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To the Student

With the hope that this work will stimulate 
an interest in Engineering Mechanics 

and provide an acceptable guide to its understanding.



The main purpose of this book is to provide the student with a clear and thorough
presentation of the theory and application of engineering mechanics. To achieve this
objective, this work has been shaped by the comments and suggestions of hundreds of
reviewers in the teaching profession, as well as many of the author’s students. The twelfth
edition of this book has been significantly enhanced from the previous edition and it is hoped
that both the instructor and student will benefit greatly from these improvements.

New Features
Fundamental Problems. These problem sets are located just after the example
problems. They offer students simple applications of the concepts and, therefore, provide
them with the chance to develop their problem-solving skills before attempting to solve any
of the standard problems that follow.You may consider these problems as extended examples
since they all have partial solutions and answers that are given in the back of the book.
Additionally, the fundamental problems offer students an excellent means of studying for
exams; and they can be used at a later time as a preparation for the Fundamentals in
Engineering Exam.

Content Revisions. Each section of the text was carefully reviewed and, in many areas,
the material has been redeveloped to better explain the concepts. This has included adding or
changing several of the examples in order to provide more emphasis on the applications of the
important concepts.

Conceptual Problems. Throughout the text, usually at the end of each chapter, there
is a set of problems that involve conceptual situations related to the application of the
mechanics principles contained in the chapter. These analysis and design problems are
intended to engage the students in thinking through a real-life situation as depicted in a photo.
They can be assigned after the students have developed some expertise in the subject matter.

Additional Photos. The relevance of knowing the subject matter is reflected by the
real world applications depicted in over 120 new and updated photos placed throughout the
book. These photos are generally used to explain how the principles of mechanics apply to
real-world situations. In some sections, photographs have been used to show how engineers
must first make an idealized model for analysis and then proceed to draw a free-body
diagram of this model in order to apply the theory.

New Problems. There are approximately 50%, or about 1600, new problems added to
this edition including aerospace and petroleum engineering, and biomechanics applications.
Also, this new edition now has approximately 17% more problems than in the previous edition.

Hallmark Features
Besides the new features mentioned above, other outstanding features that define the
contents of the text include the following.

Organization and Approach. Each chapter is organized into well-defined
sections that contain an explanation of specific topics, illustrative example problems, and a set
of homework problems. The topics within each section are placed into subgroups defined by
boldface titles.The purpose of this is to present a structured method for introducing each new
definition or concept and to make the book convenient for later reference and review.
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Chapter Contents. Each chapter begins with an illustration demonstrating a broad-
range application of the material within the chapter. A bulleted list of the chapter contents is
provided to give a general overview of the material that will be covered.

Emphasis on Free-Body Diagrams. Drawing a free-body diagram is
particularly important when solving problems, and for this reason this step is strongly
emphasized throughout the book. In particular, special sections and examples are devoted to
show how to draw free-body diagrams. Specific homework problems have also been added to
develop this practice.

Procedures for Analysis. A general procedure for analyzing any mechanical
problem is presented at the end of the first chapter. Then this procedure is customized to
relate to specific types of problems that are covered throughout the book.This unique feature
provides the student with a logical and orderly method to follow when applying the theory.
The example problems are solved using this outlined method in order to clarify its numerical
application. Realize, however, that once the relevant principles have been mastered and
enough confidence and judgment have been obtained, the student can then develop his or her
own procedures for solving problems.

Important Points. This feature provides a review or summary of the most important
concepts in a section and highlights the most significant points that should be realized when
applying the theory to solve problems.

Conceptual Understanding. Through the use of photographs placed throughout
the book, theory is applied in a simplified way in order to illustrate some of its more
important conceptual features and instill the physical meaning of many of the terms used in
the equations. These simplified applications increase interest in the subject matter and better
prepare the student to understand the examples and solve problems.

Homework Problems. Apart from the Fundamental and Conceptual type problems
mentioned previously, other types of problems contained in the book include the following:

• Free-Body Diagram Problems. Some sections of the book contain introductory
problems that only require drawing the free-body diagram for the specific problems within a
problem set. These assignments will impress upon the student the importance of mastering
this skill as a requirement for a complete solution of any equilibrium problem.

• General Analysis and Design Problems. The majority of problems in the book
depict realistic situations encountered in engineering practice. Some of these problems
come from actual products used in industry. It is hoped that this realism will both stimulate
the student’s interest in engineering mechanics and provide a means for developing the
skill to reduce any such problem from its physical description to a model or symbolic
representation to which the principles of mechanics may be applied.

Throughout the book, there is an approximate balance of problems using either SI or FPS
units. Furthermore, in any set, an attempt has been made to arrange the problems in order
of increasing difficulty except for the end of chapter review problems, which are presented
in random order.

• Computer Problems. An effort has been made to include some problems that may be
solved using a numerical procedure executed on either a desktop computer or a programmable
pocket calculator.The intent here is to broaden the student’s capacity for using other forms of
mathematical analysis without sacrificing the time needed to focus on the application of the
principles of mechanics. Problems of this type, which either can or must be solved using
numerical procedures, are identified by a “square” symbol ( ) preceding the problem number..
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With so many homework problems in this new edition, they have now been placed in three
different categories. Problems that are simply indicated by a problem number have an answer
given in the back of the book. If a bullet (•) proceeds the problem number, then a suggestion,
key equation, or additional numerical result is given along with the answer. Finally, an asterisk
(*) before every fourth problem number indicates a problem without an answer.

Accuracy. As with the previous editions, apart from the author, the accuracy of the text
and problem solutions has been thoroughly checked by four other parties: Scott Hendricks,
Virginia Polytechnic Institute and State University; Karim Nohra, University of South
Florida; Kurt Norlin, Laurel Tech Integrated Publishing Services; and finally Kai Beng, a
practicing engineer, who in addition to accuracy review provided content development
suggestions.

Contents

Statics
The subject of Statics is covered in the first 11 chapters, in which the principles are first
applied to simple, then to more complicated situations. In a general sense, each principle is
applied first to a particle, then a rigid body subjected to a coplanar system of forces, and
finally to three-dimensional force systems acting on a rigid body.

Chapter 1 begins with an introduction to mechanics and a discussion of units. The vector
properties of a concurrent force system are introduced in Chapter 2.This theory is then applied
to the equilibrium of a particle in Chapter 3. Chapter 4 contains a general discussion of both
concentrated and distributed force systems and the methods used to simplify them.The principles
of rigid-body equilibrium are developed in Chapter 5 and then applied to specific problems
involving the equilibrium of trusses, frames, and machines in Chapter 6, and to the analysis of
internal forces in beams and cables in Chapter 7.Applications to problems involving frictional
forces are discussed in Chapter 8, and topics related to the center of gravity and centroid are
treated in Chapter 9. If time permits, sections involving more advanced topics, indicated by stars
(★), may be covered. Most of these topics are included in Chapter 10 (area and mass moments
of inertia) and Chapter 11 (virtual work and potential energy). Note that this material also
provides a suitable reference for basic principles when it is discussed in more advanced courses.
Finally, Appendix A provides a review and list of mathematical formulas needed to solve the
problems in the book.

Alternative Coverage. At the discretion of the instructor, some of the material may
be presented in a different sequence with no loss of continuity. For example, it is possible to
introduce the concept of a force and all the necessary methods  of vector analysis by first
covering Chapter 2 and Section 4.2 (the cross product). Then after covering the rest of
Chapter 4 (force and moment systems), the equilibrium methods of Chapters 3 and 5 can be
discussed.

Dynamics
The kinematics of a particle is discussed in Chapter 12, followed by a discussion of particle
kinetics in Chapter 13 (Equation of Motion), Chapter 14 (Work and Energy), and Chapter 15
(Impulse and Momentum). The concepts of particle dynamics contained in these four
chapters are then summarized in a “review” section, and the student is given the chance to
identify and solve a variety of problems. A similar sequence of presentation is given for the
planar motion of a rigid body: Chapter 16 (Planar Kinematics), Chapter 17 (Equations of
Motion), Chapter 18 (Work and Energy), and Chapter 19 (Impulse and Momentum),
followed by a summary and review set of problems for these chapters.
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If time permits, some of the material involving three-dimensional rigid-body motion may be
included in the course. The kinematics and kinetics of this motion are discussed in Chapters 20
and 21, respectively. Chapter 22 (Vibrations) may be included if the student has the necessary
mathematical background. Sections of the book that are considered to be beyond the scope of
the basic dynamics course are indicated by a star (★) and may be omitted. Note that this material
also provides a suitable reference for basic principles when it is discussed in more advanced
courses. Finally, Appendix A provides a list of mathematical formulas needed to solve the
problems in the book, Appendix B provides a brief review of vector analysis, and Appendix C
reviews application of the chain rule.

Alternative Coverage. At the discretion of the instructor, it is possible to cover
Chapters 12 through 19 in the following order with no loss in continuity: Chapters 12 and 16
(Kinematics), Chapters 13 and 17 (Equations of Motion), Chapter 14 and 18 (Work and
Energy), and Chapters 15 and 19 (Impulse and Momentum).
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� Immediate and specific feedback on wrong answers coach
students individually. Specific feedback on common errors helps
explain why a particular answer is not correct.

� Hints provide individualized
coaching. Skip the hints you don’t
need and access only the ones that
you need, for the most efficient path
to the correct solution.

Resources to Accompany Engineering Mechanics: Statics, Twelfth Edition

MasteringEngineering is the most technologically advanced online tutorial and
homework system. It tutors students individually while providing instructors
with rich teaching diagnostics.

MasteringEngineering is built upon the same platform as MasteringPhysics, the only
online physics homework system with research showing that it improves student
learning. A wide variety of published papers based on NSF-sponsored research and
tests illustrate the benefits of MasteringEngineering. To read these papers, please visit
www.masteringengineering.com.

MasteringEngineering for Students
MasteringEngineering improves understanding. As an Instructor-assigned homework
and tutorial system, MasteringEngineering is designed to provide students with
customized coaching and individualized feedback to help improve problem-solving skills.
Students complete homework efficiently and effectively with tutorials that provide
targeted help.

www.masteringengineering.com


Contact your Pearson Prentice Hall representative for more information.

� One click compiles all your
favorite teaching diagnostics—
the hardest problem, class grade
distribution, even which
students are spending the most
or the least time on homework.

� Color-coded gradebook
instantly identifies students in
difficulty, or challenging areas
for your class.

MasteringEngineering for Instructors
Incorporate dynamic homework into your course with automatic grading and
adaptive tutoring. Choose from a wide variety of stimulating problems, including
free-body diagram drawing capabilities, algorithmically-generated problem sets,
and more.

MasteringEngineering emulates the instructor’s office-hour environment,
coaching students on problem-solving techniques by asking students simpler
sub-questions.



X RESOURCES FOR INSTRUCTORS

Resources for Instructors
• Instructor’s Solutions Manuals. These supplements provide complete solutions supported by problem statements
and problem figures. The twelfth edition manuals were revised to improve readability and was triple accuracy checked.
• Instructor’s Resource CD-ROM. Visual resources to accompany the text are located on this CD as well as on the Pearson
Higher Education website: www.pearsonhighered.com. If you are in need of a login and password for this site, please contact your
local Pearson representative.Visual resources include all art from the text, available in PowerPoint slide and JPEG format.
• Video Solutions. Developed by Professor Edward Berger, University of Virginia, video solutions are located on the
Companion Website for the text and offer step-by-step solution walkthroughs of representative homework problems from
each section of the text. Make efficient use of class time and office hours by showing students the complete and concise
problem-solving approaches that they can access any time and view at their own pace. The videos are designed to be a
flexible resource to be used however each instructor and student prefers. A valuable tutorial resource, the videos are also
helpful for student self-evaluation as students can pause the videos to check their understanding and work alongside the
video. Access the videos at www.prenhall.com/hibbeler and follow the links for the Engineering Mechanics: Statics and
Dynamics, Twelfth Edition text.

Resources for Students
• Statics and Dynamics Study Packs. These supplements contains chapter-by-chapter study materials, a Free-Body
Diagram Workbook and access to the Companion Website where additional tutorial resources are located.
• Companion Website. The Companion Website, located at www.prenhall.com/hibbeler, includes opportunities for practice
and review including:

• Video Solutions—Complete, step-by-step solution walkthroughs of representative homework problems from each
section.Videos offer:
• Fully worked Solutions—Showing every step of representative homework problems, to help students make vital

connections between concepts.
• Self-paced Instruction—Students can navigate each problem and select, play, rewind, fast-forward, stop, and jump-to-

sections within each problem’s solution.
• 24/7 Access—Help whenever students need it with over 20 hours of helpful review. An access code for the

Engineering Mechanics: Statics and Dynamics,Twelfth Edition website is included inside the Statics Study Pack or the
Dynamics Study Pack. To redeem the code and gain access to the site, go to www.prenhall.com/hibbeler and follow
the directions on the access code card. Access can also be purchased directly from the site.

• Statics and Dynamics Practice Problems Workbooks. These workbooks contain additional worked problems.
The problems are partially solved and are designed to help guide students through difficult topics.

Ordering Options
The Statics Study Pack and MasteringEngineering resources are available as stand-alone items for student purchase and are also
available packaged with the texts. The ISBN for each valuepack is as follows:

• Engineering Mechanics: Statics with Study Pack: 0-13-246200-1
• Engineering Mechanics: Statics with Study Pack and MasteringEngineering Student Access Card: 0-13-701629-8

The Dynamics Study Pack and MasteringEngineering resources are available as stand-alone items for student purchase and are
also available packaged with the texts. The ISBN for each valuepack is as follows:

• Engineering Mechanics: Dynamics with Study Pack: 0-13-700239-4
• Engineering Mechanics: Dynamics with Study Pack and MasteringEngineering Student Access Card: 0-13-701630-1

Custom Solutions
New options for textbook customization are now available for Engineering Mechanics,Twelfth Edition. Please contact your local
Pearson/Prentice Hall representative for details.

www.pearsonhighered.com
www.prenhall.com/hibbeler
www.prenhall.com/hibbeler
www.prenhall.com/hibbeler
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The design of this rocket and gantry structure requires a basic knowledge of
both statics and dynamics, which form the subject matter of engineering
mechanics.



General Principles

CHAPTER OBJECTIVES

• To provide an introduction to the basic quantities and idealizations
of mechanics.

• To give a statement of Newton’s Laws of Motion and Gravitation.

• To review the principles for applying the SI system of units.

• To examine the standard procedures for performing numerical
calculations.

• To present a general guide for solving problems.

1.1 Mechanics

Mechanics is a branch of the physical sciences that is concerned with the
state of rest or motion of bodies that are subjected to the action of forces.
In general, this subject can be subdivided into three branches: rigid-body
mechanics, deformable-body mechanics, and fluid mechanics. In this book
we will study rigid-body mechanics since it is a basic requirement for the
study of the mechanics of deformable bodies and the mechanics of fluids.
Furthermore, rigid-body mechanics is essential for the design and analysis
of many types of structural members, mechanical components, or electrical
devices encountered in engineering.

Rigid-body mechanics is divided into two areas: statics and dynamics.
Statics deals with the equilibrium of bodies, that is, those that are either
at rest or move with a constant velocity; whereas dynamics is concerned
with the accelerated motion of bodies. We can consider statics as a
special case of dynamics, in which the acceleration is zero; however,
statics deserves separate treatment in engineering education since many
objects are designed with the intention that they remain in equilibrium.

1
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1
Historical Development. The subject of statics developed very
early in history because its principles can be formulated simply from
measurements of geometry and force. For example, the writings of
Archimedes (287–212 B.C.) deal with the principle of the lever. Studies of
the pulley, inclined plane, and wrench are also recorded in ancient
writings—at times when the requirements for engineering were limited
primarily to building construction.

Since the principles of dynamics depend on an accurate measurement
of time, this subject developed much later. Galileo Galilei (1564–1642)
was one of the first major contributors to this field. His work consisted of
experiments using pendulums and falling bodies. The most significant
contributions in dynamics, however, were made by Isaac Newton
(1642–1727), who is noted for his formulation of the three fundamental
laws of motion and the law of universal gravitational attraction. Shortly
after these laws were postulated, important techniques for their
application were developed by such notables as Euler, D’Alembert,
Lagrange, and others.

1.2 Fundamental Concepts

Before we begin our study of engineering mechanics, it is important to
understand the meaning of certain fundamental concepts and principles.

Basic Quantities. The following four quantities are used throughout
mechanics.

Length. Length is used to locate the position of a point in space and
thereby describe the size of a physical system. Once a standard unit of
length is defined, one can then use it to define distances and geometric
properties of a body as multiples of this unit.

Time. Time is conceived as a succession of events. Although the
principles of statics are time independent, this quantity plays an
important role in the study of dynamics.

Mass. Mass is a measure of a quantity of matter that is used to compare
the action of one body with that of another. This property manifests itself
as a gravitational attraction between two bodies and provides a measure
of the resistance of matter to a change in velocity.

Force. In general, force is considered as a “push” or “pull” exerted by
one body on another. This interaction can occur when there is direct
contact between the bodies, such as a person pushing on a wall, or it can
occur through a distance when the bodies are physically separated.
Examples of the latter type include gravitational, electrical, and magnetic
forces. In any case, a force is completely characterized by its magnitude,
direction, and point of application.
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1
Idealizations. Models or idealizations are used in mechanics in
order to simplify application of the theory. Here we will consider three
important idealizations.

Particle. A particle has a mass, but a size that can be neglected. For
example, the size of the earth is insignificant compared to the size of its
orbit, and therefore the earth can be modeled as a particle when studying
its orbital motion. When a body is idealized as a particle, the principles of
mechanics reduce to a rather simplified form since the geometry of the
body will not be involved in the analysis of the problem.

Rigid Body. A rigid body can be considered as a combination of a
large number of particles in which all the particles remain at a fixed
distance from one another, both before and after applying a load. This
model is important because the material properties of any body that is
assumed to be rigid will not have to be considered when studying the
effects of forces acting on the body. In most cases the actual deformations
occurring in structures, machines, mechanisms, and the like are relatively
small, and the rigid-body assumption is suitable for analysis.

Concentrated Force. A concentrated force represents the effect of a
loading which is assumed to act at a point on a body. We can represent a
load by a concentrated force, provided the area over which the load is
applied is very small compared to the overall size of the body.An example
would be the contact force between a wheel and the ground.

A

Three forces act on the hook at A. Since these
forces all meet at a point, then for any force
analysis, we can assume the hook to be
represented as a particle.

Steel is a common engineering material that does not deform
very much under load.Therefore, we can consider this railroad
wheel to be a rigid body acted upon by the concentrated force
of the rail.
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1
Newton’s Three Laws of Motion. Engineering mechanics is
formulated on the basis of Newton’s three laws of motion, the validity of
which is based on experimental observation. These laws apply to the
motion of a particle as measured from a nonaccelerating reference
frame. They may be briefly stated as follows.

First Law. A particle originally at rest, or moving in a straight line with
constant velocity, tends to remain in this state provided the particle is not
subjected to an unbalanced force, Fig. 1–1a.

Second Law. A particle acted upon by an unbalanced force F
experiences an acceleration a that has the same direction as the force
and a magnitude that is directly proportional to the force, Fig. 1–1b.*
If F is applied to a particle of mass m, this law may be expressed
mathematically as

(1–1)F = ma

Third Law. The mutual forces of action and reaction between two
particles are equal, opposite, and collinear, Fig. 1–1c.

*Stated another way, the unbalanced force acting on the particle is proportional to the
time rate of change of the particle’s linear momentum.

Equilibrium

v
F2F1

F3

(a)

Accelerated motion

a
F

(b)

Action – reaction

force of A on B

force of B on A

F F
A B

(c)

Fig. 1–1
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1

Weight. According to Eq. 1–2, any two particles or bodies have a
mutual attractive (gravitational) force acting between them. In the case
of a particle located at or near the surface of the earth, however, the only
gravitational force having any sizable magnitude is that between the
earth and the particle. Consequently, this force, termed the weight, will be
the only gravitational force considered in our study of mechanics.

From Eq. 1–2, we can develop an approximate expression for finding the
weight W of a particle having a mass . If we assume the earth to be
a nonrotating sphere of constant density and having a mass , then
if r is the distance between the earth’s center and the particle, we have

Letting yields

(1–3)

By comparison with , we can see that g is the acceleration due to
gravity. Since it depends on r, then the weight of a body is not an absolute
quantity. Instead, its magnitude is determined from where the measurement
was made. For most engineering calculations, however, g is determined at
sea level and at a latitude of 45°,which is considered the “standard location.”

1.3 Units of Measurement

The four basic quantities—length, time, mass, and force—are not all
independent from one another; in fact, they are related by Newton’s second
law of motion, . Because of this, the units used to measure these
quantities cannot all be selected arbitrarily. The equality is
maintained only if three of the four units, called base units, are defined
and the fourth unit is then derived from the equation.

F = ma
F = ma

F = ma

W = mg

g = GMe>r2
W = G

mMe
r2

m2 = Me
m1 = m

F = force of gravitation between the two particles

G = universal constant of gravitation; according to
experimental evidence, G = 66.73(10-12) m3>(kg # s2)

m1,m2 = mass of each of the two particles

r = distance between the two particles

Newton’s Law of Gravitational Attraction. Shortly after
formulating his three laws of motion, Newton postulated a law governing the
gravitational attraction between any two particles. Stated mathematically,

(1–2)

where

F = G
m1m2

r2

The astronaut is weightless, for all
practical purposes, since she is far
removed from the gravitational field of
the earth.
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1
SI Units. The International System of units, abbreviated SI after the
French “Système International d’Unités,” is a modern version of the metric
system which has received worldwide recognition. As shown in Table 1–1,
the SI system defines length in meters (m), time in seconds (s), and mass in
kilograms (kg). The unit of force, called a newton (N), is derived from

.Thus, 1 newton is equal to a force required to give 1 kilogram of
mass an acceleration of .

If the weight of a body located at the “standard location” is to be
determined in newtons, then Eq. 1–3 must be applied. Here measurements
give ; however, for calculations, the value 
will be used.Thus,

(1–4)

Therefore, a body of mass 1 kg has a weight of 9.81 N, a 2-kg body weighs
19.62 N, and so on, Fig. 1–2a.

U.S. Customary. In the U.S. Customary system of units (FPS) length
is measured in feet (ft), time in seconds (s), and force in pounds (lb),
Table 1–1. The unit of mass, called a slug, is derived from . Hence,
1 slug is equal to the amount of matter accelerated at when acted
upon by a force of .

Therefore, if the measurements are made at the “standard location,”
where , then from Eq. 1–3,

(1–5)

And so a body weighing 32.2 lb has a mass of 1 slug, a 64.4-lb body has a
mass of 2 slugs, and so on, Fig. 1–2b.

m =
W
g

(g = 32.2 ft>s2)

g = 32.2 ft>s2

1 lb (slug = lb # s2>ft) 1 ft>s2
F = ma

W = mg (g = 9.81 m>s2)

g = 9.81 m>s2g = 9.806 65 m>s2

1 m>s2 (N = kg # m>s2)
F = ma

TABLE 1–1 Systems of Units

Name Length Time Mass Force

International
System of Units 

SI

meter

m

second

s

kilogram

kg akg # m
s2 b
N

newton*

U.S. Customary 
FPS

foot

ft

second

s
a lb # s2

ft
b

slug* pound

lb

*Derived unit.

9.81 N

1 kg

(a)

32.2 lb

1 slug

(b)

Fig. 1–2
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1
Conversion of Units. Table 1–2 provides a set of direct conversion
factors between FPS and SI units for the basic quantities. Also, in the
FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),
1000 lb = 1 kip (kilo-pound), and 2000 lb = 1 ton.

1.4 The International System of Units

The SI system of units is used extensively in this book since it is intended
to become the worldwide standard for measurement. Therefore, we will
now present some of the rules for its use and some of its terminology
relevant to engineering mechanics.

Prefixes. When a numerical quantity is either very large or very
small, the units used to define its size may be modified by using a prefix.
Some of the prefixes used in the SI system are shown in Table 1–3. Each
represents a multiple or submultiple of a unit which, if applied
successively, moves the decimal point of a numerical quantity to every
third place.*  For example, 4 000 000 N = 4 000 kN (kilo-newton) = 4 MN
(mega-newton), or 0.005 m = 5 mm (milli-meter). Notice that the SI
system does not include the multiple deca (10) or the submultiple centi
(0.01), which form part of the metric system. Except for some volume
and area measurements, the use of these prefixes is to be avoided in
science and engineering.

* The kilogram is the only base unit that is defined with a prefix.

TABLE 1–2 Conversion Factors

Quantity
Unit of 

Measurement (FPS) Equals
Unit of 

Measurement (SI)

Force lb 4.448 N
Mass slug 14.59 kg
Length ft 0.304 8 m

TABLE 1–3 Prefixes

Exponential Form Prefix SI Symbol

Multiple
1 000 000 000 109 giga G
1 000 000 106 mega M
1 000 103 kilo k
Submultiple
0.001 10–3 milli m
0.000 001 10–6 micro m

0.000 000 001 10–9 nano n
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1
Rules for Use. Here are a few of the important rules that describe
the proper use of the various SI symbols:

• Quantities defined by several units which are multiples of one another
are separated by a dot to avoid confusion with prefix notation, as
indicated by . Also, (meter-second),
whereas ms (milli-second).

• The exponential power on a unit having a prefix refers to both the
unit and its prefix. For example, . Likewise,
mm2 represents .

• With the exception of the base unit the kilogram, in general avoid
the use of a prefix in the denominator of composite units. For
example, do not write , but rather ; also, should
be written as .

• When performing calculations, represent the numbers in terms of
their base or derived units by converting all prefixes to powers of 10.
The final result should then be expressed using a single prefix. Also,
after calculation, it is best to keep numerical values between 0.1 and
1000; otherwise, a suitable prefix should be chosen. For example,

1.5 Numerical Calculations

Numerical work in engineering practice is most often performed by using
handheld calculators and computers. It is important, however, that the
answers to any problem be reported with both justifiable accuracy and
appropriate significant figures. In this section we will discuss these topics
together with some other important aspects involved in all engineering
calculations.

Dimensional Homogeneity. The terms of any equation used to
describe a physical process must be dimensionally homogeneous; that is,
each term must be expressed in the same units. Provided this is the case,
all the terms of an equation can then be combined if numerical values
are substituted for the variables. Consider, for example, the equation

, where, in SI units, is the position in meters, m, is time in
seconds, s, is velocity in and is acceleration in . Regardless of
how this equation is evaluated, it maintains its dimensional homogeneity.
In the form stated, each of the three terms is expressed in meters

or solving for , , the terms are
each expressed in units of .m>s2 [m>s2, m>s2, (m>s)>s]

a = 2s>t2 - 2v>ta[m,(m>s) s, (m>s2) s2,]

m>s2am>sv
tss = vt + 1

2at
2

= 3000(10-6) N # m = 3(10-3) N # m = 3 mN # m
 (50 kN)(60 nm) = [50(103) N][60(10-9) m]

Mm>kg
m>mgkN>mN>mm

(mm)2 = mm # mm
mN2 = (mN)2 = mN # mN

m # sN = kg # m>s2 = kg # m # s-2

Computers are often used in engineering for
advanced design and analysis.
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1
Keep in mind that problems in mechanics always involve the solution

of dimensionally homogeneous equations, and so this fact can then be
used as a partial check for algebraic manipulations of an equation.

Significant Figures. The number of significant figures contained in
any number determines the accuracy of the number. For instance, the
number 4981 contains four significant figures. However, if zeros occur at
the end of a whole number, it may be unclear as to how many significant
figures the number represents. For example, 23 400 might have three (234),
four (2340), or five (23 400) significant figures. To avoid these ambiguities,
we will use engineering notation to report a result. This requires that
numbers be rounded off to the appropriate number of significant digits
and then expressed in multiples of (103), such as (103), (106), or (10–9). For
instance, if 23 400 has five significant figures, it is written as 23.400(103), but
if it has only three significant figures, it is written as 23.4(103).

If zeros occur at the beginning of a number that is less than one, then the
zeros are not significant. For example, 0.00821 has three significant figures.
Using engineering notation, this number is expressed as 8.21(10–3).
Likewise, 0.000582 can be expressed as 0.582(10–3) or 582(10–6).

Rounding Off Numbers. Rounding off a number is necessary so
that the accuracy of the result will be the same as that of the problem
data. As a general rule, any numerical figure ending in five or greater is
rounded up and a number less than five is rounded down. The rules for
rounding off numbers are best illustrated by examples. Suppose the
number 3.5587 is to be rounded off to three significant figures. Because
the fourth digit (8) is greater than 5, the third number is rounded up to
3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 9.39. If we
round off 1.341 to three significant figures, because the fourth digit (1) is
less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 and 9.871
becomes 9.87. There is a special case for any number that has a 5 with
zeroes following it. As a general rule, if the digit preceding the 5 is an
even number, then this digit is not rounded up. If the digit preceding the
5 is an odd number, then it is rounded up. For example, 75.25 rounded off
to three significant digits becomes 75.2, 0.1275 becomes 0.128, and 0.2555
becomes 0.256.

Calculations. When a sequence of calculations is performed, it is
best to store the intermediate results in the calculator. In other words, do
not round off calculations until expressing the final result. This
procedure maintains precision throughout the series of steps to the final
solution. In this text we will generally round off the answers to three
significant figures since most of the data in engineering mechanics, such
as geometry and loads, may be reliably measured to this accuracy.
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1 1.6 General Procedure for Analysis

The most effective way of learning the principles of engineering mechanics
is to solve problems. To be successful at this, it is important to always
present the work in a logical and orderly manner, as suggested by the
following sequence of steps:

• Read the problem carefully and try to correlate the actual physical
situation with the theory studied.

• Tabulate the problem data and draw any necessary diagrams.

• Apply the relevant principles, generally in mathematical form.When
writing any equations, be sure they are dimensionally homogeneous.

• Solve the necessary equations, and report the answer with no more
than three significant figures.

• Study the answer with technical judgment and common sense to
determine whether or not it seems reasonable.

• Statics is the study of bodies that are at rest or move with
constant velocity.

• A particle has a mass but a size that can be neglected.

• A rigid body does not deform under load.

• Concentrated forces are assumed to act at a point on a body.

• Newton’s three laws of motion should be memorized.

• Mass is measure of a quantity of matter that does not change
from one location to another.

• Weight refers to the gravitational attraction of the earth on a
body or quantity of mass. Its magnitude depends upon the
elevation at which the mass is located.

• In the SI system the unit of force, the newton, is a derived unit.
The meter, second, and kilogram are base units.

• Prefixes G, M, k, m, , and n are used to represent large and small
numerical quantities. Their exponential size should be known,
along with the rules for using the SI units.

• Perform numerical calculations with several significant figures,
and then report the final answer to three significant figures.

• Algebraic manipulations of an equation can be checked in part by
verifying that the equation remains dimensionally homogeneous.

• Know the rules for rounding off numbers.

m

When solving problems, do the work as
neatly as possible. Being neat will stimulate
clear and orderly thinking, and vice versa.

Important Points
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Convert to How many is this?

SOLUTION
Since and , the factors of conversion are
arranged in the following order, so that a cancellation of the units can
be applied:

Ans.

From Table 1–2, 1 ft = 0.3048 m. Thus,

Ans.

NOTE: Remember to round off the final answer to three significant
figures.

= 1.82 ft>s
 0.556 m>s = a0.556 m

s
b a 1 ft

0.3048 m
b

=
2000 m
3600 s

= 0.556 m>s
 2 km>h =

2 km
h
a1000 m

km
b a 1 h

3600 s
b

1 h = 3600 s1 km = 1000 m

ft>sm>s2 km>h

Convert the quantities and to appropriate SI units.

SOLUTION
Using Table 1–2, .

Ans.

Since and , then

Ans.= 26.8 Mg>m3

= 26.8(103) kg>m3

 52 slug>ft3 =
52 slug

ft3 a14.59 kg
1 slug

b a 1 ft
0.304 8 m

b3

1 ft = 0.304 8 m1 slug = 14.593 8 kg

= 1334.5 N # s = 1.33 kN # s

 300 lb # s = 300 lb # sa4.448 N
1 lb

b
1 lb = 4.448 2 N

52 slug>ft3300 lb # s

EXAMPLE 1.1

EXAMPLE 1.2



14 CH A P T E R 1 GE N E R A L PR I N C I P L E S

1

Evaluate each of the following and express with SI units having an
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)2,
(c) .

SOLUTION
First convert each number to base units, perform the indicated
operations, then choose an appropriate prefix.

Part (a)

Ans.

NOTE: Keep in mind the convention .

Part (b)

Ans.

We can also write

Ans.

Part (c)

Ans.= 50 kN3>kg

= 50(109) N3a 1 kN

103 N
b3 1

kg

= 50(109) N3>kg

45 MN3

900 Gg
=

45(106 N)3

900(106) kg

= 0.144 m # MN2

 144(109) m # N2 = 144(109) m # N2a1 MN

106 N
b a1 MN

106 N
b

= 144 Gm # N2

= 144(109) m # N2

= [400(10-3) m][0.36(1012) N2]

 (400 mm)(0.6 MN)2 = [400(10-3) m][0.6(106) N]2

kN2 = (kN)2 = 106 N2

= 300 kN2

= 300(106) N2a 1 kN

103 N
b a 1 kN

103 N
b

= 300(106) N2

 (50 mN)(6 GN) = [50(10-3) N][6(109) N]

45 MN3>900 Gg

EXAMPLE 1.3
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1PROBLEMS

1–1. Round off the following numbers to three significant
figures: (a) 4.65735 m, (b) 55.578 s, (c) 4555 N, and 
(d) 2768 kg.

1–2. Represent each of the following combinations of units
in the correct SI form using an appropriate prefix: (a) ,
(b) , (c) , and (d) .

1–3. Represent each of the following quantities in the
correct SI form using an appropriate prefix: (a) 0.000431 kg,
(b) , and (c) 0.00532 km.

*1–4. Represent each of the following combinations of 
units in the correct SI form: (a) , (b) , and  
(c) .

1–5. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix:
(a) , (b) , and (c) .

1–6. Represent each of the following to three significant
figures and express each answer in SI units using an
appropriate prefix: (a) 45 320 kN, (b) , and (c)
0.005 63 mg.

1–7. A rocket has a mass of slugs on earth.
Specify (a) its mass in SI units and (b) its weight in SI units.
If the rocket is on the moon, where the acceleration due to
gravity is , determine to three significant
figures (c) its weight in SI units and (d) its mass in SI units.

*1–8. If a car is traveling at , determine its speed in
kilometers per hour and meters per second.

1–9. The pascal (Pa) is actually a very small unit of
pressure. To show this, convert to .
Atmospheric pressure at sea level is in2. How many
pascals is this?

1–10. What is the weight in newtons of an object that has a
mass of: (a) 10 kg, (b) 0.5 g, and (c) 4.50 Mg? Express the
result to three significant figures. Use an appropriate prefix.

1–11. Evaluate each of the following to three significant
figures and express each answer in Sl units using
an appropriate prefix: (a) 354 mg(45 km) (0.0356 kN),
(b) (0.004 53 Mg)(201 ms), and (c) 435 MN 23.2 mm.>

>

14.7 lb>
lb>ft21 Pa = 1 N>m2

55 mi>h

gm = 5.30 ft>s2

250(103)

568(105) mm

MN>(kg # ms)Mg>mNkN>ms

mN>(kg # ms)
N>mmMg>ms

35.3(103) N

kN>msMN>ks2N>mm
mMN

*1–12. The specific weight (wt. vol.) of brass is .
Determine its density (mass vol.) in SI units. Use an
appropriate prefix.

1–13. Convert each of the following to three significant
figures: (a) to , (b) to , and 
(c) 15 ft h to mm s.

1–14. The density (mass volume) of aluminum is
. Determine its density in SI units. Use an

appropriate prefix.

1–15. Water has a density of . What is the
density expressed in SI units? Express the answer to three
significant figures.

*1–16. Two particles have a mass of 8 kg and 12 kg,
respectively. If they are 800 mm apart, determine the force
of gravity acting between them. Compare this result with
the weight of each particle.

1–17. Determine the mass in kilograms of an object that
has a weight of (a) 20 mN, (b) 150 kN, and (c) 60 MN.
Express the answer to three significant figures.

1–18. Evaluate each of the following to three significant
figures and express each answer in SI units using an
appropriate prefix: (a) , (b) , and 
(c) .

1–19. Using the base units of the SI system, show that
Eq. 1–2 is a dimensionally homogeneous equation which
gives F in newtons. Determine to three significant figures
the gravitational force acting between two spheres that
are touching each other. The mass of each sphere is 200 kg
and the radius is 300 mm.

*1–20. Evaluate each of the following to three significant
figures and express each answer in SI units using an
appropriate prefix: (a) , and 
(b) .

1–21. Evaluate (204 mm)(0.00457 kg) (34.6 N) to three
significant figures and express the answer in SI units using
an appropriate prefix.

>
(35 mm)2(48 kg)3

(0.631 Mm)>(8.60 kg)2

(400 m)3
(0.005 mm)2(200 kN)2

1.94 slug>ft3

5.26 slug>ft3
>

>>
kN>m3450 lb>ft3N # m20 lb # ft

>
520 lb>ft3>



This bridge tower is stabilized by cables that exert forces at the points of connection.
In this chapter we will show how to express these forces as Cartesian vectors and then
determine the resultant force.
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Fig. 2–1

CHAPTER OBJECTIVES

• To show how to add forces and resolve them into components
using the Parallelogram Law.

• To express force and position in Cartesian vector form and explain
how to determine the vector’s magnitude and direction.

• To introduce the dot product in order to determine the angle
between two vectors or the projection of one vector onto another.

2.1 Scalars and Vectors

All physical quantities in engineering mechanics are measured using either
scalars or vectors.

Scalar. A scalar is any positive or negative physical quantity that can
be completely specified by its magnitude. Examples of scalar quantities
include length, mass, and time.

Vector. A vector is any physical quantity that requires both a
magnitude and a direction for its complete description. Examples of
vectors encountered in statics are force, position, and moment. A vector
is shown graphically by an arrow. The length of the arrow represents the
magnitude of the vector, and the angle between the vector and a fixed
axis defines the direction of its line of action.The head or tip of the arrow
indicates the sense of direction of the vector, Fig. 2–1.

In print, vector quantities are represented by bold face letters such as
A, and its magnitude of the vector is italicized, A. For handwritten work,
it is often convenient to denote a vector quantity by simply drawing an
arrow on top of it,A:.

u
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A
A

2A

0.5

Scalar multiplication and division

�A
�

Fig. 2–2

A A

B
B

R

(a) (c)(b)

R � A � B

A

B

Parallelogram law

P

Fig. 2–3

2

2.2 Vector Operations

Multiplication and Division of a Vector by a Scalar. If a
vector is multiplied by a positive scalar, its magnitude is increased by that
amount. When multiplied by a negative scalar it will also change the
directional sense of the vector. Graphic examples of these operations are
shown in Fig. 2–2.

Vector Addition. All vector quantities obey the parallelogram law
of addition. To illustrate, the two “component” vectors A and B in
Fig. 2–3a are added to form a “resultant” vector R A B using the
following procedure:

• First join the tails of the components at a point so that it makes
them concurrent, Fig. 2–3b.

• From the head of B, draw a line parallel to A. Draw another line
from the head of A that is parallel to B. These two lines intersect at
point P to form the adjacent sides of a parallelogram.

• The diagonal of this parallelogram that extends to P forms R, which
then represents the resultant vector R A B, Fig. 2–3c.+=

+=

We can also add B to A, Fig. 2–4a, using the triangle rule, which is a
special case of the parallelogram law, whereby vector B is added to
vector A in a “head-to-tail” fashion, i.e., by connecting the head of A to
the tail of B, Fig. 2–4b. The resultant R extends from the tail of A to the
head of B. In a similar manner, R can also be obtained by adding A to B,
Fig. 2–4c. By comparison, it is seen that vector addition is commutative;
in other words, the vectors can be added in either order, i.e.,

.R = A + B = B + A
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A

A

B

B

R

R

R � A � B R � B � A

(b)

Triangle rule Triangle rule

(c)

A

B

(a)

Fig. 2–4

A B

R

Addition of collinear vectors

R � A � B

Fig. 2–5

2

As a special case, if the two vectors A and B are collinear, i.e., both
have the same line of action, the parallelogram law reduces to an
algebraic or scalar addition R A B, as shown in Fig. 2–5.+=

Vector Subtraction. The resultant of the difference between two
vectors A and B of the same type may be expressed as

This vector sum is shown graphically in Fig. 2–6. Subtraction is therefore
defined as a special case of addition, so the rules of vector addition also
apply to vector subtraction.

R' =  A - B =  A + (–B)

R¿ A

�BB

A
�B

AR¿
or

Parallelogram law Triangle construction

Vector subtraction 

Fig. 2–6
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2

FR � F1 � F2

FRFR

F1 F1 F1

F2 F2

F2

(c)(b)(a)

v

Fig. 2–7

2.3 Vector Addition of Forces

Experimental evidence has shown that a force is a vector quantity since
it has a specified magnitude, direction, and sense and it adds according to
the parallelogram law. Two common problems in statics involve either
finding the resultant force, knowing its components, or resolving a known
force into two components. We will now describe how each of these
problems is solved using the parallelogram law.

Finding a Resultant Force. The two component forces F1 and F2
acting on the pin in Fig. 2–7a can be added together to form the resultant
force FR = F1 + F2, as shown in Fig. 2–7b. From this construction, or using
the triangle rule, Fig. 2–7c, we can apply the law of cosines or the law of
sines to the triangle in order to obtain the magnitude of the resultant
force and its direction.

Finding the Components of a Force. Sometimes it is
necessary to resolve a force into two components in order to study its
pulling or pushing effect in two specific directions. For example, in
Fig. 2–8a, F is to be resolved into two components along the two
members, defined by the u and axes. In order to determine the
magnitude of each component, a parallelogram is constructed first, by
drawing lines starting from the tip of F, one line parallel to u, and the
other line parallel to . These lines then intersect with the and u axes,
forming a parallelogram. The force components Fu and F are then
established by simply joining the tail of F to the intersection points on
the u and axes, Fig. 2–8b. This parallelogram can then be reduced to a
triangle, which represents the triangle rule, Fig. 2–8c. From this, the law of
sines can then be applied to determine the unknown magnitudes of the
components.

v

v

vv

v
Fu

u

v
Fv

F

FR

F2F1

Using the parallelogram law force F
caused by the vertical member can be
resolved into components acting along
the suspension cables a and b.

The parallelogram law must be used to
determine the resultant of the two
forces acting on the hook.
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2

F

u

(b)

F

FuFu

(c)

F

u

(a)

v v

Fv

Fv

Fig. 2–8

Addition of Several Forces. If more than two forces are to be
added, successive applications of the parallelogram law can be carried
out in order to obtain the resultant force. For example, if three forces F1,
F2, F3 act at a point O, Fig. 2–9, the resultant of any two of the forces is
found, say, F1 + F2—and then this resultant is added to the third force,
yielding the resultant of all three forces; i.e., FR = (F1 + F2)+F3. Using 
the parallelogram law to add more than two forces, as shown here, often
requires extensive geometric and trigonometric calculation to determine
the numerical values for the magnitude and direction of the resultant.
Instead, problems of this type are easily solved by using the “rectangular-
component method,” which is explained in Sec. 2.4.

F1

FR
F1 � F2

F33

F1
F3

F2

F1

F2

F1 � F2 FR

F3O

Fig. 2–9

The resultant force on the hook
requires the addition of , then this
resultant is added to .F3

F1 + F2

FR
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2

A

C

B

b

(c)

c

a

Sine law:

sin a sin b sin c
A B� � C

Cosine law:
C �   A2 � B2 � 2AB cos c

FR

F1

F2

F

Fu

u

(b)

(a)

v

Fv

Fig. 2–10

Procedure for Analysis

Problems that involve the addition of two forces can be solved as
follows:

Parallelogram Law.

• Two “component” forces F1 and F2 in Fig. 2–10a add according to
the parallelogram law, yielding a resultant force FR that forms the
diagonal of the parallelogram.

• If a force F is to be resolved into components along two axes u
and , Fig. 2–10b, then start at the head of force F and construct
lines parallel to the axes, thereby forming the parallelogram. The
sides of the parallelogram represent the components, F and F .

• Label all the known and unknown force magnitudes and the
angles on the sketch and identify the two unknowns as the
magnitude and direction of FR, or the magnitudes of its
components.

Trigonometry.

• Redraw a half portion of the parallelogram to illustrate the
triangular head-to-tail addition of the components.

• From this triangle, the magnitude of the resultant force can be
determined using the law of cosines, and its direction is
determined from the law of sines. The magnitudes of two force
components are determined from the law of sines. The formulas
are given in Fig. 2–10c.

vu

v

Important Points

• A scalar is a positive or negative number.

• A vector is a quantity that has a magnitude, direction, and sense.

• Multiplication or division of a vector by a scalar will change the
magnitude of the vector.The sense of the vector will change if the
scalar is negative.

• As a special case, if the vectors are collinear, the resultant is
formed by an algebraic or scalar addition.



The screw eye in Fig. 2–11a is subjected to two forces, F1 and F2.
Determine the magnitude and direction of the resultant force.

SOLUTION
Parallelogram Law. The parallelogram is formed by drawing a line
from the head of F1 that is parallel to F2, and another line from the
head of F2 that is parallel to F1.The resultant force FR extends to where
these lines intersect at point A, Fig. 2–11b. The two unknowns are the
magnitude of FR and the angle (theta).

Trigonometry. From the parallelogram, the vector triangle is
constructed, Fig. 2–11c. Using the law of cosines

Ans.

Applying the law of sines to determine ,

Thus, the direction (phi) of FR, measured from the horizontal, is

Ans.

NOTE: The results seem reasonable, since Fig. 2–11b shows FR to have
a magnitude larger than its components and a direction that is
between them.

f = 39.8° + 15.0° = 54.8°

f

u = 39.8°

 sin u =
150 N

212.6 N
(sin 115º)

150 N
sin u

=
212.6 N
sin 115°

u

= 213 N

= 210 000 + 22 500 - 30 000(-0.4226) = 212.6 N

FR = 2(100 N)2 + (150 N)2 - 2(100 N)(150 N) cos 115°

u

EXAMPLE 2.1
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F1 � 100 N

F2 � 150 N
10�

15�

(a)

Fig. 2–11

(c)

FR 150 N

100 N15�

115�

u

f

2

FR

90� � 25� � 65�

10�

15�

100 N

A

65�115�

150 N

(b)

� 115�
360 � 2(65�)

2

u



Resolve the horizontal 600-lb force in Fig. 2–12a into components
acting along the u and axes and determine the magnitudes of these
components.

v

EXAMPLE 2.2
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u

30�

30�

30�

30�

30�

120�

120�

120�

30�

30�

600 lb

(a)

u

C

B

A
600 lb

(b)

Fu

F

(c)

600 lb

Fu

F

v

v

v

v

Fig. 2–12

SOLUTION

The parallelogram is constructed by extending a line from the head of
the 600-lb force parallel to the axis until it intersects the u axis at
point B, Fig. 2–12b. The arrow from A to B represents Fu. Similarly,
the line extended from the head of the 600-lb force drawn parallel to
the u axis intersects the axis at point C, which gives F .

The vector addition using the triangle rule is shown in Fig. 2–12c. The
two unknowns are the magnitudes of Fu and F . Applying the law of
sines,

Ans.

Ans.

NOTE: The result for Fu shows that sometimes a component can have
a greater magnitude than the resultant.

Fv = 600 lb

Fv
sin 30°

=
600 lb
sin 30°

Fu = 1039 lb

Fu
sin 120°

=
600 lb
sin 30°

v

vv

v

2



Determine the magnitude of the component force F in Fig. 2–13a and
the magnitude of the resultant force FR if FR is directed along the
positive y axis.

EXAMPLE 2.3
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SOLUTION
The parallelogram law of addition is shown in Fig. 2–13b, and the
triangle rule is shown in Fig. 2–13c.The magnitudes of FR and F are the
two unknowns. They can be determined by applying the law of sines.

Ans.

Ans.FR = 273 lb

FR
sin 75°

=
200 lb
sin 45°

F = 245 lb

F

sin 60°
=

200 lb
sin 45°

y

45�

45� 45�

45�

200 lb

30�

30�

30�

(a)

F

y

45�

200 lb

(b)

F

FR

75�
60�60�

200 lb

(c)

F
FR

Fig. 2–13

2



It is required that the resultant force acting on the eyebolt in
Fig. 2–14a be directed along the positive x axis and that F2 have a
minimum magnitude. Determine this magnitude, the angle q, and the
corresponding resultant force.

EXAMPLE 2.4
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x x x

(a) (b) (c)

FRFR

F2

F2

F2

F1 � 800 N

F1 � 800 N F1 � 800 N

u � 90�

u

u

60�
60�60�

Fig. 2–14

SOLUTION
The triangle rule for is shown in Fig. 2–14b. Since the
magnitudes (lengths) of FR and F2 are not specified, then F2 can actually
be any vector that has its head touching the line of action of FR,
Fig. 2–14c. However, as shown, the magnitude of F2 is a minimum or the
shortest length when its line of action is perpendicular to the line of
action of FR, that is, when

Ans.

Since the vector addition now forms a right triangle, the two unknown
magnitudes can be obtained by trigonometry.

Ans.

Ans.F2 = (800 N)sin 60° = 693 N

FR = (800 N)cos 60° = 400 N

u = 90°

FR = F1 + F2

2



30�

40�

500 N

200 N

F2–2

FUNDAMENTAL PROBLEMS*
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x

2 kN

6 kN

45�60�

F2–1

y

x

800 N

600 N

30�

F2–3

F2–3. Determine the magnitude of the resultant force 
and its direction measured counterclockwise from the
positive x axis.

F2–6. If force F is to have a component along the u axis of
, determine the magnitude of F and the

magnitude of its component F along the axis.vv

Fu = 6 kN

30 lb

u

v

30�

15�

F2–4

A

C

B

450 lb

45�

30�

F2–5

u

v

F
45�

105�

F2–6

F2–1. Determine the magnitude of the resultant force
acting on the screw eye and its direction measured
clockwise from the x axis.

F2–4. Resolve the 30-lb force into components along the
u and axes, and determine the magnitude of each of these
components.

v

F2–2. Two forces act on the hook. Determine the
magnitude of the resultant force.

F2–5. The force acts on the frame. Resolve
this force into components acting along members AB and
AC, and determine the magnitude of each component.

F = 450 lb

2

* Partial solutions and answers to all Fundamental Problems are given in the back of the book.
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8 kN

T

x

y

u

45�

Probs. 2–1/2/3

u

F1 � 200 lb

F2 � 150 lb
v

30�

30�

45�

Probs. 2–4/5/6

•2–1. If and , determine the magnitude
of the resultant force acting on the eyebolt and its direction
measured clockwise from the positive x axis.

2–2. If and , determine the magnitude
of the resultant force acting on the eyebolt and its direction
measured clockwise from the positive x axis.

2–3. If the magnitude of the resultant force is to be 9 kN
directed along the positive x axis, determine the magnitude of
force T acting on the eyebolt and its angle .u

T = 5 kNu = 60°

T = 6 kNu = 30°

*2–4. Determine the magnitude of the resultant force
acting on the bracket and its direction measured
counterclockwise from the positive u axis.

•2–5. Resolve F1 into components along the u and axes,
and determine the magnitudes of these components.

2–6. Resolve F2 into components along the u and axes,
and determine the magnitudes of these components.

v

v

•2–9. The plate is subjected to the two forces at A and B
as shown. If , determine the magnitude of the
resultant of these two forces and its direction measured
clockwise from the horizontal.

2–10. Determine the angle of for connecting member A
to the plate so that the resultant force of FA and FB is
directed horizontally to the right.Also, what is the magnitude
of the resultant force?

u

u = 60°

y

x

u
B

FA � 3 kN

FB

A
u 30�

Probs. 2–7/8

A

B

FA � 8 kN

FB � 6 kN

40�

u

Probs. 2–9/10

2–7. If and the resultant force acts along the
positive u axis, determine the magnitude of the resultant
force and the angle .

*2–8. If the resultant force is required to act along the
positive u axis and have a magnitude of 5 kN, determine the
required magnitude of FB and its direction .u

u

FB = 2 kN

2
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2–11. If the tension in the cable is 400 N, determine the
magnitude and direction of the resultant force acting on 
the pulley. This angle is the same angle of line AB on the
tailboard block.

u

*2–12. The device is used for surgical replacement of the
knee joint. If the force acting along the leg is 360 N,
determine its components along the x and y axes.

•2–13. The device is used for surgical replacement of the
knee joint. If the force acting along the leg is 360 N,
determine its components along the x and y axes.¿

¿

*2–16. Resolve F1 into components along the u and axes
and determine the magnitudes of these components.

•2–17. Resolve F2 into components along the u and axes
and determine the magnitudes of these components.

v

v

2–14. Determine the design angle for
strut AB so that the 400-lb horizontal force has a
component of 500 lb directed from A towards C.What is the
component of force acting along member AB? Take

.

2–15. Determine the design angle 
between struts AB and AC so that the 400-lb horizontal
force has a component of 600 lb which acts up to the left, in
the same direction as from B towards A. Take .u = 30°

f (0° … f …  90°)

f = 40°

u (0° … u …  90°)

400 N

30�

y

A

B
x

400 N

u

Prob. 2–11

60�

360 N

10�

y

x

y¿

x¿

Probs. 2–12/13

A

C

B

400 lb

u

f

Probs. 2–14/15

F1 � 250 N

F2 � 150 N u

v

30�

30�

105�

Probs. 2–16/17

2
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•2–25. Two forces F1 and F2 act on the screw eye. If their
lines of action are at an angle apart and the magnitude 
of each force is determine the magnitude of
the resultant force FR and the angle between FR and F1.

F1 = F2 = F,
u

y

x

F3 � 5 kN

F1 � 4 kN

 F2

u

Probs. 2–23/24

F2

F1

u

Prob. 2–25

y

20°
x

A

B

FA

FB

u

Prob. 2–18/19

F1

F2

x

y

u

f

60�

Probs. 2–20/21/22

2–18. The truck is to be towed using two ropes. Determine
the magnitudes of forces FA and FB acting on each rope in
order to develop a resultant force of 950 N directed along
the positive x axis. Set .

2–19. The truck is to be towed using two ropes. If the
resultant force is to be 950 N, directed along the positive x
axis, determine the magnitudes of forces FA and FB acting
on each rope and the angle of FB so that the magnitude of
FB is a minimum. FA acts at 20° from the x axis as shown.

u

u = 50°

*2–20. If , , and the resultant force is 
6 kN directed along the positive y axis, determine the required
magnitude of F2 and its direction .

•2–21. If and the resultant force is to be 6 kN
directed along the positive y axis, determine the magnitudes
of F1 and F2 and the angle if F2 is required to be a minimum.

2–22. If , , and the resultant force is to
be directed along the positive y axis, determine the
magnitude of the resultant force if F2 is to be a minimum.
Also, what is F2 and the angle ?u

F1 = 5 kNf = 30°

u

f = 30°

u

F1 = 5 kNf = 45°

2–23. If and , determine the magnitude
of the resultant force acting on the plate and its direction
measured clockwise from the positive x axis.

*2–24. If the resultant force FR is directed along a 
line measured 75° clockwise from the positive x axis and 
the magnitude of F2 is to be a minimum, determine the
magnitudes of FR and F2 and the angle .u … 90°

F2 = 6 kNu = 30°
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2

x

y

B

A30�

FA

FB

u

Probs. 2–26/27

FB FA

y

x

30�
u

Probs. 2–28/29

45�

30�

y

x

400 lb

600 lb

F

u

Prob. 2–31

300 lb

200 lb

x

y

F

30�

u

Prob. 2–30

2–26. The log is being towed by two tractors A and B.
Determine the magnitudes of the two towing forces FA and
FB if it is required that the resultant force have a magnitude

and be directed along the x axis. Set .

2–27. The resultant FR of the two forces acting on the log is
to be directed along the positive x axis and have a magnitude
of 10 kN, determine the angle of the cable, attached to B such
that the magnitude of force FB in this cable is a minimum.
What is the magnitude of the force in each cable for this
situation?

u

u = 15°FR = 10 kN

*2–28. The beam is to be hoisted using two chains. Deter-
mine the magnitudes of forces FA and FB acting on each chain
in order to develop a resultant force of 600 N directed along
the positive y axis. Set .

•2–29. The beam is to be hoisted using two chains. If the
resultant force is to be 600 N directed along the positive y
axis, determine the magnitudes of forces FA and FB acting on
each chain and the angle of FB so that the magnitude of FB

is a minimum. FA acts at 30° from the y axis, as shown.
u

u = 45° 2–31. Three cables pull on the pipe such that they create a
resultant force having a magnitude of 900 lb. If two of the
cables are subjected to known forces, as shown in the figure,
determine the angle of the third cable so that the
magnitude of force F in this cable is a minimum. All forces
lie in the x–y plane. What is the magnitude of F? Hint: First
find the resultant of the two known forces.

u

2–30. Three chains act on the bracket such that they create
a resultant force having a magnitude of 500 lb. If two of the
chains are subjected to known forces, as shown, determine
the angle of the third chain measured clockwise from the
positive x axis, so that the magnitude of force F in this chain
is a minimum. All forces lie in the x–y plane. What is the
magnitude of F? Hint: First find the resultant of the two
known forces. Force F acts in this direction.

u
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2

2.4 Addition of a System of Coplanar
Forces

When a force is resolved into two components along the x and y axes, the
components are then called rectangular components. For analytical work
we can represent these components in one of two ways, using either scalar
notation or Cartesian vector notation.

Scalar Notation. The rectangular components of force F shown in
Fig. 2–15a are found using the parallelogram law, so that .
Because these components form a right triangle, their magnitudes can be
determined from

Instead of using the angle , however, the direction of F can also be
defined using a small “slope” triangle, such as shown in Fig. 2–15b. Since
this triangle and the larger shaded triangle are similar, the proportional
length of the sides gives

or

and

or

Here the y component is a negative scalar since Fy is directed along the
negative y axis.

It is important to keep in mind that this positive and negative scalar
notation is to be used only for computational purposes, not for graphical
representations in figures. Throughout the book, the head of a vector
arrow in any figure indicates the sense of the vector graphically;
algebraic signs are not used for this purpose. Thus, the vectors in
Figs. 2–15a and 2–15b are designated by using boldface (vector)
notation.* Whenever italic symbols are written near vector arrows in figures,
they indicate the magnitude of the vector, which is always a positive quantity.

Fy = -Fab
c
b

Fy

F
=
b
c

Fx = F aa
c
b

Fx
F

=
a
c

u

Fx = F cos u and Fy = F sin u

F = Fx + Fy

(a)

F

y

x
Fx

u

Fy

Fx

(b)

F

y

x

a
b

c

Fig. 2–15

*Negative signs are used only in figures with boldface notation when showing equal but
opposite pairs of vectors, as in Fig. 2–2.
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2

Cartesian Vector Notation. It is also possible to represent the x
and y components of a force in terms of Cartesian unit vectors i and j.
Each of these unit vectors has a dimensionless magnitude of one, and so
they can be used to designate the directions of the x and y axes,
respectively, Fig. 2–16. *

Since the magnitude of each component of F is always a positive
quantity, which is represented by the (positive) scalars Fx and Fy, then we
can express F as a Cartesian vector,

Coplanar Force Resultants. We can use either of the two
methods just described to determine the resultant of several coplanar
forces. To do this, each force is first resolved into its x and y components,
and then the respective components are added using scalar algebra since
they are collinear. The resultant force is then formed by adding the
resultant components using the parallelogram law. For example, consider
the three concurrent forces in Fig. 2–17a, which have x and y components
shown in Fig. 2–17b. Using Cartesian vector notation, each force is first
represented as a Cartesian vector, i.e.,

The vector resultant is therefore

If scalar notation is used, then we have

These are the same results as the i and j components of FR determined
above.

 (+ c) FRy = F1y + F2y - F3y

 (:+ ) FRx = F1x - F2x + F3x

= (FRx)i + (FRy)j

= (F1x - F2x + F3x) i + (F1y + F2y - F3y) j

= F1xi + F1y j - F2x i + F2y j + F3x i-F3y j

FR = F1 + F2 + F3

F1 = F1x i + F1y j
F2 = -F2x i + F2y j
F3 = F3x i - F3y j

F = Fx i + Fy j

F

Fx

Fy

y

x
i

j

Fig. 2–16

F3

F1

F2

(a)

x

y

(b)

x

y

F2x

F2y
F1y

F1x

F3x

F3y

Fig. 2–17

*For handwritten work, unit vectors are usually indicated using a circumflex, e.g., and
. These vectors have a dimensionless magnitude of unity, and their sense (or arrowhead)

will be described analytically by a plus or minus sign, depending on whether they are
pointing along the positive or negative x or y axis.

j
¿ i

¿
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2

We can represent the components of the resultant force of any number
of coplanar forces symbolically by the algebraic sum of the x and y
components of all the forces, i.e.,

(2–1)

Once these components are determined, they may be sketched along
the x and y axes with their proper sense of direction, and the resultant
force can be determined from vector addition, as shown in Fig. 2–17.
From this sketch, the magnitude of FR is then found from the
Pythagorean theorem; that is,

Also, the angle , which specifies the direction of the resultant force, is
determined from trigonometry:

The above concepts are illustrated numerically in the examples which
follow.

u = tan-1 2 FRy
FRx
2

u

FR = 2F2
Rx + F2

Ry

FRx = ©Fx
FRy = ©Fy

The resultant force of the four cable forces
acting on the supporting bracket can be
determined by adding algebraically the
separate x and y components of each cable
force. This resultant FR produces the same
pulling effect on the bracket as all four cables.

Important Points

• The resultant of several coplanar forces can easily be determined
if an x, y coordinate system is established and the forces are
resolved along the axes.

• The direction of each force is specified by the angle its line of
action makes with one of the axes, or by a sloped triangle.

• The orientation of the x and y axes is arbitrary, and their positive
direction can be specified by the Cartesian unit vectors i and j.

• The x and y components of the resultant force are simply the
algebraic addition of the components of all the coplanar forces.

• The magnitude of the resultant force is determined from the
Pythagorean theorem, and when the components are sketched
on the x and y axes, the direction can be determined from
trigonometry.

F1

F2

F3

F4

x

y

(c)

x

y

FRFRy

FRx

u

Fig. 2–17
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EXAMPLE 2.5

Determine the x and y components of F1 and F2 acting on the boom
shown in Fig. 2–18a. Express each force as a Cartesian vector.

SOLUTION
Scalar Notation. By the parallelogram law, F1 is resolved into x and
y components, Fig. 2–18b. Since F1x acts in the –x direction, and F1y acts
in the +y direction, we have

Ans.

Ans.

The force F2 is resolved into its x and y components as shown in
Fig. 2–17c. Here the slope of the line of action for the force is
indicated. From this “slope triangle” we could obtain the angle , e.g.,

, and then proceed to determine the magnitudes of the
components in the same manner as for F1. The easier method, how-
ever, consists of using proportional parts of similar triangles, i.e.,

Similarly,

Notice how the magnitude of the horizontal component, F2x, was
obtained by multiplying the force magnitude by the ratio of the
horizontal leg of the slope triangle divided by the hypotenuse;
whereas the magnitude of the vertical component, F2y, was obtained
by multiplying the force magnitude by the ratio of the vertical leg
divided by the hypotenuse. Hence,

Ans.

Ans.

Cartesian Vector Notation. Having determined the magnitudes
and directions of the components of each force, we can express each
force as a Cartesian vector.

Ans.

Ans.F2 = 5240i - 100j6N

F1 = 5-100i + 173j6N

F2y = -100 N = 100 NT

F2x = 240 N = 240 N:

F2y = 260 Na 5
13
b = 100 N

F2x = 260 Na12
13
b = 240 N

F2x

260 N
=

12
13

u = tan-1( 5
12)

u

F1y = 200 cos 30° N = 173 N = 173 Nc  

F1x = -200 sin 30° N = -100 N = 100 N;  

y

x

F1 � 200 N

F2 � 260 N

30�

(a)

5
12

13

y

x

F1 � 200 N

F1x � 200 sin 30� N

30�

F1y � 200 cos 30� N

(b)

y

x

F2 � 260 N

(c)

5
12

13

F2x � 260 12—
13( (N

F2y � 260 5—
13( (N

Fig. 2–18



36 CH A P T E R 2 FO R C E VE C T O R S

2

EXAMPLE 2.6

The link in Fig. 2–19a is subjected to two forces F1 and F2. Determine
the magnitude and direction of the resultant force.

SOLUTION I
Scalar Notation. First we resolve each force into its x and y
components, Fig. 2–19b, then we sum these components algebraically.

The resultant force, shown in Fig. 2–18c, has a magnitude of

Ans.

From the vector addition,

Ans.

SOLUTION II
Cartesian Vector Notation. From Fig. 2–19b, each force is first
expressed as a Cartesian vector.

Then,

The magnitude and direction of FR are determined in the same
manner as before.

NOTE: Comparing the two methods of solution, notice that the use of
scalar notation is more efficient since the components can be found
directly, without first having to express each force as a Cartesian vector
before adding the components. Later, however, we will show that
Cartesian vector analysis is very beneficial for solving three-dimensional
problems.

= 5236.8i + 582.8j6 N
+ (600 sin 30° N + 400 cos 45° N)j

FR = F1 + F2 = (600 cos 30° N - 400 sin 45° N)i

F2 = 5-400 sin 45°i + 400 cos 45°j6 N

F1 = 5600 cos 30°i + 600 sin 30°j6N

u = tan-1a582.8 N
236.8 N

b = 67.9°

= 629 N

FR = 2(236.8 N)2 + (582.8 N)2

= 582.8 Nc

+ cFRy = ©Fy;  FRy = 600 sin 30° N + 400 cos 45° N

= 236.8 N:
:+ FRx = ©Fx;  FRx = 600 cos 30° N - 400 sin 45° N

y

F1 � 600 N

x

F2 � 400 N

45�

30�

(a)

y

F1 � 600 N

x

F2 � 400 N

30�

(b)

45�

y

FR

x

(c)

582.8 N

236.8 N

u

Fig. 2–19
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EXAMPLE 2.7

F3 � 200 N

(a)

y

�
x

F1 � 400 N

F2 � 250 N

3
5

4

45�

250 N

(b)

y

�

45�

400 N

4
x

 200 N

3
5

FR
296.8 N

383.2 N

(c)

y

�
x

u

Fig. 2–20

The end of the boom O in Fig. 2–20a is subjected to three concurrent
and coplanar forces. Determine the magnitude and direction of the
resultant force.

SOLUTION
Each force is resolved into its x and y components, Fig. 2–20b. Summing
the x components, we have

The negative sign indicates that FRx acts to the left, i.e., in the negative
x direction, as noted by the small arrow. Obviously, this occurs
because F1 and F3 in Fig. 2–20b contribute a greater pull to the left
than F2 which pulls to the right. Summing the y components yields

The resultant force, shown in Fig. 2–20c, has a magnitude of

Ans.

From the vector addition in Fig. 2–20c, the direction angle is

Ans.

NOTE: Application of this method is more convenient, compared to
using two applications of the parallelogram law, first to add F1 and F2
then adding F3 to this resultant.

u = tan-1a296.8
383.2

b = 37.8°

u

= 485 N

FR = 2(-383.2 N)2 + (296.8 N)2

= 296.8 Nc

+ cFRy = ©Fy;  FRy = 250 cos 45° N + 200 A35 B  N

= -383.2 N = 383.2 N;
:+ FRx = ©Fx;  FRx = -400 N + 250 sin 45° N - 200 A45 B N
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FUNDAMENTAL PROBLEMS

F2–10. If the resultant force acting on the bracket is to be
750 N directed along the positive x axis, determine the
magnitude of F and its direction .u

F2–11. If the magnitude of the resultant force acting on
the bracket is to be 80 lb directed along the u axis,
determine the magnitude of F and its direction .u

3

45

y

x

F2 � 450 N
F1 � 300 N

F3 � 600 N

45�

F2–7

F

600 N

325 N

12

5

13

y

x
u

45�

F2–10

90 lb

50 lb

F

3

4
5

x

u

y

45�

u

F2–11

F3 � 15 kN

F2 � 20 kN
F1 � 15 kN

y

x

44
33 55

F2–12

y

x
300 N

400 N

250 N

3
4

5

30�

F2–8

3

4 5

F2 � 400 lb

F1 � 700 lb

y

x

F3 � 600 lb

30�

F2–9

F2–7. Resolve each force acting on the post into its x and
y components.

F2–8. Determine the magnitude and direction of the
resultant force.

F2–9. Determine the magnitude of the resultant force
acting on the corbel and its direction measured
counterclockwise from the x axis.

u
F2–12. Determine the magnitude of the resultant force
and its direction measured counterclockwise from the
positive x axis.

u
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•2–33. If and , determine the
magnitude of the resultant force acting on the eyebolt and
its direction measured clockwise from the positive x axis.

2–34. If the magnitude of the resultant force acting on 
the eyebolt is 600 N and its direction measured clockwise
from the positive x axis is , determine the magni-
tude of F1 and the angle .f

u = 30°

f = 30°F1 = 600 N

PROBLEMS

x

A

175 lb

12
5

13

y

Prob. 2–35

x

y

F2

5

4

3

F1 � 4 kN

F3 � 5 kN

f

30�

Probs. 2–36/37/38

x

y
F1 � 30 lb

F2 � 40 lb

F3 � 25 lb

15�

15�

45�

Prob. 2–32

y

x

3
45

F2 � 500 N

F1

F3 � 450 N

f

60�

Probs. 2–33/34

*2–32. Determine the magnitude of the resultant force
acting on the pin and its direction measured clockwise from
the positive x axis.

2–35. The contact point between the femur and tibia
bones of the leg is at A. If a vertical force of 175 lb is applied
at this point, determine the components along the x and y
axes. Note that the y component represents the normal
force on the load-bearing region of the bones. Both the x
and y components of this force cause synovial fluid to be
squeezed out of the bearing space.

*2–36. If and , determine the magnitude
of the resultant force acting on the plate and its direction 
measured clockwise from the positive x axis.

•2–37. If the magnitude for the resultant force acting on
the plate is required to be 6 kN and its direction measured
clockwise from the positive x axis is , determine the
magnitude of F2 and its direction .

2–38. If and the resultant force acting on the
gusset plate is directed along the positive x axis, determine
the magnitudes of F2 and the resultant force.

f = 30°

f

u = 30°

u

F2 = 3 kNf = 30°
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2–46. The three concurrent forces acting on the screw eye
produce a resultant force . If and F1 is to
be 90° from F2 as shown, determine the required magnitude
of F3 expressed in terms of F1 and the angle .u

F2 = 2
3 F1FR = 0

F3 � 260 lb

F2 � 300 lb5

1213

3
4

5

x

y
F1

f

Probs. 2–43/44/45

y

x

60�

30�

F2

F3

F1

u

Prob. 2–46

A
x

y

F1

400 N
600 N

3
4

5

30�

u

Probs. 2–39/40

FB

x

y

B A

30�
FA � 700 N

u

Probs. 2–41/42

•2–41. Determine the magnitude and direction of FB so
that the resultant force is directed along the positive y axis
and has a magnitude of 1500 N.

2–42. Determine the magnitude and angle measured
counterclockwise from the positive y axis of the resultant
force acting on the bracket if and .u = 20°FB = 600 N

u

2–43. If and , determine the
magnitude of the resultant force acting on the bracket and
its direction measured clockwise from the positive x axis.

*2–44. If the magnitude of the resultant force acting on
the bracket is 400 lb directed along the positive x axis,
determine the magnitude of F1 and its direction .

•2–45. If the resultant force acting on the bracket is to be
directed along the positive x axis and the magnitude of F1 is
required to be a minimum, determine the magnitudes of the
resultant force and F1.

f

F1 = 250 lbf = 30°2–39. Determine the magnitude of F1 and its direction 
so that the resultant force is directed vertically upward and
has a magnitude of 800 N.

*2–40. Determine the magnitude and direction measured
counterclockwise from the positive x axis of the resultant
force of the three forces acting on the ring A. Take

and .u = 20°F1 = 500 N

u
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•2–49. Determine the magnitude of the resultant force
and its direction measured counterclockwise from the
positive x axis.

2–47. Determine the magnitude of FA and its direction 
so that the resultant force is directed along the positive x
axis and has a magnitude of 1250 N.

*2–48. Determine the magnitude and direction measured
counterclockwise from the positive x axis of the resultant
force acting on the ring at O if and .u = 45°FA = 750 N

u

2–51. If and , determine the magnitude
of the resultant force acting on the bracket and its direction
measured clockwise from the positive x axis.

*2–52. If the magnitude of the resultant force acting on
the bracket is to be 450 N directed along the positive u axis,
determine the magnitude of F1 and its direction .

•2–53. If the resultant force acting on the bracket is
required to be a minimum, determine the magnitudes of F1
and the resultant force. Set .f = 30°

f

f = 30°F1 = 150 N

2–50. The three forces are applied to the bracket.
Determine the range of values for the magnitude of force P
so that the resultant of the three forces does not exceed
2400 N.

3000 N

800 N

P

90�

60�

Prob. 2–50

5

12 13

y

x

u

F3 � 260 N

F2 � 200 N

F1

f

30�

Probs. 2–51/52/53

30�

y

x
O

B

A

FA

FB � 800 N

u

Probs. 2–47/48

F1 = 60 lb

F2 � 70 lb

F3 � 50 lb

y

x

60�

45�

1

2
1

Prob. 2–49
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*2–56. The three concurrent forces acting on the post
produce a resultant force . If , and F1 is to
be 90° from F2 as shown, determine the required magnitude
of F3 expressed in terms of F1 and the angle .u

F2 = 1
2 F1FR = 0

2–58. Express each of the three forces acting on the
bracket in Cartesian vector form with respect to the x and y
axes. Determine the magnitude and direction of F1 so that
the resultant force is directed along the positive axis and
has a magnitude of .FR = 600 N

x¿
u

•2–57. Determine the magnitude of force F so that the
resultant force of the three forces is as small as possible.
What is the magnitude of this smallest resultant force?

F2 � 350 N

F1

F3 � 100 N

y

x

x¿

30�

30�

u

Prob. 2–58

x

y

u

12

5

13

F2

25�

F3 � 52 lb

F1 � 80 lb

u

Probs. 2–54/55

x

y

F1

F2

F3
u

Prob. 2–56

2–54. Three forces act on the bracket. Determine the
magnitude and direction of F2 so that the resultant force is
directed along the positive u axis and has a magnitude of 50 lb.

2–55. If and , determine the
magnitude and direction measured clockwise from the
positive x axis of the resultant force of the three forces
acting on the bracket.

u = 55°F2 = 150 lb

u

F

8 kN

14 kN

45�30�

Prob. 2–57
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2.5 Cartesian Vectors

The operations of vector algebra, when applied to solving problems in
three dimensions, are greatly simplified if the vectors are first represented
in Cartesian vector form. In this section we will present a general method
for doing this; then in the next section we will use this method for finding
the resultant force of a system of concurrent forces.

Right-Handed Coordinate System. We will use a right-
handed coordinate system to develop the theory of vector algebra that
follows. A rectangular coordinate system is said to be right-handed if the
thumb of the right hand points in the direction of the positive z axis
when the right-hand fingers are curled about this axis and directed from
the positive x towards the positive y axis, Fig. 2–21.

Rectangular Components of a Vector. A vector A may have
one, two, or three rectangular components along the x, y, z coordinate
axes, depending on how the vector is oriented relative to the axes. In
general, though, when A is directed within an octant of the x, y, z frame,
Fig. 2–22, then by two successive applications of the parallelogram law,
we may resolve the vector into components as and then

. Combining these equations, to eliminate , A is
represented by the vector sum of its three rectangular components,

(2–2)

Cartesian Unit Vectors. In three dimensions, the set of Cartesian
unit vectors, i, j, k, is used to designate the directions of the x, y, z axes,
respectively. As stated in Sec. 2.4, the sense (or arrowhead) of these
vectors will be represented analytically by a plus or minus sign,
depending on whether they are directed along the positive or negative x,
y, or z axes. The positive Cartesian unit vectors are shown in Fig. 2–23.

A = Ax + Ay + Az

A¿A¿ = Ax + Ay
A = A¿ + Az

z

y

x

Fig. 2–21

A

Ax

z

y

x

Ay

Az

A¿

Fig. 2–22

k

j
i

z

y

x

Fig. 2–23
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Cartesian Vector Representation. Since the three components
of A in Eq. 2–2 act in the positive i, j, and k directions, Fig. 2–24, we can
write A in Cartesian vector form as

(2–3)

There is a distinct advantage to writing vectors in this manner.
Separating the magnitude and direction of each component vector will
simplify the operations of vector algebra, particularly in three
dimensions.

Magnitude of a Cartesian Vector. It is always possible to
obtain the magnitude of A provided it is expressed in Cartesian vector
form. As shown in Fig. 2–25, from the blue right triangle,

, and from the gray right triangle, .
Combining these equations to eliminate , yields

(2–4)

Hence, the magnitude of A is equal to the positive square root of the sum
of the squares of its components.

Direction of a Cartesian Vector. We will define the direction
of A by the coordinate direction angles a (alpha), b (beta), and 
g (gamma), measured between the tail of A and the positive x, y, z axes
provided they are located at the tail of A, Fig. 2–26. Note that regardless
of where A is directed, each of these angles will be between 0° and 180°.

To determine a, b, and g , consider the projection of A onto the x, y, z
axes, Fig. 2–27. Referring to the blue colored right triangles shown in
each figure, we have

(2–5)

These numbers are known as the direction cosines of A. Once they
have been obtained, the coordinate direction angles a, b, g can then be
determined from the inverse cosines.

cos a =
Ax
A

cos b =
Ay
A

cos g =
Az
A

A = 2A2
x + A2

y + A2
z

A¿
A¿ = 2A2

x + Ay2A = 2A¿2 + A2
z

A = Axi + Ay j + Azk
A

Ax i

z

y

x

Ay j

Az k

k

i

j

Fig. 2–24

A

Axi

z

y

x

Ayj

Azk

A

A¿

Ay

Ax

Az

Fig. 2–25



An easy way of obtaining these direction cosines is to form a unit
vector uA in the direction of A, Fig. 2–26. If A is expressed in Cartesian
vector form, , then uA will have a magnitude of
one and be dimensionless provided A is divided by its magnitude, i.e.,

(2–6)

where . By comparison with Eqs. 2–7, it is seen that
the i, j, k components of uA represent the direction cosines of A, i.e.,

(2–7)

Since the magnitude of a vector is equal to the positive square root of
the sum of the squares of the magnitudes of its components, and uA has a
magnitude of one, then from the above equation an important relation
between the direction cosines can be formulated as

(2–8)

Here we can see that if only two of the coordinate angles are known,
the third angle can be found using this equation.

Finally, if the magnitude and coordinate direction angles of A are
known, then A may be expressed in Cartesian vector form as

(2–9)

= Axi + Ayj + Azk
= A cos a i + A cos b j + A cos gk

A = AuA

cos2 a + cos2 b + cos2 g = 1

uA = cos a i + cos b j + cos gk

A = 2Ax2 + A2
y + A2

z

uA =
A
A

=
Ax
A

i +
Ay
A

j +
Az
A

k

A = Axi + Ay j + Azk
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z

y

x

90�

A

Ax

a
z

y

x

90�

A

Ay

b

z

y

x

Az

90�

Ag

Fig 2–27

A

Axi

z

y

x

Ayj

Azk

uA

g

a

b

Fig. 2–26
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Sometimes, the direction of A can be specified using two angles, and
(phi), such as shown in Fig. 2–28. The components of A can then be

determined by applying trigonometry first to the blue right triangle,
which yields

and

Now applying trigonometry to the other shaded right triangle,

Therefore A written in Cartesian vector form becomes

You should not memorize this equation, rather it is important to
understand how the components were determined using trigonometry.

2.6 Addition of Cartesian Vectors

The addition (or subtraction) of two or more vectors are greatly simplified
if the vectors are expressed in terms of their Cartesian components. For
example, if and , Fig. 2–29,
then the resultant vector, R, has components which are the scalar sums of
the i, j, k components of A and B, i.e.,

If this is generalized and applied to a system of several concurrent
forces, then the force resultant is the vector sum of all the forces in the
system and can be written as

(2–10)

Here ΣFx, ΣFy, and ΣFz represent the algebraic sums of the respective x,
y, z or i, j, k components of each force in the system.

FR = ©F = ©Fxi + ©Fy j + ©Fzk

R = A + B = (Ax + Bx)i + (Ay + By)j + (Az + Bz)k

B = Bxi + Byj + BzkA = Axi + Ay j + Azk

A = A sin f cos u i + A sin f sin u j + A cos f k

Ay = A¿  sin u = A sin f sin u

Ax = A¿  cos u = A sin f cos u

A¿ = A sin f

Az = A cos f

f

u

z

y

x

R

B

A

(Az � Bz)k

(Ax � Bx)i

(Ay � By)j

Fig. 2–29

y
x

Ay

Az

Ax

A¿

A

z

O

u

f

Fig. 2–28
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Important Points

• Cartesian vector analysis is often used to solve problems in three
dimensions.

• The positive directions of the x, y, z axes are defined by the
Cartesian unit vectors i, j, k, respectively.

• The magnitude of a Cartesian vector is .

• The direction of a Cartesian vector is specified using coordinate
direction angles which the tail of the vector makes with the
positive x, y, z axes, respectively. The components of the unit
vector represent the direction cosines of . Only
two of the angles have to be specified. The third angle is
determined from the relationship .

• Sometimes the direction of a vector is defined using the two
angles q and as in Fig. 2–28. In this case the vector components
are obtained by vector resolution using trigonometry.

• To find the resultant of a concurrent force system, express each
force as a Cartesian vector and add the i, j, k components of all
the forces in the system.

f

cos2 a + cos2 b + cos2 g = 1
a, b, g

a, b, guA = A>A
a, b, g

A = 2A2
x + A2

y + A2
z

EXAMPLE 2.8

Express the force F shown in Fig. 2–30 as a Cartesian vector.

SOLUTION
Since only two coordinate direction angles are specified, the third angle
α must be determined from Eq. 2–8; i.e.,

Hence, two possibilities exist, namely,

By inspection it is necessary that , since Fx must be in the +x
direction.

Using Eq. 2–9, with , we have

Ans.

Show that indeed the magnitude of .F = 200 N

= 5100.0i + 100.0j + 141.4k6 N

= (200 cos 60° N)i + (200 cos 60° N)j + (200 cos 45° N)k

F = F cos ai + F cos bj + F cos gk

F = 200 N

a = 60°

a = cos-1(0.5) = 60° or a = cos-1(-0.5) = 120°

 cos a = 21 - (0.5)2 - (0.707)2 = ;0.5

 cos2 a + cos2 60° + cos2 45° = 1

 cos2 a + cos2 b + cos2 g = 1

z

y

x

45�

F � 200 N

60�a

Fig. 2–30

The resultant force acting on the bow the
ship can be determined by first
representing each rope force as a Cartesian
vector and then summing the i, j, and k
components.
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EXAMPLE 2.9

Determine the magnitude and the coordinate direction angles of the
resultant force acting on the ring in Fig. 2–31a.

SOLUTION
Since each force is represented in Cartesian vector form, the resultant
force, shown in Fig. 2–31b, is

The magnitude of FR is

Ans.

The coordinate direction angles a, b, g are determined from the
components of the unit vector acting in the direction of FR.

so that

Ans.

Ans.

Ans.

These angles are shown in Fig. 2–31b.

NOTE: In particular, notice that since the j component of
uFR

is negative. This seems reasonable considering how F1 and F2 add
according to the parallelogram law.

b 7 90°

g = 19.6°cos g =  0.9422

b = 102°cos b = -0.2094

a = 74.8°cos a =  0.2617

= 0.2617i - 0.2094 j + 0.9422k

uFR =
FR
FR

=
50

191.0
i -

40
191.0

j +
180

191.0
k

= 191 lb

FR = 2(50 lb)2 + (-40 lb)2 + (180 lb)2 = 191.0 lb

= 550i - 40j + 180k6 lb

FR = ©F = F1 + F2 = 560j + 80k6 lb + 550i - 100j + 100k6 lb

(a)

z

y

x

F2 � {50i � 100j � 100k} lb F1 � {60j � 80k} lb

(b)

z

y

x

F2

FR � {50i � 40j � 180k} lb

F1

� 102�
� 74.8�

� 19.6�

a

g

b

Fig. 2–31
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EXAMPLE 2.10

Express the force F shown in Fig. 2–32a as a Cartesian vector.

SOLUTION
The angles of 60° and 45° defining the direction of F are not coordinate
direction angles. Two successive applications of the parallelogram law
are needed to resolve F into its x, y, z components First ,
then , Fig. 2–32b. By trigonometry, the magnitudes of the
components are

Realizing that Fy has a direction defined by –j, we have

Ans.

To show that the magnitude of this vector is indeed 100 lb, apply
Eq. 2–4,

If needed, the coordinate direction angles of F can be determined
from the components of the unit vector acting in the direction of F.
Hence,

so that

These results are shown in Fig. 2–31c.

g = cos-1(0.866) = 30.0°

b = cos-1(-0.354) = 111°

a = cos-1(0.354) = 69.3°

= 0.354i - 0.354j + 0.866k

=
35.4
100

i -
35.4
100

j +
86.6
100

k

u =
F
F

=
Fx
F

i +
Fy

F
j +
Fz
F

k

= 2(35.4)2 + (-35.4)2 + (86.6)2 = 100 lb

F = 2F2
x + F2

y + F2
z

F = 535.4i - 35.4j + 86.6k6 lb

Fy = F¿ sin 45º = 50 sin 45° lb = 35.4 lb

Fx = F¿ cos 45º = 50 cos 45° lb = 35.4 lb

F¿ = 100 cos 60° lb = 50 lb

Fz = 100 sin 60° lb = 86.6 lb

F¿ = Fx + Fy
F = F¿ + Fz

(a)

z

y

x

F � 100 lb

60�

45�

z

F¿ Fx

Fz

y

x

F � 100 lb

60�

45�

Fy

(c)

z

y

x

F � 100 lb

69.3�

111�

30.0�

Fig. 2–32
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EXAMPLE 2.11

Two forces act on the hook shown in Fig. 2–32a. Specify the magnitude
of and its coordinate direction angles of that the resultant force
FR acts along the positive y axis and has a magnitude of 800 N.

SOLUTION
To solve this problem, the resultant force FR and its two components,
F1 and F2, will each be expressed in Cartesian vector form. Then, as
shown in Fig. 2–33a, it is necessary that .

Applying Eq. 2–9,

Since FR has a magnitude of 800 N and acts in the +j direction,

We require

To satisfy this equation the i, j, k components of FR must be equal to
the corresponding i, j, k components of (F1 + F2). Hence,

The magnitude of F2 is thus

Ans.

We can use Eq. 2–9 to determine 2, 2, 2.

Ans.

Ans.

Ans.

These results are shown in Fig. 2–32b.

g2 = 77.6° cos g2 =
150
700

;

b2 = 21.8° cos b2 =
650
700

;

a2 = 108° cos a2 =
-212.1

700
;

gba

= 700 N

F2 = 2(-212.1 N)2 + (650 N)2 + (150 N)2

0 = 212.1 + F2x

800 = 150 + F2y  
0 = -150 + F2z

 
F2x = -212.1 N
F2y = 650 N
F2z = 150 N

 800j = (212.1 + F2x)i + (150 + F2y)j + (-150 + F2z)k

 800j = 212.1i + 150j - 150k + F2x i + F2yj + F2zk

FR = F1 + F2

FR = (800 N)(+ j) = 5800j6 N

F2 = F2xi + F2y j + F2zk

= 5212.1i + 150j - 150k6N

= 300 cos 45° i + 300 cos 60° j + 300 cos 120° k

F1 = F1 cos a1i + F1 cos b1j + F1 cos g1k

FR = F1 + F2

F2F2

z

F2

F1 � 300 N

(a)

x

y
60�

45�

120�

z

(b)

F1 � 300 N

F2 � 700 N

FR � 800 N

x

y

g2 � 77.6�

b2 � 21.8�

a2 � 108�

Fig. 2–33
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F2–14. Express the force as a Cartesian vector.

F2–15. Express the force as a Cartesian vector.

F2–17. Express the force as a Cartesian vector.

F2–18. Determine the resultant force acting on the hook.

FUNDAMENTAL PROBLEMS

F � 500 Nz

yx

60�

60�

F2–14

F � 500 N

z

y

x

45�

60�

F2–15

y

z

x 30�

F � 75 lb

45�

F2–13

z

y
x

34

5

F � 50 lb

45�

F2–16

F � 750 N

z

y

x

45�

60�

F2–17

F2 � 800 lb

F1 � 500 lb

3
4

5

y

z

x
30�

45�

F2–18

F2–13. Determine its coordinate direction angles of the
force.

F2–16. Express the force as a Cartesian vector.
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2–59. Determine the coordinate angle for F2 and then
express each force acting on the bracket as a Cartesian
vector.

*2–60. Determine the magnitude and coordinate direction
angles of the resultant force acting on the bracket.

g

•2–61. Express each force acting on the pipe assembly in
Cartesian vector form.

2–62. Determine the magnitude and direction of the
resultant force acting on the pipe assembly.

•2–65. The two forces F1 and F2 acting at A have a
resultant force of . Determine the
magnitude and coordinate direction angles of F2.

2–66. Determine the coordinate direction angles of the
force F1 and indicate them on the figure.

FR = 5-100k6 lb

PROBLEMS

y

z

F2 � 600 N

F1 � 450 N

45�

30�

45�
60�

x

Probs. 2–59/60

z

y

x

5

3
4

F2 � 400 lb

F1 � 600 lb 120�

60�

Probs. 2–61/62

F

y

z

x

a

b

g

Probs. 2–63/64

y

x

F2

A

30�

50�

F1 � 60 lb

z

B

Probs. 2–65/66

2–63. The force F acts on the bracket within the octant
shown. If , , and , determine the
x, y, z components of F.

*2–64. The force F acts on the bracket within the octant
shown. If the magnitudes of the x and z components of F
are and , respectively, and ,
determine the magnitude of F and its y component. Also,
find the coordinate direction angles and .ga

b = 60°Fz = 600 NFx = 300 N

g = 45°b = 60°F = 400 N
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2–67. The spur gear is subjected to the two forces caused
by contact with other gears. Express each force as a
Cartesian vector.

*2–68. The spur gear is subjected to the two forces caused
by contact with other gears. Determine the resultant of the
two forces and express the result as a Cartesian vector.

•2–69. If the resultant force acting on the bracket is
, determine the magnitude

and coordinate direction angles of F.

2–70. If the resultant force acting on the bracket is to be
, determine the magnitude and coordinate

direction angles of F.
FR = 5800j6 N

FR = 5-300i + 650j + 250k6 N
•2–73. The shaft S exerts three force components on the
die D. Find the magnitude and coordinate direction angles
of the resultant force. Force F2 acts within the octant shown.

2–71. If , , , and ,
determine the magnitude and coordinate direction angles
of the resultant force acting on the hook.

*2–72. If the resultant force acting on the hook is
, determine the magnitude

and coordinate direction angles of F.
FR = 5-200i + 800j + 150k6 lb

F = 400 lbg = 60°b 6 90°a = 120°

135�

F1 � 50 lb

F2 � 180 lb

24

7

25

60�

60�

z

y

x

Probs. 2–67/68

F

F1 � 750 N

y

z

x

a

b

g

30�
45�

Probs. 2–69/70

F1 � 600 lb

F

z

x
y

4

35

a

b

g

30�

Probs. 2–71/72

S

D

z

y

x

3

4

5

F1 � 400 N

F3 � 200 N
F2 � 300 N

g2 � 60�

a2 � 60�

Prob. 2–73
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2–74. The mast is subjected to the three forces shown.
Determine the coordinate direction angles of
F1 so that the resultant force acting on the mast is

.

2–75. The mast is subjected to the three forces shown.
Determine the coordinate direction angles of
F1 so that the resultant force acting on the mast is zero.

a1, b1, g1

FR = 5350i6N

a1, b1, g1

*2–76. Determine the magnitude and coordinate
direction angles of F2 so that the resultant of the two forces
acts along the positive x axis and has a magnitude of 500 N.

•2–77. Determine the magnitude and coordinate direction
angles of F2 so that the resultant of the two forces is zero.

2–79. Specify the magnitude of F3 and its coordinate
direction angles so that the resultant force

.FR = 59j6 kN
a3, b3, g3

2–78. If the resultant force acting on the bracket is directed
along the positive y axis, determine the magnitude of the
resultant force and the coordinate direction angles of F so
that .b 6 90°

F3 � 300 N

F2 � 200 N
x

z

F1

y

b1

a1

g1

Probs. 2–74/75

y

x

z

F1 � 180 N

F2

60�

15�

b2

a2

g2

Probs. 2–76/77

x
y

z

F � 500 N

F1 � 600 N

a

b

g

30�

30�

Prob. 2–78

x

z

5

12

13

y

F3

30�

F2 � 10 kN

F1 � 12 kN

g3
b3

a3

Prob. 2–79
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*2–80. If , , and = 45°, determine the
magnitude and coordinate direction angles of the resultant
force acting on the ball-and-socket joint.

fu = 30°F3 = 9 kN

•2–85. Two forces F1 and F2 act on the bolt. If the resultant
force FR has a magnitude of 50 lb and coordinate direction
angles and , as shown, determine the
magnitude of F2 and its coordinate direction angles.

b = 80°a = 110°

4

3

5

F3

F2 � 8 kN

F1 � 10 kN

z

y
x

u

f
30�

60�

Prob. 2–80

z

Fz

Fy

Fx

F

y

x

a

b

g

Probs. 2–81/82

x

y

z

3 4

5

F3

45�

30�

F1 � 80 N

F2 � 110 N
FR � 120 N

Probs. 2–83/84

F2

80�

110�

x

y

z

g

F1 � 20 lb

FR � 50 lb

Prob. 2–85

2–83. Three forces act on the ring. If the resultant force FR
has a magnitude and direction as shown, determine the
magnitude and the coordinate direction angles of force F3.

*2–84. Determine the coordinate direction angles of F1
and FR.

•2–81. The pole is subjected to the force F, which has
components acting along the x, y, z axes as shown. If the
magnitude of F is 3 kN, , and , determine
the magnitudes of its three components.

2–82. The pole is subjected to the force F which has
components and . If ,
determine the magnitudes of F and Fy.

b = 75°Fz = 1.25 kNFx = 1.5 kN

g = 75°b = 30°
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2.7 Position Vectors

In this section we will introduce the concept of a position vector. It will be
shown that this vector is of importance in formulating a Cartesian force
vector directed between two points in space.

x, y, z Coordinates. Throughout the book we will use a right-
handed coordinate system to reference the location of points in space.We
will also use the convention followed in many technical books, which
requires the positive z axis to be directed upward (the zenith direction) so
that it measures the height of an object or the altitude of a point. The x, y
axes then lie in the horizontal plane, Fig. 2–34. Points in space are located
relative to the origin of coordinates, O, by successive measurements along
the x, y, z axes. For example, the coordinates of point A are obtained by
starting at O and measuring xA = +4 m along the x axis, then yA = +2 m
along the y axis, and finally zA = –6 m along the z axis. Thus, A(4 m, 2 m,
–6 m). In a similar manner, measurements along the x, y, z axes from O
to B yield the coordinates of B, i.e., B(6 m, –1 m, 4 m).

Position Vector. A position vector r is defined as a fixed vector
which locates a point in space relative to another point. For example, if r
extends from the origin of coordinates, O, to point P(x, y, z), Fig. 2–35a,
then r can be expressed in Cartesian vector form as

Note how the head-to-tail vector addition of the three components
yields vector r, Fig. 2–35b. Starting at the origin O, one “travels” x in the
+i direction, then y in the +j direction, and finally z in the +k direction to
arrive at point P(x, y, z).

r = xi + yj + zk

z

y

x

4 m

1 m

2 m

O
B

A

2 m

4 m

6 m

Fig. 2–34

z

y

x

y j
r

x i
O

z k

(a)

P(x, y, z)

z

y

x

z k
r

x i
O

(b)

P(x, y, z)

y j

Fig. 2–35
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In the more general case, the position vector may be directed from
point A to point B in space, Fig. 2–36a. This vector is also designated by
the symbol r. As a matter of convention, we will sometimes refer to this
vector with two subscripts to indicate from and to the point where it is
directed.Thus, r can also be designated as rAB.Also, note that rA and rB in
Fig. 2–36a are referenced with only one subscript since they extend from
the origin of coordinates.

From Fig. 2–36a, by the head-to-tail vector addition, using the triangle
rule, we require

Solving for r and expressing rA and rB in Cartesian vector form yields

or

(2–11)

Thus, the i, j, k components of the position vector r may be formed by
taking the coordinates of the tail of the vector and
subtracting them from the corresponding coordinates of the head

. We can also form these components directly, Fig. 2–36b, by
starting at A and moving through a distance of (xB – xA) along the
positive x axis (+i), then (yB – yA) along the positive y axis (+j), and
finally (zB – zA) along the positive z axis (+k) to get to B.

B(xB, yB, zB)

A(xA, yA, zA)

r = (xB - xA)i + (yB - yA)j + (zB - zA)k

r = rB - rA = (xBi + yB j + zBk) - (xAi + yA j + zAk)

rA + r = rB

z

y

x

(a)

B(xB, yB, zB)

A(xA, yA, zA)
rA

rB

r

(b)

z

y

x

(xB � xA)i

r
B

A

(yB � yA)j

(zB � zA)k

Fig. 2–36

A

r

B

u

If an x, y, z coordinate system is established, then the coordinates
of points A and B can be determinded. From this the position
vector r acting along the cable can be formulated. Its magnitude
represents the length of the cable, and its unit vector, u = r/r,
gives the direction defined by .a, b, g



58 CH A P T E R 2 FO R C E VE C T O R S

2

EXAMPLE 2.12

An elastic rubber band is attached to points A and B as shown in
Fig. 2–37a. Determine its length and its direction measured from A
toward B.

SOLUTION
We first establish a position vector from A to B, Fig. 2–37b. In
accordance with Eq. 2–11, the coordinates of the tail A(1 m, 0, –3 m) are
subtracted from the coordinates of the head B(–2 m, 2 m, 3 m), which
yields

These components of r can also be determined directly by realizing
that they represent the direction and distance one must travel along
each axis in order to move from A to B, i.e., along the x axis {–3i} m,
along the y axis {2j} m, and finally along the z axis {6k} m.

The length of the rubber band is therefore

Ans.

Formulating a unit vector in the direction of r, we have

The components of this unit vector give the coordinate direction
angles

Ans.

Ans.

Ans.

NOTE: These angles are measured from the positive axes of a localized
coordinate system placed at the tail of r, as shown in Fig. 2–37c.

g = cos-1a6
7
b = 31.0°

b = cos-1a2
7
b = 73.4°

a = cos-1a- 3
7
b = 115°

u =
r
r

= -
3
7

i +
2
7

j +
6
7

k

r = 2(-3 m)2 + (2 m)2 + (6 m)2 = 7 m

= 5-3i + 2j + 6k6 m
r = [-2 m - 1 m]i + [2 m - 0] j + [3 m - (-3 m)]k

(a)

z

y

x
3 m

1 mA

B

3 m

2 m

2 m

(b)

z

y

A

B

{6 k}

{2 j} m
{�3 i} m

r
x

(c)

A

B

z¿

y¿

x¿

r � 7 m

g � 31.0�

a � 115�
b � 73.4�

Fig. 2–37
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2.8 Force Vector Directed Along a Line

Quite often in three-dimensional statics problems, the direction of a force
is specified by two points through which its line of action passes. Such a
situation is shown in Fig. 2–38, where the force F is directed along the cord
AB. We can formulate F as a Cartesian vector by realizing that it has the
same direction and sense as the position vector r directed from point A to
point B on the cord.This common direction is specified by the unit vector

. Hence,

Although we have represented F symbolically in Fig. 2–38, note that it
has units of force, unlike r, which has units of length.

F = Fu = Fa r
r
b = Fa (xB - xA)i + (yB - yA)j + (zB - zA)k

2(xB - xA)2 + (yB - yA)2 + (zB - zA)2
b

u = r>r

z

y

x

r

u

B

F

A

Fig. 2–38

r

F
u

Important Points

• A position vector locates one point in space relative to another
point.

• The easiest way to formulate the components of a position vector is
to determine the distance and direction that must be traveled along
the x, y, z directions—going from the tail to the head of the vector.

• A force F acting in the direction of a position vector r can be
represented in Cartesian form if the unit vector u of the position
vector is determined and it is multiplied by the magnitude of the
force, i.e., F = Fu = F(r/r).

The force F acting along the chain can be represented as a Cartesian vector by establishing
x, y, z axes and first forming a position vector r along the length of the chain. Then the
corresponding unit vector u = r/r that defines the direction of both the chain and the force
can be determined. Finally, the magnitude of the force is combined with its direction,

.F = Fu
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EXAMPLE 2.13

The man shown in Fig. 2–39a pulls on the cord with a force of 70 lb.
Represent this force acting on the support A as a Cartesian vector and
determine its direction.

SOLUTION
Force F is shown in Fig. 2–39b. The direction of this vector, u, is
determined from the position vector r, which extends from A to B.
Rather than using the coordinates of the end points of the cord, r can
be determined directly by noting in Fig. 2–39a that one must travel from
A {–24k} ft, then {–8j} ft, and finally {12i} ft to get to B. Thus,

The magnitude of r, which represents the length of cord AB, is

Forming the unit vector that defines the direction and sense of both
r and F, we have

Since F, has a magnitude of 70 lb and a direction specified by u, then

Ans.

The coordinate direction angles are measured between r (or F) and
the positive axes of a localized coordinate system with origin placed at
A, Fig. 2–39b. From the components of the unit vector:

Ans.

Ans.

Ans.

NOTE: These results make sense when compared with the angles
identified in Fig. 2–39b.

g = cos-1a -24
28
b = 149°

b = cos-1a -8
28
b = 107°

a = cos-1a12
28
b = 64.6°

= 530i - 20j - 60k6 lb

F = Fu = 70 lba12
28

i -
8

28
j -

24
28

kb

u =
r
r

=
12
28

i -
8

28
j -

24
28

k

r = 2(12 ft)2 + (-8 ft)2 + (-24 ft)2 = 28 ft

r = 512i - 8j - 24k6 fty

x

z

A

30 ft

8 ft

6 ft

12 ft

B

(a)

F � 70 lb

(b)

x¿

y¿

z¿

A

u

r

B

g

b

a

Fig. 2–39
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EXAMPLE 2.14

The force in Fig. 2–40a acts on the hook. Express it as a Cartesian vector.

SOLUTION
As shown in Fig. 2–40b, the coordinates for points A and B are

and

or

Therefore, to go from A to B, one must travel {4i} m, then {3.464 j} m,
and finally {1 k} m. Thus,

Force FB expressed as a Cartesian vector becomes

Ans.= 5-557i + 482j + 139k6 N

FB = FB uB = (750 N)(-0.74281i + 0.6433j + 0.1857k)

= -0.7428i + 0.6433j + 0.1857k

uB = a rB
rB
b =

5-4i + 3.464j + 1k6 m

2(-4 m)2 + (3.464 m)2 + (1 m)2

B(-2 m, 3.464 m, 3 m)

B c - a4
5
b5 sin 30° m, a4

5
b5 cos 30° m, a3

5
b  5 m d

A(2 m, 0, 2 m)

2 m

(a)

2 m

yx

A

B

z

5 m

30°

FB � 750 N

(b)

yx

z

rB

FB

uB

A(2 m, 0 , 2 m)

B(–2 m, 3.464 m, 3 m)

3
4

5

)(5 m)3
5

(

)(5 m)4
5

(

Fig. 2–40
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EXAMPLE 2.15

The roof is supported by cables as shown in the photo. If the cables
exert forces and on the wall hook at A as
shown in Fig. 2–40a, determine the resultant force acting at A. Express
the result as a Cartesian vector.

SOLUTION
The resultant force FR is shown graphically in Fig. 2–41b.We can express
this force as a Cartesian vector by first formulating FAB and FAC as
Cartesian vectors and then adding their components.The directions of
FAB and FAC are specified by forming unit vectors uAB and uAC along
the cables.These unit vectors are obtained from the associated position
vectors rAB and rAC.With reference to Fig. 2–41a, to go from A to B, we
must travel and, then . Thus,

To go from A to C, we must travel , then , and finally
. Thus,

The resultant force is therefore

Ans.= 5151i + 40j - 151k6 N

FR = FAB + FAC = 570.7i - 70.7k6 N + 580i + 40j - 80k6 N

= 580i + 40j - 80k6N

FAC = FAC a rAC
rAC
b = (120 N) a4

6
i +

2
6

j -
4
6

kb
rAC = 2(4 m)2 + (2 m)2 + (-4 m)2 = 6 m

rAC = 54i + 2j - 4k6 m
54j6 52j6 m5-4k6 m

FAB = 570.7i - 70.7k6N

FAB = FAB a rAB
rAB
b = (100 N) a 4

5.66
i -

4
5.66

kb

rAB = 2(4 m)2 + (-4 m)2 = 5.66 m

rAB = 54i - 4k6 m
5-4i6 m5-4k6 m

FAC = 120 NFAB = 100 N

y

x

B C

A

FAB FAC

rAB

rAC

FR

(b)

z

Fig. 2–41

(a)

y

x

2 m

4 m

B

4 m

A

C

FAB � 100 N FAC � 120 N

z
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FUNDAMENTAL PROBLEMS

F2–23. Determine the magnitude of the resultant force
at .A

F2–24. Determine the resultant force at .A

F2–19. Express the position vector in Cartesian vector
form, then determine its magnitude and coordinate
direction angles.

rAB F2–22. Express the force as a Cartesian vector.

4 m
2 m

7 m

2 m

z

y

A

B

x

F � 900 N

F2–22

z

yx

6 mFB � 840 N

FC � 420 N

3 m

3 m

2 m

2 m

B

C

A

F2–23

3 m

2 m

2 m

4 m

4 m yx

A

B

z

F � 630 N

F2–21

z B

A

y

x

4 m

2 m

3 m

3 m

3 m rAB

F2–19

4 ft

z

A yx

4 ft

2 ft
B

Ou

F2–20

4 ft6 ft

4 ft

3 ft

4 ft 2 ft

z

y

x

FC � 490 lb

FB � 600 lb

2 ft

C

B

A

F2–24

F2–20. Determine the length of the rod and the position
vector directed from What is the angle ?uA to B.

F2–21. Express the force as a Cartesian vector.



64 CH A P T E R 2 FO R C E VE C T O R S

2

2–86. Determine the position vector r directed from point
A to point B and the length of cord AB. Take .

2–87. If the cord AB is 7.5 m long, determine the
coordinate position +z of point B

z = 4 m

*2–88. Determine the distance between the end points A
and B on the wire by first formulating a position vector
from A to B and then determining its magnitude.

•2–89. Determine the magnitude and coordinate
direction angles of the resultant force acting at A.

2–90. Determine the magnitude and coordinate direction
angles of the resultant force.

PROBLEMS

2 ft

4 ft

3 ft

3 ft

4 ft

2.5 ft

B

A

x
C

z

FC � 750 lb

FB � 600 lb

Prob. 2–89

z

x
B

A

y

1 in.3 in.

8 in.

2 in.

30�

60�

Prob. 2–88

3 m

2 m

6 m

z

y

z

B

x

A

Probs. 2–86/87

x

z

y

C

B

A

600 N 500 N

8 m

4 m

4 m

2 m

Prob. 2–90
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2–91. Determine the magnitude and coordinate direction
angles of the resultant force acting at A.

*2–92. Determine the magnitude and coordinate direction
angles of the resultant force.

2–95. Express force F as a Cartesian vector; then
determine its coordinate direction angles.

120�

z

y
120� 4 ft

A

B

C

6 ft

O

FA

FB
FC

x

120�

Probs. 2–93/94

A

C

B

4 ft
7 ft

3 ft

x
y

z

F2 � 81 lb
F1 � 100 lb

40�

4 ft

Prob. 2–92

y

x

B

C

A

6 m

3 m

45�

4.5 m

6 m

FB � 900 N

FC � 600 N

z

Prob. 2–91

y

x

z

B

A

10 ft

70�

30�

7 ft

5 ft

F � 135 lb

Prob. 2–95

•2–93. The chandelier is supported by three chains which
are concurrent at point O. If the force in each chain has a
magnitude of 60 lb, express each force as a Cartesian vector
and determine the magnitude and coordinate direction
angles of the resultant force.

2–94. The chandelier is supported by three chains which
are concurrent at point O. If the resultant force at O has a
magnitude of 130 lb and is directed along the negative z axis,
determine the force in each chain.
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y

B

C
D

A

x

z

4 m
4 m

1.5 m

1 m
3 m

2 m

FA � 250 N
FB � 175 N

Prob. 2–98

x
y

z

2.5 m
1.5 m

0.5 m1 m

30�

A

C

B

D

FA � 300 N

FC � 250 N

Prob. 2–97

x

z

yxy
6 m

4 m

18 m

C

A

D

400 N 800 N
600 N

24 m

O
16 m

B

Prob. 2–96

*2–96. The tower is held in place by three cables. If the
force of each cable acting on the tower is shown, determine
the magnitude and coordinate direction angles of
the resultant force. Take , .y = 15 mx = 20 m

a, b, g

•2–97. The door is held opened by means of two chains. If
the tension in AB and CD is and ,
respectively, express each of these forces in Cartesian 
vector form.

FC = 250 NFA = 300 N

2–98. The guy wires are used to support the telephone
pole. Represent the force in each wire in Cartesian vector
form. Neglect the diameter of the pole.

z

A

x y
6 m

1500 N

3 m

FB

FC

B

C

2 mx

z

Probs. 2–99/100

2–99. Two cables are used to secure the overhang boom in
position and support the 1500-N load. If the resultant force
is directed along the boom from point A towards O,
determine the magnitudes of the resultant force and forces
FB and FC. Set and .

*2–100. Two cables are used to secure the overhang boom
in position and support the 1500-N load. If the resultant
force is directed along the boom from point A towards O,
determine the values of x and z for the coordinates of point
C and the magnitude of the resultant force. Set

and .FC = 2400 NFB = 1610 N

z = 2 mx = 3 m



2.8 FORCE VECTOR DIRECTED ALONG A LINE 67

2

•2–101. The cable AO exerts a force on the top of the pole
of . If the cable has a length of 
34 ft, determine the height z of the pole and the location 
(x, y) of its base.

F = 5-120i - 90j - 80k6 lb

2–102. If the force in each chain has a magnitude of 450 lb,
determine the magnitude and coordinate direction angles
of the resultant force.

2–103. If the resultant of the three forces is
, determine the magnitude of the force in

each chain.
FR = 5-900k6 lb

*2–104. The antenna tower is supported by three cables. If
the forces of these cables acting on the antenna are

, , and , determine the
magnitude and coordinate direction angles of the resultant
force acting at A.

FD = 560 NFC = 680 NFB = 520 N

•2–105. If the force in each cable tied to the bin is 70 lb,
determine the magnitude and coordinate direction angles
of the resultant force.

2–106. If the resultant of the four forces is
, determine the tension developed in each

cable. Due to symmetry, the tension in the four cables is the
same.

FR = 5-360k6 lb

24 m

10 m

18 m

8 m

16 m

12 m

18 m

z

x

y

A

O

C

B D

FB

FC

FD

Prob. 2–104

120�

120�
3 ft

7 ft

120�

FAFBFC

z

C

A

D

B

y
x

Probs. 2–102/103

y

z

A

z

x

F

x

y

O

Prob. 2–101

z

B

C

E

D

A

x
y

6 ft

3 ft

3 ft

2 ft
2 ft

FC

FD

FB

FA

Probs. 2–105/106



68 CH A P T E R 2 FO R C E VE C T O R S

2

x

z

y

D

C

A

B

3 m

30�

0.75 m

45�

FB � 8 kN

FC � 5 kN

FA � 6 kN

Prob. 2–109

2 m

1 m
30�

120�

120� B

A

z

y

x
F � 200 N

Prob. 2–108

3 ft
20�

yx

A

B

z

5 ft

6 ft

F � 12 lb

Prob. 2–107

2–107. The pipe is supported at its end by a cord AB. If the
cord exerts a force of on the pipe at A, express
this force as a Cartesian vector.

F = 12 lb

*2–108. The load at A creates a force of 200 N in wire AB.
Express this force as a Cartesian vector, acting on A and
directed towards B.

•2–109. The cylindrical plate is subjected to the three cable
forces which are concurrent at point D. Express each force
which the cables exert on the plate as a Cartesian vector,
and determine the magnitude and coordinate direction
angles of the resultant force.

2–110. The cable attached to the shear-leg derrick exerts a
force on the derrick of . Express this force as a
Cartesian vector.

F = 350 lb

30�

50 ft

35 ft

x

y

z

A

B

F � 350 lb

Prob. 2–110
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2.9 Dot Product

Occasionally in statics one has to find the angle between two lines or the
components of a force parallel and perpendicular to a line. In two dimensions,
these problems can readily be solved by trigonometry since the geometry is
easy to visualize. In three dimensions, however, this is often difficult, and
consequently vector methods should be employed for the solution.The dot
product, which defines a particular method for “multiplying” two vectors,
will be is used to solve the above-mentioned problems.

The dot product of vectors A and B, written A · B, and read “A dot B”
is defined as the product of the magnitudes of A and B and the cosine of
the angle between their tails, Fig. 2–41. Expressed in equation form,

(2–12)

where . The dot product is often referred to as the scalar
product of vectors since the result is a scalar and not a vector.

Laws of Operation.

1. Commutative law:

2. Multiplication by a scalar:

3. Distributive law:

It is easy to prove the first and second laws by using Eq. 2–12. The proof of
the distributive law is left as an exercise (see Prob. 2–111).

Cartesian Vector Formulation. Equation 2–12 must be used to
find the dot product for any two Cartesian unit vectors. For example,

and . If we want to find
the dot product of two general vectors A and B that are expressed in
Cartesian vector form, then we have

Carrying out the dot-product operations, the final result becomes

(2–13)

Thus, to determine the dot product of two Cartesian vectors, multiply their
corresponding x, y, z components and sum these products algebraically.
Note that the result will be either a positive or negative scalar.

A # B = AxBx + AyBy + AzBz

+ AzBx(k # i) + AzBy(k # j) + AzBz(k # k)

+ AyBx( j # i) + (AyBy( j # j) + AyBz( j # k)

= AxBx(i # i) + AxBy(i # j) + AxBz(i # k)

A # B = (Axi + Ayj + Azk) # (Bxi + Byj + Bzk)

i # j = (1)(1) cos 90° = 0i # i = (1)(1) cos 0° = 1

A # (B + D) = (A # B) + (A # D)

a(A # B) = (aA) # B = A # (aB)

A # B = B # A

0° … u … 180°

A # B = AB cos u

u

A

B

u

Fig. 2–41
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Applications. The dot product has two important applications in
mechanics.

• The angle formed between two vectors or intersecting lines. The
angle between the tails of vectors A and B in Fig. 2–41 can be
determined from Eq. 2–12 and written as

Here is found from Eq. 2–13. In particular, notice that if
, so that A will be perpendicular to B.

• The components of a vector parallel and perpendicular to a
line. The component of vector A parallel to or collinear with the line

in Fig. 2–43 is defined by Aa where .This component
is sometimes referred to as the projection of A onto the line, since a
right angle is formed in the construction. If the direction of the line is
specified by the unit vector ua, then since ua = 1, we can determine the
magnitude of Aa directly from the dot product (Eq. 2–12); i.e.,

Hence, the scalar projection of A along a line is determined from the
dot product of A and the unit vector ua which defines the direction of
the line. Notice that if this result is positive, then Aa has a directional
sense which is the same as ua, whereas if Aa is a negative scalar, then
Aa has the opposite sense of direction to ua

The component Aa represented as a vector is therefore

The component of A that is perpendicular to line aa can also be
obtained, Fig. 2–43. Since , then .
There are two possible ways of obtaining . One way would be to
determine from the dot product, , then

. Alternatively, if Aa is known, then by Pythagorean’s 
theorem we can also write .A� = 2A2 - Aa 2
A� = A sin u

u = cos-1(A # uA >A)u

A�

A� = A - AaA = Aa + A�

Aa = Aa ua

Aa = A cos u = A # ua

Aa = A cos uaa¿

u = cos-1 0 = 90°A # B = 0
A # B

u = cos-1aA # B
AB

b 0° … u … 180°

u

The angle between the rope and the
connecting beam can be determined by
formulating unit vectors along the beam and
rope and then using the dot product

.ub
# ur = (1)(1) cos u

u

ur

uA
A

u

The projection of the cable force F along the
beam can be determined by first finding the
unit vector that defines this direction.Then
apply the dot product, .Fb = F # ub

ub

F

Fbub

A�

a a
uaAa � A cos u ua

A

u

Fig. 2–43
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Important Points

• The dot product is used to determine the angle between two
vectors or the projection of a vector in a specified direction.

• If vectors A and B are expressed in Cartesian vector form, the
dot product is determined by multiplying the respective x, y, z
scalar components and algebraically adding the results, i.e.,

.

• From the definition of the dot product, the angle formed between
the tails of vectors A and B is .

• The magnitude of the projection of vector A along a line 
whose direction is specified by ua is determined from the dot
product .Aa = A # ua

aa

u = cos-1(A # B>AB)

A # B = AxBx + AyBy + AzBz

EXAMPLE 2.16

Determine the magnitudes of the projection of the force F in Fig. 2–44
onto the u and axes.v

SOLUTION
Projections of Force. The graphical representation of the projections
is shown in Fig. 2–44. From this figure, the magnitudes of the projections
of F onto the u and v axes can be obtained by trigonometry:

Ans.

Ans.

NOTE: These projections are not equal to the magnitudes of the
components of force F along the u and axes found from the
parallelogram law. They will only be equal if the u and axes are
perpendicular to one another.

v
v

 (Fv)proj = (100 N)cos 15° = 96.6 N

 (Fu)proj = (100 N)cos 45° = 70.7 N

F � 100 N

u

(Fu)proj

v

15�

45�

(F )projv

Fig. 2–44
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EXAMPLE 2.17

(a)

z

y

x

6 m

2 m

3 mA

B F � {300 j} N

(b)

F

F

FAB

z

y

x

A

B
uB

Fig 2–45

The frame shown in Fig. 2–45a is subjected to a horizontal force 
F = {300j}. Determine the magnitude of the components of this 
force parallel and perpendicular to member AB.

SOLUTION
The magnitude of the component of F along AB is equal to the dot
product of F and the unit vector uB, which defines the direction of AB,
Fig. 2–44b. Since

then

Ans.

Since the result is a positive scalar, FAB has the same sense of direction
as uB, Fig. 2–45b.

Expressing FAB in Cartesian vector form, we have

Ans.

The perpendicular component, Fig. 2–45b, is therefore

Its magnitude can be determined either from this vector or by using
the Pythagorean theorem, Fig. 2–45b:

Ans.= 155 N

= 2(300 N)2 - (257.1 N)2F� = 2F2 - F2
AB

= 5-73.5i + 80j - 110k6 N
F� = F - FAB = 300j - (73.5i + 220j + 110k)

= 573.5i + 220j + 110k6N
= (257.1 N)(0.286i + 0.857j + 0.429k)FAB = FABuB

= 257.1 N

= (0)(0.286) + (300)(0.857) + (0)(0.429)

FAB = F cos u = F # uB = (300j) # (0.286i + 0.857j + 0.429k)

uB =
rB
rB

=
2i + 6j + 3k

2(2)2 + (6)2 + (3)2
= 0.286 i + 0.857 j + 0.429k
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EXAMPLE 2.18

F � 80 lb

2 ft

2 ft1 ft

B

1 ft

y

x

z

(a)

C

A

u

(c)

x F � 80 lb

F

z

y
A

B

FBA
u

B

y

x

z

(b)

C

A

u
rBC

rBA

Fig. 2–46

The pipe in Fig. 2–46a is subjected to the force of F = 80 lb. Determine
the angle between F and the pipe segment BA and the projection of
F along this segment.

u

SOLUTION
Angle . First we will establish position vectors from B to A and B
to C; Fig. 2–46b. Then we will determine the angle between the tails
of these two vectors.

Thus,

Ans.

Components of F. The component of F along BA is shown in 
Fig. 2–46b.We must first formulate the unit vector along BA and force
F as Cartesian vectors.

Thus,

Ans.= 59.0 lb

= 0 a-2
3
b + (-75.89)a- 2

3
b + (25.30) a1

3
b

FBA = F # uBA = (-75.89j + 25.30k) # a - 2
3

i -
2
3

j +
1
3

kb

F = 80 lba rBC
rBC
b = 80a -3j + 1k

210
b = -75.89j + 25.30k

uBA =
rBA
rBA

=
(-2i - 2j + 1k)

3
= -

2
3

i -
2
3

j +
1
3

k

u = 42.5°

= 0.7379 cos u =
rBA # rBC
rBArBC

=
(-2)(0) + (-2)(-3) + (1)(1)

3210

rBC = 5-3j + 1k6 ft, rBC = 210ft

rBA = 5-2i - 2j + 1k6 ft, rBA = 3 ft

u

u

NOTE: Since is known, then also, .FBA = F cos u = 80 lb cos 42.5º = 59.0 lbu
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2 m

2 m

1 m

z

y

A

O

x

F � {�6 i � 9 j � 3 k} kN

u

F2–25

FUNDAMENTAL PROBLEMS

F2–26. Determine the angle between the force and the
line .AB

u

F2–27. Determine the angle between the force and 
the line .

F2–28. Determine the component of projection of the
force along the line .OA

OA
u

F2–30. Determine the components of the force acting
parallel and perpendicular to the axis of the pole.

F2–25. Determine the angle between the force and 
the line AO.

u F2–29. Find the magnitude of the projected component of
the force along the pipe.

F � 650 N

x

A

O

y

13

12
5u

F2–27/28

O

z

y
x

4 m 

6 m 

5 m B

A

F � 400 N

4 m 

F2–29

y
x

z

A
F � 600 N

C

B

4 m

4 m

3 m

u

F2–26

z

x

y

A

F � 600 lb

60�

30�

4 ft

2 ft

4 ft

O

F2–30
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z

x
y

C
B

A

3 m

1.5 m
1 m

3 m FAB � 560 N

1.5 m

Prob. 2–112

2–111. Given the three vectors A, B, and D, show that
.

*2–112. Determine the projected component of the force
acting along cable AC. Express the result as a
Cartesian vector.

FAB = 560 N

A # (B + D) = (A # B) + (A # D)

•2–113. Determine the magnitudes of the components of
force acting along and perpendicular to line AO.F = 56 N

2–115. Determine the magnitudes of the components of
acting along and perpendicular to segment DE

of the pipe assembly.
F = 600 N

PROBLEMS

y

x

A

C

B

z

1 m

4 m

3 m

3 m

1 m

5 m

u

Prob. 2–114

y

x

z

C
O

D

A

B
3 m

1.5 m

1 m

1 m F � 56 N

Prob. 2–113

x y

E

D

C

B

A

z

2 m

2 m

2 m

2 m

3 m

F � 600 N

Prob. 2–115

2–114. Determine the length of side BC of the triangular
plate. Solve the problem by finding the magnitude of rBC;
then check the result by first finding q , rAB, and rAC and
then using the cosine law.
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z

O

x

y

40 mm

40 mm

20 mm

F � {�500 k} N

A

Prob. 2–119

F � 80 N

A

E

B

y

F
C

x

D

z

2 m

2 m

1.5 m
1.5 m

2 m

2 m

Prob. 2–118

x

z

y

45�

60�
120�

F1 � 600 N

F2 � {120i + 90j – 80k}N

u

Probs. 2–116/117

*2–116. Two forces act on the hook. Determine the angle
between them. Also, what are the projections of F1 and F2

along the y axis?

•2–117. Two forces act on the hook. Determine the
magnitude of the projection of F2 along F1.

u

2–118. Determine the projection of force along
line BC. Express the result as a Cartesian vector.

F = 80 N

2–119. The clamp is used on a jig. If the vertical force
acting on the bolt is , determine the
magnitudes of its components F1 and F2 which act along the
OA axis and perpendicular to it.

F = {-500k} N

*2–120. Determine the magnitude of the projected
component of force FAB acting along the z axis.

•2–121. Determine the magnitude of the projected
component of force FAC acting along the z axis.

12 ft

18 ft

12 ft

x

B

D

C

A

O

y

z

12 ft

36 ft

FAB � 700 lb

FAC � 600 lb

30�

Probs. 2–120/121
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2–122. Determine the projection of force 
acting along line AC of the pipe assembly. Express the result
as a Cartesian vector.

2–123. Determine the magnitudes of the components of
force acting parallel and perpendicular to
segment BC of the pipe assembly.

F = 400 N

F = 400 N

*2–124. Cable OA is used to support column OB.
Determine the angle it makes with beam OC.

•2–125. Cable OA is used to support column OB.
Determine the angle it makes with beam OD.f

u

2–126. The cables each exert a force of 400 N on the post.
Determine the magnitude of the projected component of F1
along the line of action of F2.

2–127. Determine the angle between the two cables
attached to the post.

u

*2–128. A force of is applied to the handle of
the wrench. Determine the angle between the tail of the
force and the handle AB.

u

F = 80 N

x

z

y

20�

35�

45�
60�

120�

F1 � 400 N

F2 � 400 N

u

Probs. 2–126/127

z

x

C

B

O

D

y
4 m

30�

8 m

8 m

A

u

f

Probs. 2–124/125

x

A

B
C

y

z

4 m

3 m

F � 400 N

30�

45�

Probs. 2–122/123

x

z

B

A

y

300 mm

500 mm

F � 80 N

30�

45�

u

Prob. 2–128
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z
A

O

x y

300 mm

300 mm

300 mm

F � 300 N

30�

30�

Prob. 2–132

60�

y

z

60�

30�
30�

x

F2 � 25 lb

F1 � 30 lb

u

Probs. 2–133/134

z

A

O

x y

300 mm

300 mm

300 mm

F � 300 N

30�

30�

Prob. 2–131

y

z

x

8 ft 3 ft

12 ft

8 ft

15 ft

A

C
B

F
u

Probs. 2–129/130

•2–129. Determine the angle between cables AB and AC.

2–130. If F has a magnitude of 55 lb, determine the
magnitude of its projected components acting along the x
axis and along cable AC.

u

2–131. Determine the magnitudes of the projected
components of the force acting along the x and
y axes.

F = 300 N

*2–132. Determine the magnitude of the projected
component of the force acting along line OA.F = 300 N

•2–133. Two cables exert forces on the pipe. Determine
the magnitude of the projected component of F1 along the
line of action of F2.

2–134. Determine the angle between the two cables
attached to the pipe.

u
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CHAPTER REVIEW

A scalar is a positive or negative
number; e.g., mass and temperature.

A vector has a magnitude and direction,
where the arrowhead represents the
sense of the vector.

Multiplication or division of a vector by
a scalar will change only the magnitude
of the vector. If the scalar is negative,
the sense of the vector will change so
that it acts in the opposite sense.

If vectors are collinear, the resultant 
is simply the algebraic or scalar
addition.

Parallelogram Law

Two forces add according to the
parallelogram law. The components
form the sides of the parallelogram and
the resultant is the diagonal.

To find the components of a force along
any two axes, extend lines from the head
of the force, parallel to the axes, to form
the components.

To obtain the components or the
resultant, show how the forces add by
tip-to-tail using the triangle rule, and
then use the law of cosines and the law
of sines to calculate their values.

F1

sin u1
=
F2

sin u2
=
FR

sin uR

FR = 2F1
2 + F2

2 - 2 F1F2 cos uR

R = A + B

A

2 A

0.5 A

�1.5 A

A

a

b

Components

Resultant

FR
F1

F2

u1

u2

uR

FR F1

F2

A B

R
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Rectangular Components: Two Dimensions
Vectors Fx and Fy are rectangular components
of F.

The resultant force is determined from the
algebraic sum of its components.

u = tan-1 2 FRy
FRx
2

FR = 2(FRx)
2 + (FRy)

2

FRy = ©Fy

FRx = ©Fx

Cartesian Vectors

The unit vector u has a length of one, no units,
and it points in the direction of the vector F. u =

F
F

A force can be resolved into its Cartesian
components along the x, y, z axes so that

.

The magnitude of F is determined from the
positive square root of the sum of the squares of
its components.

F = Fxi + Fyj + Fzk

The coordinate direction angles are
determined by formulating a unit vector in the
direction of F. The x, y, z components of u
represent cos , cos , cos .gba

a, b, g

u = cos a i + cos b j + cos g k

u =
F
F

=
Fx

F
i +
Fy

F
j +
Fz
F

k

F = 2Fx2 + F2
y + F2

z

F
Fy

y

x
Fx

Fx i

x

F

z

Fz k

y
Fy ja b

u

g

u

1

F F

x

y

FRy
FR

FRx
�x

y

F2x

F2y
F1y

F1x

F3x

F3y
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The coordinate direction angles are
related so that only two of the three
angles are independent of one another.

cos2 a + cos2 b + cos2 g = 1

To find the resultant of a concurrent force
system, express each force as a Cartesian
vector and add the i, j, k components of
all the forces in the system.

FR = ©F = ©Fxi + ©Fyj + ©Fzk

Position and Force Vectors

A position vector locates one point in
space relative to another. The easiest way
to formulate the components of a position
vector is to determine the distance and
direction that one must travel along the x,
y, and z directions—going from the tail to
the head of the vector.

If the line of action of a force passes
through points A and B, then the force
acts in the same direction as the position
vector r, which is defined by the unit
vector u. The force can then be
expressed as a Cartesian vector.

Dot Product

The dot product between two vectors A
and B yields a scalar. If A and B are
expressed in Cartesian vector form, then
the dot product is the sum of the
products of their x, y, and z components

= AxBx + AyBy + AzBz
A # B = AB cos u

The dot product can be used to
determine the angle between A and B.

The dot product is also used to
determine the projected component of a
vector A onto an axis defined by its
unit vector ua.

aa
Aa = A cos u ua = (A # ua)ua

u = cos-1aA # B
AB

b

F = Fu = Fa r
r
b

+ (zB - zA)k

+ (yB - yA)j

r = (xB - xA)i

y

r
B

A

x

(xB � xA)i (yB � yA)j

z
(zB � zA)k

z

y

x

u

Br

F

A

A

a u

A

u

Aa � A cos uau
a

A

B

u
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REVIEW PROBLEMS

2–138. Determine the magnitude and direction of the
resultant of the three forces by first
finding the resultant and then forming

. Specify its direction measured counter-
clockwise from the positive x axis.
FR = F¿ + F2

F¿ = F1 + F3

FR = F1 + F2 + F3

2–135. Determine the x and y components of the 700-lb
force.

2–139. Determine the design angle ( < 90°) between
the two struts so that the 500-lb horizontal force has a
component of 600 lb directed from A toward C. What is the
component of force acting along member BA?

uu

*2–136. Determine the magnitude of the projected
component of the 100-lb force acting along the axis BC of
the pipe.

•2–137. Determine the angle between pipe segments
BA and BC.

u

y

x

700 lb

30�

60�

Prob. 2–135

yC

B
A

D

z

8 ft

3 ft

6 ft

2 ft

4 ftx

F � 100 lb

u

Probs. 2–136/137

x

y

30� 30�

45�

F1 � 80 N
F2 � 75 N

F3 � 50 N

Prob. 2–138

500 lb

20�

A

B

C

u

Prob. 2–139
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2–142. Cable AB exerts a force of 80 N on the end of the
3-m-long boom OA. Determine the magnitude of the
projection of this force along the boom.

*2–140. Determine the magnitude and direction of the
smallest force F3 so that the resultant force of all three
forces has a magnitude of 20 lb.

2–143. The three supporting cables exert the forces shown
on the sign. Represent each force as a Cartesian vector.

•2–141. Resolve the 250-N force into components acting
along the u and axes and determine the magnitudes of
these components.

v

F2 � 10 lb

F3
4

3

5

F1 � 5 lb

u

Prob. 2–140

u

v

40�

20�

250 N

Prob. 2–141

O

A

80 N

3 m

B

z

y

x

4 m

60�

Prob. 2–142

2 m

z

C

2 m

y

x

A

D

E

B

3 m

3 m

2 m

FB � 400 N
FC � 400 N

FE � 350 N

Prob. 2–143



Whenever cables are used for hoisting loads, they must be selected so that they do
not fail when they are placed at their points of attachment. In this chapter, we will
show how to calculate cable loadings for such cases. 



Equilibrium of a
Particle

CHAPTER OBJECTIVES

• To introduce the concept of the free-body diagram for a particle.

• To show how to solve particle equilibrium problems using the
equations of equilibrium.

3.1 Condition for the Equilibrium 
of a Particle

A particle is said to be in equilibrium if it remains at rest if originally at rest,
or has a constant velocity if originally in motion. Most often, however, the
term “equilibrium” or, more specifically, “static equilibrium” is used to
describe an object at rest.To maintain equilibrium, it is necessary to satisfy
Newton’s first law of motion, which requires the resultant force acting on a
particle to be equal to zero.This condition may be stated mathematically as

(3–1)

where is the vector sum of all the forces acting on the particle.
Not only is Eq. 3–1 a necessary condition for equilibrium, it is also a

sufficient condition. This follows from Newton’s second law of motion,
which can be written as Since the force system satisfies Eq. 3–1,
then and therefore the particle’s acceleration 
Consequently, the particle indeed moves with constant velocity or
remains at rest.

a = 0.ma = 0,
©F = ma.

©F

©F = 0

3
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3.2 The Free-Body Diagram

To apply the equation of equilibrium, we must account for all the known
and unknown forces which act on the particle. The best way to do
this is to think of the particle as isolated and “free” from its surroundings.
A drawing that shows the particle with all the forces that act on it is called
a free-body diagram (FBD).

Before presenting a formal procedure as to how to draw a free-body
diagram, we will first consider two types of connections often
encountered in particle equilibrium problems.

Springs. If a linearly elastic spring (or cord) of undeformed length lo
is used to support a particle, the length of the spring will change in direct
proportion to the force F acting on it, Fig. 3–1. A characteristic that
defines the “elasticity” of a spring is the spring constant or stiffness k.

The magnitude of force exerted on a linearly elastic spring which has a
stiffness k and is deformed (elongated or compressed) a distance

, measured from its unloaded position, is

(3–2)

If s is positive, causing an elongation, then F must pull on the spring;
whereas if s is negative, causing a shortening, then F must push on it. For
example, if the spring in Fig. 3–1 has an unstretched length of 0.8 m and a
stiffness and it is stretched to a length of 1 m, so
that then a force 

is needed.

Cables and Pulleys. Unless otherwise stated, throughout this
book, except in Sec. 7.4, all cables (or cords) will be assumed to have
negligible weight and they cannot stretch. Also, a cable can support only
a tension or “pulling” force, and this force always acts in the direction of
the cable. In Chapter 5, it will be shown that the tension force developed
in a continuous cable which passes over a frictionless pulley must have a
constant magnitude to keep the cable in equilibrium. Hence, for any
angle shown in Fig. 3–2, the cable is subjected to a constant tension T

throughout its length.
u,

500 N>m(0.2 m) = 100 N
F = ks =s = l - lo = 1 m - 0.8 m = 0.2 m,

k = 500 N>m

F = ks

s = l - lo

1©F2

3

F

�s

o

Fig. 3–1

T

T
Cable is in tension

u

Fig. 3–2
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The bucket is held in equilibrium by
the cable, and instinctively we know
that the force in the cable must equal
the weight of the bucket. By drawing
a free-body diagram of the bucket we
can understand why this is so. This
diagram shows that there are only
two forces acting on the bucket,
namely, its weight W and the force T
of the cable. For equilibrium, the
resultant of these forces must be
equal to zero, and so T = W.

W

T

The spool has a weight W and is suspended from
the crane boom. If we wish to obtain the forces in
cables AB and AC, then we should consider the
free-body diagram of the ring at A.Here the cables
AD exert a resultant force of W on the ring and
the condition of equilibrium is used to obtain 
and TC.

TB

TCTB

W
D

C

A

A

B

Procedure for Drawing a Free-Body Diagram

Since we must account for all the forces acting on the particle when
applying the equations of equilibrium, the importance of first drawing
a free-body diagram cannot be overemphasized.To construct a free-
body diagram, the following three steps are necessary.

Draw Outlined Shape.
Imagine the particle to be isolated or cut “free” from its surroundings
by drawing its outlined shape.

Show All Forces.
Indicate on this sketch all the forces that act on the particle. These
forces can be active forces, which tend to set the particle in motion,
or they can be reactive forces which are the result of the constraints
or supports that tend to prevent motion. To account for all these
forces, it may be helpful to trace around the particle’s boundary,
carefully noting each force acting on it.

Identify Each Force.
The forces that are known should be labeled with their proper
magnitudes and directions. Letters are used to represent the
magnitudes and directions of forces that are unknown.
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3

EXAMPLE 3.1

45�

60�

C

E

B

A

(a)

D

k

Fig. 3–3

FCE (Force of cord CE acting on sphere)

58.9 N (Weight or gravity acting on sphere)
(b)

FCE (Force of sphere acting on cord CE)

FEC (Force of knot acting on cord CE)

(c)

C

FCBA (Force of cord CBA acting on knot)

FCD (Force of spring acting on knot)

FCE (Force of cord CE acting on knot)

60�

(d)

The sphere in Fig. 3–3a has a mass of 6 kg and is supported as shown.
Draw a free-body diagram of the sphere, the cord CE, and the knot at C.

SOLUTION

Sphere. By inspection, there are only two forces acting on the
sphere, namely, its weight, 6 kg , and the force of
cord CE. The free-body diagram is shown in Fig. 3–3b.

Cord CE. When the cord CE is isolated from its surroundings, its
free-body diagram shows only two forces acting on it, namely, the
force of the sphere and the force of the knot, Fig. 3–3c. Notice that

shown here is equal but opposite to that shown in Fig. 3–3b, a
consequence of Newton’s third law of action–reaction. Also, and

pull on the cord and keep it in tension so that it doesn’t collapse.
For equilibrium,

Knot. The knot at C is subjected to three forces, Fig. 3–3d. They are
caused by the cords CBA and CE and the spring CD. As required,
the free-body diagram shows all these forces labeled with their
magnitudes and directions. It is important to recognize that the weight
of the sphere does not directly act on the knot. Instead, the cord CE
subjects the knot to this force.

FCE = FEC.
FEC

FCE
FCE

19.81 m>s22 = 58.9 N
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3.3 Coplanar Force Systems

If a particle is subjected to a system of coplanar forces that lie in the x–y
plane as in Fig. 3–4, then each force can be resolved into its i and j
components. For equilibrium, these forces must sum to produce a zero
force resultant, i.e.,

For this vector equation to be satisfied, the force’s x and y components
must both be equal to zero. Hence,

(3–3)

These two equations can be solved for at most two unknowns, generally
represented as angles and magnitudes of forces shown on the particle’s
free-body diagram.

When applying each of the two equations of equilibrium, we must
account for the sense of direction of any component by using an
algebraic sign which corresponds to the arrowhead direction of the
component along the x or y axis. It is important to note that if a force has
an unknown magnitude, then the arrowhead sense of the force on the
free-body diagram can be assumed. Then if the solution yields a negative
scalar, this indicates that the sense of the force is opposite to that which
was assumed.

For example, consider the free-body diagram of the particle subjected
to the two forces shown in Fig. 3–5. Here it is assumed that the unknown
force F acts to the right to maintain equilibrium. Applying the equation
of equilibrium along the x axis, we have

Both terms are “positive” since both forces act in the positive x direction.
When this equation is solved, Here the negative sign
indicates that F must act to the left to hold the particle in equilibrium,
Fig. 3–5. Notice that if the axis in Fig. 3–5 were directed to the left,
both terms in the above equation would be negative, but again, after
solving, indicating that F would be directed to the left.F = -10 N,

+x

F = -10 N.

+F + 10 N = 0:+ ©Fx = 0;

©Fx = 0
©Fy = 0

©Fxi + ©Fyj = 0

©F = 0

y

F2

F1

F3
F4

x

Fig. 3–4

F
x

10 N

Fig. 3–5
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Procedure for Analysis

Coplanar force equilibrium problems for a particle can be solved using
the following procedure.

Free-Body Diagram.

• Establish the x, y axes in any suitable orientation.

• Label all the known and unknown force magnitudes and directions
on the diagram.

• The sense of a force having an unknown magnitude can be
assumed.

Equations of Equilibrium.

• Apply the equations of equilibrium, and 

• Components are positive if they are directed along a positive axis,
and negative if they are directed along a negative axis.

• If more than two unknowns exist and the problem involves a spring,
apply to relate the spring force to the deformation s of the
spring.

• Since the magnitude of a force is always a positive quantity, then
if the solution for a force yields a negative result, this indicates its
sense is the reverse of that shown on the free-body diagram.

F = ks

©Fy = 0.©Fx = 0

The chains exert three forces on the ring at A,
as shown on its free-body diagram. The ring
will not move, or will move with constant
velocity, provided the summation of these
forces along the x and along the y axis is zero.
If one of the three forces is known, the
magnitudes of the other two forces can be
obtained from the two equations of
equilibrium.

TC
TB

TD

y

x

B

D

A A

C
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Determine the tension in cables BA and BC necessary to support the
60-kg cylinder in Fig. 3-6a.

SOLUTION
Free-Body Diagram. Due to equilibrium, the weight of the cylinder
causes the tension in cable to be , Fig. 3-6b. The
forces in cables and BC can be determined by investigating
the equilibrium of ring . Its free-body diagram is shown in Fig. 3-6c.The
magnitudes of and are unknown, but their directions are known.

Equations of Equilibrium. Applying the equations of equilibrium
along the x and y axes, we have

(1)

(2)

Equation (1) can be written as . Substituting this into
Eq. (2) yields

So that

Ans.

Substituting this result into either Eq. (1) or Eq. (2), we get

Ans.

NOTE: The accuracy of these results, of course, depends on the
accuracy of the data, i.e., measurements of geometry and loads. For
most engineering work involving a problem such as this, the data as
measured to three significant figures would be sufficient.

TA = 420 N

TC = 475.66 N = 476 N

TC sin 45° + A35 B(0.8839TC) - 60(9.81) N = 0

TA = 0.8839TC

TC sin 45° + A35 BTA - 60(9.81) N = 0+ c©Fy = 0;

TC cos 45° - A45 BTA = 0:+ ©Fx = 0;

TCTA
B

BA
TBD = 60(9.81) NBD

EXAMPLE 3.2

(a)

B

3

4

5

A

D

C

45�

Fig. 3–6

60 (9.81) N

TBD � 60 (9.81) N

(b)

TBD � 60 (9.81) N

TA TC

y

x

(c)

B

3

4

5
45�
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The 200-kg crate in Fig. 3-7a is suspended using the ropes and .
Each rope can withstand a maximum force of before it breaks. If

always remains horizontal, determine the smallest angle to which
the crate can be suspended before one of the ropes breaks.

uAB
10 kN

ACAB

SOLUTION
Free-Body Diagram. We will study the equilibrium of ring . There
are three forces acting on it, Fig. 3-7b. The magnitude of is equal to
the weight of the crate, i.e., .

Equations of Equilibrium. Applying the equations of equilibrium
along the x and y axes,

; (1)

(2)

From Eq. (1), is always greater than since .
Therefore, rope will reach the maximum tensile force of 
before rope . Substituting into Eq. (2), we get

Ans.

The force developed in rope can be obtained by substituting the
values for and into Eq. (1).

FB = 9.81 kN

 10(103) N =
FB

cos11.31°

FCu

AB

u = sin-1(0.1962) = 11.31° = 11.3°

[10(103)N] sin u - 1962 N = 0

FC = 10 kNAB
10 kNAC

cos u … 1FBFC

FC sin u - 1962 N = 0+ c©Fy = 0;

FC =
FB

cos u
- FC cos u + FB = 0:+ ©Fx = 0;

FD = 200 (9.81) N = 1962 N 6  10 kN
FD

A

(a)

D

A B

C u

Fig. 3–7

FD � 1962 N

y

x

(b)

A

FC

FBu
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Determine the required length of cord AC in Fig. 3–8a so that the 
8-kg lamp can be suspended in the position shown. The undeformed
length of spring AB is and the spring has a stiffness of
kAB = 300 N>m.

l¿AB = 0.4 m,

(a)

A B

� 300 N/m
30�

2 m

C

kAB

Fig. 3–8

SOLUTION
If the force in spring AB is known, the stretch of the spring can be
found using From the problem geometry, it is then possible to
calculate the required length of AC.

Free-Body Diagram. The lamp has a weight 
and so the free-body diagram of the ring at A is shown in Fig. 3–8b.

Equations of Equilibrium. Using the x, y axes,

Solving, we obtain

The stretch of spring AB is therefore

so the stretched length is

The horizontal distance from C to B, Fig. 3–8a, requires

Ans.lAC = 1.32 m

 2 m = lAC cos 30° + 0.853 m

lAB = 0.4 m + 0.453 m = 0.853 m

lAB = l¿AB + sAB

sAB = 0.453 m

 135.9 N = 300 N>m1sAB2TAB = kABsAB;

TAB = 135.9 N

TAC = 157.0 N

TAC sin 30° - 78.5 N = 0+ c©Fy = 0;

TAB - TAC cos 30° = 0:+ ©Fx = 0;

W = 819.812 = 78.5 N

F = ks.

y

x

W � 78.5 N

A

(b)

30�

TAC

TAB
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FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD.

F3–1. The crate has a weight of 550 lb. Determine the
force in each supporting cable.

F3–2. The beam has a weight of 700 lb. Determine the
shortest cable ABC that can be used to lift it if the
maximum force the cable can sustain is 1500 lb.

F3–3. If the 5-kg block is suspended from the pulley B and
the sag of the cord is d = 0.15 m, determine the force in cord
ABC. Neglect the size of the pulley.

F3–4. The block has a mass of 5 kg and rests on the smooth
plane. Determine the unstretched length of the spring.

F3–5. If the mass of cylinder C is 40 kg, determine the
mass of cylinder A in order to hold the assembly in the
position shown.

F3–6. Determine the tension in cables AB, BC, and CD,
necessary to support the 10-kg and 15-kg traffic lights at B
and C, respectively. Also, find the angle .u

30�

4
35

A

B
C

D

10 ft

A C

B

u u

d � 0.15m

D

A C

B

0.4 m

45�

0.4 m

0.3 m

k � 200 N/m

40 kg

D

A

C

E

B

30�

B

A

C

D

u15�

F3–4F3–1

F3–2

F3–3 F3–6

F3–5
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All problem solutions must include an FBD.

•3–1. Determine the force in each cord for equilibrium of
the 200-kg crate. Cord remains horizontal due to the
roller at , and has a length of . Set .

3–2. If the 1.5-m-long cord can withstand a maximum
force of , determine the force in cord and the
distance y so that the 200-kg crate can be supported.

BC3500 N
AB

y = 0.75 m1.5 mABC
BC

•3–5. The members of a truss are connected to the gusset
plate. If the forces are concurrent at point O, determine the
magnitudes of F and T for equilibrium. Take .

3–6. The gusset plate is subjected to the forces of four
members. Determine the force in member B and its proper
orientation for equilibrium. The forces are concurrent at
point O. Take .F = 12 kN

u

u = 30°

3–7. The towing pendant AB is subjected to the force of
50 kN exerted by a tugboat. Determine the force in each of
the bridles, BC and BD, if the ship is moving forward with
constant velocity.

PROBLEMS

C
B

A

2 m

y

Probs. 3–1/2

FAB

A

B

C D

G

30�45�

Probs. 3–3/4

5 kN

A

B

C

D

T

O

45�

u

F

8 kN

Probs. 3–5/6

30�

A

B

CD

50 kN

20�

Prob. 3–7

3–3. If the mass of the girder is and its center of mass
is located at point G, determine the tension developed in
cables , , and for equilibrium.

*3–4. If cables and can withstand a maximum
tensile force of , determine the maximum mass of the
girder that can be suspended from cable so that neither
cable will fail. The center of mass of the girder is located at
point .G

AB
20 kN

BCBD

BDBCAB

3 Mg
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*3–8. Members and support the 300-lb crate.
Determine the tensile force developed in each member.

•3–9. If members and can support a maximum
tension of and , respectively, determine the
largest weight of the crate that can be safely supported.

250 lb300 lb
ABAC

ABAC

3–10. The members of a truss are connected to the gusset
plate. If the forces are concurrent at point O, determine the
magnitudes of F and T for equilibrium. Take .

3–11. The gusset plate is subjected to the forces of three
members. Determine the tension force in member C and its
angle for equilibrium.The forces are concurrent at point O.
Take .F = 8 kN

u

u = 90°

*3–12. If block weighs and block weighs ,
determine the required weight of block and the angle 
for equilibrium.

•3–13. If block weighs 300 lb and block weighs 275 lb,
determine the required weight of block and the angle 
for equilibrium.

uC
BD

uD
100 lbC200 lbB

A

BC

4 ft

4 ft

3 ft

Probs. 3–8/9

x

y

A

O

F

T

B

9 kN

C

4
5 3

u

Probs. 3–10/11

A

B
D

C

u 30�

Probs. 3–12/13

3 m

3 m 4 m

kAC � 20 N/m

kAB � 30 N/m

C B

A

D

Probs. 3–14/15

3–14. Determine the stretch in springs AC and AB for
equilibrium of the 2-kg block. The springs are shown in 
the equilibrium position.

3–15. The unstretched length of spring AB is 3 m. If the
block is held in the equilibrium position shown, determine
the mass of the block at D.
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*3–16. Determine the tension developed in wires and
required for equilibrium of the 10-kg cylinder. Take

.

•3–17. If cable is subjected to a tension that is twice
that of cable , determine the angle for equilibrium of
the 10-kg cylinder. Also, what are the tensions in wires 
and ?CB

CA
uCA

CB

u = 40°
CB

CA

3–18. Determine the forces in cables AC and AB needed
to hold the 20-kg ball D in equilibrium. Take 
and .

3–19. The ball D has a mass of 20 kg. If a force of 
is applied horizontally to the ring at A, determine the
dimension d so that the force in cable AC is zero.

F = 100 N

d = 1 m
F = 300 N

*3–20. Determine the tension developed in each wire
used to support the 50-kg chandelier.

•3–21. If the tension developed in each of the four wires is
not allowed to exceed , determine the maximum mass
of the chandelier that can be supported.

600 N

�3–22. A vertical force is applied to the ends of
the 2-ft cord AB and spring AC. If the spring has an
unstretched length of 2 ft, determine the angle for
equilibrium. Take 

3–23. Determine the unstretched length of spring AC if a
force causes the angle for equilibrium.
Cord AB is 2 ft long. Take k = 50 lb>ft.

u = 60°P = 80 lb

k = 15 lb>ft.
u

P = 10 lb

30°

A B

C
u

Probs. 3–16/17

A

C

B

F

D

2 m

1.5 m

d

Probs. 3–18/19

A

B

D

C

30�

30�

45�

Prob. 3–20/21

2 ft

k

2 ft

A

B C

P

u

Probs. 3–22/23



98 CH A P T E R 3 EQ U I L I B R I U M O F A PA RT I C L E

3

*3–24. If the bucket weighs 50 lb, determine the tension
developed in each of the wires.

•3–25. Determine the maximum weight of the bucket that
the wire system can support so that no single wire develops
a tension exceeding 100 lb.

3–26. Determine the tensions developed in wires , ,
and and the angle required for equilibrium of the 
30-lb cylinder and the 60-lb cylinder .

3–27. If cylinder weighs 30 lb and , determine
the weight of cylinder .F

u = 15°E

FE
uBA

CBCD

*3–28. Two spheres A and B have an equal mass and are
electrostatically charged such that the repulsive force acting
between them has a magnitude of 20 mN and is directed
along line AB. Determine the angle the tension in cords
AC and BC, and the mass m of each sphere.

u,

A

B

E

C

D4

3

5

30�

30�

Probs. 3–24/25

D A

C

F
E

B

u
30�

45�

Probs. 3–26/27

C

30�

20 mN

20 mN

30�

B

u

A

Prob. 3–28

12

5

13

B

A

C

D

u

Prob. 3–29

•3–29. The cords BCA and CD can each support a
maximum load of 100 lb. Determine the maximum weight
of the crate that can be hoisted at constant velocity and the
angle for equilibrium. Neglect the size of the smooth
pulley at C.

u
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*3–32. Determine the magnitude and direction of the
equilibrium force exerted along link AB by the tractive
apparatus shown. The suspended mass is 10 kg. Neglect the
size of the pulley at A.

FAB

u

•3–33. The wire forms a loop and passes over the small
pulleys at A, B, C, and D. If its end is subjected to a force of

, determine the force in the wire and the
magnitude of the resultant force that the wire exerts on
each of the pulleys.

3–34. The wire forms a loop and passes over the small
pulleys at A, B, C, and D. If the maximum resultant force that
the wire can exert on each pulley is 120 N, determine the
greatest force P that can be applied to the wire as shown.

P = 50 N

3–35. The picture has a weight of 10 lb and is to be hung
over the smooth pin B. If a string is attached to the frame at
points A and C, and the maximum force the string can
support is 15 lb, determine the shortest string that can be
safely used.

F

A

B

C E

D

2 ft 2 ft

k � 30 lb/ft k � 30 lb/ft

θθ

Probs. 3–30/31

45�

A

B

75�

FAB

u

Prob. 3–32

P

A

B

D

C

30�
30�

Probs. 3–33/34

CA

9 in. 9 in.

B

Prob. 3–35

•3–30. The springs on the rope assembly are originally
unstretched when . Determine the tension in each
rope when . Neglect the size of the pulleys at B
and D.

3–31. The springs on the rope assembly are originally
stretched 1 ft when . Determine the vertical force F
that must be applied so that .u = 30°

u = 0°

F = 90 lb
u = 0°
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A

O

C

1 ft
B

2 ft

F

D

2 ft

2 ft

Prob. 3–36

d

AC

B

12 in.

k

u

Probs. 3–37/38

C

D

B

A

1 ft

1.5 ft

Prob. 3–39

A Bk � 800 N/m

D

500 mm 400 mm

400 mm

300 mm

C

Prob. 3–40

•3–37. The 10-lb weight is supported by the cord AC and
roller and by the spring that has a stiffness of .
and an unstretched length of 12 in. Determine the distance
d to where the weight is located when it is in equilibrium.

3–38. The 10-lb weight is supported by the cord AC and
roller and by a spring. If the spring has an unstretched
length of 8 in. and the weight is in equilibrium when

., determine the stiffness k of the spring.d = 4 in

k = 10 lb>in

•3–39. A “scale” is constructed with a 4-ft-long cord and
the 10-lb block D. The cord is fixed to a pin at A and passes
over two small pulleys at B and C. Determine the weight of
the suspended block at B if the system is in equilibrium.

•*3–40. The spring has a stiffness of and an
unstretched length of 200 mm. Determine the force in cables
BC and BD when the spring is held in the position shown.

k = 800 N>m

*3–36. The 200-lb uniform tank is suspended by means of
a 6-ft-long cable, which is attached to the sides of the tank
and passes over the small pulley located at O. If the cable
can be attached at either points A and B or C and D,
determine which attachment produces the least amount of
tension in the cable. What is this tension?
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3–42. Determine the mass of each of the two cylinders if
they cause a sag of when suspended from the
rings at A and B. Note that when the cylinders are
removed.

s = 0
s = 0.5 m

•3–43. The pail and its contents have a mass of 60 kg. If the
cable BAL is 15 m long, determine the distance y of the
pulley at A for equilibrium. Neglect the size of the pulley.

•*3–44. A scale is constructed using the 10-kg mass, the 
2-kg pan P, and the pulley and cord arrangement. Cord
BCA is 2 m long. If , determine the mass D in the
pan. Neglect the size of the pulley.

s = 0.75 m

•3–41. A continuous cable of total length 4 m is wrapped
around the small pulleys at A, B, C, and D. If each spring is
stretched 300 mm, determine the mass m of each block.
Neglect the weight of the pulleys and cords. The springs are
unstretched when d = 2 m.

B
C

A

k � 500 N/m

k � 500 N/m

d
D

Prob. 3–41

1 m 2 m2 m

1.5 m

s

BA

C D

k � 100 N/m k � 100 N/m

Prob. 3–42

2 m

y

C

B

A

10 m

Prob. 3–43

1.5 m

0

s

P

D

A C

B

1.5 m

Prob. 3–44
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A

B C

B

A C

A

C

B

D

F

B

A

B¿
C

CONCEPTUAL PROBLEMS

P3–1. The concrete wall panel is hoisted into position using
the two cables AB and AC of equal length. Establish
appropriate dimensions and use an equilibrium analysis to
show that the longer the cables the less the force in each cable.

P3–4. The two chains AB and AC have equal lengths and
are subjected to the vertical force F. If AB is replaced by a
shorter chain , show that this chain would have to
support a larger tensile force than in order to maintain
equilibrium.

AB
AB¿

P3–2. The truss is hoisted using cable ABC that passes
through a very small pulley at B. If the truss is placed in a
tipped position, show that it will always return to the
horizontal position to maintain equilibrium.

P3–3. The device DB is used to pull on the chain ABC so
as to hold a door closed on the bin. If the angle between AB
and the horizontal segment BC is 30º, determine the angle
between DB and the horizontal for equilibrium.
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3.4 Three-Dimensional Force Systems

In Section 3.1 we stated that the necessary and sufficient condition for
particle equilibrium is

(3–4)

In the case of a three-dimensional force system, as in Fig. 3–9, we can
resolve the forces into their respective i, j, k components, so that

. To satisfy this equation we require

(3–5)

These three equations state that the algebraic sum of the components of
all the forces acting on the particle along each of the coordinate axes
must be zero. Using them we can solve for at most three unknowns,
generally represented as coordinate direction angles or magnitudes of
forces shown on the particle’s free-body diagram.

©Fz = 0

©Fy = 0

©Fx = 0

©Fxi + ©Fy j + ©Fzk = 0

©F = 0

Procedure for Analysis

Three-dimensional force equilibrium problems for a particle can be
solved using the following procedure.

Free-Body Diagram.

• Establish the x, y, z axes in any suitable orientation.

• Label all the known and unknown force magnitudes and
directions on the diagram.

• The sense of a force having an unknown magnitude can be
assumed.

Equations of Equilibrium.

• Use the scalar equations of equilibrium,
in cases where it is easy to resolve each force into its

x, y, z components.

• If the three-dimensional geometry appears difficult, then first
express each force on the free-body diagram as a Cartesian vector,
substitute these vectors into and then set the i, j, k
components equal to zero.

• If the solution for a force yields a negative result, this indicates
that its sense is the reverse of that shown on the free-body
diagram.

©F = 0,

©Fz = 0,
©Fy = 0,©Fx = 0,

F3
F2

F1

x

y

z

Fig. 3–9

The ring at A is subjected to the force from
the hook as well as forces from each of the
three chains. If the electromagnet and its load
have a weight W, then the force at the hook
will be W, and the three scalar equations of
equilibrium can be applied to the free-body
diagram of the ring in order to determine the
chain forces, , and FD.FCFB,

A

D

CB

FCFD
FB

W
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EXAMPLE 3.5

A 90-lb load is suspended from the hook shown in Fig. 3–10a. If the
load is supported by two cables and a spring having a stiffness

, determine the force in the cables and the stretch of the
spring for equilibrium. Cable AD lies in the x–y plane and cable AC
lies in the x–z plane.

SOLUTION
The stretch of the spring can be determined once the force in the spring
is determined.

Free-Body Diagram. The connection at A is chosen for the
equilibrium analysis since the cable forces are concurrent at this
point. The free-body diagram is shown in Fig. 3–10b.

Equations of Equilibrium. By inspection, each force can easily be
resolved into its x, y, z components, and therefore the three scalar
equations of equilibrium can be used. Considering components
directed along each positive axis as “positive,” we have

(1)

(2)

(3)

Solving Eq. (3) for then Eq. (1) for and finally Eq. (2) for 
yields

Ans.

Ans.

Ans.

The stretch of the spring is therefore

Ans.

NOTE: Since the results for all the cable forces are positive, each
cable is in tension; that is, it pulls on point A as expected, Fig. 3–10b.

sAB = 0.416 ft

 207.8 lb = (500 lb>ft)1sAB2
FB = ksAB

FB = 207.8 lb

FD = 240 lb

FC = 150 lb

FB,FD,FC,

A35 BFC - 90 lb = 0©Fz = 0;

-FD cos 30° + FB = 0©Fy = 0;

FD sin 30° - A45 BFC = 0©Fx = 0;

k = 500 lb>ft

x

y

z

(a)

30�

C

90 lb

A

5 3
4
k = 500 lb/ft

B

D

Fig. 3–10

y

x

z

(b)

30�

90 lb

A

5 3

4

FC

FB

FD
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EXAMPLE 3.6

The 10-kg lamp in Fig. 3-11a is suspended from the three equal-length
cords. Determine its smallest vertical distance s from the ceiling if the
force developed in any cord is not allowed to exceed 50 N.

x
y

s

(a)

z

D
A

B

C

600 mm
120�

120�

Fig. 3–11

SOLUTION
Free-Body Diagram. Due to symmetry, Fig. 3-11b, the distance

. It follows that from and
, the tension T in each cord will be the same. Also, the angle

between each cord and the axis is .

Equation of Equilibrium. Applying the equilibrium equation along
the axis, with , we have

From the shaded triangle shown in Fig. 3-11b,

Ans.s = 519 mm

tan 49.16° =
600 mm
s

g = cos-1 98.1
150

= 49.16°

3[(50 N) cos g] - 10(9.81) N = 0gFz = 0;

T = 50 Nz

gz
gFy = 0

gFx = 0DA = DB = DC = 600 mm

x

y

s

600 mm

D

z

(b)

A

B

C

10(9.81) N

T
T

T
g
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EXAMPLE 3.7

y

x

z

(a)

8 ft

3 ft

4 ft

4 ft

C

B

D A

Fig. 3–12

y

x

z

W � 40 lb

(b)

FB

A

FC

FD

Determine the force in each cable used to support the 40-lb crate
shown in Fig. 3–12a.

SOLUTION
Free-Body Diagram. As shown in Fig. 3–12b, the free-body diagram
of point A is considered in order to “expose” the three unknown forces
in the cables.

Equations of Equilibrium. First we will express each force in
Cartesian vector form. Since the coordinates of points B and C are

and C( 4 ft, 8 ft), we have

Equilibrium requires

Equating the respective i, j, k components to zero yields

(1)

(2)

(3)

Equation (2) states that Thus, solving Eq. (3) for and 
and substituting the result into Eq. (1) to obtain we have

Ans.

Ans.FD = 15.0 lb

FB = FC = 23.6 lb

FD,
FCFBFB = FC.

0.848FB + 0.848FC - 40 = 0©Fz = 0;

-0.424FB + 0.424FC = 0©Fy = 0;

-0.318FB - 0.318FC + FD = 0©Fx = 0;

- 0.318FCi + 0.424FCj + 0.848FCk + FDi - 40k = 0

-0.318FBi - 0.424FBj + 0.848FBk

FB + FC + FD + W = 0©F = 0;

W = 5-40k6 lb
FD = FDi

= -0.318FC i + 0.424FC j + 0.848FCk

FC = FC c -3i + 4j + 8k

2 1-322 + 1422 + 1822 d
= -0.318FBi - 0.424FBj + 0.848FBk

FB = FB c -3i - 4j + 8k

2 1-322 + 1-422 + 1822 d
-3 ft,B1-3 ft, -4 ft, 8 ft2
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EXAMPLE 3.8

y1 m
2 m

z

60� 135�
2 m

D

120�

x

(a)

B

A

k � 1.5 kN/m

C

Fig. 3–13

y

x

z

W � 981 N

A

FC

(b)

FD

FB

Determine the tension in each cord used to support the 100-kg crate
shown in Fig. 3–13a.

SOLUTION
Free-Body Diagram. The force in each of the cords can be
determined by investigating the equilibrium of point A.The free-body
diagram is shown in Fig. 3–13b. The weight of the crate is

Equations of Equilibrium. Each force on the free-body diagram is
first expressed in Cartesian vector form. Using Eq. 2–9 for and
noting point for we have

Equilibrium requires

W = 5-981k6 N
= -0.333FD i + 0.667FDj + 0.667FDk

FD = FD c -1i + 2j + 2k

2 1-122 + 1222 + 1222 d
= -0.5FC i - 0.707FC j + 0.5FCk

FC = FC cos 120°i + FC cos 135°j + FC cos 60°k

FB = FB i

FD,D1-1 m, 2 m, 2 m2 FC

W = 10019.812 = 981 N.

Equating the respective i, j, k components to zero,

(1)

(2)

(3)

Solving Eq. (2) for in terms of and substituting this into Eq. (3)
yields is then determined from Eq. (2). Finally, substituting the
results into Eq. (1) gives Hence,

Ans.

Ans.

Ans.FB = 694 N

FD = 862 N

FC = 813 N

FB.
FDFC.

FCFD

 0.5FC + 0.667FD - 981 = 0©Fz = 0;

-0.707FC + 0.667FD = 0©Fy = 0;

FB - 0.5FC - 0.333FD = 0©Fx = 0;

- 0.333FD i + 0.667FD j + 0.667FDk - 981k = 0

FB i - 0.5FC i - 0.707FC j + 0.5FCk

 FB + FC + FD + W = 0©F = 0;
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FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD.

F3–7. Determine the magnitude of forces so
that the particle is held in equilibrium.

F3,F2,F1,

F3–10. Determine the tension developed in cables AB,
AC, and AD.

F3–8. Determine the tension developed in cables AB, AC,
and AD.

F3–9. Determine the tension developed in cables AB, AC,
and AD.

F3–11. The 150-lb crate is supported by cables AB, AC,
and AD. Determine the tension in these wires.

900 N

600 N

z

x y

4

4
4

3

3

3

5

5 F1

F2

F3

5

A

C

z

y

x

B

D

3

3

4

4

5

5

900 lb

2 m
1 m

2 m
A

C

z

y

x B

D

600 N

30�

A

Cz

y

x

B

60º

300 lb

30�

45�

120�

60�

D

A

D

E

B

C

2 ft

3 ft

3 ft

2 ft

6 ft

F3–9 F3–11

F3–8

F3–7

F3–10



3.4 THREE-DIMENSIONAL FORCE SYSTEMS 109

3

All problem solutions must include an FBD.

•3–45. Determine the tension in the cables in order to
support the 100-kg crate in the equilibrium position shown.

3–46. Determine the maximum mass of the crate so that the
tension developed in any cable does not exceeded 3 kN.

*3–48. Determine the tension developed in cables , ,
and required for equilibrium of the 300-lb crate.

•3–49. Determine the maximum weight of the crate so that
the tension developed in any cable does not exceed 450 lb.

AD
ACAB

3–47. The shear leg derrick is used to haul the 200-kg net of
fish onto the dock. Determine the compressive force along
each of the legs AB and CB and the tension in the winch
cable DB.Assume the force in each leg acts along its axis.

2.5 m
2 m

2 m

2 m

1 mA

z

D

y
x

B

C

Probs. 3–45/46

4 m

4 m

2 m
2 m

5.6 m

D

B

C

A
x

y

z

Prob. 3–47

A

D

C

x

1 ft

3 ft

2 ft
1 ft

2 ft

2 ft

y

z

2 ft

B

Probs. 3–48/49

3 ft d yx

C

D

B

A

3500 lb

4 ft

3 ft

10 ft

4 ft

2 ft

z

Probs. 3–50/51

PROBLEMS

3–50. Determine the force in each cable needed to
support the 3500-lb platform. Set .

3–51. Determine the force in each cable needed to
support the 3500-lb platform. Set .d = 4 ft

d = 2 ft
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*3–52. Determine the force in each of the three cables
needed to lift the tractor which has a mass of 8 Mg.

•3–53. Determine the force acting along the axis of each of
the three struts needed to support the 500-kg block.

*3–56. The ends of the three cables are attached to a ring
at A and to the edge of a uniform 150-kg plate. Determine
the tension in each of the cables for equilibrium.

•3–57. The ends of the three cables are attached to a ring
at A and to the edge of the uniform plate. Determine the
largest mass the plate can have if each cable can support a
maximum tension of 15 kN.

2 m

1.25 m

1.25 m

1 m

3 m

A

D

C

B

y
x

z

Prob. 3–52

0.75 m

1.25 m
3 m

2.5 m

z

A

B

C

D

x
y

2 m

Prob. 3–53

x

x

A
B

C

y

z

z

6 m

3 m

2 m

D

Probs. 3–54/55

z

A

B

x

y

D
C

10 m

6 m 6 m

6 m

4 m
2 m

2 m

12 m

2 m

Probs. 3–56/57

3–54. If the mass of the flowerpot is 50 kg, determine the
tension developed in each wire for equilibrium. Set

and .

3–55. If the mass of the flowerpot is 50 kg, determine the
tension developed in each wire for equilibrium. Set 
and .z = 1.5 m

x = 2 m

z = 2 mx = 1.5 m
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3–58. Determine the tension developed in cables , ,
and required for equilibrium of the 75-kg cylinder.

3–59. If each cable can withstand a maximum tension of
1000 N, determine the largest mass of the cylinder for
equilibrium.

AD
ACAB

*3–64. The thin ring can be adjusted vertically between
three equally long cables from which the 100-kg chandelier
is suspended. If the ring remains in the horizontal plane and

, determine the tension in each cable.

•3–65. The thin ring can be adjusted vertically between
three equally long cables from which the 100-kg chandelier
is suspended. If the ring remains in the horizontal plane and
the tension in each cable is not allowed to exceed ,
determine the smallest allowable distance required for
equilibrium.

z
1 kN

z = 600 mm

1 m

3 m

3 m

4 m 1.5 m

2 m
2 m

1 m

A

C

z

y

x

B

D

Probs. 3–58/59

A

z

y

x

B

d

2 m 2 m

3 m

6 m

6 m

DC

Probs. 3–60/61

B

C

A

F

y

z

x

4 ft

5 ft

5 ft

zy

Probs. 3–62/63

x
y

z

z

0.5 m

120� 120�

120�

A

B

C

D

Probs. 3–64/65

3–62. A force of holds the 400-lb crate in
equilibrium. Determine the coordinates (0, y, z) of point A
if the tension in cords AC and AB is 700 lb each.

3–63. If the maximum allowable tension in cables AB and
AC is 500 lb, determine the maximum height z to which the
200-lb crate can be lifted. What horizontal force F must be
applied? Take .y = 8 ft

F = 100 lb

*3–60. The 50-kg pot is supported from A by the three
cables. Determine the force acting in each cable for
equilibrium. Take .

•3–61. Determine the height d of cable AB so that the force
in cables AD and AC is one-half as great as the force in
cable AB. What is the force in each cable for this case? The
flower pot has a mass of 50 kg.

d = 2.5 m
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•3–69. Determine the angle such that an equal force is
developed in legs OB and OC. What is the force in each leg
if the force is directed along the axis of each leg? The force
F lies in the plane. The supports at A, B, C can exert
forces in either direction along the attached legs.

x-y

u

*3–68. The three outer blocks each have a mass of 2 kg,
and the central block E has a mass of 3 kg. Determine the
sag s for equilibrium of the system.

120�

1.5 ft

80 lb

d

C

A

B

D

120�
120�

Prob. 3–66

A

B

C

D

F

120� 120�

120� 3 ft
y

z

x

4 ft

Prob. 3–67

s

60�30�

30�

1 m

1 m
A

D

E

B

C

Prob. 3–68

120�
5 ft

10 ft

120�

120�

yx

z

O

B

C A

F = 100 lb

u

Prob. 3–69

3–66. The bucket has a weight of 80 lb and is being hoisted
using three springs, each having an unstretched length of

and stiffness of . Determine the
vertical distance d from the rim to point A for equilibrium.

k = 50 lb>ftl0 = 1.5 ft

3–67. Three cables are used to support a 900-lb ring.
Determine the tension in each cable for equilibrium.
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CHAPTER REVIEW

Particle Equilibrium

When a particle is at rest or moves with
constant velocity, it is in equilibrium.
This requires that all the forces acting on
the particle form a zero resultant force.

In order to account for all the forces that
act on a particle, it is necessary to draw
its free-body diagram. This diagram is an
outlined shape of the particle that shows
all the forces listed with their known or
unknown magnitudes and directions.

Two Dimensions

The two scalar equations of force
equilibrium can be applied with reference
to an established x, y coordinate system.

The tensile force developed in a
continuous cable that passes over a
frictionless pulley must have a constant
magnitude throughout the cable to keep
the cable in equilibrium.

If the problem involves a linearly elastic
spring, then the stretch or compression s
of the spring can be related to the force
applied to it.

FR = πF = 0

Cable is in tension

Three Dimensions

If the three-dimensional geometry is
difficult to visualize, then the equilibrium
equation should be applied using a
Cartesian vector analysis. This requires
first expressing each force on the free-
body diagram as a Cartesian vector.
When the forces are summed and set
equal to zero, then the i, j, and k
components are also zero.

©Fz = 0

©Fy = 0
©Fx = 0

©F = 0

©Fy = 0
©Fx = 0

F = ks

T

T

u

F4 F3

F1 F2

F3
F2

F1

x

y

z
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REVIEW PROBLEMS

•3–73. Two electrically charged pith balls, each having a
mass of 0.15 g, are suspended from light threads of equal
length. Determine the magnitude of the horizontal
repulsive force, F, acting on each ball if the measured
distance between them is .r = 200 mm

BA

C
u

F

Prob. 3–70

x

O

y

70�

30�

5 kN

7 kN

3
4

5

F2

F1

u

Prob. 3–71/72

A B

50 mm

150 mm 150 mm

r � 200 mm

F–F

Prob. 3–73

x

1.5 m

1.5 m

2 m

4 m

A

z

B

y

6 m

O

C

Prob. 3–74

3–70. The 500-lb crate is hoisted using the ropes AB and
AC. Each rope can withstand a maximum tension of 2500 lb
before it breaks. If AB always remains horizontal,
determine the smallest angle to which the crate can be
hoisted.

u

3–74. The lamp has a mass of 15 kg and is supported by a
pole AO and cables AB and AC. If the force in the pole acts
along its axis, determine the forces in AO, AB, and AC for
equilibrium.

3–71. The members of a truss are pin connected at joint O.
Determine the magnitude of and its angle for
equilibrium. Set .

*3–72. The members of a truss are pin connected at joint O.
Determine the magnitudes of and for equilibrium.
Set .u = 60°

F2F1

F2 = 6 kN
uF1
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3–79. The joint of a space frame is subjected to four
member forces. Member OA lies in the plane and
member OB lies in the plane. Determine the forces
acting in each of the members required for equilibrium of
the joint.

y–z
x–y

z

y

x

20�

F3 � 200 lb

P

(�1 ft, �7 ft, 4 ft)

F4 � 300 lb

F1 � 360 lb

F2 � 120 lb

Prob. 3–75

40� BC

Al
2 ft

200 lb

u

Prob. 3–76

z

P

F3

F1

F2

y

x

3

800 lb

200 lb

4

5

60�

60�

135�

Prob. 3–77

D

y

x

C

A

B

6 ft

8 ft

2 ft

2 ft

6 ft

z

Prob. 3–78

3–75. Determine the magnitude of P and the coordinate
direction angles of required for equilibrium of the
particle. Note that acts in the octant shown.F3

F3

*3–76. The ring of negligible size is subjected to a vertical
force of 200 lb. Determine the longest length l of cord AC
such that the tension acting in AC is 160 lb. Also, what is the
force acting in cord AB? Hint: Use the equilibrium
condition to determine the required angle for attachment,
then determine l using trigonometry applied to .¢ABC

u

•3–77. Determine the magnitudes of , , and for
equilibrium of the particle.

F3F2F1

x

45�

A

B

200 lb

F1

z

y

40�

F2

F3
O

Prob. 3–79

3–78. Determine the force in each cable needed to
support the 500-lb load.



Application of forces to the handles of these wrenches will produce a tendency to
rotate each wrench about its end. It is important to know how to calculate this effect
and, in some cases, to be able to simplify this system to its resultants.



Force System
Resultants

CHAPTER OBJECTIVES

• To discuss the concept of the moment of a force and show how to
calculate it in two and three dimensions.

• To provide a method for finding the moment of a force about a
specified axis.

• To define the moment of a couple.

• To present methods for determining the resultants of nonconcurrent
force systems.

• To indicate how to reduce a simple distributed loading to a resultant
force having a specified location.

4.1 Moment of a Force—
Scalar Formulation

When a force is applied to a body it will produce a tendency for the body
to rotate about a point that is not on the line of action of the force. This
tendency to rotate is sometimes called a torque, but most often it is called
the moment of a force or simply the moment. For example, consider a
wrench used to unscrew the bolt in Fig. 4–1a. If a force is applied to the
handle of the wrench it will tend to turn the bolt about point O (or the z
axis). The magnitude of the moment is directly proportional to the
magnitude of F and the perpendicular distance or moment arm d. The
larger the force or the longer the moment arm, the greater the moment or
turning effect. Note that if the force F is applied at an angle ,
Fig. 4–1b, then it will be more difficult to turn the bolt since the moment
arm will be smaller than d. If F is applied along the wrench,
Fig. 4–1c, its moment arm will be zero since the line of action of F will
intersect point O (the z axis).As a result, the moment of F about O is also
zero and no turning can occur.

d¿ = d sinu

u Z 90°

4
z

O d

F

(a)
z

O

F

d¿ � d sin u

(b)

u

d

z

O

(c)

F

Fig. 4–1

117
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We can generalize the above discussion and consider the force F and
point O which lie in the shaded plane as shown in Fig. 4–2a. The moment

about point O, or about an axis passing through O and perpendicular
to the plane, is a vector quantity since it has a specified magnitude and
direction.

Magnitude. The magnitude of is

(4–1)

where d is the moment arm or perpendicular distance from the axis at
point O to the line of action of the force. Units of moment magnitude
consist of force times distance, e.g., or 

Direction. The direction of is defined by its moment axis, which
is perpendicular to the plane that contains the force F and its moment
arm d. The right-hand rule is used to establish the sense of direction of

. According to this rule, the natural curl of the fingers of the right
hand, as they are drawn towards the palm, represent the tendency for
rotation caused by the moment. As this action is performed, the thumb
of the right hand will give the directional sense of , Fig. 4–2a. Notice
that the moment vector is represented three-dimensionally by a curl
around an arrow. In two dimensions this vector is represented only by
the curl as in Fig. 4–2b. Since in this case the moment will tend to cause a
counterclockwise rotation, the moment vector is actually directed out of
the page.

Resultant Moment. For two-dimensional problems, where all the
forces lie within the x–y plane, Fig. 4–3, the resultant moment
about point O (the z axis) can be determined by finding the algebraic sum
of the moments caused by all the forces in the system. As a convention,
we will generally consider positive moments as counterclockwise since
they are directed along the positive z axis (out of the page). Clockwise
moments will be negative. Doing this, the directional sense of each
moment can be represented by a plus or minus sign. Using this sign
convention, the resultant moment in Fig. 4–3 is therefore

a

If the numerical result of this sum is a positive scalar, will be a
counterclockwise moment (out of the page); and if the result is negative,

will be a clockwise moment (into the page).(MR)
O

(MR)
O

+ (MR)
O

= ©Fd;  (MR)
O

= F1d1 - F2d2 + F3d3

(MR)
O

MO

MO

MO

lb # ft.N # m

MO = Fd

MO

MO

Sense of rotation

O

Moment axis

d
F

MO

MO

F

d

O

(a)

(b)

Fig. 4–2

y

x
O

F3

F2

F1

M3

M2 M1

d3

d2
d1

Fig. 4–3
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EXAMPLE 4.1

For each case illustrated in Fig. 4–4, determine the moment of the
force about point O.

SOLUTION (SCALAR ANALYSIS)

The line of action of each force is extended as a dashed line in order to
establish the moment arm d.Also illustrated is the tendency of rotation
of the member as caused by the force. Furthermore, the orbit of the
force about O is shown as a colored curl. Thus,

Fig. 4–4a b Ans.

Fig. 4–4b b Ans.

Fig. 4–4c b Ans.

Fig. 4–4d d Ans.

Fig. 4–4e d Ans.MO = 17 kN214 m - 1 m2 = 21.0 kN # m
MO = 160 lb211 sin 45° ft2 = 42.4 lb # ft
MO = 140 lb214 ft + 2 cos 30° ft2 = 229 lb # ft
MO = 150 N210.75 m2 = 37.5 N # m
MO = 1100 N212 m2 = 200 N # m

2 m

O

(a)

100 N

Fig. 4–4

2 m

O

(b)

50 N

0.75 m

(d)

O
1 sin 45� ft

60 lb

3 ft

45�
1 ft

2 m

O (e)

4 m

1 m
7 kN

2 ft

(c)

O

4 ft
2 cos 30� ft

40 lb30�
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EXAMPLE 4.2

50 N

40 N

20 N3 m

2 m 2 m

O

x

y

60 N

30�

Fig. 4–5

As illustrated by the example problems, the moment of a
force does not always cause a rotation. For example, the force
F tends to rotate the beam clockwise about its support at A
with a moment The actual rotation would occur
if the support at B were removed.

MA = FdA.

O

FN

FH

The ability to remove the nail will require the moment
of about point O to be larger than the moment of
the force about O that is needed to pull the nail out.FN

FH

MA � FdA

dA

F

A B

Determine the resultant moment of the four forces acting on the rod
shown in Fig. 4–5 about point O.

SOLUTION
Assuming that positive moments act in the direction, i.e.,
counterclockwise, we have

a

b Ans.

For this calculation, note how the moment-arm distances for the 20-N
and 40-N forces are established from the extended (dashed) lines of
action of each of these forces.

MRO = -334 N # m = 334 N # m
-40 N14 m + 3 cos 30° m2

MRO = -50 N12 m2 + 60 N102 + 20 N13 sin 30° m2
+MRO = ©Fd;

+k
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4.2 Cross Product

The moment of a force will be formulated using Cartesian vectors in the
next section. Before doing this, however, it is first necessary to expand our
knowledge of vector algebra and introduce the cross-product method of
vector multiplication.

The cross product of two vectors A and B yields the vector C, which is
written

(4–2)

and is read “C equals A cross B.”

Magnitude. The magnitude of C is defined as the product of the
magnitudes of A and B and the sine of the angle between their tails

Thus,

Direction. Vector C has a direction that is perpendicular to the plane
containing A and B such that C is specified by the right-hand rule; i.e.,
curling the fingers of the right hand from vector A (cross) to vector B,
the thumb points in the direction of C, as shown in Fig. 4–6.

Knowing both the magnitude and direction of C, we can write

(4–3)

where the scalar defines the magnitude of C and the unit vector
defines the direction of C. The terms of Eq. 4–3 are illustrated

graphically in Fig. 4–6.
uC

AB sin u

C = A * B = 1AB sin u2uC

C = AB sin u.10° … u … 180°2. u

C = A * B

C � A � B

A

B

u

uC

Fig. 4–6



B

A

� C � B � A

C � A � B

B

A

Fig. 4–7
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Laws of Operation.

● The commutative law is not valid; i.e., . Rather,

This is shown in Fig. 4–7 by using the right-hand rule. The cross
product yields a vector that has the same magnitude but acts
in the opposite direction to C; i.e.,

● If the cross product is multiplied by a scalar a, it obeys the assoc-
iative law;

This property is easily shown since the magnitude of the resultant
vector and its direction are the same in each case.

● The vector cross product also obeys the distributive law of addition,

● The proof of this identity is left as an exercise (see Prob. 4–1). It is
important to note that proper order of the cross products must be
maintained, since they are not commutative.

Cartesian Vector Formulation. Equation 4–3 may be used
to find the cross product of any pair of Cartesian unit vectors. For
example, to find the magnitude of the resultant vector is

and its direction is determined using
the right-hand rule. As shown in Fig. 4–8, the resultant vector points in
the direction. Thus, In a similar manner,

These results should not be memorized; rather, it should be clearly
understood how each is obtained by using the right-hand rule and the
definition of the cross product. A simple scheme shown in Fig. 4–9 is
helpful for obtaining the same results when the need arises. If the circle is
constructed as shown, then “crossing” two unit vectors in a
counterclockwise fashion around the circle yields the positive third unit
vector; e.g., “Crossing” clockwise, a negative unit vector is
obtained; e.g., i * k = - j.

k * i = j.

k * i = j  k * j = - i  k * k = 0

j * k = i  j * i = -k  j * j = 0

i * j = k  i * k = - j  i * i = 0

i * j = 112k.+k

1i21j21sin 90°2 = 112112112 = 1,
i * j,

A * 1B + D2 = 1A * B2 + 1A * D2

1 ƒa ƒAB sin u2

a1A * B2 = 1aA2 * B = A * 1aB2 = 1A * B2a

B * A = -C.
B * A

A * B = -B * A

A * B Z B * A

y

x

z

k � i � j

j

i

Fig. 4–8

�

�

i

j k

Fig. 4–9
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Let us now consider the cross product of two general vectors A and B
which are expressed in Cartesian vector form. We have

Carrying out the cross-product operations and combining terms yields

(4–4)

This equation may also be written in a more compact determinant
form as

(4–5)

Thus, to find the cross product of any two Cartesian vectors A and B, it is
necessary to expand a determinant whose first row of elements consists
of the unit vectors i, j, and k and whose second and third rows represent
the x, y, z components of the two vectors A and B, respectively.* 

A * B = 3
i j k
Ax Ay Az
Bx By Bz

3

A * B = 1AyBz - AzBy2i - 1AxBz - AzBx2j + 1AxBy - AyBx2k

+ AzBx1k * i2 + AzBy1k * j2 + AzBz1k * k2
+ AyBx1j * i2 + AyBy1j * j2 + AyBz1j * k2
= AxBx1i * i2 + AxBy1i * j2 + AxBz1i * k2

A * B = 1Axi + Ay j + Azk2 * 1Bxi + Byj + Bzk2

*A determinant having three rows and three columns can be expanded using three
minors, each of which is multiplied by one of the three terms in the first row. There are
four elements in each minor, for example,

By definition, this determinant notation represents the terms which is
simply the product of the two elements intersected by the arrow slanting downward to the
right minus the product of the two elements intersected by the arrow slanting
downward to the left For a determinant, such as Eq. 4–5, the three minors
can be generated in accordance with the following scheme:

3 * 31A12A212.
1A11A222

1A11A22 - A12A212,

Adding the results and noting that the j element must include the minus sign yields the
expanded form of given by Eq. 4–4.A * B

A11 A12

A21 A22

For element k:

For element j:

For element i: Ax

Bx

Ay

By

Az
Bz

i j k
Ax

Bx

Ay

By

Az
Bz

i j k

i j k
Ax

Bx

Ay

By

Az
Bz

Remember the
negative sign



r1r3 r2

O

F

MO � r1 � F � r2 � F � r3 � F

Line of action

Fig. 4–11
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4.3 Moment of a Force—Vector
Formulation

The moment of a force F about point O, or actually about the moment axis
passing through O and perpendicular to the plane containing O and F,
Fig. 4–10a, can be expressed using the vector cross product, namely,

(4–6)

Here r represents a position vector directed from O to any point on the
line of action of F. We will now show that indeed the moment when
determined by this cross product, has the proper magnitude and direction.

Magnitude. The magnitude of the cross product is defined from
Eq. 4–3 as where the angle is measured between the
tails of r and F. To establish this angle, r must be treated as a sliding
vector so that can be constructed properly, Fig. 4–10b. Since the
moment arm then

which agrees with Eq. 4–1.

Direction. The direction and sense of in Eq. 4–6 are determined
by the right-hand rule as it applies to the cross product. Thus, sliding r to
the dashed position and curling the right-hand fingers from r toward F, “r
cross F,” the thumb is directed upward or perpendicular to the plane
containing r and F and this is in the same direction as the moment 
of the force about point O, Fig. 4–10b. Note that the “curl” of the fingers,
like the curl around the moment vector, indicates the sense of rotation
caused by the force. Since the cross product does not obey the
commutative law, the order of must be maintained to produce 
the correct sense of direction for .

Principle of Transmissibility. The cross product operation is
often used in three dimensions since the perpendicular distance or
moment arm from point O to the line of action of the force is not
needed. In other words, we can use any position vector r measured from
point O to any point on the line of action of the force F, Fig. 4–11. Thus,

Since F can be applied at any point along its line of action and still create
this same moment about point O, then F can be considered a sliding
vector. This property is called the principle of transmissibility of a force.

MO = r1 * F = r2 * F = r3 * F

MO

r * F

MO,

MO

MO = rF sin u = F1r sin u2 = Fd

d = r sin u,
u

uMO = rF sin u,

MO,

MO = r * F

O

Moment axis

MO

rA

F

(a)

Fig. 4–10

O

Moment axis

d

MO

rAr

F

(b)

u

u
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Cartesian Vector Formulation. If we establish x, y, z coordinate
axes, then the position vector r and force F can be expressed as Cartesian
vectors, Fig. 4–12a. Applying Eq. 4–5 we have

(4–7)

where
represent the x, y, z components of the position
vector drawn from point O to any point on the
line of action of the force

represent the x, y, z components of the force vector

If the determinant is expanded, then like Eq. 4–4 we have

(4–8)

The physical meaning of these three moment components becomes
evident by studying Fig. 4–12b. For example, the i component of 
can be determined from the moments of and about the x axis.
The component does not create a moment or tendency to cause
turning about the x axis since this force is parallel to the x axis. The line
of action of passes through point B, and so the magnitude of the
moment of about point A on the x axis is . By the right-hand
rule this component acts in the negative i direction. Likewise, passes
through point C and so it contributes a moment component of 
about the axis. Thus, as shown in Eq. 4–8. As an
exercise, establish the j and k components of in this manner and
show that indeed the expanded form of the determinant, Eq. 4–8,
represents the moment of F about point O. Once is determined,
realize that it will always be perpendicular to the shaded plane
containing vectors r and F, Fig. 4–12a.

Resultant Moment of a System of Forces. If a body is acted
upon by a system of forces, Fig. 4–13, the resultant moment of the forces
about point O can be determined by vector addition of the moment of
each force. This resultant can be written symbolically as

(4–9)MRO = ©1r * F2

MO

MO

1MO2x = 1ryFz - rzFy2
ryFzi

Fz
rzFyFy

Fy

Fx
FzFy,Fx,

MO

MO = 1ryFz - rzFy2i - 1rxFz - rzFx2j + 1rxFy - ryFx2k

Fx,Fy,Fz

rx, ry, rz

MO = r * F = 3
i j k
rx ry rz
Fx Fy Fz

3

z

C

y

Fy

Fx

rz

r ry

rx

x

A

B

O

F

(b)

Fz

Fig. 4–12

z

MO

Moment
axis

x

y
O

F

(a)

r

z

x

y
O

r2

r1
r3

F3 F1

F2

MRO

Fig. 4–13
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EXAMPLE 4.3

Determine the moment produced by the force F in Fig. 4–14a about
point O. Express the result as a Cartesian vector.

SOLUTION
As shown in Fig. 4–14a, either or can be used to determine the
moment about point O. These position vectors are

Force F expressed as a Cartesian vector is

Thus

Ans.

or

Ans.

NOTE: As shown in Fig. 4–14b, acts perpendicular to the plane
that contains . Had this problem been worked using

notice the difficulty that would arise in obtaining the
moment arm d.
MO = Fd,

F, rA, and rB
MO

= 5-16.5i + 5.51j6 kN–m
+ [4(1.376) - 12(0.4588)]k

= [12(-1.376) - 0(1.376)]i - [4(-1.376) - 0(0.4588)] j

MO = rB * F = 3
i j k
4 12 0

0.4588  1.376 -1.376

3

= 5-16.5i + 5.51j6 kN–m
+ [0(1.376) - 0(0.4588)]k

= [0(-1.376) - 12(1.376)]i - [0(-1.376) - 12(0.4588)] j

MO = rA * F = 3
i j k
0 0 12

0.4588  1.376 -1.376

3

= 50.4588i + 1.376j - 1.376k6 kN

F = FuAB = 2 kN c 54i + 12j - 12k6 m
214 m22 + 112 m22 + 1-12 m22 d

rA = 512k6 m and rB = 54i + 12j6 m

rBrA

12 m

4 m

12 mA

B

O

x

y

z

(a)

F � 2 kN

uAB

Fig. 4–14

(b)

A

B

O

x

y

z

F

rB

rA

MO
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EXAMPLE 4.4

x

z

O

5 ft

4 ft

2 ft

A

B

F2 � {80i � 40j � 30k} lb

F1 � {�60i � 40j � 20k} lb

(a)

y

Fig. 4–15

x

y

z

O A

B

(b)

rA

rB

F1

F2

x

y

z

O

�39.8�

�67.4�

�121�

MRO
� {30i � 40j � 60k} lb · ft

(c)

a

g
b

SOLUTION
Position vectors are directed from point O to each force as shown in
Fig. 4–15b. These vectors are

The resultant moment about O is therefore

rB = 54i + 5j - 2k6 ft
rA = 55j6 ft

NOTE: This result is shown in Fig. 4–15c. The coordinate direction
angles were determined from the unit vector for Realize that the
two forces tend to cause the rod to rotate about the moment axis in
the manner shown by the curl indicated on the moment vector.

MRO.

Ans.= 530i - 40j + 60k6 lb # ft
+  [51-302 - 1-221402]i - [41-302 - (-2)1802]j + [41402 - 51802]k
= [51202 - 01402]i - [0] j + [01402 - (5)1-602]k

= 3
i j k
0 5 0

-60 40 20

3 + 3
i j k
4 5 -2
80 40 -30

3
= rA * F1 + rB * F3

MRO = ©1r * F2

Two forces act on the rod shown in Fig. 4–15a. Determine the
resultant moment they create about the flange at O. Express the result
as a Cartesian vector.
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Important Points

● The moment of a force creates the tendency of a body to turn
about an axis passing through a specific point O.

● Using the right-hand rule, the sense of rotation is indicated by the
curl of the fingers, and the thumb is directed along the moment
axis, or line of action of the moment.

● The magnitude of the moment is determined from 
where d is called the moment arm, which represents the
perpendicular or shortest distance from point O to the line of
action of the force.

● In three dimensions the vector cross product is used to determine
the moment, i.e., Remember that r is directed from
point O to any point on the line of action of F.

● The principle of moments states that the moment of a force
about a point is equal to the sum of the moments of the force’s
components about the point. This is a very convenient method to
use in two dimensions.

MO = r * F.

MO = Fd,

F2

O

r

F1F

Fig 4–16

MO

Fx

FFy

O

d

x

y

Fig. 4–17

FFyFy

FxFx

F

d

O

The moment of the applied force F about
point O is easy to determine if we use the
principle of moments. It is simply

.MO = Fxd

4.4 Principle of Moments

A concept often used in mechanics is the principle of moments, which is
sometimes referred to as Varignon’s theorem since it was originally
developed by the French mathematician Varignon (1654–1722). It states
that the moment of a force about a point is equal to the sum of the moments
of the components of the force about the point.This theorem can be proven
easily using the vector cross product since the cross product obeys the
distributive law. For example, consider the moments of the force and
two of its components about point O. Fig. 4–16. Since 
we have

For two-dimensional problems, Fig. 4–17, we can use the principle of
moments by resolving the force into its rectangular components and
then determine the moment using a scalar analysis. Thus,

This method is generally easier than finding the same moment using
.MO = Fd

MO = Fxy - Fyx

MO = r * F = r * 1F1 + F22 = r * F1 + r * F2

F = F1 + F2

F
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EXAMPLE 4.5

Determine the moment of the force in Fig. 4–18a about point O.

Fig. 4–18

x

y

(c)

45�

30�

30�
3 m

O

Fx � (5 kN) sin 75�

Fy � (5 kN) sin 75�

SOLUTION I
The moment arm d in Fig. 4–18a can be found from trigonometry.

Thus,

b Ans.

Since the force tends to rotate or orbit clockwise about point O, the
moment is directed into the page.

SOLUTION II
The x and y components of the force are indicated in Fig. 4–18b.
Considering counterclockwise moments as positive, and applying the
principle of moments, we have

MO = Fd = (5kN)(2.898 m2 = 14.5 kN # m

d = (3 m) sin 75° = 2.898 m

a

b Ans.= -14.5 kN # m = 14.5 kN # m
= -15 cos 45° kN213 sin 30° m2 - 15 sin 45° kN213 cos 30° m2

+ MO = - Fxdy - Fydx

SOLUTION III
The x and y axes can be set parallel and perpendicular to the rod’s axis
as shown in Fig. 4-18c. Here produces no moment about point O
since its line of action passes through this point. Therefore,

a

b Ans.= -14.5 kN # m = 14.5 kN # m
= -(5 sin 75° kN)(3 m)

+ MO = -Fy dx

Fx

30�      

(a)

45�  

F � 5 kN3 m

O

d
75�

y

x

(b)

30�

45�

O

dy � 3 sin 30� m

dx � 3 cos 30� m
Fx � (5 kN) cos 45�

Fy � (5 kN) sin 45�
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EXAMPLE 4.6

Force F acts at the end of the angle bracket shown in Fig. 4–19a.
Determine the moment of the force about point O.

SOLUTION I (SCALAR ANALYSIS)

The force is resolved into its x and y components as shown in
Fig. 4–19b, then

a

b

or

Ans.

SOLUTION II (VECTOR ANALYSIS)

Using a Cartesian vector approach, the force and position vectors
shown in Fig. 4–19c are

The moment is therefore

Ans.

NOTE: It is seen that the scalar analysis (Solution I) provides a
more convenient method for analysis than Solution II since the
direction of the moment and the moment arm for each component
force are easy to establish. Hence, this method is generally
recommended for solving problems displayed in two dimensions,
whereas a Cartesian vector analysis is generally recommended only
for solving three-dimensional problems.

= 5-98.6k6 N # m
= 0i - 0j + [0.41-346.42 - 1-0.221200.02]k

MO = r * F = 3
i j k

0.4  -0.2 0
200.0  -346.4 0

3

= 5200.0i - 346.4j6 N
F = 5400 sin 30°i - 400 cos 30°j6 N
r = 50.4i - 0.2j6 m

MO = 5-98.6k6 N # m

= -98.6 N # m = 98.6 N # m
+MO = 400 sin 30° N10.2 m2 - 400 cos 30° N10.4 m2

0.4 m

0.2 m

30�

O

F = 400 N
(a)

Fig. 4–19

0.4 m

0.2 m

(b)

x

400 cos 30� N

400 sin 30� N

O

y

y

x

0.4 m

0.2 m

30�

O

F(c)

r
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FUNDAMENTAL PROBLEMS

F4–1. Determine the moment of the force about point O.

5 ft

0.5 ft

600 lb

20�

30�

O

F4–1

5 m

2 m

100 N
3

4

5

O

F4–2

30�

45�

F � 300 N

0.4 m

0.3 m
O

F4–3

4 ft

3 ft

1 ft

600 lb

O

45�

F4–4

50 N

60�

45�

100 mm

100 mm

200 mm
O

F4–5

500 N

3 m

O

45�

F4–6

F4–4. Determine the moment of the force about point O.

F4–5. Determine the moment of the force about point O.
Neglect the thickness of the member.

F4–6. Determine the moment of the force about point O.F4–3. Determine the moment of the force about point O.

F4–2. Determine the moment of the force about point O.
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F4–10. Determine the moment of force F about point O.
Express the result as a Cartesian vector.

F4–9. Determine the resultant moment produced by the
forces about point O.

F 4–11. Determine the moment of force F about point O.
Express the result as a Cartesian vector.

F4–12. If and 
, determine the resultant moment

produced by these forces about point O. Express the result
as a Cartesian vector.

+  250j + 100k6 lb
F2 = 5-200iF1 = 5100i - 120j + 75k6 lb

O

2 m

2.5 m45�

1 m

600 N

 300 N

 500 N

F4–7

F1 � 500 N

F2 � 600 N

A

0.25 m

0.3 m
0.125 m

60�

4
35

O

F4–8

O

30�30�

6 ft

6 ft

F2 � 200 lb

F1 � 300 lb

F4–9

x

z

y

O

A
B

4 m
3 m

F � 500 N

F 4–10

x

z

y

O

A

B

C 2 ft

1 ft

4 ft

4 ft

F � 120 lb

F4–11

z

O

A

x

y

4 ft

3 ft 5 ft

F1

F2

F4–12

F4–7. Determine the resultant moment produced by the
forces about point O.

F4–8. Determine the resultant moment produced by the
forces about point O.
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PROBLEMS

A

P

F

B

C

6 ft

45�

12 ft
3

4

5

Probs. 4–4/5

3 m

0.45 m

4 kN

A

u

Probs. 4–6/7

F

B

A

18 in.

5 in.

30�

Probs. 4–8/9

4 kN

800 N 800 N

4 kN

Case 1 Case 2

0.4 m

0.05 m

0.05 m

0.4 m

O
O

Prob. 4–10

4–6. If , determine the moment produced by the 
4-kN force about point A.

4–7. If the moment produced by the 4-kN force about
point A is clockwise, determine the angle , where

.0° … u … 90°
u10 kN # m

u = 45°

•4–1. If A, B, and D are given vectors, prove the
distributive law for the vector cross product, i.e.,

.

4–2. Prove the triple scalar product identity
.

4–3. Given the three nonzero vectors A, B, and C, show
that if , the three vectors must lie in the
same plane.

*4–4. Two men exert forces of and on
the ropes. Determine the moment of each force about A.
Which way will the pole rotate, clockwise or counterclockwise?

•4–5. If the man at B exerts a force of on his
rope, determine the magnitude of the force F the man at C
must exert to prevent the pole from rotating, i.e., so the
resultant moment about A of both forces is zero.

P = 30 lb

P = 50 lbF = 80 lb

A # (B : C) = 0

A # B : C = A : B # C

A : (B + D) = (A : B) + (A : D)

*4–8. The handle of the hammer is subjected to the force
of Determine the moment of this force about the
point A.

•4–9. In order to pull out the nail at B, the force F exerted
on the handle of the hammer must produce a clockwise
moment of about point A. Determine the
required magnitude of force F.

500 lb # in.

F = 20 lb.

4–10. The hub of the wheel can be attached to the axle
either with negative offset (left) or with positive offset
(right). If the tire is subjected to both a normal and radial
load as shown, determine the resultant moment of these
loads about point O on the axle for both cases.
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4–11. The member is subjected to a force of . If
, determine the moment produced by F about

point A.

*4–12. Determine the angle of the
force F so that it produces a maximum moment and a
minimum moment about point A. Also, what are the
magnitudes of these maximum and minimum moments?

•4–13. Determine the moment produced by the force F
about point A in terms of the angle . Plot the graph of 
versus , where .0° … u … 180°u

MAu

u (0° … u … 180°)

u = 45°
F = 6 kN

A

6 m

1.5 m

u

F � 6 kN

Probs. 4–11/12/13

2 in.

4 in.

6 in.
30�

60�

P � 50 lb

F

A

Probs. 4–14

100 mm
65 mm

200 mm

A

Nf � 400 N

Ft

5�

Probs. 4–15/16

60�

6 ft

C

B

A

3 ft

3

4

5

FB

FA

Probs. 4–17/18

4–14. Serious neck injuries can occur when a football
player is struck in the face guard of his helmet in the
manner shown, giving rise to a guillotine mechanism.
Determine the moment of the knee force about
point A. What would be the magnitude of the neck force F
so that it gives the counterbalancing moment about A?

P = 50 lb

4–15. The Achilles tendon force of is
mobilized when the man tries to stand on his toes. As this is
done, each of his feet is subjected to a reactive force of

Determine the resultant moment of and 
about the ankle joint A.

*4–16. The Achilles tendon force is mobilized when the
man tries to stand on his toes.As this is done, each of his feet
is subjected to a reactive force of If the resultant
moment produced by forces and about the ankle joint
A is required to be zero, determine the magnitude of .Ft

NtFt
Nt = 400 N.

Ft

NfFtNf = 400 N.

Ft = 650 N

•4–17. The two boys push on the gate with forces of
and as shown. Determine the moment of each

force about C. Which way will the gate rotate, clockwise or
counterclockwise? Neglect the thickness of the gate.

4–18. Two boys push on the gate as shown. If the boy at B
exerts a force of , determine the magnitude of
the force the boy at A must exert in order to prevent the
gate from turning. Neglect the thickness of the gate.

FA
FB = 30 lb

FA = 30 lb
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4–26. The foot segment is subjected to the pull of the two
plantarflexor muscles. Determine the moment of each force
about the point of contact A on the ground.

•4–21. Determine the direction for of the
force F so that it produces the maximum moment about
point A. Calculate this moment.

4–22. Determine the moment of the force F about point A
as a function of . Plot the results of M (ordinate) versus 
(abscissa) for .

4–23. Determine the minimum moment produced by 
the force F about point A. Specify the angle 

.u … 180°)
u (0° …

0° … u … 180°
uu

0° … u … 180°u

*4–24. In order to raise the lamp post from the position
shown, force F is applied to the cable. If 
determine the moment produced by F about point A.

•4–25. In order to raise the lamp post from the position
shown, the force F on the cable must create a counterclockwise
moment of about point A. Determine the
magnitude of F that must be applied to the cable.

1500 lb # ft

F = 200 lb,

43 in.

6 in.

F

P

MP

u

Probs. 4–19/20

F � 400 N

3 m

2 m

A

u

Probs. 4–21/22/23

F

75�C

A

B

10 ft

20 ft

Probs. 4–24/25

60�

30�

4 in.

A
1 in.

3.5 in.

70�

F2 � 30 lb

F1 � 20 lb

Prob. 4–26

4–19. The tongs are used to grip the ends of the drilling
pipe P. Determine the torque (moment) that the
applied force exerts on the pipe about point P
as a function of . Plot this moment versus for

.

*4–20. The tongs are used to grip the ends of the drilling
pipe P. If a torque (moment) of is needed
at P to turn the pipe, determine the cable force F that must
be applied to the tongs. Set .u = 30°

MP = 800 lb # ft

0 … u … 90°
uMPu

F = 150 lb
MP
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*4–32. The towline exerts a force of at the end
of the 20-m-long crane boom. If determine the
placement x of the hook at A so that this force creates a
maximum moment about point O. What is this moment?

•4–33. The towline exerts a force of at the end
of the 20-m-long crane boom. If determine the
position of the boom so that this force creates a maximum
moment about point O. What is this moment?

u

x = 25 m,
P = 4 kN

u = 30°,
P = 4 kN•4–29. Determine the moment of each force about the

bolt located at A. Take 

4–30. If and determine the resultant
moment about the bolt located at A.

FC = 45 lb,FB = 30 lb

FB = 40 lb, FC = 50 lb.

4–31. The rod on the power control mechanism for a
business jet is subjected to a force of 80 N. Determine the
moment of this force about the bearing at A.

4–27. The 70-N force acts on the end of the pipe at B.
Determine (a) the moment of this force about point A, and
(b) the magnitude and direction of a horizontal force, applied
at C, which produces the same moment.Take 

*4–28. The 70-N force acts on the end of the pipe at B.
Determine the angles of the force that
will produce maximum and minimum moments about
point A. What are the magnitudes of these moments?

u 10° … u … 180°2

u = 60°.

A

C
0.3 m 0.7 m

0.9 m

B

70 N

u

Probs. 4–27/28

Probs. 4–29/30

20�

60�

A
80 N

150 mm

Prob. 4–31

1.5 m

O

20 m

A

B

P � 4 kN

x

u

Probs. 4–32/33
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4–43. Determine the moment produced by each force
about point O located on the drill bit. Express the results as
Cartesian vectors.

*4–40. Determine the moment produced by force 
about point O. Express the result as a Cartesian vector.

•4–41. Determine the moment produced by force 
about point O. Express the result as a Cartesian vector.

4–42. Determine the resultant moment produced by
forces and about point O. Express the result as a
Cartesian vector.

FCFB

FC

FB

B

0.65 m

0.5 m

1.2 m

30� 

0.3 m

F

G

A

Prob. 4–34/35/36

y

x

z

1 ft2 ft

2 ft

A

O
3 ft

F2 � {�10i � 30j � 50k} lb

F1 � {�20i � 10j � 30k} lb

Probs. 4–37/38/39

y
x

z

C

O
B

A
6 m

3 m

2 m

2.5 m

FC � 420 N
FB � 780 N

Probs. 4–40/41/42

x

z

A BO

y

150 mm

600 mm

300 mm

150 mm

FA � {�40i � 100j � 60k} N

FB � {�50i � 120j � 60k} N

Prob. 4–43

4–34. In order to hold the wheelbarrow in the position
shown, force F must produce a counterclockwise moment
of about the axle at A. Determine the required
magnitude of force F.

4–35. The wheelbarrow and its contents have a mass of
50 kg and a center of mass at G. If the resultant moment
produced by force F and the weight about point A is to be
zero, determine the required magnitude of force F.

*4–36. The wheelbarrow and its contents have a center of
mass at G. If and the resultant moment produced
by force F and the weight about the axle at A is zero,
determine the mass of the wheelbarrow and its contents.

F = 100 N

200 N # m

•4–37. Determine the moment produced by about
point O. Express the result as a Cartesian vector.

4–38. Determine the moment produced by about
point O. Express the result as a Cartesian vector.

4–39. Determine the resultant moment produced by the two
forces about point O. Express the result as a Cartesian vector.

F2

F1

*4–44. A force of produces a
moment of about the origin
of coordinates, point O. If the force acts at a point having an
x coordinate of determine the y and z coordinates.x = 1 m,

MO = 54i + 5j - 14k6 kN # m
F = 56i - 2j + 1k6 kN
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4–50. A 20-N horizontal force is applied perpendicular to
the handle of the socket wrench. Determine the magnitude
and the coordinate direction angles of the moment created
by this force about point O.

*4–48. Force F acts perpendicular to the inclined plane.
Determine the moment produced by F about point A.
Express the result as a Cartesian vector.

•4–49. Force F acts perpendicular to the inclined plane.
Determine the moment produced by F about point B.
Express the result as a Cartesian vector.

4–47. The force creates a
moment about point O of .
If the force passes through a point having an x coordinate of
1 m, determine the y and z coordinates of the point. Also,
realizing that , determine the perpendicular
distance d from point O to the line of action of F.

MO = Fd

MO = 5-14i + 8j + 2k6 N # m
F = 56i + 8j + 10k6 N

400 mm

y300 mm

200 mm

250 mm

x

z

30�

40�

F � 80 N

B

C

A

Probs. 4–45/46

d

z

x

y
O

y

1 m

z

P
F

MO

Prob. 4–47

z

x y

3 m

3 m

4 m

A

B C

F � 400 N

Probs. 4–48/49

15�

200 mm

75 mm

20 N

A

O

x

y

z

Prob. 4–50

•4–45. The pipe assembly is subjected to the 80-N force.
Determine the moment of this force about point A.

4–46. The pipe assembly is subjected to the 80-N force.
Determine the moment of this force about point B.
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4.5 Moment of a Force about a 
Specified Axis

Sometimes, the moment produced by a force about a specified axis must
be determined. For example, suppose the lug nut at O on the car tire in
Fig. 4–20a needs to be loosened. The force applied to the wrench will
create a tendency for the wrench and the nut to rotate about the moment
axis passing through O; however, the nut can only rotate about the y axis.
Therefore, to determine the turning effect, only the y component of the
moment is needed, and the total moment produced is not important. To
determine this component, we can use either a scalar or vector analysis.

Scalar Analysis. To use a scalar analysis in the case of the lug nut in
Fig. 4–20a, the moment arm perpendicular distance from the axis to the line
of action of the force is Thus, the moment of F about the ydy = d cos u.

F

A B

F

x y

d

(a)

z

O

dy

MO

My

Moment Axis

u

Fig. 4–20
4

If large enough, the cable force F on the boom
of this crane can cause the crane to topple
over. To investigate this, the moment of the
force must be calculated about an axis passing
through the base of the legs at A and B.

axis is According to the right-hand rule, is
directed along the positive y axis as shown in the figure. In general, for any
axis a, the moment is

(4–10)Ma = Fda

MyMy = F dy = F(d cos u).
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Vector Analysis. To find the moment of force F in Fig. 4–20b about
the y axis using a vector analysis, we must first determine the moment of
the force about any point O on the y axis by applying Eq. 4–7,

. The component along the y axis is the projection of
onto the y axis. It can be found using the dot product discussed in
Chapter 2, so that where j is the unit vector
for the y axis.

We can generalize this approach by letting be the unit vector that
specifies the direction of the axis shown in Fig. 4–21. Then the moment
of F about the axis is . This combination is referred to
as the scalar triple product. If the vectors are written in Cartesian form,
we have

This result can also be written in the form of a determinant, making it
easier to memorize.*

(4–11)

where
represent the x, y, z components of the unit
vector defining the direction of the axis

represent the x, y, z components of the
position vector extended from any point O on
the axis to any point A on the line of action
of the force

represent the x, y, z components of the force
vector.

When is evaluated from Eq. 4–11, it will yield a positive or negative
scalar. The sign of this scalar indicates the sense of direction of along
the axis. If it is positive, then will have the same sense as whereas
if it is negative, then will act opposite to 

Once is determined, we can then express as a Cartesian vector,
namely,

(4–12)

The examples which follow illustrate numerical applications of the
above concepts.

Ma = Maua

MaMa

ua.Ma

ua,Maa
Ma

Ma

FzFy,Fx,

a

rzry,rx,

a
uax, uay, uaz

Ma = ua # 1r * F2 = 3
uax uay uaz
rx ry rz
Fx Fy Fz

3

= uax(ryFz - rzFy) - uay(rxFz - rzFx) + uaz(rxFy - ryFx)

Ma = [uaxi + uay j + uazk] # 3
i j k
rx ry rz
Fx Fy Fz

3

Ma = ua # (r * F)
a

ua

My = j # MO = j # (r * F),

MOMyMO = r * F

*Take a moment to expand this determinant, to show that it will yield the above result.

r

O

MO � r � FMa

ua

a

Axis of projection

F
A

Fig. 4–21

x y

r

j

(b)

z

O

M0 � r � F

F

u

u My

4 Fig. 4–20
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Important Points

● The moment of a force about a specified axis can be determined
provided the perpendicular distance from the force line of
action to the axis can be determined.

● If vector analysis is used, where defines the
direction of the axis and r is extended from any point on the axis
to any point on the line of action of the force.

● If is calculated as a negative scalar, then the sense of direction
of is opposite to 

● The moment expressed as a Cartesian vector is determined
from Ma = Maua.

Ma

ua.Ma

Ma

uaMa = ua # 1r * F2,
Ma = Fda.
da

EXAMPLE 4.7

Determine the resultant moment of the three forces in Fig. 4–22 about
the x axis, the y axis, and the z axis.

SOLUTION
A force that is parallel to a coordinate axis or has a line of action that
passes through the axis does not produce any moment or tendency for
turning about that axis.Therefore, defining the positive direction of the
moment of a force according to the right-hand rule, as shown in the
figure, we have

Ans.

Ans.

Ans.

The negative signs indicate that and act in the and 
directions, respectively.

-z-yMzMy

Mz = 0 + 0 - (40 lb)(2 ft) = -80 lb # ft

My = 0 - (50 lb)(3 ft) - (40 lb)(2 ft) = -230 lb # ft

Mx = (60 lb)(2 ft) + (50 lb)(2 ft) + 0 = 220 lb # ft
2 ft

2 ft
2 ft 3 ft

x
y

z

B

C

A

O

F3 � 40 lb

F2 � 50 lb

F1 � 60 lb

Fig. 4–22
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EXAMPLE 4.8

Determine the moment produced by the force F in Fig. 4–23a,
which tends to rotate the rod about the AB axis.

SOLUTION
A vector analysis using will be considered for the
solution rather than trying to find the moment arm or perpendicular
distance from the line of action of F to the AB axis. Each of the terms
in the equation will now be identified.

Unit vector defines the direction of the AB axis of the rod,
Fig. 4–23b, where

Vector r is directed from any point on the AB axis to any point on the
line of action of the force. For example, position vectors and are
suitable, Fig. 4–23b. (Although not shown, or can also be
used.) For simplicity, we choose where

The force is

Substituting these vectors into the determinant form and expanding,
we have

This positive result indicates that the sense of is in the same
direction as 

Expressing as a Cartesian vector yields

Ans.

The result is shown in Fig. 4–23b.

NOTE: If axis AB is defined using a unit vector directed from B toward
A, then in the above formulation would have to be used.This would
lead to Consequently, and
the same result would be obtained.

MAB = MAB1-uB2,MAB = -80.50 N # m.
-uB

= 572.0i + 36.0j6 N # m
MAB = MABuB = 180.50 N # m210.8944i + 0.4472j2

MAB

uB.
MAB

= 80.50 N # m
+ 0[0.6102 - 0102]

= 0.8944[01-3002 - 0102] - 0.4472[0.61-3002 - 0102]

MAB = uB # 1rD * F2 = 3
0.8944 0.4472 0

0.6 0 0
0 0  -300

3

F = 5-300k6 N

rD = 50.6i6 m
rD,

rBDrBC
rDrC

uB =
rB
rB

=
{0.4i + 0.2j} m

210.4 m2 2 + 10.2 m2 2
= 0.8944i + 0.4472j

uB

MAB = uB # 1r * F2

MAB

0.4 m

(a)

0.3 m
0.6 m

0.2 m

C

F = 300 N

B

x

y

z

A

Fig. 4–23

(b)

F

C

B

x

z

MAB

uB

rC

rD

A

D

y
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EXAMPLE 4.9

Determine the magnitude of the moment of force F about segment
OA of the pipe assembly in Fig. 4–24a.

SOLUTION
The moment of F about the OA axis is determined from

where r is a position vector extending from any
point on the OA axis to any point on the line of action of F. As
indicated in Fig. 4–24b, either can be used;
however, will be considered since it will simplify the calculation.

The unit vector , which specifies the direction of the OA axis, is

and the position vector is

rOD = 50.5i + 0.5k6 m

rOD

uOA =
rOA
rOA

=
50.3i + 0.4j6 m

210.3 m22 + 10.4 m22 = 0.6i + 0.8j

uOA
rOD

rOD, rOC, rAD, or rAC

MOA = uOA # (r * F),

The force F expressed as a Cartesian vector is

= {200i - 200j + 100k} N

= (300 N)B 50.4i - 0.4j + 0.2k6m

2(0.4 m)2 + (-0.4 m)2 + (0.2 m)2R

F = Fa rCD
rCD
b

Therefore,

Ans.= 100 N #m
= 0.6[011002 - ( 0.5 )1-2002] - 0.8[0.511002 - ( 0.5 )12002] + 0

= 3
0.6 0.8 0

0.5 0 0.5

200 -200  100

3

MOA = uOA # 1rOD * F2

0.1 m

0.3 m

0.2 m0.4 m

0.5 m

0.5 m

(a)

x y

C

A

O

D

z

F � 300 N

B

Fig. 4–24

x

y

z

F

(b)

D

A

C
O

rOD

rAD

rAC

rOC

uOA
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FUNDAMENTAL PROBLEMS

F4–18. Determine the moment of force F about the x, the
y, and the z axes. Use a scalar analysis.

F4–15. Determine the magnitude of the moment of the
200-N force about the x axis.

F4–13. Determine the magnitude of the moment of the
force about the x axis.
Express the result as a Cartesian vector.

F4–14. Determine the magnitude of the moment of the
force about the OA axis.
Express the result as a Cartesian vector.

F = 5300i - 200j + 150k6N

F = 5300i - 200j + 150k6 N

z

O

A

BF

x
y0.4 m

0.2 m

0.3 m

F4–13/14

x

O

A

45�

120�

60�

F � 200 N

z

y

0.25 m

0.3 m

F4–15

2 m

F � {30i � 20j � 50k} N

4 m

z

x

y

A

3 m

F4–16

2 ft

4 ft3 ftx y

z

B

C

A

F

F4–17

z

A

O

y

x

F � 500 N

3 m

2 m2 m

3

3

4

4

5

5

F4–18

F4–16. Determine the magnitude of the moment of the
force about the y axis.

F4–17. Determine the moment of the force
about the AB axis. Express the

result as a Cartesian vector.
F = 550i - 40j + 20k6 lb
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3 m

1.5 m

3 mx

C

A B

G

F

y

z

O

D

F � {�6i � 3j � 10k} N

Probs. 4–51/52

x

y

0.4 m

F � {�60i � 20j � 15k} N

30�

z

0.25 m

Prob. 4–53

4 ft

3 ft

2 ft

y

z

C

A

B

F � {4i � 12j � 3k} lb

x

Probs. 4–54/55

y

x

z

4 m

4 m

3 m

A

B

C

F � {�20i � 10j � 15k} N

Prob. 4–56

•4–53. The tool is used to shut off gas valves that are
difficult to access. If the force F is applied to the handle,
determine the component of the moment created about the
z axis of the valve.

4–51. Determine the moment produced by force F about
the diagonal AF of the rectangular block. Express the result
as a Cartesian vector.

*4–52. Determine the moment produced by force F about
the diagonal OD of the rectangular block. Express the
result as a Cartesian vector.

*4–56. Determine the moment produced by force F about
segment AB of the pipe assembly. Express the result as a
Cartesian vector.

PROBLEMS

4–54. Determine the magnitude of the moments of the
force F about the x, y, and z axes. Solve the problem (a) using
a Cartesian vector approach and (b) using a scalar approach.

4–55. Determine the moment of the force F about an axis
extending between A and C. Express the result as a
Cartesian vector.
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4–58. If , determine the magnitude of the
moment produced by this force about the x axis.

4–59. The friction at sleeve A can provide a maximum
resisting moment of about the x axis. Determine
the largest magnitude of force F that can be applied to the
bracket so that the bracket will not turn.

125 N # m

F = 450 N

•4–57. Determine the magnitude of the moment that the
force F exerts about the y axis of the shaft. Solve the
problem using a Cartesian vector approach and using a
scalar approach.

*4–60. Determine the magnitude of the moment
produced by the force of about the hinged axis
(the x axis) of the door.

F = 200 N

200 mm

250 mm

45�

B

x

yz

A

O

30�

50 mm

� 16 NF

Prob. 4–57

300 mmx

y

z

A B

60�

60�

45�
F

100 mm

150 mm

Probs. 4–58/59

y

x

z

15�  

A

B

2.5 m

2 m

F � 200 N

0.5 m

1 m

Prob. 4–60

6 ft

4 ft
4 ft

6 ft

y

z

A

C
F

D

B

6 ft

x

Probs. 4–61/62

•4–61. If the tension in the cable is , determine
the magnitude of the moment produced by this force about
the hinged axis, CD, of the panel.

4–62. Determine the magnitude of force F in cable AB in
order to produce a moment of about the hinged
axis CD, which is needed to hold the panel in the position
shown.

500 lb # ft

F = 140 lb



60�

A

10 in.

0.75 in.

P

Probs. 4–66/67

4.5 MOMENT OF A FORCE ABOUT A SPECIFIED AXIS 147

4

4–66. The flex-headed ratchet wrench is subjected to a
force of applied perpendicular to the handle as
shown. Determine the moment or torque this imparts along
the vertical axis of the bolt at A.

4–67. If a torque or moment of is required to
loosen the bolt at A, determine the force P that must be
applied perpendicular to the handle of the flex-headed ratchet
wrench.

80 lb # in.

P = 16 lb,

*4–68. The pipe assembly is secured on the wall by the
two brackets. If the flower pot has a weight of 50 lb,
determine the magnitude of the moment produced by the
weight about the OA axis.

•4–69. The pipe assembly is secured on the wall by the two
brackets. If the frictional force of both brackets can resist a
maximum moment of , determine the largest
weight of the flower pot that can be supported by the
assembly without causing it to rotate about the OA axis.

150 lb # ft

A

O

z

x y

4 ft

3 ft

3 ft

4 ft60�

30�
B

30�

15�

6 ft

y

y¿

x¿

C

A

B

F

x

z

3 ft

3 ft
Probs. 4–68/69

45�

z

y

A

C

B

500 mm

200 mm

150 mm
F

x

Probs. 4–70/71

4–63. The A-frame is being hoisted into an upright
position by the vertical force of . Determine the
moment of this force about the axis passing through
points A and B when the frame is in the position shown.

*4–64. The A-frame is being hoisted into an upright
position by the vertical force of . Determine the
moment of this force about the x axis when the frame is in
the position shown.

•4–65. The A-frame is being hoisted into an upright
position by the vertical force of . Determine the
moment of this force about the y axis when the frame is in
the position shown.

F = 80 lb

F = 80 lb

y¿
F = 80 lb

4–70. A vertical force of is applied to the
handle of the pipe wrench. Determine the moment that this
force exerts along the axis AB (x axis) of the pipe assembly.
Both the wrench and pipe assembly ABC lie in the 
plane. Suggestion: Use a scalar analysis.

4–71. Determine the magnitude of the vertical force F
acting on the handle of the wrench so that this force
produces a component of moment along the AB axis (x axis)
of the pipe assembly of . Both the pipe
assembly ABC and the wrench lie in the plane.
Suggestion: Use a scalar analysis.

x-y
(MA)x = 5-5i6 N # m

x-y

F = 60 N

Probs. 4–63/64/65
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4.6 Moment of a Couple

A couple is defined as two parallel forces that have the same magnitude,
but opposite directions, and are separated by a perpendicular distance d,
Fig. 4–25. Since the resultant force is zero, the only effect of a couple is to
produce a rotation or tendency of rotation in a specified direction. For
example, imagine that you are driving a car with both hands on the steering
wheel and you are making a turn. One hand will push up on the wheel
while the other hand pulls down, which causes the steering wheel to rotate.

The moment produced by a couple is called a couple moment. We can
determine its value by finding the sum of the moments of both couple
forces about any arbitrary point. For example, in Fig. 4–26, position
vectors and are directed from point O to points A and B lying on
the line of action of and F. The couple moment determined about O
is therefore

However or , so that

(4–13)

This result indicates that a couple moment is a free vector, i.e., it can act
at any point since M depends only upon the position vector r directed
between the forces and not the position vectors and directed from
the arbitrary point O to the forces. This concept is unlike the moment of
a force, which requires a definite point (or axis) about which moments
are determined.

Scalar Formulation. The moment of a couple, M, Fig. 4–27, is
defined as having a magnitude of

(4–14)

where F is the magnitude of one of the forces and d is the perpendicular
distance or moment arm between the forces. The direction and sense of
the couple moment are determined by the right-hand rule, where the
thumb indicates this direction when the fingers are curled with the sense
of rotation caused by the couple forces. In all cases, M will act
perpendicular to the plane containing these forces.

Vector Formulation. The moment of a couple can also be
expressed by the vector cross product using Eq. 4–13, i.e.,

(4–15)

Application of this equation is easily remembered if one thinks of taking
the moments of both forces about a point lying on the line of action of
one of the forces. For example, if moments are taken about point A in
Fig. 4–26, the moment of is zero about this point, and the moment of
F is defined from Eq. 4–15.Therefore, in the formulation r is crossed with
the force F to which it is directed.

-F

M = r * F

M = Fd

rB,rA

M = r * F

r = rB - rArB = rA + r

M = rB * F + rA * -F = (rB - rA) * F

-F
rBrA

F

�F

d

Fig. 4–25

O

B
A

F

�F

rArB

r

Fig. 4–26

F

�F
d

M

Fig. 4–27



M2

M1

(a)

4.6 MOMENT OF A COUPLE 149

4

Equivalent Couples. If two couples produce a moment with the same
magnitude and direction, then these two couples are equivalent.For example,
the two couples shown in Fig. 4–28 are equivalent because each couple
moment has a magnitude of 
, and each is directed into the plane of the page. Notice that larger forces
are required in the second case to create the same turning effect
because the hands are placed closer together. Also, if the wheel was
connected to the shaft at a point other than at its center, then the wheel
would still turn when each couple is applied since the couple is
a free vector.

Resultant Couple Moment. Since couple moments are vectors,
their resultant can be determined by vector addition. For example,
consider the couple moments acting on the pipe in Fig. 4–29a.
Since each couple moment is a free vector, we can join their tails at any
arbitrary point and find the resultant couple moment,
as shown in Fig. 4–29b.

If more than two couple moments act on the body, we may generalize
this concept and write the vector resultant as

(4–16)

These concepts are illustrated numerically in the examples that follow.
In general, problems projected in two dimensions should be solved using
a scalar analysis since the moment arms and force components are easy
to determine.

MR = ©1r * F2

MR = M1 + M2

M1 and M2

12 N # m

M = 30 N(0.4 m) = 40 N(0.3 m) = 12 N # m

0.3 m0.4 m

30 N

40 N

40 N

30 N

Fig. 4–28

MR
(b)

M2 M1

Fig. 4–29
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Steering wheels on vehicles have been made
smaller than on older vehicles because
power steering does not require the driver
to apply a large couple moment to the rim of
the wheel.

F F

Important Points

● A couple moment is produced by two noncollinear forces that
are equal in magnitude but opposite in direction. Its effect is to
produce pure rotation, or tendency for rotation in a specified
direction.

● A couple moment is a free vector, and as a result it causes the
same rotational effect on a body regardless of where the couple
moment is applied to the body.

● The moment of the two couple forces can be determined about
any point. For convenience, this point is often chosen on the line
of action of one of the forces in order to eliminate the moment of
this force about the point.

● In three dimensions the couple moment is often determined
using the vector formulation, where r is directed
from any point on the line of action of one of the forces to any
point on the line of action of the other force F.

● A resultant couple moment is simply the vector sum of all the
couple moments of the system.

M = r * F,

EXAMPLE 4.10

Determine the resultant couple moment of the three couples acting
on the plate in Fig. 4–30.

SOLUTION
As shown the perpendicular distances between each pair of couple forces
are and . Considering counterclockwise
couple moments as positive, we have

a

b Ans.

The negative sign indicates that has a clockwise rotational sense.MR

= -950 lb # ft = 950 lb # ft
= (-200 lb)(4 ft) + (450 lb)(3 ft) - (300 lb)(5 ft)

+MR = ©M; MR = -F1d1 + F2d2 - F3d3

d3 = 5 ftd2 = 3 ft,d1 = 4 ft,

F2 � 450 lb

F1 � 200 lb
F3 � 300 lb

F3 � 300 lb

F2 � 450 lb

d3 � 5 ft

F1 � 200 lb

A

B

d2 � 3 ft

d1 � 4 ft

Fig. 4–30



4.6 MOMENT OF A COUPLE 151

4

EXAMPLE 4.11

Determine the magnitude and direction of the couple moment acting
on the gear in Fig. 4–31a.

SOLUTION
The easiest solution requires resolving each force into its components
as shown in Fig. 4–31b. The couple moment can be determined by
summing the moments of these force components about any point, for
example, the center O of the gear or point A. If we consider
counterclockwise moments as positive, we have

a

d Ans.

or

a

d Ans.= 43.9 N #m
+M = ©MA; M = (600 cos 30° N)(0.2 m) - (600 sin 30° N)(0.2 m)

= 43.9 N #m
+M = ©MO; M = (600 cos 30° N)(0.2 m) - (600 sin 30° N)(0.2 m)

This positive result indicates that M has a counterclockwise rotational
sense, so it is directed outward, perpendicular to the page.

NOTE: The same result can also be obtained using , where d
is the perpendicular distance between the lines of action of the couple
forces, Fig. 4–31c. However, the computation for d is more involved.
Realize that the couple moment is a free vector and can act at any
point on the gear and produce the same turning effect about point O.

M = Fd

(b)

30�

F � 600 N
600 sin 30� N

600 cos 30� N

30�

F � 600 N 600 sin 30� N

600 cos 30� N

0.2 m

O

A

30�

30�

(c)

F � 600 N

F � 600 N

O

d

Fig. 4–31

30�

30�

(a)

F � 600 N

F � 600 N

0.2 m

O
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EXAMPLE 4.12

Determine the couple moment acting on the pipe shown in Fig. 4–32a.
Segment AB is directed 30° below the x–y plane.

SOLUTION I (VECTOR ANALYSIS)
The moment of the two couple forces can be found about any point. If
point O is considered, Fig. 4–32b, we have

Ans.
It is easier to take moments of the couple forces about a point lying on
the line of action of one of the forces, e.g., point A, Fig. 4–32c. In this
case the moment of the force at A is zero, so that

Ans.

SOLUTION II (SCALAR ANALYSIS)
Although this problem is shown in three dimensions, the geometry is
simple enough to use the scalar equation The perpendicular
distance between the lines of action of the couple forces is

Fig. 4–32d. Hence, taking moments of the
forces about either point A or point B yields

Applying the right-hand rule, M acts in the direction. Thus,

Ans.M = 5-130j6 lb # in.

- j

M = Fd = 25 lb 15.196 in.2 = 129.9 lb # in.

d = 6 cos 30° = 5.196 in.,

M = Fd.

= 5-130j6 lb # in.

= 16 cos 30°i - 6 sin 30°k2 * 125k2
M = rAB * 125k2

= 5-130j6 lb # in.
= -200i - 129.9j + 200i

= 18j2 * 1-25k2 + 16 cos 30°i + 8j - 6 sin 30°k2 * 125k2
M = rA * 1-25k2 + rB * 125k2

O

z

30�

x
y

25 lb

A

25 lb

B

8 in.

6 in.

(a)

Fig. 4–32

z

x
25 lb

A

25 lb

B

(b)

y
rB

rA

O

z

x

y

25 lb

A

25 lb

B
(c)

rAB

O

6 in.

z

x

y

25 lb

A

25 lb

B
(d)

30�

d

O



4.6 MOMENT OF A COUPLE 153

4

EXAMPLE 4.13

Replace the two couples acting on the pipe column in Fig. 4–33a by a
resultant couple moment.

SOLUTION (VECTOR ANALYSIS)
The couple moment developed by the forces at A and B, can
easily be determined from a scalar formulation.

By the right-hand rule, acts in the direction, Fig. 4–33b. Hence,

Vector analysis will be used to determine caused by forces at C
and D. If moments are computed about point D, Fig. 4–33a,

then

Since and are free vectors, they may be moved to some
arbitrary point and added vectorially, Fig. 4–33c. The resultant couple
moment becomes

Ans.MR = M1 + M2 = 560i + 22.5j + 30k6 N # m

M2M1

= 522.5j + 30k6 N # m
= 10.3i2 * [100j - 75k] = 301i * j2 - 22.51i * k2

M2 = rDC * FC = 10.3i2 * C125 A45 B j - 125 A35 Bk D
M2 = rDC * FC,

M2,

M1 = 560i6 N # m
+ iM1

M1 = Fd = 150 N10.4 m2 = 60 N # m

M1,

0.3 m

150 N
125 N

125 N

3
45

D

z

y
53

4

C

0.4 m
150 N

A
B

x

(a)

Fig. 4–33

M2 � 37.5 N � m

M1 � 60 N � m

3
45

(b)

(c)

M1

M2MR
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FUNDAMENTAL PROBLEMS

F4–23. Determine the resultant couple moment acting on
the pipe assembly.

F4–24. Determine the couple moment acting on the pipe
assembly and express the result as a Cartesian vector.

F4–19. Determine the resultant couple moment acting on
the beam.

F4–22. Determine the couple moment acting on the beam.

0.2 m

200 N

200 N

A

300 N300 N

400 N 400 N

3 m 2 m

F4–19

4 ft

4 ft 4 ft

300 lb

200 lb

200 lb

300 lb

150 lb

150 lb

F4–20

2 kN

2 kN

0.3 m
A

F

�F

B

0.9 m

F4–21

A B

4 m

1 m

1 m

10 kN

10 kN

4

3

5

4

3

5

F4–22

y

z

(Mc)3 � 300 lb �ft

(Mc)1 � 450 lb �ft

(Mc)2 � 250 lb �ft

2 ft
2 ft

2 ft
1.5 ft

3.5 ft

x

F4–23

B

A
0.4 m

z

yx

FA � 450 N

FB � 450 N

3

3

4

4

5

5

C

O

0.3 m

F4–24

F4–21. Determine the magnitude of F so that the resultant
couple moment acting on the beam is clockwise.1.5 kN # m

F4–20. Determine the resultant couple moment acting on
the triangular plate.
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PROBLEMS

4–74. The caster wheel is subjected to the two couples.
Determine the forces F that the bearings exert on the shaft
so that the resultant couple moment on the caster is zero.

*4–72. The frictional effects of the air on the blades of the
standing fan creates a couple moment of on
the blades. Determine the magnitude of the couple forces
at the base of the fan so that the resultant couple moment
on the fan is zero.

MO = 6 N # m

0.15 m 0.15 m
F�F

MO

Prob. 4–72

M3

M2

45�

M1 � 300 N�m

Prob. 4–73

40 mm

45 mm

100 mm

500 N

500 N

50 mm

F

F

A

B

Prob. 4–74

A

B

�F

F
2 ft

2 ft

2 ft

2 ft
150 lb

150 lb

3

3

4

4

5

5

2 ft

30�    

30�

Probs. 4–75/76

•4–73. Determine the required magnitude of the couple
moments and so that the resultant couple moment
is zero.

M3M2

4–75. If , determine the resultant couple
moment.

*4–76. Determine the required magnitude of force F if the
resultant couple moment on the frame is ,
clockwise.

200 lb # ft

F = 200 lb
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*4–80. Two couples act on the beam. Determine the
magnitude of F so that the resultant couple moment is

counterclockwise. Where on the beam does the
resultant couple moment act?
450 lb # ft,

•4–77. The floor causes a couple moment of
and on the brushes of the

polishing machine. Determine the magnitude of the couple
forces that must be developed by the operator on the
handles so that the resultant couple moment on the polisher
is zero. What is the magnitude of these forces if the brush 
at B suddenly stops so that MB = 0?

MB = 30 N # mMA = 40 N # m

•4–81. The cord passing over the two small pegs A and B of
the square board is subjected to a tension of 100 N.
Determine the required tension P acting on the cord that
passes over pegs C and D so that the resultant couple
produced by the two couples is acting clockwise.
Take .

4–82. The cord passing over the two small pegs A and B of
the board is subjected to a tension of 100 N. Determine the
minimum tension P and the orientation of the cord
passing over pegs C and D, so that the resultant couple
moment produced by the two cords is , clockwise.20 N # m

u

u = 15°
15 N # m

4–78. If , determine the magnitude of force F so that
the resultant couple moment is , clockwise.

4–79. If , determine the required angle so that
the resultant couple moment is zero.

uF = 200 N

100 N # m
u = 30°

0.3 m

MB

MA

F

�F

A

B

Prob. 4–77

30�

15�

15�

F
�F

300 N

300 N

300 mm

30�

u

u

Probs. 4–78/79

200 lb

200 lb

2 ft

1.5 ft 1.25 ft

30�

30�

�F

F

Prob. 4–80

100 N

100 N
�P

P

C B

30�

300 mm

300 mm

30�

A D

45�

u

u

Probs. 4–81/82
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•4–85. Determine the resultant couple moment acting on
the beam. Solve the problem two ways: (a) sum moments
about point O; and (b) sum moments about point A.

4–83. A device called a rolamite is used in various ways to
replace slipping motion with rolling motion. If the belt,
which wraps between the rollers, is subjected to a tension of
15 N, determine the reactive forces N of the top and bottom
plates on the rollers so that the resultant couple acting on
the rollers is equal to zero.

4–86. Two couples act on the cantilever beam. If
, determine the resultant couple moment.

4–87. Determine the required magnitude of force F, if the
resultant couple moment on the beam is to be zero.

F = 6 kN
*4–84. Two couples act on the beam as shown. Determine
the magnitude of F so that the resultant couple moment is

counterclockwise. Where on the beam does the
resultant couple act?
300 lb # ft

N

N

30�
25 mm

A

B

25 mm

T � 15 N

T � 15 N

Prob. 4–83

200 lb

200 lb

1.5 ft

Prob. 4–84

1.5 m 1.8 m

45�

45�

30�

30�

A

2 kN

2 kN
8 kN

B

0.3 m

8 kN

O

Prob. 4–85

F

�F 5 kN

5 kN

0.5 m

0.5 m

30�

30�

4

4

3

3

5

5

3 m

A

B

3 m

Probs. 4–86/87
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4 3 ft
60 lb

40 lb

40 lb

30�

d

y

x
A

B

1 ft 30�

3
4 5

4 ft

2 ft

3
4 5

60 lb

Probs. 4–88/89/90

30�

x

z

y

M1

M2

M3

Probs. 4–91/92

x

z

y

300 mm

200 mm

200 mm
300 mm

300 mm

�F

F

Probs. 4–93/94

y

y

x¿

x

¿

25�

My

Mx

Prob. 4–95

•4–93. If , determine the magnitude and
coordinate direction angles of the couple moment. The pipe
assembly lies in the x–y plane.

4–94. If the magnitude of the couple moment acting on
the pipe assembly is , determine the magnitude of
the couple forces applied to each wrench. The pipe
assembly lies in the x–y plane.

50 N # m

F = 80 N

4–95. From load calculations it is determined that the
wing is subjected to couple moments and

. Determine the resultant couple moments
created about the and axes.The axes all lie in the same
horizontal plane.

y¿x¿
My = 25 kip # ft

Mx = 17 kip # ft
4–91. If , , and ,
determine the magnitude and coordinate direction angles
of the resultant couple moment.

*4–92. Determine the required magnitude of couple
moments so that the resultant couple
moment is .MR = 5-300i + 450j - 600k6 N # m

M1, M2,  and  M3

M3 = 450 N #mM2 = 600 N #mM1 = 500 N #m

*4–88. Two couples act on the frame. If the resultant
couple moment is to be zero, determine the distance d
between the 40-lb couple forces.

•4–89. Two couples act on the frame. If , determine
the resultant couple moment. Compute the result by resolving
each force into x and y components and (a) finding the
moment of each couple (Eq. 4–13) and (b) summing the
moments of all the force components about point A.

4–90. Two couples act on the frame. If , determine
the resultant couple moment. Compute the result by
resolving each force into x and y components and (a) finding
the moment of each couple (Eq. 4–13) and (b) summing the
moments of all the force components about point B.

d = 4 ft

d = 4 ft
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4

�F
x

y

z

O

1.5 m

3 m

30�

F

Probs. 4–96/97

x

30�

y

z

350 mm

250 mm

{35k} N

{�35k} N

{50i} N

{�50i} N

A

B

d

C

Probs. 4–98/99

*4–100. If , , and ,
determine the magnitude and coordinate direction angles
of the resultant couple moment.

•4–101. Determine the magnitudes of couple moments
so that the resultant couple moment is zero.M1, M2, and M3

M3 = 120 lb #ftM2 = 90 lb #ftM1 = 180 lb #ft

4–98. Determine the resultant couple moment of the two
couples that act on the pipe assembly.The distance from A to
B is . Express the result as a Cartesian vector.

4–99. Determine the distance d between A and B so that the
resultant couple moment has a magnitude of .MR = 20 N # m

d = 400 mm

*4–96. Express the moment of the couple acting on the
frame in Cartesian vector form. The forces are applied
perpendicular to the frame. What is the magnitude of the
couple moment? Take .

•4–97. In order to turn over the frame, a couple moment is
applied as shown. If the component of this couple moment
along the x axis is , determine the
magnitude F of the couple forces.

Mx = 5-20i6 N # m

F = 50 N

x

z

y

2 ft

2 ft

2 ft

3 ft

150 lb�ft

1 ft

45�

45�

M1

M2

M3

Probs. 4–100/101

2 ft

3 ft 4 ft

z

yx
�F2

F1

F2

 250 lb

250 lb

�F1

Probs. 4–102/103

4–102. If , determine the
magnitude and coordinate direction angles of the resultant
couple moment.

4–103. Determine the magnitude of couple forces and
so that the resultant couple moment acting on the block

is zero.
F2

F1

F1 = 100 lb and F2 = 200 lb
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4

4.7 Simplification of a Force and Couple
System

Sometimes it is convenient to reduce a system of forces and couple moments
acting on a body to a simpler form by replacing it with an equivalent system,
consisting of a single resultant force acting at a specific point and a resultant
couple moment.A system is equivalent if the external effects it produces on
a body are the same as those caused by the original force and couple
moment system. In this context, the external effects of a system refer to the
translating and rotating motion of the body if the body is free to move, or it
refers to the reactive forces at the supports if the body is held fixed.

For example, consider holding the stick in Fig. 4–34a, which is
subjected to the force F at point A. If we attach a pair of equal but
opposite forces F and –F at point B, which is on the line of action of F,
Fig. 4–34b, we observe that –F at B and F at A will cancel each other,
leaving only F at B, Fig. 4–34c. Force F has now been moved from A to B
without modifying its external effects on the stick; i.e., the reaction at the
grip remains the same. This demonstrates the principle of transmissibility,
which states that a force acting on a body (stick) is a sliding vector since
it can be applied at any point along its line of action.

We can also use the above procedure to move a force to a point that is not
on the line of action of the force. If F is applied perpendicular to the stick, as
in Fig. 4–35a, then we can attach a pair of equal but opposite forces F and –F
to B, Fig. 4–35b. Force F is now applied at B, and the other two forces, F at A
and –F at B, form a couple that produces the couple moment ,
Fig. 4–35c. Therefore, the force F can be moved from A to B provided a
couple moment M is added to maintain an equivalent system. This couple
moment is determined by taking the moment of F about B. Since M is
actually a free vector, it can act at any point on the stick. In both cases the
systems are equivalent which causes a downward force F and clockwise
couple moment M = Fd to be felt at the grip.

M = Fd

F F

F�FAB

(a)

AB

F

(b) (c)

Fig. 4–34

F F

�F
A

d

(a)

F
F

m � Fd

(b) (c)

Fig. 4–35
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4

System of Forces and Couple Moments. Using the above
method, a system of several forces and couple moments acting on a
body can be reduced to an equivalent single resultant force acting at a
point O and a resultant couple moment. For example, in Fig. 4–36a, O is
not on the line of action of , and so this force can be moved to point
O provided a couple moment is added to the body.
Similarly, the couple moment should be added to the
body when we move to point O. Finally, since the couple moment M
is a free vector, it can just be moved to point O. By doing this, we obtain
the equivalent system shown in Fig. 4–36b, which produces the same
external effects (support reactions) on the body as that of the force and
couple system shown in Fig. 4–36a. If we sum the forces and couple
moments, we obtain the resultant force and the resultant
couple moment Fig. 4–36c.

Notice that is independent of the location of point O; however,
depends upon this location since the moments and are
determined using the position vectors and Also note that is
a free vector and can act at any point on the body, although point O is
generally chosen as its point of application.

We can generalize the above method of reducing a force and couple
system to an equivalent resultant force acting at point O and a
resultant couple moment by using the following two equations.

(4–17)

The first equation states that the resultant force of the system is
equivalent to the sum of all the forces; and the second equation states
that the resultant couple moment of the system is equivalent to the sum
of all the couple moments plus the moments of all the forces 
about point O. If the force system lies in the x–y plane and any couple
moments are perpendicular to this plane, then the above equations
reduce to the following three scalar equations.

©MO©M

FR = ©F

(MR)O = ©MO + ©M

(MR)O
FR

(MR)Or2.r1

M2M1

(MR)OFR
(MR)O = M + M1 + M2,

FR = F1 + F2

F2

M2 = r2 * F2

M1 = r1 * F
F1

O

F1

(a)

F2

r2

r1

M

(b)

O(c)

�

O

F1

F2

M

M2 � r2 � F2

M1 � r1 � F1

FR

MRO

�

u

Fig. 4–36

(4–18)

Here the resultant force is determined from the vector sum of its two
components and (FR)y.(FR)x

(FR)x = ©Fx
(FR)y = ©Fy

(MR)O = ©MO + ©M
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4

W1 W2

d1
d2

O
WR

(MR)O

O

Procedure for Analysis

The following points should be kept in mind when simplifying a force
and couple moment system to an equivalent resultant force and
couple system.

• Establish the coordinate axes with the origin located at point O and
the axes having a selected orientation.

Force Summation.

• If the force system is coplanar, resolve each force into its x and y
components. If a component is directed along the positive x or y
axis, it represents a positive scalar; whereas if it is directed along
the negative x or y axis, it is a negative scalar.

• In three dimensions, represent each force as a Cartesian vector
before summing the forces.

Moment Summation.

• When determining the moments of a coplanar force system about
point O, it is generally advantageous to use the principle of
moments, i.e., determine the moments of the components of each
force, rather than the moment of the force itself.

• In three dimensions use the vector cross product to determine the
moment of each force about point O. Here the position vectors
extend from O to any point on the line of action of each force.

The weights of these traffic lights can be replaced by their equivalent resultant force
and a couple moment at the support, O. In

both cases the support must provide the same resistance to translation and rotation in
order to keep the member in the horizontal position.

(MR)O = W1d1 + W2 d2WR = W1 + W2
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4

 0.2 m  0.3 m

 4 kN
 5 kN

3 kN

O

(a)

54
3

30�

 0.1 m

 0.1 m

Fig. 4–37

(c)

(FR)y � 6.50 kN

(MR)O � 2.46 kN �m

(FR)x � 5.598 kN

FR

u

O

Replace the force and couple system shown in Fig. 4–37a by an
equivalent resultant force and couple moment acting at point O.

Using the Pythagorean theorem, Fig. 4–37c, the magnitude of isFR

Its direction is

Ans.

Moment Summation. The moments of 3 kN and 5 kN about
point O will be determined using their x and y components. Referring
to Fig. 4–37b, we have

u = tan-1a (FR)y
(FR)x

b = tan-1a 6.50 kN
5.598 kN

b = 49.3°

u

This clockwise moment is shown in Fig. 4–37c.

NOTE: Realize that the resultant force and couple moment in 
Fig. 4–37c will produce the same external effects or reactions at the
supports as those produced by the force system, Fig 4–37a.

a

b Ans.= -2.46 kN # m = 2.46 kN # m
- A45 B  (5 kN) (0.5 m) - (4 kN)(0.2 m)

(MR)O = (3 kN)sin 30°(0.2 m) - (3 kN)cos 30°(0.1 m) + A35 B  (5 kN) (0.1 m) 

+  (MR)O = ©MO;

SOLUTION
Force Summation. The 3 kN and 5 kN forces are resolved into their
x and y components as shown in Fig. 4–37b. We have

= -6.50 kN = 6.50 kNT(FR)y = (3 kN)sin 30° - A45 B  (5 kN) - 4 kN+ c(FR)y = ©Fy;

= 5.598 kN:(FR)x = (3 kN)cos 30° + A35 B  (5 kN):+ (FR)x = ©Fx;

Ans.FR = 21FR2x2 + 1FR2y2 = 215.598 kN22 + 16.50 kN22 = 8.58 kN

(3 kN)cos 30�

(3 kN)sin 30�

y

x

 0.2 m  0.3 m

 4 kN

 (5 kN)

O

(b)

4
5

3
5

 (5 kN)

 0.1 m

 0.1 m
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4

Replace the force and couple system acting on the member in Fig. 4–38a
by an equivalent resultant force and couple moment acting at point O.

SOLUTION
Force Summation. Since the couple forces of 200 N are equal but
opposite, they produce a zero resultant force, and so it is not necessary
to consider them in the force summation. The 500-N force is resolved
into its x and y components, thus,

From Fig. 4–15b, the magnitude of is

Ans.

And the angle is

Ans.

Moment Summation. Since the couple moment is a free vector, it
can act at any point on the member. Referring to Fig. 4–38a, we have

a

b Ans.

This clockwise moment is shown in Fig. 4–38b.

= -37.5 N #m = 37.5 N #m
- (750 N)(1.25 m) + 200 N #m

(MR)O = (500 N) A45 B(2.5 m) - (500 N) A35 B(1 m)

+ (MR)O = ©MO + ©Mc;

u = tan-1a (FR)y
(FR)x

b = tan-1a350 N
300 N

b = 49.4°

u

= 2(300 N)2 + (350 N)2 = 461 N

FR = 2(FR2x2 + (FR2y2
FR

(FR)y = (500 N) A45 B - 750 N = -350 N = 350 NT+ c(FR)y = ©Fy;

(FR)x = A35 B  (500 N) = 300 N::+ (FR)x = ©Fx;

EXAMPLE 4.15

(b)

O

y

x
(FR)x � 300 N

(FR)y � 350 N

(MR)O � 37.5 N�m

FR

u

O

4
3

5

1 m

1 m
1.25 m 1.25 m

(a)

200 N

200 N

500 N
750 N

Fig. 4–38
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The structural member is subjected to a couple moment M and
forces and in Fig. 4–39a. Replace this system by an equivalent
resultant force and couple moment acting at its base, point O.

SOLUTION (VECTOR ANALYSIS)
The three-dimensional aspects of the problem can be simplified by
using a Cartesian vector analysis. Expressing the forces and couple
moment as Cartesian vectors, we have

Force Summation.

Ans.

Moment Summation.

Ans.

The results are shown in Fig. 4–39b.

= 5-166i - 650j + 300k6 N # m
= 1-400j + 300k2 + 102 + 1-166.4i - 249.6j2

MRO = 1- 400j + 300k2 + 11k2 * 1- 800k2+ 3
i j k

-0.15 0.1 1
-249.6 166.4 0

3
MRO = M + rC * F1 + rB * F2

MRO = ©M + ©MO

= 5-250i + 166j - 800k6 N
FR = F1 + F2 = -800k - 249.6i + 166.4jFR = ©F;

M = -500 A45 B j + 500 A35 Bk = 5-400j + 300k6 N # m

= 300 N c {-0.15i + 0.1j} m

21-0.15 m22 + 10.1 m22 d = 5-249.6i + 166.4j6 N

= 1300 N2a rCB
rCB
b

F2 = 1300 N2uCB
F1 = 5-800k6 N

F2F1

EXAMPLE 4.16

F1 � 800 N
0.1 m

F2 � 300 N

0.15 m

rB

1 m

y

C

5
3

4

M � 500 N � m

O

x

(a)

z

rC

B

Fig. 4–39

y
x

z

MRO

FR

(b)

O
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F4–28. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

F4–29. Replace the loading system by an equivalent
resultant force and couple moment acting at point O.

F4–30. Replace the loading system by an equivalent
resultant force and couple moment acting at point O.

F4–26. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

F4–25. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

F4–27. Replace the loading system by an equivalent
resultant force and couple moment acting at point A.

A

3 ft 3 ft

4 ft

150 lb

200 lb

100 lb

3
4

5

50 N

200 N � m

30 N
40 N

A
B

3 m 3 m

900 N 30�

300 N�m

0.75 m 0.75 m 0.75 m 0.75 m

A

300 N

50 lb

100 lb

4
35

A

4
3

5

150 lb

3 ft 3 ft

1 ft

x

z

y

O

A

B

2 m1 m
1.5 m

F1 � {�300i � 150j � 200k} N

F2 � {�450k} N

0.5 m 0.4 m

z

y

x

F2 � 200 N

F1 � 100 N

0.3 m

Mc � 75 N�m

O

FUNDAMENTAL PROBLEMS

F4–25

F4–28

F4–29

F4–30

F4–26

F4–27
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4–107. Replace the two forces by an equivalent resultant
force and couple moment at point O. Set .

*4–108. Replace the two forces by an equivalent resultant
force and couple moment at point O. Set .F = 15 lb

F = 20 lb

•4–105. Replace the force system acting on the beam by
an equivalent force and couple moment at point A.

4–106. Replace the force system acting on the beam by an
equivalent force and couple moment at point B.

*4–104. Replace the force system acting on the truss by a
resultant force and couple moment at point C.

•4–109. Replace the force system acting on the post by a
resultant force and couple moment at point A.

PROBLEMS

BA

C

2 ft

6 ft

2 ft

200 lb
150 lb

100 lb

2 ft 2 ft

500 lb

3
4

5

Prob. 4–104

2.5 kN 1.5 kN

3 kN

A B

4 m

3
4

5

2 m 2 m

30�

Probs. 4–105/106

6 in.

30�

4
3

5

1.5 in.

F

20 lb

2 in.

x

y

O 40�

Probs. 4–107/108

250 N

500 N

0.2 m

0.5 m

3
4

5

300 N

1 m

1 m

1 m

A

B

30�  

Prob. 4–109
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*4–112. Replace the two forces acting on the grinder by a
resultant force and couple moment at point O. Express the
results in Cartesian vector form.

4–111. Replace the force system by a resultant force and
couple moment at point O.

4–110. Replace the force and couple moment system
acting on the overhang beam by a resultant force and
couple moment at point A.

•4–113. Replace the two forces acting on the post by a
resultant force and couple moment at point O. Express the
results in Cartesian vector form.

B

A
5

12 13

30 kN

45 kN�m

26 kN

0.3 m

0.3 m

2 m2 m
1 m 1 m

30�

Prob. 4–110

200 N

200 N

500 N

4

3

5

O

750 N

1.25 m 1.25 m

1 m

Prob. 4–111

z

A

D

B

C

O

x y

8 m6 m

6 m

3 m

2 m

FB � 5 kN

FD � 7 kN

Prob. 4–113

250 mm
y

x

z

25 mm
40 mm

150 mm

100 mm
O

A

B

F2 � {�15i � 20j � 30k} N

F1 � {10i � 15j � 40k} N

Prob. 4–112
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*4–116. Replace the force system acting on the pipe
assembly by a resultant force and couple moment at point O.
Express the results in Cartesian vector form.

4–115. Handle forces and are applied to the electric
drill. Replace this force system by an equivalent resultant
force and couple moment acting at point O. Express the
results in Cartesian vector form.

F2F1

4–114. The three forces act on the pipe assembly. If
and replace this force system by an

equivalent resultant force and couple moment acting at O.
Express the results in Cartesian vector form.

F2 = 80 N,F1 = 50 N

•4–117. The slab is to be hoisted using the three slings
shown. Replace the system of forces acting on slings by an
equivalent force and couple moment at point O. The force

is vertical.F1

yO

z

x

1.25 m

180 N

0.75 m

0.5 m

F2

F1

Prob. 4–114

x y

z

0.25 m

0.3 m
O

F1 � {6i � 3j � 10k} N

F2 � {2j � 4k} N

0.15 m

Prob. 4–115

x

z

2 ft

1.5 ft

2 ft

2 ft
O

x

F1 � {�20i �10j � 25k}lb

F2 � {�10i � 25j � 20k} lb

Prob. 4–116

y

x

z

45�

60�60�

45�

30�

6 m 2 m

2 m

F2 � 5 kN

F3 � 4 kN

O

F1 � 6 kN

Prob. 4–117
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4.8 Further Simplification of a Force and
Couple System

In the preceding section, we developed a way to reduce a force and couple
moment system acting on a rigid body into an equivalent resultant force

acting at a specific point O and a resultant couple moment .The
force system can be further reduced to an equivalent single resultant force
provided the lines of action of and are perpendicular to each
other. Because of this condition, only concurrent, coplanar, and parallel
force systems can be further simplified.

Concurrent Force System. Since a concurrent force system is
one in which the lines of action of all the forces intersect at a common
point O, Fig. 4–40a, then the force system produces no moment about
this point. As a result, the equivalent system can be represented by a
single resultant force acting at O, Fig. 4–40b.FR = ©F

(MR)OFR

(MR)OFR

Coplanar Force System. In the case of a coplanar force system,
the lines of action of all the forces lie in the same plane, Fig. 4–41a, and
so the resultant force of this system also lies in this plane.
Furthermore, the moment of each of the forces about any point O is
directed perpendicular to this plane. Thus, the resultant moment

and resultant force will be mutually perpendicular,
Fig. 4–41b. The resultant moment can be replaced by moving the
resultant force a perpendicular or moment arm distance d away
from point O such that produces the same moment about
point O, Fig. 4–41c. This distance d can be determined from the scalar
equation .(MR)O = FRd = ©MO or d = (MR)O>FR

(MR)OFR
FR

FR(MR)O

FR = ©F

F2

FR

F2

F4
F3

O O

(a) (b)

�

Fig. 4–40
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Parallel Force System. The parallel force system shown in Fig. 4–42a
consists of forces that are all parallel to the z axis. Thus, the resultant
force at point O must also be parallel to this axis, Fig. 4–42b.
The moment produced by each force lies in the plane of the plate, and so
the resultant couple moment, , will also lie in this plane, along the
moment axis a since and are mutually perpendicular. As a
result, the force system can be further reduced to an equivalent single
resultant force , acting through point P located on the perpendicular b
axis, Fig. 4–42c. The distance d along this axis from point O requires

.(MR)O = FRd = ©MO or d = ©MO>FR
FR

(MR)OFR
(MR)O

FR = ©F

z

F1 F2

F3O

(a)

z

a O

b
b

(b)

FR � �F

FR � �F

z

O

d

(c)

a

P

(MR)O

� �

Fig. 4–42

(a) (b) (c)

O

(MR)O

FR

O
FR

O d

F3

F4 F1

F2

� �

Fig. 4–41
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Procedure for Analysis

The technique used to reduce a coplanar or parallel force system to
a single resultant force follows a similar procedure outlined in the
previous section.

● Establish the x, y, z, axes and locate the resultant force an
arbitrary distance away from the origin of the coordinates.

Force Summation.

● The resultant force is equal to the sum of all the forces in the
system.

● For a coplanar force system, resolve each force into its x and y
components. Positive components are directed along the positive
x and y axes, and negative components are directed along the
negative x and y axes.

Moment Summation.

● The moment of the resultant force about point O is equal to the
sum of all the couple moments in the system plus the moments of
all the forces in the system about O.

● This moment condition is used to find the location of the
resultant force from point O.

FR

O

FR

The four cable forces are all concurrent at point O on this bridge
tower. Consequently they produce no resultant moment there,
only a resultant force . Note that the designers have positioned
the cables so that is directed along the bridge tower directly to
the support, so that it does not cause any bending of the tower.

FR
FR
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4Reduction to a Wrench In general, a three-dimensional force
and couple moment system will have an equivalent resultant force 
acting at point O and a resultant couple moment that are not
perpendicular to one another, as shown in Fig. 4–43a. Although a force
system such as this cannot be further reduced to an equivalent single
resultant force, the resultant couple moment can be resolved into
components parallel and perpendicular to the line of action of ,
Fig. 4–43a. The perpendicular component can be replaced if we
move to point P, a distance d from point O along the b axis,
Fig. 4–43b. As seen, this axis is perpendicular to both the a axis and the
line of action of . The location of P can be determined from

. Finally, because is a free vector, it can be moved to
point P, Fig. 4–43c.This combination of a resultant force and collinear
couple moment will tend to translate and rotate the body about its
axis and is referred to as a wrench or screw. A wrench is the simplest
system that can represent any general force and couple moment system
acting on a body.
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Here the weights of the traffic lights are replaced by their resultant force 
which acts at a distance from O. Both systems are equivalent.d = (W1d1 + W2 d2)>WR

WR = W1 + W2
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4

Replace the force and couple moment system acting on the beam in
Fig. 4–44a by an equivalent resultant force, and find where its line of
action intersects the beam, measured from point O.

EXAMPLE 4.17

SOLUTION

Force Summation. Summing the force components,

From Fig. 4–44b, the magnitude of is

Ans.

The angle is

Ans.

Moment Summation. We must equate the moment of about
point O in Fig. 4–44b to the sum of the moments of the force and
couple moment system about point O in Fig. 4–44a. Since the line of
action of acts through point O, only produces a moment
about this point. Thus,

a

Ans.d = 2.25 m

- [8 kN A35 B ] (0.5 m) + [8 kN A45 B ](4.5 m)

2.40 kN(d) = -(4 kN)(1.5 m) - 15 kN #m+(MR)O = ©MO;

(FR)y(FR)x

FR

u = tan-1a2.40 kN
4.80 kN

b = 26.6°

u

FR = 214.80 kN22 + 12.40 kN22 = 5.37 kN

FR

(FR)y = -4 kN + 8 kN A45 B = 2.40 kNc+ c(FR)y = ©Fy;

(FR)x =  8 kN A35 B = 4.80 kN::+ (FR)x = ©Fx;

(a)

O

4 kN

15 kN�m

8 kN

3
45

1.5 m 1.5 m 1.5 m 1.5 m

0.5 m

y

x

Fig. 4–44

(b)

d

O

FR

(FR)x � 4.80 kN(FR)y � 2.40 kN
u
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EXAMPLE 4.18

The jib crane shown in Fig. 4–45a is subjected to three coplanar forces.
Replace this loading by an equivalent resultant force and specify
where the resultant’s line of action intersects the column AB and
boom BC.

SOLUTION
Force Summation. Resolving the 250-lb force into x and y components
and summing the force components yields

As shown by the vector addition in Fig. 4–45b,

Ans.

Ans.

Moment Summation. Moments will be summed about point A.
Assuming the line of action of intersects AB at a distance y from A,
Fig. 4–45b, we have

a

Ans.

By the principle of transmissibility, can be placed at a distance x
where it intersects BC, Fig. 4–45b. In this case we have

a

Ans.x = 10.9 ft

+ 250 lb A35 B111 ft2 - 250 lb A45 B18 ft2= 175 lb 15 ft2 - 60 lb 13 ft2
325 lb 111 ft2 - 260 lb 1x2+MRA = ©MA;

FR

y = 2.29 ft

= 175 lb 15 ft2 - 60 lb 13 ft2 + 250 lb A35 B111 ft2 - 250 lb A45 B18 ft2
325 lb 1y2 + 260 lb 102+MRA = ©MA;

FR

u = tan-1a260 lb
325 lb

b = 38.7° u

FR = 2(325 lb)2 + (260 lb)2 = 416 lb

FRy = -250 lb A45 B - 60 lb = -260 lb = 260 lbT+ cFRy = ©Fy;

FRx = -250 lb A35 B - 175 lb = -325 lb = 325 lb;:+ FRx = ©Fx;

6 ft

y

x

5 ft

175 lb
60 lb

(a)

250 lb

5 4
3

3 ft 5 ft 3 ft

B
C

A

Fig. 4–45

y

(b)

x

x

FR

FR
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260 lb

325 lb

260 lb

325 lb
B

u
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The slab in Fig. 4–46a is subjected to four parallel forces. Determine
the magnitude and direction of a resultant force equivalent to the
given force system and locate its point of application on the slab.

EXAMPLE 4.19

SOLUTION (SCALAR ANALYSIS)
Force Summation. From Fig. 4–46a, the resultant force is

Ans.

Moment Summation. We require the moment about the x axis of
the resultant force, Fig. 4–46b, to be equal to the sum of the moments
about the x axis of all the forces in the system, Fig. 4–46a.The moment
arms are determined from the y coordinates since these coordinates
represent the perpendicular distances from the x axis to the lines of
action of the forces. Using the right-hand rule, we have

Ans.
In a similar manner, a moment equation can be written about the y

axis using moment arms defined by the x coordinates of each force.

Ans.

NOTE: A force of placed at point P(3.00 m, 2.50 m) on
the slab, Fig. 4–46b, is therefore equivalent to the parallel force system
acting on the slab in Fig. 4–46a.

FR = 1400 N

x = 3 m

 1400x = 4200

11400 N2x = 600 N18 m2 - 100 N16 m2 + 400 N102 + 500 N102
(MR)y = ©My;

-1400y = -3500 y = 2.50 m

-11400 N2y = 600 N102 + 100 N15 m2 - 400 N110 m2 + 500 N102
(MR)x = ©Mx;

= -1400 N = 1400 NT

- FR = -600 N + 100 N - 400 N - 500 N+ cFR = ©F;

y

x

B
2 m

O

600 N

500 N

z

100 N
5 m 5 m

400 N

C

8 m

�

�

(a)

Fig. 4–46

y
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FR

z

�
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x
P(x, y)

y
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EXAMPLE 4.20

Replace the force system in Fig. 4–47a by an equivalent resultant
force and specify its point of application on the pedestal.

SOLUTION
Force Summation. Here we will demonstrate a vector analysis.
Summing forces,

Ans.

Location. Moments will be summed about point O. The resultant
force is assumed to act through point P (x, y, 0), Fig. 4–47b. Thus

Equating the i and j components,

(1)

Ans.

(2)

Ans.

The negative sign indicates that the x coordinate of point P is
negative.

NOTE: It is also possible to establish Eq. 1 and 2 directly by summing
moments about the x and y axes. Using the right-hand rule, we have

700x = 300 lb14 in.2 - 500 lb14 in.)(MR)y = ©My;

-700y = -100 lb(4 in.) - 500 lb(2 in.)(MR)x = ©Mx;

x = -1.14 in.

700x = -800

y = 2 in.

-700y = -1400

 700xj - 700yi = 1200j - 2000j - 1000i - 400i

- 1000( j * k) - 400( j * k)

-700x(i * k) - 700y(j * k) = -1200(i * k) + 2000(i * k)

+ [1-4i + 2j2 * 1-500k2] + [(-4j) * (100k)]

1xi + yj2 * 1-700k2 = [14i2 * 1-300k2]
rP * FR = (rA * FA) + (rB * FB) + (rC * FC)

(MR)O = ©MO;

FR

= 5-700k6 lb
= 5-300k6 lb + 5-500k6 lb + 5100k6 lb
FR = FA + FB + FCFR = ©F;

x y

z

(a)

FB � 500 lb
FA � 300 lb

FC � 100 lb 2 in.

4 in.4 in.

4 in.

B
O

A

C

rB

rA

rC

Fig. 4–47

x y

z

(b)

FR � {�700k} lb

rP

O

P
y

x
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FUNDAMENTAL PROBLEMS

F4–34. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the member AB measured from A.

F4–32. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the member measured from A.

F4–31. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the beam measured from O.

F4–35. Replace the loading shown by an equivalent single
resultant force and specify the x and y coordinates of its line
of action.

F4–33. Replace the loading system by an equivalent
resultant force and specify where the resultant’s line of
action intersects the member measured from A.

F4–36. Replace the loading shown by an equivalent single
resultant force and specify the x and y coordinates of its line
of action.

500 lb 500 lb
250 lb

O x

y

3 ft 3 ft 3 ft 3 ft

30�

200 lb

50 lb

100 lb

3 ft 3 ft 3 ft

4
3

5

A

4
4

9
5

4
4
9
5

2 m 2 m 2 m
2 m

A
B

20 kN

15 kN

4
3

5

A

5 kN
6 kN

8 kN
4

3

5

1.5 m

3 m

0.5 m

0.5 m

0.5 m B

y

x

z

x

y

100 N

400 N

500 N

4 m

4 m
3 m

3 m2 m

3 m

3 m

1 m

1 m

z

y

x

2 m

200 N

200 N

100 N

100 N

F4–31

F4–32

F4–33 F4–36

F4–35

F4–34
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PROBLEMS

•4–121. The system of four forces acts on the roof truss.
Determine the equivalent resultant force and specify its
location along AB, measured from point A.

*4–120. The system of parallel forces acts on the top of the
Warren truss. Determine the equivalent resultant force of the
system and specify its location measured from point A.

4–118. The weights of the various components of the truck
are shown. Replace this system of forces by an equivalent
resultant force and specify its location measured from B.

4–119. The weights of the various components of the
truck are shown. Replace this system of forces by an
equivalent resultant force and specify its location
measured from point A.

4–122. Replace the force and couple system acting on the
frame by an equivalent resultant force and specify where
the resultant’s line of action intersects member AB,
measured from A.

4–123. Replace the force and couple system acting on the
frame by an equivalent resultant force and specify where
the resultant’s line of action intersects member BC,
measured from B.

A

500 N 500 N 500 N
1 kN

2 kN

1 m 1 m 1 m 1 m

Prob. 4–120

4 ft150 lb

B

A

300 lb

30�

30�

275 lb

200 lb

4 ft

4 ft

Prob. 4–121

3 ft
30�

4 ft

35

4

2 ft

150 lb

50 lb

500 lb � ft

C B

A

Probs. 4–122/123

14 ft 6 ft
2 ft3 ft

AB 3500 lb 5500 lb 1750 lb

Probs. 4–118/119
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4–127. Replace the force system acting on the post by a
resultant force, and specify where its line of action
intersects the post AB measured from point A.

*4–128. Replace the force system acting on the post by a
resultant force, and specify where its line of action
intersects the post AB measured from point B.

•4–125. Replace the force system acting on the frame by
an equivalent resultant force and specify where the
resultant’s line of action intersects member AB, measured
from point A.

4–126. Replace the force system acting on the frame by
an equivalent resultant force and specify where the
resultant’s line of action intersects member BC, measured
from point B.

*4–124. Replace the force and couple moment system
acting on the overhang beam by a resultant force, and
specify its location along AB measured from point A.

•4–129. The building slab is subjected to four parallel
column loadings. Determine the equivalent resultant force
and specify its location (x, y) on the slab. Take 

4–130. The building slab is subjected to four parallel
column loadings. Determine the equivalent resultant force
and specify its location (x, y) on the slab. Take 
F2 = 50 kN.

F1 = 20 kN,

F2 = 40 kN.
F1 = 30 kN,

B

A
5

12 13

30 kN

45 kN�m

26 kN

0.3 m

0.3 m

2 m2 m
1 m 1 m

30�

Prob. 4–124

2 ft

4 ft

3 ft

25 lb

2 ft

20 lb

A B

C

30�
35 lb

Probs. 4–125/126

250 N
500 N

0.2 m

0.5 m

3
4

5

300 N

1 m

30�

1 m

1 m

A

B

Probs. 4–127/128

y
x

20 kN

3 m

2 m

8 m 6 m

4 m

50 kN F1

F2

z

Probs. 4–129/130
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4–134. If , determine the
magnitude of the resultant force and specify the location of
its point of application (x, y) on the slab.

4–135. If the resultant force is required to act at the center
of the slab, determine the magnitude of the column loadings

and and the magnitude of the resultant force.FBFA

FA = 40 kN and FB = 35 kN

*4–132. Three parallel bolting forces act on the circular
plate. Determine the resultant force, and specify its
location (x, z) on the plate. , , and

.

•4–133. The three parallel bolting forces act on the circular
plate. If the force at A has a magnitude of ,
determine the magnitudes of and so that the resultant
force of the system has a line of action that coincides with
the y axis. Hint: This requires and .©Mz = 0©Mx = 0

FR
FCFB

FA = 200 lb

FC = 400 lb
FB = 100 lbFA = 200 lb

4–131. The tube supports the four parallel forces.
Determine the magnitudes of forces and acting at C
and D so that the equivalent resultant force of the force
system acts through the midpoint O of the tube.

FDFC

*4–136. Replace the parallel force system acting on
the plate by a resultant force and specify its location on the
x–z plane.

x

z

A

D

C

y
zB

O400 mm

400 mm

500 N

200 mm
200 mm

600 N

FC

FD

Prob. 4–131

45�
30�

1.5 ft

z

x
yAB

C

FB
FA

FC

Probs. 4–132/133

2.5 m

2.5 m

0.75 m

0.75 m

0.75 m

3 m
3 m

0.75 m 90 kN

30 kN

20 kN

x

y

z

FA

FB

Probs. 4–134/135

1 m

1 m

1 m

0.5 m

0.5 m

5 kN

3 kN

x

y

z

2 kN

Prob. 4–136
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*4–140. Replace the three forces acting on the plate by a
wrench. Specify the magnitude of the force and couple
moment for the wrench and the point P(y, z) where its line
of action intersects the plate.

4–139. Replace the force and couple moment system
acting on the rectangular block by a wrench. Specify the
magnitude of the force and couple moment of the wrench
and where its line of action intersects the x–y plane.

•4–137. If , represent the force
system acting on the corbels by a resultant force, and
specify its location on the x–y plane.

4–138. Determine the magnitudes of and so that the
resultant force passes through point O of the column.

FBFA

FA = 7 kN and FB = 5 kN

•4–141. Replace the three forces acting on the plate by a
wrench. Specify the magnitude of the force and couple
moment for the wrench and the point P(x, y) where its line
of action intersects the plate.

750 mm

z

x y

650 mm

100 mm

150 mm

600 mm

700 mm

100 mm

150 mm

8kN

6 kN

FA

FB

O

Probs. 4–137/138

y

x

z

300 lb

450 lb 600 lb

2 ft

4 ft

3 ft

600 lb�ft

Prob. 4–139

y

y
x

z

P

A

C

B

z

FB � {�60j} lb

FC � {�40i} lb
FA � {�80k}lb

12 ft

12 ft

Prob. 4–140

4 m
6 m

y

y

x

xP

A

C

B

z

FA � {500i} N

FC � {300j} N

FB � {800k} N

Prob. 4–141
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4.9 Reduction of a Simple Distributed
Loading

Sometimes, a body may be subjected to a loading that is distributed over
its surface. For example, the pressure of the wind on the face of a sign, the
pressure of water within a tank, or the weight of sand on the floor of a
storage container, are all distributed loadings.The pressure exerted at each
point on the surface indicates the intensity of the loading. It is measured
using pascals Pa (or ) in SI units or in the U.S. Customary
system.

Uniform Loading Along a Single Axis. The most common
type of distributed loading encountered in engineering practice is
generally uniform along a single axis.* For example, consider the beam
(or plate) in Fig. 4–48a that has a constant width and is subjected to a
pressure loading that varies only along the x axis. This loading can be
described by the function . It contains only one variable
x, and for this reason, we can also represent it as a coplanar distributed
load. To do so, we multiply the loading function by the width b m of
the beam, so that , Fig. 4-48b. Using the methods of
Sec. 4.8, we can replace this coplanar parallel force system with a
single equivalent resultant force acting at a specific location on the
beam, Fig. 4–48c.

Magnitude of Resultant Force. From Eq. 4–17
the magnitude of is equivalent to the sum of all the forces in the
system. In this case integration must be used since there is an infinite
number of parallel forces dF acting on the beam, Fig. 4–48b. Since dF is
acting on an element of length dx, and w(x) is a force per unit length,
then In other words, the magnitude of dF is
determined from the colored differential area dA under the loading
curve. For the entire length L,

(4–19)

Therefore, the magnitude of the resultant force is equal to the total area A
under the loading diagram, Fig. 4–48c.

FR =
LL

w1x2 dx =
LA
dA = A+ TFR = ©F;

dF = w1x2 dx = dA.

FR
1FR = ©F2,

FR

w(x) = p(x)b N/m

p = p(x) N/m2

lb/ft2N/m2

*The more general case of a nonuniform surface loading acting on a body is considered
in Sec. 9.5.

p

L

p � p(x)

x

(a)

C

x

FR

b

Fig. 4–48

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)

x

w

O

C A

L
x

FR

(c)
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Location of Resultant Force. Applying Eq. 4–17
the location of the line of action of can be determined by equating the
moments of the force resultant and the parallel force distribution about
point O (the y axis). Since dF produces a moment of 
about O, Fig. 4–48b, then for the entire length, Fig. 4–48c,

a

Solving for using Eq. 4–19, we have

(4–20)

This coordinate locates the geometric center or centroid of the area
under the distributed loading. In other words, the resultant force has a line
of action which passes through the centroid C (geometric center) of the
area under the loading diagram, Fig. 4–48c. Detailed treatment of the
integration techniques for finding the location of the centroid for areas is
given in Chapter 9. In many cases, however, the distributed-loading
diagram is in the shape of a rectangle, triangle, or some other simple
geometric form. The centroid location for such common shapes does not
have to be determined from the above equation but can be obtained
directly from the tabulation given on the inside back cover.

Once is determined, by symmetry passes through point on
the surface of the beam, Fig. 4–48a. Therefore, in this case the resultant
force has a magnitude equal to the volume under the loading curve

and a line of action which passes through the centroid
(geometric center) of this volume.
p = p1x2

1x, 02FRx

x,

x = LL
xw1x2 dx

LL
w1x2 dx

= LA
x dA

LA
dA

x,

- xFR = -
LL
xw1x2 dx+  (MR)O = ©MO;

x dF = xw1x2 dx
FRx

1MRO = ©MO2,

Important Points

● Coplanar distributed loadings are defined by using a loading
function that indicates the intensity of the loading
along the length of a member. This intensity is measured in 
or

● The external effects caused by a coplanar distributed load acting
on a body can be represented by a single resultant force.

● This resultant force is equivalent to the area under the loading
diagram, and has a line of action that passes through the centroid
or geometric center of this area.

lb>ft. N>mw = w1x2

The beam supporting this stack of lumber is
subjected to a uniform loading of . The
resultant force is therefore equal to the area
under the loading diagram It acts
trough the centroid or geometric center of
this area, from the support.b>2

FR = w0b.

w0

w0

b

b
2

a

FR

p

L

p � p(x)

x

(a)

C

x

FR

b

x

w

O

L
x

dx

dF � dA
w � w(x)

(b)

x

w

O

C A

L
x

FR

(c)
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EXAMPLE 4.21

Determine the magnitude and location of the equivalent resultant
force acting on the shaft in Fig. 4–49a.

w � (60 x2)N/m

(a)

dA � w dx

2 m
x dx

O
x

240 N/m

w

Fig. 4–49

(b)

O
x

w

C

x � 1.5 m

FR � 160 N

SOLUTION
Since is given, this problem will be solved by integration.

The differential element has an area Applying
Eq. 4–19,

Ans.

The location of measured from O, Fig. 4–49b, is determined from
Eq. 4–20.

Ans.

NOTE: These results can be checked by using the table on the inside
back cover, where it is shown that for an exparabolic area of length a,
height b, and shape shown in Fig. 4–49a, we have

=
3
4
12 m2 = 1.5 mA =

ab

3
=

2 m1240 N>m2
3

= 160 N and x =
3
4
a

= 1.5 m

x = LA
x dA

LA
dA

= L

2 m

0
x160x22 dx
160 N

=
60¢x4

4
≤ `

0

2 m

160 N
=

60¢24

4
-

04

4
≤

160 N

FRx

= 160 N

FR =
LA
dA =

L

2 m

0
60x2 dx = 60¢x3

3
≤ `

0

2 m

= 60¢23

3
-

03

3
≤

+ T FR = ©F;

dA = w dx = 60x2 dx.

w = w1x2
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A distributed loading of Pa acts over the top surface of
the beam shown in Fig. 4–50a. Determine the magnitude and location
of the equivalent resultant force.

p = (800x)

EXAMPLE 4.22

(a)

p

7200 Pa

x

9 m

0.2 m

y

p = 800x Pa

x

Fig. 4–50

w � 160x N/m

(b)

9 m

x

w 1440 N/m

x

C

FR � 6.48 kN

3 mx � 6 m

(c)

SOLUTION
Since the loading intensity is uniform along the width of the beam
(the y axis), the loading can be viewed in two dimensions as shown in
Fig. 4–50b. Here

At note that Although we may again apply
Eqs. 4–19 and 4–20 as in the previous example, it is simpler to use the
table on the inside back cover.

The magnitude of the resultant force is equivalent to the area of the
triangle.

Ans.

The line of action of passes through the centroid C of this triangle.
Hence,

Ans.

The results are shown in Fig. 4–50c.

NOTE: We may also view the resultant as acting through the
centroid of the volume of the loading diagram in Fig. 4–50a.
Hence intersects the x–y plane at the point (6 m, 0). Furthermore,
the magnitude of is equal to the volume under the loading
diagram; i.e.,

Ans.FR = V = 1
217200 N>m2219 m210.2 m2 = 6.48 kN

FR
FR

p = p1x2FR

x = 9 m - 1
319 m2 = 6 m

FR

FR = 1
219 m211440 N>m2 = 6480 N = 6.48 kN

w = 1440 N>m.x = 9 m,

= 1160x2 N>m
w = 1800x N>m2210.2 m2



4.9 REDUCTION OF A SIMPLE DISTRIBUTED LOADING 187

4

EXAMPLE 4.23

The granular material exerts the distributed loading on the beam as
shown in Fig. 4–51a. Determine the magnitude and location of the
equivalent resultant of this load.

SOLUTION
The area of the loading diagram is a trapezoid, and therefore the
solution can be obtained directly from the area and centroid formulas
for a trapezoid listed on the inside back cover. Since these formulas
are not easily remembered, instead we will solve this problem by
using “composite” areas. Here we will divide the trapezoidal loading
into a rectangular and triangular loading as shown in Fig. 4–51b. The
magnitude of the force represented by each of these loadings is equal
to its associated area,

The lines of action of these parallel forces act through the centroid of
their associated areas and therefore intersect the beam at

The two parallel forces and can be reduced to a single resultant
The magnitude of is

Ans.

We can find the location of with reference to point A, Fig. 4–51b
and 4–51c. We require

c

Ans.

NOTE: The trapezoidal area in Fig. 4–51a can also be divided into
two triangular areas as shown in Fig. 4–51d. In this case

and

NOTE: Using these results, show that again and x = 4 ft.FR = 675 lb

x4 = 9 ft - 1
319 ft2 = 6 ft

x3 = 1
319 ft2 = 3 ft

F4 = 1
219 ft2150 lb>ft2 = 225 lb

F3 = 1
219 ft21100 lb>ft2 = 450 lb

x = 4 ft

x16752 = 312252 + 4.514502+ MRA = ©MA;

FR

FR = 225 + 450 = 675 lb+ TFR = ©F;

FRFR.
F2F1

x2 = 1
219 ft2 = 4.5 ft

x1 = 1
319 ft2 = 3 ft

F2 = 19 ft2150 lb>ft2 = 450 lb

F1 = 1
219 ft2150 lb>ft2 = 225 lb

9 ft

B
A

(b)

50 lb/ft

50 lb/ft

F1 F2

x1
x2

B
A

(c)

FR

x

F3 F4

50 lb/ft

x3

9 ft
x4

(d)

100 lb/ft
A

100 lb/ft

50 lb/ft

9 ft

B

A

(a)

Fig. 4–51
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6 kN/m
9 kN/m

3 kN/m

3 m1.5 m 1.5 m

A B

A B

6 ft 8 ft

150 lb/ft

6 kN/m

6 m3 m

A
B

BA

6 ft 3 ft 3 ft

500 lb200 lb/ft

150 lb/ft

6 kN/m

3 kN/m

1.5 m4.5 m

A
B

4 m

w � 2.5x3

160 N/m

w

A
x

F4–40. Determine the resultant force and specify where it
acts on the beam measured from A.

F4–38. Determine the resultant force and specify where it
acts on the beam measured from A.

F4–39. Determine the resultant force and specify where it
acts on the beam measured from A.

F4–37. Determine the resultant force and specify where it
acts on the beam measured from A.

F4–41. Determine the resultant force and specify where it
acts on the beam measured from A.

F4–42. Determine the resultant force and specify where it
acts on the beam measured from A.

FUNDAMENTAL PROBLEMS
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A

B

3 m 3 m

15 kN/m

10 kN/m

3 m

Prob. 4–142

B

A

8 kN/m

4 kN/m

3 m 3 m

Prob. 4–143

3 m2 m

A B

800 N/m

200 N/m

Prob. 4–144

A B

L––
2

L––
2

w0 w0

Prob. 4–145

•4–145. Replace the distributed loading with an
equivalent resultant force, and specify its location on the
beam measured from point A.

4–143. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A.

*4–144. Replace the distributed loading by an equivalent
resultant force and specify its location, measured from
point A.

4–142. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A.

4–146. The distribution of soil loading on the bottom of
a building slab is shown. Replace this loading by an
equivalent resultant force and specify its location, measured
from point O.

4–147. Determine the intensities and of the
distributed loading acting on the bottom of the slab so that
this loading has an equivalent resultant force that is equal
but opposite to the resultant of the distributed loading
acting on the top of the plate.

w2w1

PROBLEMS

12 ft 9 ft

100 lb/ft50 lb/ft

300 lb/ft

O

Prob. 4–146

300 lb/ft

A B

3 ft 6 ft
1.5 ft

w2

w1

Prob. 4–147
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1.2 m

1 m

O

1.2 m 0.1 m

150 Pa

y

x

z

Prob. 4–149

4–150. The beam is subjected to the distributed loading.
Determine the length b of the uniform load and its position
a on the beam such that the resultant force and couple
moment acting on the beam are zero.

*4–148. The bricks on top of the beam and the supports
at the bottom create the distributed loading shown in the
second figure. Determine the required intensity w and
dimension d of the right support so that the resultant force
and couple moment about point A of the system are
both zero.

A

w

B

x

w � 12(1 � 2x2) lb/ft

0.5 ft
12 lb/ft

18 lb/ft

Prob. 4–151

3 m
0.5 m

d

3 m

75 N/m

A

200 N/m

0.5 m

d

w

Prob. 4–148

6 ft10 ft

b

a

60 lb/ft

40 lb/ft

Prob. 4–150

•4–149. The wind pressure acting on a triangular sign is
uniform. Replace this loading by an equivalent resultant
force and couple moment at point O.

4–151. Currently eighty-five percent of all neck injuries
are caused by rear-end car collisions. To alleviate this
problem, an automobile seat restraint has been developed
that provides additional pressure contact with the cranium.
During dynamic tests the distribution of load on the
cranium has been plotted and shown to be parabolic.
Determine the equivalent resultant force and its location,
measured from point A.
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4–154. Replace the distributed loading with an equivalent
resultant force, and specify its location on the beam
measured from point A.

•4–153. Wet concrete exerts a pressure distribution along
the wall of the form. Determine the resultant force of this
distribution and specify the height h where the bracing strut
should be placed so that it lies through the line of action of
the resultant force. The wall has a width of 5 m.

*4–152. Wind has blown sand over a platform such that
the intensity of the load can be approximated by the
function Simplify this distributed loading
to an equivalent resultant force and specify its magnitude
and location measured from A.

w = 10.5x32 N>m.

4–155. Replace the loading by an equivalent resultant
force and couple moment at point A.

*4–156. Replace the loading by an equivalent resultant
force and couple moment acting at point B.

x

w

A

10 m

500 N/m

w � (0.5x3) N/m

Prob. 4–152

4 m

h

� (4     ) kPap
1/2z

8 kPa

z

p

Prob. 4–153

w

xA

B

4 m

8 kN/m
w � (4 � x)21––

2

Prob. 4–154

60�

6 ft

50 lb/ft

50 lb/ft

100 lb/ft

4 ft

A

B

Probs. 4–155/156
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*4–160. The distributed load acts on the beam as shown.
Determine the magnitude of the equivalent resultant force
and specify its location, measured from point A.

4–158. The distributed load acts on the beam as shown.
Determine the magnitude of the equivalent resultant force
and specify where it acts, measured from point A.

4–159. The distributed load acts on the beam as shown.
Determine the maximum intensity . What is the
magnitude of the equivalent resultant force? Specify where
it acts, measured from point B.

wmax

•4–157. The lifting force along the wing of a jet aircraft
consists of a uniform distribution along AB, and a
semiparabolic distribution along BC with origin at B.
Replace this loading by a single resultant force and specify
its location measured from point A.

•4–161. If the distribution of the ground reaction on the
pipe per foot of length can be approximated as shown,
determine the magnitude of the resultant force due to this
loading.

x

w

24 ft12 ft

w � (2880 � 5x2) lb/ft
2880 lb/ft

A B

C

Prob. 4–157

w � (�2x2 � 4x � 16) lb/ft

x
B

A

w

4 ft

Probs. 4–158/159

w � (� x2 � x � 4) lb/ft

x
BA

w

10 ft

2 lb/ft
4 lb/ft

2
15

17
15

Prob. 4–160

2.5 ft

50 lb/ft

25 lb/ft

w � 25 (1 � cos u) lb/ft

u

Prob. 4–161
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CHAPTER REVIEW

Moment of Force—Scalar Definition

A force produces a turning effect or
moment about a point O that does not lie
on its line of action. In scalar form, the
moment magnitude is the product of the
force and the moment arm or
perpendicular distance from point O to
the line of action of the force.

The direction of the moment is defined
using the right-hand rule. always acts
along an axis perpendicular to the plane
containing F and d, and passes through
the point O.

MO

Rather than finding d, it is normally
easier to resolve the force into its x and y
components, determine the moment of
each component about the point, and
then sum the results. This is called the
principle of moments.

MO = Fd = Fxy - Fyx

Moment of a Force—Vector Definition

Since three-dimensional geometry is
generally more difficult to visualize, the
vector cross product should be used 
to determine the moment. Here

, where r is a position vector
that extends from point O to any point
A, B, or C on the line of action of F.

MO = r * F

MO = Fd

MO = rA * F = rB * F = rC * F

If the position vector r and force F are
expressed as Cartesian vectors, then the
cross product results from the expansion
of a determinant.

MO = r * F = 3
i j k
rx ry rz
Fx Fy Fz

3

O

Moment axis

d
F

MO

F
Fy

y

y

O

d x

x

Fx

z

x

y

F

O

A

B

C

rA

rB

MO

rC
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a da

Ma

r
F

r

Ma

ua

a

a¿

Axis of projection

F

F

�F
d

B
A

F

�Fr

Moment about an Axis

If the moment of a force F is to be
determined about an arbitrary axis a,
then the projection of the moment onto
the axis must be obtained. Provided the
distance that is perpendicular to both
the line of action of the force and the
axis can be found, then the moment of
the force about the axis can be
determined from a scalar equation.

Note that when the line of action of F
intersects the axis then the moment of F
about the axis is zero.Also, when the line
of action of F is parallel to the axis, the
moment of F about the axis is zero.

da

Ma = Fda

In three dimensions, the scalar triple
product should be used. Here is the
unit vector that specifies the direction of
the axis, and r is a position vector that is
directed from any point on the axis to
any point on the line of action of the
force. If is calculated as a negative
scalar, then the sense of direction of 
is opposite to ua.

Ma

Ma

ua

Ma = ua # 1r * F2 = 3
uax uay uz
rx ry rz
Fx Fy Fz

3

Couple Moment

A couple consists of two equal but
opposite forces that act a perpendicular
distance d apart. Couples tend to produce
a rotation without translation.

The magnitude of the couple moment is
, and its direction is established

using the right-hand rule.

If the vector cross product is used to
determine the moment of a couple, then
r extends from any point on the line of
action of one of the forces to any point
on the line of action of the other force F
that is used in the cross product.

M = Fd

M = Fd

M = r * F
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Simplification of a Force and Couple
System

Any system of forces and couples can be
reduced to a single resultant force and
resultant couple moment acting at a
point. The resultant force is the sum of
all the forces in the system,
and the resultant couple moment is
equal to the sum of all the moments of
the forces about the point and couple
moments. .MRO

= ©MO + ©M

FR = ©F,

Further simplification to a single
resultant force is possible provided the
force system is concurrent, coplanar, or
parallel. To find the location of the
resultant force from a point, it is
necessary to equate the moment of the
resultant force about the point to the
moment of the forces and couples in
the system about the same point.

If the resultant force and couple moment
at a point are not perpendicular to one
another, then this system can be reduced
to a wrench, which consists of the
resultant force and collinear couple
moment.

Coplanar Distributed Loading

A simple distributed loading can be
represented by its resultant force, which
is equivalent to the area under the
loading curve. This resultant has a line of
action that passes through the centroid
or geometric center of the area or
volume under the loading diagram.

O
r2

r1 O�

FR

MRO

u
F1F2

M

O

FR

a

b
a

b

MRO

a

b
a

b

FR

d �
MRO

FR

P�
O

O �

FR

MRO

u

M��

O

a

b
a

b

FR

P
d

x

L

w

w � w(x)

O

x

O

FR

C

L

A
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REVIEW PROBLEMS

*4–164. Determine the coordinate direction angles , ,
of F, which is applied to the end of the pipe assembly, so
that the moment of F about O is zero.

•4–165. Determine the moment of the force F about point
O. The force has coordinate direction angles of ,

, . Express the result as a Cartesian vector.g = 45°b = 120°
a = 60°

gba

4–163. Two couples act on the frame. If the resultant
couple moment is to be zero, determine the distance d
between the 100-lb couple forces.

4–162. The beam is subjected to the parabolic loading.
Determine an equivalent force and couple system at
point A.

4–166. The snorkel boom lift is extended into the position
shown. If the worker weighs 160 lb, determine the moment
of this force about the connection at A.

w � (25 x2)lb/ft

4 ft

400 lb/ft

x

w

A
O

Prob. 4–162

25 ft

50�
A

2 ft

Prob. 4–166

d3 ft

4 ft

A

B
3 ft

30°
100 lb

150 lb

150 lb

100 lb

3
4

5

3
4

5

30°

Prob. 4–163

x

10 in.

F � 20 lb

6 in.

6 in.8 in.

z

O y

Probs. 4–164/165
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4–171. Replace the force at A by an equivalent resultant
force and couple moment at point P. Express the results in
Cartesian vector form.

•4–169. Express the moment of the couple acting on the
pipe assembly in Cartesian vector form. Solve the problem
(a) using Eq. 4–13 and (b) summing the moment of each
force about point O. Take .

4–170. If the couple moment acting on the pipe has a
magnitude of , determine the magnitude F of the
vertical force applied to each wrench.

400 N # m

F = 525k6 N

4–167. Determine the moment of the force about the
door hinge at A. Express the result as a Cartesian vector.

*4–168. Determine the magnitude of the moment of the
force about the hinged axis aa of the door.FC

FC

*4–172. The horizontal 30-N force acts on the handle of
the wrench. Determine the moment of this force about
point O. Specify the coordinate direction angles , , of
the moment axis.

•4–173. The horizontal 30-N force acts on the handle of
the wrench. What is the magnitude of the moment of this
force about the z axis?

gba

0.5 m1 m

30�

2.5 m 1.5 m

z
C

A

B

a

a

x y

FC � 250 N

Probs. 4–167/168

z

y

x

O

B

F

200 mm

A

–F

300 mm

400 mm

150 mm

200 mm

Probs. 4–169/170

z

A

F � 120 lb
y

x

P

4 ft
10 ft

8 ft

8 ft

6 ft

6 ft

Prob. 4–171

O

z

x

B

y

50 mm

200 mm

10 mm

30 N
45�

45�

Probs. 4–172/173



The crane is subjected to its weight and the load it supports. In order to calculate
the support reactions on the crane, it is necessary to apply the principles of
equilibrium.



Equilibrium of a 
Rigid Body

CHAPTER OBJECTIVES

• To develop the equations of equilibrium for a rigid body.

• To introduce the concept of the free-body diagram for a rigid body.

• To show how to solve rigid-body equilibrium problems using the
equations of equilibrium.

5.1 Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions
for the equilibrium of the rigid body in Fig. 5–1a. As shown, this body is
subjected to an external force and couple moment system that is the result
of the effects of gravitational, electrical, magnetic, or contact forces caused
by adjacent bodies. The internal forces caused by interactions between
particles within the body are not shown in this figure because these forces
occur in equal but opposite collinear pairs and hence will cancel out, a
consequence of Newton’s third law.

5

F1

M2

M1

F2

F3

F4

O

(a)

Fig. 5–1
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F1

M2

M1

F2

F3

F4

O

(a)

Fig. 5–1

R

W

2T

G

Fig. 5–2

FR � 0

(MR)O � 0

O

(b)

FR � 0

(MR)O � 0

O

A

r

(c)

Using the methods of the previous chapter, the force and couple
moment system acting on a body can be reduced to an equivalent
resultant force and resultant couple moment at any arbitrary point O on
or off the body, Fig. 5–1b. If this resultant force and couple moment are
both equal to zero, then the body is said to be in equilibrium.
Mathematically, the equilibrium of a body is expressed as

(5–1)

The first of these equations states that the sum of the forces acting on
the body is equal to zero. The second equation states that the sum of the
moments of all the forces in the system about point O, added to all the
couple moments, is equal to zero. These two equations are not only
necessary for equilibrium, they are also sufficient. To show this, consider
summing moments about some other point, such as point A in Fig. 5–1c.
We require

Since , this equation is satisfied only if Eqs. 5–1 are satisfied,
namely and .

When applying the equations of equilibrium, we will assume that the
body remains rigid. In reality, however, all bodies deform when
subjected to loads. Although this is the case, most engineering materials
such as steel and concrete are very rigid and so their deformation is
usually very small. Therefore, when applying the equations of
equilibrium, we can generally assume that the body will remain rigid
and not deform under the applied load without introducing any
significant error. This way the direction of the applied forces and their
moment arms with respect to a fixed reference remain unchanged
before and after the body is loaded.

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force
system acting on a rigid body lies in or may be projected onto a single
plane and, furthermore, any couple moments acting on the body are
directed perpendicular to this plane.This type of force and couple system
is often referred to as a two-dimensional or coplanar force system. For
example, the airplane in Fig. 5–2 has a plane of symmetry through its
center axis, and so the loads acting on the airplane are symmetrical with
respect to this plane. Thus, each of the two wing tires will support the
same load T, which is represented on the side (two-dimensional) view of
the plane as 2T.

(MR)O = 0FR = 0
r Z 0

©MA = r * FR + (MR)O = 0

(MR)O = ©MO = 0

FR = ©F = 0
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5.2 Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete
specification of all the known and unknown external forces that act on
the body. The best way to account for these forces is to draw a free-body
diagram.This diagram is a sketch of the outlined shape of the body, which
represents it as being isolated or “free” from its surroundings, i.e., a “free
body.” On this sketch it is necessary to show all the forces and couple
moments that the surroundings exert on the body so that these effects can
be accounted for when the equations of equilibrium are applied. A
thorough understanding of how to draw a free-body diagram is of primary
importance for solving problems in mechanics.

Support Reactions. Before presenting a formal procedure as to
how to draw a free-body diagram, we will first consider the various types
of reactions that occur at supports and points of contact between bodies
subjected to coplanar force systems. As a general rule,

• If a support prevents the translation of a body in a given direction,
then a force is developed on the body in that direction.

• If rotation is prevented, a couple moment is exerted on the body.

For example, let us consider three ways in which a horizontal member,
such as a beam, is supported at its end. One method consists of a roller or
cylinder, Fig. 5–3a. Since this support only prevents the beam from
translating in the vertical direction, the roller will only exert a force on
the beam in this direction, Fig. 5–3b.

The beam can be supported in a more restrictive manner by using a pin,
Fig. 5–3c. The pin passes through a hole in the beam and two leaves which
are fixed to the ground. Here the pin can prevent translation of the beam
in any direction Fig. 5–3d, and so the pin must exert a force F on the
beam in this direction. For purposes of analysis, it is generally easier to
represent this resultant force F by its two rectangular components and

Fig. 5–3e. If and are known, then F and can be calculated.
The most restrictive way to support the beam would be to use a fixed

support as shown in Fig. 5–3f. This support will prevent both translation
and rotation of the beam. To do this a force and couple moment must be
developed on the beam at its point of connection, Fig. 5–3g. As in the
case of the pin, the force is usually represented by its rectangular
components and 

Table 5–1 lists other common types of supports for bodies subjected to
coplanar force systems. (In all cases the angle is assumed to be known.)
Carefully study each of the symbols used to represent these supports and
the types of reactions they exert on their contacting members.

u

Fy.Fx

fFyFxFy,
Fx

f,

5

(a)

roller

(b)

F

(c)

pin

or

Fy

Fx

F

(e)(d)

f

(f)

fixed support

Fy

Fx

M

(g)

Fig. 5–3
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(3)

Types of Connection Reaction Number of Unknowns 

One unknown. The reaction is a tension force which acts
away from the member in the direction of the cable. 

One unknown. The reaction is a force which acts along
the axis of the link.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the slot.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts
perpendicular to the rod.

continued

(1)

cable

F

(2)

weightless link
F

roller F

or

(4)

roller or pin in 
confined smooth slot

(5)

rocker

(6)

smooth contacting
 surface

F

F

F

(7)

or

or
F

F

F

TABLE 5–1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems

member pin connected 
to collar on smooth rod

u

u u
u

uu

u u

u

u

u

u

u u u

u

u
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Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the
connection types in Table 5–1.

5

The cable exerts a force on the bracket
in the direction of the cable. (1)

The rocker support for this bridge
girder allows horizontal movement
so the bridge is free to expand and
contract due to a change in
temperature. (5)

This concrete girder
rests on the ledge that
is assumed to act as 
a smooth contacting
surface. (6)

This utility building is
pin supported at the top
of the column. (8)

The floor beams of this building
are welded together and thus
form fixed connections. (10)

Types of Connection Reaction Number of Unknowns 

Two  unknowns. The reactions are two components of
force, or the magnitude and direction   of the resultant
force. Note that    and    are not necessarily equal [usually
not, unless the rod shown is a link as in (2)].

Three unknowns. The reactions are the couple moment 
and the two force components, or the couple moment and 
the magnitude and direction     of the resultant force.

Two  unknowns. The reactions are the couple moment 
and the force which acts perpendicular to the rod.

F

Fy

M

or

Fx

F

fixed support

Fy

Fx

F

or

M M

f

f

f

u

TABLE 5–1 Continued

member fixed connected
 to collar on smooth rod

smooth pin or hinge

(8)

(9)

(10)

u f

f
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Internal Forces. As stated in Sec. 5.1, the internal forces that act
between adjacent particles in a body always occur in collinear pairs such that
they have the same magnitude and act in opposite directions (Newton’s
third law). Since these forces cancel each other, they will not create an
external effect on the body. It is for this reason that the internal forces should
not be included on the free-body diagram if the entire body is to be
considered. For example, the engine shown in Fig. 5–4a has a free-body
diagram shown in Fig. 5–4b. The internal forces between all its connected
parts such as the screws and bolts, will cancel out because they form equal
and opposite collinear pairs. Only the external forces and , exerted by
the chains and the engine weight W, are shown on the free-body diagram.

T2T1

(a)

(b)

W

T2 T1

G

Fig. 5–4

Weight and the Center of Gravity. When a body is within a
gravitational field, then each of its particles has a specified weight. It was
shown in Sec. 4.8 that such a system of forces can be reduced to a single
resultant force acting through a specified point. We refer to this force
resultant as the weight W of the body and to the location of its point of
application as the center of gravity. The methods used for its
determination will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is
important for the analysis, this force will be reported in the problem
statement. Also, when the body is uniform or made from the same
material, the center of gravity will be located at the body’s geometric
center or centroid; however, if the body consists of a nonuniform
distribution of material, or has an unusual shape, then the location of its
center of gravity G will be given.

Idealized Models. When an engineer performs a force analysis of
any object, he or she considers a corresponding analytical or idealized
model that gives results that approximate as closely as possible the
actual situation. To do this, careful choices have to be made so that
selection of the type of supports, the material behavior, and the object’s
dimensions can be justified. This way one can feel confident that any
design or analysis will yield results which can be trusted. In complex
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cases this process may require developing several different models of the
object that must be analyzed. In any case, this selection process requires
both skill and experience.

The following two cases illustrate what is required to develop a proper
model. In Fig. 5–5a, the steel beam is to be used to support the three roof
joists of a building. For a force analysis it is reasonable to assume the
material (steel) is rigid since only very small deflections will occur when
the beam is loaded. A bolted connection at A will allow for any slight
rotation that occurs here when the load is applied, and so a pin can be
considered for this support. At B a roller can be considered since this
support offers no resistance to horizontal movement. Building code is
used to specify the roof loading A so that the joist loads F can be
calculated. These forces will be larger than any actual loading on the
beam since they account for extreme loading cases and for dynamic or
vibrational effects. Finally, the weight of the beam is generally neglected
when it is small compared to the load the beam supports. The idealized
model of the beam is therefore shown with average dimensions a, b, c,
and d in Fig. 5–5b.

As a second case, consider the lift boom in Fig. 5–6a. By inspection, it is
supported by a pin at A and by the hydraulic cylinder BC, which can be
approximated as a weightless link. The material can be assumed rigid,
and with its density known, the weight of the boom and the location of its
center of gravity G are determined.When a design loading P is specified,
the idealized model shown in Fig. 5–6b can be used for a force analysis.
Average dimensions (not shown) are used to specify the location of the
loads and the supports.

Idealized models of specific objects will be given in some of the
examples throughout the text. It should be realized, however, that each
case represents the reduction of a practical situation using simplifying
assumptions like the ones illustrated here.

(a)

BA

F F F

A B

(b)

a b c d

Fig. 5–5

(a)

A

C

B

(b)

B

C

G

A

P

Fig. 5–6
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Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of
bodies considered as a single system, the following steps should be
performed:

Draw Outlined Shape.
Imagine the body to be isolated or cut “free” from its constraints
and connections and draw (sketch) its outlined shape.

Show All Forces and Couple Moments.
Identify all the known and unknown external forces and couple
moments that act on the body.Those generally encountered are due to
(1) applied loadings, (2) reactions occurring at the supports or at points
of contact with other bodies (see Table 5–1), and (3) the weight of the
body. To account for all these effects, it may help to trace over the
boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions.
The forces and couple moments that are known should be labeled
with their proper magnitudes and directions. Letters are used to
represent the magnitudes and direction angles of forces and couple
moments that are unknown. Establish an x, y coordinate system so
that these unknowns, etc., can be identified. Finally, indicate
the dimensions of the body necessary for calculating the moments
of forces.

Ay,Ax,

Important Points

• No equilibrium problem should be solved without first drawing
the free-body diagram, so as to account for all the forces and
couple moments that act on the body.

• If a support prevents translation of a body in a particular direction,
then the support exerts a force on the body in that direction.

• If rotation is prevented, then the support exerts a couple moment
on the body.

• Study Table 5–1.

• Internal forces are never shown on the free-body diagram since they
occur in equal but opposite collinear pairs and therefore cancel out.

• The weight of a body is an external force, and its effect is
represented by a single resultant force acting through the body’s
center of gravity G.

• Couple moments can be placed anywhere on the free-body
diagram since they are free vectors. Forces can act at any point
along their lines of action since they are sliding vectors.
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EXAMPLE 5.1

Draw the free-body diagram of the uniform beam shown in Fig. 5–7a.
The beam has a mass of 100 kg.

SOLUTION

The free-body diagram of the beam is shown in Fig. 5–7b. Since the
support at A is fixed, the wall exerts three reactions on the beam,
denoted as and . The magnitudes of these reactions are
unknown, and their sense has been assumed. The weight of the beam,

acts through the beam’s center of gravity
G, which is 3 m from A since the beam is uniform.
W = 10019.812 N = 981 N,

MAAy,Ax,

(a)

2 m 1200 N

6 m

A

Ay

Ax

2 m
1200 N

3 m

A

981 N

MA

G

Effect of applied
force acting on beam

Effect of gravity (weight)
acting on beam

Effect of fixed
support acting
on beam

(b)

y

x

Fig. 5–7
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Draw the free-body diagram of the foot lever shown in Fig. 5–8a. The
operator applies a vertical force to the pedal so that the spring is
stretched 1.5 in. and the force in the short link at B is 20 lb.

EXAMPLE 5.2

A

B

(a)

F

5 in.

1.5 in.

1 in.

A

B

k � 20 lb/in.

(b)

F

30 lb

5 in.

1.5 in.

1 in.

A

B

20 lb

Ay

Ax

(c)

Fig. 5–8

SOLUTION
By inspection of the photo the lever is loosely bolted to the frame
at A. The rod at B is pinned at its ends and acts as a “short link.”
After making the proper measurements, the idealized model of the
lever is shown in Fig. 5–8b. From this, the free-body diagram is
shown in Fig. 5–8c. The pin support at A exerts force components

and on the lever. The link at B exerts a force of 20 lb, acting
in the direction of the link. In addition the spring also exerts a
horizontal force on the lever. If the stiffness is measured and found
to be then since the stretch using Eq. 3–2,

Finally, the operator’s shoe
applies a vertical force of F on the pedal. The dimensions of the
lever are also shown on the free-body diagram, since this
information will be useful when computing the moments of the
forces. As usual, the senses of the unknown forces at A have been
assumed. The correct senses will become apparent after solving the
equilibrium equations.

Fs = ks = 20 lb>in. 11.5 in.2 = 30 lb.
s = 1.5 in.,k = 20 lb>in.,

AyAx
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EXAMPLE 5.3

Two smooth pipes, each having a mass of 300 kg, are supported by the
forked tines of the tractor in Fig. 5–9a. Draw the free-body diagrams
for each pipe and both pipes together.

(a)

Fig. 5–9

(b)

30�

A

B

0.35 m

0.35 m

30�

B

30�

P

R 2943 N

(d)

30�

A
30�

30�

Effect of gravity
(weight) acting on A

Effect of sloped
fork acting on A

Effect of B acting on A

Effect of sloped
blade acting on A

T

F

R

2943 N

(c)

30�

A

30�

T

F

2943 N

(e)

30�

B

P

2943 N

SOLUTION
The idealized model from which we must draw the free-body
diagrams is shown in Fig. 5–9b. Here the pipes are identified, the
dimensions have been added, and the physical situation reduced to its
simplest form.

The free-body diagram for pipe A is shown in Fig. 5–9c. Its weight is
Assuming all contacting surfaces are

smooth, the reactive forces T, F, R act in a direction normal to the
tangent at their surfaces of contact.

The free-body diagram of pipe B is shown in Fig. 5–9d. Can you
identify each of the three forces acting on this pipe? In particular, note
that R, representing the force of A on B, Fig. 5–9d, is equal and
opposite to R representing the force of B on A, Fig. 5–9c. This is a
consequence of Newton’s third law of motion.

The free-body diagram of both pipes combined (“system”) is shown
in Fig. 5–9e. Here the contact force R, which acts between A and B, is
considered as an internal force and hence is not shown on the free-
body diagram. That is, it represents a pair of equal but opposite
collinear forces which cancel each other.

W = 30019.812 N = 2943 N.
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Draw the free-body diagram of the unloaded platform that is
suspended off the edge of the oil rig shown in Fig. 5–10a.The platform
has a mass of 200 kg.

EXAMPLE 5.4

(a)

1.40 m

1 m

70�

0.8 m

(b)

A
G

B

1.40 m

1 m

70�

0.8 m

1962 N

(c)

Ax

Ay

G

A

T

Fig. 5–10

SOLUTION

The idealized model of the platform will be considered in two
dimensions because by observation the loading and the dimensions
are all symmetrical about a vertical plane passing through its center,
Fig. 5–10b.The connection at A is considered to be a pin, and the cable
supports the platform at B. The direction of the cable and average
dimensions of the platform are listed, and the center of gravity G
has been determined. It is from this model that we have drawn the
free-body diagram shown in Fig. 5–10c. The platform’s weight is

The force components and along with the
cable force T represent the reactions that both pins and both cables
exert on the platform, Fig. 5–10a. Consequently, after the solution for
these reactions, half their magnitude is developed at A and half is
developed at B.

AyAx20019.812 = 1962 N.
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PROBLEMS

*5–4. Draw the free-body diagram of the beam which
supports the 80-kg load and is supported by the pin at A and
a cable which wraps around the pulley at D. Explain the
significance of each force on the diagram. (See Fig. 5–7b.)

5–2. Draw the free-body diagram of member AB, which is
supported by a roller at A and a pin at B. Explain the
significance of each force on the diagram. (See Fig. 5–7b.)

•5–1. Draw the free-body diagram of the 50-kg paper roll
which has a center of mass at G and rests on the smooth
blade of the paper hauler. Explain the significance of each
force acting on the diagram. (See Fig. 5–7b.)

•5–5. Draw the free-body diagram of the truss that is
supported by the cable AB and pin C. Explain the significance
of each force acting on the diagram. (See Fig. 5–7b.)

5–3. Draw the free-body diagram of the dumpster D of the
truck, which has a weight of 5000 lb and a center of gravity
at G. It is supported by a pin at A and a pin-connected
hydraulic cylinder BC (short link). Explain the significance
of each force on the diagram. (See Fig. 5–7b.)

B

30�

35 mm

A

G

Prob. 5–1

A

B

8 ft
30�

4 ft 3 ft

13 12

5800 lb � ft

390 lb

Prob. 5–2

1.5 m

3 m
1 m

20� 30�

B
A

D
G

C

Prob. 5–3

2 m 2 m

4
3

5

1.5 m

BA

C
E

D

Prob. 5–4

A

B

C

2 m 2 m 2 m

2 m

30�

3 kN 4 kN

Prob. 5–5
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•5–9. Draw the free-body diagram of the bar, which has a
negligible thickness and smooth points of contact at A, B,
and C. Explain the significance of each force on the
diagram. (See Fig. 5–7b.)

5–7. Draw the free-body diagram of the “spanner
wrench” subjected to the 20-lb force. The support at A can
be considered a pin, and the surface of contact at B is
smooth. Explain the significance of each force on the
diagram. (See Fig. 5–7b.)

5–6. Draw the free-body diagram of the crane boom AB
which has a weight of 650 lb and center of gravity at G. The
boom is supported by a pin at A and cable BC. The load of
1250 lb is suspended from a cable attached at B. Explain
the significance of each force acting on the diagram. (See
Fig. 5–7b.)

5–10. Draw the free-body diagram of the winch, which
consists of a drum of radius 4 in. It is pin-connected at its
center C, and at its outer rim is a ratchet gear having a mean
radius of 6 in. The pawl AB serves as a two-force member
(short link) and prevents the drum from rotating. Explain
the significance of each force on the diagram. (See 
Fig. 5–7b.)

*5–8. Draw the free-body diagram of member ABC which
is supported by a smooth collar at A, roller at B, and short
link CD. Explain the significance of each force acting on the
diagram. (See Fig. 5–7b.)

12

13
5

GC

A

B

30�

18 ft

12 ft

Prob. 5–6

A

B

6 in.

20 lb

1 in.

Prob. 5–7

6 m

2.5 kN

60�
3 m

4 kN � m

4 m

45�A B

C D

Prob. 5–8

3 in.

5 in.

8 in.
A

30�

10 lb

30�

BC

Prob. 5–9

3 in.

2 in.

6 in.

B

A

500 lb

C

4 in.

Prob. 5–10
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CONCEPTUAL PROBLEMS

P5–3. Draw the free-body diagram of the wing on the
passenger plane. The weights of the engine and wing are
significant. The tires at B are free to roll.

P5–2. Draw the free-body diagram of the outrigger ABC
used to support a backhoe. The top pin B is connected to
the hydraulic cylinder, which can be considered to be a
short link (two-force member), the bearing shoe at A is
smooth, and the outrigger is pinned to the frame at C.

P5–1. Draw the free-body diagram of the uniform trash
bucket which has a significant weight. It is pinned at A and
rests against the smooth horizontal member at B. Show
your result in side view. Label any necessary dimensions.

*P5–4. Draw the free-body diagram of the wheel and
member ABC used as part of the landing gear on a jet
plane. The hydraulic cylinder AD acts as a two-force
member, and there is a pin connection at B.

A

B

P5–1

B

C

A

P5–2

A

B

P5–3

C

D

A

B

P5–4
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5.3 Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and
sufficient for the equilibrium of a rigid body, namely, and

When the body is subjected to a system of forces, which all lie
in the x–y plane, then the forces can be resolved into their x and y
components. Consequently, the conditions for equilibrium in two
dimensions are

(5–2)

Here and represent, respectively, the algebraic sums of the x
and y components of all the forces acting on the body, and 
represents the algebraic sum of the couple moments and the moments of
all the force components about the z axis, which is perpendicular to the
x–y plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations. Although
Eqs. 5–2 are most often used for solving coplanar equilibrium problems,
two alternative sets of three independent equilibrium equations may also
be used. One such set is

(5–3)

When using these equations it is required that a line passing through
points A and B is not parallel to the y axis.To prove that Eqs. 5–3 provide
the conditions for equilibrium, consider the free-body diagram of the
plate shown in Fig. 5–11a. Using the methods of Sec. 4.8, all the forces on
the free-body diagram may be replaced by an equivalent resultant force

acting at point A, and a resultant couple moment
Fig. 5–11b. If is satisfied, it is necessary that

Furthermore, in order that satisfy it must have no
component along the x axis, and therefore must be parallel to the y
axis, Fig. 5–11c. Finally, if it is required that where B does not
lie on the line of action of then Since Eqs. 5–3 show that both
of these resultants are zero, indeed the body in Fig. 5–11a must be in
equilibrium.

FR = 0.FR,
©MB = 0,
FR

©Fx = 0,FRMRA = 0.
©MA = 0MRA = ©MA,

FR = ©F,

©Fx = 0
©MA = 0
©MB = 0

©MO
©Fy©Fx

©Fx = 0
©Fy = 0
©MO = 0

©MO = 0.
©F = 0

B

A

C

(a)

F4

F3

F1

F2

x

y

A

MRA

FR

(b)

B C

x

y

(c)

A

FR

B C

x

y

Fig. 5–11
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A second alternative set of equilibrium equations is

(5–4)

Here it is necessary that points A, B, and C do not lie on the same line.To
prove that these equations, when satisfied, ensure equilibrium, consider
again the free-body diagram in Fig. 5–11b. If is to be satisfied,
then is satisfied if the line of action of passes
through point C as shown in Fig. 5–11c. Finally, if we require 
it is necessary that and so the plate in Fig. 5–11a must then be in
equilibrium.

FR = 0,
©MB = 0,
FR©MC = 0MRA = 0.

©MA = 0

©MA = 0
©MB = 0
©MC = 0

Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved
using the following procedure.

Free-Body Diagram.

• Establish the x, y coordinate axes in any suitable orientation.

• Draw an outlined shape of the body.

• Show all the forces and couple moments acting on the body.

• Label all the loadings and specify their directions relative to the
x or y axis. The sense of a force or couple moment having an
unknown magnitude but known line of action can be assumed.

• Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

• Apply the moment equation of equilibrium, about a
point (O) that lies at the intersection of the lines of action of two
unknown forces. In this way, the moments of these unknowns are
zero about O, and a direct solution for the third unknown can be
determined.

• When applying the force equilibrium equations, and
orient the x and y axes along lines that will provide the

simplest resolution of the forces into their x and y components.

• If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, this indicates that
the sense is opposite to that which was assumed on the free-body
diagram.

©Fy = 0,
©Fx = 0

©MO = 0,
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(a)

600 N

D

100 N

A B

200 N

2 m 3 m 2 m

0.2 m

By

2 m

600 sin 45�  N

3 m 2 m

A
B

200 N

600 cos 45�  N

Ay

Bx
x

y

(b)

100 N

0.2 m

D

Fig. 5–12

Determine the horizontal and vertical components of reaction on the
beam caused by the pin at B and the rocker at as shown in Fig. 5–12a.
Neglect the weight of the beam.

A

EXAMPLE 5.5

SOLUTION
Free-Body Diagram. Identify each of the forces shown on the free-
body diagram of the beam, Fig. 5–12b. (See Example 5.1.) For
simplicity, the 600-N force is represented by its x and y components as
shown in Fig. 5–12b.

Equations of Equilibrium. Summing forces in the x direction yields

Ans.

A direct solution for can be obtained by applying the moment
equation about point B.

a

Ans.

Summing forces in the y direction, using this result, gives

Ans.

NOTE: We can check this result by summing moments about point A.

a

Ans.By = 405 N

-1100 N215 m2 - 1200 N217 m2 + By17 m2 = 0

-1600 sin 45° N212 m2 - 1600 cos 45° N210.2 m2+©MA = 0;

By = 405 N

319 N - 600 sin 45° N - 100 N - 200 N + By = 0+ c©Fy = 0;

Ay = 319 N

- 1600 cos 45° N210.2 m2 - Ay17 m2 = 0

100 N12 m2 + 1600 sin 45° N215 m2+©MB = 0;

©MB = 0
Ay

Bx = 424 N

600 cos 45° N - Bx = 0:+ ©Fx = 0;
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EXAMPLE 5.6

The cord shown in Fig. 5–13a supports a force of 100 lb and wraps
over the frictionless pulley. Determine the tension in the cord at C
and the horizontal and vertical components of reaction at pin A.

100 lb

0.5 ft

� 30�

C

(a)

A

u

T100 lb

30�

p

Ax

Ay

A

(b)

p

Ax

Ay

A

T100 lb

0.5 ft

� 30�

(c)

x

y

u

Fig. 5–13

SOLUTION
Free-Body Diagrams. The free-body diagrams of the cord and pulley
are shown in Fig. 5–13b. Note that the principle of action, equal but
opposite reaction must be carefully observed when drawing each of
these diagrams: the cord exerts an unknown load distribution p on the
pulley at the contact surface, whereas the pulley exerts an equal but
opposite effect on the cord. For the solution, however, it is simpler to
combine the free-body diagrams of the pulley and this portion of the
cord, so that the distributed load becomes internal to this “system”
and is therefore eliminated from the analysis, Fig. 5–13c.

Equations of Equilibrium. Summing moments about point A to
eliminate and Fig. 5–13c, we have

a

Ans.

Using the result,

Ans.

Ans.

NOTE: It is seen that the tension remains constant as the cord passes
over the pulley. (This of course is true for any angle at which the
cord is directed and for any radius r of the pulley.)

u

Ay = 187 lb

Ay - 100 lb - 100 cos 30° lb = 0+ c©Fy = 0;

Ax = 50.0 lb

-Ax + 100 sin 30° lb = 0:+ ©Fx = 0;

T = 100 lb

100 lb 10.5 ft2 - T10.5 ft2 = 0+©MA = 0;

Ay,Ax
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EXAMPLE 5.7

0.75 m

30�

1 m
0.5 m

60 N

90 N � m

A

B

(a)
NB

30�

0.75 m
1 m

60 N

A

Ax

Ay

30�

(b)

x

y
90 N � m

Fig. 5–14

SOLUTION

Free-Body Diagram. As shown in Fig. 5–14b, the reaction is
perpendicular to the member at B. Also, horizontal and vertical
components of reaction are represented at A.

Equations of Equilibrium. Summing moments about A, we obtain a
direct solution for 

a

Using this result,

Ans.

Ans.Ay = 233 N

Ay - 200 cos 30° N - 60 N = 0+ c©Fy = 0;

Ax = 100 N

Ax - 200 sin 30° N = 0:+ ©Fx = 0;

NB = 200 N

-90 N # m - 60 N11 m2 + NB10.75 m2 = 0+©MA = 0;

NB,

NB

The member shown in Fig. 5–14a is pin-connected at A and rests
against a smooth support at B. Determine the horizontal and vertical
components of reaction at the pin A.
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EXAMPLE 5.8

The box wrench in Fig. 5–15a is used to tighten the bolt at A. If the
wrench does not turn when the load is applied to the handle,
determine the torque or moment applied to the bolt and the force of
the wrench on the bolt.

SOLUTION

Free-Body Diagram. The free-body diagram for the wrench is
shown in Fig. 5–15b. Since the bolt acts as a “fixed support,” it exerts
force components and and a moment on the wrench at A.

Equations of Equilibrium.

Ans.

Ans.

a

Ans.

Note that must be included in this moment summation. This
couple moment is a free vector and represents the twisting resistance
of the bolt on the wrench. By Newton’s third law, the wrench exerts an
equal but opposite moment or torque on the bolt. Furthermore, the
resultant force on the wrench is

Ans.

NOTE: Although only three independent equilibrium equations can
be written for a rigid body, it is a good practice to check the
calculations using a fourth equilibrium equation. For example, the
above computations may be verified in part by summing moments
about point C:

a

19.2 N # m + 32.6 N # m - 51.8 N # m = 0

C52 A12
13 B N D 10.4 m2 + 32.6 N # m - 74.0 N10.7 m2 = 0+©MC = 0;

FA = 215.0022 + 174.022 = 74.1 N

MA

MA = 32.6 N # m
MA - C52 A12

13 B N D 10.3 m2 - 130 sin 60° N210.7 m2 = 0+©MA = 0;

Ay = 74.0 N

Ay - 52 A12
13 B N - 30 sin 60° N = 0+ c©Fy = 0;

Ax = 5.00 N

Ax - 52 A 5
13 B N + 30 cos 60° N = 0:+ ©Fx = 0;

MAAyAx
300 mm 400 mm

13 12

5

B C
60�

52 N 30 N
(a)

A

C

0.3 m 0.4 m

13 12
5

60�

52 N 30 N

(b)

Ay

MA

Ax
y

x

Fig. 5–15
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Determine the horizontal and vertical components of reaction on the
member at the pin A, and the normal reaction at the roller B in
Fig. 5–16a.

SOLUTION

Free-Body Diagram. The free-body diagram is shown in Fig. 5–16b.
The pin at A exerts two components of reaction on the member,
and .Ay

Ax

EXAMPLE 5.9

3 ft

A

B

3 ft

2 ft

(a)

30� 

750 lb

A

B

2 ft

3 ft 3 ft

750 lb

Ax

Ay

NB
30�

y

x

(b)

Fig. 5–16

Equations of Equilibrium. The reaction NB can be obtained directly
by summing moments about point A since and produce no
moment about A.

a

Ans.

Using this result,

Ans.

Ans.Ay = 286 lb

Ay + (536.2 lb) cos 30° - 750 lb =  0+ c©Fy = 0;

Ax = 268 lb

Ax - (536.2 lb ) sin 30° = 0:+ © Fx = 0;

NB = 536.2 lb = 536 lb

[NB cos 30°](6 ft) - [NB sin 30°](2 ft) - 750 lb(3 ft) = 0

+©MA = 0;

AyAx
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EXAMPLE 5.10

The uniform smooth rod shown in Fig. 5–17a is subjected to a force
and couple moment. If the rod is supported at A by a smooth wall and
at B and C either at the top or bottom by rollers, determine the
reactions at these supports. Neglect the weight of the rod.

(a)

A

2 m

300 N

4000 N � m

4 m

2 m

C

B

30�2 m

(b)

2 m

300 N

4000 N � m

4 m

2 m
30�

30�

Cy¿

By¿

30� 30�

Ax

y y¿

x

x¿

30�

SOLUTION

Free-Body Diagram. As shown in Fig. 5–17b, all the support
reactions act normal to the surfaces of contact since these surfaces are
smooth. The reactions at B and C are shown acting in the positive 
direction. This assumes that only the rollers located on the bottom of
the rod are used for support.

Equations of Equilibrium. Using the x, y coordinate system in
Fig. 5–17b, we have

(1)

(2)

a

(3)

When writing the moment equation, it should be noted that the line of
action of the force component 300 sin 30° N passes through point A,
and therefore this force is not included in the moment equation.

Solving Eqs. 2 and 3 simultaneously, we obtain

Ans.

Ans.

Since is a negative scalar, the sense of is opposite to that shown
on the free-body diagram in Fig. 5–17b. Therefore, the top roller at B
serves as the support rather than the bottom one. Retaining the negative
sign for (Why?) and substituting the results into Eq. 1, we obtain

Ans.Ax = 173 N

1346.4 sin 30° N + (-1000.0 sin 30° N) - Ax = 0

By¿

By¿By¿

Cy¿ = 1346.4 N = 1.35 kN

By¿ = -1000.0 N = -1 kN

+ 1300 cos 30° N218 m2 = 0

-By¿12 m2 + 4000 N # m - Cy¿16 m2+©MA = 0;

-300 N + Cy¿ cos 30° + By¿ cos 30° = 0+ c©Fy = 0;

Cy¿ sin 30° + By¿ sin 30° - Ax = 0:+ ©Fx = 0;

y¿ Fig. 5–17



222 CH A P T E R 5 EQ U I L I B R I U M O F A RI G I D BO D Y

5

The uniform truck ramp shown in Fig. 5–18a has a weight of 400 lb and
is pinned to the body of the truck at each side and held in the position
shown by the two side cables. Determine the tension in the cables.

SOLUTION
The idealized model of the ramp, which indicates all necessary
dimensions and supports, is shown in Fig. 5–18b. Here the center of
gravity is located at the midpoint since the ramp is considered to be
uniform.

Free-Body Diagram. Working from the idealized model, the ramp’s
free-body diagram is shown in Fig. 5–18c.

Equations of Equilibrium. Summing moments about point A will
yield a direct solution for the cable tension. Using the principle of
moments, there are several ways of determining the moment of T
about A. If we use x and y components, with T applied at B, we have

a

The simplest way to determine the moment of T about A is to resolve
it into components along and perpendicular to the ramp at B.Then the
moment of the component along the ramp will be zero about A, so that

a

Since there are two cables supporting the ramp,

Ans.

NOTE: As an exercise, show that and Ay = 887.4 lb.Ax = 1339 lb

T¿ =
T

2
= 712 lb

T = 1425 lb

-T sin 10°17 ft2 + 400 lb 15 cos 30° ft2 = 0+©MA = 0;

T = 1425 lb

+ 400 lb 15 cos 30° ft2 = 0

-T cos 20°17 sin 30° ft2 + T sin 20°17 cos 30° ft2+©MA = 0;

EXAMPLE 5.11

(a)

(b)

G

B

A
30�

20�

2 ft

5 ft

(c)

G

B

A

Ay

Ax

T

30�

2 ft
10�

20�

5 ft
400 lb

x

y

Fig. 5–18
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EXAMPLE 5.12

Determine the support reactions on the member in Fig. 5–19a. The
collar at A is fixed to the member and can slide vertically along the
vertical shaft.

A

B

(a)

1.5 m 1.5 m

1 m

45�

900 N

500 N � m
A

B

Ax

MA

900 N

NB

45�500 N � m

1 m

1.5 m 1.5 m

y

x

(b)

Fig. 5–19

SOLUTION

Free-Body Diagram. The free-body diagram of the member is shown
in Fig. 5–19b. The collar exerts a horizontal force and moment 
on the member. The reaction of the roller on the member is
vertical.

Equations of Equilibrium. The forces and can be determined
directly from the force equations of equilibrium.

Ans.

Ans.

The moment can be determined by summing moments either
about point A or point B.

a

b Ans.

or

a

b Ans.

The negative sign indicates that has the opposite sense of rotation
to that shown on the free-body diagram.

MA

MA = -1486 N # m = 1.49 kN # m
MA + 900 N [1.5 m + (1 m) cos 45°] - 500 N # m = 0+©MB = 0;

MA = -1486 N # m = 1.49 kN # m
MA - 900 N(1.5 m) - 500 N # m + 900 N [3 m + (1 m) cos 45°] = 0

+ ©MA = 0;

MA

NB - 900 N

NB - 900 N = 0+c©Fy = 0;

Ax = 0:+ © Fx = 0;

NBAx

NB

MAAx
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5.4 Two- and Three-Force Members
The solutions to some equilibrium problems can be simplified by
recognizing members that are subjected to only two or three forces.

Two-Force Members As the name implies, a two-force member has
forces applied at only two points on the member. An example of a two-
force member is shown in Fig. 5–20a. To satisfy force equilibrium, and

must be equal in magnitude, , but opposite in direction
, Fig. 5–20b. Furthermore, moment equilibrium requires that 

and share the same line of action, which can only happen if they are
directed along the line joining points A and B ( or ),
Fig. 5–20c. Therefore, for any two-force member to be in equilibrium, the
two forces acting on the member must have the same magnitude, act in
opposite directions, and have the same line of action, directed along the line
joining the two points where these forces act.

©MB = 0©MA = 0
FB

FA(©F = 0)
FA = FB = FFB

FA

Three-Force Members If a member is subjected to only three
forces, it is called a three-force member. Moment equilibrium can be
satisfied only if the three forces form a concurrent or parallel force
system. To illustrate, consider the member subjected to the three forces

, , and , shown in Fig. 5–21a. If the lines of action of and 
intersect at point O, then the line of action of must also pass through
point O so that the forces satisfy .As a special case, if the three
forces are all parallel, Fig. 5–21b, the location of the point of intersection,
O, will approach infinity.

©MO = 0
F3

F2F1F3F2F1

B

FB

(a)

A FA

(b)

Two-force member

A FA � F

FB � F

A

FB � F
(c)

B

FA � F

Fig. 5–20

F3
F1

O

F1

F3

Three-force member

F2 F2

(b)(a)

Fig. 5–21

The bucket link AB on the back-hoe
is a typical example of a two-force
member since it is pin connected at
its ends and, provided its weight is
neglected, no other force acts on this
member.

The link used for this railroad car brake
is a three-force member. Since the force

in the tie rod at B and from the
link at C are parallel, then for
equilibrium the resultant force at the
pin A must also be parallel with these
two forces.

FA

FCFB

FB

FA
FC

B
A C

The boom on this lift is a three-force
member, provided its weight is neglected.
Here the lines of action of the weight of the
worker, W, and the force of the two-force
member (hydraulic cylinder) at B, ,
intersect at O.For moment equilibrium,the
resultant force at the pin A, , must also
be directed towards O.

FA

FB

FA
B

W

O

A
FB
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EXAMPLE 5.13

The lever ABC is pin supported at A and connected to a short link BD
as shown in Fig. 5–22a. If the weight of the members is negligible,
determine the force of the pin on the lever at A.

SOLUTION

Free-Body Diagrams. As shown in Fig. 5–22b, the short link BD is a
two-force member, so the resultant forces at pins D and B must be
equal, opposite, and collinear. Although the magnitude of the force is
unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to
satisfy moment equilibrium, the three nonparallel forces acting on it
must be concurrent at O, Fig. 5–22c. In particular, note that the force F
on the lever at B is equal but opposite to the force F acting at B on the
link. Why? The distance CO must be 0.5 m since the lines of action of
F and the 400-N force are known.

Equations of Equilibrium. By requiring the force system to be
concurrent at O, since the angle which defines the line of
action of can be determined from trigonometry,

Using the x, y axes and applying the force equilibrium equations,

Solving, we get

Ans.

NOTE: We can also solve this problem by representing the force at A
by its two components and and applying 

to the lever. Once and are determined, we can get 
and .u

FAAyAx©Fy = 0
©Fx = 0,©MA = 0,AyAx

F = 1.32 kN

FA = 1.07 kN

FA sin 60.3° - F sin 45° = 0+ c©Fy = 0;

FA cos 60.3° - F cos 45° + 400 N = 0:+ ©Fx = 0;

u = tan-1a0.7
0.4
b = 60.3°

FA
u©MO = 0,

0.5 m

0.2 m

B

A

D

C

0.1 m

0.2 m

(a)

400 N

45�

F

F

B

D

(b)

0.2 m
B

A

C

0.5 m

0.5 m

F

45�

45�

45�

O

0.1 m
(c)

0.4 m

FA

400 N

u

Fig. 5–22
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B
A

5 ft 5 ft 5 ft

500 lb

600 lb � ft4
3

5

F5–1

FUNDAMENTAL PROBLEMS

F5–4. Determine the components of reaction at the fixed
support A. Neglect the thickness of the beam.

F5–2. Determine the horizontal and vertical components
of reaction at the pin A and the reaction on the beam at C.

All problem solutions must include an FBD.

F5–1. Determine the horizontal and vertical components
of reaction at the supports. Neglect the thickness of
the beam.

F5–5. The 25-kg bar has a center of mass at G. If it is
supported by a smooth peg at C, a roller at A, and cord AB,
determine the reactions at these supports.

F5–3. The truss is supported by a pin at A and a roller at B.
Determine the support reactions.

F5–6. Determine the reactions at the smooth contact
points A, B, and C on the bar.

1.5 m

C

B

A

1.5 m 1.5 m

D

4 kN

F5–22

A

B

2 m
5 kN

10 kN

2 m

4 m

4 m

45�

F5–3

60�

30�

3 m
1 m 1 m 1 m 400 N

200 N 200 N 200 N

A

F5–4

A

B
G

C

D

30� 15�

0.5 m

0.2 m

0.3 m

F5–5

0.4 m

250 N

0.2 m

0.15 m

30�
A

B

C

30�

F5–6
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PROBLEMS

*5–20. The train car has a weight of 24 000 lb and a center
of gravity at G. It is suspended from its front and rear on the
track by six tires located at A, B, and C. Determine the
normal reactions on these tires if the track is assumed to be
a smooth surface and an equal portion of the load is
supported at both the front and rear tires.

All problem solutions must include an FBD.

5–11. Determine the normal reactions at A and B in
Prob. 5–1.

*5–12. Determine the tension in the cord and the
horizontal and vertical components of reaction at support A
of the beam in Prob. 5–4.

•5–13. Determine the horizontal and vertical components
of reaction at C and the tension in the cable AB for the
truss in Prob. 5–5.

5–14. Determine the horizontal and vertical components
of reaction at A and the tension in cable BC on the boom in
Prob. 5–6.

5–15. Determine the horizontal and vertical components
of reaction at A and the normal reaction at B on the
spanner wrench in Prob. 5–7.

*5–16. Determine the normal reactions at A and B and the
force in link CD acting on the member in Prob. 5–8.

•5–17. Determine the normal reactions at the points of
contact at A, B, and C of the bar in Prob. 5–9.

5–18. Determine the horizontal and vertical components
of reaction at pin C and the force in the pawl of the winch in
Prob. 5–10.

5–19. Compare the force exerted on the toe and heel of a
120-lb woman when she is wearing regular shoes and
stiletto heels. Assume all her weight is placed on one foot
and the reactions occur at points A and B as shown.

•5–21. Determine the horizontal and vertical components
of reaction at the pin A and the tension developed in cable
BC used to support the steel frame.

A AB B

5.75 in.
3.75 in.0.75 in.1.25 in.

120 lb
120 lb

Prob. 5–19

5 ft

A

C

B

G

4 ft

6 ft

Prob. 5–20

A

B

C

30 kN � m

60 kN

1 m

3 m

1 m 1 m

5 4

3

Prob. 5–21
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•5–25. The 300-lb electrical transformer with center of gravity
at G is supported by a pin at A and a smooth pad at B.
Determine the horizontal and vertical components of reaction
at the pin A and the reaction of the pad B on the transformer.

5–23. The airstroke actuator at D is used to apply a force of
F = 200 N on the member at B. Determine the horizontal
and vertical components of reaction at the pin A and the
force of the smooth shaft at C on the member.

*5–24. The airstroke actuator at D is used to apply a force
of F on the member at B. The normal reaction of the
smooth shaft at C on the member is 300 N. Determine the
magnitude of F and the horizontal and vertical components
of reaction at pin A.

5–22. The articulated crane boom has a weight of 125 lb and
center of gravity at G. If it supports a load of 600 lb, determine
the force acting at the pin A and the force in the hydraulic
cylinder BC when the boom is in the position shown.

5–26. A skeletal diagram of a hand holding a load is shown
in the upper figure. If the load and the forearm have masses
of 2 kg and 1.2 kg, respectively, and their centers of mass are
located at and , determine the force developed in the
biceps CD and the horizontal and vertical components of
reaction at the elbow joint B. The forearm supporting
system can be modeled as the structural system shown in
the lower figure.

G2G1

C

40�

B
GA 1 ft

4 ft

1 ft

8 ft

Prob. 5–22

A

C

B

D
60�

600 mm

600 mm

15�

200 mm
F

Probs. 5–23/24

B

A

1.5 ft

3 ft G

Prob. 5–25

B

B
C

C

D

D

G2

G2

G1

G1

A

A
135 mm

65 mm

75�

100 mm

Prob. 5–26
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•5–29. The mass of 700 kg is suspended from a trolley
which moves along the crane rail from to

. Determine the force along the pin-connected
knee strut BC (short link) and the magnitude of force at pin
A as a function of position d. Plot these results of and 
(vertical axis) versus d (horizontal axis).

FAFBC

d = 3.5 m
d = 1.7 m

*5–28. The 1.4-Mg drainpipe is held in the tines of the fork
lift. Determine the normal forces at A and B as functions of
the blade angle and plot the results of force (vertical axis)
versus (horizontal axis) for 0 … u … 90°.u

u

5–27. As an airplane’s brakes are applied, the nose wheel
exerts two forces on the end of the landing gear as shown.
Determine the horizontal and vertical components of
reaction at the pin C and the force in strut AB.

5–30. If the force of F = 100 lb is applied to the handle of
the bar bender, determine the horizontal and vertical
components of reaction at pin A and the reaction of the
roller B on the smooth bar.

5–31. If the force of the smooth roller at B on the bar
bender is required to be 1.5 kip, determine the horizontal
and vertical components of reaction at pin A and the
required magnitude of force F applied to the handle.

20�

30�

2 kN

6 kN

B

A

600 mm

400 mm

C

Prob. 5–27

0.4 m

A
B u

Prob. 5–28

A

B

C

2 m

1.5 m

d

Prob. 5–29

60�

F40 in.

5 in.

B
A

C

Probs. 5–30/31
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G
D

4 m

0.2 m

3.2 m

BC

A

x

Probs. 5–32/33

5–35. The framework is supported by the member AB
which rests on the smooth floor. When loaded, the pressure
distribution on AB is linear as shown. Determine the length d
of member AB and the intensity w for this case.

5–34. Determine the horizontal and vertical components
of reaction at the pin A and the normal force at the smooth
peg B on the member.

*5–32. The jib crane is supported by a pin at C and rod AB.
If the load has a mass of 2 Mg with its center of mass located
at G, determine the horizontal and vertical components of
reaction at the pin C and the force developed in rod AB on
the crane when x = 5 m.

•5–33. The jib crane is supported by a pin at C and rod AB.
The rod can withstand a maximum tension of 40 kN. If the
load has a mass of 2 Mg, with its center of mass located at G,
determine its maximum allowable distance x and the
corresponding horizontal and vertical components of
reaction at C.

*5–36. Outriggers A and B are used to stabilize the crane
from overturning when lifting large loads. If the load to be
lifted is 3 Mg, determine the maximum boom angle so that
the crane does not overturn. The crane has a mass of 5 Mg
and center of mass at , whereas the boom has a mass of
0.6 Mg and center of mass at .GB

GC

u

A

C

F � 600 N
B

30�

0.4 m

0.4 m
30�

Prob. 5–34

4 ft

800 lb

d
w

7 ft

A B

Prob. 5–35

2.8 m

4.5 m

A B

5 m

0.7 m
2.3 m

GB

GC

u

Prob. 5–36
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*5–40. The platform assembly has a weight of 250 lb and
center of gravity at If it is intended to support a
maximum load of 400 lb placed at point determine the
smallest counterweight W that should be placed at B in
order to prevent the platform from tipping over.

G2,
G1.

5–38. Spring CD remains in the horizontal position at all
times due to the roller at D. If the spring is unstretched
when and the bracket achieves its equilibrium
position when , determine the stiffness k of the
spring and the horizontal and vertical components of
reaction at pin A.

5–39. Spring CD remains in the horizontal position at all
times due to the roller at D. If the spring is unstretched
when and the stiffness is , determine
the smallest angle for equilibrium and the horizontal and
vertical components of reaction at pin A.

u

k = 1.5 kN>mu = 0°

u = 30°
u = 0°

•5–37. The wooden plank resting between the buildings
deflects slightly when it supports the 50-kg boy. This
deflection causes a triangular distribution of load at its ends,
having maximum intensities of and . Determine 
and , each measured in , when the boy is standing
3 m from one end as shown. Neglect the mass of the plank.

N>mwB
wAwBwA

•5–41. Determine the horizontal and vertical components
of reaction at the pin A and the reaction of the smooth
collar B on the rod.

3 m

0.45 m 0.3 m

6 m

A B

wA
wB

Prob. 5–37

0.45 m

0.6 m

kD C

B

A
F � 300 N

u

Probs. 5–38/39

6 ft

8 ft

1 ft1 ft

C

B

G1

D

2 ft
6 ft

G2

Prob. 5–40

A

B

D

C

2 ft

300 lb

4 ft

1 ft 1 ft

30�

450 lb

Prob. 5–41
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*5–44. Determine the horizontal and vertical components
of force at the pin A and the reaction at the rocker B of the
curved beam.

5–43. The uniform rod AB has a weight of 15 lb. Determine
the force in the cable when the rod is in the position shown.

5–42. Determine the support reactions of roller A and the
smooth collar B on the rod. The collar is fixed to the rod
AB, but is allowed to slide along rod CD.

•5–45. The floor crane and the driver have a total weight
of 2500 lb with a center of gravity at G. If the crane is
required to lift the 500-lb drum, determine the normal
reaction on both the wheels at A and both the wheels at B
when the boom is in the position shown.

5–46. The floor crane and the driver have a total weight of
2500 lb with a center of gravity at G. Determine the largest
weight of the drum that can be lifted without causing the
crane to overturn when its boom is in the position shown.

A

1 m

2 m

600 N � m

1 m

B

D

C

900 N

45�

45�

Prob. 5–42

A
10�

30�

5 ft

C

B

T

Prob. 5–43

A B

500 N
200 N

10� 15�

2 m

Prob. 5–44

12 ft

30�

3 ft

6 ft

8.4 ft
2.2 ft

1.4 ft

A B

D

E

F

C

G

Probs. 5–45/46
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5–50. The winch cable on a tow truck is subjected to a
force of when the cable is directed at .
Determine the magnitudes of the total brake frictional
force F for the rear set of wheels B and the total normal
forces at both front wheels A and both rear wheels B for
equilibrium. The truck has a total mass of 4 Mg and mass
center at G.

5–51. Determine the minimum cable force T and critical
angle which will cause the tow truck to start tipping, i.e., for
the normal reaction at A to be zero. Assume that the truck is
braked and will not slip at B. The truck has a total mass of 
4 Mg and mass center at G.x

u

u = 60°T = 6 kN

*5–48. Determine the force P needed to pull the 50-kg roller
over the smooth step.Take 

•5–49. Determine the magnitude and direction of the
minimum force P needed to pull the 50-kg roller over the
smooth step.

u

u = 60°.

5–47. The motor has a weight of 850 lb. Determine the
force that each of the chains exerts on the supporting hooks
at A, B, and C. Neglect the size of the hooks and the
thickness of the beam.

*5–52. Three uniform books, each having a weight W and
length a, are stacked as shown. Determine the maximum
distance d that the top book can extend out from the
bottom one so the stack does not topple over.

1.5 ft1 ft

0.5 ft

CA

B

30�
10�10�

850 lb

Prob. 5–47

20�

A

B

P

0.6 m

0.1 m

u

Probs. 5–48/49

1.25 m

3 m

A

G

B F T

1.5 m
2 m 2.5 m

u

Probs. 5–50/51

a d

Prob. 5–52
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5–55. The horizontal beam is supported by springs at its
ends. Each spring has a stiffness of and is
originally unstretched so that the beam is in the horizontal
position. Determine the angle of tilt of the beam if a load of
800 N is applied at point C as shown.

*5–56. The horizontal beam is supported by springs at its
ends. If the stiffness of the spring at A is ,
determine the required stiffness of the spring at B so that if
the beam is loaded with the 800 N it remains in the
horizontal position. The springs are originally constructed
so that the beam is in the horizontal position when it is
unloaded.

kA = 5 kN>m

k = 5 kN>m

5–54. The uniform rod AB has a weight of 15 lb and the
spring is unstretched when . If , determine
the stiffness k of the spring.

u = 30°u = 0°

•5–53. Determine the angle at which the link ABC is
held in equilibrium if member BD moves 2 in. to the right.
The springs are originally unstretched when . Each
spring has the stiffness shown. The springs remain
horizontal since they are attached to roller guides.

u = 0°

u

•5–57. The smooth disks D and E have a weight of 200 lb
and 100 lb, respectively. If a horizontal force of 
is applied to the center of disk E, determine the normal
reactions at the points of contact with the ground at A, B,
and C.

5–58. The smooth disks D and E have a weight of 200 lb
and 100 lb, respectively. Determine the largest horizontal
force P that can be applied to the center of disk E without
causing the disk D to move up the incline.

P = 200 lb

kCF � 100 lb/ft

kAE � 500 lb/ft

E

F

C

A

B

D

F

6 in.

6 in.

u

Prob. 5–53

6 ft

u

B

A

3 ftk

Prob. 5–54

800 N

B

C

A

3 m

1 m

Probs. 5–55/56

P

1.5 ft

A
B

D
E

C

3

54
1 ft

Probs. 5–57/58
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•5–61. If spring BC is unstretched with and the bell
crank achieves its equilibrium position when ,
determine the force F applied perpendicular to segment
AD and the horizontal and vertical components of reaction
at pin A. Spring BC remains in the horizontal postion at all
times due to the roller at C.

u = 15°
u = 0°

*5–60. The uniform rod has a length l and weight W. It is
supported at one end A by a smooth wall and the other end
by a cord of length s which is attached to the wall as 
shown. Show that for equilibrium it is required that

.h = [(s2 - l2)>3]1>2

5–59. A man stands out at the end of the diving board,
which is supported by two springs A and B, each having a
stiffness of . In the position shown the board
is horizontal. If the man has a mass of 40 kg, determine the
angle of tilt which the board makes with the horizontal after
he jumps off. Neglect the weight of the board and assume it
is rigid.

k = 15 kN>m

5–62. The thin rod of length l is supported by the smooth
tube. Determine the distance a needed for equilibrium if
the applied load is P.

BA

1 m 3 m

Prob. 5–59

Prob. 5–60

300 mm

400 mm

B
k � 2 kN/m

D

C

A

150� F

u

Prob. 5–61

P

B

A

2r

a

l

Prob. 5–62

h

s

C

B

A

l
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CONCEPTUAL PROBLEMS

P5–7. Like all aircraft, this jet plane rests on three wheels.
Why not use an additional wheel at the tail for better
support? (Can you think of any other reason for not
including this wheel?) If there was a fourth tail wheel, draw
a free-body diagram of the plane from a side (2 D) view, and
show why one would not be able to determine all the wheel
reactions using the equations of equilibrium.

P5–6. The man attempts to pull the four wheeler up the
incline and onto the truck bed. From the position shown, is
it more effective to keep the rope attached at A, or would it
be better to attach it to the axle of the front wheels at B?
Draw a free-body diagram and do an equilibrium analysis
to explain your answer.

P5–5. The tie rod is used to support this overhang at the
entrance of a building. If it is pin connected to the building
wall at A and to the center of the overhang B, determine if
the force in the rod will increase, decrease, or remain the
same if (a) the support at A is moved to a lower position D,
and (b) the support at B is moved to the outer position C.
Explain your answer with an equilibrium analysis, using
dimensions and loads. Assume the overhang is pin
supported from the building wall.

*P5–8. Where is the best place to arrange most of the logs
in the wheelbarrow so that it minimizes the amount of force
on the backbone of the person transporting the load? Do an
equilibrium analysis to explain your answer.

C
B

D

A

P5–5

A

B

P5–6

P5–7

P5–8
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EQUILIBRIUM IN THREE DIMENSIONS

5.5 Free-Body Diagrams

The first step in solving three-dimensional equilibrium problems, as in the
case of two dimensions, is to draw a free-body diagram. Before we can do
this, however, it is first necessary to discuss the types of reactions that can
occur at the supports.

Support Reactions. The reactive forces and couple moments
acting at various types of supports and connections, when the members
are viewed in three dimensions, are listed in Table 5–2. It is important to
recognize the symbols used to represent each of these supports and to
understand clearly how the forces and couple moments are developed.
As in the two-dimensional case:

• A force is developed by a support that restricts the translation of its
attached member.

• A couple moment is developed when rotation of the attached
member is prevented.

For example, in Table 5–2, item (4), the ball-and-socket joint prevents
any translation of the connecting member; therefore, a force must act on
the member at the point of connection.This force has three components
having unknown magnitudes, Fx, Fy, Fz. Provided these components are
known, one can obtain the magnitude of force, ,
and the force’s orientation defined by its coordinate direction angles 

Eqs. 2–7.* Since the connecting member is allowed to rotate freely
about any axis, no couple moment is resisted by a ball-and-socket joint.

It should be noted that the single bearing supports in items (5) and (7),
the single pin (8), and the single hinge (9) are shown to resist both force
and couple-moment components. If, however, these supports are used in
conjunction with other bearings, pins, or hinges to hold a rigid body in
equilibrium and the supports are properly aligned when
connected to the body, then the force reactions at these supports alone
are adequate for supporting the body. In other words, the couple
moments become redundant and are not shown on the free-body
diagram. The reason for this should become clear after studying the
examples which follow.

g,b,
a,

F = 2Fx2 + Fy2 + Fz2

* The three unknowns may also be represented as an unknown force magnitude F and
two unknown coordinate direction angles. The third direction angle is obtained using the
identity Eq. 2–8.cos2 a + cos2 b + cos2 g = 1,
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Types of Connection Reaction Number of Unknowns 

continued

One unknown. The reaction is a force which acts away 
from the member in the known direction of the cable.

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact.

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact.

Three unknowns. The reactions are three rectangular 
force components.

Four unknowns. The reactions are two force and two 
couple-moment components which act perpendicular to 
the shaft.  Note: The couple moments are generally not 
applied if the body is supported elsewhere. See the 
examples.

F

F

F

Fz

FyFx

single journal bearing

Fz

Fx

Mz

Mx

(1)

cable

(2)

(3)

roller

ball and socket

(4)

(5)

smooth surface support

TABLE 5–2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems
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Reaction Number of Unknowns 

Five unknowns. The reactions are two force and three 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhere. See the examples.

Six unknowns. The reactions are three force and three 
couple-moment components. 

Fz

Fx

Mz

Mx

Fy

Fz

Fx

Mz

Mx
My

Fz

Mz

Fx

Fy My

Mz

Fx

Fy

Mx

Fz

Mz

Fx
MyMx

Fy

Fz

Types of Connection

TABLE 5–2 Continued

single hinge

fixed support

single thrust bearing

single journal bearing
with square shaft

single smooth pin

(7)

(6)

(8)

(10)

(9)
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Typical examples of actual supports that are referenced to Table 5–2 are
shown in the following sequence of photos.

This ball-and-socket joint provides a
connection for the housing of an earth
grader to its frame. (4)

This journal bearing supports the end of
the shaft. (5)

This thrust bearing is used to support the
drive shaft on a machine. (7)

Free-Body Diagrams. The general procedure for establishing the
free-body diagram of a rigid body has been outlined in Sec. 5.2.
Essentially it requires first “isolating” the body by drawing its outlined
shape. This is followed by a careful labeling of all the forces and couple
moments with reference to an established x, y, z coordinate system. It is
suggested to show the unknown components of reaction as acting on the
free-body diagram in the positive sense. In this way, if any negative values
are obtained, they will indicate that the components act in the negative
coordinate directions.

This pin is used to support the end of the
strut used on a tractor. (8)
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EXAMPLE 5.14

Consider the two rods and plate, along with their associated free-body
diagrams shown in Fig. 5–23. The x, y, z axes are established on the
diagram and the unknown reaction components are indicated in the
positive sense. The weight is neglected.

SOLUTION
45 N � m

500 N

Properly aligned journal
bearings at A, B, C.

A

B

C

45 N � m

500 N

The force reactions developed by
the bearings are sufficient for 
equilibrium since they prevent the 
shaft from rotating about
each of the coordinate axes.

Bz

Bx

Cx
Cy

x
yAy

Az

z

400 lb

A

B

C

Properly aligned journal bearing
at A and hinge at C. Roller at B.

Ax

400 lb

Bz

z

yx

Az

Cx

Cz

Cy

Only force reactions are developed by
the bearing and hinge on the plate to 
prevent rotation about each coordinate axis.
No moments at the hinge are developed.

C

200 lb � ft

Pin at A and cable BC.

A

B300 lb

200 lb � ft

Moment components are developed
by the pin on the rod to prevent
rotation about the x and z axes.

x

B300 lb

y

Az

z

MAz

MAx

Ax

Ay

T

Fig. 5–23
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5.6 Equations of Equilibrium

As stated in Sec. 5.1, the conditions for equilibrium of a rigid body
subjected to a three-dimensional force system require that both the
resultant force and resultant couple moment acting on the body be equal
to zero.

Vector Equations of Equilibrium. The two conditions for
equilibrium of a rigid body may be expressed mathematically in vector
form as

(5–5)

where is the vector sum of all the external forces acting on the body
and is the sum of the couple moments and the moments of all the
forces about any point O located either on or off the body.

Scalar Equations of Equilibrium. If all the external forces and
couple moments are expressed in Cartesian vector form and substituted
into Eqs. 5–5, we have

Since the i, j, and k components are independent from one another, the
above equations are satisfied provided

(5–6a)

and

(5–6b)

These six scalar equilibrium equations may be used to solve for at most
six unknowns shown on the free-body diagram. Equations 5–6a require
the sum of the external force components acting in the x, y, and z
directions to be zero, and Eqs. 5–6b require the sum of the moment
components about the x, y, and z axes to be zero.

©Mx = 0
©My = 0
©Mz = 0

©Fx = 0
©Fy = 0
©Fz = 0

©MO = ©Mxi + ©Myj + ©Mzk = 0

©F = ©Fxi + ©Fy j + ©Fzk = 0

©MO

©F

©F = 0
©MO = 0
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5.7 Constraints and Statical Determinacy

To ensure the equilibrium of a rigid body, it is not only necessary to satisfy
the equations of equilibrium, but the body must also be properly held or
constrained by its supports. Some bodies may have more supports than are
necessary for equilibrium, whereas others may not have enough or the
supports may be arranged in a particular manner that could cause the
body to move. Each of these cases will now be discussed.

Redundant Constraints. When a body has redundant supports,
that is, more supports than are necessary to hold it in equilibrium, it
becomes statically indeterminate. Statically indeterminate means that
there will be more unknown loadings on the body than equations of
equilibrium available for their solution. For example, the beam in 
Fig. 5–24a and the pipe assembly in Fig. 5–24b, shown together with
their free-body diagrams, are both statically indeterminate because of
additional (or redundant) support reactions. For the beam there are five
unknowns, and for which only three equilibrium
equations can be written ( and Eqs. 5–2).
The pipe assembly has eight unknowns, for which only six equilibrium
equations can be written, Eqs. 5–6.

The additional equations needed to solve statically indeterminate
problems of the type shown in Fig. 5–24 are generally obtained from the
deformation conditions at the points of support.These equations involve
the physical properties of the body which are studied in subjects dealing
with the mechanics of deformation, such as “mechanics of materials.”* 

©MO = 0,©Fy = 0,©Fx = 0,
Cy,By,Ay,Ax,MA,

500 N

B C

A

2 kN � m

500 N

2 kN � m

Ax

Ay

MA
By Cy

(a)

x

y

B

A

400 N

200 N

400 N

200 N

Ay

Az

ByBx

Mx My

Bz

Mz

(b)

y

z

x

Fig. 5–24

* See R. C. Hibbeler, Mechanics of Materials, 7th edition, Pearson Education/Prentice
Hall, Inc.
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Improper Constraints. Having the same number of unknown
reactive forces as available equations of equilibrium does not always
guarantee that a body will be stable when subjected to a particular
loading. For example, the pin support at A and the roller support at B for
the beam in Fig. 5–25a are placed in such a way that the lines of action of
the reactive forces are concurrent at point A. Consequently, the applied
loading P will cause the beam to rotate slightly about A, and so the beam
is improperly constrained, .

In three dimensions, a body will be improperly constrained if the
lines of action of all the reactive forces intersect a common axis. For
example, the reactive forces at the ball-and-socket supports at A and B
in Fig. 5–25b all intersect the axis passing through A and B. Since the
moments of these forces about A and B are all zero, then the loading P
will rotate the member about the AB axis, .©MAB Z 0

©MA Z 0

Fig. 5–25

A
B

FB

Ay

Ax

A

PP

(a)

A

Az Bz

Ax BxAy

By

z

x

B

y

A

z

x

B

y

PP

(b)
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Another way in which improper constraining leads to instability
occurs when the reactive forces are all parallel. Two- and three-
dimensional examples of this are shown in Fig. 5–26. In both cases, the
summation of forces along the x axis will not equal zero.

In some cases, a body may have fewer reactive forces than equations of
equilibrium that must be satisfied. The body then becomes only partially
constrained. For example, consider member AB in Fig. 5–27a with its
corresponding free-body diagram in Fig. 5–27b. Here will not
be satisfied for the loading conditions and therefore equilibrium will not
be maintained.

To summarize these points, a body is considered improperly
constrained if all the reactive forces intersect at a common point or pass
through a common axis, or if all the reactive forces are parallel. In
engineering practice, these situations should be avoided at all times since
they will cause an unstable condition.

©Fy = 0

A

FA

AB

FB

PP

(a)

y

x

FB

100 N

A

B

C

100 N

FA

FC

x

(b)

z

y

Fig. 5–26

A B B

FB

(a)

(b)

FA

100 N

100 N

Fig. 5–27
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Important Points
• Always draw the free-body diagram first when solving any

equilibrium problem.
• If a support prevents translation of a body in a specific direction,

then the support exerts a force on the body in that direction.
• If a support prevents rotation about an axis, then the support

exerts a couple moment on the body about the axis.
• If a body is subjected to more unknown reactions than available

equations of equilibrium, then the problem is statically indeterminate.
• A stable body requires that the lines of action of the reactive

forces do not intersect a common axis and are not parallel to one
another.

Procedure for Analysis
Three-dimensional equilibrium problems for a rigid body can be
solved using the following procedure.
Free-Body Diagram.
• Draw an outlined shape of the body.
• Show all the forces and couple moments acting on the body.
• Establish the origin of the x, y, z axes at a convenient point and

orient the axes so that they are parallel to as many of the external
forces and moments as possible.

• Label all the loadings and specify their directions. In general,
show all the unknown components having a positive sense along
the x, y, z axes.

• Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.
• If the x, y, z force and moment components seem easy to

determine, then apply the six scalar equations of equilibrium;
otherwise use the vector equations.

• It is not necessary that the set of axes chosen for force summation
coincide with the set of axes chosen for moment summation.
Actually, an axis in any arbitrary direction may be chosen for
summing forces and moments.

• Choose the direction of an axis for moment summation such that
it intersects the lines of action of as many unknown forces as
possible. Realize that the moments of forces passing through
points on this axis and the moments of forces which are parallel
to the axis will then be zero.

• If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, it indicates that
the sense is opposite to that assumed on the free-body diagram.
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EXAMPLE 5.15

The homogeneous plate shown in Fig. 5–28a has a mass of 100 kg and
is subjected to a force and couple moment along its edges. If it is
supported in the horizontal plane by a roller at A, a ball-and-socket
joint at B, and a cord at C, determine the components of reaction at
these supports.

SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram. There are five unknown reactions acting on the
plate, as shown in Fig. 5–28b. Each of these reactions is assumed to act
in a positive coordinate direction.

Equations of Equilibrium. Since the three-dimensional geometry is
rather simple, a scalar analysis provides a direct solution to this
problem. A force summation along each axis yields

Ans.

Ans.

(1)

Recall that the moment of a force about an axis is equal to the product
of the force magnitude and the perpendicular distance (moment arm)
from the line of action of the force to the axis. Also, forces that are
parallel to an axis or pass through it create no moment about the axis.
Hence, summing moments about the positive x and y axes, we have

(2)

(3)

The components of the force at B can be eliminated if moments are
summed about the and axes. We obtain

(4)

(5)

Solving Eqs. 1 through 3 or the more convenient Eqs. 1, 4, and 5 yields

Ans.

The negative sign indicates that acts downward.

NOTE: The solution of this problem does not require a summation of
moments about the z axis. The plate is partially constrained since the
supports cannot prevent it from turning about the z axis if a force is
applied to it in the x–y plane.

Bz

Az = 790 N Bz = -217 N TC = 707 N

-300 N11.5 m2 - 981 N11.5 m2 - 200 N #m + TC13 m2 = 0

©My¿ = 0;

981 N11 m2 + 300 N12 m2 - Az12 m2 = 0©Mx¿ = 0;

y¿x¿

300 N11.5 m2 + 981 N11.5 m2 - Bz13 m2 -Az13 m2 - 200 N #m = 0

©My = 0;

TC12 m2 - 981 N11 m2 + Bz12 m2 = 0©Mx = 0;

Az + Bz + TC - 300 N - 981 N = 0©Fz = 0;

By = 0©Fy = 0;

Bx = 0©Fx = 0;

A

B

C

200 N � m

1.5 m

2 m
3 m

(a)

300 N

200 N � m

1.5 m

1.5 m
y

y¿x¿�

1 m

1 m
Az

Bz

Bx By

z

z¿

981 N TC

(b)

300 N

x

Fig. 5–28
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Determine the components of reaction that the ball-and-socket joint
at A, the smooth journal bearing at B, and the roller support at C
exert on the rod assembly in Fig. 5–29a.

EXAMPLE 5.16

x

y

z

A

B

C
D

0.4 m

0.4 m

(a)

0.6 m

900 N

0.4 m
0.4 m

A

x

y

z

0.4 m

0.4 m

(b)

0.6 m
0.4 m

0.4 m
FC

Bz

Az Bx

Ax

Ay

900 N

Fig. 5–29

SOLUTION
Free-Body Diagram. As shown on the free-body diagram, Fig. 5–29b,
the reactive forces of the supports will prevent the assembly from
rotating about each coordinate axis, and so the journal bearing at B
only exerts reactive forces on the member.

Equations of Equilibrium. A direct solution for can be obtained
by summing forces along the y axis.

Ans.

The force can be determined directly by summing moments about
the y axis.

Ans.

Using this result, can be determined by summing moments about
the x axis.

Ans.

The negative sign indicates that acts downward. The force can
be found by summing moments about the z axis.

Ans.

Thus,

Ans.

Finally, using the results of and .

Ans.Az = 750 N

Az + (-450 N) + 600 N - 900 N = 0©Fz =  0;

FCBz

Ax + 0 = 0  Ax = 0©Fx = 0;

-Bx(0.8 m) = 0 Bx = 0©Mz = 0;

BxBz

Bz = -450 N

Bz(0.8 m) + 600 N(1.2 m) - 900 N(0.4 m) = 0©Mx = 0;

Bz

FC = 600 N

FC(0.6 m) - 900 N(0.4 m) = 0©My = 0;

FC

Ay = 0©Fy = 0;

Ay
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EXAMPLE 5.17

The boom is used to support the 75-lb flowerpot in Fig. 5–30a.
Determine the tension developed in wires AB and AC.

SOLUTION

Free-Body Diagram. The free-body diagram of the boom is shown in
Fig. 5–30b.

Equations of Equilibrium. We will use a vector analysis.

We can eliminate the force reaction at O by writing the moment
equation of equilibrium about point O.

rA * (FAB + FAC + W) = 0©MO = 0;

= - 2
7 FACi - 6

7 FAC j + 3
7 FACk

FAC = FACa rAC

rAC
b = FACa 5-2i-6j + 3k6 ft

2 (-2 ft)2 + (-6 ft)2 + (3 ft)2
b

= 2
7 FABi - 6

7 FABj + 3
7 FABk

FAB = FABa rAB

rAB
b = FABa 52i - 6j + 3k6 ft

2 (2 ft)2 + (-6 ft)2 + (3 ft)2
b

 (6j) * c a 2
7 FABi - 6

7 FAB j + 3
7 FABkb + a- 2

7 FACi - 6
7 FACj + 3

7 FACkb + (-75k) d = 0

(1)

(2)

Solving Eqs. (1) and (2) simultaneously,

Ans.FAB = FAC = 87.5 lb

- 12
7 FAB + 12

7 FAC = 0©Mz = 0;

0 = 0©My = 0;

18
7 FAB + 18

7 FAC - 450 = 0©Mx = 0;

a 18
7 FAB + 18

7 FAC - 450b i + a- 12
7 FAB + 12

7 FACbk = 0

x
y

O
A

z

6 ft

(a)

3 ft

2 ft
2 ft

B

C

B

A

(b)

6 ft

x y

O

z

3 ft

2 ft

2 ft

W � 75 lb

Oz

Oy
Ox

C

rA

FAB
FAC

Fig. 5–30
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EXAMPLE 5.18

1.5 m

2 m

200 N

1.5 m

2 m

E

A

B

D

C

(a)

1 m

200 N

y

B

C

x

z

rB

rC

TD

TE

Az

A Ay

Ax

(b)

Fig. 5–31

Rod AB shown in Fig. 5–31a is subjected to the 200-N force.
Determine the reactions at the ball-and-socket joint A and the
tension in the cables BD and BE.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. Fig. 5–31b.

Equations of Equilibrium. Representing each force on the free-body
diagram in Cartesian vector form, we have

Applying the force equation of equilibrium.

(1)

(2)

(3)

Summing moments about point A yields

Since then

Expanding and rearranging terms gives

(4)

(5)

(6)
Solving Eqs. 1 through 5, we get

Ans.

Ans.

Ans.

Ans.

Ans.

NOTE: The negative sign indicates that and have a sense which
is opposite to that shown on the free-body diagram, Fig. 5–31b.

AyAx

Az = 200 N

Ay = -100 N

Ax = -50 N

TE = 50 N

TD = 100 N

TD - 2TE = 0©Mz = 0;

-2TE + 100 = 0©My = 0;

2TD - 200 = 0©Mx = 0;

12TD - 2002i + 1-2TE + 1002j + 1TD - 2TE2k = 0

10.5i + 1j - 1k2 * 1-200k2 + 11i + 2j - 2k2 * 1TEi + TDj2 = 0

rC = 1
2 rB,

rC * F + rB * 1TE + TD2 = 0©MA = 0;

Az - 200 = 0©Fz = 0;

Ay + TD = 0©Fy = 0;

Ax + TE = 0©Fx = 0;

1Ax + TE2i + 1Ay + TD2j + 1Az - 2002k = 0

FA + TE + TD + F = 0©F = 0;

F = 5-200k6 N
TD = TDj

TE = TEi

FA = Axi + Ayj + Azk
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EXAMPLE 5.19

The bent rod in Fig. 5–32a is supported at A by a journal bearing, at
D by a ball-and-socket joint, and at B by means of cable BC. Using
only one equilibrium equation, obtain a direct solution for the
tension in cable BC. The bearing at A is capable of exerting force
components only in the z and y directions since it is properly aligned
on the shaft.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. As shown in Fig. 5–32b, there are six unknowns.

Equations of Equilibrium. The cable tension may be obtained
directly by summing moments about an axis that passes through
points D and A. Why? The direction of this axis is defined by the unit
vector u, where

Hence, the sum of the moments about this axis is zero provided

Here r represents a position vector drawn from any point on the axis
DA to any point on the line of action of force F (see Eq. 4–11). With
reference to Fig. 5–32b, we can therefore write

Ans.

Since the moment arms from the axis to and W are easy to obtain,
we can also determine this result using a scalar analysis. As shown in
Fig. 5–32b,

Ans.TB = 490.5 N

©MDA = 0; TB(1 m sin 45°) - 981 N(0.5 m sin 45°) = 0

TB

TB = 490.5 N

- 0.70711-TB + 490.52 + 0 + 0 = 0

1-0.7071 i - 0.7071 j2 # [1-TB + 490.52i] = 0

+ 1-0.5j2 * 1-981k2 D = 0

1-0.7071i - 0.7071j2 # C 1-1j2 * 1TBk2
u # 1rB * TB + rE * W2 = 0

©MDA = u # ©1r * F2 = 0

= -0.7071i - 0.7071j

u =
rDA
rDA

= -
1

22
i -

1

22
j

TB

0.5 m

0.5 m

x

z

y

E

B

A

D

100 kg

C

(a)

1 m

TB

x

z

y

B

A

D

Az

Ay

Dy

Dz
Dx

rE

rB

W � 981 N

u

(b)

45�

0.5 m

0.5 m

Fig. 5–32
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FUNDAMENTAL PROBLEMS

F5–10. Determine the support reactions at the smooth
journal bearings A, B, and C of the pipe assembly.

F5–8. Determine the reactions at the roller support A,
the ball-and-socket joint D, and the tension in cable BC
for the plate.

All problem solutions must include an FBD.

F5–7. The uniform plate has a weight of 500 lb. Determine
the tension in each of the supporting cables.

F5–11. Determine the force developed in cords BD, CE,
and CF and the reactions of the ball-and-socket joint A
on the block.

z
A

B C

y

x

200 lb

3 ft

2 ft

2 ft

F5–7

z

x

y

0.6 m

0.6 m
0.6 m

450 N
0.4 m A

B

C

F5–10

F5–9. The rod is supported by smooth journal bearings at
A, B and C and is subjected to the two forces. Determine
the reactions at these supports.

F5–12. Determine the components of reaction that the
thrust bearing A and cable BC exert on the bar.

x y
D

B

C

A

z

0.4 m 0.5 m

600 N900 N

0.3 m0.4 m

0.1 m

0.2 m

F5–8

z

x
y

A

B
D

C

600N 400N
0.6 m

0.6 m 0.6 m

0.4 m

F5–9

x
3 m

9 kN6 kN

1.5 m

4 m

C

A

B

E

y

z

D

F

F5–11

F � 80 lb

x

y

z

B
D

C
A

1.5 ft
1.5 ft6 ft

F5–12
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PROBLEMS

•5–65. If and , determine
the tension developed in cables AB, CD, and EF. Neglect
the weight of the plate.

5–66. Determine the location x and y of the point of
application of force P so that the tension developed in
cables AB, CD, and EF is the same. Neglect the weight of
the plate.

y = 1 mP = 6 kN, x = 0.75 m

*5–64. The pole for a power line is subjected to the two
cable forces of 60 lb, each force lying in a plane parallel to
the plane. If the tension in the guy wire AB is 80 lb,
determine the x, y, z components of reaction at the fixed
base of the pole, O.

x-y

All problem solutions must include an FBD.

5–63. The cart supports the uniform crate having a mass of
85 kg. Determine the vertical reactions on the three casters
at A, B, and C. The caster at B is not shown. Neglect the
mass of the cart.

5–67. Due to an unequal distribution of fuel in the wing
tanks, the centers of gravity for the airplane fuselage A
and wings B and C are located as shown. If these
components have weights 
and determine the normal reactions of the
wheels D, E, and F on the ground.

WC = 6000 lb,
WB = 8000 lb,WA = 45 000 lb,

B
A

C
0.2 m 0.5 m

0.6 m 0.35 m

0.1 m

0.4 m
0.2 m

0.35 m

Prob. 5–63

8 ft
20 ft

A
BD

E

F

8 ft
6 ft

6 ft

4 ft

3 ft

z

x

y

C

Prob. 5–67

z

45�

60 lb

60 lb

80 lb

1 ft

10 ft

4 ft

45�

3 ft

y

B

A

O

x

Prob. 5–64

z

F

B

D

A

y

x

x y

E

C

P

2 m
2 m

Probs. 5–65/66
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5–70. Determine the tension in cables BD and CD and
the x, y, z components of reaction at the ball-and-socket
joint at A.

•5–69. The shaft is supported by three smooth journal
bearings at A, B, and C. Determine the components of
reaction at these bearings.

*5–68. Determine the magnitude of force F that must be
exerted on the handle at C to hold the 75-kg crate in the
position shown. Also, determine the components of reaction
at the thrust bearing A and smooth journal bearing B.

5–71. The rod assembly is used to support the 250-lb cylinder.
Determine the components of reaction at the ball-and-
socket joint A, the smooth journal bearing E, and the force
developed along rod CD. The connections at C and D are
ball-and-socket joints.

x y

z

D

A

C

E

F1 ft
1 ft

1 ft
1.5 ft

1 ft

Prob. 5–71

F
0.1 m

0.2 m

0.5 m

0.6 m

0.1 m

z

x
y

A

B

C

Prob. 5–68

0.6 m
x B

C
A

z

0.9 m

0.6 m

0.9 m y
0.9 m

0.9 m

0.9 m

900 N

500 N

450 N600 N

Prob. 5–69

z

y

x

C

B A

3 m

300 N

D

1 m

0.5 m

1.5 m

Prob. 5–70
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5–74. If the load has a weight of 200 lb, determine the x, y,
z components of reaction at the ball-and-socket joint A and
the tension in each of the wires.

•5–73. Determine the force components acting on the ball-
and-socket at A, the reaction at the roller B and the tension
on the cord CD needed for equilibrium of the quarter
circular plate.

*5–72. Determine the components of reaction acting at the
smooth journal bearings A, B, and C.

5–75. If the cable can be subjected to a maximum tension
of 300 lb, determine the maximum force F which may be
applied to the plate. Compute the x, y, z components of
reaction at the hinge A for this loading.

0.6 m
45�

x y

C

z

B

A
0.4 m

0.8 m

0.4 m

450 N

300 N � m

Prob. 5–72
y

x

z

C

A

D

E

F

GB

2 ft

2 ft

2 ft

2 ft

3 ft

2 ft
4 ft

Prob. 5–74

z

x

350 N

1 m

2 m

60�

3 m200 N

200 N

y
B

A

C

D

Prob. 5–73

9 ft

F

3 ft

z

x

y

A

B

2 ft

3 ft

1 ftC

Prob. 5–75
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5–79. The boom is supported by a ball-and-socket joint at A
and a guy wire at B. If the 5-kN loads lie in a plane which is
parallel to the x–y plane, determine the x, y, z components of
reaction at A and the tension in the cable at B.

•5–77. The plate has a weight of W with center of gravity at
G. Determine the distance d along line GH where the
vertical force P = 0.75W will cause the tension in wire CD to
become zero.

5–78. The plate has a weight of W with center of gravity at
G. Determine the tension developed in wires AB, CD, and
EF if the force P = 0.75W is applied at d = L/2.

*5–76. The member is supported by a pin at A and a cable
BC. If the load at D is 300 lb, determine the x, y, z
components of reaction at the pin A and the tension in
cable B C.

*5–80. The circular door has a weight of 55 lb and a center
of gravity at G. Determine the x, y, z components of
reaction at the hinge A and the force acting along strut CB
needed to hold the door in equilibrium. Set .

•5–81. The circular door has a weight of 55 lb and a center
of gravity at G. Determine the x, y, z components of
reaction at the hinge A and the force acting along strut CB
needed to hold the door in equilibrium. Set .u = 90°

u = 45°

C

1 ft

z

A
B

D

x

6 ft

2 ft

2 ft

2 ft

2 ft

y

Prob. 5–76

z

F

B

D

A

H

y

x
G

d

E

C

P

L––
2

L––
2

L––
2

L––
2

Probs. 5–77/78

z

5 kN

5 kN

y

x

3 m

2 m

1.5 m

30�

30�

BA

Prob. 5–79

C

z

x

y
B

G

A

3 ft

3 ft

u

Probs. 5–80/81
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•5–85. The circular plate has a weight W and center of
gravity at its center. If it is supported by three vertical cords
tied to its edge, determine the largest distance d from the
center to where any vertical force P can be applied so as not
to cause the force in any one of the cables to become zero.

5–86. Solve Prob. 5–85 if the plate’s weight W is neglected.

5–82. Member AB is supported at B by a cable and at A by
a smooth fixed square rod which fits loosely through the
square hole of the collar. If ,
determine the x, y, z components of reaction at A and the
tension in the cable.

5–83. Member AB is supported at B by a cable and at A by
a smooth fixed square rod which fits loosely through the
square hole of the collar. Determine the tension in cable BC
if the force .F = 5-45k6 lb

F = 520i - 40j - 75k6 lb

8 ft C

z

6 ft

12 ft

4 ft

F

B

x

A

y

Probs. 5–82/83

a/2
a/2

a

Prob. 5–87

x

z

C

G

B

A
y

3 ft

1.5ft

10 ft

4 ft
2 ft

2.5 ft
2.5 ft

1 ft

30�

Prob. 5–84

A

d120�

120�
120�

Cr

P

B

Probs. 5–85/86

*5–84. Determine the largest weight of the oil drum that
the floor crane can support without overturning. Also, what
are the vertical reactions at the smooth wheels A, B, and C
for this case. The floor crane has a weight of 300 lb, with its
center of gravity located at G.

5–87. A uniform square table having a weight W and sides
a is supported by three vertical legs. Determine the smallest
vertical force P that can be applied to its top that will cause
it to tip over.
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CHAPTER REVIEW

roller

u

F

u

Equilibrium

A body in equilibrium does not rotate but
can translate with constant velocity, or it
does not move at all.

©M = 0
©F = 0

F3 y

x

z

F4

F1F2

O

Two Dimensions

Before analyzing the equilibrium of a body, it is
first necessary to draw its free-body diagram.
This is an outlined shape of the body, which
shows all the forces and couple moments that
act on it.

Couple moments can be placed anywhere on
a free-body diagram since they are free
vectors. Forces can act at any point along their
line of action since they are sliding vectors.

Angles used to resolve forces, and dimensions
used to take moments of the forces, should
also be shown on the free-body diagram.

Some common types of supports and their
reactions are shown below in two dimensions.

Remember that a support will exert a force on
the body in a particular direction if it prevents
translation of the body in that direction, and it
will exert a couple moment on the body if it
prevents rotation.

The three scalar equations of equilibrium
can be applied when solving problems in two
dimensions, since the geometry is easy to
visualize.

A

B

C

500 N � m

30�

Ax T

Ay

500 N � m

30�

y

x

1 m

1 m

2 m

2 m

smooth pin or hinge

u

Fy

Fx

fixed support

Fy

Fx

M

©MO = 0
©Fy = 0
©Fx = 0
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For the most direct solution, try to sum forces
along an axis that will eliminate as many
unknown forces as possible. Sum moments
about a point A that passes through the line of
action of as many unknown forces as possible.

By =
P1d1 - P2d2

dB

P2d2 + BydB - P1d1 = 0
©MA = 0;

Ax - P2 = 0 Ax = P2

©Fx = 0;

Three Dimensions
Some common types of supports and their
reactions are shown here in three dimensions.

In three dimensions, it is often advantageous to
use a Cartesian vector analysis when applying
the equations of equilibrium. To do this, first
express each known and unknown force and
couple moment shown on the free-body
diagram as a Cartesian vector. Then set the
force summation equal to zero. Take moments
about a point O that lies on the line of action of
as many unknown force components as
possible. From point O direct position vectors
to each force, and then use the cross product to
determine the moment of each force.

The six scalar equations of equilibrium are
established by setting the respective i, j, and k
components of these force and moment
summations equal to zero.

©Mz = 0
©My = 0
©Mx = 0

©Fz = 0
©Fy = 0
©Fx = 0

©MO = 0
©F = 0

Determinacy and Stability

If a body is supported by a minimum number of
constraints to ensure equilibrium, then it is
statically determinate. If it has more constraints
than required, then it is statically indeterminate.

To properly constrain the body, the reactions
must not all be parallel to one another or
concurrent.

By

d1

P1

P2

d2

Ay

Ax A

dB

roller

F

ball and socket

Fz

FyFx

fixed support

Fz

Mz

Fx
MyMx

Fy

500 N

Statically indeterminate,
five reactions, three
equilibrium equations

2 kN � m

600 N

100 N

Proper constraint, statically determinate

200 N

45�
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B

C

A

4.5 m

4 m
100 N

3 m
200 N/m

30�

Prob. 5–88

A

B

2 m 2 m 2 m

45�

2 m

FFF

Probs. 5–89/90

0.4 m

60�

0.8 m

10 kN

0.6 m0.6 m

6 kN

A

B

Prob. 5–91

REVIEW PROBLEMS

5–91. Determine the normal reaction at the roller A and
horizontal and vertical components at pin B for equilibrium
of the member.

•5–89. Determine the horizontal and vertical components
of reaction at the pin A and the reaction at the roller B
required to support the truss. Set .

5–90. If the roller at B can sustain a maximum load of 
3 kN, determine the largest magnitude of each of the three
forces F that can be supported by the truss.

F = 600 N

*5–88. Determine the horizontal and vertical components
of reaction at the pin A and the force in the cable BC.
Neglect the thickness of the members.

*5–92. The shaft assembly is supported by two smooth
journal bearings A and B and a short link DC. If a couple
moment is applied to the shaft as shown, determine the
components of force reaction at the journal bearings and the
force in the link. The link lies in a plane parallel to the y–z
plane and the bearings are properly aligned on the shaft.

250 mm
300 mm

400 mm
250 N � m

y

A
x

20�

120 mm

30�
D

B

z

C

Prob. 5–92
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5–95. A vertical force of 80 lb acts on the crankshaft.
Determine the horizontal equilibrium force P that must be
applied to the handle and the x, y, z components of force at
the smooth journal bearing A and the thrust bearing B. The
bearings are properly aligned and exert only force reactions
on the shaft.

5–94. A skeletal diagram of the lower leg is shown in the
lower figure. Here it can be noted that this portion of the leg
is lifted by the quadriceps muscle attached to the hip at A
and to the patella bone at B. This bone slides freely over
cartilage at the knee joint. The quadriceps is further
extended and attached to the tibia at C. Using the
mechanical system shown in the upper figure to model the
lower leg, determine the tension in the quadriceps at C and
the magnitude of the resultant force at the femur (pin), D,
in order to hold the lower leg in the position shown. The
lower leg has a mass of 3.2 kg and a mass center at ; the
foot has a mass of 1.6 kg and a mass center at .G2

G1

•5–93. Determine the reactions at the supports A and B of
the frame.

*5–96. The symmetrical shelf is subjected to a uniform
load of 4 kPa. Support is provided by a bolt (or pin) located
at each end A and and by the symmetrical brace arms,
which bear against the smooth wall on both sides at B and

. Determine the force resisted by each bolt at the wall
and the normal force at B for equilibrium.
B¿

A¿

A

P

B

z

x

y80 lb

14 in.

10 in.

14 in.

6 in.

4 in.

8 in.

Prob. 5–95

A

B

8 ft 6 ft

8 ft

6 ft

0.5 kip

2 kip
10 kip7 kip5 kip

6 ft

Prob. 5–93

A

A
B

C

D

D

C
B 350 mm

300 mm

75 mm

75�

25 mm

G1
G2

Prob. 5–94

0.2 m

0.15 m

4 kPa

1.5 mA

A¿

B

B¿

Prob. 5–96



The forces within the members of each truss bridge must be determined if the
members are to be properly designed.



Structural Analysis

CHAPTER OBJECTIVES

• To show how to determine the forces in the members of a truss
using the method of joints and the method of sections.

• To analyze the forces acting on the members of frames and
machines composed of pin-connected members.

6.1 Simple Trusses

A truss is a structure composed of slender members joined together at
their end points. The members commonly used in construction consist of
wooden struts or metal bars. In particular, planar trusses lie in a single
plane and are often used to support roofs and bridges.The truss shown in
Fig. 6–1a is an example of a typical roof-supporting truss. In this figure, the
roof load is transmitted to the truss at the joints by means of a series of
purlins. Since this loading acts in the same plane as the truss, Fig. 6–1b,
the analysis of the forces developed in the truss members will be 
two-dimensional.

6

(a)

A

Purlin

Fig. 6–1

(b)

Roof truss
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In the case of a bridge, such as shown in Fig. 6–2a, the load on the deck
is first transmitted to stringers, then to floor beams, and finally to the
joints of the two supporting side trusses. Like the roof truss, the bridge
truss loading is also coplanar, Fig. 6–2b.

When bridge or roof trusses extend over large distances, a rocker or
roller is commonly used for supporting one end, for example, joint A in
Figs. 6–1a and 6–2a. This type of support allows freedom for expansion or
contraction of the members due to a change in temperature or application
of loads.

Assumptions for Design. To design both the members and the
connections of a truss, it is necessary first to determine the force
developed in each member when the truss is subjected to a given
loading. To do this we will make two important assumptions:

• All loadings are applied at the joints. In most situations, such as
for bridge and roof trusses, this assumption is true. Frequently the
weight of the members is neglected because the force supported by
each member is usually much larger than its weight. However, if the
weight is to be included in the analysis, it is generally satisfactory to
apply it as a vertical force, with half of its magnitude applied at each
end of the member.

• The members are joined together by smooth pins. The joint
connections are usually formed by bolting or welding the ends of
the members to a common plate, called a gusset plate, as shown in
Fig. 6–3a, or by simply passing a large bolt or pin through each of
the members, Fig. 6–3b.We can assume these connections act as pins
provided the center lines of the joining members are concurrent, as
in Fig. 6–3.

(a)

Floor beam

Stringer
Deck

A

Fig. 6–2

(b)

Bridge truss

(a)

Fig. 6–3

(b)
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Because of these two assumptions, each truss member will act as a two-
force member, and therefore the force acting at each end of the member
will be directed along the axis of the member. If the force tends to
elongate the member, it is a tensile force (T), Fig. 6–4a; whereas if it tends
to shorten the member, it is a compressive force (C), Fig. 6–4b. In the
actual design of a truss it is important to state whether the nature of the
force is tensile or compressive. Often, compression members must be
made thicker than tension members because of the buckling or column
effect that occurs when a member is in compression.

Simple Truss. If three members are pin connected at their ends they
form a triangular truss that will be rigid, Fig. 6–5. Attaching two more
members and connecting these members to a new joint D forms a larger
truss, Fig. 6–6. This procedure can be repeated as many times as desired
to form an even larger truss. If a truss can be constructed by expanding
the basic triangular truss in this way, it is called a simple truss.

T C

T C

CompressionTension
(b)(a)

Fig. 6–4

A B

C

P

Fig. 6–5

A

C
D

B

P

Fig. 6–6

The use of metal gusset plates in the
construction of these Warren trusses is
clearly evident.
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6.2 The Method of Joints

In order to analyze or design a truss, it is necessary to determine the force
in each of its members. One way to do this is to use the method of joints.
This method is based on the fact that if the entire truss is in equilibrium,
then each of its joints is also in equilibrium. Therefore, if the free-body
diagram of each joint is drawn, the force equilibrium equations can then
be used to obtain the member forces acting on each joint. Since the
members of a plane truss are straight two-force members lying in a single
plane, each joint is subjected to a force system that is coplanar and
concurrent.As a result, only and need to be satisfied for
equilibrium.

For example, consider the pin at joint B of the truss in Fig. 6–7a.
Three forces act on the pin, namely, the 500-N force and the forces
exerted by members BA and BC. The free-body diagram of the pin is
shown in Fig. 6–7b. Here, is “pulling” on the pin, which means that
member BA is in tension; whereas is “pushing” on the pin, and
consequently member BC is in compression. These effects are clearly
demonstrated by isolating the joint with small segments of the member
connected to the pin, Fig. 6–7c. The pushing or pulling on these small
segments indicates the effect of the member being either in compression
or tension.

When using the method of joints, always start at a joint having at least
one known force and at most two unknown forces, as in Fig. 6–7b. In this
way, application of and yields two algebraic
equations which can be solved for the two unknowns. When applying
these equations, the correct sense of an unknown member force can be
determined using one of two possible methods.

©Fy = 0©Fx = 0

FBC
FBA

©Fy = 0©Fx = 0

B

2 m

500 N

A C

45�

2 m

(a)

Fig. 6–7

B

45�

500 N

FBC (compression)FBA(tension)

(b)

FBA(tension)

B

45�

500 N

FBC (compression)

(c)
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• The correct sense of direction of an unknown member force can, in
many cases, be determined “by inspection.” For example, in
Fig. 6–7b must push on the pin (compression) since its horizontal
component, must balance the 500-N force 
Likewise, is a tensile force since it balances the vertical
component, In more complicated cases, the
sense of an unknown member force can be assumed; then, after
applying the equilibrium equations, the assumed sense can be
verified from the numerical results. A positive answer indicates that
the sense is correct, whereas a negative answer indicates that the
sense shown on the free-body diagram must be reversed.

• Always assume the unknown member forces acting on the joint’s
free-body diagram to be in tension; i.e., the forces “pull” on the pin.
If this is done, then numerical solution of the equilibrium equations
will yield positive scalars for members in tension and negative scalars
for members in compression. Once an unknown member force is
found, use its correct magnitude and sense (T or C) on subsequent
joint free-body diagrams.

FBC cos 45° 1©Fy = 02.FBA
1©Fx = 02.FBC sin 45°,

FBC

Procedure for Analysis

The following procedure provides a means for analyzing a truss
using the method of joints.

• Draw the free-body diagram of a joint having at least one known
force and at most two unknown forces. (If this joint is at one of
the supports, then it may be necessary first to calculate the
external reactions at the support.)

• Use one of the two methods described above for establishing the
sense of an unknown force.

• Orient the x and y axes such that the forces on the free-body
diagram can be easily resolved into their x and y components and
then apply the two force equilibrium equations and

Solve for the two unknown member forces and verify
their correct sense.

• Using the calculated results, continue to analyze each of the other
joints. Remember that a member in compression “pushes” on the
joint and a member in tension “pulls” on the joint.Also, be sure to
choose a joint having at most two unknowns and at least one
known force.

©Fy = 0.
©Fx = 0

The forces in the members of this
simple roof truss can be determined
using the method of joints.
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B

2 m

2 m

500 N

A C

(a)

45�

Fig. 6–8

(b)

B

45�

500 N

FBCFBA

(c)

45�
707.1 N

FCA
C

Cy

(d)

A

FBA � 500 N

FCA � 500 N

Ay

Ax

(e)

B

45�

500 N

A 45�500 N

500 N

500 N

500 N
500 N

C

707.1 N

707.1 N

500 N500 N

Tension

Com
pressionT

en
si

on

Determine the force in each member of the truss shown in Fig. 6–8a
and indicate whether the members are in tension or compression.

SOLUTION

Since we should have no more than two unknown forces at the joint
and at least one known force acting there, we will begin our analysis at
joint B.

Joint B. The free-body diagram of the joint at B is shown in Fig. 6–8b.
Applying the equations of equilibrium, we have

Ans.

Ans.

Since the force in member BC has been calculated, we can proceed to
analyze joint C to determine the force in member CA and the support
reaction at the rocker.

Joint C. From the free-body diagram of joint C, Fig. 6–8c, we have

Ans.

Ans.

Joint A. Although it is not necessary, we can determine the
components of the support reactions at joint A using the results of

and . From the free-body diagram, Fig. 6–8d, we have

NOTE: The results of the analysis are summarized in Fig. 6–8e. Note
that the free-body diagram of each joint (or pin) shows the effects of
all the connected members and external forces applied to the joint,
whereas the free-body diagram of each member shows only the
effects of the end joints on the member.

500 N - Ay = 0 Ay = 500 N+ c©Fy = 0;

500 N - Ax = 0 Ax = 500 N:+ ©Fx = 0;

FBAFCA

Cy - 707.1 sin 45° N = 0   Cy = 500 N+ c©Fy = 0;

-FCA + 707.1 cos 45° N = 0   FCA = 500 N 1T2:+ ©Fx = 0;

FBA = 500 N 1T2FBC cos 45° - FBA = 0+ c©Fy = 0;

FBC = 707.1 N 1C2500 N - FBC sin 45° = 0:+ ©Fx = 0;

EXAMPLE 6.1
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EXAMPLE 6.2

Determine the force in each member of the truss in Fig. 6–9a and
indicate if the members are in tension or compression.

SOLUTION
Since joint has one known and only two unknown forces acting on
it, it is possible to start at this joint, then analyze joint , and finally
joint .This way the support reactions will not have to be determined
prior to starting the analysis.

Joint C. By inspection of the force equilibrium, Fig. 6–9b, it can be
seen that both members and must be in compression.

Ans.

Ans.

Joint D. Using the result , the force in members
and AD can be found by analyzing the equilibrium of joint . We

will assume and are both tensile forces, Fig. 6–9c. The ,
coordinate system will be established so that the axis is directed
along .This way, we will eliminate the need to solve two equations
simultaneously. Now can be obtained directly by applying

.

;

Ans.

The negative sign indicates that is a compressive force. Using this
result,

;

Ans.

Joint A. The force in member AB can be found by analyzing the
equilibrium of joint A, Fig. 6–9d. We have

Ans.FAB = 546.41 N (C) = 546 N (C)

(772.74 N) cos 45° - FAB = 0:+ ©Fx = 0;

FBD = 1092.82 N =  1.09 kN (T)

FBD + (-772.74 cos 15°) - 400 cos 30° = 0+ R©Fx¿ = 0

FAD

FAD = -772.74 N = 773 N (C)

- FAD  sin 15° - 400 sin 30° = 0+Q©Fy¿ = 0

©Fy¿ = 0
FAD

FBD
x¿

y¿x¿FBDFAD
DBD

FCD = 400 N (C)

FCD = 400 N (C)

FCD - (565.69 N) cos 45° = 0:+ ©Fx = 0;

FBC = 565.69 N = 566 N (C)

FBC sin 45° - 400 N = 0+ c©Fy = 0;

CDBC

A
D

C

2 m 2 m

(a)

400 N

2 m

D

BA

C

30�

 45�

 45�

2 m2 m

Fig. 6–9

(b)

400 N

C

y

x
45�

FCD

FBC

(c)

D

y¿

x¿15�

30�

FCD � 400 N

FAD

FBD

(d)

A

y

x
45�

FAB

Ay

FAD � 772.74 N
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Determine the force in each member of the truss shown in Fig. 6–10a.
Indicate whether the members are in tension or compression.

EXAMPLE 6.3

4 m

(a)

3 m

400 N

B
C

D
A

3 m

600 N

Fig. 6–10

4 m

(b)

400 N

C

A

6 m
600 N

3 m

Ay

Cy

Cx

SOLUTION

Support Reactions. No joint can be analyzed until the support
reactions are determined, because each joint has more than three
unknown forces acting on it.A free-body diagram of the entire truss is
given in Fig. 6–10b. Applying the equations of equilibrium, we have

a

The analysis can now start at either joint A or C. The choice is
arbitrary since there are one known and two unknown member forces
acting on the pin at each of these joints.

Joint A. (Fig. 6–10c). As shown on the free-body diagram, is
assumed to be compressive and is tensile. Applying the equations
of equilibrium, we have

Ans.

Ans.FAD - 3
51750 N2 = 0 FAD = 450 N 1T2:+ ©Fx = 0;

600 N - 4
5FAB = 0 FAB = 750 N 1C2+ c©Fy = 0;

FAD
FAB

Cy = 200 N600 N - 400 N - Cy = 0+ c©Fy = 0;

Ay = 600 N

-Ay16 m2 + 400 N13 m2 + 600 N14 m2 = 0+©MC = 0;

Cx = 600 N600 N - Cx = 0:+ ©Fx = 0;

3

45

x

y

FAB

FAD

600 N

(c)

A
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Joint D. (Fig. 6–10d). Using the result for and summing forces
in the horizontal direction, Fig. 6–10d, we have

The negative sign indicates that acts in the opposite sense to that
shown in Fig. 6–10d.* Hence,

Ans.

To determine we can either correct the sense of on the free-
body diagram, and then apply or apply this equation and
retain the negative sign for i.e.,

Ans.

Joint C. (Fig. 6–10e).

Ans.

NOTE: The analysis is summarized in Fig. 6–10f, which shows the
free-body diagram for each joint and member.

200 N - 200 N K 0 1check2+ c©Fy = 0;

FCB = 600 N 1C2FCB - 600 N = 0:+ ©Fx = 0;

FDC = 200 N 1C2-FDC - 4
51-250 N2 = 0+ c©Fy = 0;

FDB,
©Fy = 0,

FDBFDC,

FDB = 250 N 1T2

FDB

-450 N + 3
5FDB + 600 N = 0 FDB = -250 N:+ ©Fx = 0;

FAD

3

4 5

x

y

FDB

600 N

(d)

FDC

D450 N

(f)

750 N 250 N

600 N

400 N

Compression 600 N

200 N

600 N

200 N

Tension

C
om

pressionCom
pr

es
sio

n

750 N

450 N

600 N

A
Tension

450 N

250 N 200 N

600 N
D

C
B

x

y

200 N

(e)

C 600 N

200 N

FCB

* The proper sense could have been determined by inspection, prior to applying ©Fx = 0.
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6.3 Zero-Force Members

Truss analysis using the method of joints is greatly simplified if we can
first identify those members which support no loading. These zero-force
members are used to increase the stability of the truss during construction
and to provide added support if the loading is changed.

The zero-force members of a truss can generally be found by
inspection of each of the joints. For example, consider the truss shown 
in Fig. 6–11a. If a free-body diagram of the pin at joint A is drawn,
Fig. 6–11b, it is seen that members AB and AF are zero-force members.
(We could not have come to this conclusion if we had considered the
free-body diagrams of joints F or B simply because there are five
unknowns at each of these joints.) In a similar manner, consider the free-
body diagram of joint D, Fig. 6–11c. Here again it is seen that DC and
DE are zero-force members. From these observations, we can conclude
that if only two members form a truss joint and no external load or
support reaction is applied to the joint, the two members must be zero-
force members. The load on the truss in Fig. 6–11a is therefore supported
by only five members as shown in Fig. 6–11d.

(a)

D

C

EF

B

A

P

u

Fig. 6–11

FAB

y

x

FAF

A

(b)

�

�

�Fx � 0; FAB � 0

�Fy � 0; FAF � 0

FDC y

x

FDE

D

(c)

� �Fy � 0; FDC sin u = 0; FDC � 0 since sin u � 0
�Fx � 0; FDE � 0 � 0; FDE � 0�

u

(d)

B

C

EF

P
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Now consider the truss shown in Fig. 6–12a. The free-body diagram of
the pin at joint D is shown in Fig. 6–12b. By orienting the y axis along
members DC and DE and the x axis along member DA, it is seen that
DA is a zero-force member. Note that this is also the case for member
CA, Fig. 6–12c. In general then, if three members form a truss joint for
which two of the members are collinear, the third member is a zero-force
member provided no external force or support reaction is applied to the
joint. The truss shown in Fig. 6–12d is therefore suitable for supporting
the load .P

(a)

E

A

D

C

B

P

u

Fig. 6–12

D

FDE

(b)

� �Fx � 0;
�Fy � 0;

FDA

FDC

yx

�

FDA � 0
FDC � FDE

FCD

C

FCB

FCA

yx

�

�

u

(c)

�Fx � 0; FCA sin u = 0; FCA � 0 since sin u � 0;
�Fy � 0; FCB � FCD

(d)

EP

B

A
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C

A E

5 kN

2 kN

D

FGH

B

(a)

Fig. 6–13

Using the method of joints, determine all the zero-force members of
the Fink roof truss shown in Fig. 6–13a. Assume all joints are pin
connected.

EXAMPLE 6.4

SOLUTION

Look for joint geometries that have three members for which two are
collinear. We have

Joint G. (Fig. 6–13b).

Ans.

Realize that we could not conclude that GC is a zero-force member
by considering joint C, where there are five unknowns. The fact that
GC is a zero-force member means that the 5-kN load at C must be
supported by members CB, CH, CF, and CD.

Joint D. (Fig. 6–13c).

Ans.

Joint F. (Fig. 6–13d).

Ans.

NOTE: If joint B is analyzed, Fig. 6–13e,

Also, must satisfy Fig. 6–13f, and therefore HC is not a
zero-force member.

©Fy = 0,FHC

2 kN - FBH = 0 FBH = 2 kN 1C2+R©Fx = 0;

FFC = 0FFC cos u = 0 Since u Z 90°,+ c©Fy = 0;

FDF = 0+b©Fx = 0;

FGC = 0+ c©Fy = 0;

(b)

y

x
G

FGC

FGFFGH

(c)

D

FDC

FDF

FDE

y

x

(d)

y

x
F FFEFFG

0FFC

u

(e)

B FBH

FBC

FBA

2 kN

x

y

(f)

y

x
H FHGFHA

2 kN

FHC
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FUNDAMENTAL PROBLEMS

F6–4. Determine the greatest load P that can be applied to the
truss so that none of the members are subjected to a force
exceeding either 2 kN in tension or 1.5 kN in compression.

F6–2. Determine the force in each member of the truss.
State if the members are in tension or compression.

F6–1. Determine the force in each member of the truss.
State if the members are in tension or compression.

F6–5. Identify the zero-force members in the truss.

F6–3. Determine the force in members AE and DC. State if
the members are in tension or compression.

F6–6. Determine the force in each member of the truss.
State if the members are in tension or compression.

4 ft 4 ft

4 ft

A
B

C

D

450 lb

F6–1

D

A

C

B

2 ft 2 ft

300 lb

3 ft

F6–2

A C
B

F E D

4 ft 4 ft

3 ft

800 lb

F6–3

A B

P

C

3 m

60� 60�

F6–4

A B

C
DE

1.5 m

2 m2 m

3 kN

F6–5

B

D

C

E

600 lb

450 lb

3 ft 3 ft

30�A

F6–6
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PROBLEMS

*6–4. Determine the force in each member of the truss
and state if the members are in tension or compression.
Assume each joint as a pin. Set P = 4 kN.

•6–5. Assume that each member of the truss is made of steel
having a mass per length of 4 kg/m. Set , determine the
force in each member, and indicate if the members are in
tension or compression. Neglect the weight of the gusset plates
and assume each joint is a pin. Solve the problem by assuming
the weight of each member can be represented as a vertical
force, half of which is applied at the end of each member.

P = 0

6–2. The truss, used to support a balcony, is subjected to
the loading shown. Approximate each joint as a pin and
determine the force in each member. State whether the
members are in tension or compression. Set 

6–3. The truss, used to support a balcony, is subjected to
the loading shown. Approximate each joint as a pin and
determine the force in each member. State whether the
members are in tension or compression. Set 
P2 = 0.

P1 = 800 lb,

P2 = 400 lb.
P1 = 600 lb,

•6–1. Determine the force in each member of the truss,
and state if the members are in tension or compression.

6–6. Determine the force in each member of the truss and
state if the members are in tension or compression. Set

and .

6–7. Determine the force in each member of the truss and
state if the members are in tension or compression. Set

.P1 = P2 = 4 kN

P2 = 1.5 kNP1 = 2 kN

600 N

900 N

2 m

2 m

2 m

A

C
E

D

B

Prob. 6–1

45�

4 ft 4 ft

45�

D

E

CB

P2

A

4 ft

P1

Probs. 6–2/3Prob. 6–1

A

E

D

CB

PP

2P

4 m

4 m 4 m

Probs. 6–4/5

A

E D

30� 30�

B

C

3 m 3 m

P2P1

Probs. 6–6/7
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*6–12. Determine the force in each member of the truss
and state if the members are in tension or compression. Set

, .

•6–13. Determine the largest load that can be applied
to the truss so that the force in any member does not exceed
500 lb (T) or 350 lb (C). Take .P1 = 0

P2

P2 = 100 lbP1 = 240 lb

6–10. Determine the force in each member of the truss
and state if the members are in tension or compression. Set

, .

6–11. Determine the force in each member of the truss
and state if the members are in tension or compression. Set

, .P2 = 400 lbP1 = 600 lb

P2 = 0P1 = 800 lb

*6–8. Determine the force in each member of the truss,
and state if the members are in tension or compression. Set

.

•6–9. Remove the 500-lb force and then determine the
greatest force P that can be applied to the truss so that none
of the members are subjected to a force exceeding either
800 lb in tension or in compression.600 lb

P =  800 lb

6–14. Determine the force in each member of the truss,
and state if the members are in tension or compression. Set

.

6–15. Remove the 1200-lb forces and determine the
greatest force P that can be applied to the truss so that none
of the members are subjected to a force exceeding either
2000 lb in tension or 1500 lb in compression.

P = 2500 lb

3 ft

3 ft

3 ft

P

3 ft

500 lb

A
CB

DF E

Probs. 6–8/9

6 ft

A
G

B

C

F

D

E

P1

P2

4 ft 4 ft 4 ft 4 ft

Probs. 6–10/11

B

C D

A

12 ft

5 ft

P1

P2

Probs. 6–12/13

4 ft

4 ft

1200 lb 1200 lbP

4 ft 4 ft 4 ft

A B

F

E D C

G

30� 30�

Probs. 6–14/15
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*6–20. Determine the force in each member of the truss
and state if the members are in tension or compression. The
load has a mass of 40 kg.

•6–21. Determine the largest mass m of the suspended
block so that the force in any member does not exceed 
30 kN (T) or 25 kN (C).

6–18. Determine the force in each member of the truss,
and state if the members are in tension or compression.

6–19. The truss is fabricated using members having a
weight of . Remove the external forces from the
truss, and determine the force in each member due to the
weight of the members. State whether the members are in
tension or compression. Assume that the total force acting
on a joint is the sum of half of the weight of every member
connected to the joint.

10 lb>ft

*6–16. Determine the force in each member of the truss,
and state if the members are in tension or compression. Set

.

•6–17. Determine the greatest force P that can be applied
to the truss so that none of the members are subjected to a
force exceeding either in tension or in
compression.

2 kN2.5 kN

P = 5 kN

6–22. Determine the force in each member of the truss,
and state if the members are in tension or compression.

6–23. The truss is fabricated using uniform members
having a mass of . Remove the external forces from
the truss, and determine the force in each member due to
the weight of the truss. State whether the members are in
tension or compression. Assume that the total force acting
on a joint is the sum of half of the weight of every member
connected to the joint.

5 kg>m

A
C

B

D

E

P

1.5 m

1.5 m

2 m2 m

1.5 m

Probs. 6–16/17

3 ft

4 ft

900 lb
600 lb

4 ft 4 ft

A B

C

DEF

Probs. 6–18/19

G

A

B

F
C

E
D

0.1 m

6 m

2.5 m

3.5 m

Probs. 6–20/21

A

E D

B
C

2 m

400 N

45� 45�45� 45�

2 m

600 N

Probs. 6–22/23



B

CA

4 ft

3 ft

300 lb

u

Prob. 6–30

6–30. The two-member truss is subjected to the force of
300 lb. Determine the range of for application of the load so
that the force in either member does not exceed 400 lb (T) or
200 lb (C).

u

A

B

C

DF

E

P

d

d

d d/2 d/2 d Probs. 6–28/29
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6–27. Determine the force in each member of the double
scissors truss in terms of the load P and state if the members
are in tension or compression.

6–26. A sign is subjected to a wind loading that exerts
horizontal forces of 300 lb on joints B and C of one of the
side supporting trusses. Determine the force in each
member of the truss and state if the members are in tension
or compression.

*6–24. Determine the force in each member of the truss,
and state if the members are in tension or compression. Set

.

•6–25. Determine the greatest force P that can be applied
to the truss so that none of the members are subjected to a
force exceeding either in tension or in
compression.

1 kN1.5 kN

P = 4 kN

*6–28. Determine the force in each member of the truss in
terms of the load P, and indicate whether the members are
in tension or compression.

•6–29. If the maximum force that any member can support
is 4 kN in tension and 3 kN in compression, determine the
maximum force P that can be applied at joint B. Take

.d = 1 m

P

3 m

A CB

E

D

F

P

3 m 3 m3 m

Probs. 6–24/25

A

C

B

D

E

13 ft

13 ft

12 ft

5 ft

300 lb

300 lb

12 ft

45�

Prob. 6–26

A
DFE

P P

B C

L/3

L/3L/3L/3

Prob. 6–27



B

2 m

1000 N
(a)

2 m 2 m

C D

G F EA

2 m

a

a
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6.4 The Method of Sections

When we need to find the force in only a few members of a truss, we can
analyze the truss using the method of sections. It is based on the principle
that if the truss is in equilibrium then any segment of the truss is also in
equilibrium. For example, consider the two truss members shown on the
left in Fig. 6–14. If the forces within the members are to be determined, then
an imaginary section, indicated by the blue line, can be used to cut each
member into two parts and thereby “expose” each internal force as
“external” to the free-body diagrams shown on the right. Clearly, it can be
seen that equilibrium requires that the member in tension (T) be subjected
to a “pull,” whereas the member in compression (C) is subjected to a “push.”

The method of sections can also be used to “cut” or section the members
of an entire truss. If the section passes through the truss and the free-body
diagram of either of its two parts is drawn, we can then apply the equations
of equilibrium to that part to determine the member forces at the “cut
section.” Since only three independent equilibrium equations (

) can be applied to the free-body diagram of any
segment, then we should try to select a section that, in general, passes
through not more than three members in which the forces are unknown.
For example, consider the truss in Fig. 6–15a. If the forces in members BC,
GC, and GF are to be determined, then section aa would be appropriate.
The free-body diagrams of the two segments are shown in Figs. 6–15b and
6–15c. Note that the line of action of each member force is specified from
the geometry of the truss, since the force in a member is along its axis.Also,
the member forces acting on one part of the truss are equal but opposite to
those acting on the other part—Newton’s third law. Members BC and GC
are assumed to be in tension since they are subjected to a “pull,” whereas
GF in compression since it is subjected to a “push.”

The three unknown member forces and can be obtained
by applying the three equilibrium equations to the free-body diagram in
Fig. 6–15b. If, however, the free-body diagram in Fig. 6–15c is considered,
the three support reactions and will have to be known,
because only three equations of equilibrium are available. (This, of
course, is done in the usual manner by considering a free-body diagram
of the entire truss.)

ExDyDx,

FGFFGC,FBC,

©MO = 0©Fy = 0,
©Fx = 0,

C

Compression

C

Internal
compressive
forces

C

C

C

C

Fig. 6–14

Tension

T

T

T

Internal
tensile
forces

T

T

T
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When applying the equilibrium equations, we should carefully
consider ways of writing the equations so as to yield a direct solution for
each of the unknowns, rather than having to solve simultaneous
equations. For example, using the truss segment in Fig. 6–15b and
summing moments about C would yield a direct solution for since

and create zero moment about C. Likewise, can be directly
obtained by summing moments about G. Finally, can be found
directly from a force summation in the vertical direction since and

have no vertical components. This ability to determine directly the
force in a particular truss member is one of the main advantages of using
the method of sections.* 

As in the method of joints, there are two ways in which we can
determine the correct sense of an unknown member force:

• The correct sense of an unknown member force can in many
cases be determined “by inspection.” For example, is a tensile
force as represented in Fig. 6–15b since moment equilibrium
about G requires that create a moment opposite to that of
the 1000-N force. Also, is tensile since its vertical component
must balance the 1000-N force which acts downward. In more
complicated cases, the sense of an unknown member force may
be assumed. If the solution yields a negative scalar, it indicates
that the force’s sense is opposite to that shown on the free-body
diagram.

• Always assume that the unknown member forces at the cut section
are tensile forces, i.e., “pulling” on the member. By doing this, the
numerical solution of the equilibrium equations will yield positive
scalars for members in tension and negative scalars for members in
compression.

FGC
FBC

FBC

FBC
FGF

FGC
FBCFGCFBC

FGF

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G

(b)

FGF

(c)

2 m

2 m

45�

C

Dy

Dx

Ex

FGC

FBC

FGF

G

The forces in selected members of this
Pratt truss can readily be determined
using the method of sections.

*Notice that if the method of joints were used to determine, say, the force in member
GC, it would be necessary to analyze joints A, B, and G in sequence.
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Simple trusses are often used in the
construction of large cranes in order
to reduce the weight of the boom
and tower.

Procedure for Analysis

The forces in the members of a truss may be determined by the
method of sections using the following procedure.

Free-Body Diagram.
• Make a decision on how to “cut” or section the truss through the

members where forces are to be determined.
• Before isolating the appropriate section, it may first be necessary

to determine the truss’s support reactions. If this is done then the
three equilibrium equations will be available to solve for member
forces at the section.

• Draw the free-body diagram of that segment of the sectioned
truss which has the least number of forces acting on it.

• Use one of the two methods described above for establishing the
sense of the unknown member forces.

Equations of Equilibrium.
• Moments should be summed about a point that lies at the

intersection of the lines of action of two unknown forces, so that
the third unknown force can be determined directly from the
moment equation.

• If two of the unknown forces are parallel, forces may be summed
perpendicular to the direction of these unknowns to determine
directly the third unknown force.
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EXAMPLE 6.5

Determine the force in members GE, GC, and BC of the truss shown
in Fig. 6–16a. Indicate whether the members are in tension or
compression.

SOLUTION
Section aa in Fig. 6–16a has been chosen since it cuts through the three
members whose forces are to be determined. In order to use the
method of sections, however, it is first necessary to determine the
external reactions at A or D. Why? A free-body diagram of the entire
truss is shown in Fig. 6–16b. Applying the equations of equilibrium,
we have

a

Free-Body Diagram. For the analysis the free-body diagram of the
left portion of the sectioned truss will be used, since it involves the
least number of forces, Fig. 6–16c.

Equations of Equilibrium. Summing moments about point G
eliminates and and yields a direct solution for .

a

Ans.

In the same manner, by summing moments about point C we obtain a
direct solution for 

a

Ans.

Since and have no vertical components, summing forces in
the y direction directly yields i.e.,

Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction
for each unknown member force. For example, requires

to be compressive because it must balance the moment of the
300-N force about C.
FGE

©MC = 0

FGC = 500 N 1T2
300 N - 3

5 FGC = 0+ c©Fy = 0;

FGC,
FGEFBC

FGE = 800 N 1C2
-300 N18 m2 + FGE13 m2 = 0+©MC = 0;

FGE.

FBC = 800 N 1T2
-300 N14 m2 - 400 N13 m2 + FBC13 m2 = 0+©MG = 0;

FBCFGCFGE

Ay = 300 NAy - 1200 N + 900 N = 0+ c©Fy = 0;

Dy = 900 N

-1200 N18 m2 -  400 N13 m2 + Dy112 m2 = 0+©MA = 0;

Ax = 400 N400 N - Ax = 0:+ ©Fx = 0;

3 m

4 m

400 N
G

4 m

E

B C
DA

a

a

1200 N

(a)

4 m

Fig. 6–16

3 m

8 m

400 N

DA

1200 N

(b)

Ax

Ay Dy
4 m

3 m

4 m
400 N

A

(c)

FGE

FGC

FBC

3
4

5

G

300 N

C

4 m
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Determine the force in member CF of the truss shown in Fig. 6–17a.
Indicate whether the member is in tension or compression. Assume
each member is pin connected.

EXAMPLE 6.6

SOLUTION

Free-Body Diagram. Section aa in Fig. 6–17a will be used since this
section will “expose” the internal force in member CF as “external”
on the free-body diagram of either the right or left portion of the
truss. It is first necessary, however, to determine the support reactions
on either the left or right side. Verify the results shown on the free-
body diagram in Fig. 6–17b.

The free-body diagram of the right portion of the truss, which is the
easiest to analyze, is shown in Fig. 6–17c. There are three unknowns,

and

Equations of Equilibrium. We will apply the moment equation
about point O in order to eliminate the two unknowns and .
The location of point O measured from E can be determined from
proportional triangles, i.e., Or,
stated in another manner, the slope of member GF has a drop of 2 m
to a horizontal distance of 4 m. Since FD is 4 m, Fig. 6–17c, then from
D to O the distance must be 8 m.

An easy way to determine the moment of about point O is to use
the principle of transmissibility and slide to point C, and then
resolve into its two rectangular components. We have

a

Ans.FCF = 0.589 kN 1C2
-FCF sin 45°112 m2 + 13 kN218 m2 - 14.75 kN214 m2 = 0

+©MO = 0;

FCF
FCF

FCF

x = 4 m.4>14 + x2 = 6>18 + x2,
FCDFFG

FCD.FCF,FFG,

G

H F

EA

B C

D

3 kN5 kN

4 m

2 m

(a)

a

a
4 m 4 m4 m 4 m

Fig. 6–17

4 m

5 kN 3 kN

(b)

8 m

3.25 kN 4.75 kN

4 m

4 m 4 m

4 m

2 m

3 kN
(c)

4.75 kN

D E

F

x

6 m

45�

CFCF cos 45�

FCF sin 45�

FCF

FFG

FCD

O

G
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EXAMPLE 6.7

Determine the force in member EB of the roof truss shown in
Fig. 6–18a. Indicate whether the member is in tension or compression.

SOLUTION

Free-Body Diagrams. By the method of sections, any imaginary
section that cuts through EB, Fig. 6–18a, will also have to cut through
three other members for which the forces are unknown. For example,
section aa cuts through ED, EB, FB, and AB. If a free-body diagram of
the left side of this section is considered, Fig. 6–18b, it is possible to
obtain by summing moments about B to eliminate the other
three unknowns; however, cannot be determined from the
remaining two equilibrium equations. One possible way of obtaining

is first to determine from section aa, then use this result on
section bb, Fig. 6–18a, which is shown in Fig. 6–18c. Here the force
system is concurrent and our sectioned free-body diagram is the same
as the free-body diagram for the joint at E.

FEDFEB

FEB
FED

Equations of Equilibrium. In order to determine the moment of
about point B, Fig. 6–18b, we will use the principle of

transmissibility and slide the force to point C and then resolve it into
its rectangular components as shown. Therefore,

a

Considering now the free-body diagram of section bb, Fig. 6–18c, we have

Ans.FEB = 2000 N 1T2
213000 sin 30° N2 - 1000 N - FEB = 0+ c©Fy = 0;

FEF = 3000 N 1C2
FEF cos 30° - 3000 cos 30° N = 0:+ ©Fx = 0;

FED = 3000 N 1C2
+ FED sin 30°14 m2 = 0

1000 N14 m2 + 3000 N12 m2 - 4000 N14 m2+©MB = 0;

FED

1000 N

1000 N

1000 N3000 N

A

B

C

D

E

F

a

a
bb

(a)

4000 N 2000 N

30�

2 m 2 m 2 m 2 m

Fig. 6–18

1000 N

1000 N

3000 N

B
C

E

4000 N FED sin 30�

30�

2 m 2 m 4 m

A FED cos 30�

FAB

FEB

FED

30�

(b)

FFB

1000 N

E

30�

y

x

FEB

FEF FED � 3000 N

(c)

30�
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FUNDAMENTAL PROBLEMS

F6–10. Determine the force in members EF, CF, and BC
of the truss. State if the members are in tension or
compression.

F6–8. Determine the force in members LK, KC, and CD
of the Pratt truss. State if the members are in tension or
compression.

F6–9. Determine the force in members KJ, KD, and CD
of the Pratt truss. State if the members are in tension or
compression.

F6–7. Determine the force in members BC, CF, and FE.
State if the members are in tension or compression.

F6–11. Determine the force in members GF, GD, and CD
of the truss. State if the members are in tension or
compression.

F6–12. Determine the force in members DC, HI, and JI
of the truss. State if the members are in tension or
compression.

A DCB

G F E

4 ft

4 ft 4 ft 4 ft

600 lb 600 lb
800 lb

F6–7

B
C D

A
E F

G

HIJKL

2 m

3 m

2 m

20 kN 30 kN 40 kN

2 m 2 m 2 m 2 m

f

F6–8/9

A
B C

D

E

F

G

30� 30�

6 ft 6 ft 6 ft

300 lb300 lb

f

F6–10

A

B C D
E

F

G

H

2 m

2 m

1 m

2 m 2 m 2 m

10 kN
25 kN 15 kN

f

F6–11

B

t
ss

t
C

A

D

I
K

H

EFG

1600 lb
1200 lb

9 ft

6 ft

6 ft

6 ft

12 ft

9 ft6 ft

6 ft6 ft

J

F6–12



A E

B C D

6 kN
8 kN

G F

3 m

3 m 3 m 3 m

3 m

3 m3 m

Probs. 6–36/37
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PROBLEMS

6–34. Determine the force in members JK, CJ, and CD of
the truss, and state if the members are in tension or
compression.

6–35. Determine the force in members HI, FI, and EF of
the truss, and state if the members are in tension or
compression.

*6–32. The Howe bridge truss is subjected to the loading
shown. Determine the force in members HD, CD, and GD,
and state if the members are in tension or compression.

•6–33. The Howe bridge truss is subjected to the loading
shown. Determine the force in members HI, HB, and BC,
and state if the members are in tension or compression.

6–31. The internal drag truss for the wing of a light
airplane is subjected to the forces shown. Determine the
force in members BC, BH, and HC, and state if the
members are in tension or compression.

*6–36. Determine the force in members BC, CG, and GF
of the Warren truss. Indicate if the members are in tension
or compression.

•6–37. Determine the force in members CD, CF, and FG
of the Warren truss. Indicate if the members are in tension
or compression.

2 ft

A B C D

J I H G

E

F

2 ft 2 ft 2 ft 1.5 ft

80 lb 80 lb
60 lb

40 lb

Prob. 6–31

A E
B C D

IJ

30 kN
20 kN 20 kN

40 kN

H G F

4 m

16 m, 4@4m

Probs. 6–32/33

A
B C D FE

G

H

IJ

L

K

6 kN8 kN
5 kN4 kN

3 m

2 m 2 m 2 m 2 m 2 m 2 m

Probs. 6–34/35
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6–42. Determine the force in members IC and CG of the
truss and state if these members are in tension or
compression. Also, indicate all zero-force members.

6–43. Determine the force in members JE and GF of the
truss and state if these members are in tension or
compression. Also, indicate all zero-force members.

*6–40. Determine the force in members GF, GD, and CD
of the truss and state if the members are in tension or
compression.

•6–41. Determine the force in members BG, BC, and HG
of the truss and state if the members are in tension or
compression.

6–38. Determine the force in members DC, HC, and HI of
the truss, and state if the members are in tension or
compression.

6–39. Determine the force in members ED, EH, and GH
of the truss, and state if the members are in tension or
compression.

*6–44. Determine the force in members JI, EF, EI, and JE
of the truss, and state if the members are in tension or
compression.

•6–45. Determine the force in members CD, LD, and KL
of the truss, and state if the members are in tension or
compression.

A

C

G

E D

H
F

I
B

2 m 2 m 2 m

1.5 m

50 kN
40 kN

40 kN

30 kN

1.5 m

1.5 m

Probs. 6–38/39

260 lb

4 ft 4 ft

4 ft

3 ft 3 ft

4 ft 4 ft

5

1213

A
H G F

B

C

D

E

Probs. 6–40/41

1.5 m 1.5 m 1.5 m

A
H

B C D

JI

G F
E

1.5 m

2 m

2 m

6 kN 6 kN

Probs. 6–42/43

8 ft

8 ft

8 ft

900 lb

1500 lb
1000 lb1000 lb

A G

N B
H

F

M

C D E
I

JL K

8 ft 8 ft 8 ft 8 ft 8 ft 8 ft

Probs. 6–44/45
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6–50. Determine the force in each member of the truss
and state if the members are in tension or compression. Set

, .

6–51. Determine the force in each member of the truss
and state if the members are in tension or compression. Set

, .P2 = 20 kNP1 = 40 kN

P2 = 10 kNP1 = 20 kN

*6–48. Determine the force in members IJ, EJ, and CD of
the Howe truss, and state if the members are in tension or
compression.

•6–49. Determine the force in members KJ, KC, and BC
of the Howe truss, and state if the members are in tension or
compression.

6–46. Determine the force developed in members BC and
CH of the roof truss and state if the members are in tension
or compression.

6–47. Determine the force in members CD and GF of the
truss and state if the members are in tension or
compression. Also indicate all zero-force members.

*6–52. Determine the force in members KJ, NJ, ND, and
CD of the K truss. Indicate if the members are in tension or
compression. Hint: Use sections aa and bb.

•6–53. Determine the force in members JI and DE of
the K truss. Indicate if the members are in tension or
compression.

2 kN3 kN

4 kN
5 kN

4 kN

6 kN

5 kN

B
A

C D E F
G

H

I

J

K

L

2 m

4 m

2 m 2 m 2 m 2 m 2 m

Probs. 6–48/49

A
G F

E

DCB

P2P1

1.5 m 1.5 m 1.5 m 1.5 m

2 m

Probs. 6–50/51

1800 lb

15 ft

15 ft

20 ft 20 ft 20 ft 20 ft 20 ft

A B

I H

20 ft

L

M N O P

G
FEDC

1500 lb
1200 lb

a b

JK
a b

Probs. 6–52/53

1.5 m

2 m2 m

1 m 1 m

0.8 m

2 kN

1.5 kN

A
H

B
D

G

C

F E

Probs. 6–46/47
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6 Procedure for Analysis

Either the method of joints or the method of sections can be used to
determine the forces developed in the members of a simple space truss.

Method of Joints.
If the forces in all the members of the truss are to be determined, then
the method of joints is most suitable for the analysis. Here it is
necessary to apply the three equilibrium equations 

to the forces acting at each joint. Remember that
the solution of many simultaneous equations can be avoided if the
force analysis begins at a joint having at least one known force and at
most three unknown forces.Also, if the three-dimensional geometry of
the force system at the joint is hard to visualize, it is recommended that
a Cartesian vector analysis be used for the solution.

Method of Sections.
If only a few member forces are to be determined, the method of
sections can be used. When an imaginary section is passed through a
truss and the truss is separated into two parts, the force system acting 
on one of the segments must satisfy the six equilibrium equations:

(Eqs. 5–6). By proper choice of the section and axes for summing forces
and moments, many of the unknown member forces in a space truss
can be computed directly, using a single equilibrium equation.

©Mz = 0©My = 0,©Mx = 0,©Fz = 0,©Fy = 0,©Fx = 0,

©Fz = 0©Fy = 0,
©Fx = 0,

P

For economic reasons, large electrical
transmission towers are often constructed
using space trusses.

Fig. 6–19

*6.5 Space Trusses

A space truss consists of members joined together at their ends to form a
stable three-dimensional structure.The simplest form of a space truss is a
tetrahedron, formed by connecting six members together, as shown in Fig.
6–19. Any additional members added to this basic element would be
redundant in supporting the force P. A simple space truss can be built
from this basic tetrahedral element by adding three additional members
and a joint, and continuing in this manner to form a system of
multiconnected tetrahedrons.

Assumptions for Design The members of a space truss may be
treated as two-force members provided the external loading is applied at
the joints and the joints consist of ball-and-socket connections. These
assumptions are justified if the welded or bolted connections of the
joined members intersect at a common point and the weight of the
members can be neglected. In cases where the weight of a member is to
be included in the analysis, it is generally satisfactory to apply it as a
vertical force, half of its magnitude applied at each end of the member.

Typical roof-supporting space
truss. Notice the use of ball-and-
socket joints for the connections
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EXAMPLE 6.8

Determine the forces acting in the members of the space truss shown
in Fig. 6–20a. Indicate whether the members are in tension or
compression.

SOLUTION

Since there are one known force and three unknown forces acting at
joint A, the force analysis of the truss will begin at this joint.

Joint A. (Fig. 6–20b). Expressing each force acting on the free-body
diagram of joint A as a Cartesian vector, we have

For equilibrium,

Ans.

Ans.

Since is known, joint B can be analyzed next.

Joint B. (Fig. 6–20c).

Ans.

The scalar equations of equilibrium may also be applied directly to
the forces acting on the free-body diagrams of joints D and C since
the force components are easily determined. Show that

Ans.FDE = FDC = FCE = 0

FBD = 2 kN 1C2RB = FBE = 5.66 kN 1T2,
2 + FBD - 0.707FBE = 0©Fz = 0;

-4 + RB sin 45° = 0©Fy = 0;

-RB cos 45° + 0.707FBE = 0©Fx = 0;

FAB

FAB = 4 kN 1T2
FAC = FAE = 0

-FAC - 0.577FAE = 0©Fz = 0;

-4 + FAB + 0.577FAE = 0©Fy = 0;

0.577FAE = 0©Fx = 0;

-4j + FABj - FACk + 0.577FAEi + 0.577FAE j - 0.577FAEk = 0

P + FAB + FAC + FAE = 0©F = 0;

FAE = FAEa rAE
rAE
b = FAE10.577i + 0.577j - 0.577k2

FAC = -FACk,FAB = FABj,P = 5-4j6 kN,
(a)

2 m

2 m

2 m

P � 4 kN

2 kN

45�
z

y

x

A

B

C

D

E

Fig. 6–20

x

y

z

P � 4 kN

FAC

FAE

FABA

(b)

x

y

z

FAB � 4 kN

45�

1

1

FBE

FBD

RB

B

2 kN

(c)
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PROBLEMS

6–58. Determine the force in members BE, DF, and BC of
the space truss and state if the members are in tension or
compression.

6–59. Determine the force in members AB, CD, ED, and
CF of the space truss and state if the members are in tension
or compression.

*6–56. Determine the force in each member of the space
truss and state if the members are in tension or
compression. The truss is supported by ball-and-socket
joints at A, B, and E. Set . Hint: The support
reaction at E acts along member EC. Why?

•6–57. Determine the force in each member of the space
truss and state if the members are in tension or
compression. The truss is supported by ball-and-socket
joints at A, B, and E. Set . Hint: The
support reaction at E acts along member EC. Why?

F = 5-200i + 400j6 N

F = 5800j6 N

6–54. The space truss supports a force
. Determine the force in

each member, and state if the members are in tension or
compression.

6–55. The space truss supports a force
. Determine the force in each

member, and state if the members are in tension or
compression.

F = 5600i + 450j - 750k6 lb

F = 5-500i + 600j + 400k6 lb

*6–60. Determine the force in the members AB, AE, BC,
BF, BD, and BE of the space truss, and state if the members
are in tension or compression.

A

B

C

D

x

y

z

F

8 ft

6 ft

6 ft

6 ft

6 ft

Probs. 6–54/55

F
D

A

z

2 m

x

y

B

C

E

5 m

1 m

2 m
1.5 m

Probs. 6–56/57

2 m

2 m

2 m

E

A

3 m

F

D

C

B

{�2k} kN

{�2k} kN

2 m

Probs. 6–58/59

F

E

D

x

z

y

C

B
A

4 ft

4 ft
2 ft

2 ft
300 lb

600 lb

400 lb

4 ft

Prob. 6–60
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*6–64. Determine the force developed in each member of
the space truss and state if the members are in tension or
compression. The crate has a weight of 150 lb.

6–62. If the truss supports a force of ,
determine the force in each member and state if the
members are in tension or compression.

6–63. If each member of the space truss can support a
maximum force of 600 N in compression and 800 N in
tension, determine the greatest force F the truss can
support.

F = 200 N

•6–61. Determine the force in the members EF, DF, CF,
and CD of the space truss, and state if the members are in
tension or compression.

•6–65. Determine the force in members FE and ED of the
space truss and state if the members are in tension or
compression. The truss is supported by a ball-and-socket
joint at C and short links at A and B.

6–66. Determine the force in members GD, GE, and FD
of the space truss and state if the members are in tension or
compression.

F

E

D

x

z

y

C

B
A

4 ft

4 ft
2 ft

2 ft
300 lb

600 lb

400 lb

4 ft

Prob. 6–61

y

D

E

F

x

z

C

B

A

200 mm

200 mm

200 mm

200 mm

500 mm

300 mm

Probs. 6–62/63

x
y

z

A

B

C

D

6 ft

6 ft
6 ft

6 ft

Prob. 6–64

z

x

y

{�500k} lb

G {200j} lb

6 ft

6 ft

F

E
D

C

4 ft

2 ft3 ft
3 ft

A

B

Probs. 6–65/66
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6.6 Frames and Machines
Frames and machines are two types of structures which are often
composed of pin-connected multiforce members, i.e., members that are
subjected to more than two forces. Frames are used to support loads,
whereas machines contain moving parts and are designed to transmit and
alter the effect of forces. Provided a frame or machine contains no more
supports or members than are necessary to prevent its collapse, the forces
acting at the joints and supports can be determined by applying the
equations of equilibrium to each of its members. Once these forces are
obtained, it is then possible to design the size of the members, connections,
and supports using the theory of mechanics of materials and an
appropriate engineering design code.

Free-Body Diagrams. In order to determine the forces acting at
the joints and supports of a frame or machine, the structure must be
disassembled and the free-body diagrams of its parts must be drawn.The
following important points must be observed:

• Isolate each part by drawing its outlined shape Then show all the
forces and/or couple moments that act on the part. Make sure to
label or identify each known and unknown force and couple
moment with reference to an established x, y coordinate system.
Also, indicate any dimensions used for taking moments. Most often
the equations of equilibrium are easier to apply if the forces are
represented by their rectangular components. As usual, the sense of
an unknown force or couple moment can be assumed.

• Identify all the two-force members in the structure and represent
their free-body diagrams as having two equal but opposite collinear
forces acting at their points of application. (See Sec. 5.4.) By
recognizing the two-force members, we can avoid solving an
unnecessary number of equilibrium equations.

• Forces common to any two contacting members act with equal
magnitudes but opposite sense on the respective members. If the
two members are treated as a “system” of connected members, then
these forces are “internal” and are not shown on the free-body
diagram of the system; however, if the free-body diagram of each
member is drawn, the forces are “external” and must be shown on
each of the free-body diagrams.

The following examples graphically illustrate how to draw the free-
body diagrams of a dismembered frame or machine. In all cases, the
weight of the members is neglected.

Common tools such as these pliers act as
simple machines. Here the applied force
on the handles creates a much larger force
at the jaws.

This large crane is a typical
example of a framework.
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EXAMPLE 6.9

For the frame shown in Fig. 6–21a, draw the free-body diagram of 
(a) each member, (b) the pin at B, and (c) the two members connected
together.

P
B

A C

(a)

M

Fig. 6–21

P

(b)

M

Bx

By By

Ax

Ay Cy

Cx

Bx

Effect of pin
on member

Bx

By

Bx

By

(c)

Effect of 
member BC
on the pin

Effect of 
member AB
on the pin

B

Equilibrium

P

M

Ax

Ay Cy

Cx

(d)

SOLUTION

Part (a). By inspection, members BA and BC are not two-force
members. Instead, as shown on the free-body diagrams, Fig. 6–21b, BC
is subjected to a force from the pins at B and C and the external force
P. Likewise, AB is subjected to a force from the pins at A and B and
the external couple moment M. The pin forces are represented by
their x and y components.

Part (b). The pin at B is subjected to only two forces, i.e., the
force of member BC and the force of member AB. For equilibrium
these forces or their respective components must be equal but
opposite, Fig. 6–21c. Realize that Newton’s third law is applied
between the pin and its connected members, i.e., the effect of the
pin on the two members, Fig. 6–21b, and the equal but opposite
effect of the two members on the pin, Fig. 6–21c.

Part (c). The free-body diagram of both members connected
together, yet removed from the supporting pins at A and C, is shown
in Fig. 6–21d. The force components and are not shown on this
diagram since they are internal forces (Fig. 6–21b) and therefore
cancel out. Also, to be consistent when later applying the equilibrium
equations, the unknown force components at A and C must act in the
same sense as those shown in Fig. 6–21b.

ByBx
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A constant tension in the conveyor belt is maintained by using the
device shown in Fig. 6–22a. Draw the free-body diagrams of the frame
and the cylinder that the belt surrounds. The suspended block has a
weight of W.

EXAMPLE 6.10

SOLUTION

The idealized model of the device is shown in Fig. 6–22b. Here the
angle is assumed to be known. From this model, the free-body
diagrams of the cylinder and frame are shown in Figs. 6–22c and 6–22d,
respectively. Note that the force that the pin at B exerts on the cylinder
can be represented by either its horizontal and vertical components 
and which can be determined by using the force equations of
equilibrium applied to the cylinder, or by the two components T, which
provide equal but opposite moments on the cylinder and thus keep it
from turning. Also, realize that once the pin reactions at A have been
determined, half of their values act on each side of the frame since pin
connections occur on each side, Fig. 6–22a.

By,
Bx

u

(a)

Fig. 6–22

TT

B

(b)

A

u

T

Bx

By

BxAx

By

Ay

T

(c)

T

T

T

T

(d)

or

W

u

u

u
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EXAMPLE 6.11

For the frame shown in Fig. 6–23a, draw the free-body diagrams of (a)
the entire frame including the pulleys and cords, (b) the frame without
the pulleys and cords, and (c) each of the pulleys.

SOLUTION

Part (a). When the entire frame including the pulleys and cords is
considered, the interactions at the points where the pulleys and cords
are connected to the frame become pairs of internal forces which
cancel each other and therefore are not shown on the free-body
diagram, Fig. 6–23b.

Part (b). When the cords and pulleys are removed, their effect on
the frame must be shown, Fig. 6–23c.

Part (c). The force components of the pins on the
pulleys, Fig. 6–23d, are equal but opposite to the force components
exerted by the pins on the frame, Fig. 6–23c. Why?

CyCx,By,Bx,

C

A
B

75 lb

(a)

D

Fig. 6–23

75 lb

(b)

Ay

Ax

T

75 lb

75 lb By

Bx

Cx

Cy

T

T

(c)

(d)

Ax

Ay

75 lb
T

Bx

By

Cy

Cx
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Draw the free-body diagrams of the bucket and the vertical boom of
the backhoe shown in the photo, Fig. 6–24a. The bucket and its
contents have a weight W. Neglect the weight of the members.

SOLUTION
The idealized model of the assembly is shown in Fig. 6–24b. By
inspection, members AB, BC, BE, and HI are all two-force members
since they are pin connected at their end points and no other forces
act on them. The free-body diagrams of the bucket and the boom are
shown in Fig. 6–24c. Note that pin C is subjected to only two forces,
whereas the pin at B is subjected to three forces, Fig. 6–24d. These
three forces are related by the two equations of force equilibrium
applied to each pin. The free-body diagram of the entire assembly is
shown in Fig. 6–24e.

EXAMPLE 6.12

(a)

Fig. 6–24

A

B

E

C

(b)

D

F

H

I

G

(c)

Dy

Dy

FBA

Fx

Fy

FBC

FBE

FHI

DxDx

W

C

FBC

FBC

B
FBC

FBE

FBA

(d)

(e)

Fx

Fy

FHI

W
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EXAMPLE 6.13

Draw the free-body diagram of each part of the smooth piston and link
mechanism used to crush recycled cans, which is shown in Fig. 6–25a.

SOLUTION
By inspection, member AB is a two-force member. The free-body
diagrams of the parts are shown in Fig. 6–25b. Since the pins at B and
D connect only two parts together, the forces there are shown as equal
but opposite on the separate free-body diagrams of their connected
members. In particular, four components of force act on the piston:
and represent the effect of the pin (or lever EBD), is the
resultant force of the support, and P is the resultant compressive force
caused by the can C.

NOTE: A free-body diagram of the entire assembly is shown in
Fig. 6–25c. Here the forces between the components are internal and
are not shown on the free-body diagram.

NwDy
Dx

Before proceeding, it is highly recommended that you cover the
solutions to the previous examples and attempt to draw the requested free-
body diagrams. When doing so, make sure the work is neat and that all the
forces and couple moments are properly labeled.When finished, challenge
yourself and solve the following four problems.

C

F � 800 N

A

B

D

E

75�

90�

30�

(a)

Fig. 6–25

F � 800 N

E

75�

D
Dx

Dy

A

B

BFAB

FAB

FAB

30�

Dx P
D

Nw

Dy

(b)

F � 800 N

75�

30�

P

FAB

Nw

(c)



A

B
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A

B

C

E

D

F

P6–1

F

G

J

E

C

D

B

A

I

H

P6–2

CONCEPTUAL PROBLEMS

A

C
B

D
E

P6–4

P6–3. Draw the free-body diagrams of the boom ABCDF
and the stick FGH of the bucket lift. Neglect the weights of
the member. The bucket weighs W. The two force members
are BI, CE, DE and GE. Assume all indicated points of
connection are pins.

P6–2. Draw the free-body diagrams of the boom ABCD
and the stick EDFGH of the backhoe. The weights of these
two members are significant. Neglect the weights of all 
the other members, and assume all indicated points of
connection are pins.

P6–1. Draw the free-body diagrams of each of the crane
boom segments AB, BC, and BD. Only the weights of AB
and BC are significant. Assume A and B are pins.

P6–4. To operate the can crusher one pushes down on the
lever arm ABC which rotates about the fixed pin at B. This
moves the side links CD downward, which causes the guide
plate E to also move downward and thereby crush the can.
Draw the free-body diagrams of the lever, side link, and
guide plate. Make up some reasonable numbers and do an
equilibrium analysis to shown how much an applied vertical
force at the handle is magnified when it is transmitted to the
can.Assume all points of connection are pins and the guides
for the plate are smooth.
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Procedure for Analysis

The joint reactions on frames or machines (structures) composed of
multiforce members can be determined using the following
procedure.

Free-Body Diagram.

• Draw the free-body diagram of the entire frame or machine, a
portion of it, or each of its members. The choice should be made
so that it leads to the most direct solution of the problem.

• When the free-body diagram of a group of members of a frame
or machine is drawn, the forces between the connected parts of
this group are internal forces and are not shown on the free-body
diagram of the group.

• Forces common to two members which are in contact act with
equal magnitude but opposite sense on the respective free-body
diagrams of the members.

• Two-force members, regardless of their shape, have equal but
opposite collinear forces acting at the ends of the member.

• In many cases it is possible to tell by inspection the proper sense
of the unknown forces acting on a member; however, if this seems
difficult, the sense can be assumed.

• Remember that a couple moment is a free vector and can act at
any point on the free-body diagram. Also, a force is a sliding
vector and can act at any point along its line of action.

Equations of Equilibrium.

• Count the number of unknowns and compare it to the total
number of equilibrium equations that are available. In two
dimensions, there are three equilibrium equations that can be
written for each member.

• Sum moments about a point that lies at the intersection of the
lines of action of as many of the unknown forces as possible.

• If the solution of a force or couple moment magnitude is found to
be negative, it means the sense of the force is the reverse of that
shown on the free-body diagram.



302 CH A P T E R 6 ST R U C T U R A L AN A LY S I S

6

Determine the horizontal and vertical components of force which the
pin at C exerts on member BC of the frame in Fig. 6–26a.

SOLUTION I
Free-Body Diagrams. By inspection it can be seen that AB is a
two-force member. The free-body diagrams are shown in Fig. 6–26b.

Equations of Equilibrium. The three unknowns can be determined
by applying the three equations of equilibrium to member CB.

a

Ans.

Ans.

SOLUTION II
Free-Body Diagrams. If one does not recognize that AB is a two-
force member, then more work is involved in solving this problem.
The free-body diagrams are shown in Fig. 6–26c.

Equations of Equilibrium. The six unknowns are determined by
applying the three equations of equilibrium to each member.

Member AB

a (1)

(2)

(3)

Member BC

a (4)

(5)

(6)

The results for and can be determined by solving these
equations in the following sequence: 4, 1, 5, then 6. The results are

Ans.

Ans.

By comparison, Solution I is simpler since the requirement that in
Fig. 6–26b be equal, opposite, and collinear at the ends of member AB
automatically satisfies Eqs. 1, 2, and 3 above and therefore eliminates
the need to write these equations. As a result, save yourself some time
and effort by always identifying the two-force members before starting
the analysis!

FAB

Cy = 1000 N

Cx = 577 N

Bx = 577 N

By = 1000 N

CyCx

By - 2000 N + Cy = 0+ c©Fy = 0;

Bx - Cx = 0:+ ©Fx = 0;

2000 N12 m2 - By14 m2 = 0+©MC = 0;

Ay - By = 0+ c©Fy = 0;

Ax - Bx = 0:+ ©Fx = 0;

Bx13 sin 60° m2 - By13 cos 60° m2 = 0+©MA = 0;

1154.7 sin 60° N - 2000 N + Cy = 0 Cy = 1000 N+ c©Fy = 0;

1154.7 cos 60° N - Cx = 0 Cx = 577 N:+ ©Fx = 0;

FAB = 1154.7 N2000 N12 m2- 1FAB sin 60°214 m2 = 0+©MC = 0;

EXAMPLE 6.14

A

B

C

2000 N

2 m2 m
3 m

60�

(a)

Fig. 6–26

2 m2 m
60�

FAB
Cy

Cx

FAB

FAB

2000 N

(b)

B

2 m2 m Cy

Cx
C

By

Bx

2000 N

By

Bx

Ay

AAx

(c)

3 m

60�
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EXAMPLE 6.15

The compound beam shown in Fig. 6–27a is pin connected at B.
Determine the components of reaction at its supports. Neglect its
weight and thickness.

B
C

4 kN/m
3

45

2 m2 m 2 m

(a)

A

10 kN

Fig. 6–27

2 m

4 m

3

45

10 kN

B

2 m

1 m

A

Ay

Ax

MA

By

Bx Bx

By Cy

8 kN

(b)

SOLUTION
Free-Body Diagrams. By inspection, if we consider a free-body
diagram of the entire beam ABC, there will be three unknown
reactions at A and one at C. These four unknowns cannot all be
obtained from the three available equations of equilibrium, and so for
the solution it will become necessary to dismember the beam into its
two segments, as shown in Fig. 6–27b.

Equations of Equilibrium. The six unknowns are determined as
follows:

Segment BC

a

Segment AB

a

Solving each of these equations successively, using previously
calculated results, we obtain

Ans.

Ans.Cy = 4 kN

By = 4 kNBx = 0

MA = 32 kN # mAy = 12 kNAx = 6 kN

Ay - 110 kN2A45 B - By = 0+ c©Fy = 0;

MA - 110 kN2A45 B12 m2 - By14 m2 = 0+©MA = 0;

Ax - 110 kN2A35 B + Bx = 0:+ ©Fx = 0;

By - 8 kN + Cy = 0+ c©Fy = 0;

-8 kN11 m2 + Cy12 m2 = 0+©MB = 0;

Bx = 0;+ ©Fx = 0;
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DE

C

B

AF

(a)

Fig. 6–28

(b)

T1

N1

N4N2

N3

T1 T1

T2T2

500 (9.81) N

C

T1 T1

T2

A 500-kg elevator car in Fig. 6–28a is being hoisted by motor A using
the pulley system shown. If the car is traveling with a constant speed,
determine the force developed in the two cables. Neglect the mass of
the cable and pulleys.

EXAMPLE 6.16

SOLUTION

Free-Body Diagram. We can solve this problem using the free-
body diagrams of the elevator car and pulley C, Fig. 6–28b.The tensile
forces developed in the cables are denoted as and .

Equations of Equilibrium. For pulley C,

; or (1)

For the elevator car,

(2)

Substituting Eq. (1) into Eq. (2) yields

Ans.

Substituting this result into Eq. (1),

Ans.T2 = 2(700.71) N = 1401 N = 1.40 kN

T1 = 700.71 N = 701 N

3T1 + 2(2T1) - 500(9.81) N = 0

3T1 + 2T2 - 500(9.81) N = 0+ c©Fy = 0;

T2 = 2T1T2 - 2T1 = 0+ c©Fy = 0

T2T1
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EXAMPLE 6.17

The smooth disk shown in Fig. 6–29a is pinned at D and has a weight
of 20 lb. Neglecting the weights of the other members, determine the
horizontal and vertical components of reaction at pins B and D.

SOLUTION

Free-Body Diagrams. The free-body diagrams of the entire frame
and each of its members are shown in Fig. 6–29b.

Equations of Equilibrium. The eight unknowns can of course be
obtained by applying the eight equilibrium equations to each
member—three to member AB, three to member BCD, and two to
the disk. (Moment equilibrium is automatically satisfied for the disk.)
If this is done, however, all the results can be obtained only from a
simultaneous solution of some of the equations. (Try it and find out.)
To avoid this situation, it is best first to determine the three support
reactions on the entire frame; then, using these results, the remaining
five equilibrium equations can be applied to two other parts in order
to solve successively for the other unknowns.

Entire Frame

a

Member AB

Ans.

a

Ans.

Disk

Ans.

Ans.Dy = 20 lb40 lb - 20 lb - Dy = 0+ c©Fy = 0;

Dx = 0:+ ©Fx = 0;

By = 20 lb20 lb - 40 lb + By = 0+ c©Fy = 0;

ND = 40 lb-20 lb 16 ft2 + ND13 ft2 = 0+©MB = 0;

Bx = 17.1 lb17.1 lb - Bx = 0:+ ©Fx = 0;

Ay = 20 lbAy - 20 lb = 0+ c©Fy = 0;

Ax = 17.1 lbAx - 17.1 lb = 0:+ ©Fx = 0;

Cx = 17.1 lb-20 lb 13 ft2 + Cx13.5 ft2 = 0+©MA = 0;

3.5 ft

3 ft

D C

A

(a)

B

Fig. 6–29

3.5 ft

3 ft
Ay

Ax

20 lb

Cx

3.5 ft

3 ft
CxDx

Dy

By

Bx

3 ft

(b)

3 ft

ND

By

Bx

ND

Dy

Dx

20 lb

20 lb

17.1 lb
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Determine the tension in the cables and also the force P required to
support the 600-N force using the frictionless pulley system shown in
Fig. 6–30a.

EXAMPLE 6.18

SOLUTION

Free-Body Diagram. A free-body diagram of each pulley including
its pin and a portion of the contacting cable is shown in Fig. 6–30b.
Since the cable is continuous, it has a constant tension P acting
throughout its length. The link connection between pulleys B and C is
a two-force member, and therefore it has an unknown tension T
acting on it. Notice that the principle of action, equal but opposite
reaction must be carefully observed for forces P and T when the
separate free-body diagrams are drawn.

Equations of Equilibrium. The three unknowns are obtained as
follows:

Pulley A

Ans.

Pulley B

Ans.

Pulley C

Ans.R = 800 NR - 2P - T = 0+ c©Fy = 0;

T = 400 NT - 2P = 0+ c©Fy = 0;

P = 200 N3P - 600 N = 0+ c©Fy = 0;

A

P B

C

600 N

(a)

Fig. 6–30

A

B

C

R

T
P P

P P

T

P P
P

(b)
600 N
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EXAMPLE 6.19

The two planks in Fig. 6–31a are connected together by cable BC and
a smooth spacer DE. Determine the reactions at the smooth supports
A and F, and also find the force developed in the cable and spacer.

SOLUTION

Free-Body Diagrams. The free-body diagram of each plank is
shown in Fig. 6–31b. It is important to apply Newton’s third law to the
interaction forces as shown.

Equations of Equilibrium. For plank AD,

a ;

For plank CF,

a ;

Solving simultaneously,

Ans.

Using these results, for plank AD,

Ans.

And for plank CF,

Ans.NF = 180 lb

NF + 160 lb - 140 lb - 200 lb = 0+ c©Fy = 0;

NA = 120 lb

NA + 140 lb - 160 lb - 100 lb = 0+ c©Fy = 0;

FBC = 160 lbFDE = 140 lb

FDE(4 ft) - FBC(6 ft) + 200 lb (2 ft) = 0+©MF = 0

FDE(6 ft) - FBC(4 ft) - 100 lb (2 ft) = 0+©MA = 0

F
D

E

B

C

A

2 ft 2 ft 2 ft

100 lb
200 lb

2 ft 2 ft

(a)

D C FA

100 lb

(b)

2 ft 2 ft 2 ft 2 ft2 ft 2 ft

200 lb

NA
NF

FDE

FDE

FBC

FBC

Fig. 6–31
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The 75-kg man in Fig. 6–32a attempts to lift the 40-kg uniform beam
off the roller support at B. Determine the tension developed in the
cable attached to B and the normal reaction of the man on the beam
when this is about to occur.

SOLUTION

Free-Body Diagrams. The tensile force in the cable will be denoted
as . The free-body diagrams of the pulley E, the man, and the beam
are shown in Fig. 6–32b. The beam has no contact with roller B, so

. When drawing each of these diagrams, it is very important to
apply Newton’s third law.

Equations of Equilibrium. Using the free-body diagram of pulley E,

or (1)

Referring to the free-body diagram of the man using this result,

; (2)

Summing moments about point A on the beam,

a ; (3)

Solving Eqs. 2 and 3 simultaneously for and , then using 
Eq. (1) for , we obtain

Ans.

SOLUTION II

A direct solution for can be obtained by considering the beam, the
man, and pulley as a single system. The free-body diagram is shown
in Fig. 6–32c. Thus,

a ;

Ans.

With this result Eqs. 1 and 2 can then be used to find and .T2Nm

T1 = 256 N

- [40(9.81) N](1.5 m) + T1(3 m) = 0

2T1(0.8 m) - [75(9.81) N](0.8 m)+©MA = 0

E
T1

T2 = 512 NNm = 224 NT1 = 256 N

T2

NmT1

T1(3 m) - Nm(0.8 m) - [40(9.81) N](1.5 m) = 0+©MA = 0

Nm + 2T1 - 75(9.81) N = 0+ c©Fy = 0

T2 = 2T12T1 - T2 = 0+ c©Fy = 0;

NB = 0

T1

EXAMPLE 6.20

A B

CD

H

E
F

2.2 m

(a)
0.8 m

Fig. 6–32

G

H
E

1.5 m

75 (9.81) N

40 (9.81) N

(b)

0.8 m 0.7 mAy NB � 0

Ax

Nm T1

T1T1
T2 � 2 T1

T2

Nm

G

1.5 m

75 (9.81) N

40 (9.81) N

(c)

0.8 m 0.7 mAy NB � 0

Ax

T1

T1T1
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EXAMPLE 6.21

The frame in Fig. 6–33a supports the 50-kg cylinder. Determine the
horizontal and vertical components of reaction at A and the force at C.

SOLUTION

Free-Body Diagrams. The free-body diagram of pulley D, along with
the cylinder and a portion of the cord (a system), is shown in Fig. 6–33b.
Member BC is a two-force member as indicated by its free-body
diagram.The free-body diagram of member ABD is also shown.

Equations of Equilibrium. We will begin by analyzing the
equilibrium of the pulley. The moment equation of equilibrium is
automatically satisfied with T = 50(9.81) N, and so

Ans.

Using these results, FBC can be determined by summing moments
about point A on member ABD.

Ans.

Now Ax and Ay can be determined by summing forces.

Ans.

Ans.Ay = 490.5 NAy - 490.5 N = 0+ c©Fy = 0;

Ax - 245.25 N - 490.5 N = 0 Ax = 736 N:+ ©Fx = 0;

FBC = 245.25 N

FBC (0.6 m) + 490.5 N(0.9 m) - 490.5 N(1.20 m) =  0+©MA = 0;

Dy - 50(9.81) N = 0 Dy = 490.5 N+ c©Fy = 0;

Dx - 50(9.81) N = 0 Dx = 490.5 N:+ ©Fx = 0;

A

B

D

C

(a)

1.2 m

0.6 m

0.3 m

0.1 m

Fig. 6–33

1.20 m

0.6 m

� 490.5 N

� 490.5 N

(b)

T �  50 (9.81) N

50 (9.81) N
Ax

Dx

FBC

FBC

FBC

Dx

Ay

Dy

Dy

 0.9 m

b
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P

F6–13

3 ft3 ft

400 lb
500 lb

3 ft3 ft

4 ft

B

A

C

F6–4

250 mm

50 mm

100 N

100 N

45�

A

B

F6–15

A

B

C

400 N

800 N � m
2 m1 m

1 m

1 m

1 m

F6–16

FUNDAMENTAL PROBLEMS
F6–16. Determine the horizontal and vertical components
of reaction at pin C.

F6–15. If a 100-N force is applied to the handles of the
pliers, determine the clamping force exerted on the smooth
pipe B and the magnitude of the resultant force at pin A.

F6–13. Determine the force P needed to hold the 60-lb
weight in equilibrium.

F6–17. Determine the normal force that the 100-lb plate
A exerts on the 30-lb plate B.

F6–14. Determine the horizontal and vertical components
of reaction at pin C.

F6–18. Determine the force P needed to lift the load.
Also, determine the proper placement x of the hook for
equilibrium. Neglect the weight of the beam.

4 ft

B

A

1 ft 1 ft F6–17

PB

C

A

0.9 m

100 mm 100 mm

100 mm

6 kN

x

F6–18
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•6–69. Determine the force required to hold the 50-kg
mass in equilibrium.

P

*6–68. Determine the force required to hold the 
150-kg crate in equilibrium.

P

6–67. Determine the force required to hold the 
100-lb weight in equilibrium.

P

6–70. Determine the force needed to hold the 20-lb block
in equilibrium.

P

PROBLEMS

P
A

B

C

D

Prob. 6–67

P

A

B

C

Prob. 6–68

P

A

B

C

Prob. 6–69

C

B

A

P

Prob. 6–70
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•6–73. If the peg at B is smooth, determine the
components of reaction at the pin A and fixed support C.

*6–72. The cable and pulleys are used to lift the 600-lb
stone. Determine the force that must be exerted on the cable
at A and the corresponding magnitude of the resultant force
the pulley at C exerts on pin B when the cables are in the
position shown.

6–71. Determine the force needed to support the 100-lb
weight. Each pulley has a weight of 10 lb. Also, what are the
cord reactions at A and B?

P

6–74. Determine the horizontal and vertical components
of reaction at pins A and C.

P

2 in.

2 in.

2 in.

CA

B

Prob. 6–71

P

A

C

B

D

30�

Prob. 6–72

A

B C

600 mm

800 mm

900 N�m

600 mm

500 N

45�

Prob. 6–73

B
A

C

2 ft3 ft

150 lb

100 lb

2 ft

45�

Prob. 6–74
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6–78. Determine the horizontal and vertical components
of reaction at pins A and C of the two-member frame.

*6–76. The compound beam is pin-supported at C and
supported by rollers at A and B. There is a hinge (pin) at D.
Determine the components of reaction at the supports.
Neglect the thickness of the beam.

•6–77. The compound beam is supported by a rocker at B
and is fixed to the wall at A. If it is hinged (pinned) together
at C, determine the components of reaction at the supports.
Neglect the thickness of the beam.

6–75. The compound beam is fixed at A and supported by
rockers at B and C. There are hinges (pins) at D and E.
Determine the components of reaction at the supports.

6–79. If a force of acts on the rope, determine
the cutting force on the smooth tree limb at D and the
horizontal and vertical components of force acting on pin A.
The rope passes through a small pulley at C and a smooth
ring at E.

F = 50 N

6 m
2 m

6 m

30 kN � m

2 m 2 m

15 kN

A D B E
C

Prob. 6–75

A D B C

8 ft

3

45

8 ft

12 kip

15 kip � ft

4 kip
30�

8 kip

8 ft
4 ft 2 ft

6 ft

Prob. 6–76

4 ft 4 ft

500 lb
200 lb

4000 lb � ft

4 ft8 ft

A C B

1213

5 60�

Prob. 6–77

3 m

3 m

200 N/m

A

B

C

Prob. 6–78

F � 50 N

B
C

E

30 mm

100 mm

A

D

Prob. 6–79
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6–82. If the 300-kg drum has a center of mass at point G,
determine the horizontal and vertical components of force
acting at pin A and the reactions on the smooth pads C
and D. The grip at B on member DAB resists both
horizontal and vertical components of force at the rim of
the drum.

•6–81. The bridge frame consists of three segments which
can be considered pinned at A, D, and E, rocker supported
at C and F, and roller supported at B. Determine the
horizontal and vertical components of reaction at all these
supports due to the loading shown.

*6–80. Two beams are connected together by the short
link BC. Determine the components of reaction at the fixed
support A and at pin D.

6–83. Determine the horizontal and vertical components
of reaction that pins A and C exert on the two-member arch.

A B

C

D

10 kN
12 kN

3 m
1.5 m1 m 1.5 m

Prob. 6–80

15 ft

20 ft

5 ft 5 ft

15 ft

2 kip/ft

30 ft

A

B

C F

D
E

Prob. 6–81

P

390 mm

100 mm

60 mm
60 mm

600 mm

30�

B

A

C

D G

E

Prob. 6–82

1 m
1.5 m

2 kN

1.5 kN

0.5 m

A

B

C

Prob. 6–83
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6–87. The hoist supports the 125-kg engine. Determine
the force the load creates in member DB and in member
FB, which contains the hydraulic cylinder H.

•6–85. The platform scale consists of a combination of
third and first class levers so that the load on one lever
becomes the effort that moves the next lever. Through this
arrangement, a small weight can balance a massive object.
If , determine the required mass of the
counterweight S required to balance a 90-kg load, L.

6–86. The platform scale consists of a combination of
third and first class levers so that the load on one lever
becomes the effort that moves the next lever. Through this
arrangement, a small weight can balance a massive object. If

and, the mass of the counterweight S is 2 kg,
determine the mass of the load L required to maintain the
balance.

x = 450 mm

x = 450 mm

*6–84. The truck and the tanker have weights of 8000 lb
and 20 000 lb respectively. Their respective centers of
gravity are located at points and . If the truck is at
rest, determine the reactions on both wheels at A, at B, and
at C. The tanker is connected to the truck at the turntable
D which acts as a pin.

G2G1

*6–88. The frame is used to support the 100-kg cylinder E.
Determine the horizontal and vertical components of
reaction at A and D.

G1

15 ft 10 ft 9 ft
5 ft

A B

D

C

G2

Prob. 6–84

350 mm
150 mm

150 mm100 mm
250 mm

B
A

C D

E F

H

G

x

L

S

Probs. 6–85/86

C

D

EF
G

H

2 m

1 m

1 m

2 m1 m

2 m

A B

Prob. 6–87

A

CD

E

0.6 m

1.2 m

r � 0.1 m

Prob. 6–88
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*6–92. The wall crane supports a load of 700 lb. Determine
the horizontal and vertical components of reaction at the pins
A and D.Also, what is the force in the cable at the winch W?

•6–93. The wall crane supports a load of 700 lb.
Determine the horizontal and vertical components of
reaction at the pins A and D. Also, what is the force in the
cable at the winch W? The jib ABC has a weight of 100 lb
and member BD has a weight of 40 lb. Each member is
uniform and has a center of gravity at its center.

6–91. The clamping hooks are used to lift the uniform
smooth 500-kg plate. Determine the resultant compressive
force that the hook exerts on the plate at A and B, and the
pin reaction at C.

•6–89. Determine the horizontal and vertical components
of reaction which the pins exert on member AB of the frame.

6–90. Determine the horizontal and vertical components of
reaction which the pins exert on member EDC of the frame.

6–94. The lever-actuated scale consists of a series of
compound levers. If a load of weight is placed
on the platform, determine the required weight of the
counterweight S to balance the load. Is it necessary to place
the load symmetrically on the platform? Explain.

W = 150 lb

A

E

B

CD

500 lb

300 lb

3 ft 3 ft

4 ft

60�

Probs. 6–89/90

A

B

80 mm

P

P P

150 mm

C

Prob. 6–91

4 ft

D

A B

C

E

W

4 ft

700 lb

60�

4 ft

Probs. 6–92/93

BA

C
DE

F
G H

I

J
KS

M

W

L

1.5 in.

1.5 in.

7.5 in. 7.5 in.
4.5 in.

4 in.
1.25 in.

Prob. 6–94



6.6 FRAMES AND MACHINES 317

6

6–98. A 300-kg counterweight, with center of mass at G, is
mounted on the pitman crank AB of the oil-pumping unit.
If a force of is to be developed in the fixed cable
attached to the end of the walking beam DEF, determine
the torque M that must be supplied by the motor.

6–99. A 300-kg counterweight, with center of mass at G, is
mounted on the pitman crank AB of the oil-pumping unit.
If the motor supplies a torque of , determine
the force F developed in the fixed cable attached to the end
of the walking beam DEF.

M = 2500 N # m

F = 5 kN

•6–97. The pipe cutter is clamped around the pipe P. If
the wheel at A exerts a normal force of on the
pipe, determine the normal forces of wheels B and C on
the pipe. The three wheels each have a radius of 7 mm and
the pipe has an outer radius of 10 mm.

FA = 80 N

6–95. If , determine the force F that the toggle
clamp exerts on the wooden block.

*6–96. If the wooden block exerts a force of 
on the toggle clamp, determine the force P applied to the
handle.

F = 600 N

P = 75 N

*6–100. The two-member structure is connected at C by a
pin, which is fixed to BDE and passes through the smooth
slot in member AC. Determine the horizontal and vertical
components of reaction at the supports.

85 mm140 mm

50 mm

50 mm

20 mm

140 mm
P

PF

A

B
C

D

E

Probs. 6–95/96

10 mm

10 mm

P

C

B
A

Prob. 6–97

A

B
M

D E F

F0.5 m

30�

30�

1.75 m 2.50 m

G

0.65 m

Probs. 6–98/99

3 ft 3 ft 2 ft

4 ft

A

B

C D
E

600 lb � ft

500 lb

Prob. 6–100
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*6–104. The compound arrangement of the pan scale is
shown. If the mass on the pan is 4 kg, determine the
horizontal and vertical components at pins A, B, and C and
the distance x of the 25-g mass to keep the scale in balance.

6–103. Determine the reactions at the fixed support E and
the smooth support A. The pin, attached to member BD,
passes through a smooth slot at D.

•6–105. Determine the horizontal and vertical components
of reaction that the pins at A, B, and C exert on the frame.
The cylinder has a mass of 80 kg.

A B

C

D

1.2 m

0.8 m 0.8 m

100 mm

100 mm

Probs. 6–101/102

B

C

D

E

0.3 m 0.3 m 0.3 m 0.3 m

0.4 m

0.4 m
600 N

A

Prob. 6–103

50 mmG

100 mm 75 mm
300 mm 350 mm

x
F E

D

B

A

4 kg

C

Prob. 6–104

A

B

C
1 m

0.7 m
0.5 m

D

100 mm

Prob. 6–105

•6–101. The frame is used to support the 50-kg cylinder.
Determine the horizontal and vertical components of
reaction at A and D.

6–102. The frame is used to support the 50-kg cylinder.
Determine the force of the pin at C on member ABC and
on member CD.
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•6–109. If a clamping force of is required at A,
determine the amount of force F that must be applied to the
handle of the toggle clamp.

6–110. If a force of is applied to the handle of
the toggle clamp, determine the resulting clamping force at A.

F = 350 N

300 N

6–107. A man having a weight of 175 lb attempts to hold
himself using one of the two methods shown. Determine the
total force he must exert on bar AB in each case and 
the normal reaction he exerts on the platform at C. Neglect
the weight of the platform.

*6–108. A man having a weight of 175 lb attempts to hold
himself using one of the two methods shown. Determine the
total force he must exert on bar AB in each case and the
normal reaction he exerts on the platform at C.The platform
has a weight of 30 lb.

6–106. The bucket of the backhoe and its contents have a
weight of 1200 lb and a center of gravity at G. Determine
the forces of the hydraulic cylinder AB and in links AC and
AD in order to hold the load in the position shown. The
bucket is pinned at E.

6–111. Two smooth tubes A and B, each having the same
weight, W, are suspended from a common point O by means
of equal-length cords. A third tube, C, is placed between A
and B. Determine the greatest weight of C without
upsetting equilibrium.

120�

45�

1.5 ft

1 ft

B

G

E
A D

C

0.25 ft

Prob. 6–106

C C

A B
A B

(a) (b)

Probs. 6–107/108

275 mm30�

30�

235 mm

30 mm

30 mm

70 mm

F

C

E

B

D

A

Probs. 6–109/110

r/2

r
B

C

 3r  3r

O

r
A

Prob. 6–111
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6–114. The tractor shovel carries a 500-kg load of soil,
having a center of mass at G. Compute the forces developed
in the hydraulic cylinders IJ and BC due to this loading.

•6–113. Show that the weight of the counterweight at
H required for equilibrium is , and so it is
independent of the placement of the load W on the
platform.

W1 = (b>a)W
W1

*6–112. The handle of the sector press is fixed to gear G,
which in turn is in mesh with the sector gear C. Note that
AB is pinned at its ends to gear C and the underside of the
table EF, which is allowed to move vertically due to the
smooth guides at E and F. If the gears only exert tangential
forces between them, determine the compressive force
developed on the cylinder S when a vertical force of 40 N is
applied to the handle of the press.

6–115. If a force of is applied to the handle of
the toggle clamp, determine the horizontal clamping force
NE that the clamp exerts on the smooth wooden block at E.

*6–116. If the horizontal clamping force that the toggle
clamp exerts on the smooth wooden block at E is

, determine the force applied to the handle of
the clamp.

PNE = 200 N

P = 100 N

1.2 m

E F

A

B C

G

D

S

0.5 m

0.2 m

0.35 m
0.65 m

40 N

H

Prob. 6–112

A B

W

C
E

G HD
F

c

b3b a

c
4

Prob. 6–113

100 mm

300 mm

300 mm

30�A

C

E

G

D

F

H

J

B

30�

50 mm

400 mm200 mm
200 mm

200 mm

I350 mm

Prob. 6–114

B

C

D

160 mm

50 mm

75 mm

60 mm

30�

45�

A

E

P

Probs. 6–115/116
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*6–120. Determine the couple moment M that must be
applied to member DC for equilibrium of the quick-return
mechanism. Express the result in terms of the angles 
and , dimension L, and the applied vertical force P. The
block at C is confined to slide within the slot of member AB.

•6–121. Determine the couple moment M that must be
applied to member DC for equilibrium of the quick-return
mechanism. Express the result in terms of the angles 
and , dimension L, and the applied force P, which should
be changed in the figure and instead directed horizontally
to the right. The block at C is confined to slide within the
slot of member AB.

u

f

u

f

6–118. Determine the force that the smooth roller C
exerts on member AB. Also, what are the horizontal and
vertical components of reaction at pin A? Neglect the
weight of the frame and roller.

6–119. Determine the horizontal and vertical components
of reaction which the pins exert on member ABC.

•6–117. The engine hoist is used to support the 200-kg
engine. Determine the force acting in the hydraulic cylinder
AB, the horizontal and vertical components of force at the
pin C, and the reactions at the fixed support D.

6–122. The kinetic sculpture requires that each of the
three pinned beams be in perfect balance at all times during
its slow motion. If each member has a uniform weight 
of 2 and length of 3 ft, determine the necessary
counterweights and which must be added to the
ends of each member to keep the system in balance for any
position. Neglect the size of the counterweights.

W3W1,W2,
lb>ft

C

D

A
G

1250 mm
350 mm

850 mm

550 mm

10�

B

Prob. 6–117

C

0.5 ft

3 ft

A

60 lb � ft

4 ft

B

D

Prob. 6–118

3 ft

Prob. 6–119

C

M

DA

B

4 L

L

P

u f

Probs. 6–120/121

W

Prob. 6–122
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•6–125. The three-member frame is connected at its ends
using ball-and-socket joints. Determine the x, y, z components
of reaction at B and the tension in member ED. The force
acting at D is F = 5135i + 200j - 180k6 lb.

*6–124. The structure is subjected to the loading shown.
Member AD is supported by a cable AB and roller at C and
fits through a smooth circular hole at D. Member ED is
supported by a roller at D and a pole that fits in a smooth
snug circular hole at E. Determine the x, y, z components of
reaction at E and the tension in cable AB.

6–123. The four-member “A” frame is supported at A and
E by smooth collars and at G by a pin. All the other joints
are ball-and-sockets. If the pin at G will fail when the
resultant force there is 800 N, determine the largest vertical
force P that can be supported by the frame. Also, what are
the x, y, z force components which member BD exerts on
members EDC and ABC? The collars at A and E and the
pin at G only exert force components on the frame.

6–126. The structure is subjected to the loadings shown.
Member AB is supported by a ball-and-socket at A and
smooth collar at B. Member CD is supported by a pin at C.
Determine the x, y, z components of reaction at A and C.

x

y

C

D

B
F

G

E

A

P � �Pk

z

300 mm

300 mm

600 mm

600 mm

600 mm

Prob. 6–123

z

C

A

D

B

E

0.3 m y

0.3 m

0.5 m

0.4 m

F � {�2.5k} kN

x

0.8 m

Prob. 6–124

y

6 ft

2 ft
1ft

3 ft

6 ft
3 ft

4 ft

x

A

D

F

B

C

E

z

Prob. 6–125

2 m 3 m y

4 m

1.5 m

B

800 N � m

A

250 N

D
45�

60�

60�

z

x

C

Prob. 6–126
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CHAPTER REVIEW

Simple Truss

A simple truss consists of triangular
elements connected together by pinned
joints. The forces within its members 
can be determined by assuming the
members are all two-force members,
connected concurrently at each joint.
The members are either in tension or
compression, or carry no force.

Method of Joints

The method of joints states that if a truss
is in equilibrium, then each of its joints
is also in equilibrium. For a plane truss,
the concurrent force system at each
joint must satisfy force equilibrium.

To obtain a numerical solution for the
forces in the members, select a joint that
has a free-body diagram with at most
two unknown forces and one known
force. (This may require first finding the
reactions at the supports.)

Once a member force is determined, use
its value and apply it to an adjacent joint.

Remember that forces that are found to
pull on the joint are tensile forces, and
those that push on the joint are
compressive forces.

To avoid a simultaneous solution of two
equations, set one of the coordinate axes
along the line of action of one of the
unknown forces and sum forces
perpendicular to this axis.This will allow
a direct solution for the other unknown.

The analysis can also be simplified by
first identifying all the zero-force
members.

©Fy = 0

©Fx = 0

B

45�

500 N

FBC (compression)FBA (tension)

B
500 N

A C

45�

45�

Roof truss
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Method of Sections

The method of sections states that if a
truss is in equilibrium, then each
segment of the truss is also in
equilibrium. Pass a section through the
truss and the member whose force is to
be determined.Then draw the free-body
diagram of the sectioned part having the
least number of forces on it.

Sectioned members subjected to pulling
are in tension, and those that are
subjected to pushing are in compression.

Three equations of equilibrium are
available to determine the unknowns.

If possible, sum forces in a direction that
is perpendicular to two of the three
unknown forces. This will yield a direct
solution for the third force.

Sum moments about the point where
the lines of action of two of the three
unknown forces intersect, so that the
third unknown force can be determined
directly.

©MO = 0

©Fy = 0

©Fx = 0

FGC = 1.41 kN 1T2
-1000 N + FGC sin 45° = 0

+ c©Fy= 0

a

FGF = 2 kN 1C2
 1000 N14 m2 - FGF (2 m) = 0

+©MC = 0

B

2 m

1000 N

2 m 2 m

C D

G F EA

2 m

a

a

2 m

1000 N

2 m

2 m

CFBC

45�

FGC

G FGF
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Space Truss

A space truss is a three-dimensional truss
built from tetrahedral elements, and is
analyzed using the same methods as for
plane trusses. The joints are assumed to
be ball and socket connections.

Frames and Machines

Frames and machines are structures that
contain one or more multiforce members,
that is, members with three or more
forces or couples acting on them.
Frames are designed to support loads,
and machines transmit and alter the
effect of forces.

The forces acting at the joints of a frame
or machine can be determined by
drawing the free-body diagrams of each
of its members or parts. The principle of
action–reaction should be carefully
observed when indicating these forces
on the free-body diagram of each
adjacent member or pin. For a coplanar
force system, there are three equilibrium
equations available for each member.

To simplify the analysis, be sure to
recognize all two-force members. They
have equal but opposite collinear forces
at their ends.

P

FAB
Cy

Cx

FAB

FAB

2000 N

Action–reaction

B

A

B

C

2000 N

Two-force
member

Multi-force
member
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REVIEW PROBLEMS

•6–129. Determine the force in each member of the truss
and state if the members are in tension or compression.

*6–128. Determine the forces which the pins at A and
B exert on the two-member frame which supports the
100-kg crate.

6–127. Determine the clamping force exerted on the
smooth pipe at B if a force of 20 lb is applied to the handles
of the pliers. The pliers are pinned together at A.

6–130. The space truss is supported by a ball-and-socket
joint at D and short links at C and E. Determine the force in
each member and state if the members are in tension or
compression.Take and .

6–131. The space truss is supported by a ball-and-socket
joint at D and short links at C and E. Determine the force
in each member and state if the members are in tension 
or compression. Take and

.F2 = 5400j6 lb
F1 = 5200i + 300j - 500k6 lb

F2 = 5400j6 lbF1 = 5-500k6 lb

A

C

B

D

0.6 m

0.8 m 0.6 m

0.4 m

Prob. 6–128

D

A

E

3 m 3 m

3 m

8 kN

B

0.1 m

C

Prob. 6–129

3 ft4 ft

3 ft

x

y

z

C

D

E

A

B

F

F2

F1

Probs. 6–130/131

A

20 lb

20 lb

10 in. 40�

1.5 in.

0.5 in.

B

Prob. 6–127
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6–135. Determine the horizontal and vertical components
of reaction at the pin supports A and E of the compound
beam assembly.

6–134. The two-bar mechanism consists of a lever arm AB
and smooth link CD, which has a fixed smooth collar at its
end C and a roller at the other end D. Determine the force P
needed to hold the lever in the position . The spring has a
stiffness k and unstretched length 2L. The roller contacts
either the top or bottom portion of the horizontal guide.

u

*6–132. Determine the horizontal and vertical components
of reaction that the pins A and B exert on the two-member
frame. Set .

•6–133. Determine the horizontal and vertical components
of reaction that pins A and B exert on the two-member
frame. Set .F = 500 N

F = 0

*6–136. Determine the force in members AB, AD, and AC
of the space truss and state if the members are in tension or
compression.

1.5 m

400 N/m

60�

1 m

1 m

B

C

A

F

Probs. 6–132/133

2 L

L

k

C

A

B

D

P

u

Prob. 6–134

1.5 ft

1.5 ft

2 ft

F � {�600k} lb

8 ft
x

y

z

B
A

C

D

Prob. 6–136

2 ft

2 kip/ft

1 ft

3 ft 6 ft2 ft
1 ft

A

C

E
DB

Prob. 6–135



These reinforcing rods will be encased in concrete in order to create a building column.
The internal loadings developed within the material resist the external loading that is
to be placed upon the column.
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A B

(a)

P1

P2a

a

Fig. 7–1

(b)

VB VB

MB MB

MA

NB NBAx

Ay

B B

P1
P2

CHAPTER OBJECTIVES

• To show how to use the method of sections to determine the
internal loadings in a member.

• To generalize this procedure by formulating equations that can be
plotted so that they describe the internal shear and moment
throughout a member.

• To analyze the forces and study the geometry of cables supporting
a load.

7.1 Internal Forces Developed in
Structural Members

To design a structural or mechanical member it is necessary to know the
loading acting within the member in order to be sure the material can
resist this loading. Internal loadings can be determined by using the
method of sections.To illustrate this method, consider the cantilever beam
in Fig. 7–1a. If the internal loadings acting on the cross section at point B
are to be determined, we must pass an imaginary section a–a perpendicular
to the axis of the beam through point B and then separate the beam into
two segments. The internal loadings acting at B will then be exposed and
become external on the free-body diagram of each segment, Fig. 7–1b.
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7 In each case, the link on the backhoe is a
two-force member. In the top photo it is
subjected to both bending and an axial
load at its center. By making the member
straight, as in the bottom photo, then only
an axial force acts within the member.

(b)

VB VB

MB MB

MA

NB NBAx

Ay

B B

P1
P2

(a)

V

N

M
Shear force

Normal force

Bending moment

C

Fig. 7–2

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

(b)

Fig. 7–1

The force component that acts perpendicular to the cross section, is
termed the normal force. The force component that is tangent to the
cross section is called the shear force, and the couple moment is
referred to as the bending moment. The force components prevent the
relative translation between the two segments, and the couple moment
prevents the relative rotation. According to Newton’s third law, these
loadings must act in opposite directions on each segment, as shown in
Fig. 7–1b. They can be determined by applying the equations of
equilibrium to the free-body diagram of either segment. In this case,
however, the right segment is the better choice since it does not involve
the unknown support reactions at A.A direct solution for is obtained
by applying , is obtained from , and can be
obtained by applying , since the moments of and about
B are zero.

In two dimensions, we have shown that three internal loading
resultants exist, Fig. 7–2a; however in three dimensions, a general
internal force and couple moment resultant will act at the section. The x,
y, z components of these loadings are shown in Fig. 7–2b. Here is the
normal force, and and are shear force components. is a
torsional or twisting moment, and and are bending moment
components. For most applications, these resultant loadings will act at the
geometric center or centroid (C) of the section’s cross-sectional area.
Although the magnitude for each loading generally will be different at
various points along the axis of the member, the method of sections can
always be used to determine their values.

MzMx

MyVzVx
Ny

VBNB©MB = 0
MB©Fy = 0VB©Fx = 0

NB

MB

VB
NB
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Procedure for Analysis

The method of sections can be used to determine the internal
loadings on the cross section of a member using the following
procedure.

Support Reactions.
• Before the member is sectioned, it may first be necessary to

determine its support reactions, so that the equilibrium equations
can be used to solve for the internal loadings only after the
member is sectioned.

Free-Body Diagram.
• Keep all distributed loadings, couple moments, and forces acting

on the member in their exact locations, then pass an imaginary
section through the member, perpendicular to its axis at the point
where the internal loadings are to be determined.

• After the section is made, draw a free-body diagram of the
segment that has the least number of loads on it, and indicate the
components of the internal force and couple moment resultants
at the cross section acting in their postive directions to the
established sign convention.

Equations of Equilibrium.
• Moments should be summed at the section. This way the normal

and shear forces at the section are elminated, and we can obtain a
direct solution for the moment.

• If the solution of the equilibrium equations yields a negative
scalar, the sense of the quantity is opposite to that shown on the
free-body diagram.

The designer of this shop crane
realized the need for additional
reinforcement around the joint in
order to prevent severe internal
bending of the joint when a large load
is suspended from the chain hoist.

Positive shear

Positive normal force

Positive moment

M M

V

V

N N

V

V

M M

Fig. 7–3

Sign Convention. Engineers generally use a sign convention to
report the three internal loadings N, V, and M. Although this sign
convention can be arbitrarily assigned, the one that is widely accepted
will be used here, Fig. 7–3. The normal force is said to be positive if it
creates tension, a positive shear force will cause the beam segment on
which it acts to rotate clockwise, and a positive bending moment will
tend to bend the segment on which it acts in a concave upward manner.
Loadings that are opposite to these are considered negative.

If the member is subjected to a three-dimensional external loading,
then the internal loadings are usually expressed as positive or negative,
in accordance with an established x, y, z coordinate system such as shown
in Fig. 7–2.
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EXAMPLE 7.1

(a)

A

CB

D

3 m 6 m

9 kN � m

6 kN

Fig. 7–4

Ay

A D

(b)

3 m 6 m
Dy

9 kN � m

6 kN

A

(c)

3 m
VB

NB

MB

5 kN

B

5 kN

A

(d)

6 kN

3 m

C NC

MC

VC

Determine the normal force, shear force, and bending moment acting
just to the left, point B, and just to the right, point C, of the 6-kN force
on the beam in Fig. 7–4a.

SOLUTION
Support Reactions. The free-body diagram of the beam is shown
in Fig. 7–4b. When determining the external reactions, realize that the

couple moment is a free vector and therefore it can be
placed anywhere on the free-body diagram of the entire beam. Here
we will only determine since the left segments will be used for the
analysis.

a

Free-Body Diagrams. The free-body diagrams of the left segments
AB and AC of the beam are shown in Figs. 7–4c and 7–4d. In this case
the couple moment is not included on these diagrams since it
must be kept in its original position until after the section is made and
the appropriate segment is isolated.

Equations of Equilibrium.

Segment AB

Ans.

Ans.

a Ans.

Segment AC

Ans.

Ans.

a Ans.

NOTE: The negative sign indicates that VC acts in the opposite sense
to that shown on the free-body diagram.Also, the moment arm for the
5-kN force in both cases is approximately 3 m since B and C are
“almost” coincident.

MC = 15 kN # m-15 kN213 m2 + MC = 0+©MC = 0;

VC = -1 kN5 kN - 6 kN - VC = 0+ c©Fy = 0;

NC = 0:+ ©Fx = 0;

MB = 15 kN # m-15 kN213 m2 + MB = 0+©MB = 0;

VB = 5 kN5 kN - VB = 0+ c©Fy = 0;

NB = 0:+ ©Fx = 0;

9-kN # m

Ay = 5 kN

9 kN # m + 16 kN216 m2 - Ay19 m2 = 0+©MD = 0;

Ay,

9-kN # m
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EXAMPLE 7.2

B
CA

1.5 m 1.5 m

1200 N/m

(a)

Fig. 7–5

1.5 m

(b)

1200 N/m

3 m

wC

(c)

VC

MC

NC

C B

0.5 m

600 N/m

(600 N/m)(1.5 m)1
2

Determine the normal force, shear force, and bending moment at C
of the beam in Fig. 7–5a.

SOLUTION

Free-Body Diagram. It is not necessary to find the support
reactions at A since segment BC of the beam can be used to
determine the internal loadings at C. The intensity of the triangular
distributed load at C is determined using similar triangles from the
geometry shown in Fig. 7–5b, i.e.,

The distributed load acting on segment BC can now be replaced by its
resultant force, and its location is indicated on the free-body diagram,
Fig. 7–5c.

Equations of Equilibrium

Ans.

Ans.

a

Ans.

The negative sign indicates that acts in the opposite sense to that
shown on the free-body diagram.

MC

MC = -225 N

-MC - 1
2(600 N>m)(1.5 m)(0.5 m) = 0+©MC = 0;

VC = 450 N

VC - 1
2(600 N>m)(1.5 m) = 0+ c©Fy = 0;

NC = 0:+ ©Fx = 0;

wC = (1200 N>m) a1.5 m
3 m

b = 600 N>m
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EXAMPLE 7.3

200 lb

266.7 lb

2 ft 2 ft

200 lb
3

4

5

200 lb

2 ft2 ft

333.3 lb

C

(c)

VB

NB

MB

VB

NB

MB

BA B

(a)

A

4 ft 4 ft

6 ft

D

B
C

50 lb/ft

Free-Body Diagrams. Passing an imaginary section perpendicular
to the axis of member AC through point B yields the free-body
diagrams of segments AB and BC shown in Fig. 7–6c. When
constructing these diagrams it is important to keep the distributed
loading where it is until after the section is made. Only then can it be
replaced by a single resultant force.

Equations of Equilibrium. Applying the equations of equilibrium
to segment AB, we have

Ans.

Ans.

a

Ans.

NOTE: As an exercise, try to obtain these same results using segment BC.

MB = 400 lb # ft
MB - 200 lb (4 ft) + 200 lb (2 ft) = 0+©MB = 0;

VB = 0200 lb - 200 lb - VB = 0+ c©Fy = 0;
NB = 267 lbNB - 266.7 lb = 0:+ ©Fx = 0;

(b)

4 ft

A C

4 ft

Ay

Ax

3
4

5

FDC

FDC

FDC

400 lb

Fig. 7–6

Determine the normal force, shear force, and bending moment acting
at point B of the two-member frame shown in Fig. 7–6a.

SOLUTION

Support Reactions. A free-body diagram of each member is
shown in Fig. 7–6b. Since CD is a two-force member, the equations of
equilibrium need to be applied only to member AC.

a

Ay = 200 lbAy - 400 lb + A35 B(333.3 lb) = 0+ c©Fy = 0;

Ax = 266.7 lb-Ax + A45 B1333.3 lb2 = 0:+ ©Fx = 0;

FDC = 333.3 lb-400 lb (4 ft) + A35 B FDC (8 ft) = 0+©MA = 0;
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EXAMPLE 7.4

(a)

1 m

1 m

1 m

A

E

D

B

C

600 N

0.5 m

0.5 m

Fig. 7–7

D C

PP 45�

A

R

C

R

(b)

P
R

C
45�

600 N

VE

NE

ME

C

848.5 N

0.5 m
E

45�

(c)

Determine the normal force, shear force, and bending moment acting
at point E of the frame loaded as shown in Fig. 7–7a.

SOLUTION

Support Reactions. By inspection, members AC and CD are two-
force members, Fig. 7–7b. In order to determine the internal loadings
at E, we must first determine the force R acting at the end of member
AC. To obtain it, we will analyze the equilibrium of the pin at C.

Summing forces in the vertical direction on the pin, Fig. 7–7b, we
have

Free-Body Diagram. The free-body diagram of segment CE is
shown in Fig. 7–7c.

Equations of Equilibrium.

Ans.

Ans.

a Ans.

NOTE: These results indicate a poor design. Member AC should be
straight (from A to C) so that bending within the member is
eliminated. If AC were straight then the internal force would only
create tension in the member.

ME = 300 N #m848.5 cos 45° N10.5 m2-ME = 0+©ME = 0;

NE = 600 N-848.5 sin 45° N + NE = 0+ c©Fy = 0;
VE = 600 N848.5 cos 45° N - VE = 0:+ ©Fx = 0;

R sin 45° - 600 N = 0 R = 848.5 N+ c©Fy = 0;
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EXAMPLE 7.5

(a)

Fig. 7–8

A

6 m

2.5 m

4 m

4 m

(b)

3 m

(c)

5.25 m
6.376 kN13.5 kN

z

G

A y

x

FA

MA

r

The uniform sign shown in Fig. 7–8a has a mass of 650 kg and is
supported on the fixed column. Design codes indicate that the
expected maximum uniform wind loading that will occur in the area
where it is located is 900 Pa. Determine the internal loadings at A.

SOLUTION

The idealized model for the sign is shown in Fig. 7–8b. Here the
necessary dimensions are indicated. We can consider the free-body
diagram of a section above point A since it does not involve the
support reactions.

Free-Body Diagram. The sign has a weight of 
and the wind creates a resultant force of 

, which acts perpendicular to the
face of the sign. These loadings are shown on the free-body diagram,
Fig. 7–8c.

Equations of Equilibrium. Since the problem is three dimensional,
a vector analysis will be used.

Ans.

Ans.

NOTE: Here represents the normal force, whereas 
is the shear force. Also, the torsional moment is

and the bending moment is determined from 
its components and ;

i.e., .(Mb)A = 2(MA)2
x + (MA)2

y = 73.4 kN # m
MAy = 570.9j6 kN # mMAx = 519.1i6 kN # m

MAz = 5-40.5k6 kN # m,
FAx = 513.5i6 kN

FAz = 56.38k6 kN

MA = 519.1i + 70.9j - 40.5k6 kN # m

MA + `
i j k
0 3 5.25

-13.5 0 -6.376
` = 0

MA + r * 1Fw + W2 = 0©MA = 0;

FA = 513.5i + 6.38k6 kN

FA - 13.5i - 6.376k = 0©F = 0;

900 N>m216 m212.5 m2 = 13.5 kN
Fw =6.376 kN,

W = 65019.812 N =



7.1 INTERNAL FORCES DEVELOPED IN STRUCTURAL MEMBERS 337

7

FUNDAMENTAL PROBLEMS

F7–4. Determine the normal force, shear force, and
moment at point C.

F7–2. Determine the normal force, shear force, and
moment at point C.

F7–5. Determine the normal force, shear force, and
moment at point C.

A
B

C

15 kN
10 kN

1.5 m 1.5 m 1.5 m 1.5 m

A BC

30 kN � m

10 kN

1.5 m 1.5 m 1.5 m 1.5 m

A
B

C
4.5 ft 4.5 ft6 ft

3 kip/ft

F7–3

A
B

C

12 kN 9 kN/m

1.5 m 1.5 m 1.5 m 1.5 m

F7–4

A B
C

3 m3 m

9 kN/m

F7–5

F7–3. Determine the normal force, shear force, and
moment at point C.

A C B

3 m3 m

6 kN/m

F7–6

F7–6. Determine the normal force, shear force, and
moment at point C. Assume A is pinned and B is a roller.

F7–1. Determine the normal force, shear force, and
moment at point C.

F7–1

F7–2
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PROBLEMS

*7–4. Determine the internal normal force, shear force,
and moment at points E and F in the beam.

7–2. Determine the shear force and moment at points C
and D.

7–3. Determine the internal normal force, shear force, and
moment at point C in the simply supported beam. Point C is
located just to the right of the 1500-lb ft couple moment.–

•7–5. Determine the internal normal force, shear force,
and moment at point C.

D BA E F

1.5 m
300 N/m

45�

1.5 m 1.5 m 1.5 m

C

Prob. 7–4

3 m 2 m

1.5 m

1 m

0.2 m 400 N

A
C

B

Prob. 7–5

40 kip � ft

8 ft8 ft 8 ft

8 kip

A
BC D

Prob. 7–1

6 ft

A
C D

E

B

6 ft
2 ft

4 ft 4 ft

300 lb200 lb
500 lb

Prob. 7–2

BA

C

500 lb/ft

1500 lb � ft

6 ft

30�

6 ft

Prob. 7–3

•7–1. Determine the internal normal force and shear
force, and the bending moment in the beam at points C and
D.Assume the support at B is a roller. Point C is located just
to the right of the 8-kip load.
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7–10. Determine the internal normal force, shear force,
and moment at point C in the double-overhang beam.

*7–8. Determine the internal normal force, shear force,
and moment at points C and D in the simply supported
beam. Point D is located just to the left of the 5-kN force.

7–7. Determine the internal normal force, shear force, and
moment at point C in the cantilever beam.

7–11. Determine the internal normal force, shear force,
and moment at points C and D in the simply supported
beam. Point D is located just to the left of the 10-kN
concentrated load.

C
BA

3 m

4 kN/m

3 m

Prob. 7–6

A
B

C

w0

L––
2

L––
2

Prob. 7–7

A
C D

B

3 kN/m

5 kN

3 m1.5 m 1.5 m

Prob. 7–8

A B

C

90�
6 in.

Prob. 7–9

A C B

1.5 m

3 kN/m

1.5 m 1.5 m 1.5 m

Prob. 7–10

•7–9. The bolt shank is subjected to a tension of 80 lb.
Determine the internal normal force, shear force, and
moment at point C.

A
C D

B

1.5 m

6 kN/m
10 kN

1.5 m 1.5 m 1.5 m

Prob. 7–11

7–6. Determine the internal normal force, shear force, and
moment at point C in the simply supported beam.
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*7–16. Determine the internal normal force, shear force,
and moment in the cantilever beam at point B.

•7–13. Determine the internal normal force, shear force,
and moment at point D of the two-member frame.

7–14. Determine the internal normal force, shear force,
and moment at point E of the two-member frame.

•7–17. Determine the ratio of for which the shear force
will be zero at the midpoint C of the double-overhang beam.

a>b

6 ft 6 ft 6 ft 6 ft

5 kip
0.5 kip/ft

A
C D

B

Prob. 7–12

2 m
1.5 m

250 N/m

300 N/m

4 m

A

C

D

E

B

Probs. 7–13/14

200 lb/ft200 lb/ft
300 lb/ft

4 ft

A
F E

C B

D

4 ft4 ft4 ft

Prob. 7–15

A

6 kip/ft

B

12 ft3 ft

Prob. 7–16

BC

a b/2 b/2

w0

a

A BC

Prob. 7–17

7–15. Determine the internal normal force, shear force,
and moment acting at point C and at point D, which is
located just to the right of the roller support at B.

7–18. Determine the internal normal force, shear force,
and moment at points D and E in the overhang beam. Point
D is located just to the left of the roller support at B, where
the couple moment acts.

2 kN/m

5 kN

3 m 1.5 m 3
4

5

A
D B E

C

6 kN � m

1.5 m

Prob. 7–18

*7–12. Determine the internal normal force, shear force,
and moment in the beam at points C and D. Point D is just
to the right of the 5-kip load.
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7–22. The stacker crane supports a 1.5-Mg boat with the
center of mass at G. Determine the internal normal force,
shear force, and moment at point D in the girder.The trolley
is free to roll along the girder rail and is located at the
position shown. Only vertical reactions occur at A and B.

*7–20. Determine the internal normal force, shear force,
and moment at points D and E in the compound beam.
Point E is located just to the left of the 10-kN concentrated
load.Assume the support at A is fixed and the connection at
B is a pin.

7–23. Determine the internal normal force, shear force,
and moment at points D and E in the two members.

w0 w0

A B

L

a––
2

a––
2

Prob. 7–19

10 kN2 kN/m

D

B

E
C

A

1.5 m 1.5 m 1.5 m 1.5 m

Prob. 7–20

A

F

G
E

B
D

C

2 ft 2 ft 2 ft

2 ft

1.5 ft

2 ft

500 lb

600 lb

Prob. 7–21

3.5 m

D

G

C

BA

5 m

7.5 m

1 m1 m
2 m

2 m

Prob. 7–22

•7–21. Determine the internal normal force, shear force,
and moment at points F and G in the compound beam. Point
F is located just to the right of the 500-lb force, while point G
is located just to the right of the 600-lb force.

2 m

1 m

0.75 m

0.75 m

60 N
D

E

B

CA
60�30�

Prob. 7–23

7–19. Determine the distance a in terms of the beam’s
length L between the symmetrically placed supports A
and B so that the internal moment at the center of the
beam is zero.
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7–26. The beam has a weight w per unit length. Determine
the internal normal force, shear force, and moment at point
C due to its weight.

•7–25. Determine the internal normal force, shear force,
and moment at points D and E of the frame which supports
the 200-lb crate. Neglect the size of the smooth peg at C.

*7–24. Determine the internal normal force, shear force,
and moment at points F and E in the frame. The crate
weighs 300 lb.

7–27. Determine the internal normal force, shear force,
and moment acting at point C. The cooling unit has a total
mass of 225 kg with a center of mass at G.

C

B

E

A

D

4 ft

4.5 ft

2 ft

1.5 ft

1.5 ft

Prob. 7–25

B

A

CL––
2

L––
2

u

Prob. 7–26

3 m

F

3 m

30� 30�

0.2 m

G

A B

E
D

C

Prob. 7–27

1.5 ft 1.5 ft 1.5 ft 1.5 ft

0.4 ft

4 ft

A

B

F C E D

Prob. 7–24
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*7–32. Determine the internal normal force, shear force,
and moment acting at points B and C on the curved rod.

7–30. The jib crane supports a load of 750 lb from the
trolley which rides on the top of the jib. Determine the
internal normal force, shear force, and moment in the jib at
point C when the trolley is at the position shown. The crane
members are pinned together at B, E and F and supported
by a short link BH.

7–31. The jib crane supports a load of 750 lb from the
trolley which rides on the top of the jib. Determine
the internal normal force, shear force, and moment in the
column at point D when the trolley is at the position shown.
The crane members are pinned together at B, E and F and
supported by a short link BH.

*7–28. The jack AB is used to straighten the bent beam
DE using the arrangement shown. If the axial compressive
force in the jack is 5000 lb, determine the internal moment
developed at point C of the top beam. Neglect the weight of
the beams.

•7–29. Solve Prob. 7–28 assuming that each beam has a
uniform weight of .150 lb>ft

•7–33. Determine the internal normal force, shear force,
and moment at point D which is located just to the right of
the 50-N force.

1 ft

1 ft 3 ft 5 ft

1 ft

3 ft

750 lb

2 ft

3 ft

G
F

CB
H

D

E

A

Probs. 7–30/31

10 ft
10 ft 2 ft

2 ft

A

B

C

D

E

Probs. 7–28/29

45�30�

2 ft
B

C

A

3
4

5

500 lb

Prob. 7–32

50 N

50 N
50 N

50 N

600 mm

D

C

B

A
30�

30�
30� 30�

30�

Prob. 7–33
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•7–37. The shaft is supported by a thrust bearing at A and
a journal bearing at B. Determine the x, y, z components of
internal loading at point C.

7–35. Determine the x, y, z components of internal loading
at a section passing through point C in the pipe assembly.
Neglect the weight of the pipe. Take 
and

*7–36. Determine the x, y, z components of internal loading at
a section passing through point C in the pipe assembly. Neglect
the weight of the pipe. Take 
and F2 = 5250i - 150j - 200k6 lb.

F1 = 5-80i + 200j - 300k6 lb

F2 = 5150i - 300k6 lb.
F1 = 5350j - 400k6 lb

7–38. Determine the x, y, z components of internal loading
in the rod at point D. There are journal bearings at A, B,
and C. Take 

7–39. Determine the x, y, z components of internal loading
in the rod at point E. Take F = 57i - 12j - 5k6 kN.

F = 57i - 12j - 5k6 kN.

F1

F2

2 ft
x

z

y

3 ft

C

B

A

M

1.5 ft

Prob. 7–34

x

z

y

C

1.5 ft

2 ft

F1

F2

3 ft

Probs. 7–35/36

1 m

1 m

0.5 m0.2 m

0.2 m

1 m

750 N

750 N

600 N

z

C

y

x
900 N

A

B

Prob. 7–37

0.75 m

0.2 m
0.2 m 0.5 m

0.5 m

A

3 kN � m

C

z

x

B
D

E

F

y

0.6 m

Probs. 7–38/39

7–34. Determine the x, y, z components of internal loading
at point C in the pipe assembly. Neglect the weight of the
pipe. The load is , ,
and .M = 5-30k6 lb # ft

F2 = 5-80i6 lbF1 = 5-24i -10k6 lb
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*7.2 Shear and Moment Equations and
Diagrams

Beams are structural members designed to support loadings applied
perpendicular to their axes. In general, they are long and straight and have
a constant cross-sectional area.They are often classified as to how they are
supported. For example, a simply supported beam is pinned at one end
and roller supported at the other, as in Fig. 7–9a, whereas a cantilevered
beam is fixed at one end and free at the other.The actual design of a beam
requires a detailed knowledge of the variation of the internal shear force
V and bending moment M acting at each point along the axis of the beam.*

These variations of V and M along the beam’s axis can be obtained by
using the method of sections discussed in Sec. 7.1. In this case, however, it
is necessary to section the beam at an arbitrary distance x from one end
and then apply the equations of equilibrium to the segment having the
length x. Doing this we can then obtain V and M as functions of x.

In general, the internal shear and bending-moment functions will be
discontinuous, or their slopes will be discontinuous, at points where a
distributed load changes or where concentrated forces or couple
moments are applied. Because of this, these functions must be
determined for each segment of the beam located between any two
discontinuities of loading. For example, segments having lengths 
and will have to be used to describe the variation of V and M along
the length of the beam in Fig. 7–9a. These functions will be valid only
within regions from O to a for from a to b for and from b to L for

If the resulting functions of x are plotted, the graphs are termed the
shear diagram and bending-moment diagram, Fig. 7–9b and Fig. 7–9c,
respectively.

x3.
x2,x1,

x3

x2,x1,

*The internal normal force is not considered for two reasons. In most cases, the loads
applied to a beam act perpendicular to the beam’s axis and hence produce only an internal
shear force and bending moment. And for design purposes, the beam’s resistance to shear,
and particularly to bending, is more important than its ability to resist a normal force.

To save on material and thereby produce
an efficient design, these beams, also called
girders, have been tapered, since the
internal moment in the beam will be larger
at the supports, or piers, than at the center
of the span.

O

L
Pb

a

x3

x2

x1

w

(a)
Fig. 7–9

V

x

(b)

a b
L

M

x

(c)

ba L
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Positive shear

Positive moment

Beam sign convention

M M

V

V

V

V

M M

Fig. 7–10

This extended towing arm must resist both
bending and shear loadings throughout its
length due to the weight of the vehicle.The
variation of these loadings must be known
if the arm is to be properly designed.

Procedure for Analysis

The shear and bending-moment diagrams for a beam can be
constructed using the following procedure.

Support Reactions.

• Determine all the reactive forces and couple moments acting on
the beam and resolve all the forces into components acting
perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.

• Specify separate coordinates x having an origin at the beam’s left
end and extending to regions of the beam between concentrated
forces and/or couple moments, or where the distributed loading is
continuous.

• Section the beam at each distance x and draw the free-body
diagram of one of the segments. Be sure V and M are shown
acting in their positive sense, in accordance with the sign
convention given in Fig. 7–10.

• The shear V is obtained by summing forces perpendicular to the
beam’s axis.

• The moment M is obtained by summing moments about the
sectioned end of the segment.

Shear and Moment Diagrams.

• Plot the shear diagram (V versus x) and the moment diagram (M
versus x). If computed values of the functions describing V and M
are positive, the values are plotted above the x axis, whereas
negative values are plotted below the x axis.

• Generally, it is convenient to plot the shear and bending-moment
diagrams directly below the free-body diagram of the beam.



7.2 SHEAR AND MOMENT EQUATIONS AND DIAGRAMS 347

7

EXAMPLE 7.6

Draw the shear and moment diagrams for the shaft shown in Fig. 7–11a.
The support at A is a thrust bearing and the support at C is a journal
bearing.

SOLUTION
Support Reactions. The support reactions are shown on the shaft’s
free-body diagram, Fig. 7–11d.

Shear and Moment Functions. The shaft is sectioned at an
arbitrary distance x from point A, extending within the region AB,
and the free-body diagram of the left segment is shown in Fig. 7–11b.
The unknowns V and M are assumed to act in the positive sense on the
right-hand face of the segment according to the established sign
convention. Applying the equilibrium equations yields

(1)

a (2)

A free-body diagram for a left segment of the shaft extending a
distance x within the region BC is shown in Fig. 7–11c. As always, V
and M are shown acting in the positive sense. Hence,

(3)

a

(4)

Shear and Moment Diagrams. When Eqs. 1 through 4 are plotted
within the regions in which they are valid, the shear and moment
diagrams shown in Fig. 7–11d are obtained. The shear diagram indicates
that the internal shear force is always 2.5 kN (positive) within segment
AB. Just to the right of point B, the shear force changes sign and remains
at a constant value of for segment BC. The moment diagram
starts at zero, increases linearly to point B at where

and thereafter decreases back to zero.

NOTE: It is seen in Fig. 7–11d that the graphs of the shear and
moment diagrams are discontinuous where the concentrated force
acts, i.e., at points A, B, and C. For this reason, as stated earlier, it is
necessary to express both the shear and moment functions separately
for regions between concentrated loads. It should be realized,
however, that all loading discontinuities are mathematical, arising
from the idealization of a concentrated force and couple moment.
Physically, loads are always applied over a finite area, and if the actual
load variation could be accounted for, the shear and moment
diagrams would then be continuous over the shaft’s entire length.

Mmax = 2.5 kN12 m2 = 5 kN # m,
x = 2 m,

-2.5 kN

M = 110 - 2.5x2 kN # m
M + 5 kN1x - 2 m2 - 2.5 kN1x2 = 0+©M = 0;

V = -2.5 kN

2.5 kN - 5 kN - V = 0+ c©Fy = 0;

M = 2.5x kN # m+©M = 0;

V = 2.5 kN+ c©Fy = 0;

2 m

5 kN

(a)

B
A C

2 m

Fig. 7–11

x

2.5 kN

(b)

A M

V

0 � x � 2 m

2.5 kN

x

5 kN

M

V2 m
x � 2 m

A
B

(c)
2 m � x � 4 m

M � (10 � 2.5x)

2.5 kN 2.5 kN
V (kN)

V � 2.5

V � �2.5

x (m)

5 kN

CA

(d)

B

M � 2.5x

M (kN � m)

Mmax � 5

x (m)

2

2

4

4
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Draw the shear and moment diagrams for the beam shown in 
Fig. 7–12a.

SOLUTION

Support Reactions. The support reactions are shown on the
beam’s free-body diagram, Fig. 7–12c.

Shear and Moment Functions. A free-body diagram for a left
segment of the beam having a length x is shown in Fig. 7–12b. Due to
proportional triangles, the distributed loading acting at the end of this
segment has an intensity of or . It is replaced by
a resultant force after the segment is isolated as a free-body diagram.
The magnitude of the resultant force is equal to This
force acts through the centroid of the distributed loading area, a
distance from the right end. Applying the two equations of
equilibrium yields

(1)

a

(2)

Shear and Moment Diagrams. The shear and moment diagrams
shown in Fig. 7–12c are obtained by plotting Eqs. 1 and 2.

The point of zero shear can be found using Eq. 1:

NOTE: It will be shown in Sec. 7–3 that this value of x happens to
represent the point on the beam where the maximum moment occurs.
Using Eq. 2, we have

= 31.2 kN # m
Mmax = a915.202 -

15.2023
9
b  kN # m

x = 5.20 m

V = 9 -
x2

3
= 0

M = a9x -
x3

9
b  kN # m

M +
1
3
x2ax

3
b - 9x = 0+©M = 0;

V = a9 -
x2

3
b  kN

9 -
1
3
x2 - V = 0+ c©Fy = 0;

1
3x

1
21x2A23x B = 1

3x
2.

w = (2>3)xw>x = 6>9

EXAMPLE 7.7

(a)

9 m

6 kN/m

Fig. 7–12

(b)

x

1
3 2

3

x
3

x2 kN
x kN/m

M

V

9 kN

6 kN/m

9 kN

18 kN
V (kN)

5.20 m
x (m)

V � 9 �

M (kN � m)

M � 9x �
Mmax � 31.2

(c)

9

�18

x2

3

x3

9

x (m)

9

95.20
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FUNDAMENTAL PROBLEMS

F7–10. Determine the shear and moment as a function of
x, and then draw the shear and moment diagrams.

F7–8. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

F7–7. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

F7–11. Determine the shear and moment as a function of
x, where , and then draw
the shear and moment diagrams.

0 … x 6 3 m and 3 m 6 x …  6 m

F7–9. Determine the shear and moment as a function of x,
and then draw the shear and moment diagrams.

F7–12. Determine the shear and moment as a function of
x, where , and then draw
the shear and moment diagrams.

0 … x 6 3 m and 3 m 6 x …  6 m

3 m

x

6 kN

A

9 ft

2 kip/ft

15 kip � f t

x
A

3 m

6 kN/m

Ax

x

BA

6 m

12 kN � m

BA
C

x

3 m 3 m

30 kN � m

BA
C

12 kN � m
4 kN

3 m3 m
x

F7–7

F7–8

F7–9 F7–12

F7–11

F7–10
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2 kN/m

6 kN � m
2 m

A

Prob. 7–43

L/2 L/2

M0

A B

Probs. 7–44/45

A B

w0

L––
2

L––
2

Prob. 7–46

4 m 2 m

9 kN

A B

Prob. 7–41

PROBLEMS

7–43. Draw the shear and moment diagrams for the
cantilever beam.

•7–41. Draw the shear and moment diagrams for the
simply supported beam.

*7–40. Draw the shear and moment diagrams for the
beam (a) in terms of the parameters shown; (b) set

L = 12 ft.a = 5 ft,P = 800 lb,

*7–44. Draw the shear and moment diagrams for the
beam (a) in terms of the parameters shown; (b) set

, .

•7–45. If , the beam will fail when the maximum
shear force is or the maximum bending
moment is . Determine the largest couple
moment the beam will support.M0

Mmax = 22 kN # m
Vmax = 5 kN

L = 9 m

L = 8 mM0 = 500 N # m

7–42. Draw the shear and moment diagrams for the beam
ABCDE.All pulleys have a radius of 1 ft. Neglect the weight
of the beam and pulley arrangement.The load weighs 500 lb.

7–46. Draw the shear and moment diagrams for the
simply supported beam.

a a

L

P P

Prob. 7–40

A
B C D

E

8 ft 2 ft

2 ft

2 ft
3 ft

2 ft

3 ft

Prob. 7–42
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300 N/m

4 m

300 N � m

A B

Prob. 7–47

A
B

C

4 m 2 m

8 kN/m

Prob. 7–48

5 m 5 m

2 kN/m
50 kN � m

A
B

C

Prob. 7–49

*7–48. Draw the shear and moment diagrams for the
overhang beam.

7–47. Draw the shear and moment diagrams for the
simply supported beam.

•7–49. Draw the shear and moment diagrams for the
beam.

A B

3 m

1.5 kN/m

Prob. 7–51

250 lb/ ft

150 lb � ft150 lb � ft

A B

20 ft

Prob. 7–50

A B

150 lb/ft

12 ft

300 lb � ft

Prob. 7–52

7–50. Draw the shear and moment diagrams for the beam.

7–51. Draw the shear and moment diagrams for the beam.

*7–52. Draw the shear and moment diagrams for the
simply supported beam.
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4 kN/m

3 m 3 m

A
B

Prob. 7–57

w0

2w0

6 ft 6 ft

A B

Prob. 7–58

A
B C

9 ft 4.5 ft

30 lb/ ft

180 lb � ft

Prob. 7–53

12 ft

A

12 ft

4 kip/ft

Prob. 7–55

300 lb 200 lb/ft

A

6 ft

Prob. 7–56

•7–53. Draw the shear and moment diagrams for the beam.

L

w

A
B

Prob. 7.54

7–54. If the beam will fail when the maximum
shear force is or the maximum moment is

Determine the largest intensity of the
distributed loading it will support.

wMmax = 1200 lb # ft.
Vmax = 800 lb,

L = 18 ft,

7–55. Draw the shear and moment diagrams for the beam.

*7–56. Draw the shear and moment diagrams for the
cantilevered beam.

•7–57. Draw the shear and moment diagrams for the
overhang beam.

7–58. Determine the largest intensity of the distributed
load that the beam can support if the beam can withstand a
maximum shear force of and a maximum
bending moment of .Mmax = 600 lb # ft

Vmax = 1200 lb

w0
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L

a

A
B

w0

Prob. 7–59

w0

4.5 m 1.5 m

A
B C

Prob. 7–60

A B
C

500 lb/ft

6 ft3 ft

Prob. 7–61

A

L x

2 r0

r0

Prob. 7–62

y

z

x

y

4 ft 2 ft

4 lb/ft

Prob. 7–63

r

w

u

Prob. 7–64

*7–60. Determine the placement a of the roller support B
so that the maximum moment within the span AB is
equivalent to the moment at the support B.

•7–61. The compound beam is fix supported at A, pin
connected at B and supported by a roller at C. Draw the
shear and moment diagrams for the beam.

7–59. Determine the largest intensity of the distributed
load that the beam can support if the beam can withstand a
maximum bending moment of and a
maximum shear force of .Vmax = 80 kN

Mmax = 20 kN # m
w0 7–62. The frustum of the cone is cantilevered from point

A. If the cone is made from a material having a specific
weight of , determine the internal shear force and moment
in the cone as a function of x.

g

7–63. Express the internal shear and moment components
acting in the rod as a function of y, where 0 … y … 4 ft.

*7–64. Determine the normal force, shear force, and
moment in the curved rod as a function of u.
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Relation Between the Distributed Load and Shear. If we
apply the force equation of equilibrium to the segment, then

Dividing by , and letting , we get

(7–1)slope of
shear diagram

=
distributed load

intensity

dV

dx
= w(x)

¢x: 0¢x

¢V = w(x)¢x
V + w(x)¢x -  (V + ¢V) = 0+ c©Fy = 0;

In order to design the beam used to support
these power lines, it is important to first
draw the shear and moment diagrams for
the beam.

x

F1 F2
w

w � w (x)

x�

B

M1 M2

C
x

DA

(a)

Fig. 7–13

M

V

M
V

x�

�	 M

F � w(x) �x�

w(x)

�	 V

(b)

k (�x)

O

*7.3 Relations between Distributed
Load, Shear, and Moment

If a beam is subjected to several concentrated forces, couple moments,
and distributed loads, the method of constructing the shear and bending-
moment diagrams discussed in Sec. 7–2 may become quite tedious. In this
section a simpler method for constructing these diagrams is discussed—a
method based on differential relations that exist between the load, shear,
and bending moment.

Distributed Load. Consider the beam AD shown in Fig. 7–13a,
which is subjected to an arbitrary load and a series of
concentrated forces and couple moments. In the following discussion, the
distributed load will be considered positive when the loading acts upward
as shown.A free-body diagram for a small segment of the beam having a
length is chosen at a point x along the beam which is not subjected to
a concentrated force or couple moment, Fig. 7–13b. Hence any results
obtained will not apply at these points of concentrated loading. The
internal shear force and bending moment shown on the free-body
diagram are assumed to act in the positive sense according to the
established sign convention. Note that both the shear force and moment
acting on the right-hand face must be increased by a small, finite amount
in order to keep the segment in equilibrium. The distributed loading has
been replaced by a resultant force that acts at a
fractional distance from the right end, where [for
example, if w(x) is uniform, .1

2k =
0 6 k 6 1k1¢x2 ¢F = w1x2 ¢x

¢x

w = w1x2
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If we rewrite the above equation in the form dV = w(x)dx and perform
an integration between any two points B and C on the beam, we see that

(7–2)

Relation Between the Shear and Moment. If we apply the
moment equation of equilibrium about point O on the free-body
diagram in Fig. 7–13b, we get

a

Dividing both sides of this equation by , and letting 0, yields

(7–3)

In particular, notice that the absolute maximum bending moment
occurs at the point where the slope , since this is

where the shear is equal to zero.
If Eq. 7–3 is rewritten in the form and integrated

between any two points B and C on the beam, we have

(7–4)

As stated previously, the above equations do not apply at points where
a concentrated force or couple moment acts. These two special cases
create discontinuities in the shear and moment diagrams, and as a result,
each deserves separate treatment.

Force. A free-body diagram of a small segment of the beam in 
Fig. 7–13a, taken from under one of the forces, is shown in Fig. 7–14a.
Here force equilibrium requires

(7–5)

Since the change in shear is positive, the shear diagram will “jump”
upward when F acts upward on the beam. Likewise, the jump in shear

is downward when F acts downward.1¢V2

¢V = F+ c©Fy = 0;

Change in
moment

= Area under
shear diagram

¢M =
L
V dx

dM = 1 V dx

dM>dx = 0|M|max

Slope of
moment diagram

=  Shear

dM

dx
= V

¢x:¢x

¢M = V¢x + k w(x)¢x2

(M + ¢M) -  [w(x)¢x] k¢x - V¢x - M =  0+©M0 = 0;

Change in
shear

= Area under
loading curve

¢V =
L

w1x2 dx

V

M
V

x�

�	 V

M 	 �M

(a)

F

Fig. 7–14
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Couple Moment. If we remove a segment of the beam in Fig.
7–13a that is located at the couple moment , the free-body diagram
shown in Fig. 7–14b results. In this case letting moment
equilibrium requires

a (7–6)

Thus, the change in moment is positive, or the moment diagram will
“jump” upward if is clockwise. Likewise, the jump is downward
when is counterclockwise.

The examples which follow illustrate application of the above
equations when used to construct the shear and moment diagrams. After
working through these examples, it is recommended that you solve
Examples 7.6 and 7.7 using this method.

M0

¢MM0

¢M = M0+©M = 0;

¢x: 0,
M0M

V

M
V

x�

�	 M

�	 V

(b)

M0

This concrete beam is used to support the
deck. Its size and the placement of steel
reinforcement within it can be determined
once the shear and moment diagrams have
been established.

Important Points

• The slope of the shear diagram at a point is equal to the intensity
of the distributed loading, where positive distributed loading is
upward, i.e., .

• If a concentrated force acts upward on the beam, the shear will
jump upward by the same amount.

• The change in the shear between two points is equal to the
area under the distributed-loading curve between the points.

• The slope of the moment diagram at a point is equal to the shear,
i.e., .

• The change in the moment between two points is equal to
the area under the shear diagram between the two points.

• If a clockwise couple moment acts on the beam, the shear will not
be affected; however, the moment diagram will jump upward by
the amount of the moment.

• Points of zero shear represent points of maximum or minimum
moment since

• Because two integrations of are involved to first
determine the change in shear, , then to 
determine the change in moment, , then if the
loading curve is a polynomial of degree n,
will be a curve of degree and will be a curve of
degree n + 2.

M = M1x2n + 1,
V = V1x2w = w1x2 ¢M = 1 V dx

¢V = 1 w (x) dx
w = w(x)

dM>dx = 0.

¢M
dM>dx = V

¢V

dV>dx = w1x2

Fig. 7–14



7.3 RELATIONS BETWEEN DISTRIBUTED LOAD, SHEAR, AND MOMENT 357

7

EXAMPLE 7.8

Draw the shear and moment diagrams for the cantilever beam in 
Fig. 7–15a.

2 kN
1.5 kN/m

(a)

A
B

2 m 2 m

Fig. 7–15

SOLUTION
The support reactions at the fixed support B are shown in 
Fig. 7–15b.

Shear Diagram. The shear at end A is –2 kN. This value is plotted
at x = 0, Fig. 7–15c. Notice how the shear diagram is constructed by
following the slopes defined by the loading w. The shear at x = 4 m is
–5 kN, the reaction on the beam. This value can be verified by finding
the area under the distributed loading; i.e.,

Moment Diagram. The moment of zero at x = 0 is plotted in 
Fig. 7–15d. Construction of the moment diagram is based on knowing
its slope which is equal to the shear at each point. The change of
moment from x = 0 to x = 2 m is determined from the area under the
shear diagram. Hence, the moment at x = 2 m is

This same value can be determined from the method of sections,
Fig. 7–15e.

M ƒ x=2 m = M ƒ x=0 + ¢M = 0 + [-2 kN(2 m)] = -4 kN # m

V ƒ x=4 m = V ƒ x=2 m + ¢V = -2 kN - (1.5 kN>m)(2m) = -5 kN

(d)

(c)

(b)

2 kN

2 m 2 m

2 4

�5

�2

By � 5 kN

MB � 11 kN � m

x (m)

V (kN)

2
0

4

�11

�4

x (m)

M (kN � m)

w � 0
slope � 0

w � negative constant
slope � negative constant

V � negative constant 
slope � negative constant 

V � negative increasing
slope � negative increasing

1.5 kN/m

(e)

2 m

V � 2 kN

M � 4 kN � m

2 kN
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Draw the shear and moment diagrams for the overhang beam in 
Fig. 7–16a.

EXAMPLE 7.9

4 kN/m

4 m 2 m

(a)

A
B

Fig. 7–16

SOLUTION
The support reactions are shown in Fig. 7–16b.

Shear Diagram. The shear of –2 kN at end A of the beam is plotted
at x = 0, Fig. 7–16c. The slopes are determined from the loading and
from this the shear diagram is constructed, as indicated in the figure.
In particular, notice the positive jump of 10 kN at x = 4 m due to the
force , as indicated in the figure.

Moment Diagram. The moment of zero at x = 0 is plotted,
Fig. 7–16d, then following the behavior of the slope found from the
shear diagram, the moment diagram is constructed. The moment at

is found from the area under the shear diagram.

We can also obtain this value by using the method of sections, as
shown in Fig. 7–16e.

M ƒ x=4 m = M ƒ x=0 + ¢M = 0 + [-2 kN(4 m)] = -8 kN # m
x = 4 m

By

4 m 2 m

Ay � 2 kN By � 10 kN

A

�2

8

4 6

4

0 x (m)

V (kN)

6

�8

0 x (m)

M (kN � m)

w � 0
slope � 0

V � positive decreasing
slope � positive decreasing

V � negative constant
slope � negative constant

w � negative constant
slope � negative constant

(d)

(c)

(b)

4 kN/m

4 m

2 kN

A

(e)

V � 2 kN

M � 8 kN � m
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EXAMPLE 7.10

The shaft in Fig. 7–17a is supported by a thrust bearing at A and a
journal bearing at B. Draw the shear and moment diagrams.

BA

12 ft

(a)

120 lb/ft

Fig. 7–17

SOLUTION

The support reactions are shown in Fig. 7–17b.

Shear Diagram. As shown in Fig. 7–17c, the shear at x = 0 is +240.
Following the slope defined by the loading, the shear diagram is
constructed, where at B its value is –480 lb. Since the shear changes
sign, the point where V = 0 must be located. To do this we will use the
method of sections. The free-body diagram of the left segment of the
shaft, sectioned at an arbitrary position x within the region 0 x <
9 ft, is shown in Fig. 7–17e. Notice that the intensity of the distributed
load at x is w = 10x, which has been found by proportional triangles,
i.e., .

Thus, for V = 0,

Moment Diagram. The moment diagram starts at 0 since there is
no moment at A, then it is constructed based on the slope as
determined from the shear diagram. The maximum moment occurs at
x = 6.93 ft, where the shear is equal to zero, since dM/dx = V = 0,
Fig. 7–17e,

x = 6.93 ft
 240 lb -1

2(10x)x = 0+ c©Fy = 0;

120>12 = w>x

…

x (ft)

B

120 lb/ft

A

12 ft
Ay � 240 lb By � 480 lb 

126.93

6.93 12

240

� 480

V (lb)

x (ft)

0

0

M (lb � ft)

w � negative increasing 
slope � negative increasing 

V � negative increasing 
slope � negative increasing

(d)

(c)

(b)

linear

parabolic

cubic 1109

positive
decreasing

A

x

(e)

Ay � 240 lb 

x
3

[       ] x1
2

10 x

10 x

V

M

Finally, notice how integration, first of the loading w which is linear,
produces a shear diagram which is parabolic, and then a moment
diagram which is cubic.

Mmax = 1109 lb # ft
a ; Mmax + 1

2 [(10)(6.93)] 6.93 A13 (6.93) B -240(6.93) = 0+©M = 0
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FUNDAMENTAL PROBLEMS

F7–16. Draw the shear and moment diagrams for the beam.

F7–14. Draw the shear and moment diagrams for the beam.

F7–13. Draw the shear and moment diagrams for the beam.

F7–17. Draw the shear and moment diagrams for the beam.

1 m1 m1 m

8 kN
6 kN4 kN

A

6 kN
8 kN/m

1.5 m 1.5 m

A

BA

6 ft 6 ft 6 ft

6 kip
12 kip

BA

6 kN/m

1.5 m 3 m

6 kN/m

1.5 m

A
B

3 m

6 kN/m 6 kN/m

3 m

A
B

3 m

9 kN/m

3 m

F7–15. Draw the shear and moment diagrams for the beam.

F7–13 F7–16

F7–14 F7–17

F7–14F7–15

F7–18. Draw the shear and moment diagrams for the beam.
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300 lb

600 lb
400 lb

BA

2 ft 2 ft2 ft 2 ft

Prob. 7–65

A B

5 kN
10 kN

5 kN

2 m2 m2 m2 m

Prob. 7–66

PROBLEMS

A
B

M = 10 kN � m
2 m 2 m 2 m

6 kN
18 kN

Prob. 7–67

A B

M � 2 kN � m

4 kN

2 m 2 m 2 m

Prob. 7–68

A
B

2 m 2 m 2 m

10 kN 10 kN

15 kN � m

Prob. 7–69

P

L––
3

L––
3

L––
3

A B

P

Prob. 7–70

•7–65. The shaft is supported by a smooth thrust bearing
at A and a smooth journal bearing at B. Draw the shear and
moment diagrams for the shaft.

7–66. Draw the shear and moment diagrams for the
double overhang beam.

7–67. Draw the shear and moment diagrams for the
overhang beam.

*7–68. Draw the shear and moment diagrams for the
simply supported beam.

•7–69. Draw the shear and moment diagrams for the
simply supported beam.

7–70. Draw the shear and moment diagrams for the beam.
The support at A offers no resistance to vertical load.
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7

200 mm
100 mm 50 mm

50 mm50 mm50 mm
200 mm

40 N

80 N60 N 100 N

50 N 40 N 50 N

A B

Prob. 7–71

6 m

10 kN

3 kN/m

A B

Prob. 7–72

8 kN
15 kN/m

20 kN � m

8 kN

1 m 1 m 1 m0.75 m
0.25 m

A
B C D

Prob. 7–74

500 N

BA

1.5 m 1.5 m

300 N/m

Prob. 7–75

10 kN
2 kN/m

5 m 3 m 2 m

A B

Prob. 7–76

7–71. Draw the shear and moment diagrams for the lathe
shaft if it is subjected to the loads shown.The bearing at A is
a journal bearing, and B is a thrust bearing.

*7–72. Draw the shear and moment diagrams for the beam.

•7–73. Draw the shear and moment diagrams for the
shaft. The support at A is a thrust bearing and at B it is a
journal bearing.

7–74. Draw the shear and moment diagrams for the beam.

7–75. The shaft is supported by a smooth thrust bearing at
A and a smooth journal bearing at B. Draw the shear and
moment diagrams for the shaft.

*7–76. Draw the shear and moment diagrams for the beam.

A B

2 kN/m
4 kN

0.8 m
0.2 m

Prob. 7–73
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7

300 lb 200 lb/ft

A

6 ft

Prob. 7–79

1 ft 4 ft 1 ft

100 lb/ft

A 300 lb � ft

200 lb

B

Prob. 7–77

8 ft 4 ft 6 ft

700 lb
150 lb/ft

800 lb � ft

A B C

Prob. 7–78

 10 kN

10 kN/m

A
B

3 m 3 m

Prob. 7–80

w0

A
B

LL

Prob. 7–82

•7–77. Draw the shear and moment diagrams for the
shaft. The support at A is a journal bearing and at B it is a
thrust bearing.

7–78. The beam consists of two segments pin connected at
B. Draw the shear and moment diagrams for the beam.

7–79. Draw the shear and moment diagrams for the
cantilever beam.

*7–80. Draw the shear and moment diagrams for the
simply supported beam.

•7–81. Draw the shear and moment diagrams for the
beam.

7–82. Draw the shear and moment diagrams for the beam.

A B

2000 lb
500 lb/ ft

9 ft 9 ft
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3 m

8 kN/m

8 kN/m

3 m

A

Prob. 7–83

40 kN/m

20 kN

150 kN � m

A
B

8 m 3 m

Prob. 7–84

w

6 ft 6 ft
A

B

Prob. 7–85

5 kN
3 kN/m

A
B C D

3 m 3 m 1.5 m 1.5 m

Prob. 7–86

A B

2 kN/m

300 mm
450 mm600 mm

Prob. 7–87

A

6 ft 10 ft 6 ft

5 kip/ft

B

15 kip � ft15 kip � ft

Prob. 7–88

7–83. Draw the shear and moment diagrams for the beam.

*7–84. Draw the shear and moment diagrams for the beam.

•7–85. The beam will fail when the maximum moment
is or the maximum shear is 
Determine the largest intensity w of the distributed load the
beam will support.

Vmax = 8 kip.Mmax = 30 kip # ft

7–86. Draw the shear and moment diagrams for the
compound beam.

7–87. Draw the shear and moment diagrams for the shaft.
The supports at A and B are journal bearings.

*7–88. Draw the shear and moment diagrams for the beam.
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*As will be shown in the following example, the eight equilibrium equations also can be
written for the entire cable, or any part thereof. But no more than eight equations are
available.

yC
h

P1

B

P2

A

L1 L2 L3

yD

D
C

Fig. 7–18

Each of the cable segments remains
approximately straight as they support
the weight of these traffic lights.

*7.4 Cables

Flexible cables and chains combine strength with lightness and often are
used in structures for support and to transmit loads from one member to
another. When used to support suspension bridges and trolley wheels,
cables form the main load-carrying element of the structure. In the force
analysis of such systems, the weight of the cable itself may be neglected
because it is often small compared to the load it carries. On the other
hand, when cables are used as transmission lines and guys for radio
antennas and derricks, the cable weight may become important and must
be included in the structural analysis.

Three cases will be considered in the analysis that follows. In each case
we will make the assumption that the cable is perfectly flexible and
inextensible. Due to its flexibility, the cable offers no resistance to
bending, and therefore, the tensile force acting in the cable is always
tangent to the cable at points along its length. Being inextensible, the
cable has a constant length both before and after the load is applied.As a
result, once the load is applied, the geometry of the cable remains
unchanged, and the cable or a segment of it can be treated as a rigid body.

Cable Subjected to Concentrated Loads. When a cable of
negligible weight supports several concentrated loads, the cable takes
the form of several straight-line segments, each of which is subjected to a
constant tensile force. Consider, for example, the cable shown in
Fig. 7–18, where the distances h, and and the loads and 
are known. The problem here is to determine the nine unknowns
consisting of the tension in each of the three segments, the four
components of reaction at A and B, and the two sags and at points
C and D. For the solution we can write two equations of force
equilibrium at each of points A, B, C, and D.This results in a total of eight
equations.*  To complete the solution, we need to know something about
the geometry of the cable in order to obtain the necessary ninth
equation. For example, if the cable’s total length L is specified, then the
Pythagorean theorem can be used to relate each of the three segmental
lengths, written in terms of h, and to the total length L.
Unfortunately, this type of problem cannot be solved easily by hand.
Another possibility, however, is to specify one of the sags, either or

instead of the cable length. By doing this, the equilibrium equations
are then sufficient for obtaining the unknown forces and the remaining
sag. Once the sag at each point of loading is obtained, the length of the
cable can then be determined by trigonometry. The following example
illustrates a procedure for performing the equilibrium analysis for a
problem of this type.

yD,
yC

L3,L2,L1,yD,yC,

yDyC

P2P1L3L2,L1,
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7

Determine the tension in each segment of the cable shown in Fig. 7–19a.

EXAMPLE 7.11

A

12 m

C
B

yB

D

15 kN

4 kN

3 kN

E

3 m 2 m
5 m 8 m

(a)

yD

Fig. 7–19

E

15 kN

4 kN

3 kN

3 m 2 m
5 m 8 m

(b)

Ex

Ey

Ax

Ay

4 kN

3 m
5 m

(c)

Ax

C

12 m

TBC

12 kN

uBC

SOLUTION
By inspection, there are four unknown external reactions (
and ) and four unknown cable tensions, one in each cable segment.
These eight unknowns along with the two unknown sags and 
can be determined from ten available equilibrium equations. One
method is to apply the force equations of equilibrium (

) to each of the five points A through E. Here, however, we
will take a more direct approach.

Consider the free-body diagram for the entire cable, Fig. 7–19b.Thus,

a

Since the sag is known, we will now consider the leftmost
section, which cuts cable BC, Fig. 7–19c.

a

Thus,

Ans.TBC = 10.2 kN

uBC = 51.6°

12 kN - 4 kN - TBC sin uBC = 0+ c©Fy = 0;

TBC cos uBC - 6.33 kN = 0:+ ©Fx = 0;

Ax = Ex = 6.33 kN

Ax112 m2 - 12 kN 18 m2 + 4 kN 15 m2 = 0+©MC = 0;

yC = 12 m

Ey = 10 kN

12 kN - 4 kN - 15 kN - 3 kN + Ey = 0+ c©Fy = 0;

Ay = 12 kN

-Ay118 m2 + 4 kN 115 m2 + 15 kN 110 m2 + 3 kN 12 m2 = 0

+©ME = 0;
-Ax + Ex = 0:+ ©Fx = 0;

©Fy = 0
©Fx = 0,

yDyB

Ey

Ex,Ay,Ax,
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Proceeding now to analyze the equilibrium of points A, C, and E in
sequence, we have

Point A (Fig. 7–19d).

Ans.

Point C (Fig. 7–19e).

Ans.

Point E (Fig. 7–19f).

Ans.

NOTE: By comparison, the maximum cable tension is in segment AB
since this segment has the greatest slope and it is required that for
any cable segment the horizontal component 
(a constant).Also, since the slope angles that the cable segments make
with the horizontal have now been determined, it is possible to
determine the sags and Fig. 7–19a, using trigonometry.yD,yB

T cos u = Ax = Ex
1u2

TED = 11.8 kN

uED = 57.7°

10 kN - TED sin uED = 0+ c©Fy = 0;

6.33 kN - TED cos uED = 0:+ ©Fx = 0;

TCD = 9.44 kN

uCD = 47.9°

TCD sin uCD + 10.2 sin 51.6° kN - 15 kN = 0+ c©Fy = 0;

TCD cos uCD - 10.2 cos 51.6° kN = 0:+ ©Fx = 0;

TAB = 13.6 kN

uAB = 62.2°

-TAB sin uAB + 12 kN = 0+ c©Fy = 0;

TAB cos uAB - 6.33 kN = 0:+ ©Fx = 0;

uAB
A

12 kN

6.33 kN

TAB

(d)

TCD

51.6

10.2 kN

15 kN

(e)

C

uCD

10 kN

6.33 kN

TED

E

(f)

uED
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Cable Subjected to a Distributed Load. Let us now
consider the weightless cable shown in Fig. 7–20a, which is subjected to a
distributed loading that is measured in the x direction. The
free-body diagram of a small segment of the cable having a length is
shown in Fig. 7–20b. Since the tensile force changes in both magnitude
and direction along the cable’s length, we will denote this change on the
free-body diagram by Finally, the distributed load is represented by
its resultant force which acts at a fractional distance 
from point O, where Applying the equations of equilibrium,
we have

a

Dividing each of these equations by and taking the limit as 
and therefore and we obtain

(7–7)

(7–8)

(7–9)
dy

dx
= tan u

d1T sin u2
dx

- w1x2 = 0

d1T cos u2
dx

= 0

¢T: 0,¢u: 0,¢y: 0,
¢x: 0,¢x

w1x21¢x2k1¢x2 - T cos u ¢y + T sin u ¢x = 0+©MO = 0;

-T sin u - w1x21¢x2 + 1T + ¢T2 sin1u + ¢u2 = 0+ c©Fy = 0;

-T cos u + 1T + ¢T2 cos1u + ¢u2 = 0:+ ©Fx = 0;

0 6 k 6 1.
k1¢x2w1x21¢x2,¢T.

¢s
w = w1x2

7
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A

(a)

B

w � w(x)

�xx

y

x

Fig. 7–20

The cable and suspenders are used to
support the uniform load of a gas pipe
which crosses the river.
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Integrating Eq. 7–7, we have

(7–10)

where represents the horizontal component of tensile force at any
point along the cable.

Integrating Eq. 7–8 gives

(7–11)

Dividing Eq. 7–11 by Eq. 7–10 eliminates T. Then, using Eq. 7–9, we
can obtain the slope of the cable.

Performing a second integration yields

(7–12)

This equation is used to determine the curve for the cable, The
horizontal force component and the additional two constants, say 
and resulting from the integration are determined by applying the
boundary conditions for the curve.
C2,

C1FH

y = f1x2.

y =
1
FH L

a
L

w1x2 dxb dx

tan u =
dy

dx
=

1
FH L

w1x2 dx

T sin u =
L

w1x2 dx

FH

T cos u = constant = FH

(b)

T 	 �T

w(x)(�x)
(�x)k

O

T

	�u

u

u

�x

�s

�y

The cables of the suspension bridge exert
very large forces on the tower and the
foundation block which have to be
accounted for in their design.
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7

The cable of a suspension bridge supports half of the uniform road
surface between the two towers at A and B, Fig. 7–21a. If this
distributed loading is determine the maximum force developed in
the cable and the cable’s required length. The span length L and sag h
are known.

w0,

EXAMPLE 7.12

L

y

xO

h

BA

w0

(a)

Fig. 7–21

SOLUTION
We can determine the unknowns in the problem by first finding the
equation of the curve that defines the shape of the cable using Eq. 7–12.
For reasons of symmetry, the origin of coordinates has been placed at
the cable’s center. Noting that we have

Performing the two integrations gives

(1)

The constants of integration may be determined using the boundary
conditions at and at Substituting into
Eq. 1 and its derivative yields The equation of the curve
then becomes

(2)y =
w0

2FH
x2

C1 = C2 = 0.
x = 0.dy>dx = 0x = 0y = 0

y =
1
FH
aw0x

2

2
+ C1x + C2b

y =
1
FH L

a
L

w0 dxb dx
w1x2 = w0,
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This is the equation of a parabola. The constant may be obtained
using the boundary condition at Thus,

(3)

Therefore, Eq. 2 becomes

(4)

Since is known, the tension in the cable may now be determined
using Eq. 7–10, written as For the
maximum tension will occur when is maximum, i.e., at point B,
Fig. 7–21a. From Eq. 2, the slope at this point is

or

(5)

Therefore,

(6)

Using the triangular relationship shown in Fig. 7–21b, which is based
on Eq. 5, Eq. 6 may be written as

Substituting Eq. 3 into the above equation yields

Ans.

For a differential segment of cable length ds, we can write

Hence, the total length of the cable can be determined by integration.
Using Eq. 4, we have

(7)

Integrating yields

Ans.l =
L

2
c
A

1 + a4h
L
b2

+
L

4h
sinh-1a4h

L
b d

l =
L
ds = 2

L

L>2

0 B
1 + a8h

L2 xb
2

dx

ds = 21dx22 + 1dy22 =
B

1 + ady
dx
b2

dx

Tmax =
w0L

2 B
1 + a L

4h
b2

Tmax =
24FH

2 + w0
2L2

2

Tmax =
FH

cos1umax2

umax = tan-1aw0L

2FH
b

dy

dx
`
x=L>2

= tan umax =
w0

FH
x `
x=L>2

u

0 … u 6 p>2,T = FH>cos u.
FH

y =
4h

L2 x
2

FH =
w0L

2

8h

x = L>2.y = h
FH

w0L

2FH

4FH
2 	 w0

2 L
2

(b)

umax
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Cable Subjected to Its Own Weight. When the weight of a
cable becomes important in the force analysis, the loading function along
the cable will be a function of the arc length s rather than the projected
length x. To analyze this problem, we will consider a generalized loading
function acting along the cable as shown in Fig. 7–22a.The free-
body diagram for a small segment of the cable is shown in 
Fig. 7–22b. Applying the equilibrium equations to the force system on this
diagram, one obtains relationships identical to those given by 
Eqs. 7–7 through 7–9, but with ds replacing dx.Therefore, we can show that

(7–13)

(7–14)

To perform a direct integration of Eq. 7–14, it is necessary to replace
by . Since

then

dy

dx
=
A
a ds
dx
b 2

- 1

ds = 2dx2 + dy2

ds>dxdy>dx

dy

dx
=

1
FH L

w1s2 ds

T sin u =
L

w1s2 ds
T cos u = FH

¢s
w = w1s2

s�

y

x

s

(a)

B

w � w(s)

A

Fig. 7–22
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Therefore,

Separating the variables and integrating we obtain

(7–15)

The two constants of integration, say and are found using the
boundary conditions for the curve.

C2,C1

x =
L

ds

c1 +
1

FH
2 a
L

w1s2 dsb2 d1/2

ds

dx
= c1 +

1

FH
2 a
L

w1s2 dsb2 d1/2

(b)

T 	 �T

u 	 �u

w(s)(�x)
k (�x)

O

T

�y

�s

�x

u

Electrical transmission towers must be
designed to support the weights of the
suspended power lines.The weight and length
of the cables can be determined since they
each form a catenary curve.
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Determine the deflection curve, the length, and the maximum tension
in the uniform cable shown in Fig. 7–23.The cable has a weight per unit
length of 

SOLUTION
For reasons of symmetry, the origin of coordinates is located at the
center of the cable. The deflection curve is expressed as We
can determine it by first applying Eq. 7–15, where 

Integrating the term under the integral sign in the denominator,
we have

Substituting so that a
second integration yields

or

(1)

To evaluate the constants note that, from Eq. 7–14,

Since at then Thus,

(2)

The constant may be evaluated by using the condition at
in Eq. 1, in which case To obtain the deflection curve,

solve for s in Eq. 1, which yields

(3)

Now substitute into Eq. 2, in which case

dy

dx
= sinha w0

FH
xb

s =
FH
w0

sinha w0

FH
xb

C2 = 0.x = 0
s = 0C2

dy

dx
=

w0s

FH

C1 = 0.s = 0,dy>dx = 0

dy

dx
=

1
FH L

w0 ds or 
dy

dx
=

1
FH
1w0s + C12

x =
FH
w0
e sinh-1 c 1

FH
1w0s + C12 d + C2 f

x =
FH
w0
1sinh-1 u + C22

du = 1w0>FH2 ds,u = 11>FH21w0s + C12
x =

L

ds

[1 + 11>FH2 21w0s + C122]1>2

x =
L

ds

c1 + 11>FH22a
L

w0 dsb
2 d1>2

w1s2 = w0.
y = f1x2.

w0 = 5 N>m.

EXAMPLE 7.13

y

x
s

L � 20 m

h � 6 m

umax

Fig. 7–23
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Hence,

If the boundary condition at is applied, the constant
and therefore the deflection curve becomes

(4)

This equation defines the shape of a catenary curve. The constant 
is obtained by using the boundary condition that at in
which case

(5)

Since and Eqs. 4 and 5 become

(6)

(7)

Equation 7 can be solved for by using a trial-and-error procedure.
The result is

and therefore the deflection curve, Eq. 6, becomes

Ans.

Using Eq. 3, with the half-length of the cable is

Hence,
Ans.

Since the maximum tension occurs when is
maximum, i.e., at Using Eq. 2 yields

And so,

Ans.Tmax =
FH

cos umax
=

45.9 N
cos 52.8°

= 75.9 N

umax = 52.8°

dy

dx
`
s=12.1 m

= tan umax =
5 N>m112.1 m2

45.9 N
= 1.32

s = l>2 = 12.1 m.
uT = FH>cos u,

l = 24.2 m

l

2
=

45.9 N
5 N>m sinh c5 N>m

45.9 N
110 m2 d = 12.1 m

x = 10 m,

y = 9.19[cosh10.109x2 - 1] m

FH = 45.9 N

FH

 6 m =
FH

5 N>m ccosha50 N
FH
b - 1 d

y =
FH

5 N>m ccosha5 N>m
FH

xb - 1 d

L = 20 m,h = 6 m,w0 = 5 N>m,

h =
FH
w0
ccoshaw0L

2FH
b - 1 d

x = L>2,y = h
FH

y =
FH
w0
ccosha w0

FH
xb - 1 d

C3 = -FH>w0,
x = 0y = 0

y =
FH
w0

cosha w0

FH
xb + C3
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PROBLEMS

Neglect the weight of the cable in the following problems,
unless specified.

•7–89. Determine the tension in each segment of the
cable and the cable’s total length. Set .

7–90. If each cable segment can support a maximum tension
of 75 lb, determine the largest load P that can be applied.

P = 80 lb

P

A

B

C

D

2 ft

3 ft

50 lb

5 ft

4 ft3 ft Probs. 7–89/90

5 ft

2 ft

3 ft

60 lb

D

C

B

A
xB

8 ft

P

Probs. 7–91/92

4 m 3 m 2 m6 m

4 kN P

6 kN

yB
3 m

A

B C

D

E

Prob. 7–93

7–91. The cable segments support the loading shown.
Determine the horizontal distance from the force at B to
point A. Set .

*7–92. The cable segments support the loading shown.
Determine the magnitude of the horizontal force P so that

.xB = 6 ft

P = 40 lb
xB

3 m1 m
0.5 m

yB 2 m

A D

B
C

E F

Prob. 7–94

•7–93. Determine the force P needed to hold the cable
in the position shown, i.e., so segment BC remains
horizontal. Also, compute the sag and the maximum
tension in the cable.

yB

7–94. Cable ABCD supports the 10-kg lamp E and the 
15-kg lamp F. Determine the maximum tension in the cable
and the sag of point B.yB
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4 ft

12 ft 20 ft 15 ft 12 ft

A
E

B

C

D

yB yD
14 ft

P2 P2

P1

Probs. 7–95/96

5 ft

2 ft

3 ft
30 lb

D

C

B

A

xB

5

4
3

8 ft

P

Probs. 7–97/98

60 m

7 m

w0

Prob. 7–99

7–95. The cable supports the three loads shown. Determine
the sags and of points B and D. Take 

*7–96. The cable supports the three loads shown.
Determine the magnitude of if and
Also find the sag yD.

yB = 8 ft.P2 = 300 lbP1

P2 = 250 lb.
P1 = 400 lb,yDyB

•7–97. The cable supports the loading shown. Determine
the horizontal distance the force at point B acts from A.
Set

7–98. The cable supports the loading shown. Determine
the magnitude of the horizontal force P so that xB = 6 ft.

P = 40 lb.
xB

7–99. Determine the maximum uniform distributed
loading N/m that the cable can support if it is capable of
sustaining a maximum tension of 60 kN.

w0

*7–100. The cable supports the uniform distributed load
of . Determine the tension in the cable at
each support A and B.

•7–101. Determine the maximum uniform distributed
load the cable can support if the maximum tension the
cable can sustain is 4000 lb.

w0

w0 = 600 lb>ft

A

w0

B

25 ft

10 ft

15 ft

Prob. 7–101
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12 ft

h

B

D

A

C

Prob. 7–103

A

B

1000 m

150 m
75 m

Probs. 7–104/105

10 ft

500 lb/ft

10�
A

B

x

y

40 ft

Prob. 7–106

7–103. If cylinders C and D each weigh 900 lb, determine
the maximum sag h, and the length of the cable between the
smooth pulleys at A and B. The beam has a weight per unit
length of .100 lb>ft

*7–104. The bridge deck has a weight per unit length of
. It is supported on each side by a cable. Determine

the tension in each cable at the piers A and B.

•7–105. If each of the two side cables that support the
bridge deck can sustain a maximum tension of 50 MN,
determine the allowable uniform distributed load caused
by the weight of the bridge deck.

w0

80 kN>m

7–106. If the slope of the cable at support A is 10°,
determine the deflection curve y = f(x) of the cable and the
maximum tension developed in the cable.

7–102. The cable is subjected to the triangular loading. If
the slope of the cable at point O is zero, determine the
equation of the curve which defines the cable
shape OB, and the maximum tension developed in the cable.

y = f1x2

Prob. 7–102

15 ft 15 ft

500 lb/ ft 500 lb/ ft

8 ft

y

x

A

O

B
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7–111. The cable has a mass per unit length of .
Determine the shortest total length L of the cable that can
be suspended in equilibrium.

10 kg>m

*7–112. The power transmission cable has a weight per
unit length of . If the lowest point of the cable must
be at least 90 ft above the ground, determine the maximum
tension developed in the cable and the cable’s length
between A and B.

15 lb>ft

A B
50 m

h � 5 m

Prob. 7–107

A B

150 ft

30� 30�

Prob. 7–108

A B

40 m

Prob. 7–109

A B

8 m

Prob. 7–111

7–110. Show that the deflection curve of the cable discussed
in Example 7–13 reduces to Eq. 4 in Example 7–12 when the
hyperbolic cosine function is expanded in terms of a series
and only the first two terms are retained. (The answer
indicates that the catenary may be replaced by a parabola
in the analysis of problems in which the sag is small. In this
case, the cable weight is assumed to be uniformly distributed
along the horizontal.)

•7–113. If the horizontal towing force is T = 20 kN and the
chain has a mass per unit length of , determine the
maximum sag h. Neglect the buoyancy effect of the water
on the chain. The boats are stationary.

15 kg>m

A

B

180 ft

90 ft
120 ft

300 ft

Prob. 7–112

40 m

hT T

Prob. 7–113

7–107. If h = 5 m, determine the maximum tension
developed in the chain and its length. The chain has a mass
per unit length of .8 kg>m

*7–108. A cable having a weight per unit length of 
is suspended between supports A and B. Determine the
equation of the catenary curve of the cable and the cable’s
length.

5 lb>ft

•7–109. If the 45-m-long cable has a mass per unit length
of , determine the equation of the catenary curve of
the cable and the maximum tension developed in the cable.

5 kg>m
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CHAPTER REVIEW

Internal Loadings

If a coplanar force system acts on a member,
then in general a resultant internal normal
force N, shear force V, and bending moment
M will act at any cross section along the
member. The positive directions of these
loadings are shown in the figure.

The resultant internal normal force, shear
force, and bending moment are determined
using the method of sections. To find them,
the member is sectioned at the point C
where the internal loadings are to be
determined. A free-body diagram of one of
the sectioned parts is then drawn and the
internal loadings are shown in their positive
directions.

The resultant normal force is determined
by summing forces normal to the cross
section. The resultant shear force is found
by summing forces tangent to the cross
section, and the resultant bending moment
is found by summing moments about the
geometric center or centroid of the cross-
sectional area.

If the member is subjected to a three-
dimensional loading, then, in general, a
torsional moment will also act on the cross
section. It can be determined by summing
moments about an axis that is perpendicular
to the cross section and passes through its
centroid.

©MC = 0

©Fy = 0

©Fx = 0

B

Ay

Ax

By

A
C

F1 F2

A

Ay

Ax

VC

B

By

C
NC

MC

VC

C
NC

MC

F1

F2

y

z

Ny

Normal force

My

Torsional moment

Vx

Vz

Mx

x

C

Mz

Shear force components

Bending moment
components

(a)

V

N

M
Shear force

Normal force

Bending moment

C
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Positive shear

Positive moment

M M

V

V

V

V

M M

Shear and Moment Diagrams

To construct the shear and moment
diagrams for a member, it is necessary to
section the member at an arbitrary point,
located a distance x from the left end.

If the external loading consists of changes
in the distributed load, or a series of
concentrated forces and couple moments act
on the member, then different expressions
for V and M must be determined within
regions between any load discontinuities.

The unknown shear and moment are
indicated on the cross section in the positive
direction according to the established sign
convention, and then the internal shear and
moment are determined as functions of x.

Each of the functions of the shear and
moment is then plotted to create the shear
and moment diagrams.

O

L
Pb

a

x3

x2

x1

w
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Distributed load

y =
1
FH L

a
L

w1x2 dxb dx

Cable weight

x =
L

ds

c1 +
1

FH
2 a
L

w1s2 dsb2 d1>2

P1
P2

Relations between Shear and Moment

It is possible to plot the shear and moment
diagrams quickly by using differential
relationships that exist between the
distributed loading and V and M.

The slope of the shear diagram is equal to
the distributed loading at any point. The
slope is positive if the distributed load acts
upward, and vice-versa.

The slope of the moment diagram is equal
to the shear at any point. The slope is
positive if the shear is positive, or vice-versa.

The change in shear between any two
points is equal to the area under the
distributed loading between the points.

The change in the moment is equal to the
area under the shear diagram between the
points.

w

Cables

When a flexible and inextensible cable is
subjected to a series of concentrated
forces, then the analysis of the cable can be
performed by using the equations of
equilibrium applied to free-body diagrams
of either segments or points of application
of the loading.

If external distributed loads or the weight
of the cable are to be considered, then the
shape of the cable must be determined by
first analyzing the forces on a differential
segment of the cable and then integrating
this result. The two constants, say and

resulting from the integration are
determined by applying the boundary
conditions for the cable.

C2,
C1

dV

dx
= w

¢V =
L

w dx

¢M =
L
V dx

dM

dx
= V
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4 kip · ft

10 kip

A

C
B

D

3 ft

3 ft

2 ft

2 ft 2 ft

Prob. 7–115

5 m5 m 3 m

2 kN/m
1 kN/m

7.5 kN

40 kN � m

6 kN

1 m

A B
C

Prob. 7–116

60�

A

D

E

C

B

1 m

0.75 m

0.75 m

0.75 m

0.25 m

400 N/m

Prob. 7–117

REVIEW PROBLEMS

•7–117. Determine the internal normal force, shear force
and moment at points D and E of the frame.

*7–116. Determine the internal normal force, shear force,
and moment at points B and C of the beam.

7–114. A 100-lb cable is attached between two points at a
distance 50 ft apart having equal elevations. If the maximum
tension developed in the cable is 75 lb, determine the length
of the cable and the sag.

7–115. Draw the shear and moment diagrams for beam CD.

7–118. Determine the distance a between the supports in
terms of the beam’s length L so that the moment in the
symmetric beam is zero at the beam’s center.

L

a

w

Prob. 7–118
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x � 2 m

A

C

5 m

8 kN

B

Prob. 7–122

2 ft

1 ft

150 lb

200 lb
y

A

B C
u

Prob. 7–123

7–122. The traveling crane consists of a 5-m-long beam
having a uniform mass per unit length of 20 kg/m.The chain
hoist and its supported load exert a force of 8 kN on the
beam when . Draw the shear and moment
diagrams for the beam. The guide wheels at the ends A and
B exert only vertical reactions on the beam. Neglect the size
of the trolley at C.

x = 2 m

•7–121. Determine the internal shear and moment in
member ABC as a function of x, where the origin for x is at A.

7–119. A chain is suspended between points at the same
elevation and spaced a distance of 60 ft apart. If it has a
weight per unit length of and the sag is 3 ft,
determine the maximum tension in the chain.

*7–120. Draw the shear and moment diagrams for the beam.

0.5 lb>ft

*7–123. Determine the internal normal force, shear force,
and the moment as a function of and

for the member loaded as shown.0 … y … 2 ft
0° … u … 180°

5 m 5 m

2 kN/m

A

50 kN � m

B
C

Prob. 7–120

A C

D

B

3 m 1.5 m

1.5 m

1.5 m

6 kN

45�

Prob. 7–121
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d

A

B
s

x

y

60�

dl

Prob. 7–124

*7–124. The yacht is anchored with a chain that has a total
length of 40 m and a mass per unit length of and the
tension in the chain at A is 7 kN. Determine the length of
chain which is lying at the bottom of the sea. What is the
distance d? Assume that buoyancy effects of the water on
the chain are negligible. Hint: Establish the origin of the
coordinate system at B as shown in order to find the chain
length BA.

ld

18 kg/m,

•7–125. Determine the internal normal force, shear force,
and moment at points D and E of the frame.

7–126. The uniform beam weighs 500 lb and is held in the
horizontal position by means of cable AB, which has a
weight of 5 lb/ft. If the slope of the cable at A is 30°,
determine the length of the cable.

7–127. The balloon is held in place using a 400-ft cord that
weighs 0.8 lb/ft and makes a 60° angle with the horizontal. If
the tension in the cord at point A is 150 lb, determine the
length of the cord, l, that is lying on the ground and the
height h. Hint: Establish the coordinate system at B as
shown.

60� A

l
x

y h

s
B

Prob. 7–127

A

B

C

15 ft

30�

Prob. 7–126

E

4 ft

1 ft

8 ft
3 ft

D

F

C

A
30�

150 lb

B

Prob. 7–125



The effective design of a brake system, such as the one for this bicycle, requires an
efficient capacity for the mechanism to resist frictional forces. In this chapter, we will
study the nature of friction and show how these forces are considered in engineering
analysis and design.



Friction

CHAPTER OBJECTIVES

• To introduce the concept of dry friction and show how to analyze
the equilibrium of rigid bodies subjected to this force.

• To present specific applications of frictional force analysis on wedges,
screws, belts, and bearings.

• To investigate the concept of rolling resistance.

8.1 Characteristics of Dry Friction
Friction is a force that resists the movement of two contacting surfaces
that slide relative to one another. This force always acts tangent to the
surface at the points of contact and is directed so as to oppose the possible
or existing motion between the surfaces.

In this chapter, we will study the effects of dry friction, which is
sometimes called Coulomb friction since its characteristics were studied
extensively by C. A. Coulomb in 1781. Dry friction occurs between the
contacting surfaces of bodies when there is no lubricating fluid.* 

8

The heat generated by the abrasive
action of friction can be noticed
when using this grinder to sharpen
a metal blade.

*Another type of friction, called fluid friction, is studied in fluid mechanics.
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Theory of Dry Friction. The theory of dry friction can be
explained by considering the effects caused by pulling horizontally on a
block of uniform weight W which is resting on a rough horizontal surface
that is nonrigid or deformable, Fig. 8–1a. The upper portion of the block,
however, can be considered rigid. As shown on the free-body diagram of
the block, Fig. 8–1b, the floor exerts an uneven distribution of both
normal force and frictional force along the contacting surface.
For equilibrium, the normal forces must act upward to balance the
block’s weight W, and the frictional forces act to the left to prevent the
applied force P from moving the block to the right. Close examination of
the contacting surfaces between the floor and block reveals how these
frictional and normal forces develop, Fig. 8–1c. It can be seen that many
microscopic irregularities exist between the two surfaces and, as a result,
reactive forces are developed at each point of contact.*  As shown,
each reactive force contributes both a frictional component and a
normal component 

Equilibrium. The effect of the distributed normal and frictional
loadings is indicated by their resultants N and F on the free-body diagram,
Fig. 8–1d. Notice that N acts a distance x to the right of the line of action
of W, Fig. 8–1d. This location, which coincides with the centroid or
geometric center of the normal force distribution in Fig. 8–1b, is necessary
in order to balance the “tipping effect” caused by P. For example, if P is
applied at a height h from the surface, Fig. 8–1d, then moment equilibrium
about point O is satisfied if or x = Ph>W.Wx = Ph

¢Nn.
¢Fn

¢Rn

¢Fn¢Nn

*Besides mechanical interactions as explained here, which is referred to as a classical
approach, a detailed treatment of the nature of frictional forces must also include the
effects of temperature, density, cleanliness, and atomic or molecular attraction between the
contacting surfaces. See J. Krim, Scientific American, October, 1996.

P

W

(a)

Fig. 8–1

P

W

(b)

�Nn

�Fn

(c)

�F1

�N1

�N2

�R1

�R2

�F2 �Fn

�Rn

�Nn

P

W

(d)

a/2 a/2

h
F

O

Nx

Resultant Normal
and Frictional Forces

A

B

C

Regardless of the weight of the rake or
shovel that is suspended, the device has
been designed so that the small roller
holds the handle in equilibrium due to
frictional forces that develop at the
points of contact, A, B, C.
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W

(e)

N
x

Fs

Rs

Impending
motion

P

Equilibrium

h

fs

Impending Motion. In cases where the surfaces of contact are
rather “slippery,” the frictional force F may not be great enough to
balance P, and consequently the block will tend to slip. In other words, as
P is slowly increased, F correspondingly increases until it attains a certain
maximum value called the limiting static frictional force, Fig. 8–1e.
When this value is reached, the block is in unstable equilibrium since
any further increase in P will cause the block to move. Experimentally,
it has been determined that this limiting static frictional force 
is directly proportional to the resultant normal force N. Expressed
mathematically,

(8–1)

where the constant of proportionality, (mu “sub” s), is called the
coefficient of static friction.

Thus, when the block is on the verge of sliding, the normal force N and
frictional force combine to create a resultant Fig. 8–1e. The angle

(phi “sub” s) that makes with N is called the angle of static friction.
From the figure,

Typical values for are given in Table 8–1. Note that these values can
vary since experimental testing was done under variable conditions of
roughness and cleanliness of the contacting surfaces. For applications,
therefore, it is important that both caution and judgment be exercised
when selecting a coefficient of friction for a given set of conditions.When
a more accurate calculation of is required, the coefficient of friction
should be determined directly by an experiment that involves the two
materials to be used.

Fs

ms

fs = tan-1aFs
N
b = tan-1amsN

N
b = tan-1 ms

Rsfs

Rs,Fs

ms

Fs = msN

Fs

Fs,

Table 8–1
Typical Values for Ms

Contact
Materials

Coefficient of
Static Friction 1ms2

Metal on ice 0.03–0.05

Wood on wood 0.30–0.70

Leather on wood 0.20–0.50

Leather on metal 0.30–0.60

Aluminum on
aluminum 1.10–1.70
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Motion. If the magnitude of P acting on the block is increased so that
it becomes slightly greater than the frictional force at the contacting
surface will drop to a smaller value called the kinetic frictional force.
The block will begin to slide with increasing speed, Fig. 8–2a. As this
occurs, the block will “ride” on top of these peaks at the points of contact,
as shown in Fig. 8–2b. The continued breakdown of the surface is the
dominant mechanism creating kinetic friction.

Experiments with sliding blocks indicate that the magnitude of the kinetic
friction force is directly proportional to the magnitude of the resultant
normal force, expressed mathematically as

(8–2)

Here the constant of proportionality, is called the coefficient of
kinetic friction. Typical values for are approximately 25 percent
smaller than those listed in Table 8–1 for 

As shown in Fig. 8–2a, in this case, the resultant force at the surface of
contact, , has a line of action defined by This angle is referred to as
the angle of kinetic friction, where

By comparison, fs Ú fk.

fk = tan-1aFk
N
b = tan-1amkN

N
b = tan-1 mk

fk.Rk

ms.
mk

mk,

Fk = mkN

Fk,
Fs,

P

W

(a)

N

Fk

Motion

Rk

fk (b)

�F1

�N1

�N2
�R2

�R1

�F2 �Fn

�Rn

�Nn

Fig. 8–2



8.1 CHARACTERISTICS OF DRY FRICTION 391

8

The above effects regarding friction can be summarized by referring to
the graph in Fig. 8–3, which shows the variation of the frictional force F
versus the applied load P. Here the frictional force is categorized in three
different ways:

• F is a static frictional force if equilibrium is maintained.

• F is a limiting static frictional force when it reaches a maximum
value needed to maintain equilibrium.

• F is termed a kinetic frictional force when sliding occurs at the
contacting surface.

Notice also from the graph that for very large values of P or for high
speeds, aerodynamic effects will cause and likewise to begin to
decrease.

Characteristics of Dry Friction. As a result of experiments that
pertain to the foregoing discussion, we can state the following rules
which apply to bodies subjected to dry friction.

• The frictional force acts tangent to the contacting surfaces in a
direction opposed to the motion or tendency for motion of one
surface relative to another.

• The maximum static frictional force that can be developed is
independent of the area of contact, provided the normal pressure is
not very low nor great enough to severely deform or crush the
contacting surfaces of the bodies.

• The maximum static frictional force is generally greater than the
kinetic frictional force for any two surfaces of contact. However,
if one of the bodies is moving with a very low velocity over
the surface of another, becomes approximately equal to 
i.e.,

• When slipping at the surface of contact is about to occur, the
maximum static frictional force is proportional to the normal force,
such that 

• When slipping at the surface of contact is occurring, the kinetic
frictional force is proportional to the normal force, such that
Fk = mkN.

Fs = msN.

ms L mk.
Fs,Fk

Fs

mkFk

Fk

Fs

F

Fs

Fk

P

No motion Motion

F � P

45�

Fig. 8–3
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8.2 Problems Involving Dry Friction

If a rigid body is in equilibrium when it is subjected to a system of forces
that includes the effect of friction, the force system must satisfy not only
the equations of equilibrium but also the laws that govern the frictional
forces.

Types of Friction Problems. In general, there are three types of
mechanics problems involving dry friction. They can easily be classified
once free-body diagrams are drawn and the total number of unknowns
are identified and compared with the total number of available
equilibrium equations.

No Apparent Impending Motion. Problems in this category are
strictly equilibrium problems, which require the number of unknowns to
be equal to the number of available equilibrium equations. Once the
frictional forces are determined from the solution, however, their
numerical values must be checked to be sure they satisfy the inequality

otherwise, slipping will occur and the body will not remain in
equilibrium. A problem of this type is shown in Fig. 8–4a. Here we must
determine the frictional forces at A and C to check if the equilibrium
position of the two-member frame can be maintained. If the bars are
uniform and have known weights of 100 N each, then the free-body
diagrams are as shown in Fig. 8–4b. There are six unknown force
components which can be determined strictly from the six equilibrium
equations (three for each member). Once and are
determined, then the bars will remain in equilibrium provided

and are satisfied.

Impending Motion at All Points of Contact. In this case the
total number of unknowns will equal the total number of available
equilibrium equations plus the total number of available frictional
equations, When motion is impending at the points of contact,
then whereas if the body is slipping, then For
example, consider the problem of finding the smallest angle at which
the 100-N bar in Fig. 8–5a can be placed against the wall without slipping.
The free-body diagram is shown in Fig. 8–5b. Here the five unknowns are
determined from the three equilibrium equations and two static frictional
equations which apply at both points of contact, so that and

.FB = 0.4NB
FA = 0.3NA

u

Fk = mkN.Fs = msN;
F = mN.

FC … 0.5NCFA … 0.3NA

NCFC,NA,FA,

F … msN;

(a)

B

mC � 0.5mA � 0.3

A C

(b)

Bx

By

By

Bx

100 N 100 N

FA
FC

NA NC

Fig. 8–4

A

B
mB � 0.4

mA � 0.3

u

(a)

NB

NA

FB

FA

(b)

100 N
u

Fig. 8–5
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P

(a)

A

B

mC � 0.5mA � 0.3

C

By

Bx

100 N

P

(b)

FC

NC

By

Bx

100 N
FA

NA

Fig. 8–6

P

W

N

F

b/2

h

x

b/2

P

W

N

F

b/2

h

x

b/2

Consider pushing on the uniform crate that has a weight W and sits on the rough surface. As shown on the first free-body diagram, if
the magnitude of P is small, the crate will remain in equilibrium.As P increases the crate will either be on the verge of slipping on the
surface or if the surface is very rough (large ) then the resultant normal force will shift to the corner, as shown
on the second free-body diagram.At this point the crate will begin to tip over.The crate also has a greater chance of tipping if P is applied
at a greater height h above the surface, or if its width b is smaller.

x = b>2,ms1F = msN2,

Impending Motion at Some Points of Contact. Here the number
of unknowns will be less than the number of available equilibrium
equations plus the number of available frictional equations or
conditional equations for tipping. As a result, several possibilities for
motion or impending motion will exist and the problem will involve a
determination of the kind of motion which actually occurs. For example,
consider the two-member frame in Fig. 8–6a. In this problem we wish to
determine the horizontal force P needed to cause movement. If each
member has a weight of 100 N, then the free-body diagrams are as shown
in Fig. 8–6b. There are seven unknowns. For a unique solution we must
satisfy the six equilibrium equations (three for each member) and only
one of two possible static frictional equations. This means that as P
increases it will either cause slipping at A and no slipping at C, so that

and or slipping occurs at C and no slipping at
A, in which case and The actual situation can be
determined by calculating P for each case and then choosing the case for
which P is smaller. If in both cases the same value for P is calculated,
which in practice would be highly improbable, then slipping at both
points occurs simultaneously; i.e., the seven unknowns would satisfy eight
equations.

FA … 0.3NA.FC = 0.5NC
FC … 0.5NC;FA = 0.3NA
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Equilibrium Versus Frictional Equations. Whenever we solve
problems where the friction force F is to be an “equilibrium force” and
satisfies the inequality , then we can assume the sense of
direction of F on the free-body diagram. The correct sense is made
known after solving the equations of equilibrium for F. If F is a
negative scalar the sense of F is the reverse of that which was assumed.
This convenience of assuming the sense of F is possible because the
equilibrium equations equate to zero the components of vectors acting
in the same direction. However, in cases where the frictional equation

is used in the solution of a problem, the convenience of
assuming the sense of F is lost, since the frictional equation relates
only the magnitudes of two perpendicular vectors. Consequently, F
must always be shown acting with its correct sense on the free-body
diagram, whenever the frictional equation is used for the solution of a
problem.

F = mN

F 6 msN

W

P

FB

FA

NB

NA

B

A

The applied vertical force P on this roll
must be large enough to overcome the
resistance of friction at the contacting
surfaces A and B in order to cause
rotation.

Procedure for Analysis

Equilibrium problems involving dry friction can be solved using the
following procedure.

Free-Body Diagrams.
• Draw the necessary free-body diagrams, and unless it is stated in

the problem that impending motion or slipping occurs, always show
the frictional forces as unknowns (i.e., do not assume ).

• Determine the number of unknowns and compare this with the
number of available equilibrium equations.

• If there are more unknowns than equations of equilibrium, it will
be necessary to apply the frictional equation at some, if not all,
points of contact to obtain the extra equations needed for a
complete solution.

• If the equation is to be used, it will be necessary to show
F acting in the correct sense of direction on the free-body diagram.

Equations of Equilibrium and Friction.
• Apply the equations of equilibrium and the necessary frictional

equations (or conditional equations if tipping is possible) and
solve for the unknowns.

• If the problem involves a three-dimensional force system such
that it becomes difficult to obtain the force components or the
necessary moment arms, apply the equations of equilibrium using
Cartesian vectors.

F = mN

F = mN



EXAMPLE 8.1

The uniform crate shown in Fig. 8–7a has a mass of 20 kg. If a force
is applied to the crate, determine if it remains in equilibrium.

The coefficient of static friction is ms = 0.3.
P = 80 N
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0.8 m
P � 80 N

0.2 m

30�

(a)

Fig. 8–7

P � 80 N

0.2 m

30�

(b)

196.2 N

0.4 m 0.4 m

NC

x

F
O

SOLUTION
Free-Body Diagram. As shown in Fig. 8–7b, the resultant normal
force must act a distance x from the crate’s center line in order to
counteract the tipping effect caused by P. There are three unknowns,
F, and x, which can be determined strictly from the three
equations of equilibrium.

Equations of Equilibrium.

-80 sin 30° N + NC - 196.2 N = 0+ c©Fy = 0;

80 cos 30° N - F = 0:+ ©Fx = 0;

NC,

NC

Solving,

Since x is negative it indicates the resultant normal force acts (slightly)
to the left of the crate’s center line. No tipping will occur since

Also, the maximum frictional force which can be developed
at the surface of contact is 
Since the crate will not slip, although it is very
close to doing so.

F = 69.3 N 6 70.8 N,
Fmax = msNC = 0.31236 N2 = 70.8 N.

x 6 0.4 m.

x = -0.00908 m = -9.08 mm

NC = 236 N

F = 69.3 N

a 80 sin 30° N10.4 m2 - 80 cos 30° N10.2 m2 + NC1x2 = 0+©MO = 0;
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It is observed that when the bed of the dump truck is raised to an
angle of the vending machines will begin to slide off the bed,
Fig. 8–8a. Determine the static coefficient of friction between a
vending machine and the surface of the truckbed.

SOLUTION
An idealized model of a vending machine resting on the truckbed is
shown in Fig. 8–8b. The dimensions have been measured and the
center of gravity has been located. We will assume that the vending
machine weighs W.

Free-Body Diagram. As shown in Fig. 8–8c, the dimension x is used
to locate the position of the resultant normal force N. There are four
unknowns, N, F, and x.

Equations of Equilibrium.

(1)

(2)

a (3)

Since slipping impends at using Eqs. 1 and 2, we have

Ans.

The angle of is referred to as the angle of repose, and by
comparison, it is equal to the angle of static friction, Notice
from the calculation that is independent of the weight of the vending
machine, and so knowing provides a convenient method for
determining the coefficient of static friction.

NOTE: From Eq. 3, we find Since indeed
the vending machine will slip before it can tip as observed in Fig. 8–8a.

1.17 ft 6 1.5 ft,x = 1.17 ft.

u

u

u = fs.
u = 25°

ms = tan 25° = 0.466

W sin 25° = ms1W cos 25°2Fs = msN;

u = 25°,

-W sin 25°12.5 ft2 + W cos 25°1x2 = 0+©MO = 0;

N - W cos 25° = 0+Q©Fy = 0;

W sin 25° - F = 0+R©Fx = 0;

ms,

u = 25°

EXAMPLE 8.2

(a)

u � 25�
2.5 ft

G

1.5 ft
1.5 ft

(b)

(c)

2.5 ft

G

O

x

1.5 ft
1.5 ft

W 25�

N

F

Fig. 8–8
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EXAMPLE 8.3

The uniform 10-kg ladder in Fig. 8–9a rests against the smooth wall at
B, and the end A rests on the rough horizontal plane for which the
coefficient of static friction is . Determine the angle of
inclination of the ladder and the normal reaction at B if the ladder is
on the verge of slipping.

u

ms = 0.3

4 m

A

B

A

(a)

u
A

(b)

NB

NA

FA

(4 m) sin

(2 m) cos (2 m) cos

10(9.81) N

uu

u

u

Fig. 8–9

SOLUTION
Free-Body Diagram. As shown on the free-body diagram, Fig. 8–9b,
the frictional force must act to the right since impending motion at A
is to the left.

Equations of Equilibrium and Friction. Since the ladder is on the
verge of slipping, then . By inspection, can be
obtained directly.

Using this result, . Now can be found.

Ans.

Finally, the angle can be determined by summing moments about
point A.

a

Ans.u = 59.04° = 59.0°

sin u
cos u

= tan u = 1.6667

(29.43 N)(4 m) sin u - [10(9.81) N](2 m) cos u = 0+©MA = 0;

u

NB = 29.43 N = 29.4 N

29.43 N - NB = 0:+ ©Fx = 0;

NBFA = 0.3(98.1 N) = 29.43 N

NA = 98.1 NNA - 10(9.81) N = 0+ c©Fy = 0;

NAFA = msNA = 0.3NA

FA
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EXAMPLE 8.4

200 N/m

0.75 m

B

P

4 m

0.25 m
C

A

(a)

800 N

2 m

(b)

Ax

Ay

A
2 m

NB � 400 N

FB

0.75 m

0.25 m
P

B

(c)

C

400 N

NC

FC

FB

Fig. 8–10

Beam AB is subjected to a uniform load of and is supported
at B by post BC, Fig. 8–10a. If the coefficients of static friction at B
and C are and determine the force P needed to
pull the post out from under the beam. Neglect the weight of the
members and the thickness of the beam.

SOLUTION
Free-Body Diagrams. The free-body diagram of the beam is shown
in Fig. 8–10b. Applying we obtain This result
is shown on the free-body diagram of the post, Fig. 8–10c. Referring to
this member, the four unknowns P, and are determined
from the three equations of equilibrium and one frictional equation
applied either at B or C.

Equations of Equilibrium and Friction.

(1)

(2)

a (3)

(Post Slips at B and Rotates about C.) This requires and

Using this result and solving Eqs. 1 through 3, we obtain

Since slipping at C
occurs. Thus the other case of movement must be investigated.

(Post Slips at C and Rotates about B.) Here and

(4)

Solving Eqs. 1 through 4 yields

Ans.

Obviously, this case occurs first since it requires a smaller value for P.

FB = 66.7 N

FC = 200 N

NC = 400 N

P = 267 N

FC = 0.5NCFC = mCNC;

FB … mBNB

FC = 240 N 7 mCNC = 0.51400 N2 = 200 N,

NC = 400 N

FC = 240 N

P = 320 N

FB = 0.21400 N2 = 80 NFB = mBNB;

FC … mCNC

-P10.25 m2 + FB11 m2 = 0+©MC = 0;

NC - 400 N = 0+ c©Fy = 0;

P - FB - FC = 0:+ ©Fx = 0;

NCFC,FB,

NB = 400 N.©MA = 0,

mC = 0.5,mB = 0.2

200 N>m
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EXAMPLE 8.5

Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are
connected to the weightless links shown in Fig. 8–11a. Determine the
largest vertical force P that can be applied at the pin C without
causing any movement. The coefficient of static friction between the
blocks and the contacting surfaces is .

SOLUTION
Free-Body Diagram. The links are two-force members and so the
free-body diagrams of pin C and blocks A and B are shown in 
Fig. 8–11b. Since the horizontal component of tends to move
block A to the left, must act to the right. Similarly, must act to
the left to oppose the tendency of motion of block B to the right,
caused by . There are seven unknowns and six available force
equilibrium equations, two for the pin and two for each block, so that
only one frictional equation is needed.

Equations of Equilibrium and Friction. The force in links AC and
BC can be related to P by considering the equilibrium of pin C.

Using the result for , for block A,

(1)

(2)

Using the result for , for block B,

(3)

Movement of the system may be caused by the initial slipping of either
block A or block B. If we assume that block A slips first, then

(4)

Substituting Eqs. 1 and 2 into Eq. 4,

Ans.

Substituting this result into Eq. 3, we obtain .
Since the maximum static frictional force at B is

, block B will not
slip. Thus, the above assumption is correct. Notice that if the
inequality were not satisfied, we would have to assume slipping of
block B and then solve for P.

(FB)max = msNB = 0.3(88.29 N) =  26.5 N 7 FB

FB = 18.4 N

P = 31.8 N

 0.5774P = 0.3(P + 29.43)

FA = msNA = 0.3NA

NB = 88.29 NNB - 9(9.81) N = 0;+ c©Fy = 0;

FB = 0.5774P(0.5774P) - FB = 0;:+ ©Fx = 0;

FBC

NA = P +  29.43 N

NA - 1.155P cos 30°-3(9.81 N) = 0;+ c©Fy = 0;

FA = 0.5774PFA - 1.155P sin 30° = 0;:+ ©Fx = 0;

FAC

FBC = 0.5774P1.155P sin 30° - FBC = 0;:+ ©Fx = 0;

FAC = 1.155PFAC cos 30° - P = 0;+ c©Fy = 0;

FBC

FBFA
FAC

ms = 0.3

A

C
B

(a)

P

30�

C

y

x

(b)

P

FAC

FA

NA

FBC

3(9.81)N
FAC � 1.155 P

FBC � 0.5774 P

FB

NB

9(9.81)N

30�

30�

Fig. 8–11
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FUNDAMENTAL PROBLEMS

F8–4. If the coefficient of static friction at contact points A
and B is , determine the maximum force P that can
be applied without causing the 100-kg spool to move.

ms = 0.3

F8–3. Determine the maximum force P that can be applied
without causing the two 50-kg crates to move. The
coefficient of static friction between each crate and the
ground is ms = 0.25.

F8–2. Determine the minimum force P to prevent the 
30-kg rod AB from sliding. The contact surface at B is
smooth, whereas the coefficient of static friction between
the rod and the wall at A is ms = 0.2.

F8–1. If , determine the friction developed
between the 50-kg crate and the ground. The coefficient of
static friction between the crate and the ground is .ms = 0.3

P = 200 N

F8–5. Determine the minimum force P that can be applied
without causing movement of the 250-lb crate which has a
center of gravity at G.The coefficient of static friction at the
floor is .ms = 0.4

4
3

5
P

F8–1

3 m

A

BP

4 m

F8–2

BA

30�

P

F8–3

P

0.6 m
0.9 m

B

A

F8–4

1.5 ft 1.5 ft

2.5 ft

3.5 ft
4.5 ft

P

A

G

F8–5
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PROBLEMS

8–6. The 180-lb man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the coefficient of static friction between
the friction pad at A and ground if the inclination of the ladder
is and the wall at B is smooth.The center of gravity for
the man is at G. Neglect the weight of the ladder.
u = 60°

*8–4. If the coefficient of static friction at A is
and the collar at B is smooth so it only exerts a horizontal
force on the pipe, determine the minimum distance so
that the bracket can support the cylinder of any mass
without slipping. Neglect the mass of the bracket.

x

ms = 0.4

•8–5. The 180-lb man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the inclination of the ladder if the
coefficient of static friction between the friction pad A and the
ground is .Assume the wall at B is smooth.The center
of gravity for the man is at G. Neglect the weight of the ladder.

ms = 0.4

u

•8–1. Determine the minimum horizontal force P
required to hold the crate from sliding down the plane. The
crate has a mass of 50 kg and the coefficient of static friction
between the crate and the plane is .

8–2. Determine the minimum force P required to push
the crate up the plane.The crate has a mass of 50 kg and the
coefficient of static friction between the crate and the plane
is .

8–3. A horizontal force of is just sufficient to
hold the crate from sliding down the plane, and a horizontal
force of is required to just push the crate up the
plane. Determine the coefficient of static friction between
the plane and the crate, and find the mass of the crate.

P = 350 N

P = 100 N

ms = 0.25

ms = 0.25

8–7. The uniform thin pole has a weight of 30 lb and a
length of 26 ft. If it is placed against the smooth wall and on
the rough floor in the position , will it remain in
this position when it is released? The coefficient of static
friction is .

*8–8. The uniform pole has a weight of 30 lb and a length
of 26 ft. Determine the maximum distance d it can be placed
from the smooth wall and not slip. The coefficient of static
friction between the floor and the pole is .ms = 0.3

ms = 0.3

d = 10 ft

P

30�

Probs. 8–1/2/3

200 mm

x
100 mm

B

A

C

G

A

B

10 ft

3 ft

u

Probs. 8–5/6

A

d

B

26 ft

Probs. 8–7/8

Prob. 8–4
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A

B

8 ft

5 ft

5 ft

6 ft

P

Probs. 8–10/11

A

M

P

B
O 125 mm

700 mm

500 mm

300 mm

Probs. 8–12/13

A

B

0.6 m

0.3 m

60�

Prob. 8–14

A

B

u

Prob. 8–9

*8–12. The coefficients of static and kinetic friction
between the drum and brake bar are and ,
respectively. If and determine the
horizontal and vertical components of reaction at the pin O.
Neglect the weight and thickness of the brake.The drum has
a mass of 25 kg.

•8–13. The coefficient of static friction between the drum
and brake bar is . If the moment ,
determine the smallest force P that needs to be applied to
the brake bar in order to prevent the drum from rotating.
Also determine the corresponding horizontal and vertical
components of reaction at pin O. Neglect the weight and
thickness of the brake bar. The drum has a mass of 25 kg.

M = 35 N # mms = 0.4

P = 85 NM = 50 N # m
mk = 0.3ms = 0.4

8–10. The uniform 20-lb ladder rests on the rough floor
for which the coefficient of static friction is and
against the smooth wall at B. Determine the horizontal
force P the man must exert on the ladder in order to cause
it to move.

8–11. The uniform 20-lb ladder rests on the rough floor
for which the coefficient of static friction is and
against the smooth wall at B. Determine the horizontal
force P the man must exert on the ladder in order to cause
it to move.

ms = 0.4

ms = 0.8

•8–9. If the coefficient of static friction at all contacting
surfaces is , determine the inclination at which the
identical blocks, each of weight W, begin to slide.

ums

8–14. Determine the minimum coefficient of static
friction between the uniform 50-kg spool and the wall so
that the spool does not slip.
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0.1 m

G A

B

0.4 m

P

8–18. The tongs are used to lift the 150-kg crate, whose
center of mass is at G. Determine the least coefficient of
static friction at the pivot blocks so that the crate can be
lifted.

*8–16. The 80-lb boy stands on the beam and pulls on the
cord with a force large enough to just cause him to slip. If
the coefficient of static friction between his shoes and the
beam is , determine the reactions at A and B.
The beam is uniform and has a weight of 100 lb. Neglect the
size of the pulleys and the thickness of the beam.

•8–17. The 80-lb boy stands on the beam and pulls with a
force of 40 lb. If , determine the frictional force
between his shoes and the beam and the reactions at A and
B. The beam is uniform and has a weight of 100 lb. Neglect
the size of the pulleys and the thickness of the beam.

(ms)D = 0.4

(ms)D = 0.4

8–15. The spool has a mass of 200 kg and rests against the
wall and on the floor. If the coefficient of static friction at B
is , the coefficient of kinetic friction is

, and the wall is smooth, determine the friction
force developed at B when the vertical force applied to the
cable is .P = 800 N

(mk)B = 0.2
(ms)B = 0.3

D A

C

B

5 ft

60�

3 ft

12

13
5

4 ft
1 ft

Probs. 8–16/17

A

u

Bk � 2 lb/ft

275 mm

300 mm

30�

500 mm

500 mm

A

C D

F

H

E

B

P

G

Prob. 8–18

8–19. Two blocks A and B have a weight of 10 lb and 6 lb,
respectively. They are resting on the incline for which the
coefficients of static friction are and .
Determine the incline angle for which both blocks begin
to slide.Also find the required stretch or compression in the
connecting spring for this to occur.The spring has a stiffness
of .

*8–20. Two blocks A and B have a weight of 10 lb and 6 lb,
respectively. They are resting on the incline for which the
coefficients of static friction are and .
Determine the angle which will cause motion of one of
the blocks. What is the friction force under each of the
blocks when this occurs? The spring has a stiffness of

and is originally unstretched.k = 2 lb>ft

u

mB = 0.25mA = 0.15

k = 2 lb>ft

u

mB = 0.25mA = 0.15

Probs. 8–19/20

Prob. 8–15
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B

A C

D

u

Prob. 8–21

F � 120 NF � 120 N

Prob. 8–22

8–23. The paper towel dispenser carries two rolls of paper.
The one in use is called the stub roll A and the other is the
fresh roll B. They weigh 2 lb and 5 lb, respectively. If the
coefficients of static friction at the points of contact C and D
are and , determine the initial
vertical force P that must be applied to the paper on the stub
roll in order to pull down a sheet.The stub roll is pinned in the
center, whereas the fresh roll is not. Neglect friction at the pin.

(ms)D = 0.5(ms)C = 0.2

8–22. A man attempts to support a stack of books
horizontally by applying a compressive force of 
to the ends of the stack with his hands. If each book has a
mass of 0.95 kg, determine the greatest number of books
that can be supported in the stack. The coefficient of static
friction between the man’s hands and a book is 
and between any two books .(ms)b = 0.4

(ms)h = 0.6

F = 120 N

•8–21. Crates A and B weigh 200 lb and 150 lb,
respectively. They are connected together with a cable and
placed on the inclined plane. If the angle is gradually
increased, determine when the crates begin to slide. The
coefficients of static friction between the crates and the
plane are and .mB = 0.35mA = 0.25

u

u

*8–24. The drum has a weight of 100 lb and rests on the
floor for which the coefficient of static friction is . If

ft and ft, determine the smallest magnitude of
the force P that will cause impending motion of the drum.

•8–25. The drum has a weight of 100 lb and rests on the
floor for which the coefficient of static friction is . If

ft and ft, determine the smallest magnitude of
the force P that will cause impending motion of the drum.

b = 4a = 3
ms = 0.5

b = 3a = 2
ms = 0.6

P

60�

3 in.

4 in.

45�

A

B

C D

Prob. 8–23

b

a
P

3
4

5

Probs. 8–24/25
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•8–29. If the center of gravity of the stacked tables is at G,
and the stack weighs 100 lb, determine the smallest force P
the boy must push on the stack in order to cause movement.
The coefficient of static friction at A and B is . The
tables are locked together.

ms = 0.3

*8–28. Determine the minimum force P needed to push
the two 75-kg cylinders up the incline. The force acts
parallel to the plane and the coefficients of static friction of
the contacting surfaces are , , and

. Each cylinder has a radius of 150 mm.mC = 0.4
mB = 0.25mA = 0.3

8–26. The refrigerator has a weight of 180 lb and rests on a
tile floor for which . If the man pushes
horizontally on the refrigerator in the direction shown,
determine the smallest magnitude of horizontal force
needed to move it. Also, if the man has a weight of 150 lb,
determine the smallest coefficient of friction between his
shoes and the floor so that he does not slip.

8–27. The refrigerator has a weight of 180 lb and rests on a
tile floor for which . Also, the man has a weight of
150 lb and the coefficient of static friction between the floor
and his shoes is . If he pushes horizontally on the
refrigerator, determine if he can move it. If so, does the
refrigerator slip or tip?

ms = 0.6

ms = 0.25

ms = 0.25

8–30. The tractor has a weight of 8000 lb with center of
gravity at G. Determine if it can push the 550-lb log up the
incline.The coefficient of static friction between the log and
the ground is , and between the rear wheels of the
tractor and the ground . The front wheels are free
to roll. Assume the engine can develop enough torque to
cause the rear wheels to slip.

8–31. The tractor has a weight of 8000 lb with center of
gravity at G. Determine the greatest weight of the log that
can be pushed up the incline. The coefficient of static
friction between the log and the ground is , and
between the rear wheels of the tractor and the ground

. The front wheels are free to roll. Assume the
engine can develop enough torque to cause the rear wheels
to slip.

ms
œ = 0.7

ms = 0.5

mœ
s = 0.8

ms = 0.53 ft

3 ft

1.5 ft

G

A

4 ft

Probs. 8–26/27

P

A

B

C 30�

Prob. 8–28

G

A B

30�

3.5 ft
3 ft

2 ft

P

2 ft

Prob. 8–29

7 ft 3 ft

1.25 ft

2.5 ft
10�

A

B

G C

Probs. 8–30/31
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A

B

C

8 m

5 m
u

Prob. 8–32

L

A

B

u

Prob. 8–34

20 in.

3 in.3 in.

1 in.

A

C

P

30�

Prob. 8–33

8–34. The thin rod has a weight W and rests against the
floor and wall for which the coefficients of static friction are

and , respectively. Determine the smallest value of 
for which the rod will not move.

umBmA

•8–33. A force of is applied perpendicular to
the handle of the gooseneck wrecking bar as shown. If the
coefficient of static friction between the bar and the wood is

, determine the normal force of the tines at A on
the upper board. Assume the surface at C is smooth.
ms = 0.5

P = 20 lb

*8–32. The 50-kg uniform pole is on the verge of slipping
at A when . Determine the coefficient of static
friction at A.

u = 45°

•8–37. If the coefficient of static friction between the
chain and the inclined plane is , determine the
overhang length b so that the chain is on the verge of
slipping up the plane. The chain weighs w per unit length.

ms = tan u

30�

P

A

3 in.

O

u

Probs. 8–35/36

b

a

u

Prob. 8–37

8–35. A roll of paper has a uniform weight of 0.75 lb and
is suspended from the wire hanger so that it rests against
the wall. If the hanger has a negligible weight and the
bearing at O can be considered frictionless, determine the
force P needed to start turning the roll if . The
coefficient of static friction between the wall and the paper
is .

*8–36. A roll of paper has a uniform weight of 0.75 lb and
is suspended from the wire hanger so that it rests against
the wall. If the hanger has a negligible weight and the
bearing at O can be considered frictionless, determine the
minimum force P and the associated angle needed to start
turning the roll. The coefficient of static friction between
the wall and the paper is ms = 0.25.

u

ms = 0.25

u = 30°
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•8–41. The clamp is used to tighten the connection
between two concrete drain pipes. Determine the least
coefficient of static friction at A or B so that the clamp does
not slip regardless of the force in the shaft CD.

8–39. If the coefficient of static friction at B is ,
determine the largest angle and the minimum coefficient
of static friction at A so that the roller remains self-locking,
regardless of the magnitude of force P applied to the belt.
Neglect the weight of the roller and neglect friction
between the belt and the vertical surface.

*8–40. If , determine the minimum coefficient of
static friction at A and B so that the roller remains self-
locking, regardless of the magnitude of force P applied to
the belt. Neglect the weight of the roller and neglect friction
between the belt and the vertical surface.

u = 30°

u

ms = 0.3

8–38. Determine the maximum height h in meters to
which the girl can walk up the slide without supporting
herself by the rails or by her left leg.The coefficient of static
friction between the girl’s shoes and the slide is .ms = 0.8

8–42. The coefficient of static friction between the 150-kg
crate and the ground is , while the coefficient of
static friction between the 80-kg man’s shoes and the
ground is . Determine if the man can move the
crate.

8–43. If the coefficient of static friction between the crate
and the ground is , determine the minimum
coefficient of static friction between the man’s shoes and
the ground so that the man can move the crate.

ms = 0.3

ms
œ = 0.4

ms = 0.3

y

h

x

y � x21––
3

Prob. 8–38

P

A
B

30 mm

u

Probs. 8–39/40

B

C D

A

100 mm

250 mm

Prob. 8–41

30�

Probs. 8–42/43
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8–47. Block C has a mass of 50 kg and is confined between
two walls by smooth rollers. If the block rests on top of the
40-kg spool, determine the minimum cable force P needed
to move the spool. The cable is wrapped around the spool’s
inner core. The coefficients of static friction at A and B are

and .

*8–48. Block C has a mass of 50 kg and is confined
between two walls by smooth rollers. If the block rests on
top of the 40-kg spool, determine the required coefficients
of static friction at A and B so that the spool slips at A and
B when the magnitude of the applied force is increased to

.P = 300 N

mB = 0.6mA = 0.3

•8–45. The 45-kg disk rests on the surface for which the
coefficient of static friction is Determine the
largest couple moment M that can be applied to the bar
without causing motion.

8–46. The 45-kg disk rests on the surface for which the
coefficient of static friction is If
determine the friction force at A.

M = 50 N # m,mA = 0.15.

mA = 0.2.

*8–44. The 3-Mg rear-wheel-drive skid loader has a center
of mass at G. Determine the largest number of crates that
can be pushed by the loader if each crate has a mass of 
500 kg. The coefficient of static friction between a crate and
the ground is , and the coefficient of static friction
between the rear wheels of the loader and the ground is

. The front wheels are free to roll. Assume that the
engine of the loader is powerful enough to generate a
torque that will cause the rear wheels to slip.

ms
œ = 0.5

ms = 0.3

•8–49. The 3-Mg four-wheel-drive truck (SUV) has a
center of mass at G. Determine the maximum mass of the
log that can be towed by the truck. The coefficient of static
friction between the log and the ground is , and the
coefficient of static friction between the wheels of the truck
and the ground is . Assume that the engine of the
truck is powerful enough to generate a torque that will
cause all the wheels to slip.

8–50. A 3-Mg front-wheel-drive truck (SUV) has a center
of mass at G. Determine the maximum mass of the log that
can be towed by the truck. The coefficient of static friction
between the log and the ground is , and the
coefficient of static friction between the front wheels of the
truck and the ground is .The rear wheels are free to
roll. Assume that the engine of the truck is powerful enough
to generate a torque that will cause the front wheels to slip.

ms
œ = 0.4

ms = 0.8

ms
œ = 0.4

ms = 0.8

0.75 m
0.25 m

G

0.3 m
BA

Prob. 8–44

400 mm

125 mm

300 mm

B

A

C

M

Probs. 8–45/46

C
A

B

O

0.4 m

0.2 m
P

Probs. 8–47/48

1.2 m1.6 m0.5 m

G

AB

Probs. 8–49/50
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8–55. If the 75-lb girl is at position d = 4 ft, determine the
minimum coefficient of static friction at contact points A
and B so that the plank does not slip. Neglect the weight of
the plank.

*8–56. If the coefficient of static friction at the contact
points A and B is , determine the minimum distance
d where a 75-lb girl can stand on the plank without causing it
to slip. Neglect the weight of the plank.

ms = 0.4

ms

•8–53. The carpenter slowly pushes the uniform board
horizontally over the top of the saw horse. The board has a
uniform weight of and the saw horse has a weight of
15 lb and a center of gravity at G. Determine if the saw
horse will stay in position, slip, or tip if the board is pushed
forward when The coefficients of static friction
are shown in the figure.

8–54. The carpenter slowly pushes the uniform board
horizontally over the top of the saw horse. The board has a
uniform weight of and the saw horse has a weight of
15 lb and a center of gravity at G. Determine if the saw
horse will stay in position, slip, or tip if the board is pushed
forward when The coefficients of static friction
are shown in the figure.

d = 14 ft.

3 lb>ft,

d = 10 ft.

3 lb>ft,

8–51. If the coefficients of static friction at contact points
A and B are and respectively, determine
the smallest force P that will cause the 150-kg spool to have
impending motion.

*8–52. If the coefficients of static friction at contact points
A and B are and respectively, determine
the smallest force P that will cause the 150-kg spool to have
impending motion.

ms
œ = 0.2ms = 0.4

ms
œ = 0.4ms = 0.3

•8–57. If each box weighs 150 lb, determine the least
horizontal force P that the man must exert on the top box in
order to cause motion. The coefficient of static friction
between the boxes is , and the coefficient of static
friction between the box and the floor is .

8–58. If each box weighs 150 lb, determine the least
horizontal force P that the man must exert on the top box in
order to cause motion. The coefficient of static friction
between the boxes is , and the coefficient of static
friction between the box and the floor is .ms

œ = 0.35
ms = 0.65

ms
œ = 0.2

ms = 0.5

P

400 mm

200 mm

150 mm

B

A

Probs. 8–51/52

d

G

18 ft

1 ft1 ft

3 ft
m � 0.5

m¿ � 0.3 m¿ � 0.3

Probs. 8–53/54

A

G

d

B

12 ft

45�60�

Probs. 8–55/56

3 ft

4.5 ft

5 ft

P

4.5 ft

A B

Probs. 8–57/58
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8–62. Blocks A, B, and C have weights of 50 lb, 25 lb, and
15 lb, respectively. Determine the smallest horizontal force P
that will cause impending motion. The coefficient of static
friction between A and B is , between B and
C, , and between block C and the ground,

.m¿œs = 0.35
ms

œ = 0.4
ms = 0.3

•8–61. Each of the cylinders has a mass of 50 kg. If the
coefficients of static friction at the points of contact are

, , , and , determine the
smallest couple moment M needed to rotate cylinder E.

mD = 0.6mC = 0.5mB = 0.5mA = 0.5

8–59. If the coefficient of static friction between the collars
A and B and the rod is , determine the maximum
angle for the system to remain in equilibrium, regardless of
the weight of cylinder D. Links AC and BC have negligible
weight and are connected together at C by a pin.

*8–60. If , determine the minimum coefficient of
static friction between the collars A and B and the rod
required for the system to remain in equilibrium, regardless
of the weight of cylinder D. Links AC and BC have
negligible weight and are connected together at C by a pin.

u = 15°

u

ms = 0.6

8–63. Determine the smallest force P that will cause
impending motion. The crate and wheel have a mass of 
50 kg and 25 kg, respectively. The coefficient of static
friction between the crate and the ground is , and
between the wheel and the ground .

*8–64. Determine the smallest force P that will cause
impending motion. The crate and wheel have a mass of 
50 kg and 25 kg, respectively. The coefficient of static
friction between the crate and the ground is , and
between the wheel and the ground .ms

œ = 0.3
ms = 0.5

ms
œ = 0.5

ms = 0.2

D

C

A B

u u

15�15� 

Probs. 8–59/60

300 mm

A D

300 mm

EM

B C

Prob. 8–61

P

A

B

C

D

Prob. 8–62

300 mm

P

B

C A

Probs. 8–63/64
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CONCEPTUAL PROBLEMS

P8–3. The rope is used to tow the refrigerator. Is it best to
pull slightly up on the rope as shown, pull horizontally, or
pull somewhat downwards? Also, is it best to attach the
rope at a high position as shown, or at a lower position? Do
an equilibrium analysis to explain your answer.

P8–4. The rope is used to tow the refrigerator. In order to
prevent yourself from slipping while towing, is it best to pull
up as shown, pull horizontally, or pull downwards on the
rope? Do an equilibrium analysis to explain your answer.

P8–2. The lug nut on the free-turning wheel is to be
removed using the wrench. Which is the most effective way
to apply force to the wrench? Also, why is it best to keep the
car tire on the ground rather than first jacking it up?
Explain your answers with an equilibrium analysis.

P8–1. Is it more effective to move the load forward at
constant velocity with the boom fully extended as shown, or
should the boom be fully retracted? Power is supplied to
the rear wheels. The front wheels are free to roll. Do an
equilibrium analysis to explain your answer.

P8–5. Is it easier to tow the load by applying a force along
the tow bar when it is in an almost horizontal position as
shown, or is it better to pull on the bar when it has a steeper
slope? Do an equilibrium analysis to explain your answer.

P8–1

P8–2

P8–3/4

P8–5
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8.3 Wedges

A wedge is a simple machine that is often used to transform an applied
force into much larger forces, directed at approximately right angles to
the applied force. Wedges also can be used to slightly move or adjust
heavy loads.

Consider, for example, the wedge shown in Fig. 8–12a, which is used to
lift the block by applying a force to the wedge. Free-body diagrams of
the block and wedge are shown in Fig. 8–12b. Here we have excluded
the weight of the wedge since it is usually small compared to the weight

of the block. Also, note that the frictional forces and must
oppose the motion of the wedge. Likewise, the frictional force of the
wall on the block must act downward so as to oppose the block’s
upward motion. The locations of the resultant normal forces are not
important in the force analysis since neither the block nor wedge will
“tip.” Hence the moment equilibrium equations will not be considered.
There are seven unknowns, consisting of the applied force P, needed to
cause motion of the wedge, and six normal and frictional forces. The
seven available equations consist of four force equilibrium equations,

applied to the wedge and block, and three frictional
equations, , applied at the surface of contact.

If the block is to be lowered, then the frictional forces will all act in a
sense opposite to that shown in Fig. 8–12b. Provided the coefficient of
friction is very small or the wedge angle is large, then the applied force
P must act to the right to hold the block. Otherwise, P may have a
reverse sense of direction in order to pull on the wedge to remove it. If P
is not applied and friction forces hold the block in place, then the wedge
is referred to as self-locking.

u

F = mN
©Fy = 0©Fx = 0,

F3

F2F1W

(a)

Impending

motion

P

W

u

F3

N3

(b)

W

F2

N2

P

F2

N2

F1

N1

u

Fig. 8–12

Wedges are often used to adjust the
elevation of structural or mechanical
parts. Also, they provide stability for
objects such as this pipe.
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EXAMPLE 8.6

The uniform stone in Fig. 8–13a has a mass of 500 kg and is held in the
horizontal position using a wedge at B. If the coefficient of static
friction is at the surfaces of contact, determine the minimum
force P needed to remove the wedge. Assume that the stone does not
slip at A.

ms = 0.3

SOLUTION
The minimum force P requires at the surfaces of contact
with the wedge. The free-body diagrams of the stone and wedge are
shown in Fig. 8–13b. On the wedge the friction force opposes the
impending motion, and on the stone at A, since slipping
does not occur there. There are five unknowns. Three equilibrium
equations for the stone and two for the wedge are available for
solution. From the free-body diagram of the stone,

a

Using this result for the wedge, we have

Ans.

NOTE: Since P is positive, indeed the wedge must be pulled out. If P
were zero, the wedge would remain in place (self-locking) and the
frictional forces developed at B and C would satisfy and
FC 6 msNC.

FB 6 msNB

P = 1154.9 N = 1.15 kN

P - 0.3(2452.5 N) = 0

2383.1 sin 7° N - 0.312383.1 cos 7° N2 +:+ ©Fx = 0;

NC = 2452.5 N

NC - 2383.1 cos 7° N - 0.312383.1 sin 7° N2 = 0+ c©Fy = 0;

NB = 2383.1 N

+ 10.3NB sin 7° N211 m2 = 0

-4905 N10.5 m2 + 1NB cos 7° N211 m2+©MA = 0;

FA … msNA,

F = msN

(a)

P

7�

BA

C

1 m

FA

0.3 NB

P

7�

0.5 m

(b)

0.5 m

NBNA

7�

7� 7�

NC

NB

0.3 NB

0.3 NC

4905 N

A

Impending
motion

Fig. 8–13



r

l
A

B

2pr

r

A

B
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(b)

B

A
u

(a)

Fig. 8–14
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8.4 Frictional Forces on Screws

In most cases screws are used as fasteners; however, in many types of
machines they are incorporated to transmit power or motion from one
part of the machine to another.A square-threaded screw is commonly used
for the latter purpose, especially when large forces are applied along its
axis. In this section we will analyze the forces acting on square-threaded
screws.The analysis of other types of screws, such as the V-thread, is based
on these same principles.

For analysis, a square-threaded screw, as in Fig. 8–14, can be considered
a cylinder having an inclined square ridge or thread wrapped around it. If
we unwind the thread by one revolution, as shown in Fig. 8–14b, the slope
or the lead angle is determined from . Here l and
are the vertical and horizontal distances between A and B, where r is the
mean radius of the thread. The distance l is called the lead of the screw
and it is equivalent to the distance the screw advances when it turns one
revolution.

Upward Impending Motion. Let us now consider the case of a
square-threaded screw that is subjected to upward impending motion
caused by the applied torsional moment M, Fig. 8–15.* A free-body
diagram of the entire unraveled thread can be represented as a block as
shown in Fig. 8–14a. The force W is the vertical force acting on the
thread or the axial force applied to the shaft, Fig. 8–15, and is
the resultant horizontal force produced by the couple moment M about
the axis of the shaft. The reaction R of the groove on the thread, has
both frictional and normal components, where . The angle of
static friction is . Applying the force
equations of equilibrium along the horizontal and vertical axes, we have

R cos (fs + u) - W = 0+ c©Fy = 0;

M>r - R sin (fs + u) = 0:+ ©Fx = 0;

fs = tan-1(F>N) = tan-1ms

F = msN

M>r

2pru = tan-1(l>2pr)u

Eliminating R from these equations, we obtain

(8–3)M = rW tan (fs + u)

*For applications, M is developed by applying a horizontal force P at a right angle to the
end of a lever that would be fixed to the screw.

Square-threaded screws
find applications on valves,
jacks, and vises, where
particularly large forces
must be developed along
the axis of the screw.
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Self-Locking Screw. A screw is said to be self-locking if it remains
in place under any axial load W when the moment M is removed. For this
to occur, the direction of the frictional force must be reversed so that R
acts on the other side of N. Here the angle of static friction becomes
greater than or equal to , Fig. 8–16d. If , Fig. 8–16b, then R will act
vertically to balance W, and the screw will be on the verge of winding
downward.

Downward Impending Motion. . If a screw is self-
locking, a couple moment must be applied to the screw in the
opposite direction to wind the screw downward . This causes a
reverse horizontal force that pushes the thread down as indicated
in Fig. 8–16c. Using the same procedure as before, we obtain

(8–4)

Downward Impending Motion. . If the screw is not
self-locking, it is necessary to apply a moment to prevent the screw
from winding downward . Here, a horizontal force is
required to push against the thread to prevent it from sliding down the
plane, Fig. 8–16d. Thus, the magnitude of the moment required to
prevent this unwinding is

(8–5)

If motion of the screw occurs, Eqs. 8–3, 8–4, and 8–5 can be applied by
simply replacing with .fkfs

M– = Wr tan (fs - u)

M–

M–>r(fs 6 u )
M–

(fs 6 u )

M¿ = rW tan (u - fs)

M¿>r (fs 7 u)
M¿

(fs 7 u)

fs = uu

fs

W

h

r

M

Fig. 8–15

W

Downward screw motion (u � fs)

M¿/r

n

(c)

R
fs

u

u

W

Self-locking screw (u � fs)
(on the verge of rotating downward)

R

(b)

n

u

fs � u

W

Downward screw motion (u � fs)

(d)

M–/r

R

n

u

u

fs

Fig. 8–16

W

Upward screw motion

N

F

R

(a)

n

Mr

u

u

fs
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The turnbuckle shown in Fig. 8–17 has a square thread with a mean
radius of 5 mm and a lead of 2 mm. If the coefficient of static friction
between the screw and the turnbuckle is determine the
moment M that must be applied to draw the end screws closer
together.

ms = 0.25,

EXAMPLE 8.7

Fig. 8–17

M

2 kN

2 kN

SOLUTION
The moment can be obtained by applying Eq. 8–3. Since friction at
two screws must be overcome, this requires

(1)

Here
and Substituting
these values into Eq. 1 and solving gives

Ans.

NOTE: When the moment is removed, the turnbuckle will be self-
locking; i.e., it will not unscrew since fs 7 u.

= 6374.7 N # mm = 6.37 N # m
M = 2[12000 N215 mm2 tan114.04° + 3.64°2]

u = tan-11l>2pr2 = tan-112 mm>[2p15 mm2]2 = 3.64°.
= 14.04°,fs = tan-1 ms = tan-110.252r = 5 mm,W = 2000 N,

M = 2[Wr tan1u + f2]
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AP

B
B

15�

Prob. 8–65

P

10�

A

C

B

0.5 m

Prob. 8–67

P

A

B
15�

Prob. 8–66

PROBLEMS

*8–68. The wedge has a negligible weight and a coefficient
of static friction with all contacting surfaces.
Determine the largest angle so that it is “self-locking.”
This requires no slipping for any magnitude of the force P
applied to the joint.

u

ms = 0.35

8–67. Determine the smallest horizontal force P required
to lift the 100-kg cylinder. The coefficients of static friction
at the contact points A and B are and

, respectively; and the coefficient of static
friction between the wedge and the ground is .ms = 0.3
(ms)B = 0.2

(ms)A = 0.6

•8–65. Determine the smallest horizontal force P required
to pull out wedge A.The crate has a weight of 300 lb and the
coefficient of static friction at all contacting surfaces is

. Neglect the weight of the wedge.ms = 0.3

8–70. The three stone blocks have weights of
, and Determine

the smallest horizontal force P that must be applied to
block C in order to move this block.The coefficient of static
friction between the blocks is and between the
floor and each block ms

œ = 0.5.
ms = 0.3,

WC = 500 lb.WB = 150 lb,WA = 600 lb

––
2

––
2

P

uu

P

Prob. 8–68

•8–69. Determine the smallest horizontal force P
required to just move block A to the right if the spring force
is and the coefficient of static friction at all contacting
surfaces on A is .The sleeve at C is smooth. Neglect
the mass of A and B.

ms = 0.3
600 N

8–66. Determine the smallest horizontal force P required
to lift the 200-kg crate. The coefficient of static friction at
all contacting surfaces is . Neglect the mass of 
the wedge.

ms = 0.3

AP

B C

45�45�

Prob. 8–69

A B C
45�

P

Prob. 8–70
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P

300 mm

450 mm

20 mm

A

BC

F

u

Probs. 8–71/72

P

30�30�

15�

Probs. 8–73/74

8–75. If the uniform concrete block has a mass of 500 kg,
determine the smallest horizontal force P needed to move
the wedge to the left. The coefficient of static friction
between the wedge and the concrete and the wedge and the
floor is . The coefficient of static friction between
the concrete and floor is .ms

œ = 0.5
ms = 0.3

•8–73. Determine the smallest vertical force P required to
hold the wedge between the two identical cylinders, each
having a weight of W. The coefficient of static friction at all
contacting surfaces is .

8–74. Determine the smallest vertical force P required to
push the wedge between the two identical cylinders, each
having a weight of W. The coefficient of static friction at all
contacting surfaces is .ms = 0.3

ms = 0.1

8–71. Determine the smallest horizontal force P required
to move the wedge to the right. The coefficient of static
friction at all contacting surfaces is . Set 
and . Neglect the weight of the wedge.

*8–72. If the horizontal force P is removed, determine the
largest angle that will cause the wedge to be self-locking
regardless of the magnitude of force F applied to the
handle. The coefficient of static friction at all contacting
surfaces is .ms = 0.3

u

F = 400 N
u = 15°ms = 0.3

*8–76. The wedge blocks are used to hold the specimen
in a tension testing machine. Determine the largest design
angle of the wedges so that the specimen will not slip
regardless of the applied load. The coefficients of static
friction are at A and at B. Neglect the
weight of the blocks.

mB = 0.6mA = 0.1

u

A

3 m

P
150 mm

B

7.5�

Prob. 8–75

P

A B

u u

Prob. 8–76



1.5 N � m

�F

F

Prob. 8–77

8.4 FRICTIONAL FORCES ON SCREWS 419

8

8–79. The jacking mechanism consists of a link that has a
square-threaded screw with a mean diameter of 0.5 in. and a
lead of 0.20 in., and the coefficient of static friction is

. Determine the torque M that should be applied to
the screw to start lifting the 6000-lb load acting at the end of
member ABC.

ms = 0.4

8–78. The device is used to pull the battery cable terminal
C from the post of a battery. If the required pulling force is
85 lb, determine the torque M that must be applied to the
handle on the screw to tighten it. The screw has square
threads, a mean diameter of 0.2 in., a lead of 0.08 in., and the
coefficient of static friction is .ms = 0.5

•8–77. The square threaded screw of the clamp has a
mean diameter of 14 mm and a lead of 6 mm. If for
the threads, and the torque applied to the handle is

, determine the compressive force F on the block.1.5 N # m
ms = 0.2

*8–80. Determine the magnitude of the horizontal force P
that must be applied to the handle of the bench vise in order
to produce a clamping force of 600 N on the block. The
single square-threaded screw has a mean diameter of 
25 mm and a lead of 7.5 mm. The coefficient of static
friction is .

•8–81. Determine the clamping force exerted on the
block if a force of P = 30 N is applied to the lever of the
bench vise. The single square-threaded screw has a mean
diameter of 25 mm and a lead of 7.5 mm. The coefficient of
static friction is .ms = 0.25

ms = 0.25

C

A

B

M

Prob. 8–78

D

B

C

A

7.5 in.

10 in.

15 in.20 in. 10 in.

6000 lb

M

Prob. 8–79

100 mm

P

Probs. 8–80/81
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•8–85. If the jack supports the 200-kg crate, determine the
horizontal force that must be applied perpendicular to the
handle at E to lower the crate. Each single square-threaded
screw has a mean diameter of 25 mm and a lead of 7.5 mm.
The coefficient of static friction is .

8–86. If the jack is required to lift the 200-kg crate,
determine the horizontal force that must be applied
perpendicular to the handle at E. Each single square-
threaded screw has a mean diameter of 25 mm and a lead of
7.5 mm. The coefficient of static friction is .ms = 0.25

ms = 0.25

*8–84. The clamp provides pressure from several directions
on the edges of the board. If the square-threaded screw has a
lead of 3 mm, mean radius of 10 mm, and the coefficient of
static friction is determine the horizontal force
developed on the board at A and the vertical forces
developed at B and C if a torque of is applied
to the handle to tighten it further. The blocks at B and C are
pin connected to the board.

M = 1.5 N # m
ms = 0.4,

8–82. Determine the required horizontal force that must
be applied perpendicular to the handle in order to develop
a 900-N clamping force on the pipe. The single square-
threaded screw has a mean diameter of 25 mm and a lead of
5 mm.The coefficient of static friction is . Note: The
screw is a two-force member since it is contained within
pinned collars at A and B.

8–83. If the clamping force on the pipe is 900 N,
determine the horizontal force that must be applied
perpendicular to the handle in order to loosen the screw.
The single square-threaded screw has a mean diameter of
25 mm and a lead of 5 mm. The coefficient of static friction
is . Note: The screw is a two-force member since it
is contained within pinned collars at A and B.
ms = 0.4

ms = 0.4

8–87. The machine part is held in place using the
double-end clamp. The bolt at B has square threads with a
mean radius of 4 mm and a lead of 2 mm, and the
coefficient of static friction with the nut is If a
torque of is applied to the nut to tighten it,
determine the normal force of the clamp at the smooth
contacts A and C.

M = 0.4 N # m
ms = 0.5.

B

D

E

C

A

150 mm

200 mm

200 mm

Probs. 8–82/83

45�

A

B

C

D

45�

M

Prob. 8–84

C

A B

D

E

100 mm45�

45�

45�

45�

Probs. 8–85/86

260 mm

A C

B

90 mm

Prob. 8–87
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8.5 Frictional Forces on Flat Belts

Whenever belt drives or band brakes are designed, it is necessary to
determine the frictional forces developed between the belt and its
contacting surface. In this section we will analyze the frictional forces
acting on a flat belt, although the analysis of other types of belts, such as
the V-belt, is based on similar principles.

Consider the flat belt shown in Fig. 8–18a, which passes over a fixed
curved surface. The total angle of belt to surface contact in radians is ,
and the coefficient of friction between the two surfaces is We wish to
determine the tension in the belt, which is needed to pull the belt
counterclockwise over the surface, and thereby overcome both the
frictional forces at the surface of contact and the tension in the other
end of the belt. Obviously,

Frictional Analysis. A free-body diagram of the belt segment in
contact with the surface is shown in Fig. 8–18b.As shown, the normal and
frictional forces, acting at different points along the belt, will vary both in
magnitude and direction. Due to this unknown distribution, the analysis
of the problem will first require a study of the forces acting on a
differential element of the belt.

A free-body diagram of an element having a length ds is shown in
Fig. 8–18c. Assuming either impending motion or motion of the belt,
the magnitude of the frictional force This force opposes
the sliding motion of the belt, and so it will increase the magnitude 
of the tensile force acting in the belt by dT. Applying the two force
equations of equilibrium, we have

Since is of infinitesimal size, and .
Also, the product of the two infinitesimals dT and may be neglected
when compared to infinitesimals of the first order. As a result, these two
equations become

and

Eliminating dN yields

dT

T
= m du

dN = T du

m dN = dT

du>2 cos(du>2) = 1sin(du>2) = du>2du

dN - 1T + dT2 sinadu
2
b - T sinadu

2
b = 0+Q©Fy = 0;

T cosadu
2
b + m dN - 1T + dT2 cosadu

2
b = 0R+©Fx = 0;

dF = m dN.

T2 7 T1.
T1

T2

m.
b

Motion or impending
motion of belt relative
to surface

(a)

r

T2

T1

b

u

(b)

T1

T2 u

dF � mdN
ds

(c)

T � dT

T

y

dN

x

du
2

du
2

du
2

du
2

Fig. 8–18
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Integrating this equation between all the points of contact that the belt
makes with the drum, and noting that at and at

yields

Solving for we obtain

(8–6)

where

T2 = T1e
mb

T2,

 ln
T2

T1
= mb

L

T2

T1

dT

T
= m
L

b

0
du

u = b,
T = T2u = 0T = T1

Motion or impending
motion of belt relative 
to surface

	 r

T2

T1

u

Flat or V-belts are often used to transmit
the torque developed by a motor to a
wheel attached to a pump, fan or blower.

[[Tinfo
rmaltable0]] T1 =T2, belt tensions; opposes the direction of motion (or

impending motion) of the belt measured relative to the
surface, while acts in the direction of the relative belt
motion (or impending motion); because of friction,
T2 7 T1

T2

T1

m = coefficient of static or kinetic friction between the belt
and the surface of contact

b = angle of belt to surface contact, measured in radians
e = base of the natural logarithm2.718 Á ,

Note that is independent of the radius of the drum, and instead it is
a function of the angle of belt to surface contact, As a result, this
equation is valid for flat belts passing over any curved contacting surface.

b.
T2
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EXAMPLE 8.8

The maximum tension that can be developed in the cord shown in 
Fig.8–19a is 500 N. If the pulley at A is free to rotate and the coefficient
of static friction at the fixed drums B and C is determine the
largest mass of the cylinder that can be lifted by the cord.

ms = 0.25,

SOLUTION
Lifting the cylinder, which has a weight causes the cord to
move counterclockwise over the drums at B and C; hence, the
maximum tension in the cord occurs at D. Thus,
A section of the cord passing over the drum at B is shown in 
Fig. 8–19b. Since the angle of contact between the drum
and the cord is Using Eq. 8–6, we have

Hence,

Since the pulley at A is free to rotate, equilibrium requires that the
tension in the cord remains the same on both sides of the pulley.

The section of the cord passing over the drum at C is shown in 
Fig. 8–19c.The weight Why? Applying Eq. 8–6, we obtain

so that

Ans.= 15.7 kg

m =
W
g

=
153.9 N

9.81 m>s2

W = 153.9 N

 277.4 N = We0.25[13>42p]T2 = T1e
msb;

W 6 277.4 N.

T1 =
500 N

e0.25[13>42p]
=

500 N
1.80

= 277.4 N

500 N = T1e
0.25[13>42p]T2 = T1e

msb;

b = 1135°>180°2p = 3p>4 rad.
180° = p rad

F = T2 = 500 N.T2

W = mg,

T

A

(a)

CB
D

45� 45�

135�

Impending
motion

B

500 N
T1

(b)

W � mg

277.4 N

135�

Impending
motion

(c)

C

Fig. 8–19
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A

B

C
D

m � 0.5

mBA � 0.6

mAC � 0.4

20�

Probs. 8–88/89

*8–92. The boat has a weight of 500 lb and is held in
position off the side of a ship by the spars at A and B.A man
having a weight of 130 lb gets in the boat, wraps a rope
around an overhead boom at C, and ties it to the end of the
boat as shown. If the boat is disconnected from the spars,
determine the minimum number of half turns the rope must
make around the boom so that the boat can be safely
lowered into the water at constant velocity. Also, what is the
normal force between the boat and the man? The coefficient
of kinetic friction between the rope and the boom is

. Hint: The problem requires that the normal force
between the man’s feet and the boat be as small as possible.
ms = 0.15

8–90. A cylinder having a mass of 250 kg is to be
supported by the cord which wraps over the pipe.
Determine the smallest vertical force F needed to support
the load if the cord passes (a) once over the pipe, ,
and (b) two times over the pipe, . Take .ms = 0.2b = 540°

b = 180°

8–91. A cylinder having a mass of 250 kg is to be
supported by the cord which wraps over the pipe.
Determine the largest vertical force F that can be applied 
to the cord without moving the cylinder. The cord passes 
(a) once over the pipe, , and (b) two times over the
pipe, . Take .ms = 0.2b = 540°

b = 180°

*8–88. Blocks A and B weigh 50 lb and 30 lb, respectively.
Using the coefficients of static friction indicated, determine
the greatest weight of block D without causing motion.

•8–89. Blocks A and B weigh 75 lb each, and D weighs
30 lb. Using the coefficients of static friction indicated,
determine the frictional force between blocks A and B and
between block A and the floor C.

PROBLEMS

F

Prob. 8–90

A

C

B

Prob. 8–92
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8–98. If a force of is applied to the handle of
the bell crank, determine the maximum torque M that can
be resisted so that the flywheel is not on the verge of
rotating clockwise. The coefficient of static friction between
the brake band and the rim of the wheel is .ms = 0.3

P = 200 N

•8–97. Determine the smallest lever force P needed to
prevent the wheel from rotating if it is subjected to a torque
of The coefficient of static friction between
the belt and the wheel is The wheel is pin
connected at its center, B.

ms = 0.3.
M = 250 N # m.

8–95. A 10-kg cylinder D, which is attached to a small
pulley B, is placed on the cord as shown. Determine the
smallest angle so that the cord does not slip over the peg at
C. The cylinder at E has a mass of 10 kg, and the coefficient
of static friction between the cord and the peg is .

*8–96. A 10-kg cylinder D, which is attached to a small
pulley B, is placed on the cord as shown. Determine the
largest angle so that the cord does not slip over the peg at
C. The cylinder at E has a mass of 10 kg, and the coefficient
of static friction between the cord and the peg is .ms = 0.1

u

ms = 0.1

u

A

Probs. 8–93/94

A

B

D

E

Cu u

Probs. 8–95/96

400 mm

200 mm

750 mm

P

M
B

A

Prob. 8–97

P

900 mm

400 mm

100 mm

300 mm

M
O

A
B

C

Prob. 8–98

•8–93. The 100-lb boy at A is suspended from the cable
that passes over the quarter circular cliff rock. Determine if
it is possible for the 185-lb woman to hoist him up; and if
this is possible, what smallest force must she exert on the
horizontal cable? The coefficient of static friction between
the cable and the rock is , and between the shoes of
the woman and the ground .

8–94. The 100-lb boy at A is suspended from the cable
that passes over the quarter circular cliff rock. What
horizontal force must the woman at A exert on the cable in
order to let the boy descend at constant velocity? The
coefficients of static and kinetic friction between the cable
and the rock are and , respectively.mk = 0.35ms = 0.4

ms
œ = 0.8

ms = 0.2
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8–103. A 180-lb farmer tries to restrain the cow from
escaping by wrapping the rope two turns around the tree
trunk as shown. If the cow exerts a force of 250 lb on the
rope, determine if the farmer can successfully restrain the
cow. The coefficient of static friction between the rope and
the tree trunk is , and between the farmer’s shoes
and the ground .ms

œ = 0.3
ms = 0.15

8–102. The simple band brake is constructed so that the
ends of the friction strap are connected to the pin at A and
the lever arm at B. If the wheel is subjected to a torque of

determine the smallest force P applied to the
lever that is required to hold the wheel stationary. The
coefficient of static friction between the strap and wheel is
ms = 0.5.

M = 80 lb # ft,

*8–100. Determine the force developed in spring AB in
order to hold the wheel from rotating when it is subjected
to a couple moment of . The coefficient of
static friction between the belt and the rim of the wheel is

, and between the belt and peg C, . The
pulley at B is free to rotate.

•8–101. If the tension in the spring is ,
determine the largest couple moment that can be applied to
the wheel without causing it to rotate. The coefficient of
static friction between the belt and the wheel is ,
and between the belt the peg . The pulley B free to
rotate.

ms
œ = 0.4

ms = 0.2

FAB = 2.5 kN

ms
œ = 0.4ms = 0.2

M = 200 N # m

C

A

200 mm

B
M

45�

Probs. 8–100/101

1.5 ft 3 ft

45�

M � 80 lb � ft

20�

1.25 ft

A B

P

O

Prob. 8–102

Prob. 8–103

8–99. Show that the frictional relationship between the
belt tensions, the coefficient of friction , and the angular
contacts and for the V-belt is .T2 = T1e

mb>sin(a>2)ba

m

T2 T1

Impending
motion

b

a

Prob. 8–99
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*8–104. The uniform 50-lb beam is supported by the rope
which is attached to the end of the beam, wraps over the
rough peg, and is then connected to the 100-lb block. If 
the coefficient of static friction between the beam and the
block, and between the rope and the peg, is 
determine the maximum distance that the block can be
placed from A and still remain in equilibrium. Assume the
block will not tip.

ms = 0.4,

8–107. The drive pulley B in a video tape recorder is on
the verge of slipping when it is subjected to a torque of

. If the coefficient of static friction between
the tape and the drive wheel and between the tape and the
fixed shafts A and C is , determine the tensions 
and developed in the tape for equilibrium.T2

T1ms = 0.1

M = 0.005 N # m

•8–105. The 80-kg man tries to lower the 150-kg crate
using a rope that passes over the rough peg. Determine the
least number of full turns in addition to the basic wrap
(165°) around the peg to do the job. The coefficients of
static friction between the rope and the peg and between
the man’s shoes and the ground are and ,
respectively.

8–106. If the rope wraps three full turns plus the basic
wrap (165°) around the peg, determine if the 80-kg man can
keep the 300-kg crate from moving. The coefficients of
static friction between the rope and the peg and between
the man’s shoes and the ground are and ,
respectively.

ms
œ = 0.4ms = 0.1

ms
œ = 0.4ms = 0.1

*8–108. Determine the maximum number of 50-lb packages
that can be placed on the belt without causing the belt to
slip at the drive wheel A which is rotating with a constant
angular velocity. Wheel B is free to rotate. Also, find the
corresponding torsional moment M that must be supplied
to wheel A. The conveyor belt is pre-tensioned with the 
300-lb horizontal force. The coefficient of kinetic friction
between the belt and platform P is , and the
coefficient of static friction between the belt and the rim of
each wheel is .ms = 0.35

mk = 0.2

10 ft

1 ft

d

A

Prob. 8–104

T1

T2

A

C

B

M � 5 mN � m
10 mm

10 mm

10 mm

Prob. 8–107

P � 300 lb
A P B

M

0.5 ft 0.5 ft

Prob. 8–108

15�

Probs. 8–105/106
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8–111. Block A has a weight of 100 lb and rests on a
surface for which . If the coefficient of static
friction between the cord and the fixed peg at C is ,
determine the greatest weight of the suspended cylinder B
without causing motion.

ms = 0.3
ms = 0.25

8–110. Blocks A and B have a mass of 100 kg and 150 kg,
respectively. If the coefficient of static friction between A
and B and between B and C is and between the
ropes and the pegs D and E , determine the
smallest force F needed to cause motion of block B if
P = 30 N.

ms
œ = 0.5

ms = 0.25,

•8–109. Blocks A and B have a mass of 7 kg and 10 kg,
respectively. Using the coefficients of static friction
indicated, determine the largest vertical force P which can
be applied to the cord without causing motion.

*8–112. Block A has a mass of 50 kg and rests on surface
B for which . If the coefficient of static friction
between the cord and the fixed peg at C is ,
determine the greatest mass of the suspended cylinder D
without causing motion.

•8–113. Block A has a mass of 50 kg and rests on surface
B for which . If the mass of the suspended cylinder
D is 4 kg, determine the frictional force acting on A and
check if motion occurs. The coefficient of static friction
between the cord and the fixed peg at C is .ms

œ = 0.3

ms = 0.25

ms
œ = 0.3

ms = 0.25

P

300 mm

400 mm

A
C

D

B

mD � 0.1

mC � 0.4

mB � 0.4

mA � 0.3

Prob. 8–109

B

4 ft

2 ft

C

30�
A

Prob. 8–111

C

D

A
0.3 m

0.25 m

3
4

5

0.4 m

B

Probs. 8–112/113

P

F

D
A

B

E

C

45�

Prob. 8–110
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*8.6 Frictional Forces on Collar Bearings,
Pivot Bearings, and Disks

Pivot and collar bearings are commonly used in machines to support an
axial load on a rotating shaft. Typical examples are shown in Fig. 8–20.
Provided these bearings are not lubricated, or are only partially lubricated,
the laws of dry friction may be applied to determine the moment needed
to turn the shaft when it supports an axial force.

R

Pivot bearing

(a)

M

P

Collar bearing

(b)

R1

R2

M

P

Fig. 8–20

Frictional Analysis. The collar bearing on the shaft shown in
Fig. 8–21 is subjected to an axial force P and has a total bearing or contact
area Provided the bearing is new and evenly supported,
then the normal pressure p on the bearing will be uniformly distributed
over this area. Since then p, measured as a force per unit area,
is .

The moment needed to cause impending rotation of the shaft can be
determined from moment equilibrium about the z axis. A differential
area element shown in Fig. 8–21, is subjected to both a
normal force and an associated frictional force,

dF = ms dN = msp dA =
msP

p1R2
2 - R1

22 dA
dN = p dA
dA = 1r du21dr2,

p = P>p1R2
2 - R1

22
©Fz = 0,

p1R2
2 - R1

22.

z

r
R1R2

dF

dN
dAp

M

P

u

Fig. 8–21
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The normal force does not create a moment about the z axis of the
shaft; however, the frictional force does; namely, Integration
is needed to compute the applied moment M needed to overcome all the
frictional forces. Therefore, for impending rotational motion,

Substituting for dF and dA and integrating over the entire bearing area
yields

or

(8–7)

The moment developed at the end of the shaft, when it is rotating at
constant speed, can be found by substituting for in Eq. 8–7.

In the case of a pivot bearing, Fig. 8–20a, then and and
Eq. 8–7 reduces to

(8–8)

Remember that Eqs. 8–7 and 8–8 apply only for bearing surfaces
subjected to constant pressure. If the pressure is not uniform, a variation
of the pressure as a function of the bearing area must be determined
before integrating to obtain the moment. The following example
illustrates this concept.

M =
2
3
msPR

R1 = 0,R2 = R
msmk

M =
2
3
msPaR2

3 - R1
3

R2
2 - R1

2 b

=
msP

p1R2
2 - R1

22 L
R2

R1

r2 dr
L

2p

0
duM=

L

R2

R1 L

2p

0
r c msP

p1R2
2 - R1

22 d1r du dr2

M -
LA
r dF = 0©Mz = 0;

dM = r dF.

The motor that turns the disk of this
sanding machine develops a torque that
must overcome the frictional forces
acting on the disk.

z

p

M
R1

R2

P

Fig. 8–21 (Repeated)



EXAMPLE 8.9

The uniform bar shown in Fig. 8–22a has a weight of 4 lb. If it is
assumed that the normal pressure acting at the contacting surface
varies linearly along the length of the bar as shown, determine the
couple moment M required to rotate the bar. Assume that the bar’s
width is negligible in comparison to its length. The coefficient of static
friction is equal to .

SOLUTION
A free-body diagram of the bar is shown in Fig. 8–22b. The intensity

of the distributed load at the center is determined from
vertical force equilibrium, Fig. 8–22a.

Since at the distributed load expressed as a function
of x is

The magnitude of the normal force acting on a differential segment of
area having a length dx is therefore

The magnitude of the frictional force acting on the same element of
area is

Hence, the moment created by this force about the z axis is

The summation of moments about the z axis of the bar is determined
by integration, which yields

Ans.M = 0.8 lb # ft
M = 0.6ax2 -

x3

3
b `

0

2

M - 2
L

2

0
(0.3)(2x - x2) dx = 0©Mz = 0;

dM = x dF = 0.3(2x - x2)dx

dF = ms dN = 0.3(2 - x)dx

dN = w dx = (2 - x)dx

w = (2 lb>ft)a1 -
x

2 ft
b = 2 - x

x = 2 ft,w = 0

-4 lb + 2 c1
2
a2 ftbw0 d = 0 w0 = 2 lb>ft+ c©Fz = 0;

1x = 02w0

ms = 0.3
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2  f t

2  f t

z

M

w0 y

(a)

w � w(x)ax

4  lb

z

(b)

y

x


x

dF

dx
dN

dN
dx

dF

M

x

4  lb

Fig. 8–22
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8.7 Frictional Forces on Journal Bearings

When a shaft or axle is subjected to lateral loads, a journal bearing is
commonly used for support. Provided the bearing is not lubricated, or is
only partially lubricated, a reasonable analysis of the frictional resistance
on the bearing can be based on the laws of dry friction.

Frictional Analysis. A typical journal-bearing support is shown in
Fig. 8–23a.As the shaft rotates, the contact point moves up the wall of the
bearing to some point A where slipping occurs. If the vertical load acting
at the end of the shaft is P, then the bearing reactive force R acting at A
will be equal and opposite to P, Fig. 8–23b. The moment needed to
maintain constant rotation of the shaft can be found by summing
moments about the z axis of the shaft; i.e.,

or

(8–9)

where is the angle of kinetic friction defined by 
In Fig. 8–23c, it is seen that The

dashed circle with radius is called the friction circle, and as the shaft
rotates, the reaction R will always be tangent to it. If the bearing is partially
lubricated, is small, and therefore . Under these
conditions, a reasonable approximation to the moment needed to
overcome the frictional resistance becomes

(8–10)

In practice, this type of journal bearing is not suitable for long service
since friction between the shaft and bearing will wear down the surfaces.
Instead, designers will incorporate “ball bearings” or “rollers” in journal
bearings to minimize frictional losses.

M L Rrmk

sin fk L tan fk L mkmk

rf

r sin fk = rf.F>N = mkN>N = mk.
tan fk =fk

M = Rr sin fk

M - 1R sin fk2r = 0©Mz = 0;Unwinding the cable from this spool
requires overcoming friction from the
supporting shaft.

A

z
Rotation

(a)

Fig. 8–23

M

P

r
A fk

fk N

R

F

(b)

M

P

r

R

(c)

rf

fk



EXAMPLE 8.10

The 100-mm-diameter pulley shown in Fig. 8–24a fits loosely on a 
10-mm-diameter shaft for which the coefficient of static friction is

Determine the minimum tension T in the belt needed to 
(a) raise the 100-kg block and (b) lower the block. Assume that no
slipping occurs between the belt and pulley and neglect the weight of
the pulley.

ms = 0.4.
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SOLUTION
Part (a). A free-body diagram of the pulley is shown in Fig. 8–24b.
When the pulley is subjected to belt tensions of 981 N each, it makes
contact with the shaft at point As the tension T is increased, the
contact point will move around the shaft to point before motion
impends. From the figure, the friction circle has a radius

Using the simplification that then
so that summing moments about

gives

a
Ans.

If a more exact analysis is used, then Thus, the
radius of the friction circle would be 

Therefore,

a

Ans.

Part (b). When the block is lowered, the resultant force R acting
on the shaft passes through point as shown in Fig. 8–24c. Summing
moments about this point yields

a  981 N148 mm2 - T152 mm2 = 0+©MP3
= 0;

T = 1057 N = 1.06 kN

981 N150 mm + 1.86 mm2 - T150 mm - 1.86 mm2 = 0

+©MP2
= 0;

1.86 mm.
rf = r sin fs = 5 sin 21.8° =

fs = tan-1 0.4 = 21.8°.

T = 1063 N = 1.06 kN
981 N152 mm2 - T148 mm2 = 0+©MP2

= 0;

P2

15 mm210.42 = 2 mm,rf L rms =
sin fs L tan fs L msrf = r sin fs.

P2

P1.

50 mm

r � 5 mm

100 kg T (a)

Impending
motion

52 mm 48 mm

981 N
R

T

P1 P2

rf

(b)

fs

52 mm48 mm

981 N
R

T

P3

rf

fs

(c)

Impending
motion

Fig. 8–24

Ans.

NOTE: The difference between raising and lowering the block is
thus 157 N.

T = 906 N
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*8.8 Rolling Resistance

When a rigid cylinder rolls at constant velocity along a rigid surface, the
normal force exerted by the surface on the cylinder acts perpendicular to
the tangent at the point of contact, as shown in Fig. 8–25a. Actually,
however, no materials are perfectly rigid, and therefore the reaction of the
surface on the cylinder consists of a distribution of normal pressure. For
example, consider the cylinder to be made of a very hard material, and the
surface on which it rolls to be relatively soft. Due to its weight, the cylinder
compresses the surface underneath it, Fig. 8–25b.As the cylinder rolls, the
surface material in front of the cylinder retards the motion since it is being
deformed, whereas the material in the rear is restored from the deformed
state and therefore tends to push the cylinder forward. The normal
pressures acting on the cylinder in this manner are represented in Fig. 8–25b
by their resultant forces and Because the magnitude of the force of
deformation, and its horizontal component is always greater than that
of restoration, and consequently a horizontal driving force P must be
applied to the cylinder to maintain the motion. Fig. 8–25b.*

Rolling resistance is caused primarily by this effect, although it is also,
to a lesser degree, the result of surface adhesion and relative micro-
sliding between the surfaces of contact. Because the actual force P
needed to overcome these effects is difficult to determine, a simplified
method will be developed here to explain one way engineers have
analyzed this phenomenon. To do this, we will consider the resultant of
the entire normal pressure, acting on the cylinder,
Fig. 8–25c. As shown in Fig. 8–25d, this force acts at an angle with the
vertical. To keep the cylinder in equilibrium, i.e., rolling at a constant
rate, it is necessary that N be concurrent with the driving force P and the
weight W. Summing moments about point A gives
Since the deformations are generally very small in relation to the
cylinder’s radius, hence,

or

(8–11)

The distance a is termed the coefficient of rolling resistance, which
has the dimension of length. For instance, for a wheel
rolling on a rail, both of which are made of mild steel. For hardened

a L 0.5 mm

P L
Wa
r

Wa L Pr
cos u L 1;

Wa = P1r cos u2.

u

N = Nd + Nr,

Nr,
Nd,

Nr.Nd

*Actually, the deformation force causes energy to be stored in the material as its
magnitude is increased, whereas the restoration force as its magnitude is decreased,
allows some of this energy to be released. The remaining energy is lost since it is used to
heat up the surface, and if the cylinder’s weight is very large, it accounts for permanent
deformation of the surface. Work must be done by the horizontal force P to make up for
this loss.

Nr,
Nd

(a)

r

W

O

N

Rigid surface of contact

Nd

(b)

W

Soft surface of contact

P

Nr

N
Nd

Nr

(c)

(d)

r

W

P

A

a
u

N

Fig. 8–25
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steel ball bearings on steel, Experimentally, though, this
factor is difficult to measure, since it depends on such parameters as
the rate of rotation of the cylinder, the elastic properties of the
contacting surfaces, and the surface finish. For this reason, little
reliance is placed on the data for determining a. The analysis presented
here does, however, indicate why a heavy load (W) offers greater
resistance to motion (P) than a light load under the same conditions.
Furthermore, since is generally very small compared to the
force needed to roll a cylinder over the surface will be much less than
that needed to slide it across the surface. It is for this reason that a
roller or ball bearings are often used to minimize the frictional
resistance between moving parts.

mkW,Wa>r

a L 0.1 mm.

EXAMPLE 8.11

A 10-kg steel wheel shown in Fig. 8–26a has a radius of 100 mm and
rests on an inclined plane made of soft wood. If is increased so that
the wheel begins to roll down the incline with constant velocity when

determine the coefficient of rolling resistance.u = 1.2°,

u

SOLUTION
As shown on the free-body diagram, Fig. 8–26b, when the wheel has
impending motion, the normal reaction N acts at point A defined by the
dimension a. Resolving the weight into components parallel and
perpendicular to the incline, and summing moments about point A, yields

a

Solving, we obtain

Ans.a = 2.09 mm

- 198.1 cos 1.2° N)1a2 + (98.1 sin 1.2° N)1100 cos 1.2° mm2 = 0

+©MA = 0;

(b)

1.2�

98.1 N

98.1 cos 1.2� N

98.1 sin 1.2� N

100 mm

1.2�

O

N

A
a

(a)

100 mm

u

Fig. 8–26

Rolling resistance of railroad wheels on the
rails is small since steel is very stiff. By
comparison, the rolling resistance of the
wheels of a tractor in a wet field is very large.
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3 in. 2 in. P

M

Probs. 8–114/115

6 in.

2 in.

M

Prob. 8–116

•8–117. The disk clutch is used in standard transmissions
of automobiles. If four springs are used to force the two
plates A and B together, determine the force in each spring
required to transmit a moment of across the
plates. The coefficient of static friction between A and B is

.ms = 0.3

M = 600 lb # ft

*8–116. If the spring exerts a force of 900 lb on the block,
determine the torque M required to rotate the shaft. The
coefficient of static friction at all contacting surfaces is

.ms = 0.3

8–114. The collar bearing uniformly supports an axial
force of If the coefficient of static friction is

determine the torque M required to overcome
friction.

8–115. The collar bearing uniformly supports an axial
force of If a torque of is applied to
the shaft and causes it to rotate at constant velocity,
determine the coefficient of kinetic friction at the surface of
contact.

M = 3 lb # ftP = 500 lb.

ms = 0.3,
P = 800 lb.

8–118. If is applied to the handle of the bell
crank, determine the maximum torque M the cone clutch
can transmit. The coefficient of static friction at the
contacting surface is .ms = 0.3

P = 900 N

PROBLEMS

Fs

M
5 in.

B

2 in.

A

M

Fs

Fs

Prob. 8–117

375 mm

200 mm

300 mm
250 mm

P

M

AB

C

15�

Prob. 8–118
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•8–121. The shaft is subjected to an axial force P. If the
reactive pressure on the conical bearing is uniform,
determine the torque M that is just sufficient to rotate the
shaft. The coefficient of static friction at the contacting
surface is .ms

*8–120. The pivot bearing is subjected to a parabolic
pressure distribution at its surface of contact. If the
coefficient of static friction is , determine the torque M
required to overcome friction and turn the shaft if it
supports an axial force P.

ms

8–119. Because of wearing at the edges, the pivot bearing
is subjected to a conical pressure distribution at its surface
of contact. Determine the torque M required to overcome
friction and turn the shaft, which supports an axial force P.
The coefficient of static friction is . For the solution, it is
necessary to determine the peak pressure in terms of P
and the bearing radius R.

p0

ms

8–122. The tractor is used to push the 1500-lb pipe. To do
this it must overcome the frictional forces at the ground,
caused by sand.Assuming that the sand exerts a pressure on
the bottom of the pipe as shown, and the coefficient of static
friction between the pipe and the sand is 
determine the horizontal force required to push the pipe
forward. Also, determine the peak pressure p0.

ms = 0.3,

P

M

R

p0

Prob. 8–119

P

p0
p � p0 (1
     )r2

––
R2

R

r

M

Prob. 8–120

P

M

d1

d2

uu

Prob. 8–121

15 in.

12 ft

p � p0 cos up0

u

Prob. 8–122
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P

M

R

u

Prob. 8–123

P

M

R2
R1

p0

p � p0
R2
r

r

Prob. 8–124

r

P

M

Prob. 8–125

75 mm

P

z 60�

Probs. 8–126/127

•8–125. The shaft of radius r fits loosely on the journal
bearing. If the shaft transmits a vertical force P to the
bearing and the coefficient of kinetic friction between the
shaft and the bearing is , determine the torque M
required to turn the shaft with constant velocity.

mk

*8–124. Assuming that the variation of pressure at the
bottom of the pivot bearing is defined as ,
determine the torque M needed to overcome friction if the
shaft is subjected to an axial force P.The coefficient of static
friction is . For the solution, it is necessary to determine

in terms of P and the bearing dimensions and .R2R1p0

ms

p = p01R2>r2

8–123. The conical bearing is subjected to a constant
pressure distribution at its surface of contact. If the
coefficient of static friction is determine the torque M
required to overcome friction if the shaft supports an axial
force P.

ms,

8–126. The pulley is supported by a 25-mm-diameter pin.
If the pulley fits loosely on the pin, determine the smallest
force P required to raise the bucket. The bucket has a mass
of 20 kg and the coefficient of static friction between the
pulley and the pin is . Neglect the mass of the
pulley and assume that the cable does not slip on the pulley.

8–127. The pulley is supported by a 25-mm-diameter pin.
If the pulley fits loosely on the pin, determine the largest
force P that can be applied to the rope and yet lower the
bucket. The bucket has a mass of 20 kg and the coefficient
of static friction between the pulley and the pin is .
Neglect the mass of the pulley and assume that the cable
does not slip on the pulley.

ms = 0.3

ms = 0.3
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A
B

800 mm 600 mm

Probs. 8–128/129

A

B

Probs. 8–130/131

P

10 in.

12 in.50 lb

45�

120 mm

P

Probs. 8–134/135

*8–132. The 5-kg pulley has a diameter of 240 mm and the
axle has a diameter of 40 mm. If the coefficient of kinetic
friction between the axle and the pulley is 
determine the vertical force P on the rope required to lift
the 80-kg block at constant velocity.

•8–133. Solve Prob. 8–132 if the force P is applied
horizontally to the right.

mk = 0.15,

8–130. The connecting rod is attached to the piston by 
a 0.75-in.-diameter pin at B and to the crank shaft by a 
2-in.-diameter bearing A. If the piston is moving
downwards, and the coefficient of static friction at the
contact points is , determine the radius of the
friction circle at each connection.

8–131. The connecting rod is attached to the piston by a
20-mm-diameter pin at B and to the crank shaft by a 
50-mm-diameter bearing A. If the piston is moving
upwards, and the coefficient of static friction at the contact
points is , determine the radius of the friction circle
at each connection.

ms = 0.3

ms = 0.2

*8–128. The cylinders are suspended from the end of the
bar which fits loosely into a 40-mm-diameter pin. If A has a
mass of 10 kg, determine the required mass of B which is
just sufficient to keep the bar from rotating clockwise. The
coefficient of static friction between the bar and the pin is

. Neglect the mass of the bar.

•8–129. The cylinders are suspended from the end of the
bar which fits loosely into a 40-mm-diameter pin. If A has a
mass of 10 kg, determine the required mass of B which is just
sufficient to keep the bar from rotating counterclockwise.
The coefficient of static friction between the bar and the pin
is . Neglect the mass of the bar.ms = 0.3

ms = 0.3

8–134. The bell crank fits loosely into a 0.5-in-diameter
pin. Determine the required force P which is just sufficient
to rotate the bell crank clockwise. The coefficient of static
friction between the pin and the bell crank is .

8–135. The bell crank fits loosely into a 0.5-in-diameter
pin. If P = 41 lb, the bell crank is then on the verge of
rotating counterclockwise. Determine the coefficient of
static friction between the pin and the bell crank.

ms = 0.3

Probs. 8–132/133
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P

250 mm

B

A
30�

Prob. 8–137

300 mm

P

30�

30�

Probs. 8–138/139

P

Prob. 8–141

W

P

r

A

B

Prob. 8–140

1.25 ft

P

1.25 ft

Prob. 8–142

Prob. 8–136

•8–141. The 1.2-Mg steel beam is moved over a level
surface using a series of 30-mm-diameter rollers for which
the coefficient of rolling resistance is 0.4 mm at the ground
and 0.2 mm at the bottom surface of the beam. Determine
the horizontal force P needed to push the beam forward at
a constant speed. Hint: Use the result of Prob. 8–140.

•8–137. The lawn roller has a mass of 80 kg. If the arm BA
is held at an angle of 30° from the horizontal and the
coefficient of rolling resistance for the roller is 25 mm,
determine the force P needed to push the roller at constant
speed. Neglect friction developed at the axle, A, and assume
that the resultant force P acting on the handle is applied
along arm BA.

8–138. Determine the force P required to overcome
rolling resistance and pull the 50-kg roller up the inclined
plane with constant velocity. The coefficient of rolling
resistance is .

8–139. Determine the force P required to overcome
rolling resistance and support the 50-kg roller if it rolls
down the inclined plane with constant velocity. The
coefficient of rolling resistance is .a = 15 mm

a = 15 mm

*8–136. The wagon together with the load weighs 150 lb.
If the coefficient of rolling resistance is a = 0.03 in.,
determine the force P required to pull the wagon with
constant velocity.

*8–140. The cylinder is subjected to a load that has a
weight W. If the coefficients of rolling resistance for the
cylinder’s top and bottom surfaces are and ,
respectively, show that a horizontal force having a
magnitude of is required to move the
load and thereby roll the cylinder forward. Neglect the
weight of the cylinder.

P = [W(aA + aB)]>2r
aBaA

8–142. Determine the smallest horizontal force P that
must be exerted on the 200-lb block to move it forward.The
rollers each weigh 50 lb, and the coefficient of rolling
resistance at the top and bottom surfaces is .a = 0.2 in
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P

W

Rough surface

W

N

F

P

W

N

N

Fs � ms N

Fk � mk N

Motion

motion

Impending

P

P

W

P

W

N
F

Impending slipping
F � msN

P

W

N

F

Tipping

Dry Friction

Frictional forces exist between two
rough surfaces of contact. These forces
act on a body so as to oppose its motion
or tendency of motion.

A static frictional force approaches a
maximum value of where 
is the coefficient of static friction. In this
case, motion between the contacting
surfaces is impending.

If slipping occurs, then the friction force
remains essentially constant and equal
to Here is the coefficient
of kinetic friction.

The solution of a problem involving
friction requires first drawing the free-
body diagram of the body. If the
unknowns cannot be determined strictly
from the equations of equilibrium, and
the possibility of slipping occurs, then
the friction equation should be applied
at the appropriate points of contact in
order to complete the solution.

It may also be possible for slender
objects, like crates, to tip over, and this
situation should also be investigated.

mkFk = mkN.

msFs = msN,

CHAPTER REVIEW
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Impending
 motion

P

W

u

F3

N3

W

F2

N2

P

F2

N2

F1 N1

u

W

r

M

Motion or impending
motion of belt relative 
to surface

	 r

T2

T1

u

Wedges

Wedges are inclined planes used to
increase the application of a force. The
two force equilibrium equations are
used to relate the forces acting on 
the wedge.

An applied force P must push on the
wedge to move it to the right.

If the coefficients of friction between
the surfaces are large enough, then P
can be removed, and the wedge will be
self-locking and remain in place.

Screws

Square-threaded screws are used to
move heavy loads. They represent an
inclined plane, wrapped around a
cylinder.

The moment needed to turn a screw
depends upon the coefficient of friction
and the screw’s lead angle 

If the coefficient of friction between the
surfaces is large enough, then the screw
will support the load without tending to
turn, i.e., it will be self-locking.

u.

Flat Belts

The force needed to move a flat belt
over a rough curved surface depends
only on the angle of belt contact, and
the coefficient of friction.

b,

Upward Impending Screw Motion

Downward Impending Screw
Motion

Downward Screw Motion

fs 7 u

M– = Wr tan1f - us2
u 7 f

M¿ = Wr tan1u - fs2

M = Wr tan1u + fs2

T2 7 T1

T2 = T1e
mb

©Fy = 0

©Fx = 0
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z

p

M
R1

R2

P

A

zRotation

M

P

r
fk

NF

A

r

W

P

a

N

Collar Bearings and Disks

The frictional analysis of a collar
bearing or disk requires looking at a
differential element of the contact area.
The normal force acting on this element
is determined from force equilibrium
along the shaft, and the moment needed
to turn the shaft at a constant rate is
determined from moment equilibrium
about the shaft’s axis.

If the pressure on the surface of a collar
bearing is uniform, then integration
gives the result shown.

Journal Bearings

When a moment is applied to a shaft in
a nonlubricated or partially lubricated
journal bearing, the shaft will tend to
roll up the side of the bearing until
slipping occurs. This defines the radius
of a friction circle, and from it the
moment needed to turn the shaft can be
determined.

Rolling Resistance

The resistance of a wheel to rolling over
a surface is caused by localized
deformation of the two materials in
contact.This causes the resultant normal
force acting on the rolling body to be
inclined so that it provides a component
that acts in the opposite direction of the
applied force P causing the motion. This
effect is characterized using the
coefficient of rolling resistance, a, which
is determined from experiment.

M = Rr sin fk

P L
Wa
r

M =
2
3
msPaR2

3 - R1
3

R2
2 - R1

2 b
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P

s

B

Drawer

1.25 m

0.3 mChest

A

Prob. 8–143

P

R
A

B

G

2R––

u

p

Prob. 8–144

1.5 m 1 m

G

A B
600 mm

800 mm

Probs. 8–145/146

45�
60�

A
B

Prob. 8–147

•8–145. The truck has a mass of 1.25 Mg and a center of
mass at G. Determine the greatest load it can pull if (a) the
truck has rear-wheel drive while the front wheels are free to
roll, and (b) the truck has four-wheel drive.The coefficient of
static friction between the wheels and the ground is ,
and between the crate and the ground, it is .

8–146. Solve Prob. 8–145 if the truck and crate are
traveling up a 10° incline.

ms
œ = 0.4

ms = 0.5

*8–144. The semicircular thin hoop of weight W and
center of gravity at G is suspended by the small peg at A. A
horizontal force P is slowly applied at B. If the hoop begins
to slip at A when , determine the coefficient of static
friction between the hoop and the peg.

u = 30°

8–143. A single force P is applied to the handle of the
drawer. If friction is neglected at the bottom and the
coefficient of static friction along the sides is ,
determine the largest spacing s between the symmetrically
placed handles so that the drawer does not bind at the
corners A and B when the force P is applied to one of 
the handles.

ms = 0.4

8–147. If block A has a mass of 1.5 kg, determine the
largest mass of block B without causing motion of the
system. The coefficient of static friction between the blocks
and inclined planes is .ms = 0.2

REVIEW PROBLEMS
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D

10�
10�

C

B
AP P¿

8000 lb
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G

P

h3
4

h1
4

h1
4h1

4

Prob. 8–148

2 ft

5 ft 3 ft
BA

G

2 ft
O

Probs. 8–149/150

60�

20 mu

Prob. 8–151

Probs. 8–152/153

8–151. A roofer, having a mass of 70 kg, walks slowly in an
upright position down along the surface of a dome that has
a radius of curvature of If the coefficient of static
friction between his shoes and the dome is 
determine the angle at which he first begins to slip.u

ms = 0.7,
r = 20 m.

•8–149. The tractor pulls on the fixed tree stump.
Determine the torque that must be applied by the engine to
the rear wheels to cause them to slip. The front wheels are
free to roll. The tractor weighs 3500 lb and has a center of
gravity at G. The coefficient of static friction between the
rear wheels and the ground is .

8–150. The tractor pulls on the fixed tree stump. If the
coefficient of static friction between the rear wheels and
the ground is , determine if the rear wheels slip or
the front wheels lift off the ground as the engine provides
torque to the rear wheels. What is the torque needed to
cause this motion? The front wheels are free to roll. The
tractor weighs 2500 lb and has a center of gravity at G.

ms = 0.6

ms = 0.5

*8–148. The cone has a weight W and center of gravity at
G. If a horizontal force P is gradually applied to the string
attached to its vertex, determine the maximum coefficient
of static friction for slipping to occur.

*8–152. Column D is subjected to a vertical load of
8000 lb. It is supported on two identical wedges A and B for
which the coefficient of static friction at the contacting
surfaces between A and B and between B and C is
Determine the force P needed to raise the column and the
equilibrium force needed to hold wedge A stationary.
The contacting surface between A and D is smooth.

•8–153. Column D is subjected to a vertical load of 8000 lb.
It is supported on two identical wedges A and B for which
the coefficient of static friction at the contacting surfaces
between A and B and between B and C is If the
forces P and are removed, are the wedges self-locking?
The contacting surface between A and D is smooth.

P¿
ms = 0.4.

P¿

ms = 0.4.



When a water tank is designed, it is important to be able to determine its center of
gravity, calculate its volume and surface area, and reduce three-dimensional distributed
loadings caused by the water pressure to their resultants. All of these topics are
discussed in this chapter.



Center of Gravity and
Centroid

CHAPTER OBJECTIVES

• To discuss the concept of the center of gravity, center of mass, and
the centroid.

• To show how to determine the location of the center of gravity and
centroid for a system of discrete particles and a body of arbitrary
shape.

• To use the theorems of Pappus and Guldinus for finding the surface
area and volume for a body having axial symmetry.

• To present a method for finding the resultant of a general
distributed loading and show how it applies to finding the resultant
force of a pressure loading caused by a fluid.

9.1 Center of Gravity, Center of Mass,
and the Centroid of a Body

In this section we will first show how to locate the center of gravity for a
body, and then we will show that the center of mass and the centroid of a
body can be developed using this same method.

Center of Gravity. A body is composed of an infinite number of
particles of differential size, and so if the body is located within a
gravitational field, then each of these particles will have a weight dW,
Fig. 9–1a. These weights will form an approximately parallel force
system, and the resultant of this system is the total weight of the body,
which passes through a single point called the center of gravity, G,
Fig. 9–1b.*

9

*This is true as long as the gravity field is assumed to have the same magnitude and
direction everywhere. That assumption is appropriate for most engineering applications,
since gravity does not vary appreciably between, for instance, the bottom and the top of
a building.
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Using the methods outlined in Sec. 4.8, the weight of the body is the sum
of the weights of all of its particles, that is

The location of the center of gravity, measured from the y axis, is
determined by equating the moment of W about the y axis, Fig. 9–1b, to
the sum of the moments of the weights of the particles about this same
axis. If dW is located at point ( ), Fig. 9–1a, then

Similarly, if moments are summed about the x axis,

Finally, imagine that the body is fixed within the coordinate system and
this system is rotated about the y axis, Fig. 9–1c. Then the sum of the
moments about the y axis gives

Therefore, the location of the center of gravity G with respect to the x, y,
z axes becomes

(9–1)

Here

are the coordinates of the center of gravity G, Fig. 9–1b.

are the coordinates of each particle in the body, Fig. 9–1a.x
'

, y
'

, z
'

x, y, z

x = L
x
'
dW

L
dW

y = L
y
'
dW

L
dW

z = L
z
'
dW

L
dW

zW = 1z
'
dW(MR)y = ©My;

90°

yW = 1y
'
dW(MR)x = ©Mx;

xW = 1x
'
dW(MR)y = ©My;

z
'

y
'

,x
'

,

W = 1dW+ TFR = ©Fz;

(a)

z

z

dW

yyx x

~

~~

(b)

z

G

yx y
x

z

W

(c)

z

G

y

x

y

x

z

W

Fig. 9–1
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Center of Mass of a Body. In order to study the dynamic
response or accelerated motion of a body, it becomes important to locate
the body’s center of mass Cm, Fig. 9–2. This location can be determined
by substituting dW = g dm into Eqs. 9–1. Since g is constant, it cancels
out, and so

(9–2)

Centroid of a Volume. If the body in Fig. 9–3 is made from a
homogeneous material, then its density (rho) will be constant.
Therefore, a differential element of volume dV has a mass 
Substituting this into Eqs. 9–2 and canceling out , we obtain formulas
that locate the centroid C or geometric center of the body; namely

(9–3)

These equations represent a balance of the moments of the volume of
the body. Therefore, if the volume possesses two planes of symmetry,
then its centroid must lie along the line of intersection of these two
planes. For example, the cone in Fig. 9–4 has a centroid that lies on the y
axis so that . The location can be found using a single
integration by choosing a differential element represented by a thin disk
having a thickness dy and radius . Its volume is 

and its centroid is at , , .z
' = 0y

' = yx
' = 0pr2 dy = pz2 dy

dV =r = z

y—x = z = 0

x = LV
x
'
dV

LV
dV

y = LV
y
'
dV

LV
dV

z = LV
z
'
dV

LV
dV

r

dm = r dV.
r

x = L
x
'
dm

L
dm

y = L
y
'
dm

L
dm

z = L
z
'
dm

L
dm

dm Cm

~z

z

y
~x

x~y

y

z

x

C

dV

x

y

z

x

~y

y
~x

~zz

z

y

x

y

y � y

dy

r � z

(0, y, 0) C

~

Fig. 9–4

Fig. 9–3

Fig. 9–2
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Centroid of an Area. If an area lies in the x–y plane and is bounded
by the curve , as shown in Fig. 9–5a, then its centroid will be in
this plane and can be determined from integrals similar to Eqs. 9–3,
namely,

(9–4)

These integrals can be evaluated by performing a single integration if we
use a rectangular strip for the differential area element. For example, if a
vertical strip is used, Fig. 9–5b, the area of the element is , and 
its centroid is located at and . If we consider a horizontal 
strip, Fig. 9–5c, then , and its centroid is located at and

.

Centroid of a Line. If a line segment (or rod) lies within the x–y
plane and it can be described by a thin curve , Fig. 9–6a, then its
centroid is determined from

(9–5)x = LL
x
'
dL

LL
dL

y = LL
y
'
dL

LL
dL

y = f(x)

y
' = y

x
' = x>2dA = x dy

y
' = y>2x

' = x
dA = y dx

x = LA
x
'
dA

LA
dA

y = LA
y
'
dA

LA
dA

y = f(x)

y y

xx

y

dx

dy

x

x � x

y � y

x �

(x, y)

(x, y)

y �
y
2

x
2

(b) (c)

y � f(x)

y

x
x

y

(a)

y � f(x)
y � f(x)

C

~

~

~

~

Fig. 9–5

Integration must be used to determine the
location of the center of gravity of this goal
post due to the curvature of the supporting
member.
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Here, the length of the differential element is given by the Pythagorean
theorem, , which can also be written in the form

or

Either one of these expressions can be used; however, for application,
the one that will result in a simpler integration should be selected. For
example, consider the rod in Fig. 9–6b, defined by . The length of
the element is , and since , then 

. The centroid for this element is located at 

and .y
' = y

x
' = xdL = 21 + (4x22 dx

dy>dx = 4xdL = 21 + 1dy>dx22 dx
y = 2x2

dl = ¢
B
adx
dy
b 2

+ 1 ≤ dy

dL =
B
adx
dy
b 2

dy2 + a dy
dy
b 2

dy2

dl = ¢
B

1 + a dy
dx
b 2 ≤ dx

dL =
B
a dx
dx
b 2

dx2 + a dy
dx
b 2

dx2

dL = 21dx22 + 1dy22

Important Points

• The centroid represents the geometric center of a body.
This point coincides with the center of mass or the center of
gravity only if the material composing the body is uniform or
homogeneous.

• Formulas used to locate the center of gravity or the centroid
simply represent a balance between the sum of moments of all
the parts of the system and the moment of the “resultant” for the
system.

• In some cases the centroid is located at a point that is not on the
object, as in the case of a ring, where the centroid is at its center.
Also, this point will lie on any axis of symmetry for the body,
Fig. 9–7.

C

dL

dL dy
dx

x

y

y

~

~

x

O

y

x

(a)

y

x

2 m

1 m

x � x

y � y dx

dy

y � 2x2

~

~

(b)

C

y

x

Fig. 9–6

Fig. 9–7



452 CH A P T E R 9 CE N T E R O F GR AV I T Y A N D CE N T R O I D

9

Procedure for Analysis

The center of gravity or centroid of an object or shape can be
determined by single integrations using the following procedure.

Differential Element.
• Select an appropriate coordinate system, specify the coordinate

axes, and then choose a differential element for integration.

• For lines the element is represented by a differential line segment
of length dL .

• For areas the element is generally a rectangle of area dA, having
a finite length and differential width.

• For volumes the element can be a circular disk of volume dV,
having a finite radius and differential thickness.

• Locate the element so that it touches the arbitrary point (x, y, z)
on the curve that defines the boundary of the shape.

Size and Moment Arms.
• Express the length dL, area dA, or volume dV of the element in

terms of the coordinates describing the curve.

• Express the moment arms for the centroid or center of
gravity of the element in terms of the coordinates describing
the curve.

Integrations.
• Substitute the formulations for and dL, dA, or dV into the

appropriate equations (Eqs. 9–1 through 9–5).

• Express the function in the integrand in terms of the same
variable as the differential thickness of the element.

• The limits of the integral are defined from the two extreme
locations of the element’s differential thickness, so that when the
elements are “summed” or the integration performed, the entire
region is covered.* 

z
'

y
'

,x
'

,

z
'

y
'

,x
'

,

*Formulas for integration are given in Appendix A.
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EXAMPLE 9.1

Locate the centroid of the rod bent into the shape of a parabolic arc as
shown in Fig. 9–8.

SOLUTION

Differential Element. The differential element is shown in Fig. 9–8.
It is located on the curve at the arbitrary point (x, y).

Area and Moment Arms. The differential element of length dL
can be expressed in terms of the differentials dx and dy using the
Pythagorean theorem.

Since then Therefore, expressing dL in terms of
y and dy, we have

As shown in Fig. 9–8, the centroid of the element is located at 

Integrations. Applying Eqs. 9–5, using the formulas in Appendix A
to evaluate the integrals, we get

Ans.

Ans.

NOTE: These results for C seem reasonable when they are plotted on
Fig. 9–8.

y = LL
y
'
dL

LL
dL

= L

1m

0
y24y2 + 1 dy

L

1m

0
24y2 + 1 dy

=
0.8484
1.479

= 0.574 m

=
0.6063
1.479

= 0.410 m

x = LL
x
'
dL

LL
dL

= L

1m

0
x24y2 + 1 dy

L

1m

0
24y2 + 1 dy

= L

1m

0
y224y2 + 1 dy

L

1m

0
24y2 + 1 dy

y
' = y.

x
' = x,

dL = 2(2y2 2 + 1 dy

dx>dy = 2y.x = y2,

dL = 2(dx22 + (dy22 =
B
adx
dy
b 2

+ 1 dy

1 m

~

C(x, y)

y

dL

1 m

x

y � y

x � x
O

x � y2

(x, y)~ ~

~

Fig. 9–8
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Locate the centroid of the circular wire segment shown in Fig. 9–9.

EXAMPLE 9.2

SOLUTION
Polar coordinates will be used to solve this problem since the arc is
circular.

Differential Element. A differential circular arc is selected as
shown in the figure. This element intersects the curve at (R, ).

Length and Moment Arm. The length of the differential element
is and its centroid is located at and

Integrations. Applying Eqs. 9–5 and integrating with respect to 
we obtain

Ans.

Ans.

NOTE: As expected, the two coordinates are numerically the same
due to the symmetry of the wire.

R2

L

p>2

0
 sin u du

R
L

p>2

0
du

=
2R
p

y = LL
y
'
dL

LL
dL

= L

p>2

0
1R sin u2R du

L

p>2

0
R du

=

R2

L

p>2

0
 cos u du

R
L

p>2

0
du

=
2R
p

x = LL
x
'
dL

LL
dL

= L

p>2

0
1R cos u2R du

L

p>2

0
R du

=

u,

y
' = R  sin u.

x
' = R  cos udL = R du,

u

y

x

d

y � R sin u~

~

C(x, y)

(R, u)

O

R

x � R cos u

dL � R d u

u

u

Fig. 9–9
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EXAMPLE 9.3

Determine the distance measured from the x axis to the centroid of
the area of the triangle shown in Fig. 9–10.

y

y

x

y

h

dy

y � (b � x)

b

x

(x, y)
(x, y)

~ ~

h
b

SOLUTION

Differential Element. Consider a rectangular element having a
thickness dy, and located in an arbitrary position so that it intersects
the boundary at (x, y), Fig. 9–10.

Area and Moment Arms. The area of the element is 

and its centroid is located a distance from the

x axis.

Integration. Applying the second of Eqs. 9–4 and integrating with
respect to y yields

Ans.

NOTE: This result is valid for any shape of triangle. It states that the
centroid is located at one-third the height, measured from the base of
the triangle.

=
h

3

y = LA
y
'
dA

LA
dA

= L

h

0
y c b
h
1h - y2 dy d

L

h

0

b

h
1h - y2 dy

=
1
6bh

2

1
2bh

y
' = y=

b

h
1h - y2 dy,

dA = x dy

Fig. 9–10
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Locate the centroid for the area of a quarter circle shown in Fig. 9–11.

EXAMPLE 9.4

y

x

d

R d

x �     R cos~

 y �     R sin u~

R R, u

u

u

u

R
3

2
3

2
3

u

Fig. 9–11

Ans.

Ans.=
a2

3
Rb
L

p>2

0
 sin u du

L

p>2

0
du

=
4R
3p

y = LA
y
'
dA

LA
dA

= L

p>2

0
a2

3
R sin ub R2

2
du

L

p>2

0

R2

2
du

=
a2

3
Rb
L

p>2

0
 cos u du

L

p>2

0
du

=
4R
3p

x = LA
x
'
dA

LA
dA

= L

p>2

0
a2

3
R cos ub R2

2
du

L

p>2

0

R2

2
du

SOLUTION

Differential Element. Polar coordinates will be used, since the
boundary is circular. We choose the element in the shape of a triangle,
Fig. 9–11. (Actually the shape is a circular sector; however, neglecting
higher-order differentials, the element becomes triangular.) The
element intersects the curve at point (R, ).

Area and Moment Arms. The area of the element is

and using the results of Example 9.3, the centroid of the (triangular)
element is located at 

Integrations. Applying Eqs. 9–4 and integrating with respect to 
we obtain

u,

y
' = 2

3R sin u.x
' = 2

3R cos u,

dA = 1
21R21R du2 =

R2

2
du

u
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EXAMPLE 9.5

Locate the centroid of the area shown in Fig. 9–12a.

SOLUTION I
Differential Element. A differential element of thickness dx is
shown in Fig. 9–12a. The element intersects the curve at the arbitrary
point (x, y), and so it has a height y.

Area and Moment Arms. The area of the element is 
and its centroid is located at 

Integrations. Applying Eqs. 9–4 and integrating with respect to x yields

y
' = y>2.x

' = x,
dA = y dx,

Ans.

Ans.L

1m

0
1x2>22x2 dx

L

1m

0
x2 dx

=
0.100
0.333

= 0.3 my = LA
y
'
dA

LA
dA

= L

1m

0
1y>22y dx

L

1m

0
y dx

=

x = LA
x
'
dA

LA
dA

= L

1m

0
xy dx

L

1m

0
y dx

= L

1m

0
x3 dx

L

1m

0
x2 dx

=
0.250
0.333

= 0.75 m

SOLUTION II
Differential Element. The differential element of thickness dy is
shown in Fig. 9–12b. The element intersects the curve at the arbitrary
point (x, y), and so it has a length 

Area and Moment Arms. The area of the element is
and its centroid is located at

Integrations. Applying Eqs. 9–4 and integrating with respect to y,
we obtain

y
' = yx

' = x + a1 - x
2
b =

1 + x
2

,

dA = 11 - x2 dy,
11 - x2.

Ans.

Ans.=
0.100
0.333

= 0.3 my = LA
y
'
dA

LA
dA

= L

1m

0
y11 - x2 dy

L

1m

0
11 - x2 dy

= L

1m

0
1y - y3>22 dy

L

1m

0
11 - 1y2 dy

1
2 L

1m

0
11 - y2 dy

L

1m

0
11 - 1y2 dy

=
0.250
0.333

= 0.75 mx
' = LA

x
'
dA

LA
dA

= L

1m

0
[11 + x2>2]11 - x2 dy

L

1m

0
11 - x2 dy

=

y � x2

1 m

dx
1 m

y

x

y

(a)

(x, y)~~

(x, y)

x

Fig. 9–12

1 m
dy

1 m

y

x

y

(b)

(x, y)~~

(x, y)

x

y � x2

(1 � x)

NOTE: Plot these results and notice that they seem reasonable. Also,
for this problem, elements of thickness dx offer a simpler solution.
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1 ft

2 ft

y

2 ft

y

x

(a)

x � x

y �
y
2

2 ft2 ft

dx

y

y

x

(b)

(�x, y)

dy

xx y � y

� � 1x2
y2

4

� � 1x2
y2

4
~

~
~

Fig. 9–13

Locate the centroid of the semi-elliptical area shown in Fig. 9–13a.

EXAMPLE 9.6

SOLUTION I
Differential Element. The rectangular differential element parallel
to the y axis shown shaded in Fig. 9–13a will be considered. This
element has a thickness of dx and a height of y.

Area and Moment Arms. Thus, the area is and its
centroid is located at and 

Integration. Since the area is symmetrical about the y axis,

Ans.

Applying the second of Eqs. 9–4 with , we havey =
B

1-
x2

4

x = 0

y
' = y>2.x

' = x
dA = y dx,

Ans.y = LA
y
'
dA

LA
dA

= L

2 ft

-2 ft

y

2
 (y dx)

L

2 ft

-2 ft
y dx

=

1
2L

2 ft

-2 ft
a1-
x2

4
bdx

L

2 ft

-2 ftB
1-
x2

4
dx

=
4>3
p

= 0.424 ft

SOLUTION II
Differential Element. The shaded rectangular differential element
of thickness dy and width 2x, parallel to the x axis, will be considered,
Fig. 9–13b.

Area and Moment Arms. The area is , and its centroid
is at and .

Integration. Applying the second of Eqs. 9–4, with ,
we have

x = 231-y2

y
' = yx

' = 0
dA = 2x dy

Ans.y = LA
y
'
dA

LA
dA

= L

1 ft

0
y(2x dy)

L

1 ft

0
2x dy

= L

1 ft

0
4y31-y2 dy

L

1 ft

0
431-y2 dy

=
4> 3
p

 ft =  0.424 ft
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EXAMPLE 9.7

Locate the centroid for the paraboloid of revolution, shown in 
Fig. 9–14.

y

100 mm

dy
y

z

z

x

~y � y
z2 � 100y

100 mm

~(0, y, 0)

r

(o, y, z)

Fig. 9–14

SOLUTION

Differential Element. An element having the shape of a thin disk is
chosen. This element has a thickness dy, it intersects the generating
curve at the arbitrary point (0, y, z), and so its radius is 

Volume and Moment Arm. The volume of the element is 
and its centroid is located at 

Integration. Applying the second of Eqs. 9–3 and integrating with
respect to y yields

y
' = y.1pz22 dy, dV=

r = z.

Ans.

100p
L

100 mm

0
y2 dy

100p
L

100 mm

0
y dy

= 66.7 mmy = LV
y
'
dV

LV
dV

= L

100 mm

0
y1pz22 dy

L

100 mm

0
1pz22 dy

=
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Determine the location of the center of mass of the cylinder shown in
Fig. 9–15 if its density varies directly with the distance from its base,
i.e., r = 200z kg>m3.

EXAMPLE 9.8

y

dz

z

1 m

x

0.5 m

z

(0,0, z)~

Fig. 9–15

SOLUTION
For reasons of material symmetry,

Ans.

Differential Element. A disk element of radius 0.5 m and thickness
dz is chosen for integration, Fig. 9–15, since the density of the entire
element is constant for a given value of z. The element is located along
the z axis at the arbitrary point (0, 0, z).

Volume and Moment Arm. The volume of the element is 
and its centroid is located at 

Integrations. Using an equation similar to the third of Eqs. 9–2 and
integrating with respect to z, noting that we have

Ans.= L

1 m

0
z2 dz

L

1 m

0
z dz

= 0.667 m

z = LV
z
'
r dV

LV
r dV

= L

1 m

0
z1200z2 Cp10.522 dz D

L

1 m

0
1200z2p10.522 dz

r = 200z,

z
' = z.p10.522 dz,dV=

x = y = 0
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FUNDAMENTAL PROBLEMS

F9–4. Locate the center mass of the straight rod if its
mass per unit length is given by .m = m0(1 + x2>L2)

x

F9–2. Determine the centroid of the shaded area.(x, y)

F9–1. Determine the centroid of the shaded area.(x, y)

F9–5. Locate the centroid of the homogeneous solid
formed by revolving the shaded area about the axis.y

y

F9–3. Determine the centroid  of the shaded area.y F9–6. Locate the centroid of the homogeneous solid
formed by revolving the shaded area about the axis.z

z

y

x

y � x3

1 m

1 m

F9–1

y

x

1 m

1 m

y � x3

F9–2

y

x

2 m

1 m1 m

y � 2x2

F9–3

y

x

L

F9–4

y

x

1 m

0.5 m

z
z2 � y1

4

F9–5

x

z

z �      (12 � 8y)1––
3

2 ft

1.5 ft

2 ft

y

F9–6
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PROBLEMS

9–3. Determine the distance to the center of mass of the
homogeneous rod bent into the shape shown. If the rod has
a mass per unit length of  , determine the reactions
at the fixed support O.

0.5 kg>m
x

9–2. The uniform rod is bent into the shape of a parabola
and has a weight per unit length of . Determine the
reactions at the fixed support A.

6 lb>ft

•9–1. Determine the mass and the location of the center of
mass of the uniform parabolic-shaped rod. The mass
per unit length of the rod is .2 kg>m

(x, y)

*9–4. Determine the mass and locate the center of mass 
of the uniform rod. The mass per unit length of the

rod is .3 kg>m
(x, y)

y

x

4 m

4 m

y2 � 4x

Prob. 9–1

y

x

3 ft

3 ft

A

y2 � 3x

Prob. 9–2

1 m

1 m

y

x

y2 � x3

O

Prob. 9–3

y

x

2 m

4 m

y � 4 � x2

Prob. 9–4
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*9–8. Determine the area and the centroid of the area.(x, y)

9–6. Determine the location ( , ) of the centroid of the wire.yx

•9–5. Determine the mass and the location of the center of
mass of the rod if its mass per unit length is

.m = m0(1 + x>L)
x

•9–9. Determine the area and the centroid of the area.(x, y)

9–7. Locate the centroid of the circular rod. Express the
answer in terms of the radius r and semiarc angle .a

x

9–10. Determine the area and the centroid of the area.(x, y)

y

x

L

Prob. 9–5

y

x

y � x2

2 ft

4 ft

Prob. 9–6

y

x
C

r

r

–x

a

a

Prob. 9–7

y

x

4 m

4 m

y2 � 4x

Prob. 9–8

y

1 m

1 m

y2 � x3

x

Prob. 9–9

y

x

3 ft

3 ft y �      x31––
9

Prob. 9–10
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9–14. Determine the area and the centroid of the area.(x, y)

*�9–12. Locate the centroid of the area.

•�9–13. Locate the centroid of the area.y

x

9–11. Determine the area and the centroid  of the area.(x, y)

*9–16. Locate the centroid ( , ) of the area.yx

9–15. Determine the area and the centroid of the area.(x, y)

y

x

2   ab

b

y2 � 4ax

Prob. 9–11

y

x

2 ft

x1/2 � 2x5/3y �

Probs. 9–12/13

y

x

a

b

xy � c2

Prob. 9–14

y

x

a

h y �      x2h––
a2

Prob. 9–15

y

x
2 m

1 m

y � 1 – x21–
4

Prob. 9–16
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*9–20. The plate has a thickness of 0.5 in. and is made of
steel having a specific weight of . Determine the
horizontal and vertical components of reaction at the pin A
and the force in the cord at B.

490 lb>ft3

9–18. The plate is made of steel having a density of
. If the thickness of the plate is 10 mm, determine

the horizontal and vertical components of reaction at the pin
A and the tension in cable BC.

7850 kg>m3

•9–17. Determine the area and the centroid of the area.(x, y)

•9–21. Locate the centroid of the shaded area.x

9–19. Determine the location to the centroid C of the
upper portion of the cardioid, .r = a(1 - cos u)

x

x

h

a

y �      x2h––
a2

y

Prob. 9–17

y

A

B

C

x

2 m

4 m

y3 � 2x

Prob. 9–18

r

r � a (1 � cos u)

C

_
x

x

y

u

Prob. 9–19

y

A

B

x

3 ft

3 ft

y � x2
––
3

y

x

a

ka

y � 2k(x � )x2
—
2a

Prob. 9–21

Prob. 9–20
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•9–25. Determine the area and the centroid of the
area.

(x, y)

*9–24. Locate the centroid ( , ) of the area.yx

9–22. Locate the centroid of the area.

9–23. Locate the centroid of the area.y

x

9–26. Locate the centroid of the area.

9–27. Locate the centroid of the area.y

x

y

x

2 in.

2 in.

y � 1

0.5 in.

0.5 in.

x

Probs. 9–22/23

y

x

9 ft

3 ft

y � 9 � x2

Prob. 9–24

y

x

y �

y � x

3 ft

3 ft

x3
––
9

Prob. 9–25

y

x
1 m

y � x2

1 m

y2 � x

Probs. 9–26/27



9.1 CENTER OF GRAVITY, CENTER OF MASS, AND THE CENTROID OF A BODY 467

9

9–31. Locate the centroid of the area. Hint: Choose
elements of thickness dy and length .[(2 - y) - y2]

9–30. The steel plate is 0.3 m thick and has a density of
. Determine the location of its center of mass.

Also determine the horizontal and vertical reactions at the
pin and the reaction at the roller support. Hint: The normal
force at B is perpendicular to the tangent at B, which is
found from tan .u = dy>dx

7850 kg>m3

*9–28. Locate the centroid of the area.

•9–29. Locate the centroid of the area.y

x

*9–32. Locate the centroid of the area.

•9–33. Locate the centroid of the area.y

x

y

x

h

a

y � xnh––
an

Probs. 9–28/29

y

A

B

x

2 m

2 m

2 m

y2 � 2x

Prob. 9–30

y

x

1 m

1 m

1 m

y � x � 2y2 � x

Prob. 9–31

y

x
1 ft

y � 2x

2 ft

y2 � 4x

Probs. 9–32/33
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•9–37. Locate the centroid of the homogeneous solid
formed by revolving the shaded area about the y axis.

y

9–35. Locate the centroid of the homogeneous solid
formed by revolving the shaded area about the y axis.

y

9–34. If the density at any point in the rectangular plate is
defined by , where is a constant,
determine the mass and locate the center of mass of the
plate.The plate has a thickness t.

x
r0r = r0(1 + x>a)

9–38. Locate the centroid of the homogeneous solid
frustum of the paraboloid formed by revolving the shaded
area about the z axis.

z

*9–36. Locate the centroid of the solid.z

y

a

x

b––
2

b––
2

y

x

z

y2 � (z � a)2 � a2

a

Prob. 9–35

y

z

x

a

z� a
1

a a � y( )2

Prob. 9–36

z

y

x

z2 � y31––
16

2 m

4 m

Prob. 9–37

a

z �    (a2 � y2)
h
–
a2

h
–
2

h
–
2

z

x

y

Prob. 9–38

Prob. 9–34
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•9–41. Determine the mass and locate the center of mass 
of the hemisphere formed by revolving the shaded area
about the y axis. The density at any point in the hemisphere
can be defined by , where is a constant.r0r = r0(1 + y>a)

y

*9–40. Locate the center of mass of the circular cone
formed by revolving the shaded area about the y axis. The
density at any point in the cone is defined by ,
where is a constant.r0

r = (r0 >h)y

y

9–39. Locate the centroid of the homogeneous solid
formed by revolving the shaded area about the y axis.

y

9–42. Determine the volume and locate the centroid 
of the homogeneous conical wedge.

(y, z)

y

x

z

z2 � y2 � 9

3 ft

5 ft

4 ft

Prob. 9–39

y

x

z

h

a

z � �     y � aa––
h

Prob. 9–40

y

x

z

y2 � z2 � a2

r

Prob. 9–41

z

x

y

a

z �     ya––
h

h

Prob. 9–42

z

y

z

G

x

_
r

Prob. 9–43

9–43. The hemisphere of radius r is made from a stack of
very thin plates such that the density varies with height,

, where k is a constant. Determine its mass and the
distance to the center of mass G.z
r = kz
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9.2 Composite Bodies

A composite body consists of a series of connected “simpler” shaped
bodies, which may be rectangular, triangular, semicircular, etc. Such a body
can often be sectioned or divided into its composite parts and, provided
the weight and location of the center of gravity of each of these parts are
known, we can then eliminate the need for integration to determine the
center of gravity for the entire body.The method for doing this follows the
same procedure outlined in Sec. 9.1. Formulas analogous to Eqs. 9–1 result;
however, rather than account for an infinite number of differential weights,
we have instead a finite number of weights. Therefore,

(9–6)

Here

x =
©x'W
©W

y =
©y'W
©W

z =
©z'W
©W

When the body has a constant density or specific weight, the center of
gravity coincides with the centroid of the body.The centroid for composite
lines, areas, and volumes can be found using relations analogous to 
Eqs. 9–6; however, the W’s are replaced by L’s, A’s, and V’s, respectively.
Centroids for common shapes of lines, areas, shells, and volumes that often
make up a composite body are given in the table on the inside back cover.

zy,x, represent the coordinates of the center of gravity G of the 
composite body.

z
'

y
'

,x
'

, represent the coordinates of the center of gravity of each
composite part of the body.

©W is the sum of the weights of all the composite parts of the body,
or simply the total weight of the body.

G

In order to determine the force required to
tip over this concrete barrier it is first
necessary to determine the location of its
center of gravity G. Due to symmetry, G will
lie on the vertical axis of symmetry.
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Procedure for Analysis

The location of the center of gravity of a body or the centroid of a
composite geometrical object represented by a line, area, or volume
can be determined using the following procedure.

Composite Parts.
• Using a sketch, divide the body or object into a finite number of

composite parts that have simpler shapes.
• If a composite body has a hole, or a geometric region having no

material, then consider the composite body without the hole and
consider the hole as an additional composite part having negative
weight or size.

Moment Arms.
• Establish the coordinate axes on the sketch and determine the

coordinates of the center of gravity or centroid of each part.

Summations.
• Determine by applying the center of gravity equations,

Eqs. 9–6, or the analogous centroid equations.
• If an object is symmetrical about an axis, the centroid of the

object lies on this axis.

If desired, the calculations can be arranged in tabular form, as
indicated in the following three examples.

zy,x,

z
'

y
'

,x
'

,

The center of gravity of this water tank can
be determined by dividing it into
composite parts and applying Eqs. 9–6.
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Locate the centroid of the wire shown in Fig. 9–16a.

SOLUTION

Composite Parts. The wire is divided into three segments as shown
in Fig. 9–16b.

Moment Arms. The location of the centroid for each segment is
determined and indicated in the figure. In particular, the centroid of
segment is determined either by integration or by using the table
on the inside back cover.

Summations. For convenience, the calculations can be tabulated as
follows:

~1

EXAMPLE 9.9

Segment L (mm) x
'

 (mm) y
'

 (mm) z
'

(mm) x
'
L (mm2) y

'
L (mm2) z

'
L (mm2)

1 p1602 = 188.5 60 -38.2 0 11 310 -7200 0

2 40 0 20 0 0 800 0
3 20 0 40 -10 0 800 -200

©L = 248.5 ©x'L = 11 310 ©y'L = -5600 ©z'L = -200

Thus,

Ans.

Ans.

Ans.z =
©z'L
©L

=
-200
248.5

= -0.805 mm

y =
©y'L
©L

=
-5600
248.5

= -22.5 mm

x =
©x'L
©L

=
11 310
248.5

= 45.5 mm

40 mm

20 mm

(a)

y

z

x

60 mm

Fig. 9–16

(b)

� 38.2 mm
20 mm

10 mm

60 mm

20 mm

(2) (60)
———

 p

y

x

2

3

1

z
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EXAMPLE 9.10

Locate the centroid of the plate area shown in Fig. 9–17a.

(a)

y

x

1 ft
2 ft

2 ft

1 ft

3 ft

Fig. 9–17
y

x
1 ft

1.5 ft 1 ft

1.5 ft
1

2

(b)

y

x

2.5 ft

2 ft

3

SOLUTION

Composite Parts. The plate is divided into three segments as
shown in Fig. 9–17b. Here the area of the small rectangle is
considered “negative” since it must be subtracted from the larger 
one

Moment Arms. The centroid of each segment is located as indicated
in the figure. Note that the coordinates of and are negative.

Summations. Taking the data from Fig. 9–17b, the calculations are
tabulated as follows:

~3~2x
'

~2 .

~3

Thus,

Ans.

Ans.

NOTE: If these results are plotted in Fig. 9–17, the location of point C
seems reasonable.

y =
©y'A
©A

=
14

11.5
= 1.22 ft

x =
©x'A
©A

=
-4

11.5
= -0.348 ft

Segment A (ft2) x
'

 (ft) y
'

 (ft) x
'
A (ft3) y

'
A (ft3)

1 1
2132132 = 4.5 1 1 4.5 4.5

2 132132 = 9 -1.5 1.5 -13.5 13.5

3 -122112 = -2 -2.5 2 5 -4

©A = 11.5 ©x'A = -4 ©y'A = 14
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Locate the center of mass of the assembly shown in Fig. 9–18a. The
conical frustum has a density of and the hemisphere 
has a density of There is a 25-mm-radius cylindrical
hole in the center of the frustum.

SOLUTION

Composite Parts. The assembly can be thought of as consisting of
four segments as shown in Fig. 9–18b. For the calculations, and 
must be considered as “negative” segments in order that the four
segments, when added together, yield the total composite shape
shown in Fig. 9–18a.

Moment Arm. Using the table on the inside back cover, the
computations for the centroid of each piece are shown in the figure.

Summations. Because of symmetry, note that

Ans.

Since , and g is constant, the third of Eqs. 9–6 becomes
The mass of each piece can be computed from 

and used for the calculations.Also, so that1 Mg>m3 = 10-6 kg>mm3,
m = rVz = ©z'm>©m.

W = mg

x = y = 0

z
'

~4~3

rh = 4 Mg>m3.
rc = 8 Mg>m3,

EXAMPLE 9.11

Segment m (kg) z
'

(mm) z
'
m (kg # mm)

1 8110-62A13 Bp1502212002 = 4.189 50 209.440

2 4110-62A23 Bp15023 = 1.047 -18.75 -19.635

3 -8110-62A13 Bp1252211002 = -0.524 100 + 25 = 125 -65.450

4 -8110-62p1252211002 = -1.571 50 -78.540
©m = 3.142 ©z'm = 45.815

Thus, Ans.z
' =

©z'm
©m

=
45.815
3.142

= 14.6 mm

(a)

50 mm

100 mm

25 mm

50 mm

x

y

z

Fig. 9–18

200 mm

50 mm

50 mm

� 50 mm200 mm
4

1

2

(50) �  18.75 mm8
3

� 25 mm
4

100 mm

25 mm 100 mm

100 mm

50 mm

(b)

3
25 mm

4
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FUNDAMENTAL PROBLEMS

F9–10. Locate the centroid of the cross-sectional area.(x, y)

F9–8. Locate the centroid of the beam’s cross-sectional
area.

y

F9–7. Locate the centroid of the wire bent in the 
shape shown.

(x, y, z)

F9–11. Locate the center of mass of the
homogeneous solid block.

(x, y, z)

x

z

400 mm

600 mm

300 mm

y

F9–7

y

x

25 mm

50 mm

300 mm

25 mm

150 mm 150 mm

F9–8

y

x

400 mm

50 mm 50 mm

C 200 mm

50 mm

F9–9

x

y

4 in.

3 in.

C y

0.5 in.

0.5 in.

x

F9–10

y

x

z

6 ft

2 ft
4 ft

5 ft2 ft

3 ft

F9–11

y

x

z

1.8 m

1.5 m

1.5 m

0.5 m

0.5 m 2 m

F9–12

F9–9. Locate the centroid of the beam’s cross-
sectional area.

y F9–12. Determine the center of mass of the
homogeneous solid block.

(x, y, z)
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x

y

50 mm

150 mm

100 mm

20 mm

Prob. 9–44

x

z

400 mm

200 mm

y

Prob. 9–45

z

6 in.

4 in.

yx

Prob. 9–46

x y

z

4 in.

2 in.

2 in.

Prob. 9–47

PROBLEMS

9–46. Locate the centroid ( , , ) of the wire.zyx

•9–45. Locate the centroid  of the wire.(x, y, z)

*9–44. Locate the centroid ( , ) of the uniform wire bent
in the shape shown.

yx

9–47. Locate the centroid ( , , ) of the wire which is bent
in the shape shown.

zyx



9.2 COMPOSITE BODIES 477

9

3 m

3 m

C

D

BA

E

y

x

3 m

Prob. 9–48

9–50. Each of the three members of the frame has a mass
per unit length of 6 kg/m. Locate the position ( , ) of the
center of mass. Neglect the size of the pins at the joints and
the thickness of the members. Also, calculate the reactions
at the pin A and roller E.

yx

•9–49. Locate the centroid of the wire. If the wire is
suspended from A, determine the angle segment AB makes
with the vertical when the wire is in equilibrium.

(x, y)

*9–48. The truss is made from seven members, each having
a mass per unit length of 6 kg/m. Locate the position ( , )
of the center of mass. Neglect the mass of the gusset plates
at the joints.

yx

9–51. Locate the centroid of the cross-sectional area
of the channel.

(x, y)

y

x

A

CB

200 mm200 mm

60�

Prob. 9–49

y

xA

B

C D
E

4 m

6 m

7 m

4 m

Prob. 9–50

x

y

9 in.1 in. 1 in.

22 in.

1 in.

Prob. 9–51
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x

y

3 in.

6 in.

3 in.

27 in.

3 in.

12 in. 12 in.

Prob. 9–52

9–54. Locate the centroid of the channel’s cross-
sectional area.

y

•9–53. Locate the centroid of the cross-sectional area of
the built-up beam.

y

*9–52. Locate the centroid of the cross-sectional area of
the concrete beam.

y

9–55. Locate the distance to the centroid of the
member’s cross-sectional area.

y

y

x

6 in.
1 in.

1 in.

1 in.1 in.

3 in.3 in.

6 in.

Prob. 9–53

2 in.

4 in.

2 in.
12 in.

2 in.

C

y

Prob. 9–54

x

y

0.5 in.

6 in.

0.5 in.

1.5 in.

1 in.

3 in. 3 in.

Prob. 9–55
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9–58. Locate the centroid of the composite area.x

•9–57. The gravity wall is made of concrete. Determine the
location ( , ) of the center of mass G for the wall.yx

*9–56. Locate the centroid of the cross-sectional area of
the built-up beam.

y

9–59. Locate the centroid  of the composite area.(x, y)

y

x

1.5 in.

1.5 in.

11.5 in.

1.5 in.

3.5 in.

4in. 1.5 in.4 in.

Prob. 9–56

x

y

4 in.

3 in.

3 in.

3 in.

Prob. 9–59

3 ft3 ft

1.5 ft

1 ft

y

x

Prob. 9–60

y

1.2 m

x

_
x

_
y

0.6 m 0.6 m
2.4 m

3 mG

0.4 m

Prob. 9–57

x

y

ri

r0

Prob. 9–58

*9–60. Locate the centroid  of the composite area.(x, y)



480 CH A P T E R 9 CE N T E R O F GR AV I T Y A N D CE N T R O I D

9

9–63. Locate the centroid of the cross-sectional area of
the built-up beam.

y

9–62. To determine the location of the center of gravity of
the automobile it is first placed in a level position, with the
two wheels on one side resting on the scale platform P. In
this position the scale records a reading of . Then, one
side is elevated to a convenient height c as shown. The new
reading on the scale is . If the automobile has a total
weight of W, determine the location of its center of gravity
G .(x, y)

W2

W1

•9–61. Divide the plate into parts, and using the grid for
measurement, determine approximately the location ( , )
of the centroid of the plate.

yx

*9–64. Locate the centroid of the cross-sectional area of
the built-up beam.

y

y

x

200 mm

200 mm

Prob. 9–61

b

Pc

G–y

–x

W2

Prob. 9–62

y

x

450 mm

150 mm150 mm

200 mm

20 mm

20 mm

Prob. 9–63

200 mm

20 mm
50 mm

150 mm

y

x

200 mm

300 mm

10 mm

20 mm 20 mm

10 mm

Prob. 9–64
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9–67. Uniform blocks having a length L and mass m are
stacked one on top of the other, with each block overhanging
the other by a distance d, as shown. If the blocks are glued
together, so that they will not topple over, determine the
location of the center of mass of a pile of n blocks.

*9–68. Uniform blocks having a length L and mass m are
stacked one on top of the other, with each block
overhanging the other by a distance d, as shown. Show that
the maximum number of blocks which can be stacked in
this manner is .n 6 L>d

x

y

x

z

G

B

A
225 mm

150 mm

150 mm

30 mm

Prob. 9–65

FA � 1129 lb � 1168 lb � 2297 lb

FA � 1269 lb � 1307 lb � 2576 lb

FB � 975 lb � 984 lb � 1959 lb

A

_
x

B

9.40 ft

3.0 ft

G
_
y

B
G

A

Prob. 9–66

L

d

2d

y

x

Probs. 9–67/68

z

y

x

60 mm

60 mm

20 mm

20 mm

20 mm

20 mm

60 mm

10 mm dia. holes

80 mm

u

Prob. 9–60

9–66. The car rests on four scales and in this position the
scale readings of both the front and rear tires are shown by

and . When the rear wheels are elevated to a height of
3 ft above the front scales, the new readings of the front
wheels are also recorded. Use this data to compute the
location and to the center of gravity G of the car. The
tires each have a diameter of 1.98 ft.

yx

FBFA

•9–65. The composite plate is made from both steel (A)
and brass (B) segments. Determine the mass and location

of its mass center G. Take and
rbr = 8.74 Mg>m3.

rst = 7.85 Mg>m31x, y, z2

•9–69. Locate the center of gravity ( , ) of the sheet-
metal bracket if the material is homogeneous and has a
constant thickness. If the bracket is resting on the horizontal
x–y plane shown, determine the maximum angle of tilt 
which it can have before it falls over, i.e., begins to rotate
about the y axis.

u

zx
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*9–72. Locate the center of mass of the
homogeneous block assembly.

(x, y, z)

9–71. Major floor loadings in a shop are caused by the
weights of the objects shown. Each force acts through its
respective center of gravity G. Locate the center of gravity
( , ) of all these components.yx

9–70. Locate the center of mass for the compressor
assembly.The locations of the centers of mass of the various
components and their masses are indicated and tabulated in
the figure.What are the vertical reactions at blocks A and B
needed to support the platform?

•9–73. Locate the center of mass of the assembly. The
hemisphere and the cone are made from materials having
densities of and , respectively.4 Mg>m38 Mg>m3

z

x

y

1

2

34

Instrument panel

Filter system

Piping assembly

Liquid storage

Structural framework

230 kg

183 kg

120 kg

85 kg

468 kg

1

2

3
4

5

5

2.30 m
1.80 m

3.15 m

4.83 m

3.26 m

A B

2.42 m 2.87 m
1.64 m1.19m

1.20 m

3.68 m

Prob. 9–70

z

y

G2

G4G3

G1

x

600 lb
9 ft

7 ft

12 ft

6 ft

8 ft
4 ft 3 ft

5 ft

1500 lb

450 lb

280 lb

Prob. 9–71

y

z

x 150 mm

250 mm

200 mm

150 mm
150 mm100 mm

Prob. 9–72

y

z

x

100 mm 300 mm

Prob. 9–73
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•9–77. Determine the distance to the centroid of the
solid which consists of a cylinder with a hole of length

bored into its base.

9–78. Determine the distance h to which a hole must be
bored into the cylinder so that the center of mass of the
assembly is located at . The material has a
density of .8 Mg>m3

x = 64 mm

h = 50 mm

x

9–75. Locate the center of gravity of the
homogeneous block assembly having a hemispherical hole.

*9–76. Locate the center of gravity of the
assembly. The triangular and the rectangular blocks are
made from materials having specific weights of 
and , respectively.0.1 lb>in3

0.25 lb>in3

(x, y, z)

(x, y, z)

9–74. Locate the center of mass of the assembly. The
cylinder and the cone are made from materials having
densities of and , respectively.9 Mg>m35 Mg>m3

z

9–79. The assembly is made from a steel hemisphere,
, and an aluminum cylinder,
. Determine the mass center of the

assembly if the height of the cylinder is .

*9–80. The assembly is made from a steel hemisphere,
, and an aluminum cylinder,
. Determine the height h of the cylinder

so that the mass center of the assembly is located at
.z = 160 mm

ral = 2.70 Mg>m3
rst = 7.80 Mg>m3

h = 200 mm
ral = 2.70 Mg>m3
rst = 7.80 Mg>m3

y

x

h

120 mm

40 mm

20 mm

Probs. 9–77/78

160 mm

h

z

y

x

80 mm

z

G

_

Probs. 9–79/80

z

x

0.8 m

0.6 m0.4 m

0.2 m

y

Prob. 9–74

y

z

x

1 in.

3 in.

2.25 in.

2.25 in.

2.5 in.

2.5 in.

1 in.

3 in.

Probs. 9–75/76
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*9.3 Theorems of Pappus and Guldinus

The two theorems of Pappus and Guldinus are used to find the surface
area and volume of any body of revolution.They were first developed by
Pappus of Alexandria during the fourth century A.D. and then restated at
a later time by the Swiss mathematician Paul Guldin or Guldinus
(1577–1643).

Therefore the first theorem of Pappus and Guldinus states that the
area of a surface of revolution equals the product of the length of the
generating curve and the distance traveled by the centroid of the curve in
generating the surface area.

A = surface area of revolution

u = angle of revolution measured in radians, u … 2p
r = perpendicular distance from the axis of revolution to

the centroid of the generating curve

L = length of the generating curve

The amount of roofing material used on this
storage building can be estimated by using
the first theorem of Pappus and Guldinus
to determine its surface area.

2 rp

r

L

C
dL

dA

r

Surface Area. If we revolve a plane curve about an axis that does
not intersect the curve we will generate a surface area of revolution. For
example, the surface area in Fig. 9–19 is formed by revolving the curve of
length L about the horizontal axis.To determine this surface area, we will
first consider the differential line element of length dL. If this element is
revolved radians about the axis, a ring having a surface area of

will be generated.Thus, the surface area of the entire body
is Since (Eq. 9–5), then If the
curve is revolved only through an angle (radians), then

(9–7)

where

A = urL

u

A = 2prL.1r dL = rLA = 2p1r dL.
dA = 2pr dL

2p

Fig. 9–19
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Volume. A volume can be generated by revolving a plane area about
an axis that does not intersect the area. For example, if we revolve the
shaded area A in Fig. 9–20 about the horizontal axis, it generates
the volume shown. This volume can be determined by first revolving the
differential element of area dA 2 radians about the axis, so that a ring
having the volume is generated. The entire volume is then

However, Eq. 9–4, so that . If the
area is only revolved through an angle (radians), then

(9–8)

where

V = urA

u

V = 2prA1rdA = rA,V = 2p1rdA.
dV = 2pr dA

p

Therefore the second theorem of Pappus and Guldinus states that the
volume of a body of revolution equals the product of the generating area
and the distance traveled by the centroid of the area in generating the
volume.

Composite Shapes. We may also apply the above two theorems
to lines or areas that are composed of a series of composite parts. In this
case the total surface area or volume generated is the addition of the
surface areas or volumes generated by each of the composite parts. If the
perpendicular distance from the axis of revolution to the centroid of
each composite part is then

(9–9)

and

(9–10)

Application of the above theorems is illustrated numerically in the
following examples.

V = u©1r'A2

A = u©1r'L2
r
'

,

dA

2 r

C
A

rr

p

Fig. 9–20

V = volume of revolution

u = angle of revolution measured in radians, u … 2p
r = perpendicular distance from the axis of revolution to

the centroid of the generating area

A = generating area

The volume of fertilizer contained
within this silo can be determined using
the second theorem of Pappus and
Guldinus.
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Show that the surface area of a sphere is and its volume is
V = 4

3pR
3.

A = 4pR2

EXAMPLE 9.12

(b)

y

x

R C

4R
3p

y

x

R

C

2R

(a)

p

Fig. 9–21

SOLUTION

Surface Area. The surface area of the sphere in Fig. 9–21a is
generated by revolving a semicircular arc about the x axis. Using the
table on the inside back cover, it is seen that the centroid of this arc is
located at a distance from the axis of revolution (x axis).
Since the centroid moves through an angle of rad to generate
the sphere, then applying Eq. 9–7 we have

Ans.

Volume. The volume of the sphere is generated by revolving the
semicircular area in Fig. 9–21b about the x axis. Using the table on the
inside back cover to locate the centroid of the area, i.e.,
and applying Eq. 9–8, we have

Ans.V = 2pa4R
3p
b a1

2
pR2b =

4
3
pR3V = urA;

r = 4R>3p,

A = 2pa2R
p
bpR = 4pR2A = urL;

u = 2p
r = 2R>p
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EXAMPLE 9.13

Determine the surface area and volume of the full solid in Fig. 9–22a.

1 in.

1 in.

2 in.

(a)

2.5 in.

z

Fig. 9–22
(b)

z
1 in.

3.5 in.
3 in.

2.5 in.

1 in.

2 in.

1 in.

2 in.

1 in.

(c)

z

3 in.

2.5 in. � (    )(1 in.) � 3.1667 in.2
3

SOLUTION

Surface Area. The surface area is generated by revolving the four
line segments shown in Fig. 9–22b, radians about the z axis. The
distances from the centroid of each segment to the z axis are also
shown in the figure. Applying Eq. 9–7, yields

Ans.

Volume. The volume of the solid is generated by revolving the two
area segments shown in Fig. 9–22c, 2 radians about the z axis. The
distances from the centroid of each segment to the z axis are also
shown in the figure. Applying Eq. 9–10, we have

Ans.= 47.6 in3

V=2p©rA=2pE(3.1667 in.) c1
2

 (1 in.)(1 in.) d +(3 in.)[(2 in.)(1 in.)F

p

= 143 in2

+ (3.5 in.)(3 in.) + (3 in.)(1 in.)]

A = 2p©rL = 2p[(2.5 in.)(2 in.) + (3 in.)¢3(1 in.)2 + (1 in.)2≤

2p
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z

1.5 m

2 m

2 m

F9–13

1.2 m

0.9 m1.5 m

1.5 m

z

F9–14

z

18 in.

15 in.

20 in.

30 in.

F9–15

z

2 m

1.5 m

1.5 m

F9–16

FUNDAMENTAL PROBLEMS

F9–15. Determine the surface area and volume of the solid
formed by revolving the shaded area about the z axis.360°

F9–14. Determine the surface area and volume of the solid
formed by revolving the shaded area about the z axis.360°

F9–13. Determine the surface area and volume of the solid
formed by revolving the shaded area about the z axis.360°

F9–16. Determine the surface area and volume of the solid
formed by revolving the shaded area about the z axis.360°
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6 ft

8 ft

8 ft

10 ft

Probs. 9–81/82

x

y

4 ft

4 ft

y2 � 4x

Prob. 9–83

A

1 m

z

B

1.5 m

3 m

Probs. 9–84/85

16 m

y

x

16 m

y � 16 � (x2/16)

Prob. 9–86

PROBLEMS

*9–84. Determine the surface area from A to B of the tank.

•9–85. Determine the volume within the thin-walled tank
from A to B.

9–83. Determine the volume of the solid formed by
revolving the shaded area about the x axis using the second
theorem of Pappus–Guldinus.The area and centroid of the
shaded area should first be obtained by using integration.

y

•9–81. The elevated water storage tank has a conical top
and hemispherical bottom and is fabricated using thin steel
plate. Determine how many square feet of plate is needed
to fabricate the tank.

9–82. The elevated water storage tank has a conical top
and hemispherical bottom and is fabricated using thin steel
plate. Determine the volume within the tank.

9–86. Determine the surface area of the roof of the
structure if it is formed by rotating the parabola about the 
y axis.
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2 in.

3 in.

z

0.75 in.
0.75 in.

1 in.

0.5 in.

Probs. 9–87/88

75 mm
75 mm

75 mm

75 mm

250 mm

z

300 mm

Prob. 9–89

9–90. Determine the surface area and volume of the solid
formed by revolving the shaded area about the z axis.360°

•9–89. Determine the volume of the solid formed by
revolving the shaded area about the z axis.360°

9–87. Determine the surface area of the solid formed by
revolving the shaded area about the z axis.

*9–88. Determine the volume of the solid formed by
revolving the shaded area about the z axis.360°

360°

9–91. Determine the surface area and volume of the solid
formed by revolving the shaded area about the z axis.360°

1 in.

z

2 in.
1 in.

Prob. 9–90

z

75 mm 50 mm

400 mm

300 mm

50 mm

75 mm

Prob. 9–91
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9–94. The thin-wall tank is fabricated from a hemisphere
and cylindrical shell. Determine the vertical reactions that
each of the four symmetrically placed legs exerts on the
floor if the tank contains water which is 12 ft deep in
the tank. The specific gravity of water is . Neglect
the weight of the tank.

9–95. Determine the approximate amount of paint needed
to cover the outside surface of the open tank.Assume that a
gallon of paint covers .400 ft2

62.4 lb>ft3

•9–93. The hopper is filled to its top with coal. Estimate
the volume of coal if the voids (air space) are 35 percent of
the volume of the hopper.

*9–92. The process tank is used to store liquids during
manufacturing. Estimate both the volume of the tank and
its surface area. The tank has a flat top and a thin wall.

*9–96. Determine the surface area of the tank, which
consists of a cylinder and hemispherical cap.

•9–97. Determine the volume of the thin-wall tank, which
consists of a cylinder and hemispherical cap.

3 m 3 m

6 m

4 m

Prob. 9–92

0.2 m

4 m

z

1.2 m

1.5 m

Prob. 9–93

water
surface

8 ft

4 ft

6 ft

8 ft

Probs. 9–94/95

8 m

4 m

Probs. 9–96/97
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•9–101. Determine the outside surface area of the
storage tank.

9–102. Determine the volume of the thin-wall storage tank.

*9–100. Determine the surface area and volume of the
wheel formed by revolving the cross-sectional area 
about the z axis.

360°

9–98. The water tank AB has a hemispherical top and is
fabricated from thin steel plate. Determine the volume
within the tank.

9–99. The water tank AB has a hemispherical roof and is
fabricated from thin steel plate. If a liter of paint can cover

of the tank’s surface, determine how many liters are
required to coat the surface of the tank from A to B.
3 m2

9–103. Determine the height h to which liquid should be
poured into the conical paper cup so that it contacts half the
surface area on the inside of the cup.

15 ft

4 ft

30 ft

Probs. 9–101/102

100 mm

h

150 mm

Prob. 9–103

1.5 m

1.6 m

0.2 m

B

A

1.6 m

Probs. 9–98/99

4 in.2 in.

1 in.1 in.
1.5 in.

z

Prob. 9–100
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*9.4 Resultant of a General Distributed
Loading

In Sec. 4.9, we discussed the method used to simplify a two-dimensional
distributed loading to a single resultant force acting at a specific point. In
this section we will generalize this method to include flat surfaces that
have an arbitrary shape and are subjected to a variable load distribution.
Consider, for example, the flat plate shown in Fig. 9–23a, which is subjected
to the loading defined by Pa, where 1 
Knowing this function, we can determine the resultant force acting on
the plate and its location Fig. 9–23b.

Magnitude of Resultant Force. The force dF acting on the
differential area of the plate, located at the arbitrary point (x, y),
has a magnitude of 
Notice that p(x, y) the colored differential volume element
shown in Fig. 9–23a. The magnitude of is the sum of the differential
forces acting over the plate’s entire surface area A. Thus:

(9–11)

This result indicates that the magnitude of the resultant force is equal to
the total volume under the distributed-loading diagram.

Location of Resultant Force. The location ( ) of is
determined by setting the moments of equal to the moments of all the
differential forces dF about the respective y and x axes: From Figs. 9–23a
and 9–23b, using Eq. 9–11, this results in

FR
FRyx,

FR =
LA
p1x, y2 dA =

LV
dV = VFR = ©F;

FR
dA = dV,
dF = [p1x, y2 N>m2]1dA m22 = [p1x, y2 dA] N.

dA m2

(x, y),
FR

Pa 1pascal2 = 1 N>m2.p1x, y2p =

The resultant of a wind loading that is
distributed on the front or side walls of
this building must be calculated using
integration in order to design the
framework that holds the building
together.

x y

y
x

(a)

dF

p

p � p(x, y)

dA dV

Fig. 9–23

x y

yx

(b)

FR

(9–12)x = LA
xp1x,y2dA

LA
p1x,y2dA

= LV
x dV

LV
dV

y = LA
yp1x,y2dA

LA
p1x,y2dA

= LV
ydV

LV
dV

Hence, the line of action of the resultant force passes through the
geometric center or centroid of the volume under the distributed-loading
diagram.
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*9.5 Fluid Pressure

According to Pascal’s law, a fluid at rest creates a pressure p at a point
that is the same in all directions.The magnitude of p, measured as a force
per unit area, depends on the specific weight or mass density of the
fluid and the depth z of the point from the fluid surface.*  The relationship
can be expressed mathematically as

(9–13)

where g is the acceleration due to gravity. This equation is valid only for
fluids that are assumed incompressible, as in the case of most liquids. Gases
are compressible fluids, and since their density changes significantly with
both pressure and temperature, Eq. 9–13 cannot be used.

To illustrate how Eq. 9–13 is applied, consider the submerged plate
shown in Fig. 9–24. Three points on the plate have been specified. Since
point B is at depth from the liquid surface, the pressure at this point
has a magnitude Likewise, points C and D are both at depth 
hence, In all cases, the pressure acts normal to the surface area
dA located at the specified point.

Using Eq. 9–13 and the results of Sec. 9.4, it is possible to determine
the resultant force caused by a liquid and specify its location on the
surface of a submerged plate. Three different shapes of plates will now
be considered.

p2 = gz2.
z2;p1 = gz1.

z1

p = gz = rgz

rg

z
y

x

b
dA dA

C
z2

z1

Liquid surface

dA

p1

p2
p2

D

B

Fig. 9–24

*In particular, for water or since
and g = 9.81 m>s2.

r = 1000 kg>m3g = rg = 9810 N>m3g = 62.4 lb>ft3,



9.5 FLUID PRESSURE 495

9

Flat Plate of Constant Width. A flat rectangular plate of
constant width, which is submerged in a liquid having a specific weight 
is shown in Fig. 9–25a. Since pressure varies linearly with depth, Eq. 9–13,
the distribution of pressure over the plate’s surface is represented by a
trapezoidal volume having an intensity of at depth and

at depth As noted in Sec. 9.4, the magnitude of the resultant
force is equal to the volume of this loading diagram and has a line
of action that passes through the volume’s centroid C. Hence, does
not act at the centroid of the plate; rather, it acts at point P, called the
center of pressure.

Since the plate has a constant width, the loading distribution may also
be viewed in two dimensions, Fig. 9–25b. Here the loading intensity is
measured as force/length and varies linearly from to

The magnitude of in this case equals the
trapezoidal area, and has a line of action that passes through
the area’s centroid C. For numerical applications, the area and location
of the centroid for a trapezoid are tabulated on the inside back cover.

FR
FRw2 = bp2 = bgz2.

w1 = bp1 = bgz1

FR
FRFR

z2.p2 = gz2

z1p1 = gz1

g,

x

Liquid surface

z2

z1

C
Pp2 � gz2

p1 � gz1

(a)

y
FR

z

L
b
2 b

2

Fig. 9–25

Liquid surface
y

w2 � bp2

z

P L

(b)

FR C

y¿

w1 � bp1
z2

z1

The walls of the tank must be designed
to support the pressure loading of the
liquid that is contained within it.
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Curved Plate of Constant Width. When a submerged plate of
constant width is curved, the pressure acting normal to the plate
continually changes both its magnitude and direction, and therefore
calculation of the magnitude of and its location P is more difficult
than for a flat plate. Three- and two-dimensional views of the loading
distribution are shown in Figs. 9–26a and 9–26b, respectively. Although
integration can be used to solve this problem, a simpler method exists.
This method requires separate calculations for the horizontal and
vertical components of

For example, the distributed loading acting on the plate can be
represented by the equivalent loading shown in Fig. 9–26c. Here the plate
supports the weight of liquid contained within the block BDA. This
force has a magnitude and acts through the centroid
of BDA. In addition, there are the pressure distributions caused by the
liquid acting along the vertical and horizontal sides of the block.Along the
vertical side AD, the force has a magnitude equal to the area of
the trapezoid. It acts through the centroid of this area.The distributed
loading along the horizontal side AB is constant since all points lying in
this plane are at the same depth from the surface of the liquid. The
magnitude of is simply the area of the rectangle. This force acts
through the centroid or at the midpoint of AB. Summing these three
forces yields Finally, the location of the
center of pressure P on the plate is determined by applying 
which states that the moment of the resultant force about a convenient
reference point such as D or B, in Fig. 9–26b, is equal to the sum of the
moments of the three forces in Fig. 9–26c about this same point.

MR = ©M,
FR = ©F = FAD + FAB + Wf.

CAB

FAB

CAD

FAD

Wf = 1gb21areaBDA2
Wf

FR.

FR

y

p1 � gz1

Liquid surface

z

xz1

Lz2

FR

p2 � gz2

b

C
P

(a)

Fig. 9–26

Liquid surface
y

w2 � bp2
C

FR

w1 � bp1

B

z

P

D

(b)

B

CAB

FAB

A
z1

z2

y

w1 � bp1

z

CAD

FAD

w1 � bp2

WfCBDA

Liquid surface

D

(c)
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Flat Plate of Variable Width. The pressure distribution acting
on the surface of a submerged plate having a variable width is shown in
Fig. 9–27. If we consider the force dF acting on the differential area strip
dA, parallel to the x axis, then its magnitude is . Since the
depth of dA is z, the pressure on the element is . Therefore,

and so the resultant force becomes

If the depth to the centroid of the area is , Fig. 9–27, then,
. Substituting, we have

(9–14)

In other words, the magnitude of the resultant force acting on any flat
plate is equal to the product of the area A of the plate and the pressure

at the depth of the area’s centroid As discussed in Sec. 9.4, this
force is also equivalent to the volume under the pressure distribution.
Realize that its line of action passes through the centroid C of this
volume and intersects the plate at the center of pressure P, Fig. 9–27.
Notice that the location of does not coincide with the location of P.C¿

C¿.p = gz

FR = gzA

1z dA = zA
zC¿

FR = 1 dF = g1 z dA

dF = (gz)dA
p = gz

dF = p dA

y

x

y¿

Liquid surfacez

FR

p � gz

dy¿

dA

dF

C ¿P

x
z

C

Fig. 9–27

The resultant force of the water pressure
and its location on the elliptical back plate
of this tank truck must be determined by
integration.
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Determine the magnitude and location of the resultant hydrostatic force
acting on the submerged rectangular plate AB shown in Fig. 9–28a. The
plate has a width of 1.5 m;

SOLUTION I
The water pressures at depths A and B are

Since the plate has a constant width, the pressure loading can be
viewed in two dimensions as shown in Fig. 9–28b. The intensities of
the load at A and B are

From the table on the inside back cover, the magnitude of the
resultant force created by this distributed load is

Ans.

This force acts through the centroid of this area,

Ans.

measured upward from B, Fig. 9–31b.

SOLUTION II
The same results can be obtained by considering two components of

, defined by the triangle and rectangle shown in Fig. 9–28c. Each
force acts through its associated centroid and has a magnitude of

Hence,

Ans.

The location of is determined by summing moments about B,
Fig. 9–28b and c, i.e.,

c

Ans.

NOTE: Using Eq. 9–14, the resultant force can be calculated as
FR = gzA = (9810 N>m3)(3.5 m)(3 m)(1.5 m) = 154.5 kN.

h = 1.29 m

1154.52h = 88.311.52 + 66.2112+1MR2B = ©MB;

FR

FR = FRe + Ft = 88.3 + 66.2 = 154.5 kN

Ft = 1
2144.15 kN>m213 m2 = 66.2 kN

FRe = 129.43 kN>m213 m2 = 88.3 kN

FR

h =
1
3
a2129.432 + 73.58

29.43 + 73.58
b132 = 1.29 m

FR = area of a trapezoid = 1
2132129.4 + 73.62 = 154.5 kN

FR

wB = bpB = 11.5 m2149.05 kPa2 = 73.58 kN>m
wA = bpA = 11.5 m2119.62 kPa2 = 29.43 kN>m

pB = rwgzB = 11000 kg>m3219.81 m>s2215 m2 = 49.05 kPa

pA = rwgzA = 11000 kg>m3219.81 m>s2212 m2 = 19.62 kPa

rw = 1000 kg>m3.

EXAMPLE 9.14

2 m

3 m

1.5 m

A

B

(a)

Fig. 9–28

(b)

2 m

3 m

A

B

h

FR

wB � 73.58 kN/m

wA � 29.43 kN/m

(c)

2 m

3 m

A

B

Ft
1 m

44.15 kN/m
29.43 kN/m

FRe

1.5 m
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EXAMPLE 9.15

Determine the magnitude of the resultant hydrostatic force acting on
the surface of a seawall shaped in the form of a parabola as shown in
Fig. 9–29a. The wall is 5 m long; rw = 1020 kg>m3.

3 m

1 m

(a)

Fig. 9–29

Fh

wB � 150.1 kN/m

C

Fv
A

B

(b)

SOLUTION
The horizontal and vertical components of the resultant force will be
calculated, Fig. 9–29b. Since

then

Thus,

The area of the parabolic sector ABC can be determined using the
table on the inside back cover. Hence, the weight of water within this
5 m long region is

The resultant force is therefore

Ans.= 231 kN

FR = 2Fh2 + Fv2 = 21225.1 kN22 + 150.0 kN22

= 11020 kg>m3219.81 m>s2215 m2 C1311 m213 m2 D = 50.0 kN

Fv = 1rwgb21areaABC2

Fh = 1
213 m21150.1 kN>m2 = 225.1 kN

wB = bpB = 5 m130.02 kPa2 = 150.1 kN>m

pB = rwgzB = 11020 kg>m3219.81 m>s2213 m2 = 30.02 kPa
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1 m

1 m

(a)

E

Fig. 9–30

Determine the magnitude and location of the resultant force acting
on the triangular end plates of the water trough shown in Fig. 9–30a;
rw = 1000 kg>m3.

EXAMPLE 9.16

SOLUTION
The pressure distribution acting on the end plate E is shown in Fig.9–30b.
The magnitude of the resultant force is equal to the volume of this
loading distribution. We will solve the problem by integration. Choosing
the differential volume element shown in the figure, we have

The equation of line AB is

Hence, substituting and integrating with respect to z from to
yields

Ans.

This resultant passes through the centroid of the volume. Because of
symmetry,

Ans.
Since for the volume element, thenz

' = z
x = 0

= 9810
L

1 m

0
1z - z22 dz = 1635 N = 1.64 kN

F = V =
LV
dV =

L

1 m

0
119 6202z[0.511 - z2] dz

z = 1 m
z = 0

x = 0.511 - z2
dF = dV = p dA = rwgz12x dz2 = 19 620zx dz

0.5 m

y
x

z

1 m

z

dz
A

B

(b)

O

2x

dF

Ans.

NOTE: We can also determine the resultant force by applying Eq. 9–14,
FR = gzA = (9810 N>m3)(1

3)(1 m)[1
2(1 m)(1 m)] = 1.64 kN.

= 0.5 m

9810
L

1 m

0
1z2 - z32 dz

1635
z = LV

z
'
dV

LV
dV

= L

1 m

0
z119 6202z[0.511 - z2] dz

1635
=
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FUNDAMENTAL PROBLEMS

F9–20. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 2 m. Water has a
density of .r = 1 Mg>m3

F9–18. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 4 ft. The specific
weight of water is .g = 62.4 lb>ft3

F9–17. Determine the magnitude of the hydrostatic force
acting per meter length of the wall. Water has a density of

.r = 1 Mg>m3

F9–21. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 2 ft. The specific
weight of water is .g = 62.4 lb>ft3

A B

4 ft

3 ft

F9–18

B

A

2 m

1.5 m

F9–19

B

A

2 m

3 m

F9–20

6 m

F9–17

B

A

3 ft

4 ft

6 ft

F9–21

F9–19. Determine the magnitude of the hydrostatic force
acting on gate AB, which has a width of 1.5 m. Water has a
density of .r = 1 Mg>m3
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PROBLEMS

9–106. The symmetric concrete “gravity” dam is held in
place by its own weight. If the density of concrete is

, and water has a density of
, determine the smallest distance d at its

base that will prevent the dam from overturning about its
end A. The dam has a width of 8 m.

rw = 1.0 Mg>m3
rc = 2.5 Mg>m3

•9–105. The concrete “gravity” dam is held in place by its
own weight. If the density of concrete is ,
and water has a density of , determine the
smallest dimension d that will prevent the dam from
overturning about its end A.

rw = 1.0 Mg>m3
rc = 2.5 Mg>m3

*9–104. The tank is used to store a liquid having a specific
weight of . If it is filled to the top, determine the
magnitude of the force the liquid exerts on each of its two
sides ABDC and BDFE.

80 lb>ft3

9–107. The tank is used to store a liquid having a specific
weight of . If the tank is full, determine the
magnitude of the hydrostatic force on plates CDEF and
ABDC.

60 lb>ft3

A

B

E

C

D

F

12 ft

8 ft

4 ft

6 ft
6 ft

Prob. 9–104

A

6 m

d

Prob. 9–105

A

d

1.5 m

9 m

Prob. 9–106

x

B

A

D

E

y

z

5 ft

2 ft

2 ft

1.5 ft
1.5 ft

1.5 ft
1.5 ft

C

F

Prob. 9–107
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*9–112. Determine the magnitude of the hydrostatic force
acting per foot of length on the seawall. .gw = 62.4 lb>ft3

9–110. Determine the magnitude of the hydrostatic force
acting on the glass window if it is circular, A. The specific
weight of seawater is .

9–111. Determine the magnitude and location of the
resultant hydrostatic force acting on the glass window if it is
elliptical, B. The specific weight of seawater is

.gw = 63.6 lb>ft3

gw = 63.6 lb>ft3

*9–108. The circular steel plate A is used to seal the
opening on the water storage tank. Determine the
magnitude of the resultant hydrostatic force that acts on it.
The density of water is .

•9–109. The elliptical steel plate B is used to seal the
opening on the water storage tank. Determine the
magnitude of the resultant hydrostatic force that acts on it.
The density of water is .rw = 1 Mg>m3

rw = 1 Mg>m3

•9–113. If segment AB of gate ABC is long enough, the
gate will be on the verge of opening. Determine the length
L of this segment in order for this to occur. The gate is
hinged at B and has a width of 1 m. The density of water is

.

9–114. If L = 2 m, determine the force the gate ABC exerts
on the smooth stopper at C. The gate is hinged at B, free at
A, and is 1 m wide. The density of water is .rw = 1 Mg>m3

rw = 1 Mg>m3

45�

1 m

2 m

0.5 m
0.5 m

1 m

A

B

1 m

Probs. 9–108/109

4 ft
0.5 ft

0.5 ft
1 ft 1 ft

1 ft
A B

Probs. 9–110/111

x

y

8 ft

2 ft

y � �2x2

Prob. 9–112

C

B
A

L

2 m

4 m

Probs. 9–113/114
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9–118. The concrete gravity dam is designed so that it is
held in position by its own weight. Determine the minimum
dimension x so that the factor of safety against overturning
about point A of the dam is 2.The factor of safety is defined
as the ratio of the stabilizing moment divided by the
overturning moment. The densities of concrete and water
are and , respectively.
Assume that the dam does not slide.

rw = 1 Mg>m3rconc = 2.40 Mg>m3

•9–117. The concrete gravity dam is designed so that it is held
in position by its own weight. Determine the factor of safety
against overturning about point A if . The factor of
safety is defined as the ratio of the stabilizing moment divided
by the overturning moment. The densities of concrete
and water are and ,
respectively.Assume that the dam does not slide.

rw = 1 Mg>m3rconc = 2.40 Mg>m3

x = 2 m

9–115. Determine the mass of the counterweight A if the
1-m-wide gate is on the verge of opening when the water is
at the level shown. The gate is hinged at B and held by the
smooth stop at C. The density of water is .

*9–116. If the mass of the counterweight at A is 6500 kg,
determine the force the gate exerts on the smooth stop at C.
The gate is hinged at B and is 1-m wide. The density of
water is .rw = 1 Mg>m3

rw = 1 Mg>m3

9–119. The underwater tunnel in the aquatic center is
fabricated from a transparent polycarbonate material
formed in the shape of a parabola. Determine the magnitude
of the hydrostatic force that acts per meter length along the
surface AB of the tunnel. The density of the water is

.rw = 1000 kg/m3

A
B

C

1 m

45�

2 m

2 m

Probs. 9–115/116

y

x

x

3––
2y � � x2

6 m

2 m

A

Probs. 9–118

y

x

x

3––
2y � � x2

6 m

2 m

A

Probs. 9–117

y

x

2 m 2 m

2 m

4 m

y � 4 � x2 A

B

Prob. 9–119
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CHAPTER REVIEW

Center of Gravity and Centroid

The center of gravity G represents a
point where the weight of the body can
be considered concentrated. The
distance from an axis to this point can be
determined from a balance of moments,
which requires that the moment of the
weight of all the particles of the body
about this axis must equal the moment
of the entire weight of the body about
the axis.

The center of mass will coincide with
the center of gravity provided the
acceleration of gravity is constant.

The centroid is the location of the
geometric center for the body. It is
determined in a similar manner, using a
moment balance of geometric elements
such as line, area, or volume segments.
For bodies having a continuous shape,
moments are summed (integrated)
using differential elements.

The center of mass will coincide with
the centroid provided the material is
homogeneous, i.e., the density of the
material is the same throughout. The
centroid will always lie on an axis of
symmetry.

z = L
z
'
dW

L
dW

y = L
y
'
dW

L
dW

x = L
x
'
dW

L
dW

x = LV
x
'
dV

LV
dV

y = LV
y
'
dV

LV
dV

z = LV
z
'
dV

LV
dV

x = LA
x
'
dA

LA
dA

y = LA
y
'
dA

LA
dA

z = LA
z
'
dA

LA
dA

x = LL
x
'
dL

LL
dL

y = LL
y
'
dL

LL
dL

z = LL
z
'
dL

LL
dL

GdV

~z

z

y
~x

x~y

y

z

x

W

dW

C

y

x
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Composite Body

If the body is a composite of several
shapes, each having a known location for
its center of gravity or centroid, then the
location of the center of gravity or
centroid of the body can be determined
from a discrete summation using its
composite parts.

z =
©z'W
©W

y =
©y'W
©W

x =
©x'W
©W

x

y

z

Theorems of Pappus and Guldinus

The theorems of Pappus and Guldinus
can be used to determine the surface
area and volume of a body of revolution.

The surface area equals the product of the
length of the generating curve and the
distance traveled by the centroid of
the curve needed to generate the area.

The volume of the body equals the
product of the generating area and the
distance traveled by the centroid of this
area needed to generate the volume.

A = urL

V = urA
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General Distributed Loading

The magnitude of the resultant force is
equal to the total volume under the
distributed-loading diagram. The line of
action of the resultant force passes
through the geometric center or
centroid of this volume.

y = LV
y dV

LV
dV

x = LV
x dV

LV
dV

FR =
LA
p1x, y2 dA =

LV
dV

Fluid Pressure

The pressure developed by a liquid at a
point on a submerged surface depends
upon the depth of the point and the
density of the liquid in accordance with
Pascal’s law, This
pressure will create a linear distribution
of loading on a flat vertical or inclined
surface.

If the surface is horizontal, then the
loading will be uniform.

In any case, the resultants of these
loadings can be determined by finding
the volume under the loading curve or
using , where is the depth to
the centroid of the plate’s area. The line
of action of the resultant force passes
through the centroid of the volume of
the loading diagram and acts at a point P
on the plate called the center of
pressure.

zFR = gzA

p = rgh = gh.

x y

y
x

dF

p

dVdA

p � p(x, y)

Liquid surface

P

FR
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REVIEW PROBLEMS

9–123. Locate the centroid of the solid.z

9–122. Locate the centroid of the beam’s cross-sectional
area.

y

*9–120. Locate the centroid of the shaded area.
•9–121. Locate the centroid of the shaded area.y

x

*9–124. The steel plate is 0.3 m thick and has a density of
Determine the location of its center of mass. Also

compute the reactions at the pin and roller support.
7850 kg>m3.

y

x

1 in. 1 in.

4 in.

1 in.

y � x2

Probs. 9–120/121

100 mm

25 mm

25 mm

x

25 mm

y

50 mm 50 mm

y

75 mm75 mm

C

Prob. 9–122

z

x

2a

y

y2 � a a –     
z
–
2

a

Prob. 9–123

A

B

x

y

y2 � 2x

y � �x

2 m

2 m

2 m

Prob 9.124
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9–127. Locate the centroid of the shaded area.y

9–126. Determine the location ( , ) of the centroid for
the structural shape. Neglect the thickness of the member.

yx

•9–125. Locate the centroid ( , ) of the area.yx *9–128. The load over the plate varies linearly along the
sides of the plate such that . Determine
the resultant force and its position ( , ) on the plate.yx

p = 2
3 [x(4 - y)] kPa

y

x

3 in.
1 in.

3 in.6 in.

Prob. 9–125

1.5 in. 1.5 in. 1.5 in. 1.5 in.
1 in.1 in.

3 in.

x

y

Prob. 9–126

x

y

a—
2

a—
2

a

aa

Prob. 9–127

p

3 m

4 m

y

x

8 kPa

Prob. 9–128

p

x

y

6 m

5 m

100 Pa

300 Pa

Prob. 9–129

•9–129. The pressure loading on the plate is described by
the function . Determine
the magnitude of the resultant force and coordinates of the
point where the line of action of the force intersects
the plate.

p = 5-240>(x + 1) + 3406 Pa



The design of a structural member, such as a beam or column, requires calculation of
its cross-sectional moment of inertia. In this chapter, we will discuss how this is done.



Moments of Inertia

CHAPTER OBJECTIVES

• To develop a method for determining the moment of inertia for 
an area.

• To introduce the product of inertia and show how to determine the
maximum and minimum moments of inertia for an area.

• To discuss the mass moment of inertia.

10.1 Definition of Moments of Inertia 
for Areas

Whenever a distributed loading acts perpendicular to an area and its
intensity varies linearly, the computation of the moment of the loading
distribution about an axis will involve a quantity called the moment of
inertia of the area. For example, consider the plate in Fig. 10–1, which is
subjected to a fluid pressure p. As discussed in Sec. 9.5, this pressure p
varies linearly with depth, such that , where is the specific
weight of the fluid. Thus, the force acting on the differential area of
the plate is . The moment of this force about the

axis is therefore , and so integrating over the
entire area of the plate yields .The integral is called
the moment of inertia of the area about the axis. Integrals of this
form often arise in formulas used in fluid mechanics, mechanics of
materials, structural mechanics, and mechanical design, and so the
engineer needs to be familiar with the methods used for their
computation.

xIx
1y

2dAM = g1y
2dA

dMdM = y dF = gy2dAx
dF = p dA = (g y)dA

dA
gp = gy

10

y

x

z

y

dF

dAp � gy

Fig. 10–1
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Moment of Inertia. By definition, the moments of inertia of a
differential area dA about the x and y axes are and

respectively, Fig. 10–2. For the entire area A the moments
of inertia are determined by integration; i.e.,

(10–1)

We can also formulate this quantity for dA about the “pole” O or
z axis, Fig. 10–2. This is referred to as the polar moment of inertia. It is
defined as where r is the perpendicular distance from the
pole (z axis) to the element dA. For the entire area the polar moment of
inertia is

(10–2)

This relation between and is possible since 
Fig. 10–2.

From the above formulations it is seen that and will always
be positive since they involve the product of distance squared and area.
Furthermore, the units for moment of inertia involve length raised to the
fourth power, e.g., or 

10.2 Parallel-Axis Theorem for an Area

The parallel-axis theorem can be used to find the moment of inertia of an
area about any axis that is parallel to an axis passing through the centroid
and about which the moment of inertia is known.To develop this theorem,
we will consider finding the moment of inertia of the shaded area shown
in Fig. 10–3 about the x axis.To start, we choose a differential element dA
located at an arbitrary distance from the centroidal axis. If the
distance between the parallel x and axes is then the moment of
inertia of dA about the x axis is . For the entire area,

=
LA
y¿2 dA + 2dy

LA
y¿ dA + dy2

LA
dA

Ix =
LA
1y¿ + dy22 dA

dIx = 1y¿ + dy22 dA
dy,x¿

x¿y¿

in4.ft4,mm4,m4,

JOIy,Ix,

r2 = x2 + y2,IyIx,JO

JO =
LA
r2 dA = Ix + Iy

dJO = r2 dA,

Ix =
LA
y2 dA

Iy =
LA
x2 dA

dIy = x2 dA,
dIx = y2 dA

O
x

y

y

x

r

dA

A

Fig. 10–2

O
x

y

d

dx

dy

x¿

y�

x¿

y¿
dA

C

Fig. 10–3
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The first integral represents the moment of inertia of the area about the
centroidal axis, The second integral is zero since the axis passes
through the area’s centroid C; i.e., since
Since the third integral represents the total area A, the final result is
therefore

(10–3)

A similar expression can be written for i.e.,

(10–4)

And finally, for the polar moment of inertia, since and
, we have

(10–5)

The form of each of these three equations states that the moment of
inertia for an area about an axis is equal to its moment of inertia about a
parallel axis passing through the area’s centroid plus the product of the
area and the square of the perpendicular distance between the axes.

10.3 Radius of Gyration of an Area

The radius of gyration of an area about an axis has units of length and is
a quantity that is often used for the design of columns in structural
mechanics. Provided the areas and moments of inertia are known, the radii
of gyration are determined from the formulas

(10–6)

The form of these equations is easily remembered since it is similar to
that for finding the moment of inertia for a differential area about 
an axis. For example, whereas for a differential area,
dIx = y2 dA.

Ix = kx2A;

kO =
D

JO
A

ky =
D

Iy

A

kx =
D

Ix
A

JO = JC + Ad2

d2 = d2
x + d2

y

JC = Ix¿ + Iy¿

Iy = Iy¿ + Adx2

Iy;

Ix = Ix¿ + Ady2

y¿ = 0.1y¿ dA = y¿1dA = 0
x¿Ix¿.

In order to predict the strength and
deflection of this beam, it is necessary to
calculate the moment of inertia of the
beam’s cross-sectional area.
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y

(a)

y

x

dy

x

(x, y)

y � f(x)

dA

x

(b)

y

x

y

dx

(x, y)

dA

y � f(x)

Procedure for Analysis

In most cases the moment of inertia can be determined using a
single integration. The following procedure shows two ways in
which this can be done.
• If the curve defining the boundary of the area is expressed as

, then select a rectangular differential element such that
it has a finite length and differential width.

• The element should be located so that it intersects the curve at
the arbitrary point (x, y).

Case 1
• Orient the element so that its length is parallel to the axis about

which the moment of inertia is computed.This situation occurs when
the rectangular element shown in Fig. 10–4a is used to determine 
for the area.Here the entire element is at a distance y from the x axis
since it has a thickness .Thus .To find , the element
is oriented as shown in Fig. 10–4b. This element lies at the same
distance x from the y axis so that .

Case 2
• The length of the element can be oriented perpendicular to the axis

about which the moment of inertia is computed; however, Eq. 10–1
does not apply since all points on the element will not lie at the same
moment-arm distance from the axis. For example, if the rectangular
element in Fig. 10–4a is used to determine , it will first be
necessary to calculate the moment of inertia of the element about
an axis parallel to the y axis that passes through the element’s
centroid, and then determine the moment of inertia of the element
about the y axis using the parallel-axis theorem. Integration of this
result will yield . See Examples 10.2 and 10.3.Iy

Iy

Iy = 1x
2
dA

IyIx = 1y
2dAdy

Ix

y = f(x)

Fig. 10–4
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EXAMPLE 10.1

Determine the moment of inertia for the rectangular area shown in
Fig. 10–5 with respect to (a) the centroidal axis, (b) the axis 
passing through the base of the rectangle, and (c) the pole or axis
perpendicular to the plane and passing through the centroid C.

SOLUTION (CASE 1)

Part (a). The differential element shown in Fig. 10–5 is chosen for
integration. Because of its location and orientation, the entire element
is at a distance from the axis. Here it is necessary to integrate
from to Since then

Ans.

Part (b). The moment of inertia about an axis passing through the
base of the rectangle can be obtained by using the above result of part
(a) and applying the parallel-axis theorem, Eq. 10–3.

Ans.

Part (c). To obtain the polar moment of inertia about point C, we
must first obtain which may be found by interchanging the
dimensions b and h in the result of part (a), i.e.,

Using Eq. 10–2, the polar moment of inertia about C is therefore

Ans.JC = Ix¿ + Iy¿ =
1

12
bh1h2 + b22

Iy¿ =
1

12
hb3

Iy¿,

=
1
12
bh3 + bhah

2
b2

=
1
3
bh3

Ixb = Ix¿ + Ady2

Ix¿ =
1

12
bh3

Ix¿ =
LA
yœ2 dA =

L

h>2

-h>2
yœ21b dy¿2 = b

L

h>2

-h>2
yœ2 dyœ

dA = b dy¿,y¿ = h>2.y¿ = -h>2 x¿y¿

x¿–y¿
z¿
xbx¿

x¿

y¿

y¿

xb

C

dy¿

b
2

b
2

h
2

h
2

Fig. 10–5
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x

y

200 mm

100 mm

y

x
dy

y2 � 400x

(a)

(100 – x)

x

y

200 mm

x

y

100 mm

dx

x¿

y2 � 400x

(b)

y �~ y
––
2

Fig. 10–6

Determine the moment of inertia for the shaded area shown in 
Fig. 10–6a about the x axis.

SOLUTION I (CASE 1)
A differential element of area that is parallel to the x axis, as shown in
Fig. 10–6a, is chosen for integration. Since this element has a thickness
dy and intersects the curve at the arbitrary point (x, y), its area is

Furthermore, the element lies at the same
distance y from the x axis. Hence, integrating with respect to y, from

to yieldsy = 200 mm,y = 0

dA = 1100 - x2 dy.

EXAMPLE 10.2

Ans.= 10711062 mm4

=
L

200 mm

0
y2a100 -

y2

400
b dy =

L

200 mm

0
a100y2 -

y4

400
bdy

Ix =
LA
y2 dA =

L

200 mm

0
y21100 - x2 dy

SOLUTION II (CASE 2)
A differential element parallel to the y axis, as shown in Fig. 10–6b, is
chosen for integration. It intersects the curve at the arbitrary point (x, y).
In this case, all points of the element do not lie at the same distance
from the x axis, and therefore the parallel-axis theorem must be used
to determine the moment of inertia of the element with respect to this
axis. For a rectangle having a base b and height h, the moment of
inertia about its centroidal axis has been determined in part (a) of
Example 10.1.There it was found that For the differential
element shown in Fig. 10–6b, and and thus

Since the centroid of the element is from the
x axis, the moment of inertia of the element about this axis is

(This result can also be concluded from part (b) of Example 10.1.)
Integrating with respect to x, from to yields

Ans.= 10711062 mm4

Ix =
L
dIx =

L

100 mm

0

1
3
y3 dx =

L

100 mm

0

1
3
1400x23>2 dx

x = 100 mm,x = 0

dIx = dIx¿ + dA y'2 =
1

12
dx y3 + y dxay

2
b2

=
1
3
y3 dx

y
' = y>2dIx¿ = 1

12dx y
3.

h = y,b = dx
Ix¿ = 1

12bh
3.
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EXAMPLE 10.3

Determine the moment of inertia with respect to the x axis for the
circular area shown in Fig. 10–7a.

SOLUTION I (CASE 1)
Using the differential element shown in Fig. 10–7a, since
we have

Ans.

SOLUTION II (CASE 2)
When the differential element shown in Fig. 10–7b is chosen, the
centroid for the element happens to lie on the x axis, and since

for a rectangle, we have

Integrating with respect to x yields

Ans.

NOTE: By comparison, Solution I requires much less computation.
Therefore, if an integral using a particular element appears difficult to
evaluate, try solving the problem using an element oriented in the
other direction.

Ix =
L

a

-a

2
3
1a2 - x223>2 dx =

pa4

4

=
2
3
y3 dx

dIx =
1

12
dx12y23

Ix¿ = 1
12bh

3

=
L

a

-a
y2 A22a2 - y2 B dy =

pa4

4

Ix =
LA
y2 dA =

LA
y212x2 dy

dA = 2x dy,

x

y

y

x�x

dy

(�x, y)
(x, y)

x2 � y2 � a2

(a)

O

a

O
x

y

a

(x, y)

(x, �y)
dx

y

�y

(b)

(x, y)~ ~

x2 � y2 � a2

Fig. 10–7
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y

x

1 m

1 m

y3 � x2   

y

x

1 m

1 m

y3 � x2   

F10–2

y

x

1 m

1 m

y3 � x2   

y

x

1 m

1 m

y3 � x2   

F10–4

F10–3. Determine the moment of inertia of the shaded
area about the y axis.

F10–2. Determine the moment of inertia of the shaded
area about the x axis.

F10–1. Determine the moment of inertia of the shaded
area about the x axis.

F10–4. Determine the moment of inertia of the shaded
area about the y axis.

FUNDAMENTAL PROBLEMS

F10–1 F10–3
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y

x

2 m

2 m

y � 0.25 x3

Probs. 10–1/2

•10–5. Determine the moment of inertia of the area about
the axis.

10–6. Determine the moment of inertia of the area about
the axis.y

x

10–3. Determine the moment of inertia of the area about
the axis.

*10–4. Determine the moment of inertia of the area about
the axis.y

x

•10–1. Determine the moment of inertia of the area about
the axis.

10–2. Determine the moment of inertia of the area about
the axis.y

x

10–7. Determine the moment of inertia of the area about
the axis.

*10–8. Determine the moment of inertia of the area about
the axis.

•10–9. Determine the polar moment of inertia of the area
about the axis passing through point .Oz

y

x

PROBLEMS

y

x

y2 � x3       1 m

1 m

Probs. 10–3/4

y

x

y2 � 2x

2 m

2 m

Probs. 10–5/6

y

x
O

y � 2x4      2 m

1 m

Probs. 10–7/8/9
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y

x

2 in.

8 in.

y � x3

Probs. 10–10/11

10–14. Determine the moment of inertia of the area about
the x axis. Solve the problem in two ways, using rectangular
differential elements: (a) having a thickness of dx, and 
(b) having a thickness of dy.

10–15. Determine the moment of inertia of the area about
the y axis. Solve the problem in two ways, using rectangular
differential elements: (a) having a thickness of dx, and 
(b) having a thickness of dy.

*10–12. Determine the moment of inertia of the area
about the x axis.

•10–13. Determine the moment of inertia of the area
about the y axis.

10–10. Determine the moment of inertia of the area about
the x axis.

10–11. Determine the moment of inertia of the area about
the y axis.

x

y

1 in.

2 in.
y � 2 – 2 x 3

Probs. 10–12/13

1 in. 1 in.

4 in.

y � 4 – 4x2

x

y

Probs. 10–14/15 k

*10–16. Determine the moment of inertia of the triangular
area about the x axis.
•10–17. Determine the moment of inertia of the triangular
area about the y axis.

y �      (b � x)h––b

y

x

b

h

Probs. 10–16/17
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10–22. Determine the moment of inertia of the area about
the x axis.

10–23. Determine the moment of inertia of the area about
the y axis.

*10–20. Determine the moment of inertia of the area
about the x axis.

•10–21. Determine the moment of inertia of the area
about the y axis.

10–18. Determine the moment of inertia of the area about
the x axis.

10–19. Determine the moment of inertia of the area about
the y axis.

*10–24. Determine the moment of inertia of the area
about the axis.

•10–25. Determine the moment of inertia of the area
about the axis.

10–26. Determine the polar moment of inertia of the area
about the axis passing through point O.z

y

x

x

y

b

h

y �         x2 h—
b2

Probs. 10–18/19

y

x

y3 � x
2 in.

8 in.

Probs. 10–20/21

y

x

y � 2 cos (    x)––
8

2 in.

4 in.4 in.

π

Probs. 10–22/23

y

x

x2 � y2 � r2   

r0

0

Probs. 10–24/25/26



For design or analysis of this Tee beam,
engineers must be able to locate the
centroid of its cross-sectional area, and
then find the moment of inertia of this
area about the centroidal axis.
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10.4 Moments of Inertia for 
Composite Areas

A composite area consists of a series of connected “simpler” parts or
shapes, such as rectangles, triangles, and circles. Provided the moment of
inertia of each of these parts is known or can be determined about a
common axis, then the moment of inertia for the composite area about
this axis equals the algebraic sum of the moments of inertia of all its parts.

Procedure for Analysis

The moment of inertia for a composite area about a reference axis
can be determined using the following procedure.

Composite Parts.
• Using a sketch, divide the area into its composite parts and

indicate the perpendicular distance from the centroid of each
part to the reference axis.

Parallel-Axis Theorem.
• If the centroidal axis for each part does not coincide with the

reference axis, the parallel-axis theorem, should be
used to determine the moment of inertia of the part about the
reference axis. For the calculation of , use the table on the inside
back cover.

Summation.
• The moment of inertia of the entire area about the reference axis

is determined by summing the results of its composite parts
about this axis.

• If a composite part has a “hole,” its moment of inertia is found 
by “subtracting” the moment of inertia of the hole from the
moment of inertia of the entire part including the hole.

I

I = I + Ad2,
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x

100 mm

75 mm

75 mm

25 mm

(a)

x

100 mm

75 mm

75 mm

25 mm

–

(b)

Fig. 10–8

EXAMPLE 10.4

Determine the moment of inertia of the area shown in Fig. 10–8a
about the x axis.

SOLUTION

Composite Parts. The area can be obtained by subtracting the
circle from the rectangle shown in Fig. 10–8b. The centroid of each
area is located in the figure.

Parallel-Axis Theorem. The moments of inertia about the x axis
are determined using the parallel-axis theorem and the data in the
table on the inside back cover.

Circle

Rectangle

Summation. The moment of inertia for the area is therefore

Ans.= 10111062 mm4

Ix = -11.411062 + 112.511062

=
1

12
11002115023 + 110021150217522 = 112.511062 mm4

Ix = Ixœ + Ady2

=
1
4
p12524 + p1252217522 = 11.411062 mm4

Ix = Ixœ + Ady2
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Determine the moments of inertia for the cross-sectional area of the
member shown in Fig. 10–9a about the x and y centroidal axes.

SOLUTION

Composite Parts. The cross section can be subdivided into the three
rectangular areas A, B, and D shown in Fig. 10–9b. For the calculation,
the centroid of each of these rectangles is located in the figure.

Parallel-Axis Theorem. From the table on the inside back cover, or
Example 10.1, the moment of inertia of a rectangle about its
centroidal axis is Hence, using the parallel-axis theorem
for rectangles A and D, the calculations are as follows:

Rectangles A and D

Rectangle B

Summation. The moments of inertia for the entire cross section 
are thus

Ans.

Ans.= 5.6011092 mm4

Iy = 2[1.9011092] + 1.8011092
= 2.9011092 mm4

Ix =  2[1.42511092] + 0.0511092

Iy =
1

12
11002160023 = 1.8011092 mm4

Ix =
1

12
16002110023 = 0.0511092 mm4

= 1.9011092 mm4

Iy = Iy¿ + Adx2 =
1

12
13002110023 + 1100213002125022

= 1.42511092 mm4

Ix = Ix¿ + Ady2 =
1

12
11002130023 + 1100213002120022

I = 1
12bh

3.

EXAMPLE 10.5

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

100 mm

100 mm

x

y

300 mm

300 mm
200 mm

250 mm

200 mm

(b)

A

B

D

250 mm

Fig. 10–9
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FUNDAMENTAL PROBLEMS

F10–7. Determine the moment of inertia of the cross-
sectional area of the channel with respect to the y axis.

F10–6. Determine the moment of inertia of the beam’s
cross-sectional area about the centroidal x and y axes.

F10–5. Determine the moment of inertia of the beam’s
cross-sectional area about the centroidal x and y axes.

F10–8. Determine the moment of inertia of the cross-
sectional area of the T-beam with respect to the axis
passing through the centroid of the cross section.

x¿

300 mm

200 mm

30 mm 30 mm

30 mm

30 mm

x

y

F10–6

x

y

50 mm

50 mm

300 mm

50 mm

200 mm

F10–7

30 mm

150 mm

150 mm

30 mm

y

x¿

F10–8

F10–5

200 mm

150 mm 150 mm

200 mm

50 mm

50 mm

x

y
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2 in.

4 in.

1 in.1 in.

C
x¿

x 

y

y

6 in.

Probs. 10–27/28/29

PROBLEMS

*10–32. Determine the moment of inertia of the
composite area about the axis.

•10–33. Determine the moment of inertia of the
composite area about the axis.y

x

10–30. Determine the moment of inertia of the beam’s
cross-sectional area about the axis.

10–31. Determine the moment of inertia of the beam’s
cross-sectional area about the axis.y

x

10–27. Determine the distance to the centroid of the
beam’s cross-sectional area; then find the moment of inertia
about the axis.

*10–28. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

•10–29. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

x¿

y

10–34. Determine the distance to the centroid of the
beam’s cross-sectional area; then determine the moment of
inertia about the axis.

10–35. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

x¿

y

y

x

15 mm15 mm
60 mm60 mm

100 mm

100 mm

50 mm

50 mm

15 mm

15 mm

Probs. 10–30/31

y

x

150 mm

300 mm

150 mm

100 mm

100 mm

75 mm

Probs. 10–32/33

x

x¿C

y

50 mm 50 mm
75 mm

25 mm

25 mm

75 mm

100 mm

_
y

25 mm

25 mm

100 mm

Probs. 10–34/35
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•10–41. Determine the moment of inertia of the beam’s
cross-sectional area about the axis.

10–42. Determine the moment of inertia of the beam’s
cross-sectional area about the axis.y

x

10–38. Determine the distance to the centroid of the
beam’s cross-sectional area; then find the moment of inertia
about the axis.

10–39. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

*10–40. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis.

x¿

y

*10–36. Locate the centroid of the composite area, then
determine the moment of inertia of this area about the
centroidal axis.

•10–37. Determine the moment of inertia of the
composite area about the centroidal axis.y

x¿

y

10–43. Locate the centroid of the cross-sectional area
for the angle. Then find the moment of inertia about the

centroidal axis.

*10–44. Locate the centroid of the cross-sectional area
for the angle. Then find the moment of inertia about the

centroidal axis.y¿
Iy¿

x

x¿
Ix¿

y

y

1 in.1 in.

2 in.

3 in.

5 in.
x¿

x
y

3 in.

C

Probs. 10–36/37

300 mm

100 mm

200 mm

50 mm 50 mm

y

C

x 

y

x¿

Probs. 10–38/39/40

y

50 mm 50 mm

15 mm
115 mm

115 mm

7.5 mm
x

15 mm

Probs. 10–41/42

6 in.
2 in.

6 in.

x 
2 in.

C x¿

y¿y

–x

–y

Probs. 10–43/44
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•10–49. Determine the moment of inertia of the
section. The origin of coordinates is at the centroid C.

10–50. Determine the moment of inertia of the section.
The origin of coordinates is at the centroid C.

Iy¿

Ix¿

10–47. Determine the moment of inertia of the composite
area about the centroidal axis.

*10–48. Locate the centroid of the composite area, then
determine the moment of inertia of this area about the 

axis.x¿

y

y

•10–45. Determine the moment of inertia of the
composite area about the axis.

10–46. Determine the moment of inertia of the composite
area about the axis.y

x

10–51. Determine the beam’s moment of inertia about
the centroidal axis.

*10–52. Determine the beam’s moment of inertia about
the centroidal axis.y

Iy

x
Ix

y

x

150 mm 150 mm

150 mm

150 mm

Probs. 10–45/46

x

x¿

y

C

400 mm

240 mm

50 mm

150 mm 150 mm

50 mm

50 mm

y

Probs. 10–47/48

200 mm600 mm

20 mm

C

y¿

x¿

200 mm

20 mm

20 mm

Probs. 10–49/50

y

x
50 mm

50 mm

100 mm

15 mm
15 mm

10 mm

100 mm

C

Probs. 10–51/52
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•10–57. Determine the moment of inertia of the beam’s
cross-sectional area about the axis.

10–58. Determine the moment of inertia of the beam’s
cross-sectional area about the axis.y

x

10–55. Determine the moment of inertia of the cross-
sectional area about the axis.

*10–56. Locate the centroid of the beam’s cross-
sectional area, and then determine the moment of inertia of
the area about the centroidal axis.y¿

x

x

•10–53. Locate the centroid of the channel’s cross-
sectional area, then determine the moment of inertia of the
area about the centroidal axis.

10–54. Determine the moment of inertia of the area of the
channel about the axis.y

x¿

y

10–59. Determine the moment of inertia of the beam’s
cross-sectional area with respect to the axis passing
through the centroid C of the cross section. .y = 104.3 mm

x¿

6 in.

0.5 in.

0.5 in.

0.5 in.
6.5 in. 6.5 in.

y

C
x¿

x

y

Probs. 10–53/54

100 mm10 mm

10 mm

180 mm x

y¿y

C

100 mm

10 mm

x

Probs. 10–55/56

y

100 mm
12 mm

125 mm

75 mm12 mm

75 mm
x

12 mm

25 mm

125 mm

12 mm

Probs. 10–57/58

x¿C

A

B
–y

150 mm

15 mm

35 mm

50 mm

Prob. 10–59
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*10.5 Product of Inertia for an Area

It will be shown in the next section that the property of an area, called
the product of inertia, is required in order to determine the maximum and
minimum moments of inertia for the area.These maximum and minimum
values are important properties needed for designing structural and
mechanical members such as beams, columns, and shafts.

The product of inertia of the area in Fig. 10–10 with respect to the 
and axes is defined as

(10–7)

If the element of area chosen has a differential size in two directions, as
shown in Fig. 10–10, a double integration must be performed to evaluate

Most often, however, it is easier to choose an element having a
differential size or thickness in only one direction in which case the
evaluation requires only a single integration (see Example 10.6).

Like the moment of inertia, the product of inertia has units of length
raised to the fourth power, e.g., or However, since x or y
may be negative, the product of inertia may either be positive, negative,
or zero, depending on the location and orientation of the coordinate
axes. For example, the product of inertia for an area will be zero if
either the x or y axis is an axis of symmetry for the area, as in Fig. 10–11.
Here every element dA located at point (x, y) has a corresponding
element dA located at (x, ). Since the products of inertia for these
elements are, respectively, xy dA and the algebraic sum or
integration of all the elements that are chosen in this way will cancel
each other. Consequently, the product of inertia for the total area
becomes zero. It also follows from the definition of that the “sign” of
this quantity depends on the quadrant where the area is located. As
shown in Fig. 10–12, if the area is rotated from one quadrant to another,
the sign of will change.Ixy

Ixy

-xy dA,
-y

Ixy

in4.ft4,mm4m4,

Ixy.

Ixy =
LA
xy dA

y
x

x

y

x

y

A

dA

Fig. 10–10

x

y

x

y
�y

dA

dA

Fig. 10–11

The effectiveness of this beam to resist
bending can be determined once its
moments of inertia and its product of
inertia are known.
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Parallel-Axis Theorem. Consider the shaded area shown in 
Fig. 10–13, where and represent a set of axes passing through the
centroid of the area, and x and y represent a corresponding set of parallel
axes. Since the product of inertia of dA with respect to the x and y axes is

then for the entire area,

The first term on the right represents the product of inertia for the
area with respect to the centroidal axes, The integrals in the second
and third terms are zero since the moments of the area are taken about
the centroidal axis. Realizing that the fourth integral represents the
entire area A, the parallel-axis theorem for the product of inertia
becomes

(10–8)

It is important that the algebraic signs for and be maintained
when applying this equation.

dydx

Ixy = Ix¿y¿ + Adxdy

Ix¿y¿.

=
LA
x¿y¿ dA + dx

LA
y¿ dA + dy

LA
x¿ dA + dxdy

LA
dA

Ixy =
LA
1x¿ + dx21y¿ + dy2 dA

dIxy = 1x¿ + dx21y¿ + dy2 dA,

y¿x¿

x

y

yy

�x x

�x

�y �y

xIxy � � xy dA

Ixy � � xy dAIxy �  xy dA

Ixy �  xy dA

Fig. 10–12

x

y

x¿

y¿

dx

dy

C

dA y¿

x¿

Fig. 10–13
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x

y

h

b

(a)

x

y

h

b

(x, y)

dx

y

(b)

(x, y)~ ~

y � xh
b

x

y

h

b

(x, y)

dy

y(b � x)

x

(c)

(x, y)~ ~

y � xh
b

Fig. 10–14

Determine the product of inertia for the triangle shown in 
Fig. 10–14a.

SOLUTION I
A differential element that has a thickness dx, as shown in Fig. 10–14b,
has an area The product of inertia of this element with
respect to the x and y axes is determined using the parallel-axis theorem.

where and locate the centroid of the element or the origin of the
axes. (See Fig. 10–13.) Since due to symmetry, and

then

Integrating with respect to x from to yields

Ans.

SOLUTION II
The differential element that has a thickness dy, as shown in Fig. 10–14c,
can also be used. Its area is . The centroid is located
at point so the product of
inertia of the element becomes

Integrating with respect to y from to yields

Ans.Ixy =
1
2 L

h

0
yab2 -

b2

h2 y
2b dy =

b2h2

8

y = hy = 0

= ab -
b

h
yb dy cb + 1b>h2y

2
dy =

1
2
yab2 -

b2

h2 y
2b dy

= 0 + 1b - x2 dyab + x
2
by

dIxy = dIx¿y¿ + dA x'y'

y
' = y,x

' = x + 1b - x2>2 = 1b + x2>2,
dA = 1b - x2 dy

Ixy =
h2

2b2
L

b

0
x3 dx =

b2h2

8

x = bx = 0

=
h2

2b2 x
3 dx

dIxy = 0 + 1y dx2xay
2
b = ah

b
x dxbxa h

2b
xb

y
' = y>2,x

' = x,
dIx¿y¿ = 0,y¿x¿,

y
'

x
'

dIxy = dIx¿y¿ + dA x' y'

dA = y dx.

Ixy

EXAMPLE 10.6
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100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

100 mm

100 mm

x

y

300 mm

300 mm
200 mm

250 mm

200 mm

(b)

A

B

D

250 mm

Fig. 10–15

EXAMPLE 10.7

Determine the product of inertia for the cross-sectional area of the
member shown in Fig. 10–15a, about the x and y centroidal axes.

SOLUTION
As in Example 10.5, the cross section can be subdivided into three
composite rectangular areas A, B, and D, Fig. 10–15b.The coordinates
for the centroid of each of these rectangles are shown in the figure.
Due to symmetry, the product of inertia of each rectangle is zero about
a set of axes that passes through the centroid of each rectangle.
Using the parallel-axis theorem, we have

Rectangle A

Rectangle B

Rectangle D

The product of inertia for the entire cross section is therefore

Ans.

NOTE: This negative result is due to the fact that rectangles A and D
have centroids located with negative x and negative y coordinates,
respectively.

Ixy = -1.5011092 + 0 - 1.5011092 = -3.0011092 mm4

= 0 + 1300211002125021-2002 = -1.5011092 mm4

Ixy = Ix¿y¿ + Adxdy

= 0 + 0 = 0

Ixy = Ix¿y¿ + Adxdy

= 0 + 13002110021-250212002 = -1.5011092 mm4

Ixy = Ix¿y¿ + Adxdy

y¿x¿,
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*10.6 Moments of Inertia for an Area
about Inclined Axes

In structural and mechanical design, it is sometimes necessary to calculate
the moments and product of inertia and for an area with respect
to a set of inclined u and axes when the values for and are
known.To do this we will use transformation equations which relate the x,
y and u, coordinates. From Fig. 10–16, these equations are

With these equations, the moments and product of inertia of dA about
the u and axes become

Expanding each expression and integrating, realizing that 
and we obtain

Using the trigonometric identities and
we can simplify the above expressions, in which case

(10–9)

Notice that if the first and second equations are added together, we can
show that the polar moment of inertia about the z axis passing through
point O is, as expected, independent of the orientation of the u and
axes; i.e.,

JO = Iu + Iv = Ix + Iy

v

Iu =
Ix + Iy

2
+
Ix - Iy

2
cos 2u - Ixy sin 2u

Iv =
Ix + Iy

2
-
Ix - Iy

2
cos 2u + Ixy sin 2u

Iuv =
Ix - Iy

2
sin 2u + Ixy cos 2u

= cos2 u - sin2 u

cos 2 usin 2 u = 2 sin u cos u

Iuv = Ix sin u cos u - Iy sin u cos u + Ixy1cos2 u - sin2 u2
Iv = Ix sin2 u + Iy cos2 u + 2Ixy sin u cos u

Iu = Ix cos2 u + Iy sin2 u - 2Ixy sin u cos u

Ixy = 1xy dA,Iy = 1x
2 dA,

Ix = 1y
2 dA,

dIuv = uv dA = 1x cos u + y sin u21y cos u - x sin u2 dA
dIv = u2 dA = 1x cos u + y sin u22 dA
dIu = v2 dA = 1y cos u - x sin u22 dA
v

v = y cos u - x sin u

u = x cos u + y sin u

v

IxyIy,Ix,u,v
IuvIv,Iu,

x

y

O

u

v

A

dA

x

y

x cos u
u

v
y cos u

y sin u

x sin u

u

u

u

Fig. 10–16
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Principal Moments of Inertia. Equations 10–9 show that 
and depend on the angle of inclination, of the u, axes. We will
now determine the orientation of these axes about which the moments
of inertia for the area are maximum and minimum. This particular set of
axes is called the principal axes of the area, and the corresponding
moments of inertia with respect to these axes are called the principal
moments of inertia. In general, there is a set of principal axes for every
chosen origin O. However, for structural and mechanical design, the
origin O is located at the centroid of the area.

The angle which defines the orientation of the principal axes can be
found by differentiating the first of Eqs. 10–9 with respect to and
setting the result equal to zero. Thus,

Therefore, at 

(10–10)

The two roots and of this equation are 90° apart, and so they each
specify the inclination of one of the principal axes. In order to substitute
them into Eq. 10–9, we must first find the sine and cosine of and 
This can be done using these ratios from the triangles shown in
Fig. 10–17, which are based on Eq. 10–10.

Substituting each of the sine and cosine ratios into the first or second
of Eqs. 10–9 and simplifying, we obtain

(10–11)

Depending on the sign chosen, this result gives the maximum or
minimum moment of inertia for the area. Furthermore, if the above
trigonometric relations for and are substituted into the third of
Eqs. 10–9, it can be shown that that is, the product of inertia with
respect to the principal axes is zero. Since it was indicated in Sec. 10.6 that
the product of inertia is zero with respect to any symmetrical axis, it
therefore follows that any symmetrical axis represents a principal axis of
inertia for the area.

Iuv = 0;
up2

up1

Imax
min

=
Ix + Iy

2
;
C
aIx - Iy

2
b2

+ Ixy2

2up2
.2up1

up2
up1

tan 2up =
-Ixy

1Ix - Iy2>2

u = up,

dIu
du

= -2aIx - Iy
2

b  sin 2u - 2Ixy cos 2u = 0

u

vu,Iuv

Iv,Iu,

2up2

2up1

Ix � Iy

2( )

Ix � Iy

2( )�

�Ixy

Ixy

Ix � Iy

2( )2

� I2
xy

Fig. 10–17
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Determine the principal moments of inertia and the orientation of the
principal axes for the cross-sectional area of the member shown in
Fig. 10–18a with respect to an axis passing through the centroid.

SOLUTION
The moments and product of inertia of the cross section with respect
to the x, y axes have been determined in Examples 10.5 and 10.7. The
results are

Using Eq. 10–10, the angles of inclination of the principal axes u and
are

Thus, by inspection of Fig. 10–18b,

Ans.

The principal moments of inertia with respect to these axes are
determined from Eq. 10–11. Hence,

or

Ans.

NOTE: The maximum moment of inertia,
occurs with respect to the u axis since by inspection most of the cross-
sectional area is farthest away from this axis. Or, stated in another
manner, occurs about the u axis since this axis is located within

of the y axis, which has the larger value of Also, this
can be concluded by substituting the data with into the first
of Eqs. 10–9 and solving for .Iu

u = 57.1°
I 1Iy 7 Ix2.;45°

Imax

Imax = 7.5411092 mm4,

Imax = 7.5411092 mm4 Imin = 0.96011092 mm4

Imax
min

= 4.2511092 ; 3.2911092
;
C
c 2.9011092 - 5.6011092

2
d 2

+ [-3.0011092]2

=
2.9011092 + 5.6011092

2

Imax
min

=
Ix + Iy

2
;
C
aIx - Iy

2
b 2

+ Ixy2

up2
= -32.9° and up1

= 57.1°

 2up = -65.8° and 114.2°

 tan 2up =
-Ixy

1Ix - Iy2>2 =
- [-3.0011092]

[2.9011092 - 5.6011092]>2 = -2.22

v

Ix = 2.9011092 mm4 Iy = 5.6011092 mm4 Ixy = -3.0011092 mm4

EXAMPLE 10.8

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C

x

y

(b)

C

u

v
up1

� 57.1�

up2
� �32.9�

Fig. 10–18
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*10.7 Mohr’s Circle for Moments 
of Inertia

Equations 10–9 to 10–11 have a graphical solution that is convenient to use
and generally easy to remember. Squaring the first and third of Eqs. 10–9
and adding, it is found that

Here and are known constants. Thus, the above equation may
be written in compact form as

When this equation is plotted on a set of axes that represent the
respective moment of inertia and the product of inertia, as shown in 
Fig. 10–19, the resulting graph represents a circle of radius

and having its center located at point (a, 0), where The
circle so constructed is called Mohr’s circle, named after the German
engineer Otto Mohr (1835–1918).

a = 1Ix + Iy2>2.

R =
C
aIx - Iy

2
b2

+ Ixy2

1Iu - a22 + Iuv2 = R2

IxyIy,Ix,

aIu -
Ix + Iy

2
b2

+ Iuv2 = aIx - Iy
2

b2

+ Ixy2

x

y

u

v

up1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

(a)

P

I
O

Imax

Imin

A

(b)

2up1 Ixy

Ixy

Ix

R �
Ix � Iy

2

2

� I2
xy

Ix � Iy

2

Ix � Iy

2

Fig. 10–19
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Using trigonometry, the above procedure can be verified to be in
accordance with the equations developed in Sec. 10.6.

Procedure for Analysis

The main purpose in using Mohr’s circle here is to have a
convenient means for finding the principal moments of inertia for
an area. The following procedure provides a method for doing this.

Determine .

• Establish the x, y axes and determine and Fig. 10–19a.

Construct the Circle.

• Construct a rectangular coordinate system such that the abscissa
represents the moment of inertia I, and the ordinate represents
the product of inertia Fig. 10–19b.

• Determine the center of the circle, O, which is located at a
distance from the origin, and plot the reference point
A having coordinates ( ). Remember, is always positive,
whereas can be either positive or negative.

• Connect the reference point A with the center of the circle and
determine the distance OA by trigonometry. This distance
represents the radius of the circle, Fig. 10–19b. Finally, draw 
the circle.

Principal Moments of Inertia.

• The points where the circle intersects the axis give the values
of the principal moments of inertia and Notice that,
as expected, the product of inertia will be zero at these points,
Fig. 10–19b.

Principal Axes.

• To find the orientation of the major principal axis, use
trigonometry to find the angle measured from the radius
OA to the positive I axis, Fig. 10–19b. This angle represents twice
the angle from the x axis to the axis of maximum moment of
inertia Fig. 10–19a. Both the angle on the circle, and
the angle must be measured in the same sense, as shown in
Fig. 10–19. The axis for minimum moment of inertia is
perpendicular to the axis for Imax.

Imin

up1
,

2up1
,Imax,

2up1
,

Imax.Imin

I

Ixy

IxIxyIx,
1Ix + Iy2>2

Ixy,

Ixy,Iy,Ix,

Ix , Iy , and Ixy

x

y

u

v

up1

Axis for minor principal
moment of inertia, Imin

Axis for major principal
moment of inertia, Imax

(a)

P

I
O

Imax

Imin

A

(b)

2up1 Ixy

Ixy

Ix

R �
Ix � Iy

2

2

� I2
xy

Ix � Iy

2

Ix � Iy

2

Fig. 10–19
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EXAMPLE 10.9

Using Mohr’s circle, determine the principal moments of inertia and
the orientation of the major principal axes for the cross-sectional area
of the member shown in Fig. 10–20a, with respect to an axis passing
through the centroid.

Ixy (109) mm4

I (109) mm4O

(b)

4.25
2.90

1.35

�3.00

A (2.90, �3.00)

B

O

(c)

A (2.90, �3.00)

Imin � 0.960
Imax � 7.54

2up1
3.29

Ixy (109) mm4

I (109) mm4

x

y

C

u

v
up1

� 57.1�

(d)

Fig. 10–20

SOLUTION
Determine . The moments and product of inertia have
been determined in Examples 10.5 and 10.7 with respect to the x, y
axes shown in Fig. 10–20a. The results are 

and

Construct the Circle. The I and axes are shown in Fig. 10–20b.The
center of the circle, O, lies at a distance 
from the origin.When the reference point or is
connected to point O, the radius OA is determined from the triangle
OBA using the Pythagorean theorem.

The circle is constructed in Fig. 10–20c.

Principal Moments of Inertia. The circle intersects the I axis at
points (7.54, 0) and (0.960, 0). Hence,

Ans.

Ans.

Principal Axes. As shown in Fig. 10–20c, the angle is
determined from the circle by measuring counterclockwise from OA
to the direction of the positive I axis. Hence,

The principal axis for is therefore oriented at
an angle measured counterclockwise, from the positive x
axis to the positive u axis. The axis is perpendicular to this axis. The
results are shown in Fig. 10–20d.

v
up1

= 57.1°,
Imax = 7.5411092 mm4

2up1
= 180° - sin-1a ƒBA ƒ

ƒOA ƒ
b = 180° - sin-1a3.00

3.29
b = 114.2°

2up1

Imin = (4.25 - 3.29)109 = 0.96011092 mm4

Imax = (4.25 + 3.29)109 = 7.5411092 mm4

OA = 2(1.3522 + (-3.0022 = 3.29

A(2.90,-3.00)A(Ix, Ixy)
1Ix+Iy2>2 = 12.90 + 5.602>2 = 4.25

Ixy

Ixy = -3.0011092 mm4.Iy = 5.6011092 mm4,
Ix = 2.9011092 mm4,

Ix, Iy, Ixy

100 mm

400 mm

100 mm

100 mm
600 mm

400 mm

x

y

(a)

C



y

a

b

x

�       � 1x2
––
a2

y2
––
b2

Prob. 10–62

y

x
2 m

3 m

8y � x3 � 2x2 � 4x

Prob. 10–65

y

x

y � 2x2
2 in.

1 in.
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*10–64. Determine the product of inertia of the area with
respect to the and axes.yx

10–62. Determine the product of inertia of the quarter
elliptical area with respect to the and axes.yx

*10–60. Determine the product of inertia of the parabolic
area with respect to the x and y axes.

•10–61. Determine the product of inertia of the right
half of the parabolic area in Prob. 10–60, bounded by the
lines . and .x = 0y = 2 in

Ixy

•10–65. Determine the product of inertia of the area with
respect to the and axes.yx

PROBLEMS

Probs. 10–60/61

y

x

8 in.

2 in.
y3 � x

Prob. 10–63

y

x

y �      x––
4

4 in.

4 in.

(x � 8)

Prob. 10–64

y

x

2 m

1 m

y2 � 1 � 0.5x

Prob. 10–66

10–63. Determine the product of inertia for the area with
respect to the x and y axes.

10–66. Determine the product of inertia for the area with
respect to the x and y axes.
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10–70. Determine the product of inertia of the composite
area with respect to the and axes.yx

*10–68. Determine the product of inertia for the area of
the ellipse with respect to the x and y axes.

10–67. Determine the product of inertia for the area with
respect to the x and y axes.

10–71. Determine the product of inertia of the cross-
sectional area with respect to the x and y axes that have
their origin located at the centroid C.

•10–69. Determine the product of inertia for the parabolic
area with respect to the x and y axes.

y

x

y3 � x
b
h3

h

b

Prob. 10–67

y

x

4 in.

2 in.

x2 � 4y2 � 16

Prob. 10–68

y

4 in.

2 in.

x

y2 � x 

Prob. 10–69

1.5 in.

y

x

2 in.

2 in.

2 in. 2 in.

Prob. 10–70

4 in.

4 in.

x

y

5 in.

1 in.

1 in.

3.5 in.

0.5 in.

C

Prob. 10–71
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10–74. Determine the product of inertia for the beam’s
cross-sectional area with respect to the x and y axes that
have their origin located at the centroid C.

*10–72. Determine the product of inertia for the beam’s
cross-sectional area with respect to the x and y axes that
have their origin located at the centroid C.

x

y

5 mm

30 mm

5 mm

50 mm 
7.5 mm 

C

17.5 mm 

Prob. 10–72

x

y

300 mm

100 mm

10 mm

10 mm

10 mm

Prob. 10–73

1 in.

5 in.5 in.

5 in.

1 in.

C

5 in.

x

y

1 in.
0.5 in.

Prob. 10–74

y

x

u

x

200 mm

200 mm

175 mm

20 mm

20 mm

20 mm

C

60�

v

Prob. 10–75

•10–73. Determine the product of inertia of the beam’s
cross-sectional area with respect to the x and y axes.

10–75. Locate the centroid of the beam’s cross-sectional
area and then determine the moments of inertia and the
product of inertia of this area with respect to the and 

axes. The axes have their origin at the centroid C.v
u

x
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10–78. Determine the moments of inertia and the product
of inertia of the beam’s cross-sectional area with respect to
the and axes.vu

•10–77. Determine the product of inertia of the beam’s
cross-sectional area with respect to the centroidal and 

axes.y
x

*10–76. Locate the centroid ( , ) of the beam’s cross-
sectional area, and then determine the product of inertia of
this area with respect to the centroidal and axes.y¿x¿

yx

10–79. Locate the centroid of the beam’s cross-sectional
area and then determine the moments of inertia and the
product of inertia of this area with respect to the and 

axes.v
u

y

x¿

y¿

x

y

300 mm

200 mm

10 mm

10 mm

C
y

x

10 mm

100 mm

Prob. 10–76

x
C

150 mm

100 mm

100 mm

10 mm

10 mm

10 mm

y

150 mm

5 mm

Prob. 10–77

3 in.

1.5 in.

3 in.

y

u

x

1.5 in.

C

v

30�

Prob. 10–78

y

x

u

8 in.

4 in.

0.5 in.

0.5 in.

4.5 in.

0.5 in.

y

4.5 in.

C

v

60�

Prob. 10–79
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10–82. Locate the centroid of the beam’s cross-sectional
area and then determine the moments of inertia of this area
and the product of inertia with respect to the and axes.
The axes have their origin at the centroid C.

vu

y

•10–81. Determine the orientation of the principal axes,
which have their origin at centroid C of the beam’s cross-
sectional area. Also, find the principal moments of inertia.

*10–80. Locate the centroid and of the cross-sectional
area and then determine the orientation of the principal
axes, which have their origin at the centroid C of the area.
Also, find the principal moments of inertia.

yx

10–83. Solve Prob. 10–75 using Mohr’s circle.

*10–84. Solve Prob. 10–78 using Mohr’s circle.

•10–85. Solve Prob. 10–79 using Mohr’s circle.

10–86. Solve Prob. 10–80 using Mohr’s circle.

10–87. Solve Prob. 10–81 using Mohr’s circle.

*10–88. Solve Prob. 10–82 using Mohr’s circle.

y

x
6 in.

0.5 in.

6 in.

y

x

0.5 in.

C

Prob. 10–80

y

C
x

100 mm

100 mm

20 mm

20 mm

20 mm

150 mm

150 mm

Prob. 10–81

200 mm

25 mm

y

u

C
x

y

60�

75 mm75 mm

25 mm25 mm v

Prob. 10–82



10.8 MASS MOMENT OF INERTIA 545

10

10.8 Mass Moment of Inertia

The mass moment of inertia of a body is a measure of the body’s resistance
to angular acceleration. Since it is used in dynamics to study rotational
motion, methods for its calculation will now be discussed.* 

Consider the rigid body shown in Fig. 10–21. We define the mass
moment of inertia of the body about the z axis as

(10–12)

Here r is the perpendicular distance from the axis to the arbitrary
element dm. Since the formulation involves r, the value of I is unique for
each axis about which it is computed. The axis which is generally chosen,
however, passes through the body’s mass center G. Common units used
for its measurement are or 

If the body consists of material having a density , then 
Fig. 10–22a. Substituting this into Eq. 10–12, the body’s moment of
inertia is then computed using volume elements for integration; i.e.

(10–13)

For most applications, will be a constant, and so this term may be
factored out of the integral, and the integration is then purely a function
of geometry.

(10–14)I = r
LV
r2 dV

r

I =
LV
r2r dV

dm = r dV,r

slug # ft2.kg # m2

I =
Lm
r2 dm

*Another property of the body which measures the symmetry of the body’s mass with
respect to a coordinate system is the mass product of inertia. This property most often
applies to the three-dimensional motion of a body and is discussed in Engineering
Mechanics: Dynamics (Chapter 21).

r

dm

z

Fig. 10–21

z

y

x

dm � rdV

(x, y, z)

(a)

Fig. 10–22
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y

z

(x, y)

(b)

z

x
y dy

(c)

z

y

x

z

(x,y)

dzy

Fig. 10–22

Procedure for Analysis

If a body is symmetrical with respect to an axis, as in Fig. 10–22, then
its mass moment of inertia about the axis can be determined by
using a single integration. Shell and disk elements are used for this
purpose.

Shell Element.

• If a shell element having a height z, radius y, and thickness dy
is chosen for integration, Fig. 10–22b, then its volume is

• This element can be used in Eq. 10–13 or 10–14 for determining
the moment of inertia of the body about the z axis since the
entire element, due to its “thinness,” lies at the same perpendicular
distance from the z axis (see Example 10.10).

Disk Element.

• If a disk element having a radius y and a thickness dz is chosen
for integration, Fig. 10–22c, then its volume is 

• In this case the element is finite in the radial direction, and
consequently its points do not all lie at the same radial distance r
from the z axis. As a result, Eqs. 10–13 or 10–14 cannot be used to
determine Instead, to perform the integration using this
element, it is first necessary to determine the moment of inertia
of the element about the z axis and then integrate this result (see
Example 10.11).

Iz.

dV = 1py22 dz.

r = y

Iz

dV = 12py21z2 dy.
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EXAMPLE 10.10

Determine the mass moment of inertia of the cylinder shown in 
Fig. 10–23a about the z axis.The density of the material, is constant.r,

y

z

x

R

O

(a)

h
2

h
2

z
r dr

y

x

(b)

O

h
2

h
2

Fig. 10–23

SOLUTION

Shell Element. This problem will be solved using the shell element
in Fig. 10–23b and thus only a single integration is required. The
volume of the element is and so its mass is

Since the entire element lies at the same
distance r from the z axis, the moment of inertia of the element is

Integrating over the entire cylinder yields

Since the mass of the cylinder is

then

Ans.Iz =
1
2
mR2

m =
Lm
dm = r2ph

L

R

0
r dr = rphR2

Iz =
Lm
r2 dm = r2ph

L

R

0
r3 dr =

rp

2
R4h

dIz = r2 dm = r2phr3 dr

dm = r dV = r12phr dr2. dV = 12pr21h2 dr,
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A solid is formed by revolving the shaded area shown in Fig. 10–24a
about the y axis. If the density of the material is determine
the mass moment of inertia about the y axis.

5 slug>ft3,

EXAMPLE 10.11

SOLUTION

Disk Element. The moment of inertia will be determined using this
disk element, as shown in Fig. 10–24b. Here the element intersects the
curve at the arbitrary point (x, y) and has a mass

Although all points on the element are not located at the same
distance from the y axis, it is still possible to determine the moment of
inertia of the element about the y axis. In the previous example it
was shown that the moment of inertia of a homogeneous cylinder
about its longitudinal axis is where m and R are the mass
and radius of the cylinder. Since the height of the cylinder is not
involved in this formula, we can also use this result for a disk.Thus, for
the disk element in Fig. 10–24b, we have

Substituting and integrating with respect to y,
from to yields the moment of inertia for the entire solid.

Ans.Iy =
5p
2 L

1ft

0
x4 dy =

5p
2 L

1ft

0
y8 dy = 0.873 slug # ft2

y = 1 ft,y = 0
r = 5 slug>ft3,x = y2,

dIy =
1
2
1dm2x2 =

1
2

[r1px22 dy]x2

I = 1
2mR

2,

dIy

dm = r dV = r1px22 dy

x

1 ft

y2 � x

(a)

y

1 ft

y

1 ft

x
1 ft

y

dy

(x, y)

(b)

Fig. 10–24
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Parallel-Axis Theorem. If the moment of inertia of the body
about an axis passing through the body’s mass center is known, then the
moment of inertia about any other parallel axis can be determined by
using the parallel-axis theorem.To derive this theorem, consider the body
shown in Fig. 10–25. The axis passes through the mass center G,
whereas the corresponding parallel z axis lies at a constant distance d
away. Selecting the differential element of mass dm, which is located at
point ( ), and using the Pythagorean theorem,
the moment of inertia of the body about the z axis is

Since the first integral represents The second
integral is equal to zero, since the axis passes through the body’s mass
center, i.e., since Finally, the third integral
is the total mass m of the body. Hence, the moment of inertia about the z
axis becomes

(10–15)

where

I = IG + md2

x = 0.1x¿ dm = x1dm = 0
z¿

IG.r¿2 = x¿2 + y¿2,

=
Lm
1x¿2 + y¿22 dm + 2d

Lm
x¿ dm + d2

Lm
dm

I =
Lm
r2 dm =

Lm
[1d + x¿22 + y¿2] dm

r2 = 1d + x¿22 + y¿2,y¿x¿,

z¿

IG = moment of inertia about the axis passing through the mass
center G

z¿

m = mass of the body

d = distance between the parallel axes

y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 10–25
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Radius of Gyration. Occasionally, the moment of inertia of a
body about a specified axis is reported in handbooks using the radius of
gyration, k. This value has units of length, and when it and the body’s
mass m are known, the moment of inertia can be determined from the
equation

(10–16)

Note the similarity between the definition of k in this formula and r in
the equation which defines the moment of inertia of a
differential element of mass dm of the body about an axis.

Composite Bodies. If a body is constructed from a number of
simple shapes such as disks, spheres, and rods, the moment of inertia of
the body about any axis z can be determined by adding algebraically the
moments of inertia of all the composite shapes computed about the same
axis. Algebraic addition is necessary since a composite part must be
considered as a negative quantity if it has already been included within
another part—as in the case of a “hole” subtracted from a solid plate.
Also, the parallel-axis theorem is needed for the calculations if the
center of mass of each composite part does not lie on the z axis. In this
regard, formulas for the mass moment of inertia of some common
shapes, such as disks, spheres, and rods, are given in the table on the
inside back cover.

dI = r2 dm,

I = mk2 or k =
A

I
m

This flywheel, which operates a metal
cutter, has a large moment of inertia about
its center. Once it begins rotating it is
difficult to stop it and therefore a uniform
motion can be effectively transferred to
the cutting blade.
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O

0.25 m
0.125 m

G

(a)

Thickness 0.01 m

0.25 m

G G– 0.125 m

(b)

Fig. 10–26

EXAMPLE 10.12

If the plate shown in Fig. 10–26a has a density of and a
thickness of 10 mm, determine its mass moment of inertia about an
axis perpendicular to the page and passing through the pin at O.

8000 kg>m3

SOLUTION
The plate consists of two composite parts, the 250-mm-radius disk
minus a 125-mm-radius disk, Fig. 10–26b.The moment of inertia about
O can be determined by finding the moment of inertia of each of
these parts about O and then algebraically adding the results. The
computations are performed by using the parallel-axis theorem in
conjunction with the data listed in the table on the inside back cover.

Disk. The moment of inertia of a disk about an axis perpendicular
to the plane of the disk and passing through G is The mass
center of both disks is 0.25 m from point O. Thus,

Hole. For the smaller disk (hole), we have

The moment of inertia of the plate about the pin is therefore

Ans.= 1.20 kg # m2

= 1.473 kg # m2 - 0.276 kg # m2

IO = 1IO2d - 1IO2h

= 0.276 kg # m2

= 1
213.93 kg210.125 m22 + 13.93 kg210.25 m22

1IO2h = 1
2mhrh

2 + mhd2

mh = rhVh = 8000 kg>m3 [p10.125 m2210.01 m2] = 3.93 kg

= 1.473 kg # m2

= 1
2115.71 kg210.25 m22 + 115.71 kg210.25 m22

1IO2d = 1
2mdrd

2 + mdd2

md = rdVd = 8000 kg>m3 [p10.25 m2210.01 m2] = 15.71 kg

IG = 1
2mr

2.
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The pendulum in Fig. 10–27 consists of two thin rods each having a
weight of 10 lb. Determine the pendulum’s mass moment of inertia
about an axis passing through (a) the pin at O, and (b) the mass center
G of the pendulum.

SOLUTION

Part (a). Using the table on the inside back cover, the moment of
inertia of rod OA about an axis perpendicular to the page and passing
through the end point O of the rod is Hence,

Realize that this same value may be computed using and
the parallel-axis theorem; i.e.,

For rod BC we have

The moment of inertia of the pendulum about O is therefore

Ans.

Part (b). The mass center G will be located relative to the pin at O.
Assuming this distance to be Fig. 10–27, and using the formula for
determining the mass center, we have

The moment of inertia may be computed in the same manner as
which requires successive applications of the parallel-axis theorem

in order to transfer the moments of inertia of rods OA and BC to G.A
more direct solution, however, involves applying the parallel-axis
theorem using the result for determined above; i.e.,

Ans.IG = 0.362 slug # ft2

 1.76 slug # ft2 = IG + a 20 lb

32.2 ft>s2 b11.50 ft22IO = IG + md2;

IO

IO,
IG

y =
©y'm
©m

=
1110>32.22 + 2110>32.22
110>32.22 + 110>32.22 = 1.50 ft

y,

IO = 0.414 + 1.346 = 1.76 slug # ft2

= 1.346 slug # ft2

1IBC2O =
1

12
ml2 + md2 =

1
12
a 10 lb

32.2 ft>s2 b12 ft22 +
10 lb

32.2 ft>s2 12 ft22

= 0.414 slug # ft2

1IOA2O =
1

12
ml2 + md2 =

1
12
a 10 lb

32.2 ft>s2 b12 ft22 +
10 lb

32.2 ft>s2 11 ft22

IG = 1
12ml

2

1IOA2O =
1
3
ml2 =

1
3
a 10 lb

32.2 ft>s2 b12 ft22 = 0.414 slug # ft2

IO = 1
3ml

2.

EXAMPLE 10.13

2 ft

y–

O

G

A
B C

1 ft 1 ft

Fig. 10–27
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y
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z
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PROBLEMS

10–91. Determine the mass moment of inertia of the
slender rod. The rod is made of material having a variable
density , where is constant. The cross-
sectional area of the rod is . Express the result in terms of
the mass m of the rod.

A
r0r = r0(1 + x>l)

Iy

10–90. Determine the mass moment of inertia of the
right circular cone and express the result in terms of the
total mass m of the cone. The cone has a constant density .r

Ix

•10–89. Determine the mass moment of inertia of the
cone formed by revolving the shaded area around the axis.
The density of the material is . Express the result in terms
of the mass of the cone.m

r

z
Iz

•10–93. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the radius of gyration .
The density of the material is .r = 5 Mg>m3

kx

z

z �      (r0 � y)h––

y

h

x
r0

r0

Prob. 10–89

h

y

x

r

r–
h xy �

Prob. 10–90

z �    y2

x

y

z

1
4

2 m

1 m

Prob. 10–92

*10–92. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the 
axis. The density of the material is . Express the result in
terms of the mass of the solid.m

r

y
Iy

y

x

100 mm

y2 � 50 x

200 mm

Prob. 10–93
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y

a

b

z

x

�       � 1y2
––
a2

z2––
b2

Prob. 10–94

y

x

2b

b–a x � by �

a

b

Prob. 10–95

y3 � 9x
3 in.

x
3 in.

y

Prob. 10–96

2 m

4 m
z2 � 8y

z

y

x

Prob. 10–97

*10–96. The solid is formed by revolving the shaded area
around the y axis. Determine the radius of gyration The
specific weight of the material is g = 380 lb>ft3.

ky.

10–95. The frustum is formed by rotating the shaded area
around the x axis. Determine the moment of inertia and
express the result in terms of the total mass m of the
frustum. The material has a constant density .r

Ix

10–94. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the axis.
The density of the material is . Express the result in terms
of the mass of the semi-ellipsoid.m

r

y
Iy

•10–97. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the axis.
The density of the material is .r = 7.85 Mg>m3

z
Iz
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*10–100. Determine the mass moment of inertia of the
pendulum about an axis perpendicular to the page and
passing through point O.The slender rod has a mass of 10 kg
and the sphere has a mass of 15 kg.

10–99. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the axis.
The total mass of the solid is .1500 kg

y
Iy

10–98. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the axis.
The solid is made of a homogeneous material that weighs
400 lb.

z
Iz

•10–101. The pendulum consists of a disk having a mass of 
6 kg and slender rods AB and DC which have a mass per unit
length of . Determine the length L of DC so that the
center of mass is at the bearing O. What is the moment of
inertia of the assembly about an axis perpendicular to the
page and passing through point O?

2 kg>m

4 ft

8 ft

y

x

z � y
3––
2

z

Prob. 10–98

y

x

z

4 m

2 mz2 �      y31––
16

O

Prob. 10–99

450 mm

A

O

B

100 mm

Prob. 10–100

O

0.2 m
L

A B

C

D0.8 m 0.5 m

Prob. 10–101
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•10–105. The pendulum consists of the 3-kg slender rod
and the 5-kg thin plate. Determine the location of the
center of mass G of the pendulum; then find the mass
moment of inertia of the pendulum about an axis
perpendicular to the page and passing through G.

y

10–103. The thin plate has a mass per unit area of
. Determine its mass moment of inertia about the

y axis.

*10–104. The thin plate has a mass per unit area of
. Determine its mass moment of inertia about the

z axis.
10 kg>m2

10 kg>m2

10–102. Determine the mass moment of inertia of the 
2-kg bent rod about the z axis.

10–106. The cone and cylinder assembly is made of
homogeneous material having a density of .
Determine its mass moment of inertia about the axis.z

7.85 Mg>m3

300 mm

300 mm

z

y
x

Prob. 10–102

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

200 mm

z

y
x

100 mm

100 mm

Probs. 10–103/104

G

2 m

1 m

0.5 m

y

O

Prob. 10–105

300 mm

300 mm

z

x
y

150 mm

150 mm

Prob. 10–106
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10–110. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing
through point O. The material has a mass per unit area of

.20 kg>m2

•10–109. If the large ring, small ring and each of the spokes
weigh 100 lb, 15 lb, and 20 lb, respectively, determine the mass
moment of inertia of the wheel about an axis perpendicular
to the page and passing through point A.

10–107. Determine the mass moment of inertia of the
overhung crank about the x axis. The material is steel
having a density of .

*10–108. Determine the mass moment of inertia of the
overhung crank about the axis. The material is steel
having a density of .r = 7.85 Mg>m3

x¿

r = 7.85 Mg>m3

10–111. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing
through point O. The material has a mass per unit area of

.20 kg>m2

90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Probs. 10–107/108

A

O

1 ft

4 ft

Prob. 10–109

400 mm

150 mm

400 mm

O

50 mm

50 mm
150 mm

150 mm 150 mm

Prob. 10–110

200 mm

200 mm

O

200 mm

Prob. 10–111
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CHAPTER REVIEW

Area Moment of Inertia

The area moment of inertia represents the
second moment of the area about an axis.
It is frequently used in formulas related to
the strength and stability of structural
members or mechanical elements.

If the area shape is irregular but can 
be described mathematically, then a
differential element must be selected
and integration over the entire area must
be performed to determine the moment
of inertia.

Ix =
LA
y2 dA

Parallel-Axis Theorem

If the moment of inertia for an area is
known about a centroidal axis, then its
moment of inertia about a parallel axis
can be determined using the parallel-axis
theorem.

Composite Area

If an area is a composite of common
shapes, as found on the inside back cover,
then its moment of inertia is equal to the
algebraic sum of the moments of inertia of
each of its parts.

I = I + Ad2

Product of Inertia

The product of inertia of an area is used in
formulas to determine the orientation of
an axis about which the moment of inertia
for the area is a maximum or minimum.

Ixy =
LA
xy dA

If the product of inertia for an area is
known with respect to its centroidal 
axes, then its value can be determined
with respect to any x, y axes using the
parallel-axis theorem for the product of
inertia.

y¿x¿,
Ixy = Ix¿y¿ + Adxdy

Iy =
LA
x2 dA

x

y

y

x

dx

y � f(x)

dA

d

C

A

I

I

x x

–

O
x

y

d

dx

dy

x¿

y�

x¿

y¿
dA

C
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Principal Moments of Inertia

Provided the moments of inertia, and
and the product of inertia, are

known, then the transformation formulas,
or Mohr’s circle, can be used to determine
the maximum and minimum or principal
moments of inertia for the area, as well as
finding the orientation of the principal
axes of inertia.

Ixy,Iy,
Ix

tan 2up =
-Ixy

1Ix - Iy2>2

Imax
min

=
Ix + Iy

2
;
C
a Ix - Iy

2
b 2

+ Ixy2

Mass Moment of Inertia

The mass moment of inertia is a property
of a body that measures its resistance to a
change in its rotation. It is defined as the
“second moment” of the mass elements of
the body about an axis.

I = r
LV
r2dV

For homogeneous bodies having axial
symmetry, the mass moment of inertia can
be determined by a single integration, using
a disk or shell element.

The mass moment of inertia of a
composite body is determined by using
tabular values of its composite shapes
found on the inside back cover, along with
the parallel-axis theorem.

I = IG + md2

I =
Lm
r2 dm

r

dm

z

z

y

x

z

(x,y)

dzy

y

z

(x, y)

z

x

y dy
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C
x

y

d
2

d
2

d
2

d
2 60�

60�

Probs. 10–112/113

a a

a a

a––
2

y �          – x

y

x

Prob. 10–114

REVIEW PROBLEMS

10–115. Determine the moment of inertia of the beam’s
cross-sectional area with respect to the axis passing
through the centroid C.

x¿

10–114. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis.

*10–112. Determine the moment of inertia of the beam’s
cross-sectional area about the x axis which passes through
the centroid C.

•10–113. Determine the moment of inertia of the beam’s
cross-sectional area about the y axis which passes through
the centroid C.

*10–116. Determine the product of inertia for the angle’s
cross-sectional area with respect to the and axes
having their origin located at the centroid C. Assume all
corners to be right angles.

y¿x¿

0.5 in.

0.5 in.

4 in.

2.5 in.
C x¿

0.5 in.

_
y

Prob. 10–115

C

57.37 mm

x¿

y¿

200 mm

20 mm
57.37 mm

200 mm

20 mm

Prob. 10–116
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*10–120. The pendulum consists of the slender rod OA,
which has a mass per unit length of . The thin disk
has a mass per unit area of . Determine the
distance to the center of mass G of the pendulum; then
calculate the moment of inertia of the pendulum about an
axis perpendicular to the page and passing through G.

y
12 kg>m2

3 kg>m

10–119. Determine the moment of inertia of the area
about the x axis. Then, using the parallel-axis theorem, find
the moment of inertia about the axis that passes through
the centroid C of the area. .y = 120 mm

x¿

•10–117. Determine the moment of inertia of the area
about the y axis.

10–118. Determine the moment of inertia of the area
about the x axis.

•10–121. Determine the product of inertia of the area
with respect to the x and y axes.

y

4y � 4 – x2

1 ft

x
2 ft

Probs. 10–117/118

1–––
200

200 mm

200 mm

y

x

x¿
–y

C
y � x2

Prob. 10–119

G

1.5 m

A

y

O

0.3 m

0.1 m

Prob. 10–120

y � x 3

y

1 m

1 m

x

Prob. 10–121



Equilibrium and stability of this articulated crane boom as a function of the boom
position can be analyzed using methods based on work and energy, which are
explained in this chapter.



Virtual Work

CHAPTER OBJECTIVES

• To introduce the principle of virtual work and show how it applies to
finding the equilibrium configuration of a system of pin-connected
members.

• To establish the potential-energy function and use the potential-
energy method to investigate the type of equilibrium or stability of
a rigid body or system of pin-connected members.

11.1 Definition of Work

The principle of virtual work was proposed by the Swiss mathematician
Jean Bernoulli in the eighteenth century. It provides an alternative method
for solving problems involving the equilibrium of a particle, a rigid body,
or a system of connected rigid bodies. Before we discuss this principle,
however, we must first define the work produced by a force and by a
couple moment.

11
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Work of a Force. A force does work when it undergoes a
displacement in the direction of its line of action. Consider, for example,
the force F in Fig. 11–1a that undergoes a differential displacement . If

is the angle between the force and the displacement, then the
component of F in the direction of the displacement is . And so
the work produced by F is

Notice that this expression is also the product of the force F and
the component of displacement in the direction of the force, ,
Fig. 11–1b. If we use the definition of the dot product (Eq. 2–14) the
work can also be written as

As the above equations indicate, work is a scalar, and like other scalar
quantities, it has a magnitude that can either be positive or negative.

In the SI system, the unit of work is a joule (J), which is the work
produced by a 1-N force that displaces through a distance of 1 m in the
direction of the force .The unit of work in the FPS system
is the foot-pound , which is the work produced by a 1-lb force that
displaces through a distance of 1 ft in the direction of the force.

The moment of a force has this same combination of units; however,
the concepts of moment and work are in no way related. A moment is a
vector quantity, whereas work is a scalar.

Work of a Couple Moment. The rotation of a couple moment
also produces work. Consider the rigid body in Fig. 11–2, which is acted
upon by the couple forces F and –F that produce a couple moment M
having a magnitude . When the body undergoes the differential
displacement shown, points and move and to their final
positions and , respectively. Since , this movement
can be thought of as a translation , where A and B move to and 

, and a rotation about , where the body rotates through the angle 
about A.The couple forces do no work during the translation because
each force undergoes the same amount of displacement in opposite
directions, thus canceling out the work. During rotation, however, F is
displaced , and so it does work . Since

, the work of the couple moment M is therefore

If M and have the same sense, the work is positive; however, if they
have the opposite sense, the work will be negative.

du

dU = Mdu

M = Fr
dU = F dr– = F r dudr– = r du

drA
duA¿B–

A¿drA
drB = drA + dr¿B¿A¿

drBdrABA
M = Fr

(ft # lb)
(1 J = 1 N # m)

dU = F # dr

dr cos u

dU = F dr cos u

F cos u
u

dr

F

dr
F cos

(a)

u
u

F

dr

dr cos u

(b)

u

Fig. 11–1

F

–F A
A¿

B–
dr¿

drA

drA

drB
B¿

B

r du

Fig. 11–2
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Virtual Work. The definitions of the work of a force and a couple
have been presented in terms of actual movements expressed by
differential displacements having magnitudes of dr and Consider
now an imaginary or virtual movement of a body in static equilibrium,
which indicates a displacement or rotation that is assumed and does not
actually exist.These movements are first-order differential quantities and
will be denoted by the symbols and (delta r and delta ),
respectively. The virtual work done by a force having a virtual
displacement is

(11–1)

Similarly, when a couple undergoes a virtual rotation in the plane of
the couple forces, the virtual work is

(11–2)

11.2 Principle of Virtual Work

The principle of virtual work states that if a body is in equilibrium, then
the algebraic sum of the virtual work done by all the forces and couple
moments acting on the body, is zero for any virtual displacement of the
body. Thus,

(11–3)

For example, consider the free-body diagram of the particle (ball) that
rests on the floor, Fig. 11–3. If we “imagine” the ball to be displaced
downwards a virtual amount then the weight does positive virtual
work, and the normal force does negative virtual work,
For equilibrium the total virtual work must be zero, so that

Since then as
required by applying .©Fy = 0

N = Wdy Z 0,dU=Wdy -N dy = 1W-N2dy = 0.

-N dy.W dy,
dy,

dU = 0

dU = M du

du

dU = F cos u dr

dr

ududr

du.

W

N

dy

Fig. 11–3
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In a similar manner, we can also apply the virtual-work equation
to a rigid body subjected to a coplanar force system. Here,

separate virtual translations in the x and y directions and a virtual
rotation about an axis perpendicular to the x–y plane that passes through
an arbitrary point O, will correspond to the three equilibrium equations,

and When writing these equations, it is
not necessary to include the work done by the internal forces acting
within the body since a rigid body does not deform when subjected to an
external loading, and furthermore, when the body moves through a
virtual displacement, the internal forces occur in equal but opposite
collinear pairs, so that the corresponding work done by each pair of
forces will cancel.

To demonstrate an application, consider the simply supported beam in
Fig. 11–4a. When the beam is given a virtual rotation about point B,
Fig. 11–4b, the only forces that do work are P and Since 
and the virtual work equation for this case is

. Since then 
Excluding notice that the terms in parentheses actually

represent the application of .
As seen from the above two examples, no added advantage is gained

by solving particle and rigid-body equilibrium problems using the
principle of virtual work. This is because for each application of the
virtual-work equation, the virtual displacement, common to every term,
factors out, leaving an equation that could have been obtained in a more
direct manner by simply applying an equation of equilibrium.

©MB = 0
du,Ay = P>2.

du Z 0,dU = Ay1l du2 - P1l>22 du = 1Ayl - Pl>22 du = 0
dy¿ = 1l>22 du, dy = l duAy.

du

©MO = 0.©Fy = 0,©Fx = 0,

dU = 0

A

(a)

B

P

l––
2

l––
2

(b)

By

Ay

Bx

P

du

l––
2

l––
2

dy

dy¿

Fig. 11–4



11.3 PRINCIPLE OF VIRTUAL WORK FOR A SYSTEM OF CONNECTED RIGID BODIES 567

11

11.3 Principle of Virtual Work for a
System of Connected Rigid Bodies

The method of virtual work is particularly effective for solving equilibrium
problems that involve a system of several connected rigid bodies, such as
the ones shown in Fig. 11–5.

Each of these systems is said to have only one degree of freedom since
the arrangement of the links can be completely specified using only one
coordinate . In other words, with this single coordinate and the length of
the members, we can locate the position of the forces F and P.

In this text, we will only consider the application of the principle of
virtual work to systems containing one degree of freedom*. Because they
are less complicated, they will serve as a way to approach the solution of
more complex problems involving systems with many degrees of freedom.
The procedure for solving problems involving a system of frictionless
connected rigid bodies follows.

u

Important Points

• A force does work when it moves through a displacement in the
direction of the force. A couple moment does work when it
moves through a collinear rotation. Specifically, positive work is
done when the force or couple moment and its displacement
have the same sense of direction.

• The principle of virtual work is generally used to determine the
equilibrium configuration for a system of multiply connected
members.

• A virtual displacement is imaginary; i.e., it does not really
happen. It is a differential displacement that is given in the
positive direction of a position coordinate.

• Forces or couple moments that do not virtually displace do no
virtual work.

*This method of applying the principle of virtual work is sometimes called the method
of virtual displacements because a virtual displacement is applied, resulting in the
calculation of a real force. Although it is not used here, we can also apply the principle of
virtual work as a method of virtual forces. This method is often used to apply a virtual force
and then determine the displacements of points on deformable bodies. See R. C. Hibbeler,
Mechanics of Materials, 7th edition, Pearson/Prentice Hall, 2007.

This scissors lift has one degree of
freedom. Without the need for
dismembering the mechanism, the
force in the hydraulic cylinder 
required to provide the lift can be
determined directly by using the
principle of virtual work.

AB

A

B

F

l

l

P

F

l l

P

uu

u u

Fig. 11–5
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Procedure for Analysis

Free-Body Diagram.

• Draw the free-body diagram of the entire system of connected
bodies and define the coordinate q.

• Sketch the “deflected position” of the system on the free-body
diagram when the system undergoes a positive virtual
displacement

Virtual Displacements.

• Indicate position coordinates each measured from a fixed point
on the free-body diagram. These coordinates are directed to the
forces that do work.

• Each of these coordinate axes should be parallel to the line of
action of the force to which it is directed, so that the virtual work
along the coordinate axis can be calculated.

• Relate each of the position coordinates to the coordinate q;
then differentiate these expressions in order to express each
virtual displacement in terms of 

Virtual-Work Equation.

• Write the virtual-work equation for the system assuming that,
whether possible or not, each position coordinate undergoes a
positive virtual displacement If a force or couple moment is in
the same direction as the positive virtual displacement, the work
is positive. Otherwise, it is negative.

• Express the work of each force and couple moment in the
equation in terms of 

• Factor out this common displacement from all the terms, and
solve for the unknown force, couple moment, or equilibrium
position q.

dq.

ds.
s

dq.ds

s

s,

dq.
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EXAMPLE 11.1

Determine the angle for equilibrium of the two-member linkage
shown in Fig. 11–6a. Each member has a mass of 10 kg.

SOLUTION
Free-Body Diagram. The system has only one degree of freedom
since the location of both links can be specified by the single
coordinate As shown on the free-body diagram in Fig. 11–6b,
when has a positive (clockwise) virtual rotation only the force F
and the two 98.1-N weights do work. (The reactive forces and 
are fixed, and does not displace along its line of action.)

Virtual Displacements. If the origin of coordinates is established at
the fixed pin support D, then the position of F and W can be specified
by the position coordinates and . In order to determine the work,
note that, as required, these coordinates are parallel to the lines of
action of their associated forces. Expressing these position
coordinates in terms of and taking the derivatives yields

(1)

(2)

It is seen by the signs of these equations, and indicated in Fig. 11–6b, that
an increase in (i.e., ) causes a decrease in and an increase in
Virtual-Work Equation. If the virtual displacements and 
were both positive, then the forces W and F would do positive work
since the forces and their corresponding displacements would have the
same sense. Hence, the virtual-work equation for the displacement is

(3)

Substituting Eqs. 1 and 2 into Eq. 3 in order to relate the virtual
displacements to the common virtual displacement yields

Notice that the “negative work” done by F (force in the opposite
sense to displacement) has actually been accounted for in the above
equation by the “negative sign” of Eq. 1. Factoring out the common
displacement and solving for noting that yields

Ans.

NOTE: If this problem had been solved using the equations of
equilibrium, it would be necessary to dismember the links and apply
three scalar equations to each link. The principle of virtual work, by
means of calculus, has eliminated this task so that the answer is
obtained directly.

u = tan-1 98.1
50

= 63.0°

198.1 cos u - 50 sin u2 du = 0

du Z 0,u,du

98.110.5 cos u du2 + 98.110.5 cos u du2 + 251-2 sin u du2 = 0

du

W dyw + W dyw + F dxB = 0dU = 0;

du

dywdxB

yw.xBduu

dyw = 0.5 cos u du myw = 1
211 sin u2 m

dxB = -2 sin u du mxB = 211 cos u2 m
u

ywxB

By
DyDx

du,u

1q =2 u.

u

1 m1 m

D

u

B F � 25 N

C

(a)

D B F � 25 N

(b)
W � 98.1 NW � 98.1 N

ByDy

Dx

dxB

du

u
dywdyw

yw

xB

Fig. 11–6
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Determine the required force P in Fig. 11–7a, needed to maintain
equilibrium of the scissors linkage when . The spring is
unstretched when . Neglect the mass of the links.

SOLUTION

Free-Body Diagram. Only and P do work when undergoes a
positive virtual displacement , Fig. 11–7b. For the arbitrary position

, the spring is stretched , so that

Virtual Displacements. The position coordinates, and ,
measured from the fixed point A, are used to locate and . These
coordinates are parallel to the line of action of their corresponding
forces. Expressing and in terms of the angle using
trigonometry,

Differentiating, we obtain the virtual displacements of points B and D.

(1)

(2)

Virtual-Work Equation. Force P does positive work since it acts in
the positive sense of its virtual displacement. The spring force does
negative work since it acts opposite to its positive virtual
displacement. Thus, the virtual-work equation becomes

Since , then this equation requires

When ,

Ans.P = 500 sin 60° - 250 =  183 N

u = 60°

P = 500 sin u - 250

cos u du Z 0

[0.9P + 225 - 450  sin u] cos u du = 0

- [1500 sin u - 750] (0.3 cos u du) + P (0.9 cos u du) = 0

-FsdxB+PdxD = 0dU = 0;

Fs

dxD = 0.9 cos u du

dxB = 0.3 cos u du

xD = 3[(0.3 m) sin u] = (0.9 m) sin u

xB = (0.3 m) sin u

uxDxB

PFs
xDxB

= (1500 sin u - 750)N

Fs = ks = 5000 N/m [(0.3 m) sin u - (0.3 m) sin 30°]

(0.3 m) sin u - (0.3 m) sin 30°u

du

uFs

u = 30°
u = 60°

EXAMPLE 11.2

A

B

k � 5 kN/m

(a)

C

E

D

G
0.3m

0.3m0.3m

0.3m

u

u

P

B

(b)

Gx

Ax

Ay

Fs

xD

xB

dxD

dxB

P

u

du

Fig. 11–7
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EXAMPLE 11.3

If the box in Fig. 11–8a has a mass of 10 kg, determine the couple
moment M needed to maintain equilibrium when . Neglect
the mass of the members.

u = 60°

D

CA

B

M

0.45 m

0.45 m

(a)

0.2 m
0.4 m

uu 0.45 m

C

b

A

M

(b)

yE

yE

Bx Dx 

By Dy

10(9.81) N

udud

uu

d

Fig. 11–8

SOLUTION

Free-Body Diagram. When undergoes a positive virtual
displacement , only the couple moment M and the weight of the box
do work, Fig. 11–8b.

Virtual Displacements. The position coordinate , measured from
the fixed point B, locates the weight, . Here,

where b is a constant distance. Differentiating this equation, we obtain

(1)

Virtual-Work Equation. The virtual-work equation becomes

Substituting Eq. 1 into this equation

Since , then

Since it is required that , then

Ans.M = 44.145 cos 60° = 22.1 N # m
u = 60°

M - 44.145 cos u = 0

du Z 0

 du(M - 44.145 cos u) = 0

 Mdu - 10(9.81) N(0.45 m cos u du) = 0

 Mdu - [10(9.81) N]dyE = 0dU = 0;

dyE = 0.45 m cos u du

yE = (0.45 m) sin u + b

10(9.81) N
yE

du

u
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The mechanism in Fig. 11–9a supports the 50-lb cylinder. Determine
the angle for equilibrium if the spring has an unstretched length of
2 ft when . Neglect the mass of the members.

SOLUTION

Free-Body Diagram. When the mechanism undergoes a positive
virtual displacement , Fig. 11–9b, only and the 50-lb force do work.
Since the final length of the spring is , then

Virtual Displacements. The position coordinates and are
established from the fixed point A to locate at and at .
The coordinate also measured from A, specifies the position of the
50-lb force at B. The coordinates can be expressed in terms of using
trigonometry.

Differentiating, we obtain the virtual displacements of points , ,
and as

(1)

(2)

(3)

Virtual-Work Equation. The virtual-work equation is written as if
all virtual displacements are positive, thus

Since , then

Solving by trial and error,

Ans.u = 34.9° 
800 sin u cos u - 800 sin u + 100 cos u = 0

du Z 0

 du(800 sin u cos u - 800 sin u + 100 cos u) = 0

-(400 - 400 cos u)(-1 sin u du) = 0

(400 - 400 cos u)(-3 sin u du) + 50(2 cos u du)

FsdxE + 50dyB - FsdxD = 0dU = 0;

 dyB = 2 cos u du

 dxE = -3 sin u du

 dxD = -1 sin u du

B
ED

 yB = (2 ft) sin u

 xE = 3[(1 ft) cos u] = (3 ft) cos u

 xD = (1 ft) cos u

u

yB,
EDFs

xExD

Fs = ks = (200 lb/ft)(2 ft - 2 ft cos u) = (400 - 400 cos u) lb

2(1 ft cos u)
Fsdu

u = 0°
u

EXAMPLE 11.4

C

D E
k � 200 lb/ft

B

A

1 ft

1 ft 1 ft

(a)

1 ft

u u

E
D

50 lb

(b)

Ax

Ay Cy

Fs Fs

xD

yB

xE

dxEdxD

dyB

u

du

Fig. 11–9
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FUNDAMENTAL PROBLEMS

F11–4. The linkage is subjected to a force of .
Determine the angle for equilibrium. The spring is
unstretched at . Neglect the mass of the links.u = 6 0 °

u

P = 6 kN

F11–2. Determine the magnitude of force P required to
hold the 50-kg smooth rod in equilibrium at u = 60°.

F11–1. Determine the required magnitude of force P to
maintain equilibrium of the linkage at Each link
has a mass of 20 kg.

u = 60°.

F11–5. Determine the angle where the 50-kg bar is in
equilibrium. The spring is unstretched at u = 60°.

u

F11–3. The linkage is subjected to a force of 
Determine the angle for equilibrium. The spring is
unstretched when . Neglect the mass of the links.u = 0°

u

P = 2 kN. F11–6. The scissors linkage is subjected to a force of
Determine the angle for equilibrium. The

spring is unstretched at . Neglect the mass of the links.u = 0°
uP = 150 N.

0.9 m

k � 20 kN/m

0.9 m

A

B

C

P � 6 kN

u

F11–4

1.5 m
1.5 m

A

B

C
P

uu

F11–1

D

k � 15 kN/m

A

B
C

0.6 m

0.6 m

0.6 m

P � 2 kN

uu

F11–3

 5 m

A

B

k � 600 N/mu

F11–5

 5 m

Pu

A

B

F11–2

C

0.3 m

0.3 m

P � 150 N

A

B

k � 15 kN/m u

F11–6
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PROBLEMS

11–3. The “Nuremberg scissors” is subjected to a
horizontal force of . Determine the angle for
equilibrium. The spring has a stiffness of and
is unstretched when .

*11–4. The “Nuremberg scissors” is subjected to a
horizontal force of . Determine the stiffness k of
the spring for equilibrium when . The spring is
unstretched when .u = 15°

u = 60°
P = 600 N

u = 15°
k = 15 kN>m

uP = 600 N

11–2. The uniform rod OA has a weight of 10 lb. When the
rod is in a vertical position, , the spring is unstretched.
Determine the angle for equilibrium if the end of the spring
wraps around the periphery of the disk as the disk turns.

u

u =  0°

•11–1. The 200-kg crate is on the lift table at the position
. Determine the force in the hydraulic cylinder AD

for equilibrium. Neglect the mass of the lift table’s
components.

u = 30°

•11–5. Determine the force developed in the spring
required to keep the 10 lb uniform rod AB in equilibrium
when .u = 35°

P 

200 mm

200 mm

A

C
D

E

B
k

u

Probs. 11–3/4

A

u

B
k � 15 lb/ft

6 ft

M = 10 lb � ft

Prob. 11–5

A
B

C

D E

HI

F
1.2 m

1.2 m

u

Prob. 11–1

O

u

A

k � 30 lb/ft

2 ft

0.5 ft

Prob. 11–2
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•11–9. If a force is applied to the lever arm of
the toggle press, determine the clamping force developed in
the block when . Neglect the weight of the block.u = 45°

P = 100 N

11–7. The pin-connected mechanism is constrained at A by
a pin and at B by a roller. If , determine the angle

for equilibrium. The spring is unstretched when .
Neglect the weight of the members.

*11–8. The pin-connected mechanism is constrained by a
pin at A and a roller at B. Determine the force P that must
be applied to the roller to hold the mechanism in
equilibrium when . The spring is unstretched when

. Neglect the weight of the members.u = 45°
u = 30°

u = 45°u

P = 10 lb

11–6. If a force of is applied to the handle of the
mechanism, determine the force the screw exerts on the cork
of the bottle.The screw is attached to the pin at A and passes
through the collar that is attached to the bottle neck at B.

P = 5 lb

11–10. When the forces are applied to the handles of the
bottle opener, determine the pulling force developed on
the cork.

3 in.

D

B

A

u � 30°

P � 5 lb

Prob. 11–6

A C

B D

E

F

90 mm 90 mm

15 mm15 mm

5 N 5 NP � P � 

Prob. 11–10

0.5 ft

B PA
u

0.5 ft0.5 ft

k � 50 lb/ft

Probs. 11–7/8

200 mm

200 mm

500 mm

B
C

D

E

F

A

P

u

u

Prob. 11–9
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11–14. The truck is weighed on the highway inspection
scale. If a known mass m is placed a distance s from the
fulcrum B of the scale, determine the mass of the truck if
its center of gravity is located at a distance d from point C.
When the scale is empty, the weight of the lever ABC
balances the scale CDE.

mt

•11–13. Determine the angles for equilibrium of the 
4-lb disk using the principle of virtual work. Neglect the
weight of the rod.The spring is unstretched when and
always remains in the vertical position due to the roller guide.

u = 0°

u

11–11. If the spring has a stiffness k and an unstretched
length , determine the force P when the mechanism is in
the position shown. Neglect the weight of the members.

*11–12. Solve Prob. 11–11 if the force P is applied
vertically downward at B.

l0

11–15. The assembly is used for exercise. It consists of four
pin-connected bars, each of length L, and a spring of
stiffness k and unstretched length . If horizontal
forces are applied to the handles so that is slowly
decreased, determine the angle at which the magnitude of
P becomes a maximum.

u

u

a (6 2L)

P

l

kB

u

C

A

l

Probs. 11–11/12

k � 50 lb/ft

A

B C
u

3 ft
1 ft

Prob. 11–13

s a

C

B

D

E

A

m

a

d

Prob. 11–14

L L

uu

L L

D

–P
k

P

B

C

A

Prob. 11–15
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11–19. The spring is unstretched when and has a
stiffness of . Determine the angle for
equilibrium if each of the cylinders weighs 50 lb. Neglect the
weight of the members. The spring remains horizontal at all
times due to the roller.

uk = 1000 lb>ft
u = 45°

11–18. If a vertical force of is applied to the
handle of the toggle clamp, determine the clamping force
exerted on the pipe.

P = 50 N

*11–16. A 5-kg uniform serving table is supported on each
side by pairs of two identical links, and , and springs

. If the bowl has a mass of , determine the angle 
where the table is in equilibrium. The springs each have a
stiffness of and are unstretched when 
. Neglect the mass of the links.

•11–17. A 5-kg uniform serving table is supported on each
side by two pairs of identical links, and , and springs

. If the bowl has a mass of and is in equilibrium when
, determine the stiffness of each spring.The springs

are unstretched when . Neglect the mass of the links.u = 90°
ku = 45°

1 kgCE
CDAB

u = 90°k = 200 N>m
u1 kgCE

CDAB

*11–20. The machine shown is used for forming metal
plates. It consists of two toggles ABC and DEF, which are
operated by the hydraulic cylinder. The toggles push the
moveable bar G forward, pressing the plate into the cavity.
If the force which the plate exerts on the head is ,
determine the force F in the hydraulic cylinder when

.u = 30°

P = 8 kN

A

B

C

P � 50 N

D

300 mm 500 mm
100 mm

150 mm
u � 45�

Prob. 11–18

D

Ek

A

B C

4 ft

4 ft

2 ft
2 ft

u u

Prob. 11–19

A C k

250 mm

250 mm 150 mm

150 mm

B
D

E

u u

Probs. 11–16/17

200 mm 200 mm

200 mm 200 mm

A

B

H

E

u

uD F

F

–F

C

G

P

� 30� plate

Prob. 11–20
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*11–24. Determine the magnitude of the couple moment
required to support the 20-kg cylinder in the

configuration shown. The smooth peg at can slide freely
within the slot. Neglect the mass of the members.

B
M

11–22. Determine the weight of block required to
balance the differential lever when the 20-lb load F is
placed on the pan.The lever is in balance when the load and
block are not on the lever. Take .

11–23. If the load weighs 20 lb and the block weighs 
2 lb, determine its position for equilibrium of the
differential lever. The lever is in balance when the load and
block are not on the lever.

x
GF

x = 12 in

G

•11–21. The vent plate is supported at B by a pin. If it weighs
15 lb and has a center of gravity at G, determine the stiffness
k of the spring so that the plate remains in equilibrium at

.The spring is unstretched when .u = 0°u = 30°

•11–25. The crankshaft is subjected to a torque of
. Determine the vertical compressive force F

applied to the piston for equilibrium when .u = 60°
M = 50 lb # ft

0.5 ft

1 ft
A

k

u

B

GC

4 ft

Prob. 11–21

A

u

B

M

3 in.

5 in.

F

Prob. 11–25

2.5 m

1 m

1 m

A

B

C

D

E

M
u � 30�

4 in. 4 in. x

A

B

C G

ED

2 in.

F

Probs. 11–22/23

Prob. 11–24
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*11.4 Conservative Forces

If the work of a force only depends upon its initial and final positions, and
is independent of the path it travels, then the force is referred to as a
conservative force.The weight of a body and the force of a spring are two
examples of conservative forces.

Weight. Consider a block of weight that travels along the path in
Fig. 11–10a. When it is displaced up the path by an amount , then the
work is or , as shown in Fig.
11–10b. In this case, the work is negative since acts in the opposite
sense of . Thus, if the block moves from to , through the vertical
displacement , the work is

The weight of a body is therefore a conservative force, since the work
done by the weight depends only on the vertical displacement of the
body, and is independent of the path along which the body travels.

Spring Force. Now consider the linearly elastic spring in Fig. 11–11,
which undergoes a displacement ds. The work done by the spring force
on the block is . The work is negative because 
acts in the opposite sense to that of . Thus, the work of when the
block is displaced from to is

Here the work depends only on the spring’s initial and final positions,
and , measured from the spring’s unstretched position. Since this result
is independent of the path taken by the block as it moves, then a spring
force is also a conservative force.

s2

s1

U = -
3

s2

s1  
 ks ds = - a1

2 ks2
2 - 1

2 ks1
2b

s = s2s = s1
Fsds

FsdU = -Fs ds = -ks ds

U = -
3

     h

0
W dy = -Wh

h
BAdy
W

dU = -W(dr cos u) = -WdydU = W #  dr
dr

W y 

hdr
A

B

W

s

W

(a)

Undeformed 
    position

s
ds

Fs 

Fig. 11–11

dr
dy � dr cos u 

W

(b)

u

Fig. 11–10
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Friction. In contrast to a conservative force, consider the force of
friction exerted on a sliding body by a fixed surface. The work done by
the frictional force depends on the path; the longer the path, the greater
the work. Consequently, frictional forces are nonconservative, and most
of the work done by them is dissipated from the body in the form of heat.

*11.5 Potential Energy

When a conservative force acts on a body, it gives the body the capacity
to do work. This capacity, measured as potential energy, depends on the
location of the body relative to a fixed reference position or datum.

Gravitational Potential Energy. If a body is located a distance
y above a fixed horizontal reference or datum as in Fig. 11–12, the weight
of the body has positive gravitational potential energy since W has the
capacity of doing positive work when the body is moved back down to
the datum. Likewise, if the body is located a distance y below the datum,

is negative since the weight does negative work when the body is
moved back up to the datum. At the datum,

Measuring y as positive upward, the gravitational potential energy of
the body’s weight W is therefore

(11–4)

Elastic Potential Energy. When a spring is either elongated or
compressed by an amount s from its unstretched position (the datum),
the energy stored in the spring is called elastic potential energy. It is
determined from

(11–5)

This energy is always a positive quantity since the spring force acting on
the attached body does positive work on the body as the force returns
the body to the spring’s unstretched position, Fig. 11–13.

Ve = 1
2  ks

2

Vg = Wy

Vg = 0.
Vg

Vg
�y

� y

Datum 

Vg � � Wy

Vg � � Wy

Vg � 0

W

W

Fig. 11–12

Fs

Fs

s s

Undeformed
position

Undeformed
position

Ve� �    ks21
2

Fig. 11–13
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Potential Function. In the general case, if a body is subjected to
both gravitational and elastic forces, the potential energy or potential
function V of the body can be expressed as the algebraic sum

(11–6)

where measurement of V depends on the location of the body with
respect to a selected datum in accordance with Eqs. 11–4 and 11–5.

In particular, if a system of frictionless connected rigid bodies has a
single degree of freedom, such that its vertical position from the datum is
defined by the coordinate q, then the potential function for the system
can be expressed as The work done by all the weight and
spring forces acting on the system in moving it from to , is measured
by the difference in V; i.e.,

(11–7)

For example, the potential function for a system consisting of a block of
weight W supported by a spring, as in Fig. 11–14, can be expressed in
terms of the coordinate measured from a fixed datum located at
the unstretched length of the spring. Here

(11–8)

If the block moves from to then applying Eq. 11–7 the work of W
and is

U1-2 = V1y12 - V1y22 = -W(y1 - y2) + 1
2ky1

2 - 1
2ky2

2

Fs
y2,y1

= -Wy + 1
2ky

2

V = Vg + Ve

1q =2 y,

U1-2 = V1q12 - V1q22

q2q1

V = V1q2.

V = Vg + Ve

y2

y1
y

Datum

W

k

(a)

Fig. 11–14
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*11.6 Potential-Energy Criterion for
Equilibrium

If a frictionless connected system has one degree of freedom, and its
position is defined by the coordinate q, then if it displaces from q to

Eq. 11–7 becomes

or

If the system is in equilibrium and undergoes a virtual displacement
rather than an actual displacement dq, then the above equation becomes

However, the principle of virtual work requires that 
and therefore, , and so we can write . Since

, this expression becomes

(11–9)

Hence, when a frictionless connected system of rigid bodies is in
equilibrium, the first derivative of its potential function is zero. For
example, using Eq. 11–8 we can determine the equilibrium position for
the spring and block in Fig. 11–14a. We have

Hence, the equilibrium position is

Of course, this same result can be obtained by applying to the
forces acting on the free-body diagram of the block, Fig. 11–14b.

©Fy = 0

yeq =
W

k

y = yeq

dV

dy
= -W + ky = 0

dV

dq
= 0

dq Z 0
dV = (dV>dq)dq = 0dV = 0

dU = 0,dU = -dV.

dq,

dU = -dV

dU = V1q2 - V1q + dq2

q + dq,

y2

y1
y

Datum

W

k

(a)

Fig. 11–14

W

Fs � kyeq

(b)
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*11.7 Stability of Equilibrium
Configuration

The potential function V of a system can also be used to investigate the
stability of the equilibrium configuration, which is classified as stable,
neutral, or unstable.

Stable Equilibrium. A system is said to be stable if a system has a
tendency to return to its original position when a small displacement is
given to the system. The potential energy of the system in this case is at
its minimum. A simple example is shown in Fig. 11–15a. When the disk is
given a small displacement, its center of gravity G will always move
(rotate) back to its equilibrium position, which is at the lowest point of its
path. This is where the potential energy of the disk is at its minimum.

Neutral Equilibrium. A system is said to be in neutral equilibrium
if the system still remains in equilibrium when the system is given a
small displacement away from its original position. In this case, the
potential energy of the system is constant. Neutral equilibrium is shown
in Fig. 11–15b, where a disk is pinned at G. Each time the disk is rotated,
a new equilibrium position is established and the potential energy
remains unchanged.

Unstable Equilibrium. A system is said to be unstable if it has a
tendency to be displaced further away from its original equilibrium
position when it is given a small displacement. The potential energy of
the system in this case is a maximum. An unstable equilibrium position
of the disk is shown in Fig. 11–15c. Here the disk will rotate away from its
equilibrium position when its center of gravity is slightly displaced. At
this highest point, its potential energy is at a maximum.

Stable equilibrium Unstable equilibriumNeutral equilibrium

(a) (b) (c)

G
G

G

The counterweight at balances the
weight of the deck of this simple lift
bridge. By applying the method of
potential energy we can study the stability
of the structure for various equilibrium
positions of the deck.

B
A

A

B

Fig. 11–15
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One-Degree-of-Freedom System. If a system has only one
degree of freedom, and its position is defined by the coordinate q, then the
potential function V for the system in terms of q can be plotted, Fig. 11–16.
Provided the system is in equilibrium, then , which represents the
slope of this function, must be equal to zero. An investigation of stability
at the equilibrium configuration therefore requires that the second
derivative of the potential function be evaluated.

If is greater than zero, Fig. 11-16a, the potential energy of the
system will be a minimum. This indicates that the equilibrium
configuration is stable. Thus,

(11–10)

If is less than zero, Fig. 11-16b, the potential energy of the
system will be a maximum. This indicates an unstable equilibrium
configuration. Thus,

(11–11)

Finally, if is equal to zero, it will be necessary to investigate
the higher order derivatives to determine the stability. The equilibrium
configuration will be stable if the first non-zero derivative is of an even
order and it is positive. Likewise, the equilibrium will be unstable if this
first non-zero derivative is odd or if it is even and negative. If all the
higher order derivatives are zero, the system is said to be in neutral
equilibrium, Fig 11-16c. Thus,

(11–12)

This condition occurs only if the potential-energy function for the
system is constant at or around the neighborhood of .qeq

dV

dq
=
d 2V

dq 2
=
d 3V

dq 3
= Á = 0 neutral equilibrium

d 2V>dq 2

d 2V

dq 2
6 0 unstable equilibrium

dV

dq
= 0,

d 2V>dq 2

d 2V

dq 2
7 0 stable equilibrium

dV

dq
= 0,

d2V>dq2

dV/dq

V

q
qeq

d2V
dq2 � 0

Neutral equilibrium

(c)

dV
dq

� 0

Fig. 11–16

V

q
qeq

d2V
dq2 � 0

Stable equilibrium

(a)

dV
dq

� 0

V

q
qeq

d2V
dq2 � 0

Unstable equilibrium

(b)

dV
dq

� 0

During high winds and when going around
a curve, these sugar-cane trucks can become
unstable and tip over since their center of
gravity is high off the road when they are
fully loaded.
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Procedure for Analysis

Using potential-energy methods, the equilibrium positions and the
stability of a body or a system of connected bodies having a single
degree of freedom can be obtained by applying the following
procedure.

Potential Function.

• Sketch the system so that it is in the arbitrary position specified
by the coordinate q.

• Establish a horizontal datum through a fixed point* and express
the gravitational potential energy in terms of the weight W of
each member and its vertical distance y from the datum,

• Express the elastic potential energy of the system in terms of
the stretch or compression, s, of any connecting spring,

• Formulate the potential function and express the
position coordinates y and s in terms of the single coordinate q.

Equilibrium Position.

• The equilibrium position of the system is determined by taking
the first derivative of V and setting it equal to zero,

Stability.

• Stability at the equilibrium position is determined by evaluating
the second or higher-order derivatives of V.

• If the second derivative is greater than zero, the system is stable;
if all derivatives are equal to zero, the system is in neutral
equilibrium; and if the second derivative is less than zero, the
system is unstable.

*The location of the datum is arbitrary, since only the changes or differentials of
V are required for investigation of the equilibrium position and its stability.

dV>dq = 0.

V = Vg + Ve

Ve = 1
2ks

2.

Ve

Vg = Wy.

Vg



586 CH A P T E R 11 VI RT U A L WO R K

11

The uniform link shown in Fig. 11–17a has a mass of 10 kg. If the spring
is unstretched when determine the angle for equilibrium and
investigate the stability at the equilibrium position.

SOLUTION

Potential Function. The datum is established at the bottom of the
link, Fig. 11–17b. When the link is located in the arbitrary position 
the spring increases its potential energy by stretching and the weight
decreases its potential energy. Hence,

Since or and , then 

Equilibrium Position. The first derivative of V is

or

This equation is satisfied provided

Ans.

Ans.

Stability. The second derivative of V is

Substituting values for the constants, with and yields

Ans.= -29.4 6 0 1unstable equilibrium at u = 0°2

d2V

du2 `
u=0°

= 20010.6221cos 0° - cos 0°2 -
1019.81210.62

2
cos 0°

u = 53.8°,u = 0°

= kl21cos u - cos 2u2 -
Wl

2
cos u

d2V

du2 = kl211 - cos u2 cos u + kl2 sin u sin u -
Wl

2
cos u

u = cos-1a1 -
W

2kl
b = cos-1 c1 -

1019.812
21200210.62 d = 53.8°

sin u = 0 u = 0°

l ckl11 - cos u2 -
W

2
d  sin u = 0

dV

du
= kl211 - cos u2 sin u -

Wl

2
sin u = 0

V =
1
2
kl211 - cos u22 + Wa l

2
 cos ub
y = (l>2) cos us = l11 - cos u2,l = s + l cos u

V = Ve + Vg =
1
2
ks2 + Wy

u,

uu = 0°,

EXAMPLE 11.5

l � 0.6 m

A

k � 200 N/m

B

(a)

u

s

cos u

l—
2

l—
2

l

W

W

l—
2

k

Datum

(b)

F � ks

u

u

y �

Fig 11–17

Ans.= 46.9 7 0 1stable equilibrium at u = 53.8°2

d2V

du2 `
u=53.8°

= 20010.6221cos 53.8° - cos 107.6°2 - 1019.81210.62
2

cos 53.8°
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EXAMPLE 11.6

If the spring AD in Fig. 11–18a has a stiffness of 18 kN/m and is
unstretched when , determine the angle for equilibrium. The
load has a mass of 1.5 Mg. Investigate the stability at the equilibrium
position.

SOLUTION

Potential Energy. The gravitational potential energy for the load
with respect to the fixed datum, shown in Fig. 11–18b, is

uu = 60°

Vg = mgy = 1500(9.81) N[(4 m) sin u + h] = 58 860 sin u + 14 715h

where h is a constant distance. From the geometry of the system, the
elongation of the spring when the load is on the platform is

.
Thus, the elastic potential energy of the system is

The potential energy function for the system is therefore

(1)

Equilibrium. When the system is in equilibrium,

Since 

Solving by trial and error,

Ans.

Stability. Taking the second derivative of Eq. 1,

Substituting yields 

Ans.

And for ,

Ans.
d2V

du2 = 64 073 7 0      Stable 
u = 45.51°

d2V

du2 = -60 409 6 0   Unstable 
u = 28.18°

d2V

du2 = -58 860 sin u - 288 000 cos 2u + 144 000 cos u

u = 45.51° u = 28.18° and

58 860 cos u - 144 000 sin 2u +  144 000 sin u = 0

sin 2u =  2 sin u cos u,

58 860 cos u - 288 000 sin u cos u + 144 000 sin u = 0

dV

du
= 58 860 cos u + 18 000(4 cos u - 2)(-4 sin u) = 0

V = Vg + Ve = 58 860 sin u + 14 715h + 9000(4 cos u - 2)2

Ve = 1
2 ks2 = 1

2(18 000 N/m)(4 m cos u - 2 m)2 = 9000(4 cos u - 2)2

s = (4 m) cos u - (4 m) cos 60° = (4 m) cos u - 2 m

(a)

2 m

2 m
A

C

E

B

D

G

k � 18 kN/m

uu

2 m

2 m
A

C

E

B

D

G

k � 18 kN/m

(b)

4 m cosu

(4 m)sinu   

h

y

Datum
uu

Fig 11–18
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The uniform block having a mass m rests on the top surface of the half
cylinder, Fig. 11–19a. Show that this is a condition of unstable
equilibrium if 

SOLUTION

Potential Function. The datum is established at the base of the
cylinder, Fig. 11–19b. If the block is displaced by an amount from the
equilibrium position, the potential function is

From Fig. 11–18b,

Thus,

Equilibrium Position.

Note that satisfies this equation.

Stability. Taking the second derivative of V yields

At

Since all the constants are positive, the block is in unstable
equilibrium provided because then d2V>du2 6 0.h 7 2R,

d2V

du2 `
u=0°

= -mgah
2

- Rb
u = 0°,

d2V

du2 = mga-h
2

cos u + R cos u - Ru sin ub

u = 0°

= mga-h
2

sin u + Ru cos ub = 0

dV

du
= mg c - aR +

h

2
b  sin u + R sin u + Ru cos u d = 0

V = mg c aR +
h

2
b  cos u + Ru sin u d

y = aR +
h

2
b  cos u + Ru sin u

= 0 + mgy

V = Ve + Vg

u

h 7 2R.

EXAMPLE 11.7

hm

R

(a)

y

W � mg

R

(b)
) cos u(R �

Ru sin u
Ru

h—
2

h—
2

Datum

u

u

Fig 11–19
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11–31. If the springs at A and C have an unstretched
length of 10 in. while the spring at B has an unstretched
length of 12 in., determine the height h of the platform
when the system is in equilibrium. Investigate the stability
of this equilibrium configuration. The package and the
platform have a total weight of 150 lb.

11–30. The spring has a stiffness and is
unstretched when . If the mechanism is in equilibrium
when determine the weight of cylinder D. Neglect
the weight of the members. Rod AB remains horizontal at all
times since the collar can slide freely along the vertical guide.

u = 60°,
u = 45°

k = 600 lb>ft11–26. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation

, where x is given in feet,
determine the equilibrium positions and investigate the
stability at each position.

11–27. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation

, , determine
the equilibrium positions and investigate the stability at
each position.

*11–28. If the potential energy for a conservative one-
degree-of-freedom system is expressed by the relation

, where y is given in meters,
determine the equilibrium positions and investigate the
stability at each position.

•11–29. The 2-Mg bridge, with center of mass at point G, is
lifted by two beams CD, located at each side of the bridge.
If the 2-Mg counterweight E is attached to the beams as
shown, determine the angle for equilibrium. Neglect the
weight of the beams and the tie rods.

u

V = (3y3 + 2y2 - 4y + 50) J

0° … u … 90°V = (24 sin u + 10 cos 2u) ft # lb

V = (4x3 - x2 - 3x + 10) ft # lb

PROBLEMS

D

A G

C

B

E

2.5 m
2.5 m

2 m

5 m

0.3 m

2 m

u

u

Prob. 11–29

A

k
B

C

D5 ftu

Prob. 11–30

h A B C k1 � 20 lb/in.

k1 � 20 lb/in. k2 � 30 lb/in.

Prob. 11–31
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11–35. Determine the angles for equilibrium of the 
200-lb cylinder and investigate the stability of each position.
The spring has a stiffness of and an
unstretched length of 0.75 ft.

k = 300 lb>ft
u

11–34. If a 10-kg load I is placed on the pan, determine the
position x of the 0.75-kg block H for equilibrium.The scale is
in balance when the weight and the load are not on the scale.

•11–33. A 5-kg uniform serving table is supported on each
side by pairs of two identical links, AB and CD, and springs
CE. If the bowl has a mass of 1 kg, determine the angle 
where the table is in equilibrium. The springs each have a
stiffness of and are unstretched when .
Neglect the mass of the links.

u = 90°k = 200 N>m
u

*11–36. Determine the angles for equilibrium of the 
50-kg cylinder and investigate the stability of each position.
The spring is uncompressed when u = 60°.

u

B C F

I

H

EDA

100 mm100 mm

100 mm

50 mm
x

Prob. 11–34

A

B

CE
k

D

3 ft

1.5 ft

u u

Prob. 11–35

A

B C

1 m 1 m

u

k � 900 N/m
Prob. 11–36

A C k

250 mm

250 mm 150 mm

150 mm

B
D

E

u u

Prob. 11–33

*11–32. The spring is unstretched when and has a
stiffness of . Determine the angle for
equilibrium if each of the cylinders weighs 50 lb. Neglect the
weight of the members.

uk =  1000 lb>ft
u = 45°

D

Ek

A

B C

4 ft

4 ft

2 ft

2 ft
uu

Prob. 11–32
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11–39. The uniform link AB has a mass of 3 kg and is pin
connected at both of its ends. The rod BD, having negligible
weight, passes through a swivel block at C. If the spring has a
stiffness of and is unstretched when ,
determine the angle for equilibrium and investigate the
stability at the equilibrium position. Neglect the size of the
swivel block.

u

u = 0°k = 100 N>m

11–38. The uniform rod OA weighs 20 lb, and when the rod
is in the vertical position, the spring is unstretched.
Determine the position for equilibrium. Investigate the
stability at the equilibrium position.

u

•11–37. If the mechanism is in equilibrium when 
determine the mass of the bar BC. The spring has a stiffness
of and is uncompressed when . Neglect
the mass of the links.

u = 0°k = 2 kN>m
u = 30°,

*11–40. The truck has a mass of 20 Mg and a mass center at
G. Determine the steepest grade along which it can park
without overturning and investigate the stability in this
position.

u

600 mm

450 mm

B

C

D

H F

A

k � 2 kN/m

u

u

Prob. 11–37

3 ft

k � 2 lb/in.

A

O
1 ft

u

Prob. 11–38

k � 100 N/m

400 mm

400 mm
D

C

B

A

u

Prob. 11–39

G

u

3.5 m

1.5 m
1.5 m

Prob. 11–40
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11–43. Determine the height h of the cone in terms of the
radius r of the hemisphere so that the assembly is in neutral
equilibrium. Both the cone and the hemisphere are made
from the same material.

11–42. The cap has a hemispherical bottom and a mass m.
Determine the position h of the center of mass G so that the
cup is in neutral equilibrium.

•11–41. The cylinder is made of two materials such that it
has a mass of m and a center of gravity at point G. Show
that when G lies above the centroid C of the cylinder, the
equilibrium is unstable.

*11–44. A homogeneous block rests on top of the
cylindrical surface. Derive the relationship between the
radius of the cylinder, r, and the dimension of the block, b,
for stable equilibrium. Hint: Establish the potential energy
function for a small angle , i.e., approximate , and

.cos u L 1 - u2>2
sin u L 0u

h
r

G

Prob. 11–42

h

r

Prob. 11–43

b

r

b

Prob. 11–44

C

G
a

r

Prob. 11–41
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*11–48. The assembly shown consists of a semicircular
cylinder and a triangular prism. If the prism weighs 8 lb and
the cylinder weighs 2 lb, investigate the stability when the
assembly is resting in the equilibrium position.

11–46. The assembly shown consists of a semicylinder and
a rectangular block. If the block weighs 8 lb and the
semicylinder weighs 2 lb, investigate the stability when the
assembly is resting in the equilibrium position. Set 

11–47. The 2-lb semicylinder supports the block which has
a specific weight of . Determine the height h
of the block which will produce neutral equilibrium in the
position shown.

g = 80 lb>ft3

h = 4 in.

•11–45. The homogeneous cone has a conical cavity cut
into it as shown. Determine the depth d of the cavity in
terms of h so that the cone balances on the pivot and
remains in neutral equilibrium.

•11–49. A conical hole is drilled into the bottom of the
cylinder, and it is then supported on the fulcrum at A.
Determine the minimum distance d in order for it to remain
in stable equilibrium.

4 in.

6 in.

8 in.

Prob. 11–48

d

A

r

h

Prob. 11–49

r

d

h

Prob. 11–45

h

4 in.

10 in.

Probs. 11–46/47
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CHAPTER REVIEW

Principle of Virtual Work

The forces on a body will do virtual work
when the body undergoes an imaginary
differential displacement or rotation.

For equilibrium, the sum of the virtual
work done by all the forces acting on the
body must be equal to zero for any virtual
displacement. This is referred to as the
principle of virtual work, and it is useful for
finding the equilibrium configuration for a
mechanism or a reactive force acting on a
series of connected members.

If the system of connected members has
one degree of freedom, then its position
can be specified by one independent
coordinate such as 

To apply the principle of virtual work, it is
first necessary to use position coordinates
to locate all the forces and moments on
the mechanism that will do work when
the mechanism undergoes a virtual
movement du.

u.

The coordinates are related to the
independent coordinate and then these
expressions are differentiated in order to
relate the virtual coordinate displacements
to the virtual displacement .

Finally, the equation of virtual work is
written for the mechanism in terms of the
common virtual displacement , and then
it is set equal to zero. By factoring out of
the equation, it is then possible to determine
either the unknown force or couple
moment, or the equilibrium position u.

du
du

du

u

dU = 0

du–virtual rotation

dy, dy¿–virtual displacements

By

Ay

Bx

P

du
dy

dy¿

F

l

l

P

F

l l

P

uu

u u
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Potential-Energy Criterion for Equilibrium

When a system is subjected only to
conservative forces, such as weight and
spring forces, then the equilibrium
configuration can be determined using the
potential-energy function V for the system.

V = Vg + Ve = -Wy + 1
2 ky

2

The potential-energy function is established
by expressing the weight and spring
potential energy for the system in terms of
the independent coordinate q.

Once the potential-energy function is
formulated, its first derivative is set equal
to zero. The solution yields the equilibrium
position for the system.qeq

dV

dq
= 0

The stability of the system can be
investigated by taking the second derivative
of V.

dV

dq
=
d2V

dq2 =
d3V

dq3 = Á = 0 neutral equilibrium

dV

dq
= 0, 

d2V

dq2 6 0 unstable equilibrium

dV

dq
= 0, 

d2V

dq2 7 0 stable equilibrium

y2

y1
y

Datum

W

k

(a)
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REVIEW PROBLEMS

*11–52. The uniform links AB and BC each weigh 2 lb
and the cylinder weighs 20 lb. Determine the horizontal
force P required to hold the mechanism at . The
spring has an unstretched length of 6 in.

u = 45°

11–51. The uniform rod has a weight W. Determine the
angle for equilibrium. The spring is uncompressed when

. Neglect the weight of the rollers.u = 90°
u

11–50. The punch press consists of the ram R, connecting
rod AB, and a flywheel. If a torque of is
applied to the flywheel, determine the force F applied at the
ram to hold the rod in the position .u = 60°

M = 50 N # m

•11–53. The spring attached to the mechanism has an
unstretched length when . Determine the position 
for equilibrium and investigate the stability of the
mechanism at this position. Disk A is pin connected to the
frame at B and has a weight of 20 lb.

uu = 90°

1.25 ft

1.25 ft

A

B

C

uu

u u

k � 16 lb/ft

Prob. 11–53

F

0.1 m

M

B
R

A

u

0.4 m

Prob. 11–50

k A

B

L

u

Prob. 11–51

P

10 in.

B

A
u C

10 in.

k = 2 lb/in.

Prob. 11–52
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*11–56. The uniform rod AB has a weight of 10 lb. If the
spring DC is unstretched when , determine the angle

for equilibrium using the principle of virtual work. The
spring always remains in the horizontal position due to the
roller guide at D.

•11–57. Solve Prob. 11–56 using the principle of potential
energy. Investigate the stability of the rod when it is in the
equilibrium position.

u

u = 0°

11–55. The uniform bar AB weighs 100 lb. If both springs
DE and BC are unstretched when , determine the
angle for equilibrium using the principle of potential
energy. Investigate the stability at the equilibrium position.
Both springs always remain in the horizontal position due
to the roller guides at C and E.

u

u = 90°

11–54. Determine the force P that must be applied to the
cord wrapped around the drum at C which is necessary to
lift the bucket having a mass m. Note that as the bucket is
lifted, the pulley rolls on a cord that winds up on shaft B and
unwinds from shaft A.

11–58. Determine the height h of block B so that the rod
is in neutral equilibrium. The springs are unstretched when
the rod is in the vertical position. The block has a weight W.

P

c

C

B

A

ba

Prob. 11–54

B

A

k k

l

h

Prob. 11–58

A
u

k � 2 lb/in.  

k � 4 lb/in.   

2 ft

4 ft
D

B
C

E

Prob. 11–55

A

k � 50 lb/ft   

1 ft

2 ft

C
u

B

D

Probs. 11–56/57



598

Mathematical Review
and Expressions

Geometry and Trigonometry Review
The angles in Fig. A–1 are equal between the transverse and two
parallel lines.

u

APPENDIX

A
180� � u

u

u

u

uu

Fig. A–1

u
u

u

u

Fig. A–2

For a line and its normal, the angles in Fig. A–2 are equal.u
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A

s
r

r
u

Fig. A–3

For the circle in Fig. A–3 so that when rad then
the circumference is Also, since rad, then

The area of the circle is A = pr2.u 1rad2 = 1p>180°2u°.
180° = ps = 2pr.

u = 360° = 2ps = ur,

The sides of a similar triangle can be obtained by proportion as in 

Fig. A–4, where 

For the right triangle in Fig. A–5, the Pythagorean theorem is

The trigonometric functions are

This is easily remembered as “soh, cah, toa”, i.e., the sine is the opposite
over the hypotenuse, etc. The other trigonometric functions follow
from this.

 cot u =
1

tan u
=
a
o

 sec u =
1

cos u
=
h
a

 csc u =
1

sin u
=
h
o

 tan u =
o
a

 cos u =
a

h

 sin u =
o

h

h = 21o22 + 1a22

a

A
=
b

B
=
c

C
.

a

b

c
A

B

C

Fig. A–4

a (adjacent)

o (opposite)

h (hypotenuse)

u

Fig. A–5
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Trigonometric Identities

Quadratic Formula

Hyperbolic Functions

tanh x =
sinh x
cosh x

cosh x =
ex + e-x

2
,

sinh x =
ex - e-x

2
,

then x =
-b ; 2b2 - 4ac

2a
If ax2 + bx + c = 0,

1 + tan2 u = sec2 u 1 + cot2 u = csc2 u

tan u =
sin u
cos u

sin u = ;
A

1 - cos 2u
2

cos u = ;
A

1 + cos 2u
2

,

cos 2u = cos2 u - sin2 u

cos1u ; f2 = cos u cos f <  sin u sin f

sin 2u = 2 sin u cos u

sin1u ; f2 = sin u cos f ;  cos u sin f

sin2 u + cos2 u = 1

Power-Series Expansions

Derivatives

d

dx
1csc u2 = -csc u cot u

du

dx

d

dx
1sec u2 = tan u sec u

du

dx
 
d

dx
1cosh u2 = sinh u

du

dx

d

dx
1cot u2 = -csc2 u

du

dx

d

dx
1sinh u2 = cosh u

du

dx

d

dx
au
v
b =

v
du

dx
- u
dv

dx

v2

d

dx
1tan u2 = sec2 u

du

dx

d

dx
1uv2 = u

dv

dx
+ v
du

dx

d

dx
1cos u2 = -sin u

du

dx

d

dx
1un2 = nun-1 du

dx

d

dx
1sin u2 = cos u

du

dx

cosh x = 1 +
x2

2!
+ Ásinh x = x +

x3

3!
+ Á ,

cos x = 1 -
x2

2!
+ Ásin x = x -

x3

3!
+ Á ,



L
 cosh x dx = sinh x + C

L
 sinh x dx = cosh x + C

L
xeax dx =

eax

a2 1ax - 12 + C

L
eax dx =

1
a
eax + C

L
x2 cos1ax2 dx =

2x

a2 cos1ax2 +
a2x2 - 2

a3 sin1ax2 + C

L
x cos1ax2 dx =

1

a2 cos1ax2 +
x
a

sin1ax2 + C

L
 cos x dx = sin x + C

L
 sin x dx = -cos x + C

c 6 0=
1
1-c

sin-1a -2cx - b
2b2 - 4ac

b + C,

c 7 0x1c +
b

21c
d + C,

L

dx

2a + bx + cx2
=

1
1c

ln c2a + bx + cx2 +

L

x dx

2x2 ; a2
= 2x2 ; a2 + C

L

dx

2a + bx
=

22a + bx
b

+ C

<
a2

8
x2x2 ; a2 -

a4

8
ln Ax + 2x2 ; a2 B + C

L
x22x2 ; a2 dx =

x

4
21x2 ; a223

L
x2x2 ; a2 dx =

1
3
21x2 ; a223 + C
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A

Integrals

1
2
cx2x2 ; a2 ; a2 ln Ax + 2x2 ; a2 B d + C

L
2x2 ; a2 dx =

a 7 0+ a2 sin-1 x
a
b + C,+

a2

8
ax2a2 - x2

L
x22a2 - x2 dx = -

x

4
21a2 - x223

L
x2a2 - x2 dx = -

1
3
21a2 - x223 + C

a 7 0

L
2a2 - x2 dx =

1
2
cx2a2 - x2 + a2 sin-1 x

a
d + C,

218a2 - 12abx + 15b2x2221a + bx23
105b3 + C

L
x22a + bx dx =

L
x2a + bx dx =

-212a - 3bx221a + bx23
15b2 + C

L
2a + bx dx =

2
3b
21a + bx23 + C

ab 7 0
L

x2 dx

a + bx2 =
x

b
-

a

b2ab
tan-1 x2ab

a
+ C,

L

x dx

a + bx2 =
1

2b
ln1bx2 + a2 + C

ab 6 0

L

dx

a + bx2 =
1

22-ba
ln ca + x2-ab
a - x2-ab

d + C,

L

dx

a + bx
=

1
b

ln1a + bx2 + C

n Z -1
L
xn dx =

xn+1

n + 1
+ C,
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F2–9.

Ans.

Ans.

F2–10.

Ans.
Ans.

F2–11.

Ans.
Ans.

F2–12.

Ans.
Ans.

F2–13.

Ans.

Ans.

Ans.g = cos-1 A -37.5
75 B = 120° 

b = cos-1 A45.93
75 B = 52.2° 

a = cos-1 A45.93
75 B = 52.2° 

Fz = -75 sin 30° = -37.5 lb

Fy = 75 cos 30° cos 45° = 45.93 lb
Fx = 75 cos 30° sin 45° = 45.93 lb

u = 39.8°
FR = 31.2 kN
(FR)y = 15 A35 B + 20 - 15 A35 B = 20 kN c

(FR)x = 15 A45 B + 0 + 15 A45 B = 24 kN:
F = 62.5 lb
 tan u = 0.2547 u = 14.29° = 14.3°a

-(80 lb) sin45° = F sin u - A45 B(90 lb)

+ c(FR)y = ©Fy;

 (800 lb) cos 45° = F cos u + 50 lb - A35 B90 lb

:+ (FR)x = ©Fx;

F = 236 N
 tan u = 0.6190 u = 31.76° = 31.8°a
0 = F sin u + A12

13B(325 N) - (600 N)sin 45°

+ c(FR)y =©Fy;

 750 N = F cos u + A 513B(325 N) + (600 N)cos45°

+:(FR)x = ©Fx;

u = 180° + f = 180° + 78.68° = 259°

f = tan-1 A 1230 lb
246.22 lb B = 78.68°

FR = 2(246.22 lb)2 + (1230 lb)2 = 1254 lb

= -1230 lb

 (FR)y = -(700 lb) sin 30° - 400 lb - A45 B  (600 lb)

+ c(FR)y = ©Fy;
= -246.22 lb

 (FR)x = - (700 lb) cos 30° + 0 + A35 B  (600 lb)

+:(FR)x = ©Fx;

Fundamental Problems 
Partial Solutions And Answers 
Chapter 2
F2–1.

Ans.

Ans.

F2–2.

Ans.

F2–3.
Ans.

Ans.

F2–4. Ans.

Ans.

F2–5.

Ans.

Ans.

F2–6. Ans.

Ans.

F2–7. Ans.

Ans.

Ans.

Ans.

Ans.

F2–8.

Ans.

Ans.u = tan-1 350
446.4 = 38.1°a

FR = 2(446.4)2 + 3502 = 567 N

FRy = 400 sin 30° + 250 A35 B = 350 N

FRx = 300 + 400 cos 30° - 250 A45 B = 446.4 N

 (F3)y = A45 B600 N = 480 N

 (F3)x = A35 B600 N = 360 N

 (F2)y = (450 N) sin 45° = 318 N

 (F2)x = -(450 N) cos 45° = -318 N

(F1)x = 0  (F1)y = 300 N 

Fv
sin 45°

=
6

sin 105°
Fv = 4.39 kN

F

sin 30°
=

6
sin 105°

F = 3.11 kN

FAC = 636 lb 

FAC
sin 45°

=
450

sin 30°

FAB = 869 lb 

FAB
sin 105°

=
450

sin 30°

Fv
sin 30°

=
30

sin 105°
; Fv = 15.5 lb

Fu
sin 45°

=
30

sin 105°
; Fu = 22.0 lb

f = a - 30° = 73.90° - 30° = 43.9°

a = 73.90°
sin a
800

=
sin 60°
721.11

;

= 721.11 N = 721 N
FR = 26002 + 8002 - 2(600)(800) cos 60°

= 666 N 
FR = 22002 + 5002 - 2(200)(500) cos 140°

u = 45° + f = 45° + 58.49° = 103°

f = 58.49°
sin f

6 kN
=

sin 105°
6.798 kN

,

= 6.798 kN = 6.80 kN 
FR = 2(2 kN)2 + (6 kN)2 - 2(2 kN)(6 kN) cos 105°

603
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F2–14.
Require .

Ans.

F2–15.

Ans.

F2–16.

Ans.

F2–17.

Ans.

F2–18.

Ans.

F2–19. Ans.

Ans.
Ans.

F2–20. Ans.

Ans.

Ans.

F2–21.

Ans.= 5180i + 270j - 540k6 N  

= (630 N) A27 i + 3
7 j - 6

7 k B
FB = FBuB

rB = 52i + 3j - 6k6 m
u = 180° - 131.8° = 48.2°

a = cos-1 A -4 ft
6 ft B = 131.8°

rAB = 2(-4 ft)2 + (2 ft)2 + (4 ft)2 = 6 ft

rAB = 5-4i + 2j + 4k6 ft

a = 132°, b = 48.2°, g = 70.5°
rAB = 2(-6 m)2 + (6 m)2 + (3 m)2 = 9 m

rAB = 5-6i + 6j + 3k6m  
FR = F1 + F2 = 5490i + 683j - 266k6 lb  

= 5489.90i + 282.84j - 565.69k6 lb
+ (800 lb) sin 45° (-k)

+ [(800 lb) cos 45°] sin 30°j

F2 =  [(800 lb) cos 45°] cos 30° i

= 5400j + 300k6 lb
F1 = A45 B(500 lb) j + A35 B  (500 lb)k

F2 = 5265i - 459j + 530k6 N
Fy = (530.33 N) sin 60° = 459.3 N

Fx = (530.33 N) cos 60° = 265.1 N

F¿ = (750 N) cos 45° = 530.33 N

Fz = (750 N) sin 45° = 530.33 N

F = 5-21.2i + 28.3j + 35.4k6 lb
Fy = A45 B(35.36 lb) = 28.28 lb

Fx = A35 B  (35.36 lb) = 21.21 lb

F¿ = (50 lb) cos 45° = 35.36 lb

Fz = (50 lb) sin 45° = 35.36 lb

= 5250i - 354j - 250k6 N
F = FuF = (500 N)(0.5i - 0.7071j - 0.5k)

a = 60°
 cos2a + cos2135° + cos2 120° = 1

= 5-250i - 354j + 250k6 N
F = FuF = (500 N)(-0.5i - 0.7071j + 0.5k)

b = 135°
cos b = 21 - cos2 120° - cos2 60° = ;0.7071 F2–22.

F2–23.

Ans.

F2–24.

Ans.

F2–25.

Ans.

F2–26.

Ans.

F2–27.

Ans.

F2–28.

FOA = FOA uOA = 5231i + 96.2j6 N
FOA = F # uOA = 250 N

F = FuF = [650j] N

uOA = 12
13 i + 5

13 j

 cos u = 5
13; u = 67.4°

uOA # j = uOA (1) cos u

uOA = 12
13 i + 5

13 j

u = cos-1 (uAB # uF) = 68.9°

 uF = 4
5 i - 3

5 j

uAB = -3
5 j + 4

5 k

u = cos-1 (uAO # uF) = 57.7°

uF = -0.5345i + 0.8018j + 0.2673k

uAO = -1
3 i + 2

3 j - 2
3 k

 FR = FB + FC = 5-620i + 610j -540k6 lb
= 5-420i + 210j - 140k6 lb
= (490 lb) A -6

7 i + 3
7 j - 2

7 k B
FC = FCuC

= 5-200i + 400j - 400k6 lb
= (600 lb) A -1

3 i + 2
3 j - 2

3 k B
FB = FBuB

= 1.18 kN

FR = 2(480 N)2 + (-60 N)2 + (-1080 N)2

= 5120i + 180j - 360k6 N
= (420 N) A27 i + 3

7 j - 6
7 k B

FC = FCuC

= 5360i - 240j - 720k6 N
= (840 N) A37 i - 2

7 j - 6
7 k B

FB = FBuB

= 5-400i + 700j - 400k6 N
F = FuAB = 900N A -4

9 i + 7
9 j - 4

9 k B
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F2–29.

Ans.

F2–30.

Ans.

Ans.

Chapter 3

F3–1.

Ans.
Ans.

F3–2.

Ans.

F3–3.

Ans.

F3–4.

Ans.

F3–5.

Ans.mA = 20 kg

+ c©Fy = 0; (392.4 N)sin 30° - mA(9.81) = 0

l0 = 0.283 m

Fsp = k(l - l0); 43.35 = 200(0.5 - l0)

Fsp = 43.35 N

+Q©Fx = 0; 4
5 (Fsp) - 5(9.81) sin 45° = 0

T = 40.9 N

u = tan-1 A0.15 m
0.2 m B = 36.87°

+ c©Fy = 0; 2T sin u - 49.05 N = 0

f = u
:+ ©Fx = 0; T cos u - T cos f = 0

LABC = 2 A 5 ft
cos 13.5° B = 10.3 ft

u = 13.5°

+ c©Fy = 0; -2(1500) sin u + 700 = 0

FAC = 518 lb 
FAB = 478 lb 
+ c©Fy = 0; 3

5 FAC + FAB sin 30° - 550 = 0

+: ©Fx= 0; 4
5FAC - FAB cos 30° = 0

=  401 lb

 (FA)per = 2(600 lb)2 - (446.41 lb)2

 (FA)proj = F # uA = 446.41 lb = 446 lb

uA = -2
3 i + 2

3 j + 1
3 k

= 5-150i + 259.81j + 519.62k6 lb
+ [(600 lb) sin 60°] k

+ [(600 lb) cos 60°] cos 30° j

F = [(-600 lb) cos 60°] sin 30°i

 (FAO)proj = F # uAO = 244 N

= - 0.5547j - 0.8321k

uAO =
5-4 j- 6 k6m

2(-4 m)2 + (-6 m)2

= 5219.78i + 54.94j - 329.67k6 N
F = (400 N)

54 i+1 j-6 k6m
2(4 m)2 + (1 m)2 + (-6 m)2

F3–6.

Ans.

Ans.

Ans.
Ans.

F3–7. (1)

(2)

(3)

Ans.
Ans.
Ans.

F3–8.

Ans.

Ans.

Ans.

F3–9.

Ans.

Ans.

Ans.

F3–10.

Ans.
Ans.

Ans.FAB = 138.60 lb = 139 lb
©Fx = 0; FAB - 0.25(202.92) - 0.5(175.74) = 0

FAC = 202.92 lb = 203 lb
FAD = 175.74 lb = 176 lb

©Fz = 0; 0.8660FAC + 0.7071FAD - 300 = 0

©Fy = 0; 0.4330FAC - 0.5FAD = 0

= -0.5FAD i - 0.5FAD j + 0.7071FAD k

FAD = FAD5cos 120° i + cos 120° j + cos 45°k6
= -0.25FAC i + 0.4330FAC j + 0.8660FAC k

  + cos 60° cos 30° j + sin 60° k6
FAC = FAC 5-cos 60° sin 30° i

FAC = 646.41 N = 646 N

1
3 (900) + 692.82 sin 30° - FAC = 0©Fx = 0;

FAB = 692.82 N = 693 N

FAB cos 30° - 2
3 (900) = 0©Fy = 0;

FAD = 900 N

2
3FAD - 600 = 0©Fz = 0;

FAD = FADa rAD
rAD
b = 1

3 FADi - 2
3 FAD j + 2

3 FAD k

FAB = 506.25 N = 506 N

©Fx = 0; FAB - 843.75 A35 B = 0

FAC = 843.75 N = 844 N

©Fy = 0; FAC A45 B - 1125 A35 B = 0

FAD = 1125 N = 1.125 kN

©Fz = 0; FAD A45 B - 900 = 0

F2 = 879 N
F1 = 466 N
F3 = 776 N

©Fz = 0; A45 BF3 + A35 BF1 - 900 N = 0

©Fy = 0; A45 BF1 - C A35 BF3 D A45 B = 0

©Fx = 0; C A35 BF3D A35B + 600 N - F2 = 0

u = 21.9°
TCD = 395 N

+ c©Fy = 0; TCD sin u - 15(9.81) N = 0

+:©Fx = 0; TCD cos u - 366.11 N = 0

TBC = 366.11 N = 366 N

+:©Fx = 0; TBC - 379.03 N cos 15° = 0

TAB = 379.03 N = 379 N

+ c©Fy = 0; TAB sin 15° - 10(9.81) N = 0



606 PA RT I A L SO L U T I O N S AN D AN S W E R S

F4–8. a

b

F4–9. a

Ans.

F4–10.

Ans.

or

Ans.

F4–11.

Ans.

or

Ans.

F4–12.

Ans.= 5485i - 1000j + 1020k6 lb # ft 
 (MR)O = rA * FR = 3

i j k
4 5 3

-100 130 175

3
= 5-100i + 130j + 175k6 lb

+ (75 + 100)k6 lb
= 5(100 - 200)i + (-120 + 250)j

FR = F1 + F2

= 5200j - 400k6 lb # ft
MO = rB * F = 3

i j k
1 4 2
80 -80 -40

3

= 5200j - 400k6 lb # ft
MO = rC * F = 3

i j k
5 0 0
80 -80 -40

3
= 580i - 80j - 40k6 lb
= 120 lbB 54 i -4 j- 2 k6 ft

2(4 ft)2 + (-4 ft)2 + (-2 ft)2
R

F = FuBC

= 5-1200k6 N # m
MO = rOB * F = 54i6 m * 5400i - 300j6 N

= 5-1200k6 N # m
MO = rOA * F = 53j6 m * 5400i - 300j6 N
F = FuAB = 500 N A45 i - 3

5 jB = 5400i - 300j6 N
= 2.60 kip # ft
+ (200 lb)(6 cos 30° ft)

-  (300 sin 30° lb)(6 cos 30° ft)

 (MR)O = (300 cos 30° lb)(6 ft + 6 sin 30° ft)
+(MR)O = ©Fd;

= -268 N # m = 268 N # m
- [(600 N) sin 60°](0.425 m)

- [(600 N) cos 60°](0.25 m)

- C A45 B500 N D(0.25 m)

 (MR)O = C A35 B500 N D(0.425 m)

+(MR)O = ©Fd;
F3–11.

(1)

(2)

(3)

Ans.

Ans.

Ans.

Chapter 4

F4–1. a

Ans.

F4–2. a

b Ans.

F4–3. a

Ans.

F4–4. a

Ans.

F4–5. c

Ans.

F4–6. a

Ans.

F4–7. a

Ans.= 1254 N # m = 1.25 kN # m
- (300N)[(2.5 m) sin 45°]

+ (500 N)[3 m + (2.5 m) cos 45°]

 (MR)O = -(600 N)(1 m)
+(MR)O = ©Fd;

= 1.06 kN # m
- 500 cos 45° (3 sin 45°)

+MO = 500 sin 45° (3 + 3 cos 45°)

= 11.2 N # m 
- 50 cos 60°(0.2 sin 45°)

+MO = 50 sin 60° (0.1 + 0.2 cos 45° + 0.1)

= 3.07 kip # ft
+MO = (600 lb)(4 ft + (3 ft)cos 45° - 1 ft)

= 36.7 N # m
- [(300 N) cos 30°][(0.3 m) sin 45°]

+MO = [(300 N) sin 30°][0.4 m + (0.3 m) cos 45°]

= -460 N # m = 460 N # m
+MO = - A45 B(100 N)(2 m)- A35 B(100 N)(5 m)

= 2.49 kip # ft
+MO = 600 sin 50° (5) + 600 cos 50° (0.5)

FD = 346.15 lb = 346 lb  
FC = 1.5(162 lb) = 242 lb

FB = 162 lb

©Fz = 0; 2
7 FB + 3

7 FC - 150 = 0

©Fy = 0; 3
7 FB - 2

7 FC = 0

©Fx = 0; -6
7 FB - 6

7 FC + FD = 0

W = 5-150k6 lb
FD = FDi

= -6
7 FC i - 2

7FCj + 3
7 FC k

= FCB 5-6i - 2j + 3k6 ft
2(-6 ft)2 + (-2 ft)2 + (3ft)2

R
FC = FCa rAC

rAC
b

= -6
7FBi + 3

7 FBj + 2
7 FBk

= FBB 5-6i + 3j + 2k6 ft
2(-6 ft)2 + (3 ft)2 + (2 ft)2

R
FB = FBa rAB

rAB
b
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F4–13.

Ans.

F4–14.

Ans.

F4–15.

F4–16.

Ans.

F4–17.

Ans.

F4–18.

Ans.

Ans.

Ans.= -160 N #m
Mz = 240 N(2 m) - 320 N(2 m)

= -120 N #m
My = 300 N(2 m) - 240 N(3 m)

= -360 N # m
Mx = 300 N(2 m) - 320 N(3 m)

Fz = (500 N) A35 B = 300 N

Fy = C A45 B500 N D A45 B = 320 N

Fx = C A45 B500 N D A35 B = 240 N

MAB = MABuAB = 53.2i - 2.4j6 lb #ft

= -4 lb #ft= 4
i j k

-0.8 0.6 0
0 0 2
50 -40 20

4

MAB = uAB #(rAC * F)

uAB =
rAB
rAB

=
5-4i + 3j6ft

2(-4 ft)2 + (3 ft)2
= -0.8i + 0.6j

= 210 N # m

Mp = j #(rA * F) = 3
0 1 0
-3 -4 2
30 -20 50

3

= 17.4 N # m

MO = i #(rA * F) = 3
1 0 0
0 0.3 0.25

-100 100 141.42

3
= 5-100i + 100j + 141.42k6 N

+ (200 N) cos 60° j + (200 N) cos 45° k

F = (200 N) cos 120° i

= -72 N # m

MOA = uOA #(rAB * F) = 3
0.6 0.8 0
0 0 -0.2

300 -200 150

3

uOA =
rA
rA

=
50.3i + 0.4j6 m

2(0.3 m)2 + (0.4 m)2

= 20 N # m

Mx = i #(rOB*F) = 3
1 0 0

0.3 0.4 -0.2
300 -200 150

3
F4–19. c

Ans.
Also,

c

Ans.

F4–20. a

Ans.

F4–21. a

Ans.

F4–22. a

b

F4–23.

Ans.

F4–24.

Ans.
Also,

Ans.= {108j + 144k} N #m

= 3
i j k
0 0 0.3
0 -360 270

3 + 3
i j k

0.4 0 0.3
0 360 -270

3
Mc = (rA * FA) + (rB * FB)

= {108j + 144k} N #m

Mc = rAB * FB = 3
i j k

0.4 0 0
0 360 -270

3
= 5360j - 270k6 N

FB = A45 B(450 N)j - A35 B(450 N) k

 (Mc)R = {-20i - 40j + 100k} lb #ft
 (Mc)R = ©Mc;

= 5180i - 240j6 lb #ft
 (Mc)3 = (Mc)3 u3 = (300 lb #ft) A1.5

2.5 i - 2
2.5 j B

= 5-250k6 lb #ft
 (Mc)2 = (Mc)2u2 = (250 lb #ft)(-k)

= 5-200i + 200j + 350k6 lb #ft
= (450 lb #ft) A- 2

4.5 i + 2
45 j + 3.5

4.5 k B
 (Mc)1 = (Mc)1u1

u3 = 1.5
2.5 i - 2

2.5 j

u2 = -k

= - 2
4.5 i + 2

4.5 j + 3.5
4.5 k

u1 =
r1

r1
=

[-2i + 2j + 3.5k] ft

2(-2 ft)2 + (2 ft)2 + (3.5 ft)2

= 20 kN # m
+MC = 10 A35 B(2) - 10 A45 B(4) = -20 kN # m

F = 2.33 kN
-1.5 kN #m = (2 kN)(0.3 m) -F(0.9 m)

+(MB)R = ©MB

= 2600 lb # ft
+MCR = 300(4) + 200(4) + 150(4)

= 740 N # m
+MCR = 300(5) - 400(2) + 200(0.2)

+ 200(0.2) = 740 N # m 
+MCR = ©MA = 400(3) - 400(5) + 300(5)
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F4–29.

Ans.

Ans.

F4–30.

Ans.

Ans.

F4–31.

Ans.

c

Ans.

F4–32.

Ans.

a

Ans.d = 3.12 ft

 163.30(d) = 200(3) - 100 A45B(6) + 50 cos 30°(9)

+(MR)A = ©MA;

u = tan-1 A163.30
85 B = 62.5°a

FR = 2852 + 163.302 = 184 lb

= 163.30 lbc

 (FR)y = 200 + 50 cos 30° - 100 A45B
+ c(FR)y = ©Fy;

 (FR)x = 100 A35 B +  50 sin 30° = 85 lb :
:+ (FR)x = ©Fx;

x = 6 ft
 1250(x) = 500(3) + 250(6) + 500(9)
FRx = ©MO;+

= 1250 lb

+ TFR = ©Fy; FR = 500 + 250 + 500

= {-105i - 48 j + 80k} N #m

+ 3
i j k
0 0.5 0.3

-160 0 -120

3 + (-75i)

 (MR )O = (0.3k)*(-100j)

FR = {-160i - 100j - 120k} N

Mc = 5-75i6 N #m
= 5-160i - 120k6 N

F2 = (200 N)B 5-0.4i - 0.3k6 m

2(-0.4 m)2 + (-0.3 m)2
R

F1 = 5-100j6 N
= 5-650i + 375k6N #m

= 3
i j k

-1.5 2 1
-300 150 200

3 + 3
i j k
0 2 0
0 0 -450

3
 (MR)O = rOB * F1 + rOA * F2

 (MR)O = ©M;

= 5-1.5i + 2j + 1k6 m
rOB = (-1.5 - 0)i + (2 - 0)j + (1 - 0)k

rOA = (2 - 0)j = 52j6 m
= 5-300i + 150j - 250k6 N
= (-300i + 150j + 200k) + (-450k)

FR = F1 + F2

FR = ©F;F4–25.

Ans.

Ans.

c

Ans.

F4–26.

Ans.

Ans.

c

Ans.

F4–27.

Ans.

Ans.

a

b Ans.

F4–28.

Ans.

Ans.

a

b Ans.= -640 = 640 lb #ft
 (MR)A = 100 A45 B(1) - 100 A35 B(6) - 150 A45 B(3)

+(MR)A = ©MA;

u = tan-1 A180
60 B = 71.6°c

FR = 2602 + 1802 = 189.74 lb = 190 lb

= -180 lb = 180 lb T

 (FR)y = -150 A45 B - 100 A35 B
+ c(FR)y = ©Fy;

 (FR)x = 150 A35 B + 50 - 100 A45 B = 60 lb:
+: (FR)x = ©Fx;

= 960 N # m
= -959.57 N # m

 (MR)A = 300 - 900 cos30° (0.75) - 300(2.25)
 (MR)A = ©MA;+

u = tan-1 A1079.42
450 B = 67.4°c

= 1169.47 N = 1.17 kN
FR = 24502 + 1079.422

= -1079.42 N = 1079.42 N T

 (FR)y = -900 cos 30° - 300

+ c(FR)y = ©Fy;
 (FR)x = 900 sin 30° = 450 N :

:+  (FR)x = ©Fx;

= 470 N # m
MAR = 30(3) + 3

5 (50)(6) + 200

MAR = ©MA;+
u = tan-1 A100

40 B = 68.2°c

FR = 2(40)2 + (100)2 = 108 N 

= 100 N

+ TFRy = ©Fy; FRy = 40 + 30 + 3
5 (50)

FRx = 4
5 (50) = 40 N+: FR x = ©Fx ;

MRA = 210 lb # ft
MAR = 3

5 (100)(4) - 4
5 (100)(6) + 150(3)

MAR = ©MA;+
u = tan-1 A 70

140 B = 26.6°d

FR = 21402 + 702 = 157 lb

+ TFRy = ©Fy; FRy = 150 - 4
5 (100) = 70 lb

+; FRx = ©Fx; FRx = 200 - 3
5 (100) = 140 lb
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F4–33.

Ans.

Ans.

a

Ans.

F4–34.

Ans.

Ans.

a

Ans.

F4–35.

Ans.

Ans.

Ans.

F4–36.

Ans.

Ans.

Ans.x = 0.667 m
 600x = 100(3) + 100(3) + 200(2) - 200(3)

MRy = ©My;
y = -0.667 m

-600y = 200(1) + 200(1) + 100(3) - 100(3)

MRx = ©Mx;
= 600 N

FR = 200 + 200 + 100 + 100

+ TFR = ©Fz;

x = 2.125 m

MRy = ©My; 800x = 500(4) - 100(3)
y = 4.50 m

MRx = ©Mx; -800y = -400(4) - 500(4)
= 800 N  

+ TFR = ©Fz; FR = 400 + 500 - 100

d = 0.2 m

- C A35 B5kN D(4 m)

- C A45 B5 kN D(2 m)

 5 kN(d) = 8 kN(3 m) - 6 kN(0.5 m)
+(MR)A = ©MA;

u = tan-1 A10 kN
5 kN B = 63.4°d

FR = 252 + 102 = 11.2 kN

= -10 kN = 10 kNT

 (FR)y = -6 kN - A45 B  5 kN

+ c(FR)y = ©Fy;
= -5 kN = 5 kN;

 (FR)x = A35 B  5 kN - 8 kN

+:(FR)x = ©Fx;
d = 0.909 m

-11(d) = -20(2) - 15 A45 B(2) + 15 A35 B(6)

+(MR)A = ©MA;

u = tan-1 A11
12 B = 42.5°c

FR = 2122 + 112 = 16.3 kN

 (FR)y = -20 + 15 A35 B = -11 kN = 11 kN T

+ c(FR)y = ©Fy;

 (FR)x = 15 A45 B = 12 kN:
:+ (FR)x = ©Fx; F4–37.

Ans.

a

Ans.

F4–38. Ans.

c

Ans.

F4–39.

Ans.

a

Ans.

F4–40.

Ans.

c

Ans.

F4–41.

Ans.

a

Ans.

F4–42.

c

x = L
xw(x) dx

L
w(x) dx

= L

4

0
2.5x4 dx

160
= 3.20 m

MAR = ©MA;+

FR =
L
w(x) dx =

L

4

0
2.5x3 dx = 160 N

d = 2.59 m

-24.75(d) = - 1
2 (3)(4.5)(1.5) - 3(6)(3)

+(MR)A = ©MA;

FR = 24.75 kN T
-FR = - 1

2 (3)(4.5) - 3(6)

+ cFR = ©Fy;

d = 5.03 ft

 1550d = C12 (50)(6) D(4) + [150(6)](3) + 500(9)

MAR = ©MA;+
= 1550 lb 

FR = 1
2 (50)(6) + 150(6) + 500

+ TFR = ©Fy;

d = 1 m

-27(d) = 1
2 (6)(3)(1) - 1

2 (6)(6)(2)

+(MR)A = ©MA;

FR = 27 kN T
-FR = - 1

2 (6)(3) - 1
2 (6)(6)

+ cFR = ©Fy;

d = 8.36 ft

 1650d = C12 (6)(150) D(4) + [8(150)](10)

MAR = ©MA;+
FR = 1

2 (6)(150) + 8(150) = 1650 lb

d = 1.25 m
- 9(3)(1.5) - 3(1.5)(3.75)

-40.5(d) = 6(1.5)(0.75)
+(MR)A = ©MA;

FR = 40.5 kN T
-FR = -6(1.5) - 9(3) - 3(1.5)

+ cFR = ©Fy;
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F5–5. a

Ans.

Ans.

Ans.

F5–6.

Ans.

a

Ans.

Ans.

F5–7.

Ans.

F5–8.

Ans.

Ans.

Ans.

Ans.

Ans.TBC = 352.5 N
TBC + 660 N + 487.5 N - 900 N - 600 N = 0

©Fz = 0;

Dy = 0©Fy = 0;
Dx = 0©Fx = 0;

Dz = 487.5 N

Dz(0.8 m) - 600 N(0.5 m) - 900 N(0.1 m) = 0

©Mx = 0;

FA = 660 N
600 N(0.2 m) + 900 N(0.6 m) - FA(1 m) = 0

©My = 0;

TB = 250 lb, TC = 100 lbTA = 350 lb,
-TB(4) - TC(4) + 500(2) + 200(2) = 0

©My = 0;

TA(3) + TC(3) - 500(1.5) - 200(3) = 0

©Mx = 0;

TA + TB + TC - 200 - 500 = 0

©Fz = 0;

NB = 327 N
- (250 N) cos 60° = 0

NB - 577.4 N + (433.0 N)cos 30°

+ c©Fy = 0;

NA = 577.4 N = 577 N
+ [(250 N) cos 30°](0.6 m) = 0

-NA sin 30°(0.15 m) - 433.0 N(0.2 m)
+©MB = 0;

NC = 433.0 N = 433 N
NC sin 30° - (250 N) sin 60° = 0

+:©Fx = 0;

FA = 93.5 N
+ (151.71 N) sin 60° - 25(9.81) N = 0

FA + (78.53 N) sin 15°

+ c©Fy = 0;

TAB = 78.53 N = 78.5 N
TAB cos 15° - (151.71 N) cos 60° = 0

+:©Fx = 0;

NC = 151.71 N = 152 N
NC(0.7 m) - [25(9.81) N] (0.5 m) cos 30° = 0

+©MA = 0;Chapter 5

F5–1.

Ans.

c

Ans.

Ans.

F5–2. a

Ans.

Ans.

Ans.

F5–3. a

Ans.

Ans.

Ans.

F5–4.
Ans.

Ans.

a

Ans.MA = 3.90 kN # m 
- 400 sin 30°(4.5) - 400 cos 30°(3 sin 60°) = 0

MA - 200(2.5) - 200(3.5) - 200(4.5)
+©MA = 0;

Ay = 800 N 
Ay - 200 - 200 - 200 - 400 sin 30° = 0

+ c©Fy = 0;

Ax = 346 N
-Ax + 400 cos 30° = 0:+ ©Fx = 0;

Ay = 5.49 kN

Ay + 8.047 kN - (5 kN) sin 45° - 10 kN = 0

+ c©Fy = 0;

Ax = 3.54 kN
 (5 kN) cos 45° - Ax = 0

+:©Fx = 0;

NB = 8.047 kN = 8.05 kN
- 5 kN(4 m) = 0

-  10 kN[2 m + (6 m) cos 45°]

NB[6 m + (6 m) cos 45°]
+©MA = 0;

Ay = -4 kN = 4 kN T

Ay + (11.31 kN) sin 45° - 4 kN = 0

+ c©Fy = 0;

Ax = -8 kN = 8 kN;
+:©Fx = 0; Ax + (11.31 kN) cos 45° = 0

FCD = 11.31 kN = 11.3 kN
FCD sin 45°(1.5 m) - 4 kN(3 m) = 0

+©MA = 0;

Ay = 140 lb 
+ c©Fy = 0; Ay + 260 - 500 A45 B = 0

By = 260 lb 
©MA = 0; By(10) - 500 A45 B(5) - 600 = 0+

Ax = 300 lb 
:+ ©Fx = 0; -Ax + 500 A35 B = 0
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F5–9.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

F5–10. Ans.

Ans.

Ans.

Ans.

Az + 1350 N + (-1800 N) - 450 N = 0

©Fz = 0;

Cz = 1350 N Bz = -1800 N

-Cz - 0.6Bz + 270 = 0

- Bz(0.6 m) + 450 N(0.6 m) = 0

-Cz(0.6 m + 0.4 m)©My = 0;

1.2Cz + 0.6Bz - 540 = 0
- 450 N(0.6 m + 0.6 m) = 0

©Mx = 0; Cz(0.6 m + 0.6 m) + Bz(0.6 m)

Ay = 0Ay + 0 = 0©Fy = 0;

Cy = 0Cy(0.4 m + 0.6 m) = 0

©Mz = 0;

Bx = 0©Fx = 0;

Az = 333.3 N

Az - 933.3N + 600 N = 0©Fz =0;

Ax = 500 N
1400 N + (-900 N)-Ax = 0©Fx = 0;

Bx = 1400 N
+ (-400 N)(0.6 m) = 0

-(-900  N)(1.2 m)-Bx (0.6 m) +
©Mz = 0;

Bz = -933.3 N
+ (-400 N)(0.4 m) = 0

Bz (0.6 m) + 600 N (1.2 m)©Mx = 0;

Cx = -900 N 
-Cx (0.4 m) - 600 N ( 0.6 m) = 0©My = 0;

Cy = -400 N

 400 N + Cy = 0;©Fy = 0; F5–12. Ans.

Ans.

Ans.

Ans.

Ans.

Chapter 6
F6–1. Joint A.

Ans.

Ans.
Joint B.

Ans.

Ans.

Joint D.

Ans.

F6–2. Joint D:

Ans.

Ans.

Ans.

F6–3.

Joint A:

Ans.
Joint C:

Ans.FDC = 400 lb (C) 

+ c©Fy = 0; -FDC + 400 = 0;

FAE = 667 lb (C)

+ c©Fy = 0; - 3
5 FAE + 400 = 0

Ax = 0, Ay = Cy = 400 lb

FBC = 500 lb (T), FAC = FAB = 0

FAD = 400 lb (C)

:+ ©Fx = 0; -FAD + 4
5 (500) = 0

FCD = 500 lb (T)

+ c©Fy = 0; 3
5 FCD - 300 = 0;

FCD = 318.20 lb = 318 lb (T)

FCD cos 45° + (318.20 lb) cos 45° - 450 lb = 0

+:©Fx = 0;

+ c©Fy = 0; FBD = 0

FBC = 225 lb (T)

+:©Fx = 0; FBC - 225 lb = 0

FAB = 225 lb (T)

+:©Fx = 0; FAB - (318.20 lb) cos 45° = 0

FAD = 318.20 lb = 318 lb (C)

+ c©Fy = 0; 225 lb - FAD sin 45° = 0

Az = 40 lb (MA)x = 240 lb # ft
©Mz = 0; (MA)z = 0

©My = 0; 3FBC - 80(1.5) = 0 FBC = 40 lb

©Mx = 0; (MA)x + 6FBC - 80(6) = 0

©Fz = 0; Az + FBC - 80 = 0

©Fy = 0; Ay = 0

©Fx = 0; Ax = 0

F5–11. Ans.

Ans.

Ans.

Ans.

Ans.

Ans.FDB = -6.75 kN

©Fz = 0; FDB + 9 - 9 + 6.75 = 0

©Fx = 0; Ax + 6 - 6 = 0 Ax = 0

Az = 6.75 kN

©My = 0; 9(4) - Az (4) - 6(1.5) = 0

FCF = 6 kN

©Mz = 0; FCF(3) - 6(3) = 0

FCE = 9 kN
©Mx = 0; -9(3) + FCE(3) = 0

©Fy = 0; Ay = 0

Ans.Az = 900 N
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F6–8.

Ans.

a

Ans.

Ans.

F6–9. a

From the geometry of the truss,

.

a

Ans.

a

Ans.

Ans.

F6–10. From the geometry of the truss,

a

Ans.

a

Ans.

a

Ans.

F6–11. From the geometry of the truss,

.

The location of G can be found using similar 
triangles.

x = 2 m
 4 m = 2 m + x

1 m
2 m

=
2 m

2 m + x

f = tan-1 (3 m>2 m) = 56.31°
u = tan-1 (1 m>2 m) = 26.57°

FBC = 346.41 lb = 346 lb (T)

300 lb(9 ft) - 300 lb(3 ft) - FBC(9 ft)tan 30° = 0
+©MF = 0;

FCF = 346.41 lb = 346 lb (T)

300 lb(6 ft) - FCF sin 60° (6 ft) = 0
+©MD = 0;

FEF = -600 lb = 600 lb (C)

FEF sin 30°(6 ft) + 300 lb(6 ft) = 0
+©MC = 0;

tan f = (9 ft) tan 30°
3 ft = 1.732 f = 60°

FKD = 8.01 kN (T)

33.33 kN - 40 kN + FKD sin 56.31° = 0

+ c©Fy = 0;

FKJ = 66.7 kN (C)
+©MD = 0; 33.33 kN(6 m) - FKJ(3 m) = 0

FCD = 62.2 kN (T)
33.33 kN(8 m) - 40 kN(2 m) - FCD(3 m) = 0

+©MK = 0;

f = tan-1(3 m>2 m) = 56.31°

Gy = 33.33 kN
- 30 kN(4 m) - 40 kN(6 m) = 0

Gy(12 m) - 20 kN(2 m)+©MA = 0;

FLK = 62.2 kN (C)
FLK - 62.22 kN = 0+:©Fx = 0;

FCD = 62.22 kN = 62.2 kN (T)
33.33 kN(8 m) - 40 kN(2 m) - FCD(3 m) = 0

+ ©MK = 0;

FKC = 6.67 kN (C)

FKC + 33.33 kN - 40 kN = 0+ c©Fy = 0;F6–4. Joint C.

Joint B.

The smaller value of P is chosen,
Ans.

F6–5. Ans.
Ans.
Ans.
Ans.

F6–6. Joint C.

Ans.

Ans.
Joint D.

Ans.

Ans.
Joint B.

Ans.

Ans.
Joint A.

Ans.

F6–7.

Ans.

a

Ans.

a

Ans.FBC = 2200 lb (C) 
+©MF = 0; FBC(4) - 600(4) - 800(8) = 0

FFE = 800 lb (T) 
©MC = 0; FFE(4) - 800(4) = 0+

FCF = 1980 lb (T) 

+ c©Fy = 0; FCF sin 45° - 600 - 800 = 0

FAE = 340 lb (C)

+ c©Fy = 0; 340.19 lb - FAE = 0

FAB = 450 lb (T) 

+:©Fx = 0; 450 lb - FAB = 0

c©Fy = 0; FBE sin f = 0 FBE = 0

FDE = 519.62 lb = 520 lb (C)

+R©Fx¿ = 0; FDE - 519.62 lb = 0

+Q©Fy¿ = 0; FBD cos 30° = 0 FBD = 0

FBC = 450 lb (T)

+:©Fx = 0; (519.62 lb) cos 30° - FBC = 0

FCD = 519.62 lb = 520 lb (C)

+ c©Fy = 0; 259.81 lb - FCD sin 30° = 0

FDE = 0
FAE = 0
FCD = 0
FCB = 0

P = 2.598 kN = 2.60 kN

P = 2.598 kN
FAC = FBC = 0.5774P = 1.5 kN
P = 6.928 kN
FAB = 0.2887P = 2 kN
FAB = 0.2887P (T)

0.5774P cos 60° - FAB = 0+:©Fx = 0;

FAC = FBC = F = P
2 cos 30° = 0.5774P (C)

+ c©Fy = 0; 2F cos 30° - P = 0
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a

Ans.

a

Ans.

a

Ans.

F6–12. a

Ans.

a

Ans.

a

Ans.

F6–13.

Ans.

F6–14. a

Ans.

Ans.

F6–15. a

Ans.

Ans.= 575 N
FA = 2(353.55 N)2 + (453.55 N)2

Ay = 453.55 N

+ c©Fy = 0; Ay - 100 N - (500 N) cos 45° = 0

Ax = 353.55 N
:+ ©Fx = 0; (500 N) sin 45° - Ax = 0

NB = 500 N
+©MA = 0; 100 N(250 mm) - NB(50 mm) = 0

Cy = 467 lb

+ c©Fy = 0; Cy + 4
5 (541.67) - 400 - 500 = 0

Cx = 325 lb
:+ ©Fx = 0; -Cx + 3

5 (541.67) = 0

FAB = 541.67 lb

- A45 B(FAB)(9) + 400(6) + 500(3) = 0

©MC = 0;+

P = 20 lb

+ c©Fy = 0; 3P - 60 = 0

FJI = 0
- 900 lb(12 ft) - 1600 lb(9 ft) = 0
FJI cos 45°(12 ft) + 1200 lb(21 ft)+©MC = 0;

FHI = 900 lb (C)

 1200 lb(21 ft) - 1600 lb(9 ft) - FHI(12 ft) = 0
+©MD = 0;

FDC = 1900 lb (C)
FDC(12 ft) + 1200 lb(9 ft) - 1600 lb(21 ft) = 0

+©MH = 0;

FGD = 2.253 kN = 2.25 kN (T)

- FGD sin 56.31°(4 m) = 0
 15 kN(4 m) - 26.25 kN(2 m)+©MO = 0;

FGF = 29.3 kN (C)
26.25 kN(2 m) - FGF cos 26.57°(2 m) = 0

+©MD = 0;

FCD = 25 kN (T)

26.25 kN(4 m) - 15 kN(2 m) - FCD(3 m) = 0
+©MG = 0; F6–16. a

Ans.

Ans.

F6–17. Plate A:

Plate B:

Ans.

F6–18. Pulley C:

Beam:

Ans.

a

Ans.

Chapter 7

F7–1. a

Ans.

Ans.

a

Ans.

F7–2. a

Ans.

Ans.

a

Ans.MC = -22.5 kN # m
+©MC = 0; MC + 30 - 5(1.5) = 0

VC = 5 kN

+ c©Fy = 0; 5 - VC = 0
:+ ©Fx = 0; NC = 0

Ay = 5 kN

+©MB = 0; 30 - 10(1.5) - Ay(3) = 0

MC = 18.75 kN # m
+©MC = 0; 13.75(3) - 15(1.5) - MC = 0

VC = 1.25 kN

+ c©Fy = 0; VC + 13.75 - 15 = 0
:+ ©Fx = 0; NC = 0

By = 13.75 kN

+©MA = 0; By(6) - 10(1.5) - 15(4.5) = 0

x = 0.333 m 
©MA = 0; 2(1) - 6(x) = 0+

P = 2 kN 
+ c©Fy = 0; 2P + P - 6 = 0

+ c©Fy = 0; T - 2P = 0; T = 2P

T = 32.5 lb, NAB = 35 lb

+ c©Fy = 0; 2T - NAB - 30 = 0

+ c©Fy = 0; 2T + NAB - 100 = 0

Cy = 400 N

+ c©Fy = 0; -Cy + 1131.37 sin 45° - 400 = 0

Cx = 800 N
:+ ©Fx = 0; -Cx + 1131.37 cos 45° = 0

FAB = 1131.37 N
+ 800 + 400(2) = 0

FAB cos 45°(1) - FAB sin 45°(3)
©MC = 0;+
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F7–8.

a

F7–9.

a

F7–10.

a

F7–11. Region

a

Region

a

F7–12. Region

a

Region

a

F7–13.

x = 3, V = -18, M = -32;
x = 2+, V = -18, M = -14;

x = 1+, V = -10, M = -4;

x = 0, V = -4, M = 0;

M = A4(6 - x) B  kN # m
+©MO = 0; 4(6 - x) - M = 0

+ c©Fy = 0; V + 4 = 0 V = -4 kN

3 m 6 x … 6 m
M = 12 kN # m

+©MO = 0; M - 12 = 0

+ c©Fy = 0; V = 0

0 … x 6 3 m

M = A5(6 - x) B  kN # m
+©MO = 0; 5(6 - x) - M = 0

V = -5 kN+ c©Fy = 0; V + 5 = 0

0 6 x … 6 m
M = (-5x) kN # m

+©MO = 0; M + 5x = 0

V = -5 kN+ c©Fy = 0;  -V - 5 = 0

3 … x 6 3 m

M = (-2x) kN # m
+©MO = 0; M + 2x = 0

V = -2 kN

+ c©Fy = 0; -V - 2 = 0

M = - A13 x3 B  kN # m
+©MO = 0; M + 1

2 (2x)(x) Ax3 B = 0

V = - Ax2 B  kN

+ c©Fy = 0; -V - 1
2 (2x)(x) = 0

M|x=9 ft = 15 - 92 = -66 kip # ft
V|x=9 ft = -2(9) = -18 kip

M = A15 - x2 B  kip # ft
+©MO = 0; M + 2x Ax2 B - 15 = 0

V = (-2x) kip

+ c©Fy = 0; -V - 2x = 0F7–3.

a

Ans.

a

Ans.

a

Ans.

F7–4. a

Ans.

Ans.

a

Ans.

F7–5. a

Ans.

Ans.

a

Ans.

F7–6. a

Ans.

Ans.

a

Ans.

F7–7.

a

M = (6x - 18) kN # m
+©MO = 0; M + 18 - 6x = 0

+ c©Fy = 0; 6 - V = 0 V = 6 kN

MC = 22.5 kN # m
+©MC = 0; 16.5(3) - 6(3)(1.5) - MC = 0

VC = 1.50 kN

+ c©Fy = 0; VC + 16.5 - 6(3) = 0

+:©Fx = 0; NC = 0

By = 16.5 kN

By(6) -
1
2

 (6)(3)(2) - 6(3)(4.5) = 0

+©MA = 0;

MC = 27 kN # m
+©MC = 0; 13.5(3) - 1

2 (9)(3)(1) - MC = 0

VC = 0

+ c©Fy = 0; VC + 13.5 - 1
2 (9)(3) = 0

:+ ©Fx = 0; NC = 0

By = 13.5 kN

+©MA = 0; By(6) - 1
2 (9)(6)(3) = 0

MC = 24.75 kN # m
23.25(1.5) - 9(1.5)(0.75) - MC = 0

+©MC = 0;

VC = -9.75 kN

+ c©Fy = 0; VC + 23.25 - 9(1.5) = 0
:+ ©Fx = 0; NC = 0

By = 23.25 kN

+©MA = 0; By(6) - 12(1.5) - 9(3)(4.5) = 0

MC = -27 kip # ft
+©MC = 0; -MC - 6(4.5) = 0

VC = 6 kip

+ c©Fy = 0; VC - 6 = 0
:+ ©Fx = 0; NC = 0

By = 6 kip

+©MA = 0; 3(6)(3) - By(9) = 0
:+ ©Fx = 0; Bx = 0
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F7–14.

F7–15.

F7–16.

F7–17.

F7–18.

Chapter 8

F8–1.

,
therefore Ans.

F8–2. a

Ans.

F8–3. Crate A

T = 122.62 N
:+ ©Fx = 0; T - 0.25(490.5) = 0

NA = 490.5 N

+ c©Fy = 0; NA - 50(9.81) = 0

P = 154.89 N = 155 N

+:©Fx = 0; P - 154.89 = 0

NA = 154.89 N
NA(3) + 0.2NA(4) - 30(9.81)(2) = 0

+©MB = 0;

F = 160 N
F 6 Fmax = msN = 0.3(610.5) = 183.15 N

F = 160 N

+:©Fx = 0; F - 200 A45 B = 0

N = 610.5N

+ c©Fy = 0; N - 50(9.81) - 200 A35 B = 0

x = 6, V = -13.5, M = 0
x = 3, V = 0, M = 27;
x = 0, V = 13.5, M = 0;

x = 6, V = -9; M = 0
x = 3. V = 0, M = 9;
x = 0, V = 9, M = 0;

x = 6, V = 0, M = 0
x = 4.5+ , V = 9, M = -6.75;

x = 1.5+ , V = 0, M = -6.75;

x = 0, V = 0, M = 0;

x = 18, V = -10, M = 0
x = 12 + , V = -10, M = 60;

x = 6+ , V = 2, M = 48;

x = 0, V = 8, M = 0;

x = 3, V = 6, M = 0;
x = 1.5, V = 6, M = -9;
x = 0, V = 18, M = -27; Crate B

Ans.

F8–4.

a

Ans.

F8–5. If slipping occurs:

If tipping occurs:

a

Ans.

Chapter 9

F9–1. Ans.

Ans.

F9–2.

Ans.

Ans.= 0.286 m

y = LA
y dA

LA
dA

= L

1 m

0

1
2
x3 Ax3 dx B

L

1 m

0
x3 dx

= 0.8 m

x = LA
x dA

LA
dA

= L

1m

0
x(x3 dx)

L

1 m

0
x3 dx

y = LA
y dA

LA
dA

= L

1 m

0
y4/3 dy

L

1 m

0
y1/3dy

= 0.571 m

x = LA
x dA

LA
dA

=

1
2L

1 m

0
y2/3 dy

L

1 m

0
y1/3dy

= 0.4 m

P = 83.3 lb 
+©MA = 0; -P(4.5) + 250(1.5) = 0

P = 100 lb:+ ©Fx = 0; P - 0.4(250) = 0

NC = 250 lb+ c©Fy = 0; NC - 250 lb = 0

P = 343 N
NA = 175.70 N NB = 585.67 N

- 0.3NA (0.9) = 0

P(0.6) + NB(0.9) - 0.3NB(0.9)
+©MO = 0;

NB + 0.3NA + P - 100(9.81) = 0
+ c©Fy = 0;

+:©Fx = 0; NA - 0.3NB = 0

P = 247 N
P cos30° - 0.25(490.5 - 0.5 P) - 122.62 = 0
:+ ©Fx = 0;

NB = 490.5 - 0.5P

NB + P sin 30° - 50(9.81) = 0+ c©Fy = 0;
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F9–9.

Ans.

F9–10.

Ans.

Ans.

F9–11.

Ans.

Ans.

Ans.

F9–12.

Ans.

Ans.

Ans.

F9–13.

Ans.

Ans.

F9–14.

Ans.

Ans.= 22.6 m3 

= 2p C1.8 A12 B(0.9)(1.2) + 1.95(0.9)(1.5) D
V = 2p©rA

= 77.5 m2

=  2p C1.952(0.9)2 + (1.2)2 + 2.4(1.5) + 1.95(0.9) + 1.5(2.7) D
A = 2p©rL

= 18.8 m3

= 2p C0.75(1.5)(2) + 0.5 A12 B(1.5)(2) D
V = 2p©rA

= 37.7 m2

= 2p C0.75(1.5) + 1.5(2) + 0.752(1.5)2 + (2)2 D
A = 2p©rL

z =
©z V
©V

=
2.835

3.6
= 0.7875 m

y =
©y V
©V

=
5.00625

3.6
= 1.39 m

= 0.391 m

=

0.25[0.5(2.5)(1.8)] + 0.25B1
2

(1.5)(1.8)(0.5)R + B1
2

(1.5)(1.8)(0.5)R
0.5(2.5)(1.8) +

1
2

 (1.5)(1.8)(0.5) +
1
2

(1.5)(1.8)(0.5)

x =
©x V
©V

= 2.67 ft

z =
©z V
©V

=
3[2(7)(6)] + 1.5[4(2)(3)]

2(7)(6) + 4(2)(3)

= 2.94 ft

y =
©y V
©V

=
3.5[2(7)(6)] + 1[4(2)(3)]

2(7)(6) + 4(2)(3)

= 1.67 ft

x =
©x V
©V

=
1[2(7)(6)] + 4[4(2)(3)]

2(7)(6) + 4(2)(3)

= 1.33 in.

y =
©y A
©A

=
2[4(0.5)] + 0.25[(0.5)(2.5)]

4(0.5) + (0.5)(2.5)

= 0.827 in.

x =
©x A
©A

=
0.25[4(0.5)] + 1.75[0.5(2.5)]

4(0.5) + 0.5(2.5)

= 162.5 mm

y =
©y A
©A

=
100[2(200)(50)] + 225[50(400)]

2(200)(50) + 50(400)
F9–3.

Ans.

F9–4.

Ans.

F9–5.

Ans.

F9–6.

Ans.

F9–7.

Ans.

Ans.

Ans.

F9–8.

Ans.= 237.5 mm

y =
©y A
©A

=
150[300(50)] + 325[50(300)]

300(50) + 50(300)

= -61.5 mm

=
0(300) + 0(600) + (-200)(400)

300 + 600 + 400

z =
©z L
©L

= 323 mm

=
0(300) + 300(600) + 600(400)

300 + 600 + 400

y =
©y L
©L

= 265 mm

=
150(300) + 300(600) + 300(400)

300 + 600 + 400

x =
©x L
©L

= 0.786 ft

z = LV
z dV

LV
dV

= L

2 ft

0
z c9p

64
 (4 - z)2 dz d

L

2 ft

0

9p
64

(4 - z)2 dz

= 0.667 m

y = LV
y dV

LV
dV

=
L

1 m

0
y¢p

4
ydy≤

L

1 m

0

p

4
y dy

=
9

16
L

x = Lm
x dm

Lm
dm

=
L

L

0
xBm0¢1 +

x2

L2 ≤dxR

L

L

0
m0¢1 +

x2

L2 ≤dx

= 1.2 m

y = LA
y dA

LA
dA

=
L

2 m

0
ya2a y1/2

22
b bdy

L

2 m

0
2a y1/2

22
bdy
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F9–15.

Ans.

Ans.

F9–16.

Ans.

Ans.

F9–17.

Ans.

F9–18.

Ans.

F9–19.

Ans.

F9–20.

Ans.

F9–21.

Ans.

Chapter 10
F10–1.

Ans.= 0.111 m4Ix =
LA
y2 dA =

L

1 m

0
y2 C A1 - y3/2 Bdy D

= 4.99 kip

FR = 1
2 (748.8 + 1248) A2(3)2 + (4)2 B

wB = gw hB b = 62.4(10)(2) = 1248 lb>ft
wA = gwhA b = 62.4(6)(2) = 748.8 lb>ft
FR = 1

2 (58.86 + 98.1)(2) = 157 kN

= 98.1 kN>m
wB = rwghBb = 1000(9.81)(5)(2)

= 58.86 kN>m
wA = rwghAb = 1000(9.81)(3)(2)

= 36.8 kN

FR = 1
2 (29.43) A2(1.5)2 + (2)2 B

= 29.43 kN>m
wb = rwghBb = 1000(9.81)(2)(1.5)

FR = 998.4(3) = 3.00 kip

wb = gw hb = 62.4 (4)(4) = 998.4 lb>ft
FR = 1

2 (58.76)(6) = 176.58 kN = 177 kN

= 58.86 kN>m
wb = rwghb = 1000(9.81)(6)(1)

= 21.2 m3

= 2p C4(1.5)
3p Ap A1.52 B

4 B + 0.75(1.5)(2) D
V = 2p©rA

= 40.1 m2

= 2p C2(1.5)
p Ap(1.5)

2 B + 1.5(2) + 0.75(1.5) D
A = 2p©rL

= 45 710 in.3
= 2p C7.5(15)(38) + 20 A12 B(15)(20) D

V = 2p©rA
= 8765 in.2

= 2p C7.5(15) + 15(18) + 22.52152 + 202 + 15(30) D
A = 2p©rL F10–2.

Ans.

F10–3.

Ans.

F10–4.

Ans.

F10–5.

Ans.

Ans.

F10–6.

Ans.

Ans.

F10–7.

Ans.

F10–8.

Ans.

Chapter 11
F11–1.

Ans.P = 98.1 cot u|u=60° = 56.6 N

(294.3 cos u - 3P sin u)du = 0

dU = 0; 2WdyG + PdxC = 0
xC = 2(1.5) cos u dxC = -3 sin u du

yG = 0.75 sin u dyG = 0.75 cos u du

= 25.1 (106) mm4

+ C 1
12(30)(150)3 + 30(150)(105 - 65)2 D

= C 1
12 (150)(30)3 + (150)(30)(60 - 15)2 D

Ix¿ = ©(I + Ad2)

y =
©y A
©A

=
15(150)(30) + 105(30)(150)

150(30) + 30(150)
= 60 mm

= 69.8 (106) mm4

+ C 1
12(300) A503 B + 0 D

Iy = 2 C 1
12(50) A2003 B + 0 D

= 463 A106 B mm4

Iy = 1
12 (200) A3603 B - 1

12(140) A3003 B
= 171 A106 B mm4

Ix = 1
12 (360) A2003 B - 1

12 (300) A1403 B
= 183 A106 B  mm4

+ 2 C 1
12(50) A1503 B + (150)(50)(100)2 D

Iy = C 1
12 (450) A503 B + 0 D

= 383 A106 B  mm4

Ix = C 1
12 (50) A4503 B + 0 D + C 1

12(300) A503 B + 0 D

= 0.0606 m4Iy =
LA
x2 dA =

L

1 m

0
x2 C(1 - x2/3) dx D

Iy =
LA
x2 dA =

L

1 m

0
x2 Ax2/3 Bdx = 0.273 m4

Ix =
LA
y2 dA =

L

1 m

0
y2 Ay3/2 dy B = 0.222 m4
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Ans.

Ans.

F11–5.

Ans.

F11–6.

Ans.u = 20.9°
+ 5400 sin u cos u)du = 0 (135 cos u - 5400 sin u

dU = 0; PdxC + FspdyB = 0
yB = 2[0.3 cos u] dyB = -0.6 sin u du

xC = 3[0.3 sin u] dxC = 0.9 cos u du

Fsp = 15 000 (0.6 - 0.6 cos u)

u = 56.33° = 56.3°
- 1226.25 cos u)du = 0

 (15 000 sin u cos u - 7500 sin u

dU = 0;  -WdyG + A -FspdxA B = 0

xA = 5 cos u dxC = -5 sin u du
yG = 2.5 sin u dyG = 2.5 cos u du

u = 54.31° = 54.3°
64800 cos u - 37 800 = 0

sin u = 0 u = 0°
sin u (64 800 cos u - 37 800)du = 0F11–2.

Ans.

F11–3.

Ans.

Ans.

F11–4.

-  36 A103 B(cos u - 0.5)(-1.8 sin u du) = 0

6 A103 B(-0.9 sin u du)

dU = 0; PdxB + A -Fsp dxC B = 0

xC = 2(0.9 cos u) dxC = -1.8 sin udu

xB = 0.9 cos u dxB = -0.9 sin udu

u = 77.16° = 77.2°
-5400 cos u + 1200 = 0

sin u = 0 u = 0°
- 2000(-0.6 sin u du) = 0

-9 A103 B  sin u (0.6 cos u du)

dU = 0; -FspdxB + (-PdyC) = 0

yC = 0.6 cos u dyC = -0.6 sin u du
xB = 0.6 sin u dxB = 0.6 cos u du

P = 245.25 cot u|u=60° = 142 N

(5P sin u - 1226.25 cos u)du = 0

dU = 0; -PdxA + (-WdyG) = 0

yG = 2.5 sin u dyG = 2.5 cos u du
xA = 5 cos u dxA = -5 sin u du
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Chapter 2
2–1.

2–2.

2–3.

2–5.

2–6.

2–7.

2–9.

2–10.

2–11.

2–13.

2–14.

2–15.

2–17.

2–18.

2–19.

2–21.

u = 60°
F2 = 6 sin 30° = 3 kN
F1 = 6 cos 30° = 5.20 kN
u = 70.0°
FA = 893 N
FB = 325 N
FB = 346 N
FA = 774 N

F2u

sin 75°
=

150
sin 75°

, F2u = 150 N

F2v

sin 30°
=

150
sin 75°

, F2v = 77.6 N

f = 38.3°
FAB = 621 lb
u = 53.5°

Fy

sin 70°
=

360
sin 80°

Fy = 344 N

-Fx¿
sin 30°

=
360

sin 80°
Fx¿ = -183 N

u = 60°
FR = 400 N
FR = 10.4 kN
u = 54.9°
f = 3.16°
u¿ = 33.16°

sin u ¿
6 = sin 100°

10.80

FR = 282 + 62 - 2(8)(6) cos 100° = 10.8 kN

FR = 3.92 kN
u = 78.6°
Fv = 260 lb
Fu = 150 lb
Fv = 283 lb

Fu
sin 105°

=
200

sin 30°
Fu = 386 lb

u = 30.6°
T = 6.57 kN
f = 17.5°
FR = 10.5 kN
f = 3.05°

sin a
8 = sin 75°

8.669 a = 63.05°

FR = 262 + 82 - 2(6)(8) cos 75° = 8.67 kN

Answers to Selected Problems

620

Chapter 1
1–1. a.

b.
c.
d.

1–2. a. N
b. MN/m
c. N/s2

d. MN/s
1–3. a.

b.
c.

1–5. a. GN/s
b. Gg/N
c. GN/(kg · s)

1–6. a.
b.
c.

1–7. a.
b.
c.
d.

1–9

1–10. a.
b.
c.

1–11. a.
b.
c.

1–13. a.
b.
c.

1–14.
1–15.
1–17. a.

b.
c.

1–18. a.
b.
c.

1–19.
1–21. 26.9 mm # kg/N

F = 7.41 mN
0.064 km3
25 mm2
0.04 MN2
m = 6.12 Gg
m = 15.3 Mg
m = 2.04 g

rw = 1.00 Mg/m3
2.71 Mg/m3

1.27 mm/s
70.7 kN/m3
27.1 N # m
18.8 GN/m
0.911 kg # s
0.447 kg # m/N
W = 44.1 kN
W = 4.90 mN
W = 98.1 N

1 ATM = 101 kPa
1 Pa = 20.9(10-3) lb/ft2
mm = me = 3.65 Gg
Wm = 5.89 MN
We = 35.8 MN
3.65 Gg
5.63 mg
56.8 km
45.3 MN

5.32 m
35.3 kN
0.431 g

2.77 Mg
4.56 kN
55.6 s
4.66 m
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2–22.

2–23.

2–25.

2–26.

2–27.

2–29.

2–30.

2–31.

2–33.

2–34.
2–35.

2–37.

2–38.

2–39.
2–41.

2–42.

2–43.

2–45.

2–46.
2–47. u = 54.3° FA = 686 N

u = 63.7° F3 = 1.20F1

FR = 140 lb
F1 = 420 lb
FR = F1 cos f + 240 - 100
0 = F1 sin f - 180 - 240
u = 39.6°
FR = 463 lb
f = 14.8°
FR = 839 N
u = 68.6° FB = 960 N
1500 = 700 cos 30° + FB sin u
0 = 700 sin 30° - FB cos u
u = 29.1° F1 = 275 N
FR = 13.2 kN
F2 = 12.9 kN
f = 47.3° F2 = 4.71 kN
-3 = -3.464 + F2 sin f - 3
5.196 = -2 + F2 cos f + 4
Fy = -162 lb
Fx = 67.3 lb
f = 42.4° F1 = 731 N
u = 44.6°
FR = 2499.622 + 493.012 = 702 N
u = 16.2°
F = 97.4 lb
Fmin = 235 lb
u = 10.9°
FB = 600 sin 30° = 300 N
FA = 600 cos 30° = 520 N
u = 60°
FA = 8.66 kN
FB = 5.00 kN
FB = 7.07 kN
FA = 3.66 kN
FR = 2F cos A u2 B
FR = 2(F)2 + (F)2 - 2(F)(F) cos (180° - u)
f = u

2

F
sin f = F

sin(u - f)

f = 98.5°
FR = 8.09 kN
FR = 4.33 kN
F2 = 2.50 kN
u = 90° 2–49.

2–50.
2–51.

2–53.

,
2–54.

2–55.

2–57.

2–58.

2–59.

2–61.

2–62.

2–63.

2–65.

g = 144°
b = 107°
a = 59.8°
F2 = 66.4 lb
+  (F2z - 45.96)k}

-100k = {(F2x - 33.40)i + (F2y + 19.28)j
Fz = 283 N
Fy = 200 N
Fx = -200 N
g = 77.7°
b = 68.0°
a = 25.5°
FR = 754 lb

= 5200i + 283j - 200k6 N
+ 400 cos 120°k

F2 = 400 cos 60°i + 400 cos 45°j
= 5480i + 360k6 N

F1 = 600 A45 B(+ i)+0 j+600 A35 B(+k)

F2 = 5424i + 300j - 300k6 N
F1 = 5-159i + 276j + 318k6 N
F1 = 434 N
u = 67.0°
F3 = {-100j} N
F2 = { 350i } N
F1 = {F1 cos u i + F1 sin u j} N
FR = 7.87 kN
F = 2.03 kN
+  2(7 - F sin 45°)(-sin 45°) = 0

 2FR
dFR
dF

= 2(-4.1244 - F cos 45°)(-cos 45°)

FR
2 = (-4.1244 - F cos 45°)2 + (7-F sin 45°)2
u = 38.3°
FR = 161 lb
F2 = 88.1 lb
u = 103°

FR = 380 NF1 = 57.8 N

2FR
dFR
dF1

= 2F1 - 115.69 = 0

FR
2 = F1

2 - 115.69F1 + 147 600

FR = 2(0.5F1 + 300)2 + (0.8660F1 - 240)2

u = 16.4°
FR = 391 N
1.22 kN … P … 3.17 kN
u = 202°
FR = 2(-103.05)2 + (-42.57)2 = 111 lb
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2–82.

2–83.

2–85.

2–86.

2–87.
2–89.

2–90.

2–91.

2–93.

2–94.
2–95.

g = 128°
b = 131°
a = 63.9°
F = {59.4i - 88.2j - 83.2k} lb
F = 52.1 lb
g = 180°
b = 90°
a = 90°
FR = 150 lb

= {33.3 j - 49.9 k} lb

FC = 60
(4 j - 6 k)

2(4)2 + (-6)2

FB = {-28.8 i - 16.6 j - 49.9 k} lb
= {28.8 i - 16.6 j - 49.9 k} lb

FA = 60
(4 cos 30° i - 4 sin 30° j - 6 k)

2(4 cos 30°)2 + (-4 sin 30°)2 + (-6)2

g = 144°
b = 125°
a = 82.4°
FR = 1.38 kN
FR = 822 N
g = 162°
b = 83.3°
a = 72.8°
g = 137°
b = 84.0°
a = 47.4°
FR = 26502 + 1002 + (-700)2 = 960 lb
FC = 5250i + 500j - 500k6 lb
FB = 5400i - 400j - 200k6 lb
z = 5.35 m
rAB = 7 m
rAB = 5-3i + 6j + 2k6 m
g2 = 144°
b2 = 74.5°
a2 = 122°

= 32.4 lb
F2 = 2(-17.10)2 + (8.68)2 + (-26.17)2
g = 27.5°
b = 63.7°
a = 97.5°
F3 = 166 N
Fy = 0.523 kN
F = 2.02 kN2–66.

2–67.

2–69.

2–70.

2–71.

2–73.

2–74.

2–75.

2–77.

2–78.

2–79.

2–81.

Fz = 0.776 kN
Fy = 2.60 kN
Fx = 1.28 kN
a = 64.67°
g3 = 77.0°
b3 = 98.4°
a3 = 15.5°
F3 = 9.58 kN
b = 52.5°
FR = 754 N
g = 53.1°
a = 121°
g2 = 75.0°
b2 = 119°
a2 = 147°
F2 = 180 N
F2 cos g2 = 46.59
F2 cos b2 = -86.93
F2 cos a2 = -150.57
g1 = 66.4°
b1 = 53.1°
a1 = 90°
g1 = 66.4°
b1 = 53.1°
a1 = 45.6°
g = 64.0°
b = 85.1°
a = 26.6°
FR = 2(550)2 + (52.1)2 + (270)2 = 615 N
gR = 103°
bR = 13.3°
aR = 86.8°
FR = 718 lb
a = 121° b = 52.7° g = 53.0°
F = 882 N
a = 131° b = 70.5° g = 47.5°
F = 1.15 kN
F2(cos2 a + cos2 b + cos2 g) = 1 333 518.08

+ (F cos ai + F cos bj + F cosgk)
= (459.28i + 265.17j - 530.33k)

-300i + 650j + 250k
F2 = {90i - 127j + 90k} lb
F1 = {14.0j - 48.0k} lb
g = 140°
b = 71.3°
a = 124°
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2–97.

2–98.

2–99.

2–101.

2–102.

2–103.
2–105.

2–106.
2–107.
2–109.

2–110. F = {143i + 248j - 201k} lb
g = 2.81°
b = 92.6°
a = 88.8°
FR = 18.5 kN
FB = {0.970i - 1.68j + 7.76k} kN

+ (0 - 0.75 cos 30°)j + (3 - 0)k
rB = [0 - (-0.75 sin 30°)]i
FC = {0.857 i + 0.857 j + 4.85 k} kN

+ [0 - (-0.75 cos 45°)]j + (3 - 0)k
rC = [0 - (-0.75 sin 45°)]i
FA = {-1.46 i + 5.82 k} kN

= {-0.75 i + 0j + 3 k} m
rA = (0 - 0.75)i + (0 - 0)j + (3 - 0)k
F = {-6.61i - 3.73j + 9.29k} lb
F = 105 lb
g = 180°
b = 90°
a = 90°
FR = 240 lb
FD = 5-30i - 20j - 60k6 lb
FC = 5-30i + 20j - 60k6 lb
FB = 530i + 20j - 60k6 lb
FA = 530i - 20j - 60k6 lb
FA = FB = FC = 326 lb
g = 180°
b = 90°
a = 90°
FR = 1.24 kip
z = 16 ft
y = 18 ft
x = 24 ft
u = F

F = -120
170 i - 90

170 j - 80
170 k

FR = 3.46 kN
FB = 2.42 kN
FC = 1.62 kN
FB = {53.2i - 79.8j - 146k} N
FA = {-43.5i + 174j - 174k} N
 FC = {159i + 183j - 59.7k} N
FA = {285j - 93.0k} N

+ (0 - 0.750) k} m
rCD = {[-0.5 - (-2.5)] i + [0 - (-2.299)] j

+ (0 - 0.750) k} m
rAB = {(0 - 0)i + [0 - (-2.299)] j 2–113.

2–114.
2–115.

2–117.

2–118.

2–119.

2–121.

2–122.

2–123.

2–125.

2–126.
2–127.
2–129.

2–130.

2–131.

2–133.

2–134.

2–135.

2–137.

2–138.

2–139.
u = 52.7°
FAB = 215 lb
u = 85.2°
Fr = 178 N
u = 143°
rBC = {6i + 4j - 2k} ft
rBA = {-3i} ft
u = 52.7°
FR = 215 lb
u = 100°
FR = 178 N

(F1)F2
= 5.44 lb

uF2
= cos 135°i + cos 60°j + cos 60°k

uF1
= cos 30° sin 30°i + cos 30° cos 30°j - sin 30°k

Fy = 260 N
Fx = -75 N
FAC = 45.5 lb
Fx = 47.8 lb
u = 34.2°
rAC = {-15i - 8j + 12k} ft
rAB = {-15i + 3j + 8k} ft
u = 97.3°
(F1)F2

= 50.6 N
f = 65.8°
uOA = 1

3 i + 2
3 j - 2

3 k
uOD = -sin 30°i + cos 30°j
(FBC)� = 316 N
(FBC)|| = 245 N
FAC = 5293j + 219k6 lb
FAC = 366 lb
(FAC)z = -569 lb
uAC = 0.1581i + 0.2739j - 0.9487k
F2 = 373 N
F1 = 333 N
FBC = {32i - 32j} N
FBC = 45.2 N
|Proj F2| = 71.6 N
u1 = cos 120° i + cos 60° j + cos 45° k
(FED)� = 498N
(FED)|| = 334 N
rBC = 5.39 m
(FAO)� = 2(56)2 - (46.86)2 = 30.7 N

+ 16 A-2
7 B = 46.9 N

(FAO)|| = (24) A37 B + (-48) A -6
7 B
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3–26.

3–27.
3–29.

3–30.
3–31.
3–33.

3–34.
3–35.
3–37.

3–38.
3–39.
3–41.

3–42.
3–43.
3–45.

3–46.
3–47.

3–49.

3–50.

3–51.

FAD = 1.42 kip
FAC = 0.914 kip
FAB = 1.47 kip
FAD = 1.70 kip
FAC = 0.744 kip
FAB = 1.37 kip
W = 375 lb
FAC = 225 lb FAD = 450 lb

2
3FAB + 1

3FAC - W = 0

1
3FAB - 2

3FAC = 0

-2
3FAB - 2

3FAC + FAD = 0
FBD = 3.64 kN
FCB = 2.52 kN
FAB = 2.52 kN
m = 102 kg
FAB = FAC = 1.96 kN
FAD = 2.94 kN

1
3FAD - 981 = 0

- FAC+2
3FAD = 0

FAB-2
3FAD = 0

y = 6.59 m
m = 2.37 kg
m = 15.6 kg
-2(107.1) cos 44.4° + m(9.81) = 0
-150 +  2 T sin u = 0
WE = 18.3 lb
k = 6.80 lb/in.
d = 7.13 in.
-TAC + Fs cos u = 0
l = 19.1 in.
P = 147 N
FR = 40.8 N, (B and C)
FR = 14.9 N, (A and D)
T = 28.9 N
2 (T cos 30°) - 50 = 0
F = 39.3 lb
T = 53.1 lb
W = 51.0 lb
u = 78.7°

100 cos u = W A 5
13 B

WF = 123 lb
u = 2.95°
FBC = 57.1 lb
FCD = 65.9 lb
FBA = 80.7 lb

2–141.

2–142.
2–143.

Chapter 3
3–1.

3–2. ,
3–3.

3–5.
3–6.
3–7.

3–9.

3–10.

3–11

3–13.

3–14.

3–15.
3–17.

3–18.
3–19.
3–21. Joint D, ,

Joint B, ,

3–22.
3–23. ,

3–25. Joint E,
Joint B,

W = 57.7 lb

1.3957W cos 30° - 0.8723W A35 B - FBA = 0

FED cos 30° - FEB A35 B = 0

l¿ = 2.66 ft40 = 50(212 - l¿)
u = 35.0°
m = 48.2 kg

FBC + 8.7954m cos 45° - 12.4386m cos 30° = 0
©Fx = 0

FCD cos 30° - FBD cos 45° = 0
©Fx = 0

d = 2.42 m
FAB = 98.6 N FAC = 267 N
FCA = 42.6 N
u = 64.3° FCB = 85.2 N
FCB cos u - FCA cos 30° = 0
m = 8.56 kg
xAB = 0.467 m
xAC = 0.793 m
u = 40.9° WC = 240 lb
WC cos 30° - 275 cos u = 0
u = 70.1°
T = 7.66 kN
F = 5.40 kN
T = 7.20 kN
W = 412 lb
FAC = 294.63 lb

FAB cos 45° - FAC A35 B = 0
TBD = 32.6 kN
TBC = 22.3 kN
u = 36.3°, T = 14.3 kN
T = 13.3 kN, F2 = 10.2 kN
FBC = 15.2 kN, FBD = 21.5 kN
FAB = 29.4 kN

y = 0.841 mFBC = 2.90 kN
FBC = 3.40 kN
FBA sin 30° - 200(9.81) = 0 FBA = 3.92 kN

FE = {-194i + 291k} N
FC = {-324i - 130j + 195k} N
FB = {-324i + 130j + 195k} N
Proj F = 48.0 N
Fv = 98.7 N

250
sin 120°

=
Fu

sin 40°
Fu = 186 N
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3–53.

3–54.

3–55.

3–57.

3–58.

3–59.
3–61.

3–62.

3–63.

3–65.

3–66.
3–67.
3–69.

-0.2236 FOC + 100 = 0
-0.4472 FOA - 0.2236 FOB

u = 0°
-0.3873 FOB + 0.3873 FOC + 100 sin u = 0
FAB = FAC = FAD = 375 lb
d = 1.64 ft
z = 173 mm

3F£ z

20.52 + z2
≥ - 100(9.81) = 0

FAB£ 0.5

20.52 + z2
≥ - 2CF£ 0.5 sin 30°

20.52 + z2
≥ S = 0

FAD£ 0.5 cos 30°

20.52 + z2
≥ - FAC£ 0.5 cos 30°

20.52 + z2
≥ = 0

z = 2.07 ft
F = 831 lb
z = 2.51 ft
y = 0.374 ft
d = 3.61 m
FAC = FAD = 260 N
FAB = 520 N
(FAB)z + 3

14FAB + 3
14FAB - 490.5 = 0

(FAB)x - 3
7FAB - 3

7FAB = 0
m = 90.3 kg
FAD = 415 N
FAC = 35.6 N
FAB = 831 N
m = 2.62 Mg
- 12

14FB - 12
14FC - 12

14FD + W = 0

- 6
14FB - 4

14FC + 6
14FD = 0

4
14FB - 6

14FC - 4
14FD = 0

FAD = 708.5 N
FAC = 763 N
FAB = 1.31 kN
FAD = 750 N
FAC = 606 N
FAB = 1.21 kN
FD = 6.32 kN
FC = 10.4 kN
FB = 19.2 kN

0.6402 FB - 0.4432 FC - 0.4364 FD - 4905 = 0
0.7682 FB - 0.8865 FC - 0.8729 FD = 0
0.1330 FC - 0.2182 FD = 0

3–70.
3–71.

3–73.

3–74.

3–75.

3–77.

3–78.

3–79.

Chapter 4
4–5.

4–6. b

4–7.
4–9.

4–10. d

d

4–11. b
4–13.

4–14. c

4–15. b(MR)A = 2.09 N # m
F = 23.7 lb

+  MA = 123 lb # in.b
0 = 36 cos u + 18 sin u, u = 117°
WhenMA = 0,
u = 26.6°, (MA)max = 40.2 kN # m

dMA
du

= -36 sin u + 18 cos u = 0

MA = (36 cos u + 18 sin u) kN # m
MA = 38.2 kN # m
MO = 520 N # m
MO = 120 N # m
F = 27.6 lb
-500 = -F cos 30°(18) - F sin 30°(5)
u = 64.0°
MA = 7.21 kN # m
F = 39.8 lb

30 (cos 45°) (18) = F A45 B  (12)

F3 = 238 lb
F2 = 311 lb
F1 = 0
FCA = FCB = 198 lb
FCD = 625 lb
F3 = 357 lb
F2 = 280 lb
F1 = 400 lb
F1 cos 60° - 200 = 0

800 A45 B + F1 cos 135° - F3 = 0

F2 + F1 cos 60° - 800 A35 B = 0
g3 = 119°
b3 = 148°
a3 = 77.2°
P = 639 lb
FAC = 85.8 N FAO = 319 N
FAB = 110 N
F = 0.850 mN
1.699(10)-3cos 60° - F = 0
F1 = 4.31 kN
u = 4.69°
u = 11.5°
FOB = FOC = 74.5 lb
FOA = 149 lb
0.8944 FOA - 0.8944 FOB - 0.8944 FOC = 0
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4–49.

4–50.

4–51.
4–53.

4–54.

4–55.
4–57.

4–58.
4–59.
4–61.

4–62.
4–63.
4–65.

4–66.
4–67.

4–69.

4–70.
4–71.
4–73

4–74.
4–75. b

4–77.

4–78.
4–79.
4–81. c

P = 70.7 N
- P sin 15° (0.3) - P cos 15°(0.3) = 15

+MR = 100 cos 30° (0.3) + 100 sin 30° (0.3)
u = 56.1°
F = 111 N
F = 133 N
F¿ = 33.3 N
(Mc)R = 260 lb # ft
F = 625 N
M3 = 300 N # m
0 = 424.26 cos 45° - M3

M2 = 424 N # m
F = 20.2 N
Mx = 14.8 N # m
W = 56.8 lb
MOA = uOA # rOB * W = uOA # rOB * W
(Ma)2 = 8 lb # in.
(Ma)1 = 30 lb # in.
M = 282 lb # in.
My = 282 lb # ft
rAC = -6 cos 15° iœ + 3 jœ + 6 sin 15° k
uy = -sin 30° iœ + cos 30° jœ
My¿ = 464 lb # ft
F = 162 lb
= uCD # rDB * F = -432 lb # ft
MCD = uCD # rCA * F
F = 771 N
Mx = 73.0 N # m
My = 0.828 N # m
rOB = {0.2 cos 45°i - 0.2 sin 45°k} m
MAC = {11.5i + 8.64j} lb # ft
Mz = 36.0 lb # ft
My = 4.00 lb # ft
Mx = 15.0 lb # ft
Mz = 15.5 N #  m
r = 0.25 sin 30° i + 0.25 cos 30° j
u = k
MAF = 59.33i + 9.33j - 4.67k6 N # m
g = 20.6°
b = 110°
a = 95.2°
MO = 4.27 N # m

MB = rBC * F = {10i + 0.750j - 1.56k} kN # m
uF =

b
b

b = rCA * rCB4–17.

b

d

Since , the gate will rotate
counterclockwise.

4–18.
4–19.

4–21. a.
d

4–22. a

d

4–23.

4–25.

4–26. b

b

4–27. b

4–29. a d

a d

4–30. a d

4–31. a d

4–33.
c

4–34.
4–35.
4–37.
4–38.
4–39.
4–41.

4–42.
4–43.

4–45.

4–46.
4–47.

d = 1.15 m
z = 3 m
y = 1 m
MB = {10.6i + 13.1j + 29.2k} N # m

= {-5.39i + 13.1j + 11.4k} N # m
MA = rAC * F
(MB)O = 518i + 7.5j + 30 k6 N # m
(MA)O = 5-18i + 9j - 3k6 N # m
MO = 5-720i + 720j6 N # m
MO = rOC * FC = {1080i + 720j}N # m
MO = rOA * FC = {1080i + 720j} N # m
(MR)O = {200i - 180j + 30k} lb # ft
MO = 590i - 130j - 60k6 lb # ft
MO = rOA * F1 = {110i - 50j + 90k} lb # ft
F = 84.3 N
F = 115 N
u = 33.6°

+(MO)max = 80.0 kN # m
Maximum moment, OB � BA

+MA = 7.71 N #  m 
+MA = 195 lb # ft
+ MC = 141 lb # ft
+MB = 40 cos 25°(2.5) = 90.6 lb # ft
FC = 82.2 N;
MA = 73.9 N # m
(MA)2 = 140 lb # in.
(MA)1 = 118 lb # in.
F = 191 lb
1500 = F sin 23.15°(20)

sin u
10 = sin 105°

24.57 u = 23.15°
BC = 24.57 ft
umin = 146°
Mmin = 0
umax = 56.3°
Mmax = 1.44 kN # m

+MA = 1200 sin u + 800 cos u
u = 56.3°
MA = 1.44 kN # m
MA = 4002(3)2 + (2)2

MP = (537.5 cos u + 75 sin u) lb #  ft
FA = 28.9 lb

(MFB)C > (MFA)C

(MFB)C = 260 lb # ft
= -162 lb # ft = 162 lb # ft
(MFA) C = -30 A35 B(9)
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4–82. For minimum P require

4–83.
4–85. a.

b

b. b

4–86. b

4–87.
4–89. a. a

b

b. a b

4–90. a. a b

b. a b

4–91.

4–93.

4–94.
4–95.

4–97.

4–98.
4–99.
4–101.

4–102.

4–103.

4–105.

bMRA = 34.8 kN # m
u = 77.8°
FR = 2 1.252 + 5.7992 = 5.93 kN
F2 = 150 lb
F1 = 200 lb
g = 90°
b = 63.4°
a = 153°
(MC)R = 224 N # m
M1 = M2 = 287 lb # ft
M3 = 318 lb # ft
0 = 1

3M3 - 106.7

0 = M1 - 2
3M3 - 75

0 = -M2 + 2
3M3 + 75

d = 342 mm
MR = {-12.1i - 10.0j - 17.3k} N # m
F = 15.4 N
MC = F (1.5)
(MR)y¿ = 29.8 kip # ft
(MR)x¿ = 4.84 kip # ft
F = 98.1 N
g = 90°
b = 101°
a = 11.3°
Mc = 40.8 N # m
M c = r AB * F = rBA * -F
g = 136°
b = 61.3°
a = 120°
(Mc)R = 1.04 kN # m

+MC = 53.4 lb #  ft
+MC = 53.4 lb #  ft
+MC = -53.4 lb # ft = 53.4 lb #  ft

= 53.4 lb #  ft
+MC = 40 cos 30°(4)-60 A45 B(4)

F = 14.2 kN # m
(Mc)R = 5.20 kN # m
MR = 9.69 kN #  m

MR = 9.69 kN # m
-  2 sin 30°(0.3) -  2 cos 30°(3.3) -  8 cos 45°(3.3)

MR = 8 cos 45°(1.8) +  8 sin 45°(0.3) +  2 cos 30°(1.8)

N = 26.0 N
P = 49.5 N

u = 45° 4–106.

d

4–107.

d

4–109.

d

4–110.

b

4–111.

b

4–113.

4–114.

4–115.

4–117.

4–118.
d

4–119.

4–121.

4–122.

4–123.

4–125.

4–126.

d = 4.62 ft
u = 49.8°c
FR = 65.9 lb
d = 2.10 ft
u = 49.8°c
FR = 2(42.5)2 + (50.31)2 = 65.9 lb
d = 0.824 ft
u = 42.6°a
FR = 197 lb
d = 5.24 ft
u = 42.6°a
FR = 197 lb
d = 6.10 ft
f = 23.6°
u = 6.35°
FR = 2(100)2 + (898.2)2 = 904 lb
d = 9.26 ft
FR = 10.75 kip T
d = 13.7 ft
MRA = 99.5 kip # ft
FR = 10.75 kip T

= {36.0i - 26.1j + 12.2k} kN # m
MRO = r1 * F1 + r2 * F2

FR = {0.232i + 5.06j + 12.4k} kN
F2 = {-1.768i + 3.062j + 3.536k} kN
MRO = {1.30 i + 3.30 j - 0.450 k} N # m
FR = {6 i - 1 j - 14 k} N
MRO = {-15i + 225j} N # m
FR = {-210k} N

= 5-6i + 12j6 kN # m
 (MR)O = rOB * FB + rOC * FD

FR = 52i - 10k6 kN
(MR)O = 438 N # m
u = 49.4°c
FR = 461 N
(MR)A = 239 kN # m
u = 84.3°d
FR = 50.2 kN
(MR)A = 441 N # m
u = 10.6°b
FR = 2533.012 + 1002 = 542 N

MR O = 214 lb # in. 
u = 78.4°a
FR = 29.9 lb
MRB = 11.6 kN # m
u = 77.8°d
FR = 5.93 kN
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4–150.

4–151.

4–153.

4–154.

4–155.
b

4–157.

4–158.

4–159.

4–161.

4–162.
d

4–163.
4–165.
4–166.
4–167.
4–169. a.

b.

4–170.
4–171.

4–173.
Mz = k # (rBA * F) = k # (rOA * F) = -4.03 N # m

MRP = {-240i + 720j + 960k} lb #  ft
FR = {-80i - 80j + 40k} lb
F = 992 N

MC = {-5i + 8.75 j} N # m
MC = rOB * (25 k) + rOA * (-25 k)
MC = {-5i + 8.75 j} N # m
MC = r AB * (25 k)

MA = {-59.7i - 159k} N # m
MA = 2.89 kip # ft b

= {298i + 15.lj - 200k} lb # inMO = rOA * F
d = 5.54 ft
MRA = 533 lb # ft
FR = 533 lb T
FR = 223 lb c
(dFR)x = 62.5(1 + cos u) sin u du
x¿ = 2.40 ft
FR = 53.3 lb
wmax = 18 lb/ft
x = 1.60 ft
FR = 53.3 lb
x = 14.6 ft

80640x = 34560(6) +
L

x

0
(x + 12) wdx

FR = 80.6 kip c
MRA = 2.20 kip # ft
FR = 577 lb, u = 47.5°c
x = 1 m
FR = 10.7 kN T
h = 1.60 m

z = L

4 m

0
c A20z

3
2 B  (103) ddz

L

4 m

0
A20z

1
2 B (103)dz

z = L

z

0
zwdz

L

z

0
wdz

FR = 107 kN ;
x = 0.268 ft
FR = 7 lb
a = 9.75 ft
b = 4.50 ft
MRO = { - 194 j - 54 k } N # m
- A0.1 + 1

3(1.2) B  (108) k4–127.

4–129.

4–130.

4–131.
4–133.

4–134.

4–135.
4–137.

4–138.

4–139.

4–141.

4–142.

4–143.

4–145.

4–146.

4–147.

4–149.
MRO = - A1 + 2

3 (1.2) B  (108) j
FR = {-108 i} N
w2 = 282 lb/ft
w1 = 190 lb/ft
d = 11.3 ft
FR = 3.90 kip c
x = 5

12L

-1
2w0L(x) = -1

2w0 AL2 B AL6 B -1
2w0 AL2 B A23L B

FR = 1
2w0L T

x = 3.4 m
FR = 30 kN T
x = 1.20 m
FR = 75 kN T
y = 2.06 m
MR = 3.07 kN # m x = 1.16 m
uFR = -0.5051 i + 0.3030 j + 0.8081 k
FR = 990 N
MW = -1003 lb # ft
x = 3.52 ft y = 0.138 ft
FR = 808 lb
FR = 48.7 kN
FA = 18.0 kN FB = 16.7 kN
x = 3.85 mm
y = 82.7 mm
-26(y) = 6(650) + 5(750)-7(600)-8(700)
FR = 26 kN
FA = 30 kN FB = 20 kN FR = 190 kN
x = 3.54 m
y = 3.68 m
FR = 215 kN
FC = 223 lb
FB = 163 lb
0 = 200(1.5 cos 45°) - FB (1.5 cos 30°)
FC = 600 N FD = 500 N
y = 7.29 m
x = 6.43 m
FR = 140 kN
x = 5.71 m
y = 7.14 m
-140y = -50(3)-30(11)-40(13)
FR = 140 kNT
d = 0.827 m
u = 10.6°b
FR = 542 N
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Chapter 5
5–1. W is the effect of gravity (weight) on the 

paper roll.
NA and NB are the smooth blade reactions on
the paper roll.

5–2. NA force of plane on roller.
Bx, By force of pin on member.

5–3. W is the effect of gravity (weight) on the
dumpster.
Ay and Ax are the reactions of the pin A on the
dumpster.
FBC is the reaction of the hydraulic cylinder BC
on the dumpster.

5–5. Cy and Cx are the reactions of pin C on the truss.
TAB is the tension of cable AB on the truss.
3 kN and 4 kN force are the effect of external
applied forces on the truss.

5–6. W is the effect of gravity (weight) on the boom.
Ay and Ax are the reactions of pin A on the
boom.
TBC is the force reaction of cable BC on the boom.
The 1250 lb force is the suspended load reaction
on the boom.

5–7. Ax, Ay, NB forces of cylinder on wrench.
5–9. NA, NB, NC forces of wood on bar.

10 lb forces of hand on bar.
5–10. Cx, Cy forces of pin on drum.

FAB forces of pawl on drum gear.
500 lb forces of cable on drum.

5–11.

5–13.

5–14.

5–15.

5–17.

NB = 12.2 lb
NA = 23.7 lb
- 5.77(3.464) = 0

10 cos 30°(13 - 1.732) - NA(5 - 1.732)
NC = 5.77 lb
Ay = 20 lb
Ax = 140 lb
NB = 140 lb
Ay = 6.15 kip
Ax = 10.2 kip
TBC = 11.1 kip
Cy = 4.05 kN
Cx = 5.11 kN
TAB = 5.89 kN

TAB cos 30°(2) + TAB sin 30°(4) - 3(2) - 4(4) = 0

NA = 425 N
NB = 245 N

5–18.

5–19.

5–21.

5–22.

5–23.

5–25.

5–26.

5–27.

5–29.

5–30.

5–31.

5–33.

5–34.

5–35.

5–37.

wA = 1.44 kN/m
wB = 1.11 kN/m
-490.5 (3.15) + 1

2 wB (0.3) (9.25) = 0

w = 267 lb/ft
d = 6 ft
Ay = 600 N
Ax = 0
NB = 1.04 kN
Cy = 4.38 kN
Cx = 32 kN
x = 5.22 m

40 000 A35 B(4) + 40 000 A45 B(0.2) - 2000(9.81)(x) = 0

Ay = 46.9 lb
Ax = 1.42 kip
F = 93.75 lb
Ax = 1.51 kip
NB = 1.60 kip
Ay = 50 lb
FA = 2(3433.5d)2 + (4578d - 6867)2
FBC = 5722.5d

FBC A45 B(1.5) - 700(9.81)(d) = 0
Cx = 2.66 kN
Cy = 6.56 kN
FAB = 0.864 kN
By = 95.4 N
Bx = 34.0 N
FCD = 131 N
Ax = 150 lb
Ay = 300 lb
NB = 150 lb
NB(3) - 300(1.5) = 0
Ay = 118 N
Ax = 105 N
NC = 213 N
Ay = 1.97 kip
Ax = 3.21 kip
FB = 4.19 kip
Ay = 87.7 kN
Ax = 20.8 kN
T = 34.62 kN

T A35 B(3) + T A45 B(1) - 60(1) - 30 = 0
(NA)s = 100 lb, (NB)s = 20 lb
(NA)r = 98.6 lb, (NB)r = 21.4 lb
Cy = 722 lb
Cx = 333 lb
FAB = 401 lb
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5–61.

5–62.
5–63.

5–65.

5–66. ,
5–67.

5–69.

5–70.

5–71.

5–73.

5–74.

Ax = 0
FBD = 150 lb
FEF = 100 lb
FCD = 0
Ay = 0
Ax = 0
TCD = 43.5 N
TCD +  373.21 + 333.33 - 350 - 200 - 200 = 0
Az = 333 N
NB = 373 N
NB (3) - 200(3) - 200(3 sin 60°) = 0
Az = 62.5 lb
Ay = 0
Ax = 0
Ez = 562.5 lb
Ex = 0
FDC = 375 lb
Az = 100 N
Ay = 0
Ax = 66.7 N
TBD = TCD = 117 N
Ax = 475 N
Ax + 25 - 500 = 0
Bx = 25 N
Az = 125 N
Bz = 1.125 kN
Cz = 250 N
Cz (0.9 +  0.9) - 900(0.9) + 600(0.6) = 0
Cy = 450 N
RF = 13.7 kip
RE = 22.6 kip
RD = 22.6 kip

x = 0.667 my = 0.667 m
TAB = 0.75 kN
TEF = 2.25 kN
TCD = 3 kN
TCD (2)-6(1) = 0
NB = 332 N
NA = 213 N
NC = 289 N
a = 3(4 r2 l)

2
3 - 4 r2

Ay = 48.8 N
Ax = 108 N
F = 50.6 N
95.35 sin 45°(300)-F(400) = 05–38.

5–39.

5–41.

5–42.

5–43.
5–45.

5–46.
5–47.
5–49.

5–50.

5–51.

5–53.

5–54.
5–55.

5–57. For disk E:

For disk D:

5–58.

5–59. a = 10.4°
NC = 143 lb
NA = 262 lb
Pmax = 210 lb
NC = 141 lb
NB = 9.18 lb
NA = 250 lb

NA A45 B - N¿ ¢224
5
≤ = 0

-P + N¿ ¢224
5
≤ = 0

a = 1.02°
k = 11.2 lb/ft
u = 12.8°
FC (6 cos u) - FA (6 cos u) = 0
T = 29.2 kN
u = 63.4°
NB = 24.9 kN
NA = 17.3 kN
F = 5.20 kN
Pmin = 395 N
u = 33.6°
For Pmin ; dP

du = 0
- P cos u(0.5) - P sin u (0.3317) = 0
50(9.81) sin 20° (0.5) +  50(9.81) cos 20°(0.3317)
FA = 432 lb FB = 0 FC = 432 lb
W = 5.34 kip
NB = 1.15 kip
NA = 1.85 kip
- NA(2.2 + 1.4 + 8.4) = 0
 2500(1.4 + 8.4) - 500(15 cos 30° - 8.4)
T = 9.08 lb
MB = 227 N # m
Ax = 900 N
NB = 1.27 kN
Ax = 825 lb
NB = 825 lb
NB (4 sin 30°)-300(1)-450(3)
Ay = 750 lb
Ax = 353 N
Ay = 300 N
u = 23.1°
Ax = 398 N
Ay = 300 N
k = 1.33 kN>m
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5–75.

5–77.

5–78.

5–79.

5–81.

5–82.

5–83.
5–85.

5–86.
5–87.
5–89.

5–90. F = 354 N
Ay = 1.80 kN
Ax = 3.60 kN
NB = 5.09 kN
600(6) + 600(4) + 600(2) - NB cos 45°(2) = 0
P = 0.5W
d = r

2

d = r
2 A1 + W

P B
- P(d + r cos 60°) = 0

©MAB = 0; TC (r + r cos 60°) - W(r cos 60°)
FBC = 105 lb
MAz = -720 lb # ft
MAy = 0
MAx = -300 lb # ft
Ay = -10 lb
Ax = 130 lb
FBC = 175 lb
MAz = 0
MAy = 165 lb # ft
Az = 0
Ay = -27.5 lb
Ax = -27.5 lb
FCB = 67.4 lb

-55(3) + ¢ 6

254
≤FCB (3) = 0

Ax + ¢ 3

254
≤FCB = 0

Az = 16.7 kN
Ay = 5.00 kN
Ax = 0
TB = 16.7 kN
TCD = 0.0398W
TEF = 0.570W
TAB = 1.14W
TEF = 0.583W
d = 0.550L

TEF(L) - W AL2 B -0.75W AL2 - d cos 45° B = 0

MAz = 0
MAx = 0
Az = 600 lb
Ay = 0
Ax = 0
F = 900 lb
Az = 100 lb
Ay = 0 5–91.

5–93.

5–94.

5–95.

Chapter 6
6–1.

6–2.

6–3.

6–5.

-  (196.2 + 302.47) cos 26.57° = 0
Joint E: FEC cos 36.87°
FBE = 196 N (C)
Joint B: FBC - 332.45 = 0 FBC = 332 N (T)
FAB = 332 N (T)
FAE = 372 N (C)

 Joint A: FAEa 1

25
b - 166.22 = 0

FDE = 1.60 kip (C)
FDC = 1.13 kip (T)
FBC = 800 lb (T)
FBD = 0
FAB = 800 lb (T)
FAD = 1.13 kip (C)
FDE = 1.60 kip (C)
FDC = 1.41 kip (T)
FBC = 600 lb (T)
FBD = 400 lb (C)
FAB = 600 lb (T)
FAD = 849 lb (C)
FEA = 2.10 kN (T)
FEB = 1.27 kN (C)
Joint E: 900 - FEB sin 45° = 0
FCB = 1.34 kN (C)
FCE = 0
Joint C: -FCE cos 26.57° = 0
FDE = 1.20 kN (T)
FDC = 1.34 kN (C)
Joint D: 600 - FDC sin 26.57° = 0

Az = 40 lb

By = 0
Ax = 136 lb
Bx = -35.7 lb
Bz = 40 lb
P = 100 lb
FD = 982 N
Dy = -507.66 N
T = 1.01 kN
By = 16.6 kip
Bx = 0.5 kip
Ay = 7.36 kip
5(14) + 7(6) + 0.5(6) - 2(6) - Ay(14) = 0
By = 5.00 kN
Bx = 5.20 kN
NA = 8.00 kN
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6–15.
6–17.

6–18.

6–19.

6–21.

6–22.

6–23.

6–25.

Joint E: 1.4142 P sin 45° - P - FEB sin 45° = 0
Joint F: FFE - 1.4142 P sin 45° = 0
Joint D: FDC - 1.4142 P cos 45° = 0
Joint A: 1.4142 P cos 45° - FAB = 0
FEA = 286 N (C)
FBA = 202 N (T)
FBE = 118 N (T)
FDE = 286 N (C)
FDB = 118 N (T)
FCB = 202 N (T)
FCD = 286 N (C)
FBA = 450 N (T)
FEB = 70.7 N (T)
FEA = 636 N (C)
FDE = 500 N (C)
FDB = 70.7 N (C)
FCB = 550 N (T)
FCD = 778 N (C)
m = 1.80 Mg
Joint A: FAG - 1.414 W sin 45° = 0
Joint D: FDC sin 45° + FDE cos 30.25° - W = 0
FDC = 79.2 lb (C)
FBD = 55 lb (T)
FBC = 63.3 lb (T)
FAB = 63.3 lb (T)
FAD = 154 lb (C)
FEA = 55 lb (C)
FFE = 60 lb (T)
FED = 60 lb (T)
FFA = 75 lb (C)
FDC = 250 lb (T)
FBD = 0
FBC = 200 lb (C)
FAB = 200 lb (C)
FAD = 1250 lb (C)
FEA = 0
FED = 1200 lb (T)
FFE = 1200 lb (T)
FFA = 1500 lb (C)
P = 1.50 kN (controls)
- 0.8333P cos 73.74° = 0

Joint D: FDE - 0.8333P - P cos 53.13°

Joint B: 0.8333P A45 B - FBC A45 B = 0

- FAB = 0
Joint A: 0.8333P cos 73.74° + P cos 53.13°
P = 2000 lb

6–6.

6–7.

6–9.

6–10.

6–11.

6–13.

6–14.

FFD = 1768 lb (C)
FEF = 1768 lb (T)
FED = 1250 lb (C)
FAF = 0
FAE = 2450 lb (C)
FGF = 2500 lb (T)
FGD = 1768 lb (C)
FCD = 1250 lb (C)
FCG = 1768 lb (T)
FBC =  2450 lb (C)
FBG = 0
P2 = 135 lb
Joint B: FBC - 2.60 P2 sin 22.62° = 0
Joint D: 2.60 P2 cos 22.62° - FDC = 0
Joint A: FAC sin u = 0
FDC = FDE = 825 lb (C)
FBC = FBA = 708 lb (C)
FFC = FFE = 333 lb (T)
FDF = 400 lb (C)
FBG = FGC = FGA = 0
FBC = FCD = 667 lb (C)
FAB = FDE = 667 lb (C)

FEF = 0FBG = FCG = FAG = FDF = FCF =
(controls)3P = 600 lb  P = 200 lb

2P = 800 lb  P = 400 lb
Joint C: 3P - NC = 0
Joint B: FBD sin 45° - 1.4142 P sin 45° = 0
Joint E: FED - 2P = 0
Joint F: FFB cos 45° - 1.4142 P cos 45° = 0
Joint A: FAF sin 45° - P = 0
FBA = 12.0 kN (T)
FBE = 4.00 kN (C)
FDB = 4.00 kN (T)
FDE = 6.93 kN (C)
FCD = 6.93 kN (C)
FCB = 8.00 kN (T)
FBA = 5.00 kN (T)
FBE = 2.00 kN (C)
FDB = 2.00 kN (T)
FDE = 2.60 kN (C)
FCD = 2.60 kN (C)
FCB = 3.00 kN (T)
FDC = 582 N (T)
FED = 929 N (C)
FEC = 558 N (T)
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6–26.

6–27.

6–29.

6–30.

6–31.

6–33.

6–34.

6–35.

FHI = 21.1 kN (C)
FFI = 7.21 kN (T)
FEF = 12.9 kN (T)
FCJ = 1.60 kN (C)
FCD = 12 kN (T)
FJK = 11.1 kN (C)
FHB = 21.2 kN (C)
FHI = 35.0 kN (C)
FBC = 50.0 kN (T)
FBC (4) + 20(4) + 30(8) - 65.0(8) = 0
Ax = 0
Ay = 65.0 kN
FHC = 180 lb (C)
FBC = 130 lb (T)
FBH = 255 lb (T)
336° … u … 347°
127° … u … 196°
P = 1.25 kN
- 2.00P = 0

 Joint F: FFD + 2 c1.863Pa 0.5

2 1.25
b d

- FBFa 0.5

2 1.25
b - FBDa 0.5

2 1.25
b = 0

 Joint B:  2.404Pa 1.5

2 3.25
b - P

Joint A: FAF - 2.404Pa 1.5

2 3.25
b = 0

FCD = 0.471P (C)
FEC = 1.41P (T)
FBD = 1.49P (C)
FBF = 1.41P (T)
FAC = 1.49P (C)
FAE = 1.67P (T)
FAB = 0.471P (C)
FFD = 1.67P (T)
FFE = 0.667P (T)
FBA = 722 lb (T)
FBE = 297 lb (T)
FDE = 780 lb (C)
FDB = 0
FCB = 720 lb (T)
FCD = 780 lb (C)
P = 1.06 kN
1.4142 P = 1.5
P = 1 kN (controls)
Joint C: FCB = P (C) 6–37.

6–38.

6–39.

6–41.

6–42. AB, BC, CD, DE, HI, and GI are all zero-force
members.

6–43. AB, BC, CD, DE, HI, and GI are all zero-force
members.

6–45.

6–46.

6–47.

6–49.

6–50.

FEF = 9.38 kN (T)
FDE = 15.6 kN (C), FDF = 12.5 kN (T),
FCF = 3.12 kN (C), FCD = 9.38 kN (C),
FCG = 3.12 kN (T), FFG = 11.2 kN (T),
FBC = 13.1 kN (C), FBG = 17.5 kN (T),
FAB = 21.9 kN (C), FAG = 13.1 kN (T),
FBC = 15 kN (T)
FKC = 7.50 kN (C)
FKJ = 18.0 kN (C)
FKJ sin 33.69°(4) + 5(2) + 3(4) - 15.5(4) = 0
Ay = 15.5 kN
Ax = 0
FFD = FFC = 0
FGF = 1.53 kN (T)
FCD = 1.92 kN (C)
FCH = 1.92 kN 1T2
FBC = 3.25 kN 1C2
FLD = 424 lb (T)
FCD = 2600 lb (T)
FKL = 3800 lb (C)
FKL (8) + 1000(8) - 900(8) - 1300(24) = 0
NA = 1300 lb
FGF = 5.625 kN (T)
FJE = 9.38 kN (C)

FCG = 9.00 kN (T)
FIC = 5.62 kN (C)

FBG = 200 lb (C)
FHG = 420 lb (C)
FBC = 495 lb (T)
240(8) - FBC cos 14.04°(4) = 0
Ax = 100 lb
Ay = 240 lb
FEH = 29.2 kN (T)
FED = 100 kN (C)
FGH = 76.7 kN (T)
FDC = 125 kN (C)
FHC = 100 kN (T)
FHI = 42.5 kN (T)
FCF = 0.770 kN (T)
FCD = 8.47 kN (C)
FFG = 8.08 kN (T)
7.333 (4.5) - 8 (1.5) - FFG(3 sin 60°) = 0

Ey = 7.333 kN



634 AN S W E R S T O SE L E C T E D PR O B L E M S

6–62.

6–63.
6–65. are lying in the 

same plane.

are lying in the 
same plane.

6–66.

6–67.
6–69. Apply the force equation of equilibrium along

the y axis of each pulley

6–70.
6–71.

6–73.

6–74.

6–75.

6–77.
Cy = 273.6 lb Ax = 92.3 lb
Cx = 100 lb By = 449 lb
Ax = 0
Ay = 5.00 kN
MA = 30.0 kN # m
By = 15.0 kN
Cy = 5.00 kN
Ax = 161 lb
Cx = 90 lb
Cy = 161 lb
Ay = 60 lb
MC = 1.25 kN # m
Cy = 1.30 kN
Cx = 795 N
Ay = 795 N
Ax = 795 N
NB = 1125 N
NB (0.8) - 900 = 0
FA = P = 25.0 lb FB = 60.0 lb
P = 25.0 lb
P = 5 lb
P = 18.9 N
2P + 2R + 2T - 50(9.81) = 0

P = 12.5 lb
FFD = 0
FGE = 505 lb (C)
FGD = 157 lb (T)
FED cos u = 0 FED = 0

Joint E: FEG, FEC, and FEB

FFE cos u = 0 FFE = 0

Joint F: FFG, FFD, and FFC

F = 170 N
FBE = FBC = 141 N (T)
FBD = 707 N (C)
FAB = 583 N (C)
FAE = FAC = 220 N (T)
FEF = 525 lb (C)
FDF = 1230 lb (T)
Joint F: FBF = 225 lb (T)
FCF = 0
FCD = 650 lb (C)
Joint C: FCB = 06–51.

6–53.

6–54.

6–55.

6–57.

6–58.

6–59.

6–61.

Fz = 700 lb
Fy = 650 lb
Fx = 150 lb
Ex = 550 lb
Cy = 650 lb
Dx = 100 lb
FAB = 3.46 kN (C)
FED = 3.46 kN (T)
FCD = 2.31 kN (T)
FCF = 0
FBE = 4.16 kN (T)
FDF = 4.16 kN (C)
FBC = 1.15 kN (C)
FEC = 295 N (C)
FAC = 221 N (T)
FBC = 148 N (T)

Joint C: FBC -
1

2 7.25
 (397.5) = 0

FCD = 397 N (C)
FBD = 186 N (T)
FAD = 343 N (T)

+
1

2 7.25
F C D - 200 = 0

 Joint D: - 1
3 FAD +

5

2 31.25
FBD

FDB = 544 lb (C)
FAB = FAD = 424 lb (T)
FCB = 344 lb (C)
FCD = 406 lb (T)
FCA = 1000 lb (C)
FDB = 50 lb (T)
FAD = FAB = 354 lb (C)
FCD = 333 lb (T)
FCB = 667 lb (C)
FCA = 833 lb (T)
FDE = 2.13 kip (T)
FJI = 2.13 kip (C)
1.60(40) - FJI (30) = 0
Gy = 1.60 kip
FFC = 6.25 kN (C)
FDC = 18.8 kN (C), FDF = 25.0 kN (T)
FED = 31.2 kN (C), FEF = 18.8 kN (T)
FGC = 6.25 kN (T), FGF = 22.5 kN (T)
FBC = 26.2 kN (C), FBG = 35.0 kN (T)
FAB = 43.8 kN (C), FAG = 26.2 kN (T)



AN S W E R S T O SE L E C T E D PR O B L E M S 635

6–78.

6–79.

6–81.

6–82.

6–83.

6–85. Member AB,
Member EFG,
Member CDI,

6–86.
6–87.

6–89.

6–90.

6–91.

NB = 7.05 kN
Cy = 7.05 kN
NA = 4.60 kN
Dy = 1000 lb
Dx = 945 lb
Ey = 500 lb
Ex = 945 lb
Ay = 130 lb
Ax = 52.6 lb
By = 130 lb
Bx = 97.4 lb
Member AB: FBD = 162.4 lb
FBD = 2.60 kN
FFB = 1.94 kN
mL = 106 kg

ms = 1.71 kg
FED = 158.9 N

FBG = 264.9 N
Cy = 833 N
Cx = 1.33 kN
Ay = 1.17 kN
Ax = 167 N
ND = 1.05 kN
Ay = 2.94 kN
Ax = 12.7 kN
NC = 12.7 kN
Ey = 75 kip
Ex = 0
Segment DEF: Fy = 135 kip
Ay = 75 kip
Ax = 0
Segment ABC: Cy = 135 kip
Dy = 30 kip
Dx = 0
Segment BD: By = 30 kip
Ay = 100 N
Ax = 333 N
ND = 333 N
Cy = 300 N
Cx = 300 N
Ax = 300 N
Ay = 300 N
MA = 359 lb #  ft
Ay = 186 lb 6–93.

6–94.
6–95.
6–97.

6–98.
6–99.
6–101. Member ABC

Member CD

6–102.

6–103.

6–105. Member BC

Member ACD

6–106.

6–107.

6–109. Clamp

Handle

6–110.
6–111. WC = 0.812W

NA = 284 N
FBE = 2719.69 N
F = 370 N

Cx = 1175 N

NC = 87.5 lb
F = 87.5 lb
NC = 350 lb
F = 175 lb
FAD = 3.43 kip
FAB = 3.08 kip
FAC = 2.51 kip
Bx = 2.98 kN
Ax = 2.98 kN
Ay = 235 N
Cx = 2.98 kN

By = 549 N
Cy = 1.33 kN

ME = 500 N # m
Ey = 417 N
Ex = 0
Ay = 183 N
FABC = 319 N
FCD = 1.01 kN
Ax = 695 N
Dx = 695 N
Dy = 245 N

Ay = 245 N

F = 5.07 kN
M = 2.43 kN # m
NB - NC = 49.5 N
80 - NG cos 36.03° - NC cos 36.03° = 0
F = 562.5 N
Ws = 3.35 lb
Ax = 2.00 kip
Dy = 1.84 kip
Member DB: Dx = 1.82 kip
Member ABC: Ay = 700 lb
Pulley E: T = 350 lb
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6–127.
6–129.

6–130.

6–131.

6–133. Member AC:

Member AC:

Member CB:

6–134.
6–135.

Ey = 5.69 kip
Ex = 8.31 kip
Ay = 0.308 kip
Ax = 8.31 kip
P = kL

2 tan u sin u (2 - csc u)

By = 97.4 N
Bx = 97.4 N

Ay = 397 N
Ax = 117 N

Cy = 97.4 N
Cx = 402.6 N

FDF =  424 lb (T)
FCF =  300 lb (C)
FCD =  500 lb (C)
FEF =  300 lb (C)
FDE =  0
FAE =  367 lb (C)
FAD =  0
FAC =  972 lb (T)
FAB =  300 lb (C)
FBE =  500 lb (T)
FBC = 0
FBF = 0
FDF = 424 lb (T)
FCF = 300 lb (C)
FCD = 300 lb (C)
FEF = 300 lb (C)
FDE = 0
FAE = 667 lb (C)
FAD = 333 lb (T)
FAC = 583 lb (T)
FAB = 300 lb (C)
FBE = 500 lb (T)
FBC = 0
FBF = 0
Joint A: FAE = 8.00 kN (T)
Joint B: FBA = 17.9 kN (C)
Joint D: FDE = 8.00 kN (T)
FCD = 8.00 kN (T)
Joint C: FCB = 17.9 kN (C)
FDB = FBE = 0
FB = 133 lb
MCz = 0
MCy = -429 N #  m
Cz = 125 N
Cy = 61.9 N6–113.

6–114.

6–115.
6–117.

6–118.

6–119.

6–121.

6–122.

6–123.

6–125.

6–126.

Cx = 47.3 N
Ay = 115 N
Ax = 172 N
Az = 0
By = -13.3 lb
Bx = -30 lb
Bz = 0
Bz + 6

9(270) - 180 = 0
FDE = 270 lb
-6

9 FDE(3) + 180(3) = 0

Bz = Dz = 283 N
By = Dy = 283 N
Bx = Dx = 42.5 N
P = 283 N
W3 = 75 lb
W2 = 21 lb
W1 = 3 lb
M = 4PL sin2 u

sin f [cos(f - u)]

Nc = 4P sin2 u
sin f

Cy = 53.3 lb
Cx = 413 lb
Bx = 333 lb
By = 133 lb
Ay = 80 lb
Ax = 80 lb
NC = 15.0 lb
Ay = 0
Ax = 120 lb
MD = 2.66 kN # m
Dy = 1.96 kN
Dx = 0
Cy = 7.01 kN
Cx = 2.17 kN
FAB = 9.23 kN
lAB = 861.21 mm, LCAB = 76.41°,
NE = 187 N
FBC = 15.4 kN (C)
FIJ = 9.06 kN (T)
W1 = b

aW

Wx
12b + 3c(4b) + W¢1 -

x

3b + 3
4c
≤(b) - W1(a) = 0

©MA = 0; FCD(c) -
Wx

A3b + 3
4c B A

1
4c B = 0

©ME = 0; W(x) - NB A3b + 3
4c B = 0
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Chapter 7
7–1.

7–2.

7–3.

7–5.

7–6.

7–7.

7–9.

.
7–10.

7–11.

MD = 13.5 kN # m
VD = 1 kN
ND = 0
MC = 9.375 kN # m
VC = 3.25 kN
NC = 0
MC = 1.5 kN # m
VC = 0
NC = 0
MC = -480 lb # in
MC + 80(6) = 0
VC = 0
NC = -80 lb
NC + 80 = 0
MC = - 5

48w0L
2

VC =
3w0L

8

NC = 0
MC = 9 kN # m
VC = -1 kN
NC = 0
MC = -144 N # m
VC = -96 N
NC = 400 N
Ay = 96 N
Ax = 400 N
MC = 9750 lb # ft
VC = -125 lb
NC = -1804 lb
MD = -600 lb # ft
VD = 300 lb
ND = 0
MC = -857 lb # ft
VC = -386 lb
NC = 0
MD = 48.0 kip # ft
VD = -1.00 kip
ND = 0
MC = 56.0 kip # ft
VC = -1.00 kip
NC = 0
Ax = 0
Ay = 7.00 kip

By = 1.00 kip

7–13.

7–14.

7–15.

7–17.

7–18.

7–19.
7–21.

7–22.

7–23.

ME = 0
NE = 86.0 N
VE = 0
MD = 19.0 N # m
VD = 26.0 N
ND = 0
MD = 42.5 kN # m
VD = -10.6 kN
ND = 0
MG = 1160 lb # ft
VG = -580 lb
NG = 0
MF = 1040 lb # ft
VF = 20 lb
NF = 0
Ay = 520 lb
Ax = 0
Ey = 580 lb
Dy = 540 lb
FBC = 560 lb
Dx = 0
a = 2

3L
ME = -4.875 kN # m
VE = 3.75 kN
NE = 4 kN
MD = -18 kN # m
VD = -9 kN
ND = 4 kN

a
b = 1

4

Ay = w
6b(2a + b) (b - a)

MC = 800 lb # ft
VC = 0
NC = 0
MD = -1.60 kip # ft
VD = 800 lb
ND = 0
ME = 1000 N # m
VE = 500 N
NE = -1.48 kN
MD = 500 N # m
VD = 0
ND = 1.26 kN
Member BC: Bx = 1258.33 N
Member AB: By = 500 N
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7–38.

7–39.

7–41.

7–42.

7–43.

7–45.

7–46.

7–47.

7–49.

7–50.

7–51.

7–53.

at x = 3.87 ftV = 0
V = 25 - 1.667x2
0 … x 6 9 ft
Mmax = 0.866 kN # m
x = 1.732 m
M = 25(100x - 5x2 - 6)
V = 250(10 - x)
M = -7.5x + 75
V = -7.5
5 m 6 x 6 10 m
M = 2.5x - x2
V = 2.5 - 2x
0 … x 6 5 m
M = 759 N # m
x = 1.75 m

M =
w0L

2

16

x = L>2
M = 9

128w0L
2

x = A38 BL
M0 = 44 kN # m
ForMmax = M0>2, M0 = 44 kN # m
For Vmax = M0>L, M0 = 45 kN # m
M = -10 kN # m
x = 0, V = 4 kN
x = 12 + , V = -333,M = 0
x = 8+ , V = -833,M = 1333
M|x=4 = 12 kN # m
M = {36 - 6x} kN # m
V = -6kN
4 m 6 x … 6 m
M = {3x} kN # m
V = 3kN
0 … x 6 4 m
(ME)z = -26.8 kN # m
(ME)y = -43.5 kN # m
(ME)x = 0
(VE)z = -87.0 kN
(VE)y = 53.6 kN
(NE)x = 0
(MD)z = 26.2 kN # m
(MD)y = 87.0 kN # m
(MD)x = 49.2 kN # m
(VD)x = 0
(ND)y = -65.6 kN
(VD)x = 116 kN7–25. Use top segment of frame.

7–26.

7–27.

7–29. Beam reaction

7–30.

7–31.

7–33.

7–34.

7–35.

7–37.

(MC)z = 675 N # m
TC = 30 N # m
(MC)x = -825 N # m
(VC)z = -550 N
(VC)x = 450 N
(NC)y = 0
Bx = 900 N
Bz = 550 N
(MC)z = -750 lb # ft
(MC)y = -1.20 kip # ft
(MC)x = 1.40 kip # ft
(VC)z = 700 lb
(VC)x = -150 lb
(NC)y = -350 lb
(MC)z = -178 lb # ft
(MC)y = 72.0 lb # ft
(MC)x = 20.0 lb # ft
(VC)z = 10.0 lb
(VC)x = 104 lb
(NC)y = 0
MD = 8.89 N # m
VD = 37.5 N
ND = -29.4 N
By = 37.5 N
Bx = 29.39 N
MD = 1.06 kip # ft
VD = 1.06 kip
ND = 844 lb
MC = -844 lb # ft
VC = -844 lb
NC = 1.75 kip
MC = -17.8 kip # ft
R = 700 lb

MC = 382 N # m
VC = 0
NC = -1.91 kN
MC = wL2

8  cos u
VC = 0
NC = -wL

2  csc u
ME = 1140 lb # ft
VE = 120 lb
NE = 360 lb
MD = 900 lb # ft
VD = 0
ND = 200 lb
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7–54.

7–55.

7–57.

7–58.
7–59.
7–61.

7–62.

7–63.

7–65.

7–66.

7–67.

7–69.

7–70. x = AL3 B + , V = -P,M = PL
x = 4 + , V = -12.5,M = 10
x = 2 - , V = 7.5,M = 15
x = 4 + , V = 6,M = -22
x = 2 + , V = -14.5,M = 7
x = 6- , V = -5, M = -10
x = 2 + , V = 5,M = -10
x = 6, V = -625,M = 1250
x = 4 -

+ , V = 275,M = 1900
x = 2 - , V = 675,M = 1350
Mz = 0
My = 8.00 lb # ft
Mx = {2y2 - 24y + 64.0} lb # ft
Vz = {24.0 - 4y} lb
Vx = 0

M = -
pgr20
12L2 c(L + x)4 - L3(4x + L) d

V =
pgr20
3L2 c(L + x)3 - L3 d

M|x=7.5 ft = 2250 lb # ft
x = 6 ft
M = {3000x - 250x2 - 6750} lb # ft
V = {3000 - 500x} lb
w0 = 8.52 kN/m
w0 = 21.8 lb/ft
M|x=3 m = -18 kN # m
V|x=3 m+ = 12 kN
V|x=3 m- = -10 kN
M = 5-2(6 - x)26 kN # m
V = 524 - 4x6 kN
3 m 6 x … 6 m
M = E -2

9x
3 - 4xF  kN # m

V = E -2
3x

2 - 4F  kN

0 … x 6 3 m
M = E - 1

18(24 - x)3F  kip # ft
V = E16(24 - x)2F  kip

M = E48.0x - x3

18 - 576F kip # ft
V = E48.0 - x2

6 F kip

w = 22.2 lb/ft
M = -180
V = 0
9 ft 6 x 6 13.5 ft
Mmax = 64.5 lb # ft
M = 25x - 0.5556x3

7–71.
7–73.

7–74.

7–75.
7–77.

7–78.

7–79.
7–81.

7–82.
7–83.
7–85.

Use .

7–86.

7–87.

7–89. Entire cable

7–90.
7–91.
7–93.

7–94.

7–95.
yD = 7.04 ft
yB = 8.67 ft
Tmax = 157 N
yB = 2.43 m
Tmax = TDE = 8.17 kN
TCD = 4.60 kN
TBC = 4.53 kN
TAB = 6.05 kN
yB = 3.53 m
xB = 3.98 ft
P = 72.0 lb
L = 15.7 ft
Joint D: TCD = 43.7 lb
Joint A: TAC = 74.7 lb
TBD = 78.2 lb

x = 900, V = -487,M = 350
x = 300, V = 722,M = 277
x = 6, V = 2.5,M = 0
x = 3+ , V = 11.5,M = -21
x = 6+ , V = 4 w, M = -120 m

w = 2 kip/ft
w = 5 kip/ft
Mmax = -6w
w = 2 kip/ft
Vmax = 4w
x = 3, V = -12,M = 12
x = L- , V = -2wL

3 ,M = -wL2

6

x = 18, V = -3.625,M = 0
x = 9+ , V = -1.375,M = 25.9
x = 9- , V = 0.625,M = 25.9
x = 0, V = 5.12,M = 0
x = 6, V = -900,M = -3000
x = 14.1, V = 0,M = 334
x = 8- , V = 1017,M = -1267
x = 5- , V = -225,M = -300
x = 1+ , V = 175,M = -200
x = 1.5- , V = 250,M = 712.5
x = 3+ , V = 15,M = -7.50
x = 1+ , V = -9.17,M = -1.17
x = 1, V = -3.84,M = 0
x = 0.8- , V = 0.16,M = 0.708
x = 0, V = 1.76,M = 0
x = 0.2 + , V = 96.7,M = -31

x = A2L
3 B + , V = -2P,M = A23 B PL
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7–118.
7–119.
7–121.

7–122.

7–123.

7–125.

7–126.
7–127.

Chapter 8
8–1.

8–2.
8–3.
8–5.

u = 52.0°
180(10 cos u) - 0.4(180)(10 sin u) - 180(3) = 0
ms = 0.256
P = 474 N
N = 494.94 N
P = 140 N
P cos 30° + 0.25N - 50(9.81) sin 30° = 0

h = 93.75 ft
l = 238 ft
s = 18.2 ft
ME = 86.6 lb # ft
VE = 28.9 lb
NE = 0
ND = FCD = -86.6 lb
VD = MD = 0
FCD = 86.6 lb
M = -300 - 200y
N = -150 lb
V = 200 lb
0 … y … 2 ft
M = 150 cos u + 200 sin u - 150
N = 150 cos u + 200 sin u
V = 150 sin u - 200 cos u
0° … u … 180°
M = {16.0 - 2.71x - 0.0981x2} kN # m
V = { - 0.196x - 2.71} kN
2 m 6 x … 5 m
M = {5.29x - 0.0981x2} kN # m
V = {5.29 - 0.196x} kN
0 … x 6 2 m
M = {27.0 - 4.50x} kN # m
V = -4.50 kN
3 m 6 x … 6 m
M = {1.50x} kN # m
V = 1.50 kN
0 … x 6 3 m
Ay = 1.50 kN
FCD = 6.364 kN
Tmax = 76.7 lb
a = 0.366L
MD = -54.9 N # m
VD = -220 N
ND = -220 N
Segment CD
ME = 112.5 N # m

7–97.

7–98.
7–99.

7–101.

7–102.
7–103.

7–105.

7–106.

7–107.

7–109.

7–111.
7–113.

7–114.

7–115.

7–117.

VE = 0
NE = 80.4 N
Segment CE
FBC = 310.58 N
x = 5+ , V = -1.14,M = 2.29
x = 2 - , V = 4.86,M = 9.71
h = 10.6 ft
Total length = 55.6 ft
h = 1.47 m
y = 135.92 Ccosh 7.3575(10-3)x - 1 D
dy
dx = sinh 7.3575(10-3)x
L = 15.5 m
Tmax = 1.60 kN
y = 23.5[cosh 0.0425x - 1] m
FH = 1153.41 N

L = 45 = 2e FH

49.05
 sinha49.05

FH
(20)b f

y =
FH

49.05
ccosha49.05

FH
 xb - 1 d  m

L = 51.3 m
Tmax = 5.36 kN
Tmax = 48.7 kip
y = 46.0(10-6)x3 + 0.176x
w0 = 77.8 kN>m
y = 150 m at x = -(1000 - x0)
y = 75 m at x = x0

y =
w0

4FH
x2

dy

dx
=

w0

2FH
x

L = 13.4 ft
h = 2.68 ft
4.42 kip
w0 = 264 lb/ft

10 =
w0

2 FH
(25 - x)2

15 =
w0

2 FH
x2

w0 = 0.846 kN/m
P = 71.4 lb
xB = 4.36 ft

Joint C:
30 - 2xB

2(xB - 3)2 + 64
 TBC = 102

Joint B:
13xB - 15

2(xB - 3)2 + 64
 TBC = 200



AN S W E R S T O SE L E C T E D PR O B L E M S 641

8–6.
8–7. Yes, the pole will remain stationary.
8–9.

8–10.
8–11.
8–13.

8–14.
8–15.
8–17.

Boy does not slip.

8–18.
8–19.
8–21.

8–22.
8–23.
8–25. Assume

8–26.

8–27. The man is capable of moving the refrigerator.
The refrigerator slips.

8–29.

8–30. Tractor can move log.
8–31.
8–33.

The bar will not slip.

8–34.

8–35.
8–37.

8–38. h = 0.48 m
b = 2a sin u
N = wa cos u
P = 0.127 lb

u = tan-1a1 - mAmB

2mA
b

NA = 130 lb
FA = 17.32 lb
W = 836 lb

NA = 12.9 N NB = 72.4 N
P = 29.5 N

ms
œ = 0.300

P = 45.0 lb
P = 100 lb
x = 1.44 ft 6 1.5 ft
N = 160 lb

P = 100 lb
P = 0.990 lb
n = 12
FCD = 8.23 lb
u = 16.3°
NB = 150 cos u
NA = 200 cos u
u = 10.6° x = 0.184 ft
ms = 0.595
By = 228 lb
Bx = 34.6 lb
Ay = 468 lb
FD = 36.9 lb

ND = 95.38 lb
FB = 200 N
ms = 0.577
P = 350 N
NB = 700 N
FB = 280 N
P = 1 lb
P = 15 lb
d = 13.4 ft
30 (13 cos u) - 9 (26 sin u) = 0

ms = 0.231 8–39.

8–41.

8–42. He can move the crate.
8–43.
8–45.

8–46.
8–47.
8–49.

8–50.
8–51.
8–53.

Slipping of board on saw horse .
Slipping at ground .
Tipping .
The saw horse will start to slip.

8–54. The saw horse will start to slip.
8–55.
8–57.

8–58.
8–59.
8–61.

8–62.
8–63.
8–65.

8–66.
8–67.
8–69.

8–70.
8–71. P = 574 N

All blocks slip at the same time; P = 625 lb
P = 1.29 kN
NC = 600 N
NA = 1212.18 N
P = 863 N
P = 1.98 N
P = 90.7 lb
NB = 82.57 lb NC = 275.23 lb
P = 49.0 N
P = 45 lb
FB = 37.73 N
NB = 679.15 N
NA = 150.92 N
M = 90.6 N # m
ND = 188.65 N
NC = 377.31 N
u = 16.0°
P = 90 lb
F¿ = 60 lb
N¿ = 150 lb
P = 60 lb
ms = 0.304

Px = 21.2 lb
Px = 19.08 lb

Px = 24.3 lb
N = 48.6 lb
P = 1.02 kN
ml = 800 kg
ml = 1500 kg
Nl = 9.81ml

T = 11 772 N
P = 589 N
FA = 71.4 N
M = 77.3 N # m
By = 110.4 N
Bx = 110.4 N
NA = 551.8 N
ms

œ = 0.376

ms = 0.4
NA = 0.9285 FCA

FA = 0.3714 FCA

ms = 0.3
u = 33.4°
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8–102.
8–103. Since the man will not slip,

and he will successfully restrain the cow.
8–105.

Thus, the required number of full turns is

8–106. The man can hold the crate in equilibrium.
8–107.

8–109. For motion to occur, block A will have to slip.

8–110.
8–111.
8–113.

No tipping occurs.
8–114.
8–115.
8–117. Apply Eq. 8–7.

8–118.

8–119.

8–121.

8–122.

8–123.

8–125.

8–126.
8–127.
8–129.

mB = 13.1 kg
fs = 16.699°
P = 179 N
P = 215 N

M = a mk

21 + mk
2
bpr

sin fk =
mk

21 + mk
2

tan fk = mk

M =
2msPR

3 cos u

F = 573 lb
p0 = 0.442 psi

M =
msP

3 cos u
ad2

3 - d1
2

d2
2 - d1

2 b
A = p

4 cos u(d2
2 - d1

2)
N = P

cos u

M =
ms PR

2

M = 270 N # m
Fsp = 1.62 kip

mk = 0.0568
M = 304 lb # in.

x = 0.00697 m 6 0.125 m
NA = 478.4 N
FA = 16.2 N
T = 20.19 N
W = 39.5 lb
F = 2.49 kN
FB = T = 36.79 N
P = 223 N

T2 = 1.59 N
T1 = 1.85 N

n = 2

b = (2n + 0.9167)p rad
T = 486.55 N N = 314.82 N

F 6 Fmax = 54 lb,
P = 17.1 lb
M = 216 N # m
(ms)req = 0.38–73.

8–74.
8–75.
8–77.

8–78.
8–79.
8–81.

8–82.
8–83.
8–85.

8–86.
8–87.

8–89.

8–90.

8–91.

8–93.

Yes, just barely.
8–94.
8–95.
8–97.

8–98.

8–101.
T1 = 688.83
T2 = 1767.77 N
TC = 150.00 N
TA = 616.67 N
M = 187 N # m
P = 42.3 N
F¿ = 19.53P
F = 4.75P
u = 24.2°
T1 = 57.7 lb

F = 136.9 lb
N = 185 lb
F = 16.2 kN
F = 4.60 kN
F = 372 N
F = 1.31 kN
FB = 38.5 lb
NB = 65.8 lb
FC = 13.7 lb
TB = 13.678 lb
NA = 42.6 N
NC = 123 N
F = 174 N
F = 74.0 N
fs = 14.036°
u = 5.455°
FAB = 1962 N
FBD = 1387.34 N
F = 1387.34 N
FCA = FCB

F = 49.2 N
F = 71.4 N
F = 678 N
fs = 14.036°
u = 5.455°
M = 145 lb # ft
M = 5.69 lb # in
F = 620 N
fs = 11.310°
u = 7.768°
P = 1.80 kN
P = 1.38W
P = 0.0329W
FB = 0.05240W
NB = 1.1435W
NA = 0.5240W
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8–130.

8–131.

8–133.

8–134.
8–135.
8–137.

8–138.

8–139.
8–141.
8–142.
8–143.
8–145. a)

b)

8–146. a)
b)

8–147.
8–149.

8–150.
8–151.
8–153.

The wedges do not slip at contact surface AB.

The wedges are self-locking.

Chapter 9
9–1.

y = 2.29 m
x = 1.64 m
m = 11.8 kg
dm = 2y2 + 4 dy

dL = 1
22y2 + 4 dy

FC = 0
NC = 8000 lb

F = 1389.2 lb
N = 7878.5 lb
u = 35.0°
M = 2.21 kip # ft
M = 2.50 kip # ft
T = 1250 lb
NB = 2500 lb
NA = 1000 lb
mB = 1.66 kg

W = 6.89 kN
W = 1.25 kN
W = 15.3 kN
T = 6131.25 N
NB = 5886.0 N
NA = 6376.5 N
W = 6.97 kN
NA = 5573.86 N T = 2786.93 N

s = 0.750 m
P = 40 lb

= 235 NP = (1200) (9.81) (0.2 + 0.4)
2(15)

P = 266 N

P = 299 N
P = 96.7 N
u = 5.74°
ms = 0.411
P = 42.2 lb
P = 814 N (approx.)
P = 814 N (exact)
R = 2P2 + (833.85)2

rf = 2.967 mm
(rf)B = 3 mm

(rf)A = 7.50 mm

(rf)B = 0.075 in.
(rf)A = 0.2 in. 9–2.

9–3.

9–5.

9–6.

9–7.
9–9.

9–10.

9–11.

9–13.

9–14.

9–15.

9–17.

y = 3
5 h

x = 3
8 a

A = 2
3 ah

y
' = yx

' =
a

2h1/2 y1/2

dA =
a

h1/2 y1/2 dy

y = 3
10 h

x = 3
4 a

A = 1
3 ah

y =
c2(b - a)

2ab ln b
a

x =
b - a

lnba

A = c 2 lnb
a

y = 1.33 in.
y
' = 1

2 x2
dA = x2 dx
y = 3

42ab

x = 3
5 b

A = 4
3a1/2b3/2

y = 0.857 ft
x = 2.4 ft
A = 2.25 ft2
y = 0.3125 m
x = 0.714 m
A = 0.4 m2

y
' =

x3/2

2

x
' = x
dA = x 3/2 dx
x = r sin a

a

y = 1.82 ft
x = 0
x = 5

9 L

m = 3
2 m0L

dm = m0 A1 + x
L B dx

MO = 3.85 N # m
Oy = 7.06 N
Ox = 0
x = 0.546 m
MA = 32.7 lb #  ft
Ay = 26.6 lb
Ax = 0
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9–43.

9–45.

9–46.

9–47.

9–49.

9–50.

9–51.

9–53.

9–54.
9–55.

9–57.

9–58.

9–59.

9–61.

9–62.

9–63.
9–65.

x =
2.4971(10-3)

16.347(10-3)
= 153 mm

©m = 16.4 kg
y = 293 mm

y =
b(W2 - W1) 2b2 - c2

cW

x =
W1

W
b

y =
441.2(104)

81(104)
= 544 mm

x = 0
y = 2.56 in.
x = 4.83 in.

x =
4 Aro

 3 - ri3 B
3p Aro

2 - ri2 B

y = 9.648
6.84 = 1.41 m

x = 15.192
6.84 = 2.22 m

y = 2.57 in.
y = 2.00 in.
=  5.125 in.
y = 3[2(6)(1)] + 5.5(6)(1) + 9(6)(1)

2(6)(1) + 6(1) + 6(1)

y = 12 in.
x = 2.64 in.
Ax = 0
Ay = 1.32 kN
Ey = 342 N
y = 9.24 m
x = 1.65 m
f = 30° - 10.89° = 19.1°
u = tan-1 50

400 sin 60° - 88.60 = 10.89°

y = 88.6 mm
x = -50 mm
z = 0.157 in.
y = 0.0370 in.
x = 0.0740 in.
z = 2.14 in.
y = 1.07 in.
x = -0.590 in.
z = 169.44(103)

1361.37 = 124 mm

y = 60(103)
1361.37 = 44.1 mm

x = 164.72(103)
1361.37 = 121 mm

z = 8
15 r

m = pkr4

4
9–18.

9–19.
9–21.

9–22.
9–23.

9–25.

9–26.
9–27.
9–29.

9–30.

9–31.

9–33.

9–34.

9–35.

9–37.

9–38.
9–39.

9–41.

9–42.

z = a
p

y = 3
4 h

V = pa 2h
6

y = 23
55 a

y
' = y
dm = pr0 Aa2 - y2 + ay - y3

a B  dy

y = 4.36 ft
z = 2

9 h
y = 3.2 m
y
' = y
dV = p

16 y3 dy

y = a
2(10 - 3p)

x = 5
9 a

m = 3
2 r0 abt

y = 1 ft
y
' = y
dA = Ay2 - y2

4 B  dy

y = 0.357 m
x = 0.914 m
Ay = 73.9 kN
Ax = 24.6 kN
NB = 55.1 kN
y = 0
x = 1.20 m

y = n + 1
2(2n + 1) h

y = y
2

dA = y dx
y = 0.45 m
x = 0.45 m
y = 1.14 ft
x = 1.6 ft
A = 2.25 ft2

y
' = 1

2 Ax + x3

9 B
x
' = x
dA = Ax - x3

9 B  dx

y = 0.541 in.
x = 1.08 in.
x = 5a

8

x
' = x
dA = 2k Ax - x2

2a B  dx
x = - 0.833a
Ay = 1.98 kN
Ax = 0
FBC = 2.64 kN
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9–66.

9–67.

9–69.

9–70.

9–71.

9–73.
9–74.
9–75.

9–77.

9–78. or
9–79.
9–81.
9–82.
9–83.
9–85.

9–86.
9–87.
9–89.

9–90.

9–91.

9–93.

9–94.
9–95.
9–97.

=  536 m3

V = 2p C A4(4)
3p B A14p (4)2 B + (2)(8)(4) D

2.26 gallons
R = 29.3 kip
Vc = 20.5 m3
Vh = 2p[0.75(6) + 0.6333(0.780) + 0.1(0.240)]
V = 0.0376 m3
A = 1.06 m2
V = 50.6 in3
A = 116 in2
=  0.0486 m3
V = 2p[(112.5)(75)(375) + (187.5)(325)(75)]
A = 141 in2
A = 1365 m2
=  77.0 m3

+ 1.667 A2(1.5)
2 B D

V = 2p C A4(3)
3p Ap(32)

4 B + 0.5(1.5)(1)
V = 101 ft3
V = 3485 ft3
A = 2p(184) = 1156 ft2
z = 122 mm

h = 48 mmh = 80 mm

x =
11.02(106)p

172(103)p
= 64.1 mm

z = 1.67 in.
y = 2.79 in.
x = 2.19 in.
z = 754 mm
z = 1.0333p

9.3333p = 111 mm
y = 11.0 ft
x = 19.0 ft
Ay = 5.99 kN
By = 4.66 kN
y = 3.07 m
x = 4.56 m
u = 30.2°
z = 371 433.63

16 485.84 = 22.5 mm

x = 216 000
16 485.84 = 13.1 mm

x = L + (n - 1)d
2

y = 3.80 ft
x = 5.07 ft

z =
1.8221(10-3)

16.347(10-3)
= 111 mm

y = -15 mm 9–98.
9–99.

9–101.
9–102.
9–103.
9–105.

9–106.
9–107.

9–109.

9–110.
9–111.
9–113.

9–114.
9–115.
9–117.

9–118.
9–119.
9–121.

9–122.
9–123.

9–125.

9–126.

9–127.

9–129.

y = 3.00 m
x = 2.74 m
FR = 7.62 kN

dFR = 6 A- 240
x + 1 + 340 B dx

y = -0.262a

y = 1.63 in.
x = 0
y = 39.833

27.998 =  1.42 in.

x = 76.50
27.998 =  2.73 in.

z = 2
3 a

x = y = 0
y = 87.5 mm
y = 1.33 in.
y
' = x2

2

dA = x2 dx
FR = 170 kN
x = 1.51 m
F.S. = 2.66
(Wcon)r = 282.53 kN
(Wcon)p = 188.35 kN
Fh = 176.58 kN
Fv = 39.24 kN
mA = 5.89 Mg
L = 2.31 m
NC = 13.1 kN
wC = 58.86 kN
wB = 39.24 kN
FR = 450 lb
FR = 225 lb
FR = 41.7 kN

dFR = A26.556721 - y2 - 6.9367y21 - y2 B  dy

h = 2.7071 - 0.7071y
FABDC = 1800 lb
FCDEF = 750 lb
d =  3.65 m
d =  2.68 m
-176 580(2) + 73 575d A23d B = 0
h = 106 mm
V = 22.1(103) ft3
A = 2p[7.5(2241) + 15(30)] = 3.56(103) ft2
14.4 liters
A = 43.18 m2
V = 25.5 m3
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10–34.

10–35.

10–37.

10–38.

10–39.
10–41. Consider a large rectangle and a hole.

10–42.
10–43. ,
10–45. Consider three segments.

10–46.

10–47.
10–49. Consider three segments.

10–50.

10–51.

10–53.

10–54.
10–55.
10–57. Consider rectangular segments,

, , and

10–58.

10–59.
10–61.

10–62.
10–63.

10–65.

Ixy = 3.12 m4
y
' = y

2

x
' = x
dA = 1

8(x3 + 2x2 + 4x) dx

Ixy = 48 in4
Ixy = a2b2

8

Ixy = 0.667 in4
dA = x dy
y = y
x = x

2

Ix¿ = 30.2(106) mm4

Iy = 153(106) mm4
Ix = 115(106) mm4
150 mm * 12 mm

100 mm * 12 mm226 mm * 12 mm

Ix = 22.9(106) mm4
Ix = 388 in4
Ix¿ = 15.896 + 36.375 = 52.3 in4
y = 61.75

13 = 4.75 in.

Ix = 2.51(106) mm4

Iy¿ = 1.21(109) mm4
Ix¿ = 124(106) mm4

Iy = 914(106) mm4

Iy = 548(106) mm4
Ix = 548(106) mm4

Ix¿ = 64.0 in4y = 2.00 in.
Iy = 2.51(106) mm4
Ix = 52.7(106) mm4

Ix = 2.17(10-3) m4
Ix¿ = 722(10)6 mm4
y = 170 mm
  = 74 in4

Iy = C 1
12(2)(63) D + 2 C 1

12(3)(13) + 3(1)(2.5)2 D
Iy¿ = 122(106) mm4
Ix¿ = 34.4(106) mm4
y = 22.5 mm
  = 10.3(109) mm4

+ C - p4(75)4 + (-p(75)2(450)2 D
+ C 1

12(200)(300)3 + 200(300)(450)2Chapter 10
10–1.

10–2.

10–3.

10–5.

10–6.

10–7.
10–9.

10–10.
10–11.
10–13.

10–14.
10–15.

10–17.

10–18.

10–19.

10–21.

10–22.
10–23.
10–25.

10–26.

10–27.

10–29.

10–30.

10–31.

10–33.

+ 1
2(200)(300)(200)2 D

(Iy)triangle = C 1
36(200)(3003)

Iy = 45.5(106) mm4

Ix = 76.6(106) mm4
=  54.7 in4

Iy = 1
12(2)(6)3 + 2 C 1

12(4)(1)3 + 1(4)(1.5)2 D
Ix¿ = 57.9 in4
y = 2.20 in.

J0 =
pr0

4

4

Iy =
pr0

4

8

dA = (rdu) dr
Iy = 30.9 in4
Ix = 9.05 in4

Iy = 307 in4
dA = x1/3 dx

Iy = 2
15hb3

Ix = 2
7bh

3

Iy = 1
12hb3

dA = Ah - h
bx B dx

Iy = 1.07 in4
Ix = 19.5 in4

Iy = 0.333 in4
dA = (2 - 2x3) dx

Iy = 10.7 in4

Ix = 307 in4

JO = 0.491 m4

Iy = 0.2857 m4
dA = 2x4 dx
Ix = 0.2051 m4

dA = C1 - Ay2 B1/4 D dy

Ix = 0.205 m4

Iy = 4.57 m4
Ix = 2.13 m4

dA = A2 - y2

2 B dy

Ix = 0.0606 m4

Iy = 2.67 m4
Ix = 0.533 m4
dA = [2 - (4y)1/3] dy
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10–66.

10–67.

10–69.

10–70.

10–71.
10–73. Consider three segments.

10–74.
10–75.

10–77. Consider three segments.

10–78.

10–79.

10–81.

10–82.

10–83.

10–85.

10–86.

Imax = 31.7 in4
y = 1.68 in.
x = 1.68 in.
Iuv = 111 in4
Iv = 238 in4
Iu = 109 in4
R = 128.72 in4

Iavg = 173.72 in4
y = 8.25 in.
Iuv = -126(106) mm4
Iv = 258(106) mm4
Iu = 112(106) mm4
x = 48.2 mm
Iuv = -3.08(106) mm4
Iv = 47.0(106) mm4
Iu = 43.4(106) mm4
y = 82.5 mm
Imin = 5.03(106) mm4, (up)2 = -77.7°

Imax = 113(106) mm4, (up)1 = 12.3°
Ixy = -22.4(106) mm4

Iy = 9.907(106) mm4
Ix = 107.83(106) mm4
Iuv = 111 in4
Iv = 238 in4
Iu = 109 in4
y = 8.25 in.
Iuv = 17.5 in4
Iv = 23.6 in4
Iu = 43.9 in4

Ixy = -13.05(106) mm4

Iuv = -126(106) mm4
Iv = 258(106) mm4
Iu = 112(106) mm4
x = 48.2 mm
Ixy = -110 in4

Ixy = 17.1(106) mm4

Ixy = 36.0 in4

Ixy = 35.7 in4

Ixy = 10.7 in4
dA = x1/2dx, x

' = x, y
' = y

2

Ixy = 3
16b2h2

Ixy = 0.333 m4

d

b

10–87.

d

b

10–89.

10–90.

10–91.
10–93.

10–94.

10–95.

10–97.

10–98.
10–99.

10–101.

10–102.
10–103.

10–105.

10–106.
10–107.
10–109.

10–110.
10–111.
10–113. Consider four triangles and a rectangle.

10–114.
10–115.
10–117.

10–118. Ix = 0.610 ft4
Iy = 2.13 ft4
dA = 1

4(4 - x2) dx
y = 0.875 in., Ix¿ = 2.27 in4
Ix = 1

12a4

Iy = 0.187d4

IO = 0.113 kg # m2
IO = 0.276 kg # m2
IA = 222 slug # ft2
IO = 84.94 slug # ft2
Ix = 3.25 g # m2
Iz = 2.25 kg # m2
IG = 4.45 kg # m2

y
' = 1(3) + 2.25(5)

3 + 5 = 1.78 m

Iy = 0.144 kg # m2
Iz = 0.150 kg # m2
IO = 53.2 kg # m2
L = 6.39 m

0.5 = 1.5(6) + 0.65[1.3(2)] + 0[L(2)]
6 + 1.3(2) + L(2)

Iy = 1.71(103) kg # m2
Iz = 63.2 slug # ft2
Iz = 87.7(103) kg # m2
dIz = rp

8192z8 dz

Ix = 93
10 mb2

Iy = 2
5 mb2

kx = 57.7 mm
dIx = rp

2  (2500 x2) dx
dm = rp(50x) dx
Iz = 7

18 ml 2

Ix = 3
10 mr 2

Iz = 3
10 mr0

 2

dIz = 1
2 rpar0 -

r0

h
 zb4

dz

dm = rpar0 -
r0

h
zb2

 dz

(up)2 = 77.7°
(up)1 = 12.3°
Imin = 5.03(106) mm4
Imax = 113(106) mm4

(u)p)2 = 45°

(up)1 = 45°
Imin = 8.07 in4
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11–27.

11–29.

11–30.
11–31.

11–33.

11–34.
11–35.

11–37.

11–38.

11–39.

11–41.
Thus, the cylinder is in unstable equilibrium at

11–42.
11–43.
11–45.

d = h
3

V = W(h - 3d)
4  cos u

y = 1
4(h + d)

h = 23 r
h = 0
u = 0° (Q.E.D.)

V = mg(r + a cos u)

d2V

du2 = 17.0 7 0 stable

u = 20.2°

d2V

du2 = -72 6 0 unstable

u = 0°

d2V

du2 = 135 7 0 stable

u = 64.8°
mE = 7.10 kg
+  202.5 cos2 u - 405 cos u - 9.81 mEb + 202.5
V = -4.415 mE sin u

d2V

du2 = -1764 6 0 unstable

u = 17.1°

d2V

du2 = 1777 7 0 stable

u = 70.9°
x = 1.23 m

u = 36.1°
+  24.525a + 4.905b
V = 6.25 cos2 u + 7.3575 sin u

d2V

dh2 = 70 7 0 stable

h = 8.71 in.
WD = 275 lb
u = 59.0°
V = 5886 cos u + 9810 sin u + 39 240 

d2V

du2 = -25.6 6 0 unstable

u = 36.9°

d2V

du2 = 16 7 0 stable

u = 90°

d2V

dx2 = -12.2 6 0 unstable

x = -0.424 ft10–119.

10–121.

Chapter 11
11–1.

11–2.
11–3.
11–5.

11–6.
11–7.
11–9.

11–10.
11–11.
11–13.

11–14.

11–15.
11–17.

11–18.
11–19.
11–21.

11–22.
11–23.
11–25.

11–26.
d2V

dx2 = 12.2 7 0 stable

x = 0.590 ft
F = 259 lb
52 = y2

C + 32 - 2(yC) (3) cos (90° - u)
x = 16 in.
WG = 2.5 lb
k = 10.8 lb/ft
Fsp = 4.961 lb
xA = 1 sin u
yA = 1 cos u
yG = 0.5 cos u
u = 38.8°
F = 200 N
k = 166 N/m
xC = 0.25 cos u
yGt

= 0.25 sin u + a
yGb

= 0.25 sin u + b

u = cos-1 A a
2L B 13

ml = m A sa B
u = 90°
u = 13.9°
yA = 3 sin u
yC = 1 sin u
P = 2k tan u (2l cos u - l0)
F = 60 N
FE = 177 N
dyA = 0.5 du
yD = 2(0.2 cos u)
u = 24.9°
FS = 15 lb
Fsp = 10.0 lb
yC = 3 sin u
xB = 6 cos u
u = 41.2°
u = 0° and u = 73.1°
FAD = 3.92 kN
yJ = 2(2.4 sin u) + b
yD = 2.4 sin u

Ixy = 0.1875 m4

dIxy = 1
2 y5/3 dy

dA = y1/3 dy
Ix¿ = 146(106) mm4
Ix = 914(106) mm4
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11–46.

11–47.

11–49.

11–50.
11–51.

11–53.

11–54. P = Ab - a
2c B mg

d2V

du2 = 125.7 7 0 stable

u = 37.8°
V = 50 sin2 u - 100 sin u - 50 cos u + 50

u = 90° and u = sin-1 A W
2kL B

F = 512 N
d = 0.586 h

V = W C6h2 - 12hd + 3d2

4(3h - d) D  cos u

y = 6h2 - d2

4(3h - d)

h = 1.35 in.

u = 0°,
d2V

du2 = -12.6 6 0 unstable
11–55.

11–57.

11–58. h = 2kl 2

W

d2V

du2 = -45.5 6 0 unstable

u = 72.5°

d2V

du2 = 35 7 0 stable

u = 0°
V = 25 sin2 u + 15 cos u

d2V

du2 = -1775 6 0 unstable

u = 9.47°

d2V

du2 = 1524 7 0 stable

u = 90°



Index
A
Angles, 44–47, 70, 80–81, 389–390, 414–415

Cartesian coordinate direction, 44–47,
80–81

formed between two vectors, 70, 81
friction and, 389–390, 414–415
kinetic friction ( ), 390
screw thread, 414–415
static friction ( ), 389

Applied force (P), 388
Area, 450, 484–487, 511–517,

530–533, 558
axis of symmetry, 530–531
centroid (C) of an, 450
centroidal axis for, 512–513
composite shapes, 485, 522–524, 558
integration and, 450, 512 
moments of inertia (I), 512–511,

522–524, 558
parallel–axis theorem for, 512–513,

522, 531, 558
planes, rotation of and, 484–487
procedures for analysis of, 514, 522
product of inertia for, 530–533, 558
radius of gyration for, 513
surface of revolution, 484
volume of revolution, 485

Axial loads, frictional forces and, 429–430
Axis of symmetry, 530–531
Axis systems, 139–143, 183–187, 194,

511–517, 530–536, 550, 558
centroidal axis of, 512–513
distributed loads about, 511–513
inclined, 534–536
mass moments of inertia, 550
moments about, 139–143, 194
moments of inertia (I), 511–517,

534–536, 558
parallel–axis theorem, 512–513
polar moment of inertia, 512
principle moments of inertia, 535
procedure for analysis of, 514
product of inertia and, 530–533, 558
radius of gyration, 513, 550
resultant forces of, 139–143,

183–187, 194
single, 183–187
uniform distributed loads and, 183

B
Ball-and-socket joints, 237–238, 240
Base units, 7
Beams, 329–364, 380

bending moments, 330, 280
cantilevered, 345

us

uk

centroid, 330
couple moments of, 356
distributed loads, 354–356
force equilibrium of, 355
internal forces of, 329–364, 380–382
method of sections for, 329–336
moments and, 355–356, 382
normal force and, 330, 380
procedures for analysis of, 331, 346
resultant forces of, 330, 380
shear and moment diagrams,

345–348, 381
shear force and, 330, 354–356,

380, 382
sign convention for, 331
simply supported, 345
torsional (twisting) moment, 330, 380

Bearings, 237–240, 429–433, 443
axial loads and, 429–430
collar, 429–430, 443
force reactions on, 237–240
frictional forces on, 429–433, 443
journal, 443
lateral loads and, 432
pivot, 429–430
rigid-body supports, 237–240
shaft rotation and, 429–433

Belts (flat), frictional forces on, 421–423, 442
Bending moments, 330, 280
Bending-moment diagram, 345
Bridge loads, trusses, 264

C
Cables, 86–88, 365–380, 382

concentrated loads, 365–367
distributed loads of, 368–369
equilibrium and, 86–88
internal forces of, 365–380, 382
weight of as force, 372–375,

Cantilevered beams, 345
Cartesian vectors, 33, 43–55, 59–62, 69,

80–81, 122–123, 125
addition of, 46
coordinate direction angle, 44–47,

80–81
coplanar forces, notation for, 33
cross product from, 122–123
dot (scalar) product, 69, 81
line of action, 59–62, 81
magnitude of, 44, 47, 80
moment of a force from, 125
rectangular components, 43, 80
representation, 44
resultant force, 47, 81
right-hand rule for, 43
unit vectors, 43, 80

Center of gravity, 7, 204, 446–509
center of mass and, 449, 505
centroid, and, 446–509
composite bodies, location in,

470–471, 506
free-body diagrams and, 204
location of, 447–448, 505
Newton’s law for, 7
procedure for analysis of, 452, 471
weight (W) and, 204

Center of mass, 449, 460, 474, 505
Centroid, 184, 195, 330, 446–509

area, of a, 450, 484
beam cross-section location, 330
center of gravity and, 446–509
composite bodies, location in, 470–473,

485, 506
distributed loads and, 493, 507
fluid pressure and, 494–500, 507
line, of a, 450–451
location of, 449–459, 505
method of sections and, 330
procedure for analysis of, 452, 471
resultant force, location of, 184,

195, 330
resultant forces and, 493
theorems of Pappus and Guldinus,

484–487, 506
volume, of a, 449, 482

Centroidal axis, 512–513
Coefficient of kinetic friction ( ), 390, 441
Coefficient of rolling resistance (a),

434–435, 443
Coefficient of static friction ( ), 389, 441
Collar bearings, frictional forces on,

429–430, 443
Collinear vectors, 19, 79
Communitative law, 69
Composite bodies, 470–474, 485, 522–524,

550, 558
area of revolution of, 485
center of gravity of, 470–474
mass moment of inertia, 550
moments of inertia (I), 522–524,

550, 558
procedure of analysis for, 471, 522
volume of revolution of, 485

Compressive force members, trusses,
265–267, 280, 323

Concentrated force, 5
Concentrated loads, cables subjected to,

365–367
Concurrent force systems, 170, 264

resultant force of, 170
truss joint connections, 264

ms

mk
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Disks, 429–430, 443, 545–546, 548, 559
frictional forces on, 429–430, 443
mass moments of inertia of, 545–546,

548, 559
Displacement of virtual work, 564–566,

582, 594
Distributed loads, 183–187, 195, 354–356,

368–369, 493, 507, 511–512
beams subjected to, 354–356
cables subjected to, 368–369
distributed loads and, 493, 507
flat surfaces, 493, 507
force equilibrium, 355
internal forces and, 354–356, 368–369
line of action , 493, 507
location of, 184, 493
magnitude, 183, 493
moments of inertia and, 511–512
reduction of, 183–187, 195
resultant forces, 184, 493
shear force and, 354–355
single-axis, 183–187
uniform, 183, 354

Distributive law, 69
Dot (scalar) product, 69–73, 81
Dry friction, 387–433, 441–443

angles of, 389–390, 414–415
applied force and, 388
bearings, forces on, 429–433, 443
characteristics of, 387–392, 441
coefficients of ( ), 389–390, 441
direction of force and, 394
equilibrium and, 388, 391, 394
impending motion and, 389, 392–393,

414–415
kinetic force, 390–391, 441
motion and, 390–391
problems involving, 392–399
procedure for analysis of, 394
screws, forces on, 414–416, 442
slipping, and, 389–393
static force, 389, 391, 441
theory of, 388

Dynamics, 3

E
Elastic potential energy, 580
Equilibrium, 84–115, 198–261, 388, 391, 394,

565–566, 582–588, 595
conditions for, 85, 199–200
coplanar (two-dimensional) systems,

89–93, 113, 200–236, 258–259
criterion for, 582
direction of force and, 394

m

equations of, 89, 103, 214–223, 242,
565–566

free-body diagrams, 86–88, 113,
201–210, 237–241, 258–259

friction and, 388, 391, 394
frictionless systems and, 582
neutral, 583
one-degree of freedom systems,

584–588
particles, 84–115
potential-energy and, 582–588, 595
procedures for analysis of, 90, 103, 215,

246, 585
rigid-bodies, 198–261, 582
stable, 583
three-dimensional systems, 103–107,

113, 237–257, 259
three-force coplanar members, 224
tipping effect and, 388
two-force coplanar members, 224
unstable, 583
virtual work and, 565–566,

582–588, 595
Equivalent, force and couple systems,

160–165, 170–177, 195
concurrent force, 170
coplanar force, 170–171
moments, 161
parallel force, 171
perpendicular lines of action, 170–177
procedure for analysis of, 162, 172
reduction of forces, 160–165
resultants of, 160–165, 170–177, 195
wrench (screw), force reduction to,

173, 195

F
Fixed supports, 201–203
Flat plates, fluid pressure and, 495, 497
Floor beams, trusses, 264
Fluid mechanics, 3
Fluid pressure, 494–500, 507

centroid (C) and, 494–500, 507
curved plate of constant width, 496
flat plate of constant width, 495
flat plate of variable width, 497
Pascal’s law, 494

Foot-pound, unit of, 564
Force, 4, 5, 8, 16–83, 84–115, 116–197,

198–261, 328–385, 564, 579–581,
594–595.

See also Friction; Weight
addition of, 20–42
beams subjected to, 329–364, 380

Conservative forces, 579–581, 595
potential energy and, 580–581, 595
spring force, 579–580
virtual work and, 579–581, 595
weight, 579–580

Constraints, 243–251, 259
improper, 244–245
redundant, 243
statical determinacy and, 243–251, 259

Continuous cable, 86
Coordinate direction angles, 44–47, 80–81
Coplanar forces, 32–42, 89–93, 113, 170–171,

200–236, 258–259, 263–264, 266
Cartesian vector notation for, 33
center of gravity (G), 204
equations of equilibrium, 89, 214–223
equilibrium of, 89–93, 113, 200–236,

258–259
free-body diagrams, 86–88, 113,

201–210, 258–259
idealized models, 204–205
internal forces, 204
moments of force and couple systems,

170–171
particle systems, 89–93, 113
procedures for analysis of, 87, 90,

206, 215
resultant forces, 33–34, 170–171
rigid bodies, 200–236, 258–259
scalar notation for, 32
support reactions, 201–203
three-force members, 224
truss analysis, 263–264, 266
two-force members, 224
vector addition of, 32–42
weight (W), 204

Coulomb friction, see Dry friction
Couple moments, 148–153, 194, 356, 564

beam segments, 356
equivalent, 149
parallel forces of, 148–153, 194
resultant, 149
rotation, 564
scalar formulation, 148
translation, 564
vector formulation, 148
virtual work of, 564

Cross product, 121–123
Curved plates, fluid pressure and, 496
Cylinders, rolling resistance of, 434–435, 443

D
Deformable-body mechanics, 3
Dimensional homogeneity, 10–11
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cables subjected to, 368–369, 382
components of, 20–21
concentrated, 5
concurrent systems, 170
conservative, 579–581, 595
coplanar systems, 32–42, 89–93, 113,

170–171, 200–236, 258–259
equilibrium and, 84–115, 198–261, 355
equivalent (force and couple) systems,

160–165, 170–177, 195
free-body diagrams (FBD), 86–88, 113,

201–210
internal, 328–385
line of action, 59–62, 81
mechanical concept of, 4
moments of, 116–197
multiple, 21
normal, 330, 380
parallel systems, 171
particle equilibrium and, 84–115
potential energy and, 580–581, 595
procedures for analysis of, 22, 87, 90, 103
reactive, 160
resultant, 20–26, 85, 116–197, 330, 380
rigid-body equilibrium and, 84–115,

198–261
shear, 330, 354–356, 380, 382
spring, 579–580
three-dimensional systems, 103–107,

113, 237–257, 259
units of, 8
vectors and, 16–83
virtual work of a, 564, 579, 594
wrench systems, 173, 195

Frames, 294–322, 325
free-body diagrams for, 294–299
multiforce members, design of,

294–309
procedure for analysis of, 301
structural analysis of, 294–322, 325

Free-body diagrams (FBD), 86–88, 113,
201–210, 237–241, 258–259, 294–299

cables and pulleys, 86–88
center of gravity, 204
coplanar (two-dimensional),

201–210, 258
idealized models, 204–205
internal forces, 204
particle equilibrium, 86–88, 113
procedure for analysis of, 87, 206
rigid-body equilibrium, 201–210,

237–241, 258–259
springs, 86–88
structural analysis and, 294–299
support reactions, 201–203, 237–240

three-dimensional, 237–241, 259
weight, 204

Free vector, 160
Friction, 386–445, 580

axial loads and, 429–430
belts (flat), forces on, 421–423, 442
collar bearings, forces on, 429–430, 443
disks, forces on, 429–430, 443
dry, 387–433, 441
equilibrium and, 388, 391, 394
force of, 387
journal bearings, forces on,

432–433, 443
kinetic force, 390–391, 441
lateral loads and, 432
nonconservative force, as a, 580
pivot bearings, forces on, 429–430
procedure for analysis of, 394
rolling resistance and, 434–435, 443
screws, forces on, 414–416, 442
shaft rotation and, 429–433, 443
static force, 389, 391, 441
virtual work and, 580
wedges and, 412–413, 442

Frictionless systems, 567–582

G
Gravitational potential energy, 580
Gravity, see Center of gravity
Gusset plate, 264

H
Hinge supports, 237, 239

I
Idealized models, 204–205
Inclined axis, moments of inertia about,

534–536
Independent coordinates for,

567–568, 594
Inertia, see Moments of inertia
Integrals, 450, 511–512
Internal force, 204, 328–385

beams subjected to, 329–364, 380–382
bending moments, 330, 280
cables subjected to, 365–380, 382
couple moments, 356
distributed loads, 354–356, 368–369
force equilibrium, 355
free-body diagrams and, 204
method of sections for, 329–336
moments and, 330, 355–356, 380, 382
normal force and, 330, 380
procedures for analysis of, 331, 346
resultant forces, 330, 380

shear and moment diagrams,
345–348, 381

shear force and, 330, 354–356, 380, 382
sign convention for, 331
torsional (twisting) moment, 330, 380

International System (SI) of units, 8–10
prefixes, 9
rules for use, 10
units of measurement, as, 8

J
Joint connections, loads applied to, 264–266
Joule, 564
Journal bearings, frictional forces on,

432–433, 443

K
Kinetic friction force, 390–391, 441

L
Lateral loads, frictional forces and, 432
Length, 4, 8
Line of action, 59–62, 81, 170–172, 493, 507

distributed loads, 493, 507
force vectors and, 59–62, 81
perpendicular, 170–172
resultant forces, 493, 507

Linear elastic springs, 86
Lines, centroid of, 450–451
Loads, see Concentrated loads;

Distributed loads

M
Machines, 294–322, 325

free-body diagrams for, 294–299
multiforce members, design of,

294–309
procedure for analysis of, 301
structural analysis of, 294–322, 325

Magnitude, 44, 47, 80, 118, 122, 124, 183, 493
Cartesian vectors, 44, 47, 80
cross product, 121
distributed loads, 183, 493
moment of a force, 118, 124
resultant forces, 493

Mass, 4, 8, 449
center of, 449
mechanical concept of, 4
units of, 8

Mass moments of inertia, 545–552, 559
axis systems, 550
composite bodies, 550–552
disk elements, 545–546, 584, 559
radius of gyration for, 550
shell elements, 545–547, 559
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Mohr’s circle for, 537–539
parallel-axis theorem for, 512–513, 522,

531, 549, 558
polar, 512
principle, 535–536, 559
procedures for analysis of, 514,

522, 538
product of inertia and, 530–533, 558
radius of gyration for, 513, 550
shell elements, 545–547, 559

Motion, 6, 389–393, 414–415, 429–433, 441,
449, 564–566, 582, 594

displacement of virtual work,
564–566, 582, 594

downward, 415, 565
dry friction and, 389–393, 414–415, 441
dynamic response, 449
impending, 389, 392–393, 414–415
Newton’s laws of, 6
rotation of a couple moment, 564
screws and, 414–415
shaft rotation, 429–433
slipping, 389–393, 441
tipping, 388, 393, 441
translation of a couple moment, 564
upward, 414
virtual, 565

Multiplicative scalar law, 69

N
Neutral equilibrium, 583
Newton’s laws, 6–7

gravitational attraction, 7
motion, 6

Normal force, 330, 380
Numerical calculations, 10–11, 18–83

dimensional homogeneity, 10–11
rounding off numbers, 11
significant figures, 11
vector operations for, 18–83

O
One (single) degree-of-freedom systems,

584–588

P
Pappus and Guldinus, theorems of,

484–487, 506
Parallel-axis theorem, 512–513, 522, 531,

549, 558
centroidal axis for, 512–513
composite shapes, 522
moments of inertia, 512–513, 522, 588
products of inertia, 531, 558

Parallel systems, resultant force of, 171

Parallelogram law, 18–19, 79
Particles, 5, 84–115

coplanar force systems, 89–93, 113
equations of equilibrium, 89, 103
equilibrium of, 84–197
force conditions, 84–115
free-body diagrams (FBD), 86–88, 113
idealization of, 5
procedures for analysis of, 87, 90, 103
resultant force, 85
three-dimensional force systems,

103–107, 113
Pascal’s law, 494
Pin supports, 201–203, 239–240, 264

coplanar force systems, 201–203
three-dimensional force systems,

239–240
truss load connections, 264

Pivot bearings, frictional forces on, 429–430
Planar truss, 263–289
Plates, 494–500, 507

centroid of, 494–500, 507
curved of constant width, 496
flat of constant width, 495
flat of variable width, 497
fluid pressure and, 494–500, 507

Polar moments of inertia, 512
Position coordinate, 568, 581–582, 594–595
Position vectors, 56–58, 81

right-hand rule for, 56
x, y, z coordinates, 56–57, 81

Potential energy, 580–588, 595
conservative forces and, 578–581, 595
elastic, 580
equilibrium stability of , 583–588, 595
frictionless systems, 582
function of, 581
gravitational, 580
position coordinate (q), 581–582, 595
procedure for analysis of, 585
single degree-of-freedom systems,

581, 584
stability of systems using, 583–588, 595
virtual work and, 580–582, 595

Pressure, see Fluid pressure
Principle moments of inertia, 535–536, 559
Product of inertia, 530–533, 558

area minimum and maximum
moments, 530–533, 558

axis of symmetry, 530–531
parallel-axis theorem for, 531

Projection of components, 70, 81
Pulleys, equilibrium and, 86–88
Purlins, 263

Mechanics, 3–7
concentrated force, 5
deformable-body, 3
fluid, 3
Newton’s laws, 6–7
particles, 5
quantities of, 4
rigid-body, 3, 5
weight, 7

Method of joints, 266–279, 323
Method of sections, 280–289, 324,

329–336, 380
beams, 329–336, 380
centroid for, 330
compressive force members, 280
internal forces and, 329–336, 380
procedures for analysis of, 282, 331
tensile force members, 280–281
trusses, 280–289, 324

Mohr’s circle, 537–539
Moments, 116–197, 330, 355–356, 380, 382

axis, about an, 139–143, 194
beams, 330, 355–356, 380, 382
bending, 330, 380
Cartesian vector formulation, 125
changes in ( ), 355–356
couple, 148–153, 194, 356
direction of, 118, 124
equivalent (force and couple) systems,

160–165, 170–177, 195
force system resultants and, 116–197
internal forces and, 330, 355–356,

380, 382
magnitude of, 118, 122, 124
principle of, 128–130
resultant (MR), 118, 125, 149,

170–171, 184
scalar formulation, 117–120, 139,

148, 193
shear and, relationship of, 355–356
torsional (twisting), 330, 380
transmissibility, principle of, 124
Varignon’s theorem, 128–130
vector formulation, 124–127, 140,

148, 193
Moments of inertia, 510–561

area, 512–517, 522–524, 558
axis systems, 511–517, 530–536,

550, 558
composite shapes, 522–524, 550, 558
disk elements, 545–546, 548, 559
distributed loads and, 511–512
inclined axis, area about, 534–536
integrals, 511–512
mass, 545–552, 559

¢M
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R
Radius of gyration, 513, 550
Reactive force, 160
Rectangular components, 43, 80
Resultant force, 20–26, 33–34, 47, 80–81, 85,

116–197, 330, 380, 493, 507
axis, moments about an, 139–143, 194
Cartesian vectors and, 47, 80–80
centroid for location of, 184,

195, 330
components, 20–26
concurrent systems, 170
coplanar systems, 33–34, 170–171
couple moments, 148–153, 194
cross product, 121–123
distributed loads and, 183–187, 195,

493, 507
equilibrium of a particle and, 85
equivalent (force and couple) systems,

160–165, 170–177, 195
internal forces, 330, 380
line of action, 493, 507
magnitude of, 493
moments, 118, 125, 149,

170–171, 184
parallel systems, 171
procedures for analysis of, 162, 172
scalar formulation, 117–120, 139,

148, 193
system moments of, 116–197
transmissibility, principle of, 124, 160
vector formulation, 124–127, 140,

148, 193
wrench (screw) systems, 173, 195

Right-hand rule, 43, 56, 80, 121–122
Cartesian vector coordinates, 43, 56
cross-product direction, 121–122
moment direction, 118

Rigid bodies, 3, 5, 198–261, 567–572, 594
center of gravity, 204
connected, 567–572
constraints, 243–251, 259
coplanar force systems, 200–236,

258–259
equations of equilibrium, 89, 103,

214–223, 242
equilibrium of, 198–261, 565–566,

582–588, 595
free-body diagrams (FBD), 201–210,

237–241, 258–259
idealization of, 5
idealized models, 204–205
independent coordinates,

567–568, 594

internal forces, 204
mechanics, 3
position coordinates, 568, 594
procedures for analysis of, 206, 215,

246, 568
statically indeterminate, 243, 246, 259
support reactions, 201–203, 237–240
three-dimensional systems,

237–257, 259
three-force coplanar members, 224
two-force coplanar members, 224
virtual work for, 567–572, 594
weight, 204

Roller supports, 201–202
Rolling resistance, 434–435, 443
Roof loads, trusses, 263
Rotating shafts and friction, 429–433, 443
Rotation of a couple moment, 564
Rounding off numbers, 11

S
Scalar analysis, 117–120, 139, 148, 193, 242

axis, moments about an, 139
couple moments, 148
equations of equilibrium, 242
moments of a force, 117–120, 193

Scalar notation, 32
Scalars and vectors, 17–18, 79
Screws, 414–416, 442

downward impending motion, 415
friction forces on, 414–416, 442
self-locking, 415
thread angle, 414–415
upward impending motion, 414

Shaft rotation, 429–433
Shear and moment diagrams, 345–348, 381
Shear force, 330, 354–356, 380, 382

beams subjected to, 330, 354–355,
380, 382

changes in, 355–356
distributed loads and, 354–355
moments and, 355

Shell elements, mass moments of inertia of,
545–547, 559

Significant figures, 11
Simple truss, 265
Simply supported beams, 345
Single-axis distributed loads, 183–187
Sliding vector, 160
Slipping, 389–393, 441

dry friction and, 389–393, 441
impending motion of, 389, 392–393
motion of, 390–391

Slug, 8

Space truss, 290–293
Specific weight, 470
Spring force, 579–580

conservative force, as a, 579
elastic potential energy, 580

Springs, 86–88
constant, 86
equilibrium and, 86–88

Stability of a system, see Equilibrium
Stable equilibrium, 583
Static friction force, 389, 391, 441
Statically indeterminate bodies, 243,

246, 259
Statics, 2–15

development of, 4
mechanics and, 3–7
numerical calculations, 10–11
procedure for analysis, 12
quantities of, 4
units of measurement, 7–10

Stiffness, 86
Stringers, 264
Structural analysis, 262–327

frames, 294–322, 325
free-body diagrams for, 294–299
machines, 294–322, 325
method of joints, 266–279, 323
method of sections, 280–289, 324
procedures for, 267, 282, 290, 301
trusses, 263–293, 323–325
zero-force members, 272–274

Structural members, see Beams
Support reactions, 201–203, 237–240

ball-and-socket joint, 237–238, 240
bearing, 237–240
coplanar rigid-body systems, 201–203
fixed, 201–203
hinge, 237, 239
pin, 201–203, 237, 239–240
roller, 201–202
three-dimensional rigid-body 

systems, 237–240
Surface area of revolution, 484

T
Tensile force members, trusses, 265–267,

280–281, 323
Tension and belt friction, 421–422
Tetrahedral truss, 290
Three-dimensional force systems, 103–107,

113, 237–257, 259
constraints, 243–251, 259
equations of equilibrium, 103, 242
free-body diagrams (FBD),

237–241, 259
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V
Varignon’s theorem, 128–130
Vector analysis, 124–127, 140, 148, 193, 242

axis, moments about an, 140
Cartesian, 125
couple moments, 148
equations of equilibrium, 242
magnitude from, 124
moments of a force, 124–127, 193
resultant moment (MR) from, 125
right-hand rule for, 124
transmissibility, principle of, 124

Vectors, 16–83, 121–123, 160
addition, 18–22, 32–37, 46
angles formed between, 70, 81
Cartesian, 43–55, 80–81, 122–123
collinear, 19, 79
coplanar forces, 32–42
cross product, 121–123
division, 18 
dot (scalar) product, 69–73, 81
forces and, 20–42, 59–62
free, 160
line of action, 59–62, 81
multiplication, 18 
notation for, 32–33
parallelogram law, 18–19, 79
position, 56–58, 81
procedure for analysis of, 22
projection of components, 70, 81
rectangular components, 43, 80
resultant force, 20–26, 33–34
right-hand rule for, 43, 56, 121–122
scalars and, 17–18, 79
sliding, 160
subtraction, 19

Virtual work, 562–597
conservative forces and, 579–581
couple moment, of a, 564
displacement ( ) and, 564–566,

582, 594
equilibrium and, 565–566,

582–588, 595

d

force, of a, 564
friction and, 580
frictionless systems, 567–582
independent coordinates for,

567–568, 594
joules (J) as unit of, 564
one degree-of-freedom system, 567,

581, 584, 594
position coordinate for, 568,

581–582, 595
potential energy and, 580–582, 595
principle of, 563–578, 594
procedures for analysis of, 568, 585
rigid-body systems and, 567–572
spring force and, 579
stability of a system, 583–588, 595
weight and, 579

Volume, 449, 485
centroid of a, 449
revolution of a plane area, 485

W
Wedges, friction forces and, 412–413, 442
Weight, 7–8, 204, 372–375, 470, 579–580

cables subjected to own, 372–375
center of gravity and, 204
composite bodies, 470
conservative force, as a, 579
free-body diagrams and, 204
gravitational force of, 7
gravitational potential energy, 580
units of measurement, 8
virtual work and, 579–580

Work, see Virtual work
Wrench (screw) systems, force reduction

to, 173, 195

X
x, y, z coordinates, 56–57, 81

Z
Zero-force truss members, 272–274

particle equilibrium, 103–107, 113
procedure for analysis of, 90, 246
rigid-body equilibrium, 237–257, 259
statically indeterminate, 243, 246, 259

Three-force coplanar members, 224
Time, 4, 8
Tipping effect, 388, 393, 441
Torque, 117
Torsional (twisting) moment, 330, 380
Translation of a couple moment, 564
Transmissibility, principle of, 124, 160
Triangular truss, 265
Trusses, 263–293, 323–325

compressive force members, 265–267,
280, 323

coplanar loads on, 263–264, 266
design assumptions for, 264–264, 290
joint connections, 264–265
method of joints, 266–279, 323
method of sections, 280–289, 324
planar, 263–289
procedures for analysis of, 267,

282, 290
simple, 265
space, 290–293
tensile force members, 265–267,

280–281, 323
zero-force members, 272–274

Two-dimensional systems, see
Coplanar force

Two-force coplanar members, 224

U
U.S. Customary (FPS) of units, 8
Uniform distribute loads, 183, 354
Unit vectors, 43, 59, 80
Units of measurement, 7–10

conversion of, 9
International System (SI) of units,

8–10
U.S. Customary (FPS) of units, 8

Unstable equilibrium, 583
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Although each of these planes is rather large, from a distance their motion can be
analysed as if each plane were a particle.



Kinematics of a Particle

CHAPTER OBJECTIVES

• To introduce the concepts of position, displacement, velocity, and
acceleration.

• To study particle motion along a straight line and represent this
motion graphically.

• To investigate particle motion along a curved path using different
coordinate systems.

• To present an analysis of dependent motion of two particles.

• To examine the principles of relative motion of two particles using
translating axes.

12

12.1 Introduction

Mechanics is a branch of the physical sciences that is concerned with the
state of rest or motion of bodies subjected to the action of forces.
Engineering mechanics is divided into two areas of study, namely, statics
and dynamics. Statics is concerned with the equilibrium of a body that is
either at rest or moves with constant velocity. Here we will consider
dynamics, which deals with the accelerated motion of a body.The subject
of dynamics will be presented in two parts: kinematics, which treats only
the geometric aspects of the motion, and kinetics, which is the analysis of
the forces causing the motion. To develop these principles, the dynamics
of a particle will be discussed first, followed by topics in rigid-body
dynamics in two and then three dimensions.
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Historically, the principles of dynamics developed when it was possible

to make an accurate measurement of time. Galileo Galilei (1564–1642)
was one of the first major contributors to this field. His work consisted of
experiments using pendulums and falling bodies. The most significant
contributions in dynamics, however, were made by Isaac Newton
(1642–1727), who is noted for his formulation of the three fundamental
laws of motion and the law of universal gravitational attraction. Shortly
after these laws were postulated, important techniques for their
application were developed by Euler, D’Alembert, Lagrange, and others.

There are many problems in engineering whose solutions require
application of the principles of dynamics. Typically the structural design
of any vehicle, such as an automobile or airplane, requires consideration
of the motion to which it is subjected. This is also true for many
mechanical devices, such as motors, pumps, movable tools, industrial
manipulators, and machinery. Furthermore, predictions of the motions of
artificial satellites, projectiles, and spacecraft are based on the theory of
dynamics. With further advances in technology, there will be an even
greater need for knowing how to apply the principles of this subject.

Problem Solving. Dynamics is considered to be more involved
than statics since both the forces applied to a body and its motion must
be taken into account. Also, many applications require using calculus,
rather than just algebra and trigonometry. In any case, the most effective
way of learning the principles of dynamics is to solve problems. To be
successful at this, it is necessary to present the work in a logical and
orderly manner as suggested by the following sequence of steps:

1. Read the problem carefully and try to correlate the actual physical
situation with the theory you have studied.

2. Draw any necessary diagrams and tabulate the problem data.

3. Establish a coordinate system and apply the relevant principles,
generally in mathematical form.

4. Solve the necessary equations algebraically as far as practical; then,
use a consistent set of units and complete the solution numerically.
Report the answer with no more significant figures than the
accuracy of the given data.

5. Study the answer using technical judgment and common sense to
determine whether or not it seems reasonable.

6. Once the solution has been completed, review the problem. Try to
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible.
Being neat generally stimulates clear and orderly thinking, and vice versa.
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1212.2 Rectilinear Kinematics: Continuous
Motion

We will begin our study of dynamics by discussing the kinematics of a
particle that moves along a rectilinear or straight line path. Recall that a
particle has a mass but negligible size and shape.Therefore we must limit
application to those objects that have dimensions that are of no
consequence in the analysis of the motion. In most problems, we will be
interested in bodies of finite size, such as rockets, projectiles, or vehicles.
Each of these objects can be considered as a particle, as long as the motion
is characterized by the motion of its mass center and any rotation of the
body is neglected.

Rectilinear Kinematics. The kinematics of a particle is
characterized by specifying, at any given instant, the particle’s position,
velocity, and acceleration.

Position. The straight-line path of a particle will be defined using a
single coordinate axis s, Fig. 12–1a. The origin O on the path is a fixed
point, and from this point the position coordinate s is used to specify the
location of the particle at any given instant. The magnitude of s is the
distance from O to the particle, usually measured in meters (m) or feet
(ft), and the sense of direction is defined by the algebraic sign on s.
Although the choice is arbitrary, in this case s is positive since the
coordinate axis is positive to the right of the origin. Likewise, it is
negative if the particle is located to the left of O. Realize that position is
a vector quantity since it has both magnitude and direction. Here,
however, it is being represented by the algebraic scalar s since the
direction always remains along the coordinate axis.

Displacement. The displacement of the particle is defined as the
change in its position. For example, if the particle moves from one point
to another, Fig. 12–1b, the displacement is

In this case is positive since the particle’s final position is to the right
of its initial position, i.e., Likewise, if the final position were to the
left of its initial position, would be negative.

The displacement of a particle is also a vector quantity, and it should be
distinguished from the distance the particle travels. Specifically, the
distance traveled is a positive scalar that represents the total length of
path over which the particle travels.

¢s
s¿ 7 s.

¢s

¢s = s¿ - s

s

s

Position

(a)

O

s

s

Displacement

(b)

s¿

O
�s

Fig. 12–1
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Velocity. If the particle moves through a displacement during the
time interval the average velocity of the particle during this time
interval is

If we take smaller and smaller values of the magnitude of 
becomes smaller and smaller. Consequently, the instantaneous velocity is
a vector defined as or

(12–1)

Since or dt is always positive, the sign used to define the sense of the
velocity is the same as that of or ds. For example, if the particle is
moving to the right, Fig. 12–1c, the velocity is positive; whereas if it is
moving to the left, the velocity is negative. (This is emphasized here by
the arrow written at the left of Eq. 12–1.) The magnitude of the velocity
is known as the speed, and it is generally expressed in units of 

Occasionally, the term “average speed” is used. The average speed is
always a positive scalar and is defined as the total distance traveled by a
particle, divided by the elapsed time i.e.,

For example, the particle in Fig. 12–1d travels along the path of length 
in time so its average speed is but its average
velocity is vavg = -¢s>¢t.

1vsp2avg = sT>¢t,¢t,
sT

1vsp2avg =
sT

¢t

¢t;sT ,

m>s or ft>s.

¢s
¢t

v =
ds

dt
1:+ 2

v = lim
¢t:0
1¢s>¢t2,

¢s¢t,

vavg =
¢s

¢t

¢t,
¢s

s

Velocity

(c)

O
�s

v

�s

s
P

sT

Average velocity and
Average speed

O

P¿

(d)

Fig. 12–1 (cont.)
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Acceleration. Provided the velocity of the particle is known at two
points, the average acceleration of the particle during the time interval 
is defined as

Here represents the difference in the velocity during the time
interval i.e., Fig. 12–1e.

The instantaneous acceleration at time t is a vector that is found by
taking smaller and smaller values of and corresponding smaller and
smaller values of so that , or

(12–2)

Substituting Eq. 12–1 into this result, we can also write

Both the average and instantaneous acceleration can be either positive
or negative. In particular, when the particle is slowing down, or its speed
is decreasing, the particle is said to be decelerating. In this case, in
Fig. 12–1f is less than and so will be negative.
Consequently, a will also be negative, and therefore it will act to the left,
in the opposite sense to Also, note that when the velocity is constant,
the acceleration is zero since Units commonly used to
express the magnitude of acceleration are or 

Finally, an important differential relation involving the displacement,
velocity, and acceleration along the path may be obtained by eliminating
the time differential dt between Eqs. 12–1 and 12–2, which gives

(12–3)

Although we have now produced three important kinematic
equations, realize that the above equation is not independent of
Eqs. 12–1 and 12–2.

a ds = v dv1:+ 2

ft>s2.m>s2
¢v = v - v = 0.

v.

¢v = v¿ - vv,
v¿

a =
d2s

dt21:+ 2

a =
dv

dt
1:+ 2

a = lim
¢t:0
1¢v>¢t2¢v,
¢t

¢v = v¿ - v,¢t,
¢v

aavg =
¢v

¢t

¢t

s

Acceleration

(e)

O

a

v v¿

s
P

Deceleration

(f)

O

P¿

v v¿

a
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Constant Acceleration, When the acceleration is
constant, each of the three kinematic equations 
and can be integrated to obtain formulas that relate s,
and t.

Velocity as a Function of Time. Integrate assuming
that initially when 

(12–4)

Position as a Function of Time. Integrate
assuming that initially when 

(12–5)

Velocity as a Function of Position. Either solve for t in Eq. 12–4
and substitute into Eq. 12–5, or integrate assuming that
initially at 

(12–6)

The algebraic signs of and used in the above three equations,
are determined from the positive direction of the s axis as indicated by
the arrow written at the left of each equation. Remember that these
equations are useful only when the acceleration is constant and when

A typical example of constant accelerated motion
occurs when a body falls freely toward the earth. If air resistance is
neglected and the distance of fall is short, then the downward
acceleration of the body when it is close to the earth is constant and
approximately or The proof of this is given in
Example 13.2.

32.2 ft>s2.9.81 m>s2

v = v0 .s = s0 ,t = 0,

ac ,v0 ,s0 ,

v2 = v0
2 + 2ac1s - s02

Constant Acceleration
1:+ 2

L

v

v0

v dv =
L

s

s0

ac ds

s = s0 .v = v0

v dv = ac ds,

s = s0 + v0t + 1
2 act

2

Constant Acceleration
1:+ 2

L

s

s0

ds =
L

t

0
1v0 + act2 dt

t = 0.s = s0

v = ds>dt = v0 + act,

v = v0 + act

Constant Acceleration
1:+ 2

L

v

v0

dv =
L

t

0
ac dt

t = 0.v = v0

ac = dv>dt,

v,ac ,ac ds = v dv
v = ds>dt,ac = dv>dt,

a = ac.
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Procedure for Analysis

Coordinate System.

• Establish a position coordinate s along the path and specify its fixed origin and positive direction.

• Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be
represented as algebraic scalars. For analytical work the sense of s, and a is then defined by their
algebraic signs.

• The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic
equation as it is applied.

Kinematic Equations.

• If a relation is known between any two of the four variables a, s and t, then a third variable can be
obtained by using one of the kinematic equations, or since each
equation relates all three variables.*

• Whenever integration is performed, it is important that the position and velocity be known at a given
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits
of integration if a definite integral is used.

• Remember that Eqs. 12–4 through 12–6 have only limited use. These equations apply only when the
acceleration is constant and the initial conditions are s = s0 and v = v0 when t = 0.

a ds = v dv,v = ds>dta = dv>dt,
v,

v,

During the time this rocket undergoes rectilinear
motion, its altitude as a function of time can be
measured and expressed as Its velocity
can then be found using and its
acceleration can be determined from a = dv>dt.

v = ds>dt,
s = s1t2.

s

Important Points

• Dynamics is concerned with bodies that have accelerated motion.

• Kinematics is a study of the geometry of the motion.

• Kinetics is a study of the forces that cause the motion.

• Rectilinear kinematics refers to straight-line motion.

• Speed refers to the magnitude of velocity.

• Average speed is the total distance traveled divided by the total
time. This is different from the average velocity, which is the
displacement divided by the time.

• A particle that is slowing down is decelerating.

• A particle can have an acceleration and yet have zero velocity.

• The relationship is derived from and
by eliminating dt.v = ds>dt,

a = dv>dta ds = v dv

*Some standard differentiation and integration formulas are given in Appendix A.
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The car in Fig. 12–2 moves in a straight line such that for a short time
its velocity is defined by where t is in seconds.
Determine its position and acceleration when When 
s = 0.

t = 0,t = 3 s.
v = 13t2 + 2t2 ft>s,

EXAMPLE 12.1

SOLUTION
Coordinate System. The position coordinate extends from the
fixed origin O to the car, positive to the right.

Position. Since the car’s position can be determined from
since this equation relates s, and t. Noting that 

when we have* 

When 
Ans.

Acceleration. Since the acceleration is determined from
since this equation relates a, and t.

When 

Ans.

NOTE: The formulas for constant acceleration cannot be used to
solve this problem, because the acceleration is a function of time.

a = 6132 + 2 = 20 ft>s2:
t = 3 s,

= 6t + 2

a =
dv

dt
=

d

dt
13t2 + 2t21:+ 2

v,a = dv>dt,
v = f1t2,

s = 1323 + 1322 = 36 ft
t = 3 s,

s = t3 + t2

s `
0

s

= t3 + t2 `
0

t

L

s

0
ds =

L

t

0
13t2 + 2t2dt

v =
ds

dt
= 13t2 + 2t21:+ 2

t = 0,
s = 0v,v = ds>dt,

v = f1t2,

s

O

a, v

Fig. 12–2

*The same result can be obtained by evaluating a constant of integration C rather
than using definite limits on the integral. For example, integrating 
yields Using the condition that at then C = 0.s = 0,t = 0,s = t3 + t2 + C.

ds = 13t2 + 2t2dt
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12EXAMPLE 12.2

A small projectile is fired vertically downward into a fluid medium with
an initial velocity of Due to the drag resistance of the fluid the
projectile experiences a deceleration of where is in

Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION
Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12–3.

Velocity. Here and so we must determine the velocity as a
function of time using since this equation relates a, and t.
(Why not use ) Separating the variables and integrating,
with when yields

Here the positive root is taken, since the projectile will continue to
move downward. When 

Ans.

Position. Knowing we can obtain the projectile’s position
from since this equation relates s, and t. Using the initial
condition when we have

When 
Ans.s = 4.43 m

t = 4 s,

s =
1

0.4
e c 1

16022 + 0.8t d1>2 -
1
60
f  m

s =
2

0.8
c 1

16022 + 0.8t d1>2 `
0

t

L

s

0
ds =

L

t

0
c 1

16022 + 0.8t d-1>2
dt

v =
ds

dt
= c 1

16022 + 0.8t d-1>21+ T2
t = 0,s = 0,

v,v = ds>dt,
v = f1t2,

v = 0.559 m>sT
t = 4 s,

v = e c 1

16022 + 0.8t d-1>2 f m>s

1
0.8
c 1

v2 -
1

16022 d = t

1
-0.4

a 1
-2
b 1

v2 `
60

v

= t - 0

L

v

60 m>s
dv

-0.4v3 =
L

t

0
dt

a =
dv

dt
= -0.4v31+ T2

t = 0,v0 = 60 m>sv = v0 + act?
v,a = dv>dt,

a = f1v2

m>s.
va = 1-0.4v32m>s2,

60 m>s.

s

O

Fig. 12–3
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During a test a rocket travels upward at and when it is 40 m
from the ground its engine fails. Determine the maximum height 
reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of due to gravity. Neglect the effect of air
resistance.

SOLUTION
Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12–4.

Maximum Height. Since the rocket is traveling upward,
when At the maximum height the velocity

For the entire motion, the acceleration is 
(negative since it acts in the opposite sense to positive velocity or
positive displacement). Since is constant the rocket’s position may
be related to its velocity at the two points A and B on the path by using
Eq. 12–6, namely,

Ans.

Velocity. To obtain the velocity of the rocket just before it hits the
ground, we can apply Eq. 12–6 between points B and C, Fig. 12–4.

Ans.

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12–6 may also be applied between points A and C, i.e.,

Ans.

NOTE: It should be realized that the rocket is subjected to a
deceleration from A to B of and then from B to C it is
accelerated at this rate. Furthermore, even though the rocket
momentarily comes to rest at the acceleration at B is still

downward!9.81 m>s2
B 1vB = 02
9.81 m>s2,

vC = -80.1 m>s = 80.1 m>s T

= 175 m>s22 + 21-9.81 m>s2210 - 40 m2
vC

2 = vA
2 + 2ac1sC - sA21+ c2

vC = -80.1 m>s = 80.1 m>s T

= 0 + 21-9.81 m>s2210 - 327 m2
vC

2 = vB
2 + 2ac1sC - sB21+ c2

sB = 327 m

 0 = 175 m>s22 + 21-9.81 m>s221sB - 40 m2
vB

2 = vA
2 + 2ac1sB - sA21+ c2

ac

ac = -9.81 m>s2vB = 0.
s = sBt = 0.vA = +75m>s

9.81 m>s2

sB

75 m>s,

EXAMPLE 12.3

A

O

vA � 75 m/s

vB � 0

sA � 40 m

s

sB

B

C

Fig. 12–4
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12EXAMPLE 12.4

A metallic particle is subjected to the influence of a magnetic field as it
travels downward through a fluid that extends from plate A to plate B,
Fig. 12–5. If the particle is released from rest at the midpoint C,

and the acceleration is where s is in
meters, determine the velocity of the particle when it reaches plate B,

and the time it takes to travel from C to B.

SOLUTION
Coordinate System. As shown in Fig. 12–5, s is positive downward,
measured from plate A.

Velocity. Since the velocity as a function of position can
be obtained by using Realizing that at 
we have

(1)

At

Ans.

The positive root is chosen since the particle is traveling downward,
i.e., in the direction.

Time. The time for the particle to travel from C to B can be obtained
using and Eq. 1, where when From
Appendix A,

At

Ans.

Note: The formulas for constant acceleration cannot be used here
because the acceleration changes with position, i.e., a = 4s.

t =
ln A410.222 - 0.01 + 0.2 B + 2.303

2
= 0.658 s

s = 0.2 m,

 ln A4s2 - 0.01 + s B + 2.303 = 2t

 ln A4s2 - 0.01 + s B `
0.1

s

= 2t `
0

t

L

s

0.1

ds

1s2 - 0.0121>2 =
L

t

0
2 dt

= 21s2 - 0.0121>2dt

ds = v dt1+ T2
t = 0.s = 0.1 mv = ds>dt

+s

vB = 0.346 m>s = 346 mm>s T
s = 200 mm = 0.2 m,

v = 21s2 - 0.0121>2 m>s

1
2

v2 `
0

v

=
4
2

s2 `
0.1 m

s

L

v

0
v dv =

L

s

0.1 m
4s ds

v dv = a ds1+ T2

s = 0.1 m,v = 0v dv = a ds.
a = f1s2,

s = 200 mm,

a = 14s2 m>s2,s = 100 mm,

A

200 mm

100 mm

B

s
C

Fig. 12–5
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A particle moves along a horizontal path with a velocity of
where t is the time in seconds. If it is initially

located at the origin O, determine the distance traveled in 3.5 s, and the
particle’s average velocity and average speed during the time interval.

SOLUTION
Coordinate System. Here positive motion is to the right, measured
from the origin O, Fig. 12–6a.

Distance Traveled. Since the position as a function of
time may be found by integrating with 

(1)

In order to determine the distance traveled in 3.5 s, it is necessary to
investigate the path of motion. If we consider a graph of the velocity
function, Fig. 12–6b, then it reveals that for the velocity is
negative, which means the particle is traveling to the left, and for 
the velocity is positive, and hence the particle is traveling to the right.
Also, note that at The particle’s position when 

and can now be determined from Eq. 1.This yields

The path is shown in Fig. 12–6a. Hence, the distance traveled in 3.5 s is

Ans.

Velocity. The displacement from to is

and so the average velocity is

Ans.

The average speed is defined in terms of the distance traveled This
positive scalar is

Ans.

Note: In this problem, the acceleration is 
which is not constant.

a = dv>dt = 16t - 62 m>s2,

1vsp2avg =
sT

¢t
=

14.125 m
3.5 s - 0

= 4.04 m>s

sT .

vavg =
¢s

¢t
=

6.125 m
3.5 s - 0

= 1.75 m>s:

¢s = s ƒ t=3.5 s - s ƒ t=0 = 6.125 m - 0 = 6.125 m

t = 3.5 st = 0

sT = 4.0 + 4.0 + 6.125 = 14.125 m = 14.1 m

s ƒ t=0 = 0 s ƒ t=2 s = -4.0 m s ƒ t=3.5 s = 6.125 m

t = 3.5 st = 2 s,
t = 0,t = 2 s.v = 0

t 7 2 s
0 6 t 6 2 s

s = 1t3 - 3t22m
L

s

0
ds =

L

t

0
(3t2 - 6t) dt

= 13t2 - 6t2dt

ds = v dt1:+ 2
s = 0.t = 0,v = ds>dt

v = f1t2,

v = 13t2 - 6t2 m>s,

EXAMPLE 12.5

O

s � �4.0 m s � 6.125 m

t � 2 s t � 0 s t � 3.5 s

(a)

(0, 0)

v (m/s)

v � 3t2 � 6t

(2 s, 0)
t (s)

(1 s, �3 m/s)

(b)

Fig. 12–6
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12FUNDAMENTAL PROBLEMS

F12–1

s

F12–2

s

F12–3

s

F12–4

s

F12–5

s

s

F12–6

s

F12–7

s

F12–8

F12–5. The position of the particle is given by
where is in seconds. Determine the

time when the velocity of the particle is zero, and the total
distance traveled by the particle when t = 3 s.

ts = (2t2 - 8t + 6) m,

F12–3. A particle travels along a straight line with a velocity
of where is in seconds. Determine the
position of the particle when .s = 0 when t = 0t = 4 s.

tv = (4t - 3t2) m>s,

F12–1. Initially, the car travels along a straight road with a
speed of If the brakes are applied and the speed of
the car is reduced to determine the constant
deceleration of the car.

10 m>s in 15 s,
35 m>s.

F12–7. A particle moves along a straight line such that its
acceleration is where is in seconds.
When the particle is located to the left of the
origin, and when it is to the left of the origin.
Determine the position of the particle when t = 4 s.

20 mt = 2 s,
2 mt = 0,

ta = (4t2 - 2) m>s2,

F12–6. A particle travels along a straight line with an
acceleration of where s is measured in
meters. Determine the velocity of the particle when 
if at s = 0.v = 5 m>s

s = 10 m
a = (10 - 0.2s) m>s2,

F12–4. A particle travels along a straight line with a speed
where is in seconds. Determine the

acceleration of the particle when t = 2 s.
tv = (0.5t3 - 8t) m>s,

F12–2. A ball is thrown vertically upward with a speed of
Determine the time of flight when it returns to its

original position.
15 m>s.

F12–8. A particle travels along a straight line with a
velocity of where is in meters.
Determine the acceleration of the particle at s = 15 m.

sv = (20 - 0.05s2) m>s,
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12 PROBLEMS

12–10. Car A starts from rest at and travels along a
straight road with a constant acceleration of until it
reaches a speed of . Afterwards it maintains this
speed. Also, when , car B located 6000 ft down the
road is traveling towards A at a constant speed of .
Determine the distance traveled by car A when they pass
each other.

60 ft>s
t = 0

80 ft>s
6 ft>s2

t = 0•12–1. A car starts from rest and with constant
acceleration achieves a velocity of when it travels a
distance of 200 m. Determine the acceleration of the car
and the time required.

12–2. A train starts from rest at a station and travels with a
constant acceleration of . Determine the velocity of the
train when and the distance traveled during this time.

12–3. An elevator descends from rest with an acceleration
of until it achieves a velocity of . Determine the
time required and the distance traveled.

*12–4. A car is traveling at , when the traffic light
50 m ahead turns yellow. Determine the required constant
deceleration of the car and the time needed to stop the car
at the light.

•12–5. A particle is moving along a straight line with the
acceleration , where t is in seconds.
Determine the velocity and the position of the particle as a
function of time. When , and .

12–6. A ball is released from the bottom of an elevator
which is traveling upward with a velocity of . If the ball
strikes the bottom of the elevator shaft in 3 s, determine the
height of the elevator from the bottom of the shaft at the
instant the ball is released. Also, find the velocity of the ball
when it strikes the bottom of the shaft.

12–7. A car has an initial speed of and a constant
deceleration of . Determine the velocity of the car
when .What is the displacement of the car during the
4-s time interval? How much time is needed to stop the car?

*12–8. If a particle has an initial velocity of to
the right, at , determine its position when , if

to the left.

•12–9. The acceleration of a particle traveling along a
straight line is , where k is a constant. If ,
when , determine the velocity of the particle as a
function of time t.

t = 0
v = v0s = 0a = k>v

a = 2 ft>s2
t = 10 ss0 = 0

v0 = 12 ft>s

t = 4 s
3 m>s2

25 m>s

6 ft>s

s = 15 ftv = 0t = 0

a = (12t – 3t1/2) ft>s2

15m>s

15 ft>s5 ft>s2

t = 30s
1m>s2

15m>s

12–11. A particle travels along a straight line with a velocity
, where t is in seconds. When , the

particle is located 10 m to the left of the origin. Determine
the acceleration when , the displacement from 
to , and the distance the particle travels during this
time period.

*12–12. A sphere is fired downwards into a medium with
an initial speed of . If it experiences a deceleration of

where t is in seconds, determine the
distance traveled before it stops.

•12–13. A particle travels along a straight line such
that in 2 s it moves from an initial position to
a position . Then in another 4 s it moves from

to . Determine the particle’s average
velocity and average speed during the 6-s time interval.

12–14. A particle travels along a straight-line path such
that in 4 s it moves from an initial position to a
position .Then in another 5 s it moves from to

. Determine the particle’s average velocity and
average speed during the 9-s time interval.
sC = -6 m

sBsB = +3 m
sA = -8 m

sC = +2.5 msB

sB = -1.5 m
sA = +0.5 m

a = (-6t) m>s2,
27 m>s

t = 10 s
t = 0t = 4 s

t = 1 sv = (12 - 3t2) m>s

A B

6000 ft

60 ft/s

Prob. 12–10
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•12–21. Two particles A and B start from rest at the origin

and move along a straight line such that
and , where t is in

seconds. Determine the distance between them when
and the total distance each has traveled in .

12–22. A particle moving along a straight line is subjected
to a deceleration , where is in . If it
has a velocity and a position when

, determine its velocity and position when .

12–23. A particle is moving along a straight line such that
its acceleration is defined as , where is in
meters per second. If when and ,
determine the particle’s position, velocity, and acceleration
as functions of time.

t = 0s = 0v = 20 m>s
va = (-2v) m>s2

t = 4 st = 0
s = 10 mv = 8 m>s

m>sva = (-2v3) m>s2

t = 4 st = 4 s

aB = (12t2 - 8) ft>s2aA = (6t - 3) ft>s2
s = 0

*12–16. As a train accelerates uniformly it passes successive
kilometer marks while traveling at velocities of and
then . Determine the train’s velocity when it passes
the next kilometer mark and the time it takes to travel the 
2-km distance.

•12–17. A ball is thrown with an upward velocity of 
from the top of a 10-m high building. One second later
another ball is thrown vertically from the ground with a
velocity of . Determine the height from the ground
where the two balls pass each other.

12–18. A car starts from rest and moves with a constant
acceleration of until it achieves a velocity of .
It then travels with constant velocity for 60 seconds.
Determine the average speed and the total distance
traveled.

12–19. A car is to be hoisted by elevator to the fourth floor
of a parking garage, which is 48 ft above the ground. If the
elevator can accelerate at decelerate at 
and reach a maximum speed of determine the shortest
time to make the lift, starting from rest and ending at rest.

*12–20. A particle is moving along a straight line such that
its speed is defined as , where s is in meters.
If when , determine the velocity and
acceleration as functions of time.

t = 0s = 2 m
v = (-4s2) m>s

8 ft>s,
0.3 ft>s2,0.6 ft>s2,

25 m>s1.5 m>s2

10 m>s

5 m>s

10  m>s
2 m>s

12–15. Tests reveal that a normal driver takes about 
before he or she can react to a situation to avoid a collision. It
takes about 3 s for a driver having 0.1% alcohol in his system
to do the same. If such drivers are traveling on a straight road
at 30 mph (44 ) and their cars can decelerate at ,
determine the shortest stopping distance d for each from the
moment they see the pedestrians. Moral: If you must drink,
please don’t drive!

2 ft>s2ft>s

0.75 s

d

v1 � 44 ft/s

Prob. 12–15

*12–24. A particle starts from rest and travels along a
straight line with an acceleration ,a = (30 - 0.2v) ft>s2

where is in . Determine the time when the velocity of
the particle is .

•12–25. When a particle is projected vertically upwards
with an initial velocity of , it experiences an acceleration

, where g is the acceleration due to gravity,a = -(g + kv2)
v0

v = 30 ft>s
ft>sv

k is a constant and is the velocity of the particle.
Determine the maximum height reached by the particle.

12–26. The acceleration of a particle traveling along a
straight line is , where t is in seconds. If

, when , determine the velocity and
acceleration of the particle at .

12–27. A particle moves along a straight line with an
acceleration of , where s is in
meters. Determine the particle’s velocity when , if it
starts from rest when . Use Simpson’s rule to
evaluate the integral.

*12–28. If the effects of atmospheric resistance are
accounted for, a falling body has an acceleration defined by
the equation , where is in 
and the positive direction is downward. If the body is
released from rest at a very high altitude, determine (a) the
velocity when , and (b) the body’s terminal or
maximum attainable velocity (as ).t: q

t = 5 s

m>sva = 9.81[1 - v2(10-4)] m>s2

s = 1 m
s = 2 m

a = 5>(3s1>3 + s5>2) m>s2

s = 4 m
t = 0s = 0v = 0

a = (0.02et) m>s2

v
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*12–36. The acceleration of a particle traveling along a
straight line is , where s is in meters. If

at , determine the velocity of the particle at
, and the position of the particle when the velocity

is maximum.

•12–37. Ball A is thrown vertically upwards with a velocity
of . Ball B is thrown upwards from the same point with
the same velocity t seconds later. Determine the elapsed
time from the instant ball A is thrown to when the
balls pass each other, and find the velocity of each ball at
this instant.

12–38. As a body is projected to a high altitude above the
earth’s surface, the variation of the acceleration of gravity
with respect to altitude y must be taken into account.
Neglecting air resistance, this acceleration is determined
from the formula , where is the
constant gravitational acceleration at sea level, R is the
radius of the earth, and the positive direction is measured
upward. If and , determine the
minimum initial velocity (escape velocity) at which a
projectile should be shot vertically from the earth’s surface
so that it does not fall back to the earth. Hint: This requires
that as 

12–39. Accounting for the variation of gravitational
acceleration a with respect to altitude y (see Prob. 12–38),
derive an equation that relates the velocity of a freely
falling particle to its altitude. Assume that the particle is
released from rest at an altitude from the earth’s surface.
With what velocity does the particle strike the earth if it is
released from rest at an altitude ? Use the
numerical data in Prob. 12–38.

*12–40. When a particle falls through the air, its initial
acceleration diminishes until it is zero, and
thereafter it falls at a constant or terminal velocity If
this variation of the acceleration can be expressed as

determine the time needed for the
velocity to become Initially the particle falls
from rest.

•12–41. A particle is moving along a straight line such that
its position from a fixed point is ,
where t is in seconds. Determine the total distance traveled
by the particle from to . Also, find the average
speed of the particle during this time interval.

t = 3 st = 1s

s = (12 - 15t2 + 5t3) m

v = vf>2.
a = 1g>v2

 f21v2
 f - v22,

vf .
a = g

y0 = 500 km

y0

y : q .v = 0

R = 6356 kmg0 = 9.81 m>s2

g0a = -g0[R
2>(R + y)2]

t 6 2v0>g

v0

s = 2 m
s = 0v = 0

a = (8 - 2s) m>s2
•12–29. The position of a particle along a straight line is
given by , where t is in
seconds. Determine the position of the particle when

and the total distance it travels during the 6-s time
interval. Hint: Plot the path to determine the total distance
traveled.

12–30. The velocity of a particle traveling along a straight
line is , where k is constant. If when ,
determine the position and acceleration of the particle as a
function of time.

12–31. The acceleration of a particle as it moves along a
straight line is given by where t is in
seconds. If and when determine
the particle’s velocity and position when Also,
determine the total distance the particle travels during this
time period.

*12–32. Ball A is thrown vertically upward from the top
of a 30-m-high-building with an initial velocity of 5 . At
the same instant another ball B is thrown upward from the
ground with an initial velocity of 20 . Determine the
height from the ground and the time at which they pass.

•12–33. A motorcycle starts from rest at and travels
along a straight road with a constant acceleration of 
until it reaches a speed of 50 . Afterwards it maintains
this speed. Also, when , a car located 6000 ft down the
road is traveling toward the motorcycle at a constant speed
of 30 . Determine the time and the distance traveled by
the motorcycle when they pass each other.

12–34. A particle moves along a straight line with a
velocity , where s is in millimeters.
Determine the acceleration of the particle at .
How long does the particle take to reach this position if

when ?

�12–35. A particle has an initial speed of If it
experiences a deceleration of where t is in
seconds, determine its velocity, after it has traveled 10 m.
How much time does this take?

a = 1-6t2 m>s2,
27 m>s.

t = 0s = 500 mm

s = 2000 mm
v = (200s) mm>s

ft>s
t = 0

ft>s
6 ft>s2

t = 0

m>s
m>s

t = 6 s.
t = 0,v = 2 m>ss = 1 m

a = 12t - 12 m>s2,

t = 0s = 0v = v0 - ks

t = 6 s

s = (1.5t3 - 13.5t2 + 22.5t) ft
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1212.3 Rectilinear Kinematics: Erratic
Motion

When a particle has erratic or changing motion then its position, velocity,
and acceleration cannot be described by a single continuous mathematical
function along the entire path. Instead, a series of functions will be
required to specify the motion at different intervals. For this reason, it is
convenient to represent the motion as a graph. If a graph of the motion
that relates any two of the variables s, a, t can be drawn, then this graph
can be used to construct subsequent graphs relating two other variables
since the variables are related by the differential relationships 

or Several situations occur frequently.

The s–t, v–t, and a–t Graphs. To construct the graph given
the s–t graph, Fig. 12–7a, the equation should be used, since it
relates the variables s and t to . This equation states that

For example, by measuring the slope on the s–t graph when the
velocity is which is plotted in Fig. 12–7b. The graph can be
constructed by plotting this and other values at each instant.

The a–t graph can be constructed from the graph in a similar
manner, Fig. 12–8, since

Examples of various measurements are shown in Fig. 12–8a and plotted
in Fig. 12–8b.

If the s–t curve for each interval of motion can be expressed by a
mathematical function then the equation of the graph for
the same interval can be obtained by differentiating this function with
respect to time since . Likewise, the equation of the a–t graph
for the same interval can be determined by differentiating since

. Since differentiation reduces a polynomial of degree n to
that of degree n – 1, then if the s–t graph is parabolic (a second-degree
curve), the graph will be a sloping line (a first-degree curve), and the
a–t graph will be a constant or a horizontal line (a zero-degree curve).

v– t

a = dv>dt
v = v(t)

v = ds/dt

v–ts = s(t) ,

dv

dt
= a

slope of
v–t graph 

= acceleration

v–t

v–tv1 ,
t = t1 ,

ds

dt
= v

slope of
s– t graph 

= velocity

v
v = ds>dt

v–t

a ds = v dv.a = dv>dt,
v = ds>dt,

v,
tO

v0 � t � 0

(a)

s

ds
dt

v1 � t1

s1

t1 t2 t3

s2
s3

ds
dt

v2 � t2
ds
dt

v3 � t3
ds
dt

Fig. 12–7

tO

(b)

v0

v

v1

v3

v2

t1 t2

t3

a0 �

v

tt1 t2 t3

v1

v2

v3

v0

a1 �

a2 �

O

(a)

a3 � t3
dv
dt

t2
dv
dtt � 0

dv
dt

t1
dv
dt

t

a

a0 � 0
a1 a2

a3
t1 t2 t3O

(b)

Fig. 12–8
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t

a

a0

t1

�v � �   a dt
0

t1

t

v

v0

t1

v1
�v

(a)

(b)

Fig. 12–9 

t

v

v0

t1

t

s

s0

t1

s1
�s

(b)

(a)

�s � �   v dt
0

t1

Fig. 12–10

If the a–t graph is given, Fig. 12–9a, the graph may be constructed
using written as

Hence, to construct the graph, we begin with the particle’s initial
velocity and then add to this small increments of area 
determined from the a–t graph. In this manner successive points,

etc., for the graph are determined, Fig. 12–9b. Notice
that an algebraic addition of the area increments of the a–t graph is
necessary, since areas lying above the t axis correspond to an increase in

(“positive” area), whereas those lying below the axis indicate a
decrease in (“negative” area).

Similarly, if the graph is given, Fig. 12–10a, it is possible to
determine the s–t graph using written as

In the same manner as stated above, we begin with the particle’s initial
position and add (algebraically) to this small area increments 
determined from the graph, Fig. 12–10b.

If segments of the a–t graph can be described by a series of equations,
then each of these equations can be integrated to yield equations
describing the corresponding segments of the graph. In a similar
manner, the s–t graph can be obtained by integrating the equations
which describe the segments of the graph.As a result, if the a–t graph
is linear (a first-degree curve), integration will yield a graph that is
parabolic (a second-degree curve) and an s–t graph that is cubic (third-
degree curve).

v–t
v–t

v–t

v–t
¢ss0

¢s =
L

v dt

displacement =
area under
v–t graph

v = ds>dt,
v–t

v
v

v–tv1 = v0 + ¢v,

1¢v2v0

v–t

¢v =
L

a dt

change in 
=

 area under
velocity a–t graph

a = dv>dt,
v–t
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12
a

a0

s1

�  a ds �     (v1
2 � v0

2)
0

s1

(a)

1—
2

s

v

v0

s1

v1

(b)

s

Fig. 12–11

v

v0

(a)

s

dv
ds

v

s

a0

(b)

s

a

s

a � v(dv/ds)

Fig. 12–12

The v–s and a–s Graphs. If the a–s graph can be constructed,
then points on the graph can be determined by using 
Integrating this equation between the limits at and 
at we have,

Therefore, if the red area in Fig. 12–11a is determined, and the initial
velocity at is known, then Fig. 12–11b.v1 = A21s1

s0
a ds + v0

2 B1>2,s0 = 0v0

1
21v2

1 - v2
02 =

L

s1

s0

a ds

area under
a–s graph

s = s1 ,
v = v1s = s0v = v0

v dv = a ds.v–s

Successive points on the –s graph can be constructed in this manner.
If the –s graph is known, the acceleration a at any position s can be

determined using written as

Thus, at any point (s, ) in Fig. 12–12a, the slope of the –s graph is
measured. Then with and known, the value of a can be
calculated, Fig. 12–12b.

The –s graph can also be constructed from the a–s graph, or vice versa,
by approximating the known graph in various intervals with mathematical
functions, and then using to obtain the
other graph.

a ds = v dvv = f(s) or a = g(s),

v

dv>dsv
vdv>dsv

a = vadv

ds
b

acceleration =
velocity times
slope of
v–s graph

a ds = v dv,
v

v
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12 EXAMPLE 12.6

A bicycle moves along a straight road such that its position is
described by the graph shown in Fig. 12–13a. Construct the and
a–t graphs for 0 … t … 30 s.

v– t

SOLUTION
v–t Graph. Since the graph can be determined by
differentiating the equations defining the s–t graph, Fig. 12–13a.We have

The results are plotted in Fig. 12–13b. We can also obtain specific
values of by measuring the slope of the s–t graph at a given instant.
For example, at the slope of the s–t graph is determined from
the straight line from 10 s to 30 s, i.e.,

a–t Graph. Since the a–t graph can be determined by
differentiating the equations defining the lines of the graph.
This yields

The results are plotted in Fig. 12–13c.

NOTE: Show that when by measuring the slope of
the graph.v– t

t = 5 sa = 2 ft>s2

v = 20 ft>s a =
dv

dt
= 010 6 t … 30 s;

v = (2t) ft>s a =
dv

dt
= 2 ft>s20 … t 6 10 s;

v– t
a = dv>dt,

v =
¢s

¢t
=

500 ft - 100 ft
30 s - 10 s

= 20 ft>st = 20 s;

t = 20 s,
v

v =
ds

dt
= 20 ft>ss = (20t - 100) ft10 s 6 t … 30 s;

v =
ds

dt
= (2t) ft>ss = (t2) ft0 … t 6 10 s;

v– tv = ds>dt,

t (s)

s (ft)

500

100

10 30

(a)

s � t2

s � 20t � 100

t (s)

v (ft/s)

20

10 30

(b)

v � 2t v � 20

t (s)

a (ft/s2)

2

30

(c)

10

Fig. 12–13
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12EXAMPLE 12.7

The car in Fig. 12–14a starts from rest and travels along a straight
track such that it accelerates at for 10 s, and then decelerates 
at . Draw the and s–t graphs and determine the time 
needed to stop the car. How far has the car traveled?

SOLUTION
v–t Graph. Since the graph is determined by integrating
the straight-line segments of the a–t graph. Using the initial condition

when we have

When Using this as the initial
condition for the next time period, we have

v = 101102 = 100 m>s.t = 10 s,

v = 10t
L

v

0
dv =

L

t

0
10 dt,a = (10) m>s2;0 … t 6 10 s;

t = 0,v = 0

v–tdv = a dt,

t¿v–t2 m>s2
10 m>s2

t (s)

a (m/s2)

(a)

10

�2
10

A1

A2

t¿

t (s)

v (m/s)

(b)

100

10

v � 10t

v � �2t � 120

t¿ � 60

t (s)

s (m)

(c)

10 60

500

3000

s � 5t2

s � �t2 � 120t � 600

Fig. 12–14

The s–t graph is shown in Fig. 12–14c.

NOTE: A direct solution for s is possible when since the
triangular area under the graph would yield the displacement

from to Hence,t¿ = 60 s.t = 0¢s = s - 0
v–t

t¿ = 60 s,

Ans.¢s = 1
2160 s21100 m>s2 = 3000 m

v = (-2t + 120) m>s
L

v

100 m>s
dv =

L

t

10 s
-2 dt,a = (-2) m>s2;10 s 6 t … t¿;

When we require This yields, Fig. 12–14b,
Ans.

A more direct solution for is possible by realizing that the area
under the a–t graph is equal to the change in the car’s velocity. We
require Fig. 12–14a. Thus

Ans.
s–t Graph. Since integrating the equations of the
graph yields the corresponding equations of the s–t graph. Using the
initial condition when we have

When Using this initial condition,s = 511022 = 500 m.t = 10 s,

s = (5t2) m
L

s

0
ds =

L

t

0
10t dt,v = (10t) m>s;0 … t … 10 s;

t = 0,s = 0

v–tds = v dt,
t¿ = 60 s

0 = 10 m>s2110 s2 + 1-2 m>s221t¿ - 10 s2
¢v = 0 = A1 + A2 ,

t¿
t¿ = 60 s

v = 0.t = t¿

L

s

500 m
ds =

L

t

10 s
1-2t + 1202 dtv = (-2t + 120) m>s;10 s … t … 60 s;

When the position is

Ans.s = -16022 + 1201602 - 600 = 3000 m

t¿ = 60 s,

s = (- t2 + 120t - 600) m

s - 500 = - t2 + 120t - [-11022 + 1201102]
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12 EXAMPLE 12.8

The –s graph describing the motion of a motorcycle is shown in
Fig. 12–15a. Construct the a–s graph of the motion and determine the
time needed for the motorcycle to reach the position 

SOLUTION
a–s Graph. Since the equations for segments of the –s graph are
given, the a–s graph can be determined using 

The results are plotted in Fig. 12–15b.

Time. The time can be obtained using the –s graph and 
because this equation relates s, and t. For the first segment of
motion, when so

At Therefore,
using these initial conditions for the second segment of motion,

Therefore, at 

Ans.

NOTE: The graphical results can be checked in part by calculating slopes.
For example, at 
Also, the results can be checked in part by inspection. The –s graph
indicates the initial increase in velocity (acceleration) followed by
constant velocity 1a = 02.

v
a = v1dv>ds2 = 10150 - 102>200 = 2 m>s2.s = 0,

t =
400
50

+ 4.05 = 12.0 s

s = 400 ft,

t = a s

50
+ 4.05b  st - 8.05 =

s

50
- 4;

L

t

8.05 s
dt =

L

s

200 m

ds

50
;

dt =
ds
v

=
ds

50
v = 50 ft>s;200 ft 6 s … 400 ft;

t = 5 ln[0.212002 + 10] - 5 ln 10 = 8.05 s.s = 200  ft,

t = (5 ln10.2s + 102 - 5 ln 10) s

L

t

0
dt =

L

s

0

ds

0.2s + 10

dt =
ds
v

=
ds

0.2s + 10
v = (0.2s + 10) ft>s;0 … s 6 200 ft;

t = 0,s = 0
v,

v = ds>dt,v

a = v
dv

ds
= 1502 d

ds
1502 = 0

v = 50 ft>s200 ft 6 s … 400  ft;

a = v
dv

ds
= 10.2s + 102 d

ds
10.2s + 102 = 0.04s + 2

v = (0.2s + 10) ft>s0 … s 6 200 ft;

a ds = v dv.
v

s = 400 ft.

v

(a)

v (ft/s)

s (ft)
10

50

200 400

v � 0.2s � 10
v � 50

(b)

200 400
s (ft)

a (ft/s2)

10

2

a � 0.04s � 2

a � 0

Fig. 12–15
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12FUNDAMENTAL PROBLEMS

t (s)

s (m)

6 8 10

108

s � 0.5 t3

s � 108

F12–9

t (s)

v (ft/s)

v � �4t � 80

80

20

F12–10

s (m)

  (m/s)

10

40

v � 0.25 s

v

F12–11

t (s)

s (m)

s � 30t � 75

5

75

225

10
0

s � 3t2

F12–12

t (s)
t ¿

a (m/s2)

5
0

20

�10

F12–13

15
t (s)

v (m/s)

v � 30 t

v � �15 t � 225 

5

150

F12–14

F12–12. The sports car travels along a straight road such
that its position is described by the graph. Construct the 
and graphs for the time interval 0 … t … 10 s.a- t

v- t

F12–11. A bicycle travels along a straight road where its
velocity is described by the graph. Construct the 
graph for the same time interval.

a-sv-s

F12–9. The particle travels along a straight track such that
its position is described by the graph. Construct the 
graph for the same time interval.

v- ts- t

F12–14. The dragster starts from rest and has a velocity
described by the graph. Construct the graph during the
time interval Also, determine the total
distance traveled during this time interval.

0 … t … 15 s.
s- t

F12–10. A van travels along a straight road with a velocity
described by the graph. Construct the and graphs
during the same period. Take when t = 0.s = 0

a- ts- t

F12–13. The dragster starts from rest and has an
acceleration described by the graph. Construct the 
graph for the time interval  where is the time
for the car to come to rest.

t¿0 … t … t¿,
v- t
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12 PROBLEMS

12–46. A train starts from station A and for the first
kilometer, it travels with a uniform acceleration. Then, for
the next two kilometers, it travels with a uniform speed.
Finally, the train decelerates uniformly for another
kilometer before coming to rest at station B. If the time for
the whole journey is six minutes, draw the graph and
determine the maximum speed of the train.

12–47. The particle travels along a straight line with the
velocity described by the graph. Construct the graph.a-s

v–t

*12–44. A freight train starts from rest and travels with a
constant acceleration of . After a time it
maintains a constant speed so that when it has
traveled 2000 ft. Determine the time and draw the –t
graph for the motion.

•12–45. If the position of a particle is defined by
, where t is in seconds, construct

the , , and graphs for .0 … t … 10 sa- tv- ts- t
s = [2 sin (p>5)t + 4] m

vt¿
t = 160 s

t¿0.5 ft>s2

12–42. The speed of a train during the first minute has
been recorded as follows:

*12–48. The a–s graph for a jeep traveling along a straight
road is given for the first 300 m of its motion. Construct the

–s graph. At , .v = 0s = 0v

t (s) 0 20 40 60

( )m>sv 0 16 21 24

Plot the graph, approximating the curve as straight-line
segments between the given points. Determine the total
distance traveled.

12–43. A two-stage missile is fired vertically from rest with
the acceleration shown. In 15 s the first stage A burns out
and the second stage B ignites. Plot the and graphs
which describe the two-stage motion of the missile for

.0 … t … 20 s

s- tv- t

v- t

Prob. 12–43

a (m/s2)

t (s)
15

18

25

20

A

B

s (m)

a (m/s2)

2

200 300

Prob. 12–48

s (m)

v (m/s)

3 6

4

10

13

v � 2s � 4

v � s � 7

Prob. 12–47
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12
*12–52. A car travels up a hill with the speed shown.
Determine the total distance the car travels until it stops
( ). Plot the graph.a- tt = 60 s

12–51. A car starts from rest and travels along a straight
road with a velocity described by the graph. Determine the
total distance traveled until the car stops. Construct the 
and graphs.a–t

s–t

•12–49. A particle travels along a curve defined by the
equation where is in seconds. Draw
the and graphs for the particle for

.

12–50. A truck is traveling along the straight line with a
velocity described by the graph. Construct the graph
for .0 … s …  1500 ft

a-s

0 …  t …  3 s
a - tv - t,s - t,

ts = (t3 - 3t2 + 2t) m.

•12–53. The snowmobile moves along a straight course
according to the –t graph. Construct the s–t and a–t graphs
for the same 50-s time interval. When , .s = 0t = 0

v

12–54. A motorcyclist at A is traveling at when he
wishes to pass the truck T which is traveling at a constant
speed of To do so the motorcyclist accelerates at

until reaching a maximum speed of If he then
maintains this speed, determine the time needed for him to
reach a point located 100 ft in front of the truck. Draw the

and graphs for the motorcycle during this time.s- tv- t

85 ft>s.6 ft>s2
60 ft>s.

60 ft>s

Prob. 12–52

Prob. 12–53

30
t (s)

v (m/s)

10

60

Prob. 12–50

s(ft)

v (ft/s)

625 1500

75

v � 0.6 s3/4

Prob. 12–51 Prob. 12–54

t(s)

v(m/s)

30 90

30
v � �0.5t � 45

v � t 

60 100 ft55 ft40 ft

A

T

(vm)1 � 60 ft/s (vm)2 � 85 ft/s

vt � 60 ft/s

t (s)

12

30 50

v (m/s)
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12
•12–57. The dragster starts from rest and travels along a
straight track with an acceleration-deceleration described
by the graph. Construct the graph for and
determine the distance traveled before the dragster again
comes to rest.

s¿
0 … s … s¿,v-s

*12–56. The position of a cyclist traveling along a straight
road is described by the graph. Construct the and 
graphs.

a–tv–t

12–55. An airplane traveling at lands on a straight
runway and has a deceleration described by the graph.
Determine the time and the distance traveled for it to
reach a speed of . Construct the and graphs for
this time interval, .0 …  t …  t¿

s- tv–t5 m>s
t¿

70 m>s

12–58. A sports car travels along a straight road with an
acceleration-deceleration described by the graph. If the car
starts from rest, determine the distance the car travels
until it stops. Construct the graph for .0 …  s …  s¿v-s

s¿

t(s)

a(m/s2)

5 t¿

�4

�10

Prob. 12–56

t (s)

s (m)

s � �0.625 t2 � 27.5t � 162.5

10 20

50

137.5

s � 0.05 t3 

Prob. 12–58

s(ft)

a(ft/s2)

s¿

�4

6

1000

Prob. 12–57

s (m)

a(m/s2)

200 

s¿

25

5

�15

a � 0.1s � 5
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12
•12–61. The graph of a car while traveling along a road
is shown. Draw the and graphs for the motion.a- ts- t

v- t

*12–60. A motorcyclist starting from rest travels along a
straight road and for 10 s has an acceleration as shown.
Draw the graph that describes the motion and find the
distance traveled in 10 s.

v- t

12–59. A missile starting from rest travels along a straight
track and for 10 s has an acceleration as shown. Draw the

graph that describes the motion and find the distance
traveled in 10 s.
v- t

12–62. The boat travels in a straight line with the
acceleration described by the graph. If it starts from rest,
construct the graph and determine the boat’s maximum
speed.What distance does it travel before it stops? s¿

v-s
a-s

Prob. 12–59

30

5 10

40

t(s)

a (m/s2)

a � 2t � 20

a � 6t

Prob. 12–60

6 10
t (s)

6
1—
6

a (m/s2)

a �    t2 

Prob. 12–61

20

20 305
t (s)

v (m/s)

Prob. 12–62

s(m)
s¿

a(m/s2)

3

150

�4

6
a � �0.02s � 6
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12
•12–65. The acceleration of the speed boat starting from
rest is described by the graph. Construct the graph.v-s

*12–64. The jet bike is moving along a straight road with the
speed described by the graph. Construct the graph.a-sv-s

12–63. The rocket has an acceleration described by the
graph. If it starts from rest, construct the and 
graphs for the motion for the time interval .0 …  t …  14 s

s- tv- t

12–66. The boat travels along a straight line with the speed
described by the graph. Construct the and graphs.
Also, determine the time required for the boat to travel a
distance if .s = 0  when  t = 0s = 400 m

a-ss–t

Prob. 12–63

t(s)

a(m/s2)

38

18

9 14

a2 � 36t
a � 4t � 18

Prob. 12–65

a(ft/s2)

10

2

200 500

a � 0.04s � 2

s(ft)

Prob. 12–64

v(m/s)

v � 5s1/2

75

15

225 525

v � �0.2s � 120

s(m)

Prob. 12–66

v(m/s)

100 400

20

80

s(m)

v2 � 4s

v � 0.2s 
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12
•12–69. The airplane travels along a straight runway with
an acceleration described by the graph. If it starts from rest
and requires a velocity of to take off, determine the
minimum length of runway required and the time for take
off. Construct the and graphs.s–tv- t

t¿
90 m>s

*12–68. The airplane lands at on a straight runway
and has a deceleration described by the graph. Determine
the distance traveled before its speed is decreased to

. Draw the graph.s- t25 ft>s
s¿

250 ft>s

12–67. The s–t graph for a train has been determined
experimentally. From the data, construct the and a–t
graphs for the motion.

v- t

12–70. The graph of the bullet train is shown. If the
train starts from rest, determine the elapsed time before it
again comes to rest. What is the total distance traveled
during this time interval? Construct the and graphs.s–tv–t

t¿
a–t

Prob. 12–67

t (s)

600

360

30 40

s (m)

s � 24t � 360

s � 0.4t2

Prob. 12–69

t(s)

a(m/s2)

t¿10

8

a � 0.8t

Prob. 12–68

a(ft/s2)

1750

�7.5

�15

s¿
s(ft)

Prob. 12–70

t(s)

a(m/s2)

3

30 75

a � �(     )t � 51
15

a � 0.1t 

t¿
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12 12.4 General Curvilinear Motion

Curvilinear motion occurs when a particle moves along a curved path.
Since this path is often described in three dimensions, vector analysis will
be used to formulate the particle’s position, velocity, and acceleration.*
In this section the general aspects of curvilinear motion are discussed, and
in subsequent sections we will consider three types of coordinate systems
often used to analyze this motion.

Position. Consider a particle located at a point on a space curve
defined by the path function s(t), Fig. 12–16a.The position of the particle,
measured from a fixed point O, will be designated by the position vector

Notice that both the magnitude and direction of this vector will
change as the particle moves along the curve.

Displacement. Suppose that during a small time interval the
particle moves a distance along the curve to a new position, defined
by Fig. 12–16b. The displacement represents the change
in the particle’s position and is determined by vector subtraction; i.e.,

Velocity. During the time the average velocity of the particle is

The instantaneous velocity is determined from this equation by letting
and consequently the direction of approaches the tangent to

the curve. Hence, or

(12–7)

Since dr will be tangent to the curve, the direction of v is also tangent to
the curve, Fig. 12–16c. The magnitude of v, which is called the speed, is
obtained by realizing that the length of the straight line segment in
Fig. 12–16b approaches the arc length as we have

or

(12–8)

Thus, the speed can be obtained by differentiating the path function s
with respect to time.

v =
ds

dt

v = lim
¢t:0
1¢r>¢t2 = lim

¢t:0
1¢s>¢t2, ¢t: 0,¢s

¢r

v =
dr
dt

v = lim
¢t:0
1¢r>¢t2 ¢r¢t: 0,

vavg =
¢r
¢t

¢t,

¢r = r¿ - r.

¢rr¿ = r + ¢r,
¢s

¢t

r = r1t2.

*A summary of some of the important concepts of vector analysis is given in Appendix B.

s
r

O

Position

(a)

Path

s

Displacement

(b)

r

r¿

�s
�r

s

O

Velocity

(c)

r

v

s

O
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12
Acceleration. If the particle has a velocity v at time t and a velocity

at Fig. 12–16d, then the average acceleration of the
particle during the time interval is

where To study this time rate of change, the two velocity
vectors in Fig. 12–16d are plotted in Fig. 12–16e such that their tails are
located at the fixed point and their arrowheads touch points on a
curve. This curve is called a hodograph, and when constructed, it
describes the locus of points for the arrowhead of the velocity vector in
the same manner as the path s describes the locus of points for the
arrowhead of the position vector, Fig. 12–16a.

To obtain the instantaneous acceleration, let in the above
equation. In the limit will approach the tangent to the hodograph, and
so or

(12–9)

Substituting Eq. 12–7 into this result, we can also write

By definition of the derivative, a acts tangent to the hodograph,
Fig. 12–16f, and, in general it is not tangent to the path of motion,
Fig. 12–16g. To clarify this point, realize that and consequently a
must account for the change made in both the magnitude and direction
of the velocity v as the particle moves from one point to the next along
the path, Fig. 12–16d. However, in order for the particle to follow any
curved path, the directional change always “swings” the velocity vector
toward the “inside” or “concave side” of the path, and therefore a
cannot remain tangent to the path. In summary, v is always tangent to
the path and a is always tangent to the hodograph.

¢v

a =
d2r
dt2

a =
dv
dt

a = lim
¢t:0
1¢v>¢t2, ¢v

¢t: 0

O¿

¢v = v¿ - v.

aavg =
¢v
¢t

¢t
t + ¢t,v¿ = v + ¢v

vv¿

(d)

v

v¿

(e)

�v

O¿

v
a

(f)

O¿

Hodograph

Acceleration

(g)

a

path

Fig. 12–16 (cont.)
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12 12.5 Curvilinear Motion: Rectangular
Components

Occasionally the motion of a particle can best be described along a path
that can be expressed in terms of its x, y, z coordinates.

Position. If the particle is at point (x, y, z) on the curved path s shown
in Fig. 12–17a, then its location is defined by the position vector

(12–10)

When the particle moves, the x, y, z components of r will be functions of
time; i.e., so that 

At any instant the magnitude of r is defined from Eq. C–3 in
Appendix C as

And the direction of r is specified by the unit vector 

Velocity. The first time derivative of r yields the velocity of the
particle. Hence,

When taking this derivative, it is necessary to account for changes in both
the magnitude and direction of each of the vector’s components. For
example, the derivative of the i component of r is

The second term on the right side is zero, provided the x, y, z reference
frame is fixed, and therefore the direction (and the magnitude) of i does
not change with time. Differentiation of the j and k components may be
carried out in a similar manner, which yields the final result,

(12–11)

where

(12–12)vx = x
#  vy = y

#  vz = z
#

v =
dr
dt

= vxi + vyj + vzk

d

dt
1xi2 =

dx

dt
i + x

di
dt

v =
dr
dt

=
d

dt
1xi2 +

d

dt
1yj2 +

d

dt
1zk2

ur = r>r.

r = 4x2 + y2 + z2

r = r1t2.z = z1t2,y = y1t2,x = x1t2,

r = xi + yj + zk

y

x

z

r � xi � yj � zk

z

y
x

s

k
i

j

Position

(a)

y

x

z

s

Velocity

(b)

v � vxi � vyj � vzk

Fig. 12–17
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12
The “dot” notation represents the first time derivatives of

respectively.
The velocity has a magnitude that is found from

and a direction that is specified by the unit vector As discussed
in Sec. 12–4, this direction is always tangent to the path, as shown in 
Fig. 12–17b.

Acceleration. The acceleration of the particle is obtained by taking
the first time derivative of Eq. 12–11 (or the second time derivative of
Eq. 12–10). We have

(12–13)

where

(12–14)

Here represent, respectively, the first time derivatives of
or the second time derivatives of the 

functions
The acceleration has a magnitude

and a direction specified by the unit vector Since a represents
the time rate of change in both the magnitude and direction of the
velocity, in general a will not be tangent to the path, Fig. 12–17c.

ua = a>a.

a = 4ax
2 + ay

2 + az
2

z = z1t2.y = y1t2,x = x1t2,
vz = vz1t2,vy = vy1t2,vx = vx1t2,

azay ,ax ,

ax = v
#
x = x

$

ay = v
#
y = y

$

az = v
#
z = z

$

a =
dv
dt

= axi + ay j + azk

uv = v>v.

v = 4vx
2 + vy

2 + vz
2

z = z1t2,y = y1t2,x = x1t2, z
#

y
#
,x

#
,

y

x

z

s

a � axi � ayj � azk

Acceleration

(c)
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12

Procedure for Analysis

Coordinate System.

• A rectangular coordinate system can be used to solve problems
for which the motion can conveniently be expressed in terms of
its x, y, z components.

Kinematic Quantities.

• Since rectilinear motion occurs along each coordinate axis, the
motion along each axis is found using and 
or in cases where the motion is not expressed as a function of
time, the equation can be used.

• In two dimensions, the equation of the path can be used
to relate the x and y components of velocity and acceleration by
applying the chain rule of calculus. A review of this concept is
given in Appendix C.

• Once the x, y, z components of v and a have been determined, the
magnitudes of these vectors are found from the Pythagorean
theorem, Eq. B–3, and their coordinate direction angles from the
components of their unit vectors, Eqs. B–4 and B–5.

y = f(x)

a ds = v dv

a = dv>dt;v = ds>dt

Important Points

• Curvilinear motion can cause changes in both the magnitude and
direction of the position, velocity, and acceleration vectors.

• The velocity vector is always directed tangent to the path.

• In general, the acceleration vector is not tangent to the path, but
rather, it is tangent to the hodograph.

• If the motion is described using rectangular coordinates, then the
components along each of the axes do not change direction, only
their magnitude and sense (algebraic sign) will change.

• By considering the component motions, the change in magnitude
and direction of the particle’s position and velocity are
automatically taken into account.
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12EXAMPLE 12.9

At any instant the horizontal position of the weather balloon in
Fig. 12–18a is defined by where t is in seconds. If the
equation of the path is determine the magnitude and
direction of the velocity and the acceleration when 

SOLUTION
Velocity. The velocity component in the x direction is

To find the relationship between the velocity components we will use
the chain rule of calculus. (See Appendix A for a full explanation.)

vx = x
# =

d

dt
18t2 = 8 ft>s:

t = 2 s.
y = x2>10,

x = 18t2 ft,

vy = y
# =

d

dt
1x2>102 = 2xx

# >10 = 21162182>10 = 25.6 ft>s c

When the magnitude of velocity is therefore

Ans.

The direction is tangent to the path, Fig. 12–18b, where

Ans.

Acceleration. The relationship between the acceleration components
is determined using the chain rule. (See Appendix C.) We have

Thus,

Ans.

The direction of a, as shown in Fig. 12–18c, is

Ans.

NOTE: It is also possible to obtain and by first expressing
and then taking successive time derivatives.y = f1t2 = 18t22>10 = 6.4t2

ayvy

ua = tan-1 12.8
0

= 90°

a = 4(02 2 + (12.822 = 12.8 ft> s2

= 21822>10 + 21162102>10 = 12.8 ft>s2 c

ay = v
#
y =

d

dt
12xx

# >102 = 21x# 2x# >10 + 2x1x$2>10

ax = v
#
x =

d

dt
182 = 0

uv = tan-1
vy

vx
= tan-1 25.6

8
= 72.6°

v = 4(8 ft>s22 + (25.6 ft>s22 = 26.8 ft>s
t = 2 s,

y

A

B

x

16 ft

(a)

y �
x2

10

(b)

B

v � 26.8 ft/s

uv � 72.6�

(c)

a � 12.8 ft/s2

B

ua � 90�

Fig. 12–18
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12 EXAMPLE 12.10

For a short time, the path of the plane in Fig. 12–19a is described by
If the plane is rising with a constant velocity of 10 ,

determine the magnitudes of the velocity and acceleration of the plane
when it is at 

SOLUTION
When , then or . Also, since

, then

;

Velocity. Using the chain rule (see Appendix C) to find the
relationship between the velocity components, we have

(1)

Thus

The magnitude of the velocity is therefore

Ans.

Acceleration. Using the chain rule, the time derivative of Eq. (1)
gives the relation between the acceleration components.

When 

The magnitude of the plane’s acceleration is therefore

Ans.

These results are shown in Fig. 12–19b.

= 0.791 m>s2

 a = 4ax
2 + ay

2 = 4(-0.791 m>s222 + (0 m>s222

0 = 0.002((15.81 m>s)2 + 316.2 m(ax))
ax = -0.791 m>s2

x = 316.2 m, vx = 15.81 m>s , v
#
y = ay = 0,

ay = v
#
y = 0.002x

#
vx + 0.002xv

#
x = 0.002(vx

2 + xax)

 = 4(15.81 m>s)2 + (10 m>s)2 = 18.7 m>s v = 4vx 
2 + vy 

2

    10 m>s = 0.002(316.2 m)(vx)
vx = 15.81 m>s

vy =  y
# =

d

dt
 (0.001x2) = (0.002x)x

# = 0.002xvx

t = 10 s100 m = (10 m>s) ty = vyt

vy = 10 m>s x = 316.2 m100 = 0.001x2y = 100 m

y = 100 m.

m>sy = (0.001x2) m.y

x

x

y

(b)

100 m

vy v
a

vx

Fig. 12–19

x

y

(a)

y � 0.001x2

100 m
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1212.6 Motion of a Projectile

The free-flight motion of a projectile is often studied in terms of its
rectangular components. To illustrate the kinematic analysis, consider a
projectile launched at point ( ), with an initial velocity of having
components and Fig. 12–20. When air resistance is neglected,
the only force acting on the projectile is its weight, which causes the
projectile to have a constant downward acceleration of approximately

or * g = 32.2 ft>s2.ac = g = 9.81 m>s2

1v02y ,1v02x
v0 ,y0x0 ,

y

x

a � g

(v0)y

(v0)x

v0

vx

vy v

r

y0

y

x0

x

Fig. 12–20

Each picture in this sequence is taken
after the same time interval. The red ball
falls from rest, whereas the yellow ball is
given a horizontal velocity when released.
Both balls accelerate downward at the
same rate, and so they remain at the same
elevation at any instant.This acceleration
causes the difference in elevation between
the balls to increase between successive
photos.Also, note the horizontal distance
between successive photos of the yellow
ball is constant since the velocity in the
horizontal direction remains constant.

Horizontal Motion. Since application of the constant
acceleration equations, 12–4 to 12–6, yields

The first and last equations indicate that the horizontal component of
velocity always remains constant during the motion.

Vertical Motion. Since the positive y axis is directed upward, then
Applying Eqs. 12–4 to 12–6, we get

Recall that the last equation can be formulated on the basis of eliminating
the time t from the first two equations, and therefore only two of the
above three equations are independent of one another.

vy
2 = 1v02y2 - 2g1y - y02v2 = v0

2 + 2ac1y - y02;1+ c2
y = y0 + 1v02yt - 1

2 gt2y = y0 + v0t + 1
2 act

2;1+ c2
vy = 1v02y - gtv = v0 + act;1+ c2

ay = -g.

vx = 1v02xv2 = v0
2 + 2ac1x - x02;1:+ 2

x = x0 + 1v02xtx = x0 + v0t + 1
2 act

2;1:+ 2
vx = 1v02xv = v0 + act;1:+ 2

ax = 0,

* This assumes that the earth’s gravitational field does not vary with altitude.
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12
To summarize, problems involving the motion of a projectile can have

at most three unknowns since only three independent equations can be
written; that is, one equation in the horizontal direction and two in the
vertical direction. Once and are obtained, the resultant velocity v,
which is always tangent to the path, can be determined by the vector sum
as shown in Fig. 12–20.

vyvx

Procedure for Analysis

Coordinate System.

• Establish the fixed x, y coordinate axes and sketch the trajectory
of the particle. Between any two points on the path specify the
given problem data and identify the three unknowns. In all cases
the acceleration of gravity acts downward and equals 
or . The particle’s initial and final velocities should be
represented in terms of their x and y components.

• Remember that positive and negative position, velocity, and
acceleration components always act in accordance with their
associated coordinate directions.

Kinematic Equations.

• Depending upon the known data and what is to be determined, a
choice should be made as to which three of the following four
equations should be applied between the two points on the path
to obtain the most direct solution to the problem.

Horizontal Motion.

• The velocity in the horizontal or x direction is constant, i.e.,
and

Vertical Motion.

• In the vertical or y direction only two of the following three
equations can be used for solution.

For example, if the particle’s final velocity is not needed, then
the first and third of these equations will not be useful.

vy

vy
2 = 1v02y2 + 2ac1y - y02
y = y0 + 1v02y t + 1

2 act
2

vy = 1v02y + act

x = x0 + 1v02x t

vx = 1v02x ,

32.2 ft>s2
9.81 m>s2

Gravel falling off the end of this conveyor
belt follows a path that can be predicted
using the equations of constant acceleration.
In this way the location of the accumulated
pile can be determined. Rectangular
coordinates are used for the analysis since
the acceleration is only in the vertical
direction.
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12EXAMPLE 12.11

A sack slides off the ramp, shown in Fig. 12–21, with a horizontal
velocity of If the height of the ramp is 6 m from the floor,
determine the time needed for the sack to strike the floor and the
range R where sacks begin to pile up.

12 m>s.

x

y

R

6 m

12 m/sA

B
C

a � g

Fig. 12–21

SOLUTION
Coordinate System. The origin of coordinates is established at the
beginning of the path, point A, Fig. 12–21.The initial velocity of a sack has
components and Also, between points A and

B the acceleration is Since 
the three unknowns are R, and the time of flight Here we do 
not need to determine 

Vertical Motion. The vertical distance from A to B is known, and
therefore we can obtain a direct solution for by using the equation

Ans.

Horizontal Motion. Since has been calculated, R is determined
as follows:

Ans.

NOTE: The calculation for also indicates that if a sack were
released from rest at A, it would take the same amount of time to strike
the floor at C, Fig. 12–21.

tAB

R = 13.3 m

R = 0 + 12 m>s 11.11 s2
xB = xA + 1vA2xtAB1:+ 2

tAB

tAB = 1.11 s

-6 m = 0 + 0 + 1
21-9.81 m>s22tAB

2

yB = yA + 1vA2ytAB + 1
2 actAB

21+ c2
tAB

1vB2y .
tAB .1vB2y ,

1vB2x = 1vA2x = 12 m>s,ay = -9.81 m>s2.

1vA2y = 0.1vA2x = 12 m>s
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12 EXAMPLE 12.12

The chipping machine is designed to eject wood chips at 
as shown in Fig. 12–22. If the tube is oriented at 30° from the
horizontal, determine how high, h, the chips strike the pile if at this
instant they land on the pile 20 ft from the tube.

vO = 25 ft>s

4 ft

O

30�

y

x

20 ft

h

A

vO � 25 ft/s

Fig. 12–22

SOLUTION
Coordinate System. When the motion is analyzed between points
O and A, the three unknowns are the height h, time of flight and
vertical component of velocity [Note that ] With
the origin of coordinates at O, Fig. 12–22, the initial velocity of a chip
has components of

Also, and Since we do
not need to determine we have

Horizontal Motion.

Vertical Motion. Relating to the initial and final elevations of a
chip, we have

Ans.

NOTE: We can determine by using 1vA2y = 1vO2y + actOA .1vA2y
h = 1.81 ft

1h - 4 ft2 = 0 + 112.5 ft>s210.9238 s2 + 1
21-32.2 ft>s2210.9238 s22

1+ c2 yA = yO + 1vO2ytOA + 1
2 actOA

2

tOA

tOA = 0.9238 s

 20 ft = 0 + 121.65 ft>s2tOA

xA = xO + 1vO2xtOA1:+ 2

1vA2y ,
ay = -32.2 ft>s2.1vA2x = 1vO2x = 21.65 ft>s

1vO2y = 125 sin 30°2 ft>s = 12.5 ft>sc
1vO2x = 125 cos 30°2 ft>s = 21.65 ft>s:

1vA2x = 1vO2x .1vA2y .
tOA ,
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12EXAMPLE 12.13

The track for this racing event was designed so that riders jump off the
slope at 30°, from a height of 1 m. During a race it was observed that
the rider shown in Fig. 12–23a remained in mid air for 1.5 s. Determine
the speed at which he was traveling off the ramp, the horizontal
distance he travels before striking the ground, and the maximum
height he attains. Neglect the size of the bike and rider.

(a)
SOLUTION
Coordinate System. As shown in Fig. 12–23b, the origin of the
coordinates is established at A. Between the end points of the path
AB the three unknowns are the initial speed range R, and the
vertical component of velocity 

Vertical Motion. Since the time of flight and the vertical distance
between the ends of the path are known, we can determine 

Ans.

Horizontal Motion. The range R can now be determined.

Ans.
In order to find the maximum height h we will consider the path

AC, Fig. 12–23b. Here the three unknowns are the time of flight 
the horizontal distance from A to C, and the height h. At the
maximum height and since is known, we can determine
h directly without considering using the following equation.

Ans.

NOTE: Show that the bike will strike the ground at B with a velocity
having components of

1vB2x = 11.6 m>s: , 1vB2y = 8.02 m>sT

h = 3.28 m

 02 = 113.38 sin 30° m>s22 + 21-9.81 m>s22[1h - 1 m2 - 0]

1vC2y2 = 1vA2y2 + 2ac[yC - yA]

tAC

vA1vC2y = 0,

tAC ,

= 17.4 m

R = 0 + 13.38 cos 30° m>s11.5 s2
xB = xA + 1vA2xtAB1:+ 2

vA = 13.38 m>s = 13.4 m>s
-1 m = 0 + vA sin 30°11.5 s2 + 1

21-9.81 m>s2211.5 s22
yB = yA + 1vA2ytAB + 1

2 act
2
AB1+ c2

vA .

1vB2y .
vA ,

30�

A

C

B

y

x

R

h

1 m

(b)

Fig. 12–23
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12 FUNDAMENTAL PROBLEMS

F12–20

x

y

y � 0.5x

F12–18

x

y

y � 0.25x2

F12–19

x

y
y2 � 4x

x � (4t4) m

F12–17

y

x

3 m

4 m

y � 0.75x

x � 8t

F12–16

F12–18. A particle travels along a straight-line path
If the component of the particle’s velocity is

where is in seconds, determine the
magnitude of the particle’s velocity and acceleration
when t = 4 s.

tvx = (2t2) m>s,
xy = 0.5x.

F12–17. A particle is constrained to travel along the path.
If where is in seconds, determine the
magnitude of the particle’s velocity and acceleration when
t = 0.5 s.

tx = (4t4) m,

F12–15. If the components of a particle’s velocity
are and determine the equation
of the path and when 

F12–16. A particle is traveling along the straight path. If its
position along the is where is in
seconds, determine its speed when t = 2 s.

tx = (8t) m,x axis

t = 0.y = 0x = 0y = f(x).
vy = 8 m>s,vx = (32t) m>s

x and y

F12–20. The position of a box sliding down the spiral can
be described by where

is in seconds and the arguments for the sine and cosine are
in radians. Determine the velocity and acceleration of the
box when t = 2 s.

t
r = [2 sin (2t)i + 2 cos tj - 2t2k] ft,

F12–19. A particle is traveling along the parabolic path
. If where is in seconds, determine

the magnitude of the particle’s velocity and acceleration
when t = 2 s.

tx = (2t2) m,y = 0.25x2
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12

F12–25

A

B

x

y

x

v

8 ft

3 ft

12 ft

30�

F12–26

A

150 m

vA � 150 m/s

B

y

4
35

x

R

vA � 10 m/s

y

xB

A

B

h
x

30� C

F12–21/22

3 m

B

A
x

y

vA

30�

10 m

1.5 m

F12–23

R

vB � 20 m/s

3
4

5

F12–24

F12–25. A ball is thrown from If it is required to clear
the wall at determine the minimum magnitude of its
initial velocity vA.

B,
A.

F12–23. Determine the speed at which the basketball at 
must be thrown at the angle of so that it makes it to the
basket at B.

30°
A

F12–21. The ball is kicked from point with the initial
velocity Determine the maximum height it
reaches.

F12–22. The ball is kicked from point with the initial
velocity Determine the range and the
speed when the ball strikes the ground.

R,vA = 10 m>s.
A

hvA = 10 m>s.
A

F12–26. A projectile is fired with an initial velocity of
off the roof of the building. Determine the

range where it strikes the ground at B.R
vA = 150 m>s

F12–24. Water is sprayed at an angle of from the slope
at Determine the range R.20 m>s.

90°
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12 PROBLEMS

•12–77. The position of a particle is defined by
, where t is in seconds and the

arguments for the sine and cosine are given in radians.
Determine the magnitudes of the velocity and acceleration
of the particle when . Also, prove that the path of the
particle is elliptical.

12–78. Pegs A and B are restricted to move in the elliptical
slots due to the motion of the slotted link. If the link moves
with a constant speed of , determine the magnitude of
the velocity and acceleration of peg A when .x = 1 m

10 m/s

t = 1 s

r = 55 cos 2t i + 4 sin 2t j6 m12–71. The position of a particle is 
, where t is in seconds.

Determine the magnitude of the particle’s velocity and
acceleration when .

*12–72. The velocity of a particle is ,
where t is in seconds. If , determine the
displacement of the particle during the time interval

.

•12–73. A particle travels along the parabolic path .
If its component of velocity along the y axis is ,
determine the x and y components of the particle’s
acceleration. Here b and c are constants.

12–74. The velocity of a particle is given by
, where t is in seconds. If

the particle is at the origin when , determine the
magnitude of the particle’s acceleration when . Also,
what is the x, y, z coordinate position of the particle at this
instant?

12–75. A particle travels along the circular path
. If the y component of the particle’s velocity is

, determine the x and y components of its
acceleration at any instant.

*12–76. The box slides down the slope described by the
equation m, where is in meters. If the box has
x components of velocity and acceleration of 
and at , determine the y components
of the velocity and the acceleration of the box at this instant.

x = 5 max = –1.5 m>s2
vx = –3 m>s

xy = (0.05x2)

vy = 2r  cos  2t
x2 + y2 = r2

t = 2 s
t = 0

v = 516t2i +  4t3j + (5t +  2)k6 m>s

vy = ct2
y = bx2

t = 1 s to t = 3  s

r = 0 when t = 0
v = 53i + (6 - 2t)j6 m>s

t = 2  s

– (4t1/2 + t)j + (3t2 - 2)k6 m
r = 5(3t3 - 2t)i

12–79. A particle travels along the path with a
constant speed of . Determine the x and y
components of the particle’s velocity and acceleration when
the particle is at .

*12–80. The van travels over the hill described by
. If it has a constant speed of

, determine the x and y components of the van’s
velocity and acceleration when .x = 50 ft
75 ft>s
y = (-1.5(10–3) x2 + 15) ft

x = 4 m

v = 4 m>s
y2 = 4x

Prob. 12–76

y

x

y � 0.05 x2

Prob. 12–80

x

y � (�1.5 (10�3) x2 � 15) ft

y

100 ft

15 ft

Prob. 12–78

A

C D

B

y

x

v � 10 m/s

x2

4  � y2 � 1
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12
*12–84. The path of a particle is defined by , and
the component of velocity along the y axis is , where
both k and c are constants. Determine the x and y
components of acceleration when  

•12–85. A particle moves along the curve ,
where x and y are in ft. If the velocity component in the x
direction is and remains constant, determine the
magnitudes of the velocity and acceleration when .

12–86. The motorcycle travels with constant speed along
the path that, for a short distance, takes the form of a sine
curve. Determine the x and y components of its velocity at
any instant on the curve.

v0

x = 20 ft
vx = 2 ft>s

y = x - (x2>400)

y = y0.

vy = ct
y2 = 4kx

12–82. A car travels east 2 km for 5 minutes, then north 3 km
for 8 minutes, and then west 4 km for 10 minutes. Determine
the total distance traveled and the magnitude of displacement
of the car.Also, what is the magnitude of the average velocity
and the average speed?

12–83. The roller coaster car travels down the helical path at
constant speed such that the parametric equations that define
its position are , , , where
c, h, and b are constants. Determine the magnitudes of its
velocity and acceleration.

z = h - bty = c cos ktx = c sin kt

•12–81. A particle travels along the circular path from A to
B in 1 s. If it takes 3 s for it to go from A to C, determine its
average velocity when it goes from B to C.

12–87. The skateboard rider leaves the ramp at A with an
initial velocity . If he strikes the ground at
B, determine and the time of flight.vA

vA at a 30° angle

45�

30�

30 m

x

y

A

B

C

Prob. 12–81

x

y

z

Prob. 12–83

L L

c
c

x

y

v0

y � c sin (     x) ––
L
π

Prob. 12–86

h 5 ft

60 ft

Prob. 12–88

Prob. 12–87

vA

5 m

1 m

A

B

30�

*12–88. The pitcher throws the baseball horizontally with a
speed of 140 from a height of 5 ft. If the batter is 60 ft
away, determine the time for the ball to arrive at the batter
and the height h at which it passes the batter.

ft>s
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12
12–91. The fireman holds the hose at an angle with
horizontal, and the water is discharged from the hose at A
with a speed of . If the water stream strikes the
building at B, determine his two possible distances s from
the building.

vA = 40 ft>s
u = 30° 

12–90. A projectile is fired with a speed of at an
angle of . A second projectile is then fired with the same
speed 0.5 s later. Determine the angle of the second
projectile so that the two projectiles collide. At what
position (x, y) will this happen? 

u

60°
v = 60 m>s

•12–89. The ball is thrown off the top of the building. If it
strikes the ground at B in 3 s, determine the initial velocity

and the inclination angle at which it was thrown.Also,
find the magnitude of the ball’s velocity when it strikes the
ground.

uAvA 

Prob. 12–89

75 ft

60 ft

vA

B

A

uA

Prob. 12–90

y

y

x
x

v � 60 m/s

v � 60 m/s60�
u

Prob. 12–91

B

4 ft

A

s

8 ft

vA � 40 ft/s

u

Prob. 12–92

B

4 ft

A

s

8 ft

vA � 40 ft/s

u

*12–92. Water is discharged from the hose with a speed of
. Determine the two possible angles the fireman can

hold the hose so that the water strikes the building at B.
Take .s = 20 ft

u40 ft>s
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•12–93. The pitching machine is adjusted so that the
baseball is launched with a speed of . If the ball
strikes the ground at B, determine the two possible angles 
at which it was launched.

uA

vA = 30 m>s

Prob. 12–93

30 m

B

A

1.2 m

vA � 30 m/s

uA

12–95. If the motorcycle leaves the ramp traveling at
, determine the height h ramp B must have so that

the motorcycle lands safely.
110 ft>s

12–94. It is observed that the time for the ball to strike the
ground at B is 2.5 s. Determine the speed and angle at
which the ball was thrown.

uAvA

Prob. 12–94

vA

A

B

1.2 m

50 m

uA

Prob. 12–95

350 ft

30 ft

110 ft/s

A B

h
30�

*12–96. The baseball player A hits the baseball with
and . When the ball is directly above

of player B he begins to run under it. Determine the
constant speed and the distance d at which B must run in
order to make the catch at the same elevation at which the
ball was hit.

vB

uA = 60°vA = 40 ft>s

vA � 40 ft/s

A
vB

A
u B C

15 ft d

Prob. 12–96

•12–97. A boy throws a ball at O in the air with a speed 
at an angle . If he then throws another ball with the same
speed at an angle , determine the time between
the throws so that the balls collide in mid air at B.

u2 6 u1v0

u1

v0

B

y

x

O
u

u1
2

Prob. 12–97
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•12–101. A projectile is fired from the platform at B. The
shooter fires his gun from point A at an angle of .
Determine the muzzle speed of the bullet if it hits the
projectile at C.

30°

*12–100. The velocity of the water jet discharging from the
orifice can be obtained from , where is
the depth of the orifice from the free water surface.
Determine the time for a particle of water leaving the orifice
to reach point B and the horizontal distance x where it hits
the surface.

h = 2 mv = 22gh

Prob. 12–100

1.5 m

2 m A

x
B

vA

Prob. 12–101

10 m

20 m

1.8 m

B

A
vA

30�

C

12–98. The golf ball is hit at A with a speed of 
and directed at an angle of with the horizontal as
shown. Determine the distance d where the ball strikes the
slope at B.

30°
vA = 40 m>s

12–99. If the football is kicked at the , determine
its minimum initial speed so that it passes over the goal
post at C. At what distance s from the goal post will the
football strike the ground at B?

vA

 45° angle

Prob. 12–99

vA

A

C

Bs160 ft

20 ft45�

Prob. 12–98

A

B
vA � 40 m/s

1
5

d

30�
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d

B

A 10�
45�

vA � 80 ft/s

Prob. 12–102

25 ft 30 ft

15 ft
y

45�

h

60�

vA � 80 ft/s

x

B

Probs. 12–103/104

12–103. The football is to be kicked over the goalpost,
which is 15 ft high. If its initial speed is ,
determine if it makes it over the goalpost, and if so, by how
much, h.

*12–104. The football is kicked over the goalpost with an
initial velocity of as shown. Determine the
point B (x, y) where it strikes the bleachers.

vA = 80 ft>s

vA = 80 ft>s

12–102. A golf ball is struck with a velocity of 80 as
shown. Determine the distance d to where it will land.

ft>s •12–105. The boy at A attempts to throw a ball over the
roof of a barn with an initial speed of .
Determine the angle at which the ball must be thrown so
that it reaches its maximum height at C. Also, find the
distance d where the boy should stand to make the throw.

uA

vA = 15 m>s

8 m

4 m

1 m

AA

d

vA

C

u

Prob. 12–105

8 m

4 m

1 m

AA

d

vA

C

u

12–106. The boy at A attempts to throw a ball over the roof
of a barn such that it is launched at an angle .
Determine the minimum speed at which he must throw
the ball so that it reaches its maximum height at C. Also,
find the distance d where the boy must stand so that he can
make the throw.

vA

uA = 40°
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•12–109. Determine the horizontal velocity of a tennis
ball at A so that it just clears the net at B. Also, find the
distance s where the ball strikes the ground.

vA

*12–108. Small packages traveling on the conveyor belt fall
off into a l-m-long loading car. If the conveyor is running at a
constant speed of , determine the smallest and
largest distance R at which the end A of the car may be
placed from the conveyor so that the packages enter the car.

vC = 2 m>s

12–107. The fireman wishes to direct the flow of water
from his hose to the fire at B. Determine two possible
angles and at which this can be done. Water flows from
the hose at .vA = 80 ft>s

u2u1

12–110. It is observed that the skier leaves the ramp A at an
angle with the horizontal. If he strikes the ground
at B, determine his initial speed and the time of flight .tABvA

uA = 25°

35 ft

20 ft

A
u

B

vA

Prob. 12–107

vc � 2 m/s

30�

3 m

1 m

A B

R

Prob. 12–108

21 fts

7.5 ft
3 ft

vA

C

A

B

Prob. 12–109

4 m

vAA

100 m

B

A
u

3
4

5

Prob. 12–110
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1212.7 Curvilinear Motion: Normal and
Tangential Components

When the path along which a particle travels is known, then it is often
convenient to describe the motion using n and t coordinate axes which
act normal and tangent to the path, respectively, and at the instant
considered have their origin located at the particle.

Planar Motion. Consider the particle shown in Fig. 12–24a, which
moves in a plane along a fixed curve, such that at a given instant it is at
position s, measured from point O. We will now consider a coordinate
system that has its origin at a fixed point on the curve, and at the instant
considered this origin happens to coincide with the location of the
particle. The t axis is tangent to the curve at the point and is positive in
the direction of increasing s.We will designate this positive direction with
the unit vector A unique choice for the normal axis can be made by
noting that geometrically the curve is constructed from a series of
differential arc segments ds, Fig. 12–24b. Each segment ds is formed from
the arc of an associated circle having a radius of curvature (rho) and
center of curvature The normal axis n is perpendicular to the t axis with
its positive sense directed toward the center of curvature Fig. 12–24a.
This positive direction, which is always on the concave side of the curve,
will be designated by the unit vector The plane which contains the n
and t axes is referred to as the embracing or osculating plane, and in this
case it is fixed in the plane of motion.* 

Velocity. Since the particle moves, s is a function of time. As
indicated in Sec. 12.4, the particle’s velocity v has a direction that is
always tangent to the path, Fig. 12–24c, and a magnitude that is
determined by taking the time derivative of the path function 
i.e., (Eq. 12–8). Hence

(12–15)

where

(12–16)v = s
#

v = vut

v = ds>dt
s = s1t2,

un .

O¿,
O¿.

r

ut .

*The osculating plane may also be defined as the plane which has the greatest contact
with the curve at a point. It is the limiting position of a plane contacting both the point and
the arc segment ds. As noted above, the osculating plane is always coincident with a plane
curve; however, each point on a three-dimensional curve has a unique osculating plane.

s

O

O¿

n

un

ut

t
Position

(a)

O¿

ds

Radius of curvature

O¿

O¿
ds

ds

r

r

r
r

r
r

(b)

O¿

Velocity

r r

v

(c)

Fig. 12–24
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Acceleration. The acceleration of the particle is the time rate of
change of the velocity. Thus,

(12–17)

In order to determine the time derivative note that as the particle
moves along the arc ds in time dt, preserves its magnitude of unity;
however, its direction changes, and becomes Fig. 12–24d. As shown in
Fig. 12–24e, we require Here stretches between the
arrowheads of and which lie on an infinitesimal arc of radius 
Hence, has a magnitude of and its direction is defined by

Consequently, and therefore the time derivative becomes 

Since Fig. 12–24d, then and therefore

Substituting into Eq. 12–17, a can be written as the sum of its two
components,

(12–18)

where

or (12–19)

and

(12–20)

These two mutually perpendicular components are shown in Fig. 12–24f.
Therefore, the magnitude of acceleration is the positive value of

(12–21)a = 4at
2 + an

2

an =
v2

r

atds = v dvat = v
#

a = atut + anun

u
#

t = u
#
un =

s
#

r
un =

v
r

un

u
#
= s

# >r,ds = rdu,u
#

t = u
#
un .

dut = duun ,un .
dut = 112 du,dut

ut = 1.uœ
t ,ut

dutuœ
t = ut + dut .

uœ
t ,

ut

u
#

t ,

a = v
# = v

#
ut + vu

#
t

O¿

(d)

r
r

ut

u¿t

un

du

ds

ut

u¿t

un

dut

du

(e)

an

O¿

Acceleration

P
at

a

(f)

Fig. 12–24 (cont.) 
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To better understand these results, consider the following two special

cases of motion.

1. If the particle moves along a straight line, then and from
Eq. 12–20, Thus and we can conclude that the
tangential component of acceleration represents the time rate of
change in the magnitude of the velocity.

2. If the particle moves along a curve with a constant speed, then
and Therefore, the normal component

of acceleration represents the time rate of change in the direction of
the velocity. Since always acts towards the center of curvature,
this component is sometimes referred to as the centripetal (or center
seeking) acceleration.

As a result of these interpretations, a particle moving along the curved
path in Fig. 12–25 will have accelerations directed as shown.

an

a = an = v2>r.at = v
# = 0

a = at = v
#
,an = 0.

r: q

Increasing
speed

at

an
a

a

at

an

a � at

Change in
direction of
velocity

Change in
magnitude of
velocity

Fig. 12–25

Three-Dimensional Motion. If the particle moves along a space
curve, Fig. 12–26, then at a given instant the t axis is uniquely specified;
however, an infinite number of straight lines can be constructed normal
to the tangent axis. As in the case of planar motion, we will choose the
positive n axis directed toward the path’s center of curvature This axis
is referred to as the principal normal to the curve.With the n and t axes so
defined, Eqs. 12–15 through 12–21 can be used to determine v and a. Since

and are always perpendicular to one another and lie in the
osculating plane, for spatial motion a third unit vector, defines the
binormal axis b which is perpendicular to and Fig. 12–26.

Since the three unit vectors are related to one another by the vector
cross product, e.g., Fig. 12–26, it may be possible to use this
relation to establish the direction of one of the axes, if the directions of
the other two are known. For example, if no motion occurs in the 
direction, and this direction and are known, then can be
determined, where in this case Fig. 12–26. Remember,
though, that is always on the concave side of the curve.un

un = ub * ut ,
unut

ub

ub = ut * un ,

un ,ut

ub ,
unut

O¿.

O¿

un

O

ub

ut

b osculating plane

t

n

s

Fig. 12–26
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Motorists traveling along this clover-
leaf interchange experience a normal
acceleration due to the change in
direction of their velocity. A tangential
component of acceleration occurs when
the cars’ speed is increased or decreased.

Procedure for Analysis

Coordinate System.

• Provided the path of the particle is known, we can establish a set
of n and t coordinates having a fixed origin, which is coincident
with the particle at the instant considered.

• The positive tangent axis acts in the direction of motion and the
positive normal axis is directed toward the path’s center of
curvature.

Velocity.

• The particle’s velocity is always tangent to the path.

• The magnitude of velocity is found from the time derivative of
the path function.

Tangential Acceleration.

• The tangential component of acceleration is the result of the time
rate of change in the magnitude of velocity. This component acts
in the positive s direction if the particle’s speed is increasing or in
the opposite direction if the speed is decreasing.

• The relations between t and s are the same as for rectilinear
motion, namely,

• If is constant, the above equations, when integrated,
yield

Normal Acceleration.

• The normal component of acceleration is the result of the time
rate of change in the direction of the velocity. This component is
always directed toward the center of curvature of the path, i.e.,
along the positive n axis.

• The magnitude of this component is determined from

• If the path is expressed as the radius of curvature at
any point on the path is determined from the equation

The derivation of this result is given in any standard calculus text.

r =
[1 + 1dy>dx22]3>2

ƒd2y>dx2 ƒ

ry = f1x2,
an =

v2

r

v2 = v0
2 + 21at2c1s - s02

v = v0 + 1at2ct
s = s0 + v0t + 1

21at2ct2

at = 1at2c ,at

at = v
#  at ds = v dv

v,at ,

v = s
#
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12EXAMPLE 12.14

When the skier reaches point A along the parabolic path in Fig. 12–27a,
he has a speed of which is increasing at Determine the
direction of his velocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION
Coordinate System. Although the path has been expressed in terms
of its x and y coordinates, we can still establish the origin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12–27a.

Velocity. By definition, the velocity is always directed tangent to the
path. Since then at 
Hence, at A, v makes an angle of with the x axis,
Fig. 12–27a. Therefore,

Ans.

The acceleration is determined from However,
it is first necessary to determine the radius of curvature of the path at
A (10 m, 5 m). Since then

The acceleration becomes

As shown in Fig. 12–27b,

Thus, so that,

Ans.

NOTE: By using n, t coordinates, we were able to readily solve this
problem through the use of Eq. 12–18, since it accounts for the separate
changes in the magnitude and direction of v.

a = 2.37 m>s2 12.5°d

45° + 90° + 57.5° - 180° = 12.5°

f = tan-1 2
1.273

= 57.5°

a = 4(2 m>s222 + (1.273 m>s222 = 2.37 m>s2

= 52ut + 1.273un6m>s2

= 2ut +
16 m>s22
28.28 m

un

aA = v
#
ut +

v2

r
un

r =
[1 + 1dy>dx22]3>2

ƒd2y>dx2 ƒ
=
C1 + A 1

10 x B2 D3>2
ƒ 1
10 ƒ

`
x=10 m

= 28.28 m

d2y>dx2 = 1
10 ,

1v2>r2un .a = v
#
ut +

vA = 6 m>s 45°d

u = tan-11 = 45°
x = 10 m, dy>dx = 1.dy>dx = 1

10 x,y = 1
20 x2,

2 m>s2.6 m>s

5 m

10 m

y

x

vA A
t

n

(a)

u

y � x21
20

2 m/s2

1.273 m/s2

45�
90�

a

t

n

(b)

f

Fig. 12–27
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12 EXAMPLE 12.15

A race car C travels around the horizontal circular track that has a
radius of 300 ft, Fig. 12–28. If the car increases its speed at a constant
rate of starting from rest, determine the time needed for it to
reach an acceleration of What is its speed at this instant?8 ft>s2.

7 ft>s2,

SOLUTION
Coordinate System. The origin of the n and t axes is coincident
with the car at the instant considered. The t axis is in the direction of
motion, and the positive n axis is directed toward the center of the
circle. This coordinate system is selected since the path is known.

Acceleration. The magnitude of acceleration can be related to its
components using Here Since 
the velocity as a function of time must be determined first.

Thus

The time needed for the acceleration to reach is therefore

Solving for the positive value of t yields

Ans.

Velocity. The speed at time is

Ans.

NOTE: Remember the velocity will always be tangent to the path,
whereas the acceleration will be directed within the curvature of the path.

v = 7t = 714.872 = 34.1 ft>s
t = 4.87 s

t = 4.87 s

 0.163t2 = 4(8 ft>s2)2 - (7 ft>s2)2

 8 ft>s2 = 4(7 ft>s2)2 + (0.163t2)2

a = 4at
2 + an

2

8 ft>s2

an =
v2

r
=
17t22
300

= 0.163t2 ft>s2

v = 0 + 7t

v = v0 + 1at2ct
an = v2>r,at = 7 ft>s2.a = 4at

2 + an
2 .

t

n

at
an

a

C

r � 300 ft

Fig. 12–28
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12EXAMPLE 12.16

The boxes in Fig. 12–29a travel along the industrial conveyor. If a box
as in Fig. 12–29b starts from rest at A and increases its speed such that

where t is in seconds, determine the magnitude of its
acceleration when it arrives at point B.

SOLUTION
Coordinate System. The position of the box at any instant is
defined from the fixed point A using the position or path coordinate s,
Fig. 12–29b. The acceleration is to be determined at B, so the origin of
the n, t axes is at this point.

Acceleration. To determine the acceleration components 
and it is first necessary to formulate and so that they
may be evaluated at B. Since when then

(1)

(2)

The time needed for the box to reach point B can be determined by
realizing that the position of B is
Fig. 12–29b, and since when we have

Substituting into Eqs. 1 and 2 yields

At B, so that

The magnitude of Fig. 12–29c, is therefore

Ans.aB = 4(1.138 m>s2)2 + (5.242 m>s2)2 = 5.36 m>s2

aB ,

1aB2n =
vB

2

rB
=
13.238 m>s22

2 m
= 5.242 m>s2

rB = 2 m,

vB = 0.115.6922 = 3.238 m>s
1aB2t = v

#
B = 0.215.6902 = 1.138 m>s2

tB = 5.690s

 6.142 m = 0.0333tB
3

L

6.142 m

0
ds =

L

tB

0
0.1t2dt

v =
ds

dt
= 0.1t2

t = 0sA = 0
sB = 3 + 2p122>4 = 6.142 m,

v = 0.1t2

L

v

0
dv =

L

t

0
0.2t dt

at = v
# = 0.2t

t = 0,vA = 0
v
#

van = v2>r, at = v
#

at = 10.2t2 m>s2,

(a)

3 m

s

n
2 m

B

t

(b)

A

(c)

B

t

n
aB5.242 m/s2

1.138 m/s2

Fig. 12–29
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100 m
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s

s
t

n

300
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12 FUNDAMENTAL PROBLEMS

F12–30. When the crate has a speed of 
which is increasing at Determine the direction of the
crate’s velocity and the magnitude of the crate’s acceleration
at this instant.

6 ft>s2.
20 ft>sx = 10 ft,

F12–29. If the car decelerates uniformly along the curved
road from at to at determine the
acceleration of the car at B.

C,15 m>sA25 m>s

F12–27. The boat is traveling along the circular path with a
speed of where is in seconds. Determine
the magnitude of its acceleration when t = 10 s.

tv = (0.0625t2) m>s,

F12–32. The car travels up the hill with a speed of
where is in meters, measured from 

Determine the magnitude of its acceleration when it is at
point where r = 500 m.s = 50 m,

A.sv = (0.2s) m>s,

F12–28. The car is traveling along the road with a speed of
where is in meters. Determine the

magnitude of its acceleration when if at s = 0.t = 0t = 3 s
sv = (300>s) m>s,

F12–31. If the motorcycle has a deceleration of
and its speed at position is 

determine the magnitude of its acceleration when it passes
point B.

25 m>s,Aat = -(0.001s) m>s2

F12–29

250 m

50 m

C

O

A

B

rB � 300 m

F12–30

y

x

y �     x2

10 ft

1
24

20 ft/s

F12–31

300 m

A

s

B

n

t

90�

F12–27

v � 0.0625t2

O

40 m

t

n

F12–32

y

n

A
s � 50 m

x

t



12.7 CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS 61

12

� 30�

n

t

a
u

A

Prob. 12–116

r � 50 m

v

Probs. 12–117/118

s � 18 m

� 30 mρ

Prob. 12–120

PROBLEMS

12–111. When designing a highway curve it is required that
cars traveling at a constant speed of must not have
an acceleration that exceeds . Determine the
minimum radius of curvature of the curve.

*12–112. At a given instant, a car travels along a circular
curved road with a speed of while decreasing its speed
at the rate of . If the magnitude of the car’s acceleration
is , determine the radius of curvature of the road.

•12–113. Determine the maximum constant speed a race
car can have if the acceleration of the car cannot exceed

while rounding a track having a radius of curvature
of 200 m.

12–114. An automobile is traveling on a horizontal circular
curve having a radius of 800 ft. If the acceleration of the
automobile is , determine the constant speed at
which the automobile is traveling.

12–115. A car travels along a horizontal circular curved
road that has a radius of 600 m. If the speed is uniformly
increased at a rate of , determine the magnitude
of the acceleration at the instant the speed of the car is 
60 .

*12–116. The automobile has a speed of 80 at point A
and an acceleration a having a magnitude of , acting
in the direction shown. Determine the radius of curvature
of the path at point A and the tangential component of
acceleration.

10 ft>s2
ft>s

km>h
2000 km>h2

5 ft>s2

7.5 m>s2

5 m>s2
3 m>s2

20 m>s

3 m>s2
25 m>s

•12–117. Starting from rest the motorboat travels around
the circular path, , at a speed ,
where t is in seconds. Determine the magnitudes of the
boat’s velocity and acceleration when it has traveled 20 m.

12–118. Starting from rest, the motorboat travels around
the circular path, , at a speed ,
where t is in seconds. Determine the magnitudes of the
boat’s velocity and acceleration at the instant .t = 3 s

v = (0.2t2) m>sr = 50 m

v = (0.8t) m>sr = 50 m

12–119. A car moves along a circular track of radius 250 ft,
and its speed for a short period of time is

, where t is in seconds. Determine the
magnitude of the car’s acceleration when . How far
has it traveled in ?

*12–120. The car travels along the circular path such that its
speed is increased by , where t is in
seconds. Determine the magnitudes of its velocity and
acceleration after the car has traveled starting
from rest. Neglect the size of the car.

s = 18 m

at = (0.5et) m>s2

t = 2 s
t = 2 s

v = 3(t + t2) ft>s
0 … t … 2 s
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y

x

400 m

y � 200 e        
x

1000

B
A

•12–125. When the car reaches point A it has a speed of
. If the brakes are applied, its speed is reduced by

. Determine the magnitude of acceleration
of the car just before it reaches point C.

12–126. When the car reaches point A, it has a speed of
. If the brakes are applied, its speed is reduced by 

. Determine the magnitude of
acceleration of the car just before it reaches point C.

= (0.001s - 1) m>s2at

25 m>s

at = (-1
4 t

1>2
) m>s2

25 m>s

12–123. The car passes point A with a speed of after
which its speed is defined by .
Determine the magnitude of the car’s acceleration when it
reaches point B, where .

*12–124. If the car passes point A with a speed of 
and begins to increase its speed at a constant rate of

, determine the magnitude of the car’s
acceleration when .s = 100 m
at =  0.5 m>s2

20 m>s
s = 51.5 m

v = (25 - 0.15s)  m>s
25 m>s

•12–121. The train passes point B with a speed of 
which is decreasing at . Determine the
magnitude of acceleration of the train at this point.

12–122. The train passes point A with a speed of 
and begins to decrease its speed at a constant rate of

. Determine the magnitude of the
acceleration of the train when it reaches point B, where

.sAB = 412 m

at = – 0.25 m>s2

30 m>s

= – 0.5 m>s2at

20 m>s

12–127. Determine the magnitude of acceleration of the
airplane during the turn. It flies along the horizontal
circular path AB in , while maintaining a constant speed
of .

*12–128. The airplane flies along the horizontal circular path
AB in 60 s. If its speed at point A is , which decreases
at a rate of , determine the magnitude of the
plane’s acceleration when it reaches point B.

= (–0.1t) ft>s2at

400 ft>s

300 ft>s
40 s

Probs. 12–121/122

y � 16 �        x2 1
625

y

s

x
16 m

B

A

Probs. 12–123/124

A

B

60�

Probs. 12–127/128

B

C

A

200 m30�

r � 250 m

Probs. 12–125/126
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•12–133. A particle is traveling along a circular curve
having a radius of 20 m. If it has an initial speed of 
and then begins to decrease its speed at the rate of 

, determine the magnitude of the
acceleration of the particle two seconds later.

12–134. A racing car travels with a constant speed of
around the elliptical race track. Determine the

acceleration experienced by the driver at A.

12–135. The racing car travels with a constant speed of
around the elliptical race track. Determine the

acceleration experienced by the driver at B.
240 km>h

240 km>h

= (-0.25s) m>s2at

20 m>s

12–131. The car is traveling at a constant speed of .
The driver then applies the brakes at A and thereby reduces
the car’s speed at the rate of , where is
in . Determine the acceleration of the car just before it
reaches point C on the circular curve. It takes 15 s for the
car to travel from A to C.

*12–132. The car is traveling at a speed of . The
driver applies the brakes at A and thereby reduces the 
speed at the rate of , where t is in seconds.
Determine the acceleration of the car just before it reaches
point C on the circular curve. It takes 15 s for the car to
travel from A to C.

 m>s2= A -1
8t Bat

30 m>s

m>s
v= (– 0.08v) m>s2at

30 m>s

•12–129. When the roller coaster is at B, it has a speed of
, which is increasing at . Determine the

magnitude of the acceleration of the roller coaster at this
instant and the direction angle it makes with the x axis.

12–130. If the roller coaster starts from rest at A and its
speed increases at , determine the
magnitude of its acceleration when it reaches B where

.sB = 40 m

= (6 – 0.06s) m>s2at

= 3 m>s2at25 m>s

*12–136. The position of a particle is defined by
, where t is in

seconds. Determine the magnitudes of the velocity and
acceleration at any instant.

•12–137. The position of a particle is defined by
, where t is in seconds. Determine

the magnitude of the velocity and acceleration and the
radius of curvature of the path when .t = 2  s

r = 5t3
 i + 3t2

 j + 8t k6 m

r = 52  sin (p4)t i + 2 cos (p4)t j + 3 t k6 m

y

s

A

x

30 m

y �       x2 1
100

B

Probs. 12–129/130

C
B

s

A

100 m

45�

Probs. 12–131/132

x2
––
16

y2
––
4

y

x

2 km

4 km

�       � 1

A

B

Probs. 12–134/135
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B

A u

5 m

Probs. 12–138/139

50 m

Probs. 12–140/141

12–142. Two cyclists, A and B, are traveling counterclockwise
around a circular track at a constant speed of 8 at 
the instant shown. If the speed of A is increased at

, where is in feet, determine the
distance measured counterclockwise along the track from B
to A between the cyclists when . What is the
magnitude of the acceleration of each cyclist at this instant?

t = 1 s

sA(at)A = (sA) ft>s2

ft>s

*12–140. The truck travels at a speed of along a
circular road that has a radius of 50 m. For a short distance
from , its speed is then increased by ,
where s is in meters. Determine its speed and the magnitude
of its acceleration when it has moved .

•12–141. The truck travels along a circular road that has a
radius of 50 m at a speed of 4 . For a short distance when

, its speed is then increased by , where
t is in seconds. Determine the speed and the magnitude of
the truck’s acceleration when .t = 4 s

at = (0.4t) m>s2t = 0
m>s

s = 10 m

at = (0.05s) m>s2s = 0

4 m>s

12–138. Car B turns such that its speed is increased by
, where t is in seconds. If the car starts

from rest when , determine the magnitudes of its
velocity and acceleration when the arm AB rotates .
Neglect the size of the car.

12–139. Car B turns such that its speed is increased by
, where t is in seconds. If the car starts

from rest when , determine the magnitudes of its
velocity and acceleration when . Neglect the size of
the car.

t = 2 s
u = 0°

(at)B = (0.5et) m>s2

u = 30°
u = 0°

(at)B = (0.5et) m>s2

12–143. A toboggan is traveling down along a curve which
can be approximated by the parabola .
Determine the magnitude of its acceleration when it
reaches point A, where its speed is , and it is
increasing at the rate of .(at)A = 3 m>s2

vA = 10 m>s
y = 0.01x2

r � 50 ft

� 120� sB

sA

B

A

u

Prob. 12–142

60 m

36 m

y � 0.01x2

y

x

A

Prob. 12–143
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y

x

  y � 15 ln (     ) 

A

80 m

x––
80

Prob. 12–145

100 ft
x

y

y �
500–—x

v � 30 ft/s

A

Prob. 12–146

y

x

2 m

y � 0.4x2

A

Prob. 12–147

12–147. The box of negligible size is sliding down along a
curved path defined by the parabola .When it is at
A ( , ), the speed is and the
increase in speed is . Determine the
magnitude of the acceleration of the box at this instant.

dvB>dt = 4 m>s2
vB = 8 m>syA = 1.6 mxA = 2 m

y = 0.4x2

12–146. The motorcyclist travels along the curve at a
constant speed of 30 . Determine his acceleration when
he is located at point A. Neglect the size of the motorcycle
and rider for the calculation.

ft>s*12–144. The jet plane is traveling with a speed of 120 
which is decreasing at when it reaches point A.
Determine the magnitude of its acceleration when it is at
this point. Also, specify the direction of flight, measured
from the x axis.

40 m>s2
m>s

•12–145. The jet plane is traveling with a constant speed of
110 along the curved path. Determine the magnitude of
the acceleration of the plane at the instant it reaches point
A ( ).y = 0

m>s

y

x

  y � 15 ln (     ) 

A

80 m

x––
80

Prob. 12–144
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600 ft

v � 40 ft/s

x

y

y � (10�6)x3

Prob. 12–148

r � 5 m

� 120� sB

sA

A

B

u

Prob. 12–150

r � 5 m

� 120� sB

sA

A

B

u

Prob. 12–149

200 m

A

y

x
B

Prob. 12–151

*12–148. A spiral transition curve is used on railroads to
connect a straight portion of the track with a curved
portion. If the spiral is defined by the equation

, where x and y are in feet, determine the
magnitude of the acceleration of a train engine moving with
a constant speed of 40 when it is at point .x = 600 ftft>s
y = (10-6)x3

12–151. The race car travels around the circular track with a
speed of 16 . When it reaches point A it increases its
speed at , where is in . Determine the
magnitudes of the velocity and acceleration of the car when
it reaches point B. Also, how much time is required for it to
travel from A to B?

m>svat = (4
3 v1>4) m>s2

m>s

12–150. Particles A and B are traveling around a circular
track at a speed of 8 at the instant shown. If the speed of
B is increasing by , and at the same instant A
has an increase in speed of , determine how
long it takes for a collision to occur.What is the magnitude of
the acceleration of each particle just before the collision
occurs?

(at)A = 0.8t m>s2
(at)B = 4 m>s2

m>s

•12–149. Particles A and B are traveling counter-clockwise
around a circular track at a constant speed of 8 . If at 
the instant shown the speed of A begins to increase by

where sA is in meters, determine the
distance measured counterclockwise along the track from B
to A when . What is the magnitude of the
acceleration of each particle at this instant?

t = 1 s

(at)A =(0.4sA) m>s2,

m>s
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*12–152. A particle travels along the path 
where a, b, c are constants. If the speed of the particle is
constant, , determine the x and y components
of velocity and the normal component of acceleration
when .

•12–153. The ball is kicked with an initial speed
at an angle with the horizontal. Find

the equation of the path, , and then determine the
normal and tangential components of its acceleration when

.t = 0.25 s

y = f(x)
uA = 40°vA = 8 m>s

x = 0

v = v0

y = a + bx + cx2, 12–154. The motion of a particle is defined by the
equations and , where t is in
seconds. Determine the normal and tangential components
of the particle’s velocity and acceleration when .

12–155. The motorcycle travels along the elliptical track at
a constant speed . Determine the greatest magnitude of
the acceleration if .a 7 b

v

t = 2 s

y = (t2) mx = (2t + t2) m

x

y

y

xA

uA � 40�

vA = 8 m/s

Prob. 12–153

b

a

y

x

� � 1x2

a2
y2

b2

Prob. 12–155

12.8 Curvilinear Motion: Cylindrical
Components

Sometimes the motion of the particle is constrained on a path that is best
described using cylindrical coordinates. If motion is restricted to the plane,
then polar coordinates are used.

Polar Coordinates. We can specify the location of the particle
shown in Fig. 12–30a using a radial coordinate r, which extends outward
from the fixed origin O to the particle, and a transverse coordinate
which is the counterclockwise angle between a fixed reference line and
the r axis. The angle is generally measured in degrees or radians, where

The positive directions of the r and coordinates are
defined by the unit vectors and respectively. Here is in the
direction of increasing r when is held fixed, and is in a direction of
increasing when r is held fixed. Note that these directions are
perpendicular to one another.

u

uuu

uruu ,ur

u1 rad = 180°>p.

u,

O

r

r

ur

uu

Position

(a)

u

u

Fig. 12–30
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Position. At any instant the position of the particle, Fig. 12–30a, is
defined by the position vector

(12–22)

Velocity. The instantaneous velocity v is obtained by taking the time
derivative of r. Using a dot to represent the time derivative, we have

To evaluate notice that only changes its direction with respect to
time, since by definition the magnitude of this vector is always one unit.
Hence, during the time a change will not cause a change in the
direction of however, a change will cause to become where

Fig. 12–30b. The time change in is then For small
angles this vector has a magnitude and acts in the 
direction. Therefore, and so

(12–23)

Substituting into the above equation, the velocity can be written in
component form as

(12–24)

where

(12–25)

These components are shown graphically in Fig. 12–30c. The radial
component is a measure of the rate of increase or decrease in the
length of the radial coordinate, i.e., whereas the transverse component

can be interpreted as the rate of motion along the circumference of a
circle having a radius r. In particular, the term is called the
angular velocity, since it indicates the time rate of change of the angle 
Common units used for this measurement are 

Since and are mutually perpendicular, the magnitude of velocity
or speed is simply the positive value of

(12–26)

and the direction of v is, of course, tangent to the path, Fig. 12–30c.

v = 4(r
# 22 + (ru

# 22

vuvr

rad>s.
u.

u
#
= du>dt

vu
r
#
;

vr

vr = r
#

vu = ru
#

v = vrur + vuuu

u
#

r = u
#
uu

u
#

r = lim
¢t:0

¢ur

¢t
= a lim

¢t:0

¢u
¢t
b uu

¢ur = ¢uuu ,
uu¢ur L 11¢u2¢u

¢ur .urur
œ = ur + ¢ur ,

ur
œ ,ur¢uur ;

¢r¢t,

uru
#

r ,

v = r
# = r

#
ur + ru

#
r

r = rur

(b)

�ur

ur

uu u¿r

�u

O

r

vr

vu

v

Velocity

(c)

u

O

r

r

ur

uu

Position

(a)

u

u

Fig. 12–30 (cont.)
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Acceleration. Taking the time derivatives of Eq. 12–24, using
Eqs. 12–25, we obtain the particle’s instantaneous acceleration,

To evaluate it is necessary only to find the change in the direction of 
since its magnitude is always unity. During the time a change will not
change the direction of however, a change will cause to become

where Fig. 12–30d. The time change in is thus 
For small angles this vector has a magnitude and acts in the

direction; i.e., Thus,

(12–27)

Substituting this result and Eq. 12–23 into the above equation for a, we
can write the acceleration in component form as

(12–28)

where

(12–29)

The term is called the angular acceleration
since it measures the change made in the angular velocity during an
instant of time. Units for this measurement are 

Since and are always perpendicular, the magnitude of
acceleration is simply the positive value of

(12–30)

The direction is determined from the vector addition of its two
components. In general, a will not be tangent to the path, Fig. 12–30e.

a = 4(r
$ - ru

#
2)2 + (r u

$
+ 2r

#
u
#
)2

auar ,
rad>s2.

u
$

= d2u>dt2 = d>dt1du>dt2

ar = r
$ - ru

#
2

au =
$

ru + 2
#
ru
#

a = arur + auuu

u
#
u = -u

#
ur

u
#
u = lim

¢t:0

¢uu
¢t

= - a lim
¢t:0

¢u
¢t
bur

¢uu = -¢uur .-ur ,
¢uu L 11¢u2 ¢uu .uuuœ

u = uu + ¢uu ,uu
œ ,

uu¢uuu ,
¢r¢t,

uuu
#
u ,

+ ru
$
uu + ru

#
u
#
ua = v

# = r
$
ur + r

#
u
#

r + r
#
u
#
uu

O

r
ar

au

a

Acceleration

(e)

u

(d)

ur

u¿u
uu

�uu

�u
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Cylindrical Coordinates. If the particle moves along a space
curve as shown in Fig. 12–31, then its location may be specified by the
three cylindrical coordinates, r, z. The z coordinate is identical to that
used for rectangular coordinates. Since the unit vector defining its
direction, is constant, the time derivatives of this vector are zero, and
therefore the position, velocity, and acceleration of the particle can be
written in terms of its cylindrical coordinates as follows:

(12–31)

(12–32)

Time Derivatives. The above equations require that we obtain the
time derivatives and in order to evaluate the r and components
of v and a. Two types of problems generally occur:

1. If the polar coordinates are specified as time parametric equations,
and then the time derivatives can be found directly.

2. If the time-parametric equations are not given, then the path
must be known. Using the chain rule of calculus we can 

then find the relation between and and between and .
Application of the chain rule, along with some examples, is
explained in Appendix C.

u
$

r
$

u
#
,r

#
r = f1u2

u = u1t2,r = r1t2

uu
$

u
#
,r

$
,r

#
,

a = 1r$ - ru
#
22ur + 1ru$ + 2r

#
u
# 2uu + z

$
uz

v = r
#
ur + ru

#
uu + z

#
uz

rP = rur + zuz

uz ,

u,

z

r

rP

ur

uz

uu

O

u

Fig. 12–31

The spiral motion of this boy can be
followed by using cylindrical components.
Here the radial coordinate r is constant,
the transverse coordinate will increase
with time as the boy rotates about the
vertical, and his altitude z will decrease
with time.

u

r

z

u

Procedure for Analysis

Coordinate System.

• Polar coordinates are a suitable choice for solving problems when
data regarding the angular motion of the radial coordinate r is
given to describe the particle’s motion.Also, some paths of motion
can conveniently be described in terms of these coordinates.

• To use polar coordinates, the origin is established at a fixed point,
and the radial line r is directed to the particle.

• The transverse coordinate is measured from a fixed reference
line to the radial line.

Velocity and Acceleration.

• Once r and the four time derivatives and have been
evaluated at the instant considered, their values can be
substituted into Eqs. 12–25 and 12–29 to obtain the radial and
transverse components of v and a.

• If it is necessary to take the time derivatives of then the
chain rule of calculus must be used. See Appendix C.

• Motion in three dimensions requires a simple extension of the
above procedure to include and z

$
.z

#

r = f1u2,

u
$

u
#
,r

$
,r

#
,

u
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12EXAMPLE 12.17

The amusement park ride shown in Fig. 12–32a consists of a chair that
is rotating in a horizontal circular path of radius r such that the arm
OB has an angular velocity and angular acceleration Determine
the radial and transverse components of velocity and acceleration of
the passenger. Neglect his size in the calculation.

u
$
.u

#

, r

O

r

(a)

B

 ·  · ·
u u

u

(b)

··
au � ru

·
v � ru

u,t

·
�ar � ru2

n

r

Fig. 12–32

SOLUTION

Coordinate System. Since the angular motion of the arm is
reported, polar coordinates are chosen for the solution, Fig. 12–32a.
Here is not related to r, since the radius is constant for all 

Velocity and Acceleration. It is first necessary to specify the first
and second time derivatives of r and Since r is constant, we have

Thus,

Ans.

Ans.

Ans.

Ans.

These results are shown in Fig. 12–32b.

NOTE: The n, t axes are also shown in Fig. 12–32b, which in this
special case of circular motion happen to be collinear with the r and
axes, respectively. Since then by comparison,

au = at =
dv

dt
=

d

dt
1ru# 2 =

dr

dt
u
#
+ r

du
#

dt
= 0 + ru

$

-ar = an =
v2

r
=
1ru# 22

r
= ru

#
2

v = vu = vt = ru
#
,

u

au = ru
$

+ 2r
#
u
#
= ru

$
ar = r

$ - ru
#
2 = -ru

#
2

vu = ru
#

vr = r
# = 0

r = r r
# = 0 r

$ = 0

u.

u.u
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The rod OA in Fig. 12–33a rotates in the horizontal plane such that
At the same time, the collar B is sliding outward along

OA so that If in both cases t is in seconds, determine
the velocity and acceleration of the collar when 

SOLUTION
Coordinate System. Since time-parametric equations of the path
are given, it is not necessary to relate r to

Velocity and Acceleration. Determining the time derivatives and
evaluating them when we have

As shown in Fig. 12–33b,

The magnitude of v is

Ans.

Ans.

As shown in Fig. 12–33c,

The magnitude of a is

Ans.

Ans.

NOTE: The velocity is tangent to the path; however, the acceleration
is directed within the curvature of the path, as expected.

f = tan-1a1800
700
b = 68.7° 1180° - f2 + 57.3° = 169°

a = 2(700)2 + (1800)2 = 1930 mm>s2

= 5-700ur + 1800uu6 mm>s2

= [200 - 1001322]ur + [100162 + 2120023]uu

a = 1r$ - ru
#
22ur + 1ru$ + 2r

#
u
# 2uu

d = tan-1a300
200
b = 56.3° d + 57.3° = 114°

v = 4120022 + 130022 = 361 mm>s

= 200ur + 100132uu = 5200ur + 300uu6 mm>s
v = r

#
ur + ru

#
uu

r
$ = 200 `

t=1 s
= 200 mm>s2 u

$
= 6t `

t=1 s
= 6 rad>s2.

r
# = 200t `

t=1 s
= 200 mm>s u# = 3t2 `

t=1 s
= 3 rad>s

r = 100t2 `
t=1 s

= 100mm u = t3 `
t=1 s

= 1 rad = 57.3°

t = 1 s,

u.

t = 1 s.
r = 1100t22mm.

u = 1t32 rad.

EXAMPLE 12.18

(a)

A

B
r

O

u

(b)

r

vu � 300 mm/s

vr � 200 mm/s

v

u

d

u � 57.3�

(c)

r

au � 1800 mm/s2

a

ar � 700 mm/s2

u � 57.3� u
f

Fig. 12–33
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12EXAMPLE 12.19

The searchlight in Fig. 12–34a casts a spot of light along the face of a wall
that is located 100 m from the searchlight. Determine the magnitudes of
the velocity and acceleration at which the spot appears to travel across
the wall at the instant The searchlight rotates at a constant rate
of

SOLUTION
Coordinate System. Polar coordinates will be used to solve this
problem since the angular rate of the searchlight is given. To find the
necessary time derivatives it is first necessary to relate r to From
Fig. 12–34a,

Velocity and Acceleration. Using the chain rule of calculus, noting
that and we have

Since then and the above equations,
when become

As shown in Fig. 12–34b,

Ans.

As shown in Fig. 12–34c,

Ans.

NOTE: It is also possible to find a without having to calculate (or ).
As shown in Fig. 12–34d, since then by vector
resolution, a = 4525.5>cos 45° = 6400 m>s2.

au = 4525.5 m>s2,
arr

$
= 6400 m>s2

a = 4ar
2 + au

2 = 4(4525.5)2 + (4525.5)2

= 54525.5ur + 4525.5uu6 m>s2

= [6788.2 - 141.41422]ur + [141.4102 + 21565.724]uu

a = 1r$ - ru
#
22ur + 1ru$ + 2r

#
u
# 2uu

= 800 m>s
v = 4vr

2 + vu
2 = 4(565.7)2 + (565.7)2

= 5565.7ur + 565.7uu6m>s
= 565.7ur + 141.4142uu

v = r
#
ur + ru

#
uu

r
$ = 1600 1sec 45° tan2 45° + sec3 45°2 = 6788.2
r
# = 400 sec 45° tan 45° = 565.7
r = 100 sec 45° = 141.4

u = 45°,
u
$

= 0,u
#
= 4 rad>s = constant,

= 100 sec u tan2 u 1u# 22 + 100 sec3u 1u# 22 + 1001sec u tan u2u$
+ 100 sec u tan u1u$2

r
$ = 1001sec u tan u2u# 1tan u2u# + 100 sec u1sec2 u2u# 1u# 2
r
# = 1001sec u tan u2u#

d1tan u2 = sec2 u du,d1sec u2 = sec u tan u du,

r = 100>cos u = 100 sec u

u.

u
#
= 4 rad>s.

u = 45°.

100 mu� 4 rad/s
·

r

(a)

u

100 mr

v

vr

r

vu

(b)

u

u

u

100 mr

a

ar

au

(c)

r

u

u

u

ar

(d)

u � 45�

a

au � 4525.5 m/s2

Fig. 12–34
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Due to the rotation of the forked rod, the ball in Fig. 12–35a travels
around the slotted path, a portion of which is in the shape of a
cardioid, where is in radians. If the ball’s
velocity is and its acceleration is at the instant

determine the angular velocity and angular acceleration 
of the fork.

SOLUTION
Coordinate System. This path is most unusual, and mathematically
it is best expressed using polar coordinates, as done here, rather than
rectangular coordinates. Also, since and must be determined, then
r, coordinates are an obvious choice.

Velocity and Acceleration. The time derivatives of r and can be
determined using the chain rule.

Evaluating these results at we have

Since using Eq. 12–26 to determine yields

Ans.

In a similar manner, can be found using Eq. 12–30.

Ans.

Vectors a and v are shown in Fig. 12–35b.

NOTE: At this location, the and t (tangential) axes will coincide. The
(normal) axis is directed to the right, opposite to +r.+n

u

u
$

= 18 rad>s2

 (30)2 = 1-24)2 + u
$

2

 30 = 4[-0.5(4)2 - 1(4)2]2 + [1u
$

+ 2(0)(4)]2

a = 41 r
$ - ru

#
222 + 1 ru

$
+ 2r

#
u
# 22

u
$

u
#
= 4 rad>s

 4 = 4(0)2 + (1u
#
)2

v = 4(r
#
)2 + (ru

#
)2

u
#

v = 4 ft>s,

r = 1 ft r
# = 0 r

$ = -0.5u
#
2

u = 180°,

r
$ = 0.51cos u2u# 1u# 2 + 0.51sin u2u$
r
# = 0.51sin u2u#
r = 0.511 - cos u2

u

u

u
$

u
#

u
$

u
#

u = 180°,
a = 30 ft>s2v = 4 ft>s

ur = 0.511 - cos u2 ft,

EXAMPLE 12.20

· ··,
r

r � 0.5 (1 � cos u) ft

u u

u

(a)

r

a � 30 ft/s2

v � 4 ft/s

(b)

u

Fig. 12–35



A

r
30 m

v

u

u

r � (30 csc u) m

O

Br

A

C

r � 0.2(l + cos u) m

u

u � 3 rad/s

r

O

P

A
r � eu

u

,uu

F12–37. The collars are pin-connected at and are free
to move along rod and the curved guide having
the shape of a cardioid, At 
the angular velocity of is Determine the
magnitudes of the velocity of the collars at this point.

u
#
= 3 rad>s.OA

u = 30°,r = [0.2(1 + cos u)] m.
OCOA

B

A

P
r

O

u

,uu

r

,

u

uu

r � 400 ft

O

A

u
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12FUNDAMENTAL PROBLEMS

F12–33

F12–34

F12–35

F12–36. Peg is driven by the forked link along the
path described by When the link has an
angular velocity and angular acceleration of 
and Determine the radial and transverse
components of the peg’s acceleration at this instant.

u
$

= 4 rad>s2.
u
#
= 2 rad>s

u = p
4  rad,r = eu.

OAP

F12–34. The platform is rotating about the vertical axis
such that at any instant its angular position is

where t is in seconds. A ball rolls outward
along the radial groove so that its position is 
where is in seconds. Determine the magnitudes of the
velocity and acceleration of the ball when t = 1.5 s.

t
r = (0.1t3) m,

u = (4t3/2) rad,

F12–33. The car has a speed of Determine the
angular velocity of the radial line at this instant.OAu

# 55 ft>s.

F12–35. Peg is driven by the fork link along the
curved path described by At the instant

the angular velocity and angular acceleration
of the link are and Determine the
magnitude of the peg’s acceleration at this instant.

u
$

= 1 rad>s2.u
#
= 3 rad>s

u = p>4 rad,
r = (2u) ft.

OAP

F12–38. At the instant the athlete is running with
a constant speed of Determine the angular velocity
at which the camera must turn in order to follow the
motion.

2 m>s.
u = 45°,

F12–36

F12–37

F12–38
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12 PROBLEMS

*12–164. A particle travels around a lituus, defined by the
equation , where a is a constant. Determine the
particle’s radial and transverse components of velocity and
acceleration as a function of and its time derivatives.

•12–165. A car travels along the circular curve of radius
. At the instant shown, its angular rate of rotation

is , which is increasing at the rate of
. Determine the magnitudes of the car’s

velocity and acceleration at this instant.
u
$

= 0.2 rad>s2
u
#
= 0.4 rad>s

r = 300 ft

u

r2u = a2
*12–156. A particle moves along a circular path of radius
300 mm. If its angular velocity is , where t is in
seconds, determine the magnitude of the particle’s
acceleration when .

•12–157. A particle moves along a circular path of radius
300 mm. If its angular velocity is , where t is in
seconds, determine the magnitudes of the particle’s velocity
and acceleration when . The particle starts from rest
when .

12–158. A particle moves along a circular path of radius 
5 ft. If its position is , where t is in seconds,
determine the magnitude of the particle’s acceleration
when .

12–159. The position of a particle is described by
and , where t is in seconds.

Determine the magnitudes of the particle’s velocity and
acceleration at the instant .

*12–160. The position of a particle is described by
and , where t is in seconds.

Determine the magnitudes of the particle’s velocity and
acceleration at the instant .

•12–161. An airplane is flying in a straight line with a
velocity of 200 and an acceleration of . If the
propeller has a diameter of 6 ft and is rotating at an angular
rate of 120 , determine the magnitudes of velocity and
acceleration of a particle located on the tip of the propeller.

12–162. A particle moves along a circular path having a
radius of 4 in. such that its position as a function of time is
given by where t is in seconds. Determine
the magnitude of the acceleration of the particle when

.

12–163. A particle travels around a limaçon, defined by the
equation , where a and b are constants.
Determine the particle’s radial and transverse components
of velocity and acceleration as a function of and its time
derivatives.

u

r = b - a cos u

u = 30°

u = (cos 2t) rad,

rad>s
3 mi>h2mi>h

t = 1.5 s

u = (0.3t2) radr = (300e–0.5t) mm

t = 2 s

u = (t3>2) radr = (t3 + 4t - 4) m

u = 90°

u = (e0.5t) rad

u = 0°
u = 45°

= (3t2) rad>su
#

t = 2 s

= (2t2) rad>su
#

12–166. The slotted arm OA rotates counterclockwise
about O with a constant angular velocity of .The motion of
pin B is constrained such that it moves on the fixed circular
surface and along the slot in OA. Determine the magnitudes
of the velocity and acceleration of pin B as a function of .

12–167. The slotted arm OA rotates counterclockwise
about O such that when , arm OA is rotating with
an angular velocity of and an angular acceleration of .
Determine the magnitudes of the velocity and acceleration
of pin B at this instant. The motion of pin B is constrained
such that it moves on the fixed circular surface and along
the slot in OA.

u
$

u
# u = p>4

u

u
#

r � 300 ft

A

u

u

u

 � 0.2 rad/s2
..

 � 0.4 rad/s
.

Prob. 12–165

O

B
A

a

u

r � 2 a cos u

Probs. 12–166/167
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12
12–171. The small washer slides down the cord OA. When
it is at the midpoint, its speed is 200 and its
acceleration is . Express the velocity and
acceleration of the washer at this point in terms of its
cylindrical components.

10 mm>s2
mm>s

12–170. Starting from rest, the boy runs outward in the
radial direction from the center of the platform with a
constant acceleration of . If the platform is rotating
at a constant rate , determine the radial and
transverse components of the velocity and acceleration of
the boy when . Neglect his size.t = 3 s

u
#
= 0.2 rad>s

0.5 m>s2

*12–168. The car travels along the circular curve having a
radius . At the instant shown, its angular rate of
rotation is , which is decreasing at the rate

. Determine the radial and transverse
components of the car’s velocity and acceleration at this
instant and sketch these components on the curve.

•12–169. The car travels along the circular curve of radius
with a constant speed of . Determine

the angular rate of rotation of the radial line r and the
magnitude of the car’s acceleration.

u
# v = 30 ft>sr = 400 ft

u
$

= -0.008 rad>s2
u
#
= 0.025 rad>s

r = 400 ft

*12–172. If arm OA rotates counterclockwise with a
constant angular velocity of , determine the
magnitudes of the velocity and acceleration of peg P at

. The peg moves in the fixed groove defined by the
lemniscate, and along the slot in the arm.

•12–173. The peg moves in the curved slot defined by the
lemniscate, and through the slot in the arm. At , the
angular velocity is , and the angular acceleration
is . Determine the magnitudes of the velocity
and acceleration of peg P at this instant.

= 1.5 rad>s2u
$ = 2 rad>su

# u = 30°

u = 30°

= 2 rad>su
#

r � 400 ft

u
.

Probs. 12–168/169

0.5 m/s2� 0.2 rad/s
r

u

u

Prob. 12–170

300 mm

700 mm

400 mm

r

O

z

z

y

x

u

A

v, a

Prob. 12–171

r

O

P

r2 � (4 sin 2 u)m2

u

Probs. 12–172/173
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•12–177. The driver of the car maintains a constant speed
of . Determine the angular velocity of the camera
tracking the car when .

12–178. When , the car has a speed of which
is increasing at . Determine the angular velocity of
the camera tracking the car at this instant.

6 m>s2
50 m>su = 15°

u = 15°
40 m>s

12–175. The motion of peg P is constrained by the
lemniscate curved slot in OB and by the slotted arm OA. If
OA rotates counterclockwise with a constant angular
velocity of , determine the magnitudes of the
velocity and acceleration of peg P at .

*12–176. The motion of peg P is constrained by the
lemniscate curved slot in OB and by the slotted arm OA.
If OA rotates counterclockwise with an angular velocity of

, where t is in seconds, determine the
magnitudes of the velocity and acceleration of peg P at

. When , .u = 0°t = 0u = 30°

= (3t3/2) rad>su
#

u = 30°
= 3 rad>su

#

12–174. The airplane on the amusement park ride moves
along a path defined by the equations ,

and , where t is in seconds.
Determine the cylindrical components of the velocity and
acceleration of the airplane when .t = 6 s

z = (0.5 cos u) m(0.2t) rad,u =
r = 4 m

12–179. If the cam rotates clockwise with a constant
angular velocity of , determine the magnitudes
of the velocity and acceleration of the follower rod AB at
the instant . The surface of the cam has a shape of
limaçon  defined by .

*12–180. At the instant , the cam rotates with a
clockwise angular velocity of and and angular
acceleration of . Determine the magnitudes of
the velocity and acceleration of the follower rod AB at this
instant. The surface of the cam has a shape of a limaçon
defined by .r = (200 + 100  cos  u) mm

= 6 rad>s2u
$ = 5 rad>su

#u = 30°

r = (200 + 100  cos  u) mm
u = 30°

= 5 rad>su
#

r � 4 m
z u

Prob. 12–174

r
P A

O
B

r2
 � (4 cos 2 u)m2u

Probs. 12–175/176

r � (100 cos 2u) m

u

Probs. 12–177/178

A B

r � (200 � 100 cos u) mm

u

Probs. 12–179/180
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*12–184. Rod OA rotates counterclockwise with a constant
angular velocity of . Through mechanical means
collar B moves along the rod with a speed of ,
where t is in seconds. If , determine the
magnitudes of velocity and acceleration of the collar when

.

•12–185. Rod OA is rotating counterclockwise with an angular
velocity of .Through mechanical means collar B
moves along the rod with a speed of . If and

, determine the magnitudes of velocity and
acceleration of the collar at .u = 60°
r = 0  when  t = 0

u = 0= (4t2) m>sr
#= (2t2) rad>su

#

t = 0.75 s

r = 0  when  t = 0
= (4t2) m>sr

#= 6 rad>su
#

12–182. The box slides down the helical ramp with a
constant speed of . Determine the magnitude of
its acceleration. The ramp descends a vertical distance of

for every full revolution.The mean radius of the ramp is
.

12–183. The box slides down the helical ramp which is
defined by , , and ,
where t is in seconds. Determine the magnitudes of the
velocity and acceleration of the box at the instant

.u = 2p rad

z = (2 – 0.2t2) mu = (0.5t3) radr = 0.5 m

r = 0.5 m
1 m

v = 2 m>s

•12–181. The automobile travels from a parking deck
down along a cylindrical spiral ramp at a constant speed of

. If the ramp descends a distance of 12 m for
every full revolution, rad, determine the magnitude
of the car’s acceleration as it moves along the ramp,

. Hint: For part of the solution, note that the
tangent to the ramp at any point is at an angle of

from the horizontal.
Use this to determine the velocity components and ,
which in turn are used to determine and .z

#
u
# vzvu

f = tan-1 (12>32p(10)4) = 10.81°

r = 10 m

u = 2p
v = 1.5 m>s

12–186. The slotted arm AB drives pin C through the spiral
groove described by the equation . If the angular
velocity is constant at , determine the radial and transverse
components of velocity and acceleration of the pin.

12–187. The slotted arm AB drives pin C through the spiral
groove described by the equation , where is in
radians. If the arm starts from rest when and is
driven at an angular velocity of , where t is in
seconds, determine the radial and transverse components of
velocity and acceleration of the pin C when .t = 1 s

u
#
= (4t) rad>s

u = 60°
ur = (1.5 u) ft

u
# r = a u

10 m

12 m

Prob. 12–181

 1 m

0.5 m

Probs. 12–182/183

O

Br

A

u

Probs. 12–184/185

r

A

u

B

C

Probs. 12–186/187
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*12–192. The boat moves along a path defined by

, where is in radians. If 
where t is in seconds, determine the radial

and transverse components of the boat’s velocity and
acceleration at the instant .t = 1 s

(0.4t2) rad,u =
ur2 = 310(103) cos 2u4 ft2

12–190. A particle moves along an Archimedean spiral
, where is given in radians. If 

(constant), determine the radial and transverse components
of the particle’s velocity and acceleration at the instant

. Sketch the curve and show the components on
the curve.

12–191. Solve Prob. 12–190 if the particle has an angular
acceleration when at rad.u = p>2u

#
= 4 rad>su

$
= 5 rad>s2

u = p>2 rad

u
#
= 4 rad>sur = (8u) ft

*12–188. The partial surface of the cam is that of a
logarithmic spiral , where is in radians. If
the cam rotates at a constant angular velocity of ,
determine the magnitudes of the velocity and acceleration of
the point on the cam that contacts the follower rod at the
instant .

•12–189. Solve Prob. 12–188, if the cam has an angular
acceleration of when its angular velocity is

at .u = 30°u
#
= 4 rad>s

u
$

= 2 rad>s2

u = 30°

u
#
= 4 rad>s

ur = (40e0.05u) mm

•12–193. A car travels along a road, which for a short
distance is defined by , where is in radians. If
it maintains a constant speed of , determine the
radial and transverse components of its velocity when

rad.

12–194. For a short time the jet plane moves along a path
in the shape of a lemniscate, . At the
instant , the radar tracking device is rotating at 

with . Determine the
radial and transverse components of velocity and
acceleration of the plane at this instant.

u
$

= 2(10-3) rad>s2u
#
= 5(10-3) rad>s

u = 30°
r2 = (2500 cos 2u) km2

u = p>3
v = 35 ft>s

ur = (200>u) ft
� 4 rad/s

·

r � 40e0.05
u

u

u

Probs. 12–188/189

y

x

u

r � (8 u) ft

r

Probs. 12–190/191

r

u

Prob. 12–192

r

u

ur2 � 2500 cos 2

Prob. 12–194



12.9 Absolute Dependent Motion
Analysis of Two Particles

In some types of problems the motion of one particle will depend on the
corresponding motion of another particle. This dependency commonly
occurs if the particles, here represented by blocks, are interconnected by
inextensible cords which are wrapped around pulleys. For example, the
movement of block A downward along the inclined plane in Fig. 12–36
will cause a corresponding movement of block B up the other incline.We
can show this mathematically by first specifying the location of the blocks
using position coordinates and Note that each of the coordinate axes
is (1) measured from a fixed point (O) or fixed datum line, (2) measured
along each inclined plane in the direction of motion of each block, and 
(3) has a positive sense from C to A and D to B. If the total cord length is

the two position coordinates are related by the equation

Here is the length of the cord passing over arc CD.Taking the time
derivative of this expression, realizing that and remain constant,
while and measure the segments of the cord that change in length.
We have

The negative sign indicates that when block A has a velocity downward,
i.e., in the direction of positive it causes a corresponding upward
velocity of block B; i.e., B moves in the negative direction.

In a similar manner, time differentiation of the velocities yields the
relation between the accelerations, i.e.,

A more complicated example is shown in Fig. 12–37a. In this case, the
position of block A is specified by and the position of the end of the
cord from which block B is suspended is defined by As above, we
have chosen position coordinates which (1) have their origin at fixed
points or datums, (2) are measured in the direction of motion of each
block, and (3) are positive to the right for and positive downward for

During the motion, the length of the red colored segments of the cord
in Fig. 12–37a remains constant. If l represents the total length of cord
minus these segments, then the position coordinates can be related by
the equation

Since l and h are constant during the motion, the two time derivatives yield

Hence, when B moves downward A moves to the left with
twice the motion.

1-sA21+sB2,
2vB = -vA 2aB = -aA

2sB + h + sA = l

sB.
sA

sB .
sA ,

aB = -aA

sB

sA ,

dsA

dt
+

dsB

dt
= 0 or vB = -vA

sBsA

lTlCD

lCD

sA + lCD + sB = lT

lT ,

sB .sA
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A B

C D

Datum
Datum
sB

sA

O

Fig. 12–36

A

sB

Datum

hB

sADatum

(a)

Fig. 12–37
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This example can also be worked by defining the position of block B

from the center of the bottom pulley (a fixed point), Fig. 12–37b. In
this case

Time differentiation yields

Here the signs are the same. Why?

2vB = vA 2aB = aA

21h - sB2 + h + sA = l

Fig. 12–37 (cont.)

The motion of the traveling block on this
oil rig depends upon the motion of the
cable connected to the winch which
operates it. It is important to be able to
relate these motions in order to determine
the power requirements of the winch and
the force in the cable caused by any
accelerated motion.

sB

Datum

(b)

A

Datum

hB

sADatum

Procedure for Analysis

The above method of relating the dependent motion of one particle
to that of another can be performed using algebraic scalars or
position coordinates provided each particle moves along a
rectilinear path. When this is the case, only the magnitudes of the
velocity and acceleration of the particles will change, not their line
of direction.

Position-Coordinate Equation.

• Establish each position coordinate with an origin located at a
fixed point or datum.

• It is not necessary that the origin be the same for each of the
coordinates; however, it is important that each coordinate axis
selected be directed along the path of motion of the particle.

• Using geometry or trigonometry, relate the position coordinates
to the total length of the cord, or to that portion of cord, l,
which excludes the segments that do not change length as the
particles move—such as arc segments wrapped over pulleys.

• If a problem involves a system of two or more cords wrapped
around pulleys, then the position of a point on one cord must be
related to the position of a point on another cord using the above
procedure. Separate equations are written for a fixed length of
each cord of the system and the positions of the two particles are
then related by these equations (see Examples 12.22 and 12.23).

Time Derivatives.

• Two successive time derivatives of the position-coordinate
equations yield the required velocity and acceleration equations
which relate the motions of the particles.

• The signs of the terms in these equations will be consistent with
those that specify the positive and negative sense of the position
coordinates.

lT ,
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12EXAMPLE 12.21

Determine the speed of block A in Fig. 12–38 if block B has an
upward speed of 6 ft>s.

SOLUTION
Position-Coordinate Equation. There is one cord in this system
having segments which change length. Position coordinates and 
will be used since each is measured from a fixed point (C or D) and
extends along each block’s path of motion. In particular, is directed
to point E since motion of B and E is the same.

The red colored segments of the cord in Fig. 12–38 remain at a
constant length and do not have to be considered as the blocks move.
The remaining length of cord, l, is also constant and is related to the
changing position coordinates and by the equation

Time Derivative. Taking the time derivative yields

so that when (upward),

Ans.vA = 18 ft>sT
vB = -6 ft>s

vA + 3vB = 0

sA + 3sB = l

sBsA

sB

sBsA

sA

B

A

sB

C D

E

6 ft/s

Datum

Fig. 12–38
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12

Determine the speed of A in Fig. 12–39 if B has an upward speed
of 6 ft>s.

EXAMPLE 12.22

A

B

sA

sB

Datum

6 ft/s

C

D

sC

Fig. 12–39

SOLUTION
Position-Coordinate Equation. As shown, the positions of blocks
A and B are defined using coordinates and Since the system has
two cords with segments that change length, it will be necessary to use
a third coordinate, in order to relate to In other words, the
length of one of the cords can be expressed in terms of and and
the length of the other cord can be expressed in terms of and 

The red colored segments of the cords in Fig. 12–39 do not have to
be considered in the analysis. Why? For the remaining cord lengths,
say and we have

Time Derivative. Taking the time derivative of these equations yields

Eliminating produces the relationship between the motions of each
cylinder.

so that when (upward),

Ans.vA = +24 ft>s = 24 ft>s T

vB = -6 ft>s
vA + 4vB = 0

vC

vA + 2vC = 0  2vB - vC = 0

sA + 2sC = l1 sB + 1sB - sC2 = l2

l2 ,l1

sC .sB

sC ,sA

sB .sAsC ,

sB .sA
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sA

Datum

sC

sB

C

A

B

D

2 m/s

E

Fig. 12–40

EXAMPLE 12.23

Determine the speed of block B in Fig. 12–40 if the end of the cord at
A is pulled down with a speed of 2 m>s.

SOLUTION
Position-Coordinate Equation. The position of point A is defined
by and the position of block B is specified by since point E on
the pulley will have the same motion as the block. Both coordinates
are measured from a horizontal datum passing through the fixed pin
at pulley D. Since the system consists of two cords, the coordinates 
and cannot be related directly. Instead, by establishing a third
position coordinate, we can now express the length of one of the
cords in terms of and and the length of the other cord in terms
of and 

Excluding the red colored segments of the cords in Fig. 12–40, the
remaining constant cord lengths and (along with the hook and
link dimensions) can be expressed as

Time Derivative. The time derivative of each equation gives

Eliminating , we obtain

so that when (downward),

Ans.vB = -0.5 m>s = 0.5 m>s c

vA = 2 m>s
vA + 4vB = 0

vC

vA - 2vC + 2vB = 0

vC + vB = 0

1sA - sC2 + 1sB - sC2 + sB = l2

sC + sB = l1

l2l1

sC .sB ,sA ,
sC ,sB

sC ,
sB

sA

sBsA ,
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A man at A is hoisting a safe S as shown in Fig. 12–41 by walking to
the right with a constant velocity Determine the
velocity and acceleration of the safe when it reaches the elevation of
10 m. The rope is 30 m long and passes over a small pulley at D.

SOLUTION
Position-Coordinate Equation. This problem is unlike the previous
examples since rope segment DA changes both direction and
magnitude. However, the ends of the rope, which define the positions
of S and A, are specified by means of the x and y coordinates since
they must be measured from a fixed point and directed along the paths
of motion of the ends of the rope.

The x and y coordinates may be related since the rope has a fixed
length which at all times is equal to the length of segment DA
plus CD. Using the Pythagorean theorem to determine we have

also, Hence,

(1)

Time Derivatives. Taking the time derivative, using the chain rule
(see Appendix C), where and yields

(2)

At x is determined from Eq. 1, i.e., Hence, from
Eq. 2 with 

Ans.

The acceleration is determined by taking the time derivative of Eq. 2.
Since is constant, then and we haveaA = dvA>dt = 0,vA

vS =
20

4225 + (20)2
(0.5) = 0.4m>s = 400mm>s c

vA = 0.5 m>s,
x = 20 m.y = 10 m,

=
x

4225 + x2
vA

vS =
dy

dt
= B1

2

2x

2225 + x2
R dx

dt

vA = dx>dt,vS = dy>dt

y = 4225 + x2 - 15

 30 = 4(15)2 + x2 + (15 - y)

l = lDA + lCD

lCD = 15 - y.lDA = 4(15)2 + x2 ;
lDA ,

l = 30 m,

vA = 0.5 m>s.

EXAMPLE 12.24

D

10 m

15 m

E

y

vA � 0.5 m/sA

S

C

x

Fig. 12–41

aS =
d2y

dt2 = c -x1dx>dt2
1225 + x223>2 dxvA + c 1

4225 + x2
d adx

dt
bvA + c 1

4225 + x2
dx dvA

dt
=

225vA
2

1225 + x223>2
At with the acceleration becomes

Ans.

NOTE: The constant velocity at A causes the other end C of the rope
to have an acceleration since causes segment DA to change its
direction as well as its length.

vA

aS =
22510.5 m>s22

[225 + 120 m22]3>2 = 0.00360 m>s2 = 3.60 mm>s2 c

vA = 0.5 m>s,x = 20 m,
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1212.10 Relative-Motion of Two Particles
Using Translating Axes

Throughout this chapter the absolute motion of a particle has been
determined using a single fixed reference frame. There are many cases,
however, where the path of motion for a particle is complicated, so that it
may be easier to analyze the motion in parts by using two or more frames
of reference. For example, the motion of a particle located at the tip of an
airplane propeller, while the plane is in flight, is more easily described if
one observes first the motion of the airplane from a fixed reference and
then superimposes (vectorially) the circular motion of the particle
measured from a reference attached to the airplane.

In this section translating frames of reference will be considered for the
analysis. Relative-motion analysis of particles using rotating frames of
reference will be treated in Secs. 16.8 and 20.4, since such an analysis
depends on prior knowledge of the kinematics of line segments.

Position. Consider particles A and B, which move along the
arbitrary paths shown in Fig. 12–42. The absolute position of each
particle, and is measured from the common origin O of the fixed x,
y, z reference frame.The origin of a second frame of reference is
attached to and moves with particle A. The axes of this frame are only
permitted to translate relative to the fixed frame. The position of B
measured relative to A is denoted by the relative-position vector
Using vector addition, the three vectors shown in Fig. 12–42 can be
related by the equation

(12–33)

Velocity. An equation that relates the velocities of the particles is
determined by taking the time derivative of the above equation; i.e.,

(12–34)

Here and refer to absolute velocities, since
they are observed from the fixed frame; whereas the relative velocity

is observed from the translating frame. It is important
to note that since the axes translate, the components of
will not change direction and therefore the time derivative of these
components will only have to account for the change in their
magnitudes. Equation 12–34 therefore states that the velocity of B is
equal to the velocity of A plus (vectorially) the velocity of “B with
respect to A,” as measured by the translating observer fixed in the 

reference frame.z¿
y¿,x¿,

rB>Az¿y¿,x¿,
vB>A = drB>A>dt

vA = drA>dtvB = drB>dt

vB = vA + vB>A

rB = rA + rB>A

rB>A .

z¿y¿,x¿,
rB ,rA

z¿

z

A

O

x¿

x

y

y¿

rB

rA

rB/A

Translating
observer

Fixed
observer

B

Fig. 12–42
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Acceleration. The time derivative of Eq. 12–34 yields a similar
vector relation between the absolute and relative accelerations of
particles A and B.

(12–35)

Here is the acceleration of B as seen by the observer located at A
and translating with the reference frame.*z¿y¿,x¿,

aB>A

aB = aA + aB>A

Procedure For Analysis

• When applying the relative velocity and acceleration equations,
it is first necessary to specify the particle A that is the origin for
the translating axes. Usually this point has a known
velocity or acceleration.

• Since vector addition forms a triangle, there can be at most two
unknowns, represented by the magnitudes and/or directions of
the vector quantities.

• These unknowns can be solved for either graphically, using
trigonometry (law of sines, law of cosines), or by resolving each
of the three vectors into rectangular or Cartesian components,
thereby generating a set of scalar equations.

z¿y¿,x¿,

The pilots of these jet planes flying close
to one another must be aware of their
relative positions and velocities at all
times in order to avoid a collision.

* An easy way to remember the setup of these equations, is to note the “cancellation”
of the subscript A between the two terms, e.g., aB = aA + aB>A .
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12EXAMPLE 12.25

A train travels at a constant speed of crosses over a road as
shown in Fig. 12–43a. If the automobile A is traveling at along
the road, determine the magnitude and direction of the velocity of the
train relative to the automobile.

SOLUTION I
Vector Analysis. The relative velocity is measured from the
translating axes attached to the automobile, Fig. 12–43a. It is
determined from Since and are known in both
magnitude and direction, the unknowns become the x and y
components of Using the x, y axes in Fig. 12–43a, we have

Ans.

The magnitude of is thus

Ans.

From the direction of each component, Fig. 12–43b, the direction of
is

Ans.

Note that the vector addition shown in Fig. 12–43b indicates the
correct sense for This figure anticipates the answer and can be
used to check it.

SOLUTION II
Scalar Analysis. The unknown components of can also be
determined by applying a scalar analysis. We will assume these
components act in the positive x and y directions. Thus,

Resolving each vector into its x and y components yields

Solving, we obtain the previous results,

1vT>A2y = -31.8 mi>h = 31.8 mi>h T

1vT>A2x = 28.2 mi>h = 28.2 mi>h :

 0 = 45 sin 45° + 0 + 1vT>A2y1+ c2
60 = 45 cos 45° + 1vT>A2x + 01:+ 2

c60 mi>h
: d = c45 mi>h

a
45° d + c 1vT>A2x

: d + c 1vT>A2y
c d

vT = vA + vT>A

vT>A

vT>A .

u = 48.5° c

 tan u =
1vT>A2y
1vT>A2x =

31.8
28.2

vT>A

vT>A = 2128.222 + 1-31.822 = 42.5 mi>h
vT>A

vT>A = 528.2i - 31.8j6mi>h
 60i = 145 cos 45°i + 45 sin 45°j2 + vT>A
vT = vA + vT>A

vT>A .

vAvTvT = vA + vT>A .
y¿x¿,

vT>A

45 mi>h60 mi>h,

vT � 60 mi/h
y¿

45�T

vA � 45 mi/h

y

x
A

(a)

x¿

31.8 mi/h

28.2 mi/h

(b)

vT/A

u

(c)

45�

vA � 45 mi/h

vT � 60 mi/h

vT/A

u

Fig. 12–43
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Plane A in Fig. 12–44a is flying along a straight-line path, whereas
plane B is flying along a circular path having a radius of curvature of

Determine the velocity and acceleration of B as
measured by the pilot of A.

SOLUTION
Velocity. The origin of the x and y axes are located at an arbitrary
fixed point. Since the motion relative to plane A is to be determined,
the translating frame of reference is attached to it, Fig. 12–44a.
Applying the relative-velocity equation in scalar form since the velocity
vectors of both planes are parallel at the instant shown, we have

Ans.

The vector addition is shown in Fig. 12–44b.

Acceleration. Plane B has both tangential and normal components
of acceleration since it is flying along a curved path. From Eq. 12–20,
the magnitude of the normal component is

Applying the relative-acceleration equation gives

Thus,

From Fig. 12–44c, the magnitude and direction of are therefore

Ans.

NOTE: The solution to this problem was possible using a translating
frame of reference, since the pilot in plane A is “translating.”
Observation of the motion of plane A with respect to the pilot of
plane B, however, must be obtained using a rotating set of axes
attached to plane B. (This assumes, of course, that the pilot of B is
fixed in the rotating frame, so he does not turn his eyes to follow the
motion of A.) The analysis for this case is given in Example 16.21.

aB>A = 912 km>h2 u = tan-1
 
150
900

= 9.46° c

aB>A
aB>A = 5900i - 150j6 km>h2

 900i - 100j = 50j + aB>A
 aB = aA + aB>A

1aB2n =
vB

2

r
=
1600 km>h22

400 km
= 900 km>h2

 vB>A = -100 km>h = 100 km>h T

 600 km>h = 700 km>h + vB>A
 vB = vA + vB>A 1+ c2

y¿x¿,

rB = 400 km.

EXAMPLE 12.26

400 km

600 km/h

100 km/h2

y

x

y¿

4 km

A B
x¿

700 km/h

50 km/h2

(a)

(b)

vB/A

vB � 600 km/hvA � 700 km/h

150 km/h2

900 km/h2

(c)

aB/A

u

Fig. 12–44
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12EXAMPLE 12.27

At the instant shown in Fig. 12–45a, cars A and B are traveling with
speeds of and respectively. Also at this instant, A has a 
decrease in speed of and B has an increase in speed of 
Determine the velocity and acceleration of B with respect to A.

SOLUTION
Velocity. The fixed x, y axes are established at an arbitrary point on
the ground and the translating axes are attached to car A, Fig.
12–45a. Why? The relative velocity is determined from

What are the two unknowns? Using a Cartesian
vector analysis, we have

Thus,

Ans.

Noting that has and components, Fig. 12–45b, its direction is

Ans.

Acceleration. Car B has both tangential and normal components of
acceleration. Why? The magnitude of the normal component is

Applying the equation for relative acceleration yields

Here has and components. Thus, from Fig. 12–45c,

Ans.

Ans.

NOTE: Is it possible to obtain the relative acceleration of using
this method? Refer to the comment made at the end of Example 12.26.

aA>B

f = 62.7° d

 tan f =
1aB>A2y
1aB>A2x =

4.732
2.440

aB>A = 212.44022 + 14.73222 = 5.32 m>s2

-j- iaB>A

aB>A = 5-2.440i - 4.732j6 m>s2

1-1.440i - 3j2 = 12 cos 60°i + 2 sin 60°j2 + aB>A
aB = aA + aB>A

1aB2n =
vB

2

r
=
112 m>s22

100 m
= 1.440 m>s2

u = 21.7° a

 tan u =
1vB>A2y
1vB>A2x =

3.588
9

+j+ ivB>A
vB>A = 41922 + 13.58822 = 9.69 m>s

vB>A = 59i + 3.588j6m>s
-12j = 1-18 cos 60°i - 18 sin 60°j2 + vB>A

vB = vA + vB>A

vB = vA + vB>A .

y¿x¿,

3 m>s2.2 m>s2,
12 m>s,18 m>s y¿

x¿

y

x

r � 100 m

12 m/s

3 m/s2

B

A

18 m/s

2 m/s2

60�

60�

(a)

(b)

9 m/s

3.588 m/s vB/A

u

(c)

2.440 m/s2

4.732 m/s2aB/A

f

Fig. 12–45
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12 FUNDAMENTAL PROBLEMS

A

6 m/s

B

F12–40

vA � 4 ft/s

F E

C

D

B

A

F12–44

A

B

1.5 m/s

F12–41

vF � 3 m/s

F

B

C E

D

A

F12–39

vA � 3 m/s

A

D

B C

P

M

A

F12–43

F12–42. Determine the speed of block if end of the
rope is pulled down with a speed of vF = 3 m>s.

FA

F12–41. Determine the speed of block if end of the
rope is pulled down with a speed of 1.5 m>s.

BA

F12–39. Determine the speed of block if end of the
rope is pulled down with a speed of vA = 3 m>s.

AD

F12–44. Determine the speed of cylinder if cylinder 
moves downward with a speed of vA = 4 ft>s.

AB

F12–40. Determine the speed of block if end of the
rope is pulled down with a speed of 6 m>s.

BA F12–43. Determine the speed of car if point on the
cable has a speed of when the motor winds the
cable in.

M4 m>s
PA

F12–42
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2 km

A

B

100 km/h

80 km/h
45�

F12–45

vB � 800 km/h

vA � 650 km/h

A

B

60�

F12–46

y

xO

B

A
vA � 15 m/s

vB � 10 m/s

30�

30�

F12–47

A

B

100 m

20 km/h

65 km/h

45�

F12–48

F12–47. The boats and travel with constant speeds of
and when they leave the pier at

at the same time. Determine the distance between them
when t = 4 s.
O

vB = 10 m>svA = 15 m>s
BA

F12–46. Two planes and are traveling with the
constant velocities shown. Determine the magnitude and
direction of the velocity of plane relative to plane A.B

BA

F12–45. Car is traveling with a constant speed of
due north, while car is traveling with a constant

speed of due east. Determine the velocity of car 
relative to car A.

B100 km>h
B80 km>h

A

F12–48. At the instant shown, cars and are traveling at
the speeds shown. If is accelerating at while

maintains a constant speed, determine the velocity and
acceleration of with respect to B.A
A

1200 km>h2B
BA
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12 PROBLEMS

12–198. If end A of the rope moves downward with a speed
of , determine the speed of cylinder B.5 m>s

*12–196. Determine the displacement of the log if the
truck at C pulls the cable 4 ft to the right.

12–195. The mine car C is being pulled up the incline using
the motor M and the rope-and-pulley arrangement shown.
Determine the speed at which a point P on the cable
must be traveling toward the motor to move the car up the
plane with a constant speed of .v = 2 m>s

vP

12–199. Determine the speed of the elevator if each motor
draws in the cable with a constant speed of .5 m>s

5 m/s

A

B

Prob. 12–198

B C

v C

P

M

Prob. 12–195

CB

Prob. 12–196

A

B C
H

Prob. 12–197

•12–197. If the hydraulic cylinder H draws in rod BC at
determine the speed of slider A.2 ft>s,

Prob. 12–199
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C

 2 m/s
A

D

B

Prob. 12–202

A B
4 ft/s2 ft/s

Prob. 12–204

12–203. Determine the speed of B if A is moving
downwards with a speed of at the instant shown.vA = 4 m>s

12–202. If the end of the cable at A is pulled down with a
speed of , determine the speed at which block B rises.2 m>s

*12–200. Determine the speed of cylinder A, if the rope is
drawn towards the motor M at a constant rate of .

•12–201. If the rope is drawn towards the motor M at a
speed of , where t is in seconds, determine
the speed of cylinder A when .t = 1 s

vM = (5t3>2)  m>s

10  m>s

*12–204. The crane is used to hoist the load. If the motors
at A and B are drawing in the cable at a speed of 2 and
4 , respectively, determine the speed of the load.ft>s

ft>s

M

A

h

Probs. 12–200/201

B

A vA � 4 m/s

Prob. 12–203



96 CH A P T E R 12 KI N E M AT I C S O F A PA RT I C L E

12

C

D

B
4 ft/s

A

Prob. 12–205

*12–208. If the end of the cable at A is pulled down with a
speed of 2 , determine the speed at which block E rises.m>s

12–206. If block A is moving downward with a speed of
4 while C is moving up at 2 , determine the speed of
block B.

12–207. If block A is moving downward at 6 while
block C is moving down at 18 , determine the speed of
block B.

ft>s
ft>s

ft>sft>s

•12–205. The cable at B is pulled downwards at 4 , and
the speed is decreasing at . Determine the velocity
and acceleration of block A at this instant.

2 ft>s2
ft>s

•12–209. If motors at A and B draw in their attached
cables with an acceleration of , where t is in
seconds, determine the speed of the block when it reaches a
height of , starting from rest at . Also, how
much time does it take to reach this height?

h = 0h = 4 m

a = (0.2t) m>s2

h
A

C

D

B

Prob. 12–209

B
C

A

Probs. 12–206/207

B

C

D

E

 2 m/s
A

Prob. 12–208
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d � 3 m

A

D

C

B

Prob. 12–210

*12–212. The man pulls the boy up to the tree limb C by
walking backward at a constant speed of 1.5 .
Determine the speed at which the boy is being lifted at the
instant . Neglect the size of the limb. When

, , so that A and B are coincident, i.e., the
rope is 16 m long.

•12–213. The man pulls the boy up to the tree limb C by
walking backward. If he starts from rest when and
moves backward with a constant acceleration ,
determine the speed of the boy at the instant .
Neglect the size of the limb.When , , so that A
and B are coincident, i.e., the rope is 16 m long.

yB = 8 mxA = 0
yB = 4 m

aA = 0.2 m>s2
xA = 0

yB = 8 mxA = 0
xA = 4 m

m>s

12–211. The motion of the collar at A is controlled by a motor
at B such that when the collar is at it is moving
upwards at 2 and decreasing at . Determine the
velocity and acceleration of a point on the cable as it is drawn
into the motor B at this instant.

1 ft>s2ft>s
sA = 3 ft

12–210. The motor at C pulls in the cable with an
acceleration , where t is in seconds. The
motor at D draws in its cable at . If both motors
start at the same instant from rest when , determine
(a) the time needed for , and (b) the velocities of
blocks A and B when this occurs.

d = 0
d = 3 m

aD = 5 m>s2
aC = (3t2) m>s2

12–214. If the truck travels at a constant speed of
, determine the speed of the crate for any angle 

of the rope. The rope has a length of 100 ft and passes over
a pulley of negligible size at A. Hint: Relate the coordinates

and to the length of the rope and take the time
derivative. Then substitute the trigonometric relation
between and .uxC

xCxT

uvT = 6 ft>s

B

4 ft

A

sA

Prob. 12–211

8 m
yB

B

A

xA

C

Probs. 12–212/213

T vT
xTxC

C
20 ft

A

u

Prob. 12–214
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12–218. The ship travels at a constant speed of 
and the wind is blowing at a speed of , as shown.
Determine the magnitude and direction of the horizontal
component of velocity of the smoke coming from the smoke
stack as it appears to a passenger on the ship.

vw = 10 m>s
vs = 20 m>s

*12–216. Car A travels along a straight road at a speed of
while accelerating at . At this same instant

car C is traveling along the straight road with a speed of
while decelerating at . Determine the velocity

and acceleration of car A relative to car C.

•12–217. Car B is traveling along the curved road with a
speed of while decreasing its speed at . At this
same instant car C is traveling along the straight road with a
speed of while decelerating at . Determine the
velocity and acceleration of car B relative to car C.

3 m>s230 m>s
2 m>s215 m>s

3 m>s230 m>s
1.5 m>s225 m>s

12–215. At the instant shown, car A travels along the
straight portion of the road with a speed of . At this
same instant car B travels along the circular portion of the
road with a speed of . Determine the velocity of car B
relative to car A.

15 m>s
25 m>s

12–219. The car is traveling at a constant speed of
. If the rain is falling at in the direction

shown, determine the velocity of the rain as seen by the
driver.

6 m>s100 km>h

A

B

r � 200 m

C

30�

15�
15�

Prob. 12–215

vs � 20 m/s

vw � 10 m/s
y

x

30�
45�

Prob. 12–218

Prob. 12–219

B

A

50 m

25 m

5 m/s
vw � 2 m/s

u

Prob. 12–220

 r � 100 m 3 m/s2

2 m/s2
30 m/s

15 m/s

B
C

A

1.5 m/s2

25 m/s

30�

45�

Probs. 12–216/217

vr
30�

vC � 100 km/h

*12–220. The man can row the boat in still water with a
speed of . If the river is flowing at , determine
the speed of the boat and the angle he must direct the
boat so that it travels from A to B.

u

2 m>s5 m>s
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A

B
0.3 mi

vB � 20 mi/h

vA � 30 mi/h

30�

Probs. 12–221/222

vA

vB

A

O

B

30�

45�

Prob. 12–223

vB � 50 mi/h
vA � 70 mi/h

B

A

30�

Probs. 12–224/225

15�

50 km/h

B
A

Prob. 12–226

*12–224. At the instant shown, cars A and B travel at
speeds of 70 and 50 , respectively. If B is
increasing its speed by , while A maintains a
constant speed, determine the velocity and acceleration of
B with respect to A. Car B moves along a curve having a
radius of curvature of 0.7 mi.

•12–225. At the instant shown, cars A and B travel at
speeds of 70 and 50 , respectively. If B is
decreasing its speed at while A is increasing its
speed at , determine the acceleration of B with
respect to A. Car B moves along a curve having a radius of
curvature of 0.7 mi.

800 mi>h2
1400 mi>h2

mi>hmi>h

1100 mi>h2
mi>hmi>h

12–223. Two boats leave the shore at the same time and
travel in the directions shown. If and

determine the velocity of boat A with respect
to boat B. How long after leaving the shore will the boats be
800 ft apart?

vB = 15 ft>s,
vA = 20 ft>s

•12–221. At the instant shown, cars A and B travel at
speeds of and respectively. If B is
increasing its speed by while A maintains a
constant speed, determine the velocity and acceleration of
B with respect to A.

12–222. At the instant shown, cars A and B travel at speeds
of respectively. If A is increasing its
speed at whereas the speed of B is decreasing at

determine the velocity and acceleration of B
with respect to A.
800 mi>h2,

400 mi>h2
30 m>h and 20 mi>h,

1200 mi>h2,
20 mi>h,30 mi>h

12–226. An aircraft carrier is traveling forward with a
velocity of At the instant shown, the plane at A
has just taken off and has attained a forward horizontal air
speed of measured from still water. If the plane
at B is traveling along the runway of the carrier at 
in the direction shown, determine the velocity of A with
respect to B.

175 km>h
200 km>h,

50 km>h.

12–227. A car is traveling north along a straight road at
An instrument in the car indicates that the wind is

directed towards the east. If the car’s speed is the
instrument indicates that the wind is directed towards the
north-east. Determine the speed and direction of the wind.

80 km>h,
50 km>h.
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12
12–230. A man walks at 5 in the direction of a

wind. If raindrops fall vertically at 7 in still air,
determine the direction in which the drops appear to fall with
respect to the man. Assume the horizontal speed of the
raindrops is equal to that of the wind.

km>h20-km>h
km>h

•12–229. Two cyclists A and B travel at the same constant
speed Determine the velocity of A with respect to B if A
travels along the circular track, while B travels along the
diameter of the circle.

v.

*12–228. At the instant shown car A is traveling with a
velocity of and has an acceleration of along
the highway. At the same instant B is traveling on the
trumpet interchange curve with a speed of which is
decreasing at Determine the relative velocity and
relative acceleration of B with respect to A at this instant.

0.8 m>s2.
15 m>s,

2 m>s230 m>s

12–231. A man can row a boat at 5 in still water. He
wishes to cross a 50-m-wide river to point B, 50 m
downstream. If the river flows with a velocity of 2 ,
determine the speed of the boat and the time needed to
make the crossing.

m>s
m>s

v

v

r
A

f
u

B

Prob. 12–229

vw � 20 km/h

vm � 5 km/h

Prob. 12–230

50 m

B

u

A

50 m

2 m/s

Prob. 12–231 

60�

A

B r � 250 m

Prob. 12–228
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D

C

B

A

P12–1

P12–3

P12–2 P12–4

CONCEPTUAL PROBLEMS

P12–1. If you measured the time it takes for the
construction elevator to go from then and
then and you also know the distance between each
of the points, how could you determine the average
velocity and average acceleration of the elevator as it
ascends from Use numerical values to explain how
this can be done.

A to D?

C to D,
B to C,A to B,

P12–3. The basketball was thrown at an angle measured
from the horizontal to the man’s outstretched arms. If the
basket is from the ground, make appropriate
measurements in the photo and determine if the ball
located as shown will pass through the basket.

10 ft

P12–2. If the sprinkler at is from the ground, then
scale the necessary measurements from the photo to
determine the approximate velocity of the water jet as it
flows from the nozzle of the sprinkler.

1 mA

P12–4. The pilot tells you the wingspan of her plane and her
constant airspeed. How would you determine the acceleration
of the plane at the moment shown? Use numerical values and
take any necessary measurements from the photo.
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CHAPTER REVIEW

Rectilinear Kinematics

Rectilinear kinematics refers to motion
along a straight line.A position coordinate
s specifies the location of the particle on
the line, and the displacement is the
change in this position.

¢s

The average velocity is a vector quantity,
defined as the displacement divided by
the time interval.

a ds = v dvv =
ds

dt
,a =

dv

dt
,

Graphical Solutions

If the motion is erratic, then it can be
described by a graph. If one of these
graphs is given, then the others can be
established using the differential relations
between a, s, and t.v,

1vsp2avg =
sT

¢t

vavg =
-¢s

¢t

v2 = v0
2 + 2ac1s - s02

s = s0 + v0t + 1
2 act

2

v = v0 + act

a ds = v dv

v =
ds

dt
,

a =
dv

dt
,

The average speed is a scalar, and is the
total distance traveled divided by the time
of travel.

The time, position, velocity, and
acceleration are related by three
differential equations.

If the acceleration is known to be
constant, then the differential equations
relating time, position, velocity, and
acceleration can be integrated.
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y

x

z

r � xi � yj � zk

z

y
x

s

k
i

j

a
v

y

x

a � g

(v0)y

(v0)x

v0

vx

vy v

r

y0

y

x0

x

Curvilinear Motion, x , y, z

Curvilinear motion along the path can
be resolved into rectilinear motion
along the x, y, z axes.The equation of the
path is used to relate the motion along
each axis. az = v

#
zvz = z

#
ay = v

#
yvy = y

#
ax = v

#
xvx = x

#

x = x0 + 1v02xt1:+ 2
vy

2 = 1v02y2 + 2ac1y - y021+ c2
y = y0 + 1v02yt + 1

2 act
21+ c2

vy = 1v02y + act1+ c2
Projectile Motion

Free-flight motion of a projectile follows
a parabolic path. It has a constant
velocity in the horizontal direction, and a
constant downward acceleration of

or in the vertical
direction.Any two of the three equations
for constant acceleration apply in the
vertical direction, and in the horizontal
direction only one equation applies.

32.2  ft>s2g = 9.81 m>s2



104 CH A P T E R 12 KI N E M AT I C S O F A PA RT I C L E

12

an

O¿

at

as

O n

t
v

O

Pr

vr

vu

v

Velocity

u

O

r
ar

au

a

Acceleration

u

Curvilinear Motion n, t

If normal and tangential axes are used
for the analysis, then v is always in the
positive t direction.

The acceleration has two components.
The tangential component, , accounts
for the change in the magnitude of the
velocity; a slowing down is in the
negative t direction, and a speeding up is
in the positive t direction. The normal
component accounts for the change in
the direction of the velocity. This
component is always in the positive n
direction.

an

at

or

an =
v2

r

atds = v dvat = v
#

Curvilinear Motion r,

If the path of motion is expressed in
polar coordinates, then the velocity and
acceleration components can be related
to the time derivatives of r and

To apply the time-derivative equations, it
is necessary to determine r, at
the instant considered. If the path

is given, then the chain rule of
calculus must be used to obtain time
derivatives. (See Appendix C.) 

Once the data are substituted into the
equations, then the algebraic sign of 
the results will indicate the direction of
the components of v or a along each axis.

r = f1u2
u
$

u
#
,r

$
,r

#
,

u.

U

vu = ru
#

vr = r
#

au = ru
$

+ 2r
#
u
#

ar = r
$ - ru

#
2
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z¿

z

A

O

x¿

x

y

y¿

rB

rA

rB/A

Translating
observer

a

a

b

b

Fixed
observer

B

A

sB

Datum

hB

sADatum

Absolute Dependent Motion of Two
Particles

The dependent motion of blocks that are
suspended from pulleys and cables can
be related by the geometry of the
system. This is done by first establishing
position coordinates, measured from a
fixed origin to each block. Each
coordinate must be directed along the
line of motion of a block.

2sB + h + sA = l
Using geometry and/or trigonometry,
the coordinates are then related to the
cable length in order to formulate a
position coordinate equation.

The first time derivative of this equation
gives a relationship between the
velocities of the blocks, and a second time
derivative gives the relation between
their accelerations.

 2aB = -aA

 2vB = -vA

Relative-Motion Analysis Using
Translating Axes

If two particles A and B undergo
independent motions, then these
motions can be related to their relative
motion using a translating set of axes
attached to one of the particles (A).

For planar motion, each vector equation
produces two scalar equations, one in the
x, and the other in the y direction. For
solution, the vectors can be expressed in
Cartesian form, or the x and y scalar
components can be written directly.

aB = aA + aB>A
vB = vA + vB>A

rB = rA + rB>A



The design of conveyors for a bottling plant requires knowledge of the forces that act
on them and the ability to predict the motion of the bottles they transport.



Kinetics of a Particle:
Force and Acceleration

CHAPTER OBJECTIVES

• To state Newton’s Second Law of Motion and to define mass 
and weight.

• To analyze the accelerated motion of a particle using the equation
of motion with different coordinate systems.

• To investigate central-force motion and apply it to problems in
space mechanics.

13

13.1 Newton’s Second Law of Motion

Kinetics is a branch of dynamics that deals with the relationship between
the change in motion of a body and the forces that cause this change.The
basis for kinetics is Newton’s second law, which states that when an
unbalanced force acts on a particle, the particle will accelerate in the
direction of the force with a magnitude that is proportional to the force.

This law can be verified experimentally by applying a known
unbalanced force F to a particle, and then measuring the acceleration
a. Since the force and acceleration are directly proportional, the
constant of proportionality, m, may be determined from the ratio

This positive scalar m is called the mass of the particle.
Being constant during any acceleration, m provides a quantitative
measure of the resistance of the particle to a change in its velocity, that
is its inertia.

m = F>a.
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If the mass of the particle is m, Newton’s second law of motion may be
written in mathematical form as

The above equation, which is referred to as the equation of motion, is
one of the most important formulations in mechanics.* As previously
stated, its validity is based solely on experimental evidence. In 1905,
however, Albert Einstein developed the theory of relativity and
placed limitations on the use of Newton’s second law for describing
general particle motion. Through experiments it was proven that time
is not an absolute quantity as assumed by Newton; and as a result, the
equation of motion fails to predict the exact behavior of a particle,
especially when the particle’s speed approaches the speed of light

Developments of the theory of quantum mechanics by
Erwin Schrödinger and others indicate further that conclusions drawn
from using this equation are also invalid when particles are the size of
an atom and move close to one another. For the most part, however,
these requirements regarding particle speed and size are not
encountered in engineering problems, so their effects will not be
considered in this book.

Newton’s Law of Gravitational Attraction. Shortly after
formulating his three laws of motion, Newton postulated a law governing
the mutual attraction between any two particles. In mathematical form
this law can be expressed as

(13–1)

where

force of attraction between the two particles

universal constant of gravitation; according to
experimental evidence 

mass of each of the two particles

distance between the centers of the two particlesr =
m1 ,m2 =

G = 66.73110-122 m3>1kg # s22G =
F =

F = G
m1m2

r2

10.3 Gm>s2.

F = ma

*Since m is constant, we can also write where mv is the particle’s linear
momentum. Here the unbalanced force acting on the particle is proportional to the time
rate of change of the particle’s linear momentum.

F = d1mv2>dt,



a � g (ft/s2)

W (lb)

FPS system

(b)

m � W
g (slug)
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In the case of a particle located at or near the surface of the earth, the
only gravitational force having any sizable magnitude is that between the
earth and the particle. This force is termed the “weight” and, for our
purpose, it will be the only gravitational force considered.

From Eq. 13–1, we can develop a general expression for finding the
weight W of a particle having a mass Let be the mass
of the earth and r the distance between the earth’s center and the
particle. Then, if we have

By comparison with we term g the acceleration due to gravity.
For most engineering calculations g is a point on the surface of the earth
at sea level, and at a latitude of 45°, which is considered the “standard
location.” Here the values will be used for
calculations.

In the SI system the mass of the body is specified in kilograms, and the
weight must be calculated using the above equation, Fig. 13–1a. Thus,

(13–2)

As a result, a body of mass 1 kg has a weight of 9.81 N; a 2-kg body
weighs 19.62 N; and so on.

In the FPS system the weight of the body is specified in pounds. The
mass is measured in slugs, a term derived from “sluggish” which refers to
the body’s inertia. It must be calculated, Fig. 13–1b, using

(13–3)

Therefore, a body weighing 32.2 lb has a mass of 1 slug; a 64.4-lb body
has a mass of 2 slugs; and so on.

m =
W
g
1slug2 1g = 32.2 ft>s22

W = mg 1N2 1g = 9.81 m>s22

g = 9.81 m>s2 = 32.2 ft>s2

F = ma,

W = mg

g = GMe>r2,
m2 = Mem1 = m.

Fig. 13–1

a � g (m/s2)

W � mg (N)

m (kg)

SI system

(a)
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13.2 The Equation of Motion

When more than one force acts on a particle, the resultant force is
determined by a vector summation of all the forces; i.e., For
this more general case, the equation of motion may be written as

(13–4)

To illustrate application of this equation, consider the particle shown
in Fig. 13–2a, which has a mass m and is subjected to the action of two
forces, and We can graphically account for the magnitude and
direction of each force acting on the particle by drawing the particle’s
free-body diagram, Fig. 13–2b. Since the resultant of these forces
produces the vector ma, its magnitude and direction can be represented
graphically on the kinetic diagram, shown in Fig. 13–2c.*  The equal sign
written between the diagrams symbolizes the graphical equivalency
between the free-body diagram and the kinetic diagram; i.e., †
In particular, note that if then the acceleration is also
zero, so that the particle will either remain at rest or move along a
straight-line path with constant velocity. Such are the conditions of static
equilibrium, Newton’s first law of motion.

Inertial Reference Frame. When applying the equation of
motion, it is important that the acceleration of the particle be measured
with respect to a reference frame that is either fixed or translates with a
constant velocity. In this way, the observer will not accelerate and
measurements of the particle’s acceleration will be the same from any
reference of this type. Such a frame of reference is commonly known as a
Newtonian or inertial reference frame, Fig. 13–3.

When studying the motions of rockets and satellites, it is justifiable to
consider the inertial reference frame as fixed to the stars, whereas
dynamics problems concerned with motions on or near the surface of the
earth may be solved by using an inertial frame which is assumed fixed to
the earth. Even though the earth both rotates about its own axis and
revolves about the sun, the accelerations created by these rotations are
relatively small and so they can be neglected for most applications.

FR = ©F = 0,
©F = ma.

F2 .F1

©F = ma

FR = ©F.

*Recall the free-body diagram considers the particle to be free of its surrounding supports
and shows all the forces acting on the particle.The kinetic diagram pertains to the particle’s
motion as caused by the forces.

†The equation of motion can also be rewritten in the form The vector
is referred to as the inertia force vector. If it is treated in the same way as a “force

vector,” then the state of “equilibrium” created is referred to as dynamic equilibrium. This
method of application is often referred to as the D’Alembert principle, named after the
French mathematician Jean le Rond d’Alembert.

-ma
©F - ma = 0.

a

F2

F1

(a)

F2

F1

Free-body
diagram

FR � �F � ma

Kinetic
diagram

Fig. 13–2

y

xO

vO

a

Inertial frame of reference

Path of particle

Fig. 13–3



We are all familiar with the sensation one feels when sitting in a car that is subjected to a forward acceleration. Often people
think this is caused by a “force” which acts on them and tends to push them back in their seats; however, this is not the case.
Instead, this sensation occurs due to their inertia or the resistance of their mass to a change in velocity.

Consider the passenger who is strapped to the seat of a rocket sled. Provided the sled is at rest or is moving with constant
velocity, then no force is exerted on his back as shown on his free-body diagram.

When the thrust of the rocket engine causes the sled to accelerate, then the seat upon which he is sitting exerts a force F on
him which pushes him forward with the sled. In the photo, notice that the inertia of his head resists this change in motion
(acceleration), and so his head moves back against the seat and his face, which is nonrigid, tends to distort backward.

F

N2

N1

Acceleration

W

F¿

N2

N1

Deceleration

W

N2

N1

At rest or constant velocity

W

Upon deceleration the force of the seatbelt tends to pull his body to a stop, but his head leaves contact with the back of the
seat and his face distorts forward, again due to his inertia or tendency to continue to move forward. No force is pulling him
forward, although this is the sensation he receives.

F¿
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13.3 Equation of Motion for a System of
Particles

The equation of motion will now be extended to include a system of
particles isolated within an enclosed region in space, as shown in Fig. 13–4a.
In particular, there is no restriction in the way the particles are connected,
so the following analysis applies equally well to the motion of a solid,
liquid, or gas system.

At the instant considered, the arbitrary i-th particle, having a mass 
is subjected to a system of internal forces and a resultant external force.
The internal force, represented symbolically as is the resultant of all
the forces the other particles exert on the ith particle. The resultant
external force represents, for example, the effect of gravitational,
electrical, magnetic, or contact forces between the ith particle and
adjacent bodies or particles not included within the system.

The free-body and kinetic diagrams for the ith particle are shown in
Fig. 13–4b. Applying the equation of motion,

When the equation of motion is applied to each of the other particles of
the system, similar equations will result. And, if all these equations are
added together vectorially, we obtain

©Fi + ©fi = ©miai

Fi + fi = miai©F = ma;

Fi

fi ,

mi ,

z

yx

Inertial coordinate
system

(a)

G
rG

ri

fi
i

Fi

�
mi ai

Fi

fi

Free-body
diagram

Kinetic
diagram

(b)

Fig. 13–4
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The summation of the internal forces, if carried out, will equal zero, since
internal forces between any two particles occur in equal but opposite
collinear pairs. Consequently, only the sum of the external forces will
remain, and therefore the equation of motion, written for the system of
particles, becomes

(13–5)

If is a position vector which locates the center of mass G of the
particles, Fig. 13–4a, then by definition of the center of mass,

where is the total mass of all the particles.
Differentiating this equation twice with respect to time, assuming that no
mass is entering or leaving the system, yields

Substituting this result into Eq. 13–5, we obtain

(13–6)

Hence, the sum of the external forces acting on the system of particles is
equal to the total mass of the particles times the acceleration of its center
of mass G. Since in reality all particles must have a finite size to possess
mass, Eq. 13–6 justifies application of the equation of motion to a body
that is represented as a single particle.

©F = maG

maG = ©miai

m = ©mimrG = ©miri ,

rG

©Fi = ©miai

Important Points

• The equation of motion is based on experimental evidence and is
valid only when applied within an inertial frame of reference.

• The equation of motion states that the unbalanced force on a
particle causes it to accelerate.

• An inertial frame of reference does not rotate, rather its axes
either translate with constant velocity or are at rest.

• Mass is a property of matter that provides a quantitative measure
of its resistance to a change in velocity. It is an absolute quantity
and so it does not change from one location to another.

• Weight is a force that is caused by the earth’s gravitation. It is not
absolute; rather it depends on the altitude of the mass from the
earth’s surface.
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Fig. 13–5
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13.4 Equations of Motion: Rectangular
Coordinates

When a particle moves relative to an inertial x, y, z frame of reference,
the forces acting on the particle, as well as its acceleration, can be expressed
in terms of their i, j, k components, Fig. 13–5. Applying the equation of
motion, we have

For this equation to be satisfied, the respective i, j, k components on the
left side must equal the corresponding components on the right side.
Consequently, we may write the following three scalar equations:

(13–7)

In particular, if the particle is constrained to move only in the x–y plane,
then the first two of these equations are used to specify the motion.

©Fz = maz

©Fy = may

©Fx = max

©Fxi + ©Fyj + ©Fzk = m1axi + ayj + azk2©F = ma;

Procedure for Analysis

The equations of motion are used to solve problems which require a
relationship between the forces acting on a particle and the
accelerated motion they cause.

Free-Body Diagram.
● Select the inertial coordinate system. Most often, rectangular or

x, y, z coordinates are chosen to analyze problems for which the
particle has rectilinear motion.

● Once the coordinates are established, draw the particle’s free-
body diagram. Drawing this diagram is very important since it
provides a graphical representation that accounts for all the
forces which act on the particle, and thereby makes it
possible to resolve these forces into their x, y, z components.

● The direction and sense of the particle’s acceleration a should also
be established. If the sense is unknown, for mathematical
convenience assume that the sense of each acceleration component
acts in the same direction as its positive inertial coordinate axis.

● The acceleration may be represented as the ma vector on the
kinetic diagram.*

● Identify the unknowns in the problem.

1©F2

*It is a convention in this text always to use the kinetic diagram as a graphical aid
when developing the proofs and theory. The particle’s acceleration or its components
will be shown as blue colored vectors near the free-body diagram in the examples.
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Equations of Motion.
● If the forces can be resolved directly from the free-body diagram,

apply the equations of motion in their scalar component form.

● If the geometry of the problem appears complicated, which often
occurs in three dimensions, Cartesian vector analysis can be used
for the solution.

● Friction. If a moving particle contacts a rough surface, it may be
necessary to use the frictional equation, which relates the
frictional and normal forces and N acting at the surface of
contact by using the coefficient of kinetic friction, i.e.,
Remember that always acts on the free-body diagram such
that it opposes the motion of the particle relative to the surface it
contacts. If the particle is on the verge of relative motion, then the
coefficient of static friction should be used.

● Spring. If the particle is connected to an elastic spring having
negligible mass, the spring force can be related to the
deformation of the spring by the equation Here k is the
spring’s stiffness measured as a force per unit length, and s is
the stretch or compression defined as the difference between
the deformed length l and the undeformed length i.e.,

Kinematics.
● If the velocity or position of the particle is to be found, it will be

necessary to apply the necessary kinematic equations once the
particle’s acceleration is determined from 

● If acceleration is a function of time, use and 
which, when integrated, yield the particle’s velocity and position,
respectively.

● If acceleration is a function of displacement, integrate 
to obtain the velocity as a function of position.

● If acceleration is constant, use 
to determine the velocity or position of the

particle.

● If the problem involves the dependent motion of several particles,
use the method outlined in Sec. 12.9 to relate their accelerations.
In all cases, make sure the positive inertial coordinate directions
used for writing the kinematic equations are the same as those
used for writing the equations of motion; otherwise, simultaneous
solution of the equations will result in errors.

● If the solution for an unknown vector component yields a
negative scalar, it indicates that the component acts in the
direction opposite to that which was assumed.

v2 = v0
2 + 2ac1s - s02

s = s0 + v0t + 1
2act

2,v = v0 + act,

a ds = v dv

v = ds>dta = dv>dt
©F = ma.

s = l - l0 .
l0 ,

Fs = ks.
Fs

Ff
Ff = mkN.

Ff
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The 50-kg crate shown in Fig. 13–6a rests on a horizontal surface for
which the coefficient of kinetic friction is If the crate is
subjected to a 400-N towing force as shown, determine the velocity of
the crate in 3 s starting from rest.

SOLUTION
Using the equations of motion, we can relate the crate’s acceleration
to the force causing the motion. The crate’s velocity can then be
determined using kinematics.

Free-Body Diagram. The weight of the crate is 
As shown in Fig. 13–6b, the frictional

force has a magnitude and acts to the left, since it opposes the
motion of the crate. The acceleration a is assumed to act horizontally, in
the positive x direction.There are two unknowns, namely and a.

Equations of Motion. Using the data shown on the free-body
diagram, we have

(1)

(2)

Solving Eq. 2 for substituting the result into Eq. 1, and solving
for a yields

Kinematics. Notice that the acceleration is constant, since the
applied force P is constant. Since the initial velocity is zero, the
velocity of the crate in 3 s is

Ans.= 15.6 m>s :
v = v0 + act = 0 + 5.1851321:+ 2

a = 5.185 m>s2

NC = 290.5 N

NC ,

NC - 490.5 + 400 sin 30° = 0+ c©Fy = may ;
400 cos 30° - 0.3NC = 50a:+ ©Fx = max ;

NC

F = mkNC
50 kg 19.81 m>s22 = 490.5 N.

W = mg =

mk = 0.3.

EXAMPLE 13.1

P � 400 N

30�

(a)

30�

400 N

490.5 N

F � 0.3 NC

NC

(b)

y

x

a

30�

400 N

490.5 N

F � 0.3NC

NC (c)

�
50a

Fig. 13–6

NOTE: We can also use the alternative procedure of drawing the
crate’s free-body and kinetic diagrams, Fig. 13–6c, prior to applying
the equations of motion.
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EXAMPLE 13.2

A 10-kg projectile is fired vertically upward from the ground, with an
initial velocity of Fig. 13–7a. Determine the maximum height
to which it will travel if (a) atmospheric resistance is neglected; and
(b) atmospheric resistance is measured as where is
the speed of the projectile at any instant, measured in 

SOLUTION
In both cases the known force on the projectile can be related to its
acceleration using the equation of motion. Kinematics can then be
used to relate the projectile’s acceleration to its position.

Part (a) Free-Body Diagram. As shown in Fig. 13–7b, the projectile’s
weight is We will assume the
unknown acceleration a acts upward in the positive z direction.

Equation of Motion.

The result indicates that the projectile, like every object having free-
flight motion near the earth’s surface, is subjected to a constant
downward acceleration of 

Kinematics. Initially, and and at the maximum
height Since the acceleration is constant, then

Ans.

Part (b) Free-Body Diagram. Since the force 
tends to retard the upward motion of the projectile, it acts downward
as shown on the free-body diagram, Fig. 13–7c.

Equation of Motion.

Kinematics. Here the acceleration is not constant since depends
on the velocity. Since we can relate a to position using

Separating the variables and integrating, realizing that initially 
(positive upward), and at we have

Ans.

NOTE: The answer indicates a lower elevation than that obtained in
part (a) due to atmospheric resistance or drag.

h = 114 m

L

h

0
dz = -

L

0

50

v dv

0.001v2 + 9.81
= -500 ln1v2 + 98102 `

50 m>s
0

v = 0,z = h,v0 = 50 m>s z0 = 0,

-10.001v2 + 9.812 dz = v dv1+ c2 a dz = v dv;

a = f1v2, FD

a = -(0.001v2 + 9.81)-0.01v2 - 98.1 = 10a,+ c©Fz = maz ;

FD = 10.01v22 N
h = 127 m

 0 = 15022 + 21-9.8121h - 02
v2 = v0

2 + 2ac1z - z021+ c2
v = 0.z = h,

v0 = 50 m>s,z0 = 0

9.81 m>s2.

a = -9.81 m>s2-98.1 = 10a,+ c©Fz = maz ;

W = mg = 1019.812 = 98.1 N.

m>s.
vFD = 10.01v22 N,

50 m>s,

z

(a)

z

98.1 N

a

(b)

z

98.1 N

a

(c)

FD

Fig. 13–7
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The baggage truck A shown in the photo has a weight of 900 lb and
tows a 550-lb cart B and a 325-lb cart C. For a short time the driving
frictional force developed at the wheels of the truck is 
where t is in seconds. If the truck starts from rest, determine its speed
in 2 seconds. Also, what is the horizontal force acting on the coupling
between the truck and cart B at this instant? Neglect the size of the
truck and carts.

FA = 140t2 lb,

EXAMPLE 13.3

A B C

NA NB
NC

FA

900 lb
550 lb 325 lb

(a)

SOLUTION
Free-Body Diagram. As shown in Fig. 13–8a, it is the frictional
driving force that gives both the truck and carts an acceleration. Here
we have considered all three vehicles as a single system.

Equation of Motion. Only motion in the horizontal direction has
to be considered.

Kinematics. Since the acceleration is a function of time, the velocity
of the truck is obtained using with the initial condition that

at We have

Ans.

Free-Body Diagram. In order to determine the force between the
truck and cart B, we will consider a free-body diagram of the truck so
that we can “expose” the coupling force T as external to the free-body
diagram, Fig. 13–8b.

Equation of Motion. When then

Ans.

NOTE: Try and obtain this same result by considering a free-body
diagram of carts B and C as a single system.

T = 39.4 lb

 40122 - T = a 900
32.2
b [0.7256122];+ ©Fx = max ;

t = 2 s,

v = 0.3628t2 `
0

2 s

= 1.45 ft>s
L

v

0
dv =

L

2 s

0
0.7256t dt;

t = 0.v0 = 0
a = dv>dt

a = 0.7256t

 40t = a900 + 550 + 325
32.2

ba;+ ©Fx = max ;

NA

T

FA

900 lb

(b)

Fig. 13–8
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EXAMPLE 13.4

A smooth 2-kg collar C, shown in Fig. 13–9a, is attached to a spring
having a stiffness and an unstretched length of 0.75 m. If
the collar is released from rest at A, determine its acceleration and the
normal force of the rod on the collar at the instant 

SOLUTION

Free-Body Diagram. The free-body diagram of the collar when it
is located at the arbitrary position y is shown in Fig. 13–9b.
Furthermore, the collar is assumed to be accelerating so that “a” acts
downward in the positive y direction. There are four unknowns,
namely, a, and 

Equations of Motion.

(1)

(2)

From Eq. 2 it is seen that the acceleration depends on the magnitude
and direction of the spring force. Solution for and a is possible
once and are known.

The magnitude of the spring force is a function of the stretch s of the
spring; i.e., Here the unstretched length is 

Fig. 13–9a; therefore,
Since then

(3)

From Fig. 13–9a, the angle is related to y by trigonometry.

(4)

Substituting into Eqs. 3 and 4 yields and
Substituting these results into Eqs. 1 and 2, we obtain

Ans.

Ans.

NOTE: This is not a case of constant acceleration, since the spring
force changes both its magnitude and direction as the collar moves
downward.

a = 9.21 m>s2 T

NC = 0.900 N

u = 53.1°.
Fs = 1.50 Ny = 1 m

tan u =
y

0.75

u

Fs = ks = 3 A4y2 + 10.7522 - 0.75 B
k = 3 N>m,

s = CB - AB = 4y2 + 10.7522 - 0.75.

AB = 0.75 m,Fs = ks.

uFs

NC

19.62 - Fs sin u = 2a+ T©Fy = may ;

-NC + Fs cos u = 0:+ ©Fx = max ;

u.Fs ,NC ,

y = 1 m.

k = 3 N>m

y

0.75 m

A

C

k � 3 N/m

(a)

B

u

x

y

a

(b)
NC

19.62 N
Fs

u

Fig. 13–9
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The 100-kg block A shown in Fig. 13–10a is released from rest. If the
masses of the pulleys and the cord are neglected, determine the speed
of the 20-kg block B in 2 s.

SOLUTION

Free-Body Diagrams. Since the mass of the pulleys is neglected,
then for pulley C, and we can apply as shown in
Fig. 13–10b. The free-body diagrams for blocks A and B are shown
in Fig. 13–10c and d, respectively. Notice that for A to remain
stationary whereas for B to remain static 
Hence A will move down while B moves up. Although this is the
case, we will assume both blocks accelerate downward, in the
direction of and The three unknowns are T, and 

Equations of Motion. Block A,

(1)

Block B,

(2)

Kinematics. The necessary third equation is obtained by relating 
to using a dependent motion analysis, discussed in Sect. 12.9. The
coordinates and in Fig. 13–10a measure the positions of A and B
from the fixed datum. It is seen that

where l is constant and represents the total vertical length of cord.
Differentiating this expression twice with respect to time yields

(3)

Notice that when writing Eqs. 1 to 3, the positive direction was always
assumed downward. It is very important to be consistent in this
assumption since we are seeking a simultaneous solution of equations.
The results are

Hence when block A accelerates downward, block B accelerates
upward as expected. Since is constant, the velocity of block B in 2 s
is thus

Ans.

The negative sign indicates that block B is moving upward.

= -13.1 m>s
= 0 + 1-6.542122
v = v0 + aBt1+ T2
aB

aB = -6.54 m>s2

aA = 3.27 m>s2

T = 327.0 N

2aA = -aB

2sA + sB = l

sBsA

aB

aA

196.2 - T = 20aB+ T©Fy = may ;

981 - 2T = 100aA+ T©Fy = may ;

aB .aA ,+sB .+sA

T = 196.2 N.T = 490.5 N,

©Fy = 0ma = 0

EXAMPLE 13.5

T

196.2 N
sB

(d)

aB

Fig. 13–10

Datum

A

C
sB

sA

(a)

B

TT

2T

(b)

2T

981 NsA

(c)

aA
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FUNDAMENTAL PROBLEMS

F13–4. The 2-Mg car is being towed by a winch. If the winch
exerts a force of on the cable, where s is the
displacement of the car in meters, determine the speed of the
car when starting from rest. Neglect rolling
resistance of the car.

s = 10 m,

T = (100s) N

F13–2. If motor M exerts a force of 
on the cable, where t is in seconds, determine the velocity of
the 25-kg crate when . The coefficients of static and
kinetic friction between the crate and the plane are

and , respectively. The crate is initially 
at rest.

mk = 0.25ms = 0.3

t = 4 s

F = (10t2 + 100) N

F13–1. The motor winds in the cable with a constant
acceleration, such that the 20-kg crate moves a distance

in 3 s, starting from rest. Determine the tension
developed in the cable. The coefficient of kinetic friction
between the crate and the plane is .mk = 0.3

s = 6 m

F13–5. The spring has a stiffness and is
unstretched when the 25-kg block is at A. Determine the
acceleration of the block when The contact
surface between the block and the plane is smooth.

s = 0.4 m.

k = 200 N/m

s

M

A

30�

F13–1

s
F � 500 N

k � 500 N/m

3
4

5

F13–3

M

F13–2

F13–4

F13–3. A spring of stiffness is mounted
against the 10-kg block. If the block is subjected to the force
of determine its velocity at When

the block is at rest and the spring is uncompressed.
The contact surface is smooth.
s = 0,

s = 0.5 m.F = 500 N,

k = 500 N>m F13–6. Block B rests upon a smooth surface. If the
coefficients of static and kinetic friction between A and B
are and respectively, determine the
acceleration of each block if P = 6 lb.

mk = 0.3,ms = 0.4

0.3 m

s

A F � 100 N F � 100 N

k � 200 N/m

F13–5

20 lb
A

B 50 lb

P

F13–6
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30� 30�

B C

A

H

Prob. 13–1

PROBLEMS

*13–4. The 2-Mg truck is traveling at 15 m s when the brakes
on all its wheels are applied, causing it to skid for a distance of
10 m before coming to rest. Determine the constant horizontal
force developed in the coupling C, and the frictional force
developed between the tires of the truck and the road during
this time.The total mass of the boat and trailer is 1 Mg.

>

13–2. The 160-Mg train travels with a speed of 
when it starts to climb the slope. If the engine exerts a
traction force F of of the weight of the train and the
rolling resistance is equal to of the weight of the
train, determine the deceleration of the train.

13–3. The 160-Mg train starts from rest and begins to
climb the slope as shown. If the engine exerts a traction
force F of of the weight of the train, determine the
speed of the train when it has traveled up the slope a
distance of 1 km. Neglect rolling resistance.

1>8

1>500FD
1>20

80 km>h

•13–1. The casting has a mass of 3 Mg. Suspended in a
vertical position and initially at rest, it is given an upward
speed of 200 mm s in 0.3 s using a crane hook H. Determine
the tension in cables AC and AB during this time interval if
the acceleration is constant.

>

13–6. Motors A and B draw in the cable with the
accelerations shown. Determine the acceleration of the 
300-lb crate C and the tension developed in the cable. Neglect
the mass of all the pulleys.

F

10
1

Probs. 13–2/3

A

B

30�

Prob. 13–5

AB

P¿ P

C

aP¿ � 2 ft/s2
aP � 3 ft/s2

Prob. 13–6

•13–5. If blocks A and B of mass 10 kg and 6 kg,
respectively, are placed on the inclined plane and released,
determine the force developed in the link. The coefficients
of kinetic friction between the blocks and the inclined plane
are and . Neglect the mass of the link.mB = 0.3mA = 0.1

C

Prob. 13–4
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A

20 km/h

F

Prob. 13–7

13–10. The crate has a mass of 80 kg and is being towed by
a chain which is always directed at 20° from the horizontal
as shown. If the magnitude of P is increased until the crate
begins to slide, determine the crate’s initial acceleration if
the coefficient of static friction is and the
coefficient of kinetic friction is .

13–11. The crate has a mass of 80 kg and is being towed by
a chain which is always directed at 20° from the horizontal
as shown. Determine the crate’s acceleration in if
the coefficient of static friction is the coefficient of
kinetic friction is and the towing force is

, where t is in seconds.P = (90t2) N
mk = 0.3,

ms = 0.4,
t = 2 s

mk = 0.3
ms = 0.5

*13–8. If the 10-lb block A slides down the plane with a
constant velocity when , determine the acceleration
of the block when .u = 45°

u = 30°

13–7. The van is traveling at 20 km h when the coupling
of the trailer at A fails. If the trailer has a mass of 250 kg and
coasts 45 m before coming to rest, determine the constant
horizontal force F created by rolling friction which causes
the trailer to stop.

>

*13–12. Determine the acceleration of the system and the
tension in each cable. The inclined plane is smooth, and the
coefficient of kinetic friction between the horizontal surface
and block C is .(mk)C =  0.2

•13–9. Each of the three barges has a mass of 30 Mg,
whereas the tugboat has a mass of 12 Mg. As the barges are
being pulled forward with a constant velocity of 4 m s, the
tugboat must overcome the frictional resistance of the water,
which is 2 kN for each barge and 1.5 kN for the tugboat. If the
cable between A and B breaks, determine the acceleration of
the tugboat.

>

A B

1.5 kN

4 m/s

2 kN2 kN2 kN

Prob. 13–9

20�

p

Probs. 13–10/11
A

B

C
u

Prob. 13–8

A

E

B

D
C

25 kg

5 kg

10 kg
30�

(mk)C � 0.2

Prob. 13–12
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C
5�

A
B

Prob. 13–13

60�

C

B

ED

A

60�

Probs. 13–14/15

30�

F

Prob. 13–16

*13–16. The man pushes on the 60-lb crate with a force F.
The force is always directed down at 30° from the
horizontal as shown, and its magnitude is increased until the
crate begins to slide. Determine the crate’s initial
acceleration if the coefficient of static friction is 
and the coefficient of kinetic friction is .mk = 0.3

ms = 0.6

•13–13. The two boxcars A and B have a weight of 20 000 lb
and 30 000 lb, respectively. If they coast freely down the
incline when the brakes are applied to all the wheels of car A
causing it to skid, determine the force in the coupling C
between the two cars. The coefficient of kinetic friction
between the wheels of A and the tracks is . The
wheels of car B are free to roll. Neglect their mass in the
calculation. Suggestion: Solve the problem by representing
single resultant normal forces acting on A and B, respectively.

mk = 0.5

•13–17. A force of is applied to the cord.
Determine how high the 30-lb block A rises in 2 s starting
from rest. Neglect the weight of the pulleys and cord.

13–18. Determine the constant force F which must be
applied to the cord in order to cause the 30-lb block A to
have a speed of 12 ft/s when it has been displaced 3 ft
upward starting from rest. Neglect the weight of the pulleys
and cord.

F = 15 lb13–14. The 3.5-Mg engine is suspended from a spreader
beam AB having a negligible mass and is hoisted by a crane
which gives it an acceleration of when it has a
velocity of 2 m s. Determine the force in chains CA and CB
during the lift.

13–15. The 3.5-Mg engine is suspended from a spreader
beam having a negligible mass and is hoisted by a crane
which exerts a force of 40 kN on the hoisting cable.
Determine the distance the engine is hoisted in 4 s, starting
from rest.

>
4 m>s2

F
A

B
C

Probs. 13–17/18
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•13–21. Block B has a mass m and is released from rest
when it is on top of cart A, which has a mass of 3m.
Determine the tension in cord CD needed to hold the cart
from moving while B slides down A. Neglect friction.

13–22. Block B has a mass m and is released from rest
when it is on top of cart A, which has a mass of 3m.
Determine the tension in cord CD needed to hold the cart
from moving while B slides down A. The coefficient of
kinetic friction between A and B is .mk

*13–20. The 10-lb block A travels to the right at
at the instant shown. If the coefficient of kinetic

friction is between the surface and A, determine
the velocity of A when it has moved 4 ft. Block B has a
weight of 20 lb.

mk = 0.2
vA = 2 ft>s

13–19. The 800-kg car at B is connected to the 350-kg car
at A by a spring coupling. Determine the stretch in the
spring if (a) the wheels of both cars are free to roll and 
(b) the brakes are applied to all four wheels of 
car B, causing the wheels to skid. Take . Neglect
the mass of the wheels.

(mk)B = 0.4

13–23. The 2-kg shaft CA passes through a smooth journal
bearing at B. Initially, the springs, which are coiled loosely
around the shaft, are unstretched when no force is applied
to the shaft. In this position and the shaft
is at rest. If a horizontal force of is applied,
determine the speed of the shaft at the instant ,

. The ends of the springs are attached to the
bearing at B and the caps at C and A.
s¿ = 450 mm

s = 50 mm
F = 5 kN

s = s¿ = 250 mm

A
k � 600 N/m

B

4

3

5

Prob. 13–19

A

B

Prob. 13–20

A
u

B

CD

Probs. 13–21/22

s¿ s

A

kCB � 3 kN/m kAB � 2 kN/m

F � 5 kN
C B

Prob. 13–23
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13–26. A freight elevator, including its load, has a mass of
500 kg. It is prevented from rotating by the track and wheels
mounted along its sides.When , the motor M draws in
the cable with a speed of 6 m s, measured relative to the
elevator. If it starts from rest, determine the constant
acceleration of the elevator and the tension in the cable.
Neglect the mass of the pulleys, motor, and cables.

>
t = 2 s

•13–25. If the motor draws in the cable with an
acceleration of , determine the reactions at the
supports A and B.The beam has a uniform mass of 30 kg m,
and the crate has a mass of 200 kg. Neglect the mass of the
motor and pulleys.

>
3 m>s2

*13–24. If the force of the motor M on the cable is shown
in the graph, determine the velocity of the cart when 
The load and cart have a mass of 200 kg and the car starts
from rest.

t = 3s.

13–27. Determine the required mass of block A so that
when it is released from rest it moves the 5-kg block B a
distance of 0.75 m up along the smooth inclined plane in

. Neglect the mass of the pulleys and cords.t = 2 s

M

Prob. 13–26

60�

A

B

D

C

E

Prob. 13–27

C

M
F

F (N)

450

3
t (s)

30�

Prob. 13–24

C

A B

2.5 m 3 m
0.5 m

 3 m/s2

Prob. 13–25
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13–31. The 75-kg man climbs up the rope with an
acceleration of , measured relative to the rope.
Determine the tension in the rope and the acceleration of
the 80-kg block.

0.25m>s2

•13–29. The tractor is used to lift the 150-kg load B with
the 24-m-long rope, boom, and pulley system. If the tractor
travels to the right at a constant speed of 4 m s, determine
the tension in the rope when . When ,

.

13–30. The tractor is used to lift the 150-kg load B with the
24-m-long rope, boom, and pulley system. If the tractor
travels to the right with an acceleration of and has a
velocity of 4 m s at the instant , determine the
tension in the rope at this instant. When , .sB = 0sA = 0

sA = 5 m>
3 m>s2

sB = 0
sA = 0sA = 5 m

>

*13–28. Blocks A and B have a mass of and , where
. If pulley C is given an acceleration of ,

determine the acceleration of the blocks. Neglect the mass
of the pulley.

a0mA > mB
mBmA

*13–32. Motor M draws in the cable with an acceleration
of , measured relative to the 200-lb mine car.
Determine the acceleration of the car and the tension in the
cable. Neglect the mass of the pulleys.

4 ft>s2

sA

sB

A
B

12 m

Probs. 13–29/30

a0

C

A

B

Prob. 13–28

A

B

Prob. 13–31

P
M

aP/c � 4 ft/s2

30�

Prob. 13–32
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13–35. The 2-kg collar C is free to slide along the smooth
shaft AB. Determine the acceleration of collar C if (a) the
shaft is fixed from moving, (b) collar A, which is fixed to
shaft AB, moves to the left at constant velocity along the
horizontal guide, and (c) collar A is subjected to an
acceleration of to the left. In all cases, the motion
occurs in the vertical plane.

2 m>s2

13–34. In the cathode-ray tube, electrons having a mass m
are emitted from a source point S and begin to travel
horizontally with an initial velocity . While passing
between the grid plates a distance l, they are subjected to a
vertical force having a magnitude eV w, where e is the
charge of an electron, V the applied voltage acting across
the plates, and w the distance between the plates. After
passing clear of the plates, the electrons then travel in
straight lines and strike the screen at A. Determine the
deflection d of the electrons in terms of the dimensions of
the voltage plate and tube. Neglect gravity which causes a
slight vertical deflection when the electron travels from S to
the screen, and the slight deflection between the plates.

>
v0

•13–33. The 2-lb collar C fits loosely on the smooth shaft.
If the spring is unstretched when and the collar is
given a velocity of 15 ft s, determine the velocity of the
collar when .s = 1 ft

>
s = 0

*13–36. Blocks A and B each have a mass m. Determine
the largest horizontal force P which can be applied to B so
that A will not move relative to B. All surfaces are smooth.

•13–37. Blocks A and B each have a mass m. Determine
the largest horizontal force P which can be applied to B so
that A will not slip on B. The coefficient of static friction
between A and B is . Neglect any friction between B and C.ms

C

1 ft

k � 4 lb/ft

15 ft/s
s

Prob. 13–33

L

l

d

S
e
v0

w

A

+ +

– –

Prob. 13–34

B

C

A

45�

Prob. 13–35

A

B
P

u

C

Probs. 13–36/37
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*13–40. The 30-lb crate is being hoisted upward with a
constant acceleration of . If the uniform beam AB has
a weight of 200 lb, determine the components of reaction at
the fixed support A. Neglect the size and mass of the pulley
at B. Hint: First find the tension in the cable, then analyze
the forces in the beam using statics.

6 ft>s2

13–39. Suppose it is possible to dig a smooth tunnel
through the earth from a city at A to a city at B as shown. By
the theory of gravitation, any vehicle C of mass m placed
within the tunnel would be subjected to a gravitational
force which is always directed toward the center of the
earth D. This force F has a magnitude that is directly
proportional to its distance r from the earth’s center. Hence,
if the vehicle has a weight of when it is located on
the earth’s surface, then at an arbitrary location r the
magnitude of force F is , where ,
the radius of the earth. If the vehicle is released from rest
when it is at B, , determine the time needed
for it to reach A, and the maximum velocity it attains.
Neglect the effect of the earth’s rotation in the calculation
and assume the earth has a constant density. Hint: Write the
equation of motion in the x direction, noting that r cos

. Integrate, using the kinematic relation ,
then integrate the result using .v = dx>dt

v dv = a dxu = x

x = s = 2 Mm

R = 6328 kmF = (mg>R)r

W = mg

13–38. If a force is applied to the 30-kg cart,
show that the 20-kg block A will slide on the cart. Also
determine the time for block A to move on the cart 1.5 m.
The coefficients of static and kinetic friction between the
block and the cart are and . Both the cart
and the block start from rest.

mk = 0.25ms = 0.3

F = 200 N

•13–41. If a horizontal force of is applied to
block A, determine the acceleration of block B. Neglect
friction. Hint: Show that .aB = aA tan 15°

P = 10 lb

F

s

x

C
B

A

u

s

D
R

r

Prob. 13–39

5 ft

y

x
B

A

6 ft/s2

Prob. 13–40

P
A

B

15 lb

8 lb

15�

Prob. 13–41

F � 200 N

1.5 m

A

Prob. 13–38
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F � 6 kN

FD � (100v)N
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A
k

B

Probs. 13–42/43

•13–45. The buoyancy force on the 500-kg balloon is
, and the air resistance is , where is

in Determine the terminal or maximum velocity of the
balloon if it starts from rest.

m>s.
vFD = (100v)NF = 6kN

*13–44. The 600-kg dragster is traveling with a velocity of
when the engine is shut off and the braking

parachute is deployed. If air resistance imposed on the
dragster due to the parachute is ,
where is in determine the time required for the
dragster to come to rest.

m>s,v
FD = (6000 + 0.9v2)N

125 m>s

13–42. Block A has a mass and is attached to a spring
having a stiffness k and unstretched length . If another
block B, having a mass , is pressed against A so that the
spring deforms a distance d, determine the distance both
blocks slide on the smooth surface before they begin to
separate. What is their velocity at this instant?

13–43. Block A has a mass and is attached to a spring
having a stiffness k and unstretched length . If another
block B, having a mass , is pressed against A so that the
spring deforms a distance d, show that for separation to
occur it is necessary that , where 
is the coefficient of kinetic friction between the blocks and
the ground.Also, what is the distance the blocks slide on the
surface before they separate?

mkd 7 2mkg(mA + mB)>k
mB

l0

mA

mB

l0

mA

13–46. The parachutist of mass m is falling with a velocity
of at the instant he opens the parachute. If air resistance
is , determine her maximum velocity (terminal
velocity) during the descent.
FD = Cv2
v0

13–47. The weight of a particle varies with altitude such
that , where is the radius of the earth and
r is the distance from the particle to the earth’s center. If the
particle is fired vertically with a velocity from the earth’s
surface, determine its velocity as a function of position r.
What is the smallest velocity required to escape the
earth’s gravitational field, what is , and what is the time
required to reach this altitude?

rmax

v0

v0

r0W = m(gr20)>r2

Prob. 13–44

Prob. 13–45

Prob. 13–46
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13.5 Equations of Motion: Normal and
Tangential Coordinates

When a particle moves along a curved path which is known, the equation
of motion for the particle may be written in the tangential, normal, and
binormal directions, Fig. 13–11. Note that there is no motion of the particle
in the binormal direction, since the particle is constrained to move along
the path. We have

This equation is satisfied provided

(13–8)

Recall that represents the time rate of change in the
magnitude of velocity. So if acts in the direction of motion, the
particle’s speed will increase, whereas if it acts in the opposite
direction, the particle will slow down. Likewise, represents
the time rate of change in the velocity’s direction. It is caused by 
which always acts in the positive n direction, i.e., toward the path’s
center of curvature. From this reason it is often referred to as the
centripetal force.

©Fn ,
an 1= v2>r2

©Ft
at 1= dv>dt2

©Fb = 0

©Fn = man

©Ft = mat

©Ftut + ©Fnun + ©Fbub = mat + man

©F = ma

The centrifuge is used to subject a passenger to a very large
normal acceleration caused by rapid rotation. Realize that
this acceleration is caused by the unbalanced normal force
exerted on the passenger by the seat of the centrifuge.

b

tO

n �Fnun

�Fbub

�Ftut

P

Inertial coordinate
system

Fig. 13–11



132 CH A P T E R 13 KI N E T I C S O F A PA RT I C L E :  FO R C E A N D AC C E L E R AT I O N

13

Procedure for Analysis

When a problem involves the motion of a particle along a known
curved path, normal and tangential coordinates should be
considered for the analysis since the acceleration components can
be readily formulated. The method for applying the equations of
motion, which relate the forces to the acceleration, has been
outlined in the procedure given in Sec. 13.4. Specifically, for t, n, b
coordinates it may be stated as follows:

Free-Body Diagram.

● Establish the inertial t, n, b coordinate system at the particle and
draw the particle’s free-body diagram.

● The particle’s normal acceleration always acts in the positive n
direction.

● If the tangential acceleration is unknown, assume it acts in the
positive t direction.

● There is no acceleration in the b direction.

● Identify the unknowns in the problem.

Equations of Motion.

● Apply the equations of motion, Eqs. 13–8.

Kinematics.

● Formulate the tangential and normal components of
acceleration; i.e., or and 

● If the path is defined as the radius of curvature at the
point where the particle is located can be obtained from
r = [1 + 1dy>dx22]3>2> ƒd2y>dx2 ƒ .

y = f1x2,
an = v2>r.at = v dv>dsat = dv>dt

at

an
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EXAMPLE 13.6

Determine the banking angle for the race track so that the wheels of
the racing cars shown in Fig. 13–12a will not have to depend upon
friction to prevent any car from sliding up or down the track. Assume
the cars have negligible size, a mass m, and travel around the curve of
radius with a constant speed v.r

u

u

(a)

SOLUTION
Before looking at the following solution, give some thought as to why
it should be solved using t, n, b coordinates.

Free-Body Diagram. As shown in Fig. 13–12b, and as stated in the
problem, no frictional force acts on the car. Here represents the
resultant of the ground on all four wheels. Since can be calculated,
the unknowns are and 

Equations of Motion. Using the n, b axes shown,

(1)

(2)

Eliminating and m from these equations by dividing Eq. 1 by Eq. 2,
we obtain

Ans.

NOTE: The result is independent of the mass of the car. Also, a force
summation in the tangential direction is of no consequence to the
solution. If it were considered, then since the car
moves with constant speed. A further analysis of this problem is
discussed in Prob. 21–47.

at = dv>dt = 0,

u = tan-1 a v2

gr
b

 tan u =
v2

gr

NC

NC cos u - mg = 0+ c©Fb = 0;

NC sin u = m
v2

r
:+ ©Fn = man ;

u.NC

an

NC

(b)

b

n
an

NC

W � mg

u

Fig. 13–12
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The 3-kg disk D is attached to the end of a cord as shown in 
Fig. 13–13a. The other end of the cord is attached to a ball-and-socket
joint located at the center of a platform. If the platform rotates
rapidly, and the disk is placed on it and released from rest as shown,
determine the time it takes for the disk to reach a speed great enough
to break the cord.The maximum tension the cord can sustain is 100 N,
and the coefficient of kinetic friction between the disk and the
platform is mk = 0.1.

EXAMPLE 13.7

1 m

Motion of
platform

(a)

D

(b)

29.43 N 

nt

b

at an

TF � 0.1 ND

ND

Fig. 13–13

SOLUTION
Free-Body Diagram. The frictional force has a magnitude

and a sense of direction that opposes the relative
motion of the disk with respect to the platform. It is this force that
gives the disk a tangential component of acceleration causing to
increase, thereby causing T to increase until it reaches 100 N. The
weight of the disk is Since can be related
to the unknowns are and 

Equations of Motion.

(1)

(2)

(3)

Setting Eq. 1 can be solved for the critical speed of the
disk needed to break the cord. Solving all the equations, we obtain

Kinematics. Since is constant, the time needed to break the cord is

Ans.t = 5.89 s

 5.77 = 0 + 10.9812t
vcr = v0 + att

at

vcr = 5.77 m>s
at = 0.981 m>s2

ND = 29.43 N

vcrT = 100 N,

ND - 29.43 = 0©Fb = 0;

0.1ND = 3at©Ft = mat ;

T = 3av2

1
b©Fn = man ;

v.at ,ND ,v,
anW = 319.812 = 29.43 N.

v

F = mkND = 0.1ND
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EXAMPLE 13.8

Design of the ski jump shown in the photo requires knowing the type
of forces that will be exerted on the skier and her approximate
trajectory. If in this case the jump can be approximated by the parabola
shown in Fig. 13–14a, determine the normal force on the 150-lb skier
the instant she arrives at the end of the jump, point A, where her
velocity is Also, what is her acceleration at this point?

SOLUTION
Why consider using n, t coordinates to solve this problem?

Free-Body Diagram. Since the slope at A
is horizontal. The free-body diagram of the skier when she is at A is
shown in Fig. 13–14b. Since the path is curved, there are two
components of acceleration, and Since can be calculated, the
unknowns are and 

Equations of Motion.

(1)

(2)

The radius of curvature for the path must be determined at point
A(0, ). Here 
so that at 

Substituting this into Eq. 1 and solving for we obtain

Ans.

Kinematics. From Eq. 2,

Thus,

Ans.

NOTE: Apply the equation of motion in the y direction and show
that when the skier is in midair her acceleration is 32.2 ft>s2.

aA = an = 42.2 ft>s2 c

an =
v2

r
=
16522
100

= 42.2 ft>s2

at = 0

NA = 347 lb

NA ,

r =
[1 + 1dy>dx22]3>2

ƒd2y>dx2 ƒ
`
x=0

=
[1 + 1022]3>2

ƒ 1
100 ƒ

= 100 ft

x = 0,
d2y>dx2 = 1

100,dy>dx = 1
100x,y = 1

200x
2 - 200,-200 ft

r

0 =
150
32.2
at;+ ©Ft = mat ;

NA - 150 =
150
32.2

a 16522
r
b+ c©Fn = man ;

NA .at

anat .an

dy>dx = x>100 |x=0 = 0,

65 ft>s.

y

A

x

200 ft

(a)

y �  x2 � 2001
200

t

n

an

at

150 lb

NA
(b)

Fig. 13–14
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The 60-kg skateboarder in Fig.13–15a coasts down the circular track.
If he starts from rest when , determine the magnitude of the
normal reaction the track exerts on him when . Neglect his
size for the calculation.

SOLUTION

Free-Body Diagram. The free-body diagram of the skateboarder
when he is at an arbitrary position is shown in Fig. 13–15b. At

there are three unknowns,

Equations of Motion.

(1)

Kinematics. Since is expressed in terms of , the equation
must be used to determine the speed of the

skateboarder when . Using the geometric relation ,
where , Fig. 13–15c, and the initial condition

we have,

Substituting this result and into Eq. (1), yields

Ans.Ns = 1529.23 N = 1.53 kN

u = 60°

v2 = 67.97 m2/s2

v2

2
- 0 = 39.24(sin 60° - 0)

v2

2
`
0

v

= 39.24 sin u `
0

60°

L

v

0
v dv =

L

60°

0
 9.81 cos u(4 du)

v dv = at ds

v = 0 at u = 0°,
ds = r du = (4 m) du

s = uru = 60°
v dv = at ds

uat

at = 9.81 cos u

[60(9.81)N] cos u = (60 kg) atT©Ft = mat;

NS - [60(9.81)N] sin u =  (60 kg)a v2

4m
bT©Fn = man;

Ns , at , and an (or v).u = 60°
u

u = 60°
u = 0°

EXAMPLE 13.9

(a)

O

4 m

u

(c)

O

4 m
du

ds � 4du

u

Fig. 13–15

(b)

60 (9.81) N

n

an

Ns

at

t

u
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FUNDAMENTAL PROBLEMS

O

A

2 m

3 m/s

u � 45�

F13–11

A

rA � 200 m

F13–12

u � 30�

r � 500 ft

F13–10

F13–10. The sports car is traveling along a banked road
having a radius of curvature of If the coefficient
of static friction between the tires and the road is
determine the maximum safe speed so no slipping occurs.
Neglect the size of the car.

ms = 0.2,
r = 500 ft.

30°

F13–8. Determine the maximum speed that the jeep can
travel over the crest of the hill and not lose contact with
the road.

F13–7. The block rests at a distance of 2 m from the center
of the platform. If the coefficient of static friction between
the block and the platform is determine the
maximum speed which the block can attain before it begins
to slip. Assume the angular motion of the disk is slowly
increasing.

ms = 0.3,

F13–11. If the 10-kg ball has a velocity of when it is
at the position A, along the vertical path, determine the
tension in the cord and the increase in the speed of the ball
at this position.

3 m>s

F13–9. A pilot weighs 150 lb and is traveling at a constant
speed of Determine the normal force he exerts on
the seat of the plane when he is upside down at A. The loop
has a radius of curvature of 400 ft.

120 ft>s.
F13–12. The motorcycle has a mass of 0.5 Mg and a
negligible size. It passes point A traveling with a speed of

, which is increasing at a constant rate of .
Determine the resultant frictional forcce exerted by the
road on the tires at this instant.

1.5 m>s215 m>s

F13–7

A

400 ft

F13–9



B

A

C
u

10 m

Probs. 13–55/56

� 20�u

Probs. 13–53/54
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*13–52. Determine the mass of the sun, knowing that the
distance from the earth to the sun is . Hint: Use
Eq. 13–1 to represent the force of gravity acting on the earth.

•13–53. The sports car, having a mass of 1700 kg, travels
horizontally along a 20° banked track which is circular and
has a radius of curvature of . If the coefficient of
static friction between the tires and the road is ,
determine the maximum constant speed at which the car can
travel without sliding up the slope. Neglect the size of the car.

13–54. Using the data in Prob. 13–53, determine the
minimum speed at which the car can travel around the track
without sliding down the slope.

ms = 0.2
r = 100 m

149.6(106) km

13–50. At the instant shown, the 50-kg projectile travels in
the vertical plane with a speed of . Determine
the tangential component of its acceleration and the radius
of curvature of its trajectory at this instant.

13–51. At the instant shown, the radius of curvature of the
vertical trajectory of the 50-kg projectile is .
Determine the speed of the projectile at this instant.

r = 200m

r

v = 40 m>s

*13–48. The 2-kg block B and 15-kg cylinder A are
connected to a light cord that passes through a hole in the
center of the smooth table. If the block is given a speed of

, determine the radius r of the circular path
along which it travels.

•13–49. The 2-kg block B and 15-kg cylinder A are
connected to a light cord that passes through a hole in the
center of the smooth table. If the block travels along a
circular path of radius , determine the speed of
the block.

r = 1.5 m

v = 10m>s

13–55. The device shown is used to produce the
experience of weightlessness in a passenger when he
reaches point A, , along the path. If the passenger
has a mass of 75 kg, determine the minimum speed he
should have when he reaches A so that he does not exert a
normal reaction on the seat. The chair is pin-connected to
the frame BC so that he is always seated in an upright
position. During the motion his speed remains constant.

*13–56. A man having the mass of 75 kg sits in the chair
which is pin-connected to the frame BC. If the man is
always seated in an upright position, determine the
horizontal and vertical reactions of the chair on the man at
the instant . At this instant he has a speed of 6 m s,
which is increasing at .0.5 m>s2

>u = 45°

u = 90°

PROBLEMS

r

A

v

B

Probs. 13–48/49

r

30�

Probs. 13–50/51



13.5 EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES 139

13

13–59. An acrobat has a weight of 150 lb and is sitting on a
chair which is perched on top of a pole as shown. If by a
mechanical drive the pole rotates downward at a constant
rate from , such that the acrobat’s center of mass G
maintains a constant speed of , determine the
angle at which he begins to “fly” out of the chair. Neglect
friction and assume that the distance from the pivot O to G
is .r = 15 ft

u

va = 10 ft>s
u = 0°

13–58. Determine the time for the satellite to complete its
orbit around the earth. The orbit has a radius r measured
from the center of the earth. The masses of the satellite and
the earth are and , respectively.Mems

•13–57. Determine the tension in wire CD just after wire
AB is cut. The small bob has a mass m.

*13–60. A spring, having an unstretched length of 2 ft, has
one end attached to the 10-lb ball. Determine the angle of
the spring if the ball has a speed of 6 ft s tangent to the
horizontal circular path.

>
u

A D

B C

u u

Prob. 13–57

G

O

u

va

Prob. 13–59

r

Prob. 13–58

6 in.

A

k � 20 lb/ftu

Prob. 13–60
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*13–64. The ball has a mass m and is attached to the cord
of length l. The cord is tied at the top to a swivel and the ball
is given a velocity . Show that the angle which the cord
makes with the vertical as the ball travels around the
circular path must satisfy the equation .
Neglect air resistance and the size of the ball.

tan u sin u = v2
0>gl

uv0

13–63. The vehicle is designed to combine the feel of a
motorcycle with the comfort and safety of an automobile. If
the vehicle is traveling at a constant speed of 80 km h along
a circular curved road of radius 100 m, determine the tilt
angle of the vehicle so that only a normal force from the
seat acts on the driver. Neglect the size of the driver.

u

>

•13–61. If the ball has a mass of 30 kg and a speed
at the instant it is at its lowest point, ,

determine the tension in the cord at this instant. Also,
determine the angle to which the ball swings and
momentarily stops. Neglect the size of the ball.

13–62. The ball has a mass of 30 kg and a speed
at the instant it is at its lowest point, .

Determine the tension in the cord and the rate at which the
ball’s speed is decreasing at the instant . Neglect
the size of the ball.

u = 20°

u = 0°v = 4 m>s

u

u = 0°v = 4 m>s

•13–65. The smooth block B, having a mass of 0.2 kg, is
attached to the vertex A of the right circular cone using a
light cord. If the block has a speed of 0.5 m s around the cone,
determine the tension in the cord and the reaction which
the cone exerts on the block. Neglect the size of the block.

>

4 m

u

Probs. 13–61/62

O

u

l

v0

Prob. 13–64

z

A

B 400 mm

200 mm

300 mm

Prob. 13–65

u

Prob. 13–63
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13–70. A 5-Mg airplane is flying at a constant speed of 
350 km h along a horizontal circular path of radius

. Determine the uplift force L acting on the
airplane and the banking angle . Neglect the size of the
airplane.

13–71. A 5-Mg airplane is flying at a constant speed of 
350 km h along a horizontal circular path. If the banking
angle , determine the uplift force L acting on the
airplane and the radius r of the circular path. Neglect the
size of the airplane.

u = 15°
>

u

r = 3000m
>

*13–68. At the instant shown, the 3000-lb car is traveling
with a speed of 75 ft s, which is increasing at a rate of .
Determine the magnitude of the resultant frictional force
the road exerts on the tires of the car. Neglect the size of the
car.

6 ft>s2>

13–66. Determine the minimum coefficient of static
friction between the tires and the road surface so that the
1.5-Mg car does not slide as it travels at 80 km h on the
curved road. Neglect the size of the car.

13–67. If the coefficient of static friction between the tires
and the road surface is , determine the maximum
speed of the 1.5-Mg car without causing it to slide when it
travels on the curve. Neglect the size of the car.

ms = 0.25

>

*13–72. The 0.8-Mg car travels over the hill having the
shape of a parabola. If the driver maintains a constant speed
of 9 m s, determine both the resultant normal force and the
resultant frictional force that all the wheels of the car exert
on the road at the instant it reaches point A. Neglect the
size of the car.

•13–73. The 0.8-Mg car travels over the hill having the
shape of a parabola.When the car is at point A, it is traveling
at 9 m s and increasing its speed at . Determine both
the resultant normal force and the resultant frictional force
that all the wheels of the car exert on the road at this instant.
Neglect the size of the car.

3 m>s2>

>

y

A
x

y � 20 (1 �           )

80 m

x2

6400

Probs. 13–72/73

r � 200 m

Probs. 13–66/67

r � 600 ft

Prob. 13–68

r r

r r

A

B

Prob. 13–69

r

L

u

Probs. 13–70/71

•13–69. Determine the maximum speed at which the car
with mass m can pass over the top point A of the vertical
curved road and still maintain contact with the road. If the
car maintains this speed, what is the normal reaction the
road exerts on the car when it passes the lowest point B on
the road?
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*13–76. A toboggan and rider of total mass 90 kg travel
down along the (smooth) slope defined by the equation

. At the instant , the toboggan’s speed
is 5 m s. At this point, determine the rate of increase in
speed and the normal force which the slope exerts on the
toboggan. Neglect the size of the toboggan and rider for the
calculation.

>
x = 10 my = 0.08x2

13–75. Prove that if the block is released from rest at point
B of a smooth path of arbitrary shape, the speed it attains
when it reaches point A is equal to the speed it attains when
it falls freely through a distance h; i.e., v = 22gh.

13–74. The 6-kg block is confined to move along the
smooth parabolic path. The attached spring restricts the
motion and, due to the roller guide, always remains
horizontal as the block descends. If the spring has a stiffness
of , and unstretched length of 0.5 m, determine
the normal force of the path on the block at the instant

when the block has a speed of 4 m s. Also, what is
the rate of increase in speed of the block at this point?
Neglect the mass of the roller and the spring.

>x = 1 m

k = 10 N>m

•13–77. The skier starts from rest at A(10 m, 0) and
descends the smooth slope, which may be approximated by
a parabola. If she has a mass of 52 kg, determine the normal
force the ground exerts on the skier at the instant she
arrives at point B. Neglect the size of the skier. Hint: Use
the result of Prob. 13–75.

y

y � 2 � 0.5 x2

k � 10 N/m

x

B A

Prob. 13–74

y � 0.08x2

v � 5 m/s

y

x

10 m

Prob. 13–76

10 m

5 m

y

B

A
x

y � x2 � 51––
20

Prob. 13–77

A

B

h

Prob. 13–75
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13–82. Determine the maximum speed the 1.5-Mg car can
have and still remain in contact with the road when it passes
point A. If the car maintains this speed, what is the normal
reaction of the road on it when it passes point B? Neglect
the size of the car.

*13–80. The 800-kg motorbike travels with a constant
speed of 80 km h up the hill. Determine the normal force
the surface exerts on its wheels when it reaches point A.
Neglect its size.

>

13–78. The 5-lb box is projected with a speed of 20 ft s at
A up the vertical circular smooth track. Determine the
angle when the box leaves the track.

13–79. Determine the minimum speed that must be given
to the 5-lb box at A in order for it to remain in contact with
the circular path.Also, determine the speed of the box when
it reaches point B.

u

>

13–83. The 5-lb collar slides on the smooth rod, so that
when it is at A it has a speed of 10 ft s. If the spring to which
it is attached has an unstretched length of 3 ft and a stiffness
of , determine the normal force on the collar
and the acceleration of the collar at this instant.
k = 10 lb>ft

>

•13–81. The 1.8-Mg car travels up the incline at a constant
speed of 80 km h. Determine the normal reaction of the
road on the car when it reaches point A. Neglect its size.

>

2 ft

10 ft/s

A

O

y

x

1––
2

y � 8 �  x2

Prob. 13–83

B

4 ft
v

A

30�

u

Probs. 13–78/79

y

100 m

A

x

y2 � 2x

Prob. 13–80

y

x

y � 20e

50 m

x
100

A

Prob. 13–81

1
200

y

x

25 m

A B y � 25 � x2

Prob. 13–82



144 CH A P T E R 13 KI N E T I C S O F A PA RT I C L E :  FO R C E A N D AC C E L E R AT I O N

13

13.6 Equations of Motion: Cylindrical
Coordinates

When all the forces acting on a particle are resolved into cylindrical
components, i.e., along the unit-vector directions Fig. 13–16, the
equation of motion can be expressed as

To satisfy this equation, we require

(13–9)

If the particle is constrained to move only in the plane, then only the
first two of Eqs. 13–9 are used to specify the motion.

Tangential and Normal Forces. The most straightforward type
of problem involving cylindrical coordinates requires the determination
of the resultant force components which cause a particle
to move with a known acceleration. If, however, the particle’s accelerated
motion is not completely specified at the given instant, then some
information regarding the directions or magnitudes of the forces acting
on the particle must be known or computed in order to solve Eqs. 13–9.
For example, the force P causes the particle in Fig. 13–17a to move along
a path The normal force N which the path exerts on the particle
is always perpendicular to the tangent of the path, whereas the frictional
force F always acts along the tangent in the opposite direction of motion.
The directions of N and F can be specified relative to the radial
coordinate by using the angle (psi), Fig. 13–17b, which is defined
between the extended radial line and the tangent to the curve.

c

r = f1u2.

©Fz©Fu ,©Fr ,

r–u

©Fz = maz

©Fu = mau

©Fr = mar

©Frur + ©Fuuu + ©Fzuz = marur + mauuu + mazuz

©F = ma

uz ,uu ,ur ,

O

r

z

P

�Fzuz

�Fuuu

�Frur

Inertial coordinate system

u

Fig. 13–16

O

r

Tangent

P F

N

r � f (u)

(a)

u

Fig. 13–17

O

r

Tangent

r � f (u)

(b)

u

c

As the car of weight W descends
the spiral track, the resultant
normal force which the track
exerts on the car can be
represented by its three cylindrical
components. creates a radial
acceleration, creates a
transverse acceleration and the
difference creates an
azimuthal acceleration -az .

W - Nz
au ,

Nu-ar ,
-Nr
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O

r

Tangent

r � f (u)

(c)

d

dr

ds

 r d c

c
u

u

u

Fig. 13–17

This angle can be obtained by noting that when the particle is
displaced a distance ds along the path, Fig. 13–17c, the component of
displacement in the radial direction is dr and the component of
displacement in the transverse direction is Since these two
components are mutually perpendicular, the angle can be determined
from or

(13–10)

If is calculated as a positive quantity, it is measured from the extended
radial line to the tangent in a counterclockwise sense or in the positive
direction of If it is negative, it is measured in the opposite direction
to positive For example, consider the cardioid
shown in Fig. 13–18. Because then when

or measured
clockwise, opposite to as shown in the figure.+u

c = -75°,tan c = a11 + cos 30°2>1-a sin 30°2 = -3.732,
u = 30°,dr>du = -a sin u,

r = a11 + cos u2,u.
u.

c

tan c =
r

dr>du
tan c = r du>dr, c

r du.

Procedure for Analysis

Cylindrical or polar coordinates are a suitable choice for the
analysis of a problem for which data regarding the angular motion
of the radial line r are given, or in cases where the path can be
conveniently expressed in terms of these coordinates. Once these
coordinates have been established, the equations of motion can
then be applied in order to relate the forces acting on the particle to
its acceleration components. The method for doing this has been
outlined in the procedure for analysis given in Sec. 13.4. The
following is a summary of this procedure.

Free-Body Diagram.
● Establish the r, z inertial coordinate system and draw the

particle’s free-body diagram.
● Assume that act in the positive directions of r, z if they

are unknown.
● Identify all the unknowns in the problem.

Equations of Motion.
● Apply the equations of motion, Eqs. 13–9.

Kinematics.
● Use the methods of Sec. 12.8 to determine r and the time

derivatives , , , , , and then evaluate the acceleration
components , ,

● If any of the acceleration components is computed as a negative
quantity, it indicates that it acts in its negative coordinate direction.

● When taking the time derivatives of it is very important
to use the chain rule of calculus, which is discussed at the end of
Appendix C.

r = f1u2,

az = z$.au = ru
$

+ 2r
#
u
#

ar = r$ - ru
#
2
z
$

u
$

u
#

r
$

r
#

u,azau ,ar ,

u,

Tangent

r

O

2a

� 75�

� 30�u

c

r
u

Fig. 13–18
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The smooth 0.5-kg double-collar in Fig. 13–19a can freely slide on arm
AB and the circular guide rod. If the arm rotates with a constant
angular velocity of , determine the force the arm exerts on
the collar at the instant . Motion is in the horizontal plane.

SOLUTION

Free-Body Diagram. The normal reaction of the circular guide
rod and the force F of arm AB act on the collar in the plane of motion,
Fig. 13–19b. Note that F acts perpendicular to the axis of arm AB, that
is, in the direction of the axis, while acts perpendicular to the
tangent of the circular path at . The four unknowns are

.

Equations of Motion.

(1)

(2)

Kinematics. Using the chain rule (see Appendix C), the first and
second time derivatives of r when are

We have

Substituting these results into Eqs. (1) and (2) and solving, we get

Ans.F = 0

NC = 7.20 N

= -10.18 m>s2

au = ru
$

+ 2r
#
u
#
= (0.5657 m)(0) + 2(-1.6971 m>s)(3 rad>s)

ar = r$ - ru
#
2 = -5.091 m>s2 - (0.5657 m)(3 rad>s)2 = -10.18 m>s2

= -0.8[sin 45°(0)+cos 45°(32)] = -5.091 m>s2

r
$ = -0.8 Csin u u

$
+cos u u

#
2 D

r
# = -0.8 sin u u

#
= -0.8 sin 45°(3) = -1.6971 m>s

r = 0.8 cos u = 0.8 cos45° =  0.5657 m

u = 45°, u
#
= 3 rad>s, u

$
= 0,

F - NC sin 45° = (0.5 kg) au+a©Fu = mau ;

-NC cos 45° = (0.5 kg) ar+Q©Fr = mar ;

NC, F, ar, au
u = 45°

NCu

NC

u = 45°
u
#
= 3 rad>s

EXAMPLE 13.10

A

C B

0.4 m 

(a)

r � (0.8 cos u)m

u � 3 rad/s

u

C

r

(b)

tangent

NC

F

au
ar

45�

u

Fig. 13–19
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EXAMPLE 13.11

The smooth 2-kg cylinder C in Fig. 13–20a has a pin P through its
center which passes through the slot in arm OA. If the arm is forced to
rotate in the vertical plane at a constant rate determine
the force that the arm exerts on the peg at the instant 

SOLUTION
Why is it a good idea to use polar coordinates to solve this problem?

Free-Body Diagram. The free-body diagram for the cylinder is
shown in Fig. 13–20b. The force on the peg, acts perpendicular to
the slot in the arm. As usual, and are assumed to act in the
directions of positive r and respectively. Identify the four unknowns.

Equations of Motion. Using the data in Fig. 13–20b, we have

(1)

(2)

Kinematics. From Fig. 13–20a, r can be related to by the equation

Since and then
r and the necessary time derivatives become

Evaluating these formulas at we get

Substituting these results into Eqs. 1 and 2 with and 
solving yields

Ans.

The negative sign indicates that acts opposite to the direction
shown in Fig. 13–20b.

FP

FP = -0.356 NNC = 19.5 N

u = 60°

au = ru
$

+ 2r
#
u
#
= 0 + 21-0.133210.52 = -0.133

ar = r$ - ru
#
2 = 0.192 - 0.46210.522 = 0.0770

r
$ = 0.192

r
# = -0.133u

$
= 0

r = 0.462u
#
= 0.5

u = 60°,

= 0.1 csc u1cot2 u + csc2 u2
r
$ = -0.21-csc u cot u21u# 2 cot u - 0.2 csc u1-csc2 u2u#

= -0.2 csc u cot u

r
# = -0.41csc u cot u2u#u

$
= 0

r = 0.4 csc uu
#
= 0.5

d1cot u2 = -1csc2 u2 du,d1csc u2 = -1csc u cot u2 du
r =

0.4
sin u

= 0.4 csc u

u

19.62 cos u + FP - NC cos u = 2au+R©Fu = mau ;

19.62 sin u - NC sin u = 2ar+b©Fr = mar ;

u,
auar

FP ,

u = 60°.
u
#
= 0.5 rad>s,

0.4 m

P

u

u
O

� 0.5 rad/s

C

A

(a)

r

·

19.62 N

FP

NC

r

au

ar

(b)

u

u

u

Fig. 13–20



148 CH A P T E R 13 KI N E T I C S O F A PA RT I C L E :  FO R C E A N D AC C E L E R AT I O N

13

A can C, having a mass of 0.5 kg, moves along a grooved horizontal
slot shown in Fig. 13–21a. The slot is in the form of a spiral, which is
defined by the equation where is in radians. If the arm
OA rotates with a constant rate in the horizontal plane,
determine the force it exerts on the can at the instant 
Neglect friction and the size of the can.

SOLUTION
Free-Body Diagram. The driving force acts perpendicular to the
arm OA, whereas the normal force of the wall of the slot on the can,

acts perpendicular to the tangent to the curve at 
Fig. 13–21b. As usual, and are assumed to act in the positive
directions of r and respectively. Since the path is specified, the angle

which the extended radial line r makes with the tangent, Fig. 13–21c,
can be determined from Eq. 13–10. We have so that

and therefore

When so that as
shown in Fig. 13–21c. Identify the four unknowns in Fig. 13–21b.

Equations of Motion. Using and the data shown in 
Fig. 13–21b, we have

(1)

(2)

Kinematics. The time derivatives of r and are

At the instant 

Substituting these results into Eqs. 1 and 2 and solving yields

Ans.

What does the negative sign for indicate?NC

FC = 0.800 N

NC = -2.64 N

au = ru
$

+ 2r
#
u
#
= 0 + 210.42142 = 3.20 m>s2

ar = r$ - ru
#
2 = 0 - 0.11p21422 = -5.03 m>s2

u = p rad,

r
$ = 0.1u

$
= 0

r
# = 0.1u

#
= 0.1142 = 0.4 m>su

$
= 0

r = 0.1uu
#
= 4 rad>s

u

FC - NC sin 17.7° = 0.5au+ T©Fu = mau ;
NC cos 17.7° = 0.5ar;+ ©Fr = mar ;

f = 17.7°

f = 90° - c = 17.7°,c = tan-1p = 72.3°,u = p,

tan c =
r

dr>du =
0.1u
0.1

= u

dr>du = 0.1,
r = 0.1u,

c

u,
auar

u = p rad,NC ,

FC

u = p rad.
u
#
= 4 rad>s

ur = 10.1u2 m,

EXAMPLE 13.12

� 4 rad/s

O

r � 0.1

CA r

u

u
u

Top View

(a)

·

(b)

NC

FC

r

ar

auTangent

u

f

f

r

(c)

Tangent

u � pr � 0.1 u

c

f

u

Fig. 13–21
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FUNDAMENTAL PROBLEMS

F13–15. The 2-Mg car is traveling along the curved road
described by where is in radians. If a camera
is located at A and it rotates with an angular velocity of

and an angular acceleration of 
at the instant determine the resultant friction force
developed between the tires and the road at this instant.

u = p
6  rad,

u
$

= 0.01 rad>s2u
#
= 0.05 rad>s

ur = (50e2u) m,

F13–16. The 0.2-kg pin P is constrained to move in the
smooth curved slot, which is defined by the lemniscate

Its motion is controlled by the rotation
of the slotted arm OA, which has a constant clockwise
angular velocity of Determine the force arm
OA exerts on the pin P when Motion is in the
vertical plane.

u = 0°.
u
#
= -3 rad>s.

r = (0.6 cos 2u) m.

F13–13. Determine the constant angular velocity of the
vertical shaft of the amusement ride if Neglect the
mass of the cables and the size of the passengers.

f = 45°.
u
#

F13–14. The 0.2-kg ball is blown through the smooth
vertical circular tube whose shape is defined by

where is in radians. If 
where t is in seconds, determine the magnitude of force F
exerted by the blower on the ball when t = 0.5 s.

u = (p t2) rad,ur = (0.6 sin u) m,

1.5 m

8 m

u

f

F13–13

r

F

0.3 m

u

F13–14

A

r

r � (50e2u)m

u

u, u

F13–15

O

P A

r � (0.6 cos 2u) m

u

u

F13–16
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z

z � 0.02 sin

0.1 m

� 5 rad/s

A

u

u

C

B

Probs. 13–90/91

PROBLEMS

•13–89. The 0.5-kg collar C can slide freely along the smooth
rod AB.At a given instant, rod AB is rotating with an angular
velocity of and has an angular acceleration of

. Determine the normal force of rod AB and the
radial reaction of the end plate B on the collar at this instant.
Neglect the mass of the rod and the size of the collar.

u
$

= 2 rad>s2
u
#
= 2 rad>s

*13–84. The path of motion of a 5-lb particle in the
horizontal plane is described in terms of polar coordinates
as and rad, where t is in
seconds. Determine the magnitude of the resultant force
acting on the particle when .

•13–85. Determine the magnitude of the resultant force
acting on a 5-kg particle at the instant , if the particle
is moving along a horizontal path defined by the equations

and rad, where t is in
seconds.

13–86. A 2-kg particle travels along a horizontal smooth
path defined by 

,

where t is in seconds. Determine the radial and transverse
components of force exerted on the particle when .

13–87. A 2-kg particle travels along a path defined by

and , where t is in seconds. Determine the r,
, z components of force that the path exerts on the particle

at the instant .

*13–88. If the coefficient of static friction between the
block of mass m and the turntable is , determine the
maximum constant angular velocity of the platform without
causing the block to slip.

m s

t = 1s
u

z = (5 - 2t2)m

r = (3 + 2t2)m, u = ¢1
3
t3 + 2≤ rad

t = 2 s

r = ¢1
4
t3 + 2≤m, u = ¢ t2

4
≤ rad

u = (1.5t2 - 6t)r = (2t + 10) m

t = 2 s

t = 2 s

u = (0.5t2 - t)r = (2t + 1) ft

13–90. The 2-kg rod AB moves up and down as its end slides
on the smooth contoured surface of the cam, where 
and . If the cam is rotating with a constant
angular velocity of 5 rad s, determine the force on the roller A
when . Neglect friction at the bearing C and the mass
of the roller.

13–91. The 2-kg rod AB moves up and down as its end
slides on the smooth contoured surface of the cam, where

and . If the cam is rotating at a
constant angular velocity of 5 rad s, determine the maximum
and minimum force the cam exerts on the roller at A. Neglect
friction at the bearing C and the mass of the roller.

>
z = (0.02 sin u) mr = 0.1 m

u = 90°
>

z = (0.02 sin u) m
r = 0.1 m

r
u

Prob. 13–88

A

C B

0.6 m

u, u

Prob. 13–89
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13–95. The mechanism is rotating about the vertical axis
with a constant angular velocity of . If rod AB
is smooth, determine the constant position r of the 3-kg
collar C. The spring has an unstretched length of 400 mm.
Neglect the mass of the rod and the size of the collar.

u
#
= 6rad>s

13–94. If the position of the 3-kg collar C on the smooth rod
AB is held at , determine the constant angular
velocity at which the mechanism is rotating about the
vertical axis.The spring has an unstretched length of 400 mm.
Neglect the mass of the rod and the size of the collar.

u
# r = 720 mm

*13–92. If the coefficient of static friction between the
conical surface and the block of mass m is ,
determine the minimum constant angular velocity so that
the block does not slide downwards.

•13–93. If the coefficient of static friction between the conical
surface and the block is , determine the maximum
constant angular velocity without causing the block to slide
upwards.

u
#ms = 0.2

u
#ms = 0.2

*13–96. Due to the constraint, the 0.5-kg cylinder C travels
along the path described by . If arm OA
rotates counterclockwise with an angular velocity of

and an angular acceleration of at
the instant , determine the force exerted by the arm
on the cylinder at this instant. The cylinder is in contact with
only one edge of the smooth slot, and the motion occurs in
the horizontal plane.

u = 30°
u
$

= 0.8 rad>s2u
#
= 2 rad>s

r = (0.6 cos u)m

k � 200 N/m
300 mm

r

A
B

C

u

Prob. 13–94

k � 200 N/m
300 mm

r

A
B

C

u

Prob. 13–95

A

300 mm

45�45�

u

Probs. 13–92/93

O

A

C
r � 0.6 cos u

0.3 m

0.3 mu

u, u

Prob. 13–96
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3 ft

r2 ft

·

u

u

Probs. 13–99/100/101

13–102. The amusement park ride rotates with a constant
angular velocity of . If the path of the ride is
defined by and ,
determine the r, , and z components of force exerted by
the seat on the 20-kg boy when .u = 120°

u

z = (3cos u)mr = (3sin u + 5)m
u
#
= 0.8 rad>s

13–99. The forked rod is used to move the smooth 
2-lb particle around the horizontal path in the shape of a
limaçon, . If at all times ,
determine the force which the rod exerts on the particle at
the instant . The fork and path contact the particle
on only one side.

*13–100. Solve Prob. 13–99 at the instant .

•13–101. The forked rod is used to move the smooth 
2-lb particle around the horizontal path in the shape of a
limaçon, . If rad, where t is in
seconds, determine the force which the rod exerts on the
particle at the instant . The fork and path contact the
particle on only one side.

t = 1 s

u = (0.5t2)r = (2 + cos u) ft

u = 60°

u = 90°

u
#
= 0.5 rad>sr = (2 + cos u) ft

•13–97. The 0.75-lb smooth can is guided along the
circular path using the arm guide. If the arm has an
angular velocity and an angular acceleration

at the instant , determine the force of
the guide on the can. Motion occurs in the horizontal plane.

13–98. Solve Prob. 13–97 if motion occurs in the vertical
plane.

u = 30°u
$

= 0.4 rad>s2
u
#
= 2 rad>s

13–103. The airplane executes the vertical loop defined by
. If the pilot maintains a constant

speed along the path, determine the normal
force the seat exerts on him at the instant . The pilot
has a mass of 75 kg.

u = 0°
v = 120m>s

r2 = [810(103)cos 2u]m2

r

z

� 0.8 rad/s

u

u

Prob. 13–102

r

r2 � [810(103) cos 2 u]m2

u

Prob. 13–103

0.5 ft

u

r

0.5 ft

Probs. 13–97/98
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C

u

O
r � 2 m

r � 3 m

1 m

Prob. 13–104

P

r

O

u � 5 rad/s ·0.4 m

u

Probs. 13–105/106

13–107. The 1.5-kg cylinder C travels along the path
described by . If arm OA rotates
counterclockwise with a constant angular velocity of

, determine the force exerted by the smooth slot
in arm OA on the cylinder at the instant . The spring
has a stiffness of 100 N m and is unstretched when  .
The cylinder is in contact with only one edge of the slotted
arm. Neglect the size of the cylinder. Motion occurs in the
horizontal plane.

*13–108. The 1.5-kg cylinder C travels along the path
described by . If arm OA is rotating
counterclockwise with an angular velocity of ,
determine the force exerted by the smooth slot in arm OA on
the cylinder at the instant . The spring has a stiffness
of 100 N m and is unstretched when  .The cylinder is
in contact with only one edge of the slotted arm. Neglect the
size of the cylinder. Motion occurs in the vertical plane.

u = 30°>
u = 60°

u
#
= 3 rad>s

r = (0.6 sin u)m

u = 30°>
u = 60°

u
#
= 3rad>s

r = (0.6 sin u) m

13–105. The smooth particle has a mass of It is
attached to an elastic cord extending from O to P and due to
the slotted arm guide moves along the horizontal circular
path If the cord has a stiffness

and an unstretched length of 0.25 m, determine
the force of the guide on the particle when The
guide has a constant angular velocity 

13–106. Solve Prob. 13–105 if when
and u = 60°.

u
#
= 5 rad>su

$
= 2 rad>s2

u
#
= 5 rad>s.

u = 60°.
k = 30 N>m

r = 10.8 sin u2 m.

80 g.

*13–104. A boy standing firmly spins the girl sitting on a
circular “dish” or sled in a circular path of radius 
such that her angular velocity is . If the attached
cable OC is drawn inward such that the radial coordinate r
changes with a constant speed of determine
the tension it exerts on the sled at the instant .The sled
and girl have a total mass of 50 kg. Neglect the size of the girl
and sled and the effects of friction between the sled and ice.
Hint: First show that the equation of motion in the 
direction yields . Whenau = ru

$
+ 2r

#
u
#
= (1>r) d>dt(r2u# ) = 0

u

r = 2 m
r
# = -0.5 m>s,

u
#
0 = 0.1 rad>s

r0 = 3 m

•13–109. Using air pressure, the 0.5-kg ball is forced to
move through the tube lying in the horizontal plane and
having the shape of a logarithmic spiral. If the tangential
force exerted on the ball due to air pressure is 6 N,
determine the rate of increase in the ball’s speed at the
instant .Also, what is the angle from the extended
radial coordinate r to the line of action of the 6-N force?

cu = p>2

F � 6 Nu

r � 0.2e0.1u

r

Prob. 13–109

A

O

C

r � 0.6 sin u

uu, u

Probs. 13–107/108

integrated, , where the constant C is determined from
the problem data.

r2u
#
= C
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A

u

ur � 600 (1 + cos   ) ft

Prob. 13–111

P

r

u

A

O

rc

Probs. 13–112/113

*13–112. The 0.5-lb ball is guided along the vertical circular
path using the arm OA. If the arm has an
angular velocity and an angular acceleration

at the instant , determine the force of
the arm on the ball. Neglect friction and the size of the ball.
Set .

•13–113. The ball of mass m is guided along the vertical
circular path using the arm OA. If the arm has
a constant angular velocity , determine the angle 
at which the ball starts to leave the surface of the
semicylinder. Neglect friction and the size of the ball.

u … 45°u
#
0

r = 2rc cos u

rc = 0.4 ft

u = 30°u
$

= 0.8 rad>s2
u
#
= 0.4 rad>s

r = 2rc cos u
13–110. The tube rotates in the horizontal plane at a
constant rate of If a 0.2-kg ball B starts at the
origin O with an initial radial velocity of and
moves outward through the tube, determine the radial and
transverse components of the ball’s velocity at the instant it
leaves the outer end at C, Hint: Show that 
the equation of motion in the r direction is 
The solution is of the form Evaluate the
integration constants A and B, and determine the time t
when Proceed to obtain and vu .vrr = 0.5 m.

r = Ae-4t + Be4t.
r
$ - 16r = 0.

r = 0.5 m.

r
# = 1.5 m>s

u
#
= 4 rad>s.

13–114. The ball has a mass of 1 kg and is confined to
move along the smooth vertical slot due to the rotation of
the smooth arm OA. Determine the force of the rod on the
ball and the normal force of the slot on the ball when

. The rod is rotating with a constant angular velocity
. Assume the ball contacts only one side of the

slot at any instant.

13–115. Solve Prob. 13–114 if the arm has an angular
acceleration of when at .u = 30°u

#
= 3 rad>su

$
= 2 rad>s2

u
#
= 3 rad>s
u = 30°

0.5 m

O

u
u� 2 rad/s

A

r

Probs. 13–114/115

r

Bx

y

z

0.5 m

·
� 4 rad/s

C

O

u

u

Prob. 13–110

13–111. The pilot of an airplane executes a vertical 
loop which in part follows the path of a cardioid,

. If his speed at A ( ) is a
constant , determine the vertical force the
seat belt must exert on him to hold him to his seat when
the plane is upside down at A. He weighs 150 lb.

vP = 80 ft>s
u = 0°r = 600(1 + cos u) ft
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*13.7 Central-Force Motion and Space
Mechanics

If a particle is moving only under the influence of a force having a line of
action which is always directed toward a fixed point, the motion is called
central-force motion. This type of motion is commonly caused by
electrostatic and gravitational forces.

In order to analyze the motion, we will consider the particle P shown in
Fig. 13–22a, which has a mass m and is acted upon only by the central
force F. The free-body diagram for the particle is shown in Fig. 13–22b.
Using polar coordinates (r, ), the equations of motion, Eqs. 13–9, become

(13–11)

The second of these equations may be written in the form

so that integrating yields

(13–12)

Here h is the constant of integration.
From Fig. 13–22a notice that the shaded area described by the radius r,

as r moves through an angle is If the areal velocity is
defined as

(13–13)

then it is seen that the areal velocity for a particle subjected to central-
force motion is constant. In other words, the particle will sweep out equal
segments of area per unit of time as it travels along the path. To obtain
the path of motion, the independent variable t must be
eliminated from Eqs. 13–11. Using the chain rule of calculus and 
Eq. 13–12, the time derivatives of Eqs. 13–11 may be replaced by

d2r

dt2
=
d

dt
a h
r2
dr

du
b =

d

du
a h
r2
dr

du
b du
dt

= c d
du
a h
r2
dr

du
b d h
r2

dr

dt
=
dr

du

du

dt
=
h

r2
dr

du

r = f1u2,

dA

dt
=

1
2
r2
du

dt
=
h

2

dA = 1
2 r

2 du.du,

r2
du

dt
= h

1
r
c d
dt
ar2 du
dt
b d = 0

0 = mar d2u

dt2
+ 2
dr

dt

du

dt
b©Fu = mau;

-F = m cd2r

dt2
- radu

dt
b2 d©Fr = mar;

u

rdu

O

F

P

(a)

u
dA � r2du1

2
—

r

F

(b)

u

u

Fig. 13–22
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Substituting a new dependent variable (xi) into the second
equation, we have

Also, the square of Eq. 13–12 becomes

Substituting these two equations into the first of Eqs. 13–11 yields

or

(13–14)

This differential equation defines the path over which the particle travels
when it is subjected to the central force F.*

For application, the force of gravitational attraction will be considered.
Some common examples of central-force systems which depend on
gravitation include the motion of the moon and artificial satellites about
the earth, and the motion of the planets about the sun. As a typical
problem in space mechanics, consider the trajectory of a space satellite or
space vehicle launched into free-flight orbit with an initial velocity 
Fig. 13–23. It will be assumed that this velocity is initially parallel to the
tangent at the surface of the earth, as shown in the figure.† Just after 
the satellite is released into free flight, the only force acting on it is the
gravitational force of the earth. (Gravitational attractions involving other
bodies such as the moon or sun will be neglected, since for orbits close to
the earth their effect is small in comparison with the earth’s gravitation.)
According to Newton’s law of gravitation, force F will always act between
the mass centers of the earth and the satellite, Fig. 13–23. From Eq. 13–1,
this force of attraction has a magnitude of

where and m represent the mass of the earth and the satellite,
respectively, G is the gravitational constant, and r is the distance between

Me

F = G
Mem

r2

v0 ,

d2j

du2 + j =
F

mh2j2

-h2j2 d
2j

du2 - h2j3 = -
F
m

adu
dt
b2

= h2j4

d2r

dt2
= -h2j2 d

2j

du2

j = 1>r

*In the derivation, F is considered positive when it is directed toward point O. If F is
oppositely directed, the right side of Eq. 13–14 should be negative.

This satellite is subjected to a central
force and its orbital motion can be
closely predicted using the equations
developed in this section.

F

v0

Free-flight
trajectory

Satellite

Power-flight
trajectory

Launching

r � r0
F

Fig. 13–23

†The case where acts at some initial angle to the tangent is best described using the
conservation of angular momentum (see Prob. 15–100).

uv0
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the mass centers. To obtain the orbital path, we set in the
foregoing equation and substitute the result into Eq. 13–14. We obtain

(13–15)

This second-order differential equation has constant coefficients and is
nonhomogeneous. The solution is the sum of the complementary and
particular solutions given by

(13–16)

This equation represents the free-flight trajectory of the satellite. It is
the equation of a conic section expressed in terms of polar coordinates.

A geometric interpretation of Eq. 13–16 requires knowledge of the
equation for a conic section. As shown in Fig. 13–24, a conic section is
defined as the locus of a point P that moves in such a way that the ratio
of its distance to a focus, or fixed point F, to its perpendicular distance
to a fixed line DD called the directrix, is constant. This constant ratio
will be denoted as e and is called the eccentricity. By definition

From Fig. 13–24,

or

Comparing this equation with Eq. 13–16, it is seen that the fixed distance
from the focus to the directrix is

(13–17)

And the eccentricity of the conic section for the trajectory is

(13–18)e =
Ch2

GMe

p =
1
C

1
r

=
1
p

cos1u - f2 +
1
ep

FP = r = e1PA2 = e[p - r cos1u - f2]

e =
FP

PA

j =
1
r

= C cos (u - f) +
GMe
h2

d2j

du2 + j =
GMe
h2

j = 1>r

x¿

x

A

directrix

focus

D

D

p

P

F

r

u�f

f

u

Fig. 13–24
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Provided the polar angle is measured from the x axis (an axis of
symmetry since it is perpendicular to the directrix), the angle is zero,
Fig. 13–24, and therefore Eq. 13–16 reduces to

(13–19)

The constants h and C are determined from the data obtained for the
position and velocity of the satellite at the end of the power-flight
trajectory. For example, if the initial height or distance to the space
vehicle is measured from the center of the earth, and its initial
speed is at the beginning of its free flight, Fig. 13–25, then the
constant h may be obtained from Eq. 13–12. When the
velocity has no radial component; therefore, from Eq. 12–25,

so that

or

(13–20)

To determine C, use Eq. 13–19 with and substitute 
Eq. 13–20 for h:

(13–21)

The equation for the free-flight trajectory therefore becomes

(13–22)

The type of path traveled by the satellite is determined from the value
of the eccentricity of the conic section as given by Eq. 13–18. If

(13–23)

e 7 1 free-flight trajectory is a hyperbola

e 6 1 free-flight trajectory is an ellipse

e = 1 free-flight trajectory is a parabola

e = 0 free-flight trajectory is a circle

1
r

=
1
r0
a1 -

GMe
r0v0

2 b  cos u +
GMe
r0

2v0
2

C =
1
r0
a1 -

GMe
r0v0

2 b

u = 0°, r = r0 ,

h = r0v0

h = r02
du

dt

v0 = r01du>dt2,
v0

u = f = 0°,
v0

r0,

1
r

= C cos u +
GMe
h2

f

u

x¿

x

A

directrix

focus

D

D

p

P

F

r

u�f

f

u

Fig. 13–24
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Parabolic Path. Each of these trajectories is shown in Fig. 13–25. From
the curves it is seen that when the satellite follows a parabolic path, it is
“on the border” of never returning to its initial starting point. The initial
launch velocity, required for the satellite to follow a parabolic path is
called the escape velocity. The speed, can be determined by using the
second of Eqs. 13–23, with Eqs. 13–18, 13–20, and 13–21. It is left
as an exercise to show that

(13–24)

Circular Orbit. The speed required to launch a satellite into a
circular orbit can be found using the first of Eqs. 13–23, . Since e
is related to h and C, Eq. 13–18, C must be zero to satisfy this equation
(from Eq. 13–20, h cannot be zero); and therefore, using Eq. 13–21,
we have

(13–25)

Provided represents a minimum height for launching, in which
frictional resistance from the atmosphere is neglected, speeds at launch
which are less than will cause the satellite to reenter the earth’s
atmosphere and either burn up or crash, Fig. 13–25.

vc

r0

vc =
B

GMe
r0

e = 0
vc

ve =
B

2GMe
r0

e = 1,
ve ,

v0 ,

v0

v0�vc
Crash

trajectory

Circular
trajectory

Elliptical trajectory

Parabolic trajectory

Hyperbolic trajectory
e � 1

e � 1

0 � e � 1

e � 0

r0

Fig. 13–25
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Elliptical Orbit. All the trajectories attained by planets and most
satellites are elliptical, Fig. 13–26. For a satellite’s orbit about the earth,
the minimum distance from the orbit to the center of the earth O (which
is located at one of the foci of the ellipse) is and can be found using
Eq. 13–22 with Therefore;

(13–26)

This minimum distance is called the perigee of the orbit. The apogee or
maximum distance can be found using Eq. 13–22 with * Thus,

(13–27)

With reference to Fig. 13–26, the half length of the major axis of the ellipse is

(13–28)

Using analytical geometry, it can be shown that the half length of the
minor axis is determined from the equation

(13–29)b = 2rpra

a =
rp + ra

2

ra =
r0

12GMe>r0v0
22 - 1

u = 180°.ra

rp = r0

u = 0°.
rp

b

b

a a

Orp ra

Fig. 13–26

*Actually, the terminology perigee and apogee pertains only to orbits about the earth.
If any other heavenly body is located at the focus of an elliptical orbit, the minimum and
maximum distances are referred to respectively as the periapsis and apoapsis of the orbit.
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Furthermore, by direct integration, the area of an ellipse is

(13–30)

The areal velocity has been defined by Eq. 13–13,
Integrating yields where T is the period of time required to
make one orbital revolution. From Eq. 13–30, the period is

(13–31)

In addition to predicting the orbital trajectory of earth satellites, the
theory developed in this section is valid, to a surprisingly close
approximation, at predicting the actual motion of the planets traveling
around the sun. In this case the mass of the sun, should be substituted
for when the appropriate formulas are used.

The fact that the planets do indeed follow elliptic orbits about the sun
was discovered by the German astronomer Johannes Kepler in the early
seventeenth century. His discovery was made before Newton had
developed the laws of motion and the law of gravitation, and so at the
time it provided important proof as to the validity of these laws. Kepler’s
laws, developed after 20 years of planetary observation, are summarized
as follows:

1. Every planet travels in its orbit such that the line joining it to the
center of the sun sweeps over equal areas in equal intervals of time,
whatever the line’s length.

2. The orbit of every planet is an ellipse with the sun placed at one of
its foci.

3. The square of the period of any planet is directly proportional to
the cube of the major axis of its orbit.

A mathematical statement of the first and second laws is given by
Eqs. 13–13 and 13–22, respectively. The third law can be shown from
Eq. 13–31 using Eqs. 13–19, 13–28, and 13–29. (See Prob. 13–116.)

Me

Ms ,

T =
p

h
1rp + ra22rpra

A = hT>2,
dA>dt = h>2.

A = pab =
p

2
1rp + ra22rpra
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A satellite is launched 600 km from the surface of the earth, with an
initial velocity of acting parallel to the tangent at the surface
of the earth, Fig. 13–27.Assuming that the radius of the earth is 6378 km
and that its mass is determine (a) the eccentricity of the
orbital path, and (b) the velocity of the satellite at apogee.

SOLUTION
Part (a). The eccentricity of the orbit is obtained using Eq. 13–18.
The constants h and C are first determined from Eqs. 13–20 and
13–21. Since

then

Hence,

Ans.

From Eq. 13–23, observe that the orbit is an ellipse.

Part (b). If the satellite were launched at the apogee A shown in 
Fig. 13–27, with a velocity the same orbit would be maintained
provided

Using Eq. 13–27, we have

Thus,

Ans.

NOTE: The farther the satellite is from the earth, the slower it
moves, which is to be expected since h is constant.

vA =
58.1511092

10.80411062 = 5382.2 m>s = 19.4 Mm>h

ra =
rp

2GMe
rpv0

2 - 1
=

6.97811062
2[66.73110-122][5.976110242]

6.9781106218333.322 - 1

= 10.80411062

h = rpv0 = ravA = 58.1511092 m2>s
vA ,

e =
Ch2

GMe
=

2.54110-82[58.1511092]2

66.73110-122[5.976110242] = 0.215 6 1

=
1

6.97811062 e1 -
66.73110-122[5.976110242]

6.9781106218333.322 f = 25.4110-92 m-1

C =
1
rp
a1 -

GMe
rpv0

2 b
h = rpv0 = 6.9781106218333.32 = 58.1511092 m2>s

v0 = 30 Mm>h = 8333.3 m>s
rp = r0 = 6378 km + 600 km = 6.97811062 m

5.976110242 kg,

30 Mm>h

EXAMPLE 13.13

600 km

v0 � 30 Mm/h
ra

vA

O

rp
A

Fig. 13–27
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PROBLEMS

13–119. The satellite is moving in an elliptical orbit with
an eccentricity . Determine its speed when it is at
its maximum distance A and minimum distance B from
the earth.

e = 0.25

13–118. The satellite is in an elliptical orbit around the
earth as shown. Determine its velocity at perigee P and
apogee A, and the period of the satellite.

In the following problems, except where otherwise
indicated, assume that the radius of the earth is 6378 
km, the earth’s mass is the mass of the 
sun is and the gravitational constant is

*13–116. Prove Kepler’s third law of motion. Hint: Use
Eqs. 13–19, 13–28, 13–29, and 13–31.

•13–117. The Viking explorer approaches the planet Mars
on a parabolic trajectory as shown. When it reaches point A
its velocity is 10 Mm h. Determine and the required
velocity at A so that it can then maintain a circular orbit as
shown. The mass of Mars is 0.1074 times the mass of the
earth.

r0>

G = 66.73110-122 m3>1kg # s22.
1.99110302 kg,

5.976110242 kg,

*13–120. The space shuttle is launched with a velocity of
17 500 mi/h parallel to the tangent of the earth’s surface at
point P and then travels around the elliptical orbit. When
it reaches point A, its engines are turned on and its
velocity is suddenly increased. Determine the required
increase in velocity so that it enters the second elliptical
orbit. Take , slug,
and , where 5280 ft mi.=re = 3960mi

Me = 409(1021)G = 34.4(10-9) ft4>lb # s4

•13–121. Determine the increase in velocity of the space
shuttle at point P so that it travels from a circular orbit to an
elliptical orbit that passes through point A. Also, compute
the speed of the shuttle at A.

A

r0

Prob. 13–117

AP

2 Mm
8 Mm

Prob. 13–118

8 Mm

2 Mm

AP

Prob. 13–121

P¿

4500 mi

1500 mi

P A

Prob. 13–120
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13–127. A rocket is in a free-flight elliptical orbit about
the earth such that the eccentricity of its orbit is e and its
perigee is . Determine the minimum increment of speed it
should have in order to escape the earth’s gravitational field
when it is at this point along its orbit.

*13–128. A rocket is in circular orbit about the earth at an
altitude of Determine the minimum increment
in speed it must have in order to escape the earth’s
gravitational field.

•13–129. The rocket is in free flight along an elliptical
trajectory . The planet has no atmosphere, and its mass
is 0.70 times that of the earth. If the rocket has an apoapsis
and periapsis as shown in the figure, determine the speed of
the rocket when it is at point A.

A¿A

h = 4 Mm.

r0

*13–124. A communications satellite is to be placed into
an equatorial circular orbit around the earth so that it
always remains directly over a point on the earth’s surface.
If this requires the period to be 24 hours (approximately),
determine the radius of the orbit and the satellite’s velocity.

•13–125. The speed of a satellite launched into a
circular orbit about the earth is given by Eq. 13–25.
Determine the speed of a satellite launched parallel to
the surface of the earth so that it travels in a circular orbit
800 km from the earth’s surface.

13–126. The earth has an orbit with eccentricity 
around the sun. Knowing that the earth’s minimum distance
from the sun is , find the speed at which a
rocket travels when it is at this distance. Determine the
equation in polar coordinates which describes the earth’s
orbit about the sun.

151.3(106) km

e = 0.0821

13–122. The rocket is in free flight along an elliptical
trajectory The planet has no atmosphere, and its
mass is 0.60 times that of the earth. If the orbit has the
apoapsis and periapsis shown, determine the rocket’s velocity
when it is at point A. Take 

13–123. If the rocket is to land on the surface of the planet,
determine the required free-flight speed it must have at 
so that the landing occurs at B. How long does it take for the
rocket to land, in going from to B? The planet has no
atmosphere, and its mass is 0.6 times that of the earth.
Take 
1 mi = 5280 ft.

Me = 409110212 slug,G = 34.4110-921lb # ft22>slug2,

A¿

A¿

1 mi = 5280 ft.Me = 409110212 slug,
G = 34.4110-921lb # ft22>slug2,

A¿A.

A¿
r � 2000 mi

B
OA

4000 mi 10 000 mi

Probs. 13–122/123

6 Mm 9 Mm

BA A¿

r � 3 Mm

O

Prob. 13–130

6 Mm 9 Mm

BA A¿

r � 3 Mm

O

Prob. 13–129

13–130. If the rocket is to land on the surface of the
planet, determine the required free-flight speed it must
have at so that it strikes the planet at B. How long does
it take for the rocket to land, going from to B along an
elliptical path? The planet has no atmosphere, and its mass
is 0.70 times that of the earth.

A¿
A¿
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13–134. A satellite is launched with an initial velocity
parallel to the surface of the earth.

Determine the required altitude (or range of altitudes)
above the earth’s surface for launching if the free-flight
trajectory is to be (a) circular, (b) parabolic, (c) elliptical,
and (d) hyperbolic.

13–135. The rocket is in a free-flight elliptical orbit about
the earth such that as shown. Determine its speed
when it is at point A. Also determine the sudden change in
speed the rocket must experience at B in order to travel in
free flight along the orbit indicated by the dashed path.

e = 0.76

v0 = 4000 km>h

*13–132. The satellite is in an elliptical orbit having an
eccentricity of . If its velocity at perigee is

, determine its velocity at apogee A and the
period of the satellite.
vP = 15Mm>h

e = 0.15

13–131. The satellite is launched parallel to the tangent of
the earth’s surface with a velocity of from an
altitude of 2 Mm above the earth as shown. Show that the
orbit is elliptical, and determine the satellite’s velocity when
it reaches point A.

v0 = 30 Mm>h

*13–136. A communications satellite is in a circular orbit
above the earth such that it always remains directly over a
point on the earth’s surface. As a result, the period of the
satellite must equal the rotation of the earth, which is
approximately 24 hours. Determine the satellite’s altitude h
above the earth’s surface and its orbital speed.

•13–137. Determine the constant speed of satellite S so
that it circles the earth with an orbit of radius .
Hint: Use Eq. 13–1.

r = 15 Mm•13–133. The satellite is in an elliptical orbit. When it is at
perigee P, its velocity is , and when it reaches
point A, its velocity is and its altitude above
the earth’s surface is 18 Mm. Determine the period of the
satellite.

vA = 15Mm>h
vP = 25Mm>h

9 Mm 8 Mm 5 Mm

ACB

Prob. 13–135

S

r � 15 Mm

Prob. 13–137

A

P

2 Mm

v0 � 30 Mm/h
u � 150�

Prob. 13–131

AP

15 Mm/h

Prob. 13–132

AP

vP � 25 Mm/h

18 Mm

Prob. 13–133
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CONCEPTUAL PROBLEMS

P13–3. Determine the smallest speed of each car A and B
so that the passengers do not lose contact with the seat
while the arms turn at a constant rate. What is the largest
normal force of the seat on each passenger? Use numerical
values to explain your answer.

P13–2. The tugboat has a known mass and its propeller
provides a known maximum thrust. When the tug is fully
powered you observe the time it takes for the tug to reach a
speed of known value starting from rest. Show how you
could determine the mass of the barge. Neglect the drag
force of the water on the tug. Use numerical values to
explain you answer.

P13–1. If the box is released from rest at A, use
numerical values to show how you would estimate the
time for it to arrive at B. Also, list the assumptions for your
analysis.

P13–4. Each car is pin connected at its ends to the rim of the
wheel which turns at a constant speed. Using numerical
values, show how to determine the resultant force the seat
exerts on the passenger located in the top car A. The
passengers are seated towards the center of the wheel. Also,
list the assumptions for your analysis.

A

B

P13–1

P13–2

B

A

P13–3

A

P13–4
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CHAPTER REVIEW

Kinetics
Kinetics is the study of the relation between
forces and the acceleration they cause.
This relation is based on Newton’s second
law of motion, expressed mathematically as

Before applying the equation of motion, it 
is important to first draw the particle’s 
free-body diagram in order to account for 
all of the forces that act on the particle.
Graphically, this diagram is equal to the
kinetic diagram, which shows the result of the
forces, that is, the ma vector.

©F = ma.

Inertial Coordinate Systems
When applying the equation of motion, it
is important to measure the acceleration
from an inertial coordinate system. This
system has axes that do not rotate but are
either fixed or translate with a constant
velocity. Various types of inertial
coordinate systems can be used to apply

in component form.©F = ma

F2

F1

Free-body
diagram

FR = �F � ma

Kinetic
diagram

O

vO

a

Inertial frame of reference

Path of particle

x

y

©Fz = maz©Fy = may ,©Fx = max ,

where r =
[1 + 1dy>dx22]3>2 ƒ

ƒd2y>dx2 ƒ
an = v2>r

at = dv>dt or at = v dv>ds
©Fb = 0©Fn = man ,©Ft = mat ,

Cylindrical coordinates are useful when
angular motion of the radial line r
is specified or when the path can
conveniently be described with these
coordinates. ©Fz = mz$

©Fu = m1ru$ + 2r
#
u)
#

©Fr = m1r$ - ru
#
22

Central-Force Motion
When a single force acts upon a particle, such as during the free-flight trajectory of a satellite in a gravitational field, then
the motion is referred to as central-force motion.The orbit depends upon the eccentricity and as a result, the trajectory
can either be circular, parabolic, elliptical, or hyperbolic.

e;

Rectangular x, y, z axes are used to describe
rectilinear motion along each of the axes.

Normal and tangential n, t axes are often
used when the path is known. Recall that 
is always directed in the direction. It
indicates the change in the velocity
direction. Also recall that is tangent to
the path. It indicates the change in the
velocity magnitude.

at

+n
an



In order to properly design the loop of this roller coaster it is necessary to ensure that
the cars have enough energy to be able to make the loop without leaving the tracks.



Kinetics of a Particle:
Work and Energy 14
CHAPTER OBJECTIVES

• To develop the principle of work and energy and apply it to solve
problems that involve force, velocity, and displacement.

• To study problems that involve power and efficiency.

• To introduce the concept of a conservative force and apply the
theorem of conservation of energy to solve kinetic problems.

14.1 The Work of a Force

In this chapter, we will analyze motion of a particle using the concepts of
work and energy. The resulting equation will be useful for solving
problems that involve force, velocity, and displacement. Before we do
this, however, we must first define the work of a force. Specifically, a force
F will do work on a particle only when the particle undergoes a
displacement in the direction of the force. For example, if the force F in
Fig. 14–1 causes the particle to move along the path s from position r to
a new position the displacement is then The magnitude
of dr is ds, the length of the differential segment along the path. If the
angle between the tails of dr and F is Fig. 14–1, then the work done by
F is a scalar quantity, defined by

dU = F ds cos u

u,

dr = r¿ - r.r¿,

F

dr
ds

s

r¿
r

u

Fig. 14–1 
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By definition of the dot product (see Eq. B–14) this equation can also
be written as

This result may be interpreted in one of two ways: either as the
product of F and the component of displacement in the
direction of the force, or as the product of ds and the component of force,

in the direction of displacement. Note that if then
the force component and the displacement have the same sense so that
the work is positive; whereas if these vectors will have
opposite sense, and therefore the work is negative. Also, if the
force is perpendicular to displacement, since or if the force
is applied at a fixed point, in which case the displacement is zero.

The unit of work in SI units is the joule (J), which is the amount of
work done by a one-newton force when it moves through a distance of
one meter in the direction of the force . In the FPS
system, work is measured in units of foot-pounds , which is the
work done by a one-pound force acting through a distance of one foot in
the direction of the force.*

Work of a Variable Force. If the particle acted upon by the
force F undergoes a finite displacement along its path from to or 
to Fig. 14–2a, the work of force F is determined by integration.
Provided F and can be expressed as a function of position, then 

(14–1)

Sometimes, this relation may be obtained by using experimental data
to plot a graph of vs. s. Then the area under this graph bounded
by and represents the total work, Fig. 14–2b.s2s1

F cos u

U1-2 =
L

r2

r1

F # dr =
L

s2

s1

F cos u ds

u

s2 ,
s1r2r1

(ft # lb)
(1 J = 1 N # m)

cos 90° = 0,
dU = 0

90° 6 u … 180°,

0° … u 6 90°,F cos u,

ds cos u

dU = F # dr

F

dr
ds

s

r¿
r

u

Fig. 14–1

F

r1

r2

F cos u

s2

s1

s

(a)

u

(b)

F cos u

ds
s2s1

s

F cos u

Fig. 14–2

*By convention, the units for the moment of a force or torque are written as , to
distinguish them from those used to signify work, .ft # lb

lb # ft
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Work of a Constant Force Moving Along a Straight Line.
If the force has a constant magnitude and acts at a constant angle 
from its straight-line path, Fig. 14–3a, then the component of in the
direction of displacement is always The work done by when
the particle is displaced from to is determined from Eq. 14–1, in
which case

or

(14–2)

Here the work of represents the area of the rectangle in Fig. 14–3b.

Work of a Weight. Consider a particle of weight W, which moves
up along the path s shown in Fig. 14–4 from position to position At
an intermediate point, the displacement Since

applying Eq. 14–1 we have

or

(14–3)

Thus, the work is independent of the path and is equal to the magnitude
of the particle’s weight times its vertical displacement. In the case shown
in Fig. 14–4 the work is negative, since W is downward and is upward.
Note, however, that if the particle is displaced downward the
work of the weight is positive. Why?

1-¢y2,¢y

U1-2 = -W ¢y

=
L

y2

y1

-W dy = -W1y2 - y12

U1-2 =
L

F # dr =
L

r2

r1

1-Wj2 # 1dxi + dyj + dzk2
W = -Wj,

dr = dxi + dyj + dzk.
s2 .s1

Fc

U1-2 = Fc cos u1s2 - s12

U1-2 = Fc cos u
L

s2

s1

ds

s2s1

FcFc cos u.
Fc

uFc

Fc

Fc cos u s2s1
s

(a)

u

s

(b)

F cos u

Fc cos u

s2s1

Fig. 14–3

dr

s r1
r2

y

W
s2

s1

z

xy1

y2

Fig. 14–4
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Work of a Spring Force. If an elastic spring is elongated a
distance ds, Fig. 14–5a, then the work done by the force that acts on the
attached particle is . The work is negative since
acts in the opposite sense to ds. If the particle displaces from to , the
work of is then

(14–4)

This work represents the trapezoidal area under the line 
Fig. 14–5b.

A mistake in sign can be avoided when applying this equation if one
simply notes the direction of the spring force acting on the particle and
compares it with the sense of direction of displacement of the particle—
if both are in the same sense, positive work results; if they are opposite to
one another, the work is negative.

Fs = ks,

U1-2 = - A12ks22 - 1
2ks1

2 B

U1-2 =
L

s2

s1

Fs ds =
L

s2

s1

-ks ds

Fs
s2s1

FsdU = -Fsds = -ks ds

Unstretched
position, s � 0

Fs

s

ds

Force on
Particle

(a)

k

Fs

s

Fs � ks

s1 s2

(b)

The forces acting on the cart as it is pulled
a distance s up the incline, are shown on
its free-body diagram. The constant
towing force T does positive work of

the weight does
negative work of 
and the normal force N does no work
since there is no displacement of this
force along its line of action.

UW = -1W sin u2s,
UT = 1T cos f2s,

N

T

W
u

u

f
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EXAMPLE 14.1

(a)

2 cos 30� m

P � 400 N

30�

k � 30 N/m

Initial
position of spring

2 sin 30� m

s � 2 m

P � 400 N
30�

FsNB

30�98.1 N

(b)

Fig. 14–6

The 10-kg block shown in Fig. 14–6a rests on the smooth incline. If the
spring is originally stretched 0.5 m, determine the total work done by
all the forces acting on the block when a horizontal force 
pushes the block up the plane 

SOLUTION
First the free-body diagram of the block is drawn in order to account
for all the forces that act on the block, Fig. 14–6b.

Horizontal Force P. Since this force is constant, the work is
determined using Eq. 14–2. The result can be calculated as the force
times the component of displacement in the direction of the force; i.e.,

or the displacement times the component of force in the direction of
displacement, i.e.,

Spring Force . In the initial position the spring is stretched
and in the final position it is stretched 

We require the work to be negative since the force and
displacement are opposite to each other.The work of is thus

Weight W. Since the weight acts in the opposite sense to its vertical
displacement, the work is negative; i.e.,

Note that it is also possible to consider the component of weight in the
direction of displacement; i.e.,

Normal Force . This force does no work since it is always
perpendicular to the displacement.

Total Work. The work of all the forces when the block is displaced
2 m is therefore

Ans.UT = 692.8 J - 90 J - 98.1 J = 505 J

NB

UW = -198.1 sin 30° N2 (2 m) = -98.1 J

UW = -(98.1 N) 12 m sin 30°2 = -98.1 J

Us = - C12130 N>m212.5 m22 - 1
2130 N>m210.5 m22 D = -90 J

Fs
2.5 m.

s2 = 0.5 m + 2 m =s1 = 0.5 m
Fs

UP = 400 N cos 30°12 m2 = 692.8 J

UP = 400 N 12 m cos 30°2 = 692.8 J

s = 2 m.
P = 400 N
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14.2 Principle of Work and Energy

Consider the particle in Fig. 14–7, which is located on the path defined
relative to an inertial coordinate system. If the particle has a mass m and
is subjected to a system of external forces represented by the resultant

then the equation of motion for the particle in the tangential
direction is Applying the kinematic equation 
and integrating both sides, assuming initially that the particle has a position

and a speed and later at we have

(14–5)

From Fig. 14–7, note that and since work is defined
from Eq. 14–1, the final result can be written as

(14–6)

This equation represents the principle of work and energy for the
particle.The term on the left is the sum of the work done by all the forces
acting on the particle as the particle moves from point 1 to point 2. The
two terms on the right side, which are of the form define the
particle’s final and initial kinetic energy, respectively. Like work, kinetic
energy is a scalar and has units of joules (J) and However, unlike
work, which can be either positive or negative, the kinetic energy is
always positive, regardless of the direction of motion of the particle.

When Eq. 14–6 is applied, it is often expressed in the form

(14–7)

which states that the particle’s initial kinetic energy plus the work done
by all the forces acting on the particle as it moves from its initial to its
final position is equal to the particle’s final kinetic energy.

As noted from the derivation, the principle of work and energy
represents an integrated form of obtained by using the
kinematic equation As a result, this principle will provide a
convenient substitution for when solving those types of
kinetic problems which involve force, velocity, and displacement since
these quantities are involved in Eq. 14–7. For application, it is suggested
that the following procedure be used.

©Ft = mat
at = v dv>ds.

©Ft = mat ,

T1 + ©U1-2 = T2

ft # lb.

T = 1
2mv

2,

©U1-2 = 1
2mv2

2 - 1
2mv1

2

©Ft = ©Fcos u,

©
L

s2

s1

Ft ds = 1
2mv2

2 - 1
2mv1

2

©
L

s2

s1

Ft ds =
L

v2

v1

mv dv

v = v2 ,s = s2 ,v = v1 ,s = s1

at = v dv>ds©Ft = mat .
FR = ©F,s

v

1
2

n

FR � �F

t�Ft

�Fn

ds

u

Fig. 14–7
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Numerical application of this procedure is illustrated in the examples
following Sec. 14.3.

If an oncoming car strikes these crash barrels, the car’s kinetic energy will be
transformed into work, which causes the barrels, and to some extent the car, to be
deformed. By knowing the amount of energy that can be absorbed by each barrel it is
possible to design a crash cushion such as this.

Procedure for Analysis

Work (Free-Body Diagram).

• Establish the inertial coordinate system and draw a free-body
diagram of the particle in order to account for all the forces that
do work on the particle as it moves along its path.

Principle of Work and Energy.

• Apply the principle of work and energy,

• The kinetic energy at the initial and final points is always positive,
since it involves the speed squared 

• A force does work when it moves through a displacement in the
direction of the force.

• Work is positive when the force component is in the same sense of
direction as its displacement, otherwise it is negative.

• Forces that are functions of displacement must be integrated to
obtain the work. Graphically, the work is equal to the area under
the force-displacement curve.

• The work of a weight is the product of the weight magnitude and
the vertical displacement, It is positive when the
weight moves downwards.

• The work of a spring is of the form where k is the
spring stiffness and s is the stretch or compression of the spring.

Us = 1
2ks

2,

UW = ;Wy.

AT = 1
2mv

2 B .

T1 + ©U1-2 = T2 .
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14.3 Principle of Work and Energy for a
System of Particles

The principle of work and energy can be extended to include a system of
particles isolated within an enclosed region of space as shown in Fig. 14–8.
Here the arbitrary ith particle, having a mass is subjected to a resultant
external force and a resultant internal force which all the other
particles exert on the ith particle. If we apply the principle of work and
energy to this and each of the other particles in the system, then since
work and energy are scalar quantities, the equations can be summed
algebraically, which gives

(14–8)

In this case, the initial kinetic energy of the system plus the work done by
all the external and internal forces acting on the system is equal to the
final kinetic energy of the system.

If the system represents a translating rigid body, or a series of connected
translating bodies, then all the particles in each body will undergo the same
displacement. Therefore, the work of all the internal forces will occur in
equal but opposite collinear pairs and so it will cancel out. On the other
hand, if the body is assumed to be nonrigid, the particles of the body may
be displaced along different paths, and some of the energy due to force
interactions would be given off and lost as heat or stored in the body if
permanent deformations occur. We will discuss these effects briefly at
the end of this section and in Sec. 15.4.Throughout this text, however, the
principle of work and energy will be applied to problems where direct
accountability of such energy losses does not have to be considered.

©T1 + ©U1-2 = ©T2

fiFi
mi ,

si

i

Inertial coordinate system

fi

Fi

t
n

Fig. 14–8
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Work of Friction Caused by Sliding. A special class of
problems will now be investigated which requires a careful application of
Eq. 14–8. These problems involve cases where a body slides over the
surface of another body in the presence of friction. Consider, for
example, a block which is translating a distance s over a rough surface as
shown in Fig. 14–9a. If the applied force P just balances the resultant
frictional force Fig. 14–9b, then due to equilibrium a constant
velocity v is maintained, and one would expect Eq. 14–8 to be applied as
follows:

Indeed this equation is satisfied if however, as one realizes
from experience, the sliding motion will generate heat, a form of energy
which seems not to be accounted for in the work-energy equation. In
order to explain this paradox and thereby more closely represent the
nature of friction, we should actually model the block so that the
surfaces of contact are deformable (nonrigid).* Recall that the rough
portions at the bottom of the block act as “teeth,” and when the block
slides these teeth deform slightly and either break off or vibrate as they
pull away from “teeth” at the contacting surface, Fig. 14–9c. As a result,
frictional forces that act on the block at these points are displaced
slightly, due to the localized deformations, and later they are replaced
by other frictional forces as other points of contact are made. At any
instant, the resultant F of all these frictional forces remains essentially
constant, i.e., however, due to the many localized deformations,
the actual displacement of is not the same as the displacement s
of the applied force P. Instead, will be less than s and
therefore the external work done by the resultant frictional force will
be and not The remaining amount of work,
manifests itself as an increase in internal energy, which in fact causes
the block’s temperature to rise.

In summary then, Eq. 14–8 can be applied to problems involving
sliding friction; however, it should be fully realized that the work of the
resultant frictional force is not represented by instead, this term
represents both the external work of friction and internal work

which is converted into various forms of internal energy,
such as heat.† 
[mkN1s - s¿2] 1mkNs¿2

mkNs;

mkN1s - s¿2,mkNs.mkNs¿

1s¿ 6 s2,s¿
mkNs¿

mkN;

P = mkN;

1
2mv

2 + Ps - mkNs = 1
2mv

2

mkN,

*See Chapter 8 of Engineering Mechanics: Statics.
†See B. A. Sherwood and W. H. Bernard, “Work and Heat Transfer in the Presence of

Sliding Friction,” Am. J. Phys. 52, 1001 (1984).

P P

v v

s

(a)

P

F � mkN

(b)

W

N

(c)

Fig. 14–9
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The 3500-lb automobile shown in Fig. 14–10a travels down the 10°
inclined road at a speed of If the driver jams on the brakes,
causing his wheels to lock, determine how far s the tires skid on the
road. The coefficient of kinetic friction between the wheels and the
road is 

SOLUTION
This problem can be solved using the principle of work and energy,
since it involves force, velocity, and displacement.

Work (Free-Body Diagram). As shown in Fig. 14–10b, the normal
force does no work since it never undergoes displacement along its
line of action. The weight, 3500 lb, is displaced s sin 10° and does
positive work. Why? The frictional force does both external and
internal work when it undergoes a displacement s.This work is negative
since it is in the opposite sense of direction to the displacement.
Applying the equation of equilibrium normal to the road, we have

Thus,

Principle of Work and Energy.

Solving for s yields

Ans.

NOTE: If this problem is solved by using the equation of motion, two
steps are involved. First, from the free-body diagram, Fig. 14–10b, the
equation of motion is applied along the incline. This yields

Then, since a is constant, we have

Ans.s = 19.5 ft

1022 = 120 ft>s22 + 21-10.3 ft>s221s - 02
A +b B v2 = v0

2 + 2ac1s - s02;

a = -10.3 ft>s2

3500 sin 10° lb - 1723.4 lb =
3500 lb

32.2 ft>s2 a+b©Fs = mas ;

s = 19.5 ft

1
2
a 3500 lb

32.2 ft>s2 b120 ft>s22 + 3500 lb1s sin 10°2 - 11723.4 lb2s = 0

T1 + ©U1–2 = T2

FA = mk NA = 0.5 (3446.8 lb) = 1723.4 lb

NA - 3500 cos 10° lb = 0 NA = 3446.8 lb+a©Fn = 0;

FA

NA

mk = 0.5.

20 ft>s.

EXAMPLE 14.2

20 ft/s

(a)

10�

s
A

10�

(b)

s
3500 lb

10�

FA

NA

Fig. 14–10
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EXAMPLE 14.3

For a short time the crane in Fig. 14–11a lifts the 2.50-Mg beam with a
force of Determine the speed of the beam when
it has risen Also, how much time does it take to attain this
height starting from rest?

SOLUTION
We can solve part of this problem using the principle of work and
energy since it involves force, velocity, and displacement. Kinematics
must be used to determine the time. Note that at ,

, so motion will occur.

Work (Free-Body Diagram). As shown on the free-body diagram,
Fig. 14–11b, the lifting force F does positive work, which must be
determined by integration since this force is a variable. Also, the
weight is constant and will do negative work since the displacement is
upwards.

Principles of Work and Energy.

(1)

When 

Ans.

Kinematics. Since we were able to express the velocity as a
function of displacement, the time can be determined using

In this case,

The integration can be performed numerically using a pocket
calculator. The result is

Ans.

NOTE: The acceleration of the beam can be determined by
integrating Eq. (1) using or more directly, by applying
the equation of motion, ©F = ma.

v dv = a ds,

t = 1.79 s

t =
L

3

0

ds

12.78s + 0.8s321
2

12.78s + 0.8s321
2 =
ds

dt

v = ds>dt.

v = 5.47 m>s
s = 3 m,

v = 12.78s + 0.8s321
2

2811032s + 11032s3 - 24.52511032s = 1.2511032v2

0 +
L

s

0
128 + 3s2211032 ds - 12.5021103219.812s = 1

212.50211032v2

T1 + ©U1–2 = T2

F = 28(103)N 7 W = 2.50(103)(9.81)N
s = 0

s = 3 m.
F = 128 + 3s22 kN.

(a)

2.50 (103)(9.81) N

(b)

F

Fig. 14–11
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EXAMPLE 14.4

0.3 m

h

(b)

0.4 m

(a)

k � 200 N/m

P

(c)

19.62 N

Fs

SOLUTION

Work (Free-Body Diagram). Since the block is released from rest
and later reaches its maximum height, the initial and final velocities are
zero. The free-body diagram of the block when it is still in contact with
the platform is shown in Fig. 14–12c. Note that the weight does negative
work and the spring force does positive work. Why? In particular, the
initial compression in the spring is Due to
the cords, the spring’s final compression is (after the block
leaves the platform). The bottom of the block rises from a height of

to a final height h.

Principle of Work and Energy.

Note that here and so the work of the spring
as determined from Eq. 14–4 will indeed be positive once the
calculation is made. Thus,

Solving yields

Ans.h = 0.963 m

- 119.62 N2[h - 10.3 m2]F = 0

0 + E - C121200 N>m210.6 m22 - 1
21200 N>m210.7 m22 D

s1 = 0.7 m 7 s2 = 0.6 m

1
2mv1

2 + E - A12ks22 - 1
2ks1

2 B - W ¢yF = 1
2mv2

2

T1 + ©U1–2 = T2

10.4 m - 0.1 m2 = 0.3 m

s2 = 0.6 m
s1 = 0.6 m + 0.1 m = 0.7 m.

The platform P, shown in Fig. 14–12a, has negligible mass and is tied
down so that the 0.4-m-long cords keep a 1-m-long spring compressed
0.6 m when nothing is on the platform. If a 2-kg block is placed on the
platform and released from rest after the platform is pushed down 0.1 m,
Fig. 14–12b, determine the maximum height h the block rises in the
air, measured from the ground.

Fig. 14–12
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EXAMPLE 14.5

The 40-kg boy in Fig. 14–13a slides down the smooth water slide. If he
starts from rest at A, determine his speed when he reaches B and the
normal reaction the slide exerts on the boy at this position.

(b)

Nb

40(9.81) N

u

u

n

t

t

(c)

NB

n

40(9.81) N

Fig. 14–13

y � 0.075x2

y

x
B

A

10 m

7.5 m

(a)

SOLUTION

Work (Free-Body Diagram). As shown on the free-body diagram,
Fig. 14–13b, there are two forces acting on the boy as he goes down
the slide. Note that the normal force does no work.

Principle of Work and Energy.

Ans.vB = 12.13 m>s = 12.1 m>s
0 + 14019.812N217.5 m2 = 1

2140 kg2vB2
TA + ©UA-B = TB

Equation of Motion. Referring to the free-body diagram of the
boy when he is at B, Fig. 14–13c, the normal reaction can now be
obtained by applying the equation of motion along the n axis. Here
the radius of curvature of the path is

Thus,

Ans.NB = 1275.3 N = 1.28 kN

NB - 40(9.81) N = 40 kg¢ (12.13 m>s)2

6.667 m
≤+ c©Fn = man ;

rB =
c1 + ady

dx
b2 d3>2

|d2y>dx2|
=
C1 + (0.15x)2 D3>2

|0.15|
2
x=0

= 6.667 m

NB
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Blocks A and B shown in Fig. 14–14a have a mass of 10 kg and 100 kg,
respectively. Determine the distance B travels when it is released
from rest to the point where its speed becomes 

SOLUTION
This problem may be solved by considering the blocks separately and
applying the principle of work and energy to each block. However, the
work of the (unknown) cable tension can be eliminated from the
analysis by considering blocks A and B together as a single system.

Work (Free-Body Diagram). As shown on the free-body diagram
of the system, Fig. 14–14b, the cable force T and reactions and 
do no work, since these forces represent the reactions at the supports
and consequently they do not move while the blocks are displaced.
The weights both do positive work if we assume both move
downward, in the positive sense of direction of and .

Principle of Work and Energy. Realizing the blocks are released
from rest, we have

(1)

Kinematics. Using the methods of kinematics discussed in Sec. 12.9,
it may be seen from Fig. 14–14a that the total length l of all the vertical
segments of cable may be expressed in terms of the position
coordinates and as

Hence, a change in position yields the displacement equation

Here we see that a downward displacement of one block produces an
upward displacement of the other block. Note that and must
have the same sign convention in both Eqs. 1 and 2. Taking the time
derivative yields

(2)

Retaining the negative sign in Eq. 2 and substituting into Eq. 1 yields

Ans.¢sB = 0.883 m T

vA = -4vB = -412 m>s2 = -8 m>s

¢sB¢sA

¢sA = -4 ¢sB

¢sA + 4 ¢sB = 0

sA + 4sB = l
sBsA

E12110 kg21vA222 + 1
21100 kg212 m>s22F

50 + 06 + 598.1 N 1¢sA2 + 981 N 1¢sB26 =

E12mA1vA222 + 1
2mB1vB222F

E12mA1vA212 + 1
2mB1vB212F + 5WA ¢sA + WB ¢sB6 =

©T1 + ©U1–2 = ©T2

sBsA

R2R1

2 m>s.

EXAMPLE 14.6

Datum

B

10 kg

sB

sA

(a)

100 kg

A

B

A

(b)

981 N

98.1 N

T R1 R2

Fig. 14–14
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FUNDAMENTAL PROBLEMS

F14–5. When , the spring is unstretched and the
10-kg block has a speed of 5 down the smooth plane.
Determine the distance s when the block stops.

m>s
s = 0.6 m

F14–3. If the motor exerts a force of 
on the cable, determine the speed of the 100-kg crate when
it rises to . The crate is initially at rest on the
ground.

s = 15 m

F = (600 + 2s2) N

F14–1. The spring is placed between the wall and the 10-kg
block. If the block is subjected to a force of ,
determine its velocity when . When , the
block is at rest and the spring is uncompressed. The contact
surface is smooth.

s = 0s = 0.5 m
F = 500 N

F14–6. The 5-lb collar is pulled by a cord that passes
around a small peg at C. If the cord is subjected to a constant
force of , and the collar is at rest when it is at A,
determine its speed when it reaches B. Neglect friction.

F = 10 lb

F14–4. The 1.8-Mg dragster is traveling at 125 when
the engine is shut off and the parachute is released. If the
drag force of the parachute can be approximated by the
graph, determine the speed of the dragster when it has
traveled 400 m.

m>s

F14–2. If the motor exerts a constant force of 300 N on the
cable, determine the speed of the 20-kg crate when it travels

up the plane, starting from rest. The coefficient of
kinetic friction between the crate and the plane is mk = 0.3.
s = 10 m

s

k � 500 N/m

500 N

4
3 5

F14–1

s � 10 m

M

A 30�

F14–2

C

s

M

15 m

F14–3

FD (kN)

400

50

20

s (m)

F14–4

F � 100 N

5 m/s

s k � 200 N/m

30�

F14–5

F � 10 lb

BA

C

3 ft

4 ft

F14–6
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F(lb)

s(ft)

F � 3(103)s3

v � 3 ft/s

s

Prob. 14–2

Prob. 14–3

PROBLEMS

*14–4. When a 7-kg projectile is fired from a cannon
barrel that has a length of 2 m, the explosive force exerted
on the projectile, while it is in the barrel, varies in the
manner shown. Determine the approximate muzzle velocity
of the projectile at the instant it leaves the barrel. Neglect
the effects of friction inside the barrel and assume the
barrel is horizontal.

14–3. The smooth plug has a weight of 20 lb and is pushed
against a series of Belleville spring washers so that the
compression in the spring is . If the force of the
spring on the plug is , where s is given in feet,
determine the speed of the plug after it moves away from
the spring. Neglect friction.

F = (3s1>3) lb
s = 0.05 ft

•14–1. A 1500-lb crate is pulled along the ground with a
constant speed for a distance of 25 ft, using a cable that
makes an angle of 15° with the horizontal. Determine the
tension in the cable and the work done by this force. The
coefficient of kinetic friction between the ground and 
the crate is .

14–2. The motion of a 6500-lb boat is arrested using a
bumper which provides a resistance as shown in the graph.
Determine the maximum distance the boat dents the
bumper if its approaching speed is .3 ft>s

mk = 0.55

•14–5. The 1.5-kg block slides along a smooth plane and
strikes a nonlinear spring with a speed of . The
spring is termed “nonlinear” because it has a resistance of

, where . Determine the speed of the
block after it has compressed the spring .s = 0.2 m

k = 900 N>m2Fs = ks2

v = 4 m>s

15

10

5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

F (MN)

s (m)

Prob. 14–4

v

k

Prob. 14–5
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Prob. 14–6

A

B

2 ft

2 ft

k  � 5 lb/in.

y �      x21––
2

Prob. 14–7

150 mm
k � 2 kN/m D A

B

50 mm

Prob. 14–8

F = 150 N

k � 300 N/m k¿ � 200 N/m

600 mm 600 mm

D

C

A

B

30�

Prob. 14–9

•14–9. Springs AB and CD have a stiffness of 
and , respectively, and both springs have an
unstretched length of 600 mm. If the 2-kg smooth collar starts
from rest when the springs are unstretched, determine the
speed of the collar when it has moved 200 mm.

k¿ = 200 N>m
k = 300 N>m

14–7. The 6-lb block is released from rest at A and slides
down the smooth parabolic surface. Determine the
maximum compression of the spring.

14–6. When the driver applies the brakes of a light truck
traveling it skids 3 m before stopping. How far will
the truck skid if it is traveling when the brakes are
applied?

80 km>h
10 km>h,

14–10. The 2-Mg car has a velocity of when
the driver sees an obstacle in front of the car. If it takes 0.75 s
for him to react and lock the brakes, causing the car to skid,
determine the distance the car travels before it stops. The
coefficient of kinetic friction between the tires and the road
is .

14–11. The 2-Mg car has a velocity of 
when the driver sees an obstacle in front of the car. It takes
0.75 s for him to react and lock the brakes, causing the car to
skid. If the car stops when it has traveled a distance of 175 m,
determine the coefficient of kinetic friction between the
tires and the road.

v1 = 100 km>h
mk = 0.25

v1 = 100 km>h

*14–8. The spring in the toy gun has an unstretched
length of 100 mm. It is compressed and locked in the
position shown. When the trigger is pulled, the spring
unstretches 12.5 mm, and the 20-g ball moves along the
barrel. Determine the speed of the ball when it leaves the
gun. Neglect friction.

v1 � 100 km/h

Probs. 14–10/11
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14–14. The force F, acting in a constant direction on the
20-kg block, has a magnitude which varies with the position
s of the block. Determine how far the block slides before its
velocity becomes When the block is moving to
the right at The coefficient of kinetic friction
between the block and surface is 

14–15. The force F, acting in a constant direction on the
20-kg block, has a magnitude which varies with position s of
the block. Determine the speed of the block after it slides
3 m. When the block is moving to the right at 
The coefficient of kinetic friction between the block and
surface is mk = 0.3.

2 m>s.s = 0

mk = 0.3.
2 m>s.

s = 05 m>s.

14–13. Determine the velocity of the 60-lb block A if the
two blocks are released from rest and the 40-lb block B
moves 2 ft up the incline. The coefficient of kinetic friction
between both blocks and the inclined planes is mk = 0.10.

*14–12. The 10-lb block is released from rest at A.
Determine the compression of each of the springs after the
block strikes the platform and is brought momentarily to
rest. Initially both springs are unstretched. Assume the
platform has a negligible mass.

14–16. A rocket of mass m is fired vertically from the
surface of the earth, i.e., at Assuming no mass is lost
as it travels upward, determine the work it must do against
gravity to reach a distance The force of gravity is

(Eq. 13–1), where is the mass of the earth
and r the distance between the rocket and the center of
the earth.

MeF = GMem>r2
r2 .

r = r1 .

A

k1 � 30 lb/in.

k2 � 45 lb/in.

5 ft

3 in.

Prob. 14–12

60�

A
B

30� 

Prob. 14–13

r2

r1

r

Prob. 14–16

F (N)

F � 50s2

s (m)

4
3

F
5 v

Prob. 14–15
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*14–20. Packages having a weight of 15 lb are transferred
horizontally from one conveyor to the next using a ramp for
which . The top conveyor is moving at and
the packages are spaced 3 ft apart. Determine the required
speed of the bottom conveyor so no sliding occurs when the
packages come horizontally in contact with it. What is the
spacing s between the packages on the bottom conveyor?

6 ft>smk = 0.15

14–18. The collar has a mass of 20 kg and rests on the
smooth rod. Two springs are attached to it and the ends of
the rod as shown. Each spring has an uncompressed length
of 1 m. If the collar is displaced and released
from rest, determine its velocity at the instant it returns to
the point .s = 0

s = 0.5 m

•14–17. The cylinder has a weight of 20 lb and is pushed
against a series of Belleville spring washers so that the
compression in the spring is . If the force of the
spring on the cylinder is , where s is given
in feet, determine the speed of the cylinder just after it
moves away from the spring, i.e., at .s = 0

F = (100s1>3) lb
s = 0.05 ft

•14–21. The 0.5-kg ball of negligible size is fired up the
smooth vertical circular track using the spring plunger. The
plunger keeps the spring compressed 0.08 m when .
Determine how far s it must be pulled back and released so
that the ball will begin to leave the track when .u = 135°

s = 0

14–19. Determine the height h of the incline D to which
the 200-kg roller coaster car will reach, if it is launched at B
with a speed just sufficient for it to round the top of the loop
at C without leaving the track. The radius of curvature at C
is .rc = 25 m

s

Prob. 14–17

k � 50 N/m k¿ � 100 N/m

1 m
0.25 m

1 m

s

Prob. 14–18

h

D
C

B

35 m
Cr

F

Prob. 14–19

6 ft/s

3 ft

24 ft

7 ft
sA

Prob. 14–20

s

135�

B

A

u

k � 500 N/m

1.5 m

Prob. 14–21



188 CH A P T E R 14 KI N E T I C S O F A PA RT I C L E :  WO R K A N D EN E R G Y

14

*14–24. The 2-lb block slides down the smooth parabolic
surface, such that when it is at A it has a speed of .
Determine the magnitude of the block’s velocity and
acceleration when it reaches point B, and the maximum
height reached by the block.ymax

10 ft>s

14–23. Packages having a weight of 50 lb are delivered to
the chute at using a conveyor belt. Determine
their speeds when they reach points B, C, and D. Also
calculate the normal force of the chute on the packages at B
and C. Neglect friction and the size of the packages.

vA = 3 ft>s

14–22. The 2-lb box slides on the smooth circular ramp. If
the box has a velocity of at A, determine the velocity
of the box and normal force acting on the ramp when the
box is located at B and C.Assume the radius of curvature of
the path at C is still 5 ft.

30 ft>s

•14–25. The skier starts from rest at A and travels down
the ramp. If friction and air resistance can be neglected,
determine his speed when he reaches B. Also, find the
distance s to where he strikes the ground at C, if he makes
the jump traveling horizontally at B. Neglect the skier’s size.
He has a mass of 70 kg.

vB

14–26. The crate, which has a mass of 100 kg, is subjected
to the action of the two forces. If it is originally at rest,
determine the distance it slides in order to attain a speed of

The coefficient of kinetic friction between the crate
and the surface is .mk = 0.2
6 m>s.

5 ft

30 ft/s

B

A

C

Prob. 14–22

30�
30�

30�
30�

5 ft

5 ft

5 ft

A

D

B

C

vA � 3 ft/s

Prob. 14–23

y � 0.25x2

10 ft/s

A

B

y

C

4 ft
1 ft

ymax

Prob. 14–24

30�

s

50 m

4 m

A

B

C

Prob. 14–25

3
4

5

1000 N

30�

800 N

Prob. 14–26
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•14–29. The 120-lb man acts as a human cannonball by being
“fired” from the spring-loaded cannon shown. If the greatest
acceleration he can experience is ,
determine the required stiffness of the spring which is
compressed 2 ft at the moment of firing. With what velocity
will he exit the cannon barrel, , when the cannon
is fired? When the spring is compressed then

Neglect friction and assume the man holds himself
in a rigid position throughout the motion.
d = 8 ft.

s = 2 ft
d = 8 ft

a = 10g = 322 ft>s2

*14–28. Roller coasters are designed so that riders will not
experience a normal force that is more than 3.5 times their
weight against the seat of the car. Determine the smallest
radius of curvature of the track at its lowest point if the
car has a speed of at the crest of the drop. Neglect
friction.

5 ft>s
r

14–27. The 2-lb brick slides down a smooth roof, such that
when it is at A it has a velocity of Determine the
speed of the brick just before it leaves the surface at B, the
distance d from the wall to where it strikes the ground, and
the speed at which it hits the ground.

5 ft>s.

14–30. If the track is to be designed so that the passengers
of the roller coaster do not experience a normal force equal
to zero or more than 4 times their weight, determine the
limiting heights and so that this does not occur. The
roller coaster starts from rest at position A. Neglect friction.

hChA

30 ft

d

A

B

15 ft

5 ft/s

5

x

y

3

4

Prob. 14–27

120 ft

r

10 ft

Prob. 14–28

d

45�

� 8 ft

Prob. 14–29

A

hA

C

B
hC

rC � 20 m

rB � 15 m

Prob. 14–30
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•14–33. If the coefficient of kinetic friction between the
100-kg crate and the plane is , determine the
compression x of the spring required to bring the crate
momentarily to rest. Initially the spring is unstretched and
the crate is at rest.

14–34. If the coefficient of kinetic friction between the
100-kg crate and the plane is , determine the
speed of the crate at the instant the compression of 
the spring is . Initially the spring is unstretched
and the crate is at rest.

x = 1.5 m

 mk = 0.25

mk = 0.25

*14–32. The ball has a mass of 0.5 kg and is suspended
from a rubber band having an unstretched length of 1 m
and a stiffness . If the support at A to which the
rubber band is attached is 2 m from the floor, determine the
greatest speed the ball can have at A so that it does not
touch the floor when it reaches its lowest point B. Neglect
the size of the ball and the mass of the rubber band.

k = 50 N>m

14–31. Marbles having a mass of 5 g fall from rest at A
through the glass tube and accumulate in the can at C.
Determine the placement R of the can from the end of the
tube and the speed at which the marbles fall into the can.
Neglect the size of the can.

14–35. A 2-lb block rests on the smooth semicylindrical
surface. An elastic cord having a stiffness is
attached to the block at B and to the base of the
semicylinder at point C. If the block is released from rest at
A( ), determine the unstretched length of the cord so
that the block begins to leave the semicylinder at the instant

. Neglect the size of the block.u = 45°

u = 0°

k = 2 lb>ft

R

2 m

3 m

A

B

C

Prob. 14–31

2 m

A

B

Prob. 14–32

10 m

x

k � 2 kN/m

45�

Probs. 14–33/34

C Au

B

k � 2 lb/ft

1.5 ft

Prob. 14–35



14.3 PRINCIPLE OF WORK AND ENERGY FOR A SYSTEM OF PARTICLES 191

14

14–39. If the 60-kg skier passes point A with a speed of
, determine his speed when he reaches point B. Also

find the normal force exerted on him by the slope at this
point. Neglect friction.

5 m>s

•14–37. If the 75-kg crate starts from rest at A, determine
its speed when it reaches point B.The cable is subjected to a
constant force of . Neglect friction and the size of
the pulley.

14–38. If the 75-kg crate starts from rest at A, and its
speed is when it passes point B, determine the
constant force F exerted on the cable. Neglect friction and
the size of the pulley.

6 m>s

F = 300 N

*14–36. The 50-kg stone has a speed of when
it reaches point A. Determine the normal force it exerts on
the incline when it reaches point B. Neglect friction and the
stone’s size.

vA = 8 m>s

*14–40. The 150-lb skater passes point A with a speed of
. Determine his speed when he reaches point B and the

normal force exerted on him by the track at this point.
Neglect friction.

6 ft>s

•14–41. A small box of mass m is given a speed of
at the top of the smooth half cylinder.

Determine the angle at which the box leaves the cylinder.u

 v = 21
4gr

4 m

4 m

B

C

y

x
A

y � x

x1/2 � y1/2 � 2

Prob. 14–36

B

C

A

6 m 2 m

6 m

30�

F

Probs. 14–37/38

y

x

B

A

15 m

y � (0.025x2 � 5)m

Prob. 14–39

y

x

A

B

y2 � 4x

20 ft

25 ft

Prob. 14–40

r

O

A

u

Prob. 14–41
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14.4 Power and Efficiency

Power. The term “power” provides a useful basis for chosing the type
of motor or machine which is required to do a certain amount of work in
a given time. For example, two pumps may each be able to empty a
reservoir if given enough time; however, the pump having the larger
power will complete the job sooner.

The power generated by a machine or engine that performs an amount
of work dU within the time interval dt is therefore

(14–9)

If the work dU is expressed as then

or

(14–10)

Hence, power is a scalar, where in this formulation v represents the
velocity of the paticle which is acted upon by the force F.

The basic units of power used in the SI and FPS systems are the watt
(W) and horsepower (hp), respectively. These units are defined as

For conversion between the two systems of units,

Efficiency. The mechanical efficiency of a machine is defined as the
ratio of the output of useful power produced by the machine to the input
of power supplied to the machine. Hence,

(14–11)P =
power output
power input

1 hp = 746 W.

1 hp = 550 ft # lb>s
1 W = 1 J>s = 1 N # m>s

P = F # v

P =
dU

dt
=

F # dr
dt

= F # dr
dt

dU = F # dr,

P =
dU

dt

The power output of this locomotive
comes from the driving frictional force F
developed at its wheels. It is this force
that overcomes the frictional resistance
of the cars in tow and is able to lift the
weight of the train up the grade.
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If energy supplied to the machine occurs during the same time interval at
which it is drawn, then the efficiency may also be expressed in terms of
the ratio

(14–12)

Since machines consist of a series of moving parts, frictional forces will
always be developed within the machine, and as a result, extra energy or
power is needed to overcome these forces. Consequently, power output
will be less than power input and so the efficiency of a machine is always
less than 1.

The power supplied to a body can be determined using the following
procedure.

P =
energy output
energy input

The power requirements of this elevator
depend upon the vertical force F that acts on
the elevator and causes it to move upwards. If
the velocity of the elevator is v, then the power
output is P = F # v.

F

v

Procedure for Analysis

• First determine the external force F acting on the body which
causes the motion. This force is usually developed by a machine
or engine placed either within or external to the body.

• If the body is accelerating, it may be necessary to draw its free-
body diagram and apply the equation of motion to
determine F.

• Once F and the velocity v of the particle where F is applied have
been found, the power is determined by multiplying the force
magnitude with the component of velocity acting in the direction
of F, (i.e., ).

• In some problems the power may be found by calculating the
work done by F per unit of time ( ).Pavg = ¢U>¢t,

P = F # v = Fv cos u

1©F = ma2
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EXAMPLE 14.7

The man in Fig. 14–15a pushes on the 50-kg crate with a force of
Determine the power supplied by the man when 

The coefficient of kinetic friction between the floor and the crate is
Initially the create is at rest.mk = 0.2.

t = 4 s.F = 150 N.

(a)

F � 150 N

4
3 5

F � 150 N

y

x

50 (9.81) N

(b)

4
3

5

N

Fƒ � 0.2 N 

a

Fig. 14–15

SOLUTION
To determine the power developed by the man, the velocity of the
150-N force must be obtained first. The free-body diagram of the
crate is shown in Fig. 14–15b. Applying the equation of motion,

The velocity of the crate when is therefore

The power supplied to the crate by the man when is therefore

Ans. = 37.4 W

 P = F # v = Fxv = A45 B(150 N)(0.312 m>s)

t = 4 s

v = 0 + (0.078 m>s2)(4 s) = 0.312 m>s
v = v0 + act(:+ )

t = 4 s

a = 0.078 m>s2
A45 B150 N - 0.2(580.5 N) = (50 kg)a:+  ©Fx = max;

N = 580.5 N
N - A35 B150 N - 50(9.81) N = 0+ c©Fy = may;
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EXAMPLE 14.8

The motor M of the hoist shown in Fig. 14–16a lifts the 75-lb crate C
so that the acceleration of point P is Determine the power that
must be supplied to the motor at the instant P has a velocity of 
Neglect the mass of the pulley and cable and take 

SOLUTION
In order to find the power output of the motor, it is first necessary to
determine the tension in the cable since this force is developed by
the motor.

From the free-body diagram, Fig. 14–16b, we have

(1)

The acceleration of the crate can be obtained by using kinematics to
relate it to the known acceleration of point P, Fig. 14–16a. Using the
methods of Sec. 12.9, the coordinates and can be related to a
constant portion of cable length l which is changing in the vertical and
horizontal directions. We have Taking the second time
derivative of this equation yields

(2)

Since then What does
the negative sign indicate? Substituting this result into Eq. 1 and
retaining the negative sign since the acceleration in both Eq. 1 and Eq. 2
was considered positive downward, we have

The power output, measured in units of horsepower, required to draw
the cable in at a rate of is therefore

This power output requires that the motor provide a power input of

Ans.

NOTE: Since the velocity of the crate is constantly changing, the
power requirement is instantaneous.

=
1

0.85
10.1448 hp2 = 0.170 hp

 power input =
1
P
1power output2

= 0.1448 hp

P = T # v = 139.83 lb212 ft>s2[1 hp>1550 ft # lb>s2]
2 ft>s

T = 39.83 lb

-2T + 75 lb = a 75 lb

32.2 ft>s2 b1-2 ft>s22

aC = -14 ft>s22>2 = -2 ft>s2.aP = +4 ft>s2,

2aC = -aP

2sC + sP = l.

sPsC

-2T + 75 lb =
75 lb

32.2 ft>s2 ac+ T ©Fy = may ;

P = 0.85.
2 ft>s.

4 ft>s2.

P M

sP

sC

C

(a)

Datum

Datum

y

aC

2T

75 lb
(b)

Fig. 14–16
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FUNDAMENTAL PROBLEMS

F14–12. At the instant shown, point P on the cable has a
velocity which is increasing at a rate of

Determine the power input of motor M at this
instant if it operates with an efficiency The mass of
block A is 50 kg.

P = 0.8.
aP = 6 m>s2.

vP = 12 m>s,

F14–10. The coefficient of kinetic friction between the 
20-kg block and the inclined plane is If the block
is traveling up the inclined plane with a constant velocity

, determine the power of force F.v = 5 m>s
mk = 0.2.

F14–8. If where s is in meters, and the
contact surface between the block and the ground is
smooth, determine the power of force F when .
Initially, the 20-kg block is at rest.

s = 5 m

F = (10s) N,

F14–11. If the 50-kg load A is hoisted by motor M so that
the load has a constant velocity of , determine the
power input of the motor, which operates at an efficiency
P = 0.8.

1.5 m>s

F14–9. If the motor winds in the cable with a constant
speed of determine the power supplied to the
motor. The load weighs 100 lb and the efficiency of the
motor is Neglect the mass of the pulleys.P = 0.8.

v = 3 ft>s,

F � (10 s) N

F14–8

C D

B

A

E

M

v � 3 ft/s

F14–9

30�

F

F14–10

A

M

1.5 m/s

F14–11

M

A

P
12 m/s
6 m/s2

F14–12

F14–7. If the contact surface between the 20-kg block and
the ground is smooth, determine the power of force F when

Initially, the block is at rest.t = 4 s.

F � 30 N

3
5

4

F14–7



14.4 POWER AND EFFICIENCY 197

14

1
10

Prob. 14–46

15 ft

Prob. 14–50

PROBLEMS

14–50. The man having the weight of 150 lb is able to run
up a 15-ft-high flight of stairs in 4 s. Determine the power
generated. How long would a 100-W light bulb have to burn
to expend the same amount of energy? Conclusion: Please
turn off the lights when they are not in use!

14–42. The diesel engine of a 400-Mg train increases the
train’s speed uniformly from rest to in 100 s along a
horizontal track. Determine the average power developed.

14–43. Determine the power input for a motor necessary
to lift 300 lb at a constant rate of The efficiency of the
motor is .

*14–44. An electric streetcar has a weight of 15 000 lb and
accelerates along a horizontal straight road from rest so
that the power is always 100 hp. Determine how far it must
travel to reach a speed of .

•14–45. The Milkin Aircraft Co. manufactures a turbojet
engine that is placed in a plane having a weight of 13000 lb.
If the engine develops a constant thrust of 5200 lb,
determine the power output of the plane when it is just
ready to take off with a speed of 

14–46. The engine of the 3500-lb car is generating a
constant power of 50 hp while the car is traveling up the
slope with a constant speed. If the engine is operating with
an efficiency of , determine the speed of the car.
Neglect drag and rolling resistance.

P = 0.8

600 mi>h.

40 ft>s

P = 0.65
5 ft>s.

10 m>s

14–47. A loaded truck weighs and accelerates
uniformly on a level road from to during 
If the frictional resistance to motion is 325 lb, determine the
maximum power that must be delivered to the wheels.

*14–48. An automobile having a weight of 3500 lb travels
up a 7° slope at a constant speed of . If friction
and wind resistance are neglected, determine the power
developed by the engine if the automobile has a mechanical
efficiency of .

•14–49. An escalator step moves with a constant speed of
If the steps are 125 mm high and 250 mm in length,

determine the power of a motor needed to lift an average
mass of 150 kg per step. There are 32 steps.

0.6 m>s.

P = 0.65

v = 40 ft>s

4 s.30 ft>s15 ft>s
16(103) lb

14–51. The material hoist and the load have a total mass
of 800 kg and the counterweight C has a mass of 150 kg. At
a given instant, the hoist has an upward velocity of 
and an acceleration of . Determine the power
generated by the motor M at this instant if it operates with
an efficiency of .

*14–52. The material hoist and the load have a total mass
of 800 kg and the counterweight C has a mass of 150 kg. If
the upward speed of the hoist increases uniformly from

to , determine the average power
generated by the motor M during this time. The motor
operates with an efficiency of .P = 0.8

1.5 m>s in 1.5 s0.5 m>s

P = 0.8

1.5 m>s2
2 m>s

M

C

Probs. 14–51/52
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14–54. Determine the velocity of the 200-lb crate in 15 s if
the motor operates with an efficiency of .The power
input to the motor is 2.5 hp. The coefficient of kinetic
friction between the crate and the plane is .mk = 0.2

P = 0.8

14–55. A constant power of 1.5 hp is supplied to the motor
while it operates with an efficiency of . Determine
the velocity of the 200-lb crate in 15 seconds, starting from
rest. Neglect friction.

P = 0.8
*14–60. The 1.2-Mg mine car is being pulled by winch M
mounted on the car. If the winch generates a constant
power output of 30 kW, and the car starts from rest,
determine the speed of the car when .t = 5 s

•14–53. The 2-Mg car increases its speed uniformly from
rest to in 30 s up the inclined road. Determine the
maximum power that must be supplied by the engine, which
operates with an efficiency of . Also, find the
average power supplied by the engine.

P = 0.8

25 m>s
*14–56. The fluid transmission of a 30 000-lb truck allows
the engine to deliver constant power to the rear wheels.
Determine the distance required for the truck traveling on a
level road to increase its speed from to if 90 hp
is delivered to the rear wheels. Neglect drag and rolling
resistance.

•14–57. If the engine of a 1.5-Mg car generates a constant
power of 15 kW, determine the speed of the car after it has
traveled a distance of 200 m on a level road starting from
rest. Neglect friction.

14–58. The 1.2-Mg mine car is being pulled by the winch
M mounted on the car. If the winch exerts a force of

on the cable, where t is in seconds,
determine the power output of the winch when ,
starting from rest.

14–59. The 1.2-Mg mine car is being pulled by the winch M
mounted on the car. If the winch generates a constant power
output of 30 kW, determine the speed of the car at the
instant it has traveled a distance of 30 m, starting from rest.

t = 5 s
F = (150t3>2) N

60 ft>s35 ft>s

10
1

Prob. 14–53

M

Prob. 14–54

M

Prob. 14–55

M

Probs. 14–58/59

M

Prob. 14–60
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14–63. If the jet on the dragster supplies a constant thrust
of , determine the power generated by the jet as
a function of time. Neglect drag and rolling resistance, and
the loss of fuel. The dragster has a mass of 1 Mg and starts
from rest.

T = 20 kN

14–62. A motor hoists a 60-kg crate at a constant velocity
to a height of in 2 s. If the indicated power of the
motor is 3.2 kW, determine the motor’s efficiency.

h = 5 m

•14–61. The 50-lb crate is hoisted by the motor M. If the
crate starts from rest and by constant acceleration attains a
speed of after rising , determine the power
that must be supplied to the motor at the instant .
The motor has an efficiency . Neglect the mass of
the pulley and cable.

P = 0.65
s = 10 ft

s = 10 ft12 ft>s

14–65. The 500-kg elevator starts from rest and travels
upward with a constant acceleration 
Determine the power output of the motor M when 
Neglect the mass of the pulleys and cable.

t = 3 s.
ac = 2 m>s2.

*14–64. Sand is being discharged from the silo at A to the
conveyor and transported to the storage deck at the rate of

. An electric motor is attached to the conveyor
to maintain the speed of the belt at . Determine the
average power generated by the motor.

3 ft>s
360 000  lb>h

s

M

Prob. 14–61

h

Prob. 14–62

T

Prob. 14–63

20 ft

A

B

30�

Prob. 14–64

M

E

Prob. 14–65
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•14–69. Using the biomechanical power curve shown,
determine the maximum speed attained by the rider and his
bicycle, which have a total mass of 92 kg, as the rider
ascends the 20° slope starting from rest.

*14–68. The 50-lb block rests on the rough surface for
which the coefficient of kinetic friction is . A force

, where s is in ft, acts on the block in the
direction shown. If the spring is originally unstretched
( ) and the block is at rest, determine the power
developed by the force the instant the block has moved

.s = 1.5 ft

s = 0

F = (40 + s2) lb
mk = 0.2

14–66. A rocket having a total mass of 8 Mg is fired
vertically from rest. If the engines provide a constant thrust
of , determine the power output of the engines
as a function of time. Neglect the effect of drag resistance
and the loss of fuel mass and weight.

T = 300 kN

14–70. The 50-kg crate is hoisted up the 30° incline by the
pulley system and motor M. If the crate starts from rest and,
by constant acceleration, attains a speed of after
traveling 8 m along the plane, determine the power that
must be supplied to the motor at the instant the crate has
moved 8 m. Neglect friction along the plane. The motor has
an efficiency of .

14–71. Solve Prob. 14–70 if the coefficient of kinetic
friction between the plane and the crate is .mk = 0.3

P = 0.74

4 m>s

T � 300 kN

Prob. 14–66

M

Prob. 14–67

F
k � 20 lb/ft30�

Prob. 14–68

1400

t (s)
5 10 20 30

1450

1500

P (W)

20�

Prob. 14–69

M

30�

Probs. 14–70/71

14–67. The crate has a mass of 150 kg and rests on a
surface for which the coefficients of static and kinetic
friction are and , respectively. If the motor
M supplies a cable force of , where t is in
seconds, determine the power output developed by the
motor when .t = 5 s

F = (8t2 + 20) N
mk = 0.2ms = 0.3
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W

W

�y

�y

Datum

Gravitational potential energy

Vg � �Wy

Vg � �Wy

Vg � 0

Fig. 14–17
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14.5 Conservative Forces and 
Potential Energy

Conservative Force. If the work of a force is independent of the
path and depends only on the force’s initial and final positions on the
path, then we can classify this force as a conservative force. Examples of
conservative forces are the weight of a particle and the force developed
by a spring. The work done by the weight depends only on the vertical
displacement of the weight, and the work done by a spring force depends
only on the spring’s elongation or compression.

In contrast to a conservative force, consider the force of friction
exerted on a sliding object by a fixed surface. The work done by the
frictional force depends on the path—the longer the path, the greater the
work. Consequently, frictional forces are nonconservative. The work is
dissipated from the body in the form of heat.

Energy. Energy is defined as the capacity for doing work. For
example, if a particle is originally at rest, then the principle of work and
energy states that In other words, the kinetic energy is
equal to the work that must be done on the particle to bring it from a
state of rest to a speed . Thus, the kinetic energy is a measure of the
particle’s capacity to do work, which is associated with the motion of the
particle. When energy comes from the position of the particle, measured
from a fixed datum or reference plane, it is called potential energy. Thus,
potential energy is a measure of the amount of work a conservative force
will do when it moves from a given position to the datum. In mechanics,
the potential energy created by gravity (weight) or an elastic spring is
important.

Gravitational Potential Energy. If a particle is located a
distance y above an arbitrarily selected datum, as shown in Fig. 14–17, the
particle’s weight W has positive gravitational potential energy, since
W has the capacity of doing positive work when the particle is moved
back down to the datum. Likewise, if the particle is located a distance y
below the datum, is negative since the weight does negative work
when the particle is moved back up to the datum. At the datum 

In general, if y is positive upward, the gravitational potential energy of
the particle of weight W is*

(14–13)Vg = Wy

Vg = 0.
Vg

Vg ,

v

©U1:2 = T2.

*Here the weight is assumed to be constant. This assumption is suitable for small
differences in elevation If the elevation change is significant, however, a variation of
weight with elevation must be taken into account (see Prob. 14–16).

¢y.
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Elastic Potential Energy. When an elastic spring is elongated or
compressed a distance s from its unstretched position, elastic potential
energy can be stored in the spring. This energy is 

(14–14)

Here is always positive since, in the deformed position, the force of
the spring has the capacity or “potential” for always doing positive work
on the particle when the spring is returned to its unstretched position,
Fig. 14–18.

Ve

Ve = +1
2ks

2

Ve

Ve � 0

Unstretched
position, s � 0

Elastic potential energy

�s

�s

k

k

k

Ve � � ks21
2

Ve � � ks21
2

Fig. 14–18

The weight of the sacks resting on this
platform causes potential energy to be
stored in the supporting springs.As each
sack is removed, the platform will rise
slightly since some of the potential energy
within the springs will be transformed
into an increase in gravitational potential
energy of the remaining sacks. Such a
device is useful for removing the sacks
without having to bend over to pick them
up as they are unloaded.
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Potential Function. In the general case, if a particle is subjected to
both gravitational and elastic forces, the particle’s potential energy can
be expressed as a potential function, which is the algebraic sum

(14–15)

Measurement of V depends on the location of the particle with respect
to a selected datum in accordance with Eqs. 14–13 and 14–14.

The work done by a conservative force in moving the particle from one
point to another point is measured by the difference of this function, i.e.,

(14–16)

For example, the potential function for a particle of weight W
suspended from a spring can be expressed in terms of its position, s,
measured from a datum located at the unstretched length of the spring,
Fig. 14–19. We have

If the particle moves from to a lower position then applying 
Eq. 14–16 it can be seen that the work of W and is

= W1s2 - s12 - A12ks22 - 1
2ks1

2 B
U1-2 = V1 - V2 = A -Ws1 + 1

2ks1
2 B - A -Ws2 + 1

2ks2
2 B

Fs
s2 ,s1

= -Ws + 1
2ks

2

V = Vg + Ve

U1-2 = V1 - V2

V = Vg + Ve

W

s

Datum

Fs

k

Fig. 14–19



204 CH A P T E R 14 KI N E T I C S O F A PA RT I C L E :  WO R K A N D EN E R G Y

14

When the displacement along the path is infinitesimal, i.e., from point
(x, y, z) to ( ), Eq. 14–16 becomes

(14–17)

If we represent both the force and its displacement as Cartesian
vectors, then the work can also be expressed as

Substituting this result into Eq. 14–17 and expressing the differential
dV(x, y, z) in terms of its partial derivatives yields

Since changes in x, y, and z are all independent of one another, this
equation is satisfied provided

(14–18)

Thus,

or

(14–19)

where (del) represents the vector operator 

Equation 14–19 relates a force F to its potential function V and
thereby provides a mathematical criterion for proving that F is
conservative. For example, the gravitational potential function for a
weight located a distance y above a datum is To prove that
W is conservative, it is necessary to show that it satisfies Eq. 14–18 (or
Eq. 14–19), in which case

The negative sign indicates that W acts downward, opposite to positive y,
which is upward.

Fy = -
0
0y
1Wy2 = -WFy = -

0V
0y

;

Vg = Wy.

10>0y2j + 10>0z2k.
10>0x2i +§ =§

F = - §V

= - a 0
0x

i +
0
0y

j +
0
0z

kbV
F = -

0V
0x

i -
0V
0y

j -
0V
0z

k

Fz = -
0V
0z

Fy = -
0V
0y

,Fx = -
0V
0x

,

Fx dx + Fy dy + Fz dz = - a 0V
0x
dx +

0V
0y
dy +

0V
0z
dzb

= Fx dx + Fy dy + Fz dz
dU = F # dr = 1Fxi + Fyj + Fzk2 # 1dxi + dyj + dzk2

= -dV1x, y, z2
dU = V1x, y, z2 - V1x + dx, y + dy, z + dz2

z + dzy + dy,x + dx,
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14.6 Conservation of Energy

When a particle is acted upon by a system of both conservative and
nonconservative forces, the portion of the work done by the conservative
forces can be written in terms of the difference in their potential energies
using Eq. 14–16, i.e., As a result, the principle of
work and energy can be written as

(14–20)

Here represents the work of the nonconservative forces
acting on the particle. If only conservative forces do work then we have

(14–21)

This equation is referred to as the conservation of mechanical energy
or simply the conservation of energy. It states that during the motion the
sum of the particle’s kinetic and potential energies remains constant.
For this to occur, kinetic energy must be transformed into potential
energy, and vice versa. For example, if a ball of weight W is dropped
from a height h above the ground (datum), Fig. 14–20, the potential
energy of the ball is maximum before it is dropped, at which time its
kinetic energy is zero. The total mechanical energy of the ball in its
initial position is thus

When the ball has fallen a distance h 2, its speed can be determined by
using which yields The
energy of the ball at the mid-height position is therefore

Just before the ball strikes the ground, its potential energy is zero and its
speed is Here, again, the total energy of the ball is

Note that when the ball comes in contact with the ground, it deforms
somewhat, and provided the ground is hard enough, the ball will
rebound off the surface, reaching a new height which will be less than
the height h from which it was first released. Neglecting air friction, the
difference in height accounts for an energy loss, which
occurs during the collision. Portions of this loss produce noise, localized
deformation of the ball and ground, and heat.

El = W1h - h¿2,
h¿,

E = T3 + V3 =
1
2
W
g
A22gh B2 + 0 = Wh

v = 22gh.

E = T2 + V2 =
1
2
W
g
A2gh B2 + Wa h

2
b = Wh

v = 22g1h>22 = 2gh.v2 = v0
2 + 2ac1y - y02,

>
E = T1 + V1 = 0 + Wh = Wh

T1 + V1 = T2 + V2

1©U1-22noncons.

T1 + V1 + 1©U1-22noncons. = T2 + V2

1©U1-22cons. = V1 - V2 .

Datum

h

Potential Energy (max)
Kinetic Energy (zero)

Potential Energy and
Kinetic Energy

Potential Energy (zero)
Kinetic Energy (max)

h
2

Fig. 14–20
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System of Particles. If a system of particles is subjected only to
conservative forces, then an equation similar to Eq. 14–21 can be written
for the particles.Applying the ideas of the preceding discussion, Eq. 14–8

becomes

(14–22)

Here, the sum of the system’s initial kinetic and potential energies is
equal to the sum of the system’s final kinetic and potential energies. In
other words, ©T + ©V = const.

©T1 + ©V1 = ©T2 + ©V2

1©T1 + ©U1-2 = ©T22

Procedure for Analysis

The conservation of energy equation can be used to solve problems
involving velocity, displacement, and conservative force systems. It is
generally easier to apply than the principle of work and energy
because this equation requires specifying the particle’s kinetic and
potential energies at only two points along the path, rather than
determining the work when the particle moves through a
displacement. For application it is suggested that the following
procedure be used.

Potential Energy.

• Draw two diagrams showing the particle located at its initial and
final points along the path.

• If the particle is subjected to a vertical displacement, establish the
fixed horizontal datum from which to measure the particle’s
gravitational potential energy 

• Data pertaining to the elevation y of the particle from the datum
and the stretch or compression s of any connecting springs can
be determined from the geometry associated with the two
diagrams.

• Recall where y is positive upward from the datum
and negative downward from the datum; also for a spring,

which is always positive.

Conservation of Energy.

• Apply the equation 

• When determining the kinetic energy, remember that
the particle’s speed must be measured from an inertial
reference frame.

v
T = 1

2mv
2,

T1 + V1 = T2 + V2 .

Ve = 1
2ks

2,

Vg = Wy,

Vg .
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EXAMPLE 14.9

The gantry structure in the photo is used to test the response of an
airplane during a crash. As shown in Fig. 14–21a, the plane, having a
mass of 8 Mg, is hoisted back until and then the pull-back
cable AC is released when the plane is at rest. Determine the speed of
the plane just before it crashes into the ground, Also, what is
the maximum tension developed in the supporting cable during the
motion? Neglect the size of the airplane and the effect of lift caused by
the wings during the motion.

u = 15°.

u = 60°,

SOLUTION
Since the force of the cable does no work on the plane, it must be
obtained using the equation of motion. First, however, we must
determine the plane’s speed at B.

Potential Energy. For convenience, the datum has been established
at the top of the gantry, Fig. 14–21a.

Conservation of Energy.

Ans.

Equation of Motion. From the free-body diagram when the plane
is at B, Fig. 14–21b, we have

Ans.T = 149 kN

T - 1800019.812 N2 cos 15° = 18000 kg2 113.52 m>s22
20 m

+a ©Fn = man ;

vB = 13.52 m>s = 13.5 m>s
1
218000 kg2vB2 - 8000 kg 19.81 m>s22120 cos 15° m2

0 - 8000 kg 19.81 m>s22120 cos 60° m2 =

TA + VA = TB + VB

C

B

A

20 m

(a)

Datum

u

8000(9.81) N

T

15�

(b)

n

t

Fig. 14–21
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EXAMPLE 14.10

The ram R shown in Fig. 14–22a has a mass of 100 kg and is released
from rest 0.75 m from the top of a spring, A, that has a stiffness

If a second spring B, having a stiffness
is “nested” in A, determine the maximum

displacement of A needed to stop the downward motion of the ram.
The unstretched length of each spring is indicated in the figure.
Neglect the mass of the springs.

SOLUTION

Potential Energy. We will assume that the ram compresses both
springs at the instant it comes to rest. The datum is located through
the center of gravity of the ram at its initial position, Fig. 14–22b.
When the kinetic energy is reduced to zero , A is compressed
a distance and B compresses

Conservation of Energy.

Rearranging the terms,

Using the quadratic formula and solving for the positive root, we have

Ans.

Since which is positive, the
assumption that both springs are compressed by the ram is correct.

NOTE: The second root, does not represent the
physical situation. Since positive s is measured downward, the
negative sign indicates that spring A would have to be “extended” by
an amount of 0.148 m to stop the ram.

sA = -0.148 m,

sB = 0.331 m - 0.1 m = 0.231 m,

sA = 0.331 m

13 500sA
2 - 2481sA - 660.75 = 0

- 981 N 10.75 m + sA2F
 0 + 0 = 0 + E12112 000 N>m2sA2 + 1

2115 000 N>m21sA - 0.1 m22
 0 + 0 = 0 + E12kAsA2 + 1

2kB1sA - 0.122 - WhF
T1 + V1 = T2 + V2

sB = sA - 0.1 m.sA

1v2 = 02

kB = 15 kN>m,
kA = 12 kN>m.

R

0.75 m

0.4 m
0.3 m

kA�12 kN/m

A

B

kB � 15 kN/m
(a)

0.75 m

sB � sA � 0.1 m

(b)

1 Datum

981 N

2

981 N

sA

sA

Fig. 14–22
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EXAMPLE 14.11

y

A

C

(a)

0.75 m

k � 3 N/m

B

y � 1 m

A

C

(b)

Datum

W

W

vC

sCB � 1.25 m � 0.75 m � 0.5 m

0.75 m

B

(1 m)2 � (0.75 m)2 � 1.25 m

Fig. 14–23

A smooth 2-kg collar, shown in Fig. 14–23a, fits loosely on the vertical
shaft. If the spring is unstretched when the collar is in the position A,
determine the speed at which the collar is moving when if
(a) it is released from rest at A, and (b) it is released at A with an
upward velocity

SOLUTION

Part (a) Potential Energy. For convenience, the datum is established
through AB, Fig. 14–23b. When the collar is at C, the gravitational
potential energy is since the collar is below the datum, and
the elastic potential energy is Here which
represents the stretch in the spring as shown in the figure.

Conservation of Energy.

Ans.

This problem can also be solved by using the equation of motion or
the principle of work and energy. Note that for both of these
methods the variation of the magnitude and direction of the spring
force must be taken into account (see Example 13.4). Here,
however, the above solution is clearly advantageous since the
calculations depend only on data calculated at the initial and final
points of the path.

Part (b) Conservation of Energy. If using the data in
Fig. 14–23b, we have

Ans.

NOTE: The kinetic energy of the collar depends only on the
magnitude of velocity, and therefore it is immaterial if the collar is
moving up or down at when released at A.2 m>s

vC = 4.82 m>s T

- 219.812 N 11 m2F
1
212 kg212 m>s22 + 0 = 1

212 kg2vC2 + E1213 N>m210.5 m22
1
2mvA

2 + 0 = 1
2mvC

2 + E12ksCB2 - mgyF
TA + VA = TC + VC

vA = 2 m>s,

vC = 4.39 m>s T

 0 + 0 = E1212 kg2vC2 F + E1213 N>m210.5 m22 - 219.812 N 11 m2F
 0 + 0 = 1

2mvC
2 + E12ksCB2 - mgyF

TA + VA = TC + VC

sCB = 0.5 m,1
2ksCB

2 .
-1mg2y,

vA = 2 m>s.

y = 1 m,



5 ft

0.25 ft

CB
k � 1000 lb/ft

k¿ � 1500 lb/ft

k � 1000 lb/ft
A

k � 4 lb/ft

1.5 ft

1 ft

A

B
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FUNDAMENTAL PROBLEMS

F14–17. The 75-lb block is released from rest above
the plate. Determine the compression of each spring when
the block momentarily comes to rest after striking the plate.
Neglect the mass of the plate. The springs are initially
unstretched.

5 ft

F14–15. The 2-kg collar is given a downward velocity of
when it is at A. If the spring has an unstretched length

of and a stiffness of , determine the velocity
of the collar at s = 1 m.

k = 30 N>m1 m
4 m>s

F14–13. The 2-kg pendulum bob is released from rest
when it is at A. Determine the speed of the bob and the
tension in the cord when the bob passes through its lowest
position, B.

F14–18. The 4-kg collar C has a velocity of 
when it is at A. If the guide rod is smooth, determine the
speed of the collar when it is at B. The spring has an
unstretched length of l0 = 0.2 m.

vA = 2 m>s

F14–16. The 5-lb collar is released from rest at A and
travels along the frictionless guide. Determine the speed of
the collar when it strikes the stop B. The spring has an
unstretched length of 0.5 ft.

F14–14. The 2-kg package leaves the conveyor belt at A
with a speed of and slides down the smooth
ramp. Determine the required speed of the conveyor belt at
B so that the package can be delivered without slipping on
the belt. Also, find the normal reaction the curved portion
of the ramp exerts on the package at B if rB = 2 m.

vA = 1 m>s

A

B

1.5 m

F14–13

F14–16

k � 30 N/m

s

A

C

2 m

4 m/s B

F14–15

F14–17

A

B

C

k � 400 N/m

0.4 m

0.1 m

F14–18

4 m

vA � 1 m/s

vB

A

B

y

x

F14–14
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PROBLEMS

14–79. Block A has a weight of 1.5 lb and slides in the
smooth horizontal slot. If the block is drawn back to

and released from rest, determine its speed at the
instant . Each of the two springs has a stiffness of

and an unstretched length of 0.5 ft.

*14–80. The 2-lb block A slides in the smooth horizontal
slot. When the block is given an initial velocity of 
60 ft s to the right. Determine the maximum horizontal
displacement s of the block. Each of the two springs has a
stiffness of and an unstretched length of 0.5 ft.k = 150 lb>ft

>
s = 0

k = 150 lb>ft
s = 0

s = 1.5 ft

*14–72. Solve Prob. 14–12 using the conservation of
energy equation.

•14–73. Solve Prob. 14–7 using the conservation of energy
equation.

14–74. Solve Prob. 14–8 using the conservation of energy
equation.

14–75. Solve Prob. 14–18 using the conservation of energy
equation.

*14–76. Solve Prob. 14–22 using the conservation of
energy equation.

•14–77. Each of the two elastic rubber bands of the
slingshot has an unstretched length of 200 mm. If they are
pulled back to the position shown and released from rest,
determine the speed of the 25-g pellet just after the
rubber bands become unstretched. Neglect the mass of
the rubber bands. Each rubber band has a stiffness of

14.78. Each of the two elastic rubber bands of the
slingshot has an unstretched length of 200 mm. If they are
pulled back to the position shown and released from rest,
determine the maximum height the 25-g pellet will reach if
it is fired vertically upward. Neglect the mass of the rubber
bands and the change in elevation of the pellet while it is
constrained by the rubber bands. Each rubber band has a
stiffness k = 50 N>m.

k = 50 N>m.

•14–81. The 30-lb block A is placed on top of two nested
springs B and C and then pushed down to the position
shown. If it is then released, determine the maximum height
h to which it will rise.

s

2 ft

2 ft

A

k � 150 lb/ft

k � 150 lb/ft

D

C

Probs. 14–79/80

A

B

C

6 in.
4 in.

A

h

kB � 200 lb/in.

kC � 100 lb/in.

Prob. 14–81

50 mm

240 mm

50 mm

Probs. 14–77/78
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*14–84. The 5-kg collar slides along the smooth vertical
rod. If the collar is nudged from rest at A, determine its
speed when it passes point B. The spring has an unstretched
length of 200 mm.

14–83. The vertical guide is smooth and the 5-kg collar is
released from rest at A. Determine the speed of the collar
when it is at position C. The spring has an unstretched
length of 300 mm.

14–82. The spring is unstretched when and the
block is released from rest at this position. Determine

the speed of the block when . The spring remains
horizontal during the motion, and the contact surfaces
between the block and the inclined plane are smooth.

s = 3 m
15-kg

s = 1 m

•14–85. The cylinder has a mass of 20 kg and is released
from rest when . Determine its speed when m.
The springs each have an unstretched length of 2 m.

h = 3h = 0

s

A
k � 75 N/m

30�

Prob. 14–82

A
B

C

k � 250 N/m

0.4 m

0.3 m

Prob. 14–83

A

B

k � 500 N/m

u

r � 0.3 (1 � cos u) m

Prob. 14–84

2 m 2 m

k � 40 N/mk � 40 N/m
h

Prob. 14–85
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•14–89. The roller coaster and its passenger have a total
mass m. Determine the smallest velocity it must have when
it enters the loop at A so that it can complete the loop and
not leave the track. Also, determine the normal force the
tracks exert on the car when it comes around to the bottom
at C. The radius of curvature of the tracks at B is , and at
C it is . Neglect the size of the car. Points A and C are at
the same elevation.

rC

rB

14–87. The roller-coaster car has a mass of 800 kg,
including its passenger, and starts from the top of the hill A
with a speed Determine the minimum height h
of the hill so that the car travels around both inside loops
without leaving the track. Neglect friction, the mass of the
wheels, and the size of the car. What is the normal reaction
on the car when the car is at B and at C?

*14–88. The roller-coaster car has a mass of 800 kg,
including its passenger. If it is released from rest at the top
of the hill A, determine the minimum height h of the hill so
that the car travels around both inside loops without
leaving the track. Neglect friction, the mass of the wheels,
and the size of the car. What is the normal reaction on the
car when the car is at B and at C?

vA = 3 m>s.

14–86. Tarzan has a mass of 100 kg and from rest swings
from the cliff by rigidly holding on to the tree vine, which
is 10 m measured from the supporting limb A to his center
of mass. Determine his speed just after the vine strikes the
lower limb at B. Also, with what force must he hold on to
the vine just before and just after the vine contacts the
limb at B?

14–90. The 0.5-lb ball is shot from the spring device. The
spring has a stiffness . and the four cords C and
plate P keep the spring compressed 2 in. when no load is on
the plate. The plate is pushed back 3 in. from its initial
position. If it is then released from rest, determine the speed
of the ball when it reaches a position on the
smooth inclined plane.

14–91. The 0.5-lb ball is shot from the spring device
shown. Determine the smallest stiffness k which is required
to shoot the ball a maximum distance . up the
plane after the spring is pushed back 3 in. and the ball is
released from rest. The four cords C and plate P keep the
spring compressed 2 in. when no load is on the plate.

s = 30 in

s = 30 in.

k = 10 lb>in

7 m

B

A

C

45�

10 m

Prob. 14–86

h

10 m

C

B

A

7 m

Probs. 14–87/88

B

C

A

h
Cr

Br

Prob. 14–89

P
C

k

30�

s

Probs. 14–90/91
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14–95. The man on the bicycle attempts to coast around
the ellipsoidal loop without falling off the track. Determine
the speed he must maintain at A just before entering the
loop in order to perform the stunt. The bicycle and man
have a total mass of 85 kg and a center of mass at G. Neglect
the mass of the wheels.

•14–93. When the 50-kg cylinder is released from rest, the
spring is subjected to a tension of 60 N. Determine the
speed of the cylinder after it has fallen 200 mm. How far has
it fallen when it momentarily stops? 

*14–92. The roller coaster car having a mass m is released
from rest at point A. If the track is to be designed so that the
car does not leave it at B, determine the required height h.
Also, find the speed of the car when it reaches point C.
Neglect friction.

*14–96. The 65-kg skier starts from rest at A. Determine
his speed at B and the distance s where he lands at C.
Neglect friction.

C

A

B

20 m

7.5 m

h

Prob. 14–92

14–94. A pan of negligible mass is attached to two
identical springs of stiffness . If a 10-kg box is
dropped from a height of 0.5 m above the pan, determine
the maximum vertical displacement d. Initially each spring
has a tension of 50 N.

k = 250 N>m

A

k � 300 N/m

Prob. 14–93

1 m 1 m

0.5 m
k � 250 N/m k � 250 N/m

d

Prob. 14–94

A

x

y

B

3 m

4 m
G

= 1+

1.2 m

x2

9
y2

16

Prob. 14–95

Cs

A

B

15 m

4.5 m

vB

30�

30�

Prob. 14–96
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14–99. The 20-lb smooth collar is attached to the spring
that has an unstretched length of 4 ft. If it is released from
rest at position A, determine its speed when it reaches
point B.

14–98. The 10-kg block A is released from rest and slides
down the smooth plane. Determine the compression x of
the spring when the block momentarily stops.

•14–97. The 75-kg man bungee jumps off the bridge at A
with an initial downward speed of . Determine the
required unstretched length of the elastic cord to which he
is attached in order that he stops momentarily just above
the surface of the water. The stiffness of the elastic cord is

. Neglect the size of the man.k = 3 kN>m

1.5 m>s

*14–100. The 2-kg collar is released from rest at A and
travels along the smooth vertical guide. Determine the
speed of the collar when it reaches position B. Also, find 
the normal force exerted on the collar at this position. The
spring has an unstretched length of 200 mm.

150 m

A

B

Prob. 14–97

x
k � 5 kN/m

10 m

A

30�

Prob. 14–98

z

k � 50 lb/ft

A

O

x y

B

6 ft

3 ft

2 ft

3 ft
4 ft

Prob. 14–99

C
k � 600 N/m

0.2 m

A

B

D

0.4 m

Prob. 14–100
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*14–104. If the mass of the earth is , show that the
gravitational potential energy of a body of mass m located a
distance r from the center of the earth is .
Recall that the gravitational force acting between the earth
and the body is , Eq. 13–1. For the
calculation, locate the datum an “infinite” distance from the
earth. Also, prove that F is a conservative force.

•14–105. A 60-kg satellite travels in free flight along an
elliptical orbit such that at A, where ,
it has a speed . What is the speed of the
satellite when it reaches point B, where ?
Hint: See Prob. 14–104, where and

.G = 66.73(10-12) m3>(kg # s2)
Me = 5.976(1024) kg

rB = 80 Mm
vA = 40 Mm>h

rA = 20 Mm

F = G(Mem>r2)
Vg = -GMem>r
Me

14–102. The ball of mass m is given a speed of
at position A. When it reaches B, the cord hits

the small peg P, after which the ball describes a smaller
circular path. Determine the position x of P so that the
ball will just be able to reach point C.

14–103. The ball of mass m is given a speed of
at position A. When it reaches  B, the cord hits

the peg P, after which the ball describes a smaller circular
path. If , determine the speed of the ball and the
tension in the cord when it is at the highest point C.

x = 2
3r

vA = 25gr

vA = 23gr

•14–101. A quarter-circular tube AB of mean radius r
contains a smooth chain that has a mass per unit length of

. If the chain is released from rest from the position
shown, determine its speed when it emerges completely
from the tube.

m0

14–106. The double-spring bumper is used to stop the
1500-lb steel billet in the rolling mill. Determine the
maximum displacement of the plate A if the billet strikes
the plate with a speed of Neglect the mass 
of the springs, rollers and the plates A and B. Take
k1 = 3000 lb>ft, k2 = 45000 lb>ft.

8 ft>s.

A

B

O

r

Prob. 14–101

x

O

r

P

C

B

A

vA 

Probs. 14–102/103

A

B

vA

vB rB � 80 Mm

rA � 20 Mm

Prob. 14–105

v � 8 ft/s
A

B k2
k1

Prob. 14–106
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CONCEPTUAL PROBLEMS

P14–3. The boy pulls the water balloon launcher back,
stretching each of the four elastic cords. Estimate the
maximum height and the maximum range of the water
ballon if it is released from the position shown. Use
numerical values and any necessary measurements from the
photo. Assume the unstretched length and stiffness of each
cord is known.

P14–2. As the large ring rotates, the operator can apply a
breaking mechanism that binds the cars to the ring, which
then allows the cars to rotate with the ring. Assuming the
passengers are not belted into the cars, determine the
smallest speed of the ring (cars) so that no passenger will
fall out. When should the operator release the brake so that
the cars can achieve their greatest speed as they slide freely
on the ring? Estimate the greatest normal force of the seat
on a passenger when this speed is reached. Use numerical
values to explain your answer.

P14–1. The roller coaster is momentarily at rest at A.
Determine the approximate normal force it exerts on the
track at B. Also determine its approximate acceleration at
this point. Use numerical data, and take scaled
measurements from the photo with a known height at A.

P14–4. The girl is momentarily at rest in the position
shown. If the unstretched length and stiffness of each of the
two elastic cords is known, determine approximately how
far the girl descends before she again becomes momentarily
at rest. Use numerical values and take any necessary
measurements from the photo.

A
B

P14–1

P14–3

P14–2 P14–4
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CHAPTER REVIEW

Work of a Force

A force does work when it undergoes a
displacement along its line of action. If
the force varies with the displacement,
then the work is 

Graphically, this represents the area
under the diagram.

If the force is constant, then for a
displacement in the direction of the
force, A typical example of
this case is the work of a weight,

Here, is the vertical
displacement.

The work done by a spring force,
depends upon the stretch or compression
s of the spring.

F = ks,

¢yU = -W ¢y.

U = Fc ¢s.
¢s

F–s

U = 1F cos u ds.

The Principle of Work and Energy

If the equation of motion in the
tangential direction, , is
combined with the kinematic equation,

we obtain the principle of
work and energy. This equation states
that the initial kinetic energy T, plus the
work done is equal to the final
kinetic energy.

©U1-2

at ds = v dv,

©Ft = mat

U = 1
2ks2

2 - 1
2ks1

2

T1 + ©U1–2 = T2

F cos u

F cos u

ds
s2s1

s

F

F cos u s2s1
s

u

Unstretched
position, s � 0

Fs

s

Force on
Particle

k

s

y

W
s2

s1

z

xy1

y2
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The principle of work and energy is
useful for solving problems that involve
force, velocity, and displacement. For
application, the free-body diagram of the
particle should be drawn in order to
identify the forces that do work.

Elastic potential energy

T1 + V1 = T2 + V2

Power and Efficiency

Power is the time rate of doing work. For
application, the force F creating the
power and its velocity v must be specified.

Efficiency represents the ratio of power
output to power input. Due to frictional
losses, it is always less than one. P =

power output

power input

P = F # v

P =
dU

dt

Conservation of Energy

A conservative force does work that is
independent of its path. Two examples
are the weight of a particle and the
spring force.

Friction is a nonconservative force since
the work depends upon the length of the
path. The longer the path, the more
work done.

The work done by a conservative force
depends upon its position relative to a
datum. When this work is referenced
from a datum, it is called potential 
energy. For a weight, it is 
and for a spring it is 

Mechanical energy consists of kinetic
energy T and gravitational and elastic
potential energies V. According to the
conservation of energy, this sum is
constant and has the same value at any
position on the path. If only gravitational
and spring forces cause motion of the
particle, then the conservation-of-energy
equation can be used to solve problems
involving these conservative forces,
displacement, and velocity.

Ve = +1
2kx

2.
Vg = ; Wy,

sk

Ve � ks21
2

W

W

W

�y

�y

Datum

Gravitational potential energy

Vg � �Wy

Vg � �Wy

Vg � 0



Impulse and momentum principles are required to predict the motion of this golf ball.



Kinetics of a Particle:
Impulse and
Momentum
CHAPTER OBJECTIVES

• To develop the principle of linear impulse and momentum for a
particle and apply it to solve problems that involve force, velocity,
and time.

• To study the conservation of linear momentum for particles.

• To analyze the mechanics of impact.

• To introduce the concept of angular impulse and momentum.

• To solve problems involving steady fluid streams and propulsion
with variable mass.

15

15.1 Principle of Linear Impulse and
Momentum

In this section we will integrate the equation of motion with respect to
time and thereby obtain the principle of impulse and momentum. The
resulting equation will be useful for solving problems involving force,
velocity, and time.

Using kinematics, the equation of motion for a particle of mass m can
be written as

(15–1)

where a and v are both measured from an inertial frame of reference.
Rearranging the terms and integrating between the limits at

and at we have

©
L

t2

t1

Fdt = m
L

v2

v1

dv

t = t2 ,v = v2t = t1
v = v1

©F = ma = m
dv
dt
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or

(15–2)

This equation is referred to as the principle of linear impulse and
momentum. From the derivation it can be seen that it is simply a time
integration of the equation of motion. It provides a direct means of
obtaining the particle’s final velocity after a specified time period
when the particle’s initial velocity is known and the forces acting on the
particle are either constant or can be expressed as functions of time. By
comparison, if was determined using the equation of motion, a two-
step process would be necessary; i.e., apply to obtain a, then
integrate to obtain 

Linear Momentum. Each of the two vectors of the form 
in Eq. 15–2 is referred to as the particle’s linear momentum. Since m is a
positive scalar, the linear-momentum vector has the same direction as v,
and its magnitude has units of mass–velocity, e.g., or

Linear Impulse. The integral in Eq. 15–2 is referred to as
the linear impulse. This term is a vector quantity which measures the
effect of a force during the time the force acts. Since time is a positive
scalar, the impulse acts in the same direction as the force, and its
magnitude has units of force–time, e.g., or * 

If the force is expressed as a function of time, the impulse can be
determined by direct evaluation of the integral. In particular, if the force
is constant in both magnitude and direction, the resulting impulse
becomes

lb # s.N # s

I = 1F dt

slug # ft>s.
kg # m>s,mv

L = mv

v2 .a = dv>dt ©F = ma
v2

v2

©
L

t2

t1

Fdt = mv2 - mv1

The impulse tool is used to remove the
dent in the trailer fender.To do so its end
is first screwed into a hole drilled in the
fender, then the weight is gripped and
jerked upwards, striking the stop ring.The
impulse developed is transferred along
the shaft of the tool and pulls suddenly on
the dent.

*Although the units for impulse and momentum are defined differently, it can be shown
that Eq. 15–2 is dimensionally homogeneous.

F

t
t1 t2

Variable Force

F(t)dt
t2

t1
I � �

Fig. 15–1

F

t
t1 t2

I � Fc(t2 � t1)

Fc

Constant Force

Fig. 15–2

Graphically the magnitude of the impulse can be represented by the
shaded area under the curve of force versus time, Fig. 15–1. A constant
force creates the shaded rectangular area shown in Fig. 15–2.

I = 1
t2
t1

Fcdt = Fc1t2 - t12.
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Principle of Linear Impulse and Momentum. For problem
solving, Eq. 15–2 will be rewritten in the form

(15–3)

which states that the initial momentum of the particle at time plus the
sum of all the impulses applied to the particle from to is equivalent
to the final momentum of the particle at time These three terms are
illustrated graphically on the impulse and momentum diagrams shown in
Fig. 15–3.The two momentum diagrams are simply outlined shapes of the
particle which indicate the direction and magnitude of the particle’s
initial and final momenta, and . Similar to the free-body
diagram, the impulse diagram is an outlined shape of the particle
showing all the impulses that act on the particle when it is located at
some intermediate point along its path.

If each of the vectors in Eq. 15–3 is resolved into its x, y, z components,
we can write the following three scalar equations of linear impulse and
momentum.

(15–4)

m1vx21 + ©
L

t2

t1

Fx dt = m1vx22

m1vy21 + ©
L

t2

t1

Fy dt = m1vy22

m1vz21 + ©
L

t2

t1

Fz dt = m1vz22

mv2mv1

t2 .
t2t1

t1

mv1 + ©
L

t2

t1

F dt = mv2

mv1

mv2

Final
momentum
diagram

Initial
momentum
diagram

Impulse
diagram

+ =

F dt
t2

t1
�

Fig. 15–3
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*This procedure will be followed when developing the proofs and theory in the text.

Procedure for Analysis

The principle of linear impulse and momentum is used to solve
problems involving force, time, and velocity, since these terms are
involved in the formulation. For application it is suggested that the
following procedure be used.* 

Free-Body Diagram.
• Establish the x, y, z inertial frame of reference and draw the

particle’s free-body diagram in order to account for all the forces
that produce impulses on the particle.

• The direction and sense of the particle’s initial and final velocities
should be established.

• If a vector is unknown, assume that the sense of its components is
in the direction of the positive inertial coordinate(s).

• As an alternative procedure, draw the impulse and momentum
diagrams for the particle as discussed in reference to Fig. 15–3.

Principle of Impulse and Momentum.
• In accordance with the established coordinate system, apply the

principle of linear impulse and momentum,
If motion occurs in the x–y plane, the two scalar component
equations can be formulated by either resolving the vector
components of F from the free-body diagram, or by using the
data on the impulse and momentum diagrams.

• Realize that every force acting on the particle’s free-body
diagram will create an impulse, even though some of these forces
will do no work.

• Forces that are functions of time must be integrated to obtain the
impulse. Graphically, the impulse is equal to the area under the
force–time curve.

mv1 + ©1
t2
t1

F dt = mv2 .

W�t

�Ndt

�N¿dt

�F¿dt

�Fdt

As the wheels of the pitching machine
rotate, they apply frictional impulses to
the ball, thereby giving it a linear
momentum.These impulses are shown on
the impulse diagram. Here both the
frictional and normal impulses vary with
time. By comparison, the weight impulse
is constant and is very small since the time

the ball is in contact with the wheels is
very small.
¢t
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EXAMPLE 15.1

The 100-kg stone shown in Fig. 15–4a is originally at rest on the
smooth horizontal surface. If a towing force of 200 N, acting at an
angle of 45°, is applied to the stone for 10 s, determine the final
velocity and the normal force which the surface exerts on the stone
during this time interval.

SOLUTION
This problem can be solved using the principle of impulse and
momentum since it involves force, velocity, and time.

Free-Body Diagram. See Fig. 15–4b. Since all the forces acting are
constant, the impulses are simply the product of the force magnitude
and Note the alternative procedure of drawing
the stone’s impulse and momentum diagrams, Fig. 15–4c.

Principle of Impulse and Momentum. Applying Eqs. 15–4 yields

Ans.

Ans.

NOTE: Since no motion occurs in the y direction, direct application of
the equilibrium equation gives the same result for NC .©Fy = 0

NC = 840 N

0 + NC110 s2 - 981 N110 s2 + 200 N sin 45°110 s2 = 0

m1vy21 + ©
L

t2

t1

Fy dt = m1vy221+ c2

v2 = 14.1 m>s
0 + 200 N cos 45°110 s2 = 1100 kg2v2

m1vx)1 + ©
L

t2

t1

Fx dt = m(vx)21:+ 2

10 s [I = Fc1t2 - t12].

45�

200 N

(a)

45�

200 N

y

x

(b)

v

981 N

NC

45�

200 N (10 s)

=

(c)

NC (10 s)

(100 kg) v2
+

981 N (10 s)

Fig. 15–4
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The 50-lb crate shown in Fig. 15–5a is acted upon by a force having a
variable magnitude where t is in seconds. Determine the
crate’s velocity 2 s after P has been applied. The initial velocity is

down the plane, and the coefficient of kinetic friction
between the crate and the plane is 

SOLUTION

Free-Body Diagram. See Fig. 15–5b. Since the magnitude of force
varies with time, the impulse it creates must be determined

by integrating over the 2-s time interval.

Principle of Impulse and Momentum. Applying Eqs. 15–4 in the x
direction, we have

m1vx21 + ©
L

t2

t1

Fx dt = m1vx221+b2

P = 20t

mk = 0.3.
v1 = 3 ft>s

P = 120t2 lb,

EXAMPLE 15.2

50 lb

32.2 ft>s2 13 ft>s2 +
L

2 s

0
20t dt - 0.3NC12 s2 + 150 lb2 sin 30°12 s2 =

50 lb

32.2 ft>s2 v2

The equation of equilibrium can be applied in the y direction. Why?

Solving,

Ans.

NOTE: We can also solve this problem using the equation of motion.
From Fig. 15–5b,

Using kinematics

Ans.

By comparison, application of the principle of impulse and
momentum eliminates the need for using kinematics and
thereby yields an easier method for solution.

1a = dv>dt2

v = 44.2 ft>s
L

v

3 ft>s
dv =

L

2 s

0
112.88t + 7.7342dt+bdv = a dt;

a = 12.88t + 7.734

20t - 0.3143.302 + 50 sin 30° =
50

32.2
a+b©Fx = max ;

v2 = 44.2 ft>s b

NC = 43.30 lb

NC - 50 cos 30° lb = 0+a©Fy = 0;

4.658 + 40 - 0.6NC + 50 = 1.553v2

P

v1 � 3 ft/s

30�

(a)

y

x

30�

NC

F � 0.3 NC

50 lb

P � 20t

(b)

v

Fig. 15–5
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EXAMPLE 15.3

Blocks A and B shown in Fig. 15–6a have a mass of 3 kg and 5 kg,
respectively. If the system is released from rest, determine the velocity
of block B in 6 s. Neglect the mass of the pulleys and cord.

SOLUTION

Free-Body Diagram. See Fig. 15–6b. Since the weight of each block
is constant, the cord tensions will also be constant. Furthermore, since
the mass of pulley D is neglected, the cord tension Note
that the blocks are both assumed to be moving downward in the
positive coordinate directions, and 

Principle of Impulse and Momentum.

Block A:

(1)

Block B:

(2)

Kinematics. Since the blocks are subjected to dependent motion,
the velocity of A can be related to that of B by using the kinematic
analysis discussed in Sec. 12.9. A horizontal datum is established
through the fixed point at C, Fig. 15–6a, and the position coordinates,

and are related to the constant total length l of the vertical
segments of the cord by the equation

Taking the time derivative yields

(3)

As indicated by the negative sign, when B moves downward A moves
upward. Substituting this result into Eq. 1 and solving Eqs. 1 and 2 yields

Ans.

NOTE: Realize that the positive (downward) direction for and 
is consistent in Figs. 15–6a and 15–6b and in Eqs. 1 to 3. This is
important since we are seeking a simultaneous solution of equations.

vBvA

TB = 19.2 N

1vB22 = 35.8 m>s T

2vA = -vB

2sA + sB = l

sB ,sA

 0 + 519.812 N16 s2 - TB16 s2 = 15 kg21vB22
m1vB21 + ©

L

t2

t1

Fy dt = m1vB221+ T2

 0 - 2TB16 s2 + 319.812 N16 s2 = 13 kg21vA22
m1vA21 + ©

L

t2

t1

Fy dt = m1vA221+ T2

sB .sA

TA = 2TB .

Datum

sB

5 kg

(a)

3 kg

B

C

D

A

sA

sA

sB

2TB

TB

TA � 2TB

TB

TB

3(9.81) N

5(9.81) N

vA

vB

(b)

Fig. 15–6
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15.2 Principle of Linear Impulse and
Momentum for a System of Particles

The principle of linear impulse and momentum for a system of particles
moving relative to an inertial reference, Fig. 15–7, is obtained from the
equation of motion applied to all the particles in the system, i.e.,

(15–5)

The term on the left side represents only the sum of the external forces
acting on the particles. Recall that the internal forces acting between
particles do not appear with this summation, since by Newton’s third law
they occur in equal but opposite collinear pairs and therefore cancel out.
Multiplying both sides of Eq. 15–5 by dt and integrating between the
limits and yields

(15–6)

This equation states that the initial linear momenta of the system plus
the impulses of all the external forces acting on the system from to is
equal to the system’s final linear momenta.

Since the location of the mass center G of the system is determined
from where is the total mass of all the particles,
Fig. 15–7, then taking the time derivative, we have

which states that the total linear momentum of the system of particles is
equivalent to the linear momentum of a “fictitious” aggregate particle of
mass moving with the velocity of the mass center of the
system. Substituting into Eq. 15–6 yields

(15–7)

Here the initial linear momentum of the aggregate particle plus the
external impulses acting on the system of particles from to is equal to
the aggregate particle’s final linear momentum. As a result, the above
equation justifies application of the principle of linear impulse and
momentum to a system of particles that compose a rigid body.

t2t1

m1vG21 + ©
L

t2

t1

Fi dt = m1vG22

m = ©mi

mvG = ©mivi

m = ©mimrG = ©miri ,

t2t1

©mi1vi21 + ©
L

t2

t1

Fi dt = ©mi1vi22

vi = 1vi22t = t2 ,vi = 1vi21t = t1 ,

fi

©Fi = ©mi
dvi
dt

x

y

z

G i

rG

Fi
fi

ri

Inertial coordinate system

Fig. 15–7
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FUNDAMENTAL PROBLEMS

F15–1

v1 � 25 m/s v2 � 10 m/s

30�45�

F15–2

100 lb

30�

F15–3

A

F15–4

F

t (s)

F (kN)

6 kN

62

F15–5

A

FD

F15–6

B

A

F15–4. The wheels of the 1.5-Mg car generate the traction
force described by the graph. If the car starts from rest,
determine its speed when t = 6 s.

F
F15–1. The 0.5-kg ball strikes the rough ground and
rebounds with the velocities shown. Determine the
magnitude of the impulse the ground exerts on the ball.
Assume that the ball does not slip when it strikes the
ground, and neglect the size of the ball and the impulse
produced by the weight of the ball.

F15–5. The 2.5-Mg four-wheel-drive SUV tows the 1.5-Mg
trailer. The traction force developed at the wheels is

Determine the speed of the truck in 
starting from rest. Also, determine the tension developed in
the coupling between the SUV and the trailer. Neglect the
mass of the wheels.

20 s,FD = 9 kN.

F15–2. If the coefficient of kinetic friction between the
150-lb crate and the ground is determine the
speed of the crate when The crate starts from rest
and is towed by the 100-lb force.

t = 4 s.
mk = 0.2,

F15–6. The 10-lb block attains a velocity of in 
5 seconds, starting from rest. Determine the tension in the
cord and the coefficient of kinetic friction between block 
and the horizontal plane. Neglect the weight of the pulley.
Block B has a weight of 8 lb.

A

1 ft>sAF15–3. The motor exerts a force of on the
cable, where is in seconds. Determine the speed of the 
25-kg crate when The coefficients of static and
kinetic friction between the crate and the plane are

and respectively.mk = 0.25,ms = 0.3

t = 4 s.
t

F = (20t2) N
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PROBLEMS

*15–4. The 28-Mg bulldozer is originally at rest.
Determine its speed when if the horizontal traction
F varies with time as shown in the graph.

t = 4 s

15–3. The graph shows the vertical reactive force of the
shoe–ground interaction as a function of time. The first
peak acts on the heel, and the second peak acts on the
forefoot. Determine the total impulse acting on the shoe
during the interaction.

•15–1. A 5-lb block is given an initial velocity of 10 up
a 45° smooth slope. Determine the time for it to travel up
the slope before it stops.

15–2. The 12-Mg “jump jet” is capable of taking off
vertically from the deck of a ship. If its jets exert a constant
vertical force of 150 kN on the plane, determine its velocity
and how high it goes in , starting from rest. Neglect
the loss of fuel during the lift.

t = 6 s

ft>s

•15–5. If cylinder is given an initial downward speed of
determine the speed of each cylinder when 

Neglect the mass of the pulleys.
t = 3 s.2 m>s,

A
150 kN

Prob. 15–2

F (lb)

 t (ms)

750

600

500

25 50 100 200

Prob. 15–3

F (kN)

t (s)

4

20

F � 4 � 0.01t2 

F

Prob. 15–4

8 kg

10 kg A

B

Prob 15–5

15–6. A train consists of a 50-Mg engine and three cars,
each having a mass of 30 Mg. If it takes 80 s for the train to
increase its speed uniformly to 40 , starting from rest,
determine the force T developed at the coupling between
the engine E and the first car A. The wheels of the engine
provide a resultant frictional tractive force F which gives
the train forward motion, whereas the car wheels roll freely.
Also, determine F acting on the engine wheels.

km>h

F

v
EA

Prob 15–6
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15
t (s)

T (kN)

30

60

90

1 1.5 2 2.50.5

Prob. 15–7

Prob. 15–8

F

F (MN)

F � 30(1 � e�0.1t)

t (s)

Prob. 15–9

20�

F

Prob. 15–10

•15–9. The tanker has a mass of 130 Gg. If it is originally
at rest, determine its speed when . The horizontal
thrust provided by its propeller varies with time as shown in
the graph. Neglect the effect of water resistance.

t = 10 s

*15–8. The 1.5-Mg four-wheel-drive jeep is used to push
two identical crates, each having a mass of 500 kg. If the
coefficient of static friction between the tires and the
ground is , determine the maximum possible speed
the jeep can achieve in 5 s without causing the tires to slip.
The coefficient of kinetic friction between the crates and
the ground is .mk = 0.3

ms = 0.6

15–7. Determine the maximum speed attained by the
1.5-Mg rocket sled if the rockets provide the thrust shown in
the graph. Initially, the sled is at rest. Neglect friction and the
loss of mass due to fuel consumption.

15–10. The 20-lb cabinet is subjected to the force
, where t is in seconds. If the cabinet is

initially moving down the plane with a speed of 6 ,
determine how long for the force to bring the cabinet to
rest. F always acts parallel to the plane.

ft>s
F = (3 + 2t) lb
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F

v0 � 3 m/s

t (s)

F (N)

1.5

20

�20

4.53

Prob. 15–14

C

B

A

6 lb
15 lb

30�

Prob. 15–11

F

t (ms)

F(kN)

F0

0.5 0.75

Prob. 15–12

30� 30�

B C

A

H

Prob. 15–13

•15–13. The fuel-element assembly of a nuclear reactor
has a weight of 600 lb. Suspended in a vertical position from
H and initially at rest, it is given an upward speed of 5 
in 0.3 s. Determine the average tension in cables AB and AC
during this time interval.

ft>s

*15–12. Assuming that the force acting on a 2-g bullet, as
it passes horizontally through the barrel of a rifle, varies
with time in the manner shown, determine the maximum
net force applied to the bullet when it is fired.The muzzle
velocity is 500 when . Neglect friction
between the bullet and the rifle barrel.

t = 0.75 msm>s
F0

15–11. The small 20-lb block is placed on the inclined
plane and subjected to 6-lb and 15-lb forces that act
parallel with edges AB and AC, respectively. If the block is
initially at rest, determine its speed when . The
coefficient of kinetic friction between the block and the
plane is .mk = 0.2

t = 3 s

15–14. The smooth block moves to the right with a
velocity of when force is applied. If the force
varies as shown in the graph, determine the velocity of the
block when t = 4.5 s.

Fv0 = 3 m>s
10-kg
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15–18. The force acting on a projectile having a mass m as
it passes horizontally through the barrel of the cannon is

. Determine the projectile’s velocity when
. If the projectile reaches the end of the barrel at this

instant, determine the length s.
t = t¿
F = C sin (pt>t¿)

•15–17. The 5.5-Mg humpback whale is stuck on the shore
due to changes in the tide. In an effort to rescue the whale, a
12-Mg tugboat is used to pull it free using an inextensible
rope tied to its tail. To overcome the frictional force of the
sand on the whale, the tug backs up so that the rope
becomes slack and then the tug proceeds forward at 3 .
If the tug then turns the engines off, determine the average
frictional force F on the whale if sliding occurs for 1.5 s
before the tug stops after the rope becomes taut. Also, what
is the average force on the rope during the tow?

m>s

15–15. The 100-kg crate is hoisted by the motor M. If the
velocity of the crate increases uniformly from to

in 5 s, determine the tension developed in the cable
during the motion.

*15–16. The 100-kg crate is hoisted by the motor M. The
motor exerts a force on the cable of ,
where t is in seconds. If the crate starts from rest at the ground,
determine the speed of the crate when .t =  5 s

T =  (200t1>2 +  150) N

4.5 m>s
1.5 m>s

15–19. A 30-lb block is initially moving along a smooth
horizontal surface with a speed of to the left. If it
is acted upon by a force F, which varies in the manner
shown, determine the velocity of the block in 15 s.

v1 = 6 ft>s

M

Probs. 15–15/16

t  (s)

F  (lb)

15105

25

F

v1

––
10F � 25 cos(       )tp

Prob. 15–19

A B10 lb 50 lb

Prob. 15–20

F

Prob. 15–17

s

Prob. 15–18

*15–20. Determine the velocity of each block 2 s after the
blocks are released from rest. Neglect the mass of the
pulleys and cord.
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15–23. Forces and vary as shown by the graph. The 
5-kg smooth disk is traveling to the left with a speed of

when . Determine the magnitude and direction
of the disk’s velocity when .t =  4 s

t =  03 m>s
F2F1

15–22. At the instant the cable fails, the 200-lb crate is
traveling up the plane with a speed of . Determine the
speed of the crate 2 s afterward. The coefficient of kinetic
friction between the crate and the plane is .mk = 0.20

15 ft>s

•15–21. The 40-kg slider block is moving to the right with
a speed of 1.5 when it is acted upon by the forces and

. If these loadings vary in the manner shown on the graph,
determine the speed of the block at . Neglect friction
and the mass of the pulleys and cords.

t = 6 s
F2

F1m>s

*15–24. A 0.5-kg particle is acted upon by the force
, where t is in

seconds. If the particle has an initial velocity of
, determine the magnitude

of the velocity of the particle when .

•15–25. The train consists of a 30-Mg engine E, and cars A,
B, and C, which have a mass of 15 Mg, 10 Mg, and 8 Mg,
respectively. If the tracks provide a traction force of

on the engine wheels, determine the speed of
the train when , starting from rest. Also, find the
horizontal coupling force at D between the engine E and
car A. Neglect rolling resistance.

t =  30 s
F =  30 kN

t =  3 s
v0 =  55i +  10j +  20k6 m>s
F =  52t2i — (3t +  3)j +  (10 - t2)k6 N

F2

F2

t (s)

F (N)

0 2 4 6

40

F1

F1

30

20

10

Prob. 15–21

B

15 ft/s

45�

Prob. 15–22

y

x

F1

F2

F2

F1

t (s)

F (N)

10

20

1 3 4

3 m/s

30�

Prob. 15–23

E

F � 30 kN

ABC

D

Prob. 15–25



tension in the cord of , where t is in
seconds, determine the velocity of the block when .t = 2 s

T = (300 + 1202t) N
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•15–29. The 0.1-lb golf ball is struck by the club and then
travels along the trajectory shown. Determine the average
impulsive force the club imparts on the ball if the club
maintains contact with the ball for 0.5 ms.

15–27. The winch delivers a horizontal towing force F to
its cable at A which varies as shown in the graph. Determine
the speed of the 70-kg bucket when . Originally the
bucket is moving upward at .

*15–28. The winch delivers a horizontal towing force F to
its cable at A which varies as shown in the graph. Determine
the speed of the 80-kg bucket when . Originally the
bucket is released from rest.

t = 24 s

v1 = 3 m>s
t = 18 s

15–26. The motor M pulls on the cable with a force of F,
which has a magnitude that varies as shown on the graph. If
the 20-kg crate is originally resting on the floor such that
the cable tension is zero at the instant the motor is turned
on, determine the speed of the crate when . Hint:
First determine the time needed to begin lifting the crate.

t = 6 s

15–30. The 0.15-kg baseball has a speed of 
just before it is struck by the bat. It then travels along the
trajectory shown before the outfielder catches it. Determine
the magnitude of the average impulsive force imparted to
the ball if it is in contact with the bat for 0.75 ms.

v =  30 m>s

15–31. The 50-kg block is hoisted up the incline using the
cable and motor arrangement shown. The coefficient of
kinetic friction between the block and the surface is

. If the block is initially moving up the plane at
, and at this instant ( ) the motor develops at = 0v0 = 2 m>s

mk = 0.4

F (N)

t (s)

250

5

F

M

Prob. 15–26

F (N)

t (s)
12

360

600

24

v
B

A

F

Probs. 15–27/28

500 ft

v

30�

Prob. 15–29

100 m

2.5 m
0.75 m

15�
v1 � 30 m/s

v2 15�

Prob. 15–30

v0 � 2 m/s

30�

Prob. 15–31
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15.3 Conservation of Linear Momentum
for a System of Particles

When the sum of the external impulses acting on a system of particles is
zero, Eq. 15–6 reduces to a simplified form, namely,

(15–8)

This equation is referred to as the conservation of linear momentum. It
states that the total linear momentum for a system of particles remains
constant during the time period to Substituting into
Eq. 15–8, we can also write

(15–9)

which indicates that the velocity of the mass center for the system of
particles does not change if no external impulses are applied to the
system.

The conservation of linear momentum is often applied when particles
collide or interact. For application, a careful study of the free-body
diagram for the entire system of particles should be made in order to
identify the forces which create either external or internal impulses and
thereby determine in what direction(s) linear momentum is conserved.
As stated earlier, the internal impulses for the system will always cancel
out, since they occur in equal but opposite collinear pairs. If the time
period over which the motion is studied is very short, some of the
external impulses may also be neglected or considered approximately
equal to zero. The forces causing these negligible impulses are called
nonimpulsive forces. By comparison, forces which are very large and act
for a very short period of time produce a significant change in
momentum and are called impulsive forces. They, of course, cannot be
neglected in the impulse–momentum analysis.

Impulsive forces normally occur due to an explosion or the striking of
one body against another, whereas nonimpulsive forces may include the
weight of a body, the force imparted by a slightly deformed spring having
a relatively small stiffness, or for that matter, any force that is very small
compared to other larger (impulsive) forces. When making this
distinction between impulsive and nonimpulsive forces, it is important to
realize that this only applies during the time to To illustrate,
consider the effect of striking a tennis ball with a racket as shown in the
photo. During the very short time of interaction, the force of the racket
on the ball is impulsive since it changes the ball’s momentum drastically.
By comparison, the ball’s weight will have a negligible effect on the

t2 .t1

vG

1vG21 = 1vG22

mvG = ©mivit2 .t1

©mi1vi21 = ©mi1vi22

The hammer in the top photo applies an
impulsive force to the stake. During this
extremely short time of contact the
weight of the stake can be considered
nonimpulsive, and provided the stake is
driven into soft ground, the impulse of
the ground acting on the stake can also
be considered nonimpulsive. By
contrast, if the stake is used in a
concrete chipper to break concrete, then
two impulsive forces act on the stake:
one at its top due to the chipper and the
other on its bottom due to the rigidity
of the concrete.
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change in momentum, and therefore it is nonimpulsive. Consequently, it
can be neglected from an impulse–momentum analysis during this time.
If an impulse–momentum analysis is considered during the much longer
time of flight after the racket–ball interaction, then the impulse of the
ball’s weight is important since it, along with air resistance, causes the
change in the momentum of the ball.

Procedure for Analysis

Generally, the principle of linear impulse and momentum or the
conservation of linear momentum is applied to a system of particles
in order to determine the final velocities of the particles just after
the time period considered. By applying this principle to the entire
system, the internal impulses acting within the system, which may be
unknown, are eliminated from the analysis. For application it is
suggested that the following procedure be used.

Free-Body Diagram.
• Establish the x, y, z inertial frame of reference and draw the free-

body diagram for each particle of the system in order to identify
the internal and external forces.

• The conservation of linear momentum applies to the system in a
direction which either has no external forces or the forces can be
considered nonimpulsive.

• Establish the direction and sense of the particles’ initial and final
velocities. If the sense is unknown, assume it is along a positive
inertial coordinate axis.

• As an alternative procedure, draw the impulse and momentum
diagrams for each particle of the system.

Momentum Equations.
• Apply the principle of linear impulse and momentum or the

conservation of linear momentum in the appropriate directions.
• If it is necessary to determine the internal impulse acting

on only one particle of a system, then the particle must be
isolated (free-body diagram), and the principle of linear impulse
and momentum must be applied to this particle.

• After the impulse is calculated, and provided the time for
which the impulse acts is known, then the average impulsive force

can be determined from Favg = 1F dt>¢t.Favg

¢t

1F dt
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EXAMPLE 15.4

The 15-Mg boxcar A is coasting at on the horizontal track
when it encounters a 12-Mg tank car B coasting at toward it
as shown in Fig. 15–8a. If the cars collide and couple together,
determine (a) the speed of both cars just after the coupling, and
(b) the average force between them if the coupling takes place in 0.8 s.

0.75 m>s1.5 m>s

1.5 m/s 0.75 m/s
A

B

(a)

SOLUTION
Part (a) Free-Body Diagram.* Here we have considered both cars
as a single system, Fig. 15–8b. By inspection, momentum is conserved
in the x direction since the coupling force F is internal to the system
and will therefore cancel out. It is assumed both cars, when coupled,
move at in the positive x direction.

Conservation of Linear Momentum.

Ans.

Part (b). The average (impulsive) coupling force, can be
determined by applying the principle of linear momentum to either
one of the cars.

Free-Body Diagram. As shown in Fig. 15–8c, by isolating the boxcar
the coupling force is external to the car.

Principle of Impulse and Momentum. Since
we have

Ans.

NOTE: Solution was possible here since the boxcar’s final velocity
was obtained in Part (a). Try solving for by applying the principle
of impulse and momentum to the tank car.

Favg

Favg = 18.8 kN

115 000 kg211.5 m>s2 - Favg10.8 s2 = 115 000 kg210.5 m>s2
mA1vA21 + ©

L
F dt = mAv21:+ 2

=  Favg10.8 s2, 1F dt = Favg ¢t

Favg ,

v2 = 0.5 m>s:
115 000 kg211.5 m>s2 - 12 000 kg10.75 m>s2 = 127 000 kg2v2

mA1vA21 + mB1vB21 = 1mA + mB2v21:+ 2

v2

*Only horizontal forces are shown on the free-body diagram.

x
v

(b)

F �F

(c)

x
v

�F

Fig. 15–8
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EXAMPLE 15.5

(a)

Recoil spring

�F

x

vpvc

F2Fs

(b)

F

(c)

x

vp

Fig. 15–9

The 1200-lb cannon shown in Fig. 15–9a fires an 8-lb projectile with a
muzzle velocity of relative to the ground. If firing takes place
in 0.03 s, determine (a) the recoil velocity of the cannon just after
firing, and (b) the average impulsive force acting on the projectile.The
cannon support is fixed to the ground, and the horizontal recoil of the
cannon is absorbed by two springs.

SOLUTION

Part (a) Free-Body Diagram.* As shown in Fig. 15–9b, we will
consider the projectile and cannon as a single system, since the
impulsive forces, F, between the cannon and projectile are internal to
the system and will therefore cancel from the analysis. Furthermore,
during the time the two recoil springs which are attached
to the support each exert a nonimpulsive force on the cannon. This
is because is very short, so that during this time the cannon only
moves through a very small distance s. Consequently,
where k is the spring’s stiffness. Hence it can be concluded that
momentum for the system is conserved in the horizontal direction.

Conservation of Linear Momentum.

Ans.

Part (b). The average impulsive force exerted by the cannon on the
projectile can be determined by applying the principle of linear
impulse and momentum to the projectile (or to the cannon). Why?

Principle of Impulse and Momentum. From Fig. 15–9c, with
we have

Ans.

NOTE: If the cannon is firmly fixed to its support (no springs), the
reactive force of the support on the cannon must be considered as an
external impulse to the system, since the support would allow no
movement of the cannon.

Favg = 12.411032 lb = 12.4 kip

 0 + Favg10.03 s2 = a 8 lb

32.2 ft>s2 b11500 ft>s2
m1vp21 + ©

L
F dt = m1vp221:+ 2

1F dt = Favg¢t = Favg10.032,

1vc22 = 10 ft>s ;
0 + 0 = - a 1200 lb

32.2 ft>s2 b1vc22 + a 8 lb

32.2 ft>s2 b11500 ft>s2
mc1vc21 + mp1vp21 = -mc1vc22 + mp1vp221:+ 2

Fs = ks L 0,
¢t

Fs
¢t = 0.03 s,

1500 ft>s

*Only horizontal forces are shown on the free-body diagram.
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EXAMPLE 15.6

The bumper cars A and B in Fig. 15–10a each have a mass of 150 kg
and are coasting with the velocities shown before they freely collide
head on. If no energy is lost during the collision, determine their
velocities after collision.

SOLUTION

Free-Body Diagram. The cars will be considered as a single system.
The free-body diagram is shown in Fig. 15–10b.

Conservation of Momentum.

mA(vA)1 + mB(vB)1 = mA(vA)2 + mB(vB)21:+ 2
(150 kg)(3 m>s) + (150 kg)(-2 m>s) = (150 kg)(vA)2 + (150 kg)(vB)2

(1)

Conservation of Energy. Since no energy is lost, the conservation
of energy theorem gives

(2)

Substituting Eq. (1) into (2) and simplifying, we get

Solving for the two roots,

Since refers to the velocity of B just before collision,
then the velocity of B just after the collision must be

Ans.

Substituting this result into Eq. (1), we obtain

Ans.(vA)2 = 1 - 3 m>s = -2 m>s = 2 m>s ;  

(vB)2 = 3 m>s :  

(vB)2 = -2 m>s
(vB)2 = 3 m>s   and   (vB)2 = -2 m>s

(vB)2 2 - (vB)2 - 6 = 0

(vA)2 2 + (vB)2 2 = 13 

+
1
2

 (150 kg)(vB)2 2 + 0

1
2

 (150 kg)(3 m>s)2 +
1
2

 (150 kg)(2 m>s)2 + 0 =
1
2

 (150 kg)(vA)2 2

1
2

 mA(vA)1 2 +
1
2

 mB(vB)1 2 + 0 =
1
2

 mA(vA)2 2 +
1
2

 mB(vB)2 2 + 0

T1 + V1 = T2 + V2

(vA)2 = 1 - (vB)2

A B

(vA)1 � 3 m/s

(a)

(vB)1 � 2 m/s

A B

150(9.81) N 150(9.81) N

(b)

F F

NA NB 

Fig. 15–10
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EXAMPLE 15.7

An 800-kg rigid pile shown in Fig. 15–11a is driven into the ground using
a 300-kg hammer.The hammer falls from rest at a height and
strikes the top of the pile. Determine the impulse which the pile exerts on
the hammer if the pile is surrounded entirely by loose sand so that after
striking, the hammer does not rebound off the pile.

SOLUTION
Conservation of Energy. The velocity at which the hammer strikes the
pile can be determined using the conservation of energy equation applied
to the hammer.With the datum at the top of the pile, Fig. 15–11a, we have

Free-Body Diagram. From the physical aspects of the problem, the
free-body diagram of the hammer and pile, Fig. 15–11b, indicates that
during the short time from just before to just after the collision, the
weights of the hammer and pile and the resistance force of the sand
are all nonimpulsive. The impulsive force R is internal to the system
and therefore cancels. Consequently, momentum is conserved in the
vertical direction during this short time.

Conservation of Momentum. Since the hammer does not rebound
off the pile just after collision, then 

Principle of Impulse and Momentum. The impulse which the pile
imparts to the hammer can now be determined since is known.
From the free-body diagram for the hammer, Fig. 15–11c, we have

Ans.

NOTE: The equal but opposite impulse acts on the pile. Try finding this
impulse by applying the principle of impulse and momentum to the pile.

L
R dt = 683 N # s

1300 kg213.132 m>s2 -
L
R dt = 1300 kg210.8542 m>s2

mH1vH21 + ©
L

t2

t1

Fydt = mHv21+ T2

v2

v2 = 0.8542 m>s
1300 kg213.132 m>s2 + 0 = 1300 kg2v2 + 1800 kg2v2

mH1vH21 + mP1vP21 = mHv2 + mPv21+ T2
1vH22 = 1vP22 = v2 .

Fs

1vH21 = 3.132 m>s
 0 + 30019.812 N10.5 m2 =

1
2
1300 kg21vH212 + 0

1
2
mH1vH202 + WHy0 =

1
2
mH1vH212 + WHy1

T0 + V0 = T1 + V1

y0 = 0.5 m

H

P
Sand

(a)

Datum

y0 � 0.5 m

(b)

WH � 0

WP � 0

Fs � 0

�R

R

y

v

(c)

WH � 0

R y

v

Fig. 15–11
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EXAMPLE 15.8

The 1.5-Mg car in Fig. 15–12a moves on the 10-Mg barge to the left with
a constant speed of 4 m/s, measured relative to the barge. Neglecting
water resistance, determine the velocity of the barge and the
displacement of the barge when the car reaches point B. Initially, the
car and the barge are at rest relative to the water.

SOLUTION

Free-Body Diagram. If the car and the barge are considered as a
single system, the traction force between the car and the barge
becomes internal to the system, and so linear momentum will be
conserved along the x axis, Fig. 15–12b.

Conservation of Momentum. When writing the conservation of
momentum equation, it is important that the velocities be measured
from the same inertial coordinate system, assumed here to be fixed.
We will also assume that as the car goes to the left the barge goes to
the right, as shown in Fig. 15–12b.

Applying the conservation of linear momentum to the car and barge
system,

(1)

Kinematics. Since the velocity of the car relative to the barge is
known, then the velocity of the car and the barge can also be related
using the relative velocity equation.

(2)

Solving Eqs. (1) and (2),

Ans.

The car travels on the barge at a constant relative speed of
4 . Thus, the time for the car to reach point B is

The displacement of the barge is therefore

Ans.sb = vb t = 0.5217 m>s (5 s) = 2.61 m :  1:+ 2

 t = 5 s

 20 m = (4 m>s) t

 sc/b = vc/b t
m>s sc/b = 20 m

vc = 3.478 m>s ;
vb = 0.5217 m>s = 0.522 m>s :

vc = -vb + 4 m>s
vc = vb + vc/b1;+ 2

1.5vc - 10vb = 0 

0 = (1.5(103) kg)vc - (10(103) kg)vb

0 + 0 = mcvc - mbvb1;+ 2

20 m

(a)

B

(b)

FF

vc vc/b � 4 m/s

vb

x

Fig. 15–12
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F15–7

BA
1.5 m/s3 m/s

F15–8

10 m/s
3

4

5

1.5 m

A

vA � 5 m/s

B

F15–10

A B

k � 5 kN/m

F15–11

k � 10 kN/m

A B

15 m/s

F15–12

30�

F15–9

F15–11. Blocks and have a mass of 15 kg and 10 kg,
respectively. If is stationary and has a velocity of 
just before collision, and the blocks couple together after
impact, determine the maximum compression of the spring.

15 m>sBA
BA

F15–7. The freight cars and have a mass of and
, respectively. Determine the velocity of after

collision if the cars collide and rebound, such that moves
to the right with a speed of If and are in contact
for find the average impulsive force which acts
between them.

0.5 s,
BA2 m>s.

B
A15 Mg

20 MgBA

F15–12. The cannon and support without a projectile have
a mass of If a 20-kg projectile is fired from the
cannon with a velocity of measured relative to the
cannon, determine the speed of the projectile as it leaves
the barrel of the cannon. Neglect rolling resistance.

400 m>s,
250 kg.

F15–8. The cart and package have a mass of and
respectively. If the cart has a smooth surface and it is

initially at rest, while the velocity of the package is as
shown, determine the final common velocity of the cart and
package after the impact.

5 kg,
20 kg

F15–9. The 5-kg block has an initial speed of 5 as it
slides down the smooth ramp, after which it collides with
the stationary block of mass If the two blocks couple
together after collision, determine their common velocity
immediately after collision.

8 kg.B

m>sA

F15–10. The spring is fixed to block and block is pressed
against the spring. If the spring is compressed 
and then the blocks are released, determine their velocity at
the instant block loses contact with the spring. The masses
of blocks and are and respectively.15 kg,10 kgBA

B

s = 200 mm
BA

FUNDAMENTAL PROBLEMS
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PROBLEMS

15–35. The two blocks A and B each have a mass of 5 kg
and are suspended from parallel cords. A spring, having a
stiffness of , is attached to B and is compressed
0.3 m against A as shown. Determine the maximum angles 
and of the cords when the blocks are released from rest
and the spring becomes unstretched.

*15–36. Block A has a mass of 4 kg and B has a mass of
6 kg.A spring, having a stiffness of , is attached
to B and is compressed 0.3 m against A as shown.
Determine the maximum angles and of the cords after
the blocks are released from rest and the spring becomes
unstretched.

fu

k = 40 N>m

f

u

k = 60 N>m

15–33. A railroad car having a mass of 15 Mg is coasting at
on a horizontal track. At the same time another car

having a mass of 12 Mg is coasting at in the
opposite direction. If the cars meet and couple together,
determine the speed of both cars just after the coupling.
Find the difference between the total kinetic energy before
and after coupling has occurred, and explain qualitatively
what happened to this energy.

15–34. The car A has a weight of 4500 lb and is traveling to
the right at Meanwhile a 3000-lb car B is traveling at

to the left. If the cars crash head-on and become
entangled, determine their common velocity just after the
collision. Assume that the brakes are not applied during
collision.

6 ft>s
3 ft>s.

0.75 m>s
1.5 m>s

*15–32. The 10-lb cannon ball is fired horizontally by a 500-lb
cannon as shown. If the muzzle velocity of the ball is ,
measured relative to the ground, determine the recoil velocity
of the cannon just after firing. If the cannon rests on a smooth
support and is to be stopped after it has recoiled a distance of
6 in., determine the required stiffness k of the two identical
springs, each of which is originally unstretched.

2000 ft>s

•15–37. The winch on the back of the Jeep A is turned on
and pulls in the tow rope at measured relative to the
Jeep. If both the 1.25-Mg car B and the 2.5-Mg Jeep A are
free to roll, determine their velocities at the instant they
meet. If the rope is 5 m long, how long will this take?

2 m>s

A

u

B

f
2 m2 m

Probs. 15–35/36

A
B

5 m

Prob. 15–37

kk

2000 ft/s

Prob. 15–32

vA � 3 ft/s vB � 6 ft/s

A B

Probs. 15–33/34
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*15–40. A 4-kg projectile travels with a horizontal
velocity of before it explodes and breaks into two
fragments A and B of mass 1.5 kg and 2.5 kg, respectively. If
the fragments travel along the parabolic trajectories shown,
determine the magnitude of velocity of each fragment just
after the explosion and the horizontal distance where
segment A strikes the ground at C.

•15–41. A 4-kg projectile travels with a horizontal
velocity of before it explodes and breaks into two
fragments A and B of mass 1.5 kg and 2.5 kg, respectively. If
the fragments travel along the parabolic trajectories shown,
determine the magnitude of velocity of each fragment just
after the explosion and the horizontal distance where
segment B strikes the ground at D.

dB

600 m>s

dA

600 m>s

15–39. Two cars A and B have a mass of 2 Mg and 1.5 Mg,
respectively. Determine the magnitudes of and if the
cars collide and stick together while moving with a common
speed of in the direction shown.50 km>h

vBvA

15–38. The 40-kg package is thrown with a speed of 
onto the cart having a mass of 20 kg. If it slides on the
smooth surface and strikes the spring, determine the velocity
of the cart at the instant the package fully compresses the
spring. What is the maximum compression of the spring?
Neglect rolling resistance of the cart.

4 m>s

15–42. The 75-kg boy leaps off cart A with a horizontal
velocity of measured relative to the cart.
Determine the velocity of cart A just after the jump. If he
then lands on cart B with the same velocity that he left cart
A, determine the velocity of cart B just after he lands on it.
Carts A and B have the same mass of 50 kg and are
originally at rest.

v¿ = 3 m>s

k � 6 kN/m

4 m/s

30�

Prob. 15–38

AB

v¿

Prob. 15–42

y

x
B

A

50 km/h

vB

vA

30�

45�

Prob. 15–39

600 m/s

 dB dA

C

A B

D

60 m

45�
30�

vB

vA

Probs. 15–40/41
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15–46. If the 150-lb man fires the 0.2-lb bullet with a
horizontal muzzle velocity of , measured relative to
the 600-lb cart, determine the velocity of the cart just after
firing. What is the velocity of the cart when the bullet
becomes embedded in the target? During the firing, the
man remains at the same position on the cart. Neglect
rolling resistance of the cart.

3000 ft>s

•15–45. The 20-kg block A is towed up the ramp of the 
40-kg cart using the motor M mounted on the side of the
cart. If the motor winds in the cable with a constant velocity
of , measured relative to the cart, determine how far
the cart will move when the block has traveled a distance

up the ramp. Both the block and cart are at rest
when . The coefficient of kinetic friction between the
block and the ramp is . Neglect rolling resistance.mk = 0.2

s =  0
s = 2 m

5 m>s

15–43. Block A has a mass of 2 kg and slides into an open
ended box B with a velocity of 2 . If the box B has a
mass of 3 kg and rests on top of a plate P that has a mass of
3 kg, determine the distance the plate moves after it stops
sliding on the floor. Also, how long is it after impact before
all motion ceases? The coefficient of kinetic friction
between the box and the plate is , and between the
plate and the floor . Also, the coefficient of static
friction between the plate and the floor is 

*15–44. Block A has a mass of 2 kg and slides into an open
ended box B with a velocity of 2 . If the box B has a
mass of 3 kg and rests on top of a plate P that has a mass of
3 kg, determine the distance the plate moves after it stops
sliding on the floor. Also, how long is it after impact before
all motion ceases? The coefficient of kinetic friction
between the box and the plate is , and between the
plate and the floor . Also, the coefficient of static
friction between the plate and the floor is .m¿s = 0.12

m¿k = 0.1
mk = 0.2

m>s

m¿s = 0.5.
m¿k = 0.4

mk = 0.2

m>s

15–47. The free-rolling ramp has a weight of 120 lb. The
crate whose weight is 80 lb slides from rest at A, 15 ft down
the ramp to B. Determine the ramp’s speed when the crate
reaches B. Assume that the ramp is smooth, and neglect the
mass of the wheels.

*15–48. The free-rolling ramp has a weight of 120 lb. If the
80-lb crate is released from rest at A, determine the distance
the ramp moves when the crate slides 15 ft down the ramp
to the bottom B.

2 m/s

A

B

P

Probs. 15–43/44

A M

s

30�

Prob. 15–45

Prob. 15–46

5 3
4

A

B

15 ft

Probs. 15–47/48



15.3 CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES 247

15

1

2

v1

v2

x

h

y

u

u

z

Prob. 15–52

10 ft/s

A

B

Probs. 15–53/54

30°
2 m/s

Prob. 15–51

*15–52. The block of mass m travels at in the direction 
shown at the top of the smooth slope. Determine its speed 
and its direction when it reaches the bottom.u2

v2

u1v1

15–51. A man wearing ice skates throws an 8-kg block
with an initial velocity of 2 , measured relative to
himself, in the direction shown. If he is originally at rest and
completes the throw in 1.5 s while keeping his legs rigid,
determine the horizontal velocity of the man just after
releasing the block. What is the vertical reaction of both his
skates on the ice during the throw? The man has a mass of
70 kg. Neglect friction and the motion of his arms.

m>s
•15–53. The 20-lb cart B is supported on rollers of
negligible size. If a 10-lb suitcase A is thrown horizontally
onto the cart at 10 when it is at rest, determine the
length of time that A slides relative to B, and the final
velocity of A and B. The coefficient of kinetic friction
between A and B is .

15–54. The 20-lb cart B is supported on rollers of
negligible size. If a 10-lb suitcase A is thrown horizontally
onto the cart at 10 when it is at rest, determine the time
t and the distance B moves at the instant A stops relative to
B. The coefficient of kinetic friction between A and B is

.mk = 0.4

ft>s

mk = 0.4

ft>s

•15–49. The 5-kg spring-loaded gun rests on the smooth
surface. It fires a ball having a mass of 1 kg with a velocity of

relative to the gun in the direction shown. If the
gun is originally at rest, determine the horizontal distance d
the ball is from the initial position of the gun at the instant
the ball strikes the ground at D. Neglect the size of the gun.

15–50. The 5-kg spring-loaded gun rests on the smooth
surface. It fires a ball having a mass of 1 kg with a velocity of

relative to the gun in the direction shown. If the
gun is originally at rest, determine the distance the ball is
from the initial position of the gun at the instant the ball
reaches its highest elevation C. Neglect the size of the gun.

v¿ = 6 m>s

v¿ = 6 m>s

30�
B

C

D

d

v¿ � 6 m/s

Probs. 15–49/50
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15.4 Impact

Impact occurs when two bodies collide with each other during a very short
period of time, causing relatively large (impulsive) forces to be exerted
between the bodies. The striking of a hammer on a nail, or a golf club on
a ball, are common examples of impact loadings.

In general, there are two types of impact. Central impact occurs when
the direction of motion of the mass centers of the two colliding particles
is along a line passing through the mass centers of the particles. This line
is called the line of impact, which is perpendicular to the plane of
contact, Fig. 15–13a. When the motion of one or both of the particles
make an angle with the line of impact, Fig. 15–13b, the impact is said to
be oblique impact.

Central Impact. To illustrate the method for analyzing the
mechanics of impact, consider the case involving the central impact of
the two particles A and B shown in Fig. 15–14.

● The particles have the initial momenta shown in Fig. 15–14a.
Provided collision will eventually occur.

● During the collision the particles must be thought of as deformable
or nonrigid. The particles will undergo a period of deformation such
that they exert an equal but opposite deformation impulse 
on each other, Fig. 15–14b.

● Only at the instant of maximum deformation will both particles
move with a common velocity v, since their relative motion is zero,
Fig. 15–14c.

● Afterward a period of restitution occurs, in which case the particles will
either return to their original shape or remain permanently deformed.
The equal but opposite restitution impulse pushes the particles
apart from one another, Fig. 15–14d. In reality, the physical properties
of any two bodies are such that the deformation impulse with always
be greater than that of restitution, i.e.,

● Just after separation the particles will have the final momenta
shown in Fig. 15–14e, where 1vB22 7 1vA22 .

1P dt 7 1R dt.

1R dt

1P dt

1vA21 7 1vB21 ,

Line of impact

Plane of contact

Central impact

(a)

vA vB
BA

Line of impact

Plane of contact

Oblique impact

(b)

vA

BA

vB

fu

Fig. 15–13

mA(vA)1 mB(vB)1

Require
(vA)1 � (vB)1

Before impact

(a)

A B

A B

�P dt ��P dt

Effect of A on B Effect of B on A

Deformation impulse

(b)

Maximum deformation

(c)

v

A B

A B

�R dt ��R dt

Effect of A on B Effect of B on A

Restitution impulse

(d)

mA(vA)2 mB(vB)2

(vB)2 � (vA)2

After impact

(e)

A B

Fig. 15–14
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In most problems the initial velocities of the particles will be known,
and it will be necessary to determine their final velocities and

In this regard, momentum for the system of particles is conserved
since during collision the internal impulses of deformation and
restitution cancel. Hence, referring to Fig. 15–14a and Fig. 15–14e we
require

(15–10)

In order to obtain a second equation necessary to solve for and
we must apply the principle of impulse and momentum to each

particle. For example, during the deformation phase for particle A,
Figs. 15–14a, 15–14b, and 15–14c, we have

For the restitution phase, Figs. 15–14c, 15–14d, and 15–14e,

The ratio of the restitution impulse to the deformation impulse is
called the coefficient of restitution, e. From the above equations, this
value for particle A is

In a similar manner, we can establish e by considering particle B,
Fig. 15–14. This yields

If the unknown is eliminated from the above two equations, the
coefficient of restitution can be expressed in terms of the particles’ initial
and final velocities as

(15–11)e =
1vB22 - 1vA22
1vA21 - 1vB211:+ 2

v

e = L
R dt

L
P dt

=
1vB22 - v
v - 1vB21

e = L
R dt

L
P dt

=
v - 1vA22
1vA21 - v

mAv -
L
R dt = mA1vA221:+ 2

mA1vA21 -
L
P dt = mAv1:+ 2

1vB22 ,
1vA22

mA1vA21 + mB1vB21 = mA1vA22 + mB1vB221:+ 2

1vB22 .
1vA22



when In this case there is no restitution impulse so
that after collision both particles couple or stick together and move with
a common velocity.

From the above derivation it should be evident that the principle of
work and energy cannot be used for the analysis of impact problems
since it is not possible to know how the internal forces of deformation
and restitution vary or displace during the collision. By knowing the
particle’s velocities before and after collision, however, the energy loss
during collision can be calculated on the basis of the difference in the
particle’s kinetic energy. This energy loss, occurs
because some of the initial kinetic energy of the particle is transformed
into thermal energy as well as creating sound and localized deformation
of the material when the collision occurs. In particular, if the impact is
perfectly elastic, no energy is lost in the collision; whereas if the collision
is plastic, the energy lost during collision is a maximum.

©U1-2 = ©T2 - ©T1 ,

A1R dt = 0 B ,e = 0.
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The quality of a manufactured tennis ball
is measured by the height of its bounce,
which can be related to its coefficient of
restitution. Using the mechanics of
oblique impact, engineers can design a
separation device to remove substandard
tennis balls from a production line.

Provided a value for e is specified, Eqs. 15–10 and 15–11 can be solved
simultaneously to obtain and In doing so, however, it is
important to carefully establish a sign convention for defining the
positive direction for both and and then use it consistently when
writing both equations. As noted from the application shown, and
indicated symbolically by the arrow in parentheses, we have defined the
positive direction to the right when referring to the motions of both A
and B. Consequently, if a negative value results from the solution of
either or it indicates motion is to the left.

Coefficient of Restitution. From Figs. 15–14a and 15–14e, it is
seen that Eq. 15–11 states that e is equal to the ratio of the relative
velocity of the particles’ separation just after impact, to
the relative velocity of the particles’ approach just before impact,

By measuring these relative velocities experimentally,
it has been found that e varies appreciably with impact velocity as well
as with the size and shape of the colliding bodies. For these reasons the
coefficient of restitution is reliable only when used with data which
closely approximate the conditions which were known to exist when
measurements of it were made. In general e has a value between zero
and one, and one should be aware of the physical meaning of these
two limits.

Elastic Impact If the collision between the two particles is 
perfectly elastic, the deformation impulse is equal and opposite to 

the restitution impulse Although in reality this can never be
achieved, for an elastic collision.

Plastic Impact The impact is said to be inelastic or plastic(e � 0).

e = 1
A1R dt B .

A1P dt B(e � 1).

1vA21 - 1vB21 .

1vB22 - 1vA22 ,

1vB22 ,1vA22

vBvA

1vB22 .1vA22
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Procedure for Analysis (Central Impact)

In most cases the final velocities of two smooth particles are to be
determined just after they are subjected to direct central impact.
Provided the coefficient of restitution, the mass of each particle, and
each particle’s initial velocity just before impact are known, the
solution to this problem can be obtained using the following two
equations:
• The conservation of momentum applies to the system of

particles,
• The coefficient of restitution,

relates the relative velocities of the particles along the line of
impact, just before and just after collision.

When applying these two equations, the sense of an unknown
velocity can be assumed. If the solution yields a negative magnitude,
the velocity acts in the opposite sense.

e = [1vB22 - 1vA22]>[1vA21 - 1vB21],
©mv1 = ©mv2 .

Oblique Impact. When oblique impact occurs between two smooth
particles, the particles move away from each other with velocities having
unknown directions as well as unknown magnitudes. Provided the initial
velocities are known, then four unknowns are present in the problem. As
shown in Fig. 15–15a, these unknowns may be represented either as

and or as the x and y components of the final
velocities.

f2 ,1vA22 , 1vB22 , u2 ,

Procedure for Analysis (Oblique Impact)

If the y axis is established within the plane of contact and the x axis along the line of impact, the impulsive
forces of deformation and restitution act only in the x direction, Fig. 15–15b. By resolving the velocity or
momentum vectors into components along the x and y axes, Fig. 15–15b, it is then possible to write four
independent scalar equations in order to determine and 
• Momentum of the system is conserved along the line of impact, x axis, so that 
• The coefficient of restitution, relates the relative-velocity

components of the particles along the line of impact (x axis).
• If these two equations are solved simultaneously, we obtain and .
• Momentum of particle A is conserved along the y axis, perpendicular to the line of impact, since no

impulse acts on particle A in this direction. As a result or 
• Momentum of particle B is conserved along the y axis, perpendicular to the line of impact, since no

impulse acts on particle B in this direction. Consequently .

Application of these four equations is illustrated in Example 15.11.

(vBy)1 = (vBy)2

(vAy)1 = (vAy)2mA(vAy)1 = mA(vAy)2

(vBx)2(vAx)2

e = [1vBx22 - 1vAx22]>[1vAx21 - 1vBx21],
©m1vx21 = ©m1vx22 .

1vBy22 .1vAx22 , 1vAy22 , 1vBx22 ,

Line of impact

(a)

BA

(vB)1

(vB)2

(vA)1

(vA)2

Plane of contact

y

x
f1

f2

u1

u2

mA(vAx)1

mB(vBx)1

mB(vBy)2

mB(vBx)2

mB(vBy)1

mA(vAy)1

mA(vAx)2

mA(vAy)2

�Fdt

�Fdt

A A A

B B B

(b)

Fig. 15–15
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EXAMPLE 15.9

The bag A, having a weight of 6 lb, is released from rest at the position
as shown in Fig. 15–16a. After falling to it strikes an

18-lb box B. If the coefficient of restitution between the bag and box
is determine the velocities of the bag and box just after
impact. What is the loss of energy during collision?

SOLUTION
This problem involves central impact. Why? Before analyzing the
mechanics of the impact, however, it is first necessary to obtain the
velocity of the bag just before it strikes the box.

Conservation of Energy. With the datum at Fig. 15–16b,
we have

Conservation of Momentum. After impact we will assume A and B
travel to the left. Applying the conservation of momentum to the
system, Fig. 15–16c, we have

(1)

Coefficient of Restitution. Realizing that for separation to occur
after collision Fig. 15–16c, we have

(2)

Solving Eqs. 1 and 2 simultaneously yields
Ans.

Loss of Energy. Applying the principle of work and energy to the
bag and box just before and just after collision, we have

Ans.

NOTE: The energy loss occurs due to inelastic deformation during the
collision.

©U1-2 = -10.1 ft # lb
- c1

2
a 6 lb

32.2 ft>s2 b113.9 ft>s22 d

©U1-2 = c1
2
a 18 lb

32.2 ft>s2 b15.21 ft>s22 +
1
2
a 6 lb

32.2 ft>s2 b11.74 ft>s22 d
©U1-2 = T2 - T1 ;

1vA22 = -1.74 ft>s = 1.74 ft>s:  and 1vB22 = 5.21 ft>s ;
1vA22 = 1vB22 - 6.950

0.5 =
1vB22 - 1vA22
13.90 ft>s - 0

1;+ 2 e =
1vB22 - 1vA22
1vA21 - 1vB21;

1vB22 7 1vA22 ,

1vA22 = 13.90 - 31vB22
0 + a 6 lb

32.2 ft>s2 b113.90 ft>s2 = a 18 lb

32.2 ft>s2 b1vB22 + a 6 lb

32.2 ft>s2 b1vA22
mB1vB21 + mA1vA21 = mB1vB22 + mA1vA221;+ 2

1vA21 = 13.90 ft>s 0 + 0 =
1
2
a 6 lb

32.2 ft>s2 b1vA212 - 6 lb13 ft2;
T0 + V0 = T1 + V1

u = 0°,

e = 0.5,

u = 90°,u = 0°,

3 ft6 lb

6 lb

Datum

(b)

1

0

Just before impact

Just after impact

B A

(vA)1 � 13.90 ft/s

B A

(vA)2(vB)2

(vB)1 � 0

(c)

Fig. 15–16

3 ft

Line of impact

B

A

(a)

u
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EXAMPLE 15.10

Ball B shown in Fig. 15–17a has a mass of 1.5 kg and is suspended
from the ceiling by a 1-m-long elastic cord. If the cord is stretched
downward 0.25 m and the ball is released from rest, determine how
far the cord stretches after the ball rebounds from the ceiling. The
stiffness of the cord is and the coefficient of restitution
between the ball and ceiling is The ball makes a central
impact with the ceiling.

SOLUTION
First we must obtain the velocity of the ball just before it strikes the
ceiling using energy methods, then consider the impulse and momentum
between the ball and ceiling, and finally again use energy methods to
determine the stretch in the cord.

e = 0.8.
k = 800 N>m,

* The weight of the ball is considered a nonimpulsive force.

Conservation of Energy. With the datum located as shown in
Fig. 15–17a, realizing that initially 
we have

The interaction of the ball with the ceiling will now be considered using
the principles of impact.* Since an unknown portion of the mass of the
ceiling is involved in the impact, the conservation of momentum for the
ball–ceiling system will not be written. The “velocity” of this portion of
ceiling is zero since it (or the earth) are assumed to remain at rest both
before and after impact.

Coefficient of Restitution. Fig. 15–17b.

Conservation of Energy. The maximum stretch in the cord can
be determined by again applying the conservation of energy equation
to the ball just after collision. Assuming that 
Fig. 15–17c, then

Solving this quadratic equation for the positive root yields
Ans.s3 = 0.237 m = 237 mm

400s3
2 - 14.715s3 - 18.94 = 0

1
211.5 kg212.37 m>s22 = 0 - 9.8111.52 N11 m + s32 + 1

21800 N>m2s32
1
2m1vB222 + 0 = 1

2m1vB232 - WBy3 + 1
2ks3

2

T2 + V2 = T3 + V3

y = y3 = 11 + s32m,

s3

1vB22 = -2.374 m>s = 2.374 m>s T

 0.8 =
1vB22 - 0

0 - 2.968 m>s1+ c2 e =
1vB22 - 1vA22
1vA21 - 1vB21;

1vB21 = 2.968 m>s c
0 - 1.519.812N11.25 m2 + 1

21800 N>m210.25 m22 = 1
211.5 kg21vB212

1
2m1vB202 - WBy0 + 1

2ks
2 = 1

2m1vB212 + 0

T0 + V0 = T1 + V1

y = y0 = 11 + 0.252 m = 1.25 m,

y � (1 � 0.25) m

Datum

k � 800 N/m

B

(a)

1

0

x

y

(vB)2 (vB)1 � 2.97 m/s

(b)

y � (1 � s3)  m

Datum

k � 800 N/m

B

(c)

2

3

Fig. 15–17
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EXAMPLE 15.11

Two smooth disks A and B, having a mass of 1 kg and 2 kg,
respectively, collide with the velocities shown in Fig. 15–18a. If the
coefficient of restitution for the disks is determine the x and
y components of the final velocity of each disk just after collision.

SOLUTION
This problem involves oblique impact. Why? In order to solve it, we
have established the x and y axes along the line of impact and the
plane of contact, respectively, Fig. 15–18a.

Resolving each of the initial velocities into x and y components,
we have

The four unknown velocity components after collision are assumed to
act in the positive directions, Fig. 15–18b. Since the impact occurs in the
x direction (line of impact), the conservation of momentum for both
disks can be applied in this direction. Why?

Conservation of “x” Momentum. In reference to the momentum
diagrams, we have

(1)

Coefficient of Restitution (x).

(2)

Solving Eqs. 1 and 2 for and yields

Ans.

Conservation of “y” Momentum. The momentum of each disk is
conserved in the y direction (plane of contact), since the disks are
smooth and therefore no external impulse acts in this direction. From
Fig. 15–18b,

Ans.

Ans.

NOTE: Show that when the velocity components are summed
vectorially, one obtains the results shown in Fig. 15–18c.

1vBy22 = -0.707 m>s = 0.707 m>s T1+ c2 mB1vBy21 = mB1vBy22 ;

1vAy22 = 1.50 m>s c1+ c2 mA1vAy21 = mA1vAy22 ;

1vAx22 = -1.26 m>s = 1.26 m>s; 1vBx22 = 1.22 m>s :
1vBx221vAx22

1vBx22 - 1vAx22 = 2.479

0.75 =
1vBx22 - 1vAx22

2.598 m>s - 1-0.7071 m>s21:+ 2 e =
1vBx22 - 1vAx22
1vAx21 - 1vBx21;

1vAx22 + 21vBx22 = 1.184

 1 kg12.598 m>s2 + 2 kg1-0.707 m>s2 = 1 kg1vAx22 + 2 kg1vBx22
mA1vAx21 + mB1vBx21 = mA1vAx22 + mB1vBx221:+ 2

1vBx21 = -1 cos 45° = -0.7071 m>s 1vBy21 = -1 sin 45° = -0.7071 m>s
1vAx21 = 3 cos 30° = 2.598 m>s 1vAy21 = 3 sin 30° = 1.50 m>s

e = 0.75,

Line of impact

(a)

B

A

(vB)1 � 1 m/s

(vA)1 � 3 m/s
Plane of contact

y

x
u1 � 30�

f1 � 45�

A

B B B

A A

(b)

mA(vAx)1 mA(vAx)2

mA(vAy)2mA(vAy)1

mB(vBy)1

mB(vBy)2

mB(vBx)1 mB(vBx)2

��Fdt

�Fdt

(c)

(vA)2 � 1.96 m/s

(vB)2 � 1.41 m/s

B
A

y

x
u2 � 50.0�

f2 � 30.1�

Fig. 15–18
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FUNDAMENTAL PROBLEMS

F15–15

5 ft/s

10 ft

5 ft

A

B

(vb)1 � 20 m/s

(vb)2

30�

u

F15–18

x

y

B

A

2 in.

3 ft/s

1 in.

F15–16

B

vA 

A

F15–16. Blocks and weigh respectively.
After striking block slides to the right, and 
slides to the right. If the coefficient of kinetic friction
between the blocks and the surface is determine
the coefficient of restitution between the blocks. Block is
originally at rest.

B
mk = 0.2,

3 in.
B2 in.B, A

5 lb and 10 lb,BAF15–13. Determine the coefficient of restitution between
ball and ball The velocities of and before and
after the collision are shown.

BAB.A
e

F15–18. Disk weighs and slides on the smooth
horizontal plane with a velocity of Disk weighs

and is initially at rest. If after impact has a velocity
of parallel to the positive , determine the speed
of disk after impact.B

x axis1 ft>s,
A11 lb

B3 ft>s.
2 lbA

F15–15. The 30-lb package has a speed of when it
enters the smooth ramp. As it slides down the ramp, it
strikes the 80-lb package which is initially at rest. If the
coefficient of restitution between and is 
determine the velocity of just after the impact.B

e = 0.6,BA
B

5 ft>sA

F15–17. The ball strikes the smooth wall with a velocity of
If the coefficient of restitution between the

ball and the wall is determine the velocity of the
ball just after the impact.

e = 0.75,
(vb)1 = 20 m>s.

F15–14. The 15-Mg tank car and 25-Mg freight car 
travel towards each other with the velocities shown. If the
coefficient of restitution between the bumpers is 
determine the velocity of each car just after the collision.

e = 0.6,

BA

F15–13

8 m/s 2 m/s

9 m/s1 m/s

Before collision

After collision

F15–14

BA
7 m/s5 m/s

F15–17
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v

A

B C

Prob. 15–57

B

CA

D E

6 ft

Prob. 15–58

PROBLEMS

15–59. The 2-kg ball is thrown at the suspended 20-kg
block with a velocity of 4 m/s. If the coefficient of restitution
between the ball and the block is , determine the
maximum height h to which the block will swing before it
momentarily stops.

*15–60. The 2-kg ball is thrown at the suspended 20-kg
block with a velocity of 4 m/s. If the time of impact between
the ball and the block is 0.005 s, determine the average normal
force exerted on the block during this time.Take .e = 0.8

e = 0.8

15–58. The 15-lb suitcase A is released from rest at C.
After it slides down the smooth ramp, it strikes the 10-lb
suitcase B, which is originally at rest. If the coefficient of
restitution between the suitcases is and the
coefficient of kinetic friction between the floor DE and
each suitcase is , determine (a) the velocity of A
just before impact, (b) the velocities of A and B just after
impact, and (c) the distance B slides before coming to rest.

mk = 0.4

e = 0.3

15–55. A 1-lb ball A is traveling horizontally at 
when it strikes a 10-lb block B that is at rest. If the
coefficient of restitution between A and B is , and
the coefficient of kinetic friction between the plane and the
block is , determine the time for the block B to
stop sliding.

*15–56. A 1-lb ball A is traveling horizontally at 
when it strikes a 10-lb block B that is at rest. If the
coefficient of restitution between A and B is , and
the coefficient of kinetic friction between the plane and the
block is , determine the distance block B slides on
the plane before it stops sliding.

•15–57. The three balls each have a mass m. If A has a
speed just before a direct collision with B, determine the
speed of C after collision. The coefficient of restitution
between each ball is e. Neglect the size of each ball.

v

mk = 0.4

e = 0.6

20 ft>s

mk = 0.4

e = 0.6

20 ft>s

•15–61. The slider block B is confined to move within the
smooth slot. It is connected to two springs, each of which
has a stiffness of .They are originally stretched
0.5 m when as shown. Determine the maximum
distance, , block B moves after it is hit by block A which
is originally traveling at . Take and
the mass of each block to be 1.5 kg.

15–62. In Prob. 15–61 determine the average net force
between blocks A and B during impact if the impact occurs
in 0.005 s.

e = 0.4(vA)1 = 8 m>s
smax

s = 0
k = 30 N>m

4 m/s

A
B h

Probs. 15–59/60

2 m

2 m
k � 30 N/m

k � 30 N/m

BA

s(vA)1 � 8 m/s

Probs. 15–61/62
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3 ft
h

v1 � 8 ft/s

Prob. 15–65

A

20 ft
u

Prob. 15–66

15–66. During an impact test, the 2000-lb weight is
released from rest when . It swings downwards and
strikes the concrete blocks, rebounds and swings back up to

before it momentarily stops. Determine the
coefficient of restitution between the weight and the blocks.
Also, find the impulse transferred between the weight and
blocks during impact. Assume that the blocks do not move
after impact.

u = 15°

u = 60°

•15–65. The girl throws the ball with a horizontal velocity
of . If the coefficient of restitution between the
ball and the ground is , determine (a) the velocity of
the ball just after it rebounds from the ground and (b) the
maximum height to which the ball rises after the first
bounce.

e = 0.8
v1 = 8 ft>s

15–63. The pile P has a mass of 800 kg and is being driven
into loose sand using the 300-kg hammer C which is
dropped a distance of 0.5 m from the top of the pile.
Determine the initial speed of the pile just after it is struck
by the hammer. The coefficient of restitution between the
hammer and the pile is . Neglect the impulses due to
the weights of the pile and hammer and the impulse due to
the sand during the impact.

*15–64. The pile P has a mass of 800 kg and is being driven
into loose sand using the 300-kg hammer C which is dropped
a distance of 0.5 m from the top of the pile. Determine the
distance the pile is driven into the sand after one blow if the
sand offers a frictional resistance against the pile of 18 kN.
The coefficient of restitution between the hammer and the
pile is . Neglect the impulses due to the weights of
the pile and hammer and the impulse due to the sand during
the impact.

e = 0.1

e = 0.1

15–67. The 100-lb crate A is released from rest onto the
smooth ramp. After it slides down the ramp it strikes the
200-lb crate B that rests against the spring of stiffness

. If the coefficient of restitution between the
crates is , determine their velocities just after
impact. Also, what is the spring’s maximum compression?
The spring is originally unstretched.

e = 0.5
k = 600  lb>ft

12 ft

A

B
k � 600 lb/ft

Prob. 15–67

0.5 m

C

P

Probs. 15–63/64
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15–71. The 5-Mg truck and 2-Mg car are traveling with the
free-rolling velocities shown just before they collide. After
the collision, the car moves with a velocity of to the
right relative to the truck. Determine the coefficient of
restitution between the truck and car and the loss of energy
due to the collision.

15 km>h

15–70. Two identical balls A and B of mass m are
suspended from cords of length and L, respectively.
Ball A is released from rest when and swings down
to , where it strikes B. Determine the speed of each
ball just after impact and the maximum angle through
which B will swing. The coefficient of restitution between
the balls is e.

u

f = 0°
f = 90°
L>2

*15–68. A ball has a mass m and is dropped onto a surface
from a height h. If the coefficient of restitution is e between
the ball and the surface, determine the time needed for the
ball to stop bouncing.

•15–69. To test the manufactured properties of 2-lb steel
balls, each ball is released from rest as shown and strikes the
45° smooth inclined surface. If the coefficient of restitution
is to be , determine the distance s to where the ball
strikes the horizontal plane at A. At what speed does the
ball strike point A?

e = 0.8

*15–72. A 10-kg block A is released from rest 2 m above
the 5-kg plate P, which can slide freely along the smooth
vertical guides BC and DE. Determine the velocity of the
block and plate just after impact. The coefficient of
restitution between the block and the plate is .
Also, find the maximum compression of the spring due to
impact. The spring has an unstretched length of 600 mm.

e = 0.75

s

B

A

3 ft

2 ft
45�

Prob. 15–69

BA

L

f

u

L––
2

Prob. 15–70

30 km/h

10 km/h

Prob. 15–71

A

B D
P

k � 1500 N/m
C E

2 m

450 mm

Prob. 15–72

•15–73. A row of n similar spheres, each of mass m, are
placed next to each other as shown. If sphere 1 has a
velocity of , determine the velocity of the sphere just
after being struck by the adjacent . The
coefficient of restitution between the spheres is e.

(n - 1)th sphere
nthv1

1 2 3 n

v1

Prob. 15–73
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•15–77. A 300-g  ball is kicked with a velocity of
at point A as shown. If the coefficient of

restitution between the ball and the field is ,
determine the magnitude and direction of the velocity of the
rebounding ball at B.

u

e = 0.4
vA = 25 m>s

15–75. The cue ball A is given an initial velocity
. If it makes a direct collision with ball 

B ( ), determine the velocity of B and the angle just
after it rebounds from the cushion at C ( ). Each ball
has a mass of 0.4 kg. Neglect the size of each ball.

e¿ = 0.6
ue = 0.8

(vA)1 = 5 m>s

15–74. The three balls each have a mass of m. If A is
released from rest at , determine the angle to which C
rises after collision. The coefficient of restitution between
each ball is e.

fu

15–78. Using a slingshot, the boy fires the 0.2-lb marble at
the concrete wall, striking it at B. If the coefficient of
restitution between the marble and the wall is ,
determine the speed of the marble after it rebounds from
the wall.

e = 0.5

CB
A

l l
fu

l

Prob. 15–74

(vA)1 � 5 m/s

30�

C

A

u

B

Prob. 15–75

vA � 10 m/s

1.5 m
30�

3 m
s

A

C

B

Prob. 15–76

AB

u 30�

  vA � 25 m/s
v¿B

Prob. 15–77

5 ft

A

B

C

100 ft

vA � 75 ft/s

45�

60�

Prob. 15–78

*15–76. The girl throws the 0.5-kg ball toward the wall
with an initial velocity . Determine (a) the
velocity at which it strikes the wall at B, (b) the velocity at
which it rebounds from the wall if the coefficient of
restitution , and (c) the distance s from the wall to
where it strikes the ground at C.

e = 0.5

vA = 10 m>s
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A

B
10 m/s

1 m/s

20�

Probs. 15–79/80

x

y

30�

40�

A

A

B

B

O

Prob. 15–81

x

y

AB

10 m/s

30�

A

Prob. 15–82

L I B E R T YL I B E R T Y

L
I

B
E

R

T Y

L
I

B
E

R

T Y

L
I

B
E

R

T Y

IN GOD

WE TRUST

IN GOD

WE TRUST 19961996

y¿

O

30�

3 ft/s

Line of impact

2 ft/s

x¿

A

B

Prob. 15–83

15–82. The pool ball A travels with a velocity of 
just before it strikes ball B, which is at rest. If the masses of
A and B are each 200 g, and the coefficient of restitution
between them is , determine the velocity of both
balls just after impact.

e = 0.8

10 m>s

•15–81. Two cars A and B each have a weight of 4000 lb
and collide on the icy pavement of an intersection. The
direction of motion of each car after collision is measured
from snow tracks as shown. If the driver in car A states that
he was going 44 (30 ) just before collision and that
after collision he applied the brakes so that his car skidded
10 ft before stopping, determine the approximate speed of
car B just before the collision. Assume that the coefficient
of kinetic friction between the car wheels and the pavement
is . Note: The line of impact has not been defined;
however, this information is not needed for the solution.
mk = 0.15

mi>hft>s

15–79. The 2-kg ball is thrown so that it travels
horizontally at 10 when it strikes the 6-kg block as it is
traveling down the inclined plane at 1 . If the coefficient
of restitution between the ball and the block is ,
determine the speeds of the ball and the block just after the
impact.Also, what distance does B slide up the plane before
it momentarily stops? The coefficient of kinetic friction
between the block and the plane is .

*15–80. The 2-kg ball is thrown so that it travels
horizontally at 10 when it strikes the 6-kg block as it
travels down the smooth inclined plane at 1 . If the
coefficient of restitution between the ball and the block is

, and the impact occurs in 0.006 s, determine the
average impulsive force between the ball and block.
e = 0.6

m>s
m>s

mk = 0.4

e = 0.6
m>s

m>s

15–83. Two coins A and B have the initial velocities shown
just before they collide at point O. If they have weights of

and and the
surface upon which they slide is smooth, determine their
speeds just after impact. The coefficient of restitution is

.e = 0.65

WB = 6.60(10-3) lbWA = 13.2(10-3) lb



5 m/s

10 m/s

A
B

75 mm

100 mm
30�

30�

45�

Prob. 15–86
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15–87. Disks A and B weigh 8 lb and 2 lb, respectively. If
they are sliding on the smooth horizontal plane with the
velocities shown, determine their speeds just after impact.
The coefficient of restitution between them is .e = 0.5

•15–85. Disks A and B have a mass of 15 kg and 10 kg,
respectively. If they are sliding on a smooth horizontal
plane with the velocities shown, determine their speeds just
after impact. The coefficient of restitution between them is

.e = 0.8

*15–84. Two disks A and B weigh 2 lb and 5 lb, respectively.
If they are sliding on the smooth horizontal plane with the
velocities shown, determine their velocities just after impact.
The coefficient of restitution between the disks is .e = 0.6

*15–88. Ball A strikes ball B with an initial velocity of 
as shown. If both balls have the same mass and the collision is
perfectly elastic, determine the angle after collision. Ball B
is originally at rest. Neglect the size of each ball.

u

(vA)1

15–86. Disks A and B have a mass of 6 kg and 4 kg,
respectively. If they are sliding on the smooth horizontal
plane with the velocities shown, determine their speeds just
after impact. The coefficient of restitution between the
disks is .e = 0.6

•15–89. Two disks A and B each have a weight of 2 lb and
the initial velocities shown just before they collide. If the
coefficient of restitution is , determine their speeds
just after impact.

e = 0.5

y

x
AB

5 ft/s10 ft/s

30� 45�

Prob. 15–84

y

x

A

B

10 m/s

Line of
impact

8 m/s

4
3

5

Prob. 15–85

B
y

x

u

A

f

(vB)2

(vA)1

(vA)2

Prob. 15–88

B

13 ft/s

26 ft/s

x

y

A
18 in.

8 in.

Prob. 15–87

B

y

x

A

(vA)1 � 4 ft/s

(vB)1 � 3 ft/s

4
3 5

Prob. 15–89
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15.5 Angular Momentum

The angular momentum of a particle about point O is defined as the
“moment” of the particle’s linear momentum about O. Since this concept
is analogous to finding the moment of a force about a point, the angular
momentum, is sometimes referred to as the moment of momentum.

Scalar Formulation. If a particle moves along a curve lying in the
x–y plane, Fig. 15–19, the angular momentum at any instant can be
determined about point O (actually the z axis) by using a scalar
formulation. The magnitude of is

(15–12)

Here d is the moment arm or perpendicular distance from O to the line
of action of mv. Common units for are or The
direction of is defined by the right-hand rule. As shown, the curl of
the fingers of the right hand indicates the sense of rotation of mv about
O, so that in this case the thumb (or ) is directed perpendicular to the
x–y plane along the axis.

Vector Formulation. If the particle moves along a space curve,
Fig. 15–20, the vector cross product can be used to determine the angular
momentum about O. In this case

(15–13)

Here r denotes a position vector drawn from point O to the particle. As
shown in the figure, is perpendicular to the shaded plane containing
r and mv.

In order to evaluate the cross product, r and mv should be expressed in
terms of their Cartesian components, so that the angular momentum can
be determined by evaluating the determinant:

(15–14)HO = 3
i j k
rx ry rz
mvx mvy mvz

3

HO

HO = r * mv

+z
HO

HO
slug # ft2>s.kg # m2>s1HO2z

1HO2z = 1d21mv2

HO

HO ,

x

yO
d

mv

z

HO

Fig. 15–19

x

y

z

O

mv

HO � r � mv

r

Fig. 15–20
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15.6 Relation Between Moment of a
Force and Angular Momentum

The moments about point O of all the forces acting on the particle in
Fig. 15–21a can be related to the particle’s angular momentum by applying
the equation of motion. If the mass of the particle is constant, we may write

The moments of the forces about point O can be obtained by performing
a cross-product multiplication of each side of this equation by the
position vector r, which is measured from the x, y, z inertial frame of
reference. We have

From Appendix B, the derivative of can be written as

The first term on the right side, since the cross
product of a vector with itself is zero. Hence, the above equation
becomes

(15–15)

which states that the resultant moment about point O of all the forces
acting on the particle is equal to the time rate of change of the particle’s
angular momentum about point O. This result is similar to Eq. 15–1, i.e.,

(15–16)

Here so that the resultant force acting on the particle is equal to
the time rate of change of the particle’s linear momentum.

From the derivations, it is seen that Eqs. 15–15 and 15–16 are actually
another way of stating Newton’s second law of motion. In other sections
of this book it will be shown that these equations have many practical
applications when extended and applied to problems involving either a
system of particles or a rigid body.

L = mv,

©F = L
#

©MO = H
#
O

r
# * mv = m1r# * r

# 2 = 0,

H
#
O =

d

dt
1r * mv2 = r

# * mv + r * mv
#

r * mv

©MO = r * ©F = r * mv
#

©F = mv
#

x

y

z

O

r

Inertial coordinate
system

(a)

	F

Fig. 15–21
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System of Particles. An equation having the same form as
Eq. 15–15 may be derived for the system of particles shown in
Fig. 15–21b. The forces acting on the arbitrary ith particle of the system
consist of a resultant external force and a resultant internal force
Expressing the moments of these forces about point O, using the form
of Eq. 15–15, we have

Here is the time rate of change in the angular momentum of the
ith particle about O. Similar equations can be written for each of the
other particles of the system. When the results are summed vectorially,
the result is

The second term is zero since the internal forces occur in equal but
opposite collinear pairs, and hence the moment of each pair about point
O is zero. Dropping the index notation, the above equation can be
written in a simplified form as

(15–17)

which states that the sum of the moments about point O of all the external
forces acting on a system of particles is equal to the time rate of change of
the total angular momentum of the system about point O.Although O has
been chosen here as the origin of coordinates, it actually can represent
any fixed point in the inertial frame of reference.

©MO = H
#
O

©1ri * Fi2 + ©1ri * fi2 = ©1H# i2O

1H# i2O

1ri * Fi2 + 1ri * fi2 = 1H# i2O

fi .Fi

x

y

z

O

ri

Inertial coordinate
system

(b)

fi
Fi

i

Fig. 15–21 (cont.)
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EXAMPLE 15.12

The box shown in Fig. 15–22a has a mass m and travels down the
smooth circular ramp such that when it is at the angle it has a speed

Determine its angular momentum about point O at this instant and
the rate of increase in its speed, i.e., at .
v.

u

r

O

(a)

v

u

r

O

n
W

N

t

r sin u

(b)

u

Fig. 15–22

SOLUTION
Since v is tangent to the path, applying Eq. 15–12 the angular
momentum is

b Ans.

The rate of increase in its speed can be found by applying
Eq. 15–15. From the free-body diagram of the box, Fig. 15–22b, it can
be seen that only the weight contributes a moment about
point O. We have

c

Since r and m are constant,

Ans.

NOTE: This same result can, of course, be obtained from the equation
of motion applied in the tangential direction, Fig. 15–22b, i.e.,

Ans.
dv

dt
= g sin u

mg sin u = madv
dt
b+b©Ft = mat ;

dv

dt
= g sin u

mgr sin u = rm
dv

dt

mg1r sin u2 =
d

dt
1rmv2+©MO = H

#
O ;

W = mg

1dv>dt2
HO = rmv
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15.7 Principle of Angular Impulse and
Momentum

Principle of Angular Impulse and Momentum. If Eq. 15–15
is rewritten in the form and integrated, assuming that at
time and at time , we have

or

(15–18)

This equation is referred to as the principle of angular impulse and
momentum. The initial and final angular momenta and are
defined as the moment of the linear momentum of the particle

at the instants and respectively. The second term
on the left side, is called the angular impulse. It is determined
by integrating, with respect to time, the moments of all the forces acting
on the particle over the time period to Since the moment of a force
about point O is the angular impulse may be expressed in
vector form as

(15–19)

Here r is a position vector which extends from point O to any point on
the line of action of F.

In a similar manner, using Eq. 15–18, the principle of angular impulse
and momentum for a system of particles may be written as

(15–20)©1HO21 + ©
L

t2

t1

MO dt = ©1HO22

angular impulse =
L

t2

t1

MO dt =
L

t2

t1

1r * F2 dt

MO = r * F,
t2 .t1

©1MO dt,
t2 ,t11HO = r * mv2

1HO221HO21

1HO21 + ©
L

t2

t1

MO dt = 1HO22

©
L

t2

t1

MO dt = 1HO22 - 1HO21

HO = 1HO22t = t2 ,HO = 1HO21t = t1 ,
©MO dt = dHO
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Here the first and third terms represent the angular momenta of all the
particles at the instants and The second term
is the sum of the angular impulses given to all the particles from to 
Recall that these impulses are created only by the moments of the external
forces acting on the system where, for the ith particle,

Vector Formulation. Using impulse and momentum principles, it
is therefore possible to write two equations which define the particle’s
motion, namely, Eqs. 15–3 and Eqs. 15–18, restated as

(15–21)

Scalar Formulation. In general, the above equations can be
expressed in x, y, z component form, yielding a total of six scalar
equations. If the particle is confined to move in the x–y plane, three
scalar equations can be written to express the motion, namely,

(15–22)

The first two of these equations represent the principle of linear impulse
and momentum in the x and y directions, which has been discussed in
Sec. 15.1, and the third equation represents the principle of angular
impulse and momentum about the z axis.

m1vx21 + g
L

t2

t1

Fx dt = m1vx22
m1vy21 + g

L

t2

t1

Fy dt = m1vy22

1HO21 + ©
L

t2

t1

MOdt = 1HO22

mv1 + g
L

t2

t1

F dt = mv2

1HO21 + g
L

t2

t1

MO dt = 1HO22

MO = ri * Fi .

t2 .t1

t2 .t1[©HO = ©1ri * mvi2]
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Conservation of Angular Momentum. When the angular
impulses acting on a particle are all zero during the time to Eq. 15–18
reduces to the following simplified form:

(15–23)

This equation is known as the conservation of angular momentum. It
states that from to the particle’s angular momentum remains
constant. Obviously, if no external impulse is applied to the particle, both
linear and angular momentum will be conserved. In some cases,
however, the particle’s angular momentum will be conserved and linear
momentum may not. An example of this occurs when the particle is
subjected only to a central force (see Sec. 13.7). As shown in Fig. 15–23,
the impulsive central force F is always directed toward point O as the
particle moves along the path. Hence, the angular impulse (moment)
created by F about the z axis is always zero, and therefore angular
momentum of the particle is conserved about this axis.

From Eq. 15–20, we can also write the conservation of angular
momentum for a system of particles as

(15–24)

In this case the summation must include the angular momenta of all
particles in the system.

©1HO21 = ©1HO22

t2t1

1HO21 = 1HO22

t2 ,t1

x

y

O

F

Fig. 15–23

Procedure for Analysis

When applying the principles of angular impulse and momentum, or
the conservation of angular momentum, it is suggested that the
following procedure be used.

Free-Body Diagram.
• Draw the particle’s free-body diagram in order to determine any

axis about which angular momentum may be conserved. For this
to occur, the moments of all the forces (or impulses) must either
be parallel or pass through the axis so as to create zero moment
throughout the time period to 

• The direction and sense of the particle’s initial and final velocities
should also be established.

• An alternative procedure would be to draw the impulse and
momentum diagrams for the particle.

Momentum Equations.
• Apply the principle of angular impulse and momentum,

or if appropriate, the conservation 

of angular momentum, 1HO21 = 1HO22 .
1HO21 + ©1

t2
t1

MOdt = 1HO22 ,

t2 .t1

Provided air resistance is neglected, the
passengers on this amusement-park ride are
subjected to a conservation of angular
momentum about the axis of rotation. As
shown on the free-body diagram, the line of
action of the normal force N of the seat on
the passenger passes through the axis,and the
passenger’s weight W is parallel to it. Thus,
no angular impulse acts around the z axis.

N

W

z
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EXAMPLE 15.13

The 1.5-Mg car travels along the circular road as shown in Fig. 15–24a.
If the traction force of the wheels on the road is , where
t is in seconds, determine the speed of the car when . The car
initially travels with a speed of 5 . Negect the size of the car.m>s t = 5 s

F = (150t2) N

100 m

(a)

F

r � 100 m

W � 1500 (9.81)N

(b)

z

F � (150t2)N 

Fr

N

Fig. 15–24

SOLUTION

Free-Body Diagram. The free-body diagram of the car is shown in
Fig. 15–24b. If we apply the principle of angular impulse and
momentum about the z axis, then the angular impulse created by the
weight, normal force, and radial frictional force will be eliminated
since they act parallel to the axis or pass through it.

Principle of Angular Impulse and Momentum.

Ans.(vc)2 = 9.17 m>s
750(103) + 5000t3 2 5 s

0
= 150(103)(vc)2

= (100 m)(1500 kg)(vc)2

(100 m)(1500 kg)(5 m>s) +
L

5 s

0
 (100 m)[(150t2) N] dt

rmc(vc)1 +
L

t2

t1

 rF dt = rmc(vc)2

(Hz)1 + ©
L

t2

t1

 Mz dt = (Hz)2
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EXAMPLE 15.14

The 0.8-lb ball B, shown in Fig. 15–25a, is attached to a cord which
passes through a hole at A in a smooth table. When the ball is

from the hole, it is rotating around in a circle such that its
speed is By applying the force F the cord is pulled
downward through the hole with a constant speed 
Determine (a) the speed of the ball at the instant it is from
the hole, and (b) the amount of work done by F in shortening the
radial distance from to Neglect the size of the ball.

SOLUTION

Part (a) Free-Body Diagram. As the ball moves from to 
Fig. 15–25b, the cord force F on the ball always passes through the z axis,
and the weight and are parallel to it. Hence the moments, or angular
impulses created by these forces, are all zero about this axis. Therefore,
angular momentum is conserved about the z axis.

Conservation of Angular Momentum. The ball’s velocity is
resolved into two components.The radial component, is known;
however, it produces zero angular momentum about the z axis. Thus,

The speed of the ball is thus

Part (b). The only force that does work on the ball is F. (The normal
force and weight do not move vertically.) The initial and final kinetic
energies of the ball can be determined so that from the principle of
work and energy we have

Ans.

NOTE: The force F is not constant because the normal component of
acceleration, , changes as r changes.an = v2>r

UF = 1.94 ft # lb

1
2
a 0.8 lb

32.2 ft>s2 b14 ft>s22 + UF =
1
2
a 0.8 lb

32.2 ft>s2 b113.1 ft>s22
T1 + ©U1-2 = T2

= 13.1 ft>s
v2 = 4(11.67 ft>s)2 + (6 ft>s)2

v2
œ = 11.67 ft>s

 1.75 fta 0.8 lb

32.2 ft>s2 b  4 ft>s = 0.6 fta 0.8 lb

32.2 ft>s2 bv2
œ

r1mBv1 = r2mBv2
œ

H1 = H2

6 ft>s,
v2

NB

r2 ,r1

r2 .r1

r2 = 0.6 ft
vc = 6 ft>s.

v1 = 4 ft>s.
r1 = 1.75 ft

F

vc � 6 ft/s

A

B
4 ft/s

r1

r2

(a)

(b)

4 ft/s

z

NB

0.8 lb

F

r2 � 0.6 ft

r1 � 1.75 ft

v2

v¿2
6 ft/s

Fig. 15–25
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EXAMPLE 15.15

The 2-kg disk shown in Fig. 15–26a rests on a smooth horizontal
surface and is attached to an elastic cord that has a stiffness

and is initially unstretched. If the disk is given a velocity
perpendicular to the cord, determine the rate at

which the cord is being stretched and the speed of the disk at the
instant the cord is stretched 0.2 m.

SOLUTION

Free-Body Diagram. After the disk has been launched, it slides
along the path shown in Fig. 15–26b. By inspection, angular
momentum about point O (or the z axis) is conserved, since none of
the forces produce an angular impulse about this axis. Also, when
the distance is 0.7 m, only the transverse component produces
angular momentum of the disk about O.

Conservation of Angular Momentum. The component can
be obtained by applying the conservation of angular momentum
about O (the z axis).

Conservation of Energy. The speed of the disk can be obtained by
applying the conservation of energy equation at the point where the
disk was launched and at the point where the cord is stretched 0.2 m.

Ans.

Having determined and its component the rate of stretch of
the cord, or radial component, is determined from the Pythagorean
theorem,

Ans.= 0.838 m>s
= 4(1.360 m>s)2 - (1.071 m>s)2

1vDfl 22 = 41vD222 - 1vDœ 222
1vDfl 22

1vDœ 22 ,1vD22
1vD22 = 1.360 m>s = 1.36 m>s

1
212 kg211.5 m>s22 + 0 = 1

212 kg21vD222 + 1
2120 N>m210.2 m22

1
2mD(vD)1

2 + 1
2kx1

2 = 1
2mD(vD)2

2 + 1
2kx2

2

T1 + V1 = T2 + V2

 (vD
œ )2 = 1.071 m>s

 0.5 m (2 kg)(1.5 m/s) = 0.7 m(2 kg)(vD
œ )2

r1mD(vD)1 = r2mD(vD
œ )2

 (HO)1 = (HO)2

1vDœ 22

1vDœ 22

1vD21 = 1.5 m>s,
kc = 20 N>m

0.5 m

x

y

(vD)1 � 1.5 m/s

O

(a)

kc � 20 N/m

z

(vD)1

ND

2(9.81) N

z

x

y

(b)

Fc

0.5 m

0.5 m
0.2 m

O

(v¿D)2 (vD)2

(v¿¿D)2

Fig. 15–26
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F � (10 t) N

O

A

34

5
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FUNDAMENTAL PROBLEMS

M � (8t) N
m

P � 10 N

P � 10 N

0.5 m0.5 m

F15–20

y

x

15 m/s

2 m

2 m3 m

P

A

30�

F15–21

1.5 m

F � 5 N

O

A

 2 m/s

F15–22

O 0.6 m
M � (0.9t2) N
m

F15–19

y

x

A

4 m

3 m

3
45

O

 10 m/s

2 kg

F15–22. The 5-kg block is rotating around the circular path
centered at on the smooth horizontal plane when it is
subjected to the force where is in seconds. If
the block starts from rest, determine its speed when 
Neglect the size of the block. The force maintains the same
constant angle tangent to the path.

t = 4 s.
tF = (10t) N,

O

F15–21. Initially the 5-kg block is rotating with a constant
speed of around the circular path centered at on
the smooth horizontal plane. If a constant tangential force

is applied to the block, determine its speed when
Neglect the size of the block.t = 3 s.

F = 5 N

O2 m>s

F15–19. The 2-kg particle has the velocity shown.
Determine its angular momentum about point O.HO

A

F15–24. Two identical 10-kg spheres are attached to the
light rigid rod, which rotates in the horizontal plane
centered at O. If the spheres are subjected to tangential
forces of and the rod is subjected to a couple
moment where t is in seconds, determine
the speed of the spheres at the instant The system
starts from rest. Neglect the size of the spheres.

t = 4 s.
M = (8t) N # m,
P = 10 N,

F15–20. The 2-kg particle has the velocity shown.
Determine its angular momentum about point P.HP

A

F15–23. The 2-kg sphere is attached to the light rigid rod,
which rotates in the horizontal plane centered at If the
system is subjected to a couple moment 
where is in seconds, determine the speed of the sphere at
the instant starting from rest.t = 5 s

t
M = (0.9t2) N # m,

O.

F15–24

F15–23
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PROBLEMS

15–92. The 10-lb block rests on a surface for which
It is acted upon by a radial force of 2 lb and a

horizontal force of 7 lb, always directed at 30° from the
tangent to the path as shown. If the block is initially moving
in a circular path with a speed at the instant the
forces are applied, determine the time required before the
tension in cord AB becomes 20 lb. Neglect the size of the
block for the calculation.

15–93. The 10-lb block is originally at rest on the smooth
surface. It is acted upon by a radial force of 2 lb and a
horizontal force of 7 lb, always directed at 30° from the
tangent to the path as shown. Determine the time required
to break the cord, which requires a tension What
is the speed of the block when this occurs? Neglect the size
of the block for the calculation.

T = 30 lb.

v1 = 2 ft>s

mk = 0.5.

15–91. If the rod of negligible mass is subjected to a
couple moment of and the engine of the
car supplies a traction force of to the wheels,
where t is in seconds, determine the speed of the car at the
instant . The car starts from rest. The total mass of
the car and rider is 150 kg. Neglect the size of the car.

t = 5 s

F = (15t) N
M = (30t2) N # m

15–90. The spheres A and B each weighing 4 lb, are
welded to the light rods that are rigidly connected to a shaft
as shown. If the shaft is subjected to a couple moment of

, where t is in seconds, determine the
speed of A and B when . The system starts from rest.
Neglect the size of the spheres.

t = 3 s
 M = (4t2 + 2) lb #  ft

15–94. The projectile having a mass of 3 kg is fired from a
cannon with a muzzle velocity of . Determine
the projectile’s angular momentum about point O at the
instant it is at the maximum height of its trajectory.

v0 = 500 m>s

A B

M � (4t2 � 2) lb
ft

2.5 ft 2.5 ft45�45�

Prob. 15–90

M � (30t2) N
m

F � 15t N

4 m

Prob. 15–91

y

x

vO

45�

O

Prob. 15–94

A

B

30�
7 lb

4 ft

2 lb

Probs. 15–92/93
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•15–97. The two spheres each have a mass of 3 kg and are
attached to the rod of negligible mass. If a torque

, where t is in seconds, is applied to the
rod as shown, determine the speed of each of the spheres in
2 s, starting from rest.

15–98. The two spheres each have a mass of 3 kg and are
attached to the rod of negligible mass. Determine the time the
torque , where t is in seconds, must be
applied to the rod so that each sphere attains a speed of 3 
starting from rest.

m>s
M = (8t) N # m

M = (6e0.2t) N # m

*15–96. The ball B has a mass of 10 kg and is attached to
the end of a rod whose mass can be neglected. If the shaft is
subjected to a torque , where t is in
seconds, determine the speed of the ball when . The
ball has a speed when .t = 0v = 2 m>s

t = 2 s
M = (2t2 + 4) N # m

15–95. The 3-lb ball located at A is released from rest and
travels down the curved path. If the ball exerts a normal
force of 5 lb on the path when it reaches point B, determine
the angular momentum of the ball about the center of
curvature, point O. Hint: Neglect the size of the ball. The
radius of curvature at point B must first be determined.

15–99. An amusement park ride consists of a car which is
attached to the cable OA. The car rotates in a horizontal
circular path and is brought to a speed when

. The cable is then pulled in at the constant rate of
0.5 . Determine the speed of the car in 3 s.ft>s
r = 12 ft

v1 = 4 ft>s

M

0.4 m

0.4 m

Probs. 15–97/98

A

O

r

Prob. 15–99

10 ft

A

B

O

r

Prob. 15–95

M
0.5 m

vB

Prob. 15–96
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rA

rB

vB

vA

f

Prob. 15–100

15–102. A gymnast having a mass of 80 kg holds the two
rings with his arms down in the position shown as he swings
downward. His center of mass is located at point . When
he is at the lowest position of his swing, his velocity is

. At this position he suddenly lets his arms
come up, shifting his center of mass to position .
Determine his new velocity in the upswing and the angle 
to which he swings before momentarily coming to rest.
Treat his body as a particle.

u

G2

(vG)1 = 5 m>s
G1

•15–101. The 2-kg ball rotates around a 0.5-m-diameter
circular path with a constant speed. If the cord length is
shortened from to , by pulling the cord
through the tube, determine the new diameter of the path

. Also, what is the tension in the cord in each case?d¿

l¿ = 0.5 ml = 1 m

*15–100. An earth satellite of mass 700 kg is launched into
a free-flight trajectory about the earth with an initial speed
of when the distance from the center of the
earth is If the launch angle at this position is

determine the speed of the satellite and its
closest distance from the center of the earth. The earth
has a mass Hint: Under these
conditions, the satellite is subjected only to the earth’s
gravitational force, Eq. 13–1. For part of
the solution, use the conservation of energy.

F = GMems>r2,
Me = 5.976110242 kg.
rB

vBfA = 70°,
rA = 15 Mm.

vA = 10 km>s

15–103. The four 5-lb spheres are rigidly attached to the
crossbar frame having a negligible weight. If a couple
moment , where t is in seconds, is
applied as shown, determine the speed of each of the
spheres in 4 seconds starting from rest. Neglect the size of
the spheres.

M = (0.5t + 0.8) lb # ft

0.5 m

l

Prob. 15–101

O

u

G1

(vG)1 � 5 m/s

G2

(vG)2
0.8 m

5 m

Prob. 15–102

0.6 ft

M � (0.5t � 0.8) lb · ft

Prob. 15–103
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r

k � 200 N/m

A

B

v � 5 m/s

Prob. 15–104

15–106. A small ball bearing of mass m is given a velocity
of at A parallel to the horizontal rim of a smooth bowl.
Determine the magnitude of the velocity v of the ball  when
it has fallen through a vertical distance h to reach point B.

is measured from v to the horizontal at point B.Angle u

v0

•15–105. The 150-lb car of an amusement park ride is
connected to a rotating telescopic boom. When ,
the car is moving on a horizontal circular path with a speed
of . If the boom is shortened at a rate of ,
determine the speed of the car when . Also, find
the work done by the axial force F along the boom. Neglect
the size of the car and the mass of the boom.

r = 10 ft
3 ft>s30  ft>s

r = 15 ft

*15–104. At the instant , the 5-kg disk is given a
speed of , perpendicular to the elastic cord.
Determine the speed of the disk and the rate of shortening
of the elastic cord at the instant . The disk slides
on the smooth horizontal plane. Neglect its size. The cord
has an unstretched length of 0.5 m.

r = 1.2 m

v = 5 m>s
r = 1.5 m

15–107. When the 2-kg bob is given a horizontal speed of
, it begins to rotate around the horizontal circular

path A. If the force F on the cord is increased, the bob rises
and then rotates around the horizontal circular path B.
Determine the speed of the bob around path B. Also, find
the work done by force F.

1.5 m>s

F
r

Prob. 15–105

v

r

h

H

A

B

z

v0

r0

z �      r2

r0
2

H

H U

Prob. 15–106

A

B

F

300 mm

600 mm

Prob. 15–107
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15.8 Steady Flow of a Fluid Stream

Up to this point we have restricted our study of impulse and momentum
principles to a system of particles contained within a closed volume. In
this section, however, we will apply the principle of impulse and
momentum to the steady mass flow of fluid particles entering into and
then out of a control volume. This volume is defined as a region in space
where fluid particles can flow into or out of a region. The size and shape
of the control volume is frequently made to coincide with the solid
boundaries and openings of a pipe, turbine, or pump. Provided the flow of
the fluid into the control volume is equal to the flow out, then the flow can
be classified as steady flow.

Principle of Impulse and Momentum. Consider the steady flow
of a fluid stream in Fig. 15–27a that passes through a pipe. The region
within the pipe and its openings will be taken as the control volume. As
shown, the fluid flows into and out of the control volume with velocities 
and , respectively.The change in the direction of the fluid flow within the
control volume is caused by an impulse produced by the resultant external
force exerted on the control surface by the wall of the pipe. This resultant
force can be determined by applying the principle of impulse and
momentum to the control volume.

vB
vA

The conveyor belt must supply frictional
forces to the gravel that falls upon it in
order to change the momentum of the
gravel stream, so that it begins to travel
along the belt.

vA

vB

(a)

A

B

Fig. 15–27

The air on one side of this fan is
essentially at rest, and as it passes through
the blades its momentum is increased. To
change the momentum of the air flow in
this manner, the blades must exert a
horizontal thrust on the air stream.As the
blades turn faster, the equal but opposite
thrust of the air on the blades could
overcome the rolling resistance of the
wheels on the ground and begin to move
the frame of the fan.



As indicated in Fig. 15–27b, a small amount of fluid having a mass dm
is about to enter the control volume through opening A with a velocity
of at time t. Since the flow is considered steady, at time , the
same amount of fluid will leave the control volume through opening B
with a velocity . The momenta of the fluid entering and leaving the
control volume are therefore and , respectively. Also,
during the time dt, the momentum of the fluid mass within the control
volume remains constant and is denoted as . As shown on the center
diagram, the resultant external force exerted on the control volume
produces the impulse . If we apply the principle of linear impulse
and momentum, we have

If r, , are position vectors measured from point O to the geometric
centers of the control volume and the openings at A and B, Fig. 15–27b,
then the principle of angular impulse and momentum about O becomes

Dividing both sides of the above two equations by dt and simplifying,
we get

(15–25)

(15–26)©MO =
dm

dt
(rB * vB - rA * vA)

©F =
dm

dt
1vB - vA2

rA * dm vA + r * mv + r¿ * ©F dt = r * mv + rB * dm vB

rBrA

dm vA + mv + ©F dt = dm vB + mv

©F dt

mv

dm vBdm vA
vB

t + dtvA
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(b)

dm

Time t Time dt

dm vA
mv mv

	F dt

Time t � dt

dm

dm vB

rA r

O O O

rB

rr¿

B

A

B

A

B

A

AA

dm

dsA

dsB dm

AB

(c)

Fig. 15–27 (cont.)
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The term is called the mass flow. It indicates the constant amount of
fluid which flows either into or out of the control volume per unit of time. If
the cross-sectional areas and densities of the fluid at the entrance A are

and at exit Fig. 15–27c, then for an incompressible fluid,
the continuity of mass requires
Hence, during the time dt, since and we have

or in general,

(15–27)

The term measures the volume of fluid flow per unit of time and
is referred to as the discharge or the volumetric flow.

Q = vA

dm

dt
= rvA = rQ

dm>dt = rAvAAA = rBvBAB
vB = dsB>dt,vA = dsA>dt

dm = rdV = rA1dsAAA2 = rB1dsBAB2.
rB ,AB ,B,rAAA ,

dm>dt

Procedure for Analysis

Problems involving steady flow can be solved using the following
procedure.

Kinematic Diagram.
• Identify the control volume. If it is moving, a kinematic diagram

may be helpful for determining the entrance and exit velocities of
the fluid flowing into and out of its openings since a relative-
motion analysis of velocity will be involved.

• The measurement of velocities and must be made by an
observer fixed in an inertial frame of reference.

• Once the velocity of the fluid flowing into the control volume is
determined, the mass flow is calculated using Eq. 15–27.

Free-Body Diagram.
• Draw the free-body diagram of the control volume in order to

establish the forces that act on it.These forces will include the
support reactions, the weight of all solid parts and the fluid
contained within the control volume, and the static gauge
pressure forces of the fluid on the entrance and exit sections.*
The gauge pressure is the pressure measured above atmospheric
pressure, and so if an opening is exposed to the atmosphere, the
gauge pressure there will be zero.

Equations of Steady Flow.
• Apply the equations of steady flow, Eqs. 15–25 and 15–26, using

the appropriate components of velocity and force shown on the
kinematic and free-body diagrams.

©F

vBvA

* In the SI system, pressure is measured using the pascal (Pa), where 1Pa = 1 N>m2.
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EXAMPLE 15.16

Determine the components of reaction which the fixed pipe joint at A
exerts on the elbow in Fig. 15–28a, if water flowing through the pipe is
subjected to a static gauge pressure of 100 kPa at A. The discharge at
B is Water has a density and the
water-filled elbow has a mass of 20 kg and center of mass at G.

SOLUTION
We will consider the control volume to be the outer surface of the
elbow. Using a fixed inertial coordinate system, the velocity of flow at
A and B and the mass flow rate can be obtained from Eq. 15–27. Since
the density of water is constant, Hence,

Free-Body Diagram. As shown on the free-body diagram of the
control volume (elbow) Fig. 15–28b, the fixed connection at A exerts a
resultant couple moment and force components and on the
elbow. Due to the static pressure of water in the pipe, the pressure
force acting on the open control surface at A is Since

There is no static pressure acting at B, since the water is discharged at
atmospheric pressure; i.e., the pressure measured by a gauge at B is
equal to zero,

Equations of Steady Flow.

Ans.Fx = 4.41 kN

-Fx + 3141.6 N = 200 kg>s10 - 6.37 m>s2:+ ©Fx =
dm

dt
1vBx - vAx2;

pB = 0.

FA = pAAA = [10011032N>m2][p10.1 m22] = 3141.6 N

1 kPa = 1000 N>m2,
FA = pAAA .

FyFxMO

vA =
Q

AA
=

0.2 m3>s
p10.1 m22 = 6.37 m>s :

vB =
Q

AB
=

0.2 m3>s
p10.05 m22 = 25.46 m>s T

dm

dt
= rwQ = 11000 kg>m3210.2 m3>s2 = 200 kg>s

QB = QA = Q.

rw = 1000 kg>m3,QB = 0.2 m3>s.

Ans.Fy = 4.90 kN

-Fy - 2019.812 N = 200 kg>s1-25.46 m>s - 02+ c©Fy =
dm

dt
1vBy - vAy2;

If moments are summed about point O, Fig. 15–28b, then and
the static pressure are eliminated, as well as the moment of
momentum of the water entering at A, Fig. 15–28a. Hence,

c

Ans.MO = 1.50 kN # m
MO + 2019.812 N 10.125 m2 = 200 kg>s[10.3 m2125.46 m>s2 - 0]

=
dm

dt
1dOBvB - dOAvA2+©MO

FA
Fy ,Fx ,

0.1 m

0.3 m

(a)

vB

vA
0.1 m

0.1 m

0.125 m

G

B

A

O

0.125 m

0.3 m

(b)

B

A

O G

20(9.81) N

y

x

MO
FA

Fx

Fy

Fig. 15–28
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EXAMPLE 15.17

vw � 25 ft/s

vbl � 5 ft/s

A

B

2 in.

(a)

vblvA A

B
vcv

vw/cv

vB

x

y

(b)

x

y

Fy j

�Fx i

(c)

Fig. 15–29

A 2-in.-diameter water jet having a velocity of impinges upon a
single moving blade, Fig. 15–29a. If the blade moves with a constant
velocity of away from the jet, determine the horizontal and vertical
components of force which the blade is exerting on the water. What
power does the water generate on the blade? Water has a specific weight
of

SOLUTION
Kinematic Diagram. Here the control volume will be the stream of
water on the blade. From a fixed inertial coordinate system,
Fig. 15–29b, the rate at which water enters the control volume at A is

The relative-flow velocity within the control volume is
Since the control volume is 

moving with a velocity of the velocity of flow at B
measured from the fixed x, y axes is the vector sum, shown in
Fig. 15–29b. Here,

Thus, the mass flow of water onto the control volume that undergoes a
momentum change is

Free-Body Diagram. The free-body diagram of the control volume
is shown in Fig. 15–29c. The weight of the water will be neglected in
the calculation, since this force will be small compared to the reactive
components and 

Equations of Steady Flow.

Equating the respective i and j components gives
Ans.

Ans.

The water exerts equal but opposite forces on the blade.
Since the water force which causes the blade to move forward

horizontally with a velocity of is then from Eq. 14–10
the power is

P =
16.9 lb15 ft>s2

550 hp>1ft # lb>s2 = 0.154 hpP = F # v;

Fx = 16.9 lb,5 ft>s

Fy = 0.84561202 = 16.9 lb c

Fx = 0.84561202 = 16.9 lb ;

-Fxi + Fyj = 0.845615i + 20j - 25i2
©F =

dm

dt
1vB - vA2

Fy .Fx

dm

dt
= rw1vw>cv2AA = a62.4

32.2
b 1202cpa 1

12
b2 d = 0.8456 slug>s

= 55i + 20j6 ft>s
vB = vcv + vw>cv

vcv = 55i6 ft>s,
 vw>cv = vw - vcv = 25i - 5i = 520i6 ft>s.

vA = 525i6 ft>s

gw = 62.4 lb>ft3.

5 ft>s
25 ft>s
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*15.9 Propulsion with Variable Mass

A Control Volume That Loses Mass. Consider a device such as
a rocket which at an instant of time has a mass m and is moving forward
with a velocity v, Fig. 15–30a. At this same instant the amount of mass 
is expelled from the device with a mass flow velocity For the analysis,
the control volume will include both the mass m of the device and the
expelled mass The impulse and momentum diagrams for the control
volume are shown in Fig. 15–30b. During the time dt, its velocity is
increased from v to since an amount of mass has been ejected
and thereby gained in the exhaust. This increase in forward velocity,
however, does not change the velocity of the expelled mass, as seen by
a fixed observer, since this mass moves with a constant velocity once it has
been ejected. The impulses are created by , which represents the
resultant of all the external forces, such as drag or weight, that act on the
control volume in the direction of motion. This force resultant does not
include the force which causes the control volume to move forward, since
this force (called a thrust) is internal to the control volume; that is, the
thrust acts with equal magnitude but opposite direction on the mass m of
the device and the expelled exhaust mass * Applying the principle of
impulse and momentum to the control volume, Fig. 15–30b, we have

or

©Fcv dt = -v dme + m dv - dme dv - ve dme

mv - meve + ©Fcv dt = 1m - dme21v + dv2 - 1me + dme2ve1:+ 2

me .

©Fcv

ve

dmev + dv

me .

ve .
me

* represents the external resultant force acting on the control volume, which is
different from the resultant force acting only on the device.F,

©F

m

Control
Volume

me

ve

v

(a)

(b)

m

me

meve

mv

Time t

(me � dme)ve

m � dme

	 Fcv dt

(m � dme) (v � dv)

(me � dme)
Time t � dtTime dt

Fig. 15–30
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Without loss of accuracy, the third term on the right side may be
neglected since it is a “second-order” differential. Dividing by dt gives

The velocity of the device as seen by an observer moving with the
particles of the ejected mass is and so the final result
can be written as

(15–28)

Here the term represents the rate at which mass is being ejected.
To illustrate an application of Eq. 15–28, consider the rocket shown in

Fig. 15–31, which has a weight W and is moving upward against an
atmospheric drag force The control volume to be considered consists
of the mass of the rocket and the mass of ejected gas Applying
Eq. 15–28 gives

The last term of this equation represents the thrust T which the engine
exhaust exerts on the rocket, Fig. 15–31. Recognizing that we
can therefore write

If a free-body diagram of the rocket is drawn, it becomes obvious that
this equation represents an application of for the rocket.

A Control Volume That Gains Mass. A device such as a scoop
or a shovel may gain mass as it moves forward. For example, the device
shown in Fig. 15–32a has a mass m and moves forward with a velocity v.
At this instant, the device is collecting a particle stream of mass The
flow velocity of this injected mass is constant and independent of the
velocity v such that The control volume to be considered here
includes both the mass of the device and the mass of the injected
particles.

v 7 vi .
vi

mi .

©F = ma

T - FD - W =
W
g
a1+ c2

dv>dt = a,

-FD - W =
W
g
dv

dt
- vD>e

dme
dt

1+ c2

me .
FD .

dme>dt

©Fcv = m
dv

dt
- vD>e

dme
dt

vD>e = 1v + ve2,

©Fcv = m
dv

dt
- 1v + ve2 dmedt

W

FD

v

Tve

Control Volume

Fig. 15–31

Fig. 15–32

Control Volume

mi

vi

v

(a)

m
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The impulse and momentum diagrams are shown in Fig. 15–32b.Along
with an increase in mass gained by the device, there is an assumed
increase in velocity dv during the time interval dt. This increase is caused
by the impulse created by the resultant of all the external forces
acting on the control volume in the direction of motion. The force
summation does not include the retarding force of the injected mass
acting on the device. Why? Applying the principle of impulse and
momentum to the control volume, we have

Using the same procedure as in the previous case, we may write this
equation as

Since the velocity of the device as seen by an observer moving with the
particles of the injected mass is the final result can be
written as

(15–29)

where is the rate of mass injected into the device.The last term in
this equation represents the magnitude of force R, which the injected
mass exerts on the device, Fig. 15–32c. Since Eq. 15–29
becomes

This is the application of .
As in the case of steady flow, problems which are solved using Eqs.

15–28 and 15–29 should be accompanied by an identified control volume
and the necessary free-body diagram. With this diagram one can then
determine and isolate the force exerted on the device by the
particle stream.

©Fcv

©F = ma

©Fcv - R = ma

dv>dt = a,

dmi>dt

©Fcv = m
dv

dt
+ vD>i

dmi
dt

vD>i = 1v - vi2,

©Fcv = m
dv

dt
+ 1v - vi2 dmidt

mv + mivi + ©Fcv dt = 1m + dmi21v + dv2 + 1mi - dmi2vi1:+ 2

©Fcv ,

dmi

The scraper box behind this tractor
represents a device that gains mass. If the
tractor maintains a constant velocity 
then and, because the soil
is originally at rest, Applying 
Eq. 15–29, the horizontal towing force
on the scraper box is then

where is the
rate of soil accumulated in the box.

dm>dtT = 0 + v1dm>dt2,

vD>i = v.
dv>dt = 0

v,

(c)

m
	 Fs R

a

mi

mivi

mv

Time t

	 Fcv dt

m + dmi

mi � dmi

(mi � dmi) vi

(m � dmi) (v � dv)

Time t � dt
(b)

m

Time dt

Fig. 15–32 (cont.)
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EXAMPLE 15.18

T

W

Fig. 15–33

The initial combined mass of a rocket and its fuel is A total mass
of fuel is consumed at a constant rate of and expelled

at a constant speed of u relative to the rocket. Determine the
maximum velocity of the rocket, i.e., at the instant the fuel runs out.
Neglect the change in the rocket’s weight with altitude and the drag
resistance of the air. The rocket is fired vertically from rest.

SOLUTION
Since the rocket loses mass as it moves upward, Eq. 15–28 can be used
for the solution. The only external force acting on the control volume
consisting of the rocket and a portion of the expelled mass is the
weight W, Fig. 15–33. Hence,

(1)

The rocket’s velocity is obtained by integrating this equation.
At any given instant t during the flight, the mass of the rocket can be

expressed as Since Eq. 1
becomes

Separating the variables and integrating, realizing that at 
we have

(2)

Note that liftoff requires the first term on the right to be greater than
the second during the initial phase of motion. The time needed to
consume all the fuel is

Hence,

Substituting into Eq. 2 yields

Ans.vmax = u lna m0

m0 - mf
b -

gmf

c

t¿ = mf>c

mf = adme
dt
b t¿ = ct¿

t¿

v = -u ln1m0 - ct2 - gt `
0

t

= u lna m0

m0 - ct
b - gt

L

v

0
dv =

L

t

0
a uc

m0 - ct
- gb dt

t = 0,v = 0

-1m0 - ct2g = 1m0 - ct2 dv
dt

- uc

W = mg,m = m0 - 1dme>dt2t = m0 - ct.

-W = m
dv

dt
- uc+ c©Fcv = m

dv

dt
- vD>e

dme
dt

;

dme>dt = cmf

m0 .
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EXAMPLE 15.19

A chain of length l, Fig. 15–34a, has a mass m. Determine the magnitude
of force F required to (a) raise the chain with a constant speed 
starting from rest when and (b) lower the chain with a constant
speed starting from rest when 

SOLUTION
Part (a). As the chain is raised, all the suspended links are given a
sudden downward impulse by each added link which is lifted off the
ground.Thus, the suspended portion of the chain may be considered as
a device which is gaining mass.The control volume to be considered is
the length of chain y which is suspended by F at any instant, including
the next link which is about to be added but is still at rest, Fig. 15–34b.
The forces acting on the control volume exclude the internal forces
P and which act between the added link and the suspended
portion of the chain. Hence,

To apply Eq. 15–29, it is also necessary to find the rate at which mass is
being added to the system. The velocity of the chain is equivalent to

Why? Since is constant, and Integrating,
using the initial condition that when gives Thus, the
mass of the control volume at any instant is 
and therefore the rate at which mass is added to the suspended chain is

Applying Eq. 15–29 using this data, we have

Hence,

Ans.

Part (b). When the chain is being lowered, the links which are
expelled (given zero velocity) do not impart an impulse to the
remaining suspended links. Why? Thus, the control volume in Part (a)
will not be considered. Instead, the equation of motion will be used to
obtain the solution.At time t the portion of chain still off the floor is y.
The free-body diagram for a suspended portion of the chain is shown
in Fig. 15–34c. Thus,

Ans.F = mgay
l
b

F - mgay
l
b = 0+ c©F = ma;

F = 1m>l21gy + vc22

F - mgay
l
b = 0 + vcmavcl b

+ c©Fcv = m
dvc
dt

+ vD>i
dmi
dt

dmi
dt

= mavc
l
b

mcv = m1y>l2 = m1vct>l2,
y = vct.t = 0,y = 0

dy>dt = vc .dvc>dt = 0vcvD>i .
vc

©Fcv = F - mg1y>l2.-P,

y = l.vc ,
y = 0;

vc ,

y

(a)

F

y

(b)

�P

P

mg(  )
y
l

F

(c)

y

mg(  )
y
l

Fig. 15–34



*15.9 PROPULSION WITH VARIABLE MASS 287

15

Prob. 15–109

Prob. 15–110

v � 60 ft/s

40�

Prob. 15–111

1.5 m

A

G

C

0.25 m

0.5 m

vB

0.8 m
0.25 m

D

Prob. 15–112

PROBLEMS

15–111. The 150-lb fireman is holding a hose which has a
nozzle diameter of 1 in. and hose diameter of 2 in. If the
velocity of the water at discharge is 60 , determine the
resultant normal and frictional force acting on the man’s
feet at the ground. Neglect the weight of the hose and the
water within it. .gw = 62.4 lb>ft3

ft>s
*15–108. A scoop in front of the tractor collects snow at a
rate of . Determine the resultant traction force T
that must be developed on all the wheels as it moves
forward on level ground at a constant speed of 5 . The
tractor has a mass of 5 Mg.

•15–109. A four-engine commercial jumbo jet is cruising
at a constant speed of in level flight when all four
engines are in operation. Each of the engines is capable of
discharging combustion gases with a velocity of 
relative to the plane. If during a test two of the engines, one
on each side of the plane, are shut off, determine the new
cruising speed of the jet.Assume that air resistance (drag) is
proportional to the square of the speed, that is, ,
where c is a constant to be determined. Neglect the loss of
mass due to fuel consumption.

FD = cv2

775 m>s
800 km>h

km>h
200 kg>s

*15–112. When operating, the air-jet fan discharges air
with a speed of into a slipstream having a
diameter of 0.5 m. If air has a density of ,
determine the horizontal and vertical components of
reaction at C and the vertical reaction at each of the two
wheels, D, when the fan is in operation. The fan and motor
have a mass of 20 kg and a center of mass at G. Neglect the
weight of the frame. Due to symmetry, both of the wheels
support an equal load. Assume the air entering the fan at A
is essentially at rest.

1.22 kg>m3
vB = 20 m>s

15–110. The jet dragster when empty has a mass of
1.25 Mg and carries 250 kg of solid propellent fuel. Its
engine is capable of burning the fuel at a constant rate of

, while ejecting it at relative to the
dragster. Determine the maximum speed attained by the
dragster starting from rest. Assume air resistance is

, where is the dragster’s velocity in .
Neglect rolling resistance.

m>svFD = (10v2) N

1500 m>s50 kg>s
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15–115. The fire boat discharges two streams of seawater,
each at a flow of and with a nozzle velocity of

. Determine the tension developed in the anchor
chain, needed to secure the boat. The density of seawater is

.rsw = 1020  kg>m3

50 m>s
0.25 m3>s

15–114. The toy sprinkler for children consists of a 0.2-kg
cap and a hose that has a mass per length of 30 .
Determine the required rate of flow of water through the 
5-mm-diameter tube so that the sprinkler will lift 1.5 m
from the ground and hover from this position. Neglect the
weight of the water in the tube. .rw = 1 Mg>m3

g>m

•15–113. The blade divides the jet of water having a
diameter of 3 in. If one-fourth of the water flows downward
while the other three-fourths flows upwards, and the total
flow is , determine the horizontal and vertical
components of force exerted on the blade by the jet,

.gw = 62.4 lb>ft3

Q = 0.5 ft3>s

*15–116. A speedboat is powered by the jet drive shown.
Seawater is drawn into the pump housing at the rate of

through a 6-in.-diameter intake A. An impeller
accelerates the water flow and forces it out horizontally
through a 4-in.- diameter nozzle B. Determine the horizontal
and vertical components of thrust exerted on the speedboat.
The specific weight of seawater is .gsw = 64.3 lb>ft3

20  ft3>s

3 in.

Prob. 15–113

1.5 m

Prob. 15–114

30�

60�

45�

Prob. 15–115

A

B

45�

Prob. 15–116



*15.9 PROPULSION WITH VARIABLE MASS 289

15

15–119. The hemispherical bowl of mass m is held in
equilibrium by the vertical jet of water discharged through
a nozzle of diameter d. If the discharge of the water through
the nozzle is Q, determine the height h at which the bowl is
suspended. The water density is . Neglect the weight of
the water jet.

rw

15–118. The elbow for a 5-in-diameter buried pipe is
subjected to a static pressure of . The speed of the
water passing through it is . Assuming the pipe
connections at A and B do not offer any vertical force
resistance on the elbow, determine the resultant vertical
force F that the soil must then exert on the elbow in order
to hold it in equilibrium. Neglect the weight of the elbow
and the water within it. .gw = 62.4 lb>ft3

v = 8 ft>s
10 lb>in2

•15–117. The fan blows air at . If the fan has a
weight of 30 lb and a center of gravity at G, determine the
smallest diameter d of its base so that it will not tip over.
The specific weight of air is .g = 0.076 lb>ft3

6000 ft3>min

*15–120. The chute is used to divert the flow of water,
. If the water has a cross-sectional area of

, determine the force components at the pin D and
roller C necessary for equilibrium. Neglect the weight of the
chute and weight of the water on the chute. .rw = 1 Mg>m3

0.05 m2
Q = 0.6 m3>s

4 ft

0.5 ft

1.5 ft G

d

Prob. 15–117

45�

AB

F

45�

Prob. 15–118

h

Prob. 15–119

2 m

1.5 m

0.12 m

C

D

A

B

Prob. 15–120
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15–123. A missile has a mass of 1.5 Mg (without fuel). If it
consumes 500 kg of solid fuel at a rate of and ejects
it with a velocity of relative to the missile,
determine the velocity and acceleration of the missile at the
instant all the fuel has been consumed. Neglect air
resistance and the variation of its weight with altitude. The
missile is launched vertically starting from rest.

*15–124. The rocket has a weight of 65 000 lb including
the solid fuel. Determine the constant rate at which the fuel
must be burned so that its thrust gives the rocket a speed of
200 in 10 s starting from rest. The fuel is expelled from
the rocket at a relative speed of 3000 relative to the
rocket. Neglect the effects of air resistance and assume that
g is constant.

ft>s
ft>s

2000 m>s
20 kg>s

15–122. The gauge pressure of water at C is . If
water flows out of the pipe at A and B with velocities

and , determine the horizontal and
vertical components of force exerted on the elbow
necessary to hold the pipe assembly in equilibrium. Neglect
the weight of water within the pipe and the weight of the
pipe.The pipe has a diameter of 0.75 in. at C, and at A and B
the diameter is 0.5 in. .gw = 62.4 lb>ft3

vB = 25 ft>svA = 12 ft>s
40 lb>in2

•15–121. The bend is connected to the pipe at flanges A
and B as shown. If the diameter of the pipe is 1 ft and it
carries a discharge of , determine the horizontal and
vertical components of force reaction and the moment
reaction exerted at the fixed base D of the support. The
total weight of the bend and the water within it is 500 lb,
with a mass center at point G. The gauge pressure of the
water at the flanges at A and B are 15 psi and 12 psi,
respectively. Assume that no force is transferred to the
flanges at A and B. The specific weight of water is

.gw = 62.4 lb>ft3

50  ft3>s

•15–125. The 10-Mg helicopter carries a bucket containing
500 kg of water, which is used to fight fires. If it hovers over
the land in a fixed position and then releases 50 of
water at 10 , measured relative to the helicopter,
determine the initial upward acceleration the helicopter
experiences as the water is being released.

m>s
kg>s

Prob. 15–124

D

A

4 ft

1.5 ft
G B

45�

Prob. 15–121

B

A

C

4 5

3

vB � 25 ft/s
vA � 12 ft/s

vC

Prob. 15–122

v

a

Prob. 15–125
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•15–129. The tractor together with the empty tank has a
total mass of 4 Mg. The tank is filled with 2 Mg of water.
The water is discharged at a constant rate of with a
constant velocity of , measured relative to the tractor.
If the tractor starts from rest, and the rear wheels provide a
resultant traction force of 250 N, determine the velocity
and acceleration of the tractor at the instant the tank
becomes empty.

5 m>s
50 kg>s

*15–128. The bin deposits gravel onto the conveyor belt at
the rate of 1500 . If the speed of the belt is 5 ,
determine how much greater the tension in the top portion
of the belt must be than that in the bottom portion in order
to pull the belt forward.

ft>slb>min

15–126. A plow located on the front of a locomotive
scoops up snow at the rate of and stores it in the
train. If the locomotive is traveling at a constant speed of
12 , determine the resistance to motion caused by the
shoveling. The specific weight of snow is .

15–127. The boat has a mass of 180 kg and is traveling
forward on a river with a constant velocity of 70 ,
measured relative to the river. The river is flowing in the
opposite direction at 5 . If a tube is placed in the water,
as shown, and it collects 40 kg of water in the boat in 80 s,
determine the horizontal thrust T on the tube that is
required to overcome the resistance due to the water
collection and yet maintain the constant speed of the boat.

.rw = 1 Mg>m3

km>h
km>h

gs = 6 lb>ft3
ft>s

10 ft3>s

15–130. The second stage B of the two-stage rocket has a
mass of 5 Mg (empty) and is launched from the first stage A
with an initial velocity of 600 . The fuel in the second
stage has a mass of 0.7 Mg and is consumed at the rate of
4 . If it is ejected from the rocket at the rate of 3 ,
measured relative to B, determine the acceleration of B at
the instant the engine is fired and just before all the fuel is
consumed. Neglect the effects of gravitation and air
resistance.

km>skg>s
km>h

T vR � 5 km/h

Prob. 15–127

Tb

Tt

5 ft/s

Prob. 15–128

F

Prob. 15–129

vB � 600 km/hB

A

Prob. 15–130
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•15–133. The truck has a mass of 50 Mg when empty.
When it is unloading of sand at a constant rate of

, the sand flows out the back at a speed of 7 ,
measured relative to the truck, in the direction shown. If the
truck is free to roll, determine its initial acceleration just as
the sand begins to fall out. Neglect the mass of the wheels
and any frictional resistance to motion. The density of sand
is .rs = 1520 kg>m3

m>s0.8 m3>s
5 m3

*15–132. The cart has a mass M and is filled with water
that has a mass . If a pump ejects the water through a
nozzle having a cross-sectional area A at a constant rate
of relative to the cart, determine the velocity of the cart
as a function of time. What is the maximum speed of the
cart assuming all the water can be pumped out? The
frictional resistance to forward motion is F. The density of
the water is .r

v0

m0

15–131. The 12-Mg jet airplane has a constant speed of
950 when it is flying along a horizontal straight line.
Air enters the intake scoops S at the rate of . If the
engine burns fuel at the rate of 0.4 and the gas (air and
fuel) is exhausted relative to the plane with a speed of
450 , determine the resultant drag force exerted on the
plane by air resistance. Assume that air has a constant
density of . Hint: Since mass both enters and exits
the plane, Eqs. 15–28 and 15–29 must be combined to yield

©Fs = m
dv

dt
- vD>e

dme
dt

+ vD>i
dmi
dt

.

1.22 kg>m3

m>s
kg>s

50 m3>s
km>h

15–134. The truck has a mass and is used to tow the
smooth chain having a total length l and a mass per unit of
length . If the chain is originally piled up, determine the
tractive force F that must be supplied by the rear wheels of
the truck necessary to maintain a constant speed while the
chain is being drawn out.

v

m¿

m0

v � 950 km/h

S

Prob. 15–131

Prob. 15–132

45�

7 m/s

a

Prob. 15–133

v

F

Prob. 15–134

h

y

d
A

Prob. 15–135

15–135. The chain has a total length and a mass per
unit length of . If a portion h of the chain is suspended
over the table and released, determine the velocity of its
end A as a function of its position y. Neglect friction.

m¿
L 6 d
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15–139. A rocket has an empty weight of 500 lb and
carries 300 lb of fuel. If the fuel is burned at the rate of

and ejected with a velocity of relative to
the rocket, determine the maximum speed attained by the
rocket starting from rest. Neglect the effect of gravitation
on the rocket.

*15–140. Determine the magnitude of force F as a function
of time, which must be applied to the end of the cord at A to
raise the hook H with a constant speed Initially
the chain is at rest on the ground. Neglect the mass of the
cord and the hook. The chain has a mass of .2 kg>m

v = 0.4 m>s.

4400 ft>s1.5 lb>s

•15–137. A coil of heavy open chain is used to reduce the
stopping distance of a sled that has a mass M and travels at
a speed of . Determine the required mass per unit length
of the chain needed to slow down the sled to within
a distance if the sled is hooked to the chain at .
Neglect friction between the chain and the ground.

15–138. The car is used to scoop up water that is lying in a
trough at the tracks. Determine the force needed to pull the
car forward at constant velocity v for each of the three
cases. The scoop has a cross-sectional area A and the
density of water is rw .

x = 0x = s
(1>2)v0

v0

*15–136. A commercial jet aircraft has a mass of 150 Mg
and is cruising at a constant speed of in level flight

. If each of the two engines draws in air at a rate of
and ejects it with a velocity of , relative to

the aircraft, determine the maximum angle of inclination 
at which the aircraft can fly with a constant speed of

. Assume that air resistance (drag) is proportional
to the square of the speed, that is, , where c is a
constant to be determined. The engines are operating with
the same power in both cases. Neglect the amount of fuel
consumed.

FD = cv2
750 km>h

u

900 m>s1000 kg>s
(u = 0°)

850 km>h

•15–141. The earthmover initially carries of sand
having a density of The sand is unloaded
horizontally through a dumping port P at a rate of

measured relative to the port. If the earthmover
maintains a constant resultant tractive force at its
front wheels to provide forward motion, determine its
acceleration when half the sand is dumped. When empty,
the earthmover has a mass of 30 Mg. Neglect any resistance
to forward motion and the mass of the wheels. The rear
wheels are free to roll.

F = 4 kN
900 kg>s

2.5-m2
1520 kg>m3.

10 m3

u

Prob. 15–136

F1

(a) (b)

F2

v v

F3

v

(c)

Prob. 15–138

v � 0.4 m/s
H

A

Prob. 15–140

P

F

Prob. 15–141
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*15–144. The rocket has an initial mass including the
fuel. For practical reasons desired for the crew, it is required
that it maintain a constant upward acceleration If the
fuel is expelled from the rocket at a relative speed 
determine the rate at which the fuel should be consumed to
maintain the motion. Neglect air resistance, and assume that
the gravitational acceleration is constant.

ve>r
a0 .

m0 ,

15–143. The jet is traveling at a speed of 30°
with the horizontal. If the fuel is being spent at and
the engine takes in air at whereas the exhaust gas
(air and fuel) has a relative speed of determine
the acceleration of the plane at this instant. The drag
resistance of the air is where the speed is
measured in ft/s. The jet has a weight of 15 000 lb. Hint: See
Prob. 15–131.

FD = 10.7v22  lb,

32 800 ft>s,
400 lb>s,

3 lb>s,
500 mi>h,

15–142. The earthmover initially carries of sand
having a density of The sand is unloaded
horizontally through a dumping port P at a rate of

measured relative to the port. Determine the
resultant tractive force F at its front wheels if the acceleration
of the earthmover is when half the sand is dumped.
When empty, the earthmover has a mass of 30 Mg. Neglect
any resistance to forward motion and the mass of the wheels.
The rear wheels are free to roll.

0.1 m>s2

900 kg>s
2.5-m2

1520 kg>m3.
10 m3

•15–145. If the chain is lowered at a constant speed,
determine the normal reaction exerted on the floor as a
function of time.The chain has a weight of and a total
length of 20 ft.

5 lb>ft

P

F

Prob. 15–142

500 mi/h

30�

Prob. 15–143

a0

Prob. 15–144

20 ft

v � 4 ft/s

Prob. 15–145
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CONCEPTUAL PROBLEMS

P15–3. The train engine on the left, is at rest, and the
one on the right, is coasting to the left. If the engines are
identical, use numerical values to show how to determine
the maximum compression in each of the spring bumpers
that are mounted in the front of the engines. Each engine is
free to roll.

B,
A,

P15–2. The steel wrecking “ball” is suspended from the
boom using an old rubber tire The crane operator lifts
the ball then allows it to drop freely to break up the
concrete. Explain, using appropriate numerical data, why it
is a good idea to use the rubber tire for this work.

A.

P15–1. The baseball travels to the left when it is struck by
the bat. If the ball then moves horizontally to the right,
determine which measurements you could make in order to
determine the net impulse given to the ball. Use numerical
values to give an example of how this can be done.

P15–4. Three train cars each have the same mass and are
rolling freely when they strike the fixed bumper. Legs 
and on the bumper are pin-connected at their ends and
the angle is and is . Compare the average
impulse in each leg needed to stop the motion if the cars
have no bumper and if the cars have a spring bumper. Use
appropriate numerical values to explain your answer.

60°BCA30°BAC
BC

AB

P15–1

AA

P15–2

A

C

B

P15–4

A B

P15–3
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CHAPTER REVIEW

Impulse

An impulse is defined as the product of force and time.
Graphically it represents the area under the 
diagram. If the force is constant, then the impulse
becomes I = Fc1t2 - t12.

F– t

Principle of Impulse and Momentum

When the equation of motion, and the
kinematic equation, are combined, we
obtain the principle of impulse and momentum.This is a
vector equation that can be resolved into rectangular
components and used to solve problems that involve
force, velocity, and time. For application, the free-body
diagram should be drawn in order to account for all the
impulses that act on the particle.

a = dv>dt,
©F = ma,

mv1 + ©
L

t2

t1

F dt = mv2

Conservation of Linear Momentum

If the principle of impulse and momentum is applied to
a system of particles, then the collisions between the
particles produce internal impulses that are equal,
opposite, and collinear, and therefore cancel from the
equation. Furthermore, if an external impulse is small,
that is, the force is small and the time is short, then the
impulse can be classified as nonimpulsive and can be
neglected. Consequently, momentum for the system of
particles is conserved.

©mi1vi21 = ©mi1vi22

The conservation-of-momentum equation is useful for
finding the final velocity of a particle when internal
impulses are exerted between two particles and the
initial velocities of the particles is known. If the internal
impulse is to be determined, then one of the particles is
isolated and the principle of impulse and momentum is
applied to this particle.

F

t
t1 t2

F(t)dt
t2

t1
I � �

Impact

When two particles A and B have a direct impact, the
internal impulse between them is equal, opposite, and
collinear. Consequently the conservation of momentum
for this system applies along the line of impact.

mA1vA21 + mB1vB21 = mA1vA22 + mB1vB22
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If the final velocities are unknown, a second equation is
needed for solution. We must use the coefficient of
restitution, e. This experimentally determined coefficient
depends upon the physical properties of the colliding
particles. It can be expressed as the ratio of their relative
velocity after collision to their relative velocity before
collision. If the collision is elastic, no energy is lost and

For a plastic collision e = 0.e = 1.

Principle of Angular Impulse and Momentum

The moment of the linear momentum about an axis (z)
is called the angular momentum.

The principle of angular impulse and momentum is often
used to eliminate unknown impulses by summing the
moments about an axis through which the lines of action
of these impulses produce no moment. For this reason, a
free-body diagram should accompany the solution.

e =
1vB22 - 1vA22
1vA21 - 1vB21

Steady Fluid Streams

Impulse-and-momentum methods are often used to
determine the forces that a device exerts on the mass
flow of a fluid—liquid or gas. To do so, a free-body
diagram of the fluid mass in contact with the device is
drawn in order to identify these forces. Also, the
velocity of the fluid as it flows into and out of a control
volume for the device is calculated. The equations of
steady flow involve summing the forces and the
moments to determine these reactions.

1HO2z = 1d21mv2

1HO21 + ©
L

t2

t1

MO dt = 1HO22

©MO =
dm

dt
1rB * vB - rA * vA2

©F =
dm

dt
1vB - vA2

Line of impact

Plane of contact

Central impact

vA vB
BA

x

yO
d

mv

HO

z

Propulsion with Variable Mass

Some devices, such as a rocket, lose mass as they are
propelled forward. Others gain mass, such as a shovel.
We can account for this mass loss or gain by applying
the principle of impulse and momentum to a control
volume for the device. From this equation, the force
exerted on the device by the mass flow can then be
determined.

Loses Mass

Gains Mass

©Fcv = m
dv

dt
+ vD>i

dmi
dt

©Fcv = m
dv

dt
- vD>e

dme
dt

Line of impact

Plane of contact

Oblique impact

vA

BA

vB

fu

If the impact is oblique, then the conservation of
momentum for the system and the coefficient-of-
restitution equation apply along the line of impact.Also,
conservation of momentum for each particle applies
perpendicular to this line (plane of impact) because no
impulse acts on the particles in this direction.



Kinematics and
Kinetics of a Particle

The topics and problems presented in Chapters 12 through 15 have all
been categorized in order to provide a clear focus for learning the various
problem-solving principles involved. In engineering practice, however, it
is most important to be able to identify an appropriate method for the
solution of a particular problem. In this regard, one must fully understand
the limitations and use of the equations of dynamics, and be able to
recognize which equations and principles to use for the problem’s
solution. For these reasons, we will now summarize the equations and
principles of particle dynamics and provide the opportunity for applying
them to a variety of problems.

Kinematics. Problems in kinematics require a study of the geometry
of motion, and do not account for the forces causing the motion. When
the equations of kinematics are applied, one should clearly establish a
fixed origin and select an appropriate coordinate system used to define
the position of the particle. Once the positive direction of each
coordinate axis is established, then the directions of the components of
position, velocity, and acceleration can be determined from the algebraic
sign of their numerical quantities.

1
R E V I E W



RE V I E W 1 KI N E M AT I C S A N D KI N E T I C S O F A PA RT I C L E 299

Rectilinear Motion. Variable Acceleration. If a mathematical (or
graphical) relation is established between any two of the four variables ,

, , and , then a third variable can be determined by using one of the
following equations which relates all three variables.

Constant Acceleration. Be absolutely certain that the acceleration is
constant when using the following equations:

Curvilinear Motion. x, y, z Coordinates. These coordinates are often
used when the motion can be resolved into rectangular components.They
are also useful for studying projectile motion since the acceleration of the
projectile is always downward.

n, t, b Coordinates. These coordinates are particularly advantageous for
studying the particle’s acceleration along a known path. This is because
the and components of represent the separate changes in the
magnitude and direction of the velocity, respectively, and these
components can be readily formulated.

where

when the path is given.

, , Coordinates. These coordinates are used when data regarding the
angular motion of the radial coordinate is given to describe the particle’s
motion. Also, some paths of motion can conveniently be described using
these coordinates.

az = z$vz = z#
au = ru

$
+ 2r

#
u
#

vu = ru
#

ar = r$ - ru
#
2vr = r#

r
zur

y = f(x)

r = ` [1 + 1dy>dx2243>2
d2y>dx2 `

an =
v2

r

at = v
# = v

dv

ds

v = s#

ant

az = v# zvz = z#
ay = v# yvy = y#
ax = v# xvx = x#

v2 = v2
0 + 2ac1s - s02v = v0 + acts = s0 + v0t + 1

2act
2

a ds = v dva =
dv

dt
v =

ds

dt

tav
s
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Relative Motion. If the origin of a translating coordinate system is
established at particle , then for particle ,

Here the relative motion is measured by an observer fixed in the
translating coordinate system.

Kinetics. Problems in kinetics involve the analysis of forces which
cause the motion. When applying the equations of kinetics, it is
absolutely necessary that measurements of the motion be made from an
inertial coordinate system, i.e., one that does not rotate and is either fixed
or translates with constant velocity. If a problem requires simultaneous
solution of the equations of kinetics and kinematics, then it is important
that the coordinate systems selected for writing each of the equations
define the positive directions of the axes in the same manner.

Equations of Motion. These equations are used to solve for the
particle’s acceleration or the forces causing the motion. If they are used to
determine a particle’s position, velocity, or time of motion, then kinematics
will also have to be considered to complete the solution. Before applying
the equations of motion, always draw a free-body diagram to identify all
the forces acting on the particle. Also, establish the direction of the
particle’s acceleration or its components. (A kinetic diagram may
accompany the solution in order to graphically account for the vector.)

Work and Energy. The equation of work and energy represents an
integrated form of the tangential equation of motion, ,
combined with kinematics ( ). It is used to solve problems
involving force, velocity, and displacement. Before applying this equation,
always draw a free-body diagram in order to identify the forces which do
work on the particle.

where

(kinetic energy)

(work of a variable force)

(work of a constant force)

(work of a weight)

(work of an elastic spring)Us = -112ks2
2 - 1

2ks
2
12

UW = -W ¢y
UFc = Fc cos u1s2 - s12
UF =

L

s2

s1

F cos u ds

T = 1
2mv

2

T1 + ©U1-2 = T2

at ds = v dv
©Ft = mat

©Fz = maz©Fb = 0©Fz = maz

©Fu = mau©Ft = mat©Fy = may

©Fr = mar©Fn = man©Fx = max

ma

aB = aA + aB>A
vB = vA + vB>A
rB = rA + rB>A

BA
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If the forces acting on the particle are conservative forces, i.e., those
that do not cause a dissipation of energy, such as friction, then apply
the conservation of energy equation. This equation is easier to use
than the equation of work and energy since it applies at only two
points on the path and does not require calculation of the work done
by a force as the particle moves along the path.

where and

(gravitational potential energy)

(elastic potential energy)

If the power developed by a force is to be determined, use

where is the velocity of the particle acted upon by the force F.

Impulse and Momentum. The equation of linear impulse and
momentum is an integrated form of the equation of motion, ,
combined with kinematics ( ). It is used to solve problems
involving force, velocity, and time. Before applying this equation, one
should always draw the free-body diagram, in order to identify all the
forces that cause impulses on the particle. From the diagram the impulsive
and nonimpulsive forces should be identified. Recall that the
nonimpulsive forces can be neglected in the analysis during the time of
impact. Also, establish the direction of the particle’s velocity just before
and just after the impulses are applied. As an alternative procedure,
impulse and momentum diagrams may accompany the solution in order
to graphically account for the terms in the equation.

If several particles are involved in the problem, consider applying the
conservation of momentum to the system in order to eliminate the
internal impulses from the analysis. This can be done in a specified
direction, provided no external impulses act on the particles in that
direction.

If the problem involves impact and the coefficient of restitution is
given, then apply the following equation.

(along line of impact)e =
1vB22 - 1vA22
1vA21 - 1vB21

e

©mv1 = ©mv2

mv1 + ©
L

t2

t1

F dt = mv2

a = dv/dt
©F = ma

v

P =
dU

dt
= F # v

Ve = 1
2ks

2

Vg = Wy

V = Vg + Ve

T1 + V1 = T2 + V2
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Remember that during impact the principle of work and energy cannot
be used, since the particles deform and therefore the work due to the
internal forces will be unknown.The principle of work and energy can be
used, however, to determine the energy loss during the collision once the
particle’s initial and final velocities are determined.

The principle of angular impulse and momentum and the conservation
of angular momentum can be applied about an axis in order to eliminate
some of the unknown impulses acting on the particle during the period
when its motion is studied. Investigation of the particle’s free-body
diagram (or the impulse diagram) will aid in choosing the axis for
application.

The following problems provide an opportunity for applying the above
concepts. They are presented in random order so that practice may be
gained in identifying the various types of problems and developing the
skills necessary for their solution.

1HO21 = 1HO22

1HO21 + ©
L

t2

t1

MO dt = 1HO22

REVIEW PROBLEMS

R1–2. Cartons having a mass of are required to move
along the assembly line with a constant speed of 
Determine the smallest radius of curvature, , for the
conveyor so the cartons do not slip.The coefficients of static
and kinetic friction between a carton and the conveyor are

and respectively.mk = 0.5,ms = 0.7

r

8 m>s.
5 kgR1–1. The ball is thrown horizontally with a speed of

Find the equation of the path, and then
determine the ball’s velocity and the normal and tangential
components of acceleration when t = 0.25 s.

y = f(x),8 m>s.

y

x
vA � 8 m/s

A

Prob. R1–1

8 m/s

r

Prob. R1–2
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x

y

Prob. R1–4

5
12
13

v ¿ � 4 ft/s

B A

Prob. R1–5

R1–7. The man has a weight of and jumps from
rest onto the platform that has a weight of The
platform is mounted on a spring, which has a stiffness

If the coefficient of restitution between the
man and the platform is and the man holds himself
rigid during the motion, determine the required height of
the jump if the maximum compression of the spring is 2 ft.

h
e = 0.6,

k = 200 lb>ft.
60 lb.P

100 lbA

R1–5. The boy jumps off the flat car at with a velocity of
relative to the car as shown. If he lands on the

second flat car , determine the final speed of both cars
after the motion. Each car has a weight of The boy’s
weight is Both cars are originally at rest. Neglect the
mass of the car’s wheels.

60 lb.
80 lb.

B
v¿ = 4 ft>s

A

R1–3. A small metal particle travels downward through a
fluid medium while being subjected to the attraction of a
magnetic field such that its position is 
where is in seconds. Determine (a) the particle’s
displacement from to and (b) the velocity
and acceleration of the particle when .

*R1–4. The flight path of a jet aircraft as it takes off is
defined by the parametric equations and

where is the time after take-off, measured in
seconds, and and are given in meters. If the plane starts
to level off at determine at this instant (a) the
horizontal distance it is from the airport, (b) its altitude,
(c) its speed, and (d) the magnitude of its acceleration.

t = 40 s,
yx
ty = 0.03t3,

x = 1.25t2

t = 5 s
t = 4 s,t = 2 s

t
s = (15t3 - 3t) mm,

*R1–8. The baggage truck has a mass of and is
used to pull each of the 300-kg cars. Determine the tension
in the couplings at and if the tractive force on the
truck is What is the speed of the truck when

starting from rest? The car wheels are free to roll.
Neglect the mass of the wheels.

R1–9. The baggage truck has a mass of and is
used to pull each of the 300-kg cars. If the tractive force 
on the truck is determine the acceleration of
the truck. What is the acceleration of the truck if the
coupling at suddenly fails? The car wheels are free to roll.
Neglect the mass of the wheels.

C

F = 480 N,
F

800 kgA

t = 2 s,
F = 480 N.

FCB

800 kgA

R1-6. The man A has a weight of and jumps from
rest at a height onto a platform P that has a weight
of The platform is mounted on a spring, which has a
stiffness Determine (a) the velocities of A
and P just after impact and (b) the maximum compression
imparted to the spring by the impact.Assume the coefficient
of restitution between the man and the platform is 
and the man holds himself rigid during the motion.

e = 0.6,

k = 200 lb>ft.
60 lb.

h = 8 ft
175 lb

P

A

h

Probs. R1–6/7

A

BC

F

Probs. R1–8/9
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R1–14. The 5-lb cylinder falls past with a speed
onto the platform. Determine the maximum

displacement of the platform, caused by the collision. The
spring has an unstretched length of and is originally
kept in compression by the 1-ft-long cables attached to the
platform. Neglect the mass of the platform and spring and
any energy lost during the collision.

1.75 ft

vA =  10 ft>s
A

*R1–12. The skier starts fom rest at and travels down
the ramp. If friction and air resistance can be neglected,
determine his speed when he reaches . Also, compute
the distance to where he strikes the ground at , if he
makes the jump traveling horizontally at . Neglect the
skier’s size. He has a mass of 70 kg.

B
Cs

BvB

A

R1–10. A car travels at when the brakes are
suddenly applied, causing a constant deceleration of

Determine the time required to stop the car and
the distance traveled before stopping.

R1–11. Determine the speed of block if the end of the
cable at is pulled downward with a speed of What
is the relative velocity of the block with respect to ?C

10 ft>s.C
B

10 ft>s2.

80 ft>s

R1–15. The block has a mass of and rests on the
surface of the cart having a mass of If the spring
which is attached to the cart and not the block is
compressed and the system is released from rest,
determine the speed of the block after the spring becomes
undeformed. Neglect the mass of the cart’s wheels and the
spring in the calculation. Also neglect friction. Take

*R1–16. The block has a mass of and rests on the
surface of the cart having a mass of If the spring
which is attached to the cart and not the block is
compressed and the system is released from rest,
determine the speed of the block with respect to the cart
after the spring becomes undeformed. Neglect the mass of
the cart’s wheels and the spring in the calculation. Also
neglect friction. Take k = 300 N>m.

0.2 m

75 kg.
50 kg

k = 300 N>m.

0.2 m

75 kg.
50 kg

B

C

10 ft/s

Prob. R1–11

4 m

A

B

vB50 m

s
30�C

Prob. R1–12

AvA � 10 ft/s

1 ft

3 ft

k � 400 lb/ft

Prob. R1–14

B

k

C

Probs. R1–15/16

R1–13. The position of a particle is defined by
where t is in seconds and

the arguments for the sine and cosine are given in radians.
Determine the magnitudes of the velocity and acceleration
of the particle when Also, prove that the path of the
particle is elliptical.

t = 1 s.

r = 551cos 2t2i + 41sin 2t2j6 m,



C

P

v

0.75 ft
0.5 ft

2 ft

k � 30 lb/in.

k¿ � 50 lb/in.
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R1–21. Four inelastic cables are attached to plate and
hold the 1-ft-long spring in compression when no
weight is on the plate.There is also a 0.5-ft-long undeformed
spring nested within this compressed spring. Determine the
speed of the 10-lb block when it is above the plate, so
that after it strikes the plate, it compresses the nested
spring, having a stiffness of an amount of 
Neglect the mass of the plate and springs and any energy
lost in the collision.

0.20 ft.50 lb>in.,

2 ftv

0.25 ft
PC

R1–18. At the instant shown, cars and travel at speeds
of and respectively. If is increasing its
speed by while maintains its constant speed,
determine the velocity and acceleration of with respect to

Car moves along a curve having a radius of curvature
of

R1–19. At the instant shown, cars and travel at speeds
of and respectively. If is decreasing its
speed at while is increasing its speed at

determine the acceleration of with respect to
Car moves along a curve having a radius of curvature

of 0.75 mi.
BA.

B800 mi>h2,
A1500 mi>h2

B40 mi>h,55 mi>h
BA

0.5 mi.
BA.

B
A1200 mi>h2,

B40 mi>h,55 mi>h
BA

R1–17. A ball is launched from point at an angle of 
Determine the maximum and minimum speed it can
have so that it lands in the container.

vA

30°.A

*R1–20. Four inelastic cables are attached to a plate 
and hold the 1-ft-long spring in compression when
no weight is on the plate. There is also an undeformed
spring nested within this compressed spring. If the block,
having a weight of is moving downward at 
when it is above the plate, determine the maximum
compression in each spring after it strikes the plate.
Neglect the mass of the plate and springs and any energy
lost in the collision.

2 ft
v = 4 ft>s,10 lb,

0.25 ft
PC

1 m

vA

A

CB

30�

4 m
2.5 m

0.25 m

Prob. R1–17

vB � 40 mi/h

vA � 55 mi/h

B

A 30�

Probs. R1–18/19

Probs. R1–20/21

z

S

A

0.25 m

3

4

5

Probs. R1–22/23

R1–22. The 2-kg spool fits loosely on the rotating
inclined rod for which the coefficient of static friction is

If the spool is located from , determine
the minimum constant speed the spool can have so that it
does not slip down the rod.

R1–23. The 2-kg spool fits loosely on the rotating inclined
rod for which the coefficient of static friction is If
the spool is located from , determine the maximum
constant speed the spool can have so that it does not slip up
the rod.

A0.25 m
ms = 0.2.

S

A0.25 mms = 0.2.

S
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R1–27. The 150-lb man lies against the cushion for which
the coefficient of static friction is Determine the
resultant normal and frictional forces the cushion exerts on
him if, due to rotation about the z axis, he has a constant
speed Neglect the size of the man. Take

*R1–28. The 150-lb man lies against the cushion for which
the coefficient of static friction is If he rotates
about the z axis with a constant speed determine
the smallest angle of the cushion at which he will begin to
slip up the cushion.

u

v = 30 ft>s,
ms = 0.5.

u = 60°.
v = 20 ft>s.

ms = 0.5.

R1–25. The bottle rests at a distance of from the center
of the horizontal platform. If the coefficient of static friction
between the bottle and the platform is determine
the maximum speed that the bottle can attain before
slipping. Assume the angular motion of the platform is
slowly increasing.

R1–26. Work Prob. R1–25 assuming that the platform
starts rotating from rest so that the speed of the bottle is
increased at 2 ft>s2.

ms = 0.3,

3 ft

*R1–24. The winding drum draws in the cable at an
accelerated rate of Determine the cable tension if
the suspended crate has a mass of 800 kg.

5 m>s2.
D

R1–29. The motor pulls on the cable at with a force
where is in seconds. If the 34-lb crate is

originally at rest on the ground when determine its
speed when Neglect the mass of the cable and
pulleys. Hint: First find the time needed to begin lifting
the crate.

t = 4 s.
t = 0,

tF = (30 + t2) lb,
A

D

Prob. R1–24

3 ft

Probs. R1–25/26

A

Prob. R1–29

z

G

8 ft

u

Probs. R1–27/28
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R1–33. The acceleration of a particle along a straight line is
defined by , where is in seconds. When

, and . When , determine 
(a) the particle’s position, (b) the total distance traveled, and
(c) the velocity. Assume the positive direction is to the right.

R1–34. The 400-kg mine car is hoisted up the incline using
the cable and motor . For a short time, the force in the
cable is where is in seconds. If the car has
an initial velocity when determine its
velocity when 

R1–35. The 400-kg mine car is hoisted up the incline using
the cable and motor . For a short time, the force in the
cable is where is in seconds. If the car has
an initial velocity at and determine
the distance it moves up the plane when t = 2 s.

t = 0,s = 0v1 = 2 m>s
tF = (3200t2) N,

M

t = 2 s.
t = 0,v1 = 2 m>s

tF = (3200t2) N,
M

t = 9 sv = 10 m>ss = 1 mt = 0
ta = (2t - 9) m>s2

R1–31. The collar has a mass of and travels along the
smooth horizontal rod defined by the equiangular spiral

where is in radians. Determine the tangential
force and the normal force acting on the collar
when if force maintains a constant angular motion 

*R1–32. The collar has a mass of and travels along the
smooth horizontal rod defined by the equiangular spiral

where is in radians. Determine the tangential
force and the normal force acting on the collar when

if force maintains a constant angular motion 
u
#
= 2 rad>s.

Fu = 90°,
NF

ur = (eu) m,

2 kg

u
#
= 2 rad>s.

Fu = 45°,
NF

ur = (eu) m,

2 kg

R1–30. The motor pulls on the cable at with a force
where is in seconds. If the 34-lb crate is

originally at rest on the ground when determine the
crate’s velocity when Neglect the mass of the cable
and pulleys. Hint: First find the time needed to begin lifting
the crate.

t = 2 s.
t = 0,

tF = (e2t) lb,
A

*R1–36. The rocket sled has a mass of and travels
along the smooth horizontal track such that it maintains a
constant power output of Neglect the loss of fuel
mass and air resistance, and determine how far the sled must
travel to reach a speed of starting from rest.v = 60 m>s

450 kW.

4 Mg

15

8
17

M

v1 � 2 m/s

Probs. R1–34/35

v

T

Prob. R1–36

A

Prob. R1–30

F

r � e
r

u

u

Probs. R1–31/32
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R1–41. Block , having a mass , is released from rest,
falls a distance and strikes the plate having a mass 2 .
If the coefficient of restitution between and is ,
determine the velocity of the plate just after collision. The
spring has a stiffness .

R1–42. Block , having a mass of is released from
rest, falls a distance and strikes the plate 
having a mass of If the coefficient of restitution
between and is determine the velocity of the
block just after collision. The spring has a stiffness
k = 30 N>m.

e = 0.6,BA
3 kg.

Bh = 0.5 m,
2 kg,A

k

eBA
mBh

mA

R1–39. The assembly consists of two blocks and which
have masses of and respectively. Determine the
speed of each block when descends The blocks are
released from rest. Neglect the mass of the pulleys and cords.

*R1–40. The assembly consists of two blocks and ,
which have masses of and respectively.
Determine the distance must descend in order for to
achieve a speed of starting from rest.3 m>s

AB
30 kg,20 kg

BA

1.5 m.B
30 kg,20 kg

BA

R1–37. The collar has a mass of and can slide freely on
the smooth rod. The attached springs are undeformed when

Determine the speed of the collar after the
applied force causes it to be displaced so that

When the collar is at rest.

R1–38. The collar has a mass of and can slide freely on
the smooth rod. The attached springs are both compressed

when Determine the speed of the collar
after the applied force causes it to be displaced
so that When the collar is at rest.d = 0.5 md = 0.3 m.

F = 100 N
d = 0.5 m.0.4 m

20 kg

d = 0.5 md = 0.3 m.
F = 100 N

d = 0.5 m.

20 kg

R1–43. The cylindrical plug has a weight of and it is
free to move within the confines of the smooth pipe. The
spring has a stiffness and when no motion
occurs the distance Determine the force of the
spring on the plug when the plug is at rest with respect to
the pipe.The plug travels in a circle with a constant speed of

which is caused by the rotation of the pipe about the
vertical axis. Neglect the size of the plug.
15 ft>s,

d = 0.5 ft.
k = 14 lb>ft

2 lb

Probs. R1–39/40

A

B

60�

d
k � 25 N/m

k¿ � 15 N/m

F � 100 N

Probs. R1–37/38

A

B

k

h

Probs. R1–41/42

d

G

k � 14 lb/ft

3 ft

Prob. R1–43
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*R1–48. The position of particles and are
and

respectively, where is in seconds. Determine
the point where the particles collide and their speeds just
before the collision. How long does it take before the
collision occurs?

R1–49. Determine the speed of the automobile if it has the
acceleration shown and is traveling on a road which has a
radius of curvature of Also, what is the
automobile’s rate of increase in speed?

r = 50 m.

t3(t - 2)j6 m,
rB = 53(t2 - 2t + 2)i +rA = 53ti + 9t(2 - t)j6 m

BA

R1–46. A particle of mass is fired at an angle with a
velocity in a liquid that develops a drag resistance

where is a constant. Determine the maximum
or terminal speed reached by the particle.

R1–47. A projectile of mass is fired into a liquid at an
angle with an initial velocity as shown. If the liquid
develops a friction or drag resistance on the projectile
which is proportional to its velocity, i.e., where 
is a constant, determine the and components of its
position at any instant. Also, what is the maximum distance

that it travels?xmax

yx
kF = -kv,

v0u0

m

kF = -kv,
v0

u0m

*R1–44. A 20-g bullet is fired horizontally into the 300-g
block which rests on the smooth surface. After the bullet
becomes embedded into the block, the block moves to the
right before momentarily coming to rest. Determine
the speed of the bullet. The spring has a stiffness

and is originally unstretched.

R1–45. The 20-g bullet is fired horizontally at
into the 300-g block which rests on the

smooth surface. Determine the distance the block moves to
the right before momentarily coming to rest. The spring has
a stiffness and is originally unstretched.k = 200 N>m

(vB)1 = 1200 m>s

k = 200 N>m
(vB)1

0.3 m

R1–50. The spring has a stiffness and an
unstretched length of If it is attached to the 5-lb smooth
collar and the collar is released from rest at , determine
the speed of the collar just before it strikes the end of the
rod at . Neglect the size of the collar.B

A
2 ft.

k = 3 lb>ft

k � 200 N/m(vB)1

Probs. R1–44/45

y

xO

v0

0u

Probs. R1–46/47

� 40�

a � 3 m/s2

n

t

u

Prob. R1–49

z

x
y

B

A

k � 3 lb/ft

O

6 ft

4 ft

3 ft

1 ft
1 ft

2 ft

Prob. R1–50



The blades of each wind turbine rotate about a fixed axis with variable angular motion.



Planar Kinematics 
of a Rigid Body

CHAPTER OBJECTIVES

• To classify the various types of rigid-body planar motion.

• To investigate rigid-body translation and angular motion about a
fixed axis.

• To study planar motion using an absolute motion analysis.

• To provide a relative motion analysis of velocity and acceleration
using a translating frame of reference.

• To show how to find the instantaneous center of zero velocity and
determine the velocity of a point on a body using this method.

• To provide a relative-motion analysis of velocity and acceleration
using a rotating frame of reference.

16
Planar

16.1 Planar Rigid-Body Motion

In this chapter, the planar kinematics of a rigid body will be discussed.
This study is important for the design of gears, cams, and mechanisms used
for many mechanical operations. Once the kinematics is thoroughly
understood, then we can apply the equations of motion, which relate the
forces on the body to the body’s motion.

The planar motion of a body occurs when all the particles of a rigid
body move along paths which are equidistant from a fixed plane. There
are three types of rigid body planar motion, in order of increasing
complexity, they are
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● Translation. This type of motion occurs when a line in the body
remains parallel to its original orientation throughout the motion.
When the paths of motion for any two points on the body are
parallel lines, the motion is called rectilinear translation, Fig. 16–1a.
If the paths of motion are along curved lines which are equidistant,
the motion is called curvilinear translation, Fig. 16–1b.

● Rotation about a fixed axis. When a rigid body rotates about a fixed
axis, all the particles of the body, except those which lie on the axis
of rotation, move along circular paths, Fig. 16–1c.

● General plane motion. When a body is subjected to general plane
motion, it undergoes a combination of translation and rotation,
Fig. 16–1d. The translation occurs within a reference plane, and the
rotation occurs about an axis perpendicular to the reference plane.

In the following sections we will consider each of these motions in detail.
Examples of bodies undergoing these motions are shown in Fig. 16–2.

Path of rectilinear translation

(a)

Path of curvilinear translation

(b)

Rotation about a fixed axis

(c)

General plane motion

(d)

Fig. 16–1

r
r

Rotation about a fixed axis

Curvilinear translation
General plane motion

Rectilinear translation

Fig. 16–2
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16.2 Translation

Consider a rigid body which is subjected to either rectilinear or curvilinear
translation in the x–y plane, Fig. 16–3.

y

x
O

y¿

x¿
A

B

rB/A

rA

rB

Translating
coordinate system

Fixed
coordinate system

Fig. 16–3

Position. The locations of points A and B on the body are defined
with respect to fixed x, y reference frame using position vectors and

The translating coordinate system is fixed in the body and has its
origin at A, hereafter referred to as the base point.The position of B with
respect to A is denoted by the relative-position vector (“r of B with
respect to A”). By vector addition,

Velocity. A relation between the instantaneous velocities of A and B
is obtained by taking the time derivative of this equation, which yields

Here and denote absolute velocities since
these vectors are measured with respect to the x, y axes. The term

since the magnitude of is constant by definition of a
rigid body, and because the body is translating the direction of is also
constant. Therefore,

Acceleration. Taking the time derivative of the velocity equation yields
a similar relationship between the instantaneous accelerations of A and B:

The above two equations indicate that all points in a rigid body
subjected to either rectilinear or curvilinear translation move with the same
velocity and acceleration. As a result, the kinematics of particle motion,
discussed in Chapter 12, can also be used to specify the kinematics of
points located in a translating rigid body.

aB = aA

vB = vA

rB>A
rB>AdrB>A>dt = 0,

vBvAvB = vA + drB>A>dt.

rB = rA + rB>A

rB>A

y¿x¿,rB .
rA

Riders on this amusement ride are
subjected to curvilinear translation, since
the vehicle moves in a circular path yet it
always remains in an upright position.
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16.3 Rotation about a Fixed Axis

When a body rotates about a fixed axis, any point P located in the body
travels along a circular path. To study this motion it is first necessary to
discuss the angular motion of the body about the axis.

Angular Motion. Since a point is without dimension, it cannot
have angular motion. Only lines or bodies undergo angular motion. For
example, consider the body shown in Fig. 16–4a and the angular motion
of a radial line r located within the shaded plane.

Angular Position. At the instant shown, the angular position of r is
defined by the angle measured from a fixed reference line to r.

Angular Displacement. The change in the angular position, which
can be measured as a differential is called the angular displacement.*
This vector has a magnitude of measured in degrees, radians, or
revolutions, where Since motion is about a fixed axis, the
direction of is always along this axis. Specifically, the direction is
determined by the right-hand rule; that is, the fingers of the right hand are
curled with the sense of rotation, so that in this case the thumb, or 
points upward, Fig. 16–4a. In two dimensions, as shown by the top view of
the shaded plane, Fig. 16–4b, both and are counterclockwise, and so
the thumb points outward from the page.

Angular Velocity. The time rate of change in the angular position
is called the angular velocity (omega). Since occurs during an
instant of time dt, then,

(a (16–1)v =
du

dt
+2

dUV

duu

dU,

dU
1 rev = 2p rad.

du,
dU,

u,

*It is shown in Sec. 20.1 that finite rotations or finite angular displacements are not vector
quantities, although differential rotations are vectors.dU

O

P

du
u

r

(a)

dU

A

V

O

dU
P

r

(b)

V A

u

Fig. 16–4

This vector has a magnitude which is often measured in . It is
expressed here in scalar form since its direction is also along the axis of
rotation, Fig. 16–4a. When indicating the angular motion in the shaded
plane, Fig. 16–4b, we can refer to the sense of rotation as clockwise or
counterclockwise. Here we have arbitrarily chosen counterclockwise
rotations as positive and indicated this by the curl shown in parentheses
next to Eq. 16–1 Realize, however, that the directional sense of is
actually outward from the page.

V

rad>s
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Angular Acceleration. The angular acceleration (alpha)
measures the time rate of change of the angular velocity. The magnitude
of this vector is

(a (16–2)

Using Eq. 16–1, it is also possible to express as

(a (16–3)

The line of action of is the same as that for Fig. 16–4a; however, its
sense of direction depends on whether is increasing or decreasing. If 
is decreasing, then is called an angular deceleration and therefore has a
sense of direction which is opposite to 

By eliminating dt from Eqs. 16–1 and 16–2, we obtain a differential
relation between the angular acceleration, angular velocity, and angular
displacement, namely,

(a (16–4)

The similarity between the differential relations for angular motion
and those developed for rectilinear motion of a particle (

and ) should be apparent.

Constant Angular Acceleration. If the angular acceleration of
the body is constant, then Eqs. 16–1, 16–2, and 16–4, when
integrated, yield a set of formulas which relate the body’s angular
velocity, angular position, and time. These equations are similar to
Eqs. 12–4 to 12–6 used for rectilinear motion. The results are

(a (16–5)
(a (16–6)
(a (16–7)

Constant Angular Acceleration

Here and are the initial values of the body’s angular position and
angular velocity, respectively.

v0u0

v2 = v0
2 + 2ac1u - u02+2

u = u0 + v0t + 1
2act

2+2
v = v0 + act+2

A = Ac ,

a ds = v dva = dv>dt, v = ds>dt,

a du = v dv+2

V.
A

VV

V,A

a =
d2u

dt2
+2

a

a =
dv

dt
+2

A
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Motion of Point P. As the rigid body in Fig. 16–4c rotates, point P
travels along a circular path of radius r with center at point O. This path
is contained within the shaded plane shown in top view, Fig. 16–4d.

Position and Displacement. The position of P is defined by the
position vector r, which extends from O to P. If the body rotates then
P will displace .

Velocity. The velocity of P has a magnitude which can be found by
dividing so that

(16–8)

As shown in Figs. 16–4c and 16–4d, the direction of v is tangent to the
circular path.

Both the magnitude and direction of v can also be accounted for by
using the cross product of and (see Appendix B). Here, is directed
from any point on the axis of rotation to point P, Fig. 16–4c. We have

(16–9)

The order of the vectors in this formulation is important, since the cross
product is not commutative, i.e., Notice in Fig. 16–4c
how the correct direction of v is established by the right-hand rule. The
fingers of the right hand are curled from toward ( “cross” ). The
thumb indicates the correct direction of v, which is tangent to the path in
the direction of motion. From Eq. B–8, the magnitude of v in Eq. 16–9 is

and since Fig. 16–4c, then which
agrees with Eq. 16–8. As a special case, the position vector r can be
chosen for Here r lies in the plane of motion and again the velocity of
point P is

(16–10)v = V * r

rP .

v = vr,r = rP sin f,v = vrP sin f,

rPVrPV

V * rP Z rP * V.

v = V * rP

rPrPV

v = vr

ds = rdu by dt

ds = rdu
du

O

P
r

(c)

v

rP

V

f

dU

ds

(d)

O

P

r v

Fig. 16–4 (cont.)
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Acceleration. The acceleration of P can be expressed in terms of its
normal and tangential components. Since and
where and we have

(16–11)

(16–12)

The tangential component of acceleration, Figs. 16–4e and 16–4f,
represents the time rate of change in the velocity’s magnitude. If the
speed of P is increasing, then acts in the same direction as v; if the
speed is decreasing, acts in the opposite direction of v; and finally, if
the speed is constant, is zero.

The normal component of acceleration represents the time rate of
change in the velocity’s direction. The direction of is always toward O,
the center of the circular path, Figs. 16–4e and 16–4f.

Like the velocity, the acceleration of point P can be expressed in terms
of the vector cross product. Taking the time derivative of Eq. 16–9 we
have

Recalling that and using Eq. 16–9
yields

(16–13)

From the definition of the cross product, the first term on the right has a
magnitude and by the right-hand rule, is in
the direction of Fig. 16–4e. Likewise, the second term has a magnitude

and applying the right-hand rule twice, first to
determine the result then it can be seen that this
result is in the same direction as shown in Fig. 16–4e. Noting that this
is also the same direction as which lies in the plane of motion, we can
express in a much simpler form as Hence, Eq. 16–13 can
be identified by its two components as

(16–14)

Since and are perpendicular to one another, if needed the
magnitude of acceleration can be determined from the Pythagorean
theorem; namely, Fig. 16–4f.a = 2an2 + at2,

anat

a = at + an
 = A * r - v2r

an = -v2r.an
-r,

an ,
V * vP ,vP = V * rP

an = v2rP sin f = v2r,
at ,

A * rPat = arP sin f = ar,

a = A * rP + V * 1V * rP2

1drP>dt = v = V * rP2,A = dV>dt,

a =
dv
dt

=
dV

dt
* rP + V *

drP
dt

an

at
at

at

an = v2r

at = ar

a = dv>dt,r = r, v = vr,
an = v2>r,at = dv>dt

O

P
r

(e)

an
a

at

rP

f

V, A

O

P

(f)

an

a

at
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The gears used in the operation of a
crane all rotate about fixed axes.
Engineers must be able to relate their
angular motions in order to properly
design this gear system.

Important Points

• A body can undergo two types of translation. During rectilinear
translation all points follow parallel straight-line paths, and
during curvilinear translation the points follow curved paths that
are the same shape and are equidistant from one another.

• All the points on a translating body move with the same velocity
and acceleration.

• Points located on a body that rotates about a fixed axis follow
circular paths.

• The relation is derived from and
by eliminating dt.

• Once angular motions and are known, the velocity and
acceleration of any point on the body can be determined.

• The velocity always acts tangent to the path of motion.

• The acceleration has two components.The tangential acceleration
measures the rate of change in the magnitude of the velocity and
can be determined from The normal acceleration
measures the rate of change in the direction of the velocity and
can be determined from an = v2r.

at = ar.

av

v = du>dt a = dv>dta du = v dv
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Procedure for Analysis

The velocity and acceleration of a point located on a rigid body that
is rotating about a fixed axis can be determined using the following
procedure.

Angular Motion.
• Establish the positive sense of rotation about the axis of rotation

and show it alongside each kinematic equation as it is applied.
• If a relation is known between any two of the four variables 

and t, then a third variable can be obtained by using one of the
following kinematic equations which relates all three variables.

• If the body’s angular acceleration is constant, then the following
equations can be used:

• Once the solution is obtained, the sense of and is
determined from the algebraic signs of their numerical
quantities.

Motion of Point P.
• In most cases the velocity of P and its two components of

acceleration can be determined from the scalar equations

• If the geometry of the problem is difficult to visualize, the
following vector equations should be used:

• Here is directed from any point on the axis of rotation to
point P, whereas r lies in the plane of motion of P. Either of
these vectors, along with and should be expressed in terms
of its i, j, k components, and, if necessary, the cross products
determined using a determinant expansion (see Eq. B–12).

A,V

rP

an = V * 1V * rP2 = -v2r

at = A * rP = A * r

v = V * rP = V * r

an = v2r

at = ar
v = vr

av,u,

v2 = v0
2 + 2ac1u - u02

u = u0 + v0t + 1
2act

2

v = v0 + act

v =
du

dt
  a =

dv

dt
  a du = v dv

u,
v,a,
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A cord is wrapped around a wheel in Fig. 16–5, which is initially at rest
when . If a force is applied to the cord and gives it an
acceleration where t is in seconds, determine, as a
function of time, (a) the angular velocity of the wheel, and (b) the
angular position of line OP in radians.

SOLUTION

Part (a). The wheel is subjected to rotation about a fixed axis passing
through point O. Thus, point P on the wheel has motion about a
circular path, and the acceleration of this point has both tangential and
normal components. The tangential component is 
since the cord is wrapped around the wheel and moves tangent to it.
Hence the angular acceleration of the wheel is

c

b

Using this result, the wheel’s angular velocity can now be
determined from since this equation relates t, and 
Integrating, with the initial condition that when yields

c

b Ans.

Part (b). Using this result, the angular position of OP can be
found from since this equation relates and t.
Integrating, with the initial condition when we have

c

Ans.

NOTE: We cannot use the equation of constant angular acceleration,
since is a function of time.a

u = 3.33t3 rad

L

u

0
du =

L

t

0
10t2 dt

du

dt
= v = 110t22 rad>s+21

t = 0,u = 0
v,u,v = du>dt, u

v = 10t2 rad>s
L

v

0
dv =

L

t

0
20t dt

a =
dv

dt
= 120t2 rad>s2+21

t = 0,v = 0
v.a,a = dv>dt, v

a = 120t2 rad>s2

14t2 m>s2 = a10.2 m2
1aP2t = ar+21

1aP2t = 14t2 m>s2,

a = 14t2 m>s2,
u = 0

EXAMPLE 16.1

F

0.2 m

P

a

O
u

Fig. 16–5
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EXAMPLE 16.2

The motor shown in the photo is used to turn a wheel and attached
blower contained within the housing. The details of the design are
shown in Fig. 16–6a. If the pulley A connected to the motor begins to
rotate from rest with a constant angular acceleration of 
determine the magnitudes of the velocity and acceleration of point P
on the wheel, after the pulley has turned two revolutions. Assume the
transmission belt does not slip on the pulley and wheel.

SOLUTION

Angular Motion. First we will convert the two revolutions to
radians. Since there are in one revolution, then

Since is constant, the angular velocity of pulley A is therefore

c

The belt has the same speed and tangential component of
acceleration as it passes over the pulley and wheel. Thus,

Motion of P. As shown on the kinematic diagram in Fig. 16–6b,
we have

Ans.

Thus

Ans.aP = 210.3 m>s222 + (2.827 m>s222 = 2.84 m>s2

1aP2n = vB2 rB = 12.659 rad>s2210.4 m2 = 2.827 m>s2

1aP2t = aBrB = 0.750 rad>s2 10.4 m2 = 0.3 m>s2

vP = vBrB = 2.659 rad>s 10.4 m2 = 1.06 m>s

aB = 0.750 rad>s2

2 rad>s2 10.15 m2 = aB10.4 m2at = aArA = aBrB ;

vB = 2.659 rad>s
7.090 rad>s 10.15 m2 = vB10.4 m2v = vArA = vBrB ;

vA = 7.090 rad>s
vA

2 = 0 + 212 rad>s22112.57 rad - 02
v2 = v0

2 + 2ac1u - u02+21
aA

uA = 2 rev a2p rad
1 rev

b = 12.57 rad

2p rad

aA = 2 rad>s2,

P

A

B

(a)

0.4 m

0.15 m
aA � 2 rad/s2

(b)

P

aP

(aP)t

vP

(aP)n

Fig. 16–6
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FUNDAMENTAL PROBLEMS

F16–4. The bucket is hoisted by the rope that wraps around
a drum wheel. If the angular displacement of the wheel is

where is in seconds, determine the
velocity and acceleration of the bucket when t = 3 s.

tu = (0.5t3 + 15t) rad,

F16–3. The flywheel rotates with an angular velocity of
where is in radians. Determine the time

it takes to achieve an angular velocity of 
When t = 0, u = 0.

v = 150 rad>s.
uv = (4 u1/2) rad>s,

F16–1. When the gear rotates 20 revolutions, it achieves an
angular velocity of starting from rest.
Determine its constant angular acceleration and the time
required.

v = 30 rad>s,

F16–5. A wheel has an angular acceleration of
where is in radians. Determine the

magnitude of the velocity and acceleration of a point 
located on its rim after the wheel has rotated 2 revolutions.
The wheel has a radius of 0.2 m and starts from rest.

F16–6. For a short period of time, the motor turns gear 
with a constant angular acceleration of 
starting from rest. Determine the velocity of the cylinder and
the distance it travels in three seconds. The cord is wrapped
around pulley which is rigidly attached to gear B.D

aA = 4.5 rad>s2,
A

P
ua = (0.5 u) rad>s2,

F16–2. The flywheel rotates with an angular velocity of
where is in radians. Determine the

angular acceleration when it has rotated 20 revolutions.
uv = (0.005u2) rad>s,

v
u

F16–1

v u

F16–2

A

B

P P¿
D

C

 75 mm
225 mm

 125 mm

aA � 4.5 rad/s2

F16–6

v

u

F16–3

0.75 ft

v

u

F16–4
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PROBLEMS

*16–4. The torsional pendulum (wheel) undergoes
oscillations in the horizontal plane, such that the angle of
rotation, measured from the equilibrium position, is given
by rad, where t is in seconds. Determine the
maximum velocity of point A located at the periphery of
the wheel while the pendulum is oscillating. What is the
acceleration of point A in terms of t?

u = (0.5 sin 3t)

16–3. The hook is attached to a cord which is wound
around the drum. If it moves from rest with an acceleration
of , determine the angular acceleration of the drum
and its angular velocity after the drum has completed 
10 rev. How many more revolutions will the drum turn after
it has first completed 10 rev and the hook continues to
move downward for 4 s?

20 ft>s2

•16–1. A disk having a radius of 0.5 ft rotates with an
initial angular velocity of 2 and has a constant angular
acceleration of . Determine the magnitudes of the
velocity and acceleration of a point on the rim of the disk
when .

16–2. Just after the fan is turned on, the motor gives the
blade an angular acceleration , where t
is in seconds. Determine the speed of the tip P of one of the
blades when . How many revolutions has the blade
turned in 3 s? When the blade is at rest.t = 0

t = 3 s

a = (20e-0.6t) rad>s2

t = 2 s

1 rad>s2
rad>s

•16–5. The operation of reverse gear in an automotive
transmission is shown. If the engine turns shaft A at

, determine the angular velocity of the drive
shaft, . The radius of each gear is listed in the figure.vB

vA = 40 rad>s

P

1.75 ft

Prob. 16–2

a � 20 ft/s2

2 ft

Prob. 16–3

A
u

2 ft

Prob. 16–4

B
vA � 40 rad/s

v

C

D

G

H

EF

rG � 80 mm
rC � rD � 40 mm

rF � 70 mm
rE � rH � 50 mm

B

A

Prob. 16–5
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•16–9. When only two gears are in mesh, the driving gear
A and the driven gear B will always turn in opposite
directions. In order to get them to turn in the same
direction an idler gear C is used. In the case shown,
determine the angular velocity of gear B when , if
gear A starts from rest and has an angular acceleration of

, where t is in seconds.aA = (3t + 2) rad>s2

t = 5 s

16–7. The gear A on the drive shaft of the outboard motor
has a radius . and the meshed pinion gear B on the
propeller shaft has a radius . Determine the
angular velocity of the propeller in , if the drive shaft
rotates with an angular acceleration ,
where t is in seconds. The propeller is originally at rest and
the motor frame does not move.

*16–8. For the outboard motor in Prob. 16–7, determine
the magnitude of the velocity and acceleration of point P
located on the tip of the propeller at the instant .t = 0.75 s

a = (400t3) rad>s2
t = 1.5 s

rB = 1.2 in
rA = 0.5 in

16–6. The mechanism for a car window winder is shown in
the figure. Here the handle turns the small cog C, which
rotates the spur gear S, thereby rotating the fixed-connected
lever AB which raises track D in which the window rests.
The window is free to slide on the track. If the handle is
wound at , determine the speed of points A and E
and the speed of the window at the instant .u = 30°vw

0.5 rad>s

16–10. During a gust of wind, the blades of the windmill
are given an angular acceleration of ,
where is in radians. If initially the blades have an angular
velocity of 5 , determine the speed of point P, located
at the tip of one of the blades, just after the blade has turned
two revolutions.

rad>s
u

a = (0.2u) rad>s2

20 mm

C

B

A

E

uF

D

S

0.5 rad/s

vw

50 mm

200 mm

200 mm

Prob. 16–6

2.20 in.

P

B

A

Probs. 16–7/8

B

C75 mm

50 mm

Driving gearIdler gear

A

a50 mm
A

Prob. 16–9

2.5 ft

� (0.2u) rad/s2

P

a

Prob. 16–10



16.3 ROTATION ABOUT A FIXED AXIS 325

16

16–14. A disk having a radius of 6 in. rotates about a fixed
axis with an angular velocity of , where t is
in seconds. Determine the tangential and normal components
of acceleration of a point located on the rim of the disk at the
instant the angular displacement is .

16–15. The 50-mm-radius pulley A of the clothes
dryer rotates with an angular acceleration of 

where is in radians. Determine its
angular acceleration when , starting from rest.

*16–16. If the 50-mm-radius motor pulley A of the
clothes dryer rotates with an angular acceleration of

, where t is in seconds, determine
its angular velocity when , starting from rest.t = 3 s
aA = (10 + 50t) rad>s2

t = 1 s
uAaA = (27u1>2

A ) rad>s2,

u = 40 rad

v = (2t + 3) rad>s

*16–12. If the motor of the electric drill turns the
armature shaft S with a constant angular acceleration of

, determine the angular velocity of the shaft
after it has turned 200 rev, starting from rest.

•16–13. If the motor of the electric drill turns the armature
shaft S with an angular velocity of ,
determine the angular velocity and angular acceleration of
the shaft at the instant it has turned 200 rev, starting from rest.

vS = (100t1>2) rad>s

aS = 30 rad>s2

16–11. The can opener operates such that the can is driven
by the drive wheel D. If the armature shaft S on the motor
turns with a constant angular velocity of ,
determine the angular velocity of the can.The radii of S, can
P, drive wheel D, gears A, B, and C, are ,

, , , , and
, respectively.rC = 25 mm

rB = 10 mmrA = 20 mmrD = 7.5 mmrP = 40 mm
rS = 5 mm

40 rad>s

•16–17. The vacuum cleaner’s armature shaft S rotates
with an angular acceleration of , where is
in . Determine the brush’s angular velocity when

, starting from rest. The radii of the shaft and the
brush are 0.25 in. and 1 in., respectively. Neglect the
thickness of the drive belt.

t = 4 s
rad>s

va = 4v3>4 rad>s2

P
B

A

C

D

S

Prob. 16–11

S

Probs. 16–12/13

50 mm A

Prob. 16–15/16

A S A S

Prob. 16–17
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16.21. The disk is originally rotating at If it
is subjected to a constant angular acceleration of

determine the magnitudes of the velocity and
the n and t components of acceleration of point A at the
instant 

16–22. The disk is originally rotating at If it
is subjected to a constant angular acceleration of

determine the magnitudes of the velocity and
the n and t components of acceleration of point B just after
the wheel undergoes 2 revolutions.

a = 6 rad>s2,

v0 = 8 rad>s.

t = 0.5 s.

a = 6 rad>s2,

v0 = 8 rad>s.

16–19. The vertical-axis windmill consists of two blades
that have a parabolic shape. If the blades are originally at
rest and begin to turn with a constant angular acceleration
of , determine the magnitude of the velocity
and acceleration of points A and B on the blade after the
blade has rotated through two revolutions.

*16–20. The vertical-axis windmill consists of two blades
that have a parabolic shape. If the blades are originally at rest
and begin to turn with a constant angular acceleration of

, determine the magnitude of the velocity and
acceleration of points A and B on the blade when .t = 4 s
ac = 0.5 rad>s2

ac = 0.5 rad>s2

16–18. Gear A is in mesh with gear B as shown. If A starts
from rest and has a constant angular acceleration of

, determine the time needed for B to attain an
angular velocity of .vB = 50 rad>s
aA = 2 rad>s2

16–23. The blade C of the power plane is driven by pulley
A mounted on the armature shaft of the motor. If the
constant angular acceleration of pulley A is ,
determine the angular velocity of the blade at the instant A
has turned 400 rev, starting from rest.

aA = 40 rad>s2

rA � 25 mm

rB � 100 mm

A

a

B

Prob. 16–18

20 ft

B

A

ac � 0.5 rad/s2

10 ft

Probs. 16–19/20

2 ft

1.5 ft

B

A

V0 � 8 rad/s

Probs. 16–21/22

A

B

C

 25 mm

 50 mm

75 mm

Prob. 16–23



16.3 ROTATION ABOUT A FIXED AXIS 327

16

16–27. For a short time, gear A of the automobile
starter rotates with an angular acceleration of

, where t is in seconds. Determine
the angular velocity and angular displacement of gear B
when , starting from rest. The radii of gears A and B
are 10 mm and 25 mm, respectively.

*16–28. For a short time, gear A of the automobile starter
rotates with an angular acceleration of ,
where is in . Determine the angular velocity of gear B
after gear A has rotated 50 rev, starting from rest.The radii of
gears A and B are 10 mm and 25 mm, respectively.

rad>sv

aA = (50v1>2) rad>s2

t = 2 s

aA = (450t2 + 60) rad>s2

16–26. Rotation of the robotic arm occurs due to linear
movement of the hydraulic cylinders A and B. If this motion
causes the gear at D to rotate clockwise at 5 , determine
the magnitude of velocity and acceleration of the part C
held by the grips of the arm.

rad>s

*16–24. For a short time the motor turns gear A with an
angular acceleration of , where t is in
seconds. Determine the angular velocity of gear D when

, starting from rest. Gear A is initially at rest.The radii
of gears A, B, C, and D are , ,

, and , respectively.

•16–25. The motor turns gear A so that its angular velocity
increases uniformly from zero to after the shaft
turns 200 rev. Determine the angular velocity of gear D when

. The radii of gears A, B, C, and D are ,
, , and , respectively.rD = 100 mmrC = 40 mmrB = 100 mm

rA = 25 mmt = 3 s

3000 rev>min

rD = 100 mmrC = 40 mm
rB = 100 mmrA = 25 mm

t = 5 s

aA = (30t1>2) rad>s2

•16–29. Gear A rotates with a constant angular velocity of
. Determine the largest angular velocity of

gear B and the speed of point C.
vA = 6 rad>s

A
B

C
D

Probs. 16–24/25

4 ft

2 ft

A

D

C

B 3 ft

45�

Prob. 16–26

A

B

Probs. 16–27/28

100 mm

B

C

A

100 mm

100 mm

100 mm

vB
vA� 6 rad/s

Prob. 16–29
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•16–33. If the rod starts from rest in the position shown
and a motor drives it for a short time with an angular
acceleration of , where t is in seconds,
determine the magnitude of the angular velocity and the
angular displacement of the rod when . Locate the
point on the rod which has the greatest velocity and
acceleration, and compute the magnitudes of the velocity
and acceleration of this point when . The rod is
defined by where the argument for the
sine is given in radians and y is in meters.

z = 0.25 sin(py) m,
t = 3 s

t = 3 s

a = (1.5et) rad>s2

*16–32. The drive wheel A has a constant angular velocity
of . At a particular instant, the radius of rope wound on
each wheel is as shown. If the rope has a thickness T,
determine the angular acceleration of wheel B.

vA

16–30. If the operator initially drives the pedals at
and then begins an angular acceleration of

, determine the angular velocity of the flywheel
when . Note that the pedal arm is fixed connected

to the chain wheel A, which in turn drives the sheave B
using the fixed connected clutch gear D. The belt wraps
around the sheave then drives the pulley E and fixed-
connected flywheel.

16–31. If the operator initially drives the pedals at
and then begins an angular acceleration of

, determine the angular velocity of the flywheel
after the pedal arm has rotated 2 revolutions. Note that

the pedal arm is fixed connected to the chain wheel A,
which in turn drives the sheave B using the fixed-
connected clutch gear D. The belt wraps around the sheave
then drives the pulley E and fixed-connected flywheel.

F
8 rev>min2
12 rev>min,

t = 3 sF
30 rev>min2
20 rev>min,

16–34. If the shaft and plate rotates with a constant
angular velocity of , determine the velocity
and acceleration of point C located on the corner of the
plate at the instant shown. Express the result in Cartesian
vector form.

16–35. At the instant shown, the shaft and plate rotates
with an angular velocity of and angular
acceleration of . Determine the velocity and
acceleration of point D located on the corner of the plate at
this instant. Express the result in Cartesian vector form.

a = 7 rad>s2
v = 14 rad>s

v = 14 rad>s

D
B

A

rA � 125 mm
rD � 20 mm

rB � 175 mm
rE � 30 mm

F

E

Probs. 16–30/31

B
A

A v

rB rA

Prob. 16–32

z

x y

1 m

z = 0.25 sin (   y)π

Prob. 16–33

x y

C
O

D

B

z

0.2 m

0.3 m

0.3 m

0.4 m

0.4 m

0.6 m

A
v

a

Probs. 16–34/35
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16.4 Absolute Motion Analysis

A body subjected to general plane motion undergoes a simultaneous
translation and rotation. If the body is represented by a thin slab, the slab
translates in the plane of the slab and rotates about an axis perpendicular
to this plane.The motion can be completely specified by knowing both the
angular rotation of a line fixed in the body and the motion of a point on
the body. One way to relate these motions is to use a rectilinear position
coordinate s to locate the point along its path and an angular position
coordinate to specify the orientation of the line.The two coordinates are
then related using the geometry of the problem. By direct application of
the time-differential equations and

the motion of the point and the angular motion of the line can
then be related.This procedure is similar to that used to solve dependent
motion problems involving pulleys, Sec. 12.9. In some cases, this same
procedure may be used to relate the motion of one body, undergoing
either rotation about a fixed axis or translation, to that of a connected
body undergoing general plane motion.

a = dv>dt, v = du>dt,a = dv>dt,v = ds>dt,
u

Procedure for Analysis

The velocity and acceleration of a point P undergoing rectilinear
motion can be related to the angular velocity and angular
acceleration of a line contained within a body using the following
procedure.

Position Coordinate Equation.
• Locate point P on the body using a position coordinate s, which is

measured from a fixed origin and is directed along the straight-line
path of motion of point P.

• Measure from a fixed reference line the angular position of a
line lying in the body.

• From the dimensions of the body, relate s to using
geometry and/or trigonometry.

Time Derivatives.
• Take the first derivative of with respect to time to get a

relation between and 
• Take the second time derivative to get a relation between a

and
• In each case the chain rule of calculus must be used when taking

the time derivatives of the position coordinate equation. See
Appendix C.

a.

v.v
s = f1u2

s = f1u2,u,

u

The dumping bin on the truck rotates
about a fixed axis passing through the
pin at A. It is operated by the extension
of the hydraulic cylinder BC. The
angular position of the bin can be
specified using the angular position
coordinate and the position of point
C on the bin is specified using the
rectilinear position coordinate s. Since a
and b are fixed lengths, then the two
coordinates can be related by the cosine 
law, The
time derivative of this equation relates
the speed at which the hydraulic cylinder
extends to the angular velocity of
the bin.

 s = 2a2 + b2 - 2ab cos u.

u,

A

C

B

a

b

s

u
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The end of rod R shown in Fig. 16–7 maintains contact with the cam
by means of a spring. If the cam rotates about an axis passing through
point O with an angular acceleration and angular velocity 
determine the velocity and acceleration of the rod when the cam is in
the arbitrary position u.

V,A

EXAMPLE 16.3

SOLUTION

Position Coordinate Equation. Coordinates and x are chosen in
order to relate the rotational motion of the line segment OA on the
cam to the rectilinear translation of the rod. These coordinates are
measured from the fixed point O and can be related to each other
using trigonometry. Since Fig. 16–7, then

Time Derivatives. Using the chain rule of calculus, we have

Ans.

Ans.

NOTE: The negative signs indicate that and a are opposite to the
direction of positive x. This seems reasonable when you visualize
the motion.

v

a = -2r(a sin u + v2 cos u)

dv

dt
= -2radv

dt
b  sin u - 2rv(cos u)

du

dt

v = -2rv sin u

dx

dt
= -2r(sin u)

du

dt

x = 2r cos u

OC = CB = r cos u,

u

A

O
C

rr

B
x

R

u

V

A

Fig. 16–7
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EXAMPLE 16.4

At a given instant, the cylinder of radius r, shown in Fig. 16–8, has an
angular velocity and angular acceleration Determine the
velocity and acceleration of its center G if the cylinder rolls without
slipping.

A.V

sG

G
r

A¿

B A
sG � ru

G¿
uu

V

A

Fig. 16–8

SOLUTION

Position Coordinate Equation. The cylinder undergoes general
plane motion since it simultaneously translates and rotates. By
inspection, point G moves in a straight line to the left, from G to , as
the cylinder rolls, Fig. 16–8. Consequently its new position will be
specified by the horizontal position coordinate which is measured
from G to . Also, as the cylinder rolls (without slipping), the arc
length on the rim which was in contact with the ground from

, is equivalent to Consequently, the motion requires the
radial line GA to rotate to the position Since the arc

then G travels a distance

Time Derivatives. Taking successive time derivatives of this
equation, realizing that r is constant, and gives
the necessary relationships:

Ans.

Ans.

NOTE: Remember that these relationships are valid only if the
cylinder (disk, wheel, ball, etc.) rolls without slipping.

aG = ra

vG = rv

sG = ru

a = dv>dt,v = du>dt,

sG = ru

A¿B = ru,
G¿A¿.u

sG.A to B
A¿B
G¿

sG ,
G¿
G¿
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The large window in Fig. 16–9 is opened using a hydraulic cylinder
AB. If the cylinder extends at a constant rate of , determine the
angular velocity and angular acceleration of the window at the instant

SOLUTION

Position Coordinate Equation. The angular motion of the window
can be obtained using the coordinate whereas the extension or
motion along the hydraulic cylinder is defined using a coordinate s,
which measures its length from the fixed point A to the moving
point B. These coordinates can be related using the law of cosines,
namely,

(1)

When 

Time Derivatives. Taking the time derivatives of Eq. 1, we have

(2)

Since then at

Ans.

Taking the time derivative of Eq. 2 yields

Since then

Ans.

Because the result is negative, it indicates the window has an
angular deceleration.

a = -0.415 rad>s2

10.5 m>s22 + 0 = 2 cos 30°10.6197 rad>s22 + 2 sin 30°a

as = dvs>dt = 0,

vs
2 + sas = 21cos u2v2 + 21sin u2a

ds

dt
vs + s

dvs
dt

= 21cos u2 du
dt
v + 21sin u2 dv

dt

v = 0.6197 rad>s = 0.620 rad>s
11.239 m210.5 m>s2 = 2 sin 30°v

u = 30°,vs = 0.5 m>s,

s1vs2 = 21sin u2v
 2s
ds

dt
= 0 - 41-sin u2du

dt

s = 1.239 m

u = 30°,

s2 = 5 - 4 cos u

s2 = 12 m22 + 11 m22 - 212 m211 m2 cos u

u,

u = 30°.

0.5 m>s

EXAMPLE 16.5

1 m

1 m

2 m

s

O

A

B
u

Fig. 16–9
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B

D
C

Au

v

v

x

2 ft

Prob. 16–36

D E

B
uA1.5 ft/s

S

C

4 ft

Prob. 16–37

a
u

x v0

Prob. 16–38

PROBLEMS

16–38. The block moves to the left with a constant
velocity . Determine the angular velocity and angular
acceleration of the bar as a function of .u

v0

•16–37. The scaffold S is raised by moving the roller at A
toward the pin at B. If A is approaching B with a speed of
1.5 , determine the speed at which the platform rises as a
function of . The 4-ft links are pin connected at their
midpoint.

u

ft>s

*16–36. Rod CD presses against AB, giving it an angular
velocity. If the angular velocity of AB is maintained at

, determine the required magnitude of the
velocity v of CD as a function of the angle of rod AB.u

v = 5 rad>s

16–39. Determine the velocity and acceleration of
platform P as a function of the angle of cam C if the cam
rotates with a constant angular velocity . The pin
connection does not cause interference with the motion of
P on C. The platform is constrained to move vertically by
the smooth vertical guides.

V

u

r

P

C

u

y

Prob. 16–39
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16–42. The pins at A and B are constrained to move in the
vertical and horizontal tracks. If the slotted arm is causing A
to move downward at , determine the velocity of B as a
function of u.

vA

•16–41. Crank AB rotates with a constant angular
velocity of 5 . Determine the velocity of block C and
the angular velocity of link BC at the instant .u = 30°

rad>s

*16–40. Disk A rolls without slipping over the surface of
the fixed cylinder B. Determine the angular velocity of A if
its center C has a speed . How many revolutions
will A rotate about its center just after link DC completes
one revolution?

vC = 5 m>s

16–43. End A of the bar moves to the left with a constant
velocity . Determine the angular velocity and angular
acceleration of the bar as a function of its position x.A

VvA

C

D

B

A

vC � 5 m/s

150 mm

150 mm

vA

Prob. 16–40

90�

vA

y

d

h

x

B

u

A

Prob. 16–42

A

,

x

vA
r

u

Prob. 16–43

A
u

B

C

5 rad/s
600 mm 300 mm

150 mm

Prob. 16–41
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16–47. The bridge girder G of a bascule bridge is raised
and lowered using the drive mechanism shown. If the
hydraulic cylinder AB shortens at a constant rate of

, determine the angular velocity of the bridge girder
at the instant .u = 60°
0.15 m>s

•16–45. At the instant crank AB rotates with an
angular velocity and angular acceleration of 
and , respectively. Determine the velocity and
acceleration of the slider block at this instant. Take

.

16–46. At the instant , crank rotates with an
angular velocity and angular acceleration of 
and , respectively. Determine the angular
velocity and angular acceleration of the connecting rod BC
at this instant. Take and .b = 0.5 ma = 0.3 m

a = 2 rad>s2
v = 10 rad>s

ABu = 30°

a = b = 0.3 m
C

a = 2 rad>s2
v = 10 rad>s

u = 30°,

*16–44. Determine the velocity and acceleration of the
plate at the instant , if at this instant the circular cam
is rotating about the fixed point O with an angular velocity

and an angular acceleration .a = 2 rad>s2v = 4 rad>s
u = 30°

*16–48. The man pulls on the rope at a constant rate of
. Determine the angular velocity and angular

acceleration of beam AB when . The beam rotates
about A. Neglect the thickness of the beam and the size of
the pulley.

u = 60°
0.5 m>s

O
120 mm

150 mm

C
u

,

Prob. 16–44

A C

B
b

a

aa
vv

u

Probs. 16–45/46

A

5 m
3 m

B G

C u

Prob. 16–47

B

C

6 m

6 m

A

u

Prob. 16–48
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*16–52. If the wedge moves to the left with a constant
velocity v, determine the angular velocity of the rod as a
function of .u

16–51. If the hydraulic cylinder AB is extending at a
constant rate of , determine the dumpster’s angular
velocity at the instant .u = 30°

1 ft>s

•16–49. Peg B attached to the crank AB slides in the slots
mounted on follower rods, which move along the vertical
and horizontal guides. If the crank rotates with a constant
angular velocity of , determine the velocity
and acceleration of rod CD at the instant .

16–50. Peg B attached to the crank AB slides in the slots
mounted on follower rods, which move along the vertical
and horizontal guides. If the crank rotates with a constant
angular velocity of , determine the velocity
and acceleration of rod EF at the instant .u = 30°

v = 10 rad>s

u = 30°
v = 10 rad>s

•16–53. At the instant shown, the disk is rotating with an
angular velocity of and has an angular acceleration of .
Determine the velocity and acceleration of cylinder B at
this instant. Neglect the size of the pulley at C.

AV

F

E

v � 10 rad/s

B

DC

A

3 ft

u

Probs. 16–49/50

A B

15 ft

12 ft

C
u

Prob. 16–51

L

v

fu

Prob. 16–52

3 ft

5 ft

A

V, A C
u

B

Prob. 16–53
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16.5 Relative-Motion Analysis: Velocity

The general plane motion of a rigid body can be described as a
combination of translation and rotation. To view these “component”
motions separately we will use a relative-motion analysis involving two
sets of coordinate axes. The x, y coordinate system is fixed and measures
the absolute position of two points A and B on the body, here represented
as a bar, Fig. 16–10a. The origin of the coordinate system will be
attached to the selected “base point” A, which generally has a known
motion. The axes of this coordinate system translate with respect to the
fixed frame but do not rotate with the bar.

Position The position vector in Fig. 16–10a specifies the location
of the “base point” A, and the relative-position vector locates point
B with respect to point A. By vector addition, the position of B is then

Displacement During an instant of time dt, points A and B undergo
displacements and as shown in Fig. 16–10b. If we consider the
general plane motion by its component parts then the entire bar first
translates by an amount so that A, the base point, moves to its final
position and point B moves to Fig. 16–10c. The bar is then rotated
about A by an amount so that undergoes a relative displacement

and thus moves to its final position B. Due to the rotation about A,
and the displacement of B is

due to rotation about A
due to translation of A

due to translation and rotation

drB = drA + drB>A

drB>A = rB>A du,
drB>A

B¿du
B¿,

drA

drBdrA

rB = rA + rB>A

rB>A
rA

y¿x¿, B

A
x¿

y¿

y

x

rB

rA
rB/A

O
Fixed reference

Translating
reference

(a)

drA

drB

rB/A

A
A

BB

(b)

General plane
motion

Time t Time t � dt

A

B drB

drA

drA

rB/A

x¿

y¿
y¿

(c)

B¿

B

A x¿

rB/A

drB/A

RotationTranslation

du

Fig. 16–10
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Velocity To determine the relation between the velocities of points A
and B, it is necessary to take the time derivative of the position equation,
or simply divide the displacement equation by dt. This yields

The terms and are measured with respect to
the fixed x, y axes and represent the absolute velocities of points A and B,
respectively. Since the relative displacement is caused by a rotation, the
magnitude of the third term is 
where is the angular velocity of the body at the instant considered. We
will denote this term as the relative velocity since it represents the
velocity of B with respect to A as measured by an observer fixed to the
translating axes. In other words, the bar appears to move as if it were
rotating with an angular velocity about the axis passing through A.
Consequently, has a magnitude of and a direction
which is perpendicular to We therefore have

(16–15)

where

velocity of point B
velocity of the base point A
velocity of B with respect to AvB>A =

vA =
vB =

vB = vA + vB>A

rB>A .
vB>A = vrB>AvB>A
z¿V

y¿x¿,

vB>A ,
v

rB>Au
#
= rB>Av,drB>A>dt = rB>A du>dt =

drA>dt = vAdrB>dt = vB

drB
dt

=
drA
dt

+
drB>A
dt

As slider block A moves horizontally to the left with a velocity 
it causes crank CB to rotate counterclockwise, such that is
directed tangent to its circular path, i.e., upward to the left. The
connecting rod AB is subjected to general plane motion, and at the
instant shown it has an angular velocity V.

vB
vA ,

A
B

C
vA

vB

V
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What this equation states is that the velocity of B, Fig. 16–10d, is
determined by considering the entire bar to translate with a velocity of 
Fig. 16–10e, and rotate about A with an angular velocity Fig. 16–10f.
Vector addition of these two effects, applied to B, yields as shown in
Fig. 16–10g.

Since the relative velocity represents the effect of circular
motion, about A, this term can be expressed by the cross product

Eq. 16–9. Hence, for application using Cartesian
vector analysis, we can also write Eq. 16–15 as

(16–16)

where

The velocity equation 16–15 or 16–16 may be used in a practical
manner to study the general plane motion of a rigid body which is either
pin connected to or in contact with other moving bodies. When applying
this equation, points A and B should generally be selected as points on
the body which are pin-connected to other bodies, or as points in contact
with adjacent bodies which have a known motion. For example, point A
on link AB in Fig. 16–11a must move along a horizontal path, whereas
point B moves on a circular path. The directions of and can
therefore be established since they are always tangent to their paths of
motion, Fig. 16–11b. In the case of the wheel in Fig. 16–12, which rolls
without slipping, point A on the wheel can be selected at the ground.
Here A (momentarily) has zero velocity since the ground does not move.
Furthermore, the center of the wheel, B, moves along a horizontal path
so that is horizontal.vB

vBvA

 rB>A = position vector directed from A to B
 V = angular velocity of the body
 vA = velocity of the base point A
 vB = velocity of B

vB = vA + V * rB>A

vB>A = V * rB>A ,

vB>A

vB ,
V,

vA ,

vA

vB

B

A

Path of
point A

Path of
point B

�

General plane motion

(d)

V

B

A vA

vA

Translation

(e)

B

A

rB/A

vB/A � vrB/A

�

Rotation about the
base point A

(f)

V

Fig. 16–10 (cont.)

vB/A

vA

vB

(g)

45�
C

B

BC

(a)

v
A

45�

B

vB 

A

(b)

vA

Fig. 16–11

A
vA � 0

vB
B

V

Fig. 16–12
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Procedure for Analysis

The relative velocity equation can be applied either by using
Cartesian vector analysis, or by writing the x and y scalar component
equations directly. For application, it is suggested that the following
procedure be used.

Vector Analysis

Kinematic Diagram.
• Establish the directions of the fixed x, y coordinates and draw a

kinematic diagram of the body. Indicate on it the velocities 
of points A and B, the angular velocity and the relative-
position vector 

• If the magnitudes of or are unknown, the sense of
direction of these vectors can be assumed.

Velocity Equation.
• To apply express the vectors in Cartesian

vector form and substitute them into the equation. Evaluate the
cross product and then equate the respective i and j components
to obtain two scalar equations.

• If the solution yields a negative answer for an unknown
magnitude, it indicates the sense of direction of the vector is
opposite to that shown on the kinematic diagram.

Scalar Analysis

Kinematic Diagram.
• If the velocity equation is to be applied in scalar form, then the

magnitude and direction of the relative velocity must be
established. Draw a kinematic diagram such as shown in 
Fig. 16–10g, which shows the relative motion. Since the body is
considered to be “pinned” momentarily at the base point A, the
magnitude of is The sense of direction of

is always perpendicular to in accordance with the
rotational motion of the body.*

Velocity Equation.
• Write Eq. 16–15 in symbolic form, and

underneath each of the terms represent the vectors graphically
by showing their magnitudes and directions. The scalar equations
are determined from the x and y components of these vectors.

vB = vA + vB>A ,

V

rB>AvB>A
vB>A = vrB>A .vB>A

vB>A

vB = vA + V * rB>A ,

VvB ,vA ,

rB>A .
V,

vBvA ,

* The notation may be helpful in recalling that A is “pinned.”vB = vA + vB>A1pin2
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EXAMPLE 16.6

The link shown in Fig. 16–13a is guided by two blocks at A and B,
which move in the fixed slots. If the velocity of A is downward,
determine the velocity of B at the instant 

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. Since points A and B are restricted to move
along the fixed slots and is directed downward, the velocity must
be directed horizontally to the right, Fig. 16–13b. This motion causes
the link to rotate counterclockwise; that is, by the right-hand rule the
angular velocity is directed outward, perpendicular to the plane of
motion. Knowing the magnitude and direction of and the lines of
action of and it is possible to apply the velocity equation

to points A and B in order to solve for the two
unknown magnitudes and Since is needed, it is also shown
in Fig. 16–13b.

Velocity Equation. Expressing each of the vectors in Fig. 16–13b in
terms of their i, j, k components and applying Eq. 16–16 to A, the base
point, and B, we have

Equating the i and j components gives

Thus,

d

Ans.

Since both results are positive, the directions of and are indeed
correct as shown in Fig. 16–13b. It should be emphasized that these
results are valid only at the instant A recalculation for

yields and whereas when
and etc.

NOTE: Once the velocity of a point (A) on the link and the angular
velocity are known, the velocity of any other point on the link can be
determined. As an exercise, see if you can apply Eq. 16–16 to points A
and C or to points B and C and show that when 

directed at an angle of up from the horizontal.18.4°vC = 3.16 m>s,
u = 45°,

v = 13.9 rad>s,vB = 1.93 m>su = 46°,
v = 14.4 rad>s;vB = 2.07 m>su = 44°
u = 45°.

VvB

vB = 2 m>s:
v = 14.1 rad>s

vB = 0.2v cos 45° 0 = -2 + 0.2v sin 45°

vBi = -2j + 0.2v sin 45°j + 0.2v cos 45°i

vBi = -2j + [vk * 10.2 sin 45°i - 0.2 cos 45°j2]
vB = vA + V * rB>A

rB>Av.vB

vB = vA + V * rB>A
V,vB

vA
V

vBvA

u = 45°.
2 m>s

0.2 m

B

A

0.1 m C

u � 45°

vA � 2 m/s

(a)

y

x

vB

rB/A

B

A

vA � 2 m/s

(b)

V45°

Fig. 16–13



342 CH A P T E R 16 PL A N A R KI N E M AT I C S O F A RI G I D BO D Y

16

EXAMPLE 16.7

O

B

A

0.5 ft

vC � 2 ft/s

v � 15 rad/s

y

x

(a)

v � 15 rad/s

(b)

B

A
rA/B

vB � 2 ft/s

vA

u

Relative motion

B

A

rA/B

vA/B

(c)

45�

45�
0.5 ft

v � 15 rad/s

Fig. 16–14

The cylinder shown in Fig. 16–14a rolls without slipping on the surface
of a conveyor belt which is moving at . Determine the velocity of
point A.The cylinder has a clockwise angular velocity at
the instant shown.

SOLUTION I (VECTOR ANALYSIS)

Kinematic Diagram. Since no slipping occurs, point B on the
cylinder has the same velocity as the conveyor, Fig. 16–14b. Also, the
angular velocity of the cylinder is known, so we can apply the velocity
equation to B, the base point, and A to determine 

Velocity Equation.

so that

(1)

(2)

Thus,

Ans.

Ans.

SOLUTION II (SCALAR ANALYSIS) 
As an alternative procedure, the scalar components of 
can be obtained directly. From the kinematic diagram showing the
relative “circular” motion which produces Fig. 16–14c, we have

Thus,

Equating the x and y components gives the same results as before,
namely,

1vA2y = 0 + 10.6 sin 45° = 7.50 ft>s1+ c2
1vA2x = 2 + 10.6 cos 45° = 9.50 ft>s1:+ 2

c1vA2x: d + c1vA2yc d = c2 ft>s
: d + c10.6 ft>s

a 45°
d

vA = vB + vA>B

vA>B = vrA>B = 115 rad>s2a 0.5 ft
cos 45°

b = 10.6 ft>s
vA>B ,

vA = vB + vA>B

u = tan-1 7.50
9.50

= 38.3° a

vA = 2(9.5022 + (7.50)2 = 12.1 ft>s

1vA2y = 7.50 ft>s
1vA2x = 2 + 7.50 = 9.50 ft>s

1vA2xi + 1vA2yj = 2i + 7.50j + 7.50i

1vA2xi + 1vA2yj = 2i + 1-15k2 * 1-0.5i + 0.5j2
vA = vB + V * rA>B

vA .

v = 15 rad>s2 ft>s
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EXAMPLE 16.8

The collar C in Fig. 16–15a is moving downward with a velocity of
. Determine the angular velocity of CB at this instant.

SOLUTION I (VECTOR ANALYSIS)

Kinematic Diagram. The downward motion of C causes B to
move to the right along a curved path. Also, CB and AB rotate
counterclockwise.

Velocity Equation. Link CB (general plane motion): See Fig. 16–15b.

(1)

(2)

d Ans.

SOLUTION II (SCALAR ANALYSIS)
The scalar component equations of can be obtained
directly. The kinematic diagram in Fig. 16–15c shows the relative
“circular” motion which produces We have

Resolving these vectors in the x and y directions yields

which is the same as Eqs. 1 and 2.

NOTE: Since link AB rotates about a fixed axis and is known,
Fig. 16–15d, its angular velocity is found from or

.vAB = 10 rad>s2 m>s = vAB (0.2 m),
vB = vABrAB
vB

0 = -2 + vCB A0.222 sin 45° B1+ c2
vB = 0 + vCB A0.222 cos 45° B1:+ 2

 c vB: d = c2 m>s 
T

d + cvCB A0.222 m B
a45°

d
 vB = vC + vB>C

vB>C .

vB = vC + vB>C

 vB = 2 m>s:
 vCB = 10 rad>s

 0 = -2 + 0.2vCB

 vB = 0.2vCB

 vBi = -2j + 0.2vCB j + 0.2vCBi

 vBi = -2j + vCBk * 10.2i - 0.2j2
 vB = vC + VCB * rB>C

2 m>s

vC � 2 m/s

(a)

C
A

B

0.2 m

0.2 m

y

x

vB

rB/CvC � 2 m/s

B

C

VCB

(b)

B

A

(d)

0.2 m

VAB

vB � 2 m/s

vB/CrB/C
45�

B

VCB

(c)

45�

C

Relative motion

Fig. 16–15
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EXAMPLE 16.9

u� 60°

0.2 m 0.2 m

B

A

C

D

AB � 30 rad/s

(a)

0.1 m

v

60�

0.2 m 0.2 m

B

A

C

D

vD

VBC

rC/B

vAB � 30 rad/s

vC
vB

(b)

x

y

rB

0.1 mrC

Fig. 16–16

The bar AB of the linkage shown in Fig. 16–16a has a clockwise
angular velocity of when Determine the angular
velocities of member BC and the wheel at this instant.

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. By inspection, the velocities of points B and C
are defined by the rotation of link AB and the wheel about their fixed
axes. The position vectors and the angular velocity of each member
are shown on the kinematic diagram in Fig. 16–16b. To solve, we will
write the appropriate kinematic equation for each member.

Velocity Equation. Link AB (rotation about a fixed axis):

Link BC (general plane motion):

d Ans.

Wheel (rotation about a fixed axis):

d Ans.vD = 52.0 rad>s
 5.20 = 0.1vD

 5.20i = 1vDk2 * 1-0.1j2
vC = VD * rC

vBC = 15 rad>s
 0 = 0.2vBC - 3.0

vC = 5.20 m>s
vCi = 5.20i + 10.2vBC - 3.02j
vCi = 5.20i - 3.0j + 1vBCk2 * 10.2i2
vC = vB + VBC * rC>B

= 55.20i - 3.0j6 m>s
= 1-30k2 * 10.2 cos 60°i + 0.2 sin 60°j2

vB = VAB * rB

u = 60°.30 rad>s
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F16–10. If crank rotates with an angular velocity of
determine the velocity of piston and the

angular velocity of rod at the instant shown.AB
Bv = 12 rad>s,

OA

F16–9. Determine the angular velocity of the spool. The
cable wraps around the inner core, and the spool does not
slip on the platform P.

F16–7. If roller moves to the right with a constant
velocity of determine the angular velocity of
the link and the velocity of roller at the instant u = 30°.B

vA = 3 m>s,
A

F16–12. End of the link has a velocity of 
Determine the velocity of the peg at at this instant. The
peg is constrained to move along the slot.

B
vA = 3 m>s.A

F16–11. If rod slides along the horizontal slot with a
velocity of determine the angular velocity of link

at the instant shown.BC
60 ft>s,

AB

F16–8. The wheel rolls without slipping with an angular
velocity of Determine the magnitude of the
velocity of point at the instant shown.B

v = 10 rad>s.

1 ft

2 ft

A P

B
 4 ft/s

 2 ft/s

O

F16–9

0.3 m

0.6 m

O
B

A

12 rad/s

30�

F16–10

B A

O

C

0.5 ft

2.5 ft

60 ft/s

30�

F16–11

A

vA � 3 m/s

2 m

B

30�

45�

F16–12

A

B

1.5 m

vA � 3 m/s

u � 30�

F16–7

A

B

0.6 m

vv

F16–8

FUNDAMENTAL PROBLEMS
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C

B

v 0.3 ft
A

Probs. 16–54/55

B

C

A

0.5 ft

1 ft v � 2 ft/s

Probs. 16–56/57

 � 10 rad/s

O

A

v

vO � 8 m/s

120 mm

Prob. 16–58

PROBLEMS

16–58. A bowling ball is cast on the “alley” with a
backspin of while its center O has a forward
velocity of . Determine the velocity of the
contact point A in contact with the alley.

vO = 8 m>s
v = 10 rad>s

*16–56. The gear rests in a fixed horizontal rack. A cord is
wrapped around the inner core of the gear so that it
remains horizontally tangent to the inner core at A. If the
cord is pulled to the right with a constant speed of 2 ,
determine the velocity of the center of the gear, C.

•16–57. Solve Prob. 16–56 assuming that the cord is
wrapped around the gear in the opposite sense, so that the
end of the cord remains horizontally tangent to the inner
core at B and is pulled to the right at 2 .ft>s

ft>s

16–54. Pinion gear A rolls on the fixed gear rack B with an
angular velocity . Determine the velocity of the
gear rack C.

16–55. Pinion gear rolls on the gear racks and . If B
is moving to the right at 8 and C is moving to the left at
4 , determine the angular velocity of the pinion gear and
the velocity of its center A.

ft>s
ft>s

CBA

v = 4 rad>s

16–59. Determine the angular velocity of the gear and the
velocity of its center O at the instant shown.

3 ft/s

4 ft/s

A

O
0.75 ft

1.50 ft

45�

Prob. 16–60

3 ft/s

4 ft/s

A

O
0.75 ft

1.50 ft

Prob. 16–59

*16–60. Determine the velocity of point on the rim of
the gear at the instant shown.

A
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25 mm

C

A

B

D

E

v

F

150 mm
75 mm

100 mm

100 mm

AB � 
  6 rad/s

30�

Prob. 16–61

2.75 in.

vP � 300 in./s

P

5 in.

G

B

A

1.45 in.

30�

Probs. 16–62/63

R

S

P

A

vS

vR

80 mm

40 mm

40 mm

Prob. 16–64

*16–64. The planetary gear system is used in an automatic
transmission for an automobile. By locking or releasing
certain gears, it has the advantage of operating the car at
different speeds. Consider the case where the ring gear R is
held fixed, , and the sun gear S is rotating at

. Determine the angular velocity of each of the
planet gears P and shaft A.
vS = 5 rad>s

vR = 0

16–62. Piston P moves upward with a velocity of 300 
at the instant shown. Determine the angular velocity of the
crankshaft AB at this instant.

16–63. Determine the velocity of the center of gravity G
of the connecting rod at the instant shown. Piston is
moving upward with a velocity of 300 .in.>s

P

in.>s

•16–61. The rotation of link AB creates an oscillating
movement of gear F. If AB has an angular velocity of

, determine the angular velocity of gear F at
the instant shown. Gear E is rigidly attached to arm CD and
pinned at D to a fixed point.

vAB = 6 rad>s

•16–65. Determine the velocity of the center O of the spool
when the cable is pulled to the right with a velocity of v. The
spool rolls without slipping.

16–66. Determine the velocity of point A on the outer rim
of the spool at the instant shown when the cable is pulled to
the right with a velocity of v. The spool rolls without
slipping.

r
O

A

R
v

Probs. 16–65/66
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•16–69. The pumping unit consists of the crank pitman
AB, connecting rod BC, walking beam CDE and pull rod F.
If the crank is rotating with an angular velocity of

, determine the angular velocity of the
walking beam and the velocity of the pull rod EFG at the
instant shown.

v = 10 rad>s

*16–68. If bar AB has an angular velocity ,
determine the velocity of the slider block C at the instant
shown.

vAB = 4 rad>s

16–67. The bicycle has a velocity , and at the
same instant the rear wheel has a clockwise angular velocity

, which causes it to slip at its contact point A.
Determine the velocity of point A.
v = 3 rad>s

v = 4 ft>s

16–70. If the hydraulic cylinder shortens at a constant rate
of , determine the angular velocity of link ACB
and the velocity of block B at the instant shown.

16–71. If the hydraulic cylinder shortens at a constant rate
of , determine the velocity of end A of link ACB
at the instant shown.
vC = 2 ft>s

vC = 2 ft>s

 � 3 rad/s

4 ft/s

A

v

C

26 in.

Prob. 16–67

200 mm

150 mm

60�

30�

A

B

v

C

AB � 4 rad/s

Prob. 16–68

C

7.5 ft

0.75 ft

4 ft

u � 75°

A
B

E
D

F

G

v � 10 rad/s

6 ft 6 ft

Prob. 16–69

A

C
D

4 ft

4 ft

vC � 2 ft/s

u � 60�

B

60�

Probs. 16–70/71
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16–74. At the instant shown, the truck travels to the right at
3 , while the pipe rolls counterclockwise at 
without slipping at B. Determine the velocity of the pipe’s
center G.

16–75. At the instant shown, the truck travels to the right
at 8 . If the pipe does not slip at B, determine its angular
velocity if its mass center G appears to remain stationary to
an observer on the ground.

m>s

v = 8 rad>sm>s

•16–73. If link AB has an angular velocity of
at the instant shown, determine the velocity

of the slider block E at this instant.Also, identify the type of
motion of each of the four links.

vAB = 4 rad>s

*16–72. The epicyclic gear train consists of the sun gear A
which is in mesh with the planet gear B. This gear has an
inner hub C which is fixed to B and in mesh with the fixed
ring gear R. If the connecting link DE pinned to B and C is
rotating at about the pin at determine
the angular velocities of the planet and sun gears.

E,vDE = 18 rad>s

*16–76. The mechanism of a reciprocating printing table
is driven by the crank AB. If the crank rotates with an
angular velocity of , determine the velocity of
point C at the instant shown.

v = 10 rad>s

BA

200 mm

100 mm

DE � 18 rad/s

R

v

C

300 mm

E

600 mm

D

Prob. 16–72

B

AB � 4 rad/s

D

E

A
C

2 ft

1 ft
2 ft

v
1 ft

30�

30�

Prob. 16–73

B

G
v

1.5 m

Probs. 16–74/75

D

C

A

B

0.5 m

1 m

75 mm

v � 10 rad/s

45�

Prob. 16–76
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*16–80. If the ring gear D rotates counterclockwise with
an angular velocity of while link AB rotates
clockwise with an angular velocity of ,
determine the angular velocity of gear C.

vAB = 10 rad>s
vD = 5 rad>s

•16–77. The planetary gear set of an automatic
transmission consists of three planet gears A, B, and C,
mounted on carrier D, and meshed with the sun gear E and
ring gear F. By controlling which gear of the planetary set
rotates and which gear receives the engine’s power, the
automatic transmission can alter a car’s speed and
direction. If the carrier is rotating with a counterclockwise
angular velocity of while the ring gear is
rotating with a clockwise angular velocity of ,
determine the angular velocity of the planet gears and the
sun gear. The radii of the planet gears and the sun gear are
45 mm and 75 mm, respectively.

16–78. The planetary gear set of an automatic transmission
consists of three planet gears A, B, and C, mounted on carrier
D, and meshed with sun gear E and ring gear F. By
controlling which gear of the planetary set rotates and which
gear receives the engine’s power, the automatic transmission
can alter a car’s speed and direction. If the ring gear is held
stationary and the carrier is rotating with a clockwise angular
velocity of , determine the angular velocity of
the planet gears and the sun gear. The radii of the planet
gears and the sun gear are 45 mm and 75 mm, respectively.

vD = 20 rad>s

vF = 10 rad>s
vD = 20 rad>s

•16–81. If the slider block A is moving to the right at
, determine the velocity of blocks B and C at

the instant shown. Member CD is pin connected to
member ADB.

vA = 8 ft>s

F

A

BC

D

E

75 mm

45 mm

Probs. 16–77/78

A

C

D

0.5 m

0.375 m

0.125 m

B
vAB � 10 rad/s

Probs. 16–79/80

vA � 8 ft/s

45�

30�

2 ft

2 ft2 ft

A

D

BC

Prob. 16–81

16–79. If the ring gear D is held fixed and link AB rotates
with an angular velocity of , determine the
angular velocity of gear C.

vAB = 10 rad>s
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16.6 Instantaneous Center of Zero
Velocity

The velocity of any point B located on a rigid body can be obtained in a
very direct way by choosing the base point A to be a point that has zero
velocity at the instant considered. In this case, and therefore the
velocity equation, becomes For a
body having general plane motion, point A so chosen is called the
instantaneous center of zero velocity (IC), and it lies on the instantaneous
axis of zero velocity. This axis is always perpendicular to the plane of
motion, and the intersection of the axis with this plane defines the location
of the IC. Since point A coincides with the IC, then and
so point B moves momentarily about the IC in a circular path; in other
words, the body appears to rotate about the instantaneous axis. The
magnitude of is simply where is the angular velocity of
the body. Due to the circular motion, the direction of must always be
perpendicular to

For example, the IC for the bicycle wheel in Fig. 16–17 is at the contact
point with the ground. There the spokes are somewhat visible, whereas at
the top of the wheel they become blurred. If one imagines that the wheel
is momentarily pinned at this point, the velocities of various points can be
found using Here the radial distances shown in the photo,
Fig. 16–17, must be determined from the geometry of the wheel.

v = vr.

rB>IC .
vB

vvB = vrB>IC ,vB

vB = V * rB>IC

vB = V * rB>A .vB = vA + V * rB>A ,
vA = 0,

IC

Fig. 16–17
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Location of the IC. To locate the IC we can use the fact that the
velocity of a point on the body is always perpendicular to the relative-
position vector directed from the IC to the point. Several possibilities
exist:

● The velocity of a point A on the body and the angular velocity
of the body are known, Fig. 16–18a. In this case, the IC is located
along the line drawn perpendicular to at A, such that the distance
from A to the IC is Note that the IC lies up and to the
right of A since must cause a clockwise angular velocity about
the IC.

● The lines of action of two nonparallel velocities and are
known, Fig. 16–18b. Construct at points A and B line segments that
are perpendicular to and Extending these perpendiculars to
their point of intersection as shown locates the IC at the instant
considered.

● The magnitude and direction of two parallel velocities and are
known. Here the location of the IC is determined by proportional
triangles. Examples are shown in Fig. 16–18c and d. In both cases

and If d is a known distance between
points A and B, then in Fig. 16–18c, and in 
Fig. 16–18d, rB>IC - rA>IC = d.

rA>IC + rB>IC = d
rB>IC = vB>v.rA>IC = vA>v

vBvA

vB .vA

vBvA

VvA
rA>IC = vA>v.

vA

VvA

vA

rA/IC

A

IC
vIC � 0

(a)

Location of IC
knowing vA and V

Centrode

V
B

A rA/IC

rB/IC

vB

vA
IC
vIC � 0

(b)

V

Location of IC
knowing the directions

of vA and vB

Fig. 16–18

B

A

d
IC

rA/IC

rB/IC

vB

vA

(c)

V

Location of IC
knowing vA and vB

rA/IC

B

A vA

vB

IC

d
rB/IC

(d)

V
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As the board slides downward to the
left it is subjected to general plane
motion. Since the directions of the
velocities of its ends A and B are
known, the IC is located as shown. At
this instant the board will momentarily
rotate about this point. Draw the board
in several other positions and establish
the IC for each case.

vB

IC
B

A

vA

Realize that the point chosen as the instantaneous center of zero
velocity for the body can only be used at the instant considered since the
body changes its position from one instant to the next. The locus of
points which define the location of the IC during the body’s motion is
called a centrode, Fig. 16–18a, and so each point on the centrode acts as
the IC for the body only for an instant.

Although the IC may be conveniently used to determine the velocity
of any point in a body, it generally does not have zero acceleration and
therefore it should not be used for finding the accelerations of points in
a body.

Procedure for Analysis

The velocity of a point on a body which is subjected to general plane
motion can be determined with reference to its instantaneous center
of zero velocity provided the location of the IC is first established
using one of the three methods described above.
• As shown on the kinematic diagram in Fig. 16–19, the body is

imagined as “extended and pinned” at the IC so that, at the
instant considered, it rotates about this pin with its angular
velocity

• The magnitude of velocity for each of the arbitrary points A, B,
and C on the body can be determined by using the equation

where r is the radial distance from the IC to each point.
• The line of action of each velocity vector v is perpendicular to its

associated radial line r, and the velocity has a sense of direction
which tends to move the point in a manner consistent with the
angular rotation of the radial line, Fig. 16–19.V

v = vr,

V.

rA/IC

rB/IC
rC/IC

vB � v rB/IC

vC � v rC/IC

vA � v rA/IC
A

B

C

IC

V

Fig. 16–19
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EXAMPLE 16.10

Show how to determine the location of the instantaneous center of
zero velocity for (a) member BC shown in Fig. 16–20a; and (b) the link
CB shown in Fig. 16–20c.

SOLUTION

Part (a). As shown in Fig. 16–20a, point B moves in a circular path
such that is perpendicular to AB. Therefore, it acts at an angle 
from the horizontal as shown in Fig. 16–20b. The motion of point B
causes the piston to move forward horizontally with a velocity 
When lines are drawn perpendicular to and Fig. 16–20b, they
intersect at the IC.

Part (b). Points B and C follow circular paths of motion since links AB
and DC are each subjected to rotation about a fixed axis, Fig. 16–20c.
Since the velocity is always tangent to the path, at the instant considered,

on rod DC and on rod AB are both directed vertically downward,
along the axis of link CB, Fig. 16–20d. Radial lines drawn perpendicular
to these two velocities form parallel lines which intersect at “infinity;”
i.e., and Thus, As a
result, link CB momentarily translates.An instant later, however, CB will
move to a tilted position, causing the IC to move to some finite location.

vCB = 1vC>rC>IC2: 0.rB>IC: q .rC>IC: q

vBvC

vC ,vB
vC .

uvB

(a)

B

A
Cv

u

vB

rB/IC VBC

vC

rC/IC

IC

C

B

(b)

u

D
b

C

A B

VDC

(c)

VCB

C

vC

rB/IC

vB

B

IC

rC/IC

(d)

Fig. 16–20
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EXAMPLE 16.11

Block D shown in Fig. 16–21a moves with a speed of . Determine
the angular velocities of links BD and AB, at the instant shown.

3 m>s

(a)

A

B

D

0.4 m 0.4 m

90�

45�45� 3 m/s

0.4 m

IC

B

D

rD/IC

(b)

rB/IC

vD � 3 m/s

vB

BD

45�

V

A

B

0.4 m

(c)

vB � 2.12 m/s

ABV

45�

Fig. 16–21

SOLUTION
As D moves to the right, it causes AB to rotate clockwise about point
A. Hence, is directed perpendicular to AB. The instantaneous
center of zero velocity for BD is located at the intersection of the line
segments drawn perpendicular to and Fig. 16–21b. From the
geometry,

Since the magnitude of is known, the angular velocity of link BD is

d Ans.

The velocity of B is therefore

From Fig. 16–21c, the angular velocity of AB is

b Ans.

NOTE: Try and solve this problem by applying to
member BD.

vD = vB + vD>B

vAB =
vB
rB>A

=
2.12 m>s

0.4 m
= 5.30 rad>s

vB = vBD1rB>IC2 = 5.30 rad>s 10.4 m2 = 2.12 m>s c45°

vBD =
vD
rD>IC

=
3 m>s

0.5657 m
= 5.30 rad>s

vD

rD>IC =
0.4 m

cos 45°
= 0.5657 m

rB>IC = 0.4 tan 45° m = 0.4 m

vD ,vB

vB
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EXAMPLE 16.12

The cylinder shown in Fig. 16–22a rolls without slipping between the
two moving plates E and D. Determine the angular velocity of the
cylinder and the velocity of its center C.

SOLUTION
Since no slipping occurs, the contact points A and B on the cylinder
have the same velocities as the plates E and D, respectively.
Furthermore, the velocities and are parallel, so that by the
proportionality of right triangles the IC is located at a point on line AB,
Fig. 16–22b.Assuming this point to be a distance x from B, we have

Dividing one equation into the other eliminates and yields

Hence, the angular velocity of the cylinder is

b Ans.

The velocity of point C is therefore

Ans.= 0.0750 m>s;
vC = vrC>IC = 2.60 rad>s 10.1538 m - 0.125 m2

v =
vB
x

=
0.4 m>s

0.1538 m
= 2.60 rad>s

x =
0.1

0.65
= 0.1538 m

0.410.25 - x2 = 0.25x

v

0.25 m>s = v10.25 m - x2vA = v10.25 m - x2;
0.4 m>s = vxvB = vx;

vBvA

vD = 0.4 m/s

C

B

AE

D

0.125 m

vE = 0.25 m/s

(a)

C

B

A vA � 0.25 m/s

vB � 0.4 m/s

0.25 m
x

0.125 m

IC
rC/IC

(b)

V

rC

Fig. 16–22
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EXAMPLE 16.13

The crankshaft AB turns with a clockwise angular velocity of 
Fig. 16–23a. Determine the velocity of the piston at the instant shown.

10 rad>s,

(a)

B

A

C

0.75 ft

0.25 ft

13.6�

vBC � 2.43 rad/s

45�
vAB � 10 rad/s

0.75 ft

2.50 ft/s

IC
C

B

(b)

vC

58.6�

45.0� 76.4�

Fig. 16–23

SOLUTION
The crankshaft rotates about a fixed axis, and so the velocity of point
B is

Since the directions of the velocities of B and C are known, then the
location of the IC for the connecting rod BC is at the intersection of
the lines extended from these points, perpendicular to and ,
Fig. 16–23b. The magnitudes of and can be obtained from
the geometry of the triangle and the law of sines, i.e.,

The rotational sense of must be the same as the rotation caused
by about the IC, which is counterclockwise. Therefore,

Using this result, the velocity of the piston is

Ans.vC = vBCrC>IC = (2.425 rad>s)(0.9056 ft) = 2.20 ft>s

vBC =
vB

rB>IC
=

2.5 ft>s
1.031 ft

= 2.425 rad>s
vB

VBC

 rC>IC = 0.9056 ft

 
0.75 ft
sin 45°

=
rC>IC

sin 58.6°

 rB>IC = 1.031 ft

 
0.75 ft
sin 45°

=
rB>IC

sin 76.4°

rC>ICrB>IC

vCvB

vB = 10 rad>s (0.25 ft) = 2.50 ft>s a 45°
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A

C

2.5 m

2.5 m

4 m

B

vA � 6 m/s

F16–13

A
B C

0.6 m 1.2 m

vAB � 12 rad/s

F16–14

A

B

 6 m/s

0.6 m 0.3 m

O

F16–15

B

C

 3 m/s

 1.5 m/s

0.3 m
0.2 m

O

A

F16–16

FUNDAMENTAL PROBLEMS

F16–13. Determine the angular velocity of the rod and the
velocity of point at the instant shown.C

F16–16. If cable is unwound with a speed of and
the gear rack has a speed of determine the
angular velocity of the gear and the velocity of its center O.

1.5 m>s,C
3 m>s,AB

F16–17. Determine the angular velocity of link and the
velocity of the piston at the instant shown.C

BC

F16–15. If the center of the wheel is moving with a
speed of determine the velocity of point on
the wheel. The gear rack B is fixed.

AvO = 6 m>s,
O

F16–14. Determine the angular velocity of link and
velocity of the piston at the instant shown.C

BC

F16–18. Determine the angular velocity of links and
at the instant shown.CD

BC

A
0.2 m

0.8 m

C

B 30�

v � 6 rad/s

F16–17

A

B C

D

0.4 m
0.2 m

0.2 m

vAB � 10 rad/s
30�

F16–18
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PROBLEMS

•16–89. If link CD has an angular velocity of
, determine the velocity of point E on link BC

and the angular velocity of link AB at the instant shown.
vCD = 6 rad>s

16–82. Solve Prob. 16–54 using the method of
instantaneous center of zero velocity.

16–83. Solve Prob. 16–56 using the method of
instantaneous center of zero velocity.

*16–84. Solve Prob. 16–64 using the method of
instantaneous center of zero velocity.

•16–85. Solve Prob. 16–58 using the method of
instantaneous center of zero velocity.

16–86. Solve Prob. 16–67 using the method of
instantaneous center of zero velocity.

16–87. Solve Prob. 16–68 using the method of
instantaneous center of zero velocity.

*16–88. The wheel rolls on its hub without slipping on the
horizontal surface. If the velocity of the center of the wheel
is to the right, determine the velocities of points
A and B at the instant shown.
vC = 2 ft>s

16–91. If the center O of the gear is given a velocity of
, determine the velocity of the slider block B at

the instant shown.
vO = 10 m>s1 in.

0.5 in.

8 in.

3 in.

B

B

v

A

A
CC � 2 ft/s

Prob. 16–88

B

E

30�

C

DA

0.3 m 0.3 m

0.6 m

vCD� 6 rad/s

Prob. 16–89

B

G 1.5 m
3 m/s

Prob. 16–90

16–90. At the instant shown, the truck travels to the right at
while the pipe rolls counterclockwise at 

without slipping at B. Determine the velocity of the pipe’s
center G.

v = 6 rad>s3 m>s,

0.6 m

0.175 m

0.125 m

B

A

O
vO � 10 m/s 30�

30�

Prob. 16–91
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16–94. The wheel is rigidly attached to gear A, which is in
mesh with gear racks D and E. If D has a velocity of

to the right and wheel rolls on track C without
slipping, determine the velocity of gear rack E.

16–95. The wheel is rigidly attached to gear A, which is in
mesh with gear racks D and E. If the racks have a velocity
of and , show that it is necessary for
the wheel to slip on the fixed track C. Also find the angular
velocity of the gear and the velocity of its center O.

vE = 10 ft>svD = 6 ft>s

vD = 6 ft>s

•16–93. If end A of the hydraulic cylinder is moving with a
velocity of , determine the angular velocity of
rod BC at the instant shown.

vA = 3 m>s

*16–92. If end A of the cord is pulled down with a velocity
of , determine the angular velocity of the spool
and the velocity of point C located on the outer rim of 
the spool.

vA = 4 m>s

*16–96. If C has a velocity of , determine the
angular velocity of the wheel at the instant shown.

vC = 3 m>s

vA � 4 m/s
A

B

C

250 mm

O

500 mm

Prob. 16–92

A

B

C

vA � 3 m/s

0.4 m 0.4 m

45�

Prob. 16–93

C

1.5 ft

0.75 ft
O

A

vD � 6 ft/s

E

C

D

vE

Probs. 16–94/95

C

A
0.15 m

0.45 m

B

vC � 3 m/s

45�

Prob. 16–96
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*16–100. If rod AB is rotating with an angular velocity
, determine the angular velocity of rod BC at

the instant shown.

•16–101. If rod AB is rotating with an angular velocity
, determine the angular velocity of rod CD at

the instant shown.
vAB = 3 rad>s

vAB = 3 rad>s

16–98. If the hub gear H and ring gear R have angular
velocities and , respectively,
determine the angular velocity of the spur gear S and the
angular velocity of arm OA.

16–99. If the hub gear H has an angular velocity
, determine the angular velocity of the ring

gear R so that the arm OA which is pinned to the spur gear
S remains stationary ( ). What is the angular
velocity of the spur gear?

vOA = 0

vH = 5 rad>s

vS

vR = 20 rad>svH = 5 rad>s

•16–97. The oil pumping unit consists of a walking beam
AB, connecting rod BC, and crank CD. If the crank rotates
at a constant rate of 6 , determine the speed of the rod
hanger H at the instant shown. Hint: Point B follows a
circular path about point E and therefore the velocity of B
is not vertical.

rad>s

16–102. The mechanism used in a marine engine consists
of a crank AB and two connecting rods BC and BD.
Determine the velocity of the piston at C the instant the
crank is in the position shown and has an angular velocity of
5 .

16–103. The mechanism used in a marine engine consists
of a crank AB and two connecting rods BC and BD.
Determine the velocity of the piston at D the instant the
crank is in the position shown and has an angular velocity of
5 .rad>s

rad>s

9 ft

10 ft
3 ft

9 ft

1.5 ft

D
C

B

E
A

H

6 rad/s

9 ft

Prob. 16–97

O
150 mm

50 mm
A

SH

R

vH

vS

vR

250 mm

Probs. 16–98/99

AB � 3 rad/s

2 ft

3 ft

4 ft

45� 60�

A

B

v

C

D

Probs. 16–100/101

0.2 m

0.4 m

0.4 m

D

C
30°

60�

45�

B

A

45�

5 rad/s

Probs. 16–102/103



362 CH A P T E R 16 PL A N A R KI N E M AT I C S O F A RI G I D BO D Y

16

16–106. The square plate is constrained within the slots at
A and B. When , point A is moving at .
Determine the velocity of point C at this instant.

16–107. The square plate is constrained within the slots at
A and B. When , point A is moving at .
Determine the velocity of point D at this instant.

vA = 8 m>su = 30°

vA = 8 m>su = 30°

•16–105. If crank AB is rotating with an angular velocity
of , determine the velocity of the center O of
the gear at the instant shown.
vAB = 6 rad>s

*16–104. If flywheel A is rotating with an angular velocity
of , determine the angular velocity of wheel
B at the instant shown.
vA = 10 rad>s

*16–108. The mechanism produces intermittent motion of
link AB. If the sprocket S is turning with an angular velocity
of , determine the angular velocity of link AB
at this instant.The sprocket S is mounted on a shaft which is
separate from a collinear shaft attached to AB at A.The pin
at C is attached to one of the chain links.

vS = 6 rad>s

D

C

B
A

0.1 m

0.15 m
0.6 m

vA � 10 rad/s

30�

Prob. 16–104

A

B C

O0.4 m

0.6 m

0.1 m

0.1 m

60�

vAB � 6 rad/s

Prob. 16–105

0.3 m

0.3 m

D

C

u

A

B

vA � 8 m/s

 � 30�

Probs. 16–106/107

200 mm

B

30�

C

15�

S

D

A

175 mm

150 mm

� 6 rad/s

50 mm

vs

Prob. 16–108
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16.7 Relative-Motion Analysis:
Acceleration

An equation that relates the accelerations of two points on a bar (rigid
body) subjected to general plane motion may be determined by
differentiating with respect to time. This yields

The terms and are measured with respect to
a set of fixed x, y axes and represent the absolute accelerations of points B
and A.The last term represents the acceleration of B with respect to A as
measured by an observer fixed to translating axes which 
have their origin at the base point A. In Sec. 16.5 it was shown that to this
observer point B appears to move along a circular arc that has 
a radius of curvature Consequently, can be expressed in terms
of its tangential and normal components; i.e.,
where and Hence, the relative-
acceleration equation can be written in the form

(16–17)

where

tangential acceleration component of B with respect
to A. The magnitude is and the
direction is perpendicular to

normal acceleration component of B with respect to
A. The magnitude is and the
direction is always from 

The terms in Eq. 16–17 are represented graphically in Fig. 16–24. Here it
is seen that at a given instant the acceleration of B, Fig. 16–24a, is
determined by considering the bar to translate with an acceleration 
Fig. 16–24b, and simultaneously rotate about the base point A with an
instantaneous angular velocity and angular acceleration Fig. 16–24c.
Vector addition of these two effects, applied to B, yields as shown in
Fig. 16–24d. It should be noted from Fig. 16–24a that since points A and B
move along curved paths, the accelerations of these points will have both
tangential and normal components. (Recall that the acceleration of a point
is tangent to the path only when the path is rectilinear or when it is an
inflection point on a curve.)

aB ,
A,V

aA ,

B towards A.
1aB>A2n = v2rB>A ,

1aB>A2n =
rB>A .
1aB>A2t = arB>A ,

1aB>A2t =
aA = acceleration of point A

aB = acceleration of point B

aB = aA + 1aB>A2t + 1aB>A2n

1aB>A2n = v2rB>A .1aB>A2t = arB>A
aB>A = 1aB>A2t + 1aB>A2n ,

aB>ArB>A .

y¿x¿,

dvA>dt = aAdvB>dt = aB

dvB
dt

=
dvA
dt

+
dvB>A
dt

vB = vA + vB>A

Path of
point A

Path of
point B

B

A

aB

aA

General plane motion

(a)

V A

A

aA

B

aA

Translation

(b)

�

�

B

A

aB/A

(aB/A)t

(aB/A)n

rB/A

Rotation about the
base point A

(c)

V
A

(d)

(aB/A)n

(aB/A)t

aA

aB

Fig. 16–24
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Since the relative-acceleration components represent the effect of
circular motion observed from translating axes having their origin at the
base point A, these terms can be expressed as and

Eq. 16–14. Hence, Eq. 16–17 becomes

(16–18)

where

acceleration of point B

acceleration of the base point A

angular acceleration of the body 

angular velocity of the body 

position vector directed from 

If Eq. 16–17 or 16–18 is applied in a practical manner to study the
accelerated motion of a rigid body which is pin connected to two other
bodies, it should be realized that points which are coincident at the pin
move with the same acceleration, since the path of motion over which
they travel is the same. For example, point B lying on either rod BA or
BC of the crank mechanism shown in Fig. 16–25a has the same
acceleration, since the rods are pin connected at B. Here the motion of B
is along a circular path, so that can be expressed in terms of its
tangential and normal components. At the other end of rod BC point C
moves along a straight-lined path, which is defined by the piston. Hence,

is horizontal, Fig. 16–25b.
If two bodies contact one another without slipping, and the points in

contact move along different paths, then the tangential components of
acceleration of the points will be the same; however, the normal
components will generally not be the same. For example, consider the
two meshed gears in Fig. 16–26a. Point A is located on gear B and a
coincident point is located on gear C. Due to the rotational motion,

however, since both points follow different circular paths,
and therefore Fig. 16–26b.aA Z aA¿ ,1aA2n Z 1aA¿2n

1aA2t = 1aA¿2t ;
A¿

aC

aB

A to B rB>A =
 V =
 A =

 aA =
 aB =

aB = aA + A * rB>A - v2rB>A

1aB>A2n = -v2rB>A ,
1aB>A2t = A * rB>A

(a)

A

B

C

Path of B

v
a

A

B

C
aB aC

(b)

B

(aB)n
(aB)t

aB

Fig. 16–25

(a)

B
C

A¿
A

C
B

(b)

A A¿(aA)n

(aA)t
aA (aA¿)t

aA¿

(aA¿)n

Fig. 16–26
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Procedure for Analysis

The relative acceleration equation can be applied between any two
points A and B on a body either by using a Cartesian vector analysis,
or by writing the x and y scalar component equations directly.

Velocity Analysis.
• Determine the angular velocity of the body by using a velocity

analysis as discussed in Sec. 16.5 or 16.6. Also, determine the
velocities and of points A and B if these points move along
curved paths.

Vector Analysis
Kinematic Diagram.
• Establish the directions of the fixed x, y coordinates and draw the

kinematic diagram of the body. Indicate on it and 
• If points A and B move along curved paths, then their accelerations

should be indicated in terms of their tangential and normal
components, i.e., and 

Acceleration Equation.
• To apply , express the vectors in

Cartesian vector form and substitute them into the equation.
Evaluate the cross product and then equate the respective i and j
components to obtain two scalar equations.

• If the solution yields a negative answer for an unknown
magnitude, it indicates that the sense of direction of the vector is
opposite to that shown on the kinematic diagram.

Scalar Analysis
Kinematic Diagram.
• If the acceleration equation is applied in scalar form, then the

magnitudes and directions of the relative-acceleration components
and must be established.To do this draw a kinematic

diagram such as shown in Fig. 16–24c. Since the body is considered
to be momentarily “pinned” at the base point A, the magnitudes of
these components are and
Their sense of direction is established from the diagram such that

acts perpendicular to in accordance with the rotational
motion of the body, and is directed from B towards A.*

Acceleration Equation.
• Represent the vectors in graphically

by showing their magnitudes and directions underneath each
term. The scalar equations are determined from the x and y
components of these vectors.

aB = aA + 1aB>A2t + 1aB>A2n
1aB>A2nA

rB>A ,1aB>A2t
1aB>A2n = v2rB>A .1aB>A2t = arB>A

1aB>A2n1aB>A2t

aB = aA + A * rB>A - v2rB>A

aB = 1aB2t + 1aB2n .aA = 1aA2t + 1aA2n

rB>A .A,V,aB ,aA ,

vBvA

V

*The notation may be helpful in recalling
that A is assumed to be pinned.

aB = aA + 1aB>A1pin22t + 1aB>A1pin22n

The mechanism for a
window is shown. Here CA
rotates about a fixed axis
through C, and AB
undergoes general plane
motion. Since point A
moves along a curved path
it has two components 
of acceleration, whereas 
point B moves along a
straight track and the
direction of its acceleration
is specified.

A

C

B

(aA)n

(aA)t

aB

V, A
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The rod AB shown in Fig. 16–27a is confined to move along the
inclined planes at A and B. If point A has an acceleration of 
and a velocity of , both directed down the plane at the instant
the rod is horizontal, determine the angular acceleration of the rod at
this instant.

SOLUTION I (VECTOR ANALYSIS)
We will apply the acceleration equation to points A and B on the rod.
To do so it is first necessary to determine the angular velocity of the
rod. Show that it is d using either the velocity
equation or the method of instantaneous centers.

Kinematic Diagram. Since points A and B both move along
straight-line paths, they have no components of acceleration normal
to the paths.There are two unknowns in Fig. 16–27b, namely, and 

Acceleration Equation.

aB = aA + A * rB>A - v2rB>A

a.aB

v = 0.283 rad>s

2 m>s 3 m>s2

EXAMPLE 16.14

Carrying out the cross product and equating the i and j components
yields

(1)

(2)

Solving, we have

d Ans.

SOLUTION II (SCALAR ANALYSIS)
From the kinematic diagram, showing the relative-acceleration
components and Fig. 16–27c, we have

Equating the x and y components yields Eqs. 1 and 2, and the solution
proceeds as before.

c aB
a45°

d = c3 m>s2

c45°
d + ca110 m2

c d + c10.283 rad>s22110 m2
; d

aB = aA + 1aB>A2t + 1aB>A2n
1aB>A2n ,1aB>A2t

a = 0.344 rad>s2

aB = 1.87 m>s2
a45°

aB sin 45° = -3 sin 45° + a1102
aB cos 45° = 3 cos 45° - 10.283221102

aB cos 45°i + aB sin 45°j = 3 cos 45°i - 3 sin 45°j + 1ak2 * 110i2 - 10.28322110i2

10 m

BA

(a)

vA � 2 m/s
aA � 3 m/s2

45� 45�

x

y

A B

45�

45�

aA � 3 m/s2

rB/A

v � 0.283 rad/s

aB

(b)

A

A B

10 m

rB/A

(aB/A)t � a rB/A

(aB/A)n � v2 rB/A

v � 0.283 rad/s

(c)

A

Fig. 16–27
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EXAMPLE 16.15

At a given instant, the cylinder of radius r, shown in Fig. 16–28a, has an
angular velocity and angular acceleration Determine the
velocity and acceleration of its center G and the acceleration of the
contact point at A if it rolls without slipping.

SOLUTION (VECTOR ANALYSIS)

Velocity Analysis. Since no slipping occurs, at the instant A
contacts the ground, Thus, from the kinematic diagram in 
Fig. 16–28b we have

(1) Ans.

This same result can also be obtained directly by noting that point A
represents the instantaneous center of zero velocity.

Kinematic Diagram. Since the motion of G is always along a
straight line, then its acceleration can be determined by taking the
time derivative of its velocity, which gives 

(2) Ans.

Acceleration Equation. The magnitude and direction of is
unknown, Fig. 16–28c.

Evaluating the cross product and equating the i and j components
yields

Ans.

Ans.

NOTE: The results, that and can be applied to any
circular object, such as a ball, cylinder, disk, etc., that rolls without
slipping. Also, the fact that indicates that the instantaneous
center of zero velocity, point A, is not a point of zero acceleration.

aA = v2r

aG = ar,vG = vr

 (aA)y = v2r

 (aA)x = 0

ar i = (aA)xi + (aA2y j + 1-ak2 * 1rj2 - v21rj2
aG = aA + A * rG>A - v2rG>A

aA

aG = ar

aG =
dvG
dt

=
dv

dt
r

vG = vr
vGi = 0 + 1-vk2 * 1rj2
vG = vA + V * rG>A

vA = 0.

A.V

r

A

G

(a)

v
a

rG/A

G

(b)

vG

A

V

G

(c)

A

rG/A

aG

(aA)y
(aA)x

V
A

Fig. 16–28
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The spool shown in Fig. 16–29a unravels from the cord, such that at
the instant shown it has an angular velocity of and an angular
acceleration of Determine the acceleration of point B.

SOLUTION I (VECTOR ANALYSIS)
The spool “appears” to be rolling downward without slipping at point
A. Therefore, we can use the results of Example 16.15 to determine
the acceleration of point G, i.e.,

We will apply the acceleration equation to points G and B.

Kinematic Diagram. Point B moves along a curved path having an
unknown radius of curvature.* Its acceleration will be represented by
its unknown x and y components as shown in Fig. 16–29b.

Acceleration Equation.

Equating the i and j terms, the component equations are

(1)

(2)

The magnitude and direction of are therefore

Ans.

Ans.

SOLUTION II (SCALAR ANALYSIS)
This problem may be solved by writing the scalar component
equations directly. The kinematic diagram in Fig. 16–29c shows the
relative-acceleration components and Thus,

The x and y components yield Eqs. 1 and 2 above.

= c2 ft>s2

T
d + c4 rad>s2 10.75 ft2

: d + c13 rad>s2210.75 ft2
T

d
c1aB2x: d + c1aB2yc d

aB = aG + 1aB>G2t + 1aB>G2n
1aB>G2n .1aB>G2t

u = tan-1 8.75
3

= 71.1° c

aB = 21322 + 18.7522 = 9.25 ft>s2

aB

1aB2y = -2 - 6.75 = -8.75 ft>s2 = 8.75 ft>s2 T

1aB2x = 410.752 = 3 ft>s2 :

1aB2xi + 1aB2yj = -2j + 1-4k2 * 10.75j2 - 132210.75j2
aB = aG + A * rB>G - v2rB>G

aG = ar = 14 rad>s2210.5 ft2 = 2 ft>s2

4 rad>s2.
3 rad>s

EXAMPLE 16.16

*Realize that the path’s radius of curvature is not equal to the radius of the spool
since the spool is not rotating about point G. Furthermore, is not defined as the
distance from A (IC) to B, since the location of the IC depends only on the velocity
of a point and not the geometry of its path.

r

r

v � 3 rad/s
a � 4 rad/s2

(a)

B

A G

0.5 ft
0.75 ft

(b)

aG � 2 ft/s2

x

y

rB/G

(aB)x

(aB)y

v � 3 rad/s
a � 4 rad/s2

(c)

rB/G � 0.75 ft

G

B (aB/G)t � arB/G

(aB/G)n � v2rB/G

v � 3 rad/s
a � 4 rad/s2

Fig. 16–29
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EXAMPLE 16.17

The collar C in Fig. 16–30a moves downward with an acceleration of
At the instant shown, it has a speed of which gives links

CB and AB an angular velocity (See
Example 16.8.) Determine the angular accelerations of CB and AB at
this instant.

vAB = vCB = 10 rad>s.
2 m>s1 m>s2.

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. The kinematic diagrams of both links AB and
CB are shown in Fig. 16–30b. To solve, we will apply the appropriate
kinematic equation to each link.

Acceleration Equation.
Link AB (rotation about a fixed axis):

Note that has n and t components since it moves along a circular
path.

Link BC (general plane motion): Using the result for and applying
Eq. 16–18, we have

Thus,

Solving,
d Ans.

b Ans. aAB = -95 rad>s2 = 95 rad>s2

 aCB = 5 rad>s2

 20 = -1 + 0.2aCB + 20

 0.2aAB = 0.2aCB - 20

 0.2aABi + 20j = -1j + 0.2aCB j + 0.2aCBi - 20i + 20j

 0.2aABi + 20j = -1j + 1aCBk2 * 10.2i - 0.2j2 - 1102210.2i - 0.2j2
 aB = aC + ACB * rB>C - vCB2 rB>C

aB

aB

 aB = 0.2aABi + 20j

 aB = 1aABk2 * 1-0.2j2 - 110221-0.2j2
 aB = AAB * rB - vAB2 rB

(b)

C
A

B

0.2 m

0.2 m

vAB � 10 rad/s 

vCB �
 10 rad/s 

aC � 1 m/s2

x

y

rB/C
rB

ACB
AAB

Fig. 16–30

vC � 2 m/s

(a)

C
A

B

0.2 m

0.2 m

10 rad/s
vCB �

AB �10 rad/s  

aC � 1 m/s2

v
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The crankshaft AB turns with a clockwise angular acceleration of
Fig. 16–31a. Determine the acceleration of the piston at the

instant AB is in the position shown. At this instant 
and (See Example 16.13.)

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. The kinematic diagrams for both AB and BC
are shown in Fig. 16–31b. Here is vertical since C moves along a
straight-line path.

Acceleration Equation. Expressing each of the position vectors in
Cartesian vector form

Crankshaft AB (rotation about a fixed axis):

Connecting Rod BC (general plane motion): Using the result for 
and noting that is in the vertical direction, we have

 aC = aB + ABC * rC>B - vBC2 rC>B

aC
aB

 = 521.21i - 14.14j6 ft>s2

 = 1-20k2 * 1-0.177i + 0.177j2 - 110221-0.177i + 0.177j2
 aB = AAB * rB - vAB2 rB

 rC>B = 50.75 sin 13.6°i + 0.75 cos 13.6°j6 ft = 50.177i + 0.729j6 ft
 rB = 5-0.25 sin 45°i + 0.25 cos 45°j6 ft = 5-0.177i + 0.177j6 ft

aC

vBC = 2.43 rad>s vAB = 10 rad>s20 rad>s2,

EXAMPLE 16.18

13.6�

45�

(b)

B

A

C

0.75 cos 13.6� ft

x

y

0.25 cos 45� ft rB

rC/B

aC

vBC � 2.43 rad/s

vAB � 10 rad/s
aAB � 20 rad/s2

aBC

Fig. 16–31

13.6�

45�

(a)

B

A

C

0.75 ft

0.25 ft

vBC � 2.43 rad/s

vAB � 10 rad/s
aAB � 20 rad/s2

 aCj = 21.21i - 14.14j + 1aBCk2 * 10.177i + 0.729j2 - 12.432210.177i + 0.729j2

Solving yields

d

Ans.

NOTE: Since the piston is moving upward, the negative sign for 
indicates that the piston is decelerating, i.e., This
causes the speed of the piston to decrease until AB becomes vertical,
at which time the piston is momentarily at rest.

aC = 5-13.5j6 ft>s2.
aC

 aC = -13.5 ft>s2

 aBC = 27.7 rad>s2 

 aC = 0.177aBC - 18.45

 0 = 20.17 - 0.729aBC

 aCj = 21.21i - 14.14j + 0.177aBCj - 0.729aBCi - 1.04i - 4.30j



16.7 RELATIVE-MOTION ANALYSIS: ACCELERATION 371

16

A

B

0.6 m 0.3 m

O
vO � 6 m/s
aO � 3 m/s2

F16–21

B

C

0.3 m
0.2 m

O

A

vB � 3 m/s
aB � 1.5 m/s2

vC � 1.5 m/s
aC � 0.75 m/s2

F16–22

A

5 m
4 m

B

vA � 6 m/s
aA � 5 m/s2

F16–19

B
C

0.3 m 1.2 m

 v � 12 rad/s
 a � 6 rad/s2

F16–23

0.3 m

O

A
 v � 12 rad/s
 a � 6 rad/s2

F16–20

A

v � 6 rad/s

0.2 m

0.8 m

C

B

 a � 3 rad/s2

30�

F16–24

FUNDAMENTAL PROBLEMS

F16–22. At the instant shown, cable has a velocity of
and acceleration of while the gear rack has a

velocity of and acceleration of Determine
the angular acceleration of the gear at this instant.

0.75 m>s2.1.5 m>s
1.5 m>s2,3 m>s

AB

F16–21. The gear rolls on the fixed rack At the instant
shown, the center of the gear moves with a velocity of

and acceleration of Determine
the angular acceleration of the gear and acceleration of
point at this instant.A

aO = 3 m>s2.vO = 6 m>s
O

B.

F16–19. At the instant shown, end of the rod has the
velocity and acceleration shown. Determine the angular
acceleration of the rod and acceleration of end of the rod.B

A

F16–24. At the instant shown, wheel rotates with an
angular velocity of and an angular acceleration
of Determine the angular acceleration of link

and the acceleration of piston C.BC
a = 3 rad>s2.

v = 6 rad>s
A

F16–20. The gear rolls on the fixed rack with an angular
velocity of and angular acceleration of

Determine the acceleration of point A.a = 6 rad>s2.
v = 12 rad>s

F16–23. At the instant shown, the wheel rotates with an
angular velocity of and an angular acceleration
of Determine the angular acceleration of link

and the acceleration of piston at this instant.CBC
a = 6 rad>s2.

v = 12 rad>s
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PROBLEMS

•16–113. At the instant shown, the slider block B is
traveling to the right with the velocity and acceleration
shown. Determine the angular acceleration of the wheel at
this instant.

16–111. The hoop is cast on the rough surface such that it
has an angular velocity and an angular
acceleration . Also, its center has a velocity

and a deceleration . Determine the
acceleration of point A at this instant.

*16–112. The hoop is cast on the rough surface such that it
has an angular velocity and an angular
acceleration . Also, its center has a velocity of

and a deceleration . Determine the
acceleration of point B at this instant.

aO = 2 m>s2vO = 5 m>s
a = 5 rad>s2

v = 4 rad>s

aO = 2 m>s2vO = 5 m>s
a = 5 rad>s2

v = 4 rad>s

•16–109. The disk is moving to the left such that it has an
angular acceleration and angular velocity

at the instant shown. If it does not slip at A,
determine the acceleration of point B.

16–110. The disk is moving to the left such that it has an
angular acceleration and angular velocity

at the instant shown. If it does not slip at A,
determine the acceleration of point D.
v = 3 rad>s

a = 8 rad>s2

v = 3 rad>s
a = 8 rad>s2

16–114. The ends of bar AB are confined to move along
the paths shown.At a given instant, A has a velocity of 
and an acceleration of . Determine the angular
velocity and angular acceleration of AB at this instant.

3 ft>s2
8 ft>s

C

A
B

D

v
a

0.5 m

30� 45�

� 3 rad/s
� 8 rad/s2

Probs. 16–109/110

� 4 rad/s

� 5 rad/s2

vO � 5 m/s

aO � 2 m/s2

0.3 m 45�

B

A

a

v

O

Probs. 16–111/112

5 in.

A

B

20 in.

vB � 6 in./s

aB � 3 in./s2

Prob. 16–113

4 ft

4 ft

30�

30�

A

B

vA � 8 ft/s
aA � 3 ft/s2

Prob. 16–114
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•16–117. The hydraulic cylinder D extends with a velocity
of and an acceleration of .
Determine the acceleration of A at the instant shown.

16–118. The hydraulic cylinder D extends with a velocity
of and an acceleration of .
Determine the acceleration of C at the instant shown.

aB = 1.5 ft>s2vB = 4 ft>s

aB = 1.5 ft>s2vB = 4 ft>s

*16–116. At the given instant member AB has the angular
motions shown. Determine the velocity and acceleration of
the slider block C at this instant.

16–115. Rod AB has the angular motion shown.
Determine the acceleration of the collar C at this instant.

16–119. The slider block moves with a velocity of
and an acceleration of . Determine

the angular acceleration of rod AB at the instant shown.

*16–120. The slider block moves with a velocity of
and an acceleration of . Determine

the acceleration of A at the instant shown.
aB = 3 ft>s2vB = 5 ft>s

aB = 3 ft>s2vB = 5 ft>s

2.5 ft

2 ft

B

A

C

45�

60�

aAB � 3 rad/s2

vAB � 5 rad/s

Prob. 16–115

5 in.

5 in.

7 in.

3 rad/s
2 rad/s2

A

C

B

5
3

4

Prob. 16–116

2 ft

1 ft

D

A

B

C

vB � 4 ft/s
aB � 1.5 ft/s2

30�

Probs. 16–117/118

B

vB � 5 ft/s
aB � 3 ft/s2

A

1.5 ft

2 ft

30�

Probs. 16–119/120
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16–123. Pulley A rotates with the angular velocity and
angular acceleration shown. Determine the angular
acceleration of pulley B at the instant shown.

*16–124. Pulley A rotates with the angular velocity and
angular acceleration shown. Determine the acceleration of
block E at the instant shown.

16–122. The hydraulic cylinder extends with a velocity of
and an acceleration of .

Determine the angular acceleration of link ABC and the
acceleration of end C at the instant shown. Point B is pin
connected to the slider block.

aA = 0.5 m>s2vA = 1.5 m>s

•16–121. Crank AB rotates with an angular velocity 
of and an angular acceleration of

. Determine the acceleration of C and the
angular acceleration of BC at the instant shown.
aAB = 2 rad>s2
vAB = 6 rad>s

•16–125. The hydraulic cylinder is extending with the
velocity and acceleration shown. Determine the angular
acceleration of crank AB and link BC at the instant shown.

A

B

150 mmC

300 mm

500 mm

30�

vAB � 6 rad/s
aAB � 2 rad/s2

Prob. 16–121

A

C

B

vA � 1.5 m/s
aA � 0.5 m/s2

0.5 m

0.6 m60�
90�

Prob. 16–122

A

B

E

vA � 40 rad/s
aA � 5 rad/s2

50 mm 

50 mm 

125 mm 

Probs. 16–123/124

A

B

D

C

0.4 m

0.3 m30�
60�

vD � 2 m/s
aD � 1.5 m/s2

Prob. 16–125
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*16–128. At a given instant, the gear has the angular
motion shown. Determine the accelerations of points A and
B on the link and the link’s angular acceleration at this
instant.

16–127. At a given instant, the gear racks have the velocities
and accelerations shown. Determine the acceleration of
points A and B.

16–126. A cord is wrapped around the inner spool of the
gear. If it is pulled with a constant velocity v, determine the
velocities and accelerations of points A and B. The gear
rolls on the fixed gear rack.

•16–129. Determine the angular acceleration of link AB if
link CD has the angular velocity and angular deceleration
shown.

G

B

r

2r

v

A

Prob. 16–126

B

0.25 ft

a � 2 ft/s2

v � 6 ft/s

a � 3 ft/s2

v � 2 ft/s

A

Prob. 16–127

� 6 rad/s
� 12 rad/s2 O

3 in.

2 in.

B

60�

8 in.

A

a
v

Prob. 16–128

0.6 m

0.6 m

0.3 m

A

B

C

D

aCD � 4 rad/s2

vCD � 2 rad/s

Prob. 16–129
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•16–133. The retractable wing-tip float is used on an
airplane able to land on water. Determine the angular
accelerations , , and at the instant shown if the
trunnion C travels along the horizontal rotating screw with
an acceleration of . In the position shown,

. Also, points A and E are pin connected to the wing
and points A and C are coincident at the instant shown.
vC = 0

aC = 0.5 ft>s2

aABaBDaCD

*16–132. If end A of the rod moves with a constant
velocity of , determine the angular velocity and
angular acceleration of the rod and the acceleration of end
B at the instant shown.

vA = 6 m>s

16–130. Gear is held fixed, and arm rotates
clockwise with an angular velocity of and an
angular acceleration of Determine the
angular acceleration of gear at the instant shown.

16–131. Gear rotates counterclockwise with a constant
angular velocity of while arm rotates
clockwise with an angular velocity of and an
angular acceleration of Determine the
angular acceleration of gear at the instant shown.B

aDE = 3 rad>s2.
vDE = 6 rad>s

DEvA = 10 rad>s,
A

B
aDE = 3 rad>s2.

vDE = 6 rad>s
DEA

16–134. Determine the angular velocity and the angular
acceleration of the plate CD of the stone-crushing
mechanism at the instant AB is horizontal. At this instant

and . Driving link AB is turning with a
constant angular velocity of .vAB = 4 rad>s

f = 90°u = 30°

vA � 6 m/s

B

A

400 mm

30�

Prob. 16–132

aC � 0.5 ft/s2

2 ft

2 ft

2 ft
90�

AB

D

a

B

E
C

A

Prob. 16–133

2 ft

4 ft

3 ft

u � 30�

f � 90�

    AB � 4 rad/s
AB

C

D

v

Prob. 16–134

A

D

B

E

0.3 m

0.2 m

30�

Probs. 130/131
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16.8 Relative-Motion Analysis using
Rotating Axes

In the previous sections the relative-motion analysis for velocity and
acceleration was described using a translating coordinate system. This
type of analysis is useful for determining the motion of points on the
same rigid body, or the motion of points located on several pin-connected
bodies. In some problems, however, rigid bodies (mechanisms) are
constructed such that sliding will occur at their connections.The kinematic
analysis for such cases is best performed if the motion is analyzed using
a coordinate system which both translates and rotates. Furthermore, this
frame of reference is useful for analyzing the motions of two points on a
mechanism which are not located in the same body and for specifying
the kinematics of particle motion when the particle moves along a
rotating path.

In the following analysis two equations will be developed which relate
the velocity and acceleration of two points, one of which is the origin of a
moving frame of reference subjected to both a translation and a rotation
in the plane.* 

Position. Consider the two points A and B shown in Fig. 16–32a.
Their location is specified by the position vectors and which are
measured with respect to the fixed X, Y, Z coordinate system. As shown
in the figure, the “base point” A represents the origin of the x, y, z
coordinate system, which is assumed to be both translating and rotating
with respect to the X, Y, Z system. The position of B with respect to A is
specified by the relative-position vector The components of this
vector may be expressed either in terms of unit vectors along the X, Y
axes, i.e., I and J, or by unit vectors along the x, y axes, i.e., i and j. For the
development which follows, will be measured with respect to the
moving x, y frame of reference. Thus, if B has coordinates ( ), Fig.
16–32a, then

Using vector addition, the three position vectors in Fig. 16–32a are
related by the equation

(16–19)

At the instant considered, point A has a velocity and an acceleration
while the angular velocity and angular acceleration of the x, y axes

are (omega) and respectively.æ
#

= dæ>dt,æ
aA ,

vA

rB = rA + rB>A

rB>A = xBi + yBj

yBxB ,
rB>A

rB>A .

rB ,rA

Y

X

y
x

A

B

rB

rA

yB

xB

rB/A

(a)

�
� .

Fig. 16–32

*The more general, three-dimensional motion of the points is developed in Sec. 20.4.
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Velocity. The velocity of point B is determined by taking the time
derivative of Eq. 16–19, which yields

(16–20)

The last term in this equation is evaluated as follows:

(16–21)

The two terms in the first set of parentheses represent the components
of velocity of point B as measured by an observer attached to the
moving x, y, z coordinate system. These terms will be denoted by vector

In the second set of parentheses the instantaneous time rate
of change of the unit vectors i and j is measured by an observer located
in the fixed X, Y, Z coordinate system. These changes, di and dj, are due
only to the rotation of the x, y, z axes, causing i to become 
and j to become Fig. 16–32b. As shown, the magnitudes of
both di and dj equal 1 since The direction of di
is defined by since di is tangent to the path described by the
arrowhead of i in the limit as Likewise, dj acts in the 
direction, Fig. 16–32b. Hence,

Viewing the axes in three dimensions, Fig. 16–32c, and noting that
we can express the above derivatives in terms of the cross

product as

(16–22)

Substituting these results into Eq. 16–21 and using the distributive
property of the vector cross product, we obtain

(16–23)
drB>A
dt

= 1vB>A2xyz + æ * 1xBi + yBj2 = 1vB>A2xyz + æ * rB>A

di
dt

= æ * i
dj
dt

= æ * j

æ = Æk,

di
dt

=
du

dt
1j2 = Æj

dj
dt

=
du

dt
1- i2 = -Æi

- i¢t: dt.
+ j,

i = i¿ = j = j¿ = 1.du,
j¿ = j + dj,

i¿ = i + didu

1vB>A2xyz .

= adxB
dt

i +
dyB
dt

jb + axB di
dt

+ yB
dj
dt
b

=
dxB
dt

i + xB
di
dt

+
dyB
dt

j + yB
dj
dt

drB>A
dt

=
d

dt
1xBi + yBj2

vB = vA +
drB>A
dt

j
j¿

x

y

djdu

j � 1 i � 1

du
i¿ di

(b)

i

�

x

z

y
j

k
i

(c)

�

Fig. 16–32 (cont.)
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Hence, Eq. 16–20 becomes

(16–24)

where

velocity of B, measured from the X, Y, Z reference

velocity of the origin A of the x, y, z reference,
measured from the X, Y, Z reference

velocity of “B with respect to A,” as measured by an
observer attached to the rotating x, y, z reference

angular velocity of the x, y, z reference, measured
from the X, Y, Z reference

Comparing Eq. 16–24 with Eq. 16–16 which is
valid for a translating frame of reference, it can be seen that the only
difference between these two equations is represented by the term

When applying Eq. 16–24 it is often useful to understand what each of
the terms represents. In order of appearance, they are as follows:

(equals)

(plus)

(plus)

fmotion of B observed
from the x, y, z frame

evelocity of B
with respect to A

1vB>A2xyz

eangular velocity effect caused
by rotation of x, y, z frame

æ * rB>A

eabsolute velocity of the 
origin of x, y, z frame

vA

fmotion of B observed
from the X, Y, Z frame

eabsolute velocity of B
vB

1vB>A2xyz .

1vB = vA + æ * rB>A2,

position of B with respect to ArB>A =

æ =

1vB>A2xyz =

vA =

vB =

vB = vA + æ * rB>A + 1vB>A2xyz

x
motion of x, y, z frame
observed from the
X, Y, Z frame
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Acceleration. The acceleration of B, observed from the X, Y, Z
coordinate system, may be expressed in terms of its motion measured
with respect to the rotating system of coordinates by taking the time
derivative of Eq. 16–24.

(16–25)aB = aA + æ
#

* rB>A + æ *
drB>A
dt

+
d1vB>A2xyz
dt

dvB
dt

=
dvA
dt

+
dæ
dt

* rB>A + æ *
drB>A
dt

+
d1vB>A2xyz
dt

where

acceleration of B, measured from the X, Y, Z
reference

acceleration of the origin A of the x, y, z
reference, measured from the X, Y, Z reference

acceleration and velocity of B with respect to A,
as measured by an observer attached to the
rotating x, y, z reference

angular acceleration and angular velocity of the
x, y, z reference, measured from the X, Y, Z
reference

position of B with respect to ArB>A =

æ
#
, æ =

1vB>A2xyz =1aB>A2xyz ,
aA =

aB =

(16–27)

aB = aA + æ
#

* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz

Here is the angular acceleration of the x, y, z coordinate
system. Since is always perpendicular to the plane of motion, then 
measures only the change in magnitude of . The derivative is
defined by Eq. 16–23, so that

(16–26)

Finding the time derivative of 

The two terms in the first set of brackets represent the components of
acceleration of point B as measured by an observer attached to the
rotating coordinate system.These terms will be denoted by The
terms in the second set of brackets can be simplified using Eqs. 16–22.

Substituting this and Eq. 16–26 into Eq. 16–25 and rearranging terms,

d1vB>A2xyz
dt

= 1aB>A2xyz + æ * 1vB>A2xyz

1aB>A2xyz .

d1vB>A2xyz
dt

= cd1vB>A2x
dt

i +
d1vB>A2y
dt

j d + c1vB>A2x di
dt

+ 1vB>A2y dj
dt
d

1vB>A2xyz = 1vB>A2xi + 1vB>A2yj,
æ *

drB>A
dt

= æ * 1vB>A2xyz + æ * 1æ * rB>A2

drB>A>dtæ
æ
#

æ
æ
#

= dæ>dt
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y
motion of
x, y, z frame
observed from
theX, Y, Z frame

If Eq. 16–27 is compared with Eq. 16–18, written in the form
which is valid for a translating

frame of reference, it can be seen that the difference between these two
equations is represented by the terms and In
particular, is called the Coriolis acceleration, named after
the French engineer G. C. Coriolis, who was the first to determine it. This
term represents the difference in the acceleration of B as measured from
nonrotating and rotating x, y, z axes. As indicated by the vector cross
product, the Coriolis acceleration will always be perpendicular to both 
and It is an important component of the acceleration which
must be considered whenever rotating reference frames are used. This
often occurs, for example, when studying the accelerations and forces
which act on rockets, long-range projectiles, or other bodies having
motions whose measurements are significantly affected by the rotation of
the earth.

The following interpretation of the terms in Eq. 16–27 may be useful
when applying this equation to the solution of problems.

1vB>A2xyz .
æ

2æ * 1vB>A2xyz
1aB>A2xyz .2æ * 1vB>A2xyz

aB = aA + æ
#

* rB>A + æ * 1æ * rB>A2,

(equals)

(plus)

(plus)

(plus)

(plus)

eacceleration of B with
respect to A

fmotion of B observed
from the x, y, z frame

1aB>A2xyz

c
combined effect of B moving
relative to x, y, z coordinates
and rotation of x, y, z frame

s interacting motion2æ * 1vB>A2xyz

eangular velocity effect caused
by rotation of x, y, z frame

æ * 1æ * rB>A2

c
angular acceleration effect
caused by rotation of x, y, z
frame

æ
#

* rB>A

eabsolute acceleration of the 
origin of x, y, z frame

aA

fmotion of B observed
from the X, Y, Z frame

eabsolute acceleration of BaB
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Procedure for Analysis

Equations 16–24 and 16–27 can be applied to the solution of
problems involving the planar motion of particles or rigid bodies
using the following procedure.

Coordinate Axes.
• Choose an appropriate location for the origin and proper

orientation of the axes for both  fixed X, Y, Z and moving x, y, z
reference frames.

• Most often solutions are easily obtained if at the instant
considered:

1. the origins are coincident
2. the corresponding axes are collinear
3. the corresponding axes are parallel

• The moving frame should be selected fixed to the body or device
along which the relative motion occurs.

Kinematic Equations.
• After defining the origin A of the moving reference and

specifying the moving point B, Eqs. 16–24 and 16–27 should be
written in symbolic form

• The Cartesian components of all these vectors may be expressed
along either the X, Y, Z axes or the x, y, z axes. The choice is
arbitrary provided a consistent set of unit vectors is used.

• Motion of the moving reference is expressed by and 
and motion of B with respect to the moving reference is expressed
by and 1aB>A2xyz .1vB>A2xyz ,rB>A ,

æ
#
;æ,aA ,vA ,

aB = aA + æ
#

* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz
vB = vA + æ * rB>A + 1vB>A2xyz

The rotation of the dumping bin of the
truck about point C is operated by the
extension of the hydraulic cylinder AB.To
determine the rotation of the bin due to
this extension, we can use the equations of
relative motion and fix the x, y axes to the
cylinder so that the relative motion of the
cylinder’s extension occurs along the y axis.

y

x

C

A

B
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EXAMPLE 16.19

At the instant the rod in Fig. 16–33 has an angular velocity of
and an angular acceleration of At this same instant,

collar C travels outward along the rod such that when the
velocity is and the acceleration is both measured
relative to the rod. Determine the Coriolis acceleration and the
velocity and acceleration of the collar at this instant.

SOLUTION
Coordinate Axes. The origin of both coordinate systems is located
at point O, Fig. 16–33. Since motion of the collar is reported relative to
the rod, the moving x, y, z frame of reference is attached to the rod.

Kinematic Equations.

(1)

(2)

It will be simpler to express the data in terms of i, j, k component
vectors rather than I, J, K components. Hence,

aC = aO + æ
#

* rC>O + æ * 1æ * rC>O2 + 2æ * 1vC>O2xyz + 1aC>O2xyz
vC = vO + æ * rC>O + 1vC>O2xyz

3 m>s2,2 m>s x = 0.2 m
2 rad>s2.3 rad>s u = 60°,

Y

X

y

x

x � 0.2 m

C
3 m/s2

2 m/s
aCor

30�

2 rad/s2

3 rad/s u � 60�

O

Fig. 16–33

The Coriolis acceleration is defined as

Ans.

This vector is shown dashed in Fig. 16–33. If desired, it may be resolved
into I, J components acting along the X and Y axes, respectively.

The velocity and acceleration of the collar are determined by
substituting the data into Eqs. 1 and 2 and evaluating the cross products,
which yields 

aCor = 2æ * 1vC>O2xyz = 21-3k2 * 12i2 = 5-12j6 m>s2

Ans.

Ans.= 51.20i - 12.4j6 m>s2

= 0 - 0.4j - 1.80i - 12j + 3i

= 0 + 1-2k2 * 10.2i2 + 1-3k2 * [1-3k2 * 10.2i2] + 21-3k2 * 12i2 + 3i

aC = aO + æ
#

* rC>O + æ * 1æ * rC>O2 + 2æ * 1vC>O2xyz + 1aC>O2xyz
= 52i - 0.6j6 m>s
= 0 + 1-3k2 * 10.2i2 + 2i

vC = vO + æ * rC>O + 1vC>O2xyz

Motion of 
moving reference

Motion of C with respect 
to moving reference

vO = 0 rC>O = 50.2i6 m
aO = 0 1vC>O2xyz = 52i6 m>s
æ = 5-3k6 rad>s 1aC>O2xyz = 53i6 m>s2

æ
#

= 5-2k6 rad>s2
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EXAMPLE 16.20

Rod AB, shown in Fig. 16–34, rotates clockwise such that it has an
angular velocity and angular acceleration 
when Determine the angular motion of rod DE at this instant.
The collar at C is pin connected to AB and slides over rod DE.

SOLUTION
Coordinate Axes. The origin of both the fixed and moving frames
of reference is located at D, Fig. 16–34. Furthermore, the x, y, z
reference is attached to and rotates with rod DE so that the relative
motion of the collar is easy to follow.
Kinematic Equations.

(1)vC = vD + æ * rC>D + 1vC>D2xyz

u = 45°.
aAB = 4 rad>s2vAB = 3 rad>s

Motion of 
moving reference

Motion of C with respect 
to moving reference 

vD = 0 rC>D = 50.4i6m
aD = 0 1vC>D2xyz = 1vC>D2xyzi
æ = -vDEk 1aC>D2xyz = 1aC>D2xyzi
æ
#

= -aDEk

0.4 m

Y, y

X, x

B

E
VDE, ADE

0.4 m

A

u � 45�

aAB � 4 rad/s2
vAB � 3 rad/s

C

D

Fig. 16–34
(2)

aC = aD + æ
#

* rC>D + æ * 1æ * rC>D2 + 2æ * 1vC>D2xyz + 1aC>D2xyz
All vectors will be expressed in terms of i, j, k components.

Motion of C: Since the collar moves along a circular path of radius
AC, its velocity and acceleration can be determined using Eqs. 16–9
and 16–14.

= 1-4k2 * 10.4i + 0.4j2 - 132210.4i + 0.4j2 = 5-2i - 5.2j6 m>s2

aC = AAB * rC>A - vAB2 rC>A
vC = VAB * rC>A = 1-3k2 * 10.4i + 0.4j2 = 51.2i - 1.2j6 m>s

Substituting the data into Eqs. 1 and 2, we have

b Ans.vDE = 3 rad>s
1vC>D2xyz = 1.2 m>s

 1.2i - 1.2j = 0 - 0.4vDEj + 1vC>D2xyzi
 1.2i - 1.2j = 0 + 1-vDEk2 * 10.4i2 + 1vC>D2xyzi

vC = vD + æ * rC>D + 1vC>D2xyz

d Ans.aDE = -5 rad>s2 = 5 rad>s2

1aC>D2xyz = 1.6 m>s2

-2i - 5.2j = -0.4aDEj - 3.6i - 7.2j + 1aC>D2xyzi
+  21-3k2 * 11.2i2 + 1aC>D2xyzi

-2i - 5.2j = 0 + (–aDEk2 * (0.4i2 + (–3k2 * [(–3k2 * (0.4i2]
aC = aD + æ

#
* rC>D + æ * 1æ * rC>D2 + 2æ * 1vC>D2xyz + 1aC>D2xyz
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EXAMPLE 16.21

Planes A and B fly at the same elevation and have the motions shown
in Fig. 16–35. Determine the velocity and acceleration of A as
measured by the pilot of B.

SOLUTION
Coordinate Axes. Since the relative motion of A with respect to the
pilot in B is being sought, the x, y, z axes are attached to plane B,
Fig. 16–35. At the instant considered, the origin B coincides with the
origin of the fixed X, Y, Z frame.

Kinematic Equations.
(1)

(2)

aA = aB + æ
#

* rA>B + æ * 1æ * rA>B2 + 2æ * 1vA>B2xyz + 1aA>B2xyz
vA = vB + æ * rA>B + 1vA>B2xyz

Motion of Moving Reference:

b

d

Motion of A with Respect to Moving Reference:

Substituting the data into Eqs. 1 and 2, realizing that 
and we have

Ans.

Ans.

NOTE: The solution of this problem should be compared with that
of Example 12.26, where it is seen that and

.(aB>A)xyz Z (aA>B)xyz
(vB>A)xyz Z (vA>B)xyz

1aA>B2xyz = 5-1191i + 151j6 km>h2

+ 1-1.5k2 * [1-1.5k2 * 1-4i2] + 21-1.5k2 * 194j2 + 1aA>B2xyz
 50j = 1900i - 100j2 + 10.25k2 * 1-4i2
aA = aB + æ

#
* rA>B + æ * 1æ * rA>B2 + 2æ * 1vA>B2xyz + 1aA>B2xyz

1vA>B2xyz = 594j6 km>h
 700j = 600j + 1-1.5k2 * 1-4i2 + 1vA>B2xyz

vA = vB + æ * rA>B + 1vA>B2xyz
aA = 550j6 km>h2,

vA = 5700j6km>h
rA>B = 5-4i6 km 1vA>B2xyz = ? 1aA>B2xyz = ?

æ
#

= 50.25k6 rad>h2æ
#

=
1aB2t
r

=
100 km>h2

400 km
= 0.25 rad>h2

æ = 5-1.5k6 rad>hæ =
vB
r

=
600 km>h
400 km

= 1.5 rad>h
aB = 1aB2n + 1aB2t = 5900i - 100j6 km>h2

1aB2n =
vB

2

r
=
160022

400
= 900 km>h2

vB = 5600j6 km>h

4 km

400 km

50 km/h2

700 km/h

600 km/h 100 km/h2

x, X

y, Y

rA/BA B

Fig. 16–35
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PROBLEMS

•16–137. Ball C moves with a speed of , which is
increasing at a constant rate of , both measured
relative to the circular plate and directed as shown. At the
same instant the plate rotates with the angular velocity and
angular acceleration shown. Determine the velocity and
acceleration of the ball at this instant.

1.5 m>s2
3 m>s

*16–136. Ball C moves along the slot from A to B with a
speed of , which is increasing at , both measured
relative to the circular plate. At this same instant the plate
rotates with the angular velocity and angular deceleration
shown. Determine the velocity and acceleration of the ball at
this instant.

1.5 ft>s23 ft>s

16–135. At the instant shown, ball B is rolling along the
slot in the disk with a velocity of 600 and an
acceleration of , both measured relative to the
disk and directed away from O. If at the same instant the
disk has the angular velocity and angular acceleration
shown, determine the velocity and acceleration of the ball
at this instant.

150 mm>s2
mm>s

y

z

v

a

O
B

x

0.8 m
0.4 m

� 3 rad/s2
� 6 rad/s

Prob. 16–135

yx

z

v � 6 rad/s

a � 1.5 rad/s2

2 ft

2 ft

B

C

A
45�

Prob. 16–136

x y

z

a � 5 rad/s2
v � 8 rad/s

300 mm

O

C

Prob. 16–137

B

A30�

60 ft

vAB � 0.02 rad/s
aAB � 0.01 rad/s2

Prob. 16–138

16–138. The crane’s telescopic boom rotates with the
angular velocity and angular acceleration shown. At the
same instant, the boom is extending with a constant speed
of , measured relative to the boom. Determine the
magnitudes of the velocity and acceleration of point B at
this instant.

0.5 ft>s
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B

v

a

D

A

C

0.5 m60�

AB � 4 rad/s
AB � 2 rad/s2

0.75 m

Prob. 16–142

vAB � 5 rad/s

VCD

A

C B

D

2 ft

2 ft

2 ft

aAB � 12 rad/s2

ACD

Prob. 16-143

z

x

y
y � 5 ft

� 0.5 rad/s

� 0.2 rad/s2

A

v

a

O

Prob. 16–139

AC
B

v
a

D

u

DC
DC

3 ft

2 ft

Prob. 16–140

16–142. At the instant shown rod AB has an angular
velocity and an angular acceleration

. Determine the angular velocity and angular
acceleration of rod CD at this instant. The collar at C is pin
connected to CD and slides freely along AB.

aAB = 2 rad>s2
vAB = 4 rad>s

*16–140. At the instant , link DC has an angular
velocity of and an angular acceleration of

. Determine the angular velocity and
angular acceleration of rod AB at this instant. The collar at
C is pin connected to DC and slides freely along AB.

aDC = 2 rad>s2
vDC = 4 rad>s

u = 45°

16–139. The man stands on the platform at O and runs out
toward the edge such that when he is at A, , his mass
center has a velocity of 2 and an acceleration of ,
both measured relative to the platform and directed along
the positive y axis. If the platform has the angular motions
shown, determine the velocity and acceleration of his mass
center at this instant.

3 ft>s2ft>s
y = 5 ft

16–143. At a given instant, rod AB has the angular
motions shown. Determine the angular velocity and angular
acceleration of rod CD at this instant. There is a collar at C.

0.3 m

0.3 m

0.3 m

A

EB

D

C

30�

vAB � 10 rad/s
aAB � 5 rad/s2

Prob. 16–141

•16–141. Peg B fixed to crank AB slides freely along the
slot in member CDE. If AB rotates with the motion shown,
determine the angular velocity of CDE at the instant
shown.
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0.5 ft/s

3 ft

A

B

C

3 ft

1 ft

v

Prob. 16–144

O

 � 2 rad/s

0.7 ft

0.5 ft  � 4 rad/s2

A

v
a

C

B

2 ft

Prob. 16–145

300 mm

720 mm

A

O C

Bv � 8 rad/s
a � 4 rad/s2

Prob. 16–146

16–147. The two-link mechanism serves to amplify angular
motion. Link AB has a pin at B which is confined to move
within the slot of link CD. If at the instant shown, AB (input)
has an angular velocity of and an angular
acceleration of , determine the angular
velocity and angular acceleration of CD (output) at this
instant.

aAB = 3 rad>s2
vAB = 2.5 rad>s

•16–145. The disk rolls without slipping and at a given
instant has the angular motion shown. Determine the
angular velocity and angular acceleration of the slotted link
BC at this instant. The peg at A is fixed to the disk.

*16–144. The dumpster pivots about C and is operated by
the hydraulic cylinder AB. If the cylinder is extending at a
constant rate of 0.5 , determine the angular velocity of
the container at the instant it is in the horizontal position
shown.

Vft>s

*16–148. The gear has the angular motion shown. Determine
the angular velocity and angular acceleration of the slotted
link BC at this instant.The peg A is fixed to the gear.

16–146. The wheel is rotating with the angular velocity
and angular acceleration at the instant shown. Determine
the angular velocity and angular acceleration of the rod at
this instant. The rod slides freely through the smooth collar.

AB � 2.5 rad/s
AB � 3 rad/s2

45�

30�

150 mm

200 mm

C

A

v
a

B

D

Prob. 16–147

O

 � 4 rad/s

0.4 m 0.3 m

1.25 m

 � 6 rad/s2
Aa

v

C

D

B

Prob. 16–148

•16–149. Peg B on the gear slides freely along the slot in
link AB. If the gear’s center O moves with the velocity and
acceleration shown, determine the angular velocity and
angular acceleration of the link at this instant.

vO � 3 m/s
aO � 1.5 m/s2

A

O

B

600 mm

150 mm

150 mm

Prob. 16–149
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 250 m

15 m/s
2 m/s2

200 m

A

B

15 m/s
3 m/s2

25 m/s

2 m/s2

C

45�

Probs. 16–151/152

 250 m

15 m/s
2 m/s2

200 m

A

B

15 m/s
3 m/s2

25 m/s

2 m/s2

C

45�

Prob. 16–150

•16–153. At the instant shown, boat A travels with a speed
of , which is decreasing at , while boat B travels
with a speed of , which is increasing at .
Determine the velocity and acceleration of boat A with
respect to boat B at this instant.

16–154. At the instant shown, boat A travels with a speed
of , which is decreasing at , while boat B travels
with a speed of , which is increasing at .
Determine the velocity and acceleration of boat B with
respect to boat A at this instant.

2 m>s210 m>s
3 m>s215 m>s

2 m>s210 m>s
3 m>s215 m>s

16–150. At the instant shown, car A travels with a speed of
, which is decreasing at a constant rate of ,

while car B travels with a speed of , which is
increasing at a constant rate of . Determine the
velocity and acceleration of car A with respect to car B.

2 m>s2
15 m>s

2 m>s225 m>s

16–155. Water leaves the impeller of the centrifugal pump
with a velocity of and acceleration of , both
measured relative to the impeller along the blade line AB.
Determine the velocity and acceleration of a water particle
at A as it leaves the impeller at the instant shown. The
impeller rotates with a constant angular velocity of

.v = 15 rad>s

30 m>s225 m>s

30 m

50 m 50 m

3 m/s2 10 m/s
2 m/s2

15 m/s

A B

Probs. 16–153/154

v � 15 rad/s

B

A

0.3 m

y

x

30�

Prob. 16–155

16–151. At the instant shown, car A travels with a speed of
, which is decreasing at a constant rate of ,

while car C travels with a speed of , which is
increasing at a constant rate of . Determine the
velocity and acceleration of car A with respect to car C.

*16–152. At the instant shown, car B travels with a speed
of 15 , which is increasing at a constant rate of ,
while car C travels with a speed of , which is
increasing at a constant rate of . Determine the
velocity and acceleration of car B with respect to car C.

3 m>s2
15 m>s

2 m>s2m>s

3 m>s2
15 m>s

2 m>s225 m>s



60�

30�

B

C

A
x

y 2 ft
10 ft

vAB � 2 rad/s

v¿ � 0.5 rad/s
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16–159. The quick return mechanism consists of the crank
CD and the slotted arm AB. If the crank rotates with the
angular velocity and angular acceleration at the instant
shown, determine the angular velocity and angular
acceleration of AB at this instant.

*16–156. A ride in an amusement park consists of a rotating
arm AB having a constant angular velocity 
about point A and a car mounted at the end of the arm which
has a constant angular velocity 
measured relative to the arm.At the instant shown, determine
the velocity and acceleration of the passenger at C.

•16–157. A ride in an amusement park consists of a
rotating arm AB that has an angular acceleration of

when at the instant shown.
Also at this instant the car mounted at the end of the arm
has an angular acceleration of and
angular velocity of measured relative
to the arm. Determine the velocity and acceleration of the
passenger C at this instant.

V ¿ = 5-0.5k6 rad>s,
A¿ = 5-0.6k6 rad>s2

vAB = 2 rad>saAB = 1 rad>s2

V ¿ = 5-0.5k6 rad>s,

vAB = 2 rad>s

2 ft

4 ft

D

B

A

C

vCD � 6 rad/s
aCD � 3 rad/s2

30�

60�

Prob. 16–159

Probs. 16–156/157

16–158. The “quick-return” mechanism consists of a crank
AB, slider block B, and slotted link CD. If the crank has the
angular motion shown, determine the angular motion of the
slotted link at this instant.

A

vB

B
C

P

4 in.

u � 30�

       � 4 rad/s

Prob. 16–160

vCD, aCD

aAB � 9 rad/s2
vAB � 3 rad/s

30�

D

B

A

300 mm

C

30�

100 mm

Prob. 16–158

*16–160. The Geneva mechanism is used in a packaging
system to convert constant angular motion into intermittent
angular motion. The star wheel A makes one sixth of a
revolution for each full revolution of the driving wheel B
and the attached guide C.To do this, pin P, which is attached
to B, slides into one of the radial slots of A, thereby turning
wheel A, and then exits the slot. If B has a constant angular
velocity of , determine and of wheel A
at the instant shown.

AAVAvB = 4 rad>s
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CONCEPTUAL PROBLEMS

P16–3. The bi-fold hangar door is opened by cables that
move upward at a constant speed. Determine the position 
of panel when the angular velocity of is equal but
opposite to the angular velocity of . Also, what is this
angular velocity? Panel is pinned at and has a height
which is different from the height of Use appropriate
numerical values to explain your result.

BA.
CBC

AB
BCBC

u

P16–2. The crank turns counterclockwise at a constant
rate causing the connecting arm and rocking beam

to move. Draw a sketch showing the location of the 
for the connecting arm when 
Also, how was the curvature of the head at determined,
and why is it curved in this way?

E
u = 0°, 90°, 180°, and 270°.

ICDE
CDV

AB

P16–1. An electric motor turns the tire at at a constant
angular velocity, and friction then causes the tire to roll
without slipping on the inside rim of the Ferris Wheel. Using
appropriate numerical values, determine the magnitude of
the velocity and acceleration of passengers in one of the
baskets. Do passengers in the other baskets experience this
same motion? Explain.

A

P16–4. If the tires do not slip on the pavement, determine
the points on the tire that have a maximum and minimum
speed and the points that have a maximum and minimum
acceleration. Use appropriate numerical values for the car’s
speed and tire size to explain your result.

P16–1

A

B

C

u

P16–3

A

BC

D
E

u

P16–2 P16–4
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CHAPTER REVIEW

Rigid-Body Planar Motion

A rigid body undergoes three types of planar motion:
translation, rotation about a fixed axis, and general plane
motion.

Translation

When a body has rectilinear translation, all the particles of
the body travel along parallel straight-line paths. If the paths
have the same radius of curvature, then curvilinear
translation occurs. Provided we know the motion of one of
the particles, then the motion of all of the others is also
known.

Rotation about a Fixed Axis

For this type of motion, all of the particles move along
circular paths. Here, all line segments in the body undergo
the same angular displacement, angular velocity, and angular
acceleration.

Once the angular motion of the body is known, then the
velocity of any particle a distance r from the axis can be
obtained.

The acceleration of any particle has two components. The
tangential component accounts for the change in the
magnitude of the velocity, and the normal component
accounts for the change in the velocity’s direction.

General Plane Motion

When a body undergoes general plane motion, it
simultaneously translates and rotates. There are several
methods for analyzing this motion.

Absolute Motion Analysis
If the motion of a point on a body or the angular motion of a
line is known, then it may be possible to relate this motion to
that of another point or line using an absolute motion
analysis. To do so, linear position coordinates s or angular
position coordinates are established (measured from a fixed
point or line). These position coordinates are then related
using the geometry of the body. The time derivative of this
equation gives the relationship between the velocities and/or
the angular velocities. A second time derivative relates the
accelerations and/or the angular accelerations.

u

or

Constant ac

v2 = v0
2 + 2ac1u - u02a du = v dv

u = u0 + v0t + 1
2act

2a = dv>dt
v = v0 + actv = du>dt

an = v2rat = ar,v = vr

Path of rectilinear translation

Path of curvilinear translation

Rotation about a fixed axis

General plane motion
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Relative-Motion using Translating Axes

General plane motion can also be analyzed
using a relative-motion analysis between two
points A and B located on the body. This
method considers the motion in parts: first a
translation of the selected base point A, then
a relative “rotation” of the body about point
A, which is measured from a translating axis.
Since the relative motion is viewed as circular
motion about the base point, point B will have
a velocity that is tangent to the circle. It
also has two components of acceleration,

and It is also important to
realize that and will have tangential and
normal components if these points move
along curved paths.

aBaA
1aB>A2n .1aB>A2t

vB>A

aB = aA + A * rB>A - v2 rB>A

vB = vA + V * rB>A

Instantaneous Center of Zero Velocity

If the base point A is selected as having zero
velocity, then the relative velocity equation
becomes In this case, motion
appears as if the body rotates about an
instantaneous axis passing through .

The instantaneous center of rotation (IC) can
be established provided the directions of the
velocities of any two points on the body are
known, or the velocity of a point and the
angular velocity are known. Since a radial line r
will always be perpendicular to each velocity,
then the IC is at the point of intersection of
these two radial lines. Its measured location is
determined from the geometry of the body.
Once it is established, then the velocity of any
point P on the body can be determined from

where r extends from the IC to point P.v = vr,

A

vB = V * rB>A .

Relative Motion using Rotating Axes

Problems that involve connected members
that slide relative to one another or points not
located on the same body can be analyzed
using a relative-motion analysis referenced
from a rotating frame. This gives rise to the
term that is called the Coriolis
acceleration.

2æ * 1vB>A2xyz
aB = aA + æ

#
* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz

vB = vA + æ * rB>A + 1vB>A2xyz

B

A rA/IC

rP/IC

rB/IC

vB

vA vP
IC

P vIC � 0
V



The forces acting on this dragster as it begins to accelerate are quite severe and must
be accounted for in the design of its structure.



Planar Kinetics of a
Rigid Body: Force and
Acceleration

17
CHAPTER OBJECTIVES

• To introduce the methods used to determine the mass moment of
inertia of a body.

• To develop the planar kinetic equations of motion for a symmetric
rigid body.

• To discuss applications of these equations to bodies undergoing
translation, rotation about a fixed axis, and general plane motion.

17.1 Mass Moment of Inertia

Since a body has a definite size and shape, an applied nonconcurrent force
system can cause the body to both translate and rotate. The translational
aspects of the motion were studied in Chapter 13 and are governed by the
equation It will be shown in the next section that the rotational
aspects, caused by a moment M, are governed by an equation of the form

The symbol I in this equation is termed the mass moment of
inertia. By comparison, the moment of inertia is a measure of the resistance
of a body to angular acceleration in the same way that mass is
a measure of the body’s resistance to acceleration 1F = ma2.1M = IA2
M = IA.

F = ma.
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The flywheel on the engine of this tractor has a large moment of inertia about its axis
of rotation. Once it is set into motion, it will be difficult to stop, and this in turn will
prevent the engine from stalling and instead will allow it to maintain a constant power.

*Another property of the body, which measures the symmetry of the body’s mass with
respect to a coordinate system, is the product of inertia.This property applies to the three-
dimensional motion of a body and will be discussed in Chapter 21.

r

dm

z

Fig. 17–1

We define the moment of inertia as the integral of the “second moment”
about an axis of all the elements of mass dm which compose the body.*
For example, the body’s moment of inertia about the z axis in Fig. 17–1 is

(17–1)

Here the “moment arm” r is the perpendicular distance from the z axis
to the arbitrary element dm. Since the formulation involves r, the value
of I is different for each axis about which it is computed. In the study of
planar kinetics, the axis chosen for analysis generally passes through the
body’s mass center G and is always perpendicular to the plane of motion.
The moment of inertia about this axis will be denoted as Since r is
squared in Eq. 17–1, the mass moment of inertia is always a positive
quantity. Common units used for its measurement are or 

If the body consists of material having a variable density, (x,y, z),
the elemental mass dm of the body can be expressed in terms of its
density and volume as Substituting dm into Eq. 17–1, the
body’s moment of inertia is then computed using volume elements for
integration; i.e.,

(17–2)I =
LV
r2r dV

dm = r dV.

r = r
slug # ft2.kg # m2

IG .

I =
Lm
r2 dm
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In the special case of being a constant, this term may be factored out of
the integral, and the integration is then purely a function of geometry,

(17–3)

When the volume element chosen for integration has infinitesimal
dimensions in all three directions, Fig. 17–2a, the moment of inertia of
the body must be determined using “triple integration.” The integration
process can, however, be simplified to a single integration provided the
chosen volume element has a differential size or thickness in only one
direction. Shell or disk elements are often used for this purpose.

I = r
LV
r2 dV

r

Procedure for Analysis

To obtain the moment of inertia by integration, we will consider
only symmetric bodies having volumes which are generated by
revolving a curve about an axis.An example of such a body is shown
in Fig. 17–2a. Two types of differential elements can be chosen.

Shell Element.
• If a shell element having a height z, radius and thickness dy

is chosen for integration, Fig. 17–2b, then the volume is

• This element may be used in Eq. 17–2 or 17–3 for determining the
moment of inertia of the body about the z axis, since the entire
element, due to its “thinness,” lies at the same perpendicular
distance from the z axis (see Example 17.1).

Disk Element.
• If a disk element having a radius y and a thickness dz is chosen

for integration, Fig. 17–2c, then the volume is 
• This element is finite in the radial direction, and consequently its

parts do not all lie at the same radial distance r from the z axis.As
a result, Eq. 17–2 or 17–3 cannot be used to determine directly.
Instead, to perform the integration it is first necessary to
determine the moment of inertia of the element about the z axis
and then integrate this result (see Example 17.2).

Iz

dV = 1py22dz.

r = y

Iz

dV = 12py21z2dy.
r = y,

z

y

x

dm � r dV

x
y

z

(a)

(b)

z

y

x
y dy

z

(c)

z

y

x

z

dz

y

Fig. 17–2
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Determine the moment of inertia of the cylinder shown in Fig. 17–3a
about the z axis. The density of the material, is constant.r,

EXAMPLE 17.1

z

y

x

O

(a)

R

2
h

2
h

(b)

z

y

x

O

r dr

2
h

2
h

Fig. 17–3

SOLUTION

Shell Element. This problem can be solved using the shell element in
Fig. 17–3b and a single integration. The volume of the element is

so that its mass is 
Since the entire element lies at the same distance r from the z axis, the
moment of inertia of the element is

Integrating over the entire region of the cylinder yields

The mass of the cylinder is

so that

Ans.Iz =
1
2
mR2

m =
Lm
dm = r2ph

L

R

0
r dr = rphR2

Iz =
Lm
r2 dm = r2ph

L

R

0
r3 dr =

rp

2
R4h

dIz = r2dm = r2phr3 dr

dm = rdV = r12phr dr2.dV = 12pr21h2 dr,
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EXAMPLE 17.2

If the density of the material is determine the moment of
inertia of the solid in Fig 17–4a about the y axis.

5 slug>ft3,

y

x

1 ft

1 ft

y2 � x

(a)

y

x

1 ft
y

dy

(x,y)

x
1 ft

(b)

Fig. 17–4

SOLUTION

Disk Element. The moment of inertia will be found using a disk
element, as shown in Fig. 17–4b. Here the element intersects the curve
at the arbitrary point (x,y) and has a mass

Although all portions of the element are not located at the same
distance from the y axis, it is still possible to determine the moment of
inertia of the element about the y axis. In the preceding example it
was shown that the moment of inertia of a cylinder about its
longitudinal axis is where m and R are the mass and radius
of the cylinder. Since the height is not involved in this formula, the
disk itself can be thought of as a cylinder.Thus, for the disk element in
Fig. 17–4b, we have

Substituting and integrating with respect to y,
from to yields the moment of inertia for the entire solid.

Ans.Iy =
p15 slug>ft32

2 L

1 ft

0
x4 dy =

p152
2 L

1 ft

0
y8 dy = 0.873 slug # ft2

y = 1 ft,y = 0
r = 5 slug>ft3,x = y2,

dIy = 1
21dm2x2 = 1

2[r1px22 dy]x2

I = 1
2mR

2,

dIy

dm = r dV = r1px22 dy
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Parallel-Axis Theorem. If the moment of inertia of the body
about an axis passing through the body’s mass center is known, then the
moment of inertia about any other parallel axis can be determined by
using the parallel-axis theorem. This theorem can be derived by
considering the body shown in Fig. 17–5. Here the axis passes through
the mass center G, whereas the corresponding parallel z axis lies at a
constant distance d away. Selecting the differential element of mass dm,
which is located at point ( ), and using the Pythagorean theorem,

we can express the moment of inertia of the body
about the z axis as

Since the first integral represents The second
integral equals zero, since the axis passes through the body’s mass
center, i.e., since Finally, the third integralx¿ = 0.1x¿dm = x¿m = 0

z¿
IG .r¿2 = x¿2 + y¿2,

=
Lm
1x¿2 + y¿22 dm + 2d

Lm
x¿ dm + d2

Lm
dm

I =
Lm
r2 dm =

Lm
[1d + x¿22 + y¿2] dm

r2 = 1d + x¿22 + y¿2,
y¿x¿,

z¿

y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 17–5
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represents the total mass m of the body. Hence, the moment of inertia
about the z axis can be written as

(17–4)

where

moment of inertia about the axis passing through the mass
center G
mass of the body

perpendicular distance between the parallel and axes

Radius of Gyration. Occasionally, the moment of inertia of a body
about a specified axis is reported in handbooks using the radius of
gyration, k. This is a geometrical property which has units of length.
When it and the body’s mass m are known, the body’s moment of inertia
is determined from the equation

(17–5)

Note the similarity between the definition of k in this formula and r in
the equation which defines the moment of inertia of an
elemental mass dm of the body about an axis.

Composite Bodies. If a body consists of a number of simple
shapes such as disks, spheres, and rods, the moment of inertia of the body
about any axis can be determined by adding algebraically the moments of
inertia of all the composite shapes computed about the axis. Algebraic
addition is necessary since a composite part must be considered as a
negative quantity if it has already been counted as a piece of another
part—for example, a “hole” subtracted from a solid plate. The parallel-
axis theorem is needed for the calculations if the center of mass of
each composite part does not lie on the axis. For the calculation, then,

Here for each of the composite parts is determined
by integration, or for simple shapes, such as rods and disks, it can be
found from a table, such as the one given on the inside back cover of
this book.

IGI = ©1IG + md22.

dI = r2 dm,

I = mk2 or k =
A

I
m

z¿zd =
m =

z¿IG =

I = IG + md2
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O

250 mm
125 mm

G

(a)

Thickness 10 mm

250 mm

G G– 125 mm

(b)

Fig. 17–6

If the plate shown in Fig. 17–6a has a density of and a
thickness of 10 mm, determine its moment of inertia about an axis
directed perpendicular to the page and passing through point O.

8000 kg>m3

EXAMPLE 17.3

SOLUTION

The plate consists of two composite parts, the 250-mm-radius disk
minus a 125-mm-radius disk, Fig. 17–6b. The moment of inertia about
O can be determined by computing the moment of inertia of each of
these parts about O and then adding the results algebraically. The
calculations are performed by using the parallel-axis theorem in
conjunction with the data listed in the table on the inside back cover.

Disk. The moment of inertia of a disk about the centroidal axis
perpendicular to the plane of the disk is The mass center
of the disk is located at a distance of 0.25 m from point O. Thus,

Hole. For the 125-mm-radius disk (hole), we have

The moment of inertia of the plate about point O is therefore

Ans.= 1.20 kg # m2

= 1.473 kg # m2 - 0.276 kg # m2

IO = 1Id2O - 1Ih2O

= 0.276 kg # m2

=
1
2
13.927 kg210.125 m22 + 13.927 kg210.25 m22

1Ih2O = 1
2mhrh

2 + mhd2

mh = rhVh = 8000 kg>m3 [p10.125 m2210.01 m2] = 3.927 kg

= 1.473 kg # m2

=
1
2
115.71 kg210.25 m22 + 115.71 kg210.25 m22

1Id2O = 1
2mdrd

2 + mdd2

md = rdVd = 8000 kg>m3 [p10.25 m2210.01 m2] = 15.71 kg

IG = 1
2mr

2.
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EXAMPLE 17.4

The pendulum in Fig. 17–7 is suspended from the pin at O and consists
of two thin rods, each having a weight of 10 lb. Determine the moment
of inertia of the pendulum about an axis passing through (a) point O,
and (b) the mass center G of the pendulum.

SOLUTION

Part (a). Using the table on the inside back cover, the moment of
inertia of rod OA about an axis perpendicular to the page and passing
through point O of the rod is Hence,

This same value can be obtained using and the parallel-
axis theorem.

For rod BC we have

The moment of inertia of the pendulum about O is therefore

Ans.

Part (b). The mass center G will be located relative to point O.
Assuming this distance to be Fig. 17–7, and using the formula for
determining the mass center, we have

The moment of inertia may be found in the same manner as 
which requires successive applications of the parallel-axis theorem to
transfer the moments of inertia of rods OA and BC to G. A more
direct solution, however, involves using the result for i.e.,

Ans.IG = 0.362 slug # ft2

 1.76 slug # ft2 = IG + a 20 lb

32.2 ft>s2 b11.50 ft22IO = IG + md2;

IO ,

IO ,IG

y =
©y'm
©m

=
1110>32.22 + 2110>32.22
110>32.22 + 110>32.22 = 1.50 ft

y,

IO = 0.414 + 1.346 = 1.76 slug # ft2

= 1.346 slug # ft2

1IBC2O =
1
12
ml2 + md2 =

1
12
a 10 lb

32.2 ft>s2b12 ft22 + a 10 lb

32.2 ft>s2b12 ft22

= 0.414 slug # ft2

1IOA2O =
1
12
ml2 + md2 =

1
12
a 10 lb

32.2 ft>s2b12 ft22 + a 10 lb

32.2 ft>s2b11 ft22

IG = 1
12ml

2

1IOA2O =
1
3
ml2 =

1
3
a 10 lb

32.2 ft>s2 b12 ft22 = 0.414 slug # ft2

IO = 1
3ml

2.

2 ft

y–

O

G

A
B C

1 ft 1 ft

Fig. 17–7
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17–3. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the radius of gyration .
The density of the material is .r = 5 Mg>m3

kx

17–2. The right circular cone is formed by revolving the
shaded area around the x axis. Determine the moment of
inertia and express the result in terms of the total mass m
of the cone. The cone has a constant density .r

Ix

•17–1. Determine the moment of inertia for the slender
rod. The rod’s density and cross-sectional area A are
constant. Express the result in terms of the rod’s total mass m.

r

Iy

*17–4. The frustum is formed by rotating the shaded area
around the x axis. Determine the moment of inertia and
express the result in terms of the total mass m of the
frustum. The frustum has a constant density .r

Ix

PROBLEMS

x

y

z

A

l

Prob. 17–1

y

x

r

 r–
h xy �

h

Prob. 17–2

y

x

y2 � 50x

200 mm

100 mm

Prob. 17–3

y

x

2b

b–a x � by �

a

z

b

Prob. 17–4
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x2 � y2 � r2

y

x

Prob. 17–6

a–2
a–2

a–2

a–2

h

y

x

z

Prob 17–7

z

z �      (r0 � y)h––

y

h

x
r0

r0

Prob. 17–8

y

x

a

 a2
–
h xy2 =

h

Prob. 17–5

17–7. Determine the moment of inertia of the homogeneous
pyramid of mass m about the z axis. The density of the
material is . Suggestion: Use a rectangular plate element
having a volume of .dV = (2x)(2y)dz

r

*17–8. Determine the mass moment of inertia of the
cone formed by revolving the shaded area around the axis.
The density of the material is . Express the result in terms
of the mass of the cone.m

r

z
Iz

•17–5. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the moment of inertia
about the x axis and express the result in terms of the total
mass m of the paraboloid. The material has a constant
density .r

17–6. The hemisphere is formed by rotating the shaded
area around the y axis. Determine the moment of inertia 
and express the result in terms of the total mass m of the
hemisphere. The material has a constant density .r

Iy
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O

1 ft

2 ft

0.5 ft

G

0.25 ft

1 ft

Probs. 17–11/12

z �    y2

x

y

z

1
4

2 m

1 m

Prob. 17–9

•17–9. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the 
axis. The density of the material is . Express the result in
terms of the mass of the solid.m

r

y
Iy 17–11. Determine the moment of inertia of the assembly

about an axis that is perpendicular to the page and passes
through the center of mass G. The material has a specific
weight of .

*17–12. Determine the moment of inertia of the assembly
about an axis that is perpendicular to the page and passes
through point O. The material has a specific weight of

.g = 90 lb>ft3

g = 90 lb>ft3

17–10. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the 
axis. The density of the material is . Express the result in
terms of the mass of the semi-ellipsoid.m

r

y
Iy •17–13. If the large ring, small ring and each of the spokes

weigh 100 lb, 15 lb, and 20 lb, respectively, determine the
mass moment of inertia of the wheel about an axis
perpendicular to the page and passing through point A.

y

a

b

z

x

�       � 1y2
––
a2

z2––
b2

Prob. 17–10

A

O

1 ft

4 ft

Prob. 17–13
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O

a

aa

Prob. 17–15

O

3 ft1 ft

1 ft

2 ft

Prob. 17–16

2 ft 3 ft

0.5 ft

0.25 ft

x

Prob. 17–17

x

4 in.

1 in.

0.5 in. 0.5 in.

1 in.0.5 in. 0.5 in.1 in.

1 in. 1 in.

1 in.

0.5 in.

Prob. 17–18

*17–16. The pendulum consists of a plate having a weight of
12 lb and a slender rod having a weight of 4 lb. Determine
the radius of gyration of the pendulum about an axis
perpendicular to the page and passing through point O.

17–15. Each of the three slender rods has a mass m.
Determine the moment of inertia of the assembly about an
axis that is perpendicular to the page and passes through
the center point O.

17–14. The pendulum consists of the 3-kg slender rod and
the 5-kg thin plate. Determine the location of the center
of mass G of the pendulum; then calculate the moment of
inertia of the pendulum about an axis perpendicular to the
page and passing through G.

y

•17–17. Determine the moment of inertia of the solid steel
assembly about the x axis. Steel has a specific weight of

.gst = 490 lb>ft3
G

2 m

1 m

0.5 m

y

O

Prob. 17–14

17–18. Determine the moment of inertia of the center
crank about the x axis.The material is steel having a specific
weight of .gst = 490 lb>ft3
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90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Probs. 17–19/20

450 mm

A

O

B

100 mm

Prob. 17–21

17–22. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing
through point O. The material has a mass per unit area of

.20 kg>m2

•17–21. Determine the mass moment of inertia of the
pendulum about an axis perpendicular to the page and
passing through point O.The slender rod has a mass of 10 kg
and the sphere has a mass of 15 kg.

17–19. Determine the moment of inertia of the overhung
crank about the x axis. The material is steel for which the
density is .

*17–20. Determine the moment of inertia of the overhung
crank about the axis. The material is steel for which the
density is .r = 7.85 Mg>m3

x¿

r = 7.85 Mg>m3

17–23. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing
through point O. The material has a mass per unit area of

.20 kg>m2

400 mm

150 mm

400 mm

O

50 mm

50 mm
150 mm

150 mm 150 mm

Prob. 17–22

200 mm

200 mm

O

200 mm

Prob. 17–23
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17.2 Planar Kinetic Equations of Motion

In the following analysis we will limit our study of planar kinetics to rigid
bodies which, along with their loadings, are considered to be symmetrical
with respect to a fixed reference plane.* Since the motion of the body can
be viewed within the reference plane, all the forces (and couple moments)
acting on the body can then be projected onto the plane. An example of
an arbitrary body of this type is shown in Fig. 17–8a. Here the inertial
frame of reference x, y, z has its origin coincident with the arbitrary point
P in the body. By definition, these axes do not rotate and are either fixed or
translate with constant velocity

Equation of Translational Motion. The external forces acting
on the body in Fig. 17–8a represent the effect of gravitational, electrical,
magnetic, or contact forces between adjacent bodies. Since this force
system has been considered previously in Sec. 13.3 for the analysis of a
system of particles, the resulting Eq. 13–6 can be used here, in which case

This equation is referred to as the translational equation of motion for
the mass center of a rigid body. It states that the sum of all the external
forces acting on the body is equal to the body’s mass times the acceleration
of its mass center G.

For motion of the body in the x–y plane, the translational equation of
motion may be written in the form of two independent scalar equations,
namely,

©Fy = m1aG2y
©Fx = m1aG2x

©F = maG

y

x

G

W

P

F1

M1

M2

F4

F3

F2

(a)

A

V

Fig. 17–8

*By doing this, the rotational equation of motion reduces to a rather simplified form.
The more general case of body shape and loading is considered in Chapter 21.
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Equation of Rotational Motion. We will now determine the
effects caused by the moments of the external force system computed
about an axis perpendicular to the plane of motion (the z axis) and
passing through point P. As shown on the free-body diagram of the ith
particle, Fig. 17–8b, represents the resultant external force acting on the
particle, and is the resultant of the internal forces caused by interactions
with adjacent particles. If the particle has a mass and its acceleration
is then its kinetic diagram is shown in Fig. 17–8c. Summing moments
about point P, we require

or

The moments about P can also be expressed in terms of the acceleration
of point P, Fig. 17–8d. If the body has an angular acceleration and
angular velocity then using Eq. 16–18 we have

The last term is zero, since Expressing the vectors with
Cartesian components and carrying out the cross-product operations
yields

a

Letting and integrating with respect to the entire mass m of the
body, we obtain the resultant moment equation

a

Here represents only the moment of the external forces acting on
the body about point P. The resultant moment of the internal forces is
zero, since for the entire body these forces occur in equal and opposite
collinear pairs and thus the moment of each pair of forces about P
cancels. The integrals in the first and second terms on the right are used
to locate the body’s center of mass G with respect to P, since

and Fig. 17–8d. Also, the last integral
represents the body’s moment of inertia about the z axis, i.e.,

Thus,

a (17–6)©MP = -ym1aP2x + xm1aP2y + IPa

IP = 1r
2dm.

xm = 1x dm,ym = 1y dm

©MP

©MP = - a
Lm
y dmb1aP2x + a

Lm
x dmb1aP2y + a

Lm
r2dmba

mi: dm
1MP2i = mi[-y1aP2x + x1aP2y + ar2]

 1MP2i k = mi[-y1aP2x + x1aP2y + ax2 + ay2]k

  + 1xi + yj2 * [ak * 1xi + yj2]6
 1MP2i k = mi51xi + yj2 * [1aP2x i + 1aP2y j]

r * r = 0.

 = mi[r * aP + r * 1A * r2 - v21r * r2]
 1MP2i = mi r * 1aP + A * r - v2r2

V,
A

1MP2i = r * mi ai

r * Fi + r * fi = r * mi ai

ai ,
mi

fi
Fi

y

xP

(c)

Particle kinetic diagram

i
miaix

yr

=
y

xP

(d)

_
x

_
r

aP

G
_
y

aG

A

V

Fig. 17–8 (cont.)

y

xP

(b)

Particle free-body diagram

i
fi

Fi
x

yr
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It is possible to reduce this equation to a simpler form if point P
coincides with the mass center G for the body. If this is the case, then

and therefore* 

(17–7)

This rotational equation of motion states that the sum of the moments of
all the external forces about the body’s mass center G is equal to the
product of the moment of inertia of the body about an axis passing
through G and the body’s angular acceleration.

Equation 17–6 can also be rewritten in terms of the x and y components
of and the body’s moment of inertia If point G is located at ( ),
Fig. 17–8d, then by the parallel-axis theorem,
Substituting into Eq. 17–6 and rearranging terms, we get

a (17–8)

From the kinematic diagram of Fig. 17–8d, can be expressed in terms
of as

Carrying out the cross product and equating the respective i and j
components yields the two scalar equations

From these equations, and
Substituting these results into Eq. 17–8

and simplifying gives

a (17–9)

This important result indicates that when moments of the external forces
shown on the free-body diagram are summed about point P, Fig. 17–8e,
they are equivalent to the sum of the “kinetic moments” of the components
of about P plus the “kinetic moment” of Fig. 17–8f. In other
words, when the “kinetic moments,” are computed, Fig. 17–8f,
the vectors and are treated as sliding vectors; that is, they
can act at any point along their line of action. In a similar manner,
can be treated as a free vector and can therefore act at any point. It is
important to keep in mind, however, that and are not the same
as a force or a couple moment. Instead, they are caused by the external
effects of forces and couple moments acting on the body. With this in
mind we can therefore write Eq. 17–9 in a more general form as

(17–10)©MP = ©1mk2P

IGAmaG

IGA
m1aG2ym1aG2x

©1mk2P ,
IGA,maG

©MP = -ym1aG2x + xm1aG2y + IGa

[1aP2y + xa] = [1aG2y + yv2].
[-1aP2x + ya] = [-1aG2x - xv2]

1aG2y = 1aP2y + xa - yv2

1aG2x = 1aP2x - ya - xv2

1aG2x i + 1aG2y j = 1aP2x i + 1aP2y j + ak * 1x i + y j2 - v21x i + y j2
aG = aP + A * r - v2r

aG
aP

©MP = ym[-1aP2x + ya] + xm[1aP2y + xa] + IGa

IP = IG + m1x2 + y22.yx,IG .aG

©MG = IGa

x = y = 0,

* It also reduces to this same simple form if point P is a fixed point (see
Eq. 17–16) or the acceleration of point P is directed along the line PG.

©MP = IPa

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A
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General Application of the Equations of Motion. To
summarize this analysis, three independent scalar equations can be
written to describe the general plane motion of a symmetrical rigid body.

or (17–11)

When applying these equations, one should always draw a free-body
diagram, Fig. 17–8e, in order to account for the terms involved in 

or In some problems it may also be helpful to draw
the kinetic diagram for the body, Fig. 17–8f. This diagram graphically
accounts for the terms and It is especially
convenient when used to determine the components of and the
moment of these components in * 

17.3 Equations of Motion: Translation

When the rigid body in Fig. 17–9a undergoes a translation, all the particles
of the body have the same acceleration. Furthermore, in which
case the rotational equation of motion applied at point G reduces to a
simplified form, namely, Application of this and the force
equations of motion will now be discussed for each of the two types of
translation.

Rectilinear Translation. When a body is subjected to rectilinear
translation, all the particles of the body (slab) travel along parallel straight-
line paths. The free-body and kinetic diagrams are shown in Fig. 17–9b.
Since only is shown on the kinetic diagram. Hence, the
equations of motion which apply in this case become

(17–12)
©Fx = m1aG2x
©Fy = m1aG2y

©MG = 0

maGIGA = 0,

©MG = 0.

A = 0,

©1mk2P .
maG

IGA.m1aG2y ,m1aG2x ,

©MP .©MG ,©Fy ,
©Fx ,

©MP = ©1mk2P
©MG = IGa
©Fy = m1aG2y
©Fx = m1aG2x

* For this reason, the kinetic diagram will be used in the solution of an example problem
whenever is applied.©MP = ©1mk2P

Fig. 17–9

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A

Fig. 17–8 (cont.)

G

M2

M1

F1

F4

F2

F3

(a)
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M2

M1

F1

F4

F2

F3

(b)

�
A

W

G

A

d maG
Rec

til
in

ea
r

Tra
nsla

tio
n

It is also possible to sum moments about other points on or off the body,
in which case the moment of must be taken into account. For
example, if point A is chosen, which lies at a perpendicular distance d
from the line of action of the following moment equation applies:

a

Here the sum of moments of the external forces and couple moments
about A ( free-body diagram) equals the moment of about A
( kinetic diagram).

Curvilinear Translation. When a rigid body is subjected to
curvilinear translation, all the particles of the body travel along parallel
curved paths. For analysis, it is often convenient to use an inertial
coordinate system having an origin which coincides with the body’s mass
center at the instant considered, and axes which are oriented in the
normal and tangential directions to the path of motion, Fig. 17–9c. The
three scalar equations of motion are then

(17–13)

If moments are summed about the arbitrary point B, Fig. 17–9c, then it
is necessary to account for the moments, of the two
components and about this point. From the kinetic
diagram, h and e represent the perpendicular distances (or “moment
arms”) from B to the lines of action of the components. The required
moment equation therefore becomes

a ©MB = e[m1aG2t] - h[m1aG2n]+©MB = ©1mk2B ;

m1aG2tm1aG2n
©1mk2B ,

©Fn = m1aG2n
©Ft = m1aG2t

©MG = 0

©1mk2A ,
maG©MA ,

©MA = 1maG2d+©MA = ©1mk2A ;

maG ,

maG

�
G

M2
M1

F1

F4

F2

(c)

B

W

G

m(aG)t

Curvilinear

Translation

t

n

t

n

B

e

h

m(aG)n



414 CH A P T E R 17 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  FO R C E A N D AC C E L E R AT I O N

17

Procedure for Analysis

Kinetic problems involving rigid-body translation can be solved
using the following procedure.

Free-Body Diagram.
• Establish the x, y or n, t inertial coordinate system and draw the

free-body diagram in order to account for all the external forces
and couple moments that act on the body.

• The direction and sense of the acceleration of the body’s mass
center should be established.

• Identify the unknowns in the problem.
• If it is decided that the rotational equation of motion

is to be used in the solution, then consider
drawing the kinetic diagram, since it graphically accounts for the
components or and is therefore
convenient for “visualizing” the terms needed in the moment
sum

Equations of Motion.
• Apply the three equations of motion in accordance with the

established sign convention.
• To simplify the analysis, the moment equation can be

replaced by the more general equation where
point P is usually located at the intersection of the lines of action
of as many unknown forces as possible.

• If the body is in contact with a rough surface and slipping occurs,
use the friction equation Remember, F always acts on
the body so as to oppose the motion of the body relative to the
surface it contacts.

Kinematics.
• Use kinematics to determine the velocity and position of the body.
• For rectilinear translation with variable acceleration

• For rectilinear translation with constant acceleration

• For curvilinear translation

1aG2t = dvG>dt, 1aG2tdsG = vGdvG,1aG2t = ar
1aG2n = vG2 >r = v2r

sG = 1sG20 + 1vG20t + 1
2aGt

2

vG = 1vG20 + aGt vG
2 = 1vG202 + 2aG[sG - 1sG20]

aG = dvG>dt aGdsG = vGdvG vG = dsG>dt

F = mkN.

©MP = ©1mk2P ,
©MG = 0

©1mk2P .

m1aG2nm1aG2t ,m1aG2ym1aG2x ,

©MP = ©1mk2P

aG

NA

maG

T

W

NB

G
d

G

B

B

A

�

The free-body and kinetic diagrams for
this boat and trailer are drawn first in
order to apply the equations of motion.
Here the forces on the free-body
diagram cause the effect shown on the
kinetic diagram. If moments are
summed about the mass center, G,
then However, if moments
are summed about point B then
c+©MB = maG1d2.

©MG = 0.
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EXAMPLE 17.5

The car shown in Fig. 17–10a has a mass of 2 Mg and a center of mass
at G. Determine the acceleration if the rear “driving” wheels are
always slipping, whereas the front wheels are free to rotate. Neglect
the mass of the wheels. The coefficient of kinetic friction between the
wheels and the road is 

SOLUTION I

Free-Body Diagram. As shown in Fig. 17–10b, the rear-wheel
frictional force pushes the car forward, and since slipping occurs,

The frictional forces acting on the front wheels are zero,
since these wheels have negligible mass.*  There are three unknowns in
the problem, and Here we will sum moments about the mass
center. The car (point G) accelerates to the left, i.e., in the negative x
direction, Fig. 17–10b.

Equations of Motion.

(1)

(2)

a (3)

Solving,

Ans.

SOLUTION II

Free-Body and Kinetic Diagrams. If the “moment” equation is
applied about point A, then the unknown will be eliminated from the
equation.To “visualize” the moment of about A, we will include the
kinetic diagram as part of the analysis, Fig. 17–10c.

Equation of Motion.

a

Solving this and Eq. 1 for leads to a simpler solution than that
obtained from Eqs. 1 to 3.

aG

12000 kg2aG10.3 m2
NB12 m2 - [200019.812 N]11.25 m2 =+©MA = ©1mk2A ;

maG
NA

NB = 12.7 kN

NA = 6.88 kN

aG = 1.59 m>s2 ;

-NA11.25 m2 - 0.25NB10.3 m2 + NB10.75 m2 = 0+©MG = 0;

NA + NB - 200019.812 N = 0+ c©Fy = m1aG2y ;
-0.25NB = -12000 kg2aG:+ ©Fx = m1aG2x ;

aG .NB ,NA ,

FB = 0.25NB .
FB

mk = 0.25.

* With negligible wheel mass, and the frictional force at A required to turn the
wheel is zero. If the wheels’ mass were included, then the solution would be more involved,
since a general-plane-motion analysis of the wheels would have to be considered (see
Sec. 17.5).

Ia = 0

G

0.75 m1.25 m

(c)

2000 (9.81) N

A

NA NB

FB � 0.25 NB

G

0.3 mA

�

2000 aG

0.3 m

Fig. 17–10

0.3 m

0.75 m1.25 m
B

(a)

A

G

G

0.75 m
1.25 m

(b)

2000 (9.81) N

0.3 m

NA NB

FB � 0.25 NB

y

x

aG

A
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EXAMPLE 17.6

The motorcycle shown in Fig. 17–11a has a mass of 125 kg and a center
of mass at while the rider has a mass of 75 kg and a center of mass
at Determine the minimum coefficient of static friction between
the wheels and the pavement in order for the rider to do a “wheely,”
i.e., lift the front wheel off the ground as shown in the photo. What
acceleration is necessary to do this? Neglect the mass of the wheels
and assume that the front wheel is free to roll.

G2 .
G1 ,

(b)

AB
0.4 m 0.4 m

0.7 m

0.3 m

0.6 m

75 kg aG

NB

FB

735.75 N
1226.25 N

�

B

NA � 0

125 kg aG

Fig. 17–11

0.3 m

0.6 m

AB
0.4 m 0.4 m 0.7 m

G2

(a)

G1

SOLUTION

Free-Body and Kinetic Diagrams. In this problem we will consider
both the motorcycle and the rider as a single system. It is possible first to
determine the location of the center of mass for this “system” by using
the equations and Here, however, we
will consider the weight and mass of the motorcycle and rider seperate
as shown on the free-body and kinetic diagrams, Fig. 17–11b. Both of
these parts move with the same acceleration.We have assumed that the
front wheel is about to leave the ground, so that the normal reaction

The three unknowns in the problem are and 

Equations of Motion.

(1)

a

(2)

Solving,

Ans.

Thus the minimum coefficient of static friction is

Ans.1ms2min =
FB
NB

=
1790 N
1962 N

= 0.912

FB = 1790 N

NB = 1962 N

aG = 8.95 m>s2 :

-175 kg aG210.9 m2 - 1125 kg aG210.6 m2
-1735.75 N210.4 m2 - 11226.25 N210.8 m2 =+©MB = ©1mk2B ;

NB - 735.75 N - 1226.25 N = 0+ c©Fy = m1aG2y ;
FB = 175 kg + 125 kg2aG:+ ©Fx = m1aG2x ;

aG .FB ,NB ,NA L 0.

y = ©y'm>©m.x = ©x'm>©m
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EXAMPLE 17.7

A uniform 50-kg crate rests on a horizontal surface for which the
coefficient of kinetic friction is Determine the acceleration
if a force of is applied to the crate as shown in Fig. 17–12a.P = 600 N

mk = 0.2.

P � 600 N

0.5 m

0.5 m

0.3 m

x

O A

G

490.5 N

NC

F � 0.2 NC

(b)

x

y

aG

Fig. 17–12

1 m

1 m0.8 m

P � 600 N

(a)

SOLUTION
Free-Body Diagram. The force P can cause the crate either to slide
or to tip over. As shown in Fig. 17–12b, it is assumed that the crate
slides, so that Also, the resultant normal force 
acts at O, a distance x (where ) from the crate’s center
line.*  The three unknowns are x, and 

Equations of Motion.

(1)

(2)

a (3)

Solving,

Ans.

Since indeed the crate slides as originally
assumed.

NOTE: If the solution had given a value of the problem
would have to be reworked since tipping occurs. If this were the case,

would act at the corner point A and F … 0.2NC .NC

x 7 0.5 m,

x = 0.467 m 6 0.5 m,

aG = 10.0 m>s2 :
x = 0.467 m

NC = 490.5 N

-600 N10.3 m2 + NC1x2 - 0.2NC10.5 m2 = 0+©MG = 0;

NC - 490.5 N = 0+ c©Fy = m1aG2y ;
600 N - 0.2NC = 150 kg2aG:+ ©Fx = m1aG2x ;

aG .NC ,
0 6 x … 0.5 m

NCF = mkNC = 0.2NC .

* The line of action of does not necessarily pass through the mass center 
since must counteract the tendency for tipping caused by P. See Sec. 8.1 of
Engineering Mechanics: Statics.

NC
G 1x = 02,NC
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EXAMPLE 17.8

The 100-kg beam BD shown in Fig.17–13a is supported by two rods
having negligible mass. Determine the force developed in each rod if
at the instant ,

SOLUTION
Free-Body Diagram. The beam moves with curvilinear translation
since all points on the beam move along circular paths, each path
having the same radius of 0.5 m. Using normal and tangential
coordinates, the free-body diagram for the beam is shown in
Fig. 17–13b. Because of the translation, G has the same motion as the
pin at B, which is connected to both the rod and the beam. Note that
the tangential component of acceleration acts downward to the left
due to the clockwise direction of , Fig. 17–13c. Furthermore, the
normal component of acceleration is always directed toward the
center of curvature (toward point A for rod AB). Since the angular
velocity of AB is when then

The three unknowns are and The directions of and
have been established, and are indicated on the coordinate axes.1aG2t

1aG2n1aG2t .TD ,TB ,

1aG2n = v2r = 16 rad>s2210.5 m2 = 18 m>s2

u = 30°,6 rad>s

A

v = 6 rad>s.u = 30°
u � 30�

0.5 m G

A C

DB
0.4 m 0.4 m

(a)

V

G

0.4 m 0.4 m

(b)

981 N

30�30� 30�TB TDn

t

(aG)t

(aG)n

0.5 m

A

B

an

at

(c)

v � 6 rad/s
A

Fig. 17–13

Equations of Motion.

(1)

(2)

a (3)

Simultaneous solution of these three equations gives

Ans.

NOTE: It is also possible to apply the equations of motion along
horizontal and vertical x, y axes, but the solution becomes more involved.

1aG2t = 4.905 m>s2

TB = TD = 1.32 kN

-1TB cos 30°210.4 m2 + 1TD cos 30°210.4 m2 = 0+©MG = 0;

981 sin 30° = 100 kg1aG2t+b©Ft = m1aG2t ;
TB + TD - 981 cos 30° N = 100 kg118 m>s22+a©Fn = m1aG2n ;
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FUNDAMENTAL PROBLEMS

F17–4. Determine the maximum acceleration of the truck
without causing the assembly to move relative to the truck.
Also what is the corresponding normal reaction on legs

? The table has a mass center at and the
coefficient of static friction between the legs of the table
and the bed of the truck is ms = 0.2.

G100-kgA and B

F17–2. If the 80-kg cabinet is allowed to roll down the
inclined plane, determine the acceleration of the cabinet
and the normal reactions on the pair of rollers at 
that have negligible mass.

A and B

F17–1. The cart and its load have a total mass of 100 kg.
Determine the acceleration of the cart and the normal
reactions on the pair of wheels at Neglect the
mass of the wheels.

A and B.

F17–5. At the instant shown both rods of negligible mass
swing with a counterclockwise angular velocity of

while the bar is subjected to the 
horizontal force. Determine the tension developed in the
rods and the angular acceleration of the rods at this instant.

100-N50-kgv = 5 rad>s,

F17–3. The link is pinned to a moving frame at 
and held in a vertical position by means of a string 
which can support a maximum tension of Determine
the maximum acceleration of the frame without breaking
the string. What are the corresponding components of
reaction at the pin A? 

10 lb.
BC
AAB20-lb

F17–6. At the instant shown, link rotates with an
angular velocity of If it is subjected to a couple
moment determine the force developed in
link the horizontal and vertical component of reaction
on pin and the angular acceleration of link at this
instant. The block has a mass of and center of mass at

Neglect the mass of links and CD.ABG.
50 kg

CDD,
AB,
M = 450 N # m,

v = 6 rad>s.
CD

F17–10.6 m

0.5 m

0.4 m0.3 m

1.2 m
G

B A

100 N

3
4

5

1.5 m

A

B
0.5 m

0.5 m

G

15�

3 ft

3 ft

A

B

C

4 ft

a

F17–4

A C

B D100 N

1 m 1 m

1.5 m

G

 v � 5 rad/s

A

CD

B
0.4 m

0.6 m
0.1 m

G

M � 450 N � m

v � 6 rad/s0.4 m

F17–5

F17–6

F17–2

F17–3
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17 0.3 m

30� 30�

a

A C

DB
E G

F H

0.3 m0.4 m

Probs. 17–24/25

3.2 m
1.25 m

0.75 m 0.35 mC

GA B

Prob. 17–26

10 ft10 ft

A

B

C

D

Prob. 17–27

0.4 m

6 m

0.8 m

3 m

BA

30�

T � 400 N

G

Prob. 17–28

PROBLEMS

17–27. When the lifting mechanism is operating, the 400-lb
load is given an upward acceleration of . Determine
the compressive force the load creates in each of the
columns, AB and CD.What is the compressive force in each
of these columns if the load is moving upward at a constant
velocity of 3 ? Assume the columns only support an
axial load.

ft>s

5 ft>s2
*17–24. The 4-Mg uniform canister contains nuclear waste
material encased in concrete. If the mass of the spreader
beam BD is 50 kg, determine the force in each of the links
AB, CD, EF, and GH when the system is lifted with an
acceleration of for a short period of time.

•17–25. The 4-Mg uniform canister contains nuclear waste
material encased in concrete. If the mass of the spreader
beam BD is 50 kg, determine the largest vertical acceleration
a of the system so that each of the links AB and CD are not
subjected to a force greater than 30 kN and links EF and GH
are not subjected to a force greater than 34 kN.

a = 2 m>s2

*17–28. The jet aircraft has a mass of 22 Mg and a center of
mass at G. If a towing cable is attached to the upper portion
of the nose wheel and exerts a force of as shown,
determine the acceleration of the plane and the normal
reactions on the nose wheel and each of the two wing
wheels located at B. Neglect the lifting force of the wings
and the mass of the wheels.

T = 400 N

17–26. The dragster has a mass of 1200 kg and a center of
mass at G. If a braking parachute is attached at C and
provides a horizontal braking force of ,
where is in meters per second, determine the critical speed
the dragster can have upon releasing the parachute, such
that the wheels at B are on the verge of leaving the ground;
i.e., the normal reaction at B is zero. If such a condition
occurs, determine the dragster’s initial deceleration. Neglect
the mass of the wheels and assume the engine is disengaged
so that the wheels are free to roll.

v
F = (1.6v2) N
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G

BA

C D

0.7 m

0.4 m

0.5 m0.75 m

Probs. 17–29/30

0.25 m
0.3 m

B 2.5 m1 m

G

A

Probs. 17–31/32

6 ft 4.75 ft

A B

G
0.75 ft

Probs. 17–33/34

B

G

A 1.25 m
0.75 m

0.35 m

Prob. 17–35

•17–33. At the start of a race, the rear drive wheels B of the
1550-lb car slip on the track. Determine the car’s
acceleration and the normal reaction the track exerts on the
front pair of wheels A and rear pair of wheels B. The
coefficient of kinetic friction is , and the mass
center of the car is at G. The front wheels are free to roll.
Neglect the mass of all the wheels.

17–34. Determine the maximum acceleration that can be
achieved by the car without having the front wheels A leave
the track or the rear drive wheels B slip on the track. The
coefficient of static friction is .The car’s mass center
is at G, and the front wheels are free to roll. Neglect the
mass of all the wheels.

ms = 0.9

mk = 0.7

17–31. The dragster has a mass of 1500 kg and a center of
mass at G. If the coefficient of kinetic friction between the
rear wheels and the pavement is , determine if it is
possible for the driver to lift the front wheels, A, off the
ground while the rear drive wheels are slipping. Neglect the
mass of the wheels and assume that the front wheels are
free to roll.

*17–32. The dragster has a mass of 1500 kg and a center of
mass at G. If no slipping occurs, determine the frictional
force which must be developed at each of the rear drive
wheels B in order to create an acceleration of .
What are the normal reactions of each wheel on the
ground? Neglect the mass of the wheels and assume that
the front wheels are free to roll.

a = 6 m>s2
FB

mk = 0.6

•17–29. The lift truck has a mass of 70 kg and mass center
at G. If it lifts the 120-kg spool with an acceleration of

, determine the reactions on each of the four wheels.
The loading is symmetric. Neglect the mass of the movable
arm CD.

17–30. The lift truck has a mass of 70 kg and mass center at
G. Determine the largest upward acceleration of the 120-kg
spool so that no reaction on the wheels exceeds 600 N.

3 m>s2

17–35. The sports car has a mass of 1.5 Mg and a center of
mass at G. Determine the shortest time it takes for it to
reach a speed of 80 , starting from rest, if the engine
only drives the rear wheels, whereas the front wheels are
free rolling. The coefficient of static friction between the
wheels and the road is . Neglect the mass of the
wheels for the calculation. If driving power could be
supplied to all four wheels, what would be the shortest time
for the car to reach a speed of 80 ?km>h

ms = 0.2

km>h



422 CH A P T E R 17 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  FO R C E A N D AC C E L E R AT I O N

17

17–39. The forklift and operator have a combined weight of
10 000 lb and center of mass at G. If the forklift is used to lift
the 2000-lb concrete pipe, determine the maximum vertical
acceleration it can give to the pipe so that it does not tip
forward on its front wheels.

*17–40. The forklift and operator have a combined weight
of 10 000 lb and center of mass at G. If the forklift is used
to lift the 2000-lb concrete pipe, determine the normal
reactions on each of its four wheels if the pipe is given an
upward acceleration of .4 ft>s2

17–38. Each uniform box on the stack of four boxes has a
weight of 8 lb. The stack is being transported on the dolly,
which has a weight of 30 lb. Determine the maximum force F
which the woman can exert on the handle in the direction
shown so that no box on the stack will tip or slip. The
coefficient of the static friction at all points of contact is

.The dolly wheels are free to roll. Neglect their mass.ms = 0.5

*17–36. The forklift travels forward with a constant speed
of . Determine the shortest stopping distance without
causing any of the wheels to leave the ground. The forklift
has a weight of 2000 lb with center of gravity at , and the
load weighs 900 lb with center of gravity at . Neglect the
weight of the wheels.

•17–37. If the forklift’s rear wheels supply a combined traction
force of , determine its acceleration and the
normal reactions on the pairs of rear wheels and front wheels.
The forklift has a weight of 2000 lb, with center of gravity at

, and the load weighs 900 lb, with center of gravity at .The
front wheels are free to roll. Neglect the weight of the wheels.

G2G1

FA = 300 lb

G2

G1

9 ft>s

•17–41. The car, having a mass of 1.40 Mg and mass center
at , pulls a loaded trailer having a mass of 0.8 Mg and
mass center at . Determine the normal reactions on both
the car’s front and rear wheels and the trailer’s wheels if the
driver applies the car’s rear brakes C and causes the car to
skid. Take and assume the hitch at A is a pin or
ball-and-socket joint.The wheels at B and D are free to roll.
Neglect their mass and the mass of the driver.

mC = 0.4

Gt

Gc

1.5 ft
3.5 ft

3.25 ft2 ft

4.25 ft

A B

G1

G2

Probs. 17–36/37

1.5 ft

2 ft

F

1.5 ft

1.5 ft

1.5 ft

30�

Prob. 17–38

5 ft 4 ft 6 ft

G

A B

Probs. 17–39/40

2 m

0.4 m
A

B C
1 m 1.5 m 2 m

D

Gt

1.25 m

Gc
0.75 m

Prob. 17–41



17.3 EQUATIONS OF MOTION: TRANSLATION 423

17

*17–44. The handcart has a mass of 200 kg and center of
mass at G. Determine the normal reactions at each of the two
wheels at A and at B if a force of is applied to the
handle. Neglect the mass of the wheels.

•17–45. The handcart has a mass of 200 kg and center of
mass at G. Determine the largest magnitude of force P that
can be applied to the handle so that the wheels at A or B
continue to maintain contact with the ground. Neglect the
mass of the wheels.

P = 50 N

17–43. Arm BDE of the industrial robot is activated by
applying the torque of to link CD. Determine
the reactions at pins B and D when the links are in the
position shown and have an angular velocity of Arm
BDE has a mass of 10 kg with center of mass at . The
container held in its grip at E has a mass of 12 kg with center
of mass at . Neglect the mass of links AB and CD.G2

G1

2 rad>s.

M = 50  N # m

17–42. The uniform crate has a mass of 50 kg and rests on
the cart having an inclined surface. Determine the smallest
acceleration that will cause the crate either to tip or slip
relative to the cart. What is the magnitude of this
acceleration? The coefficient of static friction between the
crate and the cart is .ms = 0.5

17–46. The jet aircraft is propelled by four engines to
increase its speed uniformly from rest to 100 m/s in a distance
of 500 m. Determine the thrust T developed by each engine
and the normal reaction on the nose wheel A. The aircraft’s
total mass is 150 Mg and the mass center is at point G.
Neglect air and rolling resistance and the effect of lift.

15�

1 m

0.6 m

F

Prob. 17–42

0.3 m 0.4 m0.2 m

0.2 m

0.5 m

60�

A B

G

P

Probs. 17–44/45

30 m
7.5 m

9 m

T

T
5 m4 m

A B

G

Prob. 17–46

0.220 m

0.600 m
M � 50 N � m

v � 2 rad/s

B D

CA

0.365 m 0.735 m

E

G1 G2 

Prob. 17–43
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17–51. The trailer with its load has a mass of 150 kg and a
center of mass at G. If it is subjected to a horizontal force of

, determine the trailer’s acceleration and the
normal force on the pair of wheels at A and at B. The
wheels are free to roll and have negligible mass.

P = 600 N

•17–49. The snowmobile has a weight of 250 lb, centered at
, while the rider has a weight of 150 lb, centered at . If the

acceleration is , determine the maximum height h
of of the rider so that the snowmobile’s front skid does not
lift off the ground. Also, what are the traction (horizontal)
force and normal reaction under the rear tracks at A?

17–50. The snowmobile has a weight of 250 lb, centered at
, while the rider has a weight of 150 lb, centered at . If

, determine the snowmobile’s maximum permissible
acceleration a so that its front skid does not lift off the
ground. Also, find the traction (horizontal) force and the
normal reaction under the rear tracks at A.

h = 3 ft
G2G1

G2

a = 20 ft>s2
G2G1

17–47. The 1-Mg forklift is used to raise the 750-kg crate
with a constant acceleration of . Determine the
reaction exerted by the ground on the pairs of wheels at A
and at B. The centers of mass for the forklift and the crate
are located at and , respectively.

*17–48. Determine the greatest acceleration with which
the 1-Mg forklift can raise the 750-kg crate, without causing
the wheels at B to leave the ground. The centers of mass for
the forklift and the crate are located at and ,
respectively.

G2G1

G2G1

2 m>s2

*17–52. The 50-kg uniform crate rests on the platform for
which the coefficient of static friction is . If the
supporting links have an angular velocity ,
determine the greatest angular acceleration they can have
so that the crate does not slip or tip at the instant .

•17–53. The 50-kg uniform crate rests on the platform for
which the coefficient of static friction is . If at the
instant the supporting links have an angular velocity

and angular acceleration ,
determine the frictional force on the crate.

a = 0.5 rad>s2v = 1  rad>s
u = 30°

ms = 0.5

u = 30°
a

v = 1 rad>s
ms = 0.5

0.9 m 1 m
0.4 m

0.5 m

A B

G1
G2

0.4 m

Probs. 17–47/48

a

1.5 ft

0.5 ft

G1

G2

1 ft

h

A

Probs. 17–49/50

1.25 m

0.75 m
1.25 m

0.25 m0.25 m 0.5 m

G

B A

P � 600 N

Prob. 17–51

C 1.5 m

4 m

u

v

a u

4 m

0.5 m

 � 1 rad/s

Probs. 17–52/53
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17.4 Equations of Motion: Rotation
about a Fixed Axis

Consider the rigid body (or slab) shown in Fig. 17–14a, which is constrained
to rotate in the vertical plane about a fixed axis perpendicular to the page
and passing through the pin at O. The angular velocity and angular
acceleration are caused by the external force and couple moment system
acting on the body. Because the body’s center of mass G moves around a
circular path, the acceleration of this point is best represented by its
tangential and normal components.The tangential component of acceleration
has a magnitude of and must act in a direction which is
consistent with the body’s angular acceleration The magnitude of the
normal component of acceleration is This component is
always directed from point G to O, regardless of the rotational sense of V.

1aG2n = v2rG .
A.

1aG2t = arG

17–55. A uniform plate has a weight of 50 lb. Link AB is
subjected to a couple moment of and has a
clockwise angular velocity of at the instant .
Determine the force developed in link CD and the tangential
component of the acceleration of the plate’s mass center at
this instant. Neglect the mass of links AB and CD.

u = 30°2 rad>s
M = 10 lb # ft

17–54. If the hydraulic cylinder BE exerts a vertical force
of on the platform, determine the force
developed in links AB and CD at the instant . The
platform is at rest when . Neglect the mass of the
links and the platform. The 200-kg crate does not slip on
the platform.

u = 45°
u = 90°

F = 1.5 kN

3 m

3 m

1 m

2 m

F

G

C

A

B

D

E

u

Prob. 17–54

1.5 ft

2 ft

1 ft

C

D

B

A

u � 30�

M � 10 lb � ft 

Prob. 17–55

G

A

V

(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

O

Fig. 17–14
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The free-body and kinetic diagrams for the body are shown in
Fig. 17–14b. The two components and shown on the
kinetic diagram, are associated with the tangential and normal components
of acceleration of the body’s mass center. The vector acts in the same
direction as and has a magnitude of where is the body’s moment
of inertia calculated about an axis which is perpendicular to the page and
passes through G. From the derivation given in Sec. 17.2, the equations of
motion which apply to the body can be written in the form

(17–14)

The moment equation can be replaced by a moment summation about
any arbitrary point P on or off the body provided one accounts for the
moments produced by and about the
point. Often it is convenient to sum moments about the pin at O in order
to eliminate the unknown force From the kinetic diagram,
Fig. 17–14b, this requires

a (17–15)

Note that the moment of is not included here since the line of
action of this vector passes through O. Substituting we may
rewrite the above equation as a From the+©MO = 1IG + mrG2 2a.

1aG2t = rGa,
m1aG2n

©MO = rGm1aG2t + IGa+©MO = ©1mk2O ;

FO .

m1aG2nm1aG2t ,IGA,©1mk2P

©Fn = m1aG2n = mv2rG
©Ft = m1aG2t = marG

©MG = IGa

IGIGa,A

IGA

m1aG2n ,m1aG2t

* The result can also be obtained directly from Eq. 17–6 by selecting point
P to coincide with O, realizing that 1aP2x = 1aP2y = 0.

©MO = IOa

O

G

M1

M2

F4

F3

F2

F1

W

FO

=

(b)

rGO

G

m(aG)t

m(aG)n

IGA

Fig. 17–14 (cont.)

O

G
(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

A

V

parallel-axis theorem, and therefore the term in
parentheses represents the moment of inertia of the body about the fixed
axis of rotation passing through O.*  Consequently, we can write the
three equations of motion for the body as

(17–16)

When using these equations, remember that accounts for the
“moment” of both and about point O, Fig. 17–14b. In other
words, as indicated by Eqs. 17–15 and 17–16.©MO = ©1mk2O = IOa,

IGAm1aG2t
“IOa”

©Fn = m1aG2n = mv2rG
©Ft = m1aG2t = marG

©MO = IOa

IO = IG + md2,
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Procedure for Analysis

Kinetic problems which involve the rotation of a body about a fixed
axis can be solved using the following procedure.

Free-Body Diagram.

• Establish the inertial n, t coordinate system and specify the
direction and sense of the accelerations and and the
angular acceleration of the body. Recall that must act in a
direction which is in accordance with the rotational sense of 
whereas always acts toward the axis of rotation, point O.

• Draw the free-body diagram to account for all the external forces
and couple moments that act on the body.

• Determine the moment of inertia or 

• Identify the unknowns in the problem.

• If it is decided that the rotational equation of motion
is to be used, i.e., P is a point other than G or O,

then consider drawing the kinetic diagram in order to help
“visualize” the “moments” developed by the components

and when writing the terms for the moment
sum

Equations of Motion.

• Apply the three equations of motion in accordance with the
established sign convention.

• If moments are summed about the body’s mass center, G, then
since and create no moment about G.

• If moments are summed about the pin support O on the axis of
rotation, then creates no moment about O, and it can be
shown that 

Kinematics.

• Use kinematics if a complete solution cannot be obtained strictly
from the equations of motion.

• If the angular acceleration is variable, use

• If the angular acceleration is constant, use

v2 = v0
2 + 2ac1u - u02

u = u0 + v0t + 1
2act

2

v = v0 + act

a =
dv

dt
a du = v dv v =

du

dt

©MO = IOa.
1maG2n

1maG2n1maG2t©MG = IGa,

©1mk2P .
IGAm1aG2t ,m1aG2n ,

©MP = ©1mk2P

IO .IG

1aG2n
A,

1aG2tA

1aG2t1aG2n

Oy

Ox

M

W

T

=

G

G

O

O

IGA

m(aG)n

m(aG)t

d

The crank on the oil-pumping rig undergoes
rotation about a fixed axis which is caused by
a driving torque M of the motor.The loadings
shown on the free-body diagram cause the
effects shown on the kinetic diagram. If
moments are summed about the mass center,
G, then However, if moments
are summed about point O, noting
that then a

m1aG2n102 = 1IG + md22a = IOa.m1aG2td +
+©MO = IGa +1aG2t = ad,

©MG = IGa.
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EXAMPLE 17.9

The unbalanced 50-lb flywheel shown in Fig. 17–15a has a radius of
gyration of about an axis passing through its mass center
G. If it is released from rest, determine the horizontal and vertical
components of reaction at the pin O.

SOLUTION
Free-Body and Kinetic Diagrams. Since G moves in a circular
path, it will have both normal and tangential components of
acceleration. Also, since which is caused by the flywheel’s weight,
acts clockwise, the tangential component of acceleration must act
downward. Why? Since only and are
shown on the kinematic diagram in Fig. 17–15b. Here, the moment of
inertia about G is

The three unknowns are and 

Equations of Motion.

Ans.

(1)

c

Solving,

Ans.

Moments can also be summed about point O in order to eliminate 
and and thereby obtain a direct solution for Fig. 17–15b.This can
be done in one of two ways.

c

(2)

If is applied, then by the parallel-axis theorem the
moment of inertia of the flywheel about O is

Hence,

c

which is the same as Eq. 2. Solving for and substituting into Eq. 1
yields the answer for obtained previously.Ot

a

150 lb210.5 ft2 = 10.9472 slug # ft22a+©MO = IOa;

IO = IG + mrG2 = 0.559 + a 50
32.2
b10.522 = 0.9472 slug # ft2

©MO = IOa
= 0.9472a50 lb10.5 ft2

10.5590 slug # ft22a + c a 50 lb

32.2 ft>s2 ba10.5 ft2 d10.5 ft2150 lb210.5 ft2 =

+©MO = ©1mk2O ;

A,Ot
On

a = 26.4 rad>s2 Ot = 29.5 lb

Ot10.5 ft2 = 10.5590 slug # ft22a+©MG = IGa;

-Ot + 50 lb = a 50 lb

32.2 ft>s2 b1a210.5 ft2+ T©Ft = marG ;

On = 0;+ ©Fn = mv2rG ;

a.Ot ,On ,

IG = mkG2 = 150 lb>32.2 ft>s2210.6 ft22 = 0.559 slug # ft2

IGam1aG2t = marGv = 0,

a,

kG = 0.6 ft

0.5 ft

G

(a)

O

n

t

(b)

=

0.5 ft

O
GOn

Ot 50 lb

O G

rG

IG�

m�rG

Fig. 17–15



EXAMPLE 17.10

17.4 EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS 429

17

At the instant shown in Fig. 17–16a, the 20-kg slender rod has an
angular velocity of Determine the angular acceleration
and the horizontal and vertical components of reaction of the pin on
the rod at this instant.

v = 5 rad>s.

v � 5 rad/s

3 m

60 N � m

(a)

O

IGA

O G

O G

1.5 m

On

Ot

60 N � m

20(9.81) N

(b)

mv2rG

marG

rG

=
Fig. 17–16

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 17–16b. As shown on the
kinetic diagram, point G moves around a circular path and so it has
two components of acceleration. It is important that the tangential
component act downward since it must be in accordance
with the rotational sense of . The three unknowns are and 

Equation of Motion.

c

Solving

Ans.

A more direct solution to this problem would be to sum moments
about point O to eliminate and and obtain a direct solution for

Here,

c

Ans.

Also, since for a slender rod, we can apply

c

Ans.

NOTE: By comparison, the last equation provides the simplest solution
for and does not require use of the kinetic diagram.a

a = 5.90 rad>s2

60 N # m + 2019.812 N11.5 m2 = C13120 kg213 m22 Da+©MO = IOa;

IO = 1
3ml

2

a = 5.90 rad>s2

C 1
12120 kg213 m22 Da + [20 kg1a211.5 m2]11.5 m2

60 N # m + 2019.812 N11.5 m2 =+©MO = ©1mk2O ;

a.
OtOn

On = 750 N Ot = 19.05 N a = 5.90 rad>s2

Ot11.5 m2 + 60 N # m = C 1
12120 kg213 m22 Da+©MG = IGa;

-Ot + 2019.812N = 120 kg21a211.5 m2+ T©Ft = marG ;

On = 120 kg215 rad>s2211.5 m2;+ ©Fn = mv2rG ;

a.Ot ,On ,A

at = arG
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EXAMPLE 17.11

The drum shown in Fig. 17–17a has a mass of 60 kg and a radius of
gyration A cord of negligible mass is wrapped around the
periphery of the drum and attached to a block having a mass of 20 kg. If
the block is released, determine the drum’s angular acceleration.

SOLUTION I 

Free-Body Diagram. Here we will consider the drum and block
separately, Fig. 17–17b. Assuming the block accelerates downward at
a, it creates a counterclockwise angular acceleration of the drum.
The moment of inertia of the drum is

There are five unknowns, namely T, a, and 

Equations of Motion. Applying the translational equations of
motion and to the drum is of no
consequence to the solution, since these equations involve the
unknowns and Thus, for the drum and block, respectively,

a (1)

(2)

Kinematics. Since the point of contact A between the cord and
drum has a tangential component of acceleration a, Fig. 17–17a, then

a (3)

Solving the above equations,

d Ans.

SOLUTION II

Free-Body and Kinetic Diagrams. The cable tension T can be
eliminated from the analysis by considering the drum and block as a
single system, Fig. 17–17c. The kinetic diagram is shown since
moments will be summed about point O.

Equations of Motion. Using Eq. 3 and applying the moment
equation about O to eliminate the unknowns and we have

a

Ans.

NOTE: If the block were removed and a force of 20(9.81) N were
applied to the cord, show that . This value is larger
since the block has an inertia, or resistance to acceleration.

a = 20.9 rad>s2

a = 11.3 rad>s2

13.75 kg # m22a + [20 kg1a 0.4 m2]10.4 m2
[2019.812N] 10.4 m2 =+©MO = ©1mk2O ;

Oy ,Ox

 a = 11.3 rad>s2

 a = 4.52 m>s2 T = 106 N

a = a10.4 m2+a = ar;

-2019.812N + T = -(20 kg)a+ c©Fy = m1aG2y ;
T10.4 m2 = 13.75 kg # m22a+©MO = IOa;

Oy .Ox

©Fy = m1aG2y©Fx = m1aG2x

a.Oy ,Ox ,

IO = mkO2 = 160 kg210.25 m22 = 3.75 kg # m2

A

kO = 0.25 m.0.4 m
O

(a)

A

0.4 m
O

(b)

Ox

Oy

60 (9.81) N

20 (9.81) N

T

T y

x

a

A

0.4 m

(c)

Ox

Oy

60 (9.81) N

O
0.4 m O=

20(9.81) N (20 kg)a

IOaa

Fig. 17–17
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EXAMPLE 17.12

The slender rod shown in Fig. 17–18a has a mass m and length l and is
released from rest when Determine the horizontal and
vertical components of force which the pin at A exerts on the rod at
the instant 

SOLUTION
Free-Body Diagram. The free-body diagram for the rod in the
general position is shown in Fig. 17–18b. For convenience, the force
components at A are shown acting in the n and t directions. Note that

acts clockwise and so acts in the + t direction.
The moment of inertia of the rod about point A is

Equations of Motion. Moments will be summed about A in order
to eliminate .

(1)

(2)

c (3)

Kinematics. For a given angle there are four unknowns in the
above three equations: and As shown by Eq. 3, is not
constant; rather, it depends on the position of the rod. The necessary
fourth equation is obtained using kinematics, where and can be
related to by the equation

(c (4)

Note that the positive clockwise direction for this equation agrees with
that of Eq. 3. This is important since we are seeking a simultaneous
solution.

In order to solve for at eliminate from Eqs. 3 and 4,
which yields

Since at we have

Substituting this value into Eq. 1 with and solving Eqs. 1 to 3
yields

Ans.

NOTE: If is used, one must account for the
moments of and about A.m1aG2tIGA

©MA = ©1mk2A
An = 2.5mgAt = 0

a = 0

u = 90°

v2 = 3g>lL

v

0
v dv = 11.5g>l2

L

90°

0°
cos u du

u = 0°,v = 0

v dv = 11.5g>l2 cos u du

au = 90°,v

v dv = a du+2
u

va

u

aa.v,At ,An ,
u

mg cos u1l>22 = A13ml2 Ba+©MA = IAa;

At + mg cos u = ma1l>22+b©Ft = marG ;

An - mg sin u = mv21l>22+a©Fn = mv2rG ;

An and At

IA = 1
3ml

2.
(aG)tA

u

u = 90°.

u = 0°.

l

A

(a)

u

(b)

(aG)n

(aG)t

n

t

l–
2

A

An

At

mg

G

u

u

A

Fig. 17–18
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FUNDAMENTAL PROBLEMS

0.6 m

O

P � 100 N

F17–7

O

0.6 m 0.3 m

F17–11

A

O

P � 300 N

0.8 m

0.6 m 0.3 m

 v � 6 rad/s

F17–12

O

0.3 m
M � (9t)N � m

F17–8

O

0.3 m 0.6 m

M � 60 N � m

F17–9

0.3 m

O

P � 50 N
3

4

5

F17–10

F17–10. At the instant shown, the disk has a
counterclockwise angular velocity of 
Determine the tangential and normal components of
reaction of the pin on the disk and the angular
acceleration of the disk at this instant.

O

v = 10 rad>s.
30-kg

F17–9. At the instant shown, the uniform slender
rod has a counterclockwise angular velocity of 
Determine the tangential and normal components of
reaction of pin on the rod and the angular acceleration of
the rod at this instant.

O

v = 6 rad>s.
30-kg

F17–7. The wheel has a radius of gyration about its
center of If the wheel starts from rest,
determine its angular velocity in t = 3 s.

kO = 500 mm.O
100-kg

F17–12. The uniform slender rod is being pulled by
the cord that passes over the small smooth peg at If the
rod has an angular velocity of at the instant
shown, determine the tangential and normal components of
reaction at the pin and the angular acceleration of the rod.O

v = 6 rad>s
A.

30-kg

F17–8. The disk is subjected to the couple moment
of where is in seconds. Determine the
angular velocity of the disk when starting from rest.t = 4 s

tM = (9t) N # m,
50-kg

F17–11. The uniform slender rod has a mass of 
Determine the horizontal and vertical components of
reaction at the pin , and the angular acceleration of the
rod just after the cord is cut.

O

15 kg.
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PROBLEMS

17–58. The single blade PB of the fan has a mass of 2 kg
and a moment of inertia about an axis
passing through its center of mass G. If the blade is
subjected to an angular acceleration , and has
an angular velocity when it is in the vertical
position shown, determine the internal normal force N,
shear force V, and bending moment M, which the hub
exerts on the blade at point P.

v = 6 rad>s
a = 5 rad>s2

IG = 0.18 kg # m2

•17–57. Cable is unwound from a spool supported on small
rollers at A and B by exerting a force of on the
cable in the direction shown. Compute the time needed to
unravel 5 m of cable from the spool if the spool and cable
have a total mass of 600 kg and a centroidal radius of
gyration of . For the calculation, neglect the
mass of the cable being unwound and the mass of the rollers
at A and B. The rollers turn with no friction.

kO = 1.2 m

T = 300 N

*17–56. The four fan blades have a total mass of 2 kg and
moment of inertia about an axis passing
through the fan’s center O. If the fan is subjected to a
moment of , where t is in seconds,
determine its angular velocity when starting
from rest.

t = 4 s
M = 3(1 - e-0.2t) N # m

IO = 0.18 kg # m2

17–59. The uniform spool is supported on small rollers at
A and B. Determine the constant force P that must be
applied to the cable in order to unwind 8 m of cable in 4 s
starting from rest. Also calculate the normal forces on the
spool at A and B during this time. The spool has a mass of 
60 kg and a radius of gyration about of . For
the calculation neglect the mass of the cable and the mass of
the rollers at A and B.

kO = 0.65 mO

30�

1 m

O

T � 300 N

0.8 m

A B

1.5 m

Prob. 17–57

300 mm

75 mm

P

B

v
a

G

� 6 rad/s
� 5 rad/s2

Prob. 17–58

MO

Prob. 17–56

15� 15�

O

A B

0.8 m

1 m

P

Prob. 17–59
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17–63. The 4-kg slender rod is supported horizontally by a
spring at A and a cord at B. Determine the angular
acceleration of the rod and the acceleration of the rod’s
mass center at the instant the cord at B is cut. Hint: The
stiffness of the spring is not needed for the calculation.

17–62. The pendulum consists of a 30-lb sphere and a 10-lb
slender rod. Compute the reaction at the pin O just after the
cord AB is cut.

*17–60. A motor supplies a constant torque 
to a 50-mm-diameter shaft O connected to the center of the
30-kg flywheel. The resultant bearing friction F, which the
bearing exerts on the shaft, acts tangent to the shaft and has
a magnitude of 50 N. Determine how long the torque must
be applied to the shaft to increase the flywheel’s angular
velocity from to The flywheel has a radius
of gyration about its center .

•17–61. If the motor in Prob. 17–60 is disengaged from the
shaft once the flywheel is rotating at 15 rad/s, so that ,
determine how long it will take before the resultant bearing
frictional force stops the flywheel from rotating.F = 50 N

M = 0

OkO = 0.15 m
15 rad>s.4 rad>s

M = 2 N # m

*17–64. The passengers, the gondola, and its swing frame
have a total mass of 50 Mg, a mass center at G, and a radius
of gyration . Additionally, the 3-Mg steel block
at A can be considered as a point of concentrated mass.
Determine the horizontal and vertical components of
reaction at pin B if the gondola swings freely at 
when it reaches its lowest point as shown. Also, what is the
gondola’s angular acceleration at this instant?

•17–65. The passengers, the gondola, and its swing frame
have a total mass of 50 Mg, a mass center at G, and a radius
of gyration . Additionally, the 3-Mg steel block
at A can be considered as a point of concentrated mass.
Determine the angle to which the gondola will swing
before it stops momentarily, if it has an angular velocity of

at its lowest point.v = 1 rad>s
u

kB = 3.5 m

v = 1 rad>s

kB = 3.5 m
25 mm O

F

M

Probs. 17–60/61

2 ft

O

A

B

1 ft

Prob. 17–62

5 m

3 m

B

A

v

G

Probs. 17–64/65

2 m
B

A

Prob. 17–63



17.4 EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS 435

17

rGP

rOG

m(aG)n

G
IG

m(aG)t

O

P

a

a

Prob. 17–66

4 ft

P

A

rP

F

Prob. 17–67

*17–68. The 150-kg wheel has a radius of gyration about
its center of mass O of . If it rotates
counterclockwise with an angular velocity of 

at the instant the tensile forces and
are applied to the brake band at A and B,

determine the time needed to stop the wheel.

•17–69. The 150-kg wheel has a radius of gyration about
its center of mass O of . If it rotates
counterclockwise with an angular velocity of 

and the tensile force applied to the brake band at A is
, determine the tensile force in the band at

B so that the wheel stops in 50 revolutions after and 
are applied.

TBTA
TBTA = 2000 N

min
v = 1200 rev>

kO = 250 mm

TB = 1000 N
TA = 2000 Nmin
v = 1200 rev>

kO = 250 mm

17–67. Determine the position of the center of
percussion P of the 10-lb slender bar. (See Prob. 17–66.)
What is the horizontal component of force that the pin at 
exerts on the bar when it is struck at P with a force of

?F = 20 lb

A

rP

17–66. The kinetic diagram representing the general
rotational motion of a rigid body about a fixed axis passing
through O is shown in the figure. Show that may be
eliminated by moving the vectors and to
point P, located a distance from the center of
mass G of the body. Here represents the radius of
gyration of the body about an axis passing through G. The
point P is called the center of percussion of the body.

kG

rGP = k2
G>rOG

m(aG)nm(aG)t
IGA

17–70. The 100-lb uniform rod is at rest in a vertical
position when the cord attached to it at B is subjected to a
force of . Determine the rod’s initial angular
acceleration and the magnitude of the reactive force that
pin A exerts on the rod. Neglect the size of the smooth
peg at C.

P = 50 lb

A

B

300 mm
v � 1200 rev/min

O

TA

TB

Probs. 17–68/69

A

B

C

P � 50 lb
3 ft

4 ft

3 ft

Prob. 17–70



k
A

1.5 m 1.5 m

800 mm

k � 150 N/m

B

A

vv
u
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17–74. The uniform slender rod has a mass of 9 kg. If the
spring is unstretched when , determine the magnitude
of the reactive force exerted  on the rod by pin A when

, if at this instant . The spring has a
stiffness of and always remains in the
horizontal position.

k = 150 N>m
v = 6 rad>su = 45°

u = 0°

•17–73. The bar has a mass m and length l. If it is released
from rest from the position determine its angular
acceleration and the horizontal and vertical components of
reaction at the pin O.

u = 30°,

17–71. Wheels A and B have weights of 150 lb and 100 lb,
respectively. Initially, wheel A rotates clockwise with a
constant angular velocity of  and wheel B is
at rest. If A is brought into contact with B, determine the
time required for both wheels to attain the same angular
velocity. The coefficient of kinetic friction between the two
wheels is and the radii of gyration of A and B
about their respective centers of mass are and

. Neglect the weight of  link AC.

*17–72. Initially, wheel A rotates clockwise with a constant
angular velocity of . If A is brought into
contact with B, which is held fixed, determine the number
of revolutions before wheel A is brought to a stop. The
coefficient of kinetic friction between the two wheels is

, and the radius of gyration of A about its mass
center is . Neglect the weight of link AC.kA = 1 ft
mk = 0.3

v = 100 rad>s

kB = 0.75 ft
kA = 1 ft

mk = 0.3

v = 100 rad>s

17–75. Determine the angular acceleration of the 25-kg
diving board and the horizontal and vertical components of
reaction at the pin A the instant the man jumps off. Assume
that the board is uniform and rigid, and that at the instant
he jumps off the spring is compressed a maximum amount
of 200 mm, and the board is horizontal. Take
k = 7 kN>m.

v = 0,

Prob. 17–74

6 ft

1.25 ft

1 ft

BC

A
v

30�

Prob. 17–71/72

L

A

u

Prob. 17–76

*17–76. The slender rod of length L and mass m is released
from rest when . Determine as a function of the
normal and the frictional forces which are exerted by the
ledge on the rod at A as it falls downward. At what angle 
does the rod begin to slip if the coefficient of static friction
at A is ?m

u

uu = 0°

O

l

30��u

Prob 17.73

Prob 17–75
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P � 200 N

O

r

10 mm

Prob. 17–80

C

�

B
A

60�

150 mm

Prob. 17–81

A B

C

0.6 m 0.6 m

0.75 m

1 m

G

vv

u

Probs. 17–77/78

3 ft

3 ft

A

B

C

Prob. 17–79

*17–80. The hose is wrapped in a spiral on the reel and is
pulled off  the reel by a horizontal force of .
Determine the angular acceleration of the reel after it has
turned 2 revolutions. Initially, the radius is .The
hose is 15 m long and has a mass per unit length of .
Treat the wound-up hose as a disk.

10 kg>m
r = 500 mm

P = 200 N

17–79. If the support at B is suddenly removed, determine
the initial horizontal and vertical components of reaction
that the pin A exerts on the rod ACB. Segments AC and CB
each have a weight of 10 lb.

•17–77. The 100-kg pendulum has a center of mass at G
and a radius of gyration about G of .
Determine the horizontal and vertical components of
reaction on the beam by the pin A and the normal reaction
of the roller B at the instant when the pendulum is
rotating at . Neglect the weight of the beam and
the support.

17–78. The 100-kg pendulum has a center of mass at G and a
radius of gyration about G of . Determine the
horizontal and vertical components of reaction on the beam
by the pin A and the normal reaction of the roller B at the
instant when the pendulum is rotating at .
Neglect the weight of the beam and the support.

v = 4 rad>su = 0°

kG = 250 mm

v = 8 rad>s
u = 90°

kG = 250 mm

•17–81. The disk has a mass of 20 kg and is originally
spinning at the end of the strut with an angular velocity of

. If it is then placed against the wall, where the
coefficient of kinetic friction is , determine the
time required for the motion to stop. What is the force in
strut BC during this time?

mk = 0.3
v = 60 rad>s
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B

C

F � 300 N

6 m

A

u � 60�

Prob. 17–82

O

3 ft

3 ft

20 lb

2 ft

F

Prob. 17–83

*17–84. The 50-kg flywheel has a radius of gyration about
its center of mass of . It rotates with a
constant angular velocity of before the brake
is applied. If the coefficient of kinetic friction between the
brake pad B and the wheel’s rim is , and a force of

is applied to the braking mechanism’s handle,
determine the time required to stop the wheel.

•17–85. The 50-kg flywheel  has a radius of gyration about
its center of mass of . It rotates with a
constant angular velocity of before the brake
is applied. If the coefficient of kinetic friction between the
brake pad B and the wheel’s rim is , determine the
constant force P that must be applied to the braking
mechanism’s handle in order to stop the wheel in
100 revolutions.

mk = 0.5

1200  rev>min
kO = 250 mm

P = 300 N
mk = 0.5

1200  rev>min
kO = 250 mm

17–83. At the instant shown, two forces act on the 30-lb
slender rod which is pinned at O. Determine the magnitude
of force F and the initial angular acceleration of the rod so
that the horizontal reaction which the pin exerts on the rod
is 5 lb directed to the right.

17–82. The 50-kg uniform beam (slender rod) is lying on
the floor when the man exerts a force of on the
rope, which passes over a small smooth peg at C. Determine
the initial angular acceleration of the beam. Also find the
horizontal and vertical reactions on the beam at A
(considered to be a pin) at this instant.

F = 300 N

17–86. The 5-kg cylinder is initially at rest when it is placed
in contact with the wall B and the rotor at A. If the rotor
always maintains a constant clockwise angular velocity

, determine the initial angular acceleration of
the cylinder. The coefficient of kinetic friction at the
contacting surfaces B and C is .mk = 0.2

v = 6 rad>s

C

A

vv

125 mm

45�

B

Prob. 17–86

P
1 m

0.2 m

0.5 m

0.3 m
O

B

CA

Probs. 17–84/85
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B

s

A

0.6 ft

Prob. 17–87

A

B

1 ft

2 ft

2 ft

1 ft

 � 30 rad/s

C

E

D

v

Prob. 17–88

•17–89. A 17-kg roll of paper, originally at rest, is
supported by bracket AB. If the roll rests against a wall
where the coefficient of kinetic friction is , and a
constant force of 30 N is applied to the end of the sheet,
determine the tension in the bracket as the paper unwraps,
and the angular acceleration of the roll. For the calculation,
treat the roll as a cylinder.

mC = 0.3

*17–88. Disk D turns with a constant clockwise angular
velocity of 30 . Disk E has a weight of 60 lb and is
initially at rest when it is brought into contact with D.
Determine the time required for disk E to attain the same
angular velocity as disk D. The coefficient of kinetic
friction between the two disks is . Neglect the
weight of bar BC.

mk = 0.3

rad>s

17–87. The drum has a weight of 50 lb and a radius of
gyration . A 35-ft-long chain having a weight of
2 is wrapped around the outer surface of the drum so
that a chain length of is suspended as shown. If the
drum is originally at rest, determine its angular velocity
after the end B has descended . Neglect the
thickness of the chain.

s = 13 ft

s = 3 ft
lb>ft

kA = 0.4 ft

17–90. The cord is wrapped around the inner core of the
spool. If a 5-lb block B is suspended from the cord and
released from rest, determine the spool’s angular velocity
when . Neglect the mass of the cord. The spool has a
weight of 180 lb and the radius of gyration about the axle A
is . Solve the problem in two ways, first by
considering the “system” consisting of the block and spool,
and then by considering the block and spool separately.

kA = 1.25 ft

t = 3 s

C

120 mm

B

aa

A

P � 30 N

60�

12

5

13

Prob. 17–89

B

s

2.75 ft

A1.5 ft

Prob. 17–90



(b)

�

G

IGA

m(aG)y

m(aG)x

maG

G

M1

M2

F4

F1

F2

F3

W

y

x
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17.5 Equations of Motion: General Plane
Motion

The rigid body (or slab) shown in Fig. 17–19a is subjected to general plane
motion caused by the externally applied force and couple-moment system.
The free-body and kinetic diagrams for the body are shown in Fig. 17–19b.
If an x and y inertial coordinate system is established as shown, the three
equations of motion are

(17–17)

In some problems it may be convenient to sum moments about a point
P other than G in order to eliminate as many unknown forces as possible
from the moment summation. When used in this more general case, the
three equations of motion are

(17–18)

Here represents the moment sum of and (or its
components) about P as determined by the data on the kinetic diagram.

There is a particular type of problem that involves a uniform cylinder,
or body of circular shape, that rolls on a rough surface without slipping. If
we sum the moments about the instantaneous center of zero velocity,
then becomes The proof is similar to 
(Eq. 17–16), so that 

(17–19)

This result compares with which is used for a body pinned
at point O, Eq. 17–16. See Prob. 17–91.

©MO = IOa ,

©MIC = IICa

©MO = IOaIICa.©1mk2IC

maGIG A©1mk2P

©Fx = m1aG2x
©Fy = m1aG2y

©MP = ©1mk2P

©Fx = m1aG2x
©Fy = m1aG2y

©MG = IGa

aG

G

M1

M2

F4

F1

F2

F3

(a)

V

A

Fig. 17–19
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Procedure for Analysis

Kinetic problems involving general plane motion of a rigid body can
be solved using the following procedure.

Free-Body Diagram.

• Establish the x, y inertial coordinate system and draw the free-
body diagram for the body.

• Specify the direction and sense of the acceleration of the mass
center, and the angular acceleration of the body.

• Determine the moment of inertia 
• Identify the unknowns in the problem.
• If it is decided that the rotational equation of motion

is to be used, then consider drawing the kinetic
diagram in order to help “visualize” the “moments” developed by
the components and when writing the terms
in the moment sum 

Equations of Motion.

• Apply the three equations of motion in accordance with the
established sign convention.

• When friction is present, there is the possibility for motion with
no slipping or tipping. Each possibility for motion should be
considered.

Kinematics.

• Use kinematics if a complete solution cannot be obtained strictly
from the equations of motion.

• If the body’s motion is constrained due to its supports, additional
equations may be obtained by using which
relates the accelerations of any two points A and B on the body.

• When a wheel, disk, cylinder, or ball rolls without slipping, then
aG = ar.

aB = aA + aB>A ,

©1mk2P .
IG Am1aG2y ,m1aG2x ,

©MP = ©1mk2P

IG .
AaG ,

=

IG

Gy

Gx

FA

NA

maG

W

G

G

A

A

d

A

As the soil compactor, or “sheep’s foot
roller” moves forward, the roller has
general plane motion. The forces shown
on its free-body diagram cause the effects
shown on the kinetic diagram. If moments
are summed about the mass center, G,
then However, if moments
are summed about point A (the ) then
a+©MA = IGa + 1maG2d = IAa.

IC
©MG = IGa.



442 CH A P T E R 17 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  FO R C E A N D AC C E L E R AT I O N

17

EXAMPLE 17.13

Determine the angular acceleration of the spool in Fig. 17–20a. The
spool has a mass of 8 kg and a radius of gyration of 
The cords of negligible mass are wrapped around its inner hub and
outer rim.

SOLUTION I 
Free-Body Diagram. Fig. 17–20b. The 100-N force causes to act
upward. Also, acts clockwise, since the spool winds around the cord
at A.

There are three unknowns T, and The moment of inertia of
the spool about its mass center is

Equations of Motion.

(1)

c (2)

Kinematics. A complete solution is obtained if kinematics is used to
relate to In this case the spool “rolls without slipping” on the cord
at A. Hence, we can use the results of Example 16.4 or 16.15, so that

(c (3)

Solving Eqs. 1 to 3, we have

Ans.

SOLUTION II
Equations of Motion. We can eliminate the unknown T by summing
moments about point A. From the free-body and kinetic diagrams
Figs. 17–20b and 17–20c, we have

c

Using Eq. (3),

Ans.
SOLUTION III
Equations of Motion. The simplest way to solve this problem is to
realize that point A is the IC for the spool. Then Eq. 17–19 applies.

c

a = 10.3 rad>s2

= [0.980 kg # m2 + 18 kg210.5 m22]a
1100 N210.7 m2 - 178.48 N210.5 m2+©MA = IAa ;

a = 10.3 rad>s2

= 10.980 kg # m22a + [18 kg2aG]10.5 m2
100 N10.7 m2 - 78.48 N10.5 m2+©MA = ©1mk2A ;

 T = 19.8 N

 aG = 5.16 m>s2

 a = 10.3 rad>s2

aG = a (0.5 m)+) aG = ar.

a.aG

100 N10.2 m2 - T10.5 m2 = 10.980 kg # m22a+©MG = IGa;

T + 100 N - 78.48 N = 18 kg2aG+ c©Fy = m1aG2y ;

IG = mkG2 = 8 kg10.35 m22 = 0.980 kg # m2

a.aG ,

A

aG

kG = 0.35 m.

0.5 m0.2 m

A

100 N

G

(a)

100 N

0.2 m
0.5 m

G

78.48 N

(b)

aG

y

x
T

A

A

G

(8 kg) aG

(0.980 kg � m2)

(c)

AA
0.5 m

Fig. 17–20
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EXAMPLE 17.14

G

(a)

1.25 ft

M � 35 lb � ft

A

The 50-lb wheel shown in Fig. 17–21a has a radius of gyration
If a couple moment is applied to the wheel,

determine the acceleration of its mass center G. The coefficients of
static and kinetic friction between the wheel and the plane at A are

and respectively.

SOLUTION

Free-Body Diagram. By inspection of Fig. 17–21b, it is seen that the
couple moment causes the wheel to have a clockwise angular
acceleration of As a result, the acceleration of the mass center,
is directed to the right. The moment of inertia is

The unknowns are and 

Equations of Motion.

(1)

(2)

c (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping). If this assumption is made, then

(c (4)

Solving Eqs. 1 to 4,

This solution requires that no slipping occurs, i.e.,
However, since the wheel slips as it rolls.

(Slipping). Equation 4 is not valid, and so or

(5)

Solving Eqs. 1 to 3 and 5 yields

Ans.aG = 8.05 ft>s2 :
a = 25.5 rad>s2

NA = 50.0 lb FA = 12.5 lb

FA = 0.25NA

FA = mkNA ,

21.3 lb 7 0.3150 lb2 = 15 lb,
FA … msNA .

a = 11.0 rad>s2 aG = 13.7 ft>s2

NA = 50.0 lb FA = 21.3 lb

aG = 11.25 ft2a+)

35 lb # ft - 1.25 ft1FA2 = 10.7609 slug # ft22a+©MG = IGa;

NA - 50 lb = 0+ c©Fy = m1aG2y ;
FA = a 50 lb

32.2 ft>s2 baG:+ ©Fx = m1aG2x ;

a.aG ,FA ,NA ,

IG = mkG2 =
50 lb

32.2 ft>s2 10.70 ft22 = 0.7609 slug # ft2

aG ,A.

mk = 0.25,ms = 0.3

35-lb # ftkG = 0.70 ft.

35 lb � ft

G

(b)

1.25 ft

50 lb

aG

y

x

FA

NA

A

Fig. 17–21 



444 CH A P T E R 17 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  FO R C E A N D AC C E L E R AT I O N

17

EXAMPLE 17.15

The uniform slender pole shown in Fig. 17–22a has a mass of 100 kg. If
the coefficients of static and kinetic friction between the end of the
pole and the surface are and respectively,
determine the pole’s angular acceleration at the instant the 400-N
horizontal force is applied. The pole is originally at rest.

SOLUTION
Free-Body Diagram. Figure 17–22b.The path of motion of the mass
center G will be along an unknown curved path having a radius of
curvature which is initially on a vertical line. However, there is no
normal or y component of acceleration since the pole is originally at
rest, i.e., so that We will assume the mass
center accelerates to the right and that the pole has a clockwise
angular acceleration of The unknowns are and 

Equation of Motion.

(1)

(2)

c (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping). With this assumption, point A acts as a
“pivot” so that is clockwise, then is directed to the right.

(4)

Solving Eqs. 1 to 4 yields

The assumption of no slipping requires However,
and so the pole slips at A.

(Slipping). For this case Eq. 4 does not apply. Instead the frictional
equation must be used. Hence,

(5)

Solving Eqs. 1 to 3 and 5 simultaneously yields

d Ans.a = -0.428 rad>s2 = 0.428 rad>s2

NA = 981 N FA = 245 N aG = 1.55 m>s2

FA = 0.25NA

FA = mkNA

300 N 7 0.31981 N2 = 294 N
FA … msNA .

aG = 1 m>s2 a = 0.667 rad>s2

NA = 981 N FA = 300 N

aG = (1.5 m) aaG = arAG ;

aGa

FA11.5 m2 - (400 N)11 m2 = 1[ 1
121100 kg213 m222a+©MG = IGa;

NA - 981 N = 0+ c©Fy = m1aG2y ;
400 N - FA = 1100 kg2aG:+ ©Fx = m1aG2x ;

a.aG ,FA ,NA ,A.

1aG2y = vG2 >r = 0.vG = 0,

r,

mk = 0.25,ms = 0.3

0.5 m

400 N

3 m

(a)

A

1.5 m
400 N

1 m

G

FA

NA

981 N

(b)

aG

y

xA

Fig. 17–22
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EXAMPLE 17.16

The uniform 50-kg bar in Fig. 17–23a is held in the equilibrium
position by cords AC and BD. Determine the tension in BD and the
angular acceleration of the bar immediately after AC is cut.

SOLUTION

Free-Body Diagram. Fig. 17–23b. There are four unknowns,
and .

Equations of Motion.

(1)

a (2)

Kinematics. Since the bar is at rest just after the cable is cut, then its
angular velocity and the velocity of point B at this instant are equal to
zero. Thus . Therefore, only has a tangential
component, which is directed along the x axis, Fig. 17–23c. Applying
the relative acceleration equation to points G and B,

Equating the i and j components of both sides of this equation,

(3)

Solving Eqs. (1) through (3) yields

Ans.

Ans.

 1aG2y = 7.36 m>s2

 TB = 123 N

 a = 4.905 rad>s2

 1aG2y = 1.5a

 0 = aB

 -1aG2yj = aBi - 1.5aj

-  1aG2yj = aBi + 1ak2 * 1-1.5i2 - 0

 aG = aB + A * rG/B - v2rG/B

aB1aB2n = vB2 >rBD = 0

TB11.5 m) = B 1
12
150 kg213 m22Ra+©MG = IGa ;

TB - 5019.812N = -150 kg aG2y+ c©Fy = m1aG2y ;
1aG2x = 0

0 = 150 kg aG2x:+ ©Fx = m1aG2x ;

a1aG2y ,1aG2x ,
TB ,

C D

BA 

 3 m

(a)

B

 1.5 m

50(9.81) N

(b)

x

y

TB

G

B

(c)

G

 � 0

(aG)x = 0

(aG)y

aB

 1.5 m

rG/B
� �

Fig. 17–23
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FUNDAMENTAL PROBLEMS

F17–15

O

0.4 m

M � 100 N � m

F17–18

A

0.6 m

u

F17–16

0.15 m

30�

F17–17

0.4 m

0.6 m

BA

G M � 450 N � m

 20 N

80 N

0.75 m 0.5 m
1.75 m

0.3 m
P � 200 N

F17–14

F17–13

F17–16. The sphere rolls down the inclined plane
without slipping. Determine the angular acceleration of the
sphere and the acceleration of its mass center.

20-kg

F17–15. The wheel has a radius of gyration about its
center of When the wheel is subjected to
the couple moment, it slips as it rolls. Determine the angular
acceleration of the wheel and the acceleration of the
wheel’s center The coefficient of kinetic friction between
the wheel and the plane is mk = 0.5.

O.

kO = 300 mm.O
20-kg

F17–13. The uniform slender bar is initially at rest
on a smooth horizontal plane when the forces are applied.
Determine the acceleration of the bar’s mass center and the
angular acceleration of the bar at this instant.

60-kg

F17–18. The slender rod is pinned to a small roller 
that slides freely along the slot. If the rod is released from
rest at determine the angular acceleration of the rod
and the acceleration of the roller immediately after the
release.

u = 0°,

A12-kg

F17–14. The cylinder rolls without slipping on the
horizontal plane. Determine the acceleration of its mass
center and its angular acceleration.

100-kg F17–17. The spool has a radius of gyration about its
mass center of If the couple moment is
applied to the spool and the coefficient of kinetic friction
between the spool and the ground is determine
the angular acceleration of the spool, the acceleration of 
and the tension in the cable.

G
mk = 0.2,

kG = 300 mm.
200-kg
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O

0.4 m

A

�

u

Probs. 17–92/93

PROBLEMS

17–95. The rocket consists of the main section A having a
mass of 10 Mg and a center of mass at . The two identical
booster rockets B and C each have a mass of 2 Mg with
centers of mass at and , respectively. At the instant
shown, the rocket is traveling vertically and is at an altitude
where the acceleration due to gravity is . If
the booster rockets B and C suddenly supply a thrust of

and , respectively, determine the
angular acceleration of the rocket. The radius of gyration of
A about is and the radii of gyration of  B and
C about and are .kB = kC = 0.75 mGCGB

kA = 2 mGA

TC = 20 kNTB = 30 kN

g = 8.75 m>s2

GCGB

GA

17–91. If a disk rolls without slipping on a horizontal
surface, show that when moments are summed about the
instantaneous center of zero velocity, IC, it is possible to use
the moment equation , where represents
the moment of inertia of the disk calculated about the
instantaneous axis of zero velocity.

*17–92. The 10-kg semicircular disk is rotating at
at the instant . Determine the normal

and frictional forces it exerts on the ground at at this
instant. Assume the disk does not slip as it rolls.

•17–93. The semicircular disk having a mass of 10 kg is
rotating at at the instant . If the
coefficient of static friction at A is , determine if the
disk slips at this instant.

ms = 0.5
u = 60°v = 4 rad>s

A
u = 60°v = 4 rad>s

IIC©MIC = IICa

17–94. The uniform 50-lb board is suspended from cords
at C and D. If these cords are subjected to constant forces
of 30 lb and 45 lb, respectively, determine the initial
acceleration of the board’s center and the board’s angular
acceleration. Assume the board is a thin plate. Neglect the
mass of the pulleys at E and F.

E

30 lb 45 lb

F

C D
A

10 ft
B

Prob. 17–94
P � 150 N

G

z

y
x

250 mm

Prob. 17–96

*17–96. The 75-kg wheel has a radius of gyration about the
z axis of . If the belt of negligible mass is
subjected to a force of , determine the acceleration
of the mass center and the angular acceleration of the wheel.
The surface is smooth and the wheel is free to slide.

P = 150 N
kz = 150 mm

A

GA

C B

GBGC

TC  � 20 kN TB  � 30 kN

TA  � 150 kN

6 m

1.5 m1.5 m

Prob. 17–95
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*17–100. The circular concrete culvert rolls with an
angular velocity of when the man is at the
position shown. At this instant the center of gravity of the
culvert and the man is located at point G, and the radius of
gyration about G is . Determine the angular
acceleration of the culvert. The combined weight of the
culvert and the man is 500 lb. Assume that the culvert rolls
without slipping, and the man does not move within the
culvert.

kG = 3.5 ft

v = 0.5 rad>s

17–99. Two men exert constant vertical forces of 40 lb
and 30 lb at ends A and B of a uniform plank which has a
weight of 50 lb. If the plank is originally at rest in the
horizontal position, determine the initial acceleration of its
center and its angular acceleration. Assume the plank to be
a slender rod.

•17–97. The wheel has a weight of 30 lb and a radius of
gyration of If the coefficients of static and
kinetic friction between the wheel and the plane are

and determine the wheel’s angular
acceleration as it rolls down the incline. Set 

17–98. The wheel has a weight of 30 lb and a radius of
gyration of If the coefficients of static and
kinetic friction between the wheel and the plane are

and determine the maximum angle of
the inclined plane so that the wheel rolls without slipping.

umk = 0.15,ms = 0.2

kG = 0.6 ft.

u = 12°.
mk = 0.15,ms = 0.2

kG = 0.6 ft.

•17–101. The lawn roller has a mass of 80 kg and a radius
of gyration . If it is pushed forward with a
force of 200 N when the handle is at 45°, determine its
angular acceleration. The coefficients of static and kinetic
friction between the ground and the roller are 
and , respectively.

17–102. Solve Prob. 17–101 if and .mk = 0.45ms = 0.6

mk = 0.1
ms = 0.12

kG = 0.175 m

1.25 ft

G

u

Probs. 17–97/98

15 ft

A B

40 lb 30 lb

Prob. 17–99

4 ft

0.5 ft

G
O

v

Prob. 17–100

200 mm

200 N

G
45�

A

Probs. 17–101/102
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3 ft

Probs. 17–106/107

d A

2 ft

F

Probs. 17–108/109

G

C

B

A

T � 2000 lb

T = 2000 lb

200 ft
100 ft

Prob. 17–110

*17–108. A uniform rod having a weight of 10 lb is pin
supported at A from a roller which rides on a horizontal
track. If the rod is originally at rest, and a horizontal force of

is applied to the roller, determine the
acceleration of the roller. Neglect the mass of the roller and
its size d in the computations.

•17–109. Solve Prob. 17–108 assuming that the roller at A
is replaced by a slider block having a negligible mass. The
coefficient of kinetic friction between the block and the
track is . Neglect the dimension d and the size of
the block in the computations.

mk = 0.2

F =  15 lb

17–106. The truck carries the spool which has a weight of
500 lb and a radius of gyration of Determine the
angular acceleration of the spool if it is not tied down on the
truck and the truck begins to accelerate at Assume
the spool does not slip on the bed of the truck.

17–107. The truck carries the spool which has a weight of
200 lb and a radius of gyration of Determine the
angular acceleration of the spool if it is not tied down on
the truck and the truck begins to accelerate at The
coefficients of static and kinetic friction between the spool
and the truck bed are and respectively.mk = 0.1,ms = 0.15

5 ft>s2.

kG = 2 ft.

3 ft>s2.

kG = 2 ft.

17–103. The spool has a mass of 100 kg and a radius of
gyration of . If the coefficients of static and
kinetic friction at A are and ,
respectively, determine the angular acceleration of the
spool if .

*17–104. Solve Prob. 17–103 if the cord and force
are directed vertically upwards.

•17–105. The spool has a mass of 100 kg and a radius of
gyration . If the coefficients of static and kinetic
friction at A are and , respectively,
determine the angular acceleration of the spool if

.P = 600 N

mk = 0.15ms = 0.2
kG = 0.3 m

P = 50 N

P = 50 N

mk = 0.15ms = 0.2
kG = 0.3 m

17–110. The ship has a weight of and center of
gravity at G. Two tugboats of negligible weight are used to
turn it. If each tugboat pushes on it with a force of

, determine the initial acceleration of its center
of gravity G and its angular acceleration. Its radius of
gyration about its center of gravity is . Neglect
water resistance.

kG = 125 ft

T = 2000 lb

4(106) lb

250 mm 400 mm
G

A

P

Probs. 17–103/104/105
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3 ft

1.25 ft

A

B

M � 40 lb�ft

Prob. 17–111

17–114. The 20-kg disk A is attached to the 10-kg block B
using the cable and pulley system shown. If the disk rolls
without slipping, determine its angular acceleration and the
acceleration of the block when they are released.Also, what
is the tension in the cable? Neglect the mass of the pulleys.

17–115. Determine the minimum coefficient of static
friction between the disk and the surface in Prob. 17–114 so
that the disk will roll without slipping. Neglect the mass of
the pulleys.

*17–112. The assembly consists of an 8-kg disk and a 10-kg
bar which is pin connected to the disk. If the system is
released from rest, determine the angular acceleration of
the disk. The coefficients of static and kinetic friction
between the disk and the inclined plane are and

, respectively. Neglect friction at B.

•17–113. Solve Prob. 17–112 if the bar is removed. The
coefficients of static and kinetic friction between the disk
and inclined plane are and , respectively.mk = 0.1ms = 0.15

mk = 0.4
ms = 0.6

17–111. The 15-lb cylinder is initially at rest on a 5-lb
plate. If a couple moment is applied to the
cylinder, determine the angular acceleration of the cylinder
and the time needed for the end B of the plate to travel 3 ft
to the right and strike the wall. Assume the cylinder does
not slip on the plate, and neglect the mass of the rollers
under the plate.

M = 40 lb #  ft

*17–116. The 20-kg square plate is pinned to the 5-kg
smooth collar. Determine the initial angular acceleration of
the plate when is applied to the collar. The plate
is originally at rest.

•17–117. The 20-kg square plate is pinned to the 5-kg
smooth collar. Determine the initial acceleration of the
collar when is applied to the collar. The plate is
originally at rest.

P = 100 N

P = 100 N

1 m

A

C

B

30�

0.3 m

Probs. 17–112/113

B

A
G

0.2 m

Probs. 17–114/115

P � 100 N

A

300 mm 300 mm

Probs. 17–116/117
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B

C

A

1.5 m

2.5 m

60�

Prob. 17–120

M

G

450 mm

Probs. 17–121/122

•17–121. The 75-kg wheel has a radius of gyration about its
mass center of . If it is subjected to a torque of

, determine its angular acceleration. The
coefficients of static and kinetic friction between the wheel
and the ground are and , respectively.

17–122. The 75-kg wheel has a radius of gyration about its
mass center of . If it is subjected to a torque of

, determine its angular acceleration. The
coefficients of static and kinetic friction between the wheel
and the ground are and , respectively.mk = 0.15ms = 0.2

M = 150 N # m
kG = 375 mm

mk = 0.15ms = 0.2

M = 100 N # m
kG = 375 mm

*17–120. If the truck accelerates at a constant rate of
, starting from rest, determine the initial angular

acceleration of the 20-kg ladder. The ladder can be
considered as a uniform slender rod. The support at B is
smooth.

6 m>s2

17–118. The spool has a mass of 100 kg and a radius of
gyration of about its center of mass . If a
vertical force of is applied to the cable,
determine the  acceleration of and the angular
acceleration of the spool. The coefficients of static and
kinetic friction between the rail and the spool are 
and , respectively.

17–119. The spool has a mass of 100 kg and a radius of
gyration of about its center of mass . If a
vertical force of is applied to the cable, determine
the acceleration of and the angular acceleration of the spool.
The coefficients of static and kinetic friction between the rail
and the spool are and , respectively.mk = 0.15ms = 0.2

G
P = 500 N

GkG = 200 mm

mk = 0.25
ms = 0.3

G
P = 200 N

GkG = 200 mm

17–123. The 500-kg concrete culvert has a mean radius of
0.5 m. If the truck has an acceleration of , determine
the culvert’s angular acceleration. Assume that the culvert
does not slip on the truck bed, and neglect its thickness.

3 m>s2

300 mm

150 mm

P

G

Probs. 17–118/119

4 m

0.5m

3 m/s2

Prob. 17–123
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CONCEPTUAL PROBLEMS

P17–3. How can you tell the driver is accelerating this
SUV? To explain your answer, draw the free-body and
kinetic diagrams. Here power is supplied to the rear wheels.
Would the photo look the same if power were supplied to
the front wheels? Will the accelerations be the same? Use
appropriate numerical values to explain your answers.

P17–2. The tractor is about to tow the plane to the right. Is
it possible for the driver to cause the front wheel of the
plane to lift off the ground as he accelerates the tractor?
Draw the free-body and kinetic diagrams and explain
algebraically (letters) if and how this might be possible.

P17–1. The truck is used to pull the heavy container. To be
most effective at providing traction to the rear wheels at ,
is it best to keep the container where it is or place it at the
front of the trailer? Use appropriate numerical values to
explain your answer.

A

P17–4. Here is something you should not try at home, at
least not without wearing a helmet! Draw the free-body and
kinetic diagrams and show what the rider must do to
maintain this position. Use appropriate numerical values to
explain your answer.

A

P17–1 P17–3

P17–4P17–2
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CHAPTER REVIEW

Moment of Inertia

The moment of inertia is a measure of
the resistance of a body to a change in its
angular velocity. It is defined by

and will be different for each
axis about which it is computed.
I = 1r

2dm

Many bodies are composed of simple
shapes. If this is the case, then tabular
values of I can be used, such as the ones
given on the inside back cover of this
book. To obtain the moment of inertia of
a composite body about any specified
axis, the moment of inertia of each part is
determined about the axis and the results
are added together. Doing this often
requires use of the parallel-axis theorem.

I = IG + md2

Planar Equations of Motion

The equations of motion define the
translational, and rotational motion of a
rigid body. In order to account for all of
the terms in these equations, a free-body
diagram should always accompany their
application, and for some problems, it may
also be convenient to draw the kinetic
diagram which shows and .IGAmaG

r

G

IG

dm

m

I

d

Rectilinear translation

©MG = 0

©Fy = m1aG2y
©Fx = m1aG2x

Curvilinear translation

©MG = 0

©Ft = m1aG2t
©Fn = m1aG2n

or

Rotation About a Fixed Axis

©MO = IOa©MG = IGa

©Ft = m1aG2t = marG
©Fn = m1aG2n = mv2rG

©Fx = m1aG2x

or ©MP = ©1mk2P©MG = IGa

©Fx = m1aG2x

General Plane Motion



The principle of work and energy plays an important role in the motion of the draw
works used to lift pipe on this drilling rig.



Planar Kinetics of a
Rigid Body: Work and
Energy
CHAPTER OBJECTIVES

• To develop formulations for the kinetic energy of a body, and define
the various ways a force and couple do work.

• To apply the principle of work and energy to solve rigid–body
planar kinetic problems that involve force, velocity, and
displacement.

• To show how the conservation of energy can be used to solve
rigid–body planar kinetic problems.

18.1 Kinetic Energy

In this chapter we will apply work and energy methods to solve planar
motion problems involving force, velocity, and displacement. But first it will
be necessary to develop a means of obtaining the body’s kinetic energy
when the body is subjected to translation, rotation about a fixed axis, or
general plane motion.

To do this we will consider the rigid body shown in Fig. 18–1, which is
represented here by a slab moving in the inertial x–y reference plane.An
arbitrary ith particle of the body, having a mass dm, is located a distance
r from the arbitrary point P. If at the instant shown the particle has a
velocity then the particle’s kinetic energy is Ti = 1

2 dm vi
2.vi ,

18

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1
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The kinetic energy of the entire body is determined by writing similar
expressions for each particle of the body and integrating the results, i.e.,

This equation may also be expressed in terms of the velocity of point
P. If the body has an angular velocity then from Fig. 18–1 we have

The square of the magnitude of is thus

Substituting this into the equation of kinetic energy yields

= vP2 - 21vP2xvy + 21vP2yvx + v2r2
= 1vP2x2 - 21vP2xvy + v2y2 + 1vP2y2 + 21vP2yvx + v2x2

vi # vi = vi2 = [1vP2x - vy]2 + [1vP2y + vx]2

vi

= [1vP2x - vy]i + [1vP2y + vx]j
= 1vP2x i + 1vP2y j + vk * 1xi + yj2

vi = vP + vi>P

V,

T =
1
2Lm
dm vi

2

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1

1vP2yva
Lm
x dmb +

1
2
v2a
Lm
r2 dmbT =

1
2
a
Lm
dmbvP2 - 1vP2xva

Lm
y dmb +

The first integral on the right represents the entire mass m of the body.
Since and the second and third integrals
locate the body’s center of mass G with respect to P. The last integral
represents the body’s moment of inertia computed about the z axis
passing through point P. Thus,

(18–1)

As a special case, if point P coincides with the mass center G of the
body, then and therefore

(18–2)

Both terms on the right side are always positive, since are
squared. The first term represents the translational kinetic energy,
referenced from the mass center, and the second term represents the
body’s rotational kinetic energy about the mass center.

vG and v

T = 1
2mvG

2 + 1
2IGv

2

y = x = 0,

T = 1
2mvP

2 - 1vP2xvym + 1vP2yvxm + 1
2IPv

2

IP ,

xm = 1x dm,ym = 1y dm
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Translation. When a rigid body of mass m is subjected to either
rectilinear or curvilinear translation, Fig. 18–2, the kinetic energy due to
rotation is zero, since The kinetic energy of the body is therefore

(18–3)

Rotation About a Fixed Axis. When a rigid body rotates about
a fixed axis passing through point O, Fig. 18–3, the body has both
translational and rotational kinetic energy so that

(18–4)

The body’s kinetic energy may also be formulated for this case by noting
that so that By the parallel–axis
theorem, the terms inside the parentheses represent the moment of
inertia of the body about an axis perpendicular to the plane of motion
and passing through point O. Hence,* 

(18–5)

From the derivation, this equation will give the same result as Eq. 18–4,
since it accounts for both the translational and rotational kinetic energies
of the body.

General Plane Motion. When a rigid body is subjected to general
plane motion, Fig. 18–4, it has an angular velocity and its mass center
has a velocity Therefore, the kinetic energy is

(18–6)

This equation can also be expressed in terms of the body’s motion about
its instantaneous center of zero velocity i.e.,

(18–7)

where is the moment of inertia of the body about its instantaneous
center. The proof is similar to that of Eq. 18–5. (See Prob. 18–1.)

IIC

T = 1
2IICv

2

T = 1
2mvG

2 + 1
2IGv

2

vG .
V

T = 1
2IOv

2

IO

T = 1
21IG + mrG2 2v2.vG = rGv,

T = 1
2mvG

2 + 1
2IGv

2

T = 1
2mvG

2

V = 0.
vG � v

G

Translation

v

Fig. 18–2

vG

G

V

rG
O

Rotation About a Fixed Axis

Fig. 18–3

*The similarity between this derivation and that of Eq. 17–16, should be
noted. Also the same result can be obtained directly from Eq. 18–1 by selecting point P
at O, realizing that vO = 0.

©MO = IOa,

vG

G

General Plane Motion

V

Fig. 18–4
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System of Bodies. Because energy is a scalar quantity, the total
kinetic energy for a system of connected rigid bodies is the sum of the
kinetic energies of all its moving parts. Depending on the type of motion,
the kinetic energy of each body is found by applying Eq. 18–2 or the
alternative forms mentioned above.

18.2 The Work of a Force

Several types of forces are often encountered in planar kinetics problems
involving a rigid body.The work of each of these forces has been presented
in Sec. 14.1 and is listed below as a summary.

Work of a Variable Force. If an external force F acts on a
body, the work done by the force when the body moves along the path
s, Fig. 18–5, is

(18–8)

Here is the angle between the “tails” of the force and the differential
displacement. The integration must account for the variation of the
force’s direction and magnitude.

u

UF =
L

F # dr =
Ls
F cos u ds

Work of a Constant Force. If an external force acts on a
body, Fig. 18–6, and maintains a constant magnitude and constant
direction while the body undergoes a translation s, then the above
equation can be integrated, so that the work becomes

(18–9)UFc = 1Fc cos u2s

u,
Fc

Fc

s

F

F

Fig. 18–5 
s

Fc

Fc

Fc cos u

Fc cos u

u

u

Fig. 18–6

The total kinetic energy of this soil
compactor consists of the kinetic energy
of the body or frame of the machine due
to its translation, and the translational
and rotational kinetic energies of the
roller and the wheels due to their
general plane motion. Here we exclude
the additional kinetic energy developed
by the moving parts of the engine and
drive train.
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Work of a Weight. The weight of a body does work only when the
body’s center of mass G undergoes a vertical displacement If this
displacement is upward, Fig. 18–7, the work is negative, since the weight
is opposite to the displacement.

(18–10)

Likewise, if the displacement is downward the work becomes
positive. In both cases the elevation change is considered to be small so
that W, which is caused by gravitation, is constant.

Work of a Spring Force. If a linear elastic spring is attached to a
body, the spring force acting on the body does work when the
spring either stretches or compresses from to a further position In
both cases the work will be negative since the displacement of the body is
in the opposite direction to the force, Fig. 18–8. The work is

(18–11)

where 

Forces That Do No Work. There are some external forces that
do no work when the body is displaced. These forces act either at fixed
points on the body, or they have a direction perpendicular to their
displacement. Examples include the reactions at a pin support about
which a body rotates, the normal reaction acting on a body that moves
along a fixed surface, and the weight of a body when the center of gravity
of the body moves in a horizontal plane, Fig. 18–9. A frictional force 
acting on a round body as it rolls without slipping over a rough surface
also does no work.*  This is because, during any instant of time dt, acts
at a point on the body which has zero velocity (instantaneous center, IC)
and so the work done by the force on the point is zero. In other words,
the point is not displaced in the direction of the force during this instant.
Since contacts successive points for only an instant, the work of will
be zero.

FfFf

Ff

Ff

ƒ s2 ƒ 7 ƒ s1 ƒ .

Us = - A12 ks2
2 - 1

2 ks1
2 B

s2 .s1

Fs = ks

1-¢y2

UW = -W ¢y

¢y.

W

W

G

G

�y

s

Fig. 18–7

s1

s

s2

Fsk

Unstretched
position of
spring, s � 0

Fig. 18–8

r
Ff

N

W

IC

V

Fig. 18–9*The work done by a frictional force when the body slips is discussed in Sec. 14.3.
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18.3 The Work of a Couple Moment

Consider the body in Fig. 18–10a, which is subjected to a couple moment
If the body undergoes a differential displacement, then the work

done by the couple forces can be found by considering the displacement
as the sum of a separate translation plus rotation.When the body translates,
the work of each force is produced only by the component of displacement
along the line of action of the forces Fig. 18–10b. Clearly the
“positive” work of one force cancels the “negative” work of the other.
When the body undergoes a differential rotation about the arbitrary
point O, Fig. 18–10c, then each force undergoes a displacement

in the direction of the force. Hence, the total work done is

The work is positive when M and have the same sense of direction and
negative if these vectors are in the opposite sense.

When the body rotates in the plane through a finite angle measured
in radians, from to the work of a couple moment is therefore 

(18–12)

If the couple moment M has a constant magnitude, then

(18–13)UM = M1u2 - u12

UM =
L

u2

u1

M du

u2 ,u1

u

dU

= M du

dUM = Fa r
2
dub + Fa r

2
dub = 1Fr2 du

dsu = 1r>22 du
du

dst ,

M = Fr.

(a)

M

u

r

(b)

F

F

Translation

dst

(c)

F

F

Odu

Rotation

dsu

dsu
du

r
2

r
2

Fig. 18–10



18.3 THE WORK OF A COUPLE MOMENT 461

18

The bar shown in Fig. 18–11a has a mass of 10 kg and is subjected to a
couple moment of and a force of which is
always applied perpendicular to the end of the bar. Also, the spring
has an unstretched length of 0.5 m and remains in the vertical position
due to the roller guide at B. Determine the total work done by all the
forces acting on the bar when it has rotated downward from to

SOLUTION
First the free-body diagram of the bar is drawn in order to account for
all the forces that act on it, Fig. 18–11b.

Weight W. Since the weight is displaced
downward 1.5 m, the work is

Why is the work positive?

Couple Moment M. The couple moment rotates through an angle
of Hence,

Spring Force When the spring is stretched 
, and when the stretch is 

2.25 m.Thus,

By inspection the spring does negative work on the bar since acts in
the opposite direction to displacement. This checks with the result.

Force P. As the bar moves downward, the force is displaced through
a distance of The work is positive. Why?

Pin Reactions. Forces and do no work since they are not
displaced.

Total Work. The work of all the forces when the bar is displaced is thus

Ans.U = 147.2 J + 78.5 J - 75.0 J + 377.0 J = 528 J

AyAx

UP = 80 N14.712 m2 = 377.0 J

1p>2213 m2 = 4.712 m.

Fs

Us = - C12130 N>m212.25 m22 - 1
2130 N>m210.25 m22 D = -75.0 J

- 0.5 m =
12 m + 0.75 m2u = 90°,=  0.25 m
10.75 m - 0.5 m2u = 0°Fs.

UM = 50 N # m1p>22 = 78.5 J

u = p>2 rad.

UW = 98.1 N11.5 m2 = 147.2 J

1019.812 N = 98.1 N

u = 90°.
u = 0°

P = 80 N,M = 50 N # m

EXAMPLE 18.1

0.75 m

A

B

2 m

1 m

k � 30 N/m

M = 50 N � m

P � 80 N

(a)

u

1.5 m

1 m
0.5 m

98.1 N

P � 80 N
Fs

Ay

Ax

(b)

50 N � mu

Fig. 18–11
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18.4 Principle of Work and Energy

By applying the principle of work and energy developed in Sec. 14.2 to
each of the particles of a rigid body and adding the results algebraically,
since energy is a scalar, the principle of work and energy for a rigid body
becomes

(18–14)

This equation states that the body’s initial translational and rotational
kinetic energy, plus the work done by all the external forces and couple
moments acting on the body as the body moves from its initial to its final
position, is equal to the body’s final translational and rotational kinetic
energy. Note that the work of the body’s internal forces does not have to
be considered.These forces occur in equal but opposite collinear pairs, so
that when the body moves, the work of one force cancels that of its
counterpart. Furthermore, since the body is rigid, no relative movement
between these forces occurs, so that no internal work is done.

When several rigid bodies are pin connected, connected by
inextensible cables, or in mesh with one another, Eq. 18–14 can be
applied to the entire system of connected bodies. In all these cases the
internal forces, which hold the various members together, do no work
and hence are eliminated from the analysis.

T1 + ©U1–2 = T2

The work of the torque or moment developed by the
driving gears on the motors is transformed into
kinetic energy of rotation of the drum.
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Procedure for Analysis

The principle of work and energy is used to solve kinetic problems
that involve velocity, force, and displacement, since these terms are
involved in the formulation. For application, it is suggested that the
following procedure be used.

Kinetic Energy (Kinematic Diagrams).
• The kinetic energy of a body is made up of two parts. Kinetic

energy of translation is referenced to the velocity of the mass
center, and kinetic energy of rotation is determined
using the moment of inertia of the body about the mass center,

In the special case of rotation about a fixed axis (or
rotation about the IC), these two kinetic energies are combined
and can be expressed as where is the moment of
inertia about the axis of rotation.

• Kinematic diagrams for velocity may be useful for determining
and or for establishing a relationship between and * 

Work (Free–Body Diagram).
• Draw a free–body diagram of the body when it is located at an

intermediate point along the path in order to account for all the
forces and couple moments which do work on the body as it
moves along the path.

• A force does work when it moves through a displacement in the
direction of the force.

• Forces that are functions of displacement must be integrated to
obtain the work. Graphically, the work is equal to the area under
the force–displacement curve.

• The work of a weight is the product of its magnitude and the
vertical displacement, It is positive when the weight
moves downwards.

• The work of a spring is of the form where k is the
spring stiffness and s is the stretch or compression of the spring.

• The work of a couple is the product of the couple moment and
the angle in radians through which it rotates, .

• Since algebraic addition of the work terms is required, it is important
that the proper sign of each term be specified. Specifically, work is
positive when the force (couple moment) is in the same direction as
its displacement (rotation); otherwise, it is negative.

Principle of Work and Energy.
• Apply the principle of work and energy, Since

this is a scalar equation, it can be used to solve for only one
unknown when it is applied to a single rigid body.

T1 + ©U1–2 = T2 .

UM = Mu

Us = 1
2ks

2,

UW = Wy.

v.vGvvG

IOT = 1
2IOv

2,

T = 1
2IGv

2.

T = 1
2mvG

2 ,

*A brief review of Secs. 16.5 to 16.7 may prove helpful when solving problems,
since computations for kinetic energy require a kinematic analysis of velocity.
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EXAMPLE 18.2

The 30–kg disk shown in Fig. 18–12a is pin supported at its center.
Determine the number of revolutions it must make to attain an
angular velocity of starting from rest. It is acted upon by a
constant force which is applied to a cord wrapped around
its periphery, and a constant couple moment Neglect
the mass of the cord in the calculation.

M = 5 N # m.
F = 10 N,

20 rad>s

0.2 m

O

M � 5 N � m

F � 10 N

(a)

SOLUTION
Kinetic Energy. Since the disk rotates about a fixed axis, and it is
initially at rest, then

Work (Free–Body Diagram). As shown in Fig. 18–12b, the pin
reactions and and the weight (294.3 N) do no work, since they
are not displaced. The couple moment, having a constant magnitude,
does positive work as the disk rotates through a clockwise
angle of rad, and the constant force F does positive work as
the cord moves downward 

Principle of Work and Energy.

s = ur = u10.2 m2. UFc = Fsu

UM = Mu

OyOx

T2 = 1
2IOv2

2 = 1
2 C12130 kg210.2 m22 D 120 rad>s22 = 120 J

T1 = 0

0.2 m

M � 5 N � m

F � 10 N

(b)

O

294.3 N

Oy

Ox

Fig. 18–12
Ans.u = 17.14 rad = 17.14 rada 1 rev

2p rad
b = 2.73 rev

506 + 515 N # m2u + 110 N2u10.2 m26 = 5120 J6
5T16 + 5Mu + Fs6 = 5T26
5T16 + 5©U1-26 = 5T26
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EXAMPLE 18.3

The wheel shown in Fig. 18–13a weighs 40 lb and has a radius of
gyration about its mass center G. If it is subjected to a
clockwise couple moment of and rolls from rest without
slipping, determine its angular velocity after its center G moves 0.5 ft.
The spring has a stiffness and is initially unstretched
when the couple moment is applied.

SOLUTION
Kinetic Energy (Kinematic Diagram). Since the wheel is initially
at rest,

The kinematic diagram of the wheel when it is in the final position is
shown in Fig. 18–13b. The final kinetic energy is determined from

Work (Free–Body Diagram). As shown in Fig. 18–13c, only the
spring force and the couple moment do work. The normal force
does not move along its line of action and the frictional force does no
work, since the wheel does not slip as it rolls.

The work of is found using Here the work is negative
since is in the opposite direction to displacement. Since the wheel
does not slip when the center G moves 0.5 ft, then the wheel rotates

Fig. 18–13b. Hence, the
spring stretches 

Principle of Work and Energy.

b Ans.v2 = 2.65 rad>s
506 + e15 lb # ft10.625 rad2 -

1
2
110 lb>ft211 ft22f = 50.6211 v2

2 ft # lb6
5T16 + EMu - 1

2ks
2F = 5T26

5T16 + 5©U1-26 = 5T26

s = ur
A>IC = (0.625 rad)(1.6 ft) = 1 ft.

u = sG>rG>IC = 0.5 ft>0.8 ft = 0.625 rad,

Fs
Us = -1

2ks
2.Fs

Fs

T2 = 0.6211 v2
2

=
1
2
c 40 lb

32.2 ft>s2 10.6 ft22 + ¢ 40 lb

32.2 ft>s2 ≤(0.8 ft)2 dv2
2

T2 = 1
2IICv2

2

T1 = 0

k = 10 lb>ft
15 lb # ft

kG = 0.6 ft
k � 10 lb/ft A

G

0.8 ft 15 lb � ft

(a)

G

0.8 ft

(b)

1.6 ft

(vG)2

A

IC

V2

Fs

40 lb

(c)

15 lb � ft

FB

NB

Fig. 18–13
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The 700-kg pipe is equally suspended from the two tines of the fork lift
shown in the photo. It is undergoing a swinging motion such that when

it is momentarily at rest. Determine the normal and frictional
forces acting on each tine which are needed to support the pipe at the
instant Measurements of the pipe and the suspender are
shown in Fig. 18–14a. Neglect the mass of the suspender and the
thickness of the pipe.

u = 0°.

u = 30°

EXAMPLE 18.4

G

O

0.15 m

(a)

0.4 m
u

Fig. 18–14 

SOLUTION
We must use the equations of motion to find the forces on the tines
since these forces do no work. Before doing this, however, we will
apply the principle of work and energy to determine the angular
velocity of the pipe when 

Kinetic Energy (Kinematic Diagram). Since the pipe is originally
at rest, then

The final kinetic energy may be computed with reference to either the
fixed point O or the center of mass G. For the calculation we will
consider the pipe to be a thin ring so that If point G is
considered, we have

If point O is considered then the parallel-axis theorem must be used
to determine Hence,

= 63.875v2
2

T2 = 1
2IOv2

2 = 1
2[700 kg10.15 m22 + 700 kg10.4 m22]v2

2

IO .

= 63.875v2
2

= 1
21700 kg2[10.4 m2v2]

2 + 1
2[700 kg10.15 m22]v2

2

T2 = 1
2m1vG222 + 1

2IGv2
2

IG = mr2.

T1 = 0

u = 0°.
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Work (Free-Body Diagram). Fig. 18–14b. The normal and frictional
forces on the tines do no work since they do not move as the pipe swings.
The weight does positive work since the weight moves downward
through a vertical distance 

Principle of Work and Energy.

Equations of Motion. Referring to the free-body and kinetic
diagrams shown in Fig. 18–14c, and using the result for , we have

FT = 1700 kg21aG2t;+ ©Ft = m1aG2t ;
v2

 v2 = 2.400 rad>s
 506 + 570019.812 N10.05359 m26 = 563.875v2

26
 5T16 + 5©U1-26 = 5T26

¢y = 0.4 m - 0.4 cos 30° m = 0.05359 m.

NOTE: Due to the swinging motion the tines are subjected to a
greater normal force than would be the case if the load were static, in
which case NT

œ = 70019.812 N>2 = 3.43 kN.

G

O

700 (9.81) N

(c)

0.4 m

FT

NT

G

O

700 kg(aG)t

700 kg(aG)n 0.4 m=

IGA

Fig. 18–14

G

O

700 (9.81) N

(b)

0.4 m

FT

NT

u

�y

NT - 70019.812 N = 1700 kg212.400 rad>s2210.4 m2+ c©Fn = m1aG2n ;

c

Since then

There are two tines used to support the load, therefore

Ans.

Ans.NT
œ =

8.480 kN
2

= 4.24 kN

FT
œ = 0

 NT = 8.480 kN

 FT = 0

 a = 0, 1aG2t = 0

1aG2t = 10.4 m2a,

0 = [1700 kg210.15 m22 + 1700 kg210.4 m22]a+©MO = IOa;
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EXAMPLE 18.5

The 10–kg rod shown in Fig. 18–15a is constrained so that its ends
move along the grooved slots. The rod is initially at rest when 
If the slider block at B is acted upon by a horizontal force 
determine the angular velocity of the rod at the instant 
Neglect friction and the mass of blocks A and B.

SOLUTION
Why can the principle of work and energy be used to solve this problem?

Kinetic Energy (Kinematic Diagrams). Two kinematic diagrams of
the rod, when it is in the initial position 1 and final position 2, are
shown in Fig. 18–15b. When the rod is in position 1, since

In position 2 the angular velocity is and the
velocity of the mass center is Hence, the kinetic energy is

The two unknowns and can be related from the instantaneous
center of zero velocity for the rod. Fig. 18–15b. It is seen that as A
moves downward with a velocity B moves horizontally to the
left with a velocity Knowing these directions, the IC is located as
shown in the figure. Hence,

Therefore,

Of course, we can also determine this result using .

Work (Free–Body Diagram). Fig. 18–15c. The normal forces 
and do no work as the rod is displaced. Why? The 98.1-N weight is
displaced a vertical distance of whereas
the 50-N force moves a horizontal distance of 
Both of these forces do positive work. Why?

Principle of Work and Energy.

Solving for gives
b Ans.v2 = 6.11 rad>sv2

= 51.0667v2
2 J6

506 + 598.1 N10.4 m - 0.4 cos 45° m2 + 50 N10.8 sin 45° m26
5T16 + 5W ¢y + Ps6 = 5T26

5T16 + 5©U1-26 = 5T26

s = 10.8 sin 45°2 m.
¢y = 10.4 - 0.4 cos 45°2 m;

NB
NA

T2 = 1
2 IICv2

2

T2 = 0.8v2
2 + 0.2667v2

2 = 1.0667v2
2

= 0.4v2

1vG22 = rG>ICv2 = 10.4 tan 45° m2v2

1vB22 .
1vA22 ,

v21vG22
= 51vG222 + 0.26671v222

= 1
2110 kg21vG222 + 1

2 C 1
12110 kg210.8 m22 Dv2

2

T2 = 1
2m1vG222 + 1

2IGv2
2

1vG22 .
V21vG21 = V1 = 0.
T1 = 0

u = 45°.
P = 50 N,
u = 0°.

(b)

(vB)2

B

G

A

0.4 m

0.4 m45�

45�

IC

rG/IC

(vG)2

(vA)2

2

1

G(vG)1 � 0

v1 � 0

V2

(0.4 cos 45�) m

(c)

A

0.4 m

0.4 m

45�

NA

NB

50 N B

98.1 N

(0.8 sin 45�) m

Fig. 18–15

(a)

P � 50 N

B

u
G

A

0.4 m

0.4 m
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FUNDAMENTAL PROBLEMS

F18–4. The wheel is subjected to a force of If the
wheel starts from rest and rolls without slipping, determine 
its angular velocity after it has rotated revolutions. The
radius of gyration of the wheel about its mass center is
kO = 0.3 m.

O
10

50 N.50-kg

F18–2. The uniform slender rod is subjected to a
couple moment of If the rod is at rest when

determine its angular velocity when u = 90°.u = 0°,
M = 100 lb # ft.

50-lb

F18–1. The wheel has a radius of gyration about its
mass center of Determine its angular
velocity after it has rotated 20 revolutions starting from rest.

kO = 400 mm.O
80-kg

F18–5. If the uniform slender rod starts from rest at
the position shown, determine its angular velocity after it
has rotated revolutions.The forces remain perpendicular
to the rod.

4

30-kg

F18–3. The uniform slender rod is at rest in the
position shown when is applied. Determine the
angular velocity of the rod when the rod reaches the vertical
position.

P = 600 N
50-kg F18–6. The wheel has a radius of gyration about its

center of When it is subjected to a couple
moment of it rolls without slipping.
Determine the angular velocity of the wheel after its
center has traveled through a distance of 
starting from rest.

sO = 20 m,O

M = 50 N # m,
kO = 300 mm.O
20-kg

F18–1

0.6 m P � 50 N

O

F18–2

O

5 ft

M�100 lb � ft  

u

F18–3

A

5 m
4 m

B

P � 600 N

F18–4

O

0.4 m

P � 50 N

30�

F18–5

30 N

20 N

0.5 m 0.5 m 0.5 m1.5 m

O
 20 N � m

F18–6

O

0.4 m

M � 50 N�m
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PROBLEMS

18–3. A force of is applied to the cable, which
causes the 175-kg reel to turn without slipping on the two
rollers A and B of the dispenser. Determine the angular
velocity of the reel after it has rotated two revolutions
starting from rest. Neglect the mass of the cable. Each roller
can be considered as an 18-kg cylinder, having a radius of
0.1 m.The radius of gyration of the reel about its center axis
is .kG = 0.42 m

P = 20 N

18–2. The double pulley consists of two parts that are
attached to one another. It has a weight of 50 lb and a radius
of gyration about its center of If it rotates with
an angular velocity of 20 clockwise, determine the
kinetic energy of the system.Assume that neither cable slips
on the pulley.

rad>s
kO = 0.6 ft.

•18–1. At a given instant the body of mass m has an angular
velocity and its mass center has a velocity . Show that
its kinetic energy can be represented as , where

is the moment of inertia of the body computed about
the instantaneous axis of zero velocity, located a distance

from the mass center as shown.rG>IC

IIC

T = 1
2IICv

2
vGV

*18–4. The spool of cable, originally at rest, has a mass of
200 kg and a radius of gyration of . If the
spool rests on two small rollers A and B and a constant
horizontal force of is applied to the end of the
cable, determine the angular velocity of the spool when 8 m
of cable has been unwound. Neglect friction and the mass of
the rollers and unwound cable.

P = 400 N

kG = 325 mm

IC

G
V

rG/IC

vG

Prob. 18–1

1 ft0.5ft
O

A
B 30 lb

20 lb

V � 20 rad/s

Prob. 18–2

500 mm

400 mm

250 mm

30�

P

A

G

B

Prob. 18–3

BA

G P � 400 N200 mm

800 mm

20� 20�

Prob. 18–4
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18–7. The drum has a mass of 50 kg and a radius of gyration
about the pin at O of . Starting from rest, the
suspended 15-kg block B is allowed to fall 3 m without
applying the brake ACD. Determine the speed of the block at
this instant. If the coefficient of kinetic friction at the brake
pad C is , determine the force P that must be applied
at the brake handle which will then stop the block after it
descends another 3 m. Neglect the thickness of the handle.

*18–8. The drum has a mass of 50 kg and a radius of
gyration about the pin at O of . If the 15-kg
block is moving downward at 3 , and a force of

is applied to the brake arm, determine how far
the block descends from the instant the brake is applied
until it stops. Neglect the thickness of the handle. The
coefficient of kinetic friction at the brake pad is .mk = 0.5

P = 100 N
m>s

kO = 0.23 m

mk = 0.5

kO = 0.23 m

18–6. The two tugboats each exert a constant force F on
the ship. These forces are always directed perpendicular to
the ship’s centerline. If the ship has a mass m and a radius of
gyration about its center of mass G of , determine the
angular velocity of the ship after it turns 90°. The ship is
originally at rest.

kG

•18–5. The pendulum of the Charpy impact machine has a
mass of 50 kg and a radius of gyration of . If it
is released from rest when , determine its angular
velocity just before it strikes the specimen S, .u = 90°

u = 0°
kA = 1.75 m

•18–9. The spool has a weight of 150 lb and a radius of
gyration . If a cord is wrapped around its inner
core and the end is pulled with a horizontal force of

, determine the angular velocity of the spool after
the center O has moved 10 ft to the right. The spool starts
from rest and does not slip at A as it rolls. Neglect the mass
of the cord.

P = 40 lb

kO = 2.25 ft

A

S

u

G

1.25 m

Prob. 18–5

G
d

–F

F

Prob. 18–6

0.25 m
0.15 m

O

A

B

C

P

0.75 m

0.5 m

D

Probs. 18–7/8

A

P

3 ft
2 ft

O

Prob. 18–9



472 CH A P T E R 18 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  WO R K A N D EN E R G Y

18

*18–12. The spool has a mass of 60 kg and a radius of
gyration . If it is released from rest, determine
how far its center descends down the smooth plane before it
attains an angular velocity of . Neglect friction
and the mass of the cord which is wound around the
central core.

•18–13. Solve Prob. 18–12 if the coefficient of kinetic
friction between the spool and plane at A is .mk = 0.2

v = 6 rad>s
kG = 0.3 m

18–11. A man having a weight of 150 lb crouches down on
the end of a diving board as shown. In this position the radius
of gyration about his center of gravity is . While
holding this position at , he rotates about his toes at A
until he loses contact with the board when . If he
remains rigid, determine approximately how many revolutions
he makes before striking the water after falling 30 ft.

u = 90°
u = 0°

kG = 1.2 ft

18–10. A man having a weight of 180 lb sits in a chair of
the Ferris wheel, which, excluding the man, has a weight of
15 000 lb and a radius of gyration . If a torque

is applied about O, determine the
angular velocity of the wheel after it has rotated 180°.
Neglect the weight of the chairs and note that the man
remains in an upright position as the wheel rotates. The
wheel starts from rest in the position shown.

M = 80(103) lb # ft
kO = 37 ft

18–14. The spool has a weight of 500 lb and a radius of
gyration of . A horizontal force of is
applied to the cable wrapped around its inner core. If the
spool is originally at rest, determine its angular velocity
after the mass center G has moved 6 ft to the left. The spool
rolls without slipping. Neglect the mass of the cable.

P = 15 lbkG = 1.75 ft

60 ftM

O

Prob. 18–10

30 ft

1.5 ft

A

u

G

Prob. 18–11

30�

G

A

0.5 m
0.3 m

Probs. 18–12/13

P

G

0.8 ft
A

2.4 ft

Prob. 18–14
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•18–17. The 6-kg lid on the box is held in equilibrium by
the torsional spring at . If the lid is forced closed,

and then released, determine its angular velocity at
the instant it opens to .u = 45°
u = 0°,

u = 60°

*18–16. If the motor M exerts a constant force of
on the cable wrapped around the reel’s outer

rim, determine the velocity of the 50-kg cylinder after  it has
traveled a distance of 2 m. Initially, the system is at rest. The
reel has a mass of 25 kg, and the radius of gyration about its
center of  mass A is .kA = 125 mm

P = 300 N

18–15. If the system is released from rest, determine the
speed of the 20-kg cylinders A and B after A has moved
downward a distance of 2 m. The differential pulley has a
mass of 15 kg with a radius of gyration about its center of
mass of .kO = 100 mm

18–18. The wheel and the attached reel have a combined
weight of 50 lb and a radius of gyration about their center of

. If  pulley B attached to the motor is subjected to
a torque of , where is in radians,
determine the velocity of the 200-lb crate after it has moved
upwards a distance of 5 ft, starting from rest. Neglect the
mass of  pulley B.

18–19. The wheel and the attached reel have a combined
weight of 50 lb and a radius of gyration about their center of

. If pulley that is attached to the motor is
subjected to a torque of , determine the
velocity of the 200-lb crate after the pulley has turned 
5 revolutions. Neglect the mass of the pulley.

M = 50 lb # ft
BkA = 6 in

ulb # ftM = 40(2 - e-0.1u)
kA = 6 in

B

A

150 mm

75 mm
O

Prob. 18–15

150 mm

75 mm
M

P � 300 NA

Prob. 18–16

0.6 m

0.5 m
A

B

C

Dk � 20 N � m/rad

u

Prob. 18–17

3 in.

7.5 in.

4.5 in.A

BM

Probs. 18–18/19
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18–23. If the 50-lb bucket is released from rest, determine
its velocity after it has fallen a distance of 10 ft.The windlass
A can be considered as a 30-lb cylinder, while the spokes are
slender rods, each having a weight of 2 lb. Neglect the
pulley’s weight.

•18–21. Determine the angular velocity of the two 10-kg
rods when if they are released from rest in the
position . Neglect friction.

18–22. Determine the angular velocity of the two 10-kg
rods when if they are released from rest in the
position . Neglect friction.u = 60°

u = 90°

u = 60°
u = 180°

*18–20. The 30-lb ladder is placed against the wall at an
angle of as shown. If it is released from rest,
determine its angular velocity at the instant just before

. Neglect friction and assume the ladder is a uniform
slender rod.
u = 0°

u = 45°

*18–24. If corner A of the 60-kg plate is subjected to a
vertical force of , and the plate is released from
rest when , determine the angular velocity of the
plate when .u = 45°

u = 0°
P = 500 N

8 ft
B

A

u

Prob. 18–20

A

B

C

3 m3 m
u

Probs. 18–21/22

4 ft

0.5 ft
0.5 ft

3 ft
B

A

C

Prob. 18–23

Prob. 18–24

1 m

1 m

P = 500 N

u

A

B
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*18–28. The 50-lb cylinder A is descending with a speed of
when the brake is applied. If wheel B must be

brought to a stop after it has rotated 5 revolutions,
determine the constant force P that must be applied to the
brake arm. The coefficient of kinetic friction between the
brake pad C and the wheel is . The wheel’s weight
is 25 lb, and the radius of gyration about its center of mass is

•18–29. When a force of  is applied to the brake
arm, the 50-lb cylinder A is descending with a speed of

. Determine the number of revolutions wheel B will
rotate before it is brought to a stop. The coefficient of
kinetic friction between the brake pad C and the wheel is

. The wheel’s weight is 25 lb, and the radius of
gyration about its center of mass is .k = 0.6 ft
mk = 0.5

20 ft>s
P = 30 lb

k = 0.6 ft.

mk = 0.5

20 ft>s

18–27. The uniform door has a mass of 20 kg and can be
treated as a thin plate having the dimensions shown. If it is
connected to a torsional spring at A, which has a stiffness of

determine the required initial twist of the
spring in radians so that the door has an angular velocity of

when it closes at after being opened at
and released from rest. Hint: For a torsional spring
when k is the stiffness and is the angle of twist.uM = ku,

u = 90°
u = 0°12 rad>s

k = 80 N # m>rad,

18–30. The 100-lb block is transported a short distance by
using two cylindrical rollers, each having a weight of 35 lb. If
a horizontal force is applied to the block,
determine the block’s speed after it has been displaced 2 ft
to the left. Originally the block is at rest. No slipping occurs.

P = 25 lb

300 mm

600 mm

O

45�

Probs. 18–25/26

A

P

C
1.5 ft

0.75 ft

0.375 ft

3 ft0.5 ft

D

B

Probs. 18–28/29

P � 25 lb

1.5 ft1.5 ft

Prob. 18–30

P

A

2 m

0.8 m

0.1 m

u

Prob. 18–27

•18–25. The spool has a mass of 100 kg and a radius of
gyration of 400 mm about its center of mass O. If it is released
from rest, determine its angular velocity after its center O has
moved down the plane a distance of 2 m.The contact surface
between  the spool and the inclined plane is smooth.

18–26. The spool has a mass of 100 kg and a radius of
gyration of 400 mm about its center of mass O. If it is
released from rest, determine its angular velocity after its
center O has moved down the plane a distance of 2 m. The
coefficient of kinetic friction between  the spool and the
inclined plane is .mk = 0.15
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18–33. The beam has a weight of 1500 lb and is being
raised to a vertical position by pulling very slowly on its
bottom end A. If the cord fails when and the beam
is essentially at rest, determine the speed of A at the instant
cord BC becomes vertical. Neglect friction and the mass of
the cords, and treat the beam as a slender rod.

u = 60°

*18–32. The assembly consists of two 15-lb slender rods
and a 20-lb disk. If the spring is unstretched when 
and the assembly is released from rest at this position,
determine the angular velocity of rod AB at the instant

. The disk rolls without slipping.u = 0°

u = 45°

18–31. The slender beam having a weight of 150 lb is
supported by two cables. If the cable at end B is cut so that
the beam is released from rest when , determine the
speed at which end A strikes the wall. Neglect friction at B.

u = 30°

18–34. The uniform slender bar that has a mass m and a
length L is subjected to a uniform distributed load ,
which is always directed perpendicular to the axis of the
bar. If the bar is released from rest from the position shown,
determine its angular velocity at the instant it has rotated
90°. Solve the problem for rotation in (a) the horizontal
plane, and (b) the vertical plane.

w0

10 ft

4 ft

A

u

B

7.5 ft

Prob. 18–31

A C

B

u

3 ft

k � 4 lb/ft

3 ft

1 ft

Prob. 18–32

12 ft

13 ft

7 ft

C

B

Au

Prob. 18–33

w0

L

O

Prob. 18–34
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18.5 Conservation of Energy

When a force system acting on a rigid body consists only of conservative
forces, the conservation of energy theorem can be used to solve a problem
that otherwise would be solved using the principle of work and energy.This
theorem is often easier to apply since the work of a conservative force is
independent of the path and depends only on the initial and final positions
of the body. It was shown in Sec. 14.5 that the work of a conservative force
can be expressed as the difference in the body’s potential energy measured
from an arbitrarily selected reference or datum.

Gravitational Potential Energy. Since the total weight of a body
can be considered concentrated at its center of gravity, the gravitational
potential energy of the body is determined by knowing the height of the
body’s center of gravity above or below a horizontal datum.

(18–15)

Here the potential energy is positive when is positive upward, since
the weight has the ability to do positive work when the body moves back
to the datum, Fig. 18–16. Likewise, if G is located below the datum 
the gravitational potential energy is negative, since the weight does
negative work when the body returns to the datum.

Elastic Potential Energy. The force developed by an elastic
spring is also a conservative force. The elastic potential energy which a
spring imparts to an attached body when the spring is stretched or
compressed from an initial undeformed position to a final
position s, Fig. 18–17, is

(18–16)

In the deformed position, the spring force acting on the body always has
the ability for doing positive work when the spring returns back to its
original undeformed position (see Sec. 14.5).

Ve = +1
2ks

2

1s = 02

1-yG2,
yG

Vg = WyG

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve � �   ks21—
2

Fig. 18–17

� yG

W

Datum

Vg � � WyG

� yG

Vg � � WyG

G

G

W

Gravitational potential energy

Fig. 18–16
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Conservation of Energy In general, if a body is subjected to
both gravitational and elastic forces, the total potential energy can be
expressed as a potential function represented as the algebraic sum

(18–17)

Here measurement of V depends upon the location of the body with
respect to the selected datum.

Realizing that the work of conservative forces can be written as a
difference in their potential energies, i.e.,
Eq. 14–16, we can rewrite the principle of work and energy for a rigid
body as

(18–18)

Here represents the work of the nonconservative forces
such as friction. If this term is zero, then

(18–19)

This equation is referred to as the conservation of mechanical energy. It
states that the sum of the potential and kinetic energies of the body
remains constant when the body moves from one position to another. It
also applies to a system of smooth, pin-connected rigid bodies, bodies
connected by inextensible cords, and bodies in mesh with other bodies.
In all these cases the forces acting at the points of contact are eliminated
from the analysis, since they occur in equal but opposite collinear pairs
and each pair of forces moves through an equal distance when the
system undergoes a displacement.

It is important to remember that only problems involving conservative
force systems can be solved by using Eq. 18–19. As stated in Sec. 14.5,
friction or other drag-resistant forces, which depend on velocity or
acceleration, are nonconservative. The work of such forces is
transformed into thermal energy used to heat up the surfaces of contact,
and consequently this energy is dissipated into the surroundings and may
not be recovered. Therefore, problems involving frictional forces can be
solved by using either the principle of work and energy written in the
form of Eq. 18–18, if it applies, or the equations of motion.

T1 + V1 = T2 + V2

1©U1–22noncons

T1 + V1 + 1©U1-22noncons = T2 + V2

1©U1–22cons = V1 - V2 ,

V = Vg + Ve

The torsional springs located at the top
of the garage door wind up as the door
is lowered. When the door is raised, the
potential energy stored in the springs is
then transferred into gravitational
potential energy of the door’s weight,
thereby making it easy to open.
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Procedure for Analysis

The conservation of energy equation is used to solve problems
involving velocity, displacement, and conservative force systems. For
application it is suggested that the following procedure be used.

Potential Energy.

• Draw two diagrams showing the body located at its initial and
final positions along the path.

• If the center of gravity, G, is subjected to a vertical displacement,
establish a fixed horizontal datum from which to measure the
body’s gravitational potential energy 

• Data pertaining to the elevation of the body’s center of gravity
from the datum and the extension or compression of any
connecting springs can be determined from the problem
geometry and listed on the two diagrams.

• The potential energy is determined from Here
which can be positive or negative, and 

which is always positive.

Kinetic Energy.

• The kinetic energy of the body consists of two parts, namely
translational kinetic energy, and rotational kinetic
energy,

• Kinematic diagrams for velocity may be useful for establishing a
relationship between and .

Conservation of Energy.

• Apply the conservation of energy equation T1 + V1 = T2 + V2 .

vvG

T = 1
2IGv

2.
T = 1

2mvG
2 ,

Ve = 1
2ks

2,Vg = WyG ,
V = Vg + Ve .

yG

Vg .
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EXAMPLE 18.6

A

G

(b)

Datum

98.1 N

30�

y1 � (0.2 sin 30�) m

1

A
B

98.1 N

2

s2 � 0

s1 � (0.4 sin 30�) m

G

B

The 10-kg rod AB shown in Fig. 18–18a is confined so that its ends
move in the horizontal and vertical slots. The spring has a stiffness of

and is unstretched when Determine the angular
velocity of AB when if the rod is released from rest when

Neglect the mass of the slider blocks.

SOLUTION

Potential Energy. The two diagrams of the rod, when it is located at
its initial and final positions, are shown in Fig. 18–18b. The datum,
used to measure the gravitational potential energy, is placed in line
with the rod when 

When the rod is in position 1, the center of gravity G is located
below the datum so its gravitational potential energy is negative.
Furthermore, (positive) elastic potential energy is stored in the spring,
since it is stretched a distance of Thus,

When the rod is in position 2, the potential energy of the rod is zero,
since the center of gravity G is located at the datum, and the spring is
unstretched, . Thus,

Kinetic Energy. The rod is released from rest from position 1, thus
and so 

In position 2, the angular velocity is and the rod’s mass center has
a velocity of Thus,

Using kinematics, can be related to as shown in Fig. 18–18c.
At the instant considered, the instantaneous center of zero velocity
(IC) for the rod is at point A; hence,
Substituting into the above expression and simplifying (or using

), we get

Conservation of Energy.

d Ans.v2 = 4.82 rad>s
506 + 56.19 J6 = 50.2667v2

26 + 506
5T16 + 5V16 = 5T26 + 5V26

T2 = 0.2667v2
2

1
2IICv2

2

1vG22 = 1rG>IC2v2 = 10.2 m2v2 .

V21vG22
= 1

2110 kg21vG222 + 1
2 C 1

12110 kg210.4 m22 Dv2
2

T2 = 1
2m1vG222 + 1

2IGv2
2

1vG22 .
V2

T1 = 0

V1 = 0,1vG21 =

V2 = 0

s2 = 0

= -198.1 N)10.2 sin 30° m2 + 1
21800 N>m210.4 sin 30° m22 = 6.19 J

V1 = -Wy1 + 1
2ks1

2

s1 = 10.4 sin 30°2 m.

u = 0°.

u = 30°.
u = 0°,

u = 0°.k = 800 N>m

0.2 m

0.2 m

A

B

G

k � 800 N/m

(a)

u

(c)

B

G

0.2 m

IC
rG/IC

(vG)2

V2

Fig. 18–18
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EXAMPLE 18.7

The wheel shown in Fig. 18–19a has a weight of 30 lb and a radius of
gyration of . It is attached to a spring which has a stiffness

and an unstretched length of 1 ft. If the disk is released
from rest in the position shown and rolls without slipping, determine
its angular velocity at the instant G moves 3 ft to the left.

SOLUTION
Potential Energy. Two diagrams of the wheel, when it at the initial and
final positions, are shown in Fig. 18–19b. A gravitational datum is not
needed here since the weight is not displaced vertically. From the
problem geometry the spring is stretched 

in the initial position, and in the final position.
Hence,

Kinetic Energy. The disk is released from rest and so 
Therefore,

Since the instantaneous center of zero velocity is at the ground,
Fig. 18–19c, we have

Conservation of Energy.

d Ans.

NOTE: If the principle of work and energy were used to solve this
problem, then the work of the spring would have to be determined
by considering both the change in magnitude and direction of the
spring force.

v2 = 4.04 rad>s
506 + 516 J6 = 50.4297v2

26 + 59 J6
5T16 + 5V16 = 5T26 + 5V26

= 0.4297v2
2

=
1
2
c a 30 lb

32.2 ft>s2 b10.6 ft22 + a 30 lb

32.2 ft>s2 b(0.75 ft)2 dv2
2

T2 =
1
2
IICv2

2

T1 = 0

V1 = 0.
1vG21 = 0,

V2 = 1
2ks2

2 = 1
212 lb>ft213 ft22 = 9 J

V1 = 1
2ks1

2 = 1
212 lb>ft214 ft22 = 16 J

s2 = 14 - 12 = 3 ft

s1 = A232 + 42 - 1 B = 4 ft

k = 2 lb>ft kG
= 0.6 ft

3 ft

G
0.75 ft

4 ft

k � 2 lb/ft

(a)

(b)

30 lb

s1 � 4 ft
s2 � 3 ft

2 1

30 lb

(c)

IC

0.75 ft

(vG)2

V2

Fig. 18–19
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EXAMPLE 18.8

The 10-kg homogeneous disk shown in Fig. 18–20a is attached to a
uniform 5-kg rod AB. If the assembly is released from rest when

determine the angular velocity of the rod when 
Assume that the disk rolls without slipping. Neglect friction along the
guide and the mass of the collar at B.

SOLUTION

Potential Energy. Two diagrams for the rod and disk, when they are
located at their initial and final positions, are shown in Fig. 18–20b. For
convenience the datum passes through point A.

When the system is in position 1, only the rod’s weight has positive
potential energy. Thus,

When the system is in position 2, both the weight of the rod and the
weight of the disk have zero potential energy. Why? Thus,

Kinetic Energy. Since the entire system is at rest at the initial
position,

In the final position the rod has an angular velocity and its mass
center has a velocity Fig. 18–20c. Since the rod is fully extended
in this position, the disk is momentarily at rest, so and

For the rod can be related to from the
instantaneous center of zero velocity, which is located at point A,
Fig. 18–20c. Hence, or Thus,

Conservation of Energy.

b Ans.

NOTE: We can also determine the final kinetic energy of the rod using
.T2 = 1

2IICv2
2

1vr22 = 6.52 rad>s
506 + 512.74 J6 = 50.31vR2226 + 506
5T16 + 5V16 = 5T26 + 5V26

= 0.31vr222
=

1
2
15 kg2[10.3 m21vr22]2 +

1
2
c 1
12
15 kg210.6 m22 d1vr222 + 0 + 0

T2 =
1
2
mr1vG222 +

1
2
IG1vr222 +

1
2
md1vA222 +

1
2
IA1vd222

1vG22 = 0.31vr22 .1vG22 = rG>IC1vr22
1Vr221vG221vA22 = 0.
1Vd22 = 0

1vG22 ,
1Vr22

T1 = 0

V2 = 0

V1 = Wry1 = 149.05 N210.3 sin 60° m2 = 12.74 J

u = 0°.u = 60°,

(a)

0.1 m

G

A

B

0.6 m

u

(b)

60�

A

49.05 N98.1 N
98.1 N

Datum

49.05 N

G

y1 � (0.3 sin 60�) m

1 2
GA

(c)

G (vG)2

A(IC) rG/IC
(Vd)2 � 0

(Vr)2

Fig. 18–20



k � 80 N/m
1.5 m

2 m

A

O
u

1.5 m

B

A

k � 300 N/m

u

A

k � 100 N/m

B

2 m

2 m

1 m

u

v
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FUNDAMENTAL PROBLEMS

F18–9

k � 150 N/m

3 m

A

O
u

F18–10

F18–11

F18–12

F18–7

0.3 m
O

G

u

F18–8

O

0.4 m

0.2 m

30�

F18–10. The rod is released from rest when 
Determine the angular velocity of the rod when 
The spring is unstretched when u = 0°.

u = 90°.
u = 0°.30-kg

F18–9. The rod is released from rest when
Determine its angular velocity when 

The spring remains vertical during the motion and is
unstretched when u = 0°.

u = 45°.u = 0°.
OA60-kg

F18–7. If the disk is released from rest when 
determine its angular velocity when u = 90°.

u = 0°,30-kg

F18–12. The rod is released from rest when 
Determine its angular velocity when The spring
has an unstretched length of 0.5 m.

u = 90°.
u = 0°.20-kg

F18–8. The reel has a radius of gyration about its
center of If it is released from rest,
determine its angular velocity when its center has
traveled down the smooth inclined plane.6 m

O
kO = 300 mm.O

50-kg

F18–11. The rod is released from rest when 
Determine the angular velocity of the rod when The
spring is unstretched when u = 45°.

u = 0°.
u = 45°.30-kg
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PROBLEMS

18–42. A chain that has a negligible mass is draped over the
sprocket which has a mass of 2 kg and a radius of gyration of

. If the 4-kg block A is released from rest from
the position , determine the angular velocity of the
sprocket at the instant .

18–43. Solve Prob. 18–42 if the chain has a mass per unit
length of 0.8 . For the calculation neglect the portion of
the chain that wraps over the sprocket.

kg>m

s = 2 m
s = 1 m

kO = 50 mm

18–35. Solve Prob. 18–5 using the conservation of energy
equation.

*18–36. Solve Prob. 18–12 using the conservation of
energy equation.

•18–37. Solve Prob. 18–32 using the conservation of
energy equation.

18–38. Solve Prob. 18–31 using the conservation of energy
equation.

18–39. Solve Prob. 18–11 using the conservation of energy
equation.

*18–40. At the instant shown, the 50-lb bar rotates
clockwise at 2 . The spring attached to its end always
remains vertical due to the roller guide at C. If the spring
has an unstretched length of 2 ft and a stiffness of

, determine the angular velocity of the bar the
instant it has rotated 30° clockwise.

•18–41. At the instant shown, the 50-lb bar rotates
clockwise at 2 . The spring attached to its end always
remains vertical due to the roller guide at C. If the spring has
an unstretched length of 2 ft and a stiffness of ,
determine the angle , measured from the horizontal, to
which the bar rotates before it momentarily stops.

u

k = 12 lb>ft
rad>s

k = 6 lb>ft

rad>s

*18–44. The system consists of 60-lb and 20-lb blocks A and
B, respectively, and 5-lb pulleys C and D that can be treated
as thin disks. Determine the speed of block A after block B
has risen 5 ft, starting from rest. Assume that the cord does
not slip on the pulleys, and neglect the mass of the cord.

A

B

k

C

6 ft

4 ft

2 rad/s

Probs. 18–40/41

Probs. 18–42/43

O

s � 1 m

100 mm

A

0.5 ft

A

C

D
0.5 ft

B

Prob. 18–44
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0.8 ft

3 ft

A

u

C

B

Probs. 18–45/46

1 ft 1 ft
0.25 ft

k � 2 lb/ft

C

B D
A

1 ft

Prob. 18–47

0.5 m

k

A

B

C D

2 m

1 m

2 m

Prob. 18–49

18–47. The pendulum consists of a 2-lb rod BA and a 6-lb
disk.The spring is stretched 0.3 ft when the rod is horizontal
as shown. If the pendulum is released from rest and rotates
about point D, determine its angular velocity at the instant
the rod becomes vertical.The roller at C allows the spring to
remain vertical as the rod falls.

•18–45. The system consists of a 20-lb disk A, 4-lb slender
rod BC, and a 1-lb smooth collar C. If the disk rolls without
slipping, determine the velocity of the collar at the instant
the rod becomes horizontal, i.e., . The system is
released from rest when .

18–46. The system consists of a 20-lb disk A, 4-lb slender
rod BC, and a 1-lb smooth collar C. If the disk rolls without
slipping, determine the velocity of the collar at the instant

. The system is released from rest when .u = 45°u = 30°

u = 45°
u = 0°

3 m 4 m

C
A

B

Prob. 18–48

*18–48. The uniform garage door has a mass of 150 kg and is
guided along smooth tracks at its ends. Lifting is done using
the two springs, each of which is attached to the anchor
bracket at A and to the counterbalance shaft at B and C. As
the door is raised, the springs begin to unwind from the shaft,
thereby assisting the lift. If each spring provides a torsional
moment of , where is in radians,
determine the angle at which both the left-wound and
right-wound spring should be attached so that the door is
completely balanced by the springs, i.e., when the door is in
the vertical position and is given a slight force upwards, the
springs will lift the door along the side tracks to the horizontal
plane with no final angular velocity. Note: The elastic potential
energy of a torsional spring is , where and
in this case  .k = 0.7 N # m>rad

M = kuVe = 1
2ku

2

u0

uM = (0.7u) N # m

•18–49. The garage door CD has a mass of 50 kg and can be
treated as a thin plate. Determine the required unstretched
length of each of the two side springs when the door is in the
open position, so that when the door falls freely from the open
position it comes to rest when it reaches the fully closed
position, i.e., when AC rotates 180°. Each of the two side
springs has a stiffness of . Neglect the mass of
the side bars AC.

k = 350 N>m
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*18–52. The 50-lb square plate is pinned at corner A and
attached to a spring having a stiffness of . If the
plate is released from rest when , determine its
angular velocity when . The spring is unstretched
when .u = 0°

u = 90°
u = 0°
k = 20 lb>ft

18–51. The 30 kg pendulum has its mass center at G and a
radius of gyration about point G of . If it is
released from rest when , determine its angular
velocity at the instant . Spring AB has a stiffness of

and is unstretched when .u = 0°k = 300 N>m
u = 90°

u = 0°
kG = 300 mm

18–50. The uniform rectangular door panel has a mass of
25 kg and is held in equilibrium above the horizontal at the
position by rod BC. Determine the required
stiffness of the torsional spring at A, so that the door’s
angular velocity becomes zero when the door reaches the
closed position once the supporting rod BC is
removed. The spring is undeformed when  .u = 60°

(u = 0°)

u = 60°

•18–53. A spring having a stiffness of is
attached to the end of the 15-kg rod, and it is unstretched
when . If the rod is released from rest when ,
determine its angular velocity at the instant . The
motion is in the vertical plane.

u = 30°
u = 0°u = 0°

k = 300 N>m

A

k

B

C

1.2 m

u � 60�

Prob. 18–50

B

0.35 m

0.6 m

0.1 m

k � 300 N/m

A

G

O
u

Prob. 18–51

Prob. 18–52

k � 300 N/m

B

A

0.6 m

u

Prob. 18–53

1 ft

1 ft

k � 20 lb/ft

1 ft

A

B

C

u
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400 mm

k � 600 N/m

200 mm

200 mm

300 mm

C

B

A

u

Prob. 18–54

*18–56. Rods AB and BC have weights of 15 lb and 30 lb,
respectively. Collar C, which slides freely along the smooth
vertical guide, has a weight of 5 lb. If the system is released
from rest when , determine the angular velocity of
the rods when . The attached spring is unstretched
when .u = 0°

u = 90°
u = 0°

18–55. The 50-kg rectangular door panel is held in the
vertical position by rod CB. When the rod is removed, the
panel closes due to its own weight. The motion of the panel
is controlled by a spring attached to a cable that wraps
around the half pulley. To reduce excessive slamming, the
door panel’s angular velocity is limited to at the
instant of closure. Determine the minimum stiffness k of
the spring if the spring is unstretched when the panel is in
the vertical position. Neglect the half pulley’s mass.

0.5 rad>s

18–54. If the 6-kg rod is released from rest at ,
determine the angular velocity of the rod at the instant

. The attached spring has a stiffness of ,
with an unstretched length of 300 mm.

k = 600 N>mu = 0°

u = 30°

•18–57. Determine the stiffness k of the torsional spring at
A, so that if the bars are released from rest when ,
bar AB has an angular velocity of 0.5 rad/s at the closed
position, . The spring is uncoiled when . The
bars have a mass per unit length of .

18–58. The torsional spring at A has a stiffness of
and is uncoiled when . Determine

the angular velocity of the bars, AB and BC, when , if
they are released from rest at the closed position, .
The bars have a mass per unit length of .10 kg>m

u = 90°
u = 0°

u = 0°k = 900 N # m>rad

10 kg>m
u = 0°u = 90°

u = 0°

k 

1 m

0.15 m

1.2 m

C

B

A

Prob. 18–55

1.5 ft

3 ft

A

B

C

k � 20 lb/ft

u

Prob. 18–56

B

A

k

C

3 m 4 m

u

Probs. 18–57/58
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B

C

A

G2

G1

16 m

4 m

u

Prob. 18–59

•18–61. The motion of the uniform 80-lb garage door is
guided at its ends by the track. Determine the required
initial stretch in the spring when the door is open, , so
that when it falls freely it comes to rest when it just reaches
the fully closed position, . Assume the door can be
treated as a thin plate, and there is a spring and pulley
system on each of the two sides of the door.

18–62. The motion of the uniform 80-lb garage door is
guided at its ends by the track. If it is released from rest at

, determine the door’s angular velocity at the instant
. The spring is originally stretched 1 ft when the

door is held open, . Assume the door can be treated
as a thin plate, and there is a spring and pulley system on
each of the two sides of the door.

u = 0°
u = 30°
u = 0°

u = 90°

u = 0°

18–60. The assembly consists of a 3-kg pulley A and 10-kg
pulley B. If a 2-kg block is suspended from the cord,
determine the block’s speed after it descends 0.5 m starting
from rest. Neglect the mass of the cord and treat the pulleys
as thin disks. No slipping occurs.

18–59. The arm and seat of the amusement-park ride have
a mass of 1.5 Mg, with the center of mass located at point .
The passenger seated at A has a mass of 125 kg, with the
center of mass located at If the arm is raised to a position
where and released from rest, determine the  speed
of the passenger at the instant .The arm has a radius of
gyration of about its center of mass . Neglect
the size of the passenger.

G1kG1 = 12 m
u = 0°

u = 150°
G2

G1

18–63. The 500-g rod AB rests along the smooth inner
surface of a hemispherical bowl. If the rod is released from
rest from the position shown, determine its angular velocity
at the instant it swings downward and becomes horizontal.

k � 9 lb/ft

8 ft

8 ft
A

C

Bu

Probs. 18–61/62

A

B

200 mm

200 mm

Prob. 18–63

A
B

30 mm

100 mm

Prob. 18–60
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4 ft

4 ft

A
C

k � 5 lb/ft

B

u

Probs. 18–64/65

B

A

3 ft

0.5 ft 0.5 ft

3 ft

C

uu

Probs. 18–66/67

*18–68. The uniform window shade AB has a total weight of
0.4 lb.When it is released, it winds up around the spring-loaded
core O. Motion is caused by a spring within the core, which is
coiled so that it exerts a torque , where

is in radians, on the core. If the shade is released from rest,
determine the angular velocity of the core at the instant the
shade is completely rolled up, i.e., after 12 revolutions. When
this occurs, the spring becomes uncoiled and the radius of
gyration of the shade about the axle at O is
Note: The elastic potential energy of the torsional spring is

, where and .k = 0.3(10-3) lb # ft>radM = kuVe = 1
2ku

2

kO = 0.9 in.

u

M = 0.3(10-3)u lb # ft

18–66. The assembly consists of two 8-lb bars which are
pin connected to the two 10-lb disks. If the bars are released
from rest when determine their angular velocities
at the instant Assume the disks roll without
slipping.

18–67. The assembly consists of two 8-lb bars which are
pin connected to the two 10-lb disks. If the bars are released
from rest when determine their angular velocities
at the instant Assume the disks roll without
slipping.

u = 30°.
u = 60°,

u = 0°.
u = 60°,

*18–64. The 25-lb slender rod AB is attached to spring BC
which has an unstretched length of 4 ft. If the rod is released
from rest when determine its angular velocity at
the instant 

•18–65. The 25-lb slender rod AB is attached to spring BC
which has an unstretched length of 4 ft. If the rod is released
from rest when determine the angular velocity of
the rod the instant the spring becomes unstretched.

u = 30°,

u = 90°.
u = 30°,

18–69. When the slender 10-kg bar AB is horizontal it is at
rest and the spring is unstretched. Determine the stiffness k
of the spring so that the motion of the bar is momentarily
stopped when it has rotated clockwise 90°.

A

B
M

O O

3 ft

Prob. 18–68

kA B C

1.5 m 1.5 m

Prob. 18–69
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CONCEPTUAL PROBLEMS

P18–3. The operation of this garage door is assisted using
two springs and side members which are pinned
at Assuming the springs are unstretched when the door is
in the horizontal (open) position and is vertical,
determine each spring stiffness so that when the door falls
to the vertical (closed) position, it will slowly come to a stop.
Use appropriate numerical values to explain your result.

k
ABCD

C.
BCD,AB

P18–2. Two torsional springs, are used to assist in
opening and closing the hood of this truck. Assuming the
springs are uncoiled when the hood is opened,
determine the stiffness of each spring so that
the hood can easily be lifted, i.e., practically no force
applied to it, when it is closed. Use appropriate numerical
values to explain your result.

k (N # m>rad)
(u = 0°)

M = ku,

P18–1. The blade on the band saw wraps around the two
large wheels and When switched on, an electric
motor turns the small pulley at that then drives the
larger pulley which is connected to and turns with it.
Explain why it is a good idea to use pulley , and also use
the larger wheels and Use appropriate numerical
values to explain your answer.

B.A
D

AD,
C

B.A

P18–4. Determine the counterweight of needed to balance
the weight of the bridge deck when Show that this
weight will maintain equilibrium of the deck by considering
the potential energy of the system when the deck is in the
arbitrary position Both the deck and are horizontal
when Neglect the weights of the other members. Use
appropriate numerical values to explain this result.

u = 0°.
ABu.

u = 0°.
A

A

B

C

D

P18–1

P18–2

A

B

D

C

P18–3

A

B

u

P18–4
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CHAPTER REVIEW

Kinetic Energy

The kinetic energy of a rigid body that
undergoes planar motion can be referenced
to its mass center. It includes a scalar sum of
its translational and rotational kinetic
energies.

Rotation About a Fixed Axis

or

T = 1
2 IOv

2

T = 1
2mvG

2 + 1
2 IGv

2

Translation

T = 1
2mvG

2

vG � v

G

Translation

v

vG

G

O

Rotation About a Fixed Axis

V

vG

G

General Plane Motion

V

General Plane Motion

or

T = 1
2IICv

2

T = 1
2mvG

2 + 1
2 IGv

2



492 CH A P T E R 18 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  WO R K A N D EN E R G Y

18

Work of a Force and a Couple Moment

A force does work when it undergoes a
displacement ds in the direction of the
force. In particular, the frictional and
normal forces that act on a cylinder or any
circular body that rolls without slipping will
do no work, since the normal force does
not undergo a displacement and the
frictional force acts on successive points on
the surface of the body.

Constant magnitude

UM = M1u2 - u12

UM =
L

u2

u1

M du

s

F

F
s

F

F

s

Fc

Fc

Fc cos u

Fc cos u

u

u

k

s

Fsk

Unstretched
position of
spring, s � 0

M

u

W

W

G

G

�y

s

UF =
L
F cos u ds

Constant Force

UFC = (Fc cos u)s

Spring

U = -
1
2
k s2

Weight

UW = -W¢y
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Principle of Work and Energy

Problems that involve velocity, force, and
displacement can be solved using the
principle of work and energy. The kinetic
energy is the sum of both its rotational and
translational parts. For application, a free-
body diagram should be drawn in order to
account for the work of all of the forces and
couple moments that act on the body as it
moves along the path.

T1 = ©U1-2 = T2

Conservation of Energy

If a rigid body is subjected only to
conservative forces, then the conservation-
of-energy equation can be used to solve the
problem. This equation requires that the
sum of the potential and kinetic energies of
the body remain the same at any two points
along the path.

where V = Vg + Ve

T1 + V1 = T2 + V2

The potential energy is the sum of the
body’s gravitational and elastic potential
energies.The gravitational potential energy
will be positive if the body’s center of
gravity is located above a datum. If it is
below the datum, then it will be negative.
The elastic potential energy is always
positive, regardless if the spring is stretched
or compressed.

� yG

W

Datum

� yG

G

G

W

Gravitational potential energy

Vg �� WyG

Vg � WyG

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve � ks2
1
2



The docking of the space shuttle to the international space station requires application
of impulse and momentum principles to accurately predict their orbital motion and
proper orientation.



Planar Kinetics of a
Rigid Body: Impulse
and Momentum
CHAPTER OBJECTIVES

• To develop formulations for the linear and angular momentum of 
a body.

• To apply the principles of linear and angular impulse and
momentum to solve rigid-body planar kinetic problems that involve
force, velocity, and time.

• To discuss application of the conservation of momentum.

• To analyze the mechanics of eccentric impact.

19.1 Linear and Angular Momentum

In this chapter we will use the principles of linear and angular impulse
and momentum to solve problems involving force, velocity, and time as
related to the planar motion of a rigid body. Before doing this, we will first
formalize the methods for obtaining a body’s linear and angular
momentum, assuming the body is symmetric with respect to an inertial
x–y reference plane.

Linear Momentum. The linear momentum of a rigid body is
determined by summing vectorially the linear momenta of all the
particles of the body, i.e., Since (see Sec. 15.2)
we can also write

(19–1)

This equation states that the body’s linear momentum is a vector
quantity having a magnitude which is commonly measured in units
of or and a direction defined by the velocity of the
body’s mass center.

vGslug #  ft>skg #  m>s mvG,

L = mvG

©mivi = mvGL = ©mivi.

19
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Angular Momentum. Consider the body in Fig. 19–1a, which is
subjected to general plane motion. At the instant shown, the arbitrary
point P has a known velocity and the body has an angular velocity

. Therefore the velocity of the ith particle of the body is

The angular momentum of this particle about point P is equal to the
“moment” of the particle’s linear momentum about P, Fig. 19–1a. Thus,

Expressing in terms of and using Cartesian vectors, we have

Letting and integrating over the entire mass m of the body, we
obtain

Here represents the angular momentum of the body about an axis
(the z axis) perpendicular to the plane of motion that passes through
point P. Since and  the integrals for the first
and second terms on the right are used to locate the body’s center of
mass G with respect to P, Fig. 19–1b.Also, the last integral represents the
body’s moment of inertia about point P. Thus,

(19–2)

This equation reduces to a simpler form if P coincides with the mass
center G for the body,* in which case Hence,x = y = 0.

HP = -ym1vP2x + xm1vP2y + IPv

xm = 1x dmym = 1y dm

HP

HP = - a
Lm
y dmb1vP2x + a

Lm
x dmb1vP2y + a

Lm
r2 dmbv

mi: dm

1HP2i = -miy1vP2x + mix1vP2y + mivr2
1HP2ik = mi1xi + yj2 * [1vP2x i + 1vP2y j + vk * 1xi + yj2]

vPvi

1HP2i = r * mivi

vi = vP + vi>P = vP + V * r

V

vP,

y

xP

vP

r

i
vi

y

x

(a)

V

y

xP

vP

G

(b)

vG

_
r

V

_
x

_
y

Fig. 19–1

*It also reduces to the same simple form, if point P is a fixed point (see
Eq. 19–9) or the velocity of P is directed along the line PG.

HP = IPv,
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(19–3)

Here the angular momentum of the body about G is equal to the product
of the moment of inertia of the body about an axis passing through G
and the body’s angular velocity. Realize that is a vector quantity
having a magnitude which is commonly measured in units of

or and a direction defined by which is always
perpendicular to the plane of motion.

Equation 19–2 can also be rewritten in terms of the x and y
components of the velocity of the body’s mass center, and 
and the body’s moment of inertia Since G is located at coordinates
( ), then by the parallel-axis theorem,
Substituting into Eq. 19–2 and rearranging terms, we have

(19–4)

From the kinematic diagram of Fig. 19–1b, can be expressed in terms
of as

Carrying out the cross product and equating the respective i and j
components yields the two scalar equations

Substituting these results into Eq. 19–4 yields

a (19–5)

As shown in Fig. 19–1c, this result indicates that when the angular
momentum of the body is computed about point P, it is equivalent to the
moment of the linear momentum , or its components and

, about P plus the angular momentum Using these results,
we will now consider three types of motion.

IGV.m1vG2y
m1vG2xmvG

HP = -ym1vG2x + xm1vG2y + IGv+21

1vG2y = 1vP2y + xv

1vG2x = 1vP2x - yv

1vG2x i + 1vG2y j = 1vP2x i + 1vP2y j + vk * 1xi + yj2
vG = vP + V * r

vP
vG

HP = ym[-1vP2x + yv] + xm[1vP2y + xv] + IGv

IP = IG + m1x2 + y22.yx,
IG.

1vG2y,1vG2x

V,slug # ft2>s,kg # m2>s
IGv,

HG

HG = IGv

y

xP

G
_
y

_
x

(c)

m(vG)y

HG � IGV

L � mvG

m(vG)x

Body momentum
diagram

Fig. 19–1 (cont.)
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Translation. When a rigid body is subjected to either rectilinear or
curvilinear translation, Fig. 19–2a, then and its mass center has a
velocity of . Hence, the linear momentum, and the angular
momentum about G, become

(19–6)

If the angular momentum is computed about some other point A, the
“moment” of the linear momentum L must be found about the point.
Since d is the “moment arm” as shown in Fig. 19–2a, then in accordance
with Eq. 19–5, d.

Rotation About a Fixed Axis. When a rigid body is rotating
about a fixed axis, Fig. 19–2b, the linear momentum, and the angular
momentum about G, are

(19–7)

It is sometimes convenient to compute the angular momentum about
point O. Noting that L (or ) is always perpendicular to we have

a (19–8)

Since this equation can be written as 
Using the parallel-axis theorem,* 

(19–9)

For the calculation, then, either Eq. 19–8 or 19–9 can be used.

HO = IOv

HO = 1IG + mrG2 2v.vG = rGv,

+2 HO = IGv + rG1mvG21
rG,vG

L = mvG
HG = IGv

HA = 1d21mvG2

L = mvG
HG = 0

vG = v
V = 0

*The similarity between this derivation and that of Eq. 17–16 and Eq. 18–5
should be noted.Also note that the same result can be obtained from Eq. 19–2

by selecting point P at O, realizing that 1vO2x = 1vO2y = 0.
AT = 1

2 IOv
2 B 1©MO = IOa2

d

G

L � mvG

vG � vA

Translation

(a)

G

L � mvG

HG � IGV

O

Rotation about a fixed axis

(b)

rG

V

Fig. 19–2
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General Plane Motion When a rigid body is subjected to general
plane motion, Fig. 19–2c, the linear momentum, and the angular
momentum about G, become

(19–10)

If the angular momentum is computed about point A, Fig. 19–2c, it is
necessary to include the moment of L and about this point. In
this case,

a

Here d is the moment arm, as shown in the figure.
As a special case, if point A is the instantaneous center of zero velocity

then, like Eq. 19–9, we can write the above equation as 

(19–11)

where is the moment of inertia of the body about the IC. See Prob. 19–2.IIC

HIC = IICv

+2 HA = IGv + 1d21mvG21
HG

L = mvG
HG = IGv

HG � IGV

L � mvG

G

A

d

General plane motion

(c)

Fig 19–2

As the pendulum swings downward, its angular
momentum about point O can be determined by
computing the moment of and about O.
This is Since then 
HO = IGv + m1vd2d = 1IG + md22v = IOv.

vG = vd,HO = IGv + 1mvG2d.
mvGIGV

O

G

d

IGV

mvG
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At a given instant the 5-kg slender bar has the motion shown in
Fig. 19–3a. Determine its angular momentum about point G and
about the IC at this instant.

EXAMPLE 19.1

G

(a)

30�

4 m

B

A

vA � 2 m/s

SOLUTION

Bar. The bar undergoes general plane motion. The IC is established
in Fig. 19–3b, so that 

Thus,

vG = 10.5774 rad>s212 m2 = 1.155 m>s
v =

2 m>s
4 m cos 30°

= 0.5774 rad>s

c bAns.+2HG = IGv = C 1
1215 kg214 m22 D 10.5774 rad>s2 = 3.85 kg # m2>s1

G

A

B

(b)

2 m/s

2 m

2 m

2 m

4 m cos 30�IC

vG
vB 30�

30� 30�

30�

V

Fig. 19–3

Adding and the moment of about the IC yields

c

b Ans.

We can also use

c

b Ans.= 15.4 kg # m2>s
= C 1

12 (5 kg)(4 m)2 + (5 kg)(2 m)2 D  (0.5774 rad>s)

+)HIC = IICv1

= 15.4 kg # m2>s
= C 1

1215 kg214 m22 D 10.5774 rad>s2 + 12 m215 kg211.155 m>s2
+2HIC = IGv + d1mvG21

mvGIGv
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19.2 Principle of Impulse and
Momentum

Like the case for particle motion, the principle of impulse and momentum
for a rigid body can be developed by combining the equation of motion
with kinematics. The resulting equation will yield a direct solution to
problems involving force, velocity, and time.

Principle of Linear Impulse and Momentum. The equation
of translational motion for a rigid body can be written as

Since the mass of the body is constant,

Multiplying both sides by dt and integrating from to
yields

This equation is referred to as the principle of linear impulse and
momentum. It states that the sum of all the impulses created by the
external force system which acts on the body during the time interval to

is equal to the change in the linear momentum of the body during this
time interval, Fig. 19–4.

Principle of Angular Impulse and Momentum. If the body
has general plane motion then Since the
moment of inertia is constant,

Multiplying both sides by dt and integrating from to
gives

(19–12)

In a similar manner, for rotation about a fixed axis passing through
point O, Eq. 17–16 when integrated becomes

(19–13)

Equations 19–12 and 19–13 are referred to as the principle of angular
impulse and momentum. Both equations state that the sum of the angular
impulses acting on the body during the time interval to is equal to the
change in the body’s angular momentum during this time interval.

t2t1

©
L

t2

t1

MO dt = IOv2 - IOv1

1©MO = IOa2

©
L

t2

t1

MG dt = IGv2 - IGv1

v = v2t = t2,
v = v1t = t1,

©MG =
d

dt
1IGv2

©MG = IGa = IG1dv>dt2.

t2

t1

©
L

t2

t1

F dt = m1vG22 - m1vG21

vG = 1vG22t = t2,
vG = 1vG21t = t1,

©F =
d

dt
1mvG2

©F = maG = m1dvG>dt2.

m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

=

IGV2

m(vG)2

Fig. 19–4
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To summarize these concepts, if motion occurs in the x–y plane, the
following three scalar equations can be written to describe the planar
motion of the body.

(19–14)

The terms in these equations can be shown graphically by drawing a set
of impulse and momentum diagrams for the body, Fig. 19–4. Note that the
linear momentum is applied at the body’s mass center, Figs. 19–4a
and 19–4c; whereas the angular momentum is a free vector, and
therefore, like a couple moment, it can be applied at any point on the
body. When the impulse diagram is constructed, Fig. 19–4b, the forces F
and moment M vary with time, and are indicated by the integrals.
However, if F and M are constant integration of the impulses yields

and respectively. Such is the case for the body’s
weight W, Fig. 19–4b.

Equations 19–14 can also be applied to an entire system of connected
bodies rather than to each body separately. This eliminates the need to
include interaction impulses which occur at the connections since they
are internal to the system. The resultant equations may be written in
symbolic form as

(19–15)

As indicated by the third equation, the system’s angular momentum and
angular impulse must be computed with respect to the same reference
point O for all the bodies of the system.

aa syst. angular
impulse

b
O11-22

= aa syst. angular
momentum

b
O2

aa syst. angular
momentum

b
O1

+

aa syst. linear
momentum

b
y1

+ aa syst. linear
impulse

b
y11-22

= aa syst. linear
momentum

b
y2

aa syst. linear
momentum

b
x1

+ aa syst. linear
impulse

b
x11-22

= aa syst. linear
momentum

b
x2

M1t2 - t12,F1t2 - t12

IGV
mvG

IGv1 + ©
L

t2

t1

MG dt = IGv2

m1vGy21 + ©
L

t2

t1

Fy dt = m1vGy22

m1vGx21 + ©
L

t2

t1

Fx dt = m1vGx22m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

=

IGV2

m(vG)2

Fig. 19–4 (repeated)
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Procedure For Analysis

Impulse and momentum principles are used to solve kinetic
problems that involve velocity, force, and time since these terms are
involved in the formulation.

Free-Body Diagram.
• Establish the x, y, z inertial frame of reference and draw the free-

body diagram in order to account for all the forces and couple
moments that produce impulses on the body.

• The direction and sense of the initial and final velocity of the
body’s mass center, and the body’s angular velocity should
be established. If any of these motions is unknown, assume that the
sense of its components is in the direction of the positive inertial
coordinates.

• Compute the moment of inertia or 
• As an alternative procedure, draw the impulse and momentum

diagrams for the body or system of bodies. Each of these diagrams
represents an outlined shape of the body which graphically accounts
for the data required for each of the three terms in Eqs. 19–14 or
19–15, Fig. 19–4. These diagrams are particularly helpful in order to
visualize the “moment” terms used in the principle of angular
impulse and momentum, if application is about the IC or another
point other than the body’s mass center G or a fixed point O.

Principle of Impulse and Momentum.
• Apply the three scalar equations of impulse and momentum.
• The angular momentum of a rigid body rotating about a fixed

axis is the moment of plus about the axis. This is equal
to where is the moment of inertia of the body
about the axis.

• All the forces acting on the body’s free-body diagram will create
an impulse; however, some of these forces will do no work.

• Forces that are functions of time must be integrated to obtain the
impulse.

• The principle of angular impulse and momentum is often used to
eliminate unknown impulsive forces that are parallel or pass
through a common axis, since the moment of these forces is zero
about this axis.

Kinematics.
• If more than three equations are needed for a complete solution,

it may be possible to relate the velocity of the body’s mass center
to the body’s angular velocity using kinematics. If the motion
appears to be complicated, kinematic (velocity) diagrams may be
helpful in obtaining the necessary relation.

IOHO = IOv,
IGVmvG

IO.IG

VvG,
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The 20-lb disk shown in Fig. 19–5a is acted upon by a constant couple
moment of and a force of 10 lb which is applied to a cord
wrapped around its periphery. Determine the angular velocity of the
disk two seconds after starting from rest. Also, what are the force
components of reaction at the pin?

SOLUTION
Since angular velocity, force, and time are involved in the problems,
we will apply the principles of impulse and momentum to the
solution.

Free-Body Diagram. Fig. 19–5b. The disk’s mass center does not
move; however, the loading causes the disk to rotate clockwise.

The moment of inertia of the disk about its fixed axis of rotation is

Principle of Impulse and Momentum.

c

Solving these equations yields

Ans.

Ans.

b Ans.v2 = 132 rad>s
Ay = 30 lb

Ax = 0

 0 + 4 lb # ft12 s2 + [10 lb12 s2]10.75 ft2 = 0.1747v2

IAv1 + ©
L

t2

t1

MA dt = IAv2+21
 0 + Ay12 s2 - 20 lb12 s2 - 10 lb12 s2 = 0

m1vAy21 + ©
L

t2

t1

Fy dt = m1vAy221+ c2
 0 + Ax12 s2 = 0

m1vAx21 + ©
L

t2

t1

Fx dt = m1vAx221:+ 2

IA =
1
2
mr2 =

1
2
a 20 lb

32.2 ft>s2 b10.75 ft22 = 0.1747 slug # ft2

4 lb # ft

EXAMPLE 19.2

0.75 ft

M � 4 lb � ft

F � 10 lb
(a)

A

Ax

Ay

0.75 ftA

20 lb

4 lb � ft

10 lb
 (b)

y

x

V

Fig. 19–5
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EXAMPLE 19.3

The 100-kg spool shown in Fig. 19–6a has a radius of gyration
A cable is wrapped around the central hub of the spool,

and a horizontal force having a variable magnitude of
is applied, where t is in seconds. If the spool is initially

at rest, determine its angular velocity in 5 s. Assume that the spool
rolls without slipping at A.

P = 1t + 102 N
kG = 0.35 m.

G

A

P � (t � 10) N

(a)

0.75 m
0.4 m

981 N

G

P � (t � 10) N

A

NA

FA

vG

y

x

(b)

0.75 m
0.4 m

V

Fig. 19–6

= [100 kg (0.35 m)2 + (100 kg)(0.75 m)2]v2(0.75 m +  0.4 m)0 + B
L0

5 s

(t + 10) N dtR

b Ans.v2 = 1.05 rad>s
62.5(1.15) = 68.5v2

NOTE: Try solving this problem by applying the principle of impulse
and momentum about G and using the principle of linear impulse and
momentum in the x direction.

SOLUTION

Free-Body Diagram. From the free-body diagram, Fig. 19–6b, the
variable force P will cause the friction force to be variable, and
thus the impulses created by both P and must be determined by
integration. Force P causes the mass center to have a velocity to
the right, and so the spool has a clockwise angular velocity 

Principle of Impulse and Momentum. A direct solution for can
be obtained by applying the principle of angular impulse and
momentum about point A, the IC, in order to eliminate the unknown
friction impulse.

c IAv1 + ©
L
MA dt = IAv2+21

V

V.
vG

FA
FA
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The cylinder shown in Fig. 19–7a has a mass of 6 kg. It is attached to a
cord which is wrapped around the periphery of a 20-kg disk that has a
moment of inertia If the cylinder is initially moving
downward with a speed of , determine its speed in 3 s. Neglect
the mass of the cord in the calculation.

2 m>sIA = 0.40 kg # m2.

EXAMPLE 19.4

SOLUTION I
Free-Body Diagram. The free-body diagrams of the cylinder and
disk are shown in Fig. 19–7b. All the forces are constant since the
weight of the cylinder causes the motion. The downward motion of
the cylinder, causes of the disk to be clockwise.

Principle of Impulse and Momentum. We can eliminate and
from the analysis by applying the principle of angular impulse and

momentum about point A. Hence

Disk

c

Cylinder

Kinematics. Since then 
and Substituting and solving the
equations simultaneously for yields

Ans.1vB22 = 13.0 m>s T

1vB22
v2 = 1vB22>0.2 m = 51vB22.

v1 = 12 m>s2>10.2 m2 = 10 rad>sv = vB>r,
-6 kg12 m>s2 + T13 s2 - 58.86 N13 s2 = -6 kg1vB22

mB1vB21 + ©
L
Fy dt = mB1vB221+ c2

0.40 kg # m21v12 + T13 s210.2 m2 = 10.40 kg # m22v2

IAv1 + ©
L
MA dt = IAv2+21

Ay
Ax

VvB,

vB

y

x

T

58.86 N

0.2 m
A

Ay

Ax

196.2 N

T

(b)

V

Fig. 19–7

B

vB � 2 m/s

0.2 m
A

(a)
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SOLUTION II
Impulse and Momentum Diagrams. We can obtain directly
by considering the system consisting of the cylinder, the cord, and the
disk. The impulse and momentum diagrams have been drawn to
clarify application of the principle of angular impulse and momentum
about point A, Fig. 19–7c.

Principle of Angular Impulse and Momentum. Realizing that
and we havev2 = 51vB22,v1 = 10 rad>s

1vB22

c aa syst. angular
impulse

b
A11-22

= aa syst. angular
momentum

b
A2

+2aa syst. angular
momentum

b
A1

+1

Ans.1vB22 = 13.0 m>s T

= 16 kg21vB2210.2 m2 + 10.40 kg # m22[51vB2210.2 m2]
16 kg212 m>s210.2 m2 + 10.40 kg # m22110 rad>s2 + 158.86 N213 s210.2 m2

�

6 kg(2 m/s)

0.2 m
A �

58.86 N(3 s)

0.2 m
A

Ax (3 s)

Ay (3 s)

196.2 N(3 s)

6 kg(vB)2

0.2 m
A

0.40 kg � m2(10 rad/s) 0.40 kg � m2V2

(c)

Fig. 19–7 (cont.)
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The Charpy impact test is used in materials testing to determine the
energy absorption characteristics of a material during impact.The test
is performed using the pendulum shown in Fig. 19–8a, which has a
mass m, mass center at G, and a radius of gyration about G.
Determine the distance from the pin at A to the point P where the
impact with the specimen S should occur so that the horizontal force
at the pin A is essentially zero during the impact. For the calculation,
assume the specimen absorbs all the pendulum’s kinetic energy
gained during the time it falls and thereby stops the pendulum from
swinging when 

SOLUTION
Free-Body Diagram. As shown on the free-body diagram,
Fig. 19–8b, the conditions of the problem require the horizontal force
at A to be zero. Just before impact, the pendulum has a clockwise
angular velocity and the mass center of the pendulum is moving to
the left at 

Principle of Impulse and Momentum. We will apply the principle
of angular impulse and momentum about point A. Thus,

c

Eliminating the impulse and substituting 
yields

Factoring out and solving for we obtain

Ans.

NOTE: Point P, so defined, is called the center of percussion. By
placing the striking point at P, the force developed at the pin will be
minimized. Many sports rackets, clubs, etc. are designed so that
collision with the object being struck occurs at the center of
percussion. As a consequence, no “sting” or little sensation occurs in
the hand of the player. (Also see Probs. 17–66 and 19–1.)

rP = r +
kG

2

r

rP,mv1

[mkG
2 + mr2]v1 - m1rv12rP = 0

IA = mkG2 + mr21F dt

-m1rv12 +
L
F dt = 01:+ 2

m1vG21 + ©
L
F dt = m1vG22

IAv1 - a
L
F dtbrP = 0+21

IAv1 + ©MA dt = IAv2

1vG21 = rv1.
V1,

u = 0°.

rP

kG

EXAMPLE 19.5

y

x

A

Ay

Ax � 0

(b)

_
r

rP

G

P

W

F

vG

V

Fig. 19–8

rP
A

S

G

P

(a)

_
r

u
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FUNDAMENTAL PROBLEMS

F19–4. Gears of mass and have radii
of gyration about their respective mass centers of

and If gear is subjected to
the couple moment determine the angular
velocity of gear after it starts from rest.B 5 s

M = 10 N # m,
AkB = 150 mm.kA = 80 mm

50 kg10 kgA and BF19–1. The wheel has a radius of gyration about its
center of If it is subjected to a couple
moment of where is in seconds,
determine the angular velocity of the wheel when 
starting from rest.

t = 4 s,
tM = (3t2) N # m,

kO = 300 mm.O
60-kg

F19–5. The spool is subjected to a horizontal force
of If the spool rolls without slipping,
determine its angular velocity after it starts from rest.
The radius of gyration of the spool about its center of mass
is kG = 175 mm.

3 s
P = 150 N.

50-kg

F19–2. The wheel has a radius of gyration about its
mass center of If the wheel is subjected to
a couple moment of , determine its angular
velocity after it starts from rest and no slipping occurs.
Also, determine the friction force that develops between
the wheel and the ground.

6 s
M = 300 N # m

kO = 400 mm.O
300-kg

F19–3. If rod of negligible mass is subjected to the
couple moment determine the angular
velocity of the inner gear after it starts from
rest. The gear has a radius of gyration about its mass center
of and it rolls on the fixed outer gear.
Motion occurs in the horizontal plane.
kA = 100 mm,

t = 5 s10-kg
M = 9 N # m,

OA

F19–1

M � (3t2) N � m

O

F19–2

O

0.6 m

M � 300 N � m

F19–3

B

O

0.6 m
0.15 m

A M � 9 N � m

F19–6. The reel has a weight of and a radius of
gyration about its center of gravity of If it is
subjected to a torque of and starts from rest
when the torque is applied, determine its angular velocity in
3 seconds. The coefficient of kinetic friction between the
reel and the horizontal plane is mk = 0.15.

M = 25 lb # ft,
kG = 1.25 ft.

150 lb

F19–4

B

0.2 m

0.1 m

M � 10 N ·  m

A B

F19–5

G

P � 150 N

0.3 m

0.2 m

F19–6

1.5 ft

1 ft

M � 25 lb � ft
G

A
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PROBLEMS

19–3. Show that if a slab is rotating about a fixed axis
perpendicular to the slab and passing through its mass center
G, the angular momentum is the same when computed about
any other point P.

19–2. At a given instant, the body has a linear momentum
and an angular momentum computed

about its mass center. Show that the angular momentum of
the body computed about the instantaneous center of zero
velocity IC can be expressed as , where 
represents the body’s moment of inertia computed about
the instantaneous axis of zero velocity. As shown, the IC is
located at a distance away from the mass center G.rG>IC

IICHIC = IICV

HG = IGVL = mvG

•19–1. The rigid body (slab) has a mass m and rotates with
an angular velocity about an axis passing through the
fixed point O. Show that the momenta of all the particles
composing the body can be represented by a single vector
having a magnitude and acting through point P, called
the center of percussion, which lies at a distance

from the mass center G. Here is the
radius of gyration of the body, computed about an axis
perpendicular to the plane of motion and passing through G.

kGrP>G = k2
G>rG>O

mvG

V

*19–4. The pilot of a crippled jet was able to control his
plane by throttling the two engines. If the plane has a weight
of 17 000 lb and a radius of gyration of about
the mass center G, determine the angular velocity of the
plane and the velocity of its mass center G in if the
thrust in each engine is altered to and

as shown. Originally the plane is flying straight
at 1200 ft/s. Neglect the effects of drag and the loss of fuel.
T2 = 800 lb

T1 = 5000 lb
t = 5 s

kG = 4.7 ft

mvG

vG

G

V

P
rP/G

rG/O

O

Prob. 19–1

G         IGV

rG/IC

IC

mvG

Prob. 19–2

P

G

V

Prob. 19–3

1.25 ft
T2

T1

G

1.25 ft

Prob. 19–4
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19–7. The space shuttle is located in “deep space,” where
the effects of gravity can be neglected. It has a mass of
120 Mg, a center of mass at G, and a radius of gyration

about the x axis. It is originally traveling
forward at when the pilot turns on the engine at
A, creating a thrust , where t is in
seconds. Determine the shuttle’s angular velocity 2 s later.

T = 600(1 - e-0.3t) kN
v = 3 km>s

(kG)x = 14 m

19–6. The impact wrench consists of a slender 1-kg rod AB
which is 580 mm long, and cylindrical end weights at A and
B that each have a diameter of 20 mm and a mass of 1 kg.
This assembly is free to rotate about the handle and socket,
which are attached to the lug nut on the wheel of a car. If
the rod AB is given an angular velocity of 4 and it
strikes the bracket C on the handle without rebounding,
determine the angular impulse imparted to the lug nut.

rad>s

•19–5. The assembly weighs 10 lb and has a radius of
gyration about its center of mass G. The kinetic
energy of the assembly is when it is in the position
shown. If it rolls counterclockwise on the surface without
slipping, determine its linear momentum at this instant.

31 ft # lb
kG = 0.6 ft

*19–8. The 50-kg cylinder has an angular velocity of
30 when it is brought into contact with the horizontal
surface at C. If the coefficient of kinetic friction is ,
determine how long it will take for the cylinder to stop
spinning. What force is developed in link AB during this
time? The axle through the cylinder is connected to two
symmetrical links. (Only AB is shown.) For the computation,
neglect the weight of the links.

mC = 0.2
rad>s

1 ft

1 ft0.8 ft

G

Prob. 19–5

A

B

300 mm

300 mm

C

Prob. 19–6

2 m

T
AG

x

v = 3 km/s

z

y

Prob. 19–7

200 mm

A

B

C

500 mm

V � 30 rad/s

20�

Prob. 19–8
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P � 150 N

O

75 mm

150 mm

Probs. 19–9/10

A

M � 0.05 N � m 

mA � 0.8 kg 

B

kA � 31 mm 

mB � 0.3 kg 

kB � 15 mm 

40 mm

20 mm

Prob. 19–11

*19–12. The 200-lb flywheel has a radius of gyration about
its center of gravity O of . If it rotates
counterclockwise with an angular velocity of 
before the brake is applied, determine the time required for
the wheel to come to rest when a force of is
applied to the handle. The coefficient of kinetic friction
between the belt and the wheel rim is . (Hint:
Recall from the statics text that the relation of the tension
in the belt is given by , where is the angle of
contact in radians.) 

•19–13. The 200-lb flywheel has a radius of gyration about
its center of gravity O of . If it rotates
counterclockwise with a constant angular velocity of

before the brake is applied, determine the
required force P that must be applied to the handle to stop
the wheel in 2 s. The coefficient of kinetic friction between
the belt and the wheel rim is . (Hint: Recall from the
statics text that the relation of the tension in the belt is given
by , where is the angle of contact in radians.)bTB = TC emb

mk = 0.3

1200 rev>min

kO = 0.75 ft

bTB = TC emb

mk = 0.3

P = 200 lb

1200 rev>min
kO = 0.75 ft

19–11. A motor transmits a torque of to
the center of gear A. Determine the angular velocity of each
of the three (equal) smaller gears in 2 s starting from rest.
The smaller gears (B) are pinned at their centers, and the
masses and centroidal radii of gyration of the gears are
given in the figure.

M = 0.05 N # m

•19–9. If the cord is subjected to a horizontal force of
, and the gear rack is fixed to the horizontal plane,

determine the angular velocity of the gear in 4 s, starting from
rest. The mass of the gear is 50 kg, and it has a radius of
gyration about its center of mass O of .

19–10. If the cord is subjected to a horizontal force of
, and gear is supported by a fixed pin at O,

determine the angular velocity of the gear and the velocity
of the 20-kg gear rack in 4 s, starting from rest. The mass of
the gear is 50 kg and it has a radius of gyration of

. Assume that the contact surface between
the gear rack and the horizontal plane is smooth.
kO = 125 mm

P = 150 N

kO = 125 mm

P = 150 N

2.5 ft1.25 ft

1 ft

P

O

A B

v

C

Probs. 19–12/13

200 mm
C

500 mm 500 mm

400 mm
P (N)

5

2

A

P

B

t (s)

Prob. 19–14

19–14. The 12-kg disk has an angular velocity of
. If the brake ABC is applied such that the

magnitude of force P varies with time as shown, determine
the time needed to stop the disk. The coefficient of kinetic
friction at B is . Neglect the thickness of the brake.mk = 0.4

v = 20 rad>s
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•19–17. The 5-kg ball is cast on the alley with a backspin
of , and the velocity of its center of mass O is

. Determine the time for the ball to stop back
spinning, and the velocity of its center of mass at this
instant. The coefficient of kinetic friction between the ball
and the alley is .mk = 0.08

v0 = 5 m>s
v0 = 10 rad>s

*19–16. If the boxer hits the 75-kg punching bag with an
impulse of , determine the angular velocity of
the bag immediately after it has been hit. Also, find the
location d of point B, about which the bag appears to rotate.
Treat the bag as a uniform cylinder.

I = 20 N # s

19–15. The 1.25-lb tennis racket has a center of gravity at
G and a radius of gyration about G of .
Determine the position P where the ball must be hit so that
‘no sting’ is felt by the hand holding the racket, i.e., the
horizontal force exerted by the racket on the hand is zero.

kG = 0.625 ft

19–18. The smooth rod assembly shown is at rest when it
is struck by a hammer at A with an impulse of 10 .
Determine the angular velocity of the assembly and the
magnitude of velocity of its mass center immediately after it
has been struck. The rods have a mass per unit length of

.6 kg>m

N # s

A

B

1 m
1.5 m

0.5 m

1 m
d

I � 20 N � s

Prob. 19–16

rp

G

1 ft

P

Prob. 19–15

100 mm

O

v0 � 10 rad/s

v0 � 5 m/s

Prob. 19–17

y
x

z

0.2 m

0.2 m

0.2 m

0.2 m

A

10 N � s

30�

Prob. 19–18
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•19–21. For safety reasons, the 20-kg supporting leg of a
sign is designed to break away with negligible resistance at
B when the leg is subjected to the impact of a car.Assuming
that the leg is pinned at A and approximates a thin rod,
determine the impulse the car bumper exerts on it, if after
the impact the leg appears to rotate clockwise to a
maximum angle of .umax = 150°

*19–20. The 30-lb flywheel A has a radius of gyration about
its center of 4 in. Disk B weighs 50 lb and is coupled to the
flywheel by means of a belt which does not slip at its
contacting surfaces. If a motor supplies a counterclockwise
torque to the flywheel of , where t is in
seconds, determine the time required for the disk to attain
an angular velocity of 60 starting from rest.rad>s

M = (50t) lb # f t

19–19. The flywheel A has a mass of 30 kg and a radius of
gyration of . Disk B has a mass of 25 kg, is
pinned at D, and is coupled to the flywheel using a belt
which is subjected to a tension such that it does not slip at its
contacting surfaces. If a motor supplies a counterclockwise
torque or twist to the flywheel, having a magnitude of

, where t is in seconds, determine the
angular velocity of the disk 3 s after the motor is turned on.
Initially, the flywheel is at rest.

M = (12t) N # m

kC = 95 mm

19–22. The slender rod has a mass m and is suspended at its
end A by a cord. If the rod receives a horizontal blow giving
it an impulse I at its bottom B, determine the location y of
the point P about which the rod appears to rotate during
the impact.

vC

2 m

0.25 m

A

C

B

u

Prob. 19–21

M

A

C

125 mm
D

125 mmB

Prob. 19–19

6 in.

A

9 in.

B

M � (50t) lb�ft

Prob. 19–20

A

BI

P

l

y

Prob. 19–22
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19–26. The body and bucket of a skid steer loader has a
weight of and its center of gravity is located at 
Each of the four wheels has a weight of and a radius
of gyration about its center of gravity of If the engine
supplies a torque of to each of the rear drive
wheels, determine the speed of the loader in 
starting from rest. The wheels roll without slipping.

19–27. The body and bucket of a skid steer loader has a
weight of 2000 lb, and its center of gravity is located at G.
Each of the four wheels has a weight of 100 lb and a radius
of gyration about its center of gravity of 1 ft. If the loader
attains a speed of in 10 s, starting from rest,
determine the torque M supplied to each of the rear drive
wheels. The wheels roll without slipping.

20 ft>s

t = 10 s,
M = 100 lb # ft

1 ft.
100 lb

G.2000 lb,

•19–25. If the shaft is subjected to a torque of
, where t is in seconds, determine the

angular velocity of the assembly when , starting from
rest. Rods AB and BC each have a mass of 9 kg.

t = 3 s
M = (15t2) N # m

19–23. The 25-kg circular disk is attached to the yoke by
means of a smooth axle A. Screw C is used to lock the disk
to the yoke. If the yoke is subjected to a torque of

, where t is in seconds, and the disk is
unlocked, determine the angular velocity of the yoke when

, starting from rest. Neglect the mass of the yoke.

*19–24. The 25-kg circular disk is attached to the yoke by
means of a smooth axle A. Screw C is used to lock the disk
to the yoke. If the yoke is subjected to a torque of

, where t is in seconds, and the disk is
locked, determine the angular velocity of the yoke when

, starting from rest. Neglect the mass of the yoke.t = 3 s

M = (5t2) N # m

t = 3 s

M = (5t2) N # m

*19–28. The two rods each have a mass m and a length l,
and lie on the smooth horizontal plane. If an impulse I is
applied at an angle of 45° to one of the rods at midlength as
shown, determine the angular velocity of each rod just after
the impact. The rods are pin connected at B.

0.15 m

0.3 m

A

C

M � (5t2) N � m

Probs. 19–23/24

1 m

C

B

A

M � (15t2) N � m1 m

Prob. 19–25

2 ft 1 ft

1.25 ft 1.25 ftG

M
2 ft

Probs. 19–26/27

45�

l/2
l/2

l

A

C

I

B

Prob. 19–28
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x y

z

1.5 m

1.5 m

T � (5e(–t/10)) kN

T � (5e(–t/10)) kN

A

B

Prob. 19–31

x

C

B

A

y

z

0.6 m

0.6 m

0.6 m

0.2 m

M � (30e(�0.1t)) N � m

Prob. 19–32

19–31. The 200-kg satellite has a radius of gyration about
the centroidal z axis of . Initially it is rotating
with a constant angular velocity of .
If the two jets A and B are fired simultaneously and
produce a thrust of , where t is in seconds,
determine the angular velocity of the satellite, five seconds
after firing.

T = (5e—0.1t) kN

V0 = 51500 k6 rev>min
kz = 1.25 m

*19–32. If the shaft is subjected to a torque of
, where t is in seconds, determine the

angular velocity of the assembly when , starting from
rest. The rectangular plate has a mass of 25 kg. Rods AC
and BC have the same mass of 5 kg.

t = 5 s
M = (30e—0.1t) N # m

0.5 m

0.5 m

4 m

G

C

A

B

Prob. 19–29

A D

G

0.86 m
0.6 m

0.5 m

1.95 m 1.10 m
B C

M

Prob. 19–30

19–30. The frame of the roller has a mass of 5.5 Mg and a
center of mass at G. The roller has a mass of 2 Mg and
a radius of gyration about its mass center of . If
a torque of is applied to the rear wheels,
determine the speed of the compactor in , starting
from rest. No slipping occurs. Neglect the mass of the
driving wheels.

t = 4 s
M = 600 N # m

kA = 0.45 m

•19–29. The car strikes the side of a light pole, which is
designed to break away from its base with negligible
resistance. From a video taken of the collision it is observed
that the pole was given an angular velocity of 60
when AC was vertical. The pole has a mass of 175 kg, a
center of mass at G, and a radius of gyration about an axis
perpendicular to the plane of the pole assembly and passing
through G of . Determine the horizontal
impulse which the car exerts on the pole at the instant AC is
essentially vertical.

kG = 2.25 m

rad>s
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19.3 Conservation of Momentum

Conservation of Linear Momentum If the sum of all the
linear impulses acting on a system of connected rigid bodies is zero in a
specific direction, then the linear momentum of the system is constant, or
conserved in this direction, that is,

(19–16)

This equation is referred to as the conservation of linear momentum.
Without inducing appreciable errors in the calculations, it may be

possible to apply Eq. 19–16 in a specified direction for which the linear
impulses are small or nonimpulsive. Specifically, nonimpulsive forces
occur when small forces act over very short periods of time. Typical
examples include the force of a slightly deformed spring, the initial
contact force with soft ground, and in some cases the weight of the body.

Conservation of Angular Momentum The angular momentum
of a system of connected rigid bodies is conserved about the system’s
center of mass G, or a fixed point O, when the sum of all the angular
impulses about these points is zero or appreciably small (nonimpulsive).
The third of Eqs. 19–15 then becomes

(19–17)

This equation is referred to as the conservation of angular momentum. In
the case of a single rigid body, Eq. 19–17 applied to point G becomes

For example, consider a swimmer who executes a
somersault after jumping off a diving board. By tucking his arms and legs
in close to his chest, he decreases his body’s moment of inertia and thus
increases his angular velocity ( must be constant). If he straightens
out just before entering the water, his body’s moment of inertia is
increased, and so his angular velocity decreases. Since the weight of his
body creates a linear impulse during the time of motion, this example
also illustrates how the angular momentum of a body can be conserved
and yet the linear momentum is not. Such cases occur whenever the
external forces creating the linear impulse pass through either the center
of mass of the body or a fixed axis of rotation.

IGv

1IGv21 = 1IGv22.

aa syst. angular
momentum

b
O1

= aa syst. angular
momentum

b
O2

aa syst. linear
momentum

b
1
= aa syst. linear

momentum
b

2
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Procedure for Analysis

The conservation of linear or angular momentum should be applied
using the following procedure.

Free-Body Diagram.

• Establish the x, y inertial frame of reference and draw the free-
body diagram for the body or system of bodies during the time of
impact. From this diagram classify each of the applied forces as
being either “impulsive” or “nonimpulsive.”

• By inspection of the free-body diagram, the conservation of linear
momentum applies in a given direction when no external
impulsive forces act on the body or system in that direction;
whereas the conservation of angular momentum applies about a
fixed point O or at the mass center G of a body or system of
bodies when all the external impulsive forces acting on the body
or system create zero moment (or zero angular impulse) about O
or G.

• As an alternative procedure, draw the impulse and momentum
diagrams for the body or system of bodies. These diagrams are
particularly helpful in order to visualize the “moment” terms
used in the conservation of angular momentum equation, when it
has been decided that angular momenta are to be computed
about a point other than the body’s mass center G.

Conservation of Momentum.

• Apply the conservation of linear or angular momentum in the
appropriate directions.

Kinematics.

• If the motion appears to be complicated, kinematic (velocity)
diagrams may be helpful in obtaining the necessary kinematic
relations.
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EXAMPLE 19.6

The 10-kg wheel shown in Fig. 19–9a has a moment of inertia
Assuming that the wheel does not slip or rebound,

determine the minimum velocity it must have to just roll over the
obstruction at A.

SOLUTION
Impulse and Momentum Diagrams. Since no slipping or rebounding
occurs, the wheel essentially pivots about point A during contact. This
condition is shown in Fig. 19–9b, which indicates, respectively, the
momentum of the wheel just before impact, the impulses given to the
wheel during impact, and the momentum of the wheel just after impact.
Only two impulses (forces) act on the wheel. By comparison, the force at
A is much greater than that of the weight, and since the time of impact is
very short, the weight can be considered nonimpulsive. The impulsive
force F at A has both an unknown magnitude and an unknown direction

To eliminate this force from the analysis, note that angular momentum
about A is essentially conserved since

Conservation of Angular Momentum. With reference to Fig. 19–9b,

c

Kinematics. Since no slipping occurs, in general 
Substituting this into the above equation and

simplifying yields
(1)

Conservation of Energy.* In order to roll over the obstruction, the
wheel must pass position 3 shown in Fig. 19–9c. Hence, if [or

] is to be a minimum, it is necessary that the kinetic energy of the
wheel at position 2 be equal to the potential energy at position 3.
Placing the datum through the center of gravity, as shown in the
figure, and applying the conservation of energy equation, we have

Substituting and Eq. 1 into this equation, and solving,

Ans.1vG21 = 0.729 m>s:
v2 = 51vG22

506 + 5198.1 N210.03 m26
E12110 kg21vG222 + 1

210.156 kg # m22v2
2F + 506 =

5T26 + 5V26 = 5T36 + 5V36

1vG21
1vG22

1vG22 = 0.89211vG21
= vG>0.2 m = 5vG.

v = vG>r
10.2 m2110 kg21vG22 + 10.156 kg # m221v22

10.2 m - 0.03 m2110 kg21vG21 + 10.156 kg # m221v12 =
r¿m1vG21 + IGv1 = rm1vG22 + IGv2

1HA21 = 1HA22+21

198.1¢t2d L 0.
u.

vG
IG = 0.156 kg # m2.

*This principle does not apply during impact, since energy is lost during the collision.
However, just after impact, as in Fig. 19–9c, it can be used.

vG0.2 m

G

A
0.03 m

(a)

98.1 t

G

A
r¿ � (0.2 � 0.03) m

m(vG)1

G

A

(b)

G

A

d

r � 0.2 m

=
+

F dt

m(vG)2

�

u

IGV2

IGV1

�

(c)

G

(vG)2

0.03 m

98.1 N

Datum

2

3V2

Fig. 19–9
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The 5-kg slender rod shown in Fig. 19–10a is pinned at O and is
initially at rest. If a 4-g bullet is fired into the rod with a velocity of

, as shown in the figure, determine the angular velocity of the
rod just after the bullet becomes embedded in it.

SOLUTION
Impulse and Momentum Diagrams. The impulse which the bullet
exerts on the rod can be eliminated from the analysis, and the angular
velocity of the rod just after impact can be determined by considering
the bullet and rod as a single system.To clarify the principles involved,
the impulse and momentum diagrams are shown in Fig. 19–10b. The
momentum diagrams are drawn just before and just after impact.
During impact, the bullet and rod exert equal but opposite internal
impulses at A.As shown on the impulse diagram, the impulses that are
external to the system are due to the reactions at O and the weights of
the bullet and rod. Since the time of impact, is very short, the rod
moves only a slight amount, and so the “moments” of the weight
impulses about point O are essentially zero. Therefore angular
momentum is conserved about this point.

¢t,

400 m>s

EXAMPLE 19.7

0.25 m

O

0.75 mB

vB � 400 m/s

30�

(a)

�

O

30�

(b)

mB(vB)1
0.75 m

A

O

G
49.05 t

0.0392 t

Oy    t

Ox    t�

�

�

�

� G mR(vG)2

mB(vB)2

IGV2

O

0.5 m
0.75 m

Conservation of Angular Momentum. From Fig. 19–10b, we have

a ©1HO21 = ©1HO22+21

G
(vG)2

(vB)2

V2

O

0.5 m
0.75 m

(c)

Fig. 19–10

mB1vB2210.75 m2 +mR1vG2210.5 m2 + IGv2mB1vB21 cos 30°10.75 m2 =

or
(1)

Kinematics. Since the rod is pinned at O, from Fig. 19–10c we have

Substituting into Eq. 1 and solving yields

d Ans.v2 = 0.623 rad>s

1vG22 = 10.5 m2v2 1vB22 = 10.75 m2v2

1.039 = 0.0031vB22 + 2.501vG22 + 0.4167v2

10.004 kg21vB2210.75 m2 + 15 kg21vG2210.5 m2 + C 1
1215 kg211 m22 Dv2

10.004 kg21400 cos 30° m>s210.75 m2 =
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*19.4 Eccentric Impact

The concepts involving central and oblique impact of particles were
presented in Sec. 15.4. We will now expand this treatment and discuss the
eccentric impact of two bodies. Eccentric impact occurs when the line
connecting the mass centers of the two bodies does not coincide with the
line of impact.*  This type of impact often occurs when one or both of the
bodies are constrained to rotate about a fixed axis. Consider, for example,
the collision at C between the two bodies A and B, shown in Fig. 19–11a.
It is assumed that just before collision B is rotating counterclockwise with
an angular velocity and the velocity of the contact point C located
on A is Kinematic diagrams for both bodies just before collision
are shown in Fig. 19–11b. Provided the bodies are smooth, the impulsive
forces they exert on each other are directed along the line of impact.
Hence, the component of velocity of point C on body B, which is directed
along the line of impact, is Fig. 19–11b. Likewise, on body
A the component of velocity along the line of impact is In
order for a collision to occur,

During the impact an equal but opposite impulsive force P is exerted
between the bodies which deforms their shapes at the point of contact.
The resulting impulse is shown on the impulse diagrams for both bodies,
Fig. 19–11c. Note that the impulsive force at point C on the rotating body
creates impulsive pin reactions at O. On these diagrams it is assumed
that the impact creates forces which are much larger than the
nonimpulsive weights of the bodies, which are not shown. When the
deformation at point C is a maximum, C on both the bodies moves with
a common velocity v along the line of impact, Fig. 19–11d. A period of
restitution then occurs in which the bodies tend to regain their original
shapes. The restitution phase creates an equal but opposite impulsive
force R acting between the bodies as shown on the impulse diagram,
Fig. 19–11e. After restitution the bodies move apart such that point C on
body B has a velocity and point C on body A has a velocity 
Fig. 19–11f, where 

In general, a problem involving the impact of two bodies requires
determining the two unknowns and assuming and

are known (or can be determined using kinematics, energy
methods, the equations of motion, etc.). To solve such problems, two
equations must be written. The first equation generally involves
application of the conservation of angular momentum to the two bodies.
In the case of both bodies A and B, we can state that angular momentum
is conserved about point O since the impulses at C are internal to the
system and the impulses at O create zero moment (or zero angular
impulse) about O. The second equation can be obtained using the
definition of the coefficient of restitution, e, which is a ratio of the
restitution impulse to the deformation impulse.

1vB21
1vA211vB22,1vA22

1vB22 7 1vA22.
1uA22,1vB22

1vA21 7 1vB21.
1vA21.1uA21

1vB21 = 1vB21r,

1uA21.
1VB21,

* When these lines coincide, central impact occurs and the problem can be analyzed as
discussed in Sec. 15.4.

Here is an example of eccentric impact
occurring between this bowling ball
and pin.

A
B

C

O

Line
of impact

Plane of impact

(a)

Fig. 19–11
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Is is important to realize, however, that this analysis has only a very
limited application in engineering, because values of e for this case have
been found to be highly sensitive to the material, geometry, and the velocity
of each of the colliding bodies. To establish a useful form of the coefficient
of restitution equation we must first apply the principle of angular
impulse and momentum about point O to bodies B and A separately.
Combining the results, we then obtain the necessary equation. Proceeding
in this manner, the principle of impulse and momentum applied to body
B from the time just before the collision to the instant of maximum
deformation, Figs. 19–11b, 19–11c, and 19–11d, becomes

a (19–18)

Here is the moment of inertia of body B about point O. Similarly,
applying the principle of angular impulse and momentum from the
instant of maximum deformation to the time just after the impact,
Figs. 19–11d, 19–11e, and 19–11f, yields

a (19–19)

Solving Eqs. 19–18 and 19–19 for and respectively, and
formulating e, we have

e = L
R dt

L
P dt

=
r1vB22 - rv
rv - r1vB21 =

1vB22 - v
v - 1vB21

1R dt,1P dt

IOv + r
L
R dt = IO1vB22+21

IO

IO1vB21 + r
L
P dt = IOv+21

A

B

C

O

(b)

(vB)1 � (vB)1r

r

(vA)1

Velocity
before collision

C

(VB)1

(uA)1

A

B

C

O

(c)

r

Deformation
impulse

C

� Oy dt

� Ox dt

� Pdt

� Pdt A B

C

O

(d)

v � vr

r

u

v

Velocity at maximum
deformation

V

� O¿y dt

� O¿x dt

A

B

C

O

(e)

r

Restitution
impulse

C

� Rdt

� Rdt

A

B

C

O

(f)

(vB)2 � (vB)2r

r

(vA)2

Velocity
after collision

(uA)2
C

(VB)2

Fig. 19–11 (cont.)
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In the same manner, we can write an equation which relates the
magnitudes of velocity and of body A. The result is

Combining the above two equations by eliminating the common velocity
yields the desired result, i.e.,

(19–20)

This equation is identical to Eq. 15–11, which was derived for the central
impact between two particles. It states that the coefficient of restitution
is equal to the ratio of the relative velocity of separation of the points of
contact (C) just after impact to the relative velocity at which the points
approach one another just before impact. In deriving this equation, we
assumed that the points of contact for both bodies move up and to the
right both before and after impact. If motion of any one of the contacting
points occurs down and to the left, the velocity of this point should be
considered a negative quantity in Eq. 19–20.

e =
1vB22 - 1vA22
1vA21 - 1vB211+Q2

v

e =
v - 1vA22
1vA21 - v

1vA221vA21

During impact the columns of many highway signs are intended to break out of their
supports and easily collapse at their joints. This is shown by the slotted connections at
their base and the breaks at the column’s midsection.
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The 10-lb slender rod is suspended from the pin at A, Fig. 19–12a. If a
2-lb ball B is thrown at the rod and strikes its center with a velocity of

, determine the angular velocity of the rod just after impact.The
coefficient of restitution is 

SOLUTION

Conservation of Angular Momentum. Consider the ball and rod
as a system, Fig. 19–12b.Angular momentum is conserved about point
A since the impulsive force between the rod and ball is internal. Also,
the weights of the ball and rod are nonimpulsive. Noting the directions
of the velocities of the ball and rod just after impact as shown on the
kinematic diagram, Fig. 19–12c, we require

a

Since then

(1)

Coefficient of Restitution. With reference to Fig. 19–12c, we have

Solving,

d Ans.v2 = 3.65 rad>s
1vB22 = -6.52 ft>s = 6.52 ft>s ;

 12.0 = 1.5v2 - 1vB22
e =
1vG22 - 1vB22
1vB21 - 1vG21 0.4 =

11.5 ft2v2 - 1vB22
30 ft>s - 0

1:+ 2

2.795 = 0.093171vB22 + 0.9317v2

1vG22 = 1.5v2

a 10 lb

32.2 ft>s2 b1vG2211.5 ft2 + c 1
12
a 10 lb

32.2 ft>s2 b13 ft22 dv2

a 2 lb

32.2 ft>s2 b130 ft>s211.5 ft2 = a 2 lb

32.2 ft>s2 b1vB2211.5 ft2 +

mB1vB2111.5 ft2 = mB1vB2211.5 ft2 + mR1vG2211.5 ft2 + IGv2

1HA21 = 1HA22+21

e = 0.4.
30 ft>s

EXAMPLE 19.8

A

(b)

Ay

Ax

y

x

2 lb
10 lb

1.5 ft

1.5 ft
(vB)1 � 30 ft/s

A

(c)

B

G
(vG)2

V2

(vB)2

Fig. 19–12

1.5 ft

1.5 ft

30 ft/s

A

(a)

B
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1.75 m

750 mm

G

G

A

B

vA � 3 rad/s

Prob. 19–33

PROBLEMS

19–35. A horizontal circular platform has a weight of
300 lb and a radius of gyration kz = 8 ft about the z axis
passing through its center O. The platform is free to rotate
about the z axis and is initially at rest. A man having a
weight of 150 lb begins to run along the edge in a circular
path of radius 10 ft. If he maintains a speed of 4 relative
to the platform, determine the angular velocity of the
platform. Neglect friction.

ft>s

19–34. A 75-kg man stands on the turntable A and rotates a
6-kg slender rod over his head. If the angular velocity of the
rod is measured relative to the man and the
turntable is observed to be rotating in the opposite direction
with an angular velocity of , determine the radius
of gyration of the man about the z axis. Consider the turntable
as a thin circular disk of 300-mm radius and 5-kg mass.

vt = 3 rad>s
vr = 5 rad>s

•19–33. The 75-kg gymnast lets go of the horizontal bar in
a fully stretched position A, rotating with an angular
velocity of . Estimate his angular velocity
when he assumes a tucked position B. Assume the gymnast
at positions A and B as a uniform slender rod and a uniform
circular disk, respectively.

vA = 3 rad>s

z

O

10 ft

Prob. 19–35

z

1 m1 m

A

Prob. 19–34

z

O

n

t

10 ft

Prob. 19–36

*19–36. A horizontal circular platform has a weight of
300 lb and a radius of gyration about the z axis
passing through its center O. The platform is free to rotate
about the z axis and is initially at rest. A man having a
weight of 150 lb throws a 15-lb block off the edge of the
platform with a horizontal velocity of 5 , measured
relative to the platform. Determine the angular velocity of
the platform if the block is thrown (a) tangent to the
platform, along the axis, and (b) outward along a radial
line, or axis. Neglect the size of the man.+n

+ t

ft>s

kz = 8 ft
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19–39. A 150-lb man leaps off  the circular platform with a
velocity of , relative to the platform.
Determine the angular velocity of the platform afterwards.
Initially the man and platform are at rest. The platform
weighs 300 lb and can be treated as a uniform circular disk.

vm>p = 5 ft>s

19–38. The satellite’s body C has a mass of 200 kg and a
radius of gyration about the z axis of . If the
satellite rotates about the z axis with an angular velocity of

, when the solar panels are in a position of
, determine the angular velocity of the satellite when

the solar panels are rotated to a position of .
Consider each solar panel to be a thin plate having a mass
of 30 kg. Neglect the mass of the rods.

u = 90°
u = 0°

A and B5 rev>s
kz = 0.2 m

•19–37. The man sits on the swivel chair holding two 5-lb
weights with his arms outstretched. If he is rotating at
3 in this position, determine his angular velocity when
the weights are drawn in and held 0.3 ft from the axis of
rotation. Assume he weighs 160 lb and has a radius of
gyration about the z axis. Neglect the mass of his
arms and the size of the weights for the calculation.

kz = 0.55 ft

rad>s

*19–40. The 150-kg platform can be considered as a
circular disk. Two men, A and B, of  60-kg and 75-kg mass,
respectively, stand on the platform when it is at rest. If they
start to walk around the circular paths with speeds of

and , measured relative to the
platform, determine the angular velocity of the platform.

vB>p = 2 m>svA>p = 1.5 m>s

z

3 rad/s

2.5 ft2.5 ft

Prob. 19–37

0.5 m
0.5 m

0.4 m

B

y

z

A
Cx

u

Prob. 19–38

8 ft

10 ft

vm/p � 5 ft/s

Prob. 19–39

2 m

2.5 m

3 m

B

A
vA/p = 1.5 m/s

vB/p = 2 m/s

Prob. 19–40
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180 mm

20 mmA

V1

Prob. 19–44

z

b

b

0.75 m
0.75 m

A

B

n
n

t

t

V � 2 rad/s

Prob. 19–41

P

V1

a a

Prob. 19–42

A
B

30 mm

v2

v1 � 0.2 m/s

125 mm

Prob. 19–43

19–43. A ball having a mass of 8 kg and initial speed of
rolls over a 30-mm-long depression.Assuming

that the ball rolls off the edges of contact first A, then B,
without slipping, determine its final velocity when it
reaches the other side.

v2

v1 = 0.2 m>s

19–42. A thin square plate of mass m rotates on the
smooth surface with an angular velocity Determine its
new angular velocity just after the hook at its corner strikes
the peg P and the plate starts to rotate about P without
rebounding.

V1.

•19–41. Two children A and B, each having a mass of 30 kg,
sit at the edge of the merry-go-round which rotates at

. Excluding the children, the merry-go-round
has a mass of 180 kg and a radius of gyration .
Determine the angular velocity of the merry-go-round if A
jumps off horizontally in the direction with a speed of
2 , measured relative to the merry-go-round.What is the
merry-go-round’s angular velocity if B then jumps off
horizontally in the direction with a speed of 2 ,
measured relative to the merry-go-round? Neglect friction
and the size of each child.

m>s- t

m>s
-n

kz = 0.6 m
v = 2 rad>s

*19–44. The 15-kg  thin ring strikes the 20-mm-high step.
Determine the smallest angular velocity the ring can
have so that it will just roll over the step at A without
slipping

V1
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3 m

0.5 m

A

B

u

C

Prob. 19–45

1 ft
v

A

A B

CDS

B C

D

1 ft

Prob. 19–46

z

A

300 mm

200 mm

600 m/ s

100 mm

Prob. 19–47

A B C

D

800 mm 400 mm

300 mm

u

Prob. 19–48

19–47. The target is a thin 5-kg circular disk that can rotate
freely about the z axis. A 25-g bullet, traveling at ,
strikes the target at A and becomes embedded in it.
Determine the angular velocity of the target after  the
impact. Initially, it is at rest.

600 m>s

19–46. The 10-lb block slides on the smooth surface when
the corner D hits a stop block S. Determine the minimum
velocity v the block should have which would allow it to tip
over on its side and land in the position shown. Neglect the
size of S. Hint: During impact consider the weight of the
block to be nonimpulsive.

•19–45. The uniform pole has a mass of 15 kg and falls
from rest when It strikes the edge at A when

. If the pole then begins to pivot about this point
after contact, determine the pole’s angular velocity just
after the impact. Assume that the pole does not slip at B as
it falls until it strikes A.

u = 60°
u = 90°.

*19–48. A 2-kg mass of putty D strikes the uniform 10-kg
plank ABC with a velocity of . If the putty remains
attached to the plank, determine the maximum angle of
swing before the plank momentarily stops. Neglect the size
of the putty.

u

10 m>s
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0.3 m

0.225 m

1 m

B

C

A

Prob. 19–49

3 ft

1 ft

0.5 ft

C

D

B
H

A

Prob. 19–50

150 mm

C

u

150 mm

Prob. 19–51

(vG)1 � 6 ft/s

r � 0.5 ft

G

2 ft

0.5 ft

z

2 ft

OB

A

Prob. 19–52

19–51. The disk has a mass of 15 kg. If it is released from
rest when , determine the maximum angle of
rebound after it collides with the wall. The coefficient of
restitution between the disk and the wall is . When

, the disk hangs such that it just touches the wall.
Neglect friction at the pin C.
u = 0°

e = 0.6

uu = 30°

19–50. The rigid 30-lb plank is struck by the 15-lb hammer
head H. Just before the impact the hammer is gripped
loosely and has a vertical velocity of . If the
coefficient of restitution between the hammer head and the
plank is , determine the maximum height attained
by the 50-lb block D. The block can slide freely along the
two vertical guide rods. The plank is initially in a horizontal
position.

e = 0.5

75 ft>s

•19–49. The uniform 6-kg slender rod AB is given a slight
horizontal disturbance when it is in the vertical position and
rotates about B without slipping. Subsequently, it strikes the
step at C. The impact is perfectly plastic and so the rod
rotates about C without slipping after the impact.
Determine the angular velocity of the rod when it is in the
horizontal position shown.

*19–52. The mass center of the 3-lb ball has a velocity of
when it strikes the end of the smooth 5-lb

slender bar which is at rest. Determine the angular velocity
of the bar about the z axis just after impact if .e = 0.8

(vG)1 = 6 ft>s
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19–55. The pendulum consists of a 10-lb sphere and 4-lb
rod. If it is released from rest when , determine the
angle of rebound after the sphere strikes the floor. Take

.e = 0.8
u

u = 90°

19–54. The 4-lb rod AB hangs in the vertical position. A 
2-lb block, sliding on a smooth horizontal surface with a
velocity of 12 , strikes the rod at its end B. Determine
the velocity of the block immediately after the collision.The
coefficient of restitution between the block and the rod at B
is .e = 0.8

ft>s

•19–53. The 300-lb bell is at rest in the vertical position
before  it is struck by a 75-lb wooden post suspended from
two equal-length ropes. If the post is released from rest at

, determine the angular velocity of the bell and the
velocity of the post immediately after the impact. The
coefficient of restitution between the bell and the post is

. The center of gravity of the bell is located at point
G and its radius of gyration about G is .kG = 1.5 ft
e = 0.6

u = 45°

*19–56. The solid ball of mass m is dropped with a velocity
onto the edge of the rough step. If it rebounds

horizontally off the step with a velocity , determine the
angle at which contact occurs. Assume no slipping when
the ball strikes the step. The coefficient of restitution is e.

u

v2

v1

3 ft

4.5 ft

G

u u

Prob. 19–53

B

A

3 ft

12 ft/s

Prob. 19–54

0.3 ft

0.3 ft

2 ft

O u

Prob. 19–55

r
v1

v2

u

Prob. 19–56
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19A

C

B

D

P19–4

A

M

B

P19–2

A

B

P19–3

A

B

G

P19–1

CONCEPTUAL PROBLEMS

P19–3. Why is it necessary to have the tail blade on the
helicopter that spins perpendicular to the spin of the main
blade Explain your answer using numerical values and
an impulse and momentum analysis.

A?

B

P19–2. The swing bridge opens and closes by turning 
using a motor located under the center of the deck at that
applies a torque to the bridge. If the bridge was
supported at its end , would the same torque open the
bridge at the same time, or would it open slower or faster?
Explain your answer using numerical values and an impulse
and momentum analysis. Also, what are the benefits of
making the bridge have the variable depth as shown?

B
M

A
90°

P19–1. The soil compactor moves forward at constant
velocity by supplying power to the rear wheels. Use
appropriate numerical data for the wheel, roller, and body
and calculate the angular momentum of this system about
point at the ground, point on the rear axle, and point 
the center of gravity for the system.

G,BA

P19–4. The amusement park ride consists of two gondolas
and , and counterweights and that swing in

opposite directions. Using realistic dimensions and mass,
calculate the angular momentum of this system for any
angular position of the gondolas. Explain through analysis
why it is a good idea to design this system to have
counterweights with each gondola.

DCBA
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19

HG � IGV

L � mvG

G

A

d

General plane motion

d

G

L � mvG

vG � vA

Translation

CHAPTER REVIEW

Linear and Angular Momentum

The linear and angular momentum of a
rigid body can be referenced to its mass
center G.

If the angular momentum is to be
determined about an axis other than the
one passing through the mass center, then
the angular momentum is determined by
summing vector and the moment of
vector about this axis.L

HG

Principle of Impulse and Momentum

The principles of linear and angular
impulse and momentum are used to
solve problems that involve force,
velocity, and time. Before applying these
equations, it is important to establish the
x, y, z inertial coordinate system. The
free-body diagram for the body should
also be drawn in order to account for all
of the forces and couple moments that
produce impulses on the body.

HA = IGv + 1mvG2dHO = IOvHA = 1mvG2d
HG = IGvHG = IGvHG = 0

L = mvGL = mvGL = mvG

IGv1 + ©
L

t2

t1

MG dt = IGv2

m1vGy21 + ©
L

t2

t1

Fy dt = m1vGy22

m1vGx21 + ©
L

t2

t1

Fx dt = m1vGx22

G

L � mvG

HG � IGV

V

O

Rotation about a fixed axis
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Conservation of Momentum

Provided the sum of the linear impulses
acting on a system of connected rigid
bodies is zero in a particular direction,
then the linear momentum for the
system is conserved in this direction.
Conservation of angular momentum
occurs if the impulses pass through an
axis or are parallel to it. Momentum is
also conserved if the external forces are
small and thereby create nonimpulsive
forces on the system. A free-body
diagram should accompany any
application in order to classify the forces
as impulsive or nonimpulsive and to
determine an axis about which the
angular momentum may be conserved.

aa syst. angular
momentum

b
O1

= aa syst. angular
momentum

b
O2

aa syst. linear
momentum

b
1
= aa syst. linear

momentum
b

2

Eccentric Impact

If the line of impact does not coincide
with the line connecting the mass centers
of two colliding bodies, then eccentric
impact will occur. If the motion of the
bodies just after the impact is to be
determined, then it is necessary to
consider a conservation of momentum
equation for the system and use the
coefficient of restitution equation.

e =
1vB22 - 1vA22
1vA21 - 1vB21



Planar Kinematics 
and Kinetics of a 
Rigid Body

Having presented the various topics in planar kinematics and kinetics in
Chapters 16 through 19, we will now summarize these principles and
provide an opportunity for applying them to the solution of various types
of problems.

Kinematics. Here we are interested in studying the geometry of
motion, without concern for the forces which cause the motion. Before
solving a planar kinematics problem, it is first necessary to classify the
motion as being either rectilinear or curvilinear translation, rotation
about a fixed axis, or general plane motion. In particular, problems
involving general plane motion can be solved either with reference to a
fixed axis (absolute motion analysis) or using translating or rotating
frames of reference (relative motion analysis). The choice generally
depends upon the type of constraints and the problem’s geometry. In all
cases, application of the necessary equations can be clarified by drawing
a kinematic diagram. Remember that the velocity of a point is always
tangent to its path of motion, and the acceleration of a point can have
components in the directions when the path is curved.

Translation. When the body moves with rectilinear or curvilinear
translation, all the points on the body have the same motion.

aB = aAvB = vA

n–t

2
R E V I E W
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Rotation About a Fixed Axis. Angular Motion.
Variable Angular Acceleration. Provided a mathematical relationship is
given between any two of the four variables , , , and , then a third
variable can be determined by solving one of the following equations which
relate all three variables.

Constant Angular Acceleration. The following equations apply when it is
absolutely certain that the angular acceleration is constant.

u = u0 + v0t + 1
2act

2   v = v0 + act   v2 = v2
0 + 2ac1u - u02

a du = v dva =
dv

dt
v =

du

dt

tavu

General Plane Motion—Relative-Motion Analysis. Recall that
when translating axes are placed at the “base point” , the relative motion
of point with respect to is simply circular motion of B about A. The
following equations apply to two points and located on the same
rigid body.

Rotating and translating axes are often used to analyze the motion of rigid
bodies which are connected together by collars or slider blocks.

Kinetics. To analyze the forces which cause the motion we must use
the principles of kinetics. When applying the necessary equations, it is
important to first establish the inertial coordinate system and define the
positive directions of the axes.The directions should be the same as those
selected when writing any equations of kinematics if simultaneous
solution of equations becomes necessary.

Equations of Motion. These equations are used to determine
accelerated motions or forces causing the motion. If used to determine
position, velocity, or time of motion, then kinematics will have to be
considered to complete the solution. Before applying the equations of
motion, always draw a free-body diagram in order to identify all the forces

aB = aA + æ
#
* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz

vB = vA + æ * rB>A + 1vB>A2xyz

aB = aA + aB>A = aA + A * rB>A - v2rB>A
vB = vA + vB>A = vA + V * rB>A

BA
AB

A

a = A * r - v2ran = v2rat = ar
v = V * rv = vr

Motion of Point P. Once and have been determined, then the
circular motion of point can be specified using the following scalar or
vector equations.

P
AV
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acting on the body.Also, establish the directions of the acceleration of the
mass center and the angular acceleration of the body. (A kinetic diagram
may also be drawn in order to represent and graphically. This
diagram is particularly convenient for resolving into components
and for identifying the terms in the moment sum )

The three equations of motion are

In particular, if the body is rotating about a fixed axis, moments may
also be summed about point on the axis, in which case

Work and Energy. The equation of work and energy is used to solve
problems involving force, velocity, and displacement. Before applying this
equation, always draw a free-body diagram of the body in order to
identify the forces which do work. Recall that the kinetic energy of the
body is due to translational motion of the mass center, , and rotational
motion of the body, .

where

(variable force)

(constant force)

(weight)

(spring)

(constant couple moment)

If the forces acting on the body are conservative forces, then apply 
the conservation of energy equation. This equation is easier to use than
the equation of work and energy, since it applies only at two points on the
path and does not require calculation of the work done by a force as the
body moves along the path.

where and 

Ve = 1
2ks

2 1elastic potential energy2
Vg = Wy 1gravitational potential energy2

V = Vg + Ve

T1 + V1 = T2 + V2

UM = Mu

Us = -112ks2
2 - 1

2ks
2
12

UW = -W ¢y

UFc = Fc cos u1s2 - s12
UF = 1 F cos u ds

T = 1
2 mv

2
G + 1

2 IGv
2

T1 + ©U1-2 = T2

V

vG

©MO = ©1mk2O = IOa

O

©MG = IGa or ©MP = ©1mk2P
©Fy = m1aG2y
©Fx = m1aG2x

©1mk2P.
maG
IGAmaG
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Impulse and Momentum. The principles of linear and angular
impulse and momentum are used to solve problems involving force,
velocity, and time. Before applying the equations, draw a free-body
diagram in order to identify all the forces which cause linear and angular
impulses on the body. Also, establish the directions of the velocity of the
mass center and the angular velocity of the body just before and just after
the impulses are applied. (As an alternative procedure, the impulse and
momentum diagrams may accompany the solution in order to graphically
account for the terms in the equations. These diagrams are particularly
advantageous when computing the angular impulses and angular
momenta about a point other than the body’s mass center.)

or

Conservation of Momentum. If nonimpulsive forces or no
impulsive forces act on the body in a particular direction, or if the motions
of several bodies are involved in the problem, then consider applying the
conservation of linear or angular momentum for the solution.
Investigation of the free-body diagram (or the impulse diagram) will aid
in determining the directions along which the impulsive forces are zero, or
axes about which the impulsive forces create zero angular impulse. For
these cases,

The problems that follow involve application of all the above concepts.
They are presented in random order so that practice may be gained at
identifying the various types of problems and developing the skills
necessary for their solution.

1HO21 = 1HO22
m1vG21 = m1vG22

© 1 MO dt = 1HO221HO21 +

© 1 MG dt = 1HG221HG21 +

© 1 F dt = m1vG22m1vG21 +
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P

PR

4 in.

8 in.

D

2 in.

S

20 rad/s

R

s

v

Probs. R2–1/2

REVIEW PROBLEMS

R2–5. The 6-lb slender rod is originally at rest, suspended
in the vertical position. Determine the distance where the
1-lb ball, traveling at , should strike the rod so
that it does not create a horizontal impulse at .What is the
rod’s angular velocity just after the impact? Take .e = 0.5

A
v = 50 ft>s

d

R2–3. The 6-lb slender rod is released from rest when
it is in the horizontal position so that it begins to rotate
clockwise. A 1-lb ball is thrown at the rod with a velocity

. The ball strikes the rod at at the instant the
rod is in the vertical position as shown. Determine the
angular velocity of the rod just after the impact. Take

and .

*R2–4. The 6-lb slender rod is originally at rest,
suspended in the vertical position. A 1-lb ball is thrown at
the rod with a velocity and strikes the rod at .
Determine the angular velocity of the rod just after the
impact. Take and .d = 2 fte = 0.7

Cv = 50 ft>s
AB

d = 2 fte = 0.7

Cv = 50 ft>s

AB

R2–1. An automobile transmission consists of the
planetary gear system shown. If the ring gear is held fixed
so that , and the shaft and sun gear , rotates at

, determine the angular velocity of each planet gear
and the angular velocity of the connecting rack , which

is free to rotate about the center shaft .

R2–2. An automobile transmission consists of the
planetary gear system shown. If the ring gear rotates at

, and the shaft and sun gear , rotates at
, determine the angular velocity of each planet gear

and the angular velocity of the connecting rack , which
is free to rotate about the center shaft .s

DP
20 rad>s

SsvR = 2 rad>s
R

s
DP

20 rad>s
SsvR = 0
R

R2–6. At a given instant, the wheel rotates with the
angular motions shown. Determine the acceleration of the
collar at at this instant.A

A

B

C

d

� 50 ft/sv

3 ft

Probs. R2–3/4/5

A

60�

500 mm

B 150 mm

30�

� 8 rad/s
� 16 rad/s2a
v

Prob. R2–6
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R2–9. The gear rack has a mass of 6 kg, and the gears each
have a mass of 4 kg and a radius of gyration of 
about their center. If the rack is originally moving
downward at , when , determine the speed of the
rack when . The gears are free to rotate about
their centers, and .BA

s = 600 mm
s = 02 m>s

k = 30 mm

*R2–8. The 50-kg cylinder has an angular velocity of
when it is brought into contact with the surface at

. If the coefficient of kinetic friction is , determine
how long it will take for the cylinder to stop spinning. What
force is developed in link during this time? The axis of
the cylinder is connected to two symmetrical links. (Only

is shown.) For the computation, neglect the weight of
the links.
AB

AB

mk = 0.2C
30 rad>s

R2–7. The small gear which has a mass can be treated as
a uniform disk. If it is released from rest at , and rolls
along the fixed circular gear rack, determine the angular
velocity of the radial line at the instant .u = 90°AB

u = 0°
m

R2–10. The gear has a mass of 2 kg and a radius of
gyration . The connecting link (slender
rod) and slider block at have a mass of 4 kg and 1 kg,
respectively. If the gear has an angular velocity 
at the instant , determine the gear’s angular velocity
when .u = 0°

u = 45°
v = 8 rad>s

B
ABkA = 0.15 m

A

B

r

R

u

Prob. R2–7

BA

200 mm

500 mm

C

� 30 rad/sv

Prob. R2–8

s

A B

50 mm50 mm

Prob. R2–9

� 8 rad/s

0.6 m

45�

B

A

0.2 m

v

u

Prob. R2–10
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R2–13. The 10-lb cylinder rests on the 20-lb dolly. If the
system is released from rest, determine the angular velocity
of the cylinder in 2 s. The cylinder does not slip on the dolly.
Neglect the mass of the wheels on the dolly.

R2–14. Solve Prob. R2–13 if the coefficients of static and
kinetic friction between the cylinder and the dolly are

and , respectively.m = 0.2ms = 0.3

*R2–12. The revolving door consists of four doors which
are attached to an axle . Each door can be assumed to be
a 50-lb thin plate. Friction at the axle contributes a moment
of which resists the rotation of the doors. If a woman
passes through one door by always pushing with a force

perpendicular to the plane of the door as shown,
determine the door’s angular velocity after it has rotated
90°. The doors are originally at rest.

P = 15 lb

2 lb # ft
AB

*R2–11. The operation of a doorbell requires the use of
an electromagnet, that attracts the iron clapper that is
pinned at end and consists of a 0.2-kg slender rod to
which is attached a 0.04-kg steel ball having a radius of

If the attractive force of the magnet at is 0.5 N
when the switch is on, determine the initial angular
acceleration of the clapper. The spring is originally
stretched 20 mm.

C6 mm.

A
AB

R2–15. Gears and each have a weight of 0.4 lb and a
radius of gyration about their mass center of 

Link has a weight of 0.2 lb and a radius of
gyration of ( , whereas link has a weight of
0.15 lb and a radius of gyration of ( If a
couple moment of is applied to link and
the assembly is originally at rest, determine the angular
velocity of link when link has rotated 360°. Gear 
is prevented from rotating, and motion occurs in the
horizontal plane. Also, gear and link rotate together
about the same axle at .B

DEH

CABDE

ABM = 3 lb # ft
kDE)B = 4.5 in.
DEkAB)A = 3 in.

AB(kC)A = 2 in.
(kH)B =

CH

44 mm

50 mm

40 mm

A

B

C

k � 20 N/m

Prob. R2–11

A

7 ft

B

2.5 ft

3 ft

P � 15 lb

u

Prob. R2–12

0.5 ft

30�

Probs. R2–13/14

E

C

D

H B AM

3 in. 3 in.

Prob. R2–15
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R2–19. Determine the angular velocity of rod at the
instant . Rod moves to the left at a constant
speed of .

*R2–20. Determine the angular acceleration of rod at
the instant . Rod has zero velocity, i.e., ,
and an acceleration of to the right when

.u = 30°
aAB = 2 m>s2

vAB = 0ABu = 30°
CD

vAB = 5 m>s
ABu = 30°

CD

R2–17. The hoop (thin ring) has a mass of 5 kg and is
released down the inclined plane such that it has a backspin

and its center has a velocity as
shown. If the coefficient of kinetic friction between the
hoop and the plane is , determine how long the
hoop rolls before it stops slipping.

R2–18. The hoop (thin ring) has a mass of 5 kg and is
released down the inclined plane such that it has a backspin

and its center has a velocity as
shown. If the coefficient of kinetic friction between the
hoop and the plane is , determine the hoop’s
angular velocity 1 s after it is released.

mk = 0.6

vG = 3 m>sv = 8 rad>s

mk = 0.6

vG = 3 m>sv = 8 rad>s

*R2–16. The inner hub of the roller bearing rotates with
an angular velocity of , while the outer hub
rotates in the opposite direction at . Determine
the angular velocity of each of the rollers if they roll on the
hubs without slipping.

vo = 4 rad>s
vi = 6 rad>s

R2–21. If the angular velocity of the drum is increased
uniformly from when to when 
determine the magnitudes of the velocity and acceleration
of points and on the belt when . At this instant
the points are located as shown.

t = 1 sBA

t = 5 s,12 rad>st = 06 rad>s

o � 4 rad/s

25 mm

50 mm

i � 6 rad/sv

v

Prob. R2–16

G

0.5 m

30�

� 8 rad/s

� 3 m/svG

v

Probs. R2–17/18

A

C

vAB

B

D

0.3 m
CD

u

v

Probs. R2–19/20

45�
4 in.

A

B

Prob. R2–21
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*R2–24. The pavement roller is traveling down the incline
at when the motor is disengaged. Determine the
speed of the roller when it has traveled 20 ft down the
plane. The body of the roller, excluding the rollers, has a
weight of 8000 lb and a center of gravity at . Each of the
two rear rollers weighs 400 lb and has a radius of gyration of

The front roller has a weight of 800 lb and a
radius of gyration of The rollers do not slip as
they turn.

kB = 1.8 ft.
kA = 3.3 ft.

G

v1 = 5 ft>s

R2–23. By pressing down with the finger at , a thin ring
having a mass is given an initial velocity and a
backspin when the finger is released. If the coefficient of
kinetic friction between the table and the ring is ,
determine the distance the ring travels forward before the
backspin stops.

m

v1

v1m
B

R2–22. Pulley and the attached drum have a weight
of 20 lb and a radius of gyration of If pulley 
“rolls” downward on the cord without slipping, determine
the speed of the 20-lb crate at the instant .
Initially, the crate is released from rest when For
the calculation, neglect the mass of pulley and the cord.P

s = 5 ft.
s = 10 ftC

PkB = 0.6 ft.
BA

R2–25. The cylinder rolls on the fixed cylinder without
slipping. If bar rotates with an angular velocity

, determine the angular velocity of cylinder .
Point is a fixed point.C

BvCD = 5 rad>s
CD

AB

0.8 ft

0.4 ft

0.2 ft

A
B

C

P

s

Prob. R2–22

B

1

1

v

r

A

v

Prob. R2–23

B

G

4.5 ft

2.2 ft
5 ft

10 ft

30�

A

3.8 ft

Prob. R2–24

A

B

C

D
0.1 m 0.3 m

CD � 5 rad/sv

Prob. R2–25
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R2–29. The spool has a weight of 30 lb and a radius of
gyration A cord is wrapped around the spool’s
inner hub and its end subjected to a horizontal force

. Determine the spool’s angular velocity in 4 s
starting from rest. Assume the spool rolls without slipping.
P = 5 lb

kO = 0.45 ft.

R2–27. The tub of the mixer has a weight of 70 lb and a
radius of gyration about its center of gravity .
If a constant torque is applied to the dumping
wheel, determine the angular velocity of the tub when it has
rotated . Originally the tub is at rest when .
Neglect the mass of the wheel.

*R2–28. Solve Prob. R2–27 if the applied torque is
, where is in radians.uM = (50u) lb # ft

u = 0°u = 90°

M = 60 lb # ft
GkG = 1.3 ft

R2–26. The disk has a mass and a radius . If a block of
mass is attached to the cord, determine the angular
acceleration of the disk when the block is released from
rest. Also, what is the distance the block falls from rest in
the time ?t

m
RM

R2–30. The 75-kg man and 40-kg boy sit on the horizontal
seesaw, which has negligible mass. At the instant the man
lifts his feet from the ground, determine their accelerations
if each sits upright, i.e., they do not rotate. The centers of
mass of the man and boy are at and , respectively.GbGm

R2–31. A sphere and cylinder are released from rest on
the ramp at . If each has a mass and a radius ,
determine their angular velocities at time . Assume no
slipping occurs.

t
rmt = 0

R

Prob. R2–26

G

0.8 ft

M

u

Probs. R2–27/28

P � 5 lb

0.9 ft

0.3 ft

A

O

Prob. R2–29

2 m 1.5 m

A

Gb Gm

Prob. R2–30

u

Prob. R2–31
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R2–35. The bar is confined to move along the vertical and
inclined planes. If the velocity of the roller at is

when , determine the bar’s angular
velocity and the velocity of at this instant.

*R2–36. The bar is confined to move along the vertical
and inclined planes. If the roller at has a constant velocity
of , determine the bar’s angular acceleration and
the acceleration of when .u = 45°B
vA = 6 ft>s

A

B
u = 45°vA = 6 ft>s

A

R2–34. The spool and the wire wrapped around its core
have a mass of 50 kg and a centroidal radius of gyration of

. If the coefficient of kinetic friction at the
surface is , determine the angular acceleration of
the spool after it is released from rest.

mk = 0.15
kG = 235 mm

*R2–32. At a given instant, link has an angular
acceleration and an angular velocity

. Determine the angular velocity and angular
acceleration of link at this instant.

R2–33. At a given instant, link has an angular
acceleration and an angular velocity

. Determine the angular velocity and angular
acceleration of link at this instant.AB
vCD = 2 rad>s

aCD = 5 rad>s2
CD

CD
vAB = 4 rad>s

aAB = 12 rad>s2
AB

R2–37. The uniform girder has a mass of 8 Mg.
Determine the internal axial force, shear, and bending
moment at the center of the girder if a crane gives it an
upward acceleration of .3 m>s2

AB

0.1 m

B

0.4 m

45�

G

Prob. R2–34

A

B

5 ft

30�

vB

vA

u

Probs. R2–35/36

C

A B

3 m/s2

4 m 60� 60�

Prob. R2–37

B 2 ft

45�

60�2.5 ft

1.5 ft

C

D
A

CD
AB

AB

CDa

a
v

v

Probs. R2–32/33



RE V I E W 2 PL A N A R KI N E M AT I C S A N D KI N E T I C S O F A RI G I D BO D Y 545

*R2–40. A cord is wrapped around the rim of each 10-lb
disk. If disk is released from rest, determine the angular
velocity of disk in 2 s. Neglect the mass of the cord.

R2–41. A cord is wrapped around the rim of each 10-lb
disk. If disk is released from rest, determine how much
time is required before attains an angular velocity

.vA = 5 rad>s
At

B

A
B

R2–39. The 5-lb rod supports the 3-lb disk at its end .
If the disk is given an angular velocity while
the rod is held stationary and then released, determine the
angular velocity of the rod after the disk has stopped
spinning relative to the rod due to frictional resistance at the
bearing . Motion is in the horizontal plane. Neglect friction
at the fixed bearing .B

A

vD = 8 rad>s
AAB

R2–38. Each gear has a mass of 2 kg and a radius of gyration
about its pinned mass centers and of .
Each link has a mass of 2 kg and a radius of gyration about
its pinned ends and of . If originally the
spring is unstretched when the couple moment

is applied to link , determine the angular
velocities of the links at the instant link rotates 
Each gear and link is connected together and rotates in the
horizontal plane about the fixed pins and .BA

u = 45°.AC
ACM = 20 N # m

kl = 50 mmBA

kg = 40 mmBA

R2–42. The 15-kg disk is pinned at and is initially at rest.
If a 10-g bullet is fired into the disk with a velocity of

, as shown, determine the maximum angle to which
the disk swings. The bullet becomes embedded in the disk.

u200 m>s
O

A

B

3 ft

0.5 ft

D
v

Prob. R2–39

B
0.5 ft

0.5 ft
A O

Probs. R2–40/41

200 mm

k � 200 N/m

50 mm

50 mm

A
M

C

DB

Prob. R2–38

0.15 m

30�
200 m/s

O

u

Prob. R2–42
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R2–45. Shown is the internal gearing of a “spinner” used
for drilling wells. With constant angular acceleration, the
motor rotates the shaft to in 
starting from rest. Determine the angular acceleration of
the drill-pipe connection and the number of revolutions
it makes during the 2-s startup.

D

t = 2 s100 rev>minSM

*R2–44. The operation of “reverse” for a three-speed
automotive transmission is illustrated schematically in the
figure. If the shaft is turning with an angular velocity of

, determine the angular velocity of the drive
shaft . Each of the gears rotates about a fixed axis. Note
that gears and , and , and are in mesh. The
radius of each of these gears is reported in the figure.

FEDCBA
H

vG = 60 rad>s
G

R2–43. The disk rotates at a constant rate of as it
falls freely so that its center has an acceleration of

. Determine the accelerations of points and on
the rim of the disk at the instant shown.

BA32.2 ft>s2
G

4 rad>s

R2–46. Gear has a mass of 0.5 kg and a radius of
gyration of , and gear has a mass of 0.8 kg
and a radius of gyration of . The link is pinned
at and has a mass of 0.35 kg. If the link can be treated as a
slender rod, determine the angular velocity of the link after
the assembly is released from rest when and falls to

.u = 90°
u = 0°

C
kB = 55 mm

BkA = 40 mm
A

E

H

F C

D

B

A

G

G � 60 rad/s

H

rA � 90 mm
rB � rC � 30 mm
rD � 50 mm
rE � 70 mm
rF � 60 mm

v

v

Prob. R2–44

60 mm
150 mm

D

M

S

Prob. R2–45

C

125 mm

50 mm

75 mm

A

B
125 mm

u

Prob. R2–46

B

A

1.5 ft
� 4 rad/s

G

v

Prob. R2–43
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R2–49. If the thin hoop has a weight and radius and is
thrown onto a rough surface with a velocity parallel to
the surface, determine the backspin, , it must be given so
that it stops spinning at the same instant that its forward
velocity is zero. It is not necessary to know the coefficient of
kinetic friction at for the calculation.A

V

vG
rW

*R2–48. If link rotates at , determine
the angular velocities of links and at the instant
shown.

CDBC
vAB = 6 rad>sAB

R2–47. The 15-kg cylinder rotates with an angular
velocity of . If a force is applied to
bar , as shown, determine the time needed to stop the
rotation. The coefficient of kinetic friction between and
the cylinder is . Neglect the thickness of the bar.mk = 0.4

AB
AB

F = 6 Nv = 40 rad>s

R2–50. The wheel has a mass of 50 kg and a radius of
gyration . If it rolls without slipping down the
inclined plank, determine the horizontal and vertical
components of reaction at , and the normal reaction at the
smooth support at the instant the wheel is located at the
midpoint of the plank. The plank has negligible thickness
and has a mass of 20 kg.

B
A

kG = 0.4 m

400 mm 500 mm

A B

F � 6 N

C
150 mm

v

Prob. R2–47

AB � 6 rad/s

A

B C

D
60�

30�

400 mm

300 mm

250 mm
v

Prob. R2–48

G
Gv

r

A

v

Prob. R2–49

30�

2 m

2 m

A

B

0.6 m

G

Prob. R2–50



The three-dimensional motion of this industrial robot must be accurately specified.



Three-Dimensional
Kinematics of a 
Rigid Body
CHAPTER OBJECTIVES

• To analyze the kinematics of a body subjected to rotation about a
fixed point and general plane motion.

• To provide a relative-motion analysis of a rigid body using
translating and rotating axes.

20.1 Rotation About a Fixed Point

When a rigid body rotates about a fixed point, the distance r from the
point to a particle located on the body is the same for any position of the
body. Thus, the path of motion for the particle lies on the surface of a
sphere having a radius r and centered at the fixed point. Since motion
along this path occurs only from a series of rotations made during a finite
time interval, we will first develop a familiarity with some of the properties
of rotational displacements.

20

The boom can rotate up and down, and
because it is hinged at a point on the
vertical axis about which it turns, it is
subjected to rotation about a fixed point.



550 CH A P T E R 20 TH R E E-DI M E N S I O N A L K I N E M AT I C S O F A RI G I D BO D Y

20

Euler’s Theorem. Euler’s theorem states that two “component”
rotations about different axes passing through a point are equivalent to a
single resultant rotation about an axis passing through the point. If more
than two rotations are applied, they can be combined into pairs, and each
pair can be further reduced and combined into one rotation.

Finite Rotations. If component rotations used in Euler’s theorem
are finite, it is important that the order in which they are applied be
maintained. To show this, consider the two finite rotations 
applied to the block in Fig. 20–1a. Each rotation has a magnitude of 90°
and a direction defined by the right-hand rule, as indicated by the arrow.
The final position of the block is shown at the right. When these two
rotations are applied in the order as shown in Fig. 20–1b, the
final position of the block is not the same as it is in Fig. 20–1a. Because
finite rotations do not obey the commutative law of addition

they cannot be classified as vectors. If smaller, yet
finite, rotations had been used to illustrate this point, e.g., 10° instead of
90°, the final position of the block after each combination of rotations
would also be different; however, in this case, the difference is only a
small amount.

1U1 + U2 Z U2 + U12,

U2 + U1 ,

U1 + U2

+

z

x

y

u2 � 90�

=

z

x

y

(a)

z

x

y

u1 � 90�

z

x

y
+

z

x

y

u1 � 90�

=

z

x

y

(b)

u2 � 90�

Fig. 20–1
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Infinitesimal Rotations. When defining the angular motions of a
body subjected to three-dimensional motion, only rotations which are
infinitesimally small will be considered. Such rotations can be classified as
vectors, since they can be added vectorially in any manner.To show this, for
purposes of simplicity let us consider the rigid body itself to be a sphere
which is allowed to rotate about its central fixed point O, Fig. 20–2a. If we
impose two infinitesimal rotations on the body, it is seen that
point P moves along the path and ends up at Had
the two successive rotations occurred in the order then the
resultant displacements of P would have been Since
the vector cross product obeys the distributive law, by comparison

Here infinitesimal rotations 
are vectors, since these quantities have both a magnitude and direction
for which the order of (vector) addition is not important, i.e.,

As a result, as shown in Fig. 20–2a, the two
“component” rotations and are equivalent to a single resultant
rotation a consequence of Euler’s theorem.

Angular Velocity. If the body is subjected to an angular rotation
about a fixed point, the angular velocity of the body is defined by the

time derivative,

(20–1)

The line specifying the direction of which is collinear with is
referred to as the instantaneous axis of rotation, Fig. 20–2b. In general,
this axis changes direction during each instant of time. Since is a
vector quantity, so too is and it follows from vector addition that if the
body is subjected to two component angular motions, and

the resultant angular velocity is 

Angular Acceleration. The body’s angular acceleration is
determined from the time derivative of its angular velocity, i.e.,

(20–2)

For motion about a fixed point, must account for a change in both the
magnitude and direction of so that, in general, is not directed along
the instantaneous axis of rotation, Fig. 20–3.

As the direction of the instantaneous axis of rotation (or the line of
action of ) changes in space, the locus of the axis generates a fixed space
cone, Fig. 20–4. If the change in the direction of this axis is viewed with
respect to the rotating body, the locus of the axis generates a body cone.

V

AV,
A

A = V#

V = V1 + V2 .V2 = U
#
2 ,

V1 = U
#
1

V,
dU

dU,V,

V = U
#

dU

dU = dU1 + dU2 ,
dU2dU1

dU1 + dU2 = dU2 + dU1 .

dU1dU1 + dU22 * r = 1dU2 + dU12 * r.

dU2 * r + dU1 * r.
dU2 + dU1 ,

P¿.dU1 * r + dU2 * r
dU1 + dU2

dU2

dU1dU

dU
dtV �

dU1 � r

dU2 � r P¿

dU � r
O

(a)

P

r

dU

(b)

Instantaneous axis
of rotation

O

V

V2

V1

Fig. 20–2

P

r

O

Instantaneous axis
of rotationV

A

Fig. 20–3
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At any given instant, these cones meet along the instantaneous axis of
rotation, and when the body is in motion, the body cone appears to roll
either on the inside or the outside surface of the fixed space cone.
Provided the paths defined by the open ends of the cones are described
by the head of the vector, then must act tangent to these paths at any
given instant, since the time rate of change of is equal to Fig. 20–4.

To illustrate this concept, consider the disk in Fig. 20–5a that spins about
the rod at , while the rod and disk precess about the vertical axis at .
The resultant angular velocity of the disk is therefore .
Since both point O and the contact point P have zero velocity, then both 
and the instantaneous axis of rotation are along OP.Therefore, as the disk
rotates, this axis appears to move along the surface of the fixed space cone
shown in Fig. 20–5b. If the axis is observed from the rotating disk, the axis
then appears to move on the surface of the body cone. At any instant,
though, these two cones meet each other along the axis . If has a
constant magnitude, then indicates only the change in the direction of 
which is tangent to the cones at the tip of as shown in Fig. 20–5b.

Velocity. Once is specified, the velocity of any point on a body
rotating about a fixed point can be determined using the same methods
as for a body rotating about a fixed axis. Hence, by the cross product,

(20–3)

Here r defines the position of the point measured from the fixed point O,
Fig. 20–3.

Acceleration. If and are known at a given instant, the
acceleration of a point can be obtained from the time derivative of 
Eq. 20–3, which yields

(20–4)

*20.2 The Time Derivative of a Vector
Measured from Either a Fixed or
Translating-Rotating System

In many types of problems involving the motion of a body about a fixed
point, the angular velocity is specified in terms of its components.Then,
if the angular acceleration of such a body is to be determined, it is often
easier to compute the time derivative of using a coordinate system that
has a rotation defined by one or more of the components of For
example, in the case of the disk in Fig. 20–5a, where the x,
y, z axes can be given an angular velocity of For this reason, and for
other uses later, an equation will now be derived, which relates the time
derivative of any vector A defined from a translating-rotating reference to its
time derivative defined from a fixed reference.

Vp .
V = Vs + Vp,

V.
V

A

V

a = A * r + V * 1V * r2

AV

v = V * r

V

V

V,A

VOP

V

V = Vs + Vp
VpVs

A.V

AV

Space cone

Body cone

Instantaneous
axis of rotation

V

A

Fig. 20–4

Vp

Vs

x

O

z

y
P

Instantaneous
axis of
rotation

(a)

Fig. 20–5

(b)

Instantaneous
axis of rotation

Body cone

Vp

Vs

V

Space cone
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Consider the x, y, z axes of the moving frame of reference to be
rotating with an angular velocity , which is measured from the fixed X,
Y, Z axes, Fig. 20–6a. In the following discussion, it will be convenient to
express vector A in terms of its i, j, k components, which define the
directions of the moving axes. Hence,

In general, the time derivative of A must account for the change in
both its magnitude and direction. However, if this derivative is taken
with respect to the moving frame of reference, only the change in the
magnitudes of the components of A must be accounted for, since the
directions of the components do not change with respect to the moving
reference. Hence,

(20–5)

When the time derivative of A is taken with respect to the fixed frame
of reference, the directions of i, j, and k change only on account of the
rotation of the axes and not their translation. Hence, in general,

The time derivatives of the unit vectors will now be considered. For
example, represents only the change in the direction of i with
respect to time, since i always has a magnitude of 1 unit. As shown in
Fig. 20–6b, the change, di, is tangent to the path described by the
arrowhead of i as i swings due to the rotation Accounting for both the
magnitude and direction of di, we can therefore define using the cross
product, In general, then

These formulations were also developed in Sec. 16.8, regarding planar
motion of the axes. Substituting these results into the above equation
and using Eq. 20–5 yields

(20–6)

This result is important, and will be used throughout Sec. 20.4 and
Chapter 21. It states that the time derivative of any vector A as observed
from the fixed X, Y, Z frame of reference is equal to the time rate of
change of A as observed from the x, y, z translating-rotating frame of
reference, Eq. 20–5, plus the change of A caused by the rotation
of the x, y, z frame. As a result, Eq. 20–6 should always be used whenever

produces a change in the direction of A as seen from the X, Y, Z
reference. If this change does not occur, i.e., then 
and so the time rate of change of A as observed from both coordinate
systems will be the same.

A
#

= 1A# 2xyz ,æ = 0,
æ

æ * A,

A
#

= 1A# 2xyz + æ * A

i
#
= æ * i j

#
= æ * j k

#
= æ * k

i
#
= æ * i.

i
#æ.

i
#
= di>dt

A
#

= A
#
x i + A

#
y j + A

#
zk + Axi

#
+ Ay j

#
+ Azk

#
æ

1A# 2xyz = A
#
x i + A

#
y j + A

#
zk

A = Ax i + Ay j + Azk

æ

Y

X

Z

x

y

z

k

i

j

A

(a)

�

xi at time t
di

i at time t � dt

(b)

�

Fig. 20–6
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The disk shown in Fig. 20–7 spins about its axle with a constant
angular velocity while the horizontal platform on which
the disk is mounted rotates about the vertical axis at a constant rate

Determine the angular acceleration of the disk and the
velocity and acceleration of point A on the disk when it is in the
position shown.

vp = 1 rad>s.

vs = 3 rad>s,

EXAMPLE 20.1

0.25 m

1 m
O

Y, y

Z, z

X, x

vs � 3 rad/s

vp � 1 rad/s

rA A

Fig. 20–7

SOLUTION
Point O represents a fixed point of rotation for the disk if one
considers a hypothetical extension of the disk to this point. To
determine the velocity and acceleration of point A, it is first necessary
to determine the angular velocity and angular acceleration of the
disk, since these vectors are used in Eqs. 20–3 and 20–4.

Angular Velocity. The angular velocity, which is measured from X,
Y, Z, is simply the vector addition of its two component motions.Thus,

V = Vs + Vp = 53j - 1k6 rad>s

AV
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Angular Acceleration. Since the magnitude of is constant, only
a change in its direction, as seen from the fixed reference, creates the
angular acceleration of the disk. One way to obtain is to compute
the time derivative of each of the two components of using Eq. 20–6.
At the instant shown in Fig. 20–7, imagine the fixed X, Y, Z and a
rotating x, y, z frame to be coincident. If the rotating x, y, z frame is
chosen to have an angular velocity of then

will always be directed along the y (not Y) axis, and the time rate
of change of as seen from x, y, z is zero; i.e., (the
magnitude and direction of is constant). Thus,

By the same choice of axes rotation, or even with 
the time derivative since has a constant magnitude
and direction with respect to x, y, z. Hence,

The angular acceleration of the disk is therefore

Ans.

Velocity and Acceleration. Since and have now been
determined, the velocity and acceleration of point A can be found
using Eqs. 20–3 and 20–4. Realizing that 
Fig. 20–7, we have

Ans.

Ans.= 5-2.50j - 2.25k6 m>s2

= 13i2 * 11j + 0.25k2 + 13j - 1k2 * [13j - 1k2 * 11j + 0.25k2]
aA = A * rA + V * 1V * rA2
vA = V * rA = 13j - 1k2 * 11j + 0.25k2 = 51.75i6 m>s

rA = 51j + 0.25k6 m,

AV

A = V# = V# s + V# p = 53i6 rad>s2

V
#
p = 1V# p2xyz + Vp * Vp = 0 + 0 = 0

Vp1V# p2xyz = 0,
æ = 0,æ = Vp ,

V
#
s = 1V# s2xyz + Vp * Vs = 0 + 1-1k2 * 13j2 = 53i6 rad>s2

Vs

1V# s2xyz = 0Vs

Vs

æ = Vp = 5-1k6 rad>s,

V

AA

V
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At the instant the gyrotop in Fig. 20–8 has three components
of angular motion directed as shown and having magnitudes defined as:

Spin: increasing at the rate of

Nutation: increasing at the rate of 

Precession: increasing at the rate of 

Determine the angular velocity and angular acceleration of the top.

SOLUTION
Angular Velocity. The top rotates about the fixed point O. If the
fixed and rotating frames are coincident at the instant shown, then the
angular velocity can be expressed in terms of i, j, k components, with
reference to the x, y, z frame; i.e.,

Ans.

Angular Acceleration. As in the solution of Example 20.1, the
angular acceleration will be determined by investigating separately
the time rate of change of each of the angular velocity components as
observed from the fixed X,Y, Z reference.We will choose an for the
x, y, z reference so that the component of being considered is
viewed as having a constant direction when observed from x, y, z.

Careful examination of the motion of the top reveals that 
has a constant direction relative to x, y, z if these axes rotate at

Thus,æ = Vn + Vp .

Vs

V

æ

A

= 5-3i + 8.66j + 10k6 rad>s
= -3i + 10 sin 60°j + 15 + 10 cos 60°2k

V = -vn i + vs sin uj + 1vp + vs cos u2k

4 rad>s2vp = 5 rad>s,

2 rad>s2vn = 3 rad>s,

6 rad>s2vs = 10 rad>s,

u = 60°,

EXAMPLE 20.2

Y, y

Always in x–y plane
X, x

vp � 5 rad/s

vs � 10 rad/s

vn � 3 rad/s

vp � 4 rad/s2.

Always in
Z direction

Z, z

O

vn � 2 rad/s2.

vs � 6 rad/s2.

u

Fig. 20–8

= 5-43.30i + 20.20j - 22.98k6 rad>s2

5k2 * 110 sin 60°j + 10 cos 60°k2= 16 sin 60°j + 6 cos 60°k2 + 1-3i +
V
#
s = 1V# s2xyz + 1Vn + Vp2 * Vs

Since always lies in the fixed X–Y plane, this vector has a constant
direction if the motion is viewed from axes x, y, z having a rotation of

Thus,

Finally, the component is always directed along the Z axis so that
here it is not necessary to think of x, y, z as rotating, i.e.,
Expressing the data in terms of the i, j, k components, we therefore have

Thus, the angular acceleration of the top is

Ans.A = V# s + V# n + V# p = 5-45.3i + 5.20j - 19.0k6 rad>s2

V
#
p = 1V# p2xyz + 0 * Vp = 54k6 rad>s2

æ = 0.
Vp

15k2 * 1-3i2 = 5-2i - 15j6 rad>s2V
#
n = 1V# n2xyz + Vp * Vn = -2i +

æ = Vp 1not æ = Vs + Vp2.
Vn
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Instantaneous
axis of rotation

Y

X

Z

y

z

x

rB/A
B

AvA

aA

O

V

A

Fig. 20–9

20.3 General Motion 

Shown in Fig. 20–9 is a rigid body subjected to general motion in three
dimensions for which the angular velocity is and the angular
acceleration is If point A has a known motion of and the motion
of any other point B can be determined by using a relative-motion analysis.
In this section a translating coordinate system will be used to define the
relative motion, and in the next section a reference that is both rotating
and translating will be considered.

If the origin of the translating coordinate system x, y, z is
located at the “base point” A, then, at the instant shown, the motion of
the body can be regarded as the sum of an instantaneous translation of
the body having a motion of , and , and a rotation of the body about
an instantaneous axis passing through point A. Since the body is rigid,
the motion of point B measured by an observer located at A is therefore
the same as the rotation of the body about a fixed point. This relative
motion occurs about the instantaneous axis of rotation and is defined by

Eq. 20–3, and 
Eq. 20–4. For translating axes, the relative motions are related to
absolute motions by and Eqs. 16–15
and 16–17, so that the absolute velocity and acceleration of point B can
be determined from the equations

(20–7)

and

(20–8)

These two equations are identical to those describing the general plane
motion of a rigid body, Eqs. 16–16 and 16–18. However, difficulty 
in application arises for three-dimensional motion, because now
measures the change in both the magnitude and direction of V.

A

aB = aA + A * rB>A + V * 1V * rB>A2

vB = vA + V * rB>A

aB = aA + aB>A ,vB = vA + vB>A

aB>A = A * rB>A + V * 1V * rB>A2,vB>A = V * rB>A ,

aAvA

1æ = 02

aA ,vAA.
V
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EXAMPLE 20.3

vC � 3 m/s
2 m1 m

Z

1 m

0.5 m

D

Y
C

B

E

F

X

A

(a)

vC � 3 m/s
C

D

EX, x

A

Z, z

Y, y

vD

rD/C

(b)

V

Fig. 20–10

If the collar at C in Fig. 20–10a moves towards B with a speed of 
determine the velocity of the collar at D and the angular velocity of
the bar at the instant shown. The bar is connected to the collars at its
end points by ball-and-socket joints.

SOLUTION
Bar CD is subjected to general motion. Why? The velocity of point D
on the bar can be related to the velocity of point C by the equation

The fixed and translating frames of reference are assumed to coincide
at the instant considered, Fig. 20–10b. We have

Substituting into the above equation we get

Expanding and equating the respective i, j, k components yields

(1)

(2)

(3)

These equations contain four unknowns.* A fourth equation can be
written if the direction of is specified. In particular, any component
of acting along the bar’s axis has no effect on moving the collars.
This is because the bar is free to rotate about its axis. Therefore, if is
specified as acting perpendicular to the axis of the bar, then must
have a unique magnitude to satisfy the above equations.
Perpendicularity is guaranteed provided the dot product of and 
is zero (see Eq. C–14 of Appendix C). Hence,

(4)

Solving Eqs. 1 through 4 simultaneously yields

Ans.

Ans.vD = 12.0 m>s T

vx = -4.86 rad>s vy = 2.29 rad>s vz = -0.571 rad>s

1vx + 2vy - 0.5vz = 0

V # rD>C = 1vx i + vy j + vzk2 # 11i + 2j - 0.5k2 = 0

rD>CV

V

V

V

V

 2vx - 1vy + vD = 0

 0.5vx + 1vz + 3 = 0

-0.5vy - 2vz = 0

-vDk = 3j + 3
i j k
vx vy vz

1 2  -0.5

3

rD>C = 51i + 2j - 0.5k6 m V = vx i + vy j + vzk

vD = -vDk vC = 53j6 m>s

vD = vC + V * rD>C

3 m>s,

*Although this is the case, the magnitude of can be obtained. For example, solve
Eqs. 1 and 2 for and in terms of and substitute into Eq. 3. It will be noted that

will cancel out, which will allow a solution for vD .vz

vzvxvy

vD
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PROBLEMS

20–3. At a given instant, the satellite dish has an angular
motion and about the z axis. At
this same instant , the angular motion about the x
axis is , and . Determine the
velocity and acceleration of the signal horn A at this instant.

v
#

2 = 1.5 rad>s2v2 = 2 rad>s
u = 25°

v
#

1 = 3 rad>s2v1 = 6 rad>s

20–2. The motion of the top is such that at the instant
shown it rotates about the z axis at , while it
spins at . Determine the angular velocity and
angular acceleration of the top at this instant. Express the
result as a Cartesian vector.

v2 = 8 rad>s
v1 = 0.6 rad>s

•20–1. The anemometer located on the ship at A spins
about its own axis at a rate , while the ship rolls about the x
axis at the rate and about the y axis at the rate .
Determine the angular velocity and angular acceleration of
the anemometer at the instant the ship is level as shown.
Assume that the magnitudes of all components of angular
velocity are constant and that the rolling motion caused by
the sea is independent in the x and y directions.

vyvx

vs

*20–4. The fan is mounted on a swivel support such that 
at the instant shown it is rotating about the z axis at

, which is increasing at .The blade is
spinning at , which is decreasing at .
Determine the angular velocity and angular acceleration of
the blade at this instant.

2 rad>s2v2 = 16 rad>s
12 rad>s2v1 = 0.8 rad>s

A

Vx
Vy

Vs

x

y

z

Prob. 20–1

45�

z

x y

V1

V2

Prob. 20–2

x

A

u � 25�

z

y

1.4 m

O
V2, V2

V1, V1

Prob. 20–3

yx

z

V1

V2

30�

Prob. 20–4
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20–7. If the top gear B rotates at a constant rate of ,
determine the angular velocity of gear A, which is free to
rotate about the shaft and rolls on the bottom fixed gear C.

V

20–6. The disk rotates about the z axis
without slipping on the horizontal plane. If at this same
instant is increasing at , determine the
velocity and acceleration of point A on the disk.

v
#
z = 0.3 rad>s2vz

vz = 0.5 rad>s

•20–5. Gears A and B are fixed, while gears C and D are
free to rotate about the shaft S. If the shaft turns about the z
axis at a constant rate of , determine the
angular velocity and angular acceleration of gear C.

v1 = 4 rad>s

*20–8. The telescope is mounted on the frame F that
allows it to be directed to any point in the sky.At the instant

the frame has an angular acceleration of
and an angular velocity of 

about the axis, and while .
Determine the velocity and acceleration of the observing
capsule at C at this instant.

u
#
= 0.4 rad>su

$
= 0.5 rad>s2y¿

vy¿ = 0.3 rad>say¿ = 0.2 rad>s2
u = 30°,

h2

h1

y

rB

rC

z

x

A

B

C

O

ω

Prob. 20–7

10 m

u� 0.4 rad/s·

u� 0.5 rad/s2··

vy¿ � 0.3 rad/s
vy¿ � 0.2 rad/s2

x

z

C

F

O

y

u y¿

·

Prob. 20–8

z

x

y

160 mm
80 mm

V1

40 mm

80 mm

A

B
C

D
S

Prob. 20–5

z

y

A

x

vz � 0.5 rad/s

150 mm

300 mm

Prob. 20–6
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*20–12. At the instant shown, the motor rotates about the
z axis with an angular velocity of  and angular
acceleration of . Simultaneously, shaft OA
rotates with an angular velocity of and angular
acceleration of and collar C slides along rod
AB with a velocity and acceleration of and .
Determine the velocity and acceleration of collar C at this
instant.

3 m>s26 m>s
v
#

2 = 3 rad>s2,
v2 = 6 rad>s

v
#

1 = 1.5 rad>s2
v1 = 3 rad>s

•20–13. At the instant shown, the tower crane rotates
about the z axis with an angular velocity ,
which is increasing at . The boom OA rotates
downward with an angular velocity , which is
increasing at . Determine the velocity and
acceleration of point A located at the end of the boom at
this instant.

0.8 rad>s2
v2 = 0.4 rad>s

0.6 rad>s2
v1 = 0.25 rad>s

x

y

z

A

8 rad/s

80 mm

Prob. 20–11

x

O

C300 mm

300 mm

B

A

z

y

V2
V2

V1
V1

6 m/s
3 m/s2

Prob. 20–12

y

B

1 ft

1 ft

O

x

z

A

6 ft

u

V2,V2

V1,V1

Probs. 20–9/10

v1 � 0.25 rad/s

40 ft

z

y

x

A

O

v2 � 0.4 rad/s

30�

Prob. 20–13

20–11. The cone rolls in a circle and rotates about the z
axis at a constant rate . Determine the angular
velocity and angular acceleration of the cone if it rolls
without slipping.Also, what are the velocity and acceleration
of point A?

vz = 8 rad>s

•20–9. At the instant when , the satellite’s body is
rotating with an angular velocity of and
angular acceleration of Simultaneously, the
solar panels rotate with an angular velocity of 
and angular acceleration of . Determine the
velocity and acceleration of point B on the solar panel at
this instant.

20–10. At the instant when , the satellite’s body
travels in the x direction with a velocity of 
and acceleration of . Simultaneously, the
body also rotates with an angular velocity of 
and angular acceleration of At the same
time, the solar panels rotate with an angular velocity of

and angular acceleration of 
Determine the velocity and acceleration of point B on the
solar panel.

v
#

2 = 1.5 rad>s2v2 = 6 rad>s
v
#

1 = 3 rad>s2.
v1 = 15 rad>s

aO = 550i6 m>s2
vO = 5500i6 m>s

u = 90°

v
#

2 = 1.5 rad>s2
v2 = 6 rad>s

v
#

1 = 3 rad>s2.
v1 = 15 rad>s

u = 90°
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*20–16. At the instant the satellite’s body is rotating
with an angular velocity of , and it has an
angular acceleration of . Simultaneously, the
solar panels rotate with an angular velocity of 
and angular acceleration of . Determine the
velocity and acceleration of point B located at the end of one
of the solar panels at this instant.

v
#

2 = 3 rad>s2
v2 = 5 rad>s

v
#

1 = 5 rad>s2
v1 = 20 rad>s

u = 0°,20–14. Gear C is driven by shaft DE, while gear B spins
freely about its axle GF, which precesses freely about shaft
DE. If gear A is held fixed , and shaft DE rotates
with a constant angular velocity of ,
determine the angular velocity of gear B.

vDE = 10 rad>s
(vA = 0)

DE � 10 rad/s

150 mm

150 mm

150 mm
G

D

F

A

E

C

y

z

Av

v

B

Prob. 20–15

DE � 10 rad/s

150 mm

150 mm

150 mm
G

D

F

A

E

C

y

z

Av

v

B

Prob. 20–14

y

B

z

6 m

1 m

O

V1, V1

u

x A
V2, V2

Probs. 20–17/18

•20–17. At the instant , the satellite’s body is
rotating with an angular velocity of , and it has
an angular acceleration of . Simultaneously, the
solar panels rotate with a constant angular velocity of

. Determine the velocity and acceleration of
point B located at the end of one of the solar panels at this
instant.

20–18. At the instant , the satellite’s body is
rotating with an angular velocity of , and it
has an angular acceleration of . At the same
instant, the satellite travels in the x direction with a velocity
of , and it has an acceleration of

. Simultaneously, the solar panels rotate
with a constant angular speed of . Determine
the velocity and acceleration of point B located at the end
of one of the solar panels at this instant.

v2 = 5 rad>s
aO = 5500i6 m>s2

vO = 55000i6m>s
v
#

1 = 5 rad>s2
v1 = 20 rad>s

u = 30°

v2 = 5 rad>s
v
#

1 = 5 rad>s2
v1 = 20 rad>s

u = 30°
y

B

z

6 m

1 m

O

V1, V1

u

x A
V2, V2

Prob. 20–16

20–15. Gear C is driven by shaft DE, while gear B spins
freely about its axle GF, which precesses freely about shaft
DE. If gear A is driven with a constant angular velocity of

and shaft DE rotates with a constant angular
velocity of , determine the angular velocity
of gear B.

vDE = 10 rad>s
vA = 5 rad>s
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•20–21. Rod AB is attached to collars at its ends by ball-
and-socket joints. If the collar A has a velocity of ,
determine the angular velocity of the rod and the velocity of
collar B at the instant shown. Assume the angular velocity of
the rod is directed perpendicular to the rod.

20–22. The rod AB is attached to collars at its ends by ball-
and-socket joints. If collar A has an acceleration of

and a velocity , determine the
angular acceleration of the rod and the acceleration of collar B
at the instant shown. Assume the angular acceleration of the
rod is directed perpendicular to the rod.

vA = 53i6 ft>saA = 58i6 ft>s2

vA = 3 ft>s

*20–20. If the frame rotates with a constant angular
velocity of  and the horizontal gear B
rotates with a constant angular velocity of ,
determine the angular velocity and angular acceleration of
the bevel gear A.

vB = 55k6 rad>s
vp = 5—10k6 rad>s

20–19. The crane boom OA rotates about the z axis with a
constant angular velocity of , while it is
rotating downward with a constant angular velocity of

. Determine the velocity and acceleration of
point A located at the end of the boom at the instant shown.
v2 = 0.2 rad>s

v1 = 0.15 rad>s

0.75 ft
O

A

C

1.5 ftB

y

z

Vp

Prob. 20–20

z

x

A

y

B

4 ft

4 ft

3 ft/s

2 ft Probs. 20–21/22

110 ft

x

A
z

y

V1

V2

50 ft

O

Prob. 20–19

vA � 8 ft/s

3 ft

2.5 ft

2 ft
3 ft

4 ft
A

B

z

x

y

Probs. 20–23/24

20–23. Rod AB is attached to collars at its ends by ball-and-
socket joints. If collar A moves upward with a velocity of

determine the angular velocity of the rod and
the speed of collar B at the instant shown. Assume that the
rod’s angular velocity is directed perpendicular to the rod.

*20–24. Rod AB is attached to collars at its ends by ball-and-
socket joints. If collar A moves upward with an acceleration of

,determine the angular acceleration of rod AB
and the magnitude of acceleration of collar B.Assume that the
rod’s angular acceleration is directed perpendicular to the rod.

aA = 54k6ft>s2

vA = 58k6ft>s,
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z

x

y

A

3

4

5

B

4 ft

4 ft

2 ft

Probs. 20–25/26

z

x

y

A

B

200 mm

300 mm

600 mm

Probs. 20–27/28

•20–29. If crank BC rotates with a constant angular
velocity of , determine the velocity of the
collar at A. Assume the angular velocity of AB is
perpendicular to the rod.

20–30. If crank BC is rotating with an angular velocity 
of and an angular acceleration of

, determine the acceleration of collar A at
this instant. Assume the angular velocity and angular
acceleration of AB are perpendicular to the rod.

v
#
BC = 1.5 rad>s2
vBC = 6 rad>s

vBC = 6 rad>s

20–27. If collar A moves with a constant velocity of
, determine the velocity of collar B when rod

AB is in the position shown. Assume the angular velocity of
AB is perpendicular to the rod.

*20–28. When rod AB is in the position shown, collar A
moves with a velocity of and acceleration of

. Determine the acceleration of collar B at
this instant. Assume the angular velocity and angular
acceleration of AB are perpendicular to the rod.

aA = 50.5i6 m>s2
vA = 53i6 m>s

vA = 53i6 m>s

•20–25. If collar A moves with a constant velocity of
, determine the velocity of collar B when

rod AB is in the position shown. Assume the angular
velocity of AB is perpendicular to the rod.

20–26. When rod AB is in the position shown, collar A
moves with a velocity of and acceleration of

. Determine the acceleration of collar B at
this instant. Assume the angular velocity and angular
acceleration of AB are perpendicular to the rod.

aA = 52i6 ft>s2
vA = 510i6 ft>s

vA = 510i6 ft>s

800 mm

300 mm

1000 mm

300 mmz

A

B

C y

x VBC, VBC

Probs. 20–29/30

x

y

z

A

B

2 ft 6 ft

3 ft

vA � 15 ft/s

Probs. 20–31/32

20–31. Rod AB is attached to collars at its ends by ball-
and-socket joints. If collar A has a velocity at
the instant shown, determine the velocity of collar B.
Assume the angular velocity is perpendicular to the rod.

*20–32. Rod AB is attached to collars at its ends by ball-
and-socket joints. If collar A has a velocity of

and an acceleration of at
the instant shown, determine the acceleration of collar B.
Assume the angular velocity and angular acceleration are
perpendicular to the rod.

aA = 52i6 ft>s2vA = 515i6 ft>s

vA = 15 ft>s



z

y

x

A

B

C

2.5 ft

4 ft

3 ft

u

y

x

vA � 3 m/s

1 m

1.5 m

A

B

z

2 m

Probs. 20–33/34
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•20–37. Disk A rotates at a constant angular velocity of
If rod BC is joined to the disk and a collar by ball-

and-socket joints, determine the velocity of collar B at the
instant shown. Also, what is the rod’s angular velocity 
if it is directed perpendicular to the axis of the rod?

VBC

10 rad>s.
•20–33. Rod AB is attached to collars at its ends by ball-
and-socket joints. If collar A has a speed ,
determine the speed of collar B at the instant shown.
Assume the angular velocity is perpendicular to the rod.

20–34. If the collar at A in Prob 20–33 has an acceleration
of at the instant its velocity is

, determine the magnitude of the
acceleration of the collar at B at this instant. Assume the
angular velocity and angular acceleration are perpendicular
to the rod.

vA = 5-3k6 m>s
aA = 5-2k6m>s2

vA = 3 m>s

20–38. Solve Prob. 20–37 if the connection at B consists
of a pin as shown in the figure below, rather than a ball-
and-socket joint. Hint: The constraint allows rotation of the
rod both about bar DE (j direction) and about the axis of
the pin (n direction). Since there is no rotational
component in the u direction, i.e., perpendicular to n and j
where , an additional equation for solution can
be obtained from . The vector n is in the same
direction as .rB>C : rD>C

V # u = 0
u = j : n

20–35. The triangular plate ABC is supported at A by a
ball-and-socket joint and at C by the plane.The side AB
lies in the plane. At the instant ,
and point C has the coordinates shown. Determine the
angular velocity of the plate and the velocity of point C at
this instant.

*20–36. The triangular plate ABC is supported at A by a
ball-and-socket joint and at C by the plane. The side
AB lies in the plane. At the instant ,

, and point C has the coordinates
shown. Determine the angular acceleration of the plate and
the acceleration of point C at this instant.

u
$

= 3 rad>s2u
#
= 2 rad>s

u = 60°x-y
x-z

u
#
= 2 rad>su = 60°x-y

x-z

Probs. 20–35/36

100 mm
x

z

y

500 mm

300 mm

D B

C
A

v � 10 rad/s

E

200 mm

Prob. 20–37

B
D E

u

j

n

Prob. 20–38
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*20.4 Relative-Motion Analysis Using
Translating and Rotating Axes

The most general way to analyze the three-dimensional motion of a rigid
body requires the use of x, y, z axes that both translate and rotate relative
to a second frame X,Y, Z.This analysis also provides a means to determine
the motions of two points A and B located on separate members of a
mechanism, and the relative motion of one particle with respect to another
when one or both particles are moving along curved paths.

As shown in Fig. 20–11, the locations of points A and B are specified
relative to the X, Y, Z frame of reference by position vectors and 
The base point A represents the origin of the x, y, z coordinate system,
which is translating and rotating with respect to X, Y, Z. At the instant
considered, the velocity and acceleration of point A are and and
the angular velocity and angular acceleration of the x, y, z axes are and

. All these vectors are measured with respect to the X, Y, Z
frame of reference, although they can be expressed in Cartesian
component form along either set of axes.

æ
#

= dæ>dt æ
aA ,vA

rB .rA

X

Y

Z
y

x

z B

JI

K

i

j
k

rA

rB

rB/A

zB

yB

xBA

�

Fig. 20–11



20.4 RELATIVE-MOTION ANALYSIS USING TRANSLATING AND ROTATING AXES 567

20

Position. If the position of “B with respect to A” is specified by the
relative-position vector Fig. 20–11, then, by vector addition,

(20–9)

where

position of B

position of the origin A

position of “B with respect to A”

Velocity. The velocity of point B measured from X, Y, Z can be
determined by taking the time derivative of Eq. 20–9,

The first two terms represent and The last term must be evaluated
by applying Eq. 20–6, since is measured with respect to a rotating
reference. Hence,

(20–10)

Therefore,

(20–11)

where

velocity of B

velocity of the origin A of the x, y, z frame of reference

velocity of “B with respect to A” as measured by an
observer attached to the rotating x, y, z frame of
reference

angular velocity of the x, y, z frame of reference

position of “B with respect to A”rB>A =

æ =

1vB>A2xyz =

vA =

vB =

vB = vA + æ * rB>A + 1vB>A2xyz

r
#
B>A = 1r#B>A2xyz + æ * rB>A = 1vB>A2xyz + æ * rB>A

rB>A
vA .vB

r
#
B = r

#
A + r

#
B>A

rB>A =

rA =

rB =

rB = rA + rB>A

rB>A ,
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Acceleration. The acceleration of point B measured from X, Y, Z is
determined by taking the time derivative of Eq. 20–11.

The time derivatives defined in the first and second terms represent 
and , respectively. The fourth term can be evaluated using Eq. 20–10,
and the last term is evaluated by applying Eq. 20–6, which yields

Here is the acceleration of B with respect to A measured from
x, y, z. Substituting this result and Eq. 20–10 into the above equation and
simplifying, we have

1aB>A2xyz

= 1aB>A2xyz + æ * 1vB>A2xyzd

dt
1vB>A2xyz = 1v# B>A2xyz + æ * 1vB>A2xyz

aA
aB

v
#
B = v

#
A + æ

#
* rB>A + æ * r

#
B>A +

d

dt
1vB>A2xyz

Complicated spatial motion of the
concrete bucket B occurs due to the
rotation of the boom about the Z axis,
motion of the carriage A along the
boom, and extension and swinging of the
cable AB. A translating-rotating x, y, z
coordinate system can be established on
the carriage, and a relative-motion
analysis can then be applied to study
this motion.

Z

A

B

z

y
x

(20–12)

aB = aA + æ
#

* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz

where

acceleration of B

acceleration of the origin A of the x, y, z frame
of reference

acceleration and relative velocity of “B with
respect to A” as measured by an observer
attached to the rotating x, y, z frame of
reference

angular acceleration and angular velocity of the
x, y, z frame of reference

position of “B with respect to A”

Equations 20–11 and 20–12 are identical to those used in Sec. 16.8 for
analyzing relative plane motion.* In that case, however, application is
simplified since and have a constant direction which is always
perpendicular to the plane of motion. For three-dimensional motion,

must be computed by using Eq. 20–6, since depends on the change
in both the magnitude and direction of æ.

æ
#

æ
#

æ
#

æ

rB>A =

æ
#
, æ =

1vB>A2xyz =1aB>A2xyz ,
aA =
aB =

*Refer to Sec. 16.8 for an interpretation of the terms.
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Procedure for Analysis

Three-dimensional motion of particles or rigid bodies can be
analyzed with Eqs. 20–11 and 20–12 by using the following
procedure.

Coordinate Axes.

● Select the location and orientation of the X, Y, Z and x, y, z
coordinate axes. Most often solutions can be easily obtained if at
the instant considered:

(1) the origins are coincident

(2) the axes are collinear

(3) the axes are parallel

● If several components of angular velocity are involved in a
problem, the calculations will be reduced if the x, y, z axes are
selected such that only one component of angular velocity is
observed with respect to this frame and the frame rotates
with defined by the other components of angular velocity.

Kinematic Equations.

● After the origin of the moving reference, A, is defined and the
moving point B is specified, Eqs. 20–11 and 20–12 should then be
written in symbolic form as

● If and appear to change direction when observed from the
fixed X,Y,Z reference then use a set of primed reference axes,

having a rotation . Equation 20–6 is then used to
determine and the motion and of the origin of the moving
x, y, z axes.

● If and appear to change direction as observed from
x, y, z, then use a set of double primed reference axes 
having and apply Eq. 20–6 to determine and the
relative motion and 

● After the final forms of and 
are obtained, numerical problem data can be substituted and the
kinematic terms evaluated. The components of all these vectors
can be selected either along the X, Y, Z or along the x, y, z axes.
The choice is arbitrary, provided a consistent set of unit vectors
is used.

1aB>A2xyz#
æ, vA, aA,

#
æxyz, 1vB>A2xyz,

1aB>A2xyz.1vB>A2xyz
æ
#
xyzæ– = æxyz

z–y–,x–,
æxyz1rB>A2xyz

aAvAæ
# æ¿ = æz¿

y¿,x¿,
ærA

aB = aA + æ
#

* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz
vB = vA + æ * rB>A + 1vB>A2xyz

æ
1æxyz2
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A motor and attached rod AB have the angular motions shown in
Fig. 20–12. A collar C on the rod is located 0.25 m from A and is
moving downward along the rod with a velocity of and an
acceleration of Determine the velocity and acceleration of C
at this instant.

SOLUTION

Coordinate Axes.
The origin of the fixed X, Y, Z reference is chosen at the center of
the platform, and the origin of the moving x, y, z frame at point A,
Fig. 20–12. Since the collar is subjected to two components of
angular motion, and it will be viewed as having an angular
velocity of in x, y, z. Therefore, the x, y, z axes will be
attached to the platform so that æ = Vp .

æxyz = VM
VM ,Vp

2 m>s2.
3 m>s

EXAMPLE 20.4

0.25 m

X, x, x¿, x¿¿

·vM � 1 rad/s2
vM � 3 rad/s

2 m/s2
3 m/s

Y, y¿

y, y¿¿

vp � 5 rad/s

vp � 2 rad/s2·

Z, z¿

z, z¿¿

1 m
2 m O

C

B

A

Fig. 20–12
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Kinematic Equations. Equations 20–11 and 20–12, applied to
points C and A, become

aC = aA + æ
#

* rC>A + æ * 1æ * rC>A2 + 2æ * 1vC>A2xyz + 1aC>A2xyz
vC = vA + æ * rC>A + 1vC>A2xyz

Motion of A. Here changes direction relative to X, Y, Z. To find
the time derivatives of we will use a set of axes coincident
with the X, Y, Z axes that rotate at Thus,æ¿ = Vp .

z¿y¿,x¿,rA
rA

= [0 + 0] + 2k * 2i + 5k * 10j = 5-50i + 4j6 m>s2

aA = r
$
A = [1r$A2x¿y¿z¿ + Vp * 1r#A2x¿y¿z¿] + V# p * rA + Vp * r

#
A

vA = r
#
A = 1r#A2x¿y¿z¿ + Vp * rA = 0 + 5k * 2i = 510j6 m>s

rA = 52i6 m
æ
#

= V# p = 52k6 rad>s2

æ = Vp = 55k6 rad>s 1æ does not change direction relative to X, Y, Z.2

Motion of C with Respect to A. Here changes direction
relative to x, y, z. To find the time derivatives of use a set of

axes that rotate at Thus,æ– = æxyz = VM .z–y–,x–,
1rC>A2xyz

1rC>A2xyz

Motion of C.

Ans.

Ans.= 5-57.5i + 22.25j + 0.25k6 m>s2

+ 2[5k * 10.75j - 3k2] + 118.25j + 0.25k2
= 1-50i + 4j2 + [2k * 1-0.25k2] + 5k * [5k * 1-0.25k2]

aC = aA + æ
#

* rC>A + æ * 1æ * rC>A2 + 2æ * 1vC>A2xyz + 1aC>A2xyz
= 510.75j - 3k6 m>s
= 10j + [5k * 1-0.25k2] + 10.75j - 3k2

vC = vA + æ * rC>A + 1vC>A2xyz

= 518.25j + 0.25k6 m>s2

= [-2k + 3i * 1-3k2] + 11i2 * 1-0.25k2 + 13i2 * 10.75j - 3k2
1aC>A2xyz = 1r$C>A2xyz = [1r$C>A2x–y–z– + VM * 1r#C>A2x–y–z–] + V# M * 1rC>A2xyz + VM * 1r#C>A2xyz

= -3k + [3i * 1-0.25k2] = 50.75j - 3k6 m>s
1vC>A2xyz = 1r#C>A2xyz = 1r#C>A2x–y–z– + VM * 1rC>A2xyz
1rC>A2xyz = 5-0.25k6 m

æ
#
xyz = V# M = 51i6 rad>s2

æxyz = VM = 53i6 rad>s 1æxyz does not change direction relative to x, y, z.2
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The pendulum shown in Fig. 20–13 consists of two rods; AB is pin
supported at A and swings only in the Y–Z plane, whereas a bearing at
B allows the attached rod BD to spin about rod AB. At a given
instant, the rods have the angular motions shown. Also, a collar C,
located 0.2 m from B, has a velocity of and an acceleration of

along the rod. Determine the velocity and acceleration of the
collar at this instant.

SOLUTION I
Coordinate Axes. The origin of the fixed X, Y, Z frame will be
placed at A. Motion of the collar is conveniently observed from B, so
the origin of the x, y, z frame is located at this point. We will choose

and

Kinematic Equations.

2æ * 1vC>B2xyz + 1aC>B2xyzaC = aB + æ
#
* rC>B + æ * 1æ * rC>B2+

vC = vB + æ * rC>B + 1vC>B2xyz

æxyz = V2 .æ = V1

2 m>s2
3 m>s

EXAMPLE 20.5

Motion of B. To find the time derivatives of let the axes rotate with Then

Motion of C with Respect to B. To find the time derivatives of let the axes rotate
with Then

Motion of C.

Ans.

Ans.= 5-28.8i - 5.45j + 32.3k6 m>s2

+ 2[4i * 1-1i + 3j2] + 1-28.8i - 3j2
= 10.75j + 8k2 + 11.5i * 0.2j2 + [4i * 14i * 0.2j2]

aC = aB + æ
#

* rC>B + æ * 1æ * rC>B2 + 2æ * 1vC>B2xyz + 1aC>B2xyz
= 5-1i + 5j + 0.8k6 m>s

vC = vB + æ * rC>B + 1vC>B2xyz = 2j + 4i * 0.2j + 1-1i + 3j2

= 5-28.8i - 3j6 m>s2

= 12j + 5k * 3j2 + 1-6k * 0.2j2 + [5k * 1-1i + 3j2]
1aC>B2xyz = 1r$C>B2xyz = [1r$C>B2x–y–z– + V2 * 1r#C>B2x–y–z–] + V# 2 * 1rC>B2xyz + V2 * 1r#C>B2xyz
1vC>B2xyz = 1r#C>B2xyz = 1r#C>B2x–y–z– + V2 * 1rC>B2xyz = 3j + 5k * 0.2j = 5-1i + 3j6 m>s
1rC>B2xyz = 50.2j6 m
æxyz = V2 = 55k6 rad>s æ

#
xyz = V# 2 = 5-6k6 rad>s2

æxyz = V2 .
z–y–,x–,1rC>B2xyz ,

= [0 + 0] + 1.5i * 1-0.5k2 + 4i * 2j = 50.75j + 8k6 m>s2

aB = r
$
B = [1r$B2x¿y¿z¿ + V1 * 1r#B2x¿y¿z¿] + V# 1 * rB + V1 * r

#
B

vB = r
#
B = 1r#B2x¿y¿z¿ + V1 * rB = 0 + 4i * 1-0.5k2 = 52j6 m>s

rB = 5-0.5k6 m
æ¿ = V1 = 54i6 rad>s æ

#
¿ = V# 1 = 51.5i6 rad>s2

æ¿ = V1 .z¿y¿,x¿,rB

0.5 m

Y, y¿

3 m/s
2 m/s2

D
y, y¿¿C0.2 m

v2 � 6 rad/s2.

x, x¿¿

v2 � 5 rad/s

B

Z, z, z¿, z¿¿

v1 � 4 rad/s

A

X, x¿

v1 � 1.5 rad/s2.

Fig 20–13



20.4 RELATIVE-MOTION ANALYSIS USING TRANSLATING AND ROTATING AXES 573

20

SOLUTION II

Coordinate Axes. Here we will let the x, y, z axes rotate at

Then 

Motion of B. From the constraints of the problem does not
change direction relative to X, Y, Z; however, the direction of is
changed by Thus, to obtain consider axes coincident
with the X, Y, Z axes at A, so that Then taking the
derivative of the components of ,

Also, changes the direction of so that the time derivatives of 
can be found using the primed axes defined above. Hence,

Motion of C with Respect to B.

Motion of C.

Ans.

Ans.= 5-28.8i - 5.45j + 32.3k6 m>s2

+ 14i + 5k2 * [14i + 5k2 * 0.2j] + 2[14i + 5k2 * 3j] + 2j

= 10.75j + 8k2 + [11.5i - 20j - 6k2 * 10.2j2]
aC = aB + æ

#
* rC>B + æ * 1æ * rC>B2 + 2æ * 1vC>B2xyz + 1aC>B2xyz

= 5-1i + 5j + 0.8k6 m>s
= 2j + [14i + 5k2 * 10.2j2] + 3j

vC = vB + æ * rC>B + 1vC>B2xyz

1aC>B2xyz = 52j6 m>s2

1vC>B2xyz = 53j6 m>s
1rC>B2xyz = 50.2j6 m

æ
#
xyz = 0

æxyz = 0

= [0 + 0] + 1.5i * 1-0.5k2 + 4i * 2j = 50.75j + 8k6 m>s2

aB = r
$
B = [1r$B2x¿y¿z¿ + V1 * 1r#B2x¿y¿z¿] + V# 1 * rB + V1 * r

#
B

= 0 + 4i * 1-0.5k2 = 52j6 m>s
vB = r

#
B = 1r#B2x¿y¿z¿ + V1 * rB

rBrBV1

= [1.5i + 0] + [-6k + 4i * 5k] = 51.5i - 20j - 6k6 rad>s2

æ
#

= V# 1 + V# 2 = [1V# 12x¿y¿z¿ + V1 * V1] + [1V# 22x¿y¿z¿ + V1 * V2]

æ
æ¿ = V1 .

z¿y¿,x¿,æ
#

V1 .
V2

V1

æxyz = 0.

æ = V1 + V2 = 54i + 5k6 rad>s
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PROBLEMS

20–43. At the instant shown, the cab of the excavator
rotates about the z axis with a constant angular velocity of

. At the same instant , and the boom
OBC has an angular velocity of , which is
increasing at , both measured relative to the
cab. Determine the velocity and acceleration of point C on
the grapple at this instant.

*20–44. At the instant shown, the frame of the excavator
travels forward in the y direction with a velocity of 
and an acceleration of , while the cab rotates about
the z axis with an angular velocity of ,
which is increasing at . At the same instant

and the boom OBC has an angular velocity of
which is increasing at , both

measured relative to the cab. Determine the velocity and
acceleration of point C on the grapple at this instant.

u
$

= 0.2 rad>s2u
#
= 0.6 rad>s,
u = 60°,

az = 0.4 rad>s2
vz = 0.3 rad>s

1 m>s2
2 m>s

u
$

= 0.2 rad>s2
u
#
= 0.6 rad>s
u = 60°vz = 0.3 rad>s

20–39. Solve Example 20–5 such that the x, y, z axes move
with curvilinear translation, in which case the collar
appears to have both an angular velocity 
and radial motion.

*20–40. Solve Example 20–5 by fixing x, y, z axes to rod
BD so that . In this case the collar appears
only to move radially outward along BD; hence .

•20–41. At the instant shown, the shaft rotates with an
angular velocity of and has an angular
acceleration of . At the same instant, the disk
spins about its axle with an angular velocity of  ,
increasing at a constant rate of . Determine the
velocity of point C located on the rim of the disk at this instant.

20–42. At the instant shown, the shaft rotates with an
angular velocity of and has an angular
acceleration of . At the same instant, the disk
spins about its axle with an angular velocity of
increasing at a constant rate of . Determine
the acceleration of point C located on the rim of the disk at
this instant.

v
#
s = 6 rad>s2

vs = 12 rad>s,
v
#
p = 3 rad>s2

vp = 6 rad>s

v
#
s = 6 rad>s2

vs = 12 rad>s
v
#
p = 3 rad>s2

vp = 6 rad>s

æxyz = 0
æ = V1 + V2

æxyz = V1 + V2

æ = 0

750 mm

150 mm

A

B C

O

z

x

y

Vp

Vp

Vs

Vs

Probs. 20–41/42

z

y

x

4 m

90∞

θ

5 m
ω z = 0.3 rad/s

O

B

C

Probs. 20–43/44



20.4 RELATIVE-MOTION ANALYSIS USING TRANSLATING AND ROTATING AXES 575

20

*20–48. At the instant shown, the helicopter is moving
upwards with a velocity and has an
acceleration . At the same instant the frame H,
not the horizontal blade, rotates about a vertical axis with a
constant angular velocity . If the tail blade B
rotates with a constant angular velocity ,
measured relative to H, determine the velocity and
acceleration of point P, located on the end of the blade, at
the instant the blade is in the vertical position.

vB>H = 180 rad>s
vH = 0.9 rad>s

aH = 2 ft>s2
vH = 4 ft>s

20–47. The motor rotates about the z axis with a constant
angular velocity of . Simultaneously, shaft OA
rotates with a constant angular velocity of .
Also, collar C slides along  rod AB with a velocity and
acceleration of and . Determine the velocity
and acceleration of collar C at the instant shown.

3 m>s26 m>s
v2 = 6 rad>s

v1 = 3 rad>s

•20–45. The crane rotates about the z axis with a constant
rate , while the boom rotates downward with
a constant rate . Determine the velocity and
acceleration of point A located at the end of the boom at
the instant shown.

20–46. The crane rotates about the z axis with a rate of
, which is increasing at . Also,

the boom rotates downward at , which is
increasing at . Determine the velocity and
acceleration of point A located at the end of the boom at
the instant shown.

v
#

2 = 0.3 rad/s2
v2 = 0.2 rad/s
v
#

1 = 0.6 rad/s2v1 = 0.6 rad/s

v2 = 0.2 rad>s
v1 = 0.6 rad>s

•20–49. At a given instant the boom AB of the tower crane
rotates about the z axis with the motion shown.At this same
instant, and the boom is rotating downward such
that and . Determine the
velocity and acceleration of the end of the boom A at this
instant. The boom has a length of .lAB = 40 m

u
$

= 0.6 rad>s2u
#
= 0.4 rad>s
u = 60°

y

A

x

B
O

z

1.5 m

v1 � 0.6 rad/s

v2 � 0.2 rad/s

8 m

6 m

Probs. 20–45/46

y
x

z

B

C

A

O

6 m/s
3 m/s2

300 mm

300 mm

V2

V1

Prob. 20–47

H

B

y

P

z

20 ft

2.5 ft

VH

VB/H

vH
aH

x

Prob. 20–48

v1 � 2 rad/s

z

u � 0.4 rad/s
.

u� 60�
B

x

v1 � 3 rad/s2

u � 0.6 rad/s2
....

A

. 

Prob. 20–49
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20–54. At the instant shown, the base of the robotic arm
rotates about the z axis with an angular velocity of

, which is increasing at .Also, the
boom BC rotates at a constant rate of .
Determine the velocity and acceleration of the part C held
in its grip at this instant.

vBC = 8 rad>s
v
#

1 = 3 rad>s2v1 = 4 rad>s

*20–52. At the instant , the frame of the crane and
the boom AB rotate with a constant angular velocity of

and , respectively. Determine
the velocity and acceleration of point B at this instant.

•20–53. At the instant , the frame of the crane is
rotating with an angular velocity of and
angular acceleration of , while the boom AB
rotates with an angular velocity of and angular
acceleration of . Determine the velocity and
acceleration of point B at this instant.

v
#

2 = 0.25 rad>s2
v2 = 0.5 rad>s

v
#

1 = 0.5 rad>s2
v1 = 1.5 rad>s

u = 30°

v2 = 0.5 rad>sv1 = 1.5 rad>s
u = 30°

20–50. At the instant shown, the tube rotates about the z
axis with a constant angular velocity , while at
the same instant the tube rotates upward at a constant rate

. If the ball B is blown through the tube at a
rate , which is increasing at , determine
the velocity and acceleration of the ball at the instant
shown. Neglect the size of the ball.

20–51. At the instant shown, the tube rotates about the z
axis with a constant angular velocity , while at
the same instant the tube rotates upward at a constant rate

. If the ball B is blown through the tube at a
constant rate , determine the velocity and
acceleration of the ball at the instant shown. Neglect the
size of the ball.

r
# = 7 m>s

v2 = 5 rad>s
v1 = 2 rad>s

r
$ = 2 m>s2r

# = 7 m>s
v2 = 5 rad>s

v1 = 2 rad>s

z

y

x

r � 3 m
v1 � 2 rad/s

v2 � 5 rad/s

B

u � 30�

Probs. 20–50/51

12 m
1.5 m

z

y
A

B

O u

V2, V2

V1, V1

Probs. 20–52/53
X

B

Y

Z

0.7 m

0.5 m

v1 � 4 rad/s
v1 � 3 rad/s2

vBC � 8 rad/s

A

C

·

vBC � 2 rad/s2·

X

B

Y

Z

0.7 m

0.5 m

v1 � 4 rad/s
v1 � 3 rad/s2

vBC � 8 rad/s

A

C

·

Prob. 20–55

20–55. At the instant shown, the base of the robotic arm
rotates about the z axis with an angular velocity of

, which is increasing at . Also,
the boom BC rotates at , which is increasing
at . Determine the velocity and acceleration
of the part C held in its grip at this instant.
v
#
BC = 2 rad>s2

vBC = 8 rad>s
v
#

1 = 3 rad>s2v1 = 4 rad>s

Prob. 20–54
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CHAPTER REVIEW

Rotation About a Fixed Point
When a body rotates about a fixed point O,
then points on the body follow a path
that lies on the surface of a sphere
centered at O.

Since the angular acceleration is a time
rate of change in the angular velocity, then
it is necessary to account for both the
magnitude and directional changes of 
when finding its time derivative. To do
this, the angular velocity is often specified
in terms of its component motions, such
that the direction of some of these
components will remain constant relative
to rotating x, y, z axes. If this is the case,
then the time derivative relative to the
fixed axis can be determined using

Once and are known, the velocity
and acceleration of any point P in the
body can then be determined.

AV

A
#

= 1A# 2xyz + æ * A.

V

Relative Motion Analysis Using
Translating and Rotating Axes
The motion of two points A and B on a
body, a series of connected bodies, or
each point located on two different
paths, can be related using a relative
motion analysis with rotating and
translating axes at A.

When applying the equations, to find 
and , it is important to account for
both the magnitude and directional
changes of and 
when taking their time derivatives to find

and

To do this properly, one must use
Eq. 20–6.
æ
#
xyz .

æ
#
,1aB>A2xyz ,1vB>A2xyz ,aA ,vA ,

æxyzæ,1rB>A2xyz ,rA ,

aB
vB

2æ * 1vB>A2xyz + 1aB>A2xyzaB = aA + æ
#

* rB>A + æ * 1æ * rB>A2 +

vB = vA + æ * rB>A + 1vB>A2xyz

General Motion
If the body undergoes general motion,
then the motion of a point B on the body
can be related to the motion of another
point A using a relative motion analysis,
with translating axes attached to A.

a = A * r + V * 1V * r2
v = V * r

P

r

O

Instantaneous axis
of rotationV

A

aB = aA + A * rB>A + V * 1V * rB>A2
vB = vA + V * rB>A



The design of amusement-park rides requires a force analysis that depends upon their
three-dimensional motion.



Three-Dimensional
Kinetics of a Rigid
Body
CHAPTER OBJECTIVES

• To introduce the methods for finding the moments of inertia and
products of inertia of a body about various axes.

• To show how to apply the principles of work and energy and linear
and angular momentum to a rigid body having three-dimensional
motion.

• To develop and apply the equations of motion in three dimensions.

• To study gyroscopic and torque-free motion.

21

*21.1 Moments and Products of Inertia

When studying the planar kinetics of a body, it was necessary to introduce
the moment of inertia which was computed about an axis
perpendicular to the plane of motion and passing through the body’s mass
center G. For the kinetic analysis of three-dimensional motion it will
sometimes be necessary to calculate six inertial quantities. These terms,
called the moments and products of inertia, describe in a particular way
the distribution of mass for a body relative to a given coordinate system
that has a specified orientation and point of origin.

IG ,
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Moment of Inertia. Consider the rigid body shown in Fig. 21–1.
The moment of inertia for a differential element dm of the body about
any one of the three coordinate axes is defined as the product of the
mass of the element and the square of the shortest distance from the axis
to the element. For example, as noted in the figure, , so
that the mass moment of inertia of the element about the x axis is

The moment of inertia for the body can be determined by integrating
this expression over the entire mass of the body. Hence, for each of the
axes, we can write

(21–1)

Here it is seen that the moment of inertia is always a positive quantity,
since it is the summation of the product of the mass dm, which is always
positive, and the distances squared.

Product of Inertia. The product of inertia for a differential
element dm with respect to a set of two orthogonal planes is defined as
the product of the mass of the element and the perpendicular (or
shortest) distances from the planes to the element. For example, this
distance is x to the y–z plane and it is y to the x–z plane, Fig. 21–1. The
product of inertia for the element is therefore

Note also that By integrating over the entire mass, the
products of inertia of the body with respect to each combination of
planes can be expressed as

(21–2)

Ixy = Iyx =
Lm

xy dm

Iyz = Izy =
Lm

yz dm

Ixz = Izx =
Lm

xz dm

dIyx = dIxy .

dIxy = xy dm

dIxy

Ixx =
Lm

rx
2 dm =

Lm
1y2 + z22 dm

Iyy =
Lm

r2
y dm =

Lm
1x2 + z22 dm

Izz =
Lm

r2
z dm =

Lm
1x2 + y22 dm

Ixx

dIxx = rx
2 dm = 1y2 + z22 dm

rx = 2y2 + z2

z

dm

rz

rx

ry

z

x
y

x

y
O

Fig. 21–1
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Unlike the moment of inertia, which is always positive, the product of
inertia may be positive, negative, or zero. The result depends on the
algebraic signs of the two defining coordinates, which vary independently
from one another. In particular, if either one or both of the orthogonal
planes are planes of symmetry for the mass, the product of inertia with
respect to these planes will be zero. In such cases, elements of mass will
occur in pairs located on each side of the plane of symmetry. On one side
of the plane the product of inertia for the element will be positive, while
on the other side the product of inertia of the corresponding element will
be negative, the sum therefore yielding zero. Examples of this are shown
in Fig. 21–2. In the first case, Fig. 21–2a, the y–z plane is a plane of
symmetry, and hence Calculation of will yield a
positive result, since all elements of mass are located using only positive
y and z coordinates. For the cylinder, with the coordinate axes located as
shown in Fig. 21–2b, the x–z and y–z planes are both planes of symmetry.
Thus,

Parallel-Axis and Parallel-Plane Theorems. The techniques
of integration used to determine the moment of inertia of a body were
described in Sec. 17.1. Also discussed were methods to determine the
moment of inertia of a composite body, i.e., a body that is composed of
simpler segments, as tabulated on the inside back cover. In both of these
cases the parallel-axis theorem is often used for the calculations. This
theorem, which was developed in Sec. 17.1, allows us to transfer the
moment of inertia of a body from an axis passing through its mass center
G to a parallel axis passing through some other point. If G has
coordinates defined with respect to the x, y, z axes, Fig. 21–3,
then the parallel-axis equations used to calculate the moments of inertia
about the x, y, z axes are

(21–3)
Ixx = 1Ix¿x¿2G + m1yG

2 + zG
2 2

Iyy = 1Iy¿y¿2G + m1xG
2 + zG

2 2
Izz = 1Iz¿z¿2G + m1xG

2 + yG
2 2

zGyG ,xG ,

Ixy = Iyz = Izx = 0.

IyzIxy = Ixz = 0.

x
y

O

z

(a) (b)

x
y

z

O

Fig. 21–2

z

x

y

y¿

z¿

x¿

G

zG

xG

yG

Fig. 21–3
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The products of inertia of a composite body are computed in the same
manner as the body’s moments of inertia. Here, however, the parallel-
plane theorem is important. This theorem is used to transfer the products
of inertia of the body with respect to a set of three orthogonal planes
passing through the body’s mass center to a corresponding set of three
parallel planes passing through some other point O. Defining the
perpendicular distances between the planes as and Fig. 21–3,
the parallel-plane equations can be written as

(21–4)

The derivation of these formulas is similar to that given for the parallel-
axis equation, Sec. 17.1.

Inertia Tensor. The inertial properties of a body are therefore
completely characterized by nine terms, six of which are independent of
one another. This set of terms is defined using Eqs. 21–1 and 21–2 and
can be written as

This array is called an inertia tensor.* It has a unique set of values for a
body when it is determined for each location of the origin O and
orientation of the coordinate axes.

In general, for point O we can specify a unique axes inclination for
which the products of inertia for the body are zero when computed with
respect to these axes. When this is done, the inertia tensor is said to be
“diagonalized” and may be written in the simplified form

Here and are termed the principal moments
of inertia for the body, which are computed with respect to the principal
axes of inertia. Of these three principal moments of inertia, one will be a
maximum and another a minimum of the body’s moment of inertia.

Iz = IzzIy = Iyy ,Ix = Ixx ,

£
Ix 0 0
0 Iy 0
0 0 Iz

≥

£
Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

≥

Ixy = 1Ix¿y¿2G + mxGyG

Iyz = 1Iy¿z¿2G + myGzG

Izx = 1Iz¿x¿2G + mzGxG

zG ,yGxG ,

*The negative signs are here as a consequence of the development of angular momentum,
Eqs. 21–10.

The dynamics of the space shuttle
while it orbits the earth can be
predicted only if its moments and
products of inertia are known
relative to its mass center.

z

x

y

y¿

z¿

x¿

G

zG

xG

yG

Fig. 21–3 (repeated)
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The mathematical determination of the directions of principal axes of
inertia will not be discussed here (see Prob. 21–20). However, there are
many cases in which the principal axes can be determined by inspection.
From the previous discussion it was noted that if the coordinate axes are
oriented such that two of the three orthogonal planes containing the axes
are planes of symmetry for the body, then all the products of inertia for
the body are zero with respect to these coordinate planes, and hence
these coordinate axes are principal axes of inertia. For example, the x, y,
z axes shown in Fig. 21–2b represent the principal axes of inertia for the
cylinder at point O.

Moment of Inertia About an Arbitrary Axis. Consider the
body shown in Fig. 21–4, where the nine elements of the inertia tensor
have been determined with respect to the x, y, z axes having an origin at
O. Here we wish to determine the moment of inertia of the body about
the Oa axis, which has a direction defined by the unit vector By
definition where b is the perpendicular distance from dm
to Oa. If the position of dm is located using r, then which
represents the magnitude of the cross product Hence, the
moment of inertia can be expressed as

Provided and then 
. After substituting and

performing the dot-product operation, the moment of inertia is

Recognizing the integrals to be the moments and products of inertia of
the body, Eqs. 21–1 and 21–2, we have

(21–5)

Thus, if the inertia tensor is specified for the x, y, z axes, the moment of
inertia of the body about the inclined Oa axis can be found. For the
calculation, the direction cosines of the axes must be
determined. These terms specify the cosines of the coordinate direction
angles made between the positive Oa axis and the positive x, y, z
axes, respectively (see Appendix C).

gb,a,

uzuy ,ux ,

IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

- 2uxuy
Lm

xy dm - 2uyuz
Lm

yz dm - 2uzux
Lm

zx dm

= ux
2

Lm
1y2 + z22dm + uy

2

Lm
1z2 + x22dm + uz

2

Lm
1x2 + y22 dm

IOa =
Lm

[1uyz - uzy22 + 1uzx - uxz22 + 1uxy - uyx22]dm

1uyz - uzy2i + 1uzx - uxz2j + 1uxy - uyx2k
ua * r =r = xi + yj + zk,ua = ux i + uy j + uz k

IOa =
Lm

ƒ 1ua * r2 ƒ 2dm =
Lm
1ua * r2 # 1ua * r2dm

ua * r.
b = r sin u,

IOa = 1b2 dm,
ua .

z

x

y
O

b � r sin u

a

ua

r

dm

u

Fig. 21–4
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Determine the moment of inertia of the bent rod shown in Fig. 21–5a
about the Aa axis. The mass of each of the three segments is given in
the figure.

SOLUTION
Before applying Eq. 21–5, it is first necessary to determine the
moments and products of inertia of the rod with respect to the x, y, z
axes. This is done using the formula for the moment of inertia of a
slender rod, and the parallel-axis and parallel-plane
theorems, Eqs. 21–3 and 21–4. Dividing the rod into three parts and
locating the mass center of each segment, Fig. 21–5b, we have

The Aa axis is defined by the unit vector

[0 + 410.221-0.22] = -0.200 kg # m2

Izx = [0 + 0] + [0 + 210.221-0.12] +

Iyz = [0 + 0] + [0 + 0] + [0 + 410.2210.22] = 0.160 kg # m2

Ixy = [0 + 0] + [0 + 0] + [0 + 41-0.2210.22] = -0.160 kg # m2

411-0.222 + 10.2222 D = 0.400 kg # m2

Izz = [0 + 0] + C 1
1212210.222 + 21-0.122 D + C 1

1214210.422 +

+ [0 + 411-0.222 + 10.2222] = 0.453 kg # m2

Iyy = C 1
1212210.222 + 210.122 D + C 1

1212210.222 + 211-0.122 + 10.2222 D
+ C 1

1214210.422 + 4110.222 + 10.2222 D = 0.480 kg # m2

Ixx = C 1
1212210.222 + 210.122 D + [0 + 210.222]

I = 1
12 ml2,

EXAMPLE 21.1

uAa =
rD

rD
=

-0.2i + 0.4j + 0.2k

21-0.222 + 10.422 + 10.222 = -0.408i + 0.816j + 0.408k

Thus,

Substituting these results into Eq. 21–5 yields

Ans.= 0.169 kg # m2

 - 21-0.200210.40821-0.4082
 - 21-0.16021-0.408210.8162 - 210.160210.816210.4082

= 0.4801-0.40822 + 10.453210.81622 + 0.40010.40822
IAa = Ixxux

2 + Iyyuy
2 + Izzuz

2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

ux = -0.408 uy = 0.816 uz = 0.408

z

x

y
A

B
C

D

2 kg
(0, 0, 0.1)

2 kg
(�0.1, 0, 0.2)

4 kg
(�0.2, 0.2, 0.2)

(b)

Fig. 21–5

y

2 kg

0.4 m

0.2 m

(a)

D

a4 kg0.2 m

z

A

B C
2 kg

0.2 m

x
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PROBLEMS

*21–4. Determine by direct integration the product of
inertia for the homogeneous prism. The density of the
material is . Express the result in terms of the total mass m
of the prism.

•21–5. Determine by direct integration the product of
inertia for the homogeneous prism. The density of the
material is . Express the result in terms of the total mass m
of the prism.

r

Ixy

r

Iyz

21–3. Determine the moments of inertia and of the
paraboloid of revolution. The mass of the paraboloid is m.

IyIx

•21–1. Show that the sum of the moments of inertia of a
body, , is independent of the orientation of
the x, y, z axes and thus depends only on the location of its
origin.

21–2. Determine the moment of inertia of the cone with
respect to a vertical axis that passes through the cone’s
center of mass.What is the moment of inertia about a parallel
axis that passes through the diameter of the base of the
cone? The cone has a mass m.

y¿

y

Ixx + Iyy + Izz

21–6. Determine the product of inertia for the
homogeneous tetrahedron. The density of the material is .
Express the result in terms of the total mass m of the solid.
Suggestion: Use a triangular element of thickness dz and
then express in terms of the size and mass of the
element using the result of Prob. 21–5.

dIxy

r

Ixy

h

x

y

a

y y¿–

Prob. 21–2

z

x a

r

y

z2 � yr2

—
a

Prob. 21–3

a

x

y

z

a

h

Probs. 21–4/5

z

a

a

a
x

y

Prob. 21–6
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•21–9. The slender rod has a mass per unit length of
. Determine its moments and products of inertia

with respect to the x, y, z axes.
6 kg>m

*21–8. Determine the product of inertia of the
homogeneous triangular block. The material has a density
of . Express the result in terms of the total mass m of the
block.
r

Ixy

21–7. Determine the moments of inertia for the
homogeneous cylinder of mass m about the , , axes.z¿y¿x¿

21–10. Determine the products of inertia , , and 
of the homogeneous solid. The material has a density of

.7.85 Mg>m3

IxzIyzIxy

x¿

x

z¿

z

y¿

y

r

r

Prob. 21–7

a

b

h

z

yx

Prob. 21–8

2 m

2 m

2 m

O

y
x

z

Prob. 21–9

z

yx

100 mm

200 mm

200 mm

200 mm

200 mm

Prob. 21–10
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•21–13. The bent rod has a weight of Locate the
center of gravity G( ) and determine the principal
moments of inertia and of the rod with respect to
the axes.z¿y¿,x¿,

Iz¿Iy¿ ,Ix¿ ,
yx,

1.5 lb>ft.

*21–12. Determine the products of inertia , , and
, of the thin plate. The material has a density per unit

area of .50 kg>m2
Ixz

IyzIxy

21–11. The assembly consists of two thin plates A and B
which have a mass of 3 kg each and a thin plate C which has
a mass of 4.5 kg. Determine the moments of inertia 
and Iz .

IyIx ,

21–14. The assembly consists of a 10-lb slender rod and a
30-lb thin circular disk. Determine its moment of inertia
about the axis.y¿

200 mm

400 mm

400 mm

z

yx

Prob. 21–12

2 ft

1 ft
A

B
x

y

z

y¿

Prob. 21–14

0.3 m
0.3 m

x

y

z

0.4 m

0.4 m
60�

60�
0.2 m

0.2 m

AC

B

Prob. 21–11

x

y

z

x¿

y¿

z¿

1 ft

1 ft

G

A

_
x

_
y

Prob. 21–13
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•21–17. Determine the product of inertia for the bent
rod. The rod has a mass per unit length of .

21–18. Determine the moments of inertia , , for
the bent rod. The rod has a mass per unit length of .2 kg>m

IzzIyyIxx

2 kg>m
Ixy

*21–16. Determine the products of inertia , , and
of the thin plate. The material has a mass per unit area

of .50 kg>m2
Ixz

IyzIxy

21–15. The top consists of a cone having a mass of 0.7 kg
and a hemisphere of mass 0.2 kg. Determine the moment of
inertia when the top is in the position shown.Iz

21–19. Determine the moment of inertia of the rod-and-
thin-ring assembly about the z axis. The rods and ring have
a mass per unit length of .2 kg>m

30 mm

z

y

x

30 mm
100 mm

45�

Prob. 21–15

z

yx

400 mm

400 mm

200 mm

200 mm

200 mm

200 mm

100 mm

Prob. 21–16

z

y

x

400 mm

600 mm

500 mm

Probs. 21–17/18

z

x

y

C

D

B

A

O

500 mm
400 mm

120�

120�
120�

Prob. 21–19
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21.2 Angular Momentum

In this section we will develop the necessary equations used to determine
the angular momentum of a rigid body about an arbitrary point. These
equations will provide a means for developing both the principle of impulse
and momentum and the equations of rotational motion for a rigid body.

Consider the rigid body in Fig. 21–6, which has a mass m and center of
mass at G. The X, Y, Z coordinate system represents an inertial frame of
reference, and hence, its axes are fixed or translate with a constant
velocity.The angular momentum as measured from this reference will be
determined relative to the arbitrary point A. The position vectors and

are drawn from the origin of coordinates to point A and from A to
the ith particle of the body. If the particle’s mass is the angular
momentum about point A is

where represents the particle’s velocity measured from the X, Y, Z
coordinate system. If the body has an angular velocity at the instant
considered, may be related to the velocity of A by applying Eq. 20–7, i.e.,

Thus,

Summing the moments of all the particles of the body requires an
integration. Since we have

(21–6)HA = a
Lm
RA dmb * vA +

Lm
RA * 1V * RA2dm

mi: dm,

= 1RAmi2 * vA + RA * 1V * RA2mi

1HA2i = RA * mi1vA + V * RA2

vi = vA + V * RA

vi

V

vi

1HA2i = RA * mi vi

mi ,
RA

rA

Z

X

Y

G
i

A
rA

vi

Inertial coordinate system

V

RA

vA

Fig. 21–6
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Fixed Point O. If A becomes a fixed point O in the body, Fig. 21–7a,
then and Eq. 21–6 reduces to

(21–7)

Center of Mass G. If A is located at the center of mass G of the
body, Fig. 21–7b, then and

(21–8)

Arbitrary Point A. In general, A can be a point other than O or G,
Fig. 21–7c, in which case Eq. 21–6 may nevertheless be simplified to the
following form (see Prob. 21–21).

(21–9)

Here the angular momentum consists of two parts—the moment of the
linear momentum of the body about point A added (vectorially) to
the angular momentum Equation 21–9 can also be used to
determine the angular momentum of the body about a fixed point O.
The results, of course, will be the same as those found using the more
convenient Eq. 21–7.

Rectangular Components of H. To make practical use of
Eqs. 21–7 through 21–9, the angular momentum must be expressed in
terms of its scalar components. For this purpose, it is convenient to

HG .
mvG

HA = RG>A * mvG + HG

HG =
Lm
RG * 1V * RG2 dm

1mRA dm = 0

HO =
Lm
RO * 1V * RO2 dm

vA = 0

Z

X

Y

z

x

y

O

i

RO

Fixed Point

(a)

Z

X

Y

z

x
yi

RG

G

Center of Mass

(b)

Z

X

Y

Arbitrary Point

z

x

y

G

RG/A

A

mvG

HG

(c)

Fig. 21–7
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choose a second set of x, y, z axes having an arbitrary orientation
relative to the X, Y, Z axes, Fig. 21–7, and for a general formulation,
note that Eqs. 21–7 and 21–8 are both of the form

Expressing H, and in terms of x, y, z components, we have

Expanding the cross products and combining terms yields

Equating the respective i, j, k components and recognizing that the
integrals represent the moments and products of inertia, we obtain

(21–10)

These equations can be simplified further if the x, y, z coordinate axes
are oriented such that they become principal axes of inertia for the body
at the point. When these axes are used, the products of inertia

and if the principal moments of inertia about the x,
y, z axes are represented as and the three
components of angular momentum become

(21–11)Hx = Ixvx Hy = Iyvy Hz = Izvz

Iz = Izz ,Iy = Iyy ,Ix = Ixx ,
Ixy = Iyz = Izx = 0,

Hx = Ixxvx - Ixyvy - Ixzvz

Hy = - Iyxvx + Iyyvy - Iyzvz

Hz = -Izxvx - Izyvy + Izzvz

+ c -vx
Lm

zx dm - vy
Lm

yz dm + vz
Lm
1x2 + y22dm dk

+ c -vx
Lm

xy dm + vy
Lm
1x2 + z22dm - vz

Lm
yz dm dj

z22dm - vy
Lm

xy dm - vz
Lm

xz dmd iHx i + Hy j + Hz k = cvx
Lm
1y2 +

* 1xi + yj + zk2]dm

Hx i + Hy j + Hz k =
Lm
1xi + yj + zk2 * [1vx i + vy j + vz k2

VR,

H =
Lm
R * 1V * R2dm
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Principle of Impulse and Momentum. Now that the
formulation of the angular momentum for a body has been developed,
the principle of impulse and momentum, as discussed in Sec. 19.2, can be
used to solve kinetic problems which involve force, velocity, and time. For
this case, the following two vector equations are available:

(21–12)

(21–13)

In three dimensions each vector term can be represented by three scalar
components, and therefore a total of six scalar equations can be written.
Three equations relate the linear impulse and momentum in the x, y, z
directions, and the other three equations relate the body’s angular
impulse and momentum about the x, y, z axes. Before applying Eqs. 21–12
and 21–13 to the solution of problems, the material in Secs. 19.2 and 19.3
should be reviewed.

21.3 Kinetic Energy

In order to apply the principle of work and energy to solve problems
involving general rigid body motion, it is first necessary to formulate
expressions for the kinetic energy of the body. To do this, consider the
rigid body shown in Fig. 21–8, which has a mass m and center of mass at
G. The kinetic energy of the ith particle of the body having a mass 
and velocity measured relative to the inertial X, Y, Z frame of
reference, is

Provided the velocity of an arbitrary point A in the body is known, can
be related to by the equation where is the
angular velocity of the body, measured from the X, Y, Z coordinate
system, and is a position vector extending from A to i. Using this
expression, the kinetic energy for the particle can be written as

The kinetic energy for the entire body is obtained by summing the
kinetic energies of all the particles of the body. This requires an
integration. Since we get

1
2
Lm
1V * RA2 # 1V * RA2dmT = 1

2 m1vA
# vA2 + vA

# aV *
Lm
RA dmb +

mi: dm,

= 1
21vA

# vA2mi + vA
# 1V * RA2mi + 1

21V * RA2 # 1V * RA2mi

Ti = 1
2 mi1vA + V * RA2 # 1vA + V * RA2

RA

Vvi = vA + V * RA ,vA

vi

Ti = 1
2 mivi

2 = 1
2 mi1vi

# vi2
vi ,

mi

1HO21 + ©
L

t2

t1

MO dt = 1HO22

m1vG21 + ©
L

t2

t1

F dt = m1vG22

The motion of the astronaut is
controlled by use of small directional jets
attached to his or her space suit. The
impulses these jets provide must be
carefully specified in order to prevent
tumbling and loss of orientation.

Z

X

Y
Inertial coordinate system

G

i

A

vi

RA

rA

V

vA

Fig. 21–8
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The last term on the right can be rewritten using the vector identity
where and The

final result is

(21–14)

This equation is rarely used because of the computations involving the
integrals. Simplification occurs, however, if the reference point A is
either a fixed point or the center of mass.

Fixed Point O. If A is a fixed point O in the body, Fig. 21–7a, then
and using Eq. 21–7, we can express Eq. 21–14 as

If the x, y, z axes represent the principal axes of inertia for the body, then
and Substituting

into the above equation and performing the dot-product operations yields

(21–15)

Center of Mass G. If A is located at the center of mass G of the
body, Fig. 21–7b, then and, using Eq. 21–8, we can write
Eq. 21–14 as

In a manner similar to that for a fixed point, the last term on the right
side may be represented in scalar form, in which case

(21–16)

Here it is seen that the kinetic energy consists of two parts; namely, the
translational kinetic energy of the mass center, and the body’s
rotational kinetic energy.

Principle of Work and Energy. Having formulated the kinetic
energy for a body, the principle of work and energy can be applied to
solve kinetics problems which involve force, velocity, and displacement.
For this case only one scalar equation can be written for each body,
namely,

(21–17)

Before applying this equation, the material in Chapter 18 should be
reviewed.

T1 + ©U1–2 = T2

1
2 mvG

2 ,

T = 1
2 mvG

2 + 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2

T = 1
2 mvG

2 + 1
2V

# HG

1RA dm = 0

T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2

HO = Ixvx i + Iyvy j + Izvz k.V = vx i + vy j + vz k

T = 1
2V

# HO

vA = 0,

+ 1
2V

#
Lm
RA * 1V * RA2dm

T = 1
2 m1vA

# vA2 + vA
# AV *

Lm
RA dm B

c = V * RA .b = RA ,a = V,a * b # c = a # b * c,
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The rod in Fig. 21–9a has a weight per unit length of 
Determine its angular velocity just after the end A falls onto the hook
at E. The hook provides a permanent connection for the rod due to
the spring-lock mechanism S. Just before striking the hook the rod is
falling downward with a speed 

SOLUTION
The principle of impulse and momentum will be used since impact
occurs.
Impulse and Momentum Diagrams. Fig. 21–9b. During the short
time the impulsive force F acting at A changes the momentum of
the rod. (The impulse created by the rod’s weight W during this time
is small compared to so that it can be neglected, i.e., the weight
is a nonimpulsive force.) Hence, the angular momentum of the rod is
conserved about point A since the moment of about A is zero.
Conservation of Angular Momentum. Equation 21–9 must be
used to find the angular momentum of the rod, since A does not
become a fixed point until after the impulsive interaction with the
hook. Thus, with reference to Fig. 21–9b, or

(1)

From Fig. 21–9a, Furthermore, the
primed axes are principal axes of inertia for the rod because

Hence, from Eqs. 21–11,
The principal moments of inertia are 

(see Prob.
21–13). Substituting into Eq. 1, we have

Expanding and equating the respective i, j, k components yields

(2)

(3)

(4)
Kinematics. There are four unknowns in the above equations;
however, another equation may be obtained by relating to 
using kinematics. Since (Eq. 4) and after impact the rod rotates
about the fixed point A, Eq. 20–3 can be applied, in which case

or

(5)
Solving Eqs. 2, 3 and 5 simultaneously yields

Ans.1vG22 = 5-8.41k6 ft>s V = 5-4.09i - 9.55j6 rad>s
-1vG22 = 0.5vx + 0.667vy

-1vG22 k = 1vx i + vy j2 * 1-0.667i + 0.5j2
1vG22 = V * rG>A ,

vz = 0
1vG22V

 0 = 0.0427vz

-0.932 = -0.09321vG22 + 0.0155vy

-0.699 = -0.06991vG22 + 0.0272vx

+ 0.0272vx i + 0.0155vy j + 0.0427vz k

0.5j2* ca 4.5
32.2
b1-vG22 kd1-0.667i + 0.5j2* ca 4.5

32.2
b1-10k2d = 1-0.667i +

Iz¿ = 0.0427 slug # ft20.0155 slug # ft2,Iy¿ =0.0272 slug # ft2,
Ix¿ =Iy¿vy j + Iz¿vz k.

1HG22 = Ix¿vx i +Ix¿z¿ = Iz¿y¿ = 0.
Ix¿y¿ =

rG>A = 5-0.667i + 0.5j6 ft.

rG>A * m1vG21 = rG>A * m1vG22 + 1HG22
1HA21 = 1HA22 ,

1F dt

1F dt,

¢t,

1vG21 = 10 ft>s.

1.5 lb>ft.
EXAMPLE 21.2

z
z¿

1 ft

y

y¿
0.333 ft

0.667 ft
G

x
x¿

0.5 ft

A

(a)

S

E

(b)

�

�

G

A

m(vG)2

rG/A

(HG)2

G

A

W�t � 0

�Fdt

G

m(vG)1

rG/A

A

Fig. 21–9
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EXAMPLE 21.3

A torque is applied to the vertical shaft CD shown in 
Fig. 21–10a, which allows the 10-kg gear A to turn freely about CE.
Assuming that gear A starts from rest, determine the angular
velocity of CD after it has turned two revolutions. Neglect the mass
of shaft CD and axle CE and assume that gear A can be
approximated by a thin disk. Gear B is fixed.

SOLUTION
The principle of work and energy may be used for the solution. Why?

Work. If shaft CD, the axle CE, and gear A are considered as a system
of connected bodies, only the applied torque M does work. For two
revolutions of CD, this work is 

Kinetic Energy. Since the gear is initially at rest, its initial kinetic
energy is zero.A kinematic diagram for the gear is shown in Fig. 21–10b.
If the angular velocity of CD is taken as then the angular velocity
of gear A is The gear may be imagined as a portion
of a massless extended body which is rotating about the fixed point C.
The instantaneous axis of rotation for this body is along line CH,
because both points C and H on the body (gear) have zero velocity and
must therefore lie on this axis. This requires that the components 
and be related by the equation or

Thus,

(1)

The x, y, z axes in Fig. 21–10a represent principal axes of inertia at C
for the gear. Since point C is a fixed point of rotation, Eq. 21–15 may
be applied to determine the kinetic energy, i.e.,

(2)

Using the parallel-axis theorem, the moments of inertia of the gear
about point C are as follows:

Since Eq. 2 becomes

Principle of Work and Energy. Applying the principle of work and
energy, we obtain

Ans.vCD = 9.56 rad>s
 0 + 62.83 = 0.6875vCD

2

T1 + ©U1-2 = T2

TA = 1
210.0521-3vCD22 + 0 + 1

210.92521vCD22 = 0.6875vCD
2

vz = vCD ,vy = 0,vx = -3vCD ,

Iy = Iz = 1
4110 kg210.1 m22 + 10 kg10.3 m22 = 0.925 kg # m2

Ix = 1
2110 kg210.1 m22 = 0.05 kg # m2

T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2

VA = -vCE i + vCD k = -3vCD i + vCD k

vCE = 3vCD .
vCD>0.1 m = vCE>0.3 mVCE

VCD

VA = VCD + VCE .
VCD ,

©U1-2 = 15 N # m214p rad2 = 62.83 J.

5-N # m

M � 5 N � m

D

(a)

y
x

B
0.1 m

z

0.3 m

A
C

E

(b)

E
A

H
D

C

z

x
0.1 m

0.3 m

VCD VA

VCE

Instantaneous
axis of rotation

Fig. 21–10
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PROBLEMS

•21–21. Show that if the angular momentum of a body is
determined with respect to an arbitrary point A, then 
can be expressed by Eq. 21–9. This requires substituting

into Eq. 21–6 and expanding, noting 
that by definition of the mass center and

.vG = vA + V : RG>A
1RG dm = 0

RA = RG + RG>A

HA

*21–20. If a body contains no planes of symmetry, the
principal moments of inertia can be determined
mathematically. To show how this is done, consider the rigid
body which is spinning with an angular velocity , directed
along one of its principal axes of inertia. If the principal
moment of inertia about this axis is I, the angular momentum
can be expressed as . The
components of H may also be expressed by Eqs. 21–10,
where the inertia tensor is assumed to be known. Equate the
i, j, and k components of both expressions for H and consider

, , and to be unknown. The solution of these three
equations is obtained provided the determinant of the
coefficients is zero. Show that this determinant, when
expanded, yields the cubic equation

The three positive roots of I, obtained from the solution of
this equation, represent the principal moments of inertia

, , and .IzIyIx

- IyyI2
zx - IzzI

2
xy) = 0

- (IxxIyyIzz - 2IxyIyzIzx - IxxI2
yz

+ (IxxIyy + IyyIzz + IzzIxx - I2
xy - I2

yz - I2
zx)I

I3 - (Ixx + Iyy + Izz)I2

vzvyvx

H = IV = Ivx i + Ivyj + Ivz k

V

21–22. The 4-lb rod AB is attached to the disk and collar
using ball-and-socket joints. If the disk has a constant
angular velocity of determine the kinetic energy of
the rod when it is in the position shown.Assume the angular
velocity of the rod is directed perpendicular to the axis of
the rod.

21–23. Determine the angular momentum of rod AB in
Prob. 21–22 about its mass center at the instant shown.
Assume the angular velocity of the rod is directed
perpendicular to the axis of the rod.

2 rad>s,

RA

RG

RG/A

G P

A
y

Y

Z
z

x

X

Prob. 21–21

A

B

y

z

x

3 ft

1 ft

2 rad/s

Probs. 21–22/23

y

V

z

x

O

Prob. 21–20
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21–27. The space capsule has a mass of 5 Mg and the
radii of gyration are and .
If it travels with a velocity ,
compute its angular velocity just after it is struck by a
meteoroid having a mass of 0.80 kg and a velocity

. Assume that the
meteoroid embeds itself into the capsule at point A and
that the capsule initially has no angular velocity.

vm = 5-300i + 200j - 150k6 m>s

vG = 5400j + 200k6 m>s
ky = 0.45 mkx = kz = 1.30 m

•21–25. The 5-kg disk is connected to the 3-kg slender
rod. If the assembly is attached to a ball-and-socket joint at
A and the couple moment is applied, determine the
angular velocity of the rod about the z axis after the
assembly has made two revolutions about the z axis starting
from rest. The disk rolls without slipping.

21–26. The 5-kg disk is connected to the 3-kg slender rod.
If the assembly is attached to a ball-and-socket joint at A
and the couple moment gives it an angular velocity
about the z axis of , determine the magnitude
of the angular momentum of the assembly about A.

vz = 2 rad>s
5-N # m

5-N # m

*21–24. The uniform thin plate has a mass of 15 kg. Just
before its corner A strikes the hook, it is falling with a
velocity of with no rotational motion.
Determine its angular velocity immediately after corner A
strikes the hook without rebounding.

vG = 5-5k6 m>s

*21–28. Each of the two disks has a weight of 10 lb. The
axle AB weighs 3 lb. If the assembly rotates about the z axis
at , determine its angular momentum about
the z axis and its kinetic energy. The disks roll without
slipping.

vz = 6 rad>s

y

z

x

G
A

200 mm

200 mm
300 mm

300 mm

vG

Prob. 21–24

0.2 m
M � 5 N � m 1.5 m

z

x

y

B

A

Probs. 21–25/26

G

z

A (0.8 m, 3.2 m, 0.9 m)

x y

vm

vG

Prob. 21–27

y

z

x vz � 6 rad/s

2 ft

2 ft

1 ft

A

1 ft

B

Prob. 21–28
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21–31. The 200-kg satellite has its center of mass at point
G. Its radii of gyration about the , , axes are

, respectively. At the
instant shown, the satellite rotates about the , and 
axes with the angular velocity shown, and its center of mass
G has a velocity of .
Determine the angular momentum of the satellite about
point A at this instant.

*21–32. The 200-kg satellite has its center of mass at point G.
Its radii of gyration about the , , axes are 

, respectively. At the instant shown, the
satellite rotates about the , , and axes with the angular
velocity shown, and its center of mass G has a velocity of

. Determine the kinetic
energy of the satellite at this instant.
vG = 5—250i + 200j +  120k6 m>s

z¿y¿x¿
kx¿ = ky¿ = 500 mm

kz¿ = 300 mm,y¿x¿z¿

vG = 5—250i + 200j +  120k6 m>s
z¿y¿x¿,

kx¿ = ky¿ = 500 mmkz¿ = 300 mm,
y¿x¿z¿

•21–29. The 10-kg circular disk spins about its axle with a
constant angular velocity of . Simultaneously,
arm OB and shaft OA rotate about their axes with constant
angular velocities of and , respectively.
Determine the angular momentum of the disk about point O,
and its kinetic energy.

21–30. The 10-kg circular disk spins about its axle with a
constant angular velocity of . Simultaneously,
arm OB and shaft OA rotate about their axes with constant
angular velocities of and ,
respectively. Determine the angular momentum of the disk
about point O, and its kinetic energy.

v3 = 6 rad>sv2 = 10 rad>s
v1 = 15 rad>s

v3 = 6 rad>sv2 = 0

v1 = 15 rad>s

21–35. A thin plate, having a mass of 4 kg, is suspended
from one of its corners by a ball-and-socket joint O. If a
stone strikes the plate perpendicular to its surface at an
adjacent corner A with an impulse of 
determine the instantaneous axis of rotation for the plate
and the impulse created at O.

Is = 5-60i6 N # s,

B

O

A
150 mm

600 mm

x

y

z

V1

V2V3

Probs. 21–29/30

x¿

x

y¿

y

G

A

800 mm

Vx¿ � 600 rad/s

Vz¿ � 1250 rad/s

Vy¿ � 300 rad/s

z, z¿

vG

Probs. 21–31/32

z

y

0.5 ft

0.75 ft

0.25 ft

v

0.5 ft

x

0.25 ft

O

A

Probs. 21–33/34

z

x

O

A
y

200 mm

200 mm

Is � {�60i} N�s

Prob. 21–35

•21–33. The 25-lb thin plate is suspended from a ball-and-
socket joint at O. A 0.2-lb projectile is fired with a velocity
of into the plate and
becomes embedded in the plate at point A. Determine the
angular velocity of the plate just after impact and the axis
about which it begins to rotate. Neglect the mass of the
projectile after it embeds into the plate.

21–34. Solve Prob. 21–33 if the projectile emerges from
the plate with a velocity of in the same direction.275 ft>s

v = 5-300i - 250j + 300k6 ft>s
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21–38. The satellite has a mass of 200 kg and radii of
gyration of and . When it
is not rotating, the two small jets A and B are ignited
simultaneously, and each jet provides an impulse of

on the satellite. Determine the satellite’s
angular velocity immediately after the ignition.
I = 1000 N # s

kz = 250 mmkx = ky = 400 mm

•21–37. The plate has a mass of 10 kg and is suspended
from parallel cords. If the plate has an angular velocity of

about the z axis at the instant shown, determine
how high the center of the plate rises at the instant the plate
momentarily stops swinging.

1.5 rad>s

*21–36. The 15-lb plate is subjected to a force 
which is always directed perpendicular to the face of the
plate. If the plate is originally at rest, determine its angular
velocity after it has rotated one revolution (360°). The plate
is supported by ball-and-socket joints at A and B.

F = 8 lb

21–39. The bent rod has a mass per unit length of ,
and its moments and products of inertia have been
calculated in Prob. 21–9. If shaft AB rotates with a constant
angular velocity of , determine the angular
momentum of the rod about point O, and the kinetic energy
of the rod.

vz = 6 rad>s

6 kg>m

1.2 ft

y
x

0.4 ft

F � 8 lb

z

B

A

Prob. 21–36

z

y

x

120�

120�
120�

1.5 rad/s

250 mm

Prob. 21–37

y

x

z

400 mm

500 mm

500 mm

500 mm

A
B

G

I

�I

Prob. 21–38

y
x

2 m

2 m

2 m

z

O

B

AVz

Prob. 21–39
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*21.4 Equations of Motion

Having become familiar with the techniques used to describe both the
inertial properties and the angular momentum of a body, we can now
write the equations which describe the motion of the body in their most
useful forms.

Equations of Translational Motion. The translational motion
of a body is defined in terms of the acceleration of the body’s mass
center, which is measured from an inertial X, Y, Z reference. The
equation of translational motion for the body can be written in vector
form as

(21–18)

or by the three scalar equations

(21–19)

Here, represents the sum of all the
external forces acting on the body.

Equations of Rotational Motion. In Sec. 15.6, we developed
Eq. 15–17, namely,

(21–20)

which states that the sum of the moments of all the external forces acting
on a system of particles (contained in a rigid body) about a fixed point O
is equal to the time rate of change of the total angular momentum of the
body about point O. When moments of the external forces acting on the
particles are summed about the system’s mass center G, one again
obtains the same simple form of Eq. 21–20, relating the moment
summation to the angular momentum To show this, consider
the system of particles in Fig. 21–11, where X, Y, Z represents an inertial
frame of reference and the x, y, z axes, with origin at G, translate with
respect to this frame. In general, G is accelerating, so by definition the
translating frame is not an inertial reference. The angular momentum of
the ith particle with respect to this frame is, however,

where and represent the position and velocity of the ith particle
with respect to G. Taking the time derivative we have

1H# i2G = r
#
i>G * mi vi>G + ri>G * miv

#
i>G

vi>Gri>G

1Hi2G = ri>G * mi vi>G

HG .©MG

©MO = H
#

O

©F = ©Fx i + ©Fy j + ©Fz k

©Fx = m1aG2x
©Fy = m1aG2y
©Fz = m1aG2z

©F = maG

Z

Y

y

z

rG

X

x
ri

ri/G i

Inertial coordinate system

G

O

Fig. 21–11
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By definition, Thus, the first term on the right side is zero
since the cross product of the same vectors is zero.Also, so that

Similar expressions can be written for the other particles of the body.
When the results are summed, we get

Here is the time rate of change of the total angular momentum of the
body computed about point G.

The relative acceleration for the ith particle is defined by the equation
where and represent, respectively, the accelerations

of the ith particle and point G measured with respect to the inertial
frame of reference. Substituting and expanding, using the distributive
property of the vector cross product, yields

By definition of the mass center, the sum is equal
to zero, since the position vector relative to G is zero. Hence, the last
term in the above equation is zero. Using the equation of motion, the
product can be replaced by the resultant external force acting on
the ith particle. Denoting the final result can be
written as

(21–21)

The rotational equation of motion for the body will now be developed
from either Eq. 21–20 or 21–21. In this regard, the scalar components of
the angular momentum or are defined by Eqs. 21–10 or, if
principal axes of inertia are used either at point O or G, by Eqs. 21–11. If
these components are computed about x, y, z axes that are rotating with
an angular velocity that is different from the body’s angular velocity

then the time derivative as used in Eqs. 21–20 and 21–21,
must account for the rotation of the x, y, z axes as measured from the
inertial X, Y, Z axes. This requires application of Eq. 20–6, in which case
Eqs. 21–20 and 21–21 become

(21–22)

Here is the time rate of change of H measured from the x, y, z
reference.

There are three ways in which one can define the motion of the x, y, z
axes. Obviously, motion of this reference should be chosen so that it will
yield the simplest set of moment equations for the solution of a
particular problem.

1H# 2xyz

©MG = 1H# G2xyz + æ * HG

©MO = 1H# O2xyz + æ * HO

H
#

= dH>dt,V,
æ

HGHO

©MG = H
#

G

©MG = ©1ri>G * Fi2,
Fimi ai

r
1©mi ri>G2 = 1©mi2r

H
#

G = ©1ri>G * mi ai2 - 1©mi ri>G2 * aG

aGaiai>G = ai - aG ,

H
#

G

H
#

G = ©1ri>G * mi ai>G2

1H# i2G = 1ri>G * mi ai>G2
ai>G = v

#
i>G ,

vi>G = r
#
i>G .
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x, y, z Axes Having Motion If the body has general
motion, the x, y, z axes can be chosen with origin at G, such that the axes
only translate relative to the inertial X, Y, Z frame of reference. Doing
this simplifies Eq. 21–22, since However, the body may have a
rotation about these axes, and therefore the moments and products of
inertia of the body would have to be expressed as functions of time. In
most cases this would be a difficult task, so that such a choice of axes has
restricted application.

x, y, z Axes Having Motion The x, y, z axes can be
chosen such that they are fixed in and move with the body. The moments
and products of inertia of the body relative to these axes will then be
constant during the motion. Since Eqs. 21–22 become

(21–23)

We can express each of these vector equations as three scalar equations
using Eqs. 21–10. Neglecting the subscripts O and G yields

(21–24)

If the x, y, z axes are chosen as principal axes of inertia, the products of
inertia are zero, etc., and the above equations become

(21–25)

This set of equations is known historically as the Euler equations of
motion, named after the Swiss mathematician Leonhard Euler, who first
developed them. They apply only for moments summed about either
point O or G.

©Mx = Ixv
#

x - 1Iy - Iz2vyvz

©My = Iyv
#

y - 1Iz - Ix2vzvx

©Mz = Izv
#

z - 1Ix - Iy2vxvy

Ixx = Ix ,

- Ixy1vx
2 - vy

22 - Iyz1v# y + vzvx2
©Mz = Izzv

#
z - 1Ixx - Iyy2vxvy - Izx1v# x - vyvz2

- Izx1vz
2 - vx

22 - Ixy1v# x + vyvz2
©My = Iyyv

#
y - 1Izz - Ixx2vzvx - Iyz1v# z - vxvy2

- Iyz1vy
2 - vz

22 - Izx1v# z + vxvy2
©Mx = Ixxv

#
x - 1Iyy - Izz2vyvz - Ixy1v# y - vzvx2

©MG = 1H# G2xyz + V * HG

©MO = 1H# O2xyz + V * HO

æ = V,

æ = V.

V

æ = 0.

æ = 0.
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When applying these equations it should be realized that 
represent the time derivatives of the magnitudes of the x, y, z
components of as observed from x, y, z. To determine these
components, it is first necessary to find when the x, y, z axes
are oriented in a general position and then take the time derivative of the
magnitude of these components, i.e., However, since the x, y, z
axes are rotating at then from Eq. 20–6, it should be noted that

Since then This
important result indicates that the time derivative of with respect
to the fixed X,Y,Z axes, that is can also be used to obtain 

Generally this is the easiest way to determine the result. See
Example 21.5.

x, y, z Axes Having Motion To simplify the
calculations for the time derivative of it is often convenient to choose
the x, y, z axes having an angular velocity which is different from the
angular velocity of the body. This is particularly suitable for the
analysis of spinning tops and gyroscopes which are symmetrical about
their spinning axes.*  When this is the case, the moments and products of
inertia remain constant about the axis of spin.

Equations 21–22 are applicable for such a set of axes. Each of these
two vector equations can be reduced to a set of three scalar equations
which are derived in a manner similar to Eqs. 21–25,†  i.e.,

(21–26)

Here represent the x, y, z components of measured from
the inertial frame of reference, and must be determined
relative to the x, y, z axes that have the rotation See Example 21.6.

Any one of these sets of moment equations, Eqs. 21–24, 21–25, or
21–26, represents a series of three first-order nonlinear differential
equations. These equations are “coupled,” since the angular-velocity
components are present in all the terms. Success in determining the
solution for a particular problem therefore depends upon what is
unknown in these equations. Difficulty certainly arises when one
attempts to solve for the unknown components of when the external
moments are functions of time. Further complications can arise if the
moment equations are coupled to the three scalar equations of
translational motion, Eqs. 21–19. This can happen because of the
existence of kinematic constraints which relate the rotation of the body
to the translation of its mass center, as in the case of a hoop which rolls

V

æ.
v
#

zv
#

y ,v
#

x ,
æ,ÆzÆy ,Æx ,

©Mx = Ixv
#
x - IyÆzvy + IzÆyvz

©My = Iyv
#

y - IzÆxvz + IxÆzvx

©Mz = Izv
#

z - IxÆyvx + IyÆxvy

V

æ
V,

æ � V.

1V# 2xyz .
V
#
,

V

V
# = 1V# 2xyz .V * V = 0,V

# = 1V# 2xyz + V * V.
æ = V,

1V# 2xyz .

vzvy ,vx ,
V

v
#

zv
#

y ,v
#

x ,

*A detailed discussion of such devices is given in Sec. 21.5.
†See Prob. 21–42.
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without slipping. Problems that require the simultaneous solution of
differential equations are generally solved using numerical methods with
the aid of a computer. In many engineering problems, however, we are
given information about the motion of the body and are required to
determine the applied moments acting on the body. Most of these
problems have direct solutions, so that there is no need to resort to
computer techniques.

Procedure for Analysis

Problems involving the three-dimensional motion of a rigid body
can be solved using the following procedure.

Free-Body Diagram.
● Draw a free-body diagram of the body at the instant considered

and specify the x, y, z coordinate system. The origin of this
reference must be located either at the body’s mass center G, or
at point O, considered fixed in an inertial reference frame and
located either in the body or on a massless extension of the body.

● Unknown reactive force components can be shown having a
positive sense of direction.

● Depending on the nature of the problem, decide what type of
rotational motion the x, y, z coordinate system should have,
i.e., or When choosing, keep in mind
that the moment equations are simplified when the axes move in
such a manner that they represent principal axes of inertia for the
body at all times.

● Compute the necessary moments and products of inertia for the
body relative to the x, y, z axes.

Kinematics.
● Determine the x, y, z components of the body’s angular velocity

and find the time derivatives of 

● Note that if , then Therefore we can either
find the time derivative of with respect to the X, Y, Z axes,
and then determine its components or we can find the
components of along the x, y, z axes, when the axes are
oriented in a general position, and then take the time derivative
of the magnitudes of these components,

Equations of Motion.
● Apply either the two vector equations 21–18 and 21–22 or the six

scalar component equations appropriate for the x, y, z coordinate
axes chosen for the problem.

1V# 2xyz .

V

v
#

z ,v
#

y ,v
#

x ,
V
#
,V

V
# = 1V# 2xyz.æ = V
V.

æ Z V.æ = V,æ = 0,
æ
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EXAMPLE 21.4

The gear shown in Fig. 21–12a has a mass of 10 kg and is mounted at
an angle of 10° with the rotating shaft having negligible mass. If

and the shaft is rotating with a
constant angular velocity of determine the components
of reaction that the thrust bearing A and journal bearing B exert on the
shaft at the instant shown.

SOLUTION
Free-Body Diagram. Fig. 21–12b. The origin of the x, y, z
coordinate system is located at the gear’s center of mass G, which is
also a fixed point. The axes are fixed in and rotate with the gear so
that these axes will then always represent the principal axes of inertia
for the gear. Hence 
Kinematics. As shown in Fig. 21–12c, the angular velocity of the
gear is constant in magnitude and is always directed along the axis of
the shaft AB. Since this vector is measured from the X, Y, Z inertial
frame of reference, for any position of the x, y, z axes,

These components remain constant for any general orientation of
the x, y, z axes, and so Also note that since 
then . Therefore, we can find these time derivatives
relative to the X, Y, Z axes. In this regard has a constant magnitude
and direction since and so 
Furthermore, since G is a fixed point,

Equations of Motion. Applying Eqs. 21–25 yields

(1)

(2)

(check)

Applying Eqs. 21–19, we have
(3)

(4)

Ans.

Solving Eqs. 1 through Eqs. 4 simultaneously gives
Ans.AX = BX = 0 AY = 71.6 N BY = 26.5 N

AZ = 0©FZ = m1aG2Z ;

AY + BY - 98.1 = 0©FY = m1aG2Y ;

AX + BX = 0©FX = m1aG2X ;

AX = 1.25BX

AX10.22 sin 10° - BX10.252 sin 10° = 0 - 0

©Mz = Izv
#

z - 1Ix - Iy2vxvy

AX = 1.25BX

AX10.22 cos 10° - BX10.252 cos 10° = 0 - 0

©My = Iyv
#

y - 1Iz - Ix2vzvx

-0.2AY + 0.25BY = -7.70

-1AY210.22 + 1BY210.252 = 0 - 10.05 - 0.121-30 sin 10°2130 cos 10°2
©Mx = Ixv

#
x - 1Iy - Iz2vyvz

1æ = V2
1aG2x = 1aG2y = 1aG2z = 0.

v
#

x = v# y = v# z = 0.V
# = 0,1+Z2

V

V
# = 1V# 2xyz

æ = V,v
#

x = v# y = v# z = 0.

vx = 0 vy = -30 sin 10° vz = 30 cos 10°

V

æ = V.

v = 30 rad>s,
Ix = Iy = 0.05 kg # m2,Iz = 0.1 kg # m2,

0.2 m

0.25 m

Z

Y

X, x

y
z

A

B

(a)

10�10�

G

v � 30 rad/s

10�

0.2 m

0.25 m
x

y

z

A

B

(b)

98.1 N
BX

AX

AY

BY

10�

G

AZ

x

y

z

A

B

G

(c)

10�

V

10�

Fig. 21–12
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The airplane shown in Fig. 21–13a is in the process of making a
steady horizontal turn at the rate of During this motion, the
propeller is spinning at the rate of If the propeller has two
blades, determine the moments which the propeller shaft exerts on
the propeller at the instant the blades are in the vertical position.
For simplicity, assume the blades to be a uniform slender bar having
a moment of inertia I about an axis perpendicular to the blades
passing through the center of the bar, and having zero moment of
inertia about a longitudinal axis.

vs .
vp .

EXAMPLE 21.5

Vs

Vp

(a)

x

y

z

G

FR

MR

(b)

 Z, z¿, z

X, x¿, x

 Y, y¿, y(c)

Vs

Vp

Fig. 21–13

SOLUTION
Free-Body Diagram. Fig. 21–13b. The reactions of the connecting
shaft on the propeller are indicated by the resultants and (The
propeller’s weight is assumed to be negligible.) The x, y, z axes will be
taken fixed to the propeller, since these axes always represent the
principal axes of inertia for the propeller. Thus, The moments
of inertia and are equal and 

Kinematics. The angular velocity of the propeller observed from
the X, Y, Z axes, coincident with the x, y, z axes, Fig. 21–13c, is

so that the x, y, z components of are

Since then To find , which is the time
derivative with respect to the fixed X, Y, Z axes, we can use Eq. 20–6
since changes direction relative to X, Y, Z. The time rate of change of
each of these components relative to the X,Y, Z axes can
be obtained by introducing a third coordinate system which
has an angular velocity and is coincident with the X,Y, Z axes
at the instant shown.Thus

æ¿ = Vp

z¿,y¿,x¿,
V
# = V# s + V# p

V

V
#

V
# = 1V# 2xyz .æ = V,

vx = vs vy = 0 vz = vp

VV = Vs + Vp = vs i + vp k,

Iz = 0.1Ix = Iy = I2IyIx

æ = V.

MR .FR
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Since the X, Y, Z axes are coincident with the x, y, z axes at the instant
shown, the components of along x, y, z are therefore

These same results can also be determined by direct calculation of
however, this will involve a bit more work.To do this, it will be

necessary to view the propeller (or the x, y, z axes) in some general
position such as shown in Fig. 21–13d. Here the plane has turned
through an angle (phi) and the propeller has turned through an
angle (psi) relative to the plane. Notice that is always directed
along the fixed Z axis and follows the x axis. Thus the general
components of are

Since and are constant, the time derivatives of these components
become

But and at the instant considered. Thus,

which are the same results as those obtained previously.

Equations of Motion. Using Eqs. 21–25, we have

Ans.

Ans.

Ans.Mz = 0

©Mz = Izv
#

z - 1Ix - Iy2vxvy = 0102 - 1I - I2vs102
My = 2Ivpvs

©My = Iyv
#

y - 1Iz - Ix2vzvx = I1vpvs2 - 10 - I2vpvs

Mx = 0

©Mx = Ixv
#

x - 1Iy - Iz2vyvz = I102 - 1I - 02102vp

v
#

x = 0 v
#

y = vpvs v
#

z = 0

vx = vs vy = 0 vz = vp

c
#

= vsf = c = 0°

v
#

x = 0 v
#

y = vp cos c c
#

vz = -vp sin c c
#

vpvs

vx = vs vy = vp sin c vz = vp cos c

V

Vs

Vpc

f

1V# 2xyz ;

v
#

x = 0 v
#

y = vpvs v
#

z = 0

V
#

= 0 + 0 + vp k * vs i + 0 = vpvs j

= 0 + 0 + Vp * Vs + Vp * Vp

= 1V# s2x¿y¿z¿ + 1V# p2x¿y¿z¿ + Vp * 1Vs + Vp2
V
# = 1V# 2x¿y¿z¿ + Vp * V

X

Y

Z

x

y

z

(d)

Vs

Vp

c

f
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The 10-kg flywheel (or thin disk) shown in Fig. 21–14a rotates (spins)
about the shaft at a constant angular velocity of At the
same time, the shaft rotates (precessing) about the bearing at A with
an angular velocity of If A is a thrust bearing and B is a
journal bearing, determine the components of force reaction at each
of these supports due to the motion.

SOLUTION I
Free-Body Diagram. Fig. 21–14b. The origin of the x, y, z coordinate
system is located at the center of mass G of the flywheel. Here we will let
these coordinates have an angular velocity of 
Although the wheel spins relative to these axes, the moments of inertia
remain constant,*  i.e.,

Kinematics. From the coincident inertial X, Y, Z frame of
reference, Fig. 21–14c, the flywheel has an angular velocity of

so that

The time derivative of must be determined relative to the x, y, z
axes. In this case both and do not change their magnitude or
direction, and so

Equations of Motion. Applying Eqs. 21–26 yields

Ax10.52 - Bx10.52 = 0 - 0 + 0

©Mz = Izv
#

z - IxÆyvx + IyÆxvy

0 = 0 - 0 + 0

©My = Iyv
#

y - IzÆxvz + IxÆzvx

-Az10.52 + Bz10.52 = 0 - 10.22132162 + 0 = -3.6

©Mx = Ixv
#

x - IyÆzvy + IzÆyvz

1æ Z V2
v
#

x = 0 v# y = 0  v# z = 0

VsVp

V

vx = 0 vy = 6 rad>s  vz = 3 rad>s
V = 56j + 3k6 rad>s,

Iy = 1
2110 kg210.2 m22 = 0.2 kg # m2

Ix = Iz = 1
4110 kg210.2 m22 = 0.1 kg # m2

æ = Vp = 53k6 rad>s.

vp = 3 rad>s.

vs = 6 rad>s.

EXAMPLE 21.6

(a)

0.5 m

A

B

0.5 m

0.2 mG

vp � 3 rad/s

vs � 6 rad/s

(b)

Bx

Ax

Ay

Az

Bz

10(9.81) N

z

0.5 m

y

x

A

B

0.5 m

G

Fig. 21–14

* This would not be true for the propeller in Example 21.5.
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Applying Eqs. 21–19, we have

Solving these equations, we obtain

NOTE: If the precession had not occurred, the z component of
force at A and B would be equal to 49.05 N. In this case, however, the
difference in these components is caused by the “gyroscopic moment”
created whenever a spinning body precesses about another axis. We
will study this effect in detail in the next section.

SOLUTION II
This example can also be solved using Euler’s equations of motion,
Eqs. 21–25. In this case and the time
derivative can be conveniently obtained with reference to the
fixed X, Y, Z axes since This calculation can be
performed by choosing axes to have an angular velocity of

Fig. 21–14c, so that

The moment equations then become

The solution then proceeds as before.

Ax10.52 - Bx10.52 = 0 - 0

©Mz = Izv
#

z - 1Ix - Iy2vxvy

0 = 0 - 0

©My = Iyv
#

y - 1Iz - Ix2vzvx

-Az10.52 + Bz10.52 = 0.11-182 - 10.2 - 0.12162132 = -3.6

©Mx = Ixv
#

x - 1Iy - Iz2vyvz

v
#

x = -18 rad>s v# y = 0 v# z = 0

V
# = 1V# 2x¿y¿z¿ + Vp * V = 0 + 3k * 16j + 3k2 = 5-18i6 rad>s2

æ¿ = Vp ,
z¿y¿,x¿,
V
# = 1V# 2xyz .

1V# 2xyz

æ = V = 56j + 3k6 rad>s,

Vp

Ax = 0 Ay = -45.0 N Az = 52.6 N Ans.

Bx = 0 Bz = 45.4 N Ans.

Az + Bz - 1019.812 = 0©FZ = m1aG2Z ;

Ay = -1010.521322©FY = m1aG2Y ;

Ax + Bx = 0©FX = m1aG2X ;

vp � 3 rad/s

(c)

Z, z, z¿

X, x, x¿

Y, y, y¿

A

vs � 6 rad/s

B

G

Fig. 21–14
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PROBLEMS

•21–45. The slender rod AB has a mass m and it is
connected to the bracket by a smooth pin at A. The bracket
is rigidly attached to the shaft. Determine the required
constant angular velocity of of the shaft, in order for the
rod to make an angle of with the vertical.u

V

*21–44. The disk, having a mass of is mounted
eccentrically on shaft AB. If the shaft is rotating at a constant
rate of determine the reactions at the journal bearing
supports when the disk is in the position shown.

9 rad>s,

3 kg,

*21–40. Derive the scalar form of the rotational equation
of motion about the x axis if and the moments and
products of inertia of the body are not constant with respect
to time.

•21–41. Derive the scalar form of the rotational
equation of motion about the x axis if and the
moments and products of inertia of the body are constant
with respect to time.

21–42. Derive the Euler equations of motion for ,
i.e., Eqs. 21–26.

21–43. The uniform rectangular plate has a mass of
and is given a rotation of about its

bearings at A and B. If and , determine
the vertical reactions at A and B at the instant the plate 
is vertical as shown. Use the x, y, z axes shown and note that

Izx = -  amac

12
b a c2 - a2

c2 + a2 b .

c = 0.3 ma = 0.2 m
v = 4 rad>sm = 2 kg

æ Z V

æ Z V

æ Z V

21–46. The 5-kg rod AB is supported by a rotating arm.The
support at A is a journal bearing, which develops reactions
normal to the rod.The support at B is a thrust bearing, which
develops reactions both normal to the rod and along the axis
of the rod. Neglecting friction, determine the x, y, z
components of reaction at these supports when the frame
rotates with a constant angular velocity of .v = 10 rad>s

x

A

B

V

c
ay

z

Prob. 21–43

A

B

v � 9 rad/s

1.25 m

50 mm
75 mm

1 m

Prob. 21–44

A

B

L

L
3

V

u

Prob. 21–45

ω

z

0.5 m

y

x

A

B

G

= 10 rad/s

0.5 m

Prob. 21–46



A

V

C

D

F

E

B
yx

z

0.1 m

0.1 m

0.1 m 0.1 m

0.2 m

0.1 m

30�

uD

uF

0.1 m
0.1 m

x

z

y

G

r

x

0.6 m

0.6 m
0.2 m

z

y

B

O

A

0.2 m

0.1 m

v � 30 rad/s
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21–50. A man stands on a turntable that rotates about a
vertical axis with a constant angular velocity of

. If the wheel that he holds spins with a
constant angular speed of , determine the
magnitude of moment that he must exert on the wheel to
hold it in the position shown. Consider the wheel as a thin
circular hoop (ring) having a mass of 3 kg and a mean radius
of 300 mm.

vs = 30 rad>s
vp = 10 rad>s

*21–48. The shaft is constructed from a rod which has a
mass per unit length of Determine the x, y, z
components of reaction at the bearings A and B if at the
instant shown the shaft spins freely and has an angular
velocity of .What is the angular acceleration of
the shaft at this instant? Bearing A can support a component
of force in the y direction, whereas bearing B cannot.

v = 30 rad>s

2 kg>m.

21–47. The car travels around the curved road of radius 
such that its mass center has a constant speed . Write the
equations of rotational motion with respect to the x, y, z
axes. Assume that the car’s six moments and products of
inertia with respect to these axes are known.

vG

r

21–51. The 50-lb disk spins with a constant angular rate of
about its axle. Simultaneously, the shaft

rotates with a constant angular rate of .
Determine the x, y, z components of the moment developed
in the arm at A at the instant shown. Neglect the weight of
arm AB.

v2 = 10 rad>s
v1 = 50 rad>s

•21–49. Four spheres are connected to shaft AB. If
and , determine the mass of spheres

D and F and the angles of the rods, and , so that the
shaft is dynamically balanced, that is, so that the bearings at
A and B exert only vertical reactions on the shaft as it
rotates. Neglect the mass of the rods.

uFuD

mE = 2 kgmC = 1 kg

Prob. 21–47

Prob. 21–48

Prob. 21–49

500 mm

300 mm

vs � 30 rad/s

vp � 10 rad/s

Prob. 21–50

z

y

B

A

x

2 ft

0.75 ft

v1 � 50 rad/s

v2 � 10 rad/s

Prob. 21–51
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21–54. Rod CD of mass m and length L is rotating with a
constant angular rate of about axle AB, while shaft EF
rotates with a constant angular rate of . Determine the X,
Y, and Z components of reaction at thrust bearing E and
journal bearing F at the instant shown. Neglect the mass of
the other members.

v2

v1

•21–53. The blades of a wind turbine spin about the shaft S
with a constant angular speed of , while the frame
precesses about the vertical axis with a constant angular
speed of . Determine the x, y, and z components of
moment that the shaft exerts on the blades as a function of

. Consider each blade as a slender rod of mass m and
length l.
u

vp

vs

*21–52. The man stands on a turntable that rotates about a
vertical axis with a constant angular velocity of .
If he tilts his head forward at a constant angular velocity of

about point O, determine the magnitude of
the moment that must be resisted by his neck at O at the
instant . Assume that his head can be considered as
a uniform 10-lb sphere, having a radius of 4.5 in. and center
of gravity located at G, and point O is on the surface of the
sphere.

u = 30°

v2 = 1.5 rad>s
v1 = 6 rad>s

21–55. If shaft AB is driven by the motor  with an angular
velocity of and angular acceleration of

at the instant shown, and the 10-kg wheel
rolls without slipping, determine the frictional force and the
normal reaction on the wheel, and the moment M that must
be supplied by the motor at this instant. Assume that the
wheel is a uniform circular disk.

v
#

1 = 20 rad>s2
v1 = 50 rad>s

O

G
4.5 in.

u

V2 � 1.5 rad/s

V1 � 6 rad/s

Prob. 21–52

z

x

y

S
u

u

Vs

Vp

Prob. 21–53

D

C

F

E
B

A

z

x y

L
2L

2

a

a

V1

V2

Prob. 21–54

z

yx

0.3 m

0.1 m

0.1 m

A

M
V1 � 20 rad/s2
V1 � 50 rad/s

B

Prob. 21–55
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21–59. If shaft AB rotates with a constant angular velocity
of , determine the X, Y, Z components of
reaction at journal bearing A and thrust bearing B at the
instant shown. The thin plate has a mass of 10 kg. Neglect
the mass of shaft AB.

v = 50 rad>s

•21–57. The 25-lb disk is fixed to rod BCD, which has
negligible mass. Determine the torque T which must be
applied to the vertical shaft so that the shaft has an angular
acceleration of . The shaft is free to turn in its
bearings.

21–58. Solve Prob. 21–57, assuming rod BCD has a weight
per unit length of .2 lb>ft

a = 6 rad>s2

*21–56. A stone crusher consists of a large thin disk which
is pin connected to a horizontal axle. If the axle rotates at a
constant rate of determine the normal force which
the disk exerts on the stones. Assume that the disk rolls
without slipping and has a mass of 25 kg. Neglect the mass
of the axle.

8 rad>s,

*21–60. A thin uniform plate having a mass of 0.4 kg spins
with a constant angular velocity about its diagonal AB. If
the person holding the corner of the plate at B releases his
finger, the plate will fall downward on its side AC.
Determine the necessary couple moment M which if
applied to the plate would prevent this from happening.

V

0.8 m

0.2 m

8 rad/s

Prob. 21–56

2 ft

D

A

1 ft

1 ft

C

T

B

Probs. 21–57/58

A

B

150 mm
150 mm

450 mm

450 mm

150 mm

150 mm

z

y

x

60�

V � 50 rad/s

Prob. 21–59

A

B

C

V

x

G

y

300 mm

150 mm

Prob. 21–60
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*21.5 Gyroscopic Motion

In this section we will develop the equations defining the motion of a body
(top) which is symmetrical with respect to an axis and rotating about a
fixed point. These equations also apply to the motion of a particularly
interesting device, the gyroscope.

The body’s motion will be analyzed using Euler angles (phi,
theta, psi). To illustrate how they define the position of a body, consider
the top shown in Fig. 21–15a. To define its final position, Fig. 21–15d, a
second set of x, y, z axes is fixed in the top. Starting with the X, Y, Z and
x, y, z axes in coincidence, Fig. 21–15a, the final position of the top can be
determined using the following three steps:

1. Rotate the top about the Z (or z) axis through an angle
Fig. 21–15b.

2. Rotate the top about the x axis through an angle 
Fig. 21–15c.

3. Rotate the top about the z axis through an angle 
to obtain the final position, Fig. 20–15d.

The sequence of these three angles, then must be maintained,
since finite rotations are not vectors (see Fig. 20–1). Although this is the
case, the differential rotations and are vectors, and thus the
angular velocity of the top can be expressed in terms of the time
derivatives of the Euler angles. The angular-velocity components 
and are known as the precession, nutation, and spin, respectively.c

# u
#
,f

#
,

V

dCdU,dF,

c,u,f,

c 10 … c 6 2p2
u 10 … u … p2,

f 10 … f 6 2p2,

cu,f,

Z, z

X, x

Y, yO

(a)

X

Y

x

y

Precession f

(b)

Z, z

O

f

f

f

.

.

Y

y

X
x

(c)

O

Z
z

u

u

u

f

f

.

Nutation u
.

Y

y

X x

(d)

O

Zz

u

u

f

f

c

c

c
.

Spin c
.

Fig. 21–15
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Y

y

X

x

Z
z

O

G

u

u

f

f

vs � c
.

vp � f
.

vn � u
.

Fig. 21–16

Their positive directions are shown in Fig. 21–16. It is seen that these
vectors are not all perpendicular to one another; however, of the top
can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis,
there is no need to attach the x, y, z axes to the top since the inertial
properties of the top will remain constant with respect to this frame
during the motion. Therefore Fig. 21–16. Hence, the
angular velocity of the body is

(21–27)

And the angular velocity of the axes is

(21–28)

Have the x, y, z axes represent principal axes of inertia for the top, and so
the moments of inertia will be represented as and 
Since Eqs. 21–26 are used to establish the rotational equations of
motion. Substituting into these equations the respective angular-velocity
components defined by Eqs. 21–27 and 21–28, their corresponding time
derivatives, and the moment of inertia components, yields

(21–29)

Each moment summation applies only at the fixed point O or the center
of mass G of the body. Since the equations represent a coupled set of
nonlinear second-order differential equations, in general a closed-form
solution may not be obtained. Instead, the Euler angles and may
be obtained graphically as functions of time using numerical analysis and
computer techniques.

A special case, however, does exist for which simplification of Eqs. 21–29
is possible. Commonly referred to as steady precession, it occurs when
the nutation angle precession and spin all remain constant.
Equations 21–29 then reduce to the form

(21–30)

©Mz = 0

©My = 0

©Mx = -If
#

2 sin u cos u + Izf
#
 sin u1f#  cos u + c

# 2

c
#

f
#
,u,

cu,f,

©Mz = Iz1c$ + f
$

cos u - f
#
u
#

sin u2
©My = I1f$  sin u + 2f

#
u
#
 cos u2 - Izu

# 1f#  cos u + c
# 2

©Mx = I1u$ - f
#

2 sin u cos u2 + Izf
#
 sin u1f#  cos u + c

# 2

æ Z V,
Izz = Iz .Ixx = Iyy = I

= u
#
i + 1f# sin u2j + 1f# cos u2k

æ = Æx i + Æy j + Æz k

= u
#
i + 1f# sin u2j + 1f# cos u + c

# 2k
V = vx i + vy j + vz k

æ = Vp + Vn ,

V
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Equation 21–30 can be further simplified by noting that, from 
Eq. 21–27, so that

or

(21–31)

It is interesting to note what effects the spin has on the moment
about the x axis. To show this, consider the spinning rotor in Fig. 21–17.
Here in which case Eq. 21–30 reduces to the form

or

(21–32)©Mx = IzÆyvz

©Mx = Izf
#
c
#

u = 90°,

c
#

©Mx = f
#

sin u1Izvz - If
#

cos u2

©Mx = -If
#

2 sin u cos u + Izf
#
 (sin u)vz

vz = f
#

cos u + c
#
,

z
G

y, Z

Y

X, x

W

O

rG

u� 90�

�y � f
.

vz � c
.

Fig. 21–17

From the figure it can be seen that and act along their
respective positive axes and therefore are mutually perpendicular.
Instinctively, one would expect the rotor to fall down under the influence
of gravity! However, this is not the case at all, provided the product

is correctly chosen to counterbalance the moment 
of the rotor’s weight about O. This unusual phenomenon of rigid-body
motion is often referred to as the gyroscopic effect.

©Mx = WrGIzÆyvz

Vzæy



x

z, Y
HO

y, Z

	Mx
�y

X

O
Vz

Fig. 21–18
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Perhaps a more intriguing demonstration of the gyroscopic effect
comes from studying the action of a gyroscope, frequently referred to as
a gyro. A gyro is a rotor which spins at a very high rate about its axis of
symmetry. This rate of spin is considerably greater than its precessional
rate of rotation about the vertical axis. Hence, for all practical purposes,
the angular momentum of the gyro can be assumed directed along its
axis of spin. Thus, for the gyro rotor shown in Fig. 21–18, and
the magnitude of the angular momentum about point O, as determined
from Eqs. 21–11, reduces to the form Since both the
magnitude and direction of are constant as observed from x, y, z,
direct application of Eq. 21–22 yields

(21–33)

Using the right-hand rule applied to the cross product, it can be seen
that always swings (or ) toward the sense of In effect,
the change in direction of the gyro’s angular momentum, is
equivalent to the angular impulse caused by the gyro’s weight about O,
i.e., Eq. 21–20.Also, since and and

are mutually perpendicular, Eq. 21–33 reduces to Eq. 21–32.
When a gyro is mounted in gimbal rings, Fig. 21–19, it becomes free of

external moments applied to its base. Thus, in theory, its angular
momentum H will never precess but, instead, maintain its same fixed
orientation along the axis of spin when the base is rotated. This type of
gyroscope is called a free gyro and is useful as a gyrocompass when the
spin axis of the gyro is directed north. In reality, the gimbal mechanism is
never completely free of friction, so such a device is useful only for the
local navigation of ships and aircraft. The gyroscopic effect is also useful
as a means of stabilizing both the rolling motion of ships at sea and the
trajectories of missiles and projectiles. Furthermore, this effect is of
significant importance in the design of shafts and bearings for rotors
which are subjected to forced precessions.

HO

æy ,©Mx ,HO = IzvzdHO = ©Mx dt,

dHO ,
©Mx .VzHOæy

©Mx = æy * HO

HO

HO = Izvz .

vz W Æy ,

Gimbals

Bearings

Gyro

Fig. 21–19

The spinning of the gyro within the frame
of this toy gyroscope produces angular
momentum , which is changing
direction as the frame precesses 
about the vertical axis. The gyroscope
will not fall down since the moment of its
weight W about the support is balanced
by the change in the direction of HO .

Vp

HO

HO

W
O

Vp
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The top shown in Fig. 21–20a has a mass of 0.5 kg and is precessing about
the vertical axis at a constant angle of If it spins with an angular
velocity determine the precession Assume that 
the axial and transverse moments of inertia of the top are

and respectively, measured with
respect to the fixed point O.

1.20110-32 kg # m2,0.45110-32 kg # m2

Vp .vs = 100 rad>s,
u = 60°.

EXAMPLE 21.7

SOLUTION
Equation 21–30 will be used for the solution since the motion is steady
precession. As shown on the free-body diagram, Fig. 21–20b, the
coordinate axes are established in the usual manner, that is, with the
positive z axis in the direction of spin, the positive Z axis in the direction
of precession, and the positive x axis in the direction of the moment

(refer to Fig. 21–16).Thus,

or

(1)

Solving this quadratic equation for the precession gives

Ans.

and

Ans.

NOTE: In reality, low precession of the top would generally be
observed, since high precession would require a larger kinetic energy.

f
#

= 5.72 rad>s 1low precession2

f
#

= 114 rad>s 1high precession2

f
#

2 - 120.0f
#

+ 654.0 = 0

+ [0.45110-32 kg # m2]f
#
 sin 60°1f#  cos 60° + 100 rad>s2

 4.905 N10.05 m2 sin 60° = -[1.20110-32 kg # m2 f
#

2] sin 60° cos 60°

©Mx = -If
#

2 sin u cos u + Izf
#
 sin u1f#  cos u + c

# 2
©Mx

·

(a)

50 mm

O

G 60�

vs � 100 rad/s

vp � f Z

X

Y

x

z

y
G 60�

(b)

0.05 m
OX

OZ

OY

4.905 NFig. 21–20
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EXAMPLE 21.8

The 1-kg disk shown in Fig. 21–21a spins about its axis with a constant
angular velocity The block at B has a mass of 2 kg, and
by adjusting its position s one can change the precession of the disk
about its supporting pivot at O while the shaft remains horizontal.
Determine the position s that will enable the disk to have a constant
precession about the pivot. Neglect the weight of the
shaft.

vp = 0.5 rad>s

vD = 70 rad>s.

200 mm

s

D

(a)

50 mm
O

B

vp � 0.5 rad/s

vD � 70 rad/s

(b)

0.2 m

u � 90�

s

B

R
9.81 N

19.62 Nz

Y

X, x

Z1, y

O

Fig. 21–21

SOLUTION
The free-body diagram of the assembly is shown in Fig. 21–21b. The
origin for both the x, y, z and X, Y, Z coordinate systems is located at
the fixed point O. In the conventional sense, the Z axis is chosen along
the axis of precession, and the z axis is along the axis of spin, so that

Since the precession is steady, Eq. 21–32 can be used for the
solution.

Substituting the required data gives

©Mx = IzÆyvz

u = 90°.

Ans. s = 0.102 m = 102 mm

(98.1 N) 10.2 m2 - 119.62 N2s = C1211 kg210.05 m22 D0.5 rad>s1-70 rad>s2
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21.6 Torque-Free Motion

When the only external force acting on a body is caused by gravity, the
general motion of the body is referred to as torque-free motion.This type
of motion is characteristic of planets, artificial satellites, and projectiles—
provided air friction is neglected.

In order to describe the characteristics of this motion, the distribution
of the body’s mass will be assumed axisymmetric. The satellite shown in
Fig. 21–22 is an example of such a body, where the z axis represents an
axis of symmetry. The origin of the x, y, z coordinates is located at the
mass center G, such that and . Since gravity is the
only external force present, the summation of moments about the mass
center is zero. From Eq. 21–21, this requires the angular momentum of
the body to be constant, i.e.,

At the instant considered, it will be assumed that the inertial frame of
reference is oriented so that the positive Z axis is directed along and
the y axis lies in the plane formed by the z and Z axes, Fig. 21–22. The
Euler angle formed between Z and z is and therefore, with this choice
of axes the angular momentum can be expressed as

Furthermore, using Eqs. 21–11, we have

Equating the respective i, j, and k components of the above two
equations yields

HG = Ivx i + Ivy j + Izvz k

HG = HG sin u j + HG cos u k

u,

HG

HG = constant

Ixx = Iyy = IIzz = Iz

x

G

y
Z

z
HG

u

V

Fig. 21–22
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(21–34)

or

(21–35)

In a similar manner, equating the respective i, j, k components of 
Eq. 21–27 to those of Eq. 21–34, we obtain

Solving, we get

(21–36)

Thus, for torque-free motion of an axisymmetrical body, the angle 
formed between the angular-momentum vector and the spin of the body
remains constant. Furthermore, the angular momentum precession

and spin for the body remain constant at all times during the
motion.

Eliminating from the second and third of Eqs. 21–36 yields the
following relation between the spin and precession:

(21–37)c
#

=
I - Iz

Iz
f
#

cos u

HG

c
#

f
#
,

HG ,

u

u = constant

f
#

=
HG

I

c
#

=
I - Iz

IIz
HG cos u

f
#

cos u + c
#

=
HG cos u

Iz

f
#

sin u =
HG sin u

I

u
#
= 0

V =
HG sin u

I
j +

HG cos u
Iz

k

vx = 0 vy =
HG sin u

I
vz =

HG cos u
Iz
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These two components of angular motion can be studied by using the
body and space cone models introduced in Sec. 20.1. The space cone
defining the precession is fixed from rotating, since the precession has a
fixed direction, while the outer surface of the body cone rolls on the
space cone’s outer surface. Try to imagine this motion in Fig. 21–23a.
The interior angle of each cone is chosen such that the resultant
angular velocity of the body is directed along the line of contact of the
two cones. This line of contact represents the instantaneous axis of
rotation for the body cone, and hence the angular velocity of both the
body cone and the body must be directed along this line. Since the spin
is a function of the moments of inertia I and of the body, Eq. 21–36,
the cone model in Fig. 21–23a is satisfactory for describing the motion,
provided Torque-free motion which meets these requirements
is called regular precession. If the spin is negative and the
precession positive. This motion is represented by the satellite motion
shown in Fig. 21–23b The cone model can again be used to
represent the motion; however, to preserve the correct vector addition
of spin and precession to obtain the angular velocity the inside
surface of the body cone must roll on the outside surface of the (fixed)
space cone. This motion is referred to as retrograde precession.

V,

1I 6 Iz2.
I 6 Iz ,

I 7 Iz .

Iz

ZAxis of
precession

Instantaneous
axis of rotation

z

Body cone

Axis of
spin

Space cone

G

V

c

f

(a)

.

.

I 
 Iz

G

Z

Body cone

Axis of
precession

Instantaneous
axis of rotation

Space
cone Axis of

spin

(b)

V

zf
.

c
.

I � Iz

Fig. 21–23

Satellites are often given a spin before they are launched. If their angular momentum
is not collinear with the axis of spin, they will exhibit precession. In the photo on the
left, regular precession will occur since and in the photo on the right, retrograde
precession will occur since I 6 Iz .

I 7 Iz ,
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EXAMPLE 21.9

The motion of a football is observed using a slow-motion projector.
From the film, the spin of the football is seen to be directed 30°
from the horizontal, as shown in Fig. 21–24a. Also, the football is
precessing about the vertical axis at a rate If the 
ratio of the axial to transverse moments of inertia of the football 
is measured with respect to the center of mass, determine the
magnitude of the football’s spin and its angular velocity. Neglect the
effect of air resistance.

1
3,

f
#

= 3 rad>s.

30�

(a)

f � 3 rad/s
.

c
.

(b)

Z

z

u � 60�

f
.

c
.

Fig. 21–24

SOLUTION
Since the weight of the football is the only force acting, the motion is
torque-free. In the conventional sense, if the z axis is established along
the axis of spin and the Z axis along the precession axis, as shown in
Fig. 21–24b, then the angle Applying Eq. 21–37, the spin is

Ans.

Using Eqs. 21–34, where (Eq. 21–36), we have

Thus,

Ans.= 5.20 rad>s
= 21022 + 12.6022 + 14.5022

v = 21vx22 + 1vy22 + 1vz22

vz =
HG cos u

Iz
=

3I cos 60°
1
3 I

= 4.50 rad>s
vy =

HG sin u
I

=
3I sin 60°

I
= 2.60 rad>s

vx = 0

HG = f
#
I

= 3 rad>s
c
#

=
I - Iz

Iz
f
#

cos u =
I - 1

3 I
1
3 I

132 cos 60°

u = 60°.
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x
3 ft

y

V

z 1.8 ft

A

C

B

Probs. 21–63/64

0.5 ft

0.5 ft

y

x

z

A

B

Vy

Vs

Prob. 21–65

vC � 100 km/h

80 m

1.30 m

Prob. 21–66

PROBLEMS

•21–65. The motor weighs 50 lb and has a radius of
gyration of 0.2 ft about the z axis. The shaft of the motor is
supported by bearings at A and B, and spins at a constant
rate of , while the frame has an angular
velocity of . Determine the moment which
the bearing forces at A and B exert on the shaft due to this
motion.

Vy = 52j6 rad>s
Vs = 5100k6 rad>s

21–61. Show that the angular velocity of a body, in
terms of Euler angles , , and , can be expressed as

, where i, j, and k are directed along the x, y,
z axes as shown in Fig. 21–15d.

21–62. A thin rod is initially coincident with the Z axis
when it is given three rotations defined by the Euler angles

, , and . If these rotations are given
in the order stated, determine the coordinate direction
angles , , of the axis of the rod with respect to the X, Y,
and Z axes. Are these directions the same for any order of
the rotations? Why?

21–63. The 30-lb wheel rolls without slipping. If it has a
radius of gyration about its axle AB, and the
vertical drive shaft is turning at determine the
normal reaction the wheel exerts on the ground at C.
Neglect the mass of the axle.

*21–64. The 30-lb wheel rolls without slipping. If it has a
radius of gyration about its axle AB,
determine its angular velocity so that the normal reaction
at C becomes 60 lb. Neglect the mass of the axle.

V

kAB = 1.2 ft

8 rad>s,
kAB = 1.2 ft

gba

c = 60°u = 45°f = 30°

(f
#
 cos u + c

#
)k

v = (f
#
 sin u sin c + u

#
 cos c)i + (f

#
 sin u cos c - u

#
 sin c)j +

cuf

21–66. The car travels at a constant speed of
around the horizontal curve having a radius

of 80 m. If each wheel has a mass of 16 kg, a radius of
gyration about its spinning axis, and a radius
of 400 mm, determine the difference between the normal
forces of the rear wheels, caused by the gyroscopic effect.
The distance between the wheels is 1.30 m.

kG = 300 mm

vC = 100 km>h
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Vp

Vs

60 mm

G

O

45�

Prob. 21–67

21–70. The 10-kg cone spins at a constant rate of
. Determine the constant rate at which it

precesses if .

21–71. The 10-kg cone is spinning at a constant rate of
. Determine the constant rate at which it

precesses if .f = 30°
vpvs = 150 rad>s

f = 90°
vpvs = 150 rad>s

*21–68. The top has a weight of and can be considered
as a solid cone. If it is observed to precess about the vertical
axis at a constant rate of determine its spin.5 rad>s,

3 lb

21–67. The top has a mass of 90 g, a center of mass at G,
and a radius of gyration about its axis of
symmetry. About any transverse axis acting through point O
the radius of gyration is . If the top is connected
to a ball-and-socket joint at O and the precession is

, determine the spin .Vsvp = 0.5 rad>s
kt = 35 mm

k = 18 mm

*21–72. The 1-lb top has a center of gravity at point G. If it
spins about its axis of symmetry and precesses about the
vertical axis at constant rates of and

, respectively, determine the steady state
angle . The radius of gyration of the top about the z axis is

., and about the x and y axes it is .kx = ky = 4 inkz = 1 in
u

vp = 10 rad>s
vs = 60 rad>s

•21–69. The empty aluminum beer keg has a mass of m,
center of mass at G, and radii of gyration about the x and 
y axes of , and about the z axis of ,
respectively. If the keg rolls without slipping with a constant
angular velocity, determine its largest value without having
the rim A leave the floor.

kz = 1
4 rkx = ky = 5

4 r

5 rad/s

1.5 in.

30�6 in.

Vs

Prob. 21–68

Z

G

A B

h

r
a

y

z

Prob. 21–69

A

p 

s 

300 mm

100 mm
V

V

f

Probs. 21–70/71

y
x

O

z

3 in.

vp � 10 rad/s
u

G

vs � 60 rad/s

Prob. 21–72
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21–75. The space capsule has a mass of 3.2 Mg, and about
axes passing through the mass center G the axial and
transverse radii of gyration are and ,
respectively. If it spins at , determine its
angular momentum. Precession occurs about the Z axis.

vs = 0.8 rev>s
kt = 1.85 mkz = 0.90 m

*21–76. The radius of gyration about an axis passing through
the axis of symmetry of the 2.5-Mg satellite is ,
and about any transverse axis passing through the center of
mass G, . If the satellite has a steady-state
precession of two revolutions per hour about the Z axis,
determine the rate of spin about the z axis.

kt = 3.4 m

kz = 2.3 m

•21–73. At the moment of take off, the landing gear of an
airplane is retracted with a constant angular velocity of

, while the wheel continues to spin. If the plane
takes off with a speed of , determine the
torque at A due to the gyroscopic effect. The wheel has a
mass of 50 kg, and the radius of gyration about its spinning
axis is .k = 300 mm

v = 320 km>h
vp = 2 rad>s

21–74. The projectile shown is subjected to torque-free
motion. The transverse and axial moments of inertia are I
and , respectively. If represents the angle between the
precessional axis Z and the axis of symmetry z, and 
is the angle between the angular velocity and the z
axis, show that and are related by the equation

.tan u = (I>Iz) tan b
ub

V

b

uIz

•21–77. The 4-kg disk is thrown with a spin 
If the angle is measured as 160°, determine the precession
about the Z axis.

u

vz = 6 rad>s.

B

A

0.4 m

Vp

Vs

Prob. 21–73

10�

Zz

G

2 rev/h

Prob. 21–76

6�

Vs z

G

Z

Prob. 21–75

G

Z

u

V

y

x z

b

Prob. 21–74

125 mm

vz � 6 rad/s

Z

z

u

Prob. 21–77
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*21–80. The football has a mass of 450 g and radii of
gyration about its axis of symmetry (z axis) and its transverse
axes (x or y axis) of and ,
respectively. If the football has an angular momentum of

, determine its precession and spin .
Also, find the angle that the angular velocity vector
makes with the z axis.

b

c
#

f
#

HG = 0.02 kg # m2>s
kx = ky = 50 mmkz = 30 mm

21–79. The satellite has a mass of 100 kg and radii of
gyration about its axis of symmetry (z axis) and its transverse
axes (x or y axis) of and ,
respectively. If the satellite spins about the z axis at a constant
rate of , and precesses about the Z axis,
determine the precession and the magnitude of its angular
momentum .HG

f
#c

#
= 200 rad>s

kx = ky = 900 mmkz = 300 mm

21–78. The projectile precesses about the Z axis at a
constant rate of when it leaves the barrel of a
gun. Determine its spin and the magnitude of its angular
momentum .The projectile has a mass of 1.5 kg and radii
of gyration about its axis of symmetry (z axis) and about
its transverse axes (x and y axes) of and

, respectively.kx = ky = 125 mm
kz = 65 mm

HG

c
#f

#
= 15 rad>s

•21–81. The space capsule has a mass of 2 Mg, center of
mass at G, and radii of gyration about its axis of
symmetry (z axis) and its transverse axes (x or y axis)
of and , respectively. If the
capsule has the angular velocity shown, determine its
precession and spin . Indicate whether the precession
is regular or retrograde. Also, draw the space cone and
body cone for the motion.

c
#

f
#

kx = ky = 5.5 mkz = 2.75 m

G
y

Z

z

x
30�

f � 15 rad/s

Prob. 21–78

z Z

y

x

15�
c � 200 rad/s

Prob. 21–79

z

y

x

G

45�

V

B

HG � 0.02 kg � m2/s

Prob. 21–80

y

x

G

z

30�

v � 150 rad/s

Prob. 21–81
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CHAPTER REVIEW

Moments and Products of Inertia
A body has six components of inertia for
any specified x,y, z axes. Three of these
are moments of inertia about each of the
axes, and three are products
of inertia, each defined from two
orthogonal planes, If either
one or both of these planes are planes of
symmetry, then the product of inertia
with respect to these planes will be zero.

Ixz .Iyz ,Ixy ,

Izz ,Iyy ,Ixx ,

The moments and products of inertia can
be determined by direct integration or by
using tabulated values. If these quantities
are to be determined with respect to axes
or planes that do not pass through the
mass center, then parallel-axis and
parallel-plane theorems must be used.

Provided the six components of inertia
are known, then the moment of inertia
about any axis can be determined using
the inertia transformation equation.

IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

Principal Moments of Inertia
At any point on or off the body, the x, y, z
axes can be oriented so that the products
of inertia will be zero. The resulting
moments of inertia are called the
principal moments of inertia, one of
which will be a maximum and the other a
minimum.

Ixz = Izx =
Lm

xz dmIzz =
Lm

rz
2 dm =

Lm
1x2 + y22 dm

Iyz = Izy =
Lm

yz dmIyy =
Lm

ry
2 dm =

Lm
1x2 + z22 dm

Ixy = Iyx =
Lm

xy dmIxx =
Lm

rx
2 dm =

Lm
1y2 + z22 dm

£
Ix 0 0
0 Iy 0
0 0 Iz

≥

Principle of Impulse and Momentum
The angular momentum for a body can be
determined about any arbitrary point A.

Once the linear and angular momentum
for the body have been formulated, then
the principle of impulse and momentum
can be used to solve problems that
involve force, velocity, and time.

Fixed Point O

Center of Mass 

Arbitrary Point 

where

Hz = -Izxvx - Izyvy + Izzvz

Hy = -Iyxvx + Iyyvy - Iyzvz

Hx = Ixxvx - Ixyvy - Ixzvz

1HO21 + ©
L

t2

t1

MO dt = 1HO22

HA = RG>A * mvG + HG

HG =
Lm
RG * 1V * RG2 dm

HO =
Lm
RO * 1V * RO2 dm

m1vG21 + ©
L

t2

t1

F dt = m1vG22

Fixed Point Center of Mass 

T = 1
2 mvG

2 + 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2

Principle of Work and Energy
The kinetic energy for a body is usually
determined relative to a fixed point or
the body’s mass center.
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These formulations can be used with the
principle of work and energy to solve
problems that involve force, velocity, and
displacement.

Equations of Motion
There are three scalar equations of
translational motion for a rigid body that
moves in three dimensions. ©Fz = m1aG2z

©Fy = m1aG2y
©Fx = m1aG2x

The three scalar equations of rotational
motion depend upon the motion of the x,
y, z reference. Most often, these axes are
oriented so that they are principal axes
of inertia. If the axes are fixed in and
move with the body so that then
the equations are referred to as the Euler
equations of motion.

A free-body diagram should always
accompany the application of the
equations of motion.

Æ = v,

Gyroscopic Motion
The angular motion of a gyroscope is
best described using the three Euler
angles and . The angular velocity
components are called the precession 
the nutation and the spin 

If and and are constant, then the
motion is referred to as steady precession.

It is the spin of a gyro rotor that is
responsible for holding a rotor from
falling downward, and instead causing it
to precess about a vertical axis. This
phenomenon is called the gyroscopic effect.

c
#

f
#

u
#
= 0

c
#
.u

#
,

f
#
,

cf, u,

Torque-Free Motion
A body that is only subjected to a
gravitational force will have no moments
on it about its mass center, and so the
motion is described as torque-free
motion. The angular momentum for the
body about its mass center will remain
constant. This causes the body to have
both a spin and a precession. The motion
depends upon the magnitude of the
moment of inertia of a symmetric body
about the spin axis, versus that about a
perpendicular axis, I.

Iz ,

©Mz = 0©My = 0,

©Mx = -If
#

2 sin u cos u + Izf
#
 sin u1f#  cos u + c

# 2

æ Z V

©Mz = Izv
#

z - IxÆyvx + IyÆxvy

©My = Iyv
#

y - IzÆxvz + IxÆzvx

©Mx = Ixv
#

x - IyÆzvy + IzÆyvz

æ = V

©Mz = Izv
#

z - 1Ix - Iy2vxvy

©My = Iyv
#

y - 1Iz - Ix2vzvx

©Mx = Ixv
#

x - 1Iy - Iz2vyvz

c
#

=
I - Iz

IIz
HG cos u

f
#

=
HG

I

u = constant

u

Y

y

f
u

 ·
vp � f

 ·
vn � u

 ·
vs � c

X
x

Zz

O

G

f

T1 + ©U1-2 = T2



Spring suspensions can induce vibrations in moving vehicles, such as this railroad car.
In order to predict the behavior we must use a vibrational analysis.



Vibrations 22
CHAPTER OBJECTIVES

• To discuss undamped one-degree-of-freedom vibration of a rigid
body using the equation of motion and energy methods.

• To study the analysis of undamped forced vibration and viscous
damped forced vibration.

*22.1 Undamped Free Vibration

A vibration is the periodic motion of a body or system of connected bodies
displaced from a position of equilibrium. In general, there are two types
of vibration, free and forced. Free vibration occurs when the motion is
maintained by gravitational or elastic restoring forces, such as the swinging
motion of a pendulum or the vibration of an elastic rod. Forced vibration
is caused by an external periodic or intermittent force applied to the
system. Both of these types of vibration can either be damped or
undamped. Undamped vibrations can continue indefinitely because
frictional effects are neglected in the analysis. Since in reality both internal
and external frictional forces are present, the motion of all vibrating bodies
is actually damped.
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The simplest type of vibrating motion is undamped free vibration,
represented by the block and spring model shown in Fig. 22–1a.
Vibrating motion occurs when the block is released from a displaced
position x so that the spring pulls on the block. The block will attain a
velocity such that it will proceed to move out of equilibrium when 
and provided the supporting surface is smooth, the block will oscillate
back and forth.

The time-dependent path of motion of the block can be determined by
applying the equation of motion to the block when it is in the displaced
position x. The free-body diagram is shown in Fig. 22–1b. The elastic
restoring force is always directed toward the equilibrium
position, whereas the acceleration a is assumed to act in the direction of
positive displacement. Since we have

Note that the acceleration is proportional to the block’s displacement.
Motion described in this manner is called simple harmonic motion.
Rearranging the terms into a “standard form” gives

(22–1)

The constant is called the natural frequency, and in this case

(22–2)

Equation 22–1 can also be obtained by considering the block to be
suspended so that the displacement y is measured from the block’s
equilibrium position, Fig. 22–2a. When the block is in equilibrium, the
spring exerts an upward force of on the block. Hence,
when the block is displaced a distance y downward from this position,
the magnitude of the spring force is Fig. 22–2b. Applying
the equation of motion gives

or

which is the same form as Eq. 22–1 and is defined by Eq. 22–2.vn

y
$ + vn2y = 0

-W - ky + W = my$+ T©Fy = may ;

F = W + ky,

F = W = mg

vn =
A

k
m

vn

x
$ + vn2x = 0

-kx = mx$:+ ©Fx = max ;

a = d2x>dt2 = x$,

F = kx

x = 0,

Equilibrium
position

x

(a)

k

F � kx

(b)

W � mg

NB

Fig. 22–1

Equilibrium
position

y

(a)

k

F � W � ky

W

(b)

Fig. 22–2
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Equation 22–1 is a homogeneous, second-order, linear, differential
equation with constant coefficients. It can be shown, using the methods
of differential equations, that the general solution is

(22–3)

Here A and B represent two constants of integration. The block’s
velocity and acceleration are determined by taking successive time
derivatives, which yields

(22–4)

(22–5)

When Eqs. 22–3 and 22–5 are substituted into Eq. 22–1, the differential
equation will be satisfied, showing that Eq. 22–3 is indeed the solution
to Eq. 22–1.

The integration constants in Eq. 22–3 are generally determined from
the initial conditions of the problem. For example, suppose that the block
in Fig. 22–1a has been displaced a distance to the right from its
equilibrium position and given an initial (positive) velocity directed to
the right. Substituting when into Eq. 22–3 yields 
And since when using Eq. 22–4 we obtain If
these values are substituted into Eq. 22–3, the equation describing the
motion becomes

(22–6)

Equation 22–3 may also be expressed in terms of simple sinusoidal
motion. To show this, let

(22–7)

and

(22–8)

where C and are new constants to be determined in place of A and B.
Substituting into Eq. 22–3 yields

And since then

(22–9)

If this equation is plotted on an x versus axis, the graph shown in
Fig. 22–3 is obtained. The maximum displacement of the block from its

vnt

x = C sin1vnt + f2
sin1u + f2 = sin u cos f + cos u sin f,

x = C cos f sin vnt + C sin f cos vnt

f

B = C sin f

A = C cos f

x =
v1

vn
 sin vnt + x1 cos vnt

A = v1>vn .t = 0,v = v1

B = x1 .t = 0x = x1

v1

x1

a = x$ = -Avn2 sin vnt - Bvn2 cos vnt

v = x# = Avn cos vnt - Bvn sin vnt

x = A sin vnt + B cos vnt
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equilibrium position is defined as the amplitude of vibration. From either
the figure or Eq. 22–9 the amplitude is C. The angle is called the phase
angle since it represents the amount by which the curve is displaced from
the origin when We can relate these two constants to A and B
using Eqs. 22–7 and 22–8. Squaring and adding these two equations, the
amplitude becomes

(22–10)

If Eq. 22–8 is divided by Eq. 22–7, the phase angle is then

(22–11)

Note that the sine curve, Eq. 22–9, completes one cycle in time
when or

(22–12)

This time interval is called a period, Fig. 22–3. Using Eq. 22–2, the period
can also be represented as

(22–13)

Finally, the frequency f is defined as the number of cycles completed per
unit of time, which is the reciprocal of the period; that is,

(22–14)

or

(22–15)

The frequency is expressed in cycles/s. This ratio of units is called a hertz
(Hz), where 

When a body or system of connected bodies is given an initial
displacement from its equilibrium position and released, it will vibrate
with the natural frequency, Provided the system has a single degree
of freedom, that is, it requires only one coordinate to specify completely
the position of the system at any time, then the vibrating motion will
have the same characteristics as the simple harmonic motion of the block
and spring just presented. Consequently, the motion is described by a
differential equation of the same “standard form” as Eq. 22–1, i.e.,

(22–16)

Hence, if the natural frequency is known, the period of vibration 
natural frequency f, and other vibrating characteristics can be
established using Eqs. 22–3 through 22–15.

t,vn

x
$ + vn2x = 0

vn .

1 Hz = 1 cycle>s = 2p rad>s.

f =
1

2pA
k
m

f =
1
t

=
vn

2p

t = 2p
A

m

k

t =
2p
vn

vnt = 2p,t = t 1tau2

f = tan-1B

A

C = 2A2 + B2

t = 0.

f

C sin f
C

x

C

O

Period of time (t)

1 cycle 2p � vnt

vntx � C sin (vnt � f)

f

Fig. 22–3
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Important Points

• Free vibration occurs when the motion is maintained by
gravitational or elastic restoring forces.

• The amplitude is the maximum displacement of the body.
• The period is the time required to complete one cycle.
• The frequency is the number of cycles completed per unit of time,

where
• Only one position coordinate is needed to describe the location

of a one-degree-of-freedom system.

1 Hz = 1 cycle>s.

Procedure for Analysis

As in the case of the block and spring, the natural frequency of a
body or system of connected bodies having a single degree of
freedom can be determined using the following procedure:

Free-Body Diagram.
● Draw the free-body diagram of the body when the body is

displaced a small amount from its equilibrium position.
● Locate the body with respect to its equilibrium position by using

an appropriate inertial coordinate q. The acceleration of the
body’s mass center or the body’s angular acceleration 
should have an assumed sense of direction which is in the positive
direction of the position coordinate.

● If the rotational equation of motion is to be
used, then it may be beneficial to also draw the kinetic diagram
since it graphically accounts for the components 
and and thereby makes it convenient for visualizing the
terms needed in the moment sum 

Equation of Motion.
● Apply the equation of motion to relate the elastic or

gravitational restoring forces and couple moments acting on the
body to the body’s accelerated motion.

Kinematics.
● Using kinematics, express the body’s accelerated motion in terms

of the second time derivative of the position coordinate,
● Substitute the result into the equation of motion and determine

by rearranging the terms so that the resulting equation is in
the “standard form,” q

$ + vn2q = 0.
vn

q
$
.

©1mk2P .
IGA,

m1aG2y ,m1aG2x ,

©MP = ©1mk2P

AaG

vn
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Determine the period of oscillation for the simple pendulum shown in
Fig. 22–4a. The bob has a mass m and is attached to a cord of length l.
Neglect the size of the bob.

SOLUTION
Free-Body Diagram. Motion of the system will be related to the
position coordinate Fig. 22–4b. When the bob is displaced by
a small angle the restoring force acting on the bob is created by the
tangential component of its weight, Furthermore, acts in
the direction of increasing s (or ).

Equation of Motion. Applying the equation of motion in the
tangential direction, since it involves the restoring force, yields

(1)

Kinematics. Furthermore, s can be related to by
the equation so that Hence, Eq. 1 reduces to

(2)

The solution of this equation involves the use of an elliptic integral.
For small displacements, however, in which case

(3)

Comparing this equation with Eq. 22–16 it is seen
that From Eq. 22–12, the period of time required for the
bob to make one complete swing is therefore

Ans.

This interesting result, originally discovered by Galileo Galilei
through experiment, indicates that the period depends only on the
length of the cord and not on the mass of the pendulum bob or the
angle

NOTE: The solution of Eq. 3 is given by Eq. 22–3, where 
and is substituted for x. Like the block and spring, the constants A
and B in this problem can be determined if, for example, one knows
the displacement and velocity of the bob at a given instant.

u

vn = 2g>l
u.

t =
2p
vn

= 2p
A

l
g

vn = 2g>l.
1x$ + vn2x = 02,

u
$

+
g

l
u = 0

sin u L u,

u
$

+
g

l
sin u = 0

at = lu
$
.s = lu,

uat = d2s>dt2 = s$.

-mg sin u = mat+Q©Ft = mat ;

u

atmg sin u.
u,

1q =2 u,

EXAMPLE 22.1

s

l

(a)

u

T

W � mg

n

t
an at

(b)

u

Fig. 22–4
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EXAMPLE 22.2

The 10-kg rectangular plate shown in Fig. 22–5a is suspended at its
center from a rod having a torsional stiffness 
Determine the natural period of vibration of the plate when it is given
a small angular displacement in the plane of the plate.u

k = 1.5 N # m>rad.

(a)

a � 0.2 m
b � 0.3 m

O

u

SOLUTION
Free-Body Diagram. Fig. 22–5b. Since the plate is displaced in its
own plane, the torsional restoring moment created by the rod is

This moment acts in the direction opposite to the angular
displacement The angular acceleration acts in the direction of
positive

Equation of Motion.

or

Since this equation is in the “standard form,” the natural frequency is 

From the table on the inside back cover, the moment of inertia of
the plate about an axis coincident with the rod is 
Hence,

The natural period of vibration is therefore,

Ans.t =
2p
vn

= 2p
A

IO
k

= 2p
A

0.1083
1.5

= 1.69 s

IO =
1

12
110 kg2[10.2 m22 + 10.3 m22] = 0.1083 kg # m2

IO = 1
12m1a2 + b22.

vn = 2k>IO.

u
$

+
k

IO
u = 0

-ku = IOu
$

©MO = IOa;

u.
u
$

u.
M = ku.

O

T � W

M � ku

W

(b)

Fig. 22–5
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The bent rod shown in Fig. 22–6a has a negligible mass and supports a
5-kg collar at its end. If the rod is in the equilibrium position shown,
determine the natural period of vibration for the system.

SOLUTION

Free-Body and Kinetic Diagrams. Fig. 22–6b. Here the rod is
displaced by a small angle from the equilibrium position. Since the
spring is subjected to an initial compression of for equilibrium, then
when the displacement the spring exerts a force of

on the rod.To obtain the “standard form,” Eq. 22–16,
must act upward, which is in accordance with positive displacement.

Equation of Motion. Moments will be summed about point B to
eliminate the unknown reaction at this point. Since is small,

a

The second term on the left side, represents the
moment created by the spring force which is necessary to hold the
collar in equilibrium, i.e., at Since this moment is equal and
opposite to the moment 49.05 N(0.2 m) created by the weight of the
collar, these two terms cancel in the above equation, so that

(1)

Kinematics. The deformation of the spring and the position of the
collar can be related to the angle Fig. 22–6c. Since is small,

and Therefore, Substituting
into Eq. 1 yields

Rewriting this equation in the “standard form” gives

Compared with (Eq. 22–16), we have

The natural period of vibration is therefore

Ans.t =
2p
vn

=
2p

4.47
= 1.40 s

vn
2 = 20 vn = 4.47 rad>s

x
$ + vn2x = 0

u
$

+ 20u = 0

40010.1u2 0.1 = -510.2u
$20.2

ay = y$ = 0.2u
$
.y = 10.2 m2u.x = 10.1 m2u
uu,

kx10.12 = -5ay10.22

x = 0.

-kxst10.1 m2,
kx10.1 m2 - kxst10.1 m2 + 49.05 N10.2 m2 = -15 kg2ay10.2 m2

+©MB = ©1mk2B ;

u

u

5ayFs = kx - kxst

x 7 xst

xst

u

EXAMPLE 22.3

(a)
k � 400 N/m

200 mm

B

A

C
5 kg

100 mm

�

(b)

B

x

0.2 m

0.1 m

y

By

Bx

Fs � kx � kxst

49.05 N

0.2 m

5ay

u

u

u

(c)

0.2 m

B

x � 0.1u

y � 0.2u

0.1 m

u

u

Fig. 22–6
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EXAMPLE 22.4

A 10-lb block is suspended from a cord that passes over a 15-lb disk,
as shown in Fig. 22–7a. The spring has a stiffness 
Determine the natural period of vibration for the system.

k = 200 lb>ft.

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 22–7b. The system consists
of the disk, which undergoes a rotation defined by the angle and
the block, which translates by an amount s.The vector acts in the
direction of positive and consequently acts downward in the
direction of positive s.

Equation of Motion. Summing moments about point O to
eliminate the reactions and realizing that yields

a

(1)

Kinematics. As shown on the kinematic diagram in Fig. 22–7c, a
small positive displacement of the disk causes the block to lower by
an amount hence, When the spring
force required for equilibrium of the disk is 10 lb, acting to the right.
For position the spring force is 
Substituting these results into Eq. 1 and simplifying yields

Hence,

Therefore, the natural period of vibration is

Ans.t =
2p
vn

=
2p

19.18
= 0.328 s

vn
2 = 368 vn = 19.18 rad>s

u
$

+ 368u = 0

Fs = 1200 lb>ft210.75u ft2 + 10 lb.u,

u = 0°,a
b
= s$ = 0.75u

$
.s = 0.75u;

u

=
1
2
a 15 lb

32.2 ft>s2 b10.75 ft22 u$ + a 10 lb

32.2 ft>s2 bab10.75 ft2
10 lb10.75 ft2 - Fs10.75 ft2

+©MO = ©1mk2O ;

IO = 1
2mr

2,Oy ,Ox

mBabu,
IO U

$ u,

k � 200 lb/ft

0.75 ft

(a)

O
=

(b)

Fs

s

0.75 ft O Ox

Oy

15 lb

10 lb

0.75 ft O

mBab

uu

IO uü

s � 0.75 u

0.75 ft

0.75 u

(c)

u

u

Fig. 22–7
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6 m/s

Prob. 22–9

O

u

G

d

Prob. 22–10

PROBLEMS

*22–8. A 3-kg block is suspended from a spring having a
stiffness of If the block is pushed 
upward from its equilibrium position and then released
from rest, determine the equation that describes the
motion. What are the amplitude and the frequency of the
vibration? Assume that positive displacement is downward.

•22–9. A cable is used to suspend the 800-kg safe. If the safe
is being lowered at when the motor controlling the
cable suddenly jams (stops), determine the maximum tension
in the cable and the frequency of vibration of the safe.
Neglect the mass of the cable and assume it is elastic such
that it stretches when subjected to a tension of .4 kN20 mm

6 m>s

50 mmk = 200 N>m.
•22–1. A spring is stretched by an 8-kg block. If the
block is displaced downward from its equilibrium
position and given a downward velocity of 
determine the differential equation which describes the
motion. Assume that positive displacement is downward.
Also, determine the position of the block when .

22–2. When a 2-kg block is suspended from a spring, the
spring is stretched a distance of Determine the
frequency and the period of vibration for a 0.5-kg block
attached to the same spring.

22–3. A block having a weight of is suspended from a
spring having a stiffness . If the block is
pushed upward from its equilibrium position
and then released from rest, determine the equation which
describes the motion. What are the amplitude and the
natural frequency of the vibration? Assume that positive
displacement is downward.

*22–4. A spring has a stiffness of If a 2-kg block
is attached to the spring, pushed above its
equilibrium position, and released from rest, determine the
equation that describes the block’s motion. Assume that
positive displacement is downward.

•22–5. A 2-kg block is suspended from a spring having a
stiffness of If the block is given an upward
velocity of when it is displaced downward a distance
of from its equilibrium position, determine the
equation which describes the motion.What is the amplitude
of the motion? Assume that positive displacement is
downward.

22–6. A spring is stretched by a 15-kg block. If the
block is displaced downward from its equilibrium
position and given a downward velocity of 
determine the equation which describes the motion.What is
the phase angle? Assume that positive displacement is
downward.

22–7. A 6-kg block is suspended from a spring having a
stiffness of . If the block is given an upward
velocity of when it is above its equilibrium
position, determine the equation which describes the
motion and the maximum upward displacement of the
block measured from the equilibrium position.Assume that
positive displacement is downward.

75 mm0.4 m>s
k = 200 N>m

0.75 m>s,
100 mm

200 mm

150 mm
2 m>s

800 N>m.

50 mm
800 N>m.

y = 0.2 ft
k = 40 lb>ft

8 lb

40 mm.

t = 0.22 s

1.50 m>s,
100 mm

175 mm

22–10. The body of arbitrary shape has a mass m, mass
center at G, and a radius of gyration about G of . If it is
displaced a slight amount from its equilibrium position
and released, determine the natural period of vibration.

u

kG
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r

O

Prob. 22–11

•22–13. The connecting rod is supported by a knife edge
at A and the period of vibration is measured as .
It is then removed and rotated so that it is supported
by the knife edge at B. In this case the perod of vibration is
measured as . Determine the location d of the
center of gravity G, and compute the radius of gyration .kG

tB = 3.96 s

180°
tA = 3.38 s

*22–12. The square plate has a mass m and is suspended
at its corner from a pin O. Determine the natural period of
vibration if it is displaced a small amount and released.

22–11. The circular disk has a mass m and is pinned at O.
Determine the natural period of vibration if it is displaced a
small amount and released.

22–14. The disk, having a weight of is pinned at its
center O and supports the block A that has a weight of 
If the belt which passes over the disk does not slip at its
contacting surface, determine the natural period of
vibration of the system.

3 lb.
15 lb,

k � 80 lb/ft

0.75 ft
O

A

Prob. 22–14

a a

O

Prob. 22–12

A

d

250 mm

B

G

Prob. 22–13
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0.35 m

l

G

C
D

Prob. 22–15

•22–17. The 50-lb wheel has a radius of gyration about its
mass center G of . Determine the frequency of
vibration if it is displaced slightly from the equilibrium
position and released. Assume no slipping.

kG = 0.7 ft

*22–16. The platform AB when empty has a mass of
center of mass at and natural period of

oscillation . If a car, having a mass of 
and center of mass at , is placed on the platform, the
natural period of oscillation becomes .
Determine the moment of inertia of the car about an axis
passing through .G2

t2 = 3.16 s
G2

1.2 Mgt1 = 2.38 s
G1,400 kg,

22–15. The bell has a mass of a center of mass at
G, and a radius of gyration about point D of .
The tongue consists of a slender rod attached to the inside
of the bell at C. If an 8-kg mass is attached to the end of the
rod, determine the length l of the rod so that the bell will
“ring silent,” i.e., so that the natural period of vibration of
the tongue is the same as that of the bell. For the
calculation, neglect the small distance between C and D and
neglect the mass of the rod.

kD = 0.4 m
375 kg,

22–18. The two identical gears each have a mass of m and
a radius of gyration about their center of mass of . They
are in mesh with the gear rack, which has a mass of M and is
attached to a spring having a stiffness k. If the gear rack is
displaced slightly horizontally, determine the natural period
of oscillation.

k0

A B

2.50 m
1.83 m

O

G2

G1

Prob. 22–16

G
0.4 ft

k � 18 lb/ft

1.2 ft

Prob. 22–17

k

r

r

Prob. 22–18
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•22–21. The cart has a mass of m and is attached to two
springs, each having a stiffness of , unstretched
length of , and a stretched length of l when the cart is in
the equilibrium position. If the cart is displaced a distance
of such that both springs remain in tension

, determine the natural frequency of oscillation.

22–22. The cart has a mass of m and is attached to two
springs, each having a stiffness of and , respectively. If
both springs are unstretched when the cart is in the
equilibrium position shown, determine the natural frequency
of oscillation.

k2k1

(x0 6 l - l0)
x = x0

l0

k1 = k2 = k

*22–20. A flywheel of mass m, which has a radius of
gyration about its center of mass of , is suspended from a
circular shaft that has a torsional resistance of . If
the flywheel is given a small angular displacement of and
released, determine the natural period of oscillation.

u

M = Cu
kO

22–19. In the “lump mass theory”, a single-story building
can be modeled in such a way that the whole mass of the
building is lumped at the top of the building, which is
supported by a cantilever column of negligible mass as
shown. When a horizontal force P is applied to the model,
the column deflects an amount of , where L
is the effective length of the column, E is Young’s modulus
of elasticity for the material, and I is the moment of inertia
of the cross section of the column. If the lump mass is m,
determine the frequency of vibration in terms of these
parameters.

d = PL3>12EI

22–23. The 3-kg target slides freely along the smooth
horizontal guides BC and DE, which are ‘nested’ in springs
that each have a stiffness of . If a 60-g bullet is
fired with a velocity of and embeds into the target,
determine the amplitude and frequency of oscillation of
the target.

900 m>s
k = 9 kN>m

xD C A Bk2 k1

Probs. 22–21/22

k � 9 kN/m

k � 9 kN/m

C B

DE

900 m/s

Prob. 22–23

P

L

PL3

12EI
�d

Prob. 22–19

L

u

Prob. 22–20
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22–26. A wheel of mass m is suspended from two equal-
length cords as shown. When it is given a small angular
displacement of about the z axis and released, it is
observed that the period of oscillation is . Determine the
radius of gyration of the wheel about the z axis.

t

u

•22–25. The slender bar of mass m is supported by two
equal-length cords. If it is given a small angular
displacement of about the vertical axis and released,
determine the natural period of oscillation.

u

*22–24. If the spool undergoes a small angular
displacement of and is then released, determine the
frequency of oscillation. The spool has a mass of and
a radius of gyration about its center of mass O of

.The spool rolls without slipping.kO = 250 mm

50 kg
u

22–27. A wheel of mass m is suspended from three equal-
length cords. When it is given a small angular displacement
of about the z axis and released, it is observed that the
period of oscillation is . Determine the radius of gyration
of the wheel about the z axis.

t

u

L

z

r

r

u

Prob. 22–26

L

r

z

120�

120�

120�

u

Prob. 22–27

300 mm

150 mm O

A

B

k � 500 N/m

k � 500 N/m

u

Prob. 22–24

l

z

a

a

L

L

u

2

2

Prob. 22–25
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*22.2 Energy Methods

The simple harmonic motion of a body, discussed in the previous
section, is due only to gravitational and elastic restoring forces acting
on the body. Since these forces are conservative, it is also possible to
use the conservation of energy equation to obtain the body’s natural
frequency or period of vibration. To show how to do this, consider again
the block and spring model in Fig. 22–8. When the block is displaced x
from the equilibrium position, the kinetic energy is 
and the potential energy is Since energy is conserved, it is
necessary that

(22–17)

The differential equation describing the accelerated motion of the
block can be obtained by differentiating this equation with respect to
time; i.e.,

Since the velocity is not always zero in a vibrating system,

which is the same as Eq. 22–1.
If the conservation of energy equation is written for a system of

connected bodies, the natural frequency or the equation of motion can
also be determined by time differentiation. It is not necessary to
dismember the system to account for the internal forces because they do
no work.

x
$ + vn2x = 0 vn = 2k>m

x
#

x
# 1mx$ + kx2 = 0

mx
#
x
$ + kxx# = 0

1
2mx

# 2 + 1
2kx

2 = constant

T + V = constant

V = 1
2kx

2.
T = 1

2mv
2 = 1

2mx
# 2

k

Equilibrium
position

x

Fig. 22–8
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The suspension of a railroad car consists of a set of
springs which are mounted between the frame of
the car and the wheel truck. This will give the car
a natural frequency of vibration which can be
determined.

Procedure for Analysis

The natural frequency of a body or system of connected bodies
can be determined by applying the conservation of energy equation
using the following procedure.

Energy Equation.
● Draw the body when it is displaced by a small amount from its

equilibrium position and define the location of the body from its
equilibrium position by an appropriate position coordinate q.

● Formulate the conservation of energy for the body,
constant, in terms of the position coordinate.

● In general, the kinetic energy must account for both the body’s
translational and rotational motion,
Eq. 18–2.

● The potential energy is the sum of the gravitational and elastic
potential energies of the body, Eq. 18–17. In
particular, should be measured from a datum for which 
(equilibrium position).

Time Derivative.
● Take the time derivative of the energy equation using the chain

rule of calculus and factor out the common terms. The resulting
differential equation represents the equation of motion for the
system. The natural frequency of is obtained after rearranging
the terms in the “standard form,” q

$ + vn2q = 0.
vn

q = 0Vg

V = Vg + Ve ,

T = 1
2mvG

2 + 1
2IGv

2,

T + V =

vn
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EXAMPLE 22.5

The thin hoop shown in Fig. 22–9a is supported by the peg at O.
Determine the natural period of oscillation for small amplitudes of
swing. The hoop has a mass m.

SOLUTION

Energy Equation. A diagram of the hoop when it is displaced a small
amount from the equilibrium position is shown in Fig. 22–9b.
Using the table on the inside back cover and the parallel-axis theorem
to determine the kinetic energy is

If a horizontal datum is placed through point O, then in the displaced
position, the potential energy is

The total energy in the system is

Time Derivative.

Since is not always equal to zero, from the terms in parentheses,

For small angle , sin ≈ .

so that

Ans.t =
2p
vn

= 2p
A

2r
g

vn =
A

g

2r

u
$

+
g

2r
u = 0

uuu

u
$

+
g

2r
sin u = 0

u
#

mru
# 12ru$ + g sin u2 = 0

mr2(2u
#
)u
$

+ mgr sin uu
#
= 0

T + V = mr2u
#
2 - mgr cos u

V = -mg(r cos u)

T = 1
2IOvn

2 = 1
2[mr2 + mr2]u

#
2 = mr2u

#
2

IO ,

1q =) u

r

O

(a)

(b)

r cos u

O

r

Datum
FO

W � mg

u

Fig. 22–9
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A 10-kg block is suspended from a cord wrapped around a 5-kg disk,
as shown in Fig. 22–10a. If the spring has a stiffness 
determine the natural period of vibration for the system.

SOLUTION

Energy Equation. A diagram of the block and disk when they are
displaced by respective amounts s and from the equilibrium position
is shown in Fig. 22–10b. Since then 
Thus, the kinetic energy of the system is

Establishing the datum at the equilibrium position of the block and
realizing that the spring stretches for equilibrium, the potential
energy is

The total energy for the system is therefore,

Time Derivative.

Since the above equation reduces to the
“standard form”

so that

Thus,

Ans.t =
2p
vn

=
2p
4

= 1.57 s

vn = 216 = 4 rad>s

u
$

+ 16u = 0

sst = 98.1>200 = 0.4905 m,

0.281251u# 2u$ + 2001sst + 0.15u20.15u
#
- 14.72u

#
= 0

T + V = 0.14061u# 22 + 1001sst + 0.15u22 - 14.715u

= 1
21200 N>m2[sst + 10.15 m2u]2 - 98.1 N[10.15 m2u]

V = 1
2k1sst + s22 - Ws

sst

= 0.14061u# 22
= 1

2110 kg2[10.15 m2u# ]2 + 1
2 C1215 kg210.15 m22 D 1u# 22

T = 1
2mbvb

2 + 1
2IOvd

2

vb L s# = 10.15 m2u# .s = 10.15 m2u,u

k = 200 N>m,

EXAMPLE 22.6

k � 200 N/m

0.15 m
O

(a)

O

u

u

s � 0.15 u

0.15 m

0.15 u

(b)
98.1 N

Datum

sst � s

Fig. 22–10
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PROBLEMS

22–34. Determine the natural period of vibration of the
disk having a mass m and radius r.Assume the disk does not
slip on the surface of contact as it oscillates.

•22–33. Determine the differential equation of motion of
the 15-kg spool. Assume that it does not slip at the surface
of contact as it oscillates. The radius of gyration of the spool
about its center of mass is . The springs are
originally unstretched.

kG = 125 mm

*22–28. Solve Prob. 22–10 using energy methods.

•22–29. Solve Prob. 22–11 using energy methods.

22–30. Solve Prob. 22–12 using energy methods.

22–31. Solve Prob. 22–14 using energy methods.

*22–32. The machine has a mass m and is uniformly
supported by four springs, each having a stiffness k.
Determine the natural period of vertical vibration.

22–35. If the wheel is given a small angular displacement
of and released from rest, it is observed that it oscillates
with a natural period of . Determine the wheel’s radius of
gyration about its center of mass G.The wheel has a mass of
m and rolls on the rails without slipping.

t

u

d—
2

d—
2

G

kk

Prob. 22–32

k � 200 N/m

k � 200 N/m

G

200 mm

100 mm

Prob. 22–33

k

r

Prob. 22–34

a G

A

O

7.5 in. u

Prob. 22–36

*22–36. Without an adjustable screw, the 1.5-lb
pendulum has a center of gravity at If it is required that it
oscillates with a period of determine the distance from
pin to the screw.The pendulum’s radius of gyration about

is and the screw has a weight of 0.05 lb.kO = 8.5 in.O
O

a1 s,
G.

A,
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*22–40. The gear of mass m has a radius of gyration about
its center of mass O of . The springs have stiffnesses of 
and , respectively, and both springs are unstretched when
the gear is in an equilibrium position. If the gear is given a
small angular displacement of and released, determine its
natural period of oscillation.

u

k2

k1kO

22–38. Determine the frequency of oscillation of the
cylinder of mass m when it is pulled down slightly and
released. Neglect the mass of the small pulley.

•22–37. A torsional spring of stiffness k is attached to a
wheel that has a mass of . If the wheel is given a small
angular displacement of about the determine the
natural period of oscillation. The wheel has a radius of
gyration about the z axis of .kz

z axisu

M

22–41. The bar has a mass of 8 kg and is suspended from
two springs such that when it is in equilibrium, the springs
make an angle of 45° with the horizontal as shown.
Determine the natural period of vibration if the bar is
pulled down a short distance and released. Each spring has
a stiffness of k = 40 N>m.

22–39. Determine the frequency of oscillation of the
cylinder of mass m when it is pulled down slightly and
released. Neglect the mass of the small pulleys.

k

Prob. 22–38

z

k

u

Prob. 22–37

k

Prob. 22–39

r
A B

k1 k2

u

O

Prob. 22–40

A

k k

B C

45� 45�

Prob. 22–41
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*22.3 Undamped Forced Vibration

Undamped forced vibration is considered to be one of the most important
types of vibrating motion in engineering. Its principles can be used to
describe the motion of many types of machines and structures.

Periodic Force. The block and spring shown in Fig. 22–11a provide a
convenient model which represents the vibrational characteristics of a
system subjected to a periodic force This force has an
amplitude of and a forcing frequency The free-body diagram for
the block when it is displaced a distance x is shown in Fig. 22–11b.
Applying the equation of motion, we have

or

(22–18)

This equation is a nonhomogeneous second-order differential equation.
The general solution consists of a complementary solution, plus a
particular solution,

The complementary solution is determined by setting the term on the
right side of Eq. 22–18 equal to zero and solving the resulting
homogeneous equation. The solution is defined by Eq. 22–9, i.e.,

(22–19)

where is the natural frequency, Eq. 22–2.
Since the motion is periodic, the particular solution of Eq. 22–18 can be

determined by assuming a solution of the form

(22–20)

where X is a constant.Taking the second time derivative and substituting
into Eq. 22–18 yields

Factoring out and solving for X gives

(22–21)

Substituting into Eq. 22–20, we obtain the particular solution

(22–22)xp =
F0>k

1 - 1v0>vn22 sin v0t

X =
F0>m

1k>m2 - v0
2 =

F0>k
1 - 1v0>vn22

sin v0t

-Xv0
2 sin v0t +

k
m
1X sin v0t2 =

F0

m
sin v0t

xp = X sin v0t

vn = 2k>m,vn

xc = C sin1vnt + f2

xp .
xc ,

x
$ +

k
m
x =

F0

m
sin v0t

F0 sin v0t - kx = mx$:+ ©Fx = max ;

v0 .F0

F = F0 sin v0t.

(a)

k F � F0 sin v0 t

Equilibrium
position x

W � mg

kx

(b)
N � W

F � F0 sin v0 t

Fig. 22–11

Shaker tables provide forced vibration
and are used to separate out granular
materials.
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The general solution is therefore the sum of two sine functions having
different frequencies.

(22–23)

The complementary solution defines the free vibration, which depends 
on the natural frequency and the constants C and The
particular solution describes the forced vibration of the block caused
by the applied force Since all vibrating systems are
subject to friction, the free vibration, will in time dampen out. For this
reason the free vibration is referred to as transient, and the forced
vibration is called steady-state, since it is the only vibration that remains.

From Eq. 22–21 it is seen that the amplitude of forced or steady-state
vibration depends on the frequency ratio If the magnification
factor MF is defined as the ratio of the amplitude of steady-state
vibration, X, to the static deflection, which would be produced by
the amplitude of the periodic force then, from Eq. 22–21,F0 ,

F0>k,

v0>vn .

xc ,
F = F0 sin v0t.

xp

f.vn = 2k>m
xc

x = xc + xp = C sin1vnt + f2 +
F0>k

1 - 1v0>vn22 sin v0t

The soil compactor operates
by forced vibration developed
by an internal motor. It is
important that the forcing
frequency not be close to 
the natural frequency of
vibration of the compactor,
which can be determined
when the motor is turned off;
otherwise resonance will
occur and the machine will
become uncontrollable.
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(22–24)

This equation is graphed in Fig. 22–12. Note that if the force or
displacement is applied with a frequency close to the natural frequency
of the system, i.e., the amplitude of vibration of the block
becomes extremely large. This occurs because the force F is applied to
the block so that it always follows the motion of the block.This condition
is called resonance, and in practice, resonating vibrations can cause
tremendous stress and rapid failure of parts.* 

Periodic Support Displacement. Forced vibrations can also
arise from the periodic excitation of the support of a system. The model
shown in Fig. 22–13a represents the periodic vibration of a block which is
caused by harmonic movement of the support. The free-
body diagram for the block in this case is shown in Fig. 22–13b. The
displacement of the support is measured from the point of zero
displacement, i.e., when the radial line OA coincides with OB.Therefore,
general deformation of the spring is Applying the
equation of motion yields

or

(22–25)

By comparison, this equation is identical to the form of Eq. 22–18,
provided is replaced by If this substitution is made into the
solutions defined by Eqs. 22–21 to 22–23, the results are appropriate for
describing the motion of the block when subjected to the support
displacement d = d0 sin v0t.

kd0 .F0

x
$ +

k
m
x =

kd0

m
sin v0t

-k1x - d0 sin v0t2 = mx$:+ Fx = max ;

1x - d0 sin v0t2.
d

d = d0 sin v0t

v0>vn L 1,

MF =
X

F0>k =
1

1 - 1v0>vn22

*A swing has a natural period of vibration, as determined in Example 22.1. If someone
pushes on the swing only when it reaches its highest point, neglecting drag or wind
resistance, resonance will occur since the natural and forcing frequencies are the same.

1

3

2

1

0

�1

�2

2 3

MF

(   )vn

v0

(v0 �� vn)

Fig. 22–12 

(a)

k

Equilibrium
position

x

O

O

A
B

d � d0 sin v0t

A

B

d0

v0

V0

W � mg

(b)

N � W

k(x � d0 sin v0t)

Fig. 22–13 
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The instrument shown in Fig. 22–14 is rigidly attached to a platform P,
which in turn is supported by four springs, each having a stiffness

If the floor is subjected to a vertical displacement
where t is in seconds, determine the amplitude of

steady-state vibration. What is the frequency of the floor vibration
required to cause resonance? The instrument and platform have a
total mass of 20 kg.

d = 10 sin18t2 mm,
k = 800 N>m.

EXAMPLE 22.7

P

k k

Fig. 22–14 

SOLUTION

The natural frequency is

The amplitude of steady state vibration is found using Eq. 22–21,
with replacing 

Ans.

Resonance will occur when the amplitude of vibration X caused by
the floor displacement approaches infinity. This requires

Ans.= 12.6 rad>sv0 = vn

X =
d0

1 - 1v0>vn22 =
10

1 - [18 rad>s2>112.65 rad>s2]2 = 16.7 mm

F0 .kd0

= 12.65 rad>s
B

41800 N>m2
20 kg

vn =
A

k
m

=
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*22.4 Viscous Damped Free Vibration

The vibration analysis considered thus far has not included the effects of
friction or damping in the system, and as a result, the solutions obtained
are only in close agreement with the actual motion. Since all vibrations die
out in time, the presence of damping forces should be included in the
analysis.

In many cases damping is attributed to the resistance created by the
substance, such as water, oil, or air, in which the system vibrates.
Provided the body moves slowly through this substance, the resistance to
motion is directly proportional to the body’s speed. The type of force
developed under these conditions is called a viscous damping force. The
magnitude of this force is expressed by an equation of the form

(22–26)

where the constant c is called the coefficient of viscous damping and has
units of or 

The vibrating motion of a body or system having viscous damping can
be characterized by the block and spring shown in Fig. 22–15a.The effect
of damping is provided by the dashpot connected to the block on the
right side. Damping occurs when the piston P moves to the right or left
within the enclosed cylinder. The cylinder contains a fluid, and the
motion of the piston is retarded since the fluid must flow around or
through a small hole in the piston. The dashpot is assumed to have a
coefficient of viscous damping c.

If the block is displaced a distance x from its equilibrium position, the
resulting free-body diagram is shown in Fig. 22–15b. Both the spring and
damping force oppose the forward motion of the block, so that applying
the equation of motion yields

or

(22–27)

This linear, second-order, homogeneous, differential equation has a
solution of the form

where e is the base of the natural logarithm and (lambda) is a constant.
The value of can be obtained by substituting this solution and its time
derivatives into Eq. 22–27, which yields

or

elt1ml2 + cl + k2 = 0

ml2elt + clelt + kelt = 0

l

l

x = elt

mx
$ + cx# + kx = 0

-kx - cx# = mx$:+ ©Fx = max ;

lb # s>ft.N # s>m

F = cx#

(a)

k

Equilibrium
position

x P

c

W � mg

kx

(b)

N � W

cx
.

Fig. 22–15 
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Since can never be zero, a solution is possible provided

Hence, by the quadratic formula, the two values of are

(22–28)

The general solution of Eq. 22–27 is therefore a combination of
exponentials which involves both of these roots. There are three possible
combinations of and which must be considered. Before discussing
these combinations, however, we will first define the critical damping
coefficient as the value of c which makes the radical in Eqs. 22–28
equal to zero; i.e.,

or

(22–29)

Overdamped System. When the roots and are both
real. The general solution of Eq. 22–27 can then be written as

(22–30)

Motion corresponding to this solution is nonvibrating. The effect of
damping is so strong that when the block is displaced and released, it
simply creeps back to its original position without oscillating.The system
is said to be overdamped.

Critically Damped System. If then 
This situation is known as critical damping, since it represents a
condition where c has the smallest value necessary to cause the system to
be nonvibrating. Using the methods of differential equations, it can be
shown that the solution to Eq. 22–27 for critical damping is

(22–31)x = 1A + Bt2e-vnt

l1 = l2 = -cc>2m = -vn.c = cc,

x = Ael1t + Bel2t

l2l1c 7 cc ,

cc = 2m
A

k
m

= 2mvn

a cc
2m
b2

-
k
m

= 0

cc

l2l1

l2 = -
c

2m
-
B
a c

2m
b2

-
k
m

l1 = -
c

2m
+
B
a c

2m
b2

-
k
m

l

ml2 + cl + k = 0

elt
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Underdamped System. Most often in which case the
system is referred to as underdamped. In this case the roots and 
are complex numbers, and it can be shown that the general solution of
Eq. 22–27 can be written as

(22–32)

where D and are constants generally determined from the initial
conditions of the problem. The constant is called the damped natural
frequency of the system. It has a value of

(22–33)

where the ratio is called the damping factor.
The graph of Eq. 22–32 is shown in Fig. 22–16. The initial limit of

motion, D, diminishes with each cycle of vibration, since motion is
confined within the bounds of the exponential curve. Using the damped
natural frequency the period of damped vibration can be written as

(22–34)

Since Eq. 22–33, the period of damped vibration, will be
greater than that of free vibration, t = 2p>vn .

td ,vd 6 vn ,

td =
2p
vd

vd ,

c>cc

vd =
B

k
m

- a c
2m
b2

= vnB
1 - a c

cc
b2

vd

f

x = D[e-1c>2m2t sin1vdt + f2]

l2l1

c 6 cc ,

x � D[e�(c/2m)tsin (vd t � f)]

x2

x1
D

D

x

De�(c/2m)t

�De�(c/2m)t

x3

x4

t1 t2 t3 t4
t

td

Fig. 22–16 
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*22.5 Viscous Damped Forced Vibration

The most general case of single-degree-of-freedom vibrating motion
occurs when the system includes the effects of forced motion and induced
damping. The analysis of this particular type of vibration is of practical
value when applied to systems having significant damping characteristics.

If a dashpot is attached to the block and spring shown in Fig. 22–11a,
the differential equation which describes the motion becomes

(22–35)

A similar equation can be written for a block and spring having a
periodic support displacement, Fig. 22–13a, which includes the effects of
damping. In that case, however, is replaced by Since Eq. 22–35 is
nonhomogeneous, the general solution is the sum of a complementary
solution, and a particular solution, The complementary solution
is determined by setting the right side of Eq. 22–35 equal to zero and
solving the homogeneous equation, which is equivalent to Eq. 22–27.
The solution is therefore given by Eq. 22–30, 22–31, or 22–32, depending
on the values of and Because all systems are subjected to friction,
then this solution will dampen out with time. Only the particular
solution, which describes the steady-state vibration of the system, will
remain. Since the applied forcing function is harmonic, the steady-state
motion will also be harmonic. Consequently, the particular solution will
be of the form

(22–36)

The constants and are determined by taking the first and second
time derivatives and substituting them into Eq. 22–35, which after
simplification yields

Since this equation holds for all time, the constant coefficients can be
obtained by setting and which causes the
above equation to become

-X¿mv0
2 + X¿k = F0 cos f¿

X¿cv0 = F0 sin f¿

v0t - f¿ = p>2,v0t - f¿ = 0

X¿k sin1v0t - f¿2 = F0 sin v0tX¿cv0 cos1v0t - f¿2 +
-X¿mv0

2 sin1v0t - f¿2 +

f¿X¿

XP = X¿ sin1v0 t - f¿2

l2 .l1

xp .xc ,

kd0 .F0

mx
$ + cx# + kx = F0 sin v0t
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The amplitude is obtained by squaring these equations, adding the
resuts, and using the identity which gives

(22–37)

Dividing the first equation by the second gives

(22–38)

Since and then the above equations can also be
written as

(22–39)

The angle represents the phase difference between the applied force
and the resulting steady-state vibration of the damped system.

The magnification factor MF has been defined in Sec. 22.3 as the ratio
of the amplitude of deflection caused by the forced vibration to the
deflection caused by a static force Thus,

(22–40)

The MF is plotted in Fig. 22–17 versus the frequency ratio for
various values of the damping factor It can be seen from this graph
that the magnification of the amplitude increases as the damping factor
decreases. Resonance obviously occurs only when the damping factor is
zero and the frequency ratio equals 1.

c>cc .
v0>vn

MF =
X¿
F0>k =

1

2[1 - 1v0>vn22]2 + [21c>cc21v0>vn2]2

F0 .

f¿

f¿ = tan-1 c21c>cc21v0>vn2
1 - 1v0>vn22 d

X¿ =
F0>k

2[1 - 1v0>vn22]2 + [21c>cc21v0>vn2]2

cc = 2mvn ,vn = 2k>m
f¿ = tan-1 c cv0

k - mv0
2 d

X¿ =
F0

2(k - mv0
222 + c2v0

2

sin2f¿ +  cos2f¿ = 1,

5

4

3

2

1

0 1 2 3

MF

� 0cc
c

v0
vn

� 0.10cc
c

� 0.50cc
c

� 0.25cc
c

� 1.00cc
c

Fig. 22–17 
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The 30-kg electric motor shown in Fig. 22–18 is supported by four
springs, each spring having a stiffness of If the rotor is
unbalanced such that its effect is equivalent to a 4-kg mass located 
60 mm from the axis of rotation, determine the amplitude of vibration
when the rotor is turning at The damping factor is
c>cc = 0.15.

v0 = 10 rad>s.

200 N>m.

EXAMPLE 22.8

SOLUTION
The periodic force which causes the motor to vibrate is the centrifugal
force due to the unbalanced rotor.This force has a constant magnitude of

Since where then

The stiffness of the entire system of four springs is
Therefore, the natural frequency of

vibration is

Since the damping factor is known, the steady-state amplitude can be
determined from the first of Eqs. 22–39, i.e.,

Ans.= 0.0107 m = 10.7 mm

=
24>800

2 [1 - 110>5.16422]2 + [210.152110>5.1642]2

X¿ =
F0>k

2[1 - 1v0>vn22]2 + [21c>cc21v0>vn2]2

= 5.164 rad>s
B

800 N>m
30 kg

vn =
A

k
m

=

k = 41200 N>m2 = 800 N>m.

F = 24 sin 10t

v0 = 10 rad>s,F = F0 sin v0t,

F0 = man = mrv0
2 = 4 kg10.06 m2110 rad>s22 = 24 N

V

Fig. 22–18 
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m F (t)

(b)

c

Fig. 22–19 
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*22.6 Electrical Circuit Analogs

The characteristics of a vibrating mechanical system can be represented
by an electric circuit. Consider the circuit shown in Fig. 22–19a, which
consists of an inductor L, a resistor R, and a capacitor C. When a voltage
E(t) is applied, it causes a current of magnitude i to flow through the circuit.
As the current flows past the inductor the voltage drop is when
it flows across the resistor the drop is Ri, and when it arrives at the capacitor
the drop is Since current cannot flow past a capacitor, it is only
possible to measure the charge q acting on the capacitor. The charge can,
however, be related to the current by the equation Thus, the
voltage drops which occur across the inductor, resistor, and capacitor
becomes and respectively. According to
Kirchhoff’s voltage law, the applied voltage balances the sum of the voltage
drops around the circuit. Therefore,

(22–41)

Consider now the model of a single-degree-of-freedom mechanical
system, Fig. 22–19b, which is subjected to both a general forcing function
F(t) and damping. The equation of motion for this system was
established in the previous section and can be written as

(22–42)

By comparison, it is seen that Eqs. 22–41 and 22–42 have the same form,
and hence mathematically the procedure of analyzing an electric circuit
is the same as that of analyzing a vibrating mechanical system. The
analogs between the two equations are given in Table 22–1.

This analogy has important application to experimental work, for it is
much easier to simulate the vibration of a complex mechanical system
using an electric circuit, which can be constructed on an analog computer,
than to make an equivalent mechanical spring-and-dashpot model.

m
d2x

dt2
+ c
dx

dt
+ kx = F1t2

L
d2q

dt2
+ R
dq

dt
+

1
C
q = E1t2

q>C,R dq>dt,L d2q>dt2,
i = dq>dt.

11>C21i dt.
L1di>dt2,

Table 22–1
Electrical–Mechanical Analogs

Electrical Mechanical

Electric charge q Displacement x

Electric current i Velocity dx>dt
Voltage E(t) Applied force F(t)

Inductance L Mass m

Resistance R Viscous damping coefficient c

Reciprocal of capacitance 1 C> Spring stiffness k

C

L R

E (t)

(a)
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F � F0 cos vtk

Equilibrium
position

x

m

Prob. 22–42

PROBLEMS

•22–45. The spring shown stretches 6 in. when it is loaded
with a 50-lb weight. Determine the equation which
describes the position of the weight as a function of time if
the weight is pulled 4 in. below its equilibrium position and
released from rest at . The weight is subjected to the
periodic force of , where t is in seconds.F = (-7 sin 2t) lb

t = 0

22–43. If the block is subjected to the periodic force
, show that the differential equation of

motion is , where y is
measured from the equilibrium position of the block. What
is the general solution of this equation?

y
$ + (k>m)y = (F0>m) cos vt

F = F0 cos vt

22–42. If the block-and-spring model is subjected to the
periodic force , show that the differential
equation of motion is , where
x is measured from the equilibrium position of the block.
What is the general solution of this equation?

x
$ + (k>m)x = (F0>m) cos vt

F = F0 cos vt

22–46. The 30-lb block is attached to two springs having a
stiffness of A periodic force ,
where t is in seconds, is applied to the block. Determine the
maximum speed of the block after frictional forces cause
the free vibrations to dampen out.

F = (8 cos 3t) lb10 lb>ft.

*22–44. A block having a mass of 0.8 kg is suspended from
a spring having a stiffness of If a dashpot provides
a damping force of when the speed of the block is

determine the period of free vibration.0.2 m>s,
2.5 N

120 N>m.

k

F � F0 cos vt

y

m

Prob. 22–43

k

F � �7 sin 2t

Prob. 22–45

F � 8 cos 3t

k � 10 lb/ft

k � 10 lb/ft

Prob. 22–46
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•22–49. The fan has a mass of 25 kg and is fixed to the end
of a horizontal beam that has a negligible mass. The fan
blade is mounted eccentrically on the shaft such that it is
equivalent to an unbalanced 3.5-kg mass located 100 mm
from the axis of rotation. If the static deflection of the beam
is 50 mm as a result of the weight of the fan, determine the
angular velocity of the fan blade at which resonance will
occur. Hint: See the first part of Example 22.8.

22–50. The fan has a mass of 25 kg and is fixed to the end
of a horizontal beam that has a negligible mass. The fan
blade is mounted eccentrically on the shaft such that it is
equivalent to an unbalanced 3.5-kg mass located 100 mm
from the axis of rotation. If the static deflection of the beam
is 50 mm as a result of the weight of the fan, determine the
amplitude of steady-state vibration of the fan if the angular
velocity of the fan blade is . Hint: See the first part
of Example 22.8.

22–51. What will be the amplitude of steady-state vibration
of the fan in Prob. 22–50 if the angular velocity of the fan
blade is ? Hint: See the first part of Example 22.8.18 rad>s

10 rad>s

*22–48. The electric motor has a mass of 50 kg and is
supported by four springs, each spring having a stiffness of

If the motor turns a disk D which is mounted
eccentrically, 20 mm from the disk’s center, determine the
angular velocity at which resonance occurs. Assume that
the motor only vibrates in the vertical direction.

v

100 N>m.

22–47. A 5-kg block is suspended from a spring having a
stiffness of If the block is acted upon by a vertical
periodic force where t is in seconds,
determine the equation which describes the motion of the
block when it is pulled down 100 mm from the equilibrium
position and released from rest at Consider positive
displacement to be downward.

t = 0.

F = 17 sin 8t2 N,
300 N>m.

*22–52. A 7-lb block is suspended from a spring having a
stiffness of . The support to which the spring is
attached is given simple harmonic motion which can be
expressed as , where t is in seconds. If the
damping factor is , determine the phase angle 
of forced vibration.

•22–53. Determine the magnification factor of the block,
spring, and dashpot combination in Prob. 22–52.

fc>cc = 0.8
d = (0.15 sin 2t) ft

k = 75 lb>ft

k � 300 N/m

F � 7 sin 8t

Prob. 22–47

20 mm
V

k � 100 N/m

D

k � 100 N/m

Prob. 22–48

V

Probs. 22–49/50/51
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22–58. The spring system is connected to a crosshead that
oscillates vertically when the wheel rotates with a constant
angular velocity of . If the amplitude of the steady-state
vibration is observed to be 400 mm, and the springs each
have a stiffness of , determine the two
possible values of at which the wheel must rotate. The
block has a mass of 50 kg.

22–59. The spring system is connected to a crosshead that
oscillates vertically when the wheel rotates with a constant
angular velocity of . If the amplitude of the
steady-state vibration is observed to be 400 mm, determine
the two possible values of  the stiffness k of the springs. The
block has a mass of 50 kg.

v = 5 rad>s

V

k = 2500 N>m
V

22–55. The motion of an underdamped system can be
described by the graph in Fig. 20–16. Show that the relation
between two successive peaks of vibration is given by

, where is the
damping factor and is called the logarithmic
decrement.

*22–56. Two successive amplitudes of a spring-block
underdamped vibrating system are observed to be 100 mm
and 75 mm. Determine the damping coefficient of the
system. The block has a mass of 10 kg and the spring has a
stiffness of . Use the result of Prob. 22–55.

•22–57. Two identical dashpots are arranged parallel to
each other, as shown. Show that if the damping coefficient

, then the block of mass m will vibrate as an
underdamped system.
c 6 2mk

k = 1000 N>m

ln(xn>xn+1)
c>ccln(xn>xn+1) = 2p(c>cc)>21—(c>cc)2

22–54. The uniform rod has a mass of m. If it is acted upon
by a periodic force of , determine the
amplitude of the steady-state vibration.

F = F0 sin vt

*22–60. Find the differential equation for small
oscillations in terms of for the uniform rod of mass m.
Also show that if , then the system remains
underdamped. The rod is in a horizontal position when it is
in equilibrium.

c 6 2mk>2
u

kk

L
2

L
2

F � F0  sin vt

A

Prob. 22–54

k

cc

Prob. 22–57

200 mm

k k

v

Probs. 22–58/59

A
B

a

C

ck

2

u

a

Prob. 22–60
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22–63. The block, having a weight of 15 lb, is immersed in
a liquid such that the damping force acting on the block has
a magnitude of , where is the velocity of
the block in If the block is pulled down 0.8 ft and
released from rest, determine the position of the block as a
function of time. The spring has a stiffness of .
Consider positive displacement to be downward.

k = 40 lb>ft
ft>s.

vF = (0.8 ƒv ƒ ) lb

22–62. If the 30-kg block is subjected to a periodic force of
, , and ,

determine the equation that describes the steady-state
vibration as a function of time.

c = 300 N # s>mk = 1500 N>mP = (300 sin 5t) N

•22–61. If the dashpot has a damping coefficient of
, and the spring has a stiffness of

, show that the system is underdamped, and
then find the pendulum’s period of oscillation. The uniform
rods have a mass per unit length of .10 kg>m
k = 600 N>m
c = 50 N # s>m

*22–64. The small block at A has a mass of 4 kg and is
mounted on the bent rod having negligible mass. If the rotor
at B causes a harmonic movement ,
where t is in seconds, determine the steady-state amplitude
of vibration of the block.

dB = (0.1 cos 15t) m

CA B

D

k � 600 N/mc � 50 N�s/m

0.6 m

0.3 m0.3 m

Prob. 22–61

P � (300 sin 5 t)N

k c k

Prob. 22–62

k � 40 lb/ft

Prob. 22–63

k � 15 N/m

0.6 m

1.2 m

A
O

B

V

Prob. 22–64
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•22–69. The 4-kg circular disk is attached to three springs,
each spring having a stiffness If the disk is
immersed in a fluid and given a downward velocity of

at the equilibrium position, determine the equation
which describes the motion. Consider positive displacement
to be measured downward, and that fluid resistance acting
on the disk furnishes a damping force having a magnitude

where is the velocity of the block in .m>svF = 160 ƒv ƒ 2 N,

0.3 m>s
k = 180 N>m.

22–66. A block having a mass of 7 kg is suspended from a
spring that has a stiffness If the block is given
an upward velocity of from its equilibrium position
at determine its position as a function of time.
Assume that positive displacement of the block is
downward and that motion takes place in a medium which
furnishes a damping force where is the
velocity of the block in 

22–67. A 4-lb weight is attached to a spring having a
stiffness The weight is drawn downward a
distance of 4 in. and released from rest. If the support
moves with a vertical displacement in.,
where t is in seconds, determine the equation which
describes the position of the weight as a function of time.

*22–68. Determine the differential equation of motion
for the damped vibratory system shown. What type of
motion occurs?

d = 10.5 sin 4t2
k = 10 lb>ft.

m>s.
vF = 150 ƒv ƒ 2 N,

t = 0,
0.6 m>s
k = 600 N>m.

•22–65. The bar has a weight of 6 lb. If the stiffness of the
spring is and the dashpot has a damping
coefficient determine the differential
equation which describes the motion in terms of the angle of
the bar’s rotation. Also, what should be the damping
coefficient of the dashpot if the bar is to be critically damped?

u

c = 60 lb # s>ft,
k = 8 lb>ft

22–70. Using a block-and-spring model, like that shown in
Fig. 22–13a, but suspended from a vertical position and
subjected to a periodic support displacement of

determine the equation of motion for the
system, and obtain its general solution. Define the
displacement y measured from the static equilibrium
position of the block when 

22–71. The electric motor turns an eccentric flywheel
which is equivalent to an unbalanced 0.25-lb weight
located 10 in. from the axis of rotation. If the static
deflection of the beam is 1 in. due to the weight of the
motor, determine the angular velocity of the flywheel at
which resonance will occur. The motor weights 150 lb.
Neglect the mass of the beam.

*22–72. What will be the amplitude of steady-state
vibration of the motor in Prob. 22–71 if the angular velocity
of the flywheel is ?

•22–73. Determine the angular velocity of the flywheel in
Prob. 22–71 which will produce an amplitude of vibration of
0.25 in.

20 rad>s

t = 0.

d = d0 cos v0t,

k � 100 N/m

c � 200 N � s/mc � 200 N � s/m

25 kg

Prob. 22–68

120� 120�

120�

Prob. 22–69

CA

k

B

c

2 ft 3 ft

Prob. 22–65

V

Probs. 22–71/72/73
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*22–76. Draw the electrical circuit that is equivalent to
the mechanical system shown. What is the differential
equation which describes the charge q in the circuit?

22–75. Determine the differential equation of motion for
the damped vibratory system shown. What type of motion
occurs? Take , , .m = 25 kgc = 200 N # s>mk = 100 N>m

22–74. Draw the electrical circuit that is equivalent to the
mechanical system shown. Determine the differential
equation which describes the charge q in the circuit.

•22–77. Draw the electrical circuit that is equivalent to
the mechanical system shown. Determine the differential
equation which describes the charge q in the circuit.

k

m
F � F0 cos vt

c

Prob. 22–74

k k k

c c

m

Prob. 22–75

F � F0 cos vt

k

k

c
m

Prob. 22–76

k

m

c

Prob. 22–77
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CHAPTER REVIEW

Undamped Free Vibration
A body has free vibration when
gravitational or elastic restoring forces
cause the motion. This motion is
undamped when friction forces are
neglected. The periodic motion of an
undamped, freely vibrating body can be
studied by displacing the body from the
equilibrium position and then applying
the equation of motion along the path.

For a one-degree-of-freedom system,
the resulting differential equation can 
be written in terms of its natural
frequency vn .

Energy Methods
Provided the restoring forces acting on
the body are gravitational and elastic, then
conservation of energy can also be used to
determine its simple harmonic motion. To
do this, the body is displaced a small
amount from its equilibrium position, and
an expression for its kinetic and potential
energy is written. The time derivative 
of this equation can then be rearranged 
in the standard form x

$ + vn2 x = 0.

Undamped Forced Vibration
When the equation of motion is applied to
a body, which is subjected to a periodic
force, or the support has a displacement
with a frequency then the solution of
the differential equation consists of a
complementary solution and a particular
solution. The complementary solution is
caused by the free vibration and can be
neglected. The particular solution is
caused by the forced vibration.

Resonance will occur if the natural
frequency of vibration is equal to the
forcing frequency This should be
avoided, since the motion will tend to
become unbounded.

v0 .
vn

v0 ,

f =
1
t

=
vn

2p
t =

2p
vn

x
$ + vn2 x = 0

xp =
F0>k

1 - 1v0>vn22 sin v0t

Equilibrium
position

x

k

k F � F0 sin v0t

Equilibrium
position x
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Viscous Damped Free Vibration
A viscous damping force is caused by
fluid drag on the system as it vibrates. If
the motion is slow, this drag force will be
proportional to the velocity, that is,

Here c is the coefficient of
viscous damping. By comparing its value
to the critical damping coefficient

we can specify the type of
vibration that occurs. If it is an
overdamped system; if it is a
critically damped system; if it is
an underdamped system.

c 6 cc ,
c = cc ,
c 7 cc ,

cc = 2mvn ,

F = cx# .

Viscous Damped Forced Vibration
The most general type of vibration for a
one-degree-of-freedom system occurs
when the system is damped and
subjected to periodic forced motion. The
solution provides insight as to how the
damping factor, and the frequency
ratio, influence the vibration.

Resonance is avoided provided 
and v0>vn Z 1.

c>cc Z 0

v0>vn ,
c>cc ,

Electrical Circuit Analogs
The vibrating motion of a complex
mechanical system can be studied by
modeling it as an electrical circuit. This is
possible since the differential equations
that govern the behavior of each system
are the same.

k

Equilibrium
position

x

c
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Mathematical
Expressions

APPENDIX

A
Quadratic Formula

then

Hyperbolic Functions

Trigonometric Identities

Power-Series Expansions

 cos x = 1 -
x2

2!
+ Á cosh x = 1 +

x2

2!
+ Á

 sin x = x -
x3

3!
+ Á sinh x = x +

x3

3!
+ Á

1 + tan2 u = sec2 u 1 + cot2 u = csc2 u

tan u =
sin u
cos u

sin u = ;
A

1 - cos 2u
2

cos u = ;
A

1 + cos 2u
2

,

cos 2u = cos2 u - sin2 u

cos(u ; f) = cos u cos f < sin u sin f

sin 2u = 2 sin u cos u

sin(u ; f) = sin u cos f ; cos u sin f

sin2 u + cos2 u = 1

cot u =
B

A
tan u =

A

B
,

sec u =
C

B
cos u =

B

C
,

csc u =
C

A
sin u =

A

C
,

tanh x =
sinh x
cosh x

cosh x =
ex + e-x

2
,sinh x =

ex - e-x

2
,

x =
-b ; 2b2 - 4ac

2a
If ax2 + bx + c = 0,

Derivatives

d

dx
(cosh u) = sinh u

du

dx

d

dx
(sinh u) = cosh u

du

dx

d

dx
(tan u) = sec2 u

du

dx

d

dx
(cos u) = -sin u

du

dx

d

dx
(sin u) = cos u

du

dx

d

dx
(csc u) = -csc u cot u

du

dx

d

dx
(sec u) = tan u sec u

du

dx

d

dx
(cot u) = -csc2 u

du

dx

d

dx
au
v
b =

v
du

dx
- u
dv

dx

v2

d

dx
(uv) = u

dv

dx
+ v
du

dx

d

dx
(un) = nun-1 du

dx

AC

u

B
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Integrals

-
a4

8
ln Ax + 2x2 ; a2 B + C

L
x22x2 ; a2 dx =

x

4
2(x2 ; a2)3 <

a2

8
x2x2 ; a2

L
x2a2 - x2 dx = -

1
3
2(a2 - x2)3 + C

L
2x2 ; a2 dx =

1
2
Cx2x2 ; a2 ; a2 ln Ax + 2x2 ; a2B D + C

+
a2

8
ax2a2 - x2 + a2 sin-1 x

a
b + C, a 7 0

L
x22a2 - x2 dx = -

x

4
2(a2 - x2)3

L
x2x2 ; a2 dx =

1
3
2(x2 ; a2)3 + C

a 7 0
L
2a2 - x2 dx =

1
2
cx2a2 - x2 + a2 sin-1 x

a
d + C,

L
x22a + bx dx =

2(8a2 - 12abx + 15b2x2)2(a + bx)3

105b3 + C

L
x2a + bx dx =

-2(2a - 3bx)2(a + bx)3

15b2 + C

L
2a + bx dx =

2
3b
2(a + bx)3 + C

a2 7 x2

L

dx

a2 - x2 =
1

2a
ln ca + x
a - x

d + C,

ab 7 0
L

x2 dx

a + bx2 =
x

b
-

a

b2ab
tan-1 x2ab

a
+ C,

L

x dx

a + bx2 =
1

2b
ln(bx2 + a) + C,

L

dx

a + bx2 =
1

22-ba
lnBa + x2-ab
a - x2-ab

R + C, ab 6 0

L

dx

a + bx
=

1
b

ln(a + bx) + C

n Z -1
L
xn dx =

xn+1

n + 1
+ C,

L
cosh x dx = sinh x + C

L
sinh x dx = cosh x + C

L
xeax dx =

eax

a2 (ax - 1) + C

L
eax dx =

1
a
eax + C

+
a2x2 - 2

a3 sin(ax) + C

L
x2 cos(ax) dx =

2x

a2 cos(ax)

L
x cos(ax) dx =

1

a2 cos(ax) +
x
a

sin(ax) + C

L
 cos x dx = sin x + C

L
 sin x dx = -cos x + C

c 7 0=
1
1-c

sin-1a -2cx - b
2b2 - 4ac

b + C,

+ x1c +
b

21c
d + C, c 7 0

L

dx

2a + bx + cx2
=

1
1c

ln c2a + bx + cx2

L

x dx

2x2 ; a2
= 2x2 ; a2 + C

L

dx

2a + bx
=

22a + bx
b

+ C



672

The following discussion provides a brief review of vector analysis.A more
detailed treatment of these topics is given in Engineering Mechanics:
Statics.

Vector. A vector, A, is a quantity which has magnitude and direction,
and adds according to the parallelogram law. As shown in Fig. B–1,

where A is the resultant vector and B and C are component
vectors.

Unit Vector. A unit vector, has a magnitude of one “dimensionless”
unit and acts in the same direction as A. It is determined by dividing A by its
magnitude A, i.e,

(B–1)uA =
A
A

uA ,

A = B + C,

Vector AnalysisAPPENDIX

B

A � B � C

B

C

Fig. B–1
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Cartesian Vector Notation. The directions of the positive x, y, z
axes are defined by the Cartesian unit vectors i, j, k, respectively.

As shown in Fig. B–2, vector A is formulated by the addition of its x, y,
z components as

(B–2)

The magnitude of A is determined from

(B–3)

The direction of A is defined in terms of its coordinate direction angles,
measured from the tail of A to the positive x, y, z axes, Fig. B-3.

These angles are determined from the direction cosines which represent
the i, j, k components of the unit vector i.e., from Eqs. B–1 and B–2

(B–4)

so that the direction cosines are

(B–5)

Hence, and using Eq. B–3, it is
seen that

(B–6)

The Cross Product. The cross product of two vectors A and B,
which yields the resultant vector C, is written as

(B–7)

and reads C equals A “cross” B. The magnitude of C is

(B–8)

where is the angle made between the tails of A and B
The direction of C is determined by the right-hand rule, whereby the
fingers of the right hand are curled from A to B and the thumb points in
the direction of C, Fig. B–4. This vector is perpendicular to the plane
containing vectors A and B.

(0° … u … 180°).u

C = AB sin u

C = A * B

cos2 a + cos2 b + cos2 g = 1

uA = cos ai + cos bj + cos gk,

cos a =
Ax
A

cos b =
Ay

A
 cos g =

Az
A

uA =
Ax
A

i +
Ay

A
j +
Az
A

k

uA ;

g,b,
a,

A = 4Ax2 + Ay2 + Az2

A = Ax i + Ay j + Azk
Axi

Ayj

Azk

y

x

ji

k

A

z

Fig. B–2

z

y
a

g

b

x

A

Fig B–3

C

u
B

A

Fig. B–4
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The vector cross product is not commutative, i.e.,
Rather,

(B–9)

The distributive law is valid; i.e.,

(B–10)

And the cross product may be multiplied by a scalar m in any manner; i.e.,

(B–11)

Equation B–7 can be used to find the cross product of any pair of
Cartesian unit vectors. For example, to find the magnitude is

and its direction is determined from
the right-hand rule, applied to Fig. B–2. A simple scheme shown in
Fig. B–5 may be helpful in obtaining this and other results when the need
arises. If the circle is constructed as shown, then “crossing” two of the
unit vectors in a counterclockwise fashion around the circle yields a
positive third unit vector, e.g., Moving clockwise, a negative
unit vector is obtained, e.g.,

If A and B are expressed in Cartesian component form, then the cross
product, Eq. B–7, may be evaluated by expanding the determinant

(B–12)

which yields

Recall that the cross product is used in statics to define the moment of
a force F about point O, in which case

(B–13)

where r is a position vector directed from point O to any point on the line
of action of F.

MO = r * F

C = (AyBz - AzBy)i - (AxBz - AzBx)j + (AxBy - AyBx)k

C = A * B = 3
i j k
Ax Ay Az
Bx By Bz

3

i * k = -j.
k * i = j.

i * j,
+k(i)(j) sin 90° = (1)(1)(1) = 1,

i * j,

m(A * B) = (mA) * B = A * (mB) = (A * B)m

A * (B + D) = A * B + A * D

A * B = -B * A

A * B Z B * A.

i

kj

�

�

Fig. B–5



The Dot Product. The dot product of two vectors A and B, which
yields a scalar, is defined as

(B–14)

and reads A “dot” B. The angle is formed between the tails of A and B

The dot product is commutative; i.e.,

(B–15)

The distributive law is valid; i.e.,

(B–16)

And scalar multiplication can be performed in any manner, i.e.,

(B–17)

Using Eq. B–14, the dot product between any two Cartesian
vectors can be determined. For example, and

If A and B are expressed in Cartesian component form, then the dot
product, Eq. C–14, can be determined from

(B–18)

The dot product may be used to determine the angle formed between
two vectors. From Eq. B–14,

(B–19)u = cos-1aA # B
AB

b

u

A # B = AxBx + AyBy + AzBz

i # j = (1)(1) cos 90° = 0.
i # i = (1)(1) cos 0° = 1

m(A # B) = (mA) # B = A # (mB) = (A # B)m

A # (B + D) = A # B + A # D

A # B = B # A

(0° … u … 180°).
u

A # B = AB cos u
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It is also possible to find the component of a vector in a given direction
using the dot product. For example, the magnitude of the component (or
projection) of vector A in the direction of B, Fig. B–6, is defined by

From Eq. B–14, this magnitude is

(B–20)

where represents a unit vector acting in the direction of B, Fig. B–6.

Differentiation and Integration of Vector Functions. The
rules for differentiation and integration of the sums and products of
scalar functions also apply to vector functions. Consider, for example, the
two vector functions A(s) and B(s). Provided these functions are smooth
and continuous for all s, then

(B–21)

(B–22)

For the cross product,

(B–23)

Similarly, for the dot product,

(B–24)
d

ds
(A # B) =

dA
ds

# B + A # dB
ds

d

ds
(A * B) = adA

ds
* Bb + aA *

dB
ds
b

L
(A + B) ds =

L
A ds +

L
B ds

d

ds
(A + B) =

dA
ds

+
dB
ds

uB

A cos u = A # B
B

= A # uB

A cos u.

A

uB

A cos u
B

u

Fig. B–6
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The chain rule of calculus can be used to determine the time derivative of
a composite function. For example, if is a function of and is a function
of , then we can find the derivative of with respect to as follows 

(C–1)

In other words, to find we take the ordinary derivative and
multiply it by the time derivative .

If several variables are functions of time and they are multiplied
together, then the product rule must be used along
with the chain rule when taking the time derivatives. Here are some
examples.

d(uv) = du v + u dv

(dx>dt) (dy>dx)y
#

y
# =
dy

dt
=
dy

dx

dx

dt

tyt
xxy

The Chain Rule APPENDIX

C
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If and , find , the second derivative of y with respect 
to time.

SOLUTION.
Using the chain rule, Eq. C–1,

To obtain the second time derivative we must use the product rule
since and are both functions of time, and also, for the chain
rule must be applied. Thus, with and , we have

Since , then and so that

Note that this result can also be obtained by combining the functions,
then taking the time derivatives, that is,

y
$ = 132t10

y
# = 12t11

y = x3 = (t4)3 = t12

= 132t10

y
$ = 3(t4)[2(4t3)2 + t4(12t2)]

x
$ = 12t2x

# = 4t3x = t4
= 3x[2x

# 2 + xx$]

y
$ = [6xx

#
]x
# + 3x2[x

$
]

v = x#u = 3x2
3x2x

#
x

y
# =  3x2x

#

y
$

x = t4y = x3

EXAMPLE C–1

If , find .

SOLUTION
Since and are both functions of time the product and chain rules
must be applied. Have and .

The second time derivative also requires application of the product
and chain rules. Note that the product rule applies to three time
variables in the last term, i.e., x, , and .

If then so that in terms in , we have

y
$ = et

2
[2(1 + t2) + 4t2(2 + t2)]

tx
# = 2t, x

$ = 2x = t2
= ex[x$(1 + x) + x# 2(2 + x)]

y
$ = 5[x$]ex + x# [exx# ]6 + 5[x# ]exx# + x[exx# ]x# + xex[x$]6

x
#

ex

y
# = [x

#
]ex + x[exx# ]

v = exu = x
exx

y
$

y = xex

EXAMPLE C–2
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C

EXAMPLE C–3

If the path in radical coordinates is given as , where is a
known function of time, find .

SOLUTION
First, using the chain rule then the chain and product rules where

and , we have

= 10u
#
2 + 10uu

#
r
$ = 10[(u

#
)u
#
+ u(u

$
)]

r
# = 10uu

#
r = 5u2

v = u
#

u = 10u

r
$ ur =  5u2

EXAMPLE C–4

If , find .

SOLUTION
Here the chain and product rules are applied as follows.

To find at a specified value of which is a known function of time,
we can first find and . Then using these values, evaluate r from the
first equation, from the second equation and using the last
equation.

r
$

r
#

u
$

u
# ur

$
r
# 2 + rr$ = 9(2uu

#
2 + u2u

$
)

2[(r
#
)r
# + r(r$)] = 18[(2uu

#
)u
#
+ u2(u

$
)]

2rr
# = 18u2u

#
r2 = 6u3

r
$

r2 = 6u3



Ans.

F12–8.

At ,

Ans.

F12–9.

Ans.

F12–10.

Also,

F12–11.

F12–12.

5 s 6 t … 10 s, a = ¢v>¢t = 0
0 … t 6 5 s, a = ¢v>¢t = 6 m>s2

a = dv
dt = d

dt (30) = 0

5 s 6 t … 10 s,
a = dv

dt = d
dt (6t) = 6 m>s2

0 … t 6 5 s,
v = ¢s

¢t = 225 m - 75 m
10 m - 5 m = 30 m>s

v = ds
dt = d

dt (30t - 75) = 30 m>s
5 s 6 t … 10 s,

v|t=5 s = 6(5) = 30 m>s
v = ds

dt = d
dt (3t2) = (6t) m>s

0 … t 6 5 s,

a|s=40 m = 0.0625(40 m) = 2.5 m>s2 :
a = v dvds = 0.25s dds (0.25s) = 0.0625s

a ds = v dv

a = ¢v
¢t = 0 - 80 ft>s

20 s - 0 = -4 ft>s2

a = dv
dt = d

dt (-4t + 80) = -4 ft>s2 = 4 ft>s2;
s = -2(20)2 + 80(20) = 800 ft

s = -2t2 + 80t
L

s

0
ds =

L

t

0
 (-4t + 80) dt

ds = v dt

v = ds
dt = d

dt (108) = 0

v|t=6 s = 1.5(62) = 54 m>s
v = ds

dt = d
dt A0.5t3 B = 1.5t2

a = -13.1 m>s2 = 13.1 m>s2 ;
s = 15 m

= A20 - 0.05s2 B(-0.1s)

a = v dvds

t = 4, s = 28.7 m
t = 2, s = -20, C1 = -9.67
t = 0, s = -2, C2 = -2

s = 1
3 t

4 - t2 + C1t + C2

s =
L
A43 t3 - 2t + C1 B dt

Fundamental Problems 
Partial Solutions And Answers 
Chapter 12
F12–1.

Ans.

F12–2.

Ans.

F12–3.

Ans.

F12–4.

When ,

Ans.

F12–5.

Ans.

Ans.

F12–6.

At ,

Ans.

F12–7.

v = 4
3 t

3 - 2t + C1

v =
L

(4t2 - 2) dt

= 14.3 m>sv = 220(10) - 0.211022 + 25

s = 10 m
v = A220s - 0.2s2 + 25 B  m>s
L

v

5 m>s
v dv =

L

s

0
 (10 - 0.2s)ds

L
 v dv =

L
 a ds

(¢s)Tot = 8 m + 2 m = 10 m

s|t=3 = 2 A32 B - 8(3) + 6 = 0 m

s|t=2 = 2 A22 B - 8(2) + 6 = -2 m

s|t=0 = 2 A02 B - 8(0) + 6 = 6 m

t = 2 s
v = 0 = (4t - 8)

v = ds
dt = d

dt (2t2 - 8t + 6) = (4t - 8) m>s
a = 1.5 A22 B - 8 = -2 m>s2 = 2 m>s2 ;

t = 2 s

a = A1.5t2 - 8 B  m>s2

a = dv
dt = d

dt A0.5t3 - 8t B
= -32 m = 32 m;
s = 2 A42 B - 43

s = A2t2 - t3 B  m
L

s

0
ds =

L

t

0
A4t - 3t2 Bdt

ds = v dt

t = 3.06 s

 0 = 0 + 15t + 1
2 (-9.81)t2

s = s0 + v0t + 1
2act

2

ac = -1.67 m>s2 = 1.67 m>s2;
 10 = 35 + ac(15)

v = v0 + act

680
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The magnitude of the particle’s velocity is

Ans.

F12–17.

When ,

Ans.

When ,

Ans.

F12–18.

When ,

Ans.

When ,

Ans.

F12–19.

When ,

Ans.

When ,

Ans.a = 2ax2 + ay2 = 242 + 482 = 48.2 m>s2

ax = 4 m>s2 ay = 48 m>s2

t = 2 s

ay = v#y = A12t2 B  m>s2

ax = v#x = 4 m>s2

v = 2vx2 + vy2 = 33.0 m>s
vx = 8 m>s vy = 32 m>s

t = 2 s

vx = x# = (4t) m>s vy = y# = A4t3 B  m>s
y = A t4 B  m
a = 2ax2 + ay2 = 2162 + 82 = 17.9 m>s2

ax = 16 m>s2 ay = 8 m>s2

t = 4 s

ay = v#y = 2t

ax = v# x = 4t

v = 2vx2 + vy2 = 35.8 m>s
vx = 32 m>s vy = 16 m>s

t = 4 s

vy = t2
y
# = 0.5x

#
y = 0.5x

= 14.4 m>s2

a = 2ax2 + ay2 = 2(12 m>s2)2 + (8 m>s2)2

t = 0.5 s

ay = v#y = d
dt (8t) = 8 m>s2

ax = v#x = d
dt A16t3 B = A48t2 B  m>s2

= 4.47 m>s
v = 2vx2 + v2

y = 2(2 m>s)2 + (4 m>s)2

t = 0.5 s

vy = y# = d
dt A4t2 B = (8t) m>s c

vx = x# = d
dt A4t4 B = A16t3 B  m>s :

y = (4t2) m

= 10 m>s
v = 2vx2 + vy2 = 2(8 m>s)2 + (6 m>s)2

vy = y# = dy
dt = d

dt (6t) = 6 m>s cF12–13.

Also,

F12–14.

Ans.
Also,

Ans.

F12–15.

Substituting Eq. (2) into Eq. (1),

Ans.

F12–16.

vx = x# = dx
dt = d

dt (8t) = 8 m>s :
y = 0.75(8t) = 6t

y2 = 4x

(2)t = y
8

L

y

0
dy =

L

t

0
 8 dt

(1)x = A16t2 B  m
L

x

0
dx =

L

t

0
32t dt

= 1125 m

= 1
2 (150 m>s)(15 s)

¢s = Area under the v–t graph

= 1125 m
s = (-7.5)(15)2 + 225(15) - 562.5 m

s = (-7.5t2 + 225t - 562.5) m

A +: B ds = v dt;
L

s

375 m
ds =

L

t

5 s
 (-15t + 225)dt

5 s 6 t … 15 s,
s = 15(52) = 375 m

s = (15t2) m

s|s0 = 15t2|t0

ds = v dt  
L

s

0
ds =

L

t

0
30t dt

0 … t … 5 s,

t¿ = 15 s
0 = (20 m>s2)(5 s) + [-(10 m>s)(t¿ - 5) s]

¢v = 0 = Area under the a–t graph

t¿ = 15 s
0 = 150 - 10t¿
v = (150 - 10t) m>s,

A +: B dv = a dt
L

v

100 m>s
dv =

L

t

5s
-10 dt

5 s 6 t … t¿,
v = 20(5) = 100 m>s
v = (20t) m>s
dv = a dt

L

v

0
dv =

L

t

0
20 dt

0 … t 6 5 s,
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F12–20.
When ,

Ans.

When ,

Ans.

F12–21.

Ans.

F12–22.

Ans.

Ans.

F12–23.

Ans.

F12–24.

Ans.

F12–25.

(1)

Using Eq. (1),

Ans.vA = 40.4 ft>s
tAB = 0.3461 s

 5 = 0.5(13.856) -  16.1 tAB
2

(8 - 3) ft = 0 + 0.5vA tAB + 1
2 (-32.2 ft>s2)tAB

2

yB = yA + (vA)ytAB + 1
2 aytAB

2

vAtAB = 13.856
 12 ft = 0 + (0.8660 vA)tAB

xB = xA + (vA)xtAB

R = 76.5 m
t = 5.10 s

-R A35 B = 0 + 20 A45 B t + 1
2 (-9.81)t2

s = s0 + v0t + 1
2 act

2

R A45 B = 0 + 20 A35 B t
s = s0 + v0t

t = 0.9334, vA = 12.4 m>s
3 = 1.5 + vA sin 30°t + 1

2 (-9.81)t2
s = s0 + v0t + 1

2 act
2

10 = 0 + vA cos 30°t
s = s0 + v0t

=  8.83 m
R = xA + (vA)xtAC = 0 + (8.660 m>s)(1.0194 s)

= 2(8.660 m>s)2 + (5 m>s)2 = 10 m>s 
vC = 2(vC)x

2 + (vC)y
2

= -5 m>s = 5 m>s T

 (vC)y = 5 m>s + (-9.81 m>s2)(1.0194 s)

(vC)y = (vA)y + aytAC

tAC = 1.0194 s

0 = 0 + (5 m>s)tAC + 1
2 (-9.81 m>s2)t 2

AC

yC = yA + (vA)ytAC + 1
2 ayt

2
AC

h = 1.27 m
 02 = (5 m>s)2 + 2(-9.81 m>s2)(h - 0)

 (vB)y
2 = (vA)y

2 + 2ay(yB - yA)

a = [6.05i + 0.832j - 4k] ft>s2

t = 2 s

a = dv
dt = 5-8 sin 2t i - 2 cos t j - 4 k6 ft>s2

= 5-2.61i - 1.82j - 8k6 ft>s
t = 2 s

v = dr
dt = [4 cos 2t i - 2 sin t j - 4tk] ft>s F12–26.

Ans.

F12–27.

Ans.

F12–28.

At ,

Ans.

F12–29.

Ans.= 1.18 m>s2

= 2(-0.6667 m>s2)2 + (0.9722 m>s2)2

aB = 2(aB)t
2 + (aB)n

2

(aB)n =
vB

2

r
=

(17.08 m>s)2

300 m
= 0.9722 m>s2

vB = 17.08 m>s
v 2
B = (25 m>s)2 + 2(-0.6667 m>s2)(250 m - 0)

v 2
B = v 2

A + 2at(sB - sA)

at = -0.6667 m>s2

(15 m>s)2 = (25 m>s)2 + 2at(300 m - 0)

v 2
C = v 2

A + 2at(sC - sA)

= 1.28 m>s2

a = 2at 2 + an 2 = 2 A0.5 m>s2 B2 + A -1.179 m>s2 B2
at = -1.179 m>s2

s = 43.43 m

at = vdvds = a300
s
b a - 300

s2
b  m>s2

an =
v2

r
=

(7.071 m>s)2

100 m
= 0.5 m>s2

v = A 300
42.43 B  m>s = 7.071 m>s

s = 42.43 m

 3 = 1
600 s

2

t|30
s = 1

600 s
2|s0

dt =
ds
v L

3 s

0
dt =

L

s

0

ds

(300>s)

= 1.59 m>s2

a = 2at2 + an2 = 2(1.25 m>s2)2 + (0.9766 m>s2)2

= 0.9766 m>s2

an =
v2

r
=

(0.0625t2)2

40 m
= C97.656(10-6)t4 D m>s2�t=10 s

= 1.25 m>s2

at = v
# = dv

dt = d
dt (0.0625t2) = (0.125t) m>s2�t=10 s

= 2.39 km
R = 0 + 120 m>s(19.89 s) = 2386.37 m

xB = xA + (vA)xtAB

tAB = 19.89 s

-150 m = 0 + (90 m>s)tAB + 1
2 (-9.81 m>s2)tAB

2

yB = yA + (vA)ytAB + 1
2 ayt

2
AB
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F12–34.

Ans.

Ans.

F12–35.

At ,

Ans.= 39.5 ft>s2

= 2(-12.14 ft>s2)2 + (37.57 ft>s2)2

a = 2ar 2 + au 2

= 37.57 ft>s2

= Ap2  ft B(1 rad>s2) + 2(6 ft>s)(3 rad>s)

au = ru
# #
+ 2r

#
u
#

= -12.14 ft>s2

ar = r# # - ru
#
2 = 2 ft>s2 - Ap2  ft B(3 rad>s)2

r
# # = 2(1 rad>s) = 2 ft>s2

r
# = 2(3 rad>s) = 6 ft>s
r = 2 Ap4 B = p

2

u = p>4 rad

r
# # = 2u

# #
r
# = 2u

#
r = 2u

= 20.4 m>s2

= 2(-17.325 m>s2)2 + (10.747 m>s2)2

a = 2ar2 + au2
= 2.57 m>s
= 2(0.675 m>s)2 + (2.480 m>s)2

v = 2vr 2 + vu 2

+ 2(0.675 m>s)(7.348 rad>s) = 10.747 m>s2

au = ru
# #
+ 2r# u

#
= (0.3375 m)(2.449 rad>s2)

= -17.325 m>s2

= (0.900 m>s2) - (0.3375 m)(7.348 rad>s)2

ar = r# # - ru
#

2

vu = ru
#
= (0.3375 m)(7.348 rad>s) = 2.480 m>s

vr = r# = 0.675 m>s
u
# #
= 3t-1>2�t=1.5 s = 2.449 rad>s2

u
#
= 6t1>2�t=1.5 s = 7.348 rad>s
u = 4t3>2�t=1.5 s = 7.348 rad

r
# # = 0.6t�t=1.5 s = 0.900 m>s2

r
# = 0.3t2�t=1.5 s = 0.675 m>s
r = 0.1t3�t=1.5 s = 0.3375 mF12–30.

Ans.

Ans.

F12–31.

Ans.

F12–32.

Ans.

F12–33.

Ans.u
#
= 0.1375 rad>s

55 ft>s = 202 + [(400u
#
) ft>s]2

v = 2vr2 + vu2
vu = ru

#
= (400u

#
) ft>s

vr = r# = 0

= 2.01 m>s2

a = 2at2 + an2 = 2(2 m>s2)2 + (0.2 m>s2)2

an =
v2

r
=

(10 m>s)2

500 m
= 0.2 m>s2

v = 0.2 (50 m) = 10 m>s
at = 0.04(50 m) = 2 m>s2

at = v dvds = (0.2s)(0.2) = (0.04s) m>s2

at ds = v dv

= 1.42 m>s2

= 2(-0.4712 m>s2)2 + (1.343 m>s2)2

aB = 2(aB)t
2 + (aB)n

2

(aB)n =
vB

2

r
=

(20.07 m>s)2

300 m
= 1.343 m>s2

vB = 20.07 m>s
L

vB

25 m>s
v dv =

L

150p  m

0
-0.001s ds

v dv = at ds
= -0.4712 m>s2

 (aB)t = -0.001s = (-0.001)(300 m) Ap2  rad B  m>s2

= 16.3 ft>s2  
a = 2(at)

2 + (an)
2 = 2(6 ft>s2)2 + (15.11 ft>s2)2

an =
v2

r
=

(20 ft>s)2

26.468 ft
= 15.11 ft>s2

= 26.468 ft

r =
C1 + (dy>dx)2 D3>2

ƒd2y>dx2 ƒ
=
C1 + A 1

12xB2 D3>2
ƒ 1
12 ƒ

`
x=10 ft

= tan-1 A10
12 B = 39.81° = 39.8°

u = tan-1 A 1
12 x B `

x=10 ft

tan u = dy
dx = d

dx A 1
24 x

2 B = 1
12 x
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F12–36.

Ans.

Ans.

F12–37.

Ans.

F12–38.

Ans.

F12–39.

Ans.

F12–40.

Ans.

F12–41.

Ans.

F12–42.

Ans.vA = -0.75 m>s = 0.75 m>s c
0 = 4 vA + 3 m>s
0 = 4 vA + vF
lT = 4 sA + sF

3vA + 1.5 = 0 vA = -0.5 m>s = 0.5 m>s c
3vA + vA = 0
3sA + sB = l
6 + 2vA = 0 vA = -3 ft>s = 3 ft>s c
vB + 2vA = 0
sB + 2sA + 2h = l
vD = -1 m>s = 1 m>s c
0 = 3vD + 3 m>s
0 = 3vD + vA
lT = 3sD + sA

u
#
= 0.0333 rad>s

2 = 2(-42.426u
#
)2 + (42.426u

#
)2

v = 2vr2 + vu2
vu = ru

#
= (42.426u

#
) m>s

vr = r# = -(42.426u
#
) m>s

r
# = -30 csc u ctn u u

#
�u=45° = - A42.426u

# B  m>s
r = (30 csc u)�u=45° = 42.426 m

r = A30 m
sin u B = (30 csc u) m

30 m = r sin u

= 1.16m 
v = 2vr2 + vu2 = 2(-0.3 m>s)2 + (1.120 m>s)2

vu = ru
#
= (0.3732 m)(3 rad>s) = 1.120 m>s

vr = r# = -0.3 m>s
= -0.3 m>s
= -0.2 sin 30°(3 rad>s)

r
# = C -0.2 (sin u)u

# D  m>s�u=30°

r = [0.2(1 + cos u)] m�u=30° = 0.3732 m

= 26.3 m>s2

= ep>4(4 + 2(2)2)

au = ru
# #
+ 2 r# u

#
= (euu

# #
) + (2(euu

#
)u
#
) = eu(u

# #
+ 2u

#
2)

= 8.77 m>s2

ar = r# # - ru
#

2 = (euu
# #
+ euu

#
2) - (euu

#
2 = ep>4(4)

r
# # = euu

# #
+ euu

#
2

r
# = euu

#
r = eu F12–43.

Ans.

F12–44. (1)

(2)
Thus

Eliminating ,

Thus,

Ans.

F12–45.

Ans.

Ans.

F12–46.

Ans.

Ans.

F12–47.

Ans.

Ans.dAB = vB>At = (8.074 m>s)(4 s) = 32.3 m

= 8.074 m>s
vB>A = 2(-7.990 m>s)2 + (1.160 m>s)2

vB>A = [-7.990i + 1.160j] m>s
(5i + 8.660j) = (12.99i + 7.5j) + vB>A
vB = vA + vB>A

du = tan-1B (vB>A)y

(vB>A)x
R = tan-1¢692.82 km>h

1050 km>h ≤ = 33.4°

= 1258 km>h
= 2(1050 km>h)2 + (692.82 km>h)2

vB>A = 2(vB>A)x
2 + (vB>A)y

2

vB>A = [-1050i - 692.82j] km>h
(-400i - 692.82j) = (650i) + vB>A
vB = vA + vB>A

cu = tan-1B (vB>A)y

(vB>A)x
R = tan-1¢ 80 km>h

100 km>h ≤ = 38.7°

= 128 km>h
= 2(100 km>h)2 + (-80 km>h)2

vB>A = 2(vB>A)x
2 + (vB>A)y

2

vB>A = 100i - 80j

100i = 80j + vB>A
vB = vA + vB>A
vB = -1 ft>s = 1 ft>s c
4 ft>s + 4vB = 0

vA + 4vB = 0
vC

vA + 2vB - 2vC = 0
vC + vB = 0

sA + 2sB - 2sC = lACDF
(sA - sC) + (sB - sC) + sB = lACDF

sC + sB = lCED

4vA - 4 = 0 vA = 1 m>s
4vA - vP = 0
4sA - sP = l + 2a
sA + 2(sA - a) + (sA - sP) = l
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F13–4.

F13–5.

F13–6. Blocks A and B:

Check if slipping occurs between A and B.

Ans.

F13–7.

Ans.

F13–8.

Ans.

F13–9.

Ans.

F13–10.

Ans.

F13–11.

Ans.

Ans.T = 114 N

T - 10(9.81) N sin 45° = (10 kg) 
(3 m>s)2

2 m

©Fn = man;
at = 6.94 m>s2

©Ft = mat; 10(9.81) N cos 45° = (10 kg)at

v = 119 ft>s
Nc cos 30° - 0.2Nc sin 30° - m(32.2) = 0

+ c©Fb = 0;

Nc sin 30° + 0.2Nc cos 30° = m
v2

500

+;©Fn = man;

Np = 17.7 lb

+ T©Fn = man; 150 + Np =
150
32.2

¢ (120)2

400
≤

v = 89.7 ft>s
+ T©Fn = man; m(32.2) = m A v2

250 B
v = 2.43 m>s
©Fn = m v

2

r ; (0.3)m(9.81) = mv
2

2

aA = aB = 2.76 ft>s2

F = 4.29 lb 6 0.4(20) = 8 lb

+:©Fx = max; 6 - F = 20
32.2 (2.76);

+:©Fx = max; 6 = 70
32.2 a; a = 2.76 ft>s2

a = 2.72 m>s2

100 N - (40 N)cos 36.86° = (25 kg)a

+:©Fx = max;

u = tan-1 A0.3 m
0.4 m B = 36.86°

= 40 N

Fsp = k(l - l0) = (200 N>m)(0.5 m - 0.3 m)

v = 2.24 m>s
L

v

0
v dv =

L

10 m

0
0.05 s ds

v dv = a ds
a = (0.05s) m>s2

+:©Fx = max (100s) N = (2000 kg)aF12–48.

Ans.

Ans.

Chapter 13
F13–1.

Ans.

F13–2. .

Since when , the crate
will start to move immediately after F is applied.

Ans.

F13–3.

Ans.v = 5.24 m>s
v2

2 �v0 = A40s - 25s2 B �0.5 m
0

L

v

0
v dv =

L

0.5 m

0
(40 - 50s) ds

v dv = a ds
a = (40 - 50s) m>s2

A45 B500 N - (500s)N = (10 kg)a

+:©Fx = max;

v = 14.7 m>s:
L

v

0
dv =

L

4 s

0
A0.4 t2 + 1.5475 Bdt

dv = a dt
a = (0.4t2 + 1.5475) m>s2

10t2 + 100 - 0.25(245.25 N) = (25 kg)a

+:©Fx = max;
NA = 245.25 N

+ c©Fy = may; NA - 25(9.81) N = 0

t = 0F = 100 N 7 (Ff)max

(Ff)max = msNA = 0.3(245.25 N) = 73.575 N

T = 176 N
-  0.3(169.91 N) = (20 kg)(1.333 m>s2)

©Fx = max; T - 20(9.81) N sin 30°
NA = 169.91 N

©Fy = may; NA - 20(9.81) N cos 30° = 0
a = 1.333 m>s2

 6 m = 0 + 0 + 1
2 a(3 s)2

s = s0 + v0t + 1
2 act

2

= 3.26(103) km>h2 

aA>B = 2(1628)2 + (2828)2

aA>B = 1628i + 2828j

(20)2

0.1
 cos 45°i +

(20)2

0.1
 sin 45°j = 1200i + aA>B

aA = aB + aA>B
= 80.4 km>h 

vA>B = 2(-79.14)2 + (14.14)2

vA>B = -79.14i + 14.14j

-20 cos 45°i + 20 sin 45°j = 65i + vA>B
vA = vB + vA>B
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F13–12.

Ans.

F13–13.

Ans.

F13–14.

Ans.

F13–15.

= 4.274 m>s2

= 100 C2e2(p>6) (0.052) + e2(p>6)(0.01) D
r
# # = 100 A(2e2uu

#
)u
#
+ e2u(u

# #
) B �u=p>6 rad

= C100e2(p>6)(0.05) D = 14.248 m>s
r# = 50 A2e2u u

# B = 100e2u u
#
�u=p>6 rad

r = 50e2u�u=p>6 rad = C50e2(p>6) D  m = 142.48 m

N = 2.37 N F = 2.72 N
= 0.2(11.0404)

F sin45° + N sin45° -0.2(9.81)sin 45°

©Fu = mau;
= 0.2(-5.7089)

Fcos 45° - N cos 45° -0.2(9.81)cos 45°

©Fr = mar;
= 11.0404m>s2

+ 2(1.3329 m>s)(p rad>s)
au = ru

# #
+ 2r# u

#
= 0.4243 m(2p rad>s2)

= -5.7089 m>s2

ar = r# # - ru
# 2 = -1.5216 m>s2 - (0.4243 m)(p rad>s)2

r# # = 0.6 (cos u)u
# #
- (sinu)u

#
2�u=p>4 rad = -1.5216 m>s2

r# = 0.6 (cos u)u
#
�u=p>4 rad = 1.3329 m>s

r = 0.6 sin u|u=p>4 rad = 0.4243 m

u
# #
= 2p rad>s2

u
#
= 2pt�t=0.5 s = p rad>s
u = pt2�t=0.5 s = (p>4) rad

u
#
= 1.17 rad>s

-(13.87m) sin 45° = m(-7.157 u
# 2)

©Fr = mar;
T cos 45° - m(9.81) = m(0) T = 13.87m

©Fz = maz;
= (-7.157 u

# 2) m>s2

ar = r# # - ru
#
2 = 0 - (1.5 m + (8 m)sin 45°)u

#
2

= 938 N
F = 2Fn2 + Ft2 = 2(562.5 N)2 + (750 N)2

Ft = (500 kg)(1.5 m>s2) = 750 N

©Ft = mat;

Fn = (500 kg) 
(15 m>s)2

200 m
= 562.5 N

©Fn = man;

F13–16.

Thus,

Ans.

Chapter 14
F14–1.

Ans.

F14–2.

Ans.v = 12.3 m>s
= 1

2(20 kg)v2

- 20(9.81)N (10 m) sin 30°
0 + 300 N(10 m) - 0.3(169.91 N) (10 m)

T1 + ©U1-2 = T2

NA = 169.91 N

NA - 20(9.81) N cos 30° = 0©Fy = may;

v = 5.24 m>s
= 1

2(10 kg)v2

0 + A45 B(500 N)(0.5 m) - 1
2(500 N>m)(0.5 m)2

T1 + ©U1-2 = T2

F = 1.96 N
©Fu = mau; F - 0.2(9.81) N = 0.2 kg(0)

au = ru
# #

+ 2r# u
#
= 0.6 m(0) + 2(0)(-3 rad>s) = 0

= -27 m>s2

ar = r# # - ru
# 2 = -21.6 m>s2 - 0.6 m(-3 rad>s)2

= -21.6 m>s2

r# # = -1.2 Asin2uu
# #
+ 2cos2uu

#
2 B m>s2�u=0°

= C -1.2 sin2(0°)(-3) D  m>s = 0

r# = (-1.2 sin2uu
#
) m>s�u=0°

r = (0.6 cos 2u) m�u=0° = [0.6 cos 2(0°)] m = 0.6 m

= 9689.87 N = 9.69 kN
= 2(7836.55 N)2 + (5699.31 N)2

F = 2Fr2 + Fu2
Fu = (2000 kg)(2.850 m>s2) = 5699.31 N

©Fu = mau;
Fr = (2000 kg)(3.918 m>s2) = 7836.55 N

©Fr = mar;
= 2.850 m>s2

+ 2(14.248 m>s)(0.05 rad>s)
au = ru

# #
+ 2r# u

#
= 142.48 m(0.01 rad>s2)

= 3.918 m>s2

ar = r
# # - ru

#
2 = 4.274 m>s2 - 142.48 m(0.05 rad>s)2
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Ans.

F14–10.

Ans.

F14–11.

Ans.

F14–12.

Ans.

F14–13.

Ans.

Ans.

F14–14.

Ans.

Ans.NB = 99.1 N

= (2 kg)a (8.915 m>s)2

2 m
b

+ c©Fn = man; NB - 2(9.81)N

vB = 8.915 m>s = 8.92 m>s
= C12(2 kg)vB

2 D + [0]

C12(2 kg)(1 m>s)2 D + [2 (9.81) N(4 m)]

1
2 mAvA

2 + mghA = 1
2 mBvB

2 + mghB

TA + VA = TB + VB

T = 58.9 N

+ c©Fn = man; T - 2(9.81) = 2a (5.42)2

1.5
b

vB = 5.42 m>s
0 + 2(9.81)(1.5) = 1

2(2)(vB)2 + 0

TA + VA = TB + VB

Pin =
Pout

e
=

3843
0.8

= 4803.75 W = 4.80 kW

Pout = T # v = (640.5N/2)(12) = 3843 W
TA = 640.5N

TA-490.5N = (50 kg)(3m/s2)©Fy = may;
aA = -3 m>s2 = 3 m>s2 c
2aA + 6 = 0
2aA + aP = 0
2sA + sP = l

Pin =
Pout

e
=

735.75
0.8

= 920 W

Pout = T # v = 490.5(1.5) = 735.75 W

T - 50(9.81) = 50(0) T = 490.5 N

+ c©Fy = may;

P = F # v = 132.08(5) = 660 W

F = 132.08 N
F - 20(9.81) sin 30° - 0.2(169.91) = 0
©Fx¿ = max¿;

N = 169.91 N

N - 20(9.81) cos 30° = 20(0)©Fy¿ = may¿;

Pin =
Pout

e
=

1.091 hp

0.8
= 1.36 hp 

Pout = TB # vB = (200 lb)(3 ft>s) = 1.091 hpF14–3.

Ans.

F14–4.

Ans.

F14–5.

Ans.

F14–6.
Consider difference in cord length ,
which is distance F moves.

Ans.

F14–7.

Ans.

F14–8.

Ans.

F14–9.

100 lb + 100 lb - T2 = 0 T2 = 200 lb

(+ c)©Fy = 0;

T1 - 100 lb = 0 T1 = 100 lb

(+ c)©Fy = 0;

P = F # v = 10(5)(3.536) = 177 W

v = 3.536 m>s
L

v

 0
v dv =

L

 5 m

 0
0.5 s ds

vdv = ads
 10s = 20a a = 0.5s m>s2:

:+ ©Fx = max;

= 115 W  
= 30 A45 B(4.8)

P = F # v = F (cos u)v

v = 0 + 1.2(4) = 4.8 m>s
v = v0 + act
30 A45 B = 20a a = 1.2 m>s2:
:+ ©Fx = max;

vB = 16.0 ft>s
= 1

2 A 5
32.2 slugBvB2

0 + 10 lb(2(3 ft)2 + (4 ft)2 - 3 ft

AC - BC
TA + ©UA-B = TB

s = 0.6 m + 2.09 m = 2.69 m
s¿ = 2.09 m

-1
2(200 N>m)(s¿)2 = 0

1
2(10 kg)(5 m>s)2 + 100 Ns¿ + [10(9.81) N] s¿ sin 30°

T1 + ©U1-2 = T2

v = 8.33 m>s
= 1

2(1800 kg)v2

1
2(1800 kg)(125 m>s)2 - C(50 000 N + 20 000 N)

2  (400 m)D
T1 + ©U1-2 = T2

v = 12.5 m>s
= 1

2(100 kg)v2

0 + 2 c
L

 15 m

 0
(600 + 2s2) N ds d - 100(9.81) N(15 m)

T1 + ©U1-2 = T2
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F14–15.

Ans.

F14–16.

Ans.

F14–17.

Ans.
Also,

Ans.

F14–18.

Ans.

Chapter 15

F15–1.

Ans.= 12.2 N # s
I =

L
F dt = 2 (4.509 N # s)2 + (11.339 N # s)2

Iy =
L
Fy dt = 11.339 N # s

= (0.5 kg)(10 m>s)sin 30°

- (0.5 kg)(25 m>s)sin 45° +
L
Fy dt

(+ c) m(v1)y + ©
L

t2

t1
Fy dt = m(v2)y

Ix =
L
Fx dt = 4.509 N # s

=  (0.5 kg)(10 m>s)cos 30°

(0.5 kg)(25 m>s) cos 45° -
L
Fx dt

(+:) m(v1)x + ©
L

t2

t1
Fx dt = m(v2)x

vB = 1.962 m>s = 1.96 m>s
[4(9.81) N](-(0.1 m + 0.3 m))

+ 1
2(400 N>m)(2(0.4 m)2 + (0.3 m)2 - 0.2 m)2 += 1

2 (4kg)vB
2

1
2 (4 kg)(2 m>s)2 + 1

2 (400 N>m)(0.1 m - 0.2 m)2 + 0

= 1
2 mvB

2 + A12 ksB2 + mgyB B
1
2 mvA

2 + A12 ksA2 + mgyA B
TA + VA = TB + VB

sB = 0.5803 ft - 0.25 ft = 0.330 ft

s = sA = sC = 0.580 ft
+ 1

2(1500 lb>ft)(s - 0.25 ft)2]

[-75 lb(5 ft + s)] + [2 A12(1000 lb>ft)s2 B
[0] + [0] + [0] = [0] +

= 1
2 mv2

2 + mgy2 + 1
2 ks2

2

1
2 mv1

2 + mgy1 + 1
2 ks1

2

T1 + V1 = T2 + V2

vB = 16.0 ft>s
= 1

2 A 5
32.2 BvB2 + 1

2(4) (1 - 0.5)2

0 + 1
2 (4)(2.5 - 0.5)2 + 5(2.5)

TA + VA = TB + VB

v = 5.26 m>s
= 1

2 (2)(v)2 - 2(9.81)(1) + 1
2 (30) (2 5 - 1)2

1
2 (2)(4)2 + 1

2 (30)(2 - 1)2

T1 + V1 = T2 + V2
F15–2.

Ans.

F15–3. Time to start motion,

Ans.

F15–4.

Ans.

F15–5. SUV and trailer,

Ans.

Trailer,

Ans.T = 3375 N = 3.375 kN
0 + T(20 s) = (1500 kg)(45.0 m>s)

m(v1)x¿ + ©
L

t2

t1
Fx¿ dt = m(v2)x¿

v = 45.0 m>s
0 + (9000 N)(20 s) = (1500 kg + 2500 kg)v

m(v1)x¿ + ©
L

t2

t1
Fx¿ dt = m(v2)x¿

v = 20 m>s
= (1500 kg) v

(1500 kg)(0) + :1
2(6000 N)(2 s) + (6000 N)(6 s - 2 s);

(:+ ) m(v1)x + ©
L

t2

t1
Fx dt = m(v2)x

v = 10.1 m>s
= (25 kg)v

0 +
L

 4 s

 1.918 s
 20t2 dt - (0.25(245.25 N))(4 s - 1.918 s)

(+:) m(v1)x + ©
L

t2

t1
Fx dt = m(v2)x

:+ ©Fx = 0; 20t2 - 0.3(245.25 N) = 0 t = 1.918 s

+ c©Fy = 0; N - 25(9.81) N = 0 N = 245.25 N

v = 57.2 ft>s
= A 150

32.2 slug Bv
0 + (100 lb)(4 s)cos 30° - 0.2(100 lb)(4 s)

(+:) m(v1)x + ©
L

t2

t1
Fx dt = m(v2)x

N = 100 lb
- (150 lb)(4 s) = 0

0 + N(4 s) + (100 lb)(4 s)sin 30°

(+ c) m(v1)y + ©
L

t2

t1
Fy dt = m(v2)y
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F15–11.

Ans.

F15–12.

Ans.

F15–13.

F15–14.

(1)
Using the coefficient of restitution equation,

(2)
Solving,

Ans.

Ans.(vA)2 = -7 m>s = 7 m>s ;
(vB)2 = 0.2 m>s:

(vB)2 - (vA)2 = 7.2

0.6 =
(vB)2 - (vA)2

5 m>s - (-7 m>s)

(:+ ) e =
(vB)2 - (vA)2

(vA)1 - (vB)1

15(vA)2 + 25(vB)2 = -100

= [15(103) kg](vA)2 + [25(103)](vB)2

[15(103) kg](5 m>s) + [25(103)](-7 m>s)

(:+ ) mA(vA)1 + mB(vB)1 = mA(vA)2 + mB(vB)2

=
(9 m>s) - (1 m>s)

(8 m>s) - (-2 m>s)
= 0.8

 (:+ ) e =
(vB)2 - (vA)2

(vA)1 - (vB)1

= 378 m>s 
= 2 (320.75 m>s)2 + (200 m>s)2

vp = 2 (vp)x
2 + (vp)y

2

(vp)x = 320.75 m>s vc = 25.66 m>s
(vp)y = 200 m>s
(vp)x = 346.41 - vc

(vp)xi + (vp)y j = (346.41 - vc)i + 200j

+ (400 m>s) sin 30°j]

(vp)xi + (vp)y j = -vc i + [(400 m>s) cos 30°i

vp = vc + vp>c
(vp)x = 12.5 vc (1)

0 = (20 kg) (vp)x - (250 kg)vc

(:+ ) 0 + 0 = mp(vp)x - mcvc

smax = 0.3 m = 300 mm

1
2(15 + 10) A62 B + 0 = 0 + 1

2 C10 A103 B Dsmax
 2

1
2 (mA + mB)v3

2 + (Ve)3
1
2(mA + mB)v2

2 + (Ve)2 =
T1 + V1 = T2 + V2

v2 = 6 m>s
 0 + 10(15) = (15 + 10)v2

 (;+ ) mA(vA)1 + mB(vB)1 = (mA + mB)v2
F15–6. Block B:

Ans.
Block A:

Ans.

F15–7.

Ans.

Ans.

F15–8.

Ans.

F15–9.

Ans.

F15–10.

(1)

(2)
Solving Eqs. (1) and (2),

Ans.

Ans.(vA)2 = - 3.464 m>s = 3.46 m>s;
(vB)2 = 2.31 m>s:
5(vA)2

2 + 7.5 (vB)2
2 = 100

= 1
2(10)(vA)2

2 + 1
2(15)(vB)2

2 + 0

0 + 0 + 1
2 C5 A103 B D A0.22 B

= 1
2mA(vA)2

2 + 1
2mB(vB)2

2 + (Ve)2

1
2 mA(vA)1

 2 + 1
2 mB(vB)1

2 + (Ve)1

T1 + V1 = T2 + V2

0 + 0 = 10(vA)2 + 15(vB)2

(:+ ) mA(vA)1 + mB(vB)1 = mA(vA)2 + mA(vB)2

v = 2.84 m>s
5(7.378) + 0 = (5 + 8)v

(:+ ) mA(vA)2 + mB(vB)2 = (mA + mB)v

(vA)2 = 7.378 m>s
1
2(5)(5)2 + 5(9.81)(1.5) = 1

2(5)(vA)2
2

1
2mA(vA)1

2 + (vg)1 = 1
2 mA(vA)2

2 + (vg)2

T1 + V1 = T2 + V2

v2 = 1.6 m>s
5 C10 A45 B D + 0 = (5 + 20)v2

(:+ ) mp[(vp)1]x + mc[(vc)1]x = (mp + mc)v2

Favg = 105(103) N = 105 kN

= (15(103) kg(2 m>s)

(15(103) kg)( - 1.5 m>s) + Favg(0.5 s)

(:+ ) m(vB)1 + ©
L

t2

t1
F dt = m(vB)2

(vA)2 = 0.375 m>s :
+ (15(103) kg)(2 m>s)= (20(103) kg)(vA)2

(20(103) kg)(3 m>s) + (15(103) kg)(-1.5 m>s)

(:+ ) mA(vA)1 + mB(vB)1 = mA(vA)2 + mB(vB)2

mk = 0.789

0 + 7.95(5) - mk(10)(5) = 10
32.2(1)

(:+ )mv1 + 1 F dt = mv2

T = 7.95 lb

0 + 8(5) - T(5) = 8
32.2 (1)

(+ T)mv1 + 1F dt = mv2
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F15–15.

(1)

(2)
Solving Eqs. (1) and (2), yields

Ans.

F15–16.

Ans.

F15–17.

Ans.= 16.4 m>s
= 2(12.99 m>s)2 + (10 m>s)2

(vb)2 = 2[(vb)2]x
2 + [(vb)2]y

2

[(vb)2]x = - 12.99 m>s = 12.99 m>s;
0.75 =

0 - [(vb)2]x
(20 m>s)cos 30° - 0

(:+ )   e =
(vw)2 - [(vb)2]x
[(vb)1]x - (vw)1

[(vb)2]y = [(vb)1]y = (20 m>s)sin30° = 10 m>s c

(+ c) m[(vb)1]y = m[(vb)2]y

= 0.0652 

e =
(vB)2 - (vA)2

(vA)1 - (vB)1
=

1.794 - 1.465
5.054 - 0

(vA)1 = 5.054

5
32.2 (vA)1 + 0 = 5

32.2 (1.465) + 10
32.2 (1.794)

©mv1 = ©mv2

(vB)2 = 1.794 ft>s
1
2 A 10

32.2 B(vB)2
2 - 0.2(10) A 3

12 B = 0

(vA)2 = 1.465 ft>s
1
2 A 5

32.2 B(vA)2
2 - 0.2(5) A 2

12 B = 0

After collision: T1 + ©U1-2 = T2

(vA)3 = - 4.23 ft>s = 4.23 ft>s :
(vB)3 = 11.3 ft>s ;

(vB)3 - (vA)3 = 15.52

0.6 =
(vB)3 - (vA)3

25.87 ft>s - 0

(;+ )   e =
(vB)3 - (vA)3

(vA)2 - (vB)2

30(vA)3 + 80(vB)3 = 775.95

= A 30
32.2 slug B(vA)3 + A 80

32.2 slug B(vB)3

A 30
32.2 slug B(25.87 ft>s) + 0

(;+ ) mA(vA)2 + mB(vB)2 = mA(vA)3 + mB(vB)3

(vA)2 = 25.87 ft>s ;
= 1

2 A 30
32.2 slug B(vA)2

2 + 0

1
2 A 30

32.2 slug B(5 ft>s)2 + (30 lb)(10ft)

1
2 m(vA)1

2 + mg(hA)1 = 1
2 m(vA)2

2 + mg(hA)2

T1 + V1 = T2 + V2

Ans.

F15–18.

Ans.

F15–19.

d

F15–20.

b

F15–21.

Ans.

F15–22.

Ans.

F15–23.

Ans.

F15–24.

Ans.v = 10.4 m>s
0 +

L

4 s

0
8tdt + 2(10)(0.5)(4) = 2[10v(0.5)]

(Hz)1 + ©
L
Mzdt = (Hz)2

v = 31.2 m>s
0 +

L

5 s

0
0.9t2 dt = 2v(0.6)

(Hz)1 + ©
L
Mzdt = (Hz)2

v = 12.8 m>s
0 +

L

4 s

0
(10t) A45 B(1.5)dt = 5v(1.5)

(Hz)1 + ©
L
Mzdt = (Hz)2

v = 5 m>s
5(2)(1.5) + 5(1.5)(3) = 5v(1.5)

(Hz)1 + ©
L
Mzdt = (Hz)2

= -99.9 kg # m2>s = 99.9 kg # m2>s
HP = [2(15) sin 30°](2) - [2(15) cos 30°](5)
HP = ©mvd;

= 28 kg # m2>s
HO = C2(10) A45 B D(4) - C2(10) A35 B D(3)

HO = ©mvd;

= 0.575 ft>s
 (vB)2 = 3(-0.1818)2 + (0.545)2

(vBy)2 = 0.545 ft>s
2

32.2 (3) + 0 = 0 + 11
32.2 (vBy)2

©m(vy)1 = ©m(vy)2

(vBx)2 = - 0.1818 ft>s
 0 + 0 = 2

32.2 (1) + 11
32.2 (vBx)2

©m(vx)1 = ©m(vx)2

= 37.6°

u = tan-1a [(vb)2]y

[(vb)2]x
b = tan-1a 10 m>s

12.99 m>s b
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Ans.

F16–6.

Ans.

Ans.

F16–7.

(1)

(2)

Ans.

F16–8.

Ans.

F16–9.

Ans.v = 2 rad>s
4i = (-2 + 3v)i

(4 ft>s)i = (-2 ft>s)i + (-vk) * (3 ft)j

vB = vA + V * rB>A
= 8.49 m>s
= 2(6 m>s)2 + (6 m>s)2

vB = 2(vB)x
2 + (vB)y

2

(vB)x = 6 m>s and (vB)y = 6 m>s
(vB)xi + (vB)y j = 6i + 6j

(vB)xi + (vB)y j = 0 + (-10k) * (-0.6i + 0.6j)

vB = vA + V * rB>A
v = 4 rad>s  vB = 5.20 m>s
-vB = 0 - v(1.5 cos 30°)

 0 = 3 - v(1.5 sin 30°)

-vB j = [3 - vAB(1.5 sin 30°)]i - v(1.5 cos 30°)j

+ (vk) * (-1.5 cos 30°i + 1.5 sin 30°j)

-vB j = (3i)m>s
vB = vA + V * rB>A

= 844 mm
sC = uBrD = (6.75 rad)(0.125 m) = 0.84375 m

= 0.5625 m>s  
vC = vBrD = (4.5 rad>s)(0.125 m)

uB = 6.75 rad

uB = 0 + 0 + 1
2 (1.5 rad>s2)(3 s)2

uB = (uB)0 + (vB)0t + 1
2 aBt

2

vB = 0 + (1.5 rad>s2)(3 s) = 4.5 rad>s
vB = (vB)0 + aBt
= (4.5 rad>s2) A0.075 m

0.225 m B = 1.5 rad>s2

aB = aA¢ rArB ≤
= 15.8 m>s2

= 2(1.257 m>s2)2 + (15.79 m>s2)2

ap = 2(aP)t
2 + (aP)n

2

(aP)n = v2r = (8.886 rad>s)2(0.2 m) = 15.79 m>s2Chapter 16
F16–1.

Ans.

Ans.

F16–2.

When ,

Ans.

F16–3.

Ans.

F16–4.

Ans.

Ans.

F16–5.

When ,

Ans.

= 1.257 m>s2

(aP)t = ar=  (0.5u rad>s2)(0.2 m)�u=4p rad

vP = vr = (8.886 rad>s)(0.2 m) = 1.78 m>s
v = [0.7071(4p)] rad>s = 8.886 rad>s

u = 2 rev = 4p rad
v = (0.7071u) rad>s

v2

2 �
v

0 = 0.25u2�
u

0

L

v

0
v dv =

L

u

0
0.5u du

v dv = a du

a = ar = (9 rad>s2)(0.75 ft) = 6.75 ft>s2

v = vr = (28.5 rad>s)(0.75 ft) = 21.4 ft>s
a = 3(3) rad>s2 = 9 rad>s2.

v = [1.5(32) + 15] rad>s = 28.5 rad>s
a = dv

dt = (3t) rad>s
v = du

dt = (1.5t2 + 15) rad>s
t = 1

2 (1406.25)1>2 = 18.75 s

t = 1
2 u

1>2
t|t0 = 1

2 u
1>2�u0

L

t

0
dt =

L

u

0

du

4u1>2

dt = du
v

u = 1406.25 rad
150 rad>s = 4 u1>2
v = 4u1>2
= 99.22 rad>s2 = 99.2 rad>s2  

a = C50 A10-6 B(40p)3 D  rad>s2

u = 20 rev(2p rad>1 rev) = 40p rad

a = v dvdu = A0.005 u2 B(0.01u) = 50 A10-6 Bu3 rad>s2

dv
du = 2(0.005u) = (0.01u)

t = 8.38 s
30 rad>s = 0 + (3.581 rad>s2)t

v = v0 + act
ac = 3.581 rad>s2 = 3.58 rad>s2

 (30 rad>s)2 = 02 + 2ac[(40p rad) - 0]

v2 = v0
2 + 2ac(u - u0)

u = (20 rev) A2p rad
1 rev B = 40p rad
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F16–10.

(1)
(2)

F16–11.

Ans.

F16–12.

Ans.

F16–13. Ans.

Ans.

Ans.

F16–14.

Ans.

Ans.

F16–15. Ans.

Ans.

Ans.au = 90° - f = 90°-  26.57° = 63.4°

vA = vrA>IC = 20(0.6708) = 13.4 m>s
f = tan-1 A0.3

0.6 B = 26.57°

rA>IC = 20.32 + 0.62 = 0.6708 m

v =
vO
rO>IC

=
6

0.3
= 20 rad>s

vBC =
vB
rB>IC

=
7.2
1.2

= 6 rad>s
vC = 0

vB = vAB rB>A = 12(0.6) = 7.2 m>s T

cu = 90° - f = 90° -  53.13° = 36.9°

vC = vAB rC>IC = 2(2.5) = 5 m>s
f = tan-1 A 2

1.5 B = 53.13°

rC>IC = 21.52 + 22 = 2.5 m

vAB =
vA
rA>IC

=
6
3

= 2 rad>s
v = 5.02 rad>s vB = 8.20 m>s
0.5vB = 1.4142v - 3
-0.8660vB = -1.4142v

= -1.4142vi + (1.4142v - 3)j
-0.8660vBi + 0.5vB j
(-vk) * (-2 sin 45°i - 2 cos 45°j) m

-vB cos 30° i + vB sin 30° j = (-3 m>s)j +

vB = vA + V * rB>A
vC = 104 ft>s
vBC = 48 rad>s
vC = 2.165 vBC

0 = -60 + 1.25vBC

vC j = (-60)i + 2.165vBC j + 1.25vBC i
+ (-vBCk) * (-2.5 cos 30°i + 2.5 sin 30°j) ft
vC j = (-60i) ft>s
vC = vB + VBC * rC>B
vAB = 12 rad>s vB = 6.24 m>s c
vB = vAB(0.6 cos 30°)

 0 = vAB(0.6 sin 30°) - 3.6
vB j = [vAB(0.6 sin 30°) - 3.6]i + vAB(0.6 cos 30°)j

+ (vABk) * (0.6 cos 30°i - 0.6 sin 30°j) m 
vB j = (-3.6 m>s)i

vB = vA + vAB * rB>A
= [-3.6i] m>s
= (12 rad>s)k * (0.3 m)j

vA = VOA * rA F16–16. The location of IC can be determined using similar
triangles.

Ans.

Also,
.

Ans.

F16–17.

Ans.
Then,

Ans.

F16–18.

Ans.

Ans.

F16–19.

Ans.

Ans.

F16–20. Ans.

Ans.= {3.6i - 43.2j} m>s2

= 1.8i + (-6k) * (0.3i) - 122(0.3j)

aA = aO + A * rA>O - v2rA>O

aB = -26.7 m>s2

a = -3.67 rad>s2

 0 = 3a + 11
aB = 4a - 12

aBi = A4a - 12 B i + A3a + 11 B j
aBi = -5j + AAk B *(3i - 4j) - 22(3i - 4j)

aB = aA + A * rB>A - v2rB>A

v =
vA
rA>IC

=
6
3

= 2 rad>s
vCD = 5 rad>s
vCD(0.2) = 4.330(0.2309)

vC = vBC rC>IC
= 4.33 rad>s
vBC =

vB
rB>IC

=
2

0.4619
= 4.330 rad>s

rC>IC = 0.4 tan 30° = 0.2309 m

rB>IC = 0.4
cos 30° = 0.4619 m

vC = vCD rC>D = vCD(0.2) :
vB = vAB rB>A = 10(0.2) = 2 m>s
vC = vBC rC>IC = 0.8660(1.6) = 1.39 m>s

= 0.866 rad>s
vBC =

vB
rB>IC

=
1.2

1.3856
= 0.8660 rad>s

rC>IC = 0.8
cos 60° = 1.6 m

rB>IC = 0.8 tan 60° = 1.3856 m

vB = vrB>A = 6(0.2) = 1.2 m>s
vO = vrO>IC = 9(0.1333) = 1.20 m>s
=  0.1333 m

rO>IC = 0.3 - rC>IC = 0.3 - 0.1667

v =
vC
rC>IC

=
1.5

0.1667
= 9 rad>s

0.5 - rC>IC
3

=
rC>IC
1.5

rC>IC = 0.1667 m
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Ans.

Chapter 17
F17–1.

Ans.

(1)

a

(2)

Ans.
Ans.

F17–2.

Ans.

(1)

a

(2)

Ans.

F17–3. a

Ans.

Ans.

Ans.

F17–4.

(1)

(2)

a

(3)
Solving Eqs. (1), (2), and (3),

Ans.

Since NA is positive, the table will indeed slide
before it tips.

a = 1.96 m>s2

NB = 686.7 N = 687 N 

NA = 294.3 N = 294 N

- NB (0.6) = 0
0.2NA(0.75) + NA(0.9) + 0.2NB (0.75)

+©MG = 0;

NA + NB - 100(9.81) = 0

+ c©Fy = m(aG)y;

0.2NA + 0.2NB = 100a
:+ ©Fx = m(aG)x ;

FA = msNA = 0.2NA FB = msNB = 0.2NB

Ay = 12 lb

+ c©Fy = m(aG)y; Ay - 20 + 10 A45 B = 0

Ax = 6 lb
:+ ©Fx = m(aG)x; Ax + 10 A35 B = 20

32.2(19.32)

a = 19.3 ft>s2

+©MA = ©(Mk)A; 10 A35 B(7) = 20
32.2a(3.5)

NA = NB = 379 N

NA(0.5) - NB(0.5) = 0
+©MG = 0;

NA + NB - 80(9.81) cos 15° = 0
©Fy¿ = m(aG)y¿;
a = 2.54 m>s2

©Fx¿ = m(aG)x¿; 80(9.81) sin 15° = 80a

NB = 610.6 N = 611 N
NA = 430.4 N = 430 N

- NB(0.4) - 100 A45 B(0.7) = 0

NA(0.6) + 100 A35 B(0.7)

+ ©MG = 0;

NA + NB - 100 A35 B - 100(9.81) = 0

+ c©Fy = m(aG)y;

a = 0.8 m>s2:
+:©Fx = m(aG)x; 100 A45 B = 100a

aC = 0 aBC = 9 rad>s2

0.5aC = 0.8aBC - 7.2
0.8660aC = 0F16–21.

Ans.

Ans.

F16–22.

Ans.

F16–23.

Ans.

Ans.

F16–24.

0.8660aCi + 0.5aCj = (0.8aBC - 7.2)j

= (0.6i - 7.2j) + (aBC k * 0.8i) - 0.86602(0.8i)

aC cos 30°i + aC sin 30°j

aC = aB + ABC * rC>B - v 2rC>B
= [0.6i - 7.2j] m>s
= (-3k) * (0.2j) - 62(0.2j)

aB = A * rB>A - v 2rB>A

vBC =
vB
rB>IC

=
1.2

1.3856
= 0.8660 rad>s

rB>IC = 0.8 tan 60° = 1.3856 m

vB = v rB>A = 6(0.2) = 1.2 m>s :
 0 = 1.2aBC - 1.8 aBC = 1.5 rad>s2

aC = -54 m>s2 = 54 m>s2 ;
aCi = -54i + (1.2aBC - 1.8)j

+ (aBC k) * (1.2i) - 32(1.2i)

aCi = (-43.2i - 1.8j)

aC = aB + ABC * rC>B - vBC2 rC>B
= {-43.2i - 1.8j} m>s
= (-6k) * (0.3i) - 122(0.3i)

aB = A * rB>A - v 2rB>A

vBC =
vB
rB>IC

=
3.6
1.2

= 3 rad>s
vB = v rB>A = 12(0.3) = 3.6 m>s
a = 4.5 rad>s2

1.5 = 0.5a - 0.75

1.5i - (aA)n j = (0.5a - 0.75)i + C(aC)n - 40.5 D j
+  (-ak) * 0.5j - 92(0.5j)

1.5i - (aA)n j = -0.75i + (aC)n j

aA = aC + A * rA>C - v2rA>C

v =
vA
rA>IC

=
3

0.3333
= 9 rad>s

rA>IC
3

=
0.5 - rA>IC

1.5
; rA>IC = 0.3333 m

= {243i + 6j} m>s2

= 3i + (-10k) * (-0.6i) -  202(-0.6j)

aA = aO + A * rA>O - v2rA>O
3 = 0.3a a = 10 rad>s2

3i = 0.3ai + (aB - 120)j

3i = aB j + (-ak) * 0.3j - 202(0.3j)

aA = aB + A * rA>B - v2 rA>B
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F17–5.

Ans.

a

Ans.

F17–6. a

Ans.

Ans.

(1)

a

(2)
Ans.
Ans.

F17–7.

a

Ans.

F17–8.

a

Ans.

F17–9.

a

Ans.a = 5.872 rad>s2 = 5.87 rad>s2

+©MO = IOa; 60 - 30(9.81)(0.15) = 2.7a

= 2.7 kg # m2

IO = IG + md2 = 1
12(30)(0.92) + 30(0.152)

(aG)n = v2rG = 62(0.15) = 5.4 m>s2

(aG)t = arG = a(0.15)

v = 2(42) = 32 rad>s
v = (2t2) rad>s
L

v

0
dv =

L

t

0
4t dt

dv = a dt
-9t = -2.25a a = (4t) rad>s2

+©MC = IOa;

IO = 1
2 mr

2 = 1
2 (50) (0.32) = 2.25 kg # m2

v = 0 + 2.4(3) = 7.2 rad>s
v = v0 + act
a = 2.4 rad>s2

+©MC = IOa; -100(0.6) = -25a

IO = mk 2
O = 100(0.52) = 25 kg # m2

FAB = 633.75 N = 634 N
Dx = 446.25 N = 446 N
Dx(0.4) + 750(0.1) - FAB(0.4) = 0
+©MG = 0;

FAB + Dx = 50(21.6)
:+ ©Fn = m(aG)n;

a = 8.65 rad>s2

750 - 50(9.81) = 50[a(0.6)]

+ c©Ft = m(aG)t;

(aG)t = ar = a(0.6)

(aG)n = v2r = 62(0.6) = 21.6 m>s2

Dy(0.6) - 450 = 0 Dy = 750 N
+©MC = 0;

TAB = TCD = 1182.75 N = 1.18 kN
+©MG = 0; TCD(1 m) - TAB(1 m) = 0

TAB + TCD = 2365.5
= 50 kg(37.5 m>s2)

©Fn = m(aG)n ; TAB + TCD - 50(9.81) N

a = 1.33 rad>s2

©Ft = m(aG)t; 100 N = 50 kg[a(1.5 m)]

(aG)n = v2r = (5 rad>s)2(1.5 m) = 37.5 m>s2

(aG)t = ar = a(1.5 m) Ans.

Ans.

F17–10.

a

Ans.

Ans.

Ans.

F17–11.

a

Ans.

Ans.

Ans.

F17–12.

a

Ans.

Ans.

Ans.Ot = 73.58 N = 73.6 N
= 30[1.428(0.45)]

+ c©Ft = m(aG)t; Ot + 300 A45 B - 30(9.81)
On = 306 N

;+ ©Fn = m(aG)n; On + 300 A35 B - 30(16.2)

a = 1.428 rad>s2 = 1.43 rad>s2

300 A45 B(0.6) - 30(9.81)(0.45) = 8.1a

+©MO = IOa;

IO = 1
3ml

2 = 1
3(30)(0.92) = 8.1 kg # m2

(aG)n = v2rG = 62(0.45) = 16.2 m>s2

(aG)t = arG = a(0.45)
:+ ©Fn = m(aG)n; On = 0

Ot = 110.36 N = 110 N
= (15 kg)[16.35 rad>s2(0.15 m)]
+ T©Ft = m(aG)t; - Ot + 15(9.81)N
a = 16.35 rad>s2

[15(9.81) N](0.15 m) = (1.35 kg # m2)a

+©MO = IOa;

= 1.35 kg # m2

= 1.0125 kg # m2 + 15 kg(0.15 m)2

IO = IG + mdOG2
(aG)t = a(0.15 m)

(aG)n = v2rG = 0

IG = 1
12ml

2 = 1
12(15 kg)(0.9 m)2 = 1.0125 kg # m2

Ot = 6.67 N

Ot + 50 A45 B = 30[5.185(0.3)]

:+ ©Ft = m(aG)t;

On = 1164.3 N = 1.16kN

On + 50 A35 B - 30(9.81) = 30(30)

+ c©Fn = m(aG)n;

a = 5.185 rad>s2 = 5.19 rad>s2

50 A35 B(0.3) + 50 A45 B(0.3) = 4.05a

+©MO = IOa;

= 4.05 kg # m2

IO = IG + md2 = 1
2 (30)(0.32) + 30(0.32)

(aG)n = v2rG = 102(0.3) = 30 m>s2

(aG)t = arG = a(0.3)

Ot = 320.725 N = 321 N
Ot - 30(9.81) = 30[5.872(0.15)]
+ c©Ft = m(aG)t;

On = 30(5.4) = 162 N:+ ©Fn = m(aG)n;
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F17–18.

a

(1)

Ans.

(2)

Solving Eqs. (1) and (2)

Ans.

Chapter 18

F18–1.

Ans.

F18–2.

Or,

So that

Ans.v2 = 2.23 rad>s
= 6.4700v2

2

0 + [-(50 lb)(2.5 ft) + (100 lb #ft)( p2)]

T1 + [-WyG + Mu] = T2

T1 + ©U1-2 = T2

= 6.4700v2
2

T2 = 1
2 IOv2

2 = 1
2 (12.9400 slug # ft2)v2

2

= 12.9400 slug #ft2

IO = 1
3 ml

2 = 1
3 A 50

32.2 slug B(5 ft)2

T2 = 6.4700v2
2

+ 1
2 C 1

12 A 50
32.2 slug B(5 ft)2 Dv2

2

= 1
2 A 50

32.2 slug B(2.5v2)
2

T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

T1 = 0

v = 24.3 rad>s
0 + 50(24p) = 6.4v2

T1 + ©U1-2 = T2

s = ur = 20(2p)(0.6) = 24p m

T2 = 1
2 IOv

2 = 1
2 (12.8)v2 = 6.4v2

T1 = 0

IO = mkO2 = 80 A0.42 B = 12.8 kg # m2

(aG)y = -7.36 m>s2 = 7.36 m>s2T
a = 24.5 rad>s2

(aG)y = -0.3a

aA = 0

(aG)y j = (aA)i - 0.3 j

(aG)y j = aAi + (-ak) * (0.3i) - 0

aG = aA + A * rG>A - v2rG>A
v = 0

0.36a - 3.6(aG)y = 35.316

-12(9.81)(0.3) = 12(aG)y(0.3) - 1
12(12)(0.6)2a

+©MA = (Mk)A

:+ ©Fx = m(aG)x; 0 = 12(aG)x (aG)x = 0F17–13.

a

Ans.

F17–14. a

Ans.

F17–15.

Ans.

a

Ans.

F17–16. a

Ans.

Ans.

F17–17.

(1)

a

(2)

(3)
Solving Eqs. (1), (2), and (3),

Ans.T = 485 N
a = 1.15 rad>s2 aG = 0.461 m>s2

aG = 0.4a
aGi = 0.4ai + (0.4v2 - aA)j

aGi = - aA j + ak * (0.4j) - v2(-0.4j)

aG = aA + A * rG>A - v2rG>A
(aA)t = 0 aA = (aA)n

= 18a + 200aG(0.4)
+©MA = (Mk)A; 450 - 0.2(1962)(1)

T - 0.2(1962) = 200aG

:+ ©Fx = m(aG)x;

N - 200(9.81) = 0 N = 1962 N

+ c©Fy = m(aG)y;

aG = 3.504 m>s2 = 3.50 m>s2

a = 23.36 rad>s2 = 23.4 rad>s2

aG = ar = a(0.15)

0.18a + 3aG = 14.715
20(9.81)sin300 (0.15) = 0.18a + (20aG)(0.15)

+©MA = (Mk)A;

a = 33.8 rad>s2

0.5(196.2)(0.4) - 100 = -1.8a
+©MO = IOa;
aO = 4.905 m>s2:
:+ ©Fx = m(aG)x; 0.5(196.2) = 20aO

N - 20(9.81) = 0 N = 196.2 N

+ c©Fy = m(aG)y;

a = 4.44 rad>s2 aG = 1.33 m>s2:
aG = ar = a(0.3)  (2)

30aG + 4.5a = 60 (1)
-200(0.3) = -100aG(0.3) - 4.5a

+©MA = (Mk)A;

a = 2.11 rad>s2

+©MG = IGa; 80(1) + 20(0.75) = 45a

80 - 20 = 60aG aG = 1 m>s2c
+ c©Fy = m(aG)y;

IG = 1
12ml

2 = 1
12(60)(32) = 45 kg # m2
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F18–3.

Ans.

F18–4.

Or,

Ans.

F18–5.

Or,

Ans.v = 10.44 rad>s = 10.4 rad>s
0 + 120p + 240p + 160p = 15v2

T1 + ©U1-2 = T2

UM = Mu = 20[4(2p)] = 160p J

UP2
= P2s2 = 20(12p) = 240p J

s2 = ur2 = 8p(1.5) = 12pm
s1 = ur1 = 8p(0.5) = 4p m

T2 = 1
2 IOv

2 = 1
2 (30)v2 = 15v2

= 30 kg # m2

IO = IG + md2 = 1
12 (30) A32 B + 30 A0.52 B

= 15v2= 1
2 (30)[v(0.5)]2 + 1

2(22.5)v2

T2 = 1
2 mvG

2 + 1
2 IGv

2

T1 = 0

IG = 1
12 ml

2 = 1
12 (30) A32 B = 22.5 kg # m2

v = 13.2 rad>s
 0 + (50 N)cos 30°(8p m) = 6.25v2 J
T1 + P cos 30° sO = T2

T1 + ©U1-2 = T2

sO = ur = 10(2p rad)(0.4 m) = 8p m
= 6.25v2 J

= 1
2 [50 kg(0.3 m)2 + 50 kg(0.4 m)2]v2

T = 1
2 IICv

2

= 6.25v2 J

= 1
2 (50 kg)(0.4v)2 + 1

2 [50 kg(0.3 m)2]v2

T = 1
2 mvO

2 + 1
2 IOv

2

v2 = 2.732 rad>s = 2.73 rad>s
0 + 1800 + (-245.25) = 208.33v2

2

T1 + ©U1-2 = T2

UW = -Wh = -50(9.81)(2.5 - 2) = -245.25 J

UP = PsP = 600(3) = 1800 J

= 1
2 (50) Cv2(2.5) D2 + 1

2(104.17)v2
2 = 208.33v2

2

T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

T1 = 0

IG = 1
12 ml

2 = 1
12 (50) A52 B = 104.17 kg # m2

(vG)2 = v2rG>IC = v2(2.5) F18–6.

Ans.

F18–7.

Ans.

F18–8.

Ans.v2 = 21.28 rad>s = 21.3 rad>s
 0 + 0 = 3.25v2

2 + (-1471.5)

T1 + V1 = T2 + V2

= -1471.5J

AVg B2 = -Wy2 = -50(9.81)(6 sin 30°)

AVg B1 = Wy1 = 0

= 3.25v2
2

= 1
2 (50) Cv2(0.2) D2 + 1

2 (4.5)v2
2

T2 = 1
2 m(vO)2

2 + 1
2IOv2

2

T1 = 0

IO = mkO 2 = 50 A0.32 B = 4.5 kg # m2

vO = vrO>IC = v(0.2)

v2 = 6.603 rad>s = 6.60 rad>s
 0 + 0 = 2.025v2

2 + (-88.29)

T1 + V1 = T2 + V2

AVg B2 = -Wy2 = -30(9.81)(0.3) = -88.92 J

AVg B1 = Wy1 = 0

= 1
2 (30)[v2(0.3)]2 + 1

2(1.35)v2
2 = 2.025v2

2

T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

T1 = 0

IG = 1
2 mr

2 = 1
2 (30) A0.32 B = 1.35 kg # m2

vG = vr = v(0.3)

v = 31.62 rad>s = 31.6 rad>s
 0 + 2500 = 2.5v2

T1 + ©U1-2 = T2

UM = Mu = M¢ sO
r
≤ = 50¢ 20

0.4
≤ = 2500 J

= 2.5v2

= 1
2 (20) Cv(0.4) D2 + 1

2(1.8)v2

T2 = 1
2 mvG

2 + 1
2 IGv

2

T1 = 0

IO = mkO 2 = 20 A0.32 B = 1.8 kg # m2

vO = vr = v(0.4)
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Ans.

F18–12.

Ans.

Chapter 19

F19–1. c

Ans.

F19–2. c

Ans.

Ans.Ff = 346 N

0 + Ff(6) = 300[11.54(0.6)]

+:  m(v1)x + ©
L

t2

t1

Fx dt = m(v2)x

v2 = 11.54 rad>s = 11.5 rad>s
0 + 300(6) = 300 A0.42 Bv2 + 300[v(0.6)](0.6)

+(HA)1 + ©
L

t2

t1

MAdt = (HA)2

v2 = 11.85 rad>s = 11.9 rad>s
0 +

L

4 s

0
3t2 dt = C60 A0.3 B2 Dv2

+IOv1 + ©
L

t2

t1

MOdt = IOv2

v2 = 4.53 rad>s
= 13.3333v2

2 + [0 + 12.5 J]

 0 + [-196.2 J + 482.22 J]

T1 + V1 = T2 + V2

= 13.3333v2

T2 = 1
2 IAv

2 = 1
2 C13 (20 kg)(2 m)2 Dv2

T1 = 0
= 12.5 J

 (Ve)2 = 1
2 ks2

2 = 1
2 (100 N>m)(1 m - 0.5 m)2

= 482.22 J

= 1
2 (100 N>m)a2(3 m)2 + (2 m)2 - 0.5 mb2

 (Ve)1 = 1
2 ks1

2

(Vg)2 = 0

(Vg)1 = -Wy1 = -[20(9.81) N](1 m) = -196.2 J

v2 = 3.362 rad>s = 3.36 rad>s
 0 + (156.08 + 0) = 11.25v2

2 + (0 + 28.95)

T1 + V1 = T2 + V2

= 28.95 J
 (Ve)1 = 1

2 ks2
2 = 1

2 (300)(1.5 - 1.5 cos 45°)2

AVe B1 = 1
2 ks1

2 = 0

AVg B1 = -Wy2 = 0

AVg B1 = Wy1 = 30(9.81)(0.75 sin 45°) = 156.08 JF18–9.

Or,

Ans.

F18–10.

Or,

Ans.

F18–11.

= 1
2(30)[v2(0.75)]2 + 1

2(5.625)v2
2 = 11.25v2

2

T2 = 1
2m(vG)2

2 + 1
2 IGv2

2

T1 = 0

IG = 1
12 (30) A1.52 B = 5.625 kg # m2

(vG)2 = v2rG>IC = v2(0.75)

v2 = 2.323 rad>s = 2.32 rad>s
 0 + 0 = 11.25v2

2 + (-220.725 + 160)

T1 + V1 = T2 + V2

(Ve)1 = 1
2 ks2

2 = 1
2(80) A222 + 1.52 - 0.5 B2 = 160 J

(Ve)1 = 1
2 ks1

2 = 0

= -220.725 J

AVg B2 = -Wy2 = -30(9.81)(0.75)

AVg B1 = Wy1 = 0

= 11.25v2
2

T2 = 1
2 IOv2

2 = 1
2 C5.625 + 30 A0.752 B Dv2

2

= 1
2 (30)[v(0.75)]2 + 1

2(5.625)v2
2 = 11.25v2

2

T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

T1 = 0

IG = 1
12 (30) A1.52 B = 5.625 kg # m2

vG = vrG = v(0.75)

v2 = 1.785 rad>s = 1.79 rad>s
 0 + 0 = 90v2

2 + [-624.39 + 337.5]

T1 + V1 = T2 + V2

AVe B2 = 1
2 ks2

2 = 1
2 (150)(3 sin 45°)2 = 337.5 J

AVe B1 = 1
2 ks1

2 = 0

= -624.30 J

AVg B2 = -Wy2 = -60(9.81)(1.5 sin 45°)

AVg B1 = Wy1 = 0

T2 = 1
2 IOv2

2 = 1
2 C45 + 60 A1.52 B Dv2

2 = 90v2
2

= 90v2
2

= 1
2 (60)[v2(1.5)]2 + 1

2(45)v2
2

T2 = 1
2 m(vG)2

2 + 1
2 IGv2

2

T1 = 0

IG = 1
12(60) A32 B = 45 kg # m2

vG = vrG = v(1.5)
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F19–3.

a

a

Ans.

F19–4.

c

(1)

a

(2)

Equating Eqs. (1) and (2),

Ans.(vB)2 = 72.41 rad>s = 72.4 rad>s
500 - 1.28(vB)2 = 5.625(vB)2

L

5 s

0
Fdt = 5.625(vB)2

0 +
L

5s

0
F(0.2)dt = 1.125(vB)2

+IB(vB)1 + ©
L

t2

t1

MBdt = IB(vB)2

L

5 s

0
Fdt = 500 - 1.28(vB)2

= 0.064[2(vB)2]0 + 10(5) -
L

5s

0
F(0.1)dt

+ IA(vA)1 + ©
L

t2

t1

MA dt = IA(vA)2

vA = ¢ rB
rA
≤vB = ¢0.2

0.1
≤vB = 2vB

IB = mkB2 = 50 A0.152 B = 1.125 kg # m2

IA = mkA2 = 10 A0.082 B = 0.064 kg # m2

vA = 46.2 rad>s
+ C10 A0.12 B DvA

= 10[vA(0.15)](0.15)
0 + [20(5)](0.15)

+(HC)1 + ©
L

t2

t1

MCdt = (HC)2

+©MO = 0; 9 - At(0.45) = 0 At = 20 N

vA = vArA>IC = vA (0.15)
F19–5.

c

Ans.

Also,

Ans.

F19–6.

c

Ans.v2 = 3.46 rad>s
+ A 150

32.2 slug B Cv2(1 ft)D(1 ft)= C 150
32.2 slug(1.25 ft)2 Dv2

0 + (25 lb # ft)(3 s) - [0.15(150 lb)(3 s)](0.5 ft)

+  (HIC)1 + ©
L
MICdt = (HIC)2

NA = 150 lb
0 + NA(3 s) - (150 lb)(3 s) = 0

A + c B  m C AvG B1 Dy + ©
L
Fy dt = m C AvG B2 Dy

v2 = 37.3 rad>s
= [(50 kg)(0.175 m)2 + (50 kg)(0.3 m)2]v2

0 + [(150 N)(0.2 + 0.3) m](3 s)

IICv1 + ©
L
MIC dt = IICv2

FA = 36.53 N
v2 = 37.3 rad>s

= [(50 kg)(0.175 m)2]v2

0 + (150 N)(0.2 m)(3 s) - FA(0.3 m)(3 s)

+IGv1 + ©
L
MG dt = IGv2

= (50 kg)(0.3v2)

0 + (150 N)(3 s) + FA(3 s)

A +: B m C(vO)x D1 + ©
L
Fx dt = m C(vO)x D2
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Chapter 12
12–1.

12–2.

12–3.

12–5.

12–6.

12–7.

12–9.

12–10.
12–11.

12–13.

12–14.

12–15.

12–17.

12–18.

12–19.
12–21.

B stops
t = 0 s and = 1 s
vB = (4t3 - 8t) ft>s
vA = (3t2 - 3t) ft>s
a| t=4 = 1.06 m>s2

vavg = 22.3 m>s
s = 1708 m
h = 4.54 m
t¿ = 1.682 m
h = 19.81t¿ - 4.905(t¿)2 - 14.905
h = 5t¿ - 4.905(t¿)2 + 10
d = 616 ft
d = 517 ft
(vsp)avg = 2.22 m>s
vavg = 0.222 m>s
(vsp)avg = 1 m>s
vavg = 0.333 m>s
sT = 6 m
¢s = 2 m
sT = 912 m
¢s = -880 m
a = -24 m>s2
sA = 3200 ft
v = 22kt + v0

2

dt =
dv
a

t = 8.33 s
¢s = 76 m
v = 13 m>s
v = -90.6 ft>s = 90.6 ft > s T
h = 127 ft
s = A2t3 - 4

5 t
5>2 + 15 B  ftds = v dt

v = A6t2 - 2t3>2 B ft>sdv = a dt
s = 22.5 ft
t = 3 s
s = 450 m
v = 0 + 1(30) = 30 m>s
t = 26.7 s
v = v0 + act
ac = 0.5625 m>s2
v2 = v2

0 + 2ac As - s0 B

12–22.

12–23.

12–25.

12–26.

12–27.

12–29.

and .

12–30.

12–31.

12–33.

12–34.

12–35.

12–37.

t¿ =
2v0 + gt

2g

vB = v0 - g(t¿ - t)

h = v0 (t¿ - t) -
g

2
 (t¿ - t)2

vA = v0 - gt¿

h = v0 t¿ -
g

2
t¿2

ball A

aavg = 6 m>s2 ;
vavg = 10 m>s ;
t = 6.93 ms
a = 80 km>s2
sm = 3.67(10)3 ft
t = 77.6 s
Distance between motorcycle and car 5541.67 ft

t =
vf

2g
ln ¢vf + v
vf - v ≤

a = -kv0e
-kt

s =
v0

k
A1 - e-kt B

stot = 69.0 ft
t = 5 st = 1 s

The times when the particle stops are
v = 4.50t2 - 27.0t + 22.5

s �t=6s = -27.0 ft

v = 1.29 m>s
a = 4.13 m>s2
v = 4.11 m>s
hmax =

1
2k

 ln A1 + k
gv0

2 B
s =

1
2k

ln ¢g + kv0
2

g + kv2 ≤
s = 10 A1 - e-2t Bm
a = A -40e-2t B  m>s2

v = A20e-2t B  m>sv = 0.250 m>s
Choose the root greater than 10 m s = 11.9 m
(sT)B = 200 ft
(sT)A = 41 ft
sAB| t=4 s = 152 ft
t = 22 s
t = 0 s

Answers to Selected Problems
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12–38.
12–39.
12–41.

and

12–42.
12–45.

12–46.
12–49.

12–51.

12–53. and
and

12–54.
12–55.

12–57. and

12–58.
12–59.
12–61.

12–62.

12–63. and
and s = 2

3t
3 - 9t2 + 108t - 340s = 8

5t
5>2

v = 2t2 - 18t + 108v = 4t3>2
s¿ = 319 m
vmax = 36.7 m>s
s = - t2 + 60t -  450
s = 20t -  50
s = 2t2
s = 917 m
s¿ = 2500 ft
s¿ = 400 m
v = A2-30s + 12 000 B  m>s
v = A20.1s2 + 10s B  m>s
s�t=8.75 s = 272 m
t¿ = 8.75 s
t = 9.88 s

a = 0a = 0.4 m>s2
s = (12t -  180) ms = A15 t2 B  m

s�t=90 s = 1350 m
a = 6t - 6
v = 3t2 - 6t + 2
vmax = 16.7 m>s
a = -2p2

25  sin p5 t

v = 2p
5  cos p5 t

sT = 980 m
vavg = 15 m>s
stot = 30 m

t = 2 st = 0At rest at
v = -30t + 15t2 m>s
v = 3.02 km>s T
v = 11.2 km>s
vB = 1

2 gt c
vA = 1

2 gt T
12–73.

12–74.

12–75.

12–77.

12–78.

12–79. ,

12–81.

12–82.

12–83.

12–85.

12–86.

12–87.

12–89.

12–91.
s = 34.4 ft
s = 8.68 ft
y = 116 m
x = 222 m
u = 57.6°
vB = 76.0 ft>s
vA = 30.7 ft>s
u = 49.4°
vA sin u = 23.3
vA cos u = 20
t = 0.890 s
vA = 6.49 m>s
vy =

v0 pc

L
AcospLx B C1 + ApL c B2 cos2 ApL x B D - 1

2

vx = v0 C1 + ApL c B2 cos2 ApL x B D - 1
2

a = 0.0200 ft>s2

ay = ax - 1
200 Av2

x + xax B
v = 2.69 ft>s
vy = vx - x

200 vx
a = ck2
v = 2c2 k2 + b2

(vsp)avg = 6.52 m>s
vavg = 4.86 m>s
¢r = 6.71 km
s = 9 km
(vBC)avg = 53.88i + 6.72j6 m>s
rC = 528.98i - 7.765j6 m
rB = 521.21i - 21.21j6 m

ay = 0.64 m>s2 Tax = 0.32 m>s2
vy = 1.79 m>svx = 3.58 m>s

a = 38.5 m>s2
v = 10.4 m>s
a = 16.8 m>s2
v = 9.68 m>s
a = 5-20 cos 2ti - 16 sin 2tj6 m>s2
v = 5-10 sin 2ti + 8 cos 2tj6 m>s
ay = -4r sin2t
ax = ;4r cos2t
(42.7, 16.0, 14.0) m
a = 80.2 m>s2
ay = 2ct

ax =
3
4 A

c

3b
1
1t

x =
A

c

3b
t3>2

12–65.

12–66.

12–69.

12–70.
12–71.

a = 36.5 m>s2
v = 36.1 m>s
t¿ = 133 s, s = 8857 m
s�t=16.25 s = 540 m
t¿ = 16.25 s
v = (8t - 40) m>s
v = A0.4t2 B  m>s
a = 0.8, a = 0
v = 0.8t, v = 24.0
t = 16.9 s
v = 220s - 1600 ft>s
v = 20.04s2 + 4s ft>s
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12–117.

12–118.

12–119.

12–121.

12–122.
12–123.

12–125.

12–126.
12–127.
12–129.

12–130.
12–131.

12–133.

12–134.
12–135.

12–137.

12–138.

12–139.

12–141.
, a = 1.91 m>s2an = 1.037 m>s2

v = 7.20 m>sdv = a dt,
a = 4.22 m>s2
v = 3.19 m>s
a = 4.98 m>s2
v = 3.68 m>s
r = 51.1 m
a = 13.4 m>s2

a = 56ti + 6j6 m>s2

v = 18.8 m>s
v = 53t2i + 6tj + 8k6 m>s
aB = 0.556 m>s2
aA = 4.44 m>s2
a = 10.2 m>s2
an = 5.84 m>s2
at = -8.42 m>s2
s = 33.7 m
When t = 2 s,
t = 2 sin-1 A s40 B
v = A2400 - 0.25s2 B  m>s
a = 0.824 m>s2
a = 6.03 m>s2
u = 38.2°
a = 8.43 m>s2
r = 79.30 m
a = 7.85 ft>s2
a = 0.730 m>s2
a = 1.30 m>s2
t = 15.942 s
When the car reaches C
v = A25 - 1

6 t
3>2 B  m>s

a = 2.75 m>s2
a = 0.309 m>s2
a = 0.511 m>s2
r = 3808.96 m
¢s = 14 ft
a = 15.1 ft>s2
a = 1.20 m>s2
v = 1.80 m>s
a = 1.02 m>s2
an = 0.640 m>s2
at = v

# = 0.8 m>s2
v = 5.66 m>s
t = 7.071 s

12–93.

Solve by trial and error.

12–94.
12–95.
12–97.

12–98.
12–99.

12–101.

12–102.
12–103.

12–105.

12–106.

12–107.

12–109.

12–110.

12–111.

12–113.

12–114.
12–115. a = 0.488 m>s2

v = 63.2 ft>s
v = 38.7 m>s
7.5 =

v2

200

r = 208 m
tAB = 4.54 s
vA = 19.4 m>s
s = 6.11 ft
sx = (s0)x + (v0)x t
vA = 39.7 ft>s
21 = 0 + vA (0.5287)
0 = 7.5 + 0 + 1

2 (-32.2) t22

3 = 7.5 + 0 + 1
2 (-32.2) t21

u2 = 85.2°a
u1 = 25.0°c
d = 12.7 m
t = 1.195 s
vA = 18.2 m>s
d = 7.18m
uA = 51.4°
8 = 1 + 15 sin uA t + 1

2 (-9.81) t2
0 = 15 sin uA + (-9.81) t
h = 22.0 ft
the goalpost.
SinceH 7 15 ft, the football is kicked over
d = 166 ft
vA = 28.0 m>s
10 = 1.8 + vA sin30°(t) + 1

2 (-9.81)(t)2
20 = 0 + vA cos 30° t
s = 22.9 ft
vA = 76.7 ft>s
d = 94.1 m

¢t =
2v0 sin (u1 - u2)

g(cos u2 + cos u1)

x = 0 + v0 cos u2 t2

x = 0 + v0 cos u1 t1

y = 0 + v0 sin u2 t2 + 1
2 (-g) t22

y = 0 + v0 sin u1 t1 + 1
2 (-g) t21

h = 14.7 ft
vA = 23.2 m>suA = 30.5°

uA = 7.19° and 80.5°

4.905t2 - 30 sin uAt - 1.2 = 0

t =
1

cos uA
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12–142.

12–143.
12–145.
12–146.
12–147.

12–149.

12–150.

12–151.

12–153.

12–154.

12–155.

12–157.

12–158.
12–159.

12–161.

12–162.

12–163.

vu = (b - a cos u)u
#

vr = a sin u u
#

a = 14.3 in.>s2
a = 43.2(103) ft>s2
apr = 43 200 ft>s2
v = 464 ft>s
aPl = 0.001 22 ft>s2
vPl = 293.3 ft>s
a = 85.3 m>s2
v = 30.1 m>s
a = 3.66 ft>s2
a = 2.57 m>s2
v = 0.766 m>s

u
$

= 5.536 rad>s2u
#
= 2.554 rad>s
r
# = r$ = 0
u = A t3 B  rad

amax =
a

b2 v
2

at = 2.77 m>s2
an = 0.555 m>s2
vt = 7.21 m>s
vn = 0
an = 8.98 m>s2
at = 3.94 m>s2
y = 50.839x - 0.131x26 m
y = 0 + 5.143t + 1

2 (-9.81) A t2 Bx = 0 + 6.128t
a = 11.8 m>s2
v = 47.6 m>s
t = 10.1 s
aB = 65.1 m>s2
aA = 22.2 m>s2
t = 2.51 s
aB = 12.8 m>s2
aA = 190 m>s2
(an)B = 12.80 m>s2
(an)A = 181.17 m>s2
d = 17.0 m
sA = 14.51 m
vA = 22s2A + 16

a = 8.61 m>s2
a = 0.897 ft>s2
r = 449.4 m, an = a = 26.9 m>s2
a = 3.05 m>s2
aB = 1.28 ft>s2
aA = 9.88 ft>s2
d = 106 ft

12–165.

12–166.

12–167.

12–169.

12–170.

12–171.

12–173.

12–174.

12–175.

12–177.

12–178.
12–179.

12–181.

a = 0.217 m>s2
az = 0
au = 0
ar = -0.217
vz = -0.2814 m>s
vu = 1.473 m>s
vr = 0
ar = -9330 mm>s2
vr = -250 mm>s
u
#
= 0.378 rad>s
u
#
= 0.302 rad>s
r
# = (-200 sin2u u

#
) m>s

a = 88.2 m>s2
v = 8.49 m>s
az = -0.00725 m>s2
au = 0
ar = -0.16 m>s2
vz = -0.0932 m>s
vu = 0.8 m>s
vr = 0
a = 25.8 m>s2
au = 11.39 m>s2
ar = -23.20 m>s2
v = 4.30 m>s

vu = 3.722 m>svr = 2.149 m>s
a = 5-5.81ur - 8.14uz6 mm>s2
v = 5-116ur - 163uz6 mm>s
au = 0.600 m>s2
ar = 0.410 m>s2
vu = 0.450 m>s
vr = 1.50 m>s
a = 2.25 ft>s2
au = 0
ar = -2.25 ft>s2
u = 0.075 rad>s

vu = 400 Au# Bvr = 0
a = 2a24u

# 4 + u
$2

v = 2au
#a = 4au
#
2

v = 2au
#a = 76.8 ft>s2

au = 60.0 ft>s2
ar = -48.0 ft>s2
v = 120 ft>s

vu = 120 ft>svr = 0
au = (b - a cos u)u

$
+ 2au

#
2 sin u

ar = (2a cos u - b) u
#
2 + a sin u

#
u
#
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12–203.
12–205.

12–206.
12–207.
12–209.

12–210.

12–211.

12–213.

12–214.
12–215.

12–217.

12–218.

12–219.

12–221.

12–222.

ua = 0.767°c
aB>A = 1955 mi>h2
uv = 40.90°a
vB>A = 26.5 mi>h
u = 72.0°a
aB>A = 1.79(103) mi>h2
1200 cos 30° + 1333.3 sin 30° = (aB>A)y

-1200 sin 30° + 1333.3 cos 30° = (aB>A)x

u = 40.9°a

vB>A = 26.5 mi>h
20 cos 30° = (vB>A)y

-20 sin 30° = -30 + (vB>A)x

u = 9.58°
vr>c = 19.9 m>s
u = 9.58°
u = 74.0°
vw>s = 19.9 m>s
ua = 8.57°
aB>C = 0.959 m>s2
aB>C = [0.9486i - 0.1429j]
(aB)t5-2 cos60° i + 2 sin 60° j6 m>s2
vB>C = 57.5i + 17.01j6 m>s
uv = 66.2°
vBC = 18.6 m>s
uv = 50.3°
vB>A = 11.2 m>s
vC = (6 sec u) ft>s :
vB = 1.41 m>s c

vB = -
xA

2x2
A + 64

vA

yB = 16 - 2x2
A + 64

s
$
B = 1.11 ft>s2 c
s
#
B = 1.20 ft>s T
vB = 5.33 m>s
vA = 0.605 m>s
t = 1.07 s
vC = 2.21 m>s c
t = 5.43 s
2vC - vD + vB = 0
vA = -2vD

vB = 12 ft>s c
vB = 1 ft>s c
aA = 0.5 ft>s2 T
vA = 1 ft>s c
vB = 4vA

2vA = vC
vB = 1 m>s c12–182.

12–183.

12–185.

12–186.

12–187.

12–189.

12–190.

12–191.

12–193.

12–194.

12–195.
12–197.

12–198.
12–199.
12–201.

12–202. vB = 0.5 m>s c
vA = 1.67 m>s c
3vA + vM = 0
vE = 2.14 m>s c
vB = 20 m>s c
vA = 4 ft>s ;
2vH = -vA
vP = 6 m>s Q
au = 67.7 m>s2
ar = -128 m>s2
vu = 177 m>s
vr = -306 m>s
vu = 25.3 ft>s
vr = -24.2 ft>s

vu =
600
p
u
#

vr = -
1800
p2 u

#
au = 319 ft>s2
ar = -161 ft>s2
vu = 50.3 ft>s
vr = 32.0 ft>s
au = 256 ft>s2
ar = -201 ft>s2
vu = 50.3 ft>s
vr = 32.0 ft>s
a = 668 mm>s2
au = 147.82 mm>s2
ar = -651.2 mm>s2
v = 164 mm>s
vu = 164.24 mm>s
vr = 8.2122 mm>s
au = 66.3 ft>s2
ar = -67.1 ft>s2
vu = 18.3 ft>s
vr = 6.00 ft>s
au = 2au

#
2

ar = -auu
#
2

vu = auu
#vr = au

#a = 39.4 m>s2
au = 38.95 m>s2
ar = -5.998 m>s2
v = 7.83 m>s
vu = 5.660 m>s
vr = 5.405 m>s
a = 33.1 m>s2
v = 4.16 m>s
a = 7.26 m>s2
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12–223.

12–225.

12–226.

12–227.

12–229.

12–230.

12–231.

Chapter 13
13–1.

13–2.
13–3.
13–5.

13–6.

13–7.
13–9.

13–10.
13–11.
13–13.

13–14.
13–15.
13–17.

13–18.
13–19. (a)

(b)
13–21.

13–22. T = mg cos u(sin u - mk cos u)

T = amg
2
b  sin 2u

-T + NB sin u = 0
NB = mg cos u
x = 0.955 m
x = 0

F = 13.1 lb
s = 64.4 ft
aA = 32.2 ft>s2
s = 12.9 m
TCA = TCB = 27.9 kN
T = 5.98 kip
a = 3.61 ft>s2
a = 1.75 m>s2
a = 1.66 m>s2
a = 0.0278 m>s2
F = 7.50 kN
F = 85.7 N
T = 162 lb
aC = 2.5 ft>s2 c
F = 6.37 N
a = 3.42 m>s2
F + 14.14 = 6a
40.55 - F = 10a
v = 22.4 m>s
a = -0.505 m>s2
FAB = FAC = 18.1 kN
a = 0.6667 m>s2

t = 11.4 s
vb = 6.21 m>s
u = 25.0°c
vr>m = 16.6 km>h,
vA>B = v22(1 - sinu)

vA>B = (v sinu - v)i + vcosuj
u = 59.0°b
vW = 58.3 km>h
u = 67.2°d
vA>B = 49.1 km>h
f = 57.8°c
aB>A = 4489 mi>h2
aB>A = 52392.95i - 3798.15j6 mi>h2
t = 36.9 s
u = 18.0°d
vA>B = 21.7 ft>s 13–23.

13–25.

13–26.

13–27.
13–29.

13–30.
13–31.

13–33.

13–34.

13–35. (a), (b)
(c)

13–37.

13–38.
13–39.

13–41.

13–42.

13–43. , then for separation.
13–45.

13–46.

13–47.

t =
2

3r022g
Ar3

2max - r0
3
2 B

vesc = 22gr0

rmax =
2gr0

2

2gr0 - v0
2

v =
B
v0

2 - 2gr0a1 -
r0
r
b

vmax =
A

mg

C

vmax = 10.95 m>s
v = 10.95(1 - e-t>5)
a = (2.19 - 0.2v)m>s2

x = dN = 0

v =
B

kd2

(mA + mB)

x = d
aA = 21.22 ft>s2 NB = 18.27 lb
aB = 5.68 ft>s2
vmax = 2.49 km>s
t = 42.1 min
t = 1.08 s

P = 2mga sin u + ms cos u

cos u - ms sin u
b

N sin u + ms N cos u = ma
N cos u - msN sin u - mg = 0
u = 56.5°c
aC = 7.08 m>s2
aC = 6.94 m>s2

d =
eVLl

v0
2wm

v = 14.6 ft>s
Fs = 4 A21 + s2 - 1 B
T = 769 N
aA = 0.195 m>s2 T
T = 1.80 kN
T = 1.63 kN
12 - sB + 2sA2 + (12)2 = 24
mA = 13.7 kg
T = 1.32 kN
aE = 0.75 m>s2 c
Ay = 2.11 kN
Ax = 0
By = 1.92 kN
T = 1131 N
2aC - aP = 0
v = 30 m>s
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13–49.

13–50.

13–51.
13–53.

13–54.
13–55.
13–57.

13–58.

13–59.
13–61.

13–62.

13–63.
13–65.

13–66.
13–67.
13–69.

13–70.
13–71.

13–73.

13–74.

13–77.

13–78.
13–79.

vB = 12.8 ft>s
vmin = 25.4 ft>s
u = 112°
N = 1.02 kN
v2 = 98.1 m2>s2
at = -9.81 sin u
r = 10.0 m
u = 0°
at = 6.35 m>s2
N = 11.2 N
N = 6.73 kN
Ff = 1.11 kN
r = 223.61 m
u = -26.57°
r = 3.60 km
L = 50.8 kN

T = 51.5 kNu = 17.8°
N = 2mg
an = g
v = 2gr
v = 22.1 m>s
ms = 0.252
NB = 0.844 N
T = 1.82 N
r = 0.120 m
u = 26.7°
T = 361 N
at = 3.36 m>s2 b
u = 37.2°
at ds = v dv
at = -9.81 sin u
T = 414 N
u = 78.1°

T = 2p
B

r3

GMe

TCD = mg sin u
an = 0
v = 9.90 m>s
vmin = 12.2 m>s
vmax = 24.4 m>s
N = 19 140.6 N
v = 41.2 m>s
r = 188 m
at = -4.905 m>s2
v = 10.5 m>s
an =

v2

1.5

13–81.
,

13–82.

13–83.
13–85.

13–86.

13–87.

13–89.

13–90.
13–91.

13–93.

13–94.
13–95.
13–97.

13–98.
13–99.
13–101.

13–102.

13–103.
13–105.

13–106.
13–107.
13–109.

at = 12 m>s2
c = 84.3°
FOA = 12.7 N
F = 7.82 N
N = 12.1 N
F = 7.67 N
au = 20 m>s2
ar = 34.641 m>s2
N = 2.86 kN
Fz = 215 N
Fu = -38.4 N
Fr = -131 N
F = 0.163 lb
N = 0.267 lb
au = -1.919 ft>s2
ar = -4.235 ft>s2
F = -0.0155 lb
F = 7.71 N
NP = 7.73 N
F = 3.46 N
au = -0.5359 m>s2
ar = -8.928 m>s2
r = 816 mm
u
#
= 5.70 rad>s
u
#
= 7.00 rad>s
ar = -14.715 m>s2
N = 17.34m
(Fz)max = 20.6 N
(Fz)min = 18.6 N
Fz = 18.6 N
FAB = 0.6 N
NB = 1.20 N
au = 1.2 m>s2
ar = -2.4 m>s2
Fz = 11.6 N
Fu = 36 N
Fr = -2 N
Fu = 16 N
Fr = -2 N
F = 210 N
au = 42 m>s2
ar = 0
N = 33.8 lb, a = 59.8 ft>s2
NB = 840 N
v = 31.3 m>s
N = 19.3 kN

an = 1.395 m>s2v = 22.22 m>s2
rA = 354.05 m
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13–110.

13–111.

13–113.

13–114.

13–115.

13–117.

13–118.

13–119.

13–121.

13–122.
13–123.

13–125.

13–126.

13–127.

The change in speed should occur at perigee.
13–129.

13–130.

13–131.
13–133.

13–134.
r = 640 Mm
r = 317 Mm
T = 119 h
rP = 14.6268(106) m
h = 101.575(109) m2>s
vA = 3.44 km>s
t = 46.1 min
va = 3.94 km>s
vP = 7.47 km>s

9 A106 B =
6 A106 B

¢2 A66.73 B A10-12 B A0.7 B C5.976 A1024 B D
6 A106 B v2

p

≤ - 1

¢v =
B

GMe
r0
a22 - 21+eb

1
r = 0.502(10-12) cos u + 6.11(10-12)
v0 = 30.8 km>s
7.45 km>s
v0 =

B

66.73(10-12)(5.976)(1024)

(800 + 6378)(103)

t = 1.69 h
vA¿ = 7.30(103) ft>s
v0 = 23.9(103) ft > s
vA = 4.52 km>s
¢vp = 856 m>s
vp = 7755.54 m>s
vO = 6899.15 m>s
vA = 4.63 km>s
vB = 7.71 km>s
T = 3.35 hr
vA = 4.52 km>s
vp = 7.76 km>s
¢vA = 814 m>s
vA¿ = 1964.19 m>s
r0 = 11.1 Mm
FOA = 20.9 N
N = 10.4 N
F = 19.3 N
N = 9.66 N

u = tan-1a4rcu
#
2
0

g
b

ar = -4rc cos u u2
0

N = 113 lb
vu = 2 m>s
vr = 2.50 m>s

13–135.

13–137.

Chapter 14
14–1.

14–2.
14–3.

14–5.

14–6.
14–7.
14–9.

14–10.
14–11.
14–13.

14–14.
14–15.

14–17.

14–18.
14–19.
14–21.
14–22.

14–23.

14–25.
s cos 30° = 0 + 30.04t
vB = 30.0 m>s
vD = 18.2 ft>s
NC = 133 lb
vC = 17.0 ft>s
NB = 27.1 lb
vB = 7.22 ft>s
NC = 1.18 lb
vC = 16.0 ft>s
NB = 7.18 lb
vB = 24.0 ft>s
s = 179 mm
h = 47.5 m
vC = 1.37 m>s
v = 1.11 ft>s
0+
L

0.05 ft

0
100s1>3 ds - 20(0.05) = 1

2 A 20
32.2 Bv2

v = 3.77 m>s
s = 3.41 m
vA = 0.771 ft>s
NB = 1.54 ft>s
FB = 3.464 lb
FA = 3 lb
mk = 0.255
s = 178 m
v = 4.00 m>s
+ C -1

2(200)(0.22) D = 1
2(2)v2

0 + 150 cos 30°(0.2) + C -1
2(300)(0.22) Ds = 7.59 in

d = 192 m
v = 3.58 m>s
1
2(1.5) A42 B + c -

L

0.2 m

0
900s2 ds d = 1

2(1.5)v2

v = 0.365 ft>s
s = 1.05 ft
UT = 18.0 A103 B  ft # lbT = 744 lb
N = 1307 lb

v =
A
G
me
r

= 5.16 km>s
¢vB = -2.37 km>s
vA = 6.11 km>s
r 7 640 Mm
317 Mm 6 r 6 640 Mm



AN S W E R S T O SE L E C T E D PR O B L E M S 707

14–59.
14–61.

14–62.
14–63.
14–65.

14–66.
14–67.
14–69.

14–70.
14–71.
14–73.

14–74.
14–75.
14–77.

14–78.
14–79.
14–81.

14–82.
14–83.
14–85.

14–86.

14–87.

14–89.

14–90.
14–91.
14–93.

14–94.
14–95. vA = 11.0 m>s

d = 1.34 m
¢sA = 617.5 mm
(vA)2 = 1.42 m>s
¢sP + 2¢sA = 0
k = 8.57 lb>ft
v = 32.3 ft>s
NC =

mg

rC
(rB + rC + 2h)

vA = 2rB g + 2gh

vB
2 = rB g
NC = 16.8 kN
NB = 0
h = 24.5 m
T = 2.90 kN
T = 1.56 kN
vC = 7.58 m>s
v = 6.97 m>s
final elastic potential energy = 103.11 J
vC = 2.09 m>s
v2 = 2.15 m>s
h = 133 in.
0 + 1

2(200)(4)2 + 1
2(100)(6)2 = h(3)

v2 = 106 ft>s
h = 416 mm
v = 2.86 m>s
= 1

2(0.025)v2
0 + (2) A12 B(50) C2(0.05)2 + (0.240)2 - 0.2 D2v = 1.37 m>s
v = 1.37 m>s
x = 7.59 in.
0 + 6(2) = 0 + 1

2(5)(12)(x)2
power input = 2.28 kW
power input = 1.60 kW
v = 4.86 m>s
F = 308.68 N
P = 1.12 kW
P = 8.31t MW
Po = 35.4 kW
vP = 18 m>s
T = 1968.33 N
P = [400(103)t] W
P = 0.460
Pin = 2.05 hp
2 vC = vP
a = 7.20 ft>s2
v = 13.1 m>s

14–26.
14–27.

14–29.

14–30.

14–31.

14–33.

14–34.
14–35.
14–37.

14–38.
14–39. ,

14–41.

14–42.
14–43.

14–45.

14–46.
14–47.
14–49.

14–50.

14–51.
14–53.

14–54.
14–55.
14–57.

14–58. Pout = 42.2 kW
v = 18.7 m>s
F = 1500 Avdvds B
v = 56.5 ft >s
v = 22.3 ft >s
(Pin)avg = 56.5 kW
Pin = 113 kW
F = 3618.93N
ac = 0.8333 m>s2
Pin = 19.5 kW
t = 30.5 s
Pmax = 1.02 hp
P = 12.6 kW
t = 7.454 s
vy = 0.2683 m>s
Pmax = 119 hp
v = 63.2 ft >s
P = 5200(600)a 88 ft>s

60 mi>h b
1

550
= 8.32 A103 B  hp

power input = 4.20 hp
Pavg = 200 kW
u = 41.4°
N = mg A3 cos u - 9

4 B
v2 = gr A94 - 2 cos u B

N = 1.25 kNvB = 14.9 m > s
F = 367 N
vB = 5.42 m > s

N = 1.25 kNs = 3.675 m
l0 = 2.77 ft
v = 8.64 m>s
x = 2.57 m
Ff = 173.42 N
N = 693.67 N
vC = 7.67 m>s
R = 2.83 m
hC = 12.5 m
hA = 22.5 m
v2 = 18.0 ft>s
k = 642 lb>ft
Fs = 1284.85 lb
vC = 54.1 ft>s
d = 22.6 ft
vB = 31.5 ft>s
s = 1.35 m
s = 130 m
s sin 30° + 4 = 0 + 0 + 1

2(9.81)t2
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14–97.

14–98.
14–99.

14–101.

14–102.

14–103.

14–105.

14–106.

Chapter 15
15–1.

15–2.

15–3.
15–5.

15–6.

15–7.

15–9.

15–10.
15–11.

15–13.

15–14.
15–15.
15–17.

15–18. ,

15–19.
15–21.

v2 = 12.0 m>s(: )
-  [10(2) + 20(4 - 2) + 40(6 - 4)] = 40v2

40(1.5) + 4[(30)4 + 10(6 - 4)]
(vx)2 = 91.4 ft>s ;

s =
C tœ2

pm
v2 =

2C t¿
pm

T = 24 kN
12 A103 B(3) - T(1.5) = 0
F = 24 kN
0 + 12 A103 B(3) - F(1.5) = 0 + 0
T = 520.5 N
v = 4.50 m>s
T = 526 lb
0 + 2(T cos 30°)(0.3) - 600(0.3) = A 600

32.2 B(5)

v = 21.0 ft>s
t = 4.64 s
v = 0.849 m>s
0 +

L

10 s

0
 30 A106 B A1-e-0.1t B dt = 0.130 A109 B v

vmax = 90 m>s
T = 12.5 kN
F = 19.44 kN
T = 43.6 N
AvB)2 = 1.27 m>s T
AvA)2 = 1.27 m>s c
(vB)1 = 2 m>s c
I = 90.0 lb # s
s = 48.4 m
v = 16.1 m>s
t = 0.439 s

5
32.2 (10) + (-5 sin 45°)t = 0

sA = 1.29 ft
vB = 34.8 Mm>h
vA = 11 111.1 m>s
T = 6mg
vC = 27

3gr

x = 2
3 r

v2 = 22
p(p - 2)gr

AVg B2 = 0AVg B1 = Ap-2
2 Bm0 r

2g

vB = 32.1 ft > s
x = 453 mm
l0 = 141 m

AVe BB = 1500(150 - l0)2AVe BA = 0

AVg BB = 0AVg BA = 110 362.5J 15–22.
15–23.

15–25.

15–26.
15–27.
15–29.

15–30.
15–31.

15–33.

15–34.
15–35.
15–37.

15–38.

15–39.

15–41.

15–42.
15–43.

15–45.

15–46.

15–47.
15–49.

15–50.
15–51.

N = 771 N
vM = 0.178 m>s
1.36 m
d = 2.65 m
s = 2.207 m:
t = 0.5097 s
(vB)y = 2.5 m>s
vG = 0.8660 m>s ;
vr = 8.93 ft>s
v3 = 0
(vc)2 = 0.800 ft>s ;
sC = 0.577 m ;

AvB Bx = 2.887 m>svC = 1.443 m>s ;
t = 0.408 s
sP = 0
v = 0.720 m>s ;
dB = 104 m
tBD = 0.04574 s
vB = 2.62(103) m>s
vA = 3.09(103) m>s
vB = 11.9 m>s
vA = 29.8 m>s
smax = 163 mm
v3 = 2.31 m>s
t = 2.5 s
vB = 1.33 m>s ;  vA = 0.667 m>s:
vA = -vB + 2
u = f = 9.52°
v = 0.6 ft>s
¢T = 16.9 kJ
T2 = 3.375 kJ
T1 = 20.25 kJ
v2 = 0.5 m>s
v2 = 1.92 m>s
Favg = 12.7 kN
Favg = 847 lb
v = 136.35 ft>s
v2 = 21.8 m>s
v = 4.14 m>s
FD = 15.7 kN
33 000(0) + FD(30) = 33 000(14.29)
v = 14.3 m>s
63 000(0) + 30(103)(30) = 63 000v
u = 48.1°b
v = 8.07 m>s
v = 26.4 ft>s
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15–73.

15–74.

15–75.

15–77.

15–78.
15–79.

15–81.

15–82.

15–83.

15–85.

15–86.

15–87.

15–89.

15–90.
15–91. v = 3.33 m>s

v = 95.6 ft>s
(vB)2 = 3.09 ft>s
(vA)2 = 2.46 ft>s
AvBy B2 = -2.40 ft>s
AvAy B2 = -2.40 ft>s
(vBx)2 = 1.95 ft>s
(vAx)2 = 0.550 ft>s
fB = 42.80°
vœB = 14.7 ft>s
fA = 72.86°
vœA = 12.6 ft>s
fB = 61.16°
vœB = 4.94 m>s
fA = 86.04°
vœA = 9.68 m>s
fB = 42.99°
vœB = 9.38 m>s
fA = 102.52°
vœA = 8.19 m>s
vœB sin fB = 6.4
vœA sin fA = 8
15vœA cos fA + 10vœB cos fB = 42
(vA)2 = 1.77 ft>s
(vB)2 = 2.88 ft>s
vœB = 7.79 m>s ;

uA = 80.2°bvœA = 5.07 m>s
(vB)1 = 29.3 ft>s
(vB)2 = 43.51 ft>s
(vA)1 = 44 ft>s
(vA)2 = 9.829 ft>s
d = 0.708 m
(vB)2 = 3.16 m>s
(vA)2 = 4.60 m>s
vœB = 31.8 ft>s
u = 13.0°
vœB = 22.2 m>s
AvœB By = 5 m>sc
AvœB Bx = 21.65 m>s;

u = 43.9°(vB)3 = 3.24 m>s
f = cos-1B1 -

(1 + e)4

16
 (1 - cos u)R

vœn = A1 + e
2 Bn-1v1

vœ3 = A1 + e
2 B2 v1

vœ2 = A1 + e
2 Bv115–53.

15–54.

15–55.

15–57.

15–58.

15–59.
15–61.

15–62.
15–63.
15–65.

15–66.

15–67.

15–69.

15–70.

15–71.
¢E = 9.65 kJ
e = 0.75

u = cos-1B1 -
A1 + e B2

8
R

(vB)3 = A1 + e
2 B2gL

(vA)3 = A1 - e
2 B2gL

vA = 16.9 ft>s
s = 1.90 ft
vAx = 12.510 ft>s
t = 0.3119 s
vAy = 11.434 ft>s
f = 6.34°
(vB)1 = 13.900 ft>s
smax = 1.41 ft
(vB)3 = 13.9 ft>s
(vA)3 = 0
1Fdt = 1.99 kip # s
e = 0.261
h = 1.92 ft
u = 54.3°a
v2 = 13.7 ft>s
(vx)2 = 8 ft>s
(v2)y = 11.12 ft>s
(vP)2 = 0.940 m>s
Favg = 1.68 kN
smax = 1.53 m
(vB)2 = 5.60 m>s
(vA)2 = 2.40 m>s
h = 21.8 mm
sB = 9.13 ft
(vB)2 = 15.3 ft>s ;
(vA)2 = 9.44 ft>s ;
(vA)1 = 19.7 ft>s
(vC)2 =

v(1 + e)2

4

(vC)2 =
v(1 + e)2

1

(vA)2 =
v(1 - e)

2
(vB)2 =

v(1 + e)
2

t = 0.226 s
s = 0.863 ft
t = 0.518 s
t = 0.518 s
v = 3.33 ft>s
A 10

32.2 B(10) + 0 = A10 + 20
32.2 Bv
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15–122.

15–123.

15–125.

15–126.
15–127.
15–129.

time to empty the tank 

15–130.

15–131.

15–133.

15–134.

15–135.

15–137.

15–138.
15–139.
15–141.

Review 1
R1–1.

R1–2.
R1–3.

a = 0.450 m>s2
v = 1.12 m>s
¢s = 834 mm
r = 9.32 m
an = 9.38 m>s2
at = 2.88 m>s2
u = 17.0°c
v = 8.37 m>s
vy = 2.4525 m>s
y = -0.0766x2

F = 3.55 kN
a = 0.1
vD>e = 0.237 m>s
m = 37 600 kg
vmax = 2068 ft>s
F = v2 r A

m1 =
m
s

dv
v

= - a m1

m1x + M
bdx

v =
C

2
3
gay3 - h3

y2 b
F = m¿v2
a = 0.104 m>s2

dme
dt

= 1216 kg>s
m = 57.6 A103 B  kg

FD = 11.5 kN
a2 = 2.40 m>s2
a1 = 2.11 m>s2
v = 4.05 m>s
a = 0.125 m>s2

t = 40 s
a = 10

120 - t

T = 9.72 N
F = 22.4 lb
a = 0.0476 m>s2

m = 10.5 A103 B  kg
v = 330 m>s
a = 16.9 m>s2 c
Fy = 1.96 lb
Fx = 19.5 lb
Dx = 2.54 kip
Dy = 5.82 kip
MD = 10.7 kip # ft15–93.

15–94.

15–95.

15–97.

15–98.
15–99.
15–101.

15–102.

15–103.

15–105.

15–106.
15–107.

15–109.

15–110.
15–111.

15–113.

15–114.
15–115.
15–117.

15–118.

15–119.

15–121.

dmA
dt

=
dmB
dt

= 96.894 slug>s
vA = vB = 63.66 ft>s
FB = 1357.17 lb
FA = 1696.46 lb

h =
8Q2

p2d4 g
-

m2g

8r w2 Q2

F = 302 lb
d = 2.56 ft

dm

dt
= 0.2360 slug>s

v = 56.59 ft>s
Q = 100 ft3>s
T = 40.1 kN
Q = 0.217 A10-3 B  m3>s
Fy = 4.93 lb
Fx = 9.87 lb

dm

dt
= 0.9689 slug>sv = 10.19 ft>s

Nf = 174 lb
Ff = 19.6 lb
v = 86.3 m>s
vp = 594 km>h
ve = 552.78 m>s:
UF = 8.32 N # m
v2 = 1.99 m>s
v = 2v0

2 + 2gh

UF = 2641 ft # lb
v2 = 45.1 ft>s
Av2 Bu = 45 ft>s
v2 = 19.3 ft>s
u = 33.2°
v2 = 4.31 m>s
v2 = 0.9610 m>s

T2 = 21.6 Nd¿ = 0.414 m
v1 = 0.7958 m>s
T1 = 20.3 N
v2 = 4.60 ft>s
t = 1.34 s
v = 6.15 m>s
2[0.4 (3) (0)] +

L

2 s

0
A6e 0.2 t B dt = 2[0.4(3) v]

HB = 70.9 slug #  ft2>s
HO = 6.76 A106 B  kg #  m2>s
t = 0.910 s
v = 17.76 ft>s
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,

R1–34.
R1–35.
R1–37.

R1–38.
R1–39.

R1–41.

R1–42.
R1–43.
R1–45.

R1–46.

R1–47.

R1–49.

R1–50.

Chapter 16
16–1.

16–2.

16–3.

16–5.

16–6.
vw = 34.6 mm>s
vA = vB = 40 mm>s
vB = 89.6 rad>s
vE = vF = 64 rad>s
vC = vD = 80 rad>s
u = 35.3 rev
v = 35.4 rad>s

a = 10.0 rad>s220 = a(2)at = ar;
u = 8.54 rev
vP = 48.7 ft>s
a = 8.02 ft>s2
an = 8 ft>s2
at = 0.5 ft>s2
v = 2 ft>s
v = 4 rad>s

vB = 27.2 ft>s
at = 2.30 m>s2
v = 9.82 m>s
3 sin 40° =

v2

50

y =
m

k
av0 sin u0 +

mg

k
b a1 - e-

k
mtb - mg

k
t

xmax =
m

k
v0 cos u0

x =
m

k
v0 cos u0 A1 - e-

k
mt B

vmax =
mg

k

x = 3 m
v2 = 75 m>s
Fs = 4.90 lb
(vA)3 = 0.125 m>s
(vB)2 = 1

322gh(1 + e)
vA = 22gh
vB = 4.62 m>s
vA = 1.54 m>s
vC = 2.34 m>s
vC = 2.36 m>s
-1

2(25)(0.5 - 0.3)2 = 1
2(20)vC

2

+  20(9.81)(0.5 - 0.3) - 1
2(15)(0.5 - 0.3)2

0 + 100 sin 60°(0.5 - 0.3)
s = 5.43 m
v = 14.1 m>s
v�t= 9 = 10 m>s
stot = 56.0 m

s = -30.50 mt = 9 sR1–5.

R1–6.

R1–7.
R1–9.

R1–10.

R1–11.

R1–13.

R1–14.
R1–15.
R1–17.

R1–18.

R1–19.

R1–21.

R1–22.
R1–23.

R1–25.

R1–26.

R1–27.

R1–29.

R1–30.
R1–31.

R1–33. ,
, s = -36.627 mt = 7.702 s
s = 7.127 mt = 1.298 s

F = 24.8 N
N = 24.8 N
v2 = 2.13 ft>s
v2 = 10.1 ft>s
t = 2 s for crate to start moving
F = 13.4 lb
N = 277 N
u = 11.95°
v = 5.32 ft>s
v = 5.38 ft>s
0.3W = a W

32.2
b av2

3
b

v = 1.48 m>s
v = 0.969 m>s
v = 20.4 ft>s
k¿ = 600 lb>ft
k = 360 lb>ft
u = 19.1°
aB>A = 3.35 A103 B  mi>h2
u = 80.6°a
aB>A = 3.42 A103 B  mi>h2
u = 44.5°a
vB>A = 28.5 mi>h
vA = 5.85 m>s
t = 0.790 s
vA = 4.32 m>s
t = 0.669 s
vb = 0.379 m>s :
s = 0.0735 ft
a = dv>dt, a = 16.8 m>s2
v = dr>dt, v = 9.68 m>s
vB>C = 13.3 ft>s c
vB = 3.33 ft>s c
s = 320 ft
t = 8 s
a = 0.436 m>s2
480 = (800 + 300)a
a = 0.343 m>s2
480 = [800 + 2(300)]a
h = 4.82 ft
s = 2.61 ft
(vM)2 = 13.4 ft>s T
(vP)2 = 27.0 ft>s T
vB = 0.904 ft>s
vA = 1.58 ft>s
(vb>A)x = 3.692 ft>s
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16–35.

16–37.

16–38.

16–39.

16–41.

16–42.

16–43.

16–45.

16–46.

16–47.
16–49.

16–50.

16–51.

16–53.

16–54.
16–55.

16–57.

16–58.
16–59.

16–61.

vF = 12.0 rad>s
vCD = 3.00 rad>s
vBC = 0
vO = 0.667 ft>s :
v = 3.111 rad>s
vA = 9.20 m>s :
vC = 4 ft>s :
v = 4 rad>s
vA = 2 ft>s :
v = 20 rad>s
vC = 2.40 ft>s
aB =

15(v2 cos u + a sin u)

(34 - 30 cos u)
1
2

-
225v2 sin2 u

(34 - 30 cos u)
3
2

vB =
15v sin u

(34 - 30 cos u)
1
2

s = 232 + 52 - 2(3)(5) cos u

u
#
= 0.0841 rad>s
aEF = 150 ft>s2 T
vEF = 26 ft>s c
aCD = 260 ft>s2 ;
vCD = 15 ft>s ;
xB = 3 cos u ft
v = 0.0808 rad>s
aBC = -21.0 rad>s2
vBC = 5.45 rad>s
aC = 52.6 m>s2 ;
vC = 3 m>s ;
xC = 0.6 cos u m

a = B r(2x2 - r2)
x2(x2 - r2)3>2R v2

A

v = - a r

x2x2 - r2
b vA

vB = Ahd B vA
vBC = 10.0 rad>s
vC = -3.00 m>s
x = 0.6 cos u + 0.322 sin u - 4 sin2u + 0.75
a = -v2 r sin u
v = vr cos u

a = av0

a
b2

 sin 2u sin2 u

v =
v0

a
 sin2 u

y
# = 1.5 cotu

y = 4 sin ux = 4 cos u
aD = 5-36.0i + 66.6j + 40.2k6 m>s2
vD = 54.8i + 3.6j + 1.2k6 m>s16–7.

16–9.

16–10.
16–11.
16–13.

16–14.

16–15.
16–17.

16–18.
16–19.

16–21.

16–22.

16–23.
16–25.

16–26.

16–27.

16–29.

16–30.
16–31.
16–33.

16–34.
aC = 538.4i - 6.48j + 40.8k6 m>s2
vC = 5-4.8i - 3.6j - 1.2k6 m>s
aP = 205 m>s2
(an)P = 204.89 m>s2
(at)P = 7.532 m>s2
vP = 7.16 m>s
u = 24.1 rad
v = 28.6 rad>s
vF = 484 rev>min
vF = 784 rev>min
vC = 0.6 m>s
(vB)max = 8.49 rad>s
(rB)min = (rA)min = 50 mm
(rB)max = (rA)max = 5022 mm
uB = 288 rad
vB = 528 rad>s
aC = 106 ft>s2
vC = 21.2 ft>s
vD = 11.8 rad>s
vC = vB = 29.45 rad>s
vA = 117.81 rad>s
aA = 39.27 rad>s2
vC = 224 rad>s
(aB)n = 322 ft>s2
(aB)t = 9.00 ft>s2
vB = 22.0 ft>s
(aA)n = 242 ft>s2
(aA)t = 12.0 ft>s2
vA = 22 ft>s
v = 11 rad>s
(a)B = 126 ft>s2
(a)A = 252 ft>s2
vB = 35.4 ft>s
vA = 70.9 ft>s
t = 100 s
vB = 64 rad>s
vs = 256 rad>s
aA = 60.8 rad>s2
an = 84.5 ft>s2
at = 1 ft>s2
as = 18.8 rad>s2
vs = 266 rad>s
t = 7.083 s
vP = 0.75 rad>s
vP = 18.8 ft>s
vB = 31.7 rad>s
vC = 47.5 rad>s
vB = 211 rad>s
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16–93.

16–94.
16–95.

16–97.

16–98. d

d

16–99.

16–101.

16–102.
16–103.
16–105.

16–106.

16–107.

16–109.

16–110.

16–111.

16–113.

16–114. b

b

16–115.
16–117.

16–118.
u = 18.8°a
aC = 6.96 ft > s2
aA = 13.2 ft > s2 ;
aAB = 3.945 rad>s2
vAB = 2.309 rad > s
rB>IC = 1.732 ft
aC = 66.5 ft>s2 :
a = 7.68 rad>s2
v = 2 rad>s
aW = 0.231 rad>s2
aAB = 0.4157 rad>s2
vW = 1.20 rad>s
u = 84.1° d
aA = 4.83 m>s2
aD = 10.0 m>s2
u = 2.02° d
u = 32.6° c
aB = 2.25 m>s2
(aB)y = -1.214 m>s2
(aB)x = 1.897 m>s2
u = 36.2° b
vD = 5.72 m>s
u = 22.9° g
vC = 8.69 m>s
vO = 1.04 m>s :
vBC = 2 rad>s
rC>IC = 1.039 m
rB>IC = 1.2 m
vD = 0.518 m>s R
vC = 0.897 m>s Q
vCD = 0.0510 rad>s
vBC = 1.983 rad>s
rC>IC = 0.1029 ft
rB>IC = 3.025 ft
vR = 3.00 rad>s
vS = 15.0 rad>s
vOA = 10.6 rad>s
vS = 57.5 rad>s
vH = 18.0 ft>s
vBE = 2.00 rad>s
vBC = 0.300 rad>s
vO = 2 ft > s ;
v = 5.33 rad > s
vE = 2 ft > s ;
vBC = 5.30 rad > s
vAB = 5.303 rad > s
rA>IC = 0.5657 m16–62. d

16–63.

16–65.

16–66.
16–67.
16–69.

16–70.

16–71.
16–73.

16–74.
16–75. d

16–77.

16–78.

16–79.
16–81.

16–82.
16–83.
16–85.

16–86.
16–87.
16–89.

d

16–90.
16–91. vB = 29.7 m>s

vG = 6.00 m>s ;
u = 40.9° b
vE = 4.76 m>s
vAB = 6 rad>s
vB = 7.20 m>s
vBC = 10.39 rad>s
vC = 1.04 m>s :
vA = 2.5 ft>s ;
vA = 9.20 m>s
rO>IC = 0.8 m
vC = 1.33 ft>s :
vC = 2.40 ft>s
vC = 2.93 ft>s T
vCD = 4.00 rad>s
(vD)y = 4.00 ft>s
(vD)x = 4.00 ft>s
vB = 8.00 ft>s c
vC = 30 rad>s
vE = 64 rad>s
0.075vE = 4.8
vA = 53.3 rad>s
vE = 86 rad>s
vA = 90 rad>s
vP = 0.075vE

vP¿ = 1.65 m>s :
vO = 2.4 m>s ;
v = 5.33 rad>s
vG = 9 m>s ;
vE = 4 ft>s ;
vDE = 0
vBD = 6.928 rad>s
vD = 4 ft>s
vA = 1.15 ft>s T
vB = 1.15 ft>s c
v = 0.577 rad>s
vE = 41.4 ft>s c
vCDE = 6.90 rad>s
vBC = 0.7141 rad>s
vA = 2.5 ft>s ;
vA = A 2R

R - r Bv :
vO = A R

R - r Bv :
v = v

R - r

u = 55.6° b
vG = 330 in.>s
vAB = 330 rad>s
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16–119. b

16–121.

b

16–122. d

16–123.
16–125.

16–126.

16–127.

16–129.

b

16–130.
16–131.
16–133.

16–134. b

d

16–135.
aB = 5-14.2i + 8.40j6 m>s2
vB = 50.6i + 2.4j6 m>s
aCD = 10.9 rad>s2
vCD = 1 rad>s
aBD = 0.177 rad>s2 aAB = 0
aCD = 0.177 rad>s2
aED = -0.1768 rad>s2
aB = 52.828aABi6 ft>s2
aD = 51.414aEDi - 1.414aEDj6 ft>s2
aB = 7.5 rad>s2
aB = 7.5 rad>s2
aAB = 36 rad>s2
(aB)t = 10.8 m>s2
aBC = 12 rad>s2
(aC)t = 3.6 m>s2 :
(aC)n = 3.6 m>s2 T
vB = vC = 1.8 m>s
vBC = 0
u = 87.7°b
aC = 63.5 ft>s2
aA = 0.500 ft>s2 T

aA =
2v2

r
:

aB =
2v2

r
T

vA = 222va 45°
vB = 4v :
aAB = 173 rad>s2
aBC = 160 rad>s2
vAB = 11.55 rad>s
vBC = 5 rad>s
rB>IC = 0.6928 m
rC>IC = 0.4 m
aB = 1.43 rad>s2
u = 39.4°c
aC = 38.2 m>s2
aABC = 41.6 rad > s2
u = 66.9°a
aC = 165 m>s2
aBC = 347 rad>s2
vC = 3.118 m>s
vBC = 7.2 rad>s
rC>IC = 0.4330 m
rB>IC = 0.25 m
vB = 1.8 m>s :
aAB = 3.70 rad>s2 16–137.

16–138.

16–139.

16–141.

16–142.
d

16–143. b

b

16–145. d

d

16–146. d

16–147. b

b

16–149.

16–150.

16–151.

16–153.

16–154.

16–155.

16–157.

16–158. d

d

16–159.
aAB = 2.50 rad>s2
vAB = 2.60 rad >s
aCD = 3.23 rad>s2
vCD = 0.866 rad>s
aC = 5-38.8i - 6.84j6 ft>s2
vC = 5-7.00i + 17.3j6 ft>s
æ
#

= 0.4k
æ = 1.5k
aB = 5-39.64i - 11.34j6 ft>s2
vB = 5-10.0i + 17.32j6 ft>s
aA = 5349i + 597j6 m>s2
vA = 5-17.2i + 12.5j6 m>s
(arel)xyz = 5-10.3i + 2.2j6 m>s2
(vrel)xyz = 5-31 j6 m>s
(arel)xyz = 54.3i - 0.2j6 m>s2
(vrel)xyz = 529j6 m>s
v
# = 50.04k6rad>s2
v = 50.2k6rad>s
(arel)xyz = 52.4i - 0.38j6 m>s2
(vrel)xyz = 527i + 25j6 m>s
(arel)xyz = 50.6i - 0.38j6 m>s2
(vrel)xyz = 527i + 25j6 m>s
aAB = 2.5 rad>s2
(vrel)x¿y¿z¿ = -5.196 m>s
vAB = 5 rad>s
(aB)n = 60 m>s2
(aB)t = 3 m>s2
aDC = 7.26 rad>s2
vDC = 3.22 rad>s
aAB = 15.4 rad>s2
vAB = 1.18 rad>s
aB>A = -4.00 ft>s2
aBC = 2.02 rad>s2
vA>B = -1.92 ft>s
vBC = 0.720 rad>s
aCD = 24 rad>s2
vCD = 10 rad>s
aCD = 56.2 rad>s2
vCD = 6.93 rad>s
vCDE = 5 rad>s
vB = 5-2.898i - 0.7765j6m>s
aA = 5-3.00i + 1.75j6 ft>s2
vA = 5-2.50i + 2.00j6 ft>s
aB = 0.620 ft>s2
vB = 1.30 ft>s
aC = 5-1.2j6 m>s2
vC = 50.6i6 m>s
(arel)xyz = 51.5i - 30j6 m>s
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17–33.

17–34.
17–35.

17–37.

17–38.
17–39.
17–41.

17–42.
Since then crate will not tip. Thus, the
crate slips.

17–43.

17–45.

17–46.

17–47.

17–49.

17–50.

17–51.

17–53.

17–54.

17–55.
(aG)t = 32.2 ft>s2
FCD = 9.17 lb
FCD = 564 N
FAB = 1.22 kN
FC = 187 N
NC = 613.7 N
NA = 327 N
NB = 1.14 kN
a = 4 m>s2 :
NA = 400 lb
FA = 257 lb
amax = 20.7 ft>s2
NA = 400 lb
FA = 248 lb
hmax = 3.16 ft
= 150

32.2 A20 B Ahmax B + 250
32.2 A20 B A1 B

250 A1.5 B + 150 A0.5 B
NA = 17.4 kN
NB = 1.31 kN
NA = 114 kN
T = 375 kN
aG = 4.99 m>s2
NB = 3692 N
P = 2.00 kN
NA = 0
Dy = 731 N
FBA = 568 N
Dx = 83.3 N

c 6 0.3 m
a = 2.01 m>s2
Ax = 672.41 N Ay = 285.77 N
a = 0.8405 m>s2
ND = 7.56 kN
NC = 4.62 kN
NB = 9.40 kN
a = 96.6 ft>s2
F = 23.9 lb
NA = 778 lb
NB = 2122 lb
a = 3.33 ft>s2
All wheel drive t = 11.3 s
rear wheel drive t = 17.5 s
a = 17.3 ft>s2
a = 13.2 ft>s2
NB = 910 lb
NA = 640 lb
NB(4.75) - 0.7NB(0.75) - NA(6) = 0Chapter 17

17–1.

17–2.
17–3.

17–5.

17–6.

17–7.

17–9.

17–10.
17–11.
17–13.

17–14.

17–15.
17–17.

17–18.
17–19.

17–21.

17–22.
17–23.
17–25.

17–26.
17–27. acceleration

constant speed 
17–29.

17–30.
17–31. Since the required friction 

it is not possible
to lift the front wheels off the ground.
mk NB = 0.6(14 715) = 8829 N

Ff 7 (Ff)max =
a = 3.96 m>s2
NB = 544 N
NA = 568 N
= -120(3)(0.7)
70(9.81)(0.5) + 120(9.81)(0.7) - 2NA (1.25)

FAB = FCD = 200 lb
FAB = FCD = 231 lb

v = 111 m>saG = 16.35 m>s2
amax = 4.73 m>s2

a = 4.73 m>s2System :
a = 5.19 m>s2Canister :

IO = 0.113 kg # m2
IO = 0.276 kg # m2
IO = 5.27 kg # m2

+ C25 (15)(0.12) + 15(0.552) D
IO = C 1

12 (10)(0.452) + 10(0.2252) D
Ix = 3.25 g # m2
Ix = 0.402 slug # in2
Ix = 5.64 slug # ft2

- 3
10 m3 (0.25)2Ix = 1

2 m1 (0.5)2 + 3
10 m2 (0.5)2

IO = 1
2 ma

2
IG = 4.45 kg # m2
y = 1.78 m
IA = 222 slug # ft2
IO = 84.94 slug # ft2
IG = 118 slug #  ft2

Iy = 2
5 mb

2

Iy = 5
18 m

Iy =
pr

9

m = 2
5 rp

Iz = m
10 a

2

Iy = 2
5 m r

2

Ix = 1
3 ma

2

Ix =
L

h

0

1
2 r p a a

4

h2 bx2 dx

kx = 57.7 mm
Ix = 3

10 m r
2

Iy = 1
3 m l

2

Iy =
L

l

0
x2 (r A dx)
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17–85.

17–86.
17–87.
17–89.

17–90.
17–93.

Since
then the semicircular disk does not slip.

17–94.

17–95.

17–97.

17–98.
17–99.

17–101.

17–102.
17–103.
17–105.

17–106.
17–107.
17–109.

17–110.

17–111.

17–113.

aG = 4.06 m>s2
a = 5.66 rad>s2
NC = 67.97 N
t = 0.296 s
a = 73.27 rad>s2
a = 0.309 A10-3 B  rad>s2
a = 0
aA = 167 ft>s2
a = 125.58 rad>s2
N = 10.0 lb
a = 1.15 rad>s2
a = 0.692 rad>s2
FA = 24.0 N
NA = 981 N
aG = 6.24 m>s2
a = 15.6 rad>s2
a = 1.30 rad>s2
a = 5.01 rad>s2
a = 5.01 rad>s2
NA = 926.2 N
FA = 61.32 N
a = 2.58 rad>s2
aG = 12.9 ft>s2
u = 46.9°
a = 4.35 rad>s2
aG = 5.44 ft>s2
N = 29.34 lb
F = 1.17 lb
a = 0.293 rad>s2
a = 5.54 m>s2 c
a = 5.80 rad>s2
aG = 16.1 ft>s2
45.66 N,

Ff 6 (Ff)max = msN = 0.5(91.32) =
N = 91.32 N
Ff = 20.12 N
(aG)y = 0.6779 m>s2
(aG)x = 2.012 m>s2
a = 13.85 rad>s2
v = 2.48 rad>s
NC = 44.23 N
a = 16.4 rad>s2
FAB = 183 N
v = 17.6 rad>s
a = 14.2 rad>s2
P = 192 N
a = 12.57 rad>s217–57.

17–58.

17–59.

17–61.

17–62.
17–63.

17–65.

17–67.

17–69.

17–70.

17–71.
17–73.

17–74.

17–75.

17–77.

17–78.

17–79.

17–81.

17–82.

17–83.
F = 30.0 lb
a = 12.1 rad>s2
Ay = 253 N
Ax = 150 N
a = 0.146 rad>s2
t = 3.11 s
a = 19.3 rad>s2
FCB = 193 N
Ay = 6.5 lb
Ax = 4.5 lb
Ay = 951 N
Ax = 1.20 kN
NB = 1.05 kN
Ay = 2.89 kN
Ax = 0
NB = 2.89 kN
Cn = 5781 N
Ct = 0
a = 0
a = 23.1 rad>s2

Ay = 289 N

Ax = 0

FA = 219 N
Oy = 0.438mg
Ox = 0.325mg
a = 1.30g>l
t = 2.19 s
FA = 70.7 lb
a = 3.22 rad>s2
TB = 1.21 kN
a = 25.13 rad>s2
Ax = 0
rP = 2.67 ft
u = 30.1°
a = -3.6970 sin u
aG = 4.90 m>s2
a = 14.7 rad>s2
FO = 6.14 lb
t = 8.10 s
a = 1.852 rad>s2
NA = NB = 325 N
P = 39.6 N
VP = 3.75 N
NP = 7.38 N
MP = 2.025 N # m
t = 6.71 s
a = 0.2778 rad>s2
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18–23.
18–25.

18–26.
18–27.
18–29.

18–30.
18–31.
18–33.

18–34. (a)

(b)

18–35.

18–37.

18–38.
18–39.
18–41.

18–42.
18–43.
18–45.

18–46.
18–47.

18–49.

18–50.
18–51.
18–53.

18–54.
18–55.
18–57.

k = 814 N # m>rad
V2 = p2

8 k
k = 10.5 kN>m
v = 7.98 rad>s
v2 = 3.09 rad>s
V2 = -8.5725 J
AVg B2 = -22.0725 J
v = 3.92 rad>s
k = 232 N # m>rad
l0 = 299 mm
=  0 + 2 C12 (350)(x1 + 1)2 D - 50(9.81)(1)

0 + 2 C12 (350)(x1)
2 D

v = 1.74 rad>s
vC = 3.07 ft>s
vC = 13.3 ft>s

+ 1
2 A 1

32.2 B(vC)2 + 0= 1
2 C13 A 4

32.2 B(3)2 D avC
3
b2

0 + 4(1.5 sin 45°) + 1(3 sin 45°)
v = 39.3 rad>s
v = 41.8 rad>s
u = 25.4°
=  0 + 1

2(12)(4 + 6 sin u - 2)2 - 50(3 sin u)

1
2 C13 A 50

32.2 B(6)2 D(2)2 + 1
2 (12)(4 - 2)2

u = 0.934 rev.
vA = 6.95 ft>s
vAB = 4.28 rad>s
+ 1

2 (4) C6 - 2(3 cos 45°) D2 + 0

0 + 2 C15(1.5 sin 45°) D = 2 C12 A13 A 15
32.2 B(3)2 Bv2

AB D
v = 2.83 rad>s
v =

B

3p
2

w0

m
+

3g

L

v =
B

3p
2
aw0

m
b

vA = 14.2 ft>s
0 + 1500(5.629) - 1500(2.5) = 1

2 A1500
32.2 B AvG B2

u0 = 1.66 rad
vB = 5.05 ft>s
u = 5.18 rev
UFf = -40.5u
UWA = 18.75u
T1 = 708.07 ft # lb
AvBC B2 = 1.07 rad>s
v = 7.81 rad>s
v = 10.5 rad>s
UW = 1387.34 N
vC = 19.6 ft>s17–114.

b

17–115.
17–117.

17–118.

17–119.

17–121.

17–122.
17–123.

Chapter 18
18–2.
18–3.

18–5.

18–6.

18–7.

18–9.

18–10.
18–11.
18–13.

18–14.
18–15.

18–17.

18–18.
18–19.
18–21.

18–22. v2 = 1.25 rad>s
v2 = 2.91 rad>s
UW = 127.44 J
vC = 11.8 ft>s c
vC = 16.9 ft>s c
v = 3.62 rad>s
UW = -12.49 J
UM = 17.22 J
vB = 1.76 m>s c
vA = 3.52 m>s T
v = 1.32 rad>s
sG = 0.859 m
NA = 509.7 N
sA = 0.6667sG

u = 0.934 rev.
v = 0.836 rad>s
v = 4.51 rad>s
sP = 16.67 ft
P = 141 N
vB = 2.58 m>s
v =

1
kGB

pFd
m

v2 = 2.83 rad>s
0 + (50)(9.81)(1.25) = 1

2 C(50)(1.75)2 Dv2
2

v = 1.88 rad>s
T = 283 ft # lb

a = 3 rad>s2
aG = 1.5 m>s2 :
a = 9.51 rad>s2
Ff = 131.15 N
N = 735.75 N
aG = 1.749 m>s2
a = 3.89 rad>s2
a = 29.2 rad>s2
aG = 2.22 m>s2 ;
aG = 1.44 m>s2 ;
a = 9.60 rad>s2
a = 35.4 rad>s2
aA = 10 m>s2 :
(aG)y = 0
(aG)x = 2.5 m>s2 :
mmin = 0.0769
T = 45.3 N
a = 7.55 rad>s2
aB = 0.755 m>s2 T
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18–58.

18–59.
18–61.

18–62.
18–63.
18–65.

18–66.
18–67.
18–69.

Chapter 19
19–5.

19–6.

19–7.
19–9.

19–10.

19–11.
19–13.

19–14.
19–15.
19–17.

19–18.

19–19.
19–21.

19–22.
19–23.
19–25.

19–26.
19–27. M = 103 lb # ft

v = 19.4 ft>s
Tavg = 12.7 N
v = 9 rad>s
(vG)BC = v(1.118)
IG = 0.75 kg # m2
v = 20 rad>s
y = 2

3 l
I = 79.8 N # s
v2 = 0.065625I
v = 116 rad>s
v = 9.49 rad>s
vG = 1.39 m>s
t = 0.510 s
(vO)2 = 4.6 m>s
N = 49.05 N
IO = 0.02 kg # m2
rP = 1.39 ft
t = 5.08 s
P = 120 lb

TB = 359.67 lbTC = 140.15 lb
vB = 127 rad>s
v = 5.48 m>s
vA = 36.5 rad>s
v = 70.8 rad>s
IO = 0.78125 kg # m2
v = 0.0253 rad>sL
Mdt = 0.833 kg #  m2>s

L = 3.92 slug # ft>s
vG = 12.64 ft>s

k = 42.8 N>m
0 + 0 = 0 + 1

2 (k)(3.3541 - 1.5)2 - 98.1 A1.5
2 B

vAB = 2.21 rad>s
v = 5.28 rad>s
v = 2.82 rad>s
l = 7.727 ft
vAB = 3.70 rad>s
v = 1.82 rad>s
s = 2.44 ft
¢ss = -4 ft
vP = 20.7 m>s
(vAB)2 = 0.597 rad>s
(vBC)2 = 0

19–29.

19–30.
19–31.
19–33.

19–34.
19–35.
19–37.

19–38.
19–39.

19–41.

19–42.
19–43.
19–45.

19–46.
19–47.
19–49.

19–50.

19–51.
19–53.

19–54.
19–55.

Review 2
R2–1.

vD = 6.67 rad>s
vC = 3.333 ft>s
vP = 20 rad>s
vA = 6.667 ft>s

u1 = 39.8°
(vb)2 = 3.36 ft>s :
(vP)3 = 3.42 ft>s
v3 = 0.365 rad>s
IG = 20.96 slug # ft2
(vP)2 = 7.522 ft>s
u = 17.9°
h = 4.99 ft
(vH)2 = 16.26 ft>s T
v2 = 17.92 rad>s
v4 = 6.36 rad>s
v3 = 5.056 rad>s
v2 = 3.431 rad>s
v = 26.4 rad>s
v = 5.96 ft>s
v2 = 1.53 rad>s
IA = 24.02 kg # m2
IG = 11.25 kg # m2
v1 = 1.146 rad>s
v2 = 0.195 m>s
v2 = 1

4 v1

v3 = 2.96 rad>s
v2 = 2.41 rad>s
(Iz)2 = 81.675 kg # m2
(Iz)1 = 98.55 kg # m2
vm = 3.05 ft>s
v = 0.244 rad>s
v2 = 5.09 rev>s
(vz)2 = 6.75 rad>s
(Iz)2 = 1.531 slug # ft2
(Iz)1 = 3.444 slug # ft2
v = 0.175 rad>s
kG = 0.122 m
vB = 10.9 rad>s
(IA)G = 19.14 kg # m2
v2 = 5-31.8k6 rad>s
vG = 0.557 m>sL
F dt = 15.2 kN # s

0 + c
L
F dt d(3.5) = 175(2.25)2(60)
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R2–33.
d

b

R2–34. b

R2–35.

R2–37.

R2–38.
R2–39.
R2–41.

R2–42.
R2–43.

R2–45.

R2–46.
R2–47.

R2–49.

R2–50.

Chapter 20
20–1.

20–2.

20–3.

20–5.

A = 532i6 rad>s2
(v
#

2)XYZ = 532i6 rad>s2
v = 5-8.0j + 4.0k6 rad>s
v = -8.944 rad>s
aA = 510.4i - 51.6j - 0.463k6 m>s2
vA = 5-7.61i - 1.18j + 2.54k6 m>s
A = 5-3.39i6 rad>s2
V = 55.66j + 6.26k6 rad>s
A = vy vs i - vx vs j
A = 0 + (vx i + vy j) * (vs k)
V = vx i + vy j + vs k

Ax = 1.63 N
Ay = 344 N
NB = 297 N

v =
vG
r

t2 =
vG
mg

a =
mg

r

t = 10.4 s
vCD = 6.33 rad>s
uD = 0.667 rev
aD = 2.09 rad>s2
uS = 10.472 rad
aS = 5.236 rad>s2

u = 53.3° daB = 40.2 ft>s2
aA = 56.2 ft>s2 T
u = 4.45°
vB = 5.00 rad>s vG = 5.00 ft>s T = 2.00 lb
t = 0.194 s
v = 0.0708 rad>s
v = 30.7 rad>s
V = 0
N = -29.6 kN
M = 51.2 kN # m
T = 59166.86 N
vB = 4.39 ft>s
v = 1.08 rad>s
a = 2.66 rad>s2
aAB = 4.93 rad>s2
a = 1.80 rad>s2
vAB = 1.47 rad>s
rIC-C = 1.464 ftR2–2.

R2–3.
R2–5.

R2–6.

R2–7.

R2–9.

R2–10.
R2–11.
R2–13.

R2–14.
R2–15.
R2–17.

R2–18. d

R2–19.
R2–21.

R2–22.

R2–23.

R2–25.

R2–26.

R2–27.

R2–29.

R2–30.

R2–31.

(vC)2 =
2g sin u

3r
t

(vS)2 =
5g sin u

7 r
t

ab = 1.94 m>s2
am = 1.45 m>s2
v2 = 12.7 rad>s
0 + 5(0.6)(4) = C A 30

32.2 B(0.45)2 + A 30
32.2 B(0.9)2 Dv2

v = 3.89 rad>s
h =

mg

M + 2m
t2

a =
2mg

R(M + 2m)

vB = 6.67 rad>s
vD = 2 m>s
s =
v1 r

2mg
 (2v1 - v1 r)

vC = 12.7 ft>s
aB = 17.3 ft>s2
aA = 0.400 ft>s2
vA = vB = 2.40 ft>s
v = 7.20 rad>s
ac = 1.20 rad>s2
vCD = 4.17 rad>s
v = 2.19 rad>s
t = 1.32 s
vG = 2.75 m>s
vDE = 132 rad>s
v = 0
F = 0
vD = 32.2 ft>s
vC = 32.2 ft>s
v = 0
a = 12.6 rad>s2
v2 = 13.3 rad>s
v2 = 3.46 m>s
v1 = 40 rad>s
vAB =

B

4g

3(R - r)

aA = 12.5 m>s2 ;
vBL = -11.4 ft>s
v2 = 6.82 rad>s
d = 2 ft
v2 = 3.81 rad>s
vD = 5.33 rad>s
vP = 24 rad>s
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20–6.

20–7.

20–9.

20–10.

20–11.

20–13.

20–14.
20–15.
20–17.

20–18.

20–19.

20–21.

20–22.

20–23.

20–25.

20–26.
20–27. vB = 51j6 m>s

aB = 5-1129i + 847k6 ft>s
vB = 5-20i + 15k6 ft>s
vB = -25 ft>s
(vAB)z = 3.333 rad>s
(vAB)y = 4.167 rad>s
(vAB)x = 1.667 rad>s
VAB = 51.17i + 1.27j - 0.779k6 rad>s
vB = 4.71 ft>s
A = 5-0.722i + 0.889j - 0.278k6 rad>s2
aB = 5-6.50j6 ft>s2
V = 50.667i + 0.333j + 0.833k6 rad>s
vB = 56.00j6 ft>s
vz = 0.8333 rad>s
vy = 0.3333 rad>s
vx = 0.6667 rad>s
vB = 6.00 ft>s
aA = 5-6.12i + 3j - 2k6 ft>s2
vA = 510i + 14.7j - 19.6k6 ft>s
aB = 51069i - 2608j - 75k6 m>s2
vB = 54876i - 15j + 26.0k6 m>s
aB = 5569i - 2608j - 75k6 m>s2
vB = 5-124i - 15j + 26.0k6 m>s
aA = 5-5i - 400j6 m>s2
vA = 5-20i6 m>s
VB = 57.5j + 2.5k6 rad>s
VB = 55j + 5k6 rad>s
aA = 5-24.8i + 8.29j - 30.9k6 ft>s2
vA = 5-8.66i + 8.00j - 13.9k6 ft>s
V = 5-0.8i - 0.1j + 0.6k6 rad>s2
aA = 5-7.24j - 7.24k6 m>s2
vA = 5-0.905i6 m>s
A = 564.0i6 rad>s2
V = 5-8.00j6 rad>s
aB = 5293i - 1353j + 1.5k6 ft>s2
vB = 5410i - 15j + 6k6 ft>s
aB = 5243i - 1353j + 1.5k6 ft>s2
vB = 5-90i - 15j + 6k6 ft>s
A = 5-90i + 1.5j + 3k6 rad>s2
V = 56j + 15k6 rad>s
+ a rBh1v

rC h2 + rB h1
bk

vA = a rC
h1
b a rB h1v

rC h2 + rB h1
b j

aA = 5-0.135i - 0.1125j - 0.130k6 m>s2
vA = 5-0.225i6 m>s 20–29.

20–30.
20–31.
20–33.

20–34.
20–35.

20–37.

20–38.

20–39.

20–41.

20–42.
20–43.

20–45.

20–46.

20–47.

20–49.

20–50.

20–51.
aB = 55.75i - 110j + 23.1k6 m>s2
vB = 5-5.20i - 1.44j + 16.5k6 m>s
aB = 55.75i - 109j + 24.1k6 m>s2
vB = 5-5.20i - 1.44j + 16.5k6 m>s
aA = 5-62.4i + 115j - 17.5k6 m>s2
vA = 513.9i + 40.0j - 8.00k6 m>s
(aA>B)xyz = 517.58i - 17.54k6 m>s2
(vA>B)xyz = 513.86i - 8.00k6 m>s
aC = 5-72i - 13.5j + 7.8k6 m>s2
vC = 5-2.7i - 6k6 m>s
aA = 5-7.14i - 1.94j - 2.64k6 m>s2
vA = 5-5.70i + 1.20j - 1.60k6 m>s
aA = 5-1.44i - 3.74j - 0.240k6 m>s2
vA = 5-5.70i + 1.20j - 1.60k6 m>s
(aA>B)xyz = 5-0.320j - 0.240k6m>s2
(vA>B)xyz = 51.20j - 1.60k6 m>s
aC = 50.839i - 3.15j + 0.354k6 m>s2
vC = 5-1.79i - 1.40j + 3.58k6 m>s
aC = 519.35i - 27.9j - 21.6k6 m>s2
vC = 5-4.5i - 1.8j6 m>s
(vC>A)xyz = 5-1.8j6 m>s
vA = 5-4.5i6 m>s
aC = 5-28.8i - 5.45j + 32.3k6 m>s2
vC = 5-1.00i + 5.00j + 0.800k6 m>s
vB = 5-0.333j6 m>s
VBC = 50.769i - 2.31j + 0.513k6 rad>s
vB = 5-0.333j6 m>s
VBC = 50.204i - 0.612j + 1.36k6 rad>s
vB = 0.333 m>s
vz = 1.36 rad>s
vy = -0.612 rad>s
vx = 0.204 rad>s
vC = 510.4i - 7.79k6 ft>s
V = 51.50i + 2.60j + 2.00k6 rad>s
aB = -6.57 m>s2
vz = 0.450 rad>s
vy = 0.225 rad>s
vx = 1.50 rad>s
vB = 1.875 m>s
vB = 510k6 ft>s
aA = 5-13.9k6 m>s2
vA = 52.25k6 m>s
(vAB)z = -0.3121 rad>s2
(vAB)y = 0.3902 rad>s
(vAB)x = -2.133 rad>s
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21–18.

21–19.
21–22.
21–23.
21–25.

21–26.
21–27.
21–29.

21–30.

21–31.
21–33.

21–34.

21–35.
21–37.

21–38.
21–39.

21–41.

21–42.
21–43.

21–45.

v =
B

3g tan u

L(2 sin u + 1)

v
#
x = v# y = v# z = 0
vz = v sin u
vy = -v cos u
vx = 0
Bx = 9.98 N
Ax = 9.64 N
©Mx = Ix v

#
x - Iy Æz vy + Iz Æy vz

+ Æy(Iz vz - Izx vx - Izy vy)
- Æz (Iy vy - Iyz vz - Iyx vx)
©Mx = (Ix v

#
x - Ixy v

#
y - Ixzv

#
z)

T = 3.17 kJ
HO = 5144i + 144j + 1056k6 kg # m2>s
V = 5-28.1j + 80k6 rad>s
IO = 58.57i6N # s
uO = 50.141j - 0.990k6
T = 0.0920 ft #  lb
uA = -0.233i + 0.583j + 0.778k
V = 5-0.954i + 2.38j + 3.18k6 rad>s
uO = -0.233i + 0.583j + 0.778k
V = 5-2.16i + 5.40j + 7.20k6 rad>s
Iz = 0.06470 slug # ft2
Iy = 0.2588 slug # ft2
Ix = 0.3235 slug # ft2
HA = 5-2000i - 2500j + 22 500k6 kg # m2>s
T = 81.3 J
HO = 521.9i + 0.5625j + 1.69k6 kg # m2>s
T = 78.5J
HO = 521.9i + 1.69k6 kg # m2>s
HG = 50.3375i + 1.6875k6 kg # m2>s
Hz = 1.6875 kg # m2>s
Hy = 0
Hx = 0.3375 kg # m2>s
V = 5-0.0625i - 0.119j + 0.106k6 rad>s
HA = 26.9 kg # m2>s
vz = 2.58 rad>s
Iy¿ = 0.100 kg # m2
Ix¿ = Iz¿ = 13.55 kg # m2
HG = 50.0207i - 0.00690j + 0.0690k6 slug # ft2>s
T = 0.0920 ft # lb
Iz = 0.429 kg # m2
Izz = 1.09 kg # m2
Iyy = 0.547 kg # m2
Ixx = 0.626 kg # m220–53.

20–54.

20–55.

Chapter 21
21–2.

21–3.

21–5.

21–6.

21–7.

21–9.

21–10.

21–11.

21–13. Due to symmetry 

21–14.
21–15.
21–17.

= 0.330 kg # m2
+  [0 + 0.5(2)(0.6)(0.25)]
+  [0 + 0.6(2)(0.3)(0.5)]
Ixy = [0 + 0.4(2)(0)(0.5)]
Iz = 3.54(10-3) kg #  m2
Iy¿ = 1.25 slug # ft2
Iz¿ = 0.0427 slug # ft2
Iy¿ = 0.0155 slug #  ft2
Ix¿ = 0.0272 slug #  ft2
x = -0.667 ft

y = 0.5 ft
Iz = 1.26 kg # m2
Iy = 0.380 kg # m2
Ix = 1.36 kg # m2
Ixz = 0.785 kg # m2
Iyz = 1.10 kg # m2
Ixy = 4.08 kg # m2
Ixz = -24 kg # m2
Iyz = -24 kg # m2
Ixy = 72 kg # m2
Iz = 176 kg # m2
Iy = 128 kg # m2
Ix = 80 kg # m2
m1 = m2 = m3 = 12 kg
Iz¿ = 13

24 mr
2

Iy¿ = 7mr2
12

Ix¿ = 13
24 mr

2

Ixy = ma2

20

Ixy = m
12 a

2

m =
ra2h

2

Ix = m
6  (r2 + 3a2)

Iy = 1
3 mr

2

Iy¿ = m
20 (2h2 + 3a2)

Iy = 3m
80 (h2 + 4a2)

aC = 5-56i + 2.1j - 1.40k6 m>s2
vC = 52.80j - 5.60k6 m>s
aC = 5-56i + 2.1j6 m>s2
vC = 52.80j - 5.60k6 m>s
aB = 53.05i - 30.9j + 1.10k6 m>s2
vB = 5-17.8i - 3j + 5.20k6 m>s
(aB>A) = 5-4.098i + 1.098k6 m>s2
(vB>A)xyz = 5-3j + 5.196k6 m>s
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21–63.

21–65.

21–66.
21–67.
21–69.

21–70.
21–71.
21–73.

21–75.
21–77.
21–78.

21–79.
21–81.

Since , the motion is regular precession.

Chapter 22
22–1.

22–2.

22–3.

22–5.

22–6.

22–7.

22–9.

Tmax = 83.7 kN
C = 0.3795 mf = 0°

f = 2.52 Hz
C = 0.102 m
x = -0.0693 sin (5.77t) - 0.075 cos (5.77t)
f = 43.0°
y = 0.107 sin (7.00t) + 0.100 cos (7.00t)
C = 0.180 m
x = -0.1 sin (20t) + 0.150 cos (20t)
A = -0.1
B = 0.150
C = 0.2 ft
y = -0.2 cos 12.7t
f = 2.02 Hz
t = 0.201 s
f = 4.98 Hz
y = 0.192 m
A = 0.2003 m
B = 0.1 m
y
$ + 56.1y = 0

I7Iz
c
#

= 212 rad>s
f
#

= 81.7 rad>s
u = 66.59°
HG = 4.945 A106 B kg # m2>s
HG = 2.10 Mg # m2>s
c
#

= 35.1 rad>s
HG = 0.352 kg # m2>s
f = 12.8 rad>s
HG = 17.2 Mg # m2>s
Mx = 2 kN # m
vs = 222.22 rad>s
v = 88.89 m>s
vp = 13.5 rad>s or 3.00 rad>s
vp = -4.905 rad>s
vs =

C

16g

r cos a A16 cos2a - 26 sin2a + 1 B

I = Ix = Iy = 1
16 mr

2
vs = 3.63 A103 B  rad>s
¢F = 53.4 N
Mz = 0
My = 0
Mx = C A 50

32.2 B(0.2)2 D(2)(100) = 12.4 lb # ft
Nw = 77.7 lb21–46.

21–47.

21–49.

21–50.
21–51.

21–53.

21–54.

21–55.

21–57.

21–58.
21–59.

21–62.

No
g = 45°
b = 128°
a = 69.3°
BZ = 139 N
AX = 0
AZ = -41.2 N
BY = 0
T = 23.4 lb # ft
T = 21.0 lb # ft
Ix = Iy, vx = vy = 0, v# z = 6 rad>s2
Iz = 3.4938 slug # ft2
M = 27.5 N # m
N = 1.35 kN
F = 30 N

EZ = FZ =
mg

2

EY =
mL2v1 v2

12a

EX = 0

Fy = -
mL2 v1 v2

12a

Mz = 0
My = 1

3 ml
2 vp

2  sin 2u
Mx = -4

3 ml
2 vs vp cos u

v
#
z = vsvp sin u
v
#
y = 0
v
#
x = -vs vp cos u
vy = vs vz = vp cos u
vx = vp sin u
MX = 100 lb # ft
MZ = 0
MY = -218 lb # ft
M = 81.0 N # m
mF = 1.32 kg
uF = 40.9°
mD = 0.661 kg
uD = 139°
-  (0.2 sin uD)mD = 0
(0.1 cos 30°)(2) - (0.1 sin uF)mF

©Mz = 0

©My = -
Izx

r2 vG
2

©Mx =
Iyz

r2 vG
2

Az = Bz = 24.5 N
Ay = By = 0
Bx = -250 N
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22–10.

22–11.

22–13.

22–14.
22–15.
22–17.

22–18.

22–19.

22–21.

22–22.

22–23.

22–25.

22–26.

22–27.

22–29.

22–30.

22–31.
22–33.

22–34.

22–35. kG =
r

2p B

t2 g - 4p2 R

R

t = 3.85
A

m

k

u
$

+ 26.0u = 0
T = 0.1921875u

#
2

V = 5u2
t = 0.401 s

t = 6.10
A

a
g

t = 2p
A

3r
2g

3
2 mr

2 u
#
u
$

+ mg(r)(sin u)u
#
= 0

kz =
tr

2p A

g

L

kz =
tr

2p A

g

L

t =
2pL
a A

l

12g

u
$

+
12ga2

lL2 u = 0

C = 230 mm
vn = 76.7 rad>s
vn =

A

k1 + k2

m

vn = 22k
m

sAC = (l - l0) + x
sAB = (l - l0) - x0

fn =
1

2p A
12EI
mL3

t = 2p
B

Mr2 + 2mkO
2

kr2

f = 0.624 Hz
u
$

+ 15.376u = 0
IG = 0.7609 slug # ft2
Fsp = 28.8u
l = 0.457 m
t = 0.401 s
kG = 0.627 m
d = 146 mm
IA = 0.2894mgd

t = 2p
A

3r
2g

t = 2p
B

k2
G + d2

gd

22–37.

22–38.

22–39.

22–41.

22–42.

22–43.

22–45.

22–46.
22–47.

22–49.

22–50.
22–51.
22–53.

22–54.

22–57.

22–58.

22–59.

22–61.

td = 0.734 s
vd = 8.566 rad>s
vn = 8.923 rad>s
k = 1250 N>m
k = 417 N>m
v = 7.07 rad>s
v = 12.2 rad>s
c 6 2mk

cc = 2m
A

k
m

F = 2cy
#

C =
3FO

3
2 (mg + Lk) - mLv2

MF = 0.997
vn = 18.57 rad>s
(xp)max = 35.5 mm
(xp)max = 14.6 mm
v = 14.0 rad>s
vn = 14.01 rad>s
k = 4905 N>m
-  350 sin 8t) mm
y = (361 sin 7.75t + 100 cos 7.75t
(vp)max = 2.07 ft>s
-  0.0746 sin 2t) ft
y = (0.0186 sin 8.02t + 0.333 cos 8.02t
vn = 8.025 rad>s
A =

v0

vn
-

(FO>k)v

vn - v2

vn

B = y0

y = A sin vnt + B cos vnt + a F0

k - mv2 bcos vt

x = A sin vnt + B cos vnt +
F0>k

1 - Avp B2 cos vt

t = 2.81 s

y
$ +

2k sin2 u

m
= 0

fn = 1
4p A

k
m

f =
1
pA

k
m

t1 = 2p
C

Mkz
2

k

T1 = 1
2Mkz

2u
#
2

V = 1
2 ku

2



22–62.

22–63.

22–65.

22–66.

22–67.

22–69.

y = 33.8 Ce-7.5 t sin(8.87t) D  mm
A = 0.0338
vd = 8.87 rad>s
cc = 92.95
vn = 11.62 rad>s

+ 0.0520 sin 4t) ft

y = (-0.0232 sin 8.97t + 0.333 cos 8.97t

y = C -0.0702[e-3.57 t sin(8.54t)] D  m
Acdp B c = 3.92 lb # s>ft
vn = 11.35 rad>s
1.55u

$
+ 540u

#
+ 200u = 0

y = 0.803 Ce-0.859 t sin (9.23t + 1.48) D
yP = 0.111 sin (5t-0.588) m

22–70.

22–71.
22–73.

22–74.
22–75.

Since the system will not vibrate.Therefore
it is overdamped.

22–77. Lq
$ + Rq +

1
c
q = 0

c 7 cc
y
$ + 16y

# + 12y = 0
Lq + Rq + A 1C Bq = E0 cos vt

v0 = 19.0 rad>s or v0 = 20.3 rad>s
k = 1800 lb>ft vn = 19.657
F = 0.006470v0

2 sin v0t
v0 = vn = 19.7 rad>s

+

kd0

m

A km - v0
2 B  cos v0ty = A sin vn t + B cos vn t
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Angular motion, 314, 316–319
Angular velocity ( ), 67, 314, 316, 551–556
Apogee, 160
Arbitrary axis, moment of inertia about, 583
Arbitrary point, angular momentum at, 590

Areal velocity, 155, 161
Average acceleration, 7
Average speed, 6
Average velocity, 6, 33

B
Binormal axis (b), 54, 131
Body cone, 551–552, 622

C
Cartesian vector notation, 673
Center of mass (G), 113, 590, 593

angular momentum at, 590
kinetic energy and, 593
system of particles, 113
three-dimensional rigid bodies,

590, 593

v

Index
A
a–s graphs, 24–25
a–t graphs, 19–23
Absolute (dependent) motion analysis,

81–86, 103, 329–336, 392
particles, 81–86, 103
procedures for, 82, 329
rigid bodies, 329–336, 392

Acceleration (a), 7–8, 34, 36, 53–54, 68, 88,
104–167, 313, 317, 363–376,
380–381, 393, 394–453, 552–556,
568. See also Angular acceleration

average, 7, 34
constant, 8
curvilinear motion and, 34, 36,

53–54, 68
direction and, 553, 568–569
equations of motion for, 105–167,

409–453
fixed-axis rotation, 317, 425–439, 453
fixed-point rotation, 552
force (F) and, 104–167, 394–453
general plane motion and, 363–376,

393, 440–453
gravitational attraction and, 107–108,

156–157
hodograph curve for, 34
instantaneous, 7, 34
magnitude of, 36, 363, 365
moments of inertia (I) and, 395–408
Newton’s second law of motion 

and, 105–106
particles, 7–8, 34, 36, 53–54, 68, 88,

104–167
procedure for analysis of, 365
rectilinear motion and, 7–8
relative-motion analysis and, 88,

363–376, 380–381, 393, 568
rigid bodies, 313, 315, 317, 363–376,

380–381, 394–453
rotating axes, 380–381
rotation and, 363–376, 380–381,

410–412
three-dimensional rigid bodies,

552–556, 568
time derivatives for, 68, 552–556, 568
translation and, 313, 363–367, 409,

412–425
Amplitude, 633–34
Angular acceleration ( ), 68, 315, 317, 395,

425–426, 551–556
constant, 315
fixed-axis rotation, 315, 317, 425–426
fixed-point rotation, 551–552
magnitude and, 425–426

a

moments of inertia and, 395
particles, 68
rigid-body planar motion, 315, 317,

395, 425–426
three-dimensional rigid bodies,

551–556
time derivatives for, 552–556

Angular displacement (d ), 314, 316
Angular impulse and momentum, 262–276,

297, 496–533, 589–592, 628
arbitrary point momentum, 590

center of mass (G) and, 590
conservation of momentum, 268,

517–520, 533
eccentric impact and, 521–530, 533
fixed-axis rotation and, 498, 532
fixed-point momentum, 590
general plane motion and, 499, 532
moment of a force relations with,

263–265
particle kinetics, 262–276, 297
principle of, 266–276, 297,

501–516, 592
procedures for analysis of, 268,

503, 518
rectangular components of

momentum, 590–591
rigid-body planar motion, 496–500
scalar formulation, 262, 267
system of particles, 264–265
three-dimensional rigid bodies,

589–592, 628
translation and, 498, 532
vector formulation, 262, 267

u

Central-force motion, 155–165, 167
areal velocity, 155, 161
circular orbit, 159
elliptical orbit, 159–161
gravitational (G) attraction, 156–157
Kepler’s laws, 161
path of particles, 155–156
trajectories, 156–162, 167

Central impact, 248–250, 251, 297
Centripetal force, 131–132
Centrode, 353
Chain rule, 677–678
Circular orbit, 159
Coefficient of restitution, 249–250, 297,

521, 523
Composite bodies, 401
Conservation of energy, 205–209, 219,

477–489, 493, 645–651, 668
conservative forces and, 205–209, 219,

477–478, 645
particle kinetics, 205–209, 219
potential energy (V) and, 205–209,

219, 477–489, 493
procedures for analysis using, 206,

479, 646
rigid-body planar motion,

477–489, 493
system of particles, 206
vibration and, 645–651, 668

Conservation of momentum, 236–247, 268,
296, 517–520, 533

angular, 268, 517–520, 533
linear, 236–247, 296, 517–520, 533
particle systems, 236–247, 268, 296
procedures for analysis using, 237,

268, 518
rigid-body planar motion,

517–520, 533
Conservative force, 201–209, 219,

477–478, 645
conservation of energy, 205–209, 219,

477–478, 645
potential energy (V) and, 201–204,

219, 477–478
undamped free vibration, 645
work by displacement of weight,

201–204
Constant acceleration, 8, 315
Constant force, work (U) of, 171, 218, 458
Constant magnitude, 460, 492
Constant velocity, 110, 155
Continuity of mass, 278
Continuous motion, particles, 5–18
Control volumes, 277–295

gain of mass (m), 283–284

725
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D
Damped vibration, 631
Dashpot, 655
Deceleration, particles, 7
Deformation, 177, 248–251, 521–523

coefficient of restitution, 249–250,
521, 523

eccentric impact and, 521–523
impact and, 248–251, 521–523
particle kinetics, 177, 248–251
period of, 248
rigid-body planar motion, 521–523
sliding and, 177

Dependent motion analysis, see Absolute
motion analysis

Differentiation of vector functions, 676
Direction, 33, 35–36, 352–353, 365, 425–426,

460, 553, 568–569
acceleration (a) and, 36, 363, 365, 553,

568–569
constant, 568
curvilinear motion, 33, 35–36
fixed-axis rotation, 425–426
frames of reference for changes in,

553, 568–569
magnitude and, 33, 35–36, 352–353,

365, 425–426, 460, 553
particles, 33, 35–36
rigid-body planar motion, 352–353,

365, 425–426, 460
three-dimensional rigid bodies, 553,

568–569
work of a couple moment and, 460

Directional angle ( ), 144–145
Directrix, 157
Displacement (Δ), 5, 33, 314, 316, 459, 653

angular (d ), 314, 316
downward, 459
particles, 5, 33
periodic support, 653
rigid bodies, 314, 316, 459
vertical, 459
vibration, 653
weight (W) and, 459

Dot notation, 35–36
Dot product, 675–676
Dynamics, 3–4

principles of, 3–4
procedure for problem solving, 4

E
Eccentricity (e), 157–159, 167
Efficiency (e), 192–200, 219

mechanical, 192–193
power (P) and, 192–200, 219

u

c

Elastic impact, 250
Elastic potential energy, 202, 219, 477, 493
Electrical circuit analogs, 661, 669
Elliptical orbit, 159–161
Energy (E), 174–192, 201–219, 300–301,

454–493, 536, 592–595, 628–629,
645–651, 668

conservation of, 205–209, 219,
477–489, 493, 645–651, 668

conservative force and, 201–204, 219,
477–478, 645

internal, 177
kinetic, 174, 201, 219, 455–458, 491,

592–595, 628–629
particle kinetics, 174–192, 201–219,

300–301
potential (V), 201–204, 219,

477–489, 493
principle of work and, 174–192, 219,

462–468, 493
procedure for analysis of, 175, 206,

463, 479
rigid-body planar motion,

454–493, 536
system of particles, 176–182
three-dimensional rigid bodies,

592–595, 628–629
vibration and, 645–651, 668
work (W) and, 174–192, 201–219,

300–301, 454–493, 536
Equations of motion, 105–167, 300,

409–453, 535–536, 600–613, 629
central-force, 155–165, 167
cylindrical coordinates, 144–154
fixed-axis rotation, 425–439, 453,

602–603
free-body diagrams for, 109–111, 167,

410–412
general plane motion, 440–453
gravitational attraction, 107–108
inertial reference frame for,

110–111, 167
kinetic diagram for, 109
moments of inertia (I) and, 440–451
Newton’s second law, 105–106
normal coordinates, 131–143
particle kinetics, 105–167, 300
procedures for analysis using,

114–115, 132, 145, 414, 427, 441, 604
rectangular coordinates, 114–130
rigid-body planar motion, 409–453,

535–536
rotational, 410–412, 600–601
slipping and, 440–451

loss of mass (m), 282–283
mass flow, 278, 282–284
particle kinematics, 277–295
propulsion and, 282–295
steady flow, 277–278
thrust, 282–283
volumetric flow, 278

Coordinates, 5, 35–39, 66–74, 81–82, 87–88,
114–154

cylindrical (r, , z), 66–74, 144–154
dependent motion analysis and, 81–82
equations of motion and, 114–154
fixed origin (O), 5
kinematics of a particle, 5, 35, 66–70,

81–82, 87–88 
kinetics of a particle, 114–154
normal, 131–143
polar, 66–68, 70
position (s), 5, 9, 81–82
radial (r), 66–67
rectangular (x, y, z), 35–39, 114–120
relative-motion analysis and, 87–88
tangential, 131–143
translating axes and, 87–88
transverse ( ), 66–67

Couple moment (M), 460–461, 492
Critically damped systems, 565
Cross product, 673–674
Curvilinear motion, 33–39, 52–80,

101–102, 299
acceleration (a), 34, 36, 53–54, 68
cylindrical coordinates (r, , z), 66–74
displacement (Δ), 33
normal coordinates for, 52–58
particle kinematics, 33–39, 53–80,

101–102, 299
polar coordinates, 66–68, 70
position (s), 33, 35, 67
procedures for analysis of, 37, 55, 70
rectangular coordinates (x, y, z) for,

35–39
tangential coordinates for, 52–58
three-dimensional, 54
time derivatives for, 67–70
velocity ( ), 33, 35–36, 52, 67

Curvilinear translation, 312, 413
Cylindrical components of motion, 66–74
Cylindrical coordinates (r, q, z), 66–74,

144–154, 167
curvilinear motion, 66–74
directional angle ( ), 144–145
equations of motion and, 144–154, 167
normal force (N) and, 144
procedures for analysis using, 70, 145
tangential/frictional force (F) and, 144

c

v

u

u

u
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symmetrical spinning axes, 603–604
systems of particles, 112–113
tangential coordinates, 131–143
three-dimensional rigid bodies,

600–613, 629
trajectories, 155–162
translational, 409, 412–425, 453, 600

Equilibrium position, vibration, 632
Erratic motion, particles, 19–32
Escape velocity, 159
Euler angles, 614–616, 621–622
Euler’s equations, 602–603
Euler’s theorem, 550
External force, 228, 264
External work, 177

F
Finite rotation, 550
Fixed-axis rotation, 312, 314–321, 392,

425–439, 453, 457, 491, 498, 532,
535, 602–603

angular acceleration ( ), 315, 317,
425–426, 535

angular displacement (d ), 314, 316
angular motion, 314, 316–319, 535
angular position, 314, 316
angular velocity ( ), 314, 316
equations of motion for, 425–439, 453,

602–603
Euler’s equations for, 602–603
impulse and momentum for, 498, 532
kinetic energy and, 457, 491
magnitude of, 425–426
procedure for analysis of, 319, 427
three-dimensional rigid bodies,

602–603
Fixed-point motion, 549–556, 577, 590, 593

acceleration (a) at, 552
angular acceleration ( ) of, 551–552
angular momentum of, 590
angular velocity ( ) of, 551
Euler’s theorem for, 550
finite rotation, 550
infinitesimal rotation, 551
kinetic energy and, 593
rotation, 549–556, 577
three-dimensional rigid bodies,

549–556, 577, 590, 593
time derivatives for, 552–556
velocity ( ) at, 552

Fluid stream, steady flow of, 277–281, 279
Focus, 157
Force (F), 104–167, 168–192, 201–209,

218–219, 221–224, 228, 263–265,
394–453, 458–459, 477–478, 492,
645, 651–653, 655

v

v

a

v

u

a

acceleration (a) and, 104–167, 394–453
angular momentum relations with,

263–265
centripetal, 131–132
conservation of energy and, 205–209,

219, 477–478, 493, 645
conservative, 201–209, 219,

477–478, 645
constant, 171, 218, 458
equations of motion for, 106–154,

409–453
external, 228, 264
fixed-axis rotation, 425–439, 453
friction, 115, 177–178
general plane motion, 440–453
gravitational (G), 107–108, 156–157
internal, 112–113, 264
linear impulse and momentum and,

221–224, 228
moments of a, 263–265
normal (N), 144
particle acceleration and, 104–167
periodic, 651–653
potential energy (V) and, 201–204,

219, 477–478
procedure for analysis of,

114–115, 132
resultant, 109, 263
rigid-body planar motion and,

394–453, 458–459, 477–478, 492
rotation and, 410–412
spring, 115, 172–173, 218, 459
tangential/frictional (F), 144
translation and, 409, 412–425
unbalanced, 105–106
variable, 170, 458
vibration and, 645, 651–653, 655
viscous damping, 655
weight (W), 171, 201–204, 219, 459
work (U) of, 168–192, 218,

458–459, 492
zero velocity (no work) and, 459

Forced vibration, 631
Forcing frequency, 651
Free–body diagrams, 109–111, 167, 410–412
Free-flight trajectories, 156–158, 167
Free vibration, 631
Friction 115, 144, 177–178

force, 115, 144
sliding and heat from, 177–178

G
General motion, three-dimensional rigid

bodies, 557-558, 577, 602

General plane motion, 312, 329–336,
337–350, 363–376, 392–393,
440–453, 491, 499, 521

absolute motion analysis for,
329–336, 392

acceleration (a), 363–376, 393
equations of motion for, 440–453
impulse and momentum for, 499, 532
kinetic energy and, 457, 491
procedure for analysis of, 329, 365, 441
relative-motion analysis for, 337–350,

363–376, 393
velocity ( ), 337–350, 393

Gimbal rings, 619
Graphs, rectilinear kinematic solutions

using, 19–26, 100
Gravitational force (G), 107–108, 156–157
Gravitational potential energy, 201–202,

219, 477, 493
Gyroscopic motion, 603–604, 614–619, 629

equations of motion for, 603–604
Euler angles for, 614–616
gyroscope (gyro) design, 617
gyroscopic effect, 616–617
symmetrical spinning axes of,

603–604, 614–615

H
Heat generation, sliding and, 177–178
Hodograph curve, 34
Horizontal motion, 40–41
Horsepower (hp), unit of, 192
Hyperbolic functions, 670

I
Impact, 248–261, 296–297, 521–530, 533

central, 248–250, 251, 297
coefficient of restitution, 249–250, 297
deformation and, 248–251, 521–523
eccentric, 521–530, 533
elastic, 250
line of, 248, 521
oblique, 248, 251, 297
particle kinetics, 248–261, 296–297
plastic, 250
procedures for analysis of, 251
rigid-body planar motion,

521–530, 533
separation and, 523

Impulse, 220–297, 301–302, 494–533
angular, 266–271, 297
control volumes, 277–295
diagram, 223–224
external, 228, 236
impact and, 248–261, 296–297

v
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general three-dimensional motion,
557–565, 577

graphs for solutions of, 19–26, 100
instantaneous center (IC) of,

351–362, 393 
particles, 2–103, 298–300
planar motion, 310–393, 534–535
principles of, 3–4
procedures for analysis of, 9, 37, 41,

55, 70, 82, 88, 319, 329, 340, 353,
365, 382, 569

projectile motion, 40–44, 101
rectilinear, 5–32, 100, 299
relative-motion analysis, 87–91, 103,

300, 337–350, 363–390, 393, 566–577
rigid-body planar motion, 310–393,

534–535
rotating axes, 377–390, 393, 535
rotation, 312, 314–321, 392, 552–556
three-dimensional rigid bodies,

548–577
time (t) derivatives, 67–70, 552–556,

567–569
translation, 312–313, 392, 535, 552–556
zero velocity, 351–362, 393

Kinetic diagrams, 109
Kinetic energy, 174, 201, 219, 455–458, 491,

592–595, 628–629
center of mass (G) and, 593
fixed-point axis and, 593
general plane motion and, 457, 491
particles, 174, 201, 219
principle of work and energy for, 593,

628–629
rigid-body planar motion,

455–458, 491
rotational, 457, 491
system of rigid bodies, 458
three-dimensional rigid bodies,

592–595, 628–629
translational, 457, 491

Kinetics, 3, 104–167, 168–219, 220–297,
300–302, 394–453, 454–493,
494–533, 535–537, 578–629. See also
Space mechanics

acceleration (a) and, 104–167, 394–453
central-force motion, 155–165, 167
conservation of momentum, 236–247,

268, 296, 517–520, 533, 537
control volumes, 277–295
cylindrical coordinates, 144–154, 167
efficiency and, 192–200, 219
energy (E) and, 174–192, 202–219,

300–301, 454–493, 536, 592–595,
628–629

equations of motion, 105–167, 300,
409–453, 600–613, 629

force (F) and, 104–167, 168–173,
201–204, 219, 394–453

free-body diagrams for, 109–111, 167,
410–412

gyroscopic motion, 614–619, 629
impact and, 248–261, 296–297
impulse and momentum, 220–297,

301–302, 494–533, 537,
589–592, 628

inertia (I), 110–111, 167, 395–409, 453,
579–588, 628

Newton’s laws and, 106–109
normal coordinates, 131–143
particles, 104–219, 300–302
planar motion, 394–453, 454–493,

494–533
power and, 192–200, 219
principle of, 3
procedures for analysis, 114–115, 132,

145, 175, 206, 224, 237, 251, 268,
279, 397, 414, 427, 441, 604

propulsion, 282–286, 297
rectangular coordinates, 114–130
rigid-body planar motion, 394–453,

454–493, 494–533, 535–537
steady flow and, 277–278, 297
tangential coordinates, 131–143
three-dimensional rigid bodies,

578–629
torque-free motion, 620–623, 629
trajectories, 156–162
work (U) and, 168–219, 300–301,

454–493, 536

L
Line of impact, 248, 521
Linear impulse and momentum, 221–247,

296, 495–496, 498–533
conservation of momentum, 236–247,

517–520
diagrams for, 223
external force and, 228
fixed-axis rotation and, 498, 532
force (F) and, 221–224, 228
general plane motion and, 499, 532
principle of, 221–227, 501–516, 532
procedures for analysis of, 224,

237, 503
rigid-body planar motion, 496,

498–500
systems of particles, 228, 236–247, 296
translation and, 498, 532

Lines of action, 352

internal, 236–237
linear, 222–235, 494–533
particle kinetics 220–297, 301–302
principles of momentum and,

221–247, 266–281, 296–297,
501–516, 532

propulsion and, 282–286, 297
rigid-body planar motion, 494–533
steady flow and, 277–281, 297

Inertia (I ), 110–111, 167, 395–409, 440–451,
453, 579–588, 628

angular acceleration ( ) and, 395
arbitrary axis, moment of about, 583
composite bodies, 401
equations of motion and, 440–451
moments of, 395–408, 579–588, 628
parallel-axis theorem, 400–401,

581–582
parallel-plane theorem, 582
particle kinetics, 110–111, 167
procedure for analysis of, 397
product of, 579–582, 628
radius of gyration, 401
reference frame, 110–111, 167, 409
rigid-body planar motion,

395–409, 453
tensor, 582–582
three-dimensional rigid bodies,

579–588, 628
volume (V) elements for, 396-397

Infinitesimal rotation, 551
Instantaneous acceleration, 7
Instantaneous axis of rotation, 551–552
Instantaneous velocity, 6, 33, 351–362, 393

center (IC) of zero, 351–362, 393
particles, 6, 33
rigid bodies, 351–362, 393

Integrals, 671
Integration of vector functions, 676
Internal energy, 177
Internal force, 112–113, 264

K
Kepler’s laws, 161
Kinematics, 2–103, 298–300, 310–393,

534–535, 548–577
absolute (dependent) motion

analysis, 81–86, 103, 329–336, 392
continuous motion, 5–18
curvilinear motion, 33–39, 52–80,

101–102, 299
erratic motion, 19–32
fixed-axis rotation, 312, 314–321,

392, 535
fixed-point rotation, 549–556, 577
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M
Magnification factor (MF), 652–653, 659
Magnitude, 6, 33, 35–36, 352–353, 363, 365,

425–426, 460, 492, 553
acceleration (a) and, 36, 363, 365
angular acceleration ( ) and, 425–426
constant, 460, 492
curvilinear motion, 33, 35–36
direction and, 33, 35–36, 352–353, 365,

425–426, 460, 553
fixed-axis rotation, 425–426
instantaneous center (IC) of zero

velocity and, 352–353
particles, 6, 33, 35–36
rigid bodies, 352–353, 363, 365,

425–426, 460, 492
three-dimensional rigid bodies, 553
speed as, 6, 33
velocity (v) and, 6, 33, 35–36, 352–353
work of a couple moment and,

460, 492
Mass (m), 108, 282–284, 620. See also

Center of mass (G)
axisymmetric, 620
body, 108
gain of, 283–284
loss of, 282–283
propulsion and, 282–284

Mass flow, 278, 282–284
Mechanical energy, 192–193, 219
Mechanics, 3
Moments of inertia, 579–588, 628
Momentum, 220–297, 301–302, 494–533,

589–592, 628
angular, 262–276, 297, 496–533,

589–592, 628
conservation of, 236–247, 268, 296,

517–520, 533
control volumes, 277–295
diagrams, 223–224
impact and, 248–261, 296–297,

521–530, 533
linear, 222–247, 236–247, 296, 495,

498–500
particle kinetics, 220–297, 301–302
principles of impulse and, 221–247,

266–281, 296–297, 501–516,
532, 592

procedures for analysis of, 237,
268, 518

propulsion and, 282–286, 297
rigid-body planar motion, 494–533
steady flow and, 277–281, 297

a

systems of particles, 228, 236–247,
264–265

three-dimensional rigid bodies,
589–592, 628

N
Natural (circular) frequency, 632, 634,

645–646
Newton’s laws, 106–109

body mass and weight from, 108
gravitational attraction, 107–108
kinetics and, 106–109
second law of motion, 105–106
static equilibrium and, 109

Normal coordinates, 52–58, 131–143
curvilinear motion, 52–58
equations of motion for, 131–143
procedures for analysis using, 55, 132

Normal force (N), 144
Nutation angle ( ), 614–615, 621–622

O
Oblique impact, 248, 251, 297
Orbits, 159–161
Overdamped systems, 656

P
Parabolic path, 159
Parallel-axis theorem, 400–401, 581–582
Parallel-plane theorem, 582
Particles, 2–103, 104–167, 168–219, 220–297,

298–309
acceleration (a), 7–8, 34, 36, 53–54,

68, 88
conservation of momentum, 236–247,

268, 296
control volumes, 277–295
curvilinear motion of, 33–39, 52–80,

101–102, 299
dependent (absolute) motion

analysis, 81–86, 103
displacement (Δ), 5, 33
dynamics of, 2–3, 298–309
efficiency (e) and, 192–200, 219
energy (E) and, 174–192, 202–219,

300–301
equations of motion, 104–167, 300
force (F) and, 104–167, 168–173,

201–204, 219
gravitational attraction, 107–108,

156–157
impact of, 248–261, 296–297
impulse and momentum, 220–297,

301–302
kinematics of, 2–75, 298–300

u

kinetics of, 3, 104–167, 168–219,
220–297, 300–302

Newton’s second law of motion and,
106–108

position (s), 5, 8, 33, 35, 67, 81–82, 87
power (P) and, 192–200, 219
procedures for analysis of, 9, 37, 41,

55, 70, 82, 88, 114–115, 132, 145,
175, 206, 224, 237, 251, 268, 279

projectile motion, 40–44, 101
propulsion, 282–286, 297
rectilinear kinematics, 5–32, 100, 299
relative-motion analysis, 87–91,

103, 300
steady flow and, 277–278, 297
systems of, 112–113, 176–182, 206, 228,

236–247
three-dimensional motion, 54
trajectories, 156–162
translating axes of, 87–88, 103
velocity (v), 6, 8, 33, 35–36, 52, 67,

87–88, 110, 155, 161
work (U) and, 168–219, 300–301

Path of particles, 110, 131–132, 155–156, 167
central-force motion, 155–156
curved, 131–132
inertial reference, 110, 167

Perigee, 160
Periodic force, 651–653
Periodic support displacement,

vibration, 653
Planar motion, 310–393, 394–533, 534–547

absolute (dependent) motion
analysis, 329–336, 392

acceleration (a) and, 394–453
angular components, 314–319
energy (E) and, 454–493
fixed-axis rotation, 312, 314–321, 392
force (F) and, 394–453
general, 312, 329–393, 440–453, 491
impulse and momentum, 494–533
kinematics, 310–393
procedures for analysis of, 319, 329,

340, 353, 365, 382, 414, 427, 441
relative-motion analysis, 337–350,

363–390, 393
review of, 534–547
translation, 312–313, 392
work (U) and, 454–493

Plastic impact, 250
Polar coordinates, 66–68, 70
Position, 5, 8, 33, 35, 67, 81–82, 87, 313, 314,

316, 377, 567
angular, 314, 316
coordinate, 5, 81–82
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Product of inertia, 579–582, 628
Projectile motion, 40–44, 101
Propulsion, 282–286, 297

Q
Quadratic formula, 670

R
Radial coordinate (r), 66–67
Radius of gyration, 401
Rectangular (x, y, z) coordinates, 35–39,

114–120, 590–591
angular momentum components,

590–591
curvilinear motion, 35–39
dot notation for, 35–36
equations of motion and, 114–120
procedure for analysis using, 37,

114–115
Rectilinear kinematics, 5–32, 100, 299 

acceleration (a), 7–8
continuous motion, 5–18
displacement (Δ), 5
erratic motion, 19–32
graphs for solutions of, 19–26, 100
particle kinematics, 5–32, 100, 299
position (s), 5, 8
procedure for analysis of, 9
velocity (v), 6, 8

Rectilinear translation, 312, 412–413
Relative-motion analysis, 87–91, 103, 300,

337–350, 363–390, 393, 535, 566–577
acceleration (a) and, 88, 363–376,

380–381, 568
displacement (rotation) and, 337
particles, 87–91, 103, 300
position and, 377, 567
procedures for, 88, 340, 365, 382, 569
rigid-body planar motion, 337–350,

363–390, 393, 535
rotating axes, 377–390, 393, 535,

566–577
three-dimensional rigid bodies,

566–577
translating axes, 566–577
translation and, 87–91, 103, 337–350,

363–376, 392–393, 535
velocity (v) and, 338–339, 378–379, 567

Resultant force, 109, 263
Retrograde precession, 622
Rigid bodies, 310–393, 394–453, 454–493,

494–533, 535–547, 548–577, 578–629
absolute (dependent) motion

analysis, 329–336, 392
acceleration (a) and, 394–453

conservation of momentum, 517–520,
533, 537

energy (E) and, 454–493, 536
equations of motion for, 409–453,

535–536, 600–613
fixed-axis rotation, 312, 314–321, 392,

425–439, 453, 535
force (F) and, 394–453
free-body diagrams for, 410–412
general plane motion, 312, 329–393,

440–453, 491, 535
impulse and momentum, 494–533,

537, 592, 628
inertia and, 395–408, 579–588, 628
instantaneous center (IC) of,

351–362, 393 
kinematics of, 311–393, 534–535,

548–577
kinetics of, 394–453, 454–493,

494–533, 535–537, 578–629
planar motion, 310–393, 409–453
procedures for analysis of, 319, 329,

340, 353, 365, 382, 414, 427, 441,
569, 604

relative-motion analysis, 337–350,
363–390, 393, 566–577

rotating axes, 377–390, 393, 566–577
rotation, 312, 314–321, 337–339, 392,

410–412
systems of, 458
three-dimensional, 548–577, 578–629
translating axes, 566–577
translation, 312–313, 337–350,

392–393, 409, 412–425, 453, 534
work (U) and, 454–493, 536
zero velocity, 351–362, 393

Rotating axes, 377–390, 393, 535, 552–556,
566–567

relative-motion analysis of, 377–390,
393, 535, 566–577

rigid-body planar motion, 377–390,
393, 535

three-dimensional rigid bodies,
552–556, 566–567

time derivatives for, 552–556
translating axes and, 566–577
translation and, 377–390, 393

Rotation, 312, 314–321, 329–339, 363–390,
392–393, 410–412, 457, 491,
549–556, 577, 600–604

absolute (dependent) motion
analysis, 329–336, 392

acceleration (a) and, 363–376,
380–381

displacement and, 316, 317, 337

curvilinear motion and, 33, 35, 67
dependent motion analysis and, 81–82
fixed-axis rotation, 314, 316
particles, 5, 8, 33, 35
rectilinear motion and, 5, 8
relative-motion analysis and, 87,

377, 567
rigid bodies, 313, 314, 316, 377
rotating axes, 377
three-dimensional rigid bodies, 567
time (t), as a function of, 8
translation and, 313
velocity (v) as a function of, 8

Potential energy (V), 201–209, 219,
477–489, 493

conservation of energy and, 205–209,
219, 477–489, 493

conservative forces and, 201–204, 219,
477–478

elastic, 202, 219, 477, 493
gravitational, 201–202, 477, 493
particles, 201–204, 219
potential function for, 203–204
procedure for analysis of, 206, 479
rigid-body planar motion,

477–489, 493
spring force and, 202, 219, 477
weight (W) and, 201–204, 477

Power (P), 192–200, 219
efficiency (e) and, 192–200, 219
procedure for analysis of, 194
units of, 192

Power-flight trajectories, 158, 167
Power-series expansion, 670
Precession angle ( ), 614–615, 621–622
Principle of work and energy, 174–192, 219,

462–468, 493, 593, 628–629
kinetic energy and, 593, 628–629
particles, 174–192, 219
procedures for analysis using, 175, 463
rigid-body planar motion,

462–468, 493
three-dimensional rigid bodies, 593,

628–629
Principles of impulse and momentum,

221–247, 266–281, 296–297,
501–516, 532

angular, 266–276, 297, 501–516
linear, 222–247, 296, 501–516
particle kinetics, 221–247, 266–281,

296–297
procedure for analysis using, 224, 503
rigid-body planar motion,

501–516, 532
steady flow and, 277–281, 297

f



mass flow, 278
particle kinematics, 277–281, 297
principle of impulse and momentum

for, 277–281, 297
procedure for analysis of, 279
volumetric flow, 278

Symmetrical spinning axes, see Gyroscopic
motion

Systems of particles, 112–113, 176–182, 206,
228, 236–247, 264–265

angular momentum and, 264–265
conservation of energy for, 206
conservation of linear momentum for,

236–247
equations of motion for, 112–113
linear impulse and momentum for,

principle of, 228
principles of work and energy for,

176–182
procedures for analysis of, 206, 237

T
Tangential coordinates, 52–58, 131–143

curvilinear motion, 52–58
equations of motion for, 131–143
procedures for analysis using, 55, 132

Tangential/frictional force (F), 144
Three-dimensional motion, particles, 54
Three-dimensional rigid bodies, 548–577,

578–629
angular momentum of, 589–592
directional frames of reference 

for, 553
equations of motion for, 600–613, 629
fixed-point rotation, 549–556, 577
general motion of, 557–558, 577
gyroscopic motion, 603–604,

614–619, 629
impulse and momentum, 592, 628
inertia and, 579–588, 628
kinematics of, 548–577
kinetic energy of, 592–599
kinetics of, 578–629
principle of work and energy of, 593,

628–629
procedures for analysis of, 569, 604
relative-motion analysis of, 566–577
rotating axes, 552–556, 566–577
rotational systems, 552–556
time (t) derivatives for, 552–556,

568–569
torque-free motion, 620–623, 629
translating axes, 552–556, 566–577
translational systems, 552–556

Thrust, 282–283
Time (t), 8, 67–70, 552–556, 568–568, 577

acceleration (a), 68, 552–556, 568
derivatives, 67–70, 552–556, 567–569
particle curvilinear motion, 67–70
position (s) as a function of, 8
relative-motion analysis and, 567–568
three-dimensional rigid bodies and,

552–556, 577, 568–568
velocity (v) and, 8, 67, 552–556, 567

Torque-free motion, 620–623, 629
Trajectories, 155–162, 167

areal velocity, 155, 161
circular orbit, 159
eccentricity, 157–159, 167
elliptical orbit, 159–161
free-flight, 156–158, 167
Kepler’s laws, 161
parabolic path, 159
power-flight, 158, 167

Translating axes, 87–88, 103, 552–556,
566–577

particles, 87–88, 103
relative-motion analysis of, 566–577
rotating axes and, 566–577
three-dimensional rigid bodies,

552–556, 566–577
time derivatives for systems, 552–556

Translation, 87–91, 103, 312–313, 337–350,
363–376, 392–393, 409, 412–425,
453, 457, 491, 498, 532, 534, 600

acceleration (a) and, 88, 313, 363–376 
curvilinear, 312, 413
equations of motion for, 409, 412–425,

453, 600
impulse and momentum for, 498, 532
kinetic energy and, 457, 491
particles, 87–91, 103
position vectors, 313, 337
procedure for analysis using, 414
rectilinear, 312, 412–413
relative-motion analysis, 87–91, 103,

337–350, 363–376, 393
rigid-body planar motion, 312–313,

337–350, 363–376, 392–393, 457,
491, 498, 532, 534

three-dimensional rigid bodies, 600
velocity (v) and, 313, 338–339

Transverse coordinate ( ), 66–67
Trigonometric identities, 670

U
Unbalanced force, 105–106
Undamped forced vibration, 651–654

u

equations of motion for, 410–412,
600–604

finite, 550
fixed-axis, 312, 314–321, 392, 457, 491,

602–603
fixed-point, 549–556, 577
general three-dimensional 

motion, 602
infinitesimal, 551
instantaneous axis of, 551–552
kinetic energy and, 457, 491
position and, 377
procedures for analysis of, 329, 340,

365, 382
relative-motion analysis, 337–339,

363–390, 393
symmetrical spinning axes, 603–604
three-dimensional rigid bodies,

549–556, 577, 600–601
time derivatives for, 552–556
translation and, 377–390, 393
velocity (v) and, 338–339, 378–379

S
s–t graphs, 19–23
Scalar formulation, momentum, 262, 267
Separation from eccentric impact, 523
Simple harmonic motion, 632
Sliding, friction caused by, 177–178
Slipping, equations of motion and, 440–451
Space cone, 551–552, 622
Space mechanics, 155–165, 282–295,

579–583, 620–623, 629
circular orbit, 159
control volume of particles, 282–295
elliptical orbit, 159–161
inertia moments and product for,

579–583
propulsion, 282–295
torque-free motion, 620–623, 629
trajectories, 156–162

Speed, 6, 33. See also Velocity (v)
Spin angle ( ), 614–615, 621–622
Spring force, 115, 172–173, 202, 218–219,

459, 477
elastic potential energy and, 202,

219, 477
equation of motion for, 115
particles, 115, 172–173, 202, 218–219
rigid bodies, 459
work of, 172–173, 218, 459

Static equilibrium, 109
Statics, 3
Steady flow, 277–281, 297

control volume, 277–281
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relative-motion analysis and, 87–88,
338–339, 378–379, 393, 567

rigid-body planar motion, 131, 314,
316, 338–339, 351–362,
378–379, 393

rotating axes, 378–379
rotation and, 338–339, 378–379
three-dimensional rigid bodies,

551–556, 567
time (t), as a function of, 8
time derivatives for, 67, 552–556, 567
translation and, 313, 338–339
zero, 351–362, 393

Vertical motion, 40–41
Vibrations, 630–669

amplitude of, 633–34
critically damped systems, 565
damped, 631
electrical circuit analogs and, 661, 669
energy methods for conservation of,

645–651, 668
equilibrium position, 632
forced, 631
free, 631
magnification factor (MF) for,

652–653, 659
natural (circular) frequency of, 632,

634, 645–646
overdamped systems, 656
periodic force and, 651–653
periodic support displacement of, 653
procedures for analysis of, 635, 646
simple harmonic motion of, 632
undamped forced, 651–654, 668
undamped free, 631–651, 668
underdamped systems, 657
viscous damped forced, 658–659, 669
viscous damped free, 655–657, 669

Viscous damped forced vibration,
658–659, 669

Viscous damped free vibration,
655–657, 669

Volume (V), moments of inertia and,
396–397

Volumetric flow, 278

W
Watt (W), unit of, 192
Weight (W), 108, 171, 201–204, 219, 459, 477

conservation of energy and, 201–204,
219, 477

displacement (Δ) of rigid bodies 
from, 459

gravitational attraction and, 108
gravitational potential energy (V)

from, 201–204, 477
work (U) of, 171, 459

Work (U), 169–219, 300–301, 454–493, 536
conservative forces and, 201–209, 219
constant force, 171, 218, 458
couple moment (M), of a, 460–461, 492
energy (E) and, 174–192, 201–218,

300–301, 454–493, 536
force (F ), of a, 169–192, 218,

458–459, 492
friction caused by sliding, 177–178
particle kinetics, 169–219, 300–301
principle of energy and, 174–192, 219,

462–468, 493
procedure for analysis of, 175, 463
rigid-body planar motion,

454–493, 536
spring force, 172–173, 218
system of particles, 176–182
variable force, 170, 458
weight (W ) and, 171, 201–204,

219, 459
zero velocity and (no work), 459

Z
Zero velocity, 351–362, 393, 459

instantaneous center (IC) of,
351–362, 393

no work from, 459

Undamped free vibration, 631–651, 668
conservation of energy methods for,

645–651
conservative forces of, 645
natural (circular) frequency of, 632,

634, 645–646
procedures for analysis of, 635, 646
simple harmonic motion of, 632

Undamped vibration, 631
Underdamped systems, 657
Unit vector, 672

V
–s graphs, 24–25
–t graphs, 19–23

Variable force, work (U) of, 170, 458
Vector analysis, 672–676
Vector formulation, momentum, 262, 267
Velocity ( ), 6, 8, 33, 35–36, 52, 67, 87–88,

110, 155, 159, 161, 313, 314, 316,
337–350, 351–362, 378–379, 393,
551–556, 567

angular ( ), 67, 314, 316, 551–556
areal, 155, 161
average, 6
constant, 110, 155
curvilinear motion and, 33, 35–36,

52, 67
equations of motion and, 110, 155,

159, 161
escape, 159
fixed-axis rotation, 314, 316
fixed-point rotation, 551–552
general plane motion and, 337–350, 393
instantaneous center (IC) of,

351–362, 393 
instantaneous, 6, 33
magnitude of, 33, 35–36, 352–353
particle kinematics, 6, 8, 33, 35–36, 52,

67, 87–88
particle kinetics, 110, 155, 159, 161
position (s), as a function of, 8
procedure for analysis of, 353
rectilinear motion and, 6, 8
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