
20 Torsion of non-circular sections 

20.1 Introduction 

The torsional theory of circular sections (Chapter 16) cannot be applied to the torsion of non- 
circular sections, as the shear stresses for non-circular sections are no longer circumferential. 
Furthermore, plane cross-sections do not remain plane andundistorted on the application of torque, 
and in fact, warping of the cross-section takes place. 

As a result of h s  behaviour, the polar second moment of area of the section is no longer 
applicable for static stress analysis, and it has to be replaced by a torsional constant, whose 
magnitude is very often a small fraction of the magnitude of the polar second moment of area. 

20.2 To determine the torsional equation 

Consider a prismatic bar of uniform non-circular section, subjected to twisting action, as shown 
in Figure 20.1. 

Figure 20.1 Non-circular section under twist. 

Let, 
T = torque 

u = displacement in the x direction 

v = displacement in they direction 

w = displacement in the z direction 

= the warping function 

8 = rotation I unit length 

x, y, z = Cartesian co-ordinates 
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Figure 20.2 Displacement of P. 

Consider any point P in the section, which, owing to the application of T, will rotate and warp, 
as shown in Figure 20.2: 

u = -yze 

v = xze 
(20.1) 

due to rotation, and 

w = 8 x ~ ( x ,  y)) 

= e x w  
(20.2) 

due to warping. The theory assumes that, 

E, = EY = EZ = Y, = 0 (20.3) 

and therefore the only shearing strains that exist are yn and y,, which are defined as follows: 

y,, = shear strain in the x-z plane 

(20.4) ( 2  - y )  
aw au  - 

ax az 
= - + -  - 
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y, = shear strain in the y-z plane 

(20.5) 
= - + a ~  aw = e(?+,) 

ay az 

The equations of equilibrium of an infinitesimal element of dimensions dx x dy x dz can be 
obtained with the aid of Figure 20.3, where, 

Txr = Ta 

and 

Tyz = Tzy 

Resolving in the z-direction 

- x  h, & x h x & + - n h x & x &  h X Z  = 0 
s i?X 

or 

- + -  h X ?  h y z  = 0 (20.6) 
ax s 

Figure 20.3 Shearing stresses acting on an element. 
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However, from equations (20.4) and (20.5): 

and 

Let, 

-- = 2.. 
ax ay 

495 

(20.7) 

(20.8) 

(20.9) 

(20.10) 

where x is a shear stress function. 

following is obtained: 
By differentiating equations (20.9) and (20.10) with respect to y and x,  respectively, the 

a2Y 1 - - -  a:x a:x a2y 
ax* ay* a x .  ay ax . ay 
- + -  = - -  

Equation (20.1 1) can be described as the torsion equation for non-circular sections. 
From equations (20.7) and (20.8): 

rxz = G9- ax 
ay 

(20.1 1) 

(20.12) 

and 

rF = -G9- ?Y 
ax (20.13) 
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Equation (20.1 l), which is known as Poisson's equation, can be put into the alternative form of 
equation (20.14), which is known as Laplace's equation. 

a2y a2y - + -  = 0 
ax2 ay2  (20.14) 

20.3 To determine expressions for the shear stress t and 
the torque T 

Consider the non-circular cross-section of Figure 20.4. 

Figure 20.4 Shearing stresses acting on an element. 

From Pythagoras' theorem 

t = shearing stress at any point (x, y )  on the cross-section 

= 4- (20.15) 

From Figure 20.4, the torque is 

T = 11 (txz x Y - Tyz x x ) d r . d y  (20.16) 

To determine the bounduly value for x,  consider an element on the boundary of the section, as 
shown in Figure 20.5, where the shear stress acts tangentially. Now, as the shear stress 
perpendicular to the boundary is zero, 

ty sincp + txz coscp = 0 
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Figure 20.5 Shearing stresses on boundary. 

or 

-.ex&(-$) +Cox..(..) = 0 
ax a y h  

or 

GO* = 0 
h 

where s is any distance along the boundary, i.e. x is a constant along the boundary. 

Problem 20.1 Determine the shear stress function x for an elliptical section, and hence, or 
otherwise, determine expressions for the torque T, the warping function wand the 
torsional constant J. 

Figure 20.6 Elliptical section. 
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Solution 

The equation for the ellipse of Figure 20.6 is given by 

and this equation can be used for determining the shear stress function x as follows: 

2 2 

x = c ( + ; + y )  a -  

(20.17) 

(20.18) 

where C is a constant, to be determined. 

be determined by substituting equation (20.18) into (20.1 l),  i.e. 
Equation (20.18) ensures that xis constant along the boundary, as required. The constant C can 

c(; + $) = -2 

therefore 

- a 2 b 2  
a 2  + b 2  

c =  

and 

a 2 b z  
(a’ + b Z )  

x =  

where x is the required stress function for the elliptical section. 
Now, 

(20.19) 

& - GO 2xb2 
ax a’ + b 2  

Tvz = -GO- - 
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and 

= -G8[[ 2x’b’ + 2y’a’ 
a’ i b’ a’ + b’ 

a’b’ 
a’ + b’ 

= -2G8 

but 

- second moment of area about x-x nab 
4 

[y’dA = Ixx = - - 

and, 

- second moment of area about y-y nu 3b 
4 

p2dA = Iw = - - 

therefore 

T = -2G0 a’b’ (7 + 7) 
a’ + 6’ 

-GBna 3b 
a’ + b’ 

T =  

therefore 

-2a’y -(a2 + b2)T 
Txz = 

(a’ + b’) lra3b3 

- 2TY 
Txz - - 

nab 

-2Tx 
T Y *  = - 

nu 3b 
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(20.20) 

(20.21) 

(20.22) 
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By inspection, it can be seen that 5 is obtained by substituting y = b into (20.2 l), provided a > b. 

Q = maximum shear stress 

- 2T 
nab ’ - -  

and occurs at the extremities of the minor axis. 
The warping function can be obtained from equation (20.2). Now, 

2YU2b2 - - -  dyr - y  
(a2 + b2)b2 ax 

i.e. 

@ = ( - 2 ~ ’  + a’ + b’) 
ax (u’ + b’) 

Y - 

therefore 

Similarly, from the expression 

the same equation for W, namely equation (20.24), can be obtained. Now, 

(20.23) 

(20.24) 

w = warpingfunction 
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therefore 

oxy (20.25) 
(b’ - a’) 
(a2 + b’) 

w =  

From simple torsion theory, 

(20.26) 
T - = GO 
J 

or 

T = G8J (20.27) 

Equating (20.20) and (20.27), and ignoring the negative sign in (20.20), 

G h a  ’b 3 

(a’ + b’) 
GBJ = 

therefore 

J = torsional constant for an elliptical section 

J =  (20.28) 
na3b3 

(a’ + b2)  

Problem 20.2 Determine the shear stress function x and the value of the maximum shear 
stress f for the equilateral triangle of Figure 20.7. 

Figure 20.7 Equilateral hiangle. 



502 Torsion of non-circular sections 

Solution 

The equations of the three straight lines representing the boundary can be used for determining x, 
as it is necessary for x to be a constant along the boundary. 

Side BC 
This side can be represented by the expression 

(20.29) 

Side AC 
This side can be represented by the expression 

x - f i y - -  2a = 0 
3 

Side AB 
This side can be represented by the expression 

x + f i y  - 

(20.30) 

(20.3 1) 

The stress function x can be obtained by multiplying together equations (20.29) to (20.31): 

x = C(x+a/3)  x ( x - f i y - 2 d 3 )  x L + f i y - 2 ~ / 3 )  

= C { ~ 3 - 3 ~ Y ) - a ~ 2 + ~ 2 ) + 4 a ’ / 2 7 }  
(20.32) 

From equation (20.32), it can be seen that x = 0 (i.e. constant) along the external boundary, so that 
the boundary condition is satisfied. 

Substituting x into equation (20.1 I), 

C(6x - 2 ~ )  + C ( - ~ X  - 2 ~ )  = -2 

- 4aC = -2 

c = l / (2a) 

therefore 

2a 
2a 2 27 
1 1 x - k’ - 3 3 3 4  - - (Y’ + y2) + - (20.3 3 )  
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Now 

1 
2 

(-6x37) - - x 2y} 

Along 

y = 0, r, = 0. 

Now 

therefore 

(20.34) 

(20.35) 

As the triangle is equilateral, the maximum shear stress i can be obtained by considering the 
variation of ‘ I~  along any edge. Consider the edge BC (i.e. x = -a /3) :  

T,,, (edge BC) = -- 

(20.36) 

where it can be seen from (20.36) that .i. occurs at y = 0. Therefore 

.i. = -G8af2 (20.37) 
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20.4 Numerical solution of the torsional equation 

Equation (20.1 1) lends itself to satisfactory solution by either the finite element method or the 
finite difference method and Figure 20.8 shows the variation of x for a rectangular section, as 
obtained by the computer program LAPLACE. (The solution was carried out on an Apple II + 
microcomputer, and the screen was then photographed.) As the rectangular section had two axes 
of symmetry, it was only necessary to consider the top right-hand quadrant of the rectangle. 

Figure 20.8 Shear stress contours. 

20.5 Prandtl's membrane analogy 

Prandtl noticed that the equations describing the deformation of a thm weightless membrane were 
similar to the torsion equation. Furthermore, he realised that as the behaviour of a thin weightless 
membrane under lateral pressure was more readily understood than that of the torsion of a non- 
circular section, the application of a membrane analogy to the torsion of non-circular sections 
considerably simplified the stress analysis of the latter. 

Prior to using the membrane analogy, it will be necessary to develop the differential equation 
of a thm weightless membrane under lateral pressure. This can be done by considering the 
equilibrium of the element AA ' BB 'in Figure 20.9. 
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Figure 20.9 Membrane deformation. 

Let, 

F = membrane tension per unit length (N/m) 

Z = deflection of membrane (m) 

P = pressure (N/m2) 

I 
az 

( ax ax 

Component of force on AA ’ in the z-direction is F x - x dy 
ax 

T 1 az a2z 
Component of force on BB ’in the z-direction is F - + 7 x dx dy 
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az 
aY 

Component of force on AB in the z-direction is F x - x dx 

az a2z 
Component of force on A ' B 'in the z-direction is F x 

Resolving vertically 

therefore 

a2z a2z - P 

ax2 ay2 F 
- + -  - -- (20.38) 

If 2 = x in equation (20.38), and the pressure is so adjusted that P/F = 2, then it can be seen that 
equation (20.38) can be used as an analogy to equation (20.11). 

From equations (20.12) and (20.13), it can be seen that 

T, = G 8 x slope of the membrane in the y direction 

T~ = G 8 x slope of the membrane in the x direction 

Now, the torque is 

(20.39) 

(20.40) 

Consider the integral 

Now y and dx are as shown in Figure 20.10, where it can be seen that y x dx is the area of Is 
section. Therefore the 

115 x y x dx x dy = volume under membrane (20.41) 
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Figure 20.10 

Similarly, it can be shown that the volume under membrane is 

[[g x x x d r  x dy (20.42) 

Substituting equations (20.41) and (20.42) into equation (20.40): 

T = 2G8 x volume under membrane (20.43) 

Now 

- -  T - GO 
J 

which, on comparison with equation (20.43), gives 

J = torsional constant 

= 2 x volume under membrane (20.44) 

20.6 Varying circular cross-section 

Consider the varying circular section shaft of Figure 20.1 1, and assume that, 

u = w = o  

where, 

u = radial deflection 
v = circumferential deflection 
w = axial deflection 
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Figure 20.1 1 Varying section shaft. 

As the section is circular, it is convenient to use polar co-ordinates. Let, 

E, = radial strain = 0 

E, = hoopstrain = 0 

E, = axialstrain = 0 

y, 

r = any radius on the cross-section 

= shear strain in a longitudinal radial plane = 0 

Thus, there are only two shear strains, yle and y&, which are defined as follows: 

av  v 

av  
aZ 

yle = shearstrainintheraplane = - - - 
ar r 

ye= = shear strain in the 8-z plane = - 

But 

T, = Gy, = .(E-:) (20.45) 

and 
av 
aZ 

TO= = C;r Or = G- (20.46) 
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From equilibrium considerations, 

whch, when rearranged, becomes 

Let K be the shear stress function 

where 

and 

which satisfies equation (20.47). 
From compatibility considerations 

or 

From equation (20.49) 

From equation (20.48) 

(20.47) 

(20.48) 

(20.49) 

(20.50) 

(20.5 1) 

(20.52) 
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Substituting equations (20.59) and (20.52) into equation (20.50) gives 

or 

From considerations of equilibrium on the boundary, 

T~ cosa - T,sina = 0 

where 

(20.53) 

(20.54) 

dz cosa = - 
ds 

(20.55) 
dr sina = - 
ds 

Substituting equations (20.48), (20.49) and (20.55) into equation (20.54), 

or 
2 d K  
r 2  d 
--= 0 

i.e. K is a constant on the boundary, as required. 

to equation (20.11). 
Equation (20.53) is the torsion equation for a tapered circular section, which is of similar form 
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20.7 Plastic torsion 

The assumption made in this section is that the material is ideally elastic-plastic, as described in 
Chapter 15, so that the shear stress is everywhere equal to T,,~, the yield shear stress. As the shear 
stress is constant, the slope of the membrane must be constant, and for this reason, the membrane 
analogy is now referred to as a sand-hill analogy. 

Consider a circular section, where the sand-hill is shown in Figure 20.12. 

Figure 20.12 Sand-hill for a circular section. 

From Figure 20.12, it can be seen that the volume (Vol) of the sand-hill is 

1 
3 

Vol = --srR2h 

but 

T~~ = G0 x slope of the sand-hill 

where 

0 = twist/unit length - m 

G = modulus of rigidity - 0 

h 
:. T~,, = G0 - 

R 

or 

h = R.ryplGO 

and 

x R3r yp 

3G0 
Vol = 
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Now 

J = 2 x Vol = ~ R R ~ T , , / ( ~ C ~ )  

and 

Tp = GBJ = GO x 2lrR3rYp/(3G8) 

therefore 

Tp = 2rcR3~,,J3 

where T, is the fully plastic torsional moment of resistance of the section, which agrees with the 
value obtained in Chapter 4. 

Consider a rectangular section, where the sand-hill is shown in Figure 20.13. 

Figure 20.13 Sand-hill for rectangular section. 

The volume under sand-hill is 

V o l = - o b h - - ( - o x ~ ) x h x 2  1 1 1  
2 3 2  

1 a2h 
2 6 

ah 
6 

= -abh - - 

= -(36-a) 
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and 

or 

T~ = GO x slope of sand-hill = G8 x 2h/u 

h = -  =YP 

2G0 

therefore 

u (3b - “)ayp 

12G8 
Vol = 

Now 

J = 2 % V O ~  = a2(3b  - U ) T , , J ( ~ G ~ )  

and 

Tp = G8J 

therefore 

Tp = u2(3b - u)TY,,/6 

where Tp is the fully plastic moment of resistance of the rectangular section. 
Consider an equilateral triangular section, where the sand-hill is shown in Figure 20.14. 

(a) Plan 

(b) SeCtlon through A - A  

Figure 20.14 Sand-hill for triangular section. 
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Now 

T~~ = G6 x slope of sand-hill 

or 

and 

therefore, the volume of the sand-hill is 

9fiG8 

and 

a 3Tvp T,, = 2G8 x - 
90G8 

*a 3T.v,, q, = - 
9 0  

where T, is the fully plastic torsional resistance of the triangular section. 


