
24 The finite element method 

24.1 Introduction 

In this chapter the finite element method proper" will be described with the aid of worked 
examples. 

The finite element method is based on the matrix displacement method described in Chapter 
23, but its description is separated from that chapter because it can be used for analysing much 
more complex structures, such as those varying from the legs of an integrated circuit to the legs 
of an offshore drilling rig, or from a gravity dam to a doubly curved shell roof. Additionally, the 
method can be used for problems in structural dynamics, fluid flow, heat transfer, acoustics, 
magnetostatics, electrostatics, medicine, weather forecasting, etc. 

The method is based on representing a complex shape by a series of simpler shapes, as shown 
in Figure 24.1, where the simpler shapes are called finite elements. 

Figure 24.1 Complex shape, represented by finite elements. 

Using the energy methods described in Chapter 17, the stiffness and other properties of the 
finite element can be obtained, and then by considering equilibrium and compatibility along the 
inter-element boundaries, the stiffness and other properties of the entire domain can be obtained. 

Turner M J, Clough R W, Martin H C and Topp L J, Stiffness and Deflection Analysis of Complex Structures, 
JAero. Sci, 23,805-23, 1956. 
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628 The finite element method 

This process leads to a large number of simultaneous equations, whch can readily be solved 
on a high-speed digital computer. It must be emphasised, however, that the finite element method 
is virtually useless without the aid of a computer, and this is the reason why the finite element 
method has been developed alongside the advances made with digital computers. Today, it is 
possible to solve massive problems on most computers, including microcomputers, laptop and 
notepad computers; and in the near future,it will be possible to use the finite element method with 
the aid of hand-held computers. 

Finite elements appear in many forms, from triangles and quadrilaterals for two-dimensional 
domains to tetrahedrons and bricks for three-dimensional domains, where, in general, the finite 
element is used as a ‘space’ filler. 

Each finite element is described by nodes, and the nodes are also used to describe the domain, 
as shown in Figure 24.1, where comer nodes have been used. 

If, however, mid-side nodes are used in addition to comer nodes, it is possible to develop 
curved finite elements, as shown in Figure 24.2, where it is also shown how ring nodes can be used 
for axisymmetric structures, such as conical shells. 

Figure 24.2 Some typical finite elements. 
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The finite element was invented in 1956 by Turner et al. where the important three node in- 

The derivation of the stiffness matrix for this element will now be described. 
plane triangular finite element was first presented. 

24.2 Stiffness matrices for some  typical finite elements 

The in-plane triangular element of Turner et al. is shown in Figure 24.3. From this figure, it can 
be seen that the element has six degrees of freedom, namely, ut O ,  uzo, u30r v l0 ,  vzo and v30, and 
because of thq the assumptions for the displacement polynomial distributions uo and v" will 
involve six arbitrary constants. It is evident that with six degrees of freedom, a total of six 
simultaneous equations will be obtained for the element, so that expressions for the six arbitrary 
constants can be defined in terms of the nodal displacements, or boundary values. 

Figure 24.3 In-plane triangular element. 

Convenient displacement equations are 

u" = a, +vo +ago  (24.1) 

and 

Y O  = a, +ago  +ago (24.2) 

where a, to a, are the six arbitrary constants, and uo and v o  are the displacement equations. 
Suitable boundary conditions, or boundary values, at node 1 are: 

atx" = x,"  and y o  = y,", uo = u I o  and v o  = v I 0  

Substituting these boundary values into equations (24.1) and (24.2), 
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ulo = a, + c q , "  + agl"  

and v I 0  = a,+a+," + a a l o  

Similarly, at node 2, 

atx' = xzo and yo  = yzo, uo = u2" and v o  = v20 

When substituted into equations (24.1) and (24.2), these give 

uZo = a, +as2" +ag20 

and vzo = a, +agZo +aa2" 

(24.3) 

(24.4) 

(24.5) 

(24.6) 

Llkewise, at node 3, 

atx" = xj0 and yo = y,", uo = u30 and v o  = v," 

which, when substituted into equation (24.1) and (24.2), yield 

uj0 = a, + as3" + ag,' (24.7) 

and v," = a4 + a+," + aa,O (24.8) 

Rewriting equations (24.3) to (24.8) in matrix form, the following equation is obtained: 

or 

( U l O }  = 

and 

(24.9) 

(24.10) 
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[A]-' = b, b, b3 I CI c2 c3- 

where 

/ det(A1 

a,  = x2"y3" - ' 3  OY2 

a2 = x3"y," - x , o y 3 0  

a, = x l o y 2 0  - x z 0 y l o  

b, = Y," - Y3O 

b, = Y3" - Y , "  

b, = Y," - Y2O 

c, = x3" - x2 " 

c2 = X I 0  - X 3 O  

c3 = X 2 O  - x , "  

det IAl = x2"y3" -y2"x3" - x , "  (y3' -y20)  +y,' (x30 - x 2 " )  = 2A 

A = area oftriangle 

63 1 

(24.1 1) 

(24.12) 

(24.13) 

Substituting equations (24.13) and (24.12) into equations (24.1) and (24.2) 
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N, N3 0 0 0 

0 0 0 N ,  N, N3 

where [N] = a matrix of shape functions: 

1 
2A 

N ,  = - (a, + b,x" + cly") 

1 
2A 

N, = -(a, + b;s" + cty") 

1 
2A 

N3 = - (a3 + b;s" + c g " )  

For a two-dimensional system of strain, the expressions for strain" are given by 

e, = straininthex" direction = duo/&" 

E,, = straininthey" direction = dv0/40 

y, = shear strain in the xo-yo plane 

= auo/+o + a o / x  

which when applied to equation (24.14) becomes 

(24.14) 

(24.15) 

(24.1 6) 

(24.1 7) 

I '  Fenner R T, Engineering Elasticity, Ellis Horwood, 1986. 
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- 
b, b, b, 0 0 0 

0 0 0 c1 c, c3 4 

c1 c2 c3 b ,  b2 b3- 

63 3 

UI 

U 2 c  

VI a 

y3 O 

U 3  

v2 

Rewriting equation (24.18) in matrix form, the following is obtained: 

b,  b, b3 0 0 0 

0 0 0 c1 c, c3 

c2 c3 bl b2 b3- c1 

where [B] is a matrix relating strains and nodal displacements 

1 PI = 

(24.18) 

(24.19) 

(24.20) 

(24.21) 

Now, from Chapter 5 ,  the relationship between stress and strain for plane stress is given by 

E 
( E x  + VEL) ox = - 

(I - 2) 

(24.22) 

5 y  = 
E 

2(1 + v) rxy 



634 The finite element method 

0 0 (1 - v)/2 

where 
o, = direct stress in the xo-direction 

1 v  0 

ID] = - E V I  0 
(I - v') 

0 0 ( I  - 4 2 -  

oy = direct stress in the yo-direction 

T~ = shear stress in the xo-yo plane 

E = Young's modulus of elasticity 

v = Poisson's ratio 

E, = direct strain in the xo-direction 

= direct strain in theyo-direction 

= shear strain in the xo-yo plane y, 

E G = shear modulus = 
2(1 + v) 

Rewriting equation (24.22) in matrix form, 

or 

where, for plane stress, 

(24.23) 

(24.24) 

(24.25) 

= a matrix of material constants 
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and for plane strain,I2 

(1-v) v 0 

v (1-v) 0 

0 0 (1-2v)/2 

or, in general, 

where, for plane stress, 

E' = E/(1 - V2)  

p = v  

y = (1 - v)/2 

and for plane strain, 

E' = E(l - ~)/[(1 + v)(l - 2 ~ ) ]  

p = v/(l - v) 

y = ( 1  - 2v)/[2(1 - v)] 

(24.26) 

(24.27) 

Now from Section 1.13, it can be seen that the general expression for the strain energy of an elastic 
system, U,, is given by 

2 E  
but 

ts = EE 

1 
2 

.: U, = - JEc2  d(vo1) 

12 ROSS, C T F, Mechunics ofSolids, Prentice Hall, 1996. 
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which, in matrix form, becomes 

1 
2 

Ue = - [ { E } ~  [D] { ~ } d  (vol) 

where, 

{E) = a vector of strains, which for this problem is 

(24.28) 

(24.29) 

[D] = a matrix of material constants 

It must be remembered that U, is a scalar and, for this reason, the vector and matrix multiplication 
of equation (24.28) must be carried out in the manner shown. 

Now, the work done by the nodal forces is 

WD = -{ ui 9T {Pi 9 

where {Pi 

and the total potential is 

is a vector of nodal forces 

xp  = ue + WD 

1 
2 

= - [ { E } ~  [D] {E} d(v01) 

(24.30) 

kl0} {PI"}  
(24.3 1) 

It must be remembered that WD is a scalar and, for this reason, the premultiplying vector must be 
a row vector, and the postmultiplying vector must be a column vector. 

Substituting equation (24.20) into (24.31): 

but according to the method of minimum potential (see Chapter 17), 

(24.32) 
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or 

i.e. 

Substituting equations (24.21) and (24.27) into equation (24.34): 

P, = 0.25 E' (bibi f YC,C)IA 

Qii = 0.25 E' (pb,ci f ycibl)lA 

Qji = 0.25 E' (pbJci f ycJbJIA 

R, = 0.25 E' (c,ci f yb,bJlA 

where i andj  vary from 1 to 3 and t is the plate thickness 

637 

(24.33) 

(24.34) 

(24.35) 

(24.3 6) 

Problem 24.1 Worlung from first principles, determine the elemental stiffness matrix for a 
rod element, whose cross-sectional area varies linearly with length. The 
element is described by three nodes, one at each end and one at mid-length, as 
shown below. The cross-sectional area at node 1 is A and the cross-sectional 
area at node 3 is 2A. 
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Solution 

As there are three degrees of freedom, namely ul ,  u2 and uj, it will be convenient to assume a 
polynomial involving three arbitrary constants, as shown by equation (24.37): 

u = al+qrr+CL;s2 (24.3 7) 

To obtain the three simultaneous equations, it will be necessary to assume the following three 
boundary conditions or boundary values: 

Atx = 0, u = uI 

At x =N2, u = u2 

Atx = I ,u  = u, 

(24.38) 

Substituting equations (24.38) into equation (24.37), the following three simultaneous equations 
will be obtained: 

uI = a1 (24.39a) 

u2 = a1 + aJI2 + a.J214 (24.39b) 

u3 = aI + %I + % I 2  (24.39~) 

From (24.39a) 

a1 = uI (24.40) 

Dividing (24.39~) by 2 gives 

4 2  = U l I 2  + a412 + u p 1 2  (24.41) 
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Taking (24.41) from (24.39b), 

u2 - u3/2 = U ,  - ~ , / 2  - %12/4 

or 

= u,/2 - u2 + u,/2 l 2  
%4 

1 % = - (224, - 4u2 + 224,) 
l 2  

Substituting equations (24.40) and (24.42) into equation (24.39c), 

%1 = u3 - u ,  - 224, + 4u2 - 224, 

or 

1 
1 

% = - (-3u, + 424, - u3) 

Substituting equations (24.40), (24.42) and (24.43) into equation (24.37), 

where 

5 = X I 1  

639 

(24’.42) 

(24.43) 

(24.44) 
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Now, 

Now, for a rod, 

- E  0 

E 
- -  

or 

a = EE 

:.[Dl = E 

Now. 

where 

Q = area at 6 = A( 1 + 6)  

-3 + 45 

-1 + 45 
:. [k] = I{[ 4 - 

(24.45) 

x E[(-3 + 45) (4 - 85) (-1 + 4<)] A(1+ 5) 1 4  
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= 

64 1 

kl l  k12 k13 

41 4 2  43 

where, 
1 

A E  
1 

k, ,  = - [ ( - 3  + 4512 ( 1  + 5) d5 
0 

= 2.8333 AEJI 

1 

b2 = (4 - 85)2 ( 1  + 5)d5 
0 

1 

= 8 AEII 

1 
A E  

k33 = r [ ( - I  + 4g2 ( 1  + 5) d5 
0 

= 4.167 AEII 

A E  
k12 = 41 = ( - 3  +45) (4-85) ( 1  +{)4 

0 

= -3.33AEJ1 

I 

+ 45) ( 1  + 5)4 A E  k13 = k1 = - [ ( - 3  + 45) ( - 1  
I 

0 

= AEJ21 

1 

k, 3 = 2 = - (4 - 85) ( - 1  + 45) ( 1  + 5) 4 AE s 
0 

I 

= -4.667 AEII 
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In this chapter, it has only been possible to introduce the finite element method, and for more 
advanced work on this topic, the reader is referred to Ross, C T F, Advanced Applied Finite 
Element Methods, Ellis Honvord; Zienkiewicz, 0 C, and Taylor, R L. The Finite Element Method, 
McGraw-Hill, Vol 1, 1989, Vol2, 1991. 

Further problems (answers on page 698) 

24.2 Using equation (24.34), determine the stiffness matrix for a uniform section rod element, 
with two degrees of freedom. 

24.3 A rod element has a cross-sectional area which varies linearly from A, at node 1 to A ,  
at node 2, where the nodes are at the ends of the rod. If the rod element has two degrees 
of freedom, determine its elemental stiffness matrix using equation (24.34). 

24.4 Using equation (24.34), determine the stiffness matrix for a uniform section torque bar 
which has two degrees of freedom. 

24.5 Using equation (24.34), determine the stiffness matrix for a two node uniform section 
beam, which has four degrees of freedom; two rotational and two translational. 


