
13 Deflections of beams 

13.1 Introduction 

In Chapter 7 we showed that the loading actions at any section of a simply-supported beam or 
cantilever can be resolved into a bending moment and a shearing force. Subsequently, inChapters 
9 and 10, we discussed ways of estimating the stresses due to these bending moments and shearing 
forces. There is, however, another aspect of the problem of bending which remains to be treated, 
namely, the calculation of the stifiess of a beam. In most practical cases, it is necessary that a 
beam should be not only strong enough for its purpose, but also that it should have the requisite 
stiffness, that is, it should not deflect from its original position by more than a certain amount. 
Again, there are certain types ofbeams, such as those camed by more than two supports and beams 
with their ends held in such a way that they must keep their original directions, for which we 
cannot calculate bending moments and shearing forces without studying the deformations of the 
axis of the beam; these problems are statically indeterminate, in fact. 

In this chapter we consider methods of finding the deflected form of a beam under a given 
system of external loads and having known conditions of support. 

13.2 Elastic bending of straight beams 

It was shown in Section 9.2 that a straight beam of uniform cross-section, when subjected to end 
couples A4 applied about a principal axis, bends into a circular arc of radius R, given by 

1 M  
R EI 
- - -  - (13.1) 

where EI, which is the product of Young's modulus E and the second moment of area I about the 
relevant principal axis, is the flexural stiffness of the beam; equation ( 13.1) holds only for elastic 
bending. 

Where a beam is subjected to shearing forces, as well as bending moments, the axis of the beam 
is no longer bent to a circular arc. To deal with this type of problem, we assume that equation 
(13.1) still defines the radius of curvature at any point of the beam where the bending moment is 
M. This implies that where the bending moment varies from one section of the beam to another, 
the radius of curvature also vanes from section to section, in accordance with equation (13.1). 

In the unstrained condition of the beam, Cz is the longitudinal centroidal axis, Figure 13.1, and 
Cx, Cy are the principal axes in the cross-section. The co-ordinate axes Cx, Cy are so arranged that 
the y-axis is vertically downwards. This is convenient as most practical loading conditions give 
rise to vertically downwards deflections. Suppose bending moments are applied about axes 
parallel to Cx, so that bending is restricted to the yz-plane, because Cx and Cy are principal axes. 
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Figure 13.1 Longitudinal and principal Figure 13.2 Displacements of the longitudinal 
centroidal axes for a straight beam. axis of the beam. 

Consider a short length of the unstrained beam, corresponding with D F  on the axis Cz, Figure 13.2. 
In the strained condition D and F are dsplaced to D' and F', respectively, which lies in the yz- 
plane. Any point such as D on the axis Cz is displaced by an amount v parallel to Cy; it is also 
hsplaced a small, but negligible, amount parallel to Cz. 

The radius of curvature R at any section of the beam is then given by 

d2v  - 
1 -  dz2 

(13.2) - -  
R 

* [1 + ( $)2r 
We are concerned generally with only small deflections, in which v is small; thls implies that 
(dv/dz) is small, and that ( d ~ / d z ) ~  is negligible compared with unity. Then, with sufficient 
accuracy, we may write 

d 2 v  1 
R dz2 

(13.3) - = f- 

The equations (13.1) and (1 3.3) give 

d ' v  
dz2 

(13.4) & E I - =  A4 

We must now consider whether the positive or negative sign is relevant in this equation; we have 
already adopted the convention in Section 7.4 that sagging bending moments are positive. When 
a length of the beam is subjected to sagging bending moments, as in Figure 13.3, the value of 
(dv/dz) along the length diminishes as z increases; hence a sagging moment implies that the 
curvature is negative. Then 

(13.5) 
d 2 v  
dz' 

E I - = - M  

where M is the sagging bending moment. 
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Figure 13.3 Curvature induced by sagging Figure 13.4 Deflected form of a beam in 
bending moment. pure bending. 

Where the beam is loaded on its axis of shear centres, so that no twisting occurs, M may be written 
in terms of shearing force F and intensity w of vertical loading at any section. From equation (7.9) 
we have 

- - - -  d 2 M  - dF - -w 
dz2 a2 

On substituting for M from equation (1 3.5), we have 

(13.6) - [ - E l $ ]  d2 = 5 = -w 
dz2  

Thls relation is true if EI vanes from one section of a beam to another. Where El is constant along 
the length of a beam, 

d4v - dF 
dz4 dz 

(13.7) - E l -  - - = -w 

As an example of the use of equation (13.4), consider the case of a uniform beam carrying couples 
M at its ends, Figure 13.4. The bending moment at any section is M, so the beam is under a 
constant bendmg moment. Equation (13.5) gives 

d2v - 

dz2  
E I -  - -M 

On integrating once, we have 

dv EI - 
dz = -Mz + A  (13.8) 
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where A is a constant. On integrating once more 

(13.9) 
1 
2 

EIv = -- Mz’ + AI + B 

where B is another constant. If we measure v relative to a line CD joining the ends of the beam, 
vis zero at each end. Then v = 0, for z = 0 and z = L. 

On substituting these two conditions into equation (13.9), we have 

1 
2 

B = 0 and A = -ML 

The equation (13.9) may be written 

(13.10) 
1 EIv = -Mz(L - Z) 
2 

At the mid-length, z = U., and 

(13.11) ML 2 v = -  
8EI 

which is the greatest deflection. At the ends z = 0 and z = L/2, 

(13.12) d v -  ML dv ML 
(iz 2 EI a!? 2 EI 
- at C; - = -- at D - -  

It is important to appreciate that equation (13.3), expressing the radius of curvature R in terms of 
v, is only true if the displacement v is small. 

Figure 13.5 Distortion of a beam in pure bending. 
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We can study more accurately the pure bending of a beam by considering it to be deformed into 
the arc of a circle, Figure 13.5; as the bending moment M is constant at all sections of the beam, 
the radius of curvature R is the same for all sections. If L is the length between the ends, Figure 
13.5, and D is the mid-point, 

OB = 4-j 

Thus the central deflection v, is 

v = BD = R - \IR2 - ( L 2 / 4 )  

Then 

v = i i  

Suppose W R  is considerably less than unity; then 

which can be written 

1 v = - 1  I + - +  . . .  L 2  L 2  
8R 4 R  

But 

and so 

v = ML - i l + -  M ~ L ~  + . . . I  
8EI 4(E42 

(13.13) 

Clearly, if (L2/4Rz) is negligible compared with unity we have, approximately, 

which agrees with equation (1 3.1 1). The more accurate equation (13.13) shows that, when (Lz/4R2) 
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is not negligible, the relationshp between v and A4 is non-linear; for all practical purposes this 
refinement is unimportant, and we find simple linear relationships of the type of equation (1 3.1 1) 
are sufficiently accurate for engineering purposes. 

13.3 Simply-supported beam carrying a uniformly distributed load 

A beam of uniform flexural stiffness EI and span L is simply-supported at its ends, Figure 13.6; 
it carries a uniformly distributed lateral load of w per unit length, whch induces bending in the yz 
plane only. Then the reactions at the ends are each equal to %wL; if z is measured from the end 
C, the bending moment at a distance z from C is 

1 1 2  

2 2 
M = -WLZ - -WZ 

Figure 13.6 Simply-supported beam carrying a uniformly supported load. 

Then from equation ( 13 S), 

d2v 1 1 
dz2  2 2 

E l -  = -M = -- WLZ + - wz2 

On integrating, 

+ A  dv WLZ 2 wz 3 EI- = - - + -  
dz 4 6 

and 

+ A z + B  (1 3.14) 
wLz3 wz4 

12 24 
EIv = -- + - 

Suppose v = 0 at the ends z = 0 and z = L; then 

B = 0, and A = wL’I24 
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Then equation (13.14) becomes 

(13.15) 
wz EZv = - [L’ - 2Lz2 + z’] 
24 

The deflection at the mid-length, z = Y . ,  is 

(1 3.16) 5wL4 v = -  
3 84 El 

13.4 Cantilever with a concentrated load 

A uniform cantilever of flexural stiffness Eland length L carries a vertical concentrated load Wat 
the free end, Figure 13.7. The bending moment a distance z from the built-in end is 

M = -W(L - z )  

Figure 13.7 Cantilever carrying a vertical load at the remote end. 

Hence equation ( 13.5) gives 

d2v 
dz2 

EZ- = W(L - Z) 

Then 

E I k  = w ( L z  - i Z 2 )  -L A (13.17) 
dz 

and 
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EIv = W( ;Lz2 - iz3) + Az + B 

At the end z = 0, there is zero slope in the deflected form, so that dv/dz = 0; then equation 
(13.17) gives A = 0. Furthermore, at z = 0 there is also no deflection, so that B = 0. Then 

wz 2 EIv = - (3L - Z) 
6 

Atthe free end,^ = L, 

WL 3 
VI. = - 

3 EI 
(13.18) 

The slope of the beam at the free end is 

0, = (2) ? = L  2EI 
(13.19) 

- WL2 - -  

When the cantilever is loaded at some point between the ends, at a distance a, say, from the 
built-in support, Figure 13.8, the beam between G and D carries no bending moments and therefore 
remains straight. The deflection at G can be deduced from equation (13.18); for z = a, 

(13.20) w a  3 v, = - 
3 E/ 

and the slope at z = a is 

(13.21) Wa 2 

2EI 
eo = - 

Then the deflection at the free end D of the cantilever is 

Figure 13.8 Cantilever with a load applied between the ends. 
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W a  ’ 
3EI 2EI 

V L  = - wu3 + ( L  - a)  - 

- -  wu2 ( 3 ~  - a) 

(13.22) 
- 

6EI 

13.5 Cantilever with a uniformly distributed load 

A uniform cantilever, Figure 13.9, carries a uniformly distributed load of w per unit length over 
the whole of its length. The bending moment at a distance z from C is 

1 
2 

M = --w ( L  - z)’ 

Then, from equation (13.5), 

d‘v 1 1 
dz’ 2 2 

EI- = -W ( L  - z)’ = -W (L2 - ~ L z  + z’) 

Figure 13.9 Cantilever carrying a uniformly distributed load. 

Thus 

EI- = -w L’z - Lz2  + -z3 + A * dz 2 7 3 7 
and 

2 2  1 I’ 3 12 ’ 1  1 EIv = -w -L’z’ - -Lz3 + -z4 + Az  + B 

At the built end, z = 0, and we have 
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- -  & - O  and v = O  
CL 

ThusA = B = 0. Then 

1 
24 

E ~ v  = -W (6L2z2 - 4Lz3 + z4) 

At the free end, D, the vertical deflection is 

(13.23) WL 4 
VL = - 

8EI 

13.6 Propped cantilever with distributed load 

The uniform cantilever of Figure 13.1 O(i) carries a uniformly distributed load w and is supported 
on a rigid knife edge at the end D. Suppose P is the force on the support at D. Then we regard 
Figure 13.10(i) as the superposition of the effects of P and w acting separately. 

Figure 13.10 (i) Uniformly loaded cantilever propped at one end. 
(ii) Deflections due to w alone. (iii) Deflections due to P alone. 

If w acts alone, the deflection at D is given by equation (13.23), and has the value 

WL 4 v ,  = - 
8EI 

If the reaction P acted alone, there would be an upward deflection 

PL 3 v* = - 
3 EI 
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at D. If the support maintains zero deflection at D, 

v , - v 2  = 0 

Thls gives 

P L 3  - WL - - -  
3EI 8EI 

or 

3wL p = -  
8 

(13.24) 

Problem 13.1 A steel rod 5 cm diameter protrudes 2 m horizontally from a wall. (i) 
Calculate the deflection due to a load of 1 kN hung on the end of the rod. The 
weight of the rod may be neglected. (ii) If a vertical steel wire 3 m long, 0.25 
cm diameter, supports the end of the cantilever, being taut but unstressed 
before the load is applied, calculate the end deflection on application of the 
load. TakeE = 200GN/m2. (RNEC) 

Solution 

(1) The second moment of are of the cross-section is 

I, = - (0.050)4 = 0.307 x m 4  T 

64 

The deflection at the end is then 

(ii) Let T = tension in the wire; the area of cross-section of the wire is 4.90 x 

elongation ofthe wire is then 
m2. The 

e = - -  - T(3) 
EA (200 x 109)(4.90 x 

The load on the end of the cantilever is then (1000 - T), and this produces a deflection of 

(1000 - fi(2)3 v =  
3(200 x 109)(0.307 x 
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If this equals the stretching of the wire, then 

(1000 - 71(2)3 - - T(3) 
3(200 x 109)(0.307 x 1O-6) (200 x 109)(4.90 x 1O-6) 

This gives T = 934 N, and the deflection of the cantilever becomes 

v =  (66)(2)3 = 0.00276 m 
3(200 x 109)(0.307 x 1O-6) 

Problem 13.2 A platform carrying a uniformly distributed load rests on two cantilevers 
projecting a distance 1 m from a wall. The distance between the two cantilevers 
is %1. In what ratio might the load on the platform be increased if the ends 
were supported by a cross girder of the same section as the cantilevers, resting 
on a rigid column in the centre, as shown? It may be assumed that when there 
is no load on the platform the cantilevers just touch the cross girder without 
pressure. (Cambridge) 

Solution 

Let 
Then the maximum bending moment = %w, 12. 
Let w, = the safe load when supported, 

w, = the safe load per unit length on each cantilever when unsupported. 

6 = the deflection of the end of each cantilever, 
I/tR = the pressure between each cantilever and the cross girder. 

Then the pressure is 

3 3 E16 - -  R - - w,l -- 
2 8 - I’ 
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We see from the figure above that 

(R/2)(1/4)3 - R13 
i s =  - -  

3 EI 3 84 EI 

I having the same value for the cantilevers and cross girder. Substituting this value of 6 

R - 3w21 R - - - - -  

2 8 128 

or 

48 
65 

R = -w21 

The upward pressure on the end of each cantilever is YJ? = 24wJ/65, giving a bending moment 
at the wall equal to 24wJ2/65. The bending moment of opposite sign due to the distributed load 
is %wJ2. Hence it is clear that the maximum bending moment due to both acting together must 
occur at the wall and is equal to (% - 24/65) wJ2 = (17/130) wJ2. If h s  is to be equal to % wIZ2, 
we must have w, = (65/17) w,; in other words, the load on the platform can be increased in the 
ratio 65/17, or nearly 4/1. The bending moment at the centre of the cross girder is 6~~1’165, which 
is less than that at the wall. 

13.7 Simply-supported beam carrying a concentrated lateral load 

Consider a beam of uniform flexural stiffness EI and length L, which is simply-supported at its 
ends C and G, Figure 13.1 1. The beam carries a concentrated lateral load W at a distance a from 
C. Then the reactions at C and G are 

Wa v, = E (L  - u) vc = - 
L L 

Figure 13.1 1 Deflections of a simply-supported beam 
carrying a concentrated lateral load. 

Now consider a section of the beam a distance z from C; if z < a, the bending moment at the 
section is 
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M = v c z  

Deflections of beams 

and ifz > a, 

M = V , Z -  Mz - a) 

Then 

d2v 
dz2 

EI- = -V, z for z < a 

and 

E& = -vC z + ~ ( z  - a) for z > a 
dz2 

On integrating these equations, we have 

1 dv 
dz 2 (13.25) EI- = --Vc z 2  + A  for z < a 

dv 1 

dz 2 
E I -  = --Vcz2 + W ( i z 2  -az) +A' for z > a 

and 

1 
6 

EIv = --Vc z 3  + AZ + B for z < a 

(13.26) 

(13.27) 

+A'z + B' for z>a (13.28) 

In these equations A, B, A '  and B' are arbitrary constants. Now for z = a the values of v given by 
equations (13.27) and(13.28) are equal, and the slopes given by equations (13.25) and(13.26) are 
also equal, as there is continuity of the deflected form of the beam through the point D. Then 

1 1 
6 

--vc a 3  + A a  + B = - -Vc 6 a 3  + W($-13 - t . 3 )  + A i a  + B i  

and 
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These two equations give 

(13.29) 

Ai the extreme ends of the beam v = 0, so that when z = 0 equation (1 3.27) gives B = 0, and when 
z =L,  equation (13.28) gives 

We have finally, 

1 W A = -V, L 2  -- (L - a)’ 
6 6L 

B = O  

But Vc = W(L - a)/L, so that equations (13.30) become 

Wa 
6L 

A = - (L  - a)(2L - a) 

B = O  

(13.30) 

(13.31) 
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Then equations (13.27) and (13.28) may be written 

1 W 
6 L  6 L  

E I V =  ~ L ’ - ~ u L + u ~  z f o r z < a  

W W 
6 L  6 

EIv = - -(L - a)z3  t - (z’ - 3 m 2 )  

The second relation, for z > a, may be written 

3 (2L2 - 3aL+ u2 W 
E I v =  - - ( L - a ) z 3 + -  

6 L  6 L  

(13.32) 

(13.33) 

(13.34) 

Then equations (13.32) and (13.33) differ only by the last term of equation (13.34); ifthe last term 
of equation (13.34) is discarded when z < a,  then equation (13.34) may be used to define the 
deflected form in all parts of the beam. 

On putting z = a,  the deflection at the loaded point D is 

wa2 ( L  - .)2 
V D  = 

3 EIL 

When W is at the centre of the beam, a = %L, and 

WL 
V D  = - 

48EI 

(13.35) 

(13.36) 

This is the maximum deflection of the beam only when a = %L. 

13.8 Macaulay’s method 

The observation that equations (13.32) and (13.33) differ only by the last term of equation (13.34) 
leads to Macaulay‘s method, which ignores terms which are negative withm the Macaulay brackets. 
That is, if the term [z -a ]  in equation (13.34) is negative, it is ignored, so that equation (13.34) can 
be used for the whole beam. The method will be demonstrated by applying it to a few examples. 

Consider the beam shown in Figure 13.12, which is simply-supported at its ends and loaded 
with a concentrated load W. 
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Figure 13.12 Form of step-function used in deflection analysis of a beam. 

By taking moments, it can be seen that 

v, = w ( L  - a ) / L  (13.37) 

and the bending moment when z < a is 

M = vcz (13.38) 

Then bending moment when z > a is 

M = vc z - W(Z - a) (13.39) 

Now 

d2v 
dz2 

El - = -M 

hence, the Macaulay method allows us to express this relationship as follows 

a < z < L - - - - - - - z <  = a - _ - - _ _ - *  - - -__  - - - - -  

(13.40) +w [z - a] 
d’v 

dz’ 
EI - = -Vc z 

On integrating equation (13.40), we get 

(13.41) v, z 2  W + A  +- [z - a]’ dv 
dz 2 2 

E / -  1 -- 

(13.42) 
-v z3 W 

EIV = C + A ~ + B  ++-.I’ 
6 6 and 



312 Deflection of barns 

The term on the right of equations ( 13.40) and ( 13.4 1) must be integrated by the manner shown, 
so that the arbitrary constants A and B apply when z < a and also when z > a. The square brackets 
[ ] are called Macaulay brackets and do not appi'y when the term inside them is negative. 

The two boundary conditions are: 

a t z  = 0, v = 0 and a t z  = L ,  v = 0 

Applying the first boundary condition to equation (13.42), we get 

B = O  

Applying the second boundary condition to equation (13.42), we get 

0 = -V, L 3 / 6  + AL + W (L - ~ ) ~ / 6  

or AL = W (L - a) L3/ (6L)  - W (L  - ~ ) ~ / 6  

or A = W (L - a) L/6 - W (L  - u ) ~ / ( ~ L )  

- - W (L - a) {L - (L - a)Z/L} 
6 

:. EIv = -W(L - a)z3 / (6L)  

+ w(L - a) (4 - (L - u ) ~ / L } x / ~  

+ W[Z - aF/6 

On putting z = a, we get the deflection at D, namely v, 

i e. V D  = (L  - a) { - a 3 / L  + (L - (L - a)2/L) a + 0) 
6EI 

= wL - a) { -a3/L + (L - ( L 2  - 2aL + a2)/L) a} 
6EI 

= N L  - a) ( -a3/L + La - La + 2a2 - a3/L) 
6EI 

HqL - a)? a 2  or V D  = 
3 EIL 
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If W is placed centrally, so that a = W2, 

w( L -  L / 2)2 ( L  / 2 )  
V D  = 

3 EIL 

(13.43) 

13.9 Simply-supported beam with distributed load over a portion of 
the span 

Suppose that the load is w per unit length over the portion DG, Figure 13.13; the reactions at the 
ends of the beam are 

W vC = - (L  - a)2 
2L 

W vc = - (p - a 2 )  
2L 

The bending moment at a &stance z from C is 

where the square brackets are Macaulay brackets, which only apply when the term inside them is 
positive. 

M = - ( L - a ) 2 z - ~ [ z - a ] 2  W 

2L i.e. 

U)‘ z Hence EI-=-(L- d’v -w 
&2 2 L  

d v w  
so that EI-=  - ( L - a ) ’ z 2 + A  

& 4L 

and 
-W 

EIv = - ( L - a ) ’ z 3 t  A z t  B 
12L 

+ “[.-.IZ 
2 

+“[.-a]’ 
6 

W 
t -[z- .I4 

24 

(13.44) 

(13.45) 

(13.46) 
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Figure 13.13 Load extending to one support. 

The boundary conditions are that when 

z = 0 ,  v = 0 andwhen z = L ,  v = 0 

Applying the first boundary condition to equation (13.46), we get 

B = O  

Applying the second boundary condition to equation ( 1  3.46), we get 
W 2 W 4 o = - - ( L - U )  L ~ + A L + - ( L - u )  
12 24 

W 2 W 4 
: . A  = - ( L - U )  L - - ( L - U )  

12 24 L 

= - " (  L-a)  2 {  2 L 2 - ( k ? ) 2 }  

1 = - (L-u)2 (2L2-L2-u*  W +2uL 

A = - (L-u)2 (  W L 2 + 2 L u - u 2 )  

EIv = - ( L - a ) 2 z 3 + - ( L - a )  -W W 2 ( L 2 +  2 L u - a 2 ) z  

24 L 

24 L 

24 L 
or 

The equation for the deflection curve is then: 

2 L  24 L 

(13.47) 
+-[,-.I4 W 

24 

where the square brackets in equation (13.47) are Macaulay brackets. 
When the load does not extend to either support, Figure 13.14(i), the result of equation ( 1  3.47) 

may be used by superposing an upwards distributed load of w per unit length over the length GH 
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on a downwards distributed load of w per unit length over DH, Figure 13.14(ii). Due to the 
downwards distributed load alone 

1 EIv =-(L-u) -W 2 z ~ + - ( L - u ) ~ ( L ~ + ~ L u - u ~  W z 
2 L  24 L 

+ q - q  (13.48) 
24 

where the square brackets in equation (13.48) are Macaulay brackets. 

Figure 13.14 Load not extending to either support. 

Due to the upwards distributed load 

1 EZv = - ( L - b ) 2 z 3 - - ( L - b ) 2 ( L 2 + 2 L 6 - b 2  W W z 
2L 24 L 

(13.49) 
--[z- W bI4 

24 

where the square brackets in equation (1 3.49) are Macaulay brackets. 
On superposing the two deflected forms, the resultant deflection is given by 

W 3 wz 
EIv = - - ( b - ~ )  (2L-U- 6) + - 

2L 24 L 

{(L-.)2 ( f . 2  + 2La  -a’ )  -(L-b)2 ( L2 -b 2Lb 4 2 ) )  (13.50) 

+-+14 W - --[z-~I~ W 

24 
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where the square brackets of equation (13.50) are Macaulay brackets and must be ignored if the 
term inside them becomes negative. 

13.10 Simply-supported beam with a couple applied at an 
intermediate point 

The simply-supported beam of Figure 13.15 carries a couple M, applied to the beam at a point a 
distance u from C. The vertical reactions at each end are (MJL). The bending moment a distance 
z from C is 

(13.51) M 2  M = - + Mu [z - u]" 
L 

Figure 13.15 Beam with a couple applied at a point in the span. 

The term on the right of equation (1 3.5 1) is so written, so that equation (1 3.5 1) applied over the 
whole length of the beam. 

Hence, 
c - - - - - - - - - z < = u - - - - - - - - - -  - c - - - - - -  a < z < L - - - - -  - 

d'v Maz 
E l - = -  - Ma [ z -  U ] O  

dz2 L 

dv Maz2 
dz 2L 

... El  - = - + A  - M a [ Z - U ]  (13.52) 

(13.53) Ma 
3 

- -[z- u]' 
2 

and 

The boundary conditions are that 

EIv = - Maz t Azt B 
6 L  

v = 0 at z = O  andat z = L  

From the first boundary condition, we get 

B = O  
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From the second boundary condition, we get 

M k '  -4 
0 = - + AL - (L - a)' 

6 2 

- M k  Ma :. A = - + - (L - a)' 
6 2L 

Ma - (-L' + 3L' + 30' - 6aL) 
6L 

= 

Ma - (2L' - 6La + 3 ~ ' )  
6L 

= 

2L2-6La+3a  2 )  +- -";"-[,-a12 
6 L  6 L  

where the square brackets in equation (13.54) are Macaulay brackets. 
The deflection at D, when z = a, is 

Mila 
VD = - (L - a) (L - 2 4  

3 EIL 

(13.54) 

(13.55) 

Problem 13.3 A steel beam rests on two supports 6 m apart, and carries a uniformly 
distributed load of 10 kN per metre run. The second moment of area of the 
cross-section is 1 x m4 and E = 200 GN/m2. Estimate the maximum 
deflection. 

Solution 

The greatest deflection occurs at mid-length and has the value given by equation (1 3.16): 

= 0.00844 m 5wL4 - 5(100 x 10)) (6)4 
y = - -  

384EI 384(200 x 10') (1 x lo-)) 
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Problem 13.4 A uniform, simply-supported beam of span L carries a uniformly distributed 
lateral load of w per unit length. It is propped on a knife-edge support at a 
distance a from one end. Estimate the vertical force on the prop. 

WL 
8 

R = -  
1 - 2 [;)2 + [$ 

E ( ,  - $ L 
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Solution 

From section 13.7, the lateral deflection at any point is given by 

W wa 
6L  6L 

W wz = wa 

EIV = --(L - a)z3 + - b ~ *  - ~ U L  + a*)z for z > a 

wa3 for z > a EIv = --(L - a)z3  +- ( z  - 3a) +-(2L2 + a2)z - - 
6L 6 6L 6 

Let us suppose first that a > %L, when we would expect the greatest deflection to occur in the 
range z < a;  over this range 

wa m, W 
dz 2L 6L  

(L  - a)z2 + - (2L' - 3aL + a * )  E I -  = -- 

This is zero when 

W 
2L 6L  

-- ( L  - a ) z 2  + 5 ( 2 ~ 3  - 3 a ~  + a 2 )  = o 

i.e. when 

1 
3 

(L  - a)z2 = -a (2LZ - 3aL + a*)  

or when 

z = 4- 

G- 
If this gives a root in the range z < a, then 

- (2L - a)  < a 

and 2L - a  < 3a, or a > %L. This is compatible with our earlier suppositions. Then, with a > %L, 
the greatest deflection occurs at the point 



320 Deflections of beams 

1 - 
z = [(a/3) (2L - a)I2 and has the value 

vmax = - w a  (2L - a) (L - a) 4- 
9LEI 

If a < %L, the greatest deflection occurs in the range z > a; in this case we replace a by (L - a), 
whence the greatest deflection occurs at the point 

z = ,/-,andhasthevalue 

v,, - - = 9LEI ( L 2  - q- 3 
13.11 Beam with end couples and distributed load 

Suppose the ends of the beam CD, Figure 13.16, rest on knife-edges, and carry couples M, and MP 
If, in addition, the beam carries a uniformly distributed lateral load w per unit length, the bending 
moment a distance z from C is 

Mc z 1  M = - ( L - z ) + M , - + - w z ( L - z )  
L L 2  

The equation of the deflection curve is then given by 

d2v - Mc z 1  

d Z 2  L L 2  
Ef - - -- ( L  - Z )  - MD - - - wz ( L  - Z) 

Then 

E I -  * - -  - % ( L z  - T z 2 )  1 
- ?(:) MD - ? w ( $  1 - $) + A  dZ L 

Figure 13.16 Simply-supported beam carrying a uniformly suuuorted load. 
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and 

(13.56) 

If the ends of the beam remain at the same level, v = 0 for z = 0 and z = L. Then B = 0 and 

Then 

+ Z  
24 

+ 

The slopes at the ends are 

= - L ( 8 4 .  + 4MD + wL2) ( z)z=o 24EI 

= -- L ( 4 4  + 8MD + wL2) 
24EI 

Suppose that the end D of the beam now slnks an amount 6 downwards relative to C. Then at v =L 
we have v = 6, instead of v = 0. In equation (13.56), A is then given by 

1 1 1 
3 6 24 

AL = E16 + -M&’ + -Md2 + -wL4 

For the slopes at the ends we have 

L 6 
= - (8M, + 4MD + wL2) + - (s)z=o 24EI L 

6 
24EI L 

(4Mc + 8M, + wL2) + - L - -- 

(13.57) 
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13.12 Beams with non-uniformly distributed load 

When a beam carries a load which is not uniformly distributed the methods of the previous articles 
can still be employed if M and JMdz are both integrable functions of z, for we have in all cases 

d2v 
dz' 

-EI - = M 

which can be written in the form 

"(") = -- M 
d z d z  EI 

If I is uniform along the beam the first integral of this is 

m, - = A - ' [ M &  EI (13.58) G5 

where A is a constant. The second integral is 

1 
E/ 

v = AZ + B - - [[Mdzdz (13.59) 

If M and J M  dz are integrable function of z the process of finding v can be continued analytically, 
the constants A and B being found from the terminal conditions. Failing this the integrations must 
be performed graphically or numerically. This is most readily done by plotting the bending- 
moment curve, and from that deducing a curve of areas representing J M  dz. From this curve a 
third is deduced representing J J M  dz dz. 

Problem 13.6 A uniform, simply-supported beam carries a distributed lateral load varying in 
intensity from w, at one end to 2w0 at the other. Calculate the greatest lateral 
deflection in the beam. 

Solution 

The vertical reactions at 0 and A are (213) wJ and (516) wJ. The bending moment at any section 
a distance z from 0 is then 
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2 1 W G 3  M = -w,Lz - T W G ~  - - 
3 6L 

Then 

On integrating once, 

where C, is a constant. On integrating further, * + c,z + c2 w&3 W#4 
EIv = -IT - - -  

24 120L 

where C, is a further constant. If v = 0 at z = L, we have 

11 
180 

C, = --w,,L3 and C, = 0 

Then 

11 W , L Z ~  wG4 wG5 
EIv = - w&’z - - - - + - 

180 9 24 120L 

The greatest deflection occurs at dv/dz = 0, i.e. when 

W,LZ* W G 3  W#4 - - 11 w * L 3 - - + - + -  - 

180 3 6 24L 

or when 

+ 60(;)3 - 120(;)2 + 22 = 

The relevant root of this equation is z/L =OS06 which gives the point of maximum deflection neai 
to the mid-length. The maximum deflection is 
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7.03 w, L4 wo L4 v,, i --- - 0.0195- 
360 EI EI 

This is negligibly different from the deflection at mid-span, which is 
5w0L4 

(VIz = L / 2  = - 
256EI 

13.13 Cantilever with irregular loading 

In Figure 13.17(i) a cantilever is free at D and built-in to a rigid wall at C. The bending moment 
curve is DM of Figure 13.17(ii); the bending moments are assumed to be hogging, and are 
therefore negative. The curve CH represents JtM dz, and its ordinates are drawn downwards 
because M is negative. The curve CG is then constructed from CH by finding 

1 [Mi&& 
Inequation(l3.51),theconstantsAandBarebothzeroas v = Oanddvldz = Oatz = 0. Then 
CD is the base line for both curves. 

Figure 13.17 Cantilever carrying any system of lateral loads. 

13.14 Beams of varying section 

When the second moment of area of a beam varies from one section to another, equations (1 3.58) 
and (13.59) take the forms 

- -  dV - A - L J ?  
dz E 
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and 

v = A z + B - -  1 r,+ 
E 

The general method of procedure follows the same lines as before. If (M/I) and J(M/l)dz are 
integrable functions of z, then (dv/dz) and v may be evaluated analytically; otherwise graphical or 
numerical methods must be employed, when a curve of (M/I) must be taken as the starting point 
instead of a curve of M. 

Problem 13.7 A cantilever strip has a length L, a constant breadth b and thickness t varying 
in such a way that when the cantilever carries a lateral end load W, the centre 
line of the strip is bent into a circular arc. Find the form of variation of the 
thckness t. 

Solution 

The second moment of area, I, at any section is 

1 
12 

I = -bt3 

The bending moment at any section is (- Wz), so that 

d2v 

dz2 
El- = WZ 

Then 

d2v - wz - - -  
rL2 E l  

If the cantilever is bent into a circular arc, then d*v/dZ' is constant, and we must have 
wz 
EI 
- -  - constant 
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This requires that 

Z - -  - constant 
I 

or I " 2  

Thus, 
1 - bt' ot z 

12 

1 
or t " z3 

Any variation of the form 
1 

t = to ($7 

where to is the thickness at the built-in end will lead to bending in the form of a circular arc. 

Problem 13.8 The curve M ,  below, represents the bending moment at any section of a timber 
cantilever of variable bending stiffness. The second moments of area are given 
in the table below. Taking E = 11 GN/m2, deduce the deflection curve. 

z(frornsupportedend)(rn) 0 0.1 0.2 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.7 
I (m') 50.8 27.4 17.4 12.25 5.65 3.23 1.69 0.783 0.278 0.074 0.0298 0 x 1 0 ~ 4  
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Solution 

The first step is to calculate M/I at each section and to plot the M/I curve. We next plot the area 
under this curve at any section to give the curve 

I 

From this, the curve 

is plotted to give the deflected form 

The maximum deflection at the free end of the cantilever is 

300 lo6 = 0.0272 m 1 v = - (300 x lo6) = 
E 11 x 109 

13.1 5 Non-uniformly distributed load and terminal couples; 
the method of moment-areas 

Consider a simply-supported beam carrying end moments M, and M,, as in Figure 13.16, and a 
distributed load of varying intensity w. Suppose M, is the bending moment at any section due to 
the load w acting alone on the beam. Then 

MD ( L  - z )  + - 2  
Mc M = M o + -  
L L 

The differential equation for the deflection curve is 

The integral between the limits z = 0 and z = L is 

(13.60) 

(13.61) 
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Again, on multiplying equation ( 13.60) by z,  we have 

But 

(13.62) 

Thus, on integrating equation (13.62), 

(13.63) 

But if v = 0 when z = 0 and z =L, then equation (13.63) becomes 

Then 

MDL M c L  1 
Mozdz 

: = L  3EI 6EI EIL 
(13.64) 

On substituting this value of (dddz),  into equation (13.61), 

M,L 1 L 1 L  
M c L  - - - -I Mozdz - -1 M0z& (13.65) (2) :=0 = 6EI El o EIL o 

the integral J: Mo dz is the area of the bending moment curve due to the load w alone; M, zdz 
is the moment of h s  area about the end z = 0 of the beam. If A is the area of the bending moment 
diagram due to the lateral loads only, and z is the distance of its centroid from z = 0, then 

A = [Modz ,  z - = L f M o z d z  
A 

and equations (13.64) and (13.65) may be written 
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(13.66) 

(13.67) 

The method of analysis, malung use of A and Z, is known as the method of moment-areas; it can 
be extended to deal with most problems of beam deflections. 

When the section of the beam is not constant, equation ( 13.60) becomes 

The slopes at the ends of the beam are then given by 

and 

It is necessary to plot five curves of (Mdl), (l/l), (do, (;/l), (M,@) and to find their areas. 
As an example of the use of equations (13.66) and (13.67), consider the beam of Figure 

13.18(i), which carries end couples, Mc and MD, and a concentrated load Wat a distance a from C. 
The bending moment diagram for W acting alone is the triangle CBD, Figure 13.18(ii). The 

area of this triangle is 

w a  A = -L - ( L  - a )  = - ( L  - a )  
2 ' (7) 2 

To evaluate its first moment about C, divide the triangle into two right-angled triangles, having 
centroids at G, and G,, respectively. Then 
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1 wu 
2 

1 

- 
Az = --a [ - L (L  - .I] $ + + [L - u]  [F (L - 41 [; (L + zul] 

= - wu ( L z  - 2). 
6 

Figure 13.18 Moment-area solution of a beam carrying end couples 
and a concentrated load. 

Then equations (13.66) and (13.67) give 

M& MDL wu - + - + - (a2  - 3aL + 2L2) = (3 = 0 3EI 6EI 6EIL 

H=,, - 6EI 3EI 6EIL 
M 4  - ML4 - wu - -  - - -(L? - U Z )  

Problem 13.9 Determine the deflection of the free end of the stepped cantilever shown in 
Figure 13.19(a). 

Solution 
The bending moment diagram is shown in Figure 13.19(b) and the M/I diagram 
is shown in Figure 13.19(c). 
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Figure 13.19 Stepped cantilever. 

From equation (13.61) 

E1 z - - v = - moment of area of the bending moment diagram ( 2  1: 
1 
E 

L 
or [ z 5 - V) = -- x moment of area of the MII diagram 

0 

Consider the moment of area of MI1 about the point A ,  because we know that 

m, - and v = 0 at the point B 
dz 

:. [. d, dv - .] - b x - dv - .A] 

z = L  dz z = o  

- - - x - x - x - + - x - x - + - x - x  L 2 L WL L 3 L  WL L ($+$.$)I 
- E 2 1  1 I" 4 3 2 61 2 4 61 4 
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or 

o+v, = w.'[L+L+L.(;+;)] E1 24 16 24 

- &[L+-+- 
EI 24 16 1 144 5 ,  

- 

5WL3 
V A  = - 

36EI 

Problem 13.10 Determine the deflection of the free end of the varying depth cantilever shown 
in Figure 13.20(a) 

(c)Mil qramx(Wn) 

Figure 13.20 Varying depth cantilever. 

Solution 

Taking the moment of area of the M/I diagram about A ,  we eliminate v, and dv/dz at B, because 
they are both zero. Additionally, as the M/I diagram is numerical, we can use numerical 
integration, namely Simpsons rule, as shown in Table 13.1. 
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Table 13.1 Numerical intemation of the moment of M/I about A 

13.1 6 Deflections of beams due to shear 

Ordinate 

1 
2 
3 
4 
5 

In our simple theory of bending of beams, we assumed that plane sections remain plane during 
bendmg. The effect of shearing forces in a beam is to distort plane cross-sections into c w e d  
planes. In the cantilever of Figure 13.2 1 ,  the cross-section DH warps as the force F is applied, due 
to the shearing strains in the fibres of the beam. We assume that the shearing stresses set up by F 
are distributed in the manner already discussed in Chapter 10. This is not true strictly, because 
shearing distortions no longer allow sections to remain plane; however, we assume these shearing 
effects are secondary, and we are justified therefore in estimating them on our original theory. 

Figure 13.21 Shearing distortions in a 
cantilever. 

Mn 

0 
0.208 WWI 
0.25 WL/I 
0.25 WWI 
0.2 WWI 

Figure 13.22 Shearing deflection at the 
neutral axis of a beam. 

Z 

z 

0 
W4  
W 2  
3L/4 

L 

1.41w~'fl 

From Table 13.1, 

ZIMZ 

0 
0.052 WL'/I 
0.125WL2/I 
0.188WLZ/I 
0.2 wP/z  

SM 

1 
4 
2 
4 
1 

f(zMX!-) 

0 
0.208 wL2/I 
0.25 WP/I  
0.752 WL'/I 
0.2 WL'/I 
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Suppose the shearing stress at the neutral axis of the beam is T ~ ” ,  then the shearing strain at the 
neutral axis is 

T~~ 

G 
YN, = - (13.68) 

where G is the shearing modulus. The additional deflection arising from shearing of the cross- 
section is then 

sz TN.4 

G 
6vs = yNA sz = - 

Then 

For a cantilever of thin rectangular cross-section, Section 10.2, 

3F 
T~~ = - 2ht 

where h is the depth of the cross-section, and t is the thickness. Then 

*s - 3F - - -  
a5 2Ght 

Then 

vs = - 3Fz + A  
2Ght 

At z = 0, there is no shearing deflection, so A = 0. At the end z = L, 

3 FL 
2Ght 

(VJr.  = - 

The bending deflection at the free end, z = L, is 

FL3 - 4FL 
3 E1 Eh 3t 

(v),* = - - - 

(13.69) 

(13.70) 

(13.71) 

(13.72) 

(13.73) 



Deflections of beams due to shear 

Then the total end deflection is 

335 

4FL3 3FL 
VL = -i- Eh3t 2Ght 

(13.74) 

For most materials (3EBG) is of order unity, so the contribution of the shear to the total deflection 
is equal approximately to (h/L)’. Clearly, the shearing deflection is important only for deep beams. 

Table 13.2 provides a summary of the maximum bending moments and lateral deflections for 
some statically determinate beams. 

Problem 13.1 1 A 1.5 m length of the beam of Problem 1 1.2 is simply-supported at each end, 
and carries concentrated lateral load of 10 kN at the mid-span. Compare the 
central deflections due to bending and shearing. 

Solution 

From Problem 11.2, the second moment of area of the equivalent steel I-beam is 12.1 x 
The central deflection due to bending is, therefore, 

m4. 

wz3 - (10 x lo3) (1.5)3 = 0.290 x m ‘ B = - -  48Es 1, 48 (200 x 10’) (12.1 x 

The average shearing stress in the timber is 

lo’ = 0.445 MN/m2 
(0.15) (0.075) 

If the shearing modulus for timber is 

4 x lo9 N/m2 

the shearing strain in the timber is 
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The resulting central deflection due to shearing is 

v, = y x 0.75 = (0.111 x lO-3 )  (0.75) = 0.0833 x l O - 3  m 

Table 13.2 Bendine moment and deflections for some simple beams 

Thus, the shearing deflection is nearly 30% of the bending deflection. The estimated total central 
deflection is 

v = vB + vs = 0.373 x l O - 3  m 
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Further problems (answers on page 693) 

13.12 A straight girder of uniform section and length L rests on supports at the ends, and is 
propped up by a third support in the middle. The weight of the girder and its load is w 
per unit length. If the central support does not yield, prove that it takes a load equal to 
(5/8)wL. 

A horizontal steel girder of uniform section, 15 m long, is supported at its extremities 
and carries loads of 120 kN and 80 kN concentrated at points 3 m and 5 m from the two 
ends, respectively. I for the section of the girder is 1.67 x l O - 3  m' and E = 200 GN/m2. 
Calculate the deflections of the girder at points under the two loads. (Cambridge) 

A wooden mast, with a uniform diameter of 30 cm, is built into a concrete block, and is 
subjected to a horizontal pull at point 10 m from the ground. The wire guy A is to be 
adjusted so that it becomes taut and begins to take part of the load when the mast is 
loaded to a maximum stress of 7 MN/m2. 

Estimate the slack in the guy when the mast is unloaded. Take E for timber = 10 GN/m*. 
(Cam bridge) 

13.1 3 

13.14 

13.1 5 A bridge across a river has a span 21, and is constructed with beams resting on the banks 
and supported at the middle on a pontoon. When the bridge is unloaded the three 
supports are all at the same level, and the pontoon is such that the vertical displacement 
is equal to the load on it multiplied by a constant 2.. Show that the load on the pontoon, 
due to a concentrated load W, placed one-quarter of the way along the bridge, is given 
by 

11w 
6EIA 

, , ( I  + F )  

where I is the second moment of area of the section of the beams. (Cambridge) 
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13.1 6 Two equal steel beams are built-in at one end and connected by a steel rod as shown. 
Show that the pull in the tie rod is 

5 W l 3  

32 (3 + I)) 
P =  

where d is the diameter of the rod, and 1 is the second moment of area of the section of 
each beam about its neutral axis. (Cambridge) 
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