference, 212
implicit scheme, 220
stability, 213
conductivity, 17
variable, 42
Fourier’s law, 15
multidimensional, 125
one-dimensional, 15
original problem, 14
steady, 40
unsteady, 125
analog solution, 168
approximate solution, 152
charted solution, 156
flat plate (key problem), 156
semi-infinite plate, 165
solid cylinder (key problem), 161
solid sphere (key problem), 163
distributed, 144
integral formulation, 152
lumped, 126
periodic, 141
steady periodic, 149
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610 index

Control surface, 12
Control volume, 4
Convection,
correlation, 288
drag coefficient, 288
forced, 2935
external flow, 301
internal flow, 295
friction factor, 289
foundations, 240
boundary layer, 244
laminar forced, 244
laminar natural, 258
two key problems, 90
first problem, 90
second problem, 95
Critical radius,
cylinder, 52
sphere, 58

D

Dimensional analysis, 266
forced convection, 275
forced flow, 270
free fall, 273
natural convection, 278
Tl-theorem, 266
physical similitude, 266

Dimensionless numbers,
Biot, 62, 126, 156
Froude, 286
Grashof, 274
Jacob, 537
Nusselt, 21, 249, 255
Peclet, 93
Tiy, 286
Rayleigh, 261, 280
Reynolds, 271
Stanton, 255

E

Emissive power, 402
black body, 403
monochromatic, 405

Energy generation, 58
cylinder, 70
flat plate, 58

sphere, 70 -
Extended surface, 74

performance, 89

thermal length, 80

F

First law, 4
First law for a,
control volume, 6
rate of, 6
system, 7
Five steps of,
computation of heat transfer coefficient,
297
forced,
external flow, 305
internal flow, 297
natural, 314, 320
farmulation, 32
formulation of enclosure radiation, 445

G

Gray gas, 515, 517
Gray surface, 422

H

Heat exchangers, 346
condenser, 365
gorrection factor, 359
evaporator (boiler), 363
fouling factor, 385
ILMTD method, 349
NTU method, 370
performance, 370
thermal design, 349
variable coefficient, 385

Heat transfer,
combined modes, 27
formulation of, 3
foundations of, 1
inductive formulation, 32
origin of, 13

I

Integral formulation,
steady, 80, 249, 253, 256, 262-264
unsteady, 129, 152
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2




Intensity, 401

K, ¢

Key problems,
conduction,
enecrgy generation, 58
flat plate, 58
solid cylinder, 70
solid sphere, 70
convection,
first key, 90
second key, 95
Kirchhoff’s law, 417

M

Mass conservation for a,
control volume, 7
rate of, 7

N

Newton’s law, 19
Nuclear reactor, 102

o
Optical thickness, 517

P

Phase change, 535
boiling, 548
regimes of, 548
dimensionless number for, 546
laminar, 537

R

Radiation,
approximation, 400
electromagnetic waves, 397

Index

enclosure, 430
effect of conduction/convection, 475
electrical analogy, 443
net radiation, 472
view factor, 434
foundations, 396
gas, 506
distributed, 517
boundary effect, 521
thick gas, 519
thin gas, 518
energy balance, 517
properties, 509
monochromatic, 405
optical rays, 400
origin, 396
properties of, 413
quantum mechanics, 406
Reflectivity, 422

S

Solar collector, 99
Stefan-Boltzmann’s law, 24, 403

T

Thick gas, 519-520
Thin gas, 518-519
Time constant, 128
Transmissivity, 422
monochromatic, 413

\']
View factor, 434

w
Wien’s law, 406
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Physical Constants
Universal gas constant:

R = 8205 x 107%m’ . atm/kmol - K
= 8314 x 1072’ - bar/kmol - X
= 8.315k¥/kmol - K
= 1545 ft - Ib; /Tbmole - °R
= 1.986 Btw/lbmole - °R
Avogadro’s number:
N = 6.024 x 10® molecules/mol

Planck’s constant:
h = 6.626 x 107>*J - s/molecule

Boltzmann’s constant:
k = 1.380 x 1072 J/K - molecule

Speed of light in vacuum:
¢, = 2.998 x 10°m/s

Stefan-Boltzmann constant:
o = 5.670 x 1078 Wm? . K*

= 0.1714 x 10~ Bw/h - ft? . °R*
Blackbody radiation constants:
C1 = 3.7420 x 10° W - um*/m?
= 1.187 x 10® Btu- um*/h - ft?
Cy = 1.4388 x 10* um-K
= 2.5897 x 10* um-°R
Cs = 2897.7 um-K
= 5215.6 um -°R
Gravitational acceleration (sea level):
g = 9.807 m/s*
Normal atmospheric pressure:
= 101,325 N/m?
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Acceleration
Area

Energy

Force

Heat transfer rate

Heat flux

Heat generation rate
Heat transfer coefficient
Kinematic viscosity

and diffusivities

Latent heat

Length

Mass

Mass density

Mass flow rate

Mass transfer coefficient
Pressure and stress

Specific heat
Temperature
Temperature difference
Thermal conductivity
Thermal resistance

Viscosity (dynamic)

Volume

Volume flow rate

Conversion Factors

1m/s?
1 m?

17

1IN

1w

1 Wim?2

1 W/m3
1Wm?-K
1m?/s

1J/kg
1m

1km
lkg

1 kg/m?
1 kgfls
1m/fs

1 N/m?

1.0133 x 10° N/m?
1 % 10° N/m?
1¥kg-K

K

1K
1Wm- K
1K/W
1N - sfm?

1m?

1md /s

= 4.2520 x 107 ft/h?

= 1550.0in®

= 10.764 ft2

= 9.4787 x 10~* Btu

= (.22481 1b;

= 3.4123 Btw/h

= 0.3171 Btw/h - ft?

= 0.09665 Btu/h - ft°

= 0.17612 Btwh - ft* - °F
=3.875 x 10*f2 /h

= 4.2995 x 10~* Btu/lby,
= 39.370in.

= 3.2808 ft

= 0.62137 mile

= 2.2046 Iby,

= (.062428 Ib,, /ft®

= 7936.61by,/h

= 1.1811 x 10%ft/h

= 0.020886 Ibg /ft2

= 1.4504 % 10~*Ib:/in.
= 4,015 x 103 in. water
=2.953 x 10~*in. Hg
=1 standard atmosphere
=1 bar

= 2.3886 x 104 Btw/lby, - °F

(5/9)°R
(5/9)(°F + 459.67)
°C+273.15

=1°C

= (9/3)°R = (9/5)°F
=0.57782Btwh - ft - °F
= 0.52750 °F/h - Btu

= 2419.11b,,/ft - b

= 5.8016 x 10~ 1b; - h/ft?
= 6.1023 x 10%in.?

= 35314

= 264.17 gal

= 12713 x 10° ft¥/h

= 2.1189 x 103 ft* /min
= 1.5850 x 10 gal/min
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Typical Values of Heat Transfer Coefficient

Condition h, E%?
Gases 5-12
Natural Oils 10-120
Convection | Water 100-1,200
Liquid metals 1,000-7,000
Gases 10-300
Forced Oils 50-1,200
Convection | Wwater 300-12,000
Liquid metals 5,000-129,000
Phase Boiling 3,000-50,000
Change Condensation | 5,000-120,000




