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aagaaaaaa

“Only when you climb the highest mountain, will you be aware of the
vastness that lies around you.”

Oscar Wilde, 1854—1900.

agaaaaadao

Chinese Proverb  — It is better to ask a question and look a fool for five minutes, than not
to ask a question at all and be a fool for the rest of your life.

Heavenand Hell ~ —  In heaven you are faced with an infinite number of solvable problems
and in hell you are faced with an infinite number of unsolvable
problems.



Principal notation

length
breadth

wave velocity, distance
diameter

depth

number of joints

length

mass, modular ratio,

number of numbers
frequency, load factor, distance
pressure

shearing force per unit length
radius

distance

thickness

displacement

displacement, velocity
displacement, load intensity,
force
coordinate
coordinate
coordinate

T TR L YQT X IS rAas o

N %

coefficient of linear expansion
shearing strain

deflection

direct strain

efficiency

temperature, angle of twist
Poisson’s ratio

< D3 M= Q

[k] element stiffness matrix
[m] elemental mass matrix

area
complementary energy
diameter

young’s modulus
shearing force
shearing modulus
force

second moment of area
torsion constant

bulk modulus

length

M bending moment

P force

Q force

R force, radius

S force

T torque

U strain energy

V' force, volume, velocity
W work done, force

X force

Y force

Z section modulus, force

xRS OTmMO O

p density
o direct stress

1 shearing stress
o angular velocity
A deflection

@ step-function

K] system stiffness matrix
|M] system mass matrix



Note on Sl units

The units used throughout the book are those of the Systéme Internationale d’Unités; this is
usually referred to as the SI system. In the field of the strength of materials and structures we
are concerned with the following basic units of the SI system:

length metre (m)
mass kilogramme (kg)
time second (s)
temperature kelvin (K)

There are two further basic units of the SI system — electric current and luminous intensity —
which we need not consider for our present purposes, since these do not enter the field of the
strength of materials and structures. For temperatures we shall use conventional degrees
centigrade (°C), since we shall be concerned with temperature changes rather than absolute
temperatures. The units which we derive from the basic SI units, and which are relevant to out
fielf of study, are:

force newton (N) kg.m.s_2

work, energy joule (J) kg.mz.s_2 =Nm
power watt (W) kgm’s” =Js!
frequency hertz (Hz) cycle per second
pressure Pascal (Pa) N.m?= 10" bar

The acceleration due to gravity is taken as:
-2
g=9.81ms
Linear distances are expressed in metres and multiples or divisions of 10° of metres, i.e.

Kilometre (km) 10’ m
metre (m) Im
millimetre (mm 10° m

In many problems of stress analysis these are not convenient units, and others, such as the
centimetre (cm), which is 107> m, are more appropriate.

The unit of force, the newton (N), is the force required to give unit acceleration (ms™%) to
unit mass kg). In terms of newtons the common force units in the foot-pound-second-system
(with g =9.81 ms ") are

1 Ib.wt = 4.45 newtons (N)

1 ton.wt =9.96 x 10" newtons (N)



Xiv Note on SI units

In general, decimal multiples in the SI system are taken in units of 10°. The prefixes we make
most use of are:

kilo k 10°
mega M 106
giga G 10°

Thus:
1 ton.wt = 9.96 kN

The unit of force, the newton (N), is used for external loads and internal forces, such as
shearing forces. Torques and bending of moments are expressed in newton-metres (Nm).
An important unit in the strength of materials and structures is stress. In the foot-pound-
second system, stresses are commonly expressed in Ib.wt/in’, and tons/in®. In the SI system
these take the values:
1 Ib.wt/in® = 6.89 x 103 N/m’ = 6.89 kN/m”
1 ton.wt/in” = 15.42 x 106 N/m’ = 15.42 MN/m’

Yield stresses of the common metallic materials are in the range:
200 MN/m’ to 750 MN/m’

Again, Young’s modulus for steel becomes:

Eqee = 30 x 106 Ib.wt/in” = 207 GN/m’

Thus, working and yield stresses will usually be expressed in MN/m’ units, while Young’s
modulus will usually be given in GN/m”’ units.



Preface

This new edition is updated by Professor Ross, and while it retains much of the basic and
traditional work in Case & Chilver’s Strength of Materials and Structures, it introduces modern
numerical techniques, such as matrix and finite element methods.

Additionally, because of the difficulties experienced by many of today’s students with basic
traditional mathematics, the book includes an introductory chapter which covers in some detail the
application of elementary mathematics to some problems involving simple statics.

The 1971 edition was begun by Mr. John Case and Lord Chilver but, because of the death of
Mr. John Case, it was completed by Lord Chilver.

Whereas many of the chapters are retained in their 1971 version, much tuning has been applied
to some chapters, plus the inclusion of other important topics, such as the plastic theory of rigid
jointed frames, the torsion of non-circular sections, thick shells, flat plates and the stress analysis
of composites.

The book covers most of the requirements for an engineering undergraduate course on strength
of materials and structures.

The introductory chapter presents much of the mathematics required for solving simple
problems in statics.

Chapter 1 provides a simple introduction to direct stresses and discusses some of the
fundamental features under the title: Strength of materials and structures.

Chapter 2 is on pin-jointed frames and shows how to calculate the internal forces in some
simple pin-jointed trusses. Chapter 3 introduces shearing stresses and Chapter 4 discusses the
modes of failure of some structural joints.

Chapter S is on two-dimensional stress and strain systems and Chapter 6 is on thin walled
circular cylindrical and spherical pressure vessels.

Chapter 7 deals with bending moments and shearing forces in beams, which are extended in
Chapters 13 and 14 to include beam deflections. Chapter 8 is on geometrical properties.

Chapters 9 and 10 cover direct and shear stresses due to the bending of beams, which are
extended in Chapter 13. Chapter 11 is on beam theory for beams made from two dissimilar
materials. Chapter 15 introduces the plastic hinge theory and Chapter 16 introduces stresses due
to torsion. Chapter 17 is on energy methods and, among other applications, introduces the plastic
design of rigid-jointed plane frames.

Chapter 18 is on elastic buckling.

Chapter 19 is on flat plate theory and Chapter 20 is on the torsion of non-circular sections.
Chapter 21 is on thick cylinders and spheres.

Chapter 22 introduces matrix algebra and Chapter 23 introduces the matrix displacement
method.

Chapter 24 introduces the finite element method and in Chapter 25 this method is extended to

cover the vibrations of complex structures.
CTFR, 1999
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Introduction

1.1 Introduction

Stress analysis is an important part of engineering science, as failure of most engineering
components is usually due to stress. The component under a stress investigation can vary from the
legs of an integrated circuit to the legs of an offshore drilling rig, or from a submarine pressure hull
to the fuselage of a jumbo jet aircraft.

The present chapter will commence with elementary trigonometric definitions and show how
elementary trigonometry can be used for analysing simple pin-jointed frameworks (or trusses).
The chapter will then be extended to define couples and show the reader how to take moments.

1.2 Trigonometrical definitions

Figure I.1 Right-angled triangle.

With reference to Figure 1.1,

sin® = bc/ac
cos® = ablac (LD
tan® = bc/ab

For a triangle without a right angle in it, as shown in Figure 1.2, the sine and cosine rules can be
used to determine the lengths of unknown sides or the value of unknown angles.
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Figure 1.2. Triangle with no right angle.

The sine rule states that:

a B b _ c L2
sin A sinB  sinC (12)

where
a = length of side BC; opposite the angle A

b = length of side AC; opposite the angle B
¢ = length of side AB; opposite the angle C
The cosine rule states that:

a*=b*+c* -2bccos A

1.3 Vectors and scalars

A scalar is a quantity which has magnitude but no direction, such as a mass, length and time. A
vector is a quantity which has magnitude and direction, such as weight, force, velocity and
acceleration.

NB It is interesting to note that the moment of a couple, (Section 1.6) and energy
(Chapter 17), have the same units; but a moment of a couple is a vector quantity and
energy is a scalar quantity.

1.4 Newton’s laws of motion

These are very important in engineering mechanics, as they form the very fundamentals of this
topic.
Newton’s three laws of motion were first published by Sir 1saac Newton in The Principia in
1687, and they can be expressed as follows:
(1) Every body continues in its state of rest or uniform motion in a straight line, unless it is
compelled by an external force to change that state.



(2) The rate of change of momentum of a body with respect to time, is proportional to the
resultant force, and takes place in a direction of which the resultant force acts.

(3)  Action and reaction are equal and opposite.

.5 Elementary statics

The trigonometrical formulae of I.2 can be used in statics. Consider the force F acting on an angle
0 to the horizontal, as shown by Figure 1.3(a). Now as the force F is a vector, (i.e. it has magnitude
and direction), it can be represented as being equivalent to its horizontal and vertical components,
namely F,, and F,, respectively, as shown by Figure 1.3(b). These horizontal and vertical
components are also vectors, as they have magnitude and direction.

NB If F is drawn to scale, it is possible to obtain F, and F, from the scaled drawing.

(a) (b)
Figure 1.3 Resolving a force.

From elementary trigonometry

F
“H o< cos®
F
~ Fy = F cos 6—horizontal component of F
Similarly,
F
2 - sin#
F
- F, = F sin 6—vertical component of F
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Problem 1.1 Determine the forces in the plane pin-jointed framework shown below.

|

5kN

é / Pin joint \
A
/
/

Wall
A

/1

A

60°
Pin joint /—‘i

Assume all unknown forces in each member are in tension, i.e. the internal force in each
member is pulling away from its nearest joint, as shown below.

Solution

Wall

Isolate joint 4 and consider equilibrium around the joint,

F
? 5kN



Elementary statics

Resolving forces vertically
From Section 1.7
upward forces = downward forces
0 =5+F,cos30
5
cos 30

or F, =

= -5.77 kN (compression)

The negative sign for F, indicates that this member is in compression.

Resolving forces horizontally
From Section 1.7
forces to the left = forces to the nght
F, +F,sin30 =0
F,=-F,sin30 = 5.77 sin 30
F, =2.887 kN (tension)

The force diagram is as follows:

A
S 2.89 kN A
/1

SkN
q -577kN

i

Another method of determining the internal forces in the truss shown on page 4 is through the

use of the triangle of forces. For this method, the magnitude and the direction of the known force,
namely the 5kN load in this case, must be drawn to scale.

307
F

/o)

£

5kN
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To complete the triangle, the directions of the unknown forces, namely F, and F, must be drawn,
as shown above. The directions of these forces can then be drawn by adding the arrowheads to the
triangle so that the arrowheads are either all in a clockwise direction or, altematively, all in a
counter-clockwise direction.

Applying the sine rule to the triangle of forces above,

5 _ _F
sin 60 sin 30
1 5x05_ sg7kN
0.866

Similarly by applying the sine rule:

s __F
sin 60 sin 90
5
F, = ——— =577kN
0.866

These forces can now be transferred to the joint A of the pin-jointed truss below, where it can be
seen that the member with the load F, is in tension, and that the member with the load F; is in
compression.

SkN
£

A

F

This is known as a free body diagram.

1.6 Couples

A couple can be described as the moment produced by two equal and opposite forces acting
together, as shown in Figure 1.4 where,
the moment at the couple = M =F x[(N.m)

F = force (N)
1 = lever length (m)

n



Couples 7

F Lever

\ -
o \ F
-
Figure I.4 A clockwise couple.

For the counter-clockwise couple of Figure 1.5,
M =Fcos@xl
where F cos 0 = the force acting perpendicularly to the lever of length /.
NB The components of force F sin 8 will simply place the lever in tension, and will not cause

a moment.

7 Fsin®

7
Fsin®

Figure L.5 A counter-clockwise couple.

It should be noted from Figure 1.4 that the lever can be described as the perpendicular distance
between the line of action of the two forces causing the couple.

Furthermore, in Figure 1.5, although the above definition still applies, the same value of couple
can be calculated, if the lever is chosen as the perpendicular distance between the components of
the force that are perpendicular to the lever, and the forces acting on this lever are in fact those
components of force.
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1.7 Equilibrium
This section will be limited to one- or two-dimensional systems, where all the forces and couples
will be acting in on plane; such a system of forces is called a coplanar system.
In two dimensions, equilibrium is achieved when the following laws are satisfied:
(1) upward forces = downward forces
(2) forces to the left = forces to the right
(3) clockwise couples = counter-clockwise couples.
To demonstrate the use of these two-dimensional laws of equilibrium, the following problems will

be considered.

Problem 1.2 Determine the values of the reactions R, and R,, when a beam is simply-
supported at its ends and subjected to a downward force of 5 kN.

Solution

For this problem, it will be necessary to take moments. By taking moments, it is meant that the
values of the moments must be considered about a suitable position.

Suitable positions for taking moments on this beam are 4 and B. This is because, if moments
are taken about 4, the unknown section R, will have no lever and hence, no moment about 4,
thereby simplifying the arithmetic. Similarly, by taking moments about B, the unknown R, will
have no lever and hence, no moment about B, thereby simplifying the arithmetic.
Taking moments about B

clockwise moments = counter-clockwise moments

R, x(4+2) = 5x2

or R, = 10/6



R,

Resolving forces vertically
upward forces

Equilibrium 9

1.667 kN

downward forces

R,+R, =5
or R,=5-R, = 5-1.667
R, = 3.333kN
Problem 1.3 Determine the values of the reactions of R, and R for the simply-supported
beam shown.
3 kN 10 kN
A l B
ct— -
A A
L 2m 2m . _2m l514
™ 1
Ra Rg

Solution

Taking moments about B
clockwise couples

R, x4
R,
RA
Resolving forces vertically
R,+ Ry
or R;=13-95

H

counter-clockwise couples
3x6+10x2

18 + 20
4

9.5kN

3+10
3.5kN

Further problems (answers on page 691)

Problem 1.4 Determine the reactions R, and R, for the simply-supported beams.
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10kN l4 kN rz kN
?A- 2m -t im J  m r 3m { 2m A
R A ‘ '
@ ] R, By
(o)
l5 kN r kN
(1.5m 1 4m ! sm (
! —
Ra Ry
Problem L5 Determine the forces the pin-jointed trusses shown.
10kN
b
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1 Tension and compression:
direct stresses

1.1 Introduction

The strength of a material, whatever its nature, is defined largely by the internal stresses, or
intensities of force, in the material. A knowledge of these stresses is essential to the safe design
of a machine, aircraft, or any type of structure. Most practical structures consist of complex
arrangements of many component members; an aircraft fuselage, for example, usually consists of
an elaborate system of interconnected sheeting, longitudinal stringers, and transverse rings. The
detailed stress analysis of such a structure is a difficult task, even when the loading conditions are
simple. The problem is complicated further because the loads experienced by a structure are
variable and sometimes unpredictable. We shall be concerned mainly with stresses in materials
under relatively simple loading conditions; we begin with a discussion of the behaviour of a
stretched wire, and introduce the concepts of direct stress and strain.

1.2 Stretching of a steel wire

One of the simplest loading conditions of a material is that of tension, in which the fibres of the
material are stretched. Consider, for example, a long steel wire held rigidly at its upper end, Figure
1.1, and loaded by a mass hung from the lower end. If vertical movements of the lower end are
observed during loading it will be found that the wire is stretched by a small, but measurable,
amount from its original unloaded length. The material of the wire is composed of a large number
of small crystals which are only visible under a microscopic study; these crystals have irregularly
shaped boundaries, and largely random orientations with respect to each other; as loads are applied
to the wire, the crystal structure of the metal is distorted.

44‘43444

Steel
wire

Applied —é

weights — = —

Figure 1.1 Stretching of a steel wire under end load.
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For small loads it is found that the extension of the wire is roughly proportional to the applied load,
Figure 1.2. This linear relationship between load and extension was discovered by Robert Hooke
in 1678; a material showing this characteristic is said to obey Hooke s law.

As the tensile load in the wire is increased, a stage is reached where the material ceases to show
this linear characteristic; the corresponding point on the load—extension curve of Figure 1.2 is
known as the limit of proportionality. If the wire is made from a high-strength steel then the
load—extension curve up to the breaking point has the form shown in Figure 1.2. Beyond the limit
of proportionality the extension of the wire increases non-linearly up to the elastic limit and,
eventually, the breaking point.

The elastic limit is important because it divides the load—extension curve into two regions. For
loads up to the elastic limit, the wire returns to its original unstretched length on removal of the
loads; this property of a material to recover its original form on removal of the loads is known as
elasticity; the steel wire behaves, in fact, as a still elastic spring. When loads are applied above the
elastic limit, and are then removed, it is found that the wire recovers only part of its extension and
is stretched permanently; in this condition the wire is said to have undergone an inelastic, or
plastic, extension. For most materials, the limit of proportionality and the elastic limit are assumed
to have the same value.

In the case of elastic extensions, work performed in stretching the wire is stored as strain
energy in the material; this energy is recovered when the loads are removed. During inelastic
extensions, work is performed in making permanent changes in the internal structure of the
material; not all the work performed during an inelastic extension is recoverable on removal of the
loads; this energy reappears in other forms, mainly as heat.

The load—extension curve of Figure 1.2 is not typical of all materials; it is reasonably typical,
however, of the behaviour of brittle materials, which are discussed more fully in Section 1.5. An
important feature of most engineering materials is that they behave elastically up to the limit of
proportionality, that is, all extensions are recoverable for loads up to this limit. The concepts of
linearity and elasticity’ form the basis of the theory of small deformations in stressed materials.

Load
4
r Elastic
limit
/
Breaking
pont
\
Limit of
proportionalty
Extension

Cand

Figure 1.2 Load—extension curve for a steel wire, showing the limit of linear-elastic
behaviour (or limit of proportionality) and the breaking point.

'The definition of elasticity requires only that the extensions are recoverable on removal of the loads; this does not preclude
the possibility of a non-linear relation between load and extension .
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1.3 Tensile and compressive stresses

The wire of Figure 1.1 was pulled by the action of a mass attached to the lower end; in this
condition the wire is in tension. Consider a cylindrical bar ab, Figure 1.3, which has a uniform
cross-section throughout its length. Suppose that at each end of the bar the cross-section is divided
into small elements of equal area; the cross-sections are taken normal to the longitudinal axis of
the bar. To each of these elemental areas an equal tensile load is applied normal to the cross-
section and parallel to the longitudinal axis of the bar. The bar is then uniformly stressed in
tension.

Suppose the total load on the end cross-sections is P; if an imaginary break is made
perpendicular to the axis of the bar at the section ¢, Figure 1.3, then equal forces P are required at
the section ¢ to maintain equilibrium of the lengths ac and cb. This is equally true for any section
across the bar, and hence on any imaginary section perpendicular to the axis of the bar there is a
total force P.

When tensile tests are carried out on steel wires of the same material, but of different cross-
sectional area, the breaking loads are found to be proportional approximately to the respective
cross-sectional areas of the wires. This is so because the tensile strength is governed by the
intensity of force on a normal cross-section of a wire, and not by the total force. This intensity of
force is known as stress; in Figure 1.3 the tensile stress ¢ at any normal cross-section of the bar
is

6 = — (L)

p
c (D
b

p

Figure 1.3 Cylindrical bar under uniform tensile stress; there is a similar state of
tensile stress over any imaginary normal cross-section.
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In Figure 1.3 uniform stressing of the bar was ensured by applying equal loads to equal small areas
at the ends of the bar. In general we are not dealing with equal force intensities of this type, and
a more precise definition of stress is required. Suppose 64 is an element of area of the cross-
section of the bar, Figure 1.4; if the normal force acting on this element is P, then the tensile stress
at this point of the cross-section is defined as the limiting value of the ratio (6P/84) as 64 becomes
infinitesimally small. Thus

. .. 0P dP
6 = Limit —=— (12)
3450 84 dA

This definition of stress is used in studying problems of non-uniform stress distribution in
materials.

oP

oA

Figure 1.4 Normal load on an element of area of the cross-section.

When the forces P in Figure 1.3 are reversed in direction at each end of the bar they tend to
compress the bar; the loads then give rise to compressive stresses. Tensile and compressive
stresses are together referred to as direct (or normal) stresses, because they act perpendicularly to
the surface.

Problem 1.1 A steel bar of rectangular cross-section, 3 cm by 2 cm, carries an axial load of
30 kN. Estimate the average tensile stress over a normal cross-section of the
bar.

1
T

ON «— | | ~f—» 30kN
"—_____'})-' ____________ —

Area of normal cross-section = 6cm?
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Solution
The area of a normal cross-section of the bar is

A = 0.03x 0.02=10.6%x10"m’

The average tensile stress over this cross-section is then

Problem 1.2 A steel bolt, 2.50 cm in diameter, carries a tensile load of 40 kN. Estimate the
average tensile stress at the section a and at the screwed section b, where the

diameter at the root of the thread is 2.10 cm.

_—————
— - — -

40 kN
i §
2.10cm diameter
2.50cm —_—
U diameter

40 kN ~=—

{_.
—
\

Solution

The cross-sectional area of the bolt at the section a is
4, = % (0.025)* = 0.491 x 107 m

The average tensile stress at A is then

P 40 x 10° .
6, = = —————— = 814 MN/m
4, 0491 x10

a

The cross-sectional area at the root of the thread, section b, is

4, = — (0.021)* = 0346 x 10° m?

The average tensile stress over this section is

P 40 x10°
G, = — = ——— _ ~115.6 MN/n?’

A4, 0346 x 10
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1.4 Tensile and compressive strains

In the steel wire experiment of Figure 1.1 we discussed the extension of the whole wire. If we
measure the extension of, say, the lowest quarter-length of the wire we find that for a given load
it is equal to a quarter of the extension of the whole wire. In general we find that, at a given load,
the ratio of the extension of any length to that length is constant for all parts of the wire; this ratio
is known as the tensile strain.

Suppose the initial unstrained length of the wire is L, and the e is the extension due to
straining; the tensile strain ¢ is defined as

This definition of strain is useful only for small distortions, in which the extension e is small
compared with the original length L,; this definition is adequate for the study of most engineering
problems, where we are concerned with values of € of the order 0.001, or so.

If a material is compressed the resulting strain is defined in a similar way, except that e is the
contraction of a length.

We note that strain is a non-dimensional quantity, being the ratio of the extension, or
contraction, of a bar to its original length.

Problem 1.3 A cylindrical block is 30 cm long and has a circular cross-section 10 cm in
diameter. It carries a total compressive load of 70 kN, and under this load it
contracts by 0.02 cm. Estimate the average compressive stress over a normal
cross-section and the compressive strain.

70 kN
10cm diameter

30cm long

T0KN

Solution

The area of a normal cross-section is

A = % (0.10° = 7.85x 107 m?
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The average compressive stress over this cross-section is then

70 x 10°

785 x 107

P
o=—= - 8.92 MN/m®

The average compressive strain over the length of the cylinder is

-2
g = 002 107 0n ) o3

30 x 1072

1.5 Stress-strain curves for brittle materials

Many of the characteristics of a material can be deduced from the tensile test. In the experiment
of Figure 1.1 we measured the extensions of the wire for increasing loads; it is more convenient
to compare materials in terms of stresses and strains, rather than loads and extensions of a
particular specimen of a material.

The tensile stress—strain curve for a high-strength steel has the form shown in Figure 1.5. The
stress at any stage is the ratio of the load of the original cross-sectional area of the test specimen;
the strain is the elongation of a unit length of the test specimen. For stresses up to about 750
MN/m?’ the stress—strain curve is linear, showing that the material obeys Hooke’s law in this range;
the material is also elastic in this range, and no permanent extensions remain after removal of the
stresses. The ratio of stress to strain for this linear region is usually about 200 GN/m” for steels;
this ratio is known as Young's modulus and is denoted by E. The strain at the limit of
proportionality is of the order 0.003, and is small compared with strains of the order 0.100 at
fracture.

1500 l Stress. a(MN/m?)
Breaking
1000 - point
Limit of
| proportionality
500 H ll
1
|
i =
, i =0003 Strain, «
) L J
0 0.05 0.10

Figure 1.5 Tensile stress—strain curve for a high-strength steel.
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We note that Young s modulus has the units of a stress; the value of £ defines the constant in the
linear relation between stress and strain in the elastic range of the material. We have

E =2 (1.4)
£

for the linear-elastic range. If P is the total tensile load in a bar, 4 its cross-sectional area, and L,
its length, then

P/ A
E == (1.5)
£ e/ L,
where e is the extension of the length L,. Thus the expansion is given by
PL,
= 1.6
e ZA (1.6)

If the material is stressed beyond the linear-elastic range the limit of proportionality is
exceeded, and the strains increase non-linearly with the stresses. Moreover, removal of the stress
leaves the material with some permanent extension; this range is then both non-linear and inelastic.
The maximum stress attained may be of the order of 1500 MN/m?, and the total extension, or
elongation, at this stage may be of the order of 10%.

The curve of Figure 1.5 is typical of the behaviour of brittle materials—as, for example, area
characterized by small permanent elongation at the breaking point; in the case of metals this 1s
usually 10%, or less.

When a material is stressed beyond the limit of proportionality and is then unloaded, permanent
deformations of the material take place. Suppose the tensile test-specimen of Figure 1.5 is stressed
beyond the limit of proportionality, (point a in Figure 1.6), to a point b on the stress—strain
diagram. If the stress is now removed, the stress—strain relation follows the curve bc; when the
stress is completely removed there is a residual strain given by the intercept Oc on the e-axis. If
the stress is applied again, the stress—strain relation follows the curve cd initially, and finally the
curve df to the breaking point. Both the unloading curve bc and the reloading curve cd are
approximately paralle] to the elastic line Oa; they are curved slightly in opposite directions. The
process of unloading and reloading, bcd, had little or no effect on the stress at the breaking point,
the stress—strain curve being interrupted by only a small amount bd, Figure 1.6.

The stress—strain curves of brittle materials for tension and compression are usually similar in
form, although the stresses at the limit of proportionality and at fracture may be very different for
the two loading conditions. Typical tensile and compressive stress—strain curves for concrete are
shown in Figure 1.7; the maximum stress attainable in tension is only about one-tenth of that in
compression, although the slopes of the stress—strain curves in the region of zero stress are nearly
equal.
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~
Reloadingfl/ ¥~ Unloading

Figure 1.6 Unloading and reloading of a material in the inelastic range; the paths bc
and cd are approximately parallel to the linear-elastic line oa.

Stress (MN/m?2)
40+
Compression
30+
20t
104
Tension Stran
0 1] i A 3
0.002 0.004 0.006

Figure 1.7 Typical compressive and tensile stress—strain curves for concrete, showing
the comparative weakness of concrete in tension.

1.6 Ductile materials rsee Section 1.8)

A brittle material is one showing relatively little elongation at fracture in the tensile test; by
contrast some materials, such as mild steel, copper, and synthetic polymers, may be stretched
appreciably before breaking. These latter materials are ductile in character.

If tensile and compressive tests are made on a mild steel, the resulting stress—strain curves are
different in form from those of a brittle material, such as a high-strength steel. If a tensile test
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specimen of mild steel is loaded axially, the stress—strain curve is linear and elastic up to a point
a, Figure 1.8; the small strain region of Figure 1.8. is reproduced to a larger scale in Figure 1.9.
The ratio of stress to strain, or Young’s modulus, for the linear portion Oa is usually about
200 GN/m?, ie, 200 x10° N/m’. The tensile stress at the point a is of order 300 MN/m’, i.e.
300 x 10° N/m?. If the test specimen is strained beyond the point a, Figures 1.8 and 1.9, the stress
must be reduced almost immediately to maintain equilibrium; the reduction of stress, ab, takes
place rapidly, and the form of the curve ab is difficult to define precisely. Continued straining
proceeds at a roughly constant stress along bc. In the range of strains from a to ¢ the material is
said to yield; a is the upper yield point, and b the lower yield point. Yielding at constant stress
along bc proceeds usually to a strain about 40 times greater than that at a; beyond the point ¢ the
material strain-hardens, and stress again increases with strain where the slope from ¢ to d is about
1/50th that from 0 to a. The stress for a tensile specimen attains a maximum value at d if the stress
is evaluated on the basis of the original cross-sectional area of the bar; the stress corresponding to
the point d is known as the ultimate stress, o,,, of the material. From d to fthere is a reduction in
the nominal stress until fracture occurs at f. The ultimate stress in tension is attained at a stage
when necking begins; this is a reduction of area at a relatively weak cross-section of the test
specimen. Itis usual to measure the diameter of the neck after fracture, and to evaluate a true stress
at fracture, based on the breaking load and the reduced cross-sectional area at the neck. Necking
and considerable elongation before fracture are characteristics of ductile materials; there is little
or no necking at fracture for brittle materials.

600
600 o(MN/m?)
o(MN/m?)
Gur 300{ &
b c
300
0 0.010 0.020 0.030
N
0 0.10 0.20 0.30
Figure 1.8 Tensile stress—strain curve for an Figure 1.9 Upper and lower yield points of a
annealed mild steel, showing the drop in stress at mild steel.
yielding from the upper yield point a to the lower
yield point 4.

Compressive tests of mild steel give stress—strain curves similar to those for tension. If we
consider tensile stresses and strains as positive, and compressive stresses and strains as negative,
we can plot the tensile and compressive stress—strain curves on the same diagram; Figure 1.10
shows the stress—strain curves for an annealed mild steel. In determining the stress—strain curves
experimentally, it is important to ensure that the bar is loaded axially; with even small eccentricities
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of loading the stress distribution over any cross-section of the bar is non-uniform, and the upper
yield point stress is not attained in all fibres of the material simultaneously. For this reason the
lower yield point stress is taken usually as a more realistic definition of yielding of the material.

Some ductile materials show no clearly defined upper yield stress; for these materials the limit
of proportionality may be lower than the stress for continuous yielding. The term yield stress refers
to the stress for continuous yielding of a material; this implies the lower yield stress for a material
in which an upper yield point exists; the yield stress is denoted by o,.

Tensile failures of some steel bars are shown in Figure 1.11; specimen (ii) is a brittle material,
showing little or no necking at the fractured section; specimens (i) and (iii) are ductile steels
showing a characteristic necking at the fractured sections. The tensile specimens of Figure 1.12
show the forms of failure in a ductile steel and a ductile light-alloy material; the steel specimen (i)
fails at a necked section in the form of a ‘cup and cone’; in the case of the light-alloy bar, two
‘cups’ are formed. The compressive failure of a brittle cast iron is shown in Figure 1.13. In the
case of a mild steel, failure in compression occurs in a ‘barrel-like’ fashion, as shown in
Figure 1.14.

A Tension

Compression

Figure 1.10 Tensile and compressive stress—strain curves for an annealed
mild steel; in the annealed condition the yield stresses in tension and
compression are approximately equal.

The stress—strain curves discussed in the preceding paragraph refer to static tests carried out at
negligible speed. When stresses are applied rapidly the yield stress and ultimate stresses of metallic
materials are usually raised. At a strain rate of 100 per second the yield stress of a mild steel may
be twice that at negligible speed.
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(@)

(i)

(iii)

Figure 1.11 Tensile failures in steel specimens showing necking in mild steel, (i) and (iii),
and brittle fracture in high-strength steel, (i1).

Figure 1.12 Necking in tensile failures of ductile materials.
(i) Mild-steel specimen showing ‘cup and cone’ at the broken section.
(ii) Aluminium-alloy specimen showing double ‘cup’ type of failure.

Figure 1.13 Failure in compression of a Figure 1.14 Barrel-like failure in a compressed
circular specimen of cast iron, showing fracture specimen of mild steel.
on a diagonal plane.
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Problem 1.4 A tensile test is carried out on a bar of mild steel of diameter 2 cm. The bar
yields under a load of 80 kN. It reaches a maximum load of 150 kN, and
breaks finally at a load of 70 kN.

Estimate:
(1) the tensile stress at the yield point;
(ii) the ultimate tensile stress;

(iii) the average stress at the breaking point, if the diameter of the
fractured neck is 1 cm.

Solution

The original cross-section of the bar is

4, = % (0.020)2 = 0.314 x 107 m?

(i) The average tensile stress at yielding is then
3

o = — - 0210 554 MNm?,
4, 0.314 x 1073

where P, = load at the yield point

(ii) The ultimate stress is the nominal stress at the maximum load, i.e.,

P 3
o, = —=x o 10X10 497 vm?

o 4, 0314 x 107

where P,,, = maximum load

(iii) The cross-sectional area in the fractured neck is

4, = % (0.010)* = 0.0785 x 107> m?

The average stress at the breaking point is then

3
2l 70 <100 gg MN/m?,
» 0.0785 x 107

where P, = final breaking load.
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Problem 1.5 A circular bar of diameter 2.50 cm is subjected to an axial tension of 20 kN.
If the material is elastic with a Young’s modulus £ = 70 GN/m?, estimate the
percentage elongation.

Solution

The cross-sectional area of the bar is

A4 = %(0.025)2 = 0.491 x 107 m?

The average tensile stress is then

3
G = g - 20 X107 4607 MN/m?

0.491 x 1073

The longitudinal tensile strain will therefore be

6
e = 8 o 307 x10°0 _ (se5 » 107

E 70 x 10°

The percentage elongation will therefore be

(0.582 x 10100 = 0.058%

Problem 1.6 The piston of a hydraulic ram is 40 cm diameter, and the piston rod 6 cm
diameter. The water pressure is ] MN/m’. Estimate the stress in the piston
rod and the elongation of a length of I m of the rod when the piston is under
pressure from the piston-rod side. Take Young's modulus as £ = 200 GN/m’.

1 MN/m?

Sl
\

6cm

40cm

H]TTH

14
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Solution

The pressure on the back of the piston acts on a net area

-;5[(0.40)2 - (0.06)] = -}(0.46) (0.34) = 0.123 m?

The load on the piston is then

P = (1) (0.123) = 0.123 MN

Area of the piston rod is
A = -2—(0.060)2 = 0283 x 102 m?

The average tensile stress in the rod is then

6
o = L - LIB X0 435 Mm?

A 0.283 x 1072

From equation (1.6), the elongation of a length L = 1 mis

e = PL . PILY _ oL
EA A \E E

(@35 x 109 (1)
200 x 10°

0218 x 107 m

0.0218 cm

n

Problem 1.7 The steel wire working a signal is 750 m long and 0.5 cm diameter.
Assuming a pull on the wire of 1.5 kN, find the movement which must be
given to the signal-box end of the wire if the movement at the signal end is
to be 17.5 cm. Take Young’s modulus as 200 GN/m”.
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L =750cm

—t> P = 1.5kN

L : 17.5cm=
— dCm e —_ ) e

P=15kN

Solution

27

If 8(cm) is the movement at the signal-box end, the actual stretch of the wire is e = (6 ~17.5)cm

The longitudinal strain is then

_ (8 -17.5) 107
750

Now the cross-sectional area of the wire is

A = i‘- (0.005)* = 0.0196 x 107 m?

The longitudinal strain can also be defined in terms of the tensile load, namely,

e
L EA (200 = 10° (0.0196 x 107?)

P 1.5 x 10°

0.383 x 1073

i

On equating these two values of €,

(6 - 17.5) 1072
750

= 0.383 x 107

The equation gives

0 = 46.2 cm
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Problem 1.8 A circular, metal rod of diameter 1 cm is loaded in tension. When the
tensile load is 5kN, the extension of a 25 cm length is measured accurately
and found to be 0.0227 cm. Estimate the value of Young’s modulus, E, of

the metal.

Solution

The cross-sectional area is

A = %(0.01)2 = 0.0785 x 107 m?

The tensile stress is then

3
¢ - 5 = 32X | 637 MN/Mm?

0.0785 x 107

The measured tensile strain is

-2
e = 2 - D027 <107 o910 x 10

L 25 x 1072

Then Young’s modulus is defined by

(]
E:E:Mzm(m/mz

€ 0.91 x 1073

Problem 1.9 A straight, uniform rod of length L rotates at uniform angular speed @ about
an axis through one end and perpendicular to its length. Estimate the
maximum tensile stress generated in the rod and the elongation of the rod at
this speed. The density of the material is p and Young’s modulus is E.
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Solution

Suppose the radial displacement of any point a distance » from the axis of rotation is . The
radial displacement a distance r + 8r) from 0 is then (u + du), and the elemental length &7 of the
rod is stretched therefore an amount u. The longitudinal strain of this element is therefore

z:=Limitﬁ=ﬂ

sr-0 OF dr

The longitudinal stress in the elemental length is then

¢ - B - EX
dr

If A is the cross-sectional area of the rod, the longitudinal load at any radius r is then
P= 04 = E4 —

The centrifugal force acting on the elemental length 67 is

(pAdr) w’r

Then, for radial equilibrium of the elemental length,

8P + pA@®rdr = 0

This gives

LLANPpES

dr

On integrating, we have
1 2.2
P = ——pdor+C
2
where C is an arbitrary constant; if P = 0 at the remote end, r = L, of the rod, then

C = pAw’I?

1
2
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and

1 2,2 r2
P=—=pAo L |1-—
2P ( L

The tensile stress at any radius is then

This is greatest at the axis of rotation, 7 = 0, so that
1l
O max = EY po° L

The longitudinal stress, o, is defined by

¢ = E du
dr
so
dr E 2E L?

On integrating,

272 3
y - p_u(,- r +D]

where D is an arbitrary constant; if there is no radial movement at O, then u =0 at =r = 0, and
we have D = 0.
2
rfl - —
3L?
At the remote end, r = L,

2 72 2 73
u, = p oL Lz . po L
2E 3 3E

Thus
p w L?
2E

u =
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1.7 Proof stresses

Many materials show no well-defined yield stresses when tested in tension or compression. A
typical stress—strain curve for an aluminium alloy is shown in Figure 1.15.

400 0.2% proof stress

o(MN/m?) . _)2____

3003 T 7
0.1% /)

proof

stress /
;!

200+
4 / /

1001 / /

o [/ _

0001 0.002 _ 0.005 0010 0015

S

Figure 1.15 Proof stresses of an aluminium-alloy material; the proof stress is found
by drawing the line parallel to the linear-elastic line at the appropriate proof strain.

The limit of proportionality is in the region of 300 MN/m’, but the exact position of this limit is
difficult to determine experimentally. To overcome this problem a proof stress is defined; the
0.1% proof stress required to produce a permanent strain of 0.001 (or 0.1%) on removal of the
stress. Suppose we draw a line from the point 0.001 on the strain axis, Figure 1.15, parallel to
the elastic line of the material; the point where this line cuts the stress—strain curve defines the
proof stress. The 0.2% proof stress is defined in a similar way.

1.8 Ductility measurement

The Ductility value of 2 material can be described as the ability of the material to suffer plastic
deformation while still being able to resist applied loading. The more ductile a material is the
more it is said to have the ability to deform under applied loading.

The ductility of a metal is usualily measured by its percentage reduction in cross-sectional
area or by its percentage increase in length, i.e.

Ay - A4
percentage reduction in area = (—ITF) x 100%
and
: . (L - L)
percentage increase in length = I x 100%
where

A, = initial cross-sectional area of the tensile specimen
A, = final cross-sectional area of the tensile specimen
L, = initial gauge length of the tensile specimen

L, = final gauge length of the tensile specimen
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It should be emphasised that the shape of the tensile specimen plays a major role on the
measurement of the ductility and some typical relationships between length and character for
tensile specimens i.e. given in Table 1.1

Materials such as copper and mild steel have high ductility and brittle materials such as
bronze and cast iron have low ductility.

Table 1.1 Circular cylindrical tensile specimens

Place L, L,/D>*
UK 4varea 3.54
USA 4.51varea 4.0
Europe 5.65varea 5.0

area = cross-sectional area

* D, = initial diameter of the tensile specimen

1.9  Working stresses

In many engineering problems the loads sustained by a component of a machine or structure
are reasonably well-defined; for example, the lower stanchions of a tall building support the
weight of material forming the upper storeys. The stresses which are present in a component,
under normal working conditions, are called the working stresses; the ratio of the yield stress,
6,, of a material to the largest working stress, G, in the component is the stress factor against
yielding. The stress factor on yielding is then

Zr a7

Cw

If the material has no well-defined yield point, it is more convenient to use the proof stress, 6,
the stress factor on proof stress is then

s
2 (1.8)

Oy

Some writers refer to the stress factor defined above as a ‘safety factor’. It is preferable,
however, to avoid any reference to ‘safe’ stresses, as the degree of safety in any practical
problem is difficult to define. The present writers prefer the term ‘stress factor’ as this defines
more precisely that the working stress is compared with the yield, or proof stress of the
material. Another reason for using ‘stress factor’ will become more evident after the reader has
studied Section 1.10.
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1.10 Load factors

The stress factor in a component gives an indication of the working stresses in relation to the
yield, or proof, stress of the material. In practical problems working stresses can only be
estimated approximately in stress calculations. For this reason the stress factor may give little
indication of the degree of safety of a component.

A more realistic estimate of safety can be made by finding the extent to which the working
loads on a component may be increased before collapse or fracture occurs. Consider, for
example, the continuous beam in Figure 1.16, resting on three supports. Under working
conditions the beam carries lateral loads P,, P, and P;, Figure 1.16(i). If all these loads can be
increased simultaneously by a factor n before collapse occurs, the load factor against collapse is
n. In some complex structural systems, as for example continuous beams, the collapse loads,
such as nP,, nP, and nP,, can be estimated reasonably accurately; the value of the load factor
can then be deduced to give working loads P,, P, and P,.

n
Rl
.

le——
l«— D
fe——

LI~ - yay 2

Figure 1.16 Factored loads on a continuous beam.
(i) Working loads. (ii) Factored working loads leading to collapse.

1.11 Lateral strains due to direct stresses

When a bar of a material is stretched longitudinally—as in a tensile test—the bar extends in the
direction of the applied load. This longitudinal extension is accompanied by a lateral contraction
of the bar, as shown in Figure 1.17. In the linear-elastic range of a material the lateral strain is
proportional to the longitudinal strain; if €, is the longitudinal strain of the bar, then the lateral
strain is

(1.9)

The constant v in this relationship is known as Poisson’s ratio, and for most metals it has a
value of about 0.3 in the linear-elastic range; it cannot exceed a value of 0.5. For concrete it has
a value of about 0.1. If the longitudinal strain is tensile, the lateral strain is a contraction; for a
compressed bar there is a lateral expansion.
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Figure 1.17 The Poisson ratio effect leading to lateral contraction of a bar in tension.
With a knowledge of the lateral contraction of a stretched bar it is possible to calculate the change
in volume due to straining. The bar of Figure 1.17 is assumed to have a square cross-section of
side a; L, is the unstrained length of the bar. When strained longitudinally an amount ¢,, the

corresponding lateral strain of contractions is €,. The bar extends therefore an amount ¢ L, and
each side of the cross-section contracts an amount €. a. The volume of the bar before stretching is

V,= dL,

After straining the volume is
V=(a-ga (L tegLy)

which may be written
V=aL(l-g)(1+g) = V,(1 -g) (1 +¢g)

If € and ¢, are small quantities compared to unit, we may write
(1-g)(1+g) = 1-2g)(1+g) = [ +¢ -2,

ignoring squares and products of ¢, and £, The volume after straining is then
V="V(l+g -2¢)

The volumetric strain is defined as the ratio of the change of volume to the original volume, and
is therefore

) :
A (1.10)
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Ife, = ve_ then the volumetric strainis €, (1 -2v). Equation (1.10) shows why v cannot be greater
than 0.5; if it were, then under compressive hydrostatic stress a positive volumetric strain will
result, which is impossible.

Problem 1.10 A bar of steel, having a rectangular cross-section 7.5 cm by 2.5 cm, carries an
axial tensile load of 180 kN. Estimate the decrease in the length of the sides of
the cross-section if Young’s modulus, E, is 200 GN/m’ and Poisson’s ratio, v,
is 0.3.

Solution
The cross-sectional area is

A = (0.075)(0.025) = 1.875 x 107 m’

The average longitudinal tensile stress is

3
6 = £ - _180x10° _ o6 MN/m?

A 1.875 x 107}

The longitudinal tensile strain is therefore

6
- 260X 10 g48 x 107

€ = E
E 200 x 10°

The lateral strain is therefore

ve = 0.3(048 x107) = 0.144 x 10

The 7.5 cm side then contracts by an amount

0.0108 x 107 m
0.00108 cm

(0.075) (0.144 x 107

The 2.5 ¢cm side contracts by an amount

(0.025) (0.144 x 107 = 0.0036 x 10 m
0.00036 cm
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1.12 Strength properties of some engineering materials

The mechanical properties of some engineering materials are given in Table 1.2. Most of the
materials are in common engineering use, including a number of relatively new and important
materials; namely glass-fibre composites, carbon-fibre composites and boron composites. In the
case of some brittle materials, such as cast iron and concrete, the ultimate stress in tension is
considerably smaller than in compression.

Composite materials, such as glass fibre reinforced plastics, (GRP), carbon-fibre reinforced
plastics (CFRP), boron-fibre reinforced plastics, ‘Kevlar’ and metal-matrix composites are likely
to revolutionise the design and construction of many structures in the 21st century. The glass fibres
used in GRP are usually made from a borosilicate glass, similar to the glass used for cooking
utensils. Borosilicate glass fibres are usually produced in ‘E’ glass or glass that has good electrical
resistance. A very strong form of borosilicate glass fibre appears in the form of ‘S’ glass which
is much more expensive than ‘E’ glass.

Some carbon fibres, namely high modulus (HM) carbon fibres , have a tensile modulus much
larger than high strength steels, whereas other carbon fibres have a very high tensile strength (HS)
much larger than high tensile steels.

Currently ‘S’ glass is some eight times more expensive than ‘E’ glass and HS carbon is about
50 times more expensive than ‘E’ glass. HM carbon is some 250 times more expensive than ‘E’
glass while ‘Kevlar’ is some 15 times more expensive than ‘E’ glass.

1.13 Weight and stiffness economy of materials

In some machine components and structures it is important that the weight of material should be
as small as possible. This is particularly true of aircraft, submarines and rockets, for example, in
which less structural weight leads to a larger pay-load. If o, is the ultimate stress of a material in
tension and p is its density, then a measure of the strength economy is the ratio

o]

ult

p

The materials shown in Table 1.2 are compared on the basis of strength economy in Table 1.3 from
which it is clear that the modern fibre-reinforced composites offer distinct savings in weight over
the more common materials in engineering use.

In some engineering applications, stiffness rather than strength is required of materials; this is
so in structures likely to buckle and components governed by deflection limitations. A measure of
the stiffness economy of a material is the ratio

E

)

p

some values of which are shown in Table 1.2. Boron composites and carbon-fibre composites show
outstanding stiffness properties, whereas glass-fibre composites fall more into line with the best
materials already in common use.



Table 1.2 Approximate strength properties of some engineering materials

Elongation .
Limit . at tensile , Coefﬁctent
f Ultimate Young’s of linear
o fracture dul Densi .
propor- sgess (asafraction MO EP us er:)snty oulp - expa(r:sxon
. tionality ult of the original 2 o
Material (MN/m?)  (MN/m) ten ﬂ’f) (GN'm?)  (kg/m’) (m’s) (m/s)? (per °C)
Medium-strength mild steel 280 370 0.30 200 7840 47 x10*  25x10° 1.2%x107°
High-strength steel 770 1550 0.10 200 7840 198 x 10° 25 % 10° 1.3x107°
Medium-strength aluminium alloy 230 430 0.10 70 2800 154 x 10 25 x 10° 23x107°
Titanium alloy 385 690 0.15 120 4500 153 x 10° 27 x 10° 0.9 x107°
Magnesium alloy 155 280 0.08 45 1800 156 x 10° 25 x 10° 2.7x107°
Wrought iron 185 310 — 190 7670 40 x 10° 25 x 10° 1.2x107°
Cast iron }tension — 155 — 140 7200 — 20 x 10 1.1x10°
}compression — 700 — 140 7200 97* x 10° 20 x 10° 1.1x10°*
Concrete }tension — 3.0 — 14 2410 — 6 x 10° 1.2%x107°
}compression — 30.0 — 14 2410 12* x 10° 6 % 10° 1.2x107°
Nylon (polyamide) 77 90 1.00 2 79%10° 1.8 x10° 10x107°
Polystyrene 46 60 0.03 35 1050 57 x 10° 3.3 x10° 10x107°
Fluon (tetrafluoroethylene) 8 15 2.00 0.4 2220 7x10°  02x10° 11x107°
Polythene (ethylene) 6 12 5.00 0.2 915 13x10*  02x10° 28 x 107
High-strength glass-fibre composite — 1600 — 60 2000 800 x 10° 30 x 10° —
Carbon-fibre composite — 1400 — 170 1600 875 x 10 105 x 10° —
Boron composite — 1300 — 270 2000 650 x 10° 135 x 10° —

¢ Evaluate on the compressive value of ¢

ult*



(ryu/p)
0004 x 10%m/s)*

900
«———— carbon-fibre composite
#(X)-{ «———— high-strength glass-fibre composite

700+
<«——— horon composite
60

500
400
KV
Z(KH <«+— high-strength steel

-— magnesium, aluminium and titanium alloys
100« @———— castiron. nylon

<«——— polystyrene. mild steel, wrought iron
(}- «——— concrete, polythenc, fluon

Table 1.3 Strength economy of some engineering materials

(E/p)
150
140
130
120
110
100
90
80
70
60-1
50
40
30
20

10+

x 10%(m/s)*

a———— horon composites

<——— carbon-fibre composites

-«+——— high-strength glass-fibre composites

steels; aluminium . titanium, magnesium atloys; wrought iron
<«+——— castiron

<«——— concrete, nylon, polystyrenc
<«+———— fluon. polythene

Table 1.4 Stiffness economy of some engineering materials
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1.14 Strain energy and work done in the tensile test

As a tensile specimen extends under load, the forces applied to the ends of the test specimen move
through small distances. These forces perform work in stretching the bar. If, at a tensile load P,
the bar is stretched a small additional amount e, Figure 1.18, then the work done on the bar is
approximately Pde

P

A

Figure 1.18 Work done in stretching a bar through a small extension, de.

The total work done in extending the bar to the extension e is then

e

w o= I Pde, (1.11)

0

which is the area under the P—e curve up to the stretched condition. If the limit of proportionality
is not exceeded, the work done in extending the bar is stored as strain energy, which is directly
recoverable on removal of the load. For this case, the strain energy, U, is

e

U = w = '[Pde (1.12)

]
But in the linear-elastic range of the material, we have from equation (1.6) that

PL,
EA

e =

where L, is the initial length of the bar, 4 is its cross-sectional area and £ is Young's modulus.
Then equation (1.12) becomes

U = J._Eiede = £4 (ez) (1.13)
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U - 22() = fo_(p?) (1.14)

Now (P/A) is the tensile stress ¢ in the bar, and so we may write

U= 2o (o) =S« thevol (115
Y °E e volume .15)

Moreover, as AL, is the original volume of the bar, the strain energy per unit volume is

2 (L.16)

When the limit of proportionality of a material is exceeded, the work done in extending the bar is
still given by equation (1.11); however, not all this work is stored as strain energy; some of the
work done is used in producing permanent distortions in the material, the work reappearing largely
in the form of heat. Suppose a mild-steel bar is stressed beyond the yield point, Figure 1.19, and
up to the point where strain-hardening begins; the strain at the limit of proportionality is small
compared with this large inelastic strain; the work done per unit volume in producing a strain € is
approximately

W = oy¢€ (1.17)

in which o, is the yield stress of the material. This work is considerably greater than that required
to reach the limit of proportionality. A ductile material of this type is useful in absorbing relatively
large amounts of work before breaking.

(o)

A

ay |-

Figure 1.19 Work done in stretching a mild-steel bar; the work done during plastic
deformation is very considerable compared with the elastic strain energy.
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1.15 Initial stresses

It frequently happens that, before any load is applied to some part of a machine or structure, it is
already in a state of stress. In other words, the component is initially stressed before external
forces are applied. Bolted joints and connections, for example, involve bolts which are pre-
tensioned; subsequent loading may, or may not, affect the tension in a bolt. Most forms of welded
connections introduce initial stresses around the welds, unless the whole connection is stress
relieved by a suitable heat treatment; in such cases, the initial stresses are not usually known with
any real accuracy. Initial stresses can also be used to considerable effect in strengthening certain
materials; for example, concrete can be made a more effective material by precompression in the
form of prestressed concrete. The problems solved below are statically indeterminate
(see Chapter 2) and therefore require compatibility considerations as well as equilibrium
considerations.

Problem 1.11 A 2.5 cm diameter steel bolt passes through a steel tube S cm internal diameter,
6.25 cm external diameter, and 40 cm long. The bolt is then tightened up onto
the tube through rigid end blocks until the tensile force in the bolts is 40 kN.
The distance between the head of the bolt and the nut is 50 cm. If an external
force of 30 kN is applied to the end blocks, tending to pull them apart, estimate
the resulting tensile force in the bolt.

<—— ——40cm — — — —»
% _2.5¢cm diam. bolt %
! 5cm internal diameter !

| 6.25cm external diameter :
M — = ——50cm — — — - s

Solution:

The cross-sectional area of the bolt is
% (0.025 = 0.491 x 1073 m?

The cross-sectional are of the tube is

%[(0.0625)2 - (0.0507] = %(o.nzs) (0.0125) = 0.110 x 102 m?

Before the external load of 30 kN is applied, the bolt and tube carry internal loads of 40 kN. When
the external load of 30 kN is applied, suppose the tube and bolt are each stretched by amounts §;
suppose further that the change of load in the bolt is (AP),, tensile, and the change of load in the
tube is (AP),, tensile.
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0.50m

40+(AP), - I I—» 40+(AP),

0.40m
40-{3P) —>| [+— 40-(aPy

Then for compatibility, the elastic stretch of each component due to the additional external load

of 30 kN is
5 - (AP), (0.50)  (AP), (0.40)
(0.491 x 107 E (0.110 x 10 E

where £ is Young's modulus. Then

(AP), = 0357 (AP),

But for equilibrium of internal and external forces,

(AP), + (AP), = 30 kN

t

These two equations give

(AP), = 7.89 kN, (AP) = 22.11 kN

{

The resulting tensile force in the bolt is

40 + (AP), = 47.89 kN

1.16 Composite bars in tension or compression

A composite bar is one made of two materials, such as steel rods embedded in concrete. The
construction of the bar is such that constituent components extend or contract equally under load.
To illustrate the behaviour of such bars consider a rod made of two materials, 1 and 2, Figure 1.20;
A,, A, are the cross-sectional areas of the bars, and E,, E, are the values of Young's modulus. We
imagine the bars to be rigidly connected together at the ends; then for compatibility, the
longitudinal strains to be the same when the composite bar is stretched we must have

)
E,

(1.18)

o.l
£= —-
EI
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Figure 1.20 Composite bar in tension; if the bars are connected rigidly
at their ends, they suffer the same extensions.

where o, and o, are the stresses in the two bars. But from equilibrium considerations,
P =10,4 +0, 4 (1.19)
Equations (1.18) and (1.19) give

PE, PE,
6, ————————, 6, = ——————— (1.20)
A E + A, E, A E + A E,

Problem 1.12 A concrete column, 50 cm square, is reinforced with four steel rods, each
2.5 cm in diameter, embedded in the concrete near the corners of the square.
If Young's modulus for steel is 200 GN/m’ and that for concrete is 14 GN/m’,
estimate the compressive stresses in the steel and concrete when the total thrust
on the column is 1 MN.

le— 50CM ——!
f ] @-}-2.5cm diameter

50¢cm

Solution

Suppose subscripts ¢ and s refer to concrete and steel, respectively. The cross-sectional area of
steel is

4, = 4[% (0.025)2] = 1.96 x 107 m?
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and the cross-sectional area of concrete is

A, = (0507 - 4, = 0248 m?

s

Equations (1.20) then give
106

(0.248) + (1.96 x 107) [-2-@)
14

Gc:

3.62 MN/m?

10¢

51.76 MN/m?
0248) | 12| + (1.96 x 107)
200

Q
1]
"

Problem 1.13 A uniform beam weighing 500 N is held in a horizontal position by three
vertical wires, one attached to each end of the beam, and one at the mid-length.
The outer wires are brass of diameter 0.125 cm, and the central wire is of steel
of diameter 0.0625 cm. If the beam is rigid and the wires are of the same
length, and unstressed before the beam is attached, estimate the stresses in the
wires. Young's modulus for brass is 85 GN/m’ and for steel is 200 GN/m’.

S L Ll L 4

Vd ™
Brass Steel Brass

500N
Solution

On considering the two outer brass wires together, we may take the system as a composite one
consisting of a single brass member and a steel member. The area of the steel member is

§

A = %(0.625 x 107 = 0306 x 10¢ m?

The total area of the two brass members is

4, = 2 [Z- {125 x 10-3)2] = 245 x 10° m?
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Equations (1.20) then give, for the steel wire
500

0306 x 10°) + .45 x 107 | 32
200

370 MN/m?

)

0, =

and for the brass wires
500

0.306 x 107) [%] + 2.45 x 107)

158 MN/m?

O'b=

1.17 Temperature stresses

When the temperature of a body is raised, or lowered, the material expands, or contracts. If this
expansion or contraction is wholly or partially resisted, stresses are set up in the body. Consider
a long bar of a material; suppose L, is the length of the bar at a temperature 6,, and that « is the
coefficient of linear expansion of the material. The bar is now subjected to an increase 6 in
temperature. If the bar is completely free to expand, its length increases by al,0, and the length
becomes L, (1 + aB) were compressed to a length L,; in this case the compressive strain 1s

al,®
= —— = af
L, (1 + aB)

since af is small compared with unity; the corresponding stress is
6 = Fg = abF (1.21)

By a similar argument the tensile stress set up in a constrained bar by a fall 8 in temperature is a8
E. Ttis assumed that the material remains elastic.

In the case of steel @ = 1.3 x107° per °C; the product a£ is approximately 2.6 MN/m’ per °C,
so that a change in temperature of 4°C produces a stress of approximately 10 MN/m” if the bar is
completely restrained.

1.18 Temperature stresses in composite bars

In a component or structure made wholly of one material, temperature stresses arise only if external
restraints prevent thermal expansion or contraction. In composite bars made of materials with
different rates of thermal expansion, internal stresses can be set up by temperature changes; these
stresses occur independently of those due to external restraints.

Consider, for example, a simple composite bar consisting of two members—a solid circular bar,
1, contained inside a circular tube, 2, Figure 1.21. The materials of the bar and tube have



46 Tension and compression: direct stresses

different coefficients of linear expansion, a, and a,, respectively. If the ends of the bar and tube
are attached rigidly to each other, longitudinal stresses are set up by a change of temperature.
Suppose firstly, however, that the bar and tube are quite free of each other; if L, is the original
length of each bar, Figure 1.21, the extensions due to a temperature increase 8 are a, 6L, and a,
0L,, Figure 1.21(ii). The difference in lengths of the two members is (a, - a,) 8L,; this is now
eliminated by compressing the inner bar with a force P, and pulling the outer tube with an equal
force P, Figure 1.21(iii).

@i (i) (1)

T
- — - —
uﬂ)iLo_t____ i _1:1---:{_ -?—1—1 -‘r
VIR ) 3 B
| T (12‘”_0
‘1 L2
| H
Ly
|
|
!
Y~ B
AL T
P
) (ii) (ii1)

Figure 1.21 Temperature stress in a composite bar.

If A, and E| are the cross-sectional area and Young's modulus, respectively, of the inner bar, and
A, and E, refer to the outer tube, then the contraction of the inner bar to P is

Then from compatibility considerations, the difference in lengths (o, - a,) 6L, is eliminated
completely when

(0, ~) 8L, = ¢ +eg
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On substituting for e, + e,, we have

(a,-a,)0Ly = PL(zy (1.22)

H
‘%)

The force P is induced by the temperature change 0 if the ends of the two members are attached
rigidly to each other; from equation (1.22), P has the value

P = (21 - o2)8 (1.23)

1 1
( E 4 T E 4 )
An internal load is only set up if a, is different from a,.

Problem 1.14  An aluminium rod 2.2 cm diameter is screwed at the ends, and passes through
a steel tube 2.5 cm internal diameter and 0.3 cm thick. Both are heated to a
temperature of 140°C, when the nuts on the rod are screwed lightly on to the
ends of the tube. Estimate the stress in the rod when the common temperature
has fallen to 20°C. For steel, £ = 200 GN/m’and a = 1.2 x107° per °C, and
for aluminium, £ = 70 GN/m?and a = 2.3 x 10°° per °C, where E is Young's
modulus and a is the coefficient of linear expansion.

Solution

Let subscript a refer to the aluminium rod and subscript s to the steel tube. The problem is similar
to the one discussed in Section 1.17, except that the composite rod has its temperature lowered, in
this case from 140°C to 20°C. From equation (1.23), the common force between the two
components is

p - (@, - a)8
1 . 1
(EA), (EA)

The stress in the rod is therefore

P (@-o)8 (o -a)E
A, 1 A, E, A,
4 1 +

E, EA, E, A,

Now

(EA) = (70 x 109 [% (0.022)2} 26.6 MN
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= 200 x 10°) [x (0.028) (0.003)] = 52.8 MN

Then
P (23 -12) 107 @70 x 10° (120)

4, 1 26.6
+
52.8

1.19 Circular ring under radial pressure

61.4 MN/m?

When a thin circular ring is loaded radially, a circumferential force is set up in the ring; this force
extends the circumference of the ring, which in turn leads to an increase in the radius of the ring.
Consider a thin ring of mean radius r, Figure 1.22(i), acted upen by an internal radial force of
intensity p per unit length of the boundary. If the ring is cut across a diameter, Figure 1.22(ii),
circumferential forces P are required at the cut sections of the ring to maintain equilibrium of the
half-ring. For equilibrium

2P = 2pr
so that
P = pr (1.24)

A section may be taken across any diameter, leading to the same result; we conclude, therefore,
that P is the circumferential tension in all parts of the ring.

If A is the cross-sectional area of the ring at any point of the circumference, then the tensile
circumferential stress in the ring is

P pr
Vil (1.25)

¢ (i1)

Figure 1.22 Thin circular ring under uniform radial loading,
leading to a uniform circumferential tension.

If the cross-section is a rectangle of breadth b, (normal to the plane of Figure 1.22), and thickness
t, (in the plane of Figure 1.22), then
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pr
bt

(1.26)

Circumferential stresses of a similar type are set up in a circular ring rotating about an axis through
its centre. We suppose the ring is a uniform circular one, having a cross-sectional area A4 at any
point, and that it is rotating about its central axis at uniform angular velocity @. If p is the density
of the material of the ring, then the centrifugal force on a unit length of the circumference is

p Ao 2y
In equation (1.25) we put this equal to p; thus, the circumferential tensile stress in the ring is
_ _ 2
C="—=p0°r (1.27)

which we see is independent of the actual cross-sectional area. Now, wr is the circumferential
velocity, V (say), of the ring, so

c=pl? (1.28)

For steel we have p = 7840 kg/m’; to produce a tensile stress of 10 MN/m?, the circumferential
velocity must be

6
y = |8 - M_) = 357 m/s
p 7840

Problem 1.15 A circular cylinder, containing oil, has an internal bore of 30 cm diameter. The
cylinder is 1.25 cm thick. If the tensile stress in the cylinder must not exceed
75 MN/m’, estimate the maximum load W which may be supported on a piston
sliding in the cylinder.

w

|
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Solution

A load W on the piston generates an internal pressure p given by

W = wlp

where r is the radius of the cylinder. In this case

wo W
nr? n (0.150)

A unit length of the cylinder is equivalent to a circular ring subjected to an internal load of p per
unit length of circumference. The circumferential load set up by p in this ring is, from equation
(1.24),

P = pr = p(0.150)

The circumferential stress is, therefore,

P P
1 <1t 0.0125

where ¢ is the thickness of the wall of the cylinder. If 6 is limited to 75 MN/m’, then
80P = 75 x 10°

But

80P = 80[p (0.150)] = 12p = —2# _

7 (0.150)?

Then

_ﬂ_ 75 x 10°

r (0.150)
giving

W = 441 kN

Problem1.16  Analuminium-alloy cylinder of internal diameter 10.000 cm and wall thickness
0.50 cm is shrunk onto a steel cylinder of external diameter 10.004 cm and wall
thickness 0.50 cm. If the values of Young's modulus for the alloy and the steel
are 70 GN/m? and 200 GN/m’, respectively, estimate the circumferential
stresses in the cylinders and the radial pressure between the cylinders.
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Solution

We take unit lengths of the cylinders as behaving like thin circular rings. After the shrinking
operation, we suppose p is the radial between the cylinders. The mean radius of the steel tube is

1
5 [10.004 -0.50] = 4.75cm

The compressive circumferential stress in the steel tube is then

o, - pro_ p (0.0475) _ 9.5p
t 0.0050

The circumferential strain in the steel tube is then

9
e - O . _950p

* E, 200 x 10°

The mean radius of the alloy tube is
1
5 [10.000 +0.50] = 525cm

The tensile circumferential stress in the alloy tube is then

s - Pr . p(0.0525) 10.5p

a t (0.0050)

The circumferential strain in the alloy tube is then

% 10.5p
¢ E, 70 x 10°

The circumferential expansion of the alloy tube is

2nre,

so the mean radius increases effectively by an amount

6, = re, = 00525 ¢,

a

Similarly, the mean radius of the steel tube contracts by an amount

8, = re = 0.0475 ¢

5



52 Tension and compression: direct stresses

For the shrinking operation to be carried out we must have that the initial lack of fit, §, is given by
6 = 8, + 98

Then
8, +8 = 0002 x 107

a

On substituting for §, and &, we have

10.5p

0.0525 _230p
70 x 10°

+ 0.0475 = 0,002 x 1072
200 x 10°

This gives

p = 197 MN/m?

The compressive circumferential stress in the steel cylinder is then

6, = 950p = 18.7 MN/m?

5

The tensile circumferential stress in the alloy cylinder is

c, = 105p = 207 MN/m?

1.20 Creep of materials under sustained stresses

At ordinary laboratory temperatures most metals will sustain stresses below the limit of
proportionality for long periods without showing additional measurable strains. At these
temperatures metals deform continuously when stressed above the elastic range. This process of
continuous inelastic strain is called creep. At high temperatures metals lose some of their elastic
properties, and creep under constant stress takes place more rapidly.

When a tensile specimen of a metal is tested at a high temperature under a constant load, the
strain assumes instantaneously some value €,, Figure 1.23. If the initial strain is in the inelastic
range of the material then creep takes place under constant stress. At first the creep rate is fairly
rapid, but diminishes until a point a is reached on-the strain—time curve, Figure 1.23; the point a
is a point of inflection in this curve, and continued application of the load increases the creep rate
until fracture of the specimen occurs at b.

At ordinary temperatures concrete shows creep properties; these may be important in pre-
stressed members, where some of the initial stresses in the concrete may be lost after a long period
due to creep. Composites are also vulnerable to creep and this must be considered when using
them for construction.
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Figure 1.23 Creep curve for a material in the inelastic range; &, is the instantaneous plastic strain.

1.21 Fatigue under repeated stresses

When a material is subjected to repeated cyclic loading, it can fail at a stress which may be much
less than the material's yield stress. The problem that occurs here, is that the structure might have
minute cracks in it or other stress raisers. Under repeated cyclic loading the large stresses that
occur at these stress concentrations cause the cracks to grow, until fracture eventually occurs.
Materials likely to suffer fatigue include aluminium alloys and composites; see Figure 1.24.

Failure of a material after a large number of cycles of tensile stress occurs with little, or no,
permanent set; fractures show the characteristics of brittle materials. Fatigue is primarily a
problem of repeated tensile stresses; this is due probably to the fact that microscopic cracks in a
material can propagate more easily when the material is stressed in tension. In the case of steels
it is found that there is a critical stress—called the endurance limit—below which fluctuating
stresses cannot cause a fatigue failure; titanium alloys show a similar phenomenon. No such
endurance limit has been found for other non-ferrous metals and other materials.

701
E
b=4
s 60
a
Q .
% 501 Medium-
L v ____Z strength
§ o titanium
b 40 Endurance limit alloy
QO
T
2 30
<] iy St Mild steel
(o] .

Endurance limit

5 204
g
x Aluminium
K 10+ alloy

0

10° 10° 108 107 108 10°

Number of cycles to failure

Figure 1.24 Comparison of the fatigue strengths of metals under repeated tensile stresses.
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Further problems (answers on page 691)

1.17

1.18

119

1.20

1.21

1.22

The piston rod of a double-acting hydraulic cylinder is 20 cm diameter and 4 m long.
The piston has a diameter of 40 cm, and is subjected to 10 MN/m’ water pressure on one
side and 3 MN/m’ on the other. On the return stroke these pressures are interchanged.
Estimate the maximum stress occurring in the piston-rod, and the change of length of the
rod between two strokes, allowing for the area of piston-rod on one side of the piston.
Take £ = 200 GN/m’. (RNC)

A uniform steel rope 250 m long hangs down a shaft. Find the elongation of the first 125
m at the top if the density of steel is 7840 kg/m’ and Young's modulus is 200 GN/m’.
(Cambridge)

A steel wire, 150 m long, weighs 20 N per metre length. It is placed on a horizontal
floor and pulled slowly along by a horizontal force applied to one end. If this force
measures 600 N, estimate the increase in length of the wire due to its being towed,
assuming a uniform coefficient of friction. Take the density of steel as 7840 kg/m’ and
Young's modulus as 200 GN/m*. (RNEC)

The hoisting rope for a mine shaft is to lift a cage of weight . The rope is of variable
section so that the stress on every section is equal to ¢ when the rope is fully extended.
If p is the density of the material of the rope, show that the cross-sectional area A at a
height z above the cage is

4 = | H] eeer
[+

To enable two walls, 10 m apart, to give mutual support they are stayed togetherby a 2.5
cm diameter steel tension rod with screwed ends, plates and nuts. The rod is heated to
100°C when the nuts are screwed up. If the walls yield, relatively, by 0.5 cm when the
rod cools to 15°C, find the pull of rod at that temperature. The coefficient of linear
expansion of steel is @ = 1.2 x 107 per °C, and Young's modulus £ = 200 GN/m’.
(RNEC)

A steel tube 3 cm diameter, 0.25 cm thick and 4 m long, is covered and lined throughout
with copper tubes 0.2 cm thick. The three tubes are firmly joined together at their ends.
The compound tube is then raised in temperature by 100°C. Find the stresses in the steel
and copper, and the increase in length of the tube, will prevent its expansion? Assume
E = 200 GN/m’ for steel and £ = 110 GN/m’ for copper; the coefficients of linear
expansion of steel and copper are 1.2 x 107° per °C and 1.9 x 10° per °C, respectively.



2  Pin-jointed frames or trusses

2.1 Introduction

In problems of stress analysis we discriminate between two types of structure; in the first, the
forces in the structure can be determined by considering only its statical equilibrium. Such a
structure is said to be statically determinate. The second type of structure is said to be statically
indeterminate. In the case of the latter type of structure, the forces in the structure cannot be
obtained by considerations of statical equilibrium alone. This is because there are more unknown
forces than there are simultaneous equations obtained from considerations of statical equilibrium
alone. For statically indeterminate structures, other methods have to be used to obtain the
additional number of the required simultaneous equations; one such method is to consider
compatibility, as was adopted in Chapter 1. In this chapter, we will consider statically determinate
frames and one simple statically indeterminate frame.

Figure 2.1 shows arigid beam BD supported by two vertical wires BF and DG; the beam carries
a force of 4 at C. We suppose the wires extend by negligibly small amounts, so that the
geometrical configuration of the structure is practically unaffected; then for equilibrium the forces
in the wires must be 3W in BF and W in DG. As the forces in the wires are known, it is a simple
matter to calculate their extensions and hence to determine the displacement of any point of the
beam. The calculation of the forces in the wires and structure of Figure 2.1 is said to be statically
determinate. If, however, the rigid beam be supported by three wires, with an additional wire, say,
between H and J in Figure 2.1, then the forces in the three wires cannot be solved by considering
statical equilibrium alone; this gives a second type of stress analysis problem, which is discussed
more fully in Section 2.5; such a structure is statically indeterminate.

3wy w

Figure 2.1 Statically determinate system of a beam supported by two wires.
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2.2 Statically determinate pin-jointed frames

By a frame we mean a structure which is composed of straight bars joined together at their ends.
A pin-jointed frame or truss is one in which no bending actions can be transmitted from one bar
to another as described in the introductory chapter; ideally this could be achieved if the bars were
joined together through pin-joints. If the frame has just sufficient bars or rods to prevent collapse
without the application of external forces, it is said to be simply-stiff, when there are more bars or
rods than this, the frame is said to be redundant. A redundant framework is said to contain one or
more redundant members, where the latter are not required for the framework to be classified as
a framework, as distinct from being a mechanism. It should be emphasised, however, that if a
redundant member is removed from the framework, the stresses in the remaining members of the
framework may become so large that the framework collapses. A redundant member of a
framework does not necessarily have a zero internal force in it. Definite relations exist which must
be satisfied by the numbers of bars and joints if a frame is said fo be simply-stiff, or statically
determinate.

In the plane frame of Figure 2.2, BC is one member. To locate the joint D relative to BC
requires two members, namely, BD and CD; to locate another joint F requires two further
members, namely, CF and DF. Obviously, for each new joint of the frame, two new members are
required. If m be the total number of members, including BC, and is the total number of joints,
we must have

m= 2 -3, (2.1)

if the frame is to be simply-stiff or statically determinate.
When the frame is rigidly attached to a wall, say at B and C, BC is not part of the frame as such,
and equation (2.1) becomes, omitting member BC, and joints B and C,

m o= 2 2.2)

These conditions must be satisfied, but they may not necessarily ensure that the frame is simply-
stiff. For example, the frames of Figures 2.2 and 2.3 have the same numbers of members and
joints; the frame of Figure 2.2 is simply-stiff. The frame of Figure 2.3 is not simply-stiff, since a
mechanism can be formed with pivots at D, G, J, F. Thus, although a frame having ; joints must
have at least (2j - 3) members, the mode of arrangement of these members is important.

8 p (=8.m=13) 8 o G H
\ -7
J J J \ J ///  §
¢ F c Fo—=da - K
Figure 2.2 Simply-stiff plane frame built up Figure 2.3 Rearrangement of the members

from a basic triangle BCD. of Figure 2.2 to give a mechanism.
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For a pin-jointed space frame attached to three joints in a rigid wall, the condition for the frame to
be simply-stiff is

m o= 3y 23)

where m is the total number of members, and j is the total number of joints, exclusive of the three
joints in the rigid wall. When a space frame is not rigidly attached to a wall, the condition becomes

m = 3 -6, (2.4)

where m is the total number of members in the frame, and j the total number of joints.

2.3 The method of joints

This method can only be used to determine the internal forces in the members of statically
determinate pin-jointed trusses. It consists of isolating each joint of the framework in the form of
a free-body diagram and then by considering equilibrium at each of these joints, the forces in the
members of the framework can be determined. Initially, all unknown forces in the members of the
framework are assumed to be in tension, and before analysing each joint it should be ensured that
each joint does not have more than two unknown forces.

To demonstrate the method, the following example will be considered.

Problem 2.1 Using the method of joints, determine the member forces of the plane pin-
jointed truss of Figure 2.4.

1.155m r kN
D F
1.155m
A 30 30° - 30 30° H
f Az
| 8m
R. Rs

Figure 2.4 Pin-jointed truss.
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Solution

Assume all unknown internal forces are in tension, because if they are in compression, their signs
will be negative.

As each joint must only have two unknown forces acting on it, it will be necessary to determine
the values of R,, R, and H, prior to using the method of joints.

Resolving the forces horizontally
forces to the left = forces to the right

3 = Hy
~ Hy = 3kN
Taking moments about B
clockwise moments = counter-clockwise moments

R, x8+3x 2311 = 5x4+ 6%x2
~ R, = 25.07/8 = 3.13kN
Resolving forces vertically
upward forces = downward forces
R,*R, =5+6
or Ry = 11-3.13 = 787kN

Isolate joint A and consider equilibrium, as shown by the following free-body diagram.

Fap
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Resolving forces vertically
upward forces = downward forces

1

313+ F,,sin30 = 0
or F,, = -6.26 kN (compression)
NB The negative sign for this force denotes that this member is in compression, and such a

member is called a strur.

Resolving forces horizontally

forces to the night forces to the left

Fu + F,p cos 30 0

or F,. = 6.26x0.866

F,c = 5.42 kN (tension)

NB The positive sign for this force denotes that this member if in tension, and such a member
is called a tie.

It is possible now to analyse joint D, because F,;, is known and therefore the joint has only two
unknown forces acting on it, as shown by the free-body diagram.

FDE

FDC

Resolving vertically
upward forces = downward forces

Fpe sin 30 = F,, sin 30 + Fp sin 30

H

or Fpe = -6.26 + Fpe (2.5)
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Resolving horizontally
forces to the left

i

forces to the right

F,, cos30 = Fpocos30 + Fp.cos 30
or Fpe = -6.26 - Fp (2.6)
Equating (2.5) and (2.6)
-6.26 + Fpe = -6.26 - Fp
or Fpe = 0 2.7

Substituting equation (2.7) into equation (2.5)
Fp,; = -6.26 kN (compression)

It is now possible to examine joint E, as it has two unknown forces acting on it, as shown:

5kN

g

/N
Foe 2 Fer

Fee

Resolving horizontally
forces to the left = forces to the right

Fpp c0s30 = Fpo cos30+ 3
or Fgr = -6.26 - 3/0.866

Fge = -9.72 kN (compression)

Resolving vertically
upward forces = downward forces

0 = 5+Fp,.sin30+F + Fgpsin 30
Feg = -5+ 626%0.5+9.72%0.5

Fez = 3 kN (tension)
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It is now possible to analyse either joint F or joint C, as each of these joints has only got two
unknown forces acting on it. Consider joint F,

6 kN

Fee Fer

Resolving horizontally
forces to the left = forces to the right

Fer cos30+ Fp cos30 = Fye cos 30
o Fap = =972+ Fpp (2.8)

Resolving vertically

upward forces = downward forces

Fer sin30 = Fsin30+ Fpesin30+6

or Foex05 = -972x05-05F,-6

W Fge = 2172 - Fe (2.9
Equating (2.8) and (2.9)

-972+F = -21.72 - F

= Fep = ~6 kN (compression) (2.10)

Substituting equation (2.10) into equation (2.8)
Fge = =972 - 6 = -15.72 kN (compression)

Consider joint B to determine the remaining unknown force, namely Fy,
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B
Fgc‘ ~t—— 3 kN

T8.732 kN

Resolving horizontally

forces to the left forces to the right

Fap cos 30+ Fy.+3 =0

~ Fge = -3+15.72x0.866 = kN (tension)

Here are the magnitudes and ‘directions’ of the internal forces in this truss:

$ 542 10.61

24 The method of sections

This method is useful if it is required to determine the internal forces in only a few members. The
process is to make an imaginary cut across the framework, and then by considering equilibrium,
to determine the internal forces in the members that lie across this path. In this method, it is only
possible to examine a section that has a maximum of three unknown internal forces, and here
again, it is convenient to assume that all unknown forces are in tension.

To demonstrate the method, an imaginary cut will be made through members DE, CD and AC
of the truss of Figure 2.4, as shown by the free-body diagram of Figure 2.5

A Fac

TSJS kN

Figure 2.5 Free-body diagram.
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Taking moments about D
counter-clockwise couples = clockwise couples
F,x155 =313 x 2

#Fy = 5.42KkN

NB It was convenient to take moments about D, as there were two unknown forces acting
through this point and therefore, the arithmetic was simplified.

Resolving vertically

upward forces = downward forces

1l

F,p sin30 + 3.13 = F,.sin 30
" Fpe= 626 + Fpg (2.11)

Resolving horizontally
forces to the right = forces to the left

Fppcos30+ Fp cos30+F, =0

s Fpe = -5.42/0.866 - Fp,
or Fpe = =626 - Fp, (2.12)
Equating (2.11) and (2.12)
Fpe = -626kN (2.13)
Substituting equation (2.13) into equation (2.11)
Fpe = OKN

These values can be seen to be the same as those obtained by the method of joints.

2.5 A statically indeterminate problem

In Section 2.1 we mentioned a type of stress analysis problem in which internal stresses are not
calculable on considering statical equilibrium alone; such problems are statically indeterminate.
Consider the rigid beam BD of Figure 2.6 which is supported on three wires; suppose the tensions
in the wires are T, T, and 7. Then by resolving forces vertically, we have

T, + T, + T, = 4W (2.14)
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and by taking moments about the point C, we get

I,-7, -37, = 0 (2.15)
From these equilibrium equations alone we cannot derive the values of the three tensile forces 7},
T,, T,; a third equation is found by discussing the extensions of the wires or considering
compatibility. If the wires extend by amounts e,, e,, e;, we must have from Figure 2.6(ii) that

e +e = 2e (2.16)

because the beam BD is rigid. Suppose the wires are all of the same material and cross-sectional
area, and that they remain elastic. Then we may write

e, = AT, , e = AT,, e = AT, 2.17)
where A is a constant common to the three wires. Then equation (2.16) may be written

T, +T, =2T, (2.18)

i) (i)

e ) e 2/

c lu T‘A T2u 15
B D IR i
| : e/——l—#’“ &
| | €
| 4W I
Ly ) aw

Figure 2.6 A simple statically indeterminate system consisting
of a rigid beam supported by three extensible wires.

The three equations (2.14), (2.15) and (2.18) then give

w 4w

w
=03 L=, T, = — (2.19)

Equation (2.16) is a condition which the extensions of the wires must satisfy; it is called a strain
compatibility condition. Statically indeterminate problems are soluble if strain compatibilities are
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considered as well as statical equilibrium.

Further problems (answers on page 691)

2.2 Determine the internal forces in the plane pin-jointed trusses shown below:

< 133m —>le— 2m — ]

Le—— L —fe— [ —

'

3 ™

—

|
|
!
!
!
|

30 kN

e
i

_.
w
@
3

.

(2) (®)

(©)

23 The plane pin-jointed truss below is firmly pinned at 4 and B and subjected to two point
loads at the joint F.

Using any method, determine the forces in all the members, stating whether they are
tensile or compressive. (Portsmouth 1982)
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T‘

im

C, F—m 2 kN

1m 4 kN

A |8

1 m —f— 1 m —]

24 A plane pin-jointed truss is firmly pinned at its base, as shown below.

Determine the forces in the members of this truss, stating whether they are in tension or
compression. (Portsmouth 1980)

J — 1 kN
2kN
K
15
30 60
G H
45
E F
45
c D
5 \Ls
T\ ANV w
25 Determine the internal forces in the pin-jointed truss, below, which is known as a Warren

girder.




3 Shearing stress

3.1 Introduction

In Chapter 1 we made a study of tensile and compressive stresses, which we called direct stresses.
There is another type of stress which plays a vital role in the behaviour of materials, especially
metals.

Consider a thin block of material, Figure 3.1, which is glued to a table; suppose a thin plate is
now glued to the upper surface of the block. If a horizontal force F is applied to the plate, the plate
will tend to slide along the top of the block of material, and the block itself will tend to slide along
the table. Provided the glued surfaces remain intact, the table resists the sliding of the block, and
the block resists the sliding of the plate on its upper surface. If we consider the block to be divided
by any imaginary horizontal plane, such as ab, the part of the block above this plane will be trying
to slide over the part below the plane. The material on each side of this plane will be trying to slide
over the part below the plane. The material on each side of this plane is said to be subjected to a
shearing action; the stresses arising from these actions are called shearing stresses. Shearing
stresses act tangential to the surface, unlike direct stresses which act perpendicular to the surface.

Thin plate
E—— b f/f\r 7777 F
—— —
Fat— /BI0<':k of rnatenal . T PP AT I )N
’ *'/ / 7/ s . 7/ f \/
Figure 3.1 Shearing stresses caused Figure 3.2 Shearing stresses in a rivet; shearing
by shearing forces. forces F is transmitted over the face ab of the
rivet.

In general, a pair of garden shears cuts the stems of shrubs through shearing action and not
bending action. Shearing stresses arise in many other practical problems. Figure 3.2 shows two
flat plates held together by a single rivet, and carrying a tensile force F. We imagine the rivet
divided into two portions by the plane ab; then the upper half of the rivet is tending to slide over
the lower half, and a shearing stress is set up in the plane ab. Figure 3.3 shows a circular shaft a,
with a collar ¢, held in bearing b, one end of the shaft being pushed with a force F; in this case
there is, firstly, a tendency for the shaft to be pushed bodily through the collar, thereby inducing
shearing stresses over the cylindrical surfaces d of the shaft and the collar; secondly, there is a
tendency for the collar to push through the bearing, so that shearing stresses are set up on
cylindrical surfaces such as e in the bearing. As a third example, consider the case of a steel bolt
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in the end of a bar of wood, Figure 3.4, the bolt being pulled by forces F; suppose the grain of the
wood runs parallel to the length of the bar; then if the forces F are large enough the block abcd will
be pushed out, shearing taking place along the planes ab and cd.

7.

e

P,

Fb—»c . €.

Figure 3.3 Thrust on the collar of a shaft, generating
shearing stress over the planes d.

§:m "

Figure 3.4 Tearing of the end of a timber member by a steel bolt,
generating a shearing action on the planes ab and cd.

3.2 Measurement of shearing stress

Shearing stress on any surface is defined as the intensity of shearing force tangential to the surface.
If the block of material of Figure 3.1 has an area A over any section such as ab, the average
shearing stress T over the section ab is

F
T = — @3.1)

In many cases the shearing force is not distributed uniformly over any section; if 8F is the shearing
force on any elemental area 64 of a section, the shearing stress on that elemental area is

7/

= Limit — = — .

T aAlTlo b dA (32)

Problem 3.1 Three steel plates are held together by a 1.5 cm diameter rivet. If the load
transmitted is 50 kN, estimate the shearing stress in the rivet.
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A
|

25 kN --— N —> 50 kN

|
/'I\
25 kKN <— \:/

Solution

There is a tendency to shear across the planes in the rivet shown by broken lines. The area
resisting shear is twice the cross-sectional area of the rivet; the cross-sectional area of the rivet is

A4 = %(0.015)2 = 0.177 x 10 m?

The average shearing stress in the rivet is then

F 3
T - 7=ﬂo— - 141 MN/m?

0177 x 1073

Problem 3.2 Two steel rods are connected by a cotter joint. If the shearing strength of the
steel used in the rods and the cotter is 150 MN/m?, estimate which part of the
joint is more prone to shearing failure.

"3 5-+——7 5cm 35-
om
n TN
b|
: ) N N |V
Vo]
c q
J
4 V) H
f -6} k /

Solution
Shearing failure may occur in the following ways:

(i) Shearing of the cotter in the planes ab and cd.
The area resisting shear is 2(fkmh) = 2(0.075 (0.015) = 2.25x 107 m?
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(1)

(iii)

Shearing stress
For a shearing failure on these planes, the tensile force is
P =14 = (150 x 10°(2.25 x 107%) = 338kN

By the cotter tearing through the ends of the socket g, i.e. by shearing the planes ef and gh.
The total area resisting shear is

A = 4(0.030) (0.035) = 4.20x 107 m’
For a shearing failure on these planes
P =14 = (150 x 10%) (4.20 x 10*) = 630 kN

By the cotter tearing through the ends of the rod p, i.e. by shearing in the planes k/ and mn.
The total area resisting shear is

A = 2(0.035) (0.060) = 4.20x 107 m’
For a shearing failure on these planes
P = 14 = (150 x 10%) (4.20 x 107*) = 630kN

Thus, the connection is most vulnerable to shearing failure in the cotter itself, as discussed
in (1); the tensile load for shearing failure is 338 kN.

Problem 3.3 A lever is keyed to a shaft 4 cm in diameter, the width of the key being 1.25 cm
and its length 5 cm. What load P can be applied at an arm of a = 1 m if the
average shearing stress in the key is not to exceed 60 MN/m*?

Solution

The torque applied to the shaft is Pa. If this is resisted by a shearing force F on the plane ab of the
key, then

Fr = Pa

where r is the radius of the shaft. Then



Complementary shearing stress 71

F = Pa _ PO 50P
r (0.02)

The area resisting shear in the key is

A = 0.0125 x 0.050 = 0.625 x 107 m?

The permissible shearing force on the plane ab of the key is then

F = 14 = (60 x 10% (0.625 x 107 = 37.5 kN

The permissible value of P is then

P = — = T50N

3.3 Complementary shearing stress

Let us return now to the consideration of the block shown in Figure 3.1. We have seen that
horizontal planes, such as ab, are subjected to shearing stresses. In fact the state of stress is rather
more complex than we have supposed, because for rotational equilibrium of the whole block an
external couple is required to balance the couple due to the shearing forces F. Suppose the material
of the block is divided into a number of rectangular elements, as shown by the full lines of Figure
3.5. Under the actions of the shearing forces F, which together constitute a couple, the elements
will tend to take up the positions shown by the broken lines in Figure 3.5. It will be seen that there
is a tendency for the vertical faces of the elements to slide over each other. Actually the ends of
the elements do not slide over each other in this way, but the tendency to so do shows that the
shearing stress in horizontal planes is accompanied by shearing stresses in vertical planes
perpendicular to the applied shearing forces. This is true of all cases of shearing action: a given
shearing stress acting on one plane is always accompanied by a complementary shearing stress on
planes at right angles to the plane on which the given stress acts.

Figure 3.5 Tendency for a set of disconnected blocks
to rotate when shearing forces are applied.

Consider now the equilibrium of one of the elementary blocks of Figure 3.5. Let 7., be the
shearing stress on the horizontal faces of the element, and 1,, the complementary shearing stress’

2Notice that the first suffix x shows the direction, the second the plane on which the stress acts; thus 1, acts in
direction of x axis on planes y = constant.
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on vertical faces of the element, Figure 3.6. Suppose a is the length of the element, b its height,
and that it has unit thickness. The total shearing force on the upper and lower faces is then

T,*ax1 = ar,
while the total shearing force on the end faces is

T, xbx1 = br,
For rotational equilibrium of the element we then have

(a1,)xb = (br,) xa

and thus

Figure 3.6 Complementary shearing stresses over the faces
of a block when they are connected.

We see then that, whenever there is a shearing stress over a plane passing through a given line,
there must be an equal complementary shearing stress on a plane perpendicular to the given plane,
and passing through the given line. The directions of the two shearing stresses must be either both
towards, or both away from, the line of intersection of the two planes in which they act.

It is extremely important to appreciate the existence of the complementary shearing stress, for
its necessary presence has a direct effect on the maximum stress in the material, as we shall see
later in Chapter 5.
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34 Shearing strain

Shearing stresses in a material give rise to shearing strains. Consider a rectangular block of
material, Figure 3.7, subjected to shearing stresses 7 in one plane. The shearing stresses distort the
rectangular face of the block into a parallelogram. If the right-angles at the corners of the face
change by amounts vy, then y is the shearing strain. The angle y is measured in radians, and is non-
dimensional therefore.

Figure 3.7 Shearing strain in a rectangular block; small values of y lead
to a negligible change of volume in shear straining.

For many materials shearing strain is linearly proportional to shearing stress within certain limits.
This linear dependence is similar to the case of direct tension and compression. Within the limits
of proportionality

t =G, , (3.3)

where G is the shearing modulus or modulus of rigidity, and is similar to Young's modulus £, for
direct tension and compression. For most materials E is about 2.5 times greater than G.

It should be noted that no volume changes occur as a result of shearing stresses acting alone.
In Figure 3.7 the volume of the strained block is approximately equal to the volume of the original
rectangular prism if the angular strain y is small.

3.5 Strain energy due to shearing actions

In shearing the rectangular prism of Figure 3.7, the forces acting on the upper and lower faces
undergo displacements. Work is done, therefore, during these displacements. If the strains are
kept within the elastic limit the work done is recoverable, and is stored in the form of strain energy.
Suppose all edges of the prism of Figure 3.7 are of unit length; then the prism has unit volume, and
the shearing forces on the sheared faces are T. Now suppose 7 is increased by a small amount,
causing a small increment of shearing strain dy. The work done on the prism during this small
change is 187, as the force T moves through a distance 8y. The total work done in producing a
shearing strain y is then

B

0
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While the material remains elastic, we have from equation (3.3) that T = Gy, and the work done
is stored as strain energy; the strain energy is therefore

y ¥
ery - joydy - %Gﬁ (3.4)
1] 0

per unit volume. In terms of 1 this becomes

- =— = shear strain energy per unit volume (3.5)

Further problems (answers on page 691)

3.4

35

3.6

3.7

Rivet holes 2.5 cm diameter are punched in a steel plate 1 cm thick. The shearing
strength of the plate is 300 MN/m’. Find the average compressive stress in the punch at
the time of punching.

The diameter of the bolt circle of a flanged coupling for a shaft 12.5 cm in diameter is
37.5 cm. There are six bolts 2.5 cm diameter. What power can be transmitted at 150
rev/min if the shearing stress in the bolts is not to exceed 60 MN/m??

A pellet carrying the striking needle of a fuse has a mass of 0.1 kg; it is prevented from
moving longitudinally relative to the body of the fuse by a copper pin 4 of diameter 0.05
cm. It is prevented from turning relative to the body of the fuse by a steel stud B. A fits
loosely in the pellet so that no stress comes on 4 due to rotation. If the copper shears at
150 MN/m?’, find the retardation of the shell necessary to shear 4. (RNC)

A lever is secured to a shaft by a taper pin through the boss of the lever. The shaft is 4
cm diameter and the mean diameter of the pin is 1 cm. What torque can be applied to
the lever without causing the average shearing stress in the pin to exceed 60 MN/m’.
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A cotter joint connects two circular rods in tension. Taking the tensile strength of the
rods as 350 MN/m?, the shearing strength of the cotter 275 MN/m’, the permissible
bearing pressure between surfaces in contact 700 MN/m?, the shearing strength of the rod
ends 185 MN/m’, calculate suitable dimensions for the joint so that it may be equally
strong against the possible types of failure. Take the thickness of the cotter = d/4, and
the taper of the cotter 1 in 48.

A horizontal arm, capable of rotation about a vertical shaft, carries a mass of 2.5 kg,
bolted to it by a 1 cm bolt at a distance 50 cm from the axis of the shaft. The axis of the
bolt is vertical. If the ultimate shearing strength of the bolt is 50 MN/m?, at what speed
will the bolt snap? (RNEC)

A copper disc 10 cm in diameter and 0.0125 cm thick, is fitted in the casing of an air
compressor, so as to blow and safeguard the cast-iron case in the event of a serious
compressed air leak. If pressure inside the case is suddenly built up by a burst cooling
coil, calculate at what pressure the disc will blow out, assuming that failure occurs by
shear round the edges of the disc, and that copper will normally fail under a shearing
stress of 120 MN/m’. (RNEC)



4 Joints and connections

4.1 Importance of connections

Many engineering structures and machines consist of components suitably connected through
carefully designed joints. In metallic materials, these joints may take a number of different forms,
as for example welded joints, bolted joints and riveted joints. In general, such joints are stressed
in complex ways, and it is not usually possible to calculate stresses accurately because of the
geometrical discontinuities in the region of a joint. For this reason, good design of connections is
a mixture of stress analysis and experience of the behaviour of actual joints; this is particularly true
of connections subjected to repeated loads.

Bolted joints are widely used in structural steel work and recently the performance of such
joints has been greatly improved by the introduction of high-tensile, friction-grip bolts. Welded
joints are widely used in steel structures, as for example, in ship construction. Riveted joints are
still widely used in aircraft-skin construction in light-alloy materials. Epoxy resin glues are often
used in the aeronautical field to bond metals.

4.2 Modes of failure of simple bolted and riveted joints

One or the simplest types of joint between two plates of material is a bolted or riveted lap joint,
Figure 4.1.
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Figure 4.1 Single-bolted lap joint under tensile load.
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We shall discuss the forms of failure of the joint assuming it is bolted, but the analysis can be
extended in principle to the case of ariveted connection. Consider a joint between two wide plates,
Figure 4.1; suppose the plates are each of thickness ¢, and that they are connected together with a
single line of bolts, giving a total overlap of breadth 2a. Suppose also that the bolts are each of
diameter d, and that their centres are a distance b apart along the line of bolts; the line of bolts is
a distance a from the edge of each plate. It is assumed that a bolt fills a hole, so that the holes in
the plates are also of diameter d.

We consider all possible simple modes of failure when each plate carries a tensile load of P per
unit width of plate:

AT
SRV NN

Figure 4.2 Failure by shearing of the bolts.

(1) The bolts may fail by shearing, as shown in Figure 4.2; if 7, is the maximum shearing stress
the bolts will withstand, the total shearing force required to shear a bolt is

T, % —_
4
Now, the load carried by a single bolt is Pb, so that a failure of this type occurs when

2
Pb = 1 [%—)

This gives
nd? 1, 4.1
4b

(2) The bearing pressure between the bolts and the plates may become excessive; the total
bearing load taken by a bolt is Pb, Figure 4.3, so that the average bearing pressure between
a bolt and its surrounding hole is

¥
d
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If P, is the pressure at which either the bolt or the hole fails in bearing, a failure of this type occurs
when:
p- Pthd 42)

Pb

Pb 4-—---} ----- @ _____ - P r)

(Il

(@) (i)

Figure 4.3 (i) Bearing pressure on the holes of the upper plate.
(ii) Bearing pressures on a bolt.

(3) Tensile failures may occur in the plates; clearly the most heavily stressed regions of the plates
are on sections such as ee, Figure 4.4, through the line of bolts. The average tensile stress
on the reduced area of plate through this section is

Pb
(6-a)
Bt
e e ~—> P
R
N
l | Ieg___li
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| o
|
— b |
| i

Figure 4.4 Tensile failures in the plates.
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If the material of the plate has an ultimate tensile stress of ¢, then a tensile failure occurs when

p oo (4.3)

(4) Shearing of the plates may occur on planes such as cc, Figure 4.5, with the result that the
whole block of material cccc is sheared out of the plate. If 1, is the maximum shearing stress
of the material of the plates, this mode of failure occurs when

Pb = 1, x 2at
e a
R I
P <—— A —Fb Pb -— | d)«% f —pb
I
pf L
i t
| I
Pb <—— | dm —Pb Po<— | d}< f ——pb
| |
o o
me— |\ Y —m Pb~—— | d)—j f —pp
f | !
Figure 4.5 Shearing failure in the plates. Figure 4.6 Tensile failures at the free
edges of the plates.
This gives
2,1
P = ”’TZ (44

(5) The plates may fail due to the development of large tensile stresses in the regions of points
such as f; Figure 4.6. The failing load in this condition is difficult to estimate, and we do not
attempt the calculation at this stage.

In riveted joints it is found from tests on mild-steel plates and rivets that if the centre of a rivet hole
is not less than 1! times the rivet hole diameter from the edge of the plate, then failure of the plate
by shearing, as discussed in (4) and (5), does not occur. Thus, if for mild-steel plates and rivets,

a > 1.5d 4.5)
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we can disregard the modes of failure discussed in (4) and (5). In the case of wrought aluminium
alloys, the corresponding value of a is

a > 2d (4.6)

We have assumed, in discussing the modes of failure, that all load applied to the two plates of
Figure 4.1 is transmitted in shear through the bolts or rivets. This is so only if there is a negligible
frictional force between the two plates. If hot-driven rivets are used, appreciable frictional forces
are set up on cooling; these forces play a vital part in the behaviour of the connection. With cold-
driven rivets the frictional force is usually small, and may be neglected.

Problem 4.1 Two steel plates, each 1 cm thick, are connected by riveting them between
cover plates each 0.6 cm thick. The rivets are 1.6 cm diameter. The tensile
stress in the plates must not exceed 140 MN/m’, and the shearing stress in the
rivets must not exceed 75 MN/m®. Find the proportions of the joint so that it
shall be equally strong in shear and tension, and estimate the bearing pressure
between the rivets and the plates.

Solution

Suppose b is the rivet pitch, and that P is the tensile load per metre carried by the connection. Then
the tensile load on one rivet is Pb. The cover plates, taken together, are thicker than the main
plates, and may be disregarded therefore, in the strength calculations. We imagine there is no
restriction on the distance from the rivets to the extreme edges of the main plates and cover plates;
we may disregard then any possibility of shearing or tensile failure on the free edges of the plates.

Yy [ ! L7 ["Ht

RSSO RAYT

_— i

There are then two possible modes of failure:

1) Tensile failure of the main plates may occur on sections such as aa. The area resisting
tension is

0.010 (b - 0.016) m”
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The permissible tensile load is, therefore,
Pb = (140 x 10° [0.010 (b - 0.016)] N per rivet

(2) The rivets may fail by shearing. The area of each rivet is
-Z—(0.0IG)?' = 0201 x 107 m?

The permissible load per rivet is then
Pb = 2(75 x 10% (0.201 x 107*) N

as each rivet is in double shear.

If the joint is equally strong in tension and shear , we have, from (1) and (2),

(140 x 10°) [0.010 (b - 0.016)] = 2(75 x 10°) (0.201 x 107%)

This gives
b=10038m

Now
Pb = 2(75 x 10%) (0.201 x 107%) = 30.2kN

The average bearing pressure between the main plates and rivets is

302 x 10°

— = 189 MN/m?
(0.016) (0.010)

4.3 Efficiency of a connection

After analysing the connection of Figure 4.1, suppose we find that in the weakest mode of failure
the carrying capacity of the joint is P,. If the two plates were continuous through the connection,
that is, if there were no overlap or bolts, the strength of the plates in tension would be

Pult =o0c ultt

where o, is the ultimate tensile stress of the material of the plates. The ratio

h _ B 4.7
Pult Cunt
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is known as the efficiency of the connection; clearly, n defines the extent to which the strength of
the connection attains the full strength of the continuous plates. Joint efficiencies are also
described in Chapter 6.

Problem 4.2 What is the efficiency of the joint of Problem 4.1?
Solution

The permissible tensile load per rivet is 30.2 kN. For a continuous joint the tensile load which
could be carried by a 3.8 cm width of main plate is

(0.038) (0.010) (140 x10°) = 53.2kN

Then

n = 302 0.57, or 5T%

532

4.4 Group-bolted and -riveted joints

When two members are connected by cover plates bolted or riveted in the manner shown in Figure
4.7, the joint is said to be group-bolted or -riveted.

The greatest efficiency of the joint shown in Figure 4.7 is obtained when the bolts or rivets are
re-arranged in the form shown in Figure 4.8, where it is supposed six bolts or rivets are required
each side of the join. The loss of cross-section in the main members, on the line a, is that due to
one bolt or rivet hole. If the load is assumed to be equally distributed among the bolts or rivets,
the bolt or rivet on the line a will take one-sixth of the total load, so that the tension in the main
plates, across b, will be 5/6ths of the total.

Figure 4.7 A group-bolted or -riveted joiru.
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Figure 4.8 Joint with tapered cover plates.

But this section is reduced by two bolt or rivet holes, so that, relatively, it is as strong as the section
a, and so on: the reduction of the nett cross-section of the main plates increases as the load carried
by these plates decreases. Thus a more efficient joint is obtained than when the bolts or rivets are
arranged as in Figure 4.7.

4.5 Eccentric loading of bolted and riveted connections

Structural connections are commonly required to transmit moments as well as axial forces. Figure
4.9 shows the connection between a bracket and a stanchion; the bracket is attached to the
stanchion through a system of six bolts or rivets, a vertical load P is applied to the bracket.
Suppose the bolts or rivets are all of the same diameter. The load P is then replaced by a parallel
load P applied to the centroid C of the rivet system, together with a moment Pe about the centroid
Figure 4.9(ii); e is the perpendicular distance from C onto the line of action of P.

Stanchion

O°fO
Pe

olo
(i)

Figure 4.9 Eccentrically loaded connection leading to a bending
action on the group of bolts, as well as a shearing action.

Consider separately the effects of the load P at C and the moment Pe. We assume that P is
distributed equally amongst the bolts or rivets as a shearing force parallel to the line of action of P.
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The moment Pe is assumed to induce a shearing force F in any bolt or rivet perpendicular to the

line joining C to the bolt or rivet; moreover the force F is assumed to be proportional to the
distance r from the bolt or rivet to C, (Figure 4.10).

Figure 4.10 Assumed forces on the bolts.

For equilibrium we have

Pe =X Fr

If F= kr, where k is constant for all rivets, then
Pe=kXT?F

Thus, we have

The force on a rivet is

P
F=kr=2—r62-r 4.8)

The resultant force on a bolt or rivet is then the vector sum of the forces due to P and Pe.

Problem 4.3 A bracket is bolted to a vertical stanchion and carries a vertical load of 50 kN.
Assuming that the total shearing stress in a bolt is proportional to the relative
displacement of the bracket and the stanchion in the neighbourhood of the bolt,
find the load carried by each of the bolts. (Cambridge)
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22.5cm—>

50 kN

7.5cm 7.5cm
b
Q
&
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Solution
The centroid of the bolt system is at the point C. For bolt a
r = aC = [(0.050)* + (0.075)*]* = 0.0902 m
For bolt b,
r=5bC= aC=0.0902 m
For bolts d and f,
r=0.050m
For bolts g and A,
r=gC=aC=00902m
Then
7 = 4(0.0902)* + 2(0.050)* = 0.0376 m’
Now
e=0225m and P=50kN
Then

Pe = (0.225) (50 x 10%) = 11.25 x 10° Nm

85
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The loads on the bolts g, b g, &, due to the couple Pe alone, are then

P 1125 x 10°
Er- - (0.0902) = 28.0kN
s 2 00376

These loads are at right-angles to Ca, Cb, Cg and Ch, respectively. The corresponding loads on
the bolts d and f are

P 1125 x 103
£ ,- > X (0.050) = 15.0 kN
s 2 0.0376

perpendicular to Cd and Cf, respectively.

The load on each bolt due to the vertical shearing force of 50 kN alone is

0 3
0197 ¢33x10' N = 833kN

This force acts vertically downwards on each bolt. The resultant loads on all the rivets are found
by drawing parallelograms of forces as follows:

All force vectors are in kN. The resultant loads on the bolts are then as follows:

Bolts Resultant Load
aandg 243 kN
band h 33.5kN

d 6.7 kN
f 23.3kN

4.6 Welded connections

Some metals used in engineering—such as steel and aluminium—can be deposited in a molten
state between two components to form a joint, which is then called a welded connection. The
metal deposited to form the joint is called the weld. Two types of weld are in common use, the
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butt weld and the fillet weld; Figure 4.11 shows two plates connected by a butt weld; the plates are
tapered at the joint to give sufficient space for the weld material. If the plates carry a tensile load
the weld material carries largely tensile stresses. Figure 4.12 shows two plates connected by fillet
welds; if the joint carries a tensile load the welds carry largely shearing stresses, although the state
of stress in the welds is complex, and tensile stresses may also be present. Fillet welds of the type
indicated in Figure 4.12 transmit force between the two plates by shearing actions within the welds;
if the weld has the triangular cross-section shown in Figure 4.13(i), the shearing stress is greatest
across the narrowest section of the weld, having a thickness t/¥2. This section is called the throat
of the weld. In Figure 4.13(ii), the weld has the same thickness ¢ at all sections. To estimate
approximately the strength of the welds in Figure 4.13 it is assumed that failure of the welds takes
place by shearing across the throats of the welds.

Figure 4.11 Butt weld between two plates.

142 (
'F—t
-
P " P
COUTXT jli
(i) (i
Figure 4.12 Fillet welds in a plate connection. Figure 4.13 Throat of a fillet weld.

Problem 4.4 A steel strip 5 cm wide is fillet-welded to a steel plate over a length of 7.5 cm
and across the ends of the strip. The connection carries a tensile load of
100 kN. Find a suitable size of the fillet weld if longitudinal welds can be
stressed to 75 MN/m?’ and the transverse welds to 100 MN/m?.
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Suppose the throat thickness of the fillet-welds is z. Then the longitudinal welds carry a shearing
force

Solution

14 = (75 x 10°) (0.075 x 2f)= (11.25 x 109 tN
The transverse welds carry a shearing force

4 = (100 x 10% (0.050 x 2)= (10 x 10%) ¢N

Then
(11.25 x 10% ¢+ (10 x 10%) ¢= 100 x 10°
and therefore,
r=-19 103 -471%x107m = 0471cm
21.25
The fillet size is then
ty2 = 0.67 cm

Problem 4.5 Two metal plates of the same material and of equal breadth are fillet welded at
a lap joint. The one plate has a thickness 7, and the other a thickness ¢,.
Compare the shearing forces transmitted through the welds, when the
connection is under a tensile force P.
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Solution

The sections of the plates between the welds will stretch by approximately the same amounts; thus,
these sections will suffer the same strains and, as they are the same materials, they will also suffer
the same stresses. If a shearing force F, is transmitted by the one weld and a shearing force £, by
the other, then the tensile force over the section A in the one plate is F, and over the section B in
the other plate is F,. If the plates have the same breadth and are to carry equal tensile stresses over
the sections 4 and B, we have

Fa Fb

L L
and thus

Fa _ tl

F, L

and so

4.7 Welded connections under bending actions

Where a welded connection is required to transmit a bending moment we adopt a simple empirical
method of analysis similar to that for bolted and riveted connections discussed in Section 4.5. We
assume that the shearing stress in the weld is proportional to the distance of any part of the weld
from the centroid of the weld. Consider, for example, a plate which is welded to a stanchion and
which carries a bending moment M in the plane of the welds, Figure 4.14. We suppose the fillet-
welds are of uniform thickness ¢ around the parameter of a rectangle of sides a and b. Atany point
of the weld we take the shearing stress, 1, as acting normal to the line joining that point to the
centroid C of the weld. If 84 is an elemental area of weld at any point, then

M= ItrdA
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Figure 4.14 A plate fillet welded to a column,
and transmitting a bending moment M.

If

then
M = IkﬁdA = kJ

where J is the polar second moment of area of the weld about the axis through C and normal to the
plane of the weld. Thus

M
k= —
J

and

k.|§

4.9)

According to this simple empirical theory, the greatest stresses occur at points of the weld most
remote from the centroid C.

Problem 4.6 Two steel plates are connected together by 0.5 cm fillet welds. Estimate the

maximum shearing stress in the welds if the joint carries a bending moment of
2500 Nm.

y
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Solution

The centroid of the welds is at the centre of an 8 cm square. Suppose ¢ is the throat or thickness
of the welds. The second moment of area of the weld about Cx or Cy is

ol
t
o]
1l

g = 2 [% ) (0.08)3] + 2(®) (0.08) (0.04)]

(0.341 x 1073 r m*

The polar second moment of area about an axis through C is then
J= L+ I= 20341x107) ¢ = (0.682x107) rm*
Now ¢ = 0.005/ \/;m , and so
J = 241%x10° m*

The shearing stress in the weld at any radius r is

This is greatest at the corners of the square where it has the value

.. M [oo8] _ _ 2500 {008
A A (- 241 x 10° | 2

58.6 MN/m*

Further problems (answers on page 692)

4.7 Two plates, each 1 cm thick are connected by riveting a single cover strap to the plates
through two rows of rivets in each plate. The diameter of the rivets is 2 cm, and the
distance between rivet centres along the breadth of the connection is 12.5 cm. Assuming
the other unstated dimensions are adequate, calculate the strength of the joint per metre
breadth, in tension, allowing 75 MN/m’ shearing stress in the rivets and a tensile stress
of 90 MN/m’ in the plates. (Cambridge)

4.8 A flat steel bar is attached to a gusset plate by eight bolts. At the section A8 the gusset
plate exerts on the flat bar a vertical shearing force F and a counter-clockwise couple M.
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Assuming that the gusset plate, relative to the flat bar, undergoes a minute rotation about
a point O on the line of the two middle rivets, also that the loads on the rivets are due to
and proportional to the relative movement of the plates at the rivet holes, prove that

. AM + 3aF
4M + 6aF

Prove also that the horizontal and vertical components of the load on the top right-hand
rivet are

2M + 3aF 4M + QaF
- and —_—

24a 24a
respectively.

A steel strip of cross-section 5 cm by 1.25 cm is bolted to two copper strips, each of
cross-section 5 cm by 0.9375 cm, there being two bolts on the line of pull. Show that,
neglecting friction and the deformation of the bolts, a pull applied to the joint will be
shared by the bolts in the ratio 3 to 4. Assume that E for steel is twice E for copper.

Two flat bars are riveted together using cover plates, x being the pitch of the rivets in a
direction at right angles to the plane of the figure. Assuming that the rivets themselves
do not deform, show that the load taken by the rivets (1) is tPx / (t + 2¢') and that the
rivets (2) are free from load.
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411 Two tie bars are connected together by 0.5 cm fillet welds around the end of one bar, and
around the inside of a slot machined in the same bar. Estimate the strength of the
connection in tension if the shearing stresses in the welds are limited to 75 MN/m’.
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412 A bracket plate is welded to the face of a column and carries a vertical load P.
Determine the value of P such that the maximum shearing stress in the 1 cm weld is
75 MN/m®. (Bristol)

15¢cmy 25cm

25¢m |
I
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5 Analysis of stress and strain

51 Introduction

Up to the present we have confined our attention to considerations of simple direct and shearing
stresses. But in most practical problems we have to deal with combinations of these stresses.

The strengths and elastic properties of materials are determined usually by simple tensile and
compressive tests. How are we to make use of the results of such tests when we know that stress
in a given practical problem is compounded from a tensile stress in one direction, a compressive
stress in some other direction, and a shearing stress in a third direction? Clearly we cannot make
tests of a material under all possible combinations of stress to determine its strength. It is essential,
in fact, to study stresses and strains in more general terms; the analysis which follows should be
regarded as having a direct and important bearing on practical strength problems, and is not merely
a display of mathematical ingenuity.

5.2 Shearing stresses in a tensile test specimen

A long uniform bar, Figure 5.1, has a rectangular cross-section of area 4. The edges of the bar are
parallel to perpendicular axes Ox, Oy, Oz. The bar is uniformly stressed in tension in the x-
direction, the tensile stress on a cross-section of the bar parallel to Ox being 6,. Consider the
stresses acting on an inclined cross-section of the bar; an inclined plane is taken at an angle 6 to
the yz-plane. The resultant force at the end cross-section of the bar is acting parallel to Ox.

P = 4o,

Oy w—p—o Lz_ _____ NN

—»= Ox

Figure 5.1 Stresses on an inclined plane through a tensile test piece.

For equilibrium the resultant force parallel to Ox on an inclined cross-section is also P = Ao,. At
the inclined cross-section in Figure 5.1, resolve the force Ao, into two components—one
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perpendicular, and the other tangential, to the inclined cross-section, the latter component acting
parallel to the xz-plane. These two components have values, respectively, of

Ac, cos 0 and 4G, sin 0
The area of the inclined cross-section is
AsecO

so that the normal and tangential stresses acting on the inclined cross-section are

Ag , cos@ 3
0 =—~* — =g¢g,cos0 5.1
A sech (5-1)
A in6
p - 20 ST o, cos sind (5.2)
A secB

o is the direct stress and 1 the shearing stress on the inclined plane. It should be noted that the
stresses on an inclined plane are not simply the resolutions of 6, perpendicular and tangential to
that plane; the important point in Figure 5.1 is that the area of an inclined cross-section of the bar
is different from that of a normal cross-section. The shearing stress T may be written in the form

1= 0, cosdsing = Lo, sin26

At 8 = 0° the cross-section is perpendicular to the axis of the bar, and t = 0; 1 increases as 0
increases until it attains a maximum of %2 6, at 6 = 45°; 1 then diminishes as 0 increases further
until it is again zero at 8 = 90°. Thus on any inclined cross-section of a tensile test-piece, shearing
stresses are always present; the shearing stresses are greatest on planes at 45° to the longitudinal
axis of the bar.

Problem 5.1 A bar of cross-section 2.25 ¢cm by 2.25 cm is subjected to an axial pull of
20 kN. Calculate the normal stress and shearing stress on a plane the normal
to which makes an angle of 60° with the axis of the bar, the plane being
perpendicular to one face of the bar.

Solution

We have 8 = 60°, P= 20kNand 4 = 0.507 x10> m>. Then

20 x 10°
o, = X1 soaMN/m?
0.507 x 1073

The normal stress on the oblique plane is

= 985 MN/m?

L
4

6 = 0, cos’60° = (39.4 X 106)
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The shearing stress on the oblique plane is

1o, sin120° = £(394 x 10‘5)‘/E = 1705 MN / m?
2

5.3 Strain figures in mild steel; Liider's lines

If a tensile specimen of mild steel is well polished and then stressed, it will be found that, when the
specimen yields, a pattern of fine lines appears on the polished surface; these lines intersect roughly
at right-angles to each other, and at 45° approximately to the longitudinal axis of the bar; these
lines were first observed by Liider in 1854. Liider's lines on a tensile specimen of mild steel are
shown in Figure 5.2. These strain figures suggest that yielding of the material consists of slip along
the planes of greatest shearing stress; a single line represents a slip band, containing a large number
of metal crystals.

Figure 5.2 Liider's lines in the yielding of a steel bar in tension.

54 Failure of materials in compression

Shearing stresses are also developed in a bar under uniform compression. The failure of some
materials in compression is due to the development of critical shearing stresses on planes inclined
to the direction of compression. Figure 5.3 shows two failures of compressed timbers; failure is
due primarily to breakdown in shear on planes inclined to the direction of compression.
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Figure 5.3 Failures of compressed specimens of timber,
showing breakdown of the material in shear.

5.5 General two-dimensional stress system

A two-dimensional stress system is one in which the stresses at any point in a body act in the same
plane. Consider a thin rectangular block of material, abed, two faces of which are parallel to the
xy-plane, Figure 5.4. A two-dimensional state of stress exists if the stresses on the remaining four
faces are parallel to the xy-plane. In general, suppose the forces acting on the faces are P, 0, R,
S, parallel to the xy-plane, Figure 5.4. Each of these forces can be resolved into components P,,
P, etc., Figure 5.5. The perpendicular components give rise to direct stresses, and the tangential
components to shearing stresses.

The system of forces in Figure 5.5 is now replaced by its equivalent system of stresses; the
rectangular block of Figure 5.6 is in uniform state of two-dimensional stress; over the two faces
parallel to Ox are direct and shearing stresses o, and 1, respectively. The thickness is assumed
to be 1 unit of length, for convenience, the other sides having lengths a and 5. Equilibrium of the
block in the x- and y-directions is already ensured; for rotational equilibrium of the block in the xy-
plane we must have

[ty (@x D] xb = [1,(bx1)] xa
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a
el ¢
s=<"
d c
\ R
0 » X [o)
Figure 5.4 Resultant force acting on the faces Figure 5.5 Components of resultant

of a ‘two-dimensional’ rectangular block. forces parallel to O, and O,

Thus (ab) 1, = (ab) 1,

or Ty = Ty (5.3)

Then the shearing stresses on perpendicular planes are equal and complementary as we found in
the simpler case of pure shear in Section 3.3.

g\
y
1;
fo) (0] T x
Figure 5.6 General two-dimensional Figure 5.7 Stresses on an inclined
state of stress. plane in a two-dimensional stress system.

5.6 Stresses on an inclined plane

Consider the stresses acting on an inclined plane of the uniformly stressed rectangular block of
Figure 5.6; the inclined plane makes an angle 8 with O,, and cuts off a ‘triangular’ block, Figure
5.7. The length of the hypotenuse is ¢, and the thickness of the block is taken again as one unit of
length, for convenience. The values of direct stress, 6, and shearing stress, T, on the inclined plane
are found by considering equilibrium of the triangular block. The direct stress acts along the
normal to the inclined plane. Resolve the forces on the three sides of the block parallel to this
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normal: then

6 (c.1) = o, (c cosb cosB) + a, (c sinb sinb) + 1., (¢ cosd sinb) + 1., (c sinb cosb)
This gives

6 = o ,cos’ 0 +0,sin’ 0 + 21, sin O cos 6 (5.4)

Now resolve forces in a direction parallel to the inclined plane:

1.(c 1) = -0, (c cosB sinb) + o, (¢ sinb cosb) + 1, (¢ cosb cosb) -1, (¢ sinh sinb)
This gives
T = -0, cosf sinb + ¢, sinb cosb + Txy(cosz() - sin’0) (5.5)

The expressions for ¢ and 1 are written more conveniently in the forms:
6 = Y(o, +0)+ %o, - 6,) cos26 +1,,5in20 (5.6)
T = -%(0, - 6,) sin26 + 1, cos20 5.7

The shearing stress T vanishes when

(o, - 0,) sin26 = 1, c0s20

that is, when

21
tan28 = ¥ (5.8)
o, - O,
x ¥
or when
21 2t
26 = tan” 2 or tan’' =+ 180°
6 -0 6. -0C
x y x v
These may be written
2t 2t
8 - L v or Lant 2 4 g0e (5.9)

2 6-0, 2 6~ o,
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In a two-dimensional stress system there are thus two planes, separated by 90°, on which the
shearing stress is zero. These planes are called the principal planes, and the corresponding values
of ¢ are called the principal stresses. The direct stress ¢ is a maximum when

% = (o, - 6 sin28 + 21, cos20 = 0
that is, when
2t
tan20 = i
Gx - Gy

which is identical with equation (5.8), defining the directions of the principal stresses; thus the
principal stresses are also the maximum and minimum direct stresses in the material.

5.7 Values of the principal stresses

The directions of the principal planes are given by equation (5.8). For any two-dimensional stress
system, in which the values of 6,, 6, and 1,, are known, tan26 is calculable; two values of 6,
separated by 90°, can then be found. The principal stresses are then calculated by substituting
these vales of @ into equation (5.6).

Alternatively, the principal stresses can be calculated more directly without finding the
principal planes. Earlier we defined a principal plane as one on which there is no shearing stress;

in Figure 5.8 it is assumed that no shearing stress acts on a plane at an angle 6 to Oy.

Y

0 > x
Figure 5.8 A principal stress acting on an inclined plane;
there is no shearing stress T associated with a principal stress o.
For equilibrium of the triangular block in the x-direction,
6(c cosB) - 6, (c cosh) = 1., (c sinb)

and so

X

6-0,=1,tan6 (5.10)
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For equilibrium of the block in the y-direction
6 (c sinb) - o, (c sind) = 1, (c cosh)
and thus

6 -0,= T,cCotd (5.11)

¥y

On eliminating 8 between equations (5.10) and (5.11); by multiplying these equations together, we
get

(6-0)(c-0)= 1,

This equation is quadratic in o; the solutions are

2
o, = % (o, + o)+ %—J(cx - cy) +41%, = maximum principal stress

(5.12)

2
G, = % (0,+ o) - 71-‘[(0,( - cy) +4rfy = minimum principal stress

which are the values of the principal stresses; these stresses occur on mutually perpendicular
planes.

5.8 Maximum shearing stress

The principal planes define directions of zero shearing stress; on some intermediate plane the
shearing stress attains a maximum value. The shearing stress is given by equation (5.7); T attains
a maximum value with respect to 8 when

& .
E = ~(o, - cy) cos20 - ZT{V sin26 = 0
i.e., when
2t
cot2f = -—X
6, - O,

The planes of maximum shearing stress are inclined then at 45° to the principal planes. On
substituting this value of cot 26 into equation (5.7), the maximum numerical value of t is
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TN ET (513)

But from equations (5.12),

[3or- ol o] = o1 4lox - 03) = dox - 03)-o:

where o, and o, are the principal stresses of the stress system. Then by adding together the two
equations on the right hand side, we get

o TR O

and equation (5.13) becomes

T ax = (01 = 02) (5.14)

The maximum shearing stress is therefore half the difference between the principal stresses of the
system.

Problem 5.2 At a point of a material the two-dimensional stress system is defined by

6, = 60.0 MN/n?’, tensile

X

6, = 45.0 MN/m’, compressive

1, = 37.5 MN/m’, shearing

Xy

where ¢, 6,, T, refer to Figure 5.7. Evaluate the values and directions of the
principal stresses. What is the greatest shearing stress?

Solution

Now, we have

Ho.+0,)=1 (60.0-450) - 7.5 MNm®

L(o.-0,)=1 (600+450) = 52.5 MN/m?
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Then, from equations (5.12),

1
o, = 7.5+ [(525)2 + (375)2}2 - 75+644 = 71.9 MN/m’

Nf—

5, = 75- [(525)2 + (375)2} = 75-644 = -56.9 MN/m?

From equation (5.8)

2t,, 37.5

tan20 = = = 0714
G, ~ ©, 52.5
Thus,
26 = tan”! (0.714) = 35.5° or 215.5°
Then
® = 17.8° or 107.8°

From equation (5.14)
Tro =101 - 02) = 2(719+569) = 64.4 MN/m?

This maximum shearing stress occurs on planes at 45° to those of the principal stresses.

5.9 Mohr's circle of stress

A geometrical interpretation of equations (5.6) and (5.7) leads to a simple method of stress
analysis. Now, we have found already that

o= %(cx +cry) + -é-(c,r —cy)c0526 +1,,5in20
T = —%—(c, - cy)sinZB +1,, cos26

Take two perpendicular axes Oc, Or, Figure 5.9; on this co-ordinate system set off the point having
co-ordinates (o,, 7,,) and (o, - 1,)), corresponding to the known stresses in the x- and y-directions.
The line PQ joining these two points is bisected by the Og axis at a point O’. With a centre at O',
construct a circle passing through P and Q. The stresses ¢ and T on a plane at an angle 0 to Oy are
found by setting off a radius of the circle at an angle 26 to PQ, Figure 5.9; 20 is measured in a
clockwise direction from O’ P,
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A
p(U,, txy’

==
'l Rfc, 1)
Trmax
|
1
Y -y
(0] (0]
) |
} t
(—0’2--)1 !
|
O(va _Txy) :
t‘ ————— Oy = == - -

Figure 5.9 Mohr's circle of stress. The points P and Q correspond to the
stress states (o,, 1,,) and (o,, - T,) respectively, and are diametrically opposite;
the state of stress (g, T) on a plane inclined at an angle 6 to Oy is given by the point R.

The co-ordinates of the point R(g, T) give the direct and shearing stresses on the plane. We may
write the above equations in the forms

(cx+ cy) = —l-(cx— O’y)COSZQ + 1,,8in20

°- 2

Nl—l

-t = (ox—cy)sinZO—t,y cos20

NI»—-

Square each equation and add; then we have
1 : a1 : 2
o——2-(0,+oy) +12= 7(0‘—6-“) +[r,y] (5.15)
Thus all corresponding values of ¢ and 1 lie on a circle of radius

l 2
5(0,—0,)] +13,

with its centre at the point (}2[c, + 6,], 0), Figure 5.9.

This circle defining all possible states of stress is known as Mohr's Circle of Stress; the principal
stresses are defined by the points 4 and B, at whicht = 0. The maximum shearing stress, which
is given by the point C, is clearly the radius of the circle.

Problem 5.3 At a point of a material the stresses forming a two-dimensional system are
shown in Figure 5.10. Using Mohr's circle of stress, determine the magnitudes
and directions of the principal stresses. Determine also the value of the
maximum shearing stress.
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(ry= 30 MPa

|

——

1

20 MPa

Xy

7= 50 MPa

—————

Ty= -20 MPa

y

Figure 5.10. Stress at a point.

Solution

105

From Figure 5.10, the shearing stresses acting in conjunction with o, are counter-clockwise, hence,
1,, is said to be positive on the vertical planes. Similarly, the shearing stresses acting in conjunction

with 1, are clockwise, hence, 1, is said to be negative on the horizontal planes.

On the o - 1 diagram of Figure 5.11, construct a circle with the line joining the point (o,, 1,)
or (50, 20) and the point (o,, - 7,) or (30,-20) as the diameter, as shown by 4 and B, respectively

Figure 5.11 Problem 5.3.

The principal stresses and their directions can be obtained from a scaled drawing, but we shall

calculate 6,, o, etc.

D4 = 20 MPa
OD = ¢, = 50 MPa
0G = ¢, = 30 MPa

y
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(0D + 0G) _ (50 +30) _ 44 vpa

2 2

ocC

CD = OD-0C = S50-40 = 10 MPa
AC? = CD?* + DA?
= 10% + 20?
or AC = 2236 MPa
o, = OEF = OC + AC = 40 + 22.36
o, = 6236 MPa
6, = OF = OC - AC
= 40 - 22.36

or o, = 17.64 MPa

20 - tan“(ﬂ)

~ 8 = 31.7° see below

y

0’1 =624
3n7°
X

58.3°

0'2:176

Maximum shear stress =1, = AC = 22.36 MPa which occurs on planes at 45° to those of the
principal stresses.
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Problem 5.4 At a point of a material the two-dimensional state of stress is shown in
Figure 5.12. Determine 6,, 6,, 0 and 1,

0y=-l10 MPa
Tay= 20 MPa
a, 4——1— —0,= 30 MPa
.
Ty= -20 MPa ‘
Gy

Figure 5.12 Stress at a point.

Solution

On the 6t diagram of Figure 5.13, construct a circle with the line joining the point (¢, 7,,) or (30,
20) to the point (o, ~1,) or (-10, -20), as the diameter, as shown by the points 4 and B
respectively. It should be noted that 1, is positive on the vertical planes of Figure 5.12, as these
shearing stresses are causing a counter-clockwise rotation; vice-versa for the shearing stresses on
the horizontal planes.

Figure 5.13 Problem 5.4.



108

Analysis of stress and strain

From Figure 5.13,

AD
oD

OF

oc

or OC

CD
AC?

or

or

28

or T

T, = 20

o, = 30

o, = ~10

(OD + OE) _ (30 - 10)
2 2

10

OD-0C = 30-10 = 20

CD? + AD?

20% + 202 = 800

28.28

OF = OC + AC = 10 + 2828

38.3 MPa

OG = OC - AC

10 - 283

-18.3 MPa

tan"l ilz = .2_0 = 450
cD 20

22.5 (see below)

Maximum shearing stress = AC
28.3 MPa acting on planes at 45° to ¢, and o,.
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y
g,= 383
el
675
0-2 = - 183

5.10 Strains in an inclined direction

For two-dimensional system of strains the direct and shearing strains in any direction are known
if the direct and shearing strains in two mutually perpendicular directions are given. Consider a
rectangular element of material, OABC, in the xy-plane, Figure 5.14, it is required to find the direct
and shearing strains in the direction of the diagonal OB, when the direct and shearing strains in the
directions Ox, Oy are given. Suppose €, is the strain in the direction Ox, €, the strain in the
direction Oy, and v,, the shearing strain relative to Ox and Oy.

,V{‘
Yy SIN O
'4; ———————— S
sysinef - //
l T
] 1 Y
sin B vy, ~ N\ /
! ~ N
P N
[¢] \14:
(0] cos 9 C ) c X

Figure 5.14 Strains in an inclined direction; strains in the directions O, and O, and
defined by ¢,, €, and v,, lead to strains ¢, y along the inclined direction OB.

All the strains are considered to be small; in Figure 5.14, if the diagonal OB of the rectangle is
taken to be of unit length, the sides O4, OB are of lengths sinf, cos0, respectively, in which 0 is
the angle OB makes with Ox. In the strained condition OA extends a small amount €, sing, OC
extends a small amount €, cos®, and due to shearing strain OA rotates through a small angle v,
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If the point B moves to point B’, the movement of B parallel to Ox is

€, cosf + v,, sind

and the movement parallel to Oy is

€, sin0

Then the movement of B parallel to OB is
(s,r cosb +v,, sine) cosf + (sy sin(-)) sin®

Since the strains are small, this is equal to the extension of the OB in the strained condition; but OB
is of unit length, so that the extension is also the direct strain in the direction OB. If the direct
strain in the direction OB is denoted by ¢, then

€ = (e, cosb +v,, sine) cosf +(ey sine) sind

This may be written in the form
_ 2 .2 .
€ = €, c0os” 0 +g,, sin" 0+ y,,sinbcosbd
and also in the form

£ = %(ex + ey)+ -;—(ex - ey)cosze + 2y, sin2 (5.16)

This is similar in form to equation (5.6), defining the direct stress on an inclined plane; €, and g,
replace o, and o, respectively, and Y2y, replaces 1.

To evaluate the shearing strain in the direction OB we consider the displacements of the point
D, the foot of the perpendicular from C to OB, in the strained condition, Figure 5.10. The point
D, is displaced to a point D’; we have seen that OB extends an amount €, so that OD extends an
amount

e OD =¢ 00529

During straining the line CD rotates anti-clockwise through a small angle

€, cos’0 - € cos 0

cosf sin@ = (ex - ¢) cotd

At the same time OB rotates in a clockwise direction through a small angle

(8, cost + vy, sine)sine - (ey sine) cos@
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The amount by which the angle ODC diminishes during straining is the shearing strain y in the
direction OB. Thus

Yy = - (g - €) cotd - (g, cosb + v, sinb) sinb + (g, sinb) cosd
On substituting for € from equation (5.16) we have

y = -2(g, - €,) cosB sind + v, (cos’ B - sin’ )
which may be written

Ly = -L(,-¢)sin20+ Ty, cos20 (5:17)

This is similar in form to equation (5.7) defining the shearing stress on an inclined plane; 6, and
o, in that equation are replaced by ¢, and €, respectively, and 1., by Y2y,

5.11 Mohr's circle of strain

The direct and shearing strains in an inclined direction are given by relations which are similar to
equations (5.6) and (5.7) for the direct and shearing stresses on an inclined plane. This suggests
that the strains in any direction can be represented graphically in a similar way to the stress system.
We may write equations (5.16) and (5.17) in the forms

1 1 1 .
£ - .2_(gx + ey) = -2—(sx - sy)cosZG + nyysm29
ly = —l(gx - g )sin28 + ly c0s26
2 2 Y 27

Square each equation, and then add; we have

1 271 P T 2 7P
{E —E(EX‘FE},)} + [5'}’} = l:—z—(ex— Ey)jl + I:E'ny]
Thus all values of € and —;'Y lie on a circle of radius

Jieol o]

with its centre at the point

o]

This circle defining all possible states of strain is usually called Mohr’s circle of strain. For given
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values of €,, €, and v, it is constructed in the following way: two mutually perpendicular axes, €
and Y2y, are set up, Figure 5.15; the points (g,, 2y,,) and (g,, - Y4y, are located; the line joining
these points is a diameter of the circle of strain. The values of € and Yy in an inclined direction
making an angle 6 with Ox (Figure 5.10) are given by the points on the circle at the ends of a
diameter making an angle 26 with PQ; the angle 26 is measured clockwise.

We note that the maximum and minimum values of €, given by €, and €, in Figure 5.15, occur
when Y%y is zero; €, €, are called principal strains, and occur for directions in which there is no
shearing strain.

Pler. 31)
26 \Re 1)
= £

1) €1

O(ﬁy, _%\{xy)

Figure 5.15 Mohr's circle of strain; the diagram is similar to the circle of stress,
except that '4y is plotted along the ordinates and not y.

An important feature of this strain analysis is that we have not assumed that the strains are elastic;
we have taken them to be small, however, with this limitation Mohr's circle of strain is applicable
to both elastic and inelastic problems.

5.12 Elastic stress—strain relations

When a point of a body is acted upon by stresses o, and o, in mutually perpendicular directions
the strains are found by superposing the strains due to 6, and 6, acting separately.

Oy Oy
v, i {
Ey | T T S
Co——b———
y j o y t E—r_—g ; y Ce—fi  -1— - i}—> 0«
x| | — | | x
O | | L—>_E_1 — R ]
| 1
Oy iy
0 X (6] X (0] X
) (ii) (iii)

Figure 5.16 Strains in a two-dimensional linear-elastic stress system; the strains can be regarded
as compounded of two systems corresponding to uni-axial tension in the x- and y- directions.

The rectangular element of material in Figure 5.16(i) is subjected to a tensile stress ¢, in the x
direction; the tensile strain in the x-direction is



Elastic stress—strain relations 113

GX
E

and the compressive strain in the y-direction is

VG

in which E is Young's modulus, and v is Poisson's ratio (see section 1.10). If the element is
subjected to a tensile stress o, in the y-direction as in Figure 5.12(ii), the compressive strain in the
x-direction is

VG

and the tensile strain in the y-direction is

[ @

These elastic strains are small, and the state of strain due to both stresses o, and ¢, acting
simultaneously, as in Figure 5.16(iii), is found by superposing the strains of Figures 5.16(i) and
(ii); taking tensile strain as positive and compressive strain as negative, the strains in the x- and y-
directions are given, respectively, by

G, VGy
e = -E- - ? (518)
£ = E’! - X(S—x
g E E

Ee, = o, - Vo,
(5.19)
Esy = 6, - Vo,

These are the elastic stress-strain relations for two-dimensional system of direct stresses. When
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a shearing stress 1,, is present in addition to the direct stresses o, and o, as in Figure 5.17, the
shearing stress 1, is assumed to have no effect on the direct strains €, and ¢, caused by 6, and o,.

w

H
]
Oy —> O,
| f\ny /

Figure 5.17 Shearing strain in a two-dimensional system.

Similarly, the direct stresses 6, and o, are assumed to have no effect on the shearing strain y,, due
to 1,,. When shearing stresses are present, as well as direct stresses, there is therefore an additional
stress-strain relation having the form in which G is the shearing modulus.

Then, in addition to equations (5.19) we have the relation

1, = Gy, (5.20)

5.13 Principal stresses and strains

We have seen that in a two-dimensional system of stresses there are always two mutually
perpendicular directions in which there are no shearing stresses; the direct stresses on these planes
were referred to as principal stresses, 6, and 6,. As there are no shearing stresses in these two
mutually perpendicular directions, there are also no shearing strains; for the principal directions
the corresponding direct strains are given by

Ee

1 G, - Vo,
(5.21)

Ee, = o, - vo,

The direct strains, €,, €,, are the principal strains already discussed in Mohr's circle of strain. It
follows that the principal strains occur in directions parallel to the principal stresses.
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5.14 Relation between E, G and v

Consider an element of material subjected to a tensile stress o, in one direction together with a
compressive stress 6, in a mutually perpendicular direction, Figure 5.18(i). The Mohr's circle for
this state of stress has the form shown in Figure 5.18(ii); the circle of stress has a centre at the
origin and a radius of 6,. The direct and shearing stresses on an inclined plane are given by the co-
ordinates of a point on the circle; in particular we note that there is no direct stress when 26 = 90°,
that is, when 0 = 45° in Figure 5.18(i).

» .
P o

=]
S

3

O ~— N [—3Cp

v

—ag

S—»

Figure 5.18 (i) A stress system consisting of tensile and compressive
stresses of equal magnitude, but acting in mutually perpendicular directions.
(ii) Mobhr's circle of stress for this system.

Moreover when @ = 45°, the shearing stress on this plane is of magnitude 6,. We conclude then
that a state of equal and opposite tension and compression, as indicated in Figure 5.18(i), is
equivalent, from the stress standpoint, to a condition of simple shearing in directions at 45°, the
shearing stresses having the same magnitudes as the direct stresses o, (Figure 5.19). This system
of stresses is called pure shear.

Oo
!“‘-45“ Vs
! Y
i%
& !
0g w1 —» o >
& !
|00 Go
AN
| ~
¢ -45°
]

Figure 5.19 Pure Shear. Equality of (i) equal and opposite tensile and compressive stresses and
(ii) pure shearing stress.

If the material is elastic, the strains €, and €, caused by the direct stresses o, are, from equations
(5.18),
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1 c
g, = E("o*"“o) = EO(I + V)

1 G
g = 7 (-0 - voy) = —-Eo (1 +v)

If the sides of the element are of unit length, the work done in distorting the element is

2
- —0, & = 2 (1 +v) (5.22)

N
>
DN | —
~
ml S

per unit volume of the material.
In the state of pure shearing under stresses o,, the shearing strain is given by equation (5.20),

The work done in distorting an element of sides unit length is

2
1 Gy

w o= = = 2 (5.23)
7 %ol 2G

per unit volume of the material. As the one state of stress is equivalent to the other, the values of
work done per unit volume of the material are equal. Then

2 02
=2 (] +v) = 2
2G

and hence

E = 2G(1 +V) (529

Thus v can be calculated from measured values E and G.
The shearing stress—strain relation is given by equation (5.20), which may now be written in
the form

Ey, = 2(1 + v, (5.25)
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For most metals v is approximately 0.3; then, approximately,

E = 211 +vG = 26G (5.26)

Problem 5.5 From tests on a magnesium alloy it is found that E is 45 GN/m* and G is
17 GN/m®. Estimate the value of Poisson's ratio.

Solution

From equation (5.24),

v = £ 1 -5y 3o
2G 34
Then
v = 032

Problem 5.6 A thin sheet of material is subjected to a tensile stress of 80 MN/m?, in a certain
direction. One surface of the sheet is polished, and on this surface fine lines are
ruled to form a square of side 5 cm, one diagonal of the square being parallel
to the direction of the tensile stresses. If E = 200 GN/m? and v = 0.3,
estimate the alteration in the lengths of the sides of the square, and the changes
in the angles at the corners of the square.

Solution

The diagonal parallel to the tensile stresses increases in length by an amount

(80 = 10% (0.05 2)
200 x 10°

283 x 10 m

The diagonal perpendicular to the tensile stresses diminishes in length by an amount
03 (83 x 10 = 850 x 10°m
The change in the corner angles is then

1283 + 85010¢ = = 520 x 107 radians = 0.0405°
0.05 v
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The angles in the line of pull are diminished by this amount, and the others increased by the same
amount. The increase in length of each side is

1 [28.3 - 8.50010°] = 7.00 x 10° m
22

5.15 Strain ‘rosettes’

To determine the stresses in a material under practical loading conditions, the strains are measured
by means of small gauges; many types of gauges have been devised, but perhaps the most
convenient is the electrical resistance strain gauge, consisting of a short length of fine wire which
is glued to the surface of the material. The resistance of the wire changes by small amounts as the
wire is stretched, so that as the surface of the material is strained the gauge indicates a change of
resistance which is measurable on a Wheatstone bridge. The lengths of wire resistance strain
gauges can be as small as 0.4 mm, and they are therefore extremely useful in measuring local
strains.

&

Figure 5.20 Finding the principal strains in a two-dimensional system by recording
three linear strains, €, €, and €, in the vicinity of a point.

The state of strain at a point of a material is defined in the two-dimensional case if the direct
strains, €, and €,, and the shearing strain, y,, are known. Unfortunately, the shearing strain v, is
not readily measured; it is possible, however, to measure the direct strains in three different
directions by means of strain gauges. Suppose €,, &, are the unknown principal strains in a two-
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dimensional system, Figure 5.20. Then from equation (5.16) we have that the measured direct
strains €,, €, and €, in directions inclined at 8, (8 + a), (0 + a + P) to €, are

€q = + () +€)+ L(e; - £5)cos26
ep = +(e) +8,)+ +(es - £5)c0s2(6 + ) (5.27)

€, = —;—(el + 82)+%(81 - sz)cosz(e +a + B)

In practice the directions of the principal strains are not known usually; but if the three direct
strains €,, €, and €, are measured in known directions, then the three unknowns in equations (5.27)
are

£, €, and 6

Three strain gauges arranged so thata = = 45° form a 45° rosette, Figure 5.22. Equations
(5.27) become

€, = %(el+sz) + %(s]— £,) c0s20 (5.28a)

£, = l(s +€ )—i(a — &,) sin20 (5.28b)
b 2 1 2 2 1 2 b

£, = —l-(s +e )——l—(s - €,) cos28 (5.28¢)
c = 2 1 2 2 1 2 .

Adding together equations (5.28a) and (5.28c), we get

€, tE. = £, + &y (5.29)

a c

Equation (5.29) is known as the first invariant of strain, which states that the sum of two mutually

perpendicular normal strains is a constant.
From equations (5.28a) and (5.28b).

—l(el - &,)sin20 = ¢, -

l(8—8) 5.30.
2 2 vt (3.30a)

—i(el - g)cos20 = -g, +

5 (€1 * &) (5.30b)
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Dividing equation (5.30a) by (5.30b), we obtain

1
€, ~ -2—(81 + &)
tan26 = (5.31)

-g, + %(t:l + ez)

Substituting equation (5.29) into (5.31)

- 2¢. +
tan20 = %)—8) (5.32)

To determine €, and €, in terms of the known strains, namely &,, €, and €, put equation (5.32) in
the form of the mathematical triangle of Figure 5.21.

(€2~ 265 +E¢)

20

(Ea - Eb)

Figure 5.21 Mathematical triangle from equation (5.32).

2 2 2 2 2
hypotenuse = Jsa +4g, + e, - 4eg, -4ee +2er + g tEg - 288

= ﬁﬂea - sb)z + - £h>2

. c0s28 (5.33)

and sin26

(5.34)
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Substituting equations (5.33) and (5.34) into equations (5.30a) and (5.30b) and solving,

g = %(ea + ec) + g J(ga - gb)z + (t:c - eb)z (5.35)

—(s +£)—£J(a—£b)z + 6 - &f (5.36)

0 is the angle between the directions of €, and €,, and is measured clockwise from the direction of

7 E?T__:’r
Strain gauge

Figure 5.22 A 45° strain rosette. Figure 5.23 Alternative arrangements
of 120° rosettes.

&"

The alternative arrangements of gauges in Figure 5.23 correspond to 120° rosettes. On putting
a = B = 120° in equations (5.27), we have

€, = —;—(81+82) + -é-(sl— 82) cos 20 (5.37a)

a

€y = %(81+ €1) - %(81—82)(%COS 20 - -iz-g-sin%] (5.37b)

£, = %(81+ ez) - %(el—sz)[—;-cos 20 + J—f—sinze] (5.37¢)
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Equations (5.37b) and (5.37¢) can be written in the forms

1 1 v

g, = ‘2‘(51+52)‘ ?(el—sz)[-zlcosze - —23—sin 26]
1 1 1 V3 .

€, = 5-(814'-82) - ?(el—sz)[-z—cos 20 + —2-—sm 26]

Adding together equations (5.37a), (5.38a) and (5.38b), we get:

g, +E +¢& :}-(e +8y)
a b [ 2 1 2
or
2
£, *tE = —3-(ea+sb+ec)

Taking away equation (5.38b) from (5.38a),
V3 :
£, ~ € = 3 [, - &) sin26

Taking away equation (5.38b) from (5.37a)

e, - € = l(el - 52) [i cos28 + ﬁ sin29]
2 2 2

Dividing equation (5.41) by (5.40)

&, " & _ 1 icot29+]
€, ~ € 212 2

or

or

(5.38a)

(5.38b)

(5.39)

(5.40)

(5.41)

(5.42)
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To determine €, and €, in terms of the measured strains, namely €,, €, and €, put equation (5.42)
in the form of the mathematical triangle of Figure 5.24.

\ ep—ic)

(2ea—tp—tc)

Figure 5.24 Mathematical triangle from Pythagoras' theorem.

Then,

hypotenuse = \/[(sa - eb)2 + (ab - sc)z + (sa - s,,)z}
Hence,

(2sa — gy — ec)
cos28 = (5.43)
hypotenuse

and

sin 20 M (5.44)

hypotenuse

Substituting equation (5.43) and (5.44) into equations (5.38a) and (5.38b), and solving the two
simultaneous equations, we get

€, = %(sa + €, + Ec)+ gJ[(sa—eb)z«#(sb—sc)z +(sa—sc)2} (5.45)

and

€, = -:1_’7(8“ + €, + ec)— g [(ea—sb)2+(8b—sc)2 +(Sa-€c)2] (5.46)

When the principal strains €, and €, have been estimated, the corresponding principal stresses are
deduced from the relations

EFe, = ¢

1 - VG

1 2

EE,

G, — VO,
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These give
E
o, = — (sl +ve2)
(5.47)
E
o, = e, + Ve
2 v (€, 1)

Equations (5.18) and (5.47) are for the plane stress condition, which is a two-dimensional system
of stress, as discussed in Section 5.12.

Another two-dimensional system is known as a plane strain condition, which is a two-
dimensional system of strain and a three-dimensional system of stress, as in Figure 5.25, where

(3 VO’X Vo
szz():Ez-?-?y (5.48a)
G A% A%
e, - Ey - _E- - _E_ (5.48b)

e = x0T (5.48¢)

o -t
Oy < Oy
8
Oy
% 1™ < .
to,

Figure 5.25 Plane strain condition.

From equation (5.48a)

o, = v, o) (5.49)
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Substituting equation (5.49) into equations (5.48b) and (5.48c¢), we get,

o FF R
o
= 20 -v)-—=0+v
E
and ex:i_zc_y_vz(cx+cy)
E E E
c

(1 +vw 7 El + v E

Adding equation (5.50b) to (5.51), we get

- _ 42
..(1___"_2)_8 ve = ch(1+v)+0y(1 VY
(1 + V)V Y E E(l + V)V
or (1 -v) g, +ve = v (L~ V)O’y N S, (1 B Vz)z
E E(1 + V)
or E [(1 -v) €, + vgx] = % [_VZ (1 + V)2 + (1 _ vz)z]
{1 +v

o E[(-v)e, s ves] = oy [-vE(1ev)+(1-v) (1- )]

= cy[—vz—v3+1—v—v2+v3]

cy(l— v—2v2)

125

(5.50a)

(5.50b)

(5.51)

(5.52a)
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= cy(l+v )(1—2v)

E[(l— v)sy+ vexJ

% (1+v)(1—2v)

Q
"

Similarly

. - E[(l—-v)sx+ vsy]
* (1+v)(1—2v)

(5.52b)

Obviously the values of £ and v must be known before the stresses can be estimated from either
equations (5.19), (5.47) or (5.52).

5.16 Strain energy for a two-dimensional stress system

If 6, and o, are the principal stresses in a two-dimensional stress system, the corresponding
principal strains for an elastic material are, from equations (5.21),

£ =

1
) E (0'l - vcz)

1
g, = E(cz—vcl)

Consider a cube of material having sides of unit length, and therefore having also unit volume.
The edges parallel to the direction of 6, extend amounts €,, and those parallel to the direction of
6, by amounts €,. The work done by the stresses 6, and ¢, during straining is then

1 1
W = —o6,8g +—0,¢t
211222

per unit volume of material. On substituting for €, and €, we have

w- Lo E o - >} » 1o, [% o - >}

This is equal to the strain energy U per unit volume; thus

u = {c, + ci - 2vo, 02] (5.53)
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5.17 Three-dimensional stress systems

In any two-dimensional stress system we found there were two mutually perpendicular directions
in which only direct stresses, 6, and 6,, acted; these were called the principal stresses. In any three-
dimensional stress system we can always find three mutually perpendicular directions in which
only direct stresses, 6,, 6, and o, in Figure 5.26, are acting. No shearing stresses act on the faces
of a rectangular block having its edges parallel to the axes 1, 2 and 3 in Figure 5.26. These direct
stresses are again called principal stresses.

If 6, > 0, > 6, then the three-dimensional stress system can be represented in the form of
Mohr's circles, as shown in Figure 5.27. Circle a passes through the points o, and ¢, on the -axis,
and defines all states of stress on planes parallel to the axis 3, Figure 5.26, but inclined to axis 1
and axis 2, respectively.

Figure 5.26 Principal stresses in a three-dimensional system.

Figure 5.27  Mohr's circle of stress for a three- Figure 5.28 Two-dimensional stress
dimensional system; circle a is the Mohr's circle of the system as a particular case of a three-
two-dimensional system o,, 6,; b corresponds to 6,, o, dimensional system with one of the
and c to o,, 6,. The resultant direct and tangential stress three principal stresses equal to zero.

on any plane through the point must correspond to a
point P lying on or between the three circles.
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Circle c, having a diameter (o, - ©,), embraces the two smaller circles. For a plane inclined to
all three axes the stresses are defined by a point such as P within the shaded area in Figure 5.27.
The maximum shearing stress is

1
Tmax = ;(Gl ‘03)

and occurs on a plane parallel to the axis 2.

From our discussion of three-dimensional stress systems we note that when one of the
principal stresses, o, say, is zero, Figure 5.28, we have a two-dimensional system of stresses a,,
0,; the maximum shearing stresses in the planes 1-2, 2-3, 3-1 are, respectively,

l(c —c),—l-cl,lcz
17 %) 3 >

Suppose, initially, that ¢, and o, are both tensile and that 6, > 6,; then the greatest of the three
maximum shearing stresses is %2 6, which occurs in the 2-3 plane. If| on the other hand, o, is
tensile and o, is compressive, the greatest of the maximum shearing stresses is 2 (6, - 6,) and
occurs in the 1-2 plane.

We conclude from this that the presence of a zero stress in a direction perpendicuiar to a two-
dimensional stress system may have an important effect on the maximum shearing stresses in the
material and cannot be disregarded therefore. The direct strains corresponding to 6,, 6, and o,
for an elastic material are found by taking account of the Poisson ratio effects in the three
directions; the principal strains in the directions 1, 2 and 3 are, respectively,

g = l(c - Vo, - Vo)
] Z O

e, = l((S - vo; - Vo)
2 E 2 3 1

g = l(cr - VO, - VG,)
3 7 O3 2

The strain energy stored per unit volume of the material is

1 1
U = —0,8 +—0,8, +—0, ¢
211222233

In terms of 6,, 0, and o,, this becomes

U= é(clz + c% + c% -2vo] 02 - 2vo 63 — 2vo3 0'1) 54
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5.18 Volumetric strain in a material under hydrostatic pressure

A material under the action of equal compressive stresses ¢ in three mutually perpendicular
directions, Figure 5.29, is subjected to a hydrostatic pressure, 6. The term hydrostatic is used
because the material is subjected to the same stresses as would occur if it were immersed in a fluid
at a considerable depth.

o3

LA

Figure 5.29 Region of a material under a hydrostatic pressure.

If the initial volume of the material is ¥, and if this diminishes an amount § ¥ due to the hydrostatic
pressure, the volumetric strain is

14

£

The ratio of the hydrostatic pressure, o, to the volumetric strain, 8//V,, is called the bulk
modulus of the material, and is denoted by K. Then

G

[ Q) (5.55)

Vo

If the material remains elastic under hydrostatic pressure, the strain in each of the three mutually
perpendicular directions is

g = —_— et — t ——
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because there are two Poisson ratio effects on the strain in any of the three directions. If we
consider a cube of material having sides of unit length in the unstrained condition, the volume of
the strained cube is

(1-¢p

Now ¢ is small, so that this may be written approximately

1 - 3¢

The change in volume of a unit volume is then

3¢

which is therefore the volumetric strain. Then equation (5.55) gives the relationship

K -_9 .95 _ _E
3% -3¢ 3(1 - 2v)
Vo

We should expect the volume of a material to diminish under a hydrostatic pressure. In general,
if K is always positive, we must have

1 -2v>0
or
v<.l_
2

Then Poisson's ratio is always less than %. For plastic strains of a metallic material there is a
negligible change of volume, the Poisson's ratio is equal to !4, approximately.

5.19 Strain energy of distortion

In the three-dimensional stress system of Figure 5.22 we may consider the principal stress 6, to be
the resultant of stresses

1
;-(01 + 0, * 0'3)

and stresses

1
3 (251 -0 - 03)
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since

1 1 )

;(‘71 + 0, +cs3)+;(2(s1 - o, —03) = o,
Similarly, we write

G, = %("1 * 0, +°3>+
6, =

1 1
'3'(01‘”02*03)*?(203‘01_“2)

Now, the component ' (6, + 6, + 6,) which occurs in 6,, 6, and o, represents a hydrostatic tensile
stress; the strains associated with this stress give rise to no distortion, i.e., a cube of material under
stress 5 (0, + 0, + ©,) in three mutually perpendicular directions is strained into a cube. The
remaining components of ,, 6, and o,, are

1 1 1
;ch'cz_°3>’ ?(202"03'51)> ;(263'01'52)

The strain energy associated with these stresses, which are the only stresses giving rise to
distortion, is called the strain energy of distortion. The strains due to these distorting stresses are

1 1
g, = — (1 +V)Q6, -0, -0;) = %[(Gl SOt - 63)}
1 1
g, = 5 (1 +v)Ro, -0, -0, = < [(62 5;) + (6, 61)]
1
g, = = (1 +v) Qo -0, -0,) = = [(03 -6) + (o - 02)]
The strain energy of distortion is therefore
1 )
Uy + o oo - o - af - - o]
per unit volume. Then
1
Up = oo o) - o:f + (0, - o5f + o5 - 0] (5.56)
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For a two-dimensional stress system, ¢, (say) = 0, and U, reduces to

1
Uy = oo+ i+ ]

We shall see later that the strain energy of distortion plays an important part in the yielding of
ductile materials under combined stresses.

5.20 Isotropic, orthotropic and anisotropic

A material 1s said to be isofropic when its material properties are the same in all directions. An
orthotropic material is said to exhibit symmetric material properties about three mutually
perpendicular planes. In two dimensions, typical orthotropic materials are in the form of many
composites. An anisotropic material is a material that exhibits different material properties in all
directions.

5.21 Fibre composites

Fibre composites are very important for structures which require a large strength:weight ratio,
especially when the weight of the structure is at a premium. They are likely to become even more
important in the 21st century and will probably revolutionise the design and construction of aircraft,
rockets, submarines and warships.

To represent the elasticity of a composite, tensile modulus is used in preference to Young's
modulus of elasticity. Additionally, as most composites are usually assumed to be of orthotropic
form, their material properties in one direction, (say) ‘x’ are likely to be different to a direction
perpendicular to the ‘x” direction, (say) ‘y’. Composites usually consist of several layers of fibre
matting, set in a resin, as shown by Figure 5.30. To gain maximum strength the layers of fibre
matting are laid in different directions. In this Chapter, the term Jamina or ply will be used to
describe a single layer of the composite structure and the term /aminate or composite will be used
to define the entire mixture of plies and resin.

If the material properties of the fibre composite are orthogonal, the following relationship
applies:

v.,E, = Vv E (5.57)

Figure 5.30 Five layers of fibre reinforcement.
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where
E, = tensile modulus in the x-direction.
E, = tensile modulus in the y-direction.
v, = Poisson’s ratio due to the effects of o,
v, = Poisson’s ratio due to the effects of 5,
o, = directstress in the local x-direction. }
6, = directstress in the local y-direction. see Figure 5.31
y

Figure 5.31 A lamina from a composite.

It is evident from the theory of Section 5.12 that the following relationships between stress and
strain apply for orthotropic materials:

c V.G
e, = _Ei _ Yy
x Y
(5.58)
e = 2 %%
Y E, E
T
Yo = —G—’y— (5.59)
xy
where
€, = direct strain in the x-direction
g, = direct strain in the y-direction
Y, = shear strain in the x-y plane

Solving equations (5.58), the following alternative relationship is obtained:
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EX
6 = ———f{e +VE
X (1 _ VXVV) (X v ,V)
(5.60)
E
S, = — (Ev * sz’x)
] 1 - vxvy) :
In matrix form, equations (5.58) and (5.59) can be written as
o S Sz S x
et = IS Sn S |15 (5.61)
xy SSI S62 S66 xy
or £yl = S foat (5.62)

where [8] is the compliance matrix.

From equations (5.59) and (5.60)

x On 9 Gl [&
b ) = o1 = @0 22 Qe & (5.63)
Xy Q6l Q62 Q66 xy

where
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Oy = £
. (1 - vxvy)
0, - —=
vy
O = ny = shear modulus
On= Oy = —2b
S AN
5.64
i v, E, (5.64)
(1 -vv)

Q= D = O = O = 0
Q66 = ny

or {ny} = (0] {Sxy} = [S _1] {8x,v}

[Q] = the stiffness matrix

= the inverse of [S]

The problem with the above relationships are that they are all in the local co-ordinate system of the
lamina, namely x and y. However, as each layer of fibres may have a different direction for its
local co-ordinate system, it will be necessary to refer all relationships to a fixed global system,
namely, X and Y, as shown by Figure 5.31.

Now from equations (5.4) and (5.5)

Gy =0y c0526+cy sin26+21XY sinB cosB

6, = oy +9° = oy sin26+cy cosz6—2rXY sin® cosH (5.65)
Ty = — O y sinB cos® + oy sinb cosb + 1 (00326 - sinze)

xy = X Y XY

where 6,, 6, and 1, are local stresse$ and o, 6, and 1, are global or reference stresses; in matrix
form equations (5.65) appear as:
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. ct s 25c | [ox
o,t= | S* C* -25C | 1o
o] L-SC SC (C* - SY Iy
where S = sin@and C = cos 0
oo} = [DC] {oy}
and
{ox} = [DCT" fo,}
where
c? s? 25C c? s? ~25C
[Dc]= s ¢ -asc and[Dc“]= st 2 25C

-SC SC (c2 —52)

Similarly from Section (5.10)

sC —sc (c2 —52)

€, = Ey cos?0 + £y sin?0 + y yy sind cosd

¥y

Ty

or, in matrix form,

Sx CZ S2
ey = S2 CZ

or {en} [DCI] {CXY }

€, = sXsin29+sYcosze— Y xy sinf cos6

= - 2¢  sinB cos® + 2¢ sinB cosf + yxy(cosze - sin29)

SC | (&x
-sc | &,

-28C 28C (€? - S| [y

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)
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Now from equation (5.63),

fon} = [0 {en}

but from equation (5.72),

o} =[] [pai] {e .}

but from equation (5.67),
{Gw} = [DC] {OXY}
2 o) = el [Pai] fe v}

or
{oxr} = [pc] ™ [e][pai]e o}
or
four} = [¢']{en}
where
qlll qllZ ‘11]6
o] - 0 dn s
1 1 1
961 ds2 Des)]
- [pci o] pe
a = 1 [E, cos' 8 + E sin' 8 + (2v, E, + 4YG) coszesinze]
y s
b = 9 - 1 [vx E, (cos®® + sin®®) + (E, + E, - 4yG) cos™® sinze]
y )

137

(5.73)

(5.74)



138 Analysis of stress and strain

G = 94 = = [cos’® sind (E, - V,E, - 2YG) - cosh sin'® (E, - V,E, - 2/G)|

Y
Gy, = % [EV cos* 8 + E_sin® 8 + sin’® cos’ 8 2v,E, + 4yG)]
4k = g - % [cos 6 sin® 6 (E, - v,E, - 2/G) - cos’ 8 sin 6 (E, - v, E, - 2¢G)]

Jes = [sinze cos’ 8 (E, + E, - 2v E, - 2YG) + YG {cos* & + sin* 9)}

1
y
where

y = (1 -V, vy)

Similarly, to obtain the global strains of the lamina or ply of Figure 5.32 in terms of the global
stresses, consider equation (5.61), as follows.

Now

so that from equation (5.67)

£o} = [S1[DC] o5}

and from equation (5.72)
[DCI] Ew} = [SIDC] ot
or fry} = [DC]" [S][DC] o} (5.75)
or &y = {S‘] o}

where
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n S S
[S l] = 211 52,2 Szls = [Dcl]_l (s} [pC)
Ssln Sslz Ssles

Sjy = S, cos* B + S, sin* 8 + (2S), + Sg) cos’ 6 sin’ 6
Sty = S5y =[Sy *+ Sy, - Sg) cos? 8 sin> 8 + S (cos* B sin® 6)

S = Sgy = 28y, - 28); ~ Sg) cos’ B sin 8 - 25, - 25, - ) sin® 8 cos 8

Sy =S, sin* @ + S, cos* 0 + (28, + Sg) cos’ 8 sin’ 6
Sy = S = (28), - 28, - S) cos 6 sin® 8 - 25, - 2S,, - S,q) sin O cos’ 8

Ses = 4 (Syy ~ 25), + Sg) cos? 8 sin’ 8 + S (cos? B - sin’ B)

5.22 In-plane equations for a symmetric laminate or composite

Consider a section of the symmetric laminate of Figure 5.33(a), which is under in-plane loading.

z
) 0
gy 3, ]
Phi2
"= o) — 1

(i) Section through the laminate (11) strain distribution (ii1) stress distribution

Figure 5.33 In-plane stresses and strains in a laminate.
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As the load P is in-plane and symmetrical, the strain distribution across the laminate will be
constant, as shown by Figure 5.33(ii). However, as the stiffness of each layer is different the
stresses in each layer will be different, as shown by Figure 5.33(iii). Now, in order to define the
overall equivalent stress-strain behaviour of a laminate, it will be necessary to adopt the equivalent
average stresses or in matrix form 6", 6,' and 1,,'; these are obtained as follows:

h h h
2 1 2 I z
01v=% jcde, 01’:71'.[0#12 ) TB(ﬁ;J-"xrdz
h h b
7 2 2
or in matrix form
Gl h G
X | 3- X
1
o[ = — Oyt dz
Y R
1 A
XY 2 U7
but from equation (5.74)
[ ,
O'X SX
45;, b= [0Y {4}
“ (5.76)
1 1 1 1 "
Cx du 92 4 €y
L]
| 2
Gl = o ! ! "o de,} dz
Oy n f 921 922 9% Y
.
2
1 1 1 1
(xv ds: 961 Yes) lar
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However, as [€, €, 7,,]" is not a function of ‘z’, equation (5.76) can be written as follows:

) .
O'X SX
A
. 2
ot = [l e
k
2
T,y [Yxr]
) (5.77)
,SX,
= [4] {&r ¢
[V x)
where
A
2
21 1
A4y = 7 f 9 &
]
2
A
2 (5.78)
l .
= ; f qy; dx
h
5 2
1
4y, = 7 f 91, &

LN
1]
>N
S e Nix
0
&
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For the kth lamina of the laminate, the ¢' terms are constant, hence the integrals for the 4 terms can
be replaced by summations:

2 \ | 2h,
Ay, = 71'2 k) h, = E qll(k)[_hﬁ] (5.79)

and similarly for the other values of A,

where
h, = thickness of the kth lamina or ply

91w = kthvalueofq,'

(2h/h) = the volume fraction in the kth lamina

\¢}

Once the stiffness matrix [A4] is obtained, it can be inverted to obtain the compliance matrix [a]} and
hence, the equivalent material for the laminate properties are as follows:

Experience has shown that the diagonal terms in the laminate's stiffness matrix are considerably
larger than the off-diagonal terms, so that E_etc. can be approximated by

Ey s D% E iy cos' 0,

where k refers to the kth lamina of the laminate.

5.23 Equivalent elastic constants for problems involving bending
and twisting

For problems in this category, the equivalent stress resultants for the laminate are 6,', 6,', T,y , M,/,
M,' and M,,', where the former three symbols are in-plane and the latter three are out-of-plane
bending and twisting terms.



Equivalent elastic constants for problems involving bending and twisting 143

The equivalent stress—strain relationships for the laminate are:

€
. |
X €y
1
Oy YX)'
| (4 B] |-
) L ! — (5.80)
ox
M;, B D
1 -w
My ar?
M;,y -20%w
| 0X0Y
c A Bl
or =
B D
where [e]" = [e, & Yq|
T
[X]T - ‘azw -82w _282W
ax* or? ¢ xodr
A;; are as described in Section 5.21.
k
1 .
1 1
B, = —= fq,jz.dz = X G
h L k=1
7
k
. 2
D, P f q, 2" dz
-k
7
1 = 1 2 3
D, = — Y ay,lh 2+ nin2 (5.81)

h? k=1
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where
w = out-of-plane deflection
n = number of laminates or plies
k = the kth ply or lamina
z, = distance of the centre plane of the kth ply

For symmetrical laminates, B; = 0, however, for design purposes, the following relationship is
often used:

f-F

[4]! (see Section 5.21)
-] [B]
[bz] = (8] [A]-l

[D] - [B] [4]" [B]

where

ﬁ

5 =

=B
H 0]

&
I

Another way of looking at the components of [D] are as follows:

" 1
1 k
D, = ¥ 4y X( ) (5.82)
k-1 L omp
where k& = the kth ply

I, = thesecond moment of area of the kth ply or lamina about the neutral axis of the
laminate or composite

Lo = thesecond moment of area of the entire laminate or composite about the neutral

axis

5.24 Yielding of ductile materials under combined stresses

It was noted in Section 5.3 that when a polished bar of mild steel is loaded in tension, strain figures
are observable on the surface of the bar after the yield point has been exceeded. The figures take
the form of ‘lines’ inclined at about 45° to the axis of the bar; this direction corresponds to the
planes of maximum shearing stress in the bar; the ‘lines’ are, in fact, bands of metal crystals
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shearing over similar bands. That yielding takes place in this way suggests that the crystal
structure of the metal is relatively weak in shear; yielding takes the form of sliding of one crystal

plane over another, and not the tearing apart of two crystal planes.

This form of behaviour—yielding by a shearing action—is typical of ductile materials. We
note firstly that if a material is subjected to a hydrostatic pressure o, the three principal stresses o,,
6,and o, in a three-dimensional system are each equal to 6. A state of stress of this sort exists in
a solid sphere of material subjected to an external pressure 6, Figure 5.34. As the three principal
stresses are equal in magnitude, there are no shearing stresses in the material; if yielding is
governed by the presence of shearing on some planes in a material, then no yielding is theoretically

possible when the material is under hydrostatic pressure.

Figure 5.34 A solid sphere of material under hydrostatic pressure.

For a two-dimensional stress system one of the three principal stresses of a three-dimensional
system is zero. We consider now the yielding of a mild steel under different combinations of the
principal stresses, 6, and 6,, of a two-dimensional system,; in discussing the problem we keep in

mind the presence of a zero stress perpendicular to the plane of ¢, and o,, Figure 5.27.

O —-—— - —» Oy

Figure 5.35 Yield envelope of a two
dimensional stress system when the material
yields according to the maximum shearing
stress criterion.

a2
(Tensile)
B H
Oy
—Oy oy |A o4
(Compressive) | C o] (Tensile)
D
F — Oy
(Compressive)

t

Figure 5.36 In a two-dimensional stress
system, one of the three principal stresses -
(o, say) is zero.

145
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Suppose we conduct a simple tension test on the material; we may put o, = 0, and yielding occurs
when 0, = o, (say)

This yielding condition corresponds to the point 4 in Figure 5.35. If the material has similar
properties in tension and compression, yielding under a compressive stress o, occurs when ¢, =
-0y; this condition corresponds to the point C in Figure 5.35. We could, however, perform the
tension and compression tests in the direction of 6,, Figure 5.35; if the material is isotropic —that
is, it has the same properties in all directions—yielding occurs at the yield stress oy; we can thus
derive points B and D in the yield diagram, Figure 5.35.

We consider now yielding of the material when both ¢, and o,, Figure 5.36, are present; we
shall assume that yielding of the mild steel occurs when the maximum shearing stress attains a
critical value; from the simple tensile test, the maximum shearing stress at yielding is

which we shall take as the critical value. Suppose that 6, > 6,, and that both principal stresses are
tensile; the maximum shearing stress is

1 1
T = 5—(61-0) = — o0,

2
and occurs in the 31 plane of Figure 5.36; t,,, attains the critical value when
— 06, = Lo, or o = c
1 5 o 1 Y
Thus, yielding for these stress conditions is unaffected by o,. In Figure 5.35, these stress
conditions are given by the line 4H. If we consider similarly the case when 6, and o, are both

tensile, but ¢, > o, yielding occurs when 6, = &, giving the line BH in Figure 5.35.

a2

o, tensile

67 g, compressive
o1, 62 tensile ~_  Planeof
01> %2 \, Yielding

[
’ . o //
At A"
¥ /
o3 —1 Plane of Vg
yielding 9
Figure 5.37 Plane of yielding when both Figure 5.38 Plane of yielding when the
principal stresses tensile and o, > o,. principal stresses are of opposite sign.

By making the stresses both compressive, we can derive in a similar fashion the lines CF and DF
of Figure 5.36.
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But when o, is tensile and o, is compressive, Figure 5.36, the maximum shearing stress occurs in
the 1-2 plane, and has the value

1
Tmax = 5 (cl - 62>

Yielding occurs when

l(csl—crz) = lcy, or 6, -6, = G
2 2

This corresponds to the line AD of Figure 5.36. Similarly, when o, is compressive and o, is tensile,
yielding occurs when corresponding to the line BC of Figure 5.36.

The hexagon AHBCFD of Figure 5.36 is called a yield locus, because it defines all combinations
of 0, and o, giving yielding of mild steel; for any state of stress within the hexagon the material
remains elastic; for this reason the hexagon is also sometimes called a yield envelope. The
criterion of yielding used in the derivation of the hexagon of Figure 5.36 was that of maximum
shearing stress; the use of this criterion was first suggested by Tresca in 1878.

Not all ductile metals obey the maximum shearing stress criterion; the yielding of some metals.
including certain steels and alloys of aluminium, is governed by a critical value of the strain energy
of distortion. For a two-dimensional stress system the strain energy of distortion per unit of
volume of the material is given by equation (5.83). In the simple tension test for which o, = 0,
say, yielding occurs when 6, = o,. The critical value of U, is therefore

2

1 [2 2 1 [ 2 Oy
U, = —lo)-06,0, +0,] = —lo, ~06,(0) +0°] = —
D 6G L ! 192 2} 6G [ Y Y ] 6G
Then for other combinations of 6, and 6,, yielding occurs when
cf - 6,0, * cg = 0,2, (5.83)

The yield locus given by this equation is an ellipse with major and minor axes inclined at 45° to
the directions of g, and ,, Figure 5.39. This locus was first suggested by von Mises in 1913.

For a three-dimensional system the yield locus corresponding to the strain energy of distortion
is of the form

G, -0, +(0, ~ 0, +0; - C = constant
1 2 2 3 3 1

This relation defines the surface of a cylinder of circular cross-section, with its central axis on the
line 6, = 6, = aj; the axis of the cylinder passes through the origin of the ¢/, 6,, 6, co-ordinate
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system, and is inclined at equal angles to the axes o,, 6, and o,, Figure 5.40. When o, is zero,
critical values of 6, and o, lie on an ellipse in the 6,—0, plane, corresponding to the ellipse of
Fioure 5.39.

A Yield locus

r
Gy

—Oy op Oy > O
Max. shearing
strain energy

oy
O
Figure 5.39 The von Mises yield locus for a Figure 5.40 The von Mises yield locus for a
two-dimensional system of stresses. three-dimensional stress system.

Yield locus

o>

N

o

G2

Hexagon for 6,=0

Figure 5.41 The maximum shearing stress (or Tresca) yield locus
for a three-dimensional stress system.

When a material obeys the maximum shearing stress criterion, the three-dimensional yield
locus is a regular hexagonal cylinder with its central axis on the line o, = 6, = o, =0, Figure
5.40. When o, is zero, the locus is an irregular hexagon, of the form already discussed in Figure
5.36.

The surfaces of the yield loci in Figures 5.40 and 5.41 extend indefinitely parallel to the line
o, = 0, = 0, which we call the hydrostatic stress line. Hydrostatic stress itself cannot cause
yielding, and no yielding occurs at other stresses provided these fall within the cylinders of Figures

5.40 and 5.41.
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The problem with the maximum principal stress and maximum principal strain theories is that they
break down in the hydrostatic stress case; this is because under hydrostatic stress, failure does not
occur as there is no shear stress. It must be pointed out that under uniaxial tensile stress, all the
major theories give the same predictions for elastic failure, hence, all apply in the uniaxial case.
However, in the case of a ductile specimen under pure torsion, the maximum shear stress theory
predicts that yield occurs when the maximum shear reaches 0.5 a,, but in practice, yield occurs
when the maximum shear stress reaches 0.577 of the yield stress. This last condition is only
satisfied by the von Mises or distortion energy theory and for this reason, this theory is currently
very much in favour for ductile materials.

Another interpretation of the von Mises or distortion energy theory is that yield occurs when
the von Mises stress, namely o, reaches yield.

In three dimensions, o, is calculated as follows:

’ uvm

oo - ‘[(ol ~02) +lor-os) + (o2 - 03) |12

(5.84)

In two-dimensions, 6, = 0, therefore equation (5.84) becomes:

Svm = J(Ul +G3 -0y 02) (5.85)

5.25 Elastic breakdown and failure of brittle material

Unlike ductile materials the failure of brittle materials occurs at relatively low strains, and there
is little, or no, permanent yielding on the planes of maximum shearing stress.

Some brittle materials, such as cast iron and concrete, contain large numbers of holes and
microscopic cracks in their structures. These are believed to give rise to high stress concentrations,
thereby causing local failure of the material. These stress concentrations are likely to have a
greater effect in reducing tensile strength than compressive strength; a general characteristic of
brittle materials is that they are relatively weak in tension. For this reason elastic breakdown and
failure in a brittle material are governed largely by the maximum principal tensile stress; as an
example of the application of this criterion consider a concrete: in simple tension the breaking
stress is about 1.5 MN/m’, whereas in compression it is found to be about 30 MN/m?, or 20 times
as great; in pure shear the breaking stress would be of the order of 1.5 MN/m?, because the
principal stresses are of the same magnitude, and one of these stresses is tensile, Figure 5.42.
Cracking in the concrete would occur on planes inclined at 45° to the directions of the applied
shearing stresses.
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Plane of

7 cracking

11824

—_—1

Figure 5.42 Elastic breakdown of a brittle metal under shearing stresses (pure shear).

5.26 Failure of composites

Accurate prediction of the failure of laminates is a much more difficult task than it is for steels and
aluminium alloys. The failure load of the laminate is also dependent on whether the laminate is
under in-plane loading, or bending or shear. Additionally, under compression, individual plies can
buckle through a microscopic form of beam-column buckling (see Chapter 18). In general, it is
better to depend on experimental data than purely on theories of elastic failure. Theories, however,
exist and Hill, Azzi and Tsai produced theories based on the von Mises theory of yield. One such
popular two-dimensional theory is the Azzi-Tsai theory, as follows:

2
Loy XX ¥, oo (5-86)

where X and Y are the uniaxial strengths related to 6, and 6, respectively and S is the shear strength
in the x—y directions, which are not principal planes.

For the isotropic case, where X = Y = g,andS = ¢,/v3, equation (5.86) reduces to the von
Mises form:

2,2 v 3d -
6, +0, -6 0, +3, = 0

and wheno, = ¢o,ando, = o,sothatt,_, = 0, we get

o, + 65 - 06,0, = o [See equation (5.85)]

Further problems (answers on page 692)

5.7 A tie-bar of steel has a cross-section 15 cm by 2 cm, and carries a tensile load of 200 kN.
Find the stress normal to a plane making an angle of 30° with the cross-section and the
shearing stress on this plane. (Cambridge)
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A rivet is under the action of shearing stress of 60 MN/m’” and a tensile stress, due to
contraction, of 45 MN/m’. Determine the magnitude and direction of the greatest tensile
and shearing stresses in the rivet. (RNEC)

A propeller shaft is subjected to an end thrust producing a stress of 90 MN/m’, and the
maximum shearing stress arising from torsion is 60 MN/m’. Calculate the magnitudes
of the principal stresses. (Cambridge)

At a point in a vertical cross-section of a beam there is a resultant stress of 75 MN/m’,
which is inclined upwards at 35° to the horizontal. On the horizontal plane through the
point there is only shearing stress. Find in magnitude and direction, the resultant stress
on the plane which is inclined at 40° to the vertical and 95° to the resultant stress.
(Cambridge)

A plate is subjected to two mutually perpendicular stresses, one compressive of 45
MN/m’, the other tensile of 75 MN/m’, and a shearing stress, parallel to these directions,
of 45 MN/m®. Find the principal stresses and strains, taking Poisson's ratio as 0.3 and
E = 200 GN/m*. (Cambridge)

At a point in a material the three principal stresses acting in directions O,, O,, O,, have
the values 75, 0 and -45 MN/m’, respectively. Determine the normal and shearing
stresses for a plane perpendicular to the xz-plane inclined at 30° to the xy-plane.
(Cambridge)



6 Thin shells under internal pressure

6.1 Thin cylindrical shell of circular cross-section

A problem in which combined stresses are present is that of a cylindrical shell under internal
pressure. Suppose a long circular shell is subjected to an internal pressure p, which may be due
to a fluid or gas enclosed within the cylinder, Figure 6.1. The internal pressure acting on the long
sides of the cylinder gives rise to a circumferential stress in the wall of the cylinder; if the ends of
the cylinder are closed, the pressure acting on these ends is transmitted to the walls of the cylinder,
thus producing a longitudinal stress in the walls.

FFFT
e p —t
. —
=P P—
e— p -
‘2221
. . Lo . Figure 6.2 Circumferential and longitudinal
Figure 6.1 Long thin cylindrical shell with s%resses in a thin cylinder with closfd ends
closed ends under internal pressure. under internal pressure.

Suppose r is the mean radius of the cylinder, and that its thickness ¢ is small compared with r.
Consider a unit length of the cylinder remote from the closed ends, Figure 6.2; suppose we cut this
unit length with a diametral plane, as in Figure 6.2. The tensile stresses acting on the cut sections
are o, acting circumferentially, and o,, acting longitudinally. There is an internal pressure p on
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the inside of the half-shell. Consider equilibrium of the half-shell in a plane perpendicular to the
axis of the cylinder, as in Figure 6.3; the total force due to the internal pressure p in the direction
OAis

px2r x1)

because we are dealing with a unit length of the cylinder. This force is opposed by the stresses o;;
for equilibrium we must have

pxQ@2r x1) = o, x2(t x1)

Then

s = 2 (6.1)

Figure 6.3 Derivation of circumferential stress. Figure 6.4 Derivation of longitudinal stress.
Now consider any transverse cross-section of the cylinder remote from the ends, Figure 6.4; the
total longitudinal force on each closed end due to internal pressure is
pxnr

At any section this is resisted by the internal stresses 6,, Figure 6.4. For equilibrium we must have
pxar = 6,x2nrt

which gives

.
s, = ’2’—t (6.2)
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We shall call this the longitudinal stress. Thus the longitudinal stress, o,, is only half the
circumferential stress, o,.

The stresses acting on an element of the wall of the cylinder consist of a circumferential stress
o0,, a longitudinal stress o,, and a radial stress p on the internal face of the element, Figure 6.5. As
(r/t) is very much greater than unity, p is small compared with 6, and 6,. The state of stress in the
wall of the cylinder approximates then to a simple two-dimensional system with principal stresses

o, and o,.

()

o2}

P 45°
Gy A 3 N

T \} /<Plane of maximum
yd shearing stress
G2 ~—
\ - P
o2}
o2}

(ii) (iii)

Figure 6.5 Stresses acting on an element of the wall of a circular
cylindrical shell with closed ends under internal pressure.

The maximum shearing stress in the plane of ¢, and o, is therefore

1
4 :5(01_02)=—i—tr—

max

This is not, however, the maximum shearing stress in the wall of the cylinder, for, in the plane of
o, and p, the maximum shearing stress is
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1 pr
T =—=\0,) =T 6.3
max 2 ( l) 2t ( )

since p is negligible compared with 6,; again, in the plane of 6, and p, the maximum shearing stress
is

1
Tmax — 5(02) = i_:'

The greatest of these maximum shearing stresses is given by equation (6.3); it occurs on a plane
at 45° to the tangent and parallel to the longitudinal axis of the cylinder, Figure 6.5(iii).

The circumferential and longitudinal stresses are accompanied by direct strains. If the material
of the cylinder is elastic, the corresponding strains are given by

1 1
g, = E(Gl - vcz) = —I;—:(l—;vj

(o2 - vo,) = BL[_‘__ ) (6.4)

1
81=—E—

The circumference of the cylinder increases therefore by a small amount 2nre,; the increase in
mean radius is therefore re, The increase in length of a unit length of the cylinder is €,, so the
change in internal volume of a unit length of the cylinder is

& = mfr+ rs,)Z (1 +¢)- nr?

The volumetric strain is therefore

14
— = (L reflve)-1

But ¢, and g, are small quantities, so the volumetric strain is

(L +ef(l+e)-1 = (1+2e)(1 +¢)-1

i
)
™
+
o™
)~

In terms of 6, and o, this becomes

281+82=Z—:[Z(l—%v)+(;——v)}=%(%—2v) (6.5)
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Problem 6.1 A thin cylindrical shell has an internal diameter of 20 cm, and is 0.5 cm thick.
It is subjected to an internal pressure of 3.5 MN/m’. Estimate the
circumferential and longitudinal stresses if the ends of the cylinders are closed.

Solution

From equations (6.1) and (6.2),

o, = & = (35 x 109 (0.1025)/(0.005) = 71.8 MN/m?
t
and
6, = % = (3.5 x 109 (0.1025)/(0.010) = 35.9 MN/m?
t

Problem 6.2 If the ends of the cylinder in Problem 6.1 are closed by pistons sliding in the
cylinder, estimate the circumferential and longitudinal stresses.

Solution

The effect of taking the end pressure on sliding pistons is to remove the force on the cylinder
causing longitudinal stress. As in Problem 6.1, the circumferential stress is

6, = 71.8 MN/m?

but the longitudinal stress is zero.

Problem 6.3 A pipe of internal diameter 10 cm, and 0.3 cm thick is made of mild-steel
having a tensile yield stress of 375 MN/m’. What is the maximum permissible
internal pressure if the stress factor on the maximum shearing stress is to be 4?

Solution

The greatest allowable maximum shearing stress is
+(4x375%10%) = 46.9 MN/m®

The greatest shearing stress in the cylinder is

pr
Tmax = —
2t 2 x 0.003 6 2
Th =2 Y= 22090 (469 10°) = 546 MN/m
‘P r("“”‘) 00515 ( )
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Problem 6.4 Two boiler plates, each 1 cm thick, are connected by a double-riveted butt
joint with two cover plates, each 0.6 cm thick. The rivets are 2 cm diameter
and their pitch is 0.90 cm. The internal diameter of the boiler is 1.25 m, and
the pressure is 0.8 MN/m’. Estimate the shearing stress in the rivets, and the
tensile stresses in the boiler plates and cover plates.

[

/ 0.6 cm

/
/ 1.0cm \ o
/
Solution /

Suppose the rivets are staggered on each side of the joint. Then a single rivet takes the
circumferential load associated with a % (0.090) = 0.045 m length of boiler. The load on a rivet
is

B(l.zs)] (0.045) (o.s x 106) = 225kN

Area of a rivet is

%(0.02)2 = 0314 x 107 m?

The load of 22.5 kN is taken in double shear, and the shearing stress in the rivet is then
1
7 (22.5x10%/(0.314 x 107%) = 35.8 MN/m’

The rivet holes in the plates give rise to a loss in plate width of 2 cm in each 9 cm of rivet line. The
effective area of boiler plate in a 9 cm length is then

(0.010) (0.090 - 0.020) = (0.010) (0.070) = 0.7 x 107> m’

The tensile load taken by this area is
1
3 (1.25) (0.090) (0.8 x 10°) = 45.0kN

The average circumferential stress in the boiler plates is therefore

_ 450 x 10°

airyaeer=2li 64.2 MN/m
./ X

G
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This occurs in the region of the riveted connection. Remote from the connection, the

circumferential tensile stress is

pr_ (0.8 x 10° (0.625)
t (0.010)

50.0 MN/m?

S,

In the cover plates, the circumferential tensile stress is

45.0 x 10°

—_— = 53.6 MN/m?
2(0.006) (0.070)

The longitudinal tensile stresses in the plates in the region of the connection are difficult to
estimate; except very near to the rivet holes, the stress will be

pr
2t

o, = 25.0 MN/m?

Problem 6.5 A long steel tube, 7.5 cm internal diameter and 0.15 cm thick, has closed ends,
and is subjected to an internal fluid pressure of 3 MN/m’. IfE = 200 GN/n?’,
and v = 0.3, estimate the percentage increase in internal volume of the tube.

Solution

The circumferential tensile stress is

6
5, = & - B x 109 (0.0383) _ ;¢ 6 MN/m?

t (0.0015)

The longitudinal tensile stress is

6, = % = 383 MN/m?
11

The circumferential strain is

and the longitudinal strain is

g, = — (o, - voy)
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The volumetric strain is then

1
2e, + &, = < [201 - 2ve, + 6, - vcl]
1
= E[cl 2-v)+go,ll —ZV)}
Thus
X 6 - -
2, v 6, - (76.6 x 10° {2 - 0.3) + (1 - 0.6)]

200 x 10°

6
_ (166 x 109(1.9) | 107 4 10

200 x 10°)

The percentage increase in volume is therefore 0.0727%

Problem 6.6 An air vessel, which is made of steel, is 2 m long; it has an external diameter
of 45 cm and is 1 cm thick. Find the increase of external diameter and the
increase of length when charged to an internal air pressure of 1 MN/m’.

Solution
For steel, we take
E = 200GN/m?, v = 03

The mean radius of the vessel is r = 0.225 m; the circumferential stress is then

pr_ (1 x 10%(0.225)
t 0.010

22.5 MN/m?

The longitudinal stress is

o, = -’;—’ = 1125 MN/m?
1

The circumferential strain is therefore
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Cl =

il [1 B} lv) _ 2.5 x 109 (0.85)

0, — VO =
o1~ vey) 200 x 10°

1
E

0.957 x 107*

The longitudinal strain is

[+ 6
e, = l(02 ve) = 2 S I (22.5 x 109 (0.2)
E E\2 200 x 10°

0.225 x 107

The increase in external diameter is then

0.450 (0.957 x 107 0.430 x 10™* m

0.0043 cm

The increase in length is

20225 x 10%) = 0450 x 10* m

0.0045 cm

Problem 6.7 A thin cylindrical shell is subjected to internal fluid pressure, the ends being
closed by:

(a)  two watertight pistons attached to a common piston rod;

(b) flanged ends.
Find the increase in internal diameter in each case, given that the internal

diameter is 20 cm, thickness is 0.5 cm, Poisson’s ratio is 0.3, Young’s modulus
is 200 GN/m’, and the internal pressure is 3.5 MN/m%. (RNC)

Solution

We have
p = 3.5 MNm?, r = 0.lm, t = 0005 m
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In both cases the circumferential stress is

6
o - P - B.5 x 1090.1) _ 25 vivm?

! (0.005)

(a) In this case there is no longitudinal stress. The circumferential strain is then

6
e = 1. 70 x10° _ 535, 1072

E 200 x 10°

The increase of internal diameter is

02 (035 x 10 = 007 x 102 m = 0.007 cm

(b) In this case the longitudinal stress is
o, = & = 35 MN/m?
2t

The circumferential strain is therefore

o c
e, = i((;1-v02)=—1— 1——1—v = 0.85 —
E E 2 E

0.85 (0.35 x 107%) = 0.298 x 1073

The increase of internal diameter is therefore

0.2 (0298 x 1073 = 0.0596 x 102 m = 0.00596 cm

Equations (6.1) and (6.2) are for determining stress in perfect thin-walled circular cylindrical shells.
If, however, the circular cylinder is fabricated, so that its joints are weaker than the rest of the
vessel, then equations (6.1) and (6.2) take on the following modified forms:

L
uM

it

o, hoop or circumferential stress (6.6)

pr
2n.t

longitudinal stress =

Q
~
Hi

6.7)
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where
n. = circumferential joint efficiency < 1
n, = longitudinal joint efficiency < 1
NB The circumferential stress is associated with the longitudinal joint efficiency, and the

longitudinal stress is associated with the circumferential joint efficiency.

6.2 Thin spherical shell

We consider next a thin spherical shell of means radius r, and thickness ¢, which is subjected to an
internal pressure p. Consider any diameter plane through the shell, Figure 6.6; the total force
normal to this plane due to p acting on a hemisphere is

p x nr?

® (i)

Figure 6.6 Membrane stresses in a thin spherical shell under internal pressure.

This is opposed by a tensile stress ¢ in the walls of the shell. By symmetry ¢ is the same at all
points of the shell; for equilibrium of the hemisphere we must have

pxmr? = o x2nr
This gives
- P
c = —2? (6.8)

At any point of the shell the direct stress ¢ has the same magnitude in all directions in the plane of
the surface of the shell; the state of stress is shown in Figure 6.6(ii). As p is small compared with
o, the maximum shearing stress occurs on planes at 45° to the tangent plane at any point.

If the shell remains elastic, the circumference of the sphere in any diametral plane is strained
an amount
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s=é(c-vc)=(l—V)% (6.9)

The volumetric strain of the enclosed volume of the sphere is therefore

32 = 31 -v) 2 = 31 -v) E- 6.10
E ( 2E: ( )

Equation (6.8) is intended for determining membrane stresses in a perfect thin-walled spherical
shell. If, however, the spherical shell is fabricated, so that its joint is weaker than the remainder of
the shell, then equation (6.8) takes on the following modified form:

2
2wt

c = stress = (6.11)

where
n = joint efficiency < 1

6.3 Cylindrical shell with hemispherical ends

Some pressure vessels are fabricated with hemispherical ends; this has the advantage of reducing
the bending stresses in the cylinder when the ends are flat. Suppose the thicknesses ¢, and ¢, of the
cylindrical section and the hemispherical end, respectively (Figure 6.7), are proportioned so that
the radial expansion is the same for both cylinder and hemisphere; in this way we eliminate bending
stresses at the junction of the two parts.

ok

Figure 6.7 Cylindrical shell with hemispherical ends,
so designed as to minimise the effects of bending stresses.

From equations (6.4), the circumferential strain in the cylinder is

-5
— |l - =v
Ex, 2

and from equation (6.7) the circumferential strain in the hemisphere is
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- )
7>

If these strains are equal, then

2oLy 2y
Et, 2 2Et,

This gives

-~
[\
|

!
|
I <

= (6.12)

S
—
|

For most metals v is approximately 0.3, so an average value of (¢,/2,) is 1.7/0.7 = 2.4. The
hemispherical end is therefore thinner than the cylindrical section.

6.4 Bending stresses in thin-walled circular cylinders

The theory presented in Section 6.1 is based on membrane theory and neglects bending stresses due
to end effects and ring stiffness. To demonstrate these effects, Figures 6.9 to 6.13 show plots of the
theoretical predictions for a ring stiffened circular cylinder’ together with experimental values,
shown by crosses. This ring stiffened cylinder, which was known as Model No. 2, was firmly fixed
at its ends, and subjected to an external pressure of 0.6895 MPa (100 psi), as shown by Figure 6.8.

b
-— | B L J
Closure ] - T B
- A\ ’I \‘
P——
7 t 9 l
" L L, B b d N "
" 95.25 616.6 10.16 8.26 15.75 5 "
t 0.08 N = number of ring stiffeners

Poisson’s ratio = 0.3

M
o

Young’s modulus = 71 GPa v

Figure 6.8 Details of model No. 2 (mm).



The theoretical analysis was based on beam on elastic foundations, and is described by Ross’.

Inward radial deflection (mm)

Bending stresses in thin-walled circular cylinders

Closure plate

Figure 6.9 Deflection of longitudinal generator at 0.6895 MPa (100 psi), Model No. 2.

—-41.37

g
c 0
a
<t
n
+55.16

1st bay

2nd bay

3rd bay

Closure plate

Figure 6.10 Longitudinal stress of the outermost fibre at 0.6895 MPa (100 psi), Model No. 2.

1st frame

2nd frame

+
0.0762 1 + * loore2
.+
1st bay 2nd bay b 3rd bay |
0 | | | o
1st frame 2nd frame 3rd frame
Mid span

-41.37

F+55.16

3rd frame
Mid span

3Ross, C T F, Pressure vessels under external pressure, Elsevier Applied Science 1990.
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—55.161 -55.16

Stress (mPa)
o
\‘

0
I I
1st bay 2nd bay 3rd bay
~27.58 +27.58
1st frame 2nd frame 3rd frame
Closure plate Mid span

Figure 6.11 Circumferential stress of the outermost fibre at 0.6895 MPa (100 psi), Model No. 2.
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Stress (mPa)
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Figure 6.12 Longitudinal stress of the innermost fibre at 0.6895 MPa (100 psi), Model No. 2.
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Further problems
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Figure 6.13 Circumferential stress of the innermost fibre at 0.6895 MPa (100 psi), Model No.2.

From Figures 6.9 to 6.13, it can be seen that bending stresses in thin-walled circular cylinders are
very localised.

Further problems (answers on page 692)

6.8

6.9

6.10

6.11

6.12

A pipe has an internal diameter of 10 cm and is 0.5 cm thick. What is the maximum
allowable internal pressure if the maximum shearing stress does not exceed 55 MN/m*?
Assume a uniform distribution of stress over the cross-section. (Cambridge)

A long boiler tube has to withstand an internal test pressure of 4 MN/m’, when the mean
circumferential stress must not exceed 120 MN/m®. The internal diameter of the tube is
5 cm and the density is 7840 kg/m’. Find the mass of the tube per metre run. (RNEC)

A long, steel tube, 7.5 cm internal diameter and 0.15 cm thick, is plugged at the ends and
subjected to internal fluid pressure such that the maximum direct stress in the tube is 120
MN/m®. Assumingv = 0.3 and £ = 200 GN/m’, find the percentage increase in the
capacity of the tube. (RNC)

A copper pipe 15 cm internal diameter and 0.3 cm thick is closely wound with a single
layer of steel wire of diameter 0.18 cm, the initial tension of the wire being 10 N. If the
2ipe is subjected to an internal pressure of 3 MN/m’ find the stress in the copper and in
the wire (a) when the temperature is the same as when the tube was wound, (b) when the
temperature throughout is raised 200°C. E for steel = 200 GN/m’?, E for copper = 100
GN/m?, coefficient of linear expansion for steel = 11 x 107, for copper 18 x 10°® per
1°C. (Cambridge)

A thin spherical copper shell of internal diameter 30 cm and thickness 0.16 cm is just full
of water at atmospheric pressure. Find how much the internal pressure will be increased
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if 25 cc of water are pumped in. Take v = 0.3 for copper and K = 2 GN/m? for water.
(Cambridge)

A spherical shell of 60 cm diameter is made of steel 0.6 cm thick. Itis closed when just
full of water at 15°C, and the temperature is raised to 35°C. For this range of
temperature, water at atmospheric pressure increases 0.0059 per unit volume. Find the
stress induced in the steel. The bulk modulus of water is 2 GN/m?, E for steel is
200 GN/m’, and the coefficient of linear expansion of steel is 12 x 107 per 1°C, and
Poisson’s ratio = 0.3. (Cambridge)



7 Bending moments and shearing forces

71 Introduction

In Chapter 1 we discussed the stresses set up in a bar due to axial forces of tension and
compression. When a bar carries lateral forces, two important types of loading action are set up
at any section: these are a bending moment and a shearing force.

Consider first the simple case of a beam which is fixed rigidly at one end B and is quite free at
its remote end D, Figure 7.1; such a beam is called a cantilever, a familiar example of which is a
fishing rod held at one end. Imagine that the cantilever is horizontal, with one end B embedded
in a wall, and that a lateral force W is applied at the remote end D. Suppose the cantilever is
divided into two lengths by an imaginary section C, the lengths BC and CD must individually be
in a state of statical equilibrium. If we neglect the mass of the cantilever itself, the loading actions
over the section C of CD balance the actions of the force W at C. The length CD of the cantilever
is in equilibrium if we apply an upwards vertical force F and an anti-clockwise couple M at C; F
is equal in magnitude to W, and M is equal to W(L -z), where z is measured from B. The force F
at C'is called a shearing force, and the couple M is a bending moment.

\\\h
o
O
S
T I
4
N

A l w
T M= WsiniL - 2)
e —— ~
Mg Cc ¢D P=Wcosl -
78 c|)M w £ Wsinl
F
Figure 7.1 Bending moment and shearing Figure 7.2 Cantilever with and inclined
force in a simple cantilever beam. end load.

But at the imaginary section C of the cantilever, the actions F and M on CD are provided by
the length BC of the cantilever. In fact, equal and opposite actions F and M are applied by CD to
BC. For the length BC, the actions at C are a downwards shearing force F, and a clockwise couple
M.
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When the cantilever carries external loads which are not applied normally to the axis of the
beam, Figure 7.2, axial forces are set up in the beam. If ¥ is inclined at an angle 0 to the axis of
the beam, Figure 7.2, the axial thrust in the beam at any section is

P = Wcos 8 7.1

The bending moment and shearing force at a section a distance z from the built-in end are

M = W(L-z)sin 8 F = Wsin8 (7.2)

7.2 Concentrated and distributed loads

A concentrated load on a beam is one which can be regarded as acting wholly at one point of the
beam. For the purposes of calculation such a load is localised at a point of the beam; in reality this
would imply an infinitely large bearing pressure on the beam at the point of application of a
concentrated load. All loads must be distributed in practice over perhaps only a small length of
beam, thereby giving a finite bearing pressure. Concentrated loads arise frequently on a beam
where the beam is connected to other transverse beams.

In practice there are many examples of distributed loads: they arise when a wall is built on a
girder; they occur also in many problems of fluid pressure, such as wind pressure on a tall building,
and aerodynamic forces on an aircraft wing.

7.3 Relation between the intensity of loading, the shearing force,
and bending moment in a straight beam

Consider a straight beam under any system of lateral loads and external couples, Figure 7.3; an
element length 8z of the beam at a distance z from one end is acted upon by an external lateral load,
and internal bending moments and shearing forces. Suppose external lateral loads are distributed
so that the intensity of loading on the elemental length 8z is w.

e

woz

F) F F+oF (F+6F

R

Figure 7.3 Shearing and bending actions on an elemental length of a straight beam.
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Then the external vertical force on the element is wdz, Figure 7.3; this 1s reacted by an internal
bending moment M and shearing force F on one face of the element, and M + 8M and F + 6F on
the other face of the element. For vertical equilibrium of the element we have

(F+8F)-F +wbdz = 0

If 8z is infinitesimally small,

dF

i (7.3)

Suppose this relation is integrated between the limits z, and z,, then

= 2
J:d = - [wdz
=7 1

If F, and F, are the shearing forces atz = z andz = z, respectively, then

2
(Fz_F1)= _J‘ZWdZ

or
2
F, - F, = [wdz (7.4)

Then, the decrease of shearing force from z, to z, is equal to the area below the load distribution
curve over this length of the beam, or the difference between F, and F, is the net lateral load over
this length of the beam.

Furthermore, for rotational equilibrium of the elemental length 3z,

(F+6F’)8z—(M+8M‘)+M+wdz(-;-Sz) -0

Then, to the first order of small quantities,

Féz -8M = 0O

Then, in the limit as 8z approaches zero,

a

i F (7.5

On integrating between the limitsz = z, and z = z,, we have

=2 2
[ dM = | Fdz

=2 1
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M,- M, = dez (1.6)

where M, and M, are the values M atz = z, andz = z, respectively. Then the increase of
bending moment from z, to z, is the area below the shearing force curve for that length of the beam.

Equations (7.4) and (7.6) are extremely useful for finding the bending moments and shearing
forces in beams with irregularly distributed loads. From equation (7.4) the shearing force F at a
section distance z from one end of the beam is

F=F- fwdz a.7)

On substituting this value of F into equation (7.6),

MM, = J‘IZ{F,- [wdz}dz

M, = Ml+Fl(22—zl)— f {'llwdz} dz (7.8)

Thus

From equation (7.5) we have that the bending moment M has a stationary value when the shearing
force F is zero. Equations (7.3) and (7.5) give

d’M /.
px; = w (7.9

For the directions of M, F and w considered in Figure 7.3, M is mathematically a maximum, since
d*M/d7* is negative; the significance of the word mathematically will be made clearer in Section
7.8.

All the relations developed in this section are merely statements of statical equilibrium, and are
therefore true independently of the state of the material of the beam.

74 Sign conventions for bending moments and shearing forces

The bending moments on the elemental length 8z of Figure 7.3 tend to make the beam concave on
its upper surface and convex on its lower surface; such bending moments are sometimes called
sagging bending moments. The shearing forces on the elemental length tend to rotate the element
in a clockwise sense. In deriving the equations in this section it is assurned implicitly, therefore,
that
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(i) downwards vertical loads are positive;
(i) sagging bending moments are positive; and
(ili) clockwise shearing forces are positive.
These sign conventions are shown in Figure 7.4. Any other system of sign conventions can be

used, provided the signs of the loads, bending moments and shearing forces are considered when
equations (7.3) and (7.5) are applied to any particular problem.

|e— =

{1}

T

Figure 7.4 Positive values of w, Fand M, (i) downward vertical loading,
(ii) clockwise shearing forces, (iii) sagging bending-moment.

Figures that show graphically the variations of bending moment and shearing force along the
length of a beam are called bending moment diagrams and shearing force diagrams. Sagging
bending moments are considered positive, and clockwise shearing forces taken as positive. The
two quantities are plotted above the centre line of the beam when positive, and below when
negative. Before we can calculate the stresses and deformations of beams, we must be able to find
the bending moment and shearing force at any section.

7.5 Cantilevers

A cantilever is a beam supported at one end only; for example, the beam already discussed in
Section 7.1, and shown in Figure 7.1, is held rigidly at B. Consider first the cantilever shown in
Figure 7.5(a), which carries a concentrated lateral load W at the free end. The bending moment
at a section a distance z from B is

M = -W(L-2)

the negative sign occurring since the moment is hogging, as shown in Figure 7.5(b). The variation
of bending moment is linear, as shown in Figure 7.5(c). The shearing force at any section is

F = +W
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the shearing force being positive as it is clockwise, as shown in Figure 7.5(d). The shearing force

is constant throughout the length of the cantilever. We note that
dz
Further dF/dz = 0, as there are no lateral loads between B and D.
The bending moment diagram is shown in Figure 7.5(c) and the shearing force diagram is

shown in Figure 7.5(e)

{©

$
w
(d)

(b) M&@)M=~W(L—z)
|

Figure 7.5 Bending-moment and shearing-force diagrams for a cantilever
with a concentrated load at the free end.

(e)

B

Now consider a cantilever carrying a uniformly distributed downwards vertical load of intensity

w, Figure 7.6(a). The shearing force at a distance z from B is

F = +w(l - 2)
as shown in Figure 7.6 (d). The bending moment at a distance z from B is

M = 1wl -2

as shown in Figure 7.6(b). The shearing force varies linearly and the bending moment parabolically
along the length of the beam, as shown in Figure 7.6(e) and 7.6(c), respectively. We see that

- WL - 2) = +F

dz
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@

e -wil - 2
(b) M& )‘ 2

(€ wl w(l - 2)

Figure 7.6 Bending-moment and shearing-force diagrams for a
cantilever under uniformly distributed load.

A cantilever 5 m long carries a uniformly distributed vertical load 480 N per
metre from C from H, and a concentrated vertical load of 1000 N at its mid-
length, D. Construct the shearing force and bending moment diagrams.

g 5m >
i e 4m——>

A 4 4 4 ¥ ¥ ¥ d ¥y
B

|

|

c D H
\ k480 N/m
1000 N
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Solution

The shearing force due to the distributed load increases uniformly from zero at A to +1920 N at
C, and remains constant at +1920 N from C to B; this is shown by the lines (i). Due to the
concentrated load at D, the shearing force is zero from H to D, and equal to +1000 N from D to B,
as shown by lines (ii). Adding the two together we get the total shearing force shown by lines (iii).

2920 N g

1920
1000

The bending moment due to the distributed load increases parabolically from zero at H to

—%(480)(4)2 - -3840 Nm

at C. The total load on CH is 1920 N with its centre of gravity 3 m from B; thus the bending
moment at B due to this load is

-(1920)(3) = -5760 Nm
From Cto B the bending moment increases uniformly, giving lines (i). The bending moment due
to the concentrated load increases uniformly from zero at D to

-(1000)(2.5) = -2500 Nm

at B, as shown by lines (ii). Combining (i) and (ii), the total bending moment is given by (iii).

B

0

c
[

) 4
I

-

-2500f

-5760

—8260 Nm

The method used here for determining shearing-force and bending-moment diagrams is known as
the principle of superposition.
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7.6  Cantilever with non-uniformly distributed load

Where a cantilever carries a distributed lateral load of variable intensity, we can find the bending
moments and shearing forces from equations (7.4) and (7.6). When the loading intensity w cannot
be expressed as a simple analytic function of z, equations (7.4) and (7.6) can be integrated
numerically.

wi{N/m) FN) —-M(Nm)
1000 50007 25000
|
900 4500122500
|
800/ 4000120000
|
700 X 3500117500
N |
600 P ————3000 {15000
\ / w \
500 2500 {12500
NP 1\
400 A )< \\ 2|000 10000
300 N 1500 H 7500
VARN |
200 / \1000 5000
100 7 5002500
oleet—1 ™~ 0
0 1 2 3 4 5|6 7 8 9 10m
\4——2———»

Problem 7.2 A cantilever of length 10 m, built in at its left end, carries a distributed lateral
load of varying intensity w N per metre length. Construct curves of shearing
force and bending moment in the cantilever.

Solution

If z is the distance from the free end of cantilever, the shearing force at a distance z from the free
end is
F = [wdz

We find first the shearing force F by numerical integration of the w-curve. The greatest force
occurs at the built-in end, and has the value

F,, % 3400N

The bending moment at a section a distance z from the free end is

M=- [Fdz
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and is found therefore by numerical integration of the F-curve. The greatest bending moment
occurs at the built-in end, and has the value

M. = 22500 Nm
NB It should be noted that by inspection the bending moment and the shearing force at the

free end of the cantilever are zero; these are boundary conditions.

1.7 Simply-supported beams

By simply-supported we mean that the supports are of such a nature that they do not apply any
resistance to bending of a beam; for instance, knife-edges or frictionless pins perpendicular to the
plane of bending cannot transmit couples to a beam. The remarks concerning bending moments
and shearing forces, which were made in Section 7.5 in relation to cantilevers, apply equally to
beams simply-supported at each end, or with any conditions of end support.

As an example, consider the beam shown in Figure 7.7(a), which is simply-supported at B and
C, and carries a vertical load W a distance a from B. If the ends are simply-supported no bending
moments are applied to the beam at B and C. By taking moments about B and C we find that the
reactions at these supports are

Zr-a)yad 22
L L

respectively. Now consider a section of the beam a distance z from B; if z < a, the bending moment
and shearing force are

M = +% (L -a), F-= +% (L - a), as shown by Figures 7.7(b) and 7.7(d)

If z>a,
M=o -we-a - F20-2
L L
F oo W
L

The bending moment and shearing force diagrams show discontinuities at z = a; the maximum
bending moment occurs under the load #, and has the value

My, = 220 -a (7.10)

max L
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Figure 7.7 Bending-moment and shearing-force diagrams for a
simply-supported beam with a single concentrated lateral load.

The simply-supported beam of Figure 7.8(a) carries a uniformly-distributed load of intensity w.

The vertical reactions at B and Care 4wL. Consider a section at a distance z from B. The bending
moment at this section is

as shown in Figure 7.8(b) and the shearing force is
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F = +le ~ Wz
2

as shown in Figure 7.8(d).

A E g
@ T ‘
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B8 ‘ c

SN

IR
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Figure 7.8 Bending-moment and shearing-force diagrams for a

simply-supported beam with a uniformly distributed lateral load.

The bending moment is a maximum atz = '2L, where

wlL?
max 8

(7.11)
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Atz = %L, we note that

dﬂ=+F=0
dz

The bending moment diagram is shown in Figure 7.8(c) and the shearing force diagram is shown
in Figure 7.8(e).

Problem 7.3 A simply-supported beam carries concentrated lateral loads at C and D, and a
uniformly distributed lateral load over the length DF. Construct the bending
moment and shearing force diagrams.

200 kN 50 kN 10 kN/m

over30m
B c__ oy 4434 F
Re= & 1 A R =
258kN <—15m~4~—15m——1~——30m—— 300 kN
le ' 60m .

m 1

Solution

First we calculate the vertical reactions at B and F. On taking moments about F,

60 R, = (200 x 10%) (45) + (50 x 10%) (30) + (300 x 10%) (15) = 15000 x 10°
Then
Ry = 250kN
and
R, = (200 x 10%) + (50 x 10%) + (300 x 10%) - Ry = 300kN

The bending moment varies linearly between B and C, and between C and D, and parabolically
from D to F. The maximum bending moment is 4.5 MNm, and occurs at D. The maximum
shearing force is 300 kN, and occurs at F.

+250 kN
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Problem 7.4 A beam rests on knife-edges at each end, and carries a clockwise moment M,
at B, and an anticlockwise moment M at C. Construct bending moment and
shearing force diagrams for the beam.

e )
MB ﬂ<—zo—>‘ MC
RB RC
l , N
I 1

Solution

Suppose R, and R, are vertical reactions at 8 and C; then for statical equilibrium of the beam
1
Ry =-Rc = T(Mc - Mp)
The shearing force at all sections is then
1
F =R, = T(MC— Mp)

The bending moment a distance z from B is

B M.z
M= M, + Rgz = ——(L—z)+
B 8 I ( ) L
so M varies linearly between B and C.
Me Mc
B c

Problem 7.5 A simply-supported beam carries a couple M, applied at a point distant a from
B. Construct bending moment and shearing force diagrams for the beam.



Simply-supported beam carrying a uniformly distributed load 183

L —~ Me(1-I7 )
(@ BL-—a Vot lc © B M Mo c
3
Yl
oL

o (D o

1

Solution

The vertical reactions R at B and C are equal and opposite. For statical equilibrium of BC,

M,= RL, or R = "Z

The shearing force at all sections is

M,
F=-R=-2
L

as shown in Figure (d), above. The bending moment atz <a is

Mz

M=-Re=-2F

as shown in Figure (c), above, and forz>a

M=~Rz+M0=M0(1—%)

as shown in Figure (¢), above.

7.8 Simply-supported beam carrying a uniformly distributed load
and end couples

Consider a simply-supported beam BC, carrying a uniformly distributed load w per unit length, and
couples M, and M, applied to ends, Figure 7.9(i). The reactions R, and R can be found directly
by taking moments about B and C in turn; we have
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L 1
R, = X __~ - M
5 > L(a c) (7.12)
wL 1
Re = 224 =M, - M)
2
f
:‘L L !
) 27—

e Cidide
My '
] -}
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| 2 Bending moments
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) H Bending moments
(iv) My { +Mc  duetopositive
| Mg and M alone

Combined bending
moments

Figure 7.9 Simply-supported beam with uniformly distributed lateral load and end couples.

These give the shearing forces at the end of the beam, and the shearing force at any point of the
beam can be deduced, Figure 7.9(ii). In discussing bending moments we consider the total loading
actions on the beam as the superposition of a uniformly distributed load and end couples; the
distributed load gives rise to a parabolic bending moment curve, BDC in Figure 7.9(iii), whereas
the end couples M, and M. give the straight line HJ, Figure 7.9(iv). The combined effects of the
lateral load and the end couples give the curve BHD'JC, Figure 7.9(v). The bending moment at

a distance z from B is
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M M.z
M=Ywu-s220-9 ZC (7.13)
2 L
The ‘maximum’ bending moment occurs when
M M
a lw(L_zz)-_f.+_C = 0
dz 2 L L
that is, when
1 1
= =L - — M, - M
? 2 wL WB C)
The value of M for this value of z is
1 .21 1 2
My = gwl +7(MB+MC)+W(MB— M) (7.14)

This, however, is only a mathematical ‘maximum’; if M, or M, is negative, the numerically
greatest bending moment may occur at B or C. Care should therefore be taken to find the truly
greatest bending moment in the beam.

7.9 Points of inflection

When either, or both, of the end couples in Figure 7.9 is reversed in direction, there is at least one
section of the beam where the bending moment is zero.

w(bbli Vi ey

A ip 1\

|

B Mc

Figure 7.10 Single point of inflection in a beam.

Al

In Figure 7.10 the end couple M, is applied in an anticlockwise direction; the bending moment at
a distance z from B is
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M.z
M= Y- -220 -2+ =S (1.15)
2 3
and this is zero when
WM,
2? —zL(l v 2 M, - MC]) - R (7.16)
wiL? ' w

The distance PB is the relevant root of this quadratic equation.

When the end couple M. is also reversed in direction, Figure 7.11, there are two points, P and
0, in the beam at which the bending moment is zero. The distances P and Q from B are given by
the roots of the equation

2M,

2 (M, - Mc)] r— =0 (7.17)
w

wi?

zz—zL[l+

TEEEYRRER:
“5(1 P == ) we
a i
.
8 | ——

ip

Mg V OVSI -Mc

Figure 7.11 Beam with two points of inflection.
The distance PQ is

2\]%2 - [MB _ MC] . [MB "LMC)Z (7.18)
| w w.

The points P and Q are called points of inflection, or points of contraflexure; as we shall see later,
the curvature of the deformed beam changes sign at these points.
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7.10 Simply-supported beam with a uniformly distributed load over
part of a span

The beam BCDF, shown in Figure 7.12, carries a uniformly distributed vertical load w per unit
length over the portion CD. On taking moments about B and F,
bw bw
VB = -; (b + 26‘)’ VF = -2—L (b + 2a) (7.19)
- L >
be— 3 —te——— p ——>te— ¢ —>
oy IRTRTRIR2 AN
) Cie--» 'D
‘ .

| !
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|

- Shearing forces
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0
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|
L

Figure 7.12 Shearing-force and bending-moment diagrams for simply-supported beam
with distributed load over part of the span.

The bending moments at C and D are

baw

M. = aV, = == (b + 2¢)
c B oL
bew
M, = cV. = ?L_ (b + 2a) (7.20)

The bending moments in BC and FD vary linearly. The bending moment in CD, at a distance z
from C, is

z 1

z
M = [l ';) MC+;MD+-2—WZ(b—Z) (721)
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Then

aM 1 1
- = -I;WD—MC)+5-W(b—22)

On substituting for M, and M, from equations (7.20)

LI L PP R S

& 20 2
AtC,z = 0,and

am

= b—w(b+2c') =V
dz 2L

But ¥, is the slope of the line BG in the bending moment diagram, so the curve of equation (7.21)
is tangential to BG at G. Similarly, the curve of equation (7.21) is tangential to FJ/ at J. Between
C and D the bending moment varies parabolically; the simplest method of constructing the
bending moment diagram for CD is to produce BG and F.J to meet at H, and then to draw a

parabola between G and J, having tangents BG and FJJ.

7.11 Simply-supported beam with non-uniformly distributed load

Suppose a simply-supported beam of span L, Figure 7.13, carries a lateral distributed load of
variable intensity w. Then, from equation (7.4), if F is the shearing force a distance z from B,

F,-F = f’wdz
0

—=3

Figure 7.13 Simply-supported beam with lateral load of varying intensity.
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where F, is the shearing force atz = 0. Then

F o= Fy- [ wd (1.22)

Furthermore, from equation (7.6), the bending moment a distance z from B is

M = M+ Fg - fo fo wdz dz (7.23)

where M, is the bending moment at z = 0. However, as the beam is simply-supported at z = 0,
we have M, = 0, and so

M = Fgz- (7 [ wddz
NS
The end z = L is also simply-supported, so for this end M = 0; then

FOL—foLfO’wdzdz =0

This gives

F, = %foL [ wadz (7.24)

Equations (7.22), (7.23) and (7.24) may be used in the graphical solution of problems in which
w is not an analytic function of z. The value of F, is found firstly from equation (7.24); numerical
integrations then give the values of F and M, from equations (7.22) and (7.23), respectively.

7.12 Plane curved beams

Consider abeam BCD, Figure 7.14, which is curved in the plane of the figure. The beam is loaded
so that no twisting occurs, and bending is confined to the plane of Figure 7.14. Suppose an
imaginary cross-section of the beam is taken at C; statical equilibrium of the length CD of the
beam is ensured if, in general, a force and a couple act at C; it is convenient to consider the
resultant force at C as consisting of two components—an axial force P, acting along the centre line
of the beam, and a lateral force F, acting along the normal to the centre line of the beam. The
couple M at C acts about an axis perpendicular to the plane of bending and passing through the
centre line of the beam. The actions at C on the length BC of the beam, are equal and opposite to
those at C on the length CD.

As before the couple M is the bending moment in the beam at C, and the lateral force F is the
shearing force.
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As an example, consider the beam of Figure 7.15, which has a centre line of constant radius R.
The beam carries a radial load W at its free end. Consider a section of the beam at some angular
position 9: for statical equilibrium of the length of the bar shown in Figure 7.15(ii),

M = WR sinb
F = Wcosf
P = Wsinb (7.25)
c! D
8 \
w
F
P M '
c\v:\M 3
d F\<’,ll
8
P i
B 34 -
F (i

Figure 7.15 Plane curved beam of circular

Figure 7.14 Bending and shearing actions in
form carrying an end load.

a plane curved beam.

Consider again, the beam shown in Figure 7.16, consisting of two straight limbs, BC and CD,
connected at C. In CD the bending moment varies linearly, from zero at D to 70 000 Nm at C.
In BC the bending moment is constant and equal to 70 000 Nm. In Figure 7.17 the bending
moments are plotted on the concave sides of the bent limbs; this is equivalent to following the sign
convention of Section 7.4, that sagging bending moments are positive.

70000 Nm
(g
il
T
|
am
D
D C
¥« l ,‘
10kN t/
e —— 70000 Nm

Figure 7.16 Bending moments in a bracket.
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Problem 7.6  AB is a vertical post of a crane; the sockets at 4 and B offer no constraint
against flexure. The horizontal arm CD is hinged to 4B at C and supported by
the strut FE which is freely hinged at its two extremities to 48 and CD.
Construct the bending moment diagrams for AB and CD. (Cambridge)

20000 N A
——

B.M. diagram for AB

B.M. diagram for CO 46700N F
PO R = —80000 Nm

Solution

It is clear from considering the equilibrium of the whole crane that the horizontal reactions at A
and B must be equal and opposite, and that the couple due to them must equal the moment of the
20 kN force. Let R be the magnitude of the horizontal reactions at 4 and B, then

7R = 7(20000)

and therefore

R = 20000 N

Let P = the pull in CE, and Q = the thrust in FE. Then taking moments about C for the rod CD
we have

40 sin@ = 7(20000)

and therefore

Q = 58300 N
Resolving horizontally for AB we have

P = Qcosh = %(70000) coth = 46700 N

The vertical reaction at £ = Q@ sinf = 35 000 N.

We can now draw the bending moment diagrams for A8 and CD, considering only the forces
at right-angles to each beam; let us take CD first. CD is a beam freely supported at C and E and
loaded at D. The bending moment at E = 3 x 20 000 = 60 000 Nm, to which value it rises
uniformly from zero at D; from E to C the bending moment decreases uniformly to zero.



192 Bending moments and shearing forces
AB is supported at 4 and B and loaded with equal and opposite loads at C and F.
The bending moment at C is
(2) (20000) = 40000 Nm.
The bending moment at F is
(2) (-20 000) = -40 000 Nm.
At any point z between C and F, the bending moment is

M = 20000 (z+2) - 46 700z = 40 000 - 26 700z

In the bending moment diagram positive bending moments are those which make the beam

concave to the left, and are plotted to the left in the figure.

7.13 More general case of bending of a curved bar

In Figure 7.17, OBC represents the centre line of a beam of any shape; the line OBC is curved in
space in general. Suppose the beam carries any system of external loads; consider the actions over
a section of the beam at B. For statical equilibrium of BC we require at B a force and a couple.

The force is resolved into two components—an axial force P along the centre line of the beam,
and a shearing force F normal to the centre line; the couple is resolved into two components—a
torque T about the centre line of the beam, and a bending moment M about an axis perpendicular

to the centre line. The axis of M is not necessarily coincident with the axis of F.

y &C
o@/&&

M

Ve

Fig. 7.17 Lateral loading of a curved beam.

Problem 7.7  The centre line of a beam is curved in the plane xz with a radius a. Find the
loading actions at any section of the beam when a concentrated load W is

applied at C in a direction parallel to yO.
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W. 2asin i}
- B
Wz (1 — cos ()

Solution
Consider any section at an angular position 6 in the xz-plane; there is no axial force on the centre
line, and the shearing force at any section is . The torque about he centre line is

W(a - acos®) = Wa(l - cosb)

The bending moment acts about the radius, and has the value

Wa sin®

Problem 7.8  The axis of a beam consists of two lines BC and CD in a horizontal plane and
atright angles to each other. Estimate the greatest bending moment and torque
when the beam carries a vertical load of 10 kN at D.

10kN

10 KN
0 kN
50kNm€k¢B)r7 Km
CféOKNm

/4\7mﬁ/
4 50 kNm
e [

Solution

Consider the statical equilibrium of DC alone; there is no torque in DC, and the only internal
actions at C in DC are a shearing force of 10 kN and a bending moment of 50 kNm. Now reverse



194 Bending moments and shearing forces

the actions at C on DC and consider these reversed actions at C on BC. Equilibrium of BC is
ensured if there is a shearing force of 10 kN at B, a bending moment of 70 kNm, and a torque of
50 kNm.

7.14 Rolling loads and influence lines

In the design of bridge girders it is frequently necessary to know the maximum bending moment
and shearing force which each section will have to bear when a travelling load, such as a train,
passes from one end of the bridge to the other. The diagrams which we have considered so far
show the simultaneous values of the bending moment, or shearing force, for all sections of the
beam with the loads in one fixed position; we shall now see how to construct a diagram which
shows the greatest value of these quantities for all positions of the loads. These diagrams are
called maximum bending moment or maximum shearing force, diagrams.

We assume that the loads on a beam are moving slowly; then there are negligible inertia effects
from the mass of the beam and any moving masses.

7.15 A single concentrated load traversing a beam

Suppose a single concentrated vertical load # travels slowly along a beam BC, which is simply-
supported at each end, Figure 7.18(i). If a is the distance of the load from B, the reactions at B and
C are

Ry = (L-a R = —

~|5

The bending moment at a distance z from B, is

M = %(L —a)forz<a (7.26)
M = %(L—z) forz>a (7.27)

Consider the load rolling slowly from C to B: initially z < @, and the bending moment, given by

equation 7.26, increases as a decreases; whena = z,

M= - (7.28)

As W proceeds further, we have z > a, and the bending moment, given by equation (7.27),
decreases as a decreases further.
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Maximum positive
shearing force

Maximum negative
shearing force

Figure 7.18 Bending moments and shearing forces due to a rolling load
traversing a simply-supported beam.

Clearly, equation 7.28 is the greatest bending moment which can occur at the section; thus, for any
section a distance z from B, the maximum bending moment that can be induced is

M - -’Z—z (L -2 (7.29)

and this occurs when the load W is at that section of the beam. The variation of M, _for different
values of z is shown in Figure 7.18(ii); the curve of M, , is a parabola, attaining a peak value when
z = %L, for which

The shearing force a distance z from B is

w

F=RB=T(L—a) for z<a (7.30)
F = -R. = —% for z>a (7.31)

Consider again a load rolling slowly from C to B; initially z < g, and the shearing force, given by
equation (7.30), is positive and increases as a diminishes. The greatest positive shearing force
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occurs just before the load W passes the section under consideration; it has the value

Foud®) = % (L -2z (7.32)

After the load has passed the section being considered, that is, when z > q, the shearing force,
given by equation (7.31) is negative and decreases as a diminishes further. The greatest negative
shearing force occurs when the load # has just passed the section at a distance z; it has the value

:

Foad ) =

(7.33)

The variations of maximum positive and negative shearing forces are shown in Figure 7.18(1ii).

7.16 Influence lines of bending moment and shearing force

A curve that shows the value of the bending moment at a given section of a beam, for all positions
of a travelling load, is called the bending-moment influence line for that section; similarly, a curve
that shows the shearing force at the section for all positions of the load is called the shearing force
influence line for the section. The distinction between influence lines and maximum bending-
moment (or shearing force) diagrams must be carefully noted: for a given load there will be only
one maximum bending-moment diagram for the beam, but an infinite number of bending-moment
influence lines, one for each section of the beam.

Figure 7.19 (i) Single rolling load on a simply-supported beam. (ii) Bending-moment
influence line for section C. (iii) Shearing force influence line for Section C.
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Consider a simply-supported beam, Figure 7.19, carrying a single concentrated load, /. As the
load rolls across the beam, the bending moments at a section C of the beam vary with the position
of the load. Suppose W is a distance z from B; then the bending moment at a section C is given
by

M=%(L—a) for z < a

and Mz-p%(L—z) for z >a

The first of these equations gives the straight line BH in Figure 7.19(ii), and the second the line
HD. The influence line for bending moments at C is then BHD; the bending moment is greatest
when the load acts at the section.

Again, the shearing force at Cis

1%
F=—-—z for z < a

and F = +Z
L

(L—z) for z >a

These relationships give the lines BFCGD for the shearing force influence line for C. There is an
abrupt change of shearing force as the load # crosses the section C.
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Further problems (answers on page 692)

7.9
@
(1)
(i)
(iv)
v)

7.10

711

712

Draw the shearing-force and bending-moment diagrams for the following beams:

A cantilever of length 20 m carrying a load of 10 kN at a distance of 15 m from the
supported end.

A cantilever of length 20 m carrying a load of 10 kN uniformly distributed over the
inner 15 m of its length.

A cantilever of length 12 m carrying a load of 8 kN, applied 5 m from the supported
end, and a load of 2kN/m over its whole length.

A beam, 20 m span, simply-supported at each end and carrying a vertical load of 20
kN at a distance 5 m from one support.

A beam, 16 m span, simply-supported at each end and carrying a vertical load of 2.5
kN at a distance of 4 m from one support and the beam itself weighing 500 N per
metre.

A pair of lock gates are strengthened by two girders AC and BC. If the load on each
girder amounts to 15 kN per metre run, find the bending moment at the middle of
each girder. (Cambridge)

A girder ABCDE bears on a wall for a length BC and is prevented from overturning
by a holding-down bolt at 4. The packing under BC is so arranged that the pressure
over the bearing is uniformly distributed and the 30 kN load may also be taken as a
uniformly distributed load. Neglecting the mass of the beam, draw its bending
moment and shearing force diagrams. (Cambridge)

| H =2 M) —

IE 30 kN —H'//////

1
1
!
B i]C D E|

Draw the bending moment and shearing force diagrans for the beam shown. The
beam is supported horizontally by the strut DE, hinged at one end to a wall, and at the
other end to the projection CD which is firmly fixed at right angles to AB. The beam
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is freely hinged to the wall at B. The masses of the beam and strut can be neglected.
(Cambridge)

_!‘ 10m

: R

7.13 A timber dam is made of planking backed by vertical piles. The piles are built-in at
the section 4 where they enter the ground and they are supported by horizontal struts
whose centre lines are 10 m above 4. The piles are spaced 1 m apart between centres

and the depth of water against the dam 1s 10 m. Planking Strut
1 £
. 4
p—— G
—
A
L
i
1
[N
[N
(=]

Assuming that the thrust in the strut is two-sevenths the total water pressure
resisted by each pile, sketch the form of the bending moment and shearing
force diagrams for a pile. Determine the magnitude of the bending moment
at 4 and the position of the section which is free from bending moment.
(Cambridge)

7.14  The load distribution (full lines) and upward water thrust (dotted lines) for a ship are
given, the numbers indicating kN per metre run. Draw the bending moment diagram

for the ship. (Cambridge)
450

; 360 4 360_
300
! ‘15m+15m*i#15m

390

360




8 Geometrical properties of cross-sections

8.1 Introduction

The strength of a component of a structure is dependent on the geometrical properties of its cross-
section in addition to its material and other properties. For example, a beam with a large cross-
section will, in general, be able to resist a bending moment more readily than a beam with a smaller
cross-section. Typical cross-section of structural members are shown in Figure 8.1.

O XL T L

(a) Rectangle (b) Circle (c) ‘I’ beam (d) ‘Tee’ beam (e) Angie bar

Figure 8.1 Some typical cross-sections of structural components.

The cross-section of Figure 8.1(c) is also called a rolled steel joist (RSJ); it is used extensively
in structural engineering. It is quite common to make cross-sections of metai structural members
in the form of the cross-sections of Figure 8.1(c) to (e), as such cross-sections are structurally more
efficient in bending than cross-sections such as Figures 8.1(a) and (b). Wooden beams are usually
of rectangular cross-section and not of the forms shown in Figures 8.1(c) to (e). This is because
wooden beams have grain and will have lines of weakness along their grain if constructed as in
Figures 8.1(c) to (e).

8.2 Centroid

The position of the centroid of a cross-section is the centre of the moment of area of the cross-
section. Ifthe cross-section is constructed from a homogeneous material, its centroid will lie at the
same position as its centre of gravity.
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Figure 8.2 Cross-section.

Let G denote the position of the centroid of the plane lamina of Figure 8.2. At the centroid the
moment of area is zero, so that the following equations apply

Tx di =Xydd =0 (8.1)
where dA = elemental area of the lamina

x = horizontal distance of d4 from G

y = vertical distance of d4 from G

8.3 Centroidal axes
These are the axes that pass through the centroid.
8.4 Second moment of area (l)

The second moments of area of the lamina about the x - x and y -y axes, respectively, are given
by

I, = Y y* dA = second moment of area about x - x (8.2)
I, = Y x* dA = second moment of area about y - y (8.3)

Now from Pythagoras' theorem

or I +I =J (8.4)
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X f
Q

Figure 8.3 Cross-section.

y

where

J = polar second moment of area
= Y7 dd (8.5)

Equation (8.4) is known as the perpendicular axes theorem which states that the sum of the second
moments of area of two mutually perpendicular axes of a lamina is equal to the polar second
moment of area about a point where these two axes cross.

8.5 Parallel axes theorem

Consider the lamina of Figure 8.4, where the x—x axis passes through its centroid. Suppose that
I, is known and that I, is required, where the X-X axis lies parallel to the x—x axis and at a
perpendicular distance 4 from it.

Figure 8.4 Parallel axes.
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Now from equation (8.2)

I, = Xy dA
and
Ly = T(+h?’d4 (8.6)
= TG +H +2hy) dA, (8.7)
butX 2 hyd4 = 0, as 'y’ is measured from the centroid.
cly = ZOF+R) dA (8.8)
but
I, = £y d4
oy = I +h ZdA
= I +Hh 4 8.9
where
A = areaoflamina = X d4

Equation (8.9) is known as the parallel axes theorem, which states that the second moment of area
about the X—X axis is equal to the second moment of area about the x—x axis + 4’ x 4, where x—x
and X-X are parallel.

h = the perpendicular distance between the x—x and X—X axes.
[, = the second moment of area about x—x
I,y = the second moment of area about X=X

The importance of the parallel axes theorem is that it is useful for calculating second moments of
area of sections of RSJs, tees, angle bars etc. The geometrical properties of several cross-sections
will now be determined.

Problem 8.1 Determine the second moment of area of the rectangular section about its
centroid (x—x) axis and its base (X—X ) axis; see Figure 8.5. Hence or
otherwise, verify the parallel axes theorem.
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Figure 8.5 Rectangular section.

Solution

From equation (8.2)

-Di2

B

Y_TQ . 2B |pn (8.10)
] 3

3 D2

ey
"

BD?/12 (about centroid)

xx

Ly, = f"” (v + DI2? B ay

D72

= B[+ DY+ D)) &
-Di2
(8.11)

i
oy

3 4 2

2
y_3 . DYy . Dyz}b

-Di2

I, = BD?3 (about base)

To vernify the parallel axes theorem,
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from equation (8.9)

Ly = I, +h* x4
3 2
= BD + 2 x BD
12 2

/
= BD? 1 + 1
12 4
I,, = BD*3 QED
Problem 8.2 Determine the second moment of area about x—x, of the circular cross-section

of Figure 8.6. Using the perpendicular axes theorem, determine the polar
second moment of area, namely J’.

Figure 8.6 Circular section.

Solution

From the theory of a circle,

Z+y' = R
or ¥ = RR-X (8.12)
Let x = Rcos¢ (seeFigure 8.6)
~y = R~ Rcos’¢ (8.13)

= R’sin’¢ (8.14)
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or y
amd 2
d¢
or dy
Now A
but cos’ ¢
A
or A
Now I

Geometrical properties of cross-sections

Rsing
Rcoso

Rcoso do

area of circle
R

4 J x dy
0

n/2
4 '[R cos@ Rcose do

0
n/2

4R? J.cosz o do
o

1+ cos2¢
2

n/2
2R? I(l + cos2¢) do

[¢]
n/2

2R? {4) N sin2¢:l
2 o

2R? {(-’2‘—+ o) - {0+ O)J
nR?* QED

R
4 Iyz x dy
0

Substituting equations (8.14), (8.13) and (8.16) into equation (8.18), we get

but sin’ @

It

/2
4 IRz siff @ Rcosg Rcosop d¢
0
/2
4R* J- sin’ ¢ cos’q d¢
0
(1 -cos29)2

(8.15)

(8.16)

(8.17)

(8.18)
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and cos’@ = (1+ cos2¢)?2
n/2

I, = R [ (1 -cos2¢) (1+cos2¢) d¢
0

/2
= R | (1 -cos’29) do
0

1 4
but cos’2¢ = 1+ cosdd
2
n/2 _
L - R4J' {1_ 1+ cos4¢ do
2]
0
. qn/2
- R‘[(p _ ¢/ - Sinde '
do
- R[(n/2- m/4 - 0) - (0-0-0)]
or I, = mRY4 = nD%64
where
D = diameter = 2R

As the circle is symmetrical about x—x and y—y
I = I_ = nD%64

3% % xx

From the perpendicular axes theorem of equation (8.4),

J = polar second moment of area

I.+1 = nD*/64+n D*/64

Pid

or J aD*/32 = nR*/2

207

(8.19)

(8.20)
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Problem 8.3

Solution

I =

1]

or I

Problem 8.4

Geometrical properties of cross-sections

Determine the second moment of area about its centroid of the RSJ of Figure
8.7.

0.11m 0.015m
d C
j L 'f
i 0.1m
G
X— — — — — J——— =1
0.01m F0.1m
m S *
| 1 g A
2 b |

Figure 8.7 RSIJ.

‘I’ of outer rectangle (abcd) about x—x minus the sum of the I's of the two inner
rectangles (efgh and jklm) about x—x.

011x 023 2 x 005x 0173

12 12

7.333 x10° - 4.094 x 107

3.739 x 10”° m*

Determine /, for the cross-section of the RSJ as shown in Figure 8.8.

0.11m 0.015m
CL——1 ——
3
0.01m 0.15m
T T
X— — —X
10.2m

0.21m

Figure 8.8 RSJ (dimensions in metres).



Solution

Parallel axes theorem 209

The calculation will be carried out with the aid of Table 8.1. It should be emphasised that this
method is suitable for almost any computer spreadsheet. To aid this calculation, the RSJ will be
subdivided into three rectangular elements, as shown in Figure 8.8.

Table 8.1
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Element a = bd y ay ay i = bd',
1 0.11 x 0.015 0.1775 | 2.929x10°* 5.199 x 107* 0.11 X 0.015%/12=3x10"
=0.00165
2 0.01 x0.15 0.095 | 1.425x10* 1.354 x 10°* 001 X 0.157/12=2.812x10°¢
=0.0015
3 0.02 x 0.21 0.01 42x107° 4.2x107 021 X0.02/12=1.4x10"
= (.0042
p) Ta= B Lay=4.77x Tay=6595x | £i=2982x10°
0.00735 10°* 10°*

~

area of an element (column 2)

vertical distance of the local centroid of an element from XX (column 3)

the product @ x y (column 4 = column 2 x column 3)

the producta x y x y (column 5 = column 3 % column 4)

the second moment of area of an element about its own local centroid = bd*/12
‘width’ of element (horizontal dimension)

‘depth’ of element (vertical dimension)

summation of the column

distance of centroid of the cross-section about XX

Zay/Za (8.21)

4.774 x 10-*/0.00735 = 0.065 m (8.22)
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Now from equation (8.9)

Ly = Yay?+ Y i
= 6.595 x 107 + 2.982 x 10°¢ (8.23)
Iy = 6.893 x 10° m*

From the parallel axes theorem (8.9),
Ixx = ]XX - -;—2 E a

6.893 x 107 - 0.0652 x 0.00735 (8.24)

3.788 x 107° m*

or [

xXx

Further problems (for answers, see page 692)

8.5 Determine /,, for the thin-walled sections shown in Figures 8.9(a) to 8.9(c), where the
wall thicknesses are 0.01 m.

NB Dimensions are in metres. [ = second moment of area about a horizontal axis passing
through the centroid.
- 0.15
02 0.15 0
I
0.1
(a) (b) ©

Figure 8.9 Thin-walled sections.
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8.6 Determine /_ for the thin-walled sections shown in Figure 8.10, which have wall
thicknesses of 0.01 m.
015
0.15
0.2
0.2
1 0.25
(a) (b)
Figure 8.10

8.7 Determine the position of the centroid of the section shown in Figure 8.11, namely y.

Determine also /, for this section.

x}y_———i— X}H
XT . ¥—x

Figure 8.11 Isosceles triangular section.




9 Longitudinal stresses in beams

9.1 Introduction

We have seen that when a straight beam carries lateral loads the actions over any cross-section of
the beam comprise a bending moment and shearing force; we have also seen how to estimate the
magnitudes of these actions. The next step in discussing the strength of beams is to consider the
stresses caused by these actions.

As a simple instance consider a cantilever carrying a concentrated load W at its free end, Figure
9.1. At sections of the beam remote from the free end the upper longitudinal fibres of the beam
are stretched, i.e. tensile stresses are induced; the lower fibres are compressed. There is thus a
variation of direct stress throughout the depth of any section of the beam. In any cross-section of
the beam, as in Figure 9.2, the upper fibres which are stretched longitudinally contract laterally
owing to the Poisson ratio effect, while the lower fibres extend laterally; thus the whole cross-
section of the beam is distorted.

In addition to longitudinal direct stresses in the beam, there are also shearing stresses over any
cross-section of the beam. In most engineering problems shearing distortions in beams are
relatively unimportant; this is not true, however, of shearing stresses.

Tensile fibres
1] Vi
S e——————
Y, s 4] %
4 el SE i —— " "
]— Compressive fibres 1 b ‘
w Q.
Figure 9.1 Bending strains ina Figure 9.2 Cross-sectional distortion of
loaded cantilever. a bent beam.

9.2 Pure bending of a rectangular beam

An elementary bending problem is that of a rectangular beam under end couples. Consider a
straight uniform beam having a rectangular cross-section of breadth b and depth 4, Figure 9.3; the
axes of symmetry of the cross-section are Cx, Cy.

A long length of the beam is bent in the yz-plane, Figure 9.4, in such a way that the longitudinal
centroidal axis, Cz, remains unstretched and takes up a curve of uniform radius of curvature, R.

We consider an elemental length 6z of the beam, remote from the ends; in the unloaded
condition, 48 and FD are transverse sections at the ends of the elemental length, and these sections
are initially parallel. In the bent form we assume that planes such as AB and FD remain flat
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planes; 4 “B “and F “D ’in Figure 9.4 are therefore cross-sections of the bent beam, but are no
longer parallel to each other.

6z

y L
b
L 1.
c L i
B D
YA N
h -
c ”

|
J
.“—b—>l

Figure 9.3 Cross-section of a Figure 9.4 Beam bent to a uniform radius of
rectangular beam. curvature R in the yz-plane.

In the bent form, some of the longitudinal fibres, such as 4 “F /, are stretched, whereas others,
such as B 'D “are compressed. The unstrained middle surface of the beam is known as the neutral
axis. Now consider an elemental fibre HJ of the beam, parallel to the longitudinal axis Cz, Figure
9.5; this fibre is at a distance y from the neutral surface and on the tension side of the beam. The
original length of the fibre HJ in the unstrained beam is §z; the strained length is

o0z
HJ = (R+y =
yR

because the angle between A ‘B “and F D “in Figure 9.4 and 9.5 is (6z/R). Then during bending
HJ stretches an amount

HY -HI = R+y % 5 - 2§
R R

The longitudinal strain of the fibre H.J is therefore

e = | Lozl 78z = £
R R
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A F

A G

Figure 9.5 Stresses on a bent element of the beam.

Then the longitudinal strain at any fibre is proportional to the distance of that fibre from the neutral
surface; over the compressed fibres, on the lower side of the beam, the strains are of course
negative.

If the material of the beam remains elastic during bending then the longitudinal stress on the
fibre HJ is

c = Ee = — 9.1)

The distribution of longitudinal stresses over the cross-section takes the form shown in Figure 9.6;
because of the symmetrical distribution of these stresses about Cx, there is no resultant longitudinal
thrust on the cross-section of the beam. The resultant hogging moment is

L

M = f,h cby dy (9.2)

On substituting for ¢ from equation (9.1), we have
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E 3., El,
M = = b = 93
R f-%h v dy R ©-3)

~Eh/2R

lA Foo

_______ !

—-Eh/2R

Figure 9.6 Distribution of bending stresses giving zero resultant
longitudinal force and a resultant couple M.

where I, is the second moment of area of the cross-section about Cx. From equations (9.1) and
(9.3), we have

[¢]
- (9.4)

We deduce that a uniform radius of curvature, R, of the centroidal axis Cz can be sustained by end
couples M, applied about the axes Cx at the ends of the beam.

Equation (9.3) implies a linear relationship between M, the applied moment, and (1/R), the
curvature of the beam. The constant £/, in this linear relationship is called the bending stiffness
or sometimes the flexural stiffness of the beam,; this stiffness is the product of Young’s modulus,
E, and the second moment of area, /,, of the cross-section about the axis of bending.

Problem 9.1 A steel bar of rectangular cross-section, 10 cm deep and 5 cm wide, is bent in
the planes of the longer sides. Estimate the greatest allowable bending moment
if the bending stresses are not to exceed 150 MN/m’ in tension and
compression.
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Solution

The bending moment is applied about Cx. The second moment of area about this axis is

X

[ - 1_12(0.05) (0.10F = 4.16 x 10 m?

The bending stress, 6, at a fibre a distance y from Cx is, by equation (9.4)

where M is the applied moment. If the greatest stresses are not to exceed 150 MN/m’, we must
have

Ally < 150 MN/m?

x

The greatest bending stresses occur in the extreme fibres where y = 5 cm. Then

(150 x 1097, (150 x 10%) 4.16 x 10°9)
(0.05) (0.05)

12500 Nm

The greatest allowable bending moment is therefore 12 500 Nm. (The second moment of area
about Cy is

I - 1—12-(0.10) (0057 = 1.04 x 107 m?

The greatest allowable bending moment about Cy is

(150 x 1097, (150 x 10°) (1.04 x 107°)

(0.025) (0.025)

6250 Nm

which is only half that about Cx.

9.3 Bending of a beam about a principal axis

Insection 9.2 we considered the bending of a straight beam of rectangular cross-section; this form
of cross-section has two axes of symmetry. More generally we are concerned with sections having
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only one, or no, axis of symmetry.

Consider a long straight uniform beam having any cross-sectional form, Figure 9.7; the axes
Cx and Cy are principal axes of the cross-section. The principal axes of a cross-section are those
centroid axes for which the product second moments of area are zero. In Figure 9.7, C is the
centroidal of the cross-section; Cz is the longitudinal centroidal axis.

Figure 9.7 General cross-sectional Figure 9.8 Elemental length of a beam.
form of a beam.

When end couples M are applied to the beam, we assume as before that transverse sections of the
beam remain plane during bending. Suppose further that, if the beam is bent in the yz-plane only,
there is a neutral axis C “x ; Figure 9.7, which is parallel to Cx and is unstrained; radius of
curvature of this neutral surface is R, Figure 9.8. As before, the strain in a longitudinal fibre at a
distance y “from C 'x “is

If the material of the beam remains elastic during bending the longitudinal stress on this fibre is

B’
R

(o3 =

If there is to be no resultant longitudinal thrust on the beam at any transverse section we must have

fcbdy’ = 0
A

Where b is the breadth of an elemental strip of the cross-section parallel to Cx, and the integration
is performed over the whole cross-sectional area, 4. But

fA obdy’ - %fA yody!

This can be zero only if C “x “is a centroidal axis; now, Cx is a principal axis, and is therefore a
centroidal axis, so that C “x “and Cx are coincident, and the neutral axis is Cx in any cross-section
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of the beam. The total moment about Cx of the internal stresses is
M= [ oyt = Z [ byldy
A R J4
But [, by’ dy is the second moment of area of the cross-section about Cx; if this is denoted by /,,
then

M = = (9.5)

The stress in any fibre a distance y from Cx is

Ey My
0‘ = — = .
R 7 (9.6)

x

No moment about Cy is implied by this stress system, for

[ oxds - %foydA -0

because Cx and Cy are principal axes for which [, xy dA, or the product second moment of area,
is zero; 84 is an element of area of the cross-section.

9.4 Beams having two axes of symmetry in the cross-section

Many cross-sectional forms used in practice have two axes of symmetry; examples are the
I-section and circular sections, Figure 9.9, besides the rectangular beam already discussed.

x

Figure 9.9 (i) I-section beam. (ii) Solid circular cross-section.
(iti) Hollow circular cross-section.

y
|
I

y
X ‘x
) )

(i (iii

An axis of symmetry of a cross-section is also a principal axis; then for bending about the axis Cx
we have, from equation (9.6),
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Ey My
o = =X = 9.7
R 1. 0.7

where R, is the radius of curvature in the yz-plane, M, is the moment about Cx, and /, is the second
moment of area about Cx. Similarly for bending by a couple M, about Cy,

M x
(v} = 2 = Y. (98)
R I
b4 y

where R, is the radius of curvature in the xz-plane, and [, is the second moment of area about Cy.
The longitudinal centroid axis is Cz. From equations (9.7) and (9.8) we see that the greatest
bending stresses occur in the extreme longitudinal fibres of the beams.

Problem 9.2 A light-alloy I-beam of 10 cm overall depth has flanges of overall breadth 5 cm
and thickness 0.625 cm, the thickness of the web is 0.475 cm. If the bending
stresses are not to exceed 150 MN/m’ in tension and compression estimate the
greatest moments which may be applied about the principal axes of the cross-
section.

1 5cm

by

—1— - 0.625cm

10cm
= X

l. 0.475cm

Solution

Consider, first, bending about Cx. From equation (8.10), the second moment of area about Cx is

I, = 0.05 x 0.1%12 - (0.05 - 0.00475) x (0.1 - 2 x 0.00625)*/12
= 4.167 x 107 - 0.04525 x 0.0875%/12
= 4.167 x 10% - 2.526 x 10°°

I = 1641 x 10° m*

The above calculation has been obtained by taking away the second moments of area of the two
inner rectangles from the second moment of area of the outer rectangle, as previously
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demonstrated in Chapter 8. The allowable moment M, is

ol 6 -6
M o= oo (150 x 10°) {1.64 x 10°) _ o ¢ o
y 0.05

Second, for bending about Cy.
1, = (01-2x0.00625) x 0.00475° / 12+2 x 0.00625 x 0.05> /12

The first term, which is the contribution of the web, is negligible compared with the second. With

sufficient accuracy

= 2[%5) (0.00625) (0.05° = 0.130 x 10° m*

The allowable moment about Cy is

ol 6 -6
v = Sho (150 x 1090130 x 107%) Lo
Y x 0.025

Problem 9.3 A steel scaffold tube has an external diameter of 5 cm, and a thickness of 0.5
cm. Estimate the allowable bending moment on the tube if the bending stresses

are limited to 100 MN/m?.

Solution

From equation (8.19), the second moment of area about a centroid axis Cx is

I, = f[(o.ozs)4 - (0.020)4] = 0181 x10°® m*

The allowable bending moment about Cx is

6 -6
" - (100 ~ 109 0.181 x 109 _ .\
0.025
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9.5 Beams having only one axis of symmetry

Other common sections in use, as shown in Figure 9.10, have only one axis of symmetry Cx. In
each of these, Cx is the axis of symmetry, and Cx and Cy are both principal axes. When bending
moments M, and M, are applied about Cx and Cy, respectively, the bending stresses are again
given by equations (9.7) and (9.8). However, an important feature of beams of this type is that
their behaviour in bending when shearing forces are also present is not as simple as that of beams
having two axes of symmetry. This problem is discussed in Chapter 10.

y
]
|
I y
AN
: N ¥
—_ . s
Cl x cr
| X
:b e |
/ h X

i (ii) (iii)

Figure 9.10 (i) Channe! section. (ii) Equal angle section. (iii) T—secuon.

Problem 9.4 A T-section of uniform thickness 1 cm has a flange breadth of 10 cm and an
overall depth of 10 cm. Estimate the allowable bending moments about the
principal axes if the bending stresses are limited to 150 MN/m’.

Solution

Suppose y is the distance of the principal axis Cx from the remote edge of the flange. The total
area of the section is

A = (0.10) (0.01) + (0.09) (0.01) = 1.90 x 107 m?

On taking first moments of areas about the upper edge of the flange,

Ay = (0.10)(0.01)(0.005) + (0.09)(0.01)(0.055) = 0.0545 x 103m?3
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Then

- -3
5o 00545 X107 oen

1.9 x 107

The second moment of area of the flange about Cx is

1

- (0.10) (0.01)* + (0.10) (0.01) (0.0237)? 0.570 x 10°® m*

The second moment of area of the web about Cx is

1

- (0.01) (0.09P + (0.09) (0.01) (0.0263)* 1230 x 10 m*

Then
I, = (0.570 + 1.230) 10°® = 1.800 x 10 m*

For bending about Cx, the greatest bending stress occurs at the toe of the web, as shown in the
figure. The maximum allowable moment is

6 -6
v o 150 x 10°)(1.800 x 10°) o0

x 0.0713

The bending stress in the extreme fibres of the flange is only 60.4 MN/m? at this bending moment.
The second moment of area about Cy is
I - -]15 (0.01) (0.107 + % 0.09) (0.01F = 0.841 x 10 m*

y

The T-section is symmetrical about Cy, and for bending about this axis equal tensile and
compressive stresses are induced in the extreme fibres of the flange; the greatest allowable moment
is

6 -6
4 - 150 x 10°) (0.841 x 10°) o0\

Y 0.05

9.6 More general case of pure bending

In the analysis of the preceding sections we have assumed either that the cross-section has two
axes of symmetry, or that bending takes place about a principal axis. In the more general case we
are interested in bending stress in the beam when moments are applied about any axis of the cross-
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section. Consider a long uniform beam, Figure 9.11, having any cross-section; the centroid of a
cross-section is C, and Cz is the longitudinal axis of the beam; Cx and Cy are any two mutually

perpendicular axes in the cross-section. The axes Cx, Cy and Cz are therefore centroidal axes of
the beam.

Figure 9.11 Co-ordinate system for a beam of any cross-sectional form.

We suppose first that the beam is bent in the yz-plane only, in such a way that the axis Cz takes
up the form of a circular arc of radius R, Figure 9.12. Suppose further there is no longitudinal
strain of Cx; this axis is then a neutral axis. The strain at a distance y from the neutral axis is

If the material of a beam is elastic, the longitudinal stress in this fibre is

¢ - &
RX
y
y
? 4
R,
|
Figure 9.12 Bending in the yz-plane. Figure 9.13 Bending moments about the

axes C, and C,.

Suppose 84 is a small element of area of the cross-section of the beam acted upon by the direct
stress o, Figures 9.12 and 9.13. Then the total thrust on any cross-section in the direction Cz is
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where the integration is performed over the whole area 4 of the beam. But, as Cx is a centriodal
axis, we have

fAydA = 0

and no resultant longitudinal thrust is implied by the stresses 6. The moment about Cx due to the
stresses o is

El

x

M, = [ oy f— [ v - ©.9)

R

X

where [, is the second moment of area of the cross-section about Cx. For the resultant moment
about Cy we have

E El
M, = oxdd = — d4 = =
=, z. [, R (9.10)

where I, is the product second moment of area of the cross-section about Cx and Cy. Unless [,
is zero, in which case Cx and Cy are the principal axes, bending in the yz-plane implies not only
a couple M, about the Cx axis, but also a couple M, about Cy.

]|

Figure 9.14 Bending in the xz-plane.

When the beam is bent in the xz-plane only, Figure 9.14, so that Cz again lies in the neutral
surface, and takes up a curve of radius R, the longitudinal stress in a fibre a distance x from the
neutral axis is
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Ex
0 = Ors—
R}’

The thrust implied by these stresses is again zero as

E
fAch =-1€fAXdA = 0

because Cy is a centroidal axis of the cross-section. The bending moment about Cy due to stresses
o is

M, = [ oxdd - EE-[XZLM - 2y 9.11)

where [, is the second moment of area of the cross-section about Cy. Furthermore,

EI

M, = [ oyt - }%f,; it = 2 (9.12)

¥y

where [, is again the product second moment of area.
If we now superimpose the two loading conditions, the total moments about the axes Cx and

Cy, respectively, are

M EI,  ElL,
= + — .1
R R ©-13)
x ¥
EI EI
M = X+ X
y R R (9.14)
These equations may be rearranged in the forms
1 M I -M1I
= = XY Yy 2”’ (9.15)
s El 1 -1})
1 M I -MI
i ——= (9.16)
i oAy - IXy)

where (1/R,) and (1/R ) are the curvatures in the yz-and xz-planes caused by any set of moments
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M, and M,. If C, and C, are the principal centroid axes then /, = 0, and equations (9.15) and
(9.16) reduce to

L = M, l = .ﬂ 9.17
R, EI’ R, El, ©.17)

In general we require a knowledge of three geometrical properties of the cross-section, namely /,
I,and [, The resultant longitudinal stress at any point (x, y) of the cross-section of the beam is

Ex Ey _ x(My I, - M, Ixy)+y(Mx I, -M, 1xy)

6 =—%F 9.18
R, R, (1, 1y—13y) (5.18)
This stress is zero for points of the cross-section on the line
XM, Lo~ M L) vy (M L, - M, L) = 0 (9.19)

which is the equation of the unstressed fibre, or neutral axis, of the beam.

Problem 9.5  The I-section of Problem 9.2 is bent by couples of 2500 Nm about Cx and 500
Nm about Cy. Estimate the maximum bending stress in the cross-section, and
find the equation of the neutral axis of the beam.

Neutral axis /‘>\
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Solution

From Problem 9.2

I = 1641 x 10°m?* [ = 0.130 x 10°°m?*

x v

For bending about Cx the bending stresses in the extreme fibres of the flanges are

M,
o - My (25000005 _ o) voum?

1, 1.641 x 107¢

For bending about Cy the bending stresses at the extreme ends of the flanges are

Mx (500) (0.025)
1, 0.130 x 107

96.1 MN/m?

On superposing the stresses due to the separate moments, the stress at the corner a is tensile, and
of magnitude

o, = (76.1 +96.1) = 1722 MN/m?

The total stress at the corner a “is also 172.2 MN/m’, but compressive. The total stress at the
corner b is compressive, and of magnitude

6, = (96.1 - 76.1) = 202 MN/m’

The total stress at the corner b “is also 20.0 MN/m’, but tensile. The equation of the neutral axis
is given by

va lx +ny 1_v =0

Then

M I -6
_ ML (500 (1.641 x 107 553

M. 1, (2500) (0.130 x 1079)

= =

The greatest bending stresses occur at points most remote from the neutral axis; these are the
points a and a 7 the greatest bending stresses are therefore +172.2 MN/m’.
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9.7 Elastic section modulus

For bending of a section about a principal axis Cx, the longitudinal bending stress at a fibre a
distance y from Cx, due to a moment M,, is from equation (9.18) (in which we put/,, = O and M,
= 0),

where [, is the second moment of area about Cx. The greatest bending stress occurs at the fibre
most remote from Cx. If the distance to the extreme fibre is y,,,, the maximum bending stress is
M

XY max
max
Ix

The allowable moment for a given value of 6, is therefore

Ixcm
M, = == (9.20)

Ymax

The geometrical quantity (I /y,,,,) is the elastic section modulus, and is denoted by Z,.

Then
M = Z o (9.21)

The allowable bending moment is therefore the product of a geometrical quantity, Z,, and the
maximum allowable stress, 6,,,,. The quantity Z, o, is frequently called the elastic moment of
resistance.

Problem 9.6 A steel I-beam is to be designed to carry a bending moment of 10° Nm, and the
maximum bending stress is not to exceed 150 MN/m’. Estimate the required
elastic section modulus, and find a suitable beam.

Solution

The required elastic section modulus is

5
z - M _ 10 _ 0667 x10°m?

c 150 = 10°
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The elastic section modulus of a 22.8 cm by 17.8 cm standard steel I-beam about its axis of
greatest bending stiffness is 0.759 x 107 m’, which is a suitable beam.

9.8 Longitudinal stresses while shearing forces are present

The analysis of the proceeding paragraphs deals with longitudinal stresses in beams under uniform
bending moment. No shearing forces are present at cross-sections of the beam in this case.

When a beam carries lateral forces, bending moments may vary along the length of the beam.
Under these conditions we may assume with sufficient accuracy in most engineering problems that
the longitudinal stresses at any section are dependant only on the bending moment at that section,
and are unaffected by the shearing force at that section.

Where a shearing force is present at the section of a beam, an elemental length of the beam
undergoes a slight shearing distortion; these shearing distortions make a negligible contribution
to the total deflection of the beam in most engineering problems.

Problem 9.7 A 4 m length of the I-beam of Problem 9.2 is simply-supported at each end.
What maximum central lateral load may be applied if the bending stresses are
not to exceed 150 MN/m*?

Solution

Suppose W is the central load. If this is applied in the plane of the web, then bending takes place
about Cx. The maximum bending moment is

M - %W(z) - W Nm

X

From Problem 9.2,
I = 1641 x 10% m*

W
w {
—— e Y - X 1OCm
C
. E__i
2m —t-e——2m
| w

TR
|
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Then, the greatest bending stress is

o = Mo (W) (0.05)
A 1.641 = 10°°

If this is equal to 150 MN/m’, then

w - 150 x 10°) (1.641 x 10°°)
0.05

4920 N

Problem 9.8 If the bending stresses are again limited to 150 MN/m?, what total uniformly-
distributed load may be applied to the beam of Problem 9.7?
w

A A
fe—————— 4 ——>

w w
2 2

Solution

The maximum bending moment occurs at mid-span, and has the value
WL 1

M, = = —W Nm
8 2
Then
6 -6

Iy . (150 x 10%) (1.641 x 107) 4920 N

2 0.05
and

W = 9840 N
9.9

Calculation of the principal second moments of area

In problems of bending involving beams of unsymmetrical cross-section we have frequently to
find the principal axes of the cross-section.

Suppose Cx and Cy are any two centroidal axes of the cross-section of the beam, Figure 9.15.
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(\J\\/”
oL A

Figure 9.15 Derivation of the principal axes of a section.

If 84 is an elemental area of the cross-section at the point (x, y), then the property of the axes Cx
and Cy is that

fodA = fAydA =0

The second moments of area about the axes Cx and Cy, respectively, are

I = f,, yida, I, = fA x2d4 (9.22)

The product second moment of area is

L, = fA xydA (9.23)

Now consider two mutually perpendicular axes Cx “and Cy ; which are the principal axes of
bending, inclined at an angle 0 to the axes Cx and Cy. A point having co-ordinates (x, y) in the xy-
system, now has co-ordinates (x ] y ) in the x “y “system. Further, we have

x/

x cosB + y sinB
y' = ycos® - x sin®

The second moment of area of the cross-section about Cx “is

Ix/ = fA y/lsz

which becomes
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I, = fA (v cos® - x sinB)? dA

This may be written

I, = cos’® fA y2dd - 2 cosB sin fA xydA + sinzﬁf x2d4
4

But

fAyZdA = Ix’fosz = I, and foydA =1,

Then
I = I cos® - 2, cosb sin® + I, sin’® (9.29)

Similarly, the second moment of area about Cy “is

I = fx’sz = f(x cos8 + y sin@)? dd
- A A

Then
I, =1 cos?® + 2[,, cosB sin® + I, sin’® (9.25)

Finally, the product second moment of area about Cx “and Cy “is

Lo = fA x'y'd4 fA (x cos® + y sin) (y cos® - x sinb)d4

Then
Ix.y. =1, sinB cosb + I, (cos2 6 — sin’ 9) - 1,v cos0 sin® (9.26)

We note from equations (9.24) and (9.25), that
Ix’ + Iy/ = Ix + Iy (927)

that is, the sum of the second moments of area about any perpendicular axes is independent of 8.
The sum is in fact the polar second moment of area, or the second moment of area about an axis
through C, perpendicular to the xy-plane.

We may write equation (9.26) in the form
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1 .
Ly = > (I, - 1)sin 28 + I, cos 28 (9.28)

The principal axes Cx “and Cy “are defined as those for which 1, . = 0; then for the principal axes

Y _Iysin20 + 1 cos28 = O
2 ' »

or

tan 20 = a4 (9.29)

This relationship gives two values of 8 differing by 90°. On making use of equation (9.27), we
may write equations (9.24) and (9.25) in the forms

I, = l(Ix +1y) +—l-(1x —Iy)cos26 + Ixy sin26
2 2
1 1 .
I, = -2—(Ix +Iy) —;(Ix —Iy)c0329 +1y, sin26 (9.30)

Now

1 1 .
L1, = [E I, + Iy) + > QX - Iv) cos 26 - [, sin 20]

x

B € + Iy) - é‘ (I, - Iycos 28 + [ sin 29}

1 1
ng+1.‘r)z_’Z(Ix+1y)(1x—1,V>c°528

* >l + ) 1, sin 20

1
+ZQX+1y)00529.QX-Iy)
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% U, - Lf cos’ 26 + % U, - Iycos 26 . I . sin 20

Lo, v 1)sin28 « Lp yr - 1)sin 20 cos 26 - 12 sin® 26
2 ' R 2 A R "}

§ .3; U, + L} - % U, - Lf cos® 20 - 12 sin’ 26

+ I, (I, - 1)sin 28 cos 26

or

Io1,= [%(1 + 1y)]2 - {,}[(1 ~1,)c0s20-21,, sinZG]}z (9.31)

From equation (9.29), the mathematical triangle of the figure below is obtained:

(ly-k)

From the mathematical triangle

[ -1

cos 20 = (-V ’)
yi, - 1f + 4zl

21

and sin 20 = ald
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1 2
— -I1y. (I -1
I, I, = lg+1) _Jz(lx ,V) (_V x)_ 2]”'21”
x Ty 2X », J - . -
U -17 41l U, -Lp 41}

- _l.g +1)IZ- 1__[1y—1xr—41r2y
. i V(I,V—IX>z +4Ijv

o] i

g 2n ) Lo a ]

1
|

L2 0)- ;2+15-21X1y+41;)

or Loly = 1,1,-1} (9.32)

Substituting equation (9.27) into equation (9.32) we get

( +1,-L)I, = LI - 1,;

(9.33a)
2 2
or Iy’ N ax * Iy) Iy’ * L’x 1, - Ixy)
Similarly,
- s L)L+ 1, - 1), (9.33b)

which are both quadratic equations.
In general, equations (9.33a) and (9.33b) can be written as the following quadratic equation,

where I = a principal second moment of area

P~y 1 - 13) = 0 (9.34)
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Then

1

I = E(Ix+1y)i\Ji-(’x+ y)z—(lxly_]:y)

which may be written

1 I 2
R A R P R

Equations (9.30) and (9.26) may be written in the forms

I - %(1,r +1) = %(1, - 1,) cos 20 - I,,, sin 20

I

1 .
xy = E(I, - Iy) sin 20 + /., cos 29

Square each equation, and then add; we have

[Ix-—-é-(lx—ly)]z +[1x.y.]2 = [21-(1, - Jy)]2 +[1,Cy]2

Figure 9.16 Graphical representation of the second moments of area.

Then I,, I, lie on a circle of radius

oo mf

and centre

(9.35)

(9.36)

(9.37)

(9.38)

(9.39)
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1 +1),0 9.40
> & L) (9:40)

inthe /., I .,.diagram.

Suppose OI, .and O], ,, .are mutually perpendicular axes; then equation (9.38) has the graphical
representation shown in Figure 9.16. To find the principal second moments of area, locate the
points (I, 1, ) and (/, - [, ) in the ([, [ ;) plane. With the line joining these points as a diameter
construct a circle. The principal second moments of area, /; and /,, are given by the points where
the circle cuts the axis O/ . Figure 9.16 might be referred to as the circle of second moments of
area.

Problem 9.9 Anunequal angle section of uniform thickness 0.5 cm has legs of iengths 6 cm
and 4 cm. Estimate the positions of the principal axes, and the principal second
moments of area.

y' X—\»I hkolfcm
6°lm f =257

—3- X

= C
17 e

|<——4cm—>1

|

Solution

Firstly, find the position of the centroid of the cross-section. Total area is

A = (0.06) (0.005) + (0.035) (0.005)
= 0475 x 1073 m?
Now
Ax = {0.055) (0.005) (0.0025) + (0.04) (0.005) (0.02)

4.69 x 10 m?
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Then
- -6
T - 469 <107 | g6 %103 m
0.475 x 1073
Again
Ay = (0.035) (0.005) (0.0025) + (0.06) (0.005) (0.03) = 9.44 x 107% m?
Then
- -6
- 944 x 10" | 1985 x 107 m
0.475 x 1073
Now
I - %(o.oos) (0.06 + %(0.035) (0.005) - (0.475 x 107 (0.01985)?
= 0.174 x 10 m*
and

[ = %(0.005)(0.04)3 (0.055)(0.005)° - (0.475 = 107%)(0.00986)*

W |-

= 0.063 x 10 m*

With the axes Cx and Cy having the positive directions shown,
o [ o

:f 004 - x dxfooosfdy)rfooos—x dxfoos-»

x v + 0.005

_ %{[(0.04 -3 - (3 f0.005 - 3 - (5]

+ [0.005 - %P - (-x7] [0.06 - ) - (-3 + 0.008))

= -0.06 x 10°® m*
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From equation (9.29),
2 x (-0.06)

tan2 = ———— " = 108
0.063 - 0.174
Then
26 = 47.2°
and
6 = 23.6°

From equations (9.36) the principal second moments of area are

Lo of - of

1
— (I TAES
2 (*" * )

8 (0.1185 + 0.0988) 10°°

0.2173 or 0.0197 x 10°° m*

9.10 Elastic strain energy of bending

As couples are applied to a beam, strain energy is stored in the fibres. Consider an elemental
length 8z of a beam, which is bent about a principal axis Cx by a moment M,, Figure 9.17. During
bending, the moments M, at each end of the element are displaced with respect to each other an
angular amount

8 = — (9.41)

M - x

X

and thus
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8 = — (9.42)

MKC )MX

R,

|

\

[\74
0 —-i

Figure 9.17 Bent form of an elemental length of beam.

As there is a linear relation between 0 and M,, the total work done by the moments M, during
bending of the element is

sz 6z
M8 = SET (9.43)

N[-—-

which is equal to the strain energy of bending of the element. For a uniform beam of length L
under a moment M,, constant throughout its length, the bending strain energy is then

ML
2EI

(9.44)

When the bending moment varies along the length, the total bending strain energy is
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U = M & (9.45)
fL 2EI, '

where the integration is carried out over the whole length L of the beam.

9.11 Change of cross-section in pure bending

In Section 9.1 we pointed out the change which takes place in the shape of the cross-section when
a beam is bent. This change involves infinitesimal lateral strains in the beam. The upper and
lower edges of a cross-section which was originally rectangular, are strained into concentric
circular arcs with their centre on the opposite side of the beam to the axis of bending. The upper
and lower surfaces of the beam then have anticlastic curvature, the general nature of the strain
being as shown in Figure 9.18. The anticlastic curvature effect can be readily observed by bending
a flat piece of india-rubber. If the beam is bent to a mean radius R, we find that cross-sections are
bent to a mean radius (R/V).

Figure 9.18 Anticlastic curvature in the cross-section of a bent rectangular beam.

Problem 9.10 What load can a beam 4 m long carry at its centre, if the cross-section is a
hollow square 30 cm by 30 cm outside and 4 cm thick, the permissible
longitudinal stress being 75 MN/m?*?

Solution

We must find the second moment of area of cross-section about its neutral axis. The inside is a
square 22 cm by 22 cm. Then

1—12 03* - 022 = 047 x 10° m*

The length of the beam is 4 m; therefore if W N be a concentrated load at the middle, the
maximum bending moment is
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Moo= "L o wNm

x e
Hence the maximum stress is
My _ W0.15)

I 0.47 x 107

X

If 6 = 75 MN/m® we must therefore have

6 -3
(75 x 109 (0.47 x 107%) _ 235 KN
0.15

W =

Problem 9.11  Estimate the elastic section modulus and the maximum longitudinal stress in
a built-up I-girder, with equal flanges carrying a load of 50 kN per metre run,
with a clear span of 20 m. The web is of thickness 1.25 cm and the depth
between flanges 2 m. Each flange consists of four 1 cm plates 65 cm wide, and
is attached to the web by angle iron sections 10 cm by 10 cm by 1.25 cm thick.

(Cambridge)

Y % _4cm
-

<10cm >

| Q1.25cm ”
y c i x E

p—
1.25¢cm

2
(3
f10cm =

(8]
g ¥

—ry

—| 4cm
f—65cm— *

Solution

The second moment of area of each flange about Cx is

(0.04) (0.65) (1.022 = 0.0270 m*

The second moment of area of the web about Cx is
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1—12(0.0125) @° = 00083 m*

The horizontal part of each angle section has an area 0.00125 m’?, and its centroid is 0.944 m from
the neutral axis. Therefore the corresponding second moment of area is approximately

(0.00125) (0.994)> = 0.0012 m*

The area of the vertical part of each angle section is 0.001093 m’, and its centroid is 0.944 m from
the neutral axis. Therefore the corresponding second moment of area is approximately

(0.001093) (0.944)* = 0.00097 m*

The second moment of area of the whole section of the angle section about Cx is then

0.0012 + 0.00097 = 0.0022 m*

The second moment of area of the whole cross-section of the beam is then

o]
1l

2 (0.0270) + (0.0083) + 4 (0.0022)

0.0711 m*

The elastic section modulus is therefore

0.0711
1.04

Z = = 0.0684 m°

[

The bending moment at the mid-span is

2 2
Moo= LD B0 56 MNm

x 8 8

The greatest longitudinal stress is then

M 6
6 = —x . 250 x10° _ 30 MN/m?

Z 0.0684
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Further problems (answers on page 692)

9.12

9.13

9.14

9.15

9.16

A beam of I-section is 25 cm deep and has equal flanges 10 cm broad. The web is 0.75
cm thick and the flanges 1.25 cm thick. If the beam may be stressed in bending to 120
MN/m?, what bending moment will it carry? (Cambridge)

The front-axle beam of a motor vehicle carries the loads shown. The axle is of I-section:
flanges 7.5 cm by 2.5 cm, web 5 cm by 2.5 cm. Calculate the tensile stress at the bottom
of the axle beam. (Cambridge)

20 kN 20kN

A water trough 8 m long, is simply-supported at the ends. It is supported at its
extremities and is filled with water. If the metal has a density 7840 kg/m’, and the water
a density 1000 kg/m’, calculate the greatest longitudinal stress for the middle cross-
section of the trough. (Cambridge)

A built-up steel I-girder is 2 m deep over the flanges, each of which consists of four 1
cm plates, 1 m wide, riveted together. The web is 1 cm thick and is attached to the
flanges by four 9 cm by 9 cm by 1 cm angle sections. The girder has a clear run of 30
m between the supports and carries a superimposed load of 60 kN per metre. Find the
maximum longitudinal stress. (Cambridge)

A beam rests on supports 3 m apart carries a load of 10 kN uniformly distributed. The
beam is rectangular in section 7.5 cm deep. How wide should it be if the skin-stress
must not exceed 60 MN/m*? (RNEC)



10 Shearing stresses in beams

10.1 Introduction

We referred earlier to the existence of longitudinal direct stresses in a cantilever with a lateral load
at the free end; on a closer study we found that these stresses are distributed linearly over the cross-
section of a beam carrying a uniform bending moment. In general we are dealing with bending
problems in which there are shearing forces present at any cross-section, as well as bending
moments. Inpractice we find that the longitudinal direct stresses in the beam are almost unaffected
by the shearing force at any section, and are governed largely by the magnitude of the bending
moment at that section. Consider again the bending of a cantilever with a concentrated lateral load
F, at the free end, Figure 10.1; Suppose the beam is of rectangular cross-section. If we cut the
beam at any transverse cross-section, we must apply bending moments M and shearing forces F
atthe section to maintain equilibrium. The bending moment M is distributed over the cross-section
in the form of longitudinal direct stresses, as already discussed.

Figure 10.1 Shearing actions in a cantilever carrying an end load.

The shearing force F is distributed in the form of shearing stresses 1, acting tangentially to the
cross-section of the beam; the form of the distribution of 1 is dependent on the shape of the cross-
section of the beam, and on the direction of application of the shearing force F. An interesting
feature of these shearing stresses is that, as they give rise to complementary shearing stresses, we
find that shearing stresses are also set up in longitudinal planes parallel to the axis of the beam.

10.2 Shearing stresses in a beam of narrow rectangular
cross-section

We consider first the simple problem of a cantilever of narrow rectangular cross-section, carrying
a concentrated lateral load F at the free end, Figure 10.2; /4 is the depth of the cross-section, and
t is the thickness, Figure 10.3; the depth is assumed to be large compared with the thickness. The
load is applied in a direction parallel to the longer side 4.
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Figure 10.2 Shearing stresses in a cantilever of narrow rectangular
cross-section under end load.

B D
¢l __ ¥
M(‘i 8z
F F
C E

) (ii) {ii)

Figure 10.3 Shearing actions on an elemental length of a beam
of narrow rectangular cross-section.

Consider an elemental length 6z of the beam at a distance z from the loaded end. On the face BC
of the element the hogging bending moment is

M = Fz

We suppose the longitudinal stress ¢ at a distance y from the centroidal axis Cx is the same as that
for uniform bending of the element. Then
My _ Bz

(e} = — =
I I

T Y

Where /_is the second moment of area about the centroidal axis of bending, Cx, which is also a
neutral axis . On the face DE of the element the bending moment has increased to

M+ 38M = Fiz + 82

The longitudinal bending stress at a distance y from the neutral axis has increased correspondingly
to
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Flz + dzly
I

X

G +06 =

Now consider a depth of the beam contained between the upper extreme fibre BD, given by
y =Y%h, and the fibre GH, givenbyy = y,, Figure 10.3(ii). The total longitudinal force on the face
BG due to bending stresses 6 is

fh/zo'tafv - I;ztf . th[__ }
M 34

x

By a similar argument we have that the total force on the face DH due to bending stresses ¢ + 36

is
[hz _yl) (Z + Sz)

2\ 4

These longitudinal force, which act in opposite directions, are not quite in balance; they differ by
a small amount

ﬂ.}ﬁ—y oz
21, :

Now the upper surface BD is completely free of shearing stress, and this out-of-balance force can
only be equilibrated by a shearing force on the face GH. We suppose this shearing force is
distributed uniformly over the face GH; the shearing stress on this face is then

_ Ft (A
21 4

x

£y
21 !

This shearing stress acts on a plane parallel to the neutral surface of the beam; it gives rise therefore
to a complementary shearing stress T at a point of the cross-section a distance y, from the neutral
axis, and acting tangentially to the cross-section. Qur analysis gives then the variation of shearing
stress over the depth of the cross-section. For this simple type of cross-section

- )’x) &z / bz

(10.1)

and so
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2
T ) I A B (10.2)
R\ 4 ht |4 h

We note firstly that T is independent of z; this is so because the resultant shearing force is the same
for all cross-sections, and is equal to F. The resultant shearing force implied by the variation of T
is

2
+h/2 6F 2|1 N
Tt = — - - | — = F
f -h12 £t h J-w2 |4 [ h) H

The shearing stresses T are sufficient then to balance the force F applied to every cross-section of
the beam.

Variation of 1
T ‘ T T
+ %4 t
_* —_— . T_ p— .__T_ _____ -

! |

¥ ’ | ]

EEER i ! !

I
| Tmax
‘= 3Fi2nt

Figure 10.4 Variation of shearing stresses over the depth of a beam
of rectangular cross-section.

The variation of T over the cross-section of the beam is parabolic, Figure 10.4; 1 attains a
maximum value on the neutral axis of the beam, where y, = 0, and

3F
Thax  ~
2ht

(10.3)

The shearing stresses must necessarily be zero at the extreme fibres as there can be no
complementary shearing stresses in the longitudinal direction on the upper and lower surfaces of
the beam.

In the case of a cantilever with a single concentrated load F at the free end the shearing force
is the same for all cross-sections, and the distribution of shearing stresses is also the same for all
cross-sections. In a more general case the shearing force is variable from one cross-section to
another: in this case the value of F to be used is the shearing force at the section being considered.

10.3 Beam of any cross-section having one axis of symmetry

We are concerned generally with more complex cross-sectional forms than narrow rectangles.
Consider a beam having a uniform cross-section which is symmetrical about Cy, Figure 10.5.
Suppose, as before, that the beam is a cantilever carrying an end load F acting parallel to Cy and
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passing through the centroid C of the cross-section. Then Cx is the axis of bending.
Consider an elemental length 8z of the beam; on the near face of this element, which is ata
distance z from the free end of the cantilever, the bending moment is

M = Fz

This gives rise to bending stresses in the cross-section; the longitudinal bending stress at a point
of the cross-section a distance y from the neutral axis Cx is

o = .A_@_ = _FX
IX IX

(i)

Figure 10.5 Shearing stresses in a bent beam having one axis of symmetry.

Now consider a section of the element cut off by the cylindrical surface BDEGHJ, Figure 10.5(iii),
which is parallei to Cz. Suppose 4 is the area of each end of this cylindrical element; then the total
longitudinal force on the end BDE due to bending stresses is

F.
fAch = I—xzfAydA

where 84 is an element of the area 4, and y is the distance of this element from the neutral axis Cx.
The total longitudinal force on the remote end GHJ due to bending stresses is

fA(°'+50')dA = {-(z+82)fAydA

as the bending moment at this section is

M+ 8M = Flz + &)

The tension loads at the ends of the element BDEGH. differ by an amount

5 Lo
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If y is the distance of the centroid of the area 4 from Cx, then

o - ®

The out-of-balance tension load is equilibrated by a shearing force over the cylindrical surface
BDEGHJ.
This shearing force is then

Foz Fbéz

Lo T

and acts along the surface BDEGHJ and parallel to Cz. The total shearing force per unit length of
the beam is

FAy
IX

Fz A; / 8z =

(10.4)

X

If b is the length of the curve BDE, or GHJ, then the average shearing stress over the surface
BDEGHJ is

FAy
bl

x

T =

(10.5)

When b is small compared with the other linear dimensions of the cross-section we find that the
shearing stress is nearly uniformly distributed over the surfaces of the type BDEGHJ. This is the
case in thin-walled beams, such as I-sections and channel sections.

10.4 Shearing stresses in an I-beam

As an application of the general method developed in the preceding paragraph, consider the
shearing stresses induced in a thin-walled I-beam carrying a concentrated load F at the free end,
acting parallel to Cy, Figure 10.6. The cross-section has two axes of symmetry Cx and Cy; the
flanges are of breadth b, and the distance between the centres of the flanges is 4; the flanges and
web are assumed to be of uniform thickness ¢.

Equation (10.4) gives the shearing force ¢ per unit length of beam at any region of the cross-
section. Consider firstly a point / of the flange at a distance s, from a free edge, Figure 10.6(iii);
the area of flange cut off by a section through the point / is

A = sy

The distance of the centroid of this area from the neutral axis Cx is
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(ii)

Figure 10.6 Flexural shearing stresses in an I-beam.

Then from equation (10.4), the shearing force at point / of the cross-section is

Fs;th

- = (10.6)

x

If the wall thickness ¢ is small compared with the other linear dimensions of the cross-section, we
may assume that ¢ is distributed uniformly over the wall thickness ¢; the shearing stress is then

Fs.h
T = _q. = _]_
t 21

X

(10.7)

atpoint /. At the free edge, givenby s, = 0, we have t = 0, since there can be no longitudinal
shearing stress on a free edge of the cross-section. The shearing stress T increases linearly in

intensity as s, increases from zero to }:b; at the junction of web and flanges s, = ':b, and
_ Fbh
o (10.8)

X

As the cross-section is symmetrical about Cy, the shearing stress in the adjacent flange also
increases linearly from zero at the free edge.

Consider secondly a section through the web at the point 2 at a distance s, from the junctions
of the flanges and web. In evaluating Ay for this section we must consider the total area cut off by
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the section through the point 2. However, we can evaluate Ay for the component areas cut off by
the section through the point 2; we have

- 1 1 1
Ay = (bt) Eh + (Szt) (Eh - ’2—52)
1
by [bh + s, (h ~ s,
The from equation (10.4),
g = ZL[bh+ s (- s)

x

If this shearing force is assumed to be uniformly distributed as a shearing stress, then

.9 _ F _
v Lo El—x[bh + 5, (h - 5) (10.9)

At the junction of web and flanges s, = 0, and

Fbh
v, (10.10)

x

At the neutral axis, s, = %h, and

Fbh h
T 1+ 2 (10.11)

Figure 10.7 Variation of shearing stresses in an I-beam.
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We notice that 1 varies parabolically throughout the depth of the web, attaining a maximum
value at s, = '4h, the neutral axis, Figure 10.7. In any cross-section of the beam the shearing
stresses vary in the form shown; in the flanges the stresses are parallel to Cx, and contribute
nothing to the total force on the section parallel to Cy.

At the junctions of the web and flanges the shearing stress in the web is twice the shearing
stresses in the flanges. The reason for this is easily seen by considering the equilibrium conditions
at this junction. Consider a unit length of the beam along the line of the junction, Figure 10.8; the
shearing stresses in the flanges are

_ Fbh
T = al (10.12)
while the shearing stress in the web we have estimated to be
_ Fbh
L eY: (10.13)

x

For longitudinal equilibrium of a unit length of the junction of web and flanges, we have

2[‘rf><(t><1)] = 7, x(gx1)

w

which gives
T, = 21:f (10.14)

Figure 10.8 Equilibrium of shearing forces at the junction
of the web and flanges of an I-beam.

This is true, in fact, for the relations we have derived above; longitudinal equilibrium is ensured
at any section of the cross-section in our treatment of the problem. If the flanges and web were of
different thicknesses, # and ¢,, respectively, the equilibrium condition at the junction would be

ZTftf = Tt

Wow
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Then

4 (10.15)

The implication of this equilibrium condition is that at a junction, such as that of the flanges and
web of an I-section, the sum of the shearing forces per unit length for the components meeting at
that junction is zero when account is taken of the relevant directions of these shearing forces. For
a junction

Yu =0 (10.16)

where 7 is the shearing stress in an element at the junction, and ¢ is the thickness of the element;
the summation is carried out for all elements meeting at the junction.

For an I-section carrying a shearing force acting parallel to the web we see that the maximum
shearing stress occurs at the middle of the web, and is given by equation (10.11). Now, /, for the
section is given approximately by

1 h3t 6b

o= LopeLprp o Ay 80 (10.17)
12 2 12 P

Then

1 + Wb
T = ﬂ—+——] (10.18)

max ki |1 + 6b/h

The total shearing force in the web of the beam parailel to Cy is F; if this were distributed
uniformly over the depth of the web the average shearing stress would be

F

T = — 10.1
e (10.19)
Then for the particular case when 2 = 3b, we have
. = 1{E (10.20)
6\ At

Then 1, is only one-sixth or about 17% greater than the mean shearing stress over the web.

Problem 10.1  The web of a girder of I-section is 45 cm deep and 1 cm thick; the flanges are
each 22.5 cm wide by 1.25 cm thick. The girder at some particular section has
to withstand a total shearing force of 200 kN. Calculate the shearing stresses
at the top and middle of the web. (Cambridge)
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1.25cm

1.25¢cm

—b‘ }(—45cm—>’ '4-—

Iv<-— 22.5¢cm -»l

Solution

The second moment of area of the web about the centroidal axis is
-113 (0.010) (0.45° = 0.0760 x 10 m*
The second moment of are of each flange about the centroidal axis is

(0.225) (0.0125) (0.2312 = 0.150 x 107 m*

The total second moment of area is then
I = [0.076 + 2(0.150)] 103 = 0376 x 10 m*

X

At a distance y above the neutral axis, the shearing stress from equation (10.9) is

F 1
— 1 bh + = K| - y?
21:[( 4 ) Y

L]
I

3
200 x 10 [(0_225> (0.4625) + %(0.4625)2 - y?

2 x 0.376 x 1073

where s, = A/2-y
At the top of the web, we have y = 0.231 m, and

T = 277 MN/m’

255
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While at the middle of the web, where y = 0, we have
T = 419 MN/m?

10.5 Principal stresses in beams

We have shown how to find separately the longitudinal stress at any point in a beam due to bending
moment, and the mean horizontal and vertical shearing stresses, but it does not follow that these
are the greatest direct or shearing stresses. Within the limits of our present theory we can employ
the formulae of Sections 5.7 and 5.8 to find the principal stresses and the maximum shearing stress.

We can draw, on a side elevation of the beam, lines showing the direction of the principal
stresses. Such lines are called the lines of principal stress; they are such that the tangent at any
point gives the direction of principal stress. As an example, the lines of principal stress have been
drawn in Figure 10.9 for a simply-supported beam of uniform rectangular cross-section, carrying
a uniformly distributed load. The stresses are a maximum where the tangents to the curves are
parallel to the axis of the beam, and diminish to zero when the curves cut the faces of the beam at
right angles. On the neutral axis, where the stress is one of shear, the principal stress curves cut
the axis at 45°.

Figure 10.9 Principal stress lines in a simply-supported rectangular beam
carrying a uniformly distributed load.

Problem 10.2  The flanges of an I-girder are 30 cm wide by 2.5 cm thick and the web is 60 cm
deep by 1.25 cm thick. At a particular section the sagging bending moment is
500 kNm and the shearing force is 500 kN. Consider a point in the section at
the top of the web and calculate for this point; (i) the longitudinal stress, (ii) the
shearing stress, (iii) the principal stresses. (Cambridge)

Solution

First calculate the second moment of area about the neutral axis; the second moment of area of the
web is

% (0.0125) (0.6)> = 0225 x 103 m*

The second moment of area of each flange is

(0.3) (0.025) (0.3125)2 = 0.733 x 103 m*
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The total second moment of area is then

[0.225 + 2(0.733)11073 = 1.691 x 103 m*

I =

x

Next, for a point at the top of the web,

Ay = (0.3 x 0.025) (0.3125) = 234 x 10 m*
Then, for this point, with M = 500 kNm we have
3 \
s = M . (500 x 109 (03} _ 88.6 MN/m? (compressive)
I, 1.691 x 1072
- 3 -3
_ Fdy _ (500 x 10°) 2.34 x 107) _ 553 MN.m?
Lt (1.691 x 107%) (0.0125)

The principal stresses are then

1
% G+ B o? + rZ]E = (-443 + 70.9) MN/m?

26.6 and -115.2 MN/m?2

It should be noticed that the greater principal stress is about 30% greater than the longitudinal
stress. At the top of the flange the longitudinal stress is -96 MN/m?, so the greatest principal stress

at the top of the web is 20% greater than the maximum longitudinal stress.

—L 2.5¢cm

£

O

1.25 2

. Cm_ﬂ - J
===y
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10.6 Superimposed beams

If we make a beam by placing one member on the top of another, Figure 10.10, there will be a
tendency, under the action of lateral loads for the two members to slide over each other along the
plane of contact AB, Figure 10.10. Unless this sliding action is prevented in some way, the one
beam will act independently of the other; when there is no shearing connection between the beams
along AB, the strength of the compound beam is the sum of the strengths of the separate beams.

However, if the sliding action is resisted, the compound beam behaves more nearly as a solid
member; for elastic bending the permissible moment is proportional to the elastic section modutus.

Figure 10.10 Sliding action between two beams superimposed
without shearing connections.

In the case of two equal beams of rectangular cross-section, the elastic section modulus of each
beam is

e
6

where b is the breadth and 4 is the depth of each beam. For two such beams, placed one on the
other, without shearing connection, the elastic section modulus is

2x Lpp? = L2
6 3

If the two beams have a rigid shearing connection, the effective depth is 24, and the elastic section
modulus is

1 2 2 2
—b(2hy = =bh
6 2R 3

The elastic section modulus, and therefore the permissible bending moment, is doubled by
providing a shearing connection between the two beams. In the case of steel beams, the flanges
along the plane of contact 4B, may be riveted, bolted, or welded together.
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10.7 Shearing stresses in a channel section; shear centre

We have discussed the general case of shearing stresses in the bending of a beam having an axis
of symmetry in the cross-section; we assumed that the shearing forces were applied parallel to this
axis of symmetry. This is a relatively simple problem to treat because there can be no twisting of
the beam when a shearing force is applied parallel to the axis of symmetry. We consider now the
case when the shearing force is applied at right angles to an axis of symmetry of the cross-section.
Consider for example a channel section having an axis Cx of symmetry in the cross-section, Figure
10.11; the section is of uniform wall-thickness ¢, b is the total breadth of each flange, and 4 is the
distance between the flanges; Cis the centroid of the cross-section. Suppose the beam is supported
at one end, and that a shearing force F is applied at the free end in a direction parallel to Cy. We
apply this shearing force at a point O on Cx such that no torsion of the channel occurs, Figure
10.12; if F is applied considerably to the left of C, twisting obviously will occur in a couriter-
clockwise direction; if F is applied considerably to the right then twisting occurs in a clockwise
direction. There is some intermediate position of O for which no twisting occurs; as we shall see
this position is not coincident with the centroid C.

Figure 10.11 Shearing of a channel cantilever.

The problem is greatly simplified if we assume that F is applied at a point O on Cx to give no
torsion of the channel; suppose O is a distance e from the centre of the web, Figure 10.12.

Figure 10.12 Shearing stress at any point of a channel beam.
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Atany section of the beam there are only bending actions present; therefore, we can again use the
relation

FAy
]X

q9 = (10.21)

At a distance s, from the free edge of a flange

Fht
21

X

q, 5

At a distance s, along the web from the junction of web and flange
_ Ft

2]

x

q, [bh + 5, (b - sz)}

The shearing stress in flange is

and in the web is

=

9
t

bh + s, (h - sz)]

X

The shearing stress 1, in the flanges increases linearly from zero at the free edges to a maximum
at the corners; the variation of shearing stress 1, in the web is parabolic in form, attaining a
maximum value

Fbh h

T = — |1 + —
max o, ( 4b) (10.22)

at the mid-depth of the web, Figure 10.13. The shearing stresses 1, in the flanges imply total
shearing forces of amounts

Fhe b ds = Fblht 10.2
21, Jo 7V 4 (10.23)

x
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L Foh
21,

——————

Fb2ht/al, [
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Fbh h
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~—
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=

Figure 10.13 Variation of shearing stresses over the cross-section of a channel beam;
e is the distance to the stress centre O.

acting parallel to the centre lines of the flanges; the total shearing forces in the two flanges are in
opposite directions. If the distribution of shearing stresses 1, and 1, is statically equivalent to the
applied shearing force F, we have, on taking moments about B— the centre of the web— that

2 2,2
Fb ht Fb"h™t
Fe = &=
41, 47,
2,2
b h"t
Then e = (10.24)
41,

which, as we should expect, is independent of F. We note that O is remote from the centroid C of
the cross-section; the point O is usually called the shear centre; it is the point of the cross-section
through which the resultant shearing force must pass if bending is to occur without torsion of the
beam.

Problem 10.3 Determine the maximum value of the shearing stress and the shear centre
position ‘e’ for the thin-walled split tube in the figure below.
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Solution

Consider an infinitesimally small element of the tube wall at an angle ¢

fydA = fo‘pRsincp.(t.R.d(p)

R? t [-cosol]

R? t [-cosg - (-1)]

Rt (1 - cosp)

At @, the shearing stress 1, is given by

Yo bifydA

_ F 5 ~
or Tcp = t—lx R I(l COS(P) (1025)
_ FR?
or T, = - (1 - cosy)
Now I, = J ytdA
2x
= J‘(Rsin(p)z(thcp)
0
= Rt -[zsinzgod(p
. 1~ cos2¢
but smz(p = —
2
= {1 - cos 2¢)
cq = Ry llocos 20
x -{o 2 ¢
_ R sin 29[
2 2,
Rt
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or I = nR’: (10.26)

X

Substituting equation (10.26) into (10.25), we get

FR*?
= {1 - cosg)
® R3¢
(10.27)
F
= (1 - cosg)
nR ¢ ¢
Tomax) OCCUTS when ¢ = =
(10.28)
oy = —— 1+ 1) = 2E
TRt TR ¢

To determine the shear centre position, take moments about the point ‘O’.

ie. Fe = fzn T, (t R do) R
0

2
= E—%t—th“ - cosQ) . do
n 0

FR . x
= — o - sm(p](z)

- R ion - 0) - (0 - 0]

Fis

= 221[

n

e = 2R

Further problems (answers on page 692)

104 A plate web girder consists of four plates, in each flange, of 30 cm width. The web is
60 cm deep, 2 cm thick and is connected to the flanges by 10 cm by 10 cm by 1.25 cm
angles, riveted with 2 cm diameter rivets. Assuming the maximum bending moment to
be 1000 kNm, and the shearing force to be 380 kN, obtain suitable dimensions for (1) the
thickness of the flange plates, (i) the pitch of the rivets. Take the tensile stress as 100
MN/m?, and the shearing stress in the rivets as 75 MN/m®. (RNEC)
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10.5

10.6

10.7

10.8

10.9

Shearing stresses in beams

In a small gantry for unloading goods from a railway waggon, it is proposed to carry the
lifting tackle on a ste=! ioist, 24 cm by 10 cm, of weight 320 N/m, supported at the ends,
and of effective length S m. The equivalent dead load on the joist due to the load to be
raised is 30 kN, and this may act at any point of the middle 4 m. By considering the
fibre stress and the shear, examine whether the joist is suitable. The flanges are 10 cm
by 1.2 cm, and the web is 0.75 cm thick. The allowable fibre stress is 115 MN/m’, and
the allowable shearing stress 75 MN/m?. (Cambridge)

A girder of I-section has a web 60 cm by 1.25 cm and flanges 30 cm by 2.5 cm. The
girder is subjected at a bending moment of 300 kNm and a shearing force of 1000 kN
at a particular section. Calculate how much of the shearing force is carried by the web,
and how much of the bending moment by the flanges. (Cambridge)

The shearing force at a given section of a built-up I-girder is 1000 kN and the depth of
the web is 2 m. The web is joined to the flanges by fillet welds. Determine the thickness
of the web plate and the thickness of the welds, allowing a shearing stress of 75 MN/m?
in both the web and welds.

A thin metal pipe of mean radius R, thickness ¢ and length L, has its ends closed and is
full of water. If the ends are simply-supported, estimate the form of the distribution of
shearing stresses over a section near one support, ignoring the intrinsic weight of the

pipe.

A compound girder consists of a 45 cm by 18 cm steel joist, of weight 1000 N/m, with
a steel plate 25 cm by 3 cm welded to each flange. If the ends are simply-supported and
the effective span is 10 m, what is the maximum uniformly distributed load which can
be supported by the girder? What weld thicknesses are required to support this load?

Allowable longitudinal stress in plates = 110 MN/m®

Allowable shearing stress in welds = 60 MN/m’
Allowable shearing stress in web of girder = 75 MN/m’

!4——18cm —->|

2.4cm

45¢cm

1.4cm

=
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10.10 Determine the maximum value of the shearing stresses and the positions of the shear
centres for the thin-walled tubes shown in the figures below.

(@) (b)



11 Beams of two materials

11.1 Introduction

Some beams used in engineering structures are composed of two materials. A timber joist, for
example, may be reinforced by bolting steel plates to the flanges. Plain concrete has little or no
tensile strength, and beams of this material are reinforced therefore with steel rods or wires in the
tension fibres. In beams of these types there is a composite action between the two materials.

11.2 Transformed sections

The composite beam shown in Figure 11.1 consists of a rectangular timber joist of breadth b and
depth A, reinforced with two steel plates of depth 4 and thickness ¢.

t t

AN?<———b——hl‘s<—

|I o
|
L

~<———:~—>}i
I
|

jl /.
_‘,V
;%C/

Steel ) / ‘ Steei
Timber

Figure 11.1 Timber beam reinforced with steel side plates.

Consider the behaviour of the composite beam under the action of a bending moment M applied
about Cx; if the timber beam is bent into a curve of radius R, then, from equation (9.5), the bending

moment carried by the timber beam is
(ED),
. = —R— (11.1)

where (£7), is the bending stiffness of the timber beam. If the steel plates are attached to the timber
beam by bolting, or glueing, or some other means, the steel plates are bent to the same radius of
curvature R as the timber beam. The bending moment carried by the two steel plates is then
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where (E), is the bending stiffness of the two steel plates. The total bending moment is then

M = M+ M, = %[(Ej)[ +(EI)J-]
This gives

1. _M

R &l - &, (11.2)
Clearly, the beam behaves as though the total bending stiffness £/ were

EI = (ED), + (ED), (11.3)

If E, and E, are the values of Young's modulus for timber and steel, respectively, and if /, and /, are
the second moments of area about Cx of the timber and steel beams, respectively, we have

El

(ED, + (ED, = EI, + E,[, (11.4)

EJ'
E1 et E[ Is

If /, is multiplied by (E/E,), which is the ratio of Young's moduli for the two materials, then from
equation (11.5) we see that the composite beam may be treated as wholly timber, having an
equivalent second moment of area

Then

El

(11.5)

EA'
I, + [_] I, (11.6)

This is equivalent to treating the beam of Figure 11.2(i) with reinforcing plates made of timber, but
having thicknesses

EJ
| xr
El
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as shown in Figure 11.2(ii); the equivalent timber beam of Figure 11.2(ii) is the transformed
section of the beam. In this case the beam has been transformed wholly to timber. Equally the
beam may be transformed wholly to steel, as shown in Figure 11.2(iii). For bending about Cx the
breadths of the component beams are factored to find the transformed section; the depth % of the

beam is unaffected.

t->;i-<—b—->-:;<-t

| 1
| ! i

T G
| O '

0 G i

Figure 11.2 (i) Composite beam of timber and steel bent about Cx.
(ii) Equivalent timber beam. (iii) Equivalent steel beam.

The bending stress ¢, in the fibre of the timber core of the beam a distance y from the neutral
axis is

o, = M,

t

N

Now, from equations (11.1) and (11.2)

o= B o Lien )
R R

t

and on eliminating R,

M - —M
- E, I (11.7)
El Il
Then
G = My - My

_E_s) ; (11.8)
El
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the bending stresses in the timber core are found therefore by considering the total bending
moment M to be carried by the transformed timber beam of Figure 11.2(ii). The longitudinal strain
at the distance y from the neutral axis Cx is

S . M
E E I +E I

Then at the distance y from the neutral axis the stress in the steel reinforcing plates is

My
. [i) ; (11.9)

o, = Eg =

5

because the strains in the steel and timber are the same at the same distance y from the neutral axis.
This condition of equal strain is implied in the assumption made earlier that the steel and the timber
components of the beam are bent to the same radius of curvature R.

Problem 111 A composite beam consists of a timber joist, 15 cm by 10 cm, to which
reinforcing steel plates, /2 cm thick, are attached. Estimate the maximum
bending moment which may be applied about Cx, if the bending stress in the
timber is not to exceed S MN/m’, and that in the steel 120 MN/m’. Take E/E,
= 20.

Solution

The maximum bending stresses occur in the extreme fibres. If the stress in the timber is $ MN/m?,
the stress in the steel at the same distance from Cx is

6 ES 6 2 2
S > 10°x £ = 100 x 10° Nfm® = 100 MN/m

t

Thus when the maximum timber stress is attained, the maximum steel stress is only 100 MN/m’.
If the maximum permissible stress of 120 MN/m’” were attained in the steel, the stress in the timber
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would exceed 5 MN/m’, which is not permissible. The maximum bending moment gives therefore
a stress in the timber of 5 MN/m’. The second moment of area about Cx of the equivalent timber
beam is

I L 0.10) 0.15° + -1 (0.010) (0.15) x 20
12 12

= 0.0842 x 10> m*

For a maximum stress in the timber of 5 MN/m?, the moment is

(5 x 109 (0.0842 x 1073)
0.075

M 5610 Nm

11.3 Timber beam with reinforcing steel flange plates

In Section 11.2 we discussed the composite bending action of a timber be.m reinforced with steel
plates over the depth of the beam. A similar bending problem arises when the timber joist is
reinforced on its upper and lower faces with steel plates, as shown if Figure 11.3(i); the timber web
of the composite beams may be transformed into steel to give the equivalent steel section of Figure
11.3(ii); alternatively, the steel flanges may be replaced by equivalent timber flanges to give the
equivalent timber beam of Figure 11.3(iii). The problem is then treated in the same way as the
beam in Section 11.2; the stresses in the timber and steel are calculated from the second moment
of area of the transformed timber and steel sections.

~—b—> —b—> - (%)b >
-*t;,g ,:,,;_:L___ﬁ‘:;,::i:::—————::—_—:
- T

R X
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: T x; ~—(&)s \ b
oL E Ads ]
b — ¥ o i‘itf::_ - =/
!

0] (i} (i)

Figure 11.3 (i) Timber beam with reinforced steel flange plates.
(i1) Equivalent steel I-beam. (iii) Equivalent timber [-beam.

An important difference, however, between the composite actions of the beams of Figures 11.2
and 11.3 lies in their behaviour under shearing forces. The two beams, used as cantilevers carrying
end loads F, are shown in Figure 11.4; for the timber joist reinforced over the depth, Figure 11.4(i),
there are no shearing actions between the timber and the steel plates, except near the loaded ends
of the cantilever.
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However, for the joist of Figure 11.4(ii), a shearing force is transmitted between the timber and
the steel flanges at all sections of the beam. In the particular case of thin reinforcing flanges, it is
sufficiently accurate to assume that the shearing actions in the cantilever of Figure 11.4(ii) are
resisted largely by the timber joist; on considering the equilibrium of a unit length of the composite
beam, equilibrium is ensured if a shearing force (F/h) per unit length of beam is transmitted
between the timber joist and the reinforcing flanges, Figure 11.5. This shearing force must be
carried by bolts, glue or some other suitable means. The end deflections of the cantilevers shown
in Figure 11.4 may be difficult to estimate; this is due to the fact that account may have to be taken
of the shearing distortions of the timber beams.

K&

Figure 11.4 composite beams under shearing action, showing
(i) steel and timber both resisting shear and (ii) timber alone resisting shear.

r— | —>|

Figure 11.5 Shearing actions in a timber joist with reinforcing steel flanges.

Problem 11.2 A timber joist 15 cm by 7.5 cm has reinforcing steel flange plates 1.25 cm
thick. The composite beam is 3 m long, simply-supported at each end, and
carries a uniformly distributed lateral load of 10 kN. Estimate the maximum
bending stresses in the steel and timber, and the intensity of shearing force
transmitted between the steel plates and the timber. Take E/E, = 20.

7.5cm

I ,1.25cm

15¢cm c x

4 ¥

1.25cm
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Solution

The second moment of area of the equivalent steel section is

1, = 2—10[% (0.075) (0.15)3] + 2[(0.0125) (0.0757] = 11.6 x 10°® m*

The maximum bending moment is

(10 x 10%) (3)
8

3750 Nm

The maximum bending stress in the steel is then

- [3750) (0.0875) _ 553 MN/m?

(11.6 x 107

5

The bending stress in the steel at the junction of web and flange is

- (B750) 0.0750) _ 545 vim?

(11.6 x 1079)

5
The stress in the timber at this junction is then

t 5

E
6 = —xg = (242 = 12 MN/m?
E, 20

On the assumption that the shearing forces at any section of the beam area taken largely by the
timber, the shearing force between the timber and steel plates is

(5 x 10%) 7/ (0.15) = 33.3 kN/m

because the maximum shearing force in the beam is 5 kN.

11.4 Ordinary reinforced concrete

It was noted in Chapter 1 that concrete is a brittle material which is weak in tension. Consequently
a beam composed only of concrete has little or no bending strength since cracking occurs in the
extreme tension fibres in the early stages of loading. To overcome this weakness steel rods are
embedded in the tension fibres of a concrete beam; if concrete is cast around a steel rod, on setting
the concrete shrinks and grips the steel rod. It happens that the coefficients of linear expansion of
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concrete and steel are very nearly equal; consequently, negligible stresses are set up by temperature
changes.

| IS [ |

n
h { N v
SN DR ] I N

“““ L

@ (i)

Figure 11.6 Simple rectangular concrete beam with reinforcing steel in the tension flange.

The bending of an ordinary reinforced concrete beam may be treated on the basis of transformed
sections. Consider the beam of rectangular cross-section shown in Figure 11.6. The breadth of the
concrete is b, and 4 is the depth of the steel reinforcement below the upper extreme fibres. The
beam is bent so that tensile stresses occur in the lower fibres. The total area of cross-section of the
steel reinforcing rods is A; the rods are placed longitudinally in the beam. The beam is now bent
so that Ox becomes a neutral axis, compressive stresses being induced in the concrete above Ox.
We assume that concrete below the neutral axis cracks in tension, and is th refore ineffectual; we
neglect the contribution of the concrete below Ox to the bending strength of the beam. Suppose
m is the ratio of Young's modulus of steel, E,, to Young's modulus of concrete, E,; then

E
m = — (11.10)
E

If the area A of steel is transformed to concrete, its equ.valent area is mA4; the equivalent concrete
beam then has the form shown in Figure 11.6(ii). The depth of the neutral axis Ox below the
extreme upper fibres is n. The equivalent concrete area mA on the tension side of the beam is
concentrated approximately at a depth 4.

We have that the neutral axis of the beam occurs at the centroid of the equivalent concrete
beam; then

an—;-n = mA (h - n)

Thus # is the root of the quadratic equation

—;—bnz + mAn - mAh = 0 (1.11)
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The relevant root is

. omd 4y, 2k (11.12)
b mA

The second moment of area of the equivalent concrete beam about its centroidal axis is

I = %b;ﬂ v md (b - (11.13)

c

The maximum compressive stress induced in the upper extreme fibres of the concrete is

_ Mn
. = 7 (11.14)
Mh - n) _ E mMh - n)
0'. = a— X — = ——
§ I E I (11.15)

Problem 11.3 A rectangular concrete beam is 30 cm wide and 45 cm deep to the steel
reinforcement. The direct stresses are limited to 115 MN/m’ in the steel and
6.5 MN/m? in the concrete, and the modular ratio is 15. What is the area of
steel reinforcement if both steel and concrete are fully stressed? Estimate the
permissible bending moment for this condition.

Solution

From equations (11.14) and (11.15)

o, = 1M(h — ) = 115 MN/m?
bn_ \ 4h - np
3m
and
s, = Mn = 6.5 MN/m?
%bn3 + mA (h - n)?

Then
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Mh-n _ Mn
115 6.5

Hence

h-n = 1187 and - L~ p4ss

I

>

Then
n = 0458 x 045 = 0206 m

From equation (11.11)

2 2
2md (R (0S8R | oo
bk 1 -k 0582
Then
4 - o3g7 B . 0387 x 030X 045 _ a5, 1g

2m 30

As the maximum allowable stresses of both the steel and concrete are attained, the allowable
bending moment may be elevated on the basis of either the steel or the concrete stress. The second
moment of area of the equivalent concrete beam is

I = %bn3+mA(h—n)2

c

_ %(0.30) (0.206)° + 15(0.00174) (02442 = 2.42 x 107> m?

The permissible bending moment is

c I ; 6 -3
oo Sl 65 x 1042 x 107

¥, (0.206)

Problem 11.4 A rectangular concrete beam has a breadth of 30 cm and is 45 cm deep to the
steel reinforcement, which consists of two 2.5 cm diameter bars. Estimate the
permissible bending moment if the stresses are limited to 115 MN/m® and 6.5
MN/m? in the steel and concrete, respectively, and if the modular ratio is 15.
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Solution

The area of steel reinforcementis 4 = 2(n/4)(0.025)° = 0.982 x 10~ m®. From equation (11.12)

n mA 2bh
- = 1+ == -1
h bh mA

Now
-3
m4 _ (15) (0.982) x 10 0.101
bh (30) (45) x 107
Then
5 1
2 o 01091l -+ 2 -1 = 0370
h 0.1091
Thus

n = 0370k = 0167 m

The second moment of area of the equivalent concrete beam is

I = —;-bn3+mA(h—n)2

%(0.30) (0.1677 + 15 (0.982 x 107 (0.283)2

i

(0.466 + 1.180) 10> m*

1.646 x 10> m*

If the maximum allowable concrete stress is attained, the permissible moment is

I 6 -3
po= Sl 65 x10° (1646 x 10°)

n 0.167

If the maximum allowable steel stress is attained, the permissible moment is

4 6 -3
o= Ot (U5 <109 (166 x 107) oL

mh - n) 15(0.283)
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Steel is therefore the limiting material, and the permissible bending moment is

M = 446 kNm

Problem11.5 A rectangular concrete beam, 30 cm wide, is reinforced on the tension side with
four 2.5 cm diameter steel rods at a depth of 45 cm, and on the compression
side with two 2.5 diameter rods at a depth of 5 cm. Estimate the permissible
bending moment if the stresses in the concrete are not to exceed 6.5 MN/m’ and
in the steel 115 MN/m®. The modular ratio is 15.

e—30cm—>!

| l__i_

—oo- — |- 08 T

L (0.45 - n)
- o—o—o-o—l Y

Solution

The area of steel reinforcement is 1.964 x 10~* m? on the tension side, and 0.982 x 10°* m® on the
compression side. The cross-sectional area of the equivalent concrete beam is

(0.30)n + (m - 1)(0.000982) + m(0.001964) = (0.30n + 0.0433)m?
The position of the neutral axis is obtained by taking moments, as follows:

(0.30)n(—;-n) + (m - 1)(0.000982)(0.05) + m(0.001964)(0.45)

= (0.30n + 0.0433)n

This reduces to

n? - 02881 - 0.093 = 0

giving

n = -0.144 + 0.337

The relevantrootisn = 0.193 m
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The second moment of area of the equivalent concrete beam is

I = -3‘-(0.30);13 + (m-1)(0.000982)(n-0.05)* + m(0.001964)(0.45-n)’

<

= (0720 + 0281 + 1.950)10°3

= 295 x 107 m*

If the maximum allowable concrete stress is attained, the permissible moment is

_ Sl 65 x 109095 x 107°) | o005 inm

n 0.193

If the maximum allowable steel stress is attained, the permissible moment is

_o_ ol (s x 109095 x 107 oo 0 inm

m(0.45 - n) 15(0.257)

Thus, steel is the limiting material, and the allowable moment is 88.0 kNm.

Problem 11.6 A steel I-section, 12.5 cmby 7.5 cm, is encased in a rectangular concrete beam
of breadth 20 cm and depth 30 cm to the lower flange of the I-section.
Estimate the position of the neutral axis of the composite beam, a:d find the
permissible bending moment if the steel stress is not to exceed 115 MN/m’ and
the concrete stress 6.5 MN/m?. The modular ratio is 15. The area of the steel
beam is 0.00211 m® and its second moment of area about its minor axis is

5.70 x 10° m".
P—ZOcm—Q.
.-
/ n=0.158m
30cm / l
J— }
l 030 -n=0.142m
Y4 R
0.0795m

12cmby 7.5¢cm
I-section

Solution

The area of the equivalent steel beam is
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(0.20)n
15

+ 0.00211 m?

The position of the neutral axis is obtained by taking moments, as follows:

0201 . 00211 |n 020n1 1 1,) + (0.00211) (0.2375)
15 15 2

]

This reduces to

n? + 0.316n - 0.075

i
o

The relevant root of which is

n = 0.158 m

The second moment of area of the equivalent steel beam is

; - L [.Oﬂ) (0.158)° + (0.00211) (0.0795% = 0.0366 x 10~ m*

: 30 15

The allowable bending moment on the basis of the steel stress is

v ¢ ’
yoo S L 115 x10° 0.0366 x 107°) | 555 knm
(0.30 - n) 0.142

If the maximum allowable concrete stress is 6.5 MN/m’, the maximum allowable compressive
stress in the equivalent steel beam is

m 6.5 x 108 = 97.5 MN/m?2

On this basis, the maximum allowable moment is

6 -3
o (97.5 x 10°) (0.0366 x 107} _ 22.6 kNm

0.158

Concrete is therefore the limiting material, and the maximum allowable moment is

M = 22.6 kNm
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Problem 11.7 A reinforced concrete T-beam contains 1.25x10* m® of steel reinforcement on
the tension side. If the steel stress is limited to 115 MN/m? and the concrete
stress to 6.5 MN/m’, estimate the permissible bending moment. The modular
ratio is 15.

fe——60 cm———>:

—— ! L
{ 0 L _J {100m
30cm X T
(0.30 — n)
}_ N____ _°°€¢1~_1.25><10’3m2

e—al
15¢cm

Solution

Suppose the neutral axis falls below the underside of the flange. The area of the equivalent
concrete beam is

(0.60)n - 0.45(n - 0.10) + (0.00125)15 = 0.157 + 0.0638 m*

The position of the neutral axis is obtained by taking moments, as follows:

(0.60n) [%n) + (0.00125)(15)(0.30) - 0.45(n - 0.10)( %) (n + 0.10)

= (0.15n + 0.0638)n

This reduces to
n? + 0.850n - 0.1044 = 0
the relevant root of which is 7 = 0.109 m which agrees with our assumption earlier that the neutral

axis lies below the flange.
The second moment of area of the equivalent concrete beam is

[o

I = -;- 0.60) (n3) - % (0.45) (n - 0.10° + 0.00125 (15) (030 - n)?

= (0.259 + 0.000 + 0.685)10> m*

= 0944 x 107 m*

If the maximum allowable concrete stress is attained, the permissible moment is

o. I _ 6.5 x 1090.944 x 107) _ 563 KNm

n 0.109
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If the maximum allowable steel stress is attained, the permissible moment is

oGl (s x 1090944 x 107) oo

m(0.30 - n) 15(0.191)

Steel is therefore the limiting material, and the permissible bending moment is 37.9 kNm.

Further Problems (answers on page 693)

11.8

11.9

11.10

1.1

A concrete beam of rectangular section is 10 cm wide and is reinforced with steel bars
whose axes are 30 cm below the top of the beam. Estimate the required total area of the
cross-section of the steel if the maximum compressive stress in the concrete is to be 7.5
MN/m’ and the tensile stress in the steel is 135 MN/m’ beam is subjected to pure
bending. What bending moment would the beam withstand when in this condition?
Assume that Young's modulus for steel is 15 times that for concrete and that concrete can
sustain no tensile stresses. (Cambridge)

A reinforced concrete T-beam carries a uniformly distributed super-load on a simply-
supported span of 8 m. The stresses in the steel and concrete are not to exceed 125
MN/m? and 7 MN/m’, respectively. The modular ratio is 15, and the density of concrete
is 2400 kg/m’. Determine the permissible super-load. (Nottingham)

<—1000m4-’
¢5cm

T F e ] fsem

2.25cm bars
60cm Three
4-Six2.25¢cm bars
[ X-1.]
looo |
f7.5cm

A wooden joist 15 cm deep by 7.5 cm wide is reinforced by glueing to its lower face a
steel strip 7.5 cm wide by 0.3 cm thick. The joist is simply-supported over a span of 3
m, and carries a uniformly distributed load of 5000 N. Find the maximum direct stresses
in the wood and steel and the maximum shearing stress in the glue. Take E/E, = 20.
(Cambridge)

A timber beam is 15 cm deep by 10 cm wide, and carries a central load of 30 kN at the
centre of a 3 m span; the beam is simply-supported at each end. The timber is reinforced
with flat steel plates 10 cm wide by 1.25 cm thick bolted to the upper and lower surfaces
of the beam. Taking E for steel as 200 GN/m? and E for timber as 1 GN/m?, estimate
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(@)

(i)
(iii)
(iv)

Beams of two materials

the maximum direct stress in the steel strips;

the average shearing stress in the timber;

the shearing load transmitted by the bolts;

the bending and shearing deflections at the centre of the beam.



12 Bending stresses and direct stresses
combined

12.1 Introduction

Many instances arise in practice where a member undergoes bending combined with a thrust or
pull. If a member carries a thrust, direct longitudinal stresses are set up; if a bending moment is
now superimposed on the member at some section, additional longitudinal stresses are induced.

In this chapter we shall be concerned with the combined bending and thrust of short stocky
members; in such cases the presence of a thrust does not lead to overall instability of the member.
Buckling of beams under end thrust is discussed later in Chapter 18.

12.2 Combined bending and thrust of a stocky strut

Consider a short column of rectangular cross-section, Figure 12 1(i). The column carries an axial
compressive load P, together with bending moment M, at some section, applied about the
centroidal axis Cx.

o

|
. N ]
|

N

I

|

-~

|
~
I
g

:(—— >
I
T el
_9]
x )
/%

o
) A

U] (i) (i) (iv)

SNV
S
>

Figure 12.1 Combined bending and thrust of a rectangular cross-section beam.

The area of the column is 4, and /, is the second moment of the area about Cx. If P acts alone,
the average longitudinal stress over the section is

P

A

the stress being compressive. If the couple M acts alone, and if the material remains elastic, the
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longitudinal stress in any fibre a distance y from Cx is

My

— —

I

r

for positive values of y. We assume now that the combined effect of the thrust and the bending
moment is the sum of the separate effects of P and M. The stresses due to P and M acting
separately are shown in Figure 12.1(iit) and (iv). On combining the two stress systems, the
resultant stress in any fibre is

P _My

6 = -— -
A I

x

(12.1)

Clearly the greatest compressive stress occurs in the upper extreme fibres, and has the value

o = -£_Mh
max YT, (12.2)

. P M
¢ = VT (12.3)

which is compressive or tensile depending upon whether (Mh/21) is less than or greater than (P/A4).
The two possible types of stress distribution are shown in Figure 12.2(i) and (ii). When (MA/21,)
< (P/A), the stresses are compressive for all parts of the cross-section, Figure 12.2(i). When
(Mh/21) > (P/A), the stress is zero at a distance (PI/AM) below the centre line of the beam, Figure
12.2(ii); this defines the position of the neutral axis of the column, or the axis of zero strain. In
Figure 12.2(i) the imaginary neutral axis is also a distance (P /AM) from the centre line, but it lies
outside the cross-section.

(i) )

Figure 12.2 Position of the neutral axis for combined bending and thrust.
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12.3 Eccentric thrust

We can use the analysis of Section 12.2 to find the stresses due to the eccentric thrust. The column
of rectangular cross-section shown in Figure 12.3(i) carries a thrust P, which can be regarded as
concentrated at t+~ point D, which lies on the centroidal axis Cy, at a distance e, from C, Figure
12.3(ii). The eccentric load P is statically equivalent to an axial thrust P and a bending moment
Pe, applied about Cx, Figure 12.3(iii). Then, from equation (12.1), the longitudinal stress any fibre
is

Pe Ae
(e} = —.1_) - yy = —£ 1 + yy (124)
41 A I,
| |
e b —t

L INY i—f M:peyﬁ
P I e i .
* |

(i) (if) il

[ T
s
|

(9]

=
t

Figure 12.3 Column of rectangular cross-section carrying an eccentric thrust.

We are interested frequently in the condition that no tensile stresses occur in the column;
clearly, tensile stresses are most likely to occur in the lowest extreme fibres, where

Ae h
- L (12.5)
A 21,
This stress is tensile if
Aeyh -1
12.6
2]“ ( )
that is, if
S o
h
or
1
e = —h (12.7)
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Now suppose the thrust P is applied eccentrically about both centroidal axes, at a distance e,

from the axis Cy and a distance e, from the axis Cx, Figure 12.4. We replace the eccentric thrust
P by an axial thrust P at C, together with couples Pe, and Pe, about Cx and Cy, respectively.

O
| |
|
§

Figure 12.4 Core of a rectangular cross-section. Figure 12.5 Core of a circular cross-section.

The resultant compressive stress at any fibre defined by co-ordinate (x, y) is

. - P Pe x ) Peyy

4 I, I
(12.8)
P Aex  Adey
= = + +
Al L

Suppose e, and e, are both positive; then a tensile stress is more likely to occur at the corner B of
the rectangle. The stress at B is tensile when

Ae b Ae,h
- - 2 <0

12.9
21, 21, (12.9)
On substituting for 4, /, and /, this becomes
be,  Oe,
1 - - —=<0 (12.10)
b h

If P is applied at a point on the side of the line HG remote from C, this inequality is satisfied, and
the stress at B becomes tensile, regardless of the value of P. Similarly, the lines AJ, JF and FG
define limits on the point of application of P for the development of tensile stresses at the other
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three corners of the column. Clearly, if no tensile stresses are to be induced at all, the load P must
not be applied outside the parallelogram FGHJ in Figure 12.4; the region FGHJ is known as the
core of the section. For the rectangular section of Figure 12.4 the core is a parallelogram with
diagonals of lengths Vsh and Vsb.

For a column with a circular cross-section of radius R, Figure 12.5, the tensile stress is most
likely to develop at a point B on the perimeter diametrically opposed to the point of application of
P. The stress at B is

P, PeR P [1 . AeR) a2.11)

6 = T — = = —
A 1 A I

where / is the second moment of area about a diameter. Tensile stresses are developed if

AeR >

1
- (12.12)

On substituting for 4 and /, this becomes

de s

or

R
e > —
? (12.13)

The core of the section is then a circle of radius Y4R.

Problem 12.1  Find the maximum stress on the section AB of the clamp when a pressure of
2500 N is exerted by the screw. The section is rectangular 2.5 cm by 1 cm.
(Cambridge)

500N )
gk (1= oRRR RV )

The section 4B is subjected to a tension of 2500 N, and a bending moment (2500)(0.10) = 250

Nm. The area of the section = 0.25 x 10 m’. The direct tensile stress = (2500)/(0.25 x 10™%)

= 10 MN/m’. The second moment of area = 1/12 (0.01)(0.025)* = 13.02 x 10° m*.
Therefore, the maximum bending stresses due to the couple of 250 Nm are equal to

Solution
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(250)(0.0125)
(13.02 x 10

240 MN/m?

Hence the maximum tensile stress on the section is

(240 + 10) = 250 MN/m?>

The maximum compressive stress is

(240 - 10) = 230 MN/m?

Problem 12.2 A masonry pier has a cross-section 3 m by 2 m, and is subjected to a load of
1000 kN, the line of the resultant being 1.80 m from one of the shorter sides,
and 0.85 m from one of the longer sides. Find the maximum tensile and
compressive stresses produced. (Cambridge)

A 3m ]
! > B8
T 0.30m
. Pti
2m/ ry
l O 015m

Solution

P represents the line of action of the thrust. The bending moments are

(0.15)(1000 x 10% = 150 kNm about OX

(0.30)(1000 x 10% = 300 kNm about OY

Now,

~
it

1 3 4
— (3)2P = 2
g 12()() m

o~
1

1 3 4
— (@Y = 45
Y 5 D3 m

The cross-sectional area is

4 = D2 = 6m?
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For a point whose co-ordinates are (x, y) the compressive stress is

P [1 . Ae x . Aeyy]

e} = — —
4 1, I
which gives
3
c=-lOOOX10 1+i+2)_’.
6 25 20

The compressive stress is a maximum at B, wherex = 1.5mandy = 1 m. Then

108
[} T m—

a 1+ 2+ 2] = -0342 MN/m?
6 s 20

The stress at D, wherex = -1.5mandy = -1m,is

6
o, = - L |1-2-2] - -0008 MN/m?
6 s 20

which is the maximum tensile stress.

12.4 Pre-stressed concrete beams

The simple analysis of Section 12.2 is useful for problems of pre-stressed concrete beams. A
concrete beam, unreinforced with steel, can withstand negligible bending loads because concrete
is so weak in tension. But if the beam be pre-compressed in some way, the tensile stresses induced
by bending actions are countered by the compressive stresses already present. In Figure 12.6, for
example, a line of blocks carries an axial thrust; if this is sufficiently large, the line of blocks can
be used in the same way as a solid beam.

Figure 12.6 Bending strength of a pre- T 111" ™~
compressed line of blocks.
V(P*Mh)
A T[. r—b—»
I S B R

v 4

Pl — . -—P — — —_——— P R

I S
¢ (P*Mh)
55

Figure 12.7 Concrete beam with axial pre-compression.
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Suppose a concrete beam of rectangular cross-section, Figure 12.7, carries some system of
lateral loads and is supported at its ends. An axial pre-compression P is applied at the ends. If M
is the sagging moment at any cross-section, the greatest compressive stress occurs in the extreme
top fibres, and has the value

c = -[f- + Mh] (12.14)

The stress in the extreme bottom fibres is

- - _[ﬁ_ﬂ] (12.15)
A2

Now suppose the maximum compressive stress in the concrete is limited to ), and the maximum
tensile stress to 6,. Then we must have

£ * <0 (12.16)
A 21 )
and
£ + 0, (12.17)
A 27 )

Mh <o _P
21 Ly (12.18)
Mh <c N 2.19
2. 4 (12.19)
Mh
21,
A
(62.0) P
Figure 12.8 Optimum conditions for a <0 A

beam with axial pre-compression.
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These two inequalities are shown graphically in Figure 12.8, in which (P/4) is plotted against
(Mh/21). Usually o, is of the order of one-tenth of 6,. The optimum conditions satisfying both
inequalities occur at the point B; the maximum bending moment which can be given by

Mh
" o) (12.20)
that is,
I
M, = -}f (6, + o)) (12.21)

The required axial thrust for this load is

P = —;—A (0'l - 0'2) (12.22)

Some advantage is gained by pre-compressing the beam eccentrically; in Figure 12.9(i) a beam of
rectangular cross-section carries a thrust P at a depth (1/6)4 below the centre line. As we saw in
Section 12.3, this lies on the edge of the core of cross-section, and no tensile stresses are induced.
In the upper extreme fibres the longitudinal stress is zero, and in the lower extreme fibres the
compressive stress is 2P/A, Figure 12.9(i).

Mh

(i) {in) (i)
Figure 12.9 Concrete beam with eccentric pre-compression.

Now suppose a sagging bending moment M is superimposed on the beam; the extreme fibre
stresses due to M are (Mh/2] ) tensile on the lower and compressive on the upper fibres, Figure
12.9(i1). If

(12.23)
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then the resultant stresses, Figure 12.9(iii), are zero in the extreme lower fibres and a compressive
stress of (Mh/21) in the extreme upper fibres. If this latter compressive stress does not exceed 6,,
the allowable stress in concrete, the design is safe. The maximum allowable value of M is

21,
M o= —o (12.24)

As o, in equation (12.21) is considerably less then o,, the bending moment given by equation
(12.21) is approximately half that given by equation (12.24). Thus pre-compression by an
eccentric load gives a considerably higher bending strength.

In practice the thrust is applied to the beam either externally through rigid supports, or by
means of a stretched high-tensile steel wire passing through the beam and anchored at each end.

Further problems (answers on page 693)

12.3 The single rope of a cantilever crane supports a load of 200 kN and passes over two
pulleys and then vertically down the axis of the crane to the hoisting apparatus. The
section AB of the crane is a hollow rectangle. The outside dimensions are 37.5 cm and
75 cm and the material is 2.5 cm thick all round, and the longer dimension is in the
direction AB. Calculate the maximum tensile and compressive stresses set up in the
section, and locate the position of the neutral axis. (Cambridge)

200 kN

124 The horizontal cross-section of the cast-iron standard of a vertical drilling machine has
the form shown. The line of thrust of the drill passes through P. Find the greatest value
the thrust may have without the tensile stress exceeding 15 MN/m®. What will be the
stress along the face 4B? (Cambridge)

fe— 19.0cm —dy

L +
< 36cm — 1.60cm 5
h ~ — 14 _180emig o
P —b/-(— ~
~ —
+

1.90cm g”/ I

1.60cm B
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12.6

127
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A vertical masonry chimney has a internal diameter d, and an external diameter d,. The
base of the chimney is given a horizontal acceleration a m/s’, and the whole chimney
moves horizontally with this acceleration. Show that at a section at depth 4 below the
top of the chimney, the resultant normal force acts at a distance ah/2g from the centre
of the section. If the chimney behaves as an elastic solid, show that at a depth g(d,> +
d\")/4ad, below the top, tensile stress will be developed in the material. (i Cambridge)

A link of a valve gear has to be curved in one plane, for the sake of clearance. Estimate
the maximum tensile and compressive stress in the link if the thrust is 2500 N.
(Cambridge)

5cmby 1.25¢m

2500N 2500N
,G_),__‘ —_— . T - -

A cast-iron crank has a section on the line 4B of the form shown. Show how to
determine the greatest compressive and tensile stresses at 4B, normal to the section, due
to the thrust P of the connecting rod at the angle ¢ shown.

If the stresses at the section must not exceed 75 MN/m’, either in tension or
compression, find the maximum value of the thrust P. (Cambridge)

3.75¢m ¥
3.25¢cm

. - 20cm

25¢cm  2.5cm /\
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12.8 The load on the bearing of a cast-iron bracket is 5 kN. The form of the section 4B is
given. Calculate the greatest tensile stress across the section 4B and the distance of the
neutral axis of the section from the centre of gravity of the section. (Cambridge)




13 Deflections of beams

13.1 Introduction

In Chapter 7 we showed that the loading actions at any section of a simply-supported beam or
cantilever can be resolved into a bending moment and a shearing force. Subsequently, in Chapters
9 and 10, we discussed ways of estimating the stresses due to these bending moments and shearing
forces. There is, however, another aspect of the problem of bending which remains to be treated,
namely, the calculation of the stiffiiess of a beam. In most practical cases, it is necessary that a
beam should be not only strong enough for its purpose, but also that it should have the requisite
stiffness, that is, it should not deflect from its original position by more than a certain amount.
Again, there are certain types of beams, such as those carried by more than two supports and beams
with their ends held in such a way that they must keep their original directions, for which we
cannot calculate bending moments and shearing forces without studying the deformations of the
axis of the beam; these problems are statically indeterminate, in fact.

In this chapter we consider methods of finding the deflected form of a beam under a given
system of external loads and having known conditions of support.

13.2 Elastic bending of straight beams

It was shown in Section 9.2 that a straight beam of uniform cross-section, when subjected to end
couples M applied about a principal axis, bends into a circular arc of radius R, given by

= = (13.1)

where EI, which is the product of Young's modulus £ and the second moment of area / about the
relevant principal axis, is the flexural stiffness of the beam; equation (13.1) holds only for elastic
bending.

Where a beam is subjected to shearing forces, as well as bending moments, the axis of the beam
is no longer bent to a circular arc. To deal with this type of problem, we assume that equation
(13.1) still defines the radius of curvature at any point of the beam where the bending moment is
M. This implies that where the bending moment varies from one section of the beam to another,
the radius of curvature also varies from section to section, in accordance with equation (13.1).

In the unstrained condition of the beam, Cz is the longitudinal centroidal axis, Figure 13.1, and
Cx, Cy are the principal axes in the cross-section. The co-ordinate axes Cx, Cy are so arranged that
the y-axis is vertically downwards. This is convenient as most practical loading conditions give
rise to vertically downwards deflections. Suppose bending moments are applied about axes
parallel to Cx, so that bending is restricted to the yz-plane, because Cx and Cy are principal axes.
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7
l
Y

Figure 13.1 Longitudinal and principal Figure 13.2 Displacements of the longitudinal
centroidal axes for a straight beam. axis of the beam.

Consider a short length of the unstrained beam, corresponding with DF on the axis Cz, Figure 13.2.
In the strained condition D and F are displaced to D' and F’, respectively, which lies in the yz-
plane. Any point such as D on the axis Cz is displaced by an amount v parallel to Cy; it is also
displaced a small, but negligible, amount parallel to Cz.

The radius of curvature R at any section of the beam is then given by

&y

1 &?
E - —'—_2—,2' (13.2)

+ |1 + (—iv—

dz

We are concerned generally with only small deflections, in which v is small; this implies that
(dv/dz) is small, and that (dv/dz)’ is negligible compared with unity. Then, with sufficient
accuracy, we may write

L (13.3)

4+

E[=— =M (13.9)

We must now consider whether the positive or negative sign is relevant in this equation; we have
already adopted the convention in Section 7.4 that sagging bending moments are positive. When
a length of the beam is subjected to sagging bending moments, as in Figure 13.3, the value of
(dv/dz) along the length diminishes as z increases; hence a sagging moment implies that the
curvature is negative. Then

d*v
dz*
where M is the sagging bending moment.

EI

=-M (13.5)
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Y >z
M ( \—'/) M
y
Figure 13.3 Curvature induced by sagging Figure 13.4 Deflected form of a beam in
bending moment. pure bending.

Where the beam is loaded on its axis of shear centres, so that no twisting occurs, M may be written
in terms of shearing force F and intensity w of vertical loading at any section. From equation (7.9)
we have

d*M dF
dz? dz

On substituting for M from equation (13.5), we have

d2

-E1 £ - Ly (13.6)
dzZ

dzZ

dzv] _ dF

This relation is true if E/ varies from one section of a beam to another. Where £/ is constant along
the length of a beam,
d*v dF

_E,_;; - 2 - (13.7)

As an example of the use of equation (13.4), consider the case of a uniform beam carrying couples
M at its ends, Figure 13.4. The bending moment at any section is M, so the beam is under a
constant bending moment. Equation (13.5) gives
2
4y -y
dz 2

On integrating once, we have

av
El — = -Mz + 4 13.8
dz ( )
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where 4 is a constant. On integrating once more

Elv - —% Mz + Az + B (13.9)
where B is another constant. If we measure v relative to a line CD joining the ends of the beam,

vis zeroateachend. Thenv = 0O,forz = Oandz = L.
On substituting these two conditions into equation (13.9), we have

B =0 ad A4 - %ML
The equation (13.9) may be written
1
Elv = -2—Mz(L - 2) (13.10)

At the mid-length, z = %L, and

2
- ML (13.11)
8EI
which is the greatest deflection. Attheendsz = Oandz = L/2,
dv ML av ML
— = —at(C, — = -—atbD .
dz 2E] dz 2EI (13.12)

It is important to appreciate that equation (13.3), expressing the radius of curvature R in terms of
v, is only true if the displacement v is small.

Figure 13.5 Distortion of a beam in pure bending.
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We can study more accurately the pure bending of a beam by considering it to be deformed into
the arc of a circle, Figure 13.5; as the bending moment M is constant at all sections of the beam,
the radius of curvature R is the same for all sections. If L is the length between the ends, Figure
13.5, and D is the mid-point,

OB = yR? - (LY4)

Thus the central deflection v, is

v = BD = R -R*-(L¥4)

Then

2
Rl - |1 - 2L
4R?

<
0]

Suppose L/R is considerably less than unity; then
2
2 2
v = L L] L L) LD
2\ ar? 8 | 4R?

which can be written

L? L?
v = —|1 + + .
8R 4R?
But
1 .M
R EI
and so
2 272
S My ML, (13.13)
8EI AEl?

Clearly, if (L/4R’) is negligible compared with unity we have, approximately,

ML?
8EI

which agrees with equation (13.11). The more accurate equation (13.13) shows that, when (L*/4R°)
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is not negligible, the relationship between v and M is non-linear; for all practical purposes this
refinement is unimportant, and we find simple linear relationships of the type of equation (13.11)
are sufficiently accurate for engineering purposes.

13.3 Simply-supported beam carrying a uniformly distributed load

A beam of uniform flexural stiffness £/ and span L is simply-supported at its ends, Figure 13.6;
it carries a uniformly distributed lateral load of w per unit length, which induces bending in the yz
plane only. Then the reactions at the ends are each equal to Y2wL; if z is measured from the end
C, the bending moment at a distance z from C is

M = lez - -;—wz2

w/unit length

ol bbb bbb

]
-“Q’—LT l £l 11’5
le L 2
] -
i
C z | D
ﬁ___/
y

Figure 13.6 Simply-supported beam carrying a uniformly supported load.

Then from equation (13.5),

2
E]ﬂ = -M = -lWLZ+lWZZ
dz? 2 2
On integrating,
2 3
Eliv- . _wlz Ly
dz 4 6
and
3 4
Elv = X2 ¥ 4B (13.14)
12 24

Supposev = Oattheendsz = Oandz = L; then

B =0, and A = wl’/24
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Then equation (13.14) becomes
Elv = 22017 - 212? + 27 (13.15)
24
The deflection at the mid-length, z = 4L, is

s5wLt
384E1

(13.16)

13.4 Cantilever with a concentrated load

A uniform cantilever of flexural stiffness E7 and length L carries a vertical concentrated load W at
the free end, Figure 13.7. The bending moment a distance z from the built-in end is

M = -W(L - 2)
|
- L
| ‘.
/I | !
c N D
/ ]
El [ W
{
|
c 2 f D
! T
y i

Figure 13.7 Cantilever carrying a vertical load at the remote end.

Hence equation (13.5) gives

2
E%Y - wy - 2
de

Then

[ G (7SR B ) (13.17)
& 2

and
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Env = W lez—lz3 + Az + B
2 6

At the end z

= 0, there is zero slope in the deflected form, so that dv/dz = O0; then equation
(13.17) gives 4 = 0.

Furthermore, at z = O there is also no deflection, so that B = 0. Then
2
Ev = -
6
Atthe freeend,z = L,

wL®
v = WLZ 13.18
L 3EI (13.18)

The slope of the beam at the free end is

dv wL?
8 - [_] - (13.19)
_, 2EI

When the cantilever is loaded at some point between the ends, at a distance a, say, from the
built-in support, Figure 13.8, the beam between G and D carries no bending moments and therefore
remains straight. The deflection at G can be deduced from equation (13.18); forz = a,

3
v, = ':E"I (13.20)

and the slope atz = ais

2
JLL (13.21)
2E]

Then the deflection at the free end D of the cantilever is

Figure 13.8 Cantilever with a load applied between the ends.
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Wa’ Wa?
T gy TS
(13.22)
2
- Wa 5 -y
6E]

13.5 Cantilever with a uniformly distributed load

A uniform cantilever, Figure 13.9, carries a uniformly distributed load of w per unit length over
the whole of its length. The bending moment at a distance z from C is

M= -Lwi - 2
2

Then, from equation (13.5),

2
Erdy %W(L—z)z - —;—w(L2—2Lz+zz)

d.‘.’2

L

w/unit length

bhdbd by
/ |

=D

[

| El : |

{ !

! | :

ci——»z———ﬁ’i{xﬁb
[

y v VL

Figure 13.9 Cantilever carrying a uniformly distributed load.

Thus

EIﬂ = lw Lzz-Lzz+lz3 + A
dz 2 3

and

Elv = lw —l-Lzz2 - lLz3 + Lz‘ + Az + B
2 2 3 12

At the built end, z = 0, and we have
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SRS
(=]
5
[=H

ThusA =B = 0. Then

Elv = —Lw(6L%? - 4Lz° + 29
24

At the free end, D, the vertical deflection is

wil*
v, = — 13.23
3 SE] ( )

13.6 Propped cantilever with distributed load
The uniform cantilever of Figure 13.10(i) carries a uniformly distributed load w and is supported
on a rigid knife edge at the end D. Suppose P is the force on the support at D. Then we regard

Figure 13.10(i) as the superposition of the effects of P and w acting separately.

w/unit length

Y ¥ 4 ¥ 4 433D

C .
7 U
| Eil rP
f . l
= >
Cl—a™ )
I —= }v, (]
Yy ]
| |
c i___,z____—"_{pvz (i)
y

Figure 13.10 (i) Uniformly loaded cantilever propped at one end.
(ii) Deflections due to w alone. (iii} Deflections due to P alone.

If w acts alone, the deflection at D is given by equation (13.23), and has the value

wL?
8E/

Vi

If the reaction P acted alone, there would be an upward deflection

PL3
3EI

V2
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at D. If the support maintains zero deflection at D,

vi-v, =0
This gives
PL® _ wL!
3EI 8EI
or
3wl
P = % (13.24)

Problem 131 A steel rod 5 cm diameter protrudes 2 m horizontally from a wall. (i)
Calculate the deflection due to a load of 1 kN hung on the end of the rod. The
weight of the rod may be neglected. (ii) If a vertical steel wire 3 m long, 0.25
cm diameter, supports the end of the cantilever, being taut but unstressed
before the load is applied, calculate the end deflection on application of the
load. Take £ = 200 GN/m’. (RNEC)

Solution
@) The second moment of are of the cross-section is

x

I = = (0.050% = 0307 x 10°m?*
64

The deflection at the end is then

3 3
o o PL (1000)(2) - 00434 m

3EI 3200 x 10°)(0.307 x 1079)

(ii) Let T = tension in the wire; the area of cross-section of the wire is 4.90 x 10°° m’. The
elongation of the wire is then
.o 3)

EA (200 x 109(4.90 x 10°°)

The load on the end of the cantilever is then (1000 - 7), and this produces a deflection of

(1000 - 7)(2)
3000 x 10%(0.307 x 107)

AV =
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If this equals the stretching of the wire, then

(1000 - 7)(2) : T(3)
3(200 x 10%)(0.307 x 1079) 200 x 10%4.90 x 107)

This gives 7 = 934 N, and the deflection of the cantilever becomes

- (66)(2) - 0.00276 m

3200 x 10%(0.307 x 1079)

Problem 13.2 A platform carrying a uniformly distributed load rests on two cantilevers
projecting a distance / m from a wall. The distance between the two cantilevers
is 4. In what ratio might the load on the platform be increased if the ends
were supported by a cross girder of the same section as the cantilevers, resting
on a rigid column in the centre, as shown? It may be assumed that when there
is no load on the platform the cantilevers just touch the cross girder without
pressure. (Cambridge)

gh—4 —*-4 —ol?

&:‘ér\s

aghss Cross girder

i
|
|

i
ny
N /
(I
1!
an
Solution
Let w, = the safe load per unit length on each cantilever when unsupported.

Then the maximum bending moment = Yw, F.
Let W, the safe load when supported,

Yy the deflection of the end of each cantilever,

ViR = the pressure between each cantilever and the cross girder.
Then the pressure is

R _ 3 3EIB

— = =wl -

2 8 - 1}
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We see from the figure above that

s - R2W _ R

3EI 384E1

I'having the same value for the cantilevers and cross girder. Substituting this value of §

R 3wl R

2 8 128

or
48

R = —w,l
65 ’

The upward pressure on the end of each cantilever is 4R = 24w,l/65, giving a bending moment
at the wall equal to 24w,/’/65. The bending moment of opposite sign due to the distributed load
is Yaw,’. Hence it is clear that the maximum bending moment due to both acting together must
occur at the wall and is equal to (2 - 24/65) w,i* = (17/130) w,I’. If this is to be equal to ¥ w, I,
we must have w, = (65/17) w,; in other words, the load on the platform can be increased in the
ratio 65/17, or nearly 4/1. The bending moment at the centre of the cross girder is 6w,/"/65, which
is less than that at the wall.

13.7 Simply-supported beam carrying a concentrated lateral load

Consider a beam of uniform flexural stiffness £/ and length L, which is simply-supported at its
ends C and G, Figure 13.11. The beam carries a concentrated lateral load W at a distance a from
C. Then the reactions at C and G are

AR
, w
Cmz o G
A , ‘D A
VC L VG

Figure 13.11 Deflections of a simply-supported beam
carrying a concentrated lateral load.

Now consider a section of the beam a distance z from C; if z < a, the bending moment at the
section is
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M =V, :z

andifz > a,

Then
2
EI-d—X = -V z for z<a
dzz
and
2
EIQ = V.z+W(z~a for z>a
d22

On integrating these equations, we have
dv 1

EI= = -—V. z2+4 for z<a 13.2
dz 2 ¢ (13:23)
EI- Ly 2+W(1 2 )+A’
= -V —z° —az > .
Ve > forz>a (13.26)
and
Elv = -—é—VC v Az +B for z<a (13.27)
I 3 l 3 1 2 ’ ’
Elv = —EVCZ + -6-z ——2-az +A4'z + B' for z>a (13.28)

In these equations A4, B, A’ and B’ are arbitrary constants. Now forz = a the values of v given by
equations (13.27) and (13.28) are equal, and the slopes given by equations (13.25) and (13.26) are
also equal, as there is continuity of the deflected form of the beam through the point D. Then

——I-VC a’> + Aa + B = -cha3+ -l—a3—la3 + A'a + B'
6 6 6 2

and
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These two equations give

A = 4+ Lg?
2

(13.29)
B' = B - —Wd’?

At the extreme ends of the beam v =0, so that when z =0 equation (13.27) gives B =0, and when
z =L, equation (13.28) gives

Ly W(%ﬁ - %aLZ) AL+ B =0

6
We have finally,
A = lVCLZ A (L - ap
6 6L
B =0
(13.30)
a = Ly o W Ly
6 6L 2
/ 1 3
B'" = -—Wa
6
But V, = W(L - a)/L, so that equations (13.30) become
4 = Yy gL -a
6L
B =0
(13.31)
A/ = E (2L2 + aZ)
6L
/ 1., 3
B' = -—Wa

6
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Then equations (13.27) and (13.28) may be written

/4
Elv = - K(L - a)z3 + —a(2L2 - 3al + az)z forz<a (13.32)
6L 6L

Elv = - %(L - a)z3 + %(23 - 3azz)

Wa 3

+ —6—Z-(ZL2 + az)z - forz>a (13.33)

The second relation, for z > a, may be written
/4 3 Wa 2 2 w 3
Elv = -—|(L- +—=—|12L" - 3aL + +—lz- 13.34
v oL ( a)z <L ( a )z o (z a) ( )
Then equations (13.32) and (13.33) differ only by the last term of equation (13.34); if the last term

of equation (13.34) is discarded when z < a, then equation (13.34) may be used to define the

deflected form in all parts of the beam.
On putting z = g, the deflection at the loaded point D is

Wa? (L - a)
vy - Wa L - ar 13.35
b 3EIL ( )

When W is at the centre of the beam, a = /%L, and

3
- B (13.36)

v
b 48E]

This is the maximum deflection of the beam only whena = /L.

13.8 Macaulay's method

The observation that equations (13.32) and (13.33) differ only by the last term of equation (13.34)
leads to Macaulay's method, which ignores terms which are negative within the Macaulay brackets.
That s, if the term [z - @] in equation (13.34) is negative, it is ignored, so that equation (13.34) can
be used for the whole beam. The method will be demonstrated by applying it to a few examples.

Consider the beam shown in Figure 13.12, which is simply-supported at its ends and loaded
with a concentrated load W.



Macaulay’s method

i
o :
c! A G
VCT : ‘ ¢VG
~— 2z W

Figure 13.12 Form of step-function used in deflection analysis of a beam.

By taking moments, it can be seen that

V. = WIL - a)lL

[+

and the bending moment when z < a is

M =V z

Then bending moment when z > a i1s

M = V. z-Wz-a

Now

——————— z< = g -~--—---=-~ g <z<[ -----
2
EIQ = -V.z +W [z - 4
dzZ

On integrating equation (13.40), we get

Vv 2
E]ﬂ - e f + A +L/V-[z—a]2
dz 2 2
-y 23
and Ebv = €2 4 4z4B +%[z—a]3

311

(13.37)

(13.38)

(13.39)

(13.40)

(13.41)

(13.42)
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The term on the right of equations (13.40) and (13.41) must be integrated by the manner shown,
so that the arbitrary constants 4 and B apply when z < g and also when z > a. The square brackets
[ ] are called Macaulay brackets and do not apply when the term inside them is negative.

The two boundary conditions are:

atz = 0, v = 0 and atz = L, v = 0

Applying the first boundary condition to equation (13.42), we get
B =0

Applying the second boundary condition to equation (13.42), we get
0 = -V.L% + AL + W (L - a6

WI(L - a) L*(6L) - W (L - a)’/6

or AL

or A = WL -a) L6 - W(L - a’/(6L)

AR (Ls_ 9D {1 - (L - afir)

~ Elv = -W(L - a)z*/(6L)
+ WL -a{l - (L - a¥Llx6

+ Wz - aPl6

On putting z = a, we get the deflection at D, namely v,

ie. vy = WL -a {~a®L + (L - (L - a)%L) a + O}

6EI

= E(—I;E_I_a) {-a¥L + (L - L? - 2aL + a?JL) &}

= ﬂ‘;f_[—a—) (-a*L + La - La + 2a* - a°/L)

- ﬂ%E‘I—“) (2a? - 2a%L)

WL - af* a*

or o * 3EIL
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If W is placed centrally, so thata = L/2,

~ W(L—L/Z)Z(L/2)2
Vo = 3EIL

w3

13.43
48E1 ( )

or Vp =

13.9 Simply-supported beam with distributed load over a portion of
the span

Suppose that the load is w per unit length over the portion DG, Figure 13.13; the reactions at the
ends of the beam are

v, = XL - ap
2L

VG = 1(Lz—az)
2L

The bending moment at a distance z from C is

M = ch—%)-[z-a]z,

where the square brackets are Macaulay brackets, which only apply when the term inside them is
positive.

ie. M = %(L—a)zz-—%[z—a]2

----------- Z2< = @ ~-mmmmmmaa —eeeeg < Z < L ceee

Hence EId—zv = 1(L—a)zz + 1[z—a]2 (13.44)
dz? 2L 2 ’

so that o 2 (L-a)’2?+ 4 + 2z-a]’ (13.45)
dz 4L 6

and Ebv = '—‘2-(L-a)2z3+ Az+ B +=[z~a]’ (13.46)
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— s

~——— a—— :

: : w/unitlength

NI A
D/

3 g 1

Ve Vs

Figure 13.13 Load extending to one support.

The boundary conditions are that when

z = 0, v = 0 and when z = L, v = 0

Applying the first boundary condition to equation (13.46), we get
B =0

Applying the second boundary condition to equation (13.46), we get

2 s
0= —-%(L~a) I+ AL+ 214(L—a)

2
A= %(L——a) L—%(L-a)4

=-2—:7(L—a)2{2L2—(L—a)2}

= —W—(L—a)2{2L2 _12-4? +20L}
24
or Y =%(L—a)2(L2+2La—a2)

The equation for the deflection curve is then:

Elv = %(L—a)zz3+ 2:L (L—a)z(L2+ 2La—a2)z

w 4
tox z-a| (13.47)

where the square brackets in equation (13.47) are Macaulay brackets.
When the load does not extend to either support, Figure 13.14(i), the result of equation (13.47)
may be used by superposing an upwards distributed load of w per unit length over the length GH
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on a downwards distributed load of w per unit length over DH, Figure 13.14(ii). Due to the
downwards distributed load alone

Elv = i(L—a)2z3 +L(L—a)2(1,2 +2La —az)z
2L 241

+ ?‘:-[z— al (13.48)

where the square brackets in equation (13.48) are Macaulay brackets.

- L -
——————— H——— |
a2 ' w |
o2l " "

D G 3

' (EI

% 0 |
:<—a—>‘ :
| | w |
bbb,
A D T

Figure 13.14 Load not extending to either support.

Due to the upwards distributed load

2 2
Elv =%(L—b) z3—3:—L(L—b) (L2+2Lb—b2)z

- 3‘2-[2— 8]’ (13.49)

where the square brackets in equation (13.49) are Macaulay brackets.
On superposing the two deflected forms, the resultant deflection is given by

3

Elv = ~ %(b—a) (2L—a— b) + 2:/L
{(L—a)z (L2 +2La —az) —(L—b)z(Lz + 2Lb—b2)} (13.50)

+ %[z - a]4 - %[Z - b]4
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where the square brackets of equation (13.50) are Macaulay brackets and must be ignored if the
term inside them becomes negative.

13.10 Simply-supported beam with a couple applied at an
intermediate point

The simply-supported beam of Figure 13.15 carries a couple M, applied to the beam at a point a
distance a from C. The vertical reactions at each end are (M,/L). The bending moment a distance

z from Cis

M,z
M = T Malz - a)° (13.51)

[<—a —v-: ]
¢ 4 G
z \p A
% * [EI M,
y L

Figure 13.15 Beam with a couple applied at a point in the span.

The term on the right of equation (13.51) is so written, so that equation (13.51) applied over the
whole length of the beam.

Hence,
---------- Z2< = @ remmmmmmees e @ <2< L e~
d>v M,z
E1d22 = Z - M,,[z-a]
el M,z + 4 - M,[z-d] (13.52)
dz 2L “ '
M,z3 M, 2
and Elv = —2—+ Az+ B - =*z-4] (13.53)

The boundary conditions are that
v = 0 at z = 0 andat z =L
From the first boundary condition, we get

B =0
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From the second boundary condition, we get

ML? -M
o = o + AL (L - af
6 2
-M
A4 = L, M (L - af?
6 2L
M
= 4 (-L? +3L? + 3a% - 6al)
6L
M
= —20L? - 6La + 3a?)
6L
3 _
- Efp=Ma? +_1‘112_(2L2—6La+ 3a2)+ 2[z-a (13.54)
6L 6L 2

where the square brackets in equation (13.54) are Macaulay brackets.
The deflection at D, whenz = a,is

Ma

vy = 3EnIL (L -a) (L - 2a) (13.55)

Problem 13.3 A steel beam rests on two supports 6 m apart, and carries a uniformly
distributed load of 10 kN per metre run. The second moment of area of the

cross-section is 1x10° m® and £ = 200 GN/m’. Estimate the maximum
deflection.

Solution

The greatest deflection occurs at mid-length and has the value given by equation (13.16):

4 3 4
_ o SwLt 5(100 x 10%) (6) ~ 0.00844 m
384 E1 384200 x 10%) (1 x 1073
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Problem 13.4 A uniform, simply-supported beam of span L carries a uniformly distributed
lateral load of w per unit length. It is propped on a knife-edge support at a
distance a from one end. Estimate the vertical force on the prop.

w/unit length

EEEEER
K Ly

Y .

k< L

Y

Solution

If the beam is unpropped, then, from equation (13.15), the downwards vertical deflection at the
position of the prop is

™), ., = =2 (L?-2La® + a’)
: 24EI

If R is the reaction on the prop, then under the action of R alone the upwards vertical deflection at
the prop is, from equation (13.35),

Ra* (L - a?

V), ., =
. 3EIL

If there is no resultant deflection at the prop, we have

Ra’ (L - af _  wa (L? - 2La? - a?)

3EIL 24E1

Thus, the reaction on the prop is
2 3
1 -2 _a_ + E.
R - WL L L
1 af, -4
L L

The propping force is least when the prop is at mid-span; in this case, /L = 0.5and R = 5 wL/8.

Problem 13.5 A simply-supported, uniform beam, of span L and flexural stiffness £/, carries
a vertical lateral load W at a distance a from one end. Calculate the greatest
lateral deflection in the beam.
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w
a i L-a
A i i 7.

El

Solution

From section 13.7, the lateral deflection at any point is given by

Elv = —K(L - agz’ + Hapr2 - 3L + a’ forz > a
6L 6L
2 3
Elv = --VZ-(L - a3z’ + Wz (z - 3a) +ﬁ(2],2 +aly - Wa_ rz>a
6L 6L 6

Let us suppose first that @ > %L, when we would expect the greatest deflection to occur in the
range z < a; over this range

Elﬂ = —LV-(L—a)z

dz 2L

L Wa @L? - 3aL + az)
6L

This is zero when

A4 (L - a)z? +
2L

Wa 13 341+ ad) = 0

i.e. when

L - az? - %a QLY - 3aL + a?)

or when

If this gives a root in the range z < g, then

£(2L—a)<a

and 2L -a < 3a, ora > /L. This is compatible with our earlier suppositions. Then, witha > /3L,
the greatest deflection occurs at the point
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1

z = [(a/3) 2L - a)]* and has the value
v o= X -gL-a,|20L-a
9LEI 3

If a < %L, the greatest deflection occurs in the range z > a; in this case we replace a by (L -a),
whence the greatest deflection occurs at the point

z = %(Lz—az),andhasthevalue

_ Wa 2 2) a
Y S e—— - a — Q2L - a
max 9LE1(L ,’3( )

13.11 Beam with end couples and distributed load

Suppose the ends of the beam CD, Figure 13.16, rest on knife-edges, and carry couples M- and M),
If, in addition, the beam carries a uniformly distributed lateral load w per unit length, the bending
moment a distance z from C is

YL S VAR S N
3 L 2

The equation of the deflection curve is then given by

2 M
E(il’.:-._c(L—z)—MDi—lWZ(L-Z)
dz? L L 2
Then
M M 2 3
E].év_:—__c Lz-lzz nlz lw Li.—_z.._ + A
dz L 2 L 2 2 2 3
w/unit length

. LEL Ly,
Nz )

Figure 13.16 Simply-supported beam carrying a uniformly supported load.
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and

2 3 3 2 4
M| LZ | MplZ | 1ML 2B (13.56)
t\2 6) Lls6) 2

If the ends of the beam remain at the same level,v =0forz = Oandz = L. Then B = 0 and

1,,,2 1,,,2. 1 .4
AL = —ML? + =M L? + —wL
Mt st 0

Then
2 3 3 3 4
EIV:—& E__-z—— _—A.JL z—- —lw iz__z_
L 2 6 L 6 2 6 12
+z McL + MDL + wl
3 6 24
T
The slopes at the ends are
Lid - LM v am, W)
), ., 24E]
& - LM+ s, + we?)
), ., 24E1

Suppose that the end D of the beam now sinks an amount  downwards relative to C. Thenatv =L
we have v = §, instead of v = 0. In equation (13.56), 4 is then given by

1 1

1 2 2 4
AL = EIB + —M L+ =MyL" + —wl
3 6 24

For the slopes at the ends we have

Il

& —L—(8MC + 4Mp, + wL) + 3
d), _, 24E1 L

(13.57)

@ L (M. + 8M,, + wL?) + 3
&), _, 24E1 L
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13.12 Beams with non-uniformly distributed load

When a beam carries a load which is not uniformly distributed the methods of the previous articles
can still be employed if M and [Mdz are both integrable functions of z, for we have in all cases
2
-EI 1_‘) = M
dz 2

which can be written in the form

&) . M
d \ dz El
If / is uniform along the beam the first integral of this is
av 1
— = A - — (Md:
= = f (13.58)

where 4 is a constant. The second integral is

1
= 4 B - — [ [Mdzd:
v z + = ff z (13.59)

If M and [ M dz are integrable function of z the process of finding v can be continued analytically,
the constants 4 and B being found from the terminal conditions. Failing this the integrations must
be performed graphically or numerically. This is most readily done by plotting the bending-
moment curve, and from that deducing a curve of areas representing [M dz. From this curve a
third is deduced representing [ [M dz dz.

Problem 13.6 A uniform, simply-supported beam carries a distributed lateral load varying in
intensity from w, at one end to 2w, at the other. Calculate the greatest lateral
deflection in the beam.

Solution

The vertical reactions at O and A4 are (2/3) w,L and (5/6) w,L. The bending moment at any section
a distance z from O is then
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3

2 1., W7
M = =wlz - —=w -
3°° N 6L
Then
2 w 3
&Y - - -gwoLz - -l—woz2 i
dz? 3 2 6L

On integrating once,
W 22 w 3 W 4

E[ﬂ = _[ OL _ o _ o + C
dz | 3 6 24L

1

where C, is a constant. On integrating further,

W Z3 W, 4 W 5
Elv = —[OL i + Cz + C,
| 9 24 120L

where C, is a further constant. If v = Oatz = L, we have

Ay ad c =0

! 180
Then
w.lz?  wz?t wzd
Elv = L yps 22 M
180 9 24 120L

The greatest deflection occurs at dv/dz = 0, i.e. when

1, wlz?  wed o
—_— W, - + + = 0
180 3 6 24l

or when
; 4 3 2
15| £ + 60l £ - 120 &) +22 = 0
L L L

The relevant root of this equation is z/L =0.506 which gives the point of maximum deflection nea
to the mid-length. The maximum deflection is
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o, 103 wl'
max T 360 EI EI

This is negligibly different from the deflection at mid-span, which is
Sw, L’
256E1

(v),=L/2=

13.13 Cantilever with irregular loading

In Figure 13.17(i) a cantilever is free at D and built-in to a rigid wall at C. The bending moment
curve is DM of Figure 13.17(ii); the bending moments are assumed to be hogging, and are
therefore negative. The curve CH represents [,°M dz, and its ordinates are drawn downwards
because M is negative. The curve CG is then constructed from CH by finding

'z 2
L Mdzdz

In equation (13.51), the constants 4 and B are both zeroas v = Oand dv/dz = Oatz = 0. Then
CD is the base line for both curves.

Figure 13.17 Cantilever carrying any system of lateral loads.

13.14 Beams of varying section

When the second moment of area of a beam varies from one section to another, equations (13.58)
and (13.59) take the forms



and

v =
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Az+B—%ffA—Ildzdz

The general method of procedure follows the same lines as before. If (M/]) and [(M/)dz are
integrable functions of z, then (dv/dz) and v may be evaluated analytically; otherwise graphical or
numerical methods must be employed, when a curve of (M/]) must be taken as the starting point
instead of a curve of M.

Problem 13.7

A cantilever strip has a length L, a constant breadth 4 and thickness ¢ varying
in such a way that when the cantilever carries a lateral end load W, the centre
line of the strip is bent into a circular arc. Find the form of variation of the

thickness ¢.
b
z e
- t.f_. —
w

Solution
The second moment of area, /, at any section is

1= Lpe
12

The bending moment at any section is (- #z), so that

d*v

El— = Wz
dzZ
Then
v W
dz? EI

If the cantilever is bent into a circular arc, then d*v/dz’ is constant, and we must have

z
—— = constant
El
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This requires that

z
— = constant
7
or I =« 2z
Thus,
1
— b’z
12
1
or t o« Zz3

where ¢, is the thickness at the built-in end will lead to bending in the form of a circular arc.

Problem 13.8  The curve M, below, represents the bending moment at any section of a timber
cantilever of variable bending stiffness. The second moments of area are given
in the table below. Taking £ = 11 GN/m’, deduce the deflection curve.

z (from supported end)(m) 0 01 02 03 05 07 09 1.1 1.3 1.5 1.6 1.7
I(m") 508 274 174 1225 565 323 1.69 0.783 0.278 0.074 0.0298 0x10*
[¥gz0nm? [[¥azdzNm™)
M.
P )
1400 |2 7/280[ 700
N / 240]s00

1200 |24
\\M [Ya/

1000 | 200 \ / 20/0 500
60| 400
4

8001 %

M(Nm)

s00)2 NV PV
oo XA Nafo

N
=
-
8
53

8

8

20040 / s / \
0 I
7 0

0.1 03 05 0.
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Solution

The first step is to calculate M/ at each section and to plot the M// curve. We next plot the area
under this curve at any section to give the curve

.’M
T4

From this, the curve
N % deds

is plotted to give the deflected form
LR e

The maximum deflection at the free end of the cantilever is

6
(00 x 105 - 30 *10 _ 40272 m

1
E 11 x 10°

v =

13.15 Non-uniformly distributed load and terminal couples;
the method of moment-areas

Consider a simply-supported beam carrying end moments M. and M), as in Figure 13.16, and a
distributed load of varying intensity w. Suppose M, is the bending moment at any section due to
the load w acting alone on the beam. Then

M, M
M = My+—=S(L-2+-2Lz
L L

The differential equation for the deflection curve is

M
El— = -M,- — (L -2 - < z (13.60)

The integral between the limitsz = 0andz = Lis

d 1 1 L
EI (—1) - (‘—ilj } - =M.L-—M,L- L Mdz (13.61)
z=L z=0 2

dz dz 2
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Again, on multiplying equation (13.60) by z, we have

M, M
El[z-—zJ < - Myz- = (L-z) - 222 (13.62)
ds L L
But

{

dv L M,| 2’ L M| L 2 L
Ellz—-v| = - - - — - - J;Mozdz (13.63)
dz 0 L 3], L| 2 3],

Butif v = O when z = Oand z =L, then equation (13.63) becomes

av 1 ) 1 ) L
Eil LGl‘ = —;MDL “EMCL - LMozdz
Then
av ML M.L 1 (L
(_) L v (13.64)
dz) _, 3EI  6EI EIL
On substituting this value of (dv/dz), ., into equation (13.61),
dv M. L M, L 1 L 1 (L
(_’) = < - 2 - —’_J. Mozdz - —'I Mozdz (1365)
dz/ __, 3E/ 6El El Y% EIL %

the integral [," M, dz is the area of the bending moment curve due to the load w alone; o Myzdz

is the moment of this area about the end z = 0 of the beam. If 4 is the area of the bending moment
diagram due to the lateral loads only, and z is the distance of its centroid from z = 0, then

L 1 L
A = LModz, zZ = ;’[)Mozdz

and equations (13.64) and (13.65) may be written
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dv ML Myl 4l -2)

_ = + +
( dZ), -0 3EI  6El EIL (13.66)
dv ML ML 4
[ dz), . 6E  3EI EIL (13.67)

The method of analysis, making use of 4 and z, is known as the method of moment-areas; it can
be extended to deal with most problems of beam deflections.
When the section of the beam is not constant, equation (13.60) becomes

gl My Mo MMy (s
dz? 1 I L I

The slopes at the ends of the beam are then given by

Lid v L, d Ld 1
E - Y A Y LR I VAR ¥
[dz)z=L [dz)z=0] j; 01 CL I +L( C D) ° 1

and

dv 1 2, zdz  Mc 1zdz 1 L z%dz
Ej— = — —_ - — 2= = -M
K ]J Lfo 1 L Joo 1 +Lz(MC o], =

It is necessary to plot five curves of (My/1), (1/1), (z/D), (z/I), (M,2/]) and to find their areas.
As an example of the use of equations (13.66) and (13.67), consider the beam of Figure
13.18(i), which carries end couples, M, and M), and a concentrated load # at a distance a from C.
The bending moment diagram for W acting alone is the triangle CBD, Figure 13.18(ii). The
area of this triangle is

To evaluate its first moment about C, divide the triangle into two right-angled triangles, having
centroids at G, and G,, respectively. Then
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a[ﬁu-a)}gf+%{L—a][%(L—a)”-_;—(L +2a)}

It

Figure 13.18 Moment-area solution of a beam carrying end couples
and a concentrated load.

Then equations (13.66) and (13.67) give

ML ML
& M M Wa gy
3El 6EI  6EIL

ﬂ :_M(‘L_MDL_WG(Lz_a2>
o 6EI  3EI  6EIL

Problem 13.9  Determine the deflection of the free end of the stepped cantilever shown in

Figure 13.19(a).

Solution

The bending moment diagram is shown in Figure 13.19(b) and the M// diagram

is shown in Figure 13.19(c).
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/ 3/
A ‘r 7[ ! //
[ fe
| (a) Beam o
- (2 | (2 |
| - -
| | |
0 _r 1 0
l -Wl

|
l (b) Bending Moment Diagram '
|

0
{c) M/ Diagram -WlRi -WI3I
Figure 13.19 Stepped cantilever.
From equation (13.61)
dV L
EI (z — - v) = - moment of area of the bending moment diagram
[
dv t 1 .
orjz—-v = —E x moment of area of the M// diagram
0

Consider the moment of area of M// about the point 4, because we know that

%zv-andv = 0 at the point B

X
NS

331
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or
w1 11 (1 1)
0+v, = — | —+—+—x| —+—
EI|24 16 24 \2 3
WL3(1 ] SJ
EI \24 16 144
B swr3
4 36EI

Problem 13.10 Determine the deflection of the free end of the varying depth cantilever shown
in Figure 13.20(a)

12

\ 2 3!

5/

ATTTTTHERETEEE,

. . WMy
T )

0
;\
I (b} Bending Moment Diagram -w

o

QO Mi  gram x(WL/)

Figure 13.20 Varying depth cantilever.

Solution

Taking the moment of area of the M// diagram about 4, we eliminate v, and dv/dz at B, because
they are both zero. Additionally, as the M// diagram is numerical, we can use numerical
integration, namely Simpsons rule, as shown in Table 13.1.
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Table 13.1 Numerical integration of the moment of M/] about 4

333

Ordinate M/1 F4 MA SM f(zM/1)
1 0 0 0 1 0

2 0.208 WL/1 L/4 0.052 WL/l 4 0.208 WL/l

3 0.25 wL1 L2 0.125 WL/I 2 0.25 WL/

4 0.25 WLI 3L/4 0.188 WL/I 4 0.752 WL/I

5 0.2 WLI L 0.2 WL/ 1 02 WL/

z | 1.41 WL/T

From Table 13.1,

V4

13.16 Deflections of beams due to shear

W |

0.1175 WLYI

x % < 1.41 WLYI

In our simple theory of bending of beams, we assumed that plane sections remain plane during
bending. The effect of shearing forces in a beam is to distort plane cross-sections into curved
planes. In the cantilever of Figure 13.21, the cross-section DH warps as the force F is applied, due
to the shearing strains in the fibres of the beam. We assume that the shearing stresses set up by F
are distributed in the manner already discussed in Chapter 10. This is not true strictly, because
shearing distortions no longer allow sections to remain plane; however, we assume these shearing
effects are secondary, and we are justified therefore in estimating them on our original theory.

NNV

Figure 13.21 Shearing distortions in a
cantilever.

Figure 13.22 Shearing deflection at the

neutral axis of a beam.
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Suppose the shearing stress at the neutral axis of the beam is t,,, then the shearing strain at the
neutral axis is

T
- v (13.68)

where G is the shearing modulus. The additional deflection arising from shearing of the cross-
section is then

1
v, = yy, 6z = % oz

Then

dv.\‘ TNA
_—F — 13.69
= ( )

For a cantilever of thin rectangular cross-section, Section 10.2,

T - 3 13.70)
M 2ht (13.
where 4 is the depth of the cross-section, and ¢ is the thickness. Then
o 3F
dz 2Ght
Then
3Fz
Vv, = + A R 1
* 2Ght (13.71)
At z = 0, there is no shearing deflection, so 4 = 0. Attheendz = L,
3FL
v, = —
o), YeT® (13.72)
The bending deflection at the free end, z = L, is
FL? 4FL?
», = — = (13.73)

3E1 Eh’t
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Then the total end deflection is

4FL3 , 3FL
Eh%: 2Ght

3£ ( h)?
1+ 222
8G \ L

For most materials (3E/8G) is of order unity, so the contribution of the shear to the total deflection
is equal approximately to (h/L)*. Clearly, the shearing deflection is important only for deep beams.

Table 13.2 provides a summary of the maximum bending moments and lateral deflections for
some statically determinate beams.

(13.74)
4rFL?

Eh>t

Problem 13.11 A 1.5 m length of the beam of Problem 11.2 is simply-supported at each end,
and carries concentrated lateral load of 10 kN at the mid-span. Compare the
central deflections due to bending and shearing.

Solution

From Problem 11.2, the second moment of area of the equivalent steel I-beam is 12.1 x 10°° m*.
The central deflection due to bending is, therefore,

3 3 3
vy = L . 10 x 107 (1.5) = 0290 x 107 m

48E, I, 48 200 x 10%) (12.1 x 1079)

The average shearing stress in the timber is

5 x 10°

—_— 0.445 MN/m?
(0.15) (0.075)

If the shearing modulus for timber is

4 x 10° N/m?

the shearing strain in the timber is

6
= M = 0.111 x 1073

4 x 10°
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The resulting central deflection due to shearing is

vS

= yx075 =

(0.111 x 107 (0.75) =

0.0833 x 103 m

Table 13.2 Bending moment and deflections for some simple beams

Beam type and . .
loading — length = L Mpnax Maximum deflection
w
/ § WLY3EI
/<—L__>’ —-WL @ s L
1 w wLY8EI
AN 2
y —wL?p2
/G—L“-—! @ 7= L
w Wa*(L ~ a)*/(3EIL)
‘ W(L—-a)a/L [Lz—az}%
a @z=1L~-
e | @ 3
when a < L/2
w wL?/8 SwL%384E1
<——L—-——| @z=1LR @z=1LR
l‘ﬁﬁ%w 0.0641 wL2 0.00653 wL*/EI
L
@z=0.5773 L @z=0.5195L

Thus, the shearing deflection is nearly 30% of the bending deflection. The estimated total central

deflection is

\4

:VB*’V“,:

0.373 x 103% m
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Further problems (answers on page 693)

13.12

13.13

13.14

13.15

A straight girder of uniform section and length L rests on supports at the ends, and is
propped up by a third support in the middle. The weight of the girder and its load is w
per unit length. If the central support does not yield, prove that it takes a load equal to
(5/8)wL.

A horizontal steel girder of uniform section, 15 m long, is supported at its extremities
and carries loads of 120 kN and 80 kN concentrated at points 3 m and 5 m from the two
ends, respectively. [ for the section of the girder is 1.67 x 10~ m* and E = 200 GN/m’.
Calculate the deflections of the girder at points under the two loads. (Cambridge)

A wooden mast, with a uniform diameter of 30 cm, is built into a concrete block, and is
subjected to a horizontal pull at point 10 m from the ground. The wire guy 4 is to be
adjusted so that it becomes taut and begins to take part of the load when the mast is
loaded to a maximum stress of 7 MN/m’.

Estimate the slack in the guy when the mast is unloaded. Take E for timber = 10 GN/m’.
(Cambridge)

A bridge across a river has a span 2/, and is constructed with beams resting on the banks
and supported at the middle on a pontoon. When the bridge is unloaded the three
supports are all at the same level, and the pontoon is such that the vertical displacement
is equal to the load on it multiplied by a constant A. Show that the load on the pontoon,

due to a concentrated load W, placed one-quarter of the way along the bridge, is given
by

11w

16 [1 . 65“)
13

where / is the second moment of area of the section of the beams. (Cambridge)
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13.16

Deflection of beams

Two equal steel beams are built-in at one end and connected by a steel rod as shown.
Show that the pull in the tie rod is

swi’

32 bal + 3
nd?

P =

where d is the diameter of the rod, and / is the second moment of area of the section of
each beam about its neutral axis. (Cambridge)

NN
B

~1—//2 1/2—




14 Built-in and continuous beams

14.1 Introduction

In all our investigations of the stresses and deflections of beams having two supports, we have
supposed that the supports exercise no constraint on bending of the beam, i.e. the axis of the beam
has been assumed free to take up any inclination to the line of supports. This has been necessary
because, without knowing how to deal with the deformation of the axis of the beam, we were not
in a position to find the bending moments on a beam when the supports constrain the direction of
the axis. We shall now investigate this problem. When the ends of a beam are fixed in direction
so that the axis of the beam has to retain its original direction at the points of support, the beam is
said to be built-in or direction fixed.

Consider a straight beam resting on two supports A and B (Figure 14.1) and carrying vertical
loads. If there is no constraint on the axis of the beam, it will become curved in the manner shown
by broken lines, the extremities of the beam rising off the supports.

Figure 14.1 Beam with end couples.

In order to make the ends of the beam lie flat on the horizontal supports, we shall have to apply
couples as shown by M, and M,. If the beam is firmly built into two walls, or bolted down to two
piers, or in any way held so that the axis cannot tip up at the ends in the manner indicated, the
couples such as M, and M, are supplied by the resistance of the supports to deformation. These
couples are termed fixed-end moments, and the main problem of the built-in beam is the
determination of these couples; when we have found these we can draw the bending moment
diagram and calculate the stresses in the usual way. The couples M, and M, in Figure 14.1 must
be such as to produce curvature in the opposite direction to that caused by the loads.

14.2 Built-in beam with a single concentrated load

We may deduce the bending moments in a built-in beam under any conditions of lateral loading
from the case of a beam under a single concentrated lateral load.
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w
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]
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\Vy z b 44)
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-3} (MM
w(i-§)+(*er)
Figure 14.2 Built-in beam carrying a single lateral load.

Consider a uniform beam, of flexural stiffness EI/, and length L, which is built-in to end
supports C and G, Figure 14.2. Suppose a concentrated vertical load W is applied to the beam at
a distance a from C. If M. and M;; are the restraining moments at the supports, then the vertical
reaction is at Cis

1
W(l —%) +Z@wc - My)
The bending moment in the beam at a distance z from C is therefore

- - == - - Zz<=g----—-—-—-——-—=-—-~= ---—qg<z<=L---
M = {W(l—%)+%WC-MG)}z-MC -Wlz - q

Then, for the deflected form of the beam, the displacement is given by

-—_——— = = - Zz<=g---—-——-—-———-——-——= -—-~-qg<z<=L---

d?v a 1 14.1
El—=—\W1-T +z(MC—MG) z+ M, +W[z—a] (14.1)
or
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Two suitable boundary conditions are:
when z=0,v=dvidz =0

As the Macaulay brackets will be negative when these boundary conditions are substituted, the
terms on the right of equations (14.2) and (14.3) can be ignored, hence

A =B =20
Two other boundary conditions are:
at z =L, v =dvidz =0,

which on substituting into equations (14.2) and (14.3) give the following two simultaneous
equations:

-] -4 +i - —L—2+ +Z - aP® =
g 2w R .

a) 1 L2 ML W -
'[W{l'z)*z“"“c)]?* AL

These simultaneous equations give

M. = wa|l=a)
o = Wa| = (14.4)
2
M, = WL —a)[%) (14.5)
WL
D}
+
_MM \]
8 | 1
i ! : \
e
w

Figure 14.3 Variation in bending moment in a built-in beam
carrying a concentrated load at mid-length.
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M, and M;; are referred to as the fixed-end moments of the beam; M. is measured anticlockwise,

and M;; clockwise.
In the particular case when the load W is applied at the mid-length, a = 4L, and
WL
Me=Mo =g

The bending moment in the beam vary linearly from hogging moments of WL/8 at each endto a
sagging moment of WL/8 at the mid-length, Figure 14.3. There are points of contraflexure, or zero
bending moment, at distances L/4 from each end.

14.3 Fixed-end moments for other loading conditions

The built-in beam of Figure 14.4 carries a uniformly distributed load of w per unit length over the
section of the beam fromz =atoz = b.

),

Mc bt 7 ] G
| LBz

L

Figure 14.4 Distributed load over part of the span of a built-in beam.

Consider the loading on an elemental length 8z of the beam,; the vertical load on the element is wéz,
and this induces a retraining moment at C of amount

SM. = wsziu
C L2

from equation (14.4).
The total moment at C due to all loads is

_ h W _ )2
M. = fa LZZ(L 2P dz

which gives

Me = _;_[EZ_ (b? - a*) - % (b’ - a’) +%(b‘ - a“)} (14.6)
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M, may be found similarly. When the load covers the whole of the span,a = 0andb = L, and
equation (14.6) reduces to

2
. (14.7)

T

In this particular case, M; = M,; the variation of bending moment is parabolic, and of the form
shown in Figure 14.5; the bending moment at the mid-length is wL’/24, so the fixed-end moments

are also the greatest bending moments in the beam.

k-3
,Z: . W
T 24
1 { '
L ®

t

_owl
12

Figure 14.5 Variation of bending moment in a built-in beam
carrying a uniformly distributed load over the whole span.

The points of contraflexure, or points of zero bending moment, occur at a distance

% 3 -3 (14.8)

from each end of the beam.
When a built-in beam carries a number of concentrated lateral loads, W,, W,, and W;, Figure

14.6, the fixed-end moments are found by adding together the fixed-end moments due to the loads
acting separately. For example,

2
L-a
M. = Y Wa, ( ’] (14.9)
Fe123 L
for the case shown in Figure 14.6.
W, W, W,
C/ﬂf J l l GﬁV )
78| a | | | V£ e

Lt a; > !

! i

i [

o L !

1 |

Figure 14.6 Built-in beam carrying a number of concentrated loads.
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We may treat the case of a concentrated couple M|, applied a distance a from the end C, Figure
14.7, as a limiting case of two equal and opposite loads W a small distance a apart. The fixed-end
moment at C is

MC = —_WE_(L - a)z + M (L -a - 6(1)2
L? L?
If 6a is small,
M, = _Wa (L -a?+ L4 [a(L -af +8al(l - all - 3a)]
L? L?
which gives
M, = P2 o - 3a
L2
|‘ L :l
! }
|
42C Mo G!r
Mc\ 4 ¥ 7 %)MG
le—a —a El !
) w ;
Q - 3 —.t é)
Mc >4<—a + 82 ¥4 M,
_.‘ |

Figure 14.7 Built-in beam carrying a concentrated couple.

But if 8a is small, M, is statically equivalent to the couple Wda, and

M,
M, = -L—;’ (L - a)L - 3a) (14.10)
Similarly,
M,
M, = L_;’ a2L - 3a) (14.11)

14.4 Disadvantages of built-in beams

The results we have obtained above show that a beam which has its ends firmly fixed in direction
is both stronger and stiffer than the same beam with its ends simply-supported. On this account
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it might be supposed that beams would always have their ends built-in whenever possible; in
practice it is not often done. There are several objections to built-in beams: in the first place a
small subsidence of one of the supports will tend to set up large stresses, and, in erection, the
supports must be aligned with the utmost accuracy; changes of temperature also tend to set up large
stresses. Again, in the case of live loads passing over bridges, the frequent fluctuations of bending
moment, and vibrations, would quickly tend to make the degree of fixing at the ends extremely
uncertain.

Most of these objections can be obviated by employing the double cantilever construction. As
the bending moments at the ends of a built-in beam are of opposite sign to those in the central part
of the beam, there must be points of inflexion, i.e. points where the bending moment is zero. At
these points a hinged joint might be made in the beam, the axis of the hinge being parallel to the
bending axis, because there is no bending moment to resist. If this is done at each point of
inflexion, the beam will appear as a central girder freely supported by two end cantilevers; the
bending moment curve and deflection curve will be exactly the same as if the beam were solid and
built in. With this construction the beam is able to adjust itself to changes of temperature or
subsistence of the supports.

14.5 Effect of sinking of supports

When the ends of a beam are prevented from rotating but allowed to deflect with respect to each
other, bending moments are set up in the beam. The uniform beam of Figure 14.8 is displaced so
that no rotations occur at the ends but the remote end is displaced downwards an amount & relative
to C.

The end reactions consist of equal couples M and equal and opposite shearing forces 2M /L,
because the system is antisymmetric about the mid-point of the beam. The half-length of the beam
behaves as a cantilever carrying an end load 2M_L; then, from equation (13.18),

3EI 12E71
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Figure 14.8 End moments induced by the sinking of the supports of a built-in beam.
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Therefore
6EIS

M. = (14.12)

For a downwards deflection 8, the induced end moments are both anticlockwise; these moments
must be superimposed on the fixed-end moments due to any external lateral loads on the beam.

Problem 14.1 A horizontal beam 6 m long is built-in at each end. The elastic section modulus
is 0.933x107> m®. Estimate the uniformly-distributed load over the whole span
causing an elastic bending stress of 150 MN/m’.

Solution

The maximum bending moments occur at the built-in ends, and have value

wlL?

If the bending stress is 150 MN/m’,

M, = of . oZ, = (150 x 10°)(0.933 x 107 = 140kNm
y
Then
12
w = —=(M,) = 46.7 kN/m
L2

14.6 Continuous beam

When the same beam runs across three or more supports it is spoken of as a continuous beam.
Suppose we have three spans, as in Figure 14.9, each bridged by a separate beam; the beams will
bend independently in the manner shown. In order to make the axes of the three beams form a
single continuous curve across the supports 8 and C, we shall have to apply to each beam couples
acting as shown by the arrows. When the beam is one continuous girder these couples, on any bay
such as BC, are supplied by the action of the adjacent bays. Thus A8 and CD, bending downwards
under their own loads, try to bend BC upwards, as shown by the broken curve, thus applying the
couples M, and M, to the bay BC. This upward bending is of course opposed by the down load
on BC, and the general result is that the beam takes up a sinuous form, being, in general, concave
upwards over the middle portion of each bay and convex upwards over the supports.
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Figure 14.9 Bending moments at the supports of a continuous beam.

In order to draw the bending moment diagram for a continuous beam we must first find the couples
such as M; and M. In some cases there may also be external couples applied to the beam, at the
supports, by the action of other members of the structure.

When the bending moments at the supports have been found, the bending moment and shearing
force diagrams can be drawn for each bay according to the methods discussed in Chapter 7.

14.7 Slope-deflection equations for a single beam

In dealing with continuous beams we can make frequent use of the end slope and deflection
properties of a single beam under any conditions of lateral loading. The uniform beam of Figure
14.10(i) carries any system of lateral loads; the ends are supported in an arbitrary fashion, the
displacements and moments being as shown in the figure. In addition there are lateral forces at the
supports. The rotations at the supports are 8, and 8,, respectively, reckoned positive if clockwise;
M, and M are also taken positive clockwise for our present purposes. The displacements §, and
8, are taken positive downwards.

The loaded beam of Figure 14.10(i) may be regarded as the superposition of the loading
conditions of Figures 14.10(ii) and (iii). In Figure 14.10(ii) the beam is built-in at each end; the
moments at each end are easily calculable from the methods discussed in Sections 14.2 and 14.3.
The fixed-end moments for this condition will be denoted by M, and M,,. In Figure 14.10(iii)
the beam carries no external loads between its ends, but end displacements and rotations are the
same as those in Figure 14.10(i); the end couples for this condition are M,' and M,' The
superposition of Figures 14.10(i1) and (ii1) gives the external loading and end conditions of Figure
14.10(i). We must find then the end couples in Figure 14.10(iii); from equations (13.49), putting
w = 0, we have

/

ML ML
8, = — - +— 85 - 6
A 3EI  6EI L(B 2
ML ML
8, = -——— + +—6,-06
B 6EI  3EI L(B )

Then
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Figure 14.10 The single beam under any conditions of lateral load and end support shown in
(i) can be regarded as the superposition of the built-in end beam of
(ii) and the beam with end couples and end deformations of (iii).

But for the superposition we have

/ /
M, = M, - M, My = My - My

Thus
1 L
1 L
eB+z(5A—83)= _6E1 2(MB_MFB)_(MA—MFA)] (1414)

These are known as the slope-deflection equations; they give the values of the unknown moments,



Further problems

M, and M. These equations will be used in the matrix displacement method of Chapter 23.

Table 14.1 provides a summary of the end fixing moments and maximum deflections for some
encastré beams.

Table 14.1 End fixing moments and maximum deflections for some encastré beams

Beam type and d
loading — length = L M, Mg Maximum deflection
w —-2W(L-a)’d’
4 + N 3EI(L +2a)®
1 R | N ~Wa(L —a)%L? —Wa* (L —a)/L?
Ma L Me @z = 2aL/(L+2a)
when a> L/2
4
y AV \ =
LN , 5 384EI
— L -wL12 —-wL¥12
MA MB
@z=L"
w 0-001309wL*
El
—wL?/30 ~wL?/20
Ma —— T} @z=0-525L

Further problems (answers on page 693)

14.2

14.3

349

A beam 8 m span is built-in at the ends, and carries a load of 60 kN at the centre, and
loads of 30 kN, 2 m from each end. Calculate the maximum bending moment and the
positions of the points of inflexion.

A girder of span 7 m is built-in at each end and carries two loads of 80 kN and 120 kN
respectively placed at 2 m and 4 m from the left end. Find the bending moments at the

ends and centre, and the points of contraflexure. (Birmingham)



15 Plastic bending of mild-steel beams

15.1 Introduction

We have seen that in the bending of a beam the greatest direct stresses occur in the extreme
longitudinal fibres; when these stresses attain the yield-point values, or exceed the limit of
proportionality, the distribution of stresses over the depth of the beams no longer remains linear,
as in the case of elastic bending.

The general problem of the plastic bending of beams is complicated; plastic bending of a beam
is governed by the forms of the stress—strain curves of the material in tension and compression.
Mild steel, which is used extensively as a structural material, has tensile and compressive
properties which lend themselves to a relatively simple treatment of the plastic bending of beams
of this material. The tensile and compressive stress—strain curves for an annealed mild steel have
the forms shown in Figure 15.1; in the elastic range Young's modulus is the same for tension and
compression, and of the order of 300 MN/m’. The yield point corresponds to a strain of the order
0.0015. When the strain corresponding with the upper yield point is exceeded straining takes place
continuously at a constant lower yield stress until a strain of about 0.015 is attained; at this stage
further straining is accompanied by an increase in stress, and the material is said to strain-harden.
This region of strain-hardening begins at strains about ten times larger than the strains at the yield
point of the material.

Stress (a)
2| | .
300 MN/m ; T jStrain
i I hardening
! Tension |
[ I
: . Strain (;
; 100015 G015 Sran )
| i '
Strain | Compression ,
hardening 1 I
/fl J1300 MN/m?

Figure 15.1 Tensile and compressive stress—strain curves of an annealed mild steel.

In applying these stress-strain curves to the plastic bending of mild-steel beams we simplify the
problem by ignoring the upper yield point of the material; we assume the material is elastic, with
a Young's modulus E, up to a yield stress ¢,; Figure 15.2. We assume that the yield stress, 0,, and
Young's modulus, E, are the same for tension and compression. These idealised stress—strain
curves for tension and compression are then similar in form.
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! Tension

Compression

Figure 15.2 Idealized tensile and compressive stress—strain curves of annealed mild steel.

15.2 Beam of rectangular cross-section

As an example of the application of these idealised stress—strain curves for mild steel, consider the
uniform bending of a beam of rectangular cross-section; b is the breadth of the cross-section and
h its depth, Figure 15.3(i). Equal and opposite moments M are applied to the ends of a length of
the beam. We found that in the elastic bending of a rectangular beam there is a linear distribution
of direct stresses over a cross-section of the beam; an axis at the mid-depth of the cross-section is
unstrained and therefore a neutral axis. The stresses are greatest in the extreme fibres of the beam;
the yield stress, a,, is attained in the extreme fibres, Figure 15.3(ii), when

[

20,
h

M =

= M, (say)

where [ is the second moment of area of the cross-section about the axis of bending. But
[ = bh’/12, and so

1
M, = gbhzcy (15.1)

As the beam is bent beyond this initial yielding condition, experiment shows that plane cross-
sections of the beam remain nearly plane as in the case of elastic bending. The centroidal axis
remains a neutral axis during inelastic bending, and the greatest strains occur in the extreme tension
and compression fibres. But the stresses in these extreme fibres cannot exceed o, the yield stress;
at an intermediate stage in the bending of the beam the central core is still elastic, but the extreme
fibres have yielded and become plastic, Figure 15.3(iii).
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Figure 15.3 Stages in the elastic and plastic bending of a rectangular mild-steel beam.

If the curvature of the beam is increased the elastic core is diminished in depth; finally a
condition is reached where the elastic core is reduced to negligible proportions, and the beam is
more or less wholly plastic, Figure 15.3(iv); in this final condition there is still a central unstrained,
or neutral, axis; fibres above the neutral axis are stressed to the yield point in tension, whereas
fibres below the neutral axis to the yield point are in compression. In the ultimate fully plastic
condition the resultant longitudinal tension in the upper half-depth of the beam is

1
—bha
2 Y

There is an equal resultant compression in the lower half-depth. There is, therefore, no resultant
longitudinal thrust in the beam; the bending moment for this fully plastic condition is

1 1 1
M, = | =bho,|| =h| = —bhls 15.2
- (2w (2] - 2o s

This ultimate moment is usually called the fully plastic moment of the beam; comparing equations
(15.1) and (15.2) we get
3

My = M, (15.3)

Thus plastic collapse of a rectangular beam occurs at a moment 50% greater than the bending
moment at initial yielding of the beam.

15.3 Elastic—plastic bending of a rectangular mild-steel beam

In section 15.2 we introduced the concept of a fully plastic moment, M,, of a mild-steel beam; this
moment is attained when all longitudinal fibres of the beam are stressed into the plastic range of
the material. Between the stage at which the yield stress is first exceeded and the ultimate stage
at which the fully plastic moment is attained, some fibres at the centre of the beam are elastic and
those remote from the centre are plastic. At an intermediate stage the bending is elastic—plastic.
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Figure 15.4 Elastic—plastic bending of a rectangular section beam.

Consider again a mild-steel beam of rectangular cross-section, Figure 15.4, which is bent about
the centroidal axis Cx. In the elastic—plastic range, a central region of depth 4, remains elastic;
the yield stress o, is attained in fibres beyond this central elastic core. If the central region of depth
h, behaves as an elastic beam, the radius of curvature, R, is given by

— = % (15.4)

where E is Young's modulus in the elastic range of the material. Then

2Ka,
By = — (15.5)

Now, the bending moment carried by the elastic corz of the beam is

M, - o, — (15.6)

and the moment due to the stresses in the extreme plastic regions is

2
bn? Bk (15.7)

M = c
2 " 2

The total moment is, therefore,

M= M+M, = 6, — +06,|— - —
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354
which gives
2 h?
M=o 2|1 - (15.8)
4 3h?
But the fully plastic moment, M,, of the beam is
bh?
MP = GYT
Thus equation (15.8) may be written
nl
M = Ml - = (15.9)
3h?
On substituting for 4, from equation (15.5),
s, 2
Mo 32| R (15.10)
M, 3\E h
At the onset of plasticity in the beam,
h 20, h
— = — = — (Sa ) R
R z ( R) , y (15.11)
Then equation (15.10) may be written
(WR):
Moo 12 (15.12)

M, 3 (WRY

Values of (M/M,) for different values of (h/R)/(h/R), are given in Figure 15.5; the elastic limit of
the beam is reached when

M = %MP = M, (say)

As M is increased beyond M,, the fully plastic moment M, is approached rapidly with increase of
curvature (//R) of the beam; M is greater than 99% of the fully plastic moment when the curvature

is only five times as large as the curvature at the onset of plasticity.
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Figure 15.5 Moment—curvature relation for the elastic—plastic
bending of a rectangular mild-steel beam.

15.4 Fully plastic moment of an I-section; shape factor

The cross-sectional dimensions of an I-section are shown in Figure 15.6; in the fully plastic
condition, the centroidal axis Cx is a neutral axis of bending. The tensile fibres of the beam all
carry the same stress oy; the total longitudinal force in the upper flange is

oybtf

and its moment about Cx is

c},bt,{ -%-h - —;—tf) = %Gybtf h - 1)

Similarly, the total force in the tensile side of the web is
h —
o 5 yle,

and its moment about Cx is

1 (1 2 1
_GY(Eh - tf) t, = Ecytw(h - 2

The compressed longitudinal fibres contribute moments of the same magnitudes. The total
moment carried by the beam is therefore
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M, = obifh - 1)+ %zw (- 2P (15.13)
y
- __I_l_l >
( |
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|
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Lo, [
|— p —>

Figure 15.6 Fully plastic moment of an I-section beam.

In the case of elastic bending we defined the elastic section modulus, Z,, as a geometrical
property, which, when multiplied by the allowable bending stress, gives the allowable bending
moment on the beam. In equation (15.13) suppose

1
Z, = bifh-1)+ th (- Zt)Z (15.14)
Then Z, is the plastic section modulus of the I-beam, and

M, = oz, (15.15)

As a particular case consider an I-section having dimensions:

20 cm, t, = 0.70 cm
b = 10 cm, t, = 1.00 cm

Then

Z, = (0.1)0.010)(0.2 - 0.010) + %(0.007)(0.2 - 0.0200 = 0247 x 10° m?

The elastic section modulus is approximately

Z, = 0225 x10° m’

If M, is the bending moment at which the yield stress o, is first reached in the extreme fibres of the
beam, then
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— L - - 110 (15.16)

Thus, in this case, the fully plastic moment is only 10% greater than the moment at initial yielding.
The ratio (Z,/Z,) is sometimes called the shape factor.

15.5 More general case of plastic bending

In the case of the rectangular and I-section beams treated so far, the neutral axis of bending
coincided with an axis of symmetry of the cross-section. For a section that is unsymmetrical about
the axis of bending, the position of the neutral axis must be found first. The beam in Figure 15.7
has one axis of symmetry, Oy; the beam is bent into the fully plastic condition about Ox, which is
perpendicular to Oy. The axis Ox is the neutral axis of bending; the total longitudinal force on the
fibres above Ox is 4,0, where 4, is the area of the cross-section of the beam above Ox. If 4, is
the area of the cross-section below Ox, the total longitudinal force on the fibres below Ox is 4,6,.
If there is no resultant longitudinal thrust in the beam, then

that is,

A=A (15.17)

AiGy

Neutral

welg e

Figure 15.7 Plastic bending of a beam having one axis of symmetry in the
cross-section, but unsymmetrical about the axis of bending.

The neutral axis Ox divides the beam cross-section into equal areas, therefore. If the total area
of cross-section is A4, then

A =A =
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Then

Ao, = Apo, = %AGY

Suppose C, is the centroid of the area 4, and C, the centroid of 4,; if the centroids C, and C, are
distances y, and y,, respectively, from the neutral axis Oz, then

1 —_ —
M, = EAG,,(y] +y) (15.18)

The plastic section modulus 1s

z, = =L = —aly +y) (15.19)

Problem 15.1 A 10 cm by 10 cm T-section is of uniform thickness 1.25 cm. Estimate the
plastic section modulus for bending about an axis perpendicular to the web.

Fe—10em—> 1, _ 4y y7¢m

Solution

The neutral axis of plastic bending divides the section into equal areas. If the neutral axis is a
distance h below the extreme edge of the flange,

(0.)A = (0.0875)(0.0125) + (0.1)(0.0125 - h)

Then
h = 00117 m

Then
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X

-21-(0.1)(0.0117)2cy + %(0.0875)(0.0008)20,

. %(0.0883)2(0.0125)0,

(0.0557 x 107%)s,

The plastic section modulus is then

Z, = —£ = 00557 x 10° m?
Oy

The elastic section modulus is

Z, = 0.0311 x 107 m?

Then
Zp 0.0557

MP
=t - 2 1.79
M, Z 0.0311

15.6 Comparison of elastic and plastic section moduli

For bending of a beam about a centroidal axis Cx, the elastic section modulus is

zZ, = — (15.20)

where / is the second moment of area of the cross-section about the axis of bending, and y,,, is the
distance of the extreme fibre from the axis of bending.
From equation (15.19) the plastic section modulus of a beam is

z, - A;(;lhyj) (15.21)

Values of Z, and Z, for some simple cross-sectional forms are shown in Table 15.1. In the solid

rectangular and circular sections Z, is considerably greater than Z; the difference between Z, and
Z, is less marked in the case of thin-walled sections.
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Table 15.1 Comparison of elastic and plastic section moduli for some simple cross-sectional forms

Shape factor,

Elastic section Plastic section i
Cross-sectional form modulus, Z, modulus, Z, Z,
b =
. - :y ' Axis Cy:4b*h Axis Cy:1b*h 1-5
I Axis Cx:3bh* Axis Cx : ibh? 15
=~ "X
|
y_ L i
i
Solid rectangular section
AL
R X
1 =t t<h; t<b
e : h+1b
¥ ! Axis Cy: bt(h+3b) Axis Cy:bt(h +3b) 2
-== h+3b
o Axis Cx:ht(b+3h) |  Axis Cx:he(b+3h) b+in
Thin-walled rectangular : B : z btih
box of uniform 3
wall-thickness, t
Y
Axis Cy or Cx: Axis Cy or Cx:
X wr 47 16
| 4 3 31T
Soild circular section
y
AN
\ t<r
x . 4
/ Axis Cy or Cx:7r’t 47t Z
t ™
Thin-walled circular tube
b
_ . Yo
T; ; i <b; 1,<h s
f Axi :1b? i 14b? )
,|1 = :———x xis Cy:3b“t Axis Cy:3b“t biy+ A,
; . 1 3 . 41
JL | t Axis Cx:h{bts+3ht, ] | Axis Cx:h[bt;+1ht,] b+ ht,,

Thin-walled I-section
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15.7 Regions of plasticity in a simply-supported beam

The mild-steel beam shown in Figure 15.8 has a rectangular cross-section,; it is simply-supported
at each end, and carries a central lateral load W. The variation of bending moment has the form
shown in Figure 15.8(ii); the greatest bending moment occurs under the central load and has the
value WL/4. From the preceding analysis we see that a section may take an increasing bending
moment until the fully plastic moment M, of the section is reached. The ultimate strength of the
beam is reached therefore when

n

MP=4

(15.22)

0]

i (i)

Figure 15.8 Plastic bending of a simply-supported beam.

If b is the breadth and % the depth of the rectangular cross-section, the bending moment, M,,
at which the yield stress, o,, is first attained in the extreme fibres is

w2

M, = o

6 3

P
At the ultimate strength of the beam
M, 4

W = = —
L L

2
cy% (15.23)

The beam is wholly elastic for a distance of

2 (-1:) - L (15.24)

from each end support, Figure 15.9, as the bending moments in these regions are not greater than
M,. The middle-third length of the beam is in an elastic—plastic state; in this central region
consider a transverse section a—a of the beam, a distance z from the mid-length. The bending
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moment at this section is

M = lW[-'-L —z) (15.25)
2 |2

If W has attained its ultimate value given by equation (15.22),

2M, 1
M = 7 -2—L -z (15.26)

Suppose the depth of the elastic core of the beam at this section is h,, Figure 15.9; then from
equation (15.9),

M = MI1- —
3h?
w
[ L - L |
1 2 e 2 _
—bd |
o ; ! 4 ' ]'
full plasticit
h . > X p y 1 %]LZ—l—-ho |
| -
o : A A
| | L ol L ) L
3 - 3 [ 3 -
w w

Figure 15.9 Regions of plasticity in a simply-supported beam carrying a
distributed load; in the figure the depth of the beam is exaggerated.

On substituting this value of M into equation (15.26), we have

hl
0 Zz (15.27)

l—__:l—._

3h° L

and thus

2
hy = 6n” (15.28)
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The total depth A,, of the elastic core varies parabolically with z, therefore; from equation (15.28),
h, = hwhenz =1/6L. The regions of full plasticity are wedge-shaped; the shapes of the regions
developed in an actual mild-steel beam may be affected by, first, the stress-concentrations under
the central load W, and, second, the presence of shearing stresses on sections such as a—a, Figure
15.9; equation (15.28) is true strictly for conditions of pure bending only.

For a simply-supported rectangular beam carrying a total uniformly distributed load ¥, Figure
15.10, the bending moment at the mid-length is

at the ultimate load-carrying capacity of the beam. At a transverse section a—a, a distance z from
the mid-length, the moment is

M = —u%(ﬁ -42%) = ﬁ(ﬁ -4) = M, 1—4(i)2 (15.29)

Fully plastic !
regions |
A Tl [ a | A
L | LV3E-1) ' L(v3-1) ! L
TV STV STV, | EV A
w w

Figure 15.10 Regions of plasticity in a simply-supported beam carrying a
distributed load; in the figure the depth of the beam is exaggerated.

From equation (15.9), the depth 4, of the elastic core at the section a—a is given by
h 2
1 - 2>

3h2

2
hl = 12h? (i)
L

M = M,

P

Then

or



364 Plastic bending of mild-steel beams
hy = 243 h(%) (15.30)

The limit of the wholly elastic length of the beam is givenby & = hj, orz = L/(2v3). The regions
of plasticity near the mid-section are triangular-shaped, Figure 15.10.

15.8 Plastic collapse of a built-in beam

A uniform beam of length L is built-in at each end to rigid walls, and carries a uniformly
distributed load w per unit length, Figure 15.11. If the material remains elastic, the bending
moment at each end is wL?/12, and at the mid-length wL’/24. The bending moment is therefore
greatest at the end supports; if yielding occurs first at a bending moment M,, then the lateral load
at this stage is given by

wi?
= — 15.31
Y T (15.31)
L
b >
0 : w/unit length !
At b bbb b,
| |'
I I
wL2/12 1\ /
(i) _
wl?/24 _A \/ :B
| !
! I
wL?/16 [\ A
(ii) - 8
wL’/18 A \__./
Figure 15.11 Plastic regions of a uniformly loaded built-in beam.
or
12M,
wL = - (15.32)
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If the load w is increased beyond the limit of elasticity, plastic hinges first develop at the remote
ends. The beam only becomes a mechanism when a third plastic hinge develops at the mid-length.
On considering the statical equilibrium of a half-span of the beam we find that the moments at the
ends and the mid-length, for plastic hinges at these sections, are

2
M, - 3156— (15.33)
or
16M,
wi - (15.34)

Clearly, the load causing complete collapse is at least one-third greater than that at which initial
yielding begins because M, is greater than M,.

Another method of plastically analysing the beam of Figure 15.11 is by the principle of virtual
work described in Chapter 17. In this case the beam is assumed to collapse in the form of a
mechanism, when three plastic hinges form, as shown in Figure 15.12.

As the beam is encastré at both ends, it is statically indeterminate to the second degree,
therefore three hinges are required to change it from a beam structure to a mechanism.

L2 L2

|
I ' 1

aaatatatatatataleletalalaatn e e etnaleseaatalalatalatatats

Hogging hinge Hogging hinge

Sagging hinge

Figure 15.12 Plastic collapse of a beam.

Thus, because the beam cannot resist further loading at the three hinges, the slightest increase
in load causes the hinges to rotate like ‘rusty’ hinges. Additionally, as the bending moment
distribution is constant during this collapse, the curvature of the beam remains constant during
collapse. Hence, for the purpose of analysis, the beam's two sections can be assumed to remain
straight during collapse.

Work done by the three hinges during collapse

=MB + M, 20 + MS (15.35)
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Work done by the distributed load

L

WL x 28 (15.36)

Equating (15.35) and (15.36)

wl? wl?

aM 8 = 2 6 or M, = (15.37)

16

which is identical to equation (15.33). This method of solution is discussed in greater detail in
Chapter 17.

Further problems (answers on page 693)

15.2

15.3

154

15.5

15.6

15.7

A uniform mild-steel beam 4B is 4 m long; it is built-in at 4 and simply-supported at B.
It carries a single concentrated load at a point 1.5 m from 4. if the plastic section
modulus of the beam is 0.433 x 107 m’, and the yield stress of the material is 235
MN/m’, estimate the value of the concentrated load causing plastic collapse.

A uniform mild-steel beam is supported on four knife edges equally spaced a distance
8 m apart. Estimate the intensity of uniformly distributed lateral load over the whole
length causing collapse, if the plastic section modulus of the beam is 1.690 x 107 m’,
and the yield stress of the material is 235 MN/m’.

A uniform beam rests on three supports 4, B and C with two spans each 5 m long. The
collapse load is to be 100 kN per metre, and 6, = 235 MN/m®. What will be a suitable
mild-steel section using a shape factor 1.15?

If, in Problem 15.4, AB is 8 m and BC is 7 m, and the collapse loads are to be 100 kN/m
on 4B, 50 kN/m on BC, find a suitable mild-steel section I-beam, with 6, = 235
MN/m?.

A continuous beam ABCD has spans each 8 m long, it is 45 cm by 15 cm, with flanges
2.5 cm thick and web 1 ém thick. Find the collapse load if the whole beam carries a
uniformly-distributed load. Which spans collapse? 6, = 235 MN/m’.

A mild-steel beam 5 cm square section is subjected to a thrust of 200 kN acting in the
plane of one of the principal axes, but may be eccentric. What eccentricity will cause
the whole section to become plastic if 6, = 235 MN/m*?



16 Torsion of circular shafts and
thin-walled tubes

16.1 Introduction

In Chapter 3 we introduced the concepts of shearing stress and shearing strain; these have an
important application in torsion problems. Such problems arise in shafts transmitting heavy
torques, in eccentrically loaded beams, in aircraft wings and fuselages, and many other instances.
These problems are very complex in general, and at this elementary stage we can go no further than
studying uniform torsion of circular shafts, thin-walled tubes, and thin-walled open sections.

16.2 Torsion of a thin circular tube

The simplest torsion problem is that of the twisting of a uniform thin circular tube; the tube shown
in Figure 16.1 is of thickness ¢, and the mean radius of the wall is 7, L is the length of the tube.
Shearing stresses 7 are applied around the circumference of the tube at each end, and in opposite
directions.

Figure 16.1 Torsion of a thin-walled circular tube.

If the stresses 1 are uniform around the boundary, the total torque T at each end of the tube is

T = Quoyr = 2wttt (16.1)

Thus the shearing stress around the circumference due to an applied torque 7 is
T (16.2)
T = .
2nrlt
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We consider next the strains caused by these shearing stresses. We note firstly that
complementary shearing stresses are set up in the wall parallel to the longitudinal axis of the tube.
If 65 is a small length of the circumference then an element of the wall ABCD, Figure 16.1, is in
a state of pure shearing stress. If the remote end of the tube is assumed not to twist, then the
longitudinal element ABCD is distorted into the parallelogram ABC'D’, Figure 16.1, the angle of
shearing strain being

Yy = (16.3)

L
G

if the material is elastic, and has a shearing (or rigidity) modulus G. But if 0 is the angle of twist
of the near end of the tube we have

YL = (16.4)
Hence
_yL _ 1L
8 = T = E (16.5)

It is sometimes more convenient to define the twist of the tube as the rate of change of twist per
unit length; this is given by (6/L), and from equation (16.5) this is equal to
T

= (16.6)

s
L

16.3 Torsion of solid circular shafts

The torsion of a thin circular tube is a relatively simple problem as the shearing stress may be
assumed constant throughout the wall thickness. The case of a solid circular shaft is more complex
because the shearing stresses are variable over the cross-section of the shaft. The solid circular
shaft of Figure 16.2 has a length L and radius a in the cross-section.

Figure 16.2 Torsion of a solid circular shaft.
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When equal and opposite torques T are applied at each end about a longitudinal axis we assume
that

(i) the twisting is uniform along the shaft, that is, all normal cross-sections the same
distance apart suffer equal relative rotation;

(i1) cross-sections remain plane during twisting; and
(iit) radii remain straight during twisting.

If 0 is the relative angle of twist of the two ends of the shaft, then the shearing strain y of an
elemental tube of thickness & and at radius r is

Yy = — (16.7)

If the material is elastic, and has a shearing (or rigidity) modulus G, Section 3.4, then the
circumferential shearing stress on this elemental tube is

Gro
T = Gy = — (16.8)
L
The thickness of the elemental tube is dr, so the total torque on this tube is
Q@rrérytr = 2nrtér
The total torque on the shaft is then
T = “2nrtvdr
/s
On substituting for 1 from equation (16.8), we have
G6 a 3
T = 2n| — ridr 16.9
[ L] [ (169)
Now
4
o [ riar = B4 6.
[0 > (16.10)

This is the polar second moment of area of the cross-section about an axis through the centre, and
is usually denoted by J. Then equation (16.9) may be written
GJB

L

T = (16.11)
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We may combine equations (16.8) and (16.11) in the form

r_z~_ 6
J r L

(16.12)

We see from equation (16.8) that T increases linearly with r, from zero at the centre of the shaft to
Gad/L atthe circumference. Along any radius of the cross-section, the shearing stresses are normal
to the radius and in the plane of the cross-section, Figure 16.3.

16.4 Torsion of a hollow circular shaft

It frequently arises that a torque is transmitted by a hollow circular shaft. Suppose a, and a, are
the internal and external radii, respectively, of such a shaft, Figure 16.4. We make the same
general assumptions as in the torsion of a solid circular shaft. If t is the shearing stress at radius

r, the total torque on the shaft is

T = f"l 2nr 2 vdr

Figure 16.3 Variation of shearing stresses
over the cross-section for elastic torsion of a
solid circular bar.

(16.13)

Figure 16.4 Cross-section of a hollow
circular shaft.

If we assume, as before, that radii remain straight during twisting, and that the material is elastic,

we have

Then equation (16.13) becomes
GJB

T = fa’ GO oniar - S8
o \ L 3

where

(16.14)
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J = faz 2nr3dr (16.15)
a,

Here, Jis the polar second moment of area or, more generally, the torsion constant of the cross-
section about an axis through the centre; J has the value

J = f: 2nridr = %(a; —a[‘) (16.16)

Thus, for both hollow and solid shafts, we have the relationship

G
L

Problem 16.1  What torque, applied to a hollow circular shaft of 25 cm outside diameter and
17.5 cm inside diameter will produce a maximum shearing stress of 75 MN/m’
in the material (Cambridge)

Solution

We have

r, = 12,5 cm, r, = 875 cm

Then

J = -’25[(0.125)‘l - (0.0875)"] = 0292 x 107 m*

If the shearing stress is limited to 75 MN/m’, the torque is

-3 6
roo Juo_ 0292 x107)05 x 109 | oss inm

r, (0.125)

Problem 16.2 A ship's propeller shaft has external and internal diameters of 25 cmand 15 cm.
What power can be transmitted at 110 rev/minute with a maximum shearing
stress of 75 MN/m’, and what will then be the twist in degrees of a 10 m length
of the shaft? G = 80 GN/m’. (Cambridge)
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Solution
In this case
r, = 0I125m, r, = 0075m, [ = 10m
J = %[(0.125)4 - (0.075/] = 0335 x 103 m*
and
T = 75 MN/m?
Then
-3 6
oo Juol 0335 x 10705 x 109 | L0 inm
7, 0.125

At 110 rev/min the power generated is

201 x 10’)(21: x 16100) = 232 x 105 Nm/s

The angle of twist is

. L. o1 x 10%) (10) = 0.075 radians = 4.3°

GJ (80 x 109 (0.335 x 1073)

Problem 16.3 A solid circular shaft of 25 cm diameter is to be replaced by a hollow shaft, the
ratio of the external to internal diameters being 2 to 1. Find the size of the
hollow shaft if the maximum shearing stress is to be the same as for the solid
shaft. What percentage economy in mass will this change effect? (Cambridge)

Solution

Let r be the inside radius of the new shaft; then = 2r the outside radius of the new shaft

J for the new shaft (16r* - ¥4 = 7.5nr*

I
2

J for the old shaft

12‘- x (0.125% = 0384 x 103 m*
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If T is the applied torque, the maximum shearing stress for the old shaft is

7(0.125)
0.384 x 1073

and that for the new one is

" T@2r)
7.5nr*

If these are equal,
7(0.125) _ I@2n
0.384 x 107 7.5nr!

Then

~
1}

} 0.261 x 107 m?

or r 0.640 m

Hence the internal diameter will be 0.128 m and the external diameter 0.256 m.

area of new cross-section _ (0.128)* - (0.064)
area of old cross-section (0.125)?

Thus, the saving in mass is about 21%.

0.785
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Problem 16.4 A ship's propeller shaft transmits 7.5 x 10° W at 240 rev/min. The shaft has an
internal diameter of 15 cm. Calculate the minimum permissible external
diameter if the shearing stress in the shaft is to be limited to 150 MN/m’.

(Cambridge)

Solution
If T is the torque on the shaft, then

T(zn x 240

) = 7.5 = 108
60

Thus
T = 298 kNm
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If d, is the outside diameter of the shaft, then

J = 312(d;‘ - 0.150Y) m*

If the shearing stress is limited to 150 MN/m?, then

Td, 6
— = 150 x 10
2J

Thus,
Td, = (300 x 10%J

On substituting for Jand T

(298 x 10%4, = (300 x 106)(%) (@) - 0.150°)

This gives
4
d d
— ] -3l -1
0.150 0.150

On solving this by trial-and-error, we get
d, = 154(0.150) = 0231 m

"
=)

or d = 231cm

16.5 Principal stresses in a twisted shaft

It is important to appreciate that uniform torsion of circular shafts, of the form discussed in Section
16.3, involves no shearing between concentric elemental tubes of the shaft. Shearing stresses 1
occur in a cross-section of the shaft, and complementary shearing stresses parallel to the
longitudinal axis, Figure 16.5.

Figure 16.5 Principal stresses in the outer surface of a twisted circular shaft.
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An element ABCD in the surface of the shaft is in a state of pure shear. The principal plane
makes angles of 45° with the axis of the shaft, therefore, and the principal stresses are +1. If the
element ABCD is square, then the principal planes are AC and BD. The direct stress on AC is
compressive and of magnitude t; the direct stress on BD is tensile and of the same magnitude.
Principal planes such as AC cut the surface of the shaft in a helix; for a brittle material, weak in
tension, we should expect breakdown in a torsion test to occur by tensile fracture along planes such
as BD. The failure of a twisted bar of a brittle material is shown in Figure 16.6.

Figure 16.6 Failure in torsion of a circular bar of brittle cast iron, showing a tendency
to tensile fracture across a helix on the surface of the specimen.

The torsional failure of ductile materials occurs when the shearing stresses attain the yield stress
of the material. The greatest shearing stresses in a circular shaft occur in a cross-section and along
the length of the shaft. A circular bar of a ductile material usually fails by breaking off over a
normal cross-section, as shown in Figure 16.7.

Figure 16.7 Failure of torsion of a circular bar of ductile cast iron, showing a
shearing failure over a normal cross-section of the bar.

16.6 Torsion combined with thrust or tension

When a circular shaft is subjected to longitudinal thrust, or tension, as well as twisting, the direct
stresses due to the longitudinal load must be combined with the shearing stresses due to torsion in
order to evaluate the principal stresses in the shaft. Suppose the shaft is axially loaded in tension
so that there is a longitudinal direct stress ¢ at all points of the shaft.

T
o [+
T

T

Figure 16.8 Shearing and direct stresses due to combined torsion and tension.
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If 7 is the shearing stress at any point, then we are interested in the principal stresses of the
systemn shown in Figure 16.8; for this system the principal stresses, from equations (5.12), have the
values

1o _;_,/62 v 4T (16.17)

2

and the maximum shearing stress, from equation (5.14), is

L %\/02 +4r (16.18)

Problem 16.5 A steel shaft, 20 cm external diameter and 7.5 cm iriternal, is subjected to a
twisting moment of 30 kNm, and a thrust of 50 kN. Find the shearing stress
due to the torque alone and the percentage increase when the thrust is taken
into account. (RNC)

Solution

For this case, we have

~
i

0.100 m, r, = 00375 m

A = af?-rY) = 00270 m?

The compressive stress is

3
6 = -2 o _30x10 _ )85 MN/m?
A 0.0270

Now

J = .;l(r: - rj) = 000247 m*

The shearing stress due to torque alone is

T 3
e - o B0 x10(01000 | 09 vinjm?

J 0.00247

The maximum shearing stress due to the combined loading is
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max

1
T = %[0'2+412]2 = 153 MN/m?

Problem 16.6 A thin steel tube of 2.5 cm diameter and 0.16 cm thickness has an axial pull of
10 kN, and an axial torque of 23.5 Nm applied to it. Find the magnitude and
direction of the principal stresses at any point. (Cambridge)

Solution

It will be easier, and sufficiently accurate, to neglect the variation in the shearing stress from the
inside to the outside of the tube. Let

T = the mean shearing stress due to torsion

the mean radius = 0.0109 m

~
"

t = the thickness = 0.016 m

i

then the moment of the total resistance to shear
= 2n 1t = (1.19 x 10°) 1 Nm
If this is equal to 23.5 Nm, then
T = 19.75 MN/m’
The area of the cross-section is approximately
2art = 0.1098 x 10 m?
Hence, the tensile stress is

3
6 = —10>10 _ 911 MN/m?

0.1098 x 1073



378 Torsion of circular shafts and thin-walled tubes

The principal stresses are

.;_ b+ &+ a0} - % (911 + 99.3) MN/m’?

Then
o, = -4.1 MN/m?, o, = +952 MN/m?

the positive sign denoting tension. The planes across which they act make angles 6 and (6 + n/2)
with the axis, where

tan20 = 2= - 393 _ o434
o 911
giving 0 = 11.75°.

16.7 Strain energy of elastic torsion

In Section 16.3 we found that the torque—twist relationship for a circular shaft has the form

GJ8
L

T =

This shows that the angle of twist, 8, of one end relative to the other, increases linearly with 7. If
one end of the shaft is assumed to be fixed, then the work done in twisting the other end through
an angle 0 is the area under the 7-9 relationship, Figure 16.9. This work is conserved in the shaft
as strain energy, which has the value

U = =T8 (16.19)

Figure 16.9 Linear torque—twist relationship and strain energy of elastic torsion.
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On using equation (16.11) we may eliminate either 0 or 7, ard we have

] [_L_) - [_Gi)ez (1620)
2GJ 2L

16.8 Plastic torsion of a circular shaft

When a circular shaft is twisted the shearing stresses are greatest in the surface of the shaft. If the
limit of proportionality of the material in shear is at a stress T,, then this stress is first attained in
the surface of the shaft at a torque

JTy

T = (16.21)

a

where J is the polar second moment of area, and a is the radius of the cross-section.

Suppose the material has the idealised shearing stress—strain curve shown in Figure 16.10;
behaviour is elastic up to a shearing stress 1,, the shearing modulus being G. Beyond the limit of
proportionality shearing proceeds at a constant stress T, This behaviour is nearly true of mild steel
with a well-defined yield point.

If we are dealing with a solid circular shaft, then after the onset of plasticity in the surface fibres
the shearing stresses vary radially in the form shown in Figure 16.11. The material within a radius
b is still elastic; the material beyond a radius b is plastic and is everywhere stressed to the yield
stress T,

|
|
I ] Plastic
! zone

o .,

G Elastic core

Figure 16.10 Idealized shearing stress—strain Figure 16.11 Elastic-plastic torsion of a solid
curve of mild steel. circular shaft.

The torque sustained by the elastic core is

J
T, = ‘b” - —’231;3 T, (16.22)
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where subscripts 1 refer to the elastic core. The torque sustained by the outer plastic zone is

o= f) i - %‘Y la* - 57 (16.23)

The total torque on the shaft is

3 3
T="T+T = mY(%a3 —%b3) _ 2na r){l—b—] (16.24)

The angle of twist of the elastic core is
. ot (16.25)
Gb '

where L is the length of the shaft. We assume that the outer plastic region suffers the same angle
of twist; this is tantamount to assuming that radii remain straight during plastic torsion of the shaft.
Equation (16.25) gives

p o= - (16.26)

Then the torque becomes

1/G)
T = Znat, |1 - (/9) (1 (16.27)
3 4(a/L)P \ &
At the onset of plasticity
L
= — = 8, (say) (16.28)
Ga

Then, for any other condition of torsion,

T,L
8 = _C:_b. = 9,(%) (16.29)

which gives

by _ Zx
[—] ol (16.30)

>
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and equation (16.27) becomes

= ‘[Y = - —

3
T 2na’ -1 8, (16.31)
3 410

When 0 becomes very large, T approaches the value

2%a’
3

1, = T, (say) (16.32)

which is the torque on the shaft when it is fully plastic. For smaller values of 8, we have then

3
}]
I _ . l[_{) (16.33)
T, 4\s
107~ — = - o=
[
0.8 |
~—Elastic limit |
|
T 0.6 | l
T, I !
0.4 | '
[ |
! |
0.2 |
| |
1 |
l 1
0 1 2 3 4 5
0/8

Figure 16.12 Development of full plasticity in the torsion of a solid circular shaft.

This relationship, which is plotted in Figure 16.12 for values of 8/8; up to 5, shows that the fully
plastic torque T, is approached rapidly after the elastic limit is exceeded. The torque T, at the
elastic limit is

T, = =T

F

= 16.34
y (16.34)
If a torsion test is carried out on a thin-walled circular tube of mean radius r and thickness ¢, the

average shearing stress due to a torque 7T is

T

2nr’

T =

from equation (16.2). If 0 is the angle of twist of a length L of the tube, the shearing strain is
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‘Y = ﬁ
L

from equation (16.4). Thus, from a torsion test, in which values of T and 0 are measured, the
shearing stress T and strain y can be deduced. The resulting variation of 1 and y is called the
shearing stress—strain curve of the material; the forms of these stress—strain curves are similar to
tensile and compressive stress—strain curves, as shown in Figure 16.13. In the elastic range of a
material

T o= Gy

where G is the shearing modulus of the material (Section 3.4).

k Limit of proportionality
Mild steel
L

Aluminium
light-alloy

Figure 16.13 Forms of shearing stress—strain curves for mild steel
and for aluminium light alloys.

It is important to appreciate that the shearing stress—strain curve cannot be directly deduced
from a torsion test of a solid circular bar, although the limit of proportionality can be estimated
reasonably accurately.

16.9 Torsion of thin tubes of non-circular cross-section

In general the problem of the torsion of a shaft of non-circular cross-section is a complex one; in
the particular case when the shaft is a hollow thin tube we can develop, however, a simple theory
giving results that are sufficiently accurate for engineering purposes.

Consider a thin-walled closed tube of uniform section throughout its length. The thickness of
the wall at any point is ¢, Figure 16.14, although this may vary at points around the circumference
of the tube. Suppose torques T are applied to each end so that the tube twists about a longitudinal
axis Cz. We assume that the torque 7T'is distributed over the end of the tube in the form of shearing
stresses which are parallel to the tangent to the wall at any point, Figure 16.14, and that the ends
of the tube are free from axial restraint. If the shearing stress at any point of the circumference is
7, then an equal complementary shearing stress is set up along the length of the tube. Consider the
equilibrium of the section ABCD of the wall: if the shearing stress T at any point is uniform
throughout the wall thickness then the shearing force transmitted over the edge BC is ¢ per unit
length.
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tt/unit length

tt/unit length

Figure 16.14 Torsion of a thin-walled tube of any cross-section.

For longitudinal equilibrium of ABCD we must have that 1¢ on BC is equal and opposite to 1¢
on AD; but the section ABCD is an arbitrary one, and we must have that 1¢ is constant for all parts
of the tube. Suppose this constant value of 17 is

u o= g (16.35)

The symbol ‘q’ is called the shear flow; it has the units of a load per unit length of the
circumference of the tube.

Suppose we measure a distance s round the tube from some point O on the circumference,
Figure 16.14. The force acting along the tangent to an element of length s in the cross-section is
116s. Suppose r is the length of the perpendicular from the centre of twist C onto the tangent. Then
the moment of the force 185 about C is

Trds

The total torque on the cross-section of the tube is therefore
T = §ttrds (16.36)

where the integration is carried out over the whole of the circumference. But 7 is constant and
equal to g for all values of s. Then

T= ttérds = qirds (16.37)

Now ¢ rds is twice the area, 4, enclosed by the centre line of the wall of the tube, and so

T = 24q (16.38)

The shearing stress at any point is then
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‘[ = —— = ——
; oAr (16.39)
To find the angle of twist of the tube we consider the strain energy stored in the tube, and equate

this to the work done by the torques 7 in twisting the tube. When a material is subjected to
shearing stresses T the strain energy stored per unit volume of material is, from equation (3.5),

Ll
2G

where G is the shearing (or rigidity) modulus of the material. In the tube the shearing stresses are
varying around the circumference but not along the length of the tube. Then the strain energy
stored in a longitudinal element of length L, width &s and thickness ¢ is

( i) Ltbs
2G

The total strain energy stored in the tube is therefore

_ o T
U= foo Lids (16.40)

where the integration is carried out over the whole circumference of the tube. But ¢ is constant,
and equal to ¢, and we may write

’l'2 2 ds qu ds
U =X 2% . 9L & 16.4
fZG t 2G f t (1641)

If the ends of the tube twist relative to each other by an angle 0, then the work done by the torques
Tis

w - lrs (16.42)

On equating U and W, we have

2L ds
p - 4L &8 16.43
GT f t ( )

But from equation (16.38) we have

9 = — (16.44)
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Then equation (16.43) may be written

TL I ds
24%G J ¢t

For a tube of uniform thickness ¢,

TL (Sj
f = =
44%*G\ ¢

where S is the total circumference of the tube.

Equation (16.45) can be written in the form

where

<
n
I
B
N

wT&
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(16.45)

(16.46)

J is the torsion constant for the section; for circular cross-sections J is equal to the polar second

moment of area, but this is not true in general.

16.10 Torsion of a flat rectangular strip

A long flat strip of rectangular cross-section has a breadth b, thickness ¢, and length L. For uniform
torsion about the centroid of the cross-section, the strip may be treated as a set of concentric thin

hollow tubes, all twisted by the same amount.

y_

o &
_? En_-__J{_%__

Figure 16.15 Torsion of a thin strip.
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Consider such an elemental tube which is rectangular in shape the longer sides being a distance
y from the central axis of the strip; the thickness of the tube is &y, Figure 16.15.

If 6T is the torque carried by this elemental tube then the shearing stress in the longer sides of
the tube is

- T 16.47
4by by (16.47)
where b is assumed very much greater than ¢. This relationship gives
daT
— = 4pr (16.48)
For the angle of twist of the elemental tube we have, from equation (16.46),
_ 2bLT
6 = — (16.49)
16b°y“Goy
where L is the length of the strip. This gives the further relationship
dT 0
— 8byZGZ (16.50)
On comparing equations (16.48) and (16.50), we have
0
T = 2G 7 (16.51)

This shows that the shearing stress 1 varies linearly throughout the thickness of the strip, having
a maximum value in the surface of

max

8
= G — -
1 t[ L) (16.52)

An important feature is that the shearing stresses 7 act parallel to the longer side b of the strip, and
that their directions reverse over the thickness of the strip. This approximate solution gives an
inexact picture of the shearing stresses near the corners of the cross-section.

Figure 16.16 Directions of shearing stresses in the torsion of a thin strip.
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We ought to consider not rectangular elemental tubes but flat tubes with curved ends. The
contours of constant shearing stress are then continuous curves, Figure 16.16.
The total torque on the cross-section is

L
8 1 ]
T = [28by%G|— = —bt’G= (16.53)
[wrelg)s - jwol
The polar second moment of area of the cross-section about its centre is

J o= Lp? b3 (16.54)

12
If b is very much greater than ¢, then, approximately,

[
J = — b 16.55
> (16.55)

The geometrical constant occurring in equation (16.53) is b7/3; thus, in the torsion of a thin strip
we cannot use the polar second moment of area for J in the relationship

r . g

- = 16.56
¥ 7 ( )
Instead we must use
1
J = ~p? (16.57)

3

16.11 Torsion of thin-walled open sections

We may extend the analysis of the preceding section to the uniform torsion of thin-walled open-
sections of any cross-sectional form.

b,

Figure 16.17 Torsion of an angle section.
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In the angle section of Figure 16.17, we take elemental tubes inside the two limbs of the section.
If ¢, and ¢, are small compared with 5, and b, the maximum shearing stresses in limbs 1 and 2 are

T = th[%) T, = Gtz[%) (16.58)

where the angle of twist per unit length, 6/L, is common to both limbs.
The greatest shearing stress occurs then in the surface of the thicker limb of the cross-section.
The total torque is the summation of the torques carried by the two limbs, and has the value

T - %(ble . bzt;)G[%) (16.59)

In general, for a thin-walled open-section of any shape the shearing stress in the surface of a
section of thickness ¢ is

0
= Gt} = .
T t ( L) (16.60)

The total torque on the section is

- L] 1,3
T = G(L) Z3bt (16.61)

where the summation is carried out for all limbs of the cross-section.

Further problems (answers on page 693)

16.7 Find the maximum shearing stress in a propeller shaft 40 cm external, and 20 cm internal
diameter, when subjected to a torque of 450 kNm. If G = 80 GN/m’, what is the angle
of twist in a length of 20 diameters? What diameter would be required for a solid shaft
with the same maximum stress and torque? (RNC}

16.8 A propeller shaft, 45 m long, transmits 10 MW at 80 rev/min. The external diameter of
the shaft is 57 cm, and the internal diameter 24 cm. Assuming that the maximum torque
is 1.19 times the mean torque, find the maximum shearing stress produced. Find also the
relative angular movement of the ends of the shaft when transmitting the average torque.
Take G = 80 GN/m’. (RNC)

16.9 A steel tube, 3 mlong, 3.75 cm diameter, 0.06 cm thick, is twisted by a couple of 50 Nm.
Find the maximum shearing stress, the maximum tensile stress, and the angle through
which the tube twists. Take G = 80 GN/m’. (Cambridge)
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Compare the mass of a solid shaft with that of a hollow one to transmit a given power
ata given speed with a given maximum shearing stress, the inside diameter of the hollow
shaft being two-thirds of the outside diameter. (Cambridge)

A 2.5 cm circular steel shaft is provided with enlarged portions 4 and B. On to this
enlarged portion a steel tube 0.125 c¢m thick is shrunk. While the shrinking process is
going on, the 2.5 cm shaft is held twisted by a couple of magnitude 50 Nm. When the
tube is firmly set on the shaft this twisting couple is removed. Calculate what twisting
couple is left on the shaft, the shaft and tube being made of the same material.
(Cambridge)

¥
2.5cm
)

je—5Cm

A thin tube of mean diameter 2.5 cm and thickness 0.125 cm is subjected to a pull of 7.5
kN, and an axial twisting moment of 125 Nm. Find the magnitude and direction of the
principal stresses. (Cambridge)
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17.1 Introduction

Energy methods are very useful for analysing structures, especially for those that are statically
indeterminate. This chapter introduces the principle of virtual work and applies it to statically
determinate and statically indeterminate frameworks. The chapter also shows how the method can
be used for the plastic design of beams and rigid-jointed plane frames.

The chapter then introduces strain energy and complementary strain energy, and through the
use of worked examples, shows how these methods can be used for analysing structures.

In Chapters 24 and 25, energy methods are used for developing the finite element method,
which is one of the most powerful methods for analysing massive and complex structures with the
aid of digital computers.

17.2 Principle of virtual work
In its simplest form the principle of virtual work is that

For a system of forces acting on a particle, the particle is in statical equilibrium if,
when it is given any virtual displacement, the net work done by the forces is zero.

A virtual displacement is any arbitrary displacement of the particle. In the virtual displacement the
forces are assumed to remain constant and parallel to their original lines of actions. Consider a
particle under the action of three forces, F,, F, and F;, Figure 17.1.

Figure 17.1 System of forces in statical equilibrium acting on a particle.

Imagine the particle to be given a virtual displacement of any magnitude in any direction.
Suppose the displacements of the particle along the lines of action of the forces F,, F, and F,, are
9,,9,and &, respectively; these are known as corresponding displacements. Then the forces form
a system in statical equilibrium if
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F18l + ini2 + F383 =0 (17.1)

On the basis of the principle of virtual work we can show that the resultant of the forces acting on
a particle in statical equilibrium is zero. Suppose the forces F|, F, and F;, acting on the particle
of Figure 17.1, have a resultant of magnitude R in some direction; then by giving the particle a
suitable virtual displacement, A, say, in the direction of R, the net work is

RA
But by the principle of virtual work the net work is zero, so that
RA = 0 (17.2)

As A can be non-zero, R must be zero. Hence, by adopting the principle of virtual work as a basic
concept, we can show that the resultant of a system of forces in statical equilibrium is zero.

17.3 Deflections of beams

In a pin-jointed frame subjected to loads applied to the joints only the tensile load in any member
is constant throughout the length of that member. In the case of a beam under lateral loads the
bending moments and shearing forces may vary from one section to another, so that the state of
stress is not uniform along the length of the beam. In applying the principle of virtual work to
problems of beams we must consider the loading actions on the virtual displacement of an
elemental length of the beam.

‘“C'; \ lll B\)

Figure 17.2 Deflections of a straight beam.

Consider a straight beam AB, Figure 17.2, which is in statical equilibrium under the action of
a system of external forces and couples. The beam is divided into a number of short lengths; the
loading actions on a short length such as 8z consist of bending moments M and (M + éM), an
external lateral load W, and lateral shearing forces at the ends of the short length. Now suppose
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the short lengths of the beam are given small virtual displacements, 6. If the elements remain
connected to each other, then for given values of 8 the external forces, such as W, suffer certain
displacements, such as 6. Then the values of 6 and  form a compatible system of rotations and
displacements, and the virtual work of any system of forces and couples in statical in equilibrium
on these rotations and displacements is zero. Then

YoMx8+ Y Wxs =0 (17.3)
because the net work of the internal shearing forces is zero. The summation M x 0 is carried out
for all short lengths of the beam, whereas the summation X x 3§ is carried out for all external
loads, including couples and force reactions at points of support. If the virtual rotations 0 are

small, the virtual displacements & can be found easily. If the lengths 6z of the beam are
infinitesimally small,

YamMxe = f“LOdM (17.4)

z=0

where the integration is carried out over the whole length L of the beam. But

fz“LedM - [Me —fMdB]:L

=0 0

Now
MOLZy - oL, - L,

and is the work of the end couples on their respective virtual displacements; this work has already
been taken account of in the summation ZH x §, so that equation (17.3) becomes

Ywxs = f”_zoLMdB - fOLM[-ZZﬂ] dz (17.5)

Now (d6/dz) is the curvature of the beam when it is given the virtual rotations and displacements.
If we put

—_— = - (17.6)
where R is the radius of curvature of the beam, then

Y wWxs = foLM{%]dz (17.7)

As an example of the application of equation (17.7), consider the cantilever shown in Figure 17.3;
having a uniform flexural stiffness £/. The cantilever carries a vertical load W at the free end; the
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bending moment at any section due to W is Wz, so that, if the beam remains elastic, the
corresponding curvature at any section is
L B

R EI

Suppose the corresponding deflection of W is §, Figure 17.3; then the values of 1/R and & form a
system of compatible curvature and displacements.

w
El '|<—Z
/ e 0
v ll 'T
R 1 |
| I
| 1
4 L * (i)
/ . |
M |
|
: L
~ L >

Figure 17.3 Deflections of a cantilever with an end load.

We derive a simple system of forces and couples in statical equilibrium by applying a unit vertical
load at the end of the cantilever; the bending moment at any section due to this unit load is

M = 1xz = z

Then, from equation (17.7),

2
1x5=fL Ng - (¥,
0 R o EI

Then

Problem17.1 A simply-supported beam, of uniform flexural stiffness £/, carries a lateral load
W at a distance g from the end 4. Estimate the vertical deflection of /.
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El w
<-{—' a b ]
Al 8 c
e 21 1l ['r—zz Wa
L Ry a1y L
| II 1, R |
| | !

) ( |
P S
) B )
M, M, all

Solution

The bending moment a distance z, from A, for the section 4B, is

Wbz,
L

The curvature for 4B if therefore
1 Wbz,

R, EIL

Similarly, the curvature at any section in BC is
1 Waz,
R, EIL

Now consider the beam with a unit vertical load at B; the bending moments at sections in AB and
BC are, respectively,

bz, az,
L
Then, equation (17.7) gives

el )

_ a Wb? b Wa? 2
-, EILZZdZ J, EIL

(=2}
1
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Therefore

a _ Wa®b?
3EIL? 3EIL

—
+
S
-
1

Problem 17.2 A cantilever of uniform flexural stiffness E/ carries a uniformly-distributed
load of intensity w. Estimate the vertical deflection of the free end.

ETIN

M/ |<—z—>1|

Solution

Due to the distribution load, the curvature at any section is

2
wz

1
R 2E7

For a unit vertical load at the free end, the bending moment at any section is
M =z

Then equation (17.7) gives
3
5 = fL MNag = rew,
0 R o 2EI

wL?
8E/

Then

8 =

Problem 17.3 A semicircular thin ring has a radius » and uniform flexural stiffness £/. The
ring carries equal and opposite loads # at the ends. Find the increase in
distance between the loaded points.
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Solution
The bending moment at any angular position 6 is

M = Wr sinb

If the ring is thin, the change of curvature at any section is

1 M

R El

Now consider the virtual work of the forces and couples on their resulting displacements; if § is
the increase in distance between the loaded points

wxs = (M La - Mre - o gneam
.o M3 o EI el

Then

w3
2EI

S =

17.4 Statically indeterminate beam problems

The principle of virtual work may also be used in solving statically indeterminate beam problems.
Consider, for example, the beam of Figure 17.4, which is built-in at 4 and supported on a roller at
B; the beam is of uniform flexural stiffness £7, and carries a uniformly distributed lateral load

A w -— z —P{
ﬂ‘f!\‘oﬁt‘é& et
e / 1
I
: I']f I w
|
) | 1
A% 5 }
A )] |
: M |
e L -

Figure 17.4 Propped cantilever under uniform lateral loading.
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of intensity w. Suppose the statically indeterminate reaction at B is ¥, then the bending moment
at any section is

lwz2 - Wz
2

and if the beam remains elastic the resulting curvature at an any section is

..1_. = _1_ -!-WZZ—WZ
R EIr\2

The bending moment at any section due to a unit lateral load at B is
M =z

Then, for no deflection at B in Figure 17.4,

2
1X0=fL .l_dzszi _ML—Wzdz
0 R o EI\ 2

Then
Llwz3dz = fL Wz3dz
o 2 0
Thus
W= 3wl
8

17.5 Plastic bending of mild-steel beams

The principle of virtual work is not limited in its application to linear problems of the type
discussed in the preceding problems. It is useful, for example, in solving problems of plastic
bending; the uniform mild-steel beam of Figure 17.5 has a fully-plastic moment M,. At collapse
of the beam, plastic hinges develop at 4 and B. Suppose the point B is now given a virtual
displacement §; if § is small, AB rotates through an angle (8/a), and BC through an angle [6/(L -
a)]. The work of the system of forces and couples of Figure 17.5(ii) on the virtual displacements
and rotations of Figure 17.5(iii) is zero. Then

W8=M-2—8+ 5
Pla (L - a)
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Figure 17.5 Plastic bending of a mild-steel beam.

Then
M,(2L - a)
all - a)

This is the value of W at plastic collapse of the beam.

Problem 17.4 A uniform mild-steel beam has a fully-plastic moment M,. Find the intensity
of uniformly distributed loading at collapse of the beam.
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Solution

Suppose that, at plastic collapse, hinges develop at the built-in end, and at a distance a from that
end. Then

—1-wa8+lw(L—a)8=M,,2—8+ 3
2 2 a (L - a

Thus,

This is a minimum with respect to (a/L) when

= 2-y2)

a
L

Then the relevant value of w is

w - M (3 +242)
LZ

An alternative method of solving the above beam problem is to consider rotations of the hinges,
as shown in the figure below

Aw a ) [ -—
A ' :
Hogging } 3 l\Nohinge
hinge o «
Snaggin
hinge ¥

8§ = 8a = allL - a)
(17.8)
8 .all - a

=]
Il
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B = a+6 =0 allL -a +9
= 0 all -a) +8 (L-a/( - a

=0 (a+L-a/( -a

8 LAL

a) (17.9)

=
1]

Now work done by the hinges
= M, 8+ M, B

=M, 8+M, 6 L/ -a
=M, 0 (L-a/(L-a+M, 8L/ -a

= M® (L-a+L)/({L - a

MB (2L - a) /(L - a) (17.10)

Work done by the load ‘w’
wxLx82 = wL6 a2 (17.11)

Equating (17.10) and (17.11)
M, 8 2L -a)/(L -a = wl® a2

orw = 22L -a)/[al (L - | M,

2L 2 - all) M,
al (1 - all)

Dividing the top and bottom by L, we get

22 -al) M,
Lz(i) (1 - alL)
L

w =
(17.12)

which is the same result as before.
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17.6 Plastic design of frameworks

For this case, let us make the following definitions:

)\' =

Problem 17.5

Solution

load or safety factor
plastic moment of resistance of the cross-section of a member of the framework

the elastic moment of resistance of the cross-section of a member of the
framework at first yield

shape factor = M, /M,

yield stress

Obtain a suitable sectional modulus for the portal frame below, given that:

A =27
§ = 1.15
oy = 300 MPa
10kN
}4—2m-———1-<—2m——>|
| ] 5kN

T 2M,
3m M, M,
J‘ XXX T <<

Experiments have shown* that this framework can fail by any of the following modes:

(a) beam mechanism
()] sway mechanism
(c) combined beam and sway mechanism.

4
Baker J F - 4 Review of Recent Investigations into the Behaviour of Steel Frames in the Plastic Range, JICE, 31, 188, 1949,
and Baker J F, Home M R and Heyman J - The Steel Skeleton, Cambridge University Press, 1956.
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(a) Beam mechanism
This mode of failure, which was discussed in the previous section, is shown below. Applying the

principle of virtual work to do this failure mechanism, we get work done by the plastic hinges
when rotating = work done by the 10 kN load

or M,0+2M, x20+M,0 = 10 x 20

6M, = 200

M, = 3.33 kNm

10 kN
0 ¢ §
20

,l 2m { 2m——|

(b) Sway mechanism

This mode of failure is shown below. Applying the principle of virtual work to this failure
mechanism, we get

M, 6+6+86+8) = 5 x 30
or M, = 15
M, = 3.75 kNm

S5kN

s
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(c) Combined mechanism

This mode of failure is shown below.

20
20

From the principle of virtual work,

M + 2M, x 20 + M, x 20 + M = 10 x 26 + 5 x 38
or 8M, = 35
M, = 4375 kNm

The design M, is obtained from the largest of these values, as this is the value of M, which will just
prevent failure.

4375 x A = 4375 x 2.7

- design M,

11.81 KNm

design M,

M
Now — = §

M 11.81
M, = —£ - —— - 1027kNm
S 1.15
. M
Z = sectional modulus = —L
Gy
1027 x 10°
300 x 108

Z = 3 x 107 m’ (verticals)

Z = 6 x 10 m’ (horizontal beam)
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Problem 17.6  Determine a suitable sectional modulus for the portal frame below, assuming
that the frame has two mechanical hinges at its base, and that the following

apply:
A =27
S =115
¢ = 300 MPa
2.5 kN/m 5kN
—_—
2M,
M, M,
3m
l /Mechanical hinges
e 4m 1

Solution

The beam mechanism is shown below

[ et

0 20 8

fo——2m——f—2m——]

For this case

25 x 4 x 202

M, 0 +2M, <26 +M,0
or oM, = 10
M, = 1.67 kKNm

The sway mechanism is shown as follows, where it must be noted that the mechanical hinge does
no work during failure.
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5kN

— 1

3m

'

AU ~<\xs
For this case
M, (0 + 6) = 5 x 30
or 2M, = 15
M, = 7.5 kKNm

The combined mechanism is shown below, where it can be seen that the sagging hinge on the beam
does not necessarily occur at mid-span.

L 2+ X | 2-X i
14 T o
0 o

B
0

For this case,
2M,B+M,(a+8) = 25x 4x (2«;XJ6+5 x 30
= 5(2 + X)6+150 (17.13)
but
(2+x)6= (2-X)o
(2 +XJ
La= 8 (17.14)
2-X
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i (2+X+2—X)
2-x

4
or B=-(2—_§9

(17.15)

Substituting equations (17.14) and (17.15) into equation (17.13), we get

4 2+ X
2 x M, x + M +M, = 52+X +15
P 2 - X P(z_x) P
ormM, 822 X2 X _ 550,015
2-X
or M, = [5(2 +X) + 15] 2 1‘2X)

- ]—12-(10 + 5X + 15)2 - X)

- Lpsesne -x
12

1

= E(50 - 25X + 10X - 5X3)

or M, = —11-2- 50 - 15X - 5x?)

For maximum

aM

M, —2 =0
dx
dM
£ = -15 - 10x
dx
orX = -15m

(17.16)

(17.17)
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Substituting equation (17.17) into equation (17.16)

M, = 1—12 (50 + 22.5 - 11.25)

M, = 5.1 kNm

Design M, = 27 x35.1
= 1377 kNm
M, = 377 _ 1197 kNm
1.15
, . 1197 < 10°
300 x 10°
Z = 8 x 107 m? (horizontal beam)

The method will now be applied to two-storey and two-bay frameworks.

Problem 17.17 Determine a suitable sectional modulus for the two storey framework below,
given that

A =3, S =116, o, = 316 MPa

8 kN
{ 7kN
—
IKN 4m
5m
<X < XX T J_'

Solution

The possible mechanisms are as follows:
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{(a) Top beam

(b} Bottom beam

0 a7 —7

J ¢ 0
<\ <<

Top Bottom
(c) Sway mechanisms (3 types)

0 20 0 0

20

Top Bottom

{d) Combined mechanisms (3 types)

<

Top and bottom

Top and bottom

20



(a)

or

®)

or

(©)

(d)

(e)

or

M, (8+0+0+6)

M, (6+06+606+80)

Plastic design of frameworks

Top beam mechanism

M, (6+20+0) = 8x30
4M, = 24
M, = 6kNm

Bottom beam mechanism

M,(0+20+0) = 9x30
aM, = 27
M, = 6.75kNm

Top sway mechanism

7 x 46

il

7 kNm

M,

Bottom sway mechanism

7 x50

M, = 8.75kNm

Top and bottom sway mechanisms

M,x60 = 7x90

i

M, = 10.5kNm

Combined top mechanism
M, (06+0+20+20+08+0) = 8x30+7x90
8M, = 87

M, = 10.88 kNm

409
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(g Combined bottom mechanism
M, (6+06+20+6+20+0) = 9x30+7x90
or 8M, = 90

M, = 11.25 kNm

(h) Combined top and bottom mechanisms

M,(06+20+20+20+20+268) = 8x30+9x30+7x90

or 10M, = 114
M, = 11.4kNm
Design M, = 114x3 = 342kNm
42
M, = 342 29.48 kNm
116
2948 x 10°
= _LT = 9x10°% m?
316 x 10

Problem 17.18 Determine suitable sectional moduli for the two-bay framework below, given
that

A =3 § = 115 6, = 316 MPa

50 kN 60 kN
o 3m 3m . 3m 3m
! } -
\ \
( 2M, A — 70kN
5m
J\ M, M, M,
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Solution

The various possible mechanisms are given below:

(@) Left beam 0
0
24
20
1] 0 0
(c) Sway

0 0

0
§]
20 0] 0
(d) Combined (1)
0
0 )
0
0
20
. 24
(e) Combined (2)
! 0 1
20)
(
20 20
0 0

f

20
() Combined (3)

{
o
(a) Left beam

M,(0+40+26) = 50x36
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M, 150
M, = 214KkNm
(b) Right beam

M,(36+60+0) = 60x36

10M, = 180
M, = 18kNm
(¢ Sway
Mpx60 = 70 x50
6M, = 350
M, = 583 kNm
(d) Combined (1)
M, (06+40+20+0+0+0+8) = T70x50+50x30
11M, = 500
M, = 455kNm
(e) Combined (2)
M, (06+6+20+0+60+20+6)
= 70 x50 + 60 x 30
or 14M, = 530
M, = 37.86 kNm
i3] Combined (3)

M, (6+40+40+0+60+20+0)
= 70 x50+ 50 %30 +60x30
or 19M, = 680

M, = 358 kNm
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Design M, = 583 x3 = 174.9 kNm
M, = 182 1521 kvm
1.15
3
z = D21 X100 e 10 m? (verticals)
316 x 10°
Z = 9.6 x 107* m? (left beam)
Z = 144 107 m’ (right beam)

17.7 Complementary energy

The principle of virtual work leads also to a concept of wider application in stress—strain analysis
than that of strain energy; this other property of a structure is known as complementary energy.

Consider the statically determinate pin-jointed frame shown in Figure 17.6; the frame is pinned
to a rigid foundation at 4 and B, and carries external loads W, and W, at joints C and D,
respectively. Suppose the corresponding displacements of the joints C and D are §,, and §,,
respectively; the tensile force induced in a typical member, such as BC, is P, and its resulting
extension is e. The forces W, W,, P etc. are a system of forces in statical equilibrium, whereas
the extensions, e, etc., are compatible with the displacements §, and 3§, of the joints. Thus by the
principle of virtual work

W + W, = 3 Pe (17.18)

where the summation is carried out for all member of the frame.

7/2'////// ////////E/

Fig. 17.6 Statically determinate plane frame under any system of external load.

Now suppose the external load W, is increased in magnitude by a small amount 8 #,, the external
load W, remaining unchanged; due to change in ¥, small changes occur in the forces in the
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members of the frame P, for example, increasing to (P + dP). Now consider the virtual work of
the modified system of forces on the original set of displacements and extensions; we have

(W, + W), + W)8, = Y (P + 8P

m

where the summation is carried out for all members of the frame. Now suppose the external load
W, is increased in magnitude by a small amount § ¥, the external load W, remaining unchanged;
due to change in #, small changes occur in the forces in the members of the frame, P, for example,
increasing to (P + éP).

Now consider the virtual work of the modified system of forces on the original set of
displacement and extensions; we have

(W, + SW,)p, + W3, = Y (P + 8P (17.19)

m

On subtracting equations (17.18) and (17.19), we have

§ x 8w, = Y ebP (17.20)

The quantity eSP for a member is the shaded elemental area shown on the load-extension diagram
of Figure 17.7, this is an element of the area C shown in Figure 17.8.

P
P
I 5P
Z v
o
U
e e
Figure 17.7 Increment of complementary Figure 17.8 Strain energy and complementary
energy of a single member. energy of a single member.

When a bar is extended the work done on the bar is the area below the P—e curve of Figure 17.7,
for a conservative structural member this work is stored as strain energy, which we have already
referred to as U. We define the area above the P—e curve of Figure 17.7 as the complementary
energy, C, of the member; we have that

U+C = Pe (17.21)
and
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6C = e&dP (17.22)

In equation (17.18) we may write, therefore,

8, x 8W, = &C (17.23)

where C is the complementary energy of all members of the frame. If 3/, is infinitesimaily small

oC

= 3
oW, | (17.24)

Then the partial derivative of the complementary energy function C with respect to the external
load W, gives the corresponding displacement §, of that load.

17.8 Complementary energy in problems of bending

The complementary energy method may be used to considerable advantage in the solution of
problems of bending of straight and thin curved beams. In general we suppose that the
moment—curvature relationship for an element of a beam is of the form shown in Figure 17.9. The
complementary energy of bending of an elemental length 8s due to a bending moment M is

fo’”(%) dM

M

1 3s
___;)]iaf_ M(;\%-)M

A ]
\‘ —é—
1 1
ss
B!

1
R
Figure 17.9 Complementary energy of bending of the element of a beam.

For a linear-elastic beam of flexural stiffness £/

1 M

R EI
and so the complementary energy is

2
M _Aﬁ dMBs = M*ds
o EI 2E1

(17.25)
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For a length L of the beam, the complementary energy is therefore

2
. fLM_‘i’ (17.26)
o 2El

As in the case of pin-jointed frames, the partial derivative of C with respect to any external load
is the corresponding displacement of that load. For statically indeterminate beams, the partial
derivative of the complementary energy with respect to a redundant force or couple is zero.

Problem 17.9  Estimate the vertical displacement of the free end of the uniform cantilever
shown.
w
q & i
Z : :
~ t i

1
Solution

The complementary energy of bending is

2EI 0 2EI 6EI

c - fL M*dz L W24z _ WPLP
0

The corresponding displacement of W is

c . om
1.4 3EI

w

Problem17.10 A cantilever has a uniform flexural stiffness E/. Estimate the vertical deflection
at the free end if the cantilever carries a uniformly distributed lateral load of
intensity w.

Solution
Introduce a vertical load W at the free end; the bending moment at any section is then

M = -;—wzzw*Wz
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The complementary energy of bending is
2
= LfL Yoo we| &
2ET Jo \ 2
The corresponding displacement of W is
* ow

5 = 9C . .l.fl‘ L2 s we| o
ElJo \ 2

Now put W = 0; then

» _1_ Llwz3dz = =
El Jo 2 8EI

Problem 17.11 A cantilever of uniform flexural stiffness E/ carries a moment M at the remote
end. Estimate the angle of rotation at that end of the beam.

Solution

All sections of the beam carry the same bending moment M, so the complementary energy is

2E1 2E1

c oo (LM&E | ML
J,

The corresponding displacement of M is

ML

e =
M EI

which is the angle of rotation at the remote end.
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Problem 17.12 Solve the problem discussed in Section 17.4, using complementary energy.

Solution

The bending moment at any section in terms of w and the redundant force W is Ywz* - Wz. Then

2
C = fL Lw? o £
o \2 2ET

The property 0C/OW = 0 gives

L—1-w23dz = fLszdz
o 2 0
Then
wo- 3wl
8

Problem 17.13 Solve Problem 17.3 using complementary energy.
Solution

The bending moment at any angular position 0 is

M = Wrsind
Then
2
C = "lr
o 2FEf
Thus
, - C L2 M ey oM s
ow oM JW 0 ow EI
312 3
_ ]-n Wr-sin"@ »D - nWr
0 El 2E7

Problem 17.14 A thin circular ring of radius » and uniform flexural stiffness carries two radial
loads W applied along a diameter. Estimate the maximum bending moment in

the ring.
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}

Solution

By symmetry the loading action on a half-ring are 4/ and M,. The bending moment at any
angular position 0 is

M = M, - %Wrsine

Then
2
c - M, - Lwr sing| I
0 2 2EI
But
oC/oM, = 0, so that
T l n .
Mdd = —Wr sin8 d8
fo 0 2 fo
Then
M, = Wrin

17.9 The Raleigh—Ritz method

This method is also known as the method of minimum potential, and in Chapters 24 and 25, it is
used in the finite element method.
In mathematical terms, it can be stated, as follows:
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LA
ow

where
n, = total potential = U, + WD
U. = strain energy

WD = the potential of the load system

W = load

The method will be applied to problem 17.12 to determine an expression for §,,.

Now
MZ
u = 2—E7dz = the bending strain energy of a beam
As
M = Wz = bending moment at z,
. 1 U2 2
Uu = — f Wiztdz
2EI Jo
or
273
U, - wel
6EI

By inspection

WD

potential of the load system

= W s,

wip

T
r 6EI
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Now,
on 3
T oo - B 5
oW 3EI
3
w8, = - as required
3EI

Further problems (answers on page 693)

17.15 A thin semicircular bracket, 4B, of radius R is built-in at 4, and has at B a rigid
horizontal arm BC of length R. the arm carries a vertical load # at C. Show that the
vertical deflection at C is tWR’/2EI, where EI is the flexural rigidity of the strip, and
determine the horizontal deflection. (Nottingham)

17.16 A beam has a second moment of area of 2/ over one-half of the span and / over the other
half. Find the fixed-end moments when a load of 100 kN is carried at the mid-length.

100 kN
20m ¥ 20m 7
( f Y ?
7 f {
21 I

17.17  Aringradius R and uniform cross-section hangs from a single support. Find the position
and magnitude of the maximum bending moment due to its own weight. (London)

17.18  An ‘S’ hook follows part of the outline of two equal circles of radius R that just touch.
It embraces 5/6ths of one circle and 2/3rds of the other. If the ends are pulled apart by
a force, P, by how much will they be moved if the hook has a constant rigidity £/?
(London)

17.19  Using the plastic hinge theory determine a suitable sectional modulus for the rigid-
jointed framework shown below. The following may be assumed to apply to the
framework

A o= 4 o, = 300 MPa S = 115
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5kN/m 10 kN/m
— 4m
5m
Mechanical
hinge \
77777 -~
} 10m -
o 10kN/m I
3m
80kN ﬂi—‘
3m Mechanical
i / hinge
777 N

17.20 A portal frame of uniform section is subjected to the loading above. Using the plastic
hinge theory, determine a suitable section modulus for the frame, based on a load factor
of 4, a shape factor of 1.15 and a yield stress of 275 MPa. (Portsmouth, Standard 1989)

17.21  Using the plastic hinge theory, determine a suitable section modulus for the two bay
rigid-jointed plane frame below.

The following assumptions should be made:-

load factor 4

shape factor = 1.15

yield stress 275 MPa



Further problems
50 kN 80 kN
[-—4m 4m—et 5m 5m—=
_ \ ) ——
1.5 M, 3M, 50 kN
5m M, M, M,
t - .

(Portsmouth, Honours 1989)
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18 Buckling of columns and beams

18.1 Introduction

In all the problems treated in preceding chapters, we were concerned with the small strains and
distortions of a stressed material. In certain types of problems, and especially those involving
compressive stresses, we find that a structural member may develop relatively large distortions
under certain critical loading conditions. Such structural members are said to buckle, or become
unstable, at these critical loads.

As an example of elastic buckling, we consider firstly the buckling of a slender column under
an axial compressive load.

18.2 Flexural buckling of a pin-ended strut

A perfectly straight bar of uniform cross-section has two axes of symmetry Cx and Cy in the cross-
section on the right of Figure 18.1. We suppose the bar to be a flat strip of material, Cx being the
weakest axis of the cross-section. End thrusts P are applied along the centroidal axis Cz of the bar,
and EJ its uniform flexural stiffness for bending about Cx.

Figure 18.1 Flexural buckling of a pin-ended strut under axial thrust.

Now Cx is the weakest axis of bending of the bar, and if bowing of the compressed bar occurs
we should expect bending to take place in the yz-plane. Consider the possibility that at some value
of P, the end thrust, the strut can buckle laterally in the yz-plane. There can be no lateral
deflections at the ends of the strut; suppose v is the displacement of the centre line of the bar
parallel to Cy at any point. There can be no forces at the hinges parallel to Cy, as these would
imply bending moments at the ends of the bar. The only two external forces are the end thrusts P,
which are assumed to maintain their original line of action after the onset of buckling. The bending
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moment at any section of the bar is then

M = Py (18.1)

which is a sagging moment in relation to the axes Cz and Cy, in the sense of Section 13.2. But the
moment—curvature relationship for the beam at any section is
2
M = -E1%Y
dz 2

provided the deflection v is small. Thus

2
) A
de
Then
2
EIZZ: +Pv = 0 (18.2)
Put
P 2
— =k 18.3
o (18.3)
Then
.gz._v.q-kzv = 0 18.4
dzz ( . )

The general solution of this differential equation is
v = Acos kz + B sin kz (18.5)

where 4 and B are arbitrary constants. We have two boundary conditions to satisfy: at the ends z
=0andz = L,v =0. Then

A = 0 and Bsinkl = 0

Now consider the implications of the equation

BsinkL = 0

which is derived from the boundary conditions. If B = 0, then both 4 and B are zero, and
obviously the strut is undeflected.
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P, P, Py

}

€l 4n?El 9n’El
P, = = P P

Figure 18.2 Modes of buckling of a pin-ended strut.

If, however, sin kL = 0, B is indeterminate, and the strut may assume the form

v = Bsinkz

This is called a buckled condition of the strut. Obviously B is indeterminate when kL, assumes the
values,

kL = =, 2r, ... etc. (18.6)

We need not consider the solution kL = 0, which implies k¢ = 0, because the solution of the
differential equation is not trigonometric in form when k = 0. Instability occurs when kL=, = 2,
etc.

2
2P o= KE = FEL 4p EL g (18.7)

L? L?

There are infinite number of values of P for instability, corresponding with various modes of
buckling, Figure 18.2. The fundamental mode occurs at the lowest critical load

P, = L2 Euler load for pin-ended struts (18.8)

L2

This is known as the Euler formula and corresponds with buckling in a single longitudinal half-
wave. The critical load
p = 2 B yp E

e I (18.9)



Flexural buckling of a pin-ended strut 427

corresponds with buckling in two longitudinal half-waves, and so on for higher modes. In practice
the critical load P, is never exceeded because high stresses develop at this load and collapse of the
strut ensues. We are not therefore concerned with buckling loads higher than the lowest buckling
load. For all practical purposes the buckling load of a pin-ended strut is given by equation (18.8).

At this load a perfectly straight pin-ended strut is in a state of neutral equilibrium; the small
deflection

v = Bsin kz

is indeterminate, because B itself is indeterminate. Theoretically, the strut is in equilibrium at the
load n?El/L? for any small value of B, corresponding with a condition of neutral equilibrium; at this
buckling load we should expect to be able to push the strut into any sinusoidal wave of small
amplitude. This can be verified experimentally by compressing a long slender strip of material
which remains elastic during bending.

At values of P less than n*EI/L* the strut is in a condition of unstable equilibrium; any small
lateral disturbance produces motion and finally collapse of the strut. This, however, is a
hypothetical situation as, in practice, the load n’EI/L* cannot be exceeded if the loads are static, and
not applied suddenly.

The condition of neutral equilibrium at

L

P = IZ

e

is only attained for small lateral displacements of the strut. When these displacements become
large, the moment-curvature relation

2
M= -EI%

is no longer valid; theoretically the problem becomes more difficult. The effect of large lateral
displacements is to increase the flexural stiffness of the strut; in this case, provided the material
remains elastic, end thrusts greater than n’EJ/L’ are attainable. If the thrust P is plotted against the
lateral displacement v at any section, the P - v relation for a perfectly straight strut has the form
shown in Figure 18.3(i), when account is taken of large deflections. Lateral deflections become
possible only when

n2El

P2 2

This analysis is restricted to the hypothetical case of a perfectly straight strut. When the strut has
small imperfections, displacements v are possible for all values of P (Figure 18.3(ii)), and the
hypothetical condition of neutral equilibrium at

2

n-El
L2

P =

is never attained. All materials have a limit of proportionality; when this is attained the flexural
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stiffness of the strut usually falls off rapidly. On the P-v diagram for the strut this corresponds
with the development of a region of unstable equilibrium.

J Large deflections

£l | 0

Neutral equilibrium
for small deflections

p Material breakdown for
y perfectly-straight strut

nEl | . (i)

Materia! breakdown
for an imperfect strut

>V

Figure 18.3 Large deflections and material breakdown of struts.

18.3 Rankine-Gordon formula

Predictions of buckling loads by the Euler formula is only reasonable for very long and slender
struts that have very small geometrical imperfections. In practice, however, most struts suffer
plastic knockdown and the experimentally obtained buckling loads are much less than the Euler
predictions. For struts in this category, a suitable formula is the Rankine—Gordon formula which
is a semi-empirical formula, and takes into account the crushing strength of the matenial, its
Young's modulus and its slendemess ratio, namely L/k, where

L = length of the strut
k = least radius of gyration of the strut's cross-section
P =04 (18.10)

where

N
1

cross-sectional area

0. = crushing stress



Rankine-Gordon formula

Then

1 11
— — o —
P P, P,

R

where
Rankine—Gordon buckling load

P, R
P, = Euler buckling load

2
mEl for a pin-ended strut

or

Llo | mM*EAk® + m*Ek? | n* EAk®

0 Yyc

O'YCXA

P =
" (o, TE) (Lo / K+ 1

Let

429

(18.11)

(18.12)

(18.13)

(18.14)
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Then
c,A
Pp = — 18.15
"1+, ! KY (18.13)

where a is the denominator constant in the Rankine—Gordon formula, which is dependent on the

boundary conditions and material properties.
A comparison of the Rankine-Gordon and Euler formulae, for geometrically perfect struts, is
given in Figure 18.4. Some typical values for 1/a and o, are given in Table 18.1. Where L, is the

effective length of the strut; see Section 18.4.

Load |
\
N\ Euler
AN
\‘/
~

~

IR s
oA Rankine-Gordon ~

(I1%)

Figure 18.4 Comparison of Euler and Rankine-Gordon formulae.

Table 18.1 Rankine Constants

I
Material 1/a [
Mild Steel 7500 | 300
Wrought Iron 8000 | 250
Cast Iron 18000 | 560
Timber 1000 35

18.4 Effects of geometrical imperfections

For intermediate struts with geometrical imperfections, the buckling load is further decreased, as
shown in Figure 18.5.
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Geometrically perfect
/ y p

\ s
Geometnically
imperlect

P —

(fin)

Figure 18.5 Rankine—Gordon loads for perfect and imperfect struts.

18.5 Effective lengths of struts

The theoretical buckling load for a pinned-ended strut is one-quarter of the theoretical buckling
load of a fixed-ended strut and four times the theoretical buckling load for a strut fixed at one end
and free at the other end; see Sections 18.10 to 18.12.

Table 18.2 Effective lengths of struts (L,)

Type of Strut Euler BS449

0.7L

i

i_/\_l L, = 0.5L L,
}/\ L, = 0.7L L,

0.85L

Table 18.2 gives the effective lengths of struts (L,), which have actual lengths of L, for different
boundary conditions, where BS449 allows for elastic relaxation at the ends of the strut.
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18.6 Pin-ended strut with eccentric end thrusts

In practice it is difficult, if not impossible, to apply the end thrusts along the longitudinal centroidal
axis Cz of a strut. We consider now the effect of an eccentrically applied compressive load P on
a uniform strut of flexural stiffness £/ and length L.

P x
't b - Point of
m-—1" application
of P

Figure 18.6 Eccentric loading of a strut.

Suppose the end thrusts are applied at a distance e from the centroid and on the axis Cy of the
cross-section. We assume again that the cross-section is that of a flat rectangular strip, Cx being
the weaker axis of bending. The end thrusts P are applied to rigid arms attached to the ends of the
strut.

An end load P causes the straight strut to bend; suppose v is the displacement of any point on
Cz from its original position. The bending moment at that section is
M = Ple+v)

which is a sagging moment in relation to the axes Cz and Cy. If v is small we have

2
M = —Elﬂ
dzZ
Thus
d2v
~EI—5 = P(e+v)
dz
Then
2
Eldv + Py = -Pe
d22

When e = 0, this differential equation reduces to that already derived for an axially loaded strut.



Pin-ended strut with eccentric end thrusts

As before, put

Then

The complete solution is
v = 4coskz + Bsinkz - e

Nowv = 0 at z = 0 and z = L, so that
A-¢e = 0, and Adcoskl +BsinklL -e = 0

nEl

Yo

Figure 18.7 Deflections of an eccentrically loaded strut.

The first of these equations gives 4 = e, and the second gives

e(l - cos kL)
sin kL

B =

Then

1 - cos kL)
—— 2

v=e(coskz—1)+e( in kz

sin kL

The displacement v at the mid-length, z = 4L, is

433

(18.16)
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Vo = e[(cos _k2£ - 1) + ﬂ sin lkL]

sin kL 2
1 1 (18.17)
2sin —kL |1 - cos —kL
2 2
e
sin kL
If sin ¥4 kL # 0, we have
v, = e[sec -;—kL - 1) (18.18)
When P =0,
1y - L |2 _
2 2 \ EI

and v, = 0. As P approaches n’El/L’, V:kL approaches n/2, and

sec lkL -
2

Thus values of v, are possible from the onset of loading; the values of v, increase non-linearly with
increases of P. The value of P = # EI/L’ is not attainable as this would imply an infinitely large
value of v,, and material breakdown would occur at some smaller value of P.

It is interesting to evaluate the longitudinal stresses at the mid-length of the strut; the largest
lateral deflection occurs at this section, and the greatest bending moment also occurs at this section,
therefore. The bending moment is

M = Plv, +é) = Pese % kL (18.19)

Suppose c is the distance from the centroidal axis Cx to the extreme fibres of the strut. Then the
longitudinal bending stress set up by M is

Pec sec -1— kL
Mﬁ 2 (18.20)
!

) /

0'1 =

The average longitudinal compressive stress set up by P is

(18.21)

|~

0y =
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where A is the cross-sectional area of the strut. Then the maximum longitudinal compressive stress
is

sec EkL (18.22)

Suppose I = Ar’, where r is the radius of gyration of the cross-section about Cx. Then

P 1
Cmax = — 1+_e_;_ sec—kL (18.23)
A r 2

The minimum compressive stress is

P ec 1
Smin = — 1—7 SeC;'kL (18.24)
The value of P giving rise to a maximum compressive stress o is

Ac

1+ £C sec lkL (18.25)
r? 2

P =

However,
1 L P
—klL = — |—
2 2 ¥ E/

and is therefore a function of P, so that the above equations must be solved by trial and error. A
good approximation is derived as follows: let 4k = 6, then for 0 <8 < %=x

26\’
L 026 (7) P, +026P

[ 28)° P, - P
n

sec 8 =

which leads to the following equation for P:

Pl1-026 £} -p 1+ &) + 6
rt ¢ rt 4

Ife = 0, this has the roots P = P, or 64.

+ 6AP, = 0
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18.7 Initially curved pin-ended strut

In practice a strut cannot be made perfectly straight, and our analysis for the flexure of a
compressed bar would become more realistic if account could be taken of the slight deviations
from straightness of the centroidal axis of a strut.

Consider again a strut consisting of a flat strip of material. Suppose the centroidal longitudinal
axis is initially curved, the lateral displacement at any point being v, from the axis Oz, Figure 18.8.
Thrusts P are now applied at the ends of the strut and at the centroids of the end cross-sections.

Figure 18.8 Initially curved strut.

The strut then bends further from its initial unloaded position. Suppose v is the additional lateral
displacement at any section due to the application of P. If the ends of the strut are pinned there can
be no lateral forces at the ends. The bending moment at any section of the strut is

M = P(v +v0)

If the strut is initially unstressed then the bending moment at any section is proportioned to the
change of curvature at that section. Then

2
M = -EI%Y
de

because the change of curvature is due only to the additional displacement v of the strut and not
the total displacement (v + v,). Then

d*v
de

EI

+P(v+v0) = 0
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Put P/EI = I, as before. Then
o~

+ kv = -k,
dzZ

Suppose for the sake of simplicity that v, is sinusoidal in form; take

Vo = asin — (18.26)
where a is a constant, and is the initial lateral displacement at the centre of the strut. Then

2
AN kv = -k*asin 2
dzZ

The general solution is

2
v = Acoslcz»uBsinkz+—]‘!1——sinE
w L

If the ends are pinned we have

v = 0 a z = 0 and z = L

Then
A = 0 and Bsinkl = 0

If k is to assume any non-zero value we must have B = 0, so the relationship for v reduces to

_ k’a . mz
V ¥ —Sn —
® . L (18.27)

L2

This may be written

vV 5 —F (18.28)
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But &’ = P/EI, so on putting n’ EI/L* = P,, we have

N 4
a sin —
B L Vo
v = P TP (18.29)
=£ -1 £ -1
P P

Now P, is the buckling load for the perfectly straight strut. The relation for v, which is the
additional lateral displacement of the strut, shows that the effect of the end thrust P is to increase
v, by the factor 1/{(P, /P) - 1]. Obviously as P approaches P,,v tends to infinity. The additional
displacement at the mid-length of the strut is

‘ P, (18.30)

This relation between P and v, has the form shown in Figure 18.9(i); v, increases rapidly as P
approaches P,. Theoretically, the load P, can only be attained at an infinitely large deflection. In
practice material breakdown would occur before P, could be attained, and at a finite displacement.
We may write the relation for v_ in the form

P -v, = a (18.31)

vC
e <
P

This gives a linear relation between (v, /P) and v,, Figure 18.9. The negative intercept on the axis
of v_is equal to (-a). If values of (v,/P) and v, are plotted in a strut test, it will be found that as the
critical condition is approached these variables are related by a straight-line equation of the type
discussed above. The slope of this straight line defines P,, the buckling load for a perfectly-straight
strut.

P\ ) i)

e __ __ ET
DT P

—» Vc » Ve

Figure 18.9 Deflections of an initially curved strut.
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The P-v, curve is asymptotic to the line 2 = P, if the material remains elastic. It is of considerable
interest to evaluate the maximum longitudinal compressive stress in the strut. The maximum
bending moment occurs at the mid-length, and has the value

1 P
M = Pla+v,) = Pal 1+ |- Pa{P jPJ (18.32)
+ - ¢

The maximum compressive stress occurs in an extreme fibre, and has the value

Pa P
o =L, E (5) i P (-‘35) (18.33)
max 4 pe_ P \]J A P -P r2

where A is the area of the cross-section, ¢ is the distance from the centroidal axis to the extreme
fibres, and r is the relevant radius of gyration of the cross-section. Now P/4 is the average stress
on the strut; if this is equal to o, then

c
Opo = O |1 + —< [-“5)] (18.34)
6, - 0O r2
where
P 2
6, = =% = an[-’-) (18.35)
A L
Suppose izc: = 1. Then
r
1o,
Gpax = O 1 + (1836)
G,-0C
Then
Omx = (0. -0) = o]l +n)ce—o‘}
Thus,
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Then

c = —;'[cmax + (l+ n)oe]— J%[cmax +(1+ n)ce]Z -0 max O e (18.37)

We need not consider the positive square root, since we are only interested in the smaller of the two
roots of the equation. This relation gives the value of average stress, o, at which a maximum
compressive stress o,,, would be attained for any value of 1. If we are interested in the value of
o at which yield stress o, of a mild-steel strut is attained, we have

c = —;'[cy+(l+ 'q)ce]— Ji‘[cy +(l+ n)oe]2 -0,0, (18.38)

18.8 Design of pin-ended struts

A commonly used structural material is mild steel. It has been found from tests on mild-steel pin-
ended struts that failure of an initially-curved member takes place when the yield stress is first
attained in one of the extreme fibres. From a wide range of tests Robertson concluded that the
failing loads of mild-steel struts could be estimated if 1) is taken to be proportional to (L/7) the
slenderness ratio of the strut; Robertson suggests that

n-= 0-003(£) (18.39)

’
This value of 1 gives

2
1 L 1 L
c = El:oy+(1+0.0037)6e:'—le:cy+(1+0.0037)ce} -0,0, (18.40)

This represents a transition curve between yielding of the material for low slenderness ratios,
Figure 18.10, and buckling at high slenderness ratios.

Experimental curve
with axial loading
<

—=1 2
Oy
Typical design
curve
0.51
L 0 05 S
r Oe
Figure 18.10 Effect of material breakdown Figure 18.11 ‘Interaction’ curves for

on the buckling of a strut. practical struts.
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In the case of mild-steel struts under true axial loading buckling occurs at 6, the elastic buckling
load or at 6, the yield stress. If true axial loading could be achieved in practice, all struts would
fail at stresses that could be represented either by 6/c, = 1, oro/c, = 1. Ina series of strut tests
it is found that the test results are usually defined by a curve on the o/c, ~ o/6, diagram, Figure
18.11, and not by the two straight lines o/c, = 1and o/, = 1. if the experimental technique is
improved to give better axial-loading conditions the curve approaches these two straight lines. Any
convenient transition curve on this diagram may be taken as a design curve for practical conditions
of axial loading.

18.9  Strut with uniformly distributed lateral loading

In the preceding sections we considered the effects of end eccentricities and initial curvatures on
the lateral bending of compressed struts; these produce lateral bending of the strut from the onset
of compression.

A similar problem arises when a compressed strut carries a lateral load. Consider a pin-ended
strut length L and uniform flexural stiffness E/, Figure 18.12. Suppose the axial thrust on the strut
is P, and that there is a lateral load of uniform intensity w per unit length. At the ends of the strut
there are lateral shearing forces YawL.

Figure 18.12 Laterally loaded struts.

If v is the lateral deflection at any point of the centroidal axis, then the bending moment at any
section is
2
M o= -E182 o py o Ly o Ly
dz? 2 2
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Then
2
LRy s e
dz? El 2E]

If P/EI = &, then

2 2
LA N —lv—k—(Lz—zz)
dz? 2P

The complete solution of this equation is

v = Acosk + Bsink - 2|1z - 22+ 2
2P k2

in which A and B are arbitrary constants. Now, atz = Qandz = L wehavev =

4-2 -0

Pk?

and

Acos kL + BsinkL - 22— = 0

Pk?

Then

4 - ¥ Bz_w_l—coskL

Pk?’ Pk? sin kL

Thus

1- kL 1
hd coskz + (L) sinkz — 1 — —k?2 (Lz - 22)
Pk* sinkL 2
The maximum value of v occurs at the mid-length, z = /L, and is given by

1 1- kL 1
Y =Y |:cos—kL+ (__‘fi___) sin—kL - 1- —é-kz Lz]
2

max pg2 2 sin kL

0, so

(18.41)

(18.42)
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This may be written
1

v = Y lsec —kL - 1 - lksz (18.43)
Pk? 2 8

The maximum bending moment also occurs at the mid-length, and has the value

My = Py + wL’ (18.44)

max max
8

On substituting for v,,,,, we have

w 1 1,2,2|, 1 ,2_ W !
M = — —kL-1-—k"L" |[+cwl” =— —kL-1 18.45
max = 77 [secsz 1 3 } 3" 2 sec2 (18.45)

When P is small, k is also small, and

1
2 4
sec 1L = —L . [1 - l(lkL) . L(lkL) I
2 cos lkL 2\2 24\ 2
2
Thus, approximately,

Sec";'kL s 1 *{é’(u)z - 3%(1&)4 } w{%(kL)z - ﬁ(u)“ ]2

1 2 5 4
=1 —(k) + (ke 18.46
8( ) 384( ) ( )
Then
4
Vo = = |k = 2L (18.47)
Pk? [384 384 EI

This agrees with the value of the central deflection of a laterally loaded beam without end thrust.
Similarly, when £ is small,

1
8 —kL -1
M = wLJ [Secz ) (18.48)

max 3 [ k2 LZ

the term in square brackets is the factor by which the bending moment due to w alone must be
multiplied to give the correct bending moment.
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18.10 Buckling of a strut with built-in ends

In the elastic buckling of struts, we have assumed so far that the ends of the strut are always hinged
to some foundation. When the ends are supported so that no rotations can occur, Figure 18.13,
then the relevant mode of instability for the lowest critical load involves points of contra flexure
at the quarter points. The buckling load is therefore the same as that of a pin-ended strut of half
the length. Then

2
p - FEL_yp ﬂ, where L, = 0.5L

“ 2 L? 18.49
B "

Figure 18.13 Buckling of a strut with built-in ends.

When the ends of the strut are built-in, no restraining moments are induced at the ends until the
strut develops a buckled form.

18.11 Buckling of a strut with one end fixed and the other end free

When a vertical load P is applied to the free end of a vertical cantilever, 4B, at the lowest critical
load the laterally deflected form of the strut is a sinusoidal wave of length 2L. If we consider the
reflection of the buckled strut about 4, Figure 18.14, then the strut of length 2L behaves as a pin-
ended strut. The buckling load is

2
=, where L, = 2L (18.50)

An important assumption in the preceding analysis is that the load at the free end of the cantilever
is maintained in a vertical direction. If the load is always directed at A4, that is its line of action is
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BA, Figure 18.15 in the buckled form, then there is no restraining moment at 4, and the cantilever
behaves as a pin-ended strut. The buckling load is

El
P, = W = (18.51)

Figure 18.14 Buckling of a strut with one Figure 18.15 Thrust inclined to its original
end free and the other built in. direction.

18.12 Buckling of a strut with one end pinned and the
other end fixed

For other combinations of end conditions we are usually led to more involved calculations. A strut
is pinned at its upper end and built-in to a rigid foundation at the lower end, Figure 18.16. In the
buckled form of the strut a lateral shearing force F is induced at the upper end.

Figure 18.16 Strut with one end pinned and the other end fixed.
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If v is the deflection of the central axis of the strut parallel to the y-axis, the bending moment at any
section is

M = Pv - Fz
But
2
M - -E1 &Y
dzZ
Thus
2
Y - pv-F
de

Putk’ = P/EI. Then

The general solution is

F
v = Acoskz+Bsinkz+ —z

where A and B are arbitrary constants; the value of F is also unknown as yet, so there are three
unknown constants in this equation. The boundary conditions are

v =0, at z =0

dv
and v =0 and — =0, at z = L
dz
These give
A =0
BsinkL+E= 0
BkcoskL+£= 0
P

The last two of these equations give

B _ L o 1
Pk cos kL

F PsinkL
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Thus
kL cos kL = sin kL (18.52)

This equation gives the values of kL at which B and F are indeterminate, that is, at a condition of
neutral equilibrium. The equation may be written

kL = tan kL (18.53)

The smallest non-zero value of kL satisfying this equation is approximately equal to 4.49 (see
Figure 18.17). This gives
P, = KEI - 4498 EL . 502 EL
L? L?

We may derive an approximate value of kL in the following way: suppose kL is less than 3n/2 by
a small amount g, then

3n

kL = — - ¢ '
2 ’

, Solution for
| \ 7 | lowest critical
| A4 | load

s
| 7 tan kL
|
st i
v o 1
1 l Py
— 13 kL
=1 dil
2 | 12
1
| !
! |
|

Figure 18.17 Graphical determination of buckling load.

Then we arg interested in the roots of the equation

3n 3n
— -¢g = tan| — - ¢
2 2

If € is small, then
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Approximately
3 _ 1 2
— = —, Oor g = -—
2 € 3n
Then
2 _
L = 3.2 _ 9 -4
2 3n 6n
and
2 2
P, = kiEI = M .E_I = 20.32 (18.54)
61 L? L?
where

L, = Y22 /203 = 07

18.13 Flexural buckling of struts with other cross-sectional forms

In Section 18.2 we considered the strut to be in the form of a flat rectangular strip. We considered
buckling to involve bending about the major axis Cx only, Figure 18.18. In the case of a flat
rectangular strip the axis Cx is clearly the weaker axis of bending. In practice, structural sections
rarely have this simple cross-sectional form, but frequently have I-sections, or angle sections, or
circular sections.

In general, if the cross-sectional form of a strut has two axes of symmetry, we can consider
flexural instability about these two axes independently. If an I-section has two axes of symmetry
in the cross-section, Figure 18.19, flexural instability occurs usually about the axis of smaller
stiffness, usually Cx. In a rectangular strut, Figure 18.19, the weaker bending axis is parallel to the
longer sides. Circular cross-sectional forms have the property that any two mutually perpendicular
diameters are principal centroidal axes; for these sections flexural instability is equally likely about
any principal centroidal axis, Figure 18.19; when buckling occurs it is usually restricted to one
plane. In making these statement we assume the ends of the strut are hinged about both axes Cy
and Cz; this can be achieved in practice by loading through ball-ends. When the ends are not
supported in the same way about Cy and Cx, then torsional effects may become important in the
buckling behaviour.
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X X
| |
IR i S ()
|

—4 x
>

Figure 18.18 Narrow strip cross-section. Figure 18.19 Cross-section with two axes of
symmetry.
X
X 0 C y X
i F
ol ,
L c 7 o [e Y IG
= \
Figure 18.20 Cross-sections with only one Figure 18.21 Unequal angle strut.

axis of symmetry.

In the case of cross-sectional forms with only one axis of symmetry, Cy, say (Figure 18.20),
torsional effects become important if the shear centre is not coincident with the centroid. This is
true of channel sections, T-sections, and equal angle sections. Although for certain struts flexural
instability occurs about the weaker principal axis Cz, in general twisting also occurs.

In the case of cross-sectional forms with no axes of symmetry, Figure 18.21, the buckled form
always involves torsion, and the flexural buckling load has little meaning. This is true of unequal
angle struts.

Problem 18.1  What thrust will a round steel rod take without buckling if it is 1.25 cm
diameter, 2 m long, perfectly straight, and pin-jointed at the ends, the load
being applied exactly along the axis of the rod?

Solution

We have

4
I - ﬂg},ﬁ - 120x10°m*, L = 2m
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Taking E = 200 GN/m’ we have

2
p, - MEL _ so1w
LZ

18.14 Torsional buckling of a cruciform strut

We mentioned above that some struts are prone to torsional buckling effects. A cross-sectional
form in which torsional instability occurs independently of any other form of buckling is a
symmetrical cruciform section.

Figure 18.22 Cross-section of a cruciform strut.

The cruciform has four equally spaced limbs each of breadth b and uniform thickness ¢, Figure
18.22. Consider the section under a uniform compressive stress o, Figure 18.23(i). We consider
the possibility that the section may become unstable by twisting about the longitudinal axis Cz,
Figure 18.23(ii); the stresses ¢ over the ends remain parallel to Cz during buckling.

Over any cross-section of the cruciform the stress is o, acting parallel to Cz. Consider an
elemental area 84 of one limb at a distance x from the axis Cz, Figure 18.23(ii1). If the relative
twist between two cross-sections a distance 8z apart is 66, then the force

664

on the elemental area is statically equivalent to a force 684 acting along the twisted form of the
strut and a small force

d8
odAx —
dz
acting in the plane of the cross-section. The inclined forces 664 on the two cross-sections are in

equilibrium with each other, but the two forces 6d4x (d0/dz) give rise to a resultant torque at any
cross-section. This torque is

4fbcx2—d—9dA = 4c£fhx2d4
0 dx dz Jo

since there are four limbs.
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.

a

Figure 18.23 Torsional buckling of a cruciform column.

The geometrical quantity

4[0bx2dA

is the polar second moment of area of the cross-section about Cz. The resultant torque at any cross-
section is then

cie-Jo

where

b b 9 4
J = 4 1dd = 4 ldz = =b%
0 fox fox 3

Now, we found in Chapter 16 that the torque-twist relation for a cruciform section is

Torque = GJ-dﬁ = ith3_d_9
dz 3 dz

In the case of the compressed cruciform, the twisted form can be maintained if

e By -
dz dz
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Then
J %bta :
t
6 = G|—| =G = G(—) (18.55)
J _4_b3t b
3

18.15 Modes of buckling of a cruciform strut

With a knowledge of the torsional and flexural buckling loads of a cruciform strut, we can estimate
the range of struts, we can estimate the range of struts for which buckling is likely in the two
modes.

If b is very much greater than 7, and if all the limbs are similar in form, flexural buckling of a
pin-ended strut is possible about any axis through the junction of the limbs, since the flexural
stiffness is the same for all axes. For flexural instability the critical stress is

) El

o, = 18.56
i E ( )
Now ] = 1/12/(2b)’ = %b’tand 4 = 4bt, and so
n? Eb?
6, = — — 18.57
7 6 L2 ( )

2
6 = G (i) (18.58)

6 1?
i.e. when
b? 6G 6 3
> = - = (18.59)
Lt? ®’E 22 (1 + v) (1 +v)
Ifv = 0.3, then
b* 3

>

= 0234 18.60
L 13n? (18.60)




Torsional buckling of a cruciform strut 453

Thus torsional buckling takes place when

2
% >4/0.234 = 0.484
t

i.e. when

Lt 507
b2

This condition may be written

(A) <207 (2) (18.61)
b t

We can show the domains of flexural and torsional instability by plotting (L/b) against (b/¢), Figure
18.24. For a practical material, yielding or material breakdown occurs when L/b and b/t approach
zero; the lower left-hand comer is therefore the yielding domain. Above the straight line

g -0l

buckling is by flexure, whereas below this line buckling is by torsion.

4
AN AN
<
g
3

Figure 18.24 Modes of buckling of a cruciform strut.



454 Buckling of columns and beams

18.16 Lateral buckling of a narrow beam

We have seen that the axial compression of a slender strut can lead to a condition of neutral
equilibrium, in which at a certain compressive load a flexural form of deformation becomes
possible. In the case of a cruciform strut we have shown that a form of neutral equilibrium
involving torsion is possible under certain conditions.

Problems of structural instability are not restricted entirely to compression members, although
there are many problems of this type. In the case of deep beams, for example, lateral buckling may
occur, involving torsion and bending perpendicular to the plane of the depth of the beam. In
general this problem is a complex one; however, we can determine some of the factors involved
by studying the relatively simple case of the bending of a narrow deep beam.

:4— L ——————————d '\l
y t A
! [

, | i

'S
o

<
A
20
\
S
L
I
afs
3

Figure 18.25 Lateral buckling of a narrow strip in pure bending.

A long rectangular strip has a depth 4 and thickness ¢, which is small compared with A, Figure
18.25. The principal centroidal axes are Cx, Cy and Cz. Atthe ends of the beam are vertical rollers
which prevent twisting of the beam about a longitudinal axis. The distance between the end
supports is L.

The beam is loaded with moments M applied at each end about axes parallel to Cx. Consider
the possibility that the beam may become laterally unstable at some critical value of M. If A >>
t then bending displacements in the yz plane may be neglected. Suppose in the buckled form the
principal centroidal axes at any cross-section are Cx’, Cy’ and Cz'. The lateral displacements
paraliel to Cx 1s u, and 0 is the angle of twist about Cz at any cross-section. The moments M are
assumed to be maintained along their original lines of action; the only other forces which may be
induced at the ends are equal and opposite longitudinal torques 7. The bending moment about the
axis Cy'is then
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MO

and as this gives rise to the curvature of the beam in the xz plane we have

2
My - -EI, &4
E dzz

Where EI, is the bending stiffness of the beam about Cy. Again, for twisting about Cz’
remMm% P
dz dz

where G/J is the torsional stiffness about Cx. Differentiation of the second equations gives

2
v - g G40
y M dZZ
Then
2 2
a8 M 4 _ 9
dz? GJEI),
Put
MZ
k2 =
GJEIy (18.62)
Then
2
4% Lk - 0
dzZ

The general solution is

8 = Acos kz + Bsin kz
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where 4 and B are arbitrary constants. If6 = Qatz = 0, then4 = 0. Furtherif 6 = Oatz =L,
BsinkL = 0

If B = 0, then both 4 and B are zero, and no buckling occurs; but B can be non-zero if

sin kL = 0

We can disregard the root kL = 0, since the general solution is only valid if ¥ is non-zero. The
relevant roots are

kL = m, 2x, 3m. .. (18.63)
The smallest value of critical moment is

Now, for a beam of rectangular cross-section,

1 3 1 3
GJ] = —Gm’, EI = -— Eht 18.
Then
s 1 2.6 T ht3
M, = L |= GEnx T VGE (18.65)

If G = EA2(1+v)then

JGE = yE¥2(1 +v) = _2(_1E_+T) (18.66)

The maximum bending stress at the bending moment M, is

M, p oM, nE 2
o, - 2 - = — 18.67
I, 2 h* V20 +v) AL ( )

For a strip of given depth 4 and thickness ¢, the buckling stress G,, is proportional to the inverse of
(L/t), which is sometimes referred to as the slenderness ratio of the beam.
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Further problems (answers on page 694)

18.2

18.3

18.4

18.5

18.6

Calculate the buckling load of a pin-joined strut made of round steel rod 2 cm diameter
and 4 m long.

Find the thickness of a round steel tubular strut 3.75 cm external diameter, 2 m long, pin-
joined at the end, to withstand an axial load of 10 kN.

Calculate the buckling load of a strut built-in at both ends, the cross-section being a
square 1 cm by 1 cm, and the length 2 m. Take E = 200 GN/m’.

A steel scaffolding pole acts as a strut, but the load is applied eccentrically at 7.5 cm
distance from the centre line with leverages in the same direction at top and bottom. The
pole is tubular, 5 cm external diameter and 0.6 cm thick, 3 m in length between its ends
which are not fixed in direction. If the steel has a yield stress of 300 MN/m’ and E =
200 GN/m’, estimate approximately the load required to buckle the strut. (RNEC)

Two similar members of the same dimensions are connected together at their ends by
two equal rigid links, the links being pin-jointed to the members. At the middle the
members are rigidly connected by a distance piece. Equal couples are applied to the
links, the axes of the couples being parallel to the pins of the joints. Show that buckling
will occur in the top member if the couples M exceed a value given by the root of the
equation

tan Lkl = tank LkZ
2 2

where k¥ = M/EId. (Cambridge)

-

1 H
I\M MK.T




19 Lateral deflections of circular plates

19.1 Introduction
In this chapter, consideration will be made of three classes of plate problem, namely
(i)  small deflections of plates, where the maximum deflection does not exceed half the plate
thickness, and the deflections are mainly due to the effects of flexure;

(ii) large deflections of plates, where the maximum deflection exceeds half the plate
thickness, and membrane effects become significant; and

(iii) very thick plates, where shear deflections are significant.
Plates take many and various forms from circular plates to rectangular ones, and from plates on

ships' decks to ones of arbitrary shape with cut-outs etc; however, in this chapter, considerations
will be made mostly of the small deflections of circular plates.

19.2 Plate differential equation, based on small deflection
elastic theory

Let, w be the out-of-plane deflection at any radius r, so that,

dw

— = 9
dr
and
dw @
drz dr
Also let
R, = tangential or circumferential radius of curvature at » = AC (see Figure 19.1).

radial or meridional radius of curvature atr = BC.

x
i
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Figure 19.1 Deflected form of a circular plate.

From standard small deflection theory of beams (see Chapter 13) it is evident that

or

From Figure 19.1 it can be seen that

R, = AC = r/8

or

Let z = the distance of any fibre on the plate from its neutral axis, so that

g, = radial strain = z . 1 (6, - vo)
R E

r

459

(19.1)

(19.2)

(19.3)

(19.4)

(19.5)
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and

¢, = circumferential strain = -I—Z- (6, - vo,) (19.6)
t

ey | —

From equations (19.1) to (19.6) it can be shown that

o, == (1 +—v—)— £ (ﬂﬂe) (19.7)

r (1_v2) R, R, 1-v2\dr r '
E: ( i v) E: (e dB)

o, = —+—| = —+— (19.8)

-\ R TR (-2 e
where,
o, = radial stress due to bending
o, = circumferential stress due to bending

The tangential of circumferential bending moment per unit radial length is

M = f-"/z 6z dz

2

1
—
txy
—_——
| @
+
|3
N—
&

i

120 -v) \r dr
therefore
2
All = D _9_+v£ = D lﬂ-#vdw (199)
r dr r dr dr?

where,

~
1]

plate thickness
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and

3
D = 2 S flexural rigidity

12(1 - v3

Similarly, the radial bending moment per unit circumferential length,

2
M = p|B W _ pldw , viw (19.10)
dr r dr? rdr

Substituting equation (19.9) and (19.10) into equations (19.7) and (19.8), the bending stresses
could be put in the following form:

o, =12M, xz/¢
and

o =12M xz/1 (19.11)

and the maximum stresses &, and &, will occur at the outer surfaces of the plate (ie, @z = +#2).
Therefore

-

o,

6M, /12 (19.12)
t

and

~

G, = 6M, /¢t (19.13)

The plate differential equation can now be obtained by considering the equilibrium of the plate
element of Figure 19.2.

Figure 19.2 Element of a circular plate.

Taking moments about the outer circumference of the element,

(M, + 8M) (r + &r) 39 - M, rdp - 2M, 8rsin62—(p—F rdpor = 0
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In the limit, this becomes
aMm,
M +r. —-M -Fr =0 (19.14)

-
r

Substituting equation (19.9) and (19.10) into equation (19.14),

r? r dr

or

which can be re-written in the form

d a8 _ F
;[(m). dr] . (19.15)

where F is the shearing force / unit circumferential length.

Equation (19.15) is known as the plate differential equation for circular plates.

For a horizontal plate subjected to a lateral pressure p per unit area and a concentrated load W
at the centre, F can be obtained from equilibrium considerations. Resolving ‘vertically’,

2rF = wr? op+ W

therefore

w
F = p?r + P (except at r = 0) (19.16)

Substituting equation (19.16) into equation (19.15),

pr, W

2 2nr

< lam __d("’)] -1
dr dr D

therefore
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1d(r) 1] p? W
- ( ) L PSR +C
r dar D| 4 2n

4 2 2
1 174 Wi
YL A LSRR L I )
D| 16 4n 8n 2
3
1 Wi Wi C
oo~ 2 Py, Pl ar (19.17)
D| 16 4n 8n 2 r
since,
Li—w— = e
dr
w = fe dr + C
hence,
4 2 2
Wi C
szo*er (in r—1)+ 14 +C, Inr+G; (19.18)
n
Note that
1
Ir Inrdr = 1Ld(rz)
2
2 2 2

=—Inr - L4—+ a constant (19.19)

Problem 19.1 Determine the maximum deflection and stress in a circular plate, clamped
around its circumference, when it is subjected to a centrally placed
concentrated load #.
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Solution

Putting p = 0 into equation (19.18),

2

2 Cr
wos X -+ s mrg
8nD 4
ﬂ: Wr(]nr—l)+Wr+—C-£+Ei
dr 4nD 8xD 2 r

as dw/dr cannotequalwat r = 0,C, = 0

atr=R,iw—=w=0
dr

therefore
2 2 C,R?
0 - WR Inr - WR . ot :
8nD 8nD 4
and
C.R
0=WR1nR—WR+WR+1
4nD 4nD 8D 2
Hence,
c, - X n-2mm
4nD
2 2 2 2 2
C3=—WRlnR+WR-WR+WR1nR=WR
8nD 8nD 16xD 8nD 16D
2 2 2 2 2
w:WRlnr—Wr+Wr—ernR+WR
8nD 8nD 167D 8nD 161D
or
_ WR?

16aD

Lot 2R [
R? R? R

The maximum deflection (W) occurs at r = 0
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. _ WR?
w
16nD

Substituting the derivatives of w into equations (19.9) and (19.10),

Problem 19.2  Determine the maximum deflection and stress that occur when a circular plate
clamped around its external circumference is subjected to a uniform lateral

pressure p.

Solution

From equation (19.18),
prt . C,r?

+C, Inr+ G
64D 4

aw pr’ Cyr 2

+ +

ar 16D 2 r

and
gz—w = 3pr2 + & - &
dr 16D 2 r?
atr = 0, il # o therefore C, = 0
dr
atr = R, w = d_w_ =0
dr

therefore
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4 C,R?
0 = pR3 + 2
16D 2
therefore
. p2
c, - LR
8D
4
c, - ER
64D
therefore
4 2)2
w = PRI, 2 (19.20)
64D R?

Substituting the appropriate derivatives of w into equations (19.9) and (19.10),

2 2
YRS 5 TR S S N (19.21)
4 16 R2
2 2
M= BRI gy (19.22)
! 16 R?
Maximum deflection (W) occurs atr = 0
4
W = é’fD (19.23)

By inspection it can be seen that the maximum bending moment is obtained from (19.21), when
r =R, ie.

M = pR%/8

r

and & = 6M,/t*
= 0.75pR* / ¢*
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Problem 19.3  Determine the expression for M, and M, in an annular disc, simply-supported
around its outer circumference, when it is subjected to a concentrated load W,
distributed around its inner circumference, as shown in Figure 19.3.

1

T
N
2

Figure 19.3 Annular disc.

W = total load around the inner circumference.

Solution

From equation (19.18),
2

2 Cr
w=Wr (Inr -1 + = +C,Inr+C,
8nD - ’
atr= R, w =0
or
2
WR5 C 2
0 = In R, -1}+—R5+C, In R, +C 19.24
8nD( 2 ) 2 2 2 2tL3 ( )
Now,
Cr C
aw Wr(ln _1)+Wr+._‘_+_2 (19.25)
dr 4nD 8nD 2 r
and,
2
d w C C
‘; = (ln r=1)+ + ad S S (19.26)
dr 4z AnD 8aD 2 2

A suitable boundary condition is that
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M =0 a r = R andat r = R,

but
2
M - Dp|&w ., rd
dr? r dr
therefore
C C
__n/_ (]_n Rl-l) + 3W+_1. -2
4nD 8D 2 R12
(19.27)
WR WR, CR, C
+ s ! (]n Rl-])+ 1, e, 2 0
R, |4nD 8D 2 R
and
C C
l(lnRz- 1) + W o2
4nD 8D 2 R22
(19.28)
WR WR, CR, C
+ Y 2 (ln R2 - ])+ LS S S 2 G
R, |4nD &D 2 R,
Solving equations (19.27) and (19.28) for C, and ¢,,
2 2
_ W Jz(Rz In R, - R/ In Rl) , 0 -v (19.29)
| .
4rD l (Rzz - Rlz) {1+
and
2,2
-w R R
c, - AV ‘)7 In |2 (19.30)
4nD (1 -v) (RZ. - Rl.) R,
C; is not required to determine expressions for M, and M,. Hence,
M = DWErD){(1 +v)2 Inr + (1 - v)}
(19.31)

+(CY2)(1 + V) - (Cyr?) + )



Plate differential equation, based on small deflection elastic theory 469

and
M, = DWB8aD) {1 +v2 Inr - (1 - v}

!

(19.32)
+(Cf2) (1 + ) + [Cfr?) (1 - W)

Problem 19.4 A flat circular plate of radius R, is simply-supported concentrically by a tube
of radius R,, as shown in Figure 19.4. If the ‘internal’ portion of the plate is
subjected to a uniform pressure p, show that the central deflection 6 of the plate

is given by
B
64D R, 1 +v
o
RN
L.k
- 2R, -

I

Figure 19.4 Circular plate with a partial pressure load.

Solution

Now the shearing force per unit length F for » > R, is zero, and for r <R,,

F = pri2

so that the plate differential equation becomes

—————————— r<R --------= ~---pr>R ----

d |1 d( dw) pr

—_— e —| ) —— = e— = O

dr {rdr dr 2D

1 d{ aw

——(r—j -4 - B (19.33)
r dar dr 4D

For continuity at r = R,, the two expressions on the right of equation (19.33) must be equal, i.e.
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R
P +4 = B
4D
or
RZ
B - By (19.34)
4D
or
2 R
l —‘1— r iw_ = ﬂ_ + A = p 1 + A
r dr ar 4D 4D
or
3 R
i r ﬂ = L + Ar = P lr +
dr ar 4D 4D
which on integrating becomes,
4 2 R2p2 2
riw_:L+AL+C =plr+Ar + F
dr 16D 2 8D 2
aw pr° Ar C PR A
1 r
= - = = + +— 19.35
dr 16D 2 8D 2, (19:33)
at r = 0, ﬂ # o therefore C = 0
dr

For continuity at r = R, the value of the slope must be the same from both expressions on the
right of equation (19.35), i.e.

PR; 4R, PR AR
+ = +

16D 2 8D 2

1

F
4 —
Rl

therefore
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F = -pR;/(i6D) (19.36)
therefore
3 R, R*
aw or Ar PR, Ar PR,
aw _ Ar - LA 19.37
dr 16D 2 8D 2 16Dr (1937)

which on integrating becomes

4 2 R2r2 2 4
4 PR’r
w22 . =21 A R el (19.38)
64D 4 16D 4 16D

Now, there are three unknowns in equation (19.38), namely 4, G and H, and therefore, three
simultaneous equations are required to determine these unknowns. One equation can be obtained
by considering the continuity of watr = R, in equation (19.38), and the other two equations can
be obtained by considering boundary conditions.

One suitable boundary condition is that at » = R,, M, = 0, which can be obtained by

r

considering that portion of the plate where R, > r > R,, as follows:

2
aw _ PRir 4 PR,

dr 8D 2 16Dr
2 4
___dzw = pRl + 1_4- + pRl
dr? 8D 2 16Dr?
Now
dz
aw
M, = D| -+ 222
dr r dr
R: 4  pR} REr A R}
R F KRR . W AN e SN . (19.39)
8D 2 16Dr r 8D 2 16Dr
PRi A PRI
=D 1+v)+—(1+v)+ 1-
Now, at r = R, M, = 0; therefore
R: R!
il-(1+v)=-p—l(l~l»v)-pI (1 -v)
2 D
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or

2 4
R R -
A__Pl_Pl(l v)

4D 8DR22 1 +v

(19.40)

Another suitable boundary condition is that

aar = R, w =0

In this case, it will be necessary to consider only that portion of the plate where » < R, as follows:

aar = R, w =0

Therefore
R} AR}
0 = P_l 1 + G
64D 4
or
6
PR PR PR (1-v
G = +
64D 16D  3pppZ\ 1 +v
4 2 4 2
_ -PR, JPRI PR, 1 -v ﬁ
64D 141) spr2\1+v) | 4
or

R' RY (1 -
G SRS Il [ B Sl (19.41)
64D R \1+v

The central deflection 6 occurs at » = 0; hence, from (19.41),
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; - _{ (& (s -v)} (94
64D Rj \1+v

Problem 19.5 A flat circular plate of outer radius R, is clamped firmly around its outer
circumference. If aload W is applied concentrically to the plate, through a tube
of radius R, as shown in Figure 19.5, show that the central deflection & is

R 2
r fnf =]+ (Rzz - Rlz)
16nD R,

!
00

F— 2a, —~|

b= 2R, —

2
{0.115 WRYET?); —"2/ [0‘6211n [5) -0.436 + 0.0224 (5)

t r r

(=2}
i

AN

7

AN

Figure 19.5 Plate under an annular load.

Solution

Whenr <R, F = 0,and when R, > r> R, F = W/(2rr), so that the plate differential
equation becomes
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or
—d r.d_w = A = l Inr + B
r dr 2nD
aw
or d(,___) - A . Frinr g (19.43)
dr 2nD

From continuity considerations at » =R,, the two expressions on the right of equation (19.43) must
be equal, i.e.

w
A= ——hR, + 8B 19.44
2D ( )
On integrating equation (19.43),
2 2 2 2
rﬂ:Ar + C _u/_.t_]nr—r_ +Br + F
dr 2 2nD \ 2 4 2
or
aw A4 C Wi Br F
2L,z 4 (ln r--’-) A (19.45)
ar 2 r 4nD 2 2 r
atr= 0, i # « therefore C = 0
dr
From continuity considerations for dw/dr, atr = R,,
AR WR R BR
b ST PP S (U i (19.46)
2 4nD 2 2 R,
On integrating equation (19.46)
2 2 2 2 2
szr + G - W r—lnr—:——-r—+Br + Flnr+#
2 2rD \ 4 8 8
or
2 2
w = Ar + G r

82
(inr-1)+—+F Inr+H (19.47)
8nD 4
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From continuity considerations for w, at7 = R,
Ar? WR?

+ G =
2 8nD

2
1

BR
(nR-)+—L1+FInR+H  (1948)

In order to obtain the necessary number of simultaneous equations to determine the arbitrary
constants, it will be necessary to consider boundary considerations.

atr= R, — =0

therefore

WR BR
- 2w -2 e 22 L (19.49)
4nD 2 R
Also,atr = R, w = 0; therefore
WwR}: BR;
0 - LinR-1)+—2+Fh{R)+H (19.50)

8nD

Solving equations (19.46), (19.48), (19.49) and (19.50),

F = (19.51)

w
= o5 {-R}2 - Rl2 + RIn (R))}

and
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WR!  WR}
G = - + In (Rl) + H
8nD 8nD
WR? (R R R?
:_W12+ 1 (1)_W—-—2——1+R121n(R2)
81D 8nD | 2 2
w

167D

2
W 2 R, 2 2
G = In}—| + - R

doccursatr = 0, ie.

2
W 2 R, 2 2
6 = G = In| —| + - R

19.3 Large deflections of plates

If the maximum deflection of a plate exceeds half the plate thickness, the plate changes to a
shallow shell, and withstands much of the lateral load as a membrane, rather than as a flexural

structure.
For example, consider the membrane shown in Figure 19.6, which is subjected to uniform

lateral pressure p.
t w
t
]
1P
~
S— ~—
0.8

= ~+ R -

Figure 19.6 Portion of circular membrane.

Let
out-of-plane deflection at any radius r

3
"

membrane tension at a radius 7

Q
l

thickness of membrane

.
1]
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Resolving vertically,

c><t><21tr><-‘iw— = pxmr?
dr

or
v _ pr
dr 20t
or
2
w = pr + A
4ot
at r = R, w = 0; therefore
4 = PR
4ot
ie.
w = maximum deflection of membrane

W = -pRA4ct)

The change of meridional (or radial) length is given by

& = fds-fdr

where s is any length along the meridian

Using Pythagoras' theorem,

o/

f(arw2 +dr’f - far

1] - e

Expanding binomially and neglecting higher order terms,

N

477

(19.52)
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13l

8l =
(19.53)
1 [ aw)’
= = —\} ar
2 f[ dr]
Substituting the derivative of w, namely equation (19.52) into equation (19.53),
2
6l = L f R [ ﬂ) dr
2 Jo \ 20t (19.54)
= p’R(240%%)
but
€ = strain = — = —(o - vo)
or
03 B} E pZRZ
(1 - v) | 240%2
ie.
252
E R
o =3 £ (19.55)
T—v 24
but

6 = pRY@nw) (19.56)

From equations (19.55) and (19.56),
A\ 3
p - £ _[L)|2 (19.57)
3(1 -v)\RJ\R

According to small deflection theory of plates (19.23)

b (v
= 6R—f [%) (19.58)
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Thus, for the large deflections of clamped circular plates under lateral pressure, equations (19.57)
and (19.58) should be added together, as follows:

_ 64D i . 8 _t_ lv: 3
R [R] 31 - ) [R) (R) (19.59)

0.3, then (19.59) becomes

4 N N
PRZ . [21 4l + o065 |2 (19.60)
64Dt t t

where the second term in (19.60) represents the membrane effect, and the first term represents the
flexural effect.

When w/t = 0.5, the membrane effect is about 16.3% of the bending effect, but when v/t = 1,
the membrane effect becomes about 65% of the bending effect. The bending and membrane
effects are about the same when W/t = 1.24. A plot of the variation of w due to bending and due
to the combined effects of bending plus membrane stresses, is shown in Figure 19.7.

Ifv

)
2 |
L
&
S /
1.65
/ Small deflection theory
————— Large deflection theory
10 rL
0.581
vit
05 10 w

Figure 19.7 Small and large deflection theory.

19.3.1 Power series solution

This method of solution, which involves the use of data sheets, is based on a power series solution
of the fundamental equations governing the large deflection theory of circular plates.
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For a circular plate under a uniform lateral pressure p, the large deflection equations are given by
(19.61) to (19.63).

pd L 4|, av|l _ crﬁw_ + P (19.61)
dr |r dr dr dr 2

d

; (ro'r) -g, =0 (19.62)
d E ( dw)?

— (0 +o6)+ =| — = 0 19.63

2, o) L ( ) (1969

Way" has shown that to assist in the solution of equations (19.61) to (19.63), by the power series
method, it will be convenient to introduce the dimensionless ratio {, where

£ = r/R
or
r = CR
R = outer radius of disc

r = any value of radius between 0 and R

Substituting for ~ int (19.61):

1 d { (1 d(cm»} .88 PR

—— —

12(1 - v?) dER) IR d(GR) Eir 2Es?
or
14 {l < “(C")} _ SR | pR% (19.64)
120 -v) &L | & Et? 2E13

Inspecting (19.64), it can be seen that the LHS is dependent only on the slope 6.

Now

9 = — = —

aw
dr d(CR)

SWay, S., Bending of circular plates with large deflections, A.S.M.E., APM-56-12, 56, 1934.
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which, on substituting into (19.64), gives:

_l_i{iz[@(_w/'l} ] %[5)2M+£(5)45 (19.65)

12(1_v2)dc dc| dtg t d  E\t/) 2

(%) E(&) = 2]

are all dimensionless, and this feature will be used later on in the present chapter.
Substituting r, in terms of { into equation (19.62), equation (19.66) is obtained:

SaGIRC]

Similarly, substituting # in terms of { equation (19.63), equation (19.67) is obtained:

ERECI I

Equation (19.67) can be seen to be dependent orly on the deflected form of the plate.
The fundamental equations, which now appear as equations (19.65) to (19.67), can be put into
dimensionless form by introducing the following dimensionless variables:

but

X = rmt = (Rt
W = whit

U = ut

M = MuD

S, = o/E

S, = o/E

S, = ol/E

S, = oj/E

S, = p/E (19.68)
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g - v _ aw 19.69
dr ax (19.69)

or
W= deX (19.70)

Now from standard circular plate theory,

- 6D(de ve)
G = —|— 4 —

" t2 \dr r
and
¢+ 6D 6 a9
6, = —|—+v—
2 \r dar
Hence,
s - —J—(ﬁ +ﬁ] (19.71)
20 -v)lax X
and
1 ) a9
s/ = ———(—+v—) 19.72
Co2-v9\x A (19.72)

Now from elementary two-dimensional stress theory,

ukb
— = o, - vo,
’
or
U = X(S, - vS,) (19.73)

where u is the in-plane radial deflection at r.
Substituting equations (19.68) to (19.73) into equations (19.65) to (19.67), the fundamental
equations take the form of equations (19.74) to (19.76):
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1 d 1 e[ _ s, X+ 58 (19.74)
120 - v2) & X “ax 2
d(Xs
9ES) S =0 (19.75)
dx
92
X—p S+ 8)r = =0 (19.76)

Solution of equations (19.74) to (19.76) can be achieved through a power series solution.

Now S, is a symmetrical function, i.e. S(X) = S,(-X), so that it can be approximated in an
even series powers of X,

Furthermore, as 0 is antisymmetrical, i.e. 8(X) = -0(X), it can be expanded in an odd series
power of X. Let
S, = B, +BX*+BX'+ ...

r

and
B = CX+CX+CX° + ...
or
S, = Y Bx¥? (19.77)
i=1
and
8 = Y cx¥-! (19.78)
i=1

Now from equation (19.75)

d(xs -
S, = —('d;—-) = Y @i-1nBx¥-? (19.79)

i=1
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31
Power sernes
[ — lShr:;g:Iydellecuon theory—____
251
\Expenmenl
L]
EY
2
e
s
g 159
2
14
051
0 100 200
Pressure ratio ?p»(ﬁ)'
Figure 19.8 Central deflection versus pressure for a simply-supported plate.
Wo- feax = B || cx (19.80)
i=1 2i
Hence
— (2 -1 .
Sr/ - E (2i +v ) C,.XZ' 2 (19.81)
i1 201 - v
S,/ -y {t +v(2i - 1) Cx¥ -2 (1982

i=1 2(1 —vz)
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Now
U = X (S, - vSr)
- (19.83)

Y @Qi-1-vBXx¥ !
i=1

fori = 1,2,3,4 ~ o,

1.5+
—— Smalt deflection
theory
Experiment
14
= T Power series
% theory
g
o4
3
f=t
]
o
2
®
o}
0.5
0 100 200

p{2R )‘
Pressure ratio 'E_(_t

Figure 19.9 Central deflection versus pressure for an encastré plate.
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From equations (19.77) to (19.83), it can be seen that if B, and C, are known all quantities of
interest can readily be determined.

Way has shown that
k-1
B E C k-m
Bk - m =1
8kik - 1)

fork = 2,3,4etc. and

c, - 3 ‘V>k§_jl B,C
k k(k—l el m>="k -m

fork = 3,4, Setc. and

vyt S
c, 3(1—”[?1’+Blcl)

2

Once B, and C, are known, the other constants can be found. In fact, using this approach, Hewitt
and Tannent® have produced a set of curves which under uniform lateral pressure, as shown in
Figures 19.8 to 19.12. Hewitt and Tannent have also compared experiment and small deflection
theory with these curves.

19.4 Shear deflections of very thick plates

If a plate is very thick, so that membrane effects are insignificant, then it is possible that shear
deflections can become important.

For such cases, the bending effects and shear effects must be added together, as shown by
equation (19.84), which is rather similar to the method used for beams in Chapter 13,

)

6bcnding * 8shcar

which for a plate under uniform pressure p is

3 2
5 = pR {<, [%) vk, [%) } (19.84)

where &, and %, are constants.
From equations (19.84), it can be seen that 6, becomes important for large values of (#/R).

[ . .
Hewitt D A, Tannent } O, Large deflections of circular plates, Portsmouth Polytechnic Report M195, 1973-74.
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Figure 19.10 Central stress versus pressure for an encastré plate.
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Figure 19.11 Radial stresses near edge versus pressure for an encastré plate.
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[V
8
Experiment
6.
—
E -~ ™~ Power series
N’ theory
Slw
44
2.
Membrane theory
\ Experiment
M {membrane)
T L
200

0 100

Figure 19.12 Circumferential stresses versus pressure near edge for an encastré plate.
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Further problems (answers on page 694)
19.6 Determine an expression for the deflection of a circular plate of radius R, simply-

supported around its edges, and subjected to a centrally placed concentrated load W.

19.7 Determine expressions for the deflection and circumferential bending moments for a
circular plate of radius R, simply-supported around its edges and subjected to a uniform
pressure p.

19.8 Determine an expression for the maximum deflection of a simply-supported circular
plate, subjected to the loading shown in Figure 19.13.

| " |

’—_2R|'—.+

T

2A,

1

Figure 19.13 Simply-supported plate.

19.9 Determine expressions for the maximum deflection and bending moments for the
concentrically loaded circular plates of Figure 19.14(a) and (b).

.
7

L] Ll

b—2R,— —2R,—f .
= 2R, - = 2R, -
(a) Simply supported. (b) Clamped.

Figure 19.14 Problem 19.9



19.10

19.11

Further problems 49]

A flat circular plate of radius R is firmly clamped around its boundary. The plate has
stepped variation in its thickness, where the thickness inside a radius of (R/5) is so large
that its flexural stiffness may be considered to approach infinity. When the plate is
subjected to a pressure p over its entire surface, determine the maximum central
deflection and the maximum surface stress at any radius 7. v = 0.3.

If the loading of Example 19.9 were replaced by a centrally applied concentrated load
W, determine expressions for the central deflection and the maximum surface stress at
any radius r.



20 Torsion of non-circular sections

20.1 Introduction

The torsional theory of circular sections (Chapter 16) cannot be applied to the torsion of non-
circular sections, as the shear stresses for non-circular sections are no longer circumferential.
Furthermore, plane cross-sections do not remain plane and undistorted on the application of torque,
and in fact, warping of the cross-section takes place.

As a result of this behaviour, the polar second moment of area of the section is no longer
applicable for static stress analysis, and it has to be replaced by a torsional constant, whose
magnitude is very often a small fraction of the magnitude of the polar second moment of area.

20.2 To determine the torsional equation

Consider a prismatic bar of uniform non-circular section, subjected to twisting action, as shown
in Figure 20.1.

P

Figure 20.1 Non-circular section under twist.

Let,
T = torque
u = displacement in the x direction
v = displacement in the y direction
w = displacement in the z direction
= the warping function
® = rotation/ unit length

x,y,z = Cartesian co-ordinates
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P

Figure 20.2 Displacement of P.

Consider any point P in the section, which, owing to the application of T, will rotate and warp,
as shown in Figure 20.2:

u = -yz0
(20.1)
v = x20
due to rotation, and
wo = 8 xylx, y))
(20.2)
= 9 X w
due to warping. The theory assumes that,
& = ¢ =¢ =y, =0 (20.3)

and therefore the only shearing strains that exist are y,_, and ¥,.» which are defined as follows:

shear strain in the x-z plane

o +_al ) e(é’\v ) (20.4)

g Oz 3;-

YX ¢4
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Y,. = shear strain in the y-z plane
(20.5)
= a_w- + i = 9 _ai + X
d o oy

The equations of equilibrium of an infinitesimal element of dimensions dx x dy x dz can be
obtained with the aid of Figure 20.3, where,

and

Resolving in the z-direction

ot ar_,
_yzxdyxdxxdz+_£‘_xdxxdyxdz = 0
oy ox
or
or,, a‘ty,
- + - =0 (20.6)
Ox dy

14 dy
dz
Tyz
o T K i
pal
1y} )_ - - - -
dy z“( Z t,,+‘_?_'£-dx
-=- dx Ix
/ Tyz
sz*%'dx
X
z

Figure 20.3 Shearing stresses acting on an element.
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However, from equations (20.4) and (20.5):

1 - Gy, - Ge(ﬂ - ] (20.7)
ox
and
E
1, = Gy, = Ge(a—I +x) (20.8)
Let,
% = % -y (20.9)
and,
_% . %‘V” (20.10)

where ¥ is a shear stress function.
By differentiating equations (20.9) and (20.10) with respect to y and x, respectively, the

following is obtained:

ax?  oy? ox . dy ox . oy
or,
&y &
LT, S (20.11)
ax?  gy?

Equation (20.11) can be described as the torsion equation for non-circular sections.
From equations (20.7) and (20.8):

xz

- X
= GoX
T % (20.12)

and

v, - -GoXk (20.13)
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Equation (20.11), which is known as Poisson's equation, can be put into the alternative form of
equation (20.14), which is known as Laplace's equation.

CoATACA

pwr: Sy-z 0 (20.14)

20.3 To determine expressions for the shear stress v and
the torque T

Consider the non-circular cross-section of Figure 20.4.
y

dx
—[Jo
Txz

l vz

Figure 20.4 Shearing stresses acting on an element.

From Pythagoras' theorem

1 = shearing stress at any point (x, y) on the cross-section

- (TZ + T;) (20.15)

p 4

From Figure 20.4, the torque is
T=[fl{rexy- -1, xxd&. d (20.16)

To determine the boundary value for y, consider an element on the boundary of the section, as
shown in Figure 20.5, where the shear stress acts tangentially. Now, as the shear stress
perpendicular to the boundary is zero,

T, sing + 1, cos¢ = 0



To determine expressions for the shear stress T and the torque T

Tyz

Figure 20.5 Shearing stresses on boundary.
or
—GBx..a._x. —ﬂ +G9xﬁiy_ = 0
ds oy \ ds

ox

or

where s is any distance along the boundary, i.e. y is a constant along the boundary.

497

Problem 20.1 Determine the shear stress function y for an elliptical section, and hence, or
otherwise, determine expressions for the torque T, the warping function w and the

torsional constant J.

X , X
|

14

Figure 20.6 Elliptical section.
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Solution

The equation for the ellipse of Figure 20.6 is given by

x? v
prirE (20.17)
and this equation can be used for determining the shear stress function y as follows:
2 2
x = cx_7+Y_’_ (20.18)
a-  b°

where C is a constant, to be determined.
Equation (20.18) ensures that x is constant along the boundary, as required. The constant C can
be determined by substituting equation (20.18) into (20.11), i.e.

C i + i = =2
a’ b?
therefore
c - _02b2
aZ + b2
and
272 2 2
y = 2 |- XY (20.19)
(a2 + bz) a’ b?

where y is the required stress function for the elliptical section.

Now,
2
v, - GO - -gp 29
i dy a’ + b?
2
. - _ced . GO b

ox ) al + b?



To determine expressions for the shear stress t and the torque T

and
T = f(r”y - 1,.x)d4
272 2,2
- -GG[ 2x“b , 2ya A
a® + b2 4’ + b?
2.2 2 2
- 268 4b f"—dA « [ ad
aZ + b2 a2 b2
but
2 1tab3
f y*dd = I = e second moment of area about x—x
and,
2 _ _ 1ta3b _
f x'dd = I, = e second moment of area about y-y
therefore
T - -2G8 a’? ([ mab  mab
a’ + b2 4 4
_ 313
T - GOna’b
a2 + b2
therefore
c -2aly ~@? + bYT
* (@? + b na’b’
T, - 2Ty
nab’
-2Tx

yz
na’h

499

(20.20)

(20.21)

(20.22)
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By inspection, it can be seen that 7 is obtained by substituting y =b into (20.21), provided a > b.

T = maximum shear stress

o (20.23)

nab?

and occurs at the extremities of the minor axis.
The warping function can be obtained from equation (20.2). Now,

oy _ 0y
oy Ox
or
2ya’b? Sy _y
(az + b2>b2 ox
ie.
dy _ (24 + 4%+ bz)y
ox (a2 + bz)
therefore
2 _ 2
v o= |2y (20.24)
a’ + b?

Similarly, from the expression

ox oy

the same equation for y, namely equation (20.24), can be obtained. Now,

i

w = warping function

0 xy
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therefore

2 _ 2
w = Hexy (20.25)

From simple torsion theory,

T

- = G8 0.26

. (20.26)
or

T = G8J (20.27)

Equating (20.20) and (20.27), and ignoring the negative sign in (20.20),

Gbna’b?
@* + 57

G8J =

therefore

J = torsional constant for an elliptical section

3b3
J = 9o 20.28
@+ 57 ( )

Problem 20.2 Determine the shear stress function x and the value of the maximum shear
stress £ for the equilateral triangle of Figure 20.7.

8 y
2af V3
\ )
2afv3| a3 / -
2a/V3
C 1N

Figure 20.7 Equilateral triangle.
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Solution

The equations of the three straight lines representing the boundary can be used for determining y,
as it is necessary for y to be a constant along the boundary.

Side BC
This side can be represented by the expression

x = -2 or x+-§- =0 (20.29)

Side AC
This side can be represented by the expression

2
x - 3y-—;i =0 (20.30)
Side AB
This side can be represented by the expression
2
X+ 3y-—3‘1=0 (20.31)

The stress function  can be obtained by multiplying together equations (20.29) to (20.31):
Clx+ai3) x (x-y3 y-2a/3) x (x+y3 y-2a13)

X
(20.32)

C{le?-3xpY)-ale? +y%)+4a’127}

From equation (20.32), it can be seen thaty = 0 (i.e. constant) along the external boundary, so that
the boundary condition is satisfied.
Substituting y into equation (20.11),

Cl6x - 2a) + C(-6x - 2a) = -2
- 4aC = -2
C = 1A2a)
therefore
koY - Lty 2a* (20.33)

2a 2 27
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Now
T, = G(')i
dy
1
= GG{— (~6xy) - = x 2y}
2a
- -G ( M, ) (20.34)
- 2a
Along
y =0,7,=0
Now
1, = —GBQ = -G8 -1—(3x2 - 32 - 1. 2x
. ox 2a 2
therefore
. 3G Ji2 oy _2ax (20.35)
: 2a 3

As the triangle is equilateral, the maximum shear stress 7 can be obtained by considering the
variation of 7, along any edge. Consider the edge BC (i.e. x = -a/3):

3G8 [ a? 2 2a?
t_{edge BC) = - = - +
S0 2a ( 5 7 9

3G6 az 2
- -
2a 3

(20.36)

where it can be seen from (20.36) that T occurs at y = 0. Therefore

t = -GBan2 (20.37)
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20.4 Numerical solution of the torsional equation

Equation (20.11) lends itself to satisfactory solution by either the finite element method or the
finite difference method and Figure 20.8 shows the variation of % for a rectangular section, as
obtained by the computer program LAPLACE. (The solution was carried out on an Apple II +
microcomputer, and the screen was then photographed.) As the rectangular section had two axes
of symmetry, it was only necessary to consider the top right-hand quadrant of the rectangle.

Tsymmetry

Top right

symmetry

Figure 20.8 Shear stress contours.

20.5 Prandtl's membrane analogy

Prandtl noticed that the equations describing the deformation of a thin weightless membrane were
similar to the torsion equation. Furthermore, he realised that as the behaviour of a thin weightless
membrane under lateral pressure was more readily understood than that of the torsion of a non-
circular section, the application of a membrane analogy to the torsion of non-circular sections
considerably simplified the stress analysis of the latter.

Prior to using the membrane analogy, it will be necessary to develop the differential equation
of a thin weightless membrane under lateral pressure. This can be done by considering the
equilibrium of the element AA “ BB “in Figure 20.9.



Prandtl’s membrane analogy

y
Plan
(looking
downwards)
X
z | P |
Section
throughC-C
A(N/m?)
o X
Figure 20.9 Membrane deformation.
Let,
F = membrane tension per unit length (N/m)
Z = deflection of membrane (m)
P = pressure (N/m?)
. T 0z
Component of force on AA “ in the z-direction is ' x r x dy
x
. o 0z 9z
Component of force on BB “in the z-direction is F . + —5—2 x dx|dy
x x
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Component of force on AB in the z-direction is F' x Z—Z x dx l
y
R o oz 3’z
Component of force on A B “in the z-direction is F x e + o2 x dy| dx 1
Y y

Resolving vertically

2 2
F £+£ dzxdy = -Pxdx xdy
axZ ayZ
therefore
ﬂ + iz. = —£ 20.38

If Z = yx in equation (20.38), and the pressure is so adjusted that P/F = 2, then it can be seen that
equation (20.38) can be used as an analogy to equation (20.11).
From equations (20.12) and (20.13), it can be seen that

1, = G 0 x slope of the membrane in the y direction
(20.39)
17,, = G 0 x slope of the membrane in the x direction
Now, the torque is
T = Jj(tnxy—tﬂxx)dxd)z
= GO [8_2 x y+ 9z x xj dxdy (20.40)
dy Ox

Consider the integral

[0 s
dy

Now y and dx are as shown in Figure 20.10, where it can be seen that I y x dx 1is the area of

section. Therefore the

oz
I I 5— x y x dx x dy = volume under membrane (20.41)
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_-”.—dx

y
x /—_ yx
1 4

/]

Figure 20.10

Similarly, it can be shown that the volume under membrane is

J.l._gx_g X X Xdx X dy (2042)

Substituting equations (20.41) and (20.42) into equation (20.40):
T = 2(G6 x volume under membrane (20.43)
Now

I _ 6e
F;

which, on comparison with equation (20.43), gives

J torsional constant

2 x yolume under membrane (20.44)

20.6 Varying circular cross-section

Consider the varying circular section shaft of Figure 20.11, and assume that,

where,

u = radial deflection
v = circumferential deflection
w = axial deflection
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Figure 20.11 Varying section shaft.

As the section is circular, it is convenient to use polar co-ordinates. Let,

™
i

radial strain = Q
hoop strain = 0
axial strain = 0

shear strain in a longitudinal radial plane = 0

any radius on the cross-section

Thus, there are only two shear strains, ¥,, and v,,, which are defined as follows:

Yo =
Yo =

But
T =

and
2

Te=

shear strain in the r—0 plane

shear strain in the 6—z plane

"

ov

v
r

or

ov

oz

(20.45)

(20.46)
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From equilibrium considerations,

org, Ot 274

+.i+ =

or oz r

which, when rearranged, becomes

%(rzr,e )+ Eaz—(rzt Oz) =0

Let k be the shear stress function

where
oK
2
—=r
ar oz
and
oK
—=-r 0
0z

which satisfies equation (20.47).
From compatibility considerations

aYr@ — aYGz _ &
oz or ¥
or
Fn | Ta e
oz or r
From equation (20.49)
T . 1 Fx
oz rt oz’
From equation (20.48)
O, _ 1 &Px _ 2 &

or r? arZ r3 or

509

(20.47)

(20.48)

(20.49)

(20.50)

(20.51)

(20.52)
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Substituting equations (20.59) and (20.52) into equation (20.50) gives

P . 1 P 2 & 1 &

1
r? 8z2 r? or? r3 or r: or

or

t— =0 (20.53)

From considerations of equilibrium on the boundary,

T, €OSQ - Tg,5ina = 0 (20.54)
where
dz
cosa = —
ds
(20.55)
. dr
sing = —
ds

Substituting equations (20.48), (20.49) and (20.55) into equation (20.54),

or

1.e. K is a constant on the boundary, as required.
Equation (20.53) is the torsion equation for a tapered circular section, which is of similar form
to equation (20.11).
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20.7 Plastic torsion

The assumption made in this section is that the material is ideally elastic-plastic, as described in

Chapter 15, so that the shear stress is everywhere equal to 7, the yield shear stress. As the shear

stress is constant, the slope of the membrane must be constant, and for this reason, the membrane
analogy is now referred to as a sand-hill analogy.
Consider a circular section, where the sand-hill is shown in Figure 20.12.

|

h

b— 2R —

Figure 20.12 Sand-hill for a circular section.

From Figure 20.12, it can be seen that the volume (Vo/) of the sand-hill is

Vol = LR
3
but
1, = GB x slope of the sand-hill
where
8 = twist/unit length -
G = modulus of rigidity - 0
h
s T = 08 —
B/ R
or
h = Rr,/G8
and
TRt
Vol = 2

3Go
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Now
J=2x Vol = 27tR3ryp/(3G6)
and
Tp =G8J = GO x 27IR3Typ/ (3GH)
therefore
_ 3
Tp = 2nR typ/ 3

where T, is the fully plastic torsional moment of resistance of the section, which agrees with the
value obtained in Chapter 4.
Consider a rectangular section, where the sand-hill is shown in Figure 20.13.

—®
a
[ } "
A A
-l a2 l.g 82~
’-.— h ———=f p——— » —..i jo—a —=yf
(a) Plan {b) Section through A - A (c) Section through B-B

Figure 20.13 Sand-hill for rectangular section.

The volume under sand-hill is

Vol = labh—l(—l-a x i] xhx2
2 3\2 2

2
- Lm0
2 6
h
= %(31;-[:)
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and 1,, = GO x slope of sand-hill = G8 x 2h/a

or

h = myI’

2GO

therefore

Vol - a(3b - a)m:yp

12G6

Now

J = 2xvol = a’(3b - ajt, /(6GB)
and

Tp = GOJ
therefore

o 2ap
T = a*(3b a)'ryp/6

where 7, is the fully plastic moment of resistance of the rectangular section.
Consider an equilateral triangular section, where the sand-hill is shown in Figure 20.14.

(a) Plan
1

ZIA (b) Section through A - A
=

al3

Figure 20.14 Sand-hill for triangular section.
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Now
1, = GO xslope of sand-hill
or
3h
1, = GBx —
a
and
h = Alyp
3G9

therefore, the volume of the sand-hill is

Vol = l[_l_x.z_axa)xh

312 ‘/_3,'

and

a't
T, = 2G8 x —2
9/3G6

3
2y,

T,
%3

where T, is the fully plastic torsional resistance of the triangular section.



21 Thick circular cylinders, discs
and spheres

21.1 Introduction

Thin shell theory is satisfactory when the thickness of the shell divided by its radius is less than
1/30. When the thickness: radius ratio of the shell is greater than this, errors start to occur and
thick shell theory should be used. Thick shells appear in the form of gun barrels, nuclear reactor
pressure vessels, and deep diving submersibles.

21.2 Derivation of the hoop and radial stress equations for a thick-
walled circular cylinder

The following convention will be used, where all the stresses and strains are assumed to be tensile
and positive. At any radius,

o, = hoop stress

o, = radial stress
o, = longitudinal stress
€, = hoop strain

€ = radial strain

Figure 21.1 Thick cylinder.
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g, = longitudinal strain (assumed to be constant)
w = radial deflection

From Figure 21.2, it can be seen that at any radius 7,

2n(r + w) - 2nr
2nr

or

g = wir

Similarly,

\ dr+dw
iR
r \ w ‘ wadw

Figure 21.2. Deformation at any radius r.

From the standard stress—strain relationships,

Ee, = o,-va6, -vo, = aconstant
Ew
Eey = - = Gg— VO ,— VO,
dw
Ee, = E— = 0,-voq4- VO,

" ar

(21.1)

(21.2)

(21.3)

(21.4)
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Multiplying equation (21.3) by ,
Ew = oy xr-ve,xr-ve xr (21.5)

and differentiating equation (21.5) with respect to r, we get
do do do
EY . Gy-VG,- VG, +r| — -V —2-v — (21.6)
dr dr

Subtracting equation (21.4) from equation (21.6),

A do, do,
(ce—cr)(l +V)rr—-vr —Z-vr =0 (21.7)
dr dr
As ¢, is constant
0, - VG, - V0, = constant (21.8)

Differentiating equation (21.8)with respect to 7,

do, do, do,
-V — -V = 0
dr dr dr
or
do, _ | 9% , do (21.9)
dr dr dr

Substituting equation (21.9) into equation (21.7),

do do
(O -o )1 +V)+r(l - vl)ﬁ—vr(l +v)d—r’ =0 (21.10)

and dividing equation (21.10) by (1 + v), we get

do, do,
6, -6, +r(l +v)— - wvr =0 (21.11)
dr dr

Considering now the radial equilibrium of the shell element, shown in Figure 21.3,
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O'e, dr
\ (o +do)r+dide
/
/
o/do \
Ue, dr

Figure 21.3 Shell element.

264 9, sin(%)ﬂs, r 9, —(c,+ 60,)(r+ 8r)69 =0 (21.12)

Neglecting higher order terms in the above, we get

do,
-6, -r— =0 (21.13)

o
6
dr

Subtracting equation (21.11) from equation (21.12)

do, do,

— +—Z =0 (21.14)
dr dr
. Gy + 6, = constant = 24 (21.15)

Subtracting equation (21.13) from equation (21.15),

do,
26, +r— = 24
dr
or
2
l d(crr) Iy
r dr
2
d(or r) o



Lamé line
Integrating the above,
o, ¥r’? = Ar’ - B
6 = A - 2
r 2
2

From equation (21.15),

B

rZ

09 = A+

21.3 Lamé line

519

(21.16)

(21.17)

If equations (21.16) and (21.17) are plotted with respect to a horizontal axis, where 1/7* is the
horizontal axis, the two equations appear as a single straight line, where o, lies to the left and o,
to the right, as shown by Figure 21.4. For the case shown in Figure 21.4, ¢, is compressive and o,

tensile, where

G

65, = external hoop stress

+ ve stress

Radial stress | Hoop stress

internal hoop stress, which can be seen to be the maximum stress

12

- o ! i -
1 l/ VR_| VIR !
P 1R | 1R |
+ ve stress

Figure 21.4 Lamé line for the case of internal pressure.
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To calculate 6, and o4,, equate similar triangles in Figure 21.4,

or

1o} R
R} R (21.18)

%1 5 TS

(&} - &)

Similarly, from Figure 21.4

or,

L) RR
R} R’ (21.19)
2PR}
Gg =
R} - &)

Problem 21.1 A thick-walled circular cylinder of internal diameter 0.2 m is subjected to an
internal pressure of 100 MPa. If the maximum permissible stress in the
cylinder is limited to 150 MPa, determine the maximum possible external
diameter d,.



Lamé line
Solution
100 ) 150
1 1 1 1
— — — + —
[0.?.2 d;) [0.22 d;]
+ ve stress
Radial stress l Hoop stress
|/ 06,=150 MPa
- ]
1/d3 | 1d}
s —1001/;-_2.- : i
2 2
. 1/0.2 | 1/0.2 :
1 al
+ ve stress
Figure 21.5 Lamé line for thick cylinder.
or
1
+ —
(0.22 d? 0.22 4}
2/ x 2l = 15
1 _ 1 0.22 d;
2 2
0.2 d,
d; + 02
- - 1.5
dz = 0.22}
d2 2 _ 2 2
or 2,022 = 15(d2—02 )
or 02%(1+15) = d3(15-1)

521
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d;

d;

Thick circular cylinders, discs and spheres

= 02m?

0447 m

H

Problem 21.2  If the cylinder in the previous problem were subjected to an external pressure

Solution

1
)

d,

Now

of 100 MPa and an internal pressure of zero, what would be the maximum
magnitude of stress.

= 25 and—l; = 5,
d;

hence the Lameé line would take the form of Figure 21.6.

+ve stress
- 25 ? 25 o
| . 5 I 5
00 |
hoop stress
Radial stress \; - o8
+ve stress

Figure 21.6 Lamé line for external pressure case.

By equating similar triangles,

100 _ Oy,

25

- 5) 25 + 25

where oy, is the internal stress which has the maximum magnitude
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. 250 %100 o 550 MPa

C..
8/ 2 0

Problem 21.3 A steel disc of external diameter 0.2 m and internal diameter 0.1 m is shrunk
onto a solid steel shaft of external diameter 0.1 m, where all the dimensions are

nominal. If the interference fit, based on diameters, between the shaft and the

disc at the common surface is 0.2 mm, determine the maximum stress.
Forstee, E = 2x 10" N/m*,v = 0.3

Solution

Consider the steel disc. In this case the radial stress on the internal surfaces is the unknown P,
Hence, the Lameé line will take the form shown in Figure 21.7.

+ve stress
PC |

"{: \

100 100 |

-ve stress

Figure 21.7 Lamé line for steel ring.
Let,

Og,q = hoop stress (maximum stress) on the internal surface of the disc
0,,; = radial stress on the internal surface of the disc
Equating similar triangles, in Figure 21.7

Pc Gald

(100 - 25) 100 + 25

125 P
Gy = £ = 1667 P,
75
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Consider now the solid shaft. In this case, the internal diameter of the shaft is zero and as 1/0° -
=, the Lamé line must be horizontal or the shaft's hoop stress will be infinity, which is impossible;

see Figure 21.8.

-t Oy

wl

8
-——_—t 1 _

~ ve stress

Figure 21.8 Lamé line for a solid shaft.

Let
P, = external pressure on the shaft

[

. 6, = 0y = —P_(everywhere) (21.20)

Let,
w, = increase in the radius of the disc at its inner surface

w. = increase in the radius of the shaft at its outer surface

Now, applying the expression

to the inner surface of the disc
EwW,

—— [e] - VGO
681d 1d
5 x 1072 i

but,

therefore
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25100 xwy b 03 p

-2
5% 10 (21.21)
w, = 4918 x 1077 P,
Similarly, for the shaft
Ew,
- .5 = 69: - VCF”
5 x 1072
but Cgs = 0p = Pc
2 x 10" w,
——— = -P_(1 - V)
5 x 102
w, = -1.75 x 1078 P, (21.22)
but wy-w, = 2x107/2

(4918 x 107" +1.75x 10°*) P, = 1 x 10

=P, = 150 MPa

Maximum stress is

Cga = 1.667 P, = 250 MPa

21.4 Compound tubes

A compound tube is usually made from two cylinders of different materials where one is shrunk
onto the other.

Problem 21.4 A circular steel cylinder of external diameter 0.2 m and internal diameter 0.1
m is shrunk onto a circular aluminium alloy cylinder of external diameter 0.1
m and internal diameter 0.05 m, where the dimensions are nominal.
Determine the radial pressure at the common surface due to shrinkage alone,
so that when there is an internal pressure of 300 MPa, the maximum hoop
stress in the inner cylinders is 150 Mpa. Sketch the hoop stress distributions.
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Forsteel, E, = 2 x 10" N/m’, v, = 0.3

For aluminium alloy, £, = 6.7 x 10'"° N/m%, v, = 0.32

Solution
o, = the hoop stress due to pressure alone
o, = the hoop stress due to shrinkage alone
Gy, = hoop stress in the steel on the 0.2 m diameter
Gy, = hoop stress in the steel on the 0.1 m diameter
0., = Tradial stress in the steel on the 0.2 m diameter
6, = radial stress in the steel on the 0.1 m diameter
Gg;, = hoop stress in the aluminium on the 0.1 m diameter
o,,. = radial stress in the aluminium on the 0.1 m diameter
Ogs, = hoop stress in the aluminum on the 0.05 m diameter
o = radial stress in the aluminium on the 0.05 m diameter

Consider first the stress due to shrinkage alone, as shown in Figures 21.9 and 21.10.

\P!\\ 0‘95.13 Oo553
I i -

Figure 21.9 Lamé line for aluminium alloy tube.
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—- o o553

100 | 100

Figure 21.10 Lamé line for steel tube, due to shrinkage with respect to e.

Equating similar triangles in Figure 21.9.

02,50 _ —PCS
400 + 400 400 - 100 (21.23)
Ops, = -2.667 P
Similarly, from figure 21.9,
c;, la _ _P:
400 + 100 400 - 100 (21.24)
Og1e = -1.667 P
Equating similar triangles in Figure 21.10.
Gg’ ls _ ch
100 + 25 100 - 25 (21.25)
Oy, = 1.667 P;

Consider the stresses due to pressure alone

P

c

internal pressure

PP

pressure at the common surface due to pressure alone

The Lame lines will be as shown in Figures 21.11 and 21.12.
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0912
// Tghs;

0 -
o L — 0
/ 35 25
P |
400 400

Figure 21.11 Lamé line in aluminium alloy, due to pressure alone.

/

25

25

100

100

ogP 15

Figure 21.12 Lamé line for steel, due to pressure alone.

Equating similar triangles in Figure 21.11.

P-PP  og+ P
400-100 400+ 100

300- P*  og,,+ 300
300 500

or

or 64, =200-1667P°
Similarly, from Figure 21.11,

P-P’  Ggs.t P

300 800

(21.26)
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300- BF  ogs,+ 300

(21.27)
300 800
or oy, = §(300- P’)-300
0,5a 3 c
Ggsq =500 - 2.667 P
Similarly , from Figure 21.12,
P
100+25 100-25
o4 = 1667 PF
Owing to pressure alone, there is no interference fit, so that
wl = w’
Now
E w’
(;(;‘;‘ = c;ls+vsPcP
or wh = 99 (1667 P7 + 03 PF)
2 x 10"
or w, = 4917x1071 pF (21.29)
Similarly
E, w,
005~ Cews Vel
0.05
P P P
or w, =————|0g,, + 032P.
? 7 67x 10‘°( ola ‘ )
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0.05 , ,
=m(200—l.6671’c +032P") (21.30)

w! =1493x107- 1.0x1072 PP
Equating (21.29) and (21.30)

4917x107° PP = 1493x107'°-1.0x 107" (21.31)

.. PY = 100 MPa

<

Substituting equation (21.31) into equations (21.26) and (21.27)

500 - 2.667 x 100

Gy s, 233.3 MPa (21.32)

1l

o, = 200 - 1.667 x 100 = 33.3 MPa (21.33)

Now the maximum hoop stress in the inner tube lies either on its internal surface or its external
surface, so that either

Cora * Ghi = 150 (21.34)

or

Opsa * Opsg = 150 (21.35)

Substituting equations (21.32) and (21.24) into equation (21.34), we get
150

333 - 1.667 P;

or P’ -70 MPa

<

"

Substituting equations (21.33) and (21.23) into equation (21.35), we get

2333 - 2667 P = 150

~ P} = 312 MPa

c
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le. P’ = 31.2 MPa, as P, cannot be negative!
P =P  + Pl =312 +100 = 1312 MPa (21.36)
8 #
09,2.1' Pc + Pc
25 + 25 100 - 25
G, , 87.5 MPa
K P
oo, = 1667 (P + P} = 2187 MPa
Gy = 200 - 1.667 (P’ + P[) = -18.7 MPa
Ggsa = 500 - 2.667 (P’ + P[) = 150 MPa
i 2187
N\
N
al alloy N
150 ~ ~
\ ~ —~
\ steel —87.5
AN
0 N .
0.05m ~ 0.01m 0.2m
187
Figure 21.13 Hoop stress distribution.
21.5 Plastic deformation of thick tubes
The following assumptions will be made in this theory:
1. Yielding will take place according to the maximum shear stress theory, (Tresca).
2. The material of construction will behave in an ideally elastic-plastic manner.
3. The longitudinal stress will be the ‘minimax’ stress in the three-dimensional system of

stress.
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For this case, the equilibrium considerations of equation (21.13) apply, so that

do, 0 21.37
G, -~ G - 7r = .
[} r i ( )

Now, according to the maximum shear stress criterion of yield,

G, — G0, = ©

p
(21.38)
6, = G, +0,
Substituting equation (21.38) into equation (21.37),
do,
6, *+6, -6 -r— =0
dr 21.39
do, = o, — ( )
r
6, = O, Inr +C
For the case of the partially plastic cylinder shown in Figure 21.14,
at r = R, o, = -P,
Substituting this boundary condition into equation (21.39), we get
-P, = o, ImR, +C
therefore
C = -o,InR, - P,
and,
’
6, = g, [—] - P, (21.40)
- Rz

Similarly, from equation (21.38),

o, = o, {1 + In RL)} - P, (21.41)
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where,
R, = internal radius
R, = outer radius of plastic section of cylinder
R, = external radius
P, = internal pressure
P, = extemal pressure

Elastic
Plastic

7
&

%,
2R3

Figure 21.14 Partially plastic cylinder.

The vessel can be assumed to behave as a compound cylinder, with the internal portion
behaving plastically, and the external portion elastically. The Lamé line for the elastic portion of
the cylinder is shown in Figure 21.15.

I / X
_— — Tge
0 - 0
Rz | R
PZ 3 3
2
RS ! 1R

Figure 21.15 Lamé line for elastic zone.
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534
In Figure 21.15,
G,, = elastic hoop stress atr =R,

so that according to the maximum shear stress criterion of yield on this radius,
(21.42)

c_vp = 692+P2

From Figure 21.15
69e

therefore
(21.43)

66«:
Substituting equation (21.43) into equation (21.42),
(21.44)

P, = o[RS - R}) ! 2R])

2

Consider now the portion of the cylinder that is plastic. Substituting equation (21.44) into equation

(21.41), the stress distributions in the plastic zone are given by:

2 2
R Ry - R,
6, = _cvp In [—ZJ + —( £l 2) (2145)

r 2R}

R} + R]

o, = ©, ) 1n[_2) (21.46)
R 2
2R; r

To find the pressure to just cause yield, put

= -P, when r = R

o, =
where P, is the internal pressure that causes the onset of yield. Therefore,
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2 2
P - i I B 2147
1= S || | (21.47)

in (21.61), so that,
P, = o, (R - R}/ [2R]) (21.48)

To determine the plastic collapse pressure P, put R, = R, in equation (21.47), to give
R

P, = oypln[—Ri] (21.49)
1

To determine the hoop stress distribution in the plastic zone, oy, it must be remembered that

G, = G4 - O,
therefore
Gp = G, {1 +In(Ry/ R (21.50)

Plots of the stress distributions in a partially plastic cylinder, under internal pressure, are shown
in Figure 21.16.

Plastic | Hastic I
one zone ]
| |
| |
|
«~ I }
e ] |
. | }
— -\ |
I\ |
PN |
| ~N ]
I >0 ey
Ry Ry R

Figure 21.16 Stress distribution plots.
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Problem 21.5 A circular cylinder of 0.2 m external diameter and of 0.1 m internal diameter
is shrunk onto another circular cylinder of external diameter 0.1 m and of bore
0.05 m, where the dimensions are nominal. If the interference fit is such that
when an internal pressure of 10 MPa is applied to the inner face of the inner
cylinder, the inner face of the inner cylinder is on the point of yielding. What
internal pressure will cause plastic penetration through half the thickness of the
inner cylinder. It may be assumed that the Young's modulus and Poisson's ratio
for both cylinders is the same, but that the outer cylinder is made of a higher
grade steel which will not yield under these conditions. The yield stress of the
inner cylinder may be assumed to be 160 MPa.

Solution

The Lamé line for the compound cylinder at the onset of yield is shown in Figure 21.17.

///
-
J/,/ /"/
‘ /,/ ! v”"
P —r
| 2 1

100 = 25 25
17/ 100 100

400 400

Figure 21.17 Lamé line for compound cylinder.

In Figure 21.17,
0, = hoop stress on inner surface of inner cylinder.
0, = hoop stress on outer surface of inner cylinder.
6, = hoop stress on inner surface of outer cylinder.

As yield occurs on the inner surface of the inner surface when an internal pressure of 50 MPa is
applied,

6, - (-100) = 160

» 6, = 60 MPa

Equating similar triangles in Figure 21.17, we get
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G, + 100 100 - P,

400 + 400 400 - 100

_1%@. = 100 - P,
(21.51)
.~ P, = 40 MPa
Similarly from Figure 21.17
o, + 100 100 - P,
400 + 100 400 - 100 (21.52)
o, = 0
Also from Figure 21.17,
03 _ Pc
100 + 25 100 - 25
(21.53)
se, = % - 66.7 MPa

Consider, now, plastic penetration of the inner cylinder to a diameter 0.075. The Lamé line in the
elastic zones will be as shown in Figure 21.17. From Figure 21.18,

G, + P; = 160

Figure 21.18 Lamé line in elastic zones.
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therefore
. G = 160 - P, (21.54)
Similarly
P, -P o, + P
22 . 70 180 (21.55)
400 - 100 400 + 400 800
~ Py = 60 + P, (21.56)
Also from Figure 21.18
c P
u = 2 (21.57)
100 + 25 100 - 25
or o, = 1.667P, (21.58)
Substituting equation (21.56) into equation (21.58), we get
o, = 1.667 (P, - 60)
or o, = 1.667 P; -100
Also from equation (21.55)
P Bk 160
100 + 400 400 - 100 800
.~ 65 = 100 - P, (21.59)
Now,
’
w = — (o, - vo
E ( 8 r)
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or

Substituting equations (21.52), (21.53), (21.58) and (21.59) into the above, we get

100 - P, -0 = 1667 P, - 100 - 66.7
or 2.667 P, = 100 + 100 + 66.7
P, = 100

Consider now the yielded portion

c = cyplnr+c

r

s, = 160

at r = 0.0375 m,

6, = -P, = -100
or  -100 = 160 In (0.0375) + C
C = -100 + 5253
2 C = 4253

Now, at r = 0.025m,

-P = 160 In (0.025) + 4253
= -590.2 + 4253

P = 1649 MPa
which is the pressure to cause plastic penetration.
Problem 21.6  Determine the internal pressure that will cause complete plastic collapse of the

compound cylinder given that the yield stress for the material of the outer
cylinder is 700 MPa.
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Solution

Now,

R3
P, = o, In|l=2 (21.60)

_ R, R,
= qwgln E; + qwlln .E:

= 700 [2L] + 160 In | 203
| 0.0

= 485 + 46

P, = 531 MPa

which is the plastic collapse pressure of the compound cylinder.

21.6 Thick spherical shells

Consider a thick hemispherical shell element of radius r, under a compressive radial stress P, as
shown in Figure 21.19.

‘ P+dP

Figure 21.19 Thick hemispherical shell element.
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Let w be the radial deflection at any radius r,
so that
hoop strain = w/r

and

aw
radial strain = —
r

From three-dimensional stress—strain relationships,

EX = 6-vo+vP (21.61)
r
and
dw
E— = -P-voc -vo (21.62)
dr
= -P -2vo
Now
Ew = 6 r-vo r+vP r

which, on differentiating with respect to r, gives

Ed_w
dr

1]

do do drP
0+r——vc—vr—+vP+vr—d7

(1 —v)(c—rﬂ) +V(P +r£)
dr dr

Equating (21.62) and (21.63),

-P-2ve = (1 -v) o-r3) . ylps,r92
dr dr

(21.63)

or

(l+v)(c+P)+r(l—v);+vr—=0 (21.64)
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Considering now the equilibrium of the hemispherical shell element,

o x 2mr x dr = P x w2 —(P+dP) x m x (r+ar)’ (21.65)

Neglecting higher order terms, equation 21.65 becomes

dpP
c+P = (~-r2) — .
p» (21.66)

Substituting equation (21.66) into equation (21.64),
-(r/2) (dP/dr) (1 + v) + r (1 - v) (do/dr) + vr (dP/dr) = ©

or

P _
5 0 (21.67)

1
a2
which on integrating becomes,

c-P2 = 4 (21.68)

Substituting equation (21.68) into equation (21.66)

3PI2 + A = (-r/2) (dP/dr)

or
3
Ldpxrd) o,
r2 dr
or
3
AP xrd) g
dr

which on integrating becomes,

Pxr® = -24r33 + B

or
P = 243 +B/¥ (21.69)
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and 6 = 24/3+B/2P) (21.70)

21.7 Rotating discs

These are of much importance in engineering components that rotate at high speeds. If the speed

is high enough, such components can shatter when the centrifugal stresses become too large. The

theory for thick circular cylinders can be extended to deal with problems in this category.
Consider a uniform thickness disc, of density p, rotating at a constant angular velocity o.

From
dw
E— =0, -vo 21.71
" : @1.71)
and,
EZ =¢, - vo, (21.72)
r
or,
Ew =o0y,xr -ve, xr (21.73)

Differentiating equation (21.73) with respect to 7,

E—= o4 +r e—vc—vrdr' (21.74)

Equating (21.71) and (21.74),

do do
L =0 (21.75)
dr

(6o - o) (1 +v) fr

Considering radial equilibrium of an element of the disc, as shown in Figure 21.20,

ZGSXersin(?) +0, xrxd

-0, +do,)(r + dr)d8 = p x @ x r’ x dr x d
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//(Or +do,)(r +dr)de

ds
Figure 21.20 Element of disc.
In the limit, this reduces to
do
6, -6, -r— = poir?
dr

Substituting equation (21.76) into equation (21.75),

do do do
r__'_+p(ozr2 (1+v)+r—9-vr-—r=0
dr dr

or,

do do
98 + r - _pm2r2 (1 + v)
dr dr

which on integrating becomes,

G, + 6, = {pa?¥2) (1 +v) + 24

Subtracting equation (21.76) from equation (21.77),

do
26, + r — = ~(pa?2) 3 +v) + 24
dr
or,
1 d(cr x "z) po’ r2 (3 +v)

_— . = - =+ 24
r dr 2

(21.76)

(21.77)
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which on integrating becomes,

o, r* =-(po?r*/8)(3+v)+ 4r* - B (21.78)
or
o, = A-B/r*- (3+v)(po?r?/8)
and,
oo = A+ B/r*- (1+3)(po*r? /8) (21.79)

Problem 21.7 Obtain an expression for the variation in the thickness of a disc, in its radial
direction, so that it will be of constant strength when it is rotated at an angular
velocity ©.

Solution
Let,
t = thickness at centre
t = thickness at a radius r
t+dt = thickness at a radius r +dr
c = stress = constant (everywhere)

Consider the radial equilibrium of an element of this disc at any radius 7 as shown in Figure 21.21.

pmz.rz.de.dr.t

1 o(r + dr).do.(t + di)

Figure 21.21 Element of constant strength disc.
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Resolving forces radially

ZGXIXdrSiD(%e-) +otrd® = ofr + dr) (¢ + dt) d® + pw’r’ d8 dr

Neglecting higher order terms, this equation becomes

otdt = ordr + otdr + pw’redr

or

dr 2
— = -pwortlc
dr P

which on integrating becomes,

Int = -pw’ri(20) + In C
or
t = Ce(-pmzr2/2c)
Now,atr =0, ¢t =¢t, .C =1¢,
Hence,
t = gelee’rio) (21.80)

21.7.1 Plastic coliapse of rotating discs

Assume that 6, > ¢,, and that plastic collapse occurs when

06 = O'yp

where 6, is the yield stress.

Let R be the external radius of the disc. Then,

from equilibrium considerations,

do, )
O'yp - O'r -r E- = pwr

2
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or,

f rde, = f {cvp -6, - pa)zrz} dr
Integrating the left-hand side of the above equation by parts,
r c,—fcr dr = o, r—fcr dr po*r33 + A

therefore

6, = o, - po’r¥3 + Alr (21.81)

For a solid disc, at r = 0, 6, # o0, or the disc will collapse at small values of m. Therefore
A =0

and
- 2.2
6, = G, - pOr /3

at r = R, 6, = 0; therefore

_ _ 2p2
0 = o, pw°R*/3

(21.82)

where,  1s the angular velocity of the disc, which causes plastic collapse of the disc.

For an annular disc, of internal radius R, and external radius R,, suitable boundary conditions
for equation (21.81) are:

at r = R,, 6, = 0; therefore

A = [po’R}3 - 6,k
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2
2o, = o, - por¥3 + [polRY3 - o ) (RN (21.83)
at r = R,, 0,= 0; therefore

0 = o, - PR3 + (pmlezB - Gyp) (R/R,)

Hence, ® = {30”’) R - R) (21.84)

P (R; - Rls)

21.8 Collapse of rotating rings

Consider the radial equilibrium of the thin semicircular ring element shown in Figure 21.21.

pw R 3, do

/

do

Figure 21.21 Ring element.

Let,

]
1}

cross-sectional area of ring

P
i

mean radius of ring



Collapse of rotating rings

Resolving forces vertically

o, xax2 = f”pu)szadG sin@
0

pw’ R? a [-cos8fy

2pw’ R? a
.6y = po’R?
at collapse,

Gy = Oy,

co=L |2
R P

where o is the angular velocity required to fracture the ring.

549

(21.85)



22 Introduction to matrix algebra

22.1 Introduction

Since the advent of the digital computer with its own memory, the importance of matrix algebra
has continued to grow along with the developments in computers. This is partly because matrices
allow themselves to be readily manipulated through skilful computer programming, and partly
because many physical laws lend themselves to be readily represented by matrices.

The present chapter will describe the laws of matrix algebra by a methodological approach,
rather than by rigorous mathematical theories. This is believed to be the most suitable approach
for engineers, who will use matrix algebra as a tool.

22.2 Definitions

A rectangular matrix can be described as a table or array of quantities, where the quantities usually
take the form of numbers, as shown be equations (22.1) and (22.2):

4y 9 43 .- 4y
Ay Gy ap a,
3y Q3 Gy . . . 4y,
Al = | (22.1)
aml am? am3 cot amn
2 -1 0
3 4 -2
B] - (22.2)
-3 5 6
-4 -5 7

The matrix [A] of equation (22.1) is said to be of order m x n, where
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m = number of rows
n = number of columns

A row can be described as a horizontal line of quantities, and a column can be described as a
vertical line of quantities, so that the matrix [B] of equation (22.2) is of order 4 x 3.

The quantities contained in the third row of [B] are -3, 5 and 6, and the quantities contained
in the second column of [B} are -1, 4, 5 and -5.

A square matrix has the same number of rows as columns, as shown by equation (22.3), which
is said to be of order n:

ay 4y Ay - An
Ay Gy G a4y
3] Q3 Giz . . . O3,
A] = . (22.3)
Lanl an.’ an3 ot arm_

A column matrix contains a single column of quantities, as shown by equation (22.4), where it can
be seen that the matrix is represented by braces:

Ay = { 1t (22.4)

| “ni

A row matrix contains a single row of quantities, as shown by equation (22.5), where it can be seen
that the matrix is represented by the special brackets:

(A] = [a” ap 93 - - aln] (22.5)

The transpose of a matrix is obtained by exchanging its columns with its rows, as shown by
equation (22.6):
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(22.6)

In equation (22.6), the first row of [A], when transposed, becomes the first column of [B]; the
second row of [A] becomes the second column of [B] and the third row of [A] becomes the third
column of [B], respectively.

22.3 Matrix addition and subtraction

Matrices can be added together in the manner shown below. If

[1 o]
A] = |4 -3
._5 6.
and
2 9
B] = |-7 8
-1 -2
[ (1+2)  (0+9)
[A]+[B] = | (4-7) (-3+8) (22.7)
_(-5-1) (6-2)
(3 9
-35

-6 4
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Similarly, matrices can be subtracted in the manner shown below:
(1 -2) (0-9]

A]-B] = |4+7) (-3-8)

(-5 + 1) (6 +2)

; (22.8)
(-1 -9
= |11 -11
-4 8|
Thus, in general, for two m x n matrices:
—(a“ + bn)(alz + bxz) . "(a]n + bln)
(‘121 + bZl)(aZZ + bzz) . --(azn + bZn)
[a]+[B]=| (22.9)
_(a”'l + le)(aM2 + bm2) .. '(amn + bmn)J
and
—(a“ - b]l)(aIZ - bxz) . '(aln - bln) ]
(021 - bzl)(azz - b22)~ . '(aZn - bZn)
[A]-[B]= ' (22.10)

_("ml ‘ b,,,l)(a,,,z - bm2)~ @ - bn)
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22.4 Matrix multiplication

Matrices can be multiplied together, by multiplying the rows of the premultiplier into the columns
of the postmultiplier, as shown by equations (22.11) and (22.12).

If
1 0
(A] = | 4 -3
-5 6
and
7 2 -2
B] = ]
-1 3 -4

[A] x[B] = [C]

(1x 7+ 0x (- 1)) (1x2 + 0x 3)(1x (-2)+ 0x (-4))
= [(4x7+(=3)x (-1))(4x 2+ (-3)x 3)(4x (-2)+(-3)x (-4)) (22.11)
(5% 7+6x(<1))(-5x 2+6x3)(-5x (-2)+ 6x(-4))

[ (7+0)  (2+0) (-2+0)
= | (28+3) (8-9) (-8+12)
(-35-6) (~10+18) (10-24)

7 2 -2
€] = |31 -1 4 (22.12)
-41 8 -14

i.e. to obtain an element of the matrix [C], namely C;, the ith row of the premultiplier [A] must

be premultiplied into the jth column of the postmultiplier [B] to give

i
Cu = E ark X bk[

k=1
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where
P = the number of columns of the premultiplier and also, the number of rows of the
postmultiplier.
NB The premultiplying matrix [A] must have the same number of columns as the rows in the

postmultiplying matrix [B].

In other words, if [A] is of order (m x P) and [B] is of order (P x n), then the product [C] is of
order (m x n).

22.5 Some special types of square matrix

A diagonal matrix is a square matrix which contains all its non-zero elements in a diagonal from
the top left corner of the matrix to its bottom right corner, as shown by equation (22.13). This
diagonal is usually called the main or leading diagonal.

a, 0 0 0
0 a,, 0
A] = A (22.13)
0
0
0 0 0 a

A special case of diagonal matrix is where all the non-zero elements are equal to unity, as shown
by equation (22.14). This matrix is called a unit matrix, as it is the matrix equivalent of unity.

1 0 0 0
01 0 0

M =100 1 (22.14)
0
0 0 0 1

A symmetrical matrix is shown in equation (22.15), where it can be seen that the matrix is
symmetrical about its leading diagonal:
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8 2-3 1
2 5 0 6
[A] = (22.15)
30 9 -7
1 6 -7 4

i.e. for a symmetrical matrix, all

22.6 Determinants

The determinant of the 2x2 matrix of equation (22.16) can be evaluated, as follows:

4 2
[A] = (22.16)
-1 6
Determinant of [A] = 4x6-2x(-1) = 24+2 = 26
so that, in general, the determinant of a 2 x 2 matrix, namely det[A], is given by:
det [A] = a;, x a,, - a;, x ay (22.17)
where
a, a
o= 12 (22.18)
an 4y

Similarly, the determinant of the 3x3 matrix of equation (22.19) can be evaluated, as shown by
equation (22.20):
) 9y 953
det |A| = |a; gy, 9y (22.19)

a3y Q33 Qg



Cofactor and adjoint matrices 557

2 9 71 93
an 9
32 933 31 933
(22.20)
n 9
t 4y
31 93
For example, the determinant of equation (22.21) can be evaluated, as follows:
g8 2 -3
det|/A] = |2 5 0
309 (22.21)
0 2 0 2 5
= 8 -2 + (-3)
9 -3 9 -3 0
= 845 -0) -2(18 - 0) -3 (0 + 15)
or
det |A| = 279

For a determinant of large order, this method of evaluation is unsatisfactory, and readers are
advised to consult Ross, C T F, Advanced Applied Finite Element Methods (Horwood 1998), or
Collar, A R, and Simpson, A, Matrices and Engineering Dynamics (Ellis Horwood, 1987) which
give more suitable methods for expanding larger order determinants.

22.7 Cofactor and adjoint matrices

The cofactor of a third order matrix is obtained by removing the appropriate columns and rows of
the cofactor, and evaluating the resulting determinants, as shown below.
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If
dyp Gy 4y
(A] =l ay ay

3 Q3 4s

then [A]° = the cofactor matrix of [A], where,

c (4 (o
ay, 4y 43

[A]c = a2cl azcz azca

c c <
a3 a3 a3

and the cofactors are evaluated, as follows:

72 9

c
an
32 933

(22.22)
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o
w
1

WQ
by
"
1
~ ._.S
N N
N -
o w

[a
as3
21 9

The adjoint or adjugate matrix, [A)” is obtained by transposing the cofactor matrix, as follows:

ie AP = A (22.23)

22.8 Inverse of a matrix [A]"

The inverse or reciprocal matrix is required in matrix algebra, as it is the matrix equivalent of a
scalar reciprocal, and it is used for division.
The inverse of the matrix [A] is given by equation (22.24):

o _AY
A] Ty (22.24)

For the 2 x 2 matrix of equation (22.25),

a; 4y

(22.25)

a a

21 22

the cofactors are given by

a, = ap
¢ = -
4, = 4y

c —_
a4 T 4p
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and the determinant is given by:

det |A| = a,, x a, -

so that

Introduction to matrix algebra

(22.26)

In general, inverting large matrices through the use of equation (22.24) is unsatisfactory, and for
large matrices, the reader is advised to refer to Ross, C T F, Advanced Applied Finite Element
Methods (Horwood 1998), where a computer program is presented for solving nth order matrices

on a microcomputer.

The inverse of a unit matrix is another unit matrix of the same order, and the inverse of a

diagonal matrix is obtained by finding the reciprocals of its leading diagonal.

The inverse of an orthogonal matrix is equal to its transpose. A typical orthogonal matrix is

shown in equation (22.27):

where
¢ = cosqa
s = sina

The cofactors of [A] are:

¢ -
a, = ¢
< -

a, = s
M = -
a,, = -5

€ _
a, = ¢

and

(22.27)
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so that
w1

i.e. for an orthogonal matrix

At = (AT (22.28)

22,9 Solution of simultaneous equations

The inverse of a matrix can be used for solving the set of linear simultaneous equations shown in
equation (22.29). If,

[A] (&} = {c} (22.29)

where [A] and {c} are known and {x} is a vector of unknowns, then {x} can be obtained from
equation (22.30), where [A]™' has been pre-maltiplied on both sides of this equation:

& = [A]" {d (22.30)

Another method of solving simultaneous equations, which is usually superior to inverting the
matrix, is by triangulation. For this case, the elements of the matrix below the leading diagonal
are eliminated, so that the last unknown can readily be determined, and the remaining unknowns
obtained by back-substitution.

Further problems (answers on page 695)

If

NIEENE

Determine:

221 [A]+[B]

222  [A]- [B]



562 Introduction to matrix algebra

223 [A]

224 (B

225  [A]x[B]

226 [B] x[A]

22.7 det [A]
22.8 det [B]
22.9 [A]"
2210 [B]"
If
1 -2 0
c] =2 1 -2
0 -2 1
and
9 1 -2
D] = -1 8 3
-4 0 6
determine:

2211 [C]+[D]

2212 [C]- [D]



Further problems

2213 [C]”
2214 [DI”
2215 [C]x[D]
2216 [D]x[C]
2217  det[C]
2218 det[D]
2219 [C]”
22.20 [D]'
If

2 4

[E] = 1-3 1

5 6

and
0 7 -1
m-l
8§ -4 -5

determine:
2221 [ET"
2222 [FI"
22.23 [E] x[F}

563
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22.24 [F]" x[E]f

2225 If
X - 2x,+0 = -2
X, tx, - 2x; = 1

0-2x, +x; = 3

determine

x;, x, and x;



23 Matrix methods of structural analysis

23.1 Introduction

This chapter describes and applies the matrix displacement method to various problems in
structural analysis. The matrix displacement method first appeared in the aircraft industry in the
1940s’, where it was used to improve the strength-to-weight ratio of aircraft structures.

In today's terms, the structures that were analysed then were relatively simple, but despite this,
teams of operators of mechanical, and later electromechanical, calculators were required to
implement it. Even in the 1950s, the inversion of a matrix of modest size, often took a few weeks
to determine. Nevertheless, engineers realised the importance of the method, and it led to the
invention of the finite element method in 1956°, which is based on the matrix displacement
method. Today, of course, with the progress made in digital computers, the matrix displacement
method, together with the finite element method, is one of the most important forms of analysis
in engineering science.

The method is based on the elastic theory, where it can be assumed that most structures behave
like complex elastic springs, the load—displacement relationship of which is linear. Obviously, the
analysis of such complex springs is extremely difficult, but if the complex spring is subdivided into
a number of simpler springs, which can readily be analysed, then by considering equilibrium and
compatibility at the boundaries, or nodes, of these simpler elastic springs, the entire structure can
be represented by a large number of simultaneous equations. Solution of the simultaneous
equations results in the displacements at these nodes, whence the stresses in each individual spring
element can be determined through Hookean elasticity.

In this chapter, the method will first be applied to pin-jointed trusses, and then to continuous
beams and rigid-jointed plane frames.

23.2 Elemental stiffness matrix for a rod

A pin-jointed truss can be assumed to be a structure composed of line elements, called rods, which
possess only axial stiffness. The joints connecting the rods together are assumed to be in the form
of smooth, frictionless hinges. Thus these rod elements in fact behave like simple elastic springs,
as described in Chapter 1.

Consider now the rod element of Figure 23.1, which is described by two nodes at its ends,
namely, node 1 and node 2.

7I.Jevy, S., Computation of Influence Coefficients for Aircraft Structures with Discontinuities and Sweepback,
J. Aero. Sci., 14, 547-560, October 1947.

8Tumer, M.}, Clough, R.-W_, Martin, H.C. and Topp, L.J., Stiffness and Deflection Analysis of Complex Structures,
J. Aero. Sci., 23, 805-823, 1956.
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Node 1 Node 2
X1, Uy Xo, Uy XU
[ J l
Figure 23.1 Simple rod element.
Let
X, = axial force at node 1
X, = axial force at node 2
u, = axial deflection at node 1
u, = axial deflection at node 2
A = cross-sectional area of the rod element
! = elemental length
E = Young's modulus of elasticity

Applying Hooke's law to node 1,

S -k
but

o = X/A
and

e = (uI - uz)’l
so that

X, = AE (u] - uz)/l

From equilibrium considerations

X, = -X, = AE (u2 - u,)’l

1

(23.1)

(23.2)
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Rewriting equations (23.1) and (23.2), into matrix form, the following relationship is obtained:

X 1 -1 [u
oo 4E ‘ (233)
X, [ -1 1) |y
or in short form, equation (23.3) can be written

P o= K {u} (23.4)

where,

{P,} = = a vector of loads

{u} = = a vector of nodal displacements

u,

Now, as Force = stiffness x displacement

1 -1
N - 42
] (23.5)
-1 1

= the stiffness matrix for a rod element

23.3 System stiffness matrix [K]

A structure such as pin-jointed truss consists of several rod elements; so to demonstrate how to
form the system or structural stiffness matrix, consider the structure of Figure 23.2, which is
composed of two in-line rod elements.

A E A E
1e——————§> 43 — =
f—— fy ————f— ‘

Figure 23.2 Two-element structure.
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Consider element 1-2. Then from equation (23.5), the stiffness matrix for the rod element 1-2 is

I (23.6)

The element is described as 1-2, which means it points from node 1 to node 2, so that its start node
is 1 and its finish node is 2. The displacements u, and u, are not part of the stiffness matrix, but
are used to describe the coefficients of stiffness that correspond to those displacements.

Consider element 2-3. Substituting the values 4,, E, and /, into equation (23.5), the elemental
stiffness matrix for element 2-3 is given by

Uy, U

Ak 1 -1 ]

L 3.7
- 1 1 u3

[ka-s] =

Here again, the displacements u, and u, are not part of the stiffness matrix, but are used to describe
the components of stiffness corresponding to these displacements.

The system stiffness matrix [K] is obtained by superimposing the coefficients of stiffness of
the elemental stiffness matrices of equations (23.6) and (23.7), into a system stiffness matrix of
pigeon holes, as shown by equation (23.8):

LT L) U
AE, /] - AE /] 0 U

K] - 238
(] ~AE L AE L+ 4E 1L, - 4E L] u (238)

0 — 4E, /1, 4B L],

It can be seen from equation (23.8), that the components of stiffness are added together with
reference to the displacements u,, u, and ;. This process, effectively mathematically joins together
the two springs at their common node, namely node 2.
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Let

@ = 1 (23.9)

a vector of known externally applied loads at the nodes, 1, 2 and 3, respectively

~.E

——
1]
[

N

(23.10)

a vector of unknown nodal displacements, due to {g}, at nodes 1, 2 and 3
respectively

Now for the entire structure,
force = stiffness x displacement, or

{a} =IK] {u} (23.11)

where [K] is the system or structural stiffness matrix.

Solution of equation (23.11) cannot be carried out, as [K] is singular, i.e. the structure is
floating in space and has not been constrained. To constrain the structure of Figure 23.2, let us
assume that it is firmly fixed at (say) node 3, so thatu, = 0.

Equation (23.11) can now be partitioned with respect to the free displacements, namely «, and
u,, and the constrained displacement, namely u,, as shown by equation (23.12):

qr up
= 23.
R} {u3 - 0} (23.12)

Pl
lar} = { Pz] (23.13)

= a vector of known nodal forces, corresponding to the free displacements,
namely ¥, and u,

K Ky

K21 KZZ

where
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fs} = {:l} (23.14)

= a vector of free displacements, which have to be determined

AE, /1, -AE//I,

(23.15)
AE\l, AE/1 + AE, /L)

= that part of the system stiffness matrix that corresponds to the free
displacements, which in this case is ¥, and u,

{R} = avector ofreactions corresponding to the constrained displacements, which in
this case is u,
(K] = [4, E; /1]

Kyl = [0- 4,E, /L)

in this case

[K,.] = |:_ 212 E, /12:|

Expanding the top part of equation (23.12):

far} = [Ku]
{“F} = [Ku]_l {qF}

(23.16)

Once {u,} is determined, the initial stresses can be determined through Hookean elasticity.
For some cases u, may not be zero but may have a known value, say u.. For these cases,

equation (23.12) becomes
K u,
I {_*} (23.17)
uC

Ky K
KZ] KZZ

qr
R

e = Kal" (g - Ko ) (23.18)

so that
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and

(R} = [K21]{uF}+[K22]{uc} (23.19)

23.4 Relationship between local and global co-ordinates

The rod element of Figure 23.1 is not very useful element because it lies horizontally, when in fact
a typical rod element may lie at some angle to the horizontal, as shown in Figures 23.3 and 23 .4,
where the x—y° axes are the global axes and the x—y axes are the local axes.

x
YoV Typi .
ypical rod element j /

"\

i

Figure 23.3 Plane pin-jointed truss.

yO’ VO
X, u
2 /
yVV\
(¢
) -

x°,u°

Figure 23.4 Rod element, shown in local and global systems.

From Figure 23.4, it can be seen that the relationships between the local displacements » and
v, and the global displacements #° and v°, are given by equation (23.20):
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which, when written in matrix form, becomes:

i

e

For node 1,

where,

Matrix methods of structural analysis

u°cosa + v°sina

-u°sina + v°cosa

n

cosa sina| [,e°
-sina cosa| |v°

Or, for both nodes,
1 u,°
1 4 | 0,[ " °
2 0, C)%°
2 v,°

where,

(23.20)

(23.21)

(23.22)

(23.23)
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@ =

[0 0
[0) =

00

Equation (23.23) can be written in the form:

f} = [DC] {u°} (23.24)
where,
0
pc] = | &2 (23.25)
0, ¢
= a matrix of directional cosines
1
= o
l 2
2
u,°
v,°
I B T
U
v,°
From equation (23.25), it can be seen that [DC] is orthogonal, i.e.
[C]”’ = [DCT
(23.26)

~A{u;°} [DC]T {u}
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Similarly, it can be shown that
{P} = [DC}{P;°} (23.27)

and (P} - [DCT (P}

where
1
Y,
Py =
2
Y,
and
10
Y
{P’} = -]
2
Y -]

23.5 Plane rod element in global co-ordinates

For this case, there are four degrees of freedom per element, namely u,°, v,°, u,° and v,°. Thus,
the elemental stiffness matrix for a rod in local co-ordinates must be written as a 4 X 4 matrix, as
shown by equation (23.28):

U, v, u, v
1 0 -1 0]
[k]——’g- 0 0 0 0w (23.28)
I -1 0 1 0|4 ‘
o 0 o o,

The reason why the coefficients of the stiffness matrix under v, and v, are zero, is that the rod only
possesses axial stiffness in the local x-direction, as shown in Figure 23.1.
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For the inclined rod of Figure 23 .4, although the rod only possesses stiffness in the x-direction,
it has components of stiffness in the global x°- and y°-directions.

The elemental stiffness matrix for a rod in global co-ordinates is obtained, as follows. From
equation (23.4):

Ph o= b ) (23.29)
but
| p} = [bcl{r7) (23.30)
and

fuf = IDC] fu°} (23.31)

Substituting equations (23.30) and (23.31) into equation (23.29), the following is obtained:

[bC] {P°} = [K] [DC] {u,°) (23.32)

Premultiplying both sides by [DC] ',

{P°} = [DC]” k] [DC] {u,°)

but from equation (22.28),

1

[pC]™

=P}

[DCj”
(23.33)

[DC]™ [k] [DC] {u,°)

Now,
force = stiffness x deflection

- APy = (K1 {%} (23.34)
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Comparing equation (23.34) with (23.33),

[k°] = [DC] [K] [DC] (23.35)
= elemental stiffness matrix in global co-ordinates
ul -] vl o uz o v2 (-]
¢ o5 -c? -osfi’
ke] = AE es s? -es -sty° (23.36)

-c -5 ¢ cs U,

-cs -s° o5 sty

= the elemental stiffness matrix for a rod in global co-ordinates

Problem 23.1  The plane pin-jointed truss below may be assumed to be composed of uniform
section members, with the same material properties. If the truss is subjected to
the load shown, determine the forces in the members of the truss.

v

Solution
This truss has two free degrees of freedom, namely, the unknown displacements u,° and v,°.
Element [-2

This element points from 1 to 2, so that its start node is 1 and its end node is 2, as shown:
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a = 135° ~¢ = -0707, s = 0.707, I =1414m

Substituting the above information into equation (23.36), and removing the rows and columns
corresponding to the zero displacements, namely u,° and v,°, the elemental stiffness matrix for
element 1-2 is given by

05 -0.5 u,*

AE o

k °l = 2£ [-05 o5 v
k127 1414 : (23.37)

u,’

.v ]

Element -3

This member points from 1 to 3, so that its start node is 1 and its end node is 3, as shown below.

X, y°

1

J 90°
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Substituting the above values into equation (23.36) and removing the rows and columns

comresponding to the zero displacements, namely u,° and v,°, the elemental stiffness matrix for
element 1-3 is given by:

[kis?] = T (23.38)

Element 4 -1

This element points from 4 to 1, so that its start node is 4 and its end node is 1, as shown:

Yo
a = 210°
or a = -150°
¢ = -0.866
s = -05
I = 2

Substituting the above information into equation (23.36), and removing the rows and columns
corresponding to the zero displacements, which in this case are u,° and v,°, the elemental stiffness
matrix is given by
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4 (23.39)
0.75 0.433|,,

0.433 025 ], o

.Jvl

The system stiffness matrix corresponding to the free displacements, namely u,° and v,°, is given
by adding together the appropriate coefficients of equations (23.37) to (23.39), as shown by
equation (23.40):

u,’ v,°
0354+0 ~-0.354+0
u,’°
+0.375 +0.217
(K] = 4E
-0.354+0 0354 +1
v,°
+0.217 +0.125
L (23.40)
or
u° v,°
-0.137  1.479) v/,°
NB [K,,] is of order two, as it corresponds to the two free displacements u,° and v,°, which
are unknown.

The vector of external loads {q,}, corresponds to the two free displacements u,° and v,°, and can
readily be shown to be given by equation (23.42), ie

{gF} = {Z}u' (23.42)

-]
3) v,

where the load value 2 is in the u,° direction, and the load value -3 is in the v,° direction.
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Substituting equations (23.41) and (23.42) into equation (23.16)

{ur"}

1}
= R
o "o
D
i
—
»
-
—_—
-
]
w N
e —

1 (1479 0.137(] 2
AE [0.137 0.729] {-3

(0.729 x 1.479 - 0.137 x 0.137)

1.396 0.129] ) 2
0.129 0.688) {-3

1L
AE

i.e.

u,” 1 [ 2405 (23.43)
v,° AE |-1.806

These displacements are in global co-ordinates, so it will be necessary to resolve these
displacements along the length of each rod element, to discover how much each rod extends or
contacts along its length, and then through the use of Hookean elasticity to obtain the internal
forces in each element.

Element 1- 2

Now,
c=-0707, s =0707 and / = 1414m

Hence, from equation (23.23),

t)

1 2.405
= [-0.707 0.707] —
AE [-1.806

i

U

-2977/AE

=
|



Plane rod element in global co-ordinates
From Hooke's law,

F,_, = force in element 1-2

4E

] (e - )

2977

1.414

F,_, = 2.106 MN (tension)

Element 1-3

!
u, = [c ]

v,°
2.405

1

(0 1] 5
-1.806

u, = -1806/AE

From Hooke's law,

F,_, = force in element 1-3

AE
)

s - w)
F,; = 1.806 MN (tension)

Element 4-1
c = -0866, s =05 and !l =2m

From equation (23.23),

581



582

__2
1]

u,

Matrix methods of structural analysis

]

[-0.866 0.5]

1 2.405
AE |-1.806

-1.1797 / AE

From Hooke's law,

F4l

Problem 23.2

force in element 14

4E

()~ uy)

AE (-1.1797 - 0)

2 AE

-0.59 MN (compression)

Using the matrix displacement method, determine the forces in the members
of the plane pin-jointed truss below, which is free to move horizontally at node
3, but not vertically. It may also be assumed that the truss is firmly pinned at
node 1, and that the material and geometrical properties of its members are
given in the table below.

2m —=—

2
—/<—4MN

30 60° l
3MN
3 Rollers
/
A x°. u°

Member A E

1-2 2A4 E

1-3 A 3E

2-3 34 2F




Plane rod element in global co-ordinates

Solution

Element 1-2

u‘O v‘Q ulo v‘lO
1w°
o 24F °
[kl-Z } = -——2— vl
1 0 u,®
0 O0f. o
.v2

Element 2-3

a = 240°, ¢ = -05, s = -0.866 and l =

u, v, U, v,
[ 025 0433 -025

0433 Q.75 - 0437

o 3Ax2E
i) 2022

1
-025 -0433 025

AE
26 45 -2.6(v,°

-15 -26 1.5 u,°

5]

Va2

U

V3

583

(23.44)

(23.45)
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Element 3-1

a = 150°, ¢ = -0.866, s =05 and/ = 1.732m

o

Q [+] . O
3" vy up v,

[ 0.75 1.

Uy
A x 3FE °
k. .,°| = V.
[ks-1°] 1.732 ’
u,®
-vlo
uy

- 13w (23.46)
= [13] 4

The system stiffness matrix [K,,] is obtained by adding together the appropriate components of
stiffness, from the elemental stiffness matrices of equations (23.44) to (23.46), with reference to
the free degrees of freedom, namely, ,°, v,° and u,°, as shown by equation (23.47):

u,’ v,° u,°
1 +1.5 0+26 -15 |u,°
[K,.] = AE 0+2.6 0+45 -26 |v,°
-15 -26 1.5+13 (u,°

(23.47)

u,°* v, u’

25 26 -150u,°

= AE 23.48
26 45 -26|y° ( )

15 <26 28 [u°

The vector of loads {g.}, corresponding to the free degrees of freedom, namely, «,°, v,° and u,°
is given by:
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-4 u2°
st = 3 (23.49)

-3
0} u,

Substituting equations (23.48) and (23.49) into equation (23.16) and solving, the vector of free
displacements {u;} is given by

2 -2.27
ot = {0125 (23.50)
AE
o 1332

The member forces will be obtained by resolving these displacements along the length of each rod
element, and then by finding the amount that each rod extends or contracts, to determine the force
in each member through Hookean elasticity.

Element 1-2

u,
wm = [ s
v2°
i -2.27
= [1 0]__
AE 19125
u, = -227/4E

From Hooke's law,

F,_, = force in element 1-2

. 24E( 221
2 AE

F,_, = -2.27 MN (compression)
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Element 2-3

c = -0.5, s =-086 and ! Im

u, = [e s
20
) -2.27
= [-0.5 -0.866] —
-0.125
u, = 1243/4E
Similarly, from equation (23.23),
30
u, = [c s
30
-1.332
1
= [-0.5 -0.866] —
AFE 0
u;, = 0.666/4E

From Hooke's law,

F, , = force in element 2-3

= .M_:—zé (u} - uz)

64E x

(-0.577)
AE

-3.46 MN (compression)

!
1
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Element 3-1

¢c=-0866, s =05and / =1732m

u, = [c s
30
-1.332
- [-0.866 0.5] -—
AE
0
u; = 1.154/4E
From Hooke's law,

F,—, = force in element 1-3

A x 3E (0 ) 1.154)

1.732 AE

F,—, = -2 MN (compression)

23.6 Pin-jointed space trusses

In three dimensions, the relationships between forces and displacements for the rod element of
Figure 23.5 are given by equation (23.51):

XJ u,
v, t o o -1 o0 o |
0 0 0
2 i 0 0 0 "
{1 = £ 0 0 o o0 o4 ¢ (23.51)
LY, I} u,
-1 0 0 1 0 0
Y. (o0 0o o o o o |
& 2

where,
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load in the x direction at node 1

=
1}

AE (u, -u,)/l

=<
"

load in the y direction at node 1
0

load in the z direction at node 1

N
1}

0

load in the x direction at node 2

Ke
1

AE(u, -u)/l

e
n

load in the y direction at node 2
0

load in the z direction at node 2

N
1

1]

0

X%, u°, X°

Figure 23.6 Rod in three dimensions.
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589

For the case of the three dimensional rod in the global co-ordinate system of Figure 23.6, it can be
shown through resolution that the relationship between local loads and global loads is given by:

x,
Y,
A g
{ } =
X, 0,
r
Z,
where
Cu;
[g] = Cy,x"
Cu.,
Xy z
xO’ yO, zO
Cis C,s C, s etc

x,°
Y,
z,°
X,°
r,°
.22 ’

local axes

global axes

the directional cosines of x with x°,
respectively, etc.

force in x° direction at node 1
force in y° direction at node 1
force in z° direction at node 1
force in x° direction at node 2
force in y° direction at node 2

force in z° direction at node 2

x with y°,

(23.52)

(23.53)

x with z°,
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Now from equation (23.35) the elemental stiffness matrix for a rod in global co-ordinates is given
by:

k] = [DC]" [k] [DC]

¢ o [¢ o,
= (k]
o, ¢ 0, ¢ (23.54)
a -a
k°] =
-a a
where
Cle CoCpe CiiCi.
b - 2l c,. . ¢, (23.55)

By Pythagoras' theorem in three dimensions:
i

D= [ =P s - nf - @ ) (23.56)
The directional cosines’ can readily be shown to be given by equation (23.57):

C..°= [x° - x°)1

C,'= b -l (23.57)

C..°= (5° - z,°)1

x,z 2

Problem 23.3 A tripod, with pinned joints, is constructed from three uniform section
members, made from the same material. If the tripod is firmly secured to the
ground at nodes 1 to 3, and loaded at node 4, as shown below, determine the
forces in the members of the tripod, using the matrix displacement method.

9Ross, C T F, Advanced Applied Element Methods, Horwood, 1998.



Pin-jointed space trusses 591
Solution
Element 14

The element points from 1 to 4, so that the start node is 1 and the finish node is 4. From the figure
below it can readily be seen that:

x° =0, y,° = 0. z,° =0,
z,° = Sm, y.° = 5m, z,° = 707m
yD,VO
3 T
7.07Tm
4| —=2MN
| 5m
' l
| .
1 2 Xo'uo
| 5m | 5m
[ !
(a) Plan view of the tripod.
2w | |
1

l 5m

(b) Front view of tripod.
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Substituting the above into equation (23.56),
1
I = [5-07+(5-07+ (107 - 07

! = 10m

Substituting the above into equation (23.57),

c o= X ~H _5-0 _ 45
~ / 10
¥ -n° 5-0
C. °= = = 05
i ) 10
o, % "% 707-0
R e e

Substituting the above values into equation (23.54), and removing the coefficients of the stiffness
matrix corresponding to the zero displacements, which in this case are u,°, v,° and w,°, the
stiffness matrix for element 14 is given by equation 23.58):

u1° v]o w1° u4° v40 w40
u'
v’
[ ,,]_ 4E w' (23.58)
R 025 Uy’
025 025 Vs
I 0354 0354 05| Wi

Element 2—4

The member points from 2 to 4, so that the start node is 2 and the finish node is 4. From the above
figure,

x,° =10, ¥,° =0, z,° =0
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Substituting the above and x,°, y,° and z,° into equation (23.56),
1

(5 - 107 + (5 - OF + (7.07 - OF

-
1

! = 10m

From equation (23.57),

- (=4

o _ X2 X _ 5-10
C.,° = 7 = " = -0.5
o . Y- 5.0
G, = ; = ™ = 05
z,° - z,° -
c., - 4 2 _ 7.07-0 _ 0.707
/ 10

Substituting the above values into equation (23.54), and removing the rows and columns
corresponding to the zero displacements, which in this case are u,°, v,° and w,°, the stiffness
matrix for element 2—4 is given by equation (23.59):

w’ V2° W2° u®' vy owy
uy
vy
[ o]_A_E W2° (23.59)
e 025 Uy’
~025 025 va
i - 0354 0354 05) "3

Element 4-3

The member points from 4 to 3, so that the start node is 4 and the finish node is 3. From the figure
at the start of this problem,

x° =5 y° = 1207 z° =0
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Substituting the above and x,°, y,° and z,° into equation (23.56),

1

I = [5-57+ (1207 - 57 + (0 - 707

~
"

10 m

From equation (23.57),

o [~

X. - X -
C..o = 3 L B B 0
d ! 10
C.e - Y TV 1207 -5 oo00
! ! 10
z,° - z,° _
co- 2% . 0270 . o0
z ] 10

Substituting the above into equation (23.54), and removing the rows and columns corresponding
to the zero displacements, which in this case are u,°, v,° and w,°, the stiffness matrix for element
4-3 is given by equation (23.60):

u’' v, ow, u; vy owy
0 u”
0 05 v
-05 0. o
1 AE 0 > Wi (23.60)
[k4-3 ] = W o
U
vy
Wy’

To obtain [K,,], the system stiffness matrix corresponding to the free displacements, namely «,°,
v,° and w,°, the appropriate coefficients of the elemental stiffness matrices of equations (23.58)
to (23.60) are added together, with reference to these free displacements, as shown by equation
(23.61):
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u40 V4° W4°
0.25
+0.25
+0 u’°
0.25 0.25
[K, °] =4E -0.25 +0.25
10 +0 +0.5 v,°
0.354 0.354 0.5
- 0.354 +0.354 +0.5
+0 -05 +0.5 w,°
- (23.61)
u4° V4° Wy °
05 0 0] 4’
AE . (23.62)
=—\0 1.0 0208 | v,
0 0.208 L5 wy®

The vector of loads is obtained by considering the loads in the directions of the free displacements,
namely «,°, v,° and w,°, as shown by equation (23.63):

2 )4’
s = {o v (23.63)

_ o
3w,

Substituting equations (23.62) and (23.63) into (23.16), the following three simultaneous equations
are obtained:

2 = |4E} <0500 (23.64a)
10
0 = (f’f) (v + 0.208 w,°) (23.64b)

-3 = (%) (0.208 v,° + 1.5 w,°) (23.64c)
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From (23.64a)
u,° = 40/AE

Hence, from (20.64b) and (23.64c),

v,° = 4.284/4E
w,° = -20.594/AE
so that,
U, 40
o 1
= &y = — {4284 23.65

fus} 4 1E ( )

° -20.594

To determine the forces in the members, the displacements of equation (23.65) must be resolved
along the length of each rod, so that the amount the rod contracts or extends can be determined.
Then through the use of Hookean elasticity, the internal forces in each member can be obtained.

Element 14

Cs” =05 G, =05 C,°=0707 /=10m

xy X,z

From equation (23.52):

u,
4 = [Cuo Cx,yo C,zc] Ve’
w,°
40
= [os 05 0707) ——{ 428
AE
-20.59

u, = 1.568/AF



Pin-jointed space trusses
From Hooke's law,
F,, = force in member 14
AE 7568

=g (=) ETRDT:

F,, = 0.757 MN (tension)

Element 2—4

C.° =-05 C,° =05 C. =0707,

xy X,z

From equation (23.52):

Uy
u, = [Cu° C,° Cx;°] v,°
w,°
40
= [-05 05 0707 - { 428
AE
-20.59
u, = -32417/4E
From Hooke's law,
F, , = force in member 2-4
- AL - = 2E s 2a17/48)
10
F,, = 3.242 MN (tension)

1

10m
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Element 4-3
C.° =0 C,° =077 Cf=-0707, [=10m
u,°
U, = [Cx,xo nyo vao] v4°
40
40
u, = [0 0707 -0707) - { 428
AE
-20.59
u, = 17.58/4E

From Hooke's law,

F,, = force in member 4-3
AE
ST (s~ uy)
- AL o - 17.58/4E)
10
F,; = -1.758 MN (compression)

23.7 Beam element

The stiffness matrix for a beam element can be obtained by considering the beam element of Figure
23.7.
y.v

M. 0,

A 20
‘-.u \LYZ' ]V2 .

Yy, vy !

|
M, 0y I
|

Figure 23.7 Beam element.
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From equation (13.4),

B9 - M- vxeM
; - - Rl + 1 (2366)
& Yx?
El — = + Mx + A (23.67)
dx 2
Yx?  Mx? ,
Elv = + + Ax + B (23.68)
6 2
where
Y, = vertical reaction at node 1
Y, = vertical reaction at node 2

M, = clockwise couple at node 1

M, = clockwise couple at node 2

v, = vertical deflection at node 1
v, = vertical deflection at node 2
0, = rotational displacement (clockwise) at node 1
6, = rotational displacement (clockwise) at node 2

There are four unknowns in equation (23.68), namely Y|, M|, A and B; therefore, four boundary
values will have to be substituted into equations (23.67) and (23.68) to determine these four
unknowns, through the solution of four linear simultaneous equations.

These four boundary values are as follows:

Atx = 0, v = v, and Gl:-iv-
dxx=0

Atx = [, v = v, and 92=-£v—
dxx:l

Substituting these four boundary conditions into equations (23.67) and (23.68), the following are
obtained:
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6LE] 12ET
Y, = _1_2 (& 8,) + B (Vl - V) (23.69)
6EI EI
M, = 1_2 (v, - )+ T (48, + 28,) (23.70)
6L] 12ET
Y, = "17(91 + 92) - B ("1 - 2) (23.71)
2E1 4E] 6E]
M, = - 8, + - 0, - —l—z— (vl -~ "z) (23.72)
Equations (23.69) to (23.72) can be put in the form:
P} = [k}
where,
¢! 9, ¢! 8,
1213 -6/1* -12/1* -6/1*["1
k] = Er|-6/1* 41 en* 2l |8 (23.73)
12 et 1217 6/ v,
-6/1* 21 61 4/l |8,
= the elemental stiffness matrix for a beam
K
M, .
{E} 1y = a vector of generalised loads (23.74)
2
M,
¢!
6, .
{u,-} = = a vector of generalised displacements (23.75)
V2
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Problem 23.4 Deiermine the nodal displacements and bending moments for the uniform
section beam below, which can be assumed to be fully fixed at its ends.

AN

lti kN
A

2

|

1

3m

w
77777777

2m

Solution
= 1
Prior to solving this problem, it must be emphasised that the nodes must be numbered in ascending

order from left to right, because the beam element has been developed with the assumption that the
start node is on the left and the finish node is on the right.

Element 1-2
{=3m
Substituting this value of / into equation (23.73), and removing the components of the stiffness

matrix corresponding to the zero displacements, namely v, and 8,, the stiffness matrix for element
1-2 is given by equation (23.76):

vi 8, v 8,
Vi
[k, o] = EI 8, (23.76)
0.444 0.667|,,

0.667 1.333 6,

Element 2-3
I =2m

Substituting this value of / into equation (23.73), and removing the components of the stiffness
matrix corresponding to the zero displacements, namely v, and 6,, the following is obtained for the
elemental stiffness matrix 2-3:
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15 -15 g

ko s] = EI |-15 15 8, (23.77)
V3
93

The system stiffness matrix, which corresponds to the free displacements v, and 6,, is obtained by
adding together the appropriate components of the elemental stiffness matrices of equations (23.76)
and (23.77), as shown by equation (23.78):

vzo 920
0.444 0.667
+15 -15 |ve
(K] = EI
0.667 1.332
- 15 +20 |90
(23.78)
A6} 9,
= EI 1.944 -0.833|V, (23.79)
-0.833 33338,

The vector of generalised loads is obtained by considering the loads in the directions of the free
displacements v, and 0,, as follows:

= o

From equation (23.11),
-4 1.944 -0.833| 2

= EI
0 -0.833 3333 P,

1 (3333 0.833] |-4
2 Er|os33 1944 |0
5 (1.944 x 3.333 - 0.8332)

or,
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1 ]0.576 0.144] |-4
0.144 0336 |0

EI

(23.80)

(23.81)

To obtain the nodal bending moments, these values of displacement must be substituted into the
slope-deflection equations (23.70) and (23.72), as follows.

Element 1 -2

Substituting v,, 8,, v, and 0, into equations (23.70) and (23.72):

M,

M,
and,

M,

M,
Element 2-3

SEI[ 2304 _ | , Ef 4 x0 -
9 EI 3

-1.536 - 0.384

-1.92 kNm

2 x 0.576
El

-0.576) _ 6EI
EI 9

£x0+ﬂx
3 3

-0.768 - 1.536
~-2.304 kNm

t

2.304
+
EI

Substituting v,, 8,, v, and 6, into equations (23.70) and (23.72), and remembering that the first node
is node 2 and the second node is node 3, the following is obtained for M, and M,:

M,

4E[ [ -0576] ., _ 6EI ( -2.304
2 EI a \ E
-1.152 + 3.456

2.304 kNm
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and,

M, - 2EL(-0576)  _ 6EI( 2304
2 \ E 4

= -0.576 + 3.456

M, = 2.88 kNm

Problem 23.5 Determine the nodal displacements and bending moments for the encastré
beam:

1 kN/m 2 kN/m

AN

AN

77777777

Y.

3m 2m

Solution

Now the matrix displacement method is based on applying the loads at the nodes, but for the above
beam, the loading on each element is between the nodes. It will therefore be necessary to adopt
the following process, which is based on the principle of superposition:

1.  Fix the beam at its nodes and determine the end fixing forces, as shown in the following
figure at (a) and (b) and as calculated below.

2, The beam in condition (1) is not in equilibrium at node 2, hence, it will be necessary to
subject the beam to the negative resultants of the end fixing forces at node 2 to achieve
equilibrium, as shown in the figure at (c). It should be noted that, as the beam is firmly
fixed at nodes 1 and 3, any load or couple applied to these ends will in fact be absorbed
by these walls.

3.  Using the matrix displacement method, determine the nodal displacements due to the
loads of the figure at (¢) and, hence, the resulting bending moments.

4.  To obtain the final values of nodal bending moments, the bending moments of condition
(1) must be superimposed with those of condition (3).



(@

(®)

()

End-fixing forces
Element 1-2

F
M, =

Element 2-3

ME. =

2-3

Beam element

M, 1kN/m M5, M5, 2kN/m M,
N
1 2
3m '<—2m—J
Yio2 Yooy Y23 Yi-2
075

0.75 0.667 0.667
15 2

5 2
/ 1.5+2=35kN
1 kz' 3
0.75 - 0.667 = 0.0833 kN/m
2 2
L X3 L 075 km
12 12
2
¥ 075 kNm
12
v,, = X3 - 15k
2
2 2
W 2X2 . 0667 kNm
12 12
2
¥ 0667 KNm
12
Y;, = _w_l = 2x2 = 2 kN
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From the figure above, at (c), the vector of generalised loads is obtained by considering the free
degrees of freedom, which in this case, are v, and 6,.

-3.5 V2 (23.82)
fre) -0.0833)6, '
From equation (23.80),

Kt = =

El10.144 0.336

0.576 0.144]

and from equation (23.16),

2 1 |0.576 0.144 -3.5
{MF} N E710.144 0.336] |-0.0833

|1 [2028 2383
| Er|-0532 '

or,

To determine the nodal bending moments, the nodal bending moments obtained from the equations
(23.70) and (20.72) must be superimposed with the end-fixing bending moment of the figure
above, as follows.

Element 1-2

Substituting equation (23.83) into equation (23.70) and adding the end-fixing bending moment
from the figure above (b),

M, - SEL[Z2008 ) B, o 2x0532)
9o \ E 3 EI

= -1.352 - 0355 - 0.75

M, = -2.457 kNm
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Similarly, substituting equation (23.83) into equation (23.72) and adding the end-fixing bending
moment of the above figure at (b),

M, - -SEL(q, 2028) [ EIf, 4x0532)
3 EI 3 EI
-1.352 - 0.709 + 0.75

M, = 1311 kN/m

Element 2-3

Substituting equation (23.83) into equations (23.70) and (23.72) and remembering that node 2 is
the first node and node 3 is the second node, and adding the end fixing moments from the above
figure at (b),

M, - SEL(2028 | EI( 4x0532) e
4\ E 2 EI
= 3.042 - 1.064 - 0.667
M, = 1311 kNm

p, - SEL(2028 ) Bl 2x052) o
a \ E 2 EI
= 3.042 - 0.532 + 0.667
M; = 3.177 kNm

23.8 Rigid-jointed plane frames

The elemental stiffness matrix for a rigid-jointed plane frame element in local co-ordinates, can
be obtained by superimposing the elemental stiffness matrix for the rod element of equation
(23.28) with that of the beam element of equation (23.73), as shown by equation (23.84):

[(4ar1) 0 0 (~4/u) o0 0
0 12/ -6/ 0 -12/P -6/
0 -6/1> 471 0 6/1° 2/1
(K] = EI (23.84)
(-4/1) o 0 (a471y 0 0
0 -12/° 6/I* 0 12/ 6/
0 -6/ 2/1 0 6/ 4/l

= the elemental stiffness matrix for a rigid-jointed plane frame element, in local
co-ordinates
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Now the stiffness matrix of equation (23.84) is of little use in that form, as most elements for a
rigid-jointed plane frame will be inclined at some angle to the horizontal, as shown by Figure 23.8.

Y,°

X
0 0 Y2 /
¥V X,
' 1 _’ch
M,

Figure 23.8 Rigid-jointed plane frame element.

It can readily be shown that the relationships between the local and global forces for the
element are:

(v ) o
V\,l c s 0 X
e -s ¢ 0 0, r®
W, 0 0 1 M,°
{ "} = $ 3 (23.85)
LY, c s 0]1X°
Y, 0, -s ¢ 0 Y,°
M, 0 0 1] M,°

or,

where,



Rigid-jointed plane frames

c s 0
[§] = |-s ¢ O
0 01

Now, from equation (23.35):

k] = [DC]T [k] [DC]
- e ]
where,
u,®v,° 8, uw® v,° 8,
c? e 0 -¢? -¢s 0™
s s? 0 -cs -s? 0|V
[k,°] = AE1o o0 0 0o o o]l8
r !
-c? -¢cs 0 ¢ ¢ 0 |u°
-cs -s2 0 e s 0 v,°
o 00 0 0 o]g
W' v’ 8, Uy’
12
rad
12 , 12 ,
re 7
6 6 4
7T T
k.°|= EI
[ ”] 12, 12 6 12,
—1—35 -F-CS —1—2.5‘ 1—3S
12 12 , 6 12
"ITCS —1—30 12C I—BCS
6s 6c 2 6
— — - - =5
|2 2 I ?

V2° 0,
12 ,

'ITC

6 4
—C

I [

609

(23.86)

(23.87)

(23.88)
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c = cosa
s =sina
A = cross-sectional area
I = second moment of area of the element's cross-section
! = elemental length

E = Young's modulus of elasticity

Problem 23.6  Using the matrix displacement method, determine the nodal bending moments
for the rigid-jointed plane frame shown in the figure below. It may be assumed
that the axial stiffness of each element is very large compared to the flexural
stiffness, so that v, = v;° = 0,and u,° = u,°.

v
4m ——————
_ —= 5kN
2 3
3m
1 4
XX S N o o

Solution
As the axial stiffness of the elements are large compared with their flexural stiffness, the effects
of [k,°] can be ignored.
Element 1-2
a = 90° c=0 s =1 [ =3m
Substituting the above into equation (23.88), and removing the rows and columns corresponding

to the zero displacements, which in this case are #,°, v,°, 8, and v,°, the elemental stiffness matrix
for member 1-2 becomes
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u® v,° 8 ' v 6
u’
v
8,
[k1—2 ]= El 0.444 (23.89)
» u2°
i -0667 1333 V)
e2
Element 2-3
a =0, c =1, s =0, /] =4m

Substituting the above into equation (23.88), and removing the columns and rows corresponding
to zero displacements, which in this case are v,° and v, °, the elemental stiffness matrix for member
2-3 is given by

u,* v,° 6, u,° v;° 6,

— -— %o

0 o

\¢)
[k ] g1|° : ° 23.90
2.3 | = 0 0 ] (23.90)

U

0 05 0 1w

6,

Element 3—4
a = -90°, c =0, s =-1,1 =3m

Substituting the above into equation (23.88), and removing the columns and rows corresponding
to zero displacements, namely v,°, 4,°, v,° and 6,, the elemental stiffness matrix for member 3—4
is given by
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[ks-s°]=ET |-0.667 1333 8 (23.91)

Superimposing the stiffness influence coefficients, corresponding to the free displacements, u,°,
0,, u,° and 8, the system stiffness matrix [K,,] is obtained, as shown by equation (23.92):

uy° 0, uy° 8,
0.444
u,’°
+0
- 0.667 1.333
(K" = EI %,
+0 +1
0.444 u,°
0.5 - 0.667 1+1.333 |,
(23.92)
u2° 62 u3° 93
0444 -0667 0 0o |«
[K,,°]- B7 |-0.667 2333 0 05 |9 (23.93)
0 0 0444 -0.667|u,°
0 05  -0.667 2333 |g
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The vector of loads corresponding to these free displacements is given by

(23.94)

) =

===
D
N

Rewriting equations (23.93) and (23.94) in the form of four linear simultaneous equations, and
noting that the S kN load is shared between members 1-2 and 34, the following is obtained:

2.5 = EI0.444u,° - 0.6679,)

0 = EI(-0.667u,° +2.3338, +0.58,)

(23.95)
25 = EI(0.444u3° —0.66793)
0 = EI0.56,-0.667u,° +2.333 93)
Now for this case
8, = 6, (23.96)
and
uzo = u30
Hence, equation (23.95) can be reduced to the form shown in equation (23.97):
2.5 = 0444 Elu,° - 0.667 EIB,
(23.97)
0 = -0.667 Efu,” + 2.833 EIS,
Solving the above
uw,° = u,° = 8707/El
and
0, = 0, = 2.049/E] (23.98)

To determine the nodal bending moments, the displacements in the local v and 6 directions will
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have to be calculated, prior to using equations (23.70) and (23.72).

Element 1-2

U
v, = [-s ]
v,°
8.707
- [-1 o]ﬁ
0
v, = -8707/El

v, = 8 = 0 and 8, = 2.049/E/

Substituting the above values into the slope—deflection equations (23.70) and (23.72)

= 1.366 - 5.805
M, = -443 kNm
= 2732 - 5.805
M, , = -3.07 kNm
Element 2-3
I =4m

and



Rigid-jointed plane frames

9, = 0, = 2.049/EI

Substituting the above values into the slope—deflection equations (23.70) an (23.72):

4EI 2,049  2El _ 2.049

M. = = < 4 = -
2 4 EI 4 EI
M, , = 3.07 kNm
Element 3—4
c =0, s = -1, ! =3m

U3
v, = [-s ]

v,°

8.707
- o é
0
v, = 8.707/El
By inspection,

v, =0, =0 and 0, = 2.049/E]

Substituting the above values into equations (23.70) and (23.72),

M,, - JEL, 2049 ., 6EI[8707
3 EI 9 I;
= 2.732 - 5.805
M, , = -3.07 kNm
M, = 25, 2.049 + 0 - SEI 8707 _
3 9 El
= 1.366 - 5.805

M,, = -444 kKNm

615
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Problem 23.7  Using the matrix displacement method, determine the nodal bending moments
for the rigid-jointed plane frame shown below.

3kN/m
/

NN YN

2 3
2kN/m 3m

1 4

<<

b= 4m -

Solution

As this frame has distributed loading between some of the nodes, it will be necessary to treat the
problem in a manner similar to that described in the solution of Problem 23.5.
There are four degrees of freedom for this structure, namely, u,°, 8,, 4,° and 0, hence {q,} will

be of order 4 x 1.
To determine {gq.}, it will be necessary to fix the structure at its nodes, and calculate the end

fixing forces, as shown and calculated below.

1.5kNm

4kN m 4kNm
2 3
/29;3KN Q D 3

6kN 6kN

1
Qg\‘_ 3kN W"T\
1.5kNm
1.5kNm 4kNm 4 kNm
o C—




End fixing forces
IZ
M, = -Z= =
1-2 12
F wi?
My, = — =

Horizontal reaction at node 1

Horizontal reaction at node 2

12
Y A L
2-3 D)
F F
My, = My, =

Vertical reaction atnode 2 =

Vertical reaction at node 3 =

Now, for this problem, as

the only components of the end-fixing forces required for calculating {g.} are shown below:

Rigid-jointed plane frames

_2x3 . )5 kNm
12

1.5 kNm

IO LE BN
2 2

owl 2x3
2 2

= 3kN

2

3xa -4 kKNm
12

4 kNm

! 3x4

i = 6kN
2

wl  3x4

2 2

6 kN

617
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- /NZS KNm 4 kNm/;

gr = (23.99)

-4 6,

From equation (23.93),

u,° 6, u,° 8,
[ 0444 -0667 0 0o |4
K| = E1|-0667 2333 0 05 |8 (23.100)
0 0 0.444  -0.667[u,°
0 0.5 -0667 2333]¢,

Rewriting equations (23.99) and (23.100) in the form of four simultaneous equations,

3= 0444w, / EI - 06670, / EI (23.101a)
25= - 0667w, / EI + 23330, / EI+0.50, / EI (23.101b)
0 = 0.444u," / EI - 0.6670, / EI (23.101c)

-4=050,/EI - 0667uy’ / EI+2.3330,/EI (23.101d)
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Now, as the 2.5 kN load is shared between elements 1-2 and 34, equation (23.101a) must be
added to equation (23.101c), as shown by equation (23.102):

3 = 0888w," / EI-0.6676,/ EI-0.6670,/ EI (23.102)
Putting #,° = wu,°, the simultaneous equations (23.101) now become:
3 = 0.888u,°/El-0.6676,/EI-0.6676,/El

2.5 = -0.667u,°/EI+2.3336,/El+0.50,/ E (23.103)

-4 = -0.667u,”/EI+0.58,/El+2.3338,/E]

Solving the above,

u,” u,° = 4.61/El

>
il

, = 2.593/EI

D
w
1

-0.953/EI

To determine the nodal bending moments, the end fixing moments will have to be added to the
moments obtained from the slope—deflection equations.
Element 1-2

c=0 s =1 l=3m

From equation (23.23)

u,°
v, = [-s (]
{vzo
4.61/E]
o
0

-4.61/E/

V2

By inspection,

v, =0, =0 and 8, = -0.953/EI
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Substituting the above into the slope—deflection equations (23.70) and (23.72), and adding the end
fixing moments,

6E]

+ 2B 2.593/ED - S0 + as1/E - 15

M, =0

= 1729 - 3.07 - 15

M,_, = -2.84 kNm
and
M, = L2598 307415
3 EI
M,, = 1.89 kNm
Element 2-3
By inspection,
v, =v; =0
and

6,

"

2.593/El, 6, = ~0.953/El

Substituting the above into equations (23.70) and (23.72), adding the end-fixing moments for this
element, and remembering that node 2 is the first node and node 3 the second node,

M,, - AEL, 2593 2B (-0953) ,
a4 E 4 EI

M,, = -1.88 kNm

_ 2EI 2593  4AEI -0.953
M3_2 = I x IS+ —/— X + 4
4 EI 4 EI

M,, = 434 kNm
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Element 3—4

Uy
v; = [ ]
v,;°
4.61/El
=1 o
0
v, = 4.61/El
By inspection,

u, =u, =v, =0, =0

and

8; = -0.953/EI

M, = 3EL [ Z093) o SEL 4 61/ED
3 EI 9

M,, = -434 KNm

M, = 2EL | 20231 o - SEL 461/En
3 EI 9

M,, = -3.71 kNm

Further problems (answers on page 697)
23.8 Determine the forces in the members of the framework of the figure below, under the
following conditions:

(a) all joints are pinned;
(b) alljoints are rigid (i.e. welded).
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23.9

Matrix methods of structural analysis

The following may be assumed:

AE = 100 E/

A = cross-sectional area

I = second moment of area

E = Young's modulus

[k]° = the elemental stiffness matrix

= [k,°]1+[k°]
YoV . 2kN
T
im
1 45° 9 45° 3
~ AN XY %

XO UO

(Portsmouth, 1987, Standard level)

Determine the displacements at node S for the framework shown below under the
following conditions:

(a) all joints are pinned;
(b) all joints are rigid (i.e. welded).

It may be assumed, for all members of the framework,

'S
n

100 E1

A = cross-sectional area
I = second moment of area
E = Young's modulus
[k]°= the stiffness mattix

= [k,°]1+[k°]

(Portsmouth, 1987, Honours level)
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2310 Determine the nodal displacements and moments for the beams shown below, using the
matrix displacement method.

N
1 \
N
1 2\
',_— / ——E

® l \

A N

A1 2 K]N

12 } 12

23.11  Determine the nodal bending moments in the continuous beam below, using the marrix
displacement method.

1 kN/m 2 kN/m 3 kN/m

j1 El tz 2F] Ta 3E/ 4F

2m 2m 3m

I j — ! |

T T T 1

23.12 A ship's bulkhead stiffener is subjected to the hydrostatic loading shown below. If the
stiffener is firmly supported at nodes 2 and 3, and fixed at nodes 1 and 4, determine the
nodal displacements and moments.

W
—_
~

?2 21 *3 31 4\}‘
N

‘—3m—>+——3m—-§——3m——|

2313  Using the matrix displacement method, determine the forces in the pin-jointed space
trusses shown in the following figures. It may be assumed that AE = a constant.
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$5kN
20m
1 3 o 0
10m ° 10m 2 x.u
(a) Front elevation
|
yov |
|
4 kN ’ 10m
4] 3kN %
——
| 10‘m
T1om  1om 2 X P
{b) Plan
3
2w im 0.7m
-
50 —=1kN
1.5m
3,4 0.5m
1’2 XO,UO

(a) Front elevation

Yo,V
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(Portsmouth, 1989)

(Portsmouth, 1983)
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%
2°, w°
2 — _— [
7MN T 5 12m 110 MN
awn 0" 5T 4MN
> 3m 174 m
4
; 2m 3,4 1m
5m 3m . u° 1,2 4 X, U°
oy
(a) Pian {b) Front elevation
(Portsmouth, 1989)
23.14 Determine the nodal displacements and moments for the uniform section rigid-jointed

plane frames shown in the two figures below.

It may be assumed that the axial stiffness of each member is large compared with its
flexural stiffness, so that,

v = =0
and
u20 = u3°
yov°
2 kN/m

1 kN/m 3 kN
2 3
E=2x 10°kN/m?
J=1x10"°m*
1 4
<< ~< <<
: 4m -

(Portsmouth, 1984)
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24 The finite element method

24.1 Introduction

In this chapter the finite element method proper'® will be described with the aid of worked
examples.

The finite element method is based on the matrix displacement method described in Chapter
23, but its description is separated from that chapter because it can be used for analysing much
more complex structures, such as those varying from the legs of an integrated circuit to the legs
of an offshore drilling rig, or from a gravity dam to a doubly curved shell roof. Additionally, the
method can be used for problems in structural dynamics, fluid flow, heat transfer, acoustics,
magnetostatics, electrostatics, medicine, weather forecasting, etc.

The method is based on representing a complex shape by a series of simpler shapes, as shown
in Figure 24.1, where the simpler shapes are called finite elements.

Finite elements

Nodes

Figure 24.1 Complex shape, represented by finite elements.

Using the energy methods described in Chapter 17, the stiffness and other properties of the
finite element can be obtained, and then by considering equilibrium and compatibility along the
inter-element boundaries, the stiffness and other properties of the entire domain can be obtained.

Tumer M J, Clough R W, Martin H C and Topp L J, Stiffness and Deflection Analysis of Complex Structures,
J Aero. Sci, 23, 805-23, 1956.
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This process leads to a large number of simultaneous equations, which can readily be solved
on a high-speed digital computer. It must be emphasised, however, that the finite element method
is virtually useless without the aid of a computer, and this is the reason why the finite element
method has been developed alongside the advances made with digital computers. Today, it is
possible to solve massive problems on most computers, including microcomputers, laptop and
notepad computers; and in the near future, it will be possible to use the finite element method with
the aid of hand-held computers.

Finite elements appear in many forms, from triangles and quadrilaterals for two-dimensional
domains to tetrahedrons and bricks for three-dimensional domains, where, in general, the finite
element is used as a ‘space’ filler.

Each finite element is described by nodes, and the nodes are also used to describe the domain,
as shown in Figure 24.1, where comer nodes have been used.

If, however, mid-side nodes are used in addition to corner nodes, it is possible to develop
curved finite elements, as shown in Figure 24.2, where it is also shown how ring nodes can be used
for axisymmetric structures, such as conical shells.

Corner

nodes
\ Mid-side

nodes

(a) Curved triangle. (b) Curved quadrilateral.
(¢) Curved tetrahedron. (d) 20 node brick.
Ring
Ring / node
node \

Figure 24.2 Some typical finite elements.
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The finite element was invented in 1956 by Turner ef al. where the important three node in-
plane triangular finite element was first presented.
The derivation of the stiffness matrix for this element will now be described.

242 Stiffness matrices for some typical finite elements

The in-plane triangular element of Turner et al. is shown in Figure 24.3. From this figure, it can
be seen that the element has six degrees of freedom, namely, u,°, ,°, u,°, v,°, v,° and v,°, and
because of this, the assumptions for the displacement polynomial distributions »° and v° will
involve six arbitrary constants. It is evident that with six degrees of freedom, a total of six
simultaneous equations will be obtained for the element, so that expressions for the six arbitrary
constants can be defined in terms of the nodal displacements, or boundary values.

x°, u°
Figure 24.3 In-plane triangular element.
Convenient displacement equations are
u® = g, tox® tay’ (24.1)
and
ve = g, tax’ +oy’ (24.2)

where a, to ¢, are the six arbitrary constants, and #° and v° are the displacement equations.
Suitable boundary conditions, or boundary values, at node 1 are:

o o o

atx® = x,°and y° = y,°, u° = u,° and v° = v,

o

Substituting these boundary values into equations (24.1) and (24.2),
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-]

— o a
U =T atox toy,

and v,° =

o+ ax,® + oy, °

Similarly, at node 2,

atx°® =

When substituted into equations (24.1) and (24.2), these give

u, =

[

X" and y° = y,°

o, +ax,” +ay,”

The finite element method

o

a, +ox,° +ay,’

Likewise, at node 3,

atx° =

which, when substituted into equation (24.1) and (24.2), yield

u, =

o

o

x,° and y° = y,°

a, +0x;° + gy’

and vi® = atagx® tagy,®

Rewriting equations (24.3) to (24.8) in matrix form, the following equation is obtained:

or

and

o

-]

(24.3)

(24.4)

(24.5)

(24.6)

(24.7)

(24.8)

(24.9)

(24.10)
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ul°1
u,’
o o
fa) - AT O et (24.11)
0, A7'| M’
v,°
~v301
where
a, 4, a4
[A]' = |b, b, by|/ det|A] (24.12)
6 & G
a = 5 - x%,°
a = x5 - X%y
a = X%y -8y’
by = »° -y’
b, = »° -y° (24.13)
by = ¥ -y’
¢ = X" - x°
¢ = x° -x°
€ = x° - x°

det [4| = x,°y;° -3,°%° =x,°(1n° -»°) +3,° (%° -x,°) = 2A

A = area of triangle

Substituting equations (24.13) and (24.12) into equations (24.1) and (24.2)
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rul"
u,®
e N N, N, 0 0 0] e
R 1.1 (24.14)
v 0 0 0 N, N, Ny v,
v,°
v3°‘
or
{up = [N]fu) (24.15)
where  [N] = a matrix of shape functions:
N, = L1 (@) + bx° + cy°)
2A
1
Ny, = —(a, + bx® + cp® 24.16
2 2A (a, pad »°) ( )
Ny = L (a + byx® + cy°)
2A

For a two-dimensional system of strain, the expressions for strain'' are given by

strain in the x° direction = Ju°/&°

3]
1}

Il

strain in the y° direction = dv°/3° (24.17)

™
1

Y, = shear strain in the x°~y° plane

0

ou’/P° + A°/&°

which when applied to equation (24.14) becomes

" Fenner R T, Engineering Elasticity, Ellis Horwood, 1986.
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2A8x = b1u1°+b2u2°+b3u3°
2A€y = C]V1° + 02V2° + C3V3°
2Ay xy = cuy’ + c;_u2° + C3u3° + bvi° + byt + b3V3°

Rewriting equation (24.18) in matrix form, the following is obtained:

U
u,°
e, b, b, b, 0 0 0
1 “s
ey:_00061c2034>
2A v,°
oy ¢ & ¢ b b b R
v,
hvaol

or

where [B] is a matrix relating strains and nodal displacements

b, b, b 0 0 0
[B]=—00001626‘3

¢ ¢ ¢ b b, b

633

(24.18)

(24.19)

(24.20)

(24.21)

Now, from Chapter 5, the relationship between stress and strain for plane stress is given by

) = £+ VE

s i)

o, = VE + &

, - e e
E

(24.22)
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where

o, = direct stress in the x°-direction
o, = directstress in the y°-direction
1, = shear stress in the x°—y° plane
E = Young's modulus of elasticity

v = Poisson's ratio

e, = direct strain in the x°-direction
g, = direct strain in the y°-direction

Y, = shear strain in the x°~y° plane

E

G = shear modulus = ————
2(1 +v)

Rewriting equation (24.22) in matrix form,

GX 1 v O gx
Oyt = 0 _E ) v 1 0 g, (24.23)
. "o o -l
or
{o} = [D] {¢} (24.24)

where, for plane stress,

1 v 0
D) = T _E 3 v 1 0 (24.25)
oo (1-wn2

= a matrix of material constants
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and for plane strain,'

(l—v) v 0
E
[D]:W v (1-v) 0 (24.26)
0 0 (1-2v)/2
or, in general,
I p O
D= E'fp 10 (24.27)
0 0 vy

where, for plane stress,

E' = El(1-V)
Y Y
y = (1-v2

and for plane strain,

E' = E(1-v[(1+v)(1 -2v)]
L o= vi(l-v)
y = (1-2)/21 -v)]

Now from Section 1.13, it can be seen that the general expression for the strain energy of an elastic

system, U,, is given by

o2
U -
f IZE d(vol)

but

] Ee

s U, = -;—J-Esz d(vol)

2 Ross, C T F, Mechanics of Solids, Prentice Hall, 1996.
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which, in matrix form, becomes

= = f {e}” [D] {e}d (vol) (24.28)

where,

{e} = a vector of strains, which for this problem is

e} = {e (24.29)

[DP] = a matrix of material constants
It must be remembered that U, is a scalar and, for this reason, the vector and matrix multiplication
of equation (24.28) must be carried out in the manner shown.
Now, the work done by the nodal forces is

SR YAy, (24.30)
where {P,; 9 is a vector of nodal forces
and the total potential is
n, = U, + WD

(24.31)

s f e} D d(vol) - {u°} {P,°}

It must be remembered that WD is a scalar and, for this reason, the premultiplying vector must be
a row vector, and the postmultiplying vector must be a column vector.
Substituting equation (24.20) into (24.31):

, =] [[8] [DfBje(vofu} - ) (2] (2432)

but according to the method of minimum potential (see Chapter 17),
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or
0 = [ [B]" [D] [B] d(vol) {u; } - {P, %
ie.
{P;%} = [ [B]" [D] [B]d(vol) {u; %}
but,
P} = [k {u; %
or,

[k°] = | [B]" [D] [B] d(vol)

Substituting equations (24.21) and (24.27) into equation (24.34):

K - ¢

P, 0,
0, R,

P; = 025E' (bb; +yce)/A
Q, =025E (ubgc, +ych)/A
O, = 025 E' (ubg, + yehy/A
R; = 0.25E' (ce; + ybb)iA

ij

where i and j vary from 1 to 3 and ¢ is the plate thickness

637

(24.33)

(24.34)

(24.35)

(24.36)

Problem 24.1  Working from first principles, determine the elemental stiffness matrix for a
rod element, whose cross-sectional area varies linearly with length. The
element is described by three nodes, one at each end and one at mid-length, as
shown below. The cross-sectional area at node 1 is A and the cross-sectional

area at node 3 is 24.
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Solution

As there are three degrees of freedom, namely u,, u, and u;, it will be convenient to assume a
polynomial involving three arbitrary constants, as shown by equation (24.37):

u = @ +ax + ox’ (24.37)
To obtain the three simultaneous equations, it will be necessary to assume the following three
boundary conditions or boundary values:

Atx =0, u =u

Atx =2, u = u, (24.38)

Atx =L u = u,

Substituting equations (24.38) into equation (24.37), the following three simultaneous equations
will be obtained:

u = q (24.39a)

u, = o + @2 + ol (24.39b)

u, = a +al +al’ (24.39¢)
From (24.39a)

@ = (24.40)

Dividing (24.39¢) by 2 gives
w2 = w2 + wl2 + al¥2 (24.41)
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Taking (24.41) from (24.39b),

u, - u/2 = u - u/2 - u312/4

or

2
%% = w2 - uy, w2

1 .
% Qu, - 4u, + 2uy) (24.42)

Substituting equations (24.40) and (24.42) into equation (24.39c¢),
o = uy - ou - 2u o+ 4uy - 2u
or

1
o, = 7 (—3u] + 4u, - u3) (24.43)
Substituting equations (24.40), (24.42) and (24.43) into equation (24.37),

u=u+ (—3u1+ 4u, —uy )§+ (2u1 —4u, + 2u3)1§2

= u) (1-3§+2§2) +uy (4§—4§2)+us (—§+2€2)

u
u = [(1-3§+2§2)(4§-4g2)(-g+2§2) u12
Uy
= [N]{u}
where
E = xl

(24.44)
[N] = [1-38+28%) (ag-48?) (-&+28Y)
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1

3

= [B] {u}
B] = {3 +48) (4-8) (-1 +4) (24.45)
Now, for a rod,
S - E
€
c = Ee
b] = E
Now.
[] = [ [B]" [D][B] d(voD)
- [ (8" (D) (B) a &
where

areaat§ = A(1+§)

§1 -3 + 4¢
Ilz 4 - 8
0 -1 + 4

E[(-3+48) (4 - 88) (-1+48)] a(1+8)idE

S
1

- [k]

X



where,

ky

k53

13

kys

Stiffness matrices for some typical finite elements

kn ki ki
= k‘n kzz kza
ky ksy kg

1
AE
—I—'(( -3 a8 (1 + &) a

2.8333 AE/I

1

AL [C1eara-ga
0

4.167 AE/]

1

‘A + +
by = ZE[ (3049 (4-89 (19

0

-3.33A4E/1

1
- 4E + + +
ks = _I-{ (-3 +48) (-1 + 48 (1 + &)a¥

AE/21

AE
G T

1
f4‘8§ -1+ 48 (1 + &) &
0

-4.667 AE/]

641
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In this chapter, it has only been possible to introduce the finite element method, and for more
advanced work on this topic, the reader is referred to Ross, C T F, Advanced Applied Finite
Element Methods, Ellis Horword; Zienkiewicz, O C, and Taylor, R L. The Finite Element Method,
McGraw-Hill, Vol 1, 1989, Vol 2, 1991.

Further problems (answers on page 698)

24.2 Using equation (24.34), determine the stiffness matrix for a uniform sectionrod element,
with two degrees of freedom.

243 A rod element has a cross-sectional area which varies linearly from 4; atnode 1 to 4,
atnode 2, where the nodes are at the ends of the rod. If the rod element has two degrees
of freedom, determine its elemental stiffness matrix using equation (24.34).

24.4 Using equation (24.34), determine the stiffness matrix for a uniform section torque bar
which has two degrees of freedom.

24.5 Using equation (24.34), determine the stiffness matrix for a two node uniform section
beam, which has four degrees of freedom; two rotational and two translational.



25 Structural vibrations

25.1 Introduction

In this chapter, we will commence with discussing the free vibrations of a beam, which will be
analysed by traditional methods. This fundamental approach will then be extended to forced
vibrations and to damped oscillations, all on beams and by traditional methods.

The main snag with using traditional methods for vibration analysis, however, is that it is
extremely difficult to analyse complex structures by this approach. For this reason, the finite
element method discussed in the previous chapters will be extended to free vibration analysis, and
applications will then be made to a number of simple structures.

Vibrations of structures usually occur due to pulsating or oscillating forces, such as those due
to gusts of wind or from the motion of machinery, vehicles etc. If the pulsating load is oscillating
at the same natural frequency of the structure, the structure can vibrate dangerously (i.e. resonate).
If these vibrations continue for any length of time, the structure can suffer permanent damage.

25.2 Free vibrations of a mass on a beam

We can simplify the treatment of the free vibrations of a beam by considering its mass to be
concentrated at the mid-length. Consider, for example, a uniform simply-supported beam of length
L and flexural stiffness E7, Figure 25.1.

) L |

'r [M] LE[ {

Pay A
s

P=kvc@

P=kv., |
E:E_f,__vi N Ve -
i
Y ’ !
y

Figure 25.1 Vibrations of a concentrated mass on a beam.

Suppose the beam itself is mass-less, and that a concentrated mass M is held at the mid-span. If
we ignore for the moment the effect of the gravitational field, the beam is undeflected when the
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mass is at rest. Now consider the motion of the mass when the beam is deflected laterally to some
position and then released. Suppose, v, is the lateral deflection of the beam at the mid-span at a
time #; as the beam is mass-less the force P on the beam at the mid-span is

48EM,
- —
If k = 48 E/L’, then
P=h

c

The mass-less beam behaves then as a simple elastic spring cf stiffness k. In the deflected position
there is an equal and opposite reaction P on the mass. The equation of vertical motion of the mass
18

Thus

The general solution of this differential equation is

v, = Acos -E-I+Bsin it
M M

where 4 and B are arbitrary constants; this may also be written in the form

v, = Csin[ —]it+e]
\JM

where C and ¢ are also arbitrary constants. Obviously C is the amplitude of a simple-harmonic
motion of the beam (Figure 25.2); v, first assumes its peak value when

k T
— tl + £ = —
M 2
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Ve Wavelength

+CP N - - = - < -

Figure 25.2 Variations of displacement of beam with time.

and again attains this value when

k _ 5n
— [2 + g = =
M 2

This period T of one complete oscillation is then

M
T=1—-t,=2n 7 (25.1)

The number of complete oscillations occurring in unit time is the frequency of vibrations; this is
denoted by n, and is given by

n=—=—,/— (25.2)

The behaviour of the system is therefore directly analogous to that of a simple mass—spring system.
On substituting for the value of £ we have

n=—=— (25.3)

Problem 25.1 A steel I-beam, simply supported at each end of a span of 10 m, has a second
moment of area of 10" m*. It carries a concentrated mass of 500 kg at the mid-
span. Estimate the natural frequency of lateral vibrations.
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Solution
In this case
EI = (200 x 10°(10™) = 20 x 10° Nm?
Then
P - A8EL | 48020 x 108 _ 960 x 10° N/m
L3 (10

The natural frequency is

3
o= L& o L 960 X100 _ 697 cyclesisec = 697 Hz
2n N\ M 2n 500

25.3 Free vibrations of a beam with distributed mass

Consider a uniform beam of length L, flexural stiffness £/, and mass m per unit length (Figure
25.3); suppose the beam is simply-supported at each end, and is vibrating freely in the yz-plane,
the displacement at any point parallel to the y-axis being v. We assume first that the beam vibrates
in a sinusoidal form

. mz .
v = asm-—L—sm2nm (25.4)

where a is the lateral displacement, or amplitude, at the mid-length, and #n is the frequency of
oscillation. The kinetic energy of an elemental length 8z of the beam is

2
lm oz (iv_) = lm oz [21tna sin% cosZ1tnt]2

2 2

Figure 25.3 Vibrations of a beam having an intrinsic mass.
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The bending strain energy in an elemental length is

2

2

lEI‘ﬂ] 6z = LE
2 dz? 2

2
an . nz .
— sin — sin2nnt| 6z
LZ

The total kinetic energy at any time ¢ is then

Lo lantn2a? cos? 2nme f bsinz Z2 dz] (25.5)
0 L
The total strain energy at time ¢ is
Ta a'n! sin2mnr [*sin? Z & 25.6
2 L? fo L (25.6)

For the free vibrations we must have the total energy, i.e. the sum of the kinetic and strain energies,
is constant and independent of time. This is true if

4 2
R (@n*n2a?) cos? 2mnr + Tgr| ™9 in? 2nm = constant
2 2 L?
For this condition we must have
4 2
—l-m (41t2n202) = lEI ra
2 2 L4
This gives
nt - XH (25.7)
4mL* '

Now mL = M, say is the total mass of the beam, so that

n o= & |_EL (25.8)
2N mL?

This is the frequency of oscillation of a simply-supported beam in a single sinusoidal half-wave.
If we consider the possibility of oscillations in the form

. 2nz .
v = a sin — sin2nn,t
L
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then proceeding by the same analysis we find that

n, = 4n, = 2n AfLIB (25.9)

This is the frequency of oscillations of two sinusoidal half-waves along the length of the beam,

Figure 25.4, and corresponds to the second mode of vibration. Other higher modes are found
similarly.

i - = - T =9 _on __E_l_
=== = T T M

Figure 25.4 Modes of vibration of a simply-supported beam.

As in the case of the beam with a concentrated mass at the mid-length, we have ignored
gravitation effects; when the weight of the beam causes initial deflections of the beam, oscillations
take place about this deflected condition; otherwise the effects of gravity may be ignored.

The effect of distributing the mass uniformly along a beam, compared with the whole mass
being concentrated at the mid-length, is to increase the frequency of oscillations from

1 |48E1  m | _EI
2n N ML3 2\ MmL3

If

then
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h,

Problem 25.2  If the steel beam of the Problem 25.1 has a mass of 15 kg per metre run,
estimate the lowest natural frequency of vibrations of the beam itself.

2 2
l‘.) L WY (25.10)
2 4ﬁ

/a3

Solution

The lowest natural frequency of vibrations is

Now

EI = 20 x 10° Nm?
and

ML’ = (15) (10) (10)* = 150 x 10* kg.m’
Then

6

El_ 20x10° _ .o o

ML?® 150 x 10°
Thus

=
"

% 133 = 18.1 cycles per sec = 18.1 Hz

25.4 Forced vibrations of a beam carrying a single mass

Consider a light beam, simply-supported at each end and carrying a mass M at mid-span, Figure
25.5. Suppose the mass is acted upon by an alternating lateral force

P sin 2nNt (25.11)

which is applied with a frequency N. Ifv, is the central deflection of the beam, then the equation
of motion of the mass is
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S+ kv = P sin2nNt

<

where k = 48 EI/L’. Then

d¥v

<

dr?

*i"c = -IisinZnNt
M M

Psin2nNt

Figure 25.5 Alternating force applied to a beam.

The general solution is

ﬁsin 27Nt

v, = Acos it+Bsin ,—k—t+—k——— (25.12)
JM M 1-47:2N2-k"1

in which 4 and B are arbitrary constants. Suppose initially, i.e. at time ¢ = 0, both v, and dv /dt
are zero. Then A4 = 0 and

2nN. £
k

—

1 - 4n°N? % k

X

Then
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. IM . l k
sin2niNt - 27N TSm A_/It] (25.13)

Now, the natural frequency of free vibrations of the system is

Plk

A\ T e———

1 -am2n? M
k

1 k
n = — ———
2Zn N\ M
Then
\/k/M = 2nn
and
v, = _Pk__ [sin 2nNt - N sin 21tnt} (25.14)
1 - N¥n? n
Now, the maximum value that the term
(sin 2Nt - N sin21rnt)
n
may assume is
1 + E
n
and occurs when sin 2nNt = -sin2nnt = 1. Then
picf1+ X
v _ n - Plk
cmax Iz N (25.15)
- M 1-=
n? n

Thus, if ¥V <n, v,,,,. is positive and in phase with the alternating load P sin 2nNt. As N approaches

n, the values of v_,,, become very large. When N > n, v, is negative and out of phase with P
sin 2nNt. When N =n, the beam is in a condition of resonance.
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25.5 Damped free oscillations of a beam

The free oscillations of practical systems are inhibited by damping forces. One of the commonest
forms of damping is known as velocity, or viscous, damping; the damping force on a particle or
mass is proportional to its velocity.

AYe

Figure 25.6 Effect of damping on free vibrations.

Suppose in the beam problem discussed in Section 25.2 we have as the damping force p(dv /df).
Then the equation of motion of the mass is

d zvc .
M = -kv, - |
t dt
Thus
d¥v, dv, o 0
+ + =
dr? # dr ¢
Hence
dv dv

[
+ +

i *
dt? M da& M°

The general solution of this equation is

v, = etwar Ve kale, g, {wmt- Sy -k (25.16)
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Now (k/M) is usually very much greater than (u/2M)’, and so we may write
v = Ae(—p/ZM + r‘/kJM} + Be(—p/ZM - i‘/(kM)I

o -2 1 [AE,ﬂm, . Be-wm,]

C cos —k—t+e}]
NM

Thus, when damping is present, the free vibrations given by

Ccos[ —k—t+e)
JM

are damped out exponentially, Figure 25.7. The peak values on the curve of v, correspond to
points of zero velocity.

(25.17)

e _(P/zM)

I

VC‘ M
k

\/\?

Figure 25.7 Form of damped oscillation of a beam.

These are given by
dv(‘
= 0
dt

or
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k
‘,——sin "—k— t+g| - Lcos ‘/i t+e =0
M M 2M M

Obviously the higher peak values are separated in time by an amount

T=21rA—'{
k

We note that successive peak values are in the ratio

v

- e(‘"“M)’{Ccos(y[(k/—M)’ ”)}
v e@,zm(uz,‘m)[m{ JiTi+ )|

=e(u/M)1t Mik

Then
v
logc =< = ﬂ"'_ M
~ M k
Now
1 k
n = — ——
2Zn N\ M
Thus
v
log, <L - H
Ve, 2Mn
Hence

vcl
B = 2Mnlog, —
vc?

(25.18)

(25.19)

(25.20)

(25.21)
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25.6 Damped forced oscillations of a beam

We imagine that the mass on the beam discussed in Section 25.5 is excited by an alternating force
P sin 2nNt. The equation of motion becomes

dzvc dv, )
+ 0 — + kv, = P sin 2nNt
dr? dr

M

The complementary function is the damped free oscillation; as this decreases rapidly in amplitude
we may assume it to be negligible after a very long period. Then the particular integral is

v = P sin 2aNt
 MD?+uD +k
This gives
P[(k -4n%N2 M)sin 21Nt -2 Ny cosZnNt}
v, = - (25.22)
(k—41t2N2M) +4n2N2y?
If we write
1 k
n = — ——
2n \ M
then
N? —
k 1—-—2 sin2Nt -2 Ny cos2n Nt
n
v, =P (25.23)

2
2
N
k2(1—-—2—J +41‘[N2p2
n

The amplitude of this forced oscillation is

2\? (25.24
sz[l »L] + 4N Y2 )
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25.7 Vibrations of a beam with end thrust

In general, when a beam carries end thrust the period of free undamped vibrations is greater than
when the beam carries no end thrust. Consider the uniform beam shown in Figure 25.8; suppose
the beam is vibrating in the fundamental mode so that the lateral displacement at any section is
given by

v = asin % sin 2nnt (25.25)
y
El
P—> > Y -

¢ 2 l i P

| a !

) |

r— L —>

Figure 25.8 Vibrations of a beam carrying a constant end thrust.

If these displacements are small, the shortening of the beam from the straight configuration is
approximately

2 2.2
f t1 (ﬂ) & = 2T sin? 2nm (25.26)
0o 2\ dz 4L

If m is the mass per unit length of the beam, the total kinetic energy at any instant is
1 2
fEm(ZRa sinEI:z-cos21mt) dz = mn’a’n® L cos’ 2nnt (25.27)

The total potential energy of the system is the strain energy stored in the strut together with the
potential energy of the external loads; the total potential energy is then

2 2.2
el - lpf 2% in? 2nm (25.28)
2 L? 4 L

If the total energy of the system is the same at all instants
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L? 4 L
This gives
2
nto- ZEL L2 (25.29)
4mL* P,
where
p . PE
L 2
and is the Euler load of the column. If we write
2 n’El
n,= = 25.30
Y amLt (25.30)

then

l P
n=nl 1—;—

Clearly, as P approaches P, the natural frequency of the column diminishes and approaches zero.

25.8 Derivation of expression for the mass matrix

Consider an infinitesimally small element of volume d(vol) and density p, osciilating at a certain
time #, with a velocity .
The kinetic energy ot this element (KE) is given by:

KE - %p x d(vol) x i’

and for the whole body,

_ 1 .2
KE = > fpu d(vol) (25.31)
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or in matrix form:

1 . .
KE = 5 f {u}Tp {u} d(VOl) (2532)
vol
NB The premultiplier of equation (25.32) must be a row and the postmultiplier of this

equation must be a column, because KE is a scalar.

Assuming that the structure oscillates with simple harmonic motion, as described in Section 25.2,

W = {Cle™ (25.33)
where

{C} = avector of amplitudes

® = resonant frequency

j =AM

Differentiating {u} with respect to ¢,
i} = jo {C} & (25.34)

= jo {u} (25.35)
Substituting equation (25.35) into equation (25.32):

N T
KE = . ) f {u} plu} d(vol)

vol

but,
= (N fu)
- KE = _% o Ju) [ INIT o [N] dvol) ) (25.36)
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but,

or in matrix form:

but,

1, (25.37)
KE = 2o’ o [m] fu)
Comparing equation (25.37) with equation (25.36):

vol

= elemental mass matrix

25.9 Mass matrix for a rod element

The one-dimensional rod element, which has two degree of freedom, is shown in Figure 23.1. As
the rod element has two degrees of freedom, it will be convenient to assume a polynomial with two
arbitrary constants, as shown in equation (25.39):

U o= ooyt (25.39)

The boundary conditions or boundary values are:

atx =0, u = u,
and
atx = L, u = u (25.40)

o = (25.41)
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and
u, = u + ayj

or

o, (, - wyl (25.42)

Substituting equations (25.41) and (25.42) into equation (25.39),
u = up + (uy - ugpll

or

u = u (1 -8 + uk (25.43)

where,

E = x/l

Rewriting equation (25.43) in matrix form,

1

u = [1-8 ¢
= [N] {“r}
where
Nl = [1-8 ¢ (25.44)

Substituting equation (25.44) into equation (24.38),

m] = [ (N p [N] devoD

a-9
pf (1 -8 g ald

U—x+ﬂé—8
pal [ &
g -8 g
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up

2 1 ul
pAl (25.45)

[m] = =

In two dimensions, it can readily be shown that the elemental mass matrix for a rod is

U vy 4 W

m - &4 o 2 0o 1w (25.46)

The expression for the elemental mass matrix in global co-ordinates is given by an expression
similar to that of equation (25.35), as shown by equation (25.47):

[m°] = [DC]T [m] [DC] (25.47)
where,

'g 0

[DC] =
0
% & (25.48)
-C RY

gl =

L—S c

c = Cosa

s = sina

a is defined in Figure 23.4.
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Substituting equations (23.25) and (25.46) into equation (25.47):
u® vi®u® v°
> 0 1 o

me] - &4 fo 2 0 1M (25.49)

= the elemental mass matrix for a rod in two dimensions, in global co-
ordinates.

Similarly, in three dimensions, the elemental mass matrix for a rod in global co-ordinates, is
given by:

0° v W v, owy’
2 T
0 2 v’
me] - P4 1o o 2 K (25.50)
6 1 0 0 2 u,°
1002 o
0o 010 0 2.

Equations (25.49) and (25.50) show the mass matrix for the self-mass of the structure, but if the
effects of an additional concentrated mass are to be included at a particular node, this concentrated
mass must be added to the mass matrix at the appropriate node, as follows:

M 1 0} % (in two dimensions) (25.51)
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and
u’ v° w’®
1 0 Oof%
M, (in three dimensions) (25.52)
0 1 o|v°
0 0 1 w’°
where

M, = the value of the added mass
i = ithnode
Problem 25.3 Determine the resonant frequencies and eigenmodes for the plane pin-jointed
truss, below.

It may be assumed that the following apply:

A = 1x10%m?
p = 7860 kg/m’
E = 2x 10" N/m?

Solution
Element 1-3

a = 60°, c =05, s = 0.866

L, = — = 1.155 m = length of element 1-3
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Substituting the above values into equations (23.36) and (25.49), and removing the rows and
columns corresponding to the zero displacements, namely u,° and v,°, the stiffness and mass
matrices for element 1-3 are given by:

[k ,]_ 1x107* x2x10'1 [025 0433
= 1155|0433 075

-] o

Uy V3

7 7| u,°
0.433 x 10" 0.75 x 10'| % (25.53)

0.75 x 107 1.3 x 107{v5°

o7 _ 7860 x 1 x 10 x 1.155 [2 0
[m,5°] =
02

u,°v°
= 0.303 0 u3(J (25.54)
0 0303]v,°

Element 2-3

a = 150°, ¢ = -0.866, s =05

Substituting the above values into equations (23.36) and (25.49), and removing the rows and
columns corresponding to the zero displacements, namely #,° and v,°, the stiffness and mass
matrices for element 2-3 are given by:
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o 1 x10%x 2 x 10| 075 -0433
s’ 2 0433 025
u3° v3°
- | 075 x 107 -0.433 x 107| % (25.55)
-0.433 x 107 025 x 107|v°
o _7860><1x10'4x220
[m;°] =
6 02

u,° v,°
. 0524 0 |%° (25.56)
0 0.524) v,°

The system stiffness matrix corresponding to the free displacements »,° and v,° is obtained by
adding together equations (25.53) and (25.55), as shown by equation (25.57):

=] o

U Vi
0.433 x 10’ 0.75 =107 W
uo
+0.75 x107 |-0433 x10° |
[Kn] = 5 .
0.75 x10 1.3 x10
125
-0.433 x 107 | +0.25 x 10’
| (25.57)
u,° vs°
[Ku] = 1.183 x 107 0.317 x 107|%;° (25.58)

0317 x 107 1.55 = 107 v;°
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The system mass matrix corresponding to the free displacements u,° and v,° is obtained by adding
together equations (25.54) and (25.56), as shown by equation (25.59):

Uy Vi
0.303
0 u,°
+0.524
M, ] =
0.303
0 v°
+0.524
/ (25.59)
uy° v,°
- Jos27 o ]w° (25.60)
0 0.827] v;°
Now, from Section 25.2,
div, kv,
+ =0 (25.61)
dt? M
If simple harmonic motion takes place, so that
v, = Ce/*
then,
d%v, 3 ,
= -0 C = -0y, (25.62)
dr?
Substituting equation (25.62) into equation (25.61),
2 kv,
-0V, + = 0 (25.63)
M
In matrix form, equation (25.63) becomes
(K] -o® M) fe} = o (25.64)

or, for a constrained structure,
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(Ky] - ©* My) 1} = 0 (25.65)

Now, in equation (25.65), the condition {#} = {0} is not of practical interest, therefore the
solution of equation (25.65) becomes equivalent to expanding the determinant of equation (25.66):

| [Kyy] -0 M) | = 0 (25.66)

Substituting equations (25.58) and (25.60) into equation (25.66), the following is obtained:

,[0827 0 2567
“| 0o 0827 '

Expanding equation (25.67), results in the quadratic equation (25.68):

1183 x 107 0317 x 107
0317 x 107 155 x 107

(1.183 x 107-0.82703)(1.55 x 107-0.8270?)-(0.317 x 107 = 0

or

1.834 x 10" - 226 x 10" &? + 0.684 w* - 1 x 10® = 0

or

0.6840"-2.26x10"@? +1.734x 10" = 0 (25.68)

Solving the quadratic equation (25.68), the following are obtained for the roots »,* and w,

7 6
m? _ 226 x 10 6.028 x 10° 1211 x 107

1.368

or
®, = 3480; n, = 533.9 Hz
7 6
o - 226107+ 6028 x 10° _ L oos oo
1.368
or

R
"

4575, n, = 728 Hz
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To determine the eigenmodes, substitute ®,” into the first row of equation (25.67) and substitute
o, into the second row of equation (25.67), as follows:

(1.183 x 107 — 34807 x 0.827)143" +0317x 10" v;" = 0 (25.69)

1815 x 10% " + 317 x 105 v3° = 0

Let,

o _
u,° = 1

AV = 047

so that the first eigenmode is:

[u,° v,°] = [1 - 0.47] see the figure below at (a).

Similarly, to determine the second eigenmode, substitute ,” into the second row of equation
(25.67), as follows:

0317 x 107 u,° + (1.55 x 107 - 0.827 x 45753 v,° = 0

or

0.317 x 10" u,° - 1.81 x 10°v,° = 0
Let,

v o= 1

~uy = 057

so that the second eigenmode is given by

[u,° v,°] = [0.57 1] see below at (b).

(a) First eigenmode.
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(b) Second eigenmode.

Problem 25.4  If the pin-jointed truss of Problem 25.3 had an additional mass of 0.75 kg
attached to node 3, what would be the values of the resulting resonant
frequencies?

Solution

From equation (25.58):

u,’ v,°
1183 x 107 0317 x 107 | 5’
[Ku] = ; 1 (25.70)
0317 x 107 155 x 107 | v,
From equation (25.60)
0.827 0 075 0
My = *
0 0.827 0 075
u;* vy°
- 1577 0 |u%° (25.71)
0 1577 v,°

Substituting equations (25.70) and (25.71) into equations (25.65), the following is obtained:

=0 (25.72)

1183 x 10" 0.317 x 10’ 2[1.577 0}
0317 x 107 155 x 10’ 0 1577
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Expanding the determinant of equation (25.72), results in the quadratic equation (25.73):

(1.183 x 107 - 1.5770? (1.55 x 107 - 1.5770% - (0.317 x 107 = 0

or

1.834 x 10" - 431 x 10" 0® + 2487 * - 1 x 102 = 0

or

24870 - 431 x 107 @ + 1.734 x 10" = 0 (25.73)

The quadratic equation (25.73) has two roots, namely ®,” and w,’, which are obtained as follows:

7 _ 7
o - 431107 - LT X 10T g e

4.974

®, = 2509 n, = 3993 Hz

and

7 7
0 - A3} 107 LI 10T sy

4.974

®, = 3322;n, = 5286 Hz

Problem 25.5 Determine the resonant frequencies and eigenmodes for the pin-jointed space
truss of Problem 23.3, given that,

=2%x10%m?

A
E = 2x10" N/m?
p = 7860 kg/m’

Solution
Element |4
From Problem 25.3,

I =10m
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Substituting this and other values into equation (25.50), and removing the rows and columns
corresponding to the zero displacements, namely «,°, v,° and w, °, the mass matrix for element 1-4
is given by

200
-4
m, 0] = 7860 = 2 xs 107 % 10|, 5 (25.74)
00 2

= (25.75)

Element 24
From Problem 25.3,
[ = 10m
Substituting this and other values into equation (25.50), and removing the rows and columns

corresponding to the zero displacements, namely u,°, v,° and w,°, the mass matrix for element
24 is given by

(25.76)

Element 4-3
From Problem 25.3,

!l =10m
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Substituting the above and other values into equation (25.50), and removing the rows and columns
corresponding to the zero displacements, namely u,°, v;° and w,°, the mass matrix for element 4-3
is given by

) 524 0 0 ]%
Ml = 10 524 0 |ve
0 0 524)w,°

(25.77)

To obtain [M, ], the system mass matrix corresponding to the free displacements »,°, v,° and w,°,
the elemental mass matrices of equations (25.75) to (25.77), are added together, as shown by
equation (25.78): :

W v owe
1572 0 0 ]
[M“° 0 1572 0 |ve (25.78)
0 0 1572fw,°
From equation (23.62),
u® v e
2 0 R
K,y = 1 x 10° (25.79)

0 4 0832|v,°
0 0832 6 [w>

Substituting equations (25.78) and (25.79) into equation (25.65), the following determinant is
obtained:

2 0 0 1572 0 0
1x10%0 4 0832|-0% 0 1572 0 (25.80)
0 0832 6 0 0 1572

From the top line of equation (25.80):

2x10°-1572@* = 0
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or

2 2 x 108
15.72

= 1272 x 10°

3567, n = 56.76 Hz

£
"

As the first line of equation (25.80) is uncoupled, this equation can be reduced to the 2 x 2
determinant of equation (25.81):

4 0832 1572 0
1 x 106[ }—wz[ ] =0 (25.81)

0832 6 0 1572

Expanding equation (25.81), the quadratic equation (25.82) is obtained:

@ x 10® - 15.720%) (6 x 10° - 15.720%) - (0.832 x 10°f = 0

or

2.4 x 10 - 1.572 x 10%0? + 247.120* - 6.922 x 10"' = 0

or

247.120% - 1.572x 10%w? +2.33x 10" = 0 (25.82)

Solving equation (25.82), the roots w,” and o, are obtained, as follows:

8 _ 8
mg _ 1572 x 10 041 x 10° _ 2361 x 10°
492.24
@, = 4859, n, = 7732 Hz
8 8
a)§ _ 1572 x10° + 041 x 100 _ 4.026 x 10°
492.24
®; = 6345, n, = 10098 Hz
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To determine the eigenmodes
By inspection of the first line of equation (25.80),
=1 v°=0 and wS° =0
Therefore, the first eigenmode is
[u° v,° w,°] = [1 00]

To obtain the second eigenmode, substitute w,” into the second line of equation (25.80) to give

0 x u,° +[4 x 10° - (48592 x 15.72)]v,° + 0.832 x 10°w,° = 0

or
0.289v,° + 0.832w,° = 0 (25.83)
Let,
v, =1
~w,= - 0347

Therefore, the second eigenmode is

[,° v°  we°] =[01 -0347]

To obtain the third eigenmode, substitute ®,’ into the third line of equation (25.80) to give

0 x u,° +0.832 x 10°v,° + (6 x 10° - 634.5* x 15.72) w,° = 0

or
0.832v,° - 0329w, = 0 (25.84)
Let,
w,S =1
- v,° = 0395

Therefore, the third eigenmode is

(4,° v° w,°] = [0 0.395 1]
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Problem 25.6  Determine the resonant frequencies for the tripod of Problem 25.5, if this tripod
has a mass of 10 kg added to node 4.

Solution

From equation (25.79),

2 0 R

K1 - 6 . (25.85)
Ka] =110 100 em v,
0 0832 6 [w,°
From equation (25.78):
15.72 0 0 10 0 O
My = | 0 1572 0 |+]0 10 0
0 0 15.72 0 0 10
u,’ v,° w,°
2572 0 0 ]
= o (25.86)

0 2572 0 |v
0 0 2572fy0

Substituting equations (25.85) and (25.86) into equation (25.65), the following determinant is
obtained:

2 0 0 2572 0 0
1x10°0 4 0832|-02] 0 2572 0 ||=0 (25.87)
0 0832 6 0 0 2572

From the first line of equation (25.65):

6
o = 2x100 _ 7776 x 10°

25.72

2789; n, = 44.1 Hz

£
I
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As first line is uncoupled, the determinant of equation (25.87) can be reduced to the 2 x 2
determinant of equation (25.88):

o 4 0832 ,12572 0
1x 10 -

= 25.88
0 2572 0 ¢ )

Expanding the determinant of equation (25.88), the following quadratic is obtained:

(4 x 10° - 25.72 @?) (6 x 10° - 25.72 %) - (0.832 x 10°)® = 0

or

2.4 x 10" - 2,572 x 10* @* + 661.5 0* - 6.92 x 10" = 0
or

661.5@* - 2.572 x 10° @*+2.33 x 10" = 0 (25.89)
Solving equation (25.89),

of = 2572 10° - 0.671 x 10° _ | 437 , 105

1323
®, = 3791;n, = 603 Hz
o - 2372 10° + 0.671 x 10° _ .5 o 108

1323

e
i

, = 495.1;n, = 788 Hz

25.10 Mass matrix for a beam element

The beam element, which has four degrees of freedom, is shown in Figure 25.9.

yvVT
Vo

Figure 25.9 Beam element.
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A convenient polynomial with which to describe the lateral deflection v is

v o= @ +ox + ooy xlvax’ (25.90)
and

dv

= - a, + 20,x + 3o,x’ (25.91)

In equation (25.90), it can be seen that the polynomial has four arbitrary constants, and this
corresponds to the four degrees of freedom, namely, v,, 8,, v, and 8,, i.e.

1

Atx = 0, v =V, and 8, = -(dv/dx),

Atx =1 v =y, and 8, = -(dv/dx)_,
Substituting the first two boundary conditions into equations (25.90) and (25.91):
a, = v
and
a = -6

Substituting the remaining two boundary conditions into equations (25.90) and (25.91), the
following two simultaneous equations are obtained:

v, = v, - 01+ al +ap (25.92)

and,

0, = 0, - 20,/ - 3P (25.93)

Multiplying equation (25.92) by 2/1, we get:

2
n P, ~vy) = 28, + 2ay + 2a,/? (25.94)

Adding equation (25.93) to equation (25.94):

n v, - v) + 8, = 8,-20, - 3q,/% + 20,0’

or



678 Structural vibrations

-a? = %(v2 - v) + 8, + 8,

25.95
o =-£(v—v)—(ez+el) ( )
4 TG 1 2
Substituting equation (25.95) into equation (25.92):
v, v+ 80 = ol? -2, - v) -0, +8)!
or
3 1
o = b = w) + T @8+ &) (25.96)
Substituting the above values of a, to a, into equation (25.90)
2
v=v-0;x+ 3@2(v2 - v1)+x7(291 + 92)
2 X
- 28 (v2 —vl)+l—2(92 + 91)
or
v=v(1-382+28%) 40,0 (-5 +28 - &)
vy (382-28%)+0,0 (82 - %) (25.97)
where,
& =1
ie.
v= (1-3§2+2§3) 1(-§+2§2 - ;3)
Vi
2 3 2 3 ,
(se2-22°) 1 (e - 2)
V2
9,

= [N]{u) (25.98)
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where [N] is a matrix of shape functions for a beam element:
N] - [(1_3g2 +2g3)1(-§+2g2- 53)(3§2—2§3)I(§2 - §3)] (25.99)

From equation (25.38):

[m] = [,'[N]" p[N] Ald¢& (25.100)

Substituting equation (25.99) into equation (25.100), and integrating, the mass matrix for a beam
element is given by

v, 6, v, 8
156 1
m] = 24L 221 a2 8, (25.101)

54 -131 156 v,

131 =312 221 4%,

Equation (25.101) is the mass matrix of a beam element due to the self-mass of the structure, but
if an additional concentrated mass is added to node i, the following additional components of mass
must be added to equation (25.102) at the appropriate node.

Added mass matrix at node i

v, 8
= M, 0V (25.102)
0 MMI S,

where MMI is the mass moment of inertia and M, is the mass.

Problem 25.7  Determine the resonant frequencies for the beam of the figure in Problem 23 .4,
assuming that the 4 kN load is not present, and that

E

H

2 x 10" N/m?, p = 7860 kg/m’

A =1x10"m? I=1x10"m'
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Solution
Element 1-2
/1 =3m
Substituting the above value of / into equation (25.101), together with the other properties of this

element, and removing the columns and rows corresponding to the zero displacements v, and 0,,
the elemental mass matrix is given by

v, 8
-4
{m_]=7860><1><10 x 3 156 66| Vs
12 420
66 36) 86,
v, o,
= 0.876 0.371| V2 (25.103)
0.371 0.202] 8,
Element 2-3
l=2m

Substituting the above value of / into equation (25.101), together with the other properties of this
element, and removing the columns and rows corresponding to the zero displacements v, and 6,,
the elemental mass matrix is given by:

V2 8,
[mz_a] = 0.584 -0.165] Y2 (25_104)
~0.165 0.0599] 8,

The system mass matrix [M,,] is obtained by adding together the elemental mass matrices of
equations (25.103) and (25.104):

V2 8,
[M"] = | 1.46 0.206| V2 (25.105)
0.206 0.262] 6,

From equation (25.84),
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v, 9,
[Ku] = | 38 880 -16 660( V> (25.106)
-16 660 66 660 8,

Substituting equations (25.105) and (25.106) into equation (25.65), the following determinant is
obtained:

-0 (25.107)

38 880 -16 660| 1146 0.206
-0
-16 660 66 660 0.206 0.262

Expanding the determinant of equation (25.107), the following quadratic equation is obtained:
(38 880 - 1.460%) (66 660 - 0.262w%) - (- 16 660 - 0.206w>)* = 0
or,

2592 x 10° - 0.107 x 10° @’ + 0.383 o*

Il
o

- 278 x 10° - 6864 o* - 0.042 0"

|
(=2

0341 @* - 0.1139 x 10° @ + 2.314 x 10° (25.108)

The roots of equation (25.108), namely, »,” and ®,’, can readily be shown to be:

6 _
wf _ 0.1139 x 10 99 080 _ 2173 x 10°
0.682
or
o, = 1474;n = 2345 Hz
6
co; _ 0.1139 < 10° + 99 080 _ 3123 x 10°
0.682
and,
®, = 5588, n, = 8893 Hz

To obtain the first eigenmode, substitute @, into the first line of equation (25.107), to give
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(38 880 - 1.46 x 147.42) v, + (- 16 660 + 0.206 x 147.42) 0, =0

or
7159 v, - 211360, = 0 (25.109)

ie.
fv, 8,] = [1 0.339] — see the figure below at (a).

To obtain the second eigenmode, substitute w,’ into the second line of equation (25.107) to give:
(- 16 660 - 0.206 x 558.8%) v, + (66 660 - 0.262 x 558.8%) 8, = 0

or,
-80985v,- 151500, = 0 (25.110)

le.
v, 0,] = [- 0.187 1]~ see the figure below at (b).

(b) Second eigenmode

Problem 25.8  If the beam of Problem 25.7 has a mass of 1 kg, with a mass moment of inertia
of 0.1 kg m* added to node 2, determine the resonant frequencies of the beam.

Solution

From equation (25.105)

1.46 0.206 1 0
Mu] = '
0.206 0.262 0 0.1
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V) 8,
246 0.206| V2 (25.111)
0.206 0.362) 8,

From equation (25.101),

38880 -16660
[ al = (25.112)
-16660 66660
Substituting equations (25.111) and (25.112) into equation (25.65),
38 880 -16 660 246 0.206
-@? = 0 (25.113)
-16 660 66 660 0.206 0.362

(38 880 - 2.46 ©?) (66 660 - 0.362 w?) - (16 660 + 0.206 w2)* = 0

or
0.259 x 10" - 0.178 x 10° @’ + 0.891 @* - 2.776 x 10° - 6864 w® - 0.042 w* = 0

or
0.849 o* - 0.1849 x 10° w* + 0.231 x 10" = 0 (25.114)

Solution of the quadratic equation (25.114) results in the roots ®,* and w,%, as follows:

6 _ 6
o - 01849 X 10° - 0162 X 10° 39, g

1.698

or

e
"

116.1; n, = 13.48 Hz

and,

6 6
(o; _ 0.1849 x 10° + 0.162 x 10° _ 2043 x 10°

1.698

or

£
"

452; n, = 7193 Hz
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25.11 Mass matrix for a rigid-jointed plane frame element

Structural vibratiens

Prior to obtaining the mass matrix for an element of a rigid-jointed plane frame, it will be necessary
to obtain the mass matrix for the inclined beam of Figure 25.10.
The mass matrix for an inclined beam element in global co-ordinates is

[m,°] = [DC]" [m] [DC]

where,

[DC] is given equation (25.85) and [m] is given by equation (25.101).

[

V2

},0Y VO
A
Vi 0,
« /
\
0, /
x°, u°
Figure 25.10 Inclined beam element.
w’ v’ 8, w vy By
[ 15652 1w
~156¢s?  156¢2 v
pdl| 22Is -22lc 4P 0,
420 545> -54cs  13ls 15657 u°
-54cs  54c¢* -13cl -156cs  156¢* v,°
-13s 13lc -317 -22s  22ic 4| ©;

(25.115)

(25.116)
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For the element of a rigid-jointed plane frame, the elemental mass matrix in global co-ordinates
is given by

[m°] = [m,°]+[m°] (25.117)

where [m,°] is the axial part of the mass matrix of a rod element:

[DC] (25.118)

S

T
©c o =~ © o N
o o o © o o

o O O o o O
o O O O o ©
[ S = A =]

o O ©O © O QO

where, in equation (25.118), the components of mass in the v displacement direction have been
removed, because they have already been included in [m,°].
Substituting [DC] from equation (25.85) into equation (25.118):

o o (=] (-]
w° v° 8w v° e,

[2¢2 1™
2cs 2s? v’
[m,°] = P4l 1o 0 0 5 (25.119)
r 6
c? e 0 2t u,®
s s? 0 2cs 2s? v,°
0 00 0 0 0]g,

From equations (25.116) and (25.118), it can be seen that application of these elemental mass
matrices, together with the elemental stiffness matrix of equation (25.85), to a realistic rigid-jointed
plane frame will be extremely difficult without the aid of a computer.

Equation (25.117) shows the mass matrix for the self-mass of an element of a rigid-jointed
plane frame, but if the effects of an additional concentrated mass are to be included at a particular
node, the concentrated mass must be added to the appropriate node, as follows:
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M, 0 0 |u°

. (25.120)
0 M, 0 |v
0 0 MMI| 6

where
M, = the value of the mass

MMI = the mass moment of inertia of this mass

25.12 Units in structural dynamics

Considerable care should be taken in choosing suitable units in structural dynamics.
Recommended units are as follows:

(i) Imperial

Mass (Ibf s%/in); density (Ibf s%in*); E (Ibf/in?); time(s); length (in); Force(Ibf); second moment

of area (in*); cross-sectional area (in?).

(ii) S

Mass (kg); density (kg/m’); E (N/m?); time (s); length (m); Force(N); second moment of area

(m*); cross-sectional area (m?).

(iii) Derived SI

Mass (kg); density (kg/mm®); £ (mN/mm?); time (s); length (mm); force(mN); second moment

of area (mm®*); cross-sectional area (mm?®).

Further problems (answers on page 698)

25.9 A doubly symmetrical beam consists of a hollow rectangular steel section, having the
cross-section shown, and of length 10 m. It is simply-supported in bending about both

axes Cx, Cy at the ends. Estimate the lowest few natural frequencies of lateral vibrations
of the beam about the axes Cx and Cy. Take £ = 200 GN/m’.
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25.11

2512

25.13

Further problems 687

—=1cm thick

y

|

i

T

|

40cm —~—-¥C—

|

|

If the beam of Problem 25.7 carries an axial thrust of 10° kN, what is the lowest natural
frequency of the beam?

A light, uniform cantilever, of length L and uniform flexural stiffness £/, carries a mass
M at the free end. Estimate the natural frequency of vibrations.

Determine the resonant frequencies for the plane pin-jointed truss shown below,
assuming that the truss is loaded with a mass of 1 kg at node 4, and that the following
apply:

A =1x10"m’

E = 2x10" N/m?

1

p = 7860 kg/m’

(Portsmouth 1989)

Determine the resonant frequencies for the pin-jointed tripod, below, given that the
following apply:

Element A (md) E(N/m? kg/m’
14 1x107? 2 x 10" 7860
24 2x107? 2 x 10" 7860

34 1x10° 2 x 10" 7860
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25.14

Structural vibrations

Plan

l im  Front elevation

1 3 2
fe— 1 m—f—9 m —]|
(Portsmouth 1983)

A continuous beam is fixed at the nodes 1 and 4, and simply-supported at the nodes 2
and 3, as shown in the figure below.

Determine the two lowest resonant frequencies of vibration, given the following:

E = 2x10" N/m?

p = 7860 kg/m’

Element A(md) I(m*)
1-2 1x10™* 1x107
2-3 2x10™* 2x1077

34 1x10* 2x1077
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Further problems 689

WA
—

7777

3m 2m-=|

(Portsmouth 1987)

A continuous beam is fixed at the nodes 1 and 5, and simply-supported at the nodes 2,

3 and 4, as shown below.

Determine the two lowest resonant frequencies of vibration given the following:

E = 2x 10" N/m®

p = 7860 kg/m’

Element A (m?) I(m"Y

1-2 1x10* 1x107

2-3 2x10 2x1077

34 2x 10" 2x1077

4-5 1x10™* 1x107

1 y2 3 4 5:

A 1m N
f 3m 3m 2m-=]

(Portsmouth 1987, Honours)

Calculate the three lowest natural frequencies of vibration for the continuous beam

below, where
A=0.001m’

I =1%x10°m*
E =2x10" N/m’

p = 7860 kg/m’
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Structural vibrations

fe——2m

im

1m—=]



Answers to further problems

1.4

1.5

1.17
1.18
1.19
1.21
1.22

22

23

24

25

34
35
3.6
3.7
3.8

39
3.10

(a) R, =3333kN R, =6.667kN

(b) R, =9.6kN R, =64kN

(c) R, =4.625kN R, =3375kN

(a) F, =5kN F, =-8.66KkN

(b) F, =-5kN F, =-866kN

(c) F, =417kN F, =-3kN

(d F, =-471kN F, =-7454kN F,. =3.333kN
(e) F,, =-471kN F, =3727kN F, =3333kN

31.0 MN/m’® (compressive); 0.098 cm.

0.902 cm.

0.865 cm.

51.0 kN.

65.5 MN/m’ tensile in steel; 41.0 MN/m’ compressive in copper; increase of length 0.611
cm; force to prevent expansion 135.5 kN.

F,=-046W  F,=0763W F, =-0.651W

F, =046 W F, =-0008W  F,, =-054W

F, =4kN F,, =2829kN  F,, =-10kN F, = -4kN
F, =-2kN F, =5.66kN F,, =-8kN F, = 5.66kN
F, =78kN F, =-145kN  F,, =-88kN F, = 68kN
F,=1kN F,=-145kN  F, =-78kN F, = S8kN
F, =1kN F, =-145kN  F, =-6.8kN F, = 635kN
F, =05kN Fy =-39kN F, =-79kN F, = -45kN
F, =45kN F, =-4KkN

R, =1333kN R, =1.667kN

F, =-154kN  F, =0.77kN F, =1.54kN F, = -1.54kN
F,=-038kN  F,=1732kN  F, =038kN Fy = -1.92kN
F, = 192N F, =0.96 kN F, =-192LkN

480 MN/m’.

521 kW.

295 m/s>.

188.5 Nm.

d = 6.29 cm; cotter thickness 1.57 cm; mean width of cotter 7.98 c¢m; distance of cotter
hole from end of left-hand rod 2.97 cm; diameter of right-hand rod through cotter pin
8.28 cm; maximum diameter of right-hand rod 12.58 c¢m; distance of end of right-hand
rod from cotter hole 2.97 cm.

8.93 cycles/sec.

0.6 MN/m®.
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4.7

5.7
5.8

59

5.10
5.11
5.12

6.8
6.9
6.10

6.11

6.12
6.13

7.10
7.13

8.5

8.6

8.7

9.12
9.13
9.14
9.15
9.16

10.4
10.5

10.6

10.7
10.8

Answers to further problems

376 kN/m.

50.0 MN/m’ tensile; 28.9 MN/m’ shearing.

greatest tensile stress 86.6 MN/m’, on plane at 34" 44’ to cross-section; greatest shearing
stress 64.0 MN/m’, on planes at 10° 16’ and 79° 44’ to cross-section.

30 MN/m’ tensile; 120 MN/m’ compressive.

81.0 MN/m?, inclined at 23" 27’ to horizontal.

90 MN/m’ tensile; 60 MN/m’ compressive; 5.40 x 107 tensile; 4.35 x 107 compressive.
7.5 MN/m’ normal; 51.9 MN/m’, shearing.

11.0 MN/m’
1.03 kg/m.
0.114 per cent.

(a) copper: 38.2 MN/m’; wire: 83.9 MN/m’;
(b) copper: 28.6 MN/m’ (compressive); wire: 230 MN/m’.

1.19 MN/m>%
171 MN/m?.

489 kNM.
238 kNm; 0.75 m from A.

() 2.779 x 107 m*.
(b) 10.83 x 10 m".
(c) 5.334x10°m"

(a) 1.419 x 10° m*.
(b) 3.942 x 10 m".

H/3 BH’/36

40.6 kN.m.
69.9 MN/m’.
15.9 MN/m>.
86.0 MN/m”.
6.17 cm.

1 cm thickness; 5 cm spacing of rivets, assuming one rivet at any cross-section.
maximum tensile stress of 124 MN/m’ is greater than the allowable stress; maximum
shearing stress of 18 MN/m? is less than the allowable stress.

96 per cent of shearing force carried by web; 88 per cent of bending moment carried by
flanges.

web thickness 0.67 cm; weld throats 0.33 cm.

T=2450 (RL/) sin 0, where 6 is the angular position of any section from the vertical line
through the centre of the tube.



10.9

10.10

11.8
11.9
11.10

11.11

123

12.4
12.6
12.7
12.8

13.2
133

14.2
143

15.2
153
15.4
15.5
15.6
15.7

16.7
16.8
16.9
16.10
16.11
16.12

17.15
17.16
17.17
17.18
17.19

Answers to further problems 693

bending is limiting, and gives an allowable superimposed load of 45 kN/m; required
welds 0.26 cm throat thickness.
(a) 1273 R

(b) 1.72R.

0.378 x 10 m% 13.02 kN/m.
114 kN.
wood 4.56 MN/m’; steel 52.9 MN/m’; glue 0.21 MN/m’.

(i) 120 MN/m’.
(i) 1.00 MN/m’.
(iii) 100 kN/m.
(iv) 0.75 cm.

tensile 155 MN/m?, compressive 147 MN/m’; neutral axis 0.365 m from outside of box-
section.

17.68 kN; 11.8 MN/m’ compressive.

maximum tensile 38.0 MN/m?, maximum compressive 46.0 MN/m’.

161 kN.

13.8 MN/m?; 5.94 cm from tip of T.

1.80 cm and 2.48 cm.
3.06 cm.

maximum bending moment 105 kNm; points of inflexion at 1.75 m from each end.
169.7 kNm at left-hand end; 150.0 kNm at right-hand end; 1.52 m from left-hand end;
1.69 m from right-hand end.

217 kN.

62.4 kKN/m.

required elastic section modulus 791 cm’.
required elastic section modulus 2030 cm’.
84.2 kN/m, with collapse in the end spans.
3.26 cm.

38.1 MN/m% 1.09°; 39.2 cm.

40.3 MN/m* 3.83".

Shearing stress 37.7 MN/m*; maximum tensile stress 37.7 MN/m® ; angle of twist4.31".
0.644: 1.

38.7 Nm.

147 MN/m? (tensile) at 34.8" to axis, 70.5 MN/m’ (compressive) at 57.2° to axis.

No horizontal deflection.

609 kNm and 423 kNm.

3WR/4n, at the support, where ¥ is the weight of the ring.
12.45 PR¥/EL

2.89 x 10 m’.
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17.20
17.21

18.2
18.3
18.4
18.5

19.6

19.7

19.8

19.9

Answers to further problems

1.288 x 10”° m’.

6.324 x 10™* m’ (verticals); 9.486 x 10™* m * (top left); 1.997 x 107> m * (top right).

970 N.

0.10 cm.
1.65 kN.
24 5 kN.

{w - &%[%(Rz-ﬁ)m 1,,(%)”
- salf- )
adarl

M, = pl—léz[- (3+v)+(1+ 3v)(%)2ﬂ

—

(R - R?)+2RIn [%} ”

{w ) 16;:D {((?:) ,

(3+v) R (7+3v) R+ Rln

P
161D {(H v) 41+ v)

i R ol )

Z

. R
(b) w = _r_ R} - 0.75R? + R} In [—‘j ;
162D R

5



and

where

19.10

19.11

22.1

222

223

224

225

22.6

22.7

Answers to further problems

2
M= 1-05(5'—j
4n R,

M= i(l+v) 025 (ﬁ) - ln[—R—‘-)
4n R, R,

P = p*anz}

for R, / R,> 057

for R, R,<057;

2 2 2
{0.126pR4 /(Et3);p(£) [- 1238(1—) +0507+0.0105(£) ”
t R r

W 2
{0.115WR2 /(Et3);—2—[0.621 In (fj- 0436+ 0.0224(—@) ]}
,

t r

3 1
4 -1
ERR
o 7
(4 2

I 3
-1 2
|0 -4
(-2 -4
4 -12
(-4 -1
0 -10

695
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22.8 4,
03 -01
229
-02 04
(-1 0
22.10
-05 -025
10 -1 -2
22.11 -3 9
-4 -2 7
[ 2
22.12 -1 -7 -5
4 -2 -5
[ 1 -2 0
22.13 -2 1 -2
0 -2 1
[0 -1 -4
22.14 1 8
-2
[ 11 -15 -8
22.15 -11 6 -5
-2 -16 0
[ 7 -13 -4
22.16 -17 4 -13
-4 -4 6
22.17 -7.
22.18 362.
0.429 - 0286  -0571
22.19 -0.268 0143 -0286

-0.571 -0.286 0429



22.20

23.8

239

23.10

23.11

23.12

23.13

23.13

23.14
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0133 ~166x 1072
~1.66x 1072 0127
-884x1072  -110x1072

(@) u, = 2.828/4AE Ve
F,, = 1414kN Fy,
(b) u, = 2.626/AE Ve
F,, = 1313kN Fp,
(@) us = 2.178/4E vy
() u; = 2.065/AE vy
(@ v, = -WP3EI )
v, =0,=0
M, =0 M,

(b) v,=6,=v,=0,=0; 6,=0
v, = - WPI192EI
M =-M,=-Wij8
M, =WI/8
v, =0,
0, =-1.136/EI
6, =0.2/E1
M, =-0345 M,=+0311
M, =£145 M,=2.65
v =0,=v,=v,=v,=0,=0
6, =0.386/E] 6, =0.193/E/
M, =-0.643 M,==x1.864
M, =+4629 M,=6.236
(@) u, = 220.59/4E Vv,

=y, =v,=v,=0,=0

Fi, = 459kN Fy,=

(b) us = 2.287/4E Vs

F.s= -1.685kN Fys=

F,s = -0.054 kN

(c) us = 13.48/AE Vs
F.s = 1.05MN F, s
F,s = -2.15MN

(@ u, 1.257 x 1072 = u;
0, 0.162 x 107 rads
M, =-10.47 kNm
M, =+6.188 kNm

~525x 1072
- 691x 1072
0.202
0
0 F,,=-1414kN
0
0 F,,=1313kN
-0.243/AE
-0.224/AE 05 =2.528/4E
-WI2ET
wi
209.67/AE w, = -77.21/4E
-2.75kN F,,= -728kN
-8.591/AE ws = -1.904/4E
1.179 kN F,s= -2.927kN
= 41.72/AE ws = -39.46/AE
-4.51 MN F,s= -9.51 MN

0, = 0.162 x 107 rads
M, = +3.52 kNm
M, =-7.81 kNm
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242

243

244

245

25.7
25.8
259
25.10
25.11
25.12
25.13
25.14

Answers to further problems

(b) u, = 12.134/EI 8, =3.777/El
0, = 1.132/EI
M, =-932kNm M, = £0.7 kNm
M, =+6.58 kNm M,=-7.33 kNm

AE| 1 -1
[ |-1 I

(A]+A2)E{_1 - 1}

21 11
Gi[ 1 -1
I l-1 1
(1283 —6/2 12/ -6/ ]
-6/1% 4/1 6/1° 2/1
El 3 2 3 2
-12/1 6/1 12/1 6/1
-6/1° 2/1 6/1° 4/1 |

7.00 Hz, 28Hz, etc., 11.85 Hz, 47.4 Hz etc.
4.73 Hz.

BEIML**/2m.

404.1 Hz, 598.5 Hz.

294.8 Hz, 361.6 Hz, 485.4 Hz.

53.1 Hz, 164.1 Hz.

40.56 Hz.

191.8 Hz, 354.3 Hz, 907.8 Hz.
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Added mass, 662, 679, 685
Analysis of strain, 94, 109
Analysis of stress, 94, 98
Anti-clastic curvature, 241
Annular disc, 547

Barrel-like failure in mild steel, 23
Beam, cross-section
one axis of symmetry, 248
two axes of symmetry, 218
Beam mechanism, 401
Beam one axis of symmetry, 220
Beams, built in, 339, 341 343
composite, 266
compound, 266
continuous, 346
curved, 189
deflections, 295, 307, 333
disadvantages, 345
end couples and distributed load, 320
fixed end moments, 342
lateral buckling, 454
longitudinal bending stresses, 212
non-uniformly distributed load, 322
plane curved, 189
plastic bending, 397
principal stresses, 256
rectangular cross-section, 351
shearing stresses, 245, 259
slope deflection equations, 347, 349
superimposed, 258
two materials, 266
transformed section, 267
varying section, 325
vibrations, 643
Bending, bi-symmetric beams, 218
combined with direct stresses, 283
elastic, 239, 295, 353
mono-symmetric beams, 220
plasticity in mild-steel beams, 352
rectangular beam, 212, 352
strain energy, 239
Bending moment, 169
diagrams, 173, 175, 179

sign conventions, 172
Bending moments

fixed end, 342

Table, 336

Bending of a beam about a principal axis, 216

Bending of a curved bar, 192
Bending stiffness, 215
Bending stress in cylinders, 164
Bolted connections, 76
Boundary considerations, 475
Breakdown of brittle materials, 149
Breaking point, 13
Brittle materials, 13, 19, 149
breakdown, 149
stress-strain curves, 18
Buckling of beams, 424
Buckling of struts, 424
built-in ends, 444
cruciform, 450
Euler load, 429
narrow beam, 454
pinned ends, 445
torsional, 450
Buckling of struts, modes, 426
cruciform, 452
pin-ended, 424
torsional, 452
Built-in beams, 339
Butt weld, 86

Cantilevers, 169, 173, 304
concentrated load, 301
irregular loading, 324
non-uniformly distributed load, 177
uniformly distributed load, 303
Cast-iron, failure in compression, 23
Centroid, 200
Centroidal axes, 201

Change of cross-section in pure bending, 241

Channel-section beam, 259

Circle of second moments of area, 237
Circle of strain, 111

Circle of stress, 103
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Circular ring rotating, 49
Circular ring under radial pressure, 48
Circumferential joint efficiency, 161
Circumferential stress, 153
Cofactor and adjoint matrices, 557
Cold-driven rivets, 80
Collapse of rotating rings, 548
Combined bending and direct stresses, 283
core of a section, 287
Combined bending and thrust
of a stocky strut, 283
Combined mechanism, 401
Combined torsion and direct stresses, 375
Comparison of elastic and plastic
section module, 359
Table, 360
Compatibility of strain, 64
Compatible system, 392
Complementary energy, 413
bending problems, 415
Complementary shearing stress, 71
Composite bars, 42, 45
temperature stresses, 45
tension and compression, 42
Composite beams transformed section, 266
Composites, failure of, 149
Compound beams, 266
Compound tubes, 525
Compression, 5, 12
composite bars, 42
Compressive strain, 17
Compressive stress, 14
Concentrated loads
traversing a beam, 170, 194
Concrete beams
ordinary reinforced, 272
pre-compressed eccentrically, 291
pre-stressed, 289
Concrete, stress-strain curves, 20
Connections, 81
bolted, 76, 83
efficiency, 81
group-tiveted, 82
welded, 86
Continuous beams, 339, 346
slope-deflection equations, 347
Contraflexure, points of, 186
Co-ordinates, 571
Core of a section, 286, 287
Couple applied to a beam, 316
Couples, 6
Creep-under sustained stress, 52
Criterion of yielding, 147, 532
Cup-and cone failure in mild-steel, 23

Index

Cup-like failure in light-alloy , 23
Curvature, anti-clastic, 241
Curved beams, 189
plane, 189
Cylindrical shell, 152, 155
hemispherical ends, 163

Damped vibrations of beams, 652
Deflections of beams, 295, 391
cantilever, 301, 393
cantilever with irregular loading, 324
complementary energy, 413
curved beams, 189
due to couples, 316
due to shear, 333
moment-area analysis, 327
propped cantilever, 396
pure bending, 298
shear effects, 333
simply-supported beams, 300, 307
Table, 336, 349
varying-section beams, 324
virtual work analysis, 396
Derivation of expression for mass matrix, 657
Derivation of hoop and radial stress equations
thick-walled circular cylinder, 515
Design of pin-ended struts, 440
Determinants, 556
Direct stress, 12, 33, 95
combined with bending stresses, 283
lateral strains, 33
Disadvantages of built-in beams, 344
Displacements of pin-jointed frames, 580
Distortion strain energy, 130
Distributed loads traversing a beam, 170
Ductile materials, 20, 144
Ductility measurement, 31
high ductility, 32
low ductility, 32
Table, 32

Eccentric loading of bolted and
riveted connections, 83

Eccentric thrust, 285

Eccentrically-loaded riveted joints, 83

Eccentrically-loaded strut, 432

Eccentrically pre-compressed
concrete beam, 291

Economy of materials, 36

Effect of geometrical imperfections, 430

Effect of sinking supports, 345

Effective lengths of struts, 431



Table, 431
Efficiency of connections, 81
Eigenmode, 670, 674, 682
Elastic and plastic moduli, 359
Elastic bending, 295

section modulus, 228, 359

strain energy, 239
Elastic breakdown and failure

of brittle material, 149
Elastic constants for problems, 142
Elastic hoop stress, 534
Elastic limit, 13
Elastic moment of resistance, 228
Elastic-plastic bending, 352, 353
Elastic stress-strain relations, 111
Elasticity, 13
Element of disc, 544

constant strength, 545
Elements,

brick, 628

conical, 628

curved, 628

finite, 627

tetrahedron, 628

three node rod, 638

triangular, 629
Elongation at fracture, 20
End fixing moment and

maximum deflections

Table, 349
Endurance limit, 53
Endurance-stress curves, 53
Endurance under repeated stresses, 53
Energy, complementary, 413, 414

strain, 390, 414

problems of bending, 415
Energy methods, 390
Equilibrium, 8
Equilibrium considerations, 546
Equilibrium, neutral, 427

stable, 427

unstable, 427
Euler formula, 426

Failure, compressed timber, 97
riveted joints, 76
Failure of composites, 150
Failure of materials in compression, 96
Fatigue, endurance limit, 53
repeated stresses, 53
Fibre composites, 132
Fillet weld, 87
Finite element method, 627

Index

Fixed-end moments, 339, 342

Flexural buckling of a pin-ended strut, 424
with other cross-sectional forms, 448
Flexural shearing stresses in an I-beam, 251

Flexural stiffness, 215
Forced vibrations of beams, 649
Fracture, elongation, 20
Frames, pin-jointed, 55
redundant, 56
simply-stiff, 56
single member, 414

statically-determinate pin-jointed, 56

Free body diagram, 57, 62
Free vibrations of beams, 649
Frequencies

natural, 649

resonant, 663
Fully-plastic moment, 355

I-section, 355

Geometrical imperfections, 430
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Geometrical properties of cross-sections, 200

Table, 209
Global and local co-ordinate, 574
Group-bolted joints, 82
Group-riveted joints, 82

Hooke’s law, 13

Hoop stress in cylinders, 153, 161
Hot driven rivets, 80

Hydrostatic pressure, 128, 145
Hydrostatic tensile pressure, 130
Hydrostatic tensile stress, 131

I-beam, shearing stresses, 250
Importance of connections, 76
Inelastic extensions, 13
Inflection, points of, 185
Influence lines, bending moment
and shearing force, 194, 196
Initial curvature in struts, 436
Initial stresses, 41
Initially curved pin-ended strut, 436
In-plane equations, 139
In-plane stresses and strains
in a laminate, 139
Instability, 426
Intensity of loading of a beam, 170
Interaction curves for struts, 438, 439
Introduction to matrix algebra, 550

Isotropic, orthotropic and anisotropic, 132



702

Joints, 76
bolted, 76
efficiency, 81
group-bolted, 82
group-riveted, 82
method of joints, 57
riveted, 76
single-riveted lap, 76
tapered cover plates, 83
under eccentric loads, 83

Kinetic energy, 657, 658

Lamé line. 519
aluminium alloy, 526, 528
elastic zone, 533, 537
external pressure case, 522
solid shaft, 524
steel, pressure, 528
steel ring, 523
steel tube, shrinkage, 527
thick cylinder, 521
Lap joint, single-riveted, 76
Large deflections of plates, 476
power series solution, 479
Lateral buckling of beams, 454
Lateral deflection of circular plates, 458
Lateral strains, 33
Lines of principal stress, 256
Limit of endurance, 53
Limit of proportionality , 13, 31
Load factors, 33, 401
Local and global co-ordinates, 571
Longitudinal joint efficiency, 161
Longitudinal stresses in beams, 212
Longitudinal stress in cylinders, 154, 161
Longitudinal stresses while
shearing forces are present, 229
Lower yield point, 21
Liider’s lines, 96

Mass matrix
beam, 676
frame, 684
rod, 659
Material properties, 131
Matrix
addition, 552
adjoint, 557

Index

cofactor, 557
column, 551
definition, 550
determinants, 556
diagonal, 555
inverse, 559
multiplication, 554
orthogonal, 560, 561
rectangular, 550
rigid-jointed plane frames, 607
row, 551
square, 555
subtraction, 553
symmetrical, 555, 556
unit, 555, 560, 686
Matrix algebra, 550
Matrix displacement method, 623
Matrix methods of structural analysis, 565
Matrix of shape functions, 632
Maximum shearing stress, 101
Measurement of shearing stress, 68
Mechanisms
beam, 401
combined, 401
sway, 401
Method of joints, 57
Method of minimum, potential, 419
Method of ‘moment-areas’, 327
Method of sections, 62
Mild-steel, barrel-like failure, 23
cup-and-cone failure, 23
plastic bending, 397
strain figures, 96
stress-strain curves, 21
yielding, 21
Minimum potential, 637
Mises yield criterion, 148
Modes of buckling, 426
cruciform strut, 452
pin-ended, 424
torsional, 452
Modes of vibration of a beam, 648, 682
Modulus, bulk, 129
elastic section, 228
shearing, 73
Young’s, 18, 19
Mohr’s circle of strain, 111
Mohr’s circle of stress, 103, 104
three dimensional system, 126
Moments-areas, 327
More general case of plastic bending, 357
More general case of pure bending, 222



Natural frequency of a mass on a beam, 643

Necking, 21, 23

Neutral axis, 284

Neutral equilibrium, 427

Neutral surface, 213

Newton’s laws, 2

No interference fit, 529

Non-linear members in frames, 415

Non-uniformly distributed load and
terminal couples, 327

Normal stress, 15

Numerical integration of the moment
Table, 333

Numerical solution of torsional equation, 504

Open-sections, torsion, 387
Ordinary reinforced concrete, 272

Parallel axes theorem, 202, 203

Partially plastic cylinder, 533

Perpendicular axes theorem, 200, 201

Pin-ended strut with eccentric end thrusts, 432

Pin-jointed frames, 55

Pin-jointed space trusses, 587

Plane curved beams, 189

Plane, pin-jointed truss, 571, 576

Plane, rod element, 574

Plane strain, 124, 635

Plane stress, 124, 635

Planes, principal stress, 100, 101

Plastic bending, mild-steel beams 350, 397
fully-plastic moment, 352, 355, 398
plastic section modulus, 359
shape factor, 357, 360
strain-hardening, 350
virtual-work solution, 397
Table, 360

Plastic collapse of built-in beams, 364

Plastic collapse of rotating discs, 546

Plastic deformation of thick tubes, 531

Plastic design of frameworks, 401
beam mechanism, 401, 402, 404
combined beam and sway

mechanism, 401, 403, 405

sway mechanism, 401, 402
two-storey, 407
two-way, 407

Plastic-elastic bending, 352

Plastic extensions, 13

Plastic hinges, 402

Index
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Plastic regions in beams, 361
Plastic section modulus, 359
Plastic straining, work done in, 40
Plastic torsion, 511
Plate differential equation, 458
Points of contraflexure, 186
Points of inflection, 185
Poisson’s ratio, 33, 34

relation between £, Gand v, 115
Prandtl’s membrane analogy, 504
Pressure, cause yield, 534

plastic collapse, 535
Pre-stressed concrete beams, 289
Principal axis of bending, 216
Principal planes, 100, 101
Principal second moments of area, 230
Principal strains, 112
Principal stresses, 100, 101

beams, 256

lines of, 256

twisted shafts, 374
Principle of super position, 176
Principle of virtual work, 365, 391, 403, 413
Proof stresses, 30, 31
Properties of materials, 37
Proportionality limit, 13, 31
Propped cantilever, 304
Pure bending, 212

rectangular beam, 213

shear, 115

Rankine constants
Table, 430
Rankine-Gordon formula, 428, 430
Rayleigh-Ritz method, 419
minimum potential 419
Redundant frames, 56
Regions of plasticity, 361
Reinforced concrete beams, 272
Relationship between bending moment and
shearing force £, Gand v, 115
Relationship between intensity of
loading shearing force and
bending moment, 170
Removal of stresses, 19
Repeated stresses, 58
Rigidity modulus, 73
Rigid-jointed frame, 607
Ring element, 548
Riveted joints, 76
modes of failure, 76
Rivets
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cold-driven, 80
hot-driven, 80
Rod element, 571
Rolling load, 194
Rosettes, strain, 118
Rotating circular ring,
Rotating discs, 543
plastic collapse, 546

Scalars, 2
Second moments of area, 201, 215, 230
circle, 237
Section modulus, elastic, 228, 359
plastic, 356, 359
Shafts,
torsion of hollow, 370
torsion of solid, 368
Shape factor, 357, 401
Shape functions, 632
Shear centre, 259, 261
Shear deflections of beams, 333
Shear deflections of very thick plates, 486
Shear flow, 383
Shearing force, 67, 169
diagrams, 173, 175, 179
influence lines, 194, 196
sign conventions, 172
sagging and bending moments, 172
Shearing modulus, 382
Shearing strain, 73, 114
energy, 73
Shearing stress, 67, 95
complementary, 71
maximum, 101
tensile specimen, 94
Shearing stresses in beams, 245
channel-section, 259
I-beam, 250
narrow rectangular
cross-section, 245
Shearing stress-strain curve, 382
Shells, cylindrical, 152, 155, 163
spherical, 162, 540
thick spherical, 540
Sign conventions for bending moments
and shearing forces, 172
Simply-stiff frames, 56
Simply-supported beams, 178, 183
Simply-supported beams carrying
concentrated lateral load, 300
distributed load over a span, 313
uniformly distributed load, 187, 300

Index

non-uniformly distributed load, 188
with a couple applied at
intermediate point, 316

Simultaneous equations, 561
Single-riveted lap joint, 76
Sinking of beam supports, 345
Slope-deflection equations, 347
Solution of simultaneous equations, 561
Spherical shells, 162
Stable equilibrium, 427
Statically-determinate frames, 56, 413
Statically-determinate problems, 55
Statically-indeterminate beams, 396
Statically-indeterminate frames, 55
Statically-indeterminate problems, 55, 63
Statics, 3
Stiffness, economy of materials, 36
Stiffness matrix, 565

beam, 598

elemental, 565

frame, 607

rod, 565, 574, 580, 659

structural, 567

system, 567
Strain

inclined direction, 109

inclined plane, 109
Strain analysis, 94

compatibility, 64

compressive, 17
Strain energy, 13, 39, 73, 414

bending, 239

distortional, 130, 131

elastic extensions, 39

elastic torsion, 378

shearing actions, 73

tensile test, 39

three dimensional systems, 126

two-dimensional stresses, 112, 126

volume intensity, 40
Strain figures in mild-steel, 96
Strain-hardening , 21, 350

plastic bending, 350
Strain, Mohr’s circle, 111

principal, 112

rate, 22

rosettes, 118, 121

shearing, 73, 114

tensile, 17

volumetric, 34, 128, 155
Strength properties, 36

Table, 37
Stress, analysis, 94

complementary shearing, 71



compressive, 15
creep due to, 52
direct, 15, 33, 95
effect of removal, 19
endurance curves, 53
factor, 32, 33
Stress, fatigue due to repeated, 53
general two-dimensional, 97
initial, 41
longitudinal in beams, 212
maximum shearing, 101
Mohr’s circle, 103, 127
principal, 100, 101, 256
proof, 30, 31
shearing, 68, 95, 245
temperature effects, 45
tensile, 14
three-dimensional systems, 127
two-dimensional system, 126
ultimate, 21
working, 32
yield, 22
Stress, inclined plane, 98, 99
Stress-strain curves, brittle materials, 18
concrete, 20
ductile materials, 20
high tensile steel, 18
mild steel, 21
Stress-strain relations, elastic, 112
Stretching of a steel wire, 12
Strip, torsion of, 385
Structural vibrations, 643
Struts, buckling of pin-ended, 424
built-in, 444
design of pin-ended, 440
eccentrically-loaded, 432
effective lengths, 431
geometrical imperfections, 430
initially-curved, 436
interaction curves, 438, 439
laterally-loaded, 441
modes of buckling of a cruciform, 452
one end fixed, other end free, 444
one end pinned, other end fixed, 445
other cross-sectional forms, 448
torsional buckling, 450, 452
various end conditions, 444, 445
various types of
cross-section, 448, 450
Superimposed beams, 258
Sway mechanism, 401

Index

Tapered cover plates for riveted joints, 83
Temperature stresses, 45

composite bars, 45
Tensile strain, 17, 21
Tensile stress, 14, 21
Tensile test, strain energy, work done, 39
Tension, 4, 12

composite bars, 42
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Thick circular cylinders, discs and spheres, 515

Thick spherical shells, 540
hemispherical, 540
Thin shells, 152, 162
Three-dimensional stress systems
Throat of weld, 87
Timber beam with reinforcing steel
flange plates, 270
Torsion of
circular shafts, 307
constant, 385
non-circular sections, 492
plastic, 511
Prandtl’s membrane analogy, 504
shear stress T and Torque T
thin-walled tubes, 367
varying circular cross-section, 507
Torsion, combined with direct stresses, 375
constant, 385
flat rectangular strip, 385
hollow circular shaft, 370
plastic, 379
principal stresses, 374
solid circular shaft, 368
strain energy, 378
thin circular tube, 367
thin non-circular tube, 382
thin rectangular strip, 385
thin-walled open sections, 387
Torsion combined with thrust
or tension, 375
Torsional buckling of struts, 452
Torsional equation, 492
non-circular sections, 495
numerical solution of, 504
Transformed sections, 266, 267
Tresca yield criterion, 148, 531
Triangular element, 629
Trigonometrical definitions, 1
Truss
plane, 576, 663
space, 587, 670
Tubes
compound, 525
torsion of non-circular, 382
torsion of thin circular, 367



706

Twisted shaft, principle stresses, 374
Two bay framework, 407
Two-dimensional shearing strain, 114
Two-dimensional stress system, 97
Two storey framework, 407

Ultimate stress, 21
Unstable equilibrium, 427
Upper yield point, 21

Values of principal stresses, 100
Varying circular cross-section,
Vectors, 2
Vibrations of beams, 643
damped, 652
damped forced oscillations, 655
free, 643, 646
forced, 649
natural frequency, 643
with distributed mass, 646
with end thrust, 656
Vibration modes, 648

Virtual work principle, 365, 391, 396. 397

Volumetric strain, 34, 128, 155

Index

Weight economy of materials, 36
Weld, butt, 86

fillet, 87

throat, 87
Welded connections, 86, 89
Work done in plastic straining, 40
Work done in tensile test, 39
Working stresses, 32

Yield, combined stresses, 144
criterion, 147
envelope, 147
locus, 147
mild steel, 21
Yield point, lower, 21
upper, 21
Yield stress, 22
effect of strain rate, 22, 401, 546
Yielding of ductile materials
under combined stresses, 144
Young’s modulus, 18, 19
of elasticity, 566
relationship with £, G and v, 115





