
17 Energy methods 

17.1 Introduction 

Energy methods are very useful for analysing structures, especially for those that are statically 
indeterminate. This chapter introduces the principle of virtual work and applies it to statically 
determinate and statically indeterminate frameworks. The chapter also shows how the method can 
be used for the plastic design of beams and rigid-jointed plane frames. 

The chapter then introduces strain energy and complementary strain energy, and through the 
use of worked examples, shows how these methods can be used for analysing structures. 

In Chapters 24 and 25, energy methods are used for developing the finite element method, 
which is one of the most powerful methods for analysing massive and complex structures with the 
aid of digital computers. 

17.2 Principle of virtual work 

In its simplest form the principle of virtual work is that 

For a system of forces acting on a particle, the particle is in statical equilibrium i f ;  
when it is given any virtual displacement, the net work done by the forces is zero. 

A virtual displacement is any arbitrary displacement of the particle. In the virtual displacement the 
forces are assumed to remain constant and parallel to their original lines of actions. Consider a 
particle under the action of three forces, F,, F2 and F,, Figure 17.1. 

Figure 17.1 System of forces in statical equilibrium acting on a particle. 

Imagine the particle to be given a virtual displacement of any magnitude in any direction. 
Suppose the displacements of the particle along the lines of action of the forces F , ,  F, and F,, are 
6,,  6, and 6,, respectively; these are known as corresponding displacements. Then the forces form 
a system in statical equilibrium if 
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F , 6 ,  + F,6, + F363 = 0 (17.1) 

On the basis of the principle of virtual work we can show that the resultant of the forces acting on 
a particle in statical equilibrium is zero. Suppose the forces F,,  F, and F,, acting on the particle 
of Figure 17.1, have a resultant of magnitude R in some direction; then by giving the particle a 
suitable virtual displacement, A, say, in the direction of R, the net work is 

R A  

But by the principle of virtual work the net work is zero, so that 

R A  = 0 (17.2) 

As A can be non-zero, R must be zero. Hence, by adopting the principle of virtual work as a basic 
concept, we can show that the resultant of a system of forces in statical equilibrium is zero. 

17.3 Deflections of beams 

In a pin-jointed frame subjected to loads applied to the joints only the tensile load in any member 
is constant throughout the length of that member. In the case of a beam under lateral loads the 
bending moments and shearing forces may vary from one section to another, so that the state of 
stress is not uniform along the length of the beam. In applying the principle of virtual work to 
problems of beams we must consider the loading actions on the virtual displacement of an 
elemental length of the beam. 

Figure 17.2 Deflections of a straight beam. 

Consider a straight beam AB, Figure 17.2, which is in statical equilibrium under the action of 
a system of external forces and couples. The beam is divided into a number of short lengths; the 
loading actions on a short length such as 6z consist of bending moments M and ( M  + JM), an 
external lateral load W, and lateral shearing forces at the ends of the short length. Now suppose 
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the short lengths of the beam are given small virtual displacements, 8. If the elements remain 
connected to each other, then for given values of 8 the external forces, such as W, suffer certain 
displacements, such as 6. Then the values of 8 and 6 form a compatible system of rotations and 
displacements, and the virtual work of any system of forces and couples in statical in equilibrium 
on these rotations and displacements is zero. Then 

y 6 M x 0 + y W x 6  = 0 (17.3) 

because the net work of the internal shearing forces is zero. The summation Z6M x 8 is carried out 
for all short lengths of the beam, whereas the summation 2 W x 6 is carried out for all external 
loads, including couples and force reactions at points of support. If the virtual rotations 8 are 
small, the virtual displacements 6 can be found easily. If the lengths 6z of the beam are 
infinitesimally small, 

(1 7.4) 

where the integration is carried out over the whole length L of the beam. But 

z = L  0dM = [MB - , M d B I = L  I, = o  = o  

Now 

and is the work of the end couples on their respective virtual displacements; t h ~ s  work has already 
been taken account of in the summation ZW x 6, so that equation (17.3) becomes 

(17.5) 

Now (de/dz) is the curvature of the beam when it is given the virtual rotations and displacements. 
If we put 

d e -  1 
dz R 
- - -  

where R is the radius of curvature of the beam, then 

(1 7.6) 

(17.7) 

As an example of the application of equation (17.7), consider the cantilever shown in Figure 17.3; 
having a uniform flexural stiffness EI. The cantilever carries a vertical load W at the free end; the 
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bending moment at any section due to W is Wz, so that, if the beam remains elastic, the 
corresponding curvature at any section is 

1 -  wz - - -  
R E l  

Suppose the corresponding deflection of W is 6, Figure 17.3; then the values of 1lR and 6 form a 
system of compatible curvature and displacements. 

Figure 17.3 Deflections of a cantilever with an end load. 

We derive a simple system of forces and couples in statical equilibrium by applying a unit vertical 
load at the end of the cantilever; the bending moment at any section due to this unit load is 

M = l x z  = z 

Then, from equation (17.7), 

1 x 6 = pfp)& = JoL SdZ 

Then 

WL 3 6 = -  
3EI 

Problem 17.1 A simply-supported beam, ofuniform flexural stiffness EI, carries a lateral load 
W at a distance u from the end A. Estimate the vertical deflection of W. 
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Solution 

The bending moment a distance zI from A ,  for the section AB, is 

Wbz I 

L 
- 

The curvature for AB if therefore 

Wbz 1 1 -  
Rl EIL 
- - -  

Similarly, the curvature at any section in BC is 

1 -  Waz, 

R2 EIL 
- - -  

Now consider the beam with a unit vertical load at B;  the bending moments at sections in AB and 
BC are, respectively, 

azz M2 = - bZl MI = -, 
L L 

Then, equation ( 1  7.7) gives 

6 = lo0 MI[ $) 4 + /b” 41 i ) h 2  
u Wb2 2 h W a 2  2 

Z l  4 + s, --&2 k2 
= l o  ZF 
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Therefore 

Wa ’b2  & = -  Wa2b2 (a + b) = - 
3 EIL 2 3 EIL 

Problem 17.2 A cantilever of uniform flexural stiffness EI carries a uniformly-distributed 
load of intensity w. Estimate the vertical deflection of the free end. 

Solution 

Due to the distribution load, the curvature at any section is 
2 1 wz 

R 2 E I  
- - -  - 

For a unit vertical load at the free end, the bending moment at any section is 

M = z  

Then equation (1 7.7) gives 

s = I” M(+) dz = I’ gdz 
Then 

W L  4 & = -  
8 E/ 

Problem 17.3 A semicircular thin ring has a radius r and uniform flexural stiffness EI. The 
ring carries equal and opposite loads W at the ends. Find the increase in 
distance between the loaded points. 
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Solution 

The bendmg moment at any angular position 8 is 

M = Wr sin0 

If the ring is thin, the change of curvature at any section is 

1 -  M - - -  
R EI 

Now consider the virtual work of the forces and couples on their resulting displacements; if 6 is 
the increase in distance between the loaded points 

w x 6 = j-@@==ox 4;) dr = /or $de = - W2r3  l o x  sin2ede 
EI 

Then 

6 = -  n w r 3  
2EI 

17.4 Statically indeterminate beam problems 

The principle of virtual work may also be used in solving statically indeterminate beam problems. 
Consider, for example, the beam of Figure 17.4, which is built-in at A and supported on a roller at 
B; the beam is of uniform flexural stiffness EI, and canies a uniformly distributed lateral load 

Figure 17.4 Propped cantilever under uniform lateral loading. 
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of intensity w. Suppose the statically indeterminate reaction at B is W, then the bending moment 
at any section is 

1 
2 
- wz2 - wz 

and if the beam remains elastic the resulting curvature at an any section is 

R 

The bending moment at any section due to a unit lateral load at B is 

M = z  

Then, for no deflection at B in Figure 17.4, 

Then 

Thus 

17.5 Plastic bending of mild-steel beams 

The principle of virtual work is not limited in its application to linear problems of the type 
discussed in the preceding problems. It is useful, for example, in solving problems of plastic 
bending; the uniform mild-steel beam of Figure 17.5 has a fully-plastic moment Mp. At collapse 
of the beam, plastic hmges develop at A and B.  Suppose the point B is now given a virtual 
displacement 6; if 6 is small, AB rotates through an angle @/a),  and BC through an angle [6/(L - 
a)]. The work ofthe system of forces and couples of Figure 17.5(ii) on the virtual displacements 
and rotations of Figure 17.5(iii) is zero. Then 

w6 = 26 + -1 6 
iL - a) 
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Figure 17.5 Plastic bending of a mild-steel beam. 

Then 

MJ2L - a)  

u(L - a) 
w =  

This is the value of W at plastic collapse of the beam. 

Problem 17.4 A uniform mild-steel beam has a fully-plastic moment Mp. Find the intensity 
of uniformly distributed loading at collapse of the beam. 
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Solution 

Suppose that, at plastic collapse, hinges develop at the built-in end, and at a distance a from that 
end. Then 

1 1 26 6 -wa6 + -w ( L  - a)6 = M, - + - 
2 2 [. ( L - o ) l  

Thus, 

( 2  - ;) Mp 

(;) ( 1  - ;) L 2  

- w =  

Tlus is a minimum with respect to ( d L )  when 

a =  ( 2 - 4 3  
L 

Then the relevant value of w is 

w = - ( 3 + 2 J z )  2MP 
L 2  

An alternative method of solving the above beam problem is to consider rotations of the hinges, 
as shown in the figure below 

6 = e a  = a ( L  - a )  
(17.8) 

:. a = e . a/(L - a) 
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p = a + e  = e u / ( L - u ) + ~  

= e U/(L - U )  + e (L - (L - 

= e (a + L  - u ) / ( ~  

p = e L/(L - U) 

Now work done by the hinges 

= M~ e + M p  p 

= M,, e + M ,  e L / ( L  - a )  

= M~ e ( L - U ) / ( L - U ) + M ,  e L l ( L - a )  

= Mpe (L - u + L )  I (L - U) 

Mpe ( 2 ~  - U )  (L - U) 

Work done by the load 'w' 

x L x 612 = w~ e u/2 

Equating(17.10)and(l7.11) 

M~ e ( 2 ~  - U)  (L - U) = d e  d 2  

2L (2 - u/L) Mp 

U L Z  ( 1  - u/L) 

Dividing the top and bottom by L, we get 

2 (2  - u/L) Mp 
w =  

L Z  (;) (1 - d L )  

(17.9) 

(17.10) 

(17.11) 

(1 7.12) 

which is the same result as before. 
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17.6 Plastic design of frameworks 

For this case, let us make the following definitions: 

k = load or safety factor 

Mp = 

My = 

plastic moment of resistance of the cross-section of a member of the framework 

the elastic moment of resistance of the cross-section of a member of the 
framework at first yield 

S = shape factor = MdMy 

oy = yield stress 

Problem 17.5 Obtain a suitable sectional modulus for the portal frame below, given that: 

k = 2.7 

S = 1.15 

o y =  300MPa 

Solution 

Experiments have shown4 that thls framework can fail by any of the following modes: 

(a) beam mechanism 
(b) sway mechanism 
(c) combined beam and sway mechanism. 

4Baker I F - A  Review ofRecent Investigations into the Behaviour ofSteel Frames in the Plastic Range, JICE, 31. 188. 1949, 
and Baker J F, Home M R and Heyman J - The Steel Skeleton, Cambridge University Press, 1956. 
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(a) Beam mechanism 

This mode of failure, which was dscussed in the previous section, is shown below. Applying the 
principle of virtual work to do this failure mechanism, we get work done by the plastic hinges 
when rotating = work done by the 10 kN load 

or M p 0 + 2 M p  x 2 0 + M P 0  = 10 x 20 

6Mp = 200 

MP - - 3.33 kNm 

(b) Sway mechanism 

This mode of failure is shown below. Applying the principle of virtual work to this failure 
mechanism, we get 

M, (e + e  + 0 + e )  = 5 x 30 

or 4Mp = 15 

- - 3.75 kNm MP 
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(c) Combined mechanism 

Thls mode of failure is shown below. 

From the principle of virtual work, 

Mpe + 2 ~ ,  x 2e + M,, x 2e + Mpe = IO x 2e + 5 x 3e 

or 8Mp = 35 

M p  = 4.375 kNm 

The designM, is obtained from the largest of these values, as this is the value of M p  which will just 
prevent failure. 

:. design Mp = 4.375 x 1 = 4.375 x 2.7 

design M p  = 11.81 KNm 

MP 

MY 
NOW - = S 

M ,  11.81 
(’, M ,  = - - - - - - 10.27 kNm 

S 1.15 

MY 2 = sectionalmodulus = - 
O Y  

10.27 x lo3 

300 x lo6 
- - 

z = 3 x io-’ m3 (verticals) 

Z = 6 x lo-’ m3 (horizontal beam) 
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Problem 17.6 Determine a suitable sectional modulus for the portal frame below, assuming 
that the frame has two mechanical hinges at its base, and that the following 
apply: 

h = 2.7 

S = 1.15 

Q = 300MPa 

Solution 

The beam mechanism is shown below 

For this case 

- M, e + 2 ~ ,  x 2 e  + ~ , e  - 2.5 x 4 x 2812 

or 6Mp = 10 

MP = 1.67 m m  

The sway mechanism is shown as follows, where it must be noted that the mechanical hinge does 
no work during failure. 
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For this case 

~ , ( e  + e)  = 5 x 38 

or 2Mp = 15 

Mp = 7.5 kNm 

The combined mechanism is shown below, where it can be seen that the sagging hinge on the beam 
does not necessarily occur at mid-span. 

For this case, 

2 M p P + M p ( a + e )  = 2.5 x 4 x  ( - 2;x) e+5  x 38 

= 5 ( 2  + x)e+m (17.13) 

but 
( 2 + ~ )  e = ( 2 - ~ ) a  

:. a = - (17.14) (:::)e 

p = a + 8 =  (::;)+e - 
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2 + x + 2 - x  
= ( 2-x  1 

(17.15) 

Substituting equations (1 7.14) and (1 7.15) into equation (1 7.13), we get 

2 x M p x -  +M,,(=) + M p  = 5(2 + X )  + 15 
(2 - X) 2 - x  

(2 - X) or M p  = [5(2 + X) + 151 - 
12 

= -(lo 1 + 5X + 15)(2 - X) 
12 

= -(25 1 + 5X)(2 - XI 
12 

1 -(SO - 25X + 1OX - 5X’) 
12 

1 
12 

= 

or M p  = - (50 - 15X - 5X2)  (17.16) 

For maximum 

:. - -  dMp - -15 - IOX 
dx 

(17.17) 

or X = -1.5 m 
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Substituting equation (1 7.17) into equation (17.16) 

1 
12 

Mp = - (50 + 22.5 - 11.25) 

M p  = 5.1 kNm 

Design Mp = 2.7 x 5.1 

= 13.77 kNm 

M y = - -  13'77 - 11.97 kNm 
1.15 

11.97 x lo3 
300 x lo6 

z =  

Z = 8 x lO-5 m 3  (horizontal beam) 

The method will now be applied to two-storey and two-bay frameworks. 

Problem 17.1 7 Determine a suitable sectional modulus for the two storey framework below, 
given that 

h = 3 , S = 1.16 , oY = 316 MPa 

Solution 

The possible mechanisms are as follows: 
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(d) Combined mechanisms (3 types) 
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Top beam mechanism 

Mp(0+20+0)  = 8 x 3 0  

4Mp = 24 

Mp = 6kNm 

Bottom beam mechanism 

Mp(0+20+0)  = 9 ~ 3 0  

4Mp = 27 

Mp = 6.75kNm 

Top sway mechanism 

M p ( O + O + O + O )  = 7 x 4 8  

Mp = 7kNm 

Bottom sway mechanism 

~ , ( e + e + e + e )  = 7 x 5 8  

Mp = 8.75kNm 

Top and bottom sway mechanisms 

MPx 60 = 7 ~ 9 0  

M p  = 10.5kNm 

Combined top mechanism 

~ , ( 0 + 0 + 2 0 + 2 0 + 0 + e )  = 8 ~ 3 e + 7 ~ 9 0  

8Mp = 87 

Mp = 10.88kNm 

409 
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(a, Combined bottom mechanism 

~ , ( e + e + 2 e + e + 2 e + e )  = 9 ~ 3 e + 7 ~ 9 e  

or 8Mp = 90 

M p  = 11.25kNm 

(h) Combined top and bottom mechanisms 

~ , ( e + 2 e + 2 e + 2 e + m + 2 e )  = 8 ~ 3 e + 9 ~ 3 e + 7 ~ 9 e  

or lOM, = 114 

Mp = 11.4kNm 

Design Mp = 11.4 x 3 = 34.2 kNm 
34.2 My = - = 29.48kNm 
1.1 6 
29.48 x lo3 
316 x lo6 

z =  = 9 x 1 0 - ~  m3 

Problem 17.18 Determine suitable sectional moduli for the two-bay framework below, given 
that 

A = 3 S = 1.15 oY = 316 MPa 
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Solution 

The various possible mechanisms are given below: 

,wP (e + 48 + 28) = 50 x 38 
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7Mp = 150 

Mp = 21.4kNm 

Right beam 

M~ (38 + 6e + e) = 60 x 38 

10Mp = 180 

Mp = 18kNm 

or 

MPx68 = 70x58 

6Mp = ‘350 

Mp = 58.3kNm 

Combined ( I )  

M~ (e + 4e + 20 + e + e  + e  +e) = 70 x 5e + 50 x 3e 

llMf = 500 

Mp = 45.5kNm 

(e) Combined (2) 

M~ (e + e + 2e + e + + 2e + e) 

= 7 0 ~ 5 e + 6 0 ~ 3 e  

or 14Mp = 530 

Mp = 37.86kNm 

fl Combined (3) 

M~ (e + 4e + 4e + e  + 6e + 2e +e) 

= 7 0 ~ 5 e + 5 0 ~ 3 e + 6 0 ~ 3 e  

19Mp = 680 

Mp = 35.8kNm 
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Design Mp = 58.3 x 3 = 174.9 kNm 

174.9 - 
1.15 

My = - - 152.1 kNm 

z =  15*" x lo3 = 4.8 x lO-4 m 3  (verticals) 
316 x lo6 

Z = 9.6 x lO-4 m 3  (left beam) 

Z = 1.44 lO-3 m3  (right beam) 

17.7 Complementary energy 

The principle of virtual work leads also to a concept of wider application in stress-strain analysis 
than that of strain energy; this other property of a structure is known as complementary energy. 

Consider the statically determinate pin-jointed frame shown in Figure 17.6; the frame is pinned 
to a rigid foundation at A and B, and carries external loads W, and W, at joints C and D, 
respectively. Suppose the corresponding displacements of the joints C and D are S I ,  and 6,, 
respectively; the tensile force induced in a typical member, such as BC, is P, and its resulting 
extension is e. The forces W,, W ,  P etc. are a system of forces in statical equilibrium, whereas 
the extensions, e, etc., are compatible with the displacements 6, and 6, of the joints. Thus by the 
principle of virtual work 

(17.18) w,S ,  + w,S, = C Pe 
m 

where the summation is carried out for all member of the frame. 

Fig. 17.6 Statically determinate plane frame under any system of external load. 

Now suppose the external load W, is increased in magnitude by a small amount 6 W ,  , the external 
load W, remaining unchanged; due to change in W, small changes occur in the forces in the 
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members of the frame P ,  for example, increasing to ( P  + SP). Now consider the virtual work of 
the modified system of forces on the original set of displacements and extensions; we have 

( w ~  + 6 ~ , ) 6 ,  + W,S, = C (P + 6P)e 
m 

where the summation is carried out for all members of the frame. Now suppose the external load 
W, is increased in magnitude by a small amount 6 W,, the external load W, remaining unchanged; 
due to change in W, small changes occur in the forces in the members of the frame, P,  for example, 
increasing to ( P  + SP). 

Now consider the virtual work of the modified system of forces on the original set of 
displacement and extensions; we have 

( w ~  + 6 ~ , ) 6 ,  + W,S, = C (P + 6P)e (17.19) 
m 

On subtracting equations (17.18) and (17.19), we have 

(17.20) 6 ,  x 6 ~ ,  = C e6P 
m 

The quantity eSP for a member is the shaded elemental area shown on the load-extension diagram 
of Figure 17.7, this is an element of the area C shown in Figure 17.8. 

Figure 17.7 Increment of Complementary Figure 17.8 Strain energy and complementary 
energy of a single member. energy of a single member. 

When a bar is extended the work done on the bar is the area below the P-e curve of Figure 17.7, 
for a conservative structural member this work is stored as strain energy, which we have already 
referred to as U. We define the area above the P-e curve of Figure 17.7 as the cornplementaiy 
energy, C, of the member; we have that 

U + C  = Pe (17.21) 
and 
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6C = e6P (17.22) 

In equation (1 7.18) we may write, therefore, 

6 ,  x SW, = 6C (17.23) 

where Cis the complementary energy of all members of the frame. If 6 W,  is infinitesimally small 

ac 
awl 

(17.24) - -  - 4 

Then the partial derivative of the complementary energy function C with respect to the external 
load W, gives the corresponding displacement 6 ,  of that load. 

17.8 Complementary energy in problems of bending 

The complementary energy method may be used to considerable advantage in the solution of 
problems of bending of straight and thin curved beams. In general we suppose that the 
moment-curvature relationshp for an element of a beam is of the form shown in Figure 17.9. The 
complementary energy of bending of an elemental length 6s due to a bending moment M is 

/OM (:) dM ., 

Figure 17.9 Complementary energy of bending of the element of a beam. 

For a linear-elastic beam of flexural stiffness El 

1 -  M - _ -  
R E l  

and so the complementary energy is 

M M  M26s Jb -ddMGs = - 
E l  2 E l  

(17.25) 
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For a length L of the beam, the complementary energy is therefore 

c = /,‘E% (17.26) 
2EI 

As in the case of pin-jointed frames, the partial derivative of C with respect to any external load 
is the corresponding displacement of that load. For statically indeterminate beams, the partial 
derivative of the complementary energy with respect to a redundant force or couple is zero. 

Problem 17.9 Estimate the vertical displacement of the free end of the uniform cantilever 
chnum 

Solution 

The complementary energy of bending is 

L W2Z2& - W2L3 - - -  L M2rL c = l b % = L  2EI 6EI 

The corresponding displacement of W is 

& , = - - -  aC - WL 3 

aw 3EI 

Problem 17.1 0 A cantilever has a uniform flexural stiffness EZ. Estimate the vertical deflection 
at the free end if the cantilever carries a uniformly distributed lateral load of 
intensity w. 

Solution 

Introduce a vertical load W at the free end; the bending moment at any section is then 

1 
2 

M = -wz2 + wz 
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The complementary energy of bending is 
2 

c = 1 [ L  (Lwz2 + wz) dz 
2EI o 2 

The corresponding displacement of W is 

1 - [ + w z 2  1 + wz zdz 6, = - ac - - 1 
aw EI o 2 

Now put W = 0; then 

6,  - 1 [ L  Lwz3& = - WL 4 

E I  o 2 8EI 

Problem 17.1 1 A cantilever of uniform flexural stiffness E I  carries a moment Mat the remote 
end. Estimate the angle of rotation at that end of the beam. 

Solution 

All sections of the beam carry the same bending moment M, so the complementary energy is 

L M2dz  - M2L “ = I o = - -  2EI 

The corresponding dsplacement of M is 

ML 
EI 

e, = - 

whch is the angle of rotation at the remote end. 
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Problem 17.12 Solve the problem discussed in Section 17.4, using complementary energy. 

Solution 

The bending moment at any section in t e r n  of w and the redundant force W is I/,& - Wz. Then 

c = IL 0 2  (LZ’ - WZ)’ & 
The property dCld W = 0 gives 

Then 

Problem 17.13 Solve Problem 17.3 using complementary energy. 

Solution 

The bending moment at any angular position 9 is 

M = Wrsin0 

Then 

x M 2  
= Io EIrd 

Thus 

= Lx Wr’sin’e - x Wr 
EI 2 El  

- -  

Problem 17.14 A thin circular ring of radius rand uniform flexural stiffness carries two radial 
loads W applied along a diameter. Estimate the maximum bending moment in 
the ring. 
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Solution 

By symmetry the loading action on a half-ring are %W and M,. The bending moment at any 
angular position 8 is 

1 
2 

M = M, - -Wrsin@ 

Then 

c = J,~(M, - T w r  sine - ' ) *  ;: 
But 

aciaM, = 0, SO that 

M,& = ?wr 1 in sine& 
!On 

Then 

M, = Wrlx  

17.9 The Raleigh-Ritz method 

This method is also known as the method of minimum potential, and in Chapters 24 and 25, it is 
used in the finite element method. 

In mathematical terms, it can be stated, as follows: 
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where 

x, = total potential = U, + WD 

U. = strainenergy 

WD = the potential of the load system 

W = load 

The method will be applied to problem 17.12 to determine an expression for 6,. 

Now 

M2 -dz = the bending strain energy of a beam 
'e = I , ,  

As 

M = Wz = bending moment at z ,  

1 u, = - (' W2Z2& 
2EI o 

or 

~ 2 1 3  u, = - 
6EI 

By inspection 

WD = potential of the load system 

= -w 6M, 
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Now, 

WI 3 - -  a5 - 0 = - -  

:. 6, = - W Z 3  as required 

hW aw 3 EI 

3 EI 

Further problems (answers on page 693) 

17.15 A thin semicircular bracket, AB,  of radius R is built-in at A ,  and has at B a rigid 
horizontal arm B C  of length R. the arm carries a vertical load W at C. Show that the 
vertical deflection at C is II WR3/2EI, where EI is the flexural rigidity of the strip, and 
determine the horizontal deflection. (Noffingham) 

17.1 6 A beam has a second moment of area of 21 over one-half of the span and I over the other 
half. Find the fured-end moments when a load of 100 kN is carried at the mid-length. 

17.1 7 A ring radius R and uniform cross-section hangs from a single support. Find the position 
and magnitude of the maximum bending moment due to its own weight. (London) 

An ‘S’ hook follows part of the outline of two equal circles of radius R that just touch. 
It embraces 5/6ths of one circle and 2/3rds of the other. If the ends are pulled apart by 
a force, P, by how much will they be moved if the hook has a constant rigidity El? 
(London) 

Using the plastic hinge theory determine a suitable sectional modulus for the rigid- 
jointed framework shown below. The following may be assumed to apply to the 
framework 

h = 4  oY = 300 MPa S = 1.15 

17.1 8 

17.19 
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17.20 A portal frame of uniform section is subjected to the loading above. Using the plastic 
hinge theory, determine a suitable section modulus for the frame, based on a load factor 
of 4, a shape factor of 1.15 and a yield stress of 275 MPa. (Portsmouth, Standard 1989) 

17.21 Using the plastic hinge theory, determine a suitable section modulus for the two bay 
rigid-jointed plane frame below. 

The following assumptions should be made:- 

load factor = 4 

shape factor = 1.15 

yieldstress = 275 MPa 
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(Portsmouth, Honours 1989) 


