
14 Built-in and continuous beams 

14.1 Introduction 

In all our investigations of the stresses and deflections of beams having two supports, we have 
supposed that the supports exercise no constraint on bending of the beam, i.e. the axis of the beam 
has been assumed free to take up any inclination to the line of supports. This has been necessary 
because, without knowing how to deal with the deformation of the axis of the beam, we were not 
in a position to find the bending moments on a beam when the supports constrain the direction of 
the axis. We shall now investigate this problem. When the ends of a beam are fEed in direction 
so that the axis of the beam has to retain its original direction at the points of support, the beam is 
said to be built-in or direction fmed. 

Consider a straight beam resting on two supports A and B (Figure 14.1) and carrying vertical 
loads. If there is no constraint on the axis of the beam, it will become curved in the manner shown 
by broken lines, the extremities of the beam rising off the supports. 

Figure 14.1 Beam with end couples. 

In order to make the ends of the beam lie flat on the horizontal supports, we shall have to apply 
couples as shown by MI and M2. If the beam is finny built into two walls, or bolted down to two 
piers, or in any way held so that the axis cannot tip up at the ends in the manner indicated, the 
couples such as MI and M2 are supplied by the resistance of the supports to deformation. These 
couples are termed fuced-end moments, and the main problem of the built-in beam is the 
determination of these couples; when we have found these we can draw the bending moment 
diagram and calculate the stresses in the usual way. The couples MI and M2 in Figure 14.1 must 
be such as to produce curvature in the opposite direction to that caused by the loads. 

14.2 Built-in beam with a single concentrated load 

We may deduce the bending moments in a built-in beam under any conditions of lateral loading 
from the case of a beam under a single concentrated lateral load. 
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Figure 14.2 Built-in beam carrying a single lateral load. 

Consider a uniform beam, of flexural stiffness EI, and length L, which is built-in to end 
supports C and G, Figure 14.2. Suppose a concentrated vertical load Wis applied to the beam at 
a distance a from C. If M, and M, are the restraining moments at the supports, then the vertical 
reaction is at C is 

w 1 - -  + - ( M , - M , )  ( ;) ; 
The bending moment in the beam at a &stance z from C is therefore 

c _ - - - - _ - - _  - z < = a -  - - - - - - - - - + c - - a < z < = L -  - - 

M = k(1 -;) + ; 4 4 c - M G ) / z - M c  -W [z - a] 

Then, for the deflected form of the beam, the displacement is given by 

c - - - - - - - - - - z < = a - - - - - - - - - - -  - - -  a < z < = L - - -  

1 
.,"1.(1-3.;(M.-M.,,}= dz2 - + M c  + W [ Z - a ]  (14.1) 

E I - = - { W ( l - ~ ) + y ( M c - M G ) } ;  d= + M c z + A  
2 

or 
dv 1 z 2  W 

+ -[z-  a]* (14.2) 

Elv = - { W ( l - ~ ) + + ( M c - M G ) ) ~  + 2 + A z + B  +$[.-a]3 (14.3) 

and 
3 M,z2 
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Two suitable boundary conditions are: 

when z = 0, v = dv/dz = 0 

As the Macaulay brackets will be negative when these boundary conditions are substituted, the 
terms on the right of equations (14.2) and (14.3) can be ignored, hence 

A = B = O  

Two other boundary conditions are: 

at z = L, v = dv/dz = 0, 

whch on substituting into equations (14.2) and (14.3) give the following two simultaneous 
equations: 

-[(I-;) + + ( ~ ~ - ~ ~ ~ ~ + . . + - ( ~ - U r  W = 0 

-[+ - ;) + +(MC - M314-1 + - MCL2 + W ( L  - a)’ = 0 

2 

6 6 6 

These simultaneous equations give 

M, = W u ( q 2  (14.4) 

2 

MG = W(L - a) [;) (14.5) 

Figure 14.3 Variation in bending moment in a built-in beam 
carrying a concentrated load at mid-length. 
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M, and M, are referred to as the faed-end moments of the beam; M, is measured anticlockwise, 
and M, clockwise. 

In the particular case when the load W is applied at the mid-length, a = YX., and 
WL 
8 

M ,  = MG = - 

The bending moment in the beam vary linearly from hogging moments of WL/8 at each end to a 
sagging moment of WL/8 at the mid-length, Figure 14.3. There are points of contraflexure, or zero 
bending moment, at distances L/4 from each end. 

14.3 Fixed-end moments for other loading conditions 

The built-in beam of Figure 14.4 carries a uniformly distributed load of w per unit length over the 
section of the beam from z = a to z = b. 

Figure 14.4 Distributed load over part of the span of a built-in beam. 

Consider the loading on an elemental length 6z of the beam; the vertical load on the element is wdz, 
and this induces a retraining moment at C of amount 

z (L  - z)2 
L Z  

6M, = w6z 

from equation (14.4). 
The total moment at C due to all loads is 

M, = [ab ; z (L  - z)2dz 

M, = - - ( b 2  - .’) - - (b3  - 4 +- (b4 - ..,I 
which gives 

1 
(14.6) 

2 L  
L2 w [: 3 4 
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M, may be found similarly. When the load covers the whole of the span, a = 0 and b = L, and 
equation (14.6) reduces to 

(14.7) 
W L  2 M, = - 
12 

In this particular case, M, = M,; the variation of bending moment is parabolic, and of the form 
shown in Figure 14.5; the bending moment at the mid-length is wL”24, so the fixed-end moments 
are also the greatest bending moments in the beam. 

Figure 14.5 Variation of bending moment in a built-in beam 
carrying a uniformly distributed load over the whole span. 

The points of contraflexure, or points of zero bending moment, occur at a distance 

L ( 3 - 4 3  (14.8) 
6 

from each end of the beam. 
When a built-in beam carries a number of concentrated lateral loads, W,, W2, and W,, Figure 

14.6, the fixed-end moments are found by adding together the fixed-end moments due to the loads 
acting separately. For example, 

(14.9) M, = c Wra, - 
r = 1.2.3 [ L E a r l ’  

for the case shown in Figure 14.6. 

Figure 14.6 Built-in beam carrying a number of concentrated loads. 
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We may treat the case of a concentrated couple M, applied a distance a from the end C, Figure 
14.7, as a limiting case of two equal and opposite loads Wa small distance 6a apart. The fured-end 
moment at C is 

( L  - a - 6a)2 Wa W(a + 6a) 
L 2  L 2  

M, = - - ( L  - a)2 + 

If 6a is small, 

Wa W 
M, = -- (L - a)’ + - [ a ( ~  - U ) ~  + 6~ (L - U ) ( L  - 3a)] 

L 2  L 2  

which gives 

ma 
L 2  

M, = - (L - a)(L - 3a) 

Figure 14.7 Built-in beam carrying a concentrated couple. 

But if 6a is small, M, is statically equivalent to the couple Wda, and 

(14.10) 
MO M, = - (L - a)(L - 3 4  
L 2  

Similarly, 

(14.11) 
MO M,; = - aj2L - 3 4  
L 2  

14.4 Disadvantages of built-in beams 

The results we have obtained above show that a beam which has its ends firmly fured in direction 
is both stronger and stiffer than the same beam with its ends simply-supported. On h s  account 
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it might be supposed that beams would always have their ends built-in whenever possible; in 
practice it is not often done. There are several objections to built-in beams: in the first place a 
small subsidence of one of the supports will tend to set up large stresses, and, in erection, the 
supports must be aligned with the utmost accuracy; changes of temperature also tend to set up large 
stresses. Again, in the case of live loads passing over bridges, the frequent fluctuations of bending 
moment, and vibrations, would quickly tend to make the degree of fixing at the ends extremely 
uncertain. 

Most of these objections can be obviated by employing the double cantilever construction. As 
the bending moments at the ends of a built-in beam are of opposite sign to those in the central part 
of the beam, there must be points of mflexion, i.e. points where the bending moment is zero. At 
these points a hinged joint might be made in the beam, the axis of the hinge being parallel to the 
bending axis, because there is no bending moment to resist. If this is done at each point of 
inflexion, the beam will appear as a central girder freely supported by two end cantilevers; the 
bendmg moment curve and deflection curve will be exactly the same as if the beam were solid and 
built in. With this construction the beam is able to adjust itself to changes of temperature or 
subsistence of the supports. 

14.5 Effect of sinking of supports 

When the ends of a beam are prevented from rotating but allowed to deflect with respect to each 
other, bending moments are set up in the beam. The uniform beam of Figure 14.8 is displaced so 
that no rotations occur at the ends but the remote end is displaced downwards an amount 6 relative 
to c. 

The end reactions consist of equal couples M, and equal and opposite shearing forces 2MJL, 
because the system is antisymmetric about the mid-point of the beam. The half-length of the beam 
behaves as a cantilever carrying an end load 2M& then, from equation ( 13.1 8), 

(2MJL)(L/2)* - M& * 
- -  

1 - t i =  
2 3EI 12EI 

Figure 14.8 End moments induced by the sinking of the supports of a built-in beam. 
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Therefore 

6EI6 
L 2  

M, = - (14.12) 

For a downwards deflection 6, the induced end moments are both anticlockwise; these moments 
must be superimposed on the fixed-end moments due to any external lateral loads on the beam. 

Problem 14.1 A horizontal beam 6 m long is built-in at each end. The elastic section modulus 
is 0 .933~ m3. Estimate the uniformly-distributed load over the whole span 
causing an elastic bending stress of 150 MN/m2. 

Solution 

The maximum bending moments occur at the built-in ends, and have value 

WL 

12 
MmaX = - 

If the bending stress is 150 MN/m2, 

M,, = - " - - oZ, = (150 x lo6) (0.933 x = 140kNm 
Y 

Then 

= - 12 (Mmm) = 46.7 kN/m 

L ?  

14.6 Continuous beam 

When the same beam runs across three or more supports it is spoken of as a continuous beam. 
Suppose we have three spans, as in Figure 14.9, each bridged by a separate beam; the beams will 
bend independently in the manner shown. In order to make the axes of the three beams form a 
single continuous curve across the supports B and C, we shall have to apply to each beam couples 
acting as shown by the arrows. When the beam is one continuous girder these couples, on any bay 
such as BC, are supplied by the action of the adjacent bays. Thus AB and CD, bending downwards 
under their own loads, try to bend BC upwards, as shown by the broken curve, thus applying the 
couples MB and M, to the bay BC. This upward bending is of course opposed by the down load 
on BC, and the general result is that the beam takes up a sinuous form, being, in general, concave 
upwards over the middle portion of each bay and convex upwards over the supports. 
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Figure 14.9 Bending moments at the supports of a continuous beam. 

In order to draw the bending moment diagram for a continuous beam we must first find the couples 
such as M, and M,. In some cases there may also be external couples applied to the beam, at the 
supports, by the action of other members of the structure. 

When the bending moments at the supports have been found, the bending moment and shearing 
force diagrams can be drawn for each bay according to the methods discussed in Chapter 7. 

14.7 Slopedeflection equations for a single beam 

In dealing with continuous beams we can make frequent use of the end slope and deflection 
properties of a single beam under any conditions of lateral loading. The uniform beam of Figure 
14.10(i) carries any system of lateral loads; the ends are supported in an arbitrary fashion, the 
displacements and moments being as shown in the figure. In addition there are lateral forces at the 
supports. The rotations at the supports are 8, and e,, respectively, reckoned positive if clockwise; 
MA and M, are also taken positive clockwise for our present purposes. The displacements 6, and 
6, are taken positive downwards. 

The loaded beam of Figure 14.10(i) may be regarded as the superposition of the loading 
conditions of Figures 14.10(ii) and (iii). In Figure 14.10(ii) the beam is built-in at each end; the 
moments at each end are easily calculable from the methods discussed in Sections 14.2 and 14.3. 
The fmed-end moments for this condition will be denoted by MFA and MFB. In Figure 14.1O(iii) 
the beam carries no external loads between its ends, but end displacements and rotations are the 
same as those in Figure 14.10(i); the end couples for this condition are MA’ and M,’. The 
superposition of Figures 14.10(ii) and (iii) gives the external loading and end conditions of Figure 
14.10(i). We must find then the end couples in Figure 14.lO(iii); from equations (13.49), putting 
w = 0, we have 

M,IL ~3 1 
(b - 6,) - + -  

e’ = X - 6EI L 

MiL M 2  1 
(%i - %) e, = - - + - + -  

6EI 3EI L 

Then 
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1 1 
L 6EI 

1 L 
L 6EI 

e, + - pA - 6,) = - ( 2 ~ ;  - M;) 

e, + - pA - 8,) = - ( 2 ~ ;  - M;) 

Figure 14.10 The single beam under any conditions of lateral load and end support shown in 
(i) can be regarded as the superposition of the built-in end beam of 
(ii) and the beam with end couples and end deformations of (iii). 

But for the superposition we have 
I MA/ = MA - MFA MB = MB - MFB 

Thus 

L 
(14.13) 

1 
9'4 + -(%f-b) L = - [ 2 ( M , - M , ) - ( M , - M F B ) ]  6 E l  

9 ,  + -(b-b) L = - [ 2 ( M , - M , ) - ( M , - M , ) ]  6 E l  
L 

(14.14) 
1 

These are known as the slope-deflection equations; they give the values of the unknown moments, 
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MA and MB. These equations will be used in the matrix displacement method of Chapter 23. 

encastrk beams. 
Table 14.1 provides a summary of the end fming moments and maximum deflections for some 

Table 14.1 End fixing moments and maximum deflections for some encastri beams 

Further problems (answers on page 693) 

14.2 A beam 8 m span is built-in at the ends, and carries a load of 60 kN at the centre, and 
loads of 30 kN, 2 m from each end. Calculate the maximum bending moment and the 
positions of the points of inflexion. 

A girder of span 7 m is built-in at each end and cames two loads of 80 kN and 120 kN 
respectively placed at 2 m and 4 m from the left end. Find the bending moments at the 
ends and centre, and the points of contraflexure. (Birmingham) 

14.3 


