
21 Thick circular cylinders, discs 
and spheres 

21 .I Introduction 

Thin shell theory is satisfactory when the thickness of the shell divided by its radius is less than 
1/30. When the thickness: radius ratio of the shell is greater than this, errors start to occur and 
thick shell theory should be used. Thick shells appear in the form of gun barrels, nuclear reactor 
pressure vessels, and deep diving submersibles. 

21.2 Derivation of the hoop and radial stress equations for a thick- 
walled circular cylinder 

The following convention will be used, where all the stresses and strains are assumed to be tensile 
and positive. At any radius, r 

(T, = hoop stress 

or = radial stress 

o, = longitudinal stress 

E~ = hoopstrain 

E, = radial strain 

Figure 21.1 Thick cylinder. 
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E,  = longitudinzl strain (assumed to be constant) 

w = radial deflection 

From Figure 21.2, it can be seen that at any radius r, 

2n(r + w) - 2xr 
2xr 

Eo = 

or 

% = wfr (21.1) 

Similarly, 

(2 1.2) 
6w - dw 

“ . = 6 r - -  dr 

\ 

w- w 3;;y 1 w+dw 

Figure 21.2. Deformation at any radius r. 

From the standard stress-strain relationshps, 

EE, = 0, - v o e  - v u r  = aconstant 

E&, = - Ew - - o e -  VU,- W, (2 1.3) r 

(21.4) dw 
dr 

EE, = E- = o r -  Y U ~ -  VCJ= 



Derivation of the hoop and radial stress equations 

Multiplying equation (2 1.3) by r, 

Ew = o, x r - voz x r - vo, x r 

and differentiating equation (2 1.5) with respect to r, we get 

dw 
dr 

E- = og-voz-vo,+r 

Subtracting equation (2 1.4) from equation (2 1.6), 

do, do, dor 
dr dr dr 

(o,-o,)(l +v)+r--vr --vr - = o 

As E, is constant 

0, - vo, - vor = constant 

Differentiating equation (21.8)with respect to r, 

do, do, dor 
- - v - - v -  = o  
dr dr dr 

or 

- do, - - v[-&+--) do, do, 

dr 

Substituting equation (2 1.9) into equation (2 1.7), 

doe 'or (o,-or)(l +v)+r( l  - $)--vr(l +v)- = o 
d r  dr 

and dlviding equation (2 1.10) by (1 + v), we get 

o , - o r + r ( l  + v ) - - v r -  doe 'or = 0 
dr dr 
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(21.5) 

(21.6) 

(2 1.7) 

(21.8) 

(2 1.9) 

(21.10) 

(21.11) 

Considering now the radial equilibrium of the shell element, shown in Figure 2 1.3, 
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Figure 21.3 Shell element. 

2 0 ,  6, sin - to, r 6, - (a ,+ sa,)(r t 6r)aO = o (2 1.12) (;I 
Neglecting higher order terms in the above, we get 

(2 1.13) ‘or 0 6 - o r - r -  = 0 
dr 

Subtracting equation (2 1.1 1) from equation (2 1.12) 

do, do, 
- + -  = 0 (21.14) 
dr dr 

:. o, + or = constant = 2A (2 1.15) 

Subtracting equation (2 1.13) from equation (2 1.1 S), 

‘or 20, + r- = 2A 
dr 

or 

I d(orr’) - 2A -- - 
r dr 

= 2Ar d(cr r ’1 
dr 
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Integrating the above, 

( T ~  r 2  = Ar2  - B 

(2 1.16) B or = A - -  
r 2  

From equation (2 1.15), 

B 
(2 1.17) (TB = A + -  

r 2  

21.3 Lame line 

If equations (21.16) and (21.17) are plotted with respect to a horizontal axis, where 1/? is the 
horizontal axis, the two equations appear as a single straight line, where (T, lies to the left and (T, 

to the right, as shown by Figure 2 1.4. For the case shown in Figure 2 1.4, (I, is compressive and (T, 

tensile, where 

(T,, = internal hoop stress, which can be seen to be the maximum stress 

oBZ = external hoop stress 

+ vp ctress 

Figure 21.4 Lame line for the case of internal pressure. 
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To calculate oel and oe2, equate similar triangles in Figure 2 1.4, 

% I  - P - 

or 

Similarly, from Figure 2 1.4 

(2 1.1 8) 

(2 1.1 9) 

Problem 21.1 A thick-walled circular cylinder of internal dameter 0.2 m is subjected to an 
internal pressure of 100 MPa. If the maximum permissible stress in the 
cylinder is limited to 150 MPa, determine the maximum possible external 
diameter d,. 
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Solution 

100 - 150 - 
1 [z- i)  [&+4 

Figure 21.5 Lame line for thick cylinder. 

or 

[: + $) x [ 0.22 d;]  = 1.5 
0.22 d i  [..-$) 

[ s I :::;I = 1.5 

d,2+022 = 15 d2  0 2  
or ( 2 -  2 ,  

or 022(1+1.5) = di(1.5-1) 
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2 2 d2 = 0.2m 

d, = 0.447m 

Problem 21.2 If the cylinder in the previous problem were subjected to an external pressure 
of 100 MPa and an internal pressure of zero, what would be the maximum 
magnitude of stress. 

Solution 

1 NOW - 1 - - 25 and 7 = 5, 
d: 4 

hence the Lame line would take the form of Figure 2 1.6. 

t v e  stress 

t v e  stress 

Figure 21.6 Lame line for external pressure case. 

By equating similar triangles, 

-100 - ‘%I - 

(25 - 5 )  25 + 25 

where oBr is the internal stress which has the maximum magnitude 
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:. Oe, = -50 x loo = -250 MPa 
20 

Problem 21.3 A steel disc of external diameter 0.2 m and internal diameter 0.1 m is shrunk 
onto a solid steel shaft of external diameter 0.1 m, where all the dimensions are 
nominal. If the interference fit, based on diameters, between the shaft and the 
disc at the common surface is 0.2 mm, determine the maximum stress. 

For steel, E = 2 x 10” N/m2,v = 0.3 

Solution 

Consider the steel disc. In this case the radial stress on the internal surfaces is the unknown P,. 
Hence, the Lam6 line will take the form shown in Figure 2 1.7. 

Figure 21.7 Lame line for steel ring. 
Let, 

q,,,, = hoop stress (maximum stress) on the internal surface of the disc 

o,ld = radial stress on the internal surface of the disc 

Equating similar triangles, in Figure 2 1.7 

p c  - - Oald 

(100 - 2 5 )  100 + 25 

125 Pc 

75 
:_ OBld = - - - 1.667 Pc 
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Consider now the solid shaft. In this case, the internal diameter of the shaft is zero and as 1/02 - 
m, the Lam6 line must be horizontal or the shaft's hoop stress will be infinity, which is impossible; 
see Figure 21.8. 

-m-- 

Figure 21.8 Lam6 line for a solid shaft. 

Let 
P, = external pressure on the shaft 

:. 0, = a, = -P, (everywhere) (2 1.20) 

Let, 
wd = increase in the radius of the d m  at its inner surface 

w, = increase in the radius of the shaft at its outer surface 

Now, applying the expression 

W Eee = - - - ae - va, - vox 
r 

to the inner surface of the disc 

EWli - 
- %Id - varld 

5 x 10-2 

but, 

arld = -'c 

therefore 



Compound tubes 

2 x 10" x Wd 
= 1.667 P, +0.3 P, 

5 x 

wd = 4.918 x P, 

Similarly, for the shaft 

2 x lo1' ws 
= -P, (1 - v) 

5 x 

W ,  = -1.75 x 1 0 - l ~  P, 

525 

(21.21) 

(21.22) 

but w, - w, = 2 x 10.~12 

(4.918 x io-" + 1.75 x 10-l~)  P, = 1 x 10 .~  

:. P, = 150 MPa 

Maximum stress is 

oBld = 1.667 P, = 250 MPa 

21.4 Compound tubes 

A compound tube is usually made from two cylinders of different materials where one is shrunk 
onto the other. 

Problem 21.4 A circular steel cylinder of external diameter 0.2 m and internal diameter 0.1 
m is shrunk onto a circular aluminium alloy cylinder of external diameter 0.1 
m and internal diameter 0.05 m, where the dimensions are nominal. 

Determine the radial pressure at the common surface due to shrinkage alone, 
so that when there is an internal pressure of 300 MPa, the maximum hoop 
stress in the inner cylinders is 150 Mpa. Sketch the hoop stress distributions. 
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For steel, E, = 2 x 10" N/mz, v, = 0.3 

For aluminium alloy, E, = 6.7 x 10" N/m2, v, = 0.32 

Solution 

0: = the hoop stress due to pressure alone 

0: = the hoop stress due to shnnkage alone 

cre,2s = hoop stress in the steel on the 0.2 m diameter 

(T~ ,~ ,  
= hoop stress in the steel on the 0.1 m diameter 

or.2, - - radial stress in the steel on the 0.2 m diameter 

or,ls = radial stress in the steel on the 0.1 m diameter 

(T~,~,  = hoop stress in the aluminium on the 0.1 m diameter 

or,l, = radial stress in the aluminium on the 0.1 m diameter 

oo,5a = hoop stress in the aluminum on the 0.05 m diameter 

or.S, = radial stress in the aluminium on the 0.05 m diameter 

Consider first the stress due to shnnkage alone, as shown in Figures 2 1.9 and 2 1.10. 

Figure 21.9 Lame line for aluminium alloy tube. 
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Figure 21.10 Lame line for steel tube, due to shrinkage with respect to e. 

Equating similar triangles in Figure 2 1.9. 

1 
% , 5 a  - - PCS 

- 

(2 1.23) 400 + 400 400 - IO0 

1 
%,sa  - - -2.667 Pcs 

Similarly, from figure 2 1.9, 

4, la - PcA - - 

(2 1.24) 400 + 100 400 - 100 

S 
% i a  - - -1.667 Pcl 

Equating similar triangles in Figure 2 1.10. 

s 

Oe, is - - P C 1  

(2 1.25) 100 + 25 100 - 25 

1 
% , I &  - - 1.667 Pcs 

Consider the stresses due to pressure alone 

P, = internal pressure 

P,' = pressure at the common surface due to pressure alone 

The  la^ lines will be as shown in Figures 2 1 . 1  1 and 2 1.12. 
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Figure 21.11 Lame line in aluminium alloy, due to pressure alone. 

Figure 21.12 Lame line for steel, due to pressure alone. 

Equating similar triangles in Figure 2 1.1 1. 

P - p P  - 0,qlU+ P 
- 

400- 100 400+ 100 

300- ep o,&,+ 300 or - - (2 1.26) 
300 500 

or o8ql0 = 200- 1.667ep 

Similarly, from Figure 2 1.1 1, 

P - p P  oBq5u+ P - -  - 
300 800 



Compound tubes 

300- p p  - ~ 8 q ~ ~ +  300 
300 800 

- 

8 
3 

01 08qk = -(300- e')- 300 

(T,&~ = 500 - 2.6674' 

Similarly , from Figure 2 1.12, 

ep P 
de,is - - 

100+ 25 100- 25 

(T:,~, = 1.6674' 

Owing to pressure alone, there is no interferencefit, so that 

P w,p = w, 

Now 

wsp = (1.667 Pp + 0.3 PPI 
2 x loll 

or wS = 4 . 9 1 7 ~ 1 0 - l ~  Pp 

Similarly 

or 
0.05 ( ( T & ~  + 0.32e') 

w,p = 
6.7 x 10" 

529 

(2 1.27) 

(2 1.28) 

(2 1.29) 
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- - 0'05 (200- 1.667pp+ 0.32Pp) 
6.7 x 10'' 

w,P = 1.493 x lo-'' - 1.0 x 1 0-I2 Pp 

Equating (21.29) and (21.30) 

4 . 9 1 7 ~  e' = 1.493~ lo-''- 1 .0~  

(2 1.30) 

(2 1.3 1) 

:. 4' = I O O M P ~  

Substituting equation (21.3 1) into equations (2 1.26) and (2 1.27) 

cre,5a = 500 - 2.667 x 100 = 233.3 MPa (2 1.32) 

= 200 - 1.667 x 100 = 33.3 MPa (21.33) F 
%,la 

Now the maximum hoop stress in the inner tube lies either on its internal surface or its external 
surface, so that either 

(21.34) r 
0 e . i a  + 4 , i a  = 150 

or 
F 

( I ~ , ~ ~  + = 150 

Substituting equations (2 1.32) and (2 1.24) into equation (2 1.34), we get 

33.3 - 1.667 P,' = 150 

or P i  = -70 MPa 

Substituting equations (21.33) and (21.23) into equation (21.39, we get 

233.3 - 2.667 P: = 150 

(21.35) 

:. Pc' = 31.2 MPa 
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i.e. P,’ = 3 1.2 MPa, as P,’ cannot be negative! 

P, = P,’ + P,  = 31.2 + 100 = 131.2 MPa (21.36) F 

%,Lv - P,‘ + PCt’ - 
25 + 25 100 - 25 

oa ,. = 87.5 MPa 

oe,,> = 1.667 [P: + PcF) = 218.7 MPa 

( T ~ , , ~  = 200 - 1.667 (P: + PcF) = -18.7 MPa 

oe,50 = 500 - 2.667 (P: + P,‘) = 150 MPa 

Figure 21.13 Hoop stress distribution. 

21.5 Plastic deformation of thick tubes 

The following assumptions will be made in this theory: 

1. 
2. 
3. 

Yielding will take place according to the maximum shear stress theory, (Tresca). 
The material of construction will behave in an ideally elastic-plastic manner. 
The longitudinal stress will be the ‘minimax’ stress in the three-dimensional system of 
stress. 
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For this case, the equilibrium considerations of equation (2 1.13) apply, so that 

Thick circular cylinders, discs and spheres 

'or o o - o r - r -  = 0 
dr 

Now, according to the maximum shear stress criterion of yield, 

oe - or = Gyp 

OB = oyp + 0, 

Substituting equation (21.38) into equation (21.37), 

'or o y p + o r - o r - r -  = 0 
dr 

dr 
= 7 

or = oyp In r + C 

For the case of the partially plastic cylinder shown in Figure 2 1.14, 

at r = R,, or = -Pz 

Substituting this boundary condition into equation (2 1.39), we get 

-P, = oYp In R, + C 

therefore 

Similarly, from equation (2 1.38), 

(21.37) 

(21.38) 

(21.39) 

(21.40) 

(21.41) 
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where, 

R, = internalradius 

R, = outer radius of plastic section of cyhder  

R, = external radius 

P, = internal pressure 

P, = external pressure 

Figure 21.14 Partially plastic cylinder. 

The vessel can be assumed to behave as a compound cylinder, with the internal portion 
behaving plastically, and the external portion elastically. The Lami line for the elastic portion of 
the cylinder is shown in Figure 2 1.15. 

Figure 21.15 Lam6 line for elastic zone. 
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In Figure 21.15, 

6, = elastic hoop stress at r = R ,  

so that according to the maximum shear stress criterion of yield on this radius, 

0.vp = 68, + p2 

From Figure 2 1.1 5 

therefore 

[Rf - R;) 

(2 1.42) 

(2 1.43) 

Substituting equation (21.43) into equation (21.42), 

P ,  = O.~,,(R; - R;) / (2Ri) (2 1.44) 

Consider now the portion of the cylinder that is plastic. Substituting equation (2 1.44) into equation 
(2 1.4 l), the stress distributions in the plastic zone are given by: 

To find the pressure to just cause yield, put 

(2 1.45) 

(2 1.46) 

or = -P, when r = R ,  

where P, is the internal pressure that causes the onset of yield. Therefore, 
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(21.47) p 1  = GY+[$) + [ R3 ;R; - R2 ,)] 

but, if yield is only on the inside surface, 

R ,  = R, 

in (21.61), so that, 

p ,  = Gyp (K - R:) 1 (zR3’)) (21.48) 

To determine the plastic collapse pressure P,, put R, = R, in equation ( 2  1.47), to give 

PP = =yr ln [ :) (2 1.49) 

To determine the hoop stress dlstribution in the plastic zone, oeP, it must be remembered that 

Gyp = Ge - G, 

therefore 

Gep = oyp {I + In (R3 / Ri)} (21.50) 

Plots of the stress distributions in a partially plastic cylinder, under internal pressure, are shown 
in Figure 21.16. 

Figure 21.16 Stress distribution plots. 
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Problem 21.5 

Thick circular cylinders, discs and spheres 

A circular cylinder of 0.2 m external diameter and of 0.1 m internal diameter 
is shrunk onto another circular cylinder of external diameter 0.1 m and of bore 
0.05 m, where the dimensions are nominal. If the interference fit is such that 
when an internal pressure of 10 MPa is applied to the inner face of the inner 
cylinder, the inner face of the inner cylinder is on the point of yielding. What 
internal pressure will cause plastic penetration through half the thickness of the 
inner cylinder. It may be assumed that the Young's modulus and Poisson's ratio 
for both cylinders is the same, but that the outer cylinder is made of a higher 
grade steel which will not yield under these conditions. The yield stress of the 
inner cylinder may be assumed to be 160 MPa. 

Solution 

The Lam6 line for the compound cylinder at the onset of yield is shown in Figure 2 1.17. 

Figure 21.17 Lami line for compound cylinder. 

InFigure 21.17, 

oI = hoop stress on inner surface of inner cylinder. 

0, = hoop stress on outer surface of inner cylinder. 

0, = hoop stress on inner surface of outer cylinder. 

As yield occurs on the inner surface of the inner surface when an internal pressure of 50 MPa is 
applied, 

0, - (-100) = 160 

:. al = 60 MPa 

Equating similar triangles in Figure 2 1.17, we get 
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0, + 100 100 - P, - - -  
400 + 400 400 - 100 

160 x 300 = 100 - p, 

(21.5 1) 800 

:. P, = 40 MPa 

Similarly from Figure 2 1.17 

0* + 100 100 - P, 
- - 

(2 1.52) 400 + 100 400 - 100 

(T2 = 0 

Also from Figure 2 1.17, 

0 3  - - pc 
100 + 25 100 - 25 

(21.53) 
:. o3 = 400 x 125 = 66.7 MPa 

75 

Consider, now, plastic penetration of the inner cylinder to a diameter 0.075. The Lam6 line in the 
elastic zones will be as shown in Figure 2 1.17. From Figure 2 1.18, 

ob + P, = 160 

Figure 21.18 Lame line in elastic zones. 
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therefore 

:. o6 = 160 - P ,  

Similarly 

160 
400 - 100 400 + 400 800 

- - -  p3 - p2 - ‘6 ’ ‘ 3  - 

:. P3 

Also from Figure 2 1. 

‘4 

100 + 25 

= 60 + P2 

8 

- - p2 
100 - 25 

or 0, = 1.667 Pz 

Substituting equation (21.56) into equation (21.58), we get 

o4 = 1.667 (P ,  - 60) 

or o4 = 1.667 P3 -100 

Also from equation (2 1.55) 

p3 - p ,  - 160 
100 + 400 400 - 100 800 

- -  ‘5 + p3 - 

:. = 100 - P ,  

Now, 

r w = E (Ge - VOJ 

which will be the same for both cylinders at the common surface, i.e., 

(2 1.54) 

(2 1.55) 

(2 1.56) 

(21.57) 

(2 1.58) 

(21.59) 

11- - {(os - .*) - .(P2 - pc)} = - (04 - 03) - v(P2 - P c i  
1 
E 
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Substituting equations (21.52), (21.53), (21.58) and (21.59) into the above, we get 

or 

100 - P, - 0 = 1.667 P, - 100 - 66.7 

2.667 P, = 100 + 100 + 66.7 

P, = 100 

Consider now the yielded portion 

or = oY,, In r + c 

o.,,, = 160 

at r = 0.0375 m, 

or = -P, = -100 

or -100 = 160 In (0.0375) + C 

C = -100 + 525.3 

:. C = 425.3 

Now, at r = 0.025m, 

-P = 160 In (0.025) + 425.3 

= -590.2 + 425.3 

P = 164.9 MPa 

which is the pressure to cause plastic penetration. 

Problem 21.6 Determine the internal pressure that will cause complete plastic collapse of the 
compound cylinder given that the yield stress for the material of the outer 
cylinder is 700 m a .  
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Solution 

Now, 

Thick circular cylinders, discs and spheres 

pP = OYP In [ :) (21.60) 

= Oyp. In [ 2) + Oypl In [ ;) 
= 700 In (g) + 160 In (x) 

0.05 0.0375 

= 485 + 46 

P, = 531 MPa 

which is the plastic collapse pressure of the compound cylinder. 

21.6 Thick spherical shells 

Consider a thick hemispherical shell element of radius r, under a compressive radial stress P, as 
shown inFigure 21.19. 

Figure 21.19 Thick hemispherical shell element. 
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Let w be the radial deflection at any radius r, 

so that 

hoopstrain = w/r 

and 
mu 

rahalstrain = - 
dr 

From three-dimensional stress-strain relationshps, 

W E -  = O - V O + V P  
r 

and 

= -P - 2 v o  

Now 

Ew = o r - v o  r + v P  r 

which, on differentiating with respect to r, gives 

dw do do dP E- = o + r - - y o - v r - + v P + v r -  
dr dr dr dr 

= ( 1 - v )  o - r -  + v  P + r -  ( 3 ( 3 
Equating (2 1.62) and ( 2  1.63), 

-P  - 2vo = (1 - v)  ( o - r - ;) + v ( P + r $ )  

or 

d o  dP 
dr dr 

(1  + v ) ( o + P ) + r ( I  - v ) - + v r - = O  

(21.61) 

(2 1.62) 

(21.63) 

( 2  1.64) 
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Considering now the equilibrium of the hemispherical shell element, 

0 x 2xr x dr = P x x r 2  - ( P + d P )  x x x ( r + d r ) 2  

Neglecting higher order terms, equation 21.65 becomes 

dP 
(Z + P = ( - r  12) - 

dr 

Substituting equation (2 1.66) into equation (2 1 .a), 

-(r/2) (dP/dr) (1 + v) + r (1 - v) (doldr) + vr (dPldr) = 0 

or 

= o  do 1 dP 
dr 2 dr 
- -  - -  

which on integrating becomes, 

(Z - PI2 = A 

Substituting equation (2 1.68) into equation (2 1.66) 

3PJ2 + A = (-rJ2) (dP/dr) 

or 

or 

which on integrating becomes, 

P x r 3  = -2Ar3/3  + B 

or 
P = -2AJ3 + BJ? 

(2 1.65) 

(2 1.66) 

(2 1.67) 

(21.68) 

(2 1.69) 



Rotating discs 

and o = 2A13 f B1(2?) 
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(21.70) 

21.7 Rotating discs 

These are of much importance in engineering components that rotate at high speeds. If the speed 
is high enough, such components can shatter when the centrifugal stresses become too large. The 
theory for thick circular cylinders can be extended to deal with problems in this category. 

Consider a uniform thickness disc, of density p, rotating at a constant angular velocity w. 

From 

and, 

W E - = 0, - VG, 
r 

or, 

Ew = o, x r - vo, x r 

Differentiating equation (2 1.73) with respect to r, 

dw doe ‘or E - =  G, + r- - vo, - vr- 
dr dr dr 

Equating (21.71) and (21.74), 

Considering radial equilibrium of an element of the disc, as shown in Figure 2 1.20, 

20, x dr x sin [ $) + or x r x dB 

(2 1.71) 

(21.72) 

(2 1.73) 

(2 1.74) 

(21.75) 

- (or + do,) (r + dr)d6 = p x w2 x r 2  x dr x d e  
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Figure 21.20 Element of disc. 

In the limit, t h s  reduces to 

(2 1.76) ‘ o r  oe - a, - r - = p o v  
dr 

Substituting equation (2 1.76) into equation (2 1.75), 

[ r 2 + po2r2) (1  + v) + r - doe - vr - ‘or = 0 
dr dr 

or, 

do, do, 

d r d r  
- + -  - - -po2r2 (1 + v) 

which on integrating becomes, 

0, + 0, = -(po2r2/2) (1 + v) + 2A (2 1.77) 

Subtracting equation (21.76) from equation (21.77), 

‘ o r  2or + r - = -(po2r2/2) (3 + v) + 2A 
dr  

or, 

- 1 ‘ (or  x r 2 )  - - P o 2  r2 (3 + v) + 2A 
r d r  2 
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which on integrating becomes, 

or  r2 = - ( p o 2 r 4 / 8 ) ( 3 + v ) + A r 2  - B (21.78) 

or 

or  = A -  ~ / r ~ -  (3++o2r2 /8 )  

and, 
oe = A +  B / r 2 -  (1+3v)(po2r2 /8)  (21.79) 

Problem 21.7 Obtain an expression for the variation in the thickness of a disc, in its radial 
direction, so that it will be of constant strength when it is rotated at an angular 
velocity w. 

Solution 

Let, 
to = thickness at centre 

t = thickness at a radius r 

t + dt = thickness at a radius r + dr 

(5 = stress = constant (everywhere) 

Consider the radial equilibrium of an element of this disc at any radius r as shown in Figure 2 1.2 1. 

Figure 21.21 Element of constant strength disc. 
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Resolving forces radially 

Thick circular cylinders, discs and spheres 

20 x t x dr sin [ $) + otr d e  = o(r + dr) ( t  + dt) d e  + po’r’t d e  dr 

Neglecting hgher order terms, this equation becomes 

otdt = ordt + otdr + pw’rtdr 

or 

which on integrating becomes, 

In t = -po2r2t/(20) + In c 

Now, at r = 0, t = to :. C = to 

Hence, 

= t o e ( - p ~ 2 r 2 / ~ ~ )  

21.7.1 Plastic collapse of rotating discs 

Assume that o, > on and that plastic collapse occurs when 

where o yp is the yield stress. 

Let R be the external radius of the disc. Then, 

from equilibrium considerations, 

dor  o.~,, - or - r - = pwZr2 
dr 

(21.80) 
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or, 

PdG, = [ (G,~,, - ar - pw2r2} dr 

Integrating the left-hand side of the above equation by parts, 

r or - [ G, d r  = G,,, r - or dr po'r3/3 + A 

therefore 

G, = G-",, - p o 2 r 2 / 3  + A h  (21.81) 

For a solid disc, at r = 0, or f 00, or the disc will collapse at small values of w. Therefore 

A = O  

and 

or = G - p o 2 r 2 / 3  
.VP 

at r = R,  err = 0;  therefore 

0 = G,,,, - pw2R2/3  

(21.82) 

where, w is the angular velocity of the disc, which causes plastic collapse of the disc. 

for equation (21.81) are: 

at r = R,, 0, = 0; therefore 

For an annular disc, of internal radius R ,  and external radius R,, suitable boundary conditions 

A = (po2R:/3 - cy,#, 
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:. O, = D YP - po2r2/3 + (po2R:/3 - crYA (RJr) (21.83) 

at r = R,, or = 0; therefore 

0 = cy,, - pw2R,2/3 + (po2R:/3 - n) (R,/R2) 

Hence, w = jm (21.84) 

21.8 Collapse of rotating rings 

Consider the radial equilibrium of the thm semicircular ring element shown in Figure 2 1.2 1 .  

Figure 21.21 Ring e!ement. 

Let, 

a = cross-sectional area of ring 

R = mean radius of ring 



Collapse of rotating rings 

Resolving forces vertically 

ci0 x a x 2 = *PO’ R’ a de sin8 Io 
= pa’ R 2  a [-cos81 

= 2p02 R’ a 

:. ci8 = pa’ R’ 

at collapse, 

549 

(21.85) 

where o is the angular velocity required to fracture the ring. 


