
25 Structural vibrations 

25.1 Introduction 

In this chapter, we will commence with discussing the free vibrations of a beam, which will be 
analysed by traditional methods. This fundamental approach will then be extended to forced 
vibrations and to damped oscillations, all on beams and by traditional methods. 

The main snag with using traditional methods for vibration analysis, however, is that it is 
extremely difficult to analyse complex structures by this approach. For this reason, the finite 
element method discussed in the previous chapters will be extended to free vibration analysis, and 
applications will then be made to a number of simple structures. 

Vibrations of structures usually occur due to pulsating or oscillating forces, such as those due 
to gusts of wind or from the motion of machinery, vehcles etc. If the pulsating load is oscillating 
at the same natural frequency of the structure, the structure can vibrate dangerously (i.e. resonate). 
If these vibrations continue for any length of time, the structure can suffer permanent damage. 

25.2 Free vibrations of a mass on a beam 

We can simplify the treatment of the free vibrations of a beam by considering its mass to be 
concentrated at the mid-length. Consider, for example, a uniform simply-supported beam of length 
L and flexural stiffness EZ, Figure 25.1. 

Figure 25.1 Vibrations of a concentrated mass on a beam. 

Suppose the beam itself is mass-less, and that a concentrated mass M is held at the mid-span. If 
we ignore for the moment the effect of the gravitational field, the beam is undeflected when the 
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mass is at rest. Now consider the motion of the mass when the beam is deflected laterally to some 
position and then released. Suppose, v, is the lateral deflection of the beam at the mid-span at a 
time t; as the beam is mass-less the force P on the beam at the mid-span is 

48 Elv, p =  - 
L 3  

If k = 48 EI/L’, then 

P = kv, 

The mass-less beam behaves then as a simple elastic spring c.f stiffness k. In the deflected position 
there is an equal and opposite reaction P on the mass. The equation of vertical motion of the mass 
is 

Thus 

The general solution of this differential equation is 

v, = Acos Et + Bsin E t 
where A and B are arbitrary constants; this may also be written in the form 

where C and E are also arbitrary constants. Obviously C is the amplitude of a simple-harmonic 
motion of the beam (Figure 25.2); v, first assumes its peak value when 
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Figure 25.2 Variations of displacement of beam with time. 

and again attains h s  value when 

@ + .  = - 5x  

K 

2 

Thls period T of one complete oscillation is then 

T = t l - t z  = 2 ~  - (25.1) 

The number of complete oscillations occurring in unit time is the frequency of vibrations; this is 
denoted by n, and is given by 

n = - = -  - (25.2) 
T 1 2n T M 

The behaviour of the system is therefore directly analogous to that of a simple mass-spring system. 
On substituting for the value of k we have 

(25.3) n = - = -  - 
T 1 2n lc ML 

Problem 25.1 A steel I-beam, simply supported at each end of a span of 10 m, has a second 
moment of area of l O - 4  m4. It carries a concentrated mass of 500 kg at the mid- 
span. Estimate the natural frequency of lateral vibrations. 
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Solution 

In this case 

EI = (200 x 109)(10-4) = 20 x lo6 Nm2 

Then 

k = - -  48E' - 48(20 x lo6) = 960 x 103 N/m 
L 3  ( 1 o ) ~  

The natural frequency is 

n = -  ' F = 1 4- = 6.97 cyclestsec = 6.97 Hz 
2x M 2x 500 

25.3 Free vibrations of a beam with distributed mass 

Consider a uniform beam of length L, flexural stiffness EI, and mass m per unit length (Figure 
25.3); suppose the beam is simply-supported at each end, and is vibrating freely in the yz-plane, 
the displacement at any point parallel to the y-axis being v. We assume first that the beam vibrates 
in a sinusoidal form 

N 
v = a sin - sin2xnt (25.4) 

L 

where a is the lateral displacement, or amplitude, at the mid-length, and n is the frequency of 
oscillation. The kinetic energy of an elemental length 6z of the beam is 

P i m 6 z  2 (2) 2 l I  L 

2 
XZ 

= - m  6z 2xna sin- cos2xnt 

Figure 25.3 Vibrations of a beam having an intrinsic mass. 
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The bending strain energy in an elemental length is 

sin - sin2nnt 6z 1 2 

- 1 E I [ s )  ijz = - 1 EI 1- an2 w 
2 2 L 2  L 

The total kinetic energy at any time t is then 

cos2 2nnt I' sin2 .E 
2 L 

The total strain energy at time t is 

sin22nnt kL sin2 E d~ 1 a 2 d  -EI - 
2 L4 L 

641 

(25.5) 

(25.6) 

For the free vibrations we must have the total energy, i.e. the s u m  of the kinetic and strain energies, 
is constant and independent of time. This is true if 

-m 1 (4n2n2a2) cos2 2nnt + -EI 1 [ - n:2] sin2 2nnt = constant 
2 2 

For h s  condtion we must have 

--m 1 (47r2n2a2) = T E I [  1 ,-) n4a2 
2 

This gives 

Now mL = M, say is the total mass of the beam, so that 

= n\lK 2 ML3 

(25.7) 

(25.8) 

This is the frequency of oscillation of a simply-supported beam in a single sinusoidal half-wave. 
If we consider the possibility of oscillations in the form 

2 w  . v = a s i n -  SUI 2nn2t 
L 
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then proceeding by the same analysis we find that 

n, = 4n, = 21c JZ (25.9) 

" h s  is the frequency of oscillations of two sinusoidal half-waves along the length of the beam, 
Figure 25.4, and corresponds to the second mode of vibration. Other higher modes are found 
similarly. 

Figure 25.4 Modes of vibration of a simply-supported beam. 

As in the case of the beam with a concentrated mass at the mid-length, we have ignored 
gravitation effects; when the weight of the beam causes initial deflections of the beam, oscillations 
take place about this deflected condition; otherwise the effects of gravity may be ignored. 

The effect of distributing the mass uniformly along a beam, compared with the whole mass 
being concentrated at the mid-length, is to increase the frequency of oscillations from 

q-GE to ; j -E  ML 3 

n, = Liz, 2n and n2 = 24% 2 

2X ML3 

If 

then 
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(25.10) 

Problem 25.2 If the steel beam of the Problem 25.1 has a mass of 15 kg per metre run, 
estimate the lowest natural frequency of vibrations of the beam itself. 

Solution 

The lowest natural frequency of vibrations is 

Now 

EI = 20 x lo6 Nm2 

and 
ML3 = (15) (10) = 150 x lo3 kg.m3 

Then 

= 133 s- ’  
EI - 20 x lo6 

ML3 150 x lo3 
- -  

Thus 

n1 = 5 = 18.1 cycles per sec = 18.1 Hz 
2 

25.4 Forced vibrations of a beam carrying a single mass 

Consider a light beam, simply-supported at each end and carrying a mass M at mid-span, Figure 
25.5. Suppose the mass is acted upon by an alternating lateral force 

P sin 2lcNt (25.1 1) 

which is applied with a frequency N. If v, is the central deflection of the beam, then the equation 
of motion of the mass is 
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d2vc 

dt 2 
M- + kv, = P sin 2nNt 

where k = 48 EI/L'. Then 

P vC = - sin 2nNt d2Vc k - + -  
dt2 M M 

Figure 25.5 Alternating force applied to a beam. 

The general solution is 

P -sin2nNt 

(25.12) 
VC = R c o s E t + B s i n E t +  1 k -4n2N2- M 

k 

in which A and B are arbitrary constants. Suppose initially, i.e. at time t = 0, both v, and dvydt 
are zero. Then A = 0 and 

P 2nN.- 
k 1 B = -  

1 - 4n'N' f E 
Then 
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v, = 
M 1 - 4n2N2- 
k 

Now, the natural frequency of free vibrations of the system is 

n = LE 
2n 

Then 

FM = 2nn 

and 

n 
v, = 

1 - N21n2 

Now, the maximum value that the term 

n 

may assume is 

and occurs when sin 2nNt = -sin 2nnt = 1 .  Then 

- Plk - -  
Plk ( I  + !) 

1 - -  
N 1 - -  N 2  

vcmax = 

n 2  n 

65 1 

(25.13) 

(25.14) 

(25.15) 

Thus, if N < n, v,,, is positive and in phase with the alternating load P sin 2nNt. As N approaches 
n, the values of v,,, become very large. When N > n, v,,, is negative and out of phase with P 
sin 27tNt. When N = n, the beam is in a condition of resonance. 
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25.5 Damped free oscillations of a beam 

The free oscillations of practical systems are idnbited by damping forces. One of the commonest 
forms of damping is known as velocity, or viscous, damping; the damping force on a particle or 
mass is proportional to its velocity. 

Figure 25.6 Effect of damping on free vibrations. 

Suppose in the beam problem discussed in Section 25.2 we have as the damping force p(dv/dr). 
Then the equation of motion of the mass is 

M -  d *vC = - h c - p -  *C 
dt dt 

Thus 

d 'v, *C M- + p- + h, = 0 
dt 2 dt 

Hence 

d2Vc p *, k 
dt2 M dt M 

- + - -  + - v c  = 0 

The general solution of this equation is 

V ,  = Ae { - f l m i w } t  +Be { k d m - m f  (25.16) 
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Now (k/M) is usually very much greater than (p/2M)’, and so we may write 

= Ae(-@U + &% + Be (-Idm - lm I 
vc 

-fJdm) f b E l m  / + Be -lm I ]  

(25.17) = e  

= e - w m )  [c cos h t + $1 
Thus, when damping is present, the free vibrations given by 

ccos[& + e) 

are damped out exponentially, Figure 25.7. The peak values on the curve of vc correspond to 
points of zero velocity. 

Figure 25.7 Form of damped oscillation of a beam. 

These are given by 

* c  - 0 _ . -  

dt 

or 
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Obviously the higher peak values are separated in time by an amount 

T = 2 x E  

We note that successive peak values are in the ratio 

"CI - "cz 

Then 

Now 

Thus 

- P log, - - - 
vc2 2Mn 

Hence 

v c  I p = 2Mn log, - 
Vcr 

(25.18) 

(25.19) 

(25.20) 

(25.21) 
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25.6 Damped forced oscillations of a beam 

We imagine that the mass on the beam discussed in Section 25.5 is excited by an alternating force 
P sin 2nNt. The equation of motion becomes 

d2vc h C  M -  + p - + kv, = P sin 2ldvt 
dt dt 

The complementary function is the damped free oscillation; as this decreases rapidly in amplitude 
we may assume it to be negligible after a very long period. Then the particular integral is 

P sin 2nNt 
MDz + DD + k 

vc = 

This gives 

P [ ( k -  4x2N2M)sin2nNt-2xNp cos2nNtl 

If we write 

then 

vc = P 
1 k( 1-5) sin2nNt-2xNp cos2xNt 

The amplitude of this forced oscillation is 

P 
vmax = r 

(25.22) 

(25.23) 

(25.24) 
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25.7 Vibrations of a beam with end thrust 

In general, when a beam carries end thrust the period of free undamped vibrations is greater than 
when the beam carries no end thrust. Consider the uniform beam shown in Figure 25.8; suppose 
the beam is vibrating in the fundamental mode so that the lateral displacement at any section is 
given by 

5cZ 
v = a sin - sin 2mt (25.25) 

L 

Figure 25.8 Vibrations of a beam carrying a constant end thrust. 

If these displacements are small, the shortening of the beam from the straight configuration is 
approximately 

sin2 2nnt (25.26) JoL $(Le)’& = - a 2 ~ 2  

4L 

If rn is the mass per unit length of the beam, the total kinetic energy at any instant is 

(25.27) 2 2 2  

]I 
[ ~ ( 2 n n s i n T c o s 2 ~ n f  X Z  dz = mn a n L cos2 2xnt 

The total potential energy of the system is the strain energy stored in the strut together with the 
potential energy of the external loads; the total potential energy is then 

[f ElL [$I2 - 2 (?I] sin2 2xnt (25.28) 

If the total energy of the system is the same at all instants 
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This gives 

where 

d E I  
L 2  

Pe = - 

and is the Euler load of the column. If we write 

then 

(25.29) 

(25.30) 

n = n,  1 - -  d :e 

Clearly, as P approaches P,, the natural frequency of the column diminishes and approaches zero. 

25.8 Derivation of expression for the mass matrix 

Consider an mfiitesimally small element of volume d(vo1) and density p, oscillating at a certain 
time t, with a velocity u. 

The kmetic energy 01 this element (KE) is given by: 

1 
2 

KE = -p x d(v0l) x 2j2 

and for the whole body, 

K E z  - /p u 2  d(v0l) 
2 

(25.31) 
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or in matrix form: 

(25.32) 

NB The premultiplier of equation (25.32) must be a row and the postmultiplier of this 
equation must be a column, because KE is a scalar. 

Assuming that the structure oscillates with simple harmonic motion, as described in Section 25.2, 

{u} = {c}ejw' 

where 

{ C} = 

61 = resonant frequency 

j = J i  

a vector of amplitudes 

Differentiating { u }  with respect to t, 

{u} = jo {C} elw' 

= jo  {u} 

Substituting equation (25.35) into equation (25.32): 

1 { 4 ' P { 4  4vol) 
= - - - 2  1 

vol 
2 

but, 

(4 = [NI (u,} 

1 
2 

:. KE = -- o2 (u,}' [ [NIT p [N] d(v01) (u,} 
vol 

(25.33) 

(25.34) 

(25.35) 

(25.36) 
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but, 

659 

or in matrix form: 

but, 

(I',} = io (11,) 

... KE = --a2 1 (11,}7 [m] (11,) 
2 

Comparing equation (25.37) with equation (25.36): 

[ml = 1 [NIT P [NI 4vol) 
vol 

(25.37) 

(25.38) 

= elemental mass matrix 

25.9 Mass matrix for a rod element 

The one-dimensional rod element, which has two degree of freedom, is shown in Figure 23.1. As 
the rod element has two degrees of freedom, it will be convenient to assume a polynomial with two 
arbitrary constants, as shown in equation (25.39): 

u = a, + ap 

The boundary conditions or boundary values are: 

at x = 0, u = u,  

and 

at x = I ,  u = u2 

Substituting equations (25.40) into equation (25.39), 

al = u ,  

(25.39) 

(25.40) 

(25.41) 
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and 

u2 = u1 + %I 

or 

= (u2 - u1Yl 

Substituting equations (25.41) and (25.42) into equation (25.39), 

u = u,  + (u2 - u l p l  

where, 

5 = XI1  

Rewriting equation (25.43) in matrix form, 

Substituting equation (25.44) into equation (24.38), 

5 1  
1 - 2 5 + 5 * )  5 - 5 :  

5 - 5’ 5’ 
4 

(25.42) 

(25.43) 

(25.44) 
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[rl = 

u1 u2 

:c -s  c 

In two dimensions, it can readily be shown that the elemental mass matrix for a rod is 

u1 VI u 2  v 2  

2 0 1 0  

0 2 0 1  

1 0 2 0  

0 1 0 2  

66 1 

(25.45) 

(25.46) 

The expression for the elemental mass matrix in global co-ordinates is given by an expression 
similar to that of equation (25.35), as shown by equation (25.47): 

[mol = [DCIT [m] [DC] (25.47) 

where, 

c = cosa 

(25.48) 

s = sina 

a is defined in Figure 23.4. 
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Substituting equations (23.25) and (25.46) into equation (25.47): 

(25.49) 

= the elemental mass matrix for a rod in two dimensions, in global co- 
ordinates. 

Similarly, in three dimensions, the elemental mass matrix for a rod in global co-ordinates, is 
given by: 

[mol = 

2 

0 

(25.50) 

Equations (25.49) and (25.50) show the mass matrix for the self-mass of the structure, but if the 
effects of an additional concentrated mass are to be included at a particular node, this concentrated 
mass must be added to the mass matrix at the appropriate node, as follows: 

U,O V,O 

ML? [ y ]  (in two dimensions) (25.51) 



Ma 

Element 1-3 

Q = 60°, c = 0.5, s = 0.866 

l , .3 = - ’ m - - 1.155 m = length of element 1-3 
sin 60 

-1 0 0 Y o  

0 1 0 VI0 

0 0 1- W,O 

(in three dimensions) (25.52) 
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0.433 x lo7 0.75 x lo7 

0.75 x 107 1.3 x 1 0 ' ~  

Substituting the above values into equations (23.36) and (25.49), and removing the rows and 
columns corresponding to the zero displacements, namely u," and v , O ,  the stiffness and mass 
matrices for element 1-3 are given by: 

U 3 O  

v 3 ~  

1.1 55 0.433 0.75 

7860 x 1 x x 1.155 
[m,-3O] = 6 

(25.53) 

0 2  "1 
(25.54) 

Element 2-3 

u = 150", c = -0.866, s = 0.5 

l m  
sin 30 

12-3 = - - - 2 m = length of element 2-3 

Substituting the above values into equations (23.36) and (25.49), and removing the rows and 
columns corresponding to the zero displacements, namely u," and v,", the stiffness and mass 
matrices for element 2-3 are given by: 
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0.75 x lo7 -0.433 x 10' 

-0.433 x lo7 0.25 x lo7 

-0.433 0.25 
1 x 10-4 x 2 1011 

2 [ k 2 - 3 O ]  = 

(25.55) 

(25.56) 

The system stiffness matrix corresponding to the free displacements u3" and v j0  is obtained by 
adding together equations (25.53) and (25.55), as shown by equation (25.57): 

K 1 1  = 

v3 

1.183 x lo7 0.317 x lo7 u j o  

0.317 x lo7 1.55 x I O 7  V 3 0  1 
(25.57) 

(25.5 8) 
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The system mass matrix corresponding to the free displacements u, O and vlo is obtained by adding 
together equations (25.54) and (25.56), as shown by equation (25.59): 

[M,,1 = 

llI0 

0.303 

+OS24 

0 

v3" 

0 

0.303 

+OS24 

Now, from Section 25.2, 

If simple harmonic motion takes place, so that 

vc = CeJ"" 

then, 

Substituting equation (25.62) into equation (25.61), 

kvc 0 2 - 0 v  + -  = 
' M  

(25.59) 

(25.60) 

(25.61) 

In matrix form, equation (25.63) becomes 

(25.62) 

(25.63) 

(25.64) 

or, for a constrained structure, 
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( F l ]  - a2 [MlJ (u,} = 0 (25.65) 

Now, in equation (25.65), the condition {u,} = (0) is not of practical interest, therefore the 
solution of equation (25.65) becomes equivalent to expanding the determinant of equation (25.66): 

I [ 4 1 ]  -a2 ["ll] I = 0 (2 5.66) 

Substituting equations (25.58) and (25.60) into equation (25.66), the following is obtained: 

1.183 x lo7 0.317 x lo7 0.827 0 
0.317 x lo7 1.55 x lo7 I-.'[ 0 0.8271 

(25.67) 

Expanding equation (25.67), results in the quadratic equation (25.68): 

(1.183 x 107-0.827~2)(1.55 x 107-0.827~2)-(0.317 x 107)2 = 0 

or 

1.834 x 1014 - 2.26 x lo7 o2 + 0.684 o4 - 1 x loi3 = 0 

or 

O.684o4-2.26x 10702+ 1 . 7 3 4 ~ 1 0 ' ~  = 0 (25.68) 

Solving the quadratic equation (25.68), the following are obtained for the roots w,' and 0'': 

2 2.26 x lo7 - 6.028 x lo6 = 1.211 107 
0' = 

1.368 

or 

o1 = 3480; n, = 533.9 HZ 

o* = 
2 2.26 x lo7 + 6.028 x lo6 = 2.093 107 

1.368 

or 

o2 = 4575; n, = 728 Hz 
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To determine the eigenmodes, substitute q2 into the first row of equation (25.67) and substitute 
w: into the second row of equation (25.67), as follows: 

(1.183 x lo7 - 34802 x 0.827)~; t 0.317 x lo' v i  = 0 (25.69) 

1.815 x lo6 u< -t 3.17 x lo6 v ~ O  = 0 

Let, 

U 3 O  = 1 

:. v30 = -0.47 

so that the first eigenmode is: 

[u30 v3"] = [l  - 0.471 see the figure below at (a). 

Similarly, to determine the second eigenmode, substitute 022 into the second row of equation 
(25.67), as follows: 

0.317 x lo7 u30 + (1.55 x lo7 - 0.827 x 4575*) v30 = 0 

or 

0.317 x lo7 u30 - 1.81 x lo6 v30 = 0 

Let, 

v30 = 1 

:. u3 = 0.57 

so that the second eigenmode is given by 

[uJ0 vJo] = [0.57 11 see below at(b). 

(a) First eigenmode. 
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(b) Second eigenmode. 

Problem 25.4 If the pin-jointed truss of Problem 25.3 had an additional mass of 0.75 kg 
attached to node 3, what would be the values of the resulting resonant 
frequencies? 

Solution 

From equation (25.58): 

U 3 O  v3" 

l 0.317 x io7 155 x io7 1 v," 1.183 x lo7 0.317 x lo7 u: (25.70) [K11] = 

From equation (25.60) 

0.827 0.75 0 

[M111 = [ 0 O.:27l + [ 0 0.711 

u30 v30 

(25.71) 
= [ ''Y7 ,R,] r:' 

Substituting equations (25.70) and (25.71) into equations (25.65), the following is obtained: 

1.183 x lo7 0 . 3 1 7 ~  lo7 1.577 0 ]- a2[ 0 1.57711 = O 0.317 x lo7 1.55 x lo7 
(25.72) ll 
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Expanding the determinant of equation (25.72), results in the quadratic equation (25.73): 

(1.183 x lo7 - 1.5770’) (1.55 x lo7 - 1.5770’) - (0.317 x 107)2 = 0 

or 

1.834 x l O I 4  - 4.31 x lo7 a2 + 2.487 o4 - 1 x I O i 3  = 0 

or 

2 .4870~  - 4.31 x lo7 o2 + 1.734 x I O i 4  = 0 (25.73) 

The quadratic equation (25.73) has two roots, namely q2 and 022, which are obtained as follows: 

2 4.31 io7 - 1.178 io7 = 6.297x ],,6 
Ol  = 

4.974 

mi = 2509; n, = 399.3 Hz 

and 

2 4.31 x IO7  + 1.178 x IO’ = 1.103 107 w2 = 

w2 = 3322; n2 = 528.6 Hz 

4.974 

Problem 25.5 Determine the resonant frequencies and eigenmodes for the pin-jointed space 
truss of Problem 23.3, given that, 

A = 2 x 1 0 . ~ ~ ~  
E = 2 x 10” Nlm2 
p = 7860kgJm’ 

Solution 

Element 1 4  

From Problem 25.3, 

I = 10m 
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7860 x 2 x x 10 
[m,-4O] = 6 

Substituting this and other values into equation (25.50), and removing the rows and columns 
corresponding to the zero displacements, namely u1 O ,  vI O and w1 O ,  the mass matrix for element 1-4 
is given by 

2 0 0  

.o 0 2 

5.24 0 0 

0 5.24 0 

0 0 5.24 

Element 2-4 

'4' 

V 4 O  

w40 

From Problem 25.3, 

I = lOm 

(25.74) 

(25.75) 

Substituting this and other values into equation (25.50), and removing the rows and columns 
corresponding to the zero displacements, namely u20, vzo and wzo, the mass matrix for element 
2-4 is given by 

15.24 0 0 

U 4 O  V 4 O  W4O 

u4 O 

v4 O 

w4 O 
1 0 0 5.24 

(25.76) 

Element 4-3 

From Problem 25.3, 

I = 10m 
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Substituting the above and other values into equation (25.50), and removing the rows and columns 
corresponding to the zero displacements, namely u3 O ,  v3 O and wj O ,  the mass matrix for element 4-3 
is given by 

[m4-3°] = 

u40 V 4 O  W4O 

5.24 0 
0 5.24 0 

(25.77) 

To obtain [M, ,I, the system mass matrix corresponding to the free displacements uq0, v,," and w,", 
the elemental mass matrices of equations (25.75) to (25.77), are added together, as shown by 
equation (25.78): 

15.72 0 

[M1lo] = 1 0 15.72 

l o  0 15.721 w40 

From equation (23.62), 
0 0  

u4 v4 W4O 

(25.78) 

(25.79) 

10 0.832 6 1 w40 

Substituting equations (25.78) and (25.79) into equation (25.65), the following determinant is 
obtained: i2 0 0 ] !'p2 0 0 ] 

I x  lo6 0 4 0.832 -02 0 15.72 0 
0 0.832 6 0 15.72 

(25.80) 

From the top line of equation (25.80): 

2 x IO6 - 15.72 0' = 0 
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673 

lo6 - 1.272 x lo5 " 1 = - -  
2 

15.72 

o1 = 356.7, n = 56.76 Hz 

As the first line of equation (25.80) is uncoupled, this equation can be reduced to the 2 x 2 
determinant of equation (25.81): 

0.832 15.72 1 '  lo6[0.;32 6 0 1:7d I = 

Expanding equation (25.81), the quadratic equation (25.82) is obtained: 

or 

2.4 x 1013 - 1.572 x 10'0~ + 247.120~ - 6.922 x 10" = 0 

or 

247.120~ - 1.572 x 10'0~ +2.33 x l O I 3  = 0 

Solving equation (25.82), the roots w: and are obtained, as follows: 

= 2.361 x IO5 2 1.572 x 10' - 0.41 x lo8 
O2 = 

492.24 

o2 = 485.9; n2 = 77.32 Hz 

2 1.572 x lo8 + 0.41 x lo8 = 4.026 105 
O3 = 

492.24 

(25.81) 

(25.82) 

o3 = 634.5; n3 = 100.98 Hz 
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To determine the eigenmodes 

By inspection of the first line of equation (25.80), 

u4" = 1 ,  v," = 0 and w," = 0 

Therefore, the first eigenmode is 

[u4 " v," w4"] = [l  0 01 

To obtain the second eigenmode, substitute 0.122 into the second line of equation (25.80) to give 

0 x u4" + [4 x IO6 - (485.92 x 15.72)]v4" + 0.832 x 106w," = 0 

or 

Let, 

0 . 2 8 9 ~ ~ "  + 0 . 8 3 2 ~ ~ "  = 0 (25.83) 

v," = 1 

:. w,"= - 0.347 

Therefore, the second eigenmode is 

[u," v," w,"] = [0 1 - 0.3471 

To obtain the third eigenmode, substitute a: into the third line of equation (25.80) to give 

0 x u," + 0.832 x lo6 v," + (6 x lo6 - 634.S2 x 15.72) w," = 0 

or 

0.832 v," - 0.329 w4' = 0 

Let, 

w4 " = 1  

:. v," = 0.395 

Therefore, the third eigenmode is 

[u," v4' w,'] = [0 0.395 11 

(25.84) 
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Determine the resonant frequencies for the tripod ofProblem25.5, if this tripod 
has a mass of 10 kg added to node 4. 

Problem 25.6 

2 0  0 - 
[K,,] = I x106 

0 4 0.832 

0 0.832 6 - 

Solution - 

U 4 O  

V4O 

wq0 

From equation (25.79), 

Uq0 vqa W4O 

15.72 0 0 

[MI,] = 0 15.72 0 + 

0 0 15.72 

10 0 0 

0 10 0 

0 0 10 

25.72 0 0 ., 

0 25.72 0 

0 0 25.72 
v4' 

w40 

(25.85) 

[2 0 0 1 *I2172 0 0 1 
0 0.832 6 0 25.72 

1 x lo6 0 4 0.832 -0 0 25.72 0 

(2 5.86) 

= 0 

Substituting equations (25.85) and (25.86) into equation (25.65), the following determinant is 
obtained: 

From the first line of equation (25.65): 

- 7.776 x io4 +-- 2 x IO6  
25.72 

(25.87) 

W, = 2789; n, = 44.1 HZ 
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As first line is uncoupled, the determinant of equation (25.87) can be reduced to the 2 x 2 
determinant of equation (25.88): 

4 0.832 25.72 0 
I l x  106[ 0.832 6 1-4 0. 25.72 ] i = o  (25.8 8) 

Expanding the determinant of equation (25.88), the following quadratic is obtained: 

(4 x lo6 - 25.72 a') (6 x lo6 - 25.72 w') - (0.832 x 106)2 = 0 
or 

2.4 x lOI3  - 2.572 x 10' w2 + 661.5 w4 - 6.92 x 10" = 0 
or 

661.5 w4 - 2.572 x 10' w2 + 2.33 x l O I 3  = 0 (25.89) 

Solving equation (25.89), 

2 2.572 x lo8 - 0.671 x IO8 - 1.437 x 105 
W2 = - 

o2 = 379.1; n2 = 60.3 Hz 

1323 

= 2.451 x lo5 2 2.572 x 10' + 0.671 x lo8 w3 = 

wg = 495.1; n3 = 78.8 Hz 

1323 

25.10 Mass matrix for a beam element 

The beam element, which has four degrees of freedom, is shown in Figure 25.9. 

Figure 25.9 Beam element. 
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A convenient polynomial with which to describe the lateral deflection v is 

and 

677 

(25.90) 

(25.91) 

In equation (25.90), it can be seen that the polynomial has four arbitrary constants, and this 
corresponds to the four degrees of freedom, namely, vI, e,, v2 and e,, i.e. 

Atx = 0, v = V I  and 8, = -(dv/dx), 

Atx = 1, v = v, and 8, = -(dv/dx),, 

Substituting the first two boundary conditions into equations (25.90) and (25.91): 

a, = v, 

and 

= - e ,  

Substituting the remaining two boundary conditions into equations (25.90) and (25.91), the 
following two simultaneous equations are obtained: 

V, = v, - e,i + a,/, + 4 3  (25.92) 

and. 

e, = 8, - 2u,l- 3aJ2 (25.93) 

Multiplying equation (25.92) by 211, we get: 

2 7 (y2 - v,) = -28, + 2 a - ~  + 2a412 (25.94) 

Adding equation (25.93) to equation (25.94): 

2 - (v2 - v,) + 8, I 
= 8,-28, - 3aJ2 + 2aJ2 

or 
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2 
I 

-a4/’ = - (v2 - v,) + e, + e, 

a4 = -- (v2 - v,) - 2 (02 + 0,) 
l 3  l 2  

Substituting equation (25.95) into equation (25.92): 

v2 - v1 + e,/ = q2 - 2h2 - - (e2 + e,) z 

Substituting the above values of a, to a4 into equation (25.90) 

x3 
- 2t2(v2  -v , )+7&2 + 0,) 

or 

v = ~ , ( 1 - 3 { ~ + 2 ( ~ ) + 8 , 1 (  - 5 + 2 t 2  - t3) 

+ v 2 ( 3 t 2 - 2 t 3 ) + e 2 z ( ~ 2  - t3 )  

where, 
< = x / l  

i.e. 

v =  1 (1 -3 t2+2t3 )  1 ( - 5 + 2 c 2  - 5)) 

(25.95) 

(2 5.96) 

(25.97) 

(25.98) 
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where [N] is a matrix of shape functions for a beam element: 

[N] = [(1-3t2 +2 t3 ) I ( - j  + 2 t 2 -  t3)(3t2-2t3)1(t2 - t')] (25.99) 

From equation (25.38): 

[ml = l o '  [NIT P[NI AI d 5 (25.1 00) 

Substituting equation (25.99) into equation (25.100), and integrating, the mass matrix for a beam 
element is given by 

VI 8, v2 8, 

156 

-221 412 

54 -131 156 

131 -312 221 41 

(25.101) 

Equation (25.101) is the mass matrix of a beam element due to the self-mass of the structure, but 
if an additional concentrated mass is added to node i, the following additional components of mass 
must be added to equation (25.102) at the appropriate node. 

Added mass matrix at node i 

(25.102) 

where MMI is the mass moment of inertia and M, is the mass. 

Problem 25.7 Determine the resonant frequencies for the beam of the figure in Problem 23.4, 
assuming that the 4 kN load is not present, and that 

E = 2 x 10"N/m2, p = 7860 kg/m3 

A = 1 x m2, I = 1 x 1 0 . ' ~ ~  
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Solution 

Element 1-2 

I = 3 m  

Substituting the above value of 1 into equation (25.101), together with the other properties of this 
element, and removing the columns and rows corresponding to the zero displacements v, and e,, 
the elemental mass matrix is given by 

7860 1 3 156 66 V2 

420 [ 66 361 0, 
[ml-z] = 

Element 2-3 

I = 2 m  

v2 02 
0.876 0.371 v2 

0.371 0.202 1 0, 
(25.103) 

Substituting the above value of I into equation (25.101), together with the other properties of this 
element, and removing the columns and rows corresponding to the zero displacements vj and e,, 
the elemental mass matrix is given by: 

(25.104) 

The system mass matrix [M,,] is obtained by adding together the elemental mass matrices of 
equations (25.103) and (25.104): 

v2 0, 
[Mll] = [ 1.46 0.2061 v2 

0.206 0.262 0, 
(25.105) 

From equation (25.84), 



Mass matrix for a beam element 68 1 

38 880 -16 660 v2 

-16 660 66 660 1 8, [Kll] = [ (25.106) 

Substituting equations (25.105) and (25.106) into equation (25.65), the following determinant is 
obtained: 

38 880 -16 6601 [ 1.46 0.2061 1 
-16 660 66 660 0.206 0.262 

-w2 = o  (25.107) 

Expanding the determinant of equation (25.107), the following quadratic equation is obtained: 

(38 880 - 1.460~) (66 660 - 0.2620~) - (- 16 660 - 0.2060~)~ = 0 

or, 

2592 x lo6 - 0.107 X lo6 w2 + 0.383 w4 

278 x lo6 - 6864 w2 - 0.042 w4 - = 0 

0.341 w4 - 0.1 139 x lo6 w2 + 2.314 x lo9 = 0 (25.108) 

The roots of equation (25.108), namely, wI2  and 022, can really be shown to be: 

2 0.1139 x lo6 - 99 080 = 2.173 104 w, = 
0.682 

or 

w1 = 147.4; nI = 23.45 Hz 

2 0.1139 x lo6 + 99 080 = 3.123 105 w2 = 
0.682 

and, 

w2 = 558.8; n2 = 88.93 Hz 

To obtain the first eigenmode, substitute wI2 into the first line of equation (25.107), to give 
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(38 880 - 1.46 x 147.4,) v, + (- 16 660 + 0.206 x 147.4,) 8, = 0 

or 
7 m V ,  - 21 m e ,  = o (25.109) 

i.e. 
[v, e,] = [ 1 0.3391 - see the figure below at (a). 

To obtain the second eigenmode, substitute 022 into the second line of equation (25.107) to give: 

(- 16 660 - 0.206 x 558.8,) v2 + (66 660 - 0.262 x 558.8’) 8, = 0 

or, 
- 80 985 v, - 15 150 e, = o (25.1 10) 

i.e. 
[v2 e,] = [- 0.187 13 -see the figure below at (b). 

(b) Second eigenmode 

Problem 25.8 If the beam of Problem 25.7 has a mass of 1 kg, with a mass moment of inertia 
of 0.1 kg m2 added to node 2, determine the resonant frequencies of the beam. 

Solution 

From equation (25.105) 

[Mil] = [ 1.46 0.2061 + [ 1 O ]  
0.206 0.262 0 0.1 
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v2 

= [ 2.46 0.2::] V2 

0.206 0.362 e, 

From equation (25.101), 

38880 -16660 

[K1ll = [ -16660 666601 

Substituting equations (25.1 11) and (25.1 12) into equation (25.65), 

38 880 -16 6601 [ 2.46 0.2061 I = o  
-16 660 66 660 0.206 0.362 

-0, 
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(25.1 11) 

(25.1 12) 

(25.1 13) 

(38 880 - 2.46 a2) (66 660 - 0.362 0’) - (16 660 + 0.206 0’)’ = 0 

or 
0.259 X 10” - 0.178 X lo6 6.1’ + 0.891 0.1~ - 2.776 x lo* - 6864 0’ - 0.042 m4 = 0 

or 
0.849 a4 - 0.1849 x lo6 m2 + 0.231 x 10’’ = 0 (25.1 14) 

Solution of the quadratic equation (25.1 14) results in the roots and 022, as follows: 

2 0.1849 x lo6 - 0.162 x lo6 = 1.394 104 
0, = 

1.698 

or 

0, = 116.1; n1 = 18.48 Hz 

and, 

2 0.1849 x lo6 + 0.162 x IO6 = 2.043 105 
0, = 

1.698 

or 

o2 = 452; n, = 71.93 Hz 
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25.1 1 Mass matrix for a rigid-jointed plane frame element 

Prior to obtaining the mass matrix for an element of a rigid-jointed plane m e ,  it will be necessary 
to obtain the mass matrix for the inclined beam of Figure 25.10. 

The mass matrix for an inclined beam element in global co-ordinates is 

[mbO1 = W I T  [ml [DCI (25.115) 

where, 

[DC] is given equation (25.85) and [m] is given by equation (25.101). 

Figure 25.10 Inclined beam element. 
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For the element of a rigid-jointed plane frame, the elemental mass matrix in global co-ordinates 
is given by 

where [qo] is the axial part of the mass matrix of a rod element: 

I 2 0 0  1 0 0 1  

(25.118) 

0 0 0 0 0 0  

l o  0 0 0 0 4 
where, in equation (25.118), the components of mass in the v displacement direction have been 
removed, because they have already been included in [mho]. 

Substituting [DC] ffom equation (25.85) into equation (25.11 8): 

!C 

!cs 2s2 

0 0 0  

c2 cs 0 2c2 

cs s 2  0 2cs 2s2 

0 0 0 0  0 0  

(25.1 19) 

From equations (25.1 16) and (25.1 18), it can be seen that application of these elemental mass 
matrices, together withthe elemental stiffness matrix of equation (25.85), to a realistic rigid-jointed 
plane frame will be extremely difficult without the aid of a computer. 

Equation (25.1 17) shows the mass matrix for the self-mass of an element of a rigid-jointed 
plane frame, but if the effects of an additional concentrated mass are to be included at a particular 
node, the concentrated mass must be added to the appropriate node, as follows: 
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U,o v,o e, 
Ma 0 0 

0 Ma 0 

0 0 MMI 

Structural vibrations 

(25.1 20) 

where 

Ma = thevalueofthemss 

MMI = the mass moment of inertia of this mass 

25.12 Units in structural dynamics 

Considerable care should be taken in choosing suitable units in structural dynamics. 
Recommended units are as follows: 

(1) Imperial 

Mass (lbf s2/in); density (lbf s2/in4); E (lbf/in2); time(s); length (in); Force(1bf); second moment 
of area (in4); cross-sectional area (in'). 

(ii) SI 

Mass (kg); density (kdm3); E (N/m'); time (s); length (m); Force(N); second moment of area 
(m4); cross-sectional area (m2). 

(iii) Derived SI 

Mass (kg); density (kglmm3); E (d /mm2) ;  time (s); length (mm); force(mN); second moment 
of area (Ilun"); cross-sectional area (mm'). 

Further problems (answers on page 698) 

25.9 A doubly symmetrical beam consists of a hollow rectangular steel section, having the 
cross-section shown, and of length 10 m. It is simply-supported in bending about both 
axes Cx, Cy at the ends. Estimate the lowest few natural frequencies of lateral vibrations 
of the beam about the axes Cx and Cy. Take E = 200 GN/m'. 
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25.10 If the beam of Problem 25.7 cames an axial thrust of lo3 kN, what is the lowest natural 
frequency of the beam? 

25.1 1 A light, uniform cantilever, of length L and uniform flexural stiffness EI, cames a mass 
M at the free end. Estimate the natural frequency of vibrations. 

25.12 Determine the resonant frequencies for the plane pin-jointed truss shown below, 
assuming that the truss is loaded with a mass of 1 kg at node 4, and that the following 
apply: 

A = 1 x 10-4m2 

E = 2 x 10" N/m2 

p = 7860kg/m3 

(Portsmouth 1989) 

Determine the resonant frequencies for the pin-jointed tripod, below, given that the 
following apply: 

Element A (m2) E(N/m2) p(kn/m3) 

1-4 1 x 10.~  2 x 10" 7860 
2-4 2 x 10 .~  2 x 10" 7860 
3 4  1 x io-3 2 x 10" 7860 

25.13 
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(Portsmouth 1983) 

25.14 A continuous beam is fixed at the nodes 1 and 4, and simply-supported at the nodes 2 
and 3, as shown in the figure below. 

Determine the two lowest resonant frequencies of vibration, given the following: 

E = 2 x 10"N/m2 

p = 7860kg/m3 

Element A (m2) I(m4', 

1-2 1 x io-4 1 x io-7 
2-3 2 x io-4 2 x io-7 
3-4 1 x 1 0 - ~  2 x 10 .~  
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(Portsmouth 1987) 

25.1 5 A continuous beam is fured at the nodes 1 and 5, and simply-supported at the nodes 2, 
3 and 4, as shown below. 

Determine the two lowest resonant frequencies of vibration given the following: 

E = 2 x 10”N/m2 

p = 7860kg/m3 

Element A (m2) T(m4) 

1-2 1 x io-4 1 x 10.’ 
2-3 2 x 1 0 - ~  2 x io-7 
3 4  2 x 1 0 - ~  2 x io-7 
4-5 1 x 10.~ 1 x 10.~ 

(Portsmouth 1987. Honours) 

25.16 Calculate the three lowest natural frequencies of vibration for the continuous beam 
below, where 

A = 0.001 m2 

I = 1 x 1 0 - ~ m ~  

E = 2 x 10” N/m2 

p = 7860 kg/m3 
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