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Dedication

WHAT IS AN ENGINEER AND WHAT DO ENGINEERS DO?
The answer is in the word itself. An er word ending means “the practice of.” For example, a farmer farms, a
baker bakes, a singer sings, a driver drives, and so forth. But what does an engineer do? Do they engine? Yes they
do! The word engine comes from the Latin ingenerare, meaning “to create.“

About 2000 years ago, the Latin word ingenium was used to describe the design of a new machine. Soon after,
the word ingen was being used to describe all machines. In English, “ingen” was spelled “engine” and people
who designed creative things were known as “engine-ers”. In French, German, and Spanish today, the word for
engineer is ingenieur.

So What Is an Engineer?
An engineer is a creative and ingenious person.

What Does an Engineer Do?
Engineers create ingenious solutions to society’s problems.

This Book Is Dedicated to All the Future Engineers of the World.
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Preface

TEXT OBJECTIVES
This textbook has two main objectives. The first is to provide students with a clear presentation of the
fundamental principles of basic and applied engineering thermodynamics. The second is to help students develop
skills as engineering problem solvers by nurturing the development of their confidence with basic engineering
principles through the use of numerous solved example problems. Problem-solving skills are not necessarily
learned simply by routinely solving more and more problems. The understanding of proven problem-solving
strategies and techniques greatly accelerates the development of problem-solving skills. Throughout the text, learn-
ing assessment exercises are included that have proven to be effective in helping students to understand and
develop confidence in their ability to solve engineering thermodynamics problems.

To meet these objectives, explanations are occasionally more detailed than those found in other texts, because
common learning difficulties encountered by students have been anticipated. If students can understand the text
by simply reading it, then the instructor has more flexibility in selecting lecture material. For example, an
instructor might choose to develop a few salient points from the reading and then work a few interesting
example problems, rather than present a complete derivation of all the assigned reading material.

CULTURAL INFRASTRUCTURE
What engineers do has an enormous impact on society and the world. Understanding how the great challenges
of engineering were met in the past can help students understand the importance of the theory and practice of
modern engineering principles. This text presents the historical background, the current uses, and the future
importance of the thermodynamic topics treated. By understanding where ideas come from, how they were
developed, and what external forces shaped the resulting technology, students will better understand their role
as engineers of the future.

Engineering is an exciting and rewarding career. However, students occasionally become disenchanted with their
engineering course work because they are unable to see the connection between what they are studying and
what an engineer really does. To combat this problem, the thermodynamic concepts in this text are presented in
a straightforward logical manner, and then applied to real-world engineering situations that are both timely and
interesting.

TEXT COVERAGE
This text was designed for use in a standard two-semester engineering thermodynamics course sequence. The first
part of the text (Chapters 1–10) contains material suitable for a Basic Thermodynamics course that can be taken
by engineers from all majors. The second part of the text was designed for an Applied Thermodynamics course
in a mechanical engineering program. Chapters 17, 18, and 19 present several unique topics (biothermody-
namics, statistical thermodynamics, and coupled phenomena) for those wishing to glimpse the future of the
subject.

xiii



TEXT FEATURES

1. Style. To make the subject as understandable as possible, the writing is somewhat conversational and the
importance of the subject is evidenced in the enthusiasm of the presentation. The composition of the
engineering student body has been changing in recent years, and it is no longer assumed that the students
are all men and that they inherently understand how technologies (e.g., engines) operate. Consequently, the
operation of basic technologies is explained in the text along with the relevant thermodynamic material.

2. Significant figures. One of the unique features of this text is the treatment of significant figures. Professors
often lament about the number of figures provided by students on their homework and examinations. The
rules for determining the correct number of significant figures are introduced in Chapter 1 and are followed
consistently throughout the text. An example from Chapter 1 follows.

EXAMPLE 1.6
The inside diameter of a circular water pipe is measured with a ruler to two significant figures and is found to be 2.5 inches.
Determine the cross-sectional area of the pipe to the correct number of significant figures.

Solution
The cross-sectional area of a circle is A = πD2/4, so Apipe = π(2.5 inches)2/4 = 4.9087 in2, which must be rounded to 4.9 in2,
since the least accurate value in this calculation is the pipe diameter (2.5 inches), which has only two significant figures.

3. Chapter overviews. Each chapter begins with an overview of the material contained in the chapter.
4. Problem-solving strategy. A proven technique for solving thermodynamic problems is discussed early in the

text and followed throughout in the solved examples. The technique follows these steps:

5. Solved example problems. Over 200 solved example problems are provided in the text. These examples
were carefully designed to illustrate the preceding text material. A sample from Chapter 5 follows.

EXAMPLE P.1
Read the problem statement. An incandescent lightbulb is a simple electrical device. Using the energy rate balance on a
lightbulb, determine the heat transfer rate of a 100. W incandescent lightbulb.

Solution
Step 1. Identify and sketch the system (see Figure P.1 on the following page).
Step 2. Identify the unknowns. The unknown is _Q:

Step 3. Identify the type of system. It is a closed system.
Step 4. Identify the process connecting the system states. The bulb does not change its thermodynamic state, so its
properties remain constant. The process path (after the bulb has warmed to its operating temperature) is U = constant.

SUMMARY OF THE THERMODYNAMIC PROBLEM-
SOLVING TECHNIQUE

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.
Step 3. Identify the type of system (closed or open) you have.
Step 4. Identify the process that connects the states or stations.
Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).
Step 7. Calculate the value(s) of the unknown(s).
Step 8. Check all algebra, calculations, and units.

Sketch → Unknowns → System → Process → Equations → Solve → Calculate → Check
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Step 5. Write down the basic equations. The only basic equation thus far
available for a closed system rate process is Eq. (4.21), the general closed
system energy rate balance equation:

_Q − _W = d
dt
ðmuÞ+ d

dt
mV2

2gc

� �
+ d

dt
mgZ
gc

� �
= _U + _KE + _PE

Assume _KE = _PE = 0, and since U= constant, _U = 0. This reduces the gov-
erning energy rate balance equation for this problem to _Q − _W = 0:
Write any relevant auxiliary equations. The only relevant auxiliary equation
needed here is that the lightbulb has an electrical work input of 100. W, so
that _W = –100. W.
Step 6. Algebraically solve for the unknown(s): _Q = _W .
Step 7. Calculate the value(s) of the unknowns: _Q = _W = –100. W (the
minus sign tells us that the heat is leaving the system).
Step 8. A check of the algebra, calculations, and units shows that they are
correct.

6. Example problem exercises with answers. Immediately following each solved example, several exercises
are provided that are variations on the theme of the solved example. The answers to the exercises are also
provided so that the student can build confidence in problem solving. For example, the exercises for the
preceding example problem might look something like this:
a. What would be the heat transfer rate if the lightbulb in the previous example is replaced by a 20.0 W

fluorescent lightbulb? Answer: _Q = _W = –20.0 W.
b. How would the lightbulb in the previous example behave if it were put into a small, sealed, rigid,

insulated box? Answer: Since the box is insulated, the heat transfer rate would be zero.
c. How would the internal energy of the incandescent lightbulb change if it were put into a small, sealed,

rigid, insulated box? Answer: Then, since _Q = 0, _U = − _W = 100. W, and the internal energy increases
until the bulb overheats and fails.

7. Unit systems. Engineers today need to understand two types of units systems: classical Engineering English
units and modern metric SI units. Both are used in this text, with SI units used in many of the example and
homework problems.

8. Critical Thinking boxes. At various points in the chapters, special “Critical Thinking” boxes are introduced
to challenge the students’ understanding of the material. The example that follows is from Chapter 3.

9. Question-and-answer boxes. Students’ questions are anticipated at various points throughout the text and
are answered in a simple, direct manner. This example is from Chapter 4.

FIGURE P.1
Example P.1.

CRITICAL THINKING

If we chose the color of a system as a thermodynamic property, would it be an extensive or intensive property?

WHAT ARE HEAT AND WORK?

Heat is usually defined as energy transport to or from a system due to a temperature difference between the system and its
surroundings. This can occur by only three modes: conduction, convection, and radiation.

Work is more difficult to define. It is often defined as a force moving through a distance, but this is only one type of work
and there are many other work modes as well. Since the only energy transport modes for moving energy across a system’s
boundary are heat, mass flow, and work, the simplest definition of work is that it is as any energy transport mode that is
neither heat nor mass flow.1

1 Work can also be defined using the concept of a “generalized” force moving through a “generalized” displacement.
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10. Case studies in applied thermodynamics. Scattered throughout the text are numerous case studies
describing actual engineering applications of specific thermodynamic concepts. Typical case studies include
the following topics:

Supercritical wastewater treatment; The “drinking bird”; Heat pipes; Vortex tubes; A hypervelocity
gun; GE 90 aircraft engine; Stirling engines; Stanley steamer automobile; Forensic analysis.

11. Historical vignettes. The text also contains numerous short stories describing human side of the
development of important thermodynamic concepts and technologies. The following example is from
Chapter 14.

12. Chapter summaries. Each chapter ends with a summary (including relevant equations) that reviews the
important concepts covered in the chapter.

13. End-of-chapter problems:
■ Homework problems. At the end of each chapter, an extensive set of problems is provided that is

suitable for homework assignments or solved classroom examples. The homework problems include
traditional ones that have only one unique answer, as well as modern computer problems, design
problems, and writing to learn problems that allow students more latitude.

■ The computer problems allow students to use spreadsheets and equation solvers in modern
programming languages to address more complex problems requiring a range of solutions.

■ The design problems provide an opportunity for students to carry out a preliminary design requiring
the use of the material presented in the chapter.

■ Writing to learn problems have a dual function. They allow students to enhance their understanding of
the subject by expressing themselves verbally in short, written essays about topics presented in the
chapter, and they also develop students’ writing and communication skills.

■ Create and solve problems are designed to help students learn how to formulate solvable
thermodynamics problems from engineering data. Engineering education tends to focus only on the
process of solving problems. It ignores teaching the process of formulating solvable problems. However,
working engineers are never given a well-phrased problem statement to solve. Instead, they need to react
to situational information and organize it into a structure that can then be solved using the methods
learned in college.

14. Appendices. There are two appendices in this text. Appendix A provides a list of unit conversions. Since
thermodynamics is laced with a variety of technical terms, some having Greek or Latin origin, Appendix B
provides a brief introduction to the etymology of these terms, in the belief that understanding the meaning of
the words themselves enhances the learning of the subject matter.

15. “Thermodynamic Tables to accompany Modern Engineering Thermodynamics” is included with new copies of this
text. This booklet contains Appendices C and D, tables, and charts essential for solving the text’s
thermodynamics problems.

The United States uses more than 1017 (100 quadrillion) Btu of energy every year. But the really surprising fact
is that 45% of this energy ends up as waste heat dumped into the lakes, rivers, and atmosphere. Our energy
conversion technologies today are inefficient because we still rely on the burning of fossil fuels. As the 21st century
progresses and more and more countries strive to improve their standard of living, we will need to do a better job
of providing nonthermal energy sources. We can and will develop new energy-conversion technologies through a
detailed understanding and use of the principles of thermodynamics.

IS IT DANGEROUS TO STUFF A CHICKEN WITH SNOW?

The great British philosopher and statesman Sir Francis Bacon (1561–1626) was keenly interested in the possibility of using
snow to preserve meat. In March 1626, he stopped in the country on a trip to London and purchased a chicken. He had the
chicken killed and cleaned on the spot, then he packed it with snow and took it with him to London. Unfortunately,
the experiment caused his death only a few weeks later. The 65-year-old statesman apparently caught a chill while stuffing
the chicken with snow and came down with terminal bronchitis. Refrigeration was clearly not something to be taken lightly.
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Prologue

PARIS FRANCE, 10:35 AM, AUGUST 24, 1832
The nurse closed the door quietly behind her as she left his hospital room. She knew her patient was
very sick, because for the past two days, he had been irritable and lethargic and now he was com-
plaining of a fever and muscle cramps. His eyes looked sunken and he was constantly thirsty; yester-
day, he vomited for hours. Sadi Carnot was only 36 years old, but that day he would die of cholera.

Sadi Carnot was born June 1, 1796, in the Luxembourg Palace in Paris. His father, Lazare Carnot,
was one of the most powerful men in France and would eventually become Napoleon Bonaparte’s
war minister. He named his son Sadi simply because he greatly admired a medieval Persian poet
called Sa’di of Shiraz.

At the age of 18, Sadi graduated from the École Polytechnique military academy and went on to a
military engineering school. Sadi’s friends saw him as reserved, but he became lively and excited
when their discussions turned to science and technology.

After the defeat of Napoleon at Waterloo in October 1815, Sadi’s father was exiled to Germany and
Sadi’s military career stagnated. Unhappy at his lack of promotion and his superiors’ refusal to give
him work that allowed him to use his engineering training, he took a half-time leave to attend
courses at various institutions in Paris. He was fascinated by technology and began to study the the-
ory of gases.

After the war with Britain, France began importing advanced British steam engines, and Sadi realized
just how far French designs had fallen behind. He became preoccupied with the operation of steam
engines; in 1824, he published his studies in a small book entitled Reflections on the Motive Power of
Fire. At the time, his book was largely ignored, but today it represents the beginning of the field we
call thermodynamics.

Because Sadi Carnot died of infectious cholera, all his clothes and writings were buried with him.
Who knows what thermodynamic secrets still lie hidden in his grave?
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CHAPTER 1

The Beginning

CONTENTS

1.1 What Is Thermodynamics?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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1.8 Chemical Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9 Modern Units Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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1.1 WHAT IS THERMODYNAMICS?
Thermodynamics is the study of energy and the ways in which it can be used to improve the lives of people
around the world. The efficient use of natural and renewable energy sources is one of the most important
technical, political, and environmental issues of the 21st century.

In mechanics courses, we study the concept of force and how it can be made to do useful things. In thermo-
dynamics, we carry out a parallel study of energy and all its technological implications. The objects studied in
mechanics are called bodies, and we analyze them through the use of free body diagrams. The objects studied
in thermodynamics are called systems, and the free body diagrams of mechanics are replaced by system diagrams
in thermodynamics.

THERMO—WHAT?

The word thermodynamics comes from the Greek words θερμη (therme, meaning “heat”) and δυναμις (dynamis, meaning
“power”). Thermodynamics is the study of the various processes that change energy from one form into another (such as
converting heat into work) and uses variables such as temperature, volume, and pressure.

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00001-4
© 2011 Elsevier Inc. All rights reserved. 1



Energy is one of the most useful concepts ever developed.1 Energy can be possessed by an object or a system,
such as a coiled spring or a chemical fuel, and it may be transmitted through empty space as electromagnetic
radiation. The energy contained in a system is often only partially available for use. This, called the available
energy of the system, is treated in detail later in this book.

One of the basic laws of thermodynamics is that energy is conserved. This law is so important that it is called
the first law of thermodynamics. It states that energy can be changed from one form to another, but it can-
not be created or destroyed (that is, energy is “conserved”). Some of the more common forms of energy
are: gravitational, kinetic, thermal, elastic, chemical, electrical, magnetic, and nuclear. Our ability to effi-
ciently convert energy from one form into a more useful form has provided much of the technology we
have today.

1.2 WHY IS THERMODYNAMICS IMPORTANT TODAY?
The people of the world consume 1.06 cubic miles of oil each year as an energy source for a wide variety of uses
such as the engines shown in Figures 1.1 and 1.2.2 Coal, gas, and nuclear energy provide additional energy,
equivalent to another 1.57 mi3 of oil, making our total use of exhaustible energy sources equal to 2.63 mi3 of oil
every year. We also use renewable energy from solar, biomass, wind (see Figure 1.3), and hydroelectric, in
amounts that are equivalent to an additional 0.37 mi3 of oil each year. This amounts to a total worldwide

FIGURE 1.1
A cutaway of the Pratt & Whitney F-100 gas turbine engine.

FIGURE 1.2
Corvette engine.

1 The word energy is the modern form of the ancient Greek term energeia, which literally means “in work” (en = in and ergon = work).
2 One cubic mile of oil is equal to 1.1 trillion gallons and contains 160 quadrillion (160 × 1015) kilojoules of energy.
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energy use equivalent to 3.00 mi3 of oil each year. If the world energy demand continues at its present rate to
create the technologies of the future (e.g., the Starships of Figure 1.4), we will need an energy supply equivalent
to consuming an astounding 270 mi3 of oil by 2050 (90 times more that we currently use). Where is all that
energy going to come from? How are we going to use energy more efficiently so that we do not need to use so
much? We address these and other questions in the study of thermodynamics.

The study of energy is of fundamental importance to all fields of engineering. Energy, like momentum, is a
unique subject and has a direct impact on virtually all technologies. In fact, things simply do not “work” with-
out a flow of energy through them. In this text, we show how the subject touches all engineering fields through
worked example problems and relevant homework problems at the end of the chapters.

FIGURE 1.3
Sustainable wind energy technology.

FIGURE 1.4
The Starship Enterprise in Star Trek. (Photo credit: Industrial Light & Magic, Copyright © 2008 by PARAMOUNT PICTURES. All Rights
Reserved.)
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1.3 GETTING ANSWERS: A BASIC PROBLEM SOLVING
TECHNIQUE

Unlike mechanics, which deals with a relatively small range of applications, thermodynamics is truly global and
can be applied to virtually any subject, technology, or object conceivable. You no longer can thumb through a
book looking for the right equation to apply to your problem. You need a method or technique that guides you
through the process of solving a problem in a prescribed way.

In Chapter 4, we provide a more detailed technique for thermodynamics problem solving, but for the present,
here are seven basic problem solving steps you should know and understand.

1. Read. Always begin by carefully reading the problem statement and try to visualize the “thing” about which
the problem is written (a car, engine, rocket, etc.). The “thing” about which the problem is written is called
the system in thermodynamics. This may seem simple, but it is key to understanding exactly what you are
analyzing.

2. Sketch. Now draw a simple sketch of the system you visualized and add as much of the numerical
information given in the problem statement as possible to the sketch. If you do not know what the “thing” in
the problem statement looks like, just draw a blob and call it the system. You will not be able to remember all the
numbers given in the problem statement, so write them in an appropriate spot on your sketch, so that they
are easy to find when you need them.

3. Need. Write down exactly what you need to determine—what does the problem ask you to find?
4. Know. Make a list of the names, numerical values, and units of everything else given in the problem

statement. For example, Initial velocity = 35 meters per second, mass = 5.5 kilograms.
5. How. Because of the nature of thermodynamics, there are more equations than you are accustomed to

working with. To be able to sort them all out, you need to get in the habit of listing the relevant equations
and assumptions that you “might” be able to use to solve for the unknowns in the problem. Write down all
of them.

A BASIC PROBLEM SOLVING TECHNIQUE

1. Carefully read the problem statement and visualize what you are analyzing.
2. Draw a sketch of the object you visualized in step 1.
3. Now write down what you need to find, that is, make a list of the unknown(s).
4. List everything else you know about the problem (i.e., all the remaining information given in the problem statement).
5. Make a list of relevant equations to see how to solve the problem.
6. Solve these equations algebraically for the unknown(s).
7. Calculate the value(s) of the unknown(s), and check the units in each calculation.

Read → Sketch → Need → Know → How → Solve → Calculate

HOW IS THERMODYNAMICS USED IN ENGINEERING?

■ Mechanical engineers study the flow of energy in systems such as automotive engines (Figure 1.2), turbines, heat
exchangers, bearings, gearboxes, air conditioners, refrigerators, nozzles, and diffusers.

■ Electrical engineers deal with electronic cooling problems, increasing the energy efficiency of large-scale electrical power
generation, and the development of new electrical energy conversion technologies such as fuel cells.

■ Civil engineers deal with energy utilization in construction methods, solid waste disposal, geothermal power generation,
transportation systems, and environmental impact analysis.

■ Materials engineers develop new energy-efficient metallurgical compounds, create high-temperature materials for engines,
and utilize the unique properties of nanotechnology.

■ Industrial engineers minimize energy consumption and waste in manufacturing processes, develop new energy
management methods, and improve safety conditions in the workplace.

■ Aerospace engineers develop energy management systems for air and space vehicles, space stations, and planetary
habitation (Figure 1.4).

■ Biomedical engineers develop better energy conversion systems for the health care industry, design new diagnostic and
treatment tools, and study the energy flows in living systems.

All engineering fields utilize the conversion and use of energy to improve the human condition.
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6. Solve. Next, you need to algebraically solve the equations listed in step 5 for the unknowns. Because the
number of variables in this subject can be large, the unknowns you need to determine may be inside one of
your equations, and you need to solve for it algebraically.

7. Calculate. Finally, after you have successfully completed the first six steps, you compute the values of the
unknowns, being careful to check the units in all your calculations for consistency.

This technique requires discipline and patience on your part. However, if you follow these basic steps, you will
be able solve the thermodynamics problems in the first three chapters of this textbook. The following example
illustrates this problem solving technique.

EXAMPLE 1.1
A new racecar with a JX-750 free-piston engine is traveling on a straight level test track at a velocity of 85.0 miles per hour.
The driver accelerates at a constant rate for 5.00 seconds, at which point the car’s velocity has increased to 120. miph. Deter-
mine the acceleration of the car as it went from 85.0 to 120. mph.3

Solution
1. Read the problem statement carefully. Sometimes you may be given miscellaneous information that is not needed in the

solution. For example, we do not need to know what kind of engine is used in the car, but we do need to know that the car
has a constant acceleration for the 5.00 s.

2. Draw a sketch of the problem, like the one in Figure 1.5. Transfer all the numerical information given in the problem
statement onto your sketch so you need not search for it later.

V1 = 85.0 mph V2 = 120. mph

FIGURE 1.5
Example 1.1, solution step 2.

3. What are we supposed to find? We need the acceleration of the car.
4. We know the following things: The initial velocity = 85.0 mph, the final velocity = 120. mph, and the car accelerates for t = 5.00 s.
5. How are we going to find the car’s acceleration? In this case, the basic physics equation that defines acceleration is

a = dx2/dt2 = dV/dt, and if the acceleration a is constant, then we can integrate this equation to get Vfinal = Vinitial + at.
Note that the acceleration must be constant to use this equation. Aha, that is why the acceleration was specified as
constant in the problem statement. No additional equations are needed to solve this problem.

6. Now we can solve for the unknown acceleration, a:

a =
Vfinal −Vinitial

t

7. Now all we have to do is to insert the given numerical values and calculate the solution:

a =
120−85miles

hour

� �
5 seconds

= 7 miles
hour/seconds

Now check the units. Miles per hour times seconds makes no sense. Let us convert the car’s velocity from miles per hour
to feet per second before we calculate the acceleration4:

Vinitial = 85miles
hour

� � 5280 feet/mile
3600 seconds/hour

� �
= 125 feet

second

and

Vfinal = 120: miles
hour

� � 5280 feet/mile
3600 seconds/hour

� �
= 176 feet

second
(Continued )
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EXAMPLE 1.1 (Continued )

Then, the acceleration becomes

a =
176−125 feet

second
5 seconds

= 10:3 feet
second2 = 10:3 ft/s2

Remember, the answer is not correct if the units are not correct.

Following most of the Example problems in this text are a few Exercises, complete with answers, that are based on the
Example. These exercises are designed to allow you to build your problem solving skills and develop self-confidence. The
exercises are to be solved by following the solution structure of the preceding example problem. Here are typical exercise
problems based on Example 1.1.

Exercises
1. Determine the acceleration of the race car in Example 1.1 if its final velocity is 130. mph instead of 120. mph.

Answer: a = 13.2 feet/second2.
2. If the racecar in Example 1.1 has a constant acceleration of 10.0 ft/s2, determine its velocity after 6.00 s.

Answer: V = 126 mph.
3. A dragster travels a straight level 1

4 mile drag strip in 6.00 s from a standing start (i.e., Xinitial = Vinitial = 0). Determine the
average constant acceleration of the dragster. Hint: The basic physics equation you need here is Xfinal = Vinitial × t + (12)at

2.
Answer: a = 73.3 ft/s2.

3 You may be wondering why there are decimal points and extra zeros added to some of these numbers. This is because we are indicating the number of
significant figures represented by these values. The subject of significant figures is covered later in this chapter.
4 For future reference, there are “exactly” 5280 feet in one mile and “exactly” 3600 seconds in one hour.

1.4 UNITS AND DIMENSIONS
In thermodynamics, you determine the energy of a system in its many forms and master the mechanisms by
which the energy can be converted from one form to another. A key element in this process is the use of a con-
sistent set of dimensions and units. A calculated engineering quantity always has two parts, the numerical value
and the associated units. The result of any analysis must be correct in both categories: It must have the correct
numerical value and it must have the correct units.

Engineering students should understand the origins of and relationships among the several units systems
currently in use within the profession. Earlier measurements were carried out with elementary and often incon-
sistently defined units. In the material that follows, the development of measurement and units systems is pre-
sented in some detail. The most important part of this material is that covering modern units systems.

1.5 HOW DO WE MEASURE THINGS?
Metrology is the study of measurement, the source of reproducible quantification in science and engineering. It deals
with the dimensions, units, and numbers necessary to make meaningful measurements and calculations. It does not
deal with the technology of measurement, so it is not concerned with how measurements are actually made.

We call each measurable characteristic of a quantity a dimension of that quantity. If the quantity exists in the
material world, then it automatically has three spatial dimensions (length, width, and height), all of which are
called length (L) dimensions. If the quantity changes in time, then it also has a temporal dimension called time (t).
Some dimensions are not unique because they are made up of other dimensions. For example, an area (A) is a
measurable characteristic of an object and therefore one of its dimensions. However, the area dimension is the
same as the length dimension squared (A = L2). On the other hand, we could say that the length dimension is the
same as the square root of the area dimension.

Even though there seems to be a lack of distinguishing characteristics that allow one dimension to be recognized
as more fundamental than some other dimension, we easily recognize an apparent utilitarian hierarchy within a
set of similar dimensions. We therefore choose to call some dimensions fundamental and all other dimensions
related to the chosen fundamental dimensions secondary or derived. It is important to understand that not all systems
of dimensional analysis have the same set of fundamental dimensions.

Units provide us with a numerical scale whereby we can carry out a measurement of a quantity. They are estab-
lished quite arbitrarily and are codified by civil law or cultural custom. How the dimension of length ends up
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being measured in units of feet or meters has nothing to do with any physical law. It is solely dependent on the
creativity and ingenuity of people. Therefore, whereas the basic concepts of dimensions are grounded in the fun-
damental logic of descriptive analysis, the basic ideas behind the units systems are often grounded in the roots
of past civilizations and cultures.

CRITICAL THINKING

Where are Roman numerals still commonly used today? How would technology be different if we used Roman numerals
for engineering calculations today?

ANCIENT UNITS SYSTEMS

Intuition tells us that civilization should have evolved using the decimal system. People have ten fingers and ten toes, so the
base 10 (decimal) number system would seem to be the most logical system to be adopted by prehistoric people. However,
archaeological evidence has shown that the pre-Egyptian Sumerians used a base 60 (sexagesimal) number system, and ancient
Egyptians and early American Indians used a base 5 number system. A base 12 (duodecimal)
number system was developed and used extensively during the Roman Empire. Today, mixed
remains of these ancient number systems are deeply rooted in our culture.

A fundamental element of a successful mercantile trade is that the basic units of commerce
have easily understood subdivisions. Normally, the larger the base number of a particular
number system, the more integer divisors it has. For example, 10 has only three divisors
(1, 2, and 5), but 12 has five integer divisors (1, 2, 3, 4, and 6) and therefore makes a con-
siderably better fractional base. On the other hand, 60 has an advantage over 100 as a
number base because the former it has 11 integer divisors whereas 100 has only 8.

The measurements of length and time were undoubtedly the first to be of concern to
prehistoric people. Perhaps the measurement of time came first, because people had to
know the relationship of night to day and understand the passing of the seasons of the
year. The most striking aspect of our current measure of time is that it is a mixture of
three numerical bases; decimal (base 10) for counting days of the year, duodecimal (base
12) for dividing day and night into equal parts (hours), and sexagesimal (base 60) for
dividing hours and minutes into equal parts.

Nearly all early scales of length were initially based on the dimensions of parts of the adult
human body because people needed to carry their measurement scales with them (see
Figure 1.6). Early units were usually related to each other in a binary (base 2) system. For
example, some of the early length units were: half-hand = 2 fingers; hand = 2 half-hands;
span = 2 hands; forearm (cubit) = 2 spans; fathom = 2 forearms, and so forth. Measure-
ments of area and volume followed using such units as handful = 2 mouthfuls, jack = 2
handfuls, gill = 2 jacks, cup = 2 gills, and so forth.

Weight was probably the third fundamental measure to be established, with the development of such units as the grain
(i.e., the weight of a single grain of barley), the stone, and the talent (the maximum weight that could be comfortably
carried continuously by an adult man).

Cubit

Hand

Foot

Pace

FIGURE 1.6
Egyptian man with measurements.

NURSERY RHYMES AND UNITS

Many of the Mother Goose nursery rhymes were not originally written for children but in reality were British political
poems or songs. For example, in 17th century England, the treasury of King Charles I (1625–1640) ran low, so he imposed
a tax on the ancient unit of volume used for measuring honey and hard liquor, the jack (1 jack = 2 handfuls). The response
of the people was to avoid the tax by consuming drink measured in units other than the jack. Eventually, the jack unit
became so unpopular with the people that it was no longer used for anything. One of the few existing uses of the jack unit

(Continued)
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1.6 TEMPERATURE UNITS
The development of a temperature unit of measure came late in the history of science. The problem with early
temperature scales is that all of them were empirical, and their readings often depended on the material (usually
a liquid or a gas) used to indicate the temperature change. In a liquid-in-glass thermometer, the difference
between the coefficient of thermal expansion of the liquid and the glass causes the liquid to change height
when the temperature changes. If the coefficient of thermal expansion depends in some way on temperature,
then an accurate thermometer cannot be made simply by defining two fixed (calibration) points and subdivid-
ing the difference between these two points into a uniform number of degrees. Unfortunately, the coefficients of
thermal expansion of all liquids depend to some extent on temperature; consequently, the two-fixed-point
method of defining a temperature scale is inherently prone to this type of measurement error.

In 1848, William Thomson (1824–1907), later to become Lord Kelvin, developed a thermodynamic absolute
temperature scale that was independent of the measuring material. He was further able to show that his thermo-
dynamic absolute temperature scale was identical to the ideal gas absolute temperature scale developed earlier,
and therefore an ideal gas thermometer could be calibrated to measure thermodynamic absolute temperatures.
Thereafter, the absolute Celsius temperature scale was named the Kelvin scale in his honor. Because it was a real
thermodynamic absolute temperature scale, it could be constructed from a single fixed calibration point once
the degree size had been chosen. The triple point of water (0.01°C or 273.16 K) was selected as the fixed point.

NURSERY RHYMES AND UNITS Continued

today is in the term jackpot. Coincidentally, the next larger unit size, the gill (1 gill = 2 jacks), also fell into disuse. The
political meaning of the following popular Mother Goose rhyme should now become clear (Figure 1.7):

Jack and Gill went up a hill to fetch a pail of water.
Jack fell down and broke his crown and Gill came tumbling after.

The Jack and Gill in this rhyme are not really a little boy and girl, they are the old units of volume measure. Jack fell down refers to the
fall of the jack from popular usage as a result of the tax imposed by the crown, Charles I. The phrase and Gill came tumbling after refers
to the subsequent decline in the use to the gill unit of volume measure. The “real” jack and gill of this rhyme are shown in Figure 1.8.

FIGURE 1.7
Jack and Jill.

Jack Gill

FIGURE 1.8
The real jack and gill.

CRITICAL THINKING

What other Mother Goose rhymes or children’s songs are not what they seem?
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The difference between the boiling and freezing points of water at atmospheric pressure then became 100 K or,
alternatively, 100°C, making the Kelvin and Celsius degree size the same.

Soon thereafter, an absolute temperature scale based on the Fahrenheit scale was developed, named after the
Scottish engineer William Rankine (1820–1872).

Some early temperature scales with fixed calibration points are shown in Table 1.1. Note that both the Newton
and the Fahrenheit scales are duodecimal (i.e., base 12).

EXAMPLE 1.2
Convert 55 degrees on the modern Fahrenheit scale (Figure 1.9) into (a) degrees Newton, (b) degrees Reaumer, and (c) Kelvin.

55°F

(a) Fahrenheit 

? N

(b) Newton

? Re

(c) Reaumer

? K

(d) Kelvin

FIGURE 1.9
Example 1.2.

(Continued )

Table 1.1 Early Temperature Scales

Inventor and Date Fixed Points

Isaac Newton (1701) Freezing water (0°N) and human body temperature (12°N)

Daniel Fahrenheit (1724)a Old: Freezing saltwater mixture (0°F) and human body temperature (96°F)
New: Freezing water (32°F) and boiling water (212°F)

René Reaumur (1730) Freezing water (0°Re) and boiling water (80°Re)

Anders Celsius (1742)b Freezing water (0°C) and boiling water (100°C)

a The modern Fahrenheit scale uses the freezing point of water (32°F) and the boiling point of water (212°F) as its fixed points. This change to
more stable fixed points resulted in changing the average body temperature reading from 96°F on the old Fahrenheit scale to 98.6°F on the
new Fahrenheit scale.
b Initially, Celsius chose the freezing point of water to be 100° and the boiling point of water to be 0°, but this scale was soon inverted to its present form.

THE DEVELOPMENT OF THERMOMETERS

Thermometry is the technology of temperature measurement. Although people have always been able to experience the
physiological sensations of hot and cold, the quantification and accurate measurement of these concepts did not occur
until the 17th century. Ancient physicians judged the wellness of their patients by sensing fevers and chills with a touch of
the hand (as we often do today). The Roman physician Galen (ca. 129–199) ascribed the fundamental differences in the
health or “temperament” of a person to the proportions in which the four “humors” (phlegm, black bile, yellow bile, and
blood) were mixed within the body.5 Thus, both the term for wellness (temperament) and that for body heat (tempera-
ture) were derived from the same Latin root temperamentum, meaning “a correct mixture of things.”

Until the late 17th century, thermometers were graduated with arbitrary scales. However, it soon became clear that some
form of temperature standardization was necessary, and by the early 18th century, 30 to 40 temperature scales were in use.
These scales were usually based on the use of two fixed calibration points (standard temperatures) with the distance
between them divided into arbitrarily chosen equally spaced degrees.

The 100 division (i.e., base 10 or decimal) Celsius temperature scale became very popular during the 18th and 19th centu-
ries and was commonly known as the centigrade (from the Latin centum for “100” and gradus for “step”) scale until 1948,
when Celsius’s name was formally attached to it and the term centigrade was officially dropped.

5 It was thought that illness occurred when these four humors were not in balance, and that their balance could be restored by draining off one of them
(i.e., by “bleeding” the patient).
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EXAMPLE 1.2 (Continued )

Solution
(a) From Table 1.1, we find that both 0°N and 32°F correspond to the freezing point of water, and body heat (temperature)

corresponds to 12°N and 98.6°F (on the modern Fahrenheit scale) on these scales. Since both these scales are linear
temperature scales, we can construct a simple proportional relation between the two scales as

98:6−55
98:6−32

= 12− x
12−0

where x is the temperature on the Newton scale that corresponds to 55°F. Solving for x gives

x = 12 1− 98:6− 55
98:6− 32

� �
= 4:14°N⁡

(b) Since the Reaumur scale is also a linear scale with 0°Re and 80°Re corresponding to 32°F and 212°F, respectively, we
can establish the following proportion for the Reaumur temperature y that corresponds to 55°F:

212−55
212−32

=
80− y
80−0

from which we can solve for

y = 80 1− 212− 55
212− 32

� �
= 10:2°Re⁡

(c) Here we have 273.15 K and 373.15 K corresponding to 32°F and 212°F, respectively. The proportionality between these
scales is then

212−55
212−32

= 373:15− z
373:15−273:15

from which we can compute the Kelvin temperature z that corresponds to 55°F as

z = 373:15− ð373:15−273:15Þ 212−55
212−32

� �
= 285:9K⁡

Notice that we do not use the degree symbol (°) with either the Kelvin or the Rankine absolute temperature scale symbols.
The reason for this is by international agreement as explained later in this chapter.

Exercises
4. Convert 20.0°C into Kelvin and Rankine. Answer: 293.2 K and 527.7 R.
5. Convert 30°C into degrees Newton and degrees Reaumur. Answer: 9.7°N and 24°Re.
6. Convert 500. K into Rankine, degrees Celsius, and degrees Fahrenheit. Answer: 900 R, 226.9°C, and 440.3°F.

1.7 CLASSICAL MECHANICAL AND ELECTRICAL UNITS SYSTEMS
The establishment of a stable system of units requires the identification of certain measures that must be taken
as absolutely fundamental and indefinable. For example, one cannot define length, time, or mass in terms of
more fundamental dimensions. They all seem to be fundamental quantities. Since we have so many quantities
that can be taken as fundamental, we have no single unique system of units. Instead, there are many equivalent
units systems, built on different fundamental dimensions. However, all the existing units systems today have
one thing in common—they have all been developed from the same set of fundamental equations of physics,
equations more or less arbitrarily chosen for this task.

It turns out that all the equations of physics are mere proportionalities into which one must always introduce a
“constant of proportionality” to obtain an equality. These proportionality constants are intimately related to the
system of units used in producing the numerical calculations. Consequently, three basic decisions must be made
in establishing a consistent system of units:

1. The choice of the fundamental quantities on which the system of units is to be based.
2. The choice of the fundamental equations that serve to define the secondary quantities of the system of units.
3. The choice of the magnitude and dimensions of the inherent constants of proportionality that appear in the

fundamental equations.

With this degree of flexibility, it is easy to see why such a large number of measurement units systems have
evolved throughout history.

10 CHAPTER 1: The Beginning



The classical mechanical units system uses Newton’s second law as the fundamental equation. This law is a
proportionality defined as

F = k1ma (1.1)

The wide variety of choices available for the fundamental quantities that can be used in this system has pro-
duced a large number of units systems. Over a period of time, three systems, based on different sets of funda-
mental quantities, have become popular:

■ MLt system, which considers mass (M), length (L), and time (t) as independent fundamental quantities.
■ FLt system, which considers force (F), length (L), and time (t) as independent fundamental quantities.
■ FLMt system, which considers all four as independent fundamental quantities.

Table 1.2 shows the various popular mechanical units systems that have evolved along these lines. Also listed
are the names arbitrarily given to the various derived units and the value and units of the constant of propor-
tionality, k1, which appears in Newton’s second law, Eq. (1.1).

In Table 1.2, the four units in boldface type have the following definitions:

1 newton = 1 kg .m/s2 (1.2)

1 dyne = 1 g .cm/s2 (1.3)

1 poundal = 1 lbm . f t/s2 (1.4)

1 slug = 1 lbf .s2/f t (1.5)

These definitions are arrived at from Newton’s second law using the fact that k1 has been arbitrarily chosen to be
unity and dimensionless in each of these units systems.

Because of the form of k1 in the Engineering English system, engineering texts have evolved a rather strange and
unfortunate convention regarding its use. It is common to let gc = 1/k1, where gc in the Engineering English
units system is simply

Engineering English units: gc =
1
k1

= 32:174 lbm
. f t

lbf .s2
(1.6)

and in all the other units systems described in Table 1.2, it is

All other units systems: gc =
1
k1

= 1 ðdimensionlessÞ (1.7)

This symbolism was originally chosen apparently because the value (but not the dimensions) of gc happens to be
the same as that of standard gravity in the Engineering English units system. However, this symbolism is awk-
ward because it tends to make you think that gc is the same as local gravity, which it definitely is not. Like k1, gc is
nothing more than a proportionality constant with dimensions of ML/(Ft2). Because the use of gc is so wide-
spread today and it is important that you are able to recognize the meaning of gc when you see it elsewhere, it
is used in all the relevant equations in this text. For example, we now write Newton’s second law as

F = ma
gc

(1.8)

Until the mid-20th century, most English speaking countries used the Engineering English units system. But,
because of world trade pressures and the worldwide acceptance of the SI system, most engineering thermo-
dynamics texts today (including this one) present example and homework problems in both the old Engineering
English and the new SI units systems.

The dimensions of energy are the same as the dimensions of work, which are force × distance, and the dimen-
sions of power are the same as the dimensions of work divided by time, or force × distance ÷ time. The corre-
sponding units and their secondary names (when they exist) are shown in Table 1.3.

Table 1.2 Five Units Systems in Use Today

System Name Type F M L t gC = 1/k1

MKS (SI) MLt newton (N) kilogram (kg) meter (m) second (s) 1 (dimensionless)

CGS MLt dyne (d) gram (g) centimeter (cm) second (s) 1 (dimensionless)

Absolute English MLt poundal (pd) pound mass (lbm) foot (ft) second (s) 1 (dimensionless)

Technical English FLt pound force (lbf) slug (sg) foot (ft) second (s) 1 (dimensionless)

Engineering English FMLt pound force (lbf) pound mass (lbm) foot (ft) second (s) 32.174 lbm · ft/lbf ·s2

1.7 Classical Mechanical and Electrical Units Systems 11



EXAMPLE 1.3
In Table 1.2, the Technical English units system uses force (F), length (L), and time (t) as the
fundamental dimensions. Then, the mass unit “slug” was defined such that k1 and gc came
out to be unity (1) and dimensionless. Define a new units system in which the force, mass,
and time dimensions are taken to be fundamental with units of lbf, lbm, and s, and the
length unit is defined such that k1 is unity (1) and dimensionless. Call this new length unit
the chunk and find its conversion factor into the Engineering English and SI units systems
(Figure 1.10).

Solution
From Eq. (1.1), we see that the length unit must be defined via Newton’s second law, F = k1ma. Since we want k1 to be
unity and dimensionless, we set

k1 = F
ma

= 1 ðdimensionlessÞ

In our new system, we arbitrarily require 1 lbf to be the force calculated from Newton’s second law when 1 lbm is acceler-
ated at a rate of 1 chunk/s2. Then, from the preceding k1 equation, we get

1 lbf
1 lbm ð1 chunk/s2Þ = 1 ðdimensionlessÞ

so that

1 chunk = 1 lbf
.s2

lbm

In the Engineering English units system, 1 lbf accelerates 1 lbm at a rate of

a = F
m
ðgcÞ = 1 lbf

1 lbm
32:174 lbm

. ft
lbf .s2

� �
= 32:174 ft

s2

WHICH WEIGHS MORE—A POUND OF FEATHERS
OR A POUND OF GOLD?

The avoirdupois (from the French meaning “to have weight”) pound contains 7000 barleycorns and is divided into 16
ounces. It was used primarily for weighing ordinary commodities, such as wood, bricks, feathers, and so forth. The troy
pound was named after the French city Troyes and was used to weigh only precious metals (gold, silver, etc.), gems, and
drugs. The English troy pound contains only 5760 barleycorns and is subdivided into 12 ounces, as was the original
Roman pound. The English word ounce is also derived from the Latin word uncia, meaning “the twelfth part of.”

Consequently, the avoirdupois pound is considerably larger (by a factor of 7000/5760 = 1.215) than the troy pound and
the coexistence of both pound units produced considerable confusion over the years. So a pound of feathers actually does
weigh more than a pound of gold, because the weight of the feathers is measured with the avoirdupois pound, whereas
the weight of the gold is measured with the troy pound. Today, all engineering calculations done in an English units
system are done with the 16 ounce, 7000 grain, avoirdupois pound.

Table 1.3 Units of Energy and Power

System Name Energy Power

MKS (SI) N ·m = kg ·m2/s2 = joule (J) N ·m/s = kg ·m2/s3 = J/s = watt (W)

CGS dyn ·cm = g ·cm2/s2 = erg dyn ·cm/s = g ·cm2/s3 = erg/s

Absolute English foot ·poundal (ft ·pdl) ft ·pdl/s

Technical English ft · lbf ft · lbf/s

Engineering English ft · lbf (1 Btu = 778.17 ft · lbf) ft · lbf/s (1 hp = 550 ft · lbf/s)

Note: 1 dyn = 10–5 N and 1 erg = 10–7 J.

1 chunk= ? feet= ? meters

FIGURE 1.10
Example 1.3.
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Since the lbf, lbm, and s have the same meaning in both the new system and the traditional Engineering English units
system, it follows that

1 chunk
s2

= 32:174 ft
s2

and that

1 chunk = 32:174 ft = ð32:174 ftÞ 1m
3:281 ft

� �
= 9:806m

Exercises
7. Determine the weight at standard gravity of an object whose mass is 1.0 slug. Answer: Since force and weight are the

same, Eq. (1.8) gives F = W = mg/gc. From Table 1.2, we find that, in the Absolute English units system, gc = 1
(dimensionless). So the weight of 1.0 slug is W = (1.0 slug)(32.174 ft/s2)/1 = 32.174 slug (ft/s2). But, from Eq. (1.8),
we see that 1.0 slug = 1.0 lbf · s2/ft, so the weight of 1 slug is then W = 32.174 (lbf · s2/ft)(ft/s2) = 32.174 lbf.

8. Determine the mass of an object whose weight at standard gravity is 1 poundal. Answer: Using the same technique as in
Exercise 7, show that the mass of 1 poundal is m = Fg/gc = Wg/gc = (1 poundal)(1)/32.174 ft/s2 = 0.03108 pdl · s2/ft =
0.03108 lbm.

9. W. H. Snedegar whimsically suggested the following new names for some of the SI units6:

1 far = 1 meter (m); 1 jog = 1 m/s; 1 pant = 1 m/s2

1 shove = 1 newton (N); 1 grunt = 1 joule (J); 1 varoom = 1 watt (W)
1 lump = 1 kilogram (kg); 1 gasp = 1 pascal (Pa); 1 flab = 1 kg ·m2

and so forth. Of course the Snedegar units would use the same unit prefixes as SI (see Table 1.5 later). For example, a
km would be a kilofar, a kJ would be a kilogrunt, a MPa would be a megagasp, and an incremental length (incremental
far) would probably be called a near. In this system the fundamental mass, length, and time (M, L, t) units are the
lump, far, and second. All other Snedegar units are secondary, being defined by some basic equation. For example, the
secondary unit for velocity, the jog, is defined from the definition of the dimensions of velocity as length per unit time
(L/t), or 1 jog = 1 far/s. This can, however, produce some problems in usage. In mechanics, the units of microstrain
would be microfar/far. Since a microfar is closer to a near than a far, microstrain units would probably become a near/
far. Such logistical inconsistency often adds confusion to an otherwise well-defined system of units.
Determine the relation between the primary and secondary Snedegar units for (a) force, (b) momentum (ML/t), (c) accelera-
tion, (d) work, (e) power, and (f) stress (F/L2). Answers: (a) 1 shove = 1 lump · far/s2; (b) 1 lump · jog = 1 lump · far/s2;
(c) 1 pant = 1 far/s2; (d) 1 grunt = 1 shove · far = lump · far2/s2; (e) 1 varoom = 1 grunt/s = shove · far/s = lump · far2/s3;
(f) 1 gasp = shove/far2 = 1 lump/far ·s2.

6 Snedegar, W. H., “Letter to the Editor,” 1983. Am. J. Phys. 51, 684.

EXAMPLE 1.4
Time passes. You graduate from college and go on to become a famous NASA design engineer. You have sole responsibility for
the design and launch of the famous Bubble-II space telescope system. The telescope weighs exactly 25,000 lbf on the surface of
the Earth and is to be installed in an asynchronous Earth orbit with an orbital velocity of exactly 5000 mph (Figure 1.11).

a. What is the value of gc (in lbm · ft/lbf · s2) in this orbit?
b. How much will the telescope weigh (in lbf) in Earth orbit where the local acceleration of gravity is only 2.50 ft/s2.

Weight = 25,000. lbf

V = 5000. mph

FIGURE 1.11
Example 1.4.

(Continued )
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EXAMPLE 1.4 (Continued )

Solution
a. From the text, we see that gc is always a constant. It does not depend on the local acceleration of gravity. From Eq. (1.6)

and Table 1.2, we find that in the Engineering English units system gc = 32.174 lbm · ft/lbf · s2.
b. Since weight is force due to gravity, we have W = F = mg/gc, and the mass can be computed from m = Wgc/g, or

m =
ð25,000 lbfÞ 32:174 lbm

. ft
lbf .s2

� �
32:174 ft

s2

= 25,000 lbm

Then the weight in Earth orbit is

Worbit =
mgorbit
gc

=
ð25,000 lbmÞð2:50 ft/s2Þ

32:174 lbm . ft
lbf .s2

= 1940 lbf

Exercises
10. Suppose you use the SI units system in Example 1.4. What is the value of gc in the orbit? Answer: 1.0 and dimensionless

(see Table 1.2).
11. Suppose the orbit in Example 1.4 changes so that the local acceleration of gravity is decreased from 2.50 ft/s2 to 1.75 ft/s2.

Determine the new weight of the telescope in orbit. Answer: Worbit = 1360 lbf.
12. If the telescope in Example 1.4 weighs 112 kN on the surface of the Earth, how much does it weigh on the surface of

the Moon, where the local gravity is only 1.60m/s2? Answer: Wmoon = 18.3 kN.

1.8 CHEMICAL UNITS
A good deal of energy conversion technology comes from converting the chemical energy of fuels into thermal
energy. Therefore, we need to be aware of the nature of units used in chemical reactions.

A chemical reaction equation is essentially a molecular mass balance equation. For example, the equation
A + B = C tells us that one molecule of A reacts with one molecule of B to yield one molecule of C. Since
the molecular mass of substance A, MA, contains the same number of molecules (6.022 × 1023, Avogadro’s
constant) as the molecular masses MB and MC of substances B and C, the coefficients in their chemical
reaction equation are also equal to the number of molecular masses involved in the reaction as well as the
number of molecules.

Chemists find it convenient to use a mass unit that is proportional to the molecular masses of the substances
involved in a reaction. Since chemists use only small amounts of chemicals in laboratory experiments, the
centimeter-gram-second (CGS) units system has proven to be ideal for their work. Therefore, chemists defined
their molecular mass unit as the amount of any chemical substance that has a mass in grams numerically equal to the
molecular mass of the substance and gave it the name mole.

However, the chemists’ mole unit is problematic, in that most of the other physical sciences do not use the
CGS units system and the actual size of the molar mass unit depends on the size of the mass unit in the
units system being used. Strictly speaking, the molar mass unit used by chemists should be called a gram
mole, because the word mole by itself does not convey the type of mass unit used in the units system. Conse-
quently, we call the molar mass of a substance in the SI system a kilogram mole; in the Absolute and Engi-
neering English systems it is a pound mole; and in the Technical English system it is a slug mole. In this text,
we abbreviate gram mole as gmole, kilogram mole as kgmole, and pound mole as lbmole. Clearly, these are all
different amounts of mass, since 1 gmole ≠1 kgmole ≠ 1 lbmole ≠ 1 slug mole. For example, 1 pound mole
of water would have a mass of 18 lbm, whereas 1 gram mole would have a mass of only 18 g (0.04 lbm),
so that there is an enormous difference in the molar masses of a substance depending on the units system
being used.

Since the molar amount n of a substance having a mass m is given by

n = m
M

(1.9)
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where M is the molecular mass7 of the substance, it is clear that the molecular mass must have units of mass/
mass-mole. Therefore, we can write the molecular mass of water as

MH2O = 18 g/gmole = 18 lbm/lbmole = 18 kg/kgmole = :::

The numerical value of the molecular mass is constant, but it has units that must be taken into account when-
ever it is used in an equation.

EXAMPLE 1.5
A cylindrical drinking glass, 0.07 m in diameter and 0.15 m high, is three-quarters full of water
(Figure 1.12). Determine the number of kilogram moles of water in the glass. The density of
liquid water is exactly 1000 kg/m3.

Solution
The mass of water in the glass is equal to the volume of water present multiplied by the density of
water, or

m = πR2L
� �

× ρ = π 0:035mð Þ2 0:75× 0:15mð Þ 1000 kg/m3� �
= 0:433 kg

The molecular mass of water is 18 kg/kgmole, and Eq. (1.9) gives the number of moles present as

n = m
M

=
0:433kg

18
kg

kgmole

= 0:024 kgmole

Exercises
13. Determine the number of lbmole in a cubic foot of air whose mass is 0.075 lbm. The molecular mass

of air is 28.97 lbm/lbmole. Answer: n = 0.00259 lbmole.
14. How many kilograms are contained in 1 kgmole of a polymer with a molecular mass of

2.5 × 106 kg/kgmole? Answer: m = 2.5 × 106 kg.
15. Exactly 2 kgmole of xenon has a mass of 262.6 kg. What is the molecular mass of xenon?

Answer: M = 131.3 kg/kgmole.

1.9 MODERN UNITS SYSTEMS
The units systems commonly used in thermodynamics today are the traditional Engineering English system and
the metric SI system. Table 1.4 lists various common derived secondary units of the SI system, and Table 1.5
shows the approved SI prefixes, along with their names and symbols.

You need to understand the difference between the units of absolute pressure and gauge pressure. In the Engi-
neering English units system, we add the letter a or g to the psi (pounds per square inch) pressure units to
make this distinction. Thus, atmospheric pressure can be written as 14.7 psia or as 0 psig. In the SI units system,
we add the word that applies (and not the letter a or g) immediately after the unit name or symbol. For example,
atmospheric pressure in the SI system is 101,325 Pa absolute or 0 Pa gauge. When the words absolute or gauge
do not appear on a pressure unit, assume it is absolute pressure.

In 1967, the degree symbol (°) was officially dropped from the absolute temperature unit, and the notational
scheme was introduced wherein all unit names were to be written without capitalization (unless, of course, they

3/4 full
0.15 m

0.07 m

FIGURE 1.12
Example 1.5.

7 Most texts call M the molecular weight, probably out of historical tradition. However, M clearly has units of mass, not weight, and
therefore is more appropriately named molecular mass.

HOW DO I KNOW WHETHER IT IS ABSOLUTE OR GAUGE PRESSURE?

When the clarifying term absolute or gauge is not present in a pressure unit in the textbook, assume that pressure unit is
absolute. For example, the pressure 15.2 kPa is interpreted to mean 15.2 kPa absolute.
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appear at the beginning of a sentence) regardless of whether they were derived from proper names or not. There-
fore the name of the SI absolute temperature unit was reduced from degree Kelvin to simply kelvin even though
the unit was named after Lord Kelvin. However, when the name of a unit is to be abbreviated, it was decided
that the name abbreviation was to be capitalized if the unit was derived from a proper name. Therefore, the kelvin abso-
lute temperature unit is abbreviated as K (not °K, k, or °k). Similarly, the SI unit of force, the newton, named
after Sir Isaac Newton (1642–1727), is abbreviated N. The following list illustrates a variety of units from the SI
and other systems, all of which were derived from proper names:

ampere (A), becquerel (Bq), celsius (°C), coulomb (C), farad (F), fahrenheit (°F), gauss (G), gray (Gy), henry (H),
hertz (Hz), joule (J), kelvin (K), newton (N), ohm (Ω), pascal (Pa), poiseuille (P), rankine (R), siemens (S), stoke (St),
tesla (T), volt (V), watt (W), weber (Wb).

Table 1.5 SI Unit Prefixes

Multiples Prefixes Symbols

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

100 — —
101 deka da

10–1 deci d

10–2 centi c

10–3 milli m

10–6 micro μ
10–9 nano n

10–12 pico p

10–15 femto f

10–18 atto a

Source: Adapted with permission from the American Society for Testing and Materials, 1980.
Standard for Metric Practice, ASTM 380-79. ASTM International, 100 Barr Harbor Drive,
PO Box C700, West Conshohocken, PA 19428.

Table 1.4 Some Common Derived SI Units

Dimension Name Symbol Formula Expression in Terms of SI Fundamental Units

Frequency hertz Hz 1/s s–1

Force newton N kg ·m/s2 m ·kg ·s–2

Energy joule J N ·m m2 ·kg ·s–2

Power watt W J/s m2 ·kg ·s–3

Electric charge coulomb C A ·s A ·s

Electric potential volt V W/A m2 ·kg ·s–3 ·A–1

Electric resistance ohm Ω V/A m2 ·kg ·s–3 ·A–2

Electric capacitance farad F C/ V m–2 ·kg–1 ·s4 ·A2

Magnetic flux weber Wb V ·s m2 ·kg ·s–2 ·A–1

Pressure or stress pascal Pa N/m2 m–1 ·kg ·s–2

Conductance siemens S A/ V m–2 ·kg–1 ·s3 ·A2

Magnetic flux density tesla T Wb/m2 kg ·s–2 ·A–1

Inductance henry H Wb/A m2 ·kg ·s–2· A–2

Luminous flux lumen lm cd ·sr cd ·sr

Illuminance lux lx lm/m2 m–2 ·cd ·sr

Source: Adapted from the American Society for Testing and Materials, 1980. Standard for Metric Practice, ASTM 380-79. Copyright ASTM.
Reprinted with permission. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428.
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Note that we still use the degree symbol (°) with the celsius and fahrenheit temperature units. This is due partly to
tradition and partly to distinguish their abbreviations from those of the coulomb and farad. In this text, we also
drop the degree symbol on the rankine absolute temperature unit, even though it is not part of the SI system. This
is done simply to be consistent with the SI notation scheme and because the rankine abbreviation, R, does not
conflict with that of any other popular unit. Note that abbreviations use two letters only when necessary to prevent
them from being confused with other established unit abbreviations or to express prefixes (e.g., kg for kilogram).8

All other units whose names were not derived from the names of historically important people are both written
and abbreviated with lowercase letters; for example, meter (m), kilogram (kg), and second (s). Obvious viola-
tions of this rule occur when any unit name appears at the beginning of a sentence or when its abbreviation is
part of a capitalized title, such as in the MKSA System of Units.

Also, a unit abbreviation is never pluralized, whereas the unit’s name may be pluralized. For example, kilograms
is abbreviated as kg and not kgs, and newtons as N and not Ns. Finally, unit name abbreviations are never written
with a terminal period unless they appear at the end of a sentence. For example, the correct abbreviation of sec-
onds is s, not sec. or secs.

1.10 SIGNIFICANT FIGURES
Using the proper number of significant figures in calculations is an important part of carrying out credible engineer-
ing work. Two types of numbers are used in engineering calculations: exact values, such as an integer number used in
counting (e.g., 5 ingots of steel) or numbers fixed by definition (e.g., 3600 seconds = 1 hour); and inexact values, such
as numbers produced by physical measurements (e.g., the diameter of a pipe or the velocity or height of an object).

Every physical measurement is inexact to some degree. The number of significant figures used to record a
measurement is used as an indication of the accuracy of the measurement itself.

For example, if you measure the diameter of a shaft with a ruler that could be read to two significant figures, the
result might be 3.5 inches, but if it were measured with a micrometer that could be read to four significant
figures it might be 3.512 inches. So, when you are given a value for some variable as, say, the number 4, you see
that it is measured with a precision of only one significant figure. But if the value you are given is 4.0, you see
that it is measured with two significant figures, and 4.00 indicates it is measured with three significant figures.

CRITICAL THINKING

Suppose someone wanted to name a new unit of measure after you. What name would you choose and how would it be
abbreviated so that your unit would not be confused with other existing unit abbreviations?

“EXACT” NUMBERS HAVE AN INFINITE NUMBER
OF SIGNIFICANT FIGURES

Exact numbers, such as the number of people in a room, have an infinite number of significant figures. Exact numbers are not
measurements made with instruments. For example, there are defined numbers, such as 1 foot = 12 inches, so there are
“exactly” 12 inches in 1 foot. If a number is “exact,” it does not affect the accuracy of a calculation. Some other examples are
100 years in a century, 2 molecules of hydrogen react with 1 molecule of oxygen to form 1 molecule of water, 500 sheets of
paper in 1 ream, 60 seconds in 1 minute, and 1000 grams in 1 kilogram.

WHAT IS A “SIGNIFICANT FIGURE”?

A significant figure is any one of the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9. Zero is also a significant figure except when used
simply to fix the decimal point or to fill the places of unknown or discarded digits.

8 Non-SI units systems do not generally follow this simple rule. For example, the English length unit, foot, could be abbreviated f
rather than ft. However, the latter abbreviation is well established within society and changing it at this time would only cause
confusion.
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A number reported as 0.000452 has only three significant figures (4, 5, and 2), since the leading zeros are used
simply to fix the decimal point. But the number 7305 has four significant figures. The number 2300 may have
two, three, or four significant figures. To convey which ending zeros of a number are significant, it should be
written as 2.3 × 103 if it has only two significant figures, 2.30 × 103 if it has three, and 2.300 × 103 if it has four.
Remember that the identification of the number of significant figures associated with a measurement comes
only through a detailed knowledge of how the measurement is carried out.

Computations often deal with numbers having unequal numbers of significant figures. A number of rules have been
developed for various computations. The rule for addition and subtraction of figures follows. Next comes the rule
for multiplication and division of figures. The operation of rounding values up or down also follows specific rules.

Do you need to maintain the correct number of significant figures in all the steps of a calculation? No, just keep
one or two more digits in intermediate results than you need in your final answer. These rules are summarized
in Table 1.6.

RULE FOR ADDITION AND SUBTRACTION

The sum or difference of two numbers should contain no more significant figures farther to the right of the decimal point than
occur in the least accurate number used in the operation. For example, 114.2 + 1.31 = 115.51, which must be rounded to
115.5, since the least precise number in this operation is 114.2 (having only one place to the right of the decimal point).
Similarly, 114.2 – 1.31= 112.89, which must now be rounded to 112.9.

This rule is vitally important when subtracting two numbers of similar magnitudes, since their difference may be much less
significant than the two numbers that were subtracted. For example, 114.212 − 114.0 = 0.212, which must be rounded to
0.2 since 114.0 has only one significant figure to the right of the decimal point. In this case, the result has only one signifi-
cant figure even though the “measured” numbers each had four or more significant figures.

RULE FOR MULTIPLICATION AND DIVISION

The product or quotient should contain no more significant figures than are contained in the term with the least number of sig-
nificant figures used in the operation. For example, 114.2 × 1.31 = 149.602, which must be rounded to 150, since the term
1.31 contains only three significant figures. Also, 114.2/1.31= 87.1756, which must be rounded to 87.2 for the same reason.

RULES FOR ROUNDING

1. When the discarded value is less than 5, the next remaining value should not be changed. For example, if we round
114.2 to three significant figures it becomes 114; if we rounded it to two significant figures it becomes 110; and
rounding it to one significant figure produces 100.

2. When the discarded value is greater than 5 (or is 5 followed by at least one digit other than 0), the next remaining
value should be increased by 1. For example, 117.879 rounded to five significant figures is 117.88; rounded to four
significant figures, it becomes 117.9; and rounding it to three significant figures produces 118.

3. When the discarded value is exactly equal to 5 followed only by zeros, then the next remaining value should be rounded
up if it is an odd number, but remain unchanged if it is an even number. For example, 1.55 rounds to two significant
figures as 1.6, and 1.65 also rounds to two significant figures as 1.6.

Table 1.6 Significant Figures

Written Form of a Number
Number of Significant Figures Represented
by These Numbers

3 or 0.1 or 0.01 or 0.001 or 3 × 10–5 or 5 × 104 One significant figure

3.1 or 50. or 0.010 or 0.00036 or 7.0 × 103 Two significant figures

3.14 or 500. or 0.0155 or 0.00106 or 7.51 × 104 Three significant figures

3.142 or 1,000. or 0.1050 or 0.0004570 or 3.540 × 108 Four significant figures

3.1416 or 10,000. or 0.0030078 or 1.2500 × 104 Five significant figures

3.14159 or 100,000. or 186,285 Six significant figures
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In a textbook, it is often awkward to write each value with the proper number of significant figures. However,
the examples and problems in this textbook have a specific number of significant figures indicated in the mea-
sured values. For example, a mass that has been measured to three significant figures is given as, say, 10.0 kg,
and a temperature measured to three significant figures is given as, say, 200.ºC (note the decimal point). This is
followed throughout the remainder of this textbook.

EXAMPLE 1.6
The inside diameter of a circular water pipe is measured to two significant figures with a ruler measure and found to be
2.5 inches (Figure 1.13). Determine the cross-sectional area of the pipe to the correct number of significant figures.

D = 2.5 inches

FIGURE 1.13
Example 1.6.

Solution
From elementary algebra, the cross-sectional area of a circle is A = πD2/4, so Apipe = π(2.5 inches)2/4 = 4.9087 in2, which
must be rounded to 4.9 in2, since the least accurate value in this calculation is the pipe diameter, with only two significant
figures.

Exercises
16. Determine the cross-sectional area of a circular metal rod measured to two significant figures with a tape measure and

found to be 0.025 m. Answer: Abar = 0.00049 m2 to two significant figures.

(Continued )

NOW TEST YOURSELF

a. The number 106.750 has ___ significant figures.
b The number 0.0003507 has ___ significant figures.
c. The number 3.7 × 104 has ___ significant figures.
d. The number 2.7182818 has ___ significant figures.

(Answers: a. six, b. four, c. two, d. eight)

WHAT ABOUT INTERMEDIATE CALCULATIONS?

When doing multi-step calculations, keep one or two more digits in intermediate results than needed in your final answer. If
you round-off all your intermediate answers to the correct number of significant figures, you discard the information con-
tained in the next digit, and the last digit in your final answer might be incorrect. For example, the calculation 12 × 12 ×
1.5 has an answer with two significant figures. But you should use the intermediate results without rounding because 12 ×
12 = 144, and 144 × 1.5 = 216 → 220. But, if you round 144 to 140, you obtain 140 × 1.5 = 210, which is pretty far off.
It is best to wait until the end of a calculation to round to the correct number of significant figures.

Never round in the middle of a multi-step calculation, round only the final answer.
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EXAMPLE 1.6 (Continued )

17. A cubical box is measured to three significant figures with a ruler and found to be 1.21 ft on one side, 1.22 ft on
another side, and 1.20 ft on the third side. Determine the volume of the box to the proper number of significant figures.
Answer: 1.77 ft3.

18. A shaft is measured with a micrometer and found to have a diameter of 1.735 inches (to four significant figures).
Determine the circumference of the shaft to the proper number of significant figures. Answer: 5.451 inches.

1.11 POTENTIAL AND KINETIC ENERGIES
In classical physics, the term potential energy usually refers to gravitational potential energy and represents the
work done against the local gravitational force in changing the position of an object. It depends on the mass m
of the object and its height Z above a reference level, written as

Potential energy¼ PE¼ k1mgZ =
mgZ
gc

(1.10)

where k1 is defined by Eqs. (1.6) and (1.7) as 1/gc (see Table 1.2).

Kinetic energy represents the work associated with changing the motion of an object and can occur in two forms:
translational and rotational. The total kinetic energy of an object is the sum of both forms of its kinetic energy. The
translational kinetic energy of an object is the kinetic energy resulting from a translation velocity V, written as

Translational kinetic energy = ðKEÞtrans = k1
mV2

2
= mV2

2gc
(1.11)

The rotational kinetic energy of an object is the kinetic energy resulting from a rotation about some axis with an
angular velocity ω, written as

Rotational kinetic energy = ðKEÞrot = k1
Iω2

2
= Iω2

2gc
(1.12)

where I is the mass moment of inertia of the object about the axis of rotation.

The mass moment of inertia of an object is the integral of a mass element dm located at a radial distance r from
the axis of rotation:

I =
Z

r2dm (1.13)

Table 1.7 provides equations for the mass moment of inertia of various common geometrical shapes with a total
mass m.

Table 1.7 Mass Moments of Inertia of Various Common Shapes

Slender circular rod
Ix = mL2/2

x

L

Thin rectangular plate
Ix = m(a2 + b2)/12
Iy = ma2/12
Iz = mb2/12

x

y

z

Solid rectangular prism
Ix = m(a2 + b2)/12
Iy = m(a2 + L2)/12
Iz = m(b2 + L2)/12

x

y z

Thin disk
Ix = mR2/2
Iy = Iz = mR2/4

x

z
R

y
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In the equations that follow in this chapter and throughout the text, the phrase kinetic energy can mean either
translational or rotational. You must be alert to the conditions present in the problem to choose the correct
form. Later in the text, general equations for the first law of thermodynamics are developed that include kinetic
energy terms. Usually only the translational kinetic energy expression is written out in these equations, but be
alert to the fact that this could change to rotational kinetic energy or a combination of both translational and
rotational kinetic energy in any problem.

The following examples illustrate the calculation of kinetic and potential energies in both SI and Engineering
English units systems.

EXAMPLE 1.7
Determine the potential energy of an automobile weighing 2000. lbf when it is 8.00 ft off the floor on a hoist in a repair
shop (Figure 1.14). Express the result in both SI and Engineering English units.

Solution
The formula for the potential energy (PE) of an object of mass m at a distance Z above the reference height is given by Eq. (1.10) as

PE = k1mgZ =
mgZ
gc

We first calculate the automobile’s mass from its weight using Newton’s second law, m = Fgc/g = Weight gc/g. In the SI units
system (see Table 1.2), we find that gc = 1 (dimensionless), so

m =
Fgc
g

=
ð2000: lbfÞ 1N

0:2248 lbf

� �
ð1Þ

9:81m=s2
= 907 N .s2

m
= 906:9 kg

(Continued )

Table 1.7 continued

Solid circular cylinder
Ix = mR2/2
Iy = Iz = m(3R2 + L2)/12

R

L
z

y

x

Thin circular cylinder
Ix = mR2

x

R

Hollow circular cylinder
Ix = m R2

1 +R2
2

� �
/2

R1

R2

L

x

Solid circular cone
Ix = 3mR2/10
Iy = Iz = 3m(R2/4 + L2)/5

z

R

x

L

y

Solid sphere
Ix = Iy = Iz = 2mR2/5

x

z

R

y

Hollow sphere
Ix = Iy = Iz = 2mR2/3

x

z

y

R
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EXAMPLE 1.7 (Continued )

Now,

Z = ð8:00 ftÞ 1m
3:281 ft

� �
= 2:438m

Therefore,

PE =
mgZ
gc

=
ð907kgÞð9:81m=s2Þð2:438mÞ

1
= 21,700 kg .m2/s2

= 21,700N .m = 21,700 J = 21:7 kJ

In the Engineering English units system, we have

m =
Fgc
g

=
ð2000: lbfÞ 32:174 lbm . ft

lbf .s2

� �
32:174 ft=s2

= 2000: lbm

Here, Z = 8.00 ft, and from Table 1.2, we find that in the Engineering

English units system gc = 32.174 lbm · ft/(lbf · s2). Therefore,

PE =
mgZ
gc

=
ð2000: lbmÞð32:174 ft=s2Þð8:00 ftÞ

32:174 lbm . ft
lbf .s2

= 16,000 ft . lbf

= ð16,000 ftl≅bfÞ
 

1Btu
778:17 ft . lbf

!
= 20:6Btu

Exercises
19. If the automobile in Example 1.7 weighs 4000. lbf instead of 2000. lbf, determine its potential energy in SI and Engineering

English units. Assume all other variables (i.e., the height) remain unchanged). Answer: PE = 43.4 kJ = 41.1 Btu.
20. Determine the potential energy in both SI and Engineering English units of a 3.00 lbf textbook sitting on a table

28.0 inches above the floor. Answer: PE = 9.49 J = 7.00 ft · lbf.
21. Determine the potential energy in SI and Engineering English units of a 4000. kg moose standing on the top of a house

5.00 m above the ground. Answer: PE = 196 kJ = 186 Btu.

EXAMPLE 1.8
Determine the translational kinetic energy of a bullet having a mass of 10.0 grams traveling at a velocity of 3000. ft/s in both
SI and Engineering English units (Figure 1.15).

V = 3000. ft/s
Mass = 10.0 grams

FIGURE 1.15
Example 1.8.

Solution
The formula for the kinetic energy (KE) of an object with mass m traveling at velocity V is given by Eq. (1.11) as

KE = 1
2
k1mV2 = mV2

2gc
In the SI units system, m = 10.0 g = 0.0100 kg, and

V = 3000: ft
s

� �
1m

3:281 ft

� �
= 914:4m/s

From Table 1.2, we find that gc = 1 (dimensionless). Therefore,

KE =
ð0:0100 kgÞð914:4m/sÞ2

2ð1Þ = 4180
kg .m2

s2
= 4180N .m = 4180 J = 4:18 kJ

8.00 ft

Weight = 2000. lbf

FIGURE 1.14
Example 1.7.
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where 1 J = 1 N ·m = 1 kg ·m2/s2. In the Engineering English units system, V = 3000. ft/s, and m = 10.0 g = 0.0100 kg =
(0.0100 kg)(2.205 lbm/kg) = 0.02205 lbm. From Table 1.2, we find that gc = 32.174 lbm · ft/(lbf · s2). Therefore,

KE =
ð0:02205 lbmÞð3000: ft/sÞ2

2 32:174 lbm
. ft

lbf .s2

� � = 3084 ft . lbf

= ð3084 ft . lbfÞ 1Btu
778:17 ft . lbf

� �
= 3:96Btu

Exercises
22. If the bullet in Example 1.8 has a mass of 16.0 g instead of 10.0 g, determine its translational kinetic energy in

both SI and Engineering English units. Assume all the other variables remain unchanged. Answer: KE = 6.69
kJ = 6.34 Btu.

23. Suppose the bullet in Example 1.8 has a mass of 8.00 g and travels at a velocity of 1000. m/s. Determine its
translational kinetic energy in both SI and Engineering English units. Answer: KE = 4.00 kJ = 3.79 Btu.

24. Determine the translational kinetic energy of a baseball having a mass of 5.00 ounces thrown with a velocity of
90.0 mph. (Recall that 1 lbm = 16 oz.) Answer: KE = 115 J = 84.6 ft · lbf.

EXAMPLE 1.9
Determine the rotational kinetic energy in the armature of an electric motor rotating at 1800. rpm. The mass of the armature
is 10.0 lbm, and its diameter is 4.00 inches (Figure 1.16).

4.00 inches

Mass = 10.0 lbm

ω = 1800. rpm

FIGURE 1.16
Example 1.9.

Solution
We approximate the armature as a solid cylinder rotating about its axis. Next, from Table 1.7, we find the equation for the
mass moment of inertia of a solid cylinder, then calculate the mass moment of inertia of the armature to be

I = mR2

2
=

10:0 lbmð Þ ð2:00 inÞ 1 ft
12 in

� �h i2
2

= 0:139 lbm . f t2

Equation (1.12) gives the rotational kinetic energy of the armature as

ðKEÞrot = Iω2

2gc
=

ð0:139 lbm . ft2Þ 1800: rev
min⁡

� �
2π rad

rev

� �
1min⁡
60 s

� �h i2
2 32:174 lbm

. ft
lbf .s2

� � = 76:8 ft . lbf

Exercises
25. If the armature in Example 1.9 rotates at 2000. rpm instead if 1800. rpm, determine its new rotational kinetic energy.

Assume all the other variables remain unchanged. Answer: (KE)rot = 94.8 ft · lbf.
26. If the armature diameter in Example 1.9 is increased from 4.00 inches to 12.0 inches, determine its new rotational

kinetic energy. Assume all the other variables remain unchanged. Answer: (KE)rot = 690. ft · lbf.
27. Determine the rotational kinetic energy of the Earth as it rotates on its axis once every 24.0 h. The mass and radius of

the Earth are 5.976 × 1024 kg and 6.37 × 109 m. Answer: (KE)rot = 2.56 × 1035 J.
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THERMODYNAMIC CASE STUDIES

Case study 1.1. The Anatomy of an Accident
A testing company is commissioned to build a facility to spin test the
impellers for large centrifugal compressors. A test impeller is spun in a
vacuum inside a thick-walled spin chamber until it bursts. The impeller
is driven by a small air turbine with a shaft that enters through the
top of the spin chamber, and the walls of the spin chamber are lined
with thick lead bricks to absorb the rotational kinetic energy of the
pieces of the impeller when it bursts (Figure 1.17).

During the initial test run, a 600. lbm, 30.0-inch diameter stainless
steel impeller is to be spun until it bursts as part of the acceptance test
of the facility. At about 1 AM, the rotor reaches 14,000 rpm and bursts.
The people conducting the test are located in a room adjacent to and
one floor above the test chamber room. The burst makes a single
“thud” noise, typical of bursting rotors, but when the operators go to
the test room they find the corridor and stairwell full of dust and deb-
ris. Some of the lead bricks from inside the spin chamber are found in
the hallway, and one brick penetrated the test room wall and ended
up in the kitchen of a neighborhood house. The 3000 lbm spin cham-
ber cover had been blown up through the ceiling and fell back down

(Figure 1.18). The entry door into the test room was blown into an
adjacent parking lot, and the test room had extensive damage from
flying lead bricks and pieces of the impeller penetrating the walls.

The cover was bolted to the chamber with 24 1-inch diameter bolts
that could resist a total force of 1.90 × 106 lbf. It is concluded that
the accident was caused by the impact of the impeller fragments
extruding the lead bricks vertically in the spin chamber, ultimately
exerting a force on the cover of about 2.10 × 106 lbf. The spin
chamber contained all the radial burst forces, and only 5% of the
rotational kinetic energy escaped the chamber via the lead extruded
against the cover and forcing it off.

The moment of inertia of the impeller is measured and found to be
542 lbm · ft2, and the rotational kinetic energy of the impeller at
the point where it burst is

Rotational KE = 1
2

Iω2� �
= 7:80×106ft . lbf = 10,000Btu = 10:6MJ

which is equivalent to the explosive power of about 7.20 lb of TNT
(or about 60 hand grenades).

Lead bricks

Test rotor

Drive turbine

Containment
vessel

Vacuum

Removable cover

FIGURE 1.17
Case study 1 illustration.

FIGURE 1.18
Case study 1, damage to centrifuge.
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SUMMARY
At the beginning of this chapter we saw the significance of understanding basic thermodynamics in a well-
rounded engineering education. A working definition of thermodynamics is presented and the value of thermo-
dynamics to all engineering fields discussed. A basic problem solving technique is presented that is used throughout
the text and expanded on in later chapters.

Engineers must have a sound understanding of how units systems are constructed and how the various popular
units systems relate to each other, because engineering units are not trivial. An accurate computation depends as
much on correct units management as it does on correct numerical calculation. In this chapter, the concepts of
units, dimensions, and metrology are also discussed. We see that ancient units of measurement evolved from a grow-
ing need to expand and quantify the elements of commerce and are undeniably woven into the history of civili-
zations. The historical evolution of these units often involved the binary doubling of size between successive
units. It is pointed out that temperature units came into use quite recently, and they have their origin in the com-
mon medical practice of sensing fever in the human body.

By the turn of the 20th century, classical mechanical and electrical units systems had been developed and were in
common use by engineers. Other units, such as chemical units, are also often used in engineering analysis.

The development of modern unit systems began in 1870 and is still going on. The United States is currently in the
process of converting all its commerce and technology into the SI system. Since it is not known exactly how
long this will take, textbooks such as this one present material in both the traditional Engineering English units
system and the SI units system so that you, the next generation of engineers, will be able to work with both

Case study 1.2. Sandia’s hypervelocity gun
The high-velocity impact of even a small particle having a mass of
only 1 g can have a disastrous effect on a spacecraft. To develop
shields against such an eventuality, engineers at the Sandia
National Laboratories developed a high-velocity launcher (gun)
that allows the testing of materials and equipment here on Earth.

Sandia’s hypervelocity launcher, known as the Z accelerator, is cap-
able of accelerating dime-sized projectiles a few centimeters to gain
information that can be used to simulate the effect of meteoroid
impact on spacecraft (Figure 1.19). The propulsion technique uses
the Z machine’s 20 million amps to produce a huge magnetic field
that expands in approximately 200 nanoseconds. The smooth accel-
eration produced by the expanding magnetic field produces a
smooth projectile acceleration rather than that produced by shock
of an explosion. When accelerated to a velocity of 20 km/sec, an
aluminum projectile is liquefied but not vaporized.

Hypervelocity impact testing is also an accurate method of deter-
mining a material’s “equation of state,” which predicts how a

material will react when the pressure and temperature are changed
by specific amounts.

The energy required to launch a small projectile to 20 km/s is
about 15 times the energy required to melt and vaporize the pro-
jectile. Therefore, the energy must be imparted in a well-controlled
manner to prevent this from happening. This is achieved by using a
variable density assembly to impact a stationary projectile to propel
it to very high velocity without melting or fracturing.

The kinetic energy contained in a 1.00 g projectile launched at a
velocity of 20.0 km/s is

KEð Þlaunch = mV2ð Þ/2= 1:00×10–3 kgð Þ 20:0×103m/sð Þ2/2
=200:×103 kg m/sð Þ2 =200:×103N.m=200:×103J=200:kJ

which is about the same kinetic energy as contained in a 1000 kg
(2200 lb) automobile traveling at 20 m/s (45 mph). The impact of
a 1.00 g object traveling at 20.0 km/s is spread over a very small
area, and the material damage produced is enormous.

FIGURE 1.19
Case study 1.2, Z accelerator cross-section.
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systems when necessary. Finally, we saw how to apply the basic units systems to the calculation of the potential
and kinetic energy of systems.

Some of the more important equations developed in this chapter follow.

1. The equations for the conversion of temperature units:

Tð°FÞ = 9
5
× Tð°CÞ+32 = TðRÞ−459:67

Tð°CÞ = 5
9
× ½Tð°FÞ−32� = TðKÞ− 273:15

TðRÞ = 9
5
× TðKÞ = 1:8× TðKÞ = Tð°FÞ+ 459:67

TðKÞ = 5
9
× TðRÞ = TðRÞ

1:8
= Tð°CÞ+273:15

2. By Newton’s second law, F = ma/gc, and the dimensional constant gc

gc = 32:174 lbm . ft
lbf .s2

for the Engineering English units system

gc = 1:0 ðdimensionlessÞ for the SI units system

3. The relation between mass (m) and moles (n) of a chemical substance with a molecular mass M:

n = m
M

4. The definitions of potential and kinetic energies:

Potential Energy = PE =
mgZ
gc

Translational Kinetic Energy = ðKEÞtrans = mV2

2gC

Rotational Kinetic Energy = ðKEÞrot = Iω2

2gC

Some of the important technical terms introduced in this chapter are given in the glossary shown in Table 1.8.
Many of these terms are used throughout the remainder of the text without further explanation.

Table 1.8 Glossary of Technical Terms Introduced in Chapter 1

Technical Term Meaning

metrology The study of measurement

dimension A measurable characteristic

duodecimal A base 12 number system

sexagesimal A base 60 number system

Newton’s second law F = ma/gc
newton 1 newton = 1 kg ·m/s2

dyne 1 dyne = 1 g ·cm/s2

poundal 1 poundal = 1 lbm · ft/s2

slug 1 slug = 1 lbf ·s2/ft

gc The dimensional proportionality constant in Newton’s second law. In the Engineering English units system,
gc = 32.174 lbm · ft/(lbf ·s2), and in the SI units system gc = 1 and is dimensionless.

gmole The amount of any chemical substance that has a mass in grams numerically equal to the molecular mass
of the substance. This is called simply a mole in chemistry textbooks.

kgmole The amount of any chemical substance that has a mass in kilograms numerically equal to the molecular
mass of the substance.

lbmole The amount of any chemical substance that has a mass in lbm (pounds mass) numerically equal to the
molecular mass of the substance.

SI Le Systéme International d’Unités (French)

Psia lbf/in2 absolute (pressure)

Psig lbf/in2 gauge (pressure)
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Problems 27

Problems (* indicates problems in SI units)
1.* Using the problem solving technique described at the beginning

of the chapter, work out your answer to the following question:
A fresh egg is released by an ancient pterodactyl flying
horizontally at 10. m/s at an altitude of 1500 km (Figure 1.20).
If it takes 15 s for the egg to hatch, will it hatch before it hits
the ground?

2. During the construction of the Eads bridge across the Mississippi
river at St. Louis in 1873, Theodore Cooper, a young assistant civil
engineer, slipped on a loose board and fell 90. ft into the river
(Figure 1.21). He later reported that, during the fall, he rolled
himself into a ball and rapidly calculated the velocity with which
he would hit the water. After a deep plunge, he came to the surface
still clutching his pencil and was rescued by a nearby boat.
Neglecting air resistance, determine (a) how long it took him to
fall 90. ft, and (b) the velocity with which he hit the water.

3. If 1 gallon has a volume of 0.1337 ft3, then how many
mouthfuls of water are required to fill the moat of a castle that
is 1.0 pole deep, 1.0 fathom wide, and 1.0 furlong long
(Figure 1.22)? Note: 1.0 pole = 12 cubits = 18 feet, and
1.0 fathom = 4.0 cubits = 6.0 feet.

4. The gauge of shotguns is universally expressed as the number of
spheres of the diameter of the bore of the gun that can be cast
from 1 lb of lead (Figure 1.23). This standardization procedure
came from the English Gun Barrel Proof Act of 1868. Taking the
density of the lead as 705 lbm/ft3, develop a formula relating
the diameter of the gun barrel to the gauge of the gun. Compute
the barrel diameters for 20. gauge, 12. gauge, and 10. gauge
shotguns. (Note that the caliber of a gun is not the same as its
gauge. The caliber of a weapon is just the diameter of the bore

expressed in inches multiplied by 100. For example, a .38 caliber
pistol has a bore diameter of 0.38 inch).

5. If lead is measured in avoirdupois ounces and silver is measured in
troy ounces, which weighs more (a) an ounce of lead or an ounce
of silver, and (b) a pound of lead or a pound of silver (Figure 1.24)?

10. m/s

Egg

1500 km

FIGURE 1.20
Problem 1.

90 feet

517 feet

Eads Bridge

FIGURE 1.21
Problem 2.

FIGURE 1.22
Problem 3.

FIGURE 1.23
Problem 4.

Which one weighs more?

One pound of lead One pound of silver

FIGURE 1.24
Problem 5.



6. Most people believe that the size of a shoe is the length of the shoe
in inches (Figure 1.25). Curiously, this is not the case. Shoe sizes
became standardized between 1850 and 1900 as factory-made
shoes became popular. The size standardization consisted of
defining the smallest shoe size at some fixed insole length, then
increasing the insole length by a fixed amount for each size
increment. The child’s size 0 shoe was specified to have a 31112 inch
long insole and the adult size 1 shoe (there is no size 0 adult shoe)
was specified to have an 8 7

12 inch long insole. It was also decided
that each full size increment would represent an increase in insole
length by one barleycorn (13 inch), and an increase in girth
(the internal circumference of the shoe and the ball of the foot)
by 1

4 inch. Letters were chosen to denote shoe width increments,
and the difference in girth between these width increments
(for example, between a C and a D width shoe) is also 1

4 inch.
a. Determine the equations that relate the adult and child’s size

directly to insole length, and compute the insole length of
an adult size 10 shoe.

b. Compute the size of a child’s shoe that has the same insole
length as a size 1 adult shoe and explain why children’s
shoes are not available in size 14 or larger.

7. The classification of carpenters’ nails is based on a unit system
that is at least six centuries old. The penny system of nail sizing,
usually designated by d, the letter that was also the symbol for
the monetary penny or pence (i.e., 3d = 3 penny nail),
originated in medieval England.9 At that time, nails were sold
by the hundred, and originally a hundred 3 penny nails cost 3
pennies. From this practice came the classification of nail sizes
according to the price per hundred (Figure 1.26). This system
had the disadvantage that inflation in the monetary system
caused the size of the nails to change. By the end of the 15th
century, the classification became standardized according to
Table 1.910; and from this point on, the size of the nails no
longer corresponded to their actual cost. Estimate the percent of

monetary inflation since the 15th century if a pound of 6d nails
currently costs $1.00.

8. By 1724, Gabriel Daniel Fahrenheit (1686–1736) had
established his well-known temperature scale. This scale was based
on two fixed points: the freezing point of a water and ammonium
chloride solution (called 0°F) and the temperature of the human
body (called 96°F). Later adjustments to the scale shifted the body
temperature to 98.6 EF. What advantages did the number 96 have
over, say, 100 as an upper end to this scale in 1724?

9. Determine the units of thermal conductivity, kt, as defined by
the following equation: _Q = –ktA(dT/dx), where _Q is the heat
transfer rate in watts, A is the cross-sectional area in m2, T is the
absolute temperature in K, and x is the distance in m.

10. Determine the units of viscosity, μ, in the following equation:
τ = μ(du/dy), where τ is a shear stress, u a velocity, and y is a distance
in (a) the Engineering English system, and (b) the SI system.

11. Develop a unit conversion factor to convert the specific heat of a
substance in calories/(g ·K) into Btu/(lbm ·R).

12. The specific internal energy of a system is 411.7 J/kg. Express
this value in the following units: (a) ft · lbf/lbm, (b) kcal/kg, and
(c) kW ·h/lbm.

13. Determine the weight at standard gravity of 10.0 lbm in (a) lbf,
(b) poundals, (c) dynes, and (d) newtons.

One foot!

FIGURE 1.25
Problem 6.

1 inch Barbed roofing nail

3d Slating nail

3d Fine nail

8d Clinch nail

6d Shingle nail

8d Finishing

8d Casing

8d Flooring brad

8d Common brad

8d Common

FIGURE 1.26
Problem 7.

Table 1.9 Nail Sizes

Nail Size

2d 3d 4d 5d 6d 7d 8d 9d 10d 12d 16d 20d 30d 40d 50d 60d

Length (inches) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 4.00 4.50 5.00 5.50 6.00

Number per pound 845 540 290 250 165 150 100 90 65 60 45 30 20 17 13 10

9 The d is from denarius, the name of an old Roman silver coin.
10 Nails less than 2 penny in size are called tacks or brads, and nails larger than 60 penny are called spikes.
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14. Determine the mass of an object whose weight on the Moon,
where the local acceleration of gravity is 5.3 ft/s2, is 10.0
poundals in (a) lbm, (b) slugs, (c) g, and (d) kg.

15. Determine the acceleration of gravity at the location where 3.0
slugs of mass weigh 50.0 N.

16. How much does 10.0 lbm weigh on a planet where g = 322 ft/s2?
17. Determine the value of gc at a location where a body with a

mass of 270. lbm weighs 195 lbf.
18. Develop a mechanical units system in which the mass is the stone,

the length is the angstrom (0.1 nm), and the time is the century.
(a) Define your own force unit and choose the magnitude of k1.
(b) Discuss the problems that would be encountered in
converting between your system and the SI system.

19. Develop a mechanical units system in which force (F ), mass
(M ), length (L), and time (t) are independent quantities, using
the kgf (kilogram force) for F, and kgm (kilogram mass) for M,
the meter for L, the second for t, and 9.81 kgm ·m/(kgf · s2) as gc.
Note the similarities between this units system (which is used
by some European engineers today) and the Engineering English
units system.

20. Develop an FLt mechanical units system in which gc = 1 and the
force is the pound force (lbf), the length is the foot, and time is
the second. Define the mass in this system to be the pound mass
(lbm) and determine the conversion between the primary units
(lbf, ft, and s) and the secondary mass (lbm) unit at standard
gravity. Note that this is not the same FLMt system used in the
Engineering English units system shown in Table 1.2. Explain the
differences and similarities between these two systems.

21. Determine the mass of 18 lbm of water in (a) lbmoles,
(b) gmoles, (c) kgmoles, and (d) slug moles.

22. How many kgmoles of nitroglycerine C3H5(NO3)3 are contained
in 1.00 kg?

23. How many lbmoles of TNT (trinitrotoluene) C7H5(NO2)3 are
contained in a 1.00 lbm stick?

24. How many lbm are contained in 1.00 lbmole of glucose C6H12O6?
25. Determine the mass in lbm of 1.00 lbmole of Illinois coal

having a molecular structure of C100H85S2.1N1.5O9.5.
26. What will 3.0 kgmoles of CO2 weigh at standard gravity in

(a) N, and (b) lbf?
27. Determine the molecular mass of a substance for which

5.0 gmoles weighs 10.× 103 dynes at standard gravity.
28. Create an absolute temperature scale based on Reaumur’s

relative temperature scale defined in Table 1.1, and name it after
you. Determine the boiling point of water in your new scale,
and the conversion factors between your scale and the Kelvin
and Rankine scales.

29. Create an absolute temperature scale based on Newton’s relative
temperature scale defined in Table 1.1, and name it after you.
Determine the boiling point of water in your new scale, and the
conversion factors between your scale and the Kelvin and
Rankine scales.

30. Both the numerical value and dimensions of the universal gas
constant ℜ in the ideal gas formula p∀ = nℜT depend on
whether the temperature T is in Kelvin or Rankine absolute
temperature units. In 1964, at Washington University, St. Louis,
Missouri, Professor John C. Georgian recognized that, if the
universal gas constant were set equal to unity and made
dimensionless, then the ideal gas equation of state could be
used to define an absolute temperature unit in terms of the
traditional mass, length, and time dimensions from the

result: T = pV/n, where p is the absolute pressure, V is the total
volume, n = m/M is the number of moles, and m and M are
mass and molecular mass, respectively.
a. Using T = pV/n (i.e., set ℜ = 1), determine the equivalent

Georgian temperature unit in terms of the standard SI units
(m, kg, s). Call this new temperature unit the georgian, G.

b. Find the conversion factor between G and the SI units
system absolute temperature scale unit, K.

c. Find the conversion factor between G and the Engineering
English units system absolute temperature scale unit, R.

d. Determine the triple and boiling points of water in G
(Figure 1.27).

31. Show that (4πε0)(c2 × 10–7) = 1 C2/(kg ·m), where c is the
velocity of light = 2.998× 108 m/s, and C is the charge in
coulomb (1C = 1 A · s).

32. Show that ε0μ0c
2 = 1.0, where ε0 is the electric permittivity of a

vacuum = 8.8542× 10–12 A2 ·s4/(kg ·m3), and μ0 = the magnetic
permeability of a vacuum = 4π× 10–7 kg ·m/(A ·s)2.

33. If the pressure inside an automobile tire is 32.0 psig in
Engineering English units, what is its pressure in SI units?

34. If your mass is 183 lbm in the Engineering English units system,
what is your weight in (a) the Engineering English units system
and (b) the SI units system?

35. If you weigh 165 lbf in the Engineering English units system,
determine your mass in the following units systems:
(a) Engineering English, (b) SI, and (c) Technical English.

36.* The potential of a typical storm cloud can be as high as
109 volts. When lightning is produced, a typical lightning strike
can produces an electric current of 20,000 amps (Figure 1.28).
a. Determine the power contained in a lightning strike (in kW).

Problems 29

FIGURE 1.27
Problem 30, part d.

I = 20,000 amps

109 volts

FIGURE 1.28
Problem 36.



b. If the earth is covered with 2000 lightning storms each
producing 100 strikes per second, determine the total
lightning electrical power available (in kW).

37. If a person reports the dimensions of a room from
measurements with a tape measure as 12 feet, 61

4 inches by
14 feet, 31

2 inches, how many significant figures are being
used?

38. If you measure time in hours with an accuracy of five significant
figures then convert it into seconds, to how many significant
figures should you report the answer in seconds?

39.* An engineer reports a value of 1.3695 m/s for the velocity of
conveyer system.
a. How accurate (i.e., to how many significant figures) is the

velocity measurement?
b. If this velocity is calculated from a measurement of a

distance traveled divided by the time required, how
accurately (i.e., to how many significant figures) must the
distance and time be measured?

40. How accurate (i.e., how many significant figures can you
measure) is (a) a bathroom scale graduated in quarter pound
increments, (b) a yardstick graduated in eighth-inch increments,
(c) a 6-inch machinist’s pocket rule graduated in 1

16th inch
increments, (d) a 1-inch micrometer graduated in 1

1000th inch
increments, and (e) an analog stopwatch graduated in one
hundredths of a second?

41. If you are reporting a distance of less than ten miles traveled in
your car from reading the odometer, how many significant
figures do you use?

42. If you are calculating the potential energy of an object for which
you know its mass to three significant figures, its height to two
significant figures, and the local gravity to four significant
figures, how many significant figures do you use in your final
answer?

43. If you are calculating the kinetic energy of an object for which
you measure the distance it travels with an instrument having
an accuracy of four significant figures, the time of travel with a
stopwatch accurate to three significant figures, and a mass
measured to an accuracy of three significant figures, how many
significant figures do you use in your answer?

44.* Determine the potential energy of 1.00 kg of water at a
height of 1.00 m above the ground at standard gravity in (a)
the Engineering English units system and (b) the SI units
system.

45. Compute the kinetic and potential energies of an airplane
weighing 5.00 tons flying at a height of 30.0 × 103 ft at
500. mph (Figure 1.29). Give your answer in both SI and
Engineering English units. Assume standard gravity.

46. Assume the binding energy per molecule for liquid water at
212.°F is about 7.00 × 10−20 ft · lbf/molecule. Then, assuming
all the binding energy is converted into mass, determine the
percent gain in mass when 1.00 lbm (1025 molecules) of
liquid water vaporizes. Note: E = mc2/gc, where, in the
Engineering English units system, gc = 32.174 lbm · ft/(lbf · s2)
and c = 9.84 × 108 ft/s.

47. The engine horsepower required to overcome rolling and air
resistance for a passenger vehicle is given by the dimensional
formula

Horsepower⁡ = 53:0
hp .h
lbf .mi

� �
ðWVÞ+ 6:8

hp .h3

ft2 .mi3

� �
CDAV

3
� 	

×10− 6

where W is the vehicle weight in pounds force, V is the vehicle’s
road speed in miles per hour, A is the vehicle’s frontal area in
square feet, and CD is a dimensionless drag coefficient. Convert
this formula into a dimensional formula that uses only the four
base units (i.e., eliminate all derived units such as horsepower
and mile) of
a. The Engineering English system (lbf, lbm, ft, s).
b. The SI system (N, kg, m, s).

48.* You are suddenly transported through time and space to an
unknown planet, where you find yourself face to face with a
hungry giant quadroplex creature. Your finely honed survival
skills as a successful, but mild-mannered, engineering student
lead you conclude that the beast has a mass of 1.00 × 104 kg
(gads!). In response to its unwanted affection, you quickly pick
up a stone and throw it vertically with a carefully calibrated
launch velocity of 10.0 m/s (Figure 1.30). Your well-trained eye
determines that the stone flies to a height of 20.0 m before it
begins to drop. Knowing that the initial kinetic energy and the
final potential energy of the stone must be equal, determine
(before the creature reaches you)
a. The value of gc on this planet (in kg ·m/N · s2).
b. The value of the local acceleration of gravity (in m/s2).
c. The local weight (in newtons) of the approaching giant

bulbous creature.

500. mph

30.0 × 103 feet

Aircraft weighs 5.00 tons

FIGURE 1.29
Problem 45.

FIGURE 1.30
Problem 48.
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49. Using the CGS units system, determine the kinetic energy
of an automobile weighing 1.60 billion dynes traveling at
3000. cm/s.

50. Using the CGS units system, determine the potential energy of
a truck weighing 27.0 billion dynes at a height of 30.0× 103 cm
at standard gravity.

51. Using the Absolute English units system, determine the weight
of an object whose kinetic energy is 306.2 ft ·poundal, when it is
traveling at a velocity of 10.0 ft/s.

52. Using the Absolute English units system, determine the kinetic
energy of an object traveling at 15.3 ft/s and weighing
40.0 poundal at standard gravity.

53. Using the Absolute English units system, determine the potential
energy of an object weighing 200. lbm · ft/s2 at a height of
3000. ft at standard gravity.

54. Using the Technical English units system, determine the mass of
an object having a potential energy of 705 ft · lbf when it is at a
height of 25.0 ft at standard gravity.

55. Using the Technical English units system, determine the
kinetic energy of a 197 slug mass traveling at a velocity
of 33.5 ft/s.

56.* Micrometeoroids have space station impact velocities of
19.0 km/s. Determine the impact kinetic energy in SI and
Engineering English units of a 1.00 g micrometeoroid traveling
at this velocity.

57. A 2000. lbm meteoroid has a velocity of 23.0 × 103 mph
(Figure 1.31). Determine the kinetic energy of the meteoroid in
Engineering English and SI units.

58.* The Sandia National Laboratory hypervelocity two-stage light gas
gun achieved muzzle velocities of 12.0 km/s with 0.500 g flat
plate projectiles. Determine the muzzle kinetic energy of the
projectiles in SI and Engineering English units.

59.* A thin disk with a diameter of 1.00 m and weighing 8.00 kg is
spun about its axis at 30.0 × 103 revolutions per minute.
Determine its rotational kinetic energy.

60.* The armature of a large electric motor can be thought of as
being composed of a slender solid circular rod (the motor drive
shaft) inside a large hollow circular cylinder (the armature

windings). If the motor shaft has a mass of 150. kg and a
diameter of 0.250 m, and the armature windings have a mass of
600. kg and an outside diameter of 1.50 m (the inside diameter
is the same as the outside diameter of the shaft), determine the
rotational kinetic energy stored in the motor when it is rotating
at 3600. rpm.

61. A 0.3125 lbm baseball 2.866 inches in diameter is thrown
with a velocity of 80.0 mph and it simultaneously spins
about its axis at 5.00 rad per second (Figure 1.32). Determine
the total (translational plus rotational) kinetic energy of
the ball.

62. A 12 lbm bowling ball 8.59 inches in diameter is given a spin
of 1.0 revolution per second while traveling down the lane at
17 ft per second (Figure 1.33). Determine the total translational
plus rotational kinetic energy of the ball.

63.* The NASA space shuttle’s main engine high-pressure
turbopump rotors are cryogenically spin tested in a vacuum
at 40.0 × 103 rpm and –195°C. The rotor can be modeled as
a thin disk 0.600 m in diameter with an effective mass of
8.50 kg. Determine the rotational kinetic energy of the rotor
about its axis of rotation when it is running at the test
speed.

64. A great deal of research has been carried out at the Oak
Ridge National Laboratory in Tennessee on flywheel energy-
storage systems. The lab developed a 27.0-inch diameter
composite flywheel that can run at 40.0 × 103 rpm on
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FIGURE 1.31
Problem 57.

80.0 mph

5.00 radians/s

FIGURE 1.32
Problem 61.

17 ft/s

1.0 rev/s

FIGURE 1.33
Problem 62.



magnetic bearings (Figure 1.34). If this flywheel can be
represented as a thin disk with a mass of 100. lbm,
determine
a. The rotational kinetic energy stored in the flywheel.
b. The energy storage capacity of this flywheel in W · h/lbm.

65. Determine the energy-storage capacity in W ·h/lbm of the
impeller in the Anatomy of an Accident case study presented in
this chapter.

66.* A manufacturer of a thin disk energy-storage flywheels claims to
have a flywheel made of a composite material mounted on
magnetic bearings. If the flywheel turns at 200. × 103 rpm and
has an energy-storage capacity of 50.0 W ·h/kg, determine the
diameter of the flywheel.

40.0 × 103 rpm

Mass = 100. lbm

27.0 inch diameter

FIGURE 1.34
Problem 64.
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CHAPTER 2

Thermodynamic Concepts
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2.1 INTRODUCTION
Some students have difficulty with thermodynamics because it is such a broad subject. Engineering courses like
statics, dynamics, and materials focus on just a few topics. Thermodynamics, on the other hand, deals with
many issues that are common to a variety of engineering systems. A thermodynamic analysis can span the
gamut from a huge power plant to the smallest microscopic system. It can often be applied in a fairly simple
way to extremely complex systems (like biological systems) to provide profound results.

One of the most powerful aspects of thermodynamics is its “black box” approach to system analysis. It is not
necessary to know what takes place inside the box, it is necessary only to watch the box’s boundaries and see
what, and how much, crosses them. This is the essence of the balance concept, discussed later in this chapter. But
we begin by introducing some basic thermodynamic definitions.
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2.2 THE LANGUAGE OF THERMODYNAMICS1

This section deals with a series of definitions and technical terms fundamental to understanding the language of
thermodynamics. Some of these terms are already in our everyday vocabulary as a result of the broad-based use
of thermodynamics concepts in everyday life. It was popular among the 19th century scientists to coin technical
terms using Greek or Latin words instead of English. Consequently, many of the key terms (words) in thermody-
namics are really Greek or Latin words, which, in the 21st century, are probably foreign to you. But when these
terms are translated into English, you will find that their English meaning is identical to their thermodynamic
use. For example, the English translation of the term isothermal is simply constant temperature, which is the physical
meaning of what the term isothermal is meant to imply. Consequently, when Greek or Latin terms are introduced
in this text, their equivalent English translations also are given at that point. Appendix B at the end of this book
gives a more comprehensive analysis of the Greek and Latin origins of scientific and engineering terms. Though
this may seem like a small point to you at this stage, your understanding and ease with this subject are greatly
enhanced if you pay particular attention to the English meanings of these otherwise meaningless technical terms.

The name thermodynamics itself is an example of a Greek technical term. Basically, it means the process of
converting heat (thermo) into mechanical power (dynamics). Modern thermodynamics deals with more than just
thermal energy. It is more appropriately defined today as in the following box titled “Thermodynamics.”

There are four basic laws of thermodynamics: the zeroth, first, second, and third laws. Like all of the other basic
laws of physics, each of these laws is a generalization of observed events in the real world, and their “discovery”
was the result of an individual’s perception of how nature functions. Curiously, the order in which the thermo-
dynamic laws are named does not correspond to the order of their discovery. The zeroth law is attributed to
Fowler and Guggenheim in 1939; the first law to Joule, Mayer, and Colding in about 1845; the second law to
Carnot in 1824; and the third law to Nerst in 1907. The first and second laws are the most pragmatic and conse-
quently the most important to engineers. A thermodynamic analysis involves applying the laws of thermo-
dynamics to a thermodynamic system.

A thermodynamic system often is referred to as just a system. Its boundary is defined simply as its surface.

The system and its boundary are always chosen by the analyst (i.e., you); they are almost never specified in a
problem statement. It should be clear that, if different systems are used to analyze the same quantity, they
should produce the same results in each case. A system does not have to be fixed in space. It can move, deform,
and increase or decrease in size with time. Basically, there are three types of systems: isolated, closed, and open.

Figure 2.1 illustrates each of these types of systems. In Figure 2.1a, a pan of water is in a mass and energy
impervious insulated box, thus forming an isolated system. In Figure 2.1b, we have a closed system, wherein the
contents of the pan are closed by an airtight lid, but heat energy enters the pan from the burner. In Figure 2.1c,
water (mass) enters the pan by crossing the system boundary, so here the pan is an open system.

Notice that whether a system is open or closed depends on how the analyst views the system. Figure 2.1c could be
made into a closed system if the system boundary is extended to include the faucet, all the water pipe going back

THERMODYNAMICS

Thermodynamics deals with the laws that govern the transformation of energy from one form to another.

THERMODYNAMIC SYSTEM

The thermodynamic system is a volume of space containing the item chosen for thermodynamic analysis.

THERMODYNAMIC SYSTEM BOUNDARY

The surface of a thermodynamic system forms its boundary.

1 Feel free to turn on your babble fish here, but do not put it in your ear just yet.
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to the water treatment plant, and the water supply for the plant. But such a system would be too large to analyze
properly, since we must be able to find all the energy that crosses its boundary, at any point along the boundary.
Therefore, it is much easier to view Figure 2.1c as an open system with a small, well-defined system boundary.

The choices of the proper system, along with the proper form of the thermodynamic laws, always are decisions
that you, the analyst, must make whenever beginning to solve a thermodynamics problem. Making a sketch
of the system that shows the system boundary is a useful aid in making these decisions. The system sketch in
thermodynamics is equivalent to the free body diagram sketch in mechanics. Its value cannot be overstated.

2.3 PHASES OF MATTER
The physical phase of a substance is defined by the molecular structure of the substance. For example, water
can be described chemically as H2O, but it may exist in a number of molecular configurations. At low
temperatures, water takes on a rigid crystalline molecular structure, ice, but at higher temperatures its molecu-
lar structure becomes amorphous as it becomes a liquid and random as it becomes a vapor. We can easily
identify three common structural phases of matter: solid, liquid, and vapor (or gas). But, whereas only
one liquid phase or one vapor phase may be possible, many different solid molecular configurations of a
substance may exist.

The term homogeneous can be used to describe either physical or chemical uniformity. Here we use the term pure
substance to describe substances that are chemically uniform (Figure 2.2), and reserve the term homogeneous to
describe substances that are physically uniform (i.e., have a single physical phase). Hence, we define a pure
substance as anything that contains the same uniform chemical composition in all its physical phases. For exam-
ple, a mixture of water vapor and liquid water is a pure substance. On the other hand, air is not really a pure
substance, because when it is cooled sufficiently, some of its components condense into their liquid state, thus
changing the composition of the remaining gases.

CRITICAL THINKING

If we select your body as a thermodynamic system, is it an open or closed system? What happens to you if we force you to
be a closed system?

(a) Isolated System: Neither
      mass nor energy can cross
      the system boundary. 

System boundary

(b) Closed System: Mass
     cannot cross the system
     boundary, but energy can.  

System boundary

(c) Open System: Both
     mass and energy can cross
     the system boundary.  

System boundary

FIGURE 2.1
The three types of thermodynamic systems.

TYPES OF THERMODYNAMIC SYSTEMS

Isolated system. Any system in which neither mass nor energy crosses the system boundary.
Closed system. Any system in which mass does not cross the system boundary, but energy may cross the system boundary.
Open system. Any system in which both mass and energy may cross the system boundary.
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We further define a homogeneous substance as anything that contains a single physical phase. Air at normal
atmospheric conditions is a homogeneous substance, but being a mixture of various gases, it is not a pure
substance. A mixture of liquid water and ice on the other hand is not a homogeneous substance, but it is a pure
substance. A pure substance that is also a homogeneous substance is called a simple substance. Liquid water is an
example of a simple substance.

Pure substances must be chemically uniform but need not consist of a single chemical species. For example,
a homogeneous mixture of uniform chemical composition can often be treated as if it were a single phase of a
pure substance. Air in its gaseous state is usually treated as a pure substance, even though it does not satisfy the
general definition of a pure substance.

2.4 SYSTEM STATES AND THERMODYNAMIC PROPERTIES
The thermodynamic state of a system can be either an equilibrium state or a nonequilibrium state. A thermo-
dynamic equilibrium state is defined by the values of its thermodynamic properties. A nonequilibrium state is
much more difficult to define and generally requires the existence of a condition called local thermodynamic
equilibrium, which exists when thermodynamic equilibrium occurs locally within a series of small volumes that
make up the system. Conversely, a thermodynamic property is any characteristic of a system whose numerical
value depends only on the (local) thermodynamic equilibrium state of the system and is independent of how

PURE
SUBSTANCE

Elements contain atoms of a
single atomic number and have
well-defined physical
properties.  

ELEMENTS

Compounds contain atoms of
two or more elements
chemically combined and have
well-defined physical properties.

COMPOUNDS

MIXTURE

Homogeneous mixtures have
the same composition
throughout. The components
in the mixture are NOT
distinguishable from each
other, and different mixtures
have widely different physical
properties.      

HOMOGENEOUS MIXTURES

Heterogeneous mixtures do
NOT have the same composition
throughout. The components 
in the mixture ARE 
distinguishable, and different 
heterogeneous mixtures may 
have widely different physical
properties.      

HETEROGENEOUS MIXTURES

FIGURE 2.2
Pure substances and mixtures.

CRITICAL THINKING

From the previous discussion as to whether or not air is a pure substance, do you think that a more practical definition of
a pure substance should require only that the substance not change chemical composition under the conditions of a given
engineering process? For example, if air at atmospheric pressure is being heated from say 20°C to 200°C, then it would not
change chemical composition and therefore could be considered as a pure substance. If, on the other hand, this air is being
cooled from 20°C to –200°C, then it could not be considered a pure substance because the oxygen gas condenses into a
liquid at –183°C and this would change the chemical composition of the remaining gas.
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that state was attained. Mass, volume, temperature, pressure, color, viscosity, magnetization, and so forth are all
possible properties.

The list of possible properties is quite long. Fortunately, not all properties are independent of each other. In fact,
a homogeneous system contains relatively few independent properties. The formula relating the dependent and
independent properties of a system is called a thermodynamic equation of state. Once the values of the indepen-
dent properties are known for a particular state, this formula can be used to calculate the values of all the
dependent properties at that state. The ideal gas formula, pv= RT, is an example of such an equation of state for
a simple system. In classical thermodynamics, there are two types of properties, intensive and extensive.

Most extensive properties can be converted into intensive properties by dividing the extensive property
by the system mass (or the number of moles) in the system. Intensive properties created in this way are called
specific properties. For example, the total volume of a system divided by the total mass of the system is the inten-
sive property called specific volume, and the total volume divided by the total number of moles of the system
is the intensive property called molar specific volume. To be able to tell the difference between extensive and
intensive properties in the formulae of this book, we adopt the notational scheme explained in the boxes.

Exceptions to this extensive property notation are uppercase T for temperature (which is an intensive property),
lowercase m for mass (which is an extensive property), and lowercase n for the number of moles (also an exten-
sive property). The letters T, m, and n for temperature, mass, and moles are the traditional symbols for these
quantities, and the symbols t, M, and N are the traditional symbols for time, molecular mass, and Avogadro’s
number, respectively.

INTENSIVE PROPERTY

An intensive property is any thermodynamic property of a homogenous system that is independent of mass. Examples are the
pressure, temperature, and density.

EXTENSIVE PROPERTY

An extensive property is any thermodynamic property of a homogenous system that depends on mass. Examples are the mass,
volume, and energy.

EXTENSIVE PROPERTY NOTATION

Extensive properties are symbolized by uppercase (capital) letters. For example, V , E, and U are the symbols for volume,2

energy, and internal energy.

2 In this text, �V represents total volume, and V represents the magnitude of velocity.

INTENSIVE PROPERTY NOTATION

Intensive mass-based properties are symbolized by lowercase letters, and intensive mole-based properties are symbolized
by lowercase letters with overbars. For example, v = V/m,, e = E/m,, u = U/m are the symbols for mass-based specific
volume, specific energy, and specific internal energy. Similarly, v, e, and u are the symbols for molar specific volume, molar
specific energy, and molar specific internal energy.

CRITICAL THINKING

If we chose the color of a system as a thermodynamic property, would it be an extensive or intensive property?
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Exceptions to this intensive property notation are again temperature T (an intensive property), mass m (an
extensive property), and the number of moles n (another extensive property), as explained previously. Pressure,
p, is a natural intensive property that is not obtained by dividing something by the system mass.

The uppercase-lowercase notational scheme is also used for other thermodynamic quantities, such as kinetic energy,
potential energy, work, and heat, that are not thermodynamic properties. Total (mass dependent) values of these
quantities are given the uppercase symbols KE, PE, W, and Q, respectively. If we divide these quantities by the system
mass m, we get their specific (or per unit mass) forms, which are given the following lowercase symbols: ke= KE/m,
pe = PE/m, w =W/m, and q =Q/m. If we divide by the number of moles n in the system, we get the specific molar
values of these quantities, which are symbolized by lowercase letters with an overbar: ke = KE/n, pe = PE/n, w =W/n,
and q = Q/n. These are summarized in Table 2.1.

Later, we discuss a general principle that provides an easy way to determine the number of independent proper-
ties in any system. In the meantime, you need to know that, for a pure substance (anything with a uniform
chemical composition in all its physical phases) subjected to only one work mode3 (type of work), only two
independent intensive properties are required to determine its thermodynamic state.

A pure substance can be in any physical state—solid, liquid, vapor—or any combination of these states. Liquid
water with ice cubes in a glass is a pure substance system if the system boundary is drawn so that it does not
include the glass itself. If the system boundary is drawn outside the glass, then the system no longer contains a
pure substance (it contains water and glass). This illustrates the importance of carefully considering exactly what
the system is to be and where its boundaries are to be drawn.

2.5 THERMODYNAMIC EQUILIBRIUM
An equilibrium situation implies a condition of balance between opposing factions. There are many different kinds
of equilibria. A mechanical equilibrium exists when all the mechanical forces within a system are balanced so that
there is no acceleration (the study of mechanical equilibrium is called statics). A thermal equilibrium exists within a
system if there is a uniform temperature throughout the system. An electrostatic equilibrium exists within a system
when there is a balance of charge throughout the system. A phase equilibrium exists within a system when no
phase transformations (such as vaporization or melting) occur within the system. A system is said to be in chemical
equilibrium when no chemical reactions occur within the system. Since the subject matter of thermodynamics con-
tains all these types of phenomena, we lump all these definitions together to define thermodynamic equilibrium.

Classical equilibrium thermodynamics is based on the analysis of equilibrium states and therefore is analogous
to statics in mechanics. Since dynamic energy systems contain nonequilibrium thermodynamic states, they cannot be
analyzed by the methods of classical thermodynamics. Hence, the term thermodynamics appears to be a misnomer.
Some authors have proposed that classical thermodynamics could be more accurately titled thermostatics, to keep it
consistent with the titles used in mechanics. However, the origin of the term thermodynamics is more closely aligned
with the concept of converting heat (the thermo part) into work (the dynamics part). Consequently, the dynamics in ther-
modynamics should be thought of as the dynamics of the various processes of converting heat into work (or power).

HOW DO I DETERMINE THE STATE?

The state of a pure substance subjected to only one work mode is determined by the values of any pair of independent
intensive properties. If the pure substance is also homogeneous, then all its intensive properties are independent and any
two of them fix the state.

Table 2.1 Mass-Based and Mole-Based Specific Quantities

Mass-Based Specific Quantities Mole-Based Specific Quantities

v =�V/m v =�V/n
e = E/m e = E/n

ke = KE/m = V2/2gc ke = KE/n = m/nð Þ V2/2gc
� �

pe = PE/m = gZ/gc pe = PE/n = m/nð Þ gZ/gcð Þ

3 A work mode may be mechanical, electrical, magnetic, etc., but only one may be present in this instance. More complex systems with
multiple work modes are discussed in “The State Postulate” section of Chapter 4.
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2.6 THERMODYNAMIC PROCESSES
Engineering thermodynamics is primarily concerned with systems that undergo thermodynamic processes.
A system subjected to a thermodynamic process normally experiences a change in its thermodynamic state.
Consequently, we define a thermodynamic process as in the following box.

Neither the initial, final, nor any intermediate states need be in thermodynamic equilibrium during a thermo-
dynamic process. A process can change a system from one nonequilibrium state to another nonequilibrium state
via a path of nonequilibrium states. Figure 2.3 illustrates several process paths that change a system from an
initial state A to a final state B.

If a process path closes back on itself so that it is repeated periodically in time, then the thermodynamic process
is called a thermodynamic cycle. Figure 2.4 illustrates the definition of a thermodynamic cycle.

There is a difference between a thermodynamic cycle and a mechanical cycle. In a mechanical cycle, all the
mechanical components begin and end in the same geometrical configuration. For example, the engine of an
automobile goes through a mechanical cycle once per two crankshaft rotations for a four-stroke engine, but it
does not go through a thermodynamic cycle. For an automobile engine to go through a thermodynamic cycle
the engine’s exhaust would have to be converted back into air and fuel (the initial state).

Understanding the process path is extremely important in thermodynamic analysis because it often determines the
final state of the system. In most thermodynamic textbook problem statements, the process path is only vaguely
alluded to or else is hidden in one or more of the technical terms used. Therefore, in addition to deciding on the
type of system to use in the analysis of a problem and preparing a system sketch, you must also determine the
type of process that is occurring.

WHAT IS A THERMODYNAMIC PROCESS?

A thermodynamic process is the succession of thermodynamic states that a system passes through as it goes from an initial state
to a final state.
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FIGURE 2.3
Three process paths that change the state of the system from A to B.
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FIGURE 2.4
A thermodynamic cycle.

WHAT IS A THERMODYNAMIC CYCLE?

A system process is said to go through a thermodynamic cycle when the final state of the process is the same as the initial state
of the process.

WHAT IS THERMODYNAMIC EQUILIBRIUM?

A system is said to be in thermodynamic equilibrium if it does not spontaneously change its state after it has been isolated.
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2.7 PRESSURE AND TEMPERATURE SCALES
Because of the historical manner in which the concepts of pressure and temperature evolved, we are forced to
deal with two scales for each. We have a relative and an absolute scale for both temperature and pressure
measurement. Some formulae allow the use of either scale in calculations, but other formulae require the use of
only absolute scales in calculations. Therefore, it is very important to know which scales are being used when
you are given values for temperature and pressure.

As we saw in Chapter 1, there are two common absolute temperature scales, Rankine (R) and Kelvin (K). They
are related as follows:4

TðRÞ = 9
5
TðKÞ (2.1)

Each of these absolute scales has a relative scale, the common English Fahrenheit (°F) scale and the European
Celsius (°C) scale.5 These two relative scales are related to each other by

Tð°FÞ = 9
5
T ð°CÞ+32 (2.2)

and the respective absolute and relative scales are related by

TðRÞ = Tð°FÞ+ 459:67 (2.3)

and

TðKÞ = Tð°CÞ+ 273:15 (2.4)

Pressure can be viewed as a compressive stress. Thus, absolute zero pressure corresponds to a level of zero stress.
However, even though we generally do not encounter negative absolute pressures in thermodynamics, any finite
tensile stress in a fluid or a solid is equivalent to its being subjected to a negative absolute pressure. There is no
lack of consistency here; this is merely a standard sign convention for stress.

Because most gauges manufactured to measure pressure were designed to read zero at local atmospheric
pressure, their readings constitute a relative pressure scale, called gauge pressure.

To distinguish between gauge and absolute pressure values in our writing, we append the letter g or a to the
English units of the term. Therefore, the English pressure units psia and psig are to be read “pounds per square
inch absolute” and “pounds per square inch gauge,” respectively. SI pressure units should carry the identifying
words absolute or gauge (e.g., 3.75 MPa-absolute or 3.75 MPa-gauge). This is a clumsy indicator, and since
thermodynamic tables are always given in absolute pressure units and thermodynamic equations work with
absolute pressure units, SI pressures are generally assumed to be in absolute units even when not so specified.

Unless otherwise specified in a problem statement, the local atmospheric pressure should always be taken to be
the standard atmospheric pressure, which is 14.696 psia (or 14.7 psia) or 101,325 Pa (or 101.3 kPa). Figure 2.5
illustrates the meanings of relative and absolute temperature and pressure.

If you are given a formula with a quantity such as p or T in it, how do you know which scale to use?
The following boxed rule of thumb titled “How Do I Know When I Have to Use Absolute Pressure or Temperature?”
provides the answer.

In the ideal gas equation of state,

pV = mRT (2.5)

both the quantities p and T stand alone, so that the values substituted for them must always be in an absolute
scale (psia and R or Pa-absolute and K). On the other hand, if a formula contains the difference in a quantity not
raised to a power, such as p2 – p1 (or Δp), or T2 – T1 (or ΔT), then the values assigned to that quantity may be in
either absolute or relative scale units. For example, if we have an ideal gas in a closed system of constant volume
V , then when the gas is in state 1, we can write

p1V = mRT1 (2.6)

4 Recall from Chapter 1 that, since 1967, we no longer use the degree prefix on the absolute temperature scales but retain it on the
relative scales. Hence, we write 100 R for a temperature of 100 rankine, not 100°R.
5 The Celsius scale was also commonly called the centigrade scale. However, the centigrade—from the Latin for 100 (centi) divisions
(grade)—scale was developed by the Swedish astronomer Anders Celsius in about 1742; and in 1948, the centigrade scale was officially
renamed the Celsius scale.
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HOW IS GAUGE PRESSURE RELATED TO ABSOLUTE PRESSURE?

Absolute pressure = Gauge pressure + Local atmospheric pressure

WHO DEVELOPED THE IDEAL GAS EQUATION OF STATE?

By 1662, the English chemist Robert Boyle (1627–1691) had conducted experiments establishing that the pressure of a gas
varies inversely with the volume when the temperature is held constant. In the early 1800s, the French physicists Jacques
Charles (1746–1823) and Joseph Gay-Lussac (1778–1850) independently determined that the volume V of a gas increases
linearly with temperature when the pressure is held constant. The Charles/Gay-Lussac relation can be written as

V

V0

= 1+ αT

where T is in °C and V0 is the volume of the gas at 0°C. The empirical constant α is the coefficient of thermal expansion of
the gas and was found to have the same value for all gases as the pressure approached zero.

α = 0:003661°C− 1 = 1
273:15

°C− 1

Since α is the same for all gases at low pressure, the Charles/Gay-Lussac equation provides a single calibration point (at V0)
temperature scale that is independent of the type of gas used, plus it defines the “size” of the degree (αV0) on the scale.

By 1820, the Boyle and Charles/Gay-Lussac results had been combined to produce the “ideal” gas equation of state:

pV = mR Tðin °CÞ+ 1
α

h i
= mR½Tðin °CÞ+273:15�

and by then it was generally accepted that T (in °C) + 273.15 corresponded to some sort of ideal gas absolute temperature
scale. However, the problem remained that this scale still appeared to depend on the thermometric measuring material (an
ideal gas) and therefore did not constitute a genuine “thermodynamic” absolute temperature scale.

Since the concept of an absolute temperature scale was not firmly established until 1848 by Lord Kelvin, it is remarkable
that the ideal gas equation of state, which depends on the use of an absolute temperature scale, was in use a full 30 years
earlier. However, historically, we find that empirical equations often precede theoretical explanations.

HOW DO I KNOW IF A GIVEN SI PRESSURE IS ABSOLUTE OR GAUGE?

When an SI pressure appears in a textbook without such an identifier (e.g., 3.75 MPa), assume that it is an absolute
pressure (i.e., 3.75 MPa-absolute). Gauge pressures should always be identified as “gauge” to avoid confusion.

(a) Temperature

Freezing point
of water

Absolute
zero temperature

Absolute
temperature

Relative
temperature

Temperature level

(b) Pressure

Atmospheric
pressure

Absolute
zero pressure

Absolute
pressure 2

Absolute
pressure 1

Vacuum 1 

Gauge
pressure 2

Pressure

level 1

Pressure

level 2

FIGURE 2.5
Relative and absolute temperatures and pressures.
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and when it is changed to state 2, we can write

p2V = mRT2 (2.7)

Now, if we subtract Eq. (2.6) from (2.7), we get

ðp2 − p1ÞV = mRðT2 −T1Þ (2.8)

Absolute pressure and temperature scales must be used in making calculations with Eqs. (2.6) and (2.7), but
either absolute or relative scales may be used in Eq. (2.8). Relative scales can be used whenever the additive
term that converts a relative scale to an absolute scale cancels out within the formula, as it does when a simple
difference is taken.

Using relative scale values where absolute scale values should be used clearly leads to enormous calculational
errors. If in doubt, use values in the absolute scale units.

2.8 THE ZEROTH LAW OF THERMODYNAMICS
As previously mentioned, the zeroth law was one of the last thermodynamic laws to be developed. It was
introduced by R. H. Fowler and E. A. Guggenheim in 1939.6

This may seem trivial at first reading, but consider: If man A loves woman C and man B loves woman C, does it
follow that man A loves man B? One of the major values of the zeroth law is that it forms the theoretical basis
for temperature measurement technology. Consider the mercury in glass thermometer shown in Figure 2.6. The
zeroth law tells us that if the glass is at the same temperature as (i.e., is in thermal equilibrium with)
the surrounding fluid, and if the mercury is at the same temperature as the glass, then the mercury is at the
same temperature as the surrounding fluid. Thus, the thermometer can be graduated to show the mercury
temperature, and this temperature is automatically (via the zeroth law) equal to the temperature of its
surroundings.

HOW DO I KNOW WHEN I HAVE TO USE ABSOLUTE PRESSURE
OR TEMPERATURE?

If pressure or temperature stands by itself or is raised to some power in an equation, then the values assigned to it must be
in an absolute scale of units.

ZEROTH LAW OF THERMODYNAMICS

Consider three thermodynamic systems, A, B, and C. If system A is in thermal equilibrium with (i.e., is the same tem-
perature as) system C and system B is in thermal equilibrium with system C, then system A is in thermal equilibrium
with system B.

CRITICAL THINKING

The text describes a love triangle that would not necessarily satisfy the zeroth law of thermodynamics. Can you think of
other human characteristics (e.g., hate) that might not satisfy this law? In the zeroth law, thermal equilibrium is the same
as temperature equilibrium, so that if TA = TC and TB = TC, then the zeroth law requires that TA = TB. Can we create yet
another thermodynamic law based on requiring a different physical property of systems A, B, and C to be in another
(say, mechanical rather than thermal) type of equilibrium? What thermodynamic value would this new “law” have?

6 Fowler, R. H., Guggenheim, E. A., 1939. Statistical Thermodynamics. Cambridge University Press, Cambridge, MA.
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2.9 THE CONTINUUM HYPOTHESIS
While we recognize today the existence of the atomic nature of matter, we have not found an effective way to
apply the basic laws of physics to large aggregates of atomic particles except by a statistical averaging techni-
que. This is because the number of molecules in even a cubic centimeter of gas at standard atmospheric pres-
sure and temperature is so large (about 1020) that we cannot simultaneously solve all the equations of
motion for each molecule. The statistical averaging process taken over large numbers of molecules produces a
continuum model for matter, and the continuum hypothesis simply states that large systems made up of many
discrete molecules or atoms may be treated as though they were made up of a continuous (i.e., nonmolecular)
material.

The continuum approach to thermodynamics works well so long as the dimensions of the systems being
analyzed are much larger than the dimensions of the molecules themselves and so long as the time interval over
which a process takes place is very much greater than the average time between molecular collisions. The
continuum thermodynamics breaks down when these conditions are violated, such as in the rarefied gas of
outer space. When continuum thermodynamics breaks down, another type of thermodynamics, called statistical
thermodynamics, can be used to solve problems.

The vast majority of engineering problems can be solved with continuum concepts, and they are the main focus
of this text. Two other technical terms are used to express these ideas, microscopic and macroscopic.

When we deal with differential quantities in continuum analysis, such as dx/dt, we do not infer that the differen-
tials shrink down to molecular dimensions and thus invalidate the continuum concept. Also, when we speak of
evaluating thermodynamic properties at a point in a continuum system, we extrapolate the continuum concept
in a mathematical sense only. The resulting mathematical functions and relations developed in macroscopic
system analysis are not valid in, and cannot be accurately applied to, microscopic systems.

MICROSCOPIC SYSTEM ANALYSIS

Microscopic system analysis is the analysis of systems at the atomic level. This is the domain of statistical thermodynamics.

MACROSCOPIC SYSTEM ANALYSIS

Macroscopic system analysis is the analysis of systems at the continuum level (i.e., molecular dimensions and time scales
do not enter into the analysis). This is the domain of classical and nonequilibrium thermodynamics.

Surrounding
fluid, S

Glass, G 

Mercury, M 

Zeroth law;

TG= TS
and
TM= TG
therefore,
TM= TS

FIGURE 2.6
The zeroth law of thermodynamics applied to a mercury in a glass thermometer.
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2.10 THE BALANCE CONCEPT
The balance concept is one of the most important and, oddly enough, most underrated concepts in physical science
today. It is basically nothing more than a simple accounting procedure. Consider some quantity X possessed by an
arbitrary system. Then the balance of X over the system during a macroscopic time interval δt is

The gain in X

by the system

during time δt

8><>:
9>=>; =

The amount of X

transported into the

system during time δt

8><>:
9>=>;−

The net amount of X

leaving the system

during time δt

8><>:
9>=>;

+

The amount of X

produced by the system

during time δt

8><>:
9>=>;−

The amount of X

destroyed by the system

during time δt

8><>:
9>=>;

(2.9)

By using the word net to signify the difference between like terms, Eq. (2.9) can be simplified to

The net gain in
X by the system
during time δt

8<:
9=; =

The net amount of X
transported into the
system during time δt

8<:
9=;+

The net amount of X
produced by the system
during time δt

8<:
9=; (2.10)

In symbol form, Eq. (2.10) can be further simplified to

XGain = XTransport +XProduction or XG = XT +XP (2.11)

where the subscripts G, T, and P refer to net gain, net transport, and net production, respectively. In equilibrium
systems, Eq. (2.11) is sufficient. But in nonequilibrium systems, XG, XT, and XP may be functions of time.
In systems in which XG, XT, and XP change continuously in time, Eq. (2.11) can be differentiated with respect to
time to give a rate balance equation of X as

_XG = _XT + _XP (2.12)

where _XG = dXG/dt, _XT = dXT/dt, and _XP = dXP/dt: Equations (2.11) and (2.12) provide a full and general
account of the behavior of any property X of a system, and they are valid for any coordinate system.

EXAMPLE 2.1
The Rosalyn Computer Chip Manufacturing Company ships 120,000 chips per day to its customers and receives 100,000
chips per day from its suppliers (Figure 2.7). It manufactures 30,000 of its own chips per day, of which 3,000 are rejected as
defective and are destroyed. Determine the change in chip inventory at the end of each day.

30,000 chips/day
manufactured

3,000 chips
rejected/day

120,000 chips
shipped/day 

100,000 chips
received/day

FIGURE 2.7
Example 2.1.
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Solution
For each day of operation, Eq. (2.11) gives the net gain in chips as

XG = XT +XP

where the net transport of chips into the facility is

XT = 100,000 chips from suppliers −120,000 chips to customers = −20,000 chips=day

and the net production of chips is

XP = 30,000 chipsmanufactured−3,000 chips rejected anddestroyed = 27,000 chips=day

so the net gain in computer chips at the end of each day is

XG = XT +XP = −20,000+27,000 = 7,000 chips=day

So the chip inventory increases by 7,000 chips per day.

EXAMPLE 2.2
In 1798, the famous social scientist and economist Thomas Robert Malthus (1766–1834) discovered that, if relatively small
groups of animals are left undisturbed (Figure 2.8), their population often grows such that the sum of their net birthrate
and their net immigration rate into the population is directly proportional to the instantaneous value of the population.
This, since known as Malthus’s law of population growth, has been successfully applied to numerous types of populations,
such as humans and bacteria. Write a rate balance equation for this type of population growth rate and determine how the
instantaneous population varies with time.

FIGURE 2.8
Example 2.2.

Solution
Equation (2.12) gives the general rate balance: _XG = _XT + _XP . Let N be the instantaneous population. Then, from the pro-
blem statement, we have

_XG = dN
dt

and according to Malthus’s law, the net birth and immigration rates are

_XT + _XP = αN

where α is a constant of proportionality. Then, the complete Malthus population rate balance equation becomes

dN
dt

= αN

(Continued )
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EXAMPLE 2.2 (Continued )

Since this is a simple first-order ordinary differential equation, we can separate the variables to obtain

dN
N

= αdt

Then defining N0 as the population at time t= 0, this equation can be integrated as

ZN
N0

dN
N

=
Zt= t

t=0

αdt

to give

ln ⁡ N
N0

� �
= αt

And inverting the logarithm gives

e ln ðN/N0Þ = N
N0

= e�at

or

N = N0e
αt:

Thus the population increases or decreases exponentially depending on the sign of α.

Exercises
1. Develop a balance equation for the number of hamburgers in your room. Answer: Net hamburgers in the room=Net

hamburgers brought into the room+Net hamburgers made inside the room.
2. The growth rate discussed in Example 2.2 is often called a geometric growth rate. Malthus argued that the food supply of

a population often grew only at a constant, or arithmetic, rate, dF/dt = β, where F is the size of the food supply at time t
and β is a constant. Write a rate balance equation for the food supply F using this growth rate and solve it for F as a
function of time t. Answer:

dF
dt

� �
system

= _FG = β = _FT + _FP

and solving for F gives F= βt+ F0, where F0 is the size of the food supply at time t= 0.
3. In Example 2.2, the constant α is called the growth rate when it is greater than zero. Determine a general expression for

the time tD required for a population to double. Answer: tD= [ln(2)]/α.

2.11 THE CONSERVATION CONCEPT
In classical physics, a quantity is said to be conserved if it can be neither created nor destroyed. The basic laws of
physics would not produce unique balance equations if it were not for this concept. Whereas a balance equation
can be written for any conceivable quantity, conserved quantities can be discovered only by human research and
observation. The outstanding characteristic of conserved quantities is that their net production is always zero,
and therefore their balance equations reduce to these simpler forms:

When X is conserved, XProduction = _XProduction = 0, and
XGain = XTransport

_XGain = _XTransport



This may not seem like much of a reduction at first, but it is a very significant simplification of the general
balance equations. It means that we need not worry about property production or destruction mechanisms and
how to calculate their effects. Equations (2.13) and (2.14) turn out to be very effective working equations for
engineering design and analysis purposes.

Thus far, scientists have empirically discovered four major entities that are conserved: mass (in nonnuclear
reactions), momentum (both linear and angular), energy (total), and electrical charge. These yield the four basic
laws of physics: the conservation of mass, the conservation of momentum, the conservation of energy, and the
conservation of charge. The conservation of energy is also called the first law of thermodynamics.

If we let E be the total energy of a system, then its conservation is written as

EProduction = EP = 0 (2.15)

(2.13)

(2.14)
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or

_EP = 0 (2.16)

and its resulting balance (or conservation law) equation is

EG = ET (2.17)

or

_EG = _E T (2.18)

Equations (2.15) through (2.18) are elementary forms of the first law of thermodynamics. They are elementary
because, to be useful for calculation purposes, the terms ET and _ET , representing the system’s energy transport, must
be expanded into a sum of terms that accounts for all the energy transport mechanisms. This is taken up in detail in
Chapter 4.

EXAMPLE 2.3
Develop an accurate verbal descriptive form of the energy balance equation that incorporates the conservation of energy
principle for a system consisting of a cannon firing a projectile (Figure 2.9).

System boundary

FIGURE 2.9
Example 2.3.

Solution
The complete literal descriptive energy balance equation is obtained from Eq. (2.10) as

Net energy of the projectile
and gases transported
into the system

8<:
9=;þ

Net productionof
energy inside the
system

8<:
9=; =

Net change in the
energy of the system


 �

Since energy is a conserved quantity, the net production of energy inside the cannon must be zero. Now, the net transport of
any quantity into a system is just the difference between the input and the output of that quantity; and since there is no
transport of energy into this system, then the net transport of energy is just the negative of the energy output. So the result-
ing literal descriptive form of the combined conservation of energy equation and energy balance equation for this system is

Net energy of the projectile
and gases transported
into the system

8<:
9=; = −

Energy of the projectile
and gases transported
out of the system

8<:
9=; =

Net change in the
energy of the system


 �

Exercises
4. Develop a conservation of momentum balance for a cannon firing a projectile. Answer: The conservation of momentum

balance equation is

Netmomentumof the projectile
and gases transported into the
system

8<:
9=; = −

Momentumof the projectile
and gases transported out of
the system

8<:
9=; =

Net change in
themomentumof
the system

8<:
9=;
(Continued )
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EXAMPLE 2.3 (Continued )

5. Develop a balance equation for the conservation of electric charge in a system. Answer: The conservation of charge
balance equation is

Net electric charge
transported into the system


 �
=

Net change in electric
charge in ðor onÞ the system


 �

From the resulting conservation of energy and momentum balance equations developed in Example 2.3 and
its Exercise 1, we can investigate the technology of the ballistic pendulum shown in Figure 2.10. The ballistic
pendulum was developed in 1740 by the English mathematician and engineer Benjamin Robins (1707–1751)
and operates on the principle that the deflection of the pendulum after impact is directly proportional to
the projectile’s impact velocity. Since the projectile is imbedded in the pendulum after impact, we choose to
view this as a closed system consisting of the projectile and the pendulum. Since the system is closed, there
can be no mass transport across the system’s boundaries; and because momentum transport requires the mass
to cross the system boundary, there is also no momentum transport in this system. Then, the conservation
of momentum equation for a closed system reduces to {Net change in momentum of the system} = 0. There-
fore, the initial momentum of the projectile/pendulum system must equal to the final momentum of this
system, or

mprojectileVprojectile
� 


initial = mprojectile⁡ + mpendulum⁡
� �

Vpendulum
� 


final

After impact, the pendulum/projectile system swings through an angle θ, raising the center of gravity by
an amount h = R(1 – cos θ). Since the initial kinetic energy and the final potential energy of the
pendulum/projectile system must be equal, we can write

mprojectile +mpendulum
� � V2

pendulum

2gc

 !
= mprojectile +mpendulum⁡
� � gh

gc

� �

or

Vpendulum = 2gh½ �1/2 = 2gRð1− cos⁡yÞ½ �1/2

Then, by combining these equations, we can determine the impact velocity of the projectile as

Vprojectile =
mprojectile +mpendulum

mprojectile

� �
Vpendulum = 1+

mpendulum

mprojectile⁡

� �
2gRð1− cos yÞ½ �1/2 (2.19)

R

Pendulum of mass mpendulum

Projectile of mass mprojectile

θ

FIGURE 2.10
The operation of a ballistic pendulum.
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Therefore, by knowing the masses of the pendulum and the projectile and measuring R and θ, we can easily calculate
the impact velocity of the projectile. If the projectile is fired point blank into the pendulum, then the impact velocity
is essentially the muzzle velocity of the projectile. These concepts are illustrated in Example 2.4.

EXAMPLE 2.4
Determine the muzzle velocity of a weapon fired point blank into a ballistic pendulum causing the pendulum to deflect 15°.
The mass of the pendulum is 5.0 kg, the mass of the projectile is 0.01 kg, and the length of the pendulum support cable
is 1.5 m (Figure 2.12).

m
v = 0

M + m

θ = 15°

m = 0.01 kg

M = 5.0 kg

x

L = 1.5 m 

FIGURE 2.12
Example 2.4.

(Continued )

WHAT HAPPENS ON IMPACT?

You might wonder why we do not set the initial kinetic energy of the projectile equal to the final potential energy of the
pendulum/projectile system. Even though energy is conserved during the impact, this is not a perfectly elastic impact and
other forms of energy are involved in addition to kinetic and potential. Some of the projectile’s initial kinetic energy is con-
verted into heat through the friction and deformation that occur during the impact. Figure 2.11 illustrates what happens
when a .45 caliber bullet is fired into a 1 1

4 inch thick laminated Lexan plastic block. All the kinetic energy of the bullet has
been absorbed by the plastic.

FIGURE 2.11
Bullet in a Lexan block.
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EXAMPLE 2.4 (Continued )

Solution
From Eq. (2.19), we compute the muzzle velocity as

Vprojectile = 1+
mpendulum

mprojectile

� �
2gR 1− cos⁡yð Þ½ �1/2 = 1+

5:0 kg
0:01 kg

� �
2 9:81m/s2ð Þð1:5mÞ 1− cos 15°ð Þ½ �1/2

= 5:0× 102 m/s

Exercises
6. To bring down large game requires at least 2500. ft · lbf of impact energy (the impact energy of a high-speed projectile is

its kinetic energy on impact). Determine the necessary impact velocity for the following projectiles (recall that there are
7000 grains in 1 lbm): (a) a 200. grain bullet, (b) 300. grain bullet, and (c) a 500. grain bullet. Answers: (a) 2370 ft/s,
(b) 1940. ft/s, (c) 1500 ft/s.

7. Determine the displacement angle produced when a 0.3125 lbm baseball traveling at 90.0 miles per hour is “caught” by
a ballistic pendulum having a 3.00 ft support cable and a mass of 180. lbm. Answer: 1.33°.

2.12 CONSERVATION OF MASS
An important application of the balance equation is to one of the basic conserved physical quantities, mass.
Since mass is conserved in all nonnuclear reactions, its net production in any system is zero. Therefore,
Eq. (2.10) tells us that the mass balance equation has the form

Net gain inmass by the
systemduring time dt


 �
=

Netmass transported into
the systemduring time dt


 �
(2.20)

This statement can be cast in mathematical form via Eq. (2.11) as mG =mT (since mP = 0), and Eq. (2.12)
provides the rate form of this balance equation as _mG = _mT (since _mP = 0). In more precise mathematical
language, the mass balance (MB) measured over some time interval δt can be written as

Mass balance ðMBÞover time δt = ðδmÞsystem =∑min −∑mout (2.21)

and the mass rate balance (MRB) becomes

Mass ratebalance ðMRBÞ = dm
dt

� �
system

=∑ _min −∑ _mout (2.22)

One of the most common uses of the conservation of mass balance equation is in chemistry. Chemical reaction
equations are simply mass balances. Though reaction equations are not usually written as equalities, the left-hand
side is the total mass of reactants used and the right-hand side is the total mass of products produced by the reac-
tion. Since mass is conserved in chemical reactions, these two masses must be equal. For example, the reaction
indicated by the equation A+ B= C+D means that the mass of A plus the mass of B is the same as the mass of C
plus the mass of D. These equations are valid either for individual molecules or groups of molecules that bear the
same reaction relation as the individual molecules. These molecular groups, called moles, form the macroscopic
basis for chemistry and chemical engineering. This concept is illustrated in the following example.

EXAMPLE 2.5
The total mass of a system is conserved in a chemical reaction, but the mass of any particular chemical species is not neces-
sarily conserved. Show that the following chemical reaction is just a closed system mass balance for the chemical species
involved:

naA+ nbB ! ncC+ ndD

where A, B, C, and D are the chemical species, and na, nb, nc, and nd are their molar amounts.

Solution
When a chemical reaction occurs in a closed system, the mass transport term vanishes and then a mass balance for a chemical
species X becomes “the mass of X gained in the reaction must equal the mass of X produced by the reaction and this must equal the
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change in the mass of X due to the reaction”: mGX =mPX = δmX. Then, for a chemical reaction in a closed system, the mass
balance for each of the chemical species present can be written as

mGA = mPA = δmA

mGB = mPB = δmB

mGC = mPC = δmC

mGD = mPD = δmD

If we add these equations together, we get

δmA + δmB + δmC + δmD = mPA +mPB +mPC +mPD

Now, since total mass must be conserved, it follows that

∑mP = mPA +mPB +mPC +mPD = 0

then the previous equation can be written as

δmA + δmB = −δmC − δmD

If we now convert this equation into a molar equation by dividing each mass term by its corresponding species molecular
mass, then this equation becomes the stoichiometric chemical reaction equation naA+ nbB ! ncC+ ndD, where

na =
δmA

MA
; nc = − δmC

MC

nb =
δmB

MB
; nd = − δmD

MD

and MA, MB, MC, and MD are the molecular masses of chemical species A, B, C, and D. Consequently, all stoichiometric
chemical reaction equations are just molar mass balances that utilize the conservation of mass law.

SUMMARY7

In this chapter, we provide the definitions of many of the concepts necessary in the development of thermodynamics.
First, we review the phases of matter and define thermodynamic equilibrium. Then we see that one of the fundamental
elements underlying modern technology is the thermodynamic processes that systems undergo. Next we reexamine and
expand the pressure and temperature scales information given in Chapter 1. The zeroth law of thermodynamics is found
to provide an axiomatic way to develop temperature measurement technology, and the continuum hypothesis is found
to be a useful and valid analysis tool so long as the system’s dimensions are very large compared to those of the
molecules it contains. The balance and conservation concepts round out the chapter with an important discussion of
the form of all the equations used to represent the basic thermodynamic laws in this book.

Some of the more important equations introduced in this chapter are as follows.

1. The equations for the conversion of temperature units, Eqs. (2.1)–(2.4):

Tð°FÞ = 9
5
Tð°CÞ+32 = TðRÞ−459:67

Tð°CÞ = 5
9
½Tð°FÞ−32� = TðKÞ−273:15

TðRÞ = 9
5
TðKÞ = 1:8TðKÞ = Tð°FÞ+ 459:67

TðKÞ = 5
9
TðRÞ = TðRÞ

1:8
= Tð°CÞ+ 273:15

2. The equation for absolute to gauge pressure conversion:

Absolute pressure = Gauge pressure+ Local atmospheric pressure

3. The general balance equations, (2.11) and (2.12), are

XG = XT +XP and _X G = _X T + _X P

Summary 51
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4. The ballistic equation, (2.19), is

Vprojectile⁡=
mprojectile +mpendulum

mprojectile⁡

� �
Vpendulum = 1+

mpendulum

mprojectile

� �
2gRð1− cos yÞ½ �1/2

5. The conservation mass, or mass balance (MB), Eq. (2.21), is

Mass balanceðMBÞover time δt = ðδmÞsystem =∑min −∑mout

and the mass rate balance (MRB), Eq. (2.22), is

Mass rate balanceðMRBÞ = dm
dt

� �
system

=∑ _min −∑ _mout

Important technical terms introduced in this chapter are given in Table 2.2.

Table 2.2 Glossary of Technical Terms Introduced in Chapter 2

thermodynamics The science and technology that deal with the laws that govern the transformation of energy
from one form to another

thermodynamic system A volume containing the item chosen for thermodynamic analysis

system boundary The surface of a thermodynamic system

isolated system Any system in which neither mass nor energy crosses the system boundary

closed system Any system in which mass does not cross the system boundary, but energy may cross the
system boundary

open system Any system in which both mass and energy may cross the system boundary

physical phase A molecular configuration of matter, categorized as either solid, liquid, or vapor (or gas)

pure substance A substance containing a uniform chemical composition in all its physical states

homogeneous system A system containing only a single physical phase of a substance

simple substance A homogeneous pure substance

thermodynamic state The condition of a thermodynamic system as specified by the values of its independent
thermodynamic properties

thermodynamic property Any characteristic of a thermodynamic system that depends on the system’s thermodynamic
state and is independent of how that state is achieved

thermodynamic equation of state A formula relating the dependent and independent properties of a system

intensive property Any property of a homogeneous system that is independent of the system mass

extensive property Any property of a homogeneous system that depends on the mass of the system

mechanical equilibrium A situation where all the mechanical forces within a system are balanced so that there is no
acceleration of the system

thermal equilibrium A situation where there are no variations in temperature throughout the system

phase equilibrium A situation where no phase transformations occur within the system

chemical equilibrium A situation where no chemical reactions occur within the system

thermodynamic equilibrium A situation where a system does not have the capacity to spontaneously change its state after
it has been isolated

nonequilibrium thermodynamics The study of systems that are not in thermodynamic equilibrium

thermodynamic processes The path of thermodynamic states that a system passes through as it goes from an initial state
to a final state

thermodynamic cycle A situation where the final thermodynamic state of a process is identical with the initial
thermodynamic state of the process

standard atmospheric pressure 14.696 psia, 29.92 inches of mercury, 101.325 kPa absolute

absolute pressure Gauge pressure plus the local atmospheric pressure

gauge pressure Absolute pressure minus the local atmospheric pressure

absolute zero temperature −273.15°C or −459.67°F
zeroth law of thermodynamics If system A is in thermal equilibrium with (i.e., is the same temperature as) system C, and

system B is in thermal equilibrium with system C, then system A is in thermal equilibrium with
system B

the continuum hypothesis Large systems made up of many discrete molecules or atoms may be treated as though they
were made up of a continuous material

microscopic system analysis The analysis of a system at the atomic level.

statistical thermodynamics The study of atomic level (i.e., microscopic) systems

macroscopic system analysis The analysis of a system at the continuum level

the balance equation An equation that accounts for all the changes in some quantity within a system

the conservation concept If a quantity is neither produced nor destroyed, then it is said to be conserved
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Problems (* indicates problems in SI units)
1. Define the following terms: (a) thermostatics, (b) open system,

(c) extensive property, (d) equilibrium, and (e) zeroth law.
2. Define the following terms: (a) thermodynamics, (b) closed

system, (c) intensive property, (d) macroscopic analysis, and (e)
isolated system.

3.* A mixture of 1.0 kg of oxygen and 2.0 kg of hydrogen at
atmospheric temperature and pressure are placed in a closed
container. Explain (a) whether or not this mixture is a pure
substance, and (b) whether or not it is a homogenous substance.

4. Dry ice (solid CO2) and CO2 vapor are in a sealed rigid
container. Does the CO2 in this system constitute (a) a pure
substance, (b) a homogenous substance, (c) a simple substance?

5. Which of the following are extensive properties?
(a) Temperature, (b) volume, (c) density, (d) work, (e) mass.

6. Are the following extensive or intensive properties? (a) Total
energy, (b) temperature, (c) pressure, (d) mass.

7. Identify whether the following properties are intensive or
extensive: (a) Specific energy, (b) total energy, (c) temperature,
(d) molar mass.

8. Explain how color could be a thermodynamic property and
indicate whether it would be an intensive or extensive property.

9. Let us say we have 2.00 ft3 of a liquid/vapor mixture of motor
oil at 70.0°F and 14.7 psia that weighs 97.28. lbf where
g = 32.0 ft/s2. List the values of three intensive and two
extensive properties of the oil.

10.* There once was a man who had 1.00 m3 of air at 20.0°EC and
0.100 MPa with a specific volume of 0.840 m3/kg. List the
values of three intensive and two extensive properties of his air
(Figure 2.13).

11. A woman once collected 2000. lbm of seawater at 50.0°F and
14.7 psia that occupied a volume of 56.0 ft3. List the values of
three intensive and two extensive properties of her seawater.

12. How many independent property values are required to fix the
state of a pure substance subject to only one work mode?

13. Determine whether the following statements are true or false:
a. The mass of a closed system is constant and its boundaries

are not movable.
b. An open system is defined as a system that can exchange

only heat and work with its surroundings.

c. An isolated system is completely uninfluenced by the
surroundings.

d. A thermodynamic property is a quantity that depends on the
state of the system and is independent of the process path by
which the system arrived at the given state.

e. When a system in a given state goes through a number of
processes and its final temperature is the same as the initial
temperature, the system has undergone a thermodynamic
cycle.

14. Identify the proper type of system (isolated, closed, or open) to
be used in the analysis of each of the following and explain the
reasons for your choice: (a) the Universe, (b) a kitchen
refrigerator, (c) an electrical generator, (d) a hydraulic pump,
(e) a living human being.

15. Determine the proper type of system (isolated, closed, or open)
to be used in analyzing each of the following items and explain
the reasons for your choice: (a) a bicycle, (b) a personal
computer, (c) a stereo system, and (d) a lawn water sprinkler.

16. Establish the correct type of system (isolated, closed, or open)
to be used in analyzing each of the following items and
explain the reasons for your choice: (a) the solar system,
(b) a carbonated drink dispensing machine, (c) an insulated
box of fruit buried deep in the ground, and (d) a lightbulb.

17. Which of the basic types of systems (isolated, closed, or open)
should be used to analyze each of the following items
and explain the reasons for your choice: (a) a flying insect,
(b) a black hole, (c) Niagara Falls, and (d) the great soaring
whipple bird of Mars.

18.* As chief engineer for Thermodynamic Analysts Inc., your job is
to determine the proper type of system (isolated, closed, or
open) to be used in analyzing each of the following items
submitted to your company and to explain the reasons for your
choice: (a) a water pistol, (b) a flashlight battery, (c) a rubber
boot, and (d) 2 kg chocolate fudge candy in a thermally
insulated box buried deep in the Andes mountains.

19. An alien spacecraft has abducted you from a NASA space station
and demands to know the type of system (isolated, closed, or
open) NASA uses to analyze each of the following items, plus an
explanation of the reasons for the choice: (a) the space station
itself, (b) your pocket computer, (c) a can of tuna fish, and
(d) an old Madonna movie.

20. An automobile internal combustion engine by itself is an open
system because it draws in air and exhausts combustion
products. How could one construct system boundaries around
an operating internal combustion engine to cause it to become a
closed system?

21.* Determine the specific volume of liquid water at 20.0°C that has
a density of 998.0 kg/m3.

22. Determine the mass of ammonia having a specific volume of
35.07 ft3/lbm in a container measuring exactly 3 ft by exactly
2 ft by exactly 1 ft.

23.* Determine the volume of liquid mercury with a density of
3.87 kg/m3 having a mass of 2.00 kg.

24. A system consists of a mixture of 2.00 ft3 of a liquid having a
density of 50.0 lbm/ft3 and 4.00 lbm of a second liquid having
a specific volume of 0.0400 ft3/lbm. The specific volume of
the mixture in the system in ft3/lbm is (a) 0.208, (b) 2.08,
(c) 0.022, (d) 2.048, or (e) none of these.

Intensive properties

1.

Extensive properties

2.

3.

1.

2.

FIGURE 2.13
Problem 10.
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25. The equilibrium state of carbon at atmospheric pressure and
temperature is graphite. If diamond is the equilibrium form of
carbon only at very high pressures and temperatures, then why
does diamond exist at atmospheric pressure and temperature?

26. Water in equilibrium at 70.0°F and 14.7 psia is in the liquid
phase. If solid ice is in an equilibrium phase only at 32.0°F or
lower at atmospheric pressure, why does solid ice still exist
when you take it from the freezer and put it on the table at
room temperature?

27. Sketch the following process paths on p–v coordinates starting
from state (p1, v1).
a. A constant pressure (isobaric) expansion from (p1, v1) to

(p2, v2), where v2 = 2v1.
b. A constant volume (isochoric) compression from (p2, v2) to

(p3, v3), where p3 = 2p2.
c. A process described by p = p1 + k(v–v1), where k is a constant,

from (p3, v3) back to (p1, v1) again.
28. Sketch the following thermodynamic cycle on p−V coordinates

for a substance obeying the ideal gas equation of state, pV = mRT:
a. An isothermal compression (i.e., decreasing volume) from

p1,V1

� �
to p2,V2

� �
:

b. An isobaric (i.e., constant pressure) expansion (i.e.,

increasing volume) from p2,V2

� �
to p3,V3

� �
:

c. An isothermal expansion from p3,V3

� �
to p4,V4

� �
:

d. An isochoric (i.e., constant volume) depressurization from

p4,V4

� �
to p5,V5

� �
:

e. An isobaric compression from p5,V5

� �
back to p1,V1

� �
:

29. A new thermodynamic cycle for an ideal gas is described by the
following processes:
a. An isothermal compression from p1,V1

� �
to p2,V2

� �
:

b. An isochoric compression from p2,V2

� �
to p3,V3

� �
:

c. An isobaric expansion from p3,V3

� �
to p4,V4

� �
:

d. An isothermal expansion from p4,V4

� �
to p5,V5

� �
:

e. An isochoric decompression from p5,V5

� �
back to p1,V1

� �
:

Sketch this cycle on pressure-volume coordinates.
30. Convert (a) 20.0°C into R, (b) 1.00°C into °F, (c) 56.0°F

into °C, (d) 253°C into K, and (e) 1892°F into R.
31. Convert (a) 32.0°F into °C, (b) 500. R into °F, (c) 373 K

into °C, (d) 20.0°C into R, and (e) −155°F into K.
32. Convert (a) 12.0°C into °F, (b) 6500. K into °C, (c) 1500. R

into °F, (d) 120.°F into K, and (e) −135°C into K.
33. Convert (a) 8900. R into K, (b) −50.0°C into °F, (c) 3.00 K into

°C, (d) 220.°C into R, and (e) 1.00 × 106°F into °C.
34. Convert the following temperatures into kelvin:(a) 70.0°F,

(b) 70.0°C, (c) 70.0 R, and (d) 70.0° Reaumur. The Reaumur
temperature scale was developed in 1730 by the French scientist
René Antoine Ferchault de Réaumur (1683–1757). The freezing
and boiling points of water at atmospheric pressure are defined
to be 0° and 80.0° Reaumur, respectively.

35. Many historians believe that Gabriel Daniel Fahrenheit (1686–
1736) had established his well-known temperature scale by
1724. It was based on three easily measured fixed points: the
freezing temperature of a mixture of water and ammonium
chloride (0.00°F), the freezing point of pure water (32.0°F), and
the temperature of the human body (96.0°F). Later this scale
was changed to read 212°F at the boiling point of pure water,

which moved the body temperature from 96.0 to 98.6°F. Using
the original Fahrenheit scale (freezing point of water = 32.0°F
and body temperature = 96.0°F), determine
a. The temperature of the boiling point of pure water.
b. The conversion formula between the original Fahrenheit and

the modem Celsius temperature scales.
36.* Convert the following pressures into the proper SI units:

a. 14.7 psia.
b. 5.00 atmospheres absolute.
c. 1.00 × 105 dynes/cm2 absolute.
d. 30.0 lbf/ft2 gauge.
e. 12.4 poundals/ft2 absolute.

37. Convert the following pressures into psia:
a. 1000. N/m2 gauge.
b. 3.00 MPa-absolute.
c. 11.0 Pa-gauge.
d. 20.3 kN/m2 absolute.
e. 556 GPa-absolute.

38. Will the continuum hypothesis hold for the following
thermodynamic states (and why)?
a. Air at 20.0°C and atmospheric pressure.
b. Liquid water at 70.0°F and 14.7 psia.
c. Steam at 1.00 psia and 100.°F.
d. Steam at 1.00 MPa absolute and 100.C.
e. Air at 1.00 µN/m2 absolute and 10.0 K.

39.* Convert the following pressures into MPa-absolute:
a. 100. psig.
b. 2,000. kPa-absolute.
c. 14.7 psia.
d. 1.00 Pa gauge.
e. 500. N/m2 absolute.

40. Convert the following pressures into lbf/ft2 absolute:
a. 14.7 psia.
b. 100. lbf/ft2 gauge.
c. 0.200 MPa-absolute.
d. 1200. kPa-gauge.
e. 1500. psig.

41.* Convert the following pressures into N/m2 absolute:
a. 0.100 MPa-absolute.
b. 14.7 psia.
c. 25.0 psig.
d. 100. Pa-absolute.
e. 100. Pa-gauge.

42. In the late 18th century, it was commonly believed that heat
was some kind of colorless, odorless, weightless fluid. Today we
know that heat is not a fluid (it is primarily an energy transport
due to a temperature difference), but we still have many old
phrases and terms in our everyday and technical language that
imply that heat is a fluid (e.g., heat “pours” out of a hot stove
or heat always “flows” down a temperature gradient and so on).
Discuss whether or not heat can be generated or absorbed, and
using the balance concept, discuss whether or not it is a
conserved quantity.

43. In Example 2.2, the Malthus population law was evaluated and
found to produce an exponential growth or decay in the size of
the population. A more sophisticated population model includes
the effects of birth and death rates that vary linearly with the
instantaneous size of the population as

Birthrate = α1 − β1N
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and

Death rate = α2 + β2N

Ignoring the effects of immigration into the population,
determine the rate balance equation for this population and
show that it can be solved to produce the following population
function:

N =
α/β

1+ e−αtð Þ

where α = α1 – α2 and β = β1 + β2. Note that this model predicts a
limiting population size of α/β as t → ∞.

44. Is the amount of gold reserves held by a nation a conserved
quantity? Explain what happens if more currency is put into
circulation while the currency base (e.g., gold reserves) is held
constant.

45. Use the balance concept to explain the changes in the wealth of
a nation. In particular, describe methods by which a nation can
add or lose wealth by transport across its boundaries, and show
how it can produce or destroy wealth within its boundaries.

46. Are the natural resources of a nation conserved in a
thermodynamic sense? If not, explain what would have to be
done to cause them to be conserved. Give a specific example
where this is currently being done.

47. Using Eq. (2.9), write a balance equation for the total potential
energy of a system during a time interval δt. Is this potential
energy conserved? How can potential energy be produced or
destroyed within a system?

48. From Eq. (2.9), develop a balance equation for the gain in
kinetic energy of a system during a time interval δt. Is kinetic
energy a conserved quantity? How can kinetic energy be
produced or destroyed within a system?

49. Create a balance equation for the change in the number
of chairs in a classroom during a time interval δt using
Eq. (2.9). Are classroom chairs a conserved quantity? Describe
how classroom chairs can be transported into and out of the
classroom and produced or destroyed within the classroom.

50. Using Eq. (2.9), prepare a balance equation for the gain in the
number of dollar bills in your pocket during a week. Are these
dollar bills a conserved quantity? How can dollar bills be
transported, created, or destroyed in your pocket?

51. Equation (2.10) provides a net balance equation for any quantity.
Use this equation to construct a net balance equation for the
change in the number of automobiles contained within the city
limits of Detroit, Michigan, during a time interval of 1 year. What
are some possible mechanisms for transport, production, and
destruction of automobiles?

52. Reproduction and death are production and destruction
mechanisms for humans. Using Eq. (2.10), develop a net
balance equation to predict the net gain in people in any given
family group over a time interval of 10 years.

53. Take a typical library as your system. Using Eq. (2.10), develop
a net balance equation for the net gain in books in the library
over the period of 6 months. Specify explicit transport,
production, and destruction mechanisms for the books.

54.* Determine the muzzle velocity of a 10.0 g bullet that impacts a
5.00 kg ballistic pendulum 0.200 m below the fulcrum of the
pendulum and produces a 25.0° deflection.

55.* You are designing a ballistic pendulum for a baseball throwing
contest. The baseballs have a mass of 0.142 kg and the
pendulum is a 10.0 kg horizontal hollow cylinder closed on the
far end and suspended from the ceiling. Determine the length of
the suspension cords if the deflection of the cylinder is not to
exceed 20.0° when the baseball impact velocity is 40.0 m/s
(89.5 mph).

56. The muzzle velocity of a Daisy Red Ryder BB gun is 260 ft/s and
the mass of a BB is 7.5 × 10−4 lbm. Determine the angle of
deflection of a 0.50 lbm ballistic pendulum suspended 2.0 ft
from its support when impacted by the BB.

57. In 1945, the United States Army developed the largest artillery
weapon ever constructed. Called the Little David (Figure 2.14),
it has a bore of 900. mm and fires a 2.00 ton shell with a
muzzle velocity of 200. ft/s that produces a crater 38.0 ft wide
and 20.0 ft deep. As chief engineer of Army Ordnance, you are
to design a ballistic pendulum for this gun. If the distance from
the fulcrum of the pendulum to the point of impact is 10.0 ft,
how much mass would the pendulum have to contain if
deflection of its suspension cord is not to exceed 20.0°?

58.* The Sandia National Laboratory hypervelocity two-stage light gas
gun produces muzzle velocities of 12 km/s with 5.0 g
projectiles. A ballistic pendulum is to be designed for this gun.
It is to be suspended on cords 1.0 m long to produce a 15°
deflection when impacted by the gun’s projectile. Determine the
mass required for the pendulum.

59. Since mass is a conserved quantity, use Eq. (2.21) to develop a
conservation of mass balance equation over a time interval of
1 year for a system consisting of the entire Earth (do not forget
to draw a sketch of your system).

60. A person is trying to fill a 10.0 gallon bucket by hand with a
dipper (Figure 2.15). One dipper of water is added each second,
and the dipper holds 1.0 lbm of water. Unfortunately, the bucket
has a hole in it and water leaks out at a rate of 0.50 lbm/s. How
long does it take for the person to fill the bucket? (Note: Water
weighs 8.3 lbf/gal at standard gravity.)

FIGURE 2.14
Problem 57.

Problems 55



61.* Say you consume about 1.5 kg of solid food and about 1.0 kg
of liquid beverage per day. If you do not produce any waste
material during this time, draw a sketch of this system (you)
and use Eq. (2.21) to determine the increase in your mass at the
end of the day.

62.* The combustion chamber on a jet engine has air entering at a
rate of 2.0 kg/s while the fuel enters through a fuel injector at a
rate of 0.07 kg/s. Draw a sketch of this system and use Eq.
(2.22) to determine the mass flow rate of exhaust gases from
the engine.

63.* As your automobile travels down the highway, it consumes fuel
at a rate of 2.0 × 10–3 kg/s and it consumes 20. kg of air for
every kg of fuel burned. Draw a sketch of this system and use
Eq. (2.22) to determine the mass flow rate of exhaust gases out
the tail pipe of your automobile.

64.* A rigid tank is being filled with high-pressure oxygen gas at a
rate of 1.3 lbm/h from an external source. Taking the tank as
your system, draw a sketch of the system being filled and use
Eq. (2.22) to determine the rate of gain in mass of the tank.

65.* A chemical reaction vessel has chemical A entering at a rate of
0.51 kg/m through a 0.020 m diameter pipe, chemical B
entering at a rate of 0.75 kg/m through a 0.050 m diameter
pipe, and chemical C entering at a rate of 0.011 kg/m through a
0.015 m diameter pipe. The reaction products are drawn off
through two pipes at the bottom of the vessel at a rate of
0.35 kg/m in a small 0.015 m diameter pipe and 0.67 kg/m
in a large 0.085 m diameter pipe. Determine the net rate of
accumulation of chemicals in the vessel.

66. A new water spray nozzle head has 15 holes. If the mass flow
rate of water into the nozzle head is 0.13 lbm/s, determine the
mass flow rate of water through each hole.

67. A creative young engineer designed a hydraulic reaction multiplexer
that contains a constant mass. The unit has five inlet pipes,
numbered Inlet 1 through Inlet 5, and eight outlet pipes, numbered
Outlet 1 through Outlet 8. Each inlet pipe has twice the mass flow
rate of the previous numbered pipe (i.e., Inlet 2 has twice the mass
flow rate of Inlet 1 and so forth), and each outlet pipe has half the
mass flow rate of the previous numbered pipe (Figure 2.16). If the
mass flow rate in Inlet 1 is 10. lbm/s, determine the mass flow rates
in all the remaining inlet and outlet pipes.

68.* 2.0 kg of hydrogen (H2) reacts with 16 kg of oxygen (O2) to
yield water (H2O). Determine the chemical equation for this
reaction on a kgmole basis, and find the amount of water
formed in kg.

69. 12 lbm of carbon (C) reacts with 24 lbm of oxygen (O2) to
form 22 lbm of carbon dioxide (CO2) plus an unknown
amount of carbon monoxide (CO). Determine the amount of
carbon monoxide formed in lbm, and find the chemical
equation for this reaction on a lbmole basis.

Writing to Learn Problems
The following questions are designed to assist in the learning process
through the development of writing skills. For these problems, you
should develop a written answer containing an opening thesis sen-
tence followed by the presentation of several supporting statements,
ending with a concluding section that supports the thesis. Equations
should be used only to supplement your written statements. Limit
your response to about two double-spaced pages per question. You
will need to find additional material in your library to complete
these assignments.

70. Write a set of instructions to an engineering student friend defining
a thermodynamic state and describing how to determine it from
its thermodynamic properties. Illustrate your instructions with
specific examples dealing with water.

71. Provide a detailed written explanation of a thermodynamic
cycle. Give three specific examples of thermodynamic cycles.
Chapter 9 contains numerous practical thermodynamic cycles
from which you may choose.

72. Write a letter to a nontechnical friend in which you explain the
zeroth law of thermodynamics. Define the law and create three
nontechnical examples where it applies.

73. Write a short science fiction story based on the continuum
hypothesis. First, describe the hypothesis as it is currently
understood, then create an imaginary scenario where it does not
work. Describe the consequences your new theory may have on
world order.

74. Write a short science fiction story based on the balance concept.
First, describe the concept as it is currently understood, then
create an imaginary scenario in which a new, as yet undiscovered,
term must be added to create a true balance. Describe the
consequences your new theory has on physics today.

75. Write a 500 word article for your high school newspaper on the
conservation of mass law. Is this a truly valid law or are there
cases in which mass is not conserved? If it is not a truly valid
law of physics, then why do we treat mass as conserved in most
engineering applications?

FIGURE 2.15
Problem 60.
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FIGURE 2.16
Problem 67.
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3.1 THE TREES AND THE FOREST
Thermodynamics is like a forest. The tall trees in the center of the forest are the laws of thermodynamics. They
are surrounded by a thick underbrush of thorny bushes. These bushes are the thermodynamic properties. Some
are known by their common names, such as pressure, temperature, and volume. Others have Latin and Greek
names, like energy, enthalpy, entropy, and exergy. Before you can climb the tall trees of the thermodynamic laws to
look out over your energetic future, you must find your way through the thermodynamic underbrush that sur-
rounds them.

From the edge of the forest are barely visible paths that lead inward, but they intersect with other paths marked
with obscure signs like “This Way to Adiabatic Heat Engines” and “This Way to the Isotropic Pumps.” To survive
in this wilderness, you need to understand the symbiotic relationships between the bushes and the trees—that
is, the properties and the laws—and how to use them to solve engineering problems that enhance humankind.
This chapter gives you the tools to clear the paths toward the thermodynamic laws of the next chapter.
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3.2 WHY ARE THERMODYNAMIC PROPERTY VALUES IMPORTANT?
Since all of the basic laws of thermodynamics have terms containing key thermodynamic properties, we have to
determine numerical values for these properties before the laws can be used to solve a thermodynamics
problem. In other words, you cannot solve thermodynamic problems without accurate numerical values for the
system’s thermodynamic properties.

Thermodynamic property values can be determined from five sources:

1. Thermodynamic equations of state.
2. Thermodynamic tables.
3. Thermodynamic charts.
4. Direct experimental measurements.
5. The formulae of statistical thermodynamics.

This chapter deals with the first three sources. Source 4, the techniques of direct property measurement, are not
discussed in this text, but the information given in many of the thermodynamic problem statements can be
assumed to have come from such measurements. The last source, the formula of statistical thermodynamics, is
covered in Chapter 18 of this textbook.

Property values are often given in thermodynamic problem statements in the process path designation. For exam-
ple, if a system changes its state by an isothermal process at 250.°C, then we know that T1 = 250.°C = T2. Thus,
the process path statement gives us the value of a thermodynamic property (temperature, in this case) in each
of the two states. Process path statements that imply that some property is held constant during a change of
state are quite common in thermodynamics.

3.3 FUN WITH MATHEMATICS
In the previous chapter, you were told that the values of any two thermodynamic properties are sufficient to fix
the state of a homogeneous (single-phase) pure substance subjected to only one work mode. This means that
each thermodynamic property of the a pure substance can be written as a function of any two independent thermo-
dynamic properties. Thus, if x, y, and z are all intensive properties, we can write

f ðx, y, zÞ = 0 (3.1)

or

x = xðy, zÞ
y = yðx, zÞ
z = zðx, yÞ

Using the chain rule for differentiating the composite functions in the previous equations yields

dx = ∂x
∂y

� �
z
dy + ∂x

∂z

� �
y
dz

dy =
∂y
∂x

� �
z
dx +

∂y
∂z

� �
x
dz

dz = ∂z
∂x

� �
y
dx + ∂z

∂y

� �
x
dy

where the notation (∂x/∂y)z means the partial derivative of the function x with respect to the variable y while hold-
ing the variable z constant. Substituting the expression for dy into the expression for dx and rearranging gives

1− ∂x
∂y

� �
z

∂y
∂x

� �
z

� 	
dx = ∂x

∂y

� �
z

∂y
∂z

� �
x
+ ∂x

∂z

� �
y

� 	
dz

Normally, the partial differential notation (∂x/∂y) automatically implies that all the other variables of x are held
constant while differentiation with respect to y is carried out. However, in thermodynamics, we always have a
wide choice of variables with which to construct the function x, but when we change variables, we do not
always change the functional notation. For example, we can write x = x(y, z) = x(y, w) = x(y, q), where each of
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these three functions has a different form, even though they all yield x. Since these functions are not the same, if
follows that their partial derivatives are not equal, or

∂x
∂y

� �
z
≠ ∂x

∂y

� �
w
≠ ∂x

∂y

� �
q

That is why we always indicate which variables are held constant in partial differentiation. This also informs the
reader as to which independent variables are being used in a functional relation.

Equation (3.1) tells us that two of the three variables are independent. If we choose the independent variables
to be x and z, then the preceding equation, which relates x and z, is valid only if the coefficients of both dx and
dz are equal to zero (otherwise, they would not be independent). Then we have

1− ∂x
∂y

� �
z

∂y
∂x

� �
z
= 0

or

∂x
∂y

� �
z

∂y
∂x

� �
z
= 1

so

∂x
∂y

� �
z
=

∂y
∂x

� �
z

� 	−1
(3.2)

We also must have

∂x
∂y

� �
z

∂y
∂z

� �
x
+ ∂x

∂z

� �
y
= 0

or

∂x
∂y

� �
z

∂y
∂z

� �
x
= − ∂x

∂z

� �
y

Then, using the results of Eq. (3.2), we can write

∂x
∂y

� �
z

∂y
∂z

� �
x

∂z
∂x

� �
y
= −1 (3.3)

EXAMPLE 3.1
Show that, if the pressure p of a substance is a function of its temperature T and its density ρ, we can write

∂p
∂T

� �
p

∂ρ
∂p

� �
Τ

= − ∂ρ
∂T

� �
p

Solution
From Eq. (3.3) with x = p, y = T, and z = ρ, we have

∂p
∂T

� �
ρ

∂T
∂ρ

� �
p

∂ρ
∂p

� �
T
= −1

(Continued )

CRITICAL THINKING

If you have a composite function of the form f(x, y, z) = 0, where x = y + z, y = xz, and z = y/x, then are the following chain
rule differentials correct or not?

1. dx = dy + dz.
2. dy = zdx + xdz.
3. dz = dy/x + dx/y.
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EXAMPLE 3.1 (Continued )

Then, by multiplying this by (∂ρ/∂T)p and utilizing Eq. (3.2), we get the desired result:

∂p
∂T

� �
ρ

∂ρ
∂p

� �
Τ

= − ∂ρ
∂T

� �
p

Exercises
1. If v = 1/ρ is the specific volume of the material in Example 3.1, show that the result in this example can be written as

∂p
∂T

� �
ν

∂ν
∂p

� �
Τ

= −
�
∂ν
∂T

�
p

2. If a, b, and c are three independent intensive thermodynamic properties, use Eqs. (3.2) and (3.3) to show that they can
be related by

∂a
∂b

� �
c
= −

∂a
∂c

� �
b

∂b
∂c

� �
a

3.4 SOME EXCITING NEW THERMODYNAMIC PROPERTIES
In Chapter 2, we introduced the specific volume v, an intensive property, as

v = V/m (3.4)

where V is the total volume1 and m is the total mass of the system. We are now free to establish v as a function of
any two other independent properties. For a single-phase (i.e., homogeneous) pure substance subjected to only one
work mode, the pressure and temperature are independent properties, and for such a system, we can then write

v = v p,Tð Þ
Differentiating this equation gives

dv = ∂v
∂p

� �
T
dp + ∂v

∂T

� �
p
dT

The coefficients of dp and dT in the previous equation reflect the dependence of volume on pressure and tem-
perature, respectively. Because these terms have such important physical meaning, we introduce the following
notation:

1
v

∂v
∂T

� �
p
= β = isobaric coefficient of volume expansion (3.5)

and

− 1
v

∂v
∂p

� �
T
= κ = isothermal coefficient of compressibility (3.6)

where the thermodynamic term isobaric is from the Greek words iso meaning “constant” and baric meaning
“weight” or “pressure”; the term is to be taken to mean constant pressure in this text. Therefore, we can write

dv = −vκ dp + vβ dT

or

dv
v

= β dT − κ dp (3.7)

If κ and β are constant (or averaged) over small ranges of temperature and pressure, then Eq. (3.7) can be inte-
grated to give

ln
v2
v1

= β T2 −T1ð Þ− κ p2 − p1ð Þ

1 Remember that, in this text, volume is represented by the symbol V:. The symbol V is reserved for the magnitude of velocity.
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or

ν2 = ν1 exp βðT2 − T1Þ− κðp2 − p1Þ½ �f g (3.8)

Thus, v is seen to have an exponential dependence on p and T when β and κ are constant. Table 3.1 gives values of β
and κ for copper as a function of temperature, and Table 3.2 gives values of β and κ of various liquids at 20.°C (68°F).

EXAMPLE 3.2
A 1.00 cm3 copper block at 250. K is heated in the atmosphere to 800. K (Figure 3.1). Find the volume of the block at 800. K.

∀1 = 1.00 cm3

State 1
at 250. K

∀2 = ?

State 2
at 800. K

FIGURE 3.1
Example 3.2, problem.

Solution
Since the copper block changes state under atmospheric (constant) pressure, it undergoes an isobaric process. When p = con-
stant, Eq. (3.8) reduces to

v2 = v1 exp β T2 −T1ð Þ½ �f g

(Continued )

Table 3.1 Values of β and κ for Copper as a Function of Temperature

β × 106 κ × 1011

T (K) R−1 K−1 ft2/lbf m2/N

100. 17.5 31.5 34.51 0.721

150. 22.8 41.0 35.08 0.733

200. 25.3 45.6 35.80 0.748

250. 26.7 48.0 36.47 0.762

300. 27.3 49.2 37.14 0.776

500. 30.1 54.2 40.06 0.837

800. 33.7 60.7 44.13 0.922

1200. 38.7 69.7 49.30 1.030

Source: Material drawn from Zemansky, M. W., 1957. Heat and Thermodynamics, fourth ed. McGraw-Hill, New York. Reprinted by permission
of the publisher.

Table 3.2 Values of β and κ for Various Liquids at 20.°C (68°F)

β × 106 κ × 1011

Substance R−1 K−1 ft2/lbf m2/N

Benzene 0.689 1.24 4550 95

Diethyl ether 0.922 1.66 8950 187

Ethyl alcohol 0.622 1.12 5310 111

Glycerin 0.281 0.505 1010 21

Heptane (n) 0.683 1.23 6890 144

Mercury 0.101 0.182 192 4.02

Water 0.115 0.207 2200 45.9

Source: Adapted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw Hill, New York.
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EXAMPLE 3.2 (Continued )

and multiplying both sides of this equation by the mass m of the block gives the total volume V as

V2 = mv2 = V1 exp β T2 − T1ð Þ½ �f g
It can be seen from Table 3.1 that β for copper is not constant in the temperature range of 250. to 800. K. To come up with
a reasonable value for an average β, we must see how β varies with temperature. Figure 3.2 shows the data for β vs. T for
copper taken from Table 3.1.
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β vs. T for copper (data from Table 3.1)

β
×

10
6
(K

−1
)

FIGURE 3.2
Example 3.2, solution.

This figure shows that β varies linearly with T in the range of 250. to 800. K. The average value of β in this temperature range is
easily found to be

βavg =
60:7×10−6 + 48:0×10−6

2
= 54:4×10−6 K−1

Now we can calculate the final volume as

V2 = mv2 = V1 exp β T2 − T1ð Þ½ �f g
= 1:00 cm3ð Þ exp 54:4× 10−6 K−1ð Þ 800:−250:Kð Þ½ �� �
= 1:03 cm3

Note that we could also fit a straight line to the β vs. T data between 250. and 800. K and come up with a formula of the
form β = C1T + C2. Inserting this formula into Eq. (3.7) and integrating it (with dp = 0) yields a different (but equally valid)
relation among v1, v2, T1, and T2. This is left as an exercise at the end of this chapter.

Exercises
3. Use Tables 3.1 and 3.2 to find values for the isobaric coefficient of volume expansion β and the isothermal coefficient of

compressibility κ for (a) copper at 1200. K, (b) benzene at 68°F, and (c) mercury at 20.°C. Answers: (a) β = 38.7 × 10–6

R–1 = 69.7 × 10–6 K–1 and κ = 49.30 10–11 ft2/lbf = 1.030 × 10–11 m2/N; (b) β = 0.689 × 10–6 R–1 = 1.240 × 10–6 K–1

and κ = 4550 × 10–11 ft2/lbf = 95.0 × 10–11 m2/N; (c) β = 0.101 × 10–6 R–1 = 0.182 × 10– K–1 and κ = 192 × 10–11 ft2/
lbf = 4.02 × 10–11 m2/N.

4. Rework Example 3.2 for a 1.00 cm3 block of solid platinum, whose average isobaric coefficient of volume expansion
over the temperature range from 250. K to 800. K is 3.00 × 10–5 K–1. Answer: V = 1.017 cm3.

5. Liquid water at 68°F is isothermally compressed from 14.7 psia to 3000. psia. Determine the percent change in the
volume of the water, [(v1 − v2)/v1] × 100. Answer: 0.94%.

3.5 SYSTEM ENERGY
For historical reasons, the total energy of a system that has no magnetic, electric, surface, or other effects is
divided into three parts. Classical physicists recognized two easily observable forms of energy: (1) the total
kinetic energy KE = mV2/2gc, and (2) the total potential energy PE = mgZ/gc. The remaining unobservable part of
the total energy is simply called the total internal energy U. Thus, the total energy E of a system is written as

E = U + mV2/2gc + mgZ/gc (3.9)

or

E = U + KE + PE (3.10)
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We use the simpler Eq. (3.10) when writing general expressions and the more complete Eq. (3.9) when calcula-
tions are required. Total internal energy is an all-inclusive concept that includes chemical, nuclear, molecular,
and other energies within the system. Since all mass has internal energy, the only systems that have zero internal
energy are devoid of matter.

We define a system’s specific internal energy u as

u = U/m (3.11)

where m is the system mass. We can now write Eqs. (3.9) and (3.10) as

e = E
m

= u + V2

2gc
+

gZ
gc

(3.12)

and

e = u + ke + pe (3.13)

where ke = V2/2gc and pe = gZ/gc.

The specific internal energy u is an intensive property, like pressure, temperature, and specific volume; so, it too
can be written as a function of any other two independent properties. For a simple (i.e., homogeneous and pure)
substance, the temperature and specific volume are independent thermodynamic properties. So we can write

u = uðT, vÞ
then

du = ∂u
∂T

� �
v
dT + ∂u

∂v

� �
T
dv (3.14)

The first term in Eq. (3.14) describes the temperature dependence of u, and the coefficient of dT is written as cv,
where

∂u
∂T

� �
v
= cv = constant volume specific heat (3.15)

Then Eq. (3.14) becomes

du = cvdT + ∂u
∂v

� �
T
dv

Many of the equations of thermodynamics have groupings of similar terms. It is convenient to simplify the writ-
ing of these equations by assigning a single symbol and name to such a grouping. This is what was done in
Eq. (3.9) in defining the total system energy as the sum of three other energy terms. Also, it should be quite
clear that any function of a system’s thermodynamic properties is also a thermodynamic property itself.

3.6 ENTHALPY
When we introduce the open system energy balance later in this text, we find that the properties u and pv are
consistently grouped together. For simplicity, then, we combine these two properties into a new thermodynamic
property called enthalpy, whose total and specific forms are defined as

H = U + pV = total enthalphy (3.16)

and

h = H/m = u + pv = specific enthalpy (3.17)

WHO WAS AMALIE EMMY NOETHER?
PART 1

Emmy Noether was born on March 23, 1882, the first of four children. Her first name was Amalie, after her mother and pater-
nal grandmother, but she began using her middle name at a young age. Emmy was taught to cook and clean—as were most
girls of the time—and she took piano lessons. She pursued none of these activities with passion, although she loved to dance.

Emmy attended the Höhere Töchter Schule in Erlangen, Germany, from 1889 until 1897. She studied German, English,
French, and arithmetic and was given piano lessons. In 1900, became a certificated teacher of English and French in Bavar-
ian girls’ schools.
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EXAMPLE 3.3
The specific internal energy and specific volume of liquid water at a
temperature of 20.0°C and a pressure of 20.0 MPa are 82.77 kJ/kg and
0.0009928 m3/kg, respectively (Figure 3.3). Determine the specific
enthalpy of the water under these conditions.

Solution
From Eq. (3.18), we have

h = u + pv = 82:77 kJ=kg + 20:0× 103kN/m2
� �

0:0009928m3/kg
� �

= 82:77 kJ=kg + 19:856 kN .m=kg = 103 kJ=kg

where we use the fact that 1 kJ = 1 kN ·m. Notice that the units of the specific internal energy u and the pv product must be
exactly the same before these terms can be added. Consequently, we converted the pressure into units of kN/m2 here so that the pv
product comes out in units of kN ·m/kg = kJ/kg to match the units of u.

Exercises
6. If the specific internal energy and specific volume of raw sewage at 150.0 psia and 500.0°F are 115.0 Btu/lbm and

0.01700 ft3/lbm, respectively, determine the specific enthalpy of this material under these conditions. Answer: h =
115.5 Btu/lbm. (Hint: Check the units carefully and note that u is in Btu/lbm whereas the pv product is in ft · lbf/
lbm when the pressure is converted from lbf/in2 into lbf/ft2. Since the u and pv terms must be in the exact same
units before they can be added, the pv product must be divided by 778.17 ft · lbf/Btu.)

7. If the specific enthalpy and specific volume of mercury vapor at 6.000 MPa and 719.7°C are 381.0 kJ/kg and 0.006930 m3/kg,
respectively, determine the specific internal energy of this material under these conditions. Answer: u = 339.4 kJ/kg. (Hint:
Check the units carefully and note that h is in kJ/kg or kN · m/kg, whereas the pv product is in MN · m/kg. Convert the pressure
into kN/m2 before or during the calculation so that h and the pv product have the same units.)

8. The specific internal energy and specific enthalpy of compressed liquid water at 5000. psia and 700.°F are 721.8 Btu/lbm
and 746.6 Btu/lbm, respectively. Determine the specific volume of this material under these conditions. Answer:
v = 0.0268 ft3/lbm. (Hint: See the hint for Exercise 6.)

Like specific internal energy, specific enthalpy can be a function of any two independent properties for a simple
substance subjected to only one work mode. For such a simple substance, the temperature and pressure are
independent, so we can write

h = hðT, pÞ
and

dh = ∂h
∂T

� �
p
dT + ∂h

∂p

� �
T
dp (3.18)

The temperature dependence of h is important in classical physics, and the coefficient of dT is written as cp, where

∂h
∂T

� �
p
= cp = constant pressure specific heat (3.19)

Then Eq. (3.18) becomes

dh = cp dT + ∂h
∂p

� �
T
dp (3.20)

Water
u = 82.77 kJ/kg
v = 0.0009928 m3/kg
T= 20.0°C
p = 20.0 MPa
h = ?

FIGURE 3.3
Example 3.3.

WHY IS IT CALLED ENTHALPY?

The quantity u + pv has had many different names over the years. In the early years of thermodynamics, it was known at
various times as the heat function, the heat content, and the total heat. The term enthalpy comes from the Greek ενθαλποσ,
meaning “in warmth,” and was introduced in 1922 by Professor Alfred W. Porter. He credited the coining of the name to
the Dutch physicist Kamerlingh Onnes (1853–1926). This name was officially adopted by the American Society of Mechan-
ical Engineers (ASME) in 1936.
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Other thermodynamic properties, such as entropy and availability, are introduced later in this text when they are
needed. It must be remembered, however, that not all thermodynamic properties are directly measurable. A pres-
sure gauge and a thermometer give us numerical values for p and T, but there are no instruments that give us
values of u and h directly. It takes much more sophisticated measurements to allow us to calculate accurate
values for u and h. More complex mathematical relations between thermodynamic properties are developed
after the reader is thoroughly familiar with the concept of entropy discussed in Chapter 7.

3.7 PHASE DIAGRAMS
A pure substance is composed of a single chemical compound, which may itself be composed of a variety of
chemical elements. Water (H2O), ammonia (NH3), and carbon dioxide (CO2) are all pure substances, but air is
not because it is a mixture of N2, O2, H2O, CO2, and so forth. All substances can exist in one or more of the
gaseous (or vapor), liquid, or solid physical states, and some solids can have a variety of molecular structures.
In 1875, the American physicist Josiah Willard Gibbs (1839–1903) introduced the term phase to describe the dif-
ferent forms in which a pure substance can exist. We now speak of the gaseous, liquid, and solid phases of a
pure substance, and we recognize that a pure substance may have a number of different solid phases.2 Multiple
solid phases are called allotropic, a term that comes from the Greek words allos, meaning “related to,” and trope
meaning “forms of the same substance.” For example, graphite and diamond are allotropic forms of carbon.

A substance made up of only one physical phase is called homogeneous; if it is composed of two or more phases
it is called heterogeneous. Coexistent phases are separated by an interface, called the phase boundary, of finite thick-
ness across which the property values change uniformly. A system in which two phases coexist in equilibrium is
called saturated.

The number of degrees of freedom within a heterogeneous mixture of pure substances is given by Gibbs’s phase rule as

f = C−P + 2

where f is the number of degrees of freedom, C is the number of components (pure substances) in the mixture, and
P is the number of phases. Also, f can be interpreted to be the number of intensive properties of the individual
phases required to fix the state of the individual phases. For example, a homogeneous (P = 1) pure substance (C = 1)
requires f = 1 − 1 + 2 = 2 intensive properties to fix its state. Similarly, a homogeneous (P = 1) mixture of two pure
substances (C = 2) requires f = 2− 1 + 2 = 3 intensive properties to fix its state, and so forth. The case of a two-phase
(P = 2) pure substance (C = 1), however, is misleading, because f = 1 − 2 + 2 = 1, but this simply means that each

SATURATED WITH WHAT?

The term saturated comes from the 18th century, when heat was thought to be a fluid. At that time, it was thought that a
substance could be saturated with heat, just like water can become saturated with salt or sugar. Today we recognize that
heat is not a fluid, and therefore the use of the word saturation in reference to a thermodynamic phase change is really a
misnomer. However, this term is now completely entrenched in modern thermodynamic literature and cannot be changed.

WHO WAS EMMY NOETHER?
PART 2

Emmy Noether never became a language teacher; instead she decided to attend the University of Erlangen to study mathe-
matics. Unfortunately, at that time, women were not allowed to enroll because the faculty felt that allowing female stu-
dents would “overthrow all academic order.” She could only audit classes with the permission of each professor whose
lectures she wished to attend. Nonetheless, on July 14, 1903, she passed the graduation exam.

During the winter of 1903–1904, she studied at the University of Göttingen, attending lectures by astronomer Karl
Schwarzschild and mathematicians Hermann Minkowski, Otto Blumenthal, Felix Klein, and David Hilbert. By then, restric-
tions on women’s rights in Erlangen were rescinded and she returned there. She officially reentered the university on Octo-
ber 24, 1904, and declared her intention to focus solely on mathematics. In 1907, she received a doctorate in mathematics.

2 Actually, matter can exist in a bewildering variety of phases beyond the common solid, liquid, and vapor forms. Ferromagnetic,
antiferromagnetic, ferroelectric, superconducting, superfluid, nematic, smectic, and so on are all valid phases.
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phase requires one intensive property to fix its state. Hence, two independent properties are required to fix the state
of the complete two-phase system. To find the state of a mixture of two phases, we need to know how much of each
phase is present, that is, the composition of the mixture. The phase composition in a liquid-vapor mixture is given
by a new thermodynamic property called the quality of the mixture, which is defined shortly.

A phase diagram is made by plotting thermodynamic properties as coordinates. Figure 3.4 illustrates typical p-T
and p-v phase diagrams for a substance that expands on freezing (such as water or antimony). When the p-T
and p-v diagrams are combined to form a three-dimensional p-v-T surface, thermodynamic surfaces arise, as
shown in Figure 3.5. Figures 3.6 and 3.7 show the similar plots for a substance that contracts on freezing (such
as carbon dioxide and most other substances).

The expansion or contraction behavior of a substance on solidification can be deduced either from the increase
or decrease in specific volume as the substance goes from a liquid to a solid, or from the slope of the fusion
line on the p-T diagram. If the p-T fusion line has a negative slope, then the substance contracts on melting; if it
has a positive slope, then it expands on melting.

The pure substance p-T phase diagram shown in Figures 3.4 and 3.5 is composed of three unique curves. The
fusion line represents the region of two-phase solid-liquid equilibrium, the vaporization line represents the region
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of two-phase liquid-vapor equilibrium, and the sublimation line represents the region of two-phase solid-vapor
equilibrium. These three lines intersect at one point, called the triple point, which is the only point where all
three phases can be in equilibrium simultaneously. The triple point on the p-T diagram appears as a line on the
p-v diagram, with the triple point simply being an end view of this line. Table 3.3 gives the property values at
the solid-liquid-vapor triple point of various substances. At the triple point of a pure substance, C = 1, p = 3, and
the number of degrees of freedom are f = 1 − 3 + 2 = 0; that is, there is no flexibility in the thermodynamic state
and none of the properties can be varied and still keep the system at the triple point. The properties can be var-
ied along the various two-phase boundary lines but not at the three-phase triple point. If a substance has more
than one solid phase, then it also has more than one triple point.

When pressurized, most liquids freeze at a higher temperature because the pressure forces the molecules together.
However, at pressures higher than 1 atmosphere, water remains liquid at a temperature below 0°C due to the
strong hydrogen bonds in water. This is why ice melts under an ice skater’s blades and lubricates her or his move-
ment. The melting of ice under high pressures is also thought to contribute to the movement of glaciers.

When subjected to high pressures, water can form at least 15 solid phases. These phases differ by their crystalline
structure, ordering, and density. In 2009, ice XV was found at extremely high pressures and −143°C. Figure 3.8
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shows a more complete p-T phase diagram for water including 7 of its 15 known solid phases. Each intersection
of three phase transition lines forms a new triple point.

The vaporization curve for all known substances has a peak at a curious point, known as the critical point. This is
the state at which the densities of the liquid and the vapor phases become equal and, consequently, where the
physical interface between the liquid and the vapor disappears. At or above the critical state, there is no longer any
physical difference between a liquid and a vapor. Substances existing under these conditions are called gases. In
this text, we use the term gas to describe the state of any substance whose temperature is greater than its critical
state temperature. A substance in the vapor phase that does not meet the definition of a gas is called a superheated
vapor (sometimes just vapor). These definitions are illustrated in Figures 3.8 and 3.10. Table 3.4 gives the critical
state temperature, pressure, and specific volume for various common pure substances. A larger critical state data
table is given in Table C.12 of Thermodynamic Tables to accompany Modern Engineering Thermodynamics.

Notice in Table 3.4 that, at 14.7 psia and 70.°F (530. R), ammonia is a vapor (Tc > 530. R). Also, it should be clear
from Figure 3.10 that, to liquefy any gas whose pressure is initially less than its critical pressure simply by increasing
its pressure alone, the gas must first be made into a vapor by lowering its temperature below its critical temperature.
Vapor-liquid condensation is shown by process A-B in Figure 3.10. Thus, for example, no matter how high the
applied pressure, hydrogen cannot be liquefied unless its temperature is below 59.9 R (see Table 3.4).
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Table 3.3 Triple Point Data for Various Materials

Substance T (R) T (K) p (psia) p (kPa)

Ammonia (NH3) 351.7 195.4 0.89 6.16

Carbon dioxide (CO2) 389.9 216.6 75.98 523.8

Helium-4 (λ point) 3.9 2.17 0.74 5.11

Hydrogen (H2) 24.9 13.84 1.03 7.13

Neon (Ne) 44.2 24.57 6.35 43.77

Nitrogen (N2) 113.7 63.18 1.84 12.67

Oxygen (O2) 97.8 54.36 0.02 0.15

Sulfur dioxide (SO2) 355.9 197.7 0.02 0.17

Water (H2O) 491.7 273.16 0.09 0.62

Source: Adapted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.
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FROM WHENCE COMETH THE GAS?

The term gas was coined by the Belgian chemist Jan Bapist Van Helmont (1577–1644), derived from the Greek word κєøσ,
meaning “gaping void.”

WHAT IS A “PHASE”?

A material “phase” is a physically distinct region of space that is chemically uniform with homogenous physical properties.
For example, imagine a system consisting of ice cubes and liquid water in drinking glass. The ice cubes are one phase
(solid), the water is a second phase (liquid). The glass itself is a different material in a solid phase.

Material phases are different states of matter, such as solid, liquid, gas, or plasma. It is possible for a material to have more
than one liquid or solid phase. For example, depending on the cooling process, metals can solidify into several distinct
crystal phases.

The liquid to vapor phase transformation is called vaporization (Figure 3.9), and the vapor to liquid phase transformation is
called condensation. Similarly, the solid to liquid phase transformation is known as melting, and the liquid to solid phase
transformation is called freezing or solidification. Finally, the solid to vapor phase transformation is known as sublimation,
and the vapor to solid phase transformation is deposition (or frost in the case of water).
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Several thermodynamic properties have discontinuities at the critical state; β, κ, and cp become infinite there. Near
the critical state, a transparent substance becomes almost opaque due to light scattering caused by large fluctua-
tions in local density. This phenomenon, called critical opalescence, is illustrated in Figure 3.11. Notice the appear-
ance of the liquid-vapor interface in Figure 3.11b when the temperature becomes less than the critical temperature.

(a) (b) (c) (d)

FIGURE 3.11
The glass bulb contains carbon dioxide near the critical density ρcritical, and three balls with densities ρA ≲ ρcritical ρB = ρcritical, and
ρC ≳ ρcritical. In (a), the temperature is well above the critical temperature, leaving all the carbon dioxide in the gaseous state. In (b), the
temperature is only slightly above the critical temperature and the carbon dioxide has become foggy. In (c), the temperature is slightly
below the critical temperature and a meniscus has developed separating the gaseous and liquid states. In (d), the temperature is far
below the critical temperature and the density of the liquid has increased to the point where all three balls now float on the surface of
the liquid. (Source: Reprinted with permission from Sengers J. V., Sengers, A. L., 1968. The critical region. Chem. Eng. News 48, 104.)

Table 3.4 Critical State Properties for Various Substances (see also Table C.12)

Substance Tc (R) Tc (K) pc (psia) pc (MPa) vc (ft3/lbm) vc (m3/kg)

Ammonia (NH3) 729.9 405.5 1636 11.28 0.068 0.0043

Carbon dioxide (CO2) 547.5 304.2 1071 7.39 0.034 0.0021

Carbon monoxide (CO) 240.0 133.0 507.0 3.50 0.053 0.0033

Helium (He) 9.5 5.3 33.2 0.23 0.231 0.0144

Hydrogen (H2) 59.9 33.3 188.1 1.30 0.516 0.0322

Nitrogen (N2) 227.1 126.2 491.68 3.39 0.051 0.0032

Oxygen (O2) 278.6 154.8 736.9 5.08 0.039 0.0024

Sulfur dioxide (SO2) 775.2 430.7 1143 7.88 0.030 0.0019

Water (H2O) 1165.1 647.3 3203.8 22.09 0.051 0.0032

Source: Van Wylen, G. J., Sonntag, R. E., 1986. Fundamentals of Classical Thermodynamics, third ed. Wiley, New York. Reprinted by
permission of John Wiley & Sons.

HOW DO YOU MAKE A DIAMOND?

Diamond is the hardest naturally occurring material known, and it is also the most popular gemstone (Figure 3.12). For
centuries, it has been one of the most desirable and mysterious materials available. In 1772, the French Chemist Antoine-
Laurent Lavoisier (1743–1794) proved that diamond was just another crystalline form of carbon. He invested a

70 CHAPTER 3: Thermodynamic Properties



considerable sum of money to purchase a small diamond, then he burned it in a controlled oxygen environment. When he
analyzed the resulting combustion gas, he found it to be just carbon dioxide.

FIGURE 3.12
A real diamond.

From that time forward, many attempts have been made to make synthetic diamond from pure carbon (graphite). How-
ever, diamond was not successfully synthesized until 1955, at the General Electric Corporation in Schenectady, New York,
when GE researchers compressed graphite to a pressure exceeding 1.5 × 106 psi (10. GPa) and 5000.°F (~3000.°C). Indus-
trial and gemstone quality synthetic diamonds have been commercially available since 1960.

The pressure-temperature phase diagram for carbon is shown in Figure 3.13. At low pressure and temperature, the solid car-
bon phase is called graphite. At very high pressures and temperatures, a second solid carbon phase appears with a different
atomic structure. This phase is the valuable gemstone diamond with which we are all familiar. However, the phase diagram
clearly indicates that graphite, not diamond, is the equilibrium form of solid carbon at room temperature and pressure.

Since phase changes are rate processes that increase rapidly with increasing temperature, what is happening to all diamonds
that are exposed to room temperature and pressure? What would happen to a diamond ring if you put it into an oven at
1000 or 2000°F? Can you suggest a practical way of making a synthetic diamond? Do you think that exposing graphite to
explosive loading using dynamite under controlled conditions would work?
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3.8 QUALITY
As mentioned earlier, in an equilibrium two-phase mixture, temperature and pressure cannot be varied indepen-
dently; therefore, either one or the other can be taken as an independent thermodynamic property, but not
both. Figure 3.15a shows the actual p-v diagram for water on log-log coordinates. Notice that, in the two-phase
regions (liquid plus vapor and solid plus vapor), the isotherms (lines of constant temperature) are parallel to
the isobars (lines of constant pressure), showing that pressure and temperature are not independent in this
region. To determine other thermodynamic properties of a mixture of phases, we need to know the amount of
each phase present. We do this with a lever rule applied to one of the phase diagram coordinates. Consider the
simplified liquid-vapor p-v diagram shown in Figure 3.15b.

Substances whose states lie on the saturation curve are called saturated. Substances whose states lie under the
saturation curve are called wet. Substances whose states are on the saturation curve but to the left of the critical
state are called saturated liquids, and those on the saturation curve to the right of the critical state are called satu-
rated vapors. Substances whose states are to the left of the saturation curve are called compressed or subcooled
liquids, and those to the right are called superheated vapors.

To help identify the properties of a system, we adopt the convention of using an f subscript on the symbols of
all thermodynamic properties of saturated liquids and a g subscript on the symbols of all thermodynamic prop-
erties of saturated vapors. Thermodynamic properties in the compressed (or subcooled) liquid region, the wet
(or mixture) region, and the superheated vapor (or gas) region carry no subscripts. Consequently, the specific

CASE STUDY: A NEW SUPERCRITICAL WATER TREATMENT

A major engineering challenge today is the development of an
effective waste disposal or destruction technique that produces no
toxic waste or emission itself. Hazardous wastes have historically
been discarded in ocean dumping, landfills, incineration, or long-
term storage. However, ocean dumping is now illegal and landfill
sites are becoming increasing difficult to manage due to concerns
about groundwater contamination.

A new technology has emerged as an effective way to eliminate thou-
sands of tons of organic wastes that are the by-products of modern
society. Called supercritical water oxidation, the technique exploits the
fact that, while most organic wastes are not soluble in water at nor-
mal temperatures, they are dissolved at high pressure and tempera-
ture (Figure 3.14). Once the organic wastes are dissolved, oxygen is
added and an oxidation-reduction reaction occurs, much like a

controlled combustion process. Operating at supercritical conditions
results in a single-phase homogenous reaction environment that
causes rapid oxidation of the organics, producing carbon dioxide,
water, nitrogen, and small amounts of other compounds, such as
ammonia and acids. Since the entire process is in a closed system,
no harmful products are released into the environment.

This technique has also been found to be an effective disposal
method for surplus military chemical wastes, such as nerve agents,
mustard gas, rocket fuels, TNT, and other explosives. More than
99.9% of the explosives are destroyed in less than 30 s at 600.°C.
Even radioactive wastes can be concentrated and stabilized by elim-
inating their organic components. The resulting radioactive compo-
nents can then be encased in molten glass and stored deep
underground.
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volume of saturated liquid is written as vf and that of
saturated vapor as vg, and the associated specific inter-
nal energies, enthalpies, and masses are written as uf,
ug, hf, hg, mf, and mg.

From Figure 3.16, we see that the total volume of a
substance whose state is in the wet (liquid plus vapor)
region is given by

V = mv = mf vf + mgvg

where m is the total mass given by

m = mf + mg

Dividing the equation for V by m gives

V/m = v = mf vf /m + mgvg/m (3.21)
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FIGURE 3.15a
p-v diagram notation. The actual p-v diagram for water plotted on log-log coordinates. (Source: Wood, B. D., 1982. Applications of Thermodynamics,
second ed. Addison-Wesley Publishing Co., Inc., Reading, MA. Reprinted with permission.)

Specific volume, v

(b)

Pr
es

su
re

, p

Critical point

Saturated vapor line,

Superheated vapor
regionLiquid plus

vapor (wet)
region, 0 < x < 1

Saturated
liquid line

x = 0

C
om

pr
es

se
d 

or
 s

ub
co

ol
ed

liq
ui

d 
re

gi
on x = 1

FIGURE 3.15b
Schematic p-v diagram for the liquid, mixture, and vapor regions.

WHY USE F AND G SUBSCRIPTS?

The use of f and g as subscripts here is out of tradition. They come from the first letters of the German words flussig (for
liquid) and gas. More appropriate English subscripts might be l for liquid and v for vapor, but they are not used.
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Equation (3.21) is just a simple mass-based lever rule equation
relating a mixture thermodynamic property (v) to the thermo-
dynamic properties of the components of the mixture (vf and
vg). We now define the quality x of a liquid plus vapor mixture
as the relative amount of vapor present, or

Quality = x =
Mass of vapor

Mass of vapor + Mass of liquid
=

Mass of vapor
Total mass

or

x =
mg

mf + mg
=

mg

m
(3.22)

Therefore, Eq. (3.21) can be written as

v = ð1− xÞvf + xvg (3.23)

which can be rearranged as

v = vf + xðvg − vf Þ = vf + xvfg (3.24)

where we define the magnitude of the liquid to vapor property change as

vfg = vg − vf (3.25)

From Figure 3.16, we see that another definition of quality is

x =
v− vf
vfg

(3.26)

It should be clear from the definition of quality that its value has the following bounds

Saturated liquid : x = 0

Saturated vapor : x = 1

Wet ðliquid plus vaporÞ region : 0< x<1

WHY DO THEY CALL IT QUALITY?

In the 19th century, there were a lot of steam engines.
Railroads, factories, ships, and so on all used steam engines
as their source of power. The people responsible for keeping
these engines running noticed that they worked better if the
steam contained more vapor than liquid. So, a mixture that
contained a lot of vapor and little liquid was said to be of
high quality. They defined this quality to be the ratio of the
mass of vapor to total mass of liquid plus vapor (Figure
3.17), or quality = x = mg /(mf + mg) = mg /m. On the other
hand, the amount of liquid present in a mixture is called
the moisture of the mixture, defined as moisture = mf /m =
1 − x. Since these definitions apply only to mixtures of
liquid plus vapor, they do not extend outside of the vapor
dome. The condition where the quality x = 1.0 is reserved
for saturated vapor and does not apply to superheated
vapor. Similarly, the condition where quality x = 0 is
reserved for saturated liquid and does not apply to com-
pressed liquid. Note that the quality x of a liquid-vapor mix-
ture can never be less than 0 or greater than 1.0. That is, x
always falls in the range 0 < x < 1.0.
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FIGURE 3.17
Why do they call it quality? In all other single-phase regions
(compressed liquid, superheated vapor, gaseous), x is not defined,
because these are single-phase homogeneous regions. Note that,
since the numerical value of quality is restricted to lie in the range
from 0 to 1, no correct calculation can ever give a value of x less
than 0 or greater than 1.0.
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Although Eq. (3.26) was developed using specific volume, an identical argument can be used to expand it to all
other intensive properties (except pressure and temperature), resulting in equations of the form

x =
v− vf
vfg

=
u− uf
ufg

=
h− hf
hfg

(3.27)

In addition, the term mf/m = 1 − x represents the relative amount of liquid present in the mixture, called the
moisture of the mixture.

EXAMPLE 3.4
Saturated water at 14.696 psia and 212°F has the following
properties:

vf = 0.01672 ft3/lbm vg = 26.80 ft3/lbm
uf = 180.1 Btu/lbm ug = 1077.6 Btu/lbm
hf = 180.1 Btu/lbm hg = 1150.5 Btu/lbm

If 0.200 lbm of saturated water at 14.696 psia is put into a
sealed rigid container whose total volume is 3.00 ft3 (Figure
3.18), determine the following properties of the system:

a. The specific volume v.
b. The quality, x, and moisture, 1 − x.
c. The specific internal energy u.
d. The specific enthalpy h.
e. The mass of water in the liquid and vapor phases, mf and mg.

Solution
The system is a closed rigid container.

a. The specific volume can be calculated directly from its definition, Eq. (3.4). as

v = V/m = 3:00/0:200 = 15:0 ft3/lbm

b. The quality can be calculated from Eq. (3.26) or (3.27) and Eq. (3.25) as

x =
v− vf
vfg

= 15:0− 0:01672
26:80−0:01672

= 0:559

or x = 55.9% vapor. Therefore, the amount of moisture present is 1 − x = 0.441, or the mixture consists of 44.1% moisture.
c. The specific internal energy can be obtained by combining Eq. (3.27) with the definition ufg = ug − uf to give u = uf + xufg =

uf + x(ug − uf), or

u = 180:1 + 0:559ð Þ 1077:6−180:1ð Þ = 682Btu/lbm

d. The specific enthalpy can be obtained by combining Eq. (3.27) with the definition hfg = hg − hf to give h = hf + xhfg =
hf + x(hg − hf), or

h = 180:1 + 0:559ð Þ 1150:5−180:1ð Þ = 722Btu/lbm

e. To obtain the mass of water in the liquid and vapor phases, we can use the original definition of quality given in Eq.
(3.22) to get mg = xm = 0.559(0.2) = 0.112 lbm of saturated water vapor and then mf = (1 − x)m = m − mg = 0.088 lbm
of saturated liquid water.

EXAMPLE 3.5
What total mass of saturated water (liquid plus vapor) should be put into a 0.500 ft3 sealed, rigid container at 14.696 psia so that
the water passes exactly through the critical state when the container is heated? Also, determine the initial quality in the vessel.

Solution
Processes carried out in sealed rigid containers are constant volume (or isochoric) processes. Therefore, the process path on a
p-v diagram is a vertical straight line, as shown in the p-v diagram of Figure 3.19. In this problem, we are given the final

(Continued )

System
boundary

∀ = 3.00 ft3

m = 0.200 lbm
p = 14.696 psia

FIGURE 3.18
Example 3.4.
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EXAMPLE 3.5 (Continued )

state (the critical state), and we are asked to determine a thermodynamic property (the mass) at the initial state. In Table 3.4
or Table C.12a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find for water that pc = 3203.8
psia, Tc = 1165.1R, and vc = 0.05053 ft3/lbm. Also, since both the volume and mass are constant here, v2 = v1 = vc. This
process can then be diagrammed as follows:

Initial state !Constant volume

process
Final state

p1 = 14:696psia
T1 = 212°F ðsaturatedÞ
v1 = v2 ðfrom the process pathÞ

p2 = pc
T2 = Tc
v2 = vc

Therefore,

m = V
v1

= V
v2

= V
vc

= 0:500 ft3

0:05053 ft3/lbm
= 9:90 lbm

We can now find the quality in the initial state by using Eq. (3.26) and the data given in Example 3.2 as

x1 =
v− vf 1
vfg1

=
vc − vf1
vg1 − vf1

=
0:05053−0:01672ð Þ f t3/lbm
26:8−0:01672ð Þ f t3/lbm = 1:26×10−3 = 0:126% vapor

v

p

14.696
psia

v1 = v2 = vc

p-v diagram

Initial state

Process
path

x
=

0.
00

x=1.00

Final state (critical point)

FIGURE 3.19
Example 3.5. Note that, since the quality is not defined at the critical state (quality is one of the properties that has a discontinuity
there), no value for x2 = xc can be given.

3.9 THERMODYNAMIC EQUATIONS OF STATE
In this section, we discuss some of the basic p-v-T equations of state for various substances. These equations can
be easily typed into a computer spreadsheet, which greatly simplifies the calculations and allows for studying
the effect of varying individual terms and plotting of the results. All engineering students today have access to a
computer, and numerous computer programs can be found on the Internet that calculate the thermodynamic
properties of water, refrigerants, and various other substances.

WHO WAS EMMY NOETHER?
PART 3

From 1908 to 1915, Emmy Noether taught at the University of Erlangen’s Mathematical Institute without pay, occasionally
substituting for her father when he was too ill to lecture. In the spring of 1915, she was invited to return to the University
of Göttingen by David Hilbert and Felix Klein. Their effort to recruit her, however, was blocked by the faculty: Women,
they insisted, should not become faculty. One faculty member protested: “What will our soldiers think when they return to
the university and find that they are required to learn at the feet of a woman?” Hilbert responded with indignation, stating,
“I do not see that the sex of the candidate is an argument against her admission as faculty.3 After all, we are a university,
not a bath house.”

76 CHAPTER 3: Thermodynamic Properties



Most materials have very complex thermodynamic equations of state, which are not given in textbooks. How-
ever, these complex equations are easily solved by computer programs like spreadsheets, Engineering Equation
Solver,4 Matlab, and so forth, which are readily available today. Thermodynamic property programs can also be
found for PDAs and smart cell phones.5

While engineers in the 21st century use computer programs to find the thermodynamic property values they
need, thermodynamic courses still rely on the use of printed property tables and charts in textbooks. However,
students are encouraged to search out and use modern computer programs to solve problems or to verify that
their table or chart solutions are correct.

In this section, we focus on the relatively simple equations of state of incompressible substances, ideal gases,
and a few variations on the ideal gas equation. A more comprehensive discussion of the behavior of real gases
is given in a subsequent chapter.

3.9.1 Incompressible Materials
The simplest equation of state is that for an incompressible material. One of its equations of state is merely v =
constant. This equation can be used for either a solid or a liquid, but it cannot be used for a vapor or a gas.
Incompressible substances also have one other state equation, which specifies that the specific internal energy of
an incompressible material is a function of only one variable, temperature. Thus, the full set of state equations
that characterize an incompressible material are

v = constant (3.28)

and

u = u Tð Þ (3.29)

The constant volume specific heat of an incompressible material is given by Eq. (3.15) as

cv =
∂u
∂T

� �
v
= du

dT
ðsince u is independent of v hereÞ (3.30)

Because the specific enthalpy is defined as h = u + pv, Eq. (3.19) gives the constant pressure specific heat of an
incompressible material as

cp =
∂h
∂T

� �
p
= du

dT
+

∂ pvð Þ
∂T

� �
p
= du

dT
+ pvβ = cv = c when β = 0ð Þ (3.31)

CRITICAL THINKING

If an equation of state is an equation that relates thermodynamic properties of the system when it is in different thermody-
namic states, then what can you say about a system that has an equation of state of the form pT = constant, where p is the
absolute pressure and T is the corresponding absolute temperature of the system at any time?

When World War I ended, significant social changes occurred in Germany, including more rights for women. In 1919, the
University of Göttingen allowed Noether to proceed with her habilitation (eligibility for tenure), and she was given tenure
in June 1919.

She had a very successful career in advanced mathematics, and one of her most important but unheralded discoveries is
Noether’s theorem, which proves a relationship between symmetries and conservation principles. This basic result was
praised by Albert Einstein in a letter to David Hilbert, when he referred to Noether’s “penetrating mathematical thinking.”
It was her work that led to formulations for several concepts of Einstein’s general theory of relativity.

3 The actual term is privatdozent, which means an unsalaried university “private” lecturer or teacher paid directly by the students.

4 F-Chart Software, Box 44042, Madison, WI 53744 (info@fchart.com).
5 For example, see enggtools.com, processacesoftware.com, and appstorehq.com/engineeringtables.
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since for incompressible materials v = constant and β = 0. However, note that, since β is very small for most
liquids and solids (see Tables 3.1 and 3.2), these substances can be accurately modelled as incompressible mate-
rials. The subscripts p and v are meaningless for an incompressible material, and the simple phrase specific heat,
represented by the symbol c with no subscript, is sufficient. Thus, for all incompressible substances, cp = cυ = c.
Consequently, for these materials, we can write

u2 − u1 =
Z T2

T1

cdT (3.32)

and if c is constant over the temperature range from T1 to T2, then Eq. (3.32) becomes

u2 − u1 = c T2 − T1ð Þ (3.33)

Also, since v2 = v1 = v here,

h2 − h1 = c T2 −T1ð Þ + v p2 − p1ð Þ (3.34)

Tables 3.5 and 3.6 list the specific heats of some materials whose liquid and solid phases accurately approximate
incompressible substances.

Table 3.5 Specific Heats of Various Liquids at Atmospheric Pressure

T c

Substance R K Btu/lbm ·R kJ/kg ·K

Benzene 520. 289 0.430 1.800

Butane (n) 492 273 0.550 2.303

Glycerin 510. 283 0.576 2.320

Mercury 510. 283 0.033 0.138

Propane 492 273 0.576 2.412

Water 492 273 1.007 4.186

Source: Some material drawn from Wark, K., Jr. 1988. Thermodynamics, fifth ed. McGraw-Hill, New York. Reprinted by permission of the publisher.

Table 3.6 Specific Heats of Various Solids at Atmospheric Pressure

T c

Substance R K Btu/lbm ·R kJ/kg ·K

Aluminum 360. 200. 0.190 0.797

540. 300. 0.215 0.902

720. 400. 0.227 0.949

900. 500. 0.238 0.997

Copper 540. 300. 0.092 0.386

851 473 0.096 0.403

Graphite 527 293 0.170 0.712

Iron 527 293 0.107 0.448

Lead 540. 300. 0.031 0.129

851 473 0.032 0.136

Rubber 527 293 0.439 1.84

Silver 527 293 0.056 0.233

Water (ice) 492 273 0.504 2.11

Wood 527 293 0.420 1.76

Source: Excerpted from Wark, K., Jr. 1988. Thermodynamics, fifth ed. McGraw-Hill, New York. Reprinted by permission of the publisher.
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EXAMPLE 3.6
Determine the change in specific internal energy and specific
enthalpy of an incompressible hardwood as it is heated from a
temperature and pressure of 20.0°C, 0.100 MPa to a temperature
and pressure of 100.°C and 1.00 MPa (Figure 3.20). Assume the
wood has a constant density of 515 kg/m3 and a constant specific
heat over this temperature and pressure range.

Solution
The changes in specific internal energy and specific enthalpy of a
constant specific heat incompressible material are given
by Eqs. (3.33) and (3.34), and the specific heat of
wood is found in Table 3.6 to be c = 1.76 kJ/kg · K.
Then, Eq. (3.33) gives

u2 − u1 = cðT2 −T1Þ

= ð1:76 kJ=kg .KÞ½ð100 + 273:15Þ− 20:0 + 273:15ð ÞK� = 141kJ=kg

Notice that we could have used either °C or K for the temperature difference T2 − T1. This is because the Celsius and Kelvin
degree sizes are exactly the same, only their zero points differ. From Eq. (3.34), we have v = 1/ρ = 1/515 = 0.00194 m3/kg
and

h2 − h1 = cðT2 −T1Þ + vðp2 − p1Þ = u2 − u1 + vðp2 − p1Þ

= 141 + 0:00194m3=kg
� �

1:00× 103 −100: kN=m2� �
= 143 kJ=kg

where we have converted the units of pressure into kN/m2 so that the units of u and of the pv product match exactly.

Exercises
9. Determine the changes in specific internal energy and specific enthalpy of liquid propane as it is heated from −90.0°C,

0.100 MPa to −50.0°C, 1.00 MPa. Assume that liquid propane has a constant density of 615 kg/m3 and a constant
specific heat over this temperature and pressure range. Answer: u2 − u1 = 96.5 kJ/kg and h2− h1 = 97.9 kJ/kg.

10. Determine the changes in specific internal energy and specific enthalpy of a block of iron as it is heated in an oven at
atmospheric pressure from 70.0°F to 250.°F. Assume that iron has a density of 490. lbm/ft3 and a constant specific heat
over this temperature and pressure range. Answer: u2 − u1 = 19.3 Btu/lbm and h2 − h1 = 19.3 Btu/lbm.

3.9.2 Ideal Gases
The next simplest equation of state is that of an ideal gas. It is important because all gases approach ideal gas
behavior at low pressure. Like an incompressible substance, an ideal gas is also defined by two state equations,
both of which must be obeyed if a gas is to be called ideal. The first equation of state is the common ideal gas
law, which has the following four equivalent forms:

pV = mRT (3.35a)

pv = RT (3.35b)

pV = nℜT (3.35c)

pv = ℜT (3.35d)

where n =m/M is the number of moles, v = V/n is the molar specific volume, and ℜ is the universal gas constant
whose value is

ℜ = 1545:35 ft ⋅ lbf/ lbmole ⋅Rð Þ = 1:986Btu/ lbmole ⋅Rð Þ
= 8314 joule/ kgmole ⋅Kð Þ = 8:314 kJ/ kgmole ⋅Kð Þ

The second state equation used to define an ideal gas is that its specific internal energy is only a function of
temperature, or

u = uðTÞ (3.36)

20.0°C
0.100 MPa

State 1

100. °C
1.00 MPa

State 2

FIGURE 3.20
Example 3.6.
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As in the case of an incompressible substance, Eq. (3.15) gives the constant volume specific heat of an ideal gas
(since u does not depend on v) as

cv =
∂u
∂T

� �
v
= du

dT
(3.37)

and if cv is constant over the temperature range from T1 to T2, then integration of Eq. (3.37) gives

u2 − u1 = cv T2 −T1ð Þ (3.38)

Thus, for a constant specific heat ideal gas, Eq. (3.38) is valid for any process (not just a constant volume process),
because the internal energy of an ideal gas does not depend on its volume. Note that, even for a constant pres-
sure (isobaric) process, Eq. (3.38) is valid when a constant specific heat ideal gas is used.

Combining Eqs. (3.17) and (3.35b) gives the specific enthalpy of an ideal gas as

h = u + pv = u + RT (3.39)

From Eqs. (3.19) and (3.39), we see that the constant pressure specific heat does not depend on the
pressure, so

cp =
∂h
∂T

� �
p
= dh

dT
= du

dT
+ R (3.40)

And for an ideal gas, du/dT = cv, so Eq. (3.40) becomes

cp = cv + R (3.41)

If cp is constant over the temperature range from T1 to T2, integration of Eq. (3.40) gives

h2 − h1 = cp T2 −T1ð Þ (3.42)

Thus, for a constant specific heat ideal gas, Eq. (3.42) is valid for any process (not just a constant pressure
process), because the enthalpy of an ideal gas does not depend on its pressure. Thus, even for an isochoric
(constant volume) process, Eq. (3.42) is valid when a constant specific heat ideal gas is used. Values of cp, cv,
and the gas constant R are given in Table 3.7 for a variety of common gases at low pressure that behave as
ideal gases. A larger table can be found in Table C.13 of Thermodynamic Tables to accompany Modern Engineering
Thermodynamics.

3.9.3 Variable Specific Heats
Note that, even though the values of cp and cv for an ideal gas do not depend on p and v, they may depend on
temperature. We can improve the accuracy of an ideal gas calculation by utilizing the concept of variable specific
heats. By integrating Eqns. (3.37) and (3.40), we obtain

u2 − u1 =
Z T2

T1

cvdT

ARE “GREENHOUSE” GASES ALSO “IDEAL” GASES?

Many of the gases found in the Earth’s atmosphere behave as ideal gases, and a few are classified as “greenhouse gases.” Some
atmospheric gases trap the heat of sunlight that enters the Earth’s atmosphere just like the glass of a greenhouse traps the heat
of incoming sunlight. Many people now believe that increasing the atmospheric concentrations of these gases is producing a
global warming that will reach 3–10ºF by 2100.

Atmospheric carbon dioxide is a major greenhouse gas. Oceans and growing plants remove billions of tons of atmospheric
CO2 from the atmosphere every year, but since the 1700s, the burning of oil, coal, and gas and continued deforestation
have increased the atmospheric CO2 concentration by about 30%.

Carbon dioxide is used extensively in carbonated beverages. It gives the beverage its sparkle and tangy taste, and because it
forms a weak acidic solution in water (carbonic acid), it inhibits the growth of mold and bacteria. Soft drinks are carbonated
by chilling the water and cascading it in thin sheets in an enclosure containing pressurized CO2 gas, then flavoring is added.

If the amount of CO2 absorbed in water increases with increased surface area, then does the pressure in a soda can increase or
decrease when you shake it? Answer: The pressure actually goes down a little as you shake it because more CO2 is dissolved
due to the increased surface area produced by the shaking. But when you open it after shaking, it squirts a lot of bubbles
because there is now too much CO2 in solution and it comes out rapidly, as the can is depressurized when you open it.
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and

h2 − h1 =
Z T2

T1

cpdT

Table C.16 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics contains values for these
integrals for air. (Note: The pr and vr columns are used for entropy values introduced later in this textbook).
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FIGURE 3.21
Specific heats of selected gases (data from the National Bureau of Standards). (Source: Reprinted by permission of the publisher from
Reynolds, W. C., Perkins, H. C., 1977. Engineering Dynamics. McGraw-Hill, New York.)

Table 3.7 Properties of Various Gases at Low Pressure (also see Table C.13)

R cp cv

Substance M Btu/lbm · R kJ/kg · K Btu/lbm · R kJ/kg · K Btu/lbm · R kJ/kg · K k = cp/cv

Air 28.97 0.0685 0.286 0.240 1.004 0.172 0.718 1.40

Argon (Ar) 39.94 0.0497 0.208 0.125 0.523 0.075 0.315 1.67

Carbon dioxide (CO2) 44.01 0.0451 0.189 0.202 0.845 0.157 0.656 1.29

Carbon monoxide (CO) 28.01 0.0709 0.297 0.249 1.042 0.178 0.745 1.40

Helium (He) 4.003 0.4961 2.077 1.24 5.200 0.744 3.123 1.67

Hydrogen (H2) 2.016 0.9850 4.124 3.42 14.32 2.435 10.19 1.40

Methane (CH4) 16.04 0.1238 0.518 0.532 2.227 0.408 1.709 1.30

Nitrogen (N2) 28.02 0.0709 0.296 0.248 1.038 0.177 0.742 1.40

Oxygen (O2) 32.00 0.0621 0.260 0.219 0.917 0.157 0.657 1.39

Source: Reprinted by permission of the publisher from Reynolds, W. C., Perkins, H. C., 1977. Engineering Thermodynamics, second ed. McGraw-Hill, New York.
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Figure 3.21 illustrates the temperature and pressure dependence of cp and cv for various common gases. Note
that the specific heat temperature dependence is fairly weak, and most ideal gases can be considered to have
constant specific heats over temperature ranges of a few hundred degrees.

EXAMPLE 3.7
Determine the change in specific internal energy and specific enthalpy of air as it is cooled in a closed, rigid tank from a
temperature and pressure of 240.°F, 150 psia to a temperature and pressure of 80.0°F and 14.7 psia (Figure 3.22). Assume
the air behaves as (a) a constant specific heat ideal gas and (b) as a variable specific heat ideal gas.

Solution
a. The changes in specific internal energy and specific enthalpy

of an ideal gas are given by Eqs. (3.38) and (3.42). The constant pressure and constant volume specific heats of air are
found in Table 3.7 (or Table C.13) as cp = 0.240 Btu/lbm · R and cv = 0.172 Btu/lbm · R. Then Eq. (3.38) gives

u2 − u1 = cvðT2 −T1Þ = ð0:172Btu=lbm .RÞ½ 80:0 + 459:67ð Þ− ð240: + 459:67ÞR� = –27:5Btu=lbm

and from Eq. 3.42, we have

h2 − h1 = cpðT2 − T1Þ = ð0:240Btu=lbm .RÞð80:0− 240:°FÞ = –38:4Btu=lbm

Notice that you can use either fahrenheit or rankine values when computing the temperature difference T2 − T1
because the fahrenheit and rankine degree sizes are the same, only their zero points are different.

b. Values for u and h for variable specific heat air can be found in Table C.16. At T1 = 240 + 459.67 = 700 R,
h1 = 167.56 Btu/lbm and u1 = 119.58 Btu/lbm; and at T2 = 80 + 459.67 = 540. R, h1 = 129.06 Btu/lbm and
u2 = 92.04 Btu/lbm. Then the changes are

u2 − u1 = 92:04−119:58 = –27:5,

and

h2 − h1 = 129:06−167:56 = –38:5

Exercises
11. Determine the changes in specific internal energy and

specific enthalpy as air is heated at constant pressure of
0.100 MPa from 300. K to 1500. K. Assume air behaves as
(a) a constant specific heat ideal gas, and (b) as a variable
specific heat ideal gas. Answer: (a) u2 − u1 = 862 kJ/kg
and h2 − h1 = 1205 kJ/kg; (b) u2 − u1 = 991.38 kJ/kg and
h2 − h1 = 1335.8 kJ/kg. The difference in the results of (a)
and (b) is due to the large temperature difference between
the two states.

12. Determine the changes in specific internal energy and
specific enthalpy as methane is compressed at constant
temperature of 20.0°C from 0.100 MPa to 10.0 MPa.
Assume that methane behaves as a constant specific
heat ideal gas. Answer: u2 − u1 = h2 − h1 = 0. The specific
internal energy and specific enthalpy of an ideal gas
depend only on temperature, so changing just the
pressure on the gas does not alter the values of either
u or h.

Normally, only low molecular mass real gases at high temperature or low pressure obey the ideal gas equation
of state with good accuracy. For real gases with complex molecular structures or real gases approaching their
saturated vapor region, more complex equations of state are required. The following equations have modifica-
tions to the ideal gas p-v-T equation that are intended to account for observed real gas behavior.

State 1
240.°F

150. psia

State 2
80.0°F

14.7 psia

State 1 State 2Air (an ideal gas)

FIGURE 3.22
Example 3.7.
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3.9.4 Real Gases
The Clausius equation of state accounts for the volume actually occupied by the gas molecules themselves. If we
let b represent the specific volume of the molecules themselves, then the Clausius equation of state is

p v− bð Þ = RT (3.43)

In 1873, van der Waals included a second correction factor to account for the forces of molecular attraction.
These forces produce a net decrease in the observed pressure that is inversely proportional to v2. The van der
Waals equation of state has the form

p + a
v2

� �
v− bð Þ = RT (3.44)

The values of the molecular coefficients a and b in Eqs. (3.43) and (3.44) can be found in Table C.15 of
Thermodynamic Tables to accompany Modern Engineering Thermodynamics.

Other important real gas equations of state that are commonly used in engineering analysis are the Dieterici
equation,

p v− bð Þ = RT exp − a/ RTvð Þ½ � (3.45)

and the Berthelot equation,

pðv− bÞ = RT − a
T

v− b
v2

� �
(3.46)

But perhaps the most useful, best known, and most accurate equations of state for real gases are those of Beattie
and Bridgeman,

p = 1− ε
v2

� �
v + Bð ÞRT − A

v2
(3.47)

where

A = A0 1− a/vð Þ, B = B0 1− b/vð Þ, and ε¼ c
vT3

and Redlich and Kwong,

p v− bð Þ = RT − a
v
ffiffiffi
T

p v− b
v + b

� �
(3.48)

where A0, B0, a, b, and c are constants, whose values for various gases can be found in Table C.15.

A more general form for a real gas equation of state is a power series expansion such as

pv = RT + A
v
+ B

v2
+ C

v3
+ … (3.49)

where A, B, C, … are all empirically determined functions of temperature. These equations are called virial expan-
sions, and the temperature dependent coefficients A, B, C, … are called the virial coefficients.

EXAMPLE 3.8
When an artillery cannon using a nitrocellulose propellant is
fired, a maximum temperature of 2830°C is measured in
the breech behind the moving projectile. The density of the
propellant gases at this temperature is 200. kg/m3, and
the molecular mass of the propellant gases is 23.26 kg/kgmole.
The volume occupied by the molecules of the propellant gases
is b = 0.960 × 10–3 m3/kg (Figure 3.23). Determine the maxi-
mum pressure in the breech as the cannon fires.

(Continued )

FIGURE 3.23
Example 3.8.
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EXAMPLE 3.8 (Continued )

Solution
Since the temperature is very high, we can ignore the intermolecular forces in the propellant gases and use the Clausius
equation of state (this equation is known as the Noble-Abel equation in ballistics literature): p(v − b) = RT, where R = ℜ/M
and ℜ = 8314:3N . m/ kgmole . Kð Þ is the universal gas constant. Then,

pmax =
ℜTmax

Mðv− bÞ
where v = 1/ρ = 1/(200. kg/m3) = 5.00 × 10–3 m3/kg; and

pmax =
ℜTmax

Mðv− bÞ =
½8314:3Ngm/ðkgmolegKÞ�ð2830 + 273:15KÞ

ð23:26 kg/kgmoleÞð5:00 × 10−3 −0:960 × 10−3 m3/kgÞ

= 2:7456 × 108 N/m2 = ð2:7456 × 108 N/m2Þ 1 lbf/in2

6894:76N/m2

� �
= 39,800 lbf/in2 absolute = 39,800psia

Exercises
13. Determine the breech temperature in Example 3.8 if the breech pressure is 60.0 × 103 psia and all the remaining

variables are as given in the example. Answer: Tbreech = 4400°C.
14. Use the van der Waals equation of state to determine the pressure of water vapor at 100°C when the specific volume is

57.79 m3/kg. Answer: p = 2.98 kPa. (Hint: The values of a and b for water vapor can be found in Table C.15.)

3.10 THERMODYNAMIC TABLES
Thermodynamic tables are generated from complex equations of state, which in turn were developed from
accurate experimental data. These tables are quick and easy to use, but they are not available for all materials of
engineering interest. Tables C.1 through C.13 in the Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics give the thermodynamic properties of a variety of substances. Basically, only three types of tables are
given there: pressure and temperature entry saturation tables, superheated vapor tables, and compressed or sub-
cooled liquid tables. The saturation tables contain properties only along the saturation curve (x = 0 and x = 1) and
no property values of liquid-vapor mixtures. These mixture properties must be calculated from the saturation
values and the quality using Eq. (3.27). The superheated vapor and compressed liquid tables provide values
throughout their regions of definition. Figure 3.24 illustrates the range of applicability of these tables.

WHO WAS EMMY NOETHER?
PART 4

When Adolf Hitler became chancellor of Germany in January 1933, one of the first actions of his administration was to
remove all Jews from government positions (including university professors). In April 1933, Noether received a notice that
her right to teach at the University of Göttingen had been withdrawn.

She joined the ranks of dozens of newly unemployed German professors who were searching for positions outside of Ger-
many. Albert Einstein and Hermann Weyl were subsequently moved to the Institute for Advanced Study in Princeton, and
late in 1933, Emmy Noether accepted a position at Bryn Mawr College, which is located ten miles west of Philadelphia,
Pennsylvania.

In 1934, Noether began lecturing at the Institute for Advanced Study in Princeton (then an all-male university), but she felt
that she was not welcome at the “men’s university, where nothing female is admitted.”

Emmy Noether once said, “If one proves the equality of two numbers a and b by showing first that a is less than or equal
to b, and then a is greater than or equal to b, it is unfair, one should instead show that they are really equal by disclosing
the inner ground for their equality.”

On April 14, 1934, Emmy Noether died suddenly after an operation for a pelvic tumor. Her body was cremated and her
ashes interred under the walkway around the cloisters of the M. Carey Thomas Library at Bryn Mawr College.
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When thermodynamic data are given in problem statements, you normally are not told whether the state of
the system is compressed, saturated, or superheated. To decide which table to use, you must be able to deduce
the state of the system from the information given. This can be done by comparing the given properties with
the saturation properties at the same temperature or pressure. For example, suppose you are given water at
500°F and 1000. psia. How can you tell if it is a compressed liquid, saturated liquid, a mixture of liquid plus
vapor (i.e., wet), a saturated vapor, or a superheated vapor? The answer is obtained from the saturation data in
Table C.1a or C.2a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics. These tables
tell you that, at 500°F, the saturation pressure is 680.8 psia, and at 1000. psia, the saturation temperature is
544.61°F. First of all, we could use the saturation pressure of 680.8 psia as a guide and note that the actual state
(500°F, 1000. psia) is at a pressure greater than that required to produce a saturated liquid at 500°F, conse-
quently the water must be in a compressed liquid state. Alternatively, we could use the saturation temperature
of 544.61°F as a guide and note that the actual state has a temperature (500.°F) that is less than that required
for a saturated liquid at 1000. psia (544.61°F), so again the water must be in a compressed (or subcooled)
liquid state. Consequently, we obtain all other desired property information from Table C.4a, the compressed
water table.

Similarly, in metric units, if you have water at 1.00 MPa and 200°C, a check of the saturation data in Table C.1b
reveals that, at 200.°C, the saturation pressure is 1.554 MPa, which is greater than the actual pressure of
1.00 MPa. Therefore, the actual state of the water must be in the superheated vapor region. A check of
Table C.3b reveals that this state can be easily found in the table.

How do you decide which table to use when you are given properties other than pressure and temperature? You use
the same basic technique. For example, suppose you are given 3.00 lbm of water in a 15.0 ft3 closed, rigid container
at 14.696 psia. The specific volume of the system, then, is v = 15.0/3.00 = 5.00 ft3/lbm. A check of Table C.2a reveals
that, at 14.696 psia, vf = 0.01672 ft3/lbm, and vg = 26.80 ft3/lbm. Since the actual specific volume (5.00 ft3/lbm)
falls between these two values (vf < v < vg), the state of the water must be in the liquid plus vapor (wet) region, and
it therefore has a quality of x = (5.00 − 0.01672)/(26.8 − 0.01672) = 0.186, or 18.6%. To get more familiar with
these tables, it is recommended that you verify the states given in Table 3.8 for water.

Table 3.8 The States of Water Fixed by Various Combinations of Property Pairs

Pair of Independent Properties State (Correct Table to Use)

T = 500.°F, p = 1000. psia Compressed or subcooled liquid (C.4a)

p = 1.00 MPa, T = 200.°C Superheated vapor (C.3b)

T = 170.°F, x = 1.0 Saturated vapor (C.1a)

p = 14.696 psia, v = 5.00 ft3/lbm Liquid-vapor mixture (C.2a)

u = 500. Btu/lbm, p = 100. psia Liquid-vapor mixture (C.2a)

h = 1192.6 Btu/lbm, T = 300.°F Superheated vapor (C.3a)

p = 0.100 MPa, h = 200. kJ/kg Compressed or subcooled liquid (C.4b)

T = 100.°C, v = 8.585 m3/kg Superheated vapor (C.3b)

ν = 0.10 m3/kg, x = 1.0 Saturated vapor (C.1b or C.2b)

h = 3157.7 kJ/kg, u = 2875.2 kJ/kg Superheated vapor (C.3b)
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FIGURE 3.24
Regions of application of thermodynamic tables.
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3.11 HOW DO YOU DETERMINE THE “THERMODYNAMIC STATE”?
First, remember that you need the values of only two independent intensive thermodynamic properties to fix the
state of a homogeneous material, and the problem statement always provides these values. Usually, you are
given the values of pressure, temperature, or specific volume in the problem statement. Sometimes specific inter-
nal energy or specific enthalpy also is one of the values given.

Second, choose one of the two given values and look up the corresponding saturation values (f and g) of the
other given property from the saturation tables in Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics, Tables C.1 and C.2, for your material and compare them with the given value. You can then determine
the state of your material by following the rules in Table 3.9.

For example, if you are given water at a pressure of 1.0 MPa and a temperature of 200.°C, then you could
choose pgiven = 1.0 MPa and look up Tsat at that value of pgiven. From Table C.1 at pgiven = 1.0 MPa, you find that
Tsat = 179.9°C. Since your value of Tgiven = 200.°C > Tsat = 179.9°C, the water must be in a superheated vapor
state. Similarly, if you choose Tgiven = 200.°C instead of pgiven, then you would look up psat at that value of Tgiven.
From Table C.1 at Tgiven = 200.°C, you find that psat = 1.554 MPa. Since your value of pgiven = 1.0 MPa < psat =
1.554 MPa, you again conclude that the water must be in a superheated vapor state.

While it is true that any pair of independent properties fix the state of a simple substance subjected to only one
work mode, you must be able to deduce the system’s thermodynamic state (compressed liquid, saturated liquid
or vapor, liquid-vapor mixture, or superheated vapor) from the data given in a problem statement to know in
which table to find the other properties required in the analysis. It is important to remember that thermodynamic
states are unique and a given pair of independent properties fix the state at only one point in the tables. It is there-
fore essential to understand how to determine which table to use in the solution of a thermodynamics problem.

In Example 3.9, we introduce notation of the form v(X°F, Y psia), which represents the value of the specific
volume evaluated at X°F and Y psia. For example, v(100.°F, 50. psia) means the value of the specific volume at
100.°F and 50. psia. This is a convenient way of recording the pair of independent intensive properties used to
determine the value of v. The same notation is used with the intensive properties u and h.

EXAMPLE 3.9
Find the specific volume and specific enthalpy of Refrigerant-134a at 100.°F
and 95.0 psia (Figure 3.25).

Solution
A check of Table C.7a of Thermodynamic Tables to accompany Modern Engineering
Thermodynamics reveals that the saturation pressure of Refrigerant-134a at
100.°F is 138.83 psia. Since our actual pressure is less than the saturation pres-
sure, we must have superheated vapor. A check of Table C.8a reveals that
100.°F and 95.0 psia is indeed in the superheated region. However, 95.0 psia
is not a direct entry into this table, so we must use linear interpolation to find
the needed values. This is how a linear interpolation for v is carried out:

R-134a
T = 100.°F
p = 95.0 psia
v = ?
h = ?

FIGURE 3.25
Example 3.9.

Table 3.9 How to Find the Thermodynamic “State”

Properties Given in the
Problem Statement Choose

Look Up in
Appropriate Table

Then You Have a

Compressed
Liquid If

Mixture of Liquid
and Vapor If

Superheated
Vapor If

pgiven, Tgiven pgiven Tsat at pgiven Tgiven < Tsat Tgiven = Tsat Tgiven > Tsat

pgiven, Tgiven Tgiven psat at Tgiven pgiven > psat pgiven = psat pgiven < psat

pgiven, υgiven

pgiven, ugiven

pgiven, hgiven

pgiven

pgiven

pgiven

υf and υg

uf and ug

hf and hg

υgiven < υf

ugiven < uf

hgiven < hf

υf < υgiven < υg

uf < ugiven < ug

hf < hgiven < hg

υgiven > υg

ugiven > ug

hgiven > hg

Tgiven, υgiven

Tgiven, ugiven

Tgiven, hgiven

Tgiven

Tgiven

Tgiven

υf and υg

uf and ug

hf and hg

υgiven < υf

ugiven < uf

hgiven < hf

υf < υgiven < υg

uf < ugiven < ug

hf < hgiven < hg

υgiven > υg

ugiven > ug

hgiven > hg
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v 100:°F, 95:0 psiað Þ− v 100:°F, 90 psiað Þ
95:0 psia−90:0 psia

=
v 100:°F, 100: psiað Þ− v 100:°F, 90:0 psiað Þ

100: psia− 90:0 psia

or

v 100:°F, 95:0 psiað Þ = v 100:°F, 90 psiað Þ

+
95:0 psia− 90:0 psia
100: psia−90:0 psia

� �
v 100:°F, 100: psiað Þ− v 100:°F, 90:0 psiað Þ½ �

= 0:5751 + 0:500 0:5086−0:5751ð Þ = 0:54185 ft3/lbm

And interpolating for the specific enthalpy h gives

h 100:°F, 95:0 psiað Þ− h 100:°F, 90:0 psiað Þ
95:0 psia− 90:0 psia

=
h 100:°F, 100: psiað Þ− h 100:°F, 90:0 psiað Þ

100: psia− 90:0 psia

or

h 100°F, 95 psiað Þ = h 100:°F, 90 psiað Þ

+
95:0 psia−90:0 psia
100: psia− 90:0 psia

� �
h 100:°F, 100: psiað Þ− h 100:°F, 90:0 psiað Þ½ �

= 118:39 + 0:500ð117:73−118:39Þ = 118:06 Btu/lbm

Exercises
15. Use Table C.1b to find the values of psat, vf, vg, uf, ug, hf, and hg for saturated water at 100.°C. Answers: psat = 0.1013 MPa,

vf = 0.001044 m3/kg, vg = 1.673 m3/kg, uf = 418.9 kJ/kg, ug = 2506.5 kJ/kg, hf = 419.0 kJ/kg, and hg = 2676.0 kJ/kg.
16. Use Table C.3a to find the values of v, u, and h for superheated water vapor at 2000. psia and 1000.°F. Answers:

v = 0.3945 ft3/lbm, u = 1328.1 Btu/lbm, and h = 1474.1 Btu/lbm.
17. Use Table C.4b to find the values of v, u, and h for compressed liquid water at 30.0 MPa and 200.°C. Answers:

v = 0.0011302 m3/kg, u = 831.4 kJ/kg, and h = 865.3 kJ/kg.
18. Use Table C.5a to find the values of Tsat, psat, vg, and hg for saturated ammonia when vf = 0.02446 ft3/lbm and

hf = 53.8 Btu/lbm. Answers: Tsat = 10.0°F, psat = 38.51 psia, vg = 7.304 ft3/lbm, and hg = 614.9 Btu/lbm.
19. Use Table C.8b to find the values of T and h for superheated Refrigerant-134a when the pressure is 0.500 MPa and the

specific volume is 0.06524 m3/kg. Answers: T = 140.°C and h = 382.42 kJ/kg.
6. Use Table C.11a to find the values of T, v, and h for saturated mercury at 1.00 psia and a quality of 50.0%. Answers:

T = Tsat = 457.72°F, v = 24.211 ft3/lbm, and h = 77.321 Btu/lbm.

3.12 THERMODYNAMIC CHARTS
Experimental data, equations of state, and statistical thermodynamics results can be combined into very accurate
thermodynamic phase diagrams, called thermodynamic charts. These two-dimensional property diagrams can be
constructed with various useful thermodynamic properties as coordinates. For example, Figure 3.26 shows a spe-
cific volume vs. specific internal energy chart for water. This chart also includes lines of constant pressure, tem-
perature, and quality. Thus, given a pair of independent properties, such as p and T (or p and x in the wet
region), the u and v values can be immediately read from the coordinate axes. Notice that, in the wet region,
where 0 < x< 1, the constant temperature and constant pressure lines lie on top of each other, since p and T are
not independent in this region.

A series of similar charts for a variety of substances can be found in the charts portion of Thermodynamics Table
to accompany Modern Engineering Thermodymanics. It must be emphasized, however, that since the physical size of
these charts is very small, the values taken from them are not as accurate as those taken from a table for the
same substance, even if interpolation must be used within the table. Therefore, small charts like these are used
only when appropriate tables are not available or a state is to be fixed without using either pressure or tempera-
ture. For example, given values for u and v for water, it would be much easier to find the other thermodynamic
properties at that state using Figure 3.26 than to do a double interpolation within the water tables (however,
the accuracy still is not as good as using the tables).
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Thermodynamic properties of steam (H2O). (Source: Reprinted by permission of the publisher from Reynolds, W. C., Perkins, H. C.,
1977. Engineering Thermodynamics, second ed. McGraw-Hill, New York.)
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3.13 THERMODYNAMIC PROPERTY SOFTWARE
Very few 21st century engineers use tables and charts. Numerous computer programs can provide the numerical
values of properties. Some of the more common are listed in Table 3.10.

Since these programs do not all use the same property equations, they do not give exactly the same numerical
results. However, any differences are insignificant. In the examples and problems in this textbook, a variety of
sources (tables and computer programs) have been used, so you may expect to see differences between the
thermodynamic property values used here and values you find from other sources.

WHO WAS EMMY NOETHER?

PART 5
To the Editor of The New York Times, May 5, 1935:
Within the past few days a distinguished mathematician, Professor Emmy Noether
(Figure 3.27), formerly connected with the University of Göttingen and for the past two
years at Bryn Mawr College, died in her fifty-third year. In the judgment of the most
competent living mathematicians, Fräulein Noether was the most significant creative
mathematical genius thus far produced since the higher education of women began. In
the realm of algebra, in which the most gifted mathematicians have been busy for cen-
turies, she discovered methods which have proved of enormous importance in the
development of the present-day younger generation of mathematicians. Pure mathe-
matics is, in its way, the poetry of logical ideas. One seeks the most general ideas of
operation which will bring together in simple, logical and unified form the largest pos-
sible circle of formal relationships. In this effort toward logical beauty spiritual formulas
are discovered necessary for the deeper penetration into the laws of nature.
Born in a Jewish family distinguished for the love of learning, Emmy Noether, who, in
spite of the efforts of the great Göttingen mathematician, Hilbert, never reached the aca-
demic standing due her in her own country, none the less surrounded herself with a
group of students and investigators at Göttingen, who have already become distin-
guished as teachers and investigators. Her unselfish, significant work over a period of
many years was rewarded by the new rulers of Germany with a dismissal, which cost
her the means of maintaining her simple life and the opportunity to carry on her math-
ematical studies. Farsighted friends of science in this country were fortunately able to
make such arrangements at Bryn Mawr College and at Princeton that she found in
America up to the day of her death not only colleagues who esteemed her friendship
but grateful pupils whose enthusiasm made her last years the happiest and perhaps the
most fruitful of her entire career.

Albert Einstein
Princeton University, May 1, 1935

FIGURE 3.27
Emmy Noether.

Table 3.10 Thermodynamic Property Software

Program Name Source Comments

Mini-NIST Reference Fluid Thermodynamic and
Transport Properties (REFPROP)a

U.S. National Institute of Standards
and Technology

This free program contains properties for water, CO2, N2,
CH4, R134a, propane, and dodecane

EES (Engineering Equation Solver) F-Chart Software This is an excellent program for solving thermodynamics
problems

MathCAD (Functions are available for the
thermodynamic properties of various materialsb)

Parametric Technology Corporation
(PTC)

MathCAD can perform calculations with automatic unit
conversion and checking.

CATT (Computer-Aided Thermodynamic Tables) John Wiley and Sons Incorporates color phase diagrams showing calculated points

Microsoft Excel (Spreadsheets available for
thermodynamic properties of various materials)

Microsoft Corporation Numerous Excel spreadsheets for thermodynamic properties
are available on the Internet

a This free program can be found at www.boulder.nist.gov/div838/theory/refprop/MINIREF/MINIREF.HTM.
b For example, see www.icee.usm.edu/ICEE/conferences/Conference%20Files/ASEE2006/P2006072MCC.pdf.
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SUMMARY
In this chapter, three of the five main techniques used in obtaining values for thermodynamic properties are dis-
cussed. Equations of state, thermodynamic tables, and thermodynamic charts are valuable tools needed in the
thermodynamic analyses that occur in the following chapters.

This chapter also introduces many new technical thermodynamic terms, most of which are listed in the glossary
in Table 3.11. The reader is urged to learn the definitions of these terms. They are freely used in the remaining
chapters under the assumption that their meaning is fully understood by the reader.

Here are some of the more important equations introduced in this chapter. Be careful not to try to use them
blindly without understanding their limitations.

1. General property relations, Eq. (3.2):

∂x
∂y

� �
z
=

∂y
∂x

� �
z

� 	−1
and Eq. (3.3):

∂x
∂y

� �
z

∂y
∂z

� �
x

∂z
∂x

� �
y
= −1

2. The definitions of two new physical properties, Eqs. (3.5) and (3.6)

β = 1
v

∂v
∂T

� �
p
= isobaric coefficient of volume expansion

and

κ = − 1
v

∂v
∂p

� �
T
= isothermal coefficient of compressibility

3. The definitions of the total and specific energy of a system from Eqs. (3.9) and (3.12):

E = U + mV2

2gc
+

mgZ
gc

Table 3.11 Glossary of Technical Terms Introduced in Chapter 3

Isobaric process Constant pressure process

Isochoric process Constant volume process

Internal energy Total energy minus kinetic and potential energy

Enthalpy Internal energy plus the product of pressure and volume

Constant volume specific heat (cv) The variation in specific internal energy with respect to temperature while holding
volume constant

Constant pressure specific heat (cp) The variation in specific enthalpy with respect to temperature while holding
pressure constant

Allotropic Different solid forms of the same substance

Triple point The point where the solid, liquid, and vapor phases coexist in thermal equilibrium.

Vaporization The transformation of a liquid into a vapor

Condensation The transformation of a vapor into a liquid or a solid

Melting The transformation of a solid into a liquid (synonymous with fusion)

Solidification The transformation of a liquid into a solid (synonymous with freezing)

Sublimation The transformation of a solid into a vapor

Saturation A condition that exists when two or more phases coexist in equilibrium

Critical state The peak of the vaporization curve

Gas The state of any substance whose temperature is greater than that at the critical state

Quality The ratio of the mass of vapor present to the total mass present

Moisture The ratio of the mass of liquid present to the total mass present (1.0 minus the quality)

Wet vapor A substance whose state is under the saturation dome

Phase The physical state (or molecular configuration) of matter
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and

e = E/m = u + V2

2gc
+

gZ
gc

4. The definitions of the constant volume and constant pressure specific heats from Eqs. (3.15) and (3.18):

cv =
∂u
∂T

� �
v
= constant volume specific heat

and

cp =
∂h
∂T

� �
p
= constant pressure specific heat

5. The general definition of enthalpy, Eq. (3.17):

h = u + pv = specific enthalpy

6. The general definition of quality from Eq. (3.22):

x =
mg

mg + mf
=

mg

m
= quality

7. The definition of the specific volume of a mixture of liquid and vapor using quality, Eqs. (3.23) and (3.24):

v = ð1− xÞvf + xvg = vf + xvfg

where vfg = vg − vf.
8. A more general definition of quality using other specific properties from Eq. (3.27):

x =
v− vf
vfg

=
u− uf
ufg

=
h− hf
hfg

9. For incompressible materials, we have from Eqs. (3.28), (3.33), and (3.34),

νincompressible material = ðV/mÞincmopressible material = constant

and

ðu2 − u1Þincompressible material = cðT2 − T1Þ
so that

ðh2 − h1Þincompressible material = cðT2 − T1Þ + vðp2 − p1Þ

10. For constant specific heat ideal gases, we have, from Eqs. (3.35),

pV = mRT = nℜT

or

pv = RT

or

pv = ℜT

from Eq. (3.38),

ðu2 − u1Þideal gas = cvðT2 −T1Þ;
and, from Eq. (3.42),

ðh2 − h1Þideal gas = cpðT2 −T1Þ

11. For ideal gases, only the following relation, from Eq. (3.41), also holds:

cp = cv + R
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Problems (* indicates problems in SI units)
1. If p, v, and T are all intensive independent properties.

a. Show that the following relation is always valid:

∂p
∂v

� �
T
= −

∂p
∂T

� �
v

∂T
∂v

� �
p

b. Verify this relation for the equation of state of an ideal gas.
2. Show that the following equations are valid:

a. cv = − ∂v
∂T

� �
u

∂u
∂v

� �
T

b. cp = −
∂p
∂T

� �
h

∂h
∂p

� �
T

3. Show that

β = − 1/vð Þ ∂v
∂p

� �
T

∂p
∂T

� �
v

4. Show that

κ = 1/vð Þ ∂v
∂T

� �
p

∂T
∂p

� �
v

5. Show that

∂p
∂T

� �
v
= β/κ

6.* A 0.200 m diameter sphere of solid copper is isothermally
compressed from 0.100 to 1000. MPa at 500.°C. Determine the
sphere’s diameter after the compression process.

7. Assuming that the isothermal coefficient of compressibility is
constant, determine the percent decrease in the volume of liquid
water that undergoes an isothermal increase in pressure of
100. × 103 psia.

8. Assuming that the isobaric coefficient of volume expansion is
constant, determine the percent increase in the volume of
liquid water that is heated at constant pressure from 50.0 to
212°F.

9. Some historical researchers believe that Gabriel Daniel
Fahrenheit (1686–1736) constructed his well-known
temperature scale based on the isobaric coefficient of volume
expansion of mercury rather than with fixed reference
temperatures. It is thought that he may have defined his degree
size to be the temperature change required to isobarically
change the volume of mercury by 1/10,000th of its value at the
zero point of his scale. Modern measurements established that
the isobaric coefficient of volume expansion of mercury at 0.00°F
is 1.015 × 10−4 R−1. Consider an ordinary glass thermometer
with a bore of radius r and a reservoir bulb of volume V0, at the
bottom. Ignoring the expansion of the glass itself and assuming
that the isobaric coefficient of volume expansion is a constant,
determine the relationship between the change in length of the
mercury column (ΔL) and the bulb volume ðV0Þ, the initial
length of the mercury column (L0), the isobaric coefficient of
volume expansion (β), and the temperature change (ΔT). Is ΔL
independent of L0? If not, then the temperature interval divisions
are not the same size along the length of the thermometer.
Determine the percent difference in ΔL between L0 = 0 and
L0 = 30.0 cm if ðV

0
Þ = 0.500 cm3 and r = 0.100 mm.

10.* Assuming that all physical properties are constant, use Table 3.2
to find the percent change in the volume of liquid glycerin as it

is heated from 20.0 to 150.°C while simultaneously being
pressurized from 0.100 to 10.0 MPa.

11.* Use Table 3.2 to find the gauge pressure that would have to be
exerted on liquid diethyl ether to prevent any change in its
volume as it is heated from 0.00 to 50.0°C. Assume all the
physical properties are constant for this process.

12. Use Table 3.2 to find the temperature to which mercury needs
to be heated to prevent any change in its volume as it is
pressurized at 70.0°F from 14.7 to 1000. psia. Assume all
physical properties are constant for this process.

13. Using the relations p = constant and β = C1T + C2, integrate
Eq. (3.23) to obtain the result

v2 = v1exp C1 T2 + T1ð Þ/2 + C2½ � T2 −T1ð Þf g

and show that this is the same as

v2 = v1exp½βavg T2 −T1ð Þ�

where βavg = (β2 + β1)/2.
14. a. For an ideal gas, mathematically evaluate the partial

derivative (∂u/∂v)T.
b. What is the partial derivative (∂h/∂T)p called for a real gas?

15. The enthalpy of a certain gas can be obtained from the
following equation:

h = 0:21ð ÞT + 1:2×10− 4
� �

T2 + 0:32ð Þp + ð3:6Þp2

where h is in Btu/lbm, T is in R, and p is in psia. Determine the
specific heat at constant pressure (cp) for this gas when the
temperature is 500. R and the pressure is 1 atm.

16. Using the property data given in the superheated steam tables,
estimate the specific heat at constant pressure for steam at
400. psia and 1000.°F.

17.*Using the property data given in the superheated steam tables,
estimate the specific heat at constant pressure for steam at
30.0 MPa and 700.°C.

18. Sketch (neatly) the common p-T and p-v diagrams for water and
label
a. The critical state.
b. The triple point and triple point line.
c. The solid, liquid, and vapor regions.
d. Indicate the correct slope of the fusion line (i.e., either a

positive or negative slope).
19. Are the following statements true or false?

a. The specific volume of mercury is a function of temperature
only.

b. If ice is heated sufficiently, it always melts to form a liquid.
c. If water is at a pressure lower than the critical pressure, it is

always in the liquid phase.
d. If a mixture of liquid ammonia and ammonia vapor is

heated sufficiently in a rigid, sealed tube, the content of the
tube always becomes a vapor.

20. Define the following terms: (a) internal energy, (b) saturation,
(c) critical state, and (d) moisture.

21. Define the following terms: (a) isobaric, (b) isochoric,
(c) enthalpy, (d) quality, and (e) triple point.

22. a. Is quality (x) a thermodynamic property? Explain.
b. Mathematically define the specific heat at constant

pressure.
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c. For a saturated mixture of liquid and vapor, explain whether
or not the pressure and temperature can be varied
independently.

23. A vessel with a volume of 10.0 ft3 contains 3.00 lbm of a
mixture of liquid water and water vapor in equilibrium at a
pressure of 100. psia (Figure 3.28). Determine
a. The mass of liquid present.
b. The mass of vapor present.

Total mass of
liquid + vapor = 3.00 lbm

Total volume = 10.0 ft3
p = 100. psia

Vapor

Liquid

FIGURE 3.28
Problem 23.

24.* Determine the change in the specific internal energy of 3.00 kg
of graphite as it is heated at atmospheric pressure from 20.0 to
200.°C. Assume a constant specific heat.

25. Determine the change in the enthalpy of 5.00 lbm of ice as it is
heated from 22.0 to 32.0°F under constant atmospheric
pressure. Assume a constant specific heat.

26.* Determine the change in the specific internal energy of solid
aluminum as it is heated at atmospheric pressure from 300. to
500. K. Use an average specific heat over this temperature range.

27. Determine the change in the specific enthalpy of solid lead as it
is heated from 14.7 psia, 80.0°F to 1000. psia, 200.°F. The
density of lead is 710. lbm/ft3. Assume a constant specific heat.

28. Determine the change in the specific internal energy of 7.00 lbm
of methane gas as it is heated from 32.0 to 200.°F at
atmospheric pressure. Assume ideal gas behavior.

29.* Determine the change in the specific enthalpy of carbon dioxide
gas as it is heated at a constant pressure of 1 atm from 300. to
500. K. Assume ideal gas behavior.

30.* Argon gas is heated in a constant pressure process from 20.0 to
500.°C. Assuming ideal gas behavior, determine
a. The ratio of the final to initial volumes.
b. The change in specific internal energy.
c. The change in specific enthalpy of the argon.

31. Helium gas is heated in a constant volume process from −200.
to 500.°F. Assuming ideal gas behavior, determine
a. The ratio of the final to initial pressures.
b. The change in specific internal energy.
c. The change in specific enthalpy of the helium.

32. Gaseous oxygen is heated in a constant temperature process
until its volume is doubled. Assuming ideal gas behavior,
determine
a. The ratio of the final to initial pressures.
b. The change in specific internal energy.
c. The change in specific enthalpy of the oxygen.

33. Using Figure 3.21, estimate the average values for the constant
pressure and constant volume specific heats for the following
gases and processes:
a. Carbon dioxide is heated at a constant pressure of 10,000 psia

from 1000. to 2000.°F.
b. Carbon dioxide gas is compressed isothermally at 1000.°F

from 0 to 10,000. psia.

c. Hydrogen gas is heated at a constant pressure of 0.00 psia
from 0 to 5000.°F.

d. Air is compressed from 0.00°F, 0.00 psia to 1000.°F, 5000.
psia.

34. Determine the changes in specific internal energy and specific
enthalpy as air is compressed from 0.00°F, 14.7 psia to 1000.°F,
5000. psia (Figure 3.29). Assume variable specific heat ideal gas
behavior.

State 1 State 2

T1= 0.00°F
p1 = 14.7 psia

u2 − u1 = ?
h2 − h1 = ?

T2 =  1000. °F
p2 = 5000. psia

FIGURE 3.29
Problem 34.

35. Professor John L. Krohn at Arkansas Tech University invented a
process whereby air is heated at constant volume from 60.0°F
and v = 3.30 ft3/lbm to a pressure of 180. psi. The air then
expands adiabatically to atmospheric pressure and v = 14.6 ft3/
lbm. Assuming ideal gas behavior with variable specific heat,
determine
a. The temperature of the heated air (T2) in °F.
b. The heat transfer for the first process in Btu/lbm.
c. The work for the second process in Btu/lbm,

36. Professor Krohn uses the constant pressure specific heat
equation for water vapor given in by cp = A(B + CT + DT2 +
ET3 + FT4), where A = 0.1102 Btu/lbm · R, B = 4.070,
C = −0.000616 R−1, D = 1.281 × 10−6 R−2, E = −0.508 × 10−9

R−3, F = 0.0769 × 10−12 R−4, and T is in Rankine (R). He wants
you to estimate the change in enthalpy for water vapor from
p1 = 14.7 psi, T1 = 250.°F to p2 = 14.7 psi, T2 = 500.°F, and
compare this result to the change in enthalpy found in the
superheated steam tables.

37.* In 1879, the French physicist Emile Amagat generated
experimental data in a mine shaft at Verpilleux, France, for his
research on the compressibility of gases. There, he used a vertical
column of mercury 327 m high to measure the compressibility
of nitrogen at a pressure of 430. atm. Assuming the temperature
at the bottom of the mine shaft was 30.0°C, determine the
specific volume of the nitrogen, assuming it is an ideal gas with
constant specific heats.

38.* Calculate the specific volume of hydrogen (H2) gas at a
temperature of 20.0°C and a pressure of 11.0 MPa using
a. The ideal gas equation of state.
b. The Clausius equation of state (use the van der Waals value

for b).
39. Determine the temperature of water vapor at 200. psia when it

has a specific volume of 2.724 ft3/lbm using
a. The ideal gas equation of state.
b. The van der Waals equation of state.
c. The steam tables (Table C.3a).
Then compute the percentage error of a and b with the actual
value given in c.
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40. Determine the temperature of carbon dioxide (CO2) gas when it
is at a pressure of 2500. psia and has a density of 32.0 lbm/ft3.
Assume constant specific heat ideal gas behavior.

41. Calculate the specific volume of propane at 1000. psia and
300.°F using
a. The ideal gas equation of state.
b. The Clausius equation of state (use the van der Waals value

for b).
42. Determine the pressure exerted by 10.00 lbm of steam at a

temperature of 1300.°F in a volume of 3.285 ft3 using
a. The steam tables.
b. The ideal gas equation of state.
c. The van der Waals equation of state.

43. a. Write down the van der Waals equation.
b. Indicate which term corrects for the fact that the molecules

occupy a finite volume.
c. Indicate which term corrects for the fact that there are

attractive forces between the molecules.
d. How are the constants a and b in van der Waals equation

determined, and are they the same for all gases?
44. For superheated Refrigerant-134a at 100. psia and 100.°F,

determine the value of the specific volume
a. From the superheated vapor table.
b. Assuming it to be an ideal gas.
c. From the van der Waals equation of state.

45. Estimate the temperature to which water at the bottom of a 500. ft
deep lake would have to be heated before it would begin to
boil (Figure 3.30). (Note: Hydrostatic pressure = γz, where
γ = 62.4 lbf/ft3 is the specific weight of water, and z is the
depth below the free surface.)

46. One of the reasons for wearing a pressure suit in high
altitude or space work is that, without it, the pressure in the
body might become low enough to cause the blood to boil.
Assume blood behaves essentially as pure water (which is its
primary component) and that the body core temperature is
100.°F. Find the pressure at which this blood begins to
“boil.”

47. Refrigerant-134a contained in a tank at a pressure of 101.37 psia
has a specific volume of 0.4682 ft3/lbm. Using the proper
thermodynamic table, determine the value of the enthalpy of
the Refrigerant-134a under these conditions.

48.* The vapor produced when the pressure on saturated liquid
water is suddenly reduced during a constant enthalpy process
is called flash steam, because it occurs so quickly that part of
the liquid appears to “flash” into vapor. Determine the final
temperature and the percentage of flash steam (i.e., the
quality) produced as the pressure on saturated liquid water at
2.00 MPa is suddenly reduced to 1.00 MPa in a constant
enthalpy process (Figure 3.31)

p1 = 2.00 MPa
x1 = 0.00
h1 = hf

State 1 State 2

Process:

h2 = h1

p2 = 1.00 MPa
x2 = ?
h2 = h1

FIGURE 3.31
Problem 48.

49. What total mass of water must be put into a 1.00 ft3 sealed,
rigid container so that, when the container is heated, the
contents pass through the saturated vapor curve exactly at the
point where p = 2000. psia (Figure 3.32)

p

2000. psia

1.00 ft3

1

2

"

FIGURE 3.32
Problem 49.

50.* A rigid container contains 1.00 kg of water at the critical state.
Determine the volume of the vapor present in the container
after it has been cooled to 100.°C.

51. Suppose 0.667 lbm of water is put into a 1.00 ft3 rigid container
at 14.7 psia and 212°F and sealed. The container is then heated.
a. At what temperature do the contents become a saturated

vapor or saturated liquid?
b. Which will it be—a saturated vapor or a saturated liquid?
c. Sketch this process on a p-v diagram.

52. A closed rigid container contains water in an equilibrium mixture
of liquid and vapor at 70.0°F. The mass of the liquid initially
present is 10.236 times the mass of the vapor. The container is
then heated until all the liquid becomes vapor. Determine
a. The initial quality.
b. The pressure in the container when the last bit of water

becomes vapor.
c. Sketch this process on a p-v diagram.

53.* It is desired to carry out an experiment that allows a visual
observation of a material passing through the critical state. An
empty, transparent, rigid, sealed container with a 2.00 × 10−6 m3

internal volume is to be used.
a. How many kilograms of solid CO2 (dry ice) should be put

into the container so that, when it is sealed and heated, its
contents pass directly through the critical state?

b. To what temperature (in °C) must the contents be heated to
be at the critical state?

c. What will be the pressure (in MPa) inside the container at
the critical state?

54.*Using the tables for compressed liquid water (Tables C.4),
determine the pressure increase required to raise the

z = 500. ft

Tsat = ?

FIGURE 3.30
Problem 45.
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specific enthalpy of saturated liquid water at 50.0°C by
1.00 kJ/kg.

55. Determine the properties required in Table 3.12.

56.* The Kara Maru is a transport vessel that has inadvertently
entered an enemy neutral zone. She carries 600 passengers and
has radioed that she has blown her super-lumen drive system.
The Star Command distress codes are taken from the tables of
the thermodynamic properties of water, because the enemy has
a very poor knowledge of this substance. Therefore, if there are
any errors in the code, it may be a trap and not a real distress
call. Is the transmission in Table 3.13 correct? If not, what are
the errors? (Variations of less than 1% are not errors.)

a. The standard reply to all such distress messages is to transmit
the properties of water at 100% quality and 3000 kPa. What
are those values?

b. At this point, your reply is acknowledged with T = 200.°C,
p = 1554.9 kPa, x = 0.23.

Is the acknowledgment from the Kara Maru or the enemy?
Explain.

57. Using the tables in Thermodynamic Tables to accompany Modern
Engineering Thermodynamics, fill in the missing properties in
Table 3.14.

58. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.15.

59. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics fill in the missing properties
in Table 3.16.

60. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.17.

61. a. Using only the thermodynamic tables in Thermodynamic
Tables to accompany Modern Engineering Thermodynamics, fill in
the missing properties in Table 3.18.

b. Using only the thermodynamic charts in the tables book, fill
in the missing properties in Table 3.19.

62. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.20.

63. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.21.

64. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.22.

65. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.23.

66. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.24.

67. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.25.

68. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.26.

Table 3.12 Problem 55

Substance Given Find

a. Ammonia T = 0.00°C
x = 0.200

v = ?

b. Water p = 400. psia
h = 1000. Btu/lbm

x = ?

c. Water T = 500.°F
p = 400. psia

u = ?

d. Refrigerant-134a p = 185.82 psia
h = 51.47 Btu/lbm

v = ?

Table 3.13 Problem 56

p (kPa) T (°C)
v
(m3/kg)

u
(kJ/kg)

h
(kJ/kg)

x
(quality)

600. 600. 0.6696 2801.7 3700.7

0.6113 0.0100 206.1 2375.3 2501.3 1.00

100. 99.6 0.001043 417.3 417.4 0.00

Table 3.14 Problem 57

Material T (°F) p (psia) u (Btu/lbm) v (ft3/lbm) ρ (lbm/ft3) x

Water ? 60.0 ? ? ? 1.00

Water ? 80.0 ? ? ? 0.600

Ref.-134a ? 23.805 62.124 ? ?

p = 3000. (kPa) u = ?

T = ? h = ?

v = ?

Table 3.15 Problem 58

Substance p (psia) T (°F) v (ft3/lbm) h (Btu/lbm) u (Btu/lbm)

H2O 300. ? 0.7811 ? ?

H2O 300. 600. ? ? ?

Ref.-134a ? 70.0 0.2526 ? ?

Nitrogen 50.0 ? 1.00 ? ?
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Table 3.17 Problem 60

Material p (psia) T (°F) v (ft3/lbm) h (Btu/lbm) u (Btu/lbm) x (if applicable)

Water ? 35.0 ? ? ? 0.00

Water 1.00 ? ? ? ? 1.00

Water 14.7 1000. ? ? ? ?

Ref.-134a ? –40.0 ? ? ? 0.500

Table 3.18 Problem 61a

Material p (psia) T (°F) v (ft3/lbm) h (Btu/lbm) u (Btu/lbm) x (if applicable)

Water 14.7 300. ? ? ? ?

Ref.-134a 23.805 ? ? ? ? 1.00

Table 3.20 Problem 62

Material p (psia) T (°F) v (ft3/lbm) x (if applicable)

Water 5.00 300. ? ?

Water 100. ? 8.053 ?

Water 1000. 544.8 0.100 ?

Ref.-134a ? 0.00 ? 0.00

Mercury 1.00 ? ? 1.00

Table 3.21 Problem 63

Material p (psia) T (°F) v (ft3/lbm) h (Btu/lbm) x (if applicable)

Water 1.20 ? ? ? 0.00

Water ? 220. ? ? 1.00

Water ? 32.018 ? ? 0.500

Water 8000. 2000. ? ? ?

Ref.-134a 21.203 0.000 0.01185 11.63 ?
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Table 3.19 Problem 61b

Material T (°F) p (psia) h (Btu/lbm) v (ft3/lbm) x (if applicable)

Carbon dioxide 0.00 ? ? ? 0.20

Nitrogen ? 100. ? 1.000 ?

Table 3.16 Problem 59

Substance p (psia) T (°F) v (ft3/lbm) h (Btu/lbm)

Water 1000. ? 0.2326 ?

Ref.-134a 85.788 ? ? 111.33

Water 1000. ? ? 1505.9

Nitrogen ? −160. 0.250 ?

Table 3.22 Problem 64

Material p (psia) T (°F) v (ft3/lbm) h (Btu/lbm) x (if applicable)

H2O 600. 600. ? ? ?

H2O ? 200. ? ? 1.00

H2O 200. 1500. ? ? ?

H2O 14.696 ? ? ? 0.00

Ammonia ? 100. ? ? 0.00



Computer Problems
These problems are designed to be done on a personal computer
using a spreadsheet or equation solver. The problems cannot be
done easily without the use of a computer. They are meant to fur-
nish an additional learning experience by providing new insights
into the operation of complex thermodynamic systems and
demonstrating the power of the personal computer in generating
and manipulating thermodynamic properties. In these problems,
log is the base 10 logarithm and ln is the base e (i.e., natural)
logarithm.

69. In 1849, William Rankine proposed the following pressure-
temperature relation for saturated water:

logpsat = 6:1007− 2731:62/Tsat − 396,945/T2
sat

where psat is in psia and Tsat is in R. Develop a computer program
that returns values for psat in psia when Tsat is input in °F. Be sure
to include proper units on all input and output values. Using the
steam tables in Table C.1a of Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, plot the percent error in your
calculated saturation pressure vs. input temperature utilizing data
at 32.0, 100., 200., 300., 400., 500., 600., and 700.°F.

Table 3.23 Problem 65

Material p (psia) T (°F) v (ft3/lbm) x (if applicable)

Water ? 300. 4.00 ?

Water 300. ? ? 0.500

Water 1.00 1000. ? ?

Mercury 1.00 ? ? 1.00

Ideal gas* 100. ? 5.00 ?

* Use the ideal gas equation of state with R = 50 ft · lbf/(lbm · R.).

Table 3.24 Problem 66

Material p (psia) T (°F) v (ft3/lbm) h (Btu/lbm) x (if applicable)

Water 40.0 ? ? ? 0.00

Water ? ? 51.03 1240.5 ?

Water ? 50.0 ? ? 1.00

Ref.-134a 243.86 ? ? ? 0.500

Ref.-134a ? 160. ? ? 1.00

Mercury 100. ? ? ? 1.00

Table 3.25 Problem 67

Material T (°F) p (psia) h (Btu/lbm) x (if applicable)

Ammonia 60.0 60.0 ? ?

Ammonia 60.0 ? ? 0.100

Mercury ? 60.0 38.44 ?

Ref.-134a 60.0 ? ? 1.00

Water ? 1.00 1336.1 ?

Water ? 1.00 ? 0.00

Table 3.26 Problem 68

Material p (psia) T (°F) v (ft3/lbm) x (if applicable)

H2O 466.3 460. ? 0.00

H2O 160. 363.6 ? 1.00

H2O 40.0 ? 6.00 ?

H2O 1000. 1000. ? ?

Ammonia ? 105 1.00 ?

Ammonia 100. 100. ? ?

Ref.-134a ? 200. ? 0.500

Ref.-134a 325 ? ? 0.00

Mercury 1000. ? ? 1.00
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70. In 1905, Knoblauch, Linde, and Klebe proposed the
following equation for the specific volume of superheated
steam:

v = 0:5962T/p− ð1 + 0:0014pÞð150,300,000/T3 −0:0833Þ

where p is in psia, T is in R, and v is in ft3/lbm. Develop a
computer program that returns v when p and T are input.
Allow the use of either SI or Engineering English units.
Compare your results with steam table values at 0.10, 0.50,
1.00, 1.50, 2.00, 2.50, and 3.00 MPa along the 200.°C
isotherm. Plot these results as a percent error in v vs. p for
T = 200.°C.

71. Develop a computer program that calculates the pressure of
superheated ammonia vapor from the Beattie-Bridgeman
equation of state when the specific volume and temperature
are input from the keyboard. Allow the use of either SI or
Engineering English units. Using the superheated ammonia
tables (Table C.6), determine the percent error between your
calculated values of pressure and the correct values along the
100.°F isotherm. Plot this percent error vs. p utilizing actual
pressure data of 10.0, 30.0, 50.0, 70.0, 90.0, 140., and
180. psia.

72. The pressure-temperature relation for saturated ammonia can be
written as

logpsat = C1 −C2/Tsat −C3logðTsatÞ−C4Tsat + C5T2
sat

where

C1 = 25:5743247

C2 = 3295:1254

C3 = 6:4012471

C4 = 4:148279×10–4

C5 = 1:4759945×10–6

In this equation psat is in psia and Tsat is in R. Develop a computer
program that calculates in either SI or Engineering English units
(your choice) psat in either psia or ΚPa when Tsat is entered in either
°F or °C. Make sure the screen clearly indicates the proper units on
the input information and all output values. Compare the resulting
output values with a series of corresponding saturation values given
in Table C.5 of Thermodynamic Tables to accompany Modern
Engineering Thermodynamics.

73. The p-v-T relation for superheated mercury vapor is

pv = RT − T/vð Þ expð10:3338−312:095/T − 2:07951 ln TÞ

where p is in N/m2, v is in m3/kg, T is in K, and R = 41.45 J/kg · K.
Develop a computer program that outputs p, v, and T with their
appropriate units when either (a) p and T are input or (b) v and
T are input. Allow the user to work in either the SI or Engineering
English units and to choose which type of input he or she wishes
to use. For extra credit, create an isometric three-dimensional plot
of a p-v-T surface using this equation of state.
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CHAPTER 4

The First Law of Thermodynamics
and Energy Transport Mechanisms
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4.1 INTRODUCCIÓN (INTRODUCTION)
In this chapter, we begin the formal study of the first law of thermodynamics. The theory is presented first, and
in subsequent chapters, it is applied to a variety of closed and open systems of engineering interest. In Chapter 4,
the first law of thermodynamics and its associated energy balance are developed along with a detailed discussion
of the energy transport mechanisms of work and heat. To understand the usefulness of the first law of thermo-
dynamics, we need to study the energy transport modes and investigate the energy conversion efficiency of
common technologies.

In Chapter 5, the focus is on applying the theory presented in Chapter 4 to a series of steady state closed sys-
tems, such as sealed, rigid containers; electrical apparatuses; and piston-cylinder devices. Chapter 5 ends with a
brief discussion of the behavior of unsteady state closed systems.

The first law of thermodynamics is expanded in Chapter 6 to cover open systems, and the conservation of mass
law is introduced as a second independent basic equation. Then, appropriate applications are presented, dealing
with a variety of common open system technologies of engineering interest, such as nozzles, diffusers, throttling
devices, heat exchangers, and work-producing or work-absorbing machines. Chapter 6 ends with a brief discus-
sion of the behavior of unsteady state open systems.

4.2 EMMY NOETHER AND THE CONSERVATION LAWS OF PHYSICS
Throughout the long history of physics and engineering, we believed that the conservation laws of momentum,
energy, and electric charge were unique laws of nature that had to be discovered and verified by physical experi-
ments. And, in fact, these laws were discovered in this way. They are the heart and soul of mechanics, thermody-
namics, and electronics, because they deal with things (momentum, energy, charge) that cannot be created nor
destroyed and therefore are “conserved.” These conservation laws have broad application in engineering and
physics and are considered to be the most fundamental laws in nature.

We have never been able explain where these laws came from because they seem to have no logical source. They
seemed to be part of the mystery that is nature. However, almost 100 years ago, the mathematician Emmy
Noether developed a theorem that uncovered their source,1 yet few seem to know of its existence. Emmy
Noether’s theorem is fairly simple. It states that:

For every symmetry exhibited by a system, there is a corresponding observable quantity that is conserved.

The meaning of the word symmetry here is probably not what you think it is. The symmetry that everybody
thinks of is called bilateral symmetry, when two halves of a whole are each other’s mirror images (bilateral sym-
metry is also called mirror symmetry). For example, a butterfly has bilateral symmetry. Emmy Noether was talk-
ing about symmetry with respect to a mathematical operation. We say that something has mathematical
symmetry if, when you perform some mathematical operation on it, it does not change in any way. For exam-
ple, everyone knows that the equations of physics remain the same under a translation of the coordinate system.
This really says that there are no absolute positions in space. What matters is not where an object is in absolute
terms, but where it is relative to other objects, that is, its coordinate differences.

The impact of Emmy Noether’s studies on symmetry and the behavior of the physical world is nothing less than
astounding. Virtually every theory, including relativity and quantum physics, is based on symmetry principles.
To quote just one expert, Dr. Lee Smolin, of the Perimeter Institute for Theoretical Physics, “The connection
between symmetries and conservation laws is one of the great discoveries of twentieth century physics. But very
few non-experts will have heard either of it or its maker—Emily Noether, a great German mathematician. But it
is as essential to twentieth century physics as famous ideas like the impossibility of exceeding the speed of
light.”2

Noether’s theorem proving that symmetries imply conservation laws has been called the most important theo-
rem in engineering and physics since the Pythagorean theorem. These symmetries define the limit of all possible
conservation laws. Is it possible that, had Emmy Noether been a man, all the conservation laws of physics
would be called Noether’s laws?

1 Noether, E., 1918. Invariante variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse 1918, pp. 235–257.
An English translation can be found at http://arxiv.org/PS_cache/physics/pdf/0503/0503066v1.pdf.
2 Dr. Lee Smolin was born in New York City in 1955. He held faculty positions at Yale, Syracuse, and Penn State Universities, where
he helped to found the Center for Gravitational Physics and Geometry. In September 2001, he moved to Canada to be a founding
member of the Perimeter Institute for Theoretical Physics.
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In summary, Emmy Noether’s theorem shows us that (Table 4.1)

■ Symmetry under translation produces the conservation of linear momentum.
■ Symmetry under rotation produces the conservation of angular momentum.
■ Symmetry in time produces the conservation of energy.
■ Symmetry in magnetic fields produces the conservation of charge.

4.3 THE FIRST LAW OF THERMODYNAMICS
In this chapter, we focus our attention on the detailed structure of the first law of thermodynamics. To completely
understand this law, we need to study a variety of work and heat energy transport modes and to investigate the
basic elements of energy conversion efficiency. An effective general technique for solving thermodynamics pro-
blems is presented and illustrated. This technique is used in Chapters 5 and 6 and the remainder of the book.

The simplest, most direct statement of the first law of thermodynamics is that energy is conserved. That is, energy
can be neither created nor destroyed. The condition of zero energy production was expressed mathematically in
Eq. (2.15):

EP = 0 (2.15)

By differentiating this with respect to time, we obtain an equation for the condition of a zero energy production
rate:

dEP
dt

= _Ep = 0 (2.16)

Whereas Eqs. (2.15) and (2.16) are accurate and concise statements of the first law of thermodynamics, they are
relatively useless by themselves, because they do not contain terms that can be used to calculate other variables.
However, if these equations are substituted into the energy balance and energy rate balance equations, then the
following equations result. For the energy balance,

EG = ET +EP ðas required by the first lawÞ

AN EXAMPLE OF MATHEMATICAL SYMMETRY

Here is a story about Carl Friedrich Gauss (1777–1855). When he was a young child, his teacher wanted to occupy him for
a while, so he asked him to add up all the numbers from 1 to 100. That is, find X = 1 + 2 + 3 + … + 100. To the teacher’s
surprise, Gauss returned a few minutes later and said that the sum was 5050.

Apparently Gauss noticed that the sum is the same regardless of whether the terms are added forward (from first to last) or
backward (from last to first). In other words, X = 1 + 2 + 3 + … + 100 = 100 + 99 + 98 + … + 1. If we then add these two
ways together, we get

X = 1+ 2+ 3+…+ 100
X = 100+99+98+…+1

2X = 101+101+…+ 101

So 2X = 100 × 101 and X = (100 × 101)/2 = 5050. Gauss had found a mathematical symmetry, and it tremendously
simplified the problem. What is conserved here? It is the sum, X. It does not change no matter how you add the numbers.

Table 4.1 Relation of Conservation Laws to Mathematical Symmetry

Conservation Law Mathematical Symmetry

Linear momentum
The laws of physics are the same regardless of where we are in space. This positional symmetry implies
that linear momentum is conserved.

Angular momentum
The laws of physics are the same if we rotate about an axis. This rotational symmetry implies that angular
momentum is conserved.

Energy
The laws of physics do not depend on what time it is. This temporal symmetry implies the conservation of
energy.

Electric charge
The interactions of charged particles with an electromagnetic field remain the same if we multiply the fields
by a complex number eiφ. This implies the conservation of charge.
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or

EG = ET (4.1)

The energy rate balance is

_EG = _ET + _EP ðas required by the first lawÞ
or

_EG = _ET (4.2)

From now on, we frequently use the phrases energy balance and energy rate balance in identifying the proper
equation to use in an analysis. So, for simplicity, we introduce the following abbreviations:

EB = energy balance

and

ERB = energy rate balance

In Chapter 3, we introduce the components of the total system energy E as the internal energy U, the kinetic
energy mV2/2gc, and the potential energy mgZ/gc, or

3

E = U+ mV2

2gc
+

mgZ
gc

(3.9)

In this equation, V is the magnitude of the velocity of the center of mass of the entire system, Z is the height of
the center of mass above a ground (or zero) potential datum, and gc is the dimensional proportionality factor
(see Table 1.2 of Chapter 1). In Chapter 3, we also introduce the abbreviated form of this equation:

E = U+KE+PE (3.10)

and similarly for the specific energy e,

e = E
m

= u+ V2

2gc
+

gZ
gc

(3.12)

and

e = u+ ke+pe (3.13)

In these equations, we continue the practice introduced in Chapter 2 of using uppercase letters to denote extensive
properties and lowercase letters to denote intensive (specific) properties. The energy concepts described in these
equations are illustrated in Figure 4.1.

In equilibrium thermodynamics, the proper energy balance is given by Eq. (4.1),
where the gain in energy EG is to be interpreted as follows. The system is initially
in some equilibrium state (call it state 1), and after the application of some “pro-
cess,” the system ends up in a different equilibrium state (call it state 2). If we
now add a subscript to each symbol to denote the state at which the property is
to be evaluated (E1 is the total energy of the system in state 1 and so forth), then
we can write the energy gain of the system as

EG = Final total energy− Initial total energy (4.3)

or

EG = E2 −E1 (4.4)

and extending this to Eq. (3.9), we obtain

EG = U2 −U1 +
m
2gc

ðV2
2 −V2

1 Þ+
mg
gc

� �
ðZ2 −Z1Þ (4.5)

or

EG = m u2 − u1 +
V2
2 −V2

1

2gc
+

g
gc
ðZ2 −Z1Þ

� 	
(4.6)

System boundary

System (either
open or closed)

Center of
mass

Velocity V

Internal
energy

U

Height = Z

Z = 0

FIGURE 4.1
System energy components.

3 In this text, we use the symbol V to represent the magnitude of the average velocity |V|, and the symbol V to represent volume.
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alternatively,

EG = U2 −U1 +KE2 −KE1 +PE2 −PE1 (4.7)

and

EG = mðu2 − u1 + ke2 − ke1 +pe2 −pe1Þ (4.8)

In most of the engineering situations we encounter, either the system is not moving at all or it is moving without
any change in velocity or height. In these cases,

EG = U2 −U1 = mðu2 − u1Þ = ET

EXAMPLE 4.1
Figure 4.2 shows that 3.00 lbm of saturated water vapor at 10.0 psia is sealed in a rigid container aboard a spaceship traveling
at 25,000. mph at an altitude of 200. mi. What energy transport is required to decelerate the water to zero velocity and bring
it down to the surface of the Earth such that its final specific internal energy is 950.0 Btu/lbm? Neglect any change in the
acceleration of gravity over this distance.

p1 = 10.0 psia, x1 = 1.00

V1 = 2500. mph

Z1 = 200. miles
Sealed rigid

container

State 1 State 2

u2 = 950.0 Btu/1bm
Z2 = V2 = 0

FIGURE 4.2
Example 4.1.

Solution
Let the system in this example be just the water in the container, then the process followed by the water is a constant
volume process (the water is in a “rigid, sealed container”). Therefore, the problem statement can be outlined as follows:

State 1 m = 3:0 lbm, V = constant��������������������! State 2

p1 = 10:0psia u2 = 950:0Btu/lbm
x1 = 1:00 saturated vaporð Þ v2 = v1 = 38:42 ft3/lbm

v1 = vg at 10:0psiað Þ = 38:42 ft3/lbm

Notice how the process path gives us the value of a property (v2) in the final state. To determine the required energy
transport, we use the energy balance Eq. (4.1), along with the definition of the energy gain term EG from Eq. (4.5):

EB: EG = ET + EP0 ðas required by the first lawÞ

and, assuming g is constant during this process,

EG = ET = U2 −U1 +
m
2gc

V2
2 −V2

1

� �
+

mg
gc

Z2 −Z1ð Þ

Here, V2= Z2 = 0, so

ET = U2 −U1 −
m
2gc

V2
1 −

mg
gc

Z1

Table C.2a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics gives

u1 = ug 10:0psiað Þ = 1072:2Btu/lbm

and the problem statement requires that u2= 950.0 Btu/lbm. Therefore,

U1 = mu1 = 3:00 lbmð Þ 1072:2Btu/lbmð Þ = 3216:6Btu

(Continued )

4.3 The First Law of Thermodynamics 103



EXAMPLE 4.1 (Continued )

and

U2 = mu2 = 3:00 lbmð Þ 950:0Btu/lbmð Þ = 2850Btu

so

ET = ð2850 − 3216:6Þ Btu− 3:00 lbm
2

ð25,000: mile/hÞ 5280 ft/mile
3600 s/h

� �� 	2

×

1 Btu
778:16 ft .lbf

32:174 lbm
.ft

lbf .s2

−
3:00 lbmð32:174 ft/s2Þ

32:174 lbm
.ft

lbf .s2

� � ð200: milesÞð5280 ft/mileÞ 1 Btu
778:16 ft .lbf

� �
= −366:6−80,550−4071 = −85,000Btu ðto three significant figuresÞ

Therefore, 85,000 Btu of energy must be transferred out of the water (ET is negative here) by some mechanism. This can be
done, for example, by having the spaceship (and the water) do work on the atmosphere by aerodynamic drag as it lands.

Exercises
1. What would be the value of u2 in Example 4.1 if ET were zero? Answer: u2 = 29,300 Btu/lbm. (What is the physical state

of the water now?)
2. Which causes the larger change in EG:

a. A velocity increase from 0 to 1 ft/s or an increase in height from 0 to 1 ft?
b. A velocity increase from 0 to 100 ft/s or a height increase from 0 to 100 ft?
Answers: (a) height, (b) velocity.

3. Determine the value of ET that must occur when you stop a 1300. kg automobile traveling at 100. km/h on a level road
with no change in internal energy. Answer: ET = 502 kJ.

In nonequilibrium systems, we use the energy rate balance equation with _EG defined as

_EG = d
dt

U+ m
2gc

V2 +
mg
gc

Z

� �
system

= _ET (4.9)

Equation (4.9) can become quite complicated for open systems whose total mass is rapidly changing (such as
with rockets), because it expands as follows (using U=mu):

_EG = m _u + V
gc
ð _V Þ+ g

gc
ð _Z Þ

� 	
+ u+ V2

2gc
+

gZ
gc

� �
_m = _ET (4.10)

Notice that, in this equation, _V = dV/dt is the magnitude of the instantaneous acceleration, and _Z is the
magnitude of the instantaneous vertical velocity.

The equilibrium thermodynamics energy balance and the nonequilibrium energy rate balance are fairly simple
concepts; however, their implementation can be quite complex. Each of the gain, transport, and production
terms may expand into many separate terms, all of which must be evaluated in an analysis. Next, we investigate
the structure of the energy transport and energy transport rate terms.

4.4 ENERGY TRANSPORT MECHANISMS
There are three energy transport mechanisms, any or all of which may be operating in any given system: (1) heat,
(2) work,4 and (3) mass flow. These three mechanisms and their sign conventions are illustrated in Figure 4.3.

Note that the sign conventions for heat and work shown in Figure 4.3 are not the same. Heat transfer into
a system is taken as positive, whereas work must be produced by or come out of a system to be positive. This is
the conventional mechanical engineering sign convention and reflects the traditional view that heat coming out

4 The types of work transports of energy included here are only those due to dissipative or nonconservative forces. For example, the
work associated with gravitational or electrostatic forces is not considered a work mode because it is conservative (i.e., it is
representable by the gradient of a scalar quantity) and is consequently nondissipative. Energy transports resulting from the actions of
conservative forces have their own individual terms in the energy balance equation (such as mgZ/gc for the gravitational potential
energy).

104 CHAPTER 4: The First Law of Thermodynamics and Energy Transport Mechanisms



of a system is “lost” (i.e., negative), while work produced by a system (such as an engine) should be assigned a posi-
tive value.

By definition, a closed system has no mass crossing its system boundary, so it can experience only work and
heat transport mechanisms. Also, since the gain, transport, and production terms in the balance equation are
defined to be net values (see Eq. (2.10)), we define

1. The net heat transport of energy into a system=∑iQi=Q and the net heat transport rate of energy into a

system=∑i _Q i = _Q :

2. The net work transport of energy out of a system=∑iWi=W and the net work transport rate of energy out of

a system=∑i _Wi = _W :

3. The net mass transport of energy into the system=∑iEi = ∑Emass flow and the net mass transport rate of

energy into the system=∑i _Ei = ∑ _Emass flow:

Thus, for a closed system, the total energy transport becomes

ET = Q−W (4.11)

and the total energy transport rate is

_ET = _Q − _W (4.12)

For open systems, the same quantities are

ET = Q−W +∑Emass
flow

(4.13)

and

_ET = _Q − _W +∑ _Emass
flow

(4.14)

In Eqs. (4.13) and (4.14), note that we write the summation signs on the net mass transport of energy terms,
but for simplicity, we do not write the summation signs on the work or heat transport terms. This is because
you often have open systems with more than one mass flow stream, but seldom do you have more than one

WHAT ARE HEAT AND WORK ANYWAY?

Heat is usually defined as energy transport to or from a system due to a temperature difference between the system and its
surroundings. This can occur by only three modes: conduction, convection, and radiation.

Work is more difficult to define. It is often defined as a force moving through a distance, but this is only one type of work;
there are many other work modes as well. Since the only energy transport modes for moving energy across a system’s
boundary are heat, mass flow, and work, the simplest definition of work is that it is any energy transport mode that is
neither heat nor mass flow.5

5 Work can also be defined using the concept of a “generalized” force moving through a “generalized” displacement, see Table 4.2 later in this chapter.

(a) Closed system

−W

+W

+Q

−Q

System
boundary

ET

(b) Open system

ET

System
boundary

+Q
−Q

+E
−E

Mass
flow

−W
+W

FIGURE 4.3
Energy transport mechanisms.
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type of work or heat transport present. However, you must always remember that W, _W, Q, and _Q are also net
terms and represent a summation of all the different types of work and heat transports of energy present. This is
illustrated in the following example.

EXAMPLE 4.2
Determine the energy transport rate for the system shown in Figure 4.4.

Top heat loss
180,000 Btu/h

Fuel flow
Efuel = 15,000 Btu/min

Exhaust flow
Eexhaust = 500. Btu/min

200. hp

Bottom heat loss
54,000 Btu/h

System
boundary

50.0 hp
Electrical workout

Engine−generator set

FIGURE 4.4
Example 4.2

Solution
From Eq. (4.14), the total energy transport rate is

_E T = _Q − _W +∑ _Emass
flow

where

_Q = net heat transfer into the system
= − 180:× 103 Btu/h−54:0×103 Btu/h = −234×103 Btu/h

and

_W = net work rate out of the system = 200:hp+50:0hp = 250:hp

while

∑ _Emass
flow

= net mass flow of energy into the system

= 15:0×103Btu/min− 500:Btu/min = 14:5× 103Btu/min

So

_E T = ð‒234×103Btu/hÞ 1h/ 60minð Þ½ �− 250:hpð Þ 42:4Btu/ hp.minð Þ½ �+14:5× 103Btu/min = 0:00Btu/min

Exercises
4. Determine the energy transport rate that occurs in Example 4.2 when the work mode directions are reversed.

Answer: _E T = 21:2×103 Btu/min:
5. Determine the net rate of energy gain of a closed system that receives heat at a rate of 4500. kJ/s and produces work at a

rate of 1500. kJ/s. Answer: _EG = 3000:KJ/s:
6. An insulated open system has a net gain of 700. Btu of energy while producing 500. Btu of work. Determine the mass

flow energy transport. Answer: Emass flow= 1.20 × 103 Btu.

The system of Example 4.2 has no net energy transport rate, even though it has six energy transport rates. Note
that the energy rate balance (Eq. (4.2)) for this system is _EG = _ET ; therefore, this system also has no net gain of
energy. That is, the total energy E of this system is constant in time.
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4.5 POINT AND PATH FUNCTIONS
A quantity, say y, that has a value at every point within its range is called a point function. Its derivative is written
as dy, and its integral from state 1 to state 2 is Z 2

1
dy = y2 − y1

Thus, the value of the integral depends only on the values of y at the end points of the integration path and is
independent of the actual path taken between these end points. This is a fundamental characteristic of point
functions. All intensive and extensive thermodynamic properties are point functions. Therefore, we can writeZ 2

1
dE = E2 − E1;

Z 2

1
du = u2 − u1;

Z 2

1
dm = m2 −m1

and so forth.

A quantity, say x, whose value depends on the path taken between two points within its range is called a path
function. Since path functions do not differentiate or integrate in the same manner as point functions, we cannot
use the same differential and integral notation for both path and point functions. Instead, we let dx denote the
differential of the path function x, and we define its integral over the path from state 1 to state 2 asZ 2

1
dx = 1x2 Note:

Z 2

1
dx ≠ ðx2 − x1Þ

� 	
(4.15)

A path function does not have a value at a point. It has a value only for a path of points, and this value is
directly determined by all the points on the path, not just its end points. For example, the area A under the
curve of the point function w= f(y) is a path function because

dA = wdy = f ðyÞ dy
and Z 2

1
dA = 1A2 =

Z Y2

Y1
f ðyÞ dy = area under f yð Þ between the points y1 and y2

Clearly, if the path f(y) is changed, then the area 1A2 is also changed. Consequently, we say that 1A2 is a path function.

We see in the next sections that both the work and heat transports of energy are path functions. Therefore, we write
the differentials of these quantities as dW and dQ, and their integrals asZ 2

1
dW = 1W2 (4.16)

and Z 2

1
dQ = 1Q2 (4.17)

Since the associated rate equations contain the time differential, we define power as the work rate, or

_W = dW/dt (4.18)

and, similarly, the heat transfer rate is

_Q = dQ/dt (4.19)

Each of the different types of work or heat transport of energy is called a mode. A system that has no operating work
modes is said to be aergonic. Similarly, a system that changes its state without any work transport of energy having

NOTE!

Since work and heat are not thermodynamic properties and therefore not point functions,
Z 2

1
dW ≠W2 −W1 andZ 2

1
dW ≠ΔW: Similarly,

Z 2

1
dQ≠Q2 −Q1, and

Z 2

1
dQ≠ΔQ: Equations (4.16) and (4.17) are the only correct ways to write these

path function integrals.
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occurred is said to have undergone an aergonic process. While there are only three modes of heat transport, there
are many modes of work transport. In the following segments, four mechanical work modes and five nonmecha-
nical work modes are studied in detail.

4.6 MECHANICAL WORK MODES OF ENERGY TRANSPORT
In mechanics, we recognize that work is done whenever a force moves through a distance. When this force is a
mechanical force F

!
, we call this work mode mechanical work and define it as

dW
� �

mechanical = ð F!applied by the systemÞ.d x!− ð F!applied on the systemÞ.d x! (4.23)

WHAT IS AERGONIC ANYWAY?

The term aergonic comes from the Greek roots a meaning “not” and ergon meaning “work,” and it should be interpreted to
mean “no work has occurred.” It is the analog of the word adiabatic, meaning no heat transfer has occurred, introduced
later in this chapter.

Substituting Eqs. (4.8) and (4.11) into Eq. (4.1) and rearranging gives the general closed system energy balance equation
for a system undergoing a process from state 1 to state 2 as

General closed system energy balance:
1Q2 − 1W2 = ðE2 −E1Þsystem

= m½ðu2 − u1Þ+ ðV2
2 −V2

1 Þ/ð2gcÞ+ ðZ2 −Z1Þg/gc�system
(4.20)

and substituting Eq. (4.10) with m = constant and Eq. (4.12) into Eq. (4.2) gives the general closed system energy rate balance as

General closed system energy rate balance:
_Q − _W = ðdE/dtÞsystem = ðm _u +mV _V/gc +mg _Z /gcÞsystem (4.21)

Similarly, substituting Eqs. (4.9) and (4.14) into Eq. (4.2) gives the general open system energy rate balance as

General open system energy rate balance:

_Q − _W +∑ _Emass
flow

= d/dtð Þ mu+mV2/2gc +mZg/gcð Þsystem
(4.22)

where the mass of the system is no longer required to be constant.

CAN YOU ANSWER THIS QUESTION FROM 1936?

On page 66 of the October 1936 issue of Modern Mechanix is a discussion of the oddities of science that reads: “Modern
science states that energy cannot be destroyed. Scientists are now wondering what happens to the energy contained in a
compressed spring destroyed in acid.” How would you answer this question more than 70 years later?

The person who wrote this in 1936 did not understand the concept of internal energy. Then, neglecting any changes in
kinetic or potential energy, an energy balance on the system gives

1Q2 − 1W2 = ðE2 − E1Þsystem = ðU2 −U1Þsystem
where U1 = Uacid + Uspring = (maciduacid + mspringuspring). Now, Uspring = F(ΔX), the work done in compressing the spring. Finally,
U2 = Uacid+spring = (macid + mspring)uacid+spring. If we make the reasonable assumption that the spring dissolved without any heat
transfer (1Q2 = 0) and aergonically (1W2 = 0), then the energy balance equation gives U2 = U1, and solving it for the final
specific internal energy of the acid-spring solution, we find that

uacid+ spring =
maciduacid +mspringuspring

macid +mspring

So the answer to the 1936 question is this: The energy contained in the compressed spring ends up as part of the energy of the
combined acid-spring solution. That is, since the mechanical work that went into compressing the spring ended up as part of
the spring’s internal energy, when the spring was dissolved in the acid, the internal energy in the spring became part of the
internal energy of the acid-spring solution.

Also, if we assume that the acid-spring solution is a simple incompressible liquid with an internal energy that depends only
on temperature, then we can write uacid+spring = cT, and we see that the energy contained in the compressed spring reappears
as an increase in the temperature of the resulting acid-spring solution.
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or

ð1W2Þmechanical =
Z x2

x1
ð F!applied by the systemÞ.d x! −

Z x2

x1
ð F!applied on the systemÞ.d x! (4.24)

Note that our sign convention requires that work done by the system be positive, while work done on the system
be negative.

In thermodynamics, the four classical types of mechanical work (Figure 4.5) are

1. Moving system boundary work.
2. Rotating shaft work.
3. Elastic work.
4. Surface tension work.

These are very important work modes in engineering analysis and the following material provides a detailed
discussion of their major characteristics.

4.6.1 Moving System Boundary Work
Whenever a system boundary moves such that the total volume of the system changes, moving system boundary
work occurs. This is sometimes called expansion or compression work, and it has wide application in mechanical
power technology. In this case, the force is applied by the system through the pressure p (see Figure 4.5a), so
F
!

= pA
!

and F
!.d x! = pA

!.d x! = pdV , where p is the pressure acting on the system boundary, A
!

is the area vector
(defined to be normal to the system boundary and pointing outward), d x! is the differential boundary move-
ment, and dV is the differential volume A

!.d x!: Consequently,

ðdWÞ
moving
boundary

= p dV (4.25)

and for moving boundary work,

Moving boundary work:

ð1W2Þmoving
boundary

=
Z 2

1
p dV (4.26)

EXAMPLE 4.3
The sealed, rigid tank shown in Figure 4.6 contains air at 0.100 MPa and 20.0 °C. The tank is then heated until the pressure
in the tank reaches 0.800 MPa. Determine the mechanical moving boundary work produced in this process.

(Continued )

Fp

x
Area A

dx

(a) Moving system boundary 

x

± F

Area AL

± dx

(c) Elastic work

(d) Surface tension work

x

Moving slider

Filmb

Wire frame

± F

± dx

(b) Shaft work

dΘ

T

FIGURE 4.5
Four classical types of mechanical work.
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EXAMPLE 4.3 (Continued )

Solution
Let the system be the material inside the tank. The process of
heating the tank is one of constant volume (the tank is “rigid”).
Therefore, since the system volume, V , is constant, dV = 0 and
the moving boundary work is:

ð1W2Þmoving
boundary

=
Z 2

1
pdV = 0

Therefore, no moving boundary work occurs during this process.

Since a “rigid” container cannot change its volume, its moving boundary work is always zero regardless of the
process it undergoes.

EXAMPLE 4.4
The weather balloon in Figure 4.7 is inflated from a constant pressure, compressed gas source at 20.0 psia. Determine the
moving system boundary work as the balloon expands from a diameter of 1.00 ft to 10.0 ft.

Solution
Assume the balloon is a sphere, then V = 4 3πR

3 = 1 6 πD
3

��
. The process here

is one of constant pressure, so p= constant, and

ð1W2Þmoving
boundary

=
Z 2

1
pdV = p

Z 2

1
dV = pðV

2
−V

1
Þ

= 20:0 lbf
in2

� �
144 in2

ft2

� �
π
6

� �
½ð10:03 −1:003Þ ft3�

= 1:51×106 ft .lbf

The work is positive because the balloon does work on the atmosphere as
it expands and pushes the atmosphere out of the way.

Exercises
7. In Example 4.3, is the moving boundary work always zero for a sealed, rigid container? Are any other work modes

always zero for this type of system? Could a piston-cylinder apparatus be modeled as a sealed, rigid system? Answers:
Yes, no, no. (It is sealed and the components, the piston and the cylinder, are rigid, but the piston can move, producing
a change in the enclosed volume.)

8. Determine the moving boundary work for the balloon in Example 4.4 as it deflates from a diameter of 10. ft to a dia-
meter of 5.0 ft at a constant pressure of 20. psia. What does the work on the balloon? Answer: (1W2)moving boundary= –1.3 ×
106 ft · lbf. The surrounding atmosphere does work on the balloon as it deflates, that is why the work is negative.

9. If the pressure inside a system depends on volume according to the relation p = K1 +K2V +K3/V , where K1, K2, and K3

are constants, determine the appropriate equation for the moving boundary work done as the volume changes from
V
1
to V

2
: Answer: 1W2ð Þmoving boundary = K1ðV2

−V
1
Þ+K2ðV2

2
−V2

1
Þ/2+K3 ln ðV

2
/V

1
Þ:

To carry out the integration indicated in Eq. (4.26), the exact p = pðVÞ pressure volume function must be
known. This function is usually given in the process path specification of a problem statement. For example, in
Example 4.3, the process is one of constant volume (the container is rigid), so dV = 0; and in Example 4.4, the
filling process is isobaric (p = constant), so the integral of Eq. (4.26) is very easy. In general, outside of these
two cases, the integration of Eq. (4.26) is not trivial and must be determined with great care.

As an example of a nontrivial integration of Eq. (4.26), consider a process that obeys the relation

pVn = constant (4.27)

State 1 State 2

p1 = 20.0 psia

D1 = 1.00 ft dia
D2 = 10.0 ft dia

p2 = 20.0 psia

FIGURE 4.7
Example 4.4.

Heated sealed
rigid container

Work = ?

State 1 State 2

p1 = 0.100 MPa

T1 = 20°C
p2 = 0.800 MPa

FIGURE 4.6
Example 4.3.
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or

p1V
n
1
= p2V

n
2

where the exponent n is a constant. Such processes are called polytropic processes.6 The moving system boundary
work of any substance undergoing a polytropic process is

ð1W2Þpolytropic
moving boundary

=
Z 2

1
pdV =

Z 2

1

constant
Vn dV

For n= 1, this integral becomes

ð1W2Þpolytropic ðn=1Þ
moving boundary

= p1V1 ln
V2

V1
= p2V

2
ln

V2

V1
(4.28)

and for n ≠ 1, it becomes

ð1W2Þpolytropic ðn≠1Þ,
moving boundary

=
p2V2 − p1V1

1− n
(4.29)

If the material undergoing a polytropic process is an ideal gas, then it must simultaneously satisfy both of the
following equations:

1. The ideal gas equation of state, pV = mRT:
2. The polytropic process equation, pVn = constant:

Combining these two equations by eliminating the pressure p gives

mRTVn−1 = constant

or, for a fixed mass system,

T1V
n−1
1 = T2V

n−1
2

or

T2
T1

=
V2

V1

 !1−n
= v2

v1

� �1−n
(4.30)

Similarly, eliminating V in these two equations (for a fixed mass system) gives the polytropic process equations
for an ideal gas:

Polytropic process equations for an ideal gas

T2
T1

=
p2
p1

� �ðn−1Þ/n
= v2

v1

� �1−n (4.31)

Finally, if we have an ideal gas undergoing a polytropic process with n ≠ 1, then its moving system boundary work
is given by Eq. (4.29), with p2V2 − p1V1 = mR T2 −T1ð Þ as the polytropic work equation for an ideal gas (n ≠ 1):

Polytropic work equation for an ideal gas n≠1ð Þ

ð1W2Þpolytropic ðn≠1Þ
ideal gas
moving boundary

= mR
1− n

ðT2 −T1Þ (4.32)

6 The term polytropic comes from the Greek roots poly meaning “many” and trope meaning “turns” or “paths.”
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EXAMPLE 4.5
Figure 4.8 shows a new process in which 0.0100 kg of methane (an ideal gas) is compressed from a pressure of 0.100 MPa
and a temperature of 20.0 °C to a pressure of 10.0 MPa in a polytropic process with n= 1.35. Determine the moving bound-
ary work required.

Methane
m1 = 0.0100 kg
p1 = 0.100 MPa

T1 = 20.0°C

Methane
m2 = 0.0100 kg
p2 = 10.0 MPa

1W2 = ?
State 1 State 2

Polytropic process
with n = 1.35

FIGURE 4.8
Example 4.5.

Solution
Since the methane behaves as an ideal gas and n ≠ 1, we can find the work required from Eq. (4.32):

ð1W2Þpolytropic ðn≠1Þ
ideal gas
moving boundary

= mR
1− n

ðT2 −T1Þ

where the value of T2 can be found from Eq. (4.31):

T2 = T1
p2
p1

� �ðn−1Þ/n
= ð20:0+ 273:15KÞ 10:0MPa

0:100MPa

� �ð1:35−1Þ/1:35
= 967K = 694 °C

Using Table C.13b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics to find the value of the gas
constant for methane, Rmethane = 0.518 kJ/kg ·K, Eq. (4.32) then gives

ð1W2Þpolytropic ðn≠1Þ
ideal gas
moving boundary

=
ð0:0100 kgÞð0:518 kJ=kg .KÞ

1−1:35
ð967−293:15Þ = −9:98 kJ

The work comes out negative, because it is being done on the system.

Exercises
10. Determine the work required in Example 4.5 if the final pressure of the methane is 0.500 MPa. Answer: −2.25 kJ.
11. If the work required in Example 4.5 is −5.00 kJ, determine the final temperature and pressure of the methane. Answer:

T2= 631 K, p2 = 1.92 MPa.
12. If the gas used in Example 4.5 were air, determine the work required to compress it polytropically from 14.7 psia, 70.0°F

to 150.°F with n= 1.33. Answer: 1W2=−285.1 ft · lbf

4.6.2 Rotating Shaft Work
Whenever a rotating shaft carrying a torque load crosses a system boundary, rotating shaft work is done. In this
case (see Figure 4.5b),

ðdWÞrotating
shaft

= T
!.d θ

!
(4.33)

and, for rotating shaft work,

Rotating shaft work

ð1W2Þrotating
shaft

=
Z 2

1
T
!.d θ

!
(4.34)

where T
!

is the torque vector produced by the system on the shaft and d θ
!

is its angular displacement vector.
These two vectors are in the direction of the shaft axis. Normally, thermodynamic problem statements do not
require rotating shaft work to be calculated from Eq. (4.34). The rotating shaft work is usually openly given
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as part of the problem statement. For example, if you are analyzing an automobile internal combustion
engine producing 150. ft · lbf of work at the crankshaft, you must be able to recognize that (1W2)rotating shaft =
150. ft · lbf.

WHEN IS SHAFT WORK NOT SHAFT WORK?

Suppose you have a system that contains a fluid, and this fluid is in contact with
a mixing blade or an impeller driven by a shaft passing through the system
boundary (see Figure 4.9). This would constitute an example of shaft work.

The shaft and the blade or impeller are inside the system and their physical and
thermodynamic properties are part of the system’s properties. You have a hetero-
genous system made up of the fluid and the solid shaft and blade. If the mass of
the fluid is large enough and the size of the shaft and blade is small enough, then
their impact on the system’s properties can be neglected and the system can be
considered to consist of the fluid alone. However, this is not always the case. Sup-
pose now you exclude the shaft and the blade or impeller from the system by
restricting the system to be only the fluid and redraw the system boundaries so
that they pass along the surface of the shaft and blade (see Figure 4.10). Now,
your system consists of a pure substance (the fluid), but what kind of work mode
do you now have?

Since the only work modes we can analyze are “reversible,” the fluid medium cannot
possess viscosity (fluid friction), and consequently, there can be no shear forces on
the blade. The only force a viscousless fluid can exert on the blades is a pressure
force, p. As the blade moves, the system boundary must move accordingly to keep up
with it, and the pressure force on the blade must also move. This is just the definition
of the moving boundary work mode. Consequently, this type of shaft work is not really
shaft work at all, it is really moving boundary work.

Another example is the shaft work from an internal combustion engine. It is produced
inside the engine by moving boundary piston-cylinder work, and in a frictionless
reversible engine, these two work modes are equivalent. However, in a real engine,
where friction and other losses are present, these two work modes are not equivalent
(see Figure 4.11).

Not all shaft work can be viewed as moving boundary work. The shaft work from an electric motor or a mechanical gearbox
is not equivalent to moving boundary work (see Figure 4.12).

Reversible
engine Wrev Wirr < Wrev

Real
(irreversible)

engine

Shaft work Shaft work

FIGURE 4.11
Reversible and irreversible work in an IC engine.

Electric motor

Wshaft Wshaft−in

Mechanical gearbox

Wshaft−out
Welect

FIGURE 4.12
Shaft work from systems without internal moving boundaries.

System
boundary

Fluid

Shaft work crosses the
system boundary

FIGURE 4.9
Shaft work in a system containing a fluid.

System
boundary

Fluid

No shaft work crosses
the system boundary

FIGURE 4.10
A new system boundary that omits the
shaft and the blade.
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4.6.3 Elastic Work
Whenever we compress or extend an elastic solid (like a spring), we perform elastic work. Consider a force ± F

!
applied on the end of an elastic rod (see Figure 4.5c). The normal stress σ in the rod is

σ = ±
j F!j
A

(4.35)

where j F!j is the magnitude of the force and A is the cross-sectional area of the rod. Since the force F
!

and its
corresponding displacement d x! are always in the same direction, the vector dot product F

!.d x! always reduces
to Fdx, where F = j F!j and dx = jd x!j , and when the force is applied on the system from the surroundings
rather than being produced by the system, the work is negative and its increment is

dW = − F
!.d x! = − Fdx = − σAdx (4.36)

The strain ε in the rod is defined as

dε = dx
L

= A dx
AL

= A dx
V

=
dV

V
(4.37)

where L is the length of the rod and AL is its volume V : Then,

Adx = dV = Vdε (4.38)

and Eq. (4.36) becomes

dW = −σAdx = −σVdε (4.39)

Therefore, for elastic work,

Elastic work

1W2ð Þelastic = −
Z 2

1
σVdε

(4.40)

EXAMPLE 4.6
Determine an expression for the work involved in deforming a constant volume elastic solid that obeys Hooke’s law of elasti-
city (see Figure 4.13).

L

State 1

1W2 = ?L + ΔL

State 2

F = EA(ΔL/L)

FIGURE 4.13
Example 4.6.

Solution
Here we have V = constant. Also, from strength of materials we can write Hooke’s law as σ= Eε, where E is Young’s modulus
of elasticity. Then, Eq. (4.40) becomes

ð1W2Þelastic = −
Z 2

1
σV dε = −

Z 2

1
EVε dε = − EV

Z 2

1
ε dε

= −EV
ε22 − ε21

2

� �
= −

V

2E
ðσ22 − σ21Þ

Thus, if ε22 > ε
2
1, then ð1W2Þelastic is negative and work is being put into the system; and if ε22 < ε

2
1, then ð1W2Þelastic is positive

and work is being produced by the system. Note that both tensile strains (ε > 0) and compressive strains (ε < 0) are possi-
ble here. But, the resulting work formula deals only with ε2 and consequently gives the correct result regardless of the strain
direction.
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Exercises
13. What type of rigid system has zero elastic work regardless of the loading? Answer: A perfectly rigid system (E=∞).
14. If the system analyzed in Example 4.6 was a rectangular steel bar, 1.0 inch square by 12 inches long, determine the elastic

work required to stress it from 0.0 to 10. × 103 lbf/in2. Use Esteel= 30.× 106 lbf/in2. Answer: (1W2)elastic=− 1.7 ft · lbf.
15. Ten joules of elastic work is applied to a circular brass rod 0.0100 m in diameter and 1.00 m long. Determine the

resulting stress and strain in the bar if it is initially unloaded. Use Ebrass = 1.05 × 1011 Pa. Answer: σ= 164 MPa and
ε= 1.56 × 10−3 m/m.

4.6.4 Surface Tension Work
Surface tension work is the two-dimensional analog of the elastic work just considered. Figure 4.5d shows a
soap film on a wire loop. One side of the loop has a movable wire slider that can either compress or extend the
film. As in the case of the elastic solid, the force and deflection are always in the same direction and the force is
applied to the system, so we can modify Eq. (4.36) to read

dW = − F
!.d x! = − F dx = −ð2σsbÞ dx (4.41)

where σs is the surface tension of the film, and b is the length of the moving part of the film. The factor of 2
appears because the film normally has two surfaces (top and bottom) in contact with air. Now, 2b ·dx = dA =
change in the film’s surface area, so Eq. (4.41) becomes

dW = − σsdA (4.42)

and, for the surface tension work,

Surface tension work

ð1W2Þsurface
tension

= −
Z 2

1
σs dA

(4.43)

EXAMPLE 4.7
Determine the amount of surface tension work required to inflate the soap
bubble shown in Figure 4.14 from a diameter of zero to 0.0500 m. The surface
tension of the soap film can be taken to be a constant 0.0400 N/m.

Solution
Here, σs = constant = 0.0400 N/m. Note that we are not calculating the
surface area of the bubble here from its geometric elements, but wish
only to find the change in area between states 1 and 2. Consequently,
the area integral in this instance can be treated as a point function rather
than as a path function. So Eq. (4.43) becomes

ð1W2Þ surface
tension

= − σs
Z 2

1
dA = − σsðA2 −A1Þ

where A1 = 0. Now, since a soap bubble has two surfaces (the outside and inside films),

A2 = 2ð4πR2Þ = 2ð4πÞ 0:0500m
2

� �2
= 0:0157m2

and

ð1W2Þ surface
tension

= − ð0:0400N/mÞð0:0157− 0m2Þ

= −6:28 × 10− 4 N.m = − 6:28 × 10−4 J

= − ð6:28 × 10− 4 JÞð1Btu/1055 JÞ = −5:96 × 10− 7 Btu

State 1

Wsurf. tension = ?

State 2

D1 = 0
D2 = 0.0500 m

FIGURE 4.14
Example 4.7.
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Example 4.7 shows that it would take all of the surface tension energy stored in nearly 2 million 5 cm diameter
soap bubbles to raise the temperature of one pound-mass of water by one degree Fahrenheit.

Notice that, in each of the four cases of classical mechanical work, the work differential dW was given by the
product of what we can call a generalized force F and a generalized displacement dχ; that is,

dW = Fdχ (4.44)

where F and dχ for each of the four classical mechanical work modes are identified in Table 4.2. In Eq. (4.44),
the scalar or dot product is implied if F and dχ are vectors.

The application of these work modes may change the thermodynamic state of the system and thus may produce
a change in the system’s thermodynamic properties. Finally, note that the generalized forces are all intensive
properties, whereas the generalized displacements are all extensive properties.

We can generalize the work concept to nonmechanical systems by including any work mode given by Eq. (4.44)
when the generalized force F is an intensive property forcing function and the generalized displacement dχ is an
extensive property response function. We are now in a position to analyze the remaining work mode energy
transport mechanisms.

4.7 NONMECHANICAL WORK MODES OF ENERGY TRANSPORT
Of the wide variety of nonmechanical work modes available, the following five are of significant engineering
value:

1. Electrical current flow.
2. Electrical polarization.
3. Magnetic.
4. Chemical.
5. Mechanochemical.

Materials are electrically classified as conductors, nonconductors (dielectrics or insulators), and semiconductors. A pure
conductor is a substance that has mobile charges (electrons) free to move in an applied electric field. They constitute the
flow of electrical current. Pure nonconductors have no free electrons whatsoever, and a semiconductor is a material that
behaves as a dielectric (nonconductor) at low temperatures but becomes conducting at higher temperatures.

As an electric field E is applied to a pure conductor, the free electrons migrate to the conductor’s outer surface,
where they create their own electric field, which opposes the applied field. As more and more electrons reach
the outer surface, the electric field inside the object grows weaker and weaker, eventually vanishing altogether.
At equilibrium, there is no electric field within a pure conductor.

A pure nonconductor has no free electrons with which to neutralize the applied electric field. The externally
applied field therefore acts on the internal molecules, and normally nonpolar molecules become polar and
develop electric dipoles. Some molecules are naturally polar in the absence of an electric field (e.g., water). The
applied electric field rotates and aligns the newly created or naturally polar molecules. Complete alignment is
normally prevented by molecular vibrations. But, when the applied field is strong enough to overcome the
vibration randomizing effects and further increases in field strength have no effect on the material, the material
is said to be saturated by the applied field. The process of electric dipole creation, rotation, and alignment in an
applied electric field is known as dielectric polarization.

Therefore, two work modes arise from the application of an electric field to a material. The first is the work asso-
ciated with the free electron (current) flow, and the second is the work associated with dielectric polarization.
For a pure conductor, the polarization work is always zero; and for a pure nonconductor, the current flow work
is always zero. We always treat these as separate work modes.

Table 4.2 Generalized Forces and Generalized Displacements

Work Mode Generalized Force F Generalized Displacement dχ

Moving system boundary p (pressure) dV (volume)

Shaft T (torque) dθ (angular displacement)

Elastic −σ (stress) Vdε (volume)

Surface tension −σs (surface tension) dA (surface area)
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4.7.1 Electrical Current Flow Work
Electrical current flow work occurs whenever current-carrying wires (pure conductors) cross the system boundary.
This is the most common type of nonmechanical work mode encountered in thermodynamic system analysis.
The generalized force here is the intensive property voltage (the electric potential) ϕ, and the extensive property
generalized displacement is the charge q.7 Then, assuming the voltage is applied to the system,

ðdWÞ
electrical
current

= −ϕdq

and

ð1W2Þ electrical
current

= −
Z 2

1
ϕ dq (4.45)

Electrical current i is defined as

i =
dq
dt

so dq= i dt, and

ðdWÞ
electrical
current

= −ϕi dt (4.46)

Then, electric current work is

Electrical current work

ð1W2Þ electrical
current

=
Z 2

1
ϕi dt (4.47)

From Ohm’s law, the instantaneous voltage ϕ across a pure resistance R carrying an alternating current, described
by i= imax sin(2πft), is

ϕ = Ri = Rimax sin ð2πftÞ
where f is the frequency and ϕmax = Rimax. Thus, Eq. (4.47) gives the electrical current work of n cycles of an
alternating electrical current applied to a pure resistance from time 0 to time t= n/f as

ð1W2Þelectrical
current

= −ϕmaximax

Z t = n/f

0
sin 2ð2πftÞ dt

= −ϕmaximaxðt/2Þ

= −ϕeiet = −ϕ2
e ðt/RÞ = − i2e Rt

(4.48)

where ϕe and ie are the effective voltage and current defined by ϕe = ϕmax/
ffiffiffi
2

p
and ie = imax/

ffiffiffi
2

p
:

Electrical work can exist in either open or closed systems (we do not consider the flow of electrons across a sys-
tem boundary to be a mass flow term). When the electron supply is going into a finite system, such as a battery
or a capacitor, Eq. (4.45) or (4.47) is convenient to use. But, when an essentially infinite supply of voltage and
current is used, it is more convenient to use the instantaneous rate at which electrical work is done, or the elec-
trical power, defined as

ð _WÞ
electrical
current

= dW
dt

= −ϕi (4.49)

OHM’S LAW

This law was discovered experimentally by George Simon Ohm (1787–1854) in 1826. Basically, it states that, for a given
conductor, the current is directly proportional to the potential difference, usually written as ϕ = Ri, where R is the electrical
resistance in units of ohms, where 1 ohm = 1 volt/ampere.

7 The electrical potential ϕ and the electric field strength vector E are related by E=−∇(φ), where ∇( ) is the gradient operator.
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The instantaneous electrical power −ϕi of an alternating current circuit varies in time with the excitation
frequency f. However, it is common to report the electrical power of an ac device as the instantaneous power
averaged over one cycle of oscillation, or

ð _WÞ
electrical
ðpure resistanceÞ

= − f
Z 1/f

0
ϕi dt = − fϕmaximax

Z 1/f

0
sin 2ð2πftÞ dt

= −ϕmaximax/2 = −ϕeie = −ϕ2
e /R = − i2e R

(4.50)

where ϕe and ie are the effective voltage and current defined earlier.

EXAMPLE 4.8
Consider the 120. V, 144 Ω (ohm), alternating current incandescent lightbulb shown in Figure 4.15 to be a pure resistance.
Determine

a. The electrical current work when the bulb is operated for 1.50 h.
b. Its electrical power consumption.

Solution
a. Since the voltage and current ratings of ac devices are always given in terms of their

effective values, φe= 120. V and, from Ohm’s law, ie=ϕe/R= 120./144= 0.833 A.
Then, from Eq. (4.48),

ð1W2Þelectrical
current

= −ϕeiet = − ð120:VÞð0:833AÞð1:50hÞ

= −150:V .A .h = − 150:W .h

b. From Eq. (4.50),

ð _WÞ
electrical
current

= −ϕeie = − ð120:VÞð0:833AÞ = − 100:V .A = −100:W

The minus signs appear because electrical work and power go into the system.

Exercises
16. Determine the work and power consumption in Example 4.8 when the bulb is operated for 8.00 h instead of 1.50 h.

Answer: (1W2)electrical =−800. W ·h, and _Welectrical =−100. W.
17. Determine the effective current drawn by a 1.00 hp ac electric motor operating on a standard 120. V effective power line.

Answer: ie = 6.22 A.
18. Determine the electrical power dissipated by an 8-bit microprocessor computer chip that draws 90.0 mA at 5.00 V dc.

Answer: _Welectrical =−450. mW.

4.7.2 Electrical Polarization Work
The electric dipole formation, rotation, and alignment that occur when an electric field is applied to a noncon-
ductor or a semiconductor constitutes an electric polarization work mode. The generalized force is the intensive
property E

!
(in V/m), the electric field strength vector, and the generalized displacement is the extensive property

P
!

(in A · s/m2), the polarization vector of the medium (defined to be the sum of the electric dipole rotation
moments of all the molecules in the system). Then, assuming the electric field is applied to the system,

ðdWÞ
electrical
polarization

= − E
!.dP

!
(4.51)

and

ð1W2Þ electrical
polarization

= −
Z 2

1
E
!.d P

!
(4.52)

144 ohm

120 .V

a) Welect = ? for 1.50 hour

b) W = ?

FIGURE 4.15
Example 4.8.
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Since the effect of the electric field is to orient the dipoles coincident with the field, then E
!

and P
!

are always
parallel and point in the same direction. Therefore, if we let the magnitude of E

!
be E and the magnitude of P

!
be P, then Eqs. (4.51) and (4.52) reduce to

ðdWÞ
electrical
polarization

= −E dP (4.53)

and

ð1W2Þ electrical
polarization

= −
Z 2

1
E dP (4.54)

Many substances (particularly gases) correlate well with the following dielectric equation of state:

P = ε0χeVE (4.55)

where V is the volume of the dielectric substance, ε0 is the electric permittivity of vacuum (8.85419 × 10−12 N/V2),
and χe is the electric susceptibility (a dimensionless number) of the material. Table 4.3 gives values of χe for various
materials.

EXAMPLE 4.9
The parallel plate capacitor shown in Figure 4.16 is charged to a potential
difference of 120. V at 25.0°C. The plates are square with a side length of
0.100 m and are separated by 0.0100 m. If the gap between the plates is filled
with water, determine the polarization work required in the charging of the
capacitor.

Solution
Here, we can use the dielectric equation of state, Eq. (4.55). Then, Eq. (4.54)
becomes

1W2ð Þ
electric
po1arization

= −
Z 2

1
E dP = −

Z 2

1
ðε0χeVEÞ dE = − ε0χeV E22 −E21

� �
/2

From the problem statement, we have

V = AL = 0:100mð Þ2 0:0100mð Þ = 1:00 × 10−4 m3

If we assume that the electrical potential ϕ varies linearly between the plates, then
we can write

E = j−∇ðϕÞ j = ðvoltage differenceÞ/ðplate gapÞwith E1 = 0 ðuncharged platesÞ
and

E2 = 120:V
0:0100m

= 1:20 × 104 V/m charged platesð Þ

(Continued )

0.100 m
square

0.0100 m

120. volts

Water at
25.0°C

FIGURE 4.16
Example 4.9.

Table 4.3 The Electric Susceptibility of Various Materials

Material Temperature (°C/°F) χe (dimensionless)

Air (14.7 psia) 20/68 5.36 × 10−4

Plexiglass 27/81 2.40

Neoprene rubber 24/75 5.7

Glycerine 25/77 41.5

Water 25/77 77.5

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.
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EXAMPLE 4.9 (Continued )

From Table 4.3, we find that, for water, χe= 77.5. Then,

ð1W2Þelectric
polarization

= − ð8:85419×10− 12 N/V2Þð77:5Þð1:00 × 10− 4m3Þ × ½ð1:20×104Þ2 − 02V2/m2�/2

= −4:94×10−6 N.m¼ −4:94× 10− 6 J

The work is negative since it went into the capacitor (the system).

Exercises
19. How much voltage would be required to store 1.00 MJ of electrical polarization work in the capacitor of Example 4.9?

Answer: V= 3.82 × 107 V.
20. Determine the electrical polarization work in Example 4.9 when the gap between the capacitor plates is filled with air at

20.0°C. Answer: (1W2)polarization =−3.42 × 10−11 J.
21. A capacitor is made from two concentric cylinders 0.100 m long. The diameter of the outer cylinder is 0.0200 m and the

diameter of the inner cylinder is 0.0100 m. The gap between the cylinders is filled with glycerine at 25.0°C. Determine the
electrical polarization work required to charge the capacitor when 120. V is applied. Answer: (1W2)polarization=−1.04 × 10−10 J.

The polarization work is a small fraction of the total energy required to charge an entire capacitor. The total
work required to charge a capacitor is divided into two parts. The largest fraction goes into increasing the electric
field strength E

!
itself, and the remaining goes into the polarization of the material exposed to the electric field.

Consequently, if the thermodynamic system you are analyzing is just the material between the plates of a capaci-
tor, then the only polarization work is done on the material and Eq. (4.54) gives the correct electrical work
mode value. On the other hand, if you are analyzing the entire capacitor (plates and dielectric), then Eq. (4.47)
must be used to determine the correct electrical work mode value.

4.7.3 Magnetic Work
Materials are classified as either diamagnetic, paramagnetic, or ferromagnetic. Diamagnetic materials have no per-
manently established molecular magnetic dipoles. However, when they are placed in a magnetic field, their mole-
cules develop magnetic dipoles whose magnetic field opposes the applied field (the Greek prefix dia means “to
oppose”). Paramagnetic materials have naturally occurring molecular magnetic dipoles. When placed in a mag-
netic field, these dipoles tend to align themselves parallel to the field (the Greek prefix para means “beside”). Fer-
romagnetic materials retain some magnetism after the removal of a magnetic field. The thermodynamic state of
these materials depends not only on the present values of their thermomagnetic properties, but also on their mag-
netic history. In this sense, ferromagnetic materials have a “memory” of their previous magnetic exposure.

As in the case of an electric field, the work associated with the initiation or destruction of a magnetic field con-
sists of two parts. The first part is the work required to change the magnetic field itself (as though it existed
within a vacuum), and the second part is the work required to change the magnetization of the material present
inside the magnetic field.

For calculating the total work of magnetization, the generalized force is the intensive property H
!

(in A/m2), the mag-
netic field strength, and the generalized displacement is the extensive property V B

!
, the product of the system volume V

(in m3) and the magnetic induction B
!

(in tesla or V ·s/m2). Thus, assuming the magnetic field is applied to the system,

ðdWÞmagnetic = −H
!.dðV B

!Þ (4.56)

and since H
!

and B
!

are always parallel and point in the same direction in magnetic materials, this reduces to

ðdWÞmagnetic = −H .dðVBÞ (4.57)

where H is the magnitude of H
!

and B is the magnitude of B
!
. The magnetic induction can be decomposed into two

vectors as

B
!

= μ0H
!

+ μ0M
!

(4.58)

where M
!

is the magnetization vector per unit volume of material exposed to the magnetic field (in a vacuum, M
!

is
equal to the null vector 0

!
), and μ0 = 4π × 10−7 V · s/(A ·m) is a universal constant called the magnetic permeability.

Inserting this information into Eq. (4.57) gives

ðdWÞmagnetic
ðtotalÞ

= − μ0HdðV HÞ− μ0H dðV MÞ (4.59)
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Equation (4.59) is the differential of the total work associated with changing a material’s magnetic field. The first term
corresponds to the work required just to change the field itself (in a vacuum); and the second term corresponds to the
work associated with the alignment of the molecular magnetic dipoles of the material present inside the magnetic
field and represents the work of magnetization of the material exposed to the magnetic field. Hence, we can write

ðdWÞ
material
magnetization

= − μ0HdðV MÞ (4.60)

A simple and useful equation of state for a magnetic field is

M = χmH (4.61)

where χm is the magnetic susceptibility (a dimensionless number) of the material. The magnetic susceptibility is
negative for diamagnetic materials and positive for paramagnetic materials (see Table 4.4). For a constant
volume magnetization process, Eq. (4.61) can be used in Eq. (4.59) to give

ðdWÞmagnetic
ðtotalÞ

= − μ0Vð1+ χmÞHdH

and assuming a constant volume and a constant magnetic susceptibility, this can be integrated to give the total
magnetic work:

Total magnetic work

1W2ð Þ
magnetic
ðtotalÞ

= − μ0V 1+ χmð Þ H2
2 −H2

1

2

� �
(4.62)

where the increment to the total work due to the actual magnetization of the exposed material is just the actual
magnetic work:

Actual magnetic work

1W2ð Þ
material
magnetization

= −μ0Vχm
H2

2 −H2
1

2

� �
(4.63)

Table 4.5 summarizes the electrical and magnetic symbols used in this section.

Table 4.4 The Magnetic Susceptibility of Various Materials

Material Temperature (°C/°F) χm (dimensionless)

Mercury 18/26 −3.2 × 10−5

Quartz 25/77 −1.65 × 10−5

Ice 0/32 −0.805 × 10−5

Nitrogen (14.7 psia) 20/68 −0.0005 × 10−5

Oxygen (14.7 psia) 20/68 0.177 × 10−5

Aluminum 18/64 2.21 × 10−5

Platinum 18/64 29.7 × 10−5

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.

Table 4.5 Summary of Electrical and Magnetic Terms

Symbol Name SI Units

E Electric field strength V/m

P Polarization A ·s/m2

ε0 Permittivity of free space 8.85419 × 10−12 N/V2

χe Electric susceptibility Dimensionless

H Magnetic field strength A/m

B Magnetic induction Tesla or V ·s/m2

M Magnetization A/m

μ0 Magnetic permeability 4π × 10−7 V ·s/A ·m
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EXAMPLE 4.10
The magnetic susceptibility of the diamond in the gold engagement ring shown in
Figure 4.17 is −2.20 × 10−5 at 20.0°C. Determine the (a) total magnetic and (b) material
magnetic work required to change the magnetic field of a 1 carat diamond having a
volume of 5.00 × 10−6 m3 from 0.00 to 1.00 × 103 A/m.

Solution
a. The total magnetic work required is given by Eq. (4.62) as

1W2ð Þmagnetic = − μ0V 1+ χmð Þ H2
2 −H2

1

2

� �

where μ0= 4π × 10−7 V · s/A ·m and χm=−2.20 × 10−5. Then,

1W2ð Þmagnetic = − 4π × 10−7 V ⋅ s
A ⋅m

� �
ð5:00× 10− 6 m3Þð1− 2:20× 10−5Þ 1:00×106 − 0A2/m2

2

� �
= −3:14× 10−6 J

b. The magnetic work required to change the magnetic field strength inside the diamond alone is given by Eq. (4.63) as

1W2ð Þ
materia1
magnetization

= − μ0Vχm
H2

2 −H2
1

2

� �

and, using the values from part a, we get

2W
2

� �
magnetic

= − 4π ×10− 7 V ⋅ s
A ⋅m

� �
5:00×10− 6 m3ð Þ −2:20×10− 5ð Þ 1:00×106 −0A2/m2

2

� �
= 6:91×10− 11 J

Exercises
22. The magnetic susceptibility of gold is −3.60 × 10−5. If the gold in the ring of Example 4.10 has a volume of 1.00 × 10−5 m3,

determine the total magnetic work required to change the magnetic field strength of the ring (the gold plus the diamond)
from 0 to 1.00 × 103 A/m. Answer: (1W2)magnetic=−9.42 × 10−6 J.

23. The magnetic susceptibility of a ferromagnetic material such as iron varies with the applied magnetic field. However, if we
assume it is constant over a small range of field strength at a value of 1800, then determine the (a) total work and (b) the
material work required to magnetize a rectangular iron bar 0.500 inches square by 6.00 inches long from an initial magnetic
field strength of zero to a magnetic field strength of 100. A/m. Answer: (1W2)total= (1W2)iron=−2.78 × 10−4 J.

4.7.4 Chemical Work
Chemical work occurs whenever a specific chemical species is added to or removed from a system. Here, the
generalized force is the intensive property μi, the Gibbs chemical potential of chemical species i, and the general-
ized displacement is the extensive property mi, the mass of the chemical species added or removed.8 Since any
number of chemical species may be involved in a process, we write the chemical work as the sum over all k of
the i species that are moved from the system to the surroundings as

ðdWÞchemical = −∑
k

i=1

μi dmi (4.64)

and so

ð1W2Þchemical = −
Z 2

1
∑
k

i=1

μi dmi (4.65)

8 In chemistry texts, the chemical potential is usually defined on a molar (i.e., per unit gram mole) basis. In this text, we define it as a
standard intensive (per unit mass) property.

1 carat diamond

a) Wtotal magnetic = ? 

b) Wmaterial magnetic = ? 

FIGURE 4.17
Example 4.10.
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When the chemical potential is constant during the mass transfer from state 1 to state 2, Eq. (4.65) can be
integrated to give the chemical work of adding chemical species:

Chemical work of adding chemical species

ð1W2Þchemica1
μi = constant

= −∑
k

i=1

μiðm2 −m1Þi (4.66)

Chemical work does not include the energy transports produced by chemical reactions, nor does it include the
energy transported across the system boundary with the mass transport itself. Mass flow energy transport is con-
sidered later in this chapter, and the energy transports of chemical reactions are studied in detail in Chapter 9.
The chemical work presented here essentially deals only with those energy transports involved in the mixing or
separating of chemical species.

4.7.5 Mechanochemical Work
Mechanochemical work occurs whenever there is a direct energy conversion from chemical to mechanical energy.
Animal muscles are examples of mechanochemical systems. Small mechanochemical engines have also been
built using this work mode, and Figure 4.18 shows a small hydraulic pump driven by a mechanochemical con-
tractile fiber. The “fuel” used in mechanochemical engines is not “burned,” as in a standard heat engine. Often
it is merely diluted and a small amount of chemical work is simultaneously extracted.

Mechanochemical work is calculated as basic mechanical work. The generalized force is the intensive property
f, the force generated by or within the mechanochemical system, and the generalized displacement is the exten-
sive property ℓ, the mechanical displacement of the system. Therefore,

ðdWÞmechanochemical = f dℓ (4.67)

Generally, the mechanochemical force f is not constant during the contraction-expansion cycle, so the total
mechanochemical work must be determined by a careful integration:

Mechanochemical work

ð1W2Þmechanochemical =
Z 2

1
f dℓ

(4.68)

Note that, since the mechanochemical force comes from inside the system, a negative sign is not needed in Eqs. (4.67)
and (4.68).

A system may be exposed to only one of these work modes of energy trans-
port, or it may be exposed to several of them simultaneously. Since work is
an additive quantity, to get the total (or net) work of a system that has more
than one work mode present, we simply add all these work terms together:

Total differential work of all the work modes present

ðdWÞtotal = p dV +T .dθ− σ dε− σs dA

−ϕi dt−E dP− μ0HdðVMÞ−∑
k

i =1

μi dmi+fdℓ+ : : :

(4.69)

It is generally the engineer’s responsibility to determine the number and
type of work modes present in any problem statement or real world situa-
tion. Often, the work modes of a problem are affected by how the system
boundaries are drawn (recall that boundary definition is a prerogative of the
problem solver). For example, if a system contains an electrical heater, then
electrical current work is done on the system. However, if the boundary is
drawn to exclude the heating element itself, then no electrical work occurs
and the energy transport becomes a heat transport from the surface of the
heating element into the system.

Water

B

A

Concentrated LiBr solution

Coupling
belt

Collagen
strip

r1

r2 < r1

FIGURE 4.18
A simple mechanochemical Katchalsky engine.
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4.8 POWER MODES OF ENERGY TRANSPORT
In thermodynamics, the time rate of change of a work mode, dW/dt, is called power, and it represents the power
mode of an energy transport _W. Dividing each of the previous nine differential work mode equations by the time
differential dt produces an equation for the associated power mode. These results, summarized in Table 4.6, are
useful in calculating the power (i.e., work rates) in problems in which continuous rate processes occur. While
continuous rate processes can occur in both closed and open systems, they are more common in open systems.

4.9 WORK EFFICIENCY
Notice that, in all the work mode formulae given so far, no mention was made of the efficiency of the work transport
of energy. This is because all the mechanical and nonmechanical work mode formulae discussed earlier were devel-
oped under the presumption of ideal circumstances, in which there were no friction losses or other inefficiencies
within the system. Under these conditions the work process could ideally be reversed at any time, and all the work
put into a system could be removed again simply by reversing the direction of the generalized force. Therefore, we
call all the mechanical and nonmechanical work (or power) mode formulae developed previously reversible work (or
power) formulae. Consequently—and this is very important—work or power calculations made with these formulae
do not agree with the measurement of actual work that occurs in a real system. In real systems that absorb work,
more actual work than that calculated from the previous formulae are required to produce the same effect on the sys-
tem, and in real work producing systems, less actual work is produced than calculated from the previous formulae.

In the real world, nothing is reversible. Not one of the work modes discussed earlier can actually be carried out
with 100% efficiency. Some are very close to being reversible (i.e., they have very high efficiencies) but none is
completely reversible. This lack of reversibility in the real world is due to a phenomenon of nature that we
describe with the second law of thermodynamics, which is discussed in detail in Chapter 7. Work modes with a
low degree of reversibility (i.e., high irreversibility) are those carried out with systems far from thermodynamic
equilibrium. Heat transfer, rapid chemical reactions (explosions), mechanical friction, and electrical resistance
are all common sources of irreversibility in engineering systems.

Engineers use the concept of a work transport energy conversion efficiency to describe the difference between
reversible and actual work. A general definition of the concept of an energy conversion efficiency is

Energy conversion efficiency = ηE =
Desired energy result
Required energy input

(4.70)

Table 4.6 Power Modes of Energy Transport

Work Mode Power Equation

Mechanical moving boundary ð _WÞ
moving
boundary

=pd�Vdt = p _�V

Mechanical rotating shaft ð _WÞrotating
shaft

=T d
dt

� �
= Tω

Mechanical elastic ð _WÞelastic = −σ�V dε
dt

� �
= −σ�V _ε

Mechanical surface tension ð _WÞsurface
tension

= −σs dA
dt

� �
= −σs _A

Electrical current ð _WÞelectrical
current

= −ϕi

Electrical polarization ð _WÞelectrical
polarization

= − E dP
dt

� �
= − E _P

Magnetic ð _WÞmagnetic = − μ0�Vð1+ χmÞH dH
dt

� �
= − μ0�Vð1+ χmÞH _H

Chemical ð _WÞchemical = −∑μi
dmi
dt

� �
= −∑μi _m i

Mechanochemical ð _WÞmechanochemical = f dℓ
dt

� �
= fℓ

⋅
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In the case of work-absorbing systems, such as pumps or compressors, we can use an equation similar to
Eq. (4.70) to define a work transport energy conversion efficiency, or reversible efficiency, ηW, as work efficiency for
work-absorbing systems:

Work efficiency for work-absorbing systems

ηWð%Þ = Wrev

Wact
× 100 =

_Wrev

_Wact
× 100 (4.71)

In the case of work-producing systems, such as engines or electrical generators, the reversible or work transport
energy conversion efficiency becomes:

Work efficiency for work-producing systems

ηWð%Þ = Wact

Wrev
× 100 =

_Wact

_W rev
× 100 (4.72)

When these systems consist only of mechanical components, as, for example, in an internal combustion engine, the
work transport energy conversion efficiency is simply called the mechanical efficiency and ηW is usually written as ηm.

Even though work transport energy conversion efficiencies are always less than 100%, not all energy conversion
efficiencies are less than 100%. The value of the efficiency depends on the nature of the desired result in
Eq. (4.70). An electrical resistance can convert electrical energy (the energy input) into heat (the desired result)
with an energy conversion efficiency of 100%, but when this process is reversed, we find that the conversion of
heat into work occurs with a much lower efficiency (a consequence of the second law of thermodynamics). On
the other hand, refrigeration systems normally produce more “desired result” (cooling) than it actually costs in
required energy input. Such systems normally have energy conversion efficiencies far in excess of 100%, not
because they violate any law of physics, but simply because of the way their energy conversion efficiency is
defined. Because it seems paradoxical to most people to speak of efficiencies in excess of 100%, we call such
efficiencies coefficients of performance (COPs) instead. For example,

ðCOPÞrefrigerator =
Refrigerator cooling rate
Refrigerator power input

EXAMPLE 4.11
The automobile engine shown in Figure 4.19 produces 150. hp on a test
stand while consuming fuel with a heat content of 20.0 × 103 Btu/lbm at
a rate of 1.10 lbm/min. A design engineer calculates the reversible power
output from the engine as 223 hp. Determine

a. The energy conversion efficiency of the engine.
b. The work efficiency of the engine.

Solution
a. The energy conversion efficiency is given by Eq. (4.70) as

ηE =
Desired energy result
Required energy input

The desired energy result here is the engine output power, 150. hp. The required energy input here is the energy coming from

the fuel, 20.0 × 103 Btu/lbm × 1.10 lbm/min × 60 min/h= 1320 × 103 Btu/h × (1 hp)/(2545 Btu/h)= 519 hp. Then,

η
E
=

150:hp
519hp

= 0:289 = 28:9%

b. Since an engine is a work producing machine, Eq. (4.72) gives the work efficiency as

ηW =
_Wactual

_Wreversible
×100 =

150:hp
223hp

×100 = 67:3%

(Continued )

Wactual = 150. hp

Wreversible= 233 hp

1.10 lbm/min of fuel

FIGURE 4.19
Example 4.11.
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EXAMPLE 4.11 (Continued )

Exercises
24. If the energy conversion efficiency in Example 4.11 were 15.5%, what would be the power output of the engine

measured on the test stand for the same fuel flow rate? Answer: _Wactual = 80:4hp.
25. An engineer designs a pump that requires 1.30 kW of reversible power to operate. A prototype pump is made and taken

to the test laboratory. The actual power required to operate the prototype pump is measured at 1.50 kW. Determine the
work (or mechanical) efficiency of this pump. Answer: ηW= 86.7%.

26. A refrigeration system is powered by a 5.0 kW electric motor. It removes 18 × 103 J/s from the cold storage space. What
is the coefficient of performance of this refrigeration system? Answer: COP= 3.6.

Because of the many irreversibilities that occur within a system, we cannot calculate actual work absorbed or
produced from a theoretical formula. All efficiency values are determined from laboratory or field measurements
on the actual work of real operating systems. When energy conversion efficiencies are to be taken into account
in textbook problems, the efficiency values usually are provided within the problem statement. Experienced
engineers often have a “feel” for what the efficiencies of certain devices should be, and they can use these effi-
ciency estimations in their design calculations. Student engineers, however, are not presumed to be innately
blessed with this knowledge.

The general form of Eq. (4.70) allows the creation of many different types of efficiencies. There are ther-
mal, mechanical, volumetric, thermodynamic, and total efficiencies (to name just a few) in today’s engi-
neering literature. One should always be sure to understand the type of efficiency being used in any
calculation.

4.10 THE LOCAL EQUILIBRIUM POSTULATE
Surprisingly, there is no adequate definition for the thermodynamic properties of a system that is not in an
equilibrium state. Some extension of classical equilibrium thermodynamics is necessary for us to be able to
analyze nonequilibrium (or irreversible) processes. We do this by subdividing a nonequilibrium system into
many small but finite volume elements, each of which is larger than the local molecular mean free path, so
that the continuum hypothesis holds. We then assume that each of these small volume elements is in local
equilibrium. Thus, a nonequilibrium system can be broken down into a very large number of very small sys-
tems, each of which is at a different equilibrium state. This technique is similar to the continuum hypoth-
esis, wherein continuum equations are used to describe the results of the motion of discrete molecules (see
Chapter 2).

The differential time quantity dt used in nonequilibrium thermodynamic analysis cannot be allowed to go to
zero as in normal calculus. We require that dt > σs, where σ is the time it takes for one of the volume elements
of the subdivided nonequilibrium system just described to “relax” from its current nonequilibrium state to an
appropriate equilibrium state. This is analogous to not allowing the physical size of the element to be less than
its local molecular mean free path, as required by the continuum hypothesis. The error incurred by these postu-
lates is really quite small, because they are the result of second-order variations of the thermodynamic variables
from their equilibrium values. However, just as the continuum hypothesis can be violated by systems such as
rarefied gases, the local equilibrium postulate can also be violated by highly nonequilibrium systems such as
explosive chemical reactions. In the case of such violations, the analysis must be carried forward with techniques
of statistical thermodynamics.

Because of the similarity between the local equilibrium postulate and the continuum hypothesis, it is clear that
the local equilibrium postulate could as well be called the continuum thermodynamics hypothesis.

SIMPLE SYSTEM

Any two independent intensive property values are sufficient to determine (or “fix”) the local equilibrium state of a simple
system.
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4.11 THE STATE POSTULATE
To carry out a reversible work mode calculation using the formulae given earlier, we must know the exact beha-
vior of both the generalized force (an intensive property) and the generalized displacement (an extensive prop-
erty) for each work mode. Systems with multiple work modes have a variety of property values that must be
monitored during the work process to utilize the proper work mode formulae. Therefore, it seems reasonable to
expect that a simple relation exists between the number of work modes present in any given system and the
number of independent property values required to fix the state of that system. This is the purpose of the fol-
lowing state postulate:

The number of independent intensive thermodynamic property values required to fix the state of a closed sys-
tem that is

1. Subject to the conditions of local equilibrium,
2. Exposed to n (nonchemical) work modes of energy transport, and
3. Composed of m pure substances is n + m.

Therefore, a pure substance (m= 1) subjected to only one work mode (n= 1) requires two (n + m= 2) indepen-
dent property values to fix its state. Such systems are called simple systems, and any two independent intensive
properties determine (or “fix”) its state.

The compression or expansion of a pure gas or vapor is a simple system. The work mode is moving system
boundary work, and any two independent intensive property values (p, v; p, T; v, T, etc.) fix its state. In fact, a
simple system occurs when each of the nonchemical reversible work modes just discussed is individually applied
to a pure substance. On the other hand, if two of them are simultaneously applied to a pure substance, then
n + m = 3 and three independent intensive property values are required to fix the state of the system.

4.12 HEAT MODES OF ENERGY TRANSPORT
We now introduce the three basic modes of heat transport of energy. Since a good heat mode analysis is some-
what more complex than a work mode analysis and since its understanding is very important to a good engi-
neering education, most mechanical engineering curricula include a separate heat transfer course on this subject.
Consequently, this section is meant to be only an elementary introduction to this subject.

A system with no heat transfer is said to be adiabatic, and all well-insulated systems are considered to be adia-
batic. A process that occurs with no heat transport of energy is called an adiabatic process.

In the late 18th century, heat was thought to be a colorless, odorless, and weightless fluid, then called caloric. By
the middle of the 19th century, it had been determined that heat was in fact not a fluid but rather it represented
energy in transit. Unfortunately, many of the early heat-fluid technical terms survived and are still in use today.
This is why we speak of heat transfer and heat flow, as though heat were something physical, but it is not.
Because these conventions are so deeply ingrained in our technical culture, we use the phrases heat transfer, heat
transport, and the heat transport of energy interchangeably.

After it was determined that heat was not a fluid, late 19th century physicists defined heat transfer simply as
energy transport due to a temperature difference. In this framework, temperature was the only intensive property
driving force for the heat transport of energy.

Today, the simplest way to define heat transport of energy is as any energy transport that is neither a work mode
nor a mass flow energy transport mode. More precisely, modern nonequilibrium thermodynamics defines heat
transfer as just the transport of internal energy into or out of a system. With this definition, all other energy
transport modes are automatically either work or mass flow modes.

The basic heat transfer formulae were developed empirically and, unlike the previous work mode formulae, give
actual rather than reversible heat transport values. In fact, since heat transfer always occurs as a result of energy

WHAT DOES THE WORD ADIABATIC MEAN?

The term adiabatic was coined in 1859 by the Scottish engineer William John Macquorn Rankine (1820−1872). It comes
from the Greek word, αδιαβατοσ, meaning “not to pass through.” In thermodynamics, it means heat does not pass through
the system boundary, or simply that there is no heat transfer. Adiabatic is the analog of the word aergonic (meaning “no
work”) introduced earlier in this chapter.
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spontaneously moving down a potential gradient (such as from high to a low temperature) and the reverse can-
not spontaneously occur, no heat transfer process can be reversed in any way whatsoever. Therefore, all finite
heat transfer processes are irreversible.

4.13 HEAT TRANSFER MODES
Heat transfer is such a large and important mechanical engineering topic that most curricula have at least one
required course in it. Heat transfer equations are always cast as heat transfer rate (i.e., _Q) equations. To deter-
mine the amount of heat energy transport that occurs as a system undergoes a process from one equilibrium

state to another you must integrate _Q over the time interval of the process, or 1Q2 =
Z 2

1

_Q dt. Normally, we

choose processes in which _Q is constant in time so that the integral becomes simply 1Q2 = _Q ðt2 − t1Þ = _QðΔtÞ,
where Δt is the time required for the process to occur.

Historically, the field has been divided into three heat transfer modes: conduction, convection, and radiation.
These three modes are briefly described next.

4.13.1 Conduction
The basic equation of conduction heat transfer is Fourier’s law:

_Qcond = −ktA
dT
dx

� �
(4.73)

where _Qcond is the conduction heat transfer rate, kt is the thermal conductivity of the material, A is the cross-
sectional area normal to the heat transfer direction, and dT/dx is the temperature gradient in the direction of
heat transfer. The algebraic sign of this equation is such that a positive _Qcond always corresponds to heat transfer
in the positive x direction, and a negative _Qcond always corresponds to heat transfer in a negative x direction.
Since this is not the same sign convention adopted earlier in this text, the sign of the values calculated from
Fourier’s law may have to be altered to produce a positive when it enters a system and a negative when it leaves
a system.

For steady conduction heat transfer through a plane wall (Figure 4.20), Fourier’s law can be integrated to give

ð _QcondÞplane = − ktA
T2 −T1
x2 − x1

� �
(4.74)

and for steady conduction heat transfer through a hollow cylinder of length L, Fourier’s law can be integrated to give

ð _QcondÞcylinder = −2πLkt
Tinside −Toutside
lnðrinside/routside

� 	
(4.75)

Table 4.7 gives thermal conductivity values for various materials.

(a) Plane wall (b) Cylindrical and spherical 
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FIGURE 4.20
Thermal conduction notation in plane, cylindrical, and spherical coordinates.
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4.13.2 Convection
Convective heat transfer occurs whenever an object is either hotter or colder than the surrounding fluid. The
basic equation of convection heat transfer is Newton’s law of cooling:

_Qconv = hAðT∞ −TsÞ (4.76)

where _Qconv is the convection heat transfer rate, h is the convective heat transfer coefficient, A is the surface area
of the object being cooled or heated, T∞ is the bulk temperature of the surrounding fluid, and Ts is the surface
temperature of the object. The algebraic sign of Newton’s law of cooling has been chosen to be positive for
T∞ > Ts (i.e., for heat transfer into the object). This corresponds to our thermodynamic sign convention for heat
transfer when the object is the system. The convective heat transfer coefficient h is always a positive, empirically
determined value. Table 4.8 lists typical heat transfer coefficients.

4.13.3 Radiation
All electromagnetic radiation is classified as radiation heat transfer. Infrared, ultraviolet, visible light, radio and
television waves, X rays, and so on are all forms of radiation heat transfer. The radiation heat transfer between
two objects situated in a nonabsorbing or emitting medium is given by the Stefan-Boltzmann law:

_Qrad = F1−2ε1A1σðT4
2 − T4

1 Þ (4.77)

where _Qrad is the radiation heat transfer rate, F1–2 is called the view factor between objects 1 and 2 (it describes how
well object 1 “sees” object 2), ε1 is the dimensionless emissivity or absorptivity (the hotter object is said to emit
energy while the colder object absorbs energy) of object 1, A1 is the surface area of object 1, σ is the Stefan-
Boltzmann constant (5.69 × 10−8 W/m2 ·K4 or 0.1714 × 10−8 Btu/h · ft2 ·R4), and T1 and T2 are the surface
temperatures of the objects. A black object is defined to be any object whose emissivity is ε = 1.0. Table 4.9 lists
some typical emissivity values. Also, if object 1 is completely enclosed by object 2, then F1–2= 1.0. For a comple-
tely enclosed black object, the Stefan-Boltzmann law reduces to

ð _QradÞblack
enclosed

= A1σðT4
2 − T4

1 Þ (4.78)

Table 4.7 Thermal Conductivity of Various Materials

Material

Thermal Conductivity kt

Temperature (°C/°F) Btu/(h · ft ·R) W/(m ·K)

Air (14.7 psia) 27/81 0.015 0.026

Hydrogen (14.7 psia) 27/81 0.105 0.182

Saturated water vapor (14.7 psia) 100/212 0.014 0.024

Saturated liquid water (14.7 psia) 0/32 0.343 0.594

Engine oil 20/68 0.084 0.145

Mercury 20/68 5.02 8.69

Window glass 20/68 0.45 0.78

Glass wool 20/68 0.022 0.038

Aluminum (pure) 20/68 118.0 204.0

Copper (pure) 20/68 223.0 386.0

Carbon steel (1% carbon) 20/68 25.0 43.0

Table 4.8 Typical Values of the Convective Heat Transfer Coefficient

Type of Convection

Convective Heat Transfer Coefficient h

Btu/(h · ft2 ·R) W/(m2 ·k)

Air, free convection 1–5 2.5–25
Air, forced convection 2–100 10–500
Liquids, forced convection 20–3000 100–15,000
Boiling water 500–5000 2500–25,000
Condensing water vapor 1000–20,000 5000–100,000
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The sign convention in the Stefan-Boltzmann law has been chosen to be positive when T2 > T1; therefore, the
“system” should be object 1 to achieve the correct thermodynamic sign convention. Also note that this equation con-
tains the temperature raised to the fourth power. This means that absolute temperature units must always be used.

4.14 A THERMODYNAMIC PROBLEM SOLVING TECHNIQUE
The previous 11 example problems have been relatively straightforward, mainly illustrating the use of specific
energy and work mode equations. However, most thermodynamics problems are not so straightforward, and
now we are ready to introduce a comprehensive thermodynamic problem solving technique that allows you to
set up and solve even the most complex thermodynamics problems.

Thermodynamic problem statements sometimes have the appearance of being stories full of technical jargon,
liberally sprinkled with numbers. All too often, your first instinct on being faced with such a situation is to cal-
culate something—anything—because the act of calculation brings about the euphoria of apparent progress
toward a solution. However, this approach is quickly stalled by the inability to reach the final answer, followed
by long frustrating periods of shoe shuffling and window staring until either enlightenment, discouragement, or
sleep occurs. This is definitely the wrong problem solving technique. A good technique must have definite start-
ing and ending points, and it must contain clear and logical steps that carry you toward a solution.

As a prelude to discussing the details of the problem solving technique, you should realize that the general
structure of a thermodynamic word problem usually contains the following three features.

1. A thermodynamic problem statement is usually a small “story” that is too long to be completely and
accurately memorized no matter how many times you read it. So simply reading the problem statement
once is usually not enough; you must translate it into your own personal environment by adding a
schematic drawing, writing down relevant assumptions, and beginning a structured solution.

2. To completely understand the problem statement, you must first “decode” it. That is, you must dissect and
rearrange the problem statement until it fits into a familiar pattern. Any problem solving technique is, of
course, based on the premise that the problem has a solution. Curiously, it is very easy to construct problem
statements that are not solvable without the introduction of extraneous material (judiciously called
assumptions).

3. Thermodynamic problem statements tend to be very wide ranging. They can be written about virtually any
type of system and can deal with virtually any form of technology. To give the problem statements a
pragmatic engineering flavor, they are usually written as tiny stories that are designed to reflect what you
will encounter as a working engineer.

Unfortunately, many students facing thermodynamics for the first time are overwhelmed by these factors. How
are you supposed to know anything about how a nuclear power plant operates, how the combustion chamber
of a turbojet engine functions, or how a boiler feed pump works if you have never actually seen one in opera-
tion? The key is that you really do not have to know that much about how these things work to carry out a
good thermodynamic analysis of them. But, you do have to understand how problem statements are written
and how to analyze them correctly. This is the core of the problem solving technique.

In fact, it would be possible to write a computer program that could solve any thermodynamic word problem.
What we are going to do is to show you how to solve thermodynamic problems by using a computerlike flow-
chart approach, as in Figure 4.21.

The technique is really very simple. First, you must learn to formulate a general starting point. Then you must
learn to identify the key logical decisions that have to be made as the solution progresses. Finally, when all the

Table 4.9 Typical Emissivity Values for Various Materials

Material Temperature (°C/°F) Emissivity ε (dimensionless)

Aluminum 100/212 0.09

Iron (oxidized) 100/212 0.74

Iron (molten) 1650/3000 0.28

Concrete 21/70 0.88

Flat black paint 21/70 0.90

Flat white paint 21/70 0.88

Aluminum paint 21/70 0.39

Water 0–100/32–212 0.96
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analysis and algebraic manipulations are complete, you make the necessary calculations (paying close attention
to units and significant figures) to obtain the desired results.

The steps to be followed are shown in Figure 4.21, and each step is discussed in detail next.

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system or device described in the problem statement and determine the
material (air, steam, liquid water, etc.) with which you are working. Then, carefully define the part(s) you
choose to analyze by inserting a dashed line to identify the system boundary.
Step 2. Identify the problem’s unknown(s) by rereading the problem statement and picking out all the
things you are supposed to determine. Write them on your system sketch.
Step 3. Determine whether it is a closed system or an open system. If your system is closed, identify as
many of the state properties as you can. Most problems have only two states (initial and final), but some
also have intermediate states with which you have to contend. To keep the numerical values and units of
the state properties straight, list each one under a “state” heading.

Read next problem statement
Yes

5a) Basic equations:
 > Conservation of mass
 > Conservation of
          energy (1st law)
 > Second law
5b) Auxiliary equations:
 > Heat modes
 > Work modes
 > Mass flow
 > Equations of state, etc.

No

1a) Draw a sketch of the system
1b) Label the sketch with data
 from the problem statement 

3a) Is it a closed system?
 Identify the system “States”
3b) Is it a open system?
 Identify the inlet and outlet
 “Stations”

Start by reading the
problem statement

2) List the problem
 unknown(s) on the
 system sketch

4) Identify the “process”
 connecting the states or
 stations

5) Write the basic equations
 and write any necessary
 auxiliary equations

6) Algebraically solve for
 the unknown(s)

7) Calculate the value(s)
 for the unknown(s)

8) Check all algebra,
 calculations, and units

 Another problem?

End

1) Identify the system 

3) Identify the type of
 system

FIGURE 4.21
Flowchart for solving thermodynamic problems.
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Notice that, for “simple” thermodynamic systems, we always are looking for the values of two independent
properties in each state. These two property values fix (i.e., determine) the state and we can then find the values
of any of the other properties needed at that state.

Often a problem statement gives only one property value at a system state. In this case, the remaining indepen-
dent property value at that state is usually given by the process path statement that indicates how that state was
achieved (e.g., an isothermal process tells us that T2 = T1) or else it may be a problem unknown to be
determined.

If it is an open system, we are interested in any changes that occur in the system bulk properties of the system
plus all the properties of the entering and exiting flow streams. Flow stream properties are referred to as moni-
toring station properties, to clearly separate them from bulk system properties.

WHAT IS THE SECRET TO SOLVING THERMODYNAMICS PROBLEMS?

The secret to solving thermodynamic problems is to do the analysis first and do the calculations last, not the other way around.
The basic process for solving a thermodynamics problem is this:

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.
Step 3. Identify the type of system (closed or open) you have.
Step 4. Identify the process that connects the states or stations.
Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).
Step 7. Calculate the value(s) of the unknown(s).
Step 8. Check all algebra, calculations, and units.

The process is this:

Sketch ! Unknowns ! System ! Process ! Equations ! Solve ! Calculate ! Check

For example, if you have a flow stream entering the system at station 1 with a temperature of 300.°C and a pressure of
1.00 MPa, and a flow stream exiting the system at station 2 with a specific volume of 26.3 m3/kg and a quality of 99.0%,
you should write this information on your work sheet as (always be sure to include the units on these values):

Station 1
Process path������! Station 2

p1 = 1:00MPa v2 = 26:3m3/kg
T1 = 300:°C x2 = 0:990

Here, too, we are trying to identify two independent property values at each station, because in simple systems, they fix the
state of the material at that station.

For example, if you have a closed system that is initially at 14.7 psia with a specific volume of 0.500 ft3/lbm and by some
process it ends up at 200. psia at a quality of 90.0%, you should write this information on your work sheet in the follow-
ing form (always be sure to include the units on these values):

State 1
Process path������! State 2

p1 = 14:7psia p2 = 200:psia
v1 = 0:500 ft3/lbm x2 = 0:900
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Step 4. Now identify the process connecting the state or stations. The process path statement is usually given
in technical terms such as a closed, rigid vessel, meaning an isochoric (or constant volume) process will occur.
Proper identification of the process path is very important, because it often provides numerical values for state
properties (e.g., v2= v1 for a closed, rigid vessel) or heat, work, or other thermodynamic quantities (e.g., an
insulated or adiabatic system has 1Q2 = _Q = 0, an aergonic system has 1W2= _W =0, and so forth). When two
independent property values are given in the problem statement for each state or station of the system, the
process path is not necessary unless it provides values for heat, work, kinetic energy, or potential energy.

Step 5. Write down all the basic equations. Your work sheet should now have all the details of the
problem on it and you should not have to look at the problem statement again. The actual solution to the
problem is begun by automatically writing down (whether you think you need them or not) all the relevant
basic equations. Thermodynamics has only three basic equations:
a. The conservation of mass (which is also called the mass balance).
b. The first law of thermodynamics (which is also called the energy balance or the conservation of energy).
c. The second law of thermodynamics (which is also called the entropy balance).

In closed systems, the conservation of mass is automatically satisfied and need not be written down. Also, since
the entropy balance is not be introduced until Chapter 7, it does not enter into the solution of any problems until
then. So, for solving the closed system problems of Chapter 5, there is really only one relevant basic equation: the
first law of thermodynamics. In solving the open system problems of Chapter 6, there are two relevant basic
equations: the conservation of mass and the first law of thermodynamics.

Write any necessary auxiliary equations. All the equations developed in this book that are not one of the
three basic equations discussed previously are called auxiliary equations. For example, all equations of state
(ideal gas and incompressible materials), all work mode equations (mechanical, electrical, etc.), all heat
mode equations (conduction, convection, radiation), all property-defining equations (specific heats,

The easiest way to show the process path on your work sheet is to write the statement “Process: process name” on a connect-
ing arrow between the state or station data sets. In the closed system example used in step 3, if the state change occurs in a
closed, rigid vessel and we do not know the final quality, then we would write

State 1
Process: v = constant����������! State 2

p1 = 14:7psia p2 = 200:psia
v1 = 0:500 ft3/lbm v2 = v1 = 0:500 ft3/lbm

And, if the open system of step 3 is operated at a constant pressure (i.e., an isobaric process) and we do not know the final
quality, then we would write

Station1
Process: p = constant����������!

Station2
p1 = 1:00MPa v2 = 26:3m3/kg
T1 = 300:°C p2 = p1 = 1:00MPa

Always write down the complete general form of the basic equations. Do not try to second-guess the problem by writing
the shorter specialized forms of the basic equations that were developed for specific applications. Then, cross out all terms
that vanish as a result of given constraints or process statements. For example, for a closed, adiabatic, stationary system, we
write the energy balance as (see Eq. (4.20), where we have used the abbreviation KE = mV 2/2gc and PE = mgZ/gc)

1Q2
⎵

= 0 ðadiabatic ðinsulatedÞ systemÞ

− 1W2 = mðu2 − u1Þ + KE2 −KE1 +PE2 −PE1
⎵

j
= 0 ðstationary - i.e., not moving)

Notice that we write why each crossed out term vanishes (“adiabatic” and “stationary” in this case). This makes the
solution easier to follow and to check later if the correct answer was not obtained.
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enthalpy, etc.), and all specialized equations (such as KE=mV2/2gc, etc.) are auxiliary equations. If the
problem statement describes a mechanical, electrical, or other work mode, then write the equation for
calculating the value of that work mode. Auxiliary equations ultimately provide numerical values for use in
the basic mass, energy, and entropy balance equations.
Step 6. Algebraically solve for the unknown(s). Do not calculate anything yet. By algebraically
manipulating the basic and auxiliary equations you should be able to develop a separate equation for each
unknown. Remember, you can solve for only as many unknowns as you have independent equations. All of
the basic equations and most of the auxiliary equations are independent, so many times unknowns are
determined directly from an auxiliary equation. For example, in the problem statements dealing with closed
systems, we have only one applicable basic equation, the first law of thermodynamics (the energy balance).
Therefore, if there is more than one unknown in these problem statements, then all but one of these
unknowns must be determined directly from an appropriate auxiliary equation.
Step 7. Calculate the value(s) of the unknown(s). Once all the algebra has been completed, then and only
then should you begin to calculate numerical values.
Step 8. Check all algebra, calculations, and units. This is self-explanatory, but pay particular attention to
checking the units. With the calculational accuracy of today’s inexpensive electronic calculators and
microcomputers, most of your errors occur as a result of poor units handling rather than from numerical
manipulations.

These eight steps are illustrated in detail in the examples in the next chapter. They will lead you through even
the most difficult thermodynamic problems. Once you become familiar with them, the solutions flow quite
rapidly and naturally. It must be emphasized that these steps are not the only solution technique possible, but
they have proven successful for many engineering students.

4.15 HOW TO WRITE A THERMODYNAMICS PROBLEM
A good test of your problem solving skills is to see whether or not you can write a thermodynamics problem
that can be solved. The technique of writing your own thermodynamics problem is just the reverse of solving
one. It is as simple as A, B, C.

A. First, you first decide (1) the type of system (closed or open) you want to use, (2) the equations you want
to use in the solution (thermodynamic laws, equations of state, work mode equation, and so forth), and (3)
the unknown(s) you want to find in the solution.

B. Next, you write a short story that provides physical motivation for the problem that contains all the
numerical values necessary to find state properties and any geometry, height, or velocity information needed
to solve for your chosen unknowns.

C. Finally, you solve your problem in a forward direction to see if you have specified all the necessary
information for someone to produce an accurate solution.

This is easier than it sounds. First, let us look at the equations that can be used in a problem solution.

By this point you should be able to see your way to the end of the problem, because the mechanism for finding each of the
unknowns should now be clear. Determine the units on each value calculated and make sure that all values that are added
together or subtracted from each other have the same units. Often one of the unknowns is needed to find another; for
example, you may need to find 1W2 from a work mode auxiliary equation to solve for 1Q2 from the energy balance equation.

Unlike in some other engineering subjects, you will not be able to find all the algebraic manipulations already done for
you in example problems within the text or by the instructor in class. There are simply too many possible variations on a
problem theme to do this. Therefore, you have to carry out the mathematical manipulations suggested here to develop
your own working formulae in almost every problem. This is a fact of thermodynamic problem solving.
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A. Select the working equations and unknowns
The problem unknowns can be any of the variables carried within the basic laws of thermodynamics and any of
the related auxiliary equations introduced thus far. For simplicity, let us limit the discussion to a closed system
analysis. The general closed system energy balance is

1Q2 − 1W2 = m ðu2 − u1Þ+ V2
2 −V2

1

2gc
+

gðZ2 −Z1Þ
gc

� 	
system

and the general closed system energy rate balance is

_Q − _W = d
dt

mu+ mV2

2gc
+

mgZ
gc

� �
system

Any of the variables listed in these equations can be an unknown in a problem statement. In addition to the
basic balance equations, we have numerous auxiliary equations, such as

■ Equations of state for ideal gases, incompressible fluids, or other materials.
■ Process path equations such as polytropic, isobaric, and the like.
■ Various work mode equations for mechanical, electrical, and other work modes.

List all the basic (thermodynamics laws) and auxiliary equations you want the person who solves your problem
to use in the solution. Then choose the variables you want to use as unknowns. Remember, you need as many
independent equations in your list of equations as the number of unknowns you choose, so do not choose too
many. Then, assign numerical values to all the remaining variables in the equations that are to be used to solve
for the unknowns. Do not be too concerned about the actual values you pick at this point; if you choose the
wrong values, it will show up in step C, and you can correct them later.

B. Write a short story that contains all the information needed
to solve the problem

It would be helpful if we could categorize to some degree the wide variety of problem types or scenarios com-
monly encountered in thermodynamics. The first classification is by the thermodynamic process used in the pro-
blem scenario, the second classification is by the engineering technology used in the problem scenario, and the
third is by problem unknown. Since the number of variations within these classifications is quite large, they are
explained in detailed here.

Problem classification by thermodynamic process. A problem statement could involve more than one
process or involve unknown processes. Therefore, the process for changing the state of a system could be
the focal point of a problem statement. For example, we might want to find how the temperature
changes during a constant pressure process. This would then be the central theme of the problem
statement.
Problem classification by problem technology. The list of possible engineering technologies is much longer
than the list of known processes. Actually, any device or technology can be analyzed thermodynamically.
A series of “typical” technology based scenarios appear in engineering thermodynamics textbooks. For
example, you might want to find the work required to compress a gas with a piston, the change in
temperature across a nozzle, the power produced by a turbine, and so forth. Then, the problem statement
focuses on these technologies, providing numerical values for all the variables except the problem
unknowns.
Problem classification by problem unknown. These problems are usually the simplest, since they do
not depend on a specific technology or process path. The unknowns are simply calculated directly from
the thermodynamic laws (i.e., Q, W, KE, PE, etc.) or from an auxiliary equation (i.e., the ideal gas
equation, etc.).

C. Solve the problem in the forward direction
Here you (or a friend) must actually solve the problem you wrote using the data you provided in the pro-
blem statement. You will usually find that you get stuck part way through the problem and have to go back
and modify the problem statement. That is OK, do it quickly and go on with the solution. Sometimes, values
you originally chose cannot be found easily in the tables or are unreasonable (for example, maybe you
wanted a state to be a vapor but the values you originally specified for pressure and temperature are for a
liquid). Using the tables in the tables book and your emerging solution, change the original values in your
problem statement so that the problem solution moves along smoothly. Be careful to check the units on each
calculation.

4.15 How to Write a Thermodynamics Problem 135



Now Let us Write a Thermodynamics Problem
Step A. We limit it to a closed system and use the energy balance as our primary equation:

1Q2 − 1W2 = m ðu2 − u1Þ+ V2
2 −V2

1

2gc
+

gðZ2 −Z1Þ
gc

� 	
system

Choose the material. Let the system contain an ideal gas. Then auxiliary equations pv= RT and u2 − u1=
cv(T2 − T1) can be used.
Choose the unknowns. With two independent equations, we can have two unknowns. Let us choose
1Q2 and p2 as the unknowns. We can solve for 1Q2 from the energy balance and solve for p2 = RT2/v2.
If we put the system in a rigid container, then 1W2 =m∫pdv= 0, because for a sealed rigid container,
v = constant, then dv= 0. Let us also add the condition that the process must be isothermal, then
T2 = T1 and thus u2 − u1= cv(T2 − T1)= 0. Further, let us also require that V2= V1, then the energy
balance reduces to

1Q2 −0 = m 0+ 0+
gðZ2 −Z1Þ

gc

� 	
system

Now all we need to do is specify m, Z1, and Z2 and we can compute 1Q2.
Step B. The next step is to write a scenario, or a short story, that uses these processes and values to create a

thermodynamic problem. Let us try this:

There are 5.00 kg of hydrogen gas (an ideal gas) at 20.0°C and 0.300 MPa sealed inside a wooden barrel
(a rigid container) at the top of Niagara Falls. The barrel is not insulated and is maintained at a constant
temperature (i.e., isothermal) as it travels over the falls in contact with the water. Determine

a. The heat transfer from the barrel as it travels 50.0 m vertically between the top and bottom of the falls.
b.The final pressure inside the barrel at the bottom of the falls.

Note that the problem scenario does not have to be deadly serious, you can write problem statements
around anything your imagination can conceive.

Step C. Now we must work the problem in the forward direction to see if all the necessary information has
been provided, so let us try it.

Solution
The problem solving technique requires that we start by reading the problem statement carefully.

Step 1 ask us to draw a sketch of the system (the barrel going over the Niagara Falls, see Figure 4.22) and iden-
tify the material in the system, it is the hydrogen in the barrel.

Step 2 asks us to identify the unknowns. Even though we just wrote the problem statement, it is important to
read it again, carefully, to check for errors and completeness. The problem statement should contain clarifying
statements so that the reader need not make any unreasonable assumptions. For example, in our problem state-
ment, we identified the hydrogen as an ideal gas, because it is not obvious to a beginning thermodynamics stu-
dent which materials behave like an ideal gas and
which do not. Also, while it may be obvious to you
when you wrote the problem statement that a barrel
is to be modeled as a sealed, rigid container, it is advi-
sable to tell the reader this in clear terms, since the
purpose of the problem should be to test the pro-
blem solving skills of the reader, not his or her ability
to read your mind about how to interpret unfamiliar
things. The unknowns here are clearly specified in
items (a) and (b) at the end of the problem state-
ment. They are find 1Q2 and p2.

Step 3 asks us to identify the system’s type and its
states. The system here is closed (because the barrel is
sealed). We should be able to identify the system states
from the information given in the problem statement:

State 1 State 2
T1 = 20:0°C T2 = T1 = 20:0°C
p1 = 0:300Mpa ?

State 1 State 2

5.00 kg of hydrogen gas
at 20.0°C and 0.300 MPa

50.0 m
Niagara falls

FIGURE 4.22
A barrel going over Niagara Falls.
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We have now identified two properties in the first state but only one in the second. This is a common structure at
this point in the solution. The missing property must come from somewhere else in the solution, either from the
process path or from the working equations used in the solution.

In step 4 we have to identify the process path taken by the system as it moves between states 1 and 2. Note
that, since the system is at a constant temperature and is a sealed, rigid container, the process path here has both
constant temperature and constant volume and mass, so it is also has a constant specific volume. Now, we
can add the process path line to the state information and the missing second state property, so that it looks
like this:

State 1 − − − −T = costant and v = constant− − − −> State 2
T1 = 20:0°C T2 = T1 = 20:0°C
p1 = 0:300Mpa v2 = v1 = RT1/p1

We now have two properties in each state and can continue with the solution. Note that we do not need to
calculate the value of v2 yet, since we are not sure we need it in the solution.

Step 5 is to write the basic equations. Since this is a closed system, the conservation of mass equation yields no
useful information, as the mass of the system is constant. However, the conservation of energy (the first law of
thermodynamics) is very useful here:

1Q2 − 1W2 = m ðu2 − u1Þ+ V2
2 −V2

1

2gc
+

gðZ2 −Z1Þ
gc

� 	
system

Next, we write all the relevant auxiliary equations. If you do not know whether an auxiliary equation is relevant
or not, write it down anyway and decide later. Let us start with equations of state. If the material in the system
were steam or refrigerant or anything for which there is a table in the tables book, we would use those tables
rather than an equation of state. However, hydrogen was given in the problem statement as an ideal gas, so we
can write its equations of state as

pv = RT and u2 − u1 = cvðT2 − T1Þ

Note that the first equation of state can be used as both p1v1= RT1 and p2v2 = RT2.

Next, let us look at work mode equations. No rotating shafts or wires cross the system boundary nor has any
reference been made in the problem statement to any electric or magnetic fields. Consequently, no shaft, electri-
cal, polarization, magnetic, or other work mode is present. We also need to check for moving boundary work,
(1W2)moving boundary =m∫pdv. Since the system is closed (the mass is constant) and rigid (so the volume is con-
stant), the specific volume (total volume divided by mass) is constant. Then dv = 0 and there is no moving
boundary or any other type of work. So, 1W2= 0.

At this point we should also identify any changes in kinetic or potential energy. Our problem statement specifies
the change in height over the falls as 50.0 m, but it does not mention anything about velocity. The intent here is
to have the initial and final velocities of the system be the same, but that might be too much to ask the reader
to assume. Therefore, we should alter the problem statement by replacing the word Determine with the phrase
Assuming the initial and final velocities of the barrel are the same, determine. Then, the problem statement reads as
follows:

Five kilograms of hydrogen gas (an ideal gas) at 20.0°C and 0.300 MPa are sealed inside a wooden barrel
(a sealed, rigid container) at the top of Niagara Falls. The barrel is not insulated and is maintained at a
constant temperature (i.e., isothermal) as it travels over the falls in contact with the water. Assuming the
initial and final velocities of the barrel are the same, determine

a. The heat transfer from the barrel as is travels 50.0 m vertically between the top and bottom of the falls.
b. The final pressure inside the barrel at the bottom of the falls.

In step 6 we are ready to algebraically solve for the unknowns. From the energy balance, we can solve for the
heat transfer required in part (a) as

1Q2 = m ðu2 − u1Þ+
V

2

2
−V

2

1

2gc
+

gðZ2 −Z1Þ
gc

" #
system

+ 1W2
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Now, we incorporate our earlier results that 1W2 = 0 and u2 − u1 = cv(T2 − T1) = 0, because T2 = T1 here (the
process is also isothermal). Our latest rendition of the problem statement makes it clear that V2 = V1, and when
these conditions are incorporated into the energy balance, we obtain our final equation for the heat transfer as

1Q2 = m 0+0+
gðZ2 −Z1Þ

gc

� 	
system

+ 0 =
mg
gc

ðZ2 −Z1Þ

and, from the equation of state, we can determine the solution to part (b) as

p2 = RT2/v2 = RT1/v2 = RT1/v1 = p1

since T2 = T1 and v2 = v1.

Step 7 allows us to calculate the values of the unknowns:

ðaÞ 1Q2 =
ð5:00 kgÞð9:81m/s2Þ

1
ð0− 50:0mÞ = −2450 kg .m2/s2

= −2450N ⋅m = −2450 J = −2:45 kJ

and

ðbÞ p2 = p1 = 0:300MPa

The negative sign in the answer for part (a) tells us that the heat transfer is out of the system. Note that the
answer in part (b) was not the result of a complex calculation. However, it did result from a rather complex ana-
lysis and, therefore, is not trivial. Also note that we did not need the value of v2 in the solution of the problem,
so it would have been a waste of time to have calculated it early in the solution.

In step 8, since the solution now seems to work well, the problem statement is complete and accurate. We
should now check all the algebra, units, and calculations before creating and solving additional problems with
similar or different scenarios.

Exercises for the problem solved in Steps 1–8
1. Rewrite this problem and make the barrel insulated but not isothermal. (Can it be both insulated and

isothermal?) Resolve the problem with these new conditions. Is any additional information needed to find
T2 and p2?

2. Write a thermodynamics problem about a computer chip. Look up the steady state voltage and current
required by a typical computer chip in a handbook and supply these values in the problem statement. This
is a closed system, and the chip cannot be insulated (otherwise, it would overheat). Use the energy rate
balance in the formulation of your problem scenario.

3. Write a thermodynamics problem about an electrical generator. Use the closed system energy rate balance.
Make the process steady state. You may have the generator insulated or uninsulated. Note that there are two
work modes here, shaft work and electrical work.

4. Write a thermodynamics problem about an airplane. Make it a closed system and have it change altitude and
speed. Choose an appropriate unknown and provide all the necessary values for the remaining variables.

SUMMARY
In this chapter, we discover that the first law of thermodynamics is simply the conservation of energy principle.
Since energy is conserved in all actions, the change in a system’s energy can be equated to the net transport of
energy into the system. Only three possible energy transport mechanisms are available to us: (1) heat transport
of energy (commonly called heat transfer), (2) work transport of energy (commonly called work), and (3) energy
transported with a mass flowing across a system’s boundary. This information produced the very powerful
energy balance and energy rate balance equations.

The general closed system energy balance:

1Q2 − 1W2 = ðE2 −E1Þsystem
= m½ðu2 − u1Þ+ ðV2

2 −V2
1 Þ/ð2gcÞ+ ðZ2 −Z1Þg/gc�system

The general closed system energy rate balance:

_Q − _W = ðdE/dtÞsystem = ðm _u +mV _V /gc +mg _Z/gcÞsystem
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The general open system energy rate balance:

_Q − _W +∑ _E
mass
flow

= d/dtð Þ mu+mV2/2gc +mZg/gc
� �

system

Work modes of energy transport are not discussed in any course outside of thermodynamics and are very impor-
tant for utilizing the full capacity of the first law of thermodynamics. We need to understand and master the
work mode auxiliary equations, because they are often required in the solution of thermodynamic problems.
Some of the important work mode auxiliary equations are given in Table 4.10. The associated power equations
are given in Table 4.6 of the text.

The local equilibrium postulate allows us to deal with nonequilibrium states, and the state postulate defines the
number of independent thermodynamic properties required to determine the local equilibrium state (two, for a
simple system).

Heat transport of energy (heat transfer 1Q2 and heat transfer rate _Q ) is categorized into three modes: (1) con-
duction, (2) convection, and (3) radiation. Heat transfer is sufficiently important to mechanical engineers that
most curricula have separate heat transfer courses. Consequently, the details of this subject are not emphasized
in a thermodynamics course. The heat transfer rate modes are summarized in Table 4.11.

Generally, if you are asked to determine a heat transfer in a problem statement, you should calculate it from the
first law energy balance rather than from one of the heat transfer mode auxiliary equations.

Table 4.10 Work Mode Auxiliary Equations

Work Mode Equation

Moving boundary (general) ð1W2Þmoving
boundary

= ∫ 2
1 pd�V

Polytropic moving boundary (n ≠ 1) ð1W2Þ polytropic ðn≠ 1Þ
ideal gas
moving boundary

= mR
1− n ðT2 −T1Þ

Rotating shaft ð1W2Þ rotating
shaft

= ∫ 2

1
T
!
⋅d

Elastic ð1W2Þelastic = −∫ 2

1
σ�V dε

Surface tension ð1W2Þ surface
tension

= −∫ 2

1
σs dA

Electrical current ð1W2Þ electrical
current

= ∫ 2

1
ϕi dt

Electrical polarization ð1W2Þ electrical
polarization

= −∫ 2

1
E dP

Magnetic ð1W2Þmagnetic = − μ0�Vð1+ χmÞ H
2
2 −H

2
1

2

 !

Chemical ð1W2Þ chemical
μi¼ constant

= −∑
k

i = 1

μiðm2 −m1Þi

Mechanochemical ð1W2Þmechanochemical = ∫ 2

1
f dℓ

Table 4.11 Heat Transfer Rate Modes

Heat Transfer Mode Equation

Conduction _Q cond = − ktA dT
dx

� �
Convection _Q conv = hAðT∞ −TsÞ
Radiation _Q rad = F1− 2ε1A1σðT4

2 −T4
1 Þ
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Finally, we study a special technique that maps the solution of any thermodynamic problem. If you follow
the format given in Figure 4.21, you will breeze through the solution maze. But you must follow it reli-
giously and take no shortcuts. As an extension of your problem solving skills, you are also shown how to
write and solve your own thermodynamic problems. If you can do this successfully, you have mastered the
subject.

Problems (* indicates problems in SI units)
1.* Determine the energy transport required to increase the

temperature of 3.50 kg of air from 20.0 to 100.°C (Figure 4.23).
Assume the air is stationary and behaves as an ideal gas with
constant specific heats.

Air
3.50 kg
20.0°C

Air
3.50 kg
100.°C

Energy
transport = ?

FIGURE 4.23
Problem 1.

2.* Determine the energy transport necessary to decrease the
temperature of 15.0 kg of methane from 500. to 20.0°C. Assume
the methane is stationary and behaves as an ideal gas with
constant specific heats.

3. Determine the gain in energy of a stationary system of
5.00 lbm of argon whose temperature is increased from
70.0 to 1000.°F. Assume ideal gas behavior with constant
specific heats.

4.* Determine the gain in energy of a stationary system of 11.0 kg
of oxygen whose pressure is increased from 0.100 to 100. MPa
isothermally. Assume ideal gas behavior with constant specific
heats.

5. If 150. Btu are transported into a system via a work mode
while 75.0 Btu are removed via heat transfer and mass flow
modes (Figure 4.24), determine the net energy gain for this
system.

Heat and mass flow = 75.0 Btu

W = 150. Btu

Net energy gain = ?

FIGURE 4.24
Problem 5.

6. A jet aircraft with a constant specific internal energy of
3500. Btu/lbm consumes fuel at a rate of 50.0 lbm/min
while flying horizontally at an altitude of 30,000. ft with a
constant velocity of 500. ft/s (Figure 4.25). Determine the net
energy transport rate of the aircraft.

Altitude = 30,000. ft

uaircraft = 3500. Btu/lbm

m = 50.0 lbm/min
V = 500. ft/s

FIGURE 4.25
Problem 6.

7. An automobile transmission has 175 hp of power entering
from the engine, 167 hp leaving to the wheels, while losing
5000. Btu/h to the surroundings as heat. What is the net energy
transport rate of the transmission?

8. To keep the transmission in the previous problem from
overheating, it was decided to cool it by circulating a coolant
through its case. If the coolant enters the transmission with a
mass flow energy rate of 10.0 Btu/s, what is its mass flow energy
rate as it leaves the transmission?

9. Determine the heat transfer rate, in Btu/h, required to cool a
200. kW electric generator that is driven by a 300. hp diesel
engine (Figure 4.26). Note: The generator runs cool if it has a
zero net energy transport rate.

Q = ?

200. kW

300. hp diesel

FIGURE 4.26
Problem 9.

10. In a stationary dynamometer test, an internal combustion
automobile engine has a fuel energy input rate of 1.90 million
Btu/h while producing 150. hp of output power. What other
energy transport mechanisms are present and what are
their magnitudes. Assume that the net energy transport rate is zero.
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11.* Determine the heat transfer per kg necessary to raise
the temperature of a closed rigid tank of saturated
water vapor originality at 0.140 MPa to a temperature
of 800.°C.

12. A closed rigid vessel of volume 5.00 ft3 contains steam at
100. psia with 83.91% moisture. If 9490.4 Btu of heat are
added to the steam, find the final pressure and quality (if wet)
or temperature (if superheated).

13.* A closed rigid vessel having a volume of 0.566 m3 is filled with
steam at 0.800 MPa and 250.°C. Heat is transferred from the
steam until it exists as saturated vapor. Calculate the amount of
heat transferred during this process.

14. A sealed, rigid tank of 10.0 ft3 capacity is initially filled with
steam at 100. psia and 500.°F. The tank and its contents are
then cooled to 260.°F. Find (a) the final quality in the container
and the amounts of liquid water and water vapor (in lbm), and
(b) the amount of heat transfer required (in Btu).

15.* A sealed rigid vessel contains 5.00 kg of water (liquid plus
vapor) at 100.°C and a quality of 30.375%.
a. What is the specific volume of the water?
b. What is the mass of water in the vapor phase?
c. What would be the saturation pressure and temperature of

this water if it had the specific volume determined in part a
and a quality of 100%?

d. What heat transfer would be required to completely
condense the saturated vapor of part c into a saturated
liquid?

16. One pound of saturated liquid water at a pressure of 40.0 psia
is contained in a rigid, closed, stationary tank. A paddle wheel
does 3000. ft · lbf of the work on the system, while heat is
transferred to or from the system. The final pressure of the
system is 20.0 psia. Calculate the amount of heat transferred
and indicate its direction.

17. Identify the following as either point or path functions:
a. u2 + 3u − 5.
b. T(h2 − u2) − 3(u − pv) + 4.
c. sin u3 + sin h3.

d.
Z 2

1
V dp, where V = VðpÞ:

18. Identify the following as either point or path functions:
a. RT/v.

b.
Z 2

1
p dV , where p = p V

� �
:

c. h + pv.
d. u + V2/2gc + gZ/gc.

19. Explain whether u2 − u1 =
Z 2

1
cv dT is a point or a path function

for a given system.

20. Explain whether h2 − h1 =
Z 2

1
cp dT is a point or a path function

for a given system.
21. Explain the meaning of the notation 1Q2 and 1W2. Why do we

not write 1E2, 1u2, or 1h2?
22.* Determine the moving boundary work transport of energy when

4.5 kg of water expands at constant pressure from saturated
liquid to saturated vapor while at 20.0°C.

23. Determine the moving boundary work done by the atmosphere
(14.7 psia) as a cube of ice 2.00 in on a side melts into a pool
of liquid water (Figure 4.27). At 32.0°F, the density of ice is
57.2 lbm/ft3 and that of liquid water is 62.4 lbm/ft3.

2.00 in

2.00 in

2.00 in

Liquid water

Ice cube

State 1 State 2

Melts at
T = 32.0°F

FIGURE 4.27
Problem 23.

24. Determine the moving boundary work done by a cube
of solid CO2 2.00 in on a side as it vaporizes at atmospheric
pressure (14.7 psia) (Figure 4.28). The density of solid CO2 is
97.561 lbm/ft3 and that of CO2 vapor is 0.174 lbm/ft3.

CO2 vapor

CO2 solid

2.00 in

2.00 in

2.00 in

State 1 State 2

p = 1.00 atm

FIGURE 4.28
Problem 24.

25. A weather balloon is filled with helium at 50.0°F so that its
volume is 500. ft3. The balloon is left anchored in the sun and its
temperature rises to 110.°F. How much moving boundary work is
done by the balloon on the atmosphere as its volume increases
due to the increase in temperature? Assume that helium is an
ideal gas and the balloon skin is sufficiently thin that the pressure
in the balloon remains approximately atmospheric.

26.* Suppose 2.00 m3 of air (considered an ideal gas) is initially at a
pressure of 101.3 kPa and a temperature of 20.0°C. The air is
compressed at a constant temperature in a closed system to a
pressure of 0.500 MPa (Figure 4.29). (a) How much work is
done on the air to compress it? (b) How much energy is
transferred as heat during the compression process?

T = constant

Force

Air

Piston

State 1 State 2

p2 = 0.500 MPaV1 = 2.00 m3

p1 = 101.3 kPa
T1 = 20.0°C

Force

FIGURE 4.29
Problem 26.

Problems 141



27. Show that the first law of thermodynamics requires that, for an
ideal gas with a constant specific heat ratio cp/cv = k undergoing
a polytropic process (i.e., pvn = constant),
a. n must be greater than k for T2 < T1 when there is heat

transfer from the gas.
b. n must be less than k for T2 < T1 when there is a heat

transfer to the gas.
28. Find the moving boundary work done on a gas in compressing

it from V
1
= 10:0 ft3, p1 = 10:0psia to V

2
= 1:000 ft3 according

to the relation p V3 = constant (Figure 4.30).

pV3 = constant

Gas

Piston

Force Force

V2 = 1.000 ft3V1 = 10.0 ft3

p1 = 10.0 psia

State 2State 1

FIGURE 4.30
Problem 28.

29.* A brilliant young engineer claims to have invented an engine
that runs on the following thermodynamic cycle:
a. An isochoric pressurization from p1 to p2 = ∠p1.
b. An isobaric expansion from V

2
to V

3
= 2V

2
:

c. An isochoric depressurization from p3 to p4 = p1.
d. An isobaric compression back to the initial state, p1,V1

:

Determine the net moving boundary work done during this
cycle if p1 = 25.0 kPa and V

1
= 0:0300m3: Sketch this cycle

on a p−V diagram.
30.* A balloon filled with air at 0.100 MPa-absolute is heated in

sunlight. As the balloon is heated, it expands according to the
following pressure-volume relation:

p = 0:1+ 0:15V +0:06V2

where p is in MPa and V is in m3 (Figure 4.31). Determine the
moving boundary work transport of energy as the balloon
expands from 1.00 to 2.00 m3.

V2 = 2.00 m3p1 = 0.100 MN/m2

V1 = 1.00 m3

p = f(V )

State 2State 1

FIGURE 4.31
Problem 30.

31. One lbm of an ideal gas with molecular weight 6.44 lbm/
lbmole is compressed in a closed system from 100. psia, 600.
R to a final specific volume of 8.00 ft3/lbm. At all points
during the compression, the pressure and specific volume are
related by

p = 50+4v+ 0:1v2

where p is in psia and v is in ft3/lbm. Determine the moving
boundary work required and the heat transfer during this
compression if the gas has a constant volume specific heat of
0.200 Btu/(lbm ·R).

32. Three lbm of a substance is made to undergo a reversible
expansion process within a piston-cylinder device, starting from
an initial pressure of 100 psia and an initial volume of 2.00 ft3.
The final volume is 4.00 ft3. Determine the moving boundary
work produced by this expansion for each of the following
process paths. Note which process produces the maximum work
and which produces the minimum.
a. Pressure remains constant (p = K)
b. Pressure times volume remains constant ðpV = KÞ:
c. Pressure is proportional to volume ðp = KVÞ:
d. Pressure is proportional to the square of volume ðp = KV2Þ:
e. Pressure is proportional to the square root of volume

ðp = K
ffiffiffiffi
V

q
Þ, where K is a constant in each case.

33.* The magnitude of the torque T on a shaft is given in
N ·m by

T = 6:3 cos θ

where θ is the angular displacement. If the torque and
displacement vectors are parallel, determine the work required to
rotate the shaft through one complete revolution.

34. The magnitude of the torque vector normal to the axis of a shaft
is given in ft · lbf by

T = 21:7 sin θ for 0< θ≤ π
= 0 for π < θ≤3π/2
= 50:4 for 3π/2< θ≤ 2π

Determine the work done in one complete revolution of the
shaft.

35. When the torque and angular displacement vectors are parallel,
the torque displacement relation for the drive shaft of a 1909
American Underslung automobile is given by

Tθn = K

where K and n are constants. Determine a general formula for
the shaft work when (a) n = 1.0, and (b) n ≠ 1.0.

36. How much elastic work is done in uniaxially stretching an
initially unstrained elastic steel bar (Young’s modulus = 3.0 ×
107 psi = constant) whose volume (also a constant) is 5.00 in3

to a total strain of 0.00200 in/in?
37. When a rubber band is stretched, it exerts a restoring force (F)

that is a function of its initial length (L) and displacement (x).
For a certain rubber band this relation is

F = K x
L
+ x

L

� �2� 	
,
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where K = 0.810 lbf. Determine the elastic work (with the
appropriate sign) required to stretch the rubber band from an
initial length of 2.00 in to a final length of 3.00 in
(Figure 4.32).

3.00 in

2.00 in

FIGURE 4.32
Problem 37.

38.* A 10.0 cm soap bubble is blown on the end of a large-diameter
blowpipe. When the blowpipe end opposite the bubble is
uncovered, the surface tension in the soap bubble causes it to
collapse, thus sending its contents through the blowpipe and
the atmosphere. Estimate the velocity of the air in the blowpipe
as the bubble collapses. For the soap bubble, σs = 0.0400 N/m.

39. At 68.0°F the surface tension of acetic acid is 1.59 × 10−4 lbf/in.
A film of acetic acid is maintained on the wire frame as shown
in Figure 4.33. Determine the surface tension work done when
the wire is moved 1.00 inch in the direction indicated.

2.50 in

Acetic
acid
film

 
1.50 in

Movable wire

F

FIGURE 4.33
Problem 39.

40.* A 12.0 V automobile battery receives a constant charge from the
engine’s alternator. The voltage across the terminals is 12.5 V dc,
and the current is 9.00 A. Determine the electrical work energy
transport rate from the automobile’s engine to the battery in
both watts and horsepower.

41. A battery powered wheelchair uses a standard 12.0 V
automotive lead-acid battery with a capacity of 20.0 A ·h.
Peukert’s law for the discharge of lead-acid batteries is

σi1:4 = K

where σ is the discharge time, i is the discharge current, and K is
a constant that depends on the battery size. The capacity of the
battery is given by capacity = σi = Ki−0.4, and the average voltage
during discharge is given by ϕ = 11.868 − 0.0618i.
a. How much current is drawn from the battery if the torque

on the drive shaft is 1.00 ft · lb when it is rotating at
1.00 rev/s?

b. How long will the wheelchair operate with this current drain
before the battery is discharged?

c. Evaluate the constant K for this battery with this current
drain.

42. Determine the electrical current power averaged over one period,
T, for a sawtooth current waveform passing through a pure
resistance R described by i = imax(t/T) for 0 < t < T.

43. In an ac circuit in which a phase angle θ exists, the voltage and
current are written as

ϕ = ϕmax cos 2πftð Þ
i = imax cos 2πft − θð Þ

Show that the electrical current power averaged over one period
(1/f) is

ð _W Þelectrical avg: = − 1
2

� �
ðϕmaxÞimax cos θð Þ = −ϕeie cos θð Þ

and thus the average power of any purely reactive (θ = π/2)
circuit consisting entirely of ideal inductors and capacitors is
zero. The term cos (θ) is called the power factor, and the product
ϕeie is called the apparent power. For a purely resistive circuit,
θ = 0 and the average power equals the apparent power.

44. Show that the polarization work required to charge a parallel
plate capacitor is given by?A3B2 tptxb +2pt?>

1W2 = −Cϕ2/2

where C = ε0χe A/d is the capacitance, ϕ is the voltage difference,
A is the area of the plates, and d is their separation distance.

45. An electrical capacitor constructed of two parallel conducting
plates of area A, separated by a distance d, has a capacitance C
given by

C = εoχeA/d

where C is in faradays (1 F = 1 J/V2). Determine the polarization
work required to charge an initially discharged 10.0 μF parallel
plate capacitor when the plates are separated by 5.00 × 10−3 m
of Plexiglas and subjected to a potential difference of 300. V at
27.0°C.

46. A typical storm cloud at an altitude of 3000. ft has a cross-
sectional area of 1.00 × 108 ft2 and a surface potential relative
to the earth of 1.00 × 108 V. Determine the amount of electrical
energy stored in the cloud by calculating the polarization work
required to charge the earth-cloud capacitor.

47.* A square aluminum bar 0.0300 m on a side and 1.00 m long is
wrapped with a current-carrying wire (Figure 4.34). When the
current in the wire is turned on, it exposes the aluminum core to a
magnetic field strength of 456 × 103 A/m. Determine the total
magnetic work that occurs when the current is turned on and
determine what percentage of this work is associated with the
alignment of the aluminum’s molecular magnetic dipoles.

Magnetic field
strength = 456 × 103A/m

Square bar:
0.0300 m by 0.0300 m
and 1.00 m long  

FIGURE 4.34
Problem 47.

48.* A quartz rod 0.0100 m in diameter and 0.100 m long is to be
subjected to a magnetic intensity of 10,000. A/m. Determine the



total magnetic work required for this process if the initial
magnetic intensity of the rod is zero.

49.* A Curie substance has a magnetic susceptibility given by

χm = C′/T

where C′ is the Curie constant for the substance and T is its
absolute temperature. Determine an expression for the work per
unit volume for isothermal material magnetization of a constant
volume Curie substance. Evaluate this for
C″ = 153 K, T = 300. K, M1 = 0, M2 = 1000. A/m.

50.* The chemical potential of a professor’s brain in a single species
cranium is constant at −13.2 MJ/kg. Determine the chemical
work required to remove 3.77 kg of this valuable substance
from the cranium.

51. 2.00 lbm of chemical species A (μA = −5700. Btu/lbm) is
removed from a system while 7.30 lbm of species B (μB =
−3850 Btu/lbm) and 11.1 lbm of species C (μC = 1050 Btu/
lbm) are added to the system. Determine the net chemical work
involved. Assume constant chemical potentials.

52. If the total internal energy of an adiabatic, stationary, closed
system is given by

U = − p V +∑μimi − fℓ

Show that the following formula must hold:

−V dp+∑mi dμi −ℓ df = 0

(Hint: Start from the differential form of the energy balance,
dQ− dW = dU and use Eq. (4.69)).

53. A simple mechanochemical engine operates on the
thermodynamic cycle shown in Figure 4.35. The
mechanochemical contractile work output (fdℓ) comes from a
chemical work input (μdm) due to the aqueous dilution of a
single chemical species (i = 1).
a. Show that the net chemical transport per cycle of this engine

is given by

Wð Þchemical
cyc1e net

= μ1 − μ2ð Þ Δmð Þ

where Δm = m3 − m2 = m4 − m1.
b. Write an expression for the work transport energy efficiency

of this engine.

54. A refrigeration cycle is chosen to maintain a freezer
compartment at 10.0°F in a room that is at 90.0°F. If 200. Btu/
min are extracted from the freezer compartment by heat
transfer and the freezer is driven by a 1.00 hp electric motor,
determine the dimensionless coefficient of performance (COP)
of the unit, defined as the cooling rate divided by the input
power.

55. An automobile engine produces 127 hp of actual output
power. If the friction, heat transfer, and other losses consume
23.0 hp, determine the work transport energy efficiency of this
engine.

56.* 60.0 kW enter a mechanical gearbox at its input shaft but only
55.0 kW exit at its output shaft. Determine its work transport
energy efficiency.

57. Find the heat transport rate of energy from a circular pipe with a
2.00 inch outside diameter, 20.0 ft long, and a wall thickness of
0.150 in. The inside and outside surface temperatures of the
pipe are 212 and 200.°F, respectively. The pipe is made of
carbon steel.

58.* A wall is made up of carbon steel 1.00 cm thick. Determine the
conduction heat transport rate per unit area through the wall
when the outside temperature is 20.0°C and the inside
temperature is −10.0°C.

59. A window consists of a 0.125 in glass pane. Determine the
conduction heat transport rate per unit area of window pane
when the inside and outside temperatures to be 70.0 and 0.0°F,
respectively.

60.* Find the surface temperature of a bare 40.0 W fluorescent light
tube, 3.60 cm in diameter and 1.22 m long in room air at
20.0°C. The convective heat transfer coefficient of the tube is
4.80 W/(m2 ·K).

61.* An experiment has been conducted on a small cylindrical
antenna 12.7 mm in diameter and 95.0 mm long. It was
heated internally with a 40.0 W electric heater. During the
experiment, it was put into a cross flow of air at 26.2°C and
10.0 m/s. Its surface temperature was measured and found
to be 127.8°C. Determine the convective heat transfer
coefficient for the antenna.

62. An automobile is parked outdoors on a cold evening, when the
surrounding air temperature is 35.0°F. The convective heat
transfer between the roof of the automobile and the surrounding

6.00 ft

Pivot
Piston

Cylinder

Condensing
water vapor 

2000. lbm
of water

Chain

6.00 ft

FIGURE 4.35
Problem 53.
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air is 1.50 Btu/(h · ft2 ·R). The night sky is cloudless and forms a
black body at a temperature of −30.0°F. By performing a
convective-radiation balance on the roof, determine
a. The roof temperature.
b. Whether or not frost will form on the roof (and why).

63.* Determine the radiation heat transfer rate per unit area between
an infant at 37.0°C in a crib and a nearby window at −10.0°C
in the winter. The view factor between the infant and the
window is 0.310.

64. Determine the radiation heat transfer rate per unit area from a
nuclear fireball at 10,000.°F and a nearby building at 70.0°F
covered with white paint. The view factor between the building
and the fireball is 0.0100.

65. Define the following terms:
a. Adiabatic.
b. Mechanical work.
c. Reversible.
d. The state postulate.

66. Define the following terms:
a. Aergonic.
b. The local equilibrium postulate.
c. Enthalpy.
d. Work efficiency.

67.* A closed system undergoes a cycle made up of three processes.
Fill in the missing data in Table 4.12. All the values are in
kilojoules.

Computer Problems
The following computer assignments are designed to be carried out
on a personal computer using a spreadsheet or equation solver. They
are exercises that use some of the basic formulae of Chapter 4. They
may be used as part of a weekly homework assignment.

68. Develop a program that calculates the work transport for an ideal
gas undergoing a polytropic moving boundary process. Have the
user input all necessary data from the keyboard by responding to
properly worded screen prompts. Make sure that units are
specified when requesting user data input. Output the polytropic
work and all the input data (with corresponding units).

69. Develop a program that calculates the work transport for a
Hookean elastic solid. Have the user input all necessary data
from the keyboard by responding to properly worded screen
prompts. Make sure that units are specified when requesting
user data input. Output the elastic work and all the input data
(with corresponding units).

70. Develop a program that determines the work transport in a
constant volume magnetization process. Have the user input all
necessary data from the keyboard by responding to properly
worded screen prompts. Make sure that units are specified when
requesting user data input. Output the magnetic work, the work

of magnetization of the exposed material, and all the input data
(with corresponding units).

71. Develop a program that determines the chemical work transport
for a system with constant chemical potentials. Have the user
input all the μi and the initial and final mi from the keyboard by
responding to properly worded screen prompts. Make sure that
units are specified when requesting user data input. Output the
chemical work (with corresponding units).

72. Develop a program that determines the total heat transfer rate
from the sum of one or more of the three heat transport modes
(conduction, convection, and radiation). Have the user select
from a menu which heat transport mode or combination of heat
transport modes he or she wishes to use. Then have the user
input all necessary data from the keyboard by responding to
properly worded screen prompts. Output the heat transport rate
and all input data (with corresponding units).

Create and Solve Problems
Engineering education tends to focus only on the process of solving
problems. It ignores teaching the process of formulating solvable pro-
blems. However, working engineers are never given a well-phrased
problem statement to solve. Instead, they need to react to situational
information and organize it into a structure that can be solved using
the methods learned in college.

Also, if you see how problems are written (created), then you have a
better chance of mastering the solution technique and of understand-
ing how to structure information as a working engineer into solvable
situations. These “Create and Solve” problems are designed to help
you learn how to formulate solvable thermodynamics problems from
engineering data. Since you provide the numerical values for some of
the variables, these problems have no unique solutions. Their solu-
tions depend on the assumptions you need to make and how you set
them up to create a solvable problem.

73.* You are a design engineer working on a robotic system. The
robot contains an imbedded circuit board that draws 30.0 mA at
5.00 V. Someone mentions that the circuit board might overheat
during its 30 min. operating cycle. Write and solve a problem
that provides (a) the heat generation rate of the circuit board,
and (b) the temperature of the circuit board if it is insulated
and operated for 30.0 minutes. Choose relevant values for the
necessary variables. Hint: Your problem statement might read
something like this:

An insulated circuit board draws 30.0 mA at 5.00 V.
Determine its heat generation rate and its temperature after
30.0 min of operation. The board has a mass of
1.00 × 10−3 kg and its specific heat is 0.500 kJ/kg ·K.

Now you have to solve your problem to determine the answers
to (a) and (b).

Table 4.12 Problem 67

Process Qcond Qconv Qrad Wmech Welect Wmagn Wchem E2 − E1

1–2 5 13 −34 45 2 −23 11 ?

2–3 12.3 56.1 121. 0.0 85.0 0.0 ? 211.0

3–1 1.1 −23.3 ? −44.8 89.9 −47.3 14.2 0.0
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74. You are designing a new mechanical transmission large rock
crusher used in the mining industry. The transmission is driven
by a 300. hp engine but transmits only 290. hp to the rock
crusher. You need to prevent the transmission from overheating,
so how much cooling is needed to keep it at ambient
temperature?

75.* Dave, your boss, wants you to estimate the amount of heat that
has to be removed from an iron ingot to cool it from 900ºC to
150ºC. Make this request into a thermodynamic problem
statement and solve it.

76.* You are a new engineer at a company that manufactures
gas-filled shock absorbers for racing cars. The chief engineer
wants to understand the relation between the gas pressure inside
the shock absorber and the compression of the gas. The shock
absorbers are essentially piston-cylinder devices that are initially
filled with nitrogen gas at 0.345 MPa and 20.0ºF. When the
piston compresses the gas by 20%, the pressure increases to
0.414 MPa. You think this is a polytropic compression process.
Write and solve a thermodynamics problem to determine the
polytropic exponent for this process.
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CHAPTER 5

First Law Closed System Applications
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5.1 INTRODUCTION
In this chapter, we present a series of detailed engineering analyses of the application of the first law of thermo-
dynamics to closed systems. This material demonstrates good thermodynamic problem solving technique
through a variety of worked examples. In the first three examples that follow, the numbered steps in the solu-
tion are the same as the steps shown in Figure 4.21. As we continue with the examples and the reader becomes
more familiar with the technique, we condense the solutions by omitting the description of each solution step.
In so doing, we also introduce some flexibility into the technique.

SUMMARY OF THE THERMODYNAMIC PROBLEM SOLVING TECHNIQUE

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.
Step 3. Identify the type of system (closed or open) you have.
Step 4. Identify the process that connects the states or stations.
Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).
Step 7. Calculate the value(s) of the unknown(s).
Step 8. Check all algebra, calculations, and units.

Sketch ! Unknowns ! System ! Process ! Equations ! Solve ! Calculate ! Check

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00005-1
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5.2 SEALED, RIGID CONTAINERS
One of the most innocuous technical incantations in basic thermodynamics is the phrase sealed, rigid container
(or tank or vessel). This phrase is composed of the following three technical terms:

1. Sealed means the system is closed.
2. Rigid means the system has a constant volume, V = constant and dV = 0. Therefore, there is no moving

boundary mechanical work (i.e.,
R
p dV = 0).

3. Container (sometimes tank or vessel) means the system boundary lies inside the enclosure, because the material
we want to analyze is inside the enclosure.

The following example illustrates a typical problem of this type.

EXAMPLE 5.1
Read the problem statement. A sealed, rigid container whose volume is 1.00 m3 contains 2.00 kg of liquid water plus water
vapor at 20.0°C. The container is heated until the temperature inside is 95.0°C.1 Determine

a. The quality in the container when the contents are at 20.0°C.
b. The quality in the container when the contents are at 95.0°C.
c. The heat transport of energy required to raise the temperature of the contents from 20.0 to 95.0°C.

Solution
Step 1. Identify and sketch the system. Take the system to be the material inside the closed, rigid container as shown in

Figure 5.1. Since we do not know the type or amount of material making up the container itself, the container cannot
be part of the system. Also, since all the unknowns pertain to the container’s contents, detailed knowledge of the
container’s construction is not relevant to the solution.

System
boundary

Vapor

Liquid

Sealed
rigid

container

∀ = 1.00 m3

m = 2.00 kg

FIGURE 5.1
Example 5.1.

Step 2. Identify the unknowns. Here, there are three unknowns: x1, x2, and 1Q2.
Step 3. It is a closed system. To fix the system’s states, we note that we are given the initial and final temperatures of the

water, but to find other properties (such as quality), we need the value of one more independent property in each
state. Notice, however, that we are given both the total volume and the total mass and these do not change during
the change of state. Therefore, we can calculate the system’s specific volume in each state as

v1 = v2 = V/m = 1:00m3/2:00 kg ¼ 0:500m3/kg

Now we can write the states and process path as

State 1 Process:“Rigid and Sealed”means v1 = v2 constant�������������������������! State 2
T1 = 20:0°C T2 = 95:0°C
v1 = 0:500m3/kg v2 = v1 = 0:500m3/kg

Step 4. Identify the process connecting the system states. The process here is one of constant volume (the container was
specified as rigid), and the process path has already been indicated in the state property value listing.

Step 5. Write down the basic equations. The only basic equation we have thus far for closed systems is Eq. (4.20), the
energy balance (EB) equation:

1Q2 − 1W2 = m½ðu2 − u1Þ+ ke2 − ke1 + pe2 −pe1�system
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In this case, nothing in the problem statement leads us to believe that the vessel undergoes any change in specific
kinetic or potential energy during the heating process, so we assume that ke2 = ke1 and pe2 = pe1. Also, since the con-
tainer is rigid, V = constant and dV = 0, the mechanical moving boundary work is zero (i.e.,

R
p dV ¼ 0). Since no

other work modes are suggested in the problem statement, we assume that 1W2 ¼ 0. Applying these results to the pre-
vious general energy balance yields the following simplified energy balance equation as the governing equation for
this problem:

1Q2 = mðu2 − u1Þ

Write any relevant auxiliary equations. Since we now know the values of two independent properties in each state
(T1, v1, and T2, v2), we can find the values of any other properties in those states by use of thermodynamic tables,
charts, or equations of state. In particular, the qualities can be determined from the saturation tables and the auxili-
ary equations

x1 =
v1− vf1
vfg1

=
v1 − vf ð20:0°CÞ
vfgð20:0°CÞ

and

x2 =
v2 − vf2
vfg2

=
v2 − vf ð95:0°CÞ
vfgð95:0°CÞ

Since we are not given enough information to use the conduction, convection, or radiation heat transfer equa-
tions, we must find 1Q2 from this energy balance. The values of u1 and u2 can be found by using the saturation
tables and the following auxiliary equations:

u1 = uf1 + x1ufg1 = uf ð20:0°CÞ + x1ufgð20:0°CÞ

and

u2 = uf2 + x2ufg2 = uf ð95:0°CÞ + x2ufgð95:0°CÞ

Step 6. Algebraically solve for the unknown(s). At this point, we have algebraic equations for all the unknowns and we
know where all the numbers in these equations are to be found.

Step 7. Calculate the value(s) of the unknowns. We are now ready to make the calculations. From Table C.1b of
Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that
a. At 20.0°C, vf1 = 0:001002m3/kg, vg1 = 57:79m3/kg, and vfg1 = vg1 − vf1 = 57:789m3/kg. Also, uf 1 = 83:9 kJ/kg,

ug1 = 2402:9 kJ/kg, and ufg1 = ug1 − uf 1 = 2319:0kJ/kg.
b. At 95.0°C, vf 2 = 0:00104m3/kg, vg2 = 1:982m3/kg, and vfg2 = vg2 − vf2 = 1:981m3/kg. Also, uf 2 = 397:9 kJ/kg,

ug2 = 2500:6 kJ/kg, and ufg2 = ug2 − uf 2 = 2102:7 kJ/kg.
So the unknowns can now be determined as
a. x1 = 0:500− 0:001002

57:789 = 8:63× 10− 3 = 0:863%.

b. x2 = 0:500− 0:00104
1:981 = 0:252 = 25:2%.

c. u1 = 83:9 + ð8:63× 10− 3Þð2319:0Þ = 103:9kJ/kgÞ and u2 = 397:9 + ð0:252Þð2102:7Þ = 927:8 kJ/kg, so that

1Q2 = mðu2 − u1Þ = ð2:0 kgÞð927:8−103:9 kJ/kgÞ = 1650 kJ.
Step 8. A check of the algebra, calculations, and units shows that they are correct.

1 We want three significant figures in the answer, so the data need to be given to three significant figures.

DO THERMO COMPUTER PROGRAMS GIVE THESE SAME ANSWERS?

Suppose you use a computer program like EES or CATT2 or NIST to solve this problem. Would the answer be the same?
Using EES you get (a) x1 = 0:864%, (b) x2 = 25:2%, and (c) 1Q2 = 1650 kJ; using CATT2 you get (a) x1 = 0:864%,
(b) x2 = 25:2%, and (c) 1Q2 = 1650 kJ; and using NIST you get (a) x1 = 0:864%, (b) x2 = 25:2%, and (c) 1Q2 = 1650 kJ (all
to three significant figures). So the source of the thermodynamic properties has no significant effect on the answer.
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5.3 ELECTRICAL DEVICES
In a vast number of closed and open systems the primary work mode is electrical. We call these systems electrical
devices and recognize that one of the appropriate auxiliary equations to be used in their analysis is the electrical
work or power mode equation introduced earlier. The following example illustrates a typical closed system elec-
trical device problem.

EXAMPLE 5.2
Read the problem statement. An incandescent lightbulb is a simple electrical device. Using the energy rate balance on a
lightbulb determine

a. The heat transfer rate of an illuminated 100. W incandescent lightbulb in a room.
b. The rate of change of its internal energy if this bulb were put into a small sealed insulated box.

Solution
Step 1. Identify and sketch the system. We imagine and sketch the system in each case as the entire lightbulb, the glass

bulb plus its contents, rather than just the contents as in Example 5.1 (Figure 5.2).

(a)

System
boundary

Q = ?

(b)

Insulated box

System
boundary

W = 100. watts

W = 100. watts

FIGURE 5.2
Example 5.2.

Step 2. Identify the unknowns. The unknowns are (a) _Q and (b) _U :

Step 3. It is a closed system. This is a closed system for which we are not given specific thermodynamic properties in the
problem statement. Presumably, they are not needed in the solution.

Step 4. Identify the process connecting the system states. The following processes occur:
■ In part a, the bulb does not change its thermodynamic state, so its properties must remain constant. In

particular, the process path (after the bulb has warmed to its operating temperature) is U = constant.
■ In part b, the bulb is insulated, so it undergoes an adiabatic (i.e., _Q = 0) process.

Step 5. Write down the basic equations. The only basic equation thus far available for a closed system rate process is
Eq. (4.21), the general closed system energy rate balance (ERB) equation:

_Q − _W = d
dt
ðmuÞ + d

dt
mV2

2gc

� �
+ d
dt

mgZ
gc

� �
= _U+ _KE + _PE

Since both parts a and b imply that the lightbulb is to be stationary during analysis, we assume _KE¼ _PE¼ 0: This
reduces the governing ERB equation for this problem to

_Q − _W = _U = d
dt
ðmuÞ

Write any relevant auxiliary equations. The only relevant auxiliary equation needed here is the recognition that the
lightbulb has an electrical work input of 100. W, so that

_W = −100:W

Step 6. Algebraically solve for the unknown(s). Algebraically solving for the unknowns, we have, for part a)

_Q = _U + _W

and, for part b,

_U = _Q − _W
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Step 7. Calculate the value(s) of the unknowns. Since we are assuming a constant bulb temperature in part a,
U = constant and _U = 0. Then, our calculations give
a. _Q = _W = −100: W
(the minus sign tells us that heat is leaving the system). Thus, all the electrical work put into a lighting system ends
up as heat. Architects use the lighting within a building to supply part of the heating requirements of the building.
In the second part of this problem, the bulb is inside a small insulated box, so it cannot transport any heat energy
through its boundaries. Therefore, _Q = 0 here (the bulb undergoes an adiabatic process), and the reduced energy
rate balance yields
b. _U = − _W = 100: W

Step 8. A check of the algebra, calculations, and units shows that they are correct.

Note that the internal energy of the lightbulb must increase at a rate of 100. J/s. This means that its temperature
must continually increase. Treating the bulb as a simple incompressible substance, we can write (see Eq. (3.33))

_U = mc _T = 100: W

where m is the mass of the bulb, c is its specific heat, and _T is the time rate of change of its temperature. So long
as _U is constant and positive, the temperature of the bulb continually increases until the glass or the filament even-
tually melts.

5.4 POWER PLANTS
An electrical power generating facility is a very complex set of open and closed systems. However, if the entire
facility is taken to be the system and the system boundaries are carefully chosen, then it can be modeled as a
closed system. We call such systems power plants, and a simple thermodynamic analysis can provide important
information about their operation, as the next example illustrates.

EXAMPLE 5.3
Read the problem statement. A basic vapor cycle power plant consists of the following four parts:

a. The boiler, where high-pressure vapor is produced.
b. The turbine, where energy is removed from the high-pressure vapor as shaft work.
c. The condenser, where the low-pressure vapor leaving the turbine is condensed into a liquid.
d. The boiler feed pump, which pumps the condensed liquid back into the high-pressure boiler for reheating.

In this power plant (to three significant figures), the boiler receives 950:×105 kJ/h from the burning fuel and the condenser
rejects 600:×105 kJ/h to the environment. The boiler feed pump requires a 23.0 kW input, which it receives directly from
the turbine. Assuming that the turbine, pump, and connecting pipes are all insulated, determine the net power of the
turbine.

Solution
Step 1. Identify and sketch the system. Sketch the system as the entire power plant (Figure 5.3). If we choose only the

turbine as the system, it would be an open system; and we do not wish to deal with open systems until Chapter 6.
Step 2. Identify the unknowns. The unknown here is ð _WTÞnet:
Step 3. It is a closed system. This is closed system, and no specific information is given to identify the thermodynamic

states of the system. Presumably, they are not needed in the solution.
Step 4. Identify the process connecting the system states. We assume a steady state process with no changes in kinetic or

potential energy. Then, U, KE, and PE are all constants.
Step 5. Write down the basic equations. The only basic equation applicable here is the general closed system energy rate

balance, Eq. (4.21):

_Q − _W = _U0↘
0

+ _KE
↘

0

+ _PE
↘

0

= 0

which reduces to

_Wnet = _Qnet = ð _WTÞnet
Write any relevant auxiliary equations. No auxiliary equations are needed here.

(Continued )
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EXAMPLE 5.3 (Continued )

Condenser

Boiler
feed

pump

QC = −600. × 105 kJ/h

Wp = −23.0 kW

Boiler

Turbine

System
boundary

(WT)net = ?

QB = 950. × 105 kJ/h

FIGURE 5.3
Example 5.3.

Step 6. Algebraically solve for the unknown(s). Algebraically solving for the net power of the turbine gives

ð _WTÞnet = _Q net = ð _Q boiler + _Q condenserÞ
Step 7. Calculate the value(s) of the unknowns. The calculations then give

ð _WTÞnet = ½950:×105 + ð−600:× 105Þ� kJ/h = 350:× 105 kJ/h

= ð350:×105 kJ/hÞ 1h
3600 s

� �
= 9720 kW = 9:72MW

Step 8. A check of the algebra, calculations, and units shows that they are correct.

The positive sign tells us that the net power is coming out of the turbine. Since the turbine must also power the
boiler feed pump,

ð _WTÞtotal = ð _WTÞnet + ð _WTÞbioler feed pump = 9720+23 = 9740 kW ðto 3 significant figuresÞ

To simplify the example solutions from this point on, we omit the description of each step in the solution tech-
nique. The steps are all there, but now the solutions flow in a more continuous manner.

5.5 INCOMPRESSIBLE LIQUIDS
Perhaps the auxiliary equations most often used in thermodynamic analysis are equations of state. The two most
common equations of state are those for ideal gases and incompressible liquids. Since most students are more famil-
iar with ideal gases than they are with incompressible liquids, we chose the next example to illustrate the latter case.
Note that this example could also be described as another illustration of the analysis of an electrical device.

EXAMPLE 5.4
A food blender has a cutting/mixing blade driven by a 0.250 horsepower (hp) electric motor. The machine is initially filled
with 1.00 quart of water at 60.0°F, 14.7 psia. It is then turned on at full speed for 10.0 min. Assuming the entire machine is
insulated and that the mixing takes place at constant pressure, determine the temperature of the water when the machine is
turned off.

Solution
First, draw a sketch of the system (Figure 5.4).
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The unknown is T2. The system is closed, and the material is the 1.00 qt
of liquid water.

The system states and processes are

State 1
p1 = 14:7psia
T1= 60:0°F

��������������!Process: Constant pressure

mechanical mixing

State 2
p2 = p1 = 14:7psia

Note that, in this problem, we do not know the values of two inde-
pendent properties in the second state, nor does the process path give
us any information about an additional second-state property. This
example illustrates how the energy balance itself can be used to find
the value of a state property.

The basic energy balance (EB) equation for this system is

1Q2 − 1W2 = mðu2 − u1Þ + KE2 − KE1 + PE2 − PE1

Since we are given no information about the kinetic or potential energies
of the system, we assume that they do not change during the process
under analysis; that is,

KE2 −KE1 = PE2 −PE1 = 0

The auxiliary equations needed here are for the heat and work energy transport modes. They are 1Q2 = 0 (insulated system),
and in this case, the work mode is shaft work, but it can be calculated from the definition of power as 1W2 = _WðΔtÞ, where Δt
is the time interval of the process.

Since 14.7 psia is much greater than the saturation pressure at 60.0°F (which is 0.2563 psia), state 1 is seen to be a com-
pressed liquid. We could find u1 by interpolating the pressure between the saturation and compressed liquid tables at 60.0°F,
then use the energy balance to find u2. With u2 and p2, we could presumably find T2 by again interpolating in the tables. Or
else, we could treat the water as a simple incompressible material and use the auxiliary equation for specific heat (Eq. (3.33)),
u2 − u1 = cðT2 − T1Þ. The latter approach is the simplest in this case, so we use it and take the specific heat of water to be
1.00 Btu/ðlbm⋅RÞ
The mass of 1 qt of water at 60.0°F is given by m = pV = V/v, where

V = ð1:00qtÞ 1 gal
4 qt

� �
0:13368 ft3/gal
� �

= 0:0334 ft3

and v = vf 60:0°Fð Þ = 0:01603 ft3/lbm (from Table C.1a of Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics). Therefore,

m = 0:0334 ft3

0:01603 ft3/lbm
= 2:08 lbm

Then, the energy balance gives

u2 − u1 = cðT2 −T1Þ = 1Q2

m
− 1W2

m

and

T2 = T1 +
1Q2

mc
− 1W2

mc

= 60:0°Fþ 0−
ð−0:250hpÞð10:0minÞð1h/60minÞ½2545Btu=ðhp⋅hÞ�

ð2:08 lbmÞ½1:00Btu=ðlbm⋅RÞ� = 111°F

Exercises
1. Is the result in Example 5.4 of T2 = 111°F an unreasonably high fluid temperature, since a blender of this type is never

actually insulated (adiabatic)? In other words, what is the direction of the heat transfer in an uninsulated blender and
what effect does this heat transfer have on the temperature T2? Answer: An uninsulated blender has heat transfer from
the mixing fluid to the surroundings, producing a lower value of T2 than that calculated in Example 5.4.

2. What properties other than those used in the solution to Example 5.4 affect the designer’s choice of the motor power for
the blender? Answer: The fluid viscosity and the blender speed.

3. If the fluid temperature in Example 5.4 reaches only 85.0°F instead of 111°F after 10.0 min of operation, determine the
power delivered by the motor. Answer: _Wmotor = 0:123hp.

System boundary

1.00 quart of water

0.250 hp electric motor

FIGURE 5.4
Example 5.4.
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5.6 IDEAL GASES
Ideal gas equations are usually quite familiar to engineering students. You see them in chemistry courses, fluid
mechanics courses, and of course thermodynamics courses. They are perhaps the most used equations of state
ever devised. The next example illustrates the use of the ideal gas equations in conjunction with solving a basic
thermodynamics problem.

EXAMPLE 5.5
A new radiation heat transfer sensor consists of a small, closed, rigid, insulated 0.0400 m3 box containing a 0.0100 m3 rub-
ber balloon. Initially, the box is evacuated but the balloon contains argon (an ideal gas) at 20.0°C and 0.0100 MPa. When
the balloon receives 0.100 kJ of radiation energy through an uninsulated window in the box, it bursts. The resulting pressure
change is sensed by a transducer and an alarm is sounded. Determine the pressure and temperature inside the box after the
balloon bursts.

Solution
First, draw a sketch of the system (Figure 5.5).

The unknowns here are the final pressure and temperature inside the box, p2 and T2. The system is closed and consists of the
argon in the balloon. Initially, it is at T1 = 20:0°C and p1 = 0:0100MPa. Then, it undergoes a process in which

1Q2 = 0:100kJ of heat is added until the balloon bursts. After it bursts, the argon occupies the volume of the entire box, but
its mass has not changed.

Window
Rigid insulated box
with a volume of
0.0400 m3

Argon filled
balloon initially
with a volume
of 0.0100 m3 at
20.0°C and
10.0 kPa

FIGURE 5.5
Example 5.5.

The basic conservation of energy is

1Q2 − 1W2 = m ðu2 − u1Þ+
V

2

2
−V

2

1

2gc
+

g
gc
ðZ2 −Z1Þ

24 35
argon

and since we are given no indication that the box is moving either before or after the heat transfer process, we set the
changes in kinetic and potential energy equal to zero. Three of the relevant auxiliary equations for an ideal gas are (a) the

equation of state, pV = mRT, (b) the internal energy equation, Eq. (3.38), u2 − u1 = cvðT2 − T1Þ, and (c) the work mode

equation for moving boundary work, Eq. (4.26), 1W2 =
Z 2

1
p dV . In this problem, the argon certainly changes volume as the

balloon bursts, but the argon expands into a vacuum (the box was initially evacuated), so it expands against zero resistance.
Therefore, the moving boundary work is zero. Putting these results into the basic energy balance equation gives

1Q2 − 0 = mcvðT2 −T1Þ + 0 + 0

from which we can solve for T2 as

T2 = T1 +
1Q2

mcv

where m is the mass of argon present and 1Q2 = 0:100 kJ. Since this is a closed system, the mass can be determined from the
ideal gas equation of state:

m =
p1V1

RT1
=

p2V2

RT2
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and since we know that, for the argon, p1 = 0:0100MPa = 10:0kPa = 10:0 kN/m2, T1 = 20:0°C, and V
1
= 0:0100m3, we can

find the value of R from Table C.13b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics as
R = 0:208 kJ/kg ⋅K; then, determine the mass as

m =
ð10:0 kN/m2Þð0:0100m3Þ

ð0:208kJ/kg ⋅KÞð20:0+273:15KÞ = 0:00164kg

This equation for T2 can be solved to give

T2 = 20:0°C + 0:100 kJ
ð0:00164kgÞð0:315 kJ/kg ⋅KÞ = 214°C

where we use the value of cv = 0:315 kJ/kg ⋅K for argon found in Table C.13b. Note that, if you express T1 in °C, then T2 is
in °C, but if you express T1 in K, then T2 is in K also. Finally, we can compute the final pressure from the ideal gas equation
of state as

p2 = mRT2
V

2

=
ð0:00164kgÞð0:208 kJ/kg ⋅KÞð214 +273:15KÞ

0:0400m3
= 4:15 kPa

where in the final state the argon fills the entire volume of the box.

Exercises
4. Suppose the balloon in Example 5.5 is designed to burst after absorbing 0.200 kJ of radiation heat transfer. What would

the final temperature and pressure be inside the box after the balloon burst? Answer: T2 = 407°C and p2 = 5:8 kPa.
5. If air were substituted for the argon in Example 5.5 with no changes in the remaining parameters, what would the final

temperature and pressure be inside the box after the balloon burst? Answer: T2 = 137°C, p2 = 3:5 kPa.
6. Determine the radiation heat transfer in Example 5.5 that would produce a final pressure of 20.0 kPa in the box after

the balloon bursts. What would be the corresponding temperature in the box? Answers: 1Q2 = 1:06 kJ, and T2 = 2070°C:

5.7 PISTON-CYLINDER DEVICES
One of the oldest pieces of effective technology is the piston in a cylinder apparatus. It was used in early Roman
pumps, and its use in the steam engine of the 18th century brought about the Industrial Revolution. It is still
commonly used today in piston-type pumps and compressors and in a wide variety of internal and external
combustion engines. The following example illustrates its use in a refrigeration process.

EXAMPLE 5.6
You have 0.100 lbm of Refrigerant-134a initially at 180.°F and 100. psia in a cylinder with a movable piston that undergoes
the following two-part process. First, the refrigerant is expanded adiabatically to 30.0 psia and 120.°F, then it is compressed
isobarically (i.e., at constant pressure) to half its initial volume.

Determine

a. The work transport of energy during the adiabatic expansion.
b. The heat transport of energy during the isobaric compression.
c. The final temperature at the end of the isobaric compression.

Solution (This is an example of a multiple-part solution process)
First, draw a sketch of the system (Figure 5.6).

The unknowns are (a) 1W2, (b) 2Q3, and (c) T3. The system is closed, consisting of the R-134a in the cylinder.

Because this is a two-part process, three states are involved, as follows.

State 1 �����������!Process: Adiabatic

expansion
State 2 ����������!Process: Isobaric

compression
State 3

p1 = 100:psia p2 = 30:0psia p3 = p2 = 30:0psia
T1 = 180:°F T2 = 120:°F v3 = v1/2

The basic energy balance equations for these two processes are

1Q2 − 1W2 = mðu2 − u1Þ+KE2 −KE1 +PE2 −PE1

(Continued )
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EXAMPLE 5.6 (Continued )

Piston

System
boundary 

Refrigerant-134a

Vapor dome

P

v

1

230.100 lbm

Adiabatic
expansion

Cylinder

1W2 = ?

2Q3 = ?

Isobaric
compression

FIGURE 5.6
Example 5.6.

and

2Q3 − 2W3 = mðu3 − u2Þ+KE3 −KE2 +PE3 −PE2

Since we are not given any potential or kinetic energy information, we assume that no changes occur in these variables. As
auxiliary equations we have 1Q2 = 0 (because the process from state 1 to state 2 is adiabatic); consequently, the resulting
energy balance equation for the solution to part a) is

1W2 = −mðu2 − u1Þ
Also, since the process from state 2 to state 3 is isobaric, the work for this process is given by 2W3 = m

Z 3

2
p dv = mp3ðv3 − v2Þ

and the energy balance for the process from 2 to 3 gives the equation for the solution to part b as

2Q3 = mðu3 − u2Þ+mp3ðv3 − v2Þ
The solution to part c must be determined from the values of the independent properties p3 and v3 and the use of the
R-134a tables. From Table C.7e of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that at
p1 = 100: psia and T1 = 180:°F, v1 = 0:6210 ft3/lbm, u1 = 125:99Btu/lbm. Similarly, at p2 = 30:0psia and T2 = 120°F, we
find from Table C.7e that v2 = 1:966 ft3/lbm and u2 = 115:47Btu/lbm.

The final answers are

a.

1W2 = −mðu2 − u1Þ
= − ð0:100 lbmÞð115:47−125:99 Btu/lbmÞ = 1:05 Btu

b. 2Q3 = mðu3 − u2Þ+mp3ðv3 − v2Þ, where we already have numerical values for m, u2, p3, and v2, but we also need values
for v3 and u3. From the problem statement for the process from 2 to 3, we find that

v3 = v1
2

= 0:6210
2

= 0:3105 ft3/lbm

From Table C.7b, we find that, since state 3 is at 30.0 psia, vf ð30:0psiaÞ< v3 < vg ð30:0 psiaÞ, state 3 is a mixture of
liquid plus vapor. It therefore has a quality given by

x3 =
v3 − vf3
vfg3

Table C.7b at 30.0 psia gives vf 3 = 0:01209 ft3/lbm, vg3 = 1:5408 ft3/lbm, uf 3 = 16:24Btu/lbm, and ug3 = 95:40Btu/lbm.
We can now calculate the quality at state 3 as

x3 =
v3 − vf3
vg3 − vf3

=
0:3105 ft3/lbm− 0:01209 ft3/lbm

1:5408 ft3/lbm− 0:01209 ft3/lbm
= 0:195 = 19:5%

Finally, we get the other state 3 properties as

u3 = uf3 + x3ðug3 − uf3Þ
= 16:24Btu/lbm+ 0:1952ð95:40−16:24Btu/lbmÞ = 31:7Btu/lbm
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then

2Q3 = mðu3 − u2Þ+mp3ðv3 − v2Þ
= ð0:100 lbmÞð31:7−115:47Btu/lbmÞ
+ ð0:100 lbmÞð30:0 lbf/in:2Þð144 in:2/ft2Þð0:3105−1:9662 ft3/lbmÞ 1Btu

778:17 ft ⋅lbf

� �
= −9:31Btu

c. Since state 3 is saturated (a mixture of liquid and vapor), T3 must be equal to the saturation temperature at 30.0 psia,
which, from Table C.7b, is T3 = 15:38°F.

5.8 CLOSED SYSTEM UNSTEADY STATE PROCESSES
One of the most difficult thermodynamic processes to analyze is an unsteady state process. This is largely due to
the fact that there are many more unknowns in these processes. In addition, they usually involve integrating the
rate form of the basic equations, so some knowledge of the solution techniques for ordinary differential equa-
tions is essential before a complete thermodynamic analysis can be carried out. The following example illustrates
this type of problem.

EXAMPLE 5.7
A microwave antenna for a space station consists of a 0.100 m diameter rigid, hollow, steel sphere of negligible wall thickness.
During its fabrication the sphere undergoes a heat-treating operation in which it is initially filled with helium at 0.140 MPa
and 200.°C, then it is plunged into cold water at 15.0°C for exactly 5.00 seconds. The convective heat transfer coefficient of the
sphere in the water is 3.50 W/(m2 · K). Neglecting any changes in kinetic or potential energy and assuming the helium behaves
as an ideal gas, determine

a. The final temperature of the helium.
b. The change in total internal energy of the helium.

Solution
First, draw a sketch of the system (Figure 5.7).

(Continued )

WHY AREN’T THE VALUES OF u AND h IN THE TABLES THE SAME
AS THOSE YOU GET FROM THERMO COMPUTER PROGRAMS?

To develop a table or thermodynamic program of values of properties like internal energy and enthalpy, a zero reference
point for these properties has to be chosen. This is called a reference state, and whoever develops the table or computer pro-
gram is free to chose his or her own reference state. So the values of u and h for a particular material may not be the same
from table to table or the same as those given by computer programs. However, it turns out that this is not important
because the first law uses only the differences, u2 − u1 or h2 − h1, and when you subtract two values, the reference state
used (whatever it was) cancels out. This is like calculating T2 − T1. You can use either ºF or R (or ºC or K) and get the same
answer.

Using EES, the answers to Example 5.6 are (a) 1W2 = −1:02Btu, (b) 2Q3 = − 9:29Btu, and (c) T3 = 15:37°F. While these
are not exactly the same as those given in Example 5.6, they differ by less than 3%, which is quite acceptable for this
calculation.

Exercises
7. Find the work transport of energy in part a of Example 5.6 if the working fluid is air (an ideal gas) instead of

Refrigerant-134a. Answer: 1W2ð Þa = − 1:03Btu.
8. Find the final temperature in part c of Example 5.6 if the working fluid is an ideal gas. Answer: T3 = 96R.
9. Find the heat transport of energy in part b of Example 5.6 if we set v3 = vgð30:0psiaÞ instead of v1/2. Answer:

ð2Q3Þb = −2:20Btu.
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EXAMPLE 5.7 (Continued )

The unknowns are, after 5 seconds have passed, (a) T2 = ? and (b)
U2 − U1 = ? The system is closed, and the material is the helium gas
in the sphere.

The basic equations here are the closed system energy balance (EB)

1Q2 − 1W2 = U2 −U1 + KE2 −KE1 +PE2 −PE1

Neglect

and neglecting _KE and _PE, the closed system energy rate balance (ERB) is

_Q − _W = _U

The auxiliary equations needed here are

1. The mechanical work mode 1W2 = _W = 0 (a rigid hollow sphere).
2. The convective heat transfer mode _Q = −hAðTs −T∞Þ (the negative sign is necessary here because the helium loses heat).
3. Assuming the helium to be an ideal gas, the internal energy can be represented as du = cvðdTÞ and _U = m _u = mcv _Ts:

Putting these results into the energy rate balance equation gives (assuming T∞ = constant)

_Q = −hAðTs −T∞Þ = _U = mcv _Ts

or

_Ts =
dTs
dt

=
dðTs − T∞Þ

dt
= − hA

mcv
ðTs − T∞Þ

This is a first-order ordinary differential equation with the initial condition Ts = T1 when t = 0. Its solution is

Ts = ðT1 − T∞Þ exp − hAt
mcv

� �
+ T∞

where T2 = Ts at t = 5.00 s. The remaining part of the solution is given by the energy balance equation as

U2 −U1 = mcvðT2 −T1Þ

The auxiliary equations and calculations are

h = 3:50:W/ðm2 ⋅KÞ
T∞ = 15:0°F

V = π
6
ðDÞ3 = π

6
ð0:100mÞ3 = 5:24× 10− 4m3

A = πD2 = πð0:100mÞ2 = 0:0314m2 ðthe surface area of a sphereÞ
cv = 3:123kJ/ðkg ⋅KÞ ðfrom Table C:13bÞ

and from the ideal gas equation of state for helium, m = PV/RT, Table C.13b gives R = 2:077 kJ/ðkg ⋅KÞ. Then,

m =
ð140: kN/m2Þð5:24×10− 4m3Þ

½2:077 kJ/ðkg ⋅KÞ�½ð200:+273:15ÞK� = 7:46×10−5 kg

hA
mcv

=
½3:50W/ðm2 ⋅KÞ�ð0:0314m2Þ

ð7:46 × 10− 5 kgÞ½3:123 kJ/ðkg ⋅KÞ� = 0:472 s−1

and at t = 5.00 s,

T2 = ðT1 − T∞Þ expð− hAt/mcvÞ+T∞

= ½ð200:−15:0Þ°C� exp½−ð0:472 s− 1Þð5:00 sÞ�+15:0°C

= 32:5°C

Then,

U2 −U1 = mcvðT2 − T1Þ
= ð7:46× 10− 5 kgÞ½3:123 kJ/ðkg ⋅KÞ�½ð32:5−200:ÞK�
= −0:039 kJ

System boundary

Helium

T∞ = 15.0°C
0.100 m diameter

h = 3.50 W/(m2 . K)

FIGURE 5.7
Example 5.7.
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Exercises
10. Determine the final temperature of the helium in Example 5.7 when the sphere is left in the cold water for 10.0 s rather

than 5.00 s. Answer: T2 = 16:6°C.
11. Determine the final temperature in the sphere in Example 5.7 after 5.00 s of immersion in the cold water if the sphere is

filled with air instead of helium (everything else remains the same). Answer: T2 = 60°C.
12. Describe in words how the solution to Example 5.7 changes if the material in the sphere is an incompressible liquid

instead of an ideal gas. Answer: Change cv to c and the rest of the solution is the same.

5.9 THE EXPLOSIVE ENERGY OF PRESSURE VESSELS
The explosion of a pressure vessel, such as a steam boiler, is an example of a very unsteady state process. But,
since it is such an important topic from a safety point of view, it is treated as a separate subject here.

Not many engineers realize just how dangerous a high-pressure gas or vapor can be. The explosive energy of a
pressure vessel is defined to be its capacity to do work adiabatically on its surroundings. Consider a pressure ves-
sel whose initial state is just before the explosion and whose final state is immediately after all the debris has
come to rest and thermodynamic equilibrium has been reestablished. The explosion process is considered to be
adiabatic with no net change in system kinetic or potential energies. The explosive energy can be determined
from the closed system energy balance as

Explosive energy = −1W2 = mðu1 − u2Þ
where we have introduced the minus sign because we want the work done by the system on the environment not
that done on the system. The explosive energy per initial unit volume of the pressure vessel is defined to be Γ, where

Γ = mðu1 − u2Þ/V
1
= ðu1 − u2Þ/v1 (5.1)

If the pressure vessel contains an ideal gas with constant specific heats, then Eqs. (3.38) and (3.35b) can be used
to give the explosive energy per unit volume as

ðΓÞideal gas = cvðT1 −T2Þ/ðRT1/p1Þ = p1ð1−T2/T1Þ/ðk− 1Þ (5.2)

where R/cv = k – 1. If, on the other hand, the pressure vessel contains an incompressible liquid, then Eq. (3.33)
can be used to give

ðΓÞincompressible liquid = cðT1 −T2Þ/v = ρcðT1 −T2Þ (5.3)

A liquid that does not change phase during decompression undergoes the process very nearly isothermally, so
T2 = T1 and its explosive energy is zero. Therefore, the explosive energy of high-pressure liquids is very slight in
comparison with gases and vapors at the same pressure, and this is why liquids are often used to hydrostatically
test pressure vessels to failure.

EXAMPLE 5.8
On March 10, 1905, a catastrophic boiler explosion occurred
in a shoe factory in Brockton, Massachusetts, that killed 58
and injured 150 people (Figure 5.8).2 This and similar
explosions brought about the development of the ASME
Boiler and Pressure Vessel Code in 1915. Suppose that the
Brockton shoe factory had a 250. ft3 boiler and right before
the explosion it contained superheated steam at 600. psia
and 800.ºF. After the explosion, the steam quickly condensed
into saturated liquid water at 70.0ºF.

a. Determine the explosive energy per unit volume of
superheated steam.

b. How many 1 lbm sticks of TNT would it take to equal the
explosion of the boiler? The explosive energy per unit
mass of TNT is 1400. Btu/lbm.

Solution
First, draw a sketch of the system.

(Continued )

FIGURE 5.8
Example 5.8, Brockton Shoe Factory.
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EXAMPLE 5.8 (Continued )

The unknowns are explosive energy per unit volume of superheated steam and the number of 1 lbm sticks of TNT it would
it take to equal the explosion of the boiler. The system is closed, and the material is steam.

a. From the superheated steam table, Table C.3a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics,
we find that at 600. psia and 800.ºF, u1 = 1275:4Btu/lbm and v1 = 1:190 ft3/lbm; from the saturated steam table,
Table C.1a, we have u2 = uf ð70°FÞ = 38:1Btu/lbm. So Eq. (5.1) gives

Γ = ð1275:4 – 38:1Btu/lbmÞ/ð1:190ft3/lbmÞ=1039:7Btu/ft3

b. For a 250. ft3 boiler, the explosive energy is then ð1039:7Btu/ft3Þð250: ft3Þ = 2:60×105 Btu. Therefore, it would take
ð2:60×105 BtuÞ/ð1400:Btu/lbmÞ = 186 one-pound sticks of TNT to match the boiler explosion.

Exercises
13. Using saturated liquid water at 70.0°F as the postexplosion state, determine the explosive energy per unit volume of

superheated steam at (a) 100. psia and 1000.°F, (b) 1000. psia and 1000.°F, (c) 80.0 MPa and 1000.°C. Answer:
(a) Γ = 154:0Btu/ft3, (b) Γ = 1580Btu/ft3, (c) Γ = 5:32× 105 kJ/m3.

14. Determine the explosive energy of the boiler in Example 5.8 in lbm of TNT if it had a volume of 1500. ft3. Answer:
1114 lbm TNT.

15. How could Eq. (5.2) lead to an incorrect conclusion regarding the explosive energy (and danger) of a compressed ideal
gas? Answer: If the initial and final temperatures of the ideal gas before and after the explosion are taken to be the
same, then Γ = 0 and you would conclude that a compressed ideal gas is not dangerous. However, the final state of the
explosive process must be the state that occurs immediately after the debris from the explosion has come to rest. If we
model the explosion as a reversible and adiabatic process, we see in Chapter 7 that T2 = T1ðp2/p1Þðk–1Þ/k, where k is the
specific heat ratio cp/cv, then Eq. (5.2) becomes

Γideal gas reversible& adiabatic =
P1

k−1
1−

p2
p1

� �k−1

k

24 35
and the explosive danger of a compressed ideal gas becomes more apparent.

2 At about 8:00 AM there were around 400 employees at the R. B. Grover & Company shoe factory in Campello, when the boiler exploded, shot through the
roof, and caused the building to collapse. The boiler traveled several hundred feet, damaging a number of buildings and coming to rest in the wall of a
house. Thirty-six of the victims were never identified and were buried in a common grave, where a monument to the victims was later erected by the city.

SUMMARY
In this chapter, we investigate a series of closed system examples and carry out a first law analysis of them using
the energy balance or the energy rate balance. The primary purpose of these examples is to illustrate the material
presented in Chapter 4.

The only new equations introduced in this chapter are those associated with the explosive energy per unit initial
volume of pressure vessels, Γ, where in general

Γ = u2 − u1
v1

(5.1)

and for ideal gases

Γideal gas =
p1

k−1
1− T2

T1

� �
(5.2)

or for incompressible liquids

Γincompressible liquid =
cðT1 − T2Þ

v
(5.3)
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Problems (* indicates problems in SI units)
1.* One kg of liquid water at 20.0°C is poured from a height of

10.0 m directly onto the floor. After a short time, the specific
internal energy of the water on the floor has returned to its
initial value before it was poured.
a. What total heat transport of energy occurred during this

process (ignore evaporation effects)?
b. In which direction was this heat transport of energy, into or

out of the water?
2. Determine the direction and amount of heat transfer required to

raise the temperature of the contents of a rigid, sealed,
subterranean silicon sphere containing 10.0 lbm of saturated
water vapor from 280. to 1000.°F, 100. psia. Fill in the
following table (with correct units) and show all calculations.
Unknown: 1Q2 = ?

State 1 ��������!Process ¼ ?
State 2

x1 = 1:00 p2 = 100:psia
T1 = 208°F� T2 = 1000:°F �

p1 = ? x2 = ?
u1 = ? u2 = ?

3.* Determine the direction and amount of heat transfer that
occurs as 3.00 kg of superheated blood (essentially steam)
expands isothermally from 800.°C, 80.0 MPa to 0.100 MPa
doing 500. kJ of work in the process (Figure 5.9). Fill in the
following table (with correct units) and show all calculations.
Unknown: 1Q2 = ?

State 1 �������!Process ¼ ?

1W2=500 kJ
State 2

p1 = 80:0MPa p2 = 0:100MPa
T1 = 800:°C � T2 = ? �

v1 = ? v2 = ?
u1 = ? u2 = ?

4. A rigid, sealed 1936 Ford coupe contains an equilibrium water
liquid-vapor mixture with a quality of 8.8333% at 3.00 psia.
After 500. Btu of heat energy are added to the coupe, the
contents becomes a saturated vapor. What is the total mass of
water in the coupe? Fill in the following table (with correct
units) and show all calculations. Unknown: m = ?

State 1 ���������!Process = ?

1Q2=500Btu
State 2

p1 = 3:00psia p2 = ?
x1 = 0:088333� x2 = 1:00�

v1 = ? v2 = ?
T1 = ? T2 = ?
u1 = ? u2 = ?

5.* The makers of a new breakfast cereal have a process in which a
rigid, sealed vessel contains 1.00 kg of saturated water vapor at
10.0 MPa. Energy is removed from the vessel as heat transfer
until the pressure drops to 0.100 MPa. Determine the heat
transfer, state its direction, fill in the following table (with
correct units), and show all calculations. Unknown 1Q2 = ?

State 1 ���������!Process = ?
State 2

x1 = 1:0 T2 = ?
P1 = 10:0MPa� P2 = 0:100MPa �

v1 = ? v2 = ?
T1 = ? x2 = ?
u1 = ? u2 = ?

6. A rigid sealed fossilized goat’s bladder contains water in a
liquid-vapor equilibrium at 70.0°F. After 300. Btu of heat are
added to the bladder, its contents are converted into a saturated
vapor with a specific volume of 50.2 ft3/lbm. What is the total
mass of water in the bladder?

7.* A rigid, sealed 1939 Buick having an internal volume of 6.00 m3

is filled with steam at 0.70 MPa and 300.°C. Heat is then
transferred from the steam until it has a quality of 100.% while
the contents of the Buick are stirred with a blade requiring
10.0 W ·h of work input. Determine (a) the final pressure in the
vessel and (b) the total heat transfer.

8.* Exactly 1.73 kg of water vapor is contained in a piston-cylinder
assembly at a pressure of 1.00 MPa and temperature 600.°C.
The vapor is isothermally compressed to 80.0 MPa. Determine
the sum of the work and heat energy transports in this process.

9. One pound of Refrigerant-134a is put into a piston-cylinder
assembly at an initial pressure and temperature of 200. psia and
200.°F. The R-134a is then slowly heated at constant pressure until
the temperature reaches 300.°F. Determine the work done on or
by the system and the heat transferred to or from the system.

10. The pressure in an isochoric automobile tire increases from
28.0 psia at 70.0°F to 35.0 psia on a trip during hot weather.
Assume the air behaves as an ideal gas. (a) What is the air
temperature inside the tire at the end of the trip. (b) How much
heat is absorbed per unit mass of air in the tire during the trip?

11.* A small room 5.0 × 5.0 × 3.0 m high contains air at 20.0°C and
0.101 MPa. It is the camera stage of a television broadcasting
studio and contains many bright lights for illumination. The
room is closed, sealed, and insulated to isolate the performers
from outside distractions. Assuming air is an ideal gas, find the
temperature and pressure in the room 1.00 h after eight 1000. W
lights are turned on. Assume there is no ventilation or air
conditioning and ignore the effect of people in the room.

12. A room heating system uses steam radiators to heat the room air.
A radiator that has a volume of 3.00 ft3 is filled with saturated
vapor at a pressure of 15.3 psig and the inlet and exit valves are
closed. How much energy is transferred to the room air as heat at
a time when the pressure in the radiator reaches 3.30 psig.

Problems 161

3.00 kg of super-
heated blood

Piston

1Q2 = ?

FIGURE 5.9
Problem 3.



Assume the room air is at 14.7 psia and 70.0°F during the entire
process.

13.* The human body under the stress of exercise can release 230. W
as heat. Assume the human body to be a closed system and
neglect any work or change in kinetic energy. Determine the rate
of change in internal energy of the human body as a 68.0 kg
person runs at a constant velocity up a staircase having a vertical
height of 15.0 m in 60.0 s.

14.* Exactly 14.0 kg of herpes duplex virus scum is compressed
from a volume of 4.50 to 1.50 m3 in a process where p is in
N/m2 is given by p = 60:0/V +30:0, when V is in m3. During
the compression process the virus gives off 20.0 J of heat and
turns a putrid yellow in color. Determine the change in the
specific internal energy of the virus for this process.

15.* Exactly 3.70 kg of nitrogen gas at exactly 0°C and 0.100 MPa is
put into a cylinder with a piston and compressed in a process
defined by pV2 = constant. When the final pressure in the
cylinder reaches 10.0 MPa, and assuming ideal gas behavior,
determine (a) the amount of work done on the nitrogen by the
piston and (b) the final temperature of the nitrogen.

16. Heat is transferred to 0.100 lbm of air contained in a frictionless
piston-cylinder apparatus until its volume expands from an
initial value of 1.00 ft3 to a final value of 1.50 ft3. Calculate the
work transport of energy and the heat transfer when the system
is the air in the cylinder. The initial temperature of the air is
70.0°F. Consider air to be an ideal gas.

17. Exactly 0.100 lbm of air (an ideal gas) initially at 50.0 psia and
100.°F in a cylinder with a movable piston undergoes the
following two-part process. First, the air is expanded
adiabatically to 30.0 psia and 24.0°F, then it is compressed
isobarically (i.e., at constant pressure) to half its initial volume.
Determine
a. The final temperature at the end of the isobaric compression.
b. The work produced during the adiabatic expansion.
c. The heat transfer during the isobaric compression.

18.* A 1000. kg battery powered adiabatic electric vehicle has a fully
charged battery containing 20.0 MJ of stored energy. If it
requires 12.0 kW of power to keep it moving at a constant
velocity on a horizontal road, determine how long the vehicle
will operate before its battery is fully discharged.

19. How many watt hours of electricity are needed to heat the
contents of a sealed, rigid, insulated chamber pot containing
0.300 lbm of water from 50.0°F with a quality of 1.00% to a
saturated vapor. The chamber pot has an internal electrical
resistance heater with a power cord that plugs into a standard
110. V ac outlet.

20.* A small, sealed, rigid container holding 0.500 kg of water is
heated in a microwave oven drawing 1600. W at 2460 MHz.
The oven’s timer is set for exactly 1 min. The initial
thermodynamic state of the water is 20.0°C at 1.00 atm. After
the 1 min heating period, determine (a) the water’s work
transport of energy, (b) the water’s heat transport of energy,
(c) the change in specific internal energy of the water, and (d) the
final temperature and pressure assuming the liquid water to be
an incompressible liquid with a specific heat of 4.50 kJ/(kg ·K).

21.* 30.5 kg of H2O contained in a 1.00 m3 rigid tank are at an
initial pressure of 10.0 MPa. The contents of the tank are cooled
at constant volume until a final pressure of 2.00 MPa is reached.
Determine the final temperature, the final value of the specific
internal energy, and the process heat transfer.

22. A small rigid tank 1.00 ft3 in volume contains saturated water
vapor at 300.°F. An initially evacuated rigid container 3.4549 ft3

in volume is then attached to the first tank and the
interconnecting valve is opened. The combined system is then
brought to equilibrium at 300.°F by an appropriate heat
transport of energy. Determine the final pressure in the system
and the required heat transfer.

23. A pressure vessel that has a volume of 0.200 ft3 is filled with
saturated liquid Refrigerant-22 at 70.0°F. An evacuated container
4.00 ft3 in volume is attached to the vessel and the
interconnecting valve is opened. The combined system is then
brought to equilibrium at 70.0°F Calculate the heat transport of
energy to (or from) the system.

24.* A mixture of hydrazine and cow manure happens to have the
same thermodynamic properties as pure water. A secret process
requires that this mixture be vaporized then injected into light
bulbs. Determine the work and heat transport of energy that
occurs when 1.30 kg of this mixture is isothermally converted
from a saturated liquid to a saturated vapor at 40.0°C.

25. A lead bullet weighing 0.0200 lbf and traveling horizontally at
3000. ft/s is suddenly stopped by a perfectly rigid object that
does not deform during the impact. Find the temperature rise of
the bullet assuming the impact occurs so rapidly that the impact
process can be considered to be adiabatic. For lead, use
Δu = 0.0130(ΔT) in Btu/lbm, where T is in °F or R.

26. As a bullet travels down the barrel of a pistol, the pressure from
the burning propellant behind it increases linearly with the
volume V displaced by the bullet as p = V × 103 in psia, where V
is in in.3. The total volume of the barrel is πR2L, where R is the
radius of the bore and L is its total length. Determine the velocity
of the bullet at the end of the barrel if it travels horizontally and
adiabatically down the barrel without changing its internal
energy and with no friction.

Data
Barrel length = 6.00 in
Barrel diameter = 0.380 in
Bullet mass = 5.00 g

27. A rubber band weighing 1.00 × 10–3 lbf that obeys Hooke’s law
of elasticity is stretched horizontally and adiabatically from an
initial length of 3.00 to 4.00 in.
a. Determine the change in total internal energy of the rubber

band when it is stretched, if its elastic modulus is 1.00 ×
103 lbf/in2 and its cross-sectional area remains approximately
constant at 7.80 × 10–3 in2.

b. If the stretched rubber band is suddenly released horizontally
and adiabatically, determine its final velocity neglecting air
friction and any height change during its flight.

28. A thin glass sphere 0.0250 ft3 in volume is completely filled
with 1.00 lbm of saturated liquid nitrogen. The glass sphere is
sealed inside a large rigid, evacuated, insulated container whose
volume is 10.0 ft3. What are the final pressure and quality
(if any) inside the larger container if the glass sphere breaks.

29. 1.00 ft3 of saturated liquid water at 14.7 psia is poured into an
initially evacuated, rigid, insulated vessel whose volume is 100. ft3.
Inside the vessel is an electric heater that draws an effective 10.0 A
at an effective 110. V. Once this heater is turned on, how long will
it take the contents of the vessel to reach 40.0 psia?

30.* A rigid vessel having a volume of 3.00 m3 initially contains steam
at 0.400 MPa and a quality of 40.2%. If 23.79 MJ of heat is added
to the steam, determine its final pressure and temperature.
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31. A thermoelectric generator consists of a series of semiconductor
elements heated on one side and cooled on the other. It is a type
of thermal engine, except that the output is electrical rather than
mechanical work. Electric direct current output is produced as a
result of an input heat transport of energy. In a particular
experiment, the steady state direct current is measured to be
0.500 A and the potential across the unit is 0.800 V. The heat input
to the hot side is 5.50 W. Determine the heat transfer rate from the
cold side and the energy conversion efficiency of this device.

32. A rigid, sealed pressure cooker has a volume of 0.700 ft3 and
contains 0.1279 lbm of water (liquid plus vapor) in equilibrium
at 14.7 psia. The pressure cooker is then slowly heated until all
the water inside becomes a vapor.
a. What are the internal temperature and pressure when the last

bit of liquid vaporizes.
b. How much heat transfer is required (in Btu) to vaporize all

the water.
c. Sketch the process path on a p-v diagram for water.

33.* A pressure cooker whose volume is 0.300 m3 contains 2.00 kg of
water. It is placed on a heating element of an electric stove that
continuously draws 220. V (effective) and 0.500 A. Assuming all
the heat generated in the element goes into the pressure cooker,
determine the rate of heat loss from the pressure cooker to the
environment when it has reached steady state conditions (i.e.,
ðdE/dtÞsystem = 0).

34. A teakettle initially contains 5.00 lbm of water (liquid plus
vapor) and has a total volume of 0.500 ft3. The atmospheric
pressure (and thus the initial pressure in the teakettle) is 14.7 psia.
The kettle has a “pop-off” valve that keeps the water vapor in the
kettle until its pressure reaches 5.30 psig. At this internal pressure,
the valve opens and allows the vapor to escape into the
atmosphere in such a way as to maintain the internal pressure
constant. The kettle is heated on a stove until all the remaining
water inside becomes saturated vapor.
a. Take the water that remains in the kettle at the final state as

a system. Sketch the p-v diagram for this system for the
process just described.

b. List two intensive properties at each of the states shown in
Table 5.1.

c. Determine the mass of water in the kettle when it reaches
the final state.

d. Determine the work done by the escaping steam in pushing
aside the atmosphere.

35. A small electrically heated steam boiler with a total volume of
10.0 ft3 can be considered to be a perfectly rigid, insulated
vessel with three valves: an inlet valve, an exit valve, and a safety
relief valve. During a test, the boiler operator closed both the
inlet and exit valves while leaving the heater on. The safety relief
valve is to stay closed until a pressure of 160. psia is reached. If
there are 4.477 lbm of water in the boiler and the pressure is
100. psia at the time the valves are closed, how much energy

will have been transferred to the water as heat when the safety
relief valve first opens?

36. Helium contained in a cylinder fitted with a piston expands
according to the relation pV1:5 = constant. The initial volume of
the helium is 2.00 ft3, the initial pressure is 70.0 psia, and the
initial temperature is 400. R. After expansion, the pressure is
30.0 psia. The specific heat of the helium is given by the
relation cv = a+ bT, where a = 0:400Btu/ðlbm⋅RÞ and
b = 1:00× 10− 3 Btu/ðlbm⋅R2Þ. Determine the heat transfer and
indicate its direction.

37.* A student weighs 1333 N and wishes to lose weight. The student
climbs with a constant velocity to the top of a staircase with a
vertical height of 250. m.
a. Assuming the student is a closed adiabatic system (which is

really not a very accurate assumption here), determine the
change in total internal energy of the student.

b. How much weight would the student lose if his total
internal energy change were the result of the conversion of
body fat, where 1.00 kg of body fat contains 32,300 kJ of
energy?

c. The student decides to take more drastic action and designs a
machine that squashes him from an initial volume of 0.300 m3

to a final volume of 0.100 m3 according to the relation
pV0:5 = constant. If the student’s initial internal pressure is
0.110 MPa, determine his final internal pressure and the work
done in squashing the student.

38. A Newcomen steam engine, built in 1720, pumped water from a
coal mine by condensing water vapor in a piston-cylinder
device. If the piston had a cross-sectional area of 1.50 ft2,
determine
a. The work done by the atmosphere (at 14.7 psia) on the

piston in the cylinder when the water vapor volume is
decreased by 6.00 ft3.

b. The work done in lifting the water from the mine for the
same process as part a.

39.* Determine the surface temperature of an automobile engine,
initially at 90.0°C, 4 h after it has stopped running on a winter
day, when the air temperature is –30.0°C and the convective
heat transfer coefficient is h = 70:0W/ðm2 ⋅KÞ. Assume the
engine to be approximately spherical in shape with the
following physical properties: density = 7750 kg/m3,
specific heat = 0:4645 kJ/ kg ⋅Kð Þ, volume = 0:500m3, and
thermal conductivity = 36:0W/ðm⋅KÞ.

40. A lunar orbiting module is on its way back to Earth. At
200. miles above the surface of the Earth, the module’s velocity is
2000. mi/h. At this point an astronaut seals a rigid insulated
container holding saturated water vapor at 10.0 psia. You are a
NASA engineering supervisor at Control Headquarters. Suddenly,
two wild-eyed engineers run up to you with the following
emergency:
ENGINEER A: “That sealed container aboard the lunar module may
explode when it lands! Its bursting pressure is only 80.0 psia, and
the internal energy of the water must increase due to the decrease
in the potential and kinetic energies on landing.”
ENGINEER B: “Engineer A is incorrect! That container is a sealed,
rigid, insulated vessel, so it cannot do any work or have any heat
transfer. Therefore, its internal energy cannot change on landing.”
Write a brief paragraph stating (a) which engineer you support,
(b) why (make this part very clear), and (c) what action (if any)
you would take as engineering supervisor.
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Initial State State when Valve
Opens

Final State

1. 1. 1.

2. 2. 2.



41.* When the pressure on saturated liquid water is suddenly
reduced to a lower pressure in an adiabatic and aergonic
process, the liquid’s temperature must also be reduced to reach
a new equilibrium state. Consequently, part of the initial liquid
is very quickly converted into a saturated vapor at the lower
pressure, and the resulting heat of vaporization cools the
remaining liquid to the proper temperature. Vapor formed in
this manner is called flash steam, because the liquid appears to
“flash” into a vapor as the pressure is reduced. Determine the
final temperature and the percent of flash steam produced as a
closed system containing saturated liquid water suddenly bursts
and the pressure drops from 1.00 to 0.100 MPa in an adiabatic
and aergonic process.

42. In 1798, the American Benjamin Thompson (Count Rumford,
1753−1814) carried out a series of cannon-boring experiments in
which he established that heat was not a material substance. (It
was commonly believed at that time that heat was a colorless,
odorless, weightless fluid called caloric.) In his third experiment,
he noted that the “total quantity of ice-cold water which with the
heat actually generated by friction, and accumulated in 2h 30m,
might have been heated 180°, or made to boil, = 26.58 lb.” He
also stated that “the machinery used in the experiment could
easily be carried round by the force of one horse.” Use this crude
data of Rumford to estimate the mechanical equivalent of heat
(i.e., the number of ft · lbf per Btu). Take the specific heat of
liquid water to be 1.00 Btu/(lbm · R).

43. The mechanical equivalent of heat (i.e., the number of ft · lbf per
Btu) was first established accurately by James Prescott Joule
(1818–1889) in a long series of experiments carried out between
1849 and 1878. In one of his first experiments, the work done by
falling weights caused the rotation of a paddle wheel immersed
in water. The weights had a mass of 57.8 lbm and fell 105 ft. The
resulting paddle wheel motion caused an increase in temperature
of 0.563°F in 13.9 lbm of water in an insulated container. Using
a specific heat of c = 1.00 Btu/(lbm · R), determine the
mechanical equivalent of heat from these early data of Joule.

44. Determine the heat generated (in Btu/year) by the brakes of
100. million 3000. lbm automobiles that isothermally brake to
a stop on a horizontal surface from 55.0 mph ten times per day.
Convert your answer into equivalent barrels of crude oil per year
then into quads per year, where one barrel of crude oil contains
5.80 × 106 Btu of energy and one quad is defined to be exactly
1015 Btu.

45.* An insulated vessel contains an unknown amount of ammonia.
A 600. W electrical heater is put into the vessel and turned on
for 30.0 min. The heater raises the temperature of the ammonia
from 20.0 to 100.°C in a constant pressure process at 100. kPa.
Determine the mass of ammonia in the vessel.

46. Using the general energy rate balance equation for a closed
system, show that, under adiabatic, isothermal, and aergonic
conditions, the acceleration of an object falling vertically
downward in a vacuum is simply the local acceleration of
gravity, g.

47.* Determine the difference in water temperature between the
top and the bottom of a waterfall 35.0 m high. Choose as
your system 1.00 kg of water at the top of the falls and
follow its change of state as it moves to the bottom of the
falls. Assume water to be an incompressible liquid and neglect
any heat loss. Also assume a constant water velocity for this
process.

48. In days of yore, a bow and arrows were an archer’s best friend.
Determine
a. The maximum velocity of a 0.400 lbm arrow shot

horizontally from a bow in which 100. ft · lbf is required to
draw back the arrow before releasing it.

b. The maximum height this arrow would reach if aimed
vertically.

49.* A 5.00 cm diameter steel sphere initially at 20.0°C is to be
heated by immersing it in boiling water at 100.°C with a
convective heat transfer coefficient of 2000. W/(m2 ·K).
Determine the time required to raise the bulk temperature of the
sphere to 90.0°C. The specific heat of the steel is 0.500 kJ/(kg ·K)
and its density is 7800. kg/m3.

50.* An asteroid enters the Earth’s atmosphere and descends
vertically with a constant velocity of 100. m/s. Determine the
rate of change of the asteroid’s temperature at the point where
its temperature exactly equals the surrounding air temperature.
The specific heat of the asteroid is 0.300 kJ/(kg ·K).

51.* 50,000. kg of saturated liquid water at 20.0°C is to be heated in
a mass-energy conversion oven in which 1.00 × 10–6 kg of mass
is converted into pure thermal energy (Q = mc 2). Assuming that
the water is an incompressible liquid with a specific heat of
4.20 kJ/(kg · K), determine the final temperature of the water.
The velocity of light is 2.998 × 108 m/s.

52. A hand grenade contains 1.90 ounces (0.120 lbm) of TNT.
Determine the number of hand grenades it would take to
produce an explosion equivalent to the Brockton shoe factory
boiler explosion discussed in Example 5.8. The explosive energy
of TNT is 1400. Btu/lbm.

53. Between 1897 and 1927, the Stanley brothers of Newton, Maine,
manufactured steam-powered automobiles. They had a steam
boiler 23.0 inches in diameter and 14.0 inches high that contained
steam at 600. psia and 600.°F. Determine the explosive energy of
these boilers and the number of 1.00 lbm sticks of TNT that would
contain the equivalent amount of explosive energy. Assume the
ambient temperature is 70.0°F.

54. The greatest steam explosion in history is thought to have occurred
on August 27, 1883, when the volcano Krakatoa in Sunda Strait,
Indonesia, erupted and its molten lava vaporized an estimated
1 mi3 of seawater. The entire 2600. ft high mountain was
disintegrated and a crater 1000. ft deep was produced. More than
36,000. people were killed, most by the 120. ft tidal wave created
by the eruption. Assuming that the seawater is simply saturated
liquid water at 60.0°F, determine the number of tons of TNT that
would have the same explosive energy as this eruption. For
reference, the total military production of explosives for both
world wars was equivalent to 32.0 million tons of TNT. The
explosive energy of TNT is 1400. Btu/lbm.

55. Show that, if a pressure vessel filled with a constant specific heat
ideal gas ruptures and the gas follows a polytropic process during
the subsequent depressurization, then the maximum explosive
energy of this system can be written as

Γmax = pinitial/ k−1ð Þ
56. Consider a gaseous star undergoing a gravitational collapse.

Assume the star to be a closed system and composed of an ideal
gas with constant specific heats. The collapse process is given by
the relations

v/r3 = constant and Tr = constant
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where v, T, and r are the specific volume, temperature, and
radius of the star.
a. Show that the collapse process is a polytropic process with

n = 4/3.
b. Beginning with the per unit mass differential form of the

first law, find an expression for the star’s heat transfer as a
function of its specific heats and temperature. Note that the
star does p�V work on itself as it collapses.

c. Using the expression found in part b, along with cv =
0.200 Btu/(lbm · R) and k = 1.4, calculate the amount of
heat transfer per unit mass of star as its temperature changes
from 5000. to 10,000. R.

d. Explain the critical condition that exists when the specific
heat ratio k takes on the value of 4/3.

Computer Problems
The following computer problems are designed to be completed
using a spreadsheet or equation solver. They may be used as part of a
weekly homework assignment.

57. Develop a computer program that performs an energy balance on
a closed system containing an incompressible substance (either a
liquid or a solid). Include the following input (in proper units):
the heat and work transports of energy, the system volume, the
initial temperature of the system, and the density and specific
heat of the incompressible material contained in the system.
Output to the screen the system mass and final temperature.

58. Develop a computer program that performs an energy balance on a
closed system containing an ideal gas with constant specific heats.
Include the following input (in proper units): the heat and work
transports of energy, the system volume, the initial temperature
and pressure of the system, and the constant volume specific heat
and gas constant of the gas contained in the system. Output to the
screen the system mass and the final pressure and temperature.

59. Repeat Problem 58, except allow the user to choose the system
ideal gas from a screen menu, and omit the prompts for gas
properties. Use the data in Table C.13 of Thermodynamic Tables to
accompany Modern Engineering Thermodynamics for the properties
of the gases in your menu.

60. Develop a computer program that generates data to allow you
to plot on the computer the explosive energy contained in a
1000. ft3 pressure vessel containing compressed air vs.

a. The vessel’s initial temperature when the initial pressure is
held constant at 100. psia.

b. The vessel’s initial pressure when the initial temperature is
held constant at 80.0°F.

c. Create a three-dimensional plot with the explosive energy on
the vertical axis and the initial pressure and initial
temperature on the horizontal axes.

Assume the final temperature and pressure of the air after the
vessel has ruptured are 70.0°F and 14.7 psia in each case and
that the air undergoes a polytropic decompression process
with n = 1.25 when the vessel ruptures. Also assume that
the air behaves as a constant specific heat ideal gas with
k = 1.40.

61. A white dwarf is a spherical mass of gas in outer space. Its radial
pressure gradient must always be in equilibrium with its own
gravitational force field, or

dp
dr

= −Gmρ/r2

where G is the gravitational constant, ρ is the density of the gas
at radius r (i.e., ρ = ρ(r)), and m is the mass of gas inside a
sphere of radius r,

m = 4π
Z r

0
ρr2dr

During its formation, the gas of a white dwarf obeys the
polytropic equation

pv−5/3 = α = constant

These relations can be combined to yield a differential equation
for the density field ρ = ρ(r) inside a white dwarf of the form

d2ϕ
dx2

+ 2
x

dϕ
dx

� �
+ϕ2/3 = 0

where ϕ = ðρ/ρ0Þ2/3, ρ0 = ρ(r = 0), and x = r/r*, where
r� = 5α/ 8πGρ1/30

� �
.

a. Solve the preceding differential equation for ϕ(x) using a
computer numerical solution with the boundary conditions
ϕ = 1 and dϕ/dx = 0 at x = 0 to show that ϕ(x) = 0 at
x = 3.6537.

b. Show that ϕ(x) = 0 corresponds to the radius R of the white
dwarf and a white dwarf therefore has a mass m given by
m = −45:91ρ0 r�ð Þ3 dϕ/dxð Þ j x=R.
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6.1 INTRODUCTION
This chapter contains detailed solutions to a variety of classical open system thermodynamic problems. These
solutions use the generalized problem solving procedure discussed in Chapters 4 and 5 (see Figure 4.21) and
focus on illustrating the use of the conservation of mass law and the first law of thermodynamics. The availabil-
ity of these two basic equations plus many auxiliary formulae means that there are usually more unknowns to
be solved for in open system problems than in closed system problems.

SUMMARY OF THE THERMODYNAMIC PROBLEM SOLVING TECHNIQUE

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.
Step 3. Identify the type of system (closed or open) you have.
Step 4. Identify the process that connects the states or stations.
Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).
Step 7. Calculate the value(s) of the unknown(s).
Step 8. Check all algebra, calculations, and units.

Sketch→Unknowns→ System→Process→Equations→ Solve→Calculate→Check

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00006-3
© 2011 Elsevier Inc. All rights reserved. 167



Open system problems are written with their flow stream thermodynamic properties evaluated at inlet and
outlet data monitoring stations. This is done in an attempt to simulate the way in which engineering data are
provided from experimental or field measurements. The bulk properties inside an open system do not normally
change from one equilibrium thermodynamic state to another during the process of interest, as do closed system
bulk properties. In fact, the vast majority of open systems of engineering interest are not in any equilibrium
state, since the thermodynamic properties of the material passing through them are continually changing inside
the system between the inlet and the outlet flow streams. However, most open systems do reach a “steady state”
nonequilibrium operating condition in which the total mass and energy they contain does not change with
time. Any open or closed system can be indefinitely maintained in a steady nonequilibrium state if it has the
proper energy or mass flows passing through it.

In addition, many thermodynamic properties are mathematically defined only for equilibrium conditions. If the
steady state properties within a system do not exhibit large variations between two neighboring points, then
we say that these points are in local thermodynamic equilibrium. The local equilibrium postulate introduced in an
earlier chapter states that a small volume, large enough for the continuum hypothesis to hold, is in local equili-
brium so long as its internal properties do not vary significantly within its borders. This means that the proper-
ties cannot change significantly in a distance on the order of the molecular mean free path at the point in
question.1 Most nonequilibrium processes of engineering interest obey this postulate. A few systems, such as
those containing shock waves, do not. For example, if rapid explosions occur within a piston-cylinder apparatus
(as in an internal combustion engine) or if the piston speed exceeds the speed of sound in the cylinder, then
the gas in the cylinder is far from equilibrium and an accurate thermodynamic analysis becomes very difficult,
from both a measurement and a theoretical point of view.

6.2 MASS FLOW ENERGY TRANSPORT
Mass flow energy transport occurs whenever mass crosses the system boundary. It consists of two parts. The first
part is the total energy associated with the flow stream mass itself, and the second is the energy required to
push the flow stream mass across the system boundary (this part is often called the flow work). Let an increment
of flow stream mass dm be added to or removed from a system. The total energy dEm associated with dm cross-
ing the system boundary is given by

dEm = ðu+ ke+peÞ dm
Figure 6.1 shows an incremental slug of mass with velocity V crossing a system boundary. The slug’s volume is
dV = A dL, and its mass is dm = ρ dV = ρA dL, where ρ is the mass density of the slug. In the time increment dt,

System boundary
Center of
gravity

Internal
energy

U

System C.G.
height, Zsys

Z = 0

System velocity Vsys

Flow stream
height, Zfs

Area
A

Pressure
p

Flow stream slug of mass, dm

Slug velocity

dL

V

FIGURE 6.1
Open system flow stream and system energies.

1 In air at standard temperature and pressure (STP), the molecular mean free path is approximately 8 × 10−8 m, or 3 × 10−6 in.
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the slug moves a distance j V!jdt = V dt and sweeps out an incremental volume dV = AV dt, which has an
associated mass of dm = ρ dV = ρAV dt: Dividing by dt gives

dm
dt

� �
flow stream

= ð _mÞflow stream = ðρAVÞflow stream (6.1)

This equation is a very convenient way to calculate the flow stream mass flow rate from the easily measured
variables of density (ρ), cross-sectional area (A), and average fluid velocity ðj V!j = VÞ:
The incremental energy required to push the mass slug across the system boundary and into the system is the
product of the force acting on it, p × A, and the distance moved, dL. Consequently, the flow work energy incre-
ment is

dW
mass
flow

= − pA dL = − p dV = −
p
ρ
dm = − pv dm

where v = 1/ρ is the specific volume of the slug. The flow work is negative here because adding dm to the system
represents work done on the system.

The total mass flow energy entering the system with this incremental mass is then

dE
mass
flow

= dEm − dW
mass
flow

= ðu+ ke+peÞ dm+ ðpvÞ dm

= ðu+ pv+ ke+peÞ dm

Because the sum of the terms u and pv always appears in this equation, it is convenient to combine them into a
single term (as explained in Chapter 3) called specific enthalpy, h = u + pv.

In general, we have more than one mass flow stream in any given open system. To accurately account for all the
mass flow energies, we sum them in two groups. One group accounts for all inlet flow streams and the other
for all exiting flow streams. Therefore, we write

dE
mass
flow

=∑
inlet

ðh+ ke+peÞ dm− ∑
outlet

ðh+ ke+peÞ dm

On dividing this equation through by dt, we obtain

_E
mass
flow

=∑
inlet

_mðh+ ke+peÞ− ∑
outlet

_mðh+ ke+peÞ (6.2)

and on integration of this equation, we obtain

1

 
E
mass
flow

!
2

= ∑
inlet

Z 2

1

_mðh+ ke+peÞ dt − ∑
outlet

Z 2

1

_mðh+ ke+peÞ dt (6.3)

where ke = V2/2gc and pe = gZ/gc are the specific kinetic and potential energies of the flow streams at the point
where they cross the system boundary. Note that these equations already contain the proper thermodynamic
signs for input (+) and output (−) mass flow energy transport.

Each flow stream has its own average velocity V and height Z; in addition, the center of gravity of the entire
system has unique and usually different V and Z values (see Figure 6.1). The student must be careful not to get
these velocities and heights confused.
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EXAMPLE 6.1
Determine the mass flow energy transport rate of steam at 100. psia, 500.°F leaving a system through a 6.00-inch inside dia-
meter pipe at a velocity of 300. ft/s at a height of 15.0 ft above the floor (the zero height potential).

Solution
First, draw a sketch of the system (Figure 6.2).

300. ft/s

15.0 ft
6.00 inch ID pipe with

steam at 100. psia
and 500.°F

FIGURE 6.2
Example 6.1.

This is an open system, and the unknown is _Emass
flow

: The material is steam.

From the superheated steam table, Table C.3a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we
find that, at 100. psia and 500.°F,

v = 5:587 ft3/lbm

h = 1279:1Btu/lbm

Now, since ρ = 1/v, we can find _m from Eq. (6.1):

_m = ρAV = AV
v

=
π 3

12

� �2
ft2

� 	
ð300: ft/sÞ

5:587 ft3/lbm
= 10:5 lbm/s

Then,

ke = V2

2gc
=

ð300:Þ2 ft2/s2

2 32:174 lbm
.ft

lbf .s2

� � = 1398 ft .lbf
lbm

= 1398 ft .lbf
lbm

� �
1Btu

778:16 ft .lbf

� �
= 1:80 Btu

lbm

and

pe =
gZ
gc

=
ð32:174 ft/s2Þð15:0 ftÞ

32:174 lbm
.ft

lbf .s2

= 15:0 ft
.lbf
lbm

= 15:0 ft
.lbf
lbm

� �
1Btu

778:16 ft .lbf

� �
= 0:019Btu/lbm

In this problem, we have only one flow stream, so

_E
mass
flow

= − _m ðh+ ke+peÞ½ �out

= − ð10:5 lbm/sÞ½ð1279:1+1:80+0:019ÞBtu/lbm�
= −1:35× 104 Btu/s

Exercises
1. Determine the percentage contribution to the mass flow energy transport rate in Example 6.1 of each of the following

terms: (a) enthalpy, (b) kinetic energy, and (c) potential energy. Answers: (a) 99.86%, (b) 0.14%, and (c) 0.0015%.
2. Determine the percent error incurred in the answer to Example 6.1 if the kinetic and potential energy terms are

neglected. Answer: Percent error = 0.142%.
3. Suppose the fluid leaving the system through the 6.00-inch pipe in Example 6.1 were saturated liquid water at 50.0°F,

and determine the percentage error incurred in neglecting the kinetic and potential energies of the flow stream. Answer:
Percent error = 9.14%.
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Note that the ke and pe terms in Example 6.1 amount respectively to only 0.14% and 0.0015% of the total mass flow
energy. This is because the specific enthalpy of steam (and most vapors) usually has a large numerical value, while the speci-
fic kinetic and potential flow energies for most engineering problems usually have much smaller values when converted into
the same units.2

2 Actually, because of the form of the first law of thermodynamics, we normally compare values of the change in enthalpy, Δh, with the changes in ke, Δke,
and pe, Δpe. Here, too, we find that Δh usually dominates.

6.3 CONSERVATION OF ENERGY AND CONSERVATION
OF MASS EQUATIONS FOR OPEN SYSTEMS

To obtain a general working formula for the first law of thermodynamics for open systems, we begin by con-
structing a general energy rate balance (ERB) equation for these systems. The general open system energy rate
balance is given by Eq. (4.22) as

_Q − _W + _E
mass
flow

= _EG

where the rate of gain of total system energy _EG is given by Eq. (4.9) as

_EG = d
dt

U+ m
2gc

V2 +mgZ/gc

� �
system

and the mass flow energy transports are given by Eq. (6.2) as

_E
mass
flow

=∑
inlet

_mðh+ ke+peÞ− ∑
outlet

_mðh+ ke+peÞ

where

ðkeÞinlet =
V

2
inlet

2gc

ðkeÞoutlet =
V2
outlet

2gc

and

ðpeÞinlet =
gZinlet

gc

ðpeÞoutlet =
gZoutlet

gc

are the specific kinetic and potential energies of each inlet and outlet flow stream. Combining these equations
gives the general energy rate balance (ERB) for open systems:

General open system energy rate balance

_Q − _W +∑
inlet

_mðh+V2/2gc + gZ/gcÞ− ∑
outlet

_m h+V2/2gc + gZ/gc
� �

= d
dt

U+mV2/2gc +mgZ/gc
� �

system

(6.4)

It must be remembered that the _Q and _W terms in this equation are the net heat and work transport rate terms; that is,

_Q = ∑
all

boundaries

_Q and _W = ∑
all

boundaries

_W (6.5)
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where proper input and output signs are to be used in the summations. Also, the kinetic and potential energy terms
on the right side of Eq. (6.4) are of the center of gravity of the entire system, whereas the kinetic and potential energy
terms in the flow stream summation terms on the left side of this equation apply only to the point of entry or exit of
the flow stream from the system (see Figure 6.1 for an illustration of this notation).

As a working equation, Eq. (6.4) is really too complex to remember or write down conveniently during the solu-
tion of each thermodynamic problem we face. Since most of our problems involve systems operating at steady
state with a single inlet and a single outlet flow stream, we simplify Eq. (6.4) to fit this case. For a steady state
process, the entire right side of Eq. (6.4) vanishes:

Steady state

_EG = d
dt
ðU+mV2/2gc +mgZ/gcÞsystem = 0 (6.6)

Note that this does not necessarily mean that _U, _KE, and _PE are all zero but only that their sum vanishes.

At this point, we introduce the conservation of mass law for open systems. This law can easily be cast into the
form of a rate balance by using the general form of Eq. (2.14) as _mG = _mT , where the mass transport rate is
simply given by

_mT =∑
inlet

_m − ∑
outlet

_m (6.7)

Thus, the general mass rate balance for the rate of gain of mass _mG for an open system is simply

_mG = dm
dt

� �
system

=∑
inlet

_m − ∑
outlet

_m (6.8)

Now, if a system is operating at steady state, then, by definition,

dE
dt

� �
system

= dm
dt

� �
system

= _EG = _mG = 0 (6.9)

so that Eq. (6.8) gives the steady state mass rate balance as

∑
inlet

_m = ∑
outlet

_m

The condition of equal mass inflows and outflows is called a steady flow:

∑
inlet

_m = ∑
oulet

_m (6.10)

It should be clear from this development that any steady state open system is also (by definition) a steady flow
system. To keep this clearly in mind, we often write both statements, steady state and steady flow, explicitly,
even though it is not really necessary to do so.

If the system has only one inlet and one outlet flow stream, then the summation signs can be dropped in Eqs. (6.4),
(6.7), (6.8), and (6.10). The steady flow condition for a system with a single inlet and a single outlet flow stream
then becomes

_minlet = _moutlet = _m (6.11)

Note that the inlet-outlet direction subscripts on the mass flow rate term can now be dropped because they are
superfluous.

Substituting Eqs. (6.6) and (6.11) into Eq. (6.4), and abbreviating the terms inlet and outlet as simply in and
out gives a simplified energy rate balance. We call the resulting formula the modified energy rate balance (MERB).

Thus, the open system modified energy rate balance applies only to systems that are

1. Steady state: ð _EG = 0Þ:
2. Steady flow: ð _mG = 0Þ:
3. Single inlet and single outlet: ð _minlet = _moutlet = _mÞ:
and has the following form:

The open system modified energy rate balance (MERB)

_Q − _W + _m½hin − hout + ðV2
in −V2

outÞ/ð2gcÞ+ ðZin −ZoutÞðg/gcÞ� = 0 (6.12)
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Integrating Eq. (6.12) over time gives the open system modified energy balance (MEB) as

The open system modified energy balance (MEB)

1Q2 − 1W2 +
Z 2

1
_m½hin − hout + ðV2

in −V2
outÞ/ð2gcÞ+ ðZin −ZoutÞðg/gcÞ� dt = 0 (6.13)

However, the vast majority of open system problems are set up on a rate basis, so the modified energy rate
balance is the equation most often used in open system analysis.

When the conditions of steady state (steady flow), single inlet, or single outlet do not exist in any particular pro-
blem, we must return to the more general energy rate balance of Eq. (6.4) as a starting point for the analysis.
This is illustrated with the unsteady state examples presented later in this chapter.

6.4 FLOW STREAM SPECIFIC KINETIC AND POTENTIAL ENERGIES
Before we can begin analyzing thermodynamic problems, we must establish a criterion for when the specific
kinetic and potential energy flow stream terms of Eqs. (6.4) and (6.12) are important and when they are not.
To get some feeling for the importance of these terms, we look at how their magnitude varies over a wide range
of velocities and heights. First, consider the specific kinetic energy term V2/2gc: If we work in the Engineering
English units system, then V is normally in feet per second, and gc = 32:174 lbm.ft/ðlbf .s2Þ: Hence,

V2

2gc
=

½V �2 ft2/s2

2× 32:174 lbm
.ft

lbf .s2

� � =
½V �2

64:348
ft .lbf
lbm

where the symbol [V] stands for the numerical value of V in units of ft/s. The remaining term in the flow stream
energy transport equation to which the specific kinetic and potential energy terms are to be added is the specific
enthalpy h. In the Engineering English units system, the specific enthalpy has units of Btu/lbm. If we convert the
specific kinetic energy into these units, we get

V2

2gc
=

½V �2
64:348

ft .lbf
lbm

� ��
l Btu

778:16 ft .lbf

�
=

½V �2
50,070

Btu
lbm

In the SI units system, gc = 1.0 and is dimensionless, so

V2

2gc
=

½V �2m2/s2

2ð1Þ =
½V �2
2

J
kg

=
½V �2
2000

kJ
kg

where 1m2/s2 = 1 J/kg = 10−3 kJ/kg.

Table 6.1 gives values of the specific kinetic energy for various velocities using these equations. Since the specific
enthalpy values for most substances fall roughly between 100 and 1000 Btu/lbm, Table 6.1 shows that the speci-
fic kinetic energy is very small when compared to these h values for velocities less than about 250 ft/s (76 m/s),
or V2/2gc is less than about 1:0Btu/lbm ð2:3 kJ/kgÞ. Consequently, it is common to neglect the effect of a flow
stream’s specific kinetic energy when the flow stream velocity is less than about 250 ft/s (76 m/s). This is a
relatively high velocity (~170 mi/h or 270 km/h), and most engineering applications do not have such rapid
flow streams.

Table 6.1 The Effect of Velocity on Kinetic Energy

Velocity, V Kinetic Energy, V2/2gc

ft/s m/s Btu/lbm kJ/kg

0 0 0 0

1 0.3 2 × 10−5 4.7 × 10−5

10. 3.0 2.0 × 10−3 4.7 × 10−3

100. 30.5 2.0 × 10−1 4.70 × 10−1

1000. 305 20.0 470.
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There are, of course, exceptions to this rule of thumb. If hin − hout ≈ 0, then the enthalpy term loses its domi-
nance. In this case, a small specific kinetic energy term may be quite significant to the analysis. A nozzle or a
diffuser is an example of such an exception.

Now consider the specific potential energy term, gZ/gc. Taking g = 32.174 ft/s2 and, gc = 32.174 lbm · ft/(lbf · s2), then

gZ
gc

= Z
g
gc

� �
= ð½Z� ftÞ× 32:174 ft/s2

32:174 lbm
.ft

lbf .s2

0B@
1CA= ½Z� ft .lbf

lbm

where the symbol [Z] stands for the numerical value of Z in units of feet. Again, converting to Btu/lbm gives

gZ
gc

= ½Z� ft .lbf
lbm

� �
× 1Btu

778:16 ft .lbf

� �
=

½Z�
778:16

Btu
lbm

In the SI units system, gc = 1.0 and is dimensionless, so

gZ
gc

= Z
g
gc

� �
= ð½Z�mÞ× 9:807m/s2

1

� �
= ½Ζ� × 9:807 J

kg
= ½Ζ�9:807

1000
kJ
kg

where 1 m2/s2 = 1 J/kg = 10−3 kJ/kg.

Table 6.2 gives values of specific potential energy for various heights using these equations. Note that, for
systems with normal engineering dimensions, say less than 1000 ft (305 m) high, the specific potential energy
is very small. Consequently, it is common to neglect the effect of a flow stream’s specific potential energy when
the flow stream enters the system less than 1000 ft (305 m) above or below the potential energy baseline of the
system, or gZ/gc < ~1.0 Btu/lbm (2.3 kJ/kg).

There are also exceptions to this rule of thumb. Again, if hin − hout ≈ 0, then flow stream height changes may be
very important in the analysis. A hydroelectric power plant is an example of such an exception.

Deciding whether to neglect factors such as specific kinetic and potential energies is not always an easy task for
the beginner. Self-confidence comes only with experience. However, one more rule of thumb applies to most
textbook thermodynamic problems: If values for velocity and height are not given in the problem statement and are not
among the problem’s unknowns, then you are supposed to neglect the kinetic and potential energy terms in your analysis.
This means that the person who wrote the problem knew that either Vin ≈ Vout and Zin ≈ Zout or that all the
velocities and heights were relatively small. The only exception to this last rule of thumb is when you know the
mass flow rate _m , the diameter D, or cross-sectional area A, and the fluid density ρ or specific volume v of a
flow stream. With this information you can calculate the flow stream velocity using Eq. (6.1) as

V = _m
ρA

= _mv
A

= 4 _mv
πD2 (6.14)

If you can make this calculation for V, then you might as well use it in your energy rate balance equation, unless
it is so small that you are certain it will not affect the results of your analysis.

6.5 NOZZLES AND DIFFUSERS
Nozzle is the generic name of any device whose primary function is to convert the pressure energy _mpv of an
inlet flow stream into the kinetic energy _mV2/2 of an outlet flow stream. Thus, a nozzle is a very simple energy
conversion device. Similarly, diffuser is the generic name of any device whose primary function is to convert the
kinetic energy of an inlet flow stream into the pressure energy of an outlet flow stream. Note that nozzles and

Table 6.2 The Effect of Height on Potential Energy

Height, Z Potential Energy, gZ/gc

ft m Btu/lbm kJ/kg

0 0 0 0

1.0 0.30 1.3 × 10−3 2.9 × 10−3

10. 3.0 1.3 × 10−2 2.9 × 10−2

100. 30.5 1.3 × 10−1 2.9 × 10−1

1000. 305 1.3 2.9
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diffusers perform opposite functions. In their simplest
form, a nozzle is merely a converging duct and a dif-
fuser is merely a diverging duct, as shown schemati-
cally in Figure 6.3.3

Most commercial nozzles and diffusers are well insu-
lated (adiabatic). However, they need not be, and there-
fore may have either a heat loss or a heat gain. On the
other hand, the simple mechanical nature of nozzles
and diffusers prevents them from either performing or
absorbing work. Therefore, they can generally be taken
to be aergonic devices.

Since both nozzles and diffusers are clearly single inlet, single outlet devices, we can carry out an analysis of their
steady state operation by using the modified energy rate balance of Eq. (6.12). Also, both nozzles and diffusers
are either oriented horizontally, as shown in Figure 6.3, so that Zin = Zout or have such small changes in height
between the inlet and outlet that the enthalpy change dominates the specific potential energy change, as discussed
previously. This allows us to neglect the change in flow stream specific potential energy in nozzle and diffuser
analysis.

However, the flow stream specific kinetic energies are not necessarily negligible, because in both nozzles and
diffusers, at least one of the flow streams normally has a high velocity. Consequently, we ignore the low-speed
flow stream specific kinetic energy in each case and set Vin ≈ 0 for the nozzle and Vout ≈ 0 for the diffuser.

At this point, we have developed the following set of assumptions for these devices:

Applying these assumptions for nozzles to the modified energy rate balance of Eq. (6.12) gives the following
results:

_Q − 0 _mðhin − hout −V2
out/2gc +0Þ = 0

or

Vout nozzle
�� = ½2gcð _Q / _m + hin − houtÞ�1/2 (6.15)

Notice that adding heat to the nozzle increases the outlet velocity, whereas removing heat decreases it. If the
nozzle is insulated (adiabatic), then _Q = 0 and

Vout adiabatic
nozzle

���� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gcðhin − houtÞ

p
(6.16)

Applying the previous assumptions for diffusers to the modified energy rate balance of Eq. (6.12) gives the
following results:

_Q + _m hin − hout +V2
in/2gc

� �
= 0

or

hout diffuser
�� = hin +V2

in/2gc + _Q / _m (6.17)

Thus, heat added to a diffuser increases the outlet specific enthalpy, whereas heat removal reduces it. For an
insulated (adiabatic) diffuser, we have

hout adiabatic
diffuser

���� = hin +V2
in/2gc (6.18)

m m

(b) Diffuser(a) Nozzle

W = 0 W = 0

±Q±Q

FIGURE 6.3
Nozzles and diffusers.

Nozzle Diffuser

_W = 0 _W = 0

Zin − Zout ≈0 Zin − Zout ≈0

Vin ≈0 Vout ≈ 0

3 This figure is accurate only for subsonic flow. When the flow becomes supersonic, the relative shapes of nozzles and diffusers are not
the same as those shown here.
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For an incompressible substance such as a liquid flowing through these systems, Eq. (3.34) gives the specific
enthalpy change as

hin − hout = cðTin −ToutÞ+ vðpin − poutÞ (6.19)

where c is the specific heat of the material and v is its specific volume. Combining Eq. (6.19) with Eqs. (6.15)
and (6.16), we obtain

Vout nozzle with

incompressible

fluid

������
=
n
2gc
�
_Q / _m + cðTin −ToutÞ+ vðpin − poutÞ


o1/2
(6.20)

and

Vout adiabatic

nozzle with

incompressible

fluid

��������
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gc½cðTin −ToutÞ+ vðpin − pEÞ�

p
(6.21)

Combining Eq. (6.19) with Eqs. (6.17) and (6.18), we can solve for the diffuser outlet pressure:

pout diffuser

incompressible

fluid

������
= pin + ð1/vÞ½cðTin −ToutÞ+V2

in/2gc + _Q / _m �

and

pout adiabatic

diffuser

incompressible

fluid

��������
= pin + ð1/vÞ½cðTin − ToutÞ+V2

in/2gc�

For an ideal gas with constant specific heats (such as air at atmospheric pressure and temperature), Eq. (3.42)
gives4

hin − hout = cpðTin −ToutÞ (6.22)

where cp is the constant pressure specific heat. Then, Eqs. (6.15) and (6.16) become

Vout nozzle with

ideal gas

���� =
n
2gc
�
_Q / _m + cpðTin − ToutÞ


o1/2

and

Vout adiabatic

nozzle with

ideal gas

������
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gccpðTin − ToutÞ

q

and Eqs. (6.17) and (6.18) become:

Tout diffuser with

ideal gas

���� = Tin + ð1/cpÞðV2
in/2gc + _Q / _m Þ

and

Tout adiabatic

diffuser with

ideal gas

������
= Tin +V2

in/ð2gccpÞ

4 Note that this formula can be used here even though this is not a constant pressure process, because the enthalpy of an ideal gas
depends only on temperature and is therefore independent of pressure (see Chapter 3).
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We are now ready to carry out a thermodynamic analysis of an open system. We begin with simple examples
and work toward more difficult ones. The example problems are designed to illustrate the text material that
immediately precedes the example. Therefore, the analysis section of the solution often is abbreviated, with
appropriate reference made to the previous text material wherein the analysis has already been carried out. Do
not be misguided by this.

Homework and examination problems usually do not simply mimic textbook examples. The purpose of these
examples is not to give you a set of ready-made formulae into which you can plug numbers to solve specific
problems. Their function is to teach you analysis techniques so that you have the ability and self-confidence to
solve any thermodynamics problem whatsoever, whether you have seen one similar to it or not.

EXAMPLE 6.2
The nozzle on a lawn or garden hose has a 1.00 inch inlet inside diameter and an inlet pressure of 80.0 psig at 60.0°F. The
mass flow rate of water through the nozzle is 0.800 lbm/s. Assuming the water flows through the nozzle isothermally,
determine

a. The outlet velocity from the nozzle, ðVoutÞa.
b. The height to which the stream of water rises above the nozzle outlet when the nozzle is pointed straight up, ðZoutÞb.

Solution
First, draw a sketch of the system (Figure 6.4).

p = 80.0 psig

System b

System a

T = 60.0°F

1.00 in diameter

m = 0.800 lbm/s

(Zout)b

(Vin)b = (Vout)a

FIGURE 6.4
Example 6.2.

This is an open system, and the unknowns are ðVoutÞa and ðZoutÞb (see Figure 6.4). The material is liquid water. We assume
from our experience with garden hose nozzles that the system is a steady state, steady flow, single-inlet, single-outlet open
system.

(Continued )
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EXAMPLE 6.2 (Continued )

The material flowing through this system is water at 80.0 psig (94.7 psia) and 60.0°F. A check of the saturation tables for
water shows us that the water is in a compressed liquid state and therefore can be considered to be an incompressible fluid.
Also, since the amount of excess pressure here is relatively small (94.7 psia vs. the saturation pressure of 0.2563 psia at
60.0°F), we need not use the compressed water tables but can get sufficient accuracy using the saturated liquid tables at
60.0°F for all the inlet properties we may need.

The first law formulation that applies to this problem is the modified energy rate balance, Eq. (6.12). The auxiliary
equations needed include the equation of state for an incompressible fluid (Eq. (6.19)) and the mass flow rate formula
(Eq. (6.1)). For the case of the system shown in Figure 6.4, we have the standard nozzle configuration, except that we can
calculate Vin in this problem from Eq. (6.14) as

Vin = 4 _mv
πD2

where v≈ vf ð60:0°FÞ = 0:01603 ft3/lbm: Then, for system a,

ðVinÞa =
4ð0:800 lbm/sÞð0:01603 ft3/lbmÞ

πð1:00 in:Þ2ð1 ft/12 in:Þ2 = 2:35 ft/s

Now, this ðVinÞa probably produces a negligible inlet kinetic energy, but since we have its value, we carry it along in the
solution for the time being.

The solution to part a is obtained by solving Eq. (6.12), the modified energy rate balance, for (Vout)a, with the enthalpy values
given by Eq. (6.19). This produces an equation similar to Eq. (6.20) except with a Vin term included. Since we have no infor-
mation about any heat transfer to or from the nozzle, we assume that there is none. This is justifiable on the following basis:
Since the nozzle is very small (hand size), the water is not inside of it long enough for any significant heat transfer of energy
to occur. This is a common circumstance that often occurs in obviously uninsulated small systems with no significant heat
transfer. If the residence time of the fluid in the system is very small, then in the absence of an extraordinarily large tempera-
ture difference between the environment and the system, the time is simply insufficient for any significant heat transfer to
occur, regardless of whether the system is insulated or not. The modified energy rate balance for system a reduces to a form of
Eq. (6.21):

ðVoutÞa = fV2
in + 2gc½cðTin −ToutÞ+ vðpin − poutÞ�ga1/2

The problem statement told us to assume the water flow through the nozzle is isothermal, so we set Tin = Tout. Actually, the
water flow is not exactly isothermal, due to an increase in internal energy of the water from viscous effects, turbulence, and
so forth. However, for a small nozzle, these effects are negligible. For an isothermal flow, we obtain

ðVoutÞa = ½ðV2
inÞa +2gcvðpin − poutÞa�1/2

The data for system a are as follows:

ðVinÞa = 2:35 ft/s
v = vf ð60:0°FÞ = 0:01603 ft3/lbm

ðpinÞa = 80:0psig = 94:7psia
ðpoutÞa = 0:00psig = 14:7psia

Then

ðVoutÞa = 2:35 ft/sð Þ2 +2 32:174 lbm
.ft

lbf .s2

� �
ð0:01603 ft3/lbmÞ½ð80:0− 0:00Þ lbf/in2� × 144 in2/ft2

� �
 �1/2
= 109 ft/s

Notice that (V in)a was only about 2% of (Vout)a and therefore could have been neglected in this case.

Part b of this example is basically a mechanics problem, but it can be easily solved using system b in Figure 6.4 and the
modified energy rate balance. The following assumptions are now made for system b:

_Q = _W = 0 ðZoutÞb = ?
ðVoutÞa = ðVinÞb = 109 ft/s ðpinÞb = ðpoutÞb = 14:7 psia

ðVoutÞb ≈0 ft/s ðTinÞb = ðToutÞb = 60:0°F
ðZinÞb = 0

(Vout)b is ≪ (Vin)b here because the water stream spreads into a large fan at the top of its trajectory and therefore exits system b
through a large surface area. The conservation of mass law for an incompressible fluid requires that _m = constant and so
(Vout)b = (Vin)b(Ain/Aout)b ≪ (Vin)a here.
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These assumptions imply a negligible aerodynamic drag on the water stream and negligible viscous dissipation within the
stream itself. When these conditions are applied to the modified energy rate balance for system b, we obtain

_Q
↘
0
− _W

↘
0
+ _m½hin − hout + ðV2

in − 0Þ/2gc + ð0−ZoutÞg/gc�b = 0

or

ðZoutÞb = ½ðgc/gÞðhin − houtÞ+V2
in/2g�b

The change in specific enthalpy for this example is again given by Eq. (6.19), and under the assumptions listed for system b,
it is clear that this change is zero. Then, our working modified energy rate balance reduces to

ðZoutÞb = ðV2
inÞb/2g

or

ðZoutÞb = ð109 ft/sÞ2
2ð32:174 ft/s2Þ = 185 ft

Note that our calculations for both (Vout)a and (Zout)b in this example gave numbers somewhat higher than we would
observe if we measured these values in an experiment. This is because we ignore the viscous dissipation effects in the water
and surrounding air. Dissipation effects are considered in more detail in the next chapter, on the second law of
thermodynamics.

Exercises
4. Determine the exit diameter of the garden hose nozzle used in Example 6.2. Assume the water is incompressible so that

vin = vout. Answer: (Dout)a = 0.147 in.
5. Determine the height to which the stream of water rises when the garden hose in Example 6.2 is pointed straight up and

the nozzle removed. Answer: (Zout)b = 1.03 in.
6. If the exit diameter of the garden hose nozzle used in Example 6.2 is reduced to 0.100 in, determine the exit velocity and

the height to which the stream of water rises when pointed straight up. Answers: (Vout)a = 235 ft/s, and (Zout)b = 858 ft.

6.6 THROTTLING DEVICES
Throttling device is the generic name of any device or process that simply dissipates pressure energy _mpv by
irreversibly converting it into thermal energy. Unlike nozzles and diffusers, throttling devices provide no form of
useful energy recovery. They merely convert pressure energy into thermal energy through dissipative viscous flow
(usually turbulent) processes. In fact, any device that incurs a large irreversible pressure drop can be thought of
as a throttling device. Figure 6.5 schematically illustrates a variety of common throttling devices.

p1 p1p2 < p1 p2 < p1

p1 p1p2 < p1 p2 < p1

(b) Porous plug(a) Orifice plate

(d) Any type of flow or
         pressure control valve

(c) Butterfly valve 

FIGURE 6.5
Some common throttling devices.
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A throttling device may be thought of as any aergonic device whose primary purpose is to offer a resistance to
flow. Throttles may or may not be insulated. But they are usually such small devices and have such high flow
rates that the residence time of the fluid in them is too short for significant heat transport of energy to occur.
Consequently, a throttling device is commonly taken to be adiabatic regardless of whether it is actually insulated
or not.

The small physical size of most throttling devices also prevents them from having a significant change in
specific potential energy between their inlet and outlet flow streams. However, a throttle need not have the
same inlet and outlet flow velocities, and therefore, it may have a significant specific kinetic energy change
across it.

Consequently, we define a throttling device with the following set of thermodynamic conditions:

Throttling Devices Have
_Q = 0
_W = 0

Zin −Zout ≈0

Applying these conditions to the modified energy rate balance of Eq. (6.12) gives

0−0+ _m½hin − hout + ðV2
in −V2

outÞ/2gc +0� = 0

or

hout = hin + ðV2
in −V2

outÞ/2gc (6.23)

If Vin = Vout, as when the fluid is incompressible and the inlet and outlet areas of the throttle are equal
(e.g., cases a–d in Figure 6.5), then Eq. (6.23) reduces to the simpler form

hout = hin (6.24)

Such throttling devices are said to be isenthalpic (i.e., they have a constant enthalpy).

Even if the inlet and outlet velocities are clearly unequal in some problem, you may still be able to justify using
the simpler Eq. (6.23) as the result of your analysis. The high-velocity flow stream of an unequal area throttling
device is always limited by the speed of sound in the flowing medium.5

Consequently, if h is large, say on the order of 1000 Btu/lbm (2300 kJ/kg), then the specific kinetic energy of
the flow stream can never be more than 2 or 3% of this value and may therefore be considered negligible. The
rule of thumb discussed earlier in this chapter can be applied as follows: If you are given a throttling device problem
without adequate velocity information and where a velocity is not an unknown that you are required to find as part of the
solution, then you should assume that the specific kinetic energy terms are either equal (and therefore cancel each other) or
that they are negligible.

For an incompressible fluid flowing through a throttling device, we can use Eq. (6.19) in Eq. (6.23) to produce

cðTin − ToutÞ+ vðpin − poutÞ+ ðV2
in −V2

outÞ/2gc = 0

and if we neglect the specific kinetic energy terms (or have Vin = Vout), then this equation can be rearranged
to give

Tout = Tin + ðv/cÞðpin − poutÞ

and since pin is usually greater than pout, this equation tells us that there is normally a temperature rise
in an incompressible fluid flowing with a negligible specific kinetic energy change through a throttling
device.

5 Supersonic nozzles or diffusers usually have a flow stream velocity greater than the sonic velocity. But, with the rare exception of
supersonic flow at the inlet to a throttling device, subsonic flow prevails throughout throttling devices.
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For an ideal gas with constant specific heats, we can substitute Eq. (6.22) into Eq. (6.23) to obtain

Tout = Tin + ðV2
in −V2

outÞ/ð2gccpÞ

This equation tells us that, in the case of negligible change in specific kinetic energy, the throttling of an ideal
gas is an isothermal process.

The actual throttling device outlet temperature for a pure substance is dependent on its Joule-Thomson coeffi-
cient μJ, defined as

μJ = ð∂T/∂pÞh (6.25)

Since μJ is defined completely in terms of intensive thermodynamic properties, it too is an intensive thermody-
namic property. A throttling process that has a negligible change in specific kinetic energy is a process of con-
stant h, so the Joule-Thomson coefficient for any pure substance can be approximated from data taken during
such a throttling process as

μJ ≈ ðΔT/ΔpÞ
throttling
process

(6.26)

If we take Δp = pout − pin, then Δp normally is a negative number for such a process. Clearly, a positive value for
μJ means that the temperature drops during such a throttling process (ΔT = Tout − Tin < 0) and a negative value
for μJ means that the temperature increases. For an isothermal throttling process (such as occurs with an ideal
gas), μJ = 0.

A gaseous pure substance that has a positive Joule-Thomson coefficient could undergo a continuous decrease
in temperature and eventually be liquified by a properly designed throttling process. This was the basis of
a process introduced in 1895 by Karl von Linde (1842–1934) for the large-scale production of liquid air.
The temperature at which μJ = 0 for a real pure substance is called its inversion temperature Tinv, and μJ > 0 for
T < Tinv and μJ < 0 for T > Tinv. Thus, the temperature of a real gas decreases in a throttling process if its
inlet temperature is less than its inversion temperature. However, the temperature of a gas cannot be lowered
via the Joule-Thomson effect if the gas inlet temperature exceeds its “maximum” inversion temperature
(see Table 6.3).6

Figure 6.6 shows the variation in the Joule-Thomson coefficient with pressure and temperature for air and
carbon dioxide.

Table 6.3 The Maximum Joule-Thomson Inversion Temperature for Various Common Gases

Substance Maximum Inversion Temperature

K R

Air 659 1186

Argon 780 1404

Carbon dioxide 1500 2700

Helium 40 72

Hydrogen 202 364

Neon 231 416

Nitrogen 621 1118

Oxygen 764 1375

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.

6 Since the condition μJ = 0 can occur at more than one temperature, a gas may have several inversion temperatures, the largest of
which is its “maximum” inversion temperature.
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6.7 THROTTLING CALORIMETER
A throttling calorimeter is a device that expands (i.e., throttles) a mixture of liquid plus vapor into the superheated
vapor region. Under the vapor dome, temperature and pressure are not independent properties; therefore, their
measurement alone cannot be used to fix the thermodynamic state of a substance. If, however, the thermo-
dynamic state can be moved into a region where pressure and temperature are independent properties, then its
state can be determined from a pressure gauge and a thermometer reading. This is the purpose of a throttling
calorimeter, as illustrated in the following example.

EXAMPLE 6.3
Wet (i.e., a mixture of liquid plus vapor) steam flows in a pipe at 2.00 MPa. An insulated throttling calorimeter is attached
to the pipe and a small portion of the steam is withdrawn and throttled to atmospheric pressure. The temperature and
pressure of the throttled steam in the calorimeter are 150.°C and 0.100 MPa. Determine the quality of the wet steam in the
pipe and estimate its Joule-Thomson coefficient μJ .

Solution
First, draw a sketch of the system (Figure 6.7).

Throttling
valve 

p1 = 2.00 MPa
x1 = ?

High-
pressure
steam
pipe

Throttling
calorimeter

Exhaust
steam

21
T2 = 150.°C

p2 = 0.100 MPa

FIGURE 6.7
Example 6.3.
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FIGURE 6.6
The variation in the Joule-Thomson coefficient of air and carbon dioxide with pressure and temperature.
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The unknowns are the quality of the wet steam in the pipe and its Joule-Thomson coefficient. The system is open and the
material is wet steam.

A throttling calorimeter is clearly a steady state, steady flow, single-inlet, single-outlet open system. The material flowing is
steam, and the unknown is the quality of the inlet flow stream ðxin = x1 = ?Þ and the steam’s Joule-Thomson coefficient μJ.

The system and its properties follow:

Station1 ðinletÞ ! Throttling
process

! Station2 ðoutletÞ

p1 = psat = 200: MPa
x1 = ?

p2 = 0:100MPa
T2 = 150:°C
h2 = 2776:4 kJ/kg

This is an example of a problem where the process path plus three of the four state properties needed to fix the two states
are given, and the unknown is a property in the undetermined state. This is a common problem format.

A quick check of the steam tables shows that the outlet state is in the superheated region, and therefore all the outlet
properties are easily found from the superheated steam table. Since we are given no information on mass flow rates
or velocities, we assume that the changes in flow stream specific kinetic and potential energies are negligible. The
calorimeter was stated to be insulated, so it will have no heat transfer, and we acknowledge that this device can
neither do work nor have work done on it. Under these conditions, the modified energy rate balance reduces to
Eq. (6.24), or

hin = h1 = hout = h2

From the superheated steam table (Table C.3b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics),
we find that

h2 = hð0:100MPa, 150:°CÞ = 2776:4 kJ=kg

and this value is listed previously as part of the data for station 2. Therefore, from the modified energy rate balance, we
have

h1 = hð2:00MPa, ?Þ = 2776:4 kJ=kg

and the pair of independent properties p1 = 2.00 MPa and h1 = 2776.4 kJ/kg now fix the inlet state. From the saturation
tables for water (Table C.2b), we find that, at 2.00 MPa,

hf1 = hf ð2:00MPaÞ = 908:8 kJ/kg

hfg1 = hfgð2:00MPaÞ =1890:7 kJ/kg

hg1 = hgð2:00MPaÞ = 2799:5 kJ/kg

Since hf1< h1< hg1, we can now use the auxiliary formula for quality x to determine its value at station 1 as

x1 = ðh1 − hf1Þ/hfg1 = ð2776:4−908:8Þ/1890:7 = 0:9878

So x1 = 98.8%, which is the quality of the steam in the pipe.

A rough estimate for the Joule-Thomson coefficient for this process is given by Eq. (6.26) as

μJ ≈ ðΔT/ΔpÞ
throttling
process

where, from the saturation tables, T1 = Tsatð2:00MPaÞ = 212:4oC:

μJ ≈ ð212:4−150:°CÞ/ð2:00− 0:100MPaÞ = 32:8°C/MPa

Note that this is not a particularly accurate value, since μJ is a point function and consequently the values of ΔT and Δp used
in its calculation should really be much smaller than those used in the preceding calculation. This calculation does, however,
provide a reasonable average value of μJ for this throttling process.

Exercises
7. What would be the quality of the steam in the pipe in Example 6.3 if the pressure in the pipe were 3.00 MPa instead of

2.00 MPa and everything else remained the same? Answer: x = 0.985 = 98.5%.
8. What would be the quality of the steam in the pipe in Example 6.3 if the temperature in the calorimeter was 100.°C

instead of 150.°C and everything else remained the same? Answer: x = 0.935 = 93.5%.
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6.8 HEAT EXCHANGERS
Heat exchanger is the generic name of any device whose primary function is to promote a heat transport of
energy from one fluid to another fluid. Most heat exchangers have two separate fluid flow paths, which do not
mix the fluids but instead promote the transfer of heat from one fluid to another across a thermally conducting
but otherwise impermeable barrier. These heat exchangers have four flow streams, two inlets and two outlets.
Since the primary function of a heat exchanger is a heat transfer process, they are characteristically aergonic
devices. Also, all of the heat transfer should take place inside the heat exchanger; therefore, most heat exchangers
are normally adiabatic devices when the entire heat exchanger is insulated and taken to be the system. It is
normal for an uninsulated heat exchanger to have a net heat transfer to or from its surroundings, but when
environmental heat transfer values are not supplied in a problem statement and are not an unknown or other-
wise determinable, you are to assume that the entire heat exchanger is an adiabatic system. Figure 6.8 illustrates
a typical heat exchanger schematic and operating characteristics.

A heat exchanger can be considered to be a pair of steady state, steady flow, single-inlet, single-outlet systems
that have equal but opposite heat transfer rates. It can also be analyzed as a steady state, steady flow, double-
inlet, double-outlet system that has no (assuming it is insulated) external heat transfer. In both cases it is com-
mon to neglect any changes in flow stream specific kinetic or potential energy across the system. The general
ERB (Eq. (6.4)) for the latter case reduces to

_Q + _m1h1 + _m3h3 − _m2h2 − _m4h4 = 0

The conservation of mass law requires that _m1 = _m2 = _ma and that _m3 = _m4 = _mb, where the subscripts a and b
refer to the two different fluids. Therefore, the ERB becomes

_Q + _maðh1 − h2Þ+ _mbðh3 − h4Þ = 0 (6.27)

and if the heat exchanger is insulated, then _Q = 0 and this equation further reduces to

_maðh1 − h2Þ = _mbðh4 − h3Þ (6.28)

If both fluids a and b are incompressible (e.g., liquids), then Eq. (6.19) can be used to give

_ma½caðT1 −T2Þ+ vaðp1 − p2Þ� = _mb½cbðT4 −T3Þ+ vbðp4 − p3Þ�
where ca and cb are the specific heats of fluids a and b, respectively. For liquids, not only are va and vb small numbers,
but the pressure drops p1 − p2 and p3 − p4 across the heat exchanger are also small. Therefore, it is common to ignore
the pressure terms in the previous equation, giving the final incompressible fluid heat exchanger ERB as

ERB when both fluids are incompressible liquids

_macaðT1 − T2Þ = _mbcbðT4 −T3Þ
If both fluids are ideal gases with constant specific heats, then the use of Eq. (6.22) gives

ERB when both fluids are ideal gases

_maðcpÞaðT1 − T2Þ = _mbðcpÞbðT4 − T3Þ

where (cp)a and (cp)b are the constant pressure specific heats of gases a and b, respectively.

Fluid a

Assumptions:
1.  Steady state, steady flow,
2. W = 0,
3. Q = 0 (unless otherwise stated), 
4.  Negligible changes in ke and pe
     on all flow steams.Fluid b

(Qi is the internal heat transfer rate)

Qi

System
boundary

1

3

2

4

mb

ma

FIGURE 6.8
Typical heat exchanger operating characteristics.
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If one fluid, say a, is an ideal gas (e.g., air) and the other fluid is an incompressible liquid with a negligible pressure
drop across the device, then the insulated heat exchanger ERB becomes

ERB when one fluid is an ideal gas and the other fluid is an incompressible liquid

_maðcpÞaðT1 −T2Þ = _mbcbðT4 −T3Þ (6.29)

Several other combinations of flow stream fluid types are also possible.

If we now return to the two-system heat exchanger model and treat the two fluids as separate systems, we can
apply the MERB individually to each of them to obtain

_Qa + _maðh1 − h2Þ = _Qb + _mbðh3 − h4Þ = 0

or

_Qa = _maðh2 − h1Þ
and

_Qb = _mbðh4 − h3Þ
Since the internal fluid to fluid heat transfer rate is _Qa = − _Qb, adding the previous two equations produces
Eq. (6.28). Thus, both types of system analysis give the same results.

In some cases, the environment itself is one of the heat transfer fluids. Heat transfer fins, automobile radiators,
electrical heat sinks, and so on are all designed to transfer heat to or from the environment. Some of these
devices are single flow stream systems and must be analyzed using Eq. (6.29). These systems are illustrated in
Figure 6.9.

EXAMPLE 6.4
A condenser is a heat exchanger designed to condense a vapor into a liquid. Determine the flow rate of cooling water taken
from a local river required to condense 12.0 kg/min of water vapor at 1.00 MPa and 500.°C into a saturated liquid at 1.00
MPa. The river water can be considered to be an incompressible fluid with an inlet temperature of 15.0°C. The cooling
water must be returned to the river and is restricted by environmental code requirements not to exceed 20.0°C.

(Continued )

Convective air flow

Heat transfer fin

Automotive or household
“radiator” (convector)

Liquid flow

Convective
air flow

Cooling towerCooling water in

Fan

Air flow

Convective air flow

Electrical heat sink
Electrical

component
 

Cooling water out

FIGURE 6.9
Heat exchangers where the environment is one of the heat transfer fluids.
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EXAMPLE 6.4 (Continued )

Solution
First, draw a sketch of the system (Figure 6.10).

1
LiquidSteam

From
river

1 2

43

To river

Assumptions:
1. Q = 0
2. W = 0
3. Water vapor m = 12.0 kg/min
4. p4 = p3
5. Neglect all changes in
    flow stream ke and pe terms
6. Steady state, steady flow       

FIGURE 6.10
Example 6.4.

The system is open, and the unknown is the river water mass flow rate _mw: We treat this as a steady state, steady flow, dou-
ble-inlet, double-outlet open system problem. Since no information is given about heat loss or gain from the environmental
surface of the condenser we assume that it is insulated and therefore adiabatic. Also, since no pressure loss information is
given for the river cooling water flow stream, we assume that it is negligible.

This particular case is not covered by any of the equations developed in the previous discussion of heat exchangers. It is a
combination of a pure substance (water vapor) and an incompressible fluid (river water). However, its ERB can be quickly
arrived at by beginning with the general ERB for heat exchangers, Eq. (6.27), and adding the auxiliary formulae for the speci-
fic enthalpy change of an incompressible fluid, given in Eq. (6.19). This gives

_Q
↘0

+ _msðh1 − h2Þ = _mwðh4 − h3Þ

= _mw½cwðT4 − T3Þ+ vwðp4 − p3⎵

j
0

Þ�

Then, solving for the river water mass flow rate _mw, we get

_mw = _ms h1 − h2ð Þ/ cw T4 − T3ð Þ½ �f g
This equation tells us what properties we need to calculate the unknown. The station data are in Table 6.4.

Table C.3b gives us h1 = 3478.4 kJ/kg, and Table C.2b gives us h2 = hf (1.0 MPa) = 762.8 kJ/kg. Both these values have been
added to the station data list in Table 6.4. Also, Table 3.5 in Chapter 3 gives the specific heat of liquid water as c = 4.2 kJ/(kg ·K).
The condensate flow rate is given in the problem statement to be _ms = 12.0 kg/min, so that the required river water flow rate is

_mw = ð12:0kg/minÞ½ð3478:4−762:8Þ kJ/kg�/f½4:2 kJ/ðkg .KÞ�ð20− 15KÞg
= 1552kg/min

Exercises
9. What cooling water flow rate would be required from the river in Example 6.4 if the steam flow rate is 500. kg/s instead

of 12.0 kg/min and everything else remained the same? Answer: _mw = 3.88 × 106 kg/min.
10. Suppose air instead of river water is used to cool the steam in Example 6.4. Determine the mass flow rate of air required

if the air has an inlet temperature of 20.0°C and an exit temperature of 30.0°C. Answer: _mair = 3250 kg/min.
11. If the pumps that supply the river cooling water in Example 6.4 could deliver only 1000. kg/min, what would be the

new temperature of the cooling water as it exits the heat exchanger? Answer: (Tw)exit = 22.8°C.

Table 6.4 Data for Example 6.4

Station 1 Station 2 Station 3 Station 4

p1 = 1.0 MPa x2 = 0.0 (sat. liq.) T3 = 15°C T4 = 20°C

T1 = 500°C p2 = 1.0 MPa

h1 = 3478.4 kJ/kg h2 = 762.8 kJ/kg
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6.9 SHAFT WORK MACHINES
Shaft work machines are devices whose primary function is to promote a work input or output through a rotating
or reciprocating shaft. Common shaft work machines are hydraulic pumps, pneumatic compressors and fans,
gas or hydraulic turbines, electric motors and generators, and external and internal combustion engines. Most
shaft work machines are steady state, steady flow, single-inlet single-outlet devices (electric motors and genera-
tors are exceptions, since they have no flow streams). The work produced or absorbed by such devices can then
be determined from the MERB of Eq. (6.12) as

_Wshaft = _m½hin − hout + ðV2
in −V2

outÞ/2gc + ðZin −ZoutÞg/gc�+ _Q (6.30)

This equation shows that the effect of heat loss ð _Q< 0Þ from a work-producing device ( _W > 0) is to reduce the
device’s power output. Therefore, most work-producing systems (engines, turbines, etc.) are insulated to
improve their efficiency. Similarly, heat loss from a work-absorbing device (such as a compressor) requires
that more work be supplied to produce the same state change in the flow streams. Consequently, most of
these devices are also insulated to increase their efficiency. Massive amounts of heat loss from these systems
by external cooling usually indicate the need to lower their internal temperatures due to the existence of large
internal irreversibilities. This is a consequence of the second law of thermodynamics and is discussed in the
next chapter.

Most shaft work machines have negligible change in the specific kinetic and potential energies of their flow
streams. Obvious exceptions are hydroelectric water turbines, in which the specific potential energy change of
the water is the energy source for the turbine, and windmills, in which the specific kinetic energy change of the
air is the energy source for the windmill. The resulting ERB for an insulated shaft work machine with negligible
changes in specific kinetic and potential flow stream energies, operating in a steady state, steady flow, single-
inlet, single-outlet manner is obtained from Eq. (6.30) as

_Wshaft = _mðhin − houtÞ (6.31)

Figure 6.11 illustrates the graphical symbols used to represent several common shaft work machines.

If an incompressible fluid is used in a shaft work machine described by Eq. (6.31), then Eq. (6.19) can be used
to describe the change in specific enthalpy as

_Wshaft incomp:

fluid

���� = _m½cðTin − ToutÞ+ vðpin − poutÞ�

Normally, there is very little temperature change across such devices as hydraulic pumps, motors, and turbines,
so that the previous equation reduces to

_Wshaft isothermal

incomp:

fluid

������
= _mvðpout − pinÞ (6.32)

Notice that, in this equation,

_mv = ðρAVÞv = AV
v

ðvÞ = AV

where AV is the volume flow rate.

If an ideal gas with constant specific heats is used in a shaft work machine described by Eq. (6.31), then
Eq. (6.22) can be used to describe the change in specific enthalpy, and Eq. (6.31) becomes

_Wshaft ideal

gas

���� = _mcpðTin −ToutÞ
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EXAMPLE 6.5
Nearly every urban home has water supplied from a local water main. This water is used in washing and cooking, but its
pressure could also be used as an energy supply. Suppose you installed a small hydraulic motor or turbine on the inlet
water pipe of your house. Every time water is used in the house, the motor or turbine produces shaft work that could be
used to run a small appliance or drive an electric generator and charge a battery. How much power could you realize in this
way if you use an average of 20.0 gal of water over an eight (8.00) hour period, with an inlet water pressure of 85.0 psig
and an exit water pressure of 10.0 psig?

Solution
First, draw a sketch of the system (Figure 6.12).

The system is open, and the unknown is _Wshaft : The material is liquid water, an incompressible fluid, and we ignore any
changes in specific kinetic or potential energy of the flow stream plus any heat transfer that may occur. For steady state,
steady flow, isothermal conditions, our modified energy rate balance (Eq. (6.12)) becomes Eq. (6.32), or

_Wshaft = _mvðpout − pinÞ
where _mv = 20.0 gal/8.00 h = 2.50 gal/h (on average).

(b) Hydraulic pump

Wp

(c) Hydraulic motor

WM

Wp

WC

(d) Axial flow compressor (e) Turbine

WT

WG

(f) Electric generator

WE
WEM

(g) Electric motor

WE

(h) Piston-type compressor or engine

(a) Centrifugal pump

1

2

1

2 1

2

1

1 2

1

2

2

W

FIGURE 6.11
Graphical symbols for common shaft work machines.
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City
water
main

Basement wall

To water
meter

Wshaft

p1 = 85.0 psig

p2 = 10.0 psig

2

1

FIGURE 6.12
Example 6.5.

Now, (2.50 gal/h)(0.13368 ft3/gal)(1 h/3600 s) = 9.283 × 10−5 ft3/s. So,

_Wshaft = ð9:283× 10−5ft3/sÞ½ð85:0−10:0Þ lbf/in2�ð144 in2/ft2Þ
= 1:00 ft .lbf/s:

= ð1:00 ft .lbf/sÞ½1hp/ð550 ft .lbf/sÞ� = 1:82× 10−3 hp

= ð1:82× 10−3 hpÞð746W/hpÞ = 1:36W

Therefore, the amount of power we get out of such a device would be extremely low and probably would not justify its
initial expense.7

Suppose, now, we calculate an instantaneous power instead of the average power. For this calculation, we assume an instan-
taneous water flow of 5 gal/min. Then, the hydraulic power produced is

_WShaft instantaneous

��� = ð1:36WÞð5 gal/minÞð60min/hÞ½1/ð2:50 gal/hÞ�
=163W

Which is more reasonable. This is enough power to light two 75 W lightbulbs, but since this water flow rate does not occur
continuously the bulbs would not be lit very often.

Exercises
12. What flow rate of water would be required in Example 6.5 to produce 1.00 hp of shaft output power?

Answer: _mw = 22.9 gal/min.
13. Determine the inlet water pressure required in Example 6.5 to produce a continuous shaft output power of 163 W with

a water flow rate of 2.50 gal/h. Answer: (p inlet)w = 9.00 × 103 psig.
14. It has been suggested that, by installing a hydraulic turbine powered electric generator on the main water pipe supplying

all the open flow devices in a house (sinks, toilets, washing machines, etc.), some of the water flow energy that is
ordinarily wasted could be converted into useful electrical energy. Discuss the feasibility of this proposal in a short
paragraph. Hint: Consider the economic costs of such a system and the required payback time. Estimate how much
electrical power could be generated by analyzing the water flow in your home.

7 This conclusion might change if we were dealing with the domestic water flow into a large factory or multistory office or apartment building.

EXAMPLE 6.6
Determine the quality of the steam at the outlet of an insulated steam turbine producing 2000. kJ of energy per kilogram of
steam flowing through the turbine. The steam at the inlet of the turbine is at 2.00 MPa, 800.°C and the outlet pressure is
1.00 kPa. Neglect any changes in specific kinetic or potential energy of the flow stream, and assume a steady state operation.

Solution
First, draw a sketch of the system (Figure 6.13).

The system is open, and the unknown is the turbine’s outlet steam quality x2, as shown in Figure 6.13. The material is
steam.

(Continued )
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EXAMPLE 6.6 (Continued )

The MERB for the conditions described in the problem statement is Eq. (6.31):

_Wshaft = _mðh1 − h2Þ
We do not know _m here, but we do know the energy produced per kilogram of steam flowing:

W/m = _W/ _m = 2000: kJ/kg, so 2000: kJ/kg = h1 − h2

1

2

W/m = 2000. kJ/kg

Unknown: x2 = ?

m

Station 1
p1 = 2.00 MPa
T1 = 800.°C

h1 = 4150.4 kJ/kg

Station 2
p2 = 1.00 kPa
h2 = 2150.4 kJ/kg

x2 = ?

Process: Turbine

FIGURE 6.13
Example 6.6.

From Table C.3b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we have h1 = 4150:4 kJ/kg; and
from Table C.2b, we have hf2 = 29:30 kJ/kg, hfg2 = 2484:9 kJ/kg, and hg2 = 2514:2 kJ/kg (all at 1.0 kPa). Therefore,

h2 = h1 − _W/ _m = 4150:4− 2000: = 2150: kJ/kg

These values of h1 and h2 have been added to our station data list in Figure 6.13. Hence, the values of h2 = 2150: kJ/kg and
p2 = 1:00 kPa are a pair of independent properties in the outlet state. Therefore, the outlet quality can be found from the
auxiliary formula for quality:

x2 = h2 − hf2 1:00 kPað Þ� 

/hfg2 1:00 kPað Þ = 2150:−29:30ð Þ/2484:9 = 0:854

= 85:4% vapor at the turbine’s outlet

Exercises
15. Determine the exit steam quality in Example 6.6 if the exit pressure is atmospheric pressure (0.101 MPa) instead of

1.00 kPa and everything else remains the same. Answer: x2 = 76.8%.
16. Determine the exit steam quality in Example 6.6 if the inlet steam temperature is 900.°C instead of 800.°C and

everything else remains the same. Answer: x2 = 95.1%.
17. Suppose the shaft power produced by the turbine in Example 6.6 is 2000. kW and the steam mass flow rate is 2.00 kg/s.

Determine the exit steam quality if everything else remains the same. Answer: Since h2 > hg (1 kPa) here, the exit steam
is superheated and quality is not a valid property.

6.10 OPEN SYSTEM UNSTEADY
STATE PROCESSES

There are a wide variety of open system unsteady state
processes in industry. Most are too complex to analyze
easily, but one of the simpler cases involves the filling
or emptying of a rigid tank or vessel.

Consider the tank-filling process illustrated in Figure
6.14. In this system, a rigid tank is connected through
a valve to a high-pressure supply pipe. When the valve
is opened, the rigid tank is filled from the supply pipe
until the tank pressure is equal to that of the supply
pipe. This is the filling process that we analyze.

The filling process is neither steady state nor steady flow,
since the mass of the system is continually changing.

High-pressure pipe

Valve

System boundary

Rigid tank (vessel)

FIGURE 6.14
Filling a rigid vessel.
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Also, the system has a single-inlet flow stream but no outlet flow stream. To carry out the analysis, we note that
the system does not contain a work mode, so _W = 0: Also, the system is not moving, so

dðKE+PEÞ/dt½ �system = 0

Finally, we assume that the tank is filled slowly enough that we can ignore the inlet flow stream’s specific kinetic and
potential energy terms. Under these conditions, the generalized energy rate balance equation becomes

_Q −0+ _min hin +0+0ð Þ−0 = dU/dt+0+0ð Þtank
or

_Q + _minhin = d muð Þ/dt½ �tank
Then, multiplying through by dt and integrating over the filling process gives

1Q2 +
Z 2

1
hindmin = m2u2 −m1u1ð Þtank

where state 1 is the initial state inside the tank and state 2 is the state inside the tank after it has been filled. When
the tank is filled from a pipe of unlimited supply, as shown in Figure 6.14, hin = constant and this equation becomes

1Q2 + hinmin = m2u2 −m1u1ð Þtank
where the conservation of mass law for the filling process gives

min = m2 −m1ð Þtank
Combining the previous two equations, we obtain

u2 = u1 m1/m2ð Þ+ 1Q2/m2 + hin 1−m1/m2ð Þ (6.33)

where the numerical subscripts refer exclusively to states inside the tank from this point on.

By knowing p2 from the filling process and calculating u2 from Eq. (6.33), we have fixed the final thermodynamic
state of the filled tank and can then find the value of any other property we desire, say its final temperature T2. To
illustrate this, let us assume the tank is insulated (1Q2 = 0) and initially evacuated (m1 = 0). Then, Eq. (6.33)
becomes:

u2 = hin (6.34)

If we now assume that the tank is filled with an incompressible fluid, then we can utilize Eq. (6.19) and write

u2 = cT2 = hin = cTin + vpin

or

T2 filling

incomp:

fluid

������
= Tin + vpinð Þ/c (6.35)

and the compression process of pressurizing the tank would cause T2 to be greater than Tin by an amount vpinð Þ/c:

EXAMPLE 6.7
A high-pressure water storage system is used to fill initially empty, rigid, insulated tanks with liquid water. The temperature
of the water entering the tank is 20.0°C and the final pressure of the water in the tank is 50.0 MPa. Determine the final tem-
perature of the water in the tank immediately after it has been filled.

Solution
First, draw a sketch of the system (Figure 6.15).

(Continued )
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EXAMPLE 6.7 (Continued )

Filling
valve

High-pressure liquid 
water at 20.0°C and 
50.0 MPa

Initially empty rigid
insulated tank

FIGURE 6.15
Example 6.7.

The unknown is the final temperature in the tank. The material is liquid water.

The final temperature in the tank immediately after it has been filled is given by Eq. (6.35) as

Tfinal filled = Tin +
vpin
c

In this problem Tin = 20.0°C, pin = 50.0 MPa, and the specific heat of liquid water can be found in Table 3.5 as c = 4.216 kJ/kg ·K.
Even though the pressure range is quite high here (0 to 50.0 MPa), it is still a good assumption to take the specific volume of
the water to be a constant at the value of vf (20.0°C) = 0.001002 m3/kg; the value of v (20.0°C, 50.0 MPa) from Table C.4b of
Thermodynamic Tables to accompany Modern Engineering Thermodynamics is 0.0009804 m3/kg, which is approximately the same
as vf (20.0°C). Then, Eq. (6.35) gives

Tfinal filled = 20:0°C+
ð0:001002m3/kgÞð50:0×103 kN/m2Þ

4:216kN.m/kg .K
= 31:9°C

Exercises
18. An insulated, initially empty rigid container is filled with water from a water faucet in a house to a pressure of 0.700

MPa. The temperature of the water in the faucet and entering the container is 20.0°C. Determine the final temperature in
the container immediately after it has been filled. Answer: Tfilled = 20.2°C.

19. Determine the final temperature in the tank in Example 6.7 if it is filled with liquid mercury instead of water under the
same conditions. Use v = 7.50 × 10−5 m3/kg for mercury. Answer: Tfilled = 20.9°C.

On the other hand, if we assume that the tank is filled with an ideal gas, then we can utilize Eq. (6.22) to get

u2 = cvT2 = hin = cpTin

or

T2 filling

ideal

gas

������
= cp/cv
� �

Tin = kTin (6.36)

In the case of an ideal gas, the compression process generates a considerable amount of internal energy, as the
following example illustrates.

EXAMPLE 6.8
A scuba diving air tank is filled from a 20.0°C, 1.40 MPa air supply. Neglecting the effect of any air initially in the tank and
assuming the tank is insulated during the filling process, determine the final temperature of the air in the tank immediately
after it is filled.

Solution
First, draw a sketch of the system (Figure 6.16).
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Air at 20.0°C
and 1.40 MPa Air TFinal = ?

FIGURE 6.16
Example 6.8.

The unknown is the final temperature in the tank immediately after filling. The material is air.

The final temperature in the scuba tank immediately after it has been filled is given by Eq. (6.36) as

T
final

filling

= kTin

In this problem, Tin = 20.0°C and Table C.13b gives k = 1.40 for air. Then, Eq. (6.36) gives

T
final

filling

= kTin = 1:40ð20:0+273:15Þ = 410K = 137°C

Therefore, bottled gas tanks can get quite hot during their filling process and should be cooled to minimize any rupture
potential.

Exercises
20. If the scuba tank in Example 6.8 were filled with air at 70.0°F and 2000. psia, determine the final temperature,

neglecting any air initially in the tank and assuming the tank is insulated during the filling process.
Answer: Tfinal = 742 R = 282°F.

21. How do you account for the fact that the final temperature given by Eq. (6.36) is independent of the ideal gas
pressure? Answer: Since the internal energy of an ideal gas is independent of pressure (see Chapter 3) and the
property that defines the final state after the filling is complete is u2, the final pressure cannot affect the final
temperature when an ideal gas is used in the filling operation.

22. If the scuba tank in Example 6.8 is filled very quickly, it appears to be insulated whether it is actually insulated or not
(why?) and the air inside gets quite hot. However, the tank is a heavy walled steel vessel with a large capacity to absorb
the heat produced in filling the tank. If the tank itself has a mass of 10.0 kg, a specific heat of 0.503 kJ/kg ·K, and
initially is at 20.0°C, and it contains 0.500 kg of air with (cv)air = 0.718 kJ/kg ·K that is initially at 137°C, determine the
final equilibrium temperature of the tank-air combined system. Answer: Tcombined = 27.8°C.

The tank-emptying process is illustrated in Figure 6.17. Again we
neglect flow stream specific kinetic and potential energies and
require that the tank remain stationary and have no work trans-
port of energy.

When the valve is opened, the initially pressurized rigid tank
empties into the environment. The generalized energy rate bal-
ance for this process reduces to

_Q − 0+ 0− _mout hout +0+0ð Þ = dU/dt +0+ 0ð Þtank
or

_Q − _mouthout = dðmuÞ/dt½ �tank
Again, multiplying through by dt and integrating gives

1Q2 −
Z 2

1
houtdmout = ðm2u2 −m1u1Þtank (6.37)

where state 1 is the filled state and state 2 is the empty state (the
reverse of the filling process). Unlike the filling process described
earlier, the emptying process has no constant flow stream specific

Valve

System boundary

Rigid tank (vessel)

FIGURE 6.17
Emptying a rigid vessel.
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enthalpy (hout ≠ constant); therefore, the integral in Eq. (6.37) cannot be evaluated. However, we can devise a
way of dealing with this by defining an average specific enthalpy for the discharge flow stream as

havg = ð1/moutÞ
Z 2

1
houtdmout (6.38)

where, from the conservation of mass law, mout = (m1 − m2)tank. Approximating havg as

havg = ðh1 + h2Þ/2½ �tank
Eq. (6.37) becomes

1Q2 − h1ðm1 −m2Þ/2− h2ðm1 −m2Þ/2 = m2u2 −m1u1

where the numerical subscripts refer exclusively to states inside the tank from this point on.

The effect of the emptying process can be more easily seen by simplifying the analysis somewhat. Let us stipulate
that the tank is insulated (so 1Q2 = 0) and that m1 ≫ m2 ≈ 0. Then, the previous equation can be rearranged
to give

h2 = 2u1 − h1 (6.39)

In the case of emptying a pressurized incompressible fluid, we can write u = cT and h = cT + vp, then Eq. (6.39)
gives

T2 emptying

incomp:

fluid

������
= T1 − ðv/cÞðp1 + p2Þ (6.40)

Equation (6.40) tells us that the expansion process that accompanies the emptying process of an incompressible
fluid always causes the final temperature inside the tank to be less than the initial temperature inside the tank.
In the case of emptying a pressurized ideal gas, we can write u = cvT and h = cpT, then Eq. (6.39) gives

T2 emptying

ideal

gas

������
= T1 2/kð Þ− 1½ � (6.41)

Since a continuous expansion process lowers the temperature of the remaining contents, this explains why pres-
surized cans of paint, deodorant, and the like become very cold when they are continuously discharged.

EXAMPLE 6.9
Immediately after the scuba tank in Example 6.8 is filled, the air is released into the atmosphere through an open valve
on the top of the tank. Assuming that the emptying process is adiabatic and ignoring the mass of any air remaining in
the tank when its pressure reaches atmospheric, determine the final temperature inside the tank immediately after the
tank is empty.

Solution
First, draw a sketch of the system (Figure 6.18).

Air TFinal= ?Escaping air

FIGURE 6.18
Example 6.9.

The unknown is the final temperature inside the tank immediately after the tank is emptied. The material is air.
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The final temperature immediately after the emptying process is given by Eq. (6.41) as

T
final

emptying

= Tinitial
2
k
− 1

h i

From Example 6.8, we find that the temperature in the tank immediately after it is filled is 137.3°C or 410.4 K. This is the
initial temperature in the reverse emptying process. Again, from Table C.13b, we find for air that k = 1.4, so Eq. (6.41) gives

T
final

emptying

= ð410:KÞ 2
1:40

− 1
h i

= 176K = −97:4°C

Since this is the reverse of the filling process, it should produce a final temperature of 20°C, the initial temperature in the fill-
ing process. The large error here is primarily due to the use of a simplified average enthalpy [(h1 + h2)/2]tank in place of a more
accurate way of evaluating Eq. (6.38). Since we have no analytic information about hout, we have no other choice if we are to
obtain a solution. The error would not be so large if the temperatures were smaller.

Exercises
23. How could you correct the problem with the error introduced by using the simple average exit enthalpy shown in

Example 6.9? Answer: Compute the average exit enthalpy over a series of small mass flow steps as the tank is emptied,
or devise a correction factor for the offending equations.

24. A small, rigid, insulated tank is filled with helium at 70.0°F. A valve is opened on the tank, and it is completely
emptied. Determine the temperature in the tank immediately after it is emptied. Answer: Tfinal = −355°F.

25. Immediately after the scuba tank in Example 6.9 is filled, the air is released into the atmosphere through an open valve on
the top of the tank. Assuming that the emptying process is adiabatic and ignoring the effect of any air remaining in the
tank when its pressure reaches atmospheric, use Eq. (6.40) to determine the final temperature inside the tank immediately
after the tank is emptied. How does this temperature compare with the initial temperature used in Example 6.9?
Answer: Tfinal = 20.0°C, the same as the initial temperature in Example 6.9.

EXAMPLE 6.10
An insulated, rigid tank on a spacecraft contains nitrogen at 2000. psig and 70.0°F. It is desired to discharge the tank isother-
mally to supply constant temperature nitrogen to the attitude control thrusters. This can be done if a portion of the dis-
charged nitrogen is recycled back to the tank through a heater and compressor as shown in Figure 6.19. Assuming nitrogen
to be an ideal gas and ignoring any changes in tank or flow stream kinetic and potential energies, determine

a. An expression for the ratio of recycled mass flow rate ð _mRÞ to discharge mass flow rate ð _mDÞ so that the temperature of
the nitrogen in the tank ðTTÞ is constant in time.

b. The values of _mR/ _mD and _QH for TR = 200.°F, TT = 70.0°F, _mR = 0:500 lbm/s, and _WC = −3:00hp:

Solution
First, draw a sketch of the system (Figure 6.19).

Compressor

Heater

Nitrogen
tank

Recycle
flow
loopTo thrusters

QH

mR

mD

mout mR

WC

FIGURE 6.19
Example 6.10, schematic.

The unknown here is to find a formula for _mR/ _mD then to find its value for a specific set of conditions. Since _mR and _mD are
mass flow rates into and out of the tank, let us first apply the general energy rate balance to the tank alone (Figure 6.20)
and see what happens.

(Continued )
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EXAMPLE 6.10 (Continued )

Nitrogen
tank

mR

1

2

System boundary

mD

FIGURE 6.20
Example 6.10, tank alone.

Assumptions
1. _Q = 0 (tank is insulated).
2. _W = 0 (no work is done on or by the tank itself).
3. TT = T2 = 70.0°F = constant (discharge is isothermal).
4. Neglect changes in KE and PE of the flow streams and the tank.
5. Treat N2 as an ideal gas.

Then, the general energy rate balance becomes

_Q

0

− _W

0

+ _mRðh1 + V2
1 /2gc + gZ1/gcÞ

⎵

0

− _mDðh2 + V2
2 /2gc + gZ2/gcÞ

⎵

0

= dðmuÞT/dt + dðKE+PEÞT/dt

0

or

_mRh1 − _mDh2 = dðmuÞT/dt = _mTuT +mT _uT

Now, _uT = duT /dt = d(cvTT)/dt = 0, since TT = constant. The conservation of mass law gives

_mT = _mR − _mD:

Then, the energy rate balance becomes

_mRh1 − _mDh2 = ð _mR − _mDÞuT
or

_mR/ _mD = ðh2 − uTÞ/ðh1 − uTÞ
Now,

h2 = cpT2 = cpTT

and

uT = cvTT

Then,

_mR/ _mD = cp − cv
� �

TT
� 


/ cpT1 − cvTT
� �

= R/ cp T1/TTð Þ− cv
� 


= 1/ cp/R
� �

T1/TTð Þ− cv/R
� 


Since

cp/R = cp/ cp − cv
� �

= k/ k−1ð Þ

and

cv/R = cv/ðcp − cvÞ = 1/ðk− 1Þ
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we have

_mR/ _mD = ðk−1Þ/ k T1/TTð Þ−1½ �

In part b, we are given that TT = 70.0°F = 530. R and T1 = 200.°F = 660. R.

Table C.13a gives us the specific heat ratio for nitrogen as k = 1.40. Therefore, our resultant equation gives

_mR/ _mD = 1:40−1ð Þ/ 1:40 660:/530:ð Þ− 1½ � = 0:538

Thus, 53.8% of the discharge mass must be recycled to keep the tank temperature constant.

To find the rate of recycle heat transfer required in part b, we must analyze the heater and compressor as a separate system
(Figure 6.21).

Compressor

Heater

QH = ?

WC = −3.00 hp

System
boundary

mR

mR

2

1

FIGURE 6.21
Example 6.10, heater and compressor as a separate system.

In general, _mR is not constant in time in this system. We assume that a feedback control system exists that automatically
scales down _WC and _QH as _mR goes to zero and the tank empties. We also assume that the internal, kinetic, and potential
energies of the entire system are constant in time, so that we have a steady state, steady flow, single-inlet, single-outlet sys-
tem. Under these conditions, the modified energy rate balance becomes

_QH − _WC + _mR h1 − h2ð Þ = 0

where we again neglect any changes in flow stream specific kinetic and potential energies. Using the ideal gas relationship
for specific enthalpy gives

_QH = _mRcp T2 − T1ð Þ+ _WC

Table 13a gives cp = 0.248 Btu/(lbm · R) for nitrogen. Then,

_QH = 0:500 lbm/sð Þ 0:248Btu/ðlbm.RÞ½ � 660:− 530:Rð Þ
+ −3:00hpð Þ 550 ft .lbf/ s.hpð Þ½ � 1Btu/ 778:16 ft .lbfð Þ½ �

= 14:0Btu/s

SUMMARY
In this chapter, we investigate a series of open system examples and carry out a first law analysis of them using
the energy balance or the energy rate balance. The primary purpose of this is to illustrate the material presented
in Chapter 4. Several new equations are introduced in this chapter. Some of the more important equations are
these.

1. The one-dimensional mass flow equation:

dm
dt

� �
flow stream

= ð _mÞflow stream = ðρAVÞflow stream (6.1)



2. The general open system energy rate balance (ERB) equation:

_Q − _W +∑
inlet

_m h+V2/2gc + gZ/gc
� �

− ∑
outlet

_m h+V2/2gc + gZ/gc
� �

= d
dt

U+mV2/2gc +mgZ/gc
� �

system

(6.4)

3. The modified open system energy rate balance equation:

_Q − _W + _m½hin − hout + ðV2
in −V2

outÞ/ð2gcÞ+ ðZin −ZoutÞðg/gcÞ� = 0 (6.12)

Other equations are developed in this chapter that apply to specific geometries and boundary conditions. These
equations are best studied in the context of the specific examples in which they were developed. The secret to
mastering this material is to become competent at developing the equations that fit your specific problem by
starting from the basic energy and auxiliary equations and applying the relevant boundary conditions (adiabatic,
negligible kinetic or potential energies, and so forth). Consequently, not all the equations developed in this
chapter are listed here so that you are encouraged to learn how to use the basic equations by studying the exam-
ple problems and solutions presented.

The example problems discussed in this chapter are not meant to cover all the possible aspects of open
system energy analysis. They were chosen to illustrate the problem solving technique, thermodynamic
table usage, and how to make basic assumptions about process variables. You must learn how to successfully
apply a generalized problem solution technique, such as the one used in this chapter and illustrated in
the flowchart of Figure 4.21. More problem solving skills are gained by doing the problems at the end of
this chapter.

Table 6.5 lists some of the new technical thermodynamic terms introduced in this chapter and earlier chapters.
These terms are used without further explanation in the chapters that follow. It is recommended that the student
learn their definitions before proceeding to the next chapter.

Table 6.5 Glossary of Technical Terms Introduced in Chapter 6 and Earlier Chapters

EB The energy balance

ERB The energy rate balance

1Q2 and _Q Heat transfer and heat transfer rate

1W2 and _W Work and work rate (power)

Aergonic No work

Reversible work No losses (i.e., no friction, heat transfer, etc.)

Work efficiency A measure of the losses within a machine

Coefficient of performance (COP) The name we give energy conversion efficiency when it is more than 100%

Conduction heat transfer The heat transport of energy that obeys Fourier’s law

Convection heat transfer The heat transport of energy that obeys Newton’s law of cooling

Radiation heat transfer The heat transport of energy that obeys the Stefan-Boltzmann law

Adiabatic No heat transfer

Steady state A thermodynamic state that is constant in time

Steady flow A state wherein the mass of an open system is constant in time

Flow stream Where mass crosses a system boundary

Station A data monitoring point on a flow stream

MEB The modified energy balance

MERB The modified energy rate balance

Pressure energy Sometimes called the pressure head, _mpv

Nozzle A device for converting pressure energy into kinetic energy

Diffuser A device for converting kinetic energy into pressure energy

Heat exchanger A device for promoting heat transfer from one fluid to another
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Problems (* indicates problems in SI units)
1. Determine an expression for the time rate of change of the total

internal energy of a submarine that is
a. Not insulated.
b. Being propelled by its propeller shaft.
c. Taking on ballast water at only one opening in the

submarine.
d. Is diving and accelerating.

2. Write the complete energy rate balance (ERB) for an automobile
accelerating up a hill and provide a physical interpretation for
each term in the balance.

3. A new perfume is produced in the rigid, insulated reactor vessel
shown in Figure 6.22. Determine the electrical power required
to maintain the process in a steady state, steady flow condition.
Neglect any changes in kinetic or potential energy.

4.* Determine the adiabatic change in temperature of a river that
aergonically drops 1.00 m over a waterfall without a change in
velocity. The specific heat of the river water is 4.20 kJ/(kg · K).

5. A small hydroelectric power plant discharges 200. ft3/s of
water. If the elevation difference ðZin −ZoutÞ between the inlet
and outlet is 15.0 ft and the temperature difference ðTin − ToutÞ
is −0.0100°F, determine the mass flow energy transport
rate. Assume the inlet and outlet velocities are identical:
c = 1.00 Btu/(lbm · R) and ρ = 62.4 lbm/ft3.

6. Air flows aergonically at a constant rate of 8.00 lbm/min down
a horizontal duct so that its enthalpy remains constant. As the
air flows down the duct, its velocity increases from 500. to
650. ft/s. Find the heat transfer rate and indicate whether it is
to or from the system. Assume steady state operation.

7. A steady state air compressor takes in air at atmospheric pressure
and discharges it at 100. psia. The inlet enthalpy is 120. Btu/lbm
and the exit enthalpy is 176 Btu/lbm. Heat is transferred out of
the compressor to cooling water at the rate of 1600. Btu/min. If
the air flow rate through the compressor is 10.0 lbm/min, what
horsepower must be supplied to the compressor? Neglect the
kinetic and potential energies of the inlet and outlet flow
streams.

8. Refrigerant-134a enters a constant area tube at 100.°F with a
quality of 75.0%. Heat is transferred in a steady flow aergonic
process until the R-134a leaves as a saturated liquid at exactly
0°F. Determine the heat transfer per lbm of R-134a flowing.

Neglect any changes in kinetic and potential energies. Assume
steady state operation.

9. An architect designed a 2.00 mile-high skyscraper. Steam is used
for heating and is to be supplied to the top floor via a vertical
pipe. The steam enters the pipe at the bottom as dry saturated
vapor at 30.0 psia. At the top floor, the pressure is to be 16.0
psia, and the heat transfer from the steam as it flows up the
pipe is to be 50.0 Btu/lbm. What is the quality of the steam at
the top floor?

10.* How many watts of power could be recovered by decelerating
0.500 kg/s of air in a ventilating system from 10.0 m/s to
0.100 m/s before discharging it to the atmosphere?

11. Water initially at 300. psia and 500.°F is expanded isothermally
and adiabatically to 14.7 psia in a horizontal steady flow
process. In the absence of work modes, determine the change in
kinetic energy per pound of water.

12. Refrigerant-134a expands in a steady flow diffuser from 300.
psia, 180.°F to 35.0 psia in an isothermal process. During this
process the heat transfer from the R-134a is 3.10 Btu/lbm.
Assuming a negligible exit velocity, determine the inlet velocity
to the diffuser.

13. A steam whistle is devised by attaching a simple converging nozzle
to a steam line. At the inlet to the whistle, the pressure is 60.0 psia,
the temperature is 600.°F, and the velocity is 10.0 ft/s. The steam
expands and accelerates horizontally to the outlet, where the
pressure and temperature are 14.7 psia and 500.°F. Determine the
steam velocity at the whistle outlet. Assume the process is
adiabatic, aergonic, and steady flow.

14.* Water vapor enters a diffuser at a pressure of 0.070 MPa, a
temperature of 150.°C, and a velocity of 100 m/s. The inlet area of
the diffuser is 0.100 m2. By removing 288.2 kJ/kg in the form of
heat across the duct walls, the velocity is reduced to 1.00 m/s and
the pressure is increased to 0.200 MPa at the outlet. Determine the
outlet area of the diffuser.

15. Air at 70.0°F, 30.0 psia, and a velocity of 3.00 ft/s enters an
insulated steady state nozzle. The inlet area of the nozzle is
0.0500 m2. The nozzle contains an operating 1500. W electrical
heater. The air exits the nozzle at 14.7 psia and 300. ft/s.
Determine the temperature of the air at the exit of the nozzle.
Assume ideal gas behavior with constant specific heats and
neglect any changes in flow stream potential energy.

16.* Air at 20.0°C, 0.500 MPa, and a velocity of 1.00 m/s enters an
insulated nozzle. The inlet area of the nozzle is 0.0500 m2. The
nozzle contains an operating 500. W electrical resistance heater.
The air exits the nozzle at atmospheric pressure and 100. m/s.
Assuming ideal gas behavior with constant specific heats,
determine the exit temperature.

17. Air at 70.0°F and 30.0 psia enters an insulated nozzle with a
mass flow rate of 3.00 lbm/s. The nozzle contains an operating
1000. W electrical resistance heater. The air exits the nozzle at
14.7 psia. The inlet and exit areas of the nozzle are 0.500 and
0.100 ft2, respectively. Determine the velocity and temperature
of the air at the exit of the nozzle. Assume air to be an ideal gas.

18. The adiabatic, aergonic throttling calorimeter shown in Figure
6.23 is a device by which the quality of wet steam flowing in a
pipe may be determined. Determine (a) the enthalpy of the
steam in the pipe and (b) the quality of the steam in the pipe.
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19. Wet steam is throttled adiabatically and aergonically from 800. psia
to 5.00 psia and 200.°F. If the inlet and exit velocities and heights
are equal, what is the ratio of exit area to inlet area for this device?

20.* When the pressure on saturated liquid water is suddenly reduced
in an adiabatic, aergonic, steady flow process, the exit state
temperature must also be reduced to reach the new equilibrium
state. Consequently, part of the initial liquid is very quickly
converted into a saturated vapor at the lower pressure, with the
vaporization energy (i.e., heat of vaporization) coming from the
remaining liquid. In this way, the remaining liquid is cooled to
the new (lower) equilibrium temperature. The resulting vapor is
called flash steam because the liquid appears to “flash” into a
vapor as it expands into the low-pressure region. Determine the
exit temperature and percent of flash steam produced as saturated
liquid water at 10.0 MPa is throttled through a partially open
valve and discharged into the atmosphere adiabatically,
aergonically, and with no change in kinetic or potential energy.

21. Refrigerant-22 is flowing steadily through a refrigerator throttling
valve at the rate of 10.0 lbm/min. At the valve inlet, the R-22 is
a saturated liquid at 80.0°F. At the valve outlet, the pressure is
31.162 psia. If the process can be considered aergonic, adiabatic,
and with no change in kinetic or potential energy, find the
quality at the valve outlet.

22.* The insulated vortex tube shown in Figure 6.24 contains no
moving mechanical parts, yet it has the ability to separate the
inlet air flow stream into hot and cold outlet air flow streams.
Recorded test data are

Inlet pressure, p1 = 0:690MPa gauge
Inlet temperature,T1 = 20:0°C
Hot side outlet temperature, TH = 82:0°C
Hot sidemass flow rate, _mH = 0:136kg/min
Cold sidemass flow rate, _mC = 0:318kg/min

Calculate the cold side temperature, Tc.

23. Aerosol sprays are commonly used today for such things as hair
sprays, shaving creams, deodorants, paints, and perfumes. At
times, various inert gases have been used as the propellant
medium for the active chemicals. Consider the design of a new
deodorant that uses ammonia as the propellant medium. The
spraying process is a simple throttling process (neglect kinetic
and potential energy terms). If the can is at 80.0°F and 70.0 psia
and it is spread into the atmosphere at 15.0 psia, then (a) at
what temperature does the ammonia spray enter the
atmosphere? (b) Draw this process on an h-T diagram and label
all the relevant enthalpies and temperatures.

24.* Determine the inlet quality and the Joule-Thomson coefficient of
wet steam that is throttled from 1.00 to 0.100 MPa and 150.°C.

25.* Estimate the Joule-Thomson temperature change that occurs
as air is throttled from a pressure of 100. atm and 50.0°C to
1.00 atm.

26.* Estimate the Joule-Thomson temperature change as carbon
dioxide is throttled from a pressure of 60.0 atm and exactly 0°C
to 1.00 atm.

27. Refrigerant-22 enters a condenser at 30.0°F with a quality of
85.0% at a mass flow rate of 5.00 lbm/min. What is the
smallest diameter tubing that can be used if the velocity of the
refrigerant must not exceed 20.0 ft/s?

28.* How much electrical power (in kilowatts) is required to
isothermally convert 10.0 kg/min of water from a saturated
liquid to a saturated vapor at 100.°C in an electrically heated
and completely insulated electric boiler?

29.* The hot and cold water faucets on a bathroom sink have water
available at 80.0 and 15.0°C, respectively. When the faucets are
opened, the sink drain is also open so that water leaves the sink
as fast as it enters. Determine the ratio of hot water to cold
water mass flow rates needed to produce a mixture temperature
of 30.0°C in the sink.

30. The steady state, steady flow, adiabatic, aergonic feedwater
heater shown in Figure 6.25 is used in an electric power plant. It
mixes superheated steam with saturated liquid water to produce
a low-quality outflow, in which 10.0 lbm/s of superheated
steam at 80.0 psia and 500.°F is mixed with saturated liquid
water at 80.0 psia. The outlet stream has a quality of 10.0% at
80.0 psia. What is the mass flow rate of the saturated liquid
water flow stream?

31.* An insulated aergonic condenser for a large power plant receives
3.00 × 106 kg/h of saturated water vapor at 6.00 kPa from a
turbine and condenses it to saturated liquid at 6.00 kPa. Lake
water is used to condense the steam and it is desired to
maintain the inlet water temperature at 4.50°C and the outlet
water temperature at 15.5°C. (a) What flow rate of lake water is
required for an adiabatic, aergonic condenser and (b) what is
the rate of heat transfer from the condensing steam to the lake
water?

Steam flow T = 300.°F

p = 20.0 psiap = 200. psia

FIGURE 6.23
Problem 18.
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32.* A commercial slide projector contains a 500. W lightbulb. The
bulb is to be air cooled. Determine the steady flow mass flow rate
of air required if it enters the projector at 0.101 MPa and 22.0°C,
and leaves the projector at 0.101 MPa and 50.0°C (neglect
changes in kinetic and potential energies). Assume the air is an
ideal gas.

33. Saturated liquid water at 70.0°F enters an aergonic device at a
rate of 1.00 lbm/s. Heat is transferred to the water so that it
exits the device as superheated steam at 100. psia and 600.°F.
Determine the steady state heat transfer rate (ignore kinetic and
potential energy effects).

34. Liquid water (ρ = 62.4 lbm/ft3) enters one end of a 6.00 ft long,
1.00 in. diameter pipe with a uniform velocity. The entering
pressure and velocity are 20.0 psia and 1.00 ft/s, respectively.
Heat is added to the water as it flows down the pipe such that it
exits the pipe as a saturated vapor at 14.7 psia. Determine the
exit velocity.

35. Saturated liquid mercury at 100. psia enters an electrically heated
1.00 inch diameter horizontal pipe at a rate of 10.0 lbm/s with a
negligibly small velocity. What is the steady flow heat transfer in
Btu/s if the mercury exits the pipe at 80.0 psia as a saturated vapor
with a velocity of 500. ft/s?

36.* A straight, horizontal, constant-diameter pipe contains an
internal electrical heating coil (a resistance heater), and the
outside of the pipe is insulated. Water enters the pipe as a
saturated liquid at 0.500 kg/s and 0.200 MPa. How much
electrical power must be dissipated in the electrical heater
(in kilowatts) to produce saturated vapor at 1.00 MPa at the
outlet?

37. An engineer wants to make a steady state, steady flow steam-
cleaning jet by wrapping an electric heater around a water pipe.
Water enters the pipe at 2.00 lbm/min as a slightly compressed
liquid at 50.0°F and exits the pipe as a jet of saturated vapor at
14.7 psia. If the electric heater is plugged into a standard 110. V
ac outlet, how much effective current does it draw? Ignore any
kinetic or potential energy effects.

38.* The proposed solar collector installation shown in Figure 6.26
has a frontal area (exposed to the sun) of 50.0 m2 and
combines a thermoelectric generator with the air heating system
of a building. The thermoelectric generator produces dc power

with an efficiency of 5.00%. Solar radiation provides a net heat
transfer rate to the absorber plate of 1000. W/m2. The incoming
air is at 18.0°C, and to obtain “good” operating efficiency, the
exit air temperature must be maintained at 30.0°C. (a) How
many watts of dc power are produced by the generator, and
(b) what is the required air flow rate?

39. Determine the final temperature and the power required to
compress 10.0 ft3/s of air from 14.7 psia and 80.0°F to a state
where its specific volume is 2.84 ft3/lbm in a steady state, steady
flow process where pv1.4 = constant. Assume ideal gas behavior.

40.* Find the power delivered by an adiabatic, isenthalpic turbine in
which the mass flow rate is 2.00 kg/s and the flow enters at
1667 m/s and leaves at 404 m/s.

41. Liquid nitrogen can be made by a simple adiabatic expansion
process through a turbine, in which 10.0 lbm/h N2 enters the
turbine at 500. R and 2000. psia and leaves the turbine at 1.00
atm as a liquid-vapor mixture. If the turbine produces work at a
rate of 1500. Btu/h, what is the liquid nitrogen mass flow rate at
the exit of the turbine? Neglect kinetic and potential energy
effects.

42.* Determine the power required to compress a gas at a rate of
3.00 kg/s in a steady flow process from 0.100 MPa, 25.0°C to
0.200 MPa, 60.0°C. The specific enthalpy of the gas increases by
34.8 kJ/kg as it passes through the compressor, and the heat loss
rate from the compressor is 16.0 kJ/s. Neglect any changes in flow
stream kinetic and potential energies.

43.* Calculate the power required to compress air in a steady state,
steady flow process with no change in elevation at a rate of
2.00 kg/s from 0.101 MPa, 40.0°C, 10.0 m/s to 0.300 MPa,
50.0°C, at 125 m/s. During this process, the enthalpy of the air
increases by 40.15 kJ/kg, while 8.00 kJ/s of heat is lost to the
environment.

44. Mercury enters the steady flow, steady state, adiabatic turbine of
a starship warp drive system as a saturated vapor at 300. psia
and exits the turbine with a quality of 75.0% at 1.00 psia.
Determine
a. The mass flow rate of mercury required to produce 100. hp

of turbine output power.
b. The inlet flow area if the inlet velocity is 1.00 ft/s.

45.* A simple air conditioner can be made by isothermally
compressing air at atmospheric conditions of 0.101 MPa
and 20.0°C to 0.700 MPa then adiabatically expanding it
through a turbine back to its initial pressure. Determine the
turbine outlet temperature if the turbine produces 750. W of
power at an air flow rate of 0.100 kg/s. Assume ideal gas
behavior.

46. The water pump on the engine of an automobile has a mass
flow rate of 8.30 lbm/s. The water enters at 0.00 psig with a
velocity of 1.00 ft/s and leaves at 10.0 psig with a velocity of
10.0 ft/s with no change in height or temperature. Assuming
that the water is an incompressible liquid with a density of
62.4 lbm/ft3 and the pump is adiabatic, determine the power
(in horsepower) required to drive the pump.

47. A 20.0 hp aircraft engine is used to supply air at a rate of 0.982
lbm/s to support the ground effect vehicle shown in Figure 6.27.
The vehicle has a support area of 50.0 ft2. Estimate the
maximum weight that this system can lift. Assume that the
environmental temperature and pressure are 80.0°F and
14.7 psia, respectively, and the process path is pvk = constant
(where k = cp/cv).
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48.* Determine the power required to drive a boiler feed pump that
isothermally pumps 400. kg/s of saturated liquid water at
30.0°C to 8.00 MPa.

49. An adiabatic Refrigerant-22 turbine is mechanically coupled to an
adiabatic steam compressor. Saturated R-22 vapor at 100.°F
enters the turbine and exits as saturated vapor at −20.0oF. The
steam enters the compressor as a saturated vapor at 14.7 psia
and exits at 1000. psia, 1600.°F. If the steam mass flow rate is
5.00 lbm/s, find the R-22 mass flow rate.

50.* 3.00 kg/s of air is compressed in the steady flow, steady state,
two-stage compressor shown schematically in Figure 6.28. Find
the interstage temperature (T2). Assume the air is an ideal gas
with constant specific heats.

51. In a steady flow process, a 1300. hp adiabatic steam turbine is
supplied with 10.0 × 103 lbm of steam per hour. At the inlet to
the turbine, the pressure of the steam is 500. psia and its
velocity is 100. ft/s. The temperature of the steam leaving the
turbine is 60.0°F, its quality 0.870, and its velocity is 700. ft/s.
On leaving the turbine, the steam is condensed at constant
pressure and exits the condenser as a saturated liquid at 60.0°F
with negligible velocity. Find the temperature of the steam
supplied to the turbine and the heat transfer rate in the
condenser.

52.* Saturated liquid water at 70.0°C enters an aergonic boiler at
station 1 in Figure 6.29. The boiler receives heat energy at a

rate of 10.0 × 103 kJ/s. Superheated steam at 20.0 MPa and
800.°C leaves the boiler and enters an insulated turbine at
station 2. The turbine exhausts to an aergonic condenser at a
pressure of 200. kPa and a quality of 80.0% at station 3. The
condenser cools the water to a saturated liquid at 100. kPa at
station 4. Determine (a) the mass flow rate of water, (b) the
power of the turbine, and (c) the heat transfer rate of the
condenser.

53. 0.500 lbm/s of hydraulic oil (density = 55.6 lbm/ft3 and specific
heat = 0.520 Btu/(lbm · R)) is adiabatically pumped from 14.7
psia to 3014.7 psia with a 10.0 hp gear-type hydraulic pump.
Determine the temperature rise in the oil as it passes through
the pump.

54. An adiabatic air turbine is used to drive a compressor plus
another device as shown in Figure 6.30. Assuming the working
fluid (air) to be an ideal gas, find
a. The mass flow rate of the air
b. The power required to drive the compressor.

55. It is proposed to construct a power plant on the shores of Lake
Michigan. To preserve the essential qualities of the lake, a local
environmental activist organized the community, which passed
an ordinance requiring that condenser coolant obtained from
the lake be returned to the lake at temperatures no warmer than
5.00°F above the temperature at which the water was withdrawn
from the lake. The following are some of the design parameters
of the proposed plant:
a. Steam flow through condenser: 10.0 × 103 lbm/h.
b. Inlet steam conditions: saturated vapor at 1.00 psia.
c. Outlet condensate conditions: saturated liquid at 1.00 psia.
d. External heat loss from condenser: equal to 8.00% of the

energy extracted from the steam during condensation.
e. Lake water has a specific heat of 1.00 Btu/(lbm · R)
Find the required flow rate of coolant from Lake Michigan.

56. Determine the air velocity in the 0.250 in diameter neck of a
balloon required to inflate an initially empty balloon to a
diameter of 1.00 ft in 60.0 s. Assume the density of the air in the
balloon remains constant during the inflation process.

57. Explain why the final temperature resulting from the adiabatic
filling of a rigid vessel with an ideal gas is independent of the
filling pressure.

58.* Incompressible hydraulic oil with a density of ρ = 880. kg/m3 and
specific heat of c = 2.10 kJ/(kg ·K) is pumped from a reservoir at
35.0°C into a fully extended rigid hydraulic cylinder. Determine
the temperature of the oil in the cylinder when its pressure reaches
35.0 MPa.

W = 20.0 hp

FIGURE 6.27
Problem 47.

WTurbine = ? QCondenser =?

Boiler
1 2 3 4

Turbine Condenser

QBoiler = 10.0 × 103 kJ/s

m = ?

FIGURE 6.29
Problem 52.
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FIGURE 6.28
Problem 50.
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FIGURE 6.30
Problem 54.
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59. Incompressible liquid water—density = 62.4 lbm/ft3 and specific
heat = 1.00 Btu/(lbm ·R)—at 70.0°F is pumped into a rigid
insulated hollow bowling ball. Determine the temperature of the
water in the bowling ball when its pressure reaches 100. × 103 psia.

60.* A 0.100 m3 rigid tank is filled adiabatically to 20.0 MPa with
helium. If the helium enters the tank at 20.0°C, determine the
final temperature in the tank after it is filled. Assume ideal gas
behavior with constant specific heats.

61.* Determine the heat transfer required to fill an initially empty
rigid vessel isothermally with 15.0 kg of pure oxygen at 20.0°C.
Assume ideal gas behavior with constant specific heats.

62. Determine the heat transfer required to cause a tank initially
pressurized with air to discharge isenthalpically. The initial state
inside the tank is p1 = 1500. psia, T1 = 100.oF, m1 = 10.0 lbm and
the final state is p2 = 14.7 psia and m2 = 0.098 lbm. Assume
ideal gas behavior.

63.* A rigid tank with a volume of 0.500 m3 contains superheated steam
at 40.0 MPa and 500.°C. A valve on the tank is suddenly opened
and steam is allowed to escape until the pressure in the tank is
1.00 MPa. While the steam is escaping, heat is simultaneously
added to the tank in a manner that causes the specific enthalpy
inside the tank to remain constant throughout the emptying
process. Determine the total heat transfer required for this process.

64. Consider a rigid tank of volume V:
a. Show that the heat transfer rate required to empty or fill the

tank isenthalpically (note that you must show that this is
true for both cases) is given by

_Q
isenthalpic

empty or fill

= −V dp/dtð Þ

b. Then show that the total heat transfer required to carry out
this isenthalpic process from state 1 to state 2 is given by

1Q2ð Þ
isenthalpic

empty or fill

= V p1 − p2ð Þ

Computer Problems
The following computer problems were designed to be completed
using a spreadsheet or equation solver. They may be used as part of a
weekly homework assignment.

65. Develop a computer program that calculates the output velocity
of an incompressible fluid flowing through an adiabatic nozzle.
Input all the necessary variables with the proper units.

66. Develop a computer program that calculates the output pressure
of an incompressible fluid from an adiabatic diffuser. Input the
necessary variables with the proper units.

67. Develop a computer program that calculates the temperature of
one of the four flow streams of a heat exchanger having two
inlets and two outlets, when the mass flow rates and fluid
properties of both of the flow stream fluids are known. Assume
the fluids do not mix inside the heat exchanger and have one
flow stream be an incompressible liquid and the other a
constant specific heat ideal gas. Input the necessary variables
with the proper units.

68. Develop a computer program that performs an energy rate
balance on a gas turbine engine. Input the appropriate gas
properties (in the proper units), the turbine’s heat loss or gain

rate, and the input mass flow rate, and inlet and exit
temperatures. Output the turbine’s output power. Assume the
gas behaves as a constant specific heat ideal gas and neglect all
kinetic and potential energy terms.

69. Develop a computer program that performs a steady state energy
rate balance on an open system containing an ideal gas with
constant specific heats. Input all but one (you choose which
one) of the following quantities (in proper units): the heat and
work energy transport rates, the mass flow rate, temperature,
velocity and height of each flow stream entering and exiting the
system, and the constant pressure specific heat of the gas
contained in the system. Calculate the specific enthalpy of the
gas using h = cpT, where T is in absolute temperature units. One
of these items is not supplied by the user and therefore becomes
the unknown to be determined by the program. Output all the
input variables plus the value of the unknown.

70. Repeat Problem 69, except use an incompressible liquid as the
working fluid. Allow the user of your program to choose which
variable is to be the unknown from a screen menu, then prompt
for all the remaining variables. Use the conservation of mass law
to determine or check the balance of the mass flows.

Create and Solve Problems
Engineering education tends to focus only on the process of solving
problems. It ignores teaching the process of formulating solvable
problems. However, working engineers are never given a well-phrased
problem statement to solve. Instead, they need to react to situational
information and organize it into a structure that can then be solved
using the methods learned in college.

These “Create and Solve” problems are designed to help you learn
how to formulate solvable thermodynamics problems from engineer-
ing data. Since you provide the numerical values for some of the vari-
ables, these problems do not have unique solutions. Their solutions
depend on the assumptions you need to make and how you set
them up to create a solvable problem.

71.* A canned pickle manufacturer wants to carry out the canning
and sterilization process at 100. kPa. You have a 1.50. MPa
steam line available at the sterilizer, containing steam with
5.00% moisture. You decide to drop the pressure from 250. to
100. kPa through a throttling orifice. Write and solve a
thermodynamics problem that determines the 100. kPa (a) at
exit temperature and (b) the exit quality.

72.* A design for a pump has been proposed involving the
adiabatic, steady flow of liquid water through the pump.
Saturated liquid water at 180.°C enters the pump and
compressed water leaves at 2.20 MPa. Your section chief
wants to know the work per unit mass of water flowing
through the pump. Write and solve a thermodynamics
problem that provides her with the answer.

73. Your boss comes to you with a new design for an insulated
domestic electric water heater that is supposed to heat 1.00
gallons per minute of water from 50.0ºF to 140.ºF, but the
outlet temperature reaches only 105ºF. Your boss wants you to
determine how much electrical power is needed to meet the
design specifications. Write and solve a thermodynamics
problem that provides him with the answer.
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CHAPTER 7

Second Law of Thermodynamics and Entropy
Transport and Production Mechanisms
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7.1 INTRODUCTION
In this chapter, we introduce the second law of thermodynamics and an important new thermodynamic
property called entropy. The theory is presented first then applied to a variety of closed and open systems of
engineering interest in the following chapters.

The details of the second law of thermodynamics and its associated entropy balance are presented, along with a
detailed discussion of the entropy transport mechanisms associated with the energy transports of heat and work.
Unlike mass, energy, and momentum, entropy is not conserved. Consequently, the mechanisms of entropy
production must be well understood to produce an effective entropy balance equation.

In Chapter 8, the focus is on applying the theory presented in this chapter to the same steady state closed
systems considered in Chapter 5. The second law of thermodynamics is expanded in Chapter 9 to cover open
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systems, as in Chapter 6. Then appropriate applications are presented, dealing with a variety of common
open systems of engineering interest, such as nozzles, diffusers, throttling devices, heat exchangers, and mixing.
Chapter 9 ends with a brief discussion of shaft work machines and unsteady state processes.

7.2 WHAT IS ENTROPY?
When we discussed the first law of thermodynamics in Chapter 4, it was fairly easy to apply the general balance
equations to the energy concept and to invoke the conservation of energy principle to obtain a workable energy
balance equation. Energy is a common English word, and it is also a well-accepted technical term. Everyone has
a basic understanding of what the word means, though we would all have a difficult time defining it precisely.
The same can be said for the words force and momentum. They are such familiar words that we easily accept
mathematical formulae and logical arguments structured around them.

Most people are intrigued by seeing a movie run backward because it produces images of things never observed
in the real world. What they do not realize is that they are seeing the effects of the second law of thermo-
dynamics in action. The second law dictates the direction of the arrow of time. That is, things occur only in a
certain way in the real world; and by applying the second law to an observation (like the screening of a movie),
we can determine whether the event is running forward or backward in time. The second law of thermo-
dynamics is what prohibits us from actually traveling backward in time. Curiously, it is the only law of nature
that has such a restriction. All the other laws of mechanics and thermodynamics are valid regardless of whether
time is moving forward or backward. Only the second law of thermodynamics is violated when time is reversed.

At this point we need to introduce a new thermodynamic property that is simply a measure of the amount of
molecular disorder within a system. The name of this new property is entropy. The meaning of this particular
name is explained later, but note that a system that has a high degree of molecular disorder (such as a high-
temperature gas) has a very high entropy value and, conversely, a system that has a very low degree of molecular
disorder (such as a crystalline solid) has a very low entropy value. This new property is very important because
entropy is at the core of the second law of thermodynamics.

A system that has all its atoms arranged in some perfectly ordered manner has an entropy value of zero. This is the
substance of the third law of thermodynamics. This law, introduced in 1906 by Walter H. Nernst (1864–1941),
states that the entropy of a pure substance is a constant at absolute zero temperature. In 1911, Max Planck modi-
fied this law by setting the entropies of all pure substances equal to zero at absolute zero temperature. This had
the effect of normalizing entropy values and thus creating a uniform absolute entropy scale for all substances.
Therefore, we can write the following simple mathematical statement of the third law of thermodynamics:

The third law of thermodynamics: The entropy of a pure substance is zero at absolute zero temperature, or

lim
T!0

Entropy of a pure substanceð Þ = 0 (7.1)

With this simple entropy-disorder concept in mind, we would expect that the entropy of solid water (ice), with
its highly ordered molecular structure, would be less than that of liquid water with its amorphous molecular
structure, which in turn would be less than that of water vapor with its highly random molecular order. This is
in fact true, for at the triple point of water (the only point where the solid, liquid, and vapor phases coexist in
equilibrium), the values of the specific entropies of these phases are

Specific entropy of ice at the triple point = −1:221 kJ/ kg .Kð Þ = −0:292 Btu/ lbm.Rð Þ
Specific entropy of liquid water at the triple point = 0:0 kJ/ kg .Kð Þ = 0:0Btu/ lbm.Rð Þ
Specific entropy of water vapor at the triple point = 9:157 kJ/ kg .Kð Þ = 2:187Btu/ lbm.Rð Þ

So clearly the entropy of a solid < the entropy of a liquid < the entropy of a vapor or gas.

IS ENTROPY LIMITED TO MOLECULES?

Even though the physical concept of entropy is based on the behavior of molecular systems, order and disorder phenom-
ena exist at all levels. For example, if entropy is a measure of disorder, then what is the entropy of your bedroom? If you
have a messy room it is very disordered, so its entropy is high, but if you are a neat person and keep things picked up and
put away, then it has a low entropy. Things seem to get messy easily, and to maintain cleanliness and order requires con-
stant effort. This is a fundamental characteristic of the second law of thermodynamics. The natural progression of things is
from ordered to disorganized and to keep it organized requires the input of energy. If entropy had been named disorder,
perhaps it would not be so difficult to understand.
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Since it always takes an input of energy to create order within a system, it seems reasonable to postulate that a
relation exists between the energy transports of a system and its order, or entropy value. Thus, we arrive at the
three basic elements of the second law of thermodynamics:

We begin this chapter by assuming the existence of a disorder-measuring thermodynamic property that we call
entropy. We use the symbol S to represent the total entropy (an extensive property), and use s = S/m for the
specific entropy (an intensive property).

7.3 THE SECOND LAW OF THERMODYNAMICS
We can use the general balance equation of Chapter 2 to analyze any concept whatsoever. Introducing the total
entropy S into balance Eq. (2.11) provides the following total entropy balance (SB):

SG = ST + SP (7.2)

where SG is the gain or loss of total entropy of the system due to the transport of total entropy ST into or out of
the system and the production or destruction of total entropy SP by the system. A total entropy rate balance (SRB)
is easily obtained from Eq. 7.2 by differentiating it with respect to time to give

_SG = _ST + _SP (7.3)

where the overdot indicates material time differentiation (i.e., _S = dS/dt).

Unlike energy, mass, and momentum, entropy is not conserved in any real process. Processes that have zero
entropy production are called reversible and are characterized by the fact that they can occur equally well in
either the forward or backward direction of time. The thing that makes entropy a unique concept worthy of a
thermodynamic law of its own is that entropy is never destroyed in any real process. Now, it happens that
some processes have very small amounts of entropy production, and it is a useful approximation for these
processes to set their entropy production equal to zero. This can be stated in a very succinct mathematical
form as

The second law of thermodynamics

The entropy production, SP ≥ 0 (7.4a)

and

The entropy production rate, _SP ≥0 (7.4b)

where the equality sign applies only to a reversible process. Equations (7.2) and (7.3), as modified by Eqs. (7.4a)
and (7.4b), form the mathematical basis for a working form of the entropy balance and the entropy rate balance.

THE TRUTH ABOUT ENTROPY

1. Entropy is a measure of the amount of molecular disorder within a system.
2. Entropy can only be produced (but not destroyed) within a system.
3. The entropy of a system can be increased or decreased by entropy transport across the system boundary.

FOR WHAT IS THE THIRD LAW USED?

This law is used to define an absolute measurement scale for entropy, but it does not otherwise contribute to a thermo-
dynamic analysis of an engineering system. Numerical values for specific entropy are listed in thermodynamic tables along
with values for specific volume, specific internal energy, and specific enthalpy. For convenience, most thermodynamic
tables are developed around a “relative” measurement scale, where the values of entropy and internal energy are arbitrarily
set equal to zero at a point other than at absolute zero temperature. For example, in the steam tables, the specific internal
energy and specific entropy of saturated liquid water are arbitrarily set equal to zero at the triple point of water (0.01°C,
0.6113 kPa or 32.018°F, 0.0887 psia). Thus, the specific internal energies and specific entropies of the less-disordered mole-
cular states of water (like ice) have negative values on this relative scale.
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At this point we must develop the auxiliary formulae for the entropy transport and production terms before
Eqs. (7.2) and (7.3) can be put to any practical use. Unfortunately, this is not an easy task. To understand the
concepts of entropy transport and production, we must go back to the original 19th century classical ideas of
Carnot, Clausius, and Thomson (Lord Kelvin), the early developers of this field. When this is completed, we
bring the subject forward to a modern formulation.

7.4 CARNOT’S HEAT ENGINE AND THE SECOND LAW
OF THERMODYNAMICS

The origins of the second law of thermodynamics lie in the work of a young 19th century French military
engineer named Nicolas Leonard Sadi Carnot1 (1796–1832). Sadi was the son of one of Napoleon’s most
successful generals, Lazare Carnot, and was educated at the famous Ecole Polytechnique in Paris. This institution
was established in 1794 as an army engineering school and provided a rigorous program of study in chemistry,
physics, and mathematics. Between 1794 and 1830, the Ecole Polytechnique had such famous instructors as
Lagrange, Fourier, Laplace, Ampere, Cauchy, Coriolis, Poisson, Guy-Lussac, and Poiseuille.

After his formal education, Carnot chose a career as an army officer. At that time, Britain was a powerful military
force, primarily as a result of the Industrial Revolution brought about by the British development of the steam
engine. French technology was not developing as fast as Britain’s, and in the 1820s, Carnot became convinced that
France’s inadequate utilization of steam power had made it militarily inferior. He began to study the fundamentals
of steam engine technology, and in 1824, he published the results of his studies in a small book entitled Reflections
on the Motive Power of Fire (the French word for fire was then a common term for what we call heat today).

Sadi Carnot was trained in the basic principles of hydraulics, pumps, and water wheels at the Ecole Polytechni-
que. It was clear to him that the power of a steam engine was released as the heat fluid (caloric) fell from the
high temperature of the boiler to the lower temperature of the condenser, in much the same way that water falls
through a water wheel to produce a mechanical shaft work output. He conjectured that

According to established principles at the present time, we can compare with sufficient accuracy the motive
power of heat to that of a waterfall. The motive power of a waterfall depends on its height and on the
quantity of liquid; the motive power of heat depends also on the quantity of caloric used, and on what may
be termed, on what in fact we will call, the height of its fall, that is to say, the difference of temperature of
the bodies between which the exchange of caloric is made.

IS ENTROPY CONSERVED LIKE ENERGY AND MOMENTUM?

No, but it turns out that, if you “assume” the entropy production equal to zero, then the second law becomes a conserva-
tion law. This makes entropy problems easier to solve, because it eliminates the entropy production term in the entropy
balance equation. But, since entropy is never actually conserved in any real process, processes that “assume” zero entropy
production are only approximations of real world behavior.

We have a special word that we use to tell you when you are to assume the entropy production is zero. The word is reversi-
ble. When you see that word in a problem statement, you know that the entropy production term is assumed to be zero.
However, remember that reversible processes are only approximations of real (irreversible) processes.

WHAT IS HEAT ANYWAY?

The essence of the concept of heat was a very actively debated scientific topic at the time. In 1789, the great French chemist
Antoine Lavoisier (1743–1794) proposed the caloric theory of heat, in which heat was presumed to be a colorless, odorless,
weightless fluid called caloric that could be poured from one object to another. When an object became full of caloric, it was said
to be saturated with it. This was the origin of the terms saturated liquid, saturated vapor, and so on that we use in thermodynamics
today. These terms were introduced into the scientific literature in the early 19th century, when the caloric theory of heat was
popular, and they were never removed when it was later proven that heat was not a fluid. Today, they are simply misnomers.
Now, when we use the word heat in a technical sense, we normally mean an energy transport arising from a temperature difference.

1 Pronounced car-no. Many French words have a silent t ending. For example, Peugot, Tissot, Monet, ballet, chalet, Chevrolet, and Renault.
Sadi was named after the medieval Persian poet Saadi Musharif ed Din, whose poems became popular in France in the late 18th century.
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By the 1820s, a great deal of work had already been done on the efficiency of water wheels, and the water
wheel–steam engine analogy must have seemed to Carnot like a good way to approach the problem of improv-
ing steam engine efficiency. Two important conclusions came from his work with this analogy.

First, he knew that no one could build a water wheel that would produce a continuous work output unless
water actually entered and exited the wheel. And, if water with a certain kinetic and potential energy entered the
wheel, then the same amount of water with a lower energy level must also exit the wheel. In other words, it is
impossible to make a water wheel that converts all the energy of the inlet water into output shaft work. There
must also be an outflow of water from the wheel, and this outflow must have some energy. These rather
obvious statements are illustrated in Figure 7.1.

Now, if you extend this idea to a steam engine (or any type of heat engine) by replacing the word water by the
hypothetical heat fluid caloric, then it is easy to conclude that when caloric at a certain energy level (tempera-
ture) enters a work-producing heat engine, it must also exit the engine at a lower energy level (temperature).
This concept was later refined into the following form, known today as the Kelvin-Planck statement of the sec-
ond law of thermodynamics: You cannot make a continuously operating heat engine that converts all of its heat input
directly into work output (see Figure 7.2).

Second, Carnot observed that the maximum efficiency of a water wheel was independent of the type of liquid
used and depended only on the inlet and outlet flow energies. This led him to the conclusion that

The motive power of heat is independent of the agents employed to realize it; its quantity is fixed solely by
the temperatures of the bodies between which is effected, finally, the transfer of caloric.

Or, the maximum efficiency of a steam engine (or any type of heat engine) is dependent only on the tempera-
tures of the high- and low-temperature thermal reservoirs of the engine (the boiler and condenser temperatures
in the case of a steam engine) and is independent of the working fluid of the engine (water in the case of a
steam engine). Of course, to achieve the maximum possible efficiency, the water wheel and the heat engine
must be completely reversible; that is, they cannot possess any mechanical friction or other losses of any kind.
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FIGURE 7.1
Water wheel operation.
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FIGURE 7.2
Heat engine operation.

7.4 Carnot’s Heat Engine and the Second Law of Thermodynamics 209



An early nonmathematical version of the second law of thermodynamics, expressed in words, is the Clausius
statement2 of the second law. It is easily understood using the water wheel analogy.

Another early nonmathematical verbalized version of the second law is by William Thomson (Lord Kelvin), later
modified by Max Planck3 (1858–1947).

Both the Clausius and the Kelvin-Planck “statements” of the second law are really just verbalized consequences
of the second law. Its development by recourse to water wheel technology is clearly wrong, since a water wheel
is not a heat engine, but the conclusions are nonetheless correct. They have historical explanatory value but can-
not be used in engineering design. The power of the second law becomes apparent only when it has a mathema-
tical formulation. This comes later in the chapter.

The significance of Carnot’s conclusions was not recognized until the 1850s, when Rudolph Clausius (1822–1888)
and William Thomson (Lord Kelvin, 1824−1907) worked out a clear formulation of the conservation of energy
principle, which was then named the first law of thermodynamics. Carnot’s first conclusion was then named the
second law of thermodynamics by Clausius, who also expanded Carnot’s energy transformation concepts into a new
property he called entropy.

The classical Kelvin-Planck and Clausius statements of the second law also provide a classical means for defining
the concept of reversibility. The Kelvin-Planck statement limits the efficiency of a heat engine to something less
than 100%, but as yet, we have no idea how much less. To establish a more realistic efficiency limit, we need to
define the simplest possible heat engine, one that operates with simple idealized processes. Such an engine
would be frictionless and not have any losses. We call such an idealized engine reversible because the energy
flow through it could be reversed without leaving any trace on the environment.

Since the first law of thermodynamics is a conservative law (i.e., energy cannot be produced or destroyed), it has
no effect on the reversibility of a system. But the second law is not a conservative law, since entropy is produced
in every real process. Therefore, the second law is what dictates whether or not a system and its surroundings
can be returned to their original states, and in general, this is not possible if entropy is produced by the process.
Therefore, a reversible process is really synonymous with a zero entropy production process.

Processes that are not reversible are called irreversible. Phenomena that cause processes to be irreversible are
called process irreversibilities. Some typical process irreversibilities within a system are shown in the following
table.

CLAUSIUS STATEMENT OF THE SECOND LAW OF THERMODYNAMICS

It is impossible to build a continuously operating device that will cause heat energy to be transferred from a low-temperature
reservoir to a high-temperature reservoir without the input of work energy (Figure 7.3).

High-temperature reservoir

Cyclic heat
engine

Low-temperature reservoir

Heat out

Heat in

Impossible!
No work!

FIGURE 7.3
Clausius statement.

2 The word statement is used here, because it is a verbalized rather than mathematical form of the second law.
3 In the 1890s, Planck added the concept of “continuously operating” to Kelvin’s 1850s verbalized version of the second law, so this
statement now has both names associated with it.

210 CHAPTER 7: Second Law of Thermodynamics and Entropy Transport and Production Mechanisms



mechanical friction fluid viscosity electrical resistance

shock waves mixing chemical reactions

heat transfer plastic deformation hysteresis

Thus, it is easy to see that all engineering processes of interest are really irreversible processes, and aside from a
few mathematical formalities, we have very little need for the reversibility concept. However, we are not yet
capable of analyzing all the irreversibilities that occur in the complex real world, so we indeed need to model
our device as reversible during the design stage, then build and test a prototype of it to determine the effect of

WHAT DOES THE WORD ENTROPY MEAN?

Rudolph Clausius was German, and the word he chose for Carnot’s energy transformation concept was verwandlungsinhalt,
meaning “transformation content.” Fortunately, in 1865, he chose to rename this concept by choosing the Greek word
entropy, meaning simply “to change, or transform.” Later, there was an unsuccessful attempt to name an entropy unit the
clausius, Cl, after him. It was defined as 1 Cl = 1 kcal/K = 4.186 J/K, but it was not universally accepted.

REVERSIBLE PROCESSES: CLASSICAL DEFINITION

A process is called reversible if, at any time, both the system and the environment can be returned to their original states.

KELVIN-PLANCK STATEMENT OF THE SECOND LAW
OF THERMODYNAMICS4

You cannot make a continuously operating heat engine that converts all of its heat input directly into work output (Figure 7.4).

High-temperature reservoir

Cyclic heat
engine

Low-temperature reservoir

No heat out!

Work out = Heat in
Impossible!

Heat in

FIGURE 7.4
Kelvin-Planck statement.

4 The Kelvin-Planck statement has many different written forms. For example, it can be expressed as “It is impossible to build a continuously
operating device that produces a work output while absorbing heat from a single thermal reservoir,” and as “No heat engine can be more
than 100% efficient.” Another form of the Kelvin-Planck statement is “It is impossible to build a continuously operating device that produces a
work output while absorbing heat energy from a single thermal reservoir.”

REVERSIBLE PROCESS: MODERN DEFINITION

A reversible process is defined to be any process for which the entropy production or the entropy production rate for the
process is zero (i.e., SP = S˙P = 0).
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the inherent irreversibilities. We then correct for using the reversibility assumption in the design through an
appropriate efficiency calculation.

Though reversible processes do not actually exist in nature, they are conceptually necessary for creating perfor-
mance limits for heat engine technology. William Thomson used Carnot’s second conclusion regarding maximum
(i.e., reversible) engine energy conversion efficiency to develop the concept of an absolute temperature scale.

7.5 THE ABSOLUTE TEMPERATURE SCALE
After studying the operation of steam engines for several years, Sadi Carnot concluded in 1824 that the efficiency
of a heat engine depended only on the temperatures of the engine’s hot and cold thermal reservoirs and not on the
fluid used inside the engine. In 1848, Thomson used Carnot’s conclusion to develop the concept of an absolute
temperature scale. Soon afterward, an absolute temperature scale based on the size of the celsius degree (°C)
became popular and was given his titled name kelvin (K) by his admirers.

By using Eq. (4.70), we can define the thermal energy conversion efficiency (also called the thermal efficiency) ηT
of a continuously operating closed system heat engine with a net output work or power as

ηT =
ðWoutÞnet

Qin
=

ð _WoutÞnet
_Qin

(7.5)

A closed system heat engine can operate continuously only if it operates in a thermodynamic cycle. A system
that undergoes a thermodynamic cycle must end up at the same thermodynamic state at the end of the cycle as
it started from at the beginning of the cycle. Because the total system energy E is a point function, the closed
system first law of thermodynamics energy balance (EB) applied to a cyclic process yields

Q−Wð Þcycle = E2 − E1ð Þcycle = 0 (7.6)

Now, from Figure 7.5, we see that the heat input to a cyclic heat engine is

Qð Þcycle = Qin − jQoutj (7.7)

and

Wð Þcycle = Wout (7.8)

where jQoutj is the absolute value of this energy flow.

Note that we introduce the correct sign with the absolute value of the symbol in Eqs.
(7.7) and (7.8) to indicate the proper flow direction (+ for heat in and work out, and −
for heat out and work in). Normally we do not introduce the sign convention
directly into the equations themselves. The usual custom is to attach the correct flow
direction sign to the number and not the symbol. However, we change this notational
scheme here to help you understand the operation of closed system heat engines.
Later in this chapter, we revert to the conventional notation scheme for algebraic signs.

Combining Eqs. (7.5) through (7.8) and using the simplified notation shown in
Figure 7.5 yields

ηT =
ðWoutÞnet

Qin
=

Qin − jQoutjð Þ
Qin

= 1−
jQoutj
Qin

= 1−
jQLj
QH

(7.9)

IS IT K OR ºK?

In 1967, the International Bureau of Weights and Measures dropped the prefix degree from the SI absolute temperature
scale. So we say “100 degrees celsius is equal to 373.15 kelvin” (or 100.00°C = 373.15 K). Notice that we do not capitalize
the terms Celsius and Kelvin, even though they are proper names. Remember that, in Chapter 1, we discussed why (a) we
do not capitalize the first letter of a unit whose name is derived from that of a person when the unit’s name is written out
and (b) the first letter is capitalized when the unit’s name is abbreviated.

Also, in this book, we follow the same scheme of omitting the degree symbol on the Rankine absolute temperature scale,
so 100.00°F = 559.67 R (and “559.67 R” is written out in lower case as “559.67 rankine”).

High-temperature
thermal source

at temperature TH

Cyclic
heat

engine

Low-temperature
thermal sink

at temperature TL

Wout

Qin= QH

Qout= QL

FIGURE 7.5
Schematic of a cyclic heat engine.
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If we now follow Carnot’s lead and presume that the thermal efficiency of a reversible heat engine (ηT)rev
depends only on the absolute temperatures of the thermal reservoirs, then we can write

ηTð Þrev = 1−
jQoutj
Qin

� �
rev

= 1−
jQLj
QH

� �
rev

or

1− ηTð Þrev =
jQLj
QH

� �
rev

= f
TL
TH

� �
(7.10)

where f( ) is an unknown function that eventually is used to define the absolute temperature scale, and the subscripts
L and H refer to the low- and high-temperature reservoirs, respectively.

Now consider the two reversible heat engines connected in series shown in Figure 7.6. The thermal efficiency of
each of the individual reversible heat engines is determined from an analysis of systems A and B individually.

The thermal efficiency of the engine in system A is5

ηTð ÞA = WA

Q1
= 1−

jQ2j
Q1

= 1− f
T2
T1

� �
and that in system B is

ηTð ÞB = WB

Q2
= 1−

jQ3j
Q2

= 1− f
T3
T2

� �
Now, if we include both engines inside the system boundary, as in system C of Figure 7.6, then we have WC =
WA +WB, and utilizing the previous results, we can write

ηTð ÞC = WC

Q1
= WA +WB

Q1
=

Q1 − jQ2jð Þ+ jQ2j − jQ3jð Þ
Q1

= 1−
jQ2j
Q1

+
jQ2j − jQ3j

jQ2 j
� � jQ2j

Q1

� �
= 1− f

T2
T1

� �
+ 1− f

T3
T2

� �� 	
f

T2
T1

� �
= 1− f

T2
T1

� �
f

T3
T2

� �
(7.11)

We can also compute the heat engine thermal efficiency
of system C as

ηTð ÞC = WC

Q1
=

Q1 − jQ3j
Q1

= 1−
jQ3j
Q1

= 1− f
T3
T1

� �
(7.12)

Comparing Eqs. (7.11) and (7.12), we conclude that the
following functional relation must hold for the unknown
temperature function, f( ):

f
T3
T1

� �
≡ f

T2
T1

� �
f

T3
T2

� �
(7.13)

Many common functions do not satisfy this equation.
For example,

sin
T3
T1

≠ sin
T2
T1

� �
sin

T3
T2

log
T3
T1

≠ log
T2
T1

� �
log

T3
T2

exp
T3
T1

≠ exp
T2
T1

� �
exp

T3
T2

(Wout) = WA

(Wout) = WB

Q1

 

Q3

System
A

System
B

System
C

High-temperature
thermal source

at temperature T1

Cyclic heat
engine A

(reversible)

Cyclic heat
engine B

(reversible)

Low-temperature
thermal sink

at temperature T3

Q2 at temperature T2

FIGURE 7.6
Two reversible heat engines connected in series.

5 Since these engines are defined at the outset to be reversible, the rev subscript on the ηT,, Q, and W terms in these equations has
been dropped for simplicity. This subscript reappears in the equations at the end of this analysis.
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and so forth. However, any simple power function of the form f T3/T1ð Þ = T3/T1ð Þn does satisfy Eq. (7.13), since

T3
T1

� �n
= T2

T1

� �n
T3
T2

� �n
The simplest such power function is a linear one (n = 1), and this is what Thomson chose to establish his absolute
temperature scale. Therefore, if we take

f
T3
T1

� �
=

T3
T1

= T2
T1

� �
T3
T2

� �
= f

T2
T1

� �
f

T3
T2

� �
(7.14)

then Eq. (7.10) becomes

jQoutj
Qin

� �
rev

=
jQLj
QH

� �
rev

= TL
TH

(7.15)

It should be noted that Eq. (7.14) is not the only function that accurately defines an absolute temperature scale
(but it is the simplest). Many other functions also work. However, they produce nonlinear temperature scales in
which the size of the temperature unit is not constant but depends on the temperature level. This might be a
useful technique to expand or condense a temperature scale in certain temperature regions, but the additional
complexity associated with a nonlinear temperature scale makes it generally unsuitable for common usage.6

Now, clearly, the maximum possible thermal energy conversion efficiency of any real irreversible closed system
cyclic heat engine is equal to the thermal energy conversion efficiency that the same heat engine would have if
it were somehow made to run reversibly like a Carnot engine. Then, from Eq. (7.9),

ηTð Þmax = ηTð Þrev = ηTð ÞCarnot = 1− TL
TH

(7.16)

EXAMPLE 7.1
If a heat engine burns fuel for its thermal energy source and the combustion flame temperature is 4000.°F, determine the
maximum possible thermal efficiency of this engine if it exhausts to the environment at 70.0°F.

Solution
First, draw a sketch of the system (Figure 7.7).

The unknown is the maximum possible thermal energy conversion efficiency of any heat engine. The “maximum” efficiency
occurs when an engine operates reversibly (i.e., with no internal losses due to friction, etc.). Since all reversible engines must
have the same thermal energy conversion efficiency when operated between the same high- and low-temperature reservoirs,
we can apply the results of the reversible Carnot engine analysis to this problem. Equation (7.16) gives the maximum possi-
ble thermal efficiency as

ðηTÞmax = ðηTÞCarnot = 1− TL
TH

= 1−
ð70:0+ 459:67ÞR
ð4000:+459:67ÞR = 0:881 = 88:1%

WHAT IS A CARNOT ENGINE?

A Carnot engine is a reversible heat engine that operates between a high-temperature heat source at TH and a low-temperature
heat sink at TL. The thermal efficiency of a Carnot engine is simply ηTð ÞCarnot = 1−TL=TH .

It turns out that no one has ever actually made a running Carnot engine (although Rudolph Diesel thought he did, but he
invented the Diesel engine instead). The reversible constant temperature heat transfers TH and TL require the engine to
have infinite heat transfer surface areas, and this is not practical.

The “concept” of a Carnot engine is important because it turns out that no other heat engine can have a thermal efficiency
higher than that of a Carnot engine operating between the same two temperature limits. So the value of the Carnot engine
is only as a benchmark with which to compare the thermal efficiencies of other actual operating heat engines. The Carnot
cycle has become the universal standard by which the performance of other heat engine cycles can be measured.

6 It has been suggested that, since many thermal phenomena are inherently nonlinear, the use of a nonlinear (e.g., logarithmic)
temperature scale might have some engineering merit.
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The results of Example 7.1 are highly unrealistic since no real heat engine can ever be
reversible. The irreversibilities within modern heat engines limit their actual operating
thermal energy conversion efficiency to around 30%.

Exercises
1. Rework Example 7.1 for a flame temperature of 2500.°C and an environmental

temperature of 20.0°C. Answer: (ηT)max = 89.4%.
2. If the engine described in Example 7.1 has a maximum (reversible or Carnot) thermal

efficiency of 60.0% when the environmental temperature is 70.0°F, determine the
flame temperature of the combustion process. Answer: Tflame = TH = 1324 R = 865°F.

EXAMPLE 7.2
A coal-fired electrical power plant produces 5.00 MW of electrical power while exhausting 8.00 MW of thermal energy to a
nearby river at 10.0°C. The power plant requires an input power of 100. kW to drive the boiler feed pump.

Determine

a. The actual thermal efficiency of the power plant.
b. The equivalent heat source temperature if the plant operated on a reversible Carnot cycle.

Solution
First, draw a sketch of the system (Figure 7.8).

Boiler

Condenser

Turbine
Electrical
generator

Boiler feed
pump

WE = 5.00 MW

WP = −1.00 kW

QH (from the combustion of coal)

QL (to river at 10.0°C) = 8.00 MW

FIGURE 7.8
Example 7.2.

The unknowns are the actual thermal efficiency of the power plant and the equivalent heat source temperature if the plant oper-
ates on a reversible Carnot cycle. If we construct the system boundary as shown in the sketch, the power plant is a closed system.

a. The actual thermal efficiency of this system is given by Eq. (7.9) as

ηT =
ð _WoutÞnet

_Q in

=
_WE − j _WP j

_QH

=
_QH − j _QL j

_QH

and the energy rate balance (ERB) for the steady state operation of this system is

_QH − j _QL j − ð _WE − j _WP j Þ = 0
or

_QH = j _QL j + ð _WE − j _WP j Þ
= j−8:00MW j + ð5:00MW− j−0:100MWj Þ
= 12:9MW

(Continued )

Burning fuel
at 4000.°F

Heat engine

Environment
at 70.0°F

Exhaust

Work

v7 = ?
max
possible

Heat from combustion

FIGURE 7.7
Example 7.1.
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EXAMPLE 7.2 (Continued )

and thus the actual thermal efficiency is

ηT =
5:00MW− j− 0:100MWj

12:9MW
= 12:9MW− 8:00MW

12:9MW
= 0:380 = 38:0%

b. From Eq. (7.16), we have

ðηTÞmax = ðηTÞCarnot = 1− TL
TH

= 0:380

so that

TH = TL
1− 0:380

=
ð10:0+273:15ÞK

0:620

= 457K = 184°C

The calculations of part a are perfectly valid for this power plant since they deal with actual input and output energy values.
The answer to part b, however, is unrealistically lower than the actual coal flame temperature in the boiler due to the many
irreversibilities that exist within a real power plant.

Exercises
3. If the combustion temperature of the power plant discussed in Example 7.2 were 2000.°C, determine the maximum

(reversible or Carnot) thermal efficiency of the facility. Answer: (ηT)max = 87.5%.
4. If the heat transfer to the boiler in Example 7.2 were 3.50 × 107 Btu/h, the heat transfer from the condenser were 2.10 ×

107 Btu/h, and the power into the boiler feed pump were 1.50 hp, determine (a) the power output from the turbine/
generator in MW and (b) the actual thermal efficiency of the power plant. Answers: (a) Wact = 4:10MW, (b) ηT = 40.%.

7.6 HEAT ENGINES RUNNING BACKWARD
When a heat engine is run thermodynamically backward, it becomes a heat pump, a refrigerator, or an air condi-
tioner, depending on your point of view. Figure 7.9 shows that, when a heat engine is thermodynamically reversed,
the directions of all the energy flows are reversed. Thus, a work input Win causes a thermal energy transfer QL from a
low-temperature reservoir and a thermal energy transfer QH to a high-temperature reservoir. Consequently, the back-
ward running heat engine appears to “pump” heat from a low-temperature reservoir to a high-temperature reservoir.
However, since heat is really a thermal energy transport phenomenon and not a fluid, it is somewhat misleading to
refer to it as being “pumped.” Yet it is common practice in the heating, ventilating, and air conditioning (HVAC)
industry to refer to these devices as heat pumps when they are used to provide a thermal energy transfer to a warm
environment (e.g., a house) from a cold environment (e.g., the outside air).

High-temperature
thermal source

at temperature TH

Low-temperature
thermal sink

at temperature TL

Wout

Heat
engine

(a)

Thermo
cycle

QH

QL

Win

Heat
pump

Refrigeration
or

air conditioning

(b)

QL

QH

High-temperature
thermal source

at temperature TH

Thermo
cycle

Low-temperature
thermal sink

at temperature TL

FIGURE 7.9
(a) Heat engine; (b) thermodynamically reversed heat engine (heat pump, refrigerator, or air conditioner).
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The desired energy result in the operation of a heat pump is heat addition to an already warm environment.
Therefore, its energy conversion efficiency can be determined from Eq. (4.70) and an energy balance on the
device (see Figure 7.9b) as

ηheat
pump

=
Desired energy result
Required energy input

=
jQHj
jWinj =

jQHj
jQHj −QL

=
j _QHj
j _Winj

=
j _QHj

j _QHj − _QL

where, as in the previous section, we use the absolute values of certain terms to avoid improper or confusing
algebraic signs.

If the heat pump is modeled as a backward running Carnot heat engine, then Eqs. (7.15) and (7.17) can be
combined to yield the COP for a “reversible” (i.e., frictionless, etc.), or Carnot, heat pump as

COPCarnot
heat pump

= TH
TH −TL

(7.18)

If the removal of heat QL from a space is the desired result of a backward running heat engine, then the engine
is called a refrigerator when food is stored in the cooled space and an air conditioner when people occupy the
cooled space.

The energy conversion efficiency of a refrigerator or air conditioner can also be obtained from Eq. (4.70). As in
the case of a heat pump, these efficiencies are also normally greater than 100% and they too are commonly
represented with the pure number coefficient of performance label

COP
refrig: or
air cond:

= η
refrig: or
air cond:

=
Desired energy result
Required energy input

=
QL

jWin j =
QL

jQH j −QL
=

_QL

j _Win j
=

_QL

j _QH j − _QL

(7.19)

For a backward running Carnot (i.e., reversible) heat engine, Eqs. (7.15) and (7.19) can be combined to give the
COP for a reversible refrigerator or air conditioner as

COPCarnot
refrig:or
air cond:

= TL
TH −TL

(7.20)

IS THE EFFICIENCY OF HEAT PUMPS, AIR CONDITIONERS,
AND REFRIGERATORS GREATER THAN 100%?

If you look closely at the thermal efficiency equations for heat pumps, air conditioners, and refrigerators, you see that their
efficiency is going to be more than 100%, because under normal operating conditions, the numerator in their efficiency equa-
tion is usually greater than the denominator. Consequently, their energy conversion efficiency is usually greater than 100%.

How can that be—nothing should have an energy conversion efficiency greater then 100%. But, it is correct. This is simply
due to the way in which the thermal efficiency formula (Eq. (4.70)) is structured:

Energy conversion efficiency = ηE =
Desired energy result
Required energy input

(4.70)

This makes a heat pump much more attractive for domestic heating than, say, a purely resistive electrical heater. Electrical hea-
ters convert all their input electrical energy directly into thermal energy and therefore have energy conversion efficiencies of
100%, whereas most heat pumps have energy conversion efficiencies far in excess of 100% for the same electrical energy input.

Since this could be a problem in public advertising, the industry uses the phrase coefficient of performance (COP) instead of
efficiency. The COP is simply the pure efficiency number before it is converted into a percentage. For example, the COP of
a heat pump with an energy conversion efficiency of 450% is 4.5.

COPheat
pump

= ηheat
pump

=
jQHj
jWinj =

jQHj
jQHj −QL

=
j _QH j
j _W in j

=
j _QHj

j _QHj − _QL

(7.17)
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Comparing Eqs. (7.17) and (7.19), we see that

COPheat pump = COPrefrig: or
air cond:

+1

EXAMPLE 7.3
The temperature outside on a hot summer day is 95°F. You would like your room to
be at 70.°F, so you go out shopping for an air conditioner. If you are going to buy a
Carnot air conditioner, what should be its coefficient of performance?

Solution
First, draw a sketch of the system (Figure 7.10).

The unknown is the coefficient of performance of an air conditioner operating between
70.°F and 95°F. Equation (7.20) gives the coefficient of performance for a Carnot air
conditioner as

COP
Carnot

refrig:or

air cond:

= TL
TH − TL

= 70:+ 459:67
ð95+459:67Þ− ð70:+ 459:67Þ = 21

Note that, in the denominator, the temperature difference in this equation can be in
either relative or absolute temperature units because (95 + 459.67)− (70. + 459.67) =
95− 70. = 25°F or R. The degree size is the same for both the absolute and the relative
temperature scales.

The coefficient of performance of a real air conditioner is sometimes called its energy efficiency rating (EER) and usually ranges
between 3 and 9. The value of 21 calculated in Example 7.3 is unreasonably high, because a Carnot air conditioner is reversible
and has no friction or other internal losses. Therefore, it requires less input work than a real air conditioner.

Exercises
5. The refrigerator in your kitchen maintains a temperature difference of 2.00°C inside when the outside kitchen

temperature is 22.0°C. If it is a Carnot refrigerator, what is its coefficient of performance? Answer: (COP)Carnot ref. = 13.8.
6. If the Carnot air conditioner purchased in Example 7.3 is inserted into the window backward during the winter and

operated as a heat pump, determine its coefficient of performance as a heat pump. Answer: (COP)Carnot HP = 22.

7.7 CLAUSIUS’S DEFINITION OF ENTROPY
Rudolph Clausius extended Thomson’s absolute temperature scale work by rearranging Eq. (7.15) to read

QHð Þrev
TH

=
jQLj rev
TL

and since this applies only to a closed system undergoing a thermodynamic cycle, it can also be written as

∑
cycle

Q
T

� �
=

ðQHÞrev
TH

−
jQLjrev
TL

= 0

If we now take an arbitrary thermodynamic closed system cycle and overlay it with an infinite number of
infinitesimal heat engine cycles, as shown in Figure 7.11, then we can extend the finite summation process of
the previous equation into a cyclic integral. Also, since each of these infinite number of heat engines is now

CRITICAL THINKING

Notice that, the smaller the difference between TH and TL, the larger the COP defined in Eqs. (7.18) and (7.20) becomes. To
understand this on a physical basis, note that, since the numerator is a fixed value (QL or QH) in both equations and the
denominator represents the net work input (Win) to the device, it stands to reason that, the smaller is the work input for a
given output, the better the efficiency (i.e., COP) is.

Carnot
air

conditioner
95.°F 70.°F

(COP) = ?
Carnot
AC

FIGURE 7.10
Example 7.3.
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operating over an infinitely small temperature difference, TH ≈ TL = T and QHð Þrev − jQLj rev ≈ dQ
� �

rev. Then, in
the limit, the previous equation becomes

lim
n!∞

∑
ncycles

Q
T

� �" #
=
I
cycle

dQ
T

� �
rev

= 0 (7.21)

The temperature T in this equation is the absolute temperature at the point where the heat transfer dQ occurs.

Clausius then noted the remarkable result that, since, by definition,I
cycle

Any thermodynamic property differentialð Þ = 0

the argument of the integral in Eq. (7.21) must define a thermodynamic property. That is,

dQ
T

� �
rev

= Differential of some thermodynamic property

But, which property? The term dQ
� �

rev by itself is a path function and thus cannot be a thermodynamic property
differential. However, when dQ

� �
rev is divided by T, a property differential results. Clausius realized that he had

discovered a new thermodynamic property and he chose to name it entropy7 and represent the total entropy of a
system by the symbol S, where

dS =
dQ
T

� �
rev

(7.22)

or

S2 − S1 =
Z 2

1

dQ
T

� �
rev

(7.23)

or

s2 − s1 = S2 − S1
m

= 1
m

Z 2

1

dQ
T

� �
rev

(7.24)

Be careful to note that Eqs. (7.22)–(7.24), which define entropy, are for a closed system of fixed mass m only. The
effect of mass flow on system entropy is taken up in a separate section of this chapter.

The use of a relative temperature scale in a grouping of units can sometimes be confusing. For example, when a
temperature unit appears in the denominator of a units grouping, it can be written either as °F or R (or °C or K
in SI) because only the degree size there is important. Therefore, Eq. (7.24) indicates that the units of specific
entropy can be written correctly in either of the following forms:

s ½in Btu/ lbm.°Fð Þ�≡ s ½in Btu/ lbm.Rð Þ�

T

dT

A

An arbitrary
thermodynamic

cycle for a
closed systemAn infinite

number of
infinitesimal
heat engine

cycles

FIGURE 7.11
An infinite number of infinitesimal heat engine cycles approximating an arbitrary closed system thermodynamic cycle.

7 Here is a translation of how Clausius, in 1865, described why he chose the word entropy for the name of his new property. “We
might call S the transformational content of the body, just as we termed the quantity U the heat and work content of the body. But since
I believe it is better to borrow terms for important quantities from the ancient languages so that they may be adopted unchanged in all
modern languages, I propose to call the quantity S the entropy of the body, from the Greek word ητροπή, meaning a transformation.”
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or

s ½in kJ/ kg .°Cð Þ�≡ s ½in kJ/ kg .Kð Þ�
This does not mean that the °F and R (or °C and K) scales are equal but only that their degree sizes are equal.
Therefore, when you have units like Btu/(lbm · ºF), you need not use any mathematical formula to convert °F to
R in order to write this grouping as Btu/(lbm ·R). This is a simple but often confusing point.

However, the temperature unit you choose to place in the denominator of a term’s units grouping may depend
on how the term is to be used in relation to other temperature terms in the equation. An example of where this
occurs is in the use of specific heats. Equation (3.15) is

cv =
∂u
∂T

� �
v

(3.15)

where cv is the constant volume specific heat.

We discussed reversible processes briefly in Chapter 4 and noted that there are few reversible processes in the
real world. In fact, every heat transport of energy through a finite temperature difference is irreversible. We are
able to write Eqs. (7.21) through (7.24) as reversible heat transfers only because we created a very special
situation, in which the heat transport of energy was assumed to take place through an infinitesimal temperature
difference. But, in the real world, it would require an infinite amount of time to transport a finite amount of
energy by this method. If we try to alter the results of Eq. (7.22) by considering only real irreversible heat
transports of energy, we immediately realize that the amount of work done by the cyclic heat engines must be
less than in the reversible case. Then, for an actual heat engine,

Wactual <Wreversible

and using the first law of thermodynamics, we conclude that, since the system total energy E is a point function
and therefore independent of whether the process path is reversible or irreversible,

dE = dQrev − dWrev = dQact − dWact

WHEN DO WE USE ºF (OR ºC) AND WHEN DO WE USE R (OR K)?

Whether you use relative or absolute temperature units in an equation depends on whether the temperature appears in an
equation as a difference or stands alone. For example, assuming cv is a constant, integrating Eq. (3.15) gives u2 − u1 = cv (T2 − T1),
and since the temperature appears as a difference here, we can use either ºF or R (or ºC or K) temperature units, because
(T1 in ºF + 459.67 R) − (T2 in ºF + 459.67 R) = (T1 in ºF − T2 in ºF), as the conversion from ºF to R cancels out. You
can use either ºF or R and you get the same answer in each case.

Also, the numerical value of cv in Btu/(lbm · ºF) has the same value in Btu/(lbm ·R). For example, for air, cv = 0.172 Btu/
(lbm · ºF) = 0.172 Btu/(lbm ·R). That is because the temperature unit appears in the denominator as “per degree,” and the
Fahrenheit degree is the same size as a Rankine degree (only their zero point is different). Similarly, cv = 0.718 kJ/(kg ·K) =
0.718 kJ/(kg · ºC) for the same reason.8 This also applies to numerical values of cp, entropy s, and the gas constant R = ℛ/M.

However, in Eqs. (7.18) and (7.20), the temperature stands alone in the numerator, but the denominator has a tempera-
ture difference. What do you do now?

COP
Carnot
heat pump

= TH

TH −TL
(7.18)

COPCarnot
refrig:or
air cond:

= TL
TH −TL

(7.20)

The rule is that, whenever you have an equation in which the temperature T stands alone (and not as a temperature differ-
ence), the temperature must always be in an absolute unit (R or K). So the numerators on Eqs. (7.18) and (7.20) must be in
absolute temperature units (R or K), but since the denominator has a temperature difference, the temperatures here can be in
either relative or absolute temperature units. If you are unsure whether to use absolute or relative temperature units in an
equation, use absolute temperature units, since they always give the correct answer.

8 But be careful if you use a table with cv or s in Btu/(lbm · ºF) because you might be tempted to use T in °F to cancel the temperature unit. This would be
incorrect. You have to understand that cv or s in Btu/(lbm · ºF) has the same numerical value as cv or s in Btu/(lbm ·R).
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and dividing by the appropriate absolute temperature and rearranging gives

dS =
dQ
T

� �
rev

=
dQ
T

� �
act

+
dW
� �

rev − dW
� �

act

T
(7.25)

For a work-producing heat engine, dW
� �

act ≤ dW
� �

rev and both are positive work quantities, since they represent
energy leaving the system; Eq. (7.25) can be rearranged to produce

dS>
dQ
T

� �
act

(7.26)

Equation (7.26) is known as the Clausius inequality. It is Clausius’s mathematical form of the second law of
thermodynamics for a closed system. Dropping the subscript on the bracketed term and thus allowing it
to represent either a reversible or actual process produces the following somewhat more general mathematical
second law expression:

dS≥ dQ
T

� �
(7.27)

and I
cycle

dQ
T

� �
≤0 (7.28)

where the equality sign is used for a reversible heat transport of energy.

7.8 NUMERICAL VALUES FOR ENTROPY
In Chapter 3, we discussed five methods for finding numerical values for properties: thermodynamic equations
of state, thermodynamic tables, thermodynamic charts, direct experimental measurements, and the formulae of
statistical thermodynamics. The same five methods can be used to find numerical values for the specific entropy.
In this section, we focus on the use of thermodynamic equations of state, tables, and charts.

Energy and entropy are thermodynamic properties and therefore mathematical point functions. Consequently,
the energy and entropy changes of a system depend only on the beginning and ending states of a process and
not on the actual thermodynamic path taken by the process between these states. Therefore, for a closed system,
we can write the differential energy and entropy balances as

dEð Þrev = dEð Þact = dE = dQ
� �

rev − dW
� �

rev = dQ
� �

act − dW
� �

act

and

ðdSÞrev = ðdSÞact = dS =
dQ
T

� �
rev

Combining the “reversible” path parts of these two equations, we get

dQ
� �

rev = TdS = dE+ dW
� �

rev (7.29)

WHAT ARE PERPETUAL MOTION MACHINES?

Devices that supposedly operate using processes that violate either the first or second laws of thermodynamics or that are
required to be reversible represent various forms of perpetual motion machines. When the operation of a device depends on
the violation of the first law of thermodynamics it is called a perpetual motion machine of the first kind (e.g., a heat engine
that produces power but does not absorb heat from the environment). When the operation of a device depends on the viola-
tion of the second law, it is called a perpetual motion machine of the second kind (e.g., an adiabatic air compressor in which
the air exits at a lower temperature than it entered), and when it requires a reversible process to operate it is called a perpetual
motion machine of the third kind (e.g., a wheel on a shaft that, once started, continues to rotate indefinitely).

No perpetual motion machines operate as proposed and have for centuries been the source of frauds brought on the
unsuspecting public by unscrupulous or naive inventors.
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For a stationary differential closed system at a uniform temperature T containing a pure substance that is
subjected to only a mechanical moving boundary work mode, Eq. (7.29) becomes

T dS = dU+ p dV

and on dividing through by the system mass m and the absolute temperature T,

ds = du
T

+
p
T
dv (7.30)

Since u = h − pv, this equation can also be written as

ds = dh
T

− v
T
dp (7.31)

In Chapter 3, we define the constant volume and constant pressure specific heats for an incompressible
substance as

cv = cp = c = du
dT

Since v = constant and dv = 0 for an incompressible material, then Eq. (7.30) becomes

dsð Þincomp:= c dT
T

� �
or

s2 − s1ð Þincomp:=
Z T2

T1

c dT
T

� �
(7.32)

If the specific heat c is constant over the temperature range from T1 to T2, then this equation can be integrated
to give

s2 − s1ð Þincompressiblematerial
with a constant c

= c ln T2/T1ð Þ (7.33)

In Chapter 3, we also define the constant volume and constant pressure specific heats for an ideal gas as

cv =
du
dT

(3.37)

and

cp =
dh
dT

(3.40)

Consequently, we can now write Eqs. (7.30) and (7.31) as

dsð Þideal
gas

= cv
dT
T

� �
+

p
T
dv = cp

dT
T

� �
− v

T
dp

Further, for an ideal gas, p/T = R/v and v/T = R/p, so this equation can be integrated to give

s2 − s1ð Þideal
gas

=
Z 2

1
cv

dT
T

� �
+R ln v2

v1
(7.34)

=
Z 2

1
cp

dT
T

� �
−R ln

p2
p1

(7.35)

and if the specific heats are constant over the temperature range from T1 to T2, then these equations become

ðs2 − s1Þ ideal gas
constant
cp and cv

= cv ln
T2
T1

+R ln
v2
v1

(7.36)

= cp ln
T2
T1

−R ln
p2
p1

(7.37)
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When an elastic deformation produces a decrease in the specific entropy of a material, it is said to have entropic
elasticity. In the case of an ideal gas, Eq. (7.36) shows that an isothermal (T2 = T1) compression (v2 < v1)
produces a decrease in the specific entropy of the gas. Consequently, ideal gases have entropic elasticity.

Any process in which entropy remains constant is called an isentropic process. The term isentropic comes from the
Greek words for “constant entropy.”

If an ideal gas with constant specific heats undergoes an isentropic process, then s2 − s1 and Eqs. (7.36) and
(7.37) give

ln
T2
T1

= − R
cv

ln
v2
v1

= R
cp

ln
p2
p1

or

For an isentropic process with an ideal gas,

T2
T1

= v2
v1

� �1−k
=

p2
p1

� �k−1ð Þ/k
(7.38)

and

p1vk1 = p2vk2 = constant (7.39)

where

k = cp/cv and R = cp − cv (7.40)

Consequently, from Eq. (4.27), we see that, in the case of an ideal gas with constant specific heats, an isentropic
process is the same as a polytropic process with n = k.

These equations for the specific entropy of an incompressible substance and an ideal gas are the only such for-
mulae to be introduced at this point. Specific entropy equations for more complex substances are introduced
later in the text as they are needed.

EXAMPLE 7.4
An insulated apparatus contains 1.5 kg of saturated liquid water at 20.°C. Determine the change in specific entropy of the
water as it is pressurized from 0.10 MPa to 10. MPa. Assume the liquid water is an incompressible material.

Solution
First, draw a sketch of the system (Figure 7.12).

The unknown is the change in specific entropy, s2 − s1, for the system. The material is liquid water.

An energy balance for this process gives

1Q2 − 1W2 = m u2 − u1ð Þ

and since the apparatus is insulated 1Q2 = 0. The only possible work mode here is moving boundary work, so 1W2 =
Z

pdV .

But the water is to taken as incompressible, so V = constant and dV = 0. Also, Eq. (3.33) gives the specific internal energy
change of an incompressible material as u2 − u1 = c T2 −T1ð Þ, where c is the specific heat of the material. Then, the energy
balance equation gives for this process

0−0 = mc T2 − T1ð Þ

(Continued )

DO ALL ELASTIC MATERIALS HAVE ENTROPIC ELASTICITY?

No, most elastic solids do not have entropic elasticity, but the elasticity present in rubber and polymers is largely entropic. When
work is done adiabatically on a material with entropic elasticity, the temperature of the material increases. You can demonstrate
this by stretching a rubber band rapidly then immediately touching it to your lips (which are very sensitive to temperature). The
rubber band is warmer than it was before it was stretched. Then, if you hold the stretched rubber band long enough for it to
return to room temperature and suddenly release it and touch it to your lips, it is colder than it was before it was stretched.
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EXAMPLE 7.4 (Continued )

m = 1.5 kg
x1= 0
T1 = 20.°C
p1= 0.10 MPa
s1 = ?

State 1 State 2

Insulation

Constant volume process
s2 − s1 = ?

m = 1.5 kg
p2 = 0.10 MPa
∀2 =∀1
s2 = ?

FIGURE 7.12
Example 7.4.

or, T2 = T1. Therefore, the process must also be isothermal, and Eq. (7.33) gives the specific entropy change as

s2 − s1 = c lnðT2=T1Þ = c lnð1Þ = 0

Consequently, the entropy of an incompressible material is not altered by changing its pressure.

EXAMPLE 7.5
An apparatus contains 0.035 kg of air (an ideal gas). The apparatus is used to compress the air isentropically (i.e., at
constant entropy) from a pressure of 0.100 MPa to a pressure of 5.00 MPa. If the initial temperature of the air is 20.0°C,
determine the final temperature and specific volume of the air.

Solution
First, draw a sketch of the system (Figure 7.13).

State 1 State 2

m = 0.035 kg
p1 = 0.100 MPa
T1 = 20.0°C

Isentropic process

Air
m = 0.035 kg
p2 = 5.00 MPa
T2 = ?
v2 = ?

Air

FIGURE 7.13
Example 7.5.

The unknowns are the final temperature, T2, and specific volume, v2, of the air in the system. Since p1 = 0.100 MPa,
T1 = 20.0°C, and p2 = 5.00 MPa, then Eq. (7.38) can be used to find T2 and v2 as follows. From Thermodynamic Tables to
accompany Modern Engineering Thermodynamics, Table C.13b, we find for air that k = 1.4; and solving Eq. (7.38) for T2 gives

T2 = T1
p2
p1

� �k−1
k = ð20:0+273:15KÞ 5:00MPa

0:100MPa

� �0:4
1:4 = 896K = 623°C

Using the ideal gas equation of state and Table C.13b for the gas constant of air (Rair = 0.286 kJ/kg ·K), we find the initial
specific volume of the air to be

v1 = mRT1/p1

= ð0:035kgÞð0:286 kJ=kg .KÞð20:0+273:15KÞ/ð0:100× 103 kN=m2Þ
= 0:02934m3=kg

Then, solving Eq. (7.38) for v2 gives

v2 = v1
T2
T1

� � 1
1−k = ð0:02934m3=kgÞ 623+273:15

20:0+273:15

� �− 1
0:4

� �
= 0:00180m3=kg

Exercises
7. Determine the change in specific entropy as a 1.00 kg block of solid incompressible iron is heated from 20.0°C to 100.°C.

(See Table 3.6 for specific heat values.) Answer: (s2 − s1)iron = 0.108 kJ/kg ·K.
8. Determine the change in specific entropy of air as it is heated from 20.0°C to 100.°C in a constant pressure (isobaric)

process. Assume air behaves as an ideal gas. Answer: (s2− s1)isobaric air = 0.242 kJ/kg ·K.
9. Determine the change in specific entropy of air as it is heated from 20.0°C to 100.°C in a constant volume (isochoric)

process. Assume air behaves as an ideal gas. Answer: (s2− s1)isochoric air = 0.173 kJ/kg ·K.
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The tables and charts in Thermodynamic Tables to accompany Modern Engineering Thermodynamics list specific
entropy along with the specific properties v, u, and h. Specific entropy values are obtained from these sources in
the same way that any of the other specific properties are obtained. In particular, the quality x of a liquid-vapor
mixture is computed using the same type of lever rule relation as was used with v, u, and h; that is,

x =
v− vf
vfg

=
u− uf
ufg

=
h− hf
hfg

=
s− sf
sfg

(7.41)

EXAMPLE 7.6
Determine the change in total entropy of 3.00 lbm of steam at 100.°F and 80.0% quality when it is heated in an unknown
process to 200. psia and 800.°F.

Solution
First, draw a sketch of the system (Figure 7.14).

Steam
m = 3.00 lbm
T1 = 100.°F
x1 = 80.0%

State 1 State 2
Unknown process

s2 − s1 = ?

m = 3.00 lbm
p2 = 200. psia
T2= 800.°F

FIGURE 7.14
Example 7.6.

The unknown is the change in total entropy of the steam. Since we are given two independent properties in each state in
this problem, we do not need to know how the heating process (i.e., the path) took place. We have a closed system consist-
ing of 3.0 lbm of water, for which

State 1 Unknownprocess path�����������! State 2

T1 = 100:°F p2 = 200:psia

x1 = 0:800 T2 = 800:°F

s1 = sf ð100:°FÞ+ x1sfgð100:°FÞ s2 = 1:7662Btu/lbm.R

= 0:1296+ 0:800ð1:8528Þ
= 1:6118Btu/lbm.R

where the specific entropy values have been found in Tables C.1a and C.3a. Then,

S2 − S1 = mðs2 − s1Þ
= ð3:00 lbmÞ 1:7662−1:6118ð Þ Btu/ lbm.Rð Þ½ �
= 0:463 Btu/R

Exercises
10. Determine the change in specific entropy of steam as it is cools from a saturated vapor (x = 100.%) at 100.°F to a

saturated liquid (x = 0%) at 100.°F. Answer: s2 − s1 = sf (100.°F) − sg (100.°F) = −sfg(100.°F) = −1.8528 Btu/lbm ·R.
11. Saturated liquid ammonia at 0.00°C is heated in a constant pressure process until it has a quality of 50.0%. Determine

the change in specific entropy of the ammonia. Answer: s2 − s1 = 2.311 kJ/kg ·K.
12. Determine the magnitude of the change in specific entropy of a water liquid-vapor mixture at 100.°C as its quality

decreases from 1.000 by (a) 1.00%, (b) 10.0%, (c) 50.0%. Answers: (a) |s2 − s1| = 0.0605 kJ/kg ·K, (b) |s2 − s1| =
0.605 kJ/kg ·K, and (c) |s2 − s1| = 3.024 kJ/kg ·K.

Figure 7.15 is an h-s plot for water. It is called a Mollier diagram after the German engineer Richard Mollier
(1863–1935), who developed it in 1904. States 1 and 2 of Example 7.6 are shown on this chart to illustrate its
use. Small charts like this are usually inaccurate for engineering problem solving. Professional engineers used
much larger charts like this before thermodynamic property software became available.

At this point, we must expand the classical concepts presented thus far so that they fit into the more general
balance equations introduced at the beginning of this chapter. We must now look for a set of general entropy
transport mechanisms, valid for both open and closed systems, that are consistent with Eq. (7.28) when applied
to closed systems.
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FIGURE 7.15
The Mollier diagram for water. (Source: Keenan, J. H., Keyes, J., 1936. Thermodynamic Properties of Steam. Wiley, New York. Reprinted
by permission of John Wiley & Sons.)
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7.9 ENTROPY TRANSPORT MECHANISMS
Several conceptual problems occur when Eq. (7.22) is used to define the entropy of a system. First of all, this
equation is limited to closed systems, and at this point, we do not know how it must be altered to accommo-
date open systems. Second, it does not indicate how system entropy may be influenced by the work transport of
energy; third, it deals only with hypothetical “reversible” processes. The third point is particularly bothersome,
since all of our auxiliary formulae for heat transfer have been developed from an empirical basis and therefore
always give the actual rather than the reversible heat transport of energy (see Chapter 4).

From the work of Carnot, Thomson, and Clausius discussed earlier in this chapter, it seems clear that energy and
entropy are related in some way. In this chapter, we investigate the possibility that the energy transport mechan-
isms of heat transfer and work modes are also mechanisms for entropy transport. In Chapter 9, we expand this
investigation to include mass flow transport of entropy.

First, we investigate heat and work transports of entropy by again restricting our analysis to closed systems. In
Chapter 4, we note a modern definition of heat transfer: It is an energy transport mechanism that is neither a
work mechanism nor a mass flow mechanism. It is often conveniently viewed as a nonwork, nonmass flow
mechanism for transporting internal energy.

7.10 DIFFERENTIAL ENTROPY BALANCE
In a reversible process, the production of entropy is always zero, by definition. Therefore, if Eq. (7.22) is viewed
as a differential entropy balance for a closed system undergoing a reversible heat transport of energy, then from
a differential form of Eq. (7.2), it is clear that the heat transport of entropy is given by

dSGð ÞQ = dSð ÞQ = dSTð Þrev
Q

+ dSPð Þrev
Q

0

=
dQ
T

� �
rev

So, the differential entropy transport due to a hypothetical reversible heat transfer is simply

ðdSTÞrev
Q

=
dQ
T

� �
rev

(7.42)

Unfortunately, the two sides of Eq. (7.42) do not have the same differential form. The left side is the total differ-
ential of ST, whereas the right side is a differential divided by an absolute temperature. To integrate this equation
over the surface area of the system, we need to know the exact mathematical relationship between Q and the
temperature of the boundary Tb at the point where this heat transfer occurs. For a reversible Carnot cycle, this
relation is very simple, since a reversible heat transfer occurs only during an isothermal process; so Tb must be a
constant. In this case, Eq. (7.42) can be integrated to give

1 STð Þ2 revQ and
isothermal

=
1Q2

Tb
revQ and
isothermal

������
������ (7.43)

However, Eq. (7.42) cannot be as easily integrated for common nonisothermal heat transfer processes. This pro-
blem can be solved by changing the form of Eq. (7.42) by introducing the following mathematical identity

dQ
T

= d
Q
T

� �
+

Q
T2 dT (7.44)

Then, Eq. (7.42) becomes

dSTð Þrev
Q

= d
Q
T

� �
rev

+
Q
T2

dT

� �
rev

Recall that heat transfer irreversibility is simply due to the heat transport of energy through a finite temperature
difference, so that for all reversible heat transfers, we must have dT = 0, or

Q
T2

dT

� �
rev

= 0
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then

dSTð Þrev
Q

= d
Q
T

� �
rev

(7.45)

which, when integrated, produces Eq. (7.43) again.

In an irreversible process, the total production of entropy is always positive, by virtue of the second law of thermo-
dynamics. Therefore, Eq. (7.25) can be viewed as an entropy balance equation for a closed system undergoing
irreversible heat and work transports of energy. Then,

dS = dST + dSP

=
dQ
T

� �
act

+
dW
� �

rev − dW
� �

act

T

where dSP > 0 by the second law of thermodynamics. To reconcile the difference between the actual work and the
reversible work terms in this equation, we use the concept of a work transport energy efficiency, ηW, which was
introduced in Chapter 4. For a work-absorbing system such as a pump, we have

Work-absorbing system

Wact = Wrev/ηW (4.71)

and, for a work-producing system such as an engine, we have

Work-producing system

Wact = ηWWrev (4.72)

Let us define an irreversible work component, Wirr, which is always a positive number, as

Wirr = ð1−1/ηWÞWrev, for awork-absorbing system

and
Wirr = ð1− ηWÞWrev, for awork-producing system (7.46)

Note that ηW is a positive number between zero and unity (0 < ηW < 1) and that Wrev is negative for a work-
absorbing system and positive for a work-producing system. Consequently, Eq. (7.46) produces positive values
for Wirr for both work-absorbing and work-producing systems. Then, we can write for either a work-absorbing or
a work-producing system that

Wrev −Wact = Wirr

and the entropy balance equation becomes9

dS = dST + dSP =
dQ
T

� �
act

+ dW
T

� �
irr

(7.47)

We now wish to identify the individual heat and work components of the entropy transport and production
terms. For a closed system, we may decompose the transport and production terms as follows:

dST = dSTð ÞQ + dSTð ÞW
and

dSP = dSPð ÞQ + dSPð ÞW
so that

dS = dSTð ÞQ + dSTð ÞW + dSPð ÞQ + dSPð ÞW (7.48)

Substituting Eq. (7.44) into (7.47) gives

dS = d
Q
T

� �
act

+
Q
T2

dT

� �
act

+ dW
T

� �
irr

(7.49)

9 Note that Wirr is always positive for both work-absorbing and work-producing systems, so its sign is correct here.
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and comparing Eqs. (7.48) and (7.49) allows us to identify the following terms:10

dSTð ÞQ = d
Q
T

� �
act

(7.50)

dSTð ÞW = 0 (7.51)

dSPð ÞQ =
Q
T2

dT

� �
act

(7.52)

and

dSPð ÞW = dW
T

� �
irr

(7.53)

Integrating Eq. (7.49) and then differentiating it with respect to time produces an entropy rate balance equation
for a system as

_S = dS
dt

= d
dt

Z
d

Q
T

� �
act

+ d
dt

Z
Q
T2

dT

� �
act

+ d
dt

Z
dW
T

� �
irr

= _ST
� �

Q + _ST
� �

W + _SP
� �

Q + _SP
� �

W

(7.54)

so that

_ST
� �

Q = d
dt

Z
d

Q
T

� �
act

(7.55)

_ST
� �

W = 0 (7.56)

_SP
� �

Q = d
dt

Z
Q
T2 dT

� �
act

(7.57)

and

_SP
� �

W = d
dt

Z
dW
T

� �
irr

(7.58)

7.11 HEAT TRANSPORT OF ENTROPY
The integration of Eq. (7.50) gives the heat transport of entropy as

STð ÞQ =
Z
Σ
d

Q
Tb

� �
act

=∑ Q
Tb

� �
Σ

(7.59)

where Σ is the surface area of the system and Tb is the local absolute temperature of the system boundary corre-
sponding to the value of the local heat transfer at the boundary, Q. However, if Q and Tb vary continuously
along the boundary, then Eq. (7.59) is not easy to evaluate. To produce a more useful version of this equation,
let q be the heat transfer per unit area and let _q be the heat transfer rate per unit area (i.e., the heat “flux”).
Then, define the heat transport of entropy per unit area as q/Tb = dQ/dAð Þ/Tb and define the heat transport rate
of entropy as _q /T = d2Q/dA dtð Þ/Tb so that Eq. (7.59) becomes

STð ÞQ =
Z
Σ

q
Tb

� �
act
dA =

Z
Σ

Z
τ

_q
Tb

� �
act
dA dt (7.60)

10 Note that we could also attempt to use the identity of Eq. (5.44) on the irreversible work term and decompose it into
dWirr /T = d W/Tð Þirr + Wirr /T2ð Þ, then we would be tempted to equate d(ST)W = d(W/T)irr. This would be incorrect because the
irreversible work always occurs inside the system boundary and therefore cannot be associated with a transport term that measures
quantities crossing the system boundary.
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where τ is the time over which the heat transport occurs. Differentiating this equation with respect to time gives
the corresponding transport rate term as

_ST
� �

Q =
Z
Σ

_q
Tb

� �
act
dA (7.61)

In the case where _q and Tb are constant for time τ over the surface Σ of area A, Eq. (7.60) reduces to

Heat transport of entropy when _q and Tb are constant:

ðSTÞQ =
_q
Tb

� �
act
ðτAÞ = 1Q2

Tb

� �
act

(7.60a)

and Eq. (7.61) reduces to

Heat transport rate of entropy when _q and Tb are constant:

_ST
� �

Q =
_Q
Tb

� �
act

(7.61a)

Otherwise, the exact relations between _q /Tbð Þact, time, and surface area must be known before the integral in
Eqs. (7.60) and (7.61) can be evaluated.

EXAMPLE 7.7
A dishwashing process in a restaurant has 3.00 kg/min of saturated liquid water heated in a steady flow process at 100.°C
until it has a quality of 75.0%. Determine the heat transport rate of entropy for this process.

Solution
First, draw a sketch of the system (Figure 7.16).

Dish-washer

Heat

m = 3.00 kg/min
xin = 0
Tin = 100.°C

m = 3.00 kg/min
xout = 75.0%
Tout = 100.°C

(ST)Q= ?

FIGURE 7.16
Example 7.7.

The unknown is the heat transport rate of entropy for this process, and the material is water. The heat transport rate of
entropy is given by Eq. (7.61a) as

_ST
� �

Q =
_Q
Tb

� �
act

Neglecting any changes in flow stream kinetic and potential energy, an energy rate balance for this steady state, steady flow
system is

_Q − _W + _m ðh1 − h2 +0+0Þ = 0

HOW DOES HEAT TRANSPORT ENTROPY?

Take a glass of water, for example. If we heat it up by “transporting” heat into it, the water molecules move faster and
become more disordered. If we add enough heat, the water boils and becomes steam, and the water molecules become
even more disordered. If we cool the water by transporting heat out of it, the molecules slow down, and when it freezes
they form a very ordered crystalline structure. However, if you cool down your bedroom it does not become more
organized in the sense that all the stuff on the floor ends up in the closet. It only gets more organized at the molecular
level as everything freezes.
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and since _W = 0 here (no work modes are present), we have

_Q = _mðh2 − h1Þ
= _mf½hf ð100:°CÞ+ x2hfgð100:°CÞ�− hf ð100:°CÞg
= _mx2hfgð100:°CÞ = ð3:00 kg/minÞð0:750Þð2257 kJ/kgÞ = 5078 kJ/min

Then, Eq. (7.61a) gives

ð _STÞQ =
5078 kJ/min

100:+ 273:15K

� �
= 13:6kJ/min.K

Exercises
13. Suppose the system in Example 7.7 is a closed, rigid vessel containing 3.00 kg of water, and the water is heated in the

same manner from a saturated liquid at 100.°C to a liquid-vapor mixture at 100.°C with quality of 75.0%. Determine
the heat transport of entropy for this process. Answer: (ST)Q = 12.6 kJ/K.

14. A new heat exchanger has been designed, where the local heat flux (heat “flux” is heat transfer per unit area) is directly
proportional to the local surface temperature Tb of the heat transfer area A. Then, _q = KTb over the surface area A of the
heat exchanger. Determine an expression for the heat transport rate of entropy for this system. Answer: ð _STÞQ = KA.

15. An electric motor draws 800. W of electrical power and is 95.0% efficient. This means that 0.950(800.) = 760. W leaves
the motor as mechanical shaft power and (1 − 0.950)(800.) = 40.0 W leaves as heat generated by the electrical and
mechanical losses in the motor. Determine the heat transport rate of entropy of the motor if it has a uniform surface
temperature of 30.0°C. Answer: ð _STÞQ = 0:132W/K.

7.12 WORK MODE TRANSPORT OF ENTROPY
Integration of Eq. (7.51) for all possible work modes clearly gives

Work mode transport of entropy

STð ÞW = 0 (7.62)

and, from Eq. (7.56), we also have

Work mode transport rate of entropy

_ST
� �

W = 0 (7.63)

This produces the surprising result that none of the work modes discussed in Chapter 4 transports entropy into
or out of a system. However, as is shown later, the irreversibilities of these work modes always contribute to the
production of entropy within the system.

7.13 ENTROPY PRODUCTION MECHANISMS
One of the main problems with Eq. (7.22) is that it applies only to reversible processes. All of our auxiliary
formulae for heat transfer have been developed on an empirical basis and therefore always give the actual or irre-
versible rather than the reversible heat transport of energy. Also, the process inefficiencies are mostly due to losses

WHY DO WORK MODES NOT TRANSPORT ENTROPY?

Let us suppose you have an electric ceiling fan in your room. When you turn it on, you have an electric work “mode” com-
ing into the room. The fan blows your papers around and makes a mess (disorder). So why is this not a “work mode”
transport of entropy (disorder)?

Well, “transports” have to be able to go both ways, in and out of the system, like heat transfer. If we run the fan backward,
it does not put all your papers back where they were. So, in this case, your ceiling fan does not “transport” disorder
(entropy) into your room, it “produces” disorder (entropy) inside your room. It is an entropy production process, not an
entropy transport process. Work modes can only produce entropy; they cannot transport it across the system boundary like
heat transfer.
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produced by entropy production, so it is useful to have a tool to investigate these losses in the design and
analysis process.

From the work of Carnot, Thomson, and Clausius discussed earlier, it seems clear that energy and entropy are
related in some way. Therefore, in this section, we investigate the possibility that the energy transport mechan-
isms of heat, work, and mass flow are also mechanisms for entropy production. First, we investigate heat and
work production of entropy by again restricting our analysis to closed systems. In Chapter 9, we expand this
investigation to include mass flow entropy production.

7.14 HEAT TRANSFER PRODUCTION OF ENTROPY
To integrate Eq. (7.52) properly, we define a one-dimensional thermal entropy production rate per unit volume,
σ0, which is the rate of entropy production per unit volume due to the actual heat transfer, as

d2 SPð ÞQ
dt dV

=
d _SP
� �

Q

dV
= σQ = −

_q
T2

dT
dx

� �� 	
actual

(7.64)

where the minus sign appears because dT/dx always is negative when _q is positive. The temperature T in this
equation is the local absolute temperature inside the system boundary evaluated at the point where the local
internal heat flux _q occurs. It is generally not the same as the local system boundary temperature Tb except in
the case of an isothermal system. Equation (7.64) can then be integrated to give

dðSPÞQ =
Q
T2

dT = −
Z
τ

_q
T2

dT
dx

� �� 	
actual

dt dV =
Z
τ
σQdt dV

and, with a second integration, we have

Heat transfer entropy production

ðSPÞQ = −
Z
V

Z
τ

_q
T2

dT
dx

� �� 	
actual

dt dV =
Z
V

Z
τ
σQ dt dV (7.65)

Differentiation of Eq. (7.65) yields the heat transfer entropy production rate term as

Heat transfer entropy production rate

_SP
� �

Q = −
Z
V

_q
T2

dT
dx

� �� 	
actual

dV =
Z
V
σQdV (7.66)

EXAMPLE 7.8
An electric motor has a volume of 2.50 × 10−3 m3 and operates with a constant internal thermal entropy production rate
per unit volume of σQ = 53:7W=K .m3. Determine the heat production of entropy inside this motor for the time period τ =
30.0 min of operation.

Solution
First, draw a sketch of the system (Figure 7.17).

The unknown is the heat production of entropy inside this motor for the time period
τ = 30.0 min of operation. The heat production of entropy for this system is given be
Eq. (7.65) as

ðSPÞQ = −
Z
V

Z
τ

"
_q
T2

dT
dx

� �#
actual

dt dV =
Z
V

Z
τ
σQ dt dV

Since σQ is a constant for τ = 30.0 min of operation, this equation reduces to

ðSPÞQ = σQτV

and we can calculate

ðSPÞQ = ð53:7W/K .m3Þð2:50×10− 3 m3Þð30:0minÞð60 sec/minÞ = 242 J/K

where we have used the fact that 1 W = 1 J/s.

Electric
motor

(SP)Q= ?

σQ= 53.7 W/K . m

∀ = 2.50 × 10−3 m3

FIGURE 7.17
Example 7.8.
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EXAMPLE 7.9
Determine an equation for the steady state entropy production rate due to pure heat conduction in an insulated horizontal
rod connecting a high-temperature (T1) thermal reservoir with a low-temperature (T2) thermal reservoir.

Solution
First, draw a sketch of the system (Figure 7.18).

Q

Rod

Thermal source at
temperature

T1 > T2

Insulation

Heat
conducting

rod

Problem schematic

Thermal reservoir
at temperature

T2 < T1 

System
boundary

Rod

System boundary
temperature T1

System sketch

System boundary
temperature T2

Area A1

Area A2 = A1

Q

x

L

FIGURE 7.18
Example 7.9.

The unknown is an equation for the steady state entropy production rate for the system. The entropy production rate due to
heat transfer is given by Eq. (7.66) as

_SP
� �

Q = −
Z
V

_q
T2

dT
dx

� �� 	
actual

dV

For steady state conditions, _q = constant across areas A1 and A2, but _q = 0 on the remaining surfaces of the system bound-
ary. Since Al = A2 = A and _Q = _qA is a constant, then using dV = Adx, we can write

_SP
� �

Q = −
Z L

0

_q
T2

dT
dx

� �� 	
Adx = − _Q

Z L

0

1
T2

dT
dx

� �
dx = − _Q

Z T2

T1

dT
T2

= _Q 1
T2

− 1
T1

� �
=

_Q
T1T2

T1 − T2ð Þ> 0

For a pure one-dimensional, steady state conduction heat transfer, Fourier’s law gives

dT
dx

= −T1 −T2
L

= −
_Q

ktA
= constant

or

_Q = ktAðT1 −T2Þ/L

Putting this information into the preceding entropy production rate formula gives

_SP
� �

Q =
_Q

T1T2
T1 −T2ð Þ = ktA

T1T2L
T1 − T2ð Þ2 > 0

Notice that, in Example 7.9, the entropy production rate becomes zero only when T1 = T2 (i.e., when _Q = 0), so
that a reversible conduction heat transfer is actually impossible. Also note that, the larger the temperature difference
T1 − T2 through which a given heat transfer _Q occurs, the larger the associated heat transfer entropy production rate
becomes.
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CASE STUDY: ENTROPY PRODUCTION IN HEAT PIPES

The application of basic thermodynamic principles recently pro-
duced a new heat transfer technology. In 1939. the German engi-
neer E. Schmidt demonstrated that a hollow, sealed tube filled with
a liquid-vapor mixture could transfer several thousand times more
thermal energy than pure conduction in a solid copper rod with
the same dimensions as the tube.

Heat applied to the liquid region at the lower end of the tube
causes the quality of the mixture in the remainder of the tube to
increase. The additional vapor thus produced rises inside the tube
and condenses at the cooler end. This condensate then runs down
the inside wall of the tube to replenish the liquid at the lower
end. Figure 7.19a illustrates this process. A continuous circulation
of vapor and condensate occurs when a steady state condition has
been reached.

Since vaporization and condensation occur at the same tempera-
ture under constant pressure conditions, the entire inside volume
of the tube reaches a constant temperature. Pure thermal conduc-
tion in a solid rod requires both a radial and an axial tempera-
ture gradient (see Figure 7.19c) to transport thermal energy.
Schmidt’s device, however, transports a great deal more thermal

energy very efficiently with essentially no temperature gradient
(see Figure 7.19d).

The name heat pipe was suggested for this device in 1963 by George
M. Grover of the Los Alamos Scientific Laboratory. The first signifi-
cant application of heat pipe technology occurred in the U.S. space
program, then it spread into a wide variety of commercial areas
including home furnaces and solar water heaters.

The steady state entropy production rate of a closed system heat
pipe with isothermal input and output surfaces is obtained from
the entropy rate balance as

ð _SPÞheat pipe =∑
_Q
T

� �
net

=
_Q
T

� �
out

−
_Q
T

� �
in
= _Q

Tin −Tout
TinTout

� �
(7.67)

If the heat pipe were truly isothermal throughout, then Tin = Tout and
the entropy production rate would be zero. But Tin is always slightly
greater than Tout due to a small radial temperature gradient in the
tube wall. However, these two temperatures are really very close to
each other so that the entropy production rate of the heat pipe is
actually quite small, making it a much more efficient heat transfer
device than pure thermal conduction alone.

(a) Schmidt type of heat pipe

Vapor

Condensate
return

by gravity

Qout

Qin

T0 Solid rod

Qin

Qout

(b) Gaugler type of heat pipe

Vapor

Wick

Qout

Qin

Condensate
return by
capillary

forces

Heat pipe

Qin

Qout

T0

0 x L

T0

(c) Temperature profile
  in an uninsulated
  solid rod fin

0 x L

T0

(d) Temperature profile
  in an uninsulated
  heat pipe fin

FIGURE 7.19
Heat pipe construction.
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7.15 WORK MODE PRODUCTION OF ENTROPY
From Eq. (7.53), we have dSPð ÞW = dW/T

� �
irr , where T is the local absolute temperature inside the system

boundary evaluated at the point where the work irreversibility (e.g., friction) occurs. Then.

SPð ÞW =
Z

dW
T

� �
irr

(7.68)

and, if the system is isothermal throughout at temperature T as it changes from state 1 to state 2, then

Isothermal work mode entropy production:

ðSPÞW
T=constant

=
1

Wirr

T

� �
2

(7.68a)

The corresponding entropy production rate equation is Eq. (7.58),

_SP
� �

W = d
dt

Z
dW
T

� �
irr

(7.58)

When the system local internal temperature T in Eq. (7.58) is independent of time, this equation simplifies to

Steady state work mode entropy production rate:

_SP
� �

W =
_W
T

� �
irr

(7.58a)

Therefore, only the work mode energy dissipated within the system contributes to the entropy production of the
system. This dissipated energy has been defined to be the difference between the reversible work (as given by
the work mode formula of Chapter 4) and the actual work (for which we have no specific formula except the
empirically based efficiency Eq. (7.46)). If one has experimentally measured the work efficiency, then Wirr can
be found from Eq. (7.46). However, to evaluate SPð ÞW or _SP

� �
W from Eq. (7.68) or (7.58), we need to know the

mathematical functional relation between Wirr and the local absolute temperature T inside the system at all the
points where the irreversibility occurs, in order to carry out the integration.

EXAMPLE 7.10
Determine the work mode entropy production when a measured 42.0 × 103 ft · lbf of work are used to compress 1.00 lbm of
air (an ideal gas) from 14.7 psia to 50.0 psia isothermally at 70.0°F in a closed system.

Solution
First, draw a sketch of the system (Figure 7.20).

Air
m = 1.00 lbm
p1 = 14.7 psia
T1 = 70.0°F

State 1 State 2
Isothermal process

1W2 = 42.0 × 103 ft lbf

Air
m = 1.00 lbm
p2 = 50.0 psia
T2 = T1 = 70.0°F

(SP)W = ?

FIGURE 7.20
Example 7.10.

The unknown is the work mode entropy production for this system. Here, Wact = 42:0× 103 ft .lbf . For the isothermal com-
pression of an ideal gas, Eq. (4.28) gives

Wrev =
Z 2

1
p dV = p1V1

Z 2

1

dV

V

= p1V1 ln V2/V1

� �
= p1V1 ln p1/p2ð Þ

(Continued )
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EXAMPLE 7.10 (Continued )

where

p1 = 14:7psia = 14:7 lbf/in2ð Þ 144 in2/ft2
� �

= 2117 lbf/ft2

V1 = mRT1
p1

=
1:00 lbmð Þ 53:34 ft .lbf/ lbm.Rð Þ½ � 70+ 459:67Rð Þ

2117 lbf/ft2
= 13:35 ft3

Then,

Wrev = 2117 lbf/ft2
� �

13:35 ft3
� �

ln 14:7
50:0

= −34,600 ft .lbf

Now, for an isothermal process, Eq. (7.68a) gives

ðSPÞW =
Z 2

1

dWirr

T
= 1

T

Z 2

1
dWirr =

1

Wirr

T

� �
2

Equation (7.59) gives us Wirr as

Wirr = Wrev −Wact = −34,600− ð−42,000Þ = 7,400 ft .lbf

Therefore,

SPð ÞW = 7400 ft .lbf
70+ 459:67R

= 13:97 ft .lbf/R

= 13:97 ft .lbf/Rð Þ½1Btu/ 778:16 ft .lbfð Þ� = 0:0179Btu/R

This example illustrates that you must know the relation between Wirr and T before Eq. (7.68) can be integrated. The
simplest possible case occurs if T is a constant throughout the system volume, as in this example.

Exercises
16. Determine the work mode production of entropy in Example 7.10 if carbon dioxide gas (an ideal gas) is used instead of

air. Answer: (SP)W = 122.3 ft · lbf/R.
17. If the losses in the electric motor in Example 7.7, Exercise 15, were interpreted as a work mode irreversibility with a

work transport energy efficiency of ηW = 95.0%, then Eq. (7.46) gives Wirr = (1− ηW)Wrev = 0.050(800. W) = 40.0 W.
Determine the work mode production rate of entropy for this system if it has a uniform internal temperature of 30.0°C.
Answer: (SP)W = 0.132 W/K.

18. The actual work to compress a spring was measured and found to be 3.00 J. The reversible work required to compress
the same spring was calculated to be 2.90 J. Determine the work mode production of entropy in the spring if the
internal temperature of the spring is uniform at 20.0°C. Answer: SPð ÞW = 3:41× 10−4 J=K.

Note that you must also know the exact relation between Q and T or Tb before Eqs. (7.60), (7.61), (7.65), and
(7.66) can be integrated. These relations are often empirically derived auxiliary formulae known as constitutive
equations. Fourier’s law, Newton’s law of cooling, and Planck’s radiation law are three such constitutive
equations, briefly discussed in Chapter 4, that relate heat transfer rate and temperature.

An alternative approach to evaluating the entropy production due to work mode irreversibilities is to attempt to
identify the sources of the irreversibilities and to mathematically model them with appropriate equations. This
is normally done by deriving relations for the work mode entropy production per unit time per unit volume σW.
Since σW has a value at every point within the system, the total entropy production is determined by integrating
σW over time and the system volume as

Work mode entropy production:

ðSPÞw =
Z
V

Z
τ
σw dt dV (7.69)

and the entropy production rate is determined by integrating σW over the system volume as

Work mode entropy production rate:

ð _SPÞw =
Z
V
σw dV (7.70)

These results are available for various work mode dissipation mechanisms, such as viscous dissipation within a
Newtonian fluid, electrical energy resistive dissipation, diffusion of dissimilar chemicals, and so on. However,
these mathematical models are normally quite complex, and therefore only the viscous dissipation and the elec-
trical resistance mechanism models are introduced at this point. Dissipation resulting from diffusion is discussed
in Chapter 9 in the section on mass flow production of entropy.
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For the one-dimensional flow of a Newtonian fluid with viscosity μ, velocity distribution V = V(x), and local
internal absolute temperature T, we have

σWð Þvis =
μ
T

dV
dx

� �2
Then, we can write

Entropy production due to fluid viscosity:

SPð ÞW
vis

=
Z
τ

Z
V

μ
T

dV
dx

� �2
dt dV (7.71)

and

Entropy production rate due to fluid viscosity:

_SP
� �

W
vis

=
Z
V

μ
T

dV
dx

� �2
dV (7.72)

To carry out these integrations, we need to know in advance the velocity distribution function V = V(x) and how
μ and V depend on the local internal absolute temperature T.

EXAMPLE 7.11
Determine the entropy production rate per unit volume due to the flow of a lubricating oil (μ = 0.10 N · s/m2) at 30.°C in a
sliding bearing. Assume the lubricant is isothermal throughout its volume.

Solution
First, draw a sketch of the system (Figure 7.21).

Bearing runner

x

Air

Oil
1.00 m/s

V = x ×103 (in m/s when x is in meters)

FIGURE 7.21
Example 7.11.

The unknown is the entropy production rate per unit volume due to the flow of the lubricating oil. In this case, dV/dx =
1000 s−1 = constant, and since μ, T, and dV/dx are constant here, Eq. (7.72) can be integrated to give

_SP
� �

W
vis

=
μ
T

dV
dx

� �2
V

and

σW-vis =
_S P
� �

W-vis
V

=
μ
T

dV
dx

� �2
=

0:10N.s/m2ð Þ
30:+ 273:15Kð Þ 1000 s−1

� �2
= 330 N

m2 .s.K
= 0:33 kJ/ m3 .s.K

� �
Exercises
19. Determine the entropy production rate per unit volume in Example 7.11 when bearing grease (μ = 30. N · s/m2) is used

instead of lubricating oil. With the heavier lubricant, the bearing temperature is now 50.°C. Answer: σW-vis =
93 kJ=ðm3.s.KÞ.

20. Determine the work mode entropy production due to viscosity in a system where the fluid has a constant velocity.
Answer: (SP)W-vis = 0.

21. If a fluid flowing in a pipe has a constant entropy production rate per unit volume due to viscosity of 0.100 Btu/(ft3 · s ·R)
and the volume of the fluid in the pipe is 0.475 ft3, determine the work mode production rate of entropy for this system.
Answer: ( _SP)W-vis = 0.0475 Btu/s ·R.
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Ohm’s law is a simple mathematical model used for the resistive dissipation of electrical work mode energy. In
this model, the entropy production rate per unit volume due to electrical resistance is

σWð Þelect = J2e ρe/T

where Je = I/A is the electrical current per unit area (i.e., the electrical current flux), ρe = ReA/L is the electrical
resistivity, Re is the total electrical resistance of the conductor, L and A are the length and cross-sectional area of
the conductor, and T is the local internal absolute temperature of the conductor. Then, Eq. (7.70) gives

_Sp
� �

W
elect

=
Z
V

J2e ρe
T

dV (7.73)

The electrical current flux Je is often expressed by the one-dimensional Ohm’s law as

Je = −ke
dϕ
dx

� �
where ke = 1/ρe is the electrical conductivity and ϕ is the electrical potential (i.e., voltage). The relation between
ρe and T is shown in Figure 7.22 for various materials.

For the special case of an isothermal system with uniform properties and a constant current density, Eq. (7.73) reduces
to this special case:

Entropy production rate due to electrical resistance:

_SP
� �

W
elect
ðspecialÞ

=
J2e ρeV

T
=

ðI/AÞ2 × ðReA/LÞ× LA
T

� �
= I2Re

T
(7.74)

EXAMPLE 7.12
A new high-temperature silicon computer chip 1.00 × 10−3 m by 5.00 × 10−3 m by 10.0 × 10−3 m long with uniform prop-
erties operates isothermally at 600. K and draws a constant electrical current of 0.10 A. Determine the entropy production
rate of the chip.

Solution
First, draw a sketch of the system (Figure 7.23).
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FIGURE 7.22
The variation of electrical resistivity with temperature. (Source: Reprinted by permission of the author from Lenert, L. H., 1968.
Semiconductor Physics, Devices, and Circuits. Charles E. Merrill Publishing, Columbus, OH.)
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1.00 × 10 −3 m T = 600. K

10.0 × 10 −3 m

5.00 × 10 −3 m

i = 0.10 amp (SP)W -electric = ?

FIGURE 7.23
Example 7.12.

The unknown is the entropy production rate of the chip. Since the chip has uniform properties, is isothermal, and has a
constant current, we can use Eq. (7.74) to determine its electrical work mode entropy production rate as:

ð _SPÞW
elect

= I2Re

T

where the electrical resistance Re = ρe(L/A). The electrical resistivity can be found for silicon at 600. K from Figure 7.22 as
(ρe )silicon = 0.10 Ω · m. Then, from the dimensions given for the chip, we have A = 0.00100 × 0.00500 = 5.00 × 10−6 m2,
L = 0.0100 m, and

Re = ð0:100ohm.mÞð0:0100mÞ=ð5:00× 10− 6 m2Þ = 200:Ω = 200:W=A2

Then, Eq. (7.75) gives

ð _SPÞW
elect

=
ð0:10AÞ2ð200W/A2Þ

600:K
= 0:0033W/K

Exercises
22. Determine the percent reduction in the entropy production rate in Example 7.12 if germanium (see Figure 7.22) is

used in place of silicon in the chip and all the other parameters in the example remain the same. Answer:
% reduction = 99%.

23. An incandescent lightbulb has a filament 0.13 mm in diameter and 0.076 m long. It is made of tungsten wire and
operates at 900. K while carrying 0.90 A. Use Figure 7.22 to determine the entropy production rate due to the electrical
work mode in the filament. Answer: ð _SPÞW-elect = 0:0052W/K.

24. A solenoid is made of copper wire 0.0500 mm in diameter and 200. m long. The solenoid operates at 300. K and carries a
current of 0.500 A. Determine the entropy production rate inside the solenoid due to the electrical work mode. Answer:
_SP
� �

W-elect = 0:424W/K.

7.16 PHASE CHANGE ENTROPY PRODUCTION
In any process, the change in entropy is independent of the actual process path used, because entropy is a state
property (or a point function). Therefore, we may write ΔSð Þrev = ΔSð Þact or Δsð Þrev = Δsð Þact for any process
whatsoever. The entropy change produced by an actual process can occasionally be found by assuming that the
system has undergone a hypothetical reversible process that is easier to evaluate than the actual irreversible pro-
cess. As an example of this technique, consider the entropy change and associated entropy production that occur
in a phase change. For a reversible phase change carried out in a closed system, we have (SP)rev = 0, and the
entropy balance for an isothermal system then gives

S2 − S1ð Þrev = S2 − S1ð Þact = Q/Tbð Þrev = Q/Tbð Þact + SPð Þphase change
or

SPð Þphase change =
Qrev −Qact

Tb
>0

Thus, for an exothermic (heat liberating) phase change (e.g., a condensation or solidification process), the heat
transfers are negative and it follows that jQact j > jQrev j and for an endothermic phase change (e.g.,
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a vaporization process), Qrev >Qact. The irreversibilities involved in a phase change process arise largely from the
heat transfer required to produce the phase change and from the mechanical moving boundary work associated
with any volume change between the phases. If the real system is truly isothermal, then heat transfer irreversi-
bilities may be allocated to the system’s surroundings. As for the work mode irreversibilities, for a reversible
process, ðdWÞrev = −mp dv, and the differential energy balance then gives ðdQÞrev = m du+ p dvð Þ = m dhð Þ. How-
ever, for an actual irreversible process ðdWÞact = f ðηWÞðdWÞrev, where f(ηW) is a function of the work transport
energy efficiency, given in Eqs. (4.71) and (4.72), immediately preceding Eq. (7.46). Then, ðdQÞact =
m½du+ f ηWð Þ p dv�≠m dhð Þ. Consequently, if there is negligible change in system volume during the phase change
or the moving boundary work is carried out very efficiently, then the work mode irreversibilities also are insig-
nificant. Under these conditions, the actual phase change can be accurately approximated as a reversible
process.

7.17 ENTROPY BALANCE AND ENTROPY RATE BALANCE
EQUATIONS

The resulting entropy balance for a closed system of mass m is given by integrating Eq. (7.48) and substituting
in Eqs. (7.60), (7.62), (7.65), and (7.69) to produce

General closed system entropy balance ðSBÞZ
τ

Z
Σ

_q
Tb

� �
act
dA dt + 1ðSPÞ2 = ðS2 − S1Þsystem= ½mðs2 − s1Þ�system (7.75)

For the simplified case of isothermal boundaries, this equation reduces to

Isothermal boundary closed system entropy balance

1Q2

Tb

� �
act

+ 1 SPð Þ2 = m s2 − s1ð Þ (7.76)

where in each case

1ðSPÞ2 =
Z
τ

Z
V

−
_q
T2

dT
dx

� �� 	
+ σW


 �
dV dt

In Chapter 9, Eq. (7.75) is expanded into the following open system general entropy rate balance equations.

General open system entropy rate balance ðSRBÞZ
Σ

_q
Tb

� �
act
dA+∑

inlet

_ms− ∑
outlet

_ms+ _SP = _Ssystem (9.4)

and, for the simplified case of isothermal boundaries, this equation reduces to

Isothermal boundary open system entropy ratebalance

_Q
Tb

� �
act

+∑
in

_ms−∑
out

_ms+ _Sp = _Ssystem (9.5)

There are two effective ways for calculating the entropy production or the entropy production rate for any
process: the direct and the indirect methods.

■ Direct method involves calculating the amount of entropy produced for a process from its defining
equations. For example, for closed systems, the direct method of calculating the entropy production rate is

_SP =
Z
V
ðσQ + σWÞdV

where

σQ =
_q
T2

dT
dx

� �� 	
actual

and σW = σviscous + σelectrical +⋯
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■ Indirect method involves calculating the amount of entropy production for a process from an entropy
balance on the system. For example, for closed systems with isothermal boundaries, the indirect method of
calculating the entropy production rate is

_SP = dS
dt

� �
system

−
_Q
Tb

� �
act

Both the direct method and indirect methods give accurate answers for entropy production if applied correctly.
Which method you choose to solve a particular problem depends entirely on the type of information given to
you in the problem statement (usually only one of the two methods works for a given problem scenario). The
examples presented in the next two chapters illustrate the use of both of these methods.

SUMMARY
In this chapter, we study the classical and the modern development of the second law of thermodynamics and
the resulting entropy and entropy rate balances for closed systems. We find that entropy, unlike energy, is not
conserved in any process and the second law of thermodynamics requires that entropy always be produced in a
process. Kelvin used the classical results of Carnot to develop an absolute temperature scale and produced a
definition of thermal efficiency based only on temperature. Numerical values for entropy can be computed from
simple entropy equations of state for incompressible materials and ideal gases, but the tables in Thermodynamic
Tables to accompany Modern Engineering Thermodynamics must be used for more complex materials, such as
mixtures of liquid and vapor. Two important new process terms introduced in this chapter are reversible process,
a process in which the entropy production inside the system is always zero (SP = _SP = 0), and isentropic process, a
process in which the system’s entropy is maintained constant (s2 − !s1 = 0).

Then we develop entropy balance (SB) and entropy rate balance (SRB) equations by using the same three trans-
port modes (heat, work, and mass flow) as to develop the energy and energy rate balance equations in Chapter 4.
However, since entropy is such an ambiguous concept, we have to be very careful how we define entropy transport
and production modes. The resulting closed system constant boundary temperature entropy and entropy rate
balance equations and other important equations introduced in this chapter follow.

1. The general closed system entropy balance equation for a system that has a constant temperature Tb on the
boundaries where the heat transfer occurs is

1Q2

Tb

� �
act

+ 1ðSPÞ2 = mðs2 − s1Þ (7.76)

2. The general closed system entropy rate balance equation for a system that has a constant temperature Tb on
the boundaries where the heat transfer occurs is

_Q
Tb

� �
act

+ _SP = dS
dt

� �
system

(7.78)

3. The second law of thermodynamics is simply

SP ≥0 (7.4a)

or

_SP ≥0 (7.4b)

4. The third law of thermodynamics is this: The entropy of a pure substance at absolute zero temperature is
zero, or

lim
T¼0

Entropy of a pure substanceð Þ= 0 (7.1)

5. The definition of the absolute temperature scale based on the heat transports of a (reversible) Carnot engine is

jQoutj
Qin

� �
rev

=
jQLj
QH

� �
rev

= TL
TH

(7.15)

6. The thermal efficiency of a Carnot reversible heat engine and the maximum thermal efficiency of any other
heat engine operating between the temperature limits of TH and TL is

ηTð Þmax = ηTð Þrev = ηTð ÞCarnot = 1− TL
TH

(7.16)

Summary 241



7. The coefficient of performance (COP) of a Carnot engine operating in reverse as a heat pump, refrigerator,
or air conditioner is

COP
Carnot
heat pump

= TH
TH −TL

(7.18)

and

COPCarnot
refrig:or
air cond:

= TL
TH −TL

(7.20)

8. The change in specific entropy of an incompressible material (solid or liquid) with constant specific heat c is

s2 − s1ð Þincompressiblematerial
with a constant c

= c ln T2/T1ð Þ (7.33)

and, for an ideal gas with constant specific heats cp and cv, it is

ðs2 − s1Þideal gas
constant
cp and cv

= cv ln
T2
T1

+R ln
v2
v1

(7.36)

= cp ln
T2
T1

−R ln
p2
p1

(7.37)

9. When an ideal gas is used in an isentropic process between states 1 and 2, the following is valid:

T2
T1

= v2
v1

� �1−k
=

p2
p1

� �k−1ð Þ/k
(7.38)

10. The heat transport of entropy (ST)Q and the heat transport rate of entropy _ST
� �

Q across a system boundary at
a constant temperature Tb are

ðSTÞQ =
_q
Tb

� �
act
ðτAÞ = 1Q2

Tb

� �
act

(7.60a)

and

_ST
� �

Q =
_Q
Tb

� �
act

(7.61a)

11. The work transport of entropy (ST)W and the work transport rate of entropy _ST
� �

W across a system boundary
are both zero:

STð ÞW = constant = 0 (7.62)

and

_ST
� �

W = 0 (7.63)

12. The entropy production (SP)Q due to an actual heat transfer inside a system of volume V during the time
interval 0− τ is

ðSPÞQ = −
Z
V

Z
τ

_q
T2

dT
dx

� �� 	
act
dt dV =

Z
V

Z
τ
σQ dt dV (7.65)

and the entropy production rate ( _SP)Q due to an actual heat transfer inside a system of volume V is

_SP
� �

Q = −
Z
V

_q
T2

dT
dx

� �� 	
act
dV =

Z
V
σQ dV (7.66)

13. The equations for the entropy production (SP)W due to the presence of work modes by a system depends on
the type of work mode present. For example, if the system is isothermal throughout at temperature T and an
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amount of work Wirr is dissipated within the system due to irreversibilities inside the system, then the
entropy produced by these irreversibilities is

ðSPÞW
T=constant

=
1

Wirr

T

� �
2

(7.68a)

and the corresponding entropy production rate is

_SP
� �

W =
_W
T

� �
irr

(7.58a)

14. But if we know the irreversibilities are due to a velocity gradient dV/dx in a liquid with viscosity μ at a
temperature T and that they occur in a system of volume V during a time interval 0–τ, then we can calculate
the entropy production and entropy production rates directly from

SPð ÞW
vis

=
Z
τ

Z
V

μ
T

dV
dx

� �2
dt dV (7.71)

and

_SP
� �

W
vis

=
Z
V

μ
T

dV
dx

� �2
dV (7.72)

Alternatively, if the irreversibilities are due to the flow of a constant electrical current I flowing in an
isothermal system with uniform electrical resistance Re at temperature T, then we have

_SP
� �

W
elect
ðspecialÞ

= I2Re

T
(7.74)
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Problems (* indicates problems in SI units)
The first ten problems are designed to review some basic ther-
modynamic concepts of this and earlier chapters. They may
have more than one correct answer.

1. A closed system becomes an open system when
a. There is no heat transfer to energy.
b. There is no work transfer of energy.
c. There is no mass flow.
d. There is no entropy production.
e. There is no kinetic or potential energy.
f. None of the above.

2. Which of the following are intensive properties: (a) pressure,
(b) temperature, (c) volume, (d) mass, (e) quality, (f) power.

3. The entropy change of a closed system is zero for which of the
following processes: (a) adiabatic, (b) isothermal, (c) isentropic,
(d) isenthalpic, (e) aergonic, (f) reversible.

4.* An insulated, rigid container is divided into two
compartments separated by a partition. One compartment
contains air at 15°C and 0.101 MPa, the other compartment
contains air at 40.°C and 0.101 MPa. When the dividing
partition is removed, the total internal energy of the system
(a) increases, (b) decreases, (c) does not change, (d) is converted
into entropy, (e) is converted into temperature, (f) is converted
into heat.

5. A rigid container contains air (an ideal gas), at 70.0°F and
14.7 psia. If the air is heated to 510.°F, its pressure (a) increases,
(b) decreases, (c) does not change, (d) causes moving boundary
work to occur, (e) causes polytropic work to occur, (f) is
converted into thermal energy.

6. A constant velocity throttling process (a) is reversible, (b) is
isothermal, (c) is isentropic, (d) is isenthalpic, (e) is aergonic,
(f) does not exist in the real world.

7. Heat and work are both (a) intensive properties, (b) extensive
properties, (c) process path dependent, (d) zero for an ideal gas,
(e) zero for an adiabatic process, (f) zero for an aergonic process.

8. An ideal gas must satisfy (a) pvn = constant, (b) u = u(T),
(c) s = constant, (d) p2/p1 = v1/v2, (e) pv = nRT, (f) pv =mRT.

9. In a steady flow irreversible process, the total entropy of a system
a. Always increases.
b. Always decreases.
c. Always remains constant.
d. Can increase, decrease, or remain constant.
e. Cannot decrease.
f. Cannot remain constant.

10. To determine the maximum possible work that a heat engine
could produce, one must assume
a. No entropy is produced by the engine.
b. No heat energy is discharged to the environment.



c. No mechanical friction occurs anywhere in the engine.
d. No chemical reactions occur anywhere in the engine.
e. No irreversibilities occur anywhere within the engine.
f. No heat transfer occurs to or from the engine.

11. a. Write either the Clausius or the Kelvin-Planck word
statements of the second law of thermodynamics.

b. Write an accurate mathematical equation for the second law.
c. Given any process, how can you determine whether it is

physically possible?
12. An inventor claims to have developed an engine that operates

on a cycle that consists of two reversible adiabatic processes
and one reversible isothermal heat addition process (see
Figure 7.24). Explain whether this engine violates either the
first or second laws of thermodynamics. (Hint: Recall that the
net work for the process is the area enclosed on the p − V
diagram.)

1
2

3

Adiabatic (3Q1 = 0)
Adiabatic (2Q3 = 0)

Volume V

Pr
es

su
re

 p

FIGURE 7.24
Problem 12.

13.* If the human body is modeled as a heat engine with its
heat source at body temperature, what is its maximum
(reversible or Carnot) efficiency when the ambient temperature
is 20.0°C?

14.* An engine that operates on a reversible Carnot cycle transfers
4.00 kW of heat from a reservoir at 1000. K. Heat is then
rejected to the atmosphere at 300. K. What is the thermal
efficiency and the power output of this engine?

15. Determine whether each of the following functions could be
used to define an absolute temperature scale:
a. f (x) = cos x.
b. f (x) = tan x.
c. f (x) = x4.
d. f (x) = 1 + x.

16.* A closed system undergoes a cycle consisting of the following
four processes:
Process 1. 10 kJ of heat are added to the system and 20 kJ of
work are done by the system.
Process 2. The system energy increases by 30 kJ adiabatically.
Process 3. 10 kJ of work are done on the system while the
system gains 50 kJ of energy.
Process 4. The system does 40 kJ of work while returning to its
initial state.
a. Complete Table 7.1 (all values in kJ).
b. Find the thermal efficiency of this cycle.

17.* It is proposed to heat a house using a Carnot heat pump. The
heat loss from the house is 50.0 × 103 J/s. The house is to be
maintained at 25.0°C while the outside air is at −10.0°C. What
coefficient of performance should the selected heat pump have,
and what minimum horsepower of the motor is required to
drive the heat pump?

18. A reversible Carnot refrigerator is to be used to remove 400. Btu/h
from a region at −60.0°F and discharge heat to the atmosphere at
40.0°F. The reversible Carnot refrigerator is to be driven by a
reversible heat engine operating between thermal reservoirs at
1040.°F and
40.0°F. How much heat must be supplied to the reversible Carnot
heat engine from the 1040.°F reservoir?

19. A reversible Carnot refrigerator is used to maintain food in a
refrigerator at 40.0°F by rejecting heat to the atmosphere at
80.0°F. The owner wishes to convert the refrigerator into a
freezer at 0.00°F with the same atmospheric temperature of
80.0°F. What percent increase in reversible work input is
required for the new freezer unit over the existing refrigerated
unit for the same quantity of heat removed?

20.* What is the cooling capacity QL of a refrigerator with a
coefficient of performance of 3.00 that is driven by a heat
engine whose thermal efficiency is 25.0%? Both the engine and
the refrigerator are reversible, and the engine receives 600. kW of
heat energy from its high-temperature source.

21. A heat pump in a home is to serve as a heater in winter and an
air conditioner in summer. This device transfers heat from its
working fluid to air inside the house during the winter and to
air outside the house during the summer. The design conditions
(worst case) are as follows:

Winter Summer
Thouse = 70.0°F Thouse = 70.0°F
Toutside = 20.0°F Toutside = 100.°F
_Q house=−50:0× 103 Btu=h _Q house=+30:0×103 Btu=h

Use the reversible Carnot cycle to determine the minimum
power required to drive the heat pump.

22.* The air inside a garage is to be heated using a heat pump driven by
a 500. W electric motor. The outside air is at a temperature of
−20.0°C and provides the low-temperature heat source for the heat
pump. The heat loss from the garage to the outside through the
walls and roof is 12.5 × 103 kJ/h. If the heat pump operates on a
reversible cycle, what is the highest temperature that can be
maintained in the garage?

23. A heat pump, with the elements shown in Figure 7.25, is to be
used to heat a home. On a given day, the evaporator receives
heat at 30.0°F and the condenser rejects heat at 70.0°F. The
required heat transfer rate from the condenser to the home is
50.0 × 103 Btu/h.

Table 7.1 Problem 16

Process iQj iWj Ei − Ej

1

2

3

4

Totals
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a. If the heat pump is operated reversibly, what is the rate of
work transfer of energy to the compressor?

b. Express this compressor work rate in kilowatts and calculate
the cost per 24.0 hour day if electricity is purchased at
10.0 cents/(kW ·h).

QH

Condenser

Evaporator

Valve Compressor
W

QL

FIGURE 7.25
Problem 23.

24.* An automobile air conditioner removes 8000. kJ/h from the
vehicle’s interior. Determine the amount of engine horsepower
required to drive the air conditioner if it has a coefficient of
performance of 2.50.

25. A thermodynamic cycle using water is shown on the T-s diagram
of Figure 7.26. Calculate the coefficient of performance for this
cycle using the equation

COP = hA − hD
ðhB − hCÞ− ðhA − hDÞ

s

T

B

A

C

D

FIGURE 7.26
Problem 25.

State A State B StateC StateD
xA = 1:00 PB = 300:psia xC = 0:00 pD = 10:0psia

PA = 10:0psia

The processes are

A ! B = isentropic compression,
B ! C = isobaric expansion,
C ! D = isentropic expansion,
D ! A = isothermal compression:

26.* Determine the change in total entropy of 3.00 kg of
incompressible liquid water with a specific heat of 4.20 kJ/(kg ·K)
as it is heated at atmospheric pressure from 20.0°C to its boiling
point.

27. An ideal gas is compressed from 1.00 atm and 40.0°F to
3.00 atm and 540.°F. For this gas, cp = 0.280 Btu/(lbm ·R) and
cv = 0.130 Btu/(lbm ·R). Calculate the change in specific entropy
of this gas for this process.

28.* Determine the rate of heat transport of entropy through an
isothermal boundary at 50.0°C when the heat transfer rate at the
boundary is 350. kJ/min.

29.* Determine the heat transport of entropy into a pan of boiling
water at 100.°C that has been sitting on a kitchen stove for
30.0 min. During this time, 0.300 kg of water is converted from
a saturated liquid to a saturated vapor.

30.* If the heat entropy flux at a 2.70 m2 boundary is given by
_q /Tb = 500:× t + 243 in W/(m2 ·K), where t is in seconds,
determine the total heat transport of entropy across this
boundary during the time period from t = 0.00 to t = 60.0 s.

31.* If the thermal entropy production rate per unit volume
is constant at 0.315 W/(m3 ·K) throughout a 0.500 m3

system, determine the system’s rate of heat production
of entropy.

32. Show that the one-dimensional thermal entropy production rate
per unit volume for pure thermal conduction in a material with
a constant thermal conductivity kt is given by

σQ = kt/T2
� �

dT/dxð Þ2:

33. Show that the one-dimensional temperature profile inside a
system that has a constant thermal entropy production rate per
unit volume σQ and a constant thermal conductivity kt, restricted
to pure conduction heat transfer, is given by T = To exp½ðσQ/ktÞ1=2
x− xoð Þ�, where To is the temperature at x = xo.

34. If the temperature profile in Example 7.9 is given by

T = T1 exp x
L

ln
T2
T1

� �� 	
then
a. Show that for _Q in = _Q out the rod cannot have a constant

cross-sectional area and the areas of the ends of the rod are
related by A2 = A1 (T1/T2).

b. Show that the entropy production rate under these
circumstances is given by

ð _SpÞQ =
ktA1

L

� �
T1
T2

−1
� �

ln
T1
T2

c. Show that the entropy production rate of part b is greater
than that obtained with the linear temperature profile used
in Example 7.9 when A = A1.

35.* A stainless steel heat pipe, k1 = 30.0 W/(m ·K), has an isothermal
external surface temperature of 130.°C when its heat transfer rate is
1000. W. The surface area and wall thickness are 1.00 × 10−3 m2

and 1.00 × 10−3 m, respectively. Determine the heat pipe’s entropy
production rate.

36.* If 0.101 grams of liquid plus vapor water at 0.0100 MPa-absolute
are put into a heat pipe 1.00 m long with an inside diameter of
5.00 × 10−3 m, determine the temperature at which the heat pipe
phenomena cease to operate due to the complete vaporization of
the water.



37. Determine the work mode (a) entropy transport rate and
(b) entropy production rate as 100. hp is continuously dissipated
in a mechanical brake operating isothermally at 300.°F.

38.* Determine the work mode entropy production as a 300. kg steel
block slides 10.0 m down a 60.0° incline. The coefficient of
friction between the block and the incline is 0.100, and the bulk
mean temperature of the sliding surface is 50.0°C.

39. A mechanical gearbox at a uniform temperature of 160.°F
receives 150. hp at the input shaft and transmits 145 hp out the
output shaft. Determine its work mode (a) entropy transport
rate and (b) entropy production rate.

40.* Determine the work mode entropy production as 0.500 m3

of air is compressed adiabatically from 200. kPa, 20.0°C to
0.100 m3 in a piston-cylinder apparatus with a mechanical
efficiency of 85.0%. Assume constant specific heat ideal gas
behavior.

41. The velocity profile for the steady laminar flow of an
incompressible Newtonian fluid in a horizontal circular pipe
(Figure 7.27) is

V = Vmax½1− ðx/RÞ2�
where Vmax is the centerline (x = 0) velocity, R is the pipe radius,
and x is the radial coordinate measured from the centerline.
a. Determine the position in this flow where the entropy

production rate per unit volume is a minimum.
b. Determine the position in this flow where the entropy

production rate per unit volume is a maximum.
c. Comment on how you can minimize the total entropy

production rate for this flow.

Vm

R

CL

x

FIGURE 7.27
Problem 41.

42. The viscous work entropy production rate per unit volume in
three-dimensional Cartesian coordinates is

σWð Þvis =
μ
T

(
2
3

∂Vx

∂x
−

∂Vy

∂y

� �2
+

∂Vy

∂y
− ∂Vz

∂z

� �2
+ ∂Vz

∂z
− ∂Vx

∂x

� �2" #

+
∂Vx

∂y
+

∂Vy

∂x

� �2
+

∂Vy

∂z
+

∂Vz

∂y

� �2
+

∂Vz

∂x
+

∂Vx

∂z

� �2)

Show that this can be written as

σWð Þvis =
μ
T

(
− 2
3

∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

� �2

+ 2
∂Vx

∂x

� �2
+

∂Vy

∂y

� �2
+ ∂Vz

∂z

� �2" #

+
∂Vx

∂y
+

∂Vy

∂x

� �2
+

∂Vy

∂z
+

∂Vz

∂y

� �2
+

∂Vz

∂x
+

∂Vx

∂z

� �2)

43. Show that the three-dimensional Cartesian coordinate viscous
work entropy production rate per unit volume given in Problem

42 reduces to the following for two-dimensional incompressible
flow:

ðσWÞvis =
μ
T

∂Vx

∂y
+

∂Vy

∂x

� �2

Hint: For incompressible fluids,
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
= 0:

� 	
44.* Determine the entropy production rate of a 10.0 × 103 Ω

electrical resistor that draws a constant 10.0 mA of current. The
temperature of the resistor is constant throughout its volume at
35.0°C.

Computer Problems
The following computer programming assignments are designed to
be carried out on any personal computer using a spreadsheet or
equation solver. They are meant to be exercises in the manipulation
of some of the basic formulae of this chapter. They may be used as
part of a weekly homework assignment.

45. Develop a program that allows you to input any temperature
(i.e., value plus unit symbol) in either the relative or absolute
Engineering English or SI units system at the keyboard and
converts this input into all the following temperatures and
outputs them to the screen:
°C, °F, R, and K.

46. Develop a program that computes the change in specific internal
energy, enthalpy, and entropy for an incompressible material.
Input the initial and final temperatures and pressures, the
specific heat, and the specific volume or density of the material.
Output u1 − u2, h2 − h1, and s2 − s1 to the screen along with
their proper units. Allow the choice of working in either the
Engineering English or the SI units system.

47. Develop a program that computes the change in specific internal
energy, enthalpy, and entropy for a constant specific heat ideal
gas. Input the initial and final temperatures and pressures or
specific volumes (allow the user the choice of which to input),
the specific heats and gas constant. Output u2 − u1, h2 − h1, and
s2 − s1 to the screen along with their proper units. Allow the
choice of working in either the Engineering English or the
SI units system.

48. Repeat Problem 47 except allow the user to choose a gas from a
menu. Have all the specific heats and gas constants for the gases
resident in your program.

49. Develop a program that outputs the heat production rate ð _SPÞQ
of entropy due to steady state, one-dimensional thermal
conduction. Utilize Fourier’s law of conduction and input the
appropriate temperatures, thermal conductivity, cross-sectional
area, and length in the proper units. Allow the choice of
working in either the Engineering English or the SI units
system.

50. Develop a program that outputs the work mode entropy
production rate _SP

� �
w due to the viscous dissipation in the

steady one-dimensional flow of a Newtonian fluid in a circular
pipe with the velocity profile given in Problem 41. Input the
fluid’s viscosity, density, and mass flow rate and the appropriate
pipe dimensions in proper units. Allow the choice of working in
either the Engineering English or the SI units system.
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51. Develop a program that outputs the electrical work mode
entropy production rate ð _SPÞw due to resistive dissipation in an
isothermal system with uniform properties and a constant
current density. Input the appropriate variables in proper units.
Allow the choice of working in either the Engineering English or
the SI units system.

52. Since Figure 7.22 is a semi-logarithmic plot, the straight line for
copper has an equation of the form ρe = A eBTð Þ. Estimate the
coefficients A and B for copper from this figure and develop a
program that outputs the electrical work mode entropy
production rate ð _SpÞw due to the temperature-dependent resistive
dissipation in an isothermal copper wire. Input the appropriate
variables in proper units. Allow the choice of working in either
the Engineering English or the SI units system.

Create and Solve Problems
Engineering education tends to focus on the process of solving
problems. It ignores teaching the process of formulating solvable
problems. However, working engineers are never given a well-
phrased problem statement to solve. Instead, they need to react to
situational information and organize it into a structure that can be
solved using the methods learned in college.

These “Create and Solve” problems are designed to help you learn how
to formulate solvable thermodynamics problems from engineering
data. Since you provide the numerical values for some of the variables,
these problems have no unique solutions. Their solutions depend on
the assumptions you need to make and how you set them up to create
a solvable problem.

53.* You are an engineer at a company that manufactures domestic
cookware. You are working on a new electric pot to be used to

heat water to make spaghetti. The pot holds 2.5 kg of liquid
water. You need to know the heat transfer rate and the electrical
power required to heat the water from 15.0°C to 100.°C in
10.0 min. Tests have shown that 30% of the heat from the
electrical heater is lost to the environment during the 10.0 min
heating process. You also need to know the entropy production
rate for this process (assume the average pot surface temperature
is 55°C). Write and solve a thermodynamics problem that
answers these questions.

54. You are an engineer at a diesel truck manufacturing company.
Your work involves designing suitable braking systems for the
trucks. To properly size the brakes, you need to know the work
mode entropy transport rate and entropy production rate as
450. hp is absorbed in the brakes during an emergency stop.
Tests show that the average brake temperature during this test is
350.°F. Write and solve a thermodynamics problem that
provides the answers to these questions.

55. You have been transferred to the transmission section of the diesel
truck manufacturing company. The transmission gearbox has a
uniform surface temperature of 145°F when it receives 400. hp at
the input shaft and transmits 375 hp out the output shaft. To
improve this design of the transmission, you need to know the
work mode entropy transport rate and entropy production rate of
the existing transmission. Write and solve a thermodynamics
problem that provides the answers to these questions.

56.* You are a newly employed engineer at a factory that produces
scuba diving gear. The apparatus that fills the scuba tanks
adiabatically compresses 1.50 m3 of air from 100. kPa, 20.0°C
to 0.067 m3 in a piston-cylinder apparatus with a mechanical
efficiency of 85.0%. You need to know the work mode entropy
production for this process. Write and solve a thermodynamics
problem that provides the answer you need.
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CHAPTER 8

Second Law Closed System Applications
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8.1 INTRODUCTION
Chapters 8 and 9 provide closed and open system applications of the second law of thermodynamics in the
same way that Chapters 5 and 6 dealt with closed and open system applications of the first law of thermo-
dynamics. In this chapter, we present a series of applications of the closed system entropy balance and entropy
production equations developed in Chapter 7. This material is organized into two major subdivisions: applica-
tions involving reversible processes and applications involving irreversible processes. Because the second law is
seldom used alone, most of these examples also involve the application of the energy balance.

Our discussion of the applications involving reversible processes is similar to the way the second law is treated
in many classical thermodynamics textbooks. Restricting consideration to reversible processes significantly sim-
plifies the analysis, because the entropy production is zero and the second law is reduced to a simple conserva-
tion of entropy law. However, few real processes are truly reversible, so that any analysis that requires (or
specifies) that a reversible process be assumed to get a solution always is somewhat in error. It should be
remembered that a “reversible” process is just an idealization (a model) of some real irreversible process, much
in the same way that we often model complex real gas behavior with the simple ideal gas equation of state. On
the other hand, the study of reversible processes does provide an easy introduction to the use of the second law
and the entropy balance equations, and they are accurate approximations to real processes in systems that have
low entropy production values.

The section dealing with purely irreversible processes begins by expanding the closed system energy balance (first
law) examples presented in Chapter 5 to include an entropy balance (second law) analysis. In Chapter 7, we
introduce two methods for determining entropy production, the direct and the indirect methods. In the direct
method, the amount of entropy produced for a process is calculated from its defining equations (e.g., Eqs. (7.65)
and (7.66)); and in the indirect method, the amount of entropy production for a process is calculated from an
entropy balance on the system.

The indirect method requires detailed temperature and heat flow information evaluated at the boundary of the
system plus specific information about changes in system entropy, whereas the direct method requires detailed
information about temperature, heat flow, and work mode irreversibilities spread throughout the interior of the
system. The examples presented in this chapter illustrate the use of both methods. The following entropy
production formulae correspond to these definitions.
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8.1.1 Closed System Indirect Method
1. The entropy produced by a change of state is given by Eq. (7.75) as

1 SPð Þ2 = m s2 − s1ð Þ−
Z
τ

Z
Σ

_q
Tb

� �
act
dA dt (8.1)

2. The entropy production rate of a closed system is given by differentiating Eq. (8.1) with respect to time, or

_SP = _S −
Z

Σ

_q
Tb

� �
act
dA (8.2)

where Tb is the local system boundary temperature evaluated at the point where _q crosses the system boundary Σ.

8.1.2 Closed System Direct Method
1. The entropy produced by a change of state is given by

1 SPð Þ2 =
Z 2

1

Q
T2

dT

� �
act

+ dW
T

� �
irr

� 	
=
Z
τ

Z
V

−
_q
T2

dT
dx

� �
+ σW

� 	
dV dt (8.3)

2. The entropy production rate of a closed system is given by

_SP =
Z
V

−
_q
T2

dT
dx

� �� 	
+ σW


 �
dV (8.4)

where σW = (σW)viscouw + (σW)electrical + (σW)diffusion + ⋯ and T is the local temperature inside the system volume
evaluated at the point where the heat transfer and work irreversibilities occur.

Both the direct method and the indirect method give accurate answers for entropy production if applied correctly.
Which method you choose to solve a particular problem depends entirely on the type of information given to
you in the problem statement (usually only one of the two methods works for a given problem scenario).

In the examples presented in this chapter, we are concerned mainly with determining the amount of entropy
production for a process by calculating it from the closed system entropy balance (i.e., by using the indirect
method).

Last, before we begin the example problems, keep in mind the basic reason why the evaluation of entropy pro-
duction is important. The entropy production is a measure of the “losses” within the system, so the larger the
entropy production, the more inefficient the system is at carrying out its function. We continually look for ways
to minimize a system’s entropy production and thus improve its overall operating efficiency.

8.2 SYSTEMS UNDERGOING REVERSIBLE PROCESSES
In Chapter 7, we define a reversible process as any process for which the entropy production or entropy produc-
tion rate is zero. Thus, a system is said to be reversible if there are no losses due to friction, viscosity, heat trans-
fer, diffusion, or the like anywhere within the system. Consequently, the entropy production of a system
undergoing a reversible process is always zero, or

_SP = 1 SPð Þ2 = 0 for all reversible processes

and the closed system entropy balance (SB) given in Eq. (7.75) reduces to

S2 − S1 = m s2 − s1ð Þ =
Z
τ

Z
Σ

_q
Tb

� �
rev
dA dt (8.5)

where _q is the heat flux, Tb is the system boundary absolute temperature, A is the system boundary area, and τ is
the time required to change from state 1 to state 2. The closed system entropy rate balance (SRB) is obtained
from this equation by differentiating it with respect to time as1

dS
dt

= _S = m _s =
Z
Σ

_q
Tb

� �
rev
dA (8.6)

1 Remember that the system mass m is always constant in a closed system.
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For the case of constant heat flux and isothermal system boundaries (i.e., _q and Tb both constant), Eqs. (8.5)
and (8.6) reduce to

Closed system reversible processes :

Entropy balance ðSBÞ: S2 − S1 = m s2 − s1ð Þ = 1Q2

Tb

� �
rev

(8.7)

and

Entropy rate balance ðSRBÞ: _S = m _s =
_Q
Tb

� �
rev

(8.8)

where 1Q2 and _Q are the total heat transfer and total heat transfer rate, respectively, and Tb is again the absolute
temperature of the system boundary (assumed isothermal here).

If the system boundary temperature is not constant, then the exact analytical dependence of _q on system bound-
ary temperature Tb, system boundary area A, and process time t must be known before the integrals in Eqs. (8.5)
and (8.6) can be evaluated. This information must be provided in the problem statement (or determined by
measurement or hypothesis in the case of real engineering situations).

EXAMPLE 8.1
Water in the amount of 2.00 kg undergoes a reversible isothermal expansion from a saturated liquid at 50.0°C to a super-
heated vapor at 50.0°C and 5.00 kPa. Determine the heat and work transports of energy for this process.

Solution
First, draw a sketch of the system (Figure 8.1).

Water
m = 2.00 kg
x1 = 0
T1 = 50.0°C

Superheated vapor
m = 2.00 kg
T2 = 50.0°C
p2 = 5.00 kPa

State  1 State 2
Isothermal process

1Q2 = ?

1W2 = ?

FIGURE 8.1
Example 8.1.

The unknowns here are 1Q2 and 1W2. The material is the water inside the cylinder (a closed system). The thermodynamic
states are:

State 1
Isothermal
�����!Reversible and

State 2
T1 = 50:0 °C T2 = T1 = 50:0 °C
x1 = 0 p2 = 5:00 kPa

The basic equations here are the energy balance, EB,

1Q2 − 1W2 = mðu2 − u1Þ+ KE2 −KE1 +PE2 −PE1

0 ðassume the system is stationaryÞ

and the entropy balance, SB,

m s2 − s1ð Þ =
Z
τ

Z
Σ

_q
Tb

� �
rev
dA dt

Since this process is isothermal, the system boundary absolute temperature Tb is a constant andZ
τ

Z
Σ

_q
Tb

� �
rev
dA dt = 1Q2

Tb

� �
rev

(Continued )
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EXAMPLE 8.1 (Continued )

and the SB reduces to

m s2 − s1ð Þ = 1Q2

Tb

� �
rev

We know that the work mode involved in this system is of the moving boundary type
Z
p dV

� �
, but we do not know the

p−V relation for the process. Therefore, we cannot evaluate 1W2 directly from its auxiliary equation. However, we can solve

for 1Q2 from the SB, then we can find 1W2 from the EB:

1Q2 = mTb s2 − s1ð Þ
and

1W2 = m u1 − u2ð Þ+ 1Q2

Here,

s1 = sf 50:0°Cð Þ = 0:7036 kJ/ kg ⋅Kð Þ
s2 = sð50:0°C and5:00 kPaÞ = 8:4982 kJ/ kg ⋅Kð Þ

and

u1 = uf 50:0°Cð Þ = 209:3 kJ/kg

u2 = uð50:0°Cand5:00 kPAÞ = 2444:7kJ/kg

so that

1Q2 = 2:00 kgð Þ 50+ 273:15Kð Þ 8:4982−0:7036 kJ/ kg ⋅Kð Þ½ �
= 5040 kJ

and

1W2 = 2:00 kgð Þ 209:3− 2444:7 kJ/kgð Þ+5040 kJ = 569 kJ

EXAMPLE 8.2
The solar power plant shown in Figure 8.2 utilizes the thermal energy of the sun to drive a heat engine. Solar collectors with
a constant surface temperature of 200.°F absorb 100. × 103 Btu/h of solar energy and deliver it to the heat engine. The heat
engine rejects heat to a condenser in a river at 40.0°F. What is the maximum steady state electrical power (in kW) that can
be produced by this power plant?

HOW DO YOU MAKE THE ASSUMPTIONS USED TO SOLVE
EXAMPLE 8.1?

In Example 8.1, we had to deduce certain things based on information that was not explicitly given in the problem state-
ment. For example, we knew that the mass was constant but the specific volume increased as the water went from a satu-
rated liquid to a superheated vapor. Therefore, the total volume had to increase, and its expansion do moving boundary
mechanical work. This is a typical engineering situation, which requires the use of commonsense assumptions that often
come from practice and experience.

Exercises
1. Determine the heat transfer in Example 8.1 when the final state is a saturated (rather than a superheated) vapor at

50.0°C. Answer: 1Q2 = 4770 kJ.
2. If the system in Example 8.1 is insulated so that no heat transfer occurs and the final expansion pressure is still 5.00

kPa, determine the final temperature and quality in the system. Answer: T2 = 32.6°C and x2 = 2.92%.
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Solution
First, draw a sketch of the system.

Here, the unknown is _Welectrical
� �

max, and the system is the entire power plant as shown in Figure 8.2. You must now realize
that a system like this produces maximum work output when the internal losses (friction etc.) are a minimum, and the
absolute maximum occurs when the system is reversible. Therefore, what we wish to find here is _Welectrical

� �
rev :

Condenser

Solar collector

Heat
engine

Electrical
generator

System boundary200.°F

River

40.0°F

100. × 10³ Btu/h

Qsolar

Welect = ?

Qcondenser

FIGURE 8.2
Example 8.2.

Since no clearly defined system states are given in the problem statement and all the given values are rate values, we recog-
nize that this problem requires a rate analysis. The energy rate balance (ERB) equation for this system is

_Qnet − _Wnet = _U

0
ðsteady
stateÞ

+ _KE + _PE

0
ðassume the system

is stationaryÞ

or

_Welectrical
� �

rev =
_Wnet = _Qnet

= _Qsolar − j _Q jcondenser
� �

Note that there are two heat transfer surfaces in this system (the solar collector and the condenser), each at a different iso-
thermal temperature, and one work mode (electrical). The entropy rate balance (SRB) equation for this system is

_S = _ms

0
ðsteady
stateÞ

=
Z
Σ

_q
Tb

� �
rev
dA+ _SP

0
ðreversible
systemÞ

The system surface area Σsystem is the sum of the surface areas of the collector, condenser, and the remaining surfaces where
no heat transfer occurs

∑system =∑collector +∑condenser +∑no heat transfer sufaces

Since the heat transfer surfaces are all isothermal, we can set

Z
Σ

_q
Tb

� �
dA =

Z
Σcollector

_q
Tb

� �
dA+

Z
Σcondenser

_q
Tb

� �
dA =

_Q solar

Tcollector
−

����� _Q condenser

Triver

�����
(Continued )
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EXAMPLE 8.2 (Continued )

Therefore, ��� _Q condenser

��� = _Q solar
Triver

Tcollector

� �
and the ERB becomes

_Welectrical
� �

rev =
_Qsolar 1− Triver

Tcollector

� �
= 100:× 103 Btu/hð Þ 1− 40:0+459:67

200:+459:67

� �
= 24,300Btu/hð Þ 1 kW

3412Btu/h

� �
= 7:11 kW

The positive sign indicates that the electrical power is out of the system.

This example could also have been solved by using the Carnot heat engine efficiency (which is defined only for
a reversible system) and the definition of the absolute temperature scale given in Eq. (7.15).

EXAMPLE 8.3
Determine an expression for the minimum isothermal system boundary temperature required by the second law of thermo-
dynamics as an incompressible material is heated or cooled from a temperature T1 to a temperature T2 in a closed system
with a constant heat flux.

Solution
First, draw a sketch of the system (Figure 8.3).

Here, we are asked to derive a formula (the unknown) for the minimum
value of an isothermal boundary temperature, (Tb)min = ? The system is
closed and made up exclusively of an incompressible material (solid or
liquid). The energy balance equation for this system is

1Q2 − 1W2 = m u2 − u1ð Þ+ KE2 −KE1 +PE2 −PE1

0 ðassume the system is stationaryÞ

For an incompressible substance, V = constant, so dV = 0, and

1W2 = −
Z 2

1
p dV = 0: Since no other work modes are mentioned in

the problem statement, we assume that there are none. The resulting

energy balance is then

1Q2 = m u2 − u1ð Þ

The entropy balance equation for this system is

m s2 − s1ð Þ =
Z
τ

Z
Σ

_q
Tb

� �
dA dt + 1 SPð Þ2

which, for a constant heat flux ð _q Þ and isothermal boundaries, reduces to

m s2 − s1ð Þ = 1Q2

Tb
+ 1 SPð Þ2

Combining the energy balance and the entropy balance, we get

Tb =
m u2 − u1ð Þ

m s2 − s1ð Þ− 1 SPð Þ2
Now, since 1(SP)2 ≥ 0, clearly Tb is at a minimum when 1(SP)2 = 0 (a reversible process). Therefore,

ðTbÞmin = u2 − u1
s2 − s1

State 1

T1

State 2

T2

Incompressible
material

(Tb)min= ?

QA= Constant

FIGURE 8.3
Example 8.3.
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For an incompressible material, u2 – u1 = c(T2 – T1) and s2 – s1 = c ln(T2/T1). Then,

ðTbÞmin = T2 −T1
ln ðT2/T1Þ

This is the required final formula.

If you look closely at the last equation in Example 8.3, you see that (Tb)min always falls between T1 and T2. This
means that, to change the temperature of an incompressible substance by a heat transfer process from an exter-
nal source without producing entropy (i.e., reversibly), the system must be constructed with a well-defined
boundary that is somehow maintained isothermal at the temperature given by this equation. This causes all the
entropy generated by the heat transfer process to be produced outside the system.

EXAMPLE 8.4
Show that a reversible and adiabatic process carried out in a closed system results in the system having a constant entropy;
that is, that a closed system reversible adiabatic process is also isentropic.

Solution
First, draw a sketch of the system (Figure 8.4).

Here, we are to show that a reversible and adiabatic process carried out in a closed
system results in the system having a constant entropy. We begin with just the
entropy balance equation and note that

m s2 − s1ð Þ =
Z
τ

Z
Σ

_q
Tb

� �
dA dt

0 ðadiabaticÞ

+ 1 SPð Þ2
0 ðreversibileÞ

= 0

and therefore s2 = s1 and we have a constant entropy or isentropic process. Similarly, the entropy rate balance equation
gives

_S =
Z

Σ

_q
Tb

� �
dA

0 ðadiabaticÞ

+ _S P

0 ðreversibileÞ

= 0

and therefore S (and, of course, s) is again constant.

Exercises
4. If the size of the solar collectors in Example 8.2 is doubled and the collectors capture 200. × 103 Btu/h of solar energy,

determine the new maximum steady state electrical power output of the power plant. Answer: _Welectrical
� �

rev = 14:2 kW:

5. Using the result of Example 8.3, determine the minimum isothermal boundary temperature as liquid water is heated
from 50.0°F to 70.0°F at atmospheric pressure. Answer: (Tb)min = 520°F.

6. Example 8.4 shows that a reversible and adiabatic process carried out in a closed system is also an isentropic process.
Use a similar argument to show that an isentropic process in a closed system is not necessarily reversible and adiabatic.

Answer: s2 – s1 = 0 simply implies that _S P = −
Z
Σ
ð _q /TbÞdA, not that _S P = 0 and _q = 0:

Isentropic processes are an important new category that we add to our list of constant property processes
(isothermal, isobaric, isochoric, and isenthalpic).

ARE ALL ISENTROPIC PROCESSES REVERSIBLE AND ADIABATIC?

Example 8.4 shows that all reversible and adiabatic processes are isentropic but not all isentropic processes are necessarily
reversible and adiabatic. It does not automatically go both ways. For example, heat loss from a system results in an entropy
loss for that system; and if this entropy loss exactly balances the entropy production for the process the system is
undergoing, then the process also is isentropic without being either reversible or adiabatic.

S1 S2 = ?
1Q2 = 0

1(SP)2 = 0

State 1 State 2Reversible and
adiabatic process

FIGURE 8.4
Example 8.4.
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8.3 SYSTEMS UNDERGOING IRREVERSIBLE PROCESSES
We begin our treatment of irreversible processes by extending Examples 5.1 through 5.7 of Chapter 5 using the
entropy balance or entropy rate balance equations in their analysis to obtain additional results from the pro-
blem. To do this effectively we have to add some information to these problem statements, in the way of addi-
tional unknowns or additional data. When additional wording has been added to these problem statements it
appears in italic type so that you can clearly see what changes have been made. Also, the analysis in these exam-
ples contains less commentary, as they are designed to be straightforward applications.

EXAMPLE 8.5 A CONTINUATION OF EXAMPLE 5.1, WITH
THE ADDED MATERIAL SHOWN IN ITALIC TYPE
A sealed, rigid container whose volume is 1.00 m3 contains 2.00 kg of liquid water plus water vapor at 20.0°C. The
container is heated until the temperature inside is 95.0°C. Determine

a. The quality in the container when the water is 20.0°C.
b. The quality in the container when the water is at 95.0°C.
c. The heat transport of energy required to raise the temperature of the contents from 20.0 to 95.0°C.
d. The entropy production that occurs if the boundary of the container is maintained isothermal at 100.°C during the heat transfer

process by condensing steam at atmospheric pressure on the outside of the tank.

Solution
First, draw a sketch of the system (Figure 8.5).

Liquid

System boundary
maintained at a constant
temperature of 100.°C

Vapor

Sealed
rigid
container

A= 1.00 m3

m = 2.00 kg

1(SP)2 = ?

FIGURE 8.5
Example 8.5.

The unknowns are (a) x1, (b) x2, (c) 1Q2 and (d) 1(Sp)2. The system is the water and is closed. The thermodynamic states are

State 1
v2 = v1
���!Isochoric

State 2
T1 = 20:0 °C T2 = 95:0 °C
v1 = 0:500m3=kg v2 = v1 = 0:500m3=kg

The answers to a, b, and c can be found in Example 5.1 as

a). x1 = 0:863%:
b). x2 = 25:2%:
c). 1Q2 = 1650 kJ:

The answer to part d is obtained from the entropy rate balance or the indirect method since we lack the detailed information
about the interior of the system required to use the direct method. Equation (8.1) for an isothermal boundary becomes

1 SPð Þ2 = m s2 − s1ð Þ = 1Q2

Tb

where

s1 = sf1 + x1sfg1
= 0:2965+ 0:00863ð Þ 8:3715ð Þ = 0:3687 kJ/ kg ⋅Kð Þ

and

s2 = sf2 + x2sfg2
= 1:2503+ 0:252ð Þ 6:1664ð Þ = 2:8042 kJ/ kg ⋅Kð Þ
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Then,

1 SPð Þ2 = 2:00 kgð Þ 2:8042−0:3687 kJ/ kg ⋅Kð Þ½ �− 1650 kJ
100:+273:15K

= 0:449 kJ/K = 449 J/K

Notice that the process described in this example also has a minimum isothermal system boundary temperature, like that
described in Example 8.3. In this case, 1(SP)2 = 0, and the minimum boundary temperature is

Tbð Þminimum = 1Q2

m s2 − s1ð Þ = 339K = 65:6°C

EXAMPLE 8.6 A CONTINUATION OF EXAMPLE 5.2, WITH
THE ADDED MATERIAL SHOW IN ITALIC TYPE
An incandescent lightbulb is a simple electrical device. Using the energy rate balance and the entropy rate balance on a light-
bulb, determine

a. The heat transfer rate of an illuminated 100. W incandescent lightbulb in a room.
b. The rate of change of its internal energy if this bulb were put into a small, sealed, insulated box.
c. The value of the entropy production rate for part a if the bulb has an isothermal surface temperature of 110.°C.
d. An expression for the entropy production rate as a function of time for part b.

Solution
First, draw a sketch of the system (Figure 8.6).

System boundary
(at a constant 110.°C)

System boundary
(temperature not

constant)

(a)

Q
· = ?

(b)

Insulated box

S
·
P = ?

S
·
P = ?

W
·  = 100. watts

W
·  = 100. watts

FIGURE 8.6
Example 8.6.

(Continued )

WHAT HAPPENS IF YOU TRY TO HEAT THE WATER IN EXAMPLE 8.5
WITH AN ISOTHERMAL BOUNDARY TEMPERATURE LESS THAN 65.2°C?

Any attempt to carry out the heating process in Example 8.5 with an isothermal boundary temperature lower than the mini-
mum of 65.6°C fails because it violates the second law by requiring a negative entropy production. But, what would hap-
pen if you tried? You could add heat to the system with an isothermal boundary temperature of less than 65.6°C, but it
would not reach 95.0°C.

However, cooling the tank from 95.0°C back to 20.0°C with an isothermal boundary reverses all the signs in the entropy
production calculation so that 2(SP)1 = 1(SP)2. This cooling process requires an isothermal boundary temperature less than
65.6°C to satisfy the second law.

Exercises
7. Determine the entropy production that occurs in Example 8.5 if the surface temperature of the container is maintained

at 80.0°C rather than 100.°C. Answer: 1(SP)2 = 199 J/K.
8. Determine the entropy production that occurs in Example 8.5 if the two states are fixed as T1 = 20.0°C and x1 = 0.00%,

T2 = 95.0°C and x2 = 100.%. Answer: 1(SP)2 = 9.83 kJ/K.
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EXAMPLE 8.6 (Continued )

Here, the unknowns are (a) _Q , (b) _U , (c) _SP , and (d) an expression for _SP as a function of time. The system is the lightbulb
itself, and apparently, we do not need to know any specific system properties to solve this problem.

The answers for parts a and b can be found in Example 5.2 as

a). _Q = −100:W:

b). _U = 100:W:

The answer to part c can be obtained by the indirect method of the SRB. From Eq. (8.2), we have

_SP = _S − d
dt

Z
Σ

dQ
Tb

� �
act

Since we are given that the surface temperature of the bulb is isothermal,

d
dt

Z
Σ

dQ
Tb

� �
= 1

Tb
d
dt

Z
Σ
dQ =

_Q
Tb

and

_SP = _S −
_Q
Tb

In part a, we have steady state operation so _S = 0, then the answer to part c is

_SP = −
_Q
Tb

= 100:W
110:+ 273:15Kð Þ = 0:261W/K

The solution to part d is obtained by recognizing that. in part b. The bulb is insulated, so _Q = 0, then

_SP = _S

The surface and internal temperatures of the bulb are not constant here. If we recognize that most of the mass of the bulb is
made up of incompressible material (glass and tungsten wire), then we can write

s− sref = c ln T/Trefð Þ = c ln Tð Þ− c ln Trefð Þ
where sref and Tref are values chosen at some arbitrary reference state. Then,

_S = m _s = mc
T

dT
dt

� �
= mc

T
_T
� �

Similarly, we can write

m u− urefð Þ = c T −Trefð Þ
so that

_U = m _u = mc dT
dt

� �
= mc _T

� �
Therefore,

_S =
_U
T

= _SP

The temperature in this equation is the mean temperature of the bulb and can be evaluated from the answer to part b,
where we find that _U = 100:W:

Therefore,

_T = dT
dt

=
_U
mc

= constant

and integration of this equation gives

T =
_U
mc

t +T0

where T0 is the bulb temperature immediately before the insulation is applied. Therefore, the answer to part d is

_SP =
_U

_U t
mc

+ T0

= mc

t + mcT0
_U

Since _U = 100:W: and m, c, and T0 are all constant measurable quantities, it is clear from this result that _S p slowly decays to
zero as time t goes to infinity. However, the bulb temperature increases linearly with time, so the bulb overheats and burns
out quickly.
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Exercises
9. If the surface temperature of the bulb in Example 8.6 were 40.0°C (which is typical of a fluorescent light), determine the

entropy production rate of the bulb. Answer: _S p = 0:319W=K:
10. Take _U = 100: watts, T0 = Tb = 110:°C, and for a glass bulb take m = 0.050 kg and c = 0.80 kJ/kg ·K. Then, using the

last expression in Example 8.6 for the decay in entropy production rate for an insulated lightbulb, determine the entropy
production rate at t = 0, 300., 600., and 1000. s. Answers: _Sp = 0:26, 0:088, 0:053, and 0:035W=K:

EXAMPLE 8.7 A CONTINUATION OF EXAMPLE 5.3, WITH
THE ADDITION SHOWN IN ITALIC TYPE
A basic vapor cycle power plant consists of the following four parts:

a. The boiler, where high-pressure vapor is produced.
b. The turbine, where energy is removed from the high-pressure vapor as shaft work.
c. The condenser, where the low-pressure vapor leaving the turbine is condensed into a liquid.
d. The boiler feed pump, which pumps the condensed liquid back into the high-pressure boiler for reheating.

In such a power plant, the boiler receives 950. × 105 kJ/h from the burning fuel, and the condenser rejects 600. × 105 kJ/h
to the environment. The boiler feed pump requires 23.0 kW input, which it receives directly from the turbine. Assuming
that the turbine, pump, and connecting pipes are all insulated, determine the net power of the turbine and the rate of entropy
production of the plant if the boiler temperature is 500.°C and the condenser temperature is 10.0°C.

Solution
First, draw a sketch of the system (Figure 8.7).

SP = ?
TB = 500.°C

Condenser

Boiler
feed

pump

Qc = −600. × 105 kJ/h
Tc= 10.0°C

Wp = −23.0 kW

QB = 950. × 105 kJ/h

Boiler

Turbine

System
boundary

(WT)net = ?

FIGURE 8.7
Example 8.7.

The unknowns here are _WT
� �

net and
_SP for the entire power plant. Therefore, the system is the entire power plant. Since we

have few specific details on the internal operation of the plant, the thermodynamic properties within the power plant are
apparently not needed in the solution.

The net turbine work output is determined in Example 5.3 to be

_WT
� �

net = 9720 kW

The answer to the second part of this problem can be obtained by the indirect method from Eq. (8.2) as

_S P = _S − d
dt

Z
Σ

dQ
Tb

� �
act

(Continued )
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EXAMPLE 8.7 (Continued )

The surface area of our system can be divided into three major parts: the boiler’s surface area, the condenser’s surface area,
and all the remaining surface areas. Therefore, the surface area Σsystem of the system is composed of the boiler, the condenser,
and everything else, or

∑
system

=∑
boiler

+∑
condenser

+∑
everything else

Now, both the boiling and the condensing processes are isothermal phase changes; and since no heat transfer occurs at any
other point in the system, we can write

d
dt

Z
Σ

dQ
Tb

= d
dt

Z
Σ
boiler

dQ
Tb

+
Z
Σcondenser

dQ
Tb

+
Z
Σ
remainder

dQ
Tb

 !

where

d
dt

Z
Σ
boiler

dQ
Tb

=
_Q

boiler

T
boiler

d
dt

Z
Σ
condenser

dQ
Tb

=
_Q
condenser

T
condenser

and

d
dt

Z
Σ

remainder

dQ
Tb

= 0 no heat transfer across the remaining surface areað Þ

Then, we have

_SP = _S −
_Q
boiler

T
boiler

−
_Q
condenser

T
condenser

and, for steady state operation ð _S = 0Þ, this reduces to

_S p = −
_Q
boiler

T
boiler

+
_Q
condenser

T
condenser

 !

= − 950:×105

500:+273:15
+ −600:×105

10:0+ 273:15

� �
kJ/h
K

� �
= 89:0×103 kJ/ h⋅Kð Þ

Note that the actual thermal efficiency of this power plant is given by Eq. (7.9) as

ηTð Þact = 1−
j _Q out j
_Q in

= 1− 600:× 105

950:× 105
= 0:368 = 36:8%

whereas its theoretical reversible (Carnot) efficiency is given by Eq. (7.16) as

ηTð Þrev = 1− Tcondenser
Tboiler

= 1− 10:0+ 273:15
500:+ 273:15

= 0:634 = 63:4%

Therefore, the actual efficiency is less than the theoretical maximum (reversible) efficiency, as it should be.

Exercises
11. Determine the condenser temperature that would cause the entropy production rate of the power plant in Example 8.7

to be 500. kJ/h ·K. Answer: Tcondenser = 486 K = 213°C.
12. Determine the condenser temperature that would cause the entropy production rate of the power plant in Example 8.7

to equal zero. Why can’t this occur? Answer: Tcondenser = 488 K = 215°C. This cannot occur because it would require the
plant to be reversible throughout (i.e., it could have no internal friction, heat transfer, chemical reactions, or anything
else that would naturally be irreversible).

13. If the heat transfer rate into the boiler is doubled in Example 8.7 and all the other parameters remain constant,
determine the new entropy production rate of the power plant. Is this possible? Answer: _SP = −33,900kJ=h⋅K: This is
not possible because it violates the second law of thermodynamics _SP must be>0

� �
.

260 CHAPTER 8: Second Law Closed System Applications



EXAMPLE 8.8 A CONTINUATION OF EXAMPLE 5.4, WITH
THE ADDITION SHOWN IN ITALIC TYPE
A food blender has a cutting-mixing blade driven by a 0.250 hp electric motor. The machine is initially filled with 1.00 qt of
water at 60.0°F, 14.7 psia. It is turned on at full speed for 10.0 min. Assuming the entire machine is insulated and the mix-
ing takes place at constant pressure, determine the temperature of the water and the amount of entropy produced when the
machine is turned off.

Solution
First, draw a sketch of the system (Figure 8.8).

The unknowns here are T2 and l(SP)2. The system is the water in the
blender, which we assume to be an incompressible material. The
data for the water are as follows:

State 1 mixing���!Isobaric
State 2

p1 = 14:7psia p2 = p1 = 14:7psia
T1 = 60:0°F

The solution to the first part of this problem is given in Example 5.4
as m = 2.08 lbm and T2 = 111°F.

The solution to the second part is determined by the indirect method.
Equation (8.1) gives

1 SPð Þ2 = m s2 − s1ð Þ−
Z

Σ

dQ
Tb

� �
0 ðinsulated systemÞ

and, for an incompressible substance,

s2 − s1 = c ln
T2
T1

so that

1 SPð Þ2 = mc ln
T2
T1

or

1 SPð Þ2 = 2:08 lbmð Þ 1:0Btu/ lbm⋅Rð Þ½ �ln 111+459:67
60:0+459:67

= 0:195Btu/R

If we wished to know the entropy production rate for this example, our analysis and results would be the same
as that for part b of Example 8.6. The entropy production rate would not be constant in time, but would
decrease as the water became hotter. Since it is stated that the blender is insulated, eventually enough mixing
energy would be converted into internal (thermal) energy to cause the water to completely vaporize, whereupon
the assumption of an incompressible fluid no longer applies.

EXAMPLE 8.9 A CONTINUATION OF EXAMPLE 5.5, WITH
THE ADDITION SHOWN IN ITALIC TYPE
A new radiation heat transfer sensor consists of a small, closed, rigid, insulated 0.0400 m3 box containing a 0.0100 m3

rubber balloon. Initially, the box is evacuated but the balloon contains argon (an ideal gas) at 20.0°C and 0.0100 MPa.
When the balloon receives 0.100 kJ of radiation energy through an uninsulated window in the box, it bursts. The resulting
pressure change is sensed by a pressure transducer and an alarm is sounded. Determine the pressure and temperature inside
the box after the balloon bursts and the entropy produced during this process if the average surface temperature of the heat transfer
window is 400.K.

Solution
First, draw a sketch of the system (Figure 8.9).

(Continued )

1.00 quart of water

System boundary

0.250 hp electric motor

1(SP)2 = ?

FIGURE 8.8
Example 8.8.
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EXAMPLE 8.9 (Continued )

Rigid insulated box
with a volume of
0.0400 m3

Argon-filled balloon
initially with a volume
of 0.0100 m3 at 20.0°C
and 10.0 kPa

Window
Twindow = 400. K

FIGURE 8.9
Example 8.9.

The unknown is the entropy produced during this process if the average surface temperature of the heat transfer window is
400. K. The material is argon gas.

In Example 5.5, we use an energy balance to find the final pressure and temperature as p2 = 4.15 kPa and T2 = 214°C = 487 K.
Now, an entropy balance gives

1Q2

Tb
+ 1 SPð Þ2 = mðs2 − s1Þargon

which can be solved for the entropy production as

1 SPð Þ2 = mðss − s1Þ− 1Q2

Tb
and, since argon is an ideal gas, we can write

s2 − s1 = cp ln T2/T1ð Þ−R ln p2/p1ð Þ
From Table C.13b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that for argon,
cp = 0.523 kJ/kg ·K and R = 0.208 kJ/kg ·K; and from Example 5.5, the mass of the argon is m = 0.00164 kg. Then, with

1Q2 = 0.100 kJ and Tb = 400. K, we get

1ðSPÞ2 = ð0:00164 kgÞ ð0:523 kJ/kg .KÞ ln 214+ 273:15K
20:0+273:15K

� �
− ð0:208 kJ/kg .KÞln 4:15 kPa

10:0 kPa

� �� 	
− 0:100 kJ

400:K
= 0:486×10−3 kJ/K = 0:486 J/K

In this example, the heat transfer occurs over only a portion of the system’s surface (the uninsulated window). The rest of
the enclosure is insulated to prevent the sensor from being influenced by anything except the heat source in front of the
window. Though the surface temperature of the window probably changes during the heat transfer process, an adequate
solution is obtained simply by using an average surface temperature during the process of Tb = 400. K.

Exercises
14. Suppose the balloon in Example 8.9 is designed to burst after absorbing 0.200 kJ of radiation heat transfer. Determine

the entropy produced during this process if the average surface temperature of the heat transfer window is 500. K.
Answer: 1(SP)2 = 0.336 J/K.

15. If air were substituted for the argon in Example 8.9 with no changes in the remaining parameters, what would be the
entropy produced inside the box during this process? Answer: 1(SP)2 = 0.510 J/K.

16. Determine the entropy produced when the radiation heat transfer is increased to produce a final pressure of 20 kPa in
the box after the balloon bursts. Assume that the average temperature of the heat transfer window is 1200 K for this
process. Answers: 1(SP)2 = 0.664 J/K.

EXAMPLE 8.10 A CONTINUATION OF EXAMPLE 5.6, WITH
THE ADDITION SHOWN IN ITALIC TYPE
Suppose 0.100 lbm of Refrigerant-134a initially at 180.°F and 100. psia in a cylinder with a movable piston undergoes the
following two-part process. First, the refrigerant is expanded adiabatically to 30.0 psia and 120.°F, then it is isobarically com-
pressed to half its initial volume. Determine

a. The work transport of energy during the adiabatic expansion.
b. The heat transport of energy during the isobaric compression.

262 CHAPTER 8: Second Law Closed System Applications



c. The final temperature at the end of the isobaric compression.
d. The total entropy production for both processes if the heat transport of energy and the boundary temperature are related by the

formula dQ = KdTb, where K = 5.00 Btu/R and Tb is in R.

Solution
First, draw a sketch of the system (Figure 8.10).

(SP)total = 1(SP)2 + 2(SP)3 = ?

Vapor dome

P

ν

1

23

Adiabatic
expansion

Isobaric
compression

Cylinder

Piston

System
boundary 

Refrigerant–134a

2Q3 = ?

1W2 = ?

0.100 lbm

FIGURE 8.10
Example 8.10.

The unknowns here are (a) 1W2, (b) 2Q3, (c) T3, and (d) 1(SP)3. The system is just the R-134a, and the state variables are as
follows:

State 1
pansion
���!Adiabatic

State 2
compression������!Isobaric

State 3

p1 = 100:psia p2 = 30:0psia p3 = p2 = 30:0psia

T1 = 180:°F T2 = 120:°F v3 = v1/2

v1 = 0:6210 ft3/lbm v2 = 1:9662 ft3/lbm v3 = 0:3105 ft3/lbm

h1 = 137:49Btu/lbm h2 = 126:39Btu/lbm x3 = 0:1952

s1 = 0:2595Btu/ðlbm⋅RÞ s2 = 0:2635Btu/ðlbm⋅RÞ s3 = 0:07241Btu/ðlbm⋅RÞ
The solutions to the first three parts of this problem are given in Example 5.6 as

a. 1W2 = 1.05 Btu.
b. 2Q3 = –9.31 Btu.
c. T3 = 15.4°F.

The solution to part d can be determined by the indirect method (entropy balance) as follows. From Eq. (8.1), we have

1 SPð Þ2 = m s2 − s1ð Þ−
Z

Σ

dQ
Tb

� �
act

⎵

0 ðadiabatic processÞ

From Table C.7e, we find that

s1 = 0:2595 Btu/ lbm⋅Rð Þ

and

s2 = 0:2635Btu/ lbm⋅Rð Þ

Since the process from 1 to 2 is adiabatic, dQ = 0: and

1 SPð Þ2 = 0:100 lbmð Þ 0:2635− 0:2595Btu/ lbm⋅Rð Þ½ �− 0 = 4:00×10−4 Btu/R

(Continued )

8.3 Systems Undergoing Irreversible Processes 263



EXAMPLE 8.10 (Continued )

Similarly,

2 SPð Þ3 = m s3 − s2ð Þ−
Z

Σ

dQ
Tb

In this process, we are given that dQ = KdTb, where K = 5.00 Btu/R. Therefore, 2Q3 = K(Tb3 – Tb2) + C = –9.31 Btu, where C is
an integration constant. Then, Z

Σ

dQ
Tb

=
Z Tb3

Tb2

K
dTb
Tb

� �
= K ln

Tb3
Tb2

Therefore,

2 SPð Þ3 = m s3 − s2ð Þ−K ln
Tb3

Tb2

where Tb2 = T2 and Tb3 = T3.

Now, s3 = sf 3 + x3sfg 3, and from Table C.7b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, at 30.0 psia,
we get

sf3 = 0:0364Btu/ lbm⋅Rð Þ
sfg3 = 0:2209Btu/ lbm⋅Rð Þ

Then,

s3 = 0:0364+ 0:1952ð Þ 0:2209−0:0364ð Þ = 0:07241Btu/ lbm⋅Rð Þ
and

2 SPð Þ3 = 0:100 lbmð Þ 0:07241− 0:2635Btu/ lbm⋅Rð Þ½ �− 5:00Btu/Rð Þln 15:38+ 459:67
120:+459:67

= 0:976Btu/R

Finally, the entropy production for the entire process is given by

1 SPð Þ3 = 1 SPð Þ2 + 1 SPð Þ2 = 4:00×10−4 +0:976 = 0:976Btu/R ðto 3 significant figuresÞ
In this example, a special Q = Q(Tb) relation is introduced, which is similar to that used to describe convection heat transfer
processes. These relations, often called thermal constitutive equations, are mathematical models developed to describe specific
heat transfer mechanisms. The following exercises illustrate this concept.

Exercises
17. Find 2(SP)3 in Example 8.10 when Tb2 = Tb3 = Tb = 60.0°C, and 2Q3 = –9.31 Btu = constant. Answer: This is not possible

since 2(SP)3 is negative for this process and violates the second law of thermodynamics.
18. Rework part d in Example 8.10 using the relation dQ = K2TbdTb, where K2 = 0.001 Btu/R2. Note K2 is not the same as K

in Example 8.10. Keep all other variables the same as in Example 8.10. You have to reevaluate the integral ∫dQ/Tb for
this exercise. Answer: 1(SP)3 = 0.0855 Btu/R.

19. Resolve part d in Example 8.10 for radiation heat transfer where dQ = K3Tb
3dTb, where K3 = 6.30 × 10–6. Note that K4 is

not the same as K in Example 8.10. Keep all other variables the same as in Example 8.10. You have to re-evaluate the
integral ∫dQ/Tb for this exercise. Answer: 1(SP)3 = 184 Btu/R.

EXAMPLE 8.11 A CONTINUATION OF EXAMPLE 5.7, WITH THE
ADDITION SHOWN IN ITALIC TYPE
A microwave antenna for a space station consists of a 0.100 m diameter rigid, hollow, steel sphere of negligible wall thickness.
During its fabrication, the sphere undergoes a heat treating operation in which it is initially filled with helium at 0.140 MPa
and 200.°C, then it is plunged into cold water at 15.0°C for exactly 5.00 s. The convective heat transfer coefficient of the sphere
in the water is 3.50 W/(m2 ·K). Neglecting any changes in kinetic or potential energy and assuming the helium behaves as an
ideal gas, determine

a. The final temperature of the helium.
b. The change in total internal energy of the helium.
c. The total entropy production in the helium.
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Solution
First, draw a sketch of the system (Figure 8.11).

The unknowns here are, after 5 s have passed, (a) T2, (b) U2 – U1,
and (c) 1(SP)2; the material is helium gas.

The solutions to the first two parts of this problem can be found
in Example 5.7 as

a. T2 = 32.5°C.
b. U2 – U1 = –0.039 kJ.

The solution to part c can be found again by the indirect method
(entropy balance) as follows. From Eq. (8.1), we have

1 SPð Þ2 = mðs2 − sιÞ−
Z

Σ

dQ
T

� �
act

We can assume that helium behaves as an ideal gas, then since
v2 = v1 = constant, we can use Eq. (7.36) to produce

s2 − s1= cv ln
T2
T1

+R ln
v2
v1

= 3:123 kJ/ kg ⋅Kð Þ½ � ln 32:5+ 273:15
200:+ 273:15

+0

= −1:37 kJ/ kg ⋅Kð Þ
and, from Example 5.7, we have

_Q = −hA Ts −T∞ð Þ = dQ
dt

so

dQ = −hA Ts − T∞ð Þ dt
and

dQ
Tb

=
dQ
T∞

= −hA Ts −T∞ð Þ/T∞½ � dt

where we have set Tb = T∞ (i.e., we put the system boundary slightly outside the sphere itself). Also, in Example 5.7, we
discover that

Ts = T∞ + T1 −T∞ð Þexp − hAt
mcv

� �
where T1 = Ts evaluated at t = 0. Then, Z

Σ

dQ
Tb

� �
act

= −hA
Z 5s

0

Ts − T∞
T∞

� �
dt

= mcv
T1 − T∞

T∞

� �
exp − hAt

mcv

� ����5s
0

� 	
Now, from Example 5.7, we have the following numerical values:

m = 7:46×10−5 kg

cv = 3:123 kJ/kg .RK

T1 = 200:°C = 473:15K

T∞ = 15:0°C = 288:15K

and hA/(mcv) = 0.472s–1. Substituting these values into the preceding integration result givesZ
Σ

dQ
Tb

� �
act

= −1:35× 10−4 kJ/K

then

1 SPð Þ2 = 7:46×10−5 kgð Þ −1:365kJ/ kg ⋅Kð Þ½ �− ð−1:35× 10−4 kJ/KÞ
= 3:32× 10−5 kJ/K = 0:0332 J/K

(Continued )

System boundary

Helium

0.100 m diameter

T∞= 15.0°C

h = 3.50 W/(m2.K)

1(SP)2 = ?

FIGURE 8.11
Example 8.11.
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EXAMPLE 8.11 (Continued )

Exercises
20. Rework part c in Example 8.11 with an immersion time of 1.00 s rather than 5.00 s. Note that T2 now becomes 130.5°C

rather than 32.5°C. Keep the values of all the other variables the same as in the example. Answer: 1(SP)2 = 0.0192 J/K.
21. Determine 1(SP)2 in Example 8.11 when T4 = 30.0°C rather than 15.0°C. With this value of T4, the value of T2 changes

from 32.5°C to 136°C. Use this new value of T2 but keep the values of all of the other variables the same as in the
example. Answer: 1(SP)2 = 0.0845 J/K.

22. Plot 1(SP)2 vs. immersion time t over the range 0 ≤ t ≤ 30.0 s for the process described in Example 8.11. Note that
T2 varies between 15.0°C ≤ T2 ≤ 200.°C over this range of t. Do this by using commercial equation solver software or by
choosing several values of t in the range 0 ≤ t ≤ 30.0 s and carry out the calculations and plot the results with a spreadsheet.
Answer: Your results should look like Figure 8.12.
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FIGURE 8.12
Example 8.11, Exercise 22.

The next three examples illustrate the use of the direct method of determining the entropy production. This
method is usually more difficult than the entropy balance or indirect method, because it requires detailed infor-
mation about local property values (i.e., properties at each point inside the system boundary) and the integration
of Eq. (8.6) or (8.7) is often quite difficult. The formulae for the work mode entropy production per unit time
per unit volume (σW) are given in Chapter 7 for viscous and electrical work mode irreversibilities.

EXAMPLE 8.12
The heat transfer rate from a very long fin of constant cross-section is given by

_Q =
ffiffiffiffiffiffiffiffiffiffiffiffi
hPktA

p
Tf −T∞
� �

where h is the convective heat transfer coefficient, P is the perimeter of the fin in a plane normal to its axis, kt is the thermal
conductivity of the fin, and A is the cross-sectional area of the fin (again in a plane normal to its axis). T∞ is the temperature
of the fin’s surrounding (measured far from the fin itself) and Tf is the temperature of the foot (or base) of the fin. The tem-
perature profile along the fin is given by

T xð Þ = T∞ + Tf −T∞
� �

e−mx

where

m = hP
ktA

� �1/2
The fin is attached to an engine whose surface temperature is 95.0°C. Determine the entropy production rate for the fin if
it is a very long square aluminum fin, 0.0100 m on a side, in air at 20.0°C. The thermal conductivity of aluminum is
204 W/(m ·K) and the convective heat transfer coefficient of the fin is 3.50 W/(m2 ·K).
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Solution
First, draw a sketch of the system (Figure 8.13).

Fin of thermal conductivity kt 

Perimeter P

Area A

T∞
Lx

Tf

FIGURE 8.13
Example 8.12.

The unknown is the entropy production rate for the fin. The material is aluminum.

Since there is no work mode entropy production here, Eq. (7.66) is used to find the fin’s entropy production rate by the direct
method (note that we have insufficient information to use the more convenient indirect method or entropy balance here) as

_SP = _SP
� �

Q = −
Z
V

_q
T2

dT
dx

� �� 	
act
dV

Since this is a one-dimensional heat transfer problem, we can substitute A dx for dV : Then,

_SP
� �

Q = −
Z L

0

_q
T2

dT
dx

� �� 	
Adx =

Z ∞

0

ktA
T2

dT
dx

� �2� 	
dx

where we have used Fourier’s law, _q = −ktðdT/dxÞ, and have let L → ∞ for a very long fin. We can differentiate the fin’s tem-
perature profile given previously to obtain

dT
dx

= −m Tf −T∞
� �

e−mx

then

kt
A
T2

� �
dT
dx

� �2
=

ffiffiffiffiffiffiffiffiffiffiffiffi
hPktA

p
mð Þ Tf −T
� �2e−2mx

T∞ + ðTf − T∞Þe−mx
� 
2

and

SPð ÞQ = m Tf −T∞
� �2 ffiffiffiffiffiffiffiffiffiffiffiffi

hPktA
p Z ∞

0

e−2mxdx

T∞ + Tf − T∞
� �

e−mx
� 
2

This expression can be integrated using a table of integrals and a change of variables (e.g., let y = e–mx) to obtain

_SP
� �

Q =
ffiffiffiffiffiffiffiffiffiffiffiffi
hPktA

p
ln

Tf

T∞
+ T∞

Tf
− 1

� �
In this problem, we have

h = 3:50W/ m2⋅K
� �

A = 1:00× 10−4m2

P = 0:0400m T∞ = 20:0°C = 293:15K

kt = 204W/ m⋅Kð Þ Tf = 95:0°C = 368K

Then,

_S P = _S P
� �

Q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:50W/ m2 ⋅Kð Þ½ � 0:0400mð Þ 204W/ m⋅Kð Þ½ � 1:00×10−4m2ð Þ

p
ln 368

293:15
+ 293:15

368
−1

� �
= 0:00128W/K

Note that the entropy production rate in this example is quite small.
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EXAMPLE 8.13
The velocity profile in the steady isothermal laminar flow of an incompressible Newtonian fluid contained between
concentric cylinders in which the inner cylinder is rotating and the outer cylinder is stationary is given by

V =
ωR2

1

R2
2 −R2

1

R2
2

x
− x

� �
for R1 ≤ x≤R2

where ω is the angular velocity of the inner cylinder, and x is measured radially outward. Determine the rate of entropy
production due to laminar viscous losses for SAE-40 engine oil at 20.0°C in the gap between cylinders of radii 0.0500 and
0.0510 m when the inner cylinder is rotating at 1000. rev/min. The viscosity of the oil is 0.700 N · s/m2 and the length of
the cylinder is 0.100 m.

Solution
First, draw a sketch of the system (Figure 8.14).

L

R1

ω

R2

R1

R2

x

Velocity profile V

FIGURE 8.14
Example 8.14, system.

The unknown is the rate of entropy production due to laminar viscous losses. The material is SAE-40 engine oil at 20.0°C.

Here, we use Eq. (7.72) for the viscous dissipation of mechanical work. By differentiating the velocity formula just given,
we get

dV
dx

= −
ωR2

1

R2
2 −R2

1

R2
2

x2
+ 1

� �

WHY IS THE ENTROPY PRODUCTION RATE IN EXAMPLE 8.12
SO SMALL?

This is due to the fact that the fin temperature T(x) is close to the environmental temperature T∞ over most of the length of
the fin. Entropy production due to heat transfer is minimized when the temperature difference producing the heat transfer
is small. Check it out for yourself to see that _SP

� �
Q becomes zero in the following equation when Tf = T∞ (remember,

ln(1) = 0).

_SP
� �

Q =
ffiffiffiffiffiffiffiffiffiffiffiffi
hPktA

p
ln

Tf
T∞

+ T∞
Tf

−1
� �

And the maximum entropy production rate occurs when the temperature difference is a maximum. This occurs in this
example when T∞ = 0 K or Tf = ∞. In this case,

_SP
� �

max = lim
T∞!0

_SP = lim
Tf!∞

_SP = ∞
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then

σWð Þvis =
μ
T

dV
dx

� �2
=

ω2R4
1μ

R2
2 −R2

1ð Þ2T
R2
2

x2
+ 1

� �2
Equation (7.69) gives the entropy production rate for viscous effects as

_SP
� �

W
vis

=
Z
V
σWð Þ

vis
dV

For the differential volume element dV , we use the volume of an annulus of thickness dx, or dV = 2πLx dx (Figure 8.15).

Annular differential
volume

L

x

x + dx

d   = 2πLxdx

A

FIGURE 8.15
Example 8.13, annular differential volume.

Putting these expressions for σWð Þvis and dV into Eq. (7.70) and carrying out the integration gives

SPð Þ
W
vis

=
2πLω2R4

1μ

R2
2 −R2

1ð Þ2T
2R2

2 ln
R2

R1
+

R4
2

2R2
1
−

R2
1

2

� �

where μ = 0.700 N · s/m2, L = 0.100 m, and

ω = 1000: rev
min

� �
2π rad
rev

� �
1min
60 s

� �
= 104:7 rad/s

R1 = 0.0500 m, R2 = 0.0510 m, and T = 20.0°C = 293.15 K.

Substituting these values into the preceding formula gives

_SP
� �

W
vis

= 2:08W/K

In this example, we have a reasonably high entropy production rate. This is due to the very small gap between the cylinders
and the high viscosity of the engine oil. Check for yourself to see that _SP

� �
W-vis ! 0 as R2 becomes much larger than R1, or

as μ → 0. Conversely, check to see that _SP
� �

W-vis ! ∞ asR1 ! R2 or as μ → ∞. Some of these elements are explored in the
following exercises.

Exercises
23. Determine the entropy production rate _SP in Example 8.13 if the oil is changed from SAE-40 motor oil with a viscosity of

μ = 0.700 N ·s/m2 to SAE-10 motor oil with μ = 0.150 N ·s/m2 at 20.0°C. Keep the values of all the other variables the
same as they are in Example 8.13. Answer: _SP

� �
W-vis = 0:455W=K:

24. Recalculate the entropy production rate _SP in Example 8.13 when the bearing gap is reduced from 1.00 mm to 0.500 mm
by making R1 = 0.0500 m and R2 = 0.0505 m. Keep the values of all the other variables the same as they are in
Example 8.13. Answer: _SP = 4:13W/K:

25. Determine the entropy production rate _SP in Example 8.13 when the shaft rotation is increased to 8000. rpm.
Keep the values of all the other variables the same as they are in Example 8.13. Plot the entropy

(Continued )
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EXAMPLE 8.13 (Continued )

production rate _SP vs. shaft angular velocity ω as ω varies from 0 to 10,000. rpm (Figure 8.16).
Answer: _SP = 133W/K:
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FIGURE 8.16
Example 8.13, Exercise 25.

EXAMPLE 8.14
An electrical circuit board contains a variety of digital logic elements. When operating, the board draws 10.0 mA at 5.00 V
dc and it has a steady state surface temperature of 30.0°C. Estimate the entropy production rate of the circuit board.

Solution
First, draw a sketch of the system (Figure 8.17).

T = 30.0°C

i = 10.0 mA
v = 5.00 V dc

(SP)W = ?
Circuit
board

FIGURE 8.17
Example 8.14.

The unknown is entropy production rate of the circuit board. The system is the circuit board.

Since nearly all the electrical energy entering the circuit board is being converted into heat, we could calculate the entropy
production rate of the board from its heat loss characteristics (convective heat transfer coefficient, surface temperature, envir-
onmental temperature, surface area, etc.); however, none of this information is supplied in the problem statement. We
could also calculate the entropy production rate for electrical work mode dissipation directly from Eq. (7.73) if we knew
how the current density Je, electrical resistivity ρe, and local internal temperature T are distributed throughout the circuit
board. But we do not know this information either. However, the problem statement asks for only an estimate of the
entropy production rate, and we can obtain this from the special electrical work mode dissipation Eq. (7.74) if we lump all
the components on the board into one uniform, isothermal, constant current density system. From Ohm’s law, ϕ = IRe, we
can write Eq. (7.74) as

_SP
� �

W = I2Re

T
=
ϕI
T

=
5:00Vð Þ 10:0× 10−3Að Þ

30:0+273:15K

= 1:65×10−4W/K

This is only a lumped parameter estimate of the entropy production rate for this system. The actual entropy production rate
is somewhat larger due to the nonuniform distribution of entropy-producing electrical components within the system
volume.
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Exercises
26. Recompute the entropy production rate _SP in Example 8.14 when the steady state surface temperature of the board

increases to 38.0°C. Keep the values of all the other variables the same as they are in Example 8.14.
Answer: _SP

� �
W = 1:61×10–4 W/K:

27. Determine the entropy production rate _SP in Example 8.14 if the current is increased to 50.0 mA. Keep the values of all
the other variables the same as they are in Example 8.14. Answer: _SP

� �
W = 8:25×10–4 W/K:

28. If the circuit voltage is increased from 5.00 V to 30.0 V in Example 8.14, determine the new entropy production rate.
Keep the values of all the other variables the same as they are in Example 8.14. Answer: _SP

� �
W = 9:90× 10–4 W/K:

8.4 DIFFUSIONAL MIXING
Here, we wish to use the indirect method to analyze the entropy production that results from a simple diffusion
type of mixing process. Consider the rigid, insulated container shown in Figure 8.18. It contains the same sub-
stance on both sides of the partition but generally at different pressures, temperatures, and amounts. When the
partition is removed, the material in the chambers mixes by diffusion, resulting in a final temperature T2 and
final pressure p2. We are interested in the amount of entropy produced by this mixing process.

The energy balance equation for this system gives

1Q2

0
adiabaticð Þ

− 1W2

0 adiabaticð Þ

= U2 −U1 + KE2 −KE1 +PE2 −PE1
⎵

0 stationary systemð Þ

U2 = m2u2 = U1 = maua +mbub

or

u2 = maua +mbub
ma +mb

= ub + y ua − ubð Þ (8.9)

where

y = ma

ma +mb

and

1− y = mb

ma +mb

The entropy balance equation gives

1 SPð Þ2 = S2 − S1 − 1Q2

Tb
0

adiabaticð Þ

or

Entropy production in two-component mixing:
1 SPð Þ2 = m2s2 −masa −mbsbp

= ma +mbð Þ s2 − sb + y sb − sað Þ½ �
(8.10)

Partition

Insulation
Mixing
process

State 1 State 2

Ta, pa

a, ma

A Tb, pb

b, mb

A T2, p2

2, m2

A

FIGURE 8.18
Mixing of single-species substances.
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When the chambers contain identical ideal gases, Eqs. (3.38) and (8.9) give

u2 − ub = cv T2 − Tbð Þ = ycv Ta − Tbð Þ
or

T2 = Tb + y Ta −Tbð Þ (8.11)

and Eqs. (7.37) and (8.10) give

1 SPð Þ2 = ma +mbð Þ cp ln
T2
Tb

−R ln
p2
pb

+ y cp ln
Tb
Ta

−R ln
pb
pa

� �� 	
or

1 SPð Þ2 = ma +mbð Þ cp ln T2/Tbð Þ Tb/Tað Þy½ �−R ln p2/pbð Þ pb/pað Þy½ �� �
and inserting Eq. (8.11) for T2 gives

Entropy production when two identical ideal gases are mixed

1 SPð Þ2 = ma +mbð Þ cp ln 1+ y Ta/Tb − 1ð Þð Þ Tb/Tað Þy½ �−R ln p2/pbð Þ pb/pað Þy½ �� �
≥0 (8.12)

When the chambers contain identical incompressible liquids, Eqs. (3.33), (8.9), and (8.10) can be combined to
yield

Entropy production when two identical incompressible liquids are mixed

1 SPð Þ2 = ma +mbð Þc ln 1+ y Ta/Tb − 1ð Þð Þ Tb/Tað Þy½ �≥0 (8.13)

The actual mixing process need not have the same two-chamber geometry shown in Figure 8.18, as illustrated by
the following example.

EXAMPLE 8.15
Determine the entropy produced when 3.00 g of cream at 10.0°C are added adiabatically and without stirring to 200. g of
hot coffee at 80.0°C. Assume both the coffee and the cream have the properties of pure water.

Solution
First, draw a sketch of the system (Figure 8.19).

Coffee (water)
m = 200. g
Tcoffee= 80.0 °C

Cream (water)
m = 3.00 g
Tcream= 10.0 °C

1(SP)2 = ?

FIGURE 8.19
Example 8.15.

The unknown is the entropy produced by mixing, and the materials are coffee and cream, both modeled as liquid water.

Let a = cream and b = coffee. Then, y = 3.00/203 = 0.0148. Assuming both the coffee and the cream are incompressible
liquids with the specific heat of water, c = 4186 J/(kg ·K), Eq. (8.13) gives

1 SPð Þ2 = 0:203 kgð Þ 4186 J/ kg ⋅Kð Þ½ � ln 1+0:0148 10:0+273:15
80:0+273:15

−1
� �� 	

× 80:0+273:15
10:0+273:15

� �0:0148( )
= 0:282 J/K
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Note that this example does not include the entropy production due to the heat transfer required to cool the mixture down
to a drinkable temperature.

Exercises
29. Recalculate the entropy production in Example 8.15 when the average specific heat of the mixture of coffee and cream of

3856 J/(kg ·K) is used instead of the value for pure water. Keep the values of all the other variables the same as they are
in Example 8.15. Answer: 1(SP)2 = 0.259 J/K.

30. Determine the entropy production in the mixing process described in Example 8.15 when the temperature of the cream is
20.0°C and the temperature of the coffee is 90.0°C. Keep the vales of all the other variables the same as they are in
Example 8.15. Answer: 1(SP)2 = 0.265 J/K.

31. (a) Determine the entropy produced in the process described in Example 8.15 when the mass of the cream added is
increased from 3.00 g to 10.0 g. Keep the values of all the other variables the same as they are in Example 8.15. (b) Plot

1(SP)2/(ma + mb) vs. the mass fraction y over the range 0 ≤ y ≤ 1 for the values of c, Ta, and Tb used in Example 8.15.
(c) What value of y maximizes 1(SP)2 in part b? Answers: (a) 1(SP)2 = 0.911 J/K, (b) See Figure 8.20, (c) [1(SP)2]max

occurs at y = 0.52.
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FIGURE 8.20
Example 8.15, Exercise 31, part b.

Equations (8.12) and (8.13) show that the amount of entropy production in this type of mixing process
depends on the amounts mixed and their initial states. The larger the property differences between the initial
states, the larger is entropy production on mixing. That is, the farther the initial states are from the final equili-
brium state, the larger the associated entropy production is. This is a general characteristic of the second law.

SUMMARY
In this chapter, the energy and entropy balance and rate balance equations are used to investigate various
closed system applications. The indirect method of calculating values for SP and _SP occurs when they are calcu-
lated from the entropy balance or the entropy rate balance equations. But, when these values are calculated
from the applicable entropy production rate density equations (σW) defined in Chapter 7, we called this the
direct method.

Reversible processes are defined as processes that occur with no internal irreversibilities, such as friction, viscos-
ity, heat transfer, or diffusion. Then, SP and _SP = 0, and the closed system entropy balance and entropy rate
balance equations for a reversible process reduce to

Entropy balance ðSBÞ: S2 − S1 = m s2 − s1ð Þ = 1Q2

Tb

� �
rev

(8.7)

and

Entropy rate balance ðSRBÞ: _S = m _s =
_Q
Tb

� �
rev

(8.8)
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However, most systems of engineering interest do not undergo reversible processes, and the entropy produced
by the irreversiblilties inherent in the system is of great value in the design process. Both the direct method and
the indirect method can be used to find values for the entropy produced in any irreversible process. The indirect
method is used in several examples developed in this chapter to determine the entropy produced by heating a
fluid in a simple closed container, a lightbulb, a food blender, a typical electrical power plant, and so forth. The
more complex direct method is then used to determine the entropy produced by convective heat transfer from a
cooling fin, the viscosity of the lubricant liquid in an engine bearing, the electrical resistance of a circuit board,
and the diffusional mixing of identical fluids.

Problems (* indicate problems in SI units)
1.* Air contained in a cylinder fitted with a piston initially at

2.00 MPa and 2000.°C expands to 0.200 MPa in an isentropic
process. Assuming the air behaves as a constant specific heat
ideal gas, determine the following:
a. The final temperature.
b. The change in specific internal energy.
c. The change in specific enthalpy.
d. The change in specific entropy.
e. The work done per lbm of air during the expansion.

2. A constant specific heat ideal gas has a gas constant of 42.92 ft ·
lbf/(lbm ·R) and a constant pressure specific heat of 0.200Btu/
(lbm ·R). Determine the heat transferred and the change of total
entropy if 9.00 lbm of this gas is heated from 40.0°F to 340.°F
in a rigid container.

3. A reversible Carnot heat engine has 1.00 lbm of air as the
working fluid. Heat is received at 740.°F and rejected at 40.0°F.
At the beginning of the heat addition process, the pressure is
100. psia and during this process the volume triples. Calculate
the net cycle work per lbm of air. Assume the air behaves as a
constant specific heat ideal gas.

4. A 1.000 ft3 glass bottle is initially evacuated then has 1.000 g of
water added that eventually comes to equilibrium at 70.00°F. The
pressure in the bottle is increased by 11.1668 psia during a
reversible adiabatic compression:
a. What is the work done during compression?
b. What is the entropy production for the compression?

5. 3.00 lbm of Refrigerant-134a (not an ideal gas) is compressed
adiabatically in a closed piston-cylinder device from 5.00 psia,
220.°F to 200. psia, 340.°F.
a. Determine the work for this process.
b. Show whether or not this process violates the second law of

thermodynamics.
6.* An engineer claims to be able to compress 0.100 kg of water

vapor at 200.°C and 0.100 MPa in a piston-cylinder
arrangement in an isothermal and adiabatic process. The
engineer claims that the final volume is 6.10% of the initial
volume. Determine
a. The final temperature and pressure.
b. The work required.
c. Show whether the process is thermodynamically possible.

7. An inventive engineer claims to have designed a
mechanochemical, single-stroke closed system that compresses
l0.0 lbm of air isothermally from 14.7 psia, 100.°F to 200. psia
while inputting 500. Btu of mechanochemical compression
work. Assuming constant specific heat ideal gas behavior,
a. What heat transfer is required for this process to occur?
b. Does this process violate the second law of thermodynamics?

8.* Saturated liquid water at 8.58 MPa undergoes a reversible
isothermal process in a cylinder until the pressure reaches
0.100 MPa. Calculate the heat transfer and work per kg of water
for this process. Show the process on a T-s diagram. Neglect any
changes in kinetic and potential energies.

9.* Air is compressed in a steady state reversible adiabatic process
from 25.0°C and 0.150 MPa to 1.70 MPa. Determine the change
of specific enthalpy in this process and find the density of the exit
air. Assume the air behaves as an ideal gas with constant specific
heats. Neglect any changes in kinetic and potential energies.

10.* One cubic meter of hydrogen (a constant specific heat ideal gas)
expands from an initial pressure of 0.500 MPa to a final
pressure of 0.100 MPa. The gas temperature before expansion
is 27.0°C.
a. Determine the final temperature if the process is isentropic.
b. Determine the final temperature if the process is polytropic

with n = 1.30.
c. Calculate the heat transfer required for the polytropic case.

11. 2.00 lbm of saturated water vapor at 247.1 psia undergoes a
reversible isothermal expansion until the pressure reaches
20.0 psia. Determine the heat transfer and the work done for
this process. The system boundary temperature is the same as
the process temperature.

12. Consider a fixed mass of a constant specific heat ideal gas in a
piston-cylinder device undergoing a compression process for
which pVn = constant (a polytropic process). Show that the
work done per unit mass of gas in such a process is given by
(p2v2 – p1v1)/(n – 1) if n ≠ 1. If the process is isentropic, show
that this reduces to cv(T2 – T1).

13.* 0.130 kg of a constant specific heat ideal gas is compressed in a
closed system from 1.00 atm and 40.0°C to 11.39 atm in an
isothermal process. For this gas, cp = 523 J/(kg ·K), cv = 315 J/
(kg ·K), and R = 208 J/(kg ·K). For this process, determine
a. The work required.
b. The resulting heat transfer.
c. The amount of entropy produced.
d. Explain whether this process violates the second law of

thermodynamics.
14. Show that a constant specific heat ideal gas undergoing a

constant heat flux polytropic process (pvn = constant with n≠ 1)
has a limiting isothermal system boundary temperature
corresponding to a reversible process given by

ðTbÞrev = T2 − T1
lnðT2/T1Þ

(Hint: Recall that 1W2 = mR(T2 – T1)/(n – 1) for such a
polytropic process with an ideal gas.)
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15. A 20.0 ft3 tank contains air at 100. psia, 100.°F. A valve on the
tank is opened and the pressure in the tank drops to 20.0 psia.
If the air that remains in the tank is considered to be a closed
system undergoing a reversible adiabatic process, calculate the
final mass of air in the tank. Assume constant specific heat ideal
gas behavior, and neglect any changes in kinetic and potential
energies.

16. A pressure vessel contains ammonia at a pressure of 100. psia
and a temperature of 100.°F. A valve at the top of the vessel is
opened, allowing vapor to escape. Assume that, at any instant,
the ammonia that remains in the vessel has undergone an
isentropic process. When the ammonia remaining in the vessel
becomes a saturated vapor, the valve is closed. The mass of
ammonia in the vessel at this moment is 2.00 lbm. Find the
mass of ammonia that escaped into the surroundings. Neglect
any changes in kinetic and potential energies.

17.* A 2.00 m3 tank contains air at 0.200 MPa and 35.0°C. A valve
on the tank is opened and the pressure in the tank drops to
0.100 MPa. If the process is isentropic, calculate the final mass
of air in the tank. Assume the air behaves as a constant specific
heat ideal gas. Neglect any changes in kinetic and potential
energies.

18. A 58.0 ft3 tank contains air at 30.0 psia and 100.°F. A valve on
the tank is opened and the pressure in the tank drops to 10.0
psia. If the air that remains in the tank has gone through an
adiabatic polytropic process with n = 1.33, calculate the final
mass of air in the tank and the entropy production that
occurred in this mass. Assume the air behaves as a constant
specific heat ideal gas, and neglect any changes in kinetic and
potential energies.

19. An operating gearbox (transmission) has 200. hp at its input
shaft while 190. hp are delivered to the output shaft. The
gearbox has a steady state surface temperature of 140.°F.
Determine the rate of entropy production by the gearbox.

20.* A gearbox (transmission) operating at steady state, receives
100. kW of power from an engine and delivers 97.0 kW to the
output shaft. If the surface of the gearbox is at a uniform
temperature of 50.0°C and the surrounding temperature is
20.0°C, what is the rate of entropy production?

21.* Determine the amount of entropy produced in the process
described in Problem 1 at the end of Chapter 5, when both the
specific internal energy and the specific entropy of the water
have returned to their initial values.

22.* Determine the amount of entropy produced in the process
described in Problem 3 at the end of Chapter 5. Assume that the
system boundary temperature is the same as its bulk isothermal
temperature.

23. Determine the amount of entropy produced in the process
described in Problem 4 at the end of Chapter 5 if the 500. Btu
heat transfer occurred across an isothermal system boundary at
250.°F.

24.* Determine the amount of entropy produced in the process
described in Problem 8 at the end of Chapter 5 if the work
transport is 90.0% of the magnitude of the heat transport.
Assume that the system boundary temperature is the same as its
bulk isothermal temperature.

25.* Determine the amount of entropy produced in the process
described in Problem 13 at the end of Chapter 5. Assume the
human body is a steady state closed system with an isothermal
surface temperature of 36.0°C during the exercise process.

26. Determine the amount of entropy produced during the adiabatic
expansion process described in Problem 17 at the end of
Chapter 5. Discuss the difficulty encountered in determining the
entropy production during the final isobaric compression
process.

27. 1.00 lbm of saturated water vapor at 212°F is condensed in a
closed, nonrigid system to saturated liquid at 212°F in a
constant pressure process by a heat transfer across a system
boundary with a constant temperature of 80.0°F. What is the
total entropy production for this process?

28. A rigid container encloses 150. lbm of air at 15.0 psia and
500. R. We wish to increase the temperature to 540. R.
Assuming constant specific heat ideal gas behavior,
a. Determine the heat transfer to the air for this change of state.
b. Determine the entropy production if this change of state is

accomplished by using a constant system boundary
temperature of 300.°F.

29. A sealed kitchen pressure cooker whose volume is 1.00 ft3

contains 2.20 lbm of saturated water (liquid plus vapor) at
14.7 psia. The pressure cooker is then heated until its internal
pressure reaches 20.0 psia. Determine
a. The work done during the process.
b. The heat transfer during the process.
c. The entropy produced during the process if the inner surface

of the pressure cooker is constant at 250.°F.
30. A closed, sealed, rigid container is filled with 0.05833 ft3 of

liquid water and 0.94167 ft3 of water vapor in equilibrium at
1.00 psia.
a. What is the quality in the vessel at this state?

The vessel is then heated until its contents become a
saturated vapor.

b. What are the temperature and pressure in the vessel at this
state?
The heating process just described is done irreversibly.

c. Determine the total entropy produced for this process if the
surface temperature of the vessel is maintained constant at
300.°F.

31.* Determine the entropy produced as a 4.00 g, 80.0°C lead bullet
traveling at 900. m/s impacts a perfectly rigid surface
aergonically and adiabatically. The specific heat of lead at the
mean temperature of the bullet is 167 J/(kg ·K).

32.* Determine the minimum isothermal system boundary
temperature required by the second law as a 1500. kg iron ingot
is heated from 20.0°C to 1000.°C. Assume the ingot is
incompressible.

33.* In the 21st century, the Earth will be terrorized by Zandar the
Wombat, an asexual rebel engineer from the planet Q-dot.
Earth’s only hope for survival lies in your ability to determine
the entropy production rate of Zandar. To do this, you
cleverly trick Zandar into completely wrapping himself
(herself?) with insulation and holding his breath. You then
quickly measure his body temperature and find that it is
increasing at a constant rate of 2.00°C per minute. Zandar
weighs 981 N and has the thermodynamic properties of
liquid water. Determine Zandar’s entropy production rate
when his body temperature reaches 50.0°C.

34.* The surface temperature of a 100. W incandescent lightbulb is
60.0°C. The surface temperature of a 20.0 W fluorescent tube
producing the same amount of light as the 100. W incandescent
lightbulb is 30.0°C. Determine the steady state entropy
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production rate of each light source and comment on which is
the most efficient.

35. Rework Example 8.11 by setting Tb = Ts. Using the formula for
Ts given in the example, show that

dQ
Tb

= − hA dt
1+T∞eαt/ðT1 − T∞Þ

where α = hA/(mcv). Integrate this from t = 0.00 to 5.00 s and
combine it with the m(s2 – s1) result from the example to get

1(SP)2 under this condition. What is the significance of this result?
36. Integrate Eq. (7.52) to determine the entropy production and

use Eq. (7.77) to find the total entropy change for an aergonic
closed system in which the temperature increases from T1 =
70.0°F to T2 = 200.°F for the cases where the heat transfer varies
with the system absolute temperature according to the relations
a. Q = K1T (convection).
b. Q = K2T

4 (radiation), where K1 = 3.00 Btu/R and K2 = 3.00 ×
10–4 Btu/R4. The system boundary is maintained isothermal
at 212°F.

37. Determine the entropy production rate due to conduction heat
transfer inside a system having a volume of 3.00 ft3 and a
thermal conductivity of 105 Btu/(h · ft ·R) that contains the
following temperature profile:

T = 300:× ½expðx/3:00Þ�
where T is in R and x is in feet.

38. Using Eq. (7.64), show that the entropy production rate per unit
volume due to heat transfer (σQ) is a constant if the temperature
distribution due to conduction heat transfer is given by

T = C1½expðC2xÞ�
where C1 and C2 are constants. (Hint: Use Fourier’s law of heat
conduction to eliminate the _q term.)

39. The temperature distribution due to conduction heat transfer
inside a flat plate with an internal heat generation (Figure 8.21)
is given by

T = T0 + ðTs −T0Þðx/LÞ2

where Ts is the surface (x = L) and T0 is the centerline
(x = 0) temperature. Determine a formula for the entropy
production rate ð _SpÞ for this system.

L L

x

Ts

T0

Ts

FIGURE 8.21
Problem 39.

40. Example 8.13 deals with the velocity profile in a liquid
contained in the gap between two concentric cylinders of radii
R1 and R2 > Rl in which the inner cylinder is rotating with an
angular velocity ω and the outer cylinder is stationary. If this gap
is very small, the velocity profile can be approximated by the
linear relation

V = R1ωðR2 − xÞ/ðR2 −R1Þ
where R2 >> (R2 – R1) and x is measured radially outward
from the center of the inner cylinder. Using the data given in
Example 8.13, determine the entropy production rate using this
simpler velocity profile and compare your answer to that given
in Example 8.13 for the more complex nonlinear velocity
profile.

41. Example 8.13 deals with the entropy production rate in the flow
between concentric rotating cylinders in which the outer cylinder
was stationary and the inner cylinder rotates with a constant
angular velocity ω. If, instead, we allow both cylinders to rotate
in the same direction with constant angular velocities ω2 at the
outer cylinder and ω1 at the inner one, then the velocity profile
in the gap between the cylinders becomes

V = ω2R2
2 −ω1R2

1

� �
x− ω2 −ω1ð Þ R2

1R
2
2

� �
/x

� 

/ R2

2 −R2
1

� �
Find the expression for the entropy production rate due to
viscous effects in the fluid of viscosity μ contained between
these rotating cylinders of radii Rl and R2 > R1 and length L.
Assume the fluid is maintained isothermal at temperature T.

42.* A dipstick heater is an electrical resistance heater plugged into a
regular 110. V ac outlet and inserted into the dipstick tube of an
automobile engine. Its purpose is to keep the engine oil warm
during the winter when the car is not in use, thus allowing the
engine to start more easily. Determine the entropy produced
during an 8.00 h period by a 100. W steady state dipstick heater
whose surface is isothermal at 90.0°C.

43.* The potential difference across the tungsten filament operating
at 2400.°C in a cathode ray vacuum tube is 25.0 × 103 V. The
filament is a small disk 2.00 × 10–3 m in diameter and 1.00 ×
10–4 m thick having a resistivity of 6.00 × 10–4 Ω ·m. Assuming
all the voltage drop occurs uniformly across the thickness of the
disk, determine its entropy production rate.

44. A current of 100. A is passed through a 6.00 ft long stainless
steel wire 0.100 inch in diameter. The electrical resistivity of
the wire is 197 × 10–5 Ω · in, and its thermal conductivity is
12.5 Btu/(h · ft ·R). The outer surface temperature of the wire
is maintained constant at 300.°F and the temperature profile
inside the wire is given by

T = Tw + ρeJ
2
e ðR2 − x2Þ/ð4ktÞ

where Tw is the wall temperature of the wire, R is its radius, and
x is measured radially out from the center of the wire.
Determine the total entropy production rate within the wire due
to the flow of electricity through it. Assume all the physical
properties are independent of temperature.

45. Determine the entropy produced when 3.00 lbm of carbon
dioxide at 70.0°F and 30.0 psia are adiabatically mixed with
7.00 lbm of carbon dioxide at 100.°F and 15.0 psia. The final
mixture pressure is 17.0 psia. Assume the carbon dioxide
behaves as a constant specific heat ideal gas.
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46. a. Determine a formula for the final pressure (p2) that results
when two volumes of the same constant specific heat ideal
gas initially at pa, Ta and pb, Tb are mixed isentropically.

b. Does this mixture pressure represent an upper or lower
bound when this mixing is done adiabatically but not
isentropically?

47. Determine the entropy produced as 5.0 × 10–3 lbm of human
saliva at 98.6°F is adiabatically mixed with 3.00 × 10–3 lbm of
human saliva at 103.2°F in a passionate and infectious kiss. The
specific heat of the saliva is 0.950 Btu/(lbm ·R).

48.* Determine the entropy produced as 10.0 kg of liquid water at
10.0°C is adiabatically mixed with 20.0 kg of liquid water at
80.0°C. The specific heat of the water is 4.20 kJ/(kg ·K).

49. Here is the complete classical coffee and cream problem. Which
of the following processes produces less entropy:
a. Mixing cream with hot coffee and letting the mixture cool to

the drinking temperature.
b. Letting the coffee cool to a temperature such that, when the

cream is added, the mixture will be at the drinking
temperature? Do not ignore the cooling heat transfer entropy
production.

Design Problems
The following are elementary, open-ended design problems. The
objective is to carry out a preliminary thermal design as indicated.
A detailed design with working drawings is not expected unless
otherwise specified. These problems do not have specific answers,
so each student’s design is unique.

50.* Carry out a preliminary thermodynamic design of a system that
heats 20.0 kg of liquid water from 20.0 to 80.0°C in 15.0 min
at atmospheric pressure in a closed vessel. Use an electrical
heating system and determine the electrical power and current
requirements (assume standard line voltage values). Include a
means of relieving any pressure buildup, and discuss safety
considerations.

51. Carry out a preliminary thermodynamic design of a single
piston-cylinder apparatus that produces 25.0 hp as it moves
through a mechanical cycle in 10.0 s. The piston is to be
drawn into the cylinder by condensing steam that enters the
apparatus as a saturated vapor at 212°F. No work is done
during the return stroke of the piston, during which time a
fresh charge of steam is drawn into the apparatus. Continuous
motion of this type can be accomplished through the use of a
flywheel.

52.* Carry out a preliminary thermodynamic design of a system that
mixes by only diffusive processes 5.00 kg of gaseous CO2 with
10.0 kg of air in a maximum of 6.00 min in a closed, rigid
vessel. Specify the vessel material, size, and internal geometry
and discuss any relevant safety considerations.

Computer Problems
The following computer assignments are designed to be carried out
on a personal computer using a spreadsheet or equation solver. They
are meant to be exercises using some of the basic formulae of

this chapter. They may be used as part of a weekly homework
assignment.

53. Develop a program that determines the power output from
a reversible solar power plant similar to that discussed in
Example 8.2. Input all the relevant variables (in proper units),
and output the net reversible electrical power produced. At
your instructor’s discretion, add screen graphics depicting
a diagram of the power plant and the input and output
variables. Allow the choice of working in either Engineering
English or SI units.

54. Develop a program that performs an energy and entropy
balance on a closed system with an isothermal boundary. The
system contains an incompressible substance (either a liquid
or a solid) that is undergoing an irreversible process. Input (in
proper units) the heat and work transports of energy, the
system volume, the initial internal temperature and the
isothermal boundary temperature of the system, and the
density and specific heat of the incompressible material
contained in the system. Output to the screen the system
mass, final temperature, and entropy production. Note that, if
the entropy production becomes negative (an impossible
physical situation), then the system boundary temperature was
not properly specified. Check for this possibility and prompt
the user for another boundary temperature if it occurs.
Allow the choice of working in either Engineering English
or SI units.

55. Develop a program that performs an energy and an entropy
balance on a closed system with an isothermal boundary. The
system contains an ideal gas with constant specific heats that is
undergoing an irreversible process. Input (in proper units): the
heat and work transports of energy, the system volume, the
initial temperature and pressure of the system, and the
constant volume specific heat and gas constant of the gas
contained in the system. Output to the screen the system mass,
the final pressure and temperature, and the entropy production
for the process. Check to make sure the entropy production is
positive and prompt the user for corrected input if it is not. Allow
the choice of working in either Engineering English or SI units.

56. Repeat Problem 55, except allow the user to choose the system
ideal gas from a screen menu and omit the prompts for gas
properties. Use the data in Table C.13 of Thermodynamic Tables to
accompany Modern Engineering Thermodynamics for the properties
of the gases in your menu.

57.* Develop a program that allows you to plot the entropy
production rate due to the heat transfer from the fin in
Example 8.12 vs. the base temperature of the fin Tf. Allow
the Tf to range from 20.0 to 200.°C. Keep all the remaining
variables constant.

58.* The temperature profile for the fin discussed in Example 8.12 is
for a “very long” (i.e., infinite) fin. A more accurate equation for
a finite fin of length L is

TðxÞ = T∞ + ðTf −T∞Þ cosh½mðL− xÞ�+ ½h/ðmkÞ� sinh½mðL− xÞ�
coshðmLÞ+ ½h/ðmkÞ� sinhðmLÞ


 �
where the remaining variables are defined in Example 8.12.
Using this temperature profile, rework Example 8.12 and
Problem 57 to produce a new plot of entropy production rate vs.
fin base temperature (you may wish to use a numerical
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integration technique here). Which has the smaller entropy
production rate, the infinite fin or the finite fin?

59.* In Example 8.13, the fluid in the gap between the cylinders was
maintained isothermal. If, instead, the outer and inner cylinder
surfaces are maintained isothermal at temperatures T2 and Tl,
respectively, and the gap between the cylinders is very small, then
the fluid in the gap is not isothermal but has a temperature and
velocity profile given by

TðxÞ = T1 + ðT2 − T1Þ½1+Br/2Þ�½1− ðx−R1Þ/t�ðx−R1Þ/t
VðxÞ = R1ωðR2 − xÞ/t

where t = R2 − R1 and Br is the dimensionless Brinkman
number,2

Br = μR2
1ω

2/½ktðT2 −T1Þ�

Rework Example 8.13 using these temperature and velocity profiles
with T1 = 40.0°C, T2 = 20.0°C, and kt = 0.130 W/(m ·K). Use the
values given in Example 8.13 for the remaining variables. Since the
resulting integrals involve a considerable amount of algebraic
manipulation, you may wish to use a numerical integration
technique.

2 The Brinkman number is named after H. C. Brinkman, who solved the equations for the flow of a fluid with viscous heat generation in a circular tube
in 1951. This dimensionless number is approximately the ratio of the viscous heat generation rate to the rate of conduction heat transfer due to the
imposed temperature difference, T2 – T1. Note that there is a maximum in the temperature profile between the two cylinders if |Br| > 2.
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CHAPTER 9

Second Law Open System Applications
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9.1 INTRODUCTION
This chapter is an extension of Chapter 6, except here we use both the first and second laws of thermodynamics
to analyze open systems. As in Chapter 8, we have two types of system processes to consider, reversible and
irreversible. A reversible process is easier to analyze, because its entropy production is always equal to zero.
However, reversible process models are often unrealistic in actual engineering applications because they require
that the system have no losses (i.e., no friction or no heat transfer through a finite temperature difference etc.).
On the other hand, irreversible process models are very realistic, because they take into account all the losses
within the system, but they are often very difficult to analyze because of the complex entropy production terms
that must be evaluated. We are therefore faced with the choice of carrying out a quick but possibly inaccurate
analysis based on hypothetical reversible processes or a more complex but accurate analysis based on real
irreversible processes. The material presented in this chapter focuses primarily on the latter by utilizing the
appropriate entropy production formulae developed in Chapter 7.

Since we have not yet considered the impact of flow streams on the general entropy balance, we must now
introduce the mass flow transport and production of entropy characteristic of open systems.

9.2 MASS FLOW TRANSPORT OF ENTROPY
Mass flow transport of entropy occurs every time mass crosses the system boundary. Every element of mass dm
is assumed to be in local equilibrium and hence has a well-defined specific entropy s. Therefore, dm transports
an amount of entropy sdm when it crosses a system boundary, and we can set

dSTð Þm = s dm
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and

STð Þm =
Z

s dm

This equation can also be written as

STð Þm =
Z

s dm =
Z

s dm
dt

� �
dt =

Z
_msdt

where _m is the mass flow rate crossing the system boundary. Differentiation of this equation with respect to
time yields the mass transport rate term as

_ST
� �

m = _ms

Unlike heat and work transports of entropy, it is customary in mass flow transport to write a more explicit for-
mula for the net mass flow entropy transport rate as

Entropy transport rate due to mass flow

_ST
� �

m

h i
net

=∑
in

_ms−∑
out

_ms (9.1)

where the summations are over all inlet and outlet flow streams (the flow streams normally are pipes or ducts
that convey mass into or out of the system).

9.3 MASS FLOW PRODUCTION OF ENTROPY
Mass flow entropy production is due to mass flow that occurs inside the system. No entropy production is due
solely to mass crossing the system boundary, because it is an imaginary boundary of zero thickness. The two
main sources for this type of internal mass flow entropy production are viscous dissipation and diffusion of
dissimilar chemical species.

Viscous dissipation is really a work mode entropy production mechanism and has already been treated in
Eqs. (7.71) and (7.72). Diffusion of dissimilar chemical species inside the system is an advanced topic not trea-
ted in this text. Consequently, if we neglect diffusion, there is no mass flow production of entropy inside a
system, and

ð _SPÞm = 0

9.4 OPEN SYSTEM ENTROPY BALANCE EQUATIONS
The general entropy rate balance given by Eq. (7.3) equates the net rate of gain of total entropy by a system _SG
to the sum of the net entropy transport rate into the system _ST plus the net entropy production rate within the
system _SP , or

_ST + _SP = _SG (7.3)

where

_SG = _Ssystem =
�
dS
dt

�
system

and the transport and production rates of entropy have been identified as caused by heat transfer, work, and
mass flow, or

_ST = ð _STÞQ + ð _STÞW + ð _STÞm (9.2)

and

_SP = ð _SPÞQ + ð _SPÞW + ð _SPÞm (9.3)

280 CHAPTER 9: Second Law Open System Applications



where ð _SPÞm = 0, since we are neglecting diffusion of dissimilar species inside the system. The individual entropy
transport rate terms are given in Eqs. (7.61), (7.63), and (9.1) as

ð _STÞQ =
Z
Σ

_q
Tb

� �
act
dA (7.61)

ð _STÞW = 0 (7.63)

½ð _STÞm�net =∑
in

_ms−∑
out

_ms (9.1)

Using the concept of entropy production rate per unit volume, σ, we can express the total entropy production
rate of Eq. (9.3) (neglecting ð _SPÞm) as

_SP = ð _SPÞQ + ð _SPÞW =
Z
V

ðσQ + σWÞdV =
Z
V

σdV

where the total entropy production per unit volume is σ = σQ + σW. The relation for σQ is given by Eq. (7.64) as

σQ = −
_q
T2

dT
dx

� �� 	
actual

(7.64)

and the equations for σW for viscous flow and electrical resistance are given by Eqs. (7.70) and (7.73) as

ðσWÞvis =
μ
T

dV
dx

� �2
and ðσWÞelect =

J2e ρe
T

Putting Eqs. (7.61) and (9.1) into Eq. (7.3) produces a general open system entropy rate balance (SRB) equation as

General open system entropy rate balance (SRB)Z
Σ

_q
Tb

� �
act
dA+∑

inlet

_ms− ∑
outlet

_ms+ _SP = _Ssystem (9.4)

and, when the system boundaries are isothermal (i.e., Tb is constant), this equation reduces to

Isothermal boundary open system entropy rate balance

_Q
Tb

� �
act

+∑
in

_ms−∑
out

_ms+ _Sp = _Ssystem (9.5)

where _Q /Tb =
Z
Σ
ð _q /TbÞdA: In this equation, _Q is the actual heat transfer rate, and Tb is the temperature of the system

boundary where _Q occurs. The equation for the direct method for determining the entropy production rate is given by
Eq. (9.6) as1

_SP =
Z

Vσ dV >0 (9.6)

where σ is the total entropy production rate density (EPRD) for the system, given by

σ = σQ + σWð Þvis + σWð Þelect + � � �

However, since the use of Eq. (9.6) for the direct determination of _SP is often quite difficult, the example

problems presented in this chapter use the indirect method for determining the entropy production rate ( _SP) in
the entropy rate balance, Eq. (9.5). When this is done, the entropy rate balance can be used to generate

1 In this chapter, we assume that the processes of interest are truly irreversible, so we write _SP >0, rather than the less restrictive _SP ≥0.
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values for only the entropy production rate, _SP, and nothing else. This is the major disadvantage of the
indirect method, since if we could determine _SP directly from Eq. (9.6), we could use the entropy rate balance
to determine other important information about the system, such as _Q , Tb, _m , sin, and sout. Determining the
value of _SP (by either method) provides us with a measure of how well or how poorly a system is operating.
Large _SP values may indicate excessive losses within a particular system or a particularly inefficient mode of
operation. Some of the examples in this chapter explore the possibility of reducing _SP values through alterna-
tive realistic processes that produce the same system operating goals. These analyses lead to methods of
increasing the overall system efficiency (and thus reduce operating costs) by using processes that dissipate less
useful energy as “losses.”

In Chapter 6, we introduce the modified energy balance (MEB) and the modified energy rate balance (MERB),
so that we need not continually deal with the complex general open system first law formulae. These formulae
were designed to work only for steady state, steady flow, single-inlet, single-outlet systems, but the conditions fit
most of the applications we were interested in analyzing. When one or more of these four conditions did not
exist in a particular problem, we carried out the analysis by reverting to the complete, accurate, general energy
rate balance equation.

The general entropy rate balance given in Eq. (9.5) is not as mathematically complex as the general energy rate
balance given in Eq. (6.4), but we still find it convenient to develop similar modified entropy balance and
modified entropy rate balance equations.

The MSB and MSRB formulae require the four conditions used in the MEB and MERB formulae plus one more
condition. In the SRB, the steady state condition requires that

Steady state: _Ssystem = dS
dt

� �
system

= 0 (9.7)

and the steady flow condition requires that

Steady flow: ∑
inlet

_m = ∑
outlet

_m (9.8)

finally, the steady flow, single-inlet, single-outlet condition requires that

Single-inlet, single-outlet: ∑
inlet

_m = ∑
outlet

_m = _m

In addition to these four conditions, we add the fifth condition of isothermal boundaries at all points along the
system boundary where heat transport of energy occurs. Under this condition, the entropy transport term due to
the heat transport of energy becomes

Z
Σ

_q
Tb

� �
act
dA =∑

Σ

_Q
Tb

� �
act

=
_Q
Tb

(9.9)

In this equation, the simplified notation _Q /Tb is used to describe the net (or total) value of the “actual” _Q /Tb
summed over the entire system boundary Σ. This simplification is also used in the EB and ERB equations, where
Q, W, _Q , and _W are used to represent their net (or total) values (e.g., see Eq. (6.5)). The act subscript and the
summation sign has been dropped in the last term of Eq. (9.9) to simplify the notation, but it must always be
considered to be present. Under these five restrictive conditions, the general open system entropy rate balance of
Eq. (9.4) becomes the modified entropy rate balance (MSRB), defined as

Modified entropy rate balance

_Q
Tb

+ _m sin − soutð Þ+ _SP = 0
(9.10)

Multiplying this equation through by dt and integrating over time from system state 1 to state 2 gives the open
system modified entropy balance (MSB) equation as

Modified entropy rate balance

1Q2

Tb
+
Z 2

1
_m sin − soutð Þdt + 1 SPÞ2 = 0

� (9.11)
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EXAMPLE 9.1
You are now an attorney in a patent office. An inventor wants to patent a new domestic hot water heater. The inventor
claims to have a secret process that heats liquid water from 15.0ºC to 50.0ºC using only 100. W of electrical energy. Evaluate
the inventor’s claim and decide whether or not to issue a patent.

Solution
First, draw a sketch of the system (Figure 9.1).

Since the water heater is a steady state open system with an isothermal boundary,
we can provide a preliminary evaluation of the inventor’s claim with Eq. (9.10).
If this equation produces a positive entropy production rate, then the claim is at
least possible. If it produces a negative entropy production rate, then we can say
without equivocation that the claim is impossible to achieve.

Assumptions: (1) all the input electrical energy is converted into heating the water,
(2) the system boundary temperature is the same as the ambient temperature, or 20ºC.

Since the inventor does not provide us with the water flow rate, we can calculate it from the modified energy rate balance as
_m = _Q /ðh2 − h1Þ, where for an incompressible liquid, h2 – h1 = c(T2 – T1) + v(p2 – p1). Neglecting the pressure drop across
the water heater, we can now compute the expected water flow rate as

_m =
_Q

h2 − h1
=

0:100 kJ/s
ð4:186 kJ/kg .KÞ½50+273:15− ð15+273:15ÞK� = 0:000686kg/s

Not a very fast water flow rate. For liquid water, sout – sin = c ln(Tout/Tin), so

sout − sin = c lnðTout/TinÞ = ð4:186 kJ=kg .KÞ ln 50:0+ 273:15
15:0+ 273:15

� �
= 0:480 kJ/kg .K

Then, Eq. (9.10) gives

_SP = _m sout − sinð Þ− _Q
Tb

= ð0:000686kg/sÞð0:480 kJ/kg .KÞ− 0:100 kJ/s
20:0+ 273:15K

= −1:36×10−5 kJ/s.K

Since the entropy production rate is negative, this water heater cannot possibly meet the claims of the inventor, so we
should reject the patent application.

50°C15°C Domestic
water
heater

Room temp. = 20°C Q = 100. W

SP    0?<>

FIGURE 9.1
Example 9.1.

HOW CAN YOU HEAT THE WATER IN EXAMPLE 9.1 IF THE SYSTEM
BOUNDARY TEMPERATURE IS ONLY 20ºC?

Doesn’t the boundary have to be higher than the fluid temperature for heat to go into the water? The boundary temperature in
Eq. (9.10) can be the “average” boundary temperature, but if 20ºC is the “average” boundary temperature, then 20ºC = (Tmax +
15ºC)/2, and the maximum boundary temperature is Tmax = 2(20) – 15 = 25ºC, and that is not hot enough to heat the water to 50ºC.

This is what happens when you make incorrect assumptions. The average boundary temperature cannot be 20ºC, it has to
be higher. Suppose the inventor now tells us that it is 150ºC. Then, we get

_SP = ð0:000686kg/sÞð0:480kJ/kg .KÞ− 0:100 kJ/s
150:0+273:15K

= 9:12× 10−5 kJ/s.K

The patent application is now alright, since the entropy production rate is positive. But the water flow rate here is only 6.86 ×
10–4 kg/s = 0.686 grams per second, or 42.2 grams per minute, or 2.47 kg per hour. Not a very effective water heater.

Exercises
1. Suppose the inventor in Example 9.1 corrected his patent claim and said the heater was 1000. W instead of 100. W and

the heat transfer boundary temperature was 150ºC instead of 20ºC. What would be the water flow rate end entropy
production rate under these conditions? Answer: _m = 6:83 grams per second and _SP = 9:12× 10−4 kJ/s.K.

2. OK, so now the inventor says the heater is 10.0 kW, the heater boundary temperature is 150ºC and the water flow rate
is 0.500 kg/s. What are the water outlet temperature and the unit’s entropy production rate? Answer: Tout = 19.8ºC and
_SP = 0:0108 kJ/s.K.

3. Alright, now the inventor hires an engineer to determine the heat transfer rate and entropy production rate needed to
heat 0.500 kg/s from 15ºC to 50ºC. You are the engineer, so what are the answers? Hint: Is _Q (a) 20.9 kW, (b) 73.3 kW,
or (c) 103. kW? Is _SP (a) 0.0220 kJ/s · K, (b) 0.137 kJ/s · K, or (c) 0.0669 kJ/s · K?
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Note that the entropy production rate in Example 9.1 is actually positive if there is no heat transfer into the
water ( _Q = 0). This is because the water temperature could increase from 15ºC to 50ºC by internal viscous fric-
tion alone. However, that would require a really long pipe inside the water heater and a pretty big pressure
drop (which we neglected in the solution).

9.5 NOZZLES, DIFFUSERS, AND THROTTLES
In Chapter 6, we see that nozzles, diffusers, and throttling devices are normally steady state, steady flow,
single-inlet, single-outlet open systems with approximately constant surface temperature and they may or may
not be adiabatic. Therefore, Eq. (9.10) can be applied to all three of these types of open systems. Solving
Eq. (9.10) for _SP gives

1. For adiabatic nozzles, diffusers, and throttling devices:

_SP = _m sout − sinð Þ>0 (9.12)

2. For isothermal surface nozzles, diffusers, and throttling devices:

_SP = _m sout − sinð Þ− _Q
Tb

>0 (9.13)

where the second law condition that _SP >0 has been added.

If the fluid flowing through these systems is incompressible and has a constant specific heat c, then from
Chapter 7, we have

sout − sin = c ln
Tout
Tin

(7.33)

Equations (9.12) and (9.13) then become

Entropy production rate of an incompressible fluid in an adiabatic nozzle, diffuser, or throttle

_SP adiabatic
incompressible
fluid

������� = _mc ln
Tout
Tin

>0 (9.14)

and

Entropy production rate of an incompressible fluid in a nozzle, diffuser, or throttle with heat transfer

_SP incompressible
fluid

����� = _mc ln
Tout
Tin

−
_Q
Tb

>0 (9.15)

Equation (9.14) shows us that the outlet temperature must always be greater than the inlet temperature for an
insulated (adiabatic) open system with an incompressible fluid. This is because all the dissipation due to the
irreversibilities within the system simply goes into increasing the temperature of an incompressible fluid.

Nozzles, diffusers, and throttling devices are all physically small (i.e., Zout ≈ Zin), aergonic systems, so their
modified energy rate balance becomes

_Q = _m hout − hin +
V2
out −V2

in

2gc

� �
(9.16)

and, for constant specific heat incompressible fluids, we have

hout − hin = c Tout −Tinð Þ+ v pout − pinð Þ (6.19)

Combining Eqs. (9.15), (9.16), and (6.19) gives the combined nonadiabatic first and second law relation for an
incompressible fluid with a constant specific heat as

Equation ð9:15Þ with the heat transfer rate evaluated using the ERB

_SP incompressible
fluid

= _m c ln
Tout
Tin

−
c Tout − Tinð Þ

Tb
−

v pout − pinð Þ
Tb

−
V2
out −V2

in

2gcTb

� 	���� (9.17)
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Notice that Eq. (9.17) is now written completely in terms of directly measurable physical quantities (m, c, T, v, p,
and V).

Similarly, if the fluid flowing through these devices is an ideal gas with constant specific heats cp and cv, then
from Chapter 7, we have

sout − sin = cv ln
Tout
Tin

+R ln
vout
vin

(7.36)

= cp ln
Tout
Tin

−R ln
pout
pin

(7.37)

and, from Chapter 6, we have

hout − hin = cp Tout −Tinð Þ (6.22)

Combining Eqs. (9.12) and (7.37) gives the adiabatic modified energy rate balance equation for an ideal gas
with constant specific heats as

Entropy production rate of an ideal gas in an adiabatic nozzle, diffuser, or throttle

_SP adiabatic
ideal gas

������ = _m cp ln
Tout
Tin

−R ln
pout
pin

� �
>0 (9.18)

In the case of diffusers, pout > pin and Eq. (9.18) requires that Tout > Tin, as in the case of incompressible fluid flow.
However, for nozzles and throttling devices, pout < pin and Tout can be either greater or less than Tin, depending on
the value of the Joule-Thomson coefficient (see Eq. (6.25)). Combining Eqs. (9.13), (9.16), (7.37), and (6.22)
gives the combined nonadiabatic first and second law relation for an ideal gas with constant specific heats as

Equation ð9:18Þ with the heat transfer rate evaluated using the ERB

_SP

�����ideal gas = _m cp ln
Tout
Tin

−R ln
pout
pin

− cp
Tout −Tin

Tb
−

V2
out −V2

in

2gcTb

� �
>0 (9.19)

Finally, if the fluid flowing through these devices is neither an incompressible fluid nor an ideal gas, then Eqs.
(9.13) and (9.16) can still be combined and rearranged to give a combined nonadiabatic first and second law
relation of the form

The entropy production rate for a general fluid in a nozzle, diffuser, or throttle

_SP = − _m
Tb

hout − Tb soutð Þ− hin −Tb sinð Þ+ V2
out −V2

in

2gc

� 	
> 0 (9.20)

EXAMPLE 9.2
Determine the rate of entropy production as 0.2000 lbm/s of liquid water at 50.00°F, 95.00 psia flows through the nozzle
on the end of a garden hose and exits at 14.70 psia. The inlet and outlet diameters of the nozzle are 1.000 and 0.2500 in.,
respectively. Assume that the flow through the nozzle is too fast to allow a significant heat transfer to occur.2

Solution
First, draw a sketch of the system (Figure 9.2).

The unknown is the rate of entropy production ( _SP = ?) for this
system. The material is liquid water and the thermodynamic
station conditions are:

Station 1
p1 = 95:00 psia
T1= 50:00°F

���!Nozzle

process Station 2
p2 = 14:70psia

(Continued )

System boundary

1 2

Nozzle m = 0.2000 lbm/s
      of liquid water

SP = ?

FIGURE 9.2
Example 9.2.
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EXAMPLE 9.2 (Continued )

The modified energy rate balance equation for this system is

_Q
↘
0

− _W
↘
0

+ _m

"
h1 − h2 + ðV2

1 −V2
2 Þ/2gc + gðZ1 −Z2Þ/gc

⎵

0

#
= 0

Assuming liquid water is incompressible with a constant specific heat under these conditions and using the incompressi-
ble liquid auxiliary equation for enthalpy (Eq. (6.19)) allows the preceding modifies energy rate balance equation to be
written as

h2 − h1 = c T2 − T1ð Þ+ v p2 − p1ð Þ = V2
1 −V2

2

� �
/2gc

or

T2 = T1 +
v
c
p1 − p2ð Þ− V2

2 −V2
1

� �
2cgc

where v = vf (at 50.0°F) = 0.01602 ft3/lbm (from Table C.1a of Thermodynamic Tables to accompany Modern Engineering
Thermodynamics). From the data given in the problem statement, we can compute V1 and V2 as

V1 = _m
ρA1

= 4 _mv
πD2

1
=

4 0:2000 lbm/sð Þ 0:01602 ft3/lbm
� �

144 in:2/ft2
� �

π 1:000 in:ð Þ2 = 0:5874 ft/s

and

V2 = 4 _mv
πD2

2
= V1

D1

D2

� �2
= 0:5874ð Þ 1:000

0:2500

� �2
= 9:399 ft/s

Then,

T2 = 50:00+459:67Rð Þ+ 0:01602 ft3/lbm
� � 95:00− 14:70 lbf/in:2ð Þ 144 in:2/ft2

� �
½1:0Btu/ lbm.Rð Þ� 778:17 ft .lbf/Btuð Þ

" #

−
9:399ð Þ2 − 0:5874ð Þ2ft2/s2

2 1:0Btu/ lbm.Rð Þ½ � 32:174 lbm.ft/ lbf . s2ð Þ½ � 778:17 ft .lbf/Btuð Þ

= 509:9−0:0018R = 509:9R

and Eq. (9.14) gives3

_SP = _mc ln
T2
T1

= 0:2000 lbm/sð Þ 1:000Btu/ lbm.Rð Þ½ � ln 509:9
509:7

= 7:846× 10−5 Btu/ s.Rð Þ½ � 778:17 ft .lbf/Btuð Þ = 0:0611 ft .lbf/ s.Rð Þ

Notice that the kinetic energy term in this example (0.0018 R) provides a negligible contribution to the exit temperature
and the vast majority of the entropy production results from the pressure loss across the nozzle. The increase in velocity
across the nozzle as converted pressure energy does decrease the entropy production rate slightly (but only by less than
1% in this case). Therefore, this nozzle is quite inefficient at converting pressure energy into kinetic energy. Its efficiency
could be improved, however, by making the nozzle outlet diameter smaller, so that the outlet velocity is substantially
increased.

Exercises
4. Determine the entropy production rate in Example 9.2 if the mass flow rate is increased from 0.2000 to 0.8000 lbm/s.

Recalculate the values of V1, V2, and T2, then keep the values of all the remaining variables the same as they are in
Example 9.2. Answer: _SP = 0:288 ft .lbf/ s.Rð Þ:

5. Determine the entropy production rate in Example 9.2 if the water hose has been lying in the sun and the water
temperature is 80.00°F rather than 50.00°F. Using v = vsat (80°F), recalculate V1, V2, and T2, then keep the values of all
the remaining variables the same as they are in Example 9.2. Answer: _SP = 0:068 ft .lbf/ s.Rð Þ:

6. The exit diameter on the nozzle in Example 9.2 is reduced to 0.1250 in. Determine the new entropy production rate
for this system. Keep the values of all the variables except V2 and T2 the same as they are in Example 9.2.
Answer: _SP = 0:064 ft .lbf/ s.Rð Þ:

2 To get a meaningful answer, this problem needs to be specified to four significant figures.
3 Note that, without carrying four significant figures in this example, the logarithm is zero.
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EXAMPLE 9.3
Suppose 0.800 kg/s of argon flows at 93.0 m/s through an insulated diffuser from 97.0 kPa, 80.0°C to 101.3 kPa. Assuming
the argon to be an ideal gas with constant specific heats, determine the rate of entropy production within the diffuser.

Solution
First, draw a sketch of the system (Figure 9.3).

The unknown is _SP = ?, and the material is argon gas. The
thermodynamic station conditions are

Station 1
p1 = 97:0 kPa
T1= 80:0°C

���!Diffuser

process Station 2
p2 = 101:3 kPa

The modified energy rate balance equation for this system is

_Q − _W = 0 = _m h2 − h1 +
V2
2 −V2

1

2gc

� �
Assuming V2 ≈0, and using the ideal gas auxiliary formula (Eq. (6.22)) with data for argon from Table C.13b,we
find that

T2 = T1 +
V2
1

2gccp
= 80:0+273:15Kð Þ+ 93:0m/sð Þ2

2 1ð Þ 523 J/ kg .Kð Þ½ �
= 353:15+ 8:27 = 361:42K

Then, Eq. (9.18) gives

_SP = _m cp ln
T2
T1

−R ln
p2
p1

� �
= 0:800 kg/sð Þ 523 J/ kg .Kð Þ½ � ln 361:42

353:15
− 208 J/ kg .Kð Þ½ � ln 101:3

97:0

� �h i
= 2:47 J/ðs.KÞ = 2:47 W/K

In this example, both the pressure and the temperature of the gas increase as it passes through the diffuser.

Exercises
7. Determine the entropy production rate in Example 9.3 when the mass flow rate of the argon is increased from 0.800 kg/s

to 1.30 kg/s. Keep the values of all the other variables the same as they are in Example 9.3. Answer: _SP = 4:01W/K.
8. Determine the entropy production rate in Example 9.3 as the inlet velocity is increased from 93.0 m/s to 155 m/s. Keep

the values of all the other variables the same as they are in Example 9.3. Answer: _SP = 19:1W/K.
9. Could the gas in Example 9.3 be changed from argon to air, keeping the values of all the other variables (except cp and

R) the same as they are in Example 9.3? Hint: Check the sign of _SP . Answer: No. When the values of cp and R for air are
used along with the values of the other variables given in Example 9.3, Eq. (9.18) gives _SP = −0:187. Since _SP < 0 in this
case, the process as described in Example 9.3 with air replacing argon cannot occur.

EXAMPLE 9.4
Suppose 0.100 lbm/s of Refrigerant-134a is throttled across the expansion valve in a refrigeration unit. The R-134a enters the valve
as a saturated liquid at 100.°F and exits at 20.0°F with a quality of 53.0%. If the inlet and exit velocities are equal, determine

a. The entropy production rate inside the valve if the valve is not insulated and has an isothermal external surface
temperature of 60.0°F.

b. The entropy production rate inside the valve if it is insulated and assuming it has the same inlet conditions and exit
temperature as just stated.

c. The percent decrease in the entropy production rate of part a brought about by adding the insulation in part b.

Solution
First, draw a sketch of the system (Figure 9.4).

The unknowns are _SP
� �

uninsulated,
_SP
� �

insulated, and the percent decrease in _SP due to the insulation. The material is R-134a.
The thermodynamic station conditions are

Station 1
x1 = 0:00 kPa
T1= 100:°F

�����!Throttling

process

Station 2
x2 = 0:530 ðonly in part aÞ
T2= 20:0°F

(Continued )

1

Diffuser
V1 = 93.0 m/s

System boundary

2

m = 0.800 kg/s
      of argon

SP= ?

FIGURE 9.3
Example 9.3.
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EXAMPLE 9.4 (Continued )

a. The MERB for this aergonic device with negligible change in kinetic
and potential energy is

_Q − 0 = _m h2 − h1 + 0ð Þ

and, from Table C.7a for R-134a, we find

h1 = hf 100°Fð Þ = 44:23Btu/lbm

s1 = sf 100°Fð Þ = 0:0898Btu/ lbm.Rð Þ

and

h2 = hf 20:0°Fð Þ+ x2hfg 20:0°Fð Þ
= 17:74+ 0:530ð Þ 86:87ð Þ = 63:78Btu/lbm

s2 = sf 20:0°Fð Þ+ x2sfg 20:0°Fð Þ
= 0:0393+ 0:530ð Þ 0:2206−0:0393ð Þ = 0:1353Btu/ lbm.Rð Þ

Then, the MERB gives

_Q = 0:100 lbm/sð Þ 63:78− 44:23Btu/lbmð Þ = 1:955Btu/s

and Eq. (9.13) gives

_SP = _m ðs2 − s1Þ−
_Q
Tb

= 0:100 lbm/sð Þ 0:1353−0:0898Btu/ lbm.Rð Þ½ �

−
1:955Btu/s

60:0+459:67R

� �
= 7:88×10−4 Btu/ s.Rð Þ

= 7:88× 10−4Btu/ s.Rð Þ½ � 778:17 ft .lbf/Btuð Þ = 0:613 ft .lbf/ s.Rð Þ

b. The MERB for this device as an adiabatic, aergonic, negligible change in kinetic and potential energy system is

0−0 = _m h2 − h1 +0ð Þ

or

h2 = h1

Now, station 2 is fixed by the pair of properties T = 20.0°F and h2 = h1 = 44.23 Btu/lbm. Consequently, the quality at
station 2 cannot be 53.0% but is instead

x2 =
h2 − hf2
hfg2

= 44:23−17:74
86:87

= 0:3049 = 30:5%

then,

s2 = 0:0393+0:3049 0:2206−0:0393ð Þ = 0:0946Btu/ lbm.Rð Þ
Then, with _Q = 0, Eq. (9.13) gives

_SP = _mðs2 − s1Þ−
_Q
Tb

= 0:100 lbm/sð Þ 0:0946− 0:0898Btu/ lbm.Rð Þ½ �−0

= 4:80× 10−4Btu/ s.Rð Þ = 4:80×10−4Btu/ s.Rð Þ½ � 778:17 ft .lbf/Btuð Þ
= 0:374 ft .lbf/ s.Rð Þ

c. The percentage decrease in _SP brought about by adding the insulation is

7:88×10−4 Btu/ s.Rð Þ−4:80×10−4 Btu/ s.Rð Þ
7:88× 10−4 Btu/ s.Rð Þ × 100 = 39:1%

Note that there is a substantial decrease in the entropy production rate of Example 9.4 due to simply insulating the valve.
This results from the elimination of the entropy generated by the heat transfer present in the uninsulated valve.

1 2

System boundary

0.100 lbm/s of
refrigerant-134a

Q

FIGURE 9.4
Example 9.4.
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Exercises
10. If the surface temperature of the valve in Example 9.4 is decreased from 60.0°F to 40.0°F, resolve part a to find

the new entropy production rate of the valve. Keep the values of all the other variables the same as they are in
Example 9.4. Answer: _SP = 6:35×10−4 Btu/(s ·R).

11. If the mass flow rate through the expansion valve discussed in Example 9.4 is increased from 0.100 lbm/s to 0.500 lbm/s,
determine the new entropy production rate for parts a and b of the example. Keep the values of all the other variables the
same as they are in Example 9.4. Answer: _SP

� �
a = 0:0191 Btu/(s ·R), _SP

� �
b = 2:35×10−3 Btu(s ·R).

12. Resolve part a of Example 9.4 if the R-134a exits the valve at 80.0% quality rather than 53.0%, determine the new
entropy production rate for the system. Keep the values of all the other variables (except _Q and sout) the same as they
are in Example 9.4. Answer: _SP

� �
a = 1:16× 10−3 Btu/(s ·R).

9.6 HEAT EXCHANGERS
Heat exchangers are discussed briefly in the energy balance examples of Chapter 6. This section expands the
earlier material on this subject by introducing some of the basic concepts of heat exchanger design and analysis.
Heat exchangers are normally classified as either parallel flow, counterflow, or cross flow, as shown in Figure 9.5. If
both fluids flow in the same direction, it is said to be a parallel flow heat exchanger; if they flow in opposite
directions, it is said to be a counterflow heat exchanger; and if they flow at right angles to each other, it is said
to be a cross flow heat exchanger.

The two most common types of heat exchangers are shell and tube and plate and tube. The simplest type of
shell and tube heat exchanger is the double-pipe system shown in Figures 9.1a and 9.1b. Figure 9.1c illus-
trates a simple plate and tube geometry. The efficiency of a shell and tube heat exchanger can be improved

(a) (b)

(c)

mB

mA

mB

mA

mB

mA

FIGURE 9.5
Single-tube, single-pass heat exchanger geometries: (a) parallel flow; (b) counterflow; (c) cross flow.

THE WORLD’S LARGEST HORIZONTAL SHAFT HEAT EXCHANGER

Removing sulfur and nitrogen oxides from the combustion products of large industrial or electrical power plant furnaces is
important for the preservation of the environment. If the catalytic reduction of nitrogen oxides in the furnace exhaust gas
occurs after the desulfurization process, the exhaust gas must be reheated to a temperature of about 320°C. However, most
of the thermal energy used to reheat the gas can be recovered using a heat exchanger so that a temperature differential of
only about 30°C needs to be produced with an auxiliary heater.

In 1988, the largest horizontal shaft heat exchanger then existing was installed at the Heilbronn electrical power plant in
Germany. It has a rotor diameter of 15.5 m, is about 46 m long, and weighs 870 tons. It is a counterflow heat exchanger
that handles about 900,000 m3/h of exhaust gas.
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by using multiple tubes and multiple passes, as shown in Figure 9.6.
Figure 9.7 illustrates a typical commercial multiple tube heat
exchanger.

The temperature profiles inside single-tube, single-pass heat exchan-
gers are shown in Figure 9.8. In the parallel flow arrangement, the
outlet temperature of the cold flow stream can never exceed the out-
let temperature of the hot flow stream. However, in the counterflow
arrangement, this situation can occur, and consequently the required
surface area to produce a given amount of heat transfer is less in the
counterflow than the parallel flow configuration.

In heat exchanger design, the basic formula used to determine the
internal heat transfer rate for a single-pass heat exchanger is

Internal heat transfer rate for a single-pass heat exchanger

_Q heat
exchanger
ðinternalÞ

������� = UA ΔTð ÞLMTD (9.21)

where U is the overall heat transfer coefficient (see Table 9.1), A is
the total internal heat transfer area, and (ΔT)LMTD is the log mean
temperature difference, defined for a single-tube, single-pass heat
exchanger as

Log mean temperature difference

ΔTð ÞLMTD =
TH − TCð Þ j x=L − TH − TCð Þ j x=0

ln TH −TCð Þ j x=L/ TH −TCð Þ j x=0

� 
 (9.22)

Heat exchangers are normally two-fluid aergonic devices with dual inlets and dual outlets. If the entire heat
exchanger is taken as the system, it is normally adiabatic (the main heat transfer takes place inside the heat
exchanger not across its external boundary) and the modified energy rate balance equation for negligible change
in kinetic and potential energy reduces to (see Eq. (6.28))

_mH hin − houtð ÞH = _mC hout − hinð ÞC (9.23)

and the MSRB for this system yields

Heat exchanger entropy production rate

_SP = _mH sout − sinð ÞH + _mC sout − sinð ÞC (9.24)

If both fluids are incompressible liquids with constant specific heats, Eqs. (6.19) and (7.33) convert Eqs. (9.23)
and (9.24) into

_mH c Tin −Toutð Þ+ v pin − poutð Þ½ �H = _mC c Tout −Tinð Þ+ v pout − pinð Þ½ �C

Shell Tube
mB

mA

Shell Tubes mB

mA

(a) (b)

FIGURE 9.6
Multiple-tube, multiple-pass heat exchanger geometries: (a) single-tube, double-pass, parallel flow; (b) double-tube, double-pass, counterflow.

FIGURE 9.7
A cutaway of a single-pass shell and tube heat exchanger.
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and

Heat exchanger entropy production rate when both fluids are incompressible liquids

_SP = _mHcH ln
Tout
Tin

� �
H
+ _mCcC ln

Tout
Tin

� �
C

(9.25)

And, if both fluids are ideal gases with constant specific heats, then Eqs. (6.22) and (7.37) give

_mH cp
� �

H Tin −Toutð ÞH = _mC cp
� �

C Tout −Tinð ÞC
and

Heat exchanger entropy production rate when both fluids are ideal gases

_SP = _mH cp
� �

H ln
Tout
Tin

� �
H
−RH ln

pout
pin

� �
H

� 	
+ _mC cp

� �
C ln

Tout
Tin

� �
C
−RC ln

pout
pin

� �
C

� 	 (9.26)

EXAMPLE 9.5
A single-tube, single-pass heat exchanger is used to cool a compressed air flow of 0.200 kg/s from 90.0 to 75.0°C. The
cooling fluid is liquid water that enters the heat exchanger at 20.0°C and leaves at 40.0°C. If the overall heat transfer coeffi-
cient is 140. W/(m2 ·K) and all flow streams have negligible pressure drop, determine the required heat exchanger area and
the entropy production rate for (a) parallel flow and (b) counterflow. Assume the compressed air behaves as an ideal gas
with constant specific heats.

(Continued )

(a) (b)

0 Lx

(TH)in

(TC)in

(TH)in

(TH)out

(TC)out

(TC)out (TH)out

(TC)in

0 Lx

FIGURE 9.8
Temperature profiles inside single-tube, single-pass heat exchangers: (a) parallel flow; (b) counterflow.

TABLE 9.1 Typical Ranges for the Overall Heat Transfer Coefficient (U)

Fluids Used Btu/(h · ft2 ·R) W/(m2 ·K)

Water and
Water 200–250 1140−1420
Gasoline 60–100 340−570
Fuel oil 15–25 85−140
Compressed air 10–30 57−170
Steam and

Water (liquid) 250–400 1420−2270
Fuel oil (light) 60–90 340−510
Fuel oil (heavy) 15–25 85−140
Compressed air 5–50 28−280
Kerosene and
Water 25–50 140−280
Oil 20–35 110−200
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EXAMPLE 9.5 (Continued )

Solution
First, draw a sketch of the system (Figure 9.9).

Data:
mair = 0.200 kg/s
(Tin)air= 90.0°C
(Tout)air= 75.0°C

(Tin)water = 20.0°C
(Tout)water = 40.0°C

Air

Water Water

Air

(a) Parallel flow (b) Counterflow
Area = ?, SP = ?Area = ?, SP = ?

FIGURE 9.9
Example 9.5.

The unknowns are the heat exchanger area and the entropy production rate for parallel flow and counterflow conditions.

The heat exchanger area, from Eq. (9.21), is

A =
_Q

U ΔTð ÞLMTD

where the log mean temperature difference has different values for the parallel and counterflow arrangements. From
Eq. (9.22), we have

a. Parallel flow:

ΔTð ÞLMTD =
75:0−40:0ð Þ− 90:0−20:0ð Þ

ln 75:0−40:0
90:0−20:0

= 50:5K

b. Counterflow:

ΔTð ÞLMTD =
75:0−20:0ð Þ− 90:0−40:0ð Þ

ln 75:0−20:0
90:0−40:0

= 52:5K

For each case, the heat transfer rate _Q is obtained by applying the modified energy rate balance equation to only the air
flow stream. Then, using the ideal gas assumption and the fact that the value of _Q must be positive for use in Eq. (9.21),

_Q = j _mair hout − hinð Þair j = j _mair cp
� �

air Tout −Tinð Þair j
= j 0:200 kg/sð Þ 1004 J/ kg .Kð Þ½ � 75:0− 90:0Kð Þ j = j −3010 J/s j = 3010 J/s

then, the corresponding heat exchanger areas are

Aparallel
flow

=
3010 J/s

140:W/ m2 .Kð Þ½ � 50:5Kð Þ = 0:426m2

and

Acounterflow =
3010 J/s

140:W/ m2 .Kð Þ½ � 52:5Kð Þ = 0:410m2

Also, in this case, one of the heat transfer fluids is an ideal gas and one is an incompressible liquid. Combining Eqs. (7.33)
and (7.37) into Eq. (9.24) with the condition (pin)air = (pout)air (i.e., a negligible pressure drop) gives

_SP = _mair cp
� �

air ln
Tout
Tin

� �
air

+ _mwatercwater ln
Tout
Tin

� �
water

(a)
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Now, _mair is given and _mwater can be found from the modified energy rate balance equation by combining Eq. (6.19) with
(pin)water = (pout)water and Eq. (6.22) with Eq. (9.23) as

_mwater = _mair cp
� �

air/cwater
h i

Tin −Toutð Þair / Tout − Tinð Þwater
n o

Our calculations begin with this last equation:

_mwater = 0:2 kg/sð Þ 1:004kJ/ kg .Kð Þ
4:186kJ/ kg .Kð Þ
� 	

90:0−75:0Kð Þ
40:0−20:0Kð Þ

� 	
= 0:036 kg/s

Then, the entropy production rate equation (a) gives

_SP = 0:200 kg/sð Þ 1004 J/ kg .Kð Þ½ � ln 75:0+273:15
90:0+273:15

� �
+ 0:036kg/sð Þ 4186 J/ kg .Kð Þ½ � ln 40:0+273:15

20:0+273:15

� �
= 1:48W/K

Notice that the entropy production rate in the previous example is independent of whether the heat exchanger is parallel
or counterflow, since the same amount of heat transfer occurs in each case. We would see a difference if we had included
the effect of the viscous pressure drop in the entropy production rate equation. The counterflow arrangement requires less
heat transfer area and therefore produces a smaller pressure drop than the parallel flow arrangement. Then, the counterflow
heat exchanger has a smaller entropy production rate than a parallel flow heat exchanger with the same _Q , U(ΔT )H, and
(ΔT )C values.

Exercises
13. Determine the entropy production rate in Example 9.5 if the air mass flow rate is increased from 0.200 kg/s

to 0.500 kg/s. Keep the values of all the other variables except _mwater the same as they are in Example 9.5.
Answer: _SP = 3:67W/K.

14. If the cooling water mass flow rate in Example 9.5 is decreased so that it exits the heat exchanger at 60.0°C rather than
40.0°C, then determine the new entropy production rate for the heat exchanger. Keep the values of all the variables
except _mwater the same as they are in Example 9.5. Answer: _SP = 1:16W/K.

15. Suppose the air in Example 9.5 is to be cooled to 35.0°C rather than 75.0°C. Determine the new entropy production
rate for this system. Keep the values of all the variables except _mwater the same as they are in Example 9.5.
Answer: _SP = 3:47W/K.

9.7 MIXING
A mixer normally has two or more inlet flow streams but only one outlet flow stream. Often mixers are used
simply to mix different chemical species to produce a final product. When all the entering fluids have the same
composition but are at different temperatures, the mixer becomes a type of simple heat exchanger.

Consider the dual-inlet, single-exit mixer shown in Figure 9.10. The steady state, steady flow energy rate balance
equation (neglecting any change in kinetic and potential energy) is

_Q − _W + _m1h1 + _m2h2 − _m3h3 = 0

and the similar mass rate balance equation is

_m1 + _m2 − _m3 = 0

Combining these two equations and introducing the
mass fraction y as

_m1/ _m3 = y (9.27)

or

_m2/ _m3 = 1− y

where y is always bound by 0 ≤ y ≤ 1, which gives

_Q − _W + _m3 y h1 − h2ð Þ+ h2 − h3ð Þ½ � = 0

1

2
3

Q

W

System boundary

FIGURE 9.10
A simple mixing system.
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Similarly, the appropriate entropy rate balance equation for an isothermal system boundary is

_SP
� �

mixing = _m3s3 − _m1s1 − _m2s2 −
_Q
Tb

= _m3 y s2 − s1ð Þ+ s3 − s2ð Þ½ �− _Q
Tb

Many mixing systems use the inlet flow streams to induce mixing and thus tend to be isobaric (i.e., p1 = p2 = p3).
4 To

simplify the preceding results somewhat, consider the adiabatic, aergonic, isobaric mixing of two flow streams of the
same material but at different temperatures. Then, these formulae reduce to

y h1 − h2ð Þ+ h2 − h3ð Þ = 0 (9.28)

and

Entropy production rate in mixing two nonreacting flow streams

_SP
� �

mixing = _m3 y s2 − s1ð Þ+ s3 − s2ð Þ½ �> 0 (9.29)

If these materials are identical incompressible liquids with negligible mixer pressure loss or identical ideal gases
with constant specific heats, then Eqs. (6.19) and (7.33) or Eqs. (6.22) and (7.37) can be used to give

y T1 − T2ð Þ+ T2 − T3 = 0 (9.30)

and

_SP
� �

mixing = _m3c y ln
T2
T1

+ ln
T3
T2

� �
(9.31)

where c = cp in the case of ideal gases. Combining these two equations by eliminating T3 gives

Entropy production rate in mixing two flow streams of the same
incompressible liquid or the same ideal gas in this case, c = cp

� �
_SP
� �

mixing = _m3c ln 1+ y
T1
T2

−1
� �� 	

T1
T2

� �−y
 �
(9.32)

For a given T1/T2 ratio, there is a critical mass fraction (yc) that produces a maximum rate of entropy production.5 The
critical mass fraction can be found from Eq. (9.32) by setting d _SP/dy = 0 and solving for y = yc. The result is

yc =
1− T1/T2ð Þ+ ln T1/T2ð Þ
1− T1/T2ð Þ ln T1/T2ð Þ (9.33)

which gives

_SP
� �

mixing
ðmaxÞ

= _m3c ln 1+ yc
T1
T2

−1
� �� 	

T1
T2

� �− yc
 �
(9.34)

Figure 9.11 shows the variation in yc with the absolute temperature ratio T1/T2, and Figure 9.12 shows the
resulting _SP

� �
mixing ðmaxÞ vs. T1/T2 relation.

Note that yc is limited by its definition to be less than or equal to 1 in Figure 9.11 and that, in Figure 9.12, it is
impossible to have a mixer whose entropy production rate falls in the region above the curve shown.

Finally, the analysis of the adiabatic, aergonic, isobaric (i.e., viscousless) mixing of identical ideal gases with
constant specific heats produces formulae identical to Eqs. (9.32), (9.33), and (9.34) except c is replaced with
the constant pressure specific heat cp.

4 Isobaric mixing also requires negligible viscous friction losses.
5 It is a maximum because d2 _SP/dy2 <0 when evaluated at y = yc. Also, the minimum value of _SP is always zero, which occurs here
when T1 = T2.
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EXAMPLE 9.6
A bathroom shower is set with equal hot and cold mass flow rates of 0.300 lbm/s. The hot water is at 140.°F and the cold
water is 50.0°F. Determine

a. The shower mixture temperature and its entropy production rate.
b. The critical mass fraction yc and the value of the maximum entropy production rate.

Solution
First, draw a sketch of the system (Figure 9.13).

The unknowns are the shower mixture temperature and its
entropy production rate, the critical mass fraction yc, and the
value of the maximum entropy production rate. The material
is liquid water.

Assume the water is incompressible with a constant specific
heat and the mixing takes place adiabatically, aergonically,
and isobarically.

a. From Eq. (9.27), since _mH = _mC and _mM = _mH + _mC,
y = _mH/ _mM = 1/2 = 0:500 and, with T1 = TH, T2 = TC,
and T3 = TM,

T1
T2

= TH
TC

= 140:+459:67
50:0+459:67

= 1:18

Then, from Eq. (9.30), we have

T3 = TM = TC + y TH −TCð Þ
= 50:0+0:500 140:− 50:0ð Þ = 95:0°F

and, from Eq. (9.32), we have (using _m3 = _mM = _mH + _mC = 0:600 lbm/s)

_SP
� �

mixing = 0:600 lbm/sð Þ 1:0Btu/ lbm.Rð Þ½ � ln 1+ 0:5 0:18ð Þ½ � 1:18ð Þ−0:5
n o

= 2:051× 10−3 Btu/ s.Rð Þ½ � 778:17 ft .lbf/Btuð Þ
= 1:60 ft .lbf/ s.Rð Þ

b. From Eq. (9.33), we have

yc =
ð1−TH/TCÞ+ ln ðTH/TCÞ
ð1− TH/TCÞ ln ðTH/TCÞ =

ð1−1:18Þ+ ln ð1:18Þ
1−1:18ð Þ ln ð1:18Þ = 0:486

(Continued )
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FIGURE 9.11
The critical mass fraction required to produce a maximum entropy
production rate in adiabatic, aergonic, isobaric (i.e., viscousless)
mixing of identical incompressible liquids or ideal gases with
constant specific heats (note that yc = 1.0 at T1/T2 = 0, and
yc → 0 as T1/T2 → ∞).
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FIGURE 9.12
The maximum entropy production rate vs. temperature ratio for a
simple mixing process.

Shower head

mC = 0.300 lbm/s
TC = 50.0°F

TM = ?
SP = ?
yc = ?

(SP)max = ?

mH = 0.300 lbm/s
TH = 140.0°F

FIGURE 9.13
Example 9.6.
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EXAMPLE 9.6 (Continued )

Then, from Eq. (9.34),

_SP
� �

mixing
ðmaxÞ

= 0:600 lbm/sð Þ 1:0Btu/ lbm.Rð Þ½ � ln 1+ 0:486 0:18ð Þ½ � 1:18ð Þ−0:486� �
= 2:056× 10−3 Btu/ s.Rð Þ� 


778:17 ft .lbf/Btuð Þ = 1:60 ft .lbf/ s.Rð Þ

This example illustrates that mixing identical materials at almost the same absolute temperatures with equal mass flow rates
produces nearly the maximum possible entropy production rate. Less entropy is produced if the mixing fraction is either
y < 0.5 or y > 0.5 when T1 ≈ T2.

Exercises
16. If the hot water mass flow rate is 0.500 lbm/s and the cold water mass flow rate is 0.300 lbm/s in Example 9.6,

determine the entropy production rate of the mixing process. Keep the values of all the variables except TM and y the
same as they are in Example 9.6. Answer: _SP

� �
mixing = 1:90 ft .lbf/ s.Rð Þ.

17. Recalculate parts a and b in Example 9.6 when the hot water temperature is reduced from 140.°F to 120.°F.
Keep the values of all the variables except TM and yc the same as they are in Example 9.6. Answer:
(a) _SP

� �
mixing = 0:966 ft .lbf/ s.Rð Þ, (b) yc = 0.489 and _SP

� �
mixingmax = 0:966 ft .lbf/ s.Rð Þ.

18. If the cold water temperature is increased from 50.0°F to 60.0°F, recalculate parts a and b in Example 9.6.
Keep the values of all the variables except TM and yc the same as they are in Example 9.6. Answer:
(a) _SP

� �
mixing = 1:196 f .lbf/ s.Rð Þ, (b) yc = 0.488, and _SP

� �
mixingmax = 1:196 ft .lbf/ s.Rð Þ.

9.8 SHAFT WORK MACHINES
A shaft work machine is defined in Chapter 6 as any device that has work (or power) input or output through a
rotating or reciprocating shaft. These devices are normally steady state, steady flow, single-inlet, single-outlet systems,
and their resulting modified energy rate balance equation is

_Qactual − _Wactual = _m h2 − h1 + V2
2 −V2

1

� �
/2gc + g/gcð Þ Z2 −Z1ð Þ� 


(6.30)

Assuming an isothermal system boundary, the modified entropy rate balance equation is

ð _Q /TbÞactual + _m s1 − s2ð Þ+ _SP = 0

or

_Qactual = _mTb s2 − s1ð Þ− Tb _SP

Using this expression for _Q in the preceding equation and solving for _Wactual produces

_Wactual = _m h1 −Tbs1ð Þ− h2 − Tbs2ð Þ+ V2
1 −V2

2

� �
/2gc + g/gcð Þ Z1 −Z2ð Þ� 


−Tb _SP (9.35)

and this can be rearranged to provide an expression for the entropy production rate of a shaft work machine as

Entropy production in a shaft work machine

_SP shaft work
machine

���� = _m
Tb

� �
h1 − Tbs1ð Þ− h2 − Tbs2ð Þ+ V2

1 −V2
2

2gc
+

g Z1 −Z2ð Þ
gc

� 	
−

_Wactual

Tb
(9.36)

For a reversible process, _SP = 0, and Eq. (9.35) reduces to

_Wrev = _m h2 −Tbs2ð Þ− h1 −Tbs1ð Þ+ V2
2 −V2

1

� �
/2gc + g/gcð Þ Z2 −Z1ð Þ� 


(9.37)

and since, from Chapter 7,

_Wactual = _Wrev + _Wirr

by comparing Eqs. (9.35) and (9.37), we see that

_Wirr = Tb _SP
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The work transport energy efficiency ηW is defined in Chapter 4 for a work producing system (e.g., an engine or
motor) by Eq. (4.72) as

ðηWÞwork
producing

=
_Wact

_Wrev
(4.72)

Inserting Eqs. (9.35) and (9.37) gives

ðηWÞ
work
producing

����� =
_m½ðh1 − Tbs1Þ− ðh2 − Tbs2Þ+ ðV1

2 −V2
2Þ/ð2gcÞ+ ðg/gcÞðZ1 −Z2Þ�− Tb _SP

_m½ðh1 − Tbs1Þ− ðh2 − Tbs2Þ+ ðV1
2 −V2

2Þ/ð2gcÞ+ ðg/gcÞðZ1 −Z2Þ�

= 1− Tb _SP
_m½ðh1 − Tbs1Þ− ðh2 − Tbs2Þ+ ðV1

2 −V2
2Þ/ð2gcÞ+ ðg/gcÞðZ1 −Z2Þ�

(9.38)

and, for a work absorbing system (pump, compressor, etc.), Eq. (4.71) gives

ðηWÞ
work
absorbing

������ =
_m½ðh1 − Tbs1Þ− ðh2 − Tbs2Þ+ ðV1

2 −V2
2Þ/ð2gcÞ+ ðg/gcÞðZ1 −Z2Þ�

_m½ðh1 − Tbs1Þ− ðh2 − Tbs2Þ+ ðV1
2 −V2

2Þ/ð2gcÞ+ ðg/gcÞðZ1 −Z2Þ�− Tb _SP
(9.39)

EXAMPLE 9.7
Determine the maximum (reversible) power that could be produced by expanding 0.500 kg/s of steam in a shaft work
machine from 8.00 MPa, 300.°C to a saturated vapor at 100.°C. Neglect any kinetic and potential energy effects. The tem-
perature of the system boundary is Tb = 20.0°C

Solution
First, draw a sketch of the system (Figure 9.14).

The unknown is the maximum (reversible) power for this
system. For this open system, we have the following ther-
modynamic station data:

Station 1 �����!Expansion

p1 = 8:00MPa
T1= 300:°F

Station 2

x2 = 1:00
T2= 100:°C

Neglecting all kinetic and potential energy effects, Eq. (9.37)
reduces to

_Wmax = _Wrev = _m ½ðh1 − Tbs1Þ− ðh2 −Tbs2Þ�

and, using the values just given, we get

_Wmax = ð0:50 kg=sÞ 2785:0− ð20:0+273:15Þð5:7914Þ½ �− 2676:0− ð20+ 273:15Þð7:3557Þ½ �f g
= 284 kW

Exercises
19. If the mass flow rate of steam in Example 9.7 is increased from 0.500 kg/s to 0.850 kg/s with all the inlet and exit steam

properties remaining constant, what is the maximum (reversible) power output? Answer: _Wmax = _Wrev = 482kW.
20. Determine the maximum (reversible) power output in Example 9.7 when the steam exits with a quality of 90.0% rather

than 100.%. Answer: _Wmax = _Wrev = 308 kW.
21. Suppose the inlet steam pressure and temperature in Example 9.7 is increased to 10.0 MPa and 800.°C. Determine the

maximum (reversible) power output. Answer: _Wmax = _Wrev = 712kW.

9.9 UNSTEADY STATE PROCESSES IN OPEN SYSTEMS
In Chapter 6, we analyze the energy transport requirements in the emptying and filling of a rigid container. In
this section, we carry out an entropy analysis of the filling of a rigid container and determine whether it is more
efficient to fill it adiabatically or isothermally.

m = 0.500 kg/s

p1  = 8.00 MPa
T1 = 300.°C

x2  = 1.00
T2 = 100.°C

Tb = 20.0°C

1

2 Wmax= Wrev = ?

Station 1 Station 2

FIGURE 9.14
Example 9.7.
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The energy rate balance analysis of the adiabatic,
aergonic system shown in Figure 9.15 is done in
Chapter 6. The result is

u2 = hin (6.34)

and, in the case of an incompressible, constant specific
heat liquid, this means that the final temperature T2 is

T2 = Tin + v/cð Þpin (6.35)

For an ideal gas with constant specific heats, it
means that

T2 = cp/cv
� �

Tin = kTin (6.36)

The entropy rate balance for this unsteady state system is

_S = dS
dt

=
_Q
Tb⎵

0 ðinsulatedÞ

+ _msin + _SP

Integrating this equation from its initial empty state 1 to its final filled state 2 with Sin equal to a constant and
solving for the entropy production gives

1ðSPÞ2 = S2 − S1 − ðm2 −m1Þsin = m2s2 −m1s1 − ðm2 −m1Þsin
Now, for simplicity, assume that the container is initially evacuated, m1 = 0, and

1 SPð Þ2 = m2 s2 − sinð Þ (9.40)

then, Eqs. (7.33), (7.37), and (9.40) give

Entropy production in adiabatically filling a rigid tank with an incompressible liquid

1 SPð Þ2 incomp:
liquid
ðadiabaticÞ

= m2c ln
T2
Tin

= m2c ln 1+
pvð Þin
cTin

� 	������ (9.41)

and

Entropy production in adiabatically filling a rigid tank with an ideal gas

1 SPð Þ2 ideal
qas
ðadiabaticÞ

������ = m2cp ln
T2
Tin

−m2R ln
p2
pin

= m2cp ln k (9.42)

where, for the ideal gas case, m2 = p2V
2
/ RT2ð Þ = p2V/ kRTinð Þ, where V is the volume of the container and where

we use p2 = pin.

A similar energy rate balance on the same system except now uninsulated and kept isothermal at T1 = Tin = T2
gives

_Q + _minhin = d
dt

muð Þ

and multiplying this equation by dt and integrating gives

1Q2 + ðm2 −m1Þhin = m2u2 −m1u1

again setting m1 = 0 for an initially evacuated container produces

u2 = hin +
1Q2

m2
= uin + pvð Þin + 1Q2

m2

m

Initially empty
rigid insulated tank
of volume ∀    

hin, Tin, pin

FIGURE 9.15
The filling of an insulated, rigid container.
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For an incompressible isothermal liquid, this reduces to

u2 − uin = c T2 − Tinð Þ = pvð Þin + 1Q2

m2
= 0

or

1Q2 = −m2 pvð Þin (9.43)

and, for an isothermal ideal gas, it becomes

1Q2 = −m2RTin = −m2cvTinðk−1Þ

The integrated entropy rate balance for this system with both Sin and Tb constant is

1 SPð Þ2 = m2s2 −m1s1 − m2 −m1ð Þsin − 1Q2

Tb

and, when m1 = 0, this becomes

1ðSPÞ2 = m2ðs2 − sinÞ− 1Q2

Tb
(9.44)

For an isothermal incompressible liquid with T2 = Tin = Tb = T, Eqs. (7.33), (9.43), and (9.44) give

Entropy production in isothermally filling a rigid tank with an incompressible liquid

1 SPð Þ2 incomp:

liquid
ðisothermalÞ

������
= m2 pvð Þin/T (9.45)

and, for an isothermal ideal gas with p2 = pin and T2 = Tin = Tb = T,

Entropy production in isothermally filling a rigid tank with an ideal gas

1 SPð Þ2 ideal
gas
ðisothermalÞ

������
= m2cv k−1ð Þ = m2R = p2V/T (9.46)

where R = cp – cv = cv(cp/cv – 1) = cv(k – 1) and m2 = p2V/ðRTÞ.
Now, comparing Eqs. (9.41) and (9.45) for filling the container with the same amount of an incompressible
liquid (i.e., m2 is the same in each case), we see that, since ln(1 + x) < x for all x >0,

1 SPð Þ2 incomp:
liquid
ðadiabaticÞ

������
< 1 SPð Þ2 incomp:

liquid
ðisothermalÞ

������ ðfor adding the same amount of mass in each caseÞ ð9:47Þ

but, on comparing Eqs. (9.42) and (9.46) for ideal gases, we find that we cannot add the same amount of mass
in each case because

ðm2Þ adiabatic
filling

���� = p2V/ RT2ð Þ = p2V/ kRTinð Þ = m2ð Þ/k isothermal
filling

���� (9.48)

Since

k R
cp

� �
=

cp − cv
cv

= k−1
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and the series expansion for the logarithm of k for 0 < k < 2 is

ln k = ðk− 1Þ− ðk− 1Þ2/2+ ðk− 1Þ3/3− � � �
clearly kR/cp > ln k, which produces the following result when the tanks are filled to the same pressure (but not
with the same amount of mass):

1 SPð Þ2
ideal
gas
ðadiabaticÞ

������
< 1 SPð Þ2

ideal
gas
ðisothermalÞ

������
In the dissipative hydraulic flows studied earlier in this chapter, we find that less entropy is produced in both incom-
pressible and ideal gas systems if the flows are carried out adiabatically as opposed to isothermally. The preceding
analysis shows that this is also true in the filling of a rigid vessel. Note, however, that these two filling processes do
not normally produce the same final system state. For example, adiabatic filling clearly produces a higher final tem-
perature than isothermal filling when starting from the same initial temperature. A complete entropy production
analysis has to include any additional processes required to reduce both systems to the same final state.

EXAMPLE 9.8
A 3.00 ft3 rigid container is filled with oxygen entering at 70.0°F to a final pressure of 2000. psia. Assuming the container is
initially evacuated and that the oxygen behaves as an ideal gas with constant specific heats, determine the amount of
entropy produced when the container is filled

a. Adiabatically by insulating it.
b. Isothermally by submerging it in a water bath at 70.0°F while filling.

Solution
First, draw a sketch of the system (Figure 9.16).

The unknowns are the amount of entropy produced when the
container is filled adiabatically by insulating it and isother-
mally by submerging it in a water bath at 70.0°F while fill-
ing. The material is the oxygen gas in the tank.

From Table C.13a of Thermodynamic Tables to accompany Modern
Engineering Thermodynamics, we find for oxygen cp = 0.219 Btu/
(lbm ·R), R = 48.29 ft · lbf/(lbm ·R), k =1.39. The final temper-
ature after filling adiabatically is given by Eq. (6.36) as

ðT2Þadiabatic
filling

= kTin = 1:39ð70:0+459:67RÞ = 736R = 277°F

and, for isothermal filling,

ðT2Þisothermal
filling

= Tin = 70:0+ 459:67 = 530:R

The final mass of oxygen in the container can be found from the ideal gas equation of state as

m2 =
p2V

2

RT2

so

m2ð Þ adiabatic
filling

���� =
p2V2

RðT2Þadiabatic
filling

=
2000: lbf/in:2ð Þ 144 in:2/ft2

� �
3:00 ft3
� �

48:29 ft .lbf/ lbm.Rð Þ½ � 736Rð Þ = 24:3 lbm

and

m2ð Þ isothermal
filling

���� =
p2V2

RðT2Þisothermal
filling

=
2000: lbf/in:2ð Þ 144 in:2/ft2

� �
3:00 ft3
� �

48:29 ft .lbf/ lbm.Rð Þ½ � 530:Rð Þ = 33:8 lbm

O2 at 70.0°F O2 at 70.0°F

Insulation

(a) 1(SP)2 =? (b) 1(SP)2 = ?

Water at 70.0°F

∀ = 3.00 ft3

Pfinal = 2000. psia
∀ = 3.00 ft3

Pfinal= 2000. psia

FIGURE 9.16
Example 9.8.

300 CHAPTER 9: Second Law Open System Applications



a. From Eq. (9.42) for adiabatic filling, we have

½1ðSPÞ2�adiabatic
filling

= ðm2Þadiabatic
filling

cp lnðkÞ = ð24:3 lbmÞ½0:219Btu/ðlbm.RÞ� ln ð1:39Þ = 1:75Btu/R

b. From Eq. (9.46) for isothermal filling, we have

½1ðSPÞ2�isothermal
filling

= ðm2Þisothermal
filling

R = ð33:8 lbmÞ 48:29 ft .lbf/ðlbm.RÞ
778:16 ft .lbf/Btu

� �
= 2:10Btu/R

which is about 20% greater than the entropy produced in part a.

Exercises
22. If the volume of the rigid container in Example 9.8 is reduced from 3.00 ft3 to 2.00 ft3, what is the new entropy

production for the filling processes described in parts a and b? Keep the values of all the other variables the same as
they are in Example 9.8. Answer: (a) [1(SP)2]adiabatic = 1.17 Btu/R, (b) [1(SP)2]isothermal = 1.40 Btu/R.

23. The filling pressure in Example 9.8 is to be reduced from 2000. psia to 1500. psia. Determine the new entropy
production for the filling processes described in parts a and b. Keep the values of all the other variables the same as they
are in Example 9.8. Answer: (a) [1(SP)2]adiabatic = 1.31 Btu/R, (b) [1(SP)2]isothermal = 1.57 Btu/R.

24. If the rigid container discussed in Example 9.8 is filled with air instead of oxygen, determine the new entropy
production for the filling described in parts a and b. Keep the values of all the other variables the same as they are in
Example 9.8. Answer: (a) [1(SP)2]adiabatic = 1.76 Btu/R, (b) [1(SP)2]isothermal = 2.10 Btu/R.

25. Determine the amount of entropy produced as 15.7 kg of argon gas is isothermally compressed into a 1.75 m3 rigid
container at 25.0°C. Answer: [1(SP)2]isothermal = 3.27 kJ/K.

Equations (9.42), (9.46), and (9.48) can be combined to give

½1ðSPÞ2�isothermal

½1ðSPÞ2�adiabatic

� 	
= k− 1

ln k
ideal
gas

��������
which is greater than 1.0 for k > 1.0. This result is shown in Figure 9.17.

However, the specific entropy production ratio on a per unit mass of charge basis, that is, as 1(SP)2/m2 = 1(sP)2, is

½1ðsPÞ2�isothermal

½1ðsPÞ2�adiabatic

� 	
= k− 1

k ln k
ideal
gas

��������
which is less than 1.0 for k > 1.0, because the two processes do not take on the same total charge of gas (see
Eq. (9.48)).
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FIGURE 9.17
Entropy production ratio for an ideal gas.
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CASE STUDIES OF ENTROPY PRODUCTION IN OPEN SYSTEMS

The following examples are typical case studies in open system
applied engineering thermodynamics. They are included here to
provide the student with an exposure to a second law analysis of
complex systems typical of 21st century engineering technology.
Energy and entropy rate balance equations are used as tools to
understand these technologies.

Case study 9.1. Temperature magic
A vortex tube is a seemingly magical device that separates the tem-
perature of its inlet flow stream into hot and cold outlet flow
streams. Remarkably, it contains no moving parts other than the
flowing gas itself.

The inlet flow enters the vortex tube chamber tangentially, and the
resulting swirling motion causes the gaseous core along the cham-
ber centerline to become extremely cold while the gas near the
chamber wall becomes very hot. Internal baffles allow the core gas
to exit through one tube (cold outlet) while the wall gas exits
through the other (hot outlet), thus producing flow stream tem-
perature separation. The illustration in Figure 9.18 shows the opera-
tion of this simple device.

Hot outlet

3
Inlet

Cold outlet

1

(a)

2

(b)
Flow control valve

Cold side outlet

Compressed air inlet

Hot side outlet

FIGURE 9.18
(a) A typical vortex tube. (b) A schematic showing how the off-center inlet
causes the flow to form a swirl (vortex) inside the tube. The center of the
vortex becomes cold and exits one end of the tube, and the outer part of
the vortex becomes hot and exits the other end on the tube.

This remarkable device was discovered by Georges Joseph Ranque and
was first described in a French patent in 1931.6 In 1933, Ranque pre-
sented a paper to the Societe Francaise de Physique on this device,
and nothing more was heard about it until 1945, when a vortex tube
was found by an American and British investigation team at the end
of World War II in the laboratory of Rudolph Hilsch at the University

of Erlangen, Germany. Hilsch had begun research on the vortex tube
in 1944, after reading Ranque’s paper, and he published his results in
Germany in 1946 and in the United States in 1947. Since then, inter-
est in the vortex tube has remained high, and it is now frequently
used in industry for inexpensive localized cooling applications.

Applying the energy rate balance to the adiabatic and aergonic vor-
tex tube shown in Figure 9.18 and assuming ideal gas behavior
with constant specific heats yields

y T1 −T2ð Þ+T2 −T3 = 0

where y = _m3/ _m1 = _mhot/ _mcold is the hot-side mass fraction defined
by Eq. (9.27). Note that this result is exactly the same as Eq.
(9.30), which was developed for the mixing operation. Thus, the
first law of thermodynamics is insensitive to whether the fluids are
being mixed or separated. It yields the same result in either case.

However, application of the entropy rate balance to the same system
produces

_SP
� �

vortex tube = _m3 y s1 − s2ð Þ+ s2 − s3½ �>0 (9.49)

and comparing this with Eq. (9.29) yields the remarkable result that

_SP
� �

vortex tube = − _SP
� �

mixing (9.50)

yet both entropy production rates must be positive. This means that
these two processes cannot simply be the reverse of each other. They
cannot both follow the same thermodynamic path. The vortex tube
separation phenomena must occur by a process that is unavailable
to the simple mixing process and vice versa; otherwise, one of these
devices violates the second law of thermodynamics.

To produce temperature separation, the vortex tube must have a sig-
nificant pressure drop between the inlet and the outlet flow streams.
It does not work isobarically. This pressure drop is not necessary in
the mixing operation. Mixing is usually nearly isobaric, and emulation
of the vortex tube separation operation requires a higher mixer outlet
pressure than inlet pressure. This cannot be done without introducing
heat or work energy transport into the system, which would alter the
basic nature of the simple mixing device. Therefore, it is clear that the
vortex tube inlet pressure is the source of the energy needed to pro-
duce the observed temperature separation. It is also the source of the
entropy generation needed to allow Eq. (9.50) to be valid, as shown
in Example 9.9, which follows.

Though the vortex tube is not an isobaric device, its two exit pres-
sures are essentially equal (i.e., p1 ≈ p2). Combining this condition
with Eq. (7.37) for ideal gases and substituting the result into Eq.
(9.49) gives

_SP
� �

vortex tube = _m3 cp ln
T1/T2ð Þy

1+ y T1/T2 −1ð Þ +R ln
p3
p2

� 	
(9.51)

6 In 1932, he applied for a U.S. patent, which was awarded March 27, 1934
(U.S. patent number 1,952,281).
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EXAMPLE 9.9
The Vortec Corporation manufactures a vortex tube to provide hot and cold air from a standard compressed air system. For an
equally split mass flow rate (y = 0.500), Table 9.2 lists the hot and cold outlet temperatures for various inlet pressures when
the inlet temperature is 70.0°F. Assuming the exit pressure is atmospheric, determine the entropy production rate per unit
mass flow rate for each pressure shown and plot the results.

Solution
First, draw a sketch of the system (Figure 9.19).

Hot outlet

Cold outlet

Tinlet = 70.0°F

Inlet

y =        = 0.500
mH
mC

FIGURE 9.19
Example 9.9, system.

The unknowns are the entropy production rate per unit mass flow rate for each pressure shown; plot the results. The
material is air.

(Continued )

Table 9.2 Hot and Cold Outlet Temperatures

Inlet pressure Outlet temperatures THð°FÞ+ 460
TCð°FÞ+ 460(psig) (psia) Thot(°F) Tcoldt(°F)

0.000 14.7 70.0 70.0 1.000

20.00 34.7 119.0 19.5 1.209

40.00 54.7 141.0 –3.00 1.315

60.00 74.7 150.0 –14.0 1.368

80.00 94.7 156.0 –22.0 1.406

100.0 114.7 161.0 –29.0 1.441

120.0 134.7 164.0 –34.0 1.465

140.0 154.7 166.0 –39.0 1.487

Table 9.3 Remaining Results for Example 9.9

Inlet pressure psig T1/T2
_SP/ _m3 Btu/ lbm ⋅RÞð

0.000 1.000 0.0000

20.00 1.209 0.0577

40.00 1.315 0.0878

60.00 1.368 0.1084

80.00 1.406 0.1241

100.0 1.441 0.1367

120.0 1.465 0.1474

140.0 1.487 0.1565
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EXAMPLE 9.9 (Continued )

Using Eq. (9.51) for air, with R = 0.0685 Btu/(lbm ·R), cp = 0.240 Btu/(lbm ·R), and y = 0.500, to calculate _SP/ _m3 gives
the following results. At 20 psig = 34.7 psia, p2 = p3 = 14.7 psia, and from Table 9.2, we find TH/TC = T3/T2 = 1.209.
Then,

_SP/ _m3
� �

vortex
tube

= 0:240Btu/ lbm.Rð Þ½ � ln 1:209ð Þ0:5
1+0:500 0:209ð Þ + 0:0685Btu/ lbm.Rð Þ½ � ln 34:7

14:7

= −0:0011+ 0:0588 = 0:0577Btu/ lbm.Rð Þ

Notice that the first term (which corresponds to isobaric separation) in this calculation is negative while the second term
(resulting from the pressure loss) is positive and dominant. Therefore, if the vortex tube is required to be isobaric, it could
not work, because to do so would violate the second law of thermodynamics. However, isobaric mixing is possible because
then the lead term in this equation is positive and the second term is zero. The remaining results are in Table 9.3. These
values are plotted Figure 9.20.
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FIGURE 9.20
Example 9.9, results.

CAN VORTEX TUBES BE USED FOR AIR CONDITIONING?

In factories where compressed air is readily available, vortex tubes are often used to cool parts during machining or to
provide cool air to workers in enclosed environments. But, when you take into account the energy needed to compress the
air, vortex tubes are not very efficient cooling devises.

Vortex tubes also work with liquids as well as gases, but only at very high inlet pressures. Using the incompressible liquid
equations of state in the entropy balance equation, you can show that indeed a temperature separation occurs in a vortex
tube, providing the inlet pressure is very high.7

7 See: R.T. Balmer, “Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids,” ASME Journal of Fluids Engineering (1988), pp. 161–164.
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CASE STUDY 9.2. HYDRODYNAMIC FLOW SYSTEMS

A variety of hydrodynamic flow situations can be effectively
analyzed with the entropy rate balance. Consider a steady state,
steady flow, single-inlet, single-outlet system. The MERB for this sys-
tem using the definition of enthalpy, h = u + pv, and the definition
of density, ρ = 1/v, can be written as

_Q − _W = _m u2 − u1 + p/ρð Þ2 − p/pð Þ1 + V2
2 −V2

1

� �
/2gc + g/gcð Þ Z2 −Z1ð Þ� 


= _m u2 − u1 − g/gCð Þ 1 hLð Þ2
� 
� �

where, using the specific weight γ = ρg,

1 hLÞ2 = pgc/γð Þ1 − pgc/γð Þ2 + V2
1 −V2

2

� �
/2g+Z1 −Z2

�
(9.52)

is the head loss between the inlet station 1 and the exit station 2. In
fluid mechanics texts, Eq. (9.52) is known as the Bernoulli equation,
named after the Swiss mathematician and hydrodynamist Daniel
Bernoulli (1700–1782). The MSRB for this system is

_SP = _m s2 − s1ð Þ− _Q /Tb

If the flowing fluid is a constant specific heat incompressible liquid,

ρ1 = ρ2 = constant

u2 − u1 = c T2 −T1ð Þ

s2 − s1 = c ln T2
T1

and, if it is a constant specific heat ideal gas,

ρ = p/ RTð Þ = 1/v

u2 − u1 = cv T2 − T1ð Þ

s2 − s1 = cp ln
T2
T1

−R ln
p2
p1

Now, let us compare the rate of entropy production for two cases (i.e.,
two thermodynamic paths), adiabatic flow and isothermal flow.

Case A. SS, SF, SI, SO, aergonic, adiabatic flow8

Incompressible, constant specific heat liquids. In this case, the
MERB gives

T2 = T1 + g 1 hLð Þ2
� 


/ cgcð Þ

and the MSRB gives

_SP incomp:
liquid:
ðadiabaticÞ

����� = _mc ln 1+ g 1 hLÞ2
� 


/ cgcT1ð Þ� ��
(9.53)

Ideal gases with constant specific heats. In this case, the MERB
gives

T2 = T1 + g 1 hLÞ2
� 


/ cvgcð Þ�
and the MSRB gives

_SP
� �

ideal
gas
ðadiabaticÞ

����� = _mcp ln 1+ g 1 hLð Þ2
� 


/ cvgcT1ð Þ� 

− _mR ln

p2
p1

(9.54)

Case B. SS, SF, (SI, SO) aergonic, isothermal flow
Incompressible, constant specific heat liquids. In this case, the
MERB gives

_Q = − _mg 1 hLÞ2
� 


/gc
�

and the MSRB gives

_SP
� �

incomp:
liquid
ðisothermalÞ

����� = _mg 1 hLÞ2
� 


/ðTbgcÞ
�

(9.55)

Ideal gases with constant specific heats. In this case, the MERB
again gives

_Q = − _mg 1 hLÞ2
� 


/gc
�

and the MSRB gives

_SP
� �

ideal
gas
ðisothermalÞ

����� = _mg 1ðhLÞ2
� 


/ðTbgcÞ− _mR ln
p2
p1

(9.56)

The question is this: Which process, adiabatic or isothermal, is the
more efficient by producing less entropy? For the incompressible
liquids, we must compare Eqs. (9.53) and (9.55). Using a series
expansion for the logarithm, we find that, for all x > 0, ln(l + x) < x,
so that for Tb = Tl, we have

c ln 1+ g 1 hLð Þ2
� 


/ cgcT1ð Þ� �
< g 1 hLð Þ2
� 


/ T1gcð Þ

and, consequently,

_SP
� �

incomp:
liquid
ðadiabaticÞ

����� < _SP
� �

incomp:
liquid
ðisothermalÞ

�����
Similarly, for the ideal gases, we compare Eqs. (9.54) and (9.56) and
again find that.

_SP
� �

ideal
gas
ðadiabaticÞ

����� < _SP
� �

ideal
gas
ðisothermalÞ

�����
In both of these cases, the adiabatic process produces less entropy.
This is always true in this type of comparison, because an adiabatic
system eliminates the entropy production due to heat transfer across
the system boundary.

(Continued )

9.9 Unsteady State Processes in Open Systems 305



EXAMPLE 9.10
At a rate of 500. lbm/s, water at 50.0°F flows down a spillway onto a horizontal floor. A hydraulic jump 1.80 ft high
appears at the bottom of the spillway. The jump has an inlet velocity of 8.00 ft/s and an inlet height of 1.00 ft. Determine
the energy dissipation rate and entropy production rate.

Solution
First, draw a sketch of the system (Figure 9.21).

Hydraulic jump

8.00 ft/s

1.00 ft 1.80ft 5.14 ft/s
m = 500. lbm/s

FIGURE 9.21
Example 9.10.

The unknowns are the energy dissipation rate and entropy production rate. The material is liquid water.

From the formula in Table 9.4, we get

1 hLð Þ2 = 1:80− 1:00ð Þ3/ 4 1:0ð Þ0 1:80ð Þ½ � = 0:0711 ft

and

_m g/gcð Þ 1 hLð Þ2
� 


= 500: lbm/sð Þ 32:174 ft/s2ð Þ/ 32:174 lbm.ft/ lbf .s2ð Þ½ �f g 0:0711 ftð Þ
= 35:55 ft .lbf/sð Þ/ 778:17 ft .lbf/Btuð Þ = 0:0457Btu/s

Combining the MERB and the MSRB equations for any type of mate-
rial produces a general formula for the entropy production rate
inside a steady state, steady flow, single-inlet, single-outlet system
with an isothermal boundary as

_SP = _m s2 − s1 + g/gcð Þ 1 hLð Þ2
� 


− u2 + u1
� 


/Tb
� �

(9.57)

Table 9.4 shows typical head loss formulations for a few common
hydrodynamic flow situations. With these formulae, the entropy
production rates can be calculated for many different hydraulic or
pneumatic flow systems.

The hydraulic jump is a very effective phenomenon for dissipating
energy. It commonly appears at the end of chutes or spillways to dis-
sipate the kinetic energy of the flow. It is also an effective mixing
process due to the violent dissipative agitation that takes place. The
following example illustrates the entropy production rate in a
hydraulic jump.

8 Recall that these terms mean we assume that the flow is steady state (SS) and
steady flow (SF), that the flow has a single inlet and a single outlet (SI, SO), and
that there is no work (aergonic) or heat transfer (adiabatic).

HYDRODYNAMIC FLOW SYSTEMS Continued

Table 9.4 Hydraulic Flow Systems

System Heat Loss Formula

Flow in a straight pipe 1(hL)2 = f(L/D)(V 2/2g), where f is the Darcy-Weisbach friction factor

Flow through valves, fittings, etc. (“minor losses”) 1(hL)2 = KM (V 2/2g), where KM is the minor loss coefficient

Flow through sudden contractions or expansions [1(hL)2]contraction = KC (V
2/2g), where KC is the contraction coefficient and

V is the contraction outlet velocity or expansion inlet velocity. Also

½1 hLð Þ2�expansion = 1−D2
1/D

2
2

� �2 V2/2g
� �

Flow through a hydraulic jump 1(hL)2 = (y2 – y1)
3/(4y1y2), where y2 – y1 is the jump height

Note: Values for the coefficients f, KM, and KC can be found in standard fluid mechanics textbooks.
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Assuming the flow to be incompressible and adiabatic, the entropy production rate is given by Eq. (9.53) as

_SP = 500: lbm/sð Þ 1:00Btu/ lbm.Rð Þ½ �

× ln 1+
32:174 ft/s2ð Þ 0:0711 ftð Þ

1:00 Btu
lbm.R

� �
32:174 lbm

.ft
lbf .s2

� �
50:0+459:67Rð Þ

264
375

= 0:0697Btu/ s.Rð Þ

Exercises
26. Determine the entropy production rate in the hydraulic jump discussed in Example 9.10 if the mass flow rate of the

water is reduced from 500. lbm/s to 50.0 lbm/s. Keep the values of all the other variables the same as they are in
Example 9.10. Answer: _SP = 0:00697 Btu/(s ·R).

27. If the exit water height (y2) in Example 9.10 is 1.50 ft rather than 1.80 ft, what is the entropy production rate of the
hydraulic jump. Keep the values of all the other variables the same as they are in Example 9.10. Answer: _SP = 0:0204
Btu/(s ·R).

28. If the inlet water temperature in Example 9.10 is increased from 50.0°F to 80.0°F, what is the new entropy production
rate of the hydraulic jump? Keep the values of all the other variables the same as they are in Example 9.10. Answer:
_SP = 0:0659 Btu/(s ·R).

The next example illustrates the use of the more complex direct method of determining the entropy production
rate in a simple laminar hydrodynamic flow situation. In the design of hydraulic systems, the viscous losses in
the flow stream oil can be very large. For this reason, it is usually desirable to keep the flow of hydraulic oil
laminar rather than turbulent.

EXAMPLE 9.11
The velocity profile in the steady isothermal laminar flow of an incompressible Newtonian fluid in a horizontal circular tube
of radius R is given by

V = Vm 1− x/Rð Þ2� 

where Vm is the maximum (i.e., centerline) velocity of the fluid, and x is the radial coordinate measured from the center-
line of the tube.

Determine the entropy production rate due to laminar viscous losses in water at 20.0°C flowing in a 2.50 cm diameter pipe
with a centerline velocity of 0.500 m/s. The viscosity of the water is 10.1 × 10–3 kg/(m · s), and the length of the pipe is
10.0 m.

Solution
First, draw a sketch of the system (Figure 9.22).

The unknown is the entropy production rate due to laminar viscous losses. The material is liquid water.

Here we use Eq. (7.72), which is the direct method, to determine the
entropy production rate due to fluid viscosity. By differentiating
the velocity formula given in the problem statement, we get

dV
dx

= −2Vm x/R2
� �

then

σWð Þvis =
μ
T

dV
dx

� �2
=

4μV2
mx

2

R4T

and Eq. (7.72) gives

_SP
� �

W
vis

=
Z

V σWð ÞvisdV

(Continued )

dx

Annular
differential
volume

x

L

(SP)W-vis = ?

FIGURE 9.22
Example 9.11.
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EXAMPLE 9.11 (Continued )

For the differential volume element dV , we use the volume of an annulus of thickness dx, or dV = 2πLx dx. Then, we can
evaluate Eq. (7.72) as

_SP
� �

W
vis

=
8πμLV2

m

R4T

Z R

0
x3dx =

2πμLV2
m

T

For this problem,

μ = 10:1× 10−3 kg/ m.sð Þ
L = 10:0m

Vm = 0:500m/s

T = 20:0°C = 293K

then

_SP
� �

W
vis

=
2π 10:1× 10−3 kg/ðm.sÞ½ � 10:0mð Þ 0:500m/sð Þ2

20:0+273:15K

= 5:41×10−4 W/K

In this example, we again have a very low entropy production rate. This is due, in this case, to the fact that laminar flow is a
very energy efficient type of flow. Turbulent flow (which occurs spontaneously here at higher flow velocities) is much more
dissipative and consequently is a much less energy efficient flow.

Exercises
29. If the fluid being pumped through the pipe in Example 9.11 is SAE-30 motor oil with a viscosity of 0.400 kg/(m · s)

instead of water, determine the entropy production rate due to viscosity. Keep the values of all the other variables the
same as they are in Example 9.11. Answer: _SP

� �
W-vis = 0:0214W/K.

30. If we increase the maximum (centerline) velocity of the water in Example 9.11 from 0.500 m/s to 3.00 m/s, determine
the new entropy production rate due to viscosity. Keep the values of all the other variables the same as they are in
Example 9.11. Answer: _SP

� �
W-vis = 1:95× 10−3 W/K.

31. If we increase the length of the pipe in Example 9.11 from 10.0 m to 1000. m, determine the new entropy
production rate due to viscosity. Keep the values of all the other variables the same as they are in Example 9.11.
Answer: _SP

� �
W-vis = 5:41×10−3 W/K.

32. The diameter of the pipe in Example 9.11 is increased from 2.50 to 3.75 cm, but the mass flow rate is maintained
constant. Determine the new entropy production rate due to the fluid’s viscosity. Keep the values of all the variables
except Vm the same as they are in Example 9.11. Answer: _SP

� �
W-vis = 1:07×10−5 W/K.

SUMMARY
In this chapter, we investigate a series of open systems and carry out a second law analysis of them using the
entropy balance or the entropy rate balance. The primary purpose of this material is to stimulate your thinking
by addressing modern technologies from a second law point of view. Several new equations are introduced in
this chapter that deal with these technologies. Some of the more important equations follow.

1. The general open system entropy rate balance (SRB) equation isZ
Σ

_q
Tb

� �
act
dA+∑

inlet

_ms− ∑
outlet

_ms+ _SP = _Ssystem (9.4)

and, when the system boundaries are isothermal, this equation reduces to

_Q
Tb

� �
act

+∑
in

_ms−∑
out

_ms+ _Sp = _Ssystem (9.5)

This equation is the actual heat transfer rate, and Tb is the temperature where the system boundary occurs.
When you have a steady state (SS), steady flow (SF), single inlet, single outlet (SI, SO), isothermal boundary
(IB) system, Eqn. (9.5) reduces to the modified entropy rate balance:

_Q
Tb

+ _m sin − soutð Þ+ _SP = 0 (9.10)
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Multiplying this equation through by dt and integrating over time from system state 1 to state 2 gives the
open system modified entropy balance (MSB) equation as

1Q2

Tb
+
Z 2

1
_m sin − soutð Þdt + 1 SPÞ2 = 0

�
(9.11)

2. For flow in nozzles, diffusers, or throttles, we have the entropy production rate of an incompressible fluid in
an adiabatic nozzle, diffuser, or throttle:

_SP
� �

adiabatic
incompressible
fluid

����� = _mc ln
Tout
Tin

>0 (9.14)

and the entropy production rate of an incompressible fluid in a nozzle, diffuser, or throttle with heat
transfer

_SP incompressible
fluid

��� = _mc ln
Tout
Tin

−
_Q
Tb

> 0 (9.15)

3. For flow in heat exchangers, we have the heat exchanger entropy production rate:

_SP = _mH sout − sinð ÞH + _mC sout − sinð ÞC (9.24)

See Eqs. (9.25) and (9.26) when the hot and cold fluids are known to be incompressible liquids or ideal
gases.

4. When two flow streams, 1 and 2, are combined to form a mixed outlet flow stream, 3, the entropy
production rate is

_SP
� �

mixing = _m3 y s2 − s1ð Þ+ s3 − s2ð Þ½ �>0 (9.29)

See Eq. (9.32) for the entropy production rate in mixing identical incompressible liquids or identical ideal
gases.

5. The entropy production rate for shaft work machines is

_SP shaft work
machine

��� = _m
Tb

� �
h1 − Tbs1ð Þ− h2 −Tbs2ð Þ+ V2

1 −V2
2

2gc
+

g Z1 −Z2ð Þ
gc

� 	
−

_Wactual

Tb
(9.36)

6. The entropy production in adiabatically filling a rigid tank with an incompressible liquid is

1 SPð Þ2 incomp:
liquid
ðadiabaticÞ

����� = m2c ln
T2
Tin

= m2c ln 1+
pvð Þin
cTin

� 	
(9.41)

7. The entropy production in adiabatically filling a rigid tank with an ideal gas is

1 SPð Þ2 ideal
qas
ðadiabaticÞ

����� = m2cp ln
T2
Tin

−m2R ln
p2
pin

= m2cp ln k (9.42)

8. The entropy production in isothermally filling a rigid tank with an incompressible liquid is

1 SPð Þ2 incomp:
liquid
ðisothermalÞ

�����
= m2 pvð Þin/T (9.45)

9. The entropy production in isothermally filling a rigid tank with an ideal gas is

1 SPð Þ2 ideal
gas
ðisothermalÞ

�����
= m2cv k− 1ð Þ = m2R = p2V/T (9.46)
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FINAL COMMENTS ON THE SECOND LAW
In Chapter’s 7, 8, and 9, we deal with the fundamentals of the second law of thermodynamics for nonequilibrium
systems. This law introduces the new thermodynamic property entropy, which is not conserved in any real engineer-
ing process. The second law of thermodynamics states that entropy must always be produced in any irreversible
process; however, a positive entropy production does not mean that the net system entropy must necessarily
increase, because entropy may be transported out of a system faster than it is produced within the system; there-
fore, the entropy level of the entire system can either increase or decrease in any real process.

In Chapter 8 we investigate closed system applications of the second law of thermodynamics for both reversible
and irreversible processes. In so doing, we expand the first law examples given in Chapter 5 to include an
entropy balance analysis. Since entropy production is a direct consequence of system losses that lead to dimin-
ished operating efficiency, many of the examples in this chapter focus on determining the entropy production
or its rate to gain further insight into the causes of system inefficiency. This is done by using either the auxiliary
entropy production equations (the direct method) or an appropriate entropy balance equation (the indirect
method).

In this chapter, we use the second law of thermodynamics in the analysis of open systems. We use the entropy
balance to determine the entropy production rates for a variety of common engineering devices (nozzles, dif-
fusers, throttles, heat exchangers, etc.). We also look at how different processes that achieve the same end
states affect the amount of entropy produced by the system during those processes. This allows us to choose
the process or method of changing the state that is the least dissipative and consequently the most efficient.
Determining processes that minimize the entropy production produces economic and productivity rewards to
the user.

Problems (* indicates problems in SI units)
1. An inventor claims to have a steady state, steady flow system

with an isentropic flow stream (i.e., sin = sout) that requires heat
addition. Show whether or not this system violates the second
law of thermodynamics.

2. The inventor in Example 9.1 now claims to have a system that
generates heat by pumping water through a pipe isothermally
(i.e., Tin = Tout). Show whether or not this system violates the
second law of thermodynamics.

3.* Suppose the inventor in Example 9.1 filed a new patent claim
that said the heater was 20.0 kW and the heat transfer boundary
temperature was 100ºC. What are the water flow rate and entropy
production rate under these conditions?

4.* The inventor in Example 9.1 needs to know the heat transfer
rate and entropy production rate required to heat 5.00 kg/s from
15ºC to 50ºC. You are the engineer, so what are the answers?

5.* The inventor in Example 9.1 now wants to patent a
water cooling system that cools 0.500 kg/s of water from 50ºC
to 15ºC by removing heat with a heat transfer boundary
temperature of 10.0ºC. What is (a) the heat transfer rate and
(b) the entropy production rate for this process.

6. An inventor reports that she has a refrigeration compressor that
receives saturated Refrigerant-134a vapor at 0.00°F and delivers
it at 150. psia and 120.°F. The compression process is adiabatic.
Determine whether or not this process violates the second law
of thermodynamics.

7.* A 1.00 MW steam power plant operates on the simple reversible
thermodynamic cycle shown Figure 9.23.
a. What is its thermal efficiency?
b. What is the steam mass flow rate in this system?
c. What is its thermal efficiency if it is operated on a Carnot cycle?

8.* A steam turbine is limited to a maximum inlet temperature of
800.°C. The exhaust pressure is 0.0100 MPa, and the moisture
in the turbine exhaust is not to exceed 9.00%.

1.0 1.1 1.2 1.3 1.4

500

550

600

650

700

T
(K

)

s (kJ/kg • K)

FIGURE 9.23
Problem 7.

a. What is the maximum allowable turbine inlet pressure if the
flow is adiabatic and reversible?

b. What is the maximum power output per unit mass flow rate?
9.* A steam turbine receives steam at 1.00 MPa and 700.°C and

exhausts at 0.100 MPa. If the turbine can be considered to
operate as a steady flow, reversible, adiabatic machine, what is
the work done per pound of steam flowing? Neglect any
changes in kinetic or potential energy.

10. Saturated mercury vapor enters a steady flow turbine of a high-
pressure auxiliary power system at 600. psia and emerges as a
mixture of liquid and vapor at a pressure of 1.00 psia. What
must be the flow rate if the power output is to be 10.0 kW?
Assume the turbine is reversible and adiabatic, and neglect any
changes in kinetic or potential energy.

11.* In the year 2138, a law requires certain limits on the production
of entropy of any marketable piece of technology. This law is
similar in nature to the old air pollution laws of the 20th
century. It sets an upper limit of 1.00 × 10–3 kJ/(kg · K · s) on the
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entropy production rate density of any new technology. This
becomes known simply as the EPRD number, determined by
dividing the entire mass of the system generating the entropy
into its total entropy production rate. Determine the steady state
EPRD of an insulated steam turbine that has a total mass of
2000. kg, takes in steam at 3.50 MPa, 400.°C at a rate of
2.00 kg/s and exhausts it at 5.00 kPa, 90.0% quality.

12. Determine the entropy production rate as 5.00 lbm/s of
saturated water vapor at 14.696 psia is condensed isothermally
and aergonically in a steady flow, steady state process to a
saturated liquid. Ignore all kinetic and potential energy changes.
Explain the significance of your answer.

13.* Air is throttled from 1.00 MPa and 30.0°C to 0.100 MPa in a
steady flow, adiabatic process. Assuming constant specific heat
ideal gas behavior and ignoring any changes in kinetic and
potential energy, determine
a. The change in flow stream entropy.
b. The entropy produced per kg of air flowing.

14. Determine the nozzle outlet diameter in Example 9.2 required
to increase the nozzle efficiency by decreasing the entropy
production rate by 25.0%.

15.* Determine the final temperature and the entropy production per
unit mass of air at 1.00 MPa, 25.0°C, and 2.00 m/s that expands
adiabatically through a horizontal nozzle to 0.100 MPa and
100. m/s. Assume constant specific heat ideal gas behavior, and
ignore any changes in kinetic and potential energy.

16. Refrigerant-134a enters an insulated nozzle at 25.0 psia, 80.0°F,
and 10.0 ft/s. The flow accelerates and reaches 15.0 psia and
60.0°F just before it exits the nozzle. The process is adiabatic
and steady flow.
a. What is the exit velocity?
b. Is the flow reversible or irreversible?

17. Air is expanded in an insulated horizontal nozzle from
100. psia, 100.°F to 26.0 psia, 70.0°F. Neglecting the inlet
velocity and any change in potential energy, determine (a) the
outlet velocity and (b) the entropy production rate per unit
mass flowing. Assume the air behaves as an ideal gas with
constant specific heats.

18.* Steam at 40.0 MPa, 800.°C expands through a heated nozzle to
0.100 MPa and 90.0% quality at a rate of 100. kg/h. Neglect the
inlet velocity and any change in potential energy, and take the
entropy production rate to be 10.0% of the magnitude of the
entropy transport rate due to heat transfer. Determine
a. The entropy production rate if the surface temperature of the

nozzle is 450.°C.
b. The exit velocity.
c. The exit area of the nozzle.

19. Refrigerant-134a flows steadily through an adiabatic throttling
valve. At the inlet to the valve, the fluid is a saturated liquid at
110.°F. At the valve outlet, the pressure is 20.0 psia. Neglecting
any changes in kinetic and potential energy, determine
a. The quality of the fluid at the valve outlet.
b. The entropy production per pound of R-134a flowing

through the valve.
20.* Carbon dioxide (CO2) at 50 MPa and 207°C is expanded

isothermally through an uninsulated nozzle to 1.50 MPa in a
steady state, steady flow process. There is no change in potential
energy across the nozzle, and the surface temperature of the
nozzle is 307°C. The entropy production rate magnitude in this
problem can be taken to be 10% of the absolute value of the

heat transfer rate. Assuming the CO2 to be a constant specific
heat ideal gas, determine
a. The heat transfer rate of the nozzle per kg of CO2 flowing.
b. The change in kinetic energy of the CO2 across the nozzle

per kg of CO2 flowing.
21. Refrigerant-134a is throttled irreversibly through an insulated,

horizontal, constant diameter tube. Saturated liquid R-134a
enters the tube at 80.0°F and exits the tube at 10.0°F.
a. What is the increase in entropy per lbm of R-134a flowing

through the tube?
b. What is the entropy production rate per unit mass flow rate

of R-134a?
c. Show the initial and final states on a T-s diagram.
d. Determine the average Joule-Thomson coefficient for this

process.
22. Saturated liquid Refrigerant-134a is expanded irreversibly in a

refrigerator expansion valve from 100.°F to 0.00°F. Determine
(a) the entropy of the R-134a after the expansion and (b) the
entropy production rate of the expansion process per unit mass
flow rate. Assume the process is adiabatic and aergonic, and
neglect any changes in kinetic and potential energy.

23.* A steady state desuperheater (a type of mixing heat exchanger)
adiabatically mixes superheated vapor and liquid with the
properties shown in Figure 9.24. Complete vaporization of the
liquid reduces the enthalpy of the vapor to h = 1390 kJ/kg at the
exit of the desuperheater. Compute the rate of entropy
production in the desuperheater.

Vapor
inlet

Mixture
outlet

s = 0.3000 kJ/kg • K

m  = 1000. kg/h
 h = 1500. kJ/kg
 s  = 1.650 kJ/kg • K h = 180.0 kJ/kg

h = 139.0 kJ/kg
s  = 1.560 kJ/kg • K

Liquid
inlet

FIGURE 9.24
Problem 23.

24. A solar concentrating heat exchanger system directs sunlight
onto a long, straight pipe. The pipe receives 153.616 Btu/h per
foot of length. If water enters the pipe at 50.0 lbm/h as
saturated liquid at 300.°F and is heated isothermally so that it
leaves as vapor at 20.0 psia, then
a. How long is the pipe for steady state, steady flow conditions.
b. What is the rate of entropy production.
c. Show whether this system violates the second law of

thermodynamics.
25.* Consider a simple constant pressure boiler that converts 3.00 kg/

min of saturated liquid water at 1.00 atm pressure into saturated
vapor at 1.00 atm in a steady state, steady flow, single-inlet,
single-outlet process.
a. What is the heat transfer rate into the boiler?
b. What is the entropy production rate inside the boiler?

26.* A brilliant young engineering student just invented a new
chrome-plated digital heat exchanger that has water flowing
through it at 14.41 kg/s. At the inlet, the water is a saturated
vapor at 200.°C. The water passes isothermally through the
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heat exchanger while it absorbs heat from the environment. At
the outlet, the pressure is 1.00 MPa. Determine (a) the heat
transfer rate, and (b) the entropy production rate. (c) Show
whether this device violates the second law of thermodynamics.
Assume that the system boundary temperature is isothermal
at 200.°C.

27. A contact feedwater heat exchanger for heating the water going
into a boiler operates on the principle of mixing steam with
liquid water. For the steady flow adiabatic process shown in
Figure 9.25, calculate
a. The rate of change of entropy of the entire heater.
b. The rate of entropy production inside the heater.

Water

Steam
Water

p = 100. psia
x = 0.98
p = 100 psia
T = 80.0°F 

m = 25.0 × 103 lbm/h
p = 100. psia
T = 80.0°F

Feedwater
heater

FIGURE 9.25
Problem 27.

28. As an engineering consultant, you are asked to review a design
proposal in which an electric resistance heater is to be used in
conjunction with a precision air bearing (Figure 9.26). The
heater uses 100 W of electrical power and the air bearing has a
constant surface temperature of 160.°F. The heater is well
insulated on the outside and air enters the bearing at 40.0°F,
35.0 psia and exits at 80.0°F, 40.0 psia. The bearing is a steady
flow, steady state device with an air flow rate of 35.55 lbm/h.
Determine
a. Whether this device violates the first law of thermodynamics.
b. Whether this device violates the second law of

thermodynamics.

Air inlet
40.0°F

35.0 psia

Air outlet
80.0°F

40.0 psia

100. watt
Resistance heater

160.°F

FIGURE 9.26
Problem 28.

29.* A slide projector contains a 500. W lightbulb cooled by an
internal fan that blows room air across the bulb at a rate of
1.00 kg/min. If the equilibrium surface temperature of the
bulb is 350.°C and the inlet temperature (the room air) is at
20.0°C, then determine (a) the outlet temperature of the
cooling air and (b) the rate of entropy production in the air
passing through the projector. Assume the air is an ideal gas
with constant specific heats and that it undergoes an aergonic
process.

30. Determine the total entropy production rate for the heat
exchanger shown in Figure 9.27. In addition to the air-water
heat transfer within the heat exchanger, the air also loses an
unknown amount of heat to the surroundings while the water
receives an additional 10.0 Btu/s from the surroundings. Assume
the internal air-water interface is isothermal at 100.°F and the
outer surface of the heat exchanger is isothermal at 70.0°F.
Neglect all flow stream pressure losses.

interface

140.°F

35.0°F

110.°F

78.5°F
Air

Water

mair = 100. lbm/s

mwater= 16.3 lbm/s

Tb = 70.0°F

100. °F

Qwater = 10.0 Btu/s

Qair = ?

Air−water

FIGURE 9.27
Problem 30.

31.* A new Yo Yo Dyne propulsion system has three flow streams,
as shown in Figure 9.28. It mixes 0.500 kg/s of saturated water
vapor at 100.°F with 0.200 kg/s of saturated liquid water at
100.°C in a steady flow, steady state, isobaric process. This
system is cheaply made and uninsulated; consequently, it loses
heat at the rate of 75.0 kJ/s to the surroundings. Assuming the
system boundary temperature is isothermal at 100.°C, determine
a. The quality of the outlet mixture.
b. The entropy production rate of the system.

Vapor−mixer
incorporated

Sat. liq.
0.200 kg/s
at 100.°C

Sat. vap.
0.500 kg/s
at 100.°C)

Mixture
 x = ? 

W = 1.00 hp
(power to the mixing blades)

Q = 75.0 kJ/s

FIGURE 9.28
Problem 31.

32.* In a steady flow, adiabatic, aergonic desuperheater (a kind of
mixing heat exchanger), water is sprayed into superheated steam
in the proper amount to cause the superheated steam to become
saturated.
a. Calculate the mass flow rate of water necessary for

desuperheating.
b. What is the entropy production rate of this system?
c. Show whether this process violates the second law of

thermodynamics.
Given that
■ Steam mass flow rate = 200. kg/h.
■ Steam entering state = 10.0 MPa, 600.°C.
■ Water entering state = 10.0 MPa, 100.°C.
■ Steam outlet state = 10.0 MPa, saturated vapor.

33. A steady state, steady flow steam mixer consists of a box with
two inlet pipes and one outlet pipe. One inlet pipe carries
saturated water vapor at 50.0 lbm/s and 20.0 psia. The other
inlet pipe carries saturated liquid water at 10.0 lbm/s and 20.0
psia. The mixing process is isobaric. In addition, 9602 Btu/s of
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heat is added to the box by heat transfer from an external
source. The surface temperature of the box is isothermal at
300.°F, and no work is done on or by the mixing box.
Determine
a. The quality (or temperature if superheated) of the exit flow.
b. The rate of entropy production inside the mixing box.

34. You are now a world famous energy researcher commissioned by
the National Entropy Foundation to determine the effect of vapor
generation on the entropy production rate in a two-phase
mixture. Your experiment consists of a steady state, closed loop
flow system in which a liquid-vapor mixture of Refrigerant-134a
flows through a test section consisting of a stainless steel tube
0.319 in. in diameter and 4.00 ft long. A constant wall heat flux
is imposed along the length of the tube of 450. Btu/(h · ft2)
The inlet quality is 0.00% and the outlet quality is 72.6%. The
wall surface temperature along the length of the tube is given
in °F by

Tw = 199:28− 0:007217×T +0:39449× T2

for 0 ≤ x ≤ 4.00 ft. The mass flow rate of the R-134a is
1000. lbm/h, and the inlet and outlet temperatures are 10.0°F
and 0.00°F, respectively. Determine the total entropy
production rate in the test section of Figure 9.29.

R-134a
xin = 0

x

TW = f(x) 

mR-134a = 1000. lbm/h         

wallq      = 450. Btu/h • ft2 = constant

xout = 0.726

FIGURE 9.29
Problem 34.

35. A steam turbine receives steam at 250. psia and 900.°F and
exhausts it at 20.0 psia. The turbine is adiabatic and does the
work of 190.4 Btu/lbm of steam flowing. Find the entropy
production per lbm of steam flowing.

36.* What mass flow rate is required to produce 75.0 kW from a
steam turbine with inlet conditions of 2.00 MPa, 900.°C and
exit conditions of 0.100 MPa, 200.°C if the turbine is reversible
but not adiabatic? The heat transfer from the turbine occurs at a
surface temperature of 50.0°C. Neglect any changes in kinetic
and potential energy.

37. Calculate the isentropic efficiency of a continuous flow adiabatic
compressor that compresses 20.0 lbm/min of a constant specific
heat ideal gas. The test data for this compressor are inlet state =
1.00 atm and 25.0°C; outlet state = 1.00 MPa and 350.°C;
cp = 1.00 KJ/(kg · K), R = 0.250 kJ/(kg · K). The isentropic
efficiency of a compressor is defined as

ηs =
_Wisentropic compression

_Wactual compression

38. A steady flow, steady state air compressor with a surface
temperature of 80.0°F handles 4000. ft3/min measured at the

intake state of 14.1 psia, 30.0°F and a velocity of 70.0 ft/s. The
discharge is at 45.0 psia and has a velocity of 280. ft/s. Both the
inlet and exit stations are located 4.00 ft above the floor.
Determine the discharge temperature and the power required to
drive the compressor for
a. A reversible adiabatic process.
b. An irreversible adiabatic process with a compressor work

transport efficiency of 80.0%.
39.* Determine the power required to compress 15.0 kg/min of

superheated steam in an uninsulated, reversible compressor
from 0.150 MPa, 600.°C to 1.50 MPa, 500.°C in a steady state,
steady flow process. Neglect any changes in kinetic and potential
energy. The boundary temperature is 20.0°C.

40. An adiabatic, steady flow compressor is designed to compress
superheated steam at a rate of 50.0 lbm/min. At the inlet to
the compressor, the state is 100. psia and 400.°F; and at the
compressor exit, the state is 200. psia and 600.°F. Neglecting
any kinetic or potential energy effects, calculate
a. The power required to drive the compressor.
b. The rate of entropy production of the compressor.

41.* A steady flow air compressor takes in 5.00 kg/min of
atmospheric air at 101.3 kPa and 20.0°C and delivers it at an
exit pressure of 1.00 MPa. The air can be considered an ideal
gas with constant specific heats. Potential and kinetic energy
effects are negligible. If the process is not reversible but is
adiabatic and polytropic with a polytropic exponent of n = 147,
calculate
a. The power required to drive the compressor.
b. The entropy production rate of the compressor.

42. An uninsulated, irreversible steam engine whose surface
temperature is 200.°F produces 50.0 hp with a steam mass
flow rate of 15.0 lbm/min. The inlet steam is at 400.°F,
100. psia; and it exits at 14.7 psia, 90.0% quality. Determine
(a) the rate of heat loss from the engine and (b) its entropy
production rate.

43.* A design for a turbine has been proposed involving the
adiabatic steady flow of steam through the turbine. Saturated
vapor at 300.°C enters the turbine and the steam leaves at
0.200 MPa with a quality of 95.0%. (a) Draw a T-s diagram
for the turbine, and (b) determine the work and entropy
production per kilogram of steam flowing through the turbine.
The turbine’s boundary temperature is 25.0°C.

44. An uninsulated, warp drive steam turbine on a Romulan battle
cruiser has a surface temperature of 200.°F. It produces 50.0 hp
with a steam mass flow rate of 150. lbm/min. The inlet steam is
at 400.°F, 100. psia, and it exits at 16.0 psia, 90.0% quality.
Determine
a. The heat transfer rate from the engine.
b. The entropy production rate of the engine.
c. Show whether the Romulans have discovered how to build

steam engines that violate the second law of
thermodynamics.

45.* Steam enters a turbine at 1.50 MPa and 700.°C and exits the
turbine at 0.200 MPa and 400.°C. The process is steady flow,
steady state, and adiabatic. The system boundary temperature is
35.0°C. Determine the following on the basis of a steam flow
rate of 6.30 kg/s:
a. The entropy production rate of the turbine.
b. The work transport energy efficiency of the turbine.
c. The turbine’s actual output power.
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46. Steam at 400. psia and 50.0% quality is heated in a steady
flow, isobaric heat exchanger until it becomes a saturated
vapor. It is then expanded adiabatically through a turbine to
1.00 psia and 98.0% quality. This is followed by isobaric
cooling to a saturated liquid in a second heat exchanger then
compression and heating to the initial state. For the turbine
alone, determine
a. The net power output per unit mass flow rate of steam.
b. The entropy production rate per unit mass flow rate of steam

flowing in the system.
47.* Through a clerical error, our purchasing department ordered a

finely crafted but mysterious device from a foreign manufacturer
(Figure 9.30). The manuals are all in a foreign language, and the
only intelligible information is in the form of some numbers
printed next to the entrance and exit ports and the rotating
shaft. The 10.0 kW rating on the shaft may mean either a work
input or a work output. Determine
a. The flow direction, a to b or b to a.
b. The mass flow rate.
c. The entropy production rate of the device.

10.0 kW

A
0.200 MPa

200.°C

B
30.0 MPa

800.°C

FIGURE 9.30
Problem 47.

Assume a steady state, adiabatic device and that the working
substance is H2O. Assume also that the kinetic and potential
energies of outlet and inlet flow streams are negligible.

48. An irreversible, steady state, steady flow steam turbine that has
no thermal insulation has an isothermal surface temperature of
100.°F. It operates with a steam mass flow rate of 15.0 lbm/s.
The turbine inlet is at 300. psia, 1200.°F, and the exit is at
14.7 psia, 300.°F. If the turbine’s entropy production rate is
0.500 Btu/(s · R), then determine
a. The turbine’s heat transfer rate.
b. The turbine’s work rate (power).

49.* A dog food manufacturer wishes to carry out the canning and
sterilization process of a new pet food product at 100.°C,
0.0100 MPa. After crawling around in the rafters of the plant, an
engineer finds a 1.60 MPa wet steam line. A pipe is run from
this line to the canning area, where it produces 1.40 MPa steam
with 2.00% moisture. Now, instead of just throttling down to
the 0.0100 MPa state needed and wasting all that energy, the
engineer decides to drop the pressure through a small adiabatic
steam turbine.
a. What steam mass flow rate must be used to obtain 1.00 hp

from the turbine?
b. What is the turbine’s entropy production rate under these

conditions?
50. A nuclear reactor heats a fluid for the steady flow power plant

shown in Figure 9.31. The mass flow rate is 10.0 lbm/s.
Determine
a. The horsepower input to the adiabatic pump.

Pump

Reactor

Condenser

Turbine WT

h = 100.0 Btu/lbm
h = 200.0 Btu/lbm
s = 1.003 Btu/lbm•R

h = 1000.0 Btu/lbm
s = 1.001 Btu/lbm•R

p = 10.0 lbf/ft2Wpumpu = 100.0 Btu/lbm
v = 10.0 ft3/lbm
p = 77.8 lbf/ft2

s = 1.000 Btu/lbm•R

FIGURE 9.31
Problem 50.

b. The entropy production rate in the insulated reactor.
c. The entropy production rate in the insulated turbine.

51. The sales literature for the device shown in Figure 9.32 claims
that the outlet temperature is slightly higher than the inlet
temperature due to the presence of the vortex tube (see Case
Study 9.1).
a. Assuming the vortex tube and the rest of the system are

isentropic, determine the outlet temperature (T4) from the
data given in Figure 9.32.

b. Explain how the temperature rise claimed by the
manufacturer could in fact exist.

1

4

2

3
Air

100. psia
70.0°F

92.0 psia
T4 > 70.0°F

Vortex
tube

FIGURE 9.32
Problem 51.

52.* Determine the entropy production rate as 0.0500 kg/s of air flows
through a vortex tube from an inlet pressure of 1.00 MPa. Both
hot and cold side exit pressures are 101.3 kPa, and the hot side
temperature is 50.0°C while the cold side temperature is –40.0°C.
Two thirds of the inlet mass flow rate passes through the hot side
exit. Assume constant, specific heat, ideal gas behavior and neglect
any changes in kinetic and potential energy (see Case Study 9.1).

53. Using Eqs. (9.41), (9.29), and (7.33), discuss the possibility of
having a temperature separation occur in a constant, specific
heat, incompressible liquid flowing through a vortex tube (see
Case Study 9.1).

54. A company claims to be able to manufacture a vortex tube using
air that reaches –250.°F cold side and +250.°F hot side (both at
atmospheric pressure) with an inlet pressure of 20.0 psig and a
hot side mass flow fraction of 50.0%. Does their vortex tube
violate the second law of thermodynamics? Assume constant
specific heat ideal gas behavior and neglect any changes in
kinetic and potential energy.
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55.* Determine the maximum possible hot side exit temperature in a
vortex tube using air when the cold side temperature is 0.00°C,
the hot side mass flow fraction is 50.0%, the inlet pressure is
0.800 MPa, and both exits are at atmospheric pressure. Assume
constant, specific heat, ideal gas behavior and neglect any
changes in kinetic and potential energy.

56. Determine the heat transfer rate and the entropy production rate
for the steady state, steady flow of water flowing through a
straight horizontal 1.0 in. inside diameter pipe 10.0 ft long at a
rate of 5.00 ft3/min. The Darcy-Weisbach friction factor for this
flow is 0.0320. The flow is isothermal at 75.0°F, and the mass
density of the water is 62.26 lbm/ft3.

57.* Determine the entropy production rate and heat transfer in a
newly designed valve with 1.10 kg/s of an incompressible
hydraulic oil flowing through it. The minor loss coefficient of the
valve is 26.3, and the inlet and outlet oil temperatures are 53.0
and 49.0°C, respectively. The surface temperature of the valve is
constant at 46.0°C. The flow velocity through the valve is constant
at 3.00 m/s, and the specific heat of the oil is 1.13 kJ/(kg · K).

58.* A valve in an air handling system has a mass flow rate of
2.90 kg/min and a minor loss coefficient of 11.56. The valve inlet
temperature is 20.0°C and the valve is insulated. The inlet and
exit pressures of the valve are 1.66 and 0.300 MPa, respectively.
The air velocity through the valve is 2.70 m/s. Assuming air to
be an ideal gas with constant specific heats, determine the exit
temperature and entropy production rate of the valve.

59. Air enters a sudden contraction in a pipe at a rate of 0.300 lbm/s.
The contraction coefficient is 0.470, the exit temperature is 156°F
and the exit diameter is 2.00 in. The pipe is insulated. The
pressure across the contraction drops from 185 to 50.0 psia.
Determine the entrance temperature and the entropy production
rate of the contraction. Assume the air to be an ideal gas with
constant specific heats.

60.* Liquid mercury enters an insulated sudden expansion with a
velocity of 1.15 m/s at 20.0°C. The inlet and exit areas are
1.00 × 10–3 and 0.00 × 10–2 m2, respectively. Assuming the
flow is incompressible and adiabatic, determine the exit
temperature and the entropy production rate of the expansion.
The specific heat and density of the mercury are 0.1394 kJ/(kg · K)
and 13,579 kg/m3.

61.* It is required to dissipate 3.30 kJ/s of water flow energy in a
spillway with a hydraulic jump. An amount of 1000. kg/s of water
enters at 15.0°C and a depth of 0.500 m. The water passes through
the jump fast enough to be considered adiabatic. Determine
a. The required hydraulic jump depth, y2 – y1 (see Table 9.4).
b. The exit water temperature.
c. The entropy production rate of the hydraulic jump.

62.* Suppose 0.730 kg/s of oil at 1.20 MPa and 20.0°C enters a
system at 8.00 m/s and exits the system at 0.800 MPa, 40.0°C,
and 4.00 m/s. The exit is 4.00 m below the inlet. The specific
weight of the oil is 6000. N/m3, which is a constant throughout
the system. The specific heat of the oil is constant at 1.21 kJ/(kg ·K).
Determine (a) the heat transfer rate and (b) the entropy production
rate of this system if its boundary temperature is maintained
constant at 40.0°C.

63. Determine the entropy production rate for the isothermal steady
laminar flow of a constant specific heat, incompressible power law
non-Newtonian fluid in a horizontal circular tube of radius R whose
velocity profile is given by

V = Vm 1− ðx/RÞðn+1Þ/n
h i

where Vm is the maximum (i.e., centerline) velocity, x is the radial
coordinate measured from the tube’s centerline, and n is the power
law exponent (a positive constant). Sketch a plot of _Sp vs. n and
determine the value of n that minimizes _Sp.

64. The steady laminar flow of a constant specific heat,
incompressible Newtonian fluid through a horizontal circular
tube of radius R has a velocity profile given by

V = Vm 1− ðx/RÞ2� 

where Vm is the maximum (i.e., centerline) velocity and x is the
radial coordinate measured from the tube’s centerline. If there is
a uniform heat flux _qs at the tube wall, then the temperature
profile within the fluid (neglecting axial conduction) is given by

T = To + ð _qsR/ktÞ α− ðx/RÞ2 + 0:25ðx/RÞ4� 

(a)

where To and α are constants, and kt is the thermal conductivity
of the fluid.
a. Combine the heat transfer and viscous work entropy

production rates per unit volume to show that the total
entropy production rate per unit volume for this system is
given by

σ =
4μV2

mx
2

R4T
+ 1

kt

_qs
T

2x/R− ðx/RÞ3� 

 �2
(b)

b. Comment on the integration of σ over the system volume.
Remember that the T in Eq. (b) is given by Eq. (a), and in a
polar cylindrical coordinate system, dV = 2πLx dx. Carry out
the integration analytically, if you can.

c. What factors in Eq. (b) can be manipulated to minimize _SP?
65. The velocity and temperature profiles established in the free

convection of a fluid contained between two flat parallel vertical
walls maintained at different isothermal temperatures T1 and
T2 are

V = ρβgb2ðT2 −T1Þðx/bÞ½ðx/bÞ2 − 1�/12μ
and

T = ðT1 + T2Þ/2− ðT2 −T1Þðx/2bÞ
where x is measured from the centerline between the plates, β is
the coefficient of volume expansion, ρ is the density, and 2b is
the distance between the plates (Figure 9.33). Determine a
formula for the entropy production rate per unit depth and
length of this flow due to viscous effects.

b b

x

V

T1 T

T2

FIGURE 9.33
Problem 65.



66.* Figure 9.34 is a schematic of a novel hydraulic air compressor
built in Michigan in 1906 at the Victoria Copper Mining
Company and operated until 1921. This plant used the power
of falling water from the Ontonagon River to produce high-
pressure air with no moving mechanical parts. The falling
water compressed entrained air bubbles, which were then
separated from the water in a large underground separation
tank. The efficiency of this system is defined to be rate of
energy removed

η =
Rate of energy removed from the compressed air

Net hydraulic power of the water
=

_maðh2 − h3Þa
_mwðgH/gcÞ

where the a subscript refers to the air and the w subscript
refers to the water. Using the data given in Table 9.5,
determine
a. The separation tank temperature, assuming the air and water

are in constant thermal equilibrium in an adiabatic
downflow.

b. The air turbine output power.
c. The entropy production rate for the compressor, assuming it is

completely adiabatic.
In your analysis, assume air to be a constant specific heat ideal gas
and water to be an incompressible liquid. Neglect any changes in
kinetic energy of the air and the water. Note that the air turbine
discharges to the atmosphere, so p3 = patm = 101.3 kPa.

67.* A bottle of beer is emptied adiabatically at a rate of 0.100 kg/s.
What is the rate of change of entropy of the contents of the beer
bottle if the properties of the beer are

h = 53:0 kJ/kg T = 10:0°C
p = 0:1013MPa s = 1:000 kJ/ðkg ⋅KÞ

and the entropy production rate is 0.0100 kJ/(s · K).

68. Helium at 70.0°F enters a 3.00 ft3 rigid tank that is filled to a
final pressure of 2200. psia. Assuming the tank is initially
evacuated and that the helium behaves as an ideal gas with
constant specific heats, determine the amount of entropy
produced when the tank is filled (a) adiabatically and
(b) isothermally at 70.0°F.

69. Plot the isothermal to adiabatic entropy production ratio for
filling an initially evacuated container with equal amounts of an
incompressible liquid vs. the dimensionless ratio pv/(cT) as this
ratio ranges from 0.00 to 10.0.

70.* A 0.0370 m3 hydraulic cylinder is filled with 30.0 kg of oil (an
incompressible liquid) from a supply at 20.0°C and 50.0 MPa.
The specific heat of the oil is 1.83 kJ/(kg · K). Determine
a. The entropy produced if the cylinder is filled isothermally at

20.0°C.
b. The final temperature and the entropy produced if the

cylinder is filled adiabatically.
71. Equation (9.47) shows that filling a rigid container adiabatically

with an incompressible liquid produces less entropy than filling
it isothermally. However, an adiabatic filling process produces a
temperature rise in the vessel (see Eq. (6.35)) such that Tfinal =
T2 > T1.
a. Develop a formula for the additional entropy produced

when the rigid container adiabatically filled with an
incompressible liquid is cooled back to the initial
temperature by submerging it into a large isothermal bath at
temperature T1.

b. Compare the total entropy produced by the adiabatic filling
plus the cooling process described in part a with that produced
during an isothermal filling process at temperature T1.

Design problems
The following are elementary open-ended design problems. The
objective is to carry out a preliminary thermal design as indicated.
A detailed design with working drawings is not expected unless
otherwise specified. These problems do not have specific answers, so
each student’s design is unique.

72. A liquid cavitates when the local pressure drops below the
saturation pressure and the liquid begins to vaporize, or boil.

Air bubbles rise to surface

Air
(101.3 kPa)

Compressed air

Air entrained
in downflow

of water

+Z
1

2

3

4

Seperation
tank

Exhaust
water
pipe

Dam

Air
turbine

WT
H=21.49 m

80.77 m

FIGURE 9.34
Problem 66.

Table 9.5 Data for the Victoria Hydraulic Air
Compressor

η = 57:4% _mw = 6119:1 kg/s

p2a = 882:6 kPa T1a = T1w = 20:0°C
_ma = 5:430 kg/s H = 21:49m

Source: Data from W. Rice, “Performance of Hydraulic Gas Compressors.”
ASME Journal of Fluids Engineering (December 1976), pp. 645–653.
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The cavitation process is the formation of these vapor bubbles.
Carry out the preliminary thermodynamic design of a closed
loop apparatus that illustrates this phenomenon by having a
liquid pumped through a transparent nozzle wherein the
pressure drops below the local saturation pressure and the
vapor bubbles become visible. Choose a suitable liquid and
provide an engineering sketch containing all the major
dimensions and materials of your system. Estimate the pump
size and power required, and the entropy production rate of
your nozzle.

73. The Engine Test Facility at the Arnold Air Force Base in Tennessee
requires a test cell 48.0 ft in diameter and 85.0 ft long with an air
flow rate of 4300. ft3/s at atmospheric pressure and temperature.
Carry out the preliminary thermodynamic design of a
compressor-nozzle system that meets these requirements. The
compressor inlet is at atmospheric conditions, and the inlet
temperature of the nozzle must be 70.0°F (this means an
intercooling system must be used). Determine the horsepower
required to drive the compressor, the nozzle outlet temperature,
and the entropy production rate of your nozzle. Assume the
compression process is polytropic with n = 1.30 and the pressure
loss through the nozzle is 15.0% of the inlet pressure.

74. The Aeropropulsion System Test Facility at the Arnold Air Force
Base in Tennessee requires a heat exchanger capable of cooling
2750. lbm/s of gas turbine exhaust from 3500. to 80.0°F before
discharging it to the atmosphere. Carry out a preliminary
thermodynamic design of a suitable heat exchanger using water
as the second fluid. Determine the amount of cooling water
needed and recommend an appropriate source. Also determine
the entropy production rate of your heat exchanger.

75.* Carry out the preliminary thermodynamic design of a fuel
mixing valve for a furnace that efficiently mixes inlet flow
streams of air at 2.50 kg/s and methane at 0.500 kg/s, both at
atmospheric pressure and temperature, and produces one outlet
flow stream. Assume these gases behave as constant specific heat
ideal gases. Provide a dimensioned engineering sketch and
estimate the entropy production rate of your valve.

76.* Carry out the preliminary thermodynamic design of a system
that uses a vortex tube to cool a full body suit for a firefighter.
The suit must be able to reject up to 1300. kJ/h, and this
cooling rate must be easily adjustable by the wearer. Use the
data given in Case Study 9.1 or from appropriate industrial
literature.

77. Carry out the preliminary thermodynamic design of a system
that uses a vortex tube to heat a skintight suit for an underwater
diver by bleeding off part of the air supply to the diver. The suit
must be able to supply 800. Btu/h, and this heating rate must
be easily adjustable by the diver. Use the data given in Case
Study 9.1 or from appropriate industrial literature.

78.* Carry out the preliminary thermodynamic design of a system that
isothermally fills an initially evacuated, rigid, cylindrical tank with
air at 20.0°C to 20.0 MPa with a minimum amount of entropy
production. The tank is 0.250 m in diameter and 1.50 m high.
Assume the air behaves as a constant specific heat ideal gas.
Discuss the technology and economics of how the tank is
maintained isothermal during the filling process. Note that there
will beentropy production in the pipes and valves used to connect
the tank to the air supply.

79. The Von Karman Gas Dynamics Facility at the Arnold Air Force
Base in Tennessee has need of a blowdown wind tunnel, to be

supplied from a tank containing compressed air initially at
1000. psia and 70.0°F. The wind tunnel is to be at the end of
a nozzle attached to the tank and must be 8.00 ft in diameter
and have a velocity of 10.0 × 103 ft/s at 2000. R. The tank must
be of sufficient size to sustain these wind tunnel conditions for
a minimum of 30.0 min of testing. Carry out the preliminary
thermodynamic design of such a facility and estimate the size of
the storage tank required and the power required to compress the
air in filling the tank if it must be done overnight (i.e., in 8.00 h).
Determine the entropy production associated with both the filling
and emptying of the tank if both are done isothermally.

Computer problems
The following computer assignments are designed to be carried out
on a personal computer using a spreadsheet or equation solver. They
are meant to be exercises using some of the basic formulae of
this chapter. They may be used as part of a weekly homework
assignment.

80.* Develop a program that allows you to plot the entropy
production rate discussed in Example 9.1 vs. the heat transfer
rate. Let the heat transfer rate range from 100. to 1000. watts.
Assume all the remaining variables are as given in Example 9.1.

81. Develop a program that determines the entropy production rate
of an incompressible fluid or a constant specific heat ideal gas
of your choice flowing through an adiabatic nozzle. Input all
the variables with proper units. Allow the choice of working in
either Engineering English or SI units.

82. Develop a program that determines the entropy production rate
of an incompressible fluid or constant specific heat ideal gas of
your choice from an adiabatic diffuser. Input all the variables
with proper units. Allow the choice of working in either
Engineering English or SI units.

83. Develop a program that determines the entropy production
inside a heat exchanger having two inlets and two outlets, when
the mass flow rates, temperatures, and fluid properties of both of
the flow stream fluids are known. Assume the fluids do not mix
inside the heat exchanger, and allow either flow stream to be an
incompressible liquid or a constant specific heat ideal gas at the
user’s discretion. Input all the variables with proper units. Allow
the choice of working in either Engineering English or SI units.

84. Develop a program that performs an energy rate balance on a
gas turbine engine. Input the appropriate gas properties (in the
proper units), the turbine’s heat loss or gain rate, and the input
mass flow rate, and the inlet and exit temperatures. Output to
the screen the turbine’s output power. Assume the gas behaves
as a constant specific heat ideal gas, and neglect all kinetic and
potential energy terms. Allow the choice of working in either
Engineering English or SI units.

85. Curve fit the hot and cold vortex tube outlet temperature data
given in Case Study 9.1 vs. the inlet absolute pressure. Then
develop a program that returns these outlet temperatures plus
the COP of this device when it is used as a Carnot heat pump
and when it is used as a Carnot refrigerator or air conditioner
when the user inputs the inlet pressure. Use this program to
generate enough data to plot the values of these two COPs vs.
the inlet absolute pressure.

86. Develop a program that outputs the entropy production rate for
the filling of an initially evacuated rigid vessel with an
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incompressible liquid or an ideal gas of your choice when the
vessel is filled either adiabatically or isothermally (again, your
choice). Input all necessary information in proper units. Allow
the user to work in either Engineering English or SI units.

Create and solve problems
Engineering education tends to focus on the process of solving
problems. It ignores teaching the process of formulating solvable
problems. However, working engineers are never given a well-phrased
problem statement to solve. Instead, they need to react to situational
information and organize it into a structure that can then be solved
using the methods learned in college.

These “Create and Solve” problems are designed to help you
learn how to formulate solvable thermodynamics problems from
engineering data. Since you provide the numerical values for some of
the variables, these problems do not have unique solutions. Their
solutions depend on the assumptions you need to make and how
you set them up to create a solvable problem.

87. You are a new engineer at a small paper making company. The
company’s chief engineer wants to install a new drum dryer that
produces heat at a rate of 500,000 Btu/h with a drum surface
temperature of 175ºF. The factory has a steam boiler and can
produce saturated vapor at any desired pressure and flow rate.
Write and solve a thermodynamics problem that satisfies the
chief engineer’s needs. Choose a steam mass flow rate and inlet
conditions, then determine the exit quality and the entropy
production rate of the dryer.

88.* Your boss wants to know how much power is required to
compress 15.0 kg/min of air (an ideal gas) in an insulated
compressor from 0.100 MPa, 20.0°C to 1.50 MPa, in a steady

state, steady flow process. Write and solve a thermodynamics
problem that provides her with the answer plus the final
temperature of the air.

89. Your new job at a domestic refrigerator manufacturing company
involves the design of expansion valves. The liquid refrigerant
passes through the expansion valve (also called a throttle valve),
where its pressure abruptly decreases, causing flash evaporation
of 35% of the liquid. The resulting mixture of liquid and vapor,
at a lower temperature and pressure, then travels through the
refrigerator’s evaporator coil and is completely vaporized by
cooling the warm air of the space being refrigerated. The
resulting refrigerant vapor returns to the refrigerator’s
compressor inlet to complete the thermodynamic cycle. For a
new refrigerator design, saturated liquid Refrigerant 134a enters
the expansion valve at 80.0°F and exits at 10.0°F. Your
supervisor needs you to determine the following items: (a) The
increase in entropy per lbm of R-134a flowing through the
expansion valve. (b) The entropy production rate per unit mass
flow rate of R-134a flowing through the expansion valve.
(c) The average Joule-Thomson coefficient for this process. Write
and solve a thermodynamics problem to provide the answers.

90.* The corporate vice president of the company that employs you
needs to know what the entropy production and the heat
transfer rates are in a newly designed valve that has been
designed to control the flow of saturated liquid ammonia. At
the normal flow rate 0.55 kg/s, the minor loss coefficient of the
valve is 18.3, and the inlet and outlet oil temperatures are 3.00
and 19.0°C, respectively. The surface temperature of the valve is
constant at 20.0°C. Under normal conditions, the flow velocity
through the valve is constant at 7.50 m/s. Write and solve a
thermodynamics problem that gives your corporate vice
president the answers to his questions.
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10.1 WHAT IS AVAILABILITY?
Availability1 is a measure of how useful the energy within a system can be. It is the name given to the amount of
energy within a system that is “available” to do useful work, and consequently, it is a measure of the “quality”
of the energy present within a system. Some forms of energy within a system are more available to do useful
work than others. Consequently, these energy forms have a higher value, or availability, than the others. In addi-
tion, a system may contain forms of energy that cannot do any useful work at all because they do not have a
high enough potential, so they are called unavailable energy. Figure 10.1 illustrates how a system can have avail-
able and unavailable energy.

For example, one gallon of gasoline contains about 158 MJ (150,000 Btu) of energy and currently sells for about
$2–$4 dollars. Yet, if you purchase 158 MJ of electrical energy from your local electrical power company, it costs
you about $5. Why does electrical energy cost more than an equivalent amount of chemical energy? The answer
is simply that electrical energy is more available to do useful work than chemical fuel. An electric motor can
convert about 90% of the electrical energy supplied to it into useful output work, whereas an internal

1 Availability is called exergy and essergy (essence of energy) in European textbooks. The term exergy was coined to be similar in form to
the words energy and entropy, and the term essergy is a contraction of “essence of energy.” Both terms lack any obvious connotation
and consequently are not used here.
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combustion engine can convert only about 20–30% of the chemical energy in its
fuel into useful output work. Therefore, electrical energy is more valuable to our
society than chemical fuel (notice that we have not taken into account how the
electrical energy is generated). Being more valuable, it costs more because it has a
higher “quality” of work “availability.”

Much of the world around us today is driven by various energy conversion tech-
nologies. Automobiles, power plants, manufacturing facilities, and computers are
all important elements in our society today. Since we know that energy is con-
served in all processes, energy would seem to be an inexhaustible resource to be
used over and over again, powering our technological needs. However, though
energy is conserved, it is degraded through use to a form that is not useful in tech-
nological systems. For example, the kinetic energy of a bouncing rubber ball is
continuously degraded by internal friction produced by the deformation of the
ball during impact. This causes the height to which the ball rebounds after each
impact to progressively decrease. Using the second law of thermodynamics, we
can pinpoint where energy degradation occurs within an engineering system; and
by redesigning the system to minimize the energy degradation, we can improve
the overall energy conversion performance of the system.

With increasing material costs and decreasing resources, it is apparent that the
efficient use of energy resources will be of primary importance to engineers in the
future. In engineering design, the concept of pure energy in somewhat misleading.
What a designer needs to know is how much of the energy present in a given system can

be used for a particular process. That is, of the total energy contained within a system, how much is available to do
useful work? Therefore, it is important for engineers to understand how to determine the consequence (i.e., the
amount of useful energy available) of the energy within a given system. The manipulation of the amount of energy
present is the subject of the first law of thermodynamics. The second law of thermodynamics tells us where the
irreversibilities within the system are located (through the entropy production term). If we combine these two
laws and define a new thermodynamic property (called availability) that is a measure of the useful energy, we can
then identify where energy is being degraded or lost within a system and decide how to modify the system to
reduce these losses.

This chapter provides a basic introduction to the availability property and the availability balance. Open and
closed system availability balances are developed, and a new system efficiency based on the second law of ther-
modynamics is developed. Examples are presented illustrating the use of this material for power plants, refrigera-
tion systems, heat pumps, internal combustion engines, and heat exchangers. A summary at the end of the
chapter reiterates the main concepts and equations developed in the chapter.

Useful work is associated with a quantity called the potential of a conservative force. The following section on fields
and forces provides a background on the mathematical nature of fields, potentials, and conservative forces.

10.2 FUN WITH SCALAR, VECTOR, AND CONSERVATIVE FIELDS
10.2.1 Scalar and Vector Fields
A scalar (or vector) function is a mathematical expression defined at each point in a region of space whose resul-
tant value is a scalar (or vector) quantity that depends only on the point where the expression was evaluated and
not on the coordinate system used. The region of space over which a scalar function is defined is called the sca-
lar field of the scalar function, and the region of space over which a vector function is defined is called the vector
field of the vector function. For example, the scalar pressure, temperature, and density functions at each point
within an object define the pressure, temperature, and density scalar fields of the object. Similarly, the velocity
vector at each point within a flowing fluid defines the velocity vector field of the fluid.

hB

hA

More available
energy than B

Less available
energy than A

Ground

A

Unavailable energy

−hC

B

C

FIGURE 10.1
A system’s available and unavailable energy. The
potential energy of weight A has more “available”
potential energy to do useful work relative to the
ground than does weight B. However, the potential
energy of weight C is negative relative to the
ground and therefore is “unavailable” to do useful
work relative to the ground.

CRITICAL THINKING

Is some of the energy with a system “unavailable”? Does the magnitude of the available energy within a system depend on
the accessible technology? What about nuclear energy, is it “available” to do useful work? If not, could future technologies
make it available?
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10.2.2 Conservative Fields
A vector field is said to be conservative if it has a vanishing line integral around every closed path c in its region
of definition, or I

c
A
!.d x! = 0

Since the line integral of a conservative vector field A
!

around any closed path is always zero, the value of its
integral between any two arbitrary points x!1 and x!2 depends only on the end points themselves and is inde-
pendent of the path taken between these points (i.e., the integral is a point function). Further, any vector field A

!
that obeys the preceding equation must also obey the equation A

!
= −∇!P, where ∇! is the differential operator2

(called the del operator) and Pð x!Þ is called the potential3 of A
!

at x!. The term ∇!P is called the gradient of P,
and for a point x! and an arbitrarily chosen reference point x!0, we can write

Pð x!Þ = Pð x!0Þ−
Z

x!0

x!
A
!.d x!

The gradient of a scalar function P is usually written as ∇!P = A
!
, where A

!
is called the gradient vector.

10.3 WHAT ARE CONSERVATIVE FORCES?
Any force produced by a reversible process is a point function (i.e., it depends only on the end points of the
process) and is therefore called a conservative force. The term conserve means to preserve from loss or decay. The
“conservation” laws of physics state that certain measurable quantities (e.g., mass, energy, momentum) do not
change with time in an isolated system. Similarly, a conservative force is one whose magnitude is not dimin-
ished in time by its own action (i.e., it is nondissipative). Thus, the total work done by a conservative force is
independent of the path producing the displacement and is equal to zero when its path is a closed loop, or

Wconserative
force

=
I
C
F
!.d r! = 0:

Since conservative forces are reversible (i.e., nondissipative), they form a conservative vector field and have an
energy potential (or stored energy), Φ, defined as F

!
= − ∇!Φ. Nonconservative (irreversible) forces (such as fric-

tion) that depend on other forces (such as sliding velocity) are dissipative, and no energy potential can be
defined for them.

OK, BUT WHAT DOES ALL THIS REALLY MEAN?

In simpler terms, this means that we can divide forces into two categories: conservative forces and nonconservative forces. If
the “net” work done by a force acting on a system is always zero, the force is said to be conservative. In other words, if the
work done by a force depends only on the initial and final states of a system and not on the path taken by the force, then
it is a conservative force. Otherwise, it is non-conservative.

Examples of conservative forces:

■ The force of gravity.
■ Coulomb’s force in electrostatics.
■ A completely elastic deformation.

Examples of nonconservative forces:

■ Friction (both sliding and viscous).
■ Inelastic (or plastic) deformation.
■ Electrical resistance.

2 This operator has the following form in Cartesian coordinates

∇!ð Þ = ∂ð Þ
∂x

i
!

+
∂ð Þ
∂y

j
!

+
∂ð Þ
∂z

k
!
:

3 Note that the potential P is not uniquely determined by A
!
, since any other potential of the form P′ = P + a constant also satisfies

this equation. Consequently, a conservative force field A
!

can always be written as the negative gradient of its potential P.
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10.4 MAXIMUM REVERSIBLE WORK
Any mathematical point function can be interpreted as the potential
of a conservative vector. Since all thermodynamic properties (both
extensive and intensive) are point functions, they must also represent
such potentials. Some of these vector potential relations are well
known. For example, Fourier’s law relates the conduction heat transfer
rate per unit area vector to its potential, the local temperature T, as
q! = − kt∇

!ðTÞ, where kt is the thermal conductivity.

Since the potential of a conservative force is equal to the reversible
work done on or by a system, perhaps it would be useful to know the
potential for the maximum possible reversible work that a system could
produce from any given state. Using a combination of the energy and
entropy balance, we can compute the reversible work produced or
absorbed by a closed system with isothermal boundaries at tempera-
ture Tb, as the system changes from state 1 to state 2, as

ð1W2Þrev = E1 −E2 + ð1Q2Þrev = E1 − E2 − TbðS1 − S2Þ
where E = U + mV2/2gc + mgZ/gc. To determine the maximum pos-
sible reversible work we must define a minimal energy reference state,
which we call the ground state of the system.4 We denote quantities
in the ground state with a zero subscript (e.g., p0 and T0 denote the pressure and temperature of the ground
state). Then, for an arbitrary starting state, the maximum reversible work that a closed system can perform is

ðWÞmaximum
reversible

= E− E0 − T0ðS− S0Þ (10.1)

where the system boundary is now assumed to be at the ground state temperature T0 (see Figure 10.2). Note that
the change in entropy in Eq. (10.1) is solely due to a heat transfer by the system and not as a result of irreversi-
bilities (either internal or external) that may occur during the process of bringing the system to the ground state.

Now, what constitutes a suitable ground state? If we are to have a minimum system energy in the ground state,
then clearly the kinetic and potential energies of this state should be zero, so we set V0 = Z0 = 0. Beyond this,
the remaining properties of the ground state can be arbitrarily chosen.

10.5 LOCAL ENVIRONMENT
If the maximum reversible work is to be a useful concept in
engineering analysis, a practical ground state must be chosen. It
is easy to see that the most convenient ground state for any
given system is its local environment. Recall that the term sur-
roundings refers to everything outside the system boundaries,
consequently the surroundings must include the local environ-
ment. We therefore define the local environment and the ground
state as in the display boxes. Since the ground state and the
local environment are essentially identical, we denote all the
properties of the ground state and local environment with a
zero subscript (see Figure 10.3).

System with total
energy E and total

entropy S

 

Reversible
engine

Ground state at 
temperature T0 with
total energy E0 and

total entropy S0

System boundary
temperature is the

same as the ground
state temperature,

Tb = T0

Wmax rev

FIGURE 10.2
The maximum reversible work a system can
produce. Note that the system boundary must be
at the same temperature as the ground state to
produce the maximum reversible work.

System boundary

System at E,∀, p, T, and S

Local environment = Ground state 
at  E0, ∀0, p0, T0, and S0

FIGURE 10.3
The surroundings, local environment, and the ground
state.

WHAT IS THE LOCAL ENVIRONMENT?

The local environment is a portion of the total surroundings in contact with the system boundaries. It must be large
enough for all of its intensive properties to be constant, and it must be insensitive to state changes of the system.

4 Some authors call this the dead state. However, the term ground state is more easily understood, since it is conceptually similar to the
zero energy ground level reference state commonly used in gravitational potential energy analysis.
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10.6 AVAILABILITY
Equation (10.1) represents the maximum possible reversible work that a system could produce as it changed
states to the ground state, but it is not the maximum possible useful reversible work that could be produced. To
obtain an expression for the useful work, we must subtract the work associated with moving the local environ-
ment as the system volume changes from its initial volume V to its final volume V0 in the ground state. Since
the local environment is at a constant pressure p0, Eq. (4.26) gives the reversible moving boundary work as

ðWÞ
reversible
moving
boundary

= p0ðV0 −VÞ = − p0ðV −V0Þ

Then, we can compute:

ðWÞ
maximum
reversible
useful

= ðWÞ
maximum
reversible

− ðWÞ
reversible
moving
boundary

= E− E0 + p0ðV −V0Þ−T0ðS− S0Þ (10.2)

Since we are dealing with “reversible” work modes here, the maximum useful reversible work for a closed sys-
tem given by Eq. (10.2) must be the potential for some conservative force vector, and we could call this work the
energy potential (or work potential) of that force. However, the term energy potential is easily confused with the
term potential energy (the potential of the gravitational force vector) and consequently is not a good choice for
the name of this new potential. Therefore, we choose the term availability for the name of this new potential,
since this term is synonymous with the word useful and it represents the energy available within the system to
do useful work. Figure 10.4 illustrates this new concept.

Therefore, the total availability, A, of a closed system is defined as

A� Wð Þ
maximum
reversible
useful

= E−E0 + p0ðV −V0Þ−T0ðS− S0Þ

= m u− u0 + p0ðv− v0Þ−T0ðs− s0Þ+V2/2gc + gZ/gc½ �
(10.3)

WHAT IS A SYSTEM’S GROUND STATE?

The “ground state” of a system is the state of a system that has zero kinetic and potential energies and that is in thermodynamic
equilibrium with its local environment. Consequently, the local environment of a system is at the system’s ground state.

WHAT IS THE GROUND STATE NOTATION?

Zero subscripts are used to denote the ground state and the local environment thermodynamic properties as T0, p0, V0, v0, U0,
u0, H0, h0, S0, and s0.

System boundary

Reversible system

A = Wmax rev − Wrev moving boundary 

Heat and moving system boundary work
to or from the local environment

(ground state)

FIGURE 10.4
Availability as the maximum, reversible, useful work that can be produced.
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where the kinetic and potential energy terms have been moved to the end of the last expression for convenience.
The specific availability, a, is now defined as

Specific availability, a
a = A/m = u− u0 + p0ðv− v0Þ− T0ðs− s0Þ+V2/2gc + gZ/gc

(10.4)

Most processes do not take the system to its ground state. In that case, as a closed system undergoes a process
that carries it from state 1 to state 2, the change in total and specific availabilities are

A2 −A1 = E2 −E1 + p0ðV2 −V1Þ− T0ðS2 − S1Þ
= m u2 − u1 + p0ðv2 − v1Þ− T0ðs2 − s1Þ+ ðV2

2 −V1
2Þ/2gc + gðZ2 −Z1Þ/gc

� 
 (10.5)

a2 − a1 = u2 − u1 + p0ðv2 − v1Þ−T0ðs2 − s1Þ+ ðV2
2 −V1

2Þ/2gc + gðZ2 −Z1Þ/gc (10.6)

The following examples illustrate the calculation of these availability functions for various closed systems.

EXAMPLE 10.1
A cylindrical drinking glass 0.0700 m in diameter and 0.150 m high is three-fourths full of cold liquid water at 10.0°C and
is placed at 0.762 m above the floor on a table in a room. Determine the total availability of the water in the glass relative
to the floor. Take the local environment (ground state) to be at p0 = 0.101 MPa and T0 = 20.0°C = 293 K.

Solution
First, draw a sketch of the system (Figure 10.5).

3/4 full

0.762 m

0.150 m

7.00 × 10−2 m

p0 = 0.101 MPa

T0 = 20.0°C

FIGURE 10.5
Example 10.1.

The unknown is the total availability of the water in the glass relative to the floor. The material is water, and the system is
closed.

The total availability of a system is given by Eq. (10.3) as

A = m u− u0 + p0ðv− v0Þ−T0ðs− s0Þ+ V2

2gc
+

gZ
gc

� 	
Water at 10.0°C and atmospheric pressure is a slightly compressed liquid. However, the amount of compression is very
small, and we can use the u, v, s, and u0, v0, s0 values of saturated liquid water at 10.0°C and 20.0°C, respectively from
Table C.1b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics in the calculation. The glass is not
moving, so V = 0, but it does have a potential energy defined by its height at Z = 0.762 m. The mass of water in the glass is

m = πR2Lρ = πð0:0350mÞ2 ð3/4×0:150mÞ ð1000: kg=m3Þ = 0:433kg

WHERE DID THE NAME “AVAILABILITY” COME FROM?

The potential we call availability today has been known by various names over the years. In 1873, Gibbs called it the avail-
able energy of a body and a medium; in 1889, Gouy called it the utilizable energy; and in 1953, Rant named it exergy. Joseph
Keenan introduced the term availability in 1941, and it is still used.

324 CHAPTER 10: Availability Analysis



and the total available energy is then

A = ð0:433 kgÞ½ð42:0− 83:9 kJ/kgÞ+ ð101 kN/m2Þð0:001000−0:001002m3/kgÞ
− ð293KÞð0:1510−0:2965 kJ/kg .KÞ+ 0+ ð9:81m/s2Þð0:762mÞ/1� = 3:56 kJ

Exercises
1. In Example 10.1, the total available energy was positive even though the water is colder than the local environment and

the contribution from the potential energy term is quite small. Determine the contribution of each term in the total
availability equation in this example and comment on its significance. Answer: m(u− u0) = −18.1 kJ, mp0(v− v0) ≈ 0 kJ,
−mT0(s− s0) = 18.5 kJ, and mgZ/gc = 3.23 kJ. The entropy change dominates.

2. Recalculate the total availability in Example 10.1 when the water is at 20.0°C instead of 10.0°C. Answer: 3.23 kJ.
(The only nonzero term here is potential energy.)

3. If the mass of water in the glass in Example 10.1 is doubled, but all the other variables remain unchanged, determine
the new availability of the water. Answer: A = 7.12 kJ.

EXAMPLE 10.2
Determine the specific available energy in a stationary, rigid tank containing air (an ideal gas) at 20.0°C and 1.500 MPa.
Take the local environment (ground state) to be at p0 = 0.101 MPa and T0 = 20.0°C = 293 K.

Solution
First, draw a sketch of the system (Figure 10.6).

The unknown is the specific available energy in a stationary, rigid tank, The
material is air and the system is closed.

The specific availability is given by Eq. (10.4) as

a = u− u0 + p0ðv− v0Þ− T0ðs− s0Þ+V2/2gc + gZ/gc

For an ideal gas, u − u0 = cv(T − T0), v − v0 = R(T/p− T0/p0), and s − s0 =
cpln(T/T0) − Rln(p/p0). Then,

a = cvðT −T0Þ+ p0RðT/p− T0/p0Þ−T0cplnðT/T0Þ+V2/2gc + gZ/gc

or

a = ð0:781 kJ/kg .KÞð20:0−20:0°CÞ+ ð101 kN/m2Þð0:286 kJ/kg .KÞ 293K
1500: kN/m2 − 293K

101kN/m2

� �

− ð293KÞ 1:004 kJ/kg .KÞ ln 293K
293K

� �
− ð0:286kJ/kg .KÞ ln 1500: kN/m2

101 kN/m2

� �� 	
+0+ 0 = 148kJ/kg

Exercises
4. If the tank temperature in Example 10.2 is increased from 20.0°C to 200.°C and all the other variables remain unchanged,

determine the new specific availability of the gas in the tank. Answer: a = 140. kJ/kg.
5. If the pressure in the tank in Exercise 10.2 is reduced from 1.500 MPa to 0.500 MPa and all the other variables remain

unchanged, determine the new specific availability of the gas in the tank. Answer: a = 67.0 kJ/kg.
6. Recalculate the specific availability in Example 10.2 when the tank contains carbon dioxide at 50.0°C and 2.250 MPa.

Assume all the other variables remain unchanged. Answer: a = 115 kJ/kg.

CRITICAL THINKING

Why is some of the energy within a system unavailable for use? Does its availability or unavailability depend on the
technology being used? Could energy that is unavailable in one system be considered as available in another? Give some
examples.

p0 = 0.101 MPa and T0 = 20.0°C

p = 1.500 MPa
T = 20.0°C

Stationary
rigid tank

FIGURE 10.6
Example 10.2.

10.6 Availability 325



EXAMPLE 10.3
The instrument cooling system on an aircraft flying at 30.0 × 103 ft at 500. mph contains 5.00 lbm of saturated liquid
Refrigerant-22 at 50°F. As the aircraft lands, a malfunction occurs that causes the refrigerant to be heated to 400.°F and
100. psia. Determine

a. The total availability of the refrigerant before and after the aircraft lands.
b. The change in total availability during the landing.

Take the local environment (ground state) to be saturated liquid Refrigerant-22 at T0 = 70.0°F (so that p0 = psat(70.0°F) =
136.12 psia).

Solution
First, draw a sketch of the system (Figure 10.7).

R-22
Ground state:

R-22 at 70.0°F and 136.12 psia

FIGURE 10.7
Example 10.3.

The unknowns are the total availability of the refrigerant before and after the aircraft lands and the change in total availability
during the landing. The material is R-22, and the system is closed.

a. The total availability of a system is given by Eq. (10.3) as

A = m u− u0 + p0ðv− v0Þ− T0ðs− s0Þ+ V2

2gc
+

gZ
gc

� 	

Tables C.9a and C.10a give the thermodynamic properties of the refrigerant as

State 1 ðflyingÞ State 2 ðlandedÞ Ground state

x1 = 0:00 p2 = 100:psia x0 = 0:00

T1 = 50:0°F T2 = 400:°F T0 = 70:0°F

v1 = 0:01281 ft3/lbm v2 = 1:046 ft3/lbm v0 = 0:01325 ft3/lbm

u1 = 24:04Btu/lbm u2 = 154:77Btu/lbm u0 = 29:78Btu/lbm

s1 = 0:0519Btu/lbm .R s2 = 0:31464Btu/lbm .R s0 = 0:06296Btu/lbm .R

V1 = 500mph V2 = 0 p0 = 136:12psia

Z1 = 30,000 ft Z2 = 0

The total availability is given by Eq. (10.5) as

A = m u− u0 + p0ðv− v0Þ−T0ðs− s0Þ+V2/2gc + gZ/gc
� 


326 CHAPTER 10: Availability Analysis



so

A1 = ð5:00 lbmÞ 24:04−29:78 Btu
bm

� �
+ 136:12 lbf

in2

� � 144 in2/f t2

778:16 ft . lbf/Btu

� �
0:01218− 0:01325 ft3

lbm

� �� 	

− ð5:00 lbmÞð530RÞ 0:0519− 0:06296 Btu
lbm .R

� �

+ ð5:00 lbmÞ ½ð500:mphÞð5280 ft/miÞð1h/3600 sÞ�2
2ð32:174 lbm . ft/lbf .s2Þð778:16 ft . lbf/BtuÞ +

ð32:174 ft/s2Þð30:0× 103 ftÞ
ð32:174 lbm . ft/lbf .s2Þð778:16 ft . lbf/BtuÞ

� 	
= 247Btu

and

A2 = ð5:00 lbmÞ
"

154:77− 29:78Btu
bm

� �
+ 136:12 lbf

in2

� � 144 in2/ft2

778:16 ft . lbf/Btu

� �
1:046−0:01325 ft3

lbm

� �
− ð530RÞ 0:31464− 0:06296 Btu

lbm .R

� �
+0+0

#
= 88:1Btu

b. Now, from part a, we have A2− A1 = 88.1− 247 = −159 Btu. Note that the availability is higher in the first state.

Exercises
7. Determine the change in total availability in Example 10.3 if the initial (flying) state of the R-22 is a saturated vapor

rather than a saturated liquid. Assume all the other variables remain unchanged. Answer: A2 − A1 = −161 Btu.
8. If the state of the R-22 in the final (landed) state of Example 10.3 is a saturated liquid at 100.°F rather than a superheated

vapor, recompute the change in total availability for this system. Answer: A2− A1 = −246 Btu.
9. To illustrate the impact of choosing the local environment (ground state), compute the total availabilities and the

change during landing in Example 10.3 if the ground state is changed from a saturated liquid at 70.0°F, where
p0 = 136.122 psia, to a saturated liquid at −40.0°F, where p0 = psat(−40.0°F) = 15.222 psia, which is close to atmospheric
pressure. Answer: A1 = 258 Btu, A2 = 129 Btu, and A2− A1 = −129 Btu.

10.7 CLOSED SYSTEM AVAILABILITY BALANCE
Since availability is a function of the system’s thermodynamic properties, it is therefore a thermodynamic prop-
erty itself. Perhaps, we can gain more insight into its engineering use if we carry out an availability balance for a
closed system. Using the general balance equation, Eq. (2.11), we can write

Atransport +Aproduction = Again (10.7)

If availability were conserved like energy, we would be able to set Aproduction = 0, but since availability is defined
for only reversible processes and most systems undergo irreversible processes, we can expect that Aproduction ≠ 0
and availability is not conserved.

Since it is difficult to decide heuristically how total availability is transported across a system boundary, it is
easier to develop Eq. (10.7) from the definition of the gain in total availability given by Eq. (10.5) as

Again = A2 −A1 = E2 −E1 + p0ðV2 −V1Þ− T0ðS2 − S1Þ

From an energy balance on a system undergoing an actual irreversible process from state 1 to state 2, we have
(recall that we can choose to follow either an actual irreversible path or a hypothetical reversible path to evalu-
ate the change in the total system energy E, because energy is a point function whose integral is independent of
the integration path)

E2 −E1 = ð1Q2Þact − ð1W2Þact = 1Q2 − 1W2

where we drop the subscripts on heat and work transfer and allow them to represent the actual (irreversible)
process values from here on. The entropy balance for this situation is

S2 − S1 =
Z 2

1

dQ
Tb

+ 1ðSPÞ2
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Combining the last three equations, the gain in availability for a closed system undergoing an irreversible
process from state 1 to state 2 becomes

1ðAgainÞ2 =
Z 2

1
1− T0

Tb

� �
dQ− 1W2 + p0ðV2 −V1Þ−T0 1ðSpÞ2 (10.8)

Comparing Eqs. (10.7) and (10.5), we see that the heat transport of total availability can be identified as

A
heat
transport

=
Z 2

1
1− T0

Tb

� �
dQ (10.9)

and, if the boundary temperature is constant over all the heat transfer surfaces, then Eq. (10.9) reduces to

A
heat
transport

=
Z 2

1
1− T0

Tb

� �
dQ =∑ 1− T0

Tbi

� �
ð1Q2Þi (10.10)

where the summation is over all the heat transfer surfaces at temperature Tbi, where heat transfer (1Q2)i occurs.
Again, comparing Eqs. (10.7), (10.8), and (10.9), we see that the work transport of total availability can be
identified as

A
work
transport

= −1W2 + p0ðV2 −V1Þ (10.11)

and, finally, that leaves the net production of total availability as the remaining term:

Aproduction = 1ðAPÞ2 � −T0 1ðSPÞ2 (10.12)

Note that, since the second law of thermodynamics requires that 1(SP)2 ≥ 0, Eq. (10.12) dictates that

1ðAPÞ2 ≤0 (10.13)

for all real irreversible processes. Since the negative of production is destruction, Eq. (10.13) tells us that
availability is always destroyed in any irreversible process. Since negative availability production is a somewhat contra-
dictory and perhaps confusing phrase, we give this term a name that accurately represents its function; we call it
the irreversibility of the process and give it the symbol I:

Irreversibility = 1I2 = 1ðAproductionÞ2 = 1ðAdestructionÞ2 = T0 1ðSPÞ2 ≥0 (10.14)

and the irreversibility rate _I is

Irreversibility rate = _I = T0 _SP ≥0 (10.15)

Finally, substituting Eqs. (10.9), (10.11), (10.12), and (10.14) into Eq. (10.7) gives the closed system total
availability balance (AB) asZ 2

1
1− T0

Tb

� 	
dQ− 1W2 + p0ðV2 −V1Þ− 1I2 = ðA2 −A1Þsystem = ½mða2 − a1Þ�system (10.16)

and the corresponding total availability rate balance (ARB) is obtained by differentiating Eq. (10.16) with respect
to time to yield Z

Σ
1− T0

Tb

� 	
_q dΣ− _W + p0

dV
dt

− _I = dA
dt

� �
system

where Σ is the surface area of the system and Tb is the boundary temperature at the differential surface dΣ.
In this equation, _q is the heat flux, defined in Chapter 7 as _q = d

2
Q/dΣdt: For most systems, the surface integral

can be reduced to a summation over a finite number of isothermal heat transfer surface areas at temperature Tbi,
with each subjected to a heat transfer rate _Qi asZ

Σ
1− T0

Tb

� 	
_q dΣ =∑

i

1− T0
Tbi

� �
_Qi

Then the availability rate balance for a closed system becomes

∑
i

1− T0
Tbi

� �
_Qi − _W + p0

dV
dt

− _I = dA
dt

� �
system

(10.17)
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If the system has a single heat transfer mode occurring at a constant system boundary temperature Tb, then Eqs.
(10.16) and (10.17) reduce to

1− T0
Tbi

� 	
ð1Q2Þ− 1W2 + p0ðV2 −V1Þ− 1I2 = ðA2 −A1Þsystem = ½mða2 − a1Þ�system (10.18)

and

1− T0
Tb

� �
_Q − _W + p0

dV
dt

− _I = dA
dt

� �
system

(10.19)

Since availability represents the maximum useful reversible work that a system produces, each term in the avail-
ability balance must have this same meaning. Note that the heat transport of availability (Eqs. (10.9) and
(10.10)) represents the maximum reversible work that a Carnot engine produces while operating between iso-
thermal reservoirs at temperatures T and T0 (see Eqs. (7.9) and (7.16)). The work transport of availability
(Eq. (10.11)) corresponds to the difference between the actual work and the reversible work necessary to move
the local environment if the system changes volume during a process. The irreversible loss of available energy
associated with the actual heat and work transports of availability are contained in the irreversibility term I. This
term accounts for the difference between an actual irreversible process and a hypothetical reversible process.
Note that the availability gain can be either positive or negative (a system can gain or lose available energy dur-
ing a process), and the heat and work availability transports can also be either positive or negative. However,
Eq. (10.14) requires that the irreversibility must always be positive (I ≥ 0) because of its relation to the entropy
production and the second law of thermodynamics (i.e., SP ≥ 0).

When Tb is greater than T0, the heat transfer and the associated availability transfer are in the same direction
(either both into or both out of the system). However, when Tb is less than T0, they are in opposite directions.
Figure 10.8 illustrates this point and the following examples illustrate the use of this material.

EXAMPLE 10.4
A constant pressure piston-cylinder apparatus contains 1.00 kg of saturated liquid water at 120.°C. Heat is added to this sys-
tem until the contents reach a quality of 50.0%. The surface temperature of the cylinder is constant at 130.°C. Determine
the irreversibility of this process. The local environment (ground state) is at p0 = 0.101 MPa and T0 = 20.0°C = 293 K.

(Continued )

CRITICAL THINKING

How do Eqs. (10.17) and (10.19) change for steady state processes? Does a system have to be steady state for dV/dt to be
zero? If a system is steady state, does that necessarily mean that dV/dt and dA/dt are both zero?

System boundary
at temperature Tb

System boundary
at temperature Tb

Local surroundings
at temperature T0

(a)  Tb > T0 (b)  Tb < T0

Q

Q

A

Q

Q

A

AA

FIGURE 10.8
(a) When Tb > T0, the heat transfer and the associated availability transfer are both in the same direction (either both into or both out of
the system). (b) When Tb < T0, the heat transfer and the associated availability transfer are in opposite directions.
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EXAMPLE 10.4 (Continued )

Solution
First, draw a sketch of the system (Figure 10.9).

The unknown is the irreversibility of this process. The material is water,
and the system is closed.

The irreversibility for this system can be computed from Eq. (10.14) using
an entropy balance to calculate the entropy production or directly from
Eq. (10.18). We use Eq. (10.18) for this example. Solving this equation
for the irreversibility gives

1I2 = 1− T0
Tbi

� 	
ð1Q2Þ− 1W2 + p0mðv2 − v1Þ− ½mða2 − a1Þ�system

and, since the entire process takes place at constant pressure, we can write

1W2 = m
Z

pdv = mpðv2 − v1Þ

Applying the closed system energy balance equation to this system gives

1Q2 = mðu2 − u1Þ+ 1W2

The state properties are

State 1 State 2 Ground State

x1 = 0 x2 = 0:500 T0 = 20:0°C = 293K

T1 = 120:°C p2 = p1 = psatð120:°CÞ = 198:5 kN/m2 p0 = 0:101MPa

v1 = vf ð120:°CÞ v2 = vf ð120:°CÞ+ x2vfgð120:°CÞ
= 0:001060m3/kg = 0:44648m3/kg

u1 = uf 120:°Cð Þ = 503:5 kJ/kg u2 = uf + x2ufg = 1516:4 kJ/kg

s1 = sf 120:°Cð Þ = 1:5280 kJ/kg .K s2 = sf + x2sfg = 4:3292 kJ/kg .K

The change in specific availability of the system is calculated from Eq. (10.4) with V1 = V2 = 0 and Z1 = Z2 as

a2 − a1 = u2 − u1 + p0ðv2 − v1Þ−T0ðs2 − s1Þ
= 1516:4−503:5 kJ/kgð Þ+ 101N/m2ð Þ 0:44648− 0:001060m3/kgð Þ
− 293Kð Þ 4:3292−1:5280 kJ/kg .Kð Þ = 237kJ/kg

Then, we can compute the work using p2 = p1 = p as

1W2 = mpðv2 − v1Þ
= 1:00 kgð Þ 198:5 kN/m2ð Þ 0:44648 −0:001060m3/kgð Þ = 88:4 kJ

and the heat transfer becomes

1Q2= mðu2 − u1Þ+ 1W2

= 1:00 kgð Þ 1516:4−503:5 kJ/kgð Þ+88:4 kJ = 1100 kJ

Then, Eq. (10.15) gives the irreversibility of this process as

1I2 = 1− 293K
403K

� �
ð110 kJÞ−88:4 kJ+ ð101kN/m2Þð1:00 kgÞð0:44648− 0:001060m3/kgÞ

− ð1:00 kgÞð236:9kJ/kgÞ = 20:3 kJ

Exercises
10. Suppose the initial state in Example 10.4 is a saturated vapor at 120.°C instead of a saturated liquid at 120.°C and the

system boundary temperature is lowered from 130.°C to 100.°C. Determine the irreversiblilty in the process under these
conditions, assuming all the other variables remain unchanged. Answer: 1I2 = 44.0 kJ.

11. Determine the irreversibility of the process in Example 10.4 if the system boundary temperature is (a) 150.°C, and
(b) 110.°C instead of 130.°C. Assume all the other variables remain unchanged. Answer: (a) 58.3 kJ, (b) −21.4 kJ. (The fact
that 1I2 < 0 in part b means that it would be impossible to have a surface temperature of only 110.°C for this process.)

12. What is the minimum possible system boundary temperature for the process described in Example 10.4? (Hint: Find Tb
that produces 1I2 = 0.) Answer: Tb = 120.°C.

State 1 State 2

Ground state:
T0 = 20.0°C
p0 = 0.101 MPa

Ts = 130.°C

x1 = 0.00
T1 = 120.°C

x2 = 0.500

FIGURE 10.9
Example 10.4.
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EXAMPLE 10.5
A small room has a single 100. W lightbulb hanging from the ceiling. The walls are not insulated, so a steady state condition
is reached where the room walls are at 24.0°C. Determine the irreversibility rate within the room. The local environment
(ground state) outside the room is at p0 = 0.101 MPa and T0 = 15.0°C.

Solution
First, draw a sketch of the system (Figure 10.10).

100. W lightbulb
Troom= 24.0°C Ground state:

T0 = 15.0°
p0 = 0.101 MPA

FIGURE 10.10
Example 10.5.

The unknown is the irreversibility rate within the room. The irreversibility rate for this closed system can be determined
from Eq. (10.19) as

_I = 1− T0
Tb

� �
_Q − _W + p0

dV
dt

− dA
dt

� �
system

In this problem, the system has a fixed volume so dV/dt = 0, and since the system is steady state, we also have (dA/dt)system = 0.
The energy rate balance applied to this closed system tells us that _Q = _W = 100W: Then, Eq. (10.19) gives

_I = 1− 15:0+ 273K
24:0+ 273K

� �
ð−100WÞ− ð−100WÞ+ p0ð0Þ−0 = 97:0W

Note that, of the 100. W that enters the room as electrical power, only 3% remains as available energy.

Exercises
13. Suppose the local environment (ground state) temperature in Example 10.5 is lowered from 15.0°C to 0.00°C.

Determine the irreversibility rate within the room assuming all the other variables remain unchanged.
Answer: _I = 91:9W.

14. If we change the system in Example 10.5 from the room to the lightbulb itself, then the boundary temperature increases
from 24.0°C to 40.0°C. Assuming all other variables remain unchanged, determine the irreversibility rate of the
lightbulb. Answer: _I = 92:0W

15. The basal metabolic rate of the human body is about 400. Btu/h. This means that the body gives off this much heat, or
_Q body = −400: Btu/h, when it is resting (i.e., when _W body = 0). Suppose the human body is a reversible ð _I = 0Þ closed
system with a surface boundary temperature of 98.6°F in an environment with a temperature of 70.0°F. What is the rate
of change of total availability of the human body? Answer: (dA/dt)body = −20.5 Btu/h.

10.8 FLOW AVAILABILITY
Before we extend the availability balance to open systems, we must evaluate the availability transport associated
with mass flowing across the system boundary. Consider an incremental amount of mass dm moving with velo-
city V crossing the system boundary at height Z in a time interval dt. This mass carries with it an incremental
amount of available energy, dA, defined as

ðdAÞmass
flow

= aðdmÞ = ½u− u0 + p0ðv− v0Þ−T0ðs− s0Þ+V2/2gc + gZ/gc�ðdmÞ
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and the associated availability transport rate for the incremental mass dm is

dA/dtð Þmass
flow

= _Amass
flow

= aðdm/dtÞ = a _m = ½u− u0 + p0ðv− v0Þ−T0ðs− s0Þ+V2/2gc + gZ/gc�ð _m Þ

Figure 6.1 in Chapter 6 indicates that the amount of incremental “flow work” associated with moving the mass
dm across the system boundary is

ðdWÞmass
flow

= pvðdmÞ

and the corresponding flow work rate is

dW
dt

� �
mass
flow

= pv dm
dt

� �
= _mpv

If we assume that the incremental mass dm does not undergo any heat transfer or change in kinetic or potential
energy as it moves through the incremental distance dΡ required to cross the system boundary, then Eq. (10.11)
gives the incremental work mode availability transport as

ðdWÞmass
flow

− p0ðdVÞ = ðdWÞmass
flow

− p0ðvdmÞ

where dV is the volume of the incremental mass dm. Then,

ðdAÞmass
flow

= aWdm = pvdm− p0vdm = vðp− p0Þdm

and the work mode net availability transport rate is

ð _AÞmass
flow

= aW _m = vðp− p0Þ _m

Combining these equations with the nonwork mass flow availability transport gives the total flow availability
transport, af dm, as

adm+ aWdm = ða+ aWÞdm = af dm

or

af = a+ aw = u− u0 + p0ðv− v0Þ− T0ðs− s0Þ+ pv− pv0 +
V2

2gc
+

gZ
gc

= ðu+ pvÞ− ðu0 + p0v0Þ−T0ðs− s0Þ+ V2

2gc
+

gZ
gc

or

The specific flow availability of a flow stream

af = h− h0 −T0ðs− s0Þ+ V2

2gc
+

gZ
gc

(10.20)

where af is the specific flow availability of the mass crossing the system boundary, and the total flow availability of
the mass crossing the system boundary is

_A f = _mðaf Þ = _m h− h0 −T0ðs− s0Þ+ V2

2gc
+

gZ
gc

� �
The concept of flow availability is illustrated in the following example.

EXAMPLE 10.6
Compute the specific flow availability at the exit of a garden hose used to fill a child’s wading pool. The hose is held
horizontally 4.00 ft above the ground and the water exits the hose at 3.00 ft/s at 50.0°F. Take the local environment (ground
state) to be atmospheric temperature and pressure of 70.0°F and 14.7 psia.
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Solution
First, draw a sketch of the system (Figure 10.11).

3.00 ft/s

4.00 ft

T = 50.0°F

Ground state:
T0 = 70.0°F
p0 = 14.7 psia

FIGURE 10.11
Example 10.6.

The unknown is the specific flow availability at the exit of a garden hose. The material is water, and the system is open.

The specific flow availability is defined by Eq. (10.16) as

af = h− h0 −T0ðs− s0Þ+ V2

2gc
+

gZ
gc

The liquid water exiting the garden hose fits our definition of an incompressible fluid, so Eqs. (3.62) and (7.33) can be used
to compute

h− h0 = cðT −T0Þ+ vðp− p0Þ
and

s− s0 = c ln T
T0

� �
Using the subscript w for the water, we can write the specific flow availability of the stream of water exiting the garden
hose as

ðaf Þw = cwðTw −T0Þ+ vwðpw − p0Þ− cwT0ln
Tw

T0

� �
+

V2
w

2gc
+

gZw

gc

where T0 = Tair = 70.0°F and p0 = pair = 14.7 psia. The liquid water is a slightly compressed liquid; however, the amount of
compression is only a few psia (pactual − psat(50.0°F) = 14.7 − 0.1780 = 14.52 psia), and the effect of this small amount of
compression is negligible. Thus, for the specific volume v we use the value of saturated liquid at the actual temperature of
the water, or v = vsat(50.0°F) = 0.01602 ft3/lbm. Substituting in all the appropriate numerical values into the specific flow
availability equation, we get

af = ð1:00Btu/lbmÞð50:0−70:0RÞ+0:01602 ft3/lbmÞð14:7−14:7 lbf/in2Þ 144 lbf/in2

778:16 ft . lbf/Btu

� �
− ð70:0+ 459:67RÞ ln 50:0+ 459:67

70:0+ 459:67

� �
+

ð3:00 ft/s2Þ2
2ð32:174 lbm . ft/lbf .s2Þð778:16 ft . lbf/BtuÞ

+
ð32:174 ft/s2Þð4:00 ftÞ

ð32:174 lbm . ft/lbfgs2Þð778:16 ft . lbf/BtuÞ = 0:393Btu/lbm

Exercises
16. Determine the value of the flow availability in Example 10.6 when the garden hose is lying on the ground. Assume that

the other variables remain unchanged. Answer: (af)w = 0.388 Btu/lbm.
17. Suppose you put a nozzle on the end of the garden hose in Example 10.6 and increase the velocity of the water leaving the

hose from 3.00 ft/s to 15.0 ft/s. Determine the new flow availability, assuming all the other variables remain unchanged.
Answer: (af)w = 0.397 Btu/lbm.

18. While you are spraying the garden hose in Example 10.6, a weather front comes through and lowers the atmospheric
temperature from 70.0°F to 50.0°F. Determine the new flow availability assuming all the other variables remain unchanged.
Answer: (af)w = 0.00500 Btu/lbm.
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10.9 OPEN SYSTEM AVAILABILITY RATE BALANCE
The open system availability rate balance is obtained from the closed system availability rate balance simply by
adding the flow availability resulting from all the inlet and outlet flow streams to Eq. (10.17) to yield the open
system availability rate balance (ARB):

Open system availability rate balance

∑
n

i=1

1− T0
Tbi

� �
_Qi − _W +∑

inlet

_maf − ∑
outlet

_maf + p0 _V − _I = dA
dt

� �
system

(10.21)

As in the case of the open system energy rate balance, several specific cases merit special consideration. These
cases are described in detail next.

■ Case 1 Steady State
A steady state is reached when all system properties are independent of time, then d(any system property)/dt = 0.
Thus, at a steady state, we have

dA
dt

= d
dt

E− E0 + p0ðV −V0Þ−T0ðS− S0Þ
h i

system
= 0

and, since E0, p0, V0, T0, and S0 are all constants, this reduces to

dA
dt

= dE
dt

+ p0
dV
dt

− T0
dS
dt

� �
system

= 0

But since E, V , and S are also system properties, their individual time derivatives must also vanish, so that, in
a steady state, we must have the following system conditions:

Steady statemeans: dA
dt

= dE
dt

= dV
dt

= dS
dt

= 0 (10.22)

■

■ Case 2 Steady Flow
Equation (6.22) defines steady flow as

∑
inlet

_m = ∑
outlet

_m

so that there is no accumulation or depletion of mass within the system during steady flow. ■

■ Case 3 Single Inlet, Single Outlet
In an open system with a single inlet and a single outlet, the summation signs on the flow availability terms
can be dropped. Then,

∑
inlet

_maf − ∑
outlet

_maf = ð _mafÞinlet − ð _mafÞoutlet (10.23)

If the system is also at a steady flow, then Eq. (10.22) tells us that _minlet = _moutlet , and the flow availability
terms for a steady flow system with a single inlet and single outlet can then be written as

∑
inlet

_maf − ∑
outlet

_maf = _m½ðafÞinlet − ðafÞoutlet� (10.24)

■
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■ Case 4 Isothermal Boundaries
If the system has a constant (isothermal) system boundary temperature, Tb, then all the heat transports can

be combined into a single net heat transport term, ∑
i

_Qi = _Qnet = _Q, where we drop the subscript net for

convenience. Then the (net) heat transport of availability for isothermal boundaries can be written as

∑
n

i=1

1− T0
Tbi

� 	
_Qi = 1− T0

Tb

� 	
_Qnet = 1− T0

Tb

� 	
_Q (10.25)

■

■ Case 5 Constant Volume
If the volume of space enclosed by the system boundary is constant in time, then dV/dt = 0, and the loss or gain
of available energy associated with the moving environment vanishes. Then, p0ðV2 −V1Þ = 0 in Eq. (10.18), and
p0ðdV/dtÞ = 0 in Eq. (10.19). Note that Eq. (10.22) tells us that, if the system is at a steady state, then it also
must have a constant volume. ■

10.10 MODIFIED AVAILABILITY RATE BALANCE (MARB) EQUATION
Now, we can refer to the open system availability rate balance for a steady state, steady flow, single-inlet,
single-outlet, constant volume, isothermal boundary system (or SS, SF, SI, SO, CV, IB system) as:

The modified availability rate balance for a SS, SF, SI, SO, CV, IB open system

1− T0
Tb

� 	
_Q − _W + _m½ðaf Þin − ðaf Þout�− _I = 0 (10.26)

where Eq. (10.15) requires that _I ≥ 0.

EXAMPLE 10.7
A horizontal pipe carrying superheated steam at 5000. psia and
1000.°F suddenly develops a small crack. Steam enters the
crack at 50.0 ft/s and passes through it in a steady state, adia-
batic _Q = 0

� �
, aergonic _W = 0

� �
process to exit at 14.696 psia

with a velocity of 300. ft/s. Determine the specific flow avail-
abilities at the inlet and outlet of the crack, and calculate the
irreversibility per unit mass of steam exiting the crack. Take the
local environment (ground state) to be saturated liquid water
at 70.0°F.

Solution
First, draw a sketch of the system (Figure 10.12).

The unknowns are the specific flow availabilities at the inlet and
outlet of the crack and the irreversibility per unit mass of steam
exiting the crack. The material is steam, and this is an open
system. The data at the inlet and outlet flow stations are

Station1 Station2

p1 = 5000:psia p2 = 14:696psia

T1 = 1000:°F ?

h1 = 1363:4Btu/lbm

s1 = 1:3990Btu/lbm .R

(Continued )

5000. psia
50.0 ft/s

1000.°F

300. ft/s
Ground state:
x0 = 0.00
T0 = 70.0°F

FIGURE 10.12
Example 10.7.
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EXAMPLE 10.7 (Continued )

For a steady state adiabatic, aergonic process _Q = _W ¼ 0, and the resulting energy rate balance gives (this is a type of throt-
tling process, see Chapter 4)

h2 = h1 +
V2
1 −V2

2

2gc
= 1363:4 Btu

lbm
+

ð50:0 ft/sÞ2 − ð300: ft/sÞ2

2 32:174 lbm
. ft

lbf . s2

� �
778:16 ft

. lbf
Btu

� � = 1360 Btu
lbm

The values p2 = 14.696 psia and h2 = 1361.7 Btu/lbm fix the exit state, and the remaining properties at the exit station can
now be determined from the steam tables (by interpolation) as T2 = 655°F and s2 = 1:9981Btu/lbm .R: Then, Eq. (10.20)
gives the specific flow availability as

af = h− h0 − T0ðs− s0Þ+ V2

2gc
+

gZ
gc

The local environment (ground state) values are h0 = hf (70.0°F) = 38.1 Btu/lbm, and s0 = sf(70.0°F) = 0.0746 Btu/lbm ·R,
and inserting the numerical values with Z1 = Z2 = 0, we get

af1 = ð1363:4−38:1Btu/lbmÞ− ð70:0+ 459:67RÞð1:3990−0:0746Btu/lbm .RÞ

+
ð50:0 ft/sÞ2

2 32:174 lbm
. ft

lbf . s2

� �
778:16 ft

. lbf
Btu

� � + 0 = 624 Btu
lbm

and

af2 = ð1361:7−38:1Btu/lbmÞ− ð70:0+ 459:67RÞð1:9970−0:0746Btu/lbm .RÞ

+
ð300: ft/sÞ2

2 32:174 lbm
. ft

lbf . s2

� �
778:16 ft

. lbf
Btu

� � + 0 = 307 Btu
lbm

The irreversibility rate is found from Eq. (10.26), and if we divide through by _m , we have the irreversibility per unit mass of
steam flowing, or

_I / _m = I/m = 1− T0
Tb

� 	
_Q / _m − _W/ _m + af1 − af2

and, since _Q = _W = 0 here, this equation reduces to

I
m

= af1 − af2 = 624− 307 = 317 Btu
lbm

Exercises
19. Determine the irreversibility rate in Example 10.7 if the mass flow rate out of the pipe crack is 0.100 lbm/s.

Answer: _I = 31:7Btu/s:
20. If the crack in the pipe in Example 10.7 is horizontal at a height of 15.0 ft from the floor, determine the inlet and exit flow

availabilities of the steam relative to the floor. Answer: Only gZ/gc = 0.0193 Btu/lbm is added to af1 and af2 in Example 10.7.
21. If the leak in Example 10.7 is not adiabatic but has a heat transfer rate per unit flow rate of _Q / _m = �316Btu/lbm and a

boundary temperature of 500.°F, determine the new irreversibility per unit mass of steam exiting the crack. Assume all other
variables remain unchanged (i.e., assume this small value of _Q / _m does not significantly change the values of h2 and s2).
Answer: I/m = 316 Btu/lbm.

EXAMPLE 10.8
Superheated steam at 2.80 lbm/s, 100. psia, and 500.°F enters
a horizontal, stationary, insulated nozzle with a negligible
inlet velocity and expands to 10.0 psia. The friction and
other irreversibilities within the nozzle cause the exit velo-
city to be only 95.0% of that produced by an isentropic
expansion. Taking the local environment (ground state) to
be saturated liquid water at 70.0°F, determine

a. The inlet specific flow availability.
b. The exit specific flow availability.
c. The irreversibility rate inside the nozzle.

Solution
First, draw a sketch of the system (Figure 10.13).

Insulation

10.0 psia

Nozzle

100. psia
500.°F
2.80 lbm/s

V = 0.95 Visentropic

Ground state:
x0 = 0.00
T0 = 70.0°F

FIGURE 10.13
Example 10.8.
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The unknowns are the inlet specific flow availability, the exit specific flow availability, and the irreversibility rate inside the
nozzle. The system is open, and material is steam.

a. The station data at the inlet and outlet of the nozzle are

Station1 Station2s Ground State

p1 = 100:psia p2s = p2 = 10:0psia x0 = 0

T1 = 500:°F s2s = s1 = 1:7087Btu/lbm .R T0 = 70:0°F

h1 = 1279:1Btu/lbm x2s = 0:94735 s0 = 0:0746Btu/lbm .R

s1 = 1:7087Btu/lbm .R h2s = 161:2+0:94735 982:1ð Þ
= 1091:6Btu/lbm

Since this an aergonic, adiabatic, steady state, steady flow, single-inlet, single-outlet system, we can use the energy rate
balance with V1 = 0 and Z1 = Z2 = 0 to determine the isentropic exit velocity as

V2s = 2gcðh1 − h2sÞ½ �1/2

= 2ð32:174 lbm . ft/lbf . s2Þð1279:1− 1091:6Btu/lbmÞð778:16 ft . lbf/BtuÞ½ �1/2
= 3064 ft/s

and the actual exit velocity is V2 = 0.95 × V2s = 0.95(3064) = 2911 ft/s. We can use the energy rate balance to calculate the
actual exit specific enthalpy as

h2 = h1 −
V2
2

2gc
= 1279:1Btu/lbm−

ð2911 ft/sÞ2

2 32:174 lbm
. ft

lbf .s2

� �
778:16 ft

. lbf
Btu

� � = 1110Btu/lbm

Then, we can determine the actual quality of the exit steam as

x2 = h2 − h2fð Þ/h2 fg = 1110− 161:2ð Þ/982:1 = 0:9660

from which we can calculate the actual entropy at the exit as

s2 = s2 f + x2s2 fg = 0:2836+ 0:9660ð Þ 1:5043ð Þ = 1:7368Btu/lbm .R

The specific flow availability is defined by Eq. (10.20) as

af = h− h0 −T0ðs− s0Þ+ V2

2gc
+

gZ
gc

from which we can now calculate the entrance specific flow availability as

af1 = ð1279:1− 38:1Btu/lbmÞ− ð70:0+459:67RÞð1:7087−0:0746Btu/lbm .RÞ
+0+ 0 = 375Btu/lbm

b. The specific flow availability at the exit can now be determined from Eq. (10.20) as

af2 = ð1109:9− 38:1Btu/lbmÞ− ð70:0+450:67RÞð1:7368− 0:0746Btu/lbm .RÞ

+
ð2910:9 ftasÞ2

2 32:174 lbm
. ft

lbf .s2

� �
778:16 ft

. lbf
Btu

� � +0 = 361Btu/lbm

c. The irreversibility rate for this system is given by Eq. (10.26) as

_I = 1− T0
Tb

� �
_Q − _W + _mðaf1 − af2Þ

and, since _Q = _W = 0 here, this equation reduces to

_I = _m ðaf1 − af2Þ

or

_I = 2:80 lbm/sð Þ 375−361Btu/lbmð Þ = 39:2Btu/s

(Continued )
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EXAMPLE 10.8 (Continued )

Exercises
22. Determine the actual exit enthalpy in Example 10.8 if the nozzle efficiency is 85.0% instead of 95.0%. Assume all the

other variables remain unchanged. Answer: h2 = 1144 Btu/lbm.
23. In other thermodynamics problems, we often neglect the effect of flow stream velocity in our analysis. Recompute the

irreversibility rate in Example 10.8 neglecting the exit velocity and observe the effect flow stream velocity has on the
answer. Note that both h2 and s2 change, and that station 2 is now superheated. Answer: = 373 Btu/s (a very significant
error is produced by neglecting the flow stream velocity).

24. If the inlet pressure is increased from 100. psia to 400. psia, determine the new actual exit velocity. Assume all the other
variables remain unchanged. Answer: V2 = 2640 ft/s (to three significant figures).

One further case needs to be introduced. To be able to deal with the inequality that appears in the entropy
production term of the entropy balance, we introduce the simplifying assumption of a reversible process. Even
though reversible processes do not occur in practical engineering problems, it is often a useful simplifying
assumption to invoke. However, when it is used, one should not expect calculated values to closely match the
results of experimental measurements.

■ Case 6 Reversible Processes
In any system undergoing reversible processes, _SP = _I = 0: Then, the resulting SS, SF, SI, SO, CV, IB availability
rate balance for a system undergoing an internally reversible processes is

The modified availability rate balance for a SS, SF, SI, SO, CV, IB, reversible system

1− T0
Tb

� 	
_Q − _W + _m ðaf Þin − ðafÞout

� 

= 0 (10.27)

Note that the first term on the left-hand side of this equation represents external heat transfer irreversibilities,
even though we made the system internally reversible. ■

EXAMPLE 10.9
A large uninsulated steam turbine receives superheated steam
at 18.0 kg/s, 500.°C, and 3.00 MPa and exhausts it to 0.0100
MPa with a quality of 96.0%. If the turbine is assumed to be
internally reversible, determine the rate of heat loss from the
surface of the turbine if the power output is 20.0 × 103 kW.
The surface temperature of the turbine is uniform at 350.°C,
and the local environment (ground state) is taken to be satu-
rated liquid water at T0 = 20.0°C. Neglect all flow stream
kinetic and potential energies in this problem.

Solution
First, draw a sketch of the system (Figure 10.14).

The unknown is the rate of heat loss from the surface of the
turbine. This is an open system, and the material is steam.
The station data at the inlet and outlet of the turbine are

Station1 Station2 Ground State

p1 = 3:00MPa p2 = 0:0100MPa x0 = 0:00

T1 = 500:°C x2 = 0:960 T0 = 20:0°C

h1 = 3456:5 kJ/kg h2 = 191:8+0:96 2392:8ð Þ h0 = 83:9kJ/kg

s1 = 7:2346 kJ/kg .K = 2488:9kJ/kg s0 = 0:2965 kJ/kg .K

s2 = 0:6491+ 0:96 7:5019ð Þ
= 7:8509 kJ/kg .K

Q = ?

Ts = 350.°C
W = 20.0 × 103 kw

x2 = 0.960
p2 = 0.0100 MPa

Ground state:
Water at x0 = 0.00 and
T0 = 20.0°C

m = 18.0 kg/s
T1 = 500.°C
p1 = 3.00 MPa

FIGURE 10.14
Example 10.9.
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The entrance and exit specific flow availabilities are given by Eq. (10.20) (neglecting all flow stream kinetic and potential
energy terms as per the problem statement) as

af = h− h0 −T0ðs− s0Þ
so

af 1 = h1 − h0 − T0ð Þ s1 − s0ð Þ = 3456:5− 83:9 kJ/kgð Þ− 20:0+ 273:15Kð Þ 7:2346−0:2965 kJ/kg .Kð Þ = 1339 kJ/kg

and

af 2 = h2 − h0 − T0ð Þ s2 − s0ð Þ = 2488:9− 83:9kJ/kgð Þ− 20:0+ 273:15Kð Þ 7:8509−0:2965 kJ/kg .Kð Þ = 190:4 kJ/kg

Then, Eq. (10.27), for a reversible process, gives the required heat transfer as

_Q =
_W + _mðaf2 − af1Þ

1− T0
Tbor

_Q =
20:0× 103 kJ/s+ ð18:0 kg/sÞð190:4−1339 kJ/kgÞ

1− 20:0+273:15K
350:+273:15K

= −1260 kJ/s = −1260 kW

Exercises
25. Determine the heat loss from the turbine in Example 10.9 if it is not reversible but instead has a power output of

15.0 × 103 kW with an isentropic efficiency of 88.0%. Assume all the other variables remain unchanged.
Answer: _Q = �6840 kJ/s:

26. If we lower the surface temperature on the turbine in Example 10.9 from 350.°C to 100.°C, determine the new heat loss
rate from the turbine, assuming all the other variables remain unchanged. Answer: _Q = �3120 kJ/s.

27. An error was made in reporting the steam mass flow rate in Example 10.9. The actual mass flow rate is 20.0 kg/s not
18.0 kg/s. Determine the heat loss rate now, assuming all the other variables remain unchanged.
Answer: _Q = �5600 kJ/s.

10.11 ENERGY EFFICIENCY BASED ON THE SECOND LAW
The common work and thermal energy conversion efficiencies defined in Chapters 4 and 7 for fluid pumps and
compressors, heat engines, heat pumps, air conditioners, refrigerators, and so forth are based on energy transport
ratios for these technologies. Such efficiencies do not reveal the source of the losses within these devices, because
they have no term containing the irreversibilities within the system. Consequently, these efficiencies are often
called first law energy conversion efficiencies and are described by Eq. (4.70).

10.11.1 First Law (Energy) Efficiency

ηE �
Desired energy result
Required energy input

(4.70)

For example, in Chapter 7, we introduce the first law (thermal) energy efficiency of a heat engine as

ηT �
Net work output
Total heat input

=
ðWoutÞnet
ðQinÞtotal

=
ð _WoutÞnet
ð _QinÞtotal

(7.5)

Equation (4.70) tells us that the energy conversion efficiency is the ratio of the magnitude of the energy that has
been converted divided by the magnitude of energy initially present that could be converted. Since energy is
conserved, if the energy conversion process is not 100%, then some of the energy initially present must have
been converted into a form different from that desired. This energy is said to be “lost” to the system, since it did
not end up in the proper energy form.

All technology can be categorized into four broad genres:

1. Those that output some form of energy (such as an engine) as their primary function.
2. Those that absorb energy (such as a pump) as their primary function.
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3. Those whose primary function involves energy transfers internal to the system (such as heat exchangers).
4. All other technologies.

For example, given a technology whose primary function is energy output, we can write

Actual useful energy output = Maximum reversible useful energy output− Lost energy

and, given a technology with a primary function of absorbing energy, we have

Actual useful energy input = Maximum reversible useful energy input+ Lost energy

where we recognize that, in each case, the lost energy is not destroyed but only in a form not used by the technology.

A different and more revealing type of energy conversion efficiency can now be defined, based on ratios of available
energy rather than total energy. This new efficiency contains terms representing the irreversibilities within the system,
so that we can see exactly where the loss of efficiency occurs within a system. To distinguish it from the ordinary first
law efficiencies already discussed, this new type of energy conversion efficiency is given the symbol ε and is called
second law efficiency.

10.11.2 Second Law (Availability) Efficiency
Of the available energy initially resident in (or the net available energy put into) a system, some of it leaves the
system with the “desired result” of the operation of the system, some of it is lost to the local environment
(usually through unwanted heat transfer), and some of it is destroyed by the irreversibilities operating inside the
system. This can be written in equation form as

Ainitial or
net input

= Adesired
result

+Aloss +Adestruction (10.28)

We can now define a meaningful second law efficiency (or effectiveness) ε based on availability as

Second law efficiency

ε =

Adesired
result

A
initial or
net input

=

_Adesired
result

_A
initial or
net input

(10.29)

EXAMPLE 10.10
Determine the first and second law efficiencies for heating a liquid from
temperature T to temperature T + ΔT in a closed, uninsulated tank. The tem-
perature change ΔT is due to an external heat transfer Qin, and since the tank
is not insulated, there is also a heat loss to the local environment, Qloss. The
ground state temperature is T0.

Solution
First, draw a sketch of the system (Figure 10.15).

The unknowns are the first and second law efficiencies for heating a liquid from
temperature T to temperature T + ΔT in a closed, uninsulated tank.

An energy balance for this system with W = 0 and Δpe = Δke = 0 is

Qin − jQlossj −0 = m u2 − u1 +0+0ð Þ
or

Qin = m u2 − u1ð Þ+ jQlossj
For an incompressible liquid, we can write

u2 − u1 = cðT2 −T1Þ = c½ðT +ΔTÞ−T� = cðΔTÞ
The “desirable result” here is the increase in internal energy of the liquid in the tank, m(u2 − u1), so the first law (thermal)
efficiency is

ηT = Desirable result
Cost

=
mðu2 − u1Þ

Qin
=

mc ΔTð Þ
Qin

T

T + ΔT

Qloss

Ground state:
Temperature = T0

Qin

FIGURE 10.15
Example 10.10.
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The second law efficiency is given by Eq. (10.29) as

ε = Adesirable result

Ainitial or net input

where

Adesirable result = A2 −A1 = m u2 − u1 + p0ðv2 − v1Þ− T0ðs2 − s1Þ+ ðV2
2 −V2

1 Þ/2gc + gðZ2 −Z1Þ/gc
� 


since V1 = V2, Z1 = Z2, and v1 = v2 here, the this equation reduces to

Adesirable result = A2 −A1 = m u2 − u1 −T0 s2 − s1ð Þ½ �
For an incompressible liquid, u2 − u1 = c(T2 − T1) = c(ΔT ), and s2 − s1 = c ln(T2/T1), then

Adesirable result = mc T2 −T1 − T0ln
T2
T1

� �� 	
= mc ΔT − T0ln

T +ΔT
T

� �h i
so

ε = mc
ΔT − T0 ln

T +ΔT
T

� �
Qin

264
375 = mc

ΔT −T0 ln 1+ ΔT
T

� �
Qin

0B@
1CA

But, from the first law efficiency defined earlier, Qin = mc (ΔT )/ηT, so

ε = ηT 1− T0
ΔT

ln 1+ ΔT
T

� �h i
For example, if T0 = 70.0°F = 530. R and T = 120.°F = 580. R, then

ε = ηT 1− 530:
50:0

× ln 1+ 50:0
580:

� �h i
= 0:124× ηT

so that, even if the first law thermal efficiency of the heating process were 100%, the corresponding second law efficiency
would be only 12.4%. This is due to the fact that ΔT is very small in comparison with T and T0.

Exercises
28. Determine the first and second law efficiencies for the closed liquid heater in Example 10.10 when 300. lbm of liquid

water at 50.0°F is heated to 100.°F using 16.5 × 103 Btu. The temperature of the local environment is 50.0°F.
Answer: ηT = 90.9%, and ε = 4.20%.

29. If the closed liquid heater in Example 10.10 contains 150. kg of liquid water at 15.0°C and is heated to 40.0°C,
determine the first and second law efficiencies of this process. The amount of heat added to the heater is 23.0 × 103 kJ,
and the local environmental temperature is 10.0°C. Answer: ηT = 68.3%, and ε = 6.20%.

30. Show that, when ΔT ≪ T, the second law efficiency defined in Example 10.10 for a closed liquid heating system can be
written as ε = ηT(1− T0/T). (Hint: If ΔT is small, i.e., ΔT ≪ T, then the logarithm term can be expanded as ln(1 + ΔT/T) ≈
ΔT/T.) Note that as T → T0 (or as ΔT → 0) in this case, then ε → 0. This is due to the fact that there is no available energy
in the desired result (i.e., A2 → A1).

Example 10.10 shows that heating a liquid in a closed container is not a very efficient use of energy. What
would happen if the heating were done in an open system, such as a domestic hot water heater? Would that be
any better? Example 10.11 answers this question and shows that the process of heating a liquid has a poor
second law efficiency no matter how it is done.

EXAMPLE 10.11
In this example, we determine the first and second law efficiencies for heating a liquid from temperature T to temperature
T +ΔT in an open, uninsulated heating tank with a negligible pressure drop and compare the results to those obtained in
Example 10.10 for heating in a closed tank. As in Example 10.10, the temperature change ΔT is due to the external heat
transfer rate _Q in:, and since the tank is not insulated there is also a heat loss rate to the local environment, _Q loss: Again, take
the ground state temperature to be T0.

(Continued )
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EXAMPLE 10.11 (Continued )

Solution
First, draw a sketch of the system (Figure 10.16).

The unknowns are the first and second law efficiencies for heating a liquid
from temperature T to temperature T + ΔT in an open uninsulated heating
tank.

An energy balance on this system with _W = 0 and Δpe = Δke = 0 is

_Qin − _Qloss − 0 = _mðh2 − h1 +0+ 0Þ

or

_Qin = _m h2 − h1ð Þ+ _Qloss

We can treat the liquid as incompressible with a negligible pressure drop
and write

h2 − h1 = u2 − u1 + vðp2 − p1Þ = cðT2 − T1Þ+0 = c½ðT +ΔTÞ−T� = cðΔTÞ

The “desirable result” in this problem is the increase in enthalpy of the
liquid flowing through the system, _mðh2 − h1Þ, so the first law (thermal)
efficiency becomes

ηT = Desirable result
Cost

=
_mðh2 − h1Þ

_Qin

=
_mc ΔTð Þ
_Qin

The second law efficiency is given by Eq. (10.29) as

ε =
_Adesired result

_Ainitial or net input

where

_Adesirable result = _mðaf2 − af1Þ = _m h2 − h1 − T0ðs2 − s1Þ+ ðV2
2 −V2

1 Þ/2gc + gðZ2 −Z1Þ/gc
� 


and, since V1 = V2 and Z1 = Z2 here, this equation reduces to

_Adesirable result = _m h2 − h1 − T0 s2 − s1ð Þ½ �

For a constant pressure incompressible liquid, h2 − h1 = u2 − u1 + v ( p2 − p1) = c (T2 − T1) + 0 = c (ΔT ) and s2 − s1 =
c ln(T2/T1), then

_Adesirable result = _mc T2 − T1 −T0 ln
T2
T1

� �� 	
= _mc ΔT −T0 ln

T +ΔT
T

� �h i
so

ε = _mc
ΔT −T0 ln

T +ΔT
T

� �
_Qin

264
375 = _mc

ΔT −T0 ln 1+ ΔT
T

� �
_Qin

0B@
1CA

But, from the first law efficiency defined previously, _Qin = _mc ΔTð Þ/ηT , so we have

ε = ηT 1− T0
ΔT

ln 1+ ΔT
T

� �h i
as was found in Example 10.10. If we again set T0 = 70.0°F = 530. R and T = 120.°F = 580. R, then this equation gives

ε = ηT 1− 530:
50:0

ln 1+ 50:0
580:

� �h i
= 0:124× ηT

Qin

T

T + ΔT

Qloss

Ground state:
Temperature = T0 

FIGURE 10.16
Example 10.11.
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so that, even if the first law thermal efficiency of a domestic hot water heater were 100%, the corresponding second law
efficiency would be only 12.4%. This is again due to the fact that the ΔT here is very small in comparison with the values
of T and T0.

Exercises
31. Determine the first and second law efficiencies for the open liquid heater in Example 10.11 when 3.00 lbm/s of liquid

water at 50.0°F is heater to 100.°F with a heat input of 174 Btu/s. The temperature of the local environment is 50.0°F.
Answer: ηT = 86.2%, and ε = 4.0%.

32. If the open liquid heater in Example 10.11 has a flow rate of 1.50 kg/s of liquid water at 15.0°C that is heated to 40.0°C,
determine the first and second law efficiencies of this process. The rate of heat added to the heater is 180. kJ/s, and the
local environmental temperature is 10.0°C. Answer: ηT = 87.2%, and ε = 7.9%.

33. Show that, when ΔT is small (i.e., ΔT ≪ T ), the second law efficiency derived for the open liquid heating system
in Example 10.11 can be written as ε ≈ ηT (1− T0/T ). (Hint: When ΔT ≪ T, the logarithm can be expanded as ln
(1 +ΔT/T ) ≈ ΔT/T.)

Consider the operation of a heat engine. The “desired result” of the operation of a heat engine is the net power
output of the engine _W, and the availability of the desired result is again just the net power output _W: The
availability input rate to the engine is that due to the net heat transfer rate, which is the difference between the
heat transfer availability rate input from the high temperature source at TH and the heat transfer availability rate
loss to the sink at TL, or

_Adesired
result

= _W

and

_Anet
input

= 1− T0
TH

� �
_QH − 1− T0

TL

� �
j _QLj

and the resulting second law availability efficiency of a heat engine is

εHE =
_W

1− T0
TH

� �
_QH − 1− T0

TL

� �
j _QLj

(10.30)

If T0 = TL, the second law efficiency of a heat engine that rejects heat to the local environment reduces to

Second law efficiency of a heat engine that rejects heat to the local environment

When T0 = TL, εHE =
_W/ _QH

1− TL
TH

=
ηT

ηCarnot
(10.31)

where, from Eq. (7.16), we use ηCarnot = 1− TL/TH.

A power plant is a type of modern heat engine. The following example illustrates the application of this material
to a power plant.

EXAMPLE 10.12
The electric power plant at Mount Etna has a heat input to the boiler of 1.00 × 106 kJ/s at 700.ºC and rejects 7.00 × 105 kJ/s of
heat to the condenser at 40.0ºC while producing 3.00 × 105 kJ/s of electrical power. The local environment (ground state) is at
0.101 MPa and 5.00ºC. Determine

a. The first law thermal efficiency of the power plant.
b. The rate at which available energy enters the boiler.
c. The rate at which available energy enters the condenser.
d. The second law efficiency of the power plant.

Solution
First, draw a sketch of the system (Figure 10.17).

(Continued )
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EXAMPLE 10.12 (Continued )

Boiler

Condenser

Pump
Turbine Generator

Qboiler =1.00 × 106 kJ/s

3.00 × 105 kJ/s
Electrical power

Ground state:
T0 = 5.00°C
p0 = 0.101 MPa

Qcondenser = 7.00 × 105 kJ/s
Tcondenser = 40.0°C

FIGURE 10.17
Example 10.12.

The unknowns are the first law thermal efficiency of the power plant, the rate at which available energy enters the boiler, the
rate at which available energy enters the condenser, and the second law efficiency of the power plant.

a. The first law thermal efficiency of a heat engine is given by Eq. (7.5) as

ηT =
Net work output
Total heat input

=
jWoutjnet
jQinputj total =

j _Woutjnet
j _Qinputj total

so, the overall thermal efficiency of the power plant is

ηT =
3:00× 105 kJ/s
1:00× 106 kJ/s

= 0:300 = 30:0%

b. The rate at which available energy enters the boiler is given by

_A
boiler
input

= 1− T0
TH

� �
_QH = 1− 5:00+273:15K

700:+273:15K

� �
ð1:00×106 kJ/sÞ = 7:14× 105 kJ/s

c. The rate at which available energy enters the condenser is given by

_A
condenser
input

= 1− T0
TH

� �
j _QLj = 1− 5:00+273:15K

40:0+273:15K

� �
ð7×106 kJ/sÞ = 0:78×105 kJ/s

d. The second law availability efficiency of the power plant is given by Eq. (10.30) as

εHE =
_W

1− T0
TH

� �
_QH − 1− T0

TL

� �
j _QL j

=
_W

_A
turbine
input

− _A
condenser
input

=
3:00×105 kJ/s

1− 5:00+273:15K
700:+273:15K

� �
ð1:00× 106 kJ/sÞ− 1− 5:00+ 273:15K

40:0+ 273:15K

� �
ð7:00× 105 kJ/sÞ

= 0:472 = 47:2%
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Exercises
34. Calculate the second law thermal efficiency of the power plant in Example 10.12 if the boiler outlet temperature is

increased from 700.°C to 1000.°C. Assume all the other variables remain unchanged. Answer: εHE = 42.7%.
35. Suppose we lower the condenser temperature in Example 10.12 from 40.0°C to 15.0°C. Assuming all the other variables

remain unchanged, determine the new second law thermal efficiency of the power plant. Answer: εHE = 43.5%.
36. Determine the second law thermal efficiency of the power plant in Example 10.12 when we set TL = T0 = 5.00°C.

Answer: εHE = 42.0%.
37. Why is the value of εHE calculated in Exercise 36 less than the value calculated in the Example 10.12? (Hint: Does it

include the heat transfer irreversibilities and the lost available energy in the heat transfer between the condenser and the
environment?)

In the case of a heat pump, the net available energy input rate is again just the pump work rate (power). The
available energy rate of the “desired result” (heating) is (1− T0/TH)H. Then, the second law availability efficiency
of a heat pump is

εHP =
1− T0

TH

� �
_QH

j _Winj
= 1− T0

TH

� �
_QH

j _Winj

 !
= 1− T0

TH

� �
COPactual

heat pump
(10.32)

and, if T0 = TL, the second law efficiency of a heat pump that absorbs heat from the local environment reduces to

Second law efficiency of a heat pump that absorbs heat from the local environment

When T0 = TL, εHP =

COPactual
heat pump

COPCarnot
heat pump

(10.33)

where the coefficient of performance (COP) of a Carnot heat pump given in Eq. (7.18) is used. The following
example illustrates the use of this material.

EXAMPLE 10.13
A heat pump is designed to provide 30.0 × 103 Btu/h of heat to a small house at 70.0°F when the outside temperature is
30.0°F. The electric motor driving the heat pump draws 1.50 hp. Determine

a. The first law thermal efficiency (i.e., the COP) of the heat pump.
b. The second law availability efficiency of the heat pump.

Solution
First, draw a sketch of the system (Figure 10.18).

The unknowns are the first law thermal efficiency (i.e., the COP) of the heat pump and the second law availability
efficiency of the heat pump.

a. The first law thermal efficiency of the heat pump is given by Eq. (4.70) as

ηT = COPactual
heat pump

=
Desired energy result
Required energy input

=
_QH

j _Winj
=

30:0×103 Btu/h
ð1:50hpÞð2545Btu/hp .hÞ = 7:86

(Continued )

CRITICAL THINKING

The combustion temperature of the burning fuel in the boiler of Example 10.12 is 1800.°C. Suppose this temperature is
taken as the heat source temperature TH. Would the value of the second law availability efficiency εHE calculated in Example
10.12 increase or decrease? Explain what additional irreversibilities are introduced by this change in system boundary that
would produce the change you observe in εHE.
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EXAMPLE 10.13 (Continued )

1.50 hp
electric motor

30.0°F 70.0°F

30.0 ×103

Btu/h
 

Heat pump

FIGURE 10.18
Example 10.13.

b. The second law availability efficiency is given by Eq. (10.32) with T0 = TL = 30.0°F as

εHP = 1− T0
TH

� �
COPactual

heat pump

 !
= 1− 30:0+459:67R

70:0+459:67R

� �
ð7:86Þ = 0:594 = 59:4%

Note that, since T0 = TL here, Eq. (10.33) could have been used with

COPCarnot
heat pump

= TH
TH − TL

= 70:0+ 459:67
70:0− 30:0

= 13:241

to find

εHP =

COPactual
heat pump

COP
Carnot
heat pump

= 7:86
13:24

= 0:594 = 59:4%

Exercises
38. If the house temperature in Example 10.13 increases from 70.0°F to 85.0°F and all the other variables remain

unchanged, determine the new second law efficiency of the heat pump. Answer: εHP = 79.4%.
39. When the outside temperature in Example 10.13 increases from 30.0°F to 40.0°F, determine the new second law thermal

efficiency of the heat pump. Assume all the other variables remain unchanged. Answer: εHP = 44.5%.
40. The heat provided to the house in Example 10.13 is suddenly reduced from 30.0 × 103 Btu/h to 25.0 × 103 Btu/h.

What is the new second law thermal efficiency of the heat pump? Assume all the other variables remain unchanged.
Answer: εHP = 49.5%.

In the case of a refrigeration or air conditioning system, the net available energy input rate is also j _W inj , but
now the available energy rate of the “desired result” (cooling) is j 1−T0/TLð Þ _QLj , where the absolute value has
been used to keep the efficiency a positive number. Then, the second law availability efficiency of a refrigeration
or air conditioning system is

εR/AC =
1− T0

TL

� �
_QL

j _Winj
= 1− T0

TL

� �
_QL

j _Winj

 !
= 1− T0

TL

� �
COPactual

ref or air cond
(10.34)
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and, if T0 = TH, the second law efficiency of a refrigerator or air conditioner that rejects heat to the local environment
reduces to

Second law efficiency of a refrigerator or air conditioner that rejects heat to the local environment

When T0 = TH, εR/AC =
COPactual

ref or air cond

COPCarnot
ref or air cond

(10.35)

where the coefficient of performance of a Carnot refrigerator or air conditioner given in Eq. (7.20) is used. The fol-
lowing example illustrates the use of this material.

EXAMPLE 10.14
A common window air conditioner has an actual COP of 8.92. If the inside temperature is T0 = TL = 20.0°C and the outside
temperature is TH = 35.0°C, determine the second law availability efficiency of this air conditioner.

Solution
First draw a sketch of the system (Figure 10.19).

The unknown is the second law availability efficiency of this air conditioner.

Equation (7.20) gives the coefficient of performance of a Carnot refrigerator or
air conditioner as

COPCarnot
ref : or air cond:

= TL
TH −TL

= 20:0+273:15K
ð35:0+273:15KÞ− ð20:0+ 273:15KÞ = 19:6

then, Eq. (10.35) can be used to determine the second law efficiency as

εR/AC =

COPactual
ref : or air cond:

COPCarnot
ref : or air cond:

= 8:92
19:6

= 0:455 = 45:5%

Exercises
41. Determine the second law thermal efficiency of the air conditioner

in Example 10.14 if the outside air temperature is increased from
35.0°C to 40.0°C. Assume all the other variables remain unchanged.
Answer: εR/AC = 60.9%.

42. If the inside air temperature in Example 10.14 increases from 20.0°C to 22.0°C, determine the new second
law thermal efficiency of the window air conditioner. Assume all the other variables remain unchanged.
Answer: εR/AC = 39.3%.

43. When the outside temperature in Example 10.14 increases from 35.0°C to 40.0°C, the actual COP of the air
conditioner decreases from 8.92 to 7.5. Determine the new second law thermal efficiency of the air conditioner.
Answer: εR/AC = 51.2%.

When we deal with heat exchangers in which the fluids do not mix, the desirable result is the increase in
temperature of the cold stream (we could choose the desired result to be the decrease in temperature of the hot
stream if we wished). Thus, the corresponding _A desired result is the increase in the available energy rate of the cold
stream, or from Figure 10.20a,

_Adesirable result = _mCðaf4 − af3Þ
and the source availability is the decrease in the available energy rate of the hot stream:

_Ainitial or
net input

= _mHðaf1 − af2Þ

Then, the second law availability efficiency for a nonmixing heat exchanger is the ratio of these two terms:

Second law efficiency of a nonmixing heat exchanger

εnonmixingHX =
_mCðaf4 − af3Þ
_mHðaf1 − af2Þ (10.36)

Window
air

conditioner

Toutside= 35.0°CTinside= 20.0°C

COP = 8.92

FIGURE 10.19
Example 10.14.
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EXAMPLE 10.15
The inlet air to a gas turbine engine is preheated with the engine’s exhaust gases. The preheater is insulated so that all
heat transfer is internal. The engine’s exhaust gas enters the preheater at 500.°C and 1.10 atmospheres pressure and
exits at 400.°C and 1.00 atm. The inlet air enters the
preheater at 20.0°C and 1.50 atm and exits at 1.40 atm. The
mass flow rates of the inlet air and the exiting exhaust
are approximately the same at 0.800 kg/s. Both gases can
be treated as constant specific heat ideal gases. The specific
heat and gas constant of the exhaust gas are (cp)exh. =
0.990 kJ/(kg ·K) and Rexh. = 0.272 kJ/(kg ·K). Neglecting all
kinetic and potential energies and taking local environ-
ment (ground state) as p0 = 1.00 atm and T0 = 20.0°C,
determine

a. The exit temperature of the inlet air.
b. The second law availability efficiency of the preheater.

Solution
First, draw a sketch of the system (Figure 10.21).

The unknowns are the exit temperature of the inlet air and
the second law availability efficiency of the preheater.

a. The air exit temperature can be obtained from an energy rate balance on the steady state preheater with _Q = _W = 0
and, with the kinetic and potential energy terms neglected, as

_mexhðhin − houtÞexh = _mairðhout − hinÞair

Since both sides of the heat exchanger are ideal gases, this can be written as

_mexhðcpÞexhðTin −ToutÞexh = _mairðcpÞairðTout −TinÞair

from which we can solve for the exit air temperature as

ðToutÞair = ðTinÞair +
_mexhðcpÞexh
_mcoldðcpÞair

� �
Tin −Toutð Þexh

or

ðToutÞair = 20:0°C+
ð0:800 kg/sÞð0:990 kJ/kg .KÞ
ð0:800 kg/sÞð1:004 kJ/kg .KÞ
� �

ð500:−400:°CÞ = 119°C

Engine exhaust
400.°C
1.00 atm

Engine exhaust
500.°C
1.10 atm

Inlet air
20.0°C
1.50 atm

To engine
1.40 atm

Ground state:
T0 = 20.0°C
p0 =1.00 atm

Internal
heat transfer

mair= mexhaust = 0.800 kg/s

FIGURE 10.21
Example 10.15.

Nonmixing heat exchanger Mixing heat exchanger

(b)(a)

Hot

Cold

Internal
heat transfer

Mixed

Hot

Cold Internal
heat transfer

FIGURE 10.20
Schematic examples of nonmixing and mixing heat exchangers.
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b. The second law availability efficiency of the preheater is given by Eq. (10.36), where the flow availability is given by
Eq. (10.20):

af = h− h0 −T0ðs− s0Þ+ V2

2gc
+

gZ
gc

and since both flow streams are constant specific heat ideal gases, this equation reduces to

af = cpðT − T0Þ− T0 cpln
T
T0

� �
−R ln

p
p0

� �� 	
+ V2

2gc
+

gZ
gc

We neglect kinetic and potential energy terms here, so we can evaluate this equation for each of the four flow
streams as

af
� �

in-exh = 0:990 kJ
kg .K

� �
ð500:−20:0KÞ

− ð20:0+273:15KÞ 0:990 kJ
kg .K

� �
ln 500:+ 273:15

20:0+273:15

� �
− 0:272 kJ

kg .K

� �
ln 1:10

1:00

� �� 	
+ 0+ 0 = 201 kJ/kg

af
� �

out-exh = 0:990 kJ
kg .K

� �
ð400:−20:0KÞ

− ð20:0+273:15KÞ 0:990 kJ
kg .K

� �
ln 400:+273:15

20:0+273:15

� �
− 0:272 kJ

kg .K

� �
ln 1:00

1:00

� �� 	
+0+0 = 135 kJ/kg

af
� �

in-air = 1:004 kJ
kg .K

� �
ð20:0− 20:0KÞ

− ð20:0+ 273:15KÞ 1:004 kJ
kg .K

� �
ln 20:0+273:15

20:0+273:15

� �
− 0:286 kJ

kg .K

� �
ln 1:50

1:00

� �� 	
+0+ 0 = 34:0 kJ/kg

af
� �

out-air = 1:004 kJ
kg .K

� �
ð118:6−20:0KÞ

− ð20:0+273:15KÞ 1:004 kJ
kg .K

� �
ln 118:6+273:15

20:0+ 273:15

� �
− 0:286 kJ

kg .K

� �
ln 1:40

1:00

� �� 	
+0+ 0 = 41:9 kJ/kg

Then Eq. (10.36) gives the second law availability efficiency as

εnonmixing HX =
_mair½ðaf Þout air − ðaf Þin air �
_mexh½ðaf Þin exh − ðaf Þout exh�

=
ð0:800 kg/sÞð41:9−34:0kJ/kgÞ
ð0:800 kg/sÞð201−135 kJ/kgÞ = 0:119 = 11:9%

Exercises
44. Determine the second law efficiency of the air preheater in Example 10.15 when the exhaust inlet temperature

is increased from 500.°C to 750.°C. Assume all the other variables (except T4) remain unchanged.
Answer: εHX = 48.0%.

45. Calculate the second law efficiency of the air preheater in Example 10.15 when the exhaust exit temperature is decreased
from 400.°C to 350.°C. Assume all the other variables (except T4) remain unchanged. Answer: εHX = 24.0%.

46. The mass flow rates in Example 10.15 are changed from 0.800 kg/s to _m exhaust = 0:900 kg=s and _mair = 0:700 kg=s:
Assuming all the other variables remain unchanged, determine the new second law thermal efficiency of the air
preheater. Answer: εHX = 18.4%.

If the hot and cold fluids mix inside the heat exchanger (see Figure 10.20b), then the second law availability
efficiency becomes

Second law efficiency of a heat exchanger in which the hot and cold fluids mix

εmixingHX =
ð1− yÞðaf3 − af2Þ

yðaf1 − af3Þ (10.37)

where y is the hot mass fraction defined as y = _mH/ _mm = _m1/ _m3:
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EXAMPLE 10.16
A student is using a bathroom sink with separate hot and cold water faucets. The student turns on both faucets and adjusts
them to create a pool of warm water in the sink. The sink’s drain is open, so the faucets must be kept running to maintain the
pool of water. The hot water faucet provides 130.°F water at 0.180 lbm/s, and the cold water faucet provides 60.0°F water at
0.270 lbm/s. The local environment (ground state) is at p0 = 14.7 psia at T0 = 55.0°F. Neglecting all flow stream kinetic and
potential energy and assuming the sink itself is insulated, determine

a. The temperature of the mixed water in the sink.
b. The second law availability efficiency of the sink as a mixing-type heat exchanger.

Solution
First, draw a sketch of the system (Figure 10.22).

The unknowns are the temperature of the mixed water in the
sink and the second law availability efficiency of the sink as
a mixing-type heat exchanger.

a. Since the sink is insulated, the mixing process can be taken
as adiabatic, with all the heat transfer occurring inside the
system. The energy rate balance for an adiabatic, aergonic,
steady state, steady flow, double-inlet, single-outlet system
with negligible kinetic and potential energies is

_mHhH + _mChC = _mMhM = ð _mH + _mCÞhM
or

_mHðhH − hMÞ = _mCðhM − hCÞ
where we use the conservation of mass, _mM = _mH + _mC:

The thermodynamic state of the water here is a slightly
compressed liquid, but since the compressibility of liquid water is so small, it can be treated as an incompressible
liquid with a constant specific heat c. Assuming pH = pC = pm, then Eq. (3.34) can be used in the previous equation to
produce

_mHcðTH −TMÞ = _mCcðTM − TCÞ

or

TM =
_mHTH + _mCTC

_mH + _mC
=

ð0:180 lbm/sÞð130:+459:67RÞ+ ð0:270 lbm/sÞð60:0+ 459:67RÞ
0:180 lbm/s+0:270 lbm/s

= 548R = 88:0°F

b. The specific flow availability is defined by Eq. (10.20) as

af = h− h0 − T0ðs− s0Þ+ V2

2gc
+

gZ
gc

The liquid water exiting the faucet fits our definition of an incompressible fluid so that we can use Eq. (3.34)

h− h0 = cðT −T0Þ+ vðp− p0Þ

and Eq. (7.33)

s− s0 = c ln T
T0

� �
Combining these equations for the flow of an incompressible fluid gives

af = cðT −T0Þ+ vðp− p0Þ− cT0 ln T
T0

� �
+ V2

2gc
+

gZ
gc

Tmixed =?

Ground state:
T0 = 55.0°F
p0 = 14.7 psia

mhot = 0.180 1bm/s
Thot = 130.°F 

mcold = 0.270 1bm/s
Tcold = 60.0°F 

FIGURE 10.22
Example 10.16.
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In this problem, we have pH = pC = pm = p0 and we neglect all kinetic and potential energy terms. Then, the flow
availabilities become

afH = af1 = cwðT1 −T0Þ− cwT0 ln
T1
T0

� �
= 1:00 Btu

lbm .R

� �
ð130:−55:0RÞ

− 1:00 Btu
lbm .R

� �
ð55:0+ 459:67RÞ ln 130:+ 459:67R

55:0+ 459:67R

� �
= 4:99Btu/lbm

afC = af2 = cwðT2 −T0Þ− cwT0 ln T2
T0

� �
= 1:00 Btu

lbm .R

� �
ð60:0−55:0RÞ

− 1:00 Btu
lbm .R

� �
ð55:0+ 459:67RÞ ln 60:0+ 459:67R

55:0+ 459:67R

� �
= 0:0240Btu/lbm

afM = af3 = cwðT3 −T0Þ− cwT0 ln
T3
T0

� �
= 1:00 Btu

lbm .R

� �
ð88:0− 55:0RÞ

− 1:00 Btu
lbm .R

� �
ð55:0+ 459:67RÞ ln 88:0+ 459:67R

55:0+ 459:67R

� �
= 1:02Btu/lbm

The second law availability efficiency is now given by Eq. (10.37) with y = _mH/ _mm = _m1/ _m3 = 0:180/ð0:180+0:270Þ=
0.400. Then,

εmixing HX =
ð1−yÞðaf3−af2Þ

yðaf1−af3Þ =
ð1−0:400Þ 1:02−0:0240 Btu

lbm.R

� �
0:400 4:99−1:02 Btu

lbm.R

� � = 0:374= 37:4%

Exercises
47. The hot water temperature in Example 10.16 is reduced from 130.°F to 120.°F. Determine the new mixture temperature

in the sink and the second law efficiency of the mixing in the sink. Assume all the other variables (except Tm) remain
unchanged. Answer: Tm = 84°F, and εHX = 38.2%.

48. If the hot and cold mass flow rates in Example 10.16 are equalized at 0.225 lbm/s each, determine the mixture
temperature in the sink and new second law efficiency of this mixing process. Assume all the other variables (except Tm)
remain unchanged. Answer: Tm = 95.0°F, and εHX = 41.5%.

49. Explain how the second law efficiency in Example 10.16 might be increased. (Hint: Describe how the mass flow rates
and the temperatures could be altered to increase the value of ε.)

50. According to Figure 10.8, when Tb > T0, the heat and availability transports are in the same direction, but when Tb < T0,
they are in opposite directions. In a heat exchanger that has TC < TH < T0, show that the hot flow stream gains
availability during the internal heat transfer process and the cold flow stream loses it. (Hint: Look at the difference
between the inlet and exit flow stream specific flow availabilities.)

SUMMARY
In this chapter, we study a new concept in applied thermodynamics called available energy. The importance of
this material is discussed in the Introduction, and necessary background material is presented in the sections on
scalar and vector fields, conservative fields, and conservative forces. The concept of availability is based on the
maximum reversible work possible in a system, limited by the conditions present in the local environment. Once the
necessary background material is presented, we are able to define availability as the maximum possible useful
reversible work that a system could supply relative to its local environment as a ground state. At this point, we
could develop a closed system availability balance and carry out the solution of several example problems. Before
we could extend this to open systems, we had to define the concept of flow availability. With this as the concept
of how available energy crosses the system boundary, we are able to develop an open system availability balance
and modify the general form of this equation for several typical conditions, such as steady state and steady
flow. The chapter concludes with a discussion of a new type of efficiency, the second law efficiency. This efficiency
tells us how efficiently the available energy within the system is used. This is a very important concept in the
design of energy conversion systems.
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Some of the more important equations introduced in this chapter are (recall that the thermodynamic properties
of the local environment or ground state are written as T0, p0, V0, v0, U0, u0, H0, h0, S0 and s0) follow.

1. The maximum reversible work that a closed system can perform is given by Eq. (10.1) as

ðWÞmaximum
reversible

= E−E0 −T0ðS− S0Þ

and the maximum reversible useful work that a closed system can perform is given by Eq. (10.2) as

ðWÞmaximum
reversible
useful

= ðWÞmaximum
reversible

− ðWÞreversible
moving
boundary

= E− E0 + p0ðV −V0Þ−T0ðS− S0Þ

2. The total availability A of a closed system is given by Eq. (10.3) as

A = Wð Þmaximum
reversible
useful

= E− E0 + p0ðV −V0Þ− T0ðS− S0Þ

= m u− u0 + p0ðv− v0Þ− T0ðs− s0Þ+V2/2gc + gZ/gc
� 


and the specific availability, a, of a closed system is given by Eq. (10.4) as

a = A/m = u− u0 + p0ðv− v0Þ− T0ðs− s0Þ+V2/2gc + gZ/gc

3. The change in total and specific availability of a closed system as it passes from state 1 to state 2 is given by
Eqs. (10.5) and (10.6) as

A2 −A1 = E2 − E1 + p0ðV2 −V1Þ− T0ðS2 − S1Þ

= m½u2 − u1 + p0ðv2 − v1Þ−T0ðs2 − s1Þ+ ðV2
2 −V2

1 Þ/2gc + gðZ2 −Z1Þ/gc�
and

a2 − a1 = u2 − u1 + p0ðv2 − v1Þ− T0ðs2 − s1Þ+ ðV2
2 −V2

1 Þ/2gc + gðZ2 −Z1Þ/gc

4. The irreversibility I and the irreversibility rate _I that occur inside a system are given by Eqs. (10.14) and
(10.15) as

1I2 = T0 1ðSPÞ2 ≥0

and

_I = T0 _SP ≥ 0

5. The availability balance (AB) and availability rate balance (ARB) for a closed system with a single heat
transfer mode occurring at a constant system boundary temperature Tb is given by Eqs. (10.18) and
(10.19) as

1− T0
Tbi

� 	
ð1Q2Þ− 1W2 + p0ðV2 −V1Þ− 1I2 = ðA2 −A1Þsystem = ½mða2 − a1Þ�system

and

1− T0
Tb

� �
_Q − _W + p0

dV
dt

− _I = dA
dt

� �
system

6. The specific flow availability of mass crossing a system boundary is defined by Eq. (10.20) as

af = h− h0 − T0ðs− s0Þ+ V2

2gc
+

gZ
gc
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7. The general open system availability rate balance is given by Eq. (10.21) as

∑
n

i=1
1− T0

Tbi

� �
_Qi − _W +∑

inlet

_maf − ∑
outlet

_maf + p0 _V − _I = dA
dt

� �
system

and the modified availability rate balance (MARB) for steady state, steady flow, single-inlet, single-
outlet, constant volume, isothermal boundary (SS, SF, SI, SO, CV, IB) open systems is given by
Eq. (10.26) as

1− T0
Tb

� 	
_Q − _W + _m½ðaf Þin − ðaf Þout�− _I = 0

8. The second law efficiency (or effectiveness) is defined in Eq. (10.29) as

ε =

Adesired
result

A
initial or
net input

=

_Adesired
result

_A
initial or
net input

9. The second law availability efficiency of a heat engine is given by Eq. (10.30) as

εHE =
_W

1− T0
TH

� �
_QH − 1− T0

TL

� �
j _QLj

which becomes εHE = ηT/ηCarnot when T0 = TL.
10. The second law availability efficiency of a heat pump is given by Eq. (10.32) as

εHP =
1− T0

TH

� �
_QH

j _Winj
= 1− T0

TH

� �
_QH

j _Winj

 !
= 1− T0

TH

� �
COPactual

heat pump

which becomes εHP = (COP)actual HP/(COP)Carnot HP when T0 = TL.
11. The second law availability efficiency of a refrigerator or air conditioner is given by Eq. (10.34) as

εR/AC =
1− T0

TL

� �
_QL

j _Winj
= 1− T0

TL

� �
_QL

j _Winj

 !
= 1− T0

TL

� �
COPactual

ref or air cond

which reduces to εR/AC = (COP)actual R/AC/(COP)Carnot R/AC when T0 = TH.
12. The second law availability efficiency of a four flow stream nonmixing heat exchanger is given by

Eq. (10.36) as

εnonmixingHX =
_mCðaf4 − af3Þ
_mHðaf1 − af2Þ

and, for a three flow stream heat exchanger in which the fluids mix inside its boundaries, it is given by
Eq. (10.37) as

εmixingHX =
ð1− yÞðaf3 − af2Þ

yðaf1 − af3Þ

where y is the hot mass fraction, y = _mhot/ _mmixed:
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Problems (*indicates problems in SI units)
1. Determine the potential for the following vector field:

A
!

= y i
!

+ x j
!

+ 0k
!
:

2. Compute the vector field for the following potential:
P = ax + by + cz.

3. Compute the vector field for the following potential:
P = 3x3 + 2y2 − z + 7.

4. Compute the vector field for the following potential:
P = 5x2y/z + sin(x).

5. Coulomb’s law of the electrostatic force of attraction between
two isolated charges, Q1 and Q2, separated by a distance r is
F
!

= ðQ1Q2/4πεr2Þ i!r , where i
!
r is the unit vector pointing along

the line of centers of the charges and ε is the dielectric constant
of the medium containing the charges. Show that this force has a
potential given by P = Q1Q2/4πεr:

6. Newton’s law for the gravitational force between to bodies of
mass m1 and m2 separated by a distance r is F

!
=ðGm1m2/r2Þ i!r ,

where G is the gravitational constant and i
!

r is a unit vector
pointing along the line of centers of the masses. Determine the
gravitational potential for this force and show that it satisfies
the Laplace equation in cylindrical coordinates,

∇2 F
!

= ∂2 F!
∂r2

+1
r
∂ F!
∂r

+ 1
r2

∂2 F!
∂θ2

+∂2 F!
∂z2

7.* The total energy contained in a closed rigid system is 550. kJ
and its total entropy is 2.7521 kJ/K. The ground state total
energy, total entropy, and absolute temperature of the system
are 50.0 kJ, 1.0000 kJ/K, and 273 K, respectively. Determine
the maximum reversible work this system can produce.

8.* The total energy contained in a closed, sealed, rigid can of
tuna is 3000. J with a total entropy of 2.8330 J/K. The ground
state total energy, total entropy, and temperature of the system
are 100.0 J, 0.0275 J/K, and 20.0°C, respectively. Determine
the maximum reversible work available from the can of tuna.

9. The total energy contained in a closed, sealed, rigid can of
carbonated soda is 10.0 Btu with a total entropy of 0.0739
Btu/R. The ground state total energy, total entropy, and
temperature of the system are 1.00 Btu, 0.0619 Btu/K, and
70.0°F, respectively. Determine the maximum reversible work
available from the can of soda.

10.* An inventor claims to have developed a new closed, sealed
battery that can produce a maximum reversible work of 3.80
kJ. The total energy contained in the battery is 2.00 kJ with a
total entropy of 7.5150 J/K. If the ground state total energy
and total entropy are 100. J and 0.5660 J/K, respectively, what
ground state temperature is required to meet the inventor’s
maximum reversible work claim?

11. As a designer, you are required to develop a new closed, sealed
thermal energy storage cell that has a maximum reversible work
output of 500. Btu. The ground state total energy, total entropy,
and temperature are 5.00 Btu, 0.11690 Btu/R, and 50.0°F,
respectively. If the total entropy of the cell must be ten times its
ground state value, what should the total energy of the cell be?

12. An open bucket containing 30.0 lbm of liquid water at 70.0°F
is sitting 6 ft above the floor on a ladder. Determine the total
availability of the water in the bucket relative to the floor. The
local environment is at 14.7 psia and 70.0°F.

13.* An open bucket containing 14.0 kg of liquid water at 20.0°C is
spun on a rope in a horizontal plane 2.00 m above the floor

with a tangential velocity of 5.00 m/s. Determine the total
availability of the water in the bucket relative to the floor. The
local environment is at 0.101 MPa and 20.0°C.

14.* Determine the total availability of a 7.00 × 10−3 kg
incompressible lead bullet traveling vertically at 1000. m/s at a
height of 50 m above the ground. The temperature of the bullet
is 150.°C and its specific heat is 0.167 kJ/kg ·K. The local
environment is at 0.101 MPa and 20.0°C.

15.* A stationary tethered balloon contains helium gas (an ideal
gas here) at 0.00°C and 0.0700 MPa at a height of 1000. m.
Determine the specific availability of the helium in the
balloon relative to the ground, where the local environment is
at p0 = 0.101 MPa and T0 = 20.0°C.

16.* The air (an ideal gas here) in the ballast tanks of a submarine is
at 10.0°C and 1.50 MPa when the submarine is cruising at 3.00
m/s, 100. m below sea level. Determine the specific availability
of the air in the ballast tanks relative to sea level where the local
environment is at 0.101 MPa and 20.0°C.

17. Integrate Eq. (7.52) and use Eqs. (10.13a) and (10.14a) to
determine the irreversibility and total availability change for
an aergonic closed system in which the temperature increases
from T1 = 70.0°F to T2 = 200.°F for the cases where the heat
transfer varies with the system absolute temperature according
to the relationships
a. Q = K1T (convection).
b. Q = K2T

4 (radiation)
where K1 = 3.70 Btu/R and K2 = 5.40 × 10−4 Btu/R4. The
system boundary is maintained isothermal at 350.°F and the
local environment is at 14.7 psia and 70.0°F.

18. The temperature distribution due to conduction heat transfer
inside a flat plate with an internal heat generation is given by
T = T0 + (Ts − T0)(x/L)

2, where Ts is the surface temperature at
x = L, and T0 is the centerline temperature at x = 0 (Figure 10.23).
Use Eqs. (7.66) and (10.13b) to determine a formula for the
steady state irreversibility rate for this system.

L

x

Ts Ts

FIGURE 10.23
Problem 18.

19. A current of 100. A is passed through a 6.00 ft long stainless
steel wire 0.100 inch in diameter. The electrical resistivity of
the wire is 1.97 × 10−5 Ω · in, and its thermal conductivity is
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12.5 Btu/hr · ft ·R. If the outer surface temperature of the wire
is maintained constant at 300.°F and the temperature profile
inside the wire is given by T = Tw + ρeJ

2
e ðR2 − r2Þ/ð4ktÞ, where

Tw is the wall temperature of the wire, R is its outside radius,
and r is measured from the center of the wire. Use Eqs. (7.75)
and (10.13b) to determine the steady state irreversibility
production rate within the wire due to the flow of electricity
through it. Assume all the physical properties are independent
of temperature.

20. A constant pressure piston-cylinder apparatus contains 1.30
lbm of saturated liquid water at 212°F. Heat is added to this
system until the contents reach a quality of 85.0%. The surface
temperature of the cylinder is constant at 250.°F. Determine
the irreversibility of this process if the local environment is at
14.7 psia and 70.0°F.

21. 1.00 lbm of saturated water vapor at 212°F is condensed in a
closed, nonrigid system to saturated liquid at 212°F in a
constant pressure process by a heat transfer across a system
boundary with a constant temperature of 80.0°F. What is (a)
the irreversibility and (b) the change in total availability for this
process if the local environment is at 14.7 psia and 70.0°F?

22.* A closed, rigid container encloses 1.50 kg of air at 0.100 MPa
and 20.0°C. We wish to increase the temperature to 40.0°C
by heat transfer. Assuming constant specific heat ideal gas
behavior, determine (a) the irreversibility and (b) the change
in total availability of the air when this change of state is
accomplished using a constant system boundary temperature
of 100.°C and the local environment is at 0.101 MPa
and 20.0°C.

23. A sealed, rigid kitchen pressure cooker with a volume of 1.00 ft3

contains 2.20 lbm of a mixture of liquid plus vapor water at 14.7
psia. The pressure cooker is then heated until its internal pressure
reaches 20.0 psia. Determine (a) the heat transfer during the
process, (b) the irreversibility of the process if the inner surface
of the pressure cooker is constant at 250.°F, and (c) the change
in total availability of the water if the local environment is at
14.7 psia and 70.0°F.

24. A closed, sealed, rigid container is filled with 0.05833 ft3 of
liquid water and 0.94167 ft3 of water vapor in equilibrium at
1.00 psia. The vessel is then heated until its contents become a
saturated vapor. If this heating process is done irreversibly,
determine (a) the total irreversibility for this process if the
surface temperature of the vessel is maintained constant at
300.°F and (b) the change in total availability of the water if
the local environment is at 14.7 psia and 70.0°F.

25.* Determine the irreversibility of a 4.00 × 10−3 kg, 80.0°C lead
bullet traveling at 900. m/s that impacts a perfectly rigid surface
aergonically and adiabatically. The specific heat of lead at the
mean temperature of the bullet is 167 J/kg ·K, and the local
environment is at 0.101 MPa and 20.0°C.

26. A small room has a single 60.0 W lightbulb hanging from the
ceiling. The walls are not insulated, so a steady state condition
is reached where the room walls are at 55.0°F. Determine the
irreversibility rate within the room if the local environment is
at 14.7 psia and 40.0°F.

27.* The surface temperature of a 100. W incandescent lightbulb
is 60.0°C. The surface temperature of a 20.0 W fluorescent
tube producing the same amount of light as the 100. W
incandescent lightbulb is 30.0°C. Determine the steady state
irreversibility rate of each light source when the local

environmental temperature is 20.0°C, and comment on which
is the more efficient.

28.* An automobile engine heater is an electrical resistance heater that
is plugged into a 110. V ac outlet and inserted into the oil
dipstick tube of the engine. Its purpose is to keep the engine oil
warm during the winter when the car is not in use, thus allowing
the engine to start easier. Determine the steady state
irreversibility produced during an 8.00 h period by a 100. W
steady state engine heater whose surface is isothermal at 90.0°C.

29. Determine the irreversibility produced when 3.00 lbm of carbon
dioxide at 70.0°F and 30.0 psia are adiabatically mixed with
7.00 lbm of carbon dioxide at 100.°F and 15.0 psia. The final
mixture pressure is 17.0 psia. Assume the carbon dioxide
behaves as a constant specific heat ideal gas and that the local
environment is at 14.7 psia and 70.0°F.

30.* Determine the irreversibility produced as 10.0 kg of liquid
water at 10.0°C is adiabatically mixed with 20.0 kg of liquid
water at 80.0°C. The specific heat of the water is 4.20 kJ/kg ·K,
and the local environment is at 0.101 MPa and 20.0°C.

31. Here is the classical coffee and cream problem. Which of the
following processes produces less irreversibility?
a. Mixing cream with hot coffee and then letting the mixture

cool to the drinking temperature.
b. Letting the coffee cool to a temperature such that, when

the cream is added, the mixture will be at the drinking
temperature.

Do not ignore the cooling heat transfer irreversibility.
32.* An engine operating on a Carnot cycle extracts 10.0 kJ of heat

per cycle from a thermal reservoir at 1000.°C and rejects a
smaller amount of heat to a low-temperature thermal reservoir
at 10.0°C. Determine the net change in availability of the engine
per cycle of operation when the local temperature is 0.00°C.

33. An engine operating on a Carnot cycle extracts heat at a rate of
500. Btu/s from a thermal reservoir at 1000.°F and rejects heat to
a low-temperature thermal reservoir at 100.°F. Determine the
rate of change in availability of the engine when the local
environmental temperature is 70.0°F.

34. A fire hose is used to extinguish a building fire. The end of the
hose is held 50.0 ft from the ground on a ladder and sprays
50.0°F water at a velocity of 12.0 ft/s. Assuming the water is
an incompressible liquid, determine the specific flow
availability at the exit of the hose when the local environment
(ground state) is at 14.7 psia and 70.0°F.

35. Recompute the specific flow availability in Problem 34 using
Table C.1a of Thermodynamic Tables to accompany Modern
Engineering Thermodynamics when the water exits the fire hose
as a saturated liquid at 50.0°F and the local environment
(ground state) is saturated liquid water at 70.0°F.

36.* A garden hose is used to fill a swimming pool. The hose is
laid on the ground and the water exits at 1.00 m/s at 15.0°C.
Assuming the water is an incompressible liquid, determine the
specific flow availability at the exit of the hose when the local
environment (ground state) is at 0.101 MPa and 20.0°C.

37.* Recompute the specific flow availability in Problem 36 using
Table C.1b when the water exits the garden hose as a saturated
liquid at 15.0°C and the local environment (ground state) is
saturated liquid water at 20.0°C.

38.* Superheated steam at 1000.°C and 1.00 MPa flows through a
pipe located 20.0 m above the floor in a power plant with a
velocity of 50.0 m/s. Determine the specific flow availability of
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the steam in the pipe when the local environment (ground
state) is saturated liquid water at 20.0°C.

39.* Saturated liquid ammonia at 0.00°C flows through a pipe
located 10.0 m below the floor in a refrigeration system with a
velocity of 3.30 m/s. Determine the specific flow availability of
the ammonia in the pipe when the local environment (ground
state) is saturated liquid ammonia at 0.00°C.

40. Superheated Refrigerant-22 at 100. psia and 100.°F flows
through a tube in a large industrial air conditioner 50.0 ft
above the ground at a velocity of 20.0 ft/s. Determine the
specific flow availability of the refrigerant in the tube when the
local environment (ground state) is saturated liquid
Refrigerant-22 at 0.00°F.

41.* Saturated liquid Refrigerant-134a at 12.0°C flows through a
tube in an automobile air conditioning system at a velocity of
0.300 m/s. The tube is 1.00 m above the ground. Determine
the specific flow availability of the refrigerant in the tube when
the local environment (ground state) is saturated liquid
Refrigerant-134a at 0.00°C.

42.* Superheated mercury vapor at 2.00 MPa flows at a velocity
of 7.50 m/s through a pipe in a portable nuclear power
plant. The pipe is 0.500 m above the ground. Determine the
specific flow availability of the mercury in the pipe. Use
saturated liquid mercury at 0.100 MPa as the local
environment (ground state).

43. Air (an ideal gas here) at 100. psia and 150.°F flows through a
pipe in a factory with a velocity of 10.0 ft/s. The pipe is located
75.0 ft above the floor. Determine the specific flow availability
of the air in the pipe when the local environment (ground
state) is at 14.7 psia and 70.0°F.

44.* Saturated water vapor enters an isentropic turbine of a power
plant at 4.00 MPa and exits at 1.00 × 10−3 MPa. Neglecting
kinetic and potential energy effects, determine the difference in
specific flow availability between the entrance and exit of the
turbine. Use saturated liquid water at 20.0°C as the local
environment (ground state).

45. Steam enters the isentropic turbine of power plant at 200. psia
and 500.°F. How much does the change in specific flow
availability between the inlet and exit of the turbine increase if
the exit pressure is lowered from 14.7 psia to 1.00 psia?
Neglect all kinetic and potential energy effects. Use saturated
liquid water at 80.0°F as the local environment (ground state).

46. A small portable nuclear-powered steam turbine has an inlet
state of 200. psia, 600.°F and an outlet temperature of 95.0°F.
Assuming that the exit state is also a saturated vapor,
determine the change in specific flow availability between the
inlet and exit of the turbine. Neglect all kinetic and potential
energy effects. Use saturated liquid water at 70.0°F as the local
environment (ground state).

47.* A horizontal pipe carrying superheated steam at 30.0 MPa and
1000.°C suddenly develops a small crack. Steam enters the
crack at 30.0 m/s and passes through it in a steady state,
adiabatic, aergonic process to exit at 0.101 MPa with a velocity
of 250. m/s. Determine the specific flow availabilities at the
inlet and outlet of the crack, and calculate the irreversibility
per unit mass of steam exiting the crack. Use saturated liquid
water at 20.0°C as the local environment (ground state).

48.* Superheated steam at 8.30 kg/s, 1.00 MPa, and 400.°C enters a
horizontal, stationary, insulated nozzle with a negligible
velocity and expands to 10.0 × 10−3 MPa. The friction and

other irreversibilities within the nozzle cause the exit velocity
to be only 85.0% of that produced by an isentropic expansion.
Taking the local environment (ground state) to be that of
saturated liquid water at 20.0°C, determine
a. The inlet specific flow availability.
b. The exit specific flow availability.
c. The irreversibility rate inside the nozzle.

49. A large, uninsulated steam turbine receives superheated steam
at 40.0 lbm/s, 1000.°F, and 800. psia and exhausts it to 1.00
psia with a quality of 92.0%. If the turbine is assumed to be
internally reversible, determine the heat loss from the surface
of the turbine if the power output is 30.0 × 103 kW. The
surface temperature of the turbine is uniform at 225°F and the
local environment (ground state) is saturated liquid water at
20.0°C. Neglect all flow stream kinetic and potential energies
in this problem.

50. A steady flow, steady state air compressor handles 4000. ft3/min
measured at the intake state of 14.1 psia, 30.0°F and a velocity
of 70.0 ft/s. The discharge is at 45.0 psia and has a velocity of
280. ft/s. Both the inlet and exit stations are located 4.00 ft
above the floor. Using the specific flow availability relative to
the local environmental (ground state) temperature of 80.0°F
and a pressure of 14.7 psia, determine
a. The discharge temperature and the power required to drive

the compressor if the process is reversible and adiabatic.
b. The discharge temperature and the power required to

drive the compressor if the process is irreversible and
adiabatic with a compressor work transport efficiency
of 80.0%.

51.* Determine the work required to compress 15.0 kg/min of
superheated steam in an uninsulated, reversible compressor
from 0.150 MPa, 600.°C to 1.50 MPa, 500.°C in a steady state,
steady flow process. Neglect any changes in kinetic and
potential energy. Use the flow availability approach to
calculate the specific flow availabilities at the inlet and exit if
the environmental temperature is 20.0°C. Choose the local
environment (ground state) to be saturated liquid water at the
environmental temperature.

52. An adiabatic, steady flow compressor is designed to compress
superheated steam at a rate of 50.0 lbm/min. At the inlet to
the compressor, the state is 100. psia and 400.°F; and at the
compressor exit, the state is 200. psia and 600.°F. Neglecting
any kinetic or potential energy effects, calculate (a) the power
required to drive the compressor and (b) the rate of
availability destruction by the compressor. Use saturated liquid
water at 80.0°F as the local environment (ground state).

53.* A steady flow air compressor takes in 5.00 kg/min of
atmospheric air at 101.3 kPa and 20.0°C and delivers it at an
exit pressure of 1.00 MPa. The air can be considered an ideal
gas with constant specific heats. Potential and kinetic energy
effects are negligible. If the process is not reversible but is
adiabatic and polytropic with a polytropic exponent of n =
1.47, calculate
a. The power required to drive the compressor.
b. The entropy production rate of the compressor.
c. The entrance and exit specific flow availabilities if the

ground state local environmental temperature and pressure
are 20.0°C and 101.3 kPa.

54. An uninsulated, irreversible steam engine whose surface
temperature is 200.°F produces 50.0 hp with a steam mass
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flow rate of 15.0 lbm/min. The inlet steam is at 400.0°F,
100. psia and it exits at 14.7 psia, 90.0% quality. Determine
a. The rate of heat loss from the engine.
b. Its entropy production rate.
c. Its entrance and exit specific flow availabilities. Use

saturated liquid water at 80.0°F as the local environment
(ground state).

55.* A design for a turbine has been proposed involving the
adiabatic, steady flow of steam through the turbine. Saturated
vapor at 300.°C enters the turbine and the steam leaves at
0.200 MPa with a quality of 95.0%.
a. Draw a T-s diagram for the turbine.
b. Determine the work and entropy production per kilogram

of steam flowing through the turbine.
c. If the atmospheric temperature is 25.0°C, determine the

entrance and exit specific flow availabilities.
Neglect any kinetic and potential energy effects and take the
local environment (ground state) to be saturated liquid water
at 80.0°F.

56.* Steam enters a turbine at 2.00 MPa and 700.°C and exits the
turbine at 0.200 MPa and 400.°C. The process is steady flow,
steady state, and adiabatic. Using saturated liquid water at
20.0°C as the local environment (ground state), determine the
following items on the basis of a steam flow rate of 6.30 kg/s:
a. The irreversibility rate of the turbine.
b. The turbine’s entrance and exit specific flow availabilities.
c. The turbine’s actual output power.

57. Saturated liquid water enters a badly worn boiler feed pump
at 1.00 psia and exits the pump as a saturated liquid at 600
psia in a steady flow, steady state, adiabatic process. Using
saturated liquid water at 70.0°F as the local environment
(ground state), determine the following items on the basis of
a steam flow rate of 75.0 lbm/s:
a. The irreversibility rate of the pump.
b. The pump’s entrance and exit specific flow availabilities.
c. The pump’s actual input power.

58.* Saturated liquid ammonia enters a boiler in a refrigeration
system at −20.0°C and exits the boiler as a superheated vapor
at 100. kPa and 10.0°C in a steady flow, steady state, process.
Using saturated liquid ammonia at 0.00°C as the local
environment (ground state), determine the following items on
the basis of an ammonia flow rate of 12.0 kg/s:
a. The irreversibility rate of the boiler.
b. The boiler’s entrance and exit specific flow availabilities.
c. The boiler’s heat input rate.

59. Saturated Refrigerant-22 vapor enters the condenser of a large
refrigeration system at 80.0°F and exits as a saturated liquid at
80.0°F in a steady flow, steady state process. Using saturated
liquid Refrigerant-22 at 0.00°F as the local environment
(ground state), determine the following items on the basis of
an ammonia flow rate of 80.0 lbm/s:
a. The irreversibility rate of the condenser.
b. The condenser’s entrance and exit specific flow

availabilities.
c. The condenser’s heat rejection rate.

60. Air (an ideal gas) enters a throttle at 70.0°F and 150. psia and
exits at 14.7 psia in a steady flow, steady state, adiabatic,
aergonic process. Determine the irreversibility rate per unit
mass of air flowing through the throttle. The local
environment (ground state) is 14.7 psia and 70.0°F.

61.* Superheated steam at 1.30 kg/s, 0.0100 MPa, and 400.°C
enters a horizontal, stationary, insulated diffuser with a
velocity of 100. m/s. The friction and other irreversibilities
within the nozzle cause the exit pressure to be 115% of that
produced by an isentropic expansion. Taking the local
environment (ground state) to be that of saturated liquid
water at 20.0°C, determine
a. The inlet specific flow availability.
b. The exit specific flow availability.
c. The irreversibility rate inside the diffuser.

62.* A new solar collection system has a net input availability rate
of 600. kJ/s and an availability destruction rate of 80.0 kJ/s.
Determine the second law availability efficiency of this system
if it loses availability at a rate of 345 kJ/s to the surroundings.

63. A closed domestic gas hot water heater contains 415 lbm of
water at 45.0°F. Determine the first and second law efficiencies
as this water is heated to 130.°F using 39,589 Btu from a gas
burner. The temperature of the local environment (ground
state) is 55.0°F.

64.* A large, closed, industrial electrical hot water heater contains
2000. kg of water at 15.0°C. Determine the first and second
law efficiencies as this water is heated to 75.0°C using
0.550 MJ of electrical energy. The temperature of the local
environment (ground state) is 20.0°C.

65. In Example 10.10, the following equation was developed for
the second law availability efficiency ε of heating a liquid in a
closed uninsulated tank:

ε = mc
ΔT − T0 ln 1+ ΔT

T

� �
Qin

264
375

Is there a value of ΔT that maximizes ε? Hint: Set dε/d(ΔT) = 0
and solve for ΔT.

66.* An electric heater is used to increase the temperature of liquid
water in an open tank from 10.0 to 80.0°C in a steady state,
steady flow process. The mass flow rate of the water through the
tank is 3.70 kg/s, and the electric heater adds 1500. kW to the
water. Determine the first and second law efficiencies of this
system. The temperature of the local environment (ground
state) is 10.0°C.

67.* A solar water heater is used to increase the temperature of
liquid water in an open cattle watering tank from 3.00°C to
18.0°C in a steady state, steady flow process. The mass flow rate
of the water through the tank is 1.50 kg/s, and the solar heater
adds 100. kW to the water. Determine the first and second law
efficiencies of this system. The temperature of the local
environment (ground state) is 0.00°C.

68. In Example 10.11, the following equation was developed for
the second law availability efficiency ε of heating a liquid in
an open, uninsulated tank:

ε = _mc
ΔT − T0 ln 1+ ΔT

T

� �
_Qin

264
375

Is there a value of ΔT that maximizes ε? Hint: Set dε/d(ΔT) =
0 and solve for ΔT.

69. An automobile engine has a Carnot thermal efficiency of 56.0%
and an actual thermal efficiency of 21.0%. Determine the second
law availability efficiency of this engine.
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70. The turbine of a large power plant receives 1.00 × 108 Btu/h of
heat from the boiler at 900.°F and rejects 5.50 × 106 Btu/h of
heat to the condenser at 60.0°F while producing 22.0 × 103 kW
of electrical power. The local environment (ground state) is at
14.7 psia and 50.0°F. Determine
a. The first law thermal efficiency.
b. The rate at which available energy enters the boiler.
c. The rate at which available energy enters the condenser.
d. The second law availability efficiency of the power plant.

71. The Heat-Master is a new heat pump design that has a Carnot
COP (coefficient of performance) of 15.5. However, its actual
coefficient of performance is only 6.90. Determine the second
law availability efficiency of this heat pump.

72.* A heat pump is designed to provide 9.00 kW of heat to a
small house at 20.0°C when the outside temperature is 5.00°C.
The electric motor driving the heat pump draws 1.20 kW.
Determine:
a. The first law thermal efficiency (i.e., COP) of the heat pump.
b. The second law availability efficiency of the heat pump.

73. The Cool-Master is a new window air conditioner design that
has a Carnot coefficient of performance (COP) of 18.9.
However, its actual coefficient of performance is only 3.30.
Determine the second law availability efficiency of this air
conditioner.

74. A common window air conditioner has an actual COP of
7.88. If the inside temperature is T0 = TL = 75.0°F and the
outside temperature is 95.0°F, then determine the second
law availability efficiency of this air conditioner.

75. Liquid water is to be heated in a nonmixing heat exchanger
with waste steam. The liquid water (an incompressible liquid)
flows through the heat exchanger at 15.0 lbm/s with an inlet
temperature of 50.0°F and an exit temperature of 75.0°F. The
steam flows through the heat exchanger at 3.00 lbm/s with an
inlet state of 600.°F and 60.0 psia and an exit state of 400.°F
and 40.0 psia. Determine the second law availability efficiency
of this heat exchanger. Neglect all kinetic and potential energy
effects, and use saturated liquid water at 50.0°F as the local
environment (ground state).

76. The inlet air to a gas turbine engine is preheated with the
engine’s exhaust gases. The preheater is insulated so that all
heat transfer is internal. The engine’s exhaust gas enters the
preheater at 800.°F and 1.30 atm pressure and exits at 500.°F
and 1.00 atm. The inlet air enters the preheater at 70.0°F and
1.40 atm and exits at 1.30 atm. The mass flow rates of the
inlet air and the exiting exhaust are approximately the same at
2.10 lbm/s. Both gases can be treated as constant specific heat
ideal gases. The specific heat and gas constant of the exhaust
gas are (cp)exh. = 0.238 Btu/(lbm ·R) and Rexh. = 0.0640 Btu/
(lbm ·R). Neglecting all kinetic and potential energies, and
taking the local environment (ground state) as p0 = 1.00 atm,
and T0 = 70.0°F, determine:
a. The exit temperature of the inlet air.
b. The second law availability efficiency of the preheater.

77.* Can you believe that 0.800 kg/s of air at 60.0°C and 1.50
MPa is mixed in an open heat exchanger with 1.50 kg/s of
air at 20.0°C and 1.50 MPa to produce an outlet mixture at
30.0°C at 1.50 MPa? Determine the second law availability
efficiency of this heat exchanger. Neglect all kinetic and
potential energy effects, and take the local environment
(ground state) to be 0.101 MPa and 20.0°C.

78.* A student is using a bathtub with separate hot and cold water
faucets. The student turns on both faucets and adjusts them to
create a pool of warm water in the tub. The tub’s drain is
open, so the faucets must be kept running to maintain the
pool of water. The hot water faucet provides 40.0°C water at
0.100 kg/s, and the cold water faucet provides 15.0°C water at
0.250 kg/s. The local environment (ground state) is at 0.101
MPa and 18.0°C. Neglecting all flow stream kinetic and
potential energy and assuming the tub itself is insulated,
determine
a. The temperature of the mixed water in the tub.
b. The second law availability efficiency of the tub as a

mixing type heat exchanger.

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary thermal design as indicated. A detailed design
with working drawings is not required unless otherwise specified by
your instructor. These problems do not have specific answers, so each
student’s design is unique.

79.* Carry out the preliminary design of a closed domestic hot
water heater that has a first law efficiency of at least 95.0%
and a second law efficiency of at least 10.0%. The inlet water
temperature is fixed at 10.0°C. The remaining variables
(including the ground state) are unrestrained and can be
chosen to fit the needs of the designer.

80. You are to prepare the preliminary design of a commercial,
open, liquid water heater that has a first law efficiency of at
least 88.0% and a second law efficiency of at least 15.0%. The
inlet water temperature is fixed at 50.0°F. The remaining
variables (including the ground state) are unrestrained and can
be chosen to fit the needs of the designer.

81.* As chief engineer of a large heat exchanger company, you are
to prepare the preliminary design of a nonmixing heat
exchanger that has a second law availability efficiency of at
least 15.0%. The two flow streams are to be liquid water,
with one flow stream having a mass flow rate of 10 kg/s,
entering at 10.0°C and leaving at 30.0°C. The remaining
variables (including the ground state) are not specified and
are left to the discretion of the designer.

82. Design a benchtop apparatus that illustrates the basic
principles of a mixing heat exchanger. You may use either
liquids or gases or a combination of liquids and gases as the
flow streams. Determine the measurements that must be made
to compute the second law availability of the heat exchanger.

83. Carry out the preliminary design of an instrument that
provides a readout of the specific availability of any fluid
(liquid or gas) in which it is immersed. Determine the
necessary sensors and any calibration procedure required.

Computer Problems
The following open-ended computer problems are designed to be
done on a personal computer using a spreadsheet or equation solver.

84. Plot the specific availability of the air in the tank in Example
10.2 as a function of air pressure. Assume all the remaining
variables are constant.
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85. Create a specific availability vs. temperature curve for saturated
liquid and saturated vapor water. Neglect any kinetic or
potential energy effects.

86. Using the data and situation described in Example 10.6, plot
the specific flow availability vs. (a) water inlet temperature,
(b) water velocity, and (c) height above the ground. Use this
information to create a three-dimensional surface with
availability on the vertical axis and water velocity and height
as the other two coordinates. For each part of this problem,
assume all the variables except those under consideration are
constant at their values given in Example 10.6.

87. Example 10.9 contains a situation involving a large steam
turbine. Using the data provided there and assuming the
values of all the remaining variables are constant, plot the
turbine’s heat loss as a function of
a. The steam flow rate.
b. The surface temperature of the turbine.
c. The ground state temperature (note that changing T0

changes the af values).
88. The second law efficiency of heating a liquid in a closed

container is evaluated in Example 10.10. Using the results
obtained there, plot the ratio of second law availability
efficiency to the first law energy efficiency (ε/ηT) vs. ΔT for a
variety of T and T0 values. Comment on the general trends of
these curves.

Writing to Learn Problems
Provide a coherent 500-word written response to the following ques-
tions on 8½ by 11 in. paper, double spaced, with 1-inch margins on
all sides. Unless your instructor indicates otherwise, your response
should include the following items:

a. An opening thesis statement containing the argument
you wish to support.

b. A body of supporting material.
c. A conclusion section in which you use the supporting

material to substantiate your thesis statement.

89. Availability is the name given to the amount of energy within a
system that can produce useful work. Describe in your own
words what constitutes “useful work” and provide at least
three representative examples.

90. Is the definition of what constitutes useful work a cultural
variable (e.g., could work considered useful in one culture not
be considered useful in another)? Provide specific arguments
and at least three examples to support your contention.

91. If the numerical value of availability represents the amount of
energy within a system that can be converted into useful work,
does this value depend on existing energy conversion
technology accessible for use with the system? Provide specific
arguments and at least three examples to support your
contention.

92. Useful work is associated with the potential of a conservative
force. Provide a definition of potential using only words and
arguments that your (hypothetical) nine-year-old sister would
understand. Provide at least three examples she could relate to.

93. The concept of a conservative force is central to defining useful
work. Describe the differences between conservative and
nonconservative forces using only words and arguments a

second-year college music major would understand. Provide
examples of at least three forces of each type.

94. In the text, it is stated that electrical energy is more available
to do useful work through a rotating shaft of an 90.0%
efficient electrical motor than is an equivalent amount of fuel
chemical energy used to power the rotating shaft of an internal
combustion engine with an energy conversion efficiency of
20.0%. However, if the chemical fuel is supplied to a fuel cell
that converts it directly into electrical energy with a 90.0%
efficiency, would the chemical energy of the fuel now have a
higher availability than an equivalent amount of electrical
energy?

95. Write a letter to your (hypothetical) ten-year-old brother in
which you describe in words he would understand the concept
of a local environment. Be sure to distinguish it from the
complete surroundings, and provide at least three physical
examples he would be able to understand.

Create and Solve Problems
Engineering education tends to focus on the process of solving pro-
blems. It ignores teaching the process of formulating solvable pro-
blems. However, working engineers are never given a well-phrased
problem statement to solve. Instead, they need to react to situa-
tional information and organize it into a structure that can then be
solved using the methods learned in college.

These “Create and Solve” problems are designed to help you learn
how to formulate solvable thermodynamics problems from engi-
neering data. Since you provide the numerical values for some of
the variables, these problems do not have unique solutions. Their
solutions depend on the assumptions you need to make and how
you set them up to create a solvable problem.

96. You have been hired as a thermal engineer at a company that
manufactures domestic cookware appliances. Your first job is
to analyze a new design for a pressure cooker. It has a volume
of 0.15 ft3 and initially contains 2.50 lbm of a mixture of
liquid plus vapor water at 14.7 psia. When the pressure cooker
is heated electrically, its internal pressure reaches 35.0 psia. To
understand the design, you need to know the heat transfer
during the process, the irreversibility of the process if the inner
surface of the pressure cooker is constant at 250.°F, and the
change in total availability of the water if the local
environment is at 14.7 psia and 70.0°F. Write and solve a
thermodynamics problem that answers these questions.

97. As the resident thermal engineer at a new company developing
inventive new ideas, you are faced with a scenario where 1.00
lbm of saturated water vapor at 212°F is condensed inside a
flexible balloon to saturated liquid at 212°F. This occurs in a
constant pressure process by a heat transfer from the balloon
to the environment. The balloon has an average surface
temperature during this process of 125°F. Your job is to
determine the irreversibility and the change in total availability
for this process if the local environment is at 14.7 psia and
70.0°F. Write and solve a thermodynamics problem that
provides the answers to these questions.

98.* It is now 1923, and you are working for Thomas Edison in
his New Jersey research laboratory. The surface temperature of
his 50.0 W incandescent lightbulb is 60.0°C. But the surface
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temperature of a Westinghouse 50.0 W incandescent lightbulb
is 50.0°C. Tom asks you to determine the steady state
irreversibility rate of each lightbulb when the local
environmental temperature is 20.0°C and comment on why
the Westinghouse bulb is more efficient. Write and solve a
thermodynamics problem that answers these questions.

99.* As a chief engineer at the local fire station, you are asked to use
one of your fire hoses to fill a large swimming pool. The hose
will be laid on the ground and the water will exit at 3.50 m/s at
18.0°C. Before you can respond to this request, you need to
know the specific flow availability at the exit of the hose when
the local environment is at 0.101 MPa and 20.0°C. Write and
solve a thermodynamics problem that answers this question.

100.* You received a promotion to production engineer at a food-
processing factory. A particularly critical process involves the
mixing of ingredients with warm water in a large insulated vat.
The vat’s drain is kept open, so water must be continuously
added to maintain the proper mix. The water comes from a
hot water source at 38.0°C at 3.10 kg/s and a cold water
source at 15.0°C at 2.50 kg/s. The local environment is at
0.101 MPa and 20.0°C. To keep control of this process, you
need to know the temperature of the mixed water in the tub
and the second law availability efficiency of the tub as a
mixing-type heat exchanger. Write and solve a
thermodynamics problem that provides the answers to these
questions.
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CHAPTER 11

More Thermodynamic Relations
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11.1 KYNNING (INTRODUCTION)
We have a problem. It turns out that no meters, gauges, or instruments of any kind can be used to directly
measure the internal energy or the enthalpy or the entropy of a system. How, then, do you get numerical values
for thermodynamic properties that are not directly measurable? In Chapter 3, we discuss this subject briefly and
find that numerical values of properties that are not directly measurable (e.g., u, h, and s) can sometimes be
calculated from the numerical values of properties that are measurable (e.g., p, v, and T).

For elementary materials, such as incompressible solids (or liquids) and ideal gases, we have relatively simple
equations of state that provide the necessary relations. For example, the specific internal energy, specific enthalpy,
and specific entropy of an incompressible material are related to its temperature, pressure, and specific volume by

ðu2 − u1Þincomp= cðT2 − T1Þ, ðh2 − h1Þincomp = cðT2 −T1Þ+ vðp2 − p1Þ, and ðs2 − s1Þincomp = c lnðT2/T1Þ
where c is the specific heat of the material. And, in the case of an ideal gas, these properties are related by

ðu2 − u1Þideal gas= cvðT2 − T1Þ, ðh2 − h1Þideal gas = cpðT2 − T1Þ, and ðs2 − s1Þideal gas = cp lnðT2/T1Þ−R lnðp2/p1Þ
Complex materials require more sophisticated equations of state plus a knowledge of various mathematical
property interrelationships to be able to evaluate their unmeasurable thermodynamic properties. In this chapter,
we build on the equations introduced in Chapter 3 to formulate new property relations that can be used to
compute numerical values for u, h, and s for complex real materials.
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We begin this chapter by rounding out our list of useful thermodynamic properties by defining two new properties,
the Helmholtz and Gibbs functions. We then move on to develop a series of general mathematical results, called
the Maxwell equations, that relate a number of thermodynamic properties. We end this chapter by using the principle
of corresponding states to develop a set of generalized thermodynamic property charts that are valid for many
real gases.

11.2 TWO NEW PROPERTIES: HELMHOLTZ AND GIBBS FUNCTIONS
If we consider a stationary closed system containing a pure substance subjected only to a moving boundary
mechanical work mode, then the combined energy and entropy balance is given by Eq. (7.30) as

du = T ds− p dv (11.1)

Since any two independent properties fix the thermodynamic state of a pure substance subjected to only one
work mode (see Chapter 4), we can take the two independent properties here to be s and v, or

u = u s, vð Þ
The total differential of this composite function, then, has the form

du = ∂u
∂s

� �
v
ds+ ∂u

∂v

� �
s
dv (11.2)

Comparing Eqs. (11.1) and (11.2) we see that

T = ∂u
∂s

� �
v

and

p = − ∂u
∂v

� �
s

For this system, we can also write, from Eq. (7.31),

dh = T ds+ v dp (11.3)

and, in this case, we take the two independent properties to be s and p, so that

h = h s, pð Þ
whose total differential is

dh = ∂h
∂s

� �
p
ds+ ∂h

∂p

� �
s
dp (11.4)

On comparing Eqs. (11.3) and (11.4), we see that

T = ∂h
∂s

� �
p

and

v = ∂h
∂p

� �
s

EXAMPLE 11.1
To illustrate the relation between the constant volume and constant pressure specific heats and entropy, begin with Eqs.
(11.1) and (11.3) and show that the constant volume and constant pressure specific heats are related to specific entropy by:

cv = T ∂s
∂T

� �
v

and

cp = T ∂s
∂T

� �
P
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Solution
The constant volume specific heat is defined by Eq. (3.15) as

cv =
∂u
∂T

� �
v

and the constant pressure specific heat is defined by Eq. (3.19) as

cp =
∂h
∂T

� �
p

Equation (11.1) is du = Tds – pdv, and if we it divide through by dT, we get

du
dT

= T ds
dT

− p dv
dT

If we now require the specific volume v to be constant during this operation, then this equation becomes

du
dT

���
v
= T ds

dT

���
v
− p dv

dT

���
v

(a)

Now, a total derivative restrained with a constant parameter is just a partial derivative, or

du
dT

���
v
= ∂u

∂T

� �
v
= cv

ds
dT

���
v
= ∂s

∂T

� �
v

dv
dT

���
v
= ∂v

∂T

� �
v
= 0 ðsince v is to be held constant hereÞ

Then, substituting these results into Eq. (a) gives one of the desired relations:

∂u
∂T

� �
v
= cv = T ∂s

∂T

� �
v

Similarly, beginning with Eq. (11.3), we have dh = T ds + v dp, and dividing this through by dT gives

dh
dT

= T ds
dT

+ v
dp
dT

(b)

Again, imposing the condition that p must be constant during this operation, we get

dh
dT

���
p
= ∂h

∂T

� �
p
= cp

ds
dT

���
p
= ∂s

∂T

� �
p

dp
dT

���
p
=

∂p
∂T

� �
p
= 0 ðsince p is to be held constant hereÞ

Then, substituting these results into Eq. (b) gives the other desired relation:

∂h
∂T

� �
p
= cp = T ∂s

∂T

� �
p

The following exercises are designed to strengthen your understanding of the thermodynamics and the mathematics of the
material presented in this part of the chapter.

Exercises
1. Use the results of Example 11.1 to show that a material that has an entropy function of the form s(T, v) = A + B(ln T ) +

C(ln v), where A, B, and C are constants, has a constant volume specific heat given by cv = B. Hint: Substitute the given
function into the relation cv = T(∂s/∂T )v.

2. If the specific internal energy of a material is found to depend on its specific entropy and specific volume according to the
relation u(s, v) = A + Bs + Cv2 + Ds/v, where A, B, C, and D are all constants, then determine an expression for p(s, v) for
this material. Answer: p(s, v) = –(2Cv – Ds/v2).

3. If the specific enthalpy of a material depends on specific entropy and pressure according to h(s, p) = A + Bs + Cp2 + Ds3p,
where A, B, C, and D are all constants, then determine an expression for T(s, p) for this material. Answer: T(s, p) = B + 3Ds2p.

We now introduce two new thermodynamic properties. The first is the total Helmholtz function F, named after
the German physicist and physiologist Hermann Ludwig Ferdinand von Helmholtz (1821–1894), defined as

F = U− TS

Dividing by the system mass gives the specific Helmholtz function f as

f = u−Ts

11.2 Two New Properties: Helmholtz and Gibbs Functions 363



Differentiating this equation gives

df = du−T ds− s dT

but from Eq. (11.1) we have

du− T ds = −p dv
so that

df = −p dv− s dT (11.5)

If we presume the existence of a functional relation of the form

f = f v, Tð Þ
then its total differential is

df =
∂f
∂v

� �
T
dv+

∂f
∂T

� �
v
dT (11.6)

and, on comparing Eqs. (11.5) and (11.6), we see that

p = −
∂f
∂v

� �
T

and

s = −
∂f
∂T

� �
v

The second new thermodynamic function is the total Gibbs function G, named after the American physicist
Josiah Willard Gibbs (1839–1903), defined as

G = H−TS

Dividing by the system mass gives the specific Gibbs function g as

g = h− Ts (11.7)

Differentiating Eq. (11.7) gives

dg = dh− T ds− s dT

but from Eq. (11.3), we have

dh = T ds+ v dp

so that

dg = v dp− s dT (11.8)

If we presume a functional relation of the form

g = gðp, TÞ
then its total differential is

dg =
∂g
∂p

� �
T
dp+

∂g
∂T

� �
p
dT (11.9)

and comparing Eqs. (11.8) and (11.9) gives

v =
∂g
∂p

� �
T

and

s = −
∂g
∂T

� �
p
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Table 11.1 summarizes these results. The importance of this set of partial differential equations lies in the fact
that they relate easily measurable properties (p, v, T) to nonmeasurable properties (u, h, s, f, and g). Therefore,
accurate p, v, T data on any pure substance can be used to generate information about u, h, s, f, and g for that
substance. However, they do not provide a direct method for calculating u, h, or s from p, v, and T information.
We must look for additional information to complete this task. But, first, we take a short diversion into phase
change processes for which we can determine important results based on what we already know.

EXAMPLE 11.2
The design of a new Happy Food fast-food processing system requires the values of the specific Helmholtz and Gibbs func-
tions for superheated water vapor at 200. psia and 400.°F. Since most thermodynamic tables do not list these properties
directly, you are asked to calculate them for these conditions.

Solution
First, draw a sketch of the system (Figure 11.1).

The unknowns are the values of the specific Helmholtz and Gibbs
functions for superheated water vapor at 200. psia and 400.°F.
The specific Helmholtz and Gibbs functions are defined in the
text as

Specific Helmholtz function: f = u−Ts

and

Specific Gibbs function: g = h−Ts

Therefore, we need u, h, and s information at the state defined by p = 200. psia and T = 400.°F = 860.R. From Table C.3a in
Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that, at this state,

uðp = 200:psia,T = 400:°FÞ = 1123:5Btu/lbm

hðp = 200:psia,T = 400:°FÞ = 1210:8Btu/lbm,

and

sðp = 200:psia,T = 400:°FÞ = 1:5602Btu/lbm .R

Then,

f = 1123:5Btu/lbm − ð400:+459:67RÞð1:5602Btu/lbm .RÞ = −218Btu/lbm

and

g = 1210:8Btu/lbm− ð400:+ 459:67RÞð1:5602Btu/lbm .RÞ = −131Btu/lbm

The following exercises consider different pressures and temperatures and explore why the specific Helmholtz and Gibbs
functions were negative in Example 11.2.

Exercises
4. Determine the value of the specific Helmholtz function of the superheated water vapor in Example 11.2 if the pressure is

maintained at 200. psia but the temperature is increased to 1000.°F. Answer: f = −1320 Btu/lbm.
5. Determine the specific Helmholtz function of saturated liquid water at 200. psia. Answer: f = −103 Btu/lbm.
6. The Helmholtz and Gibbs functions calculated in Example 11.2 are both negative. Though this has no particular

significance at this point, use Table C.3a to determine the temperature and pressure at which the Helmholtz function is
zero for water. Answer: f = 0 for saturated liquid water at 0.0887 psia and 32.018°F (the triple point of water).

Table 11.1 Summary of Thermodynamic Property Relations

New Property Relations

T =
�
∂u
∂s
�
v
=
�
∂h
∂s
�
p

v =
�
∂h
∂p
�
s
=
�∂g
∂p
�
T

p = − ∂u
∂v
� �

s
= −
�∂f
∂v
�
T

s = −
�∂f
∂T
�
v
= −

�∂g
∂T
�
p

New Happy Food
fast−food processing

system

Superheated water vapor
at 200. psia and 400.°F

Happy food

FIGURE 11.1
Example 11.1.
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11.3 GIBBS PHASE EQUILIBRIUM CONDITION
During a phase change process, the system pressure and temperature are not independent properties. This means
that, if we hold one of them constant during a phase change, the other must also remain constant. Under the
condition of constant pressure and temperature, dp = dT = 0, and Eq. (11.9) gives dg = 0. Since g = gf + xgfg, we
can then write

dg = dgf + x dgfg + gfg dx = 0

Again, Eq. (11.8) can be used to evaluate dgf = dgfg = 0. Since x can vary during the phase equilibrium, dx
cannot be zero. Therefore, we are forced to conclude from the preceding equation that gfg = 0 at phase equilibrium,
or gf = gg. Using the definition of the Gibbs function, Eq. (11.7), we see that, at phase equilibrium,

gf = gg = hf − ðTsatÞsf = hg − ðTsatÞsg
or

hg − hf = hfg = ðTsatÞðsg − sf Þ = ðTsatÞsfg
or

sfg = hfg/Tsat (11.10)

This gives us an important relation between the entropy and the enthalpy of a phase change, but we need much
more information to complete the process of determining the nonmeasurable properties u, h, and s from the
measurable properties p, v, and T. The following example illustrates the use of Eq. (11.10).

EXAMPLE 11.3
Use Eq. (11.10) to calculate the phase change entropy sfg for water at exactly 1.00 MPa and compare the result with the
value for sfg at exactly 1.00 MPa listed in Table C.2b in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics.

Solution1

The unknown is the phase change entropy of water. From (Eq. 11.10), we have

sfg =
hfg
Tsat

and from Table C.2b at p = 1.00 MPa, we find that

hfg = 2015:3 kJ/kg

and

Tsat = 179:90°C

then, Eq. (11.10) gives

sfg =
hfg
Tsat

=
2015:3 kJ/kg

179:90+ 273:15K
= 4:4482 kJ/kg .K

Comparing this with the value for sfg listed in Table C.2b at p = 1.00 MPa, we find that it is exactly the same.

The following exercises illustrate some of the many uses of Eq. (11.10).

Exercises
7. Use Eq. (11.10) to compute the values of sfg for water at 0.0100 MPa and compare the result with the values listed in

Table C.2b. Find hfg and Tsat at 0.01 MPa from Table C.2b. Answer: (sfg)calc = 7.5021 kJ/kg ·K.
8. Use Eq. (11.10) to compute the value of hfg for water at 100.°F and compare the result with the value listed in Table

C.1a. Find values for sfg and Tsat at 100.°F from Table C.1a. Answer: (hfg)calc = 1036.96 Btu/lbm.
9. Use the values for hfg and sfg found in Table C.2b for water at 10.0 MPa and Eq. (11.10) to calculate the value of Tsat at

this state. Answer: (Tsat)calc = 584.2 K = 311.06°C.

1 To achieve the desired result, we need to carry a lot more significant figures than usual.
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11.4 MAXWELL EQUATIONS
Two sets of equations are named after the Scottish physicist James Clerk Maxwell (1831−1879): the electromagnetic
field equations and the thermodynamic property equations. The thermodynamic Maxwell equations allow
additional numerical information to be obtained about the nonmeasurable properties u, h, and s from accurately
measured p, v, and T data.

Consider an arbitrarily continuous function of the form

z = z x, yð Þ
Then, we can write its total differential as

dz = ∂z
∂x

� �
y
dx+ ∂z

∂y

� �
x
dy = Mdx+Ndy (11.11)

where we set

M = ∂z
∂x

� �
y

and

N = ∂z
∂y

� �
x

If we now differentiate M with respect to y while holding x constant and differentiate N with respect to x while
holding y constant, we get

∂M
∂y

� �
x
= ∂2z

∂y ∂x

and

∂N
∂x

� �
y
= ∂2z

∂x ∂y

Since we require z(x, y) to be a continuous function, it follows that

∂2z
∂y ∂x

= ∂2z
∂x ∂y

or that

∂M
∂y

� �
x
� ≡

∂N
∂x

� �
y

(11.12)

Recall that the thermodynamic state of any pure substance is fixed by any pair of independent intensive thermo-
dynamic properties of that substance. That is, any property of a pure substance can be written as a function of
any other two independent properties of that substance. Consequently, if x and y are such independent proper-
ties, then z also is a property, provided that Eq. (11.12) is satisfied.

EXAMPLE 11.4
Suppose we make a series of measurements in the laboratory and think we discovered a new thermodynamic property, call
it z. Our experimental data provide an empirical equation of the form: dz = p dv + v 2dp. Is z a new property?

Solution
The unknown is whether or not z is a new thermodynamic property. Equation (11.11) here has the form

dz = Mdx+Ndy = p dv+ v2dp

so M = p, N = v 2, x = v, and y = p. The cross differentials in Eq. (11.12) are

∂M
∂y

� �
x
=

∂p
∂p

� �
v
= 1

(Continued )
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EXAMPLE 11.4 (Continued )

and

∂N
∂x

� �
y
=

∂ðv2Þ
∂v

� �
p
= 2v≠ ∂M

∂y

� �
x

Since Eq. (11.12) is not satisfied here, then z cannot be a thermodynamic property.

Exercises
10. Suppose the expression experimentally discovered in Example 11.4 is dz = p2dv + v2dp, would z be the thermodynamic

property? Answer: No, because 2p ≠ 2v.
11. If the expression experimentally discovered in Example 11.4 is dz = pdv –vdp, would z be a thermodynamic property? Answer: No, 1 ≠ –1.
12. If the expression reported in Example 11.4 is dz = p dv + v dp, would z be a thermodynamic property? Answer: Yes, dz = d(pv).

If we now look at our four basic property relationships as differential equations of the form of Eq. (11.11),

du = T ds − p dv (11.1)

dh = T ds + v dp (11.3)

df = − p dv − s dT (11.5)

dg = v dp − s dT (11.8)

then, Eq. (11.12) must be valid for these equations, since we already know that all of these functions are ther-
modynamic properties. Applying Eq. (11.12) to each of these equations yields a new set of equations, known as
the Maxwell thermodynamic equations:

Maxwell thermodynamic equations

∂T
∂v

� �
s
= −

∂p
∂s

� �
v

(11.13)

∂T
∂p

� �
s
= ∂v

∂s

� �
p

(11.14)

∂p
∂T

� �
v
= ∂s

∂v

� �
T

(11.15)

∂v
∂T

� �
p
= − ∂s

∂p

� �
T

(11.16)

While the Maxwell thermodynamic equations provide additional information about u, h, and s in terms of p, v,
and T, they cannot be solved to produce the direct functional relations between these properties that we seek.
However, these relations are used a little later in this chapter in conjunction with other material to provide the
desired u, h, and s relations from experimental p, v, T data.

EXAMPLE 11.5
Suppose we have the ideal gas equation of state, pv = RT, but know nothing about the entropy of this type of gas. Use the appro-
priate Maxwell equations to determine a mathematical relation for the entropy of an ideal gas during an isothermal process.

Solution
The ideal gas equation of state is pv = RT, and so we know a p, v, T relation for our material. Perusing the Maxwell equa-
tions, we see two, Eqs. (11.15) and (11.16), that involve only p, v, T variables on one side of the equation. We can choose
either of these equations to satisfy the problem statement, so we select Eq. (11.16):

∂v
∂T

� �
p
= − ∂s

∂p

� �
T

Solving for v from the ideal gas equation of state gives v = RT/p, so the partial derivative we need is

∂v
∂T

� �
p
= R/p
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then,

∂s
∂p

� �
T
= −R/p

so that dsT = –R(dp/p)T, where the subscript T is used to indicate that the temperature is to be held constant. This can be
integrated for the constant temperature condition to give

ðs2 − s1ÞT = −R
Z 2

1
ðdp/pÞT + funcðTÞ = −R ln ðp2/p1Þ+ funcðTÞ

where func(T ) is an arbitrary function of integration. The function of integration here depends on the temperature T, and for
an isothermal process, it is treated as a constant. Since we happen to know that the entropy relation for an ideal gas is in
fact s2 – s1 = cp ln(T 2/T1) – R ln(p 2/p 1), it is easy to see that the function of integration here is simply cp ln(T2/T1).

The following exercises reinforce the concepts presented in Example 11.5.

Exercises
13. Use the other Maxwell equation (Eq. 11.15) available for the solution of Example 11.5 to find a different ideal gas

entropy relation. Answer: (s2 – s1)T = R ln(v2/v1) + func(T ).
14. Show that (∂s/∂)p = (∂p/∂T )s. Answer: Invert Eq. (11.14).

15. Show that ðs2 − s1Þy = −
Z 2

1
ð∂T/∂vÞs dp+ funcðvÞ. Answer: Use Eq. (11.13).

Before we continue with our search for the illusive u, h, s equations in terms of p, v, T variables, the following
example shows that the form taken by the Maxwell equations depends on the type of reversible work mode pre-
sent in the system.

EXAMPLE 11.6
The equation of state for a nonlinear rubber band is given by

F = KT L/Lo − 1ð Þ2

where F is the stretching force, L is the stretched length, Lo is the initial length, K is the elastic constant, and T is the absolute
temperature of the material. Then,

a. Determine the Maxwell equations for this material.
b. Show that the internal energy of this material is a function of temperature only.
c. Determine the heat transfer required when the rubber band is stretched isothermally and reversibly from Lo = 0.0700 m

to L = 0.200 m at T = 20.0°C when K = 0.150 N/K.

Solution
The unknowns here are the Maxwell equations for this material, showing that the internal energy of this material is a func-
tion of temperature only and the heat transfer required when the rubber band is stretched isothermally and reversibly
between two states.
a. Since the reversible work mode involved in the stretching process is

ðdWÞrev = −F dL

the Maxwell equations for this material can be easily obtained from those derived in the text by replacing p with –F and
v with L/m = ℓ, the specific length of the material. Then Eqs. (11.13) to (11.16) become

∂T
∂ℓ

� �
s
= ∂F

∂s

� �
ℓ

∂T
∂F

� �
s
= − ∂ℓ

∂s

� �
F

∂F
∂T

� �
ℓ
= − ∂s

∂ℓ

� �
T

and

∂ℓ
∂T

� �
F
= ∂s

∂F

� �
T

(Continued )
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EXAMPLE 11.6 (Continued )

b. The combined energy and entropy balance for this material is

du = T ds+ F dℓ

so that

∂u
∂ℓ

� �
T
= T ∂s

∂ℓ

� �
T
+ F

From the third Maxwell equation for this substance listed in part a and the given equation of state, we have

∂s
∂ℓ

� �
T
= − ∂F

∂T

� �
ℓ

= −K L/Lo −1ð Þ2

and

T ∂s
∂ℓ

� �
T
= −KT L/Lo − 1ð Þ2 = −F

Therefore,

∂u
∂ℓ

� �
T
= −F + F = 0

If we now set u = u(T, ℓ) and differentiate it, we get

du = ∂u
∂T

� �
ℓ
dT + ∂u

∂ℓ

� �
T
dℓ

= cℓdT + ∂u
∂ℓ

� �
T
dℓ

where cℓ is the constant length specific heat. Now since (∂u/∂ℓ)T = 0 here, then this equation reduces to du = cℓdT, so u
is only a function of T.

c. A closed system energy balance applied to this material for an isothermal process with (u2 – u1)T = 0 gives

1Q2 = 1W2 = −
Z L

Lo

F dL

= −KT
Z L

Lo

L/Lo −1ð Þ2 dL
= −KTLo L/Lo −1ð Þ3/3
= − 0:150N/Kð Þ 293Kð Þ 0:0700mð Þ 0:200

0:0700
− 1

� �3.
3

1Q2 = − 6:57N .m

Consequently, there is a heat transfer out of the system equal in magnitude to the work input.

Exercises
16. Determine the heat transfer and work required to stretch the rubber band in Example 11.6 if the elastic constant of the

rubber is increased from 0.150 N/K to 10.0 N/K. Answer: 1Q2 = 1W2 = –438 N ·m.
17. If the temperature of the rubber band in Example 11.6 is increased from 20.0°C to 60.0°C, determine the heat transfer and

work required to stretch the rubber band assuming all the other variables remain unchanged. Answer: 1Q2 = 1W2 = –7.47 N ·m.
18. How much heat transfer and work is required to stretch the rubber band in Example 11.6 twice as far, to L = 0.400 m

instead of 0.200 m, if everything else remains constant? Answer: 1Q2 = 1W2 = –107 N ·m.

11.5 THE CLAPEYRON EQUATION
Benoit Pierre Emile Clapeyron (1799–1864) was a French mining engineer and a contemporary of Carnot who,
in the, 1830s, took an interest in studying the physical behavior of gases and vapors. He was able to derive a
relation for the enthalpy change of the liquid to vapor phase transition (hfg) in terms of pressure, temperature,
and specific volume, thus providing one of the first equations for calculating a property that is not directly
measurable in terms of properties that are directly measurable. Today, this relation is most easily derived from
one of the Maxwell equations, Eq. (11.15). For an isothermal phase change from a saturated liquid to a satu-
rated vapor, the pressure and temperature are independent of volume. Then, Eq. (11.15) becomes

∂p
∂T

� �
v
=

dp
dT

� �
sat

=
sg − sf
vg − vf

= sfg/vfg
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and, using Eq. (11.10), we obtain the Clapeyron equation as2

dp
dT

� �
sat

= hfg/ Tsatvfg
� �

(11.17)

For most substances, vg ≫ vf, so we can approximate vfg ≈ vg. Also, for vapors at very low pressures, the saturated
vapor curve can be accurately approximated by the ideal gas equation of state, so we can write vg = RTsat/psat.
Then Eq. (11.17) becomes

dp
dT

� �
sat

= psathfg/ RT
2
sat

� �
or

dp
p

� �
sat

= hfg/ RT
2
sat

� �� 

dTsat (11.18)

This equation is often called the Clapeyron-Clausius equation. For small pressure and temperature changes, hfg can
be assumed to be constant and Eq. (11.18) can be integrated from a reference state to any other state to give

ln p/p0ð Þsat = hfg/R
� �Tsat − T0

TsatT0

or

psat = p0exp hfg/R
� �Tsat −T0

TsatT0

� 	
where p0 and T0 are reference state values. An exponential relation between psat and Tsat fits experimental data
quite well for most substances at low pressure.

EXAMPLE 11.7
In 1849, William Rankine proposed the following relation between the saturation pressure and saturation temperature of
water:

ln psat = 14:05− 6289:78
Tsat

− 913,998:92
T2
sat

where psat is in psia, and Tsat is the temperature in °F + 461.2 (at that time –461.2°F was Rankine’s best estimate of absolute
zero temperature). Determine hfg at 212.0°F from the Rankine equation and compare the result with that listed in the steam
tables in Thermodynamic Tables to accompany Modern Engineering Thermodynamics.

Solution
Differentiating Rankine’s equation, we obtain

1
p

dp
dT

� �
sat

= 6289:78
T2
sat

+ 1,827,997:8
T3
sat

then, using Eq. (11.18), we get

hfg =
RT2

p
dp
dT

� �� 	
sat

= R 6289:78+1,827,997:8/Tsatð Þ

(Continued )

2 The Clapeyron equation is valid for any type of phase change in a simple substance. For example, if we let the i subscript denote the
solid phase, then for melting we can write

dp
dT

� �
solid�
liquid
saturation

= hif / Tsatvif
� �

and, for sublimation,

dp
dT

� �
solid�
vapor
saturation

= hig/ Tsatvig
� �
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EXAMPLE 11.7 (Continued )

From Table C.13a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find R = 85.78 ft · lbf/(lbm ·R) =
0.1102 Btu/(lbm ·R). Then, at 212.0°F,

hfg 212:0°Fð Þ = 6289:78R + 1,827,997:8R2ð Þ/ 461:2+ 212:0Rð Þ½ �
× 0:1102Btu/ lbm ⋅Rð Þ½ � = 992:37Btu/lbm

Table C.1a gives hfgð212:0°FÞ = 970:4Btu/lbm: Thus, the value obtained from Rankine’s equation is in error by only +2.26%.

Exercises
19. Determine psat from the Rankine equation given in Example 11.7 when Tsat = 212.0°F and compare it with the value of Tsat

given in Table C.1a at 212.0°F. Answer: (psat)calc = 14.73 psia, and from Table C.1a, psat(212.0°F) = 14.696 psia.
20. Using the relations given in Example 11.7, find the value of Tsat for water when hfg = 1037 Btu/lbm and compare your

result with the value given in Table C.1a. Answer: (Tsat)calc = 124.6°F, and from Table C.1a, Tsat = 100.0°F.
21. Determine hfg in Example 11.7 if the temperature is increased from 212.0°F to 500.0°F and compare your result with the

value given in Table C.1a. Answer: (hfg)calc = 902.7 Btu/lbm, and from Table C.1a, hfg(500.0°F) = 714.8 Btu/lbm.

11.6 DETERMINING u, h, AND s FROM p, v, AND T
We are now ready to combine the previous results to produce u, h, and s relations from p, v, and T data. For a
simple substance, any two independent intensive properties fix its thermodynamic state. Consider the specific
internal energy described by a function of temperature and specific volume. We can write this as u = u(T, v).
Differentiating this function, we get

du = ∂u
∂T

� �
v
dT + ∂u

∂v

� �
T
dv

From Eq. (11.1), we can write

∂u
∂v

� �
T
= T ∂s

∂v

� �
T
− p

and using the Maxwell Eq. (11.15), this becomes

∂u
∂v

� �
T
= T

∂p
∂T

� �
v
− p

In Chapter 3, we introduce the constant volume specific heat cv as

cv =
∂u
∂T

� �
v

(3.15)

and our equation for the total differential du then becomes

du = cv dT + T
∂p
∂T

� �
v
− p

� 	
dv (11.19)

Therefore, the change in specific internal energy for any simple substance can be determined by integrating
Eq. (11.19):

u2 − u1 =
Z T2

T1

cv dT +
Z v2

v1

T
∂p
∂T

� �
v
− p

� 	
dv (11.20)

Here, we achieved what we set out to do. Equation (11.20) has u cast completely in terms of the measurable
quantities p, v, T, and cv.

Similarly, we can consider the specific enthalpy to be given by a continuous function of temperature and pres-
sure, h = h(T, p). Then, its total differential is

dh = ∂h
∂T

� �
p
dT + ∂h

∂p

� �
T
dp

In Chapter 3, we introduce the constant pressure specific heat cp as

cp =
∂h
∂T

� �
p

(3.19)
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Introducing the definition of specific enthalpy into Eq. (11.1) gives

du = dh− p dv− v dp = T ds− p dv

or

dh = T ds+ v dp (11.21)

and, from this equation, we can deduce that

∂h
∂p

� �
T
= T ∂s

∂p

� �
T
+ v

Using the Maxwell Eq. (11.16), we get

∂h
∂p

� �
T
= −T ∂v

∂T

� �
p
+ v

and our total differential dh becomes

dh = cp dT + v− T ∂v
∂T

� �
p

� 	
dp (11.22)

The change in specific enthalpy for any simple substance is then given by

h2 − h1 =
Z T2

T1

cp dT +
Z p2

p1

v−T ∂v
∂T

� �
p

� 	
dp (11.23)

Again, we are successful. Equation (11.23) has h cast completely in terms of the measurable quantities, p, v,
T, and cp. Also note that Eqs. (11.20) and (11.23) are related by the fact that

h2 − h1 = u2 − u1 + p2v2 − p1v1

Finally, we can carry out the same type of analysis for the specific entropy of a simple substance. If we let
s = s (T, v), then

ds = ∂s
∂T

� �
v
dT + ∂s

∂v

� �
T
dv

From Eqs. (11.1) and (3.15), we can deduce that

∂s
∂T

� �
v
= 1

T

� � ∂u
∂T

� �
v
= cv

T

and, using the Maxwell Eq. (11.15), we can write the total differential ds as

ds = cv
T

� �
dT +

∂p
∂T

� �
v
dv (11.24)

Integrating this gives a relation for the change in specific entropy of a pure substance based completely on
measurable quantities:

s2 − s1 =
Z T2

T1

cv
T
dT +

Z v2

v1

∂p
∂T

� �
v
dv (11.25)

By assuming s = s(T, p), we can also show that (see Problem 27 at the end of this chapter)

ds =
cp
T
dT − ∂v

∂T

� �
p
dp (11.26)

and

s2 − s1 =
Z T2

T1

cp
T
dT −

Z p2

p1

∂v
∂T

� �
p
dp (11.27)

This completes the process of discovering relations for the unmeasurable u, h, and s properties in terms of the
measurable properties p, v, and T. The following example illustrates the use of these results.
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EXAMPLE 11.8
In Chapter 3, an equation of state developed in 1903 by Pierre Berthelot (1827–1907) was briefly discussed. Using this
equation of state, develop equations based on measurable properties for the changes in (a) specific internal energy, (b) spe-
cific enthalpy, and (c) specific entropy for an isothermal process.

Solution
The Berthelot equation is given in Eq. (3.46) as

p v− bð Þ = RT − a v− bð Þ/ Tv2
� �

where a and b are constants. Solving this equation for p gives

p = RT/ v− bð Þ− a/ Tv2
� �

a. The change in specific internal energy is given by Eq. (11.20), for which we need

∂p
∂T

� �
v
= R/ v− bð Þ+ a/ T2v2

� �
Then, for an isothermal process (T1 = T2), Eq. (11.20) gives

u2 − u1ð ÞT =
Z v2

v1

RT/ v− bð Þ+ a/ Tv2
� �

−RT/ðv− bÞ+ a/ Tv2
� �� 


dv

= − 2a/Tð Þ 1/v2 −1/v1ð Þ = 2a v2 − v1ð Þ/ Tv1v2ð Þ
b. To find the change in specific enthalpy, we could use Eq. (11.23). However, to evaluate this equation, we need to be

able to determine the relation ∂v/∂Tð Þp: Since the Berthelot equation is not readily solvable for v = v (T, p), we choose
instead to use the simpler approach, utilizing only the definition of specific enthalpy, h = u + pv. Then,

ðh2 − h1ÞT = ðu2 − u1ÞT + p2v2 − p1v1 =
2aðv2 − v1Þ

Tv1 v2
+ p2v2 − p1v1

=
3aðv2 − v1Þ

Tv1v2
+RT

v2
v2 − b

− v1
v1 − b

� �
c. Finally, since we already evaluated the relation ∂p/∂Tð Þv , we choose to use Eq. (11.25) for the isothermal specific entropy relation:

s2 − s1ð ÞT =
Z v2

v1

∂p
∂T

� �
v
dv

=
Z v2

v1

R/ðv− bÞ+ a/ðT2v2Þ� 

dv

= R ln ðv2 − bÞ/ðv1 − bÞ½ �+ aðv2 − v1Þ/ðT2v1v2Þ
Exercises
22. Setting a = 0 in the Berthelot equation of state used in Example 11.8 produces the Clausius equation of state, p(v – b) = RT

(see Eq. (3.43)). Determine equations for the change in specific internal energy, specific enthalpy, and specific entropy for a
Clausius gas undergoing an isothermal process. Answer: (u2 – u1)T = 0, (h2 – h1)T = RT [(v2/(v2 – b) – v1/(v1 – b)], and (s2 – s1)T = R
ln[(v2 – b)/(v1 – b)].

23. Evaluate the change in specific internal energy of water vapor when it is modeled as a Berthelot gas, with a = 4.30 MN ·m4 ·K/kg2

and b = 4.50 × 10–3 m3/kg, and undergoes an isothermal compression from a specific volume 40.0 m3/kg to a specific volume
of 5.00 m3/kg at a constant temperature of 100.°C. Answer: (u2 – u1)T = –4.03 kN ·m/kg = –4.03 kJ/kg.

24. Evaluate the change in specific enthalpy of water vapor when it is modeled as a Berthelot gas, with a = 4.30 MN ·m4 ·K/kg2 and
b = 4.50 × 10–3 m3/kg, and undergoes an isothermal expansion from a specific volume of 10.0 × 10–3 m3/kg to a specific volume
of 1.00 m3/kg at a constant temperature of 500.°C. Use Rwater = 461 N ·m/(kg ·K). Answer: (h2 – h1)T = 261 kN ·m/kg = 261 kJ/kg.

Note that, for an ideal gas undergoing an isothermal process,

ðu2 − u1ÞT = ðh2 − h1ÞT = 0 and ðs2 − s1ÞT = R ln v2/v1ð Þ
Therefore, the equations developed in Example 11.8 can be considered to be Berthelot corrections to ideal gas
behavior.

Equation (11.24) has the same Mdx + Ndy form as Eq. (11.11), so that we can utilize Eq. (11.12) to produce
the property relation

∂ðcv/TÞ
∂v

� 	
T
= ∂

∂T
∂p
∂T

� �
v

� 	
v
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or

∂cv
∂v

� �
T
= T

∂2p
∂T2

� �
v

(11.28)

Similarly, Eq. (11.26) has the same Mdx + Ndy form and application of Eq. (11.12), so it gives

∂ cp/T
� �
∂p

" #
T

= − ∂
∂T

∂v
∂T

� �
p

� 	
p

or

∂cp
∂p

� �
T
= −T ∂2v

∂T2

� �
p

(11.29)

Both Eqs. (11.28) and (11.29) give specific heat information from measurable p, v, and T properties.

EXAMPLE 11.9
Using the Berthelot equation of state given in Example 11.8, determine an equation for the isothermal variation in the
constant volume specific heat with volume change.

Solution
From Eq. (11.28) we have what we seek,

∂cv
∂v

� �
T
= T

∂2p
∂T2

� �
v

and from Example 11.8, the Berthelot equation of state can be written as

p = RT
v− b

− a
Tv2

so that

∂p
∂T

� �
v
= R

v− b
+ a

T2v2

and

∂2p
∂T2

� �
v
= − 2a

T3v2

then,

∂cv
∂v

� �
T
= − 2a

T2v2

and, to find an explicit cv = cv(T, v ) equation, the preceding equation can be integrated from a reference state specific
volume vo to give

cv = −2a
T2

Z v

v0

dv
v2

= 2a v0 − vð Þ/ T2v0v
� �

+ f ðTÞ

where f (T ) is a function of integration. Note that cv is independent of v only in the case where a = 0 in the Berthelot equa-
tion of state.

Exercises
25. The Clausius equation of state, p(v – b) = RT (see Eq. (3.43)), can be obtained by setting a = 0 in the Berthelot equation

of state. Rework Example 11.9 to determine how the constant volume specific heat of a Clausius gas undergoing an
isothermal process depends on the specific volume of the gas. Answer: For a Clausius gas undergoing an isothermal
process, cυ does not depend on the specific volume of the gas.

26. For the Berthelot equation of state used in Example 11.9, determine an expression for the mixed partial derivative

∂
∂T

∂cv
∂v

� �
T

� 	
v
= ?

Answer: 4a/(T 3v 2).
27. Evaluate the constant volume specific heat relation developed in Example 11.9 for a material in which a = 2.30 MN ·m4 ·K/kg2.

Use v0 = 0.100 m3/kg and v = 0.0200 m3/kg. Answer: cv = 1.321 kN ·m/kg = 1.321 kJ/kg.
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Finally, if Eqs. (11.24) and (11.26) are set equal to each other,

cv
T

� �
dT +

∂p
∂T

� �
v
dv =

cp
T

� �
dT − ∂v

∂T

� �
p
dp

and, if we solve for dT,

dT = T
cp − cv

� � ∂v
∂T

� �
p
dp+ T

cp − cv

� � ∂p
∂T

� �
v
dv

Then, writing the general relation T = T(p, v) and differentiating it, we get

dT = ∂T
∂p

� �
v
dp+ ∂T

∂v

� �
p
dv

and, by comparing coefficients of dp and dv in these two equations, it is clear that

∂T
∂p

� �
v
= T

cp − cv

� � ∂v
∂T

� �
p

and

∂T
∂v

� �
p
= T

cp − cv

� � ∂p
∂T

� �
v

or

cp − cv = T ∂v
∂T

� �
p

∂p
∂T

� �
v
= T

∂p
∂T

� �
v

∂v
∂T

� �
p

Using Eq. (3.3), we can write

∂p
∂T

� �
v
= − ∂v

∂T

� �
p

∂p
∂v

� �
T

which, when substituted into the previous equation, yields

cp − cv = −T ∂v
∂T

� �2
p

∂p
∂v

� �
T

In Chapter 3, we define the isobaric coefficient of volume expansion β as

β = 1
v

∂v
∂T

� �
p

(3.5)

and the isothermal coefficient of compressibility κ as

κ = −1
v

∂v
∂p

� �
T

(3.6)

Substituting these two relations into the previous equation gives the final result:

cp − cv = Tβ2v/k (11.30)

This equation reveals several important results. First of all, cp = cv for all simple substances at absolute zero
temperature. Second, since β2/κ = 0 for incompressible materials, then cp = cv for all incompressible materials. In
this case, the p and v subscripts are normally dropped and we write cp = cv = c for all incompressible materials.
Finally, since T, β, v, and κ are always positive, then cp ≥ cv for all simple substances.

EXAMPLE 11.10
Using the data in Table 3.2, determine the difference between cp and cv for saturated liquid water at 20.0°C.

Solution
From Table 3.2, for water, we find that

β = 0:207× 10−6 K−1

κ = 45:9× 10−11 m2/N
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and, from Table C.1b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that

v = vf ð20:0°CÞ = 0:001002m3/kg

Then, from Eq. (11.30), we have

cp − cv =
Tβ2v
κ

=
ð293KÞð0:207×10−6 K−1Þ2ð0:001002m3/kgÞ

45:9×10−11 m ⋅ s2/kg

= 2:74×10−5 J/ðkg ⋅KÞ = 2:74× 10−8 kJ/ðkg ⋅KÞ
In most applications, this difference is clearly negligible, since the value of cp for liquid water at standard temperature and
pressure is 4.18 kJ/(kg ·K).

Exercises
28. Show that, for an ideal gas, defined by pv = RT, the isobaric coefficient of volume expansion is β = 1/T and the

isothermal coefficient of compressibility is κ = 1/p. Then, show that, for an ideal gas, Eq. (11.30) gives cp – cv = R.
29. Using the methods of Example 11.10, determine the difference between the constant pressure specific heat cp and

the constant volume specific heat cv for liquid mercury at 20.0°C. For liquid mercury, v = 7.4 × 10–5 m3/kg. Answer:
(cp – cv)mercury = 1.79 × 10–5 J/(kg ·K).

30. Rework Example 11.10 for liquid benzene at 20°C. For liquid benzene, v = 1.15 × 10–3 m3/kg. Answer: (cp – cv)benzene =
5.46 × 10–4 J/(kg ·K).

Now we need to develop a strategy for the integration of Eqs. (11.19), (11.22), (11.24), and (11.26) for
arbitrary states. Since u, h, and s are point functions, the integration results are independent of the actual integra-
tion path, so we should pick a path that is easy to evaluate. In addition, since u and h lack well-defined absolute
zero values, the integration path must begin at an arbitrary reference state.

Since all equations of state should reduce to the ideal gas equation of state at low pressures, we can postulate
that they must all be reducible to the following form:

pv = RT + f v, Tð Þ
where the function f(v, T) must be on the order of 1/v so that it vanishes as p → 0 and v → ∞. Consequently, the
reference state is usually taken to be at some arbitrary reference temperature T0 and at essentially zero pressure p0 = 0,
and zero density or infinite specific volume, v = ∞.

To generate a numerical value from Eqs. (11.19), (11.22), (11.24), and (11.26) for u, h, and s, we start the inte-
gration process at this reference state. Now, the choice of the easiest integration path from the reference state to
the actual state depends on the form of the arguments in the integrals. For example, in evaluating Eq. (11.19)
for the specific internal energy, the easiest path to follow is a constant specific volume line for the first integral
(since cv is defined for a constant volume process) and to follow a constant temperature line for the second inte-
gral. Since the first integration line is at zero pressure, the constant volume specific heat along this path is c0v
(the superscript zero indicates a zero pressure constant volume specific heat). Note that the integration path must
be only piecewise continuous; therefore, it can have “kinks.”

Since all of our equations of state must have the form pv = RT + f(v, T),

p = RT
v +

f ðv, TÞ
v

∂p
∂T

� �
v
= R

v + 1
v

∂f
∂T

� �
v

and

T
∂p
∂T

� �
v
= RT

v + T
v

∂f
∂T

� �
v

then,

T
∂p
∂T

� �
v
− p = RT

v + T
v

∂f
∂T

� �
v
− RT

v +
f
v

� �
= T

v
∂f
∂T

� �
v
−

f
v

so that Eq. (11.19) now gives

u− u0 =
Z T

T0

c0v dT +
Z v

v0=∞
T

∂p
∂T

� �
v
− p

� 	
dv =

Z T

T0

c0v dT +
Z v

v0=∞

T
v

∂f
∂T

� �
v
−

f
v

� 	
dv
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Note that following a path of constant T for the second integral in this equation is very logical since f depends
on only v and T and we are integrating over v.

For example, if we had an equation of state of the form pv = RT + αT2/v, then

p = RT
v + αT2

v2

∂p
∂T

� �
v
= R

v + 2αT
v2

and

T
∂p
∂T

� �
v
= RT

v + 2αT2

v2

then,

T
∂p
∂T

� �
v
− p = RT

v + 2αT2

v2
− RT

v + αT2

v2

� �
= αT2

v2

Equation (11.19) now gives

u1 − u0 =
Z T1

T0

c0v dT +
Z v1

v0=∞

αT2

v2

� �
dv

=
Z T1

T0

c0v dT + αT2 − 1
v

� ����v1
∞

=
Z T1

T0

c0v dT + αT12

v1

and if the zero pressure specific heat c0v is constant over the temperature range T0 to T1, this equation reduces to

u1 − u0 = c0v ðT1 −T0Þ− αT2
1

v1

A similar equation can be easily developed for a second state, and we can then combine them to produce an
equation for the change in specific internal energy between these two states for this material as

u2 − u1 = c0v ðT2 −T1Þ− α T2
2
v2

−
T2
1
v1

� �
and the reference state values have completely cancelled out.

11.7 CONSTRUCTING TABLES AND CHARTS
We are now able to use Eqs. (11.19), (11.22), (11.24), and (11.26) to construct thermodynamic tables and charts.
The construction of thermodynamic tables and charts like the ones in Thermodynamic Tables to accompany Modern
Engineering Thermodynamics require, first of all, that a great deal of accurate experimental p, v, T, and cv (or cp) data be
obtained. These data are reduced to mathematical equations through curve-fitting techniques. The resultant mathe-
matical equations are used to derive equations for u, h, and s using the thermodynamic property relations discussed
previously. One of the simplest methods for generating saturation and superheat tables is carried out as follows.

A. The following four data sets must be developed from appropriate experiments:
Data set 1. Saturation temperature and saturation pressure (Tsat, psat).
Data set 2. Pressure, specific volume, and temperature in the superheated vapor region and along the
saturated vapor curve (p, v, T).
Data set 3. Saturated liquid specific volume (or density) and saturation temperature (vf, Tsat).
Data set 4. Low- (or zero) pressure constant volume specific heat, c0v and temperature T in the superheated
vapor region and along the saturated vapor curve. The superscript 0 is used to denote the fact that the c0v
values are measured at essentially zero pressure.

B. Once these four data sets have been obtained, a mathematical equation is curve fit to each of them to
obtain four mathematical equations of the form

Curve fit 1: psat = psatðTsatÞ (11.31a)
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Curve fit 2: p = pðv, TÞ ðfor superheated and saturated vaporÞ (11.31b)

Curve fit 3: vf = vf ðTsatÞ (11.31c)

Curve fit 4: c0v = c0v ðTÞ ðfor superheated and saturated vaporÞ (11.31d)

C. If a very low-pressure reference state (p0, v0, T0) is chosen such that ðcvÞ0 = c0v , then Eqs. (11.19), (3.17), and
(11.24) are used to calculate values for u, h, and s relative to this reference state as

u = u0 +
Z T

T0

c0v dT +
Z v

v0

T
∂p
∂T

� �
v
− p

� 	
dv (11.32)

h = u+ pv (3.17)

and

s = s0 +
Z T

T0

c0v
T

� �
dT +

Z v

v0

∂p
∂T

� �
v
dv (11.33)

where u0 and s0 are the internal energy and entropy values of the reference state. Note that these reference
state properties always cancel out in a typical internal energy change (u2 – u1) or entropy change (s2 – s1)
calculation, so their values can be arbitrarily chosen and need not be made known to the user of the table
or chart. Typically u0 and s0 are chosen so as to make hf and sf zero at the reference temperature T0, and T0 is
often taken to be the triple point temperature (see, for example, the first row of values for water in Table C.1a),
because the triple point is a well-defined and easily reproducible reference state. Therefore, u0 and s0 are seldom
chosen to be zero themselves. The generation of the tables can now be carried out as follows.

11.7.1 Saturation tables
A temperature entry saturation table can be constructed as follows:

1. A temperature T = Tsat is chosen at which the properties are to be determined.
2. Next, psat is calculated from Eq. (11.31a).
3. Equation (11.31b), which must be valid for saturated vapor as well as superheated vapor, is used to

calculate vg at these psat and Tsat values.
4. Chose a reference temperature To and assign arbitrary values to uo and so.
5. The expression for (dp/dT)sat is determined by differentiating Eq. (11.31a).3 The values of ug, hg, and sg are

then calculated from Eqs. (11.32), (3.17), and (11.33) by setting (∂p/∂T)v = (dp/dT)sat.
6. Equation (11.31c) is used to calculate vfg = vg – vf at the Tsat value.
7. The remaining saturated liquid properties are determined from the Clapeyron and Gibbs Eqs. (11.17) and

(11.10) as follows:

hf = hg − hfg = hg −Tsat vfg
� � dp

dT

� �
sat

uf = ug − ufg = ug − ðhfg − psatvfgÞ
and

sf = sg − sfg = sg − hfg/Tsat

This sequence of operations is repeated for a variety of Tsat values, and the compilation of all these results
gives a temperature entry saturation table like Table C.1a or C.1b in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics.

Beginning the calculation sequence with a p = psat value and calculating the corresponding Tsat value
from Eq. (11.31a) and continuing as just described produces a pressure entry saturation table like
Table C.2a or C.2b.

3 Note that Eq. (11.31b) should yield the same values of psat and Tsat as Eq (11.31a). However, they both are both empirical equations
and may not yield the same values of (dp/dT)sat. In this case, Eq. (11.31a) is preferable.
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11.7.2 Superheated vapor tables
Superheated vapor tables are somewhat easier to construct.

1. Begin by choosing a pair of pressure-temperature (p, T) values and calculate the corresponding specific
volume v from Eq. (11.31b).

2. Values are then calculated for u, h, and s from Eqs. (11.32), (3.17), and (11.33) utilizing (∂p/∂T)v
determined from Eq. (11.31b).
The compilation of v, u, h, and s for each set of p and T values chosen forms a superheated vapor table like
Table C.3a or C.3b.

Many tables do not list both u and h values, since these properties are simply related to each other through
h = u + pv. Therefore, if only one is listed in a table (it is usually h), the other can be easily calculated.

11.8 THERMODYNAMIC CHARTS
When accurate values for p, T, v, u, h, and s have been determined for the construction of saturated and
superheated property tables, it is a relatively simple task to plot these values to form thermodynamic charts.
Two-dimensional plots allow only two independent properties to be plotted, and the remaining properties have
to be added to the plot as parametric families of lines representing constant property values (isotherms, isobars,
etc.). For example, the Mollier diagram (see Figure 7.15a) has h and s as coordinate axes. This means that all the
remaining property information must be displayed as families of lines of constant p, constant T, constant v, and
so forth.

Because of the large number of variables to choose from and the lack of any standard thermodynamic chart
format, the charts found in Thermodynamic Tables to accompany Modern Engineering Thermodynamics have many
coordinate axes (h-s, T-s, p-h, p-v, v-u, etc.).

Although all thermodynamic tables and charts up to about 1950 were generated from manual calculations, the
use of a modern digital computer can substantially reduce the amount of human labor involved. Most of the
required software programming is straightforward, simply by following the steps outlined previously. However,
one aspect of this process that is not so obvious involves solving Eq. (11.31b) for v when p and T are known.
These equations are often so algebraically complex that v cannot be determined explicitly in terms of p and T.

EXAMPLE 11.11
A new substance has the following equations of state corresponding to Eqs. (11.31a) through (11.31d). Here, we just letter
the equations (a) through (d) to avoid any confusion. That is, Eq. (11.31a) is just called (a) here.

psat = exp A1 −
A2

Tsat

� 	
(a)

p = RT
v

− T
v2

� �
exp B1 −

B2

T

h i
(b)

vf =
1

C1 +C2Tsat
(c)

c0v = D1 = constant (d)

where A1, A2, B1, B2, C1, C2, and D1 are all empirical constants. Determine the equations for ug, uf, hg, hf, sg, and sf for this
material in the saturated region.

Solution
For the saturation tables, let A = A1 – A2/Tsat and B = B1 – B2/T, then psat = exp[A] and

p = RT
v

− T
v2

� �
exp½B�

then,

dp
dT

� �
sat

= A2

T2
sat

� �
exp½A�
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so that

Tsat
dp
dT

� �
sat

− psat = Tsat
A2

T2
sat

� �
exp½A�− exp½A� = A2

Tsat
−1

� �
exp½A�

and Z vg

v0

Tsat
dp
dt

� �
sat

− psat

� 	
dv = A2

Tsat
− 1

� �
exp½A�


 �
ðvg − v0Þ

Since Eq. (b) must be valid to the saturated vapor line, it can be solved to find vg. For this problem, Eq. (b) is a quadratic
equation in vg with the following solution:

vg =
RTsat
2psat

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTsat
2psat

� �2
− Tsat

psat
exp½B�

s
From Eq. (c) and the preceding result for vg, we can now calculate vfg = vg – vf.

Then, with c0v equal to a constant (D1), we get

ug − u0 +
Z Tsat

T0

T
dp
dT

� �
sat

− p

� 	
dv = u0 + c0v ðTsat −T0Þ+ A2

Tsat
−1

� �
exp½A�


 �
ðvg − v0Þ

then, with vg from the preceding equation, we can easily find hg = ug + psatvg.

To find the saturated vapor entropy, we need to determineZ vg

v0

dp
dT

� �
sat
dv =

Z vg

v0

A2

T2
sat

� �
exp½A�dv = A2

T2
sat

� �
exp½A�


 �
ðvg − v0Þ

Then, with c0v equal to a constant, we get

sg = s0 +
Z Tsat

T0

c0v
T
dT +

Z v

v0

dp
dT

� �
sat
dv

= s0 + c0v ln
Tsat
T0

� �
+ A2

T2
sat

� �
exp½A�


 �
ðvg − v0Þ

Now, we can determine the remaining saturated liquid properties as

hf = hg − hfg = hg −Tsat vfg
dp
dT

� �
sat

= hg − vfg
A2

Tsat

� �
exp½A�

uf = ug − ufg = ug − ðhfg − psat vfgÞ = ug − vfg
A2

Tsat

� �
exp½A�− psatvfg


 �
and

sf = sg − sfg = sg −
hfg
Tsat

= sg − vfg exp½A� A2

T2
sat

� �
Inserting the empirical values for the constants A1 through D1 into these equations provides the desired set of property
relations for this material in the saturated region.

Exercises
31. Determine an expression for T(∂p/∂T )v – p for the material described in Example 11.11 in the superheated region. Answer:

∂p
∂T

� �
v
= R

v − 1
v2

� �
exp½B�− T

v2
− B2

T2

� �
exp½B� = R

v −
exp½B�
v2

1− B2

T

� �
so that

T
∂p
∂T

� �
v
− p = T R

v −
exp½B�
v2

1− B2

T

� �
 �
− RT

v − T
v2

exp½B�
� �

=
B2

v2

� �
exp½B�

where B = B1 – B2/T.
32. Determine an expression for the specific internal energy of the material in Example 11.11 in the superheated region.

Answer:

u = u0 +
Z T

T0

c0
o~
dT +

Z v

v0

T
∂p
∂T

� �
v
− p

� 	
dv = u0 + c0v ðT − T0Þ−B2exp½B� 1

v
− 1

v0

� �
where B = B1 – B2/T.
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EXAMPLE 11.11 (Continued )

33. Determine an expression for the specific entropy of the material in Example 11.11 in the superheated region. Answer:

s = s0 +
Z T

T0

c0v
T
dT +

Z v

v0

∂p
∂T

� �
v
dv = s0 + c0v ln

T
T0

� �
+R ln v

v0

� �
+ exp½B� 1− B2

T

� �
1
v
− 1

v0

� �

where B = B1 – B2/T.

11.9 GAS TABLES
We now move from the region of the vapor dome and its immediate surroundings out into the region where
the material behaves as an “ideal gas.” However, we need to incorporate the temperature dependence of the
ideal gas’s specific heats.

When the concept of an ideal gas was introduced in Chapter 3, it was noted that ideal gases generally do not
have constant specific heats. Therefore, one of the simplest steps we can take to make the ideal gas equations
more accurate is to take into account their temperature-dependent specific heats. This is what is done for you in
Tables C.16 and C.17 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics.

The specific internal energy and enthalpy values listed in the gas tables are determined from an integration of
Eqs. (3.37) and (3.40) by incorporating an accurate specific heat vs. temperature data curve fit as

u = uo +
Z T

To

cv dT

and

h = ho +
Z T

To

cp dT

where uo, ho, and To are the arbitrarily chosen reference state values, all of which are set equal to zero in these
tables.

Since the ideal gas specific entropy depends on more than just temperature, it is not listed in these tables. How-
ever, the temperature-dependent part of the specific entropy is listed as the ϕ function, where

ϕ =
Z T

To

cp/T
� �

dT (11.34)

and, from Eq. (7.35), we have

s = so +
Z T

To

ðcp/TÞdT −R ln ðp/poÞ

= so +ϕ−R ln ðp/poÞ
(7.35)

In the gas tables, so and To are both arbitrarily set equal to zero, and po is set equal to 1 atm. As always, the arbi-
trarily chosen reference states for u, h, and s cancel out when we calculate the changes u2 – u1, h2 – h1, and s2 – s1.
Such changes are calculated directly from values taken from the gas tables for u and h, but the change in entropy
is given by combining the previous equations as

s2 − s1 = ϕ2 −ϕ1 −R ln p2/p1ð Þ (11.35)

or an isentropic process, s2 = s1; Eq. (11.35) then gives

ðϕ2 −ϕ1Þ/R = ln p2/p1ð Þ = ln
p2po
p1po

= ln pr2/pr1ð Þ
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where pr is the relative pressure, defined as

pr = p/po = exp ϕ/Rð Þ
consequently,

p2/p1 = pr2/pr1 (11.36)

Equation (7.34) expresses the specific entropy in terms of temperature and specific volume as

s2 − s1 =
Z T2

T1

cv/Tð ÞdT +R ln v2/v1ð Þ (7.34)

Again, for an isentropic process, s2 = s1 and

− 1
R

Z T2

T1

cv/Tð ÞdT = ln v2/v1ð Þ = ln
v2vo
v1vo

= ln vr2/vr1ð Þ

where vr is the relative volume, defined as

vr = v/v0 = exp − 1
R

Z T

T0

cv/Tð ÞdT
� 	

consequently,

v2/v1 = vr2/vr1 (11.37)

The pr and vr columns of the gas tables are to be used only for isentropic processes, and their values are to be used
only in Eqs. (11.36) and (11.37).

EXAMPLE 11.12
A diesel engine has a compression ratio of 19.2 to 1. Air at 60.0°F and 14.7 psia is drawn into the engine during the intake
stroke and compressed isentropically during the compression stroke. Using the gas tables, determine the final temperature
and pressure of the air at the end of the compression stroke and the work required per lbm of air present.

Solution
First, draw a sketch of the system (Figure 11.2).

Air at 60.0°F
and 14.7 psia

State 1 State 2

v2 = v1/19.2
T2 = ?

FIGURE 11.2
Example 11.12.

The unknowns here are the final temperature and pressure of the air at the end of the compression stroke and the work
required per lbm of air present.

The piston-cylinder arrangement of a diesel engine forms a closed system for the air being compressed. The unknowns are T2,
p2, and 1W2/m. The energy balance for this system (neglecting any changes in the potential and kinetic energies of the air) is

1Q2 − 1W2 = m u2 − u1ð Þ

(Continued )
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EXAMPLE 11.12 (Continued )

Now, 1Q2 = 0 (isentropic processes are also adiabatic), so

1W2/m = u1 − u2

The gas tables are to be used for the thermodynamic properties of air here, because they are more accurate than the standard
constant specific heat ideal gas equations. From Table C.16a in Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics, we find that, at 60.0°F = 520. R,

u1 = 88:62Btu/lbm

pr1 = 1:2147

and

vr1 = 158:58

For a compression ratio of 19.2 to 1, v2/v1 = 1/19:2: Then, from Eq. (11.37),

vr2 = vr1 v2/v1ð Þ = 158:58/19:2 = 8:26

scanning down the vr column in Table C.16a, we find that vr = 8.26 at about

T2 = 1600R = 1140°F

u2 = 286:06Btu/lbm

and

pr2 = 71:73

Then, from Eq. (11.36),

p2 = p1 pr2/pr1ð Þ = 14:7psiað Þ 71:73/1:2147ð Þ
= 868:1psia

Finally, from the preceding energy balance,

1W2/m = u1 − u2 = 88:62−286:06 = −197:44Btu/lbm

Exercises
34. Determine the final temperature and pressure in Example 11.12 if the compression ratio is 10.7 to 1 instead of 19.2 to

1. Answer: T2 = 1300. R and p2 = 392. psia.
35. Rework Example 11.12 for a compression ratio of 19.3 to 1 when air at 300. K and 0.100 MPa is drawn into the engine

during the intake stroke. Answer: T2 = 920. K, p2 = 5.92 MPa, and 1W2/m = −477 kJ/kg.
36. Use the relations for an isentropic process for an ideal gas,

T2
T1

= v2
v1

� �1− k

=
p2
p1

� �k−1
k

to compute the final temperature T2 and pressure p2 of the compression process described in Example 11.12. Then,
assuming constant specific heats, compute the work required per unit mass for the compression 1W2/m = u1 – u2 =
cv (T1 – T2). Answer: T2 = 1236°F, p2 = 920 psia, and 1W2/m = −200. Btu/lbm.

11.10 COMPRESSIBILITY FACTOR AND GENERALIZED CHARTS
In Chapter 3, we discussed the van der Waals, Dieterici, Berthelot, Beattie-Bridgeman, and Redlich-Kwong
equations of state as possible models of nonideal, or real, gas behavior. Several of these equations are just varia-
tions on the basic ideal gas equation, pv = RT. We now introduce one of the most powerful engineering real gas
equations of state: the compressibility factor.

In 1880, the Dutch physicist Johannes Diderik van der Waals (1837–1923) reasoned that, if the p-v-T
equation of state could be nondimensionalized, then all gases might be found to fit the same dimensionless
p-v-T equation. Further, he noted that, since every substance has a vapor dome and every vapor dome has a
unique critical point (its peak), perhaps the critical point properties (pc, Tc, and vc) could be used to create a
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dimensionless equation of state. He defined the
dimensionless variables reduced pressure pR, reduced
temperature TR, and reduced specific volume vr as

4

pR = p/pc (11.38a)

TR = T/Tc (11.38b)

vR = v/vc (11.38c)

where p and T are the actual pressure and temperature of
the gas, and pc and Tc are the critical state pressure and
temperature of the gas (see Table C.12 in Thermodynamic
Tables to accompany Modern Engineering Thermodynamics).
Then, he hypothesized that pR = pR(vR, TR) would define
a generalized dimensionless equation of state that
would be valid for all substances. Today, this hypothesis
is called van der Waals’s law of corresponding states, but
unfortunately, it has been found to be valid only for
materials with similar molecular structures.

In 1883, van der Waals introduced his now classical equation of state:

p = RT/ðv− bÞ− a/v2 (3.44)

in which the constants a and b are corrections for intermolecular forces and molecular volume, respectively. This
is a cubic equation in v (see Example 11.11) and has isotherms shaped as shown in Figure 11.3. For given
p and T < Tc values, there are three real roots of this equation. One root corresponds to vf, another corresponds
to vg, and the third is a meaningless root between vf and vg.

Van der Waals noted that the critical temperature isotherm seemed to have an inflection point at the critical
point. If this were generally true, then all equations of state would have to obey the mathematical constraints of
an inflection point, or

∂p
∂v

� ����
Tc ,vc

=
∂2p
∂v2

� ����
Tc ,vc

= 0

Applying these conditions to the van der Waals equation yields

∂p
∂v

� ����
Tc ,vc

= RTc/ vc − bð Þ2 + 2a/v3c = 0

and

∂2p
∂v2

� ����
Tc ,vc

= 2RTc/ vc − bð Þ3 −6a/v4c = 0

and solving these two equations simultaneously for a and b while using Eq. (3.44) evaluated at the critical point
gives

a = 9RTcvc/8 = 27
64

R2T2
c

pc

� �
and

b = vc/3 =
RTc
8pc

Thus, if the van der Waals equation accurately represented universal material behavior, the constants a and b
could be determined from a single experimental measurement at the critical point.

Specific volume, v

Pr
es

su
re

, p

van der Waals
isotherms

Vapor dome

Actual
isotherm

FIGURE 11.3
Schematic of van der Waals isotherms near the vapor dome.

4 Note that the reduced properties pR and vR are not the same as the relative properties pr and vr introduced in the previous section.
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Substituting this formula for a and b back into the van der Waals equation and dividing both sides by pc gives

p/pc = pR = 8TR/ð3vR − 1Þ− 3/v2R

which is the type of dimensionless equation of state that he was seeking. Unfortunately, the molecular interac-
tions in real substances are more complex than the elementary corrections used in the van der Waals equation,
so it does not work well over large pressure and temperature ranges.

A serious flaw in van der Waals’s law of corresponding states is that it breaks down at low pressures, where ideal
gas behavior is expected. Further, his equation of state (Eq. (3.44)) has the curious property that (from the
preceding equation for b) the ratio pcvc/(RTc) = 3/8 = 0.375, whereas for an ideal gas, pv/(RT) is always equal
to unity. This similarity led many researchers to investigate pv/(RT) data, and this grouping is now called the
compressibility factor Z, as

Z = pv/ðRTÞ (11.39)

where Z = 1 for an ideal gas. Figure 11.4 shows that the experimental data for the compressibility factor for
many different gases fall together when Z is plotted against reduced pressure pR while holding the reduced tempera-
ture TR constant. Figures 11.4, 11.5, 11.6, and 11.7 constitute a set of compressibility charts that can be used to
solve real gas compressibility factor problems.

The van der Waals equation predicts that Zc = pcvc/(RTc) = 0.375, but many experiments on a large number of
substances have shown that 0.23 ≤ Zc ≤ 0.375. So Zc is not the same for all substances. Though many people
tried to correlate Z with p or T for various substances, it was not until 1939 that H. C. Weber correlated Z with
pR and TR and thus produced the first generalized compressibility chart of the form Z = Z(pR, TR). There was,
however, a problem with this chart, in that lines of constant reduced specific volume could not be added
because the vR data were inconsistent. In 1946, Gouq-Jen Su solved this problem, as shown in Figure 11.5, by
choosing the product vRZC as a “pseudo” reduced specific volume v′R, defined as

vR′ = vRZc = ðv/vcÞZc = v/v′c

where a new critical state specific volume vc′ has been defined as

vc′ = vc/Zc = RTc/pc

This change produced a much better correlation of the experimental data and lines of constant v′R could be accu-
rately added to the chart. The resulting Z = ZðpR, TR, v′RÞ plot is now called the generalized compressibility chart and is
shown in Figures 11.5, 11.6, and 11.7. Values for pc and Tc for various substances can be found in Table C.12.
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FIGURE 11.4
A generalized compressibility chart for various gases. (Sources: Reprinted with permission from Su, G.-J. “Modified law of corresponding
states for real gases.” Ind. Eng. Chem. 38 (8), 1948, p. 804. Also reprinted with permission of the publisher from Reynolds, W. C.,
Perkins, H. C., 1977. Engineering Thermodynamics. McGraw-Hill, New York.)

386 CHAPTER 11: More Thermodynamic Relations



Though the van der Waals equation is not very accurate as a universal equation of state, Su’s modified compres-
sibility factor formulation as an approximate approach to the law of corresponding states has found universal
acceptance within the engineering community.

EXAMPLE 11.13
Using the compressibility charts, find the pressure exerted by 8.20 lbm of carbon monoxide in a 1.00 ft3 rigid tank at –78.0°F.

Solution
From Table C.12a, we find that

Tc = 240:R

pc = 507psia

and

vc =
1:49 ft3/lbmole

28:011 lbm/lbmole
= 0:053 ft3/lbm

Also, from Table C.13a, we find that R = 0.0709 Btu/lbm ·R. Then, we have

TR = T
Tc

= −78:0+460:
240:

= 1:60

and

v = 1:00 ft3

8:20 lbm
= 0:122 ft3/lbm

(Continued )
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EXAMPLE 11.13 (Continued )

with

v′c =
RTc
pc

=
0:0709Btu/ lbm ⋅Rð Þ½ � 240:Rð Þ 778:16 ft ⋅ lbf/Btuð Þ

507 lbf/in2ð Þ 144 in2/ft2ð Þ = 0:181 ft3/lbm

so that

v′R = v
v′c

= 0:122
0:181

= 0:67 ðnotice that we do not use the actual critical specific volume vc hereÞ

Using TR = T/Tc = 1.60 and v′R = v/v′c = 0:67, we find from Figure 11.6 that

pR =
p
pc

= 2:10 and Z = 0:850

Then, we can calculate

p = pcpR = 507 2:10ð Þ = 1070 psia

Exercises
37. Determine the pressure exerted by the carbon monoxide in Example 11.13 if it is at a temperature of 100.°F and all the

other variables remain unchanged. Answer: p = 1670 psia.
38. Suppose the tank containing the carbon monoxide in Example 11.13 was isothermally crushed by a giant winged

wombat, causing the pressure in the tank to increase to 2000. psia. Determine the final volume of the tank. Answer:
V

final
= 0:516 ft3.

39. Management has just informed us that the tank in Example 11.13 really contains carbon dioxide rather than carbon
monoxide and that the tank was really at 178°F, not –78.0°F. Assuming all the remaining variables are unchanged,
determine the pressure of the CO2 in the tank. Answer: p = 964 psia.
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The generalized (Nelson-Obert) compressibility chart—low-pressure range, 0 ≤ pR ≤ 10.0. Note that v′R = v/v′c = vpc/RTc. (Source:
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EXAMPLE 11.14
Compressed natural gas (CNG) is essentially methane (CH4). CNG is currently being used as a replacement fuel for gasoline in
some automobiles. This requires replacing the automobile’s gasoline tank with a high-pressure 0.100 m3 cylinder filled with
CNG. Under normal conditions, the tank pressure is no more than 20.0 MPa when the tank is filled with a maximum of 15.6 kg
of CNG. However, the worst case condition would be if the automobile were consumed by fire and the tank temperature reached
1000.°C. Using the compressibility charts, determine the maximum pressure in the CNG tank at this worst case temperature.

Solution
First, draw a sketch of the system (Figure 11.8).

CNG tank
at 1000.°C

FIGURE 11.8
Example 11.14
The unknown is the maximum pressure in the CNG tank. From Table C.12b, we find the critical state properties of methane to be

Tc = 191:1K and pc = 4:64MPa
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EXAMPLE 11.14 (Continued )

Since this is a closed fixed volume system,

v1 = v2 = v = V/m = 0:100m3/15:6 kg = 6:40× 10− 3m3/kg

Table C.13b, gives the gas constant for methane as R = 0.518 kJ/kg ·K, then

v′R = v/v′c = vpc/RTc = ð6:40×10−3m3/kgÞð4640 kPaÞ/½ð0:518 kJ/kg .KÞð191:1KÞ� = 0:300

and

TR = T/Tc = ð1000:+273:15Þ/191:1 = 6:66

Using these values of v′R and TR in Figure 11.7, we find that pR = p2/pc ≈ 32.0, and the worst case pressure is (p2)worst case =
pRpc = 32.0(4.64) = 148 MPa.

Exercises
40. Determine the final (worst case) pressure in the CNG tank in Example 11.14 if the tank temperature reached only 500.°C.

Answer: (p2)worst case = 90. MPa.
41. If we decrease the size of the CNG tank in Example 11.14 from 0.100 m3 to 0.0500 m3 and decrease its temperature in the

fire from 1000.°C to 200.°C, determine the final (worst case) pressure in the tank. Answer: (p2)worst case = 8.00 MPa.

Compressibility factor data can be used to estimate the specific enthalpy and entropy pressure dependence of
substances as follows. Integrating the specific enthalpy total differential given in Eq. (11.22) from a reference
state at po, vo, To, and ho to any other state at p, v, T, and h gives

h = ho +
Z T

To

cpdT +
Z p

po

v−T ∂v
∂T

� �
p

� 	
dp

Then, arbitrarily choosing ho, To, and po to be zero gives

h =
Z T

0
cpdT +

Z p

0
v−T ∂v

∂T

� �
p

� 	
dp

= h*+
Z p

0
v−T ∂v

∂T

� �
p

� 	
dp

where h* is the ideal gas specific enthalpy defined earlier in the discussion of the gas tables. From Eq. (11.39),
we can write

v = ZRT/p

so that

∂v
∂T

� �
p
= ZR/p+ RT/pð Þ ∂Z/∂Tð Þp (11.40)

Then,

v−T ∂v
∂T

� �
p
= ZRT/p−ZRT/p− RT2/pð Þ ∂Z/∂Tð Þp
= −ðRT2/pÞð∂Z/∂TÞp

and

h = h*−R
Z p

0
ðT2/pÞð∂Z/∂TÞp dp

390 CHAPTER 11: More Thermodynamic Relations



Nondimensionalizing this equation with T = TcTR and p = pcpR and rearranging it gives

h*− hð Þ/Tc = R
Z pR

0
ðT2

R/pRÞð∂Z/∂TRÞpRdpR

This equation still depends on the substance under consideration, because the value of R is substance depen-
dent. This dependence can be removed by multiplying both sides of this equation by the molecular mass M (in
lbm/lbmoles or kg/kgmole) and thus converting it into molar units:

h*− h
� �

/Tc = ℜ
Z pR

0
T2
R/pR

� �
∂Z/∂TRð ÞpR dpR

where h* = h*M is the ideal gas molar enthalpy, h = hM is the real substance molar enthalpy, and ℜ = RM is
the universal gas constant. Using compressibility factor data, this equation has been integrated and the results
are shown in Figure 11.9.
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To find the change in specific enthalpy between states 1 and 2 using this figure, values of pR and TR are calculated
and values of h*− h

� �
/Tc are then read from the figure. The change in specific enthalpy between states 1 and 2 is

then determined from

h2 − h1 = ðh2*− h1*Þ− h*− h
Tc

� �
2
− h*− h

Tc

� �
1

� 	
Tc
M

� �
(11.41)

where h2*− h1* is determined from the gas tables (Table C.16 in Thermodynamic Tables to accompany Modern Engi-
neering Thermodynamics) or by assuming constant specific heats over the temperature range from T1 to T2 and
using h2*− h1* = cpðT2 − T1Þ:

EXAMPLE 11.15
As chief engineer at Precision Throttles Inc., you are responsible for designing an adiabatic, aergonic, steady state, steady flow
device to throttle carbon dioxide (CO2) from 20.0 MPa, 150.°C to 0.101 MPa. As part of this design, you must accurately
predict the exit temperature of the throttle. Neglecting all kinetic and potential energies, use the generalized charts under the
assumption of constant specific heats to determine the exit temperature of the throttle.

Solution
First, draw a sketch of the system (Figure 11.10).

CO2

T2 = ?

p2 = 0.101 MPap1= 20.0 MPa

T1 = 150.°C

FIGURE 11.10
Example 11.15.

The unknown is the exit temperature of the throttle. The energy rate balance for an adiabatic, aergonic, steady state, steady
flow, single-inlet, single-outlet throttle is

_Q − _W + _m ðh1 − h2Þ = 0

and since _Q = _W = 0 here, we get h2 – h1 = 0. From Table C.12b, we find the critical temperature and pressure for CO2 are

Tc = 304:2K and pc = 7:39MPa

and that the molecular mass of CO2 is 44.01 kg/kgmole. From Table C.13b, we now find the value of the constant pressure
specific heat of CO2 as

cp = 0:845 kJ/kg .K

Then,

pR1 = 20/7:39 = 2:71

and

TR1 = ð150:+273:15KÞ/ð304:2KÞ = ð423:15KÞ/ð304:2KÞ = 1:39:

Then, Figure 11.9 gives [(h* – h)/Tc]1 ≈ 14.0 kJ/kgmole ·K. At the exit of the throttle, we have

pR2 = 0:101MPað Þ/ 7:39MPað Þ = 0:0135

and Figure 11.9 gives [(h* – h)/Tc]2 ≈ 0. Then, using Eq. (11.41), we have

h2 − h1 = 0

= 0:845 kJ
kg .K

� �
ðT2 − 423:15KÞ− 0− 14:0 kJ

kgmole .K

� �
304:2K

44:01 kg/kgmole

� �
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Solving for T2 gives

T2 = 423:15K−
14:0 kJ/kgmole .K
0:845 kJ/kg .K

304:2K
44:01 kg/kgmole

� �
= 308:6K = 35:5°C

Exercises
42. Determine the exit temperature in the throttle described in Example 11.15 if the inlet pressure is reduced from 20.0 MPa

to 10.0 MPa. Answer: T2 = 117°C.
43. If the temperature of the CO2 entering the throttle in Example 11.15 is reduced from 150.°C to 100.°C, determine the

exit temperature of the CO2. Answer: T2 = −90.0°C.
44. Suppose the CO2 in Example 11.15 is replaced with air using the same inlet and exit conditions. Determine the exit

temperature of the air from the throttle. Answer: T2-air = 141°C.

Similarly, integration of Eq. (11.26) between a zero value reference state (po = To = so = 0) and a final state at
p, v, T, and s gives

s =
Z T

0
cp/T
� �

dT −
Z p

0
∂v/∂Tð Þpdp

and, for an ideal gas, we have, from Eq. (7.35),

s* =
Z T

0
ðcp/TÞdT −R

Z p

0
dp/p

Combining these results, we get

s = s*+
Z p

0
R/p− ∂v/∂Tð Þp
h i

dp

Now, using Eq. (11.40),

R/p− ∂v/∂Tð Þp = R/p−ZR/p− RT/pð Þ ∂Z/∂Tð Þp
= R/pð Þ 1−Z− T ∂Z/∂Tð Þp

h i
Then,

s*− s = R
Z p

0
Tð∂Z/∂TÞp +Z−1
h i

ðdp/pÞ

Again, nondimensionalizing with T = TcTR and p = pcpR and multiplying both sides by the molecular mass M to
remove substance dependence from the equation, we get the molar results:

s*− s = ℜ
Z pR

0
TRð∂Z/∂TRÞpR +Z− 1
h i

dpR/pRð Þ

Compressibility data have been used to integrate this equation, and the results are shown in Figure 11.11. To
find the change in specific entropy between states 1 and 2 using this figure, calculate the values of pR and TR

and obtain values for s*− s from the figure. Then, we can compute

s2 − s1 = ðs�2 − s�1Þ− s� − sð Þ2 − s� − sð Þ1
� 
ð1/MÞ (11.42)

where s�2 − s�1 = ϕ2 −ϕ1 −R lnðp2/p1Þ from the gas tables, or by assuming constant specific heats over the
temperature range from T1 to T2 and using s�2 − s�1 = cp ln(T2/T1) – R ln(p2/p1).
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EXAMPLE 11.16
Ethylene (C2H4) gas is to be isothermally compressed from 150. psia to 15.0 × 103 psia at 80.0°F. Using the compressibility
charts, determine

a. The change in specific enthalpy.
b. The change in specific internal energy.
c. The change in specific entropy of the ethylene.

Solution
a. The change in specific enthalpy of the ethylene is given by Eq. (11.41) as

h2 − h1 = ðh�2 − h�1Þ− h
�
− h
Tc

� �
2
− h

�
− h
Tc

� �
1

� 	
Tc
M

� �
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and since this is an isothermal process, T2 = T1 and the ideal gas portion of this equation for a constant specific heat
gas is h2*− h1* = cpðT2 −T1Þ = 0: The properties of ethylene at its critical state and its molecular mass are found in
Table C.12a as Tc = 508.3 R, pc = 742 psia, and M = 28.05 lbm/lbmoles. Then,

pR1 = 150:
742

= 0:202 and TR1 = 80:0+ 459:67
508:3

= 1:06

pR2 = 15:0×103

742
= 20:2 and TR2 = TR1 = 1:06

Using pR1 = 0.202 and TR1 = 1.06, Figure 11.9 gives the enthalpy correction for state 1 as

h*− h
Tc

� �
1
= 1:50 kJ

kgmole .K
= 1:50 kJ

kgmole .K

� �
1Btu/ðlbmole .RÞ

4:1865 kJ/ðkgmole .KÞ
� �

= 0:360 Btu
lbmole .R

and using pR2 = 20.2 and TR2 = 1.06, Figure 11.9 gives the enthalpy correction for state 2 as

h*− h
Tc

� �
2
= 31:5 kJ

kgmole .K
= 31:5 kJ

kgmole .K

� �
1Btu/ðlbmole .RÞ

4:1865 kJ/ðkgmole .KÞ
� �

= 7:52 Btu
lbmole .R

Then, Eq. (11.41) gives

h2 − h1= ðh2*− h1*Þ− h*− h
Tc

� �
2
− h*− h

Tc

� �
1

� 	
Tc
M

� �
= 0− ½7:52−0:360Btu/ðlbm .RÞ� 508:3R

28:05 lbm/lbmole

� �
= −130: Btu

lbm

Note that, since the compressibility charts cannot be read to more than two or three significant figures, our final
calculation results are limited to this accuracy as well.

b. The compressibility charts do not give values for the specific internal energy, so it must be calculated from the definition
of enthalpy as u = h – pv, or u2 – u1 = h2 – h1 – (p2v2 – p1v1), where v1 = Z1RT1/p1 and v2 = Z2RT2/p2. For pR1 = 0.202
and TR1 = 1.06, Figure 11.5 gives Z1 = 0.940, and for pR2 = 20.2 and TR2 = TR1 = 1.06, Figure 11.7 gives Z2 = 2.15. The
gas constant R for ethylene can be found in Table C.13a as R = 55.1 ft · lbf/(lbm ·R). Then,

v1 = Z1RT1
p1

=
0:940½55:1 ft . lbf/ðlbm .RÞ�ð80:0+ 459:67RÞ

ð150: lbf/in2Þð144 in2/f t2Þ = 1:29 ft3

lbm

and

v2 = Z2RT2
p2

=
2:15½55:1 ft . lbf/ðlbm .RÞ�ð80+ 459:67RÞ

ð15:0× 103 lbf/in2Þð144 in2/f t2Þ = 0:030 ft3

lbm

Then,

u2 − u1 = h2 − h1 − ðp2v2 − p1v1Þ

= 130: Btu
lbm

− 15:0×103 lbf
in2

� �
144 in

2

f t2

� �
0:0300 ft3

lbm

� �
1Btu

778:16 ft . lbf

� �
− 150: lbf

in2

� �
144 in

2

f t2

� �
1:29 ft3

lbm

� �
1Btu

778:16 ft . lbf

� �
= − 180: Btu

lbm

c. Finally, from Eq. (11.42), we have the change in specific entropy as

s2 − s1 = ðs2*− s1*Þ− ðs*− sÞ2 − ðs*− sÞ1
� 
 1

M

� �
(Continued )
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EXAMPLE 11.16 (Continued )

where, for a constant specific heat ideal gas,

s2*− s1* = cp ln ðT2/T1Þ−R ln ðp2/p1Þ− s1*

and, since T2 = T1 here, this becomes

s2*− s1* = 0−
55:1 ft . lbf/ðlbm .RÞ
778:16 ft . lbf/Btu

� 	
ln 15:0×103

150:

� �
= −0:326 Btu

lbm .R

Using pR1 = 0.202 and TR1 = 1.06, Figure 11.11 gives the entropy correction for state 1 as

ðs*− sÞ1 = 1:50 kJ
kgmole .K

= 1:50 kJ
kgmole .K

� �
1Btu/ðlbmole .RÞ

4:1865 kJ/ðkgmole .KÞ
� �

= 0:360 Btu
lbmole .R

and using pR2 = 20.2 and TR2 = 1.06, Figure 11.11 gives the entropy correction for state 2 as

ðs*− sÞ2 = 22:2 kJ
kgmole .K

= 22:2 kJ
kgmole .K

� �
1Btu/ðlbmole .RÞ

4:1865 kJ/ðkgmole .KÞ
� �

= 5:30 Btu
lbmole .R

Then, Eq. (11.42) gives

s2 − s1 = ðs2*− s1*Þ− s*− sð Þ2 − s*− sð Þ1
� 
 1

M

� �
= −0:326 Btu

lbm .R
− 5:30−0:360 Btu

lbm .R

h i
1

28:05 lbm/lbmole

� �
= −0:500 Btu

lbm .R

The following exercises illustrate some of the elements of Example 11.16.

Exercises
45. Determine the values of Z1 and Z2 in Example 11.16 if the isothermal compression occurs at 1060°F instead of 80.0°F

and all the remaining variables are unchanged. Answer: Z1 = 1.0 and Z2 = 2.0.
46. Determine the changes in specific enthalpy and specific entropy in Example 11.16 if the final pressure is 7500. psia instead of

15.0 × 103 psia and all the remaining variables are unchanged. Answer: h2 – h1 = –145 Btu/lbm and s2 – s1 = –0.509 Btu/(lbm ·R).
47. Rework Example 11.16 when the ethylene is replaced by air but all the other variables are unchanged. Answer: h2 – h1 =

–4.85 Btu/lbm, u2 – u1 = –51.1 Btu/lbm, and s2 – s1 = –0.357 Btu/(lbm ·R).

11.11 IS STEAM EVER AN IDEAL GAS?
One of the most unforgivable mistakes that a thermodynamics student can make is to use the ideal gas
equations to calculate the values of the properties u, h, and s of superheated steam. Yet we do just that in the
next chapter when we discuss the thermodynamics of water vapor and air mixtures (i.e., humidity). Where did
this great academic fear of steam as an ideal gas come from, and is it really justified?

When the term steam vapor was introduced into engineering jargon in the 19th century, it originally meant only
visible, or “wet” steam. That is, steam whose state was far enough under the vapor dome to contain tiny visible
foglike liquid water droplets (sometimes called water dust). As soon as the steam became a saturated or super-
heated vapor, it became invisible to the naked eye and was called steam gas, and for a long time, its properties
were actually calculated from the ideal gas equations. By the end of the 19th century, it had become clear to
thermodynamicists that the ideal gas equations did not accurately describe the behavior of high-pressure steam,
and during the first half of the 20th century, considerable effort was devoted to developing new empirical
equations for steam properties over the full range of pressures and temperatures of industrial interest.

However, these empirical equations were generally too complex and time consuming for ordinary engineering work,
so they were used instead to generate elaborate saturation and superheated steam tables that were accurate to within
1% or less over their full range. Those tables could be used easily and quickly by working engineers with at most a
simple linear interpolation required between table entries. These tables were widely distributed and continuously
improved through a series of annual International Conferences on the Properties of Steam, which began in 1929.
Today, the full steam tables have small pressure and temperature increment listings and fill an entire book.

To provide engineering students with a working knowledge of these new tables, a condensed version was
appended to all thermodynamics textbooks. Authors and professors attempted to encourage the use of these
tables and discourage the use of ideal gas equations for steam by extending the definition of a vapor to include
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any state near the vapor dome and below the critical point. Under this definition, superheated steam was now a
vapor, not a gas, and it would be unforgivable for a student to apply ideal gas equations to a vapor.

For many years, this subterfuge was successful. But growing student computer literacy and the availability of complex
software containing all the equations necessary to generate accurate steam properties will eventually make the use of
printed tables obsolete. Yet, there remains the nagging question of whether or not the ideal gas equations can be used
to describe the thermodynamic properties of steam with reasonable accuracy in
low-pressure or high-temperature situations. If so, then engineering students could
write relatively simple computer programs to solve challenging thermodynamic
steam (or any other “vapor”) problems without using elaborate software for gener-
ating property values.

It was the pragmatic Scottish engineer William John Macquorn Rankine
(1820–1872), in his Manual of the Steam Engine and Other Prime Movers,6 who
noted that

Steam attains a condition which is sensibly that of a perfect gas, by means
of a very moderate extent of superheating; and it may be inferred that the
formulae for the relations between heat and work which are accurate for
steam-gas are not materially erroneous for actual superheated steam; while
they possess the practical advantage of great simplicity.

The concept of a region of steam ideal gas behavior is illustrated in Figure
11.12. This figure is a Mollier diagram that shows the regions in which the
equation’s vg = RTsat/psat, v = RT/p, h = hg + Cp(T – Tsat) and s = sg + cp ln(T/
Tsat) – R ln(p/psat) are accurate to within about 1% or less of the actual steam
table values (where hg and sg are evaluated at Tsat). The use of these ideal gas
equations for steam in the regions shown produces errors of only a few per-
cent in an analysis, which is often quite acceptable for many engineering ther-
modynamic applications. The reader can easily define the regions shown in
Figure 11.12 by using the preceding equations and a steam table.

6 This book has the honor of being the first comprehensive engineering thermodynamics textbook. It was first printed in 1859 and
went through 17 editions.

WHERE DID THE STEAM TABLES COME FROM?

There is no record of who first took interest in measuring the p-v-T properties of steam, but the development of the steam
engine and the associated Industrial Revolution it produced created a strong practical need for such information. By 1683,
Samuel Morland (1625–1695) is said to have acquired data on the pressure and temperature of saturated steam near atmo-
spheric pressure. In 1662, Robert Boyle (1627–1691) developed the equation pV = constant for isothermal “elastic fluids”
(i.e., compressible gases), and this equation was used over 100 years later for steam by James Watt (1736–1819) in his
improved steam engine patent of 1782. In about 1787, Jacques Charles (1746–1823) developed the equation for isobaric
gas behavior, V/T = constant, and soon thereafter the laws of Boyle and Charles were combined into the ideal gas
equation5 that we have today, pV = mRT:

The combined Boyle-Charles ideal gas equation continued to be used for steam engine design until the end of the 19th cen-
tury, when engines were operating at sufficiently high pressures and temperatures to render the equation noticeably
inaccurate.

In the 1840s, the French scientist Henri Victor Regnault (1810–1878) was sponsored by his government to carry out a ser-
ies of precise measurements of the saturation properties of various substances, including water. He found that the Boyle-
Charles ideal gas equation was only approximately true for real substances. By 1847, he had correlated his experimental
results for the saturation pressure and temperature of steam with the formula given in the problem set at the end of this
chapter. Regnault’s data was considered to be an accurate authoritative source for over 60 years, and many others made
mathematical correlations from it. By the end of the 19th century, many steam tables based on various correlations of
increasing complexity of Regnault’s data had become available for engineering use.

5 Boyle’s law was independently discovered in 1676 by Edme Mariotte (1620–1684) and is sometimes known as Mariotte’s law. Also, Charles’s law was
independently discovered in 1802 by Joseph Louis Gay-Lussac (1778–1850) and is sometimes known as Gay-Lussac’s law. Carnot, Clapeyron, and many
others were using the ideal gas equation in the form pv = R(T + A), where T was in °C and A = 273 °C was then an empirical constant. Later, in
1848, William Thomson (Lord Kelvin) recognized that –273 °C corresponded to absolute zero temperature.
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EXAMPLE 11.17
Suppose 1.00 lbm of superheated steam at 1.00 psia and 200.°F is mixed adiabatically and aergonically with 5.00 lbm of
superheated steam at 5.00 psia and 400.°F in a closed, rigid system. Determine the final temperature and pressure.

Solution
The unknowns here are T2 and p2, and since this is a closed system, the energy balance (neglecting any changes in system
kinetic and potential energy) is

1Q2
.
0
adiabaticð Þ

− 1W2
↘
0

= mðu2 − u1Þ
ðaergonicÞ

= U2 −U1

or U2 = U1, or u2 = u1 = U1/m1 = (mAuA + mBuB)/(mA + mB). Also, for a closed, rigid system, the total volume and mass are constant, so

v2 = v1 = mAvA +mBvBð Þ/ mA +mBð Þ
This problem is very difficult to solve using the steam tables or the Mollier diagram. It requires the construction of lines of con-
stant u and constant v for various combinations of pressure and temperature, then finding the intersection of the u = u1 = u2 and
v = vl = v2 lines. However, the steam states given in the problem statement fall within the ideal gas region of Figure 11.12, so we
can solve this problem with reasonable accuracy using the ideal gas equations of state. Since the reference state values ultimately
cancel out here, we can simplify the algebra by taking To = 0 R and uo = 0 Btu/lbm, then we can write uA = cvTA, uB = cvTB, and
u2 = cvT2. Also, from the Boyle-Charles ideal gas equation, we have that vA = RTA/pA, vB = RTB/pB, and v2 = RT2/p2. Then,

u2 = cvT2 = u1 = cv mATA +mBTBð Þ/ mA +mBð Þ
or

T2 = mATA +mBTBð Þ/ mA +mBð Þ
and

v2 = RT2
p2

=
R mATA/pA +mBTB/pBð Þ

mA +mB

or

p2 =
mA +mBð ÞT2

mATA/pA +mBTB/pB

For the values given in the problem statement, we get

T2 =
1:00 lbmð Þ 659:67Rð Þ+ 5:00 lbmð Þ 859:67Rð Þ

6:00 lbm
= 827R = 367°F

and

p2 =
6:00 lbmð Þ 827Rð Þ

1:00 lbmð Þ 659:67Rð Þ/ 1:00 psiað Þ+ 5:00 lbmð Þ 859:67Rð Þ/ 5:00psiað Þ = 3:26 psia

Note that, since the specific heat and gas constant cancel out in the equations for the final temperature and pressure in
Example 11.17, they are independent of the material being mixed. The following exercises illustrate the use of this material.

Exercises
48. Determine the final temperature and pressure in Example 11.17 if the 1.00 lbm of superheated steam is at 5.00 psia and

200.°F instead of 1.00 psia and 200.°F. Answer: T2 = 367°F and p2 = 5.00 psia.
49. Suppose we increase the mass and temperature of one of the components in Example 11.17 so that we are mixing

5.00 lbm of superheated steam at 1.00 psia and 800.°F with 5.00 lbm of superheated steam at 5.00 psia and 400.°F.
Determine the final temperature and pressure of this mixture. Answer: T2 = 600.°F and p2 = 1.48 psia.

50. Suppose the superheated steam components in Example 11.17 are replaced with superheated R-22 at exactly the same
temperatures and pressures. Determine the final temperature and pressure of this mixture. Answer: T2 = 367°F and p2 = 3.26 psia.

SUMMARY
In this chapter, we discuss a series of generalized thermodynamic property relations. We also introduce two
thermodynamic properties, the Helmholtz and Gibbs functions, and develop a series of differential property
relations, known as the Maxwell thermodynamic property equations. The Clapeyron equation, Gibbs phase equilibrium
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equation, and a series of differential relations for the nonmeasurable u, h, s properties cast in terms of the measur-
able p, v, T properties allow us to develop a general procedure for constructing thermodynamic tables and charts.

In the concluding section of this chapter, the history and philosophy of modeling steam with the ideal gas
equations is discussed. It is seen that this is a reasonably accurate approximation for saturated vapor at low
pressure and superheated vapor (steam gas) at low pressure or high temperature.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them without
understanding their limitations.

1. Two new thermodynamic properties: the specific Helmholtz function, f = u – Ts, and the specific Gibbs
function, g = h – Ts.

2. The Gibbs phase equilibrium condition:

sfg =
hfg
Tsat

3. The Maxwell equations:

∂T
∂v

� �
s
= −

∂p
∂s

� �
v

∂T
∂p

� �
s
= ∂v

∂s

� �
p

∂p
∂T

� �
v
= ∂s

∂v

� �
T

∂v
∂T

� �
p
= − ∂s

∂p

� �
T

4. The Clapeyron equation:

dp
dT

� �
sat

=
hfg

Tsatvfg

5. General u, h, and s property relations:

u2 − u1 =
Z T2

T1

cvdT +
Z v2

v1

T
∂p
∂T

� �
v
− p

� 	
dv

h2 − h1 =
Z T2

T1

cpdT +
Z p2

p1

v− T ∂v
∂T

� �
p

� 	
dp

s2 − s1 =
Z T2

T1

cv
T
dT +

Z v2

v1

∂p
∂T

� �
v
dv

=
Z T2

T1

cp
T
dT −

Z p2

p1

∂v
∂T

� �
p
dp

6. Specific heat relations:

∂cv
∂v

� �
T
= T

∂2p
∂T2

� �
v

∂cp
∂p

� �
T
= −T ∂2v

∂T2

� �
p
cp − cv = Tβ2v/k

7. Using the gas tables to find changes in entropy: s2 − s1 = ϕ2 −ϕ1 −R ln p2/p1ð Þ
9. The compressibility factor: Z = pv/ðRTÞ:

10. Relations for use with the Generalized charts:

h2 − h1 = ðh2*− h1*Þ− h*− h
Tc

� �
2
− h*− h

Tc

� �
1

� 	
Tc
M

� �

s2 − s1 = ðs2*− s1*Þ− s*− sð Þ2 − s*− sð Þ1
� 
ð1/MÞ

where h2*− h1* and s2*− s1* are the equivalent ideal gas changes in specific enthalpy and specific entropy of the
real gas.

Summary 399



Problems (* indicates problems in SI units)
1.* Calculate the specific Gibbs and Helmholtz functions of

saturated water vapor at 100.°C.
2. You are given an unknown material whose boiling point at

atmospheric pressure is 50.0°F. You are also given the following
property values at this pressure and temperature: Sf = 0.310 Btu/
(lbm ·R), sg = 1.76 Btu/(lbm ·R), and hg = 940. Btu/lbm.
Calculate the following quantities for this material at this state
(a) hfg, (b) hf, (c) gf, and (d) gg.

3. Using Eq. (11.3), show that

cp =
∂h
∂T

� �
p
= T ∂s

∂T

� �
p

4. Beginning with Eq. (11.1), show that

cv
T

= ∂s
∂T

� �
v
= −

∂2f
∂T2

� �
v

5. Beginning with Eq. (11.3), show that

cp
T

= ∂s
∂T

� �
p
= −

∂2g
∂T2

� �
p

6. Using Eq. (11.1), show that another definition of
thermodynamic pressure is

p = T ∂s
∂v

� �
u

7. Using Eqs. (11.8) and (11.10) and the Gibbs phase equilibrium
conditions, show that

dp
dT

� �
sat

=
sfg
vfg

=
hfg

Tsatvfg

8.* Calculate sfg for water at 100.°C using the Gibbs phase
equilibrium conditions and compare it with the value listed in
the steam tables.

9. Using the hfg data from the steam tables at psat = 14.7, 100.,
200., and 300. psia, calculate the value of sfg at these
temperatures from the Gibb’s phase equilibrium condition and
compare your results with the sfg values listed in the steam
tables.

10. Determine whether or not any of the following are properties
a. dM = 7

3 u3s du+ 1
2 u2s3ds

b. dN = ðh/TÞdT + lnð1/TÞdh
c. X =

Z
½ðp/2Þ ds− ðs/2Þ dp�

d. Y =
Z
ðv dpÞ

11. Beginning with Eq. (11.1) and the condition that s = s(u, v),
show that, for an ideal gas,

∂T
∂v

� �
u
= 0

and thus that T = T(u) or u = u(T ) only.
12. Beginning with Eq. (11.1) and using the appropriate Maxwell

equation, show that

∂u
∂v

� �
T
= T

∂p
∂T

� �
v
− p

13. Using the results of Problem 12, show that it can be further
reduced to

a. ∂u
∂v
� �

T
= T2 ∂ p/Tð Þ

∂T

� 	
v

b. ∂u
∂v
� �

T
= − ∂ p/Tð Þ

∂ 1/Tð Þ
� 	

v

14. Beginning with Eq. (11.3) and using the appropriate Maxwell
equation, show that

∂h
∂p

� �
T
= −T ∂v

∂T

� �
p
+ v

15. Using the results of Problem 14, show that it can be further
reduced to

a. ∂h
∂p

� �
T
= −T2 ∂ v/Tð Þ

∂T

� 	
p

b. ∂h
∂p

� �
T
= ∂ðv/TÞ

∂ð1/TÞ
� 	

p

16. Let the isentropic exponent k for an arbitrary substance be
defined by the process pvk = constant.
a. Show that k = − v/pð Þ ∂p/∂vð Þs:
b. Using Eqs. (11.24) and (11.26) and the classical definition

of an isentropic process (s = constant) along with the
appropriate Maxwell equations, show that part a reduces
to k = –(v/p)(∂p/∂v)T(cp /cv).

c. Show that, for an ideal gas, part b reduces to k = cp/cv.
17. An empirical equation of state has been proposed of the form

pv = RT + pA Tð Þ+ p2B Tð Þ
where A(T) and B(T) are empirically determined functions of
temperature. Beginning with Eq. (11.1) and using the appropriate
Maxwell thermodynamic property equation, show that, for this
material,

∂u
∂p

� �
T
= −T dA

dT
− p B+T dB

dT

� �
18. A simple magnetic substance has the following differential

equation of state:

du = T ds+ μovH .dM

where H is the strength of the applied magnetic field, M is the
magnetization vector, and μo is the magnetic permeability of
free space (a constant). For this substance, show that the
thermodynamic temperature is defined by

T = ∂u
∂s

� �
M

and that the Maxwell equation analogous to Eq. (11.13) is

∂T
∂M

� �
s
=

∂μovH
∂s

� �
M

19. A system involves both reversible expansion work (–∫p dv) and
reversible electrochemical work (∫ϕdq, where ϕ is the voltage and q
is the charge per unit mass). For such a system, its specific enthalpy
is now defined as h = u + pv – ϕq.
a. Find an expression for the differential change in specific

Gibbs free energy, dg, in terms of p, v, s, T, ϕ, and q.
b. Find the Maxwell equation (∂q/∂T)p,ϕ = ?
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Problems 401

20.* Estimate hfg for water at 10.0°C using Eq. (11.17) and compare
your answer with the steam table value.

21.* Estimate vfg for water at 10.0°C using Eq. (11.17) and compare
your answer with the steam table value.

22.* Using the triple point of water (0.0100°C, 611.3 Pa) as a reference
state, estimate the saturation pressure of ice in equilibrium with
water vapor at −20.0°C if hig = 2834.8 kJ/kg is a constant over this
range.

23.* If saturated solid ice at –10.0°C is subjected to an isothermal
compression process to 200. MPa, will it melt? Use the triple
point (0.0100°C, 611.3 Pa) as the reference state, where hif =
−333.41 kJ/kg and vif = 9.08 × 10–5 m3/kg. Sketch this process on
a p-T diagram.

24. At very low pressures, a substance has a saturation curve given
by psat = exp(A1 – A2/Tsat), where A1 and A2 are constants. Show
that hfg is constant for this substance.

25. At very low pressures, the saturation curve for a particular
substance is given by psat = exp[A1 + A2/Tsat + A3(ln Tsat)], where
A1, A2, and A3 are constants. Show that hfg varies linearly with
Tsat for this substance.

26. Using Eq. (11.22),
a. Show that the Joule-Thomson coefficient defined by

Eq. (6.25) can be written as

μJ = ∂T/∂pð Þh = T ∂v/∂Tð Þp − v
h i

/cp

b. Use this result to evaluate the Joule-Thomson coefficient for
an ideal gas.

27. Assuming s = s(T, p) for a simple substance, derive Eqs. (11.26)
and (11.27) of this chapter.

28. The following equation of state has been proposed for a gas

pv = RT +A/T −B/T2

where A and B are constants. Beginning with this equation,
develop equations based on the measurable properties p, v, and T
for the property changes u – uo, h – ho, and s – so, where uo, ho, and
so are reference state properties at po, vo, and To.

29. Develop an equation based on measurable properties p, v, and
T for the property changes u2 – u1, h2 – h1, and s2 – sl of a van
der Waals gas with constant specific heats. The van der Waals
equation of state, Eq. (3.44), can be written as p = RT/(v – b) –
a/v2, where a and b are constants.

30. Develop equations based on measurable properties p, v, and T
for the isothermal property changes (u2 – u1)T, (h2 – h1)T, and
(s2 – s1)T of a Dieterici gas (see Eq. (3.45)).

31. Develop equations based on measurable properties p, v, and T
for the isothermal property changes (u2 – u1)T, (h2 – h1)T, and
(s2 – s1)T of a Beattie-Bridgeman gas (see Eq. (3.47)).

32. Develop equations based on measurable properties p, v, and T
for the isothermal property changes (u2 – u1)T, (h2 – h1)T, and
(s2 – s1)T of a Redlich-Kwong gas (see Eq. (3.48)).

33. Determine (∂cv/∂v)T for a Redlich-Kwong gas (see Eq. (3.48))
and integrate this to find the function cv = cv(T, v, vo), where v0
is a reference state specific volume.

34.* Using Eq. (11.30), calculate the difference between cp and cv for
(a) copper at 300°C, (b) mercury at 20°C, (c) glycerin at 20°C.
Use Tables 3.1 and 3.2 for compressibility values. The densities
at 20°C are ρCu = 8954 kg/m3, ρHg = 13,579 kg/m3, and ρglyc =
1264 kg/m3.

35. Determine (∂cv/∂v)T for a van der Waals gas (see Eq. (3.44)).

36. Determine (∂cv/∂v)T for a Beattie-Bridgeman gas (see Eq. (3.47))
and integrate this to find the function cv = cv(T, v, vo), where vo
is a reference state specific volume.

37. Saturated mercury vapor has an equation of state of the form

psat =
RT
v

� �
sat

− T
v2

� �
sat
exp A1 +A2/Tsat +A3 lnTsatð Þ

where A1, A2, and A3 are constants. The constant volume
specific heat cv is also constant for this material. Determine
equations that allow ug, hg, and sg to be calculated relative to a
reference state at po, vo, uo, and so in terms of the measurable
quantities p, v, and T.

38.* A standard spark ignition piston-cylinder automobile engine
has a compression ratio of 8.60 to 1, and the intake air is at
0.100 MPa, 17.0°C. For an isentropic compression process, use
the gas tables (Table C.16b) to determine
a. The work required per unit mass of air compressed.
b. The temperature at the end of the compression stroke.
c. The pressure at the end of the compression stroke.

39. Air enters an isentropic, steady flow, axial compressor at
14.7 psia and 60.0°F and exits at 197 psia. Determine the
exhaust temperature and the input power per unit mass flow
rate. Use Table C.16a in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics in your solution.

40.* An engineer claims to have designed an uninsulated diffuser that
expands 3.00 kg/s of air from 1.00 MPa, 37.0°C to 0.100 MPa,
17.0°C. The inlet and exit air velocities are 80.0 and 5.00 m/s,
respectively. Use the gas tables (Table C.16b) to determine the
heat transfer rate and entropy production rate for the diffuser, if
the average wall temperature is 27.0°C. Will the diffuser work as
designed?

41.* Determine the final pressure, temperature, and required work
per unit mass when 1.00 m3 of air is isentropically compressed
from 0.150 MPa, 300. K to 0.100 m3 using
a. Constant specific heat ideal gas equations.
b. The gas tables for air (Table C.16b).

42.* An insulated axial flow air compressor for a gas turbine engine
is being tested in a laboratory. The inlet conditions are 0.090
MPa and −3.00°C, and the outlet is at 0.286 MPa and 217°C.
Use the gas tables to determine the ratio of the power input for
an isentropic process to the actual adiabatic power input. This
ratio is defined to be the compressor’s isentropic efficiency.

43.* An insulated air compressor with an isentropic efficiency of
78.0% compresses air from 0.100 MPa, 290. K to 10.0 MPa. Use
the gas tables to determine the power required per unit mass
flow rate and the exit air temperature.

44. Use the gas tables (Table C.16a) to determine the final
temperature and the minimum possible power required to
compress 3.00 lbm/s of air from 14.7 psia, 40.0°F to 10.0 atm. in
a steady flow, adiabatic process.

45.* Air is compressed in an adiabatic, steady flow process from
0.081 MPa, 400. K, to 2.50 MPa with an isentropic efficiency of
85.0%. Use the gas tables to determine
a. The power required per unit mass flow rate.
b. The actual inlet temperature.
c. The entropy production rate per unit mass flow rate.

46.* An uninsulated piston-type air compressor operates in a steady
flow process from 0.100 MPa, 300. K to 2.00 MPa, 540. K. Use
the gas tables to determine per unit mass flow rate,
a. The power required.
b. The heat transfer rate.



when the entropy production rate per unit mass flow rate is
0.538 kJ/(kg ·K) and the mean cylinder external wall
temperature is 432 K.

47. An inventor claims that 700. ft · lbf was used to compress
0.450 lbm of air isothermally in a closed piston-cylinder
apparatus from 14.7 psia, 70.0°F to 2000. psia. Assuming ideal
gas behavior,
a. Is this process possible?
b. If not, what is the maximum possible compression pressure

that could be reached with this process?
48.* Determine the compressibility factor for methane at 20.0 MPa

and 0.00C.
49.* In 1879, the French physicist Emile Amagat generated

experimental data in a mine shaft at Verpilleux, France, for his
research on the compressibility of gases. There he used a vertical
column of mercury 327 m high to measure the compressibility
of nitrogen at a pressure of 430. atm. Assuming the temperature
at the bottom of the mine shaft was 30.0°C, use the
compressibility charts to determine the value of the
compressibility factor for nitrogen under these conditions.

50.* For air at 20.0°C, there is a unique pressure above pR = 1.00
at which the compressibility factor is the same as that of an
ideal gas. Use the compressibility charts to determine this
pressure.

51.* For air at 20.0°C, use the compressibility charts to determine
the low pressure range in which the compressibility factor of air
differs from that of an ideal gas by no more than 2.00% (i.e.,
1.0 ≤ Z ≤ 0.980). Is it reasonable to assume ideal gas behavior
for air at pressures up to 3.45 MPa (500. psia)?

52. 200. lbm of carbon dioxide is to be put into a rigid 3.00 ft3

tank at 87.5°F. Use the compressibility factor to determine the
final pressure.

53. Determine the ratio of v′c/vc for the following substances:
(a) water vapor, (b) nitrogen, (c) propane, and (d) methane.

54.* Using the generalized charts, determine the sum of the heat
transfer rate and power required to isothermally compress
0.300 kg/s of hydrogen in a steady flow process from 2.00 to
20.0 atm at 50.0 K. Is it possible to carry out this process
adiabatically?

55.* Using the generalized charts, determine the entropy change as
0.730 kg of carbon monoxide is expanded from 35.0 MPa to
0.100 MPa in an isothermal process at 100. K.

56. Compare the specific volumes of water vapor obtained from the
steam tables to those obtained from the compressibility factor
charts (Figures 11.5–11.7) at the following states
a. 14.7 psia, 300.°F.
b. 6000. psia, 1000 °F.
c. 8000. psia, 2000.°F.

57. Compare the values of h2 – h1 and s2 – s1 for water vapor
obtained from (a) the gas tables (Table C.16c) and (b) the
generalized charts (Figures 11.9 and 11.11) with those obtained
from the steam tables for the following conditions: 14.7 psia,
300.°F (state 1) and 6000. psia, 1000.°F (state 2).

58. Use the generalized charts to calculate the heat transfer rate
required to cool 7.00 lbm/s of argon gas from 500.°F, 2000. psia
to 300.°F in a steady flow, constant pressure heat exchanger.
Assume the specific heats of argon are constant over this
temperature range.

59. Methane is throttled adiabatically with negligible velocity
change from 1500. psia, 70.0°F to atmospheric pressure.

Assuming constant specific heats and using the generalized
charts, determine the exit temperature.

60. Carbon dioxide is throttled adiabatically with negligible velocity
change from 2500. psia, 800. R to atmospheric pressure. Use
the generalized charts to determine the exit temperature by
a. Assuming constant specific heats.
b. Using the gas tables (Table C.16c).

61.* Helium in an external storage tank on a spacecraft is expanded
through an isentropic attitude control nozzle with a negligible
inlet velocity from 2.00 MPa, 10.0 K to 0.0100 MPa. Assuming
constant specific heats and using the generalized charts,
determine the exit temperature and velocity.

62.* Sulfur dioxide with a negligible inlet velocity is expanded
through an isentropic nozzle from 20.0 MPa, 500. K to 0.200
MPa in a chemical processing unit. Assuming constant specific
heats and using the generalized charts, determine the exit
temperature and velocity.

63. Hydrogen is cooled in an isobaric heat exchanger from 5000. to
527 R at 20.0 psia. The heat transfer occurs across an
isothermal wall at 500. R inside the heat exchanger. Use the
generalized charts to determine the hydrogen’s heat transfer
and entropy production rates per unit mass flow rate.

64. Use the generalized charts to determine the changes in specific
enthalpy and specific entropy of nitrogen as it undergoes an
isobaric cooling process from 2000. to 1000. R at 14.7 psia
assuming
a. Constant specific heats.
b. Temperature dependent specific heats.
c. Compute the percentage difference between the results of

parts a and b.
65.* According to Dalton’s law of partial pressures, the partial

pressure exerted by the water vapor in a mixture of air and water
vapor is equal to the pressure the water vapor would exert if it
alone occupied the total volume of the mixture. If 1.00 m3 of
humid air at 20.0°C contains 10.3 g of water vapor, determine
a. The partial pressure of the water vapor.
b. The maximum partial pressure of water vapor at this

temperature.
c. The ratio of the answer in part a to that of part b (this ratio

is called the relative humidity of the air).
66. Steam is throttled from 100. psia, 500.°F to 14.7 psia in an

isenthalpic process. Determine the change in specific entropy
and the exit temperature of the steam using
a. Ideal gas equations.
b. The steam tables.
c. Compute the percent error in assuming ideal gas behavior.

67.* In the warp drive system of an intergalactic spacecraft, 13.0 kg/s
of water vapor is reversibly and isothermally expanded from
500. to 125 Pa at 100.°C. Determine the heat transfer rate and
the power produced. Assume ideal gas behavior.

68. Water vapor is heated from 300. to 400.°F in a steady flow
isobaric process. Determine the percent error in calculating the
heat transfer rate per unit mass flow rate by using the ideal gas
equations for system pressures of (a) 20.0 psia, (b) 2.00 psia,
and (c) 0.200 psia.

69.* Saturated water vapor at 10.0 kPa is expanded reversibly and
isentropically in a steady flow process in a doorknob heat treating
plant to 5.00 kPa. Determine the final temperature, the heat
transfer rate, and the power produced per unit mass flow rate.
Assume the steam is an ideal gas.
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Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary thermal design as indicated. A detailed design
with working drawings is not expected unless otherwise specified.
These problems do not have specific answers, so each student’s
design is unique.

70. Design a system to liquefy nitrogen by repeatedly expanding it
until it reaches the saturation temperature. (Hint: Consult your
library about the Linde gas liquefaction process.)

71. Design a system to cut ice into various two-dimensional shapes
using localized pressure to produce a phase change and thus
locally “melting” out the desired shape. (Suggestion: Try a high-
pressure “cookie-cutter” technique.)

72.* Design a fire extinguisher system that expands liquid carbon
dioxide under a suitable pressure at ambient temperature
(which can vary by ±50.0°C) and produce a fine spray of solid
carbon dioxide particles at high velocity and low temperature.

73. Design a 3.00 ft3 cylindrical tank that safely contains oxygen gas
at 2500. psia under ambient temperature conditions (which can
vary by ±100.°F). (Suggestion: Consult the ASME Pressure
Vessel Design Codes in your library.)

74.* Design an experiment that illustrates and accurately measures
the difference in p-v-T behavior between water vapor and a
suitable ideal gas (such as air) over the temperature range from
0.00 to 150.°C.

Computer Problems
The following computer assignments are designed to be carried out
on a personal computer using a spreadsheet or equation solver. They
may be used as part of a weekly homework assignment.

75.* Develop a computer program, spreadsheet, equation solver, or
the like to determine the percent error in the pressure predicted
by the van der Waals equation of state for water along the T =
500°C isotherm, p = RT/(v – b) – a/v2. Use Table C.3b or other
appropriate tables for the actual values of p for various values of
v at T = 500.°C. The van der Waals coefficients for water vapor
can be found in Table C.15b.

76.* Develop a computer program, spreadsheet, equation solver, or
the like to determine the percent error in the pressure predicted
by the Beattie-Bridgeman equation of state for water along the
T = 500.°C isotherm, p = [(1 – ε)(v + B)RT – A]/v2, where
A = Ao(1 – a/v), B = Bo(1 – b/v), and ε = c/(vT3). Use Table C.3b
or other appropriate tables for the actual values of p for various
values of v at T = 500.°C. The Beattie-Bridgeman coefficients for
water vapor can be found in Table C.15b.

77.* Develop a computer program, spreadsheet, equation solver, or the
like to determine the percent error in the pressure predicted by the
Redlich-Kwong equation of state for water along the T = 500.°C
isotherm, p = RT/(v – b) – a/[v (v + b)T1/2]. Use Table C.3b or other
appropriate tables for the actual values of p for various values of v
at T = 500.°C. The Redlich-Kwong coefficients for water vapor can
be found in Table C.15b.

78. Plot a minimum of 100 points along the T = 500. R isotherm
on p-v coordinates for air using
a. The ideal gas equation of state.
b. The Clausius equation of state (use the van der Waals value

for b).

79. Plot a minimum of 100 points along the T = 500. R isotherm
on p-v coordinates for hydrogen using
a. The ideal gas equation of state.
b. The van der Waals equation of state.

80. Plot a minimum of 100 points along the T = 500. R isotherm
on p-v coordinates for methane using
a. The ideal gas equation of state.
b. The Beattie-Bridgeman equation of state.

81. Using the steam tables as a guide, find the regions on a Mollier
diagram or a p-v diagram where the ideal gas equations with
constant specific heats are accurate to within ±1.00% for
a. Specific volume v.
b. Enthalpy h.
c. Entropy s.

82. Expand Problem 81 by adding temperature-dependent ideal gas
specific heats.

83. Expand Problem 81 by using the van der Waals equation of
state in place of the ideal gas equation of state.

84. Develop an interactive computer program for ammonia using
the Beattie-Bridgeman equation of state to produce the
following results from responses to appropriate screen prompts:
a. Output p when v and T are input.
b. Output T when p and v are input.
c. Output v when p and T are input.

85. Develop an interactive computer program that replaces the gas
tables Tables C.16a and C.16b. Do this in two steps:
a. First have the program return u, h, ϕ, pr, and vr when T is

input by assuming constant specific heats.
b. Modify the program developed in step a to include the

temperature-dependent specific heats given in Table C.14
in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics.

86.* The purpose of this assignment is to investigate the accuracy of
several historically important p-T relations for saturated water
vapor. Using the tables in the tables book or some other source
for accurate saturation p-T data, calculate, tabulate, and plot the
percent error in saturation pressure for each of the following
cases using % error = (CP – TP)/TP, where CP is the calculated
saturation pressure and TP is the saturation pressure found in
the steam tables.
a. By 1847, Henri Regnault had developed an equation from

his experimental psat – Tsat results for saturated steam. It was
valid in the range of −33.0 to 232°C and had the form

log10 psat = A−BDn −CEn

where psat is in mm Hg and

A = 6:2640348 log10 D = 9:994049292−10

log10B = 0:1397743 log10 E = 9:998343862−10

log10C = 0:6924351 n = Tsat + 20:0°C

Make your % error calculations every 20.0°C between 20.0
and 220.°C.

b. In 1849 Williams Rankine fit his own equation to
Regnault’s data and came up with the following relation:

log10 psat = A−B/Tsat −C/T2
sat

where psat is in psia and Tsat = Tsat(in °F) + 461.2 (–461.2°F
was Rankine’s best estimate of absolute zero), and

A = 6:1007 log10 B = 3:43642 log10 C = 5:59873
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Make your percent error calculations here at 20.0°F intervals
between 40.0 and 700.°F.

c. By 1899, very careful psat – Tsat measurements had been
made, and K. Thiesen curve fit these data to the following
equation:

ðTsat+459:6Þlog10 psat = 5:409ðTsat−212Þ
−ð8:71×10−10Þ 689−Tsatð Þ4− 477ð Þ4� 


where psat is in atmospheres and Tsat is in °F. Make your
percent error calculations here at intervals of 20.0°F between
20.0 and 700.°F.

d. By 1915, G. A. Goodenough had developed the following
more complex equation, which he claimed fit steam quite
well over the entire range from 32.0°F to the critical point
(705°F).

log10 psat = A−B/Tsat −Clog10 Tsat −DTsat +ET2
sat − F

where F = 0.0002{10 – 10[(Tsat – 829.6)/100]2 +
[(Tsat – 829.6)/100]4}. Here, psat is in psia, Tsat is in R,
and

A = 10:5688080 log10 D = 7:6088020− 10
log10 B = 3:6881209 log10 E = 4:1463000−10

C = 0:0155

Make your percent error calculations at any convenient
temperature interval between 32.0 and 705°F. Note: The use
of base 10 logarithms in these equations is the way these
equations were originally written, and it has been continued
here for historical accuracy.

87.* Equations (11.31) for mercury are given by
1. ln psat = 23.6321− 7042.6208/Tsat− 0.1207 (ln Tsat)

− 58,060.290/T 2
sat.

2. p = RT/v− (T/v 2) exp[10.3338− 312.0954/T− 2.0795
(ln T)].

3. vf = [12,813.6070− 2.4531(Tsat− 600)−0.000267(Tsat− 600)2]−1.
4. cv° = 62.168 J/(kg ·K) = constant.
where p and psat are in Pa, T and Tsat are in K, and v and vf
are in m3/kg, and R = 41.4453 J/(kg ·K). Develop a
computer spreadsheet that returns v, u, h, and s values when
p and T are input. Make sure your program checks to see
what region (saturated or superheated) your input data are
in. For Tsat = 750. K, you should get hfg = 291 kJ/kg and sfg =
0.388 kJ/kg. These values are independent of your reference
state values. Note: More ambitious programs can now be
produced by adding subroutines that return the remaining
properties when any pair of independent properties (T-s, p-h,
etc.) are input.
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CHAPTER 12

Mixtures of Gases and Vapors
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12.1 WPROWADZENIE (INTRODUCTION)
In this chapter, we deal with the problem of generating thermodynamic properties for homogenous mixtures of
gases and vapors that are not involved in chemical reactions. Properties of chemically reacting mixtures are
discussed in detail in Chapter 15.

We can define the composition of any mixture based on how we physically create the mixture. For example, we
can create a mixture by combining measured masses (or weights) of things or by combining measured volumes of
things. The items or things that make up the mixture are called the components of the mixture, and knowing
how much of each one is present defines the composition of the mixture.

This all seems very simple, so why do we need to dwell on it here? First of all, there are two ways to measure
mass, the regular mass (lbm or kg) and the molar mass (lbmole or kgmole), and a composition based on the
regular mass is not the same as a composition based on the molar mass. Second, since the conservation of mass
law tells us that the total mass of the mixture is simply the sum of the masses of all the components in the
mixture, is the total volume of the mixture the same as the sum of the volumes of all the components in the
mixture? Well, that depends. If the components are immiscible, then the total volume is the sum of the indivi-
dual component volumes. But gases and vapors are not immiscible, so how do the component volumes affect
the total volume?

So, whereas the basic definitions of mixture composition for insoluble solids and liquids seems very easy, the
practicality of implementing these definitions for mixtures of soluble gases and vapors is not so easy. However,
the mixture composition is not really our primary goal. Our primary goal is to be able to determine the thermodynamic
properties of a mixture so that we can apply the first and second laws to an engineering system containing a mixture. Are
mixture thermodynamic properties just the sum of the thermodynamic properties of their components? No! With
the exception of mass, the extensive thermodynamic properties (e.g., mixture total volume Vm, mixture total
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internal energy Um, mixture total enthalpy Hm, and mixture total entropy Sm) of a mixture are not generally equal
to the sum of the extensive thermodynamic properties of the components. It turns out that the value of any
thermodynamic property of a mixture is just the mass weighted sum of the partial specific properties of the mixture’s
components. Therefore, to determine the numeric value of a thermodynamic property of a mixture we need to
know (a) the exact composition of the mixture and (b) the values of the partial specific properties of all the
components in the mixture. This is what the first half of this chapter is all about.

The second half of this chapter deals with the application of this material to a very special mixture of gases and
vapors, air and water vapor (atmospheric air). This is normally the domain of heating, ventilating, and air condi-
tioning (HVAC) engineers, but since the atmosphere affects all of us in our daily life, it provides a good textbook
application of gas and vapor mixture theory. The basic elements of HVAC involve applying the first and second
laws to systems designed to cool and dehumidify or heat and humidify atmospheric and building air. To carry out
this analysis we need the numerical values for specific internal energy, specific enthalpy, and specific entropy for
various mixtures of air and water vapor. Since atmospheric air is a fairly complex mixture, it is more convenient to
refer to industry prepared tables and charts for accurate thermodynamic property values for this mixture.

12.2 THERMODYNAMIC PROPERTIES OF GAS MIXTURES
Unfortunately, there is no single measure of mixture composition. A mixture composition often is given simply in
percent, but the percent is calculated on a mass (or weight) basis,1 a molar basis, a volume basis, or a pressure
basis; and the numerical values depend on which basis is used in the calculation. This ambiguity leads us to define
four composition percentages or fraction measures for mixtures of gases.

Consider a homogeneous mixture made up of N distinct gases, each of which has a unique molecular mass, Mi. Let
the mass of each gas present in the mixture be mi. Then the mass balance gives the total mass of the mixture mm as

mm = m1 +m2 + � � �+mN =∑
N

i=1

mi (12.1)

The corresponding number of moles ni of gas i with molecular mass Mi can be determined from Eq. (1.9) as

ni = mi/Mi (1.12)

and because the mole unit is just another measure of mass, the total number of moles of mixture nm is simply

nm = n1 + n2 + � � �+ nN =∑
N

i=1

ni (12.2)

With these two mass measures, we can define two different mass-based composition measures or fractions as

The mass fraction wi of chemical species i in the mixture is

wi =
mi
mm

(12.3)

and

The mole fraction χi of chemical species i in the mixture is

χi =
ni
nm

(12.4)

CRITICAL THINKING

Whereas the volumes of insoluble solids and liquids seem easily defined, because their molecules do not intermingle, the
same is not true for gases and vapors, where their molecules do intermingle. But, what happens when you mix two soluble
liquids? Is the mixture volume in this case just the sum of the volumes of the mixture components before they were
mixed? Can you find an example of soluble liquids where the final mixture volume is not equal to the sum of their
premixed component volumes?

1 This is also called a gravimetric basis.
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With the exception of system mass, the extensive properties of a system are not generally conserved in any
thermodynamic process, so that their mixture values are not normally equal to the sum of their constituent
values. The changes in extensive or intensive properties of a mixture with composition must always be deter-
mined experimentally. However, the extensive properties of gases are mathematically homogeneous functions
of the first degree in mass.2 For example, the total volume Vm of a homogeneous mixture of gases can be
written as a function of the mixture total pressure pm, mixture temperature Tm, and the mass composition of
the mixture m1, m2, … , mN as

Vm = Vm pm, Tm,m1,… ,mNð Þ

and, when the mixture pressure and temperature are held constant, this is a homogeneous function of the
first degree in the masses mi. This means that, if all the remaining variables (the mi) are multiplied by an
arbitrary constant λ, then the mixture volume also is multiplied by λ, or

λVm = Vmðpm, Tm, λm1,… , λmNÞ

where λ is an arbitrary variable. Differentiating this equation with respect to λ while holding the pressure and
temperature constant and setting λ = 1 gives

Vmj pm ,Tm = ∂Vm

∂m1

� �
m1 + � � �+ ∂Vm

∂mN

� �
mN =∑

N

i=1
miv̂i (12.5)

where

v̂i =
∂Vm

∂mi

� �
pm,Tm ,mj

(12.6)

here v̂i is defined to be the partial specific volume of gas i in the mixture and Vi = miv̂i = niv̂i is the partial
volume of gas i in the mixture.3 Equation (12.5) leads us to a third common composition measure, the
volume fraction:

The volume fraction ψ i of gas i in a mixture of gases is

ψ i =
Vi

Vm
(12.7)

Even though pressure is not an extensive property, the implicit function theorem from calculus tells us that, if
∂Vm/∂pm ≠ 0 in Eq. (12.5), we can write the total pressure pm of a homogenous mixture of N gases as a function
of the mixture volume Vm, mixture temperature Tm, and the mass composition of the mixture m1, m2,… , mN as

pm = pmðVm, Tm,m1,m2, : : : ,mNÞ
and, when the total volume and temperature of the mixture are constant, this too is a homogenous function of
the first degree in the masses mi. Following the development of Eq. (12.5), we can write

pm =∑mi
∂pm
∂mi

� �
Vm,Tm ,mj

=∑
N

i=1

mip̂i =∑pi = p1 + p2 + � � �+ pN (12.8)

where p̂i = ∂pm/∂pið ÞVm,Tm,mj is the partial specific pressure of gas i in the mixture and pi = mi ∂pm/∂pið ÞVm,Tm ,mj is the
partial pressure of gas i in the mixture. Equation (12.8) provides our fourth common composition measure,
the pressure fraction:

The pressure fraction πi of gas i in a mixture of gases is

πi =
pi
pm

(12.9)

2 See, for example, Kestin, J., 1979. A Course in Thermodynamics. Hemisphere Publishing Corporation, McGraw-Hill Book Company,
New York, vol. 1, pp. 326–327.
3 The concept of “partial properties” was introduced by Lewis, G. N., 1907. A new system of thermodynamic chemistry, in Proceedings
of the American Academy, 43, p. 273.
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Table 12.1 summarizes the four composition measures thus far defined.

Dividing both sides of Eq. (12.5) by the mixture mass mm produces the specific volume of the mixture as

vm = Vm

mm
=∑

N

i=1

mi

mm
v̂i =∑wiv̂i

where wi is the mass fraction mi/mm. The concepts of total, specific, and partial specific properties can
be extended to other extensive properties, as shown in Table 12.2. On a molar basis, total, molar specific, and
partial molar specific properties are defined in Table 12.3.

Finally, the constant volume and constant pressure specific heats for the mixture are defined as

cvm = ∂um
∂Tm

� �
vm

and cpm = ∂hm
∂Tm

� �
vm

These specific heats can also be written on a molar basis and in terms of the partial specific heats of the component
gases, as shown in Table 12.4.

The mass, mole, volume, and pressure composition fractions have the characteristic that they always sum to
unity; that is,

∑
N

i=1

wi =∑
N

i=1

χi =∑
N

i=1

Ψ i =∑
N

i=1

πi = 1:0 (12.10)

Table 12.1 Four Composition Measures

Name of Composition Fraction Defining Equation

Mass fraction wi wi = mi/mm

Mole fraction χi χi = ni/nm
Volume fraction ψi ψ i = �Vi/�Vm
Partial pressure fraction πi πi = pi/pm

Table 12.2 Total, Specific, and Partial Specific Properties of a Mixture of Gases

Total Property of the Mixture Specific Property of the Mixture
Partial Specific Property
of Gas i in the Mixture

Vm =∑
N

i=1

miv̂i vm = Vm/mm =∑
N

i=1

mi
mm

v̂i =∑
N

i=1

wiv̂i
v̂i =

∂Vm
∂mi

� �
pm ,Tm ,mj

Um =∑
N

i=1

miûi um = Um/mm =∑
N

i=1

mi
mm

ûi =∑
N

i=1

wiûi
ûi =

∂Um
∂mi

� �
pm ,Tm ,mj

Hm =∑
N

i=1

miĥi hm = Hm/mm =∑
N

i=1

mi
mm

ĥi =∑
N

i=1

wiĥi
ĥi =

∂Hm
∂mi

� �
pm ,Tm ,mj

Sm =∑
N

i=1

miŝi sm = Sm/mm =∑
N

i=1

mi
mm

ŝi =∑
N

i=1

wiŝi
ŝi =

∂Sm
∂mi

� �
pm ,Tm ,mj

CRITICAL THINKING

Is it possible to define a partial temperature of gas i in a mixture of N gases? Since the mixture temperature varies inversely
with the system mass in most equations of state for gases, is temperature a homogeneous function of the first degree in the
masses mi? Could the partial temperature of gas i in the mixture be the temperature exhibited by gas i when it alone occu-
pies the volume of the mixture Vm at the pressure of the mixture pm? (See Problem 67 at the end of this chapter.)
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therefore, when either wi, χi, ψi, or πi is multiplied by 100, it represents the composition percentage of gas
i present on a mass, molar, volume, or pressure basis, respectively. Note, however, that wi and χi do not have
the same numerical values; therefore, a mass based percentage analysis of the composition depends on which fractional
base is used in its determination.

If we consider the mixture to be a unique substance, then we can compute its equivalent molecular mass Mm from
Eqs. (12.1), (1.9), and (12.4) as

Mm = mm
nm

= 1
nm

∑
N

i=1

mi

 !
=∑

N

i=1

niMi
nm

=∑
N

i=1

χiMi (12.11)

and using Eqs. (12.2), (1.9), and (12.3) as

Mm = mm
nm

= mm

∑
N

i=1

mi

Mi

 ! = 1

∑
N

i=1

mi/mmð Þ
Mi

 ! = 1

∑
N

i=1

wi

Mi

 ! (12.12)

Using Eqs. (12.11) and (12.12), we can now easily convert back and forth between mass and mole
fractions with

wi =
mi

mm
= niMi

nmMm
= χi

Mi

Mm

� �
(12.13)

Table 12.3 Total, Molar Specific, and Partial Molar Specific Properties
of a Mixture of Gases

Total Property
of the Mixture

Molar Specific Property
of the Mixture

Partial Molar Specific Property
of Gas i in the Mixture

Vm =∑
N

i=1

niv̂i vm = Vm/nm =∑
N

i=1

ni
nm
v̂i =∑

N

i=1

χi v̂i
v̂i =

∂Vm
∂ni

� �
pm ,Tm ,nj

Um =∑
N

i=1

niûi um = Um/nm =∑
N

i=1

ni
nm
ûi =∑

N

i=1

χi ûi
ûi =

∂Um
∂ni

� �
pm ,Tm ,nj

Hm =∑
N

i=1

niĥi hm = Hm/nm =∑
N

i=1

ni
nm

ĥi =∑
N

i=1

χiĥi
ĥi =

∂Hm
∂ni

� �
pm ,Tm ,nj

Sm =∑
N

i=1

niŝi sm = Sm/nm =∑
N

i=1

ni
nm
ŝi =∑

N

i=1

χi ŝi
ŝi =

∂Sm
∂ni

� �
pm ,Tm ,nj

Table 12.4 Specific Heats of a Mixture and the Partial Specific Heats
of the Gases in the Mixture

Specific Heat of the Mixture Partial Specific Heat of Gas i in the Mixture

cvm = ∂um
∂Tm

� �
vm

=∑
N

i=1

wiĉvi
ĉvi =

∂ûi
∂Tm

� �
vm

cpm = ∂hm
∂Tm

� �
vm

=∑
N

i=1

wiĉpi
ĉpi =

∂ĥi
∂Tm

� �
pm

cvm = ∂um
∂Tm

� �
vm

=∑
N

i=1

χi ĉvi
ĉvi =

∂ûi
∂Tm

� �
vm

cpm = ∂hm
∂Tm

� �
vm

=∑
N

i=1

χi ĉpi ĉpi =
∂ĥi
∂Tm

 !
vm
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and

χi =
ni
nm

= wi
Mm

Mi

� �
(12.14)

Last, if the mixture is a gas or a vapor, we can determine its equivalent gas constant Rm from the universal gas
constant ℜ = 8:313 kJ/ kgmole .Kð Þ = 1545:35 ft . lbf/ lbm .Rð Þ and Eq. (12.11) or (12.12) as

Rm = ℜ
Mm

(12.15)

At this point, we have developed general formulae for determining the values of thermodynamic properties and
other important characteristics of mixtures of substances in their solid, liquid, vapor, or gaseous states. Before we
can continue further, we need to know how these mixture thermodynamic properties are related to each other.
Since the number of possible mixture compositions is infinite, the construction of thermodynamic tables or charts
for all possible mixtures is impractical except for very common mixtures, such as pure air and air–water vapor
mixtures.

EXAMPLE 12.1
A new gas furnace requires a mixture of 50.0% propane and 50.0% air on a mass basis. Determine (a) the equivalent mole-
cular mass of the mixture, (b) the mixture composition on a molar basis, and (c) the equivalent gas constant of the mixture.

Solution
a. The mixture composition on a mass basis is wpropane = 0.500, and wair = 0.500. The molecular masses of the components

are found in Table C.13 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics as

Mpropane = 44:09 kg/kgmole and Mair = 28:97 kg/kgmole

Then, the equivalent molecular mass of the mixture is given by Eq. (12.12) as

Mm = 1

∑
N

i=1

wi

Mi

= 1
0:500
44:09

+ 0:500
28:97

= 35:0
kg

kgmole

b. The equivalent molar values are given by Eq. (12.14) as

χ i =
ni
nm

= wi
Mm

Mi

� �
and this is used as follows:

χpropane = wpropane
Mm

Mpropane

� �
= 0:500

35:0 kg/kgmole
44:1 kg/kgmole

� �
= 0:397

and the remaining component is

χair = wair
Mm

Mair

� �
= 0:500

35:0 kg/kgmole
28:97 kg/kgmole

� �
= 0:603

so that the composition is 50.0% propane and 50.0% air on a mass basis, but it is 39.7% propane and 60.3% air
on a molar basis. (Note that, once we knew the propane molar concentration, we could have determined the air
molar concentration through Eq. (12.10), since wpropane +wair = 1.0 and χpropane + χair = 1.0, so χair = 1.0 − χpropane =
1.0 − 0.397 = 0.603.)

c. The equivalent gas constant for this mixture is given by Eq. (12.15) as

Rm = ℜ
Mm

=
8:3143 kJ/kgmole .K
34:97 kg/kgmole

= 0:238 kJ
kg .K

The following example is slightly more complicated than Example 12.1, because it deals with a mixture contain-
ing four components. The solution method, however, is the same as in Example 12.1.
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EXAMPLE 12.2
The molar composition of air that is normally used to determine the thermodynamic properties of air at standard tem-
perature and pressure is

Determine (a) the equivalent molecular mass, (b) the gas constant for this mixture, and (c) the composition of air on a
mass (or weight) basis.

Solution
a. Since we are given the molar composition for air, we can find its equivalent molecular weight from Eq. (12.11).

Assuming that argon and carbon dioxide are the only minor components present, Table C.13 provides the necessary
molecular masses as

Mnitrogen = 28:02 kg=kgmole

Moxygen = 32:00 kg=kgmole

Margon = 39:94 kg=kgmole

Mcarbondioxide = 44:01 kg=kgmole

Then, Eq. (12.11) gives

Mair =∑
4

i=1

χiMi = χN2
MN2 + χO2

MO2 + χArMAr + χCO2
MCO2

= 0:7809ð28:02 kg=kgmoleÞ+0:2095ð32:00 kg=kgmoleÞ
+ 0:00930ð39:94 kg=kgmoleÞ+ 0:000300ð44:10 kg=kgmoleÞ

= 28:97 kg=kgmole

b. Equation (12.15) gives the gas constant of this mixture as

Rair =
ℜ
Mair

=
8:3143 kJ=ðkgmole .KÞ

28:97 kg=kgmole
= 0:287 kJ

kg .K

which agrees with the values given in Table C.13b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics.
c. Equation (12.13) can be used to determine the corresponding mass or weight fraction composition as

wN2 = χN2

MN2

Mair

� �
= 0:7809

28:02 kg=kgmole
28:97 kg=kgmole

� �
= 0:7553 = 75:53%bymass

wO2 = χO2

MO2

Mair

� �
= 0:2095

32:00 kg=kgmole
28:97 kg=kgmole

� �
= 0:2314 = 23:14%bymass

wAr = χAr
MAr

Mair

� �
= 0:00930

39:94 kg=kgmole
28:97 kg=kgmole

� �
= 0:0128 = 1:28%bymass

wCO2 = χCO2

MCO2

Mair

� �
= 0:000300

44:01 kg=kgmole
28:97 kg=kgmole

� �
= 0:00046 = 0:0456%bymass

Note the difference between the mass and mole fraction composition values.

Exercises
1. Research has suddenly discovered that the composition given in Example 12.1 was wrong. It should have been 30.0%

propane and 70.0% air on a mass basis. Determine the proper molar basis composition for this new mixture.
Answer: χpropane = 0.220 and χair = 0.780.

(Continued )

Component Molar %

Nitrogen 78.09

Oxygen 20.95

Argon 0.930

CO2 and trace gases 0.0300

Total 100.00%
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EXAMPLE 12.2 (Continued )

2. Oops, Research discovered still another error; it turns out that the composition given in Example 12.1 was correct except
that it is 50.0% propane and 50.0% air on a molar basis. Now , Research wants you to determine the corresponding
mass based composition. Answer: wpropane = 0.603 and wair = 0.397.

3. A more detailed composition for air than that given in Example 12.2 is

Determine the equivalent molecular mass and the corresponding composition on a mass (or weight) basis. Answer:
Mm = 28.97 kg/kgmole = 28.97 lbm/lbmole, and see the table.

12.3 MIXTURES OF IDEAL GASES
A mixture of ideal gases behaves as a unique ideal gas with an equivalent molecular mass Mm and gas
constant Rm given by Eqs. (12.11) or (12.12) and (12.15). Ideal gas mixtures obey all of the ideal gas
equations of state:

pmVm = mmRmTm

um2 − um1 =
Z Tm2

Tm1

cvm dTm

hm2 − hm1 =
Z Tm2

Tm1

cpm dTm

and

sm2 − sm1 =
Z Tm2

Tm1

cvm/Tmð Þ dTm +Rm ln vm2/vm1ð Þ

=
Z Tm2

Tm1

cpm/Tm
� �

dTm −Rm ln pm2/pm1ð Þ

where pm and Tm are the mixture pressure and temperature, respectively. If the mixture can be considered to
have constant specific heats, then these equations reduce to

um2 − um1 = cvm Tm2 − Tm1ð Þ
hm2 − hm1 = cpm Tm2 − Tm1ð Þ
sm2 − sm1 = cvm ln Tm2/Tm1ð Þ+Rm ln vm2/vm1ð Þ

= cpm ln Tm2/Tm1ð Þ−Rm ln pm2/pm1ð Þ
From pmVm = mmRmTm and Eqs. (12.3), (12.12), and (12.15), we find that, for a mixture of ideal gases,

Vm = mmRmTm
pm

= mm
ℜ
Mm

Tm
pm

� �
= mmℜ ∑

N

i=1

wi

Mi

 !
Tm
pm

� �
=

ℜTm
pm

� �
∑
N

i=1

mi

Mi

Component Molar % (Answer: Mass %)

Nitrogen (N2) 78.084 75.519

Oxygen (O2) 20.948 23.143

Argon (Ar) 0.934 1.288

Carbon dioxide (CO2) 0.0314 0.0477

Neon (Ne) 0.00182 0.00127

Helium (He) 0.000520 0.0000720

Methane (CH4) 0.000200 0.000110

Krypton (Kr) 0.000110 0.000320

Hydrogen (H2) 0.0000500 0.00000350

Dinitrogen monoxide (N2O) 0.0000500 0.0000620

Xenon (Xe) 0.00000800 0.0000360

Total = 100.000% 100.000%
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Then, Eq. (12.6) can be used to find

v̂i =
∂Vm

∂mi

� �
pm,Tm ,mj

= ℜ
Mi

� �
Tm
pm

� �
=

RiTm
pm

= vi (12.16)

where vi is the specific volume of gas i at the pressure and temperature of the mixture. Similarly, using the
appropriate equations for the partial specific internal energy ûi, enthalpy ĥi, and entropy ŝi, we can show that,
for a mixture of ideal gases with constant specific heats, the partial specific properties of gas i in the mixture are
the same as the corresponding specific properties; that is,

ûi = cviðTm − T0Þ
ĥi = cpiðTm −T0Þ

and

ŝi = si = cpi lnðTm/T0Þ−Ri lnðpm/p0Þ

where T0 and p0 are arbitrary reference state values.

These relations were also discovered experimentally in the 19th century and are now known as the Gibbs-Dalton
and Amagat laws. In 1801, John Dalton (1766–1844) carried out a series of experiments that led him to con-
clude that the total pressure pm of a mixture of ideal gases was equal to the sum of the partial pressures of the
individual component gases in the mixture, where the partial pressure pi of gas i in a mixture of ideal gases is
the pressure gas i would exert if it alone occupied the volume of the mixture at the temperature of the mixture.
This is known as Dalton’s law of partial pressures, and it can be written as

pm =∑
N

i=1

pi = p1 + p2 + p3 + � � �+ pN (12.17)

where

pi =
miRiTm
Vm

(12.18)

Later, Emile Amagat (1841–1915) discovered experimentally that the total volume Vm of a mixture of ideal
gases was equal to the sum of the partial volumes Vi of the individual component gases in the mixture, where
the partial volume Vi of gas i in a mixture of ideal gases is the volume gas i would occupy if it alone was at
the pressure and temperature of the mixture. This is known as Amagat’s law of partial volumes, and it can be
written as

Vm =∑
N

i=1

Vi = V1 +V2 +V3 + � � �+VN (12.19)

where

Vi =
miRiTm
pm

or vi =
RiTm
pm

� �
(12.20)

WHAT IS DALTON’S LAW OF PARTIAL PRESSURES?

Dalton’s law of partial pressures states that the partial pressure pi of ideal gas i in a mixture of ideal gases is equal to the
pressure gas i would exert if it alone occupied the volume of the mixture at the temperature of the mixture.

WHAT IS AMAGAT’S LAW OF PARTIAL VOLUMES?

Amagat’s law of partial volumes states that the partial volume Vi of ideal gas i in a mixture of ideal gases is equal to the
volume gas i would occupy if it alone was at pressure and temperature of the mixture.
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Finally, the thermodynamic description of a mixture of ideal gases was completed through the work of Josiah
Willard Gibbs (1838–1903), who generalized Dalton’s law to define all the partial properties (except volume) of
the components in the mixture to be equal to the values that those properties would have if each component
gas alone occupied the volume of the mixture at the temperature of the mixture and at the partial pressure of
that component. The Gibbs-Dalton ideal gas mixture law presumes that no molecular interactions take place
between the components of the mixture, because each component is presumed to behave as though the other
components were not present.

Under these conditions, we conclude that all the extensive properties of a mixture of ideal gases are conserved, and the
mixture value of any extensive property can be determined by summing the contributions made by each gas present in the
mixture.

Therefore, for ideal gases only,

Vm =∑
N

i=1

Vi =∑
N

i=1

mivi (12.21)

and the specific volume of this mixture can be calculated from

vm = Vm

mm
=∑

N

i=1

mi

mm
vi =∑

N

i=1

wivi (12.22)

where wi is the mass fraction of ideal gas i in the mixture and vi is the specific volume of that gas determined at
the pressure and temperature of the mixture (i.e., vi = RiTm/pm). Table 12.5 lists the mass and molar equations
for all the total and specific properties of a mixture of ideal gases.

The mass fraction wi, the mole fraction χi, the volume fraction ψi, and the pressure fraction πi make four
composition measures that can be used to describe a mixture. However, for ideal gases, there is a simple
relation between these four quantities. From Eqs. (12.16) and (12.18), we can write the pressure and volume
fractions as

πi =
pi
pm

=
miRiTm/Vm

mmRmTm/Vm
= wiRi

Rm
= wiMm

Mi
= ni

nm
= χi

and

ψ i =
Vi

Vm
=

miRiTm/pm
mmRmTm/pm

=
wiRi

Rm
=

wiMm

Mi
=

ni
nm

= χi

Table 12.5 Mass and Molar Total and Specific Thermodynamic Properties of Ideal
Gas Mixtures

Total Property Mass Specific Property Molar Specific Property

Vm =∑
N

i=1

Vi =∑
N

i=1

mivi vm =∑
N

i=1

wivi vm =∑
N

i=1

χivi

Um =∑
N

i=1

Ui =∑
N

i=1

miui um =∑
N

i=1

wiui um =∑
N

i=1

χ iui

Hm =∑
N

i=1

Hi =∑
N

i=1

mihi hm =∑
N

i=1

wihi hm =∑
N

i=1

χ ihi

Sm =∑
N

i=1

Si =∑
N

i=1

misi sm =∑
N

i=1

wisi sm =∑
N

i=1

χi si

cvm =∑
N

i=1

wicvi cvm =∑
N

i=1

χicvi

cpm =∑
N

i=1

wicpi cpm =∑
N

i=1

χicpi
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Consequently, for a mixture of ideal gases, we have

pi
pm

= πi =
Vi

Vm
= ψ i =

ni
nm

= χ i = wi
Mm

Mi

� �
or

πi = ψ i = χi = wi
Mm

Mi

� �
(12.23)

which relates all four composition measures. Thus, the pressure fraction, volume fraction, and mole fraction are
all equal and differ from the mass fraction by only a molecular mass ratio.

EXAMPLE 12.3
An analysis of the exhaust gas from an experimental engine produces the following results on a molar basis:

Carbon dioxide = 9.51%
Water = 19.01%
Nitrogen = 71.48%

Assuming ideal gas behavior, (a) determine the volume fraction, pressure fraction, and mass fraction composition of the
mixture, and (b) if the total pressure of the mixture is 14.7 psia, determine the partial pressure of the water vapor in the
exhaust gas mixture.

Solution
a. For ideal gas behavior, Eq. (12.23) tells us that the mole fractions, volume fractions, and the pressure fractions are all

the same, or

χCO2
= ψCO2

= πCO2 = 9:51%

χH2O = ψH2O = πH2O = 19:01%

χN2
= ψN2

= πN2 = 71:48%

The equivalent molecular mass of this ideal gas mixture is given by Eq. (12.11) as

Mm =∑
N

i=1

χiMi = χCO2
MCO2 + χH2OMH2O + χN2

MN2

= 0:0951ð44:01 kg/kgmoleÞ+0:1901ð18:02 kg/kgmoleÞ+0:7148ð28:02 kg/kgmoleÞ
= 27:64 kg/kgmole

and the corresponding mass fractions are given by Eq. (12.23) as

wCO2 = ψCO2

MCO2

Mm

� �
= ð9:51%Þ 44:01 kg/kgmole

27:64 kg/kgmole

� �
= 15:14%

wH2O= ψH2O
MH2O

Mm

� �
= ð19:01%Þ 18:02 kg/kgmole

27:64 kg/kgmole

� �
= 12:39%

wN2 = ψN2

MN2

Mm

� �
= ð71:48%Þ 28:02 kg/kgmole

27:64 kg/kgmole

� �
= 72:46%

b. If the total pressure is 14.7 psia, then the partial pressure of the water vapor in the exhaust gas mixture is given by
Eq. (12.23) as

pH2O = pmχH2O = ð14:7psiaÞð0:1901Þ = 2:79 psia

Exercises
4. Find the partial volume of the nitrogen in the exhaust gas in Example 12.3 if the total volume of the gas mixture is

8.00 ft3. Answer: VN2 = 2:14 ft3:
5. If there are 20.0 moles of the exhaust gas mixture in Example 12.3, how many moles of carbon dioxide would be in the

mixture? Answer: nCO2 = 14:3moles:
6. If there is 0.650 lbm of the exhaust gas mixture in Example 12.3, how many lbm of water vapor would be in the

mixture? Answer: mwater vapor = 0.081 lbm.
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EXAMPLE 12.4
Though oxygen is necessary to sustain life, breathing oxygen at elevated pressure has toxic effects. It causes changes in lung
tissue and affects the liver and brain. Acute oxygen poisoning at high pressures can cause convulsions that can lead to death
(even at atmospheric pressure, pure oxygen can be breathed safely for only two hours). Oxygen poisoning at elevated envir-
onmental pressure can be avoided by maintaining the oxygen partial pressure equal to that of atmospheric air at standard
temperature and pressure (STP). Also, since atmospheric nitrogen is very soluble in blood and body tissue, rapid depressuri-
zation causes nitrogen bubbles to form in the blood and tissue (nitrogen embolisms) producing a condition commonly
called the bends.

Divers going to great depths in the sea are able to circumvent this problem somewhat by breathing a compressed helium-
oxygen mixture in which the oxygen partial pressure is adjusted so that it is always equal to its value in atmospheric air at
STP. Helium, being much less soluble in body tissue than nitrogen, decreases the time required for depressurization when
the diver returns to the surface.

The engineering problem that we must solve is stated as follows:

a. For a deep water diver, determine the proper helium-oxygen breathing mixture composition for a dive to 100. m below
the surface of the water, where the pressure is 1.08 MN/m2. Give your answer in mole, volume, and mass fractions.

b. Determine the effective gas constant, the specific heats, and the specific heat ratio for this mixture.

Assume helium and oxygen behave as ideal gases with constant specific heats.

Solution
a. From Example 12.3 and Eq. (12.23), we find that the partial pressure of oxygen in air at STP is

pO2 = χO2
pm = 0:2095 0:1013MN/m2ð Þ

= 0:0212MN/m2

Therefore, at a total pressure in 100. m of water of 1.08 MN/m2, this same partial pressure requires a mole and volume
fraction of oxygen of only

χO2
= ψO2

= πO2 = pO2/pm = 0:0212/1:08 = 0:0196

and, from Eq. (12.10), the helium mole and volume fractions are

χHe = ψHe = 1− χO2
= 1− 0:0196 = 0:980

The equivalent mass fractions are given by Eq. (12.13), where the mixture equivalent molecular mass can be com-
puted from Eq. (12.11), as

Mm = χO2
MO2 + χHeMHe = 0:0196ð32:00Þ+0:980ð4:003Þ = 4:55 kg=kgmole

then,

wO2 = χO2
MO2 /Mmð Þ = 0:0196ð32:00/4:55Þ = 0:138

and

wHe = 1−wO2 = 0:862

Therefore, the required oxygen concentration is only 1.96% on a volume or molar basis, but it is 13.8% on a mass or
weight basis.

b. The mixture equivalent gas constant can be computed from Eq. (12.15) as

Rm = ℜ
Mm

=
8:3143 kJ/ kgmole .Kð Þ

4:55 kg/kgmole
= 1:86 kJ/ðkg .KÞ

and the mixture specific heats can be determined from the equations in Table 12.5 and Table C.13b as

cvm = wO2cvO2 +wHecvHe = 0:138ð0:657Þ+0:862ð3:123Þ = 2:78 kJ=ðkg .KÞ

and

cpm = wO2cpO2 +wHecpHe = 0:138ð0:917Þ+0:862ð5:200Þ = 4:61 kJ=ðkg .KÞ
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Finally, the specific heat ratio of the mixture is

km =
cpm
cvm

= 4:61
2:78

= 1:66

(Note that km ≠ ∑wiki because of its definition as a ratio.)

Exercises
7. Rework Example 12.4 for a dive to 200. m below the surface of the water, where the pressure is 2.063 MN/m2. Answer:

χO2
= 0:0103, χHe = 0.990, Rm = 1.94 kJ/kg ·K, cvm = 2.93 kJ/kg ·K, cpm = 4.87 kJ/kg ·K, and k = 1.66.

8. Rework Example 12.4 for an argon-oxygen mixture subject to the same condition of pO2 = 0:0212MN/m2. Answer:
χO2

= 0:0196, χHe = 0.980, Rm = 0.209 kJ/kg ·K, cvm = 3.08 kJ/kg ·K, cpm = 5.13 kJ/kg ·K, and k = 1.66.

Ideal gas mixture equations are used to produce property values in thermodynamic problems just as though the
mixture is a single unique gas. This is illustrated in the next example.

EXAMPLE 12.5
Determine the power per unit mass flow rate required to isentropically compress the helium-oxygen mixture described in
Example 12.2 from atmospheric pressure (0.101 MN/m2) and 20.0°C to 1.08 MN/m2 in a steady flow, steady state process.
Assume the mixture has constant specific heats.

Solution
The unknown here is the power per unit mass flow rate _W/ _mm. Since this is an open system, the energy rate balance for a
steady state, steady flow, single-inlet, single-outlet system is (neglecting kinetic and potential energy effects)

ERB (SS, SF, SI, SO)

_Q − _W + _mm hm1 − hm2ð Þ = 0

and, since an isentropic process is normally also adiabatic,

_W/ _mm = hm1 − hm2 = cpm Tm1 −Tm2ð Þ
For an ideal gas in an isentropic process, Eq. (7.38) gives

Tm2 = Tm1ðpm2/pm1Þðkm−1Þ/km

and, using the results of Example 12.4, this gives

Tm2 = 20:0+ 273:15Kð Þ 1:08/0:101ð Þ0:66/1:66 = 803K = 530°C

Then,

_W/ _mm = cpm Tm1 −Tm2ð Þ = 4:61 kJ/ðkg .KÞ½ � 293−803Kð Þ = −2350 kJ/kg

Exercises
9. Determine the isentropic power per unit mass flow rate required in Example 12.5 if the inlet temperature is 10.0°C

rather than 20.0°C. Answer: _W/ _mm = −2030 kJ/kg.
10. If the exit pressure in Example 12.5 is increased to 2.06 MN/m2, determine the required isentropic power input per unit

mass flow rate. Answer: _W/ _mm = −3110 kJ/kg.
11. Determine the aergonic (zero work) heat transfer required to cool the compressed mixture in Example 12.5 from 530°C

back to 20.0°C again. Answer: _Q/ _mm = −2350 kJ/kg.

12.4 PSYCHROMETRICS
Psychrometrics is the study of atmospheric air, which is a mixture of pure air and water vapor at atmospheric
pressure.4 The pure air portion of an air–water vapor mixture is commonly called dry air; consequently,
atmospheric air is said to consist of a mixture of dry air and water vapor. Both the air and the water vapor in

4 The term psychrometer is from the Greek psychros (cold) and meter (measure).
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this mixture are treated as ideal gases (even though we say water vapor and not water gas). This particular mixture
of ideal gases is important because of its meteorological and environmental comfort implications.

To begin this discussion, we define two new composition measures for the amount of water vapor present in the
mixture. Both measures are a type of humidity, as is shown.5

1. The relative humidity ϕ is the ratio of the actual partial pressure of the water vapor present in the mixture to
the saturation pressure of the water vapor at the temperature of the mixture, or

Relative humidity = ϕ =
pw
psat

(12.24)

The value of psat can be found in Table C.1 in Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics at the temperature of the mixture. Since 0 ≤ ϕ ≤ 1, the relative humidity is normally reported as a
percentage. This is the common meteorological humidity measure.

2. The humidity ratio ω is the ratio of the mass of water vapor present in the mixture divided by the mass of dry
air present in the mixture, or

Humidity ratioω =
mw

ma
(12.25)

where mm = ma + mw, and pm = pa + pw = atmospheric pressure. Assuming ideal gas behavior for both the
air and water vapor, we can write mw = pwVm/ RwTmð Þ and ma = paVm/ RaTmð Þ, then

ω =
pwRa

paRw
=

pwMw

paMa
=

18:016pw
28:97pa

= 0:622
pw
pa

= 0:622
pw

pm − pw

� 	
(12.26a)

From Eq. (12.24), we find that pw = ϕpsat, and substituting this into Eq. (12.26a)
provides a formula that relates the two humidity measures:

ω = 0:622ϕ
psat
pa

= 0:622
ϕpsat

pm − pw

� 	
(12.26b)

A colorful term from the meteorological profession is the dew point tempera-
ture TDP, which is the temperature at which liquid water (dew) condenses
out of the atmosphere at constant atmospheric pressure (and consequently at
constant water vapor partial pressure):

TDP = Tsat evaluated at pwð Þ (12.27)

If the partial pressure of the water vapor (pw) is known, then the dew point
temperature can be found in Table C.2. Figure 12.1 illustrates these concepts
on a pressure-specific volume schematic.

CRITICAL THINKING

On page 77 of the July/August 1993 issue of Family Handyman magazine, a helpful hint is given on how to determine the
amount of propane remaining a cook stove tank. According to this magazine you just “Pour a cup of hot water over the
outside of the tank. A condensation line will appear on the tank surface at the level of the remaining propane.”

Since the formation of a “condensation line” requires reducing the liquid-vapor interface inside the tank to a temperature
below the dew point temperature, can you explain how this test works? Are there any conditions under which this test
would not work? (Hint: Look at the thermodynamics of the propane’s evaporation and condensation processes that result
from the heating by the hot water and the subsequent cooling by the local atmosphere.)

T pw

ω

Dew point
temperature

isotherm

Atmospheric
temperature

isotherm

FIGURE 12.1
The partial pressure and dew point temperature of
a mixture of water vapor and dry air.

5 Since neither of these two humidity measures corresponds to any of the four composition measures previously discussed, this brings
the number of composition measures used in this chapter to six.
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EXAMPLE 12.6
On a particular day, the weather forecast states that the relative humidity is 56.8% when the atmospheric temperature and
pressure are 25.0°C and 0.101 MPa, respectively. Determine:

a. The partial pressure of the water vapor in the atmosphere.
b. The humidity ratio of the atmosphere.
c. The dew point temperature of the atmosphere.

Solution
a. From Table C.1b, we find that

psat 25:0°Cð Þ = 0:003169MPa

and, from Eq. (12.24), we can calculate the partial pressure of the water vapor present in the mixture as

pw = ϕpsat = 0:568 0:003169MPað Þ = 0:00180MPa = 1:80 kPa

b. From Dalton’s law for partial pressure, we can find the partial pressure of the dry air in the mixture as

pa = pm − pw = 101−1:8 = 99:2kPa

then, Eq. (12.26a) gives the humidity ratio ω as

ω = 0:622 pw/pað Þ = 0:622 1:80/99:2ð Þ = 0:0113 kgH2Oper kg of dry air

Note that, since the value of ω is not constrained to lie between 0 and 1, it is not reported as a percentage.
c. Using Eq. (12.27) and Table C.2b, we find the dew point temperature to be

TDP = Tsat 0:00180MPað Þ = 15:8°C

Exercises
12. If the relative humidity in Example 12.6 is 45.0% rather than 56.8% and all the remaining variables are the same,

determine the new dew point temperature. Answer: TDP = 12.1°C.
13. Suppose the atmospheric temperature in Example 12.6 is 20.0°C rather than 25.0°C and all other variables remain the

same. Determine the humidity ratio of this mixture. Answer: ω = 0.00830 kg H2O per kg of dry air.
14. Rework Example 12.6 for a relative humidity of 35.0%, an atmospheric temperature of 20.0°C, and an atmospheric

pressure of 0.101 MPa. Answer: (a) pw = 0.820 kPa, (b) ω = 5.00 × 10−3 kg H2O per kg of dry air, (c) TDP = 4.00°C.

The steady state, steady flow, isothermal boundary energy and entropy rate balances for a mixture of dry air and
water vapor with negligible flow stream kinetic and potential energies can be written either on an unmixed
component basis as

_Q − _W + _ma h1 − h2ð Þa + _mw h1 − h2ð Þw = 0 (12.28)

and

_Q /Tb + _ma s1 − s2ð Þa + _mw s1 − s2ð Þw + _Sp = 0 (12.29)

or on a premixed mixture basis as

_Q − _W + _mm h1 − h2ð Þm = 0

and

_Q /Tb + _mm s1 − s2ð Þm + _Sp = 0

where the mixture enthalpy and entropy changes are given by

ðh1 − h2Þm = waðh1 − h2Þa +wwðh1 − h2Þw
and

ðs1 − s2Þm = waðs1 − s2Þa +wwðs1 − s2Þw
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In these formulae, ha is found in the gas tables (Table C.16), hw is found in the superheated steam tables, and wa

and ww are the mass fractions of the dry air and water vapor. However, since psychrometrics involves only a two-
component mixture, there is no particular advantage to using the complicated premixed mixture formula. There-
fore, we confine our attention to the simpler unmixed component form illustrated in Eqs. (12.28) and (12.29).

12.5 THE ADIABATIC SATURATOR
Evaporative humidification processes normally occur without external heat transfer and are therefore adiabatic. If
the outlet of an evaporative humidifier is saturated with water vapor (ϕ = 100%), then the device is known as
an adiabatic saturator. A simple adiabatic saturator is shown in Figure 12.2. It consists of an inlet air–water vapor
flow stream at temperature T1, a liquid makeup water flow stream at temperature T2, and an outlet air–water
vapor flow stream. If the unit is insulated and made long enough, the outlet flow stream will be saturated with
water vapor, and the temperature T3 of the outlet flow stream is then called the adiabatic saturation temperature.

Since this device is adiabatic and aergonic, its steady state, steady flow energy rate balance (ERB) reduces to
(neglecting changes in flow stream kinetic and potential energy)

_ma1ha1 + _mw1hw1 + _mw2hw2 − _ma3ha3 − _mw3hw3 = 0

where we have chosen to separate the contributions from the air and water components according to
Eq. (12.28). From the conservation of mass, _ma1 = _ma3 = _ma and _mw2 = _mw3 − _mw1.

Then, the ERB becomes

_maðha1 − ha3Þ+ ð _mw3 − _mw1Þhw2 + _mw1hw1 − _mw3hw3 = 0

or

_maðha1 − ha3Þ+ _mw1ðhw1 − hw2Þ+ _mw3ðhw2 − hw3Þ = 0

Dividing by _ma and introducing the humidity ratios ω1 = _mw1/ _ma and ω3 = _mw3/ _ma, and solving for ω1 gives

ω1 =
ðha3 − ha1Þ+ω3ðhw3 − hw2Þ

hw1 − hw2
(12.30)

Since we can treat the air here as an ideal gas and assuming T3 = T2,

ha3 − ha1 = cpaðT3 − T1Þ = cpaðT2 −T1Þ
and since the liquid makeup water is only a slightly compressed liquid, we can write

hw2 ≈ hf ðT2Þ = hf2

Finally, since the outlet state contains saturated water vapor at the adiabatic saturation temperature, T3 = T2,

hw3 = hgðT3Þ = hgðT2Þ = hg2

The water vapor in the inlet region is superheated. A quick check of the Mollier diagram (Figure 7.15) reveals
that the isotherms in the low-pressure superheated region are very nearly horizontal. Therefore, the enthalpy of
water vapor in this region depends only on temperature, so we can take

hw1 = hgðT1Þ = hg1

Insulation

Evaporation

Water

Air−water
vapor

mixture

Saturated
air−water

vapor mixture

Liquid makeup water

1 3

2

FIGURE 12.2
An adiabatic saturator.
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Then, Eq. (12.30) becomes
Adiabatic saturator inlet humidity ratio

ω1 =
cpaðT2 − T1Þ+ω3ðhfg2Þ

hg1 − hf2
(12.31)

Thus, by simply measuring the inlet temperature T1 and the outlet adiabatic saturation temperature T2 = T3, we
can calculate the inlet humidity ratio of the air–water vapor mixture, ω1, directly from Eq. (12.31). However,
an adiabatic saturator must be extremely long to obtain 100% relative humidity at the outlet. This difficulty is
overcome by the sling psychrometer discussed next.

12.6 THE SLING PSYCHROMETER
Figure 12.3 illustrates a simple device for determining air humidity, called a sling psychrometer. It contains two
thermometers, one of which is covered with a wick saturated with ambient temperature liquid water. These two
thermometers are called dry bulb and wet bulb. When the sling psychrometer is spun rapidly in the air, the eva-
poration of the water from the wick causes the wet bulb thermometer to read lower than the dry bulb thermo-
meter. After the psychrometer has been spun long enough for the thermometers to reach equilibrium
temperatures, the unit is stopped and the two thermometers are quickly read. A psychrometric chart (or table) is
then used to convert the dry bulb temperature TDB and the wet bulb temperature TWB into humidity informa-
tion. The wet bulb temperature is approximately equal to the adiabatic saturation temperature, so TWB ≈ T2 = T3
in Eq. (12.31).

Figure 12.4 illustrates the major characteristics of a psychrometric chart. Larger charts of professional engineering
quality can be found in Charts D.5 and D.6 of Thermodynamic Tables to accompany Modern Engineering
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FIGURE 12.3
A sling psychrometer.
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FIGURE 12.4
The elements of a psychrometric chart. The intersection of the dry bulb and wet bulb constant temperature lines determine the state of
the water vapor in the system, from which TDP, pw, ϕ, and ω can then be found.
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Thermodynamics. Note that the dry bulb temperature is just the temperature registered on any ordinary thermo-
meter and the psychrometric chart is just part of the p-T diagram for saturated and superheated water vapor in
the low-pressure region. When the mixture is saturated with water vapor (ϕ = 100%), no water can evaporate
from the wet bulb wick and TWB = TDB = TDP. Note also that a psychrometric chart is drawn for a fixed total
pressure, thus Charts D.5 and D.6 are valid only for mixtures at 1 atm total pressure.

EXAMPLE 12.7
Wet and dry bulb temperature measurements made outside on a cold day reveal that TDB = 5.0°C and TWB = 4.0°C. Using
the psychrometric chart, determine

a. ϕ, ω, TDP, and pw for the outside air
b. The values of ϕ, ω, TWB, and pw if this mixture is heated at constant pressure to 25.0°C.

Solution
a. From Chart D.6 at TDB1 = 5.0°C and TWB1 = 4.0°C, we read ϕ1 = 80.%, ω1 = 0.004 kg of water vapor per kg of dry air,

TDP1 = 20°C, and pw1 = 700. N/m2.
b. Now the mixture is heated at constant pressure until its dry bulb temperature increases to 25.0°C. Note that, when the

temperature is stated without a modifier (i.e., “wet” or “dry”), we presume it is the ordinary, or dry bulb, temperature.
Then, Chart D.6 gives ϕ2 ≈ 20.%, ω2 = ω1, TWB2 = 13°C, TDP2 = TDP1, and pw2 = pw1.

This is shown in Figure 12.5.

Notice that, under these conditions, the relative humidity and the wet and dry bulb temperatures change, but none of the
other characteristics change. This is because the amount of water vapor and the amount of air present do not change.

Exercises
15. Determine the values of ϕ, ω, TWB, and pw when the mixture in Example 12.7 is reheated to 20.0°C rather than 25.0°C

and all the other variables remain the same. Answer: ϕ = 28%, ω = 0.004 kg H2O per kg of dry air, TWB = 11°C, and
pw = 700. N/m2.

16. If the dry bulb temperature in Example 12.7 is 8.0°C rather than 5.0°C and all the other variables remain the same,
determine ϕ, ω, and pw for the outside air. Answer: ϕ = 50%, ω = 0.0035 kg H2O per kg of dry air, and pw = 550 N/m2.

17. Rework Example 12.7 for a dry bulb temperature of 10.0°C and a wet bulb temperature of 8.0°C. Answer: (a) ϕ =
75%, ω = 0.006 kg H2O per kg of dry air, TDP = 6.0°C, and pw = 900 N/m2; and (b) ϕ = 30%, ω = 0.006 kg H2O per
kg of dry air, TWB = 14°C, and pw = 900 N/m2.

CRITICAL THINKING

A sling psychrometer can be used to determine the humidity of the surrounding air because its wet bulb temperature is
nearly the same as the adiabatic saturation temperature, and Eq. (12.31) can then be used to find ω1 = ωair in Figure 12.2.
The combined heat and mass transfer rate analysis of a wet bulb thermometer yields the following result:

ωadiabatic −ωair

Tair −Tadiabatic
=

ωWB −ωair

Tair −TWB

� �
Pr
Sc

� �2/3
where ωadiabatic = ω3 in Figure 12.2, ωWB is the humidity ratio in the vicinity of the wet bulb, Tair = TDB = T1 in Figure 12.2,
Pr = cp μ/k is the Prandtl number, and Sc = μ/(ρD) is the Schmidt number. Pr and Sc are traditional dimensionless numbers
composed of viscosity μ, constant pressure specific heat cp, specific heat ratio k, density ρ, and mass diffusivity D. From the
equation, we see that TWB = Tadiabatic only if (Pr/Sc)2/3 = 1. It turns out that, for water vapor in air, the Prandtl to Schmidt
number ratio is about 1.0, so the wet bulb and adiabatic saturation temperatures are about the same. However, for any
other chemical vapor–air mixture, (Pr/Sc)2/3 generally is not equal to 1, and the wet bulb and adiabatic saturation tempera-
tures are not equal.

Suppose you had a serious leak or spill of a dangerous liquid chemical, like a refrigerant that subsequently evaporated into
the air of a closed room, and you wanted to use a sling psychrometer to estimate the resulting concentration of the chemi-
cal in the air. Is it possible to use this equation to correct the wet bulb temperature (with the bulb wetted with the spilled
liquid) so that it could be used with a psychrometric chart (or Eq. (12.31)) to give an estimate of the concentration of the
spilled chemical in the air?
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FIGURE 12.5
Example 12.7.

If a sling psychrometer is spun such that the air velocity over the wick is greater than 3.0 m/s, then the wet bulb
temperature is essentially equal to the adiabatic saturation temperature T2 in Eq. (12.31). The following example
illustrates this point.

EXAMPLE 12.8
The wet and dry bulb temperatures measured in a dormitory room are 60.0°F and 70.0°F, respectively, when the barometric
pressure is 14.7 psia. Assuming that the wet bulb temperature is equal to the adiabatic saturation temperature, use
Eq. (12.31) to find the humidity ratio (ω) in the room and compare your answer with that obtained from the psychrometric
chart, Chart D.5.

Solution
Here, we have TWB = 60.0°F and TDB = 70.0°F. Then, from Table C.1a in Thermodynamic Tables to accompany Modern Engineer-
ing Thermodynamics, we find

hg1= hgð70:0°FÞ= 1092:0Btu/lbm

hf g2= hfgð60:0°FÞ= 1059:6Btu/lbm

hf 2= hf ð60:0°FÞ= 28:1Btu/lbm

and

pw3 = psatð60:0°FÞ¼ 0:2563psia

Then, Eq. (12.26a) gives

ω3 = 0:622 0:2563ð Þ/ 14:7−0:2563ð Þ = 0:0110 lbmwater per lbmof dry air

and, from Eq. (12.31), we get6

ω1 =
0:240ð60−70Þ+0:0110ð1059:6Þ

1092:0−28:1
= 0:00874 lbmwater per lbmof dry air

= 0:00874ð7000Þ = 61:2 grains of water per lbmof dry air

(Continued )
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EXAMPLE 12.8 (Continued )

which, with TWB = 60.0°F and TDB = 70.0°F, the psychrometric chart, Chart D.5, gives approximately

ω1 = 61 grains of water per lbmof dry air

which is essentially the same as that calculated from Eq. (12.31).

Exercises
18. If the dry bulb temperature in the room discussed in Example 12.8 is 80.0°F rather than 70.0°F, calculate the humidity

ratio in the room and compare your answer with that obtained from the psychrometric chart. Answer: ω1 = 45.2 grains
of water per lbm of dry air.

19. Rework Example 12.8 for wet and dry bulb temperatures of 65.0°F and 85.0°F, respectively. Answer: ω1 = 60.2 grains of
water per lbm of dry air.

20. Using the method of your choice, determine the relative humidity ratio in the room discussed in Example 12.8 when the
wet and dry bulb temperatures are 18.0°C and 22.0°C, respectively. Answer: ω = 0.0115 kg of water per kg of dry air.

6 The grain is the smallest of the ancient Egyptian measures of weight (see Chapter 1) and originally represented the average weight of a grain of barley
corn. Today, it is still used in some engineering fields (e.g., in the heating, ventilating, and air conditioning field) as a mass unit, with 7000 grains =
1 lbm.

Equation (12.31) gives essentially the same values as obtained from the psychrometric chart, but the chart is
much easier and quicker to use.

12.7 AIR CONDITIONING
Complete air conditioning involves producing an environment with desired pressure, temperature, humidity,
purity, and circulation characteristics. In this section, we are concerned only with altering the temperature and
the humidity in typical air conditioning applications.

In Example 12.8, we see how winter air is severely dehumidified if it is simply heated up to room temperature.
Water vapor must be added to bring its humidity up into the 40 to 50% relative humidity range. This can easily
be done by blowing the heated air across a moist surface, as shown in Figure 12.6. This is the technique used in
a common room humidifier.

The humidification process 2–3 shown in Figure 12.6 is also an example of evaporative cooling. When unsatu-
rated air is brought into contact with liquid water at the same (dry bulb) temperature, some of the water evapo-
rates (thus cooling the mixture) and the resulting air–water vapor mixture moves upward along the TWB =
constant line, as shown in Figure 12.6b. The minimum dry bulb temperature that can be produced by evapora-
tive cooling occurs when the outlet air becomes saturated with water vapor (ϕ = 100%), then TDB = TWB. This
concept is illustrated in the following example.

(a) (b)
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FIGURE 12.6
Temperature and humidity conditioning of cold winter air.
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EXAMPLE 12.9
Desert air at 110.°F and 10.0% relative humidity is to be cooled and humidified by using evaporative cooling only. Deter-
mine the minimum outlet mixture temperature and its relative humidity.

Solution
The minimum outlet temperature associated with the evaporation process is the wet bulb temperature corresponding to a dry
bulb temperature of 110.°F and 10.0% relative humidity. From Chart D.5, we find that this is approximately

ðTDBÞmin = TWB = 69°F

and, of course, the relative humidity at this new dry bulb temperature is 100%.

Exercises
21. Determine the minimum outlet dry bulb temperature that could be realized through evaporation of the liquid water in

part b of Example 12.7. Answer: (TDB)min = TWB(25.0°C, 20.0% relative humidity) = 13°C.
22. Determine the minimum outlet dry bulb temperature that could be realized using the evaporation of liquid water into

air with an inlet dry bulb temperature of 20.0°C and an inlet relative humidity of 50.0%. Answer: (TDB)min = TWB(20.0°C
and 50.0% relative humidity) = 14°C.

23. Suppose we wanted to produce air with a dry bulb temperature of 60.0°F and a relative humidity of 100.% simply by
allowing liquid water to evaporate into the air. What is the maximum dry bulb temperature of the inlet air? Note: In this
case, (TDB)max occurs when ϕ = 0% (i.e., when ω = 0). Answer: (TDB)max = 107°F.

Hot, humid air can be easily cooled and dehumidified by cooling it to below its dew point (saturation)
temperature, condensing out some of the water, then reheating the remaining air–water vapor mixture to the
desired temperature. This is illustrated in Figure 12.7. The water in the cooling section condenses at various
temperatures, but it is assumed to exit the system at temperature T2 in Figure 12.7.
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Hot
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Fan Heater

2 3
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Cooling and
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Reheating
2–3

Electrical work
input

Cool
conditioned

air

φ =10
0%

φ3 < φ1

TWB3 < TDB1

ω

TDB

pw

φ1

(a) (b)

FIGURE 12.7
Dehumidification by cooling, condensing, and reheating again.

WHAT ENVIRONMENTAL CONDITIONS MAKE PEOPLE COMFORTABLE?

Humans are essentially isothermal open systems with complex temperature-regulating mechanisms. Body temperature (98.6°F,
37.0°C) is normally above the surrounding environmental temperature so that the excess heat generated by the irreversibilities
inside the body can be removed by normal convection, conduction, and radiation heat transfer mechanisms. During periods of
physical stress or high environmental temperature, the body produces a surface layer of water, called perspiration, whose evapora-
tion into the atmosphere helps cool the body. This is one of the body’s primary temperature-regulating mechanisms. When the
relative humidity of the surrounding atmosphere is high, the evaporation of body perspiration is low and the body automatically
tries to minimize its internal heat generation, resulting in the person’s feeling lethargic and becoming inactive. Because the sensa-
tion of human comfort is so subjective, attempts to define a “comfortable” atmosphere have met with only limited success. Tests
have shown that a relative humidity below 15% produces a dried (or parched) condition of the membranes in the mouth, nose,
and lungs and an increased susceptibility to disease germs. However, a relative humidity above 70% causes an accumulation of
moisture in the clothing and a general “sticky” or “muggy” feeling. For best health and comfort conditions, it has been found that
the relative humidity should range from 40 to 50% during cold winter weather and from 50 to 60% during warm summer
weather.
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12.8 PSYCHROMETRIC ENTHALPIES
The psychrometric chart also contains enthalpy information that is useful in energy balance calculations. Though
water vapor may be added or removed from the mixture by an air conditioning system, the mass flow rate of
the dry air component is usually constant throughout the system. This makes it convenient to define the
mixture’s specific enthalpy on a per unit mass of dry air basis, rather than on a per unit mass of mixture basis.
Specific enthalpies so constructed are referred to as psychrometric enthalpies, denoted by h# to distinguish them
from the ordinary form of the specific enthalpy. Thus, the specific psychrometric enthalpy is defined as

h# = Hm/ma

whereas the ordinary mixture specific enthalpy is defined as

hm = Hm/mm

Note that, since Hm = mah
# = mmhm = (ma + mw)hm, we have

h# = ð1+ωÞhm
Further, since

Hm = Ha +Hw = maha +mwhw

then,

Hm/ma = h# = ha + ðmw/maÞhw = ha +ωhw (12.32)

Values of h# are given on the psychrometric charts in Charts D.5 and D.6.7

EXAMPLE 12.10
Air has a dry bulb temperature of 50.0°C and a relative humidity of 40.0% at a total pressure of 0.101 MPa. Calculate the
value of h# from its definition and compare this value with that found in Chart D.6 for these conditions.

Solution
The basic definition of h# is given by Eq. (12.32) as h# = ha + ωhw, where ha = cp(TDB − Tref). When the psychrometric Charts D.5
and D.6 were developed, the reference temperature used in the ha ideal gas equation was chosen to be 0°C. From Table C.13b,
we find for air that cp = 1.004 kJ/(kg ·K). Then,

ha = ½1:004 kJ=ðkg .KÞ�½ð50:0+273:15KÞ− ð0+ 273:15KÞ� = 50:2 kJ=ðkg dry airÞ
Equation (12.26b) gives the humidity ratio ω for this mixture as

ω = 0:622
ϕpsat

pm − ϕpsat

� �
where, from Table C.1b, psat = psat(50.0°C) = 0.01235 MPa. Then,

ω = 0:622 0:400 × 0:01235
0:101− 0:400 × 0:01235

� �
= 0:0319

kgwater vapor
kg dry air

Since the water vapor in the mixture is superheated, its specific enthalpy hw is determined from Table C.3b at the temperature
of the mixture and the partial pressure of the water vapor. From Eq. (12.24), we have pw = ϕpsat = 0.400 × 0.01235 = 5.00 ×
10−3 MPa. Then, from Table C.3b at 50.0°C and 5.00 × 10−3 MPa, we find that hw = 2593.6 kJ/kg water vapor. Using the defi-
nition of h# given in Eq. (12.32), we now have

h# = ha +ωhw = 50:2 kJ
kg dry air

+ 0:0319
kg water vapor

kg dry air

� �
× 2593:6 kJ

kg water vapor

� �
= 133 kJ

kg dry air

Chart D.6 also gives this value for ω at TDB = 50.0°C and ϕ = 40.0%.

7 Note that ha has a zero reference state at 0°F (not 0 R) in Chart D.6a and 0°C in Chart D.6b with the hw value coming from the
appropriate steam table in each case. Recall that the choice of a reference state is arbitrary, so long as property differences are used in
the calculations.
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Exercises
24. Use the defining equation for h# to calculate the psychrometric enthalpy of air with a dry bulb temperature of 100.°C

and a relative humidity of 81.0% at a total pressure of 0.101 MPa. Answer: h# = 227 kJ/(kg dry air).
25. Use the defining equation for h# to calculate its value for air at 100.°C and a relative humidity of 69.1% at a total

pressure of 0.200 MPa. Answer: h# = 998 kJ/(kg dry air).
26. Use the defining equation for h# to calculate its value for air at 100.°F and a relative humidity of 52.6% at atmospheric

pressure. Compare your value with that found in Chart D.5. Answer: h# = 48.2 Btu/(lbm dry air).

Using the psychrometric enthalpy values in the energy
rate balance on the adiabatic saturator (see Figure 12.2)
gives

_mah
#
1 + _mw2hw2 − _mah

#
3 = 0

or

h#1 +ω2hw2 = h#3

Typically, ω2hw2 ≪ h1, so that we obtain h#1 ≈ h#3, and
since both ha and hw depend only on temperature at low
pressures, lines of constant h# are parallel to lines of con-
stant TWB, as shown in Figure 12.8. The following exam-
ple illustrates the processes of dehumidification in an air
conditioning application.

EXAMPLE 12.11
A new paint-drying system requires air with a dry bulb temperature of 35.0°C and a relative humidity of 80.0% to be cooled
and dehumidified to a dry bulb temperature of 20.0°C and a relative humidity of 40.0%. Determine the heat transfer rate
per unit mass flow rate of dry air required to carry out this process.

Solution
The cooling and dehumidification process is illustrated in Figure 12.9.

For an aergonic (zero work) system, an energy rate balance on the air in the paint
booth gives

_Q = _mah
#
3 − _mah

#
1 − _mw2hw2

Neglecting the magnitude of the thermal energy associated with the condensate
water (i.e., setting _mw2hw2 = 0), we get

_Q / _ma = h#3 − h#1

Values for psychrometric enthalpy are easily found on the psychrometric chart, Chart D.6.
Looking at this chart, we find the intersection of the lines for TDB1 = 35.0°C and for
ϕ1 = 80.0%. Then, we follow the diagonal line upward and to the left until we intersect
the psychrometric enthalpy axis and read h#1 ≈110kJ/kg dry air. Using a similar tech-
nique at TDB3 = 20.0°C and ϕ3 = 40.0%, we find that h#

3 ≈ 35 kJ/kg dry air. The heat
transfer rate per unit mass flow rate of dry air is

_Q / _ma = h#3 − h#1 −35−110 = −75 kJ/kg dry air

This means that 75 kJ of thermal energy must be removed from every kilogram of (dry) air that passes through the system.

Exercises
27. Use Chart D.6 to determine the initial state psychrometric enthalpy h#1 of the air in Example 12.11 if it is at 40.0°C

instead of 35.0°C at the same relative humidity. Answer: h#1 ≈ 140kJ/kg dry air.
28. If the final state in Example 12.11 is at a dry bulb temperature of 22.0°C and a relative humidity of 20.0%, use Chart

D.6 to find the psychrometric enthalpy of this state. Answer: h#2 ≈30 kJ/kg dry air.
29. Rework Example 12.11 for an inlet dry bulb temperature of 100.°F at a relative humidity of 70.0% and an exit dry bulb

temperature of 70.0°F at a relative humidity of 10.0%. Answer: _Q / _ma ≈ −37:5Btu/lbm dry air.
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Example 12.11.
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FIGURE 12.8
Reading the psychrometric enthalpy from the psychrometric chart.
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EXAMPLE 12.12
Moist air at atmospheric pressure and 25.0°C with a relative humidity of 80.0% is to be cooled and dehumidified to 20.0°C
with a relative humidity of 40.0%. On a per unit mass of dry air basis, determine (a) the amount of water to be removed,
(b) the cooling heat transfer rate, and (c) the reheating heat transfer rate.

Solution
The schematic for this process is the same as Figure 12.7. From the psychrometric chart (Chart D.6), we can find the follow-
ing information:8

State 1 State 2 State 3

TDB1 = 25:0°C

ϕ1 = 80:0%

h#1 = 67 kg/ kg dað Þ
ω1 = 0:016 kgH2O/ kg dað Þ

TWB2 = 6:0°C

ϕ2 = 100:%

h#1 = 21 kg/ðkg daÞ
ω2 = 0:0056 kgH2O/ kg dað Þ

TDB3 = 20:0°C

ϕ3 = 40:0%

h#3 = 35 kg/ðkg daÞ
ω3 = ω2

a. The amount of water removed per unit mass of dry air is

ω1 −ω2 = 0:016− 0:0056 = 0:010 kgH2O/ðkg dry airÞ
b. The amount of cooling required per unit mass of dry air is given by an energy rate balance on the cooling section as

_Q cooling/ _mdry air = h#2 − h#1 + ðω1 −ω2Þhf ðT2Þ
= 21− 67+0:010ð25:2Þ = −45:7 kJ/ðkg dry airÞ

c. The reheating heat transfer rate is given by an energy rate balance on the reheating section:

_Q reheating/ _mdry air = h#3 − h#2 = 35− 21 = 14 kJ/ðkg dry airÞ
Exercises
30. Suppose the inlet air in Example 12.12 has a relative humidity of 100.% instead of 80.0% and all the other variables

remain the same. How much water then has to be removed per unit mass of dry air to achieve the outlet state of
TDB2 = 20.0°C and ϕ2 = 40.0%? Answer: ω1 − ω2 = 0.0144 kg H2O per kg of dry air

31. If the final dry bulb temperature in Example 12.12 is 25.0°C (and ϕ3 ≈ 30.0%) rather than 20.0°C and all the other
parameters remain the same (i.e., the mixture is dehumidified but has no net cooling), determine the cooling and
reheating heat transfer rates per unit mass flow rate of dry air. Answer: _Qcooling/ _mdry air = −45:7 kJ/ kg dry airð Þ and
_Qreheating/ _mdry air = 24:0kJ/ kg dry airð Þ

32. Rework Example 12.12 for an inlet condition of TDB1 = 100.°F and ϕ1 = 80.0% and an outlet condition of TDB2 = 60.0°F
and ϕ2 = 40.0%. Answer: (a) ω1 − ω2 = 0.0247 lbm H2O/(lbm dry air), (b) _Qcooling/ _mdry air = −41:9Btu/ lbmdry airð Þ,
and (c) _Qreheating/ _mdry air = 5:5Btu/ lbmdry airð Þ

8 Values taken from reading a chart are typically accurate to only two significant figures.

Another common air conditioning design problem where the psychrometric chart is put to good use is in the
mixing of two or more wet airstreams. This normally involves determining how to mix the inlet airstreams to
produce a desired output conditional airstream or predicting the outlet airstream properties when all the inlet
airstream properties are known.

The conservation of mass equation for water when wet airstreams 1 and 2 are adiabatically and aergonically
mixed to form wet airstream 3 is

_mw3 = _mw1 + _mw2

or

_mw3 = _ma3ω3 = _ma1ω1 + _ma2ω2

or

ω3 = ð _ma1/ _ma3Þω1 + ð _ma2/ _ma3Þω2 (12.33)

From the energy rate balance applied to this process, we get

_Q − _W
⎵

+ _ma1h
#
1 + _ma2h

#
2 − _ma3h

#
3 = 0

0
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or

h#3 = ð _ma1/ _ma3Þh#1 + ð _ma2/ _ma3Þh#2 (12.34)

If the states of the inlet flow streams are known, then Eqs. (12.33) and (12.34) allow the calculation of two
independent thermodynamic properties (ω3 and h#3) that fix the state of the outlet flow stream. The following
example illustrates this type of problem.

EXAMPLE 12.13
Suppose 2000. ft3/min of air at 14.7 psia, 50.0°F, ϕ = 80.0% is
adiabatically and aergonically mixed with 1000. ft3/min of air
at 14.7 psia, 100.°F, and ϕ = 40.0%. Determine the dry bulb
temperature and the relative humidity of the outlet mixture.

Solution
First, draw a sketch of the system (Figure 12.10).

The unknowns are the dry bulb temperature and the relative
humidity of the outlet mixture.

At 50.0°F, pw1 = ϕ1psat(50.0°F) = 0.800(0.178) = 0.142 psia.
Then,

va1 = RaTm/pa1

= ½53:34 ft . lbf/ lbm .Rð Þ�ð50:0+ 459:67RÞ/½ð14:7− 0:142 lbf/in2Þð144 in2/ft2Þ�
= 13:0 ft3/ðlbmdry airÞ

Similarly,

pw2 = ϕ2psatð100:°FÞ = 0:400ð0:9503Þ = 0:380psia

and

va2 = 53:34ð100:+459:67Þ/½ð14:7−0:380Þð144Þ�
= 14:5 ft3/ðlbmdry airÞ

Also, since _ma = _Va/va,

_ma1 = ð2000: ft3/minÞ/½13:0 ft3/ðlbmdry airÞ� = 154 lbmdry air/min

_ma2 = ð1000: ft3/minÞ/½14:5 ft3/ðlbmdry airÞ� = 69:0 lbmdry air/min

and, using the conservation of mass applied to the air,

_ma3 = _ma1 + _ma2 = 154+69:0 = 223 lbmdry air/min

Then, from the psychrometric chart (Chart D.5), we find9

ω1 = ½44 grains of water vapor/ðlbmdry airÞ�/ð7000: grains/lbmÞ
= 0:0063 lbmwater vapor/ðlbmdry airÞ

ω2 = ½115 grains of water vapor/ðlbmdry airÞ�/ð7000: grains/lbmÞ
= 0:0164 lbmwater vapor/ðlbmdry airÞ

h#1 = 19Btu/ðlbmdry airÞ
h#2 = 42Btu/ðlbmdry airÞ

From the water conservation of mass equation, Eq. (12.33), we can now calculate

ω3 = ð154/223Þð0:0063Þ+ ð69:0/223Þð0:0164Þ
= 0:0094 lbmwater vapor/ðlbmdry airÞ
= 0:0094 ð7000:Þ = 66 grains of water vapor/ðlbmdry airÞ

and the resulting energy rate balance equation, Eq. (12.34), gives

h#3 = ð154/223Þð19Þ+ ð69:0/223Þð42Þ
= 26Btu/ðlbmdry airÞ

(Continued )
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FIGURE 12.10
Example 12.13.
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EXAMPLE 12.13 (Continued )

From the point where the lines ω = 65.8 grains/(lbm dry air) = constant and h# = 26 Btu/(lbm dry air) = constant intersect
on the psychrometric chart, we can read from this chart that

TDB = 63°F, TWB = 59°F, ϕ = 75%, and TDP = 56°F

Exercises
33. If the 2000. ft3/min of air entering station 1 in Example 12.13 is at a dry bulb temperature of 70.0°F instead of 50.0°F

with all the remaining parameters unchanged, determine its new mass flow rate. Answer: _ma1=147 lbmdry air/min.
34. If the 1000. ft3/min of air entering station 2 in Example 12.13 is at a relative humidity of 10.0% rather than 40.0% with

all the remaining parameters unchanged, determine its new mass flow rate. Answer: _ma2 = 70:5 lbmdry air/min.
35. Determine the dry bulb temperature and relative the humidity of the outlet mixture in Example 12.13 if the volume

flow rate at station 2 is increased from 1000. ft3/min to 2000. ft3/min and all the remaining variables remain
unchanged. Answer: TDB = 74°F and ϕ = 60.%.

9 The examples and problems throughout this text have been written such that at least three significant figures appear in the variables. Unfortunately, small
textbook charts can often be read to only two significant figures; however, psychrometric computer programs can be found on the Internet that provide much
more accuracy and are recommended for student use.

12.9 MIXTURES OF REAL GASES
If the components of an ideal gas mixture interact in any way or one or more of the gases is not ideal, the
resulting mixture is not ideal and does not obey the Gibbs-Dalton and Amagat laws. Then, its partial properties
must be determined from accurate pressure, volume, temperature, and specific heat data by the techniques dis-
cussed in the previous chapter.

Though Amagat’s law, Eqs. (12.16) and (12.19), may not hold for a mixture of real gases, the definition of par-
tial specific volumes, Eqs. (12.5) and (12.6), is always valid. The difference is that, for real gases,

v̂i = ð∂Vm/∂miÞpm , Tm ,mj
≠ vi = RiTm/pm

For a binary mixture of gases A and B, v̂A and v̂B can be determined at any composition from experimental data
of vm vs. wA, as shown in Figure 12.11.

Amagat’s law

Mixture of real
gases A and B

Composition
of interest

Tangent
at ω*

A

vA

vA

vm

vB

vB

0 1

ω*
A

ωA

FIGURE 12.11
Determining v̂A and v̂B at wA = w�

A from real gas data by the method of tangents.
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When p, v, T, and cv data on the gas mixture of interest are not available, engineering approximations can be
obtained by combining either Dalton’s or Amagat’s law with the simplified compressibility factor equation of
state pV = ZmRT. For example, using Dalton’s law,

pm =∑
N

i=1
pDi = ZDmmmRmTm/Vm (12.35)

where pDi is the Dalton compressibility factor partial pressure, defined by

pDi = ZDimiRiTm/Vm

and ZDi and ZDm are the Dalton species i and mixture compressibility factors, respectively. Substituting the latter
equation into the former and solving for ZDm gives

Dalton compressibility factor

Z Dm =∑
N

i=1

wiMm

Mi

� �
Zdi =∑

N

i=1
χiZDi (12.36)

For each gas i, the Dalton ZDi compressibility factor is determined from the compressibility charts (Figures 7.5, 7.6,
and 7.9 in Chapter 7) by using the reduced temperature TRi and reduced pseudospecific volume v′Ri for gas i at the
temperature and volume of the mixture, or

TRi = Tm/Tci
v′Ri = vDipci/ðRiTciÞ

= ðVm/miÞðmm/mmÞðpciÞ/ðRiTciÞ = ðvm/wiÞ½pci/ðRiTciÞ�
= ðVm/niÞðnm/nmÞðpciÞ/ðℜTciÞ = ðvm/xiÞ½pci/ðℜTciÞ�

where vDi = Vm/mi = vm/wi is the Dalton specific volume of gas i, and vm = Vm/mm and vm = Vm/nm are the mixture
mass and molar specific volumes, respectively. Note that we cannot use the reduced pressure pRi = pDi/pci in this
case because pDi = ZDimiRiTm/Vm, and ZDi is not usually known in advance.

EXAMPLE 12.14
A new type of fuel for the camping stove shown in Figure 12.12 is made by mixing 3.00 lbm
of methane (CH4) with 4.00 lbm of propane (C3H8) and compressing the mixture into a
1.00 ft3 portable storage tank. Use the Dalton compressibility factor to determine the total
pressure in the tank when it is exposed to the hot summer sun and its internal temperature
reaches 240.°F.

Solution
The unknown is the total pressure in the tank. Here, we use Eq. (12.35) to determine the
mixture pressure as

pm = ZDmmmRmTm
Vm

where ZDm is the Dalton compressibility factor, determined from Eq. (12.36) as

ZDm =∑
N

i=1

wiMm

Mi

� �
ZDi

First, we find the mixture composition and molecular mass. The mass of the entire mixture
is mm = mmethane + mpropane = 3.00 + 4.00 = 7.00 lbm. The mass fractions are

wmethane = 3:00=7:00 = 0:429

wpropane = 4:00=7:00 = 0:571

(Continued )

FIGURE 12.12
Example 12.14.
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EXAMPLE 12.14 (Continued )

The molecular masses of the components are found in Table C.12a in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics as

Mmethane = 16:043 lbm=lbmole

Mpropane = 44:097 lbm=lbmole

then, Eq (12.12) gives the molecular mass of the mixture as

Mm = 1

∑
2

i=1

wi

Mi

= 1
wmethane

Mmethane
+

wpropane

Mpropane

= 1
0:429
16:043

+ 0:571
44:097

= 25:2 lbm
lbmole

The Dalton compressibility factors for the components, ZDi, are found from the reduced temperature TRi and the reduced
pseudospecific volume v′Ri for each component. From Tables C.12a and C.13a, we find that

ðpcÞmethane = 673psia, (TcÞmethane = 343:9 R, andRmethane = 96:3 ft . lbf=ðlbm .RÞ
ðpcÞpropane = 617psia, (TcÞpropane = 665:9 R, andRpropane = 35:0 ft . lbf=ðlbm .RÞ

The specific volume of the mixture is

vm =
Vm

mm
= 1:00 ft3

7:00 lbm
= 0:143 ft3/lbm

then, the reduced temperature and reduced pseudospecific volume for methane are

ðTRÞmethane =
Tm

ðTcÞmethane
= 240:+459:67R

343:9R
= 2:03

and

v′Rð Þmethane = vm
wmethane

� �
pcð Þmethane

Rmethane Tcð Þmethane

� �
=

0:143 ft3=lbmmixture
0:429 lbmmethane=lbmmixture

� �
×

ð673 lbf=in2Þð144 in2=ft2Þ
ð96:3 ft .lbf=lbm.RÞð343:9RÞ
� �

= 0:975

For propane, they are

ðTRÞpropane =
Tm

ðTcÞpropane
= 240:+ 459:67R

665:9R
= 1:05

and

v′Rð Þpropane = vm
wpropane

� � pcð Þpropane
Rpropane Tcð Þpropane

 !

=
0:143 f t3=lbmmixture

0:571 lbmmethane=lbmmixture

� �
×

ð617 lbf=in2Þð144 in2=ft2Þ
ð35:0 ft .lbf=lbm.RÞð665:9RÞ
� �

= 0:955

Using Figure 7.6 with TR = 2.03 and v′R = 0:975, we find that the Dalton compressibility factor for methane is (ZD)methane =
0.975; and using TR = 1.05 and v′R = 0:95, we find that the Dalton compressibility factor for propane is (ZD)propane = 0.720.
Then, Eq. (12.36) gives the mixture Dalton compressibility factor as

ZDm =∑
2

i=1

wiMm

Mi

� �
ZDi =

wmethaneMm

Mmethane

� �
ðZDÞmethane +

wpropaneMm

Mpropane

� �
ðZDÞpropane

=
ð0:429Þð25:2Þ

16:043

� �
ð0:975Þ+ ð0:571Þð25:2Þ

44:097

� �
ð0:720Þ = 0:892

The mixture gas constant can be easily calculated from

Rm = ℜ
Mm

=
1545:35 ft . lbf/ðlbmole .RÞ

25:2 lbm/lbmole
= 61:3 ft . lbf

lbm .R
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and Eq. (12.35) gives the mixture pressure as

pm = ZDm mm Rm Tm
Vm

=
ð0:892Þð7:00 lbmÞð61:3 ft . lbf/lbm .RÞð240:+459:67RÞ

1:00 f t3

= ð268×103 lbf=ft2Þ÷ ð144 in:2/f t2Þ = 1860psia

Exercises
36. Determine the total pressure in the tank in Example 12.14 when the mixture is changed to 2.00 lbm of methane and

5.00 lbm of propane with all of the other variables remaining unchanged. Answer: ptotal = 1470 psia.
37. Determine the total pressure in the tank in Example 12.14 if the tank volume is reduced from 1.00 ft3 to 0.500 ft3 with

all the other variables remaining unchanged. Answer: ptotal = 3400 psia.
38. Determine the total pressure in the tank in Example 12.14 when the propane is replaced by the same mass of ethane

(C2H6). Answer: ptotal = 2200 psia.

Alternatively, we could use Amagat’s law and incorporate a real gas compressibility factor as

Vm =∑
N

i=1
VAi =

ZAmmmRmTm
pm

(12.37)

where VAi is the Amagat compressibility factor partial volume defined by

VAi = ZAimiRiTm/pm

and ZAi and ZAm are Amagat species i and mixture compressibility factors, respectively. Substituting the latter
equation into the former gives

Amagat compressibility factor

ZAm =∑
N

i=1

ðwiMm/MiÞZAi =∑
N

i=1

xiZAi (12.38)

In this case, for each gas i, the Amagat ZAi compressibility factor is determined from the compressibility charts using
the reduced temperature TRi and reduced pressure pRi for gas i at the temperature and pressure of the mixture, or

pRi = pm/pci

and

TRi = Tm/Tci

Note that we cannot use the reduced pseudospecific volume v′Ri = vAipm/ RiTmð Þ in this case because the Amagat
specific volume is given by vAi = VAi/mi = ZAiRiTm/pm, and ZAi is not usually known in advance.

EXAMPLE 12.15
The test chamber atmosphere for a new electrical device requires a mixture of 1.00 kg of each of the following gases:
ammonia (NH3), chlorine (Cl2), and nitrous oxide (N2O). Use the Amagat compressibility factor to determine the volume
occupied by this mixture at a total pressure of 20.0 MPa and a mixture temperature of 500. K.

Solution
Here, we use Eq. (12.37) to determine the mixture total volume as

Vm =
ZAm mm Rm Tm

pm

where ZAm is the Amagat compressibility factor, determined from Eq. (12.38) as

ZAm =∑
N

i=1

wiMm

Mi

� �
ZAi

(Continued )
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EXAMPLE 12.15 (Continued )

First, we find the mixture composition and molecular mass. The mass of the entire mixture is mm = mammonia + mchlorine +
mnitrous oxide = 1.00 + 1.00 + 1.00 = 3.00 kg. The mass fractions are

wammonia = wchlorine = wnitrousoxide = 1:00=3:00 = 0:333

The molecular masses of the components are found in Table C.12b as

Mammonia = 17:030 kg=kgmole

Mchlorine = 70:906 kg=kgmole

Mnitrous oxide = 44:013kg=kgmole

Equation (12.12) gives the molecular mass of the mixture as

mm = 1

∑
3

i=1

wi

Mi

= 1
wammonia

Mammonia
+ wchlorine

Mchlorine
+ wnitrous oxide

Mnitrous oxide

= 1
0:333
17:030

+ 0:333
70:906

+ 0:333
44:013

= 31:4
kg

kgmole

The Amagat compressibility factors for the components, ZAi, are found from the reduced pressure and reduced temperature
for each component. From Table C.12b, we find that

ðpcÞammonia = 11:280MPa and ðTcÞammonia = 405:5K

ðpcÞchlorine = 7:710MPa and ðTcÞchlorine = 417:0K

ðpcÞnitrous oxide = 7:270MPa and ðTcÞnitrous oxide = 309:7K

and the component gas constants can be computed as

Rammonia = ℜ=Mammonia = 8:3143 kJ=ðkgmole .KÞ=17:030 kg=kgmole = 0:488 kJ=kg .K

Rchlorine = ℜ=Mchlorine = 8:3143 kJ=ðkgmole .KÞ=70:906kg=kgmole = 0:117kJ=kg .K

Rnitrous oxide = ℜ=Mnitrous oxide = 8:3143 kJ=ðkgmole .KÞ=44:013 kg=kgmole = 0:189 kJ=kg .K

Then, the reduced temperatures and pressures are

ðTRÞammonia =
Tm

ðTcÞammonia
= 500:K

405:5K
= 1:23

ðpRÞammonia =
pm

ðpcÞammonia
= 20:0MPa

11:280MPa
= 1:77

ðTRÞchlorine =
Tm

ðTcÞchlorine
= 500:K

417:0K
= 1:20

ðpRÞchlorine =
pm

ðpcÞchlorine
= 20:0 MPa

7:710MPa
= 2:59

ðTRÞnitrous oxide =
Tm

ðTcÞnitrous oxide
= 500:K

309:7K
= 1:61

ðpRÞnitrousoxide =
pm

ðpcÞnitrousoxide
= 20:0 MPa

7:270MPa
= 2:75

and using these values on Figure 7.6 gives the following Amagat compressibility factors:

ðZAÞammonia = 0:64

ðZAÞchlorine = 0:55

ðZAÞnitrous oxide = 0:86
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Then, Eq. (12.38) gives the Amagat compressibility factor for the mixture as

ZAm =∑
3

i=1

wiMm

Mi

� �
ZAi

= wammoniaMm

Mammonia

� �
ðZAÞammonia +

wchlorineMm

Mchlorine

� �
ðZAÞchlorine +

wnitrous oxideMm

Mnitrous oxide

� �
ðZAÞnitrous oxide

=
ð0:333Þð31:4 kg/kgmolemixtureÞ

17:030 kg/kgmole ammonia

� �
ð0:64Þ

+
ð0:333Þð31:4kg/kgmolemixtureÞ

70:906kg/kgmole chlorinee

� �
ð0:55Þ

+
ð0:333Þð31:4kg/kgmolemixtureÞ
44:013kg/kgmole nitrous oxide

� �
ð0:86Þ = 0:68

The mixture gas constant can now be calculated from

Rm = ℜ
Mm

=
8:3143 kJ/ðkgmole .KÞ

31:4 kg/kgmole
= 0:265 kJ

kg .K

Then, Eq. (12.37) gives the total volume of the mixture as

Vm = ZAm mm Rm Tm
pm

=
ð0:68Þð3:00 kgÞð0:265 kJ/ðkg .KÞÞð500:KÞ

ð20:0MPaÞð1000: kPa/MPaÞ = 0:0135m3

Exercises
39. Determine the volume in Example 12.15 if the composition is changed to 1.00 kg of ammonia and chlorine but 5.00 kg

of nitrous oxide. Answer: V = 0:0297m3.
40. If the mixture temperature in Example 12.15 is increased from 500. K to 1000. K, what volume would then be required

to hold the mixture if all the other variables remain unchanged? Answer: V = 0:0401m3.
41. If the nitrous oxide gas is eliminated from the mixture in Example 12.15 and the masses of ammonia and chlorine are

each increased to 1.50 kg, what volume would then be required to hold this new mixture if all the other variables
remain unchanged? Answer: V = 0:0141m3.

It should be clear from the preceding formulae that ZDi ≠ ZAi; therefore, the resultant Dalton and Amagat mix-
ture compressibility factors also in general are not equal, or ZDm ≠ ZAm.

Dalton’s law for mixtures of real gases (Eq. (12.35)) is based on the premise that each gas in the mixture acts as
though it alone occupies the entire volume of the mixture at the temperature of the mixture. Therefore, the
gases are assumed not to interact in any manner. We do not find this to be true experimentally except at very
low pressures or very high temperatures.

Amagat’s law for mixtures of real gases (Eqs. (12.37)), on the other hand, incorporates the resultant mixture
pressure and, therefore, automatically takes gas molecular interactions into account. Consequently, it tends to be
more accurate than Dalton’s law at high pressures and low temperatures.

A third method of incorporating the compressibility factor charts into predicting the behavior of real gas mix-
tures involves defining a pseudocritical pressure and a pseudocritical temperature for the mixture as

Kay’s law

Pcm =∑
N

i=1
xiPci (12.39)

and

Tcm =∑
N

i=1
xiTci (12.40)
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This was introduced by W. B. Kay in 1936 and is now known as Kay’s law. The reduced pressure and temp-
erature of the mixture can then be computed from

pRm = pm/pcm

and

TRm = Tm/Tcm

and these values are used to find the mixture’s compressibility factor, called the Kay’s compressibility factor, ZKm,
directly from the compressibility charts. This compressibility factor is then used in the normal way, as, for exam-
ple, in the equation pmVm = ZKmmmRmTm, where Rm = ℜ/Mm.

EXAMPLE 12.16
Determine the critical pressure and temperature for air using Kay’s law. Use the composition information for air given in
Example 12.2.

Solution
Using Eqs. (12.39) and (12.40), the composition data given in Example 12.2 and the critical point data given in
Table C.12b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics give

pcð Þair = χN2
pcð ÞN2

+ χO2
pcð ÞO2

+ χAr pcð ÞAr + χCO2
pcð ÞCO2

= 0:7809ð3:39Þ + 0:2095ð5:08Þ + 0:0093ð4:86Þ + 0:0003ð7:39Þ
= 3:76MPa

and

Tcð Þair = χN2
Tcð ÞN2

+ χO2
Tcð ÞO2

+ χAr Tcð ÞAr + χCO2
Tcð ÞCO2

= 0:7809ð126:2Þ+0:2095ð154:8Þ+0:00930ð151Þ+0:0003ð304:2Þ
= 133K

These values agree quite well with the values of 3.774 MPa and 132.4 K for air given in Table C.12b.

Exercises
42. If the composition of air is simplified to 79.0% nitrogen and 21.0% oxygen on a molar basis, use Kay’s law to

determine the critical pressure and temperature of this mixture and compare these results with those given in Example
12.16 for the more accurate composition of air. Answer: pc = 3.74 MPa, Tc = 133 K, both less than 1% from the values
determined in Example 12.14

43. Determine the critical pressure, temperature, and compressibility factor for the mixture given in Example 12.14 using
Kay’s law. Answer: (pc)mix = 655 psia, (Tc)mix = 450. R, and ZKm = 0.84

44. Determine the critical pressure, temperature, and compressibility factor for the mixture given in Example 12.15 using
Kay’s law. Answer: (pc)mix = 9.80 MPa, (Tc)mix = 384 K, and ZKm = 0.70

Note that, in general, ZDm ≠ ZAm ≠ ZKm. Which one of these three is the most accurate in a specific instance
depends on the molecular characteristics and thermodynamic state of the gas under consideration. A demonstra-
tion of the accuracy of these three methods of modeling real gas behavior is provided in the following example.

EXAMPLE 12.17
The molar specific volume of a mixture of 30.0% nitrogen and 70.0% methane (on a molar basis) at 1500. psia and −100.°F
is measured and found to be 1.315 ft3/lbmole. Calculate the molar specific volume of this mixture under these conditions,
using

a. Ideal gas mixture behavior.
b. The Dalton compressibility factor.
c. The Amagat compressibility factor.
d. Kay’s law.

Compute the percent error in each case.
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Solution
a. For ideal gas mixture behavior,

v�m = ℜTm
pm

=
½1545:35 ft . lbf/ðlbmole .RÞ�ð−100:+459:67RÞ

ð1500: lbf=in2Þð144 in2/ft2Þ = 2:57 ft3/lbmole

and

% error = 2:57− 1:315
1:315

� �
ð100Þ = 95:4%high

b. From Table C.12a, we find

pcð ÞN2
= 492psia

Tcð ÞN2
= 227:1R

and

Pcð ÞCH4
= 673psia

Tcð ÞCH4
= 343:9R

Since the mixture specific volume is the unknown here, it must be determined by a trial and error method, using the
reduced pseudospecific volume v′Ri, which, as was shown earlier, can be written in a variety of forms, for example, as

v′Ri = vmpci/ðxiℜTciÞ

We assume values for vm; find (ZDm)N, (ZD)CH, and ZDm, then check the assumption with vm ¼ ZDm=ℜTm/pm. Assume
vm ¼ 1:51ft3/ lbmole, then

ðv′RÞN2
=

ð1:51Þð492Þð144Þ
ð0:300Þð1545:35Þð227:1Þ = 1:02

and

ðv′RÞCH4
=

ð1:51Þð673Þð144Þ
ð0:700Þð1545:35Þð343:9Þ = 0:393

Then,

ðTRÞN2
= ð−100:+ 459:67Þ/227:1 = 1:58

and

ðTRÞCH4
= ð−100:+459:67Þ/343:9 = 1:05

From Figure 7.6 in Chapter 7, we find that, for these values,

ðZDÞN2
= 0:91

and

ðZDÞCH4
= 0:39

Then, from Eq. (12.36), we have

ZDm = 0:300ð0:91Þ+0:700ð0:39Þ = 0:59

Now, checking the vm assumption,

vm = ZDm=ℜTm/pm =
0:59ð1545:35Þð−100:+459:67Þ

ð1500:Þð144Þ
= 1:52 ft3/lbmole

which is close enough to our original assumption. Then,

% error = 1:52−1:315
1:315

� �
ð100Þ = 15:6%high

(Continued )
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EXAMPLE 12.17 (Continued )

c. Using the Amagat compressibility factor method, we have

pRð ÞN2
= pm/ pcð ÞN2

= 1500:
492

= 3:05

TRð ÞN2
= Tm/ Tcð ÞN2

= −100:+459:67ð Þ/227:1 = 1:58

pRð ÞCH4
= 1500:

673
= 2:23

TRð ÞCH4
= −100:+459:67ð Þ/343:9 = 1:05

Using these values in Figure 7.6 of Chapter 7, we find that

ðZAÞN2
= 0:84

and

ðZAÞCH4
= 0:35

Then, Eq. (12.38) gives

ZAm = 0:300ð0:84Þ+ 0:700ð0:35Þ
= 0:50

and

vm = ZAmℜTm/pm =
0:50ð1545:35Þð−100:+ 459:67Þ

1500: ð144Þ = 1:29 ft3/lbmole

or an error of

1:29− 1:315
1:315

� �
ð100Þ = −1:90% low

d. Using Kay’s law, Eqs. (12.39) and (12.40), we get

pcm = 0:300ð492Þ+0:700ð673Þ = 619psia

and

Tcm = 0:300ð227:1Þ+ 0:700ð343:9Þ = 309R

Then,

pRm = 1500:/619 = 2:42

and

TRm = ð−100:+459:67Þ/309 = 1:17

For these reduced values, Figure 7.6 of Chapter 7 gives ZKm = 0.51. Then, the mixture molar specific volume is

vm = ZKmℜTm/pm =
0:51ð1545:35Þð−100:+459:67Þ

1500: ð144Þ = 1:31 ft3/lbmole

which has a negligible error from the measured value of 1.315 ft3/lbmole.

SUMMARY
In this chapter, we deal with the problem of generating thermodynamic properties for homogeneous, nonreact-
ing mixtures. Because of their engineering value, we focus our analysis on gases and vapors, but the theory
extending beyond Eq. (12.15) can be easily modified to cover mixtures of liquids and solids.

We find that, if the mixture components and ultimately the mixture itself behave as an ideal gas, then all exten-
sive properties are additive and the partial specific properties reduce to the component specific properties. This
produces simple working equations for all the intensive properties (v, u, h, and s) of the mixture.
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Last, we combine Dalton’s and Amagat’s laws with the compressibility factor technique to produce methods for
dealing with the p-v-T mixture properties of real gases and vapors.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they are introduced to gain an
understanding of their use and limitations.

1. Mass, mole, volume, and pressure fractions of gas mixtures are defined as follows:
a. wi is the mass fraction of gas i in a mixture of N gases whose total mass is mm = ∑mi

wi =
mi

mm

b. χi is the mole fraction of gas i in a mixture of N gases whose total molar mass is nm = ∑ni

χi =
ni
nm

c. ψi is the volume fraction of gas i in a mixture of N ideal gases that occupy a total volume of Vm =∑
N

i=1
Vi

(where Vi is the partial volume of ideal gas i in the mixture)

ψ i =
Vi

Vm

d. πi is the pressure fraction of gas i in a mixture of N ideal gases that are subjected to a total pressure of
pm= pi (where pi is the partial pressure of ideal gas i in the mixture)

πi =
pi
pm

and the mass, mole, volume, and pressure fractions always sum to unity, or

∑
N

i=1
wi =∑

N

i=1
χi =∑

N

i=1
ψ i =∑

N

i=1
πi = 1:0

2. The effective molecular mass of a mixture of N gases is given by

Mm =∑
N

i=1
Mi and Mm = 1

∑
N

i=1

wi

Mi

3. The equivalent gas constant of a mixture of N gases is then given by

Rm = ℜ
Mm

where ℜ = 8:3143 kJ/ kgmole .Kð Þ = 1545:35 ft . lbf/ lbm .Rð Þ is the universal gas constant.
4. If all the gases in the mixture are ideal gases, then the composition measures are related as follows:

χ i =
ni
nm

= ψ i =
Vi

Vm
= πi =

pi
pm

= wi
Mm

Mi

� �
5. The changes in specific internal energy, specific enthalpy, and specific entropy for mixtures of ideal gases are

given by

um2 − um1 = cvm Tm2 −Tm1ð Þ
hm2 − hm1 = cpm Tm2 − Tm1ð Þ
sm2 − sm1 = cvmln Tm2/Tm1ð Þ+Rmln vm2/vm1ð Þ

= cpmln Tm2/Tm1ð Þ−Rmln pm2/pm1ð Þ
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where the mixture specific heats are given by

cvm =∑
N

i=1
wiĉvi and cpm =∑

N

i=1
wiĉpi

6. The study of the special mixture of ideal gases of dry air and water vapor is called psychrometrics, and the two
important composition measures used in the field of meteorology are
a. The relative humidity ϕ of the mixture, defined as

ϕ =
pw
psat

where pw is the actual partial pressure of the water vapor in the mixture and psat is the saturation pressure
of the water vapor at the temperature of the mixture.

b. The humidity ratio ω of the mixture, defined as

ω = mw

ma

where mw is the mass of water vapor present in the mixture and ma is the mass of dry air present in the
mixture. These two composition measures are related by

ω = 0:622
ϕpsat

pm −ϕpsat

� �
7. The dew point temperature TDP is defined as

TDP = Tsat ðevaluated at pwÞ
where pw is the partial pressure of the water vapor present, pw = ϕpsat.

8. The humidity ratio at the inlet to an adiabatic saturator is given by

ω1 =
cpaðT2 −T1Þ+ω3ðhfg2Þ

hg1 − hf2

9. The psychrometric enthalpy h# of the mixture is defined as

h# = Hm

ma
= ha +ωhw

10. For mixtures of real gases, we can use
a. The Dalton compressibility factor, ZDm,

pmVm = ZDmmmRmTm

where

ZDm =∑
N

i=1

wiMm

Mi

� �
ZDi =∑

N

i=1

χiZDi

b. the Amagat compressibility factor, ZAm,

pmVAm = ZAmmmRmTm

where

ZAm =∑
N

i=1
ðwiMm/MiÞZAi =∑

N

i=1
xiZAi

c. the Kay compressibility factor, ZKm,

pmVm = ZKmmmRmTm

where ZKm is found from the pseudocritical pressure and temperature of the mixture

pcm =∑
N

i=1
xipci and Tcm =∑

N

i=1
xiTci
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Problems (* indicates problems in SI units)
1.* 1.00 kg of CH4, 6.30 kg of O2, and 13.2 kg of N2 are combined

to form a gas mixture. Find the molecular mass of the mixture.
2. Ammonia gas is flowing in a tube whose cross-sectional area is

1.00 ft2. The density of the ammonia is 0.100 lbm/ft3. At some
point in the system, CO2 is added at a rate of 1.00 × 10−3 lbm/h
in a steady flow process. At a point further downstream,
a detector indicates that the concentration of CO2 on a mass basis
is 1.00 × 10−3%. Determine the inlet velocity of the ammonia.

3. The following is the gravimetric analysis of a gaseous mixture:

Find the mole fractions of the components in the mixture.
4. If the amount of helium produced by the large-scale

liquefaction of air is 1.30 lbm per 100. tons of air, determine
the mass, mole, and volume fractions of helium in air. Assume
air is a mixture of ideal gases.

5.* A mixture of air and water vapor at 20.0°C and 0.101 MPa has a
relative humidity of 100.%. Using the information given in
Example 12.2, determine
a. The molar composition.
b. The effective molecular mass.
c. The mass concentration.
d. The effective gas constant of the mixture, whose components

are nitrogen, oxygen, water vapor, argon, and carbon
dioxide.

6. A gas bulb of volume 0.100 ft3 contains hydrogen at a pressure
of 10.0 psia and a temperature of 50.0°F. Nitrogen is introduced
into the bulb such that the final pressure is 20.0 psia and the
final temperature is 80.0°F. Find the mole fraction and the mass
fraction of the hydrogen in the final state.

7. Using Eqs. (12.11), (12.12), and (12.15), show that the
equivalent gas constant of a mixture Rm can be determined
directly from the mass and mole fraction compositions (wi and
xi) and the species gas constants Ri = ℜ/Mið Þ as
a. Rm =∑wiRi

b. Rm = 1

∑ðxi/RiÞ
8. A mixture of ideal gases at a total pressure of 40.0 psia and

70.0°F contains 0.600 lbm of hydrogen (H2) and 4.80 lbm of
oxygen (O2). Determine
a. The mole fraction of the hydrogen in the mixture.
b. The equivalent molecular mass of the mixture.
c. The total volume occupied by the mixture under the

conditions stated.
9.* (a) How many kg of nitrogen must be mixed with 5.00 kg of

carbon dioxide to produce an ideal gas mixture that is 50.0%
by volume of each component? (b) For the resulting mixture
of part a, determine the mixture molecular mass (Mm), gas
constant (Rm), and the partial pressure of the nitrogen if that
of the carbon dioxide is 0.0700 MPa.

10. A furnace exhaust stack is instrumented so that a sample of the
stack gas can be analyzed for composition. The analysis gives
the following volume fractions: 70.0% N2, 20.0% CO2, 8.00%
CO, 1.00% Ar, and 1.00% H2O.
a. What is the molecular mass of the stack gas?
b. Calculate the mass fraction of each of the gases.
c. If the measured pressure in the stack is 15.0 psia, what is the

partial pressure of the carbon monoxide?
11.* The Department of Homeland Security discovered that 10.0 kg

of nitrogen (N2) was mixed with 3.82 kg of a possibly toxic
unknown gas. The resulting mixture occupies a volume of 2.00 m3

at 0.800 MPa and 65.0°C. Both gases and the mixture are ideal
gases. Determine
a. The molecular mass of the gas mixture.
b. The volume fraction of each gas present in the mixture.

12. Onboard a starship, a demented alien creature releases a mixture
of ideal gases made up of 4.00 lbm of molecular oxygen (O2)
and 6 lbm of an unknown and possibly toxic gas. Before the
gas mixture was released, you noticed that its original container
had a volume of 10.0 ft3, and at 150.°F, it had a pressure of
114.3 psia. Because you are a line officer engineer, the captain
asks you for your assessment of the situation. Is the gas lethal?
To draw a proper conclusion, you must determine
a. The molecular mass of the unknown gas.
b. The probable name of this gas.
c. The volume fraction of each gas present in the mixture.

13. The measured molecular masses of many naturally occurring
chemical elements differ appreciably from integer values due to
the presence of isotopes of the element in the test sample.
Commercially available neon has a measured molecular mass of
20.183. The gas is known to be a mixture of two isotopes
whose molecular masses are 20.0 and 22.0. Determine the mole
and mass fractions of each of the neon isotopes present in
commercial neon.

14. 1.00 ft3 of steam at 300.°F and 14.7 psia is mixed with 3.00 ft3

of methane at 80.0°F and 14.7 psia. Assuming ideal gas
behavior for both of these substances, determine
a) The mass fractions.
b) The mole fractions.
c) The pressure fractions.
d) Both the constant pressure and constant volume specific

heats of the mixture.
15. A rigid insulated tank is divided into two compartments by a

partition. Initially, 5.60 lbm of nitrogen is introduced into one
compartment at a pressure of 30.0 psia and a temperature of
140.°F. At the same time, 13.2 lbm of carbon dioxide is
introduced into the other compartment at a pressure of 15.0 psia
and a temperature of 60.0°F. The partition is then removed and
the gases are allowed to mix. Assuming ideal gas behavior, find
the pressure in the tank after the mixing.

16.* A perfect gas mixture consists of 3.00 kg of nitrogen (N2) and
5.00 kg of carbon dioxide (CO2) at a pressure of 1.00 MPa and
a temperature of 30.0°C. If the mixture is heated at constant
pressure to 40.0°C, find the work and the heat transfer required
for this process.

17.* We invented a new process in which 2.00 kg/min of hydrogen
at 5.00°C and 1.00 atm is continuously aergonically mixed with

Constituent % by mass

N2 60.0

CO2 22.0

CO 11.0

O2 7.00
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1.00 kg/min of nitrogen at 30.0°C and 1.00 atm. The mixture
leaves the mixing chamber at 60.0°C and 0.800 atm. Find
the heat transfer rate and indicate whether it is into or out of
the mixture.

18. On planet 3M4G6 in the subsystem Zeta-12, the atmosphere
consists of a binary mixture of sewer gas (methane) and an
unknown gas, called Esh-nugim Marookee Moo by the local
mushfoot natives. An extremely accurate spectral scan reveals
that the mass fraction to mole fraction ratio for methane
is 0.9341875 and the mole fraction of methane is
0.4281378. Determine the name of the unknown gas (in
English).

19. Methane, ethane, and propane, all ideal gases, are mixed
together in equal parts by mass to create a new “super” fuel gas.
Then, it is adiabatically compressed from 40.0°F to 1.75 ft3 at
300. psia, 80.0°F. Determine the work required.

20.* A chemical processing facility produces exhaust gases (46.0%
N2, 43.0% CO2, and 11.0% SO2 by volume) at a total pressure
of 0.320 MPa at 1000.°C. It is proposed that energy be
recovered from this gas by expanding it through a turbine to
atmospheric pressure. Assuming ideal gas behavior, determine
the maximum possible power output per unit mass flow rate for
this system.

21.* Two parts of molecular hydrogen gas are mixed with one part of
molecular oxygen gas (on a molar basis) at 2.00 MPa, 0.00°C
and expanded through a reversible nozzle from a negligible
inlet velocity to 292 m/s at the entrance to the combustion
zone of a rocket engine. Through a preheating process in the
nozzle, the gas mixture receives 1325.5 kJ per kg of mixture
of heat at 500.°C. Determine the exit pressure of the gas
mixture. Assume ideal gas behavior.

22. A diving experiment is to be performed with a mixture of
helium and air at a total pressure of 50.0 psia. The composition
must be such that the partial pressure of oxygen in the
compressed mixture is the same as that in air at standard
pressure and temperature (14.7 psia and 70.0°F). Assuming a
closed system and ideal gas behavior, determine
a. The work required to isentropically compress 2.70 lbm of

the mixture from 14.7 psia, 70.0°F to 50.0 psia.
b. The heat transfer required to aergonically cool the

compressed mixture back to 70.0°F again.
23.* Acetylene and oxygen are drawn from pressurized storage tanks

and mixed together in an oxyacetylene torch in a ratio of 5.00
parts of oxygen per 1 part acetylene on a volume basis. This
mixture flows reversibly through the torch from 0.140 MPa,
20.0°C, to atmospheric pressure at 173°C, at which point it is
ignited by the flame. The mean surface temperature of the
torch is 30.0°C, and it uses 0.100 m3/s of oxygen at STP
(0.101325 MPa, 20.0°C). Assuming ideal gas behavior,
determine the work and heat transfer rates.

24.* 18.0 m3/s of methane are mixed with 10.0 m3/s of isobutane
in a test of a new furnace gas. The mixture is preheated before
being ignited by passing it through an adiabatic, isobaric heat
exchanger. The second fluid in the heat exchanger is condensing
steam at 200.°C flowing at 8.30 kg/s. The steam enters as a
saturated vapor and exits with a quality of 21.0%. The gas
mixture enters at 20.0°C and exits at 150.°C (Figure 12.13).
Determine the entropy production rate of the heat
exchanger.

Qinternal

Steam at 200.°C
(xin = 1.00)

Methane
(20.0°C)
Isobutane
(20.0°C) 

Steam at 200.°C
xout = 0.210
pout = pin

Mixture at 150.°C
pout = pin

FIGURE 12.13
Problem 24.

25.* Air at 0.101 MPa and 50.0°C is saturated with water vapor. It is
to be aergonically heated to 80.0°C in a steady flow, isobaric
process by putting it in contact with an isothermal reservoir at
100.°C. Determine the heat transfer and entropy production
rates per unit mass flow rate if
a. The presence of the water vapor is ignored.
b. The presence of the water vapor is considered (as an ideal

gas).
c. Determine the percent error in the answer a due to the effect

of the water vapor.
26.* The combustion of 1.00 mole of octane, C8H18, yields 8 moles

of CO2, 9.00 moles of H2O, and 47.0 moles of N2. The exhaust
gases at 811 K, 0.172 MPa from a spark ignition engine are to
be expanded through a turbocharger used to compress the
incoming air charge to the engine. The incoming air is at 20.0°C
and atmospheric pressure, and the turbocharger turbine exhausts
to the atmosphere (Figure 12.14). Find the compressor’s
isentropic outlet temperature T2 and its isentropic power input
per unit mass flow rate _WC/ _m

� �
s:

Compressor Turbine

Engine

Turbocharger

2 3

Dry air Exhaust
41

FIGURE 12.14
Problem 26.

27. A pneumatic motor in a highly explosive environment uses a
mixture of the ideal gases argon and helium in equal parts on a
mass basis. The motor has inlet conditions of 150. psia at 500. R
and an exit pressure of 14.7 psia. If the motor must produce
3.00 hp of output power while operating in a steady state,
steady flow, reversible, and adiabatic manner, then
a. What is the exit temperature of the gas mixture?
b. What mass flow rate of the mixture is required?

28.* An insulated gas turbine is attached to the exhaust stack of an
oil-fired boiler in a power plant. The pressure and temperature
at the inlet to the turbine are 0.500 MPa absolute, 1000.°C and
the exit pressure is atmospheric. The exhaust gas analysis by
volume is 12.0% CO2, 2.00% CO, 4.00% O2, and 82.0% N2.
What is the maximum possible power output from this turbine
per kg of exhaust gas flowing through it? Assume that the
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exhaust gas is an ideal gas and ignore all kinetic and potential
energy effects.

29. An air–water vapor mixture at 14.7 psia, 100.°F, and 40.4%
relative humidity is contained in a 10.0 ft3 closed tank. The
tank is cooled until the water just begins to condense.
Determine the temperature at which condensation begins.

30. When the dew point of atmospheric air is between 60.0°F and
70.0°F, the weather is said to be humid, and when it is above
70.0°F it is said to be tropical. If the partial pressure of water
vapor in the air is 0.400 psia when the dry bulb temperature is
80.0°F, determine the relative humidity and whether the weather
is humid or tropical.

31. The volume fractions of the gases in the atmosphere of Mars
measured at the surface of the planet, where the total
atmospheric pressure is 0.112 psia, were found by the early
Viking I mission to be 95.0% CO2, 2.50% N2, 2.00% Ar,
0.400% O2, and 0.100% H2O. Determine
a. The partial pressure of the water vapor in the Martian

atmosphere.
b. The mass fractions of all the gases in the Martian

atmosphere.
c. The humidity ratio of the Martian atmosphere (consider the

Martian dry “air” to be everything in its atmosphere except
the water vapor).

32. An engineer at a party is handed a cold glass of beverage with
ice in it. The engineer estimates the outside temperature of the
glass to be 35.0°F and the room temperature to be 70.0°F. What
is the relative humidity in the room when moisture just begins
to condense on the outside of the glass?

33.* The list of cities in Table 12.6 includes representative wet and
dry bulb temperatures. Use the psychrometric chart to determine
their corresponding relative humidity, humidity ratio, dew point
temperature, and water vapor partial pressure.

34. People often clean eyeglasses by holding them near their mouths
and exhaling heavily on them. This usually causes the lenses to
“fog”; the moisture is then wiped off, and this process cleans the
lenses. Assuming the air in the lungs has a relative humidity of
75.0% at a dry bulb temperature of 100.°F, determine the
maximum temperature of the glasses that just causes moisture
droplets (i.e., “fog”) to form when cleaned in this manner.

35.* 7000 m3/min of air at 28.0°C and 0.101 MPa with a relative
humidity of 60.0% is to be cooled at constant total pressure to
its dew point temperature. Determine the required heat transfer
rate and indicate its direction.

36. 30 ft3/min of air with a dry bulb temperature of 90.0°F and a
relative humidity of 80.0% is to be cooled and dehumidified to

a dry bulb temperature of 65.0°F and a relative humidity of
50.0%. Determine (a) the wet bulb temperature of the air before
dehumidification, (b) the dew point temperature of the air after
dehumidification, (c) the amount of moisture removed during
the dehumidification process, and (d) the amount of heat
removed during the cooling part of the dehumidification
process.

37.* A room containing 275 m3 of air at 1.00 atm pressure is to be
humidified. The initial conditions are TDB = 24.0°C and
ϕ = 20.0%, and the final conditions are TDB = 20.0°C and
ϕ = 60.0%. Determine the mass of water that must be added to
the room air.

38. 1000. ft3/h of moist air at atmospheric pressure, 80.0°F and
70.0% relative humidity is to be cooled to 50.0°F at constant
total pressure. Find whether or not this can be done without the
removal of water from the air. If it cannot, determine the
minimum amount of water that must be removed in lbm/h.

39. A classroom contains 6000. ft3 of air–water vapor mixture at
1.00 atm total pressure. The dry bulb temperature is 70.0°F and
the wet bulb temperature is 65.0°F. Assuming a closed constant
total pressure system, determine the following:
a. The relative humidity.
b. The partial pressure of the water vapor.
c. The dew point.
d. The amount of water that must be added to or removed

from the air in the room to achieve 40.0% relative humidity
at the same dry bulb temperature.

40. 10,000. ft3/h of moist air at 14.7 psia and 75.0°F is to be cooled
to 45.0°F at constant total pressure. Find the amount (lbm/h) of
water condensed if the mole fraction of water in the inlet
mixture is 0.0260.

41.* Atmospheric air can be dehumidified by cooling the air at
constant total pressure until the moisture condenses out.
Suppose that air with a humidity ratio of 5.00 × 10−3 kg water
per kg of dry air must be achieved by cooling incoming
atmospheric air with a dry bulb temperature of 25.0°C and a
wet bulb temperature of 20.0°C.
a. To what temperature must the incoming air–water vapor

mixture be cooled to achieve a humidity ratio of 5.00 ×
10−3 kg water per kg dry air?

b. How much water must be removed per kg of dry air to
achieve this state?

42. Outside atmospheric air with a dry bulb temperature of 90.0°F
and a wet bulb temperature of 85.0°F is to be passed through
an air conditioning device so that it enters a house at 71.0°F
and 40.0% relative humidity. The process consists of two steps.

Table 12.6 Problem 33

City TWB TDB ϕ ω TDP Pw

Berlin 21.0°C 32.0°C

Chicago 75.0°F 97.0°F

Hong Kong 28.0°C 33.0°C

New York City 75.0°F 93.0°F

Paris 20.0°C 31.0°C

Rome 23.0°C 36.0°C

Tokyo 79.0°F 92.0°F
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First, the air passes over a cooling coil, where it is cooled below
its dew point temperature and the water condenses out until the
desired humidity ratio is reached. Then, the air is passed over a
reheating coil until its temperature reaches 71.0°F. Determine
a. The amount of water removed per pound of dry air passing

through the device.
b. The heat removed by the cooling coil in Btu/(lbm dry air).
c. The heat added by the reheating coil in Btu/(lbm dry air).

43.* An airstream with a mass flow rate of 2.00 kg/s, a dry bulb
temperature of 10.0°C, and a wet bulb temperature of 8.00°C is
mixed with an airstream having a mass flow rate of 1.00 kg/s, a
dry bulb temperature of 40.0°C, and a wet bulb temperature of
35.0°C. For the resulting mixture, determine the (a) humidity
ratio, (b) psychrometric enthalpy, (c) relative humidity, (d) dry
bulb temperature, (e) wet bulb temperature, and (f) dew point
temperature.

44.* Exactly 200 m3/min of air with a dry bulb temperature of
7.00°C and a wet bulb temperature of 5.00°C is continuously
mixed with 500. m3/min of air with a dry bulb temperature
of 32.0°C and a relative humidity of 60.0%. The mixing
chamber is at atmospheric pressure and is electrically heated
with a power consumption of 3.00 kW. For the resulting
mixture, determine (a) the dry bulb temperature, (b) the wet
bulb temperature, (c) the dew point temperature, and (d) the
relative humidity.

45.* 100. kg of atmospheric air (whose composition is given in
Example 12.2) is cooled in a 0.500 m3 constant volume
container to 200. K. Determine the mixture pressure using
Dalton’s compressibility factor. Compare this result with that
obtained by assuming ideal gas (i.e., Zm = 1.00) behavior.

46. Show that the ratio of the Amagat specific volume, vAi = VAi/mi,
to the Dalton specific volume, vDi = Vm/mi, of gas i can be
written as vAi/vDi = ZAipDi/ZDipm.

47.* Atmospheric air, whose composition is given in Example 12.2, is
compressed to 1000. atm at 0.00°C. Determine the density of
the compressed air using Amagat’s compressibility factor and
compare this result with that obtained by assuming ideal gas
(i.e., Zm = 1.00) behavior.

48.* In normal psychrometric analysis at or below atmospheric
pressure, both the air and the water vapor are treated as ideal
gases. However, at high pressures, this assumption is no longer
valid. Determine the relative humidity (ϕ) that results when
10.0 g of water are added to 1.00 kg of dry air at a total pressure
of 10.0 MPa at 350.°C. Assume Amagat’s compressibility factor is
valid here and compare your result with that obtained by
assuming ideal gas behavior.

49.* 0.500 m3 of a mixture of 35.0% acetylene (C2H2), 25.0%
oxygen (O2), 20.0% hydrogen (H2), and 20.0% sulfur dioxide
(SO2) on a mass basis is to be adiabatically compressed in a
piston-cylinder arrangement from 1.00 atm, 20.0°C to 100. atm
and 300.°C.
a. Using Kay’s law, find the final volume of the mixture.
b. Assuming constant specific heats, determine the work

required per unit mass of mixture.
50.* A mixture of 80.0% methane and 20.0% ethane on a molar

basis is contained in an insulated 1.00 m3 tank at 3.00 MPa
and 50.0°C. An automatic flow control valve opens, causing
the tank pressure to drop quickly to 2.00 MPa before it closes
again.

a. Calculate the mass that escaped from the tank using Kay’s
law.

b. Determine the equilibrium tank temperature when the
control valve closes, assuming that the gas remaining in the
tank underwent a reversible process.

51.* 6.00 kg of hydrogen gas (H2) is mixed with 28.0 kg of nitrogen
gas (N2) and compressed to 40.5 MN/m2 at 300.°C. At this
state, the specific volume of the mixture is measured and found
to be 0.0160 m3/kg. Determine the specific volume of this state
as predicted by each of the following models and calculate the
percent deviation from the measured value.
a. Ideal gas model.
b. Dalton’s law compressibility factor.
c. Amagat’s law compressibility factor.
d. Kay’s law.

52.* Determine the total mixture volume when 1 kgmole each of
hydrogen (H2) and helium (He) gases are mixed at 15.0 atm
and 40.0 K, using
a. Dalton’s law compressibility factor.
b. Amagat’s law compressibility factor.
c. Kay’s law.
d. Which of the three results do you believe is the most

accurate, and why?

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary thermal design as indicated. A detailed
design with working drawings is not expected unless otherwise spe-
cified. These problems do not have specific answers, so each stu-
dent’s design is unique.

53. Design an electrically driven sling psychrometer to produce the
wet and dry bulb temperatures on digital readouts. The
finished product must cost less than 30.0 h of minimum wage
pay and be battery powered. If possible, fabricate and test your
design. (Suggestion: Try designing around inexpensive, “off the
shelf” components.)

54. Design an apparatus to measure the dew point of an air sample
based on the cooling of a mirrored surface until it fogs. If
possible, build and test this apparatus. (Suggestion: Consider
thermoelectric cooling of a polished metal plate.)

55.* Design a system to remove the respiration carbon dioxide from
inside a spacecraft and replace it with oxygen. Use a living
quarters volume of 10.0 m3 with the crew generating a
maximum of 2.00 × 10−5 m3/s of CO2. Assume the mixture
enters your system at 30.0°C and exits it at 20.0°C. Maintain
the same oxygen partial pressure in your mixture as that in
atmospheric air at 0.1013 MPa and 20.0°C.

56.* Design a system to remove the respiration carbon dioxide
from inside a submarine and replace it with oxygen. The air
volume of the submarine is 1000. m3, and the crew can
generate a maximum of 1.30 × 10−3 m3/s of CO2. The
submarine must be able to achieve a depth of 300. m. Assume
the air mixture enters your system at 30.0°C and exits at
20.0°C. Maintain the oxygen partial pressure at all times in
your mixture equal to that in atmospheric air at 0.1013 MPa
and 20.0°C.
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57.* Cooling towers are large evaporative cooling systems that can be
used to transfer heat from warm water to the atmosphere by
evaporation of the water to be cooled. Prepare a preliminary
design for a cooling tower that will cool 30,000 kg/s of water
from 40.0°C to 30.0°C. Atmospheric air enters at 20 ± 10°C with
a relative humidity of 45 ± 15%. Establish the overall physical
dimensions of the cooling tower, air flow rate, water pumping
power, fan power (if forced convection is used), makeup water
requirements, air exit conditions, and so forth (Figure 12.15).

Water
spray

Fan

Cool dry
air in

Warm
water

Cooled
water

Makeup
water

Warm moist air out

FIGURE 12.15
Problem 57.

Computer Problems
The following open-ended computer problems are designed to be
done on a personal computer using a spreadsheet or equation solver.

58. Develop a computer program that returns all four ideal gas
mixture composition fractions when any one composition
fraction is input for an arbitrary mixture of ideal gases. Have the
user input the values of the gas constant, molecular masses,
number of gases in the mixture, and anything else you need to
make the appropriate calculations. Make sure the user enters the
input variables in the proper units, and make sure that correct
units appear with the output values.

59.* Develop a simple computer version of the gas tables (Table C.16
in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics) for an arbitrary mixture of ideal gases with
constant specific heats. Input the composition (on a mass, molar,
or volume basis), specific heats (in proper units), and temperature
from the keyboard. Output, in a properly formatted manner, the
values of u, h, ϕ, pr, and vr with correct units. Use reference levels of
h0 = ϕ0 = 0 at T0 = 300. K and p0 = 1.00 atm.

60.* Modify Problem 59 by adding the mixture pressure to the list of
keyboard input variables and output the specific entropy s instead
of ϕ. Use s0 = ϕ 0 = 0 at T0 = 300. K and p0 = 1.00 atm.

61.* Create an accurate expanded version of the gas tables (Table C.16)
for an arbitrary mixture of ideal gases with temperature-
dependent specific heats. Allow the user to choose the gases in

the mixture from those you list in a screen menu. Have the user
input the composition (on a mass, molar, or volume basis), the
pressure, and the temperature from the keyboard in response to
screen prompts. Output the values of u, h, s, pr, and vr with
correct units. Use reference levels of h0 = s0 = 0 at T0 = 300. K
and p0 = 1.00 atm.

62. The saturation pressure curve for ammonia (NH3) can be
approximated with
psat = exp A−B/TDB −C lnTDBð Þ−D TDBð Þ+ EðT2

DBÞ
� 


, where psat is
in psia, TDB is in R, and A = 58.88706, B = 8.58730 × 103,
C = 6.40125, D = 9.55176 × 10−4, and E = 3.39860 × 10−6.
Equation (12.28) can be modified to give the humidity ratio ω
of an air-ammonia mixture as follows:

ω = ðMNH3/MaÞ½pNH3/ðpm − pNH3Þ� = 0:588½pNH3/ pm − pNH3ð Þ�

Using these equations and Eq. (12.24), develop an interactive
computer program in English units that returns properly
formatted values for pm, TDB, ϕ, and ω for an air-ammonia
mixture, when
a. pm, TDB, and ϕ are input from the keyboard.
b. pm, TDB, and ω are input from the keyboard.
Make sure the user is prompted for the input variables in the
proper units, and that correct units appear with the output values.

63. Modify the program of Problem 62 to allow the user to
separately choose either English or Metric (SI) units for the
input and the output values.

64.* Using Eqs. (12.24) and (12.26a) and the four equations that
follow,10 develop an interactive computer program in metric
(SI) units that replaces the psychrometric chart of Chart D.6.
Prompt the user for keyboard input of atmospheric pressure pm,
atmospheric temperature TDB, and either the relative humidity ϕ
or the humidity ratio ω. Return to the screen properly formatted
values (with units) for pm, TDB, TDP, ω, ϕ, h

#, and va.
a. psat = 0.1 exp[14.4351 − 5333.3/(TDB + 273.15)], for

0 ≤ TDB ≤ 38°C
b. TDP = 5333.3/[14.4351 − ln(pw/0.1)] − 273.15, for 0 ≤ TDP

≤ 38°C
c. h# = 1.005(TDB) + ω[2501.7 + 1.82(TDB)]
d. va = ð0:286×10−3ÞðTDB +273:15Þ/ pm − pwð Þ
where psat, pm, and pw are in MPa; TDB and TDP are in °C; h# is in
kJ/(kg dry air); and va is in m3/(kg dry air).

65.* Modify the program of Problem 64 to allow the user to
separately choose either metric (SI) or English units for the
input and the output values.

66.* Expand Problem 65 by adding Eq. (12.31) to your program.
In Eq. (12.31), let ω1 = ω, T1ω = TDB, T2 = TWB, and use
cpa = 1.005 kJ/(kg · K). Also, use11

e. hg1 = 2501.7 + 1.82(TDB)
f. hf2 = 4.194(TWB)
g. hfg2 = 2501.7− 2.374(TWB)
h. ω3 = 0.622psat/(pm− psat)
where hg1, hf2, and hfg2 are in kJ/kg, T is in °C, and psat is
evaluated at TWB and obtained from Eq. (a) in Problem 64 by

10 These equations are from Liley, P. E., 1980. Approximations for the thermodynamic properties of air and steam useful in psychrometric calculations.
Mech. Eng. News 17 (4), 19–20.
11 These equations also are from Liley, P. E. Approximations for the thermodynamic properties of air and steam useful in psychrometric calculations.
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replacing TDB with TWB. The wet bulb temperature can now be
used as an input parameter. Prompt for inputs of pm, TDB, and
either TWB, ϕ, or ω. Return to the screen properly formatted values
(with appropriate units) of pm, TDB, TWB, TDP, ω, ϕ, h

#, and va.

Special Problems
67. The implicit function theorem from calculus tells us that if

MVm/MTm ≠0 in Eq. (12.5), then we can write the temperature
Tm of a mixture of N gases as a function of the mixture total
volume Vm, mixture total pressure pm, and the mass
composition of the mixture m1, m2, … , mN as

Tm = TmðVm, pm,m1,m2,… ,mNÞ
However, when the total volume and pressure of the mixture are
constant, this generally is not a homogenous function of the first
degree in the masses mi. The temperature usually varies inversely
with the system mass in most equations of state for gases and
vapors. Consequently, when the mixture masses are multiplied
by an arbitrary constant λ, the mixture temperature is multiplied
by 1/λ, or

ð1=λÞTm = Tmðpm,Vm, λm1, λm2, : : . , λmNÞ
Show that differentiating this equation with respect to λ while
holding the mixture pressure and volume constant gives

∂ðTm/λÞ
λ

� �
pm ,Vm

= −Tm
λ2

jpm ,Vm

=
∂Tm
∂λm1

� �
∂λm1

∂λ

� �
+ …+

∂Tm
∂λmN

� �
∂λmN

∂λ

� �
= ∂Tm

∂λm1

� �
m1 + …+ ∂Tm

∂λmN

� �
mN

and setting λ = 1 gives

Tm j pm ,Vm= − ∂Tm
∂m1

� �
m1−…− ∂Tm

∂mN

� �
mN =∑

N

i=1

m1T̂i=∑
N

i=1

Ti

where

T̂i= − ∂Tm
∂mi

� �
pm ,Vm ,mj

Can we then define Ti to be the partial specific temperature of gas
i in the mixture and define Ti=miT̂i to be the partial temperature
of gas i in the mixture (Figure 12.16)? Does this lead us to a
fourth composition measure, the temperature fraction?

Mixture
pressure

pm

Is this the partial
temperature of gas i

Ti ????

Gas i at the mixture volume
Vm

FIGURE 12.16
Problem 67.

Is this the temperature fraction of gas i in a mixture of gases?

τi = Ti=Tm

Also, in the case of a mixture of ideal gases, can the following
interpretation be developed similar to the Dalton and Amagat law
ideal gas partial pressure and partial volume? Can the partial
temperature of ideal gas i (Ti ) be defined as the temperature
exhibited by ideal gas i when it alone occupies the volume of the
mixture Vm at the pressure of the mixture pm? Or,

Ti =
pmVm

miRi
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CHAPTER 13

Vapor and Gas Power Cycles
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13.1 BEVEZETÉSÉNEK (INTRODUCTION)
The material in this chapter embodies the heart and soul of applied thermodynamics. Because of the human
and cultural impact this technology has had on society, the material is presented chronologically to provide a
historical framework for its study. It is important that engineers today develop an understanding of the relative
effect the technology they create can have on society. Therefore, the normally dry technical aspects of this enor-
mously powerful technology have been augmented with a small amount of relevant humanistic information in
the hope of giving it an interesting perspective.

The first part of this chapter deals with vapor power cycles and their associated technology. Were it not for this
technology, the Industrial Revolution that began in the mid 18th century would not have taken place, and the
world would be a much different place today. The section begins with basic definitions of engines, machines,
and heat, then moves on to a detailed discussion of the Rankine cycle and its various attributes. The section
ends with a discussion of modern power plant thermodynamic cycles and technology.

The second part of this chapter focuses on gas power cycles. These power cycles were originally developed as an
alternative to dangerous vapor cycle engines. The Stirling, Ericsson, and Brayton cycles are external combustion
cycles, meaning that the combustion process takes place outside the prime mover. The Lenoir, Otto, and Diesel
cycles, on the other hand, are internal combustion cycles, with the combustion process taking place inside the
engine itself. Gas power cycle technology has also had a profound impact on our culture. Gas power cycles have
come to dominate portable power systems, such as automobiles, ships, trains, and airplanes. A great deal of the
petroleum imported into the United States goes to fuel the machines powered by these cycles. Part II of this
chapter covers the thermodynamics of these cycles in detail. As engineers, we are particularly concerned with
understanding how the cycle thermal efficiency depends on design variables, such as compression ratio and
combustion temperature.

13.2 PART I. ENGINES AND VAPOR POWER CYCLES
We need to start out with a clear understanding of some of the terminology we use in this chapter. By looking
at the historical roots of words like machine and engine, we discover the true meaning of our profession—
engineering.

13.2.1 What Is a Machine?
The English word machine is from the Greek word μηχανη, meaning a device consisting of interrelated parts with
separate functions. Until the mid 19th century, the terms engine and machine were used interchangeably (though
an “engine” is more than just a machine—it is an ingenious machine). These machines were normally driven by
either animal, wind, or water power and would be referred to as animal (or horse) engines, wind (or air)
engines, or water (or hydraulic) engines, respectively.

13.2.2 What Is an Engine?
The English words engine and ingenious are derived from the same Latin root word ingignere, meaning “to
create.” About AD 200 Tertullian1 referred to a military battering ram in Latin as an ingenium or product of
genius, and soon thereafter the word ingen was used in Latin to describe all military machines (catapults,
assault towers, etc.). The Latin word ingen then became assimilated into English but its spelling was changed
to engine.

1 Quintus Septimius Florens Tertullianus (ca. AD 150–230) was an early Christian author who helped establish Latin (rather than
Greek) as the language of Christianity. He coined many new Latin words and phrases as he wrote about the moral and practical
problems facing the early Christians of his time (proper dress, military service, marriage and divorce, arts, theater, etc.).
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13.2.3 What Is an Engineer?
In English, the –er ending to a word often means someone who does something. For example, someone who
sings is a singer, someone who builds is a builder, and someone who writes is a writer. So, naturally, someone
who creates ingenious things is called an engineer. That is where the name of our profession comes from. In
French and German, the word engineer is translated as ingenieur, and in Italian, it is ingegnere. So, engineers are
the people who create ingenious solutions to society’s problems. We are the engineers.

13.2.4 What Is a Heat Engine?
The vast number of different engines (or machines) developed over time are usually classified either generally
according to their source of power (animal, wind, water, etc.) or specifically according to their function. For
example, beginning in the medieval period, an ingenious machine (an ingen or engine) was simply called a gin
(a contraction applicable to either ingen or engine).2 So when, in 1793, Eli Whitney (1765–1825) built an
ingenious engine (or machine) for removing the seeds from raw cotton, his “cotton engine” became known as a
cotton gin. A calculating engine is a machine whose function is to make calculations (e.g., an adding machine),
whereas a pneumatic engine is an engine whose source of power is air pressure.

A heat engine is any machine whose source of power is heat (fire, steam, solar, etc.), and whose specific function
is undefined (i.e., it simply produces work, which can be mechanical, electrical, chemical, etc., in nature).

Initially, heat engines simply produced mechanical work that was used directly (e.g., in manufacturing) or else
they were connected to other engines. For example, they were often connected to pumping engines (pumps) to
move water and later to electrical engines (generators) to generate electricity. Most heat engines use either a
vapor or a gas as the internal energy transfer medium (even a thermoelectric device can be thought of as trans-
porting energy via an internal electron gas). Typical heat engine characteristics are shown in Table 13.1.

We call the device that actually produces the heat engine’s output work the prime mover. A prime mover can be a reci-
procating piston-cylinder steam engine, a steam turbine, an internal combustion engine, and so forth. Figure 13.1
illustrates these terms.

It is common to use the words engine and prime mover interchangeably when referring to reciprocating piston-
cylinder devices. We follow this custom in this textbook when no confusion is likely to occur.

The reason heat engines are so important to the study of thermodynamics is that the history of heat engine tech-
nology is essentially the history of the Industrial Revolution. The heat engine whose prime mover was the recipro-
cating piston steam engine was the first large-scale source of portable mechanical power. It was a source of power
that did not depend on wind or river and could therefore be located anywhere. The heat engine is still the primary
source of power for travel and electricity today, and it is likely to remain so for the foreseeable future.

Table 13.1 Some Typical Heat Engine Characteristics

Heat Sources Heat Sinks
Working
Fluid

Work Output
Prime Movers Cycle Types Uses

Combustion Atmosphere Gas Engine Power Transportation

Nuclear Oceans, lakes Vapor Turbine Refrigeration Generate electricity

Atmosphere Rivers Vapor Reversed engine Heat pump Heating and cooling

Ocean Groundwater Vapor Solid state (e.g.,
thermoelectric)

Power Generate electricity

QH QL

Wout

Prime moverHeat source Heat sink

Heat engine

FIGURE 13.1
Heat engine terminology.

2 The alcoholic beverage gin (a spirit distilled from grain and originally flavored with the juice of juniper berries) is a contraction of
the word geneva, which comes from the Latin juniperus.
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THE EVOLUTION OF STEAM POWER

Heat engine steam power technology began in 1698, when Thomas Savery (1650–1715) was granted a patent by King
William III of England for “an engine for raising water by the impellant force of fire.” Savery’s machine was designed to
pump water from flooded English mines, and he called it a fire engine because it drew its power from the fire under the
boiler rather than from horses or wind. Its only moving mechanical parts were hand operated valves and automatic check
valves. It drew water by suction when a partial vacuum was created as steam condensed inside a pumping chamber. The
operation of this engine is shown in Figure 13.2.

Savery’s engine could not draw water from a depth of more than about 20 ft (6.1 m), and it was somewhat dangerous
because of the relatively high boiler pressure required to push the water out through the discharge pipe. Boiler technology
had not advanced beyond that of the brewing industry then in existence, and many boiler explosions are known to have
occurred. Nonetheless, Savery’s engine was an enormous economic success. It used fire to pump water, which was some-
thing that no other engine could do, and it was the first technologically successful heat engine. In spite of its large size and
rather primitive use of steam, its simplicity made it a popular means of pumping water through short distances. Engines of
this design were in continuous use in England until 1830.

Discharge
pipe

Spray water
valve

Steam
valve

Spray water to
condense the steam
in the pumping chamber

Pumping
chamber

Pumping chamber
exit valve

Suction
pipe

Mine flood
water

Pumping chamber
inlet valve

Fire

Boiler

Sieve

FIGURE 13.2
A schematic of the operation of Savery’s fire engine. Steam was generated in the boiler at 100–150 psig. To operate the engine, the
manual control valve was opened to fill the pumping chamber with steam. This valve was then closed and cold water was allowed to flow
over the outside of the pumping chamber, causing the steam inside to condense and form a partial vacuum. Atmospheric pressure (acting
on the surface of the mine water) then forced the water from the flooded mine up through the suction pipe and into the pumping chamber.
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By 1712, Thomas Newcomen (1663–1729), an English blacksmith, had devised a better steam engine, which could pump
water from very great depths while simultaneously eliminating the need for a high boiler pressure. A schematic of the
operation of his engine is shown in Figure 13.3. He introduced a piston-cylinder arrangement in place of Savery’s pumping
chamber, with the piston attached to one end of a walking beam and a positive displacement piston-cylinder pump,
located deep in the mine, attached to the other end of the walking beam. The pump end was counterweighted so as to
hold the driving piston at the top of its stroke. When low-pressure (3 to 5 psig) steam was introduced under the driving
piston and condensed using a cold water spray, the resulting partial vacuum allowed atmospheric pressure to push the driv-
ing piston down (thus charging the pump with water). Venting the driving piston to the atmosphere allowed the counter-
weight to drop, thus pumping the water. These engines typically ran at a speed of about ten cycles per minute.

Opening the manual valve again allowed steam from the boiler to force this water out through the vertical discharge pipe.
A skilled operator could run this engine at about five cycles per minute.

Since both the Savery and Newcomen engines depended on creating a partial vacuum by condensing steam and using atmo-
spheric pressure to cause the necessary motion, they are called atmospheric engines. Also, since both engines alternately heated
and cooled large metal chambers (Savery’s pumping chamber and Newcomen’s piston-cylinder) during each cycle of operation,
both had very low thermal efficiencies (a fraction of 1%). But, since the concept of thermal efficiency had not yet been devel-
oped, their poor thermal performance went undetected. However, as the technology advanced and more engines came into use,
it became clear to their owners that they required an enormous amount of fuel (wood or coal) to keep them operating.
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FIGURE 13.3
A schematic of the operation of Newcomen’s steam engine. When the cylinder has been filled with steam, the driving piston rises
and the weight of the pump rod forces a stroke on the pump (not shown) at the bottom of the mine shaft. The steam valve is then
closed and the injection water valve opened. The cold water jet condenses the steam in the cylinder, producing a partial vacuum.
Atmospheric pressure (acting on the top of the driving piston) forces the driving piston down, and the walking beam lifts the pump
rod and makes the engine ready for another pumping cycle.
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By the late 1760s, John Smeaton (1724–1792)3 had undertaken a study of the fuel efficiencies of a number of
England’s Newcomen steam engines. He called his measure of fuel efficiency the duty of the engine, and he
defined it as follows:

The duty of a pumping engine is equal to the number of pounds of water that are raised one foot in height
by the engine’s pump when one 84.0 lbm bushel of coal is burned in the boiler.

Because Smeaton’s efficiency (duty) was applied to the total energy conversion process from chemical input
(coal) to work output (water pumped), it constituted a measure of the overall system efficiency that included
the boiler and pump efficiencies and the efficiency of the piston-cylinder operation. By assuming the average
energy content of coal to be 1.30 × 103 Btu/lbm, we can easily convert Smeaton’s duty measurements into over-
all thermal efficiencies. One 84.0 lbm bushel (bu) of coal = (1.30 × 103 Btu/lbm)(84.0 lbm/bu)(778.16 ft · lbf/
Btu) = 8.50 × 108 ft · lbf of energy. Defining thermal efficiency ηT as the ratio of net output (pounds of water
raised 1 ft) to net input (ft · lbf of energy of coal consumed), we obtain (in percent)

ηTðin%Þ = Duty
8:50 × 108

× 100 (13.1)

EXAMPLE 13.1
In 1765, John Smeaton built a small steam engine with a 10.0 in (0.254 m) diameter piston having a 38.0 in (0.965 m)
stroke and found that, when it was used to drive a water pump, it could pump 291,900 lbf of water 10.0 ft high when one
84.0 lbm bushel of coal was burned in the boiler. Determine the duty and thermal efficiency of this engine.

Solution
The work required by Smeaton’s engine to raise 291,900 lbf of water 10.0 ft in height was mg(Δh) = 2,919,000 ft · lbf.
Therefore, it could have raised 2,919,000 lbf of water 1 ft in height using the same amount of work. Since the duty of
any engine is the amount of water it can raise 1 ft when one 84.0 lbm bushel of coal is burned in the boiler, the duty of
Smeaton’s engine is 2,919,000. Note that, because of the way duty is defined, it is expressed without units or dimensions.
Then, Eq. (13.1) gives the thermal efficiency of Smeaton’s engine as

ηT =
Duty

8:5 × 108
× 100 = 2,919,000

8:5 ×108
× 100 = 0:344%

His engine was not very efficient.

Exercises
1. Suppose Smeaton’s engine in Example 13.1 had pumped 291,900 lbf of water 15.0 ft high. What would its duty and

thermal efficiency be in this case? Answer: Duty = 4,378,500 and ηT = 0.515%.
2. How high would Smeaton’s engine in Example 13.1 have to pump 1.00 lbf of water to have a duty of 5,000,000?

Answer: Δh = 5,000,000 ft.
3. What would be the duty of Smeaton’s engine in Example 13.1 if it had a thermal efficiency of 10%?

Answer: Duty = 85.0 × 106.

For five years, Smeaton collected duty measurements for over 30 Newcomen pumping engines and found they
had an average duty of 5,590,000, which corresponds to an average overall thermal efficiency of 0.65%. With
these results he was able to conclude that large diameter pistons with short strokes made the most efficient
engines. Using this result and improved cylinder boring techniques (necessary to reduce piston leakage), he was
able to build an engine with a 52.0 in (1.32 m) diameter piston and a 7.00 ft (2.13 m) stroke in 1772 that had
a duty of 9,450,000 and an overall thermal efficiency of 1.11%. Thus, he was able to produce an engine with
double the efficiency of the average Newcomen engine simply by using his experimental observations to optimize
its design.

3 John Smeaton was a successful English engineer. In about 1750, he introduced the name civil engineer for any nonmilitary engineer
(civil being simply a contraction of the word civilian). In 1771, he started the British Institution of Civil Engineers (the world’s first
professional engineering society). This was followed by the founding of the British Institution of Mechanical Engineers in 1847 by
George Stephenson (1781–1848). In America, the American Society of Civil Engineers (ASCE) was founded in 1852. This was followed
by the American Institute of Mining Engineers (AIME) in 1871, the American Society of Mechanical Engineers (ASME) in 1880, the
American Institute of Electrical Engineers (AIEE) in 1884, the Society of Automotive Engineers (SAE) in 1904, American Institute of
Chemical Engineers (AIChE) in 1908, and many others.
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WHO WAS JAMES WATT?

James Watt (1736–1819) was a young Scottish machinist at the College of Glasgow and, in 1764, was given the job of
repairing a classroom teaching scale model of a Newcomen engine. The engine was not actually broken. Its problem
was that it consumed so much steam that its boiler was empty after only a few cycles of operation and consequently
it soon stopped running. Watt discovered that this was due to the alternate heating and cooling of the piston-cylinder
unit during the condensation and reheat portions of each cycle. Part of the thermal energy contained in the steam
had to be used to reheat the piston and cylinder after the condensation process was brought about by the cold water
jet. This energy therefore became unavailable for doing mechanical work. The small size of the scale model engine
had magnified this effect to the point where the engine was so inefficient that it would run for only a few cycles
before using up all the steam available in the boiler.4 Several months later, he realized that, if the steam was
condensed not inside the piston-cylinder unit, but outside of it in a separate condenser chamber, then the piston and
cylinder could be continuously kept at the high temperature of the steam. This way, the piston-cylinder unit would
not have to be reheated during each cycle of the engine and the steam consumption would be greatly reduced. From
this simple observation was born one of the most significant technological innovations of the 18th century, the
separate steam condenser.

With the addition of a condenser unit, the efficiency of a full-size Newcomen engine was increased several-fold. This
meant that these engines could be reduced in size somewhat (most Newcomen engines at that time were as big as a
two-story house) and adapted to other uses than pumping water out of flooded mines. The smaller Watt engines
provided the medium-scale power sources necessary to bring about the onset of centralized manufacturing, which was
the beginning of the Industrial Revolution. How Watt added a separate condenser to a standard Newcomen pumping
engine is shown in Figure 13.4.
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FIGURE 13.4
Watt’s condenser added to a Newcomen pumping engine. Automatic valves alternately admit steam from the boiler to the proper
side of a double-acting piston inside a steam jacketed cylinder, then into a separate condenser unit.

In 1775, Watt entered into a business partnership with the British industrialist Matthew Boulton (1728–1809) for the
purpose of manufacturing his version of the external condenser Newcomen engine. Boulton provided the financial support
(and consequently took two thirds of the patent rights) and Watt was responsible for the engineering and manufacturing
activities.

(Continued)
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WHO WAS JAMES WATT? Continued

The Boulton and Watt company was very successful
and manufactured steam engines for many years, includ-
ing the engine used in 1807 by Robert Fulton (1765–
1815) on the first American steamboat, the Clermont
(Figure 13.5).

Over the years Watt made many important technological
advances including automatic controls (the centrifugal
governor), safety devices (the pressure gauge), and effi-
ciency improvements (the double-acting cylinder).

The term horsepower was introduced by Savery as a measure
of how many horses driving a mechanical pump were
replaced by his fire engine. However, as a unit of power
measurement, it lacked a precise definition until Watt car-
ried out experiments in about 1780 to determine how
much power an average horse could deliver on a continuous
basis. He then multiplied this value by a factor of 2 to
ensure that, when he sold engines rated at a given horse-
power, the purchasers would have no complaints as to their performance. Using this technique, he finally arrived at
the figure of 33,000 ft·lbf/min as his horsepower definition. In addition to his conservative two-horse horsepower
definition, some other equivalences that Watt felt were valid are 1 horsepower = 2 average horses = 3 powerful oxen = 12 men
working cranks = 396 gallons of water falling 10 ft in 1 min. Much later, the electrical unit of power was named after
him, 1 watt = 1 volt ·ampere (and 1 hp = 746 W).

By 1800, Watt’s improvements had increased the thermal efficiency of a full-size Newcomen steam engine by about a factor
of 4. But, even then, the overall thermal efficiency was only around 4 or 5%. This was to be the upper limit of atmospheric
engine thermal efficiency, because they were soon to be replaced by a new technological breakthrough: the high-pressure,
expansion steam engine.5

4 This occurred because small-scale models magnify the inefficiencies that arise from heat loss from the engine’s surface to the atmosphere. Since the
surface area to volume ratio of a given geometric shape always increases as the physical dimensions of the shape decrease, small heat engine models are
inherently much less efficient than their full-scale counterparts.
5 It has been estimated that the upper limit of the thermal efficiency of the reciprocating atmospheric steam engine using the technology available in 1915
was less than 15%.

BOILER EXPLOSIONS AND EXPANSION STEAM ENGINES

Before the early 19th century, high-pressure steam (anything over about 10 psig) was considered extremely dangerous.
Explosions of the primitive boilers of Savery’s time caused much damage and loss of life and traumatized steam engine
manufacturers. But new boiler materials and manufacturing and testing techniques in the early 1800s allowed operational
steam pressures many times the single atmosphere of pressure available to Watt’s engines. Engines of 100 psig were com-
mon by 1840, and 200 psig was in use by 1880. High-pressure engine technology brought another quantum leap in ther-
mal efficiency, another factor of 3, from Watt’s 4 to 5% in 1800 to 12 to 15% by 1850.

High-pressure engines used the pressure of the steam to push the piston by expanding against it, rather than having atmo-
spheric pressure push the piston into a vacuum as the atmospheric engines had done. Thus, they were known as expansion
engines. By the 1820s, high-pressure engines were sufficiently efficient that Watt’s condenser unit was no longer considered
to be essential, and consequently the steam was often exhausted from the cylinder directly into the atmosphere. The con-
denser always increased the engine’s thermal efficiency somewhat, but if the piston-cylinder was not cooled during each
cycle (as it was in the Newcomen atmospheric engines but not in the newer expansion engines), this effect was minimal.
The elimination of the condenser and its attendant pump simplified the engine’s construction and further reduced its cost
and size, with only a small loss in thermal efficiency. At this point, the steam engine was finally small enough to become
truly portable and its application to locomotion on land (railroads) and water (steamboats) produced new transportation
technologies that changed the face of the world.

FIGURE 13.5
An illustration of Robert Fulton’s steamboat Clermont.
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EXAMPLE 13.2
In 1807, Robert Fulton (1765-1815) successfully piloted his walking beam paddlewheel steamboat Clermont from New York
City to Albany, New York (see Figure 13.5). His single-cylinder engine was made by the Boulton and Watt steam engine
manufacturing company in England and produced 20.0 hp with a piston diameter of 2.00 ft and a piston stroke of 4.00 ft.
The two side paddlewheels were 15.0 ft in diameter. The boiler was made of copper and it weighed 4,000 lbf dry. If the
engine had a duty of 35.0 million and ran at 18.0 strokes per minute, then determine:

a. The average pressure of the cycle.
b. The actual thermal efficiency of the engine.
c. The heat rate produced by the boiler.

Solution
a. The average cylinder pressure of the engine can be determined by setting the calculated power produced by the piston

equal to the actual power produced by the engine, or

_Wout = ðpavgÞ× ðPiston displacementÞ× ðPiston strokes/minÞ

= ðpavgÞ×
πðDpistonÞ2

4

 !
ðPiston strokeÞ

" #
× ðStrokes/minÞ

= ðpavgÞ× πð2:00Þ2
4

ft2
� �

ð4:00 ft/StrokeÞ
� 	

× ð18:0 Strokes/minÞ

= ðpavgÞ× ð226 ft3/minÞ

Now, _Wout = 20 hp = (20 hp)(33,000 ft · lbf/hp ·min) = 660,000 ft · lbf/min, so

pavg =
660,000 ft . lbf/min

226 ft3/min
= 2918 lbf/ft2 =

2918 lbf/ft2

144 in2/ft2
= 20:3 lbf/in2

b. From Eq. (13.1), we have

ηTð%Þ = Duty
8:5 × 108

× 100 = 35:0 × 106

8:50 × 106
= 4:12%

c. The heat rate produced by the boiler can be found from the thermodynamic definition of the thermal efficiency as
ηT = _Wout= _Q boiler . Then,

_Q boiler =
_Wout

ηT
=

ð20:0hpÞð2545Btu/hp .hÞ
0:0412

= 1:24 ×106Btu/h

Exercises
4. Determine the average cycle pressure in Example 13.2 if the engine produces 30.0 instead of 20.0 hp and all the other

variables remain unchanged. Answer: pavg = 27.3 psi.
5. Determine the actual thermal efficiency of the engine in Example 13.2 if it has a duty of 26.0 × 106 instead of

35.0 × 106 and all the other variables remain unchanged. Answer: ηT = 3.06%.
6. Determine the heat rate produced by the boiler in Example 13.2 if the engine produces 25.0 instead of 20.0 hp, and all

the other variables remain unchanged. Answer: _Q boiler = 1.55 × 106 Btu/h.

WHAT IS A STEAM ENGINE INDICATOR?

In an effort to continue to improve the performance of his steam engines, Watt wanted to know how the pressure varied
with piston position inside the cylinder as the engine was running. About 1790, he developed an ingenious device for this
purpose (Figure 13.6), which he called a steam engine indicator. This device drew the actual pressure–volume diagram of the
steam inside the cylinder as the engine was running. Such p�V diagrams soon became known as indicator diagrams, and the
area enclosed by these diagrams represented the reversible work produced inside the engine.

(Continued)
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WHAT IS A STEAM ENGINE INDICATOR? Continued

FIGURE 13.6
Steam engine indicator.

13.3 CARNOT POWER CYCLE
In Chapter 7, we discuss how the young French military engineer Sadi Carnot (1796–1832) came to understand
the rudiments of heat engine theory in the 1820s using a water wheel analogy. His theory was based on the
caloric (or fluid) theory of heat, and he believed that heat passed through a heat engine undiminished (like
water passes through a water wheel undiminished), and in so doing, the heat engine could perform work.
Today, we know that this is incorrect. The heat flow through an engine is diminished (i.e., reduced) by its con-
version into work. Carnot’s ideas were so revolutionary that they were largely ignored. Soon after Carnot’s death
from scarlet fever, Emile Clapeyron (1799–1864), in 1834, strengthened Carnot’s ideas by using more precise
mathematical derivations. From Carnot’s description of a reversible heat engine, Clapeyron constructed its
thermodynamic cycle. He deduced that it must be composed of two isothermal processes and two reversible
adiabatic processes. Using the pressure-volume steam engine indicator diagram format common at that time, he
deduced the cycle shape shown in Figure 13.7a. This cycle is still known as Carnot’s cycle, but because it is
defined to be a reversible cycle, no heat engine can ever be made to operate using it.

The Carnot cycle is important because it was the first heat engine cycle ever to be properly conceptualized and
because no other heat engine, reversible or irreversible, can ever be more efficient than a Carnot cycle heat
engine (though even a reversible heat engine may be less efficient), thus it can be used as a benchmark or stan-
dard for comparison, for gauging both real and reversible (ideal) heat engine performance.

When Rudolph Clausius (1822–1888) formalized the second law of thermodynamics and defined entropy
in 1860, Carnot’s reversible adiabatic processes became an isentropic process, and the Carnot cycle was defined
by two T = constant processes and two s = constant processes. The Carnot cycle then took on its characteristic
rectangular shape on a T–s diagram, as shown in Figure 13.7b.

In Chapter 7, we also discuss how Carnot’s ideas led to the development of the Kelvin absolute temperature
scale and, finally, to an expression for the thermal efficiency of a reversible heat engine (see Eq. (7.16)), which
we call in this chapter the Carnot thermal efficiency:

ðηTÞCarnot = 1−TL/TH (13.2)
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where TH and TL are the absolute isothermal temperatures of the high-temperature heat addition and
low-temperature heat rejection reservoirs, respectively.

13.4 RANKINE CYCLE
In the period from 1850 to 1880, the subject of thermodynamics was formally developed. One of its early
practical goals was to provide a scientific foundation for the empirical steam technology that had by then grown
to dominate the economy of the Western World. By 1850, it had been determined that heat was a form of
energy, and by 1860, the first and second laws of thermodynamics had been accurately formulated by Clausius,
Kelvin, Joule, and others. But, it was the Scottish engineer William John Macquorn Rankine (1820–1872) who
first worked out the thermodynamic cycle for a steam engine with an external condenser.6 Because Rankine was
the first person to understand how this type of steam engine worked thermodynamically, the thermodynamic
cycle for adiabatic cylinder engines is called the Rankine cycle today.

Though the Newcomen cycle is obsolete, the Rankine cycle is still in common use. Therefore, we carry out an
analysis of the thermal efficiency of the Rankine cycle and focus on its further development throughout the
remainder of this chapter. The difference between the Newcomen and Rankine cycles can be seen by comparing
parts a and b of Figure 13.8.

The Rankine cycle is a thermodynamic representation of a high-pressure or expansion type of steam engine cycle,
and because of the shape of the T-s saturation curve for water, the ideal or reversible Rankine cycle without
superheat is very close to the (reversible) Carnot cycle. The difference between the Rankine and Carnot cycles is
shown in Figure 13.8c. Because it is very difficult to efficiently pump wet vapor back into the boiler in the
Rankine cycle, the vapor is completely condensed into a liquid in the condenser and, using a common liquid
pump, pumped into the boiler as a compressed liquid. The Rankine cycle boiler feed pump raises the pressure
of the liquid condensate to only that of the boiler (state 4), leaving its temperature nearly equal to that of the
condenser (state 3).

The thermal efficiency ηT of a heat engine is defined in Eq. (7.5) as

ηT =
Net work output
Total heat input

=
Enginework output−Pump work input

Boiler heat input

(7.5)

p

A

B

C
D

Isotherms

Reversible
adiabatics

(a) Carnot’s power cycle as
described by Clapeyron in 1834

(b) Carnot’s power cycle using
Clausius’ entropy concept of 1860

T Isotherms

Reversible
adiabatics

TH

TL

s

BA

D C

V

FIGURE 13.7
(a) Carnot’s power cycle as described by Clapeyron in 1834. (b) Carnot’s power cycle using Clausius’ entropy concept of 1860.
The reversible Carnot p�V cycle diagram was chosen as the logo for the Mechanical Engineering Honor Society, ΠΤΣ
(Pi Tau Sigma).

6 An adiabatic cylinder steam engine is any expansion engine or any atmospheric engine with an external condenser. Rankine’s work
on this subject was published in his classic Manual of the Steam Engine and Other Prime Movers, first published in 1859. This text went
through 17 editions and was in print for over 50 years. It is considered to be the first comprehensive engineering thermodynamics
textbook.
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Consider the Rankine cycle shown in Figure 13.9. An energy rate balance on the steady state boiler, the conden-
sate pump, and the piston-cylinder prime mover (neglecting any changes in flow stream kinetic or potential
energy) gives

Heat transport rate into the boiler = _QB = _mðh1 − h4Þ
The magnitude of the power into the condensate pump = j _Wpumpj = _m h4 − h3ð Þ

Power out of the piston-cylinder prime mover = _Wpm = _m h1 − h2ð Þ+ _Qpm

h

s

Critical
point

3
4s

4

1

2
2s

14

23

Pump Adiabatic
engine

QB

QC

WP WE

Boiler

Condenser

T

s

4

1

3,4s 2s 2

p = Constant
isobar

p

v

4,4s 1

3 2,2s

T = Constant
isotherm

FIGURE 13.9
Reciprocating heat engines operating on Newcomen and Rankine cycles.

Process 1−2 is the nonadiabatic
cylinder power stroke

T

s

4

1

2,3,4s
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Condensation inside
the piston−cylinder
producing piston
movement and work

(a) The Newcomen cycle

Process 1−2s is the reversible and
adiabatic cylinder power stroke

T

s

4

1

3,4s

Saturation
dome

Work-producing
piston stroke

(b) The reversible Rankine cycle

2s
Condensation in an
external condenser

T

s

4

1

3,4s

Saturation
dome

Rankine cycle

(c) Comparison of the reversible
 rankine and Carnot cycles

2s

Carnot
 cycle

Line of constant
boiler pressure

FIGURE 13.8
The Newcomen, Rankine, and Carnot cycles.
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For a Rankine cycle, the prime mover can be assumed to be insulated ( _Qpm = 0), then the prime mover power
output becomes

ð _WpmÞRankine = _m h1 − h2ð Þ

and Eq. (7.5) gives the thermal efficiency of a Rankine cycle heat engine as

ηTð ÞRankine =
_Wpm − j _Wp j
_Q boiler

=
h1 − h2 − h4 − h3ð Þ

h1 − h4
13:3ð Þ

13.5 OPERATING EFFICIENCIES
Since no machine is really reversible, we need to develop a method of making accurate power consumption or
production calculations for real irreversible machines. This is usually done through the introduction of an
empirically determined performance measure, called an operating efficiency. Because of the manner in which this
type of technology evolved, several different types of efficiency measures are in common use today.

The physical meaning of an operating efficiency depends on where the system boundaries are drawn. If the system
under consideration consists of only the working fluid, then this efficiency represents the effect of the irreversibilities
that occur only within the working fluid. However, if the system under consideration consists of the entire work-
producing or work-absorbing machine (including the working fluid), then this efficiency represents the effect of the
irreversibilities within the working fluid as well as those within the machine itself (such as bearing friction). To be
effective, an operating efficiency should apply to a system consisting of the device plus the working fluid it contains.

13.5.1 Mechanical Efficiency
The first important measure of the performance of any device is the work transport energy efficiency ηW, which
is defined in Chapter 4 as the ratio of the actual work to the reversible work for a work-producing device:

ηmð Þ
work-
producing
device

= Wactual

Wreversible
=

_Wactual

_Wreversible

or the ratio of the reversible work to the actual work for a work-absorbing device:

ηmð Þ
work-
absorbing
device

=
Wreversible

Wactual
=

_Wreversible

_Wactual

This efficiency compares the actual performance of a device with what would occur if the device were reversible
(but not adiabatic), and it is commonly known as the reversible efficiency of the device. However, in mechanical
devices, the source of the internal irreversibilities is primarily mechanical friction. Consequently, it is customary
to refer to the reversible efficiency of a mechanical device as simply the mechanical efficiency of the device and to
use the notation ηm instead of ηW. The mechanical efficiency of work-producing and work-absorbing devices is
defined mathematically in Table 13.2.

13.5.2 Isentropic Efficiency
Next, we define the isentropic efficiency ηs as the ratio of the actual work to the isentropic work for a work-producing
device:

ηsð Þ
work-
producing
device

=
Wactual

Wisentropic
=

_Wactual

_Wisentropic

or the ratio of the isentropic work to the actual work for a work-absorbing device:

ηsð Þ
work-
absorbing
device

=
Wisentropic

Wactual
=

_Wisentropic

_Wactual

It is similar to the work transport energy efficiency ηW, defined in Chapter 4, but whereas ηW was based on
comparing the actual performance of the device with what would occur if the device were reversible, the
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isentropic efficiency ηs is based on comparing the actual performance of the device with that which would occur
if the device were adiabatic as well as reversible (i.e., isentropic). Since most prime movers and pumps are
thermally insulated, we always assume that they are adiabatic when their heat loss is not given. The isentropic
efficiency of work-producing and work-absorbing devices is defined mathematically in Table 13.2.

13.5.3 Relative Efficiency
It is also possible to define a relative efficiency (or efficiency ratio) ηr for these devices that relates the mechanical
and isentropic efficiencies. For a work-producing device, the relative efficiency is defined as the ratio of the
reversible work to the isentropic work:

ηrð Þ
work-
producing
device

=
Wreversible

Wisentropic
=

_W
reversible

_Wisentropic

and for a work-absorbing device, it is defined as

ηrð Þ
work-
absorbing
device

=
Wisentropic

Wreversible
=

_Wisentropic

_Wreversib1e

Then, with a little algebra, we can write ηs = ηmηr for either a work-producing or work-absorbing device. Notice
that, if a device is insulated and is therefore adiabatic, then ηs = ηm and ηr = 1.0.

The terms shaft and brake are also commonly used to describe the actual work or power produced or absorbed
by a device.7 These terms are interchangeable, but for clarity, the term actual is used most often throughout
this chapter. Further, the terms reversible and indicated are synonymous because the reversible work or power
produced inside a device can be determined from p�V data provided by an indicator diagram; therefore, we can
write _Wreversible = _Windicated. Consequently, for a work-producing device, we can always write

_Wactual = _Wshaft = _Wbrake = ηsð Þ _Wisentropic
� �

= ηmð Þ _Wreversible
� �

and for a work-absorbing device, we can always write

_Wactual = _Wshaft = _Wbrake = _Wisentropic
� �

/ ηsð Þ = _Wreversible
� �

/ ηmð Þ

Table 13.2 Definitions of Some Common Efficiencies

Mechanical efficiency (ηm)

ηmð Þwork-
producing
device

= Wactual

Wreversible
=

_Wactual

_Wreversible

ηmð Þwork-
absorbing
device

=
Wreversible

Wactual
=

_Wreversible

_Wactual

Isentropic efficiency (ηs)

ηsð Þwork-
producing
device

= Wactual

Wisentropic
=

_W
actual

_Wisentropic

ηsð Þwork-
absorbing
device

=
Wisentropic

Wactual
=

_Wisentropic

_Wactual

Relative efficiency (ηr)

ηrð Þwork-
producing
device

=
Wreversible

Wisentropic
=

_Wreversible

_Wisentropic

ηrð Þwork-
absorbing
device

=
Wisentropic

Wreversible
=

_Wisentropic

_Wreversib1e

Thermal efficiency (ηT)

ηTð Þisentropic =
ð _WoutÞisentropic

_Qin

ηTð Þreversible = ηTð Þindicated =
ð _WoutÞreversible

_Qin

ηTð Þactual = ηTð Þbrake =
_Wout

� �
actual

_Qin

=
_Wout

� �
brake

_Qin

where _Wout represents the magnitude of the net power output in each case:

7 The term brake is a descriptive term that comes from an early method of measuring the power output of machines using a friction
band brake dynamometer called a Prony brake. It was named after Baron Gaspard Clair Francois Marie Riche de Prony (1755–1839)
and was developed in the 1830s to measure the power output of water wheels and steam engines.
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13.5.4 Thermal Efficiency
We also have to deal with three types of thermal efficiencies for work-producing or work-absorbing systems:
isentropic, reversible (or indicated), and actual (or brake). These thermal efficiencies are defined mathematically in
Table 13.2.

Using these definitions, the isentropic efficiency of the adiabatic piston-cylinder work-producing prime mover of
the Rankine cycle heat engine shown in Figure 13.9 is

ηsð Þ
prime
mover

= ηsð Þpm =
h1 − h2ð Þactual

h1 − h2ð Þisentropic
= h1 − h2

h1 − h2s
(13.4a)

or

h1 − h2 = h1 − h2ð Þactual = h1 − h2sð Þ ηsð Þpm (13.4b)

where h2s is determined from p2 (but not T2) and the condition s2s = s1, as shown in Figure 13.9. Similarly,
the isentropic efficiency of the adiabatic work-absorbing condensate pump in the heat engine shown in
Figure 13.9 is

ηsð Þpump = ηsð Þp =
h4 − h3ð Þisentropic
h4 − h3ð Þactual

= h4s − h3
h4 − h3

(13.5)

where h4s is determined from p4 (but not T4) and the condition s4s = s3, as shown in Figure 13.9. If the fluid
being pumped is an incompressible liquid (v = constant) with a constant specific heat c, then Eq. (7.33) of
Chapter 7 clearly shows that any isentropic process that it undergoes must also be isothermal. That is, T4s = T3
and consequently u4s = u3. Then, for v4s = v4 = v3 and (note that, for an isentropic pump, points 3 and 4s coin-
cide on a T–s diagram but not on a p–v diagram, see Figure 13.9) p4s = p4 and

h4s − h3 = u4s − u3 + p4sv4s − p3v3

= c T4s − T3ð Þ+ v3 p4s − p3ð Þ
= v3 p4 − p3ð Þ

(13.6)

Equation (13.5) can now be written as

ηsð Þ
incompressible
liquid
pump

=
v3 p4 − p3ð Þ
h4 − h3

=
v3 p4 − p3ð Þ

c T4 − T3ð Þ+ v3 p4 − p3ð Þ (13.7)

or

h4 − h3 = h4 − h3ð Þactual = v3 p4 − p3ð Þ/ ηsð Þp (13.8)

Substituting Eqs. (13.4b) and (13.8) into the Rankine cycle thermal efficiency, Eq. (13.3) gives

ηTð ÞRankine =
h1 − h2sð Þ ηsð Þpm − v3 p4 − p3ð Þ/ ηsð Þp

h1 − h3 − v3 p4 − p3ð Þ/ ηsð Þp
(13.9a)

where (ηs)pm is the isentropic efficiency of the prime mover. The maximum possible Rankine cycle thermal
efficiency occurs when both the prime mover and the condensate pump are isentropic: (ηs)pm = (ηs)p = 1.0, or

ηTð Þ
maximum
Rankine

= ηTð Þ
isentropic
Rankine

=
h1 − h2s − v3 p4 − p3ð Þ
h1 − h3 − v3 p4 − p3ð Þ (13.9b)

The phrase isentropic Rankine cycle thermal efficiency is used here to denote that the prime mover and the conden-
sate pump are both isentropic (i.e., reversible and adiabatic). Clearly, the entire cycle is not isentropic, since
thermal irreversibilities are associated with reheating the cold condensate returned to the hot boiler. This
notation is necessary to distinguish between reversible Rankine cycles, in which the prime movers and pumps are
modeled as reversible but are not adiabatic, and those Rankine cycles in which these items are modeled as both
reversible and adiabatic (i.e., isentropic). This same notation is used in referring to other power and refrigeration
cycles that contain isentropic components.
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EXAMPLE 13.3
The boiler on the toy steam engine shown in Figure 13.10 is heated by a 300. watt electrical heater and produces
saturated vapor at 20.0 psia. If the exhaust steam from the engine is condensed at 14.7 psia, determine the maximum
possible thermal efficiency and net power output of the engine, assuming it operates on (a) a Carnot cycle and (b) a
Rankine cycle.

FIGURE 13.10
Example 13.3, toy steam engine.

Solution
a. A Carnot cycle is defined to be a reversible cycle, so it automatically represents the maximum possible performance.

Equation (13.2) gives the Carnot cycle thermal efficiency as

ðηTÞCarnot = 1 – TL/TH

where

TL = Tsatð14:7 psiaÞ = 212°F = 671:67 R

and

TH = Tsatð20:0 psiaÞ = 228:0°F = 687:67 R

Then,

ðηTÞCarnot = 1−671:67/687:67 = 0:0233 = 2:33%

and since

ðηTÞCarnot = ð _WnetÞCarnot/ _Q boiler

then

ð _WnetÞCarnot = ηTð ÞCarnot × _Q boiler = 0:0233ð300:Þ = 6:98 watts
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b. The maximum possible Rankine cycle thermal efficiency occurs when the piston-cylinder unit is reversible and the boiler
feed pump is isentropic (Figure 13.11):

s

T

3,4s
2s

1

s

h

4s

3

1

2s

FIGURE 13.11
Example 13.3, T–s diagram.

Station 1—Engine inlet Station 2s—Engine exit

p1 = 20:0 psia p2s = 14:7 psia

x1 = 1:00 s2s = s1 = 1:7322 Btu/lbm .R

h1 = hgð20:0 psiaÞ = 1156:4 Btu/lbm x2s = s2s–sf ð14:7 psiaÞ� 

/sfgð14:7 psiaÞ

s1 = sgð20:0 psiaÞ = 1:7322 Btu/lbm .R = ½1:7322−0:3122�/1:4447 = 0:9829

h2s = hf ð14:7 psiaÞ+ x2shfgð14:7 psiaÞ
= 180:1+0:9829ð970:4Þ
= 1133:9 Btu/lbm

Station 3—Condenser exit Station 4s—Boiler inlet

p3 = p2s = 14:7 psia p4s = p1 = 20:0 psia

x3 = 0 s4s = s3

h3 = hf ð14:7 psiaÞ = 180:1 Btu/lbm

v3 = vf ð14:7 psiaÞ = 0:01672 ft3/lbm

Then, the isentropic efficiency of this system is given by Eq. (13.9b) as

ηTð Þ
maximum
Rankine

=
h1 − h2s − v3 p4 − p3ð Þ
h1 − h3 − v3 p4 − p3ð Þ

=
1156:4− 1133:9Btu/lbmð Þ− 0:01672 ft3/lbm

� �
20:0−14:7 lbf/in2� � 144 in2/ft2

118:16 ft . lbf/Btu

� �
1156:4−180:1Btu/lbmð Þ− 0:01672 ft3/lbm

� �
20:0−14:7 lbf/in2
� � 144 in2/ft2

118:16 ft . lbf/Btu

� �
= 0:0230 = 2:30%

Exercises
7. Determine the maximum Carnot cycle net power output in Example 13.3 if the boiler pressure is increased to 30.0 psia

from 20.0 psia. Assume all the other variables remain unchanged. Answer: ( _Wnet)Carnot = 16.2 W.
8. Determine the maximum Rankine cycle net power output in Example 13.3 if the boiler pressure is increased to 40.0 psia

from 20.0 psia. Assume all the other variables remain unchanged. Answer: ( _Wnet)max. Rankine = 22.2 W.
9. Determine the minimum power required to operate the boiler feed pump per unit mass flow of steam in Example 13.3

if the boiler pressure is 35.0 psia instead of 20.0 psia. Assume all the other variables remain unchanged.
Answer: j _W= _m jpump = 0.0184 W ·h/(lbm).

The thermal efficiency calculated in part b of the previous example was for a reversible Rankine cycle engine
and, thus, is impossible to achieve with a real Rankine cycle engine. Considering the mechanical and thermal
inefficiencies of these relatively crude toy engines, it is easy to see why their actual operating thermal
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efficiencies are in the range of 1%. Also note that the ratio of pump power to engine power in this example
is only

j _Wp/ _Wpmj = ð0:01672Þð20:0−14:7Þð144/778:16ÞBtu=lbm
ð1156:4− 1133:9Þ− ð0:01672Þð20:0−14:7Þð144/778:16ÞBtu=lbm

= 0:00073 = 0:073%

and consequently the pump input power could be safely neglected in comparison to the engine output power
in the thermal efficiency calculation. Even so, for clarity and completeness, the pump power is included in all
subsequent thermal efficiency calculations carried out in the examples given in this chapter.

EXAMPLE 13.4
In 1876, George H. Corliss (1817–1888) built what was then the largest steam engine ever made (Figure 13.12), for the
United States Centennial Exposition in Philadelphia, Pennsylvania. It had two cylinders, each with a 40.0-inch bore and a
10.0 ft stroke. Steam entered the engine as a saturated vapor at 100. psia, producing 1400. hp at only 36.0 rpm. The engine’s
flywheel was 30.0 ft in diameter and weighed 56.0 tons. If the steam was condensed at 14.7 psia, determine the Rankine
cycle thermal efficiency of this engine assuming (a) isentropic prime mover and pump, (b) an engine isentropic efficiency of
55.0% and a pump isentropic efficiency of 65.0%, and (c) the steam mass flow rate required to produce 1400. hp.

FIGURE 13.12
Example 13.4, The Corliss engine.

Solution
a. The thermodynamic states at the four main points around the Rankine cycle for this system are (Figure 13.13)

Station 1—Engine inlet Station 2s—Engine exit

p1 = 100: psia p2s = 14:7 psia

x1 = 1:00 s2s = s1

h1 = hgð100: psiaÞ = 1187:8 Btu/lbm x2s = s2s – sf ð14:7 psiaÞ� 
.
sfgð14:7 psiaÞ

s1 = sgð100: psiaÞ = 1:6036 Btu/lbm .R = ½1:6036− 0:3122�
.
1:4447 = 0:8939

h2s = hf ð14:7 psiaÞ+ x2shfgð14:7 psiaÞ
= 180:1+ 0:8939 ð970:4Þ
= 1047:5 Btu/lbm
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Station 3—Condenser exit Station 4s—Boiler inlet

p3 = p2s = 14:7 psia p4s = p1 = 100 psia

x3 = 0 s4s = s3
h3 = hf ð14:7 psiaÞ = 180:1 Btu/lbm

v3 = vf ð14:7 psiaÞ = 0:01672 ft3/lbm

Then, the isentropic efficiency of this system is given by Eq. (13.9b) as

ðηTÞmaximum
Rankine

=
h1 − h2s − v3 p4 − p3ð Þ
h1 − h3 − v3 p4 − p3ð Þ

=
1187:8− 1047:5Btu/lbmð Þ− 0:01672 ft3/lbm

� �
100:−14:7 lbf/in2� � 144 in2/ft2

118:16 ft . lbf/Btu

� �
1187:8−180:1Btu/lbmð Þ− 0:01672 ft3/lbm

� �
100:−14:7 lbf/in2
� � 144 in2/ft2

118:16 ft . lbf/Btu

� �
= 0:139 = 13:9%
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FIGURE 13.13
Example 13.4, T–s diagram.

b. Here, we use Eq. (13.9a) with (ηs)pm = 0.550. and (ηs)p = 0.650.

ηTð ÞRankine =
h1 − h2sð Þ ηsð Þpm − v3 p4 − p3ð Þ/ ηsð Þp

h1 − h3 − v3 p4 − p3ð Þ/ ηsð Þp

=
1187:8−1047:5Btu/lbmð Þ 0:550ð Þ− 0:01672 ft3/lbm

� �
100:−14:7 lbf/in2
� � 144 in2/ft2

118:16 ft . lbf/Btu

� �
1

0:650

� �
1187:8− 180:1Btu/lbmð Þ− 0:01672 ft3/lbm

� �
100:− 14:7 lbf/in2� � 144 in2/ft2

118:16 ft . lbf/Btu

� �
1

0:650

� �
= 0:0762 = 7:62%

c. If the actual power output from the engine is 1400 hp and the isentropic efficiency of the engine is 55%, then the mass
flow rate of steam required is

_m =
_Wactual

ðh1 − h2sÞðηsÞpm
=

ð1400:hpÞð2545Btu/hp .hÞ
ð1187:8− 1047:5Btu/lbmÞð0:550Þ = 46,200 lbm/h

Exercises
10. Determine the mass flow rate of steam required for the Corliss engine in Example 13.4 if it produced only 1000. hp

instead of 1400. hp. Assume all the other variables remain unchanged. Answer: _m = 33,000 lbm/h.
11. If the isentropic efficiency of the Corliss engine in Example 13.4 were increased from 55.0% to 75.0%, determine

the mass flow rate then required to produce 1400. hp. Assume all the other variables remain unchanged. Answer:
_m = 33,860 lbm/h.

12. If the condenser pressure in Example 13.4 were reduced from 14.7 psia to 1.00 psia, recalculate items a, b, and c in
Example 13.4. Assume all the other variables remain unchanged. Answer: a. (ηT)max Rankine = 26.1%, b. (ηT)Rankine = 14.3%,
and c. _m = 22,3000 lbm/h.
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The actual thermal efficiencies achieved by these early engines were naturally considerably less than that
predicted through an isentropic analysis. Figure 13.14 illustrates the growth of both the actual and the isen-
tropic efficiencies for the past three centuries. Since the early steam engines were very large and expensive, the
firm of Boulton and Watt devised a creative marketing scheme based on the superior thermal efficiency of
their engine. They let the purchaser pay for his engine by giving the company one third of the value of the
fuel saved with the new engine as compared with the fuel consumption of a standard Newcomen engine of
the same size.

13.6 RANKINE CYCLE WITH SUPERHEAT
Between 1850 and 1890, a variety of mechanical complexities were added to the reciprocating steam engine to
improve its thermal efficiency. For example, the cylinders were often staged in series, so that the steam was
first expanded in a high-pressure cylinder then exhausted to lower-pressure cylinder stages. Series staging of an
engine’s cylinders with the steam expanding only partially in each stage was then called compounding. Two-
stage (duplex) expansion was introduced in 1811, three-stage (triplex) in 1871, and four-stage (quadruplex)
in 1875.

By 1880, it was recognized that initially dry saturated steam became wet when condensation occurred during the
expansion stroke of the piston (process 1 to 2 in Figure 13.8b). The water droplets thus formed inside the
cylinder tended to cool it slightly, and they promoted corrosion. This meant that the cylinder walls were being
alternately cooled and heated (as in the original Newcomen engine) slightly with each cycle of the engine, and
this reduced the engine’s thermal efficiency. However, if the steam entered the cylinder in a superheated state,
then the amount of moisture produced during the expansion stroke was greatly reduced or eliminated alto-
gether. Originally, the term surcharging was used to denote the use of superheated steam. This term has since
been replaced by the more direct term superheating.

Superheating the steam at the entrance to the cylinder alters the equivalent Carnot cycle by raising TH to the
superheating temperature and consequently increases the equivalent Carnot efficiency considerably. This, in
turn, makes the Rankine cycle appear less desirable by comparison, as shown in Figure 13.15. But all vapor
cycle heat engines operate on the Rankine cycle, and using the Carnot cycle for engineering comparison
purposes is purely academic. A more realistic comparison would be between the isentropic Rankine cycle and the
actual Rankine cycle.
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FIGURE 13.14
A chronology of steam engine thermal efficiency, 1700–2000.
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The degree of superheat is defined to be the difference between the actual superheated vapor temperature and the
saturation temperature at the pressure of the superheated vapor; that is,

Degree of superheat of superheated
vapor at temperature T and pressure p


 �
= T −TsatðpÞ (13.10)

For example, in Figure 13.15a, the degree of superheat is T1 – TA. The degree of superheat that can be used in
any particular heat engine design is limited only by the engine’s ability to resist high temperatures. This has led
to the industrial development and use of high-temperature alloys and ceramics for critical heat engine
components.

EXAMPLE 13.5
In the 1890s, the Lancashire Steam Motor Company (now called British
Leyland) manufactured the lawn mower shown in Figure 13.16, which
was powered by a Rankine cycle steam engine. If it had a superheated
boiler outlet state of 100. psia and 500.°F, and a condenser pressure of
1.00 psia, then find

a. The degree of superheat at the boiler outlet.
b. The equivalent Carnot cycle thermal efficiency of the lawn mower.
c. The isentropic Rankine cycle thermal efficiency of the lawn mower.

Solution
A system sketch is shown in Figure 13.17.
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(b) T–s thermodynamic state diagram(a) Equipment schematic

FIGURE 13.17
Example 13.5, system sketch.

(Continued )
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FIGURE 13.15
A comparison between the Carnot cycle and the isentropic Rankine cycle with superheat.

FIGURE 13.16
Example 13.5, steam-powered lawn mower.
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EXAMPLE 13.5 (Continued )

The thermodynamic states of the steam at the four monitoring stations shown in the equipment schematic are

Station 1 Station 2s

p1 = 100: psia

T1 = 500:°F

h1 = 1279:1Btu/lbm

s1 = 1:7087Btu/ðlbm .RÞ
Station 3 Station 4s

p3 = 1:00 psia p4s = p4 = 100: psia

x3 = 0:00 s4s = s3 = 0:1326Btu/ðlbm .RÞ
h3 = hf = 69:7Btu/lbm h4s = h3 + v3 p4 – p3ð Þ
s3 = sf = 0:1326Btu/ðlbm .RÞ = 69:7+ ð0:01614Þð100: – 1:00Þð144/778:16Þ
v3 = vf ð1:00 psiaÞ = 0:01614 ft3=lbm = 70:0Btu/lbm

where we have calculated the following items:

x2s = s2 – sf 2
� �

/sfg2 = s1 – sf 2
� �

/sfg2

= 1:7087 – 0:1326ð Þ/1:8455 = 0:8540

h2s = hf 2 + x2shfg2 = 69:7+ 0:8540ð Þ 1036:0ð Þ
= 954:4Btu/lbm

a. The degree of superheat at the outlet of the boiler is determined from Table C.2a in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics and Eq. (13.10) as

Degree of superheat = 500: –Tsatð100: psiaÞ
= 500: –327:8 = 172°F

b. Here, the highest temperature in the cycle is TH = 500. + 459.67. = 960. R, and the lowest temperature in the cycle is
TL = Tsat(1.00 psia) = 101.7 + 459.67 = 561.4 R. Then, Eq. (7.16) gives the Carnot cycle thermal efficiency as

ηTð ÞCarnot = 1− TL
TH

= 1− 561:4
960:

= 0:415 = 41:5%

c. Equation (13.9b) is used to determine the isentropic Rankine cycle thermal efficiency as

ðηTÞisentropic
Rankine

=
h1 − h2s − v3ðp4 − p3Þ
h1 − h3 − v3ðp4 − p3Þ =

1279:1−954:4− ð0:01614Þð100:−1Þð144/778:16Þ
1279:1−69:7− ð0:01614Þð100:−1Þð144/778:16Þ

= 0:268 = 26:8%

Exercises
13. Determine the degree of superheat in Example 13.5 if the boiler outlet pressure were 120. psia instead of 100. psia.

Assume all the other variables remain unchanged. Answer: Degree of superheat = 159°F.
14. Find the equivalent Carnot cycle thermal efficiency of the engine in Example 13.5 if the condenser pressure were

2.00 psia instead of 1.00 psia. Assume all the other variables remain unchanged. Answer: (ηT)Carnot = 39.0%.
15. Determine the actual Rankine cycle thermal efficiency of the system described in Example 13.5 if the prime mover and

boiler feed pump isentropic efficiencies were 0.600 and 0.700, respectively. Assume all the other variables remain
unchanged. Answer: (ηT)Rankine = 16.1%.

Initially, the purpose of superheating the vapor was simply to eliminate or at least reduce the amount of
moisture in the engine’s low-pressure stages. However, at the higher boiler pressures and temperatures of
the 20th century, the effect of superheating the steam can add as many as 5 percentage points to the isentropic
Rankine cycle thermal efficiency.
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WHAT IS WRONG WITH USING WET STEAM?

High-efficiency modern steam turbines are designed to expand the steam into the wet vapor region in the low-pressure
stage of the turbine. When the steam quality is less than 1.0, some of the vapor (1 – x) condenses into tiny liquid water
droplets. Some of these droplets are deposited on the turbine walls, promoting corrosion, and some are entrained in the
steam flow, eventually coalescing into large droplets. When large water droplets strike the front of high-speed moving
blades, they can cause impact erosion, as shown by Figure 13.18.

This type of impact damage occurs where blades have a tip velocity around 800 ft/s and a steam quality of 97% (3.0%
moisture) or less. Water droplets can also damage blade trailing edges, as shown in Figure 13.19. This is more of a gouging
operation and produces blade thinning and stress concentration at positions where cracks and blade failure can occur.
Superheating the turbine inlet steam minimizes the exhaust steam moisture that produces these detrimental effects.

13.7 RANKINE CYCLE WITH REGENERATION
A regeneration process in a system is a feedback process whereby energy is transferred internally from one part of
a system to a different part of the system to improve the system’s overall energy conversion efficiency. This inter-
nal transport of energy within a system is called regeneration, and the associated equipment is called a regenera-
tor. In the case of heat engines, regeneration usually involves utilizing otherwise waste exhaust thermal energy to
preheat fluid in another part of the same system. More specifically, in the case of the Rankine cycle heat engine,
a certain percentage of the vapor passing through the prime mover is removed and used to preheat the boiler
feedwater to a temperature between the condenser outlet temperature and the boiler outlet temperature. This sig-
nificantly reduces the thermal irreversibility that occurs when relatively cold condenser outlet water is pumped

FIGURE 13.19
Trailing edge of turbine blades. (Source: Photo courtesy of
Sanders, W. P. Turbo-Technic Services, Inc., Aurora, Canada.)

FIGURE 13.18
Front edge of turbine blades. (Source: Photo courtesy of
Sanders, W. P. Turbo-Technic Services, Inc., Aurora, Canada.)
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back into a much hotter boiler. By reducing a major irreversibility of the cycle, the overall thermal efficiency of
the cycle is increased.

Regenerative feedwater heating is shown schematically in Figure 13.20. These regenerators are simply heat
exchangers. There are two common types:

a. Open loop (or direct contact) heat exchangers, in which the regeneration vapor mixes directly with the boiler
feedwater.

b. Closed loop heat exchangers, in which the regeneration vapor and the boiler feedwater do not mix until after
the regeneration vapor has been condensed into a liquid.

As an example of regeneration thermodynamics, consider the open loop regenerative feedwater heater shown in
Figure 13.20a. These units were normally adiabatic (all the heat transfer occurs internally) and aergonic. A steady
state, steady flow mass and energy rate balance (neglecting any changes in potential or kinetic energy) on the
regenerator yields

_m4 + _m5 − _m6 = 0

and

_m4h4 + _m5h5 − _m6h6 = 0

Combining these two equations to eliminate _m4 gives

h6 = ð1− yÞh4 + yh5

where we use y = _m5/ _m6 = _m5/ _m1 as the mass fraction of regeneration vapor extracted from the prime mover.
Solving for y produces

y =
h6 − h4
h5 − h4

(13.11)

where

h4 = h3 + v3ðp4 – p3Þ/ðηsÞpump1

(a) Open loop regeneration (b) Closed loop regeneration

(c) Thermodynamic diagram
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The Rankine cycle with regeneration.
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and

h5 = h1 – ðh1– h5sÞðηsÞstage1
This equation allows us to calculate the mass fraction of vapor that must be removed from the prime mover and
added to the open loop regenerator to achieve a desired saturated liquid state at station 6.

Suppose we have a total of N regenerators (either open, closed, or any combination) in a system. Let the
fraction of vapor removed for the first regenerator be _m regen 1= _m total = y1, the amount removed for the
second be y2, and so forth, with yN being fed to the Nth regenerator. Now, the general equation for thermal
efficiency is

ηT =
_Wnet

_Qboiler

=
_Qboiler − j _Qcondenserj

_Qboiler

= 1−
j _Qcondenserj

_Qboiler

so that the thermal efficiency of a Rankine cycle with N regenerators can be written as

ðηTÞ Rankine cycle
withN regenerators

= 1−
j _Qcondenserj

_Qboiler

= 1−
_mcondenserðhin − houtÞcondenser

_mboilerðhout − hinÞboiler

= 1−
_m totalð1− y1 − y2 −…− yNÞðhin − houtÞcondenser

_m totalðhout − hinÞboiler
= 1−

ðhin − houtÞcondenser
ðhout − hinÞboiler

� �
ð1− y1 − y2 −…− yNÞ

Therefore, the thermal efficiency of a Rankine cycle with N open or closed regenerators can always be
determined from

ðηTÞRankine cycle
withN regenerators
ðeither openor closedÞ

= 1−
ðhin − houtÞcondenser
ðhout − hinÞboiler

� 	
ð1− y1 − y2 −…− yNÞ (13.12a)

This equation provides a simple solution to a complex problem when multiple open or closed regenerators are
used. For the open and closed regenerators shown in Figure 13.20, Eq. (13.12a) reduces to

ðηTÞRankine cycle
with 1 regenerator
ðeither openor closedÞ

= 1− h2 − h3
h7 − h6

� �
ð1− yÞ (13.12b)

where

h2 = h5 – ðh5 – h2sÞðηsÞstage2
h5 = h1 – ðh1 – h5sÞðηsÞstage1
h7 = h6 + v6ðp7 – p6Þ/ðηsÞpump2

The only property in Eq. (13.12a) that is directly affected by the presence of the regenerators is the boiler inlet
enthalpy, (hin)boiler. Notice that maximizing this value also maximizes the cycle’s thermal efficiency. Therefore,
an optimum set of regenerator flows exists that maximizes the cycle’s thermal efficiency. This is illustrated in the
next example problem.

EXAMPLE 13.6
A two-stage steam turbine receives dry saturated steam at 200. psia. It has an interstage pressure of 80.0 psia and a condenser
pressure of 1.00 psia. Determine

a. The isentropic Rankine cycle thermal efficiency of the system without regeneration present.
b. The isentropic Rankine cycle thermal efficiency of the system and the mass fraction of regeneration steam required with

an open loop boiler feedwater regenerator at a pressure of 80.0 psia.

(Continued )
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EXAMPLE 13.6 (Continued )

Solution
a. First, draw a sketch of the configuration of the isentropic Rankine cycle system before boiler feedwater regeneration is

added (Figure 13.21).

1

3 2s4s

Pump Condenser

Boiler Stage 1 Stage 2QB WE

WP
QC

Prime mover

FIGURE 13.21
Example 13.6, part a.

Its thermal efficiency is

ηTð Þ
isentropic
Rankine

=
h1 − h2sð Þ− h4s − h3ð Þ

h1 − h4sð Þ

where, assuming an incompressible liquid condensate, Eq. (13.6) gives h4s = h3 + v3(p4 – p3) and v3 = v4 (1.00 psia) =
0.01614 ft3/lbm. The monitoring station data are as follows:

Station 1 Station 2s

p1 = 200: psia

x1 = 1:00 p2s = p2 = 1:00 psia

h1 = 1199:3Btu/lbm s2s = s1 = 1:5466Btu/ðlbm .RÞ
s1 = 1:5466Btu/ðlbm .RÞ h2s = 863:5Btu/lbm

Station 3 Station 4s

p3 = 1:00 psia p4s = p4 = 200: psia

x3 = 0:00 s4s = s3 = 0:1326Btu/ðlbm .RÞ
h3 = 69:7Btu/lbm h4s = h3 + v3ðp4 – p3Þ
s3 = 0:1326Btu/ðlbm .RÞ = 69:70+ ð0:01614Þð200: – 1:00Þð144/778:16Þ

= 69:70+0:594 = 70:3Btu=lbm

where, at station 2s, we use

x2s =
s2s − sf2
sfg2

=
s1 − sf2
sfg2

= 1:5466−0:1326
18455

= 0:7662

then,

h2s = 69:70+ ð0:7662Þð1036:0Þ = 863:5Btu=lbm

The thermal efficiency is now

ðηTÞisentropic
Rankine

= 1199:3−863:5−0:594
1199:3−70:3

= 0:297 = 29:7%

b. Now, draw a sketch of the configuration of the
isentropic Rankine cycle system with one open loop
boiler feedwater regenerator (Figure 13.22).

The properties at monitoring stations 1, 2, and 3 are the
same as they were in part a, but pump 1 brings the conden-
sate pressure up to only 80.0 psia (to match the vapor inlet
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FIGURE 13.22
Example 13.6, part b.
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pressure), and pump 2 brings the pressure the rest of the way up from 80.0 to 200. psia. Then, v3 = vf(1.00 psia) =
0.01614 ft3/lbm and v6 = vf(80.0 psia) = 0.01757 ft3/lbm. The additional monitoring station data needed are

Station 4s Station 5s

p4s = p4 = 80:0 psia p5s = p4 = 80:0 psia

s4s = s3 = 0:1326Btu/ðlbm .RÞ s5s = s1 = 1:5466Btu/ðlbm .RÞ
h4s = h3 + v3 p4 – p3ð Þ x5s = 0:9358

= 69:7+ ð0:01614Þð80:0 – 1:00Þð144/778:16Þ h5s = 1125:7Btu/lbm

= 69:7+0:236 = 69:9Btu/lbm

Station 6 Station 7s

p6 = 80:0 psia p7s = p7 = 200: psia

x6 = 0:00 s7s = s6 = 0:4535Btu/ðlbm .RÞ
h6 = 282:2Btu/lbm h7s = h6 + v6 p7 – p6ð Þ
s6 = 0:4535Btu/ðlbm .RÞ = 282:2+ ð0:01757Þð200: –80:0Þð144/778Þ

= 282:2+0:390 = 282:6Btu/lbm

where, at station 5s, we determine that x5s = (1.5466 – 0.4535)/1.1681 = 0.9358 and h5s = 282.2 + (0.9358)(901.4) =
1125.7 Btu/lbm. Equation (13.11) now gives the value of y as

y = h6 − h4s
h5s − h4s

= 282:6− 69:9
1125:7−69:9

= 0:201

then, the isentropic thermal efficiency of the cycle is given by Eq. (13.12b) with all the ηs = 1.0 as

ðηTÞRankine cycle
with 1 regenerator

= 1− h2s − h3
h1 − h7s

� �
ð1− yÞ = 1− 863:5− 69:7

1199:3− 282:6

� �
ð1−0:201Þ = 0:308 = 30:8%

By altering the value of y (the amount of steam bled from the turbine) and recomputing the value of h7s, it becomes clear
that the cycle thermal efficiency is maximized at 31.2% when y = 0.138. This is shown in Figure 13.23.
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FIGURE 13.23
Example 13.6, plot of solution.

Exercises
16. The operator of the plant described in Example 13.6 changes the boiler outlet state from dry saturated steam at 200. psia

to dry saturated steam at 400. psia. Determine the mass fraction of regeneration steam that is now required to produce
saturated liquid water at 80.0 psia at the end of the open loop regenerator. Assume all the other variables remain
unchanged. Answer: y = 0.210

17. If the interstage steam pressure in Example 13.6 is increased from 80.0 to 150. psia, determine the new isentropic
Rankine cycle thermal efficiency. Assume all the other variables remain unchanged. Answer: (ηT)isentropic Rankine = 31.0%.

18. The power plant engineer mentioned in Exercise 16 just informed us that the first and second stage prime mover
isentropic efficiencies are 75.0% and 68.0%, respectively, and that the boiler feed pump isentropic efficiency is 83.0%.
Now determine the actual Rankine cycle thermal efficiency of this system with the 80.0 psia open loop regenerator.
Answer: (ηT)Rankine = 25.8%.
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Note that the effect of a single regeneration unit in the previous example was to increase the thermal efficiency
by only 1.1%. The extra expense of the regenerators and the additional pumps cannot be economically justified
unless the system is large enough to make such a small thermal efficiency increment produces a significant sav-
ings in fuel costs.

This type of Rankine cycle regeneration was first seriously proposed in 1890 and first implemented in 1898 with
a four-stage, quadruple-expansion (quadruplex), reciprocating piston-cylinder steam engine. This system
achieved an actual thermal efficiency of 22.8%, which was remarkably high for its day. After about 1910, the
production of large reciprocating piston-cylinder steam engines decreased rapidly. They were being replaced by a
new prime mover technology, the steam turbine. Consequently, regeneration was temporarily discontinued until
about 1920, at which point the steam turbine had been established as the preferred prime mover for large sta-
tionary power plants. After 1920, regeneration became standard practice in the design of large, vapor cycle, tur-
bine, prime mover power plants.

13.8 THE DEVELOPMENT OF THE STEAM TURBINE
By the end of the 19th century, the large, slow-speed reciprocating piston-cylinder steam engine had reached its
upper limit in size and complexity. When the maximum practical piston speed had been reached in reciprocat-
ing steam engine design, the only way to increase the work output further was to increase the physical size of
the engine. The largest reciprocating steam engine ever built in the United States was constructed in 1891 by the
E. P. Allis Company (renamed the Allis Chalmers Company in 1901) of Milwaukee, Wisconsin. It was installed
as a pumping engine at the Chapin mine in Iron Mountain, Michigan, in 1892. It was a duplex steeple
compound condensing engine with high-pressure cylinders 50. inches in diameter and low-pressure cylinders
100. inches in diameter, both with strokes of 10 ft. It was 54 ft high, 75 ft long, weighed 725 tons, and had a
flywheel 40. ft in diameter. At its maximum speed of 10. rpm it could produce over 1200 hp.

Meanwhile, a new heat engine prime mover technology was quickly being developed: the steam turbine. The
word turbine was coined in 1822 from the Latin root word turbo, for “that which spins.” When it was coined it
was applied only to water wheels (as in hydraulic or water turbines).

A turbine is a prime mover in which mechanical rotating shaft work is produced by a steady flow of fluid
through the system. The output work is produced by changing the momentum of the working fluid as it passes
through the system (the turbine). Reciprocating prime mover output work, on the other hand, is produced by
changing the pressure of a fixed mass of working fluid within the system (the piston-cylinder apparatus).

There are two basic types of turbine designs: impulse and reaction. Both the impulse and reaction turbine con-
cepts date from antiquity. The paddle-type water wheels developed in Italy in about 70 BC (and used throughout
the world, well into the 20th century AD) were of the impulse type (Figure 13.24, left). Also, in the first century AD,
a Greek known today only as Heron (or, in Latin, Hero) of Alexandria (Egypt) devised a simple reaction
steam turbine (called an aeolipile) in which a hollow copper sphere was made to rotate by steam jetting out of
four nozzles mounted perpendicular to the axis of rotation (see Figure 13.24, right). No practical use was then
made of this device. However, it was known to James Watt and his contemporaries because they experimented
with steam-driven reaction turbines of the Heron type and still found them impractical due to the extremely
high rotational speeds required to make them efficient enough to be competitive with existing reciprocating
steam engine technology.

In the impulse turbine, high-velocity fluid jets from stationary nozzles impinge on a set of blades on a rotor.
The impulse force generated by the momentum change of the fluid passing through these blades causes the

WHAT IS THE WORLD’S SMALLEST STEAM ENGINE?

The world’s smallest steam engine was built using nanotechnology (the ability to create objects at the atomic scale). It is
about 5 microns wide (approximately the size of a red blood cell), and was developed by Dr. Jeff Sniegowski at Sandia
National Laboratories in Albuquerque, New Mexico. Steam is produced by a small electrical current that boils the water in
a tiny boiler. The engine was built using computer chip technology by photographing and reducing an image to a very
small size, then etching it on a silicon wafer. The etchings are done in layers to build up the three-dimensional working
engine. However, you need an electron microscope to see it.
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rotor to spin rapidly, like blowing on a pinwheel. In a reaction turbine, the rotation is caused by a reaction force
generated by the momentum change of the fluid accelerating through nozzles attached to the rotor itself (like
the nozzles on a lawn sprinkler). The nozzles in a rotor-type reaction turbine are not the same as the simple axi-
symmetric cylindrical jet producing nozzles of the impulse turbine. Instead, they are two-dimensional nozzlelike
channels formed in the passage between the blades of each row. The characteristics of impulse and reaction
turbines are shown in Figure 13.25.

It can be easily shown from the momentum balance equations of fluid mechanics that the maximum
energy conversion efficiency of an impulse turbine occurs when the fluid enters the rotor blades parallel to
the direction of motion of the blades and with a velocity equal to exactly twice the blade average velocity

River

Roman paddlewheel impulse turbine (ca. 70 BC) Heron’s reaction stream turbine
(ca. 1st century AD)

FIGURE 13.24
Roman paddlewheel impulse turbine (ca. 70 BC) and Heron’s reaction steam turbine (ca. 1st century AD).
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FIGURE 13.25
Characteristics of (a) impulse and (b) reaction turbines.
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and that this efficiency drops off quickly when these conditions are deviated from. Similarly, it can be
shown that a reaction turbine has a maximum energy conversion efficiency when the fluid enters the rotor
blades parallel to the direction of motion of the blades and with a velocity exactly equal to the blade average
velocity. The effect of the turbine’s nozzles is to convert static pressure energy into dynamic kinetic energy,
whose momentum can then be manipulated by the turbine’s geometry to drive the rotor. Nozzles are ana-
lyzed in Chapter 6, and the outlet velocity of an adiabatic nozzle with a negligible inlet velocity is given by
Eq. (6.16) as

Vout =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gcðhin − houtÞ

p
(6.16)

A nozzle receiving steam at 200. psia, 700.°F and exhausting to 1.00 psia has an enthalpy drop of, say,
400. Btu/lbm. The resulting nozzle outlet velocity is supersonic and can be calculated from Eq. (6.16) as

Vout = 2 32:174 lbm . ft/ lbf . ftð Þ½ � 400:Btu/lbmð Þ 778:16 ft . lbf/Btuð Þf g1/2
≈4500 ft/s

Then, a reaction turbine operating at its most efficient speed requires a blade average velocity of about 4500 ft/s.
If we assume a mean rotor radius of 1.0 ft, then the angular velocity of the rotor at its most efficient operating
speed is 4500 radians per second, or about 43,000 rpm. This is an extremely high rotational speed and is very
dangerous, due to the high centrifugal stresses and the high bearing loads produced by unbalanced forces. Also,
few auxiliary turbine driven devices (e.g., an electrical generator) could be made to operate at these speeds.
Therein was the major problem with early turbine development. How could they be slowed down while still
maintaining their good energy conversion and thermal efficiencies?

This problem remained unsolved until the end of the 19th century, when it was discovered that certain types of
turbine staging significantly decrease the turbine’s operating speed while maintaining its energy conversion effi-
ciency. The region between stationary nozzles in an impulse turbine is referred to as an impulse stage. It was dis-
covered that the effect of adding two extra rows of blades, one stationary and one moving, to each stage of an
impulse turbine reduced its most efficient operating speed by about a factor of 2. In a reaction turbine, every
other row of blades is stationary, and the combination of a stationary row and a moving row forms a reaction
stage of the turbine. Large reaction turbines typically have 30 to 100 or more stages, whereas impulse turbines,
normally, have fewer than 10 stages.

In 1883, the Swedish engineer Carl Gustaf Patrik DeLaval (1845–1913) built and ran the first practical single-
stage impulse steam turbine. It had a mean rotor diameter of 3 inches (0.076 m) and produced about 1.5 hp
with a shaft speed of 40,000 rpm. In 1889, he discovered that, if the pressure ratio across his stationary nozzles
were less than about 0.55, he could increase the nozzle exit velocity to supersonic speeds by making the nozzles
with a converging-diverging internal profile. The high shaft velocity of the DeLaval impulse turbine required a
gearbox to reduce the output rotational speed to a usable value. Since high-speed gear reduction is very ineffi-
cient, it became necessary to find other ways of reducing the turbine’s speed effectively. The addition of multiple
stages of fixed nozzles and moving blades to the shaft of a DeLaval impulse turbine was first carried out by the
Frenchman Auguste Camille Edmond Rateau (1863–1930) in 1899. By having a sufficient number of these
stages in series, he was able to reduce the efficient rotating speed enough to allow electrical generators to be dri-
ven directly from the output shaft. Also, in 1898, the American engineer Charles Gordon Curtis (1860–1953)
introduced multiple sets of stationary and moving blade rows downstream from a single stationary nozzle. This
technique exposed each set of moving vanes to a different mean velocity and also had the effect of slowing
down an impulse turbine while maintaining its energy conversion efficiency. Rateau staging exposes each row of
moving blades to nearly constant pressure, usually called pressure compounding or pressure staging. Curtis staging
exposes each row of stationary blades to nearly constant velocity, usually called velocity compounding or velocity
staging. Figure 13.26 illustrates these impulse turbine staging concepts.

The practice of putting several different constant pressure stages in series in a reaction turbine was introduced in
1884 by the Englishman Charles Algernon Parsons (1854–1931). His first turbine had 14 stages (14 pairs of
stationary and moving blade rows) and produced about 10 hp at 18,000 rpm. This was still too fast for direct
coupling to the existing electrical generators, so Parsons designed a new high-speed generator that could be
driven directly by his turbine.

By the early 20th century, the pressure and velocity staged DeLaval impulse turbine and the multiple pressure
staged Parsons reaction turbine became nearly equal rivals in terms of cost and efficiency. A lot was at stake at
this point in time, because electrical power generation was just coming into existence, and it was clear that it
had the potential for creating a second Industrial Revolution, based on electricity rather than steam.
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Thomas Alva Edison’s (1847–1931) development of a practical electric lightbulb in 1879 opened the doors of a
remarkable new technology, electricity. To make his lightbulb marketable, he had to develop and produce a
means of putting electricity directly into the home. He had to conceive and build an entire electrical power
plant and electrical distribution network. This he did, and in 1882, he opened the Pearl Street power station in
New York City, the first such station in the world. By 1890, several electrical power stations were in place in
major cities across the United States, and they were rapidly growing in size and complexity. Initially, reciprocat-
ing steam engines drove the electrical generators, but it became clear rather quickly that this type of prime
mover was not going to be able to meet the needs of this growing industry for very long. Reciprocating steam
engines were too slow, too large, and too unreliable to carry the burden. The steam turbine was cultivated as a
viable replacement prime mover.

By 1900, the Westinghouse Electric Company was manufacturing multistage reaction steam turbines of the
Parson’s type for the electrical power generation industry, and the General Electric Company was developing an
impulse turbine of the DeLaval type with Curtis velocity staging for the same market.

Thus, the search for a suitable prime mover for large-scale electrical generators was the motivation that led to the
successful commercial development of the steam turbine. Though early steam turbines were actually less energy
efficient than their reciprocating counterparts, their potential for improvement was enormous. In addition, they
were about ten times smaller than a reciprocating engine with the same power output. Also, even very large steam
turbines could be made to run efficiently at generator speeds (1800 or 3600 rpm), they were quiet, and they
required little maintenance. It was for these reasons, not the reasons of improved thermal or mechanical effi-
ciency, that by 1920, the steam turbine had replaced virtually all large-scale reciprocating steam engines. By
1960, virtually all small- and medium-scale reciprocating steam engines had been replaced by electric motors or
internal combustion engines.

13.9 RANKINE CYCLE WITH REHEAT
By 1920, boiler technology had advanced to the point where steam at 650°F, 250 psia was generally available.
In the early 1920s, the regenerative process, initially developed in the late 1890s to improve the thermal effi-
ciency of reciprocating steam engines, was reintroduced as a means of improving steam turbine power plant
thermal efficiency. Regeneration using steam turbine prime movers required that steam be extracted from
between one or more of the turbine stages and used to preheat the boiler feedwater. During the 1920s, boiler
technology continued to increase rapidly, and by 1930, steam was commonly supplied at 725°F and 550 psia.
This led to the commercial use of steam reheat, in which steam is extracted from the outlet of a turbine stage,
returned to the boiler to be reheated, then brought back to the inlet of the next turbine stage for further expan-
sion. After its introduction in the mid 1920s, reheat technology became unpopular during the Depression due
to technical and economic difficulties. Single reheat cycles were again introduced in the 1940s, and double
reheat cycles were introduced in the 1950s. This prevents excessive moisture levels from occurring in the low-
pressure stages and has the effect of slightly increasing the thermal efficiency of the cycle. A simple power plant
utilizing reheat (but no regeneration) is shown schematically in Figure 13.27.
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Pressure (Rateau) and velocity (Curtis) staging in the DeLaval impulse turbine.
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The thermal efficiency of the Rankine cycle power plant with reheat shown in Figure 13.27 can be computed
from the general thermal efficiency definition as

ηTð Þ
Rankine
cyc1e with
one reheat unit

=
_Wpm − j _Wp j
_QB + _QR

=
h1 − h2ð Þ+ h3 − h4ð Þ− h6 − h5ð Þ

h1 − h6ð Þ+ h3 − h2ð Þ

and, if the liquid condensate is considered to be incompressible, then Eq. (13.7b) can be used to give

ηTð Þ
Rankine
cyc1e with
one reheat unit

=
h1 − h2ð Þ+ h3 − h4ð Þ− v5 p6 − p5ð Þ/ ηsð Þp

h1 − h6ð Þ+ h3 − h2ð Þ

where (ηs)p is the isentropic efficiency of the boiler feed pump. Using Eq. (13.4a), we can introduce the isentropic
efficiencies of the two turbine stages (ηs)pm1 and (ηs)pm2 as

ηsð Þpm1 = h1 − h2
h1 − h2s

(13.13)

and

ηsð Þpm2 = h3 − h4
h3 − h4s

(13.14)

Finally, the thermal efficiency of the cycle can be written as

ðηTÞRankine
cycle with
one reheat unit

=
h1 − h2sð Þ ηsð Þpm1 + h3 − h4sð Þ ηsð Þpm2 − v5 p6 − p5ð Þ/ ηsð Þp

h1 − h6ð Þ+ h3 − h2ð Þ (13.15)

where the values of h2 and h6 in the denominator of this equation are calculated from Eqs. (13.13) and
(13.7b) as

h2 = h1 − h1 − h2sð Þ ηsð Þpm1 (13.16)

and

h6 = h5 + v5 p6 − p5ð Þ/ ηsð Þp (13.17)
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FIGURE 13.27
A Rankine cycle power plant with reheat.
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EXAMPLE 13.7
The first Rankine cycle steam turbine prime mover with reheat used in the United States was at the Crawford Avenue power
station of the Commonwealth Edison Company of Chicago, Illinois, which went into operation in September 1924. The pri-
mary steam was at 700.°F, 600. psia, with reheat to 700.°F at 100. psia. The isentropic efficiencies of the first and second tur-
bine stages and the boiler feed pump were 84.0, 80.0, and 61.0%, respectively. The condenser pressure was 1.00 psia with
saturated liquid being produced at its outlet.

Determine

a. The Rankine cycle thermal efficiency of the plant with reheat.
b. The Rankine cycle thermal efficiency of the plant without reheat (assume a turbine isentropic efficiency of 82.0% for this

calculation).

Solution
a. Using the notation of Figure 13.27, the monitoring station data for this problem are

Station 1 Station 2s

p1 = 600: psia p2s = p2 = 100: psia

T1 = 700:°F s2s = s1 = 1:5874Btu/ðlbm .RÞ
h1 = 135:6Btu/lbm x2s = 0:9856

s1 = 1:5874Btu/ðlbm .RÞ h2s = 1175:0Btu/lbm

Station 3 Station 4s

p3 = p2s = 100: pisa p4s = p4 = 1:00 psia

T3 = 700:°F s4s = s3 = 1:8035Btu/ðlbm .RÞ
h3 = 1379:2Btu/lbm x4s = 0:9054

s3 = 1:8035Btu/ðlbm .RÞ h4s = 1007:7Btu/lbm

Station 5 Station 6s

p5 = 1:00 psia p6s = p6 = 600: psia

x5 = 0:00 s6s = s5 = 0:1326Btu/ðlbm .RÞ
h5 = 69:7Btu/lbm h6s = 72:5Btu/lbm

s5 = 0:1326Btu/ðlbm .RÞ
where the following calculations have been used:

x2s =
s2s − sf2
sfg2

=
s1 − sf2
sfg2

= 1:5874−0:4745
1:1291

= 0:9856

Then,

h2s = hf2 + x2sðhfg2Þ = 298:6+ ð0:9856Þð889:2Þ = 1175:0Btu/lbm

x4s =
s3 − sf4
sfg4

= 1:8035−0:1326
1:8455

= 0:9054

and

h4s = hf4 + x4s hfg4
� �

= 69:7+ ð0:9054Þð1036:0Þ = 1007:7Btu/lbm:

Since v5 = vf (1.0 psia) = 0.01614 ft3/lbm, Eqs. (13.16) and (13.17) can now be used to give

h2 = 1350:6− ð0:840Þð1350:6− 1175:0Þ = 1203:1Btu/lbm

and

h6 = 69:7+ ð0:01614Þð600:−1:00Þð144/778:16Þ/ð0:610Þ
= 69:7+2:93 = 72:6Btu=lbm

Then, finally, Eq. (13.15) yields

ηT =
ð1350:6−1175:0Þð0:840Þ+ ð1379:2−1007:7Þð0:800Þ−2:93

ð1350:6−72:6Þ+ ð1379:2− 1203:1Þ
= 0:304 = 30:4%

(Continued )
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EXAMPLE 13.7 (Continued )

b. Here, we remove the reheat loop by simply eliminating the pipes with monitoring stations 2 and 3 in Figure 13.27. The
power plant’s thermal efficiency becomes

ηT =
h1 − h4sð Þ ηsð Þpm − h6s − h5ð Þ/ ηsð Þpm

h1 − h6

where all the enthalpy values are the same as they were in part a except for h4s. Here, s4s = s1, and

x4s =
s1 − sf4
sfg4

= 1:5874− 0:1326
1:8455

= 0:7883

so

h4s = 69:7+ ð0:7883Þð1036:0Þ = 886:4Btu/lbm

Then,

ηT =
ð1350:6−886:4Þð0:82Þ− 2:93

1350:6−72:6
= 0:296 = 29:6%

Exercises
19. Determine the isentropic Rankine cycle thermal efficiency of the Crawford Avenue power plant without reheat discussed

in Example 13.7b. Assume all the variables except the turbine and boiler feed pump isentropic efficiencies remain
unchanged. Answer: (ηT)isentropic Rankine = 36.2%.

20. If the isentropic efficiency of the boiler feed pump in the Crawford Avenue power plant with reheat in Example 13.7(a)
is increased from 61.0% to 85.0%, determine the power plant’s new Rankine cycle thermal efficiency. Assume all the
other variables remain unchanged. Answer: (ηT)Rankine = 30.4% (there is no change in (ηT)Rankine to three significant
figures).

21. If the reheat pressure in the Crawford Avenue power plant with reheat in Example 13.7a is decreased from
100. psia to 80.0 psia, determine the power plant’s new Rankine cycle thermal efficiency. Assume all the
other variables remain unchanged. Answer: (ηT)Rankine = 30.4% (there is no change in (ηT)Rankine to three significant
figures).

Note that the interstage reheating used in Example 13.7 increases the Rankine cycle thermal efficiency by only
0.8%. However, it has the much more important effect of reducing the moisture content at the turbine exit. Wet
steam with a moisture content of more than 8 to 10% can produce serious blade erosion problems in the
low-pressure region of a turbine. The effect of reheating in this example keeps the exit moisture level within
this range, whereas without reheating, part b of the example shows that the exit moisture level would be
(1 – 0.7883)(100) = 21.2%, which is much too high.

13.10 MODERN STEAM POWER PLANTS
In the years since the 1930s, the advancements in boiler technology have been as dramatic as those in turbine
technology. Turbine inlet pressures and temperatures continued to increase over the years, mainly due to signifi-
cant improvements in high-temperature strength properties of various metal alloys. The simultaneous use of
superheat, reheat, and regeneration, along with improved turbine isentropic and mechanical efficiencies at
higher turbine inlet temperatures and pressures, allowed actual operating power station thermal efficiencies to
reach percentages in the low 40s by the 1980s (see Figure 13.9). In the 1930s, the turbine-generator unit output
reached 200 MW, and by the 2000s, it had surpassed 2000 MW. Figure 13.28 shows the 2800 MW combined
cycle gas turbine (CCGT) power plant built in Chiba, Japan.

480 CHAPTER 13: Vapor and Gas Power Cycles



Modern power plant performance can be expressed in four ways:

1. The actual thermal efficiency (ηT)actual, where

ηTð Þactual ð _WoutÞnet/ _Qin

� �
actual

Typical ranges of this efficiency are shown in Figure 13.30 for various power-producing technologies.

HOW DANGEROUS ARE BOILER EXPLOSIONS?

Between 1898 and 1902, there were 1600 boiler explosions
in the United States, in which 1184 people were killed. On
March 10, 1905, a boiler explosion in a shoe factory in
Brockton, Massachusetts, killed 58 people and injured an
additional 117 people (Figure 13.29); and on December 6,
1906, a similar explosion occurred in a shoe factory in
Lynn, Massachusetts. As a result of the ensuing public out-
cry, the state of Massachusetts enacted the first legal code
of rules for the construction of steam boilers, in 1907.
From 1908 to 1910, Ohio and various other states enacted
similar legislation, but because no two states had exactly
the same code, boiler manufacturers had great difficulty
satisfying all the varying and occasionally conflicting rules.
In 1911, the American Society of Mechanical Engineers
(ASME) joined with the boiler manufacturers to formulate
a set of uniform standards for the design and construction
of safe boilers. The first edition of the resulting ASME
Boiler and Pressure Vessel Code was produced in 1914,
and by the 1930s, many advancements in boiler technol-
ogy had been made. An updated and modernized version
of this code is used throughout industry today.

FIGURE 13.29
Brockton shoe factory explosion.

FIGURE 13.28
Chiba Japan 2800 MW CCGT power plant with turbines supplied by GE and Mitsubishi. The facility cost $1.5 billion and was completed in 2000.
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2. A similar performance measure, the heat rate of the power plant, which is defined to be the inverse of the
thermal efficiency but in mixed units (e.g., Btu/(kW ·h)). These two measures are related by

Heat rate in Btu/ðkW .hÞ = 3412Btu/ðkW .hÞ
ηTð Þactual

where the decimal form (not percent) of (ηT)actual is used.
3. The actual steam flow rate divided by the actual plant electrical output power, _msteam/ _Welect, in mixed units

of (lbm steam)/(kW ·h).
4. The ratio of the actual thermal efficiency of the power plant to the isentropic Rankine cycle thermal

efficiency, (ηT)actual/(ηT)isentropic. This ratio is often expressed as a percentage and is commonly called by the
misleading term engine efficiency. More accurately, it is an overall heat engine thermal efficiency ratio.

By the 1930s, it had been realized that water was not necessarily the best working fluid for a vapor cycle heat
engine. Since the deviations between the Carnot cycle and the isentropic Rankine cycle are due to the characteris-
tics of the working fluid, clearly, the ideal working fluid for a heat engine should make the Rankine cycle as
close to the Carnot cycle as possible. More specifically, the ideal working fluid should have the following charac-
teristics (see Figure 13.31):

1. It should have a critical temperature well above the metallurgical limit of the boiler and turbine, so that
efficient isothermal high-temperature heat transfer can occur in the boiler.

2. It should have a relatively low saturation vapor pressure at high temperatures, so that high mechanical
stresses are not produced in the boiler or turbine.

3. It should have an ambient temperature saturation pressure slightly above atmospheric pressure, so that the
condenser does not have to be operated at a vacuum.

4. It should have large phase change enthalpies (hfg)
and low liquid specific heats, so that the heat
required to bring the liquid condensate up to the
vaporization temperature is a small percentage of the
vaporization heat (this reduces boiler heat transfer
irreversibilities and ensures that regeneration devices
are effective).

5. It should have the slope of its saturated vapor and
liquid lines as nearly vertical as possible on a T–s
diagram.

6. It should have a triple-point temperature well below
the ambient temperature to prevent the formation of
solids (i.e., freezing) within the system.

7. It should be chemically stable (i.e., not dissociate at
high temperatures), nontoxic, noncorrosive, and
inexpensive.
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No known fluid meets all seven of these conditions quite as well
as water. But other fluids meet some of these conditions signifi-
cantly better than water. For example, the critical state of mer-
cury is at 1649°F and 2646 psia, which meets item 1 much
better than water, whose critical state is 705°F and 3204 psia.
However, the saturation pressure of mercury at 100°F is a very
high vacuum (thus violating item 3). At 1000°F, the saturation
pressure of mercury is about 180 psia, which makes it attractive
for use in a dual working fluid or binary cycle system, as shown
in Figure 13.32. Here, the mercury condenser also serves as the
steam generator, and the combined binary cycle thermal effi-
ciency is much higher (in the range of 50–60% for isentropic
systems) than either one operating alone (in the range of 30–
40% for isentropic systems).

Between the 1930s and 1960s, several mercury-water binary
cycle power plants were put into commercial operation. But,
despite their superior thermal efficiencies, the problems of high
initial cost, mercury toxicity, and numerous operating and maintenance problems prevented such plants from
being commercially successful. However, the use of two or more working fluids within the same power plant
still holds promise for significantly improving overall thermal performance in the future.

Supercritical power plants were developed after 1950 with boiler pressures as high as 5000 psia at 1200°F.
Figure 13.33 illustrates a supercritical Rankine cycle with two stages of reheat. However, the high operating
and maintenance costs of supercritical plants often offset the cost benefits due to their increased thermal
efficiencies.

EXAMPLE 13.8
The Philadelphia Electric Power Company Eddystone Power Plant has the highest operating conditions of any electrical
generating facility in the world. The boiler has a supercritical outlet state of 5000. psia at 1200.°F. After expansion in the
first and second stages of the turbine, the steam is reheated to 1000.°F at 1000. psia and to 1000.°F at 300. psia, res-
pectively. The condenser pressure is 0.400 psia, and the power plant has eight regenerators. The steam mass flow rate is
1.50 × 106 lbm/h and the power plant produces 325 MW of electrical power. Neglecting the eight regenerators in this
plant, determine

a. The isentropic thermal efficiency of this power plant.
b. The isentropic efficiency of the turbine-generator power unit.

Solution
First, draw a sketch of the system (Figure 13.34).

(Continued )
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EXAMPLE 13.8 (Continued )
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FIGURE 13.34
Example 13.8.

The thermodynamic data at the various points around this cycle are as follows:

Station 1—Turbine 1 inlet Station 2s—Turbine 1 exit

p1 = 5000: psia p2s = 1000: psia

T1 = 1200:°F s2s = s1 = 1:5068 Btu/lbm .R

h1 = 1530:8 Btu/lbm h2s = 1316:9 Btu/lbm

s1 = 1:5068 Btu/lbm .R ðby interpolation in Table C:3aÞ
Station 3—Turbine 2 inlet Station 4s—Turbine 2 exit

p3 = 1000: psia p4s = 300: psia

T3 = 1000:°F s4s = s3 = 1:6532 Btu/lbm .R

h3 = 1505:9 Btu/lbm h4s = 1343:8 Btu/lbm

s3 = 1:6532 Btu/lbm .R ðby interpolation in Table C:3aÞ
Station 5—Turbine 3 inlet Station 6s—Turbine 3 exit

p5 = 300: psia p6s = 0:400 psia

T5 = 1000:°F s6s = s5 = 1:7966 Btu/lbm .R

h5 = 1526:4 Btu/lbm x6s = ð1:7966 –0:0799Þ/1:9762 = 0:8687

s5 = 1:7966 Btu/lbm .R h6s = 40:9+ 0:8687ð1052:4Þ
= 955:1 Btu/lbm

Station 7—Condenser exit Station 8s—Boiler inlet

p7 = 0:400 psia p8s = p1 = 5000: psia

x7 = 0:00 s8s = s7

h7 = hf ð0:4 psiaÞ = 40:9 Btu/lbm h8s = h7 + v7ðp8s – p7Þ = 40:9+ 0:01606ð5000: – 0:400Þð144/778:16Þ
v7 = vf ð0:4 psiaÞ = 0:01606 ft3/lbm = 55:76 Btu/lbm
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a. The isentropic thermal efficiency of this Rankine cycle power plant is given by Eq. (13.15) with (ηs)pm1 = (ηs)pm2 =
(ηs)p = 1.0 as

ðηTÞs =
ðh1 − h2sÞ+ ðh3 − h4sÞ+ ðh5 − h6sÞ− v7ðp8s − p7Þ

ðh1 − h8sÞ+ ðh3 − h2sÞ+ ðh5 − h4sÞ
where the numerator in this equation is

Numerator = ð1530:8−1316:9Þ+ ð1505:9−1343:8Þ+ ð1526:4− 955:1Þ
− 0:01606ð5000:−0:400Þ 144

778:16

� �
= 932:4Btu/lbm

and the denominator is

Denominator = 1530:8−55:76ð Þ+ 1505:9−1316:9ð Þ+ 1526:4−1343:8ð Þ
= 1847Btu/lbm

then, the isentropic thermal efficiency is

ðηTÞs =
932:4Btu/lbm
1847Btu/lbm

= 0:505 = 50:5%

b. The isentropic efficiency of the complete power generating unit is

ðηsÞturbine-generator =
ð _WoutÞnet actual

ð _WoutÞnet isentropic

where the actual net power output is given as

ð _WoutÞnet actual = 325 MW = ð325,000 kWÞð3412 Btu/kW .hÞ = 1:11× 109 Btu/h

and the isentropic net power output can be calculated from

ð _WoutÞnet isentropic = _Wturbine 1 + _Wturbine 2 + _Wturbine 3 − j _W jpump

= _m h1 − h2sð Þ+ h3 − h4sð Þ+ h5 − h6sð Þ− v7 p7 − p8sð Þf g
= 1:50 ×106 lbm/hð Þf 1530:8−1316:9ð Þ+ 1505:9−1343:8ð Þ

+ 1526:4−955:1ð Þ−0:01606ð5000:−0:400Þ 144/778:16Þð gBtu/lbm
= 1:40 ×109 Btu/h

Then,

ðηsÞturbine-generator =
1:11 ×109 Btu/h
1:40 ×109 Btu/h

= 0:793 = 79:3%

The isentropic efficiencies calculated in parts a and b are somewhat low because we choose to omit the eight regenerator
units in this analysis.

Exercises
22. Determine the isentropic thermal efficiency of the Eddystone Power Plant discussed in Example 13.8 if the boiler

outlet state temperature is increased from 1200.°F to 1500.°F. Assume all the other variables remain unchanged.
Answer: (ηT)s = 52.1%.

23. If the second reheat pressure in Example 13.8 is increased from 300. psia to 600. psia, what would be the new
isentropic thermal efficiency of the power plant? Assume all the other variables remain unchanged. Answer:
(ηT)s = 50.2%.

24. If the operating conditions of the power plant in Example 13.8 remain unchanged, but the generator power output
drops from 325 MW to 315 MW, determine the new isentropic efficiency of the power generating unit. Answer:
(ηs)turbine-generator = 76.8%.

The introduction of nuclear power in the 1960s added a new facet to heat source technology. Nuclear safety
restrictions require the use of a double-loop heat transfer system to keep the radioactive reactor cooling fluid
from entering the turbine, and this effectively limits the maximum nuclear power plant secondary loop tempera-
ture and pressure to around 1000°F and 800 psia. This has the effect of limiting nuclear plant thermal efficien-
cies to the low 30%s, while the thermal efficiencies of fossil fueled plants reached the low 50%s.
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13.11 PART II. GAS POWER CYCLES
Heat engines whose working fluid is a gas rather than a vapor undergo gas power thermodynamic cycles. Like
steam power, gas prime movers fall into two broad mechanical design categories: reciprocating and turbine. In
addition, unlike steam power prime movers, they fall into two heat source categories: external combustion (EC)
and internal combustion (IC). In external combustion engines, the working fluid does not enter into the com-
bustion process. Combustion, if it occurs at all, occurs outside the engine, with the resulting heat being trans-
ferred into the working fluid at some point. All steam engines, therefore, are external combustion prime movers.
Since the working fluid of an internal combustion engine always enters into the heat-generating combustion
process, thus depleting the fuel and oxygen supply of the working fluid, the combustion products must be
removed and fresh fuel and oxygen added during each thermodynamic cycle. Consequently, all internal combus-
tion engines operate on an open loop process, whereas external combustion engines can operate on either an
open loop or closed loop process (see Figure 13.35).

Gas power cycle prime movers (engines) developed slightly later than their steam engine counterparts. They
evolved largely as an alternative to steam power technology, and by 1900, they were already very competitive
with small to medium power steam engines. By the mid 20th century, they had replaced all steam power within
the transportation industry and the small to medium electrical generating industry, leaving only large electrical
power plants as the major commercial users of steam.

13.12 AIR STANDARD POWER CYCLES
Most modern gas power cycles involve the use of open loop internal or external combustion engines. The work-
ing fluid has highly variable physical and chemical properties throughout these engines, and this makes their
thermodynamic cycle very difficult to analyze. Since the most abundant chemical constituent of the working
fluid of air-breathing engines is nitrogen, which is largely chemically inert within the engine, it is possible to
devise an effective closed loop engine model in which air alone is considered to be the working fluid. Such an
approximation to real engine thermodynamics is called the air standard cycle, ASC for short. The ASC allows a
simple but highly idealized closed loop thermodynamic analysis to be carried out on an otherwise very complex
open loop system. The assumptions embodied in an ASC analysis of an IC or EC engine are as follows:
1. The engine operates on a closed loop thermodynamic cycle and the working fluid is a fixed mass of

atmospheric air.
2. This air behaves as an ideal gas throughout the cycle.
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FIGURE 13.35
Internal and external combustion engine thermodynamic loop classifications.
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3. The combustion process within the engine is replaced by a simple heat addition process from an external
heat source.

4. The intake and exhaust processes of the engine are replaced by an external heat rejection process to the
environment.

5. All processes within the thermodynamic cycle are assumed to be reversible.

Note that item 5 implies that all processes within a cycle that have no associated heat transfer are also isentropic
processes (i.e., they are reversible and adiabatic). Since the numerical results of an analysis using the ASC
depends on how the ideal gas specific heat issue is handled, an ASC analysis is further characterized as either a
cold air standard cycle, if the specific heats of air are assumed to be constant and evaluated at room temperature,
or a hot air standard cycle, if the specific heats of air are assumed to be temperature dependent. When a more
complex analysis is done, in which the actual fuel-air mixture and exhaust gases are used, it is usually called a
real mixture standard cycle.

An IC or EC engine operating on an ASC can be represented schematically as shown in Figure 13.36. Since the
actual operating thermal efficiency of an IC engine is often compared to its ideal ASC thermal efficiency to eval-
uate the impact of real world irreversibilities on the engine’s performance, the ASC analysis serves the same type
of idealized benchmark comparison function as the isentropic Rankine cycle analysis of vapor power cycles.

If the working fluid in the Carnot cycle shown in Figure 13.37 is air (functioning as an ideal gas), then we
would have a Carnot ASC. Since (by definition) a Carnot cycle is thermodynamically reversible, using the nota-
tion of Figure 13.37, s1 = s2 and s3 = s4.

Isentropic ideal gas compression and expansion processes with constant specific heats are discussed in Chapter 7,
and the p-v-T relation for these processes is given by Eq. (7.38), which shows that it can be written directly in
terms of either the temperature ratio, pressure ratio, or compression (volume) ratio.

For an isentropic expansion process, s1 = s2 = s2s,

T2s
T1

=
p2s
p1

� �ðk−1Þ/k
= v2s

v1

� �1−k
For an isentropic compression process, s3 = s4 = s4s,

T3
T4s

=
p3
p4s

� �ðk−1Þ/k
= v3

v4s

� �1−k
where

T1 = T4s = TH

and

T2s = T3 = TL

We further define

v2s/v1 = v3/v4s = isentropic compression ratio, CR

and

p1/p2s = p4s/p3 = isentropic pressure ratio, PR

Inlet
air
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air
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QH (from external heat source)
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out

QL

FIGURE 13.36
IC or EC engine operating on a closed loop air standard cycle.
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The equation for the thermal efficiency of the Carnot cold ASC can now be written as

ηTð Þ
Carnot
cold ASC

= 1−TL/TH = 1−PRð1−kÞ/k = 1−CR1−k (13.18)

Most vapor power cycles fall at least partially under the vapor dome and can therefore be modeled with a single
practical thermodynamic cycle, the Rankine cycle. Unfortunately, outside the vapor dome, no one thermody-
namic cycle models all possible practical gas power cycles. In the next sections, we discuss a few commercially
valuable gas power cycles and evaluate their ASC thermal efficiencies. While these cycles do not cover all possi-
ble cycles, they are the ones that have had significant economic success over the years. We discuss them in the
chronological order in which they were developed.

13.13 STIRLING CYCLE
Many early steam boilers exploded because of weak materials, faulty design, and poor construction. The result-
ing loss in human life and property inspired many people to attempt to develop engines that did not need a
high-pressure boiler. In 1816, the Scottish clergyman Robert Stirling (1790–1878) patented a remarkable closed
loop external combustion engine in which a fixed mass of air passed through a thermodynamic cycle composed
of two isothermal processes and two isochoric (constant volume) processes. Figure 13.38 shows the T–s and
p−V diagrams for this cycle, along with an equipment schematic.

Stirling’s engine was remarkable, not only in its mechanical and thermodynamic complexity, but also because he
originated a thermal regeneration process in which the heat released during the isochoric expansion process
from state 1 to state 2 is stored within the system (in the regenerator) and reintroduced into the working fluid
(air) during the isochoric compression process from state 3 to state 4. This was the first use of thermal regenera-
tion in a power cycle and predates its use in steam engines by many years.8 The complexity of construction and
high cost limited production of Stirling’s engine to small units (0.5 to 10 hp). Generally known as hot air
engines, they found extensive use on small farms between 1820 and 1920 for pumping water and other light
duties.

The thermal efficiency of the Stirling cycle is given by

ηTð ÞStirling =
ð _WoutÞnet

_QH

=
_QH − j _QL j

_QH

= 1−
j _QL j
_QH

where (see Figure 13.38a) for a reversible ASC engine, we can write

_QH = _mTH s1 − s4ð Þ
and

j _QL j = _mTL s2 − s3ð Þ

CRITICAL THINKING

When we say that an engine or compressor is isentropic, we mean that the entropy at the exit is the same as the entropy at
the inlet. But this condition alone is not enough to fix the exit state, since we must specify two independent thermody-
namic properties to fix a state. We could choose the actual exit pressure or the actual exit temperature as the second inde-
pendent property at the exit. However, in practice, we always choose the actual exit pressure as the second independent
property. Why do we do this?

The answer is simply that the exit pressure is more often known or easily specified than the exit temperature. For example,
when an engine exhausts into the atmosphere, the exhaust pressure is always atmospheric pressure, independent of
the inlet pressure and the processes that occur inside the engine. But the exhaust temperature always depends on the inlet
temperature and the complex processes that occur between the inlet and the exit inside the engine.

Therefore, the isentropic pressure is always taken to be equal to the actual pressure at the exit of an isentropic process, and the isentropic
pressure ratio is always the same as the actual pressure ratio for these systems.

8 Note that this is a completely different type of “regeneration” than that used with the Rankine vapor cycle.

488 CHAPTER 13: Vapor and Gas Power Cycles



These entropy changes can be evaluated for the cold ASC using Eq. (7.36) of Chapter 7 as

s1 − s4 = cv ln T1/T4ð Þ+R ln v1/v4ð Þ = R ln v1/v4ð Þ

and

s2 − s3 = cv ln T2/T3ð Þ+R ln v2/v3ð Þ = R ln v2/v3ð Þ

Figures 13.38a and 13.38b show that T2 = T3 = TL, T1 = T4 = TH, and v2/v3 = v1/v4, so that we have s1 – s4 = s2 – s3
and the preceding equations give

ðηTÞStirling
coldASC

= 1−TL/TH = 1−T2/T1 = 1−T3/T4 (13.19)

which is the same as the thermal efficiency of the Carnot cold ASC operating between the same two temperature
limits.

EXAMPLE 13.9
A new Stirling cycle engine using air as the working fluid is being designed
to power the small portable electric generator shown Figure 13.39. The
piston displacement is to be 0.0110 m3 and the minimum volume in the
cylinder is to be V3 = V4 = 1.00 × 10–3 m3. The design calls for a maxi-
mum power piston pressure of p1 = 0.300 MPa, a minimum displaced
piston pressure of p2 = 0.100 MPa, and a displacer inlet temperature of
T2 = 30.0°C. Use the Stirling cold ASC analysis shown in Figure 13.38 to
complete the design, determining

a. The displacer piston maximum pressure (p3).
b. The power piston maximum pressure (p4).
c. The mass of air in the engine (m).
d. The heat addition temperature (T1 = T4).
e. The Stirling cold ASC thermal efficiency of the engine.

(Continued )
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The Stirling cycle.
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EXAMPLE 13.9 (Continued )

Solution
Using the Stirling cycle diagram shown in Figure 13.38, we can carry out the following analysis.

a. Since T2 = T3, the ideal gas equation of state gives p3 = p2(V2/V3), where
V2 = V1 = Piston displacement – V3 = 0.011 – 0.001 = 0.010 m3. Then, p3 = (0.100 MPa)(0.0100/0.00100) = 1.00 MPa.

b. Since T1 = T4, the ideal gas equation of state gives p4 = p1(V1/V4), where V4 = V3 = 0.001 m3.
Then, p4 = (0.300 MPa) × (0.0100/0.00100) = 3.00 MPa.

c. Again using the ideal gas equation of state, we find that m = p2V2/RT2 and

m =
ð0:100MPaÞð1000 kPa/MPaÞð0:0100m3Þ

ð0:286kJ/kgKÞð30:0+273:15KÞ = 0:0115 kg

d. The ideal gas equation of state gives

T1 =
p1V1

mR
=

ð0:300MPaÞð1000 kPa/MPaÞð0:0100m3Þ
ð0:0115 kgÞð0:286kJ/kg .KÞ = 912K

e. Equation (13.19) gives the Stirling cold ASC thermal efficiency of this engine as

ðηTÞStirling
coldASC

= 1− TL
TH

= 1− T2
T1

= 1− 30:0+273:15K
912K

= 0:668 = 66:8%

Exercises
25. Determine what the maximum displaced piston pressure would be in Example 13.9 if the piston displacement is

increased from 0.0110 m3 to 0.0200 m3. Assume all the other variables remain unchanged. Answer: p3 = 1.90 MPa.
26. If the maximum power piston design pressure is increased from 0.300 MPa to 0.800 MPa in Example 13.9,

determine the corresponding design heat addition temperature. Assume all the other variables remain unchanged.
Answer: T1 = T4 = 2430 K.

27. Determine the Stirling cold ASC thermal efficiency in Example 13.9 if the piston displacement is reduced from 0.0110 m3

to 8.00 × 10–3 m3. Assume all the other variables remain unchanged. Answer: (ηT)Stirling cold ASC = 66.7% (no change).

Though the Stirling cycle engine did not compete well with alternate gas power cycle engines after about 1880,
its potential for high thermal efficiency (and consequently low fuel consumption) plus the low noise and low
air pollution traits of an external combustion process caused renewed interest in the late 20th century in its
applicability for automotive use.

13.14 ERICSSON CYCLE
In 1833, the Swedish-born engineer John Ericsson (1803–1889) developed a different type of hot air, reciprocat-
ing, external combustion engine, which could operate on either an open or closed loop cycle. Ericsson’s engine
also used a thermal regenerator, but it differed from Stirling’s in that the constant volume regeneration process
was replaced by a constant pressure regeneration process. Therefore, the Ericsson cycle consists of two isothermal
processes and two isobaric (constant pressure) processes, as shown in Figure 13.40.

In 1839, Ericsson moved to America and continued to develop his engine. His large engines (up to 300 hp, with
pistons 14 ft in diameter) were very inefficient and could not compete economically with existing steam engine
technology. However, his small engines were reasonably successful and several thousand were sold by 1860. By
1880, the popularity of his engine had dropped off, and it was considered to be obsolete technology until modern
gas turbine power plants came into being in the mid 20th century. The Ericsson cycle is approximated by an open
loop gas turbine that has multistage compressor intercooling (to approximate TL = constant) and multistage tur-
bine reheating (to approximate TH = constant) along with thermal regeneration, as shown in Figure 13.41.

The Ericsson cycle thermal efficiency is given by

ðηTÞEricsson =
ð _WoutÞnet

_QH

=
_QH − j _QL j

_QH

= 1−
j _QL j
_QH

where (see Figure 13.40a), for a reversible ASC engine, we can write

_QH = _mTHðs1 − s4Þ
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and

j _QLj = _mTLðs2 − s3Þ
Equation (7.37) of Chapter 7 gives these entropy changes for the cold ASC as

s1 − s4 = cp ln T1/T4ð Þ+R ln p1/p4ð Þ = R ln p1/p4ð Þ
and

s2 − s3 = cp ln T2/T3ð Þ+R ln p2/p3ð Þ = R ln p2/p3ð Þ
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An open loop gas turbine power plant as an approximation to the Ericsson cycle.
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Figure 13.40b shows that T2 = T3 = TL, T1 = T4 = TH, and p1/p4 = p2/p3, so that the previous equations yields
s1 – s4 = s2 – s3 and the thermal efficiency becomes

ηTð Þ
Ericsson
cold ASC

= 1− TL/TH = 1− T2/T1 = 1− T3/T4 (13.20)

Thus, like the Stirling cold ASC, the Ericsson cold ASC has the same thermal efficiency as the Carnot cold ASC
operating between the same two temperature limits. The Stirling and Ericsson cycle engines of the 19th century
were large and costly, and their actual operating thermal efficiencies were quite poor. They were ultimately
replaced by a newer, more efficient engine technology introduced in the second half of the 19th century, the
internal combustion Otto and Diesel cycles, discussed later in this chapter. However, the high thermal efficiency
potential of the Stirling and Ericsson cycles produces periodically renewed interest in utilizing these cycles within
the framework of modern technology.

EXAMPLE 13.10
A new Ericsson cycle engine is being designed with a pressure ratio of PR = p4/p1 = 2.85, a power piston outlet pressure of
p1 = 0.500 MPa, a maximum volume of V1 = 0.0110 m3, and a minimum volume of V3 = 3.00 × 10–3 m3. The engine will
contain 0.0500 kg of air. Use the Ericsson cold ASC analysis shown in Figure 13.40 to complete this design, determining

a. The compressor inlet pressure and volume (p2 and V2).
b. The power piston outlet pressure and inlet volume (p4 and V4).
c. The compressor outlet pressure (p3).
d. The temperatures at the inlet and outlet of the power and displacer pistons (T1, T2, T3, and T4).
e. The Ericsson cold ASC thermal efficiency of this engine.

Solution
Using the Ericsson cycle diagram shown in Figure 13.40 we can carry out the following analysis.

a. For this cycle, the compressor inlet pressure is the same as the power piston outlet pressure (see Figure 13.40), or
p2 = p1 = 0.500 MPa. The compressor inlet volume is V2 = V3 × (CR), where the isentropic compression ratio
CR = V1/V4 and V4 = mRT4/p4. Now, from Figure 13.40,

T4 = T1 =
p1V1

mR
=

ð0:500MPaÞð1000 kPa/MPaÞð0:0110m3Þ
ð0:0500 kgÞð0:286 kJ/kg .KÞ = 385K

and

p4 = p3 = p2ðPRÞ = p1ðPRÞ = ð0:500MPaÞð2:85Þ = 1:43 MPa

so

V4 = mRT4
p4

=
ð0:0500 kgÞð0:286 kJ/kg .KÞð385KÞ

ð1:43MPaÞð1000 kPa/MPaÞ = 0:00385m3

and the isentropic compression ratio is

CR = V1

V4
= 0:0110m3

0:00385m3
= 2:86

Then, the compressor inlet volume is V2 = V3 × (CR) = (3.00 × 10–3)(2.86) = 0.00858 m3.
b. For this cycle, the power piston outlet pressure is the same as the compressor inlet pressure (see Figure 13.40):

p4 = p3 = 1.43 MPa, and from part a, V4 = 0.00385 m3.
c. Since p4/p1 = p3/p2 = PR, the compressor outlet pressure is p3 = p2(PR), where the isentropic pressure ratio is given as

PR = 2.86. Then, p3 = 0.500(2.86) = 1.43 MPa.
d. Using the ideal gas equation of state, we have

T3 = T2 =
p2V2

mR
=

ð0:500MPaÞð1000 kPa/MPaÞð0:00858m3Þ
ð0:0500 kgÞð0:286 kJ/kg .KÞ = 300:K

e. The Ericsson cold ASC thermal efficiency for this engine is given by Eq. (13.20) as

ðηTÞEricsson
cold ASC

= 1− TL

TH
= 1− T2

T1
= 1− 300:K

385K
= 0:221 = 22:1%
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Exercises
28. If the isentropic pressure ratio in Example 13.10 is increased from 2.85 to 3.10, determine the resulting compressor inlet

and exit pressures. Assume all other variables remain unchanged. Answer: p2 = 0.500 MPa and p3 = 1.55 MPa.
29. If the minimum volume V3 in the Ericsson cycle engine in Example 13.10 is decreased from 3.0 × 10–3 m3 to

1.00 × 10–3 m3, determine the new compressor inlet pressure and volume (p2 and V2). Assume all other variables
remain unchanged. Answer: p2 = 0.500 MPa and V2 = 0.00285 m3.

30. A modification of the Ericsson cycle engine proposed in Example 13.10 calls for increasing the power piston outlet
pressure and the compressor piston inlet pressure from p1 = p2 = 0.500 MPa to p1 = p2 = 1.00 MPa. Determine the new
Ericsson cold ASC thermal efficiency resulting from this design change. Assume all other variables remain unchanged.
Answer: (ηT)Ericsson cold ASC = 22.3% (no change).

13.15 LENOIR CYCLE
Both the Stirling and the Ericsson cycles are for external combustion with thermal regeneration. Initially, an
appropriately sized furnace was used as their heat source. This made these engines rather large and awkward,
and even though they could theoretically achieve high (reversible) thermal efficiencies, the mechanical and ther-
mal irreversibilities of the early engines were very large; consequently, they had rather low actual operating ther-
mal efficiencies. In 1860, the French engineer Jean Joseph Etienne Lenoir (1822–1900) made the first
commercially successful internal combustion engine. He converted a reciprocating steam engine to admit a mix-
ture of air and methane during the first half of the piston’s outward (suction) stroke, at which point it was
ignited with an electric spark and the resulting combustion pressure acted on the piston for the remainder of
the outward (expansion) stroke. The following inward stroke of the piston was used to expel the exhaust gases,
then the cycle began over again. This cycle is (ideally) composed of only three effective processes: constant
volume (combustion), constant entropy (power), and constant pressure (exhaust), as shown in Figure 13.42.
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Ignition coil

Battery
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and
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FIGURE 13.42
The Lenoir cycle.
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The fuel-air mixture was ignited by an electric spark inside the cylinder. The spark was generated by a battery
and an induction coil, which was basically the same technique used with all spark ignition engines through the
middle of the 20th century.

The Lenoir engine ran smoothly, but because the air-fuel mixture was not compressed before ignition, the
engine had a very low actual thermal efficiency (less than 4%).9 Consequently, Lenoir engines became popular
only in small sizes (0.5 to 3 hp) because their fuel consumption was very high.

The thermal efficiency of the Lenoir cycle is given by

ηTð ÞLenoir =
ð _WoutÞnet

_QH

=
_QH − j _QL j

_QH

= 1−
j _QL j
_QH

where, from Figure 13.42a, for a cold ASC with an isentropic expansion from 1 to 2s, we have

j _QLj = j2s _Q3j = _m ðu2s − u3Þ+ _mpðv2s − v3Þ
= _m h2s − h3ð Þ = _mcp T2s − T3ð Þ

and

_QH = 4 _Q 1 = _mcv T1 −T4ð Þ

Because the intake air comes from an isothermal source (the atmosphere), T3 = T4. However, the exhaust gas is
confined to a fixed mass, so the condition p2s = p3 requires that T2s/T3 = v2s/v3, where v2s/v3 is the isentropic
compression ratio, CR. Then, the thermal efficiency becomes

ηTð Þ
Lenoir
cold ASC

= 1−
cp T2s − T3ð Þ
cv T1 − T4ð Þ = 1− kT3

T2s/T3 − 1
T1 − T4

� �
= 1− kT3

v2s/v3 −1
T1 −T4

� �
= 1− kT3

CR −1
T1 − T4

� � (13.21)

EXAMPLE 13.11
The small model airplane jet engine shown in Figure 13.43 operates on the Lenoir cycle. It has a maximum temperature of
T1 = 800. R and an intake temperature of T3 = T4 = 530. R. The expansion, exhaust, and intake pressures are all p2s = p3 =
p4 = 14.7 psia, and the engine contains 1.00 × 10–3 lbm of air. For this engine, determine

a. The combustion pressure p1.
b. The isentropic compression ratio CR = v2s/v3.
c. The Lenoir cold ASC thermal efficiency.

FIGURE 13.43
Example 13.11.

9 These engines were often called atmospheric gas engines for the same reason.
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Solution
Using the Lenoir cycle diagram shown in Figure 13.42, we can carry out the following analysis.

a. From the ideal gas equation of state, we can calculate p1 = mRT1=V1. For this cycle, we have

V1 = V4 = mRT4
p4

=
ð1:00 × 10−3 lbmÞ 53:34 ft . lbf

lbm .R

� �
ð530RÞ

14:7 lbf
in2

� �
144 in2

ft2

� � = 0:0134 ft3

Then,

p1 = mRT1
V1

=
ð1:00 × 10−3 lbmÞ 53:34 ft . lbf

lbm .R

� �
ð800:RÞ

ð0:0134 ft3Þ 144 in2

ft2

� � = 22:2psia

b. For the Lenoir cycle, the isentropic compression ratio is CR = v2s/v3 = T2s/T3. From Eq. (7.38), we have

T2s = T1
p2s
p1

� �k−1
k = ð800:RÞ 14:7psia

22:2psia

� �0:4
1:4

= 711R

Then, the isentropic compression ratio for this engine is

CR =
v2s
v3

=
T2s
T3

= 711R
530:R

= 1:34

c. Equation (13.21) gives the Lenoir cold ASC thermal efficiency as

ðηTÞLenoir
cold ASC

= 1−
kT3ðCR −1Þ

T1 −T4
= 1−

1:40ð530:RÞð1:34−1Þ
800:−530:R

= 0:0656 = 6:56%

Exercises
31. If the maximum combustion temperature of the Lenoir model airplane jet engine in Example 13.11 is increased from

800. R to 1000. R, determine the corresponding combustion pressure, p1. Assume all the other variables remain
unchanged. Answer: p1 = 27.7 psia

32. If the air intake temperature T3 in Example 13.11 is lowered from 530. R to 500. R, determine the new isentropic
compression ratio for the engine. Assume all the other variables remain unchanged. Answer: CR = 1.40.

33. If the combustion temperature in Example 13.11 is increased from 800. R to 1500. R, determine the corresponding
Lenoir cold ASC thermal efficiency of the engine. Answer: (ηT)Lenoir cold ASC = 15.7%.

Its relatively simple construction and good reliability, and the fact that methane was readily available and
inexpensive in many urban areas (where it was already being used extensively for illumination), made the
Lenoir cycle engine quite successful from about 1860 to 1890. After the turn of the century, the Lenoir engine
lost popularity and became obsolete. However, the Lenoir cycle appeared briefly again in the German V-l rocket
engines (“buzz bombs”), used during World War II.

13.16 BRAYTON CYCLE
The main reason why the Lenoir cycle had such a poor thermal efficiency was that the fuel-air mixture was not
compressed before it was ignited. Many people recognized this fact, but it was not until 1873 that a more effi-
cient internal combustion engine, utilizing preignition compression, was developed. George B. Brayton (1830–
1892), an American engineer, adopted the dual reciprocating piston technique of Stirling and Ericsson but used
one piston only as a compressor and the second piston only to deliver power. A combustion chamber was
inserted between the two pistons to provide a constant pressure heat addition process. Thus, the Brayton ASC
consists (ideally) of two isentropic processes (compression and power) and two isobaric processes (combustion
and exhaust), as shown in Figure 13.44.
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The thermal efficiency of the Brayton cycle is given by

ηTð ÞBrayton =
ð _WoutÞnet

_QH

=
_Wpm − j _Wc j

_QH

For the cold ASC, both the compressor and the prime mover (either reciprocating piston-cylinder or turbine) are
considered to be isentropic, and we can write

_Wpm = _mðh1 − h2sÞ = _mcpðT1 −T2sÞ
and

j _Wc j = _mðh4s − h3Þ = _mcpðT4s −T3Þ
Since the combustion chamber is isobaric,

_QH = _mðh1 − h4sÞ = _mcpðT1 − T4sÞ
Then,

ηTð Þ
Brayton
cold ASC

=
T1 − T2sð Þ− T4s −T3ð Þ

T1 −T4s
=

T1 − T4sð Þ− T2s −T3ð Þ
T1 −T4s

= 1− T2s − T3
T1 − T4s

(13.22)

Now, from the ideal gas isentropic formula used earlier, Eq. (7.38), we see from Figure 13.44b that

T1/T2s = p1/p2sð Þ k−1ð Þ/k = p4s/p3ð Þ k−1ð Þ/k = T4s/T3

so that T2s/T3 = T1/T4s, and Eq. (13.22) becomes

ðηTÞBrayton
cold ASC

= 1−
T2s/T3 −1ð ÞT3
T1/T4s −1ð ÞT4s = 1−T3/T4s
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FIGURE 13.44
The open loop Brayton cycle.

BRAYTON CYCLE GAS TURBINE ENGINE

The original Brayton cycle was conceived as a closed loop external combustion hot air engine like those of Stirling and
Ericsson. However, it was found to run more reliably when it was converted into an open loop internal combustion engine,
as shown in Figure 13.44. Much later, it was discovered to be an adequate model for gas turbine engines.
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Equation (7.38) also allows us to write

T3/T4s = ðp4s/p3Þð1− kÞ/k = v3/v4sð Þ1− k

so that

ðηTÞBrayton
coldASC

= 1− T3/T4s = 1−PRð1− kÞ/k = 1−CR1− k (13.23)

where PR is the isentropic pressure ratio p4s/p3, and CR is the isentropic compression ratio v3/v4s. Thus, the ther-
mal efficiency of the Brayton cold ASC can be written as a function of the isentropic pressure or compression
ratio and the specific heat ratio of the working fluid.

EXAMPLE 13.12
The average power cylinder and compression cylinder pressures for the early 1878 Brayton cycle engine shown in Figure 13.45
were p1 = p4s = 0.210 MPa and p2s = p3 = 0.190 MPa, respectively. For this engine, determine

a. The isentropic pressure ratio PR.
b. The isentropic compression ratio CR.
c. The Brayton cold ASC thermal efficiency.

Solution
Using the Brayton cycle diagram shown in Figure 13.44, we can carry out
the following analysis.

a. The isentropic pressure ratio of a Brayton cycle engine is given by

PR =
p4s
p3

= 0:210MPa
0:190MPa

= 1:11

b. The isentropic compression ratio of a Brayton cycle engine is given by

CR ¼ ðPRÞ1/k = ð1:11Þ1/1:40 = 1:07

c. Equation (13.23) gives the Brayton cold ASC thermal efficiency as

ðηTÞBrayton
cold ASC

=1− T3
T4s

=1−PRð1−kÞ/k =1−ð1:11Þð1−1:40Þ/1:40=0:0294=2:94%

Exercises
34. Determine the isentropic pressure ratio for the Brayton cycle engine in

Example 13.12 if the power piston pressure is increased from 0.210 MPa
to 0.300 MPa. Assume all the other variables remain unchanged.
Answer: PR = 1.58.

35. If the compression pressure of the Brayton cycle engine in Example 13.12 is lowered from 0.190 MPa to 0.100 MPa,
determine the corresponding isentropic compression ratio of the engine. Assume all the other variables remain
unchanged. Answer: CR = 1.70.

36. If operating conditions of the Brayton cycle engine in Example 13.12 are altered such that the isentropic temperature at
the exit of the compressor is T4s = 35.0°C when the inlet air temperature is 22.0°C, determine the Brayton cycle cold
ASC thermal efficiency of this engine under these operating conditions. Answer: (ηT)Brayton cold ASC = 4.22%.

Since T3 = TL but T4s < T1 = TH, the Brayton cold ASC thermal efficiency is less than that of the Carnot cold ASC
working between the same temperature limits (T1 and T3). However, for fixed values of the temperature limits
T1 and T3, there is an optimum value for the compressor outlet temperature T4s that maximizes the net output
work. This can be determined as follows for an isentropic turbine and compressor:

ð _WoutÞnet
isentropic

= _Wpm − j _Wc j = _mcpðT1 −T2s −T4s + T3Þ

Now, holding T1 and T3 fixed and replacing T2 with its isentropic equivalent, T2s = T1T3/T4s, we get

ð _WoutÞnet
isentropic

= _mcp T1 −T1T3/T4s − T4s +T3ð Þ

FIGURE 13.45
Example 13.12.
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The optimum value of T4s that causes the net isentropic output work to be a maximum can be found by
differentiating ð _WoutÞnet isentropic with respect to T4s and setting the result equal to zero, or

dð _WoutÞnet isentropic
dT4s

= _mcp 0+ T1T3/T2
4s − 1+ 0

� �
= 0

Then, solving for T4s = (T4s)opt gives

ðT4sÞopt =
ffiffiffiffiffiffiffiffiffiffiffi
T1 T3

p
(13.24)

The corresponding optimum pressure and compression ratios are

PRopt = T4sð Þopt/T3
h ik/ðk−1Þ

= T1/T3ð Þk/½2ðk−1Þ� (13.25)

and

CRopt = T4sð Þopt/T3
h i1/ðk−1Þ

= T1/T3ð Þ1/½2ðk−1Þ� (13.26)

while the thermal efficiency at the maximum net isentropic work output is

ðηTÞmaxwork
Brayton
coldASC

= 1−T3/ T4sð Þopt = 1− T3/T1ð Þ1/2 = 1− TL/THð Þ1/2 (13.27)

HOW DID THE BRAYTON CYCLE BECOME A GAS TURBINE ENGINE?

The reciprocating piston-cylinder Brayton cycle engine, while more efficient than the Lenoir cycle engine, was at the same
time mechanically more complex and costly. Its relatively low compressor pressure ratio limited its efficiency and its ability
to compete effectively with existing reciprocating steam engine economics. These factors stifled the development of the
reciprocating Brayton cycle engine, and the cycle might have quickly become obsolete if it had not been for a new prime
mover technology being developed for steam, the turbine. By replacing steam with gas, a new type of gas-powered prime
mover, the gas turbine, was produced.

Because gas and steam turbines have many characteristics in common, several gas turbine engines were under development
at the same time steam turbines were being developed. One characteristic that they do not have in common, however, is
that gas turbine power plants require gas compressors, while vapor turbine power plants condense the working fluid to the
liquid phase before compressing it with pumps. Early liquid pumps were fairly efficient, but early gas compressors were
very inefficient due to a lack of understanding of the dynamics of high-speed compressible flow. This single fact proved to
be a major stumbling block in the development of gas turbine engine technology.

This problem is illustrated by Eq. (13.29). For a gas turbine to have a net work output, its thermal efficiency obviously has to
be a positive number. This means that both the turbine (the prime mover) and the compressor need high enough isentropic
efficiencies for Eq. (13.28) to be obeyed. One of the early major problems in compressible fluid mechanics was to under-
stand how to compress a gas efficiently in a rotary compressor. Turbine prime movers, on the other hand, had already under-
gone considerable development within the steam power industry and were already 70 to 90% isentropically efficient.

A gas compressor is not simply a turbine running backward, and since compressible flow theory had not yet been comple-
tely developed, gas compressor development was carried out largely by trial and error. By 1900, most compressors had
isentropic efficiencies of less than 50%, so that the product (ηs)pm(ηs)c in Eq. (13.28) was on the order of 0.4. Since typical
early gas turbines operated with very small compressor pressure ratios, say, PR = 1.5, and relatively small combustion
chamber temperatures, say, 700°F = 1150 R, for an ambient inlet temperature of 70°F = 530 R, Eq. (13.28) requires that
(ηs)pm(ηs)c ≥ (530/1160)(1.5)0.286 = 0.513. But this was impossible for early units, because while they may have had good
turbine isentropic efficiencies of around 90%, they also had very poor compressor isentropic efficiencies of around 50% or
less. Thus, many early prototype gas turbine test engines failed to operate under their own power.

The first Brayton cycle gas turbine unit to produce a net power output (11 hp) was built in 1903. It had a very low actual
thermal efficiency (about 3%) and could not compete economically with the other prime movers of its time. Compressor
efficiency problems continued to plague gas turbine technology, and many new prototype engines were designed and built
as late as the 1930s that still could not produce a net power output. Since the thrust produced by an aircraft engine is not
considered to be part of the engine’s work output (thrust is force, not work), aircraft engines do not necessarily need high
thermal efficiencies to be effective. It was in this industry that the gas turbine engine first became successful.
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When the isentropic efficiencies of the compressor and prime mover are taken into account, the Brayton cycle
thermal efficiency becomes

ηTð ÞBrayton =
_Ws

� �
pm ηsð Þpm − j _Ws

� �
c/ ηsð Þcj

_QH

=
T1 −T2sð Þ ηsð Þpm − T4s −T3ð Þ/ ηsð Þc

T1 − T4

where T4 = T3 + (T4s – T3)/(ηs)c. It is clear that this efficiency has a positive value only if

ðηsÞpmðηsÞc ≥ ðT4s −T3Þ/ðT1 − T2sÞ = T4s/T1

or

ðηsÞpmðηsÞc ≥ ðT3/T1ÞPRðk−1Þ/k = ðTL/THÞPRðk−1Þ/k

= ðT3/T1ÞCRk−1 = ðTL/THÞCRk−1
(13.28)

13.17 AIRCRAFT GAS TURBINE ENGINES
The major function of an aircraft jet engine is to produce a high-velocity exhaust jet whose thrust is large
enough to propel the aircraft. The engine’s thrust T is given by

T = _mðVexhaust −VinletÞ/gc (13.29)

where both the inlet and exhaust velocities are measured in a coordinate system fixed to the engine, and the
mass flow rate is _m = _mfuel + _mair = _mexhaust. A jet engine needs to produce only enough net output power to
drive the aircraft’s accessories (fuel pump, hydraulics, generator, etc.), and consequently, it need not have a very
high thermal efficiency (the exhaust kinetic energy is considered to be lost energy in a thermal efficiency analysis).
This was an ideal application for the inherently inefficient gas turbine engine of the 1930s. The pressures of World
War II caused intense research and development in aircraft gas turbine turbojet engine development. The first suc-
cessful turbojet aircraft was the German Heinkel-178, which flew for the first time on August 27, 1939. The engine
weighed 800 lbf (364 kg) and produced a thrust of 1100 lbf (4890 N) at 13,000 rpm. As a result of intense war-
time technological development, axial flow compressors with pressure ratios of 3.0 and isentropic efficiencies of
75−80% were available by the end of World War II.

Modern aircraft gas turbine engines have compressor pressure ratios as high as 25, and ceramic-coated super
alloys have allowed turbine inlet temperatures to approach 3000 R. Their turbine isentropic efficiencies are typi-
cally in the range of 85 to 95%, and their compressor isentropic efficiencies usually fall in the range of 80 to
90%. Figure 13.46 illustrates the construction of a modern gas turbine engine.

FIGURE 13.46
World class design. The GP7000 was designed by a 50/50 joint venture between GE and Pratt & Whitney for the Airbus A380.
(Source: United Technologies, Pratt & Whitney Aircraft.)
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When regeneration, interstage compressor cooling, and interstage turbine reheat are added to the Brayton cycle,
it approximates the more efficient Ericsson cycle, as shown in Figure 13.39. The major focus of modern gas tur-
bine development centers on increasing the turbine inlet temperature through the development of new high-
strength, high-temperature materials. Modern gas turbine heat engines are used mainly in small- to medium-size
stationary power-generating stations and as prime movers throughout the transportation industry.

EXAMPLE 13.13
Under static ground testing at sea-level conditions, the Pratt & Whitney JT3D-3B Turbofan engine has the actual internal
temperatures and pressures as shown in Figure 13.47.

Fuel
Combustion

chamber

Compressor

Station 3
14.7 psia
520. R

Station 4
200. psia
1175 R

Station 1
190. psia
2060 R

Station 2
28.0 psia
1350 R

Vexhaust  = 1560 ft/s
Vinlet ≈ 0

mexhaust= 270. lbm/s
Turbine

FIGURE 13.47
Example 13.13.

Determine

1. The engine’s static thrust.
2. The compressor and turbine isentropic efficiencies for

a. The Brayton cold air standard cycle.
b. The Brayton hot air standard cycle using the gas tables for air, Table C.16a.

3. The ASC and actual thermal efficiencies for
a. The Brayton cold air standard cycle.
b. The Brayton hot air standard cycle using the gas tables for air, Table C.16a.
c. The maximum work Brayton cold ASC thermal efficiency.

Solution
1. The engine’s static thrust is given directly by Eq. (13.29) as

T = _m Vexhaust −Vinletð Þ/gc
= 370: lbm/sð Þ 1560: ft/s− 0ð Þ 32:174 lbm ⋅ ft/ lbf ⋅s2ð Þ½ �
= 17,900 lbf

2a. The compressor’s isentropic efficiency is given by

ηsð Þc =
_Wc

� �
isentropic

_Wc
� �

actua1

= T4s −T3
T4 −T3

and, using k = 1.40 = constant for the cold ASC, we have

T4s = T3 p4s/p3ð Þðk−1Þ/k = ð520:Þ 200:/14:7ð Þð1:4−1Þ/1:4 = 1100R = 640:°F

so that the compressor’s isentropic efficiency using constant specific heats is

ηsð Þ
compressor
ðconstant
specific heatsÞ

= 1100− 520:
1175− 520:

= 0:886 = 88:6%
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Similarly, the turbine’s (prime mover) isentropic efficiency is given by

ðηsÞpm =
ð _WpmÞactual

ð _WpmÞisentropic
= T1 − T2

T1 −T2s

where, using the constant specific heats, we obtain

T2s = T1 p2s/p1ð Þðk−1Þ/k = ð2060Þ 28:0/190:ð Þð1:40−1Þ/1:40 = 1190R = 730:°F

Then,

ðηsÞpm
ðconstant
specific heatsÞ

= 2060−1350
2060−1190

= 0:816 = 81:6%

3a. The Brayton cold ASC thermal efficiency is given by

ηTð Þ
Brayton
coldASC

=
T1 − T2s − T4s −T3ð Þ

T1 − T4s

=
2060− 1190− 1100−520:ð Þ

2060−1100
= 0:302 = 30:2%

but the actual thermal efficiency of the engine, based on constant specific heats and the data provided in the schematic, is

ηTð Þ
Brayton
ðactual, constant
specific heatsÞ

=
T1 −T2 − T4 −T3ð Þ

T1 −T4

=
2060−1350− 1175−520:ð Þ

2060− 1175
= 0:062 = 6:2%

2b. We can easily take into account the temperature-dependent specific heats by using Table C.16a in Thermodynamic Tables
to accompany Modern Engineering Thermodynamics. For the compressor, pr4 = p4s/p3ð Þ = ð1:2147Þð200:/14:7Þ = 16:5 and,
by interpolation in Table C.16a, we find that T4s = 1084 R = 624°F. Then,

ðηsÞc
ðvariable
specific heatsÞ

= T4s −T3
T4 −T3

= 1084− 520:
1175− 520:

= 0:861 = 86:1%

Similarly, for the turbine,

pr2 = pr1 p2s/p1ð Þ = ð196:16Þð28:0/190:Þ = 28:9

and, by interpolation in Table C.16a, we find that T2s = 1261 R = 801°F. Then,

ðηsÞpm
ðvariable
specific heatsÞ

= T1 −T2
T1 − T2s

= 2060−1350
2060−1261

= 0:889 = 88:9%

3b. Finally, the Brayton hot ASC can be easily determined from

ðηTÞBrayton
hot ASC

=
h1 − h2s − ðh4s − h3Þ

h1 − h4s

where, from Table C.16a,

h3 = 124Btu/lbm ðat 520:RÞ
h4s = 262Btu/lbm ðby interpolation at 1084RÞ
h1 = 521Btu/lbm ðat 2060RÞ
h2s = 307Btu/lbm ðby interpolation at 1261RÞ

Then,

ðηTÞBrayton
hot ASC

=
521−307− ð262−124Þ

521−262
= 0:293 = 29:3%

(Continued )
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EXAMPLE 13.13 (Continued )

and the engine’s actual thermal efficiency, based on temperature-dependent specific heats, is

ðηTÞBrayton
ðactual, variable
specific heatsÞ

=
h1 − h2 − ðh4 − h3Þ

h1 − h4

where h4 = 284:9Btu/lbmðat 1175 RÞ and h2 = 329:9Btu/lbmðat 1350RÞ. Then,

ðηTÞBrayton
ðactual, variable
specific heatsÞ

=
521−329:9− ð284:9− 124Þ

521− 284:9
= 0:128 = 12:8%

3c. The maximum work Brayton cold ASC thermal efficiency is given by Eq. (13.27) as

ðηTÞmax work
Brayton
coldASC

= 1−
ffiffiffiffiffi
T3
T1

r
= 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
520:R
2060R

r
= 0:502 = 50:2%

This is much greater than the actual thermal efficiency for this engine, because an aircraft engine need produce only enough
work output to drive the engine’s auxiliary equipment (generator, fuel pump, etc.), and most of the engine’s energy output
is in the kinetic energy of its exhaust (which produces thrust).

Exercises
37. Determine the optimum compressor outlet temperature of the Pratt & Whitney jet engine analyzed in Example 13.13

that maximizes the net output work of the engine. Answer: (T4s)opt = 1035 R.
38. Determine the isentropic efficiency of the Brayton cycle compressor in Example 13.13 if the outlet pressure is increased

from 200. psia to 210. psia. Assume all the other variables remain unchanged. Answer: (ηs)compressor = 90.3%.
39. If the temperature at the entrance to the turbine in Example 13.13 is increased from 2060 R to 2460 R, determine the

new Brayton cycle cold ASC thermal efficiency of the engine. Assume all the other variables remain unchanged. Answer:
(ηT)Brayton cold ASC = 33.8%.

Note that, whereas the Brayton hot ASC cycle thermal efficiency of Example 13.13 is relatively high (about
30%), the actual thermal efficiency of an aircraft turbojet engine is normally quite low. This is not because of
poor engine design, but because most of the combustion energy is put into the kinetic energy of the exhaust
gas rather than into the mechanical shaft work output. In aircraft engine design, the thrust to weight ratio of the
engine is a key parameter, and the engine’s thermal efficiency is secondary.

13.18 OTTO CYCLE
The Stirling and Ericsson external combustion gas power cycles were originally developed to combat the
dangerous high-pressure boilers of the early steam engines. The Lenoir internal combustion engine was simpler,
smaller, and used a more convenient fuel than either of these engines, but it had a very poor thermal efficiency.
Brayton managed to increase the thermal efficiency of the internal combustion engine by providing a compres-
sion process before combustion using the two-piston Stirling and Ericsson technique with a separate combustion
chamber. But the ultimate goal of commercial internal combustion engine development was to combine all
the basic processes of intake, compression, combustion, expansion (power), and exhaust within a single piston-
cylinder apparatus. This was finally achieved in 1876 by the German engineer Nikolaus August Otto
(1832–1891). The basic elements of the ASC model of the Otto cycle are shown in Figure 13.48. It is composed
of two isochoric processes and two isentropic processes.

After several years of experimentation, Otto finally built a successful internal combustion engine that allowed all
the basic processes to occur within a single piston-cylinder arrangement. The thermodynamic cycle of Otto’s
engine required four piston strokes and two crankshaft revolutions to complete, but it ran smoothly, was rela-
tively quiet, and was very reliable and efficient. Otto’s engine was an immediate success, and by 1886, more
than 30,000 had been sold. They became the first serious competitor to the steam engine in the small- and
medium-size engine market.

Initially, Otto’s engine used illuminating gas (methane) as its fuel, but by 1885, many Otto cycle engines were
already being converted into liquid hydrocarbon (gasoline) burning engines. The development of the ingenious
float-feed carburetor for vaporizing liquid fuel in 1892 by the German Wilhelm Maybach (1847–1929) heralded
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the dawn of the automobile era. The German engineer Karl Friedrich Benz (1844–1929) is generally credited
with building the first practical automobile, using a low-speed Otto cycle engine running on liquid hydrocarbon
fuel, in 1885. He used engine exhaust heat to vaporize the fuel before it was fed into the engine.

WHO INVENTED THE “OTTO” CYCLE?

Unknown to Nikolaus Otto, the four-stroke cycle IC engine had already been patented in the 1860s by the French engineer
Alphonse Eugene Beau de Rochas (1815–1893). However, Rochas did not actually build and test the engine he patented.
Since Otto was the first to actually construct and operate the engine, the cycle is named after him rather than Rochas.

In 1878, the Scottish engineer, Dugald Clerk (1854–1932) developed a two-stroke version of the Otto cycle,
producing one crankshaft revolution per thermodynamic cycle (it was like the Lenoir engine but with preigni-
tion compression). In 1891, Clerk went on to develop the concept of IC engine supercharging. This increased
the thermal efficiency of the engine by further compressing the induction charge before ignition.

Although Clerk’s two-stroke engine was inherently less fuel efficient than Otto’s four-stroke cycle engine, it gave
a more uniform power output (which is important only for single- or dual-cylinder engines) and had almost
double the power to weight ratio of the Otto engine. The two-stroke Otto cycle (it never became known as the
Clerk cycle) engine became successful as a small, lightweight engine for boats, lawn mowers, saws, and so forth.

The thermal efficiency of the Otto cycle is given by

ðηTÞOtto =
ð _WoutÞnet

_QH

=
_QH − j _QLj

_QH

= 1−
j _QLj
_QH

where, from Figure 13.48, j _QLj = _m ðu2s − u3Þ and _QH = _m ðu1 − u4sÞ.
Then, the thermal efficiency of the Otto hot ASC is

ðηTÞOtto
hotASC

= 1− u2s − u3
u1 − u4s

For the Otto hot ASC, Table C.16a or C.16b in Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics are used to find values for the specific internal energies. Since the processes from 1 to 2s and from 3 to
4s are isentropic, we use the vr columns in these tables to find

v3
v4s

= vr3
vr4

= v2s
v1

= vr2
vr1

= CR

T

s

QH
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3

2s

1
v = c
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3′ 3
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(a) T−s diagram
(isentropic cycle)

(d) The operation of a four-stroke Otto cycle engine
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FIGURE 13.48
The Otto air standard cycle.
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where CR = v3/v4s is the isentropic compression ratio. If the intake temperature and pressure (T3 and p3) are
known, we can find u3 and vr3 from the table. Then, if we know the compression ratio (CR), we can find

vr4 = vr3
CR

and vr2 = vr1 ×CR

We can now find u4s and T4s from the tables. However, to find u1, T1, u2s, and T2s, we need to know more infor-
mation about the system. Consequently, the heat of combustion (QH/m = _QH/ _m ), maximum pressure (p1), or
maximum temperature (T1) in the cycle is usually given to complete the analysis.

For the Otto cold ASC,

j _Q Lj = _mðu2s − u3Þ = _mcvðT2s −T3Þ and _QH = _mðu1 − u4sÞ = _mcvðT1 −T4sÞ:
Then,

ðηTÞOtto
cold ASC

= 1− T2s − T3
T1 −T4s

= 1− T3
T4s

� �
T2s/T3 − 1
T1/T4s − 1

� �
The process 1 to 2s and process 3 to 4s are isentropic, so

T1/T2s = T4s/T3 = v1/v2sð Þ1−k = v4s/v3ð Þ1−k

= p1/p2sð Þðk−1Þ/k = p4s/p3ð Þðk−1Þ/k

Since T1/T4s = T2s/T3,

ðηTÞOtto
coldASC

= 1−T3/T4s = 1−PRð1−kÞ/k = 1−CR1−k (13.30)

where CR = v3/v4s is the isentropic compression ratio and PR = p4s/p3 is the isentropic pressure ratio.

Since T3 = TL but T4s <T1 = TH, the Otto cold ASC thermal efficiency is less than that of a Carnot cold ASC
operating between the same temperature limits (T1 and T3). Because the Otto cycle requires a constant volume
combustion process, it can be carried out effectively only within the confines of a piston-cylinder or other fixed
volume apparatus by a nearly instantaneous rapid combustion process.

EXAMPLE 13.14
The isentropic compression ratio of a new lawn mower Otto cycle gasoline engine is 8.00 to 1, and the inlet air temperature
is T3 = 70.0°F at a pressure of p3 = 14.7 psia. Determine

a. The air temperature at the end of the isentropic compression stroke T4s.
b. The pressure at the end of the isentropic compression stroke before ignition occurs p4s.
c. The Otto cold ASC thermal efficiency of this engine.

Solution
a. The isentropic compression ratio for an Otto cycle engine is defined as

CR =
v3
v4s

= T3
T4s

� � 1
1−k

from which we have

T4s =
T3

CR1−k = T3 ×CRk− 1 = ð70:0+ 459:67RÞð8:00Þ0:40 = 1220R

b. For the Otto cycle, the isentropic pressure and compression ratios are related by PR = CRk, where PR = p4s=p3 and
CR = v3/v4s. Then,

p4s = p3CRk = ð14:7psiaÞð8:00Þ1:40 = 270:psia

c. Equation (13.30) gives the Otto cold ASC thermal efficiency as

ðηTÞOtto
cold ASC

= 1− T3
T4s

= 1−PR

1−k
k = 1−CR1−k = 1− ð8:00Þ1−1:40 = 0:565 = 56:5%
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Exercises
40. If the lawn mower in Example 13.14 is left outside on a cold day when T3 is reduced from 70.0°F to 30.0°F, determine

the new temperature at the end of the isentropic compression stroke. Assume all the other variables remain unchanged.
Answer: T4s = 1130 R.

41. If the clearance volume on the lawn mower in Example 13.14 is decreased such that the compression ratio is increased
from 8.00 to 8.50 to 1, determine the new pressure at the end of the isentropic compression stroke. Assume all the other
variables remain unchanged. Answer: p4s = 294.1 psia.

42. If the maximum temperature in the cycle (T4s) is 2400 R, determine the Otto cycle hot ASC thermal efficiency of this
engine. Assume all the other variables remain unchanged. Answer: (ηT)Otto hot ASC = 52.8%.

The actual pressure–volume diagram from an engine operating on a gas or vapor power cycle is called an indicator
diagram,10 and the enclosed area is equal to the net reversible work produced inside the engine. The mean effective
pressure (mep) of a reciprocating engine is the average net pressure acting on the piston during its displacement. The
indicated (or reversible) work output ðWIÞout of the piston is the net positive area enclosed by the indicator dia-
gram, as shown in Figure 13.49, and is equal to the product of the mep and the piston displacement,
V2 −V1 = π 4ðBoreÞ2ðStrokeÞ, or

�
ðWIÞout = mep ðV2 −V1Þ (13.31)

The indicated power output ð _WIÞout is the net (reversible) power developed inside all the combustion chambers
of an engine containing n cylinders and is

ð _WIÞout = mepðnÞ V2 −V1ð Þ N/Cð Þ (13.32)

where N is the rotational speed of the engine and C is the number of crankshaft revolutions per power stroke
(C = 1 for a two-stroke cycle and C = 2 for a four-stroke cycle). The actual power output of the engine as mea-
sured by a dynamometer is called the brake power ð _WBÞ out, and the difference between the indicated and brake
power is known as the friction power (i.e., the power dissipated in the internal friction of the engine) _WF , or

ð _WIÞout = ð _WBÞout + _W F

therefore, the engine’s mechanical efficiency ηm is simply (see Table 13.2)

ηm =
_Wactual

_Wreversible
=

ð _WBÞout
ð _WIÞout

= 1−
_WF

ð _WIÞout
(13.33)

From Eq. (13.31), we can write

mep = ðWIÞout/ðV2 −V1Þ = ðWIÞout/ma
� �

/v2 − v1

= ð _WIÞout/ _ma
� 


/ v2 − v1ð Þ

p

Area = Expansion work

Area = Suction
work (intake)

p mep

patm

mep + patm

(a) Actual indicator diagram (b) Equivalent mep diagram

Area = (WI)out

(WI)out = Expansion work p−V area
               − Suction work p−V area

(WI)out = (mep)(V2 − V1)

V V

V1 V2 V1 V2

FIGURE 13.49
Mean effective pressure (mep) and indicator diagram relation.

10 The term indicator diagram dates from about 1790, when James Watt developed an apparatus to continuously record (i.e., indicate)
the variations in pressure within a steam engine cylinder. It is used today to denote any p−V diagram that is constructed from actual
pressure–volume data.
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where ma and _ma are the mass of air in the cylinder and the cylinder’s air mass flow rate, respectively. The ASC
(i.e., reversible or indicated, see Table 13.2) thermal efficiency of any internal or external combustion engine can
now be written as

ðηTÞASC =
ð _WoutÞreversible

_Qin

=
ð _W1Þout
_Qfuel

=
ð _W1Þout/ _ma

_Qfuel/ _ma

where _Qin = _Qfuel is the heating value of the fuel. Combining these equations gives

mep =
ðηTÞASC _Qfuel/ _ma

� �
v2 − v1

=
ηTð ÞASC _Qfuel/ _mfuel

� �
A/Fð Þ v2 − v1ð Þ

where A/F = _ma/ _m fuel is the air–fuel ratio of the engine. Now,

v2 − v1 = v1 v2/v1 −1ð Þ = RT1 CR − 1ð Þ/p1
so Eq. (13.32) becomes

ð _W1Þout =
ηTð ÞASC _Q / _m

� �
fuel DNp1/Cð Þ

A/Fð Þ RT1ð Þ CR − 1ð Þ (13.34)

where D = nðV2 −V1Þ = π 4ðBoreÞ2 × ðStrokeÞ× ðNumber of cylindersÞ�
is the total piston displacement of the

engine. Equation (13.34) allows us to determine the horsepower output of an ideal frictionless internal combus-
tion engine, and when actual dynamometer test data are available, Eq. (13.33) allows us to determine the
engine’s mechanical efficiency.

EXAMPLE 13.15
A six-cylinder, four-stroke Otto cycle internal combustion engine has a total displacement of 260. in3 and a compression ratio of
9.00 to 1. It is fueled with gasoline having a specific heating value of 20.0 × 103 Btu/lbm and is fuel injected with a mass-based
air-fuel ratio of 16.0 to 1. During a dynamometer test, the intake pressure and temperature were found to be 8.00 psia and
60:0°F while the engine was producing 85.0 brake hp at 4000. rpm. For the Otto cold ASC with k = 1:40, determine the

a. Cold ASC thermal efficiency of the engine.
b. Maximum pressure and temperature of the cycle.
c. Indicated power output of the engine.
d. Mechanical efficiency of the engine.
e. Actual thermal efficiency of the engine.

Solution
a. From Eq. (13.30), using k = 1:40 for the cold ASC,

ðηTÞOtto
coldASC

= 1−CR1−k = 1−9:00−0:40 = 0:585 = 58:5%

b. From Figure 13.48a,

_QH = _Qfuel = ð _mcvÞaðT1 −T4sÞ = _m fuel A/Fð ÞðcvÞaðT1 −T4sÞ
and

T1 = Tmax = T4s +
_Q / _m
� �

fuel

A/Fð Þmass cvð Þa
Since process 3 to 4s is isentropic, Eq. (7.38) gives

T4s = T3CRk−1 = ð60:0+ 459:67Þð9:00Þ0:40 = 1250R

Then,

Tmax =
20:0 ×103 Btu/lbm fuel

ð16:0 lbmair/lbm fuelÞ½0:172Btu/ðlbmair .RÞ� +1250R = 8520R

Since process 4s to 1 is isochoric, the ideal gas equation of state gives

pmax = p1 = p4s T1/T4sð Þ
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and, since the process 3 to 4s is isentropic,

T4s/T3 p4s/p3ð Þðk− 1Þ/k

or

p4s = p3ðT4s/T3Þk/ðk−1Þ = ð8:00psiaÞ 1250R
520R

� �1:40/0:40
= 172psia

then,

pmax = ð172psiaÞ ð8520RÞ/1250R½ � = 1170psia

c. Equation (13.34) gives the indicated power as

j _WIjout =
ð0:585Þð20:0 × 103 Btu/lbmÞð260: in3/revÞð4000: rev/minÞð1170 lbf/in2Þ/2

ð16:0Þ½0:0685Btu/ðlbm .RÞ�ð8520RÞð9:00−1Þð12 in/ftÞð60 s/minÞ

= ð132,00 ft ⋅ lbf/sÞ 1hp
550 ft . lbf/s

� �
= 241hp

d. Equation (13.33) gives the mechanical efficiency of the engine as

ηm =
ð _WBÞout
ð _WIÞout

=
85:0hp
241hp

= 0:353 = 35:3%

e. Finally, the actual thermal efficiency of the engine can be determined from Eqs. (7.5) and (13.33) as

ðηTÞOtto
actual

=
ð _WBÞout
_Qfuel

=
ðηmÞð _WIÞout

_Qfuel

= ðηmÞðηTÞOtto
coldASC

= ð0:353Þð0:585Þ = 0:207 = 20:7%

Exercises
43. If the Otto cycle engine discussed in Example 13.15 has its compression ratio increased to 10.0 to 1, what

would be its new Otto cold ASC thermal efficiency? Assume all other variables remain unchanged. Answer:
(ηT)Otto cold ASC = 60.2%.

44. Find pmax and Tmax for the Otto cycle engine discussed in Example 13.15 when the compression ratio is decreased from
9.00 to 8.00 to 1. Assume all other variables remain unchanged. Answer: pmax = 1040 psia and Tmax = 8460 R.

45. Determine the indicated horsepower in Example 13.15 if the engine’s displacement is increased from 260. in3 to
300. in3. Assume all other variables remain unchanged. Answer: ( _WI)out = 280. hp.

46. Determine the mechanical efficiency of the Otto cycle engine in Example 13.15 if the actual brake horsepower is 88.0 hp
instead of 85.0 hp. Assume all other variables remain unchanged. Answer: ηm = 36.3%.

The previous example illustrates that the Otto cold ASC analysis generally predicts thermal efficiencies that are
far in excess of the actual thermal efficiencies. Typical Otto cycle IC engines have actual operating thermal effi-
ciencies in the range of 15−25%. The large difference between the cold ASC (which contains at least one isentro-
pic process) thermal efficiency and the actual thermal efficiency is due to the influence of the second law of
thermodynamics through the large number of thermal and mechanical irreversibilities inherent in this type of
reciprocating piston-cylinder engine. To improve its actual thermal efficiency, the combustion heat losses and
the number of moving parts in the engine must be reduced.

WHAT IS THE SMALLEST INTERNAL COMBUSTION ENGINE?

The Cox Tee Dee .010 model airplane engine (Figure 13.50) has the smallest internal combustion engine ever put into
production. This amazing little engine weighs just under an ounce and runs at 30,000 rpm. The fuel is 10–20% castor
oil plus 20–30% nitromethane mixed with methanol. With a bore of 0.237 in (6.02 mm) and a stroke of 0.226 in
(5.74 mm), it has a power output of about 5 W.

(Continued)
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WHAT IS THE SMALLEST INTERNAL COMBUSTION ENGINE?Continued

13.19 ATKINSON CYCLE
In Otto cycle engines, the pressure in the cylinder at the end of the expansion (power) stroke is still 3 to 5 atm when
the exhaust valve opens. The British engineer James Atkinson (1846–1914) realized that the efficiency of the Otto cycle
could be improved if the combustion gases could be expanded to near atmospheric pressure before being exhausted
from the engine. In 1882, he invented a piston engine that allowed the intake, compression, power, and exhaust
strokes of the four-stroke cycle to occur in a single crankshaft revolution. The crankshaft was mounted on a separate
axis from the piston rods and was connected by a series of levers that allowed all four strokes of the cycle to occur in a
single crankshaft revolution (Figure 13.51). The complex crankshaft also produced a power stroke that was longer than
the compression stroke, which allowed the engine to achieve a greater efficiency than an equivalent Otto cycle engine.

The Atkinson cycle engines were slightly more efficient than comparable Otto cycle engines of the day, but they were
also larger and more expensive. Consequently, Atkinson’s engine did not achieve market success and soon
disappeared.

The additional work produced by the Atkinson cycle over the equivalent Otto
cycle is the area enclosed by the area 2a → 2s → 3 → 4 → 2a. The thermal
efficiency of the Atkinson cold ASC is given by

ðηTÞAtkinson
cold ASC

= 1−
kðER−CRÞ
ERk −CRk

where ER = v2s/v1 is the isentropic expansion ratio and CR = v4/v5s is the isen-
tropic compression ratio. Note that, as the expansion ratio ER approaches the
compression ratio CR, the Atkinson cold ASC thermal efficiency should
approach the Otto cycle cold ASC thermal efficiency. To be effective, the
expansion ratio should be greater than the compression ratio. Typical values
are compression ratio = 8:1 and expansion ratio = 10:1.

Ilmor Engineering, a firm that is co-owned by Roger Penske and that supplies
Honda engines to the Indy Racing League, is developing a new three-cylinder
engine that simulates the Atkinson cycle. Two cylinders operate on the conven-
tional four-stroke cycle and empty their exhaust into a third, low-pressure
expansion cylinder, which allows the expansion and compression processes to
operate independently. A prototype engine was first displayed at the 2009
Stuttgart Engine Exposition.

1

5s

2a
2s

3
43′

p

V

FIGURE 13.51
The ideal Atkinson cycle consists of the following
operations: 1–2s, isentropic (reversible and adiabatic)
expansion; 2s–3: isochoric (constant volume) cooling;
3–4–3′, isobaric (constant pressure) exhaust and
intake; 3–4, isobaric (constant pressure) cooling; 4–5s,
isentropic compression; and 5s–1, isochoric heating
(combustion).

FIGURE 13.50
Cox Tee engine.
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13.19.1 Modern Atkinson Cycle
In 1947, an American engineer named Ralph Miller patented an ingenious variation of the original Atkinson
cycle. Rather than varying the actual length of the intake stroke, he realized that you could simply delay closing
the intake valve past the end of the intake stroke. Then, as the piston traveled back up the cylinder, it simply
pushed air back out into the intake manifold. The compression began only when the intake valve was finally
closed, and by altering when the intake valve closed, you could effectively change the compression ratio of the
engine.

Today, the term Atkinson cycle is used to describe Miller’s modified four-stroke Otto cycle, in which the intake
valve is held open longer than normal to allow the piston to push some of the intake air back out of the cylin-
der. This reduces the compression ratio, but the subsequent expansion ratio is unchanged. This means that the
compression ratio is smaller than the expansion ratio, meeting one of the essential features of the Atkinson
cycle.

The goal of the modern Atkinson cycle is to allow the pressure in the combustion chamber at the end of the
power stroke to be as close to atmospheric pressure as possible. This maximizes the energy obtained from the
combustion process.

Because an Atkinson cycle engine does not compress as much air as a similar size Otto cycle engine, it has a
lower power density (power output per unit of engine mass). Four-stroke Atkinson cycle engines with the addi-
tion of a turbocharger or supercharger to make up for the loss of power density are known as Miller cycle
engines.

While an Otto cycle engine modified to run on the Atkinson cycle provides good fuel economy, it has a lower
power output than a traditional Otto cycle engine. However, the power of the engine can be supplemented by
an electric motor during times when more power is needed. This forms the basis of Atkinson cycle hybrid
electric automobiles. Their electric motors can be used independently of, or in combination with, the Atkin-
son-cycle engine, to provide the most efficient means of producing the desired power. Toyota, Ford, Chevro-
let, Lexus, and Mercedes have all produced hybrid electric automobiles using Atkinson cycle engines in recent
years. For more information, see the animated Atkinson cycle engine at http://www.animatedengines.com/
atkinson.shtml.

13.20 MILLER CYCLE
By closing the intake valve when the piston is at the bottom of its stroke, the Otto cycle engine begins compres-
sing the air when the crankshaft has no leverage to push it up. A flywheel is often necessary to keep the engine
running. In the 1940s, the American engineer R. H. Miller (1890–1967) realized that the crankshaft would have
a much easier time pushing the piston up if it did not start the compression stroke until it had rotated part way
up, so he used a longer lever arm (see Figure 13.52).

When a Miller cycle engine has delayed (late) intake valve closure, it reduces the load on the piston as it rises to
begin the compression stroke. This can produce significant horsepower with the addition of a turbocharger or
supercharger, which compresses the air for the engine. A modern-day Atkinson cycle engine, on the other hand,
delays its intake valve closure simply to cause the compression stroke to be shorter than the power stroke, thus
realizing some of the same efficiency benefits of the original Atkinson cycle engine.

A Miller cycle engine is very similar to a modern Atkinson cycle engine. However, there are two big differences:

1. A Miller cycle engine depends on a turbocharger or supercharger.
2. A Miller cycle engine has either an early or late intake valve closing during the compression stroke. When

the intake valve closes late, the piston travels 20 to 30% of the way back up to the top of the cylinder before
the intake valve finally closes, so that the engine compression starts at the pressure of the turbocharger or
supercharger.

The effect is increased efficiency, up to about 15%. This type of engine was first used in ships and stationary
power-generating plants, but in the 1990s, it was adapted by Mazda for use in the Mazda Millennia.

To be effective, the Miller cycle turbocharger or supercharger must be able to compress the air with less energy
than with the engine’s pistons. This occurs only at low pressures, so the Miller cycle uses the turbocharger or
supercharger for the first part of the compression process and uses the piston for the remainder. Successful pro-
duction versions of this cycle use variable valve timing to control the Miller cycle to maximize the engine’s
efficiency.
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The Miller cycle has one additional benefit: When the intake air is compressed by a supercharger then cooled by
an intercooler, it has a higher density and a lower temperature than that obtained by a piston compression
alone, further increasing the engine’s efficiency.

EXAMPLE 13.16
A four-cylinder, 3.50 liter automobile engine operates on an ideal Miller cycle with early closing intake valves
shown in Figure 13.52b. It has a compression ratio of 8.00 to 1 and an expansion ratio of 10.0 to 1. The turbocharger
provides air at 200. kPa and 40.0ºC when the intake valve closes. The air–fuel ratio is 15.0 to 1 and the fuel has a
heating value of 43,300 kJ/kg. Using a cold ASC with k = 1.35, determine the temperature and pressure at all points of
the cycle.

Solution
For each cylinder, the displacement volume is Vd = 3.50/4 = 0.875 L = 8.75 × 10–4 m3. The clearance volume, Vc, is
calculated from the expansion ratio as ER = (Vc + Vd)/Vc, or

Vc = Vd/ðER− 1Þ = ð8:75 ×10−4Þ/ð10:0− 1Þ = 9:72 ×10−5 m3
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FIGURE 13.52
The ideal supercharged Miller cycle with early and late intake valve closing.
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Then, from Figure 13.52b,

Vc = V1 = V7s = V4 = 9:72 ×10−5 m3

Also,

V6s = V2s = V3 = Vd +Vc = 8:75 ×10−4 m3 + 9:72 × 10−5 m3 = 9:72 × 10−4 m3

and

V5 = V7s ×CR = ð9:72 × 10−5 m3Þ × 8:00 = 7:78 × 10−4 m3

Now, we can compute the temperature and pressure at each point in the cycle by starting at state 5 in Figure 13.52b, the
closing of the intake valve, where we know the pressure and temperature.

State 5 in Figure 13.52b

This is where the intake valve closes and the following information is given in the problem statement: p5 = 200 kPa and
T5 = 40.0ºC = 313 K.

State 6 in Figure 13.52b

The process from states 5 to 6 is isentropic, so

p6s = p5
V5

V6s

� �k
= ð200: kPaÞ 7:78 × 10−4 m3

9:72 × 104 m3

� �
= 148 kPa

and

T6s = T5
V5

V6s

� �k−1
= ð313KÞ 7:78 × 10−4 m3

9:72 × 10−4 m3

� �
= 648K

State 7s in Figure 13.52b

The process from states 5 to 7s is also isentropic, so

p7s = p5ðV5/V7sÞk = p5ðCRÞk = ð200: kPaÞð8:00Þ1:35 = 3310 kPa

and

T7s = T5ðV5/V7sÞk−1 = T5ðCRÞk−1 = ð313KÞð8:00Þ0:35 = 648K

State 1 in Figure 13.52b

The mass of air in the cylinder is

mair =
p6sV6s

RT6s
=

ð148 kPaÞð9:72 × 104 m3Þ
ð0:287kJ/kg .KÞð648KÞ = 1:73 × 10− 3 kg

Since we have an air–fuel ratio of 15.0, the mass of fuel in the cylinder is mfuel =
mair

AF+1
=

1:73 × 10− 3 kg
15:0+ 1

= 1:08 ×10−4 kg

The heat produced by the combustion process is then

Qcomb = mfuel × Fuel heating value = ð1:08×10−4 kgÞð43300kJ/kg-fuelÞ = 4:69 kJ:

Also, Qcomb = maircv-air(T1 – T7s) = (1.73 × 10–3 kg)(T1 – 648 K) = 4.69 kJ. Solving for T1 gives T1 = 3940 K. Then, since the
process from state 7s to 1 is a constant volume process, p1 = p7s(T1/T7s) = (3310 kPa)(3940 K/624 K) = 20.2 MPa.

State 2s in Figure 13.52b

The process from 1 to 2s is isentropic, so

p2s = p1
V1

V2s

� �k
= ð20:2 × 103 kPaÞ 9:72 ×10−5 m3

9:72 ×10−4 m3

� �1:35
= 901kPa

and

T2s = T1
V1

V2s

� �k−1
= ð3920KÞ 9:72 × 10−5 m3

9:72 × 10−4 m3

� �
= 1760K

(Continued )
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EXAMPLE 13.16 (Continued )

State 3 in Figure 13.52b

p3 = pexhaust = 101 kPa, and since the process from 2s to 3 is a constant volume process, we have T3 = T2s(p3/p2s) = (1760 K)
(101 kPa/901 kPa) = 196 K.

State 4 in Figure 13.52b

p4 = p3 = 101 kPa and T4 = atmospheric temperature.

Exercises
47. Determine the clearance volume in Example 13.16 if the compression ratio is 9.00 to 1 and the expansion ratio is 12.0

to 1. Answer: Clearance volume = 7.96 × 10–5 m3.
48. Determine the pressure and temperature at the end of the compression stroke in Example 13.16 if the supercharger

boost pressure is only 100. kPa instead of 200. kPa. Answer: p7s =1660 kPa and T7s = 648 K.
49. If the fuel used in Example 13.16 is changed to a hotter burning fuel with a heating value of 51,700 kJ/kg-fuel,

determine the temperature at the end of the combustion process. Answer: T1 = 4580 K.

13.21 DIESEL CYCLE
Rudolf Christian Karl Diesel (1858–1913) was a well-educated linguist and social theorist, but most of all, he
was a remarkable engineer. He was born in Paris, but he received his technical education in Munich under Karl
von Linde (1842–1934), a renowned pioneer in mechanical refrigeration.

Though the actual thermal efficiency of Otto’s engine was many times better than that of Lenoir’s, it was still
barely competitive with the ever improving Rankine cycle steam engine. Diesel felt that he could eliminate the
electrical ignition system of the Otto cycle engine if he could compress the air to the point where its temperature
would be high enough to cause the fuel to ignite spontaneously. This would raise the maximum temperature of
the cycle and consequently improve its thermal efficiency. He also felt that a higher combustion temperature
would allow cheaper, heavier hydrocarbon fuels (such as kerosene, a common lamp oil in the late 19th century)
to be used. On August 10, 1893, Diesel’s first compression ignition engine ran under its own power for the first
time, and by 1898, Diesel had become a millionaire simply by selling franchises for the industrial use of his
engine.11

Diesel had originally intended to create an isothermal combustion process in the cylinder, so as to eliminate the
heat transfer irreversibilities and thus approach the Carnot cycle thermal efficiency. He was not able to do this;
instead, the ASC model of his cycle consists of two isentropic processes (compression and power), one isobaric
process (combustion), and one isochoric process (exhaust), as shown in Figure 13.53.

DR. DIESEL VANISHES FROM A STEAMSHIP

Inventor of Oil Engine Missing after a Journey from Antwerp to Harwich
By Marconi Transatlantic Wireless Telegraph to The New York Times

LONDON, Sept. 30.—Dr. Rudolf Diesel, the famous inventor of the Diesel oil engine, has disappeared in most mysterious
circumstances. He left Antwerp yesterday to attend in London the annual meeting of the Consolidated Diesel Engine Manu-
facturers. He embarked on the steamer Dresden, accompanied by a fellow Director, George Carels, and Herr Luckmann,
Chief Engineer of the company.

Dr. Diesel had a cabin to himself. On the arrival of the vessel at Harwich at 6 o’clock this morning he was missing. His bed
had not been slept in, though his night attire was laid out on it.

It is conjectured by his friends that Dr. Diesel fell overboard. He complained to a friend some time ago that he was
occasionally troubled with insomnia, and it is possible that when his friends retired to their cabins he decided to continue

11 Diesel’s 1893 test engine compressed air to 80 atm, a pressure never before achieved by a machine. He was nearly killed when the
engine subsequently exploded.
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to stroll on deck. He was in the best of health, in very cheerful spirits, and had expressed most sanguine expectations as to
the future of his engine and the development of the company.12

12 Ten days later, the crew of the Dutch boat Coertsen came upon the corpse of a man floating in the sea. The body was in such an advanced state of
decomposition that they did not bring it aboard. Instead, the crew retrieved personal items (pill case, wallet, pocket knife, eyeglass case) from the clothing
of the dead man and returned the body to the sea. On October 13, these items were identified by Rudolf’'s son as his father’s. No one knows for sure how
or why Diesel went overboard. Some believe he committed suicide because of his numerous “breakdowns,” and some believe he was murdered by either
fellow Germans (who resented his lack of nationalism) or by coal industrialists (who resented his engine).

The thermal efficiency of the Diesel cycle is

ðηTÞDiesel =
ð _WoutÞnet

_QH

=
_QH − j _QLj

_QH

= 1−
j _QLj
QH

where (see Figure 13.53a), for the hot ASC,

j _QLj = _mðu2s − u3Þ and _QH = _m½ðu1 − u4sÞ+ pðv1 − v4sÞ� = _mðh1 − h4sÞ
Then, the thermal efficiency of the Diesel hot ASC is

ðηTÞDiesel
hot ASC

= 1− u2s − u3
h1 − h4s

For the Diesel cold ASC, this becomes

ðηTÞDiesel
cold ASC

= 1−
cvðT2s − T3Þ
cpðT1 −T4sÞ = 1−

T3ðT2s/T3 −1Þ
kT4sðT1/T4s − 1Þ (13.35)

For the isentropic processes from 1 to 2s and from 3 to 4s, we have

T2s/T1 = v2s/v1ð Þ1−k

and

T3/T4s = v3/v4sð Þ1−k = CR1−k

T

s

QH

QL

4s

3

2s

1

v=c 

v=c 

Wout

(a) T−s diagram
      (isentropic cycle) 

p p

3

4
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2

3′
3′

3
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4s 1
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(d) The operation of a four−stroke Diesel cycle engine

Combustion (4s to 1)
and power (1 to 2s)

Exhaust
(2s to 3 to 3′)

Intake
(3′ to 3)

Compression
(3 to 4s)

(c) p−V indicator diagram
 (actual cycle)

(b) p−V diagram
             (isentropic cycle) 

VV

FIGURE 13.53
The Diesel air standard cycle.
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and, for the isobaric process from 4s to 1, we have

T1/T4s = v1/v4s = CO

where CO is called the cutoff ratio of the engine. For the isochoric process from 2s to 3, it can easily be shown
that T2s/T3 = COk, then

ðηTÞDiesel
coldASC

= 1−
CR1−kðCOk − 1Þ

kðCO− 1Þ (13.36)

WHAT DOES CUTOFF MEAN?

The term cutoff is another archaic steam engine jargon term that has been absorbed into modern IC engine terminology.
It was introduced in the 1780s by James Watt, when he realized that, if the steam entering the cylinder was “cut off”
(i.e., shut off) when the piston had completed only a portion of its stroke and the natural expansion of the steam was
allowed to complete the stroke, then the engine’s thermal efficiency increased significantly. Today, this term is used to
indicate where the combustion process “cuts off” (i.e., stops) in a compression ignition internal combustion engine. It is
determined by the geometry of the combustion chamber and the fuel charge.

EXAMPLE 13.17
The Wärtsilä RT-flex96C, the two-stroke, turbocharged, low-speed Diesel engine shown in Figure 13.54, was manufactured by
the Finnish manufacturer Wärtsilä. With 14 cylinders, it is one of the largest reciprocating engines in the world. Determine
the following items for the Diesel cold ASC with k = 1.4. Assume that, when the engine is producing 80,080 kW of output
power, it has a compression ratio of 18.0 to 1 with a cutoff ratio of 2.32, and it uses fuel with a heating value of 45.5 × 103

kJ/kg with a fuel flow rate of rate 3.35 kg/s.

a. The Diesel cold ASC thermal efficiency of the engine.
b. The actual thermal efficiency of the engine.
c. The mechanical efficiency of the engine.

FIGURE 13.54
Example 13.17.

The 14-cylinder Wärtsilä RT-flex96C marine engine was put into service in September 2006 aboard the Emma Mærsk. Its
maximum continuous power output was 80,080 kW (108,920 bhp) at 102 rpm. Measuring 27.3 m long and 13.5 m high,
its overall weight is 2300 tons.
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Solution
a. The compression ratio CR = 18.0, and the cutoff ratio CO = 2.32, so the Diesel cold ASC thermal efficiency is given by

Eq. (13.36) as

ðηTÞDiesel
coldASC

= 1−
ð18:0Þ− 0:40½ð2:32Þ1:40 − 1�

1:40ð2:32−1Þ = 0:617 = 61:7%

b. The rate of energy provided by burning the fuel is

_Qfuel = ðFuel heating value in kJ/kg-fuelÞ× ðFuel flow rate in kg-fuel/sÞ

= ð45:5 ×103 kJ/kg-fuelÞ× ð3:35 kg-fuel/sÞ = 152 ×103 kJ/s = 152,000 kW

Then the actual thermal efficiency of the engine is given by Eqs. (7.5) and (13.33) as

ðηTÞDiesel
actual

=
ð _WBÞout
_Qfuel

= 80,080
152,000

= 0:527 = 52:7%

c. Since ðηTÞactual = ðηmÞðηTÞcold ASC,

ηm =
ðηTÞactual
ðηTÞcoldASC

= 0:525
0:617

= 0:851 = 85:1%

Exercises
50. Determine the Diesel cold ASC efficiency discussed in Example 13.17 if the compression ratio is decreased to 14.0 to 1.

Assume all other variables remain unchanged. Answer: (ηT)Diesel cold ASC = 61.6%.
51. Find the Diesel cold ASC thermal efficiency of the engine in Example 13.17 if the cutoff ratio is increased to 4.65.

Answer: (ηT)Diesel cold ASC = 61.1%.
52. Calculate the indicated horsepower output for the Diesel engine in Example 13.17. Answer:

ð _WIÞout = ðηTÞDiesel
cold ASC

× _Qfuel = 0:661 ×152,000 kW = 100,500 kW.

53. Determine the actual thermal efficiency of the diesel engine in Example 13.16 if it produces 85,500 kW rather than
80,080 kW. Assume all other variables remain unchanged. Answer: (ηT)Diesel actual = 56.1%.

NO RAY OF LIGHT ON DIESEL MYSTERY

German Inventor Was a Millionaire and His Home Was Happy

Special Cable to The New York Times

LONDON, Oct. 1—Today brought no fresh tidings in regard to Dr. Rudolf Diesel, the oil engine inventor, and that he met his
death by drowning on his way from Antwerp to Harwich on Monday night appears to be certain.

Dr. Diesel’s friends are greatly mystified. While on the one hand the probabilities of an accidental fall overboard seem
remote, on the other hand they cannot conceive any motive which might prompt a suggestion of suicide.

Dr. Diesel was a wealthy man. His patent rights in the Diesel engine were sold for huge sums in various countries, and,
having amassed a fortune, he had to all intents and purposes retired from active business. It is believed that he amassed a
fortune of $2,500,000 in a few years.

Sidney Whitman, the oldest of Dr. Diesel’s English friends, says Dr. Diesel lived in Munich in one of the most palatial
modern houses in Bavaria, which cost $250,000 to build. Mr. Whitman says that when he was in America last year
Dr. Diesel struck up a great friendship with Thomas A. Edison. The latter told him not to eat too much and he would live
to be a hundred.
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NO LIGHT ON DIESEL’S FATE

Special Cable to The New York Times

LONDON, Oct. 2.—The mystery of the disappearance on Monday night of Dr. Rudolf Diesel on the cross-channel steamer
Dresden is still unexplained. A report that Dr. Diesel did not sail on the Dresden receives no confirmation. The inventor was
seen on deck after the vessel left Flushing.

The British Board of Trade inquiry has elicited nothing, and an examination of Dr. Diesel’s private papers at Munich has
been equally without result.

Baron Schmidt, Dr. Diesel’s son-in-law, declares that the theory of suicide in a sudden fit of aberration is entirely
unsupported.

When the inventor went to see his daughter at Frankfurt after several days’ shooting in the Bavarian highlands he
complained that he had overstrained himself and that this had accentuated the weakness of the heart from which he had
suffered in recent years. Nevertheless, he was in the best possible spirits.

Diesel cycle engines operate with a much higher compression ratio than Otto cycle engines (12 to 24 vs. 8 to 11)
and therefore are more efficient than Otto cycle engines. Typical Otto cycle engine actual thermal efficiencies are
in the range from 15 to 25%, whereas for Diesel cycle engines, they normally fall in the range from 30 to 45%. As
the previous example illustrates, very large Diesel engines can have efficiencies greater than 50%.

Because combustion takes place intermittently in internal combustion engines and therefore the cylinder is
alternately heated by combustion and cooled by the intake stroke (plus the fact that most of these engines have
water jacket cooling), they have the same heat transfer irreversibilities as the early 18th century Newcomen
steam engines. A similar cyclic cylinder heating and cooling process in the Newcomen steam engine led James
Watt to develop the external steam condenser that improved the engine’s thermal efficiency fourfold.

13.22 MODERN PRIME MOVER DEVELOPMENTS
Solving for the power from an energy rate balance (ERB) on a steady state, steady flow, single-inlet, single-outlet
prime mover (neglecting any changes in kinetic or potential energy) yields

_Wout = _mðhin − houtÞ− j _Qj loss

Since the primary objective of any prime mover is to produce power ð _Wout > 0Þ, any heat loss ð j _Qj loss >0Þ
clearly reduces both the power output and the thermal efficiency of the prime mover. Consequently, most
external combustion prime movers are heavily insulated to minimize their heat loss and maximize their ther-
mal efficiency. When there is no heat loss or gain by a prime mover, it can properly be called an adiabatic
prime mover.

DIESEL WAS BANKRUPT

He Owed $375,000—Tangible Assets Only about $10,000
By Marconi Transatlantic Wireless Telegraph to The New York Times

MUNICH, Oct. 14.—The deplorable state of the late Dr. Rudolf Diesel’s finances was revealed at today’s meeting of his
creditors here.

The meeting found itself unable to take definite action regarding the administration of Dr. Diesel’s wrecked fortune, as the
exact state of affairs remains to be cleared up. It is declared that the inventor’s liabilities are approximately $375,000,
against which the tangible assets are only $10,000.

Figures laid before the meeting showed a state of confusion in the tabulation of Dr. Diesel’s supposed assets. In the case of
some houses at Hamburg and Munich it was found that there was an overvaluation of $125,000.
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Current internal combustion engines are not only uninsulated, they are intentionally cooled. This is done to
prevent the buildup of excessively high internal temperatures that in turn would cause material failure due to
loss of strength. Consequently, about 80% of the chemical energy originally contained in the fuel leaves an IC
engine as thermal energy in the coolant and exhaust gases.

The development of high-temperature, high-strength ceramic or superalloy engine components is a step in the
direction of creating a truly adiabatic IC engine. In addition to reducing engine heat loss, these new components
allow higher internal operating temperatures to be achieved, and this in turn increases the maximum theoretical
thermal efficiency of the engine. For example, doubling the operating temperature from 2000°F (1093°C) to
4000°F (2204°C) increases the Carnot isentropic efficiency by about 10%. Figure 13.55 illustrates some of the
current uses of ceramics in reciprocating IC engines. Similar advances are being made in gas turbine engine
technology.

Other thermal efficiency–increasing technology, such as supercharging, turbocharging, and turbocompounding,
can be used to extract some of the thermal energy from the engine’s exhaust gases (see Figure 13.56). How-
ever, it must be remembered that all cyclic heat engines (including all IC engines when their cycle is closed by
the environment) must have a heat loss rate to the environment, dictated by the second law of thermo-
dynamics, of

j _Qjloss ≥ Tenvironment/Tenginemax
� � j _Q j fuel

Ceramic
bearings

Fuel
injector

Ceramic
valve

Ceramic
head liner

Ceramic
bearings

Ceramic
piston

Thermal
barrier

FIGURE 13.55
Typical ceramic components of a modern IC engine.
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13.23 SECOND LAW ANALYSIS OF VAPOR AND GAS
POWER CYCLES

The difference between the isentropic thermal efficiency and the actual thermal efficiency of a system is due to
the effects of the second law of thermodynamics. The second law can be used to determine viscous irreversibil-
ities leading to pressure losses in pipes, valves, and fittings; to determine heat transfer irreversibilities due to
incomplete insulation and large temperature gradients; and to determine mechanical and chemical irreversibil-
ities in pumps, compressors, and prime movers due to friction and chemical reactions. However, piping and
ancillary viscous losses (irreversibilities) are normally determined through the empirical friction factor material
introduced in Chapter 9 (and found in most fluid mechanics textbooks), and mechanical and thermal losses in
machinery are globally lumped into the empirically determined isentropic efficiency, ηs. The application of the
second law to complex engines and turbines is so difficult today that it is not normally used in the engineering
design stage of product development. This will, no doubt, change as technology and engineering analysis
advance in the future.

The thermal efficiency ηT is essentially a first law energy conversion efficiency, in that it is concerned with the
effectiveness of an energy conversion process as the ratio of a desired output to a required input. The isentropic
efficiency ηs, on the other hand, can be viewed as a second law energy conversion efficiency in that it compares
the actual energy conversion performance of a real (irreversible) device with its idealized reversible counterpart.
Consequently, the primary role of the second law of thermodynamics in the analysis of vapor and gas power
cycles today is through the (largely empirical) determination and use of the isentropic efficiency. Many of the
practical aspects of engineering courses in heat transfer, fluid mechanics, electrical circuit theory, and machine
design today are the result of the consequences of the second law of thermodynamics.
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Intake manifold
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FIGURE 13.56
Air and exhaust flow arrangements for supercharging, turbocharging, and turbocompounding an internal combustion engine.
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CASE STUDIES IN APPLIED THERMODYNAMICS

The following are examples of typical case studies in the field of
applied thermodynamics. They are meant to demonstrate the prac-
tical use of the material presented in this chapter. The examples are
chosen from a wide variety of well-known technologies, and the
thermodynamic analysis has been presented essentially as a diag-
nostic tool. In this way, we can develop a quick understanding of
how some simple and some complex items behave from a thermo-
dynamic point of view.

Case study 13.1. The Stanley Steamer automobile
In 1897, a Rankine cycle steam-powered automobile was intro-
duced by the twin brothers Francis Edgar Stanley (1849–1918) and
Freelan Oscar Stanley (1849–1940). Their automobiles were affec-
tionately known as Stanley Steamers (Figure 13.57), and most had a
two-cylinder, 30.0 hp reciprocating steam engine with a 4.0 in
bore and a 5.0 in stroke. The boiler operated at 600. psia and
600.°F and was fueled with gasoline or kerosene. The engine was
mounted in the rear of the automobile and connected directly to
the drive wheels. Therefore, Stanley Steamers did not require a
drive shaft, transmission, or differential. The engine (and the auto-
mobile’s) speed was controlled simply by altering the amount of
steam reaching the engine with a hand-operated throttle valve. The
Stanley Steamers did not have a condenser until 1917. Before then,
they exhausted their spent steam directly into the atmosphere.
When a condenser was finally added to the engine, its main func-
tion was to conserve and recycle water and not to improve the effi-
ciency of the power plant. Consequently, the condenser looked and
operated very much like a standard automobile radiator, conden-
sing at atmospheric pressure instead of a vacuum. Under these con-
ditions, the engine produced 30.0 hp with an isentropic efficiency
of about 80.0%. Using basic engineering thermodynamics, we can
estimate the steam flow rate required for the engine and the
amount of water consumed in traveling 1 mile at 55.0 mph.

Station1—Engineinlet Station2s—Condenser inlet

p1 =600: psia p2s = p2 = 14:7 psia

T1 =600°F s2s = s1 = 1:5322Btu/lbm .R

h1 =1289:5Btu/lbm x2s = ð1:5322−0:3122Þ/1:4447=0:8445

s1 =1:5322Btu/lbm .R h2s = 180:1+ 0:8445ð970:4Þ = 999:6Btu/lbm

Station3—Pumpinlet Station4s—Boiler inlet

p3 = p2s = 14:7 psia p4s = p1 =600: psia

x3 =0:00 s4s = s3 =0:3122Btu/lbm .R

h3 = 180:1Btu/lbm h4s = h3+ v3ðp4s – p3Þ

s3 = 0:3122Btu/lbm .R = 180:1

+ 0:01672ð600: – 14:7Þð144/778:16Þ

v3 = 0:01672ft3/lbm = 181:9Btu/lbm

Then, since _W = (30.0 hp)(2545 Btu/hp · h) = 76,400 Btu/h, and
(ηs)engine = 0.800, the required steam mass flow rate is

_m =
_W

ðh1 − h2sÞðηsÞengine

=
76,400Btu/h

ð1289:5−999:6Btu/lbmÞð0:800Þ = 329: lbm/h

and, if the vehicle is traveling at 55.0 mph, it uses

329 lbm/h
55:0mi/h

= 5:98 lbm/mi

or about 3
4 of a gallon of water per mile.

Wire winding

Boiler

Superheater

Stanley steamer boiler

FIGURE 13.57
1909 Stanley Steamer car and boiler.
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CASE STUDIES IN APPLIED THERMODYNAMICS Continued

Note that, if we take the isentropic efficiency of the boiler feed
pump to be 70.0%, then the thermal efficiency of the entire Stanley
power plant is quite respectable at

ηTð Þ
Stanley
Steamer

=
h1 − h2sð Þ ηsð Þengine − v3 p4s − p3ð Þ/ ηsð Þpump

h1 − h4

=
1289:5− 999:6ð Þ 0:80ð Þ−0:01672 600:− 14:7ð Þ 144

778:16

� �
1

0:700

� �
1289:5− 180:1+0:01672 600:−14:7ð Þ 144

778:16

� �
1

0:700

� �� �
= 0:207 = 20:7%

In Chapter 7, we learned that the amount of entropy production
inside a system is a key factor in limiting its energy conversion effi-
ciency. For example, the more moving parts and friction there are
inside an engine, the lower is its isentropic efficiency. Since Stanley
engines used double-acting cylinders with two power strokes occur-
ring with every revolution of the engine’s crankshaft, they produced
the same power as an equivalent eight-cylinder Otto cycle internal
combustion engine that has only one power stroke occurring in
every two revolutions of the engine’s crankshaft.

A typical eight-cylinder Otto cycle engine has 50–100 moving parts
with very significant mechanical friction, whereas the two-cylinder,
double-acting Stanley engine had only 15–25 moving parts. In fact, an
entire Stanley automobile had only 37 moving parts. Consequently,
the Stanley automobiles were very effective energy conversion devices.

In 1906, the Stanley brothers set a new world land speed record of
127.66 mph at the Dewar Cup Race in Omond Beach, Florida, with a
steam-powered race car called the Rocket (Figure 13.58). The car’s
body was made by a canoe factory and looked like an upside-down
boat. The engine was the same two-cylinder Stanley steam engine used
in their production vehicles, but it had been enhanced with a 4.50 in
bore and a 6.50-inch stroke. The standard Stanley boiler had been
enlarged to a 30.0 inches in diameter and was 18.0 inches high, and
operated at 1000 psia and about 700°F. Under these conditions the
little two-cylinder Stanley steam engine produced a whopping 250 hp.

FIGURE 13.58
The Rocket race car.

In 1907, the Stanleys again tried to set a new world land speed
record. This attempt ended in disaster, when the car became air-
borne at about 190 mph and crashed. The driver survived the
crash, but a spectator in the crowd had to reinsert the driver’s right
eye, which had been dislodged from its socket by the force of the
impact. At the time of the crash, the boiler pressure had been
increased to an incredible 1300 psia.

Case study 13.2. The drinking bird as a heat engine
Many novelty stores carry a toy called the drinking bird, which
bobs up and down, apparently drinking from a glass of water
(Figure 13.59). This toy is really a small heat engine that uses the
evaporation of water from its head as the power source for its
operation (Figure 13.60).

The head must be lightly covered with something that will hold a
small amount of water (e.g., a light fuzz) and the beak is simply a
wick that keeps the head wet. As the water evaporates from the head,
it cools the vapor inside the head causing a slight vacuum to form.
The liquid in the bottom of the bird is then drawn up into the bird’s
neck, shifting the center of gravity of the bird forward, and ulti-
mately causing it to tip. When the bird tips, the beak is rewetted and
a vapor bubble passes through the neck equalizing the pressures
between the ends of the bird and restoring the bird’s center of grav-
ity. The bird then returns to its original upright position. This cycle
is continuously repeated until the water source is exhausted.

FIGURE 13.59
Drinking bird.

(a) (b) (c) (d) (e)

FIGURE 13.60
The operation of the drinking bird.
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Since the motion of the bird could easily be connected to a shaft to
produce work, the drinking bird is clearly some form of an engine.
So how does this engine work?

By simple observation, we conclude that the evaporation of liquid
water from the head of the bird causes the physical changes in
the liquid inside the bird. Also, our observations tell us that the
relative humidity in the room must be below 100% for the bird
to operate. Therefore, it would seem that the bird is some form
of steam engine, where the steam is just the water vapor that eva-
porates from the bird’s head, and the partial pressure of this
water vapor must be lower than the saturation pressure of water
vapor in the room air for the bird to operate. Since the bird’s
head is constantly moving, it is not unreasonable to assume that
its temperature is approximately equal to the wet bulb tempera-
ture of the room. If we then complete the steam cycle by assum-
ing the evaporated water is condensed in the atmosphere at the
dew point temperature, we can construct the T–s vapor power
cycle shown Figure 13.61.

TWB

TDP
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(a) (b)

FIGURE 13.61
T–s and p–v diagrams for the drinking bird.

We can estimate its power-producing potential and operational
thermal efficiency as follows. The equivalent Carnot cycle thermal
efficiency is given by

ðηTÞCarnot
drinking bird

= 1− TL

TH
= 1− TDP

TWB

and the isentropic Rankine cycle thermal efficiency is

ðηTÞIsentropic
Rankine
drinking bird

=
ðh1 − h2sÞ− ðh4s − h3Þ

h1 − h4s

where the states are identified using the relative humidity ϕ, the dry
bulb temperature TDB, the wet bulb temperature TWB, and the dew
point temperature TDP as follows:

Station1—Bird’shead
Station2s—Beginning of

condensation
p1 = ϕpsat TDBð Þ T2s = TDP

T1 = TWB s2s = s1
h1 = h p1,T1ð Þ h2s = h T2s, s2sð Þ
s1 = s p1, T1ð Þ p2s = p T2s, s2sð Þ

Station3—Endof condensation
Station4s—Liquid brought

back to pressure p1
p3 = p2s p4s = p1
x3 = 0:0 s4s = s3
h3 = h p3, x3ð Þ h4s = h p4s, s4sð Þ
s3 = s p3, x3ð Þ

Figure 13.62 shows how these thermal efficiencies vary with room
relative humidity. Clearly, the drier the air in the room, the more
efficient the drinking bird becomes.

25
0.0

0.5

1.0

1.5

2.0

T
he

rm
al

 e
ff

ic
ie

nc
y 

(%
)

2.5

3.0

3.5

34 43

Relative humidity of the surrounding air (%)

52 61 70

Rankine cycle

Carnot cycle

FIGURE 13.62
Thermal efficiency of a drinking bird.

The drinking bird thermal efficiency is roughly equivalent to the
low thermal efficiencies of the original Newcomen and Watt steam
engines. However, a scaled-up version could be effective as an
engine in dry climates.

Case study 13.3. Aircraft engine development
The world’s largest aircraft engine manufacturers developed a new
generation of gas turbine engines that provide 60,000 to 100,000 lbf
of thrust. Pratt & Whitney has its PW4000, Rolls Royce has its Trent,
and General Electric has its GE90. The PW4000 has an isentropic pres-
sure ratio of 31.5 and a bypass ratio of 5:1, producing 60,000 lbf of
thrust. The GE90 has an isentropic pressure ratio of 50.0, and a bypass
ratio of 10.0 to 1, producing a thrust in the 80,000 lbf range. This case
study focuses on the GE90 turbofan engine development.

Before we can discuss aircraft engine design, we need to do some
background work. The thrust produced by an aircraft engine is pri-
marily the difference between the rate of momentum imparted to
the gases exiting the engine and the momentum rate of the inlet
air. Neglecting the small momentum produced by the fuel flow
rate, the thrust can be written as

Thrust = T = _maðVexhaust −VaircraftÞ/gc
where, in this case, Vaircraft = Vinlet air and _ma = _mair = _m exhaust. Since
the exhaust velocity is always greater than the aircraft velocity, we
see from this equation that there are two ways to increase the
thrust of an aircraft engine:

1. Increase the engine’s exhaust gas velocity.
2. Increase the engine’s air mass flow rate.

A turbojet engine is a Brayton cycle gas turbine engine that produces
all of its thrust by generating a very high exhaust gas velocity. This
is done by forcing all the turbine’s hot exhaust gases through a
flow nozzle to maximize the exhaust velocity (see Figure 13.63a). A
turbofan engine is also a Brayton cycle gas turbine engine. But it

(Continued )
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produces thrust by a combination of high-speed exhaust gas plus
low-speed “bypass” air produced by an external “fan” (or a low-
pressure ratio compressor stage) directly connected to the engine’s
turbine to increase the value of the air mass flow rate _mair

(see Figure 13.63b). Finally, a turboprop engine is a Brayton cycle
gas turbine engine that produces some thrust with a high-speed
exhaust gas, like the turbojet, with the remaining thrust coming
from a standard low-speed propeller driven by the engine’s turbine
through a speed-reducing gearbox (see Figure 13.63c).

Fuel

Fuel

Compressor

Burners

Turbine

(a) Turbojet

(b) Turbofan

(c) Turboprop

Compressor Turbines

Burners

Fuel

Fuel

Compressor
Turbine

Fuel

Fuel

Burners

FIGURE 13.63
Brayton cycle gas turbine engines.

Each of these engine designs has its advantages and disadvantages.
A turbojet engine is ideal for very high-speed flight, but it does not
perform well at low speeds or low altitudes. A turbofan engine per-
forms well at moderate to high speeds, and a turboprop engine
performs well at low aircraft speeds but not at high speeds.

The propulsion efficiency of these three engine designs is given by

ηpropulsion =
Thrust power output

Thrust power output + Lost kinetic energy rate

Neglecting the momentum associated with the mass flow rate of
the fuel, the thrust of a turbojet engine is given by

Tturbojet = _maðVexhaust −VaircraftÞ/gc
and the thrust of a turbofan or turboprop engine is given by

T
turbofan
or turboprop

= _maðVexhaust −VaircraftÞ/gc

where
_ma = air mass flow rate,

Vaircraft = Vinlet air (the air inlet velocity is the same as the aircraft
velocity),

Vexhaust = turbojet exhaust gas velocity,

Vexhaust = turbofan or turboprop average exhaust gas velocity,
defined as

Vexhaust = _maHVeH + _maCVeCð Þ/ _maH + _maCð Þ = _maHVeH + _maCVeCð Þ/ _ma,

where _maH and VeH are the mass flow rate and exhaust gas velocity of
that portion of the exhaust passing through the hot combustion cham-
ber, and _maC and VeC are the mass flow rate and exhaust velocity of
that portion of the exhaust gases that “bypass” the combustion cham-
ber to produce additional thrust by increasing the magnitude of _ma.

Then, the propulsion efficiencies can be written as

ηpropulsion

� �
turbojet

=
_ma Vexhaust −Vaircraftð Þ Vaircraft/gcð Þ

_ma Vexhaust −Vaircraftð Þ Vaircraft/gcð Þ+ _ma/2gcð Þ Vexhaust −Vaircraftð Þ2

= 2
1+Vexhaust/Vaircraft

and

ðηpropulsionÞturbofan
or turboprop

=
_maðVexhaust −VaircraftÞðVaircraft/gcÞ

_maðVexhaust −VaircraftÞðVaircraft/gcÞ+ ð _ma/2gcÞðVexhaust −VaircraftÞ2

= 2
1+Vexhaust/Vaircraft

Note that ηpropulsion increases as aircraft speed approaches the engine’s
exhaust velocity (Vaircraft → Vexhaust), but the engine’s thrust vanishes as
Vaircraft → Vexhaust. So, to maintain the thrust while we increase Vaircraft,
we must increase _ma. Therefore, an engine with a large _ma and a small
Vexhaust is more efficient than an engine with the same thrust moving a
small _ma at a high Vexhaust.

Another measure of aircraft performance is its thrust efficiency,
defined as

ηthrust =
Thrust power
Fuel power

=
T ×Vaircraft

_Q fuel
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where _Qfuel is the rate of heat produced by the burning fuel. For
turbojet engines, this is

ðηthrustÞturbojet =
_maðVexhaust −VaircraftÞVaircraft

_Q fuel

and, for turbofan and turboprop engines, this it

ðηthrustÞturbofan
or turboprop

=
_maðVexhaust −VaircraftÞVaircraft

_Q fuel

We can now maximize the thrust efficiency by differentiating it
with respect to the aircraft’s velocity V while holding all the other
variables constant, then setting the result equal to zero to find the
optimum aircraft velocity as

Voptimum =
Vexhaust

2

� �
turbojet

=
Vexhaust

2

� �
turbofan
or turboprop

Inserting this result into the turbojet, turbofan, and turboprop
propulsion efficiency equations produces a common optimum
propulsion efficiency for all three engines of

ðηpropulsionÞoptimum = 2
3
= 0:667 = 66:7%

The GE90 engine development
In early 1990, the Aircraft Engines Division of General Electric
launched the design of the GE90, a high-thrust, turbofan, gas tur-
bine engine (Figure 13.64) designed to meet the needs of the emer-
ging superjumbo wide-body passenger aircraft market. It was clear
at that time that there would be increasing air traffic occurring over
longer distances as world markets continued to evolve in the Pacific
Rim, Eastern Europe, and South America. More passengers traveling
longer distances meant more air congestion or larger planes. Also,
in the 1990s, the aging fleet of over 3000 Boeing 747s could be
replaced with new wide-body, twin-engine passenger aircraft cap-
able of carrying 300 passengers over 6000 miles. Such an aircraft
would have a wingspan of about 200 ft and a gross weight of about
500,000 lbf. This meant that each engine required a takeoff thrust of
about 100,000 lbf. The resulting GE90 engine specifications were

Bypass ratio ð _maC/ _maHÞ = 10:0 to1

Compressor compression ratio p2s/p1 = PR = 50:0 to1

Engine thrust = T = 100,000 lbf

Fandiameter = Dfan = 123 in: = 10:25 ft

_ma =2150 lbm/s

FIGURE 13.64
Cross-section of the GE90 engine.

For a static (takeoff) thrust of 100,000 lbf, the average exit velocity
must be

Vexhaust =
Tgc
_ma

=
ð100,000 lbfÞð32:174 lbm . ft/lbf . s2Þ

2150 lbm/s
= 1500 ft/s

and for a cruising speed of 500. mph = 733 ft/s, this exhaust velo-
city yields a propulsion efficiency of

ηpropulsion = 2

1+ 1500:
733

= 0:657 = 65:7%

Note that, since Vaircraft ≈ Vexhaust /2 here, this is very close to the
optimum propulsion efficiency (66.7%) for this engine.

The GE-IA: The first U.S. turbojet engine
In January 1941, the U.S. National Academy of Sciences reported
that gas turbine engines were impractical for aircraft propulsion
because their power to weight ratio was too low. However, on
August 24, 1939, Germany flew its first turbojet-powered aircraft
(the Heinkel-178), and by June 1944, German combat jet aircraft
(Messerschmitt ME-262 Swallow, powered by two Junkers Juno tur-
bojet engines with an air speed of 540 mph at 20,000 ft) had
entered World War II. Also, on May 15, 1941, the British first flew
a Gloster Meteor jet aircraft powered by a single Whittle W-1X tur-
bojet engine as part of their war research and development pro-
gram. These events prompted the U.S. government to issue a
contract to General Electric in September 1941 to build and test 15
gas turbojet engines based on the designs of the British aircraft
engineer Frank Whittle. On March 18, 1942, the first GE type I-A
(pronounced “eye-A”) turbojet engine was completed and tested at
GE’s River Works facility in Lynn, Massachusetts. It produced about
1250 lbf of static thrust at 15,000 rpm. On October 1, 1942, the
first U.S. turbojet-powered aircraft (the Bell XP-59A Aircomet) was
flown at Muroc Dry Lake (now called Edwards Air Force Base) in
California. It had an air speed of 400 mph, 140 mph less than the
German ME-262.

The tests with the Bell XP-59A did not result in U.S. combat aircraft
during World War II, but it did play a key role in the later develop-
ment of the XP-80 Shooting Star, used in the Korean War in the
early 1950s.

If the air mass flow rate into the GE-IA engine is 18.0 lbm/s and it
produces 1,250 lbf of static thrust, then we can compute the jet
exit velocity from the relation given in the GE90 case study as

Vexhaust =
T × gc
_ma

=
ð1250 lbfÞ½32:174 lbm . ft/ðlbf . s2Þ�

18:0 lbm/s
= 2230 ft/s

Then, at a flight speed of 400. mph = 587 ft/s, the propulsion effi-
ciency is

ηpropulsion = 2

1+
2230 ft/s
587 ft/s

= 0:417 = 41:7%

Case study 13.4. Model Stirling engine projects
Though the mechanism and thermodynamic cycle of a Stirling
engine are not easy to understand, you can make a working Stir-
ling engine at home. Numerous model Stirling engine designs are
available (for example, see Making Stirling Engines, by Andy Ross,

(Continued )
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published by Ross Experimental, 1660 W. Henderson Rd.,
Columbus, Ohio); however, most require machinist skills. The
Stirling engine described here can be made from commonly avail-
able components and requires minimum manual skill to assemble.

Stirling engine 1. A test tube engine
This project has been designed for any engineering student with
access to simple hand-tools. It was originally developed in 1992 by
Wilfried Schlagenhauf in Germany. If you follow the instructions
carefully, you can make a simple Stirling cycle engine that runs
under its own power. Figure 13.65 shows the eight basic parts. You
need a standard test tube (about ¾ inch in diameter and 6 inches
long) (1), and five glass marbles (2) that roll freely inside the test
tube and function as a free piston displacer. The power cylinder (5)
is a 1-inch diameter plastic snap-cap pill bottle with the bottom
cut off. Cut the neck off a small balloon (6) and stretch the open-
ing over the uncut end of the pill bottle and snap the cap in place
to hold and seal the balloon. Then, cut a small hole in the pill bot-
tle top to insert the air tube and mount it upside down on the base
(8). The power piston assembly (4) consists of another plastic bot-
tle cap, small enough to fit inside the power cylinder without jam-
ming when at an angle. A 3 inch long nail is pushed through the
center of the bottle cap to provide the piston connecting rod. The
test tube support assembly (3) consists of an angle bracket
mounted to the base (8), and an adjustable (erector set) member
attached to the test tube pivot joint. The air tube (9) is 2 or 3 mm
ID pliable plastic or rubber tubing. Finally, counterweights (10)
need to be added to the cold end of the test tube to control its
motion. The engine is driven by the heat of a single candle (7).
A complete engine kit is available from Ginsberg Scientific
(ginsbergscientific.com).

1

2

10

9

4

5

6

8

7

3

FIGURE 13.65
A test tube Stirling engine.

Here is how the cycle works (Figure 13.66): (a) When the free end
of the test tube is pointing up, the air it contains is heated. The
heated air expands and inflates the balloon. (b) The expanding bal-
loon pushes the power piston assembly up, which in turn causes
the test tube to pivot its free end downward. Then the marbles roll

towards the free end of the test tube, displacing the hot air to the
higher, cold end, where it cools, causing the balloon to retract, low-
ering the piston assembly, and the cycle begins again. When prop-
erly adjusted, the engine operates at about one to three cycles per
second, and the engine generates enough power to drive a small
external device.

(a) Heating the air

Heating

(b) Cooling the air

Cooling

FIGURE 13.66
How this engine works.

Stirling engine 2. A liquid piston fruit-jar engine
A number of easily made liquid piston Stirling cycle engines can be
found in the text Liquid Piston Stirling Engines, by C. D. West (New
York: Van Nostrand Reinhold, 1983). One of the most intriguing is
the fruit-jar engine, shown in Figure 13.67, connected to a water
pump. This unit should pump about 5 gallons per hour when
properly adjusted. In some cases, the water level in the cylinders
and the length of the tuning line inserted into the hot cylinder may
require careful adjustment. Some very interesting thermodynamic
experiments can be done with this design. For best results, see the
details provided in the text by C. D. West.
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SUMMARY
Vapor and gas power cycles are the heart and soul of applied thermodynamics. Their commercialization brought
humanity from a meager medieval cottage industry to an advanced technological society with a high standard of
living. The empirical development of power-producing technology that began in the 17th century provided the
basis and motivation for the theoretical understanding of thermodynamics as an intellectual pursuit in the mid
19th century. Most of the technology described in this chapter was developed by inventors who did not under-
stand the theoretical principles involved. Only after they created their ingenious machines did others come
along to interpret their work in the light of a complete thermodynamic analysis. Until now, technology was
often developed by this simple discovery method. The future holds less of this empirical approach to technologi-
cal development. Most modern technology is far too complicated to continue to be developed by trial and error
methods. We need to know much more about exactly what we are dealing with to discover new technological
advances that will benefit humankind. Table 13.3 summarizes the basic elements of the power cycles presented
in this chapter.

Fill port

8 mm O/D

Water
level

18 mm O/D

Sealed top

End of coiled
tube fits loosely
into end of U tube 

Mason jar

Non−return
valves

Semi stiff
non−kinking
tube to form
connection

8 mm O/D

Heat applied to
this region 

120 mm

160 mm

8 coils 8.5 or 9 mm O/D tubing,
2140 mm long 

FIGURE 13.67
Fruit-jar Stirling engine.
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The field of power plant thermodynamics is so broad that it is difficult to present it adequately in just one chap-
ter. In this chapter, we attempt to find a new course for its presentation by carefully charting the chronology of
its development. Our goal is to provide you, the reader, with a historical perspective on this important technol-
ogy and historical benchmarks with which to judge the significance of its impact on society and to broaden
your understanding of your chosen profession. Contrary to the opinion held by most historians, the history
of the human race is primarily a history of its technological development, with the social faux pas of the ruling
aristocracy being much less significant than the concurrent advances in mathematics, metallurgy, mechanics, and
so forth.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they were introduced to gain an
understanding of their use and limitations.

1. The thermal efficiency of a steam engine whose output is rated in duty is

ηTðin%Þ = Duty
8:50 × 108

× 100

2. The thermal efficiency of an engine operating on a Carnot vapor power cycle is

ðηTÞCarnot = 1−TL/TH

where TL and TH are the high and low temperature limits of the cycle.
3. The thermal efficiency of a Rankine cycle power plant without regeneration or reheat is

ηTð ÞRankine =
h1 − h2sð Þ ηsð Þpm − v3 p4 − p3ð Þ/ ηsð Þp

h1 − h3 − v3 p4 − p3ð Þ/ ηsð Þp
Note that the maximum (or isentropic) thermal efficiency of this cycle occurs when (ηs)pm = (ηs)p = 1.0.

4. The thermal efficiency of a Rankine cycle with one stage of regeneration is

ðηTÞRankine cycle
with 1 regenerator
ðeither open or closedÞ

= 1− h2 − h3
h7 − h6

� �
ð1− yÞ

5. The thermal efficiency of a Rankine cycle with one stage of reheat is

ηTð Þ
Rankine
cycle with
one reheat unit

=
_Wpm − j _Wp j
_QB + _QR

=
h1 − h2ð Þ+ h3 − h4ð Þ− h6 − h5ð Þ

h1 − h6ð Þ+ h3 − h2ð Þ

where h2 = h1 – (h1 – h2s)(ηs)pm1 and h6 = h5 + v5(p6 – p5)/(ηs)p, and of course p6 = p6s.
6. The thermal efficiency of an engine operating on a Carnot gas power cycle is

ηTð Þ
Carnot
cold ASC

= 1−TL/TH = 1−PRð1−kÞ/k = 1−CR1−k

where PR is the isentropic pressure ratio and CR is the isentropic compression ratio.

Table 13.3 Summary of Power Cycle Thermodynamic Processes

Cycle Name Cycle Process

Carnot (1820) Two constant entropy and two constant temperature processes (2s and 2T )

Rankine (1859) Two constant entropy and two constant pressure processes (2s and 2p), mostly under the vapor dome

Stirling (1816) Two constant temperature and two constant volume processes (2T and 2V )

Ericsson (1833) Two constant temperature and two constant pressure processes (2T and 2p)

Lenoir (1860) One constant entropy, one constant volume, and one constant pressure process (1s, 1V, and 1p)

Brayton (1873) Two constant entropy and two constant pressure processes (2s and 2p)

Otto (1876) Two constant entropy and two constant volume processes (2s and 2V )

Atkinson (1885) and
Miller (1947)

Two constant entropy, one constant volume, and one constant pressure processes (2s, 1V, and 1p)

Diesel (1893) Two constant entropy, one constant volume, and one constant pressure processes (2s, 1V, and 1p)
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7. The thermal efficiency of a Stirling cold ASC external combustion engine is

ðηTÞStirling
cold ASC

= 1−TL/TH = 1−T2/T1 = 1−T3/T4

8. The thermal efficiency of an Ericsson cold ASC external combustion engine is

ðηTÞEricsson
cold ASC

= 1−TL/TH = 1−T2/T1 = 1−T3/T4

9. The thermal efficiency of a Lenoir cold ASC internal combustion engine is

ηTð Þ
Lenoir
cold ASC

= 1− kT3 CR −1ð Þ/ T1 −T4ð Þ

10. The thermal efficiency of a Brayton cold ASC external combustion engine is

ðηTÞBrayton
cold ASC

= 1− T3/T4s = 1−PRð1−kÞ/k = 1−CR1−k

11. The thermal efficiency of an Otto cold ASC internal combustion engine is

ðηTÞOtto
cold ASC

= 1−T3/T4s = 1−PRð1−kÞ/k = 1−CR1−k

12. The thermal efficiency of a Diesel cold ASC internal combustion engine is

ðηTÞDiesel
cold ASC

= 1−
CR1−kðCOk − 1Þ

kðCO− 1Þ

where CO is the cutoff ratio of the engine.
13. The indicated cold ASC power output of either an Otto or Diesel cycle engine is

ð _W1Þout =
ηTð ÞASC _Q/ _m

� �
fuel DNp1/Cð Þ

A/Fð Þ RT1ð Þ CR −1ð Þ
where D is the engine’s total displacement, N is the engine speed in revolutions per time, C is the number
of crankshaft revolutions per power stroke, and A/F is the air/fuel ratio of the engine.

14. The thermal efficiency of an Atkinson cold ASC internal combustion engine is

ðηTÞAtkinson
cold ASC

= 1−
kðER −CRÞ
ERk −CRk

where ER is the isentropic expansion ratio v2s/v1 and CR is the isentropic compression ratio v3/v4s.
15. The actual thermal efficiency of any of the cycles discussed in this chapter is

ðηTÞactual = ðηmÞðηTÞASC
where ηm is the mechanical efficiency of the engine.

Problems (* indicates problems in SI units)
1. The duty of a 1718 Newcomen engine was found to be 4.30

million. Determine its thermal efficiency (%).
2. In 1767, John Smeaton measured the performance of a

particularly efficient Newcomen engine that had a 42.0-inch
diameter piston and found that it produced 16.7 net horsepower
with a duty of 7.44 million. Determine (a) the thermal efficiency
of the engine and (b) the boiler heat input rate.

3. In 1767 John Smeaton measured the performance of a
Newcomen engine with a 60.0-inch diameter piston and found
that it produced 40.8 net horsepower with a duty of 5.88
million. Determine (a) the thermal efficiency of this engine and
(b) its boiler heat input rate.

4. In 1767, John Smeaton measured the performance of a
Newcomen engine with a 75.0-inch diameter piston and found
that it produced 37.6 net horsepower with a duty of 4.59
million. Determine (a) the thermal efficiency of this engine and
(b) the boiler heat input rate.

5. In 1772, John Smeaton used the results of his tests on various
existing Newcomen cycle engines to design and build his own
atmospheric steam engine. It had a 52.0-inch diameter piston
with a 7.0 ft stroke and operated at 12.5 strokes per minute
with a mean effective pressure of 7.50 lbf/in2. It produced a
remarkably high duty of 9.45 million. Determine the (a)
thermal efficiency, (b) the horsepower output, and (c) the boiler
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heat input rate of this engine. Ignore the boiler feed pump
power requirement.

6. In 1790 John Curr of Sheffield, England, made an atmospheric
steam engine with a 61.0-inch diameter piston and an 9.50 ft
stroke. The engine operated with a mean effective piston
pressure of 7.00 lbf/in2 and ran at 12.0 strokes per minute. It
produced a duty of 9.38 million. Determine (a) the thermal
efficiency, (b) the horsepower output, and (c) the boiler heat
input rate of this engine. Ignore the boiler feed pump power
requirement.

7.* An engine operating on a Carnot cycle extracts 10.0 kJ of heat per
cycle from a thermal reservoir at 1000.°C and rejects a smaller
amount of heat to a low-temperature thermal reservoir at 10.0°C.
Determine the net work produced per cycle of operation.

8.* We need to get 1.00 kW of power from a heat engine operating
on a Carnot cycle. 3.00 kW of heat is supplied to the engine
from a thermal reservoir at 600. K. What is the required
temperature of the low-temperature reservoir, and how much
heat must be rejected to it?

9. For the thermal reservoir temperatures shown in Table 13.4,
determine (a) the Carnot cycle heat engine thermal efficiency
and (b) which is the more effective method of increasing this
efficiency, increasing TH by an amount ΔT or lowering TL by an
amount ΔT, and why.

10. Steam enters the turbine of a power plant at 200. psia, 500.°F.
How much will the Carnot cycle thermal efficiency increase if
the condenser pressure is lowered from 14.7 to 1.00 psia?

11. Steam enters the piston cylinder of a Newcomen cycle steam
engine at 14.7 psia, 212°F and condenses at 6.00 psia. Plot the
thermal efficiency of the reversible cycle vs. the average cylinder
wall temperature over the range 170.°F ≤ (Tb)avg ≤ 212°F.
Neglect the power used by the boiler feed pump.

12. Determine the maximum possible thermal efficiency of an
atmospheric steam engine with a boiler temperature of 212°F
and a condensation temperature of 70.0°F if it operates on
a. A Carnot cycle.
b. A Newcomen cycle assuming an average cylinder wall

temperature of 141°F.
c. A Rankine cycle.

13. Steam with a quality of 1.00 enters the turbine of a Rankine
cycle power plant at 400. psia and exits at 1.00 psia. Neglecting
pumping power, determine the Rankine cycle isentropic thermal
efficiency.

14. Determine the decrease in Carnot and isentropic Rankine cycle
thermal efficiencies if the condenser is removed from the engine
discussed in text Example 13.5 and the steam is allowed to
exhaust directly into the atmosphere at 14.7 psia. Assume the
cycles are still closed loop.

15. Show that the Carnot and isentropic Rankine cycle thermal
efficiencies for an engine whose boiler produces dry saturated

steam at 100. psia and whose condenser operates at 1.00 psia
are 29.7% and 26.1%, respectively. Draw the appropriate T–s
and p–v diagrams for these cycles.

16. Rework Problem 15 for an engine without a condenser, with the
steam exhausting directly into the atmosphere at 14.7 psia.
Determine the Carnot and isentropic Rankine cycle thermal
efficiencies and their percent decrease due to the removal of the
condenser. Assume the cycles are still closed loop.

17. Steam enters the turbine of a Rankine cycle power plant at
200. psia and 500.°F. How much will the isentropic Rankine
cycle thermal efficiency increase if the condenser pressure is
lowered from 14.7 psia to 1.00 psia? Neglect the pump work.

18. A small portable nuclear-powered Rankine cycle steam power
plant has a turbine inlet state of 200. psia, 600.°F, and a
condenser temperature of 80.0°F. The steam mass flow rate is
0.500 lbm/s. Assuming that the condenser exit state is a
saturated liquid, that the pump and turbine isentropic
efficiencies are 55.0% and 75.0%, respectively, and that there are
no pressure losses across the boiler or condenser, determine
a. The actual power required to drive the pump.
b. The actual power output of the plant.
c. The actual thermal efficiency of the plant.

19. A Rankine cycle power plant is to be used as a stationary power
source for a polar research station. The working fluid is
Refrigerant-22 at a flow rate of 9.00 lbm/s, and the turbine inlet
state is saturated vapor at 200.°F. The condenser is air cooled
and has an internal temperature of 0.00°F. Assuming a turbine
and pump isentropic efficiency of 85.0% and that the refrigerant
leaves the condenser as a saturated liquid, determine the overall
thermodynamic efficiency and the net power output of the
system.

20.* A solar-powered Rankine cycle power plant uses 18.5 × 103 m2

of solar collectors. Refrigerant-22 is used as the working fluid at
a flow rate of 1.00 kg/s and is transformed to a saturated vapor
in the solar collectors (which function as the boiler) at a
temperature of 40.0°C. The condenser for the system operates
at 20.0°C and has a quality of 0.00 at the exit. The pump
and prime mover isentropic efficiencies are 65.0% and 75.0%,
respectively. Determine the prime mover power output
and system thermal efficiency when the incident solar flux
is 8.00 W/m2.

21.* Saltwater oceans have subsurface stratification layers called
thermoclines across which large temperature differences can exist.
A 1.00 MW Rankine cycle power plant using ammonia as the
working fluid is being designed to operate on a thermocline
temperature difference. The ammonia exits the boiler as a
saturated vapor at 28.0°C and exits the condenser as a saturated
liquid at 10.0°C. For an isentropic system, determine
a. The thermal efficiency of the power plant.
b. The pump to turbine power ratio.
c. The required mass flow rate of ammonia.

22. The condensation that can occur in the low-pressure end of a
steam turbine is undesirable because it can cause corrosion and
blade erosion, thus reducing the turbine’s isentropic efficiency.
This can be avoided by superheating the steam before it enters
the turbine. What degree of superheat would be required if the
steam entered an isentropic turbine at 300. psia and exited as a
saturated vapor at 1.00 psia?

23.* Steam enters the turbine of a Rankine cycle power plant at
12.0 MPa and 400.°C. How much does the isentropic thermal

Table 13.4 Problem 9

No. TH (°F) TL (°F)

1 4000. 500.

2 4000. 100.

3 2000. 500.

4 2000. 100.
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efficiency increase if the condenser pressure is lowered from
0.100 to 1.00 × 10–3 MPa?

24. Steam enters the turbine of a Rankine cycle power plant at
200. psia and 500.°F. How much does the isentropic thermal
efficiency increase if the condenser pressure is lowered from
14.7 to 1.00 psia?

25. Steam leaves the boiler of a Rankine cycle power plant at
3000. psia and 1000.°F. It is isenthalpically throttled to 600.
psia before it enters the turbine. It then exits the turbine at 1.00
psia. Neglecting the pump work, determine
a. The maximum thermal efficiency of this plant.
b. Its maximum thermal efficiency if the boiler is operated at

600. psia and 1000.°F and no throttling occurs at the
entrance to the turbine.

26. Steam exits a boiler and enters a turbine at 200. psia, 600.°F
with a mass flow rate of 30.0 × 103 lbm/h. It exits the turbine at
1.00 psia and is condensed. The condensate then reenters the
boiler as a saturated liquid at 90.0°F. The turbine drives an
electrical generator that delivers a net 3000. kW of power.
Determine
a. The Rankine cycle actual thermal efficiency of the entire

system.
b. The isentropic efficiency of the combined turbine–generator

unit.
27. An isentropic Rankine cycle using steam is shown in Figure 13.68.

For the given data, determine
a. The quality of the turbine exhaust steam.
b. The cycle thermal efficiency.
c. The mass flow rate required to produce 10,000 Btu/s net

output power.
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FIGURE 13.68
Problem 27.

The process path from station 1 to 2 is an isentropic expansion
and that from station 3 to 4 is an isentropic compression.

28.* For a constant steam boiler temperature of 400.°C, a constant
turbine exhaust moisture content of 5.00%, and a constant
condenser pressure of 3.00 kPa, plot the Rankine cycle thermal
efficiency vs. boiler pressure over the boiler pressure range from

1.00 to 20.0 MPa. Ignore the power required by the boiler
feed pump.

29.* Steam is supplied to a turbine at a rate of 1.00 × 106 kg/h at
500.°C and 10.0 MPa, and it exhausts to a condenser at 2.00
kPa. A single open loop regenerator is used to heat the boiler
feedwater with steam extracted from the turbine at 6.00 MPa.
The condensate exits the regenerator at 6.00 MPa as a saturated
liquid. Neglecting the pump power, determine
a. The mass flow rate of steam extracted from the turbine.
b. The system’s isentropic Rankine cycle thermal efficiency.
c. The isentropic Rankine cycle thermal efficiency of the same

system without a regenerator.
d. The percent increase in thermal efficiency due to the

regenerator.
30. Steam enters a turbine with an isentropic efficiency of 83.0%

at 300. psia, 800.°F and exhausts to a condenser at 0.250 psia.
The boiler feedwater is heated in a single, open loop regenerator
with steam extracted from the turbine at 100. psia. Saturated
liquid leaves the regenerator at the pressure of the extraction
steam. Neglecting all pump work, determine
a. The percent mass flow of steam extracted from the turbine.
b. The turbine power output per unit mass flow of steam.
c. The system thermal efficiency.
d. The turbine power output per unit mass flow of steam when

the regenerator is not in use.
e. The system thermal efficiency when the regenerator is not

in use.
f. The percent increase in system thermal efficiency produced

by the regenerator.
31. Repeat items a, b, and c of Problem 30 for steam extraction

pressures of 75.0, 50.0, 25.0, and 10.0 psia and plot these
results vs. the extraction pressure.

32. A turbine having an isentropic efficiency of 86.0% receives
steam at 4.00 × 106 lbm/h, 300. psia, 1000.°F and exhausts it to
a condenser at 1.00 psia. Steam is extracted from the turbine at
788,000 lbm/h and 200. psia to heat the boiler feedwater in a
single, closed loop regenerator. The extract steam then exits the
regenerator as a saturated liquid. Neglecting the pump power,
determine
a. The pressure and temperature of the extract steam as it leaves

the regenerator.
b. The Rankine cycle thermal efficiency of this system.
c. The Rankine cycle thermal efficiency of this system without

regeneration.
d. The percent increase in thermal efficiency due to the

regenerator.
33. Determine the blade tip velocity of DeLaval’s first steam turbine.

It had a rotor diameter of 3.00 inches and ran at 40.0 × 103 rpm.
34.* Determine the isentropic exit velocity from a reaction turbine

nozzle if steam enters the nozzle at 30.0 MPa, 500.°C and exits
at 1.00 MPa.

35. Steam at 600. psia and 800.°F enters the high-pressure stage of
an isentropic turbine and is reheated to 60.0 psia and 700.°F
before entering the low-pressure stage. The steam then exhausts
to a condenser at 1.00 psia. Neglecting pump power, determine
a. The isentropic Rankine cycle thermal efficiency.
b. The isentropic Rankine cycle thermal efficiency that would

occur if the steam were not reheated.
c. The percent increase in thermal efficiency due to the

reheating operation.

Station 1 Station 2 Station 3 Station 4

p1 = 1000: psia
T1 = 1000:°F

p2 = 3:00 psia
s2 = s1

p3 = 3:00 psia
x3 = 0:00

p4 = 1000:psia
s4 = s3
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36. Steam enters the high-pressure turbine of a Rankine cycle power
plant at 1200. psia and 700.°F and exits as a saturated vapor.
It is then reheated to 600.°F before it enters the low-pressure
turbine, which exhausts to a condenser at 1.00 psia. The
isentropic efficiencies of the high- and low-pressure turbines
and the boiler feed pump are 88.0%, 79.0%, and 65.0%,
respectively. Determine the thermal efficiency and the net power
per unit mass flow rate of steam for this plant.

37.* Consider a steam turbine with a constant inlet temperature of
500.°C connected to a constant pressure condenser at 1.00 kPa.
When the steam expands to a saturated vapor in the turbine, it
is removed and reheated in the boiler to 500.°C then returned
to the turbine to continue to expand until it reaches the
condenser pressure. The turbine isentropic efficiency is constant
at 80.0%. Ignoring the boiler feed pump power, plot
a. The Rankine cycle thermal efficiency.
b. The percent moisture in the turbine exhaust vs. the boiler

pressure over a boiler pressure range of 1.00 to 20.0 MPa.
Computerized steam tables are recommended for this
problem.

38. The first steam turbine used in an American electrical power
plant was a Westinghouse reaction turbine of the Parson’s type
installed at the Hartford, Connecticut, Electric Light Company in
1902. The turbine inlet state was 200. psig and 400.°F, the
generator produced 2.00 MW, and the plant had a heat rate of
35.0 × 103 Btu/(kW · h). Determine its thermal efficiency.

39. In 1903, a General Electric Curtis impulse steam turbine was
installed at the Fisk Street Station of the Commonwealth Electric
Company in Chicago, Illinois, and was at that time the most
powerful steam turbine in the world.13 The turbine inlet state
was 175 psig with 150.°F of superheat, and the condenser
pressure was 1.50 in of mercury. When the generator produced a
net 5000. kW, the steam flow rate per unit of electrical power
produced ( _m / _W elect:) was 22.5 lbm/(kW · h). For this unit,
determine
a. The isentropic power output of the turbine.
b. The isentropic efficiency of the turbine-generator unit.
c. The isentropic Rankine cycle thermal efficiency of the power

plant, assuming saturated liquid exits the condenser and
neglecting pump work.

40. In 1939, the Port Washington, Wisconsin, power plant of the
Milwaukee Electric Railway and Light Company14 had an
unusually high heat rate of 10,800 Btu/(kW · h). Determine its
thermal efficiency.

41. Refrigerant-22 is used as the working fluid in a 1.00 MW
Rankine bottoming cycle for a steam power plant. The
bottoming cycle turbine inlet state is saturated vapor at 210.°F,
and the condenser outlet is saturated liquid at 70.0°F. The
turbine and pump isentropic efficiencies are 85.0% and 70.0%,
respectively. Determine
a. The thermal efficiency of the bottoming cycle.
b. The ratio of the pump to turbine power.
c. The required mass flow rate of refrigerant.

42. It is common to model hot ASC performance with the same
formula used in cold ASC analysis except that a specific heat
ratio (k) typical of high-temperature gas is used. Determine the
Carnot ASC thermal efficiency of an engine with an 8.00 to 1
compression ratio, using
a. A cold ASC analysis with k = 1.40.
b. A hot ASC analysis with k = 1.30.
c. Determine the percent decrease in the Carnot thermal

efficiency between the cold and hot ASC analysis.
43. Air enters an engine at 40.0°F and is compressed isentropically

in a 9.00 to 1 compression ratio. Determine the Carnot ASC
thermal efficiency of this engine, using
a. A cold ASC analysis with k = 1.40.
b. A hot ASC analysis using the gas tables (Table C.16a in

Thermodynamic Tables to accompany Modern Engineering
Thermodynamics).

c. Determine the percent decrease in the Carnot thermal
efficiency between the cold and hot ASC analysis.

44.* Air enters an engine at atmospheric pressure and 17.0°C and is
isentropically compressed to 871.4 kPa. Determine the Carnot
ASC thermal efficiency of the engine, using
a. A cold ASC analysis with k = 1.40.
b. A hot ASC analysis using the gas tables (Table C.16b).
c. Determine the percent decrease in the Carnot thermal

efficiency between the cold and hot ASC analysis.
45. Determine the mechanical efficiency of a Stirling cycle engine

operating with a 1300.°F heater and a 100.°F cooler. The
engine produces a net 10.0 hp output with a heat input of
80.0 × 103 Btu/h.

46. In 1964, an experimental Stirling engine was installed in a
modified Chevrolet Corvair at the General Motors Research
Laboratory. Alumina (aluminum oxide) heated to 1200.°F served
as the heat source for the engine, while the atmosphere at 100.°F
served as the heat sink (because of the use of alumina in the
engine, the car was dubbed the Calvair by GM researchers).
Assuming a mechanical efficiency of 67.0%, determine the actual
thermal efficiency of the engine based on a cold ASC analysis.

47. A Stirling cycle engine uses 0.0800 lbm of air as the working
fluid. Heat is added to this air isothermally at 1500.°F and is
rejected isothermally at 200.°F. The initial volume of the air
before the heat addition (V4 in Figure 13.38) is 0.750 ft3 and
the final volume after the heat addition (V1 in Figure 13.38)
is 1.00 ft3. For the cold ASC, determine
a. The air pressure at the beginning and end of the expansion

stroke (p4 and p1 in Figure 13.38).
b. The air pressure at the beginning and end of the

compression stroke (p2 and p3 in Figure 13.38).
c. The cold ASC thermal efficiency of the engine.
d. The net reversible work produced inside the engine per cycle

of operation.
48. In 1853, John Ericsson constructed a huge 300. hp hot air

engine that ran on the Ericsson cycle. It had pistons 14.0 ft
in diameter and it consumed 2.00 lbm of coal per indicated

13 On May 28, 1975, this turbine-generator unit was designated as the seventh National Historic Mechanical Engineering Landmark by the American
Society of Mechanical engineers.
14 In 1980, this power plant was designated as the 48th National Historic Mechanical Engineering Landmark by the American Society of Mechanical
Engineers.
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horsepower hour. Assuming a heating value for coal of
13.0 × 103 Btu/lbm and that the engine was reversible,
determine the thermal efficiency of this engine.

49. The air standard Ericsson cycle (see Figure 13.40) is made up of
an isothermal compressor (T2 = T3 = TL), an isothermal prime
mover (T1 = T4 = TH), and an isobaric regenerator (p1 = p2 and
p3 = p4). Show that the compressor and prime mover must have
identical pressure ratios, that is, p2/p3 = p1/p4, and show that this
also requires that v3/v2 = v4/v1.

50.* An Ericsson cycle operates with a compressor inlet pressure and
volume of 1.00 MPa, 0.0200 m3 and a turbine inlet pressure and
volume of 5.00 MPa, 0.0400 m3. For a reversible cycle, determine
a. The heat added.
b. The heat rejected.
c. The work done.
d. The thermal efficiency of the cycle.

51.* An inventor claims to have developed a Lenoir engine with an
isentropic compression ratio of 8.00 to 1 that produces a
combustion temperature of 1500.°C when the intake temperature
is 20.0°C. Assuming k = 1.40 and that the engine operates on a
cold ASC, show whether or not the inventor’s claim is possible.

52.* A World War II Lenoir cycle “buzz bomb” has an air intake at
10.0°C, a combustion temperature of 1000.°C, and a compression
ratio of 2.30. Determine its cold ASC thermal efficiency.

53.* Plot the cold ASC thermal efficiency of a Lenoir engine having an
air intake at 15.0°C and a combustion temperature of 2000.°C vs.
the isentropic compression ratio over the range 1.01 ≤ CR ≤ 5.50.

54. A Brayton cold ASC has a turbine isentropic efficiency of 92.0%
and a compressor isentropic pressure ratio of 13.37. The
compressor and turbine inlet temperatures are 500. and 2200. R,
respectively. Determine the value of the compressor isentropic
efficiency that causes the overall thermodynamic thermal
efficiency of this system to be exactly zero.

55. A Brayton cold ASC has a turbine that is 80.0% isentropically
efficient and a compressor with an isentropic pressure ratio of
7.00. The compressor inlet temperature is 530. R and the
turbine inlet temperature is 2460 R. Determine the compressor
isentropic efficiency that causes the entire cycle thermal
efficiency to become exactly zero. Assume k = 1.40.

56. Show that the product of the compressor and turbine isentropic
efficiencies must be greater than (TL/TH)

1/2 if a Brayton cycle gas
turbine unit is to operate at its maximum power output.

57. A test on an open loop Brayton cycle gas turbine produced the
following results:

Net power output = 180:5hp

Air mass flow rate = 20:0×103 lbm/h

Inlet air temperature = 80:0°F

Inlet air pressure = 14:5psia

Compressor exit pressure = 195psia

Compressor isentropic efficiency = 85:0%

Combustion chamber heat addition = 4:00 ×106 Btu/h

Using a cold ASC analysis and assuming k = 1.40, determine
a. The cycle thermal efficiency.
b. The isentropic efficiency of the turbine.

58. On July 29, 1949, the first gas turbine installed in the
United States for generating electric power went into service at
the Belle Isle station of the Oklahoma Gas and Electric
Company.15 It had a 15-stage compressor with an isentropic
pressure ratio of 6 to 1, a 2-stage turbine with overall entrance
and exit temperatures of 1400°F and 780°F, respectively, and the
turbine-generator unit was rated at 3500 kW. Assuming a
Brayton cold ASC, determine
a. The isentropic efficiency of the turbine.
b. The Brayton cold ASC thermal efficiency of the entire

turbine-compressor unit.
59.* The regenerator in a Brayton cycle is simply a heat exchanger

designed to transfer heat from hot exhaust gas to cool inlet
gas. In an “ideal” regenerator, the exit temperature of the
inlet (heated) gas is equal to the entrance temperature of the
exhaust (cooled) gas. Since this is not normally the case in
practice, regenerator (or heat exchanger) efficiency can be
defined as

ηregeneration =
ð _Q regenerationÞactual

ð _Q regenerationÞmaximum
possible

=
ðhout − hinÞheated

ðhinÞcooled − ðhinÞheated

and, for constant specific heats, this reduces to

ηregeneration =
ðTout − TinÞheated

ðTinÞcoo1ed − ðTinÞheated

Note that regeneration is practical only when the engine
exhaust temperature is greater than the compressor exhaust
temperature. Therefore, as the compression and expansion
ratios of the compressor and prime mover increase, the
effectiveness of regeneration decreases. Determine an expression
for the limiting isentropic pressure ratio (PR) in terms of T1, T3,
and k for which regeneration is no longer useful in the Brayton
ASC with regeneration as shown in Figure 13.69. Evaluate this
expression to find the limiting pressure ratio when T1 = 1500.°C,
T3 = 10.0°C, and k = 1.40.

60.* An aircraft gas turbine engine operating on a Brayton cycle has a
cold ASC thermal efficiency of 25.0% when the intake air is at
20.0°C and the combustion chamber outlet temperature is at
1200.°C. Assuming k = 1.40, determine
a. The isentropic pressure ratio of the engine.
b. The isentropic compression ratio of the engine.
c. The isentropic outlet temperature of the engine’s

compressor.
d. The optimum isentropic pressure ratio for maximum

isentropic power output from the engine.
e. The optimum isentropic compression ratio for maximum

isentropic power output from the engine.
f. The engine’s thermal efficiency when operated at the

maximum isentropic power output.
61. In Professor John L. Krohn’s laboratory at Arkansas Tech

University, air enters the compressor of an ideal Brayton cycle
at p1= 14.5 psi, T1= 70.0°F with a volumetric flow rate of
20.0 × 103 ft3/min. The compressor pressure ratio is 12.0
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and the turbine inlet temperature is 2500.°F. Using the hot air
standard cycle analysis, determine the:
a. Net work output of the cycle in Btu/hr and MW.
b. Hot ASC thermal efficiency of the cycle.

62. An internal combustion engine operating on the Otto cycle has
a pressure and temperature of 13.0 psia and 70.0°F at the
beginning of the compression stroke (state 3 in Figure 13.48)
and a pressure at the end of the compression stroke of
200. psia. For the cold ASC with k = 1.40, determine
a. The compression ratio, CR.
b. The temperature at the end of the compression stroke.
c. The thermal efficiency of the cycle.

63. An eight-cylinder, four-stroke Otto cycle racing engine has a
4.00-inch bore and a 4.00-inch stroke with a compression ratio
of 10.0 to 1. Find the mean effective pressure in the cylinders
when the engine is running at 5000. rpm and burning fuel at a
rate of _Q fuel = 1.00 × 103 Btu/s. Assume k = 1.4.

64. Determine the actual brake horsepower produced by a four-
stroke Otto cycle internal combustion engine operating with
a 7.50 to 1 compression ratio and a mechanical efficiency
of 30.0% when the combustion of the fuel is producing
225,000 Btu/h inside the engine. Assume k = 1.40.

65.* Air enters an Otto cycle internal combustion engine at 90.0 kPa
and 15.0°C. The engine has a compression ratio of 8.00 to 1.
During the combustion process, 3000. kJ per kg of air is added
to the air. Assuming a reversible engine, determine
a. The pressure and temperature at the end of each process of

the cycle.
b. The engine’s cold ASC thermal efficiency.
c. The mean effective pressure of the engine.

66. Determine the output brake horsepower of a small two-stroke
Otto cycle internal combustion engine that has the following
characteristics:

Displacement = 5:00 in3

Speed = 2000: rpm

Compression ratio = 8:00 to 1

Air−fuel ratio = 15:0 to 1

Mechanical efficiency = 30:0%

Fuel heating value = 18:0× 103 Btu/lbm

Ambient conditions = 14:7 psia and 70:0°F

67. A dynamometer test of a six-cylinder Otto four-stroke cycle
engine with a 231 in3 displacement gave the following results at
4000. rpm:

Indicated power output = 250:hp

Actual ðor brakeÞ power output = 75:0hp

Heating value of the fuel being used = 20:0 ×103 Btu/lbm

Fuel consumption rate = 54:0 lbm/h

Determine
a. The mechanical efficiency ηm of the engine.
b. The ASC thermal efficiency of the engine.
c. The isentropic compression ratio (CR) of the engine,

assuming an Otto cold ASC.
d. The mean effective pressure (mep) inside the combustion

chamber.
68. Professor John L. Krohn at Arkansas Tech University is running

an engine test. At the beginning of the compression process in a
hot air standard cycle, Otto cycle, the conditions are p1 = 14.7 psi,
T1 = 77.0°F. The compression ratio is 8.50 and the pressure
doubles during the constant volume heat addition. For this
cycle, use the air tables (Table C.16a) to determine the
a. Heat addition per unit mass.
b. Net work per unit mass.
c. Hot ASC thermal efficiency.
d. The maximum temperature reached in the cycle.

69.* At the beginning of the compression process in a hot air
standard Diesel cycle, the conditions are p1 = 1.00 bar, T1 =
25.0°C, V1 = 700. cm3. The engine has a compression ratio of
18.0 and the heat addition per unit mass is 920. kJ/kg. For this
cycle, Professor John L. Krohn at Arkansas Tech University wants
you to use the air tables (Table C.16b) to determine the
a. Maximum temperature reached.
b. Cutoff ratio.
c. Net work.
d. The hot ASC thermal efficiency.

70. A Diesel cycle internal combustion engine has a compression
ratio of 18.0 to 1 and a cutoff ratio of 2.20. Determine the cold
ASC thermal efficiency of this engine. Assume k = 1.40.

71. Show that, as the cutoff ratio of the Diesel cycle approaches
1.00, the Diesel cold ASC thermal efficiency becomes equal to
that of the Otto cycle with the same compression ratio.
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72. Determine the value of the cutoff ratio that causes the Diesel
cold ASC thermal efficiency to become zero for an engine with a
20.0 to 1 compression ratio. Assume k = 1.40.

73. A Diesel cycle internal combustion engine has a compression
ratio of 15.0 to 1. At the beginning of the compression process,
the pressure is 14.7 psia and the temperature is 520. R. The
maximum temperature of the cycle is 4868 R. Determine the
cold ASC thermal efficiency. Assume k = 1.40.

74.* A two-cylinder, two-stroke Diesel cycle internal combustion
engine with a 16.2 to 1 compression ratio and a total
displacement of 1.50 L burns kerosene having a heating value
of 40.0 × 103 kJ/kg when using an air–fuel ratio of 25.0 to 1.
The intake temperature and pressure are 100. kPa and 15.0°C.
When the engine is running at 1200. rpm and producing
6.00 kW of power, determine (assuming k = 1.40) the engine’s
a. Cutoff ratio.
b. Cold ASC thermal efficiency.
c. Indicated power output.
d. Mechanical efficiency.
e. Actual thermal efficiency.

75. The Atkinson cycle is similar to the Otto cycle except that the
constant volume exhaust-intake stroke at the end of the Otto
cycle power stroke has been replaced by a constant pressure
process in the Atkinson cycle, as shown in Figure 13.70. QH

occurs during process 4s to 1, and QL occurs during process 2s
to 3 in each case.
a. Sketch the T–s diagram for the Atkinson cycle numbering

and labeling all the process path lines as in the p−V diagram
of Figure 13.70.

b. Determine the Atkinson cold ASC thermal efficiency for
k = 1.40, T1 = 8000. R, T3 = 520. R, and CR = v3/v4s = 8.0.

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary thermal design as indicated. A detailed design
with working drawings is not expected unless otherwise specified.
These problems have no specific answers, so each student’s design is
unique.

76. Design a small, single-cylinder, piston-type steam engine and
boiler that can be used to power a toy vehicle, such as a train or
a tractor. Choose a convenient fuel such as alcohol, and design

the boiler so that it can supply enough steam to your engine.
Make sure the boiler has a pressure relief valve, and pay close
attention to other safety considerations.

77. Develop a preliminary design for a closed loop Rankine cycle
steam power plant to be used in a compact automobile. The
prime mover may be either a reciprocating piston or turbine and
must produce a net output of 40.0 hp with a thermal efficiency
in excess of 35.0%.
a. Specify inlet and outlet states for the boiler, prime mover,

condenser, and boiler feed pump.
b. Choose typical values for the isentropic efficiencies of the

prime mover and boiler feed pump, and calculate the overall
thermal efficiency of the power plant.

c. Specify the fuel to be used in the boiler.
d. Estimate the overall power plant weight, including fuel

storage.
e. Specify conditions needed to meet part-load operation and

prime mover speed control during vehicle acceleration and
deceleration.

f. Specify all additional equipment needed to connect the
prime mover output shaft to the vehicle drive wheels.

78. Design a small, single-cylinder Stirling or Ericsson cycle external
combustion engine that can be used to demonstrate the
operation of this type of engine in the classroom. Choose a
convenient fuel such as alcohol. Provide detailed working
drawings and a thermodynamic analysis.

79. Design a Brayton cycle power system to propel a small drone
aircraft that will be used for military target practice. The fueled
drone must weigh less than 500. kg, and since these aircraft are
not reusable, they must be produced at minimum cost.
Determine or specify the air mass flow rate, pressure ratio,
compressor and turbine isentropic efficiencies, turbine inlet
temperature, thrust, thrust to weight ratio, exhaust temperature,
and hot ASC thermal efficiency. A computer program will help
you carry out parametric studies of the variables involved.

80. Design a personal exercise machine that uses the otherwise
dissipated human exercise energy in some productive way.
For example, the exercise energy could be converted into
mechanical, chemical, or electrical energy, which could then
be used in some domestic device (for example, to power a
computer, TV set, or kitchen appliance). Another solution would
be to design a system that would feed the exercise energy
directly into the local electrical power grid for credit against the
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user’s electrical bill (like wind power devices today). If 100
million people exercised for 15 min every day of the year at a
power level of 100. W each, how many barrels of crude oil
(at 5.80 × 106 Btu per barrel) and how many tons of coal
(at 26.0 × 106 Btu per ton) could be saved annually?

Computer Problems
The following computer programming assignments are designed to
be carried out on any personal computer using a spreadsheet or
equation solver. They are meant to be exercises in the manipulation
of some of the basic formulae of this chapter. They may be used as
part of a weekly homework assignment.

81. Write a computer program or use an equation solver or
spreadsheet to carry out a parametric study of the isentropic
Rankine cycle with regeneration given in Example 13.6, part
b. Allow the regenerator pressure p5s to vary from 1.00 to
200. psia (this simulates opening a valve in the regenerator
steam line from the turbine). Maintain the regenerator outlet
state as a saturated liquid (i.e., set h6 = hf(p5s)), because if
h6 < hf(p5s), the regenerator is not operating as effectively
as possible; and if h6 > hf(p5s), there will be vapor at the
entrance of the boiler feed pump and its performance will be
seriously degraded.
a. Determine the values of p5s and mass fraction y that

maximize the cycle efficiency.
b. Produce a plot of cycle efficiency ηT and mass fraction y on the

y-axis vs. regenerator pressure p5s on the x-axis. As part of this
solution, note that, when p5s is equal to the turbine inlet
pressure (200. psia) or the condenser inlet pressure (1.00 psia),
the regenerator has no effect and the cycle efficiency is the same
as without regeneration (i.e., 29.7%).

82. Repeat Problem 78 using the cycle data from Example 13.6,
except now let the boiler pressure range from 100. to 1000. psia
and keep the regenerator pressure at 25.0% of the boiler
pressure. Plot the cycle efficiency and the regenerator mass
fraction vs. boiler pressure. Does the cycle efficiency have a
maximum value under these conditions?

83. Develop a computer program or use a spreadsheet or equation
solver to calculate the Otto ASC thermal efficiency as the
compression ratio ranges from 1.00 to 12.0 for the following
values of k: 1.40, 1.35, 1.30, 1.25, and 1.20 (note that values of
k less than 1.40 give an approximate hot ASC result). Plot these
results (either manually or with a computer) with the thermal
efficiency on the vertical axis and the compression ratio on the
horizontal axis, using k as a parameter for the family of curves.
Utilize at least 25 points per curve.

84. Develop a computer program or use a spreadsheet or equation
solver to calculate the Diesel cold ASC thermal efficiency as
the compression ratio (CR) ranges from 12.0 to 30.0 for the
following cutoff ratios: 1.50, 2.00, 2.50, 3.00, and 3.50. Plot
these results (either manually or with a computer) with the
thermal efficiency on the vertical axis and the compression
ratio on the horizontal axis, using the cutoff ratio as a
parameter for the family of curves. Utilize at least 25 points
per curve.

85. Develop a computer program or use a spreadsheet or
equation solver that determines the value of the cutoff ratio
that causes the Diesel ASC thermal efficiency to become zero
as the compression ratio ranges from 12.0 to 30.0 for the
following values of k: 1.40, 1.35, 1.30, 1.25, and 1.20. Plot
these results (either manually or with a computer) with the
cutoff ratio on the vertical axis and the compression ratio on
the horizontal axis, using k as a parameter for the family of
curves.
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CHAPTER 14

Vapor and Gas Refrigeration Cycles
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14.1 INTRODUKSJON (INTRODUCTION)
This chapter is divided into two parts, one dealing with common vapor refrigeration cycles and one dealing with
common gas refrigeration cycles. Most of these cycles are reversed power cycles, and their analysis amounts
to a reapplication of the power cycle material presented in Chapter 13. Reversed vapor (Rankine) cycles are
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commonly called vapor-compression refrigeration cycles and reversed gas cycles are normally referred to by the
cycle name (e.g., a reversed Brayton refrigeration cycle).

Like power cycle technology, refrigeration technology has had an enormous impact on our culture and the way
we live. It changed our diet, the architecture of our buildings, the agriculture on our farms, and many other
items that touch our everyday life. Just as we would find it very difficult to return to a time without the portable
power produced by engines, we would also find life much less comfortable in a time without refrigeration and
air conditioning.

14.2 PART I. VAPOR REFRIGERATION CYCLES
The basic concepts of refrigeration, air conditioning, and heat pumps were introduced in Chapter 7. This technol-
ogy is usually modeled as a backward-running heat engine. When a heat engine runs backward (or in reverse), it
receives a net input of work W that causes an amount of heat QL to be removed from a low-temperature region
and an amount of heat QH to be added to a high-temperature region. So, it actually cools the low-temperature
region and heats the high-temperature region.

A backward-running heat engine is a refrigeration machine, but its exact technical name depends on exactly
how it is being used. For example, if food occupies the low-temperature region, then the device is indeed called
a refrigerator, but if people occupy the low-temperature region, then the device is called an air conditioner.1 On
the other hand, if people occupy the high-temperature region and utilize QH for space-heating purposes, then
the device is called a heat pump. Though the details of their design and operation differ slightly, refrigerators, air
conditioners, and heat pumps can all be modeled as backward-running heat engines. These distinctions are
shown in Figure 14.1.

HOW CAN AN ENGINE RUN BACKWARD?

To get an engine to run backward, you need to put work into it where the work normally comes out. If the engine has an
output shaft, you simply attach a motor or something to the shaft to turn it so that you are putting work into the engine
instead of having the engine produce work. A heat engine converts some of the heat from a high-temperature source into
work and rejects the remaining heat to a low-temperature sink. A “backward-running” heat engine draws heat from a low-
temperature source, adds work energy to it, and rejects everything to a high-temperature sink (see Figure 14.1).

Environment
(warm region)

Backward-
running

heat engine

Food stuff
(cold region)

QH

QL QL QL

QH QH

People
(cool region)

People
(warm region)

Environment
(cold region)

WR WAC WHP

Environment
(warm region)

Backward-
running

heat engine

Backward-
running

heat engine

(a) Refrigerator (b) Air conditioner (c) Heat pump

FIGURE 14.1
Characteristics of refrigerators, air conditioners, and heat pumps.

1 In addition to lowering room or building air temperature, air conditioners also usually filter the air and alter its humidity
(see Chapter 8).
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14.3 CARNOT REFRIGERATION CYCLE
In Chapter 7, we discovered that refrigerators, air conditioners, and heat pumps usually have actual thermal
efficiencies in excess of 100%. This is due simply to the mathematical way in which their thermal efficiencies are
defined (the desired energy output divided by the required energy input) and does not imply the violation of any
physical law. However, claims of thermal efficiency in excess of 100% cause obvious credibility problems in the
public domain, so the term efficiency is not often used with this technology. Instead, we simply rename the
thermal efficiency the coefficient of performance (COP), which is expressed as a pure number, usually between 1
and 10, rather than as a percentage. The COP definitions have been given in Eqs. (7.17) and (7.19) (recall that
work into and heat out of a system are both negative quantities in our sign convention; as in previous chapters, we
use their absolute values in these equations and assign algebraic signs to the symbols to avoid confusion):

ðηTÞheat
hump

= COPHP =
jQHj
jWHPj =

j _QHj
j _WHPj

=
jQHj

jQHj−QL
=

j _QHj
j _QHj− _QL

(7.17)

and

ðηTÞrefrigerator or
air conditioner

= COPR/AC =
QL

jWR/ACj =
_QL

j _WR/ACj
=

QL

jQHj−QL
=

_QL

j _QHj− _QL

(7.19)

and it is easily shown that

COPHP = COPR/AC +1 (14.1)

From Figure 14.1 and Eq. (14.1), it is evident that Eqs. (7.17) and (7.19) can also be written as

COPHP =
j _QHj

j _Winjnet
(7.17a)

and

COPR/AC =
_QL

j _Winjnet
= COPHP −1 (7.19a)

Note that Eq. (7.17a) is simply the inverse of the general forward-running heat engine thermal efficiency equation
(see Eq. (7.5)); that is,

COPHP � 1
ðηTÞforward-running

heat engine

(14.2)

and Eq. (7.17a) then gives

COPR/AC � 1
ðηTÞforward-running

heat engine

− 1 (14.3)

Therefore, the COP for any of the heat engines discussed in Chapter 13 operating on a reversed thermodynamic cycle
as a heat pump, refrigerator, or air conditioner can be easily obtained through the use of Eqs. (14.2) and (14.3).2

For example, Eq. (7.16) gives the Carnot thermal efficiency as

ðηTÞCarnot = 1− TL
TH

= TH −TL
TL

Then, Eqs. (14.2) and (14.3) can be used directly to give the COP of a Carnot engine running backward as a
heat pump, refrigerator, or air conditioner as

COPCarnot HP = TH
TH − TL

(14.4)

COPCarnot R/AC = TL
TH −TL

(14.5)

Also, it is easy to show that Eq. (14.1) remains valid for these systems.

2 However, it is difficult to imagine an internal combustion engine (like the Otto and Diesel cycle) running backward because it would
require a heat-absorbing (endothermic) combustion reaction.
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EXAMPLE 14.1
A new die-casting operation has a large amount of waste heat available at 200.°C in a location where the local environmen-
tal temperature is 20.0°C. As chief engineer in charge of thermal energy management, investigate the possibility of recovering
some of this waste heat by determining

a. The thermal efficiency of a Carnot engine operating between these temperatures.
b. The coefficient of performance of a Carnot heat pump operating between these temperatures.
c. The coefficient of performance of a Carnot refrigerator or air conditioner operating between these temperatures.

Solution
First, draw a sketch of the system (Figure 14.2).

Work Work Work

Waste heat Heat out Waste heat

Heat out Heat in Heat out

Die-casting
machine
at 200.°C

Carnot
heat

engine

Environment
at 20.0°C

Die-casting
machine
at 200.°C

Carnot
heat

pump

Environment
at 20.0°C

Die-casting
machine
at 200.°C

Carnot
refrigerator

or air
conditioner

Environment
at 20.0°C

(a) (b) (c)

FIGURE 14.2
Example 14.1.

a. Equation (13.2) gives the thermal efficiency of a Carnot engine operating between the temperature limits of 200. +
273.15 = 473.15 K and 20.0 + 273.15 = 293.15 K as

ðηTÞCarnot = 1− TL
TH

= 1− 293:15K
473:15K

= 0:380 = 38:0%

b. Equation (14.4) gives the coefficient of performance of the same Carnot engine running backward as a heat pump as

COPCarnot HP = TH
TH − TL

= 473:15K
473:15−293:15K

= 2:63

c. Equation (14.5) gives the coefficient of performance of the same Carnot engine running backward as a refrigerator or air
conditioner as

COPCarnot R/AC = TL
TH −TL

= 293:15K
473:15− 293:15K

= 1:63

Note that the COPCarnot HP = COPCarnot R/AC + 1 as Eq. (14.1) requires, and that Eqs. (14.2) and (14.3) are also
satisfied here.

Thermal energy management is a serious problem in the industrial environment. Lost thermal energy often reflects poor process
design and lost money. It can be remedied by considering the waste heat as an energy source and applying a technology that can
utilize it in some fashion.

Exercises
1. Suppose the waste heat in Example 14.1 is available at 35.0°C instead of 200.°C while the environmental temperature

remains at 20.0°C. Determine the thermal efficiency of a Carnot engine operating between these temperatures and the
coefficient of performance of a Carnot air conditioning unit. Answer: (ηT)Carnot = 4.90%, and COPCarnot AC = 20.5.

2. During winter, the environmental temperature in the die-casting facility in Example 14.1 drops to 0.00°C. Recompute
the thermal efficiency and coefficient of performance, assuming the waste heat temperature remains at 200.°C. Answer:
(ηT)Carnot = 42.3%, COPCarnot HP = 2.37, and COPCarnot R/AC = 1.37.
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3. A salesperson from a waste heat recovery company visits you and claims to have a new engine that can convert
50.% of the waste heat in Example 14.1 into useful shaft work. How would you evaluate this claim? Answer: No
engine can be more efficient than a (hypothetical) Carnot engine, and since a Carnot engine is only 38% efficient
for converting this waste heat into useful work, the salesperson’s claim of a 50.% conversion is impossible to
achieve.

Two primary types of refrigeration are available, natural (e.g., ice) and artificial. Artificial refrigeration has been
subdivided in this chapter into vapor cycles (specifically vapor-compression and absorption cycles) and gas expan-
sion (specifically reversed Stirling and Brayton cycles). These refrigeration methods are illustrated in Figure 14.3
and discussed in detail in this chapter.

14.4 IN THE BEGINNING THERE WAS ICE
The use of natural ice for refrigeration spread throughout the world in prehistoric times. China had ice houses
for storing winter ice and snow by 1100 BC. The early Greeks and Romans are known to have used ice and
snow for cooling drinks but not for preserving
foods. In about 300 BC, the king of Macedon had
several trenches dug and filled with snow to cool
kegs of wine given to his troops on the eve of a
major battle, hoping it would make them more
courageous. Ice and snow were harvested by farm-
ers during the winter throughout the United States,
Europe, and Asia (see Figure 14.4). Ice was stored
in special icehouses, underground, or in pits and
ravines and covered with straw to insulate it from
the daytime sun.

Initially, natural ice refrigeration was merely a con-
venience, providing a cool drink or preserving
food a bit longer. However, the development
and extensive use of ice as a refrigeration technol-
ogy had a very significant social impact, in that it
allowed whole populations to change to a heal-
thier diet. In the distant past, people used salting
and drying as the main technology for preserving
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FIGURE 14.3
The development of natural and artificial refrigeration technologies.

FIGURE 14.4
Ice harvesting in the 19th century.
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IS IT CALLED AN ICEBOX OR A REFRIGERATOR?

An icebox was a wooden box that contained both ice and food to be preserved (Figure 14.5). Originally, the ice was put on
the bottom and the food on the top. But eventually it was realized that this was inefficient because the cold air is heavier
than warm air. Thereafter, the ice was put in the top of the icebox and the food was always placed below it, so that the
heavier cold air could circulate around the food. The icebox was invented in 1803 and manufactured in the United States
until 1953. Ice needed to be added every day or two in the original iceboxes. But, by 1923, improved thermal insulation
design required ice to be added only every five to seven days.

Food

storage

area

Drain pan

Block of ice

FIGURE 14.5
Domestic icebox.

The term refrigerator is reserved for a device that does not use ice to produce cold temperatures, even though the device may
be used to preserve food (Figure 14.6). There are vapor-compression refrigerators, gas expansion refrigerators, thermoelectric
refrigerators, and so forth.

Throttle
valve

Refrigerator
temperature
35°F (1.5°C)

Room
temperature
72°F (22°C)

Evaporator Compressor

Refrigerant
storage

Condenser

Low-pressure liquid
High-pressure liquid
Low-pressure vapor

High-pressure vapor

FIGURE 14.6
Domestic refrigerator.
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meat and fish. By 1830, the use of ice to preserve food in American iceboxes was quite common. The stan-
dard of living of average Americans improved between 1830 and 1860, as their diet changed from one of
bread and salted or dried meat or fish to one that regularly included refrigerated fresh meat, fruits, and
vegetables.

Preserving food in a sterilized metal can was patented in 1825, but it did not become a commercial success until
1875, about the same time mechanical refrigeration systems were being marketed.

As the food refrigeration industry grew, the demand for natural ice increased dramatically. Natural ice was har-
vested from ponds, lakes, and rivers in rural communities around the world by farmers during the winter
months. New York City used 12,000 tons of natural ice in 1843, 100,000 tons in 1856, and 1 million tons in
1879. Natural ice harvesting in the United States reached its peak in 1886 at 25 million tons. From 1845 to
1860, the mechanical refrigeration systems of Perkins, Gorrie, and Carré were used primarily for making ice to
replace natural (winter) ice.

A common unit of commercial and household refrigeration or air conditioning is the ton. The following example
illustrates the use of this old unit of measurement.

WHAT IS A “TON” OF REFRIGERATION?

A ton of refrigeration or air conditioning is the amount of heat that must be removed from 1 ton (2000 lbm) of water in
one day (24 hours) to freeze it at 32°F at 1 atmosphere pressure. It is also the amount of heat absorbed by the melting of
1 ton of ice in 24 hours at 32°F at atmospheric pressure. Using more conventional units,

1 tonof refrigerationor air conditioning = 200:Btu=min = 12:0×103 Btu=h = 214: kJ=min = 12,600 kJ/h

IS IT DANGEROUS TO STUFF A CHICKEN WITH SNOW?

The great British philosopher and statesman Sir Francis Bacon (1561–1626) was keenly interested in the possibility of using
snow to preserve meat. In March 1626, he stopped in the country on a trip to London and purchased a chicken. He had
the chicken killed and cleaned on the spot, then he packed it with snow and took it with him to London (Figure 14.7).
Unfortunately, the experiment only caused his own death a few weeks later. The 65-year-old statesman apparently caught a
chill while stuffing the chicken with snow and came down with terminal bronchitis. Refrigeration was clearly not
something to be taken lightly.

FIGURE 14.7
The price of experimentation.
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EXAMPLE 14.2
The earth’s polar ice caps contain about 2.50 × 1016 m3 of ice. Determine the tons of refrigeration produced if all this ice
were to melt at 0.00°C in a 24.0 h period. The density of ice at 0.00°C is 917 kg/m3.

Solution
The mass of ice present in the polar ice caps is (2.50 × 1016 m3)(917 kg/m3)(2.2046 lbm/kg) = 5.05 × 1019 lbm = 2.53 ×
1016 tons. Since a ton of refrigeration is equal to the amount of heat absorbed by melting 1 ton of ice at 0.00°C at atmo-
spheric pressure in one 24.0 h day, melting the earth’s polar ice caps at 0.00°C in a 24.0 h period would produce 2.53 ×
1016 tons of refrigeration.

Exercises
4. Suppose the polar ice caps in Example 14.2 melt over a period of 14.0 years. Then, how many tons of refrigeration

would be produced? Answer: 6.85 × 1012 tons.
5. How many Btu per hour would be produced by the melting of the polar ice caps in Example 14.2?

Answer: 3.04 × 1020 Btu/h.
6. How long would it take to melt the polar ice caps in Example 14.2 if the Earth receives an extra 1015 kJ per year from

the sun? Answer: 7.56 million years.

14.5 VAPOR-COMPRESSION REFRIGERATION CYCLE
Like the steam engine, refrigeration technology had a significant impact on society and the way we live. First
of all, it changed the way we process food; it created large new agricultural markets and provided a healthier
diet for many people. Later, it was applied to making our living environment more comfortable and produc-
tive. Initially, it was a spinoff technology from steam engine and gas power cycle prime movers that were
simply made to operate thermodynamically backward. Then, it became a powerful force in shaping our
culture.

The first vapor-compression refrigeration system using a closed cycle process was patented in 1834 by the
American Jacob Perkins (1766–1849). He chose ethyl ether (or, more accurately, diethyl ether, C2H5OC2H5)
as the refrigerant, because at low pressures, its temperature was low enough to freeze water on the outside of
the evaporator. The ether vapor was compressed in a piston-cylinder apparatus and condensed into a liquid at
a higher saturation pressure and temperature. Finally, the liquid ether was throttled through a valve back into
the low-pressure evaporator. This system is illustrated in Figure 14.8. Since this process occurs beneath the
vapor dome of the working fluid (ether), it is clearly a reversed Rankine cycle device.

All vapor-compression cycle refrigeration systems operate essentially on a reversed Rankine cycle, as shown in
Figure 14.8b. In these systems, the boiler is normally called the evaporator and the prime mover is replaced by a
compressor. Also, it would seem reasonable to replace the boiler feed pump of the forward-running Rankine cycle
with some form of prime mover in the reversed Rankine or vapor-compression cycle, whose work output could
be used to offset the work input to the compressor. Unfortunately, this is not economically feasible in most
small- to medium-scale refrigeration systems, as the following example illustrates.

4h 1

3 2

1s

(b) The thermodynamic cycle(a) Equipment schematic

Throttling
(expansion)
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(evaporator)

Condenser

Compressor

FIGURE 14.8
Jacob Perkins’s closed-loop vapor-compression refrigeration cycle.
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EXAMPLE 14.3
A refrigeration system for a supermarket is to be designed using R-22 to maintain frozen food at −15.0°C while operating in
an environment at 20.0°C. The refrigerant enters the condenser as a saturated vapor and exits as a saturated liquid. Deter-
mine the COP for this refrigerator, using

a. A reversed Carnot cycle operating between these temperature limits.
b. An isentropic vapor-compression cycle with an isentropic expansion turbine installed between the high-pressure

condenser and the low-pressure evaporator.
c. An isentropic vapor-compression cycle with an aergonic, adiabatic, throttling expansion valve installed between the high-

pressure condenser and the low-pressure evaporator.

Solution
First, draw a sketch of the system (Figure 14.10).

3 2

14

QH

QL

WT WC

Condenser

Evaporator

T

s

3

4s 1

2s

FIGURE 14.10
Example 14.3, system sketch.

a. Here, TH = 20.0 + 273.15 = 293.15 K, and TL = −15.0 + 273.15 = 258.15 K. Then, Eq. (14.5) gives

COP
Carnot
refrigerator

= TL
TH −TL

= 258:15
293:15−258:15

= 7:38

(Continued )

WHERE DID “MECHANICAL REFRIGERATION” COME FROM?

The first vapor-compression refrigeration system was patented by Jacob Perkins (1766–1849) in 1834 (Figure 14.9). Though
Perkins was an American, his refrigerator was made in England and was not an economic success. A similar machine was made
in the United States in 1856 by Alexander Catlin Twinning (1801–1884), again with little financial success. In each case, the eva-
porator was immersed in a salt brine solution and the cold brine was used to make ice, but it attracted little attention for more
than 20 years, after which natural refrigeration had begun to cause changes in people’s dietary habits. In 1855, James Harrison
(1816–1893), a Scotsman who emigrated to Australia, produced a commercially successful refrigerator similar to Perkins’s for
the manufacture of ice. Since natural ice is difficult to find in Australia, Harrison’s artificial ice machine was an instant success.

Supply duct

Indoor 
heat exchanger

Return duct

Heat

Outdoor
heat exchanger

Heated air

Compressor

FIGURE 14.9
Jacob Perkins’s 1834 refrigeration apparatus.
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EXAMPLE 14.3 (Continued )

b. From Table C.9b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, the thermodynamic data at
the monitoring stations shown in the schematic are

Station 1 Station2s

T1 = −15:0°C T2s = 20:0°C

s1 = s2s = 0:89973kJ/ kg .Kð Þ x2s = 1:00

x1 = 0:9395 h2s = 256:5 kJ/kg

h1 = 231:0 kJ/kg s2s = 0:89973kJ/ kg .Kð Þ
p2s = 909:9 kPa

Station 3 Station4s

T3 = 20:0°C T4s = T1 = −15:0°C
x3 = 0:00 s4s = s3 = 0:25899kJ/ðkg .KÞ
h3 = 68:67 kJ/kg x4s = 0:1765

s3 = 0:25899kJ/ðkg .KÞ h4s = 65:6 kJ/kg

p3 = p2 = 909:9 kPa

where we have calculated

x1=
s1 − sf1
sfgx1

=
s2s − sf1
sfg1

= 0:89973−0:11075
0:83977

= 0:9395

h1= hf1 + x1ðhfg1Þ = 27:33+ ð0:9395Þð216:79Þ = 231:0 kJ/kg

x4s =
s3 − sf4
sfg4

= 0:25899− 0:11075
0:83977

= 0:1765

and

h4s = hf4 + x4sðhfg4Þ = 27:33+ ð0:1765Þð216:79Þ = 65:59 kJ/kg

Then,

COP
isentropic
vapor-compression
cycle ðwith expansion
turbineÞ

=
_QL

_Wc − _Wt
=

h1 − h4s
ðh2s − h1Þ− ðh3 − h4sÞ

= 231:0−65:59
ð256:5− 231:0Þ− ð68:67−65:59Þ = 7:38

which is identical to the Carnot efficiency of part a, as it should be, because the Rankine and Carnot cycles are identical
in this case (see Figure 14.10).

c. When the isentropic turbine is replaced by an adiabatic, aergonic throttling valve, the process from station 3 to station 4
becomes isenthalpic rather than isentropic, as shown in Figure 14.11.

Throttling
valve
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2s

FIGURE 14.11
Example 14.3, Solution, part c.
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The thermodynamic data for stations 1, 2s, and 3 remain unchanged from part b, but the isenthalpic throttling valve
changes the data of station 4s to 4h as follows.

Station4h

T4h = T1 = −15:0°C
h4h = h3 = 68:67 kJ/kg

x4h = 0:1910

s4h = 0:27081kJ/ðkg .KÞ

where we have calculated

x4h =
h4h − hf4

hfg4
= 68:67− 27:34

216:79
= 0:1906

and

s4h = sf4 + x4hðsfg4Þ = 0:11075+ ð0:1906Þð0:83977Þ = 0:27081kJ/ kg .Kð Þ

Finally,

COP
isentropie
vapor-compression cycle
ðwith throttling valveÞ

=
_QL

_Wc
=

h1 − h4h
h2s − h1

= 231:0−68:67
256:5−231:0

= 6:37

Exercises
7. Determine the pressure of the R-22 in the evaporator in Example 14.3. Answer: pevaporator = p1 = p4 = psat(R-22 at −15.0°C) =

295.7 kPa.
8. If ammonia were used in the refrigeration system described in Example 14.3, determine the condenser pressure if all the

other variables remain unchanged. Answer: pcondenser = p2 = p3 = psat(ammonia at 20.0°C) = 857.12 kPa.
9. The head of your Engineering Department has decided to use R-134a instead of R-22 in the refrigeration system in

Example 14.3. Assuming all the other variables remain unchanged, determine the new operating pressure in the
evaporator. Answer: pevaporator = p1 = p4 = psat(R-134a at −15.0°C) = 164 kPa.

The decrease in COP from 7.38 to 6.37 (13.7%) in the previous example is not normally sufficient to justify the
increased expense of manufacturing, installing, and maintaining a turbine or other prime mover between
the condenser and the evaporator in small- and medium-size systems. Also, the working fluid in this part of the
cycle contains a mixture of liquid and vapor, and it is difficult to find any prime mover that operates efficiently
and reliably with this type of two-phase fluid. Throttling expansion valves, on the other hand, are very inexpen-
sive and reliable under these conditions.

By introducing the isentropic efficiency of the compressor (ηs)c, the general formula for the actual thermal effi-
ciency (COP) of a reversed Rankine cycle can be written as

COP
vapor-compression cycle
R/AC

=
_QL

_Wc
=

h1 − h4h
h2s − h1ð Þ/ ηsð Þc

(14.6)

and

COP
vapor-compression cycle
HP

=
j _QHj
_Wc

= h2 − h3
h2s − h1ð Þ/ ηsð Þc

(14.7)

where h2 = h1 + h2s − h1ð Þ/ ηsð Þc:
Because throttling processes are ideally isenthalpic, a pressure-enthalpy diagram is often used to describe vapor
refrigeration cycles, as shown in Figure 14.12. Process 1 to 2s in this figure involves the compression of a liquid-
vapor mixture. This is technically more difficult than compressing either a pure vapor or a pure liquid. A
method of eliminating this problem is to superheat the vapor, as shown in Figure 14.12b.
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EXAMPLE 14.4
Repeat part c of Example 14.3 requiring that the evaporator outlet be a saturated vapor at −15.0°C and introduce a compres-
sor isentropic efficiency of 75.0%.

Solution
First, draw a sketch of the system (Figure 14.13). Since the evaporator outlet is a saturated vapor, the compressor outlet is a
superheated vapor, as shown in the figure.

The thermodynamic data for the four monitoring stations are (see Example 14.3 for details)

Station1 Station2s

T1 = −15:0°C p2s = p2 = 909:9 kPa

x1 = 1:00 s2s = s1 = 0:95052kJ/ kg .Kð Þ
h1 = 244:13 kJ/kg h2s = 271:92 kJ/kg from interpolation in TableC:10bð Þ
s1 = 0:95052kJ/ kg .Kð Þ T2s = 39:3°C

Station3 Station4h

T3 = 20:0°C T4h = T1 = −15:0°C

x3 = 0:00 h4h = h3 = 68:67 kJ/kg

h3 = 68:67 kJ/kg x4h = 0:1910

s3 = 0:25899 kJ/ kg .Kð Þ s4h = 0:27088kJ/ kg .Kð Þ
Then, from Eq. (14.7),

COP
vapor-compression cycle
R/AC

=
_QL

j _W jc
=

h1 − h4h
h2s − h1ð Þ/ ηsð Þc

= 244:13−68:67
271:92−244:13ð Þ/0:750 = 4:74
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(a) Vapor-compression isentropic refrigeration cycle
with isenthalpic throttling

(b) Same as (a) except with superheat

FIGURE 14.12
T–s and p–h diagrams for an isentropic vapor-compression cycle.
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FIGURE 14.13
Example 14.4.

Exercises
10. After several years of use, the isentropic efficiency of the compressor in Example 14.4 decreases from 75.0% to 55.0%

due to wear and a lack of maintenance. Determine the new COP for this system. Answer: COP = 3.47.
11. Determine the power required to drive the compressor _Wc in Example 14.4 if the refrigeration system is to produce

_Q L = 20 tons of cooling. Recall that 1 ton of refrigeration is equal to 214. kJ/min. Answer: _Wc = 19:8hp.
12. Determine the mass flow rate of refrigerant required in Example 14.4 if this system produces _Q L = 20 tons of cooling.

Recall that 1 ton of refrigeration is equal to 214. kJ/min. Answer: _m = 23:9 kg=min.

Even if the compressor had an isentropic efficiency of 100%, the COP in this example would be only 4.74/0.750 =
6.32, which is still slightly less than the 6.37 of part c in Example 14.3. Thus, adding superheat to the cycle
usually does not increase the COP because both j _Wc j/ _m and _QL/ _m are increased. However, the required mass flow
rate _m is significantly reduced by the addition of superheat. Also, because condensers and evaporators are not 100%
effective as heat exchangers, the temperature difference between the working fluid in these devices and their local
environment is typically about 15.0°F.

14.6 REFRIGERANTS
Whereas the working fluid of the steam engine (water) was nearly ideal for vapor power cycles, it was totally
unsuitable for the refrigeration cycles of commercial interest. The major problem faced by the early developers
of refrigeration technology was not the design of the machinery per se but the search for a suitable nontoxic,
safe, inexpensive working fluid with satisfactory low-temperature thermodynamic characteristics.

Though water is the cheapest and safest refrigerant available, it is limited to high-temperature applications such
as steam-jet refrigeration. Since most refrigeration needs are at temperatures near the freezing point of water,
other refrigerants had to be found that boiled at lower temperatures.

Perkins used ethyl ether as his refrigerant. It was a good refrigerant, but it was also toxic and flammable. Also,
the entire ethyl ether refrigeration system operated below atmospheric pressure, making it difficult to prevent air
from leaking into the system. The danger and complexity of ethyl ether refrigerators caused other inventors to
search for alternative refrigeration technologies, which ultimately lead to the rapid development of gas expan-
sion refrigeration cycles between 1860 and 1890.

The French inventor Charles Tellier (1828–1913) introduced methyl ether (CH3Cl) as a replacement for ethyl
ether in 1863. Though methyl ether was also toxic and flammable, it had a higher vapor pressure, and that
allowed the entire refrigeration system to operate above atmospheric pressure, thus eliminating the problems
caused by air leaking into the system.

IS ETHER A REFRIGERANT OR AN ANESTHETIC?

The di in diethyl ether is often dropped, and it is called either ethyl ether or simply ether. This is the same ether that was first
successfully used as an anesthetic in 1846 by the Massachusetts dentist William T. G. Morton. Since the boiling point of
ether at atmospheric pressure is 35°C (95°F), slightly below the temperature of the human body, it was common practice
in the late 19th and early 20th centuries for physicians to use liquid ether as a local anesthetic by spraying it onto parts of
the body where it would then freeze the tissue as it boiled away and consequently numb the local sensations. This is the
source of the term freezing as a synonym for a local anesthetic (especially in dentistry) today.
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During the last half of the 19th century, the development of refrigeration technology flourished in America,
especially in the South. In 1866, Thaddeus S. C. Lowe (1832–1913) developed a high-pressure (80 atm) carbon
dioxide compressor for manufacturing ice in Dallas, Texas, and Jackson, Mississippi; and in 1872, David Boyle
(1837–1891) developed an ammonia compressor (10 atm) for manufacturing ice in Jefferson, Texas. This
allowed CO2 and NH3 to enter the list of useful refrigerants.

The Swiss physicist Raoul Pierre Pictet (1846–1929) studied the various refrigerants then available and found that
sulfur dioxide had suitable thermodynamic properties. In 1874, he developed an SO2 compressor and refrigerating
system that was quite successful. Sulfur dioxide has the advantages of being a natural lubricant for the compressor
and it does not burn. Its chief disadvantage is that, on contact with moisture, it forms corrosive sulfuric acid.

In the late 1920s, the American chemist and engineer, Thomas Midgley, Jr. (1889–1944), discovered that certain
fluorine compounds were remarkably nontoxic and odorless while simultaneously having the proper thermody-
namic properties of a good refrigerant. In the 1930s, the E. I. duPont de Nemours Company became commer-
cially involved in the refrigeration industry by manufacturing and selling Midgley’s discovery as a refrigerant.
DuPont marketed the product under the commercial trade name Freon.

Midgley’s refrigerants were halogenated hydrocarbons in which halogen atoms (mainly chlorine and fluorine)
were substituted for hydrogen atoms in simple hydrocarbon molecules. Midgley replaced the four hydrogen
atoms in methane, CH4, with two chlorine and two fluorine atoms to produce dichloro-difluoro-methane (or
dichlorodifluoromethane, CCl2F2). Other common methane based refrigerants are monochlorodifluoromethane
CHClF2 and trichloromonofluoromethane CCl3F. The complex chemical names of these compounds are logical
and technically correct, but they are difficult for the nonchemist to pronounce and remember. Consequently, a
confusing variety of commercial trade names, such as Freon, Genetron, Isotron, and Frigen, came into popular
use during the 1940s. Shortly thereafter, the American Society of Refrigerating Engineers (ASRE)3 decided to
adopt a standard method of refrigerant designation that was based only on the use of numbers.

THE TEFLON CONNECTION!

A young DuPont chemist named Roy J. Plunkett discovered Teflon on April 6, 1938, while experimenting with a haloge-
nated ethylene gas for use as a refrigerant. On this day, Plunkett received a pressurized tank of tetrafluoroethylene (C2F4)
to study its properties as a nontoxic refrigerant. When he opened the tank nothing came out. After the valve was checked,
the tank was weighted and found to be the same weight as when it was full. Something made no sense, so Plunkett had
the tank cut open and found a waxy white powder. Being a chemist, Plunkett realized that the gas had somehow sponta-
neously “polymerized” to form a new material, polytetrafluoroethylene. The waxy white powder had some remarkable physi-
cal properties: it was not affected by strong acids or bases, was resistant to heat from −450°F to 725°F (−270°C to 385°C),
and was very slippery. While these properties were interesting, it was decided that this new material had no particular com-
mercial value. Then came World War II and the top-secret atomic bomb project (the Manhattan Project). A material was
needed for gaskets that would resist the terribly corrosive properties of uranium hexafluoride gas. By a chance communica-
tion, the director of the Manhattan Project became aware of the new polymeric material that Plunkett had discovered. It
was then made into a test gasket and found to be very successful at containing the corrosive gas. After World War II, the
new polymer material was not put to any practical use until it began to be used on nonstick cookware in France in 1954.
Nonstick cooking utensils were first sold in the United States on December 15, 1960, at Macy’s Department Store in New
York City. Taking letters from the complicated chemical name polytetrafluoroethylene, the new polymer was named Teflon.

HOW DID COMPRESSOR TECHNOLOGY DEVELOP?

By the end of the World War I (1914–1918), reciprocating piston compressors still dominated refrigerant technology, and
the primary refrigerants still in use in the Unoted States at that time were ammonia, carbon dioxide, and sulfur dioxide. In
1919, the French engineer Henri Corblin (1867–1947) patented a diaphragm refrigerant compressor in which the oscillat-
ing motion of the center of a fixed diaphragm replaced the reciprocating motion of a piston in a cylinder. In 1918, the first
hermetically sealed refrigeration compressor was developed by the Australian Douglas Henry Stokes, in which the motor
and compressor were sealed together inside a container with the refrigerant. In 1933, Willis Carrier (1876–1950) developed
his first centrifugal refrigerant compressor for use with R-11.

3 The ASRE merged with the American Society of Heating and Air-Conditioning Engineers (ASHAE) to form the American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) in 1959.
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14.7 REFRIGERANT NUMBERS
Most halogenated hydrocarbons used in refrigeration have a molecular structure of the form CaHbClcFd and the
atomic valences require that c = 2(a + 1) − b − d. These compounds are given refrigerant R numbers defined by

CaHbClcFd is refrigerant number: R-ða−1Þðb+ 1Þd, where c = 2ða+1Þ− b− d (14.8)

When a = 1, then a − 1 = 0 (the methane series of halogenated hydrocarbons) and the zero is omitted in the R
number. For example, carbon tetrachloride, CCl4, has a = 1, b = 0, c = 4, and d = 0. Consequently, its R num-
ber is R-(0)(0 + 1)0 = R-010 = R-10.

Bromate compounds are indicated with a B after the R number followed by the number of bromine atoms. For
example, CBrF3 = R-13B1. Also, ethane and higher hydrocarbon bases can have numerous isomers (compounds
containing the same number of atoms, but assembled in different ways). In these cases, the most symmetrical
atomic arrangement is given the base R number R-(a − 1)(b + 1)d, and the remaining arrangements are given
the suffixes a, b, c, and so forth as the refrigerant molecule become less and less symmetrical. For example the
differences between R-134 (CHF2-CHF2) and R-134a (CH2FCF3) are illustrated next:

F F H F
H� C� C�H F� C� C� F

F F H F

R � 134 R � 134a

Therefore, Midgley’s CCl2F2 with a = 1, b = 0, c = 2, and d = 2 became Refrigerant-12 (abbreviated R-12), or
Freon-12 if manufactured by DuPont. Similarly, CHClF2 (a = b = c = 1, d = 2) became Refrigerant-22 or R-22,
CCl3F (a = 1, b = 0, c = 3, d = 1) became Refrigerant-11 or R-11, and so forth. Ethane-based refrigerants are the
100 number series, and the ethane-based hexachloroethane C2Cl6 (a = 2, b = 0, c = 6, d = 0) became Refriger-
ant-110 or R-110, and so forth. Propane-based refrigerants are the 200 number series, and butane-based refriger-
ants are assigned the 600 number series. Inorganic (i.e., nonhydrocarbon based) refrigerants are assigned the
700 number series with the last two digits being the molecular mass of the refrigerant. For example, ammonia,
NH3, is Refrigerant-717 and water, H2O, is Refrigerant-718. Table 14.1 lists the ASHRAE number, chemical
formula, and boiling point of some common refrigerants. Figure 14.14 presents typical saturation temperature-
pressure curves for some common refrigerants plus a graphical representation of the refrigerant derivatives of
methane, CH4, and ethane, C2H6.

Table 14.1 The American Society of Heating, Refrigerating and Air-Conditioning Engineers
Refrigerant Numbering System for Some Common Refrigerants

Refrigerant Number Chemical Formula

Boiling Point at Atmospheric Pressure

°F °C

R-10 CCl4 170.2 76.8

R-11 CCl3F 74.9 23.8

R-12 CCl2F2 −21.6 −29.8
R-21 CHCl2F 48.1 8.9

R-22 CHClF2 −41.4 −40.8
R-30 CH2Cl2 105.2 40.7

R-40 CH3Cl −14.8 −23.8
R-50 CH4 (methane) −259.0 −161.7
R-110 C2Cl6 365.0 185.0

R-111 C2Cl5F 279.0 137.2

R-112 C2Cl4F2 199.0 92.8

R-123 CHCl2CF3 81.7 27.6

R-134a CH2FCF3 −15.7 −26.2
R-170 C2H6 (ethane) −127.8 −88.8
R-290 C3H8 (propane) −43.7 −42.1
R-600 C4H10 (butane) 33.1 0.6

R-717 NH3 (ammonia) −28.0 −33.3
R-718 H2O (water) 212.0 100.0

Source: Reprinted by permission from the ASHRAE Handbook—1985 Fundamentals.
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(c) Refrigerant derivatives of ethane (C2H6)
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C2Cl6

R-120
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C2F2Cl4
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C2H4Cl2
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C2H3FCl
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CH2F2Cl2
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(d)
FIGURE 14.14
(a) Typical saturation temperature–pressure curves for common refrigerants, (b) the refrigerant derivatives of methane, (c) the refrigerant
derivatives of ethane, and (d) CFC behavior chart.
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EXAMPLE 14.5
As a technical expert in a multibillion-dollar lawsuit, you are asked to determine the refrigerant numbers for the following
refrigerants by the prosecuting attorney:

a. Chloroform, CHCl3.
b. Chlorotetrafluoroethane, CHClFCF3.
c. Octafluoropropane, CF3CF2CF3.

Solution
Being totally unimpressed by the prosecuting attorney’s aggressive questioning, you calmly reply as follows:
a. “Chloroform contains one carbon atom (a = 1), one hydrogen atom (b = 1), and three chlorine atoms (c = 3), and no

fluorine atoms (d = 0).” Making a quick calculation in your head using Eq. (14.8), you arrive at R-(a − 1)(b + 1)d = R-(1 − 1)
(1 + 1)0 = R-020 = R-20 (dropping the leading 0). Then you reply, “So, the refrigerant number for chloroform is R-20.”

b. “Chlorotetrafluoroethane, on the other hand, contains two carbon atoms (a = 2), one hydrogen atom (b = 1), one
chlorine atom (c = 1), and four fluorine atoms (d = 4).” Using Eq. (14.8) again you find R-(2 − 1)(1 + 1)4 = R-124,
and you reply, “So, its refrigerant number is: R-124.”

c. “Now octafluoropropane is a very interesting compound in that it contains three carbon atoms (a = 3), no hydrogen or
chlorine (b = c = 0), and eight fluorine atoms (d = 8).” (Thinking, again using Eq. (14.8), R-(3 − 1)(0 + 1)8 = R-218.)
“Consequently its refrigerant number is: R-218.”

Exercises
13. Suppose the prosecuting attorney in Example 14.5 asks you for the refrigerant number of carbontetrachloride CCl4. What

would you say then? Answer: Your response: “The refrigerant number is: R-14.”
14. “Aha!” the prosecutor in Example 14.5 exclaims, “You seem pretty confident of yourself, don’t you? Well, then, can you

tell me what substance has refrigerant number 720?” (Recall that 700 series refrigerants are inorganic compounds and
the last two digits of the R number correspond to the molecular mass of the compound.) Answer: Your response: “The
compound is neon.”

15. The prosecuting attorney in Example 14.5 vociferates, “You don’t say, then give me the chemical formula and refrigerant
number for trifluoromethane!” Answer: Your response: “CHF3 which is R-23.”

14.8 CFCs AND THE OZONE LAYER
Ozone (O3) in the upper atmosphere absorbs ultraviolet radiation from the sun and prevents much of it from
reaching the surface of the Earth. Exposure to ultraviolet radiation is a known source of skin cancer and other
biological problems.

All chlorofluorocarbons (CFCs) are combinations of chlorine, fluorine, and carbon atoms. After 1950, the use of
chlorofluorocarbons dominated the domestic and automotive refrigeration and air conditioning markets. In the
1950s and 1960s, inexpensive chlorofluorocarbons found use as a propellant in aerosol spray cans for paint,
deodorant, hair products, and so forth.

In 1974, Professor Sherry Rowland at the University of California—Irvine and her postdoctorate student Mario
Moline postulated that chlorofluorocarbons are so chemically stable that they can exist in the atmosphere for hun-
dreds of years, eventually diffusing into the Earth’s stratosphere, where ultraviolet radiation decomposes them to
release chlorine atoms. The chlorine atoms then catalyze the conversion of ozone into oxygen as follows:

O3 +Cl ! O2 +ClO
ClO+O ! O2 +Cl

with the chlorine atom being regenerated. The overall reaction is then

O+O3 ! 2O2

The CFC production in 1974 was 1 million pounds per year, and the shear volume of CFCs released through
spray cans and leaking refrigeration systems could possibly destroy the ozone layer faster than it is created by
ultraviolet radiation acting on oxygen molecules. Rowland’s hypothesis alluded to a massive global problem,
and it had profound impact on CFC use.

But, what will replace the banned CFCs? It was not too difficult to find safe propellants (such as CO2) for use in
aerosol cans, but finding suitable replacements for refrigerants such as R-11 (used in large building air condi-
tioning systems) and R-12 (used in domestic refrigerators and air conditioners and automotive air conditioners)
was much less obvious.
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The financial investment in existing refrigeration and air conditioning systems is massive, so the replacement
refrigerants must have very similar thermodynamic properties to R-11 and R-12, so that they can be used in the
same operating equipment with minimal modifications. Today, R-123 is temporarily4 replacing R-11, and
R-134a is replacing R-12. By the end of 1995, EPA banned most production and import of R-12. However, the
use of R-12 is still permitted until supplies are depleted. Figures 14.15 and 14.16 show the p–h diagrams for
these refrigerants and their replacements.

R-123 is CHCl2CF3 and is called a hydrochlorofluorocarbon (HCFC). While it still contains chlorine, it is 50 times
less detrimental to the ozone layer than R-11. Consequently, it is viewed as a temporary replacement for R-11,
since it too must be phased out by the year 2030. The ultimate replacement for R-11 may be R-245fa
(CF2HCF2CFH2), a propane-based halocarbon that does not contain chlorine. R-134a is CH2FCF3 and is called a
hydrofluorocarbon (HFC). It contains no chlorine and will not damage the ozone layer. The other common refrig-
erant in use in large-scale air conditioning and heat pump systems is R-22 (CHClF2). It is also an HCFC, and
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FIGURE 14.16
Superimposed p–h diagrams for R-12 and R-134a, showing the
thermodynamic similarities between these two refrigerants.
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Superimposed p–h diagrams for R-11 and R-123, showing the
thermodynamic similarities between these two refrigerants.

HOW WERE CFCs CONTROLLED?

1978: The U.S. Environmental Protection Agency (EPA) banned the use of CFCs in all nonessential aerosol cans. This
action alone cut the U.S. consumption of CFCs by 50%.

1980: The European Community limited CFC production and use in aerosols.

1985: The Ozone Hole is discovered in the Antarctic.

1987: The Montreal Protocol is signed by 43 nations to decrease overall production of CFCs by 50% by 1999.

1990: Title VI of the Clean Air Act (Stratospheric Ozone Protection) is passed into law in the United States.

1992: The signers of the Montreal Protocol agree to a phase-out schedule for all HCFCs (including R-123) by the
year 2030.

4 R-123 is scheduled to be phased out in 2020 in new equipment.
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although it still contains chlorine, it is 20 times less detrimental to the ozone layer than R-11 or R-12. However,
after January 1, 2010, no virgin R-22 can be used in existing systems, and after January 1, 2015, no recycled
refrigerant R-22 can be used in existing systems.

14.9 CASCADE AND MULTISTAGE VAPOR-COMPRESSION SYSTEMS
Refrigeration applications like the quick freezing of processed food or the production of liquefied gases such as
liquefied natural gas (LNG, methane) and liquefied petroleum gas (LPG, propane and butane) require moder-
ately cold refrigeration temperatures in the range of −30.°C to −180°C (−22°F to −290°F) with an outside
ambient temperature near 20.°C (68°F). This temperature range is too large for a single vapor-compression
refrigeration cycle, because it requires a very large pressure ratio across the compressor. To solve this problem,
we can connect (or cascade) two or more cycles together to form a cascade vapor-compression refrigeration cycle
with lower individual compressor pressure ratios, as shown in Figure 14.17. This figure shows a double-cascade
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FIGURE 14.17
A dual-cascade, vapor-compression refrigeration system with the same refrigerant used in each cycle.

CRITICAL THINKING

Replacing refrigerants R-11 and R-12 with R-123 and R-134a in existing equipment is not a matter of simply draining out
the old refrigerant and adding the new, because they have different physical and thermodynamic properties. This conver-
sion is very expensive and the owners of the equipment must bear the costs. This is why the final phase-out of all CFCs is
not scheduled until the year 2030, when the equipment existing today would be obsolete and need to be replaced anyway.
If the CFCs are as dangerous as we think they are, then why are we waiting so long to eliminate them? Who else should
share in the conversion costs?
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system using the same refrigerant in each cycle. However, a different refrigerant is often used in each cycle to
optimize overall system performance. When different refrigerants are used in the cascaded cycles, separate (or
combined) T–s diagrams must be used in the analysis. Some industrial systems require three or four cascaded
cycles to reach the desired low temperature.

The cascaded cycles are interconnected through insulated closed loop heat exchangers that function as evaporators
in the higher temperature cycle (A) and as condensers in the lower temperature cycle (B). An energy balance on an
interconnecting heat exchanger provides a relation between the mass flow rates of refrigerant in the two cycles as

_mA

_mB
= h2B − h3B

h1A − h4hA
(14.9)

Where h2b is determined from

h2B = ðh2sB − h1BÞ/ðηsÞc−B + h1B (14.10)

And the coefficient of performance for the entire cascaded system is

COPcascade =
_QL

_Wc−A + _Wc−B +…
=

_QL

∑ _Wcompressors

(14.11)

For a dual-cascade system, Eq. (14.11) becomes

COP
dual
cascade

=
_QL

_Wc−A + _Wc−B
=

_mBðh1B − h4hBÞ
_mAðh2sA − h1AÞ/ðηsÞc−A + _mBðh2sB − h1BÞ/ðηsÞc−B

(14.12)

The following example illustrates that cascading can be used to decrease the individual compressor pressure
ratios and increase the coefficient of performance of a system. However, understand that this increase in system
COP also requires an increased capital investment and increased maintenance costs.

EXAMPLE 14.6
A food-processing refrigeration unit is required to produce 40.0 tons of refrigeration at an evaporator temperature of −50.0°C
and a condenser temperature of 25.0°C. Since this temperature difference is quite large, it was decided to design a dual-cascade
unit using. R-22 in both of the cascaded loops. The intermediate heat exchanger connecting the two loops is to operate
at −20.0°C, and the isentropic efficiencies of both compressors is 80.0%. The following design specifications were then
established for the refrigeration loops shown in Figure 14.17:

Loop A

Station1A Station 2sA Station3A Station4hA
Compressor A inlet Compressor A outlet Condenser A outlet Expansion valve A outlet
x1A = 1:00 p2sA = 1500: kPa x3A = 0:00 h4hA = h3A
T1A = −20:0°C s2sA = s1A T3A = 25:0°C

Loop B

Station1B Station2sB Station3B Station4hB
Compressor B inlet Compressor B outlet Condenser B outlet Expansion valve B outlet
x1B = 1:00 p2sB = 300: kPa x3B = 0:00 h4hB = h3B
T1B = −50:0°C s2sA = s1B T3B = −25:0°C

(Continued )

HOW DO YOU LIQUEFY A GAS LIKE OXYGEN?

Though French engineer Charles Tellier (1828–1913) first suggested the concept of cascade refrigeration in 1867, the Swiss
scientist Raoul Pictet (1846–1929) first developed a dual-cascade refrigeration system and used it to produce liquid oxygen
in 1877. He used SO2 in the high-temperature cycle and CO2 in the low-temperature cycle. He was able to produce only a
liquid oxygen mist, but it was the beginning of cryogenic refrigeration. Hydrogen gas was first liquefied in 1898 and
helium gas was finally liquefied in 1908.
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EXAMPLE 14.6 (Continued )

For this design, determine

a. The mass flow rate of refrigerant in loops A and B.
b. The system’s coefficient of performance.
c. The pressure ratios across each of the compressors.

Solution
Use Figure 14.17 as the equipment schematic for this example. From Tables C.9b and C.10b for R-22, we can find the
following property values:

Loop A

Station 1A Station2sA Station 3A Station4hA

Compressor A in Compressor A out Condenser A out Expansion valve A out

x1A = 1:00 p2sA = 1500: kPa x3A = 0:00 h4hA = h3A

T1A = − 20:0°C s2sA = s1A T3A = 25:0°C

h1A = 242:05 kJ/kg h2sA = 289:08 kJ/kg h3A = 74:91 kJ/kg h4hA = h3A = 74:91 kJ/kg

s1A = 0:95927 kJ/kg .K by interpolationð Þ
p1A = 244:8 kPa T2sA = 71:07°C

by interpolationð Þ

Loop B

Station1B Station 2sB Station3B Station4hB

Compressor B inlet Compressor B outlet Condenser B outlet Expansion valve B outlet

x1B = 1:00 p2sB = 300: kPa x3B = 0:00 h4hB = h3B

T1B = −50:0°C s2sB = s1B T3B = −20:0°C
h1B = 228:51 kJ/kg h2sB = 264:05 kJ/kg h3B = 21:73 kJ/kg h4hB = h3B = 21:73 kJ/kg

s1B = 1:02512kJ/kg .K by interpolationð Þ
p1B = 63:139 kPa T2sB = 15:0°C

a. The mass flow rate in loop B can be found from an energy rate balance on the evaporator as

_mB =
_QL

h1B − h4hB
=

ð40:0 tonsÞ½210: kJ/min/ð1 tonÞ�ð1min/60 sÞ
228:51−21:73 kJ/kg

= 0:677kg/s

Equation (14.10) can now be used to find the actual compressor outlet state in loop B as

h2B = ðh2sB − h1BÞ/ðηsÞc−B + h1B = ð264:05−228:51Þ/0:80+228:51 = 272:9 kJ/kg

Then Eq. (14.9) can be used to find the mass flow rate in loop A as

_mA = _mB
h2B − h3B
h1A − h4hA

� �
= ð0:677 kg/sÞ 272:94− 21:73 kJ/kg

242:05− 74:91 kJ/kg

� �
= 1:02 kg/s

b. Equation (14.12) provides the system COP as

COP
dual
cascade

=
_mBðh1B − h4hBÞ

_mAðh2sA − h1AÞ/ðηsÞc−A + _mBðh2sB − h1BÞ/ðηsÞc−B

=
0:677ð228:51−21:73Þ

1:02ð289:08−242:05Þ/0:80+0:677ð264:05−228:51Þ/0:80
= 1:55

c. The compressor pressure ratios are obtained form these data as

PRcompressor A = p2SA/p1A = 1500:/244:8 = 6:13

PRcompressor B = p2SB/p1B = 300:/63:139 = 4:75
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Exercises
16. If the refrigerating capacity of the dual-cascade system described in Example 14.6 is doubled, determine the required

mass flow rate of refrigerant in loops A and B. Assume all the other variables remain unchanged. Answer:
_mA = 2:04 kg=s and _mB = 1:35 kg=s.

17. We just found another compressor manufacturer that can provide both compressors in Example 14.6 with isentropic
efficiencies of 88.0% instead of 80.0%. Determine the new system coefficient of performance, assuming all the other
variables remain unchanged. Answer: COP = 1.73.

18. Determine the coefficient of performance and the compressor pressure ratio required to produce the refrigeration
required in Example 14.6 using a single-stage, vapor-compression R-22 refrigeration system. Use the following states in
your calculations: compressor inlet, xl = 1.00, T1 = −50°C; compressor outlet, s2s = s1, p2s = 1500. kPa; condenser outlet:
x3 = 0.00, T3 = 25.0°C; expansion valve outlet: h4h = h3. Answer: COP = 1.48 and PR = 23.8.

When the same refrigerant is used in two or more cascaded cycles, the interconnecting closed loop heat exchangers
can be replaced with more efficient heat exchanger systems consisting of liquid-vapor separators, called flash
chambers, and open loop direct contact (or mixing) heat exchangers. Such systems are called multistage refrigeration
systems. A dual-stage refrigeration system is shown in Figure 14.18.

In Figure 14.18, we see that the vapor from the flash chamber mixes directly with vapor from the first-stage
compressor. Since the flash vapor is at a lower temperature than the vapor from the first-stage compressor, the
flash chamber acts as an intercooler between compressor stages. The liquid from the flash chamber then passes
through an expansion valve and flows into the low-temperature evaporator. The entire process is basically a
regeneration process, similar to the Rankine power cycle with regeneration discussed in Chapter 13, with the
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FIGURE 14.18
A dual-stage, vapor-compression refrigeration system. The flash chamber functions as a regenerator in this system.
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flash chamber functioning as the regenerator. As with the Rankine power cycle, the efficiency of a multistage
refrigeration cycle can be optimized through the proper choice of the regenerator (flash chamber) pressure. This
pressure then dictates the quality of the vapor entering the direct contact heat exchanger as

xflash =
hf ðat the condenser pressureÞ− hf ðat the flash chamber pressureÞ

hfgðat the flash chamber pressureÞ (14.13)

The rate of cooling produced by a dual-stage refrigeration system is given by

ð _QLÞdual
stage

= _mAð1− xflashÞðh1B − h4BÞ = _mBðh1B − h4BÞ (14.14)

and the total power input is

∑ _Wcompressors = _WA + _WB = _mAðh2A − h1AÞ+ _mBðh2B − h1BÞ
= _mA ½ðh2A − h1AÞ+ ð1− xflashÞðh2B − h1BÞ�
= _mA ½ðh2sA − h1AÞ/ðηsÞc−A + ð1− xflashÞðh2B − h1BÞ/ðηsÞc−B�

(14.15)

The system coefficient of performance can then be computed from Eq. (14.10) as

COP
dual
stage

=
_QL

∑ _W compressors

=
_QL

_Wc−A + _Wc−B

=
_m ref ð1− xflashÞðh1B − h4BÞ

_m ref ½ðh2sA − h1AÞ/ðηsÞc−A + ð1− xflashÞðh2B − h1BÞ/ðηsÞc−B�

(14.16)

An energy balance on the mixing heat exchanger in Figure 14.18 gives the value of the specific enthalpy at the
inlet of the compression stage in loop A as

h1A = xflashh5 + ð1− xflashÞh2B = xflashhgðat pflashÞ+ ð1− xflashÞh2B (14.17)

where we set h5 = hg(at pflash), and we compute h2B from

h2B = ðh2sB − h1BÞ/ðηsÞc−B + h1B (14.18)

The following example illustrates the effect of flash chamber pressure on the system’s overall coefficient of
performance.

EXAMPLE 14.7
A large food-processing plant needs a 14.0 ton refrigeration unit with an evaporator pressure of 100. kPa and a condenser
pressure of 1600. kPa. We are designing a two-stage, vapor-compression unit using refrigerant R-134a. The flash chamber is
to operate at 500. kPa, and the isentropic efficiency of both compressors is 80.0%. The following design specifications have
been established for the refrigerant loops shown in Figure 14.18:

Loop A

Station1A Station2sA Station3A Station 4hA

Compressor A inlet Compressor A outlet Condenser A outlet Expansion valve A outlet

p1A = 500: kPa p2sA = 1600: kPa x3A = 0:00 h4hA = h3A

s2sA = s1A p3A = 1600: kPa

Loop B

Station 1B Station2sB Station3B Station4hB

Compressor B inlet Compressor B outlet Condenser B outlet Expansion valve B outlet

x1B = 1:00 p2sB = 500: kPa x3B = 0:00 h4hB = h3B

p1B = 100: kPa s2sA = s1B p3B = 500: kPa

We now need to determine

a. The mass flow rate of the two refrigerants.
b. The system’s coefficient of performance.
c. The total power required by the compressors.
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Solution
Use Figure 14.18 as the equipment schematic for this example. From Tables C.7f and C.8d for R-134a, we can find the
following data:

Loop A

Station 1A Station2sA Station 3A Station4hA

Compressor A inlet Compressor A outlet Condenser A outlet Expansion valve A outlet

p1A = 500: kPa p2sA = 1600: kPa x3A = 0:00 h4hA = h3A

h1A = 265:60 kJ/kg s2sA = s1A p3A = 1600: kPa −
see belowð Þ = 0:9486 kJ/kg .K h3A = 134:02 kJ/kg h4A = 134:02 kJ/kg

s1A = 0:9486 kJ/kg .K h2A = 256:60 kJ/kg

by interpolationð Þ
Loop B

Station 1B Station 2sB Station3B Station 4hB

Compressor B inlet Compressor B outlet Condenser B outlet Expansion valve B outlet

x1B = 1:00 p2sB = 500: kPa x3B = 0:00 h4hB = h3B

p1B = 100: kPa s2sA = s1B = 0:9395 p3B = 500: kPa −
h1B = 231:35 kJ/kg h2sB = 264:25 kJ/kg h3B = 71:33 kJ/kg h4hB = 71:33 kJ/kg

s1B = 0:9395 kJ/kg .K by interpolationð Þ
The specific enthalpy of station 1A was determined from an energy rate balance on the flash chamber using Eq. (14.17) as

h1A = xflashhgðat pflashÞ+ ð1− xflashÞh2B
where h2B was determined from Eq. (14.18) as

h2B = ðh2sB − h1BÞ/ðηsÞc−B + h1B

= ð264:25− 231:35Þ/0:800+231:35 = 272:54 kJ/kg

The quality of the vapor exiting the flash chamber is given by Eq. (14.13) as

xflash =
hf ðat the condenser pressureÞ− hf ðat the flash chamber pressureÞ

hfgðat the flash chamber pressureÞ

=
hf ðat 1600: kPaÞ− hf ðat 500: kPaÞ

hfgðat 500: kPaÞ = 134:02−71:33
184:74

= 0:339 = 33:9%

Then

h1A = 0:339ð252:07Þ+ ð1− 0:339Þð272:54Þ = 265:60 kJ/kg

a. The mass flow rate in loop B is given by Eq. (14.14) as

_mB =

ð _Q LÞdual
stage

h1B − h4B
=

ð10:0 tonsÞ½210: kJ/min/ð1 tonÞ�ð1min/60 sÞ
231:35−71:33 kJ/kg

= 218 kg/s

and, since for the dual-stage system _mB = _mAð1− xflashÞ,
_mA = _mB/ð1− xflashÞ = ð0:218 kg/sÞ/ð1− :0339Þ = 0:330kg/s

b. The system COP is given by Eq. (14.16) as

COP
dual
stage

=
_m ref ð1− xflashÞðh1B − h4BÞ

_m ref ½ðh2sA − h1AÞ/ðηsÞc−A + ð1− xflashÞðh2B − h1BÞ/ðηsÞc−B�

=
ð1− 0:339Þð231:35−71:33Þ

ð292:33−265:60Þ/0:800+ ð1− 0:339Þð264:25−231:38Þ/0:800
= 1:78

(Continued )
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EXAMPLE 14.7 (Continued )

c. The total compressor power is obtained from Eq. (14.15) as

∑ _Wcompressors = _mA½ðh2sA − h1AÞ/ðηsÞc−A + ð1− xflashÞðh2B − h1BÞ/ðηsÞc−B�
= ð0:330kg/sÞ½ð292:33− 256:60 kJ/kgÞ/0:800+ ð1− 0:339Þð264:25−231:35 kJ/kgÞ/0:800�
= 23:7 kJ/s = 23:7 kW

Exercises
19. If the refrigerating capacity of the two-stage system described in Example 14.7 is tripled, determine the required

refrigerant mass flow rate. Assume all the other variables remain unchanged. Answer: _m ref = 0:654 kg=s.
20. We just found another manufacturer that can provide the compressors for the unit described in Example 14.7 with an

isentropic efficiency of 90.0% instead of 80.0%. Determine the new system coefficient of performance, assuming all the
other variables remain unchanged. Answer: COP = 1.88.

21. Using a spreadsheet or equation solver (like EES), develop a plot of system COP vs. flash chamber pressure for the unit
discussed in Example 14.7. Note that the maximum COP occurs at a flash chamber pressure of about 500 kPa.

14.10 ABSORPTION REFRIGERATION
Ammonia was discovered in 1774 by the British chemist Joseph Priestley (1733–1804), who noted that his new
gas dissolved easily in water (one volume of water dissolves over 1000 volumes of ammonia at STP). The
French engineer Ferdinand Carré utilized this property of ammonia’s affinity for water to create the first absorp-
tion refrigeration system in 1859.

Carré’s absorption refrigeration technique is an important vapor refrigeration technology, because it does not
require a vapor compressor. It is based on dissolving the refrigerant vapor (ammonia) in a carrier liquid
(water) and pumping this liquid to a high pressure. A liquid can be pumped more efficiently than a vapor
can be compressed, so this technique has a decided advantage over vapor-compression technology. The pres-
surized liquid is then fed into a generator, where the refrigerant vapor is boiled off, now at a much higher
pressure, and the carrier liquid returned to the absorber to continue the process. The high-pressure refrigerant
vapor then continues through the refrigeration cycle in the normal reversed Rankine manner. Standard and
absorption refrigeration systems are shown schematically in Figure 14.19. These are both vapor-compression

(a) Standard vapor-compression refrigeration.

(b) Absorption vapor-compression refrigeration.
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FIGURE 14.19
Basic absorption refrigeration.
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cycles, since the compressor unit in the standard system is simply replaced by the absorption unit in the
absorption system.

The absorption cycle is a special type of vapor-compression refrigeration cycle, since it is driven by heat as
opposed to work. Consequently, the coefficient of performance of an absorption cycle is not computed in the
same way as a standard vapor-compression cycle, and the two COPs should not be directly compared. The heat
energy necessary to drive an absorption cycle is at a much lower availability than the electrical energy necessary
to power a work-driven cycle. There is a need for some work in absorption systems with a generator feed pump,
but the amount of pump work required is negligible in comparison to the compressor work needed in a stan-
dard vapor-compression cycle. The coefficient of performance of an ideal absorption refrigerator is

ðCOPÞ
absorption
refrigerator

=
Refrigeration ðevaporatorÞ cooling

Generator heat+Pumpwork
=

_Qevaporator

_Qgenerator + _Wpump
(14.19)

A Carnot absorption cycle can be constructed by driving a Carnot refrigerator with a Carnot engine, as shown in
Figure 14.20. In this system, both the engine and the refrigerator exhaust heat to the local environment at tem-
perature Ta.

The thermal efficiency of the Carnot engine used here is

ðηTÞCarnot
engine

=
_Wengine

_Qgenerator

and the thermal efficiency (COP) of the Carnot refrigerator used here is

ðηTÞCarnot
refrigerator

= ðCOPÞ
Carnot
refrigerator

=
_Qevaporator

_Wrefrigerator

Since the overall efficiency of a combined system is equal to the product of the efficiencies of its components,
the COP of this combined system is equal to the product of the thermal efficiency of the Carnot engine multi-
plied by the thermal efficiency of the Carnot refrigerator, or

ðCOPÞ
Carnot
absorption
refrigerator

=
_Wengine

_Qgenerator

 !
_Qevaporator

_Wrefrigerator

 !
=

_Qevaporator

_Qgenerator

(14.20)

as all the work produced by the engine is used to drive the refrigerator, or _Wengine = _Wrefrigerator = _W. For a Carnot
cycle, _Qgenerator = _W /ð1−Ta/TgÞ and _Qevaporator = _WTe/ðTa −TeÞ. Consequently,

ðCOPÞ
Carnot
absorption
refrigerator

=
Te
Tg

Tg −Ta
Ta − Te

� �
(14.21)
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FIGURE 14.20
A Carnot absorption refrigeration cycle.
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Since no real system can be more efficient than a Carnot system, Eq. (14.21) represents the maximum possible
thermal efficiency of an absorption refrigeration system operating with a generator temperature Tg, an evaporator
temperature Te, and an ambient temperature Ta. Because absorption systems are heat rather than work driven,
their practical COP values tend to be around 1.0 or less. Common absorption refrigeration fluid systems are:
ammonia (refrigerant)-water (carrier), water (refrigerant)-lithium bromide (carrier), and water (refrigerant)-
lithium chloride (carrier). The ammonia-water system was widely used in domestic refrigerators until about
1950. The lithium salt–water systems that use water as the refrigerant cannot go below 32°F (0°C) and conse-
quently are mainly used in air conditioning applications.

Absorption refrigeration dominated the refrigeration market before 1875, which is remarkable considering its
inherent complexity and the fact that its design was empirical. A suitable theory for the operation of absorption
refrigeration did not appear until 1913, and today multistage regenerative absorption refrigerators can produce
temperatures as low as 65 K.

EXAMPLE 14.8
A new absorption refrigeration system with a generator temperature of 100.°C and an evaporator temperature of 5.00°C is
being designed to operate in an environment at a temperature of 20.0°C. To provide an upper limit for the operating effi-
ciency, determine the Carnot absorption refrigeration coefficient of performance of this system.

Solution
Use Figure 14.20 as the equipment schematic for this example. Equation (14.21) gives the COP for this system as

ðCOPÞ
Carnot
absorption
refrigerator

=
Te
Tg

Tg −Ta
Ta −Te

� �
= 5:00+273:15

100:+273:15

� �
100:− 20:0
20:0− 5:00

� �
= 3:98

Since no system can be more efficient than a Carnot system, this represents the maximum COP of any absorption system
operating under these conditions.

Exercises
22. The environmental temperature of the absorption refrigerator being designed in Example 14.8 is suddenly increased

from 20°C to 30°C. Determine the new Carnot absorption refrigeration COP, assuming all the other variables remain
unchanged. Answer: (COP)Carnot absorption ref = 2.09.

23. Suppose now we want to convert the absorption refrigeration system design discussed in Example 14.8 into a cryogenic
unit with an evaporator temperature of only 65 K. What would be the maximum possible coefficient of performance of
this system assuming all the other variables remain unchanged? Answer: (COP)Carnot absorption ref = 0.06.

24. Explain why the COP given by Eq. (14.21) goes to zero as the evaporator temperature approaches absolute zero.
Answer: In this instance, as Te → 0, the evaporator cooling load _Qe also goes to zero. Since the COP is defined as the
ratio of the system cooling to the energy input, the COP must vanish as the cooling vanishes.

14.11 COMMERCIAL AND HOUSEHOLD REFRIGERATORS
Commercial and household refrigeration technology essentially developed together, because commercial refrigera-
tion in shops and supermarkets requires the same basic technological advances as household refrigerators. Also,
once frozen or chilled food products were purchased by the consumer, similar refrigeration needs were created in
the home. Thus. the parallel development of household and commercial refrigeration was advantageous, if the mar-
ket for chilled and frozen foods was to expand beyond the needs of a single day’s food supply.

Throughout the 19th century, mechanical vapor-compression refrigeration systems had been limited to large-
scale industrial units powered by steam engines or internal combustion engines. Several major technical bot-
tlenecks prevented small commercial and household vapor-compression refrigerators from being successfully
developed. The first problem was the development of a power source suitable for use in a household. The tra-
ditional commercial power sources (steam and internal combustion engines) were not suitable for household
use. The second problem was the enormous friction in the mechanical seals on the shaft between the power
source and the compressor. Without a complex and tight sealing system, refrigerant leaked out, causing
serious environmental and maintenance problems. The third problem was the development of an automatic
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refrigerant flow control mechanism that would not let liquid refrigerant enter and subsequently destroy the
compressor. Commercial refrigeration systems often required constant refrigerant flow adjustment by a
human operator.

The first problem was solved with the development of an effective central electrical power system by Thomas
Edison between 1895 and 1920. Inexpensive electric motors then became available as suitable power sources for a
household compressor. The second problem was solved with the development of the hermetically sealed motor-
compressor unit in 1918. Many of the refrigerants used were dielectrics and did not conduct electricity. Therefore,
they could come in direct contact with the motor windings and even act as a coolant for the motor. Numerous
float-valve (as found in a toilet tank) refrigerant flow control mechanisms were tried during this period, but the
automatic flow control problem was not completely solved until 1926, when Harry Thompson developed the
thermostatic expansion valve to automatically control the flow of liquid refrigerant into the evaporator.

The Kelvinator Corporation of Detroit, Michigan, was one of the first companies to build electrical refrigerators.
They launched the first household vapor-compression refrigerator in 1918 and sold 67 units that year. By 1921,
over 20 manufacturers of home refrigerators sold a total of 5000 units that year. Growth in the domestic refrig-
eration market was phenomenal, with 75,000 units sold in 1925, 850,000 in 1930, and 1.7 million in 1935.
Even during the Depression, sales of home refrigerators remained high. As production increased, the prices fell.
In 1920, the average price for a refrigerator was $600; in 1930, it was $275; and in 1935, it was $160. In 1929,
as many mechanical refrigerators were produced as old-fashioned iceboxes.

The first commercial refrigeration system appeared in large hotels in the early 1900s for air conditioning and
food preservation. By the 1930s, glass-covered self-service display cabinets were available in small groceries and
supermarkets for chilled or frozen ice cream, meat, poultry, fish, eggs, and dairy products. Since cold air is hea-
vier than room air, the glass cover disappeared from most horizontal display cases in the 1950s to encourage
customer access. Vertical freezer display cases, however, still require glass doors.

At the same time as vapor-compression domestic refrigerators were reaching the market, a major breakthrough
was made in absorption refrigeration. In 1925, the Swedish engineers G. Munters and B. von Platen successfully
eliminated the mechanical pump between the high- and low-pressure regions by introducing hydrogen gas into
the system. Hydrogen lowers the partial pressure of the refrigerant (ammonia) vapor in the evaporator, allowing
it to boil at a lower temperature. A percolation or siphon action transports the fluid from the low-pressure
absorber into the high-pressure generator (the pressure difference is only a few inches of height in these systems)
and gravity forces the fluid to circulate through the remaining system (see Figure 14.22). This refinement opened
the way for the development of a household absorption refrigerator that had no moving parts, was completely

WHERE DID BIRDS EYE FROZEN FOOD COME FROM?

Clarence Birdseye (1886–1956) was a very successful businessman and inventor. In 1912, he went to Labrador as a fur
trader and discovered that fish caught in weather 50° below zero froze almost instantly and were still fresh months later,
when they were thawed out. Slow freezing allows ice crystals to form in the cells of plants and animals, causing them to
burst. However, with quick freezing, the cells remain intact, preserving the flavor and nutrition of the food.

After returning from Labrador, Birdseye developed a quick freezing process that preserved the original taste of a variety of
foods such as fish, fruits, and vegetables. In 1924, he helped found the General Seafood Company (later to become
General Foods Corporation), which successfully marketed his frozen food products, and he became very wealthy. Birds Eye
frozen food products are still available in supermarkets.

Birdseye’s patented freezing process consisted of placing two flat refrigerated metal plates at −40°F on either side of a food
package, causing the food to freeze very quickly. Birdseye was granted nearly 300 patents in his lifetime. In addition to his
frozen food patents, he developed infrared heat lamps for home use, a recoilless gun for firing a harpoon, and a method
for freeze-drying foods.

CRITICAL THINKING

Visit an antique store and find an old icebox. Note the current price. Look it over to understand how it worked. Inspect it
for insulation in the walls and measure the size of the food storage compartment. How do you think your diet would
change if you had to use an icebox every day? How cold do you think iceboxes were able to keep the food?
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silent, and did not require electricity to operate. This technology was first marketed in the United States in 1927
by Electrolux in Evansville, Indiana. Absorption refrigeration was popular in the household until the 1950s,
when highly efficient, cascaded, electric-powered, vapor-compression refrigerators dominated the market. Because
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generator
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of ammonia
dissolved in
liquid water 
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in liquid
water 
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FIGURE 14.22
A gas-powered absorption refrigerator requires no electricity.

WHO INVENTED THE “TV DINNER”?

By the 1930s, General Foods had a few frozen meals on the
market (such as Irish stew), but the first individual frozen
meals did not appear until World War II. In 1945, Maxson
Food Systems Inc. introduced three-part meals called Strato-
Plates for military airplane passengers. For the next ten years,
food engineers worked to make frozen meals more appeal-
ing. In 1954, C. A. Swanson & Sons (a Campbell Soup
company) introduced the name TV Dinner for its new
frozen meals that could be eaten while watching television
(Figure 14.21). They were an instant success at 98 cents each,
with 10 million TV dinners sold in 1955 and 214 million in
1960. In 1990, manufacturers introduced over 650 new
frozen dishes, resulting in over 2 billion frozen meals sold
per year by the mid 1990s. Today, the TV dinner has
morphed into the $4 billion frozen food industry.

The TV dinner allowed families to gather around the television
set to share their meals, just as they used to do while
gathered around the dinner table. Commercially prepared
frozen foods vastly simplified the art of meal preparation
and significantly contributed to changing women’s role in
society by promoting the sharing of meal preparation tasks
by all members of the family.

FIGURE 14.21
TV Dinner.
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absorption refrigeration has no moving parts and operates from a heat source instead of a work source, it peri-
odically attracts renewed attention. It is particularly attractive from an energy conservation point of view, since it
can operate from waste heat or solar energy.

Early vapor-compression and absorption household refrigerators had only one evaporator, located around the
freezer compartment. Cooling of the remaining refrigeration space was produced by the natural convection of
air passing around the outside of the freezer compartment. Many inexpensive portable refrigerators are still
made this way today. The first true “dual-temperature” refrigerator, with separate freezer and refrigeration eva-
poration coils, appeared in 1939.

In single-evaporator refrigerator-freezers, the evaporator temperature must be colder than the freezer temperature.
A dual-evaporator refrigerator allows the pressure and temperature in the evaporators to be controlled separately.
The fresh food evaporator is warmer than the freezer evaporator temperature, thus reducing the irreversibilities
associated with the heat transfer.

Also, in a single-evaporator system, humid air from the fresh food compartment comes in contact with the
cold freezer evaporator, producing frost. When the dehumidified dry air is returned to the fresh food cabinet,
it dries the food and reduces food quality. If the fresh food evaporator more closely matches the air tem-
perature in the fresh food compartment, it dehumidifies the air less and builds up less frost. This decreases
the need for defrosting with a heater and increases energy efficiency. Figure 14.23 illustrates these
differences.

EXAMPLE 14.9
A new household refrigerator-freezer combination unit is being designed with the dual-evaporator system shown in
Figures 14.23 and 14.24. The freezer compartment is to be at −18.0°C and the refrigerator compartment is to be at 4.00°C.
The outlet of the condenser is at 30.0°C. The cooling capacities of both the refrigeration and the freezer compartments are
to be 422 kJ/h each. The system uses refrigerant R-134a with a compressor isentropic efficiency of 80%. Determine

a. The coefficient of performance for this design.
b. The mass flow rate of refrigerant required.
c. The quality at the outlet of the refrigeration evaporator.

(Continued )
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FIGURE 14.23
Illustration of (a) single-evaporator system and (b) dual-evaporator system.
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EXAMPLE 14.9 (Continued )
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FIGURE 14.24
Example 14.9.

Solution
The properties of the refrigerant at the states shown in Figure 14.24 are as follows (see Tables C.7e, C.7f, and C.8d for the
numerical values):

Station1—Compressor inlet Station2s—Compressor outlet

x1 = 1:00 s2s = s1 = 0:9315 kJ/kg .K

T1 = −18:0°C p2s = p3 = psatð30:0°CÞ = 0:770MPa

h1 = 236:53 kJ/kg h2s = 271:0 kJ/kg

s1 = 0:9315 kJ/kg .K interpolation in TableC:7fð Þ
Station3—Condenser outlet Station4h—Refrigerator evaporator inlet

x3 = 0:00 h4h = h3
T3 = 30:0°C T4h = 4:00°C

p3 = psatð30:0°CÞ = 0:770MPa No further information is needed:

h3 = hf ð30:0°CÞ = 91:49 kJ/kg

Station5—Refrigerator evaporator outlet Station6h—Freezer evaporator inlet

x5 = ? h6h = h5 = ?

T5 = T4h = 4:00°C T6h = −18:0°C
h5 = ? No further information is needed:

The isentropic efficiency of the compressor is 80.0%, or (ηs)comp = 0.800.

a. The COP for this system is the ratio of the total heat rate removed from the refrigeration plus freezer compartments
divided by the power input to the compressor, or

COP =
_Q R + _Q F

_WC
=

ðh5 − h4hÞ+ ðh1 − h6hÞ
ðh2s − h1Þ/ðηsÞcomp

but since h5 = h6h here, this equation reduces to

COP =
h1 − h4h

ðh2s − h1Þ/ðηsÞcomp
= 236:53− 91:49

ð271:0−236:53Þ/0:800 = 3:37

so that the system COP does not depend on states 5 or 6h.
b. Since h5 = h6h, we can write the refrigeration and freezer compartment cooling rates as

_QR = _m ref ðh5 − h4hÞ and _QF = _m ref ðh1 − h6hÞ = _m ref ðh1 − h5Þ. Solving these two equations for _m ref gives

_m ref =
_QR + _QF

h1 − h4h
=

ð422+422 kJ/hÞð1h/60minÞ
236:53−91:49 kJ/kg

= 0:0970 kg/min
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c. Now we can find the enthalpy at the exit of the refrigeration evaporator from the energy balance on the refrigeration
compartment as

h5 = h4h +
_QR

_mref
= 91:49 kJ/kg+

ð422kJ/hÞð1h/60minÞ
0:0970 kg/min

= 164:0 kJ/kg

Then, we can find the quality at the exit of the refrigeration evaporator as

x5 =
h5 − hf ð4:00°CÞ
hfgð4:00°CÞ = 164:0−55:35

194:19
= 0:559 = 55:9%

Exercises
25. A high-efficiency compressor has just been developed. It has an isentropic efficiency of 95%. Determine the new COP

for the refrigerator design presented in Example 14.9. Answer: COP = 4.00.
26. Explain why the COP of the dual-evaporator refrigerator in Example 14.9 does not depend on the quality of the

refrigerator evaporator’s exit. What characteristic of the system depends on this variable? Answer: The intermediate state
h5 to h6h cancels out in the COP evaluation. The amounts of cooling in the refrigeration and freezing sections depend on
this variable.

27. If the refrigerator in Example 14.9 runs only 50% of the time, determine its annual operating cost if the price of
electricity is $0.15 per kWh. Answer: Annual operating cost = $45.05.

HOW LONG HAVE WE HAD AIR CONDITIONING?

Before 1930, air conditioning for human comfort was available only for large installations, such as movie theaters, department
stores, and offices. In 1919, the first air-conditioned movie theater opened in Chicago, Illinois, and the first air-conditioned
department store (Abraham and Straus) opened in Brooklyn, New York. The first completely air-conditioned office building
was built in San Antonio, Texas, in 1927. By the late 1930s, smaller units became available for restaurants, shops, and hotels.

Air conditioning using cold or chilled water circulating throughout the air handling system of a building was introduced in
1929. The water was chilled by the evaporator in a large central refrigeration unit (the evaporator was usually called the chiller).

Small home window air conditioners were not introduced until after 1946, and mass-produced automobiles were not air
conditioned until after 1948.

WHERE DID HEAT PUMPS COME FROM?

Lord Kelvin seemed cognizant of the possibility that a “reversed heat engine” could be used for heating and cooling. The
first use of the term heat pump appears in the British literature in about 1895. The first application of heat pump technol-
ogy was made by T.G.N. Haldane to heat his London office in 1927. Modern heat pumps (Figure 14.25) use refrigerants
R-113 or R-114 to reach hot-side temperatures as high as 150°C.

Refrigerant

Warm water

Cool water

FIGURE 14.25
A heat pump.
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14.12 PART II. GAS REFRIGERATION CYCLES
Reversed gas power cycles have the same potential for producing cooling that we see with reversed vapor cycles.
But not all gas power cycles have a reversed cycle refrigeration analog. For example, we do not yet know how
to reverse internal combustion gas power cycles, because to do so would require the development of rapid
endothermic (heat-absorbing) chemical reactions similar to the exothermic combustion reactions used in the
power cycles. However, all external combustion gas power cycles have effective reversed cycle refrigeration
technologies.

The rapid development of vapor and gas power cycles forever changed the world. They improved productivity
and efficiency in agriculture, transportation, textiles, manufacturing, and in many other areas that affect the way
we live. The social impact of the reversed power cycles, limited primarily to food preservation and environmen-
tal control, was less influential. Though we have known for a long time that many gas power cycles could be
reversed to produce cooling, their development into viable technologies had less social impact and consequently
grew less rapidly. Part II of this chapter focuses on the technology of gas refrigeration cycles plus a few miscella-
neous refrigeration technologies that were not derived from reversed power cycles.

14.13 AIR STANDARD GAS REFRIGERATION CYCLES
The working fluid in gas refrigeration cycles is less complex than in gas power cycles. For example, refrigeration
cycles do not involve internal combustion processes that change the working fluid during the cycle, but they
can be either open or closed loop cycles. Therefore, there is much less need for a working fluid simplifying
model like the air standard cycle (ASC). Nonetheless, we use its simplifying characteristics in analyzing gas
refrigeration cycles in which air is the working fluid. In particular, all gas refrigeration cycles are assumed to be
closed loop cycles when an ASC analysis is used. In addition, the following assumptions apply to gas refrigera-
tion ASC analysis:
1. The working fluid is a fixed mass of air that obeys the ideal gas equation of state.
2. All inlet or exhaust processes in open loop systems are replaced by heat transfer processes to or from the

environment.
3. All processes within the cycle are reversible.
4. The air has constant specific heats.5

ASC refrigeration analysis yields reasonably accurate results for most cycles using air as the working fluid. One
notable exception is in the area of throttling or Joule-Thomson cooling, in which the amount of cooling
depends exclusively on real gas behavior. This is illustrated later in this chapter.

WHAT ARE “SOFT” DRINKS AND WHY ARE THEY
SERVED COLD?

The soda fountain is a unique 1920s American invention at which ice cream and carbonated nonalcoholic
(i.e., “soft”) drinks were sold. The soft drinks were usually cooled to increase the solubility of the
CO2 used in their carbonation (Figure 14.26). This enhanced their flavor and created a unique
tingling feeling in the mouth and throat.

In 1767, Joseph Priestley invented carbonated water, a key component of soft drinks. He added carbon
dioxide to water by suspending a container of water above a beer vat at a local brewery.

In 1881, the first cola-flavored beverage was introduced. In 1885, Charles Aderton invented “Dr Pepper”;
in 1886, Dr. John S. Pemberton invented “Coca-Cola”; and in 1898, “Pepsi-Cola” was invented by
Caleb Bradham. Until 1905, Coca-Cola contained extracts of cocaine (from coca leaves) and
caffeine (from the kola nut) and was marketed as a medicine that could cure various ailments.

FIGURE 14.26
A soft drink bottle.

5 Since the temperature variations within a gas refrigeration cycle are not nearly as large as those within a gas power cycle that contains
a combustion process, there is no practical need to distinguish between a hot refrigeration ASC, in which temperature-dependent
specific heats are used, and a cold refrigeration ASC, in which constant specific heats are used.
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14.14 REVERSED BRAYTON CYCLE REFRIGERATION
In 1844, the American physician John Gorrie (1803–1855) designed and built an air cooling apparatus in Flor-
ida to provide air conditioning for his yellow fever patients. His machine had a piston-cylinder apparatus that
compressed air that was cooled back to ambient temperature by circulating water. The cooled compressed air
was then expanded in a second piston-cylinder apparatus that caused the air to drop to a sufficiently low tem-
perature to produce ice and satisfy other cooling needs. The expanded air was then drawn back into the com-
pressor and the cycle began again. The two piston-cylinder devices were connected together so that the
expansion work was used to offset the compression work. This was clearly a reversed, closed loop Brayton cycle,
as shown by comparing Figures 13.44 and 14.27.

The COP of an actual reversed Brayton cycle is given by

COP
reversed
Brayton cycle
HP

=
j _QHj

j _Winjnet
= T2 − T3

T2s −T1ð Þ/ ηsð Þc − T3 −T4sð Þ ηsð Þc
(14.22)

and

COP
reversed
Brayton cycle
R=AC

=
j _QLj

j _Winjnet
= T1 − T4

T2s −T1ð Þ/ ηsð Þc − T3 −T4sð Þ ηsð Þc
(14.23)

where T2 = T1 + T2s −T1ð Þ/ ηsð Þc and T4 = T3 − T3 − T4ð ÞðηsÞe: Since the processes 1 to 2s and 3 to 4s are isentropic
and the processes 2s to 3 and 4s to 1 are isobaric,

T2s = T1 p2s/p1ð Þ k−1ð Þ/k = T1PR k−1ð Þ/k
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(a) John Gorrie’s 1844 equipment schematic (b) A modern reversed Brayton cycle equipment
 schematic

(c) Reversed Brayton ASC T–s diagram

FIGURE 14.27
The reversed Brayton cycle cooling system using air as a working fluid.
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and

T3 = T4s p3/p4sð Þ k−1ð Þ/k = T4sPR k−1ð Þ/k

where PR is the isentropic pressure ratio. Hence, T2s/T3 = T1/T4s, and it can be shown that, for an ASC
(i.e., (ηs)c = (ηs)e = 1.0), Eqs. (14.22) and (14.23) reduce to

COP
reversed
Brayton ASC
HP

= T3
T3 − T4s

= 1−PR 1−kð Þ/k
� �−1

(14.24)

and

COP
reversed
Brayton ASC
R=AC

= T4s
T3 −T4s

= PR k−1ð Þ/k −1
� �−1

(14.25)

It is easy to show that these equations can also be obtained directly from Eqs. (13.23), (14.4), and (14.5). These
results are illustrated in the following example.

EXAMPLE 14.10
Determine the COP and cycle minimum cooling temperature of Gorrie’s 1844 reversed Brayton cycle refrigerator
if it has a pressure ratio of 2.00 to 1, a compressor inlet temperature of 70.0°F, and an expander inlet temperature
of 80.0°F, using

a. An ASC analysis.
b. An ideal gas analysis that includes typical mid 19th century compressor and expander isentropic efficiencies of

65.0% each.

Solution
Use Figure 14.27 as the system illustration for this example.

a. From the problem statement, we have PR = 2.00, T1 = 70.0°F = 530. R, and T3 = 80.0°F = 540. R. Then, Eq. (14.25)
gives the COP for a reversed Brayton R/AC ASC as

COP
reversed Brayton
ASC R=AC

= ð2:000:40/1:40 −1Þ−1 = 4:57

and the minimum temperature within the cycle is the cooling temperature T4s, which is given by

T4s = T3/PR
k−1ð Þ/k = ð540:RÞ/2:000:40/1:40 = 443R = −17:0°F

WHO INVENTED MECHANICAL REFRIGERATION FIRST, BRAYTON
OR GORRIE?

If Gorrie developed his refrigeration cycle in 1844 and Brayton developed his power cycle in 1873, why do we call Gorrie’s
cycle a reversed Brayton cycle? The reversed name order is just tradition. It probably occurred because power cycles have
always been more important to the development of societal goals than refrigeration cycles.

The original reversed Brayton cycle using a reciprocating piston compressor and expander (sometimes called gas expansion
with external work), developed by Dr. Gorrie in 1844, was not commercially successful. He received a patent in 1851 but
could not raise capital to produce his refrigerator, and he died a disappointed man.

The reversed Brayton cycle was finally established as a viable refrigeration technology by Sir William Siemens (1823–1883)
in 1857. Carl von Linde (1842–1934) unsuccessfully tried to liquefy air using this cycle in 1894. Then, he switched to a
Joule-Thompson expansion technique that allowed him to liquefy air at −190°C in 1895. In 1902, the French engineer
Georges Claude (1870–1960) finally succeeded in liquefying air using a reversed Brayton cycle. The reciprocating piston
technology was finally replaced by turbine technology around 1935 in Germany.
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b. In a more realistic analysis, we still assume ideal gas behavior, but now we introduce isentropic compressor and
expander efficiencies of (ηs)c = (ηs)e = 0.650, and use Eq. (14.23), where the coldest temperature in the cycle
is now only

T4 = T3 − T3 −T4sð Þ ηsð Þe
= 540:− 540:−443ð Þ 0:650ð Þ = 477R = 17:0°F

and

T2s = T1T3/T4s =
ð530:RÞð540:RÞ

443R
= 646R

Then, Eq. (14.23) gives

COP
reversed
Brayton cycle
R=AC

= T1 − T4
ðT2s −T1Þ/ðηsÞc − ðT3 −T4sÞðηsÞe

= 530:− 477
646−530:ð Þ/0:650½ �− 540:−443ð Þ 0:650ð Þ

= 0:220

The results of part b of this example are much more realistic than those of part a due to the large thermodynamic
irreversibilities (friction, heat loss, etc.) present in early mechanical equipment.

Exercises
28. If Gorrie had found a way to increase the isentropic efficiency of his compressor in Example 14.10 from 65.0% to 75.0%

(but the isentropic efficiency of the expander did not change), determine the new coefficient of performance of the
actual (not ASC) system assuming all the other variables remain unchanged. Answer: COPactual = 0.244.

29. A sudden heat wave causes the compressor inlet temperature in Example 14.10 to increase from 70.0°F to 95.0°F.
Determine the new actual (not ASC) coefficient of performance of the unit. Assume all the other variables remain
unchanged. Answer: COPactual = 0.384.

30. Gorrie found a way to increase the pressure ratio of his compressor in Example 14.10 from 2.00 to 3.00. Determine
the new actual (not ASC) coefficient of performance of the unit. Assume all the other variables remain unchanged.
Answer: COPactual = 0.214.

Like modern Brayton power cycles, modern reversed Brayton refrigeration cycles can be constructed with regen-
eration capability (Figure 14.28). Unlike power cycles, however, regeneration in refrigeration cycles does not
improve the cycle’s thermal efficiency; instead, it reduces the COP. However, regeneration does have the advan-
tage of decreasing the minimum cooling temperature T4s. Therefore, the purpose of regeneration in refrigeration
cycles is simply to be able to reach lower cooling temperatures.

The use of a modern reversed Brayton refrigeration cycle is illustrated in the following example.

Regenerator

Turbine Compressor

Cold air
Hot air

Internal heat
transfer from A to B

A

B

QH

QL

Wc

FIGURE 14.28
A modern reversed Brayton cycle with a regenerator.
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EXAMPLE 14.11
Suppose 4.00 lbm/s of air at 530. R enters the compressor of a modern reversed Brayton ASC refrigeration unit. The
isentropic pressure ratio of the compressor is 3.00 to 1 and the inlet temperature of the expander is 600. R. Determine

a. The expander power.
b. The compressor power.
c. The coefficient of performance of the unit.
d. The refrigeration capacity of the unit in tons.

Solution
Using Figure 14.27 as the illustration for this example, station 1 is the compressor inlet, station 2 is the compressor outlet,
station 3 is the expander inlet, and station 4 is the expander outlet. For an ASC, all the processes are reversible, so the ηs of
the expander and the compressor are both 1.00.

a. An energy rate balance on the expander gives

_Wexpander = _m ðh3 − h4sÞ = _mcpðT3 − T4sÞ
where

T4s = T3 p4s/p3ð Þ k−1ð Þ/k = 600: 1/3:00ð Þ0:40/1:40 = 438R

Then,

_Wexpander = 4:00 lbm/sð Þ 0:240Btu/ lbm.Rð Þ½ �ð600:− 438:RÞ = 155Btu/s

b. An energy rate balance on the compressor gives

_Wcompressor = _m ðh1 − h2sÞ = _mcpðT1 −T2sÞ
where

T2s = T1 p2s/p1ð Þ k−1ð Þ/k = 530: 3:00ð Þ0:40/1:40 = 725R:

Then,

_Wcompressor = 4:00 0:240ð Þ 530:−725ð Þ = −188Btu/s

c. Equation (14.25) gives the COP of this unit as

COP = PR k−1ð Þ/k − 1
� �−1

= 3:000:40/1:40 −1
� �−1

= 2:71

d. Finally, the refrigeration capacity of this unit is

_QL = refrigeration capacity = COPR/AC × j _Winjnet = 2:71j 188−155ð Þj
= 88:0Btu/sð Þ 60 s/minð Þ = 5280Btu/minð Þ l ton/200:Btu/minð Þ
= 26:4 tons of refrigeration

Exercises
31. If the compressor inlet temperature of the reversed Brayton ASC refrigeration unit in Example 14.11 is reduced from

530. R to 500. R, what is the new refrigeration capacity of this unit? Answer: _QL = 49.8 tons.
32. The pressure ratio across the compressor of the reversed Brayton ASC refrigeration unit in Example 14.11 is increased

from 3.00 to 500. Determine the new ASC coefficient of performance for the new unit. Answer: COPASC R/AC = 1.71.
33. The reversed Brayton ASC refrigeration unit discussed in Example 14.11 is to be scaled up to handle a refrigeration capacity

of 230. tons. Determine the corresponding air mass flow rate required for the new unit. Answer: _mair = 34.9 lbm/s.

14.15 REVERSED STIRLING CYCLE REFRIGERATION
A reversed Stirling cycle refrigerator was first implemented by the Scottish engineer Alexander Carnegie Kirk
(1830–1892) in 1862. Kirk was searching for a cooling technology that was safer than the prevailing
vapor-compression machines that used explosive ether. He was aware of the engine developed by Robert Stirling
in 1816 and felt that, if he put power into the engine instead of letting it produce power, the displacer piston
would be cooled. With a compressor pressure ratio of 2.0, he reached an expander temperature of −13°C, and
when he increased the pressure ratio to 7.0, he reached −40.°C.
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A theoretical analysis of the Stirling cycle was finally carried out by I. A. Wyshnegradski in 1871. Because of its inher-
ent safety, it was extensively used for refrigeration of food products (especially frozen meat) on ships from 1880 to
1900. The safe operation of a reversed Stirling cycle also made it ideal for use in deep mines until about 1930, when
synthetic refrigerants (especially R-11 and R-12) made vapor-compression machines safer and more efficient.

The reversed Stirling cycle refrigerator is most effective when hydrogen gas is the working fluid and a very
efficient regenerator is employed. Hydrogen has the largest specific heat of all common gases and does not con-
dense at temperatures above 35 K (helium is used for lower temperatures). Under these conditions, Stirling
refrigerators are often used to produce temperatures in the −80.0°C to −200.°C (−112°F to −328°F) range.

Recall that the Stirling cycle consists of two constant temperature processes and two constant volume processes
(see Figure 14.29). Reciprocating piston technology is still the most effective mechanism used to form this cycle,
with the constant volume processes being approximated by the relatively small piston motion near the top and
bottom dead center crankshaft positions. Since the Stirling and Carnot cycles have the same thermal efficiency,
the reversed Stirling and the reversed Carnot cycles have the same coefficient of performance,

COP
reversed Stirling
ASC HP

= TH
TH − TL

(14.26)

and

COP
reversed Stirling
ASC R/AC

= TL
TH − TL

(14.27)
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FIGURE 14.29
The reversed Stirling cycle operating as a refrigerator, air conditioner, or heat pump.

CRITICAL THINKING

Stirling engines and refrigerators work best when hydrogen gas is used as the working fluid, because hydrogen has a very
large specific heat (cp-hydrogen = 14.32 kJ/kg ·K, whereas cp-air = 1.004 kJ/kg ·K). Since the hydrogen is not burned, but merely
passes through the cycle described in Figure 14.29, then why would having a high specific heat make any difference? Hint:
Think about the heat transfer process in the regenerator.
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The following example illustrates the use of this material.

EXAMPLE 14.12
A company manufactures the cryogenic Stirling refrigeration cycle
microcooler shown in Figure 14.30. The microcooler has a mass
of only 0.300 kg and is used to replace liquid nitrogen in infra-
red thermal imaging cameras. With a power input of only
3.00 W from a 12.0 V battery, the microcooler can reach a tem-
perature of 65.0 K in an environment at 22.0°C. The refrigerating
capacity of the microcooler at these conditions is 0.100 J/s. For
this design, determine

a. The Stirling ASC coefficient of performance of this refrigeration
unit.

b. The actual coefficient of performance of this unit.

Solution
a. The Stirling ASC coefficient of performance of a refrigeration

unit is given by Eq. (14.27) as

COP
reversed Stirling
ASCR/AC

= TL
TH − TL

= 65:0K
ð273:15+22:0KÞ− 65:0K

= 0:282

b. The actual coefficient of performance can be calculated from its definition as

COP
reversed Stirling
actual R/AC

=
_QL

_Wcompressor
=

_Q cooling

_Winput
=

0:100 J/s
3:00 J/s

= 0:0333

The actual efficiency of Stirling cycle systems is often much lower than the idealized ASC predictions. In addition to
the fact that real systems have losses and entropy production that are not accounted for in an ASC analysis, the large
dead space within the reciprocating piston mechanism prevents all the gas in the system from passing through
the cycle. Also, a reciprocating piston mechanism cannot provide a truly constant volume process at any point in
the cycle. It can provide only approximate constant volume conditions when the piston is near the top or bottom
dead center positions while the crankshaft is rotating. Figure 14.31 illustrates this volume change for a compression
ratio of 8.0.
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FIGURE 14.31
Example 14.14, volume change.

Exercises
34. If the microcooler described in Example 14.12 is used to produce a temperature of 75.0 K instead of 65.0 K at the same

environmental temperature, determine the ASC coefficient of performance of the unit under these conditions. Answer:
COPreversed Stirling ASC R/AC = 0.341.

FIGURE 14.30
Example 14.12, microcooler.
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35. The microcooler described in Example 14.12 can also produce 0.250 J/s of cooling at 120. K with a power input of only
1.70 W when the ambient temperature is 22.0°C. Determine the ASC and actual coefficients of performance under these
conditions. Answer: COPreversed Stirling ASC R/AC = 0.685 and COPactual Stirling R/AC = 0.147.

36. Note that the Stirling ASC coefficient of performance of a refrigerator vanishes as TL → 0. What happens to the power
required to drive these systems as you approach lower and lower temperatures? If a Stirling ASC has the same efficiency as
a Carnot ASC and a Carnot ASC is the most efficient cycle possible, then what is the likelihood that we will ever be able to
reach absolute zero temperature in the laboratory? Answer: As TL → 0, _Wcomp → ∞, consequently we will never be able to
reach absolute zero temperature in the laboratory (although temperatures in the range of 0.001 K have been reached).

14.16 MISCELLANEOUS REFRIGERATION TECHNOLOGIES
14.16.1 Joule-Thomson Expansion Cooling
The cooling that results from the expansion or throttling of a gas from a high to a low pressure is called
Joule-Thomson cooling. A refrigeration ASC analysis predicts that no cooling occurs in this type of throttling,
because an ideal gas throttling process is both isenthalpic and isothermal. However, real gases and vapors do
undergo a temperature change during isenthalpic processes, as dictated by their Joule-Thomson coefficient. This
coefficient is discussed in Chapter 6 and defined in Eq. (6.25) as

μJ =
∂T
∂p

� �
h

(6.25)

so that, approximately,

ðΔTÞh = μJðΔpÞh (14.28)

The value of μJ can be either positive or negative, and it is usually larger at lower temperatures.6 For example, the
Joule-Thomson coefficient for air at 20°C and several atmospheres is only about 0.3°C/atm (see Figure 6.6).
Therefore, throttling air from 100 psig (~6 atm) down to atmospheric pressure produces a temperature drop in
the air of only about 2°C. Such a system is shown in Figure 14.32.

The refrigeration or air conditioning COP of a Joule-Thomson expansion throttling device is given by

COP
J�T
R/AC

=
_QL

j _Wjc
=

T1 −T4h
ðjT1 − T2sjÞ/ðηsÞc

and if T1 = T3, p2 = p3, and p4 = p1, then this reduces to

COP
J�T
R/AC

=
μJ p2 − p1ð Þ

T1 p2/p1ð Þ k−1ð Þ/k −1
h i

/ ηsð Þe
(14.29)

The vortex tube discussed in Chapter 9 is a variation on this technique. It does not appear to depend on the
Joule-Thomson effect, and it can produce cold temperatures in only part of the outlet flow. The remainder of
the outlet flow is quite warm (see Figure 9.15).
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FIGURE 14.32
A Joule-Thomson refrigeration system.

6 If μJ is negative, then you have Joule-Thomson heating of the gas on throttling.
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EXAMPLE 14.13
Determine the outlet temperature and COP of a Joule-Thomson expansion throttling device using air when the inlet
temperature and pressure are 70.0°F and 300. psia and the outlet pressure is 14.7 psia. Assume the Joule-Thomson coefficient
for air in this range is 0.0300°F/psi, and that the isentropic efficiency of the air compressor is 90.0%.

Solution
Using Figure 14.32 as the illustration for this example, from Eq. (14.28) we have

T2 −T1 = μJ p2 − p1ð Þ = 0:0300 14:7−300:ð Þ = −8:56°F

Then, T2 = 70.0 − 8.56 = 61.4°F, and Eq. (14.29) gives the COP as

COP
J�T
R/AC

=
0:0300 14:7−300:ð Þ

70:0+ 459:67ð Þ 14:7
300:

� �0:40/1:40
−1

� 	.
0:90

= 0:0252

Therefore, the thermal efficiency of this type of Joule-Thomson expansion throttling refrigeration or air conditioner is only
2.52%.7

Exercises
37. The air compressor in Example 14.13 is replaced by one with an isentropic efficiency of 95%. Determine the new

Joule-Thomson coefficient of performance of the device. Assume all the other variables remain unchanged. Answer:
COPJ−T = 0.027.

38. If the inlet air temperature in Example 14.13 is reduced from 70.0°F to 50.0°F, determine the outlet air temperature and
the Joule-Thomson coefficient of performance. Assume all the other variables remain unchanged. Answer: T2 = 41.4°F
and COPJ−T = 0.0260.

39. If the initial pressure in Example 14.13 is increased from 300. psia to 3000. psia, determine the new outlet temperature
and the Joule-Thomson coefficient of performance of the device. Assume all the other variables remain unchanged.
Answer: T2 = −19.6°F and COPJ−T = 0.195.

40. The Joule-Thomson coefficient for CO2 at 2.00 MPa is 0.0150°C/kPa. Carbon dioxide initially at 20.0°C is throttled
from 2.00 MPa to atmospheric pressure. Determine the outlet temperature and the Joule-Thomson coefficient of
performance. Answer: T2 = −8.50°C and COPJ−T = 0.179.

Though the Joule-Thomson refrigerator is not very effective by itself, it is often used in conjunction with other refrigeration
systems. Figure 14.33 shows it being used with a reversed Brayton cycle to liquefy the working fluid. This was the basic
technique used by Karl von Linde (1842–1934) to produce liquid air on a large commercial scale in 1895.
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FIGURE 14.33
The basic Linde process for liquefying air.

7 Note that the thermal efficiency of a heat pump is always greater than 100% (i.e., its COP > 1.0), but the thermal efficiency of a refrigerator or air
conditioner can be less than 100%.

576 CHAPTER 14: Vapor and Gas Refrigeration Cycles



14.16.2 Refrigerating Mixtures
Any endothermic (heat-absorbing) chemical reaction can be used to produce refrigeration. The simplest refrigerat-
ing reactions occur when salts with endothermic heats of solution are dissolved in water. The resulting saltwater
(brine) mixtures can become cold enough to freeze ice on the outside of the container and are known as refrigerat-
ing mixtures. Sodium nitrate (NaNO3), potassium nitrate (KNO3), ammonium nitrate (NH4NO3), and calcium
chloride hexahydrate8 (CaCl2 · 6 H2O) were all used as refrigerating mixtures in ancient times. Refrigerating
mixtures were used in ancient times to produce artificial ice to cool drinks. More recently, it was discovered that
most of these salts also reduce the freezing point of a saltwater mixture, so if one of these salts is added to ice or
snow at 0°C (32°F), the salt melts some of the ice or snow, producing a brine solution. Chemical equilibrium
requires that thermal energy be added to the endothermic process of dissolving the salt, plus additional thermal
energy must be found to melt the ice used to produce the brine. If the mixture container is insulated, then the
required thermal energy must come from the mixture itself. This results in lowering the mixture temperature to
the freezing point corresponding to the brine concentration. For example, a saturated solution of common
hydrated calcium chloride (CaCl2 ·6 H2O) can produce an ice-brine mixture temperature of −55°C (−67°F) in an
insulated container. This salt is also used to melt ice from sidewalks and roads during winter, so long as the ice
temperature is above −55°C (−67°F).

14.16.3 Surface Evaporation
The ancient Egyptians knew that, when water seeped through porous pottery and evaporated from its surface, it
would cool the contents. Evaporative cooling is the method warm-blooded animals use to control their body
temperature. The evaporation of perspiration from the surface of our skin is one of the main cooling mechan-
isms of humans. Dogs and cats pant, causing evaporation directly from the surface of their lungs.

HOW DO YOU MAKE ICE CREAM?

Have you ever tried to refreeze melted ice cream? Refreezing
changes the texture of the ice cream from smooth and creamy
to coarse and unpleasant. This is because refrigerator freezers
freeze foods slowly, producing large ice crystals that result in
the coarse texture in refrozen ice cream (it also destroys the
cellular structure of meats frozen this way).

Cooled or semi-frozen foods containing milk or cream have
been known since ancient times. Initially reserved for the
wealthy, who could afford such extravagance, they finally
became universally available when a Spanish doctor, Blasius
Villafranca, discovered that cream could be frozen in a con-
tainer surrounded by a mixture of saltpeter (potassium
nitrate, KNO3) and snow in 1550. Nancy Johnson, a farmer’s
wife, developed an ingenious home ice cream freezer using
salt and ice in 1846, and in 1851 Jacob Fussel established
the first ice cream company in Seven Valleys, Pennsylvania.
By the late 1800s, it was commonly known that mixing table
salt (NaCl) or hydrated calcium chloride (CaCl2 · 6 H20)
with solid ice or snow in an insulated container produced
subzero temperatures cold enough to make good quality
homemade ice cream by quick freezing (Figure 14.34).
Around 1890, a small ice cream vendor decided to stimulate weekend sales by adding chocolate or fruit syrup to ice
cream sold on Sunday. At first this was known as Sunday ice cream, but to avoid religious conflict, the name and spelling
were subsequently changed to ice cream sundae. The first ice cream on a stick was produced commercially in 1904.

FIGURE 14.34
A 19th century home ice cream maker.

8 Pure anhydrous calcium chloride (CaCl2) has an exothermic heat of solution due to the strong exothermic hydration process that
occurs during solution. However, common solid calcium chloride salt is already hydrated as CaCl2 · 6 H2O, and has an endothermic
heat of solution, since the exothermic hydration process is not required.
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14.16.4 Radiation Cooling
The Egyptians were known to use radiation heat loss to a black night sky (which typically has a black-body
temperature of about 150 R) from a shallow pan of water, causing it to freeze when the surrounding air tem-
perature is far above freezing.

14.16.5 Reduced Pressure Refrigeration
In 1755, William Cullen discovered that exposing water to a vacuum caused it to boil at a lower temperature.
This could then be used to cool a surrounding fluid. Various versions of this technique evolved over the years,
including a fascinating steam jet ejector cooling system developed by the French engineer Maurice Leblanc in
1909. Leblanc utilized the Bernoulli effect to evacuate a container of water by attaching it to the throat of a noz-
zle passing high-velocity steam. The water in the container was thus cooled. This is the technology that was initi-
ally used to air condition the Radio City Music Hall in New York City in the 1930s (see Figure 14.35).

14.16.6 Thermoelectric Refrigeration
Thermoelectricity is the direct or spontaneous conversion of heat into electrical energy. In 1834, Jean Charles
Peltier (1785–1845) observed that, when an electric current was passed through two different metallic conduc-
tors connected in a loop, one of the two junctions between the conductors cooled while the other warmed.
When the direction of the current was reversed, the effect was reversed, with the first junction warming and the
second cooling. Thermoelectric cooling remained a laboratory curiosity until after 1950, when semiconductors
were developed. Semiconductor materials were formulated to produce much more efficient thermoelectric cool-
ing than pure metals. They were used effectively in the U.S. space program in the 1960s and have a growing
market today.

14.16.7 Vortex Tube
The technique for separating a flowing fluid into hot and cold outlet flows using a spiral vortex chamber was
developed by Georges Ranque (1898–1973) in 1931. Vortex tubes have a limited application in spot cooling in
manufacturing operations, electronic cabinet cooling, and body suit cooling. They have no moving parts, and
are very effective in manufacturing facilities, since they require only a source of compressed air for their opera-
tion (see the Section 9.10 at the end of Chapter 9 for more information).

14.17 FUTURE REFRIGERATION NEEDS
The most pressing need in modern refrigeration, air conditioning, and heat pump technology is improvement in
energy efficiency (COP). It is estimated that, in the United States, over 20% of all household electricity used is
consumed by refrigerators and about 20% of all the electricity generated in the United States is used for lighting.
By the year 2030, it is estimated that the world’s energy needs will top 25 × 1012 W (25 TW) per year. Technolo-
gical developments are needed to make household appliances and industrial operations more efficient, develop
heat pumps that operate in colder climates, devise new and more efficient air conditioning cycles and associated
technologies, and decrease the overall use of energy in illumination. It was mentioned earlier that refrigeration
technology has never had the power and glamour associated with the power-generating technologies, but it will
be very important in leading the way to energy conservation in the future.
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Water level
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Steam nozzle

To condenser
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FIGURE 14.35
Steam jet refrigeration. Steam flowing through the steam nozzle and booster ejector produces low pressure in the evaporator. This
causes the water to evaporate and cool (or “chill”) the water in the evaporator.
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Initially, improvement in system efficiency can be had by simply applying what we already know in the way of
better thermal insulation, more efficient compressors and pumps, more effective use of proportional control sys-
tems, and so forth. The Super Efficient Refrigeration Program (SERP), developed in the 1990s, is a step in this
direction (see the box). This program and others like it may produce the energy-efficient products that will be
needed in the future.

14.18 SECOND LAW ANALYSIS OF REFRIGERATION CYCLES
A logical method for maximizing (or optimizing) system performance during the design stage of a new product
can be based on minimizing the losses (irreversibility rate) within a system. In Chapter 10, we define the irrever-
sibility rate of a process to be the product of the local environmental temperature T0 and the entropy production
rate inside the system _S P as

Irreversibility rate = _I = T0 _S P ≥0 (10.15)

This method involves computing the irreversibility rate of each of the components within a system over a range
of component parameters (size, efficiency, materials, and so forth) and system operating conditions. Then, you
specify the component parameters in the design that minimize the irreversibility and entropy production rates
within the system. Equations for the direct calculation of the entropy production rate for various component
processes are given in Chapter 7. Some examples follow:

Irreversibility rate due to heat transfer

_I
heat
transfer

= T0ð _SPÞheat
transfer

= −T0

Z
V

_q
T2

dT
dx

� �
dV

Irreversibility rate due to fluid viscosity

_I
fluid
viscosity

= T0ð _SPÞfluid
viscosity

= T0

Z
V

μ
T

dV
dx

� �2
dV

Irreversibility rate due electrical resistance

_I
electrical
resistance

= T0ð _SPÞelectrical
resistance

= T0

Z
V

J2e ρe
T

dV

and so forth. Use of these equations requires a detailed understanding of the operation of the system.

However, if the system contains simply connected flow loops, it is much easier to determine the entropy
production and irreversibility rates using a simple entropy rate balance equation (recall that this is called the
indirect method for determining entropy production). Entropy production rate equations using the indirect
method are developed in Chapter 9 for heat exchangers (i.e., boilers, evaporators, and condensers), fluid mixing,
and transient operations.

WHAT IS THE SUPER EFFICIENT REFRIGERATOR PROGRAM?

By the 1990s, refrigeration consumed over 20% of all U.S. household electricity. The Super Efficient Refrigerator Program
was a contest sponsored by a consortium of 24 electrical utilities, which offered a prize of $30 million for the manufacture
and marketing of a new domestic refrigerator that was at least 50% more efficient than current models and used a chlor-
ine-free refrigerant. Whirlpool Corporation in Evansville, Indiana, easily won the award with a refrigerator that was 80%
more efficient than current models, using R-134a as the refrigerant. Its design modifications included

■ Foam insulation throughout the cabinet.
■ Fuzzy logic controlled defrost cycle, which defrosts only when needed.
■ Freezer vacuum insulation panels three times as effective as foam.
■ Thicker door with foam insulation.
■ Redesigned efficient fan motors.
■ Redesigned efficient compressor and drive motor.
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Because of the simple flow structure of most refrigeration systems, it is easy to use the indirect method to find
the irreversibility rate of various components. For a steady state (SS), steady flow (SF) system component with a
single inlet and a single outlet (SI, SO) having isothermal boundaries (IB), the irreversibility rate is

_I
SS, SF
SI, SO IB

= T0ð _SPÞSS, SF
SI, SO IB

= T0 _m ðsout − sinÞ−
_Q
Tb

� 	
For example, for the simple vapor-compression refrigeration system shown in Figure 14.36, the irreversibility
rate produced by the adiabatic compressor is

_I
adiabatic
compressor

= T0ð _SPÞadiabatic
compressor

= _mrefT0ðs2 − s1Þ (14.30)

and, in the condenser, we have

_Icondenser = T0ð _SPÞcondenser = T0 _mref ðs3 − s2Þ−
_Q condenser

Tcondenser

� 	
(14.31)

where _Q condenser = _QH, and across the adiabatic expansion valve, we have

_I
adiabatic
expansion valve

= T0ð _SPÞadiabatic
expansion valve

= _mrefT0ðs4h − s3Þ (14.32)

Finally, the irreversibility rate produced inside the evaporator is

_Ievaporator = T0ð _SPÞevaporator = T0 _mref ðs1 − s4hÞ−
_Q evaporator

Tevaporator

" #
(14.33)

where _Q evaporator = _QL is the refrigeration or cooling rate of the system. Note that, since a phase change is
usually a reversible process (see Chapter 7), the irreversibilities that occur in the condenser and evaporator come
from viscous pressure losses between the inlet and outlet and, if the refrigerant exits the evaporator or enters the
condenser in a superheated state, then irreversibilities exist for all heat transfer processes that occur outside the
vapor dome.

The use of this technique is illustrated in the following example.

EXAMPLE 14.14
The following preliminary design information is available for the vapor-compression refrigeration cycle shown in Figure 14.36
using R-134a:

Station1 Station 2s Station3 Station 4h
Compressor Inlet Compressor Outlet Condenser Outlet ExpansionValveOutlet
x1 = 1:00 p2s = 800: kPa x3 = 0:00 h4h = h3
T1 = −20:0°C s2s = s1 p3 = 725: kPa p4h = 160: kPa
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s

3

4h 1

2Expansion
valve

Compressor

Warm environment

Cold environment

QH

QL

Win

FIGURE 14.36
A simple vapor-compression refrigeration cycle.
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Note that the designer computes pressure losses of 75.0 kPa in the condenser and 27.0 kPa in the evaporator. The refrigerant
mass flow rate is 0.500 kg/s, the local environmental temperature is T0 = 25.0°C, and the isentropic efficiency of the
compressor is 70.0%. Determine

a. The irreversibility rate of each component in the system and the total irreversibility rate of the system.
b. The system COP and ε (the first and second law efficiencies).
c. Select the component with the highest irreversibility rate and suggest ways to improve it.

Solution
Using Figure 14.36 as the illustration for this example, the properties at the four stations can be found in Tables C.7e, C.7f,
and C.8d as

Station1 Station 2s Station3 Station 4h
Compressor inlet Compressor outlet Condenser outlet Expansion valve outlet
x1 = 1:00 p2s = 800: kPa x3 = 0:0 h4h = h3

T1 = −20:0°C s2s = s1 p3 = 725kPa p4h = 160kPa
= 0:9332 kJ/kg .K h3 = 87:46 kJ/kg h4h = 87:46 kJ/kg

h1 = 235:31 kJ/kg h2s = 271:10 kJ/kg s3 = 0:3257 kJ/kg .K x4h = 0:280
s1 = 0:9332 kJ/kg .K T2s = 39:8°C T3 = 27:9°C s4h = 0:3449 kJ/kg .K
p1 = 132:99 kPa T4h = −15:6°C

Conditions at stations 2s, 3, and 4h are determined by interpolation in Table C.7f or with a computer program containing the
appropriate properties. Also, note that the condenser outlet temperature T3 is about 3°C above the environmental temperature
of T0 = 25°C, which is an appropriate temperature drop across the wall of the condenser. A temperature drop of this magni-
tude also occurs in the evaporator, so the temperature of the refrigerated space is about −12.6°C instead of −15.6°C.

We can now determine the actual conditions at the outlet of the compressor from the two properties h2 = (h2s − h1)/(ηs)comp +
h1 = 288.03 kJ/kg and p2 = p2s = 800 kPa. Interpolation in Table C.7f in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics (or through the use of an appropriate computer program) gives the following additional properties at this state:

s2 = 0:9814kJ=kg . K and T2 = 54:97°C

The condenser and evaporator heat transfer rates and the compressor work rate are

_Q condenser = _m ref ðh3 − h2Þ = 0:5kg/sð Þð87:46− 288:03 kJ/kgÞ = −100:3 kJ/s

_Q evaporator = _m ref ðh1 − h4hÞ = 0:5 kg/sð Þð235:31− 87:46 kJ/kgÞ = 73:9 kJ/s

_Q compressor = _m ref ðh2 − h1Þ = 0:5 kg/sð Þð288:03−235:31 kJ/kgÞ = 26:36 kJ/s

Now we can calculate the desired quantities.

a. The irreversibility rate of the compressor is given by

_I
adiabatic
compressor

= _mrefT0ðs2 − s1Þ

=
�
0:500kJ

s

�
ð25:0+273:15KÞ

�
0:9814−0:9317 kJ

kg .K

�
= 7:41kJ

s
= 7:41 kW

_Icondenser = T0 _mref ðs3 − s2Þ−
_Qcondenser

T0

� �

= ð25:0+273:15KÞ 0:500
kg
s

0:3257−0:9814 kJ
kg .K

� �
−

−100:3kJ/s
25:0+ 273:15K

� 	

= 2:55 kJ
s

= 2:55 kW

_I
expansion
valve

= _mrefT0ðs4h − s3Þ

= 0:500
kg
s

� �
25:0+273:15Kð Þ 0:3449−0:3257 kJ

kg .K

� �
= 2:86 kJ

s
= 2:86 kW

(Continued )
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EXAMPLE 14.14 (Continued )

_Ievaporator = T0 _m ref ðs1 − s4hÞ−
_Q evaporator

Tevaporator

" #

= ð25:0+273:15Þ 0:500
kg
s

� �
0:9332−0:3449 kJ

kg .K

� �
−

73:4 kJ/s
−15:6+273:15K

� 	
= 2:15 kJ/s = 2:15 kW

and the total irreversibility rate of the system is

_Itotal = _Icompressor + _Icondenser + _Iexpansion valve + _Ievaporator

= 7:41+ 2:55+ 2:86+ 2:15 = 15:0 kW

b. The system coefficient of performance is given by

COP =
_Qevaporator

_Wcompressor
= 73:9

26:4
= 2:80

The second law efficiency for a refrigeration system is discussed in Chapter 10. The relevant equation is Eq. (10.34),

εR/AC =

����� 1− T0
TL

� �
_QL

�����
_W

=

����� 1− T0
TL

� �
_QL

_W

� ������ =
����� 1− T0

TL

� ������ × COP
actual
R/AC

=

����� 1− 25:0+273:15K
−15:6+273:15K

� ������ × 2:85 = 0:494 = 49:4%

c. The component with the highest irreversibility rate in this system is the compressor. It is the weak link in this system.
Improving other system components will have only a marginal effect on system performance until a more efficient
compressor is designed or found. Note that to reduce the irreversibility rate of the compressor to a value comparable to
the irreversibility rates of the other components in the system requires improving the isentropic efficiency of the
compressor from 70% to about 88%.

SUMMARY
Refrigeration is a generic term that embodies the topics of refrigeration, air conditioning, and heat pump systems. In
this chapter, we divide refrigeration into three broad categories of technology. The first is vapor refrigeration cycles,
consisting of vapor-compression cycles and absorption cycles. Vapor-compression cycles are basically reversed Ran-
kine power cycles, whereas absorption refrigeration has no power cycle analog. The second category is gas refrigera-
tion cycles, which consist of reversed versions of external combustion power cycles. The most prominent are the
reversed Brayton and reversed Stirling refrigeration cycles. The third category covers all other miscellaneous refrigera-
tion technologies, such as Joule-Thomson cooling; refrigerating mixtures; and evaporation, radiation, reduced pres-
sure, thermoelectric, and vortex tube cooling. The chapter ends with a discussion of future needs in refrigeration
technology followed by an example of how the second law of thermodynamics can assist in the design of better
refrigeration technologies by minimizing the irreversibility rate within the various system components.

As in the other chapters in this text, a historical timeline is used to develop the material. This is done to provide
a perspective on the social and cultural impact produced by the development of refrigeration technology. The
reason this approach has been followed throughout this text is to sensitize you, the next generation of engineers,
to your responsibility for understanding the enormous potential of your profession to change society.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they were introduced to gain an
understanding of their use.

1. The relation between the coefficient of performance of heat pumps, refrigerators, and air conditioners:

COPHP = COPR/AC +1
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2. The coefficient of performance of the reversed Carnot benchmark cycle:

COPCarnot HP = TH
TH − TL

and

COPCarnot R/AC = TL
TH − TL

3. The equation for assigning refrigerant numbers:

R-ða−1Þðb+ 1Þd
where a = number of carbon atoms, b = number of hydrogen atoms, c= number of chlorine atoms, and
d = number of fluorine atoms in the refrigerant molecule. Note that when a= 1, the leading a− 1 = 0
number is omitted from the R number designation.

4. The coefficient of performance of a dual-cascade, vapor-compression refrigeration system:

COP
dual
cascade

=
_mBðh1B − h4hBÞ

_mAðh2sA − h1AÞ/ðηsÞc−A + _mBðh2sB − h1BÞ/ðηsÞc−B

5. The coefficient of performance of a dual-stage, vapor-compression refrigeration system:

COPdual− stage =
ð1− xflashÞðh1B − h4hBÞ

ðh2sA − h1AÞ/ðηsÞc−A + ð1− xflashÞðh2sB − h1BÞ/ðηsÞc−B
where xflash is the quality of the vapor leaving the flash chamber.

6. The coefficient of performance of a Carnot absorption refrigeration system:

ðCOPÞ
Carnot
absorption
refrigerator

=
Te
Tg

Tg −Ta
Ta − Te

� �

where Te is the evaporator temperature, Tg is the gas generator temperature, and Ta is the ambient
temperature.

7. The coefficient of performance of a reversed Brayton cycle heat pump:

COP
reversed
Brayton cycle
HP

=
T2 − T3

ðT2s − T1Þ/ðηsÞc − ðT3 −T4sÞðηsÞe

and of a reversed Brayton cycle refrigerator or air conditioner:

COP
reversed
Braytonc ycle
R/AC

= T1 −T4
ðT2s −T1Þ/ðηsÞc − ðT3 − T4sÞðηsÞe

If the reversed Brayton cycle operates on an air standard cycle (ASC), then these equations become

COP
reversed
BraytonASC
HP

= 1
1−PRð1−kÞ/k

and

COP
reversed
BraytonASC
R=AC

= 1
PRðk−1Þ/k −1

where PR is the compressor or expander pressure ratio.
8. The coefficient of performance of a reversed Stirling air standard cycle heat pump and refrigerator or air

conditioner is the same as the reversed Carnot cycle:

COP
reversed Stirling
ASC HP

= TH
TH − TL
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and

COP
reversed Stirling
ASC R=AC

= TL
TH − TL

9. The coefficient of performance of a Joule-Thomson air standard cycle refrigerator or air conditioner is

COP
J�T
R=AC

=
μJðp2 − p1Þ

T1 ðp2/p1Þðk−1Þ/k −1
h i.

ðηsÞc
10. The irreversibility rate produced by an adiabatic compressor is

_I
adiabatic
compressor

= T0ð _SPÞadiabatic
compressor

= _m refT0ðs2 − s1Þ

the irreversibility rate produced by a condenser is

_Icondenser = T0ð _SPÞcondenser = T0 _m ref ðs3 − s2Þ−
_Q condenser

Tcondenser

� 	
the irreversibility rate produced by an adiabatic expansion valve is

_I
adiabatic
expansion valve

= T0ð _SPÞadiabatic
expansion valve

= _m refT0ðs4h − s3Þ

and the irreversibility rate produced inside an evaporator is

_Ievaporator = T0ð _SPÞevaporator = T0 _m ref ðs1 − s4hÞ−
_Q evaporator

Tevaporator

" #

Problems (* indicates problems in SI units)
1. Using the definition of thermal efficiency, show that the

coefficient of performance (COP) of a heat pump is always
greater than 1.0.

2. If the coefficient of performance of a window air conditioner in
the summer is 5.70, what is the coefficient of performance of
this unit if it were used as a window heat pump in the winter?

3. The Rumford Engineering company, a supplier of yours, has just
announced that it is offering a new product line for closed
electronic cabinet cooling. It is a small refrigeration unit driven
by a 0.250 hp electric motor that removes 500. W of heat from
the cabinet. What is the coefficient of performance of this unit?

4. A heat pump with a coefficient of performance of 7.30 is used
to heat a small house at a rate of 40.0 × 103 Btu/h. What
horsepower electric motor is required to drive the heat pump?

5.* It is proposed to operate a reversed Carnot cycle to remove
1500. W of thermal energy from a freezer at −14.0°C and to
discharge heat to the environment at 20.0°C. Determine
a. The coefficient of performance of the system.
b. The heat transfer rate to the environment.
c. The required input power.

6.* When the outside environmental temperature is 5.00°C, to what
temperature can you heat the interior of a house with a Carnot
heat pump that has a coefficient of performance of 8.90?

7.* How much power is required to drive a Carnot refrigeration unit
used to remove 15.0 kW of heat from a commercial food
storage unit maintained at 3.00°C when the outside temperature
is 35.0°C?

8. A new plastic-molding facility has a large amount of waste heat
available at 300.°F. The local environmental temperature is
75.0°F. As an entry-level engineer, you are to investigate possible
energy savings by determining
a. The thermal efficiency of a Carnot engine operating between

these temperatures.
b. The coefficient of performance of a Carnot heat pump

operating between these temperatures.
c. The coefficient of performance of a Carnot refrigerator

operating between these temperatures.
9. A typical ice cube from your refrigerator contains about 1.50 in3

of ice. Determine the tons of refrigeration produced if the ice
cube melts at 32.0°F in (a) 24 hours and (b) 1 hour. Assume
the density of ice at 32.0°F to be 0.0330 lbm/in3.

10. A large commercial refrigerator has a coefficient of performance
of 4.70 and is driven by a 7.00 hp electric motor. Determine the
refrigeration capacity of this unit in tons of refrigeration.

11. The air conditioning unit for a building uses a water chiller with a
capacity of 12.0 tons of refrigeration. Determine the coefficient of
performance of this unit if it is driven by a 14.0 hp electric motor.

12. In 1937, Dr. Willis Haviland Carrier (1876–1950) developed an
air conditioning system to cool the air in the Magma Copper
Mine in Superior, Arizona.9 It reduced the air temperature at the
3600 ft level from 133°F to 71.0°F after 4 months of operation.
Each air conditioning unit in the system had a capacity of 140.
tons of cooling and was driven by a 200. hp electric motor.
Determine the coefficient of performance of these units.

9 In 1976, this air-conditioning system was designated the 13th National Historic Mechanical Engineering Landmark by the American Society of
Mechanical Engineers.
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13.* A refrigeration unit is to be designed for a meat market using
R-22 to maintain meat at 0.00°C while operating in an
environment at 30.0°C. The refrigerant enters the condenser as a
saturated vapor and exits as a saturated liquid. Determine the
coefficient of performance (COP) for this refrigerator, using
a. A reversed Carnot cycle operating between these temperature

limits.
b. An isentropic, vapor-compression refrigeration cycle with an

aergonic, adiabatic throttling valve installed between the
high-pressure condenser and the low-pressure evaporator.

14. A vapor-compression refrigeration unit uses R-22 and has an
isentropic efficiency of 88.0% when working between the
temperature limits of −20.0°F and 80.0°F. The refrigerant enters
the condenser as a saturated vapor and exits as a saturated liquid.
Determine the coefficient of performance (COP) of this unit.

15.* A vapor-compression cycle refrigeration system using R-22 has an
evaporator temperature of −20.0°C and a condenser temperature
of 20.0°C. The refrigerant exits the compressor as a saturated
vapor and exits the condenser as a saturated liquid. Determine
a. The isentropic coefficient of performance of this system.
b. The coefficient of performance of a Carnot refrigerator

operating between the same temperature limits.
c. The “tons” of isentropic refrigeration per unit mass flow rate

of refrigerant.
16.* Repeat Problem 15 using R-134a instead of R-22 as the

refrigerant.
17.* A vapor-compression cycle refrigerator uses R-22 as the working

fluid. The evaporator temperature is −20.0°C, the condenser
temperature is 40.0°C, and the flow rate of R-22 is 0.100 kg/s. If
the refrigerant exits the compressor as a saturated vapor and
exits the condenser as a saturated liquid, determine
a. The isentropic coefficient of performance.
b. The equivalent reversed Carnot cycle coefficient of

performance.
c. The amount of refrigeration (in tons) that this system can

provide.
18.* Repeat Problem 17 using R-134a instead of R-22 as the

refrigerant.
19.* A vapor-compression cycle refrigerator using R-22 as the working

fluid has an evaporator temperature of −30.0°C and a condenser
temperature of 50.0°C. The refrigerant enters the compressor at
7.50 kg/min as a saturated vapor and exits the condenser as a
saturated liquid. The isentropic efficiency of the compressor is
82.5%. Determine
a. The coefficient of performance for the system.
b. The coefficient of performance for a reversed Carnot cycle

with the same temperature limits.
c. The refrigeration (in tons) that this system can provide.

20.* Repeat Problem 19 using R-134a instead of R-22 as the
refrigerant.

21. The states in a vapor-compression cycle air conditioner using
R-22 as the working fluid are as follows:

Station1 Station2s
Compressor Compressor
inlet outlet
T1 = 20:0°F T2s = 80:0°F
s1 = s2s x2s = 1:00

Station3 Station 4h
Throttle Throttle
valve inlet valve outlet
T3 = T2s = 80:0°F T4h = 20:0°F
x3 = 0:00 h4h = h3

Determine the actual coefficient of performance of this cycle if
the compressor isentropic efficiency is 79.0%.

22. A large vapor-compression cycle refrigeration manufacturer tests
its units by directing the condenser heat to the evaporator and
adding additional cooling as necessary to fully cool the unit.
In the test unit shown Figure 14.37, the refrigerant is R-22 and
the refrigerant mass flow rate is 1500. lbm/min.

Station1 Station 2s
Compressor inlet Compressor isentropic outlet
T1 = 20:0°F p2s = p3 = 98:7≈100:psia
p1 = 30:0psia s2s = s1

Station3 Station4h
Condenser outlet Expansion valve outlet
p3 = 98:87≈100:psia
x3 = 0:00

Assuming the isentropic efficiency of the compressor is 100.%,
determine:
a. The compressor power input.
b. The cooling capacity in tons of refrigeration.
c. The unit’s COP.

23. A vapor compression cycle heat pump using R-22 is used to
provide 20.0 × 103 Btu/h of heat to a house. The evaporator
temperature is 14.0°F and the condenser temperature is 70.0°F.
The refrigerant exits the compressor as a saturated vapor and
exits the condenser as a saturated liquid. The isentropic
efficiency of the compressor is 80.0%. Determine
a. The mass flow rate of the refrigerant.
b. The power input to the compressor.
c. The coefficient of performance of this system.

24. Repeat Problem 23 using R-134a instead of R-22 as the
refrigerant.

25. A vapor-compression cycle heat pump using low-pressure water
as the working fluid is proposed to heat a house. The evaporator
is to be buried in the ground below the frost line and
consequently will remain at 50.0°F year-round. The condenser is
to be inside the house and will operate at a constant 80.0°F. The
water enters the condenser as a saturated vapor at 12.6 lbm/min
and exits as a saturated liquid. Assume the isentropic efficiency
of the compressor is 100.%. Determine
a. The coefficient of performance of this system.
b. The amount of heat (in Btu/h) transferred into the house.

26.* A vapor-compression cycle heat pump using R-134a as the
working fluid is to be designed for heating a house. The

Problems 585

WC

1

23

4

QH

QL

Condenser

Evaporator

Expansion
valve

Compressor

Additional cooling

FIGURE 14.37
Problem 22.



evaporator is to be buried in the ground below the frost line
and consequently will remain at 14.0°C year-round. The
condenser is to be inside a house and will operate at a
constant 20.0°C. The refrigerant enters the condenser as a
saturated vapor at 7.30 kg/min and exits as a saturated liquid.
Assume the isentropic efficiency of the compressor is 91.0%.
Determine
a. The coefficient of performance of this system.
b. The amount of heat (in kW) transferred into the house.

27.* A vapor-compression cycle heat pump has been developed that
uses R-22 as the working fluid. The evaporator is at 0.00°C and
the condenser is at 30.0°C. The refrigerant enters the condenser
as a saturated vapor at 0.0800 kg/s and exits as a saturated
liquid. The isentropic efficiency of the compressor is 83.0%.
Determine
a. The coefficient of performance of this system.
b. The power (in kW) required to drive the unit.

28.* A company wants to design a vapor-compression cycle heat
pump that uses ammonia as the working fluid. The evaporator
is at 0.00°C and the condenser is at 30.0°C. The refrigerant
enters the condenser as a saturated vapor at 0.120 kg/s and exits
as a saturated liquid. The compressor has an isentropic efficiency
of 85.0%. Determine
a. The coefficient of performance of this system.
b. The amount of heat (in kW) transferred from the cold to the

warm region.
29.* A special high-temperature vapor-compression cycle heat pump

for a spacecraft is to be designed that uses water as the
working fluid. The evaporator is at 100.°C and the condenser is
at 300.°C. The refrigerant enters the condenser as a saturated
vapor at 1.80 kg/min and exits as a saturated liquid. Assume
that the isentropic efficiency of the compressor is 91.0%.
Determine
a. The coefficient of performance of this system.
b. The amount of heat (in kW) transferred from the cold to the

warm region.
30. Use Eq. (14.8) to determine the proper chemical formula and

chemical name for the following refrigerants: (a) R-10,
(b) R-110, and (c) R-214.

31. Find the chemical formula and chemical name for the
following refrigerants using Eq. (14.8): (a) R-30, (b) R-40,
and (c) R-50.

32. Use Eq. (14.8) to find the chemical formula and chemical
name for the following refrigerants: (a) R-113, (b) R-114, and
(c) R-123.

33. Determine the chemical formula and R number of the following
refrigerants (see Eq. (14.8)): a) pentachloroethane,
b) trichloroethane, and c) octafluoropropane.

34. Use Eq. (14.8) to determine the chemical name and R number
of the following refrigerants: (a) CClF3, (b) CHF3, and
(c) CH2ClF.

35. Provide the chemical name and refrigerant R number
of the following materials: (a) NH3, (b) CO2, and
(c) H2O.

36.* A dual-cascade system using R-22 in both loops is used to
produce 30.0 tons of refrigeration in a large refrigeration
unit with an evaporator temperature of −40.0°C and a
condenser temperature of 25.0°C. The intermediate heat
exchanger between the loops operates at −20.0°C, and the
isentropic efficiencies of the compressors in each loop are

both 83.0%. The following design specifications have been
defined for the loops:
Loop A

Station 1A Station 2sA
Compressor Compressor
A inlet A outlet
x1A = 1:00 p2sA = 1500: kPa
T1A = −20:0°C s2sA = s1A

Station 3A Station 4hA
Condenser Expansion
A outlet valve A outlet
x3A = 0:00 h4hA = h3A
T3A = 25:0°C

Loop B

Station 1B Station 2sB Station 3B Station 4hB
Compressor Compressor Condenser Expansion
B inlet B outlet B outlet valve B outlet
x1B = 1:00 p2sB = 300: kPa x3B = 0:00 h4hB = h3B
T1B = −40:0°C s2sB = s1B T3B = −20:0°C

For this design, determine
a. The mass flow rate of refrigerant in loops A and B.
b. The system’s coefficient of performance.
c. The pressure ratios across both of the compressors.

37.* A new ultralow-temperature, dual-cascade refrigeration system
using R-22 in both loops is used to produce 5.00 tons of
refrigeration with an evaporator temperature of −60.0°C and a
condenser temperature of 25.0°C. The intermediate heat
exchanger between the loops operates at −20.0°C and the
isentropic efficiencies of the compressors in each loop are both
75.0%. The following operating specifications have been
determined for the loops:
Loop A

Station1A Station 2sA Station3A Station4hA
Compressor Compressor Condenser Expansion
A inlet A outlet A outlet valve A outlet
x1A = 1:00 p2sA = 1500: kPa x3A = 0:00 h4hA = h3A
T1A = −20:0°C s2sA = s1A T3A = 25:0°C

Loop B

Station1B Station2sB Station3B Station4hB
Compressor Compressor Condenser Expansion
B inlet B outlet B outlet valve B outlet
x1B = 1:00 p2sB = 300: kPa x3B = 0:00 h4hB = h3B
T1B = −60:0°C s2sB = s1B T3B = −20:0°C

For this design, determine:
a. The mass flow rate of refrigerant in loops A and B.
b. The system’s coefficient of performance.
c. The pressure ratios across both of the compressors.

38.* A dual-cascade system using R-22 in both loops is used to
produce 300. tons of refrigeration in a ice-skating rink with
an evaporator temperature of −30.0°C and a condenser
temperature of 25.0°C. The intermediate heat exchanger
between the loops operates at 0.00°C and the isentropic
efficiencies of the compressors in each loop are both 85.0%.
The following design specifications have been defined for
the loops:
Loop A

Station 1A Station 2sA Station 3A Station 4hA
Compressor Compressor Condenser Expansion
A inlet A outlet A outlet valve A outlet
x1A = 1:00 p2sA = 1500: kPa x3A = 0:00 h4hA = h3A
T1A = 0:00°C s2sA = s1A T3A = 25:0°C
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Loop B

Station 1B Station 2sB Station 3B Station 4hB
Compressor Compressor Condenser Expansion
B inlet B outlet B outlet valve B outlet
x1B = 1:00 p2sB = 300: kPa x3B = 0:00 h4hB = h3B
T1B = −30:0°C s2sB = s1B T3B = 0:00°C

For this design, determine
a. The mass flow rate of refrigerant in loops A and B.
b. The system’s coefficient of performance.
c. The pressure ratios across both of the compressors.

39.* A small, two-stage, vapor-compression refrigeration unit using
R-134a produces 15.0 tons of refrigeration with an evaporator
pressure of 100. kPa and a condenser pressure of 1200. kPa. The
intermediate flash chamber operates at 400. kPa and the
isentropic efficiencies of the compressors in each loop are both
89.0%. The following operating specifications have been
developed for the stages (loops):
Stage (Loop) A

Station 1A Station2sA Station3A Station 4hA
Compressor Compressor Condenser Expansion
A inlet A outlet A outlet valve A outlet
p1A = 400: kPa p2sA = 1200: kPa x3A = 0:00 h4hA = h3A

s2sA = s1A p3A = 1200: kPa

Stage (Loop) B

Station1B Station2sB Station 3B Station4hB
Compressor Compressor Condenser Expansion
B inlet B outlet B outlet valve B outlet
x1B = 1:00 p2sB = 400: kPa x3B = 0:00 h4hB = h3B
p1B = 100: kPa s2sB = s1B p3B = 400: kPa

For this design, determine
a. The mass flow rate of the refrigerant.
b. The system’s coefficient of performance.
c. The total power required by the compressor.

40.* A large, two-stage, vapor-compression packing house refrigeration
unit using R-134a produces 55.0 tons of refrigeration with an
evaporator pressure of 80.0 kPa and a condenser pressure of 1.00
MPa. The intermediate flash chamber operates at 400. kPa and
the isentropic efficiencies of the compressors in each loop are
both 92.0%. The following operating specifications have been
determined for the stages (loops):
Stage (Loop) A

Station1A Station 2sA Station 3A Station4hA
Compressor Compressor Condenser Expansion
A inlet A outlet A outlet valveA outlet
p1A = 400: kPa p2sA = 1:00MPa x3A = 0:00 h4hA = h3A

s2sA = s1A p3A = 1:00MPa

Stage (Loop) B

Station1B Station 2sB Station 3B Station 4hB
Compressor Compressor Condenser Expansion
B inlet B outlet B outlet valve B outlet
x1B = 1:00 p2sB = 400: kPa x3B = 0:00 h4hB = h3B
p1B = 80:0 kPa s2sB = s1B p3B = 400: kPa

For this design, determine
a. The mass flow rate of the refrigerant.
b. The system’s coefficient of performance.
c. The total power required by the compressor.

41.* A very large, two-stage, vapor-compression refrigeration unit
using R-134a produces 3000 tons of refrigeration with an
evaporator pressure of 100 kPa and a condenser pressure of
2000 kPa. The intermediate flash chamber operates at 800 kPa,
and the isentropic efficiencies of the compressors in each loop
are both 91%. The following operating specifications have been
determined for the stages (loops):
Stage (Loop) A

Station1A Station2sA Station3A Station4hA
Compressor Compressor Condenser Expansion
A inlet A outlet A outlet valve A outlet
p1A = 800: kPa p2sA = 2000: kPa x3A = 0:00 h4hA = h3A

s2sA = s1A p3A = 2000: kPa

Stage (Loop) B

Station1B Station2sB Station 3B Station4hB
Compressor Compressor Condenser Expansion
B inlet B outlet B outlet valve B outlet
x1B = 1:00 p2sB = 800: kPa x3B = 0:00 h4hB = h3B
p1B = 100: kPa s2sB = s1B p3B = 800: kPa

For this design, determine
a. The mass flow rate of the refrigerant.
b. The system’s coefficient of performance.
c. The total power required by the compressor.

42. Laboratory measurements on an absorption refrigeration
system produced the following results: the evaporator absorbs
15.0 × 103 Btu/h while 14.0 × 103 Btu/h of heat is added to
the generator. The carrier liquid pump requires 0.500 hp to
operate during the test. Determine the coefficient of
performance of this unit.

43.* A new absorption refrigeration system is designed to operate in
a hazardous environment, where the temperature is 40.0°C. If
the generator temperature is 100.0°C and the evaporator
temperature is 20.0°C, determine the Carnot absorption
refrigeration coefficient of performance of this unit.

44. If the Carnot absorption refrigeration coefficient of performance
of a new refrigeration unit is 4.20 and the environmental and
generator temperatures are 70.0°F and 300.°F, respectively,
determine the cooling (evaporator) temperature.

45.* A new household refrigerator-freezer combination unit is
designed with a dual-evaporator system. The freezer
compartment is at −20.0°C and the refrigerator compartment is
at 4.00°C. The outlet of the condenser is at 28.0°C. The cooling
capacities of both the refrigeration and the freezer compartments
are to be 400. kJ/h each. The system uses refrigerant R-134a with
a compressor isentropic efficiency of 87.0%. Determine (a) the
coefficient of performance for this design and (b) the mass flow
rate of refrigerant required.

46.* A new commercial refrigerator-freezer combination unit is being
designed with a dual-evaporator system. The freezer
compartment is to be at −24.0°C and the refrigerator
compartment is to be at 8.00°C. The outlet of the condenser is
at 26.0°C. The cooling capacities of both the refrigerating and
the freezer compartments are to be 800. kJ/h each. The system
uses refrigerant R-134a with a compressor isentropic efficiency
of 89.0%. Determine
a. The coefficient of performance for this design.
b. The mass flow rate of refrigerant required.
c. The quality at the outlet of the refrigeration evaporator.
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47.* A new refrigerator-freezer combination unit is being designed
with a dual-evaporator system to be used in a recreational
vehicle. The freezer compartment is to be at −14.0°C and the
refrigerator compartment is to be at 8.0°C. The outlet of the
condenser is at 20.0°C. The cooling capacities of both the
refrigerator and the freezer compartments are to be 200. kJ/h
each. The system will use refrigerant R-134a with a compressor
isentropic efficiency of 70.0%. Determine
a. The coefficient of performance for this design.
b. The mass flow rate of refrigerant required.
c. The quality at the outlet of the refrigeration evaporator.

48.* A reversed Brayton cycle with an isentropic pressure ratio of 1.75
is to be used to refrigerate a food locker. The refrigerant is air.
The compressor and expander inlet temperatures are 0.00°C and
14.0°C, respectively. Determine
a. The ASC coefficient of performance of this system.
b. The Carnot coefficient of performance for a refrigerator

operating between the same temperature limits.
c. The compressor and expander outlet temperatures.

49. In calculating the reversed Carnot ASC coefficient of
performance for comparison with that of a reversed Brayton
ASC, the temperature limits are always taken as TL = “the
compressor inlet temperature,” and TH = “the expander inlet
temperature.” (a) Why is this done? (b) What would happen if
the cycle limit temperatures were used instead (i.e., taking TL =
“the expander outlet temperature” and TH = “the compressor
outlet temperature”)?

50. A reversed Brayton ASC refrigerator operates with air
between 0.00°F (the compressor inlet temperature) and
80.0°F (the expander inlet temperature) with an isentropic
pressure ratio of 2.85. Determine the ASC coefficient of
performance of this system, assuming (a) constant specific
heats and (b) temperature-dependent specific heats
(use Table C.16 in Thermodynamic Tables to accompany Modern
Engineering Thermodynamics).

51. Consider the possibility of converting an automobile
turbocharger with radiator intercooling at 100.0°F into a
reversed Brayton ASC air conditioning system. For inlet
conditions of 14.7 psia at 70.0°F and a compressor pressure
ratio of 2.00, determine
a. The ASC coefficient of performance of this system as an air

conditioner.
b. The coldest possible air conditioning temperature attainable

with this system.
52. The states in a reversed Brayton cycle air conditioner using air

(a constant specific heat ideal gas) as the working fluid are as
follows:

Station1 Station2s Station3 Station 4s
Compressor Compressor Expander Expander
inlet outlet inlet outlet
T1 = 80:0°F T2s = 280:°F T3 = 120:°F T4s = −36:0°F
p1 = 14:0psia p2s = 42:0psia p3 = 42:0psia p4s = 14:0psia

Determine the actual coefficient of performance of this cycle
if the compressor and expander isentropic efficiencies are 0.790
and 0.880, respectively. Note: Not an ASC analysis.

53. Show that Eqs. (14.22) and (14.23) for the reversed Brayton
cycle obey Eq. (14.1).

54.* 1.75 kg/s of air at 300. K enters the compressor of a reversed
Brayton cycle heat pump. The isentropic pressure ratio of the

compressor is 3.00 to 1, and the inlet temperature of the
expander is 335 K. The isentropic efficiencies of the compressor
and expander are 91.0% and 85.0%, respectively. Determine
a. The actual power output from the expander.
b. The actual power input to the compressor.
c. The coefficient of performance of the unit.

55. Show that the coefficient of performance of a reversed Brayton
ASC heat pump can be written as

COP
reversed
BraytonASC
HP

=
ðCRÞk−1

ðCRÞk−1 −1

where CR is the compression ratio of the system.
56. Using the notation of Figure 14.27 and beginning with the

relation

COP
reversed
Carnot ASC
R/AC

= TL
TH −TL

= T1
T3 − T1

show that the minimum possible isentropic pressure ratio of a
reversed Brayton ASC refrigerator is

PRminimum = T3
T1

� � k
k−1

57.* In 1862, Carnegie Kirk attained a temperature of −40.0°C with
a reversed Stirling cycle refrigerator. Assuming the environmental
temperature was 20.0°C, determine the reversed Stirling ASC
coefficient of performance for his unit.

58.* A reversed Stirling cryogenic refrigerator is used to produce a
temperature of −200.°C in an environment at 20.0°C.
Determine the reversed Stirling ASC coefficient of performance
of this unit.

59. Reversed Stirling cycle air conditioners were used to cool deep
mines until about 1930. If the temperature in the mine was
150.°F and the temperature of the air outside the mine was
60.0°F, determine the reversed Stirling ASC coefficient of
performance for the air conditioner.

60. A reversed Stirling cycle heat pump is driven by a 14.0 hp
electric motor. It produces a heat transfer rate of 75.0 × 103 Btu/h
into the high temperature region at 80.0°F from an environment
at 50.0°F. Determine
a. The actual coefficient of performance of the heat pump.
b. The reversed Stirling ASC coefficient of performance for

this unit.
61.* What power is required to drive a reversed Stirling cycle heat

pump with a high-temperature heat transfer rate of 14.0 kW
over the temperature difference 30.0°C and 0.00°C, if the actual
coefficient of performance is 50.0% of the ASC coefficient of
performance for this unit?

62. Determine the cooling temperature and the coefficient of
performance of an isenthalpic expansion cooler that expands air
from 1500. psia, 70.0°F to 14.7 psia. The isentropic efficiency of
the compressor is 85.0%. The mean Joule-Thomson coefficient
for this process is 0.0200°F/psi.

63.* When compressed air expands from 20.0°C, 100. atm to 1.00
atm, the mean Joule-Thomson coefficient is 0.150°C/atm.
Determine the outlet temperature and the coefficient of
performance of an expansion air conditioning system operating
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under these conditions when the compressor isentropic
efficiency is 80.0%.

64* A Joule-Thomson expansion refrigeration system is being
considered for use in a meat-storage facility. The working fluid is
to be carbon dioxide that is to be expanded from 20.0
atmospheres at 20.0°C to 1.00 atm. The system is to have a
compressor with an isentropic efficiency of 75.0%. Determine
the cooling temperature and the coefficient of performance of
this system.

65. A newly formulated gas is found to have a Joule-Thomson
coefficient of 0.500°F/psi. If this gas expands from 70.0°F at
100. psia to atmospheric pressure, determine the exhaust
temperature and the coefficient of performance of this system if
the compressor has an isentropic efficiency of 88.0%.

66.* A highly toxic gas is discovered to have a negative Joule-Thomson
coefficient of −8.00°C/atmosphere. Since this coefficient is
negative, the gas heats rather than cools on expansion, and thus it
can be made into a heat pump. Determine
a. The exhaust temperature as this gas expands from 20.0°C at

100. atm to 1.00 atm.
b. The coefficient of performance of this unit as a heat pump if

it is compressed with an isentropic efficiency of 65.0%.
67* Determine the irreversibility rate produced by an adiabatic

compressor that compresses 0.150 kg/s of refrigerant R-134a
from 0.00°C at 0.100 MPa to 80.0°C at 0.500 MPa. The local
environmental temperature is 20.0°C.

68.* Refrigerant R-22 flows through a condenser at a rate of 2.70 kg/s.
It enters the condenser as a superheated vapor at 1.00 MPa
and 50.0°C and exits as a saturated liquid at 25.0°C. The average
temperature of the condenser is 30°C and the local
environmental temperature is 20.0°C. Determine the
irreversibility rate for this condenser.

69.* Find the irreversibility rate of an adiabatic expansion valve
that reduces 0.0660 kg/s of refrigerant R-22 from a saturated liquid
at 25.0°C to a liquid-vapor mixture with a quality of 15.0% at
0.00°C. The local environmental temperature is 20.0°C.

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary thermal design as indicated. A detailed design
with working drawings is not expected unless otherwise specified.
These problems have no specific answers, so each student’s design is
unique.

70. Design a small vapor-compression cycle refrigeration system
that can serve as an experimental apparatus for a junior or
senior mechanical engineering laboratory course. The system
must be instrumented with the proper pressure, temperature,
and mass flow transducers, so that its coefficient of
performance can be accurately determined. The system should
have at least one variable parameter (such as refrigerant
mass flow rate) to provide a range of performance to study.
You may wish to start by modifying the components of an
existing domestic refrigerator. Either construct the apparatus
yourself or else provide sufficiently accurate drawings (or
sketches) and instructions that it can be made by an
engineering technician.

71. Carry out the preliminary thermal design of a vapor-
compression cycle heat pump that uses a solar collector as the
heat source. Use Refrigerant-134a as the working fluid, and
assume an average solar flux of 496 Btu per square foot per day
in December (the worst case) with a yearly average solar flux of
1260 Btu per square foot per day. The heat pump must provide
400. × 103 Btu per day to a house during December and average
200. × 103 Btu per day during the year. Be sure to determine the
following items in your analysis:
a. The required collector surface area for worst case and average

conditions. (Is either too large for an average roof?)
b. The resulting system coefficient of performance.
c. The required mass flow rate of R-134a.

Note: Assume a solar flux (sunshine) period of 8 to 10 hours
per day.

72. Design a domestic heating system that uses a heat pump to
extract heat from the earth to heat a house. The evaporator is to
be made of long lengths of plastic pipe buried below the frost
line at a constant temperature of 50.0°F. The heat pump system
must provide 200. × 103 Btu/h to the house at 70.0°F. Specify
the refrigerant; the length, diameter, and type of plastic to be
used for the evaporator piping; the mass flow rate of the
refrigerant; and the compressor efficiency. Also determine the
pumping losses (i.e., the pressure drop) in the evaporator.
Estimate or compute an appropriate temperature differential
between the outside and the inside of the condenser and the
evaporator.

73. Design a small, laboratory-scale, reversed Brayton cycle
air conditioning system that can serve as an experimental
apparatus for a junior or senior mechanical engineering
laboratory course. The system must be instrumented with the
proper pressure, temperature, and mass flow transducers so
that its coefficient of performance can be accurately
determined. The system should have at least one variable
parameter to provide a range of performance to study. You
may wish to start by modifying an automotive turbocharger to
provide the turbine and compressor stages. Either construct
the apparatus yourself or else provide sufficiently accurate and
detailed drawings and instructions that it can be made by an
engineering technician.

74. Design an inexpensive reversed Brayton cycle air conditioning
system for an automobile using air as the working fluid.
Convert one of the engine’s cylinders into an air compressor or
add a separate compressor driven off the fan belt. Determine the
amount of cooling required (in tons) when the outside air
temperature is 100.°F and the inside temperature is maintained
at 70.0°F. Size and locate the components on the automobile.
Estimate the unit’s coefficient of performance, its input power
requirement, and manufacturing cost. The final unit must add
no more than $200.00 to the cost of the automobile to the
consumer.

Computer Problems
The following computer programming assignments are designed to
be carried out on a personal computer using a spreadsheet, equation
solver, or programming language. They may be used as part of a
weekly homework assignment.
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75. Develop a computer program that provides data to plot (either
manually or with a computer) the coefficient of performance of
a vapor-compression cycle heat pump, refrigerator, or air
conditioner vs. the throttling valve outlet quality, x4h. Prompt
the user for all the relevant input information, including the
compressor’s isentropic efficiency.

76. Develop an interactive computer program that determines
either the system’s coefficient of performance or its cooling
capacity in tons (allow the user to choose which) of a vapor-
compression cycle air conditioner, refrigerator, or heat pump
(again allow the used to choose which). Prompt the user for
all necessary information (in proper units) and produce a
screen diagram of the system with all the variables and the
unknowns shown.

77.* Develop an interactive reversed Brayton ASC computer program
that utilizes constant specific heat ideal gas equations of state as
the source of the enthalpy values. Allow the user to select either
a refrigeration, air conditioning, or heat pump application. Have
the user input the appropriate gas constants (or choose the gas
from a screen menu), the source and sink temperatures, the
mass flow rate of the gas, and the isentropic pressure ratio, PR.
Output the coefficient of performance, the source and sink heat
transfer rates, and the net power input. Use this program to plot
the coefficient of performance vs. the PR for a reversed Brayton
cycle refrigerator operating between 20.0°C and −14.0°C. Allow
the PR to range from 1.00 to 14.0.

78.* Expand Problem 77 by replacing the ideal gas properties with a
gas menu that contains a computerized version of the isentropic
gas tables as the source of the enthalpy values.

79. Develop an interactive computer program that determines the
coefficient of performance of a Joule-Thomson refrigeration
system using air or carbon dioxide (allow the user to choose
which). Curve fit the information given in Figure. 6.6 as the
source of the proper Joule-Thomson coefficient. Prompt the user

for the appropriate temperatures, pressures, and isentropic
compressor efficiency.

80. Develop an interactive computer program that determines the
coefficient of performance of a reversed Stirling ASC
refrigerator or heat pump (allow the user to choose which).
Prompt the user for all necessary input information (in the
proper units).

Writing to Learn Problems
Provide a coherent 500-word written response to the following ques-
tions on 812 by 11 in paper, double spaced, 12 point font, with 1 in
margins on all sides. Unless your instructor indicates otherwise, your
response should include the following:
a. An opening thesis statement containing the argument you wish

to support.
b. A body of supporting material.
c. A conclusion section in which you use the supporting material

to substantiate your thesis statement.

81. Describe how you think the introduction of food refrigeration
by artificial ice used in kitchen iceboxes in the mid 19th century
could improve the standard of living in a society.

82. While water makes a very good working fluid for power cycles,
it does not make a good refrigerant. Describe the reasons for
this and discuss the evolution of refrigerant working fluids.
What problems are produced by leaking refrigerants?

83. Describe the controversy over CFCs and the ozone layer. Do you
believe it is true?

84. Describe the assumptions behind the air standard cycle. Which
are the most severe and which are the least severe?

85. Describe what you see as future refrigeration needs in the next
100 years (i.e., what will the refrigeration need be 100 years
from now, in your opinion)?
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15.1 EINFÜHRUNG (INTRODUCTION)
This chapter deals with an application of the laws of thermodynamics on which entire textbooks have been
written. Chemists call this topic physical chemistry, and it forms the basis of much of applied chemistry. It is
important to engineers, because it provides a fundamental understanding of the combustion process in engines,
power plants, fuel cells, and other chemically based energy conversion processes.

This chapter has three main goals. Our first goal is to be able to calculate the amount of heat produced in the
combustion of an organic fuel. The second is to understand the basic elements of chemical equilibrium and
dissociation, and the third is to look at the emerging field of fuel cell technology. To be able to discuss these
subjects adequately, we need to define what we mean by the term fuel, we need to decide how the thermo-
dynamic properties of the products and the reactants are related through a standard reference state, and we need
to lay the foundations for discussing chemical reaction energy conversion efficiency.
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IS IT CHEMISTRY OR ALCHEMY?

A practical chemical technology can be traced to prehistoric times. Primitive metallurgy, medicine, and food preparation are
typical examples. They were purely empirical “recipe” driven processes with no form of chemical theory to explain their
results. Before the sixth century BC, it was generally believed that all things were composed of a single primitive element.
The Greek philosophers Heraclitus (540–480 BC) and Empedocles (490–430 BC) began a new era when they proposed that,
instead of a single element, all matter was made up of four elements—air, earth, fire, and water—and that the continual
mixing of these elements formed all the objects of the real world.

The Greek philosopher Pythagoras (580–500 BC) is generally credited with recognizing the functional significance of num-
bers in quantifying the processes of the real world. Pythagoras established an academy of learning in Crotona, Italy, in
about 532 BC. The academy prospered long after his death until its destruction in about 390 BC. It is believed that his disci-
ples (known as Pythagoreans) working at the academy during this time developed many of the mathematical discoveries
now attributed to him (e.g., the Pythagorean theorem for right triangles).

Empedocles adopted Pythagoras’ numerology technique in an attempt to quantify the chemistry of his four elements. For
example, according to Empedocles, animal bone consisted of two parts water, two parts earth, and four parts fire. Because
he believed that all of his four elements were most thoroughly mixed in blood, he concluded that people think mainly
with their blood.

From about the second century AD until nearly the 19th century, the world embraced what is considered today to be a
scientific and chemical curiosity, alchemy. Alchemy was a combination of the occult, astrology, and primitive chemistry.
Even its name, derived from Arabic and introduced in the 12th century, is obscure because the root chem seems to have no
relevant etymological meaning.

The basic function of alchemy was transmutation, which was concerned with transmuting age to youth, sickness to health,
death to immortality. More notorious was its preoccupation with the physical transmutation of base metals into gold (i.e.,
transmuting poverty to wealth). Its central elements were mercury (quicksilver, the liquid metal), sulfur (the stone that
burns), and ammonium chloride (sal ammoniac, a source of hydrochloric acid). Successful alchemists tended to be charla-
tans whose work was shrouded in mystery. From the Medieval period forward, the central focus of alchemy was the making
of gold (religion had successfully taken over the immortality issue), and many prominent scientists, including Isaac Newton
(1643–1726), experimented with it seriously. (Newton is thought to have contracted mercury poisoning in about 1690 as a
result of his alchemy experiments.) The false science of alchemy, which appealed primarily to the human weakness of
greed, went without serious intellectual challenge for nearly 2000 years.

In the 17th century, Johann Jochim Becher (1635–1682), an established alchemist at one time engaged in attempting to
transmute Danube River sand into gold, proposed that all substances were made up of the classical alchemical elements of
mercury, sulfur, and corrosive salts, plus a new fourth weightless element that was produced by combustion. In 1697, the
German physician Georg Ernst Stahl (1660–1734) named this supposed fourth element phlogiston and used it to develop a
coherent theory of combustion, respiration, and corrosion. His phlogiston theory quickly won universal scientific approval
and was the only scientifically accepted theory of matter for nearly 100 years afterward.

In 1774, the English clergyman and scientist Joseph Priestley (1733–1804) described some of his experimental results in
removing phlogiston from air (the “dephlogistication” of air) to the French chemist Antione Laurent Lavoisier (1743–
1794), who immediately recognized their importance and subsequently carried out similar experiments himself. Lavoisier
soon realized that the dephlogiston that Priestley thought he had been working with was actually a unique chemical and,
in 1777, he named it oxygen (from the Greek for acid forming). By the early 19th century Lavoisier’s oxidation theory com-
pletely replaced Stahl’s phlogiston theory and the era of modem chemistry had begun. Lavoisier had done for chemistry
what a century earlier Newton had done for mechanics; he put the subject on a firm analytical foundation. The unfortunate
Joseph Priestley was subsequently driven from his home in England because of his public support of the French Revolu-
tion, and he settled in America.

WHO KILLED THE GREAT FRENCH CHEMIST LAVOISIER?

Because Lavoisier maintained a career in the French government as well as science (he was on the original 1790 weights
and measures committee that led to the development of the metric system we now use), he was caught up in the French
Revolution and was accused of political crimes (such as stopping the circulation of air in Paris by a city wall erected at his
suggestion in 1787). He was convicted and guillotined on the same day in 1794.
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15.2 STOICHIOMETRIC EQUATIONS
In the early 19th century, the English chemist John Dalton (1766–1844) devised a system of chemical symbols
and determined the relative masses of some elemental atoms. He also formulated a theory that combinations of
different chemical elements occur in simple mass ratios, which led him to the development of a way of writing
a chemical formula that mathematically represented chemical reactions. For example, if elements A and B com-
bine in a two to one ratio by mass to form chemical C, Dalton wrote this as

2 atoms of A+1 atomof B = 1 atomof C (15.1)

In modern notation, this would simply be

2A+B ! C

Reactants Product

where the equality has been replaced by an arrow that indicates the direction of the reaction. The items on the left
side of this equation are called the reactants, and those on the right side are called the products of the reaction.

A description of the net combining properties of atoms and compounds that occur in a chemical reaction is
known today as the stoichiometry of the reaction. Dalton’s chemical equation notation provides a shorthand mathe-
matical version of such a description, and the numerical values that precede the chemical symbols in these equa-
tions are called the stoichiometric coefficients of the reaction. These coefficients represent the number of atoms or
molecules involved in the reaction, and since mass is conserved in ordinary chemical reactions, the number of
atoms of each chemical element must be the same in both the reactants and the products. Therefore, a chemical
equation can be balanced (i.e., mass balanced) by requiring stoichiometric coefficients that produce the same num-
ber of atoms of each chemical species on both sides of the reaction equation. For example, the reaction that occurs
in burning hydrogen to completion in a pure oxygen atmosphere can be written in modern notation as

aðH2Þ+ bðO2Þ ! cðH2OÞ
where a, b, and c are the stoichiometric coefficients for the reaction. An individual atomic species balance now gives

Atomic hydrogen Hð Þbalance: 2a = 2c

Atomic oxygen Oð Þbalance: 2b = c

thus producing two equations in the three unknowns, a, b, and c. Since such reactions are usually of interest per
unit mass of fuel supplied, we can arbitrarily set a = 1: then, the atomic hydrogen and oxygen balances gives c= 1
and b = 1

2= 0.5. Therefore, our final balanced equation would read

H2 + 0:5ðO2Þ ! H2O (15.2)

After an extensive period of experimentation, the Italian chemist Count Amado Avogadro (1776–1856)
proposed in 1811 that equal volumes of different gases at the same temperature and pressure contain equal
numbers of molecules.

WHAT DOES THE WORD STOICHIOMETRY MEAN?

The term stoichiometry comes from the Greek words stoicheion (component) and metron (measure). It was introduced in
1792 by the German chemist Jeremias Benjamin Richter, when he suggested that substances react chemically according to
relations that resemble mathematical formulae.

WHAT IS AVOGADRO’S LAW?

Avogadro’s law states that equal volumes of different gases at the same temperature and pressure contain equal numbers of
molecules. The Avogadro constant, NA (originally called Avogadro’s number), is the number of atoms in exactly 12 kg of
carbon-12. The 2006 value is

NA = 6:0221× 1026 atoms/kgmole = 2:7316× 1026 atoms/lbmole

Although Avogadro introduced this law in 1811, it was not generally accepted by the scientific community until after 1858.
Incidentally, André Marie Ampère (1775–1836) popularized the term molecule for an assembly of atoms in about 1814.
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With this proposition, he was able to show that hydrogen, oxygen, nitrogen, and the like exist as diatomic
molecules in nature. Modern experiments have determined that the actual number of molecules in any sub-
stance whose mass in kilograms is equal to its (relative) molecular mass M is 6.022 × 1026. Therefore, the mass
of one molecule of this substance is

M
6:022×1026

kilograms:

The acceptance of Avogadro’s law soon led to the development of the mole (sometimes abbreviated mol, both
being a contraction of the German word molekul) as a convenient chemical mass unit. Originally a “mole” was
defined as a mass in grams that was equal to the molecular mass M of a substance (i.e., originally a “mole” of
carbon-12 contained 12 grams of carbon-12). Today, we need to recognize that this “mole” is really a gram-mole,
or gmole, because the “mole” unit is used in so many different units systems today. Now, it must carry a prefix
showing the units system being used, such as gmole, kgmole, or lbmole. But remember that these “moles” are not
equal to each other, since 1 kgmole= 1000 gmole= 2.2046 lbmole.

Since equal “moles” of different substances contain the same number of molecules, the stoichiometric
coefficients, which initially represented only individual molecules, can also be used to represent the number
of moles of each element present. Therefore, Eq. (15.1) can be written in the equivalent form

2 gmole of A+1 gmole of B = 1 gmole of C

or

2 kgmole of A+1 kgmole of B = 1 kgmole of C

or

2 lbmole of A+ 1 lbmole of B = 1 lbmole of C

and Eq. (15.2) can be interpreted as a reaction between 1 kgmole of H2 and 0.5 kgmole of O2 producing
1 kgmole of H2O or 1 lbmole of H2 and 0.5 lbmole of O2 producing 1 lbmole of H2O and so forth.

Most combustion processes occur in air, not pure oxygen. The composition of air used to determine its thermo-
dynamic properties on a molar or volume basis is 78.09% nitrogen, 20.95% oxygen, 0.93% argon, and 0.03%
carbon dioxide and trace elements. For convenience, we round this off to 79.0% N2 and 21.0% O2. In doing
this, we are essentially dividing air into two components: pure oxygen and a mixture of noncombustibles
(N2, Ar, CO2). The noncombustible group, called atmospheric nitrogen, has a mole fraction composition of

χN2
=

nN2

nN2 + nAr + nCO2

= 78:09
78:09+ 0:93+0:03

= 78:09
79:05

= 0:9879 = 98:79%

χAr =
nAr

nN2 + nAr + nCO2

= 0:93
79:05

= 0:0118 = 1:18%

and

χCO2
=

nCO2

nN2 + nAr + nCO2

= 0:03
79:05

= 0:00038 = 0:038%

where nN2 , nAr, and nCO2 are the number of moles of nitrogen, argon, and carbon dioxide present in the mixture.
Then, from Eq. (12.11), the equivalent molecular mass of this mixture is

ðMÞ
atmospheric
nitrogen

=∑ χiMi = ð0:9879Þð28:016Þ+ ð0:0118Þð39:944Þ+ ð0:00038Þð44:01Þ

= 28:16 kg/kgmole = 28:16 lbm/lbmole

From this point on, we refer to the atmospheric nitrogen mixture as simply nitrogen, and we assume that air has
a molar composition of 21.0% oxygen and 79.0% nitrogen, where the molecular mass of oxygen is still 32.00,
but the molecular mass of nitrogen is now 28.16 instead of 28.016. The equivalent molecular mass of air is still
28.97, since the argon and carbon dioxide are now merely grouped with the nitrogen.

For this air composition, each mole of oxygen is accompanied by 79:0/21:0 = 3:76 moles of nitrogen. Thus, if
the hydrogen combustion reaction described by Eq. (15.2) were carried out in air instead of pure oxygen, it
would be written as

H2 +0:5½O2 +3:76ðN2Þ� ! H2O+ 1:88ðN2Þ
In this equation, the nitrogen is assumed to be inert and therefore passes through the reaction unchanged.
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The amount of air or oxygen used in a combustion process can be described as

1. The percent of theoretical air or oxygen required to carry out the reaction.
2. The percent of excess or deficit air or oxygen actually used in the reaction.
3. The air/fuel (A/F) or fuel/air (F/A) ratio used in the reaction measured on either a mass or a mole basis.

One hundred percent theoretical air is the minimum amount of air that supplies enough oxygen to carry out
complete combustion. The percentage of excess air is simply the percentage of theoretical air supplied minus
100, and the percentage of deficit air is 100 minus the percent of theoretical air supplied. The air/fuel ratio (A/F)
is the amount of air used per unit of fuel consumed, and it can be expressed either in mass or mole units. The
relation between the mass and molar air/fuel ratios is given by

ðA/FÞmass = ½ðA/FÞmolar inmoles of air/mole of fuel�× Molecular mass of air,Mair

Molecular mass of fuel,Mfuel

� �
The fuel/air ratio (F/A) is simply the inverse of the air/fuel ratio.

ðF/AÞmolar =
1

ðA/FÞmolar

and

ðF/AÞmass =
1

ðA/FÞmass

With these definitions, it is easy to see that the hydrogen combustion described in the reaction H2 +
0:5½O2 +3:76ðN2Þ� ! H2O+ 1:88ðN2Þ uses 100% theoretical air and no excess or deficit air is involved. The
molar air/fuel ratio for this reaction is

ðA/FÞmolar =
nair
nfuel

=
0:5× ð1+3:76Þmoles of air

1mole of fuel
= 2:38moles of air/moleH2

and the mass air/fuel ratio is1

ðA/FÞmass = ½ðA/FÞmolar moles of air/mole of fuel� × Molecular mass of air,Mair

Molecular mass of fuel,Mfuel

� �
= 2:38moles of air/mole of fuel ðH2Þ × 28:97Mass of air/mole of air

2:016Mass of fuel/mole of fuel

= 34:2 grams of air/gramof H2 = 34:2 kg of air/kg of H2 = 34:2 lbmof air/lbmof H2

Then, the molar and mass fuel/air ratios are simply

ðF/AÞmolar = ðA/FÞ−1molar = 0:42molesH2/mole air

and

ðF/AÞmass = ðA/FÞ−1mass = 0:029 gramH2/gramair

= 0:029 kgH2/kg air

= 0:029 lbmH2/lbmair

CHEMICAL REACTION EQUATIONS AND SIGNIFICANT FIGURES

We have a problem using significant figures in the equations for chemical reactions. For example, in the reaction of hydro-
gen and oxygen to form water, H2 + 0.5 O2 → H2O, we do not want to have to write it as 1.00 H2 + 0.500 O2 → 1.00 H2O.
So, in this chapter, we assume that the coefficients in an equation for a chemical reaction have at least three significant
figures without actually writing them as such in the reaction equations.

1 While the mole is in fact a unit of mass, in this section we use the term mass to indicate nonmolar units.
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If this reaction is carried out with 150% theoretical air (i.e., 50% excess air), it has the form2

H2 +1:5 × ð0:5Þ½O2 + 3:76ðN2Þ� ! H2O+0:25ðO2Þ+ 2:82ðN2Þ
with a molar air/fuel ratio of

ðA/FÞmolar =
nair
nfuel

=
1:5× ð0:5Þð1+ 3:76Þ

1
= 3:57moles air/moleH2

Similarly, if it is carried out at 75% theoretical air (i.e., 25% deficit air), it is

H2 + 0:75 × ð0:5Þ½O2 + 3:76ðN2Þ� ! 0:75ðH2OÞ+ 0:25ðH2Þ+1:41ðN2Þ
with a molar air/fuel ratio of

ðA/FÞmolar =
nair
nfuel

=
0:75× ð0:5Þð1+ 3:76Þ

1
= 1:785moles air/moleH2

and so forth.

15.3 ORGANIC FUELS
The term organic has been used in chemistry since the late 18th century and originally referred only to materials
occurring in or derived from living organisms. Today, this term is used to represent all compounds of carbon,
whether derived from living organisms or not. Other elements frequently found in organic compounds are
hydrogen, oxygen, nitrogen, sulfur, and phosphorus. Since the number of organic compounds is very large, they
are subdivided into groups having similar properties. Hydrocarbons, alcohols, carbohydrates, proteins, and fats
are typical organic compound subdivisions.

Many common organic fuels are made up of only carbon and hydrogen atoms and are consequently called
hydrocarbons. The hydrocarbon class of organic molecules can be further subdivided into the groups shown in
Figure 15.1.

Using the atomic mass balance technique discussed at the beginning of this chapter, it is easily shown that the
stoichiometric reaction equation for the combustion of a typical hydrocarbon of the form CnHm using 100.%
theoretical air is

CnHm + n+m/4ð Þ½O2 +3:76ðN2Þ� ! nðCO2Þ+ m/2ð ÞðH2OÞ+3:76 n+m/4ð ÞðN2Þ (15.3a)

Hydrocarbons

Benzene
(C6H6)

Toluene
(C7H8)

Xylene
(C8H10)

etc.

Naphthalene
(C10H8)

etc.

Anthracene
(C14H10)

Alkanes
(CnH2n+2)

Acetylene
(C2H2)

etc.

Alkenes
(CnH2n)

Alkynes
(CnH2n+2)2

Propyne
(C3H4)

Ethylene
(C2H4)

etc.

Propylene
(C3H6)

Methane
(CH4)

etc.

Ethane
(C2H6)

Propane
(C3H8)

Butane
(C4H10)

Benzoid
(CnH2n+2)6

Nonbenzoid

Aliphatic Aromatic

FIGURE 15.1
Classification of hydrocarbons.

2 Remember, in this chapter we assume each coefficient in an equation for a chemical reaction has at least three significant figures
without actually writing them as such in the reaction equation.
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Also, its combustion with excess air using 100.(x) percent theoretical air (i.e., 100.(x − 1) percent excess air),
where x ≥ 1.0, is

CnHm + x n+m/4ð Þ½O2 + 3:76ðN2Þ� ! nðCO2Þ+ m/2ð ÞðH2OÞ
+ ðx−1Þðn+m/4ÞðO2Þ
+ xð3:76Þðn+m/4ÞðN2Þ

(15.3b)

And its combustion in deficit air using 100.(y) percent theoretical air (i.e., 100.(1− y) percent deficit air), where
ð2n+mÞ÷ ð4n+mÞ≤ y≤1:0, is

CnHm + y n+m/4ð Þ½O2 + 3:76ðN2Þ� !
�
nð2y− 1Þ−mð1− yÞ/2
ðCO2Þ
+ 2n+m/2ð Þð1− yÞðCOÞ+ m/2ð ÞðH2OÞ
+ yð3:76Þ n+m/4ð ÞðN2Þ

(15.3c)

In Eq. (15.3c), it has been assumed that the hydrogen is much more reactive than the carbon, so it will take up all
the oxygen it needs to be converted into water. This leaves only the carbon subject to incomplete combustion.

ANSWERS SOMETIMES COME IN DREAMS!

In the early part of the 19th century, chemists were puzzled by the fact that it was possible to construct two seemingly
different compounds that had dissimilar physical properties yet identical chemical formulae. For example, ethanol
and dimethyl ether both have the same chemical formula, C2H6O, yet ethanol boils at 79°C while dimethyl ether boils at
−24°C. Materials that have the same chemical formula but dissimilar physical properties are called isomers. The isomer
puzzle was solved by the German chemist Friedrich August Kekulé (1829–1896) in a dream while dozing on the top deck
of a horse-drawn bus in London. In his dream, he realized that the atoms of a molecule could be arranged in different geo-
metric structures; and in 1858, he introduced the schematic notation, still used, in which bonds between atoms are repre-
sented by lines drawn between their corresponding chemical symbols (e.g., H2 as H—H). He was then able to show that
isomers were simply the result of different bonding patterns. For example, butane (C4H10) has the isomers n-butane, which
boils at −0.5°C, and isobutane, which boils at −12°C. (The n prefix is always used to denote the normal, or chainlike, struc-
ture, whereas the iso prefix is used to denote the branched structure.) These two isomer bonding patterns are shown in
Figures 15.2 and 15.3.

Another 19th century hydrocarbon curiosity was the existence of the two classes, aliphatic (fatty) and aromatic (fragrant)
compounds. Aromatic hydrocarbons always had at least six carbon atoms and a smaller proportion of hydrogen atoms
than the aliphatic hydrocarbons. In 1865, Kekulé again found the solution in a dream. He envisioned a six-carbon chain
closing on itself to form a ring, like a snake biting its own tail, and he concluded that the aromatic compounds contain
such rings whereas the aliphatic compounds contain only straight chains.

Within the aliphatic group, the alkanes are characterized by having carbon atoms with single bonds between them, while
the alkenes have carbon atoms with double bonds between them, and alkynes have carbon atoms with triple bonds between
them. If all the bonds within an organic compound are single, then the compound is said to be saturated; but if multiple
bonds exist between any two carbon atoms in the compound, it is said to be unsaturated. Thus, the alkanes are all saturated
hydrocarbons, while all the remaining hydrocarbons are unsaturated.

H

H

H HC

H

H

C

H H

H H

C C H C C H

Ethane (C2H6)
(alkane, saturated)

Ethylene (C2H4)
(alkene, unsaturated)

Acetylene (C2H2)
(alkyne, unsaturated)

FIGURE 15.3
Ethane (alkane, saturated), ethylene (alkene, unsaturated), and
acetylene (alkyne, unsaturated).

n-Butane
(normal butane)

(C4H10)

Isobutane
(C4H10)

H H H H

H H H H

H HC C C C

H H H

H C C C

H

H

H

H C H

H

FIGURE 15.2
n-Butane and isobutane.
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EXAMPLE 15.1
Determine the stoichiometric reaction equation for methane (CH4) burned in

a. 100.% theoretical air.
b. 150.% excess air.
c. 20.0% deficit air.

Solution
We could solve this problem for methane, CH4 = CnHm by setting n = 1 and m = 4 in Eqs. (15.3a–c). However, since
methane is a simple compound, it is more enlightening to carry out the individual atomic balances to obtain the correct
reaction equations.

a. The general combustion equation for 1 mole of methane in 100% theoretical air is

CH4 + a½O2 +3:76ðN2Þ� ! bðCO2Þ+ cðH2OÞ+ dðN2Þ
The element3 balances are

Carbon (C) balance: 1= b
Hydrogen (H2) balance: 2= c
Oxygen (O2) balance: a = b+ c/2 = 1+ 2/2 = 2
Nitrogen (N2) balance: að3:76Þ = d = 2ð3:76Þ = 7:52

The resulting stoichiometric equation for 100.% theoretical air is

CH4 +2½O2 +3:76ðN2Þ� ! CO2 +2ðH2OÞ+7:52ðN2Þ
b. The 150.% excess air corresponds to 250.% theoretical air. The reaction equation now has O2 in the products and

consequently has the form

CH4 +2:5ð2Þ½O2 +3:76ðN2Þ� ! aðCO2Þ+ bðH2OÞ+ cðO2Þ+ dðN2Þ
and again element balances can be used to find that a= 1, b= 2, c= 3, and d= 2.5(2)(3.76)= 18.8; so that, for 150.%
excess air, we have

CH4 +5½O2 + 3:76ðN2Þ� ! CO2 + 2ðH2OÞ+3ðO2Þ+18:8ðN2Þ

c. The 20.0% deficit air corresponds to 80.0% theoretical air. Again, assuming all the hydrogen reacts to water, the reaction
now has CO in the products and has the form

CH4 +0:8ð2Þ½O2 +3:76ðN2Þ� ! aðCO2Þ+ bðCOÞ+ cðH2OÞ+ dðN2Þ
and again the element balances can be used to yield the coefficients a = 0:2, b = 0:8, c = 2:0, and d = 6:016: Note that
these results correspond to the same coefficients one would obtain using Eq. (15.3c). The final reaction equation for
20.0% deficit air is

CH4 +1:6½O2 + 3:76ðN2Þ� ! 0:2ðCO2Þ+ 0:8ðCOÞ+2ðH2OÞ+6:016ðN2Þ

Exercises
1. Determine the number of kgmoles of water produced in the reaction of Example 15.1 per kgmole of methane burned in

200.% excess air. Answer: 2 kgmoles per kgmole of CH4.
2. Determine the molar and mass A/F ratios for parts a, b, and c in Example 15.1. Answer:

a. (A/F)molar= 9.52 lbmole air/lbmole CH4 = 9.52 kgmole air/kgmole CH4

(A/F)mass= 17.24 lbm air/lbm CH4 = 17.24 kg air/kg CH4

b. (A/F)molar= 23.8 lbmole air/lbmole CH4 = 23.8 kg air/kg CH4

(A/F)mass= 43.1 lbm air/lbm CH4 = 43.1 lbm air/lbm CH4

c. (A/F)molar= 7.616 lbmole air/lbmole CH4= 7.616 kg air/kg CH4

(A/F)mass= 13.79 lbm air/lbm CH4 = 13.79 lbm air/lbm CH4

3. Rework Example 15.1 for combustion in 200% theoretical air. Answer: CH4 + 4[O2 + 3.76(N2)] → CO2 + 2(H2O) +
2(O2) + 15.04(N2).

3 In modern chemistry, the term element refers to the stable form of a substance composed of only one kind of atom. The chemically stable forms of
carbon, hydrogen, oxygen, and nitrogen in these reactions are C, H2, O2, and N2, rather than C, H, O, and N. So, even though H2, O2, and N2 are
really diatomic molecules, they are considered to be the proper forms for these elements in common chemical reactions.
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Hydrocarbon fuels refined from petroleum normally contain a mixture of many organic components. Gasoline,
for example, is a mixture of over 30 compounds. It is, however, convenient to model these fuels as a single
average hydrocarbon compound of the form CnHm, as discussed in the following section.

15.4 FUEL MODELING
It is fairly easy to obtain accurate composition analysis of combustion products with modern gas chromato-
graphy or mass spectroscopy techniques. With an accurate combustion analysis of a fuel that is in reality a com-
plex mixture of hydrocarbons, an equivalent or average hydrocarbon model of the form CnHm can be determined
from a chemical element balance. For example, if the combustion products contain only CO2, CO, O2, H2O,
and N2, then Eqs. (15.3a–c) could be used to determine the composition parameters n and m when the stoichio-
metric coefficients of the products are measured. Since the fuel model formula CnHm represents an average of all
the different hydrocarbon compounds present in the fuel mixture, n and m usually do not turn out to be inte-
gers and the resulting model does not represent any real hydrocarbon (except possibly when n and m are
rounded to integers).

EXAMPLE 15.2
A new hydrocarbon fuel is being developed that consists of 1.00 kgmole of methane (CH4) mixed with 3.00 kgmoles of
propane (C3H8). Determine the hydrocarbon fuel model for this mixture.

Solution
This mixture is assumed to produce 1.00 kgmole of the fuel model CnHm, so

1CH4 + 1C3H8 = 1CnHm

An element balance for this equation gives

Carbonbalance:1+3ð3Þ = 10 = n

Hydrogenbalance: 4+3ð8Þ = 28 = m

Consequently, the hydrocarbon fuel model is C10H28.

Exercises
4. Determine the hydrocarbon fuel model in Example 15.2 if only 2.00 kgmoles of propane are used in the mixture.

Answer: Hydrocarbon fuel model=C7H20.
5. Determine the hydrocarbon fuel model in Example 15.2 if ethane (C2H6) is used in place of the methane. Answer:

Hydrocarbon fuel model=C11H30.
6. 1.00 lbmole each of methane (CH4), propane (C3H8), and butane (C4H10) are mixed to form 1.00 lbmole

of a new super fuel. Determine the hydrocarbon fuel model for this mixture. Answer: Hydrocarbon fuel
model = C8H22.

Often, you do not know the exact hydrocarbon composition of a fuel. However, you can analyze the products of
the fuel’s combustion and deduce the fuel model. Several modern instruments produce an accurate exhaust gas
analysis. For example, gas chromatography and mass spectrometry are commonly used in exhaust gas analysis
today. But perhaps the quickest, simplest, and most inexpensive method of obtaining an approximate combustion
analysis is with an Orsat analyzer. This gas analyzer uses a chemical absorption technique to determine the volume
fractions (which are equivalent to the mole fractions) of CO2, CO, and O2 in the exhaust gas (see Figure 15.4).
Since it cannot measure the H2O content, the exhaust gas sample is always cooled to room temperature, or below
the dew point of any water vapor present, so that most of the water in the combustion products condenses out.
Therefore, the Orsat technique is said to produce a dry products analysis. Also, the Orsat technique cannot detect
unburned hydrocarbons (typically CH4) and free hydrogen (H2) in the exhaust gas. These are usually small and
can normally be neglected. However, studies have shown that the mole fractions of methane and hydrogen in the
combustion products of a hydrocarbon can be approximated as χCH4

≈ 0:0022 and χH2
≈ 0:5ðxCOÞ, and these rela-

tions can be used with an Orsat analysis if necessary.
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EXAMPLE 15.3
The exhaust gas of a gasoline-fueled automobile engine is cooled to 20.0°C and subjected to an Orsat analysis. The results
(on a volume or mole basis) are

CO2 = 7:10%

CO = 0:800%

O2 = 9:90%

N2 = 82:2%

Total = 100:%

Determine

a. The hydrocarbon model (CnHm) of the fuel.
b. The composition of the fuel on a molar and a mass basis.
c. The air-fuel ratio on a molar and a mass basis.
d. The % of theoretical air used in the combustion process.

Solution
a. Since the Orsat analysis is carried out at 20.0°C, we assume that virtually all the water of combustion has condensed out

and therefore the composition given is on a dry basis. However, the water term must be left in the chemical reaction

C

CuCl

B

C  H  O6 6 3

A

KOH

D
E

Measuring
chamber

(a)

(b)

Valve

CO
Absorbed

O2
Absorbed

CO2
Absorbed

Sample

Leveling
bottle

FIGURE 15.4
A typical Orsat analyzer. (a) Schematic: Vessel A contains a potassium hydroxide (KOH) solution that absorbs CO2. Vessel B contains
a pyrogallic acid (1,2,3-trihydroxybenzene, C6H6O3) solution that absorbs O2. Vessel C contains a cuprous chloride (CuCl) solution
that absorbs CO. The remaining gas is assumed to be N2. Vessel D is the measuring chamber, and vessel E is the leveling bottle.
(b) Photograph of a typical Orsat analyzer.
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equation, since it results from the oxidation of the hydrogen in the fuel. For convenience, we write the combustion
reaction for 100. moles of dry product formed by burning 1.00 mole of the fuel model CnHm. Using the given
combustion analysis, we have

CnHm + a½O2 + 3:76ðN2Þ� ! 7:10ðCO2Þ+ 0:800ðCOÞ+9:90ðO2Þ+ bðH2OÞ+ 82:2ðN2Þ
The element balances are

Carbon (C) balance: n= 7.10 + 0.800= 7.90
Hydrogen (H) balance: m = 2b
Nitrogen (N2) balance: 3:76a = 82:2, or a = 82:2/3:76 = 21:9
Oxygen (O2) balance: a = 21:9 = 7:10+ 0:800/2+ 9:90+ b/2, or b = 9:00:

Then, from the preceding hydrogen balance, m = 2b = 18:0: Consequently, the fuel model is C7.90H18.0, which is
approximately octane, C8H18. The final reaction equation is

C7:90H18:0 + 21:9½O2 +3:76ðN2Þ� ! 7:10ðCO2Þ+ 0:800ðCOÞ+ 9:90ðO2Þ+ 9:00ðH2OÞ+82:2ðN2Þ
b. On a molar basis, 1.00 mole of fuel contains 7.90 moles of C and 18.0 moles of H, and on a molar percentage basis,

this becomes [7.90/(7.90 + 18.0)](100.)= 31.0% C and [18.0/(7.90 + 18.0)](100)= 69.0% H. The molecular mass of
the fuel in this model is

Mfuel = 7:90ð12Þ+18:0ð1Þ = 113 kg/kgmole = 113 lbm/lbmole

and so the fuel’s composition on a mass basis is

7:90 kgmoleC/kgmole fuelð Þ 12:0kg C/kgmoleCð Þ/ 113 kg fuel/kgmole fuelð Þ
= 0:840 kg C/kg fuel = 0:840 lbmC/lbm fuel

and

9:00ð Þ 2:016ð Þ/113 = 0:161kgH/kg fuel = 0:161 lbmH/lbm fuel

Therefore, the fuel can be said to consist of 31% carbon and 69% hydrogen on a molar basis or 84% carbon and 16%
hydrogen on a mass basis.

c. Referring to the final combustion equation determined in part a, the air/fuel ratio on a molar basis is

ðA/FÞmolar =
nair
nfuel

=
21:9× ð1+ 3:76Þmoles of air

1mole of fuel
= 104moles air/mole fuel

and on a mass basis it is

ðA/FÞmass = 104 kgmole air/kgmole fuelð Þ× 28:97 kg air/kgmole air
113 kg fuel/kgmole fuel

� �
= 26:7 kg air/kg fuel = 26:7 lbmair/lbm fuel

d. To determine the percent of theoretical air used, we must first determine the minimum air required for complete
combustion. The reaction for 100.% theoretical air has the form

C7 :90H18:0 + a½O2 + 3:76ðN2Þ� ! bðCO2Þ+ cðH2OÞ+ dðN2Þ
The element balances are

Carbon (C) balance: 7.90= b
Hydrogen (H) balance: 18.0= 2c, or c= 11.0
Oxygen (O2) balance: a = b+ c/2 = 7:90+9:00/2 = 12:4
Nitrogen (N2) balance: 3:76a = d = 3:76ð12:4Þ = 46:6

Then the theoretical molar air/fuel ratio (for 100% theoretical air) is

A/Fð Þ
molar
theoretical

=
12:4ð1+3:76Þ

1
= 59:0mole air/mole fuel

finally, the percent of theoretical air used in the actual combustion process is

%of theoretical air =

"
A/Fð Þ

molar
actual

,
A/Fð Þ

molar
theoretical

#
× 100

=
�
104/59:0


ð100Þ = 177%

or 77.0% excess air.

(Continued )

15.4 Fuel Modeling 601



EXAMPLE 15.3 (Continued)

Exercises
7. Determine the hydrocarbon fuel model in Example 15.3 if the CO and O2 concentrations are both 0.00%, and the CO2

and N2 concentrations are 17.0% and 83.0%, respectively, in the Orsat analysis. Answer: Hydrocarbon fuel model=
C17H20.3.

8. Determine the molar and mass air/fuel ratios in Example 15.3 if the CO and O2 concentrations are both 0.00%, and the
CO2 and N2 concentrations are 17.0% and 83.0%, respectively, in the Orsat analysis. Answer: A/F= 10.15 kgmole air/
kgmole fuel= 1.31 kg air/kg fuel.

9. If the CO concentration in Example 15.3 is 0.00% and the N2 concentration is 83.0%, with all the other concentrations
unchanged, determine the hydrocarbon fuel model and % of excess air used in the combustion process.
Answer: Hydrocarbon fuel model=C7.1H22.28 and % of excess air= 74.2%.

In the previous example, we assume that nearly all the water produced by the combustion process condensed
out by the time the combustion products cooled to 20.0°C. For this to be a valid assumption, the dew point of
the combustion products must be at 20.0°C or higher. The determination of the dew point temperature for this
reaction is illustrated in the next example.

EXAMPLE 15.4
Determine the dew point temperature of the combustion products given in Example 15.3 if the total pressure of the mixture
is 14.7 psia.

Solution
From Eq. (12.23) of Chapter 12, the volume fractions, mole fractions, and partial pressure ratios are all equal for a mixture
of ideal gases. Exhaust products at atmospheric pressure are sufficiently ideal to allow us to determine the water vapor par-
tial pressure at its condensation temperature (i.e., dew point) from this relation. The total number of moles of product,
from part a of Example 15.3, is 109 moles. Then, using Eq. (12.23) wherein pm is the total pressure of the mixture gives

πH2O = pH2O/pm = ψH2O = χH2O = 9:00
109

= 0:0826

where π is the partial pressure ratio, ψ is the volume fraction, and χ is the mole fraction. So,

pH2O = 0:0826 14:7ð Þ = 1:21psia

The saturation temperature of water vapor at this pressure is defined to be the dew point temperature. By interpolation in
Table C.1a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find that

Tsat 1:21psiað Þ = TDP = 108°F = 42:3°C

Thus, the exhaust products must be cooled to 108°F ð42:3°CÞ or below to condense the water of combustion and have an
essentially dry exhaust gas.

Exercises
10. Determine the partial pressure of the water vapor in Example 15.4 if the mixture total pressure is 0.150 MPa.

Answer: pH2O= 12.4 kPa.
11. If the dew point temperature in Example 15.4 is 212°F, what is the mixture total pressure? Answer: pm= 178 psia.
12. Determine the partial pressure and dew point temperature of the water vapor present in the 100.% theoretical air

combustion process given in part d of Example 15.3. Assume the mixture total pressure is 14.7 psia. Answer: pH2O =
2.08 psia, TDP = 128°F.

WHY DO AUTOMOBILE EXHAUST SYSTEMS RUST?

Water condenses in an automobile’s exhaust system and drips out the tailpipe until the entire exhaust system has been
heated above the dew point temperature by the exhaust gases. This water promotes corrosion and causes the exhaust sys-
tem to rust out sooner if the vehicle is used for short trips than trips long enough (a half hour or more) to dry out the
exhaust system.
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If moisture enters the combustion process as humidity in the inlet air, this moisture is carried through the
reaction as an inert element and adds to the combustion water in the products. This has the net effect of raising
the dew point temperature. This is illustrated in the next example.

EXAMPLE 15.5
During the automobile engine fuel combustion test discussed in Example 15.3, the dry bulb and wet bulb temperatures of
the inlet air were measured to be 90.0°F and 75.0°F, respectively. Determine (a) the amount of water carried into the engine
in the form of inlet humidity and (b) the new dew point temperature of the exhaust products. Assume the exhaust is at a
total pressure of 14.7 psia.

Solution
From the psychrometric chart, Figure D.6a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find
that, for TDB= 90°F and TWB= 76°F, the relative humidity ϕ= 50% and the humidity ratio, ω= (105 grains of H2O per lbm of
dry air) × (1 lbm/7000. grains)= 0.0150 lbm H2O/lbm dry air. On a molar basis, the humidity ratio is

ω = 0:0150 lbmH2O/lbmdry airð Þ 28:97 lbmdry air/lbmole dry air
18:016 lbmH2O/lbmoleH2O

� �
= 0:0241 lbmoleH2O/lbmole dry air

From the balanced reaction equation of part a of Example 15.3, we find that the amount of dry air used per mole of fuel is
21.9(1 + 3.76) = 104 moles, and this now carries with it 0.0241(104) = 2.51 moles of water. Assuming this water passes
through the reaction unchanged, the total amount of water now in the exhaust is 9:00+2:51 = 11:5 moles per mole of fuel.
Consequently, the total moles of product are 111.5, the mole fraction of water vapor in the exhaust is now

χH2O =
nH2O

ntotal
= 11:5/111:5 = 0:103

and Eq. (12.23) gives the partial pressure of the water vapor in the exhaust as

pH2O = 0:103ð14:7Þ = 1:52psia

Again, interpolating in Table C.1a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find

Tsat 1:52psiað Þ = TDP = 116°F = 46:5°C

Exercises
13. What happens to the water vapor in the engine’s exhaust in Example 15.5 if the surrounding air temperature is 20.0°C?

Answer: It condenses into liquid water, since the surrounding air temperature is less than the dew point temperature of
the water vapor.

14. If the inlet air in Example 15.5 contains 3.214 moles of water vapor per mole of fuel burned (instead of 2.50 moles of
H2O per mole of fuel), determine the new dew point temperature. Answer: TDP= 118°F.

15. If the inlet air in Example 15.5 has a relative humidity of 100.% and a dry bulb temperature of 90.0°F, what is the new
exhaust dew point temperature? Answer: TDP = 123°F.

By comparing the results of Examples 15.4 and 15.5, we see that combustion air with 50.0% relative humidity
has a dew point temperature 7.6°F (4.2°C) higher than that of dry combustion air.

15.5 STANDARD REFERENCE STATE
Because we deal with a variety of elements and compounds in combustion reactions, it is necessary to define
a common thermodynamic reference state for all these substances. Recall that, in developing the steam tables,
we chose the triple point of water as the reference state and arbitrarily set the specific internal energy of
liquid water equal to zero at that point. Therefore, the values of u and h in the steam tables are not the actual
specific internal energies and enthalpies of steam, they are only relative values. This is sufficient, since most of
our formulae use u2 − u1 or h2 − h1 for changes occurring within a system and the effect of the reference
state cancels out in the subtraction process. In the case of the gas tables, we take 0 K and 1 atm as the
thermodynamic reference state and arbitrarily set the specific internal energy equal to zero at this state. How-
ever, in the case of combustion processes, a more pragmatic thermodynamic reference state of 25.0°C and
0.100 MPa (approximately 1 atm) is chosen. This is called the standard reference state (SRS) for combustion
reactions. However, since most of the calorimeters used to study combustion processes are steady state, steady
flow, open systems, it is more convenient to set the specific enthalpy rather than the specific internal energy of
the elements equal to zero at this state.
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Consequently, the specific internal energies of the elements at the SRS are always negative and computed from
u° = − p°v°, where p° = 0:100 MPa and v° is the corresponding specific volume of the element in question. Thermo-
dynamic properties at the standard reference state are always denoted by a superscript °.

15.6 HEAT OF FORMATION
When a reaction gives off or liberates heat, the reaction is said to be exothermic, and when it absorbs heat, it is
said to be endothermic. Our sign convention for heat transport of energy requires that Qexothermic < 0 whereas
Qendothermic > 0. The heat of formation of a compound is the heat liberated or absorbed in the reaction when the
compound is formed from the stable form of its elements at the standard reference state. For example, if the
elements and the resulting compound are both at the standard reference state, then we can write

Elements at the SRSð Þ ! Compound at the SRSð Þ+ q °
f

� �
compound

where q °
f

� �
compound

is the molar heat of formation of the compound at the standard reference state.

In 1840, the Swiss chemist Germain Henri Hess (1802–1850) discovered that the total amount of heat liberated
or absorbed during a chemical reaction is independent of the thermodynamic path followed by the reaction.
This is known as Hess’s law or the law of constant heat sums. It allows us to determine heats of formation for com-
pounds that cannot be synthesized directly from their elements.

For example, the complete combustion of a hydrocarbon compound of the form CnHm in pure oxygen, wherein
the reactants and the products are both maintained at the standard reference state, can be written as

CnHm + aðO2Þ ! nðCO2Þ+ m/2ð ÞðH2OÞ+HHVCnHm

where HHV is the higher heating value of the hydrocarbon (defined later, see Tables 15.2 and 15.3). We also
have the following carbon dioxide and water formation reactions:

C+O2 ! CO2 −393:5MJ/kgmoleCO2

and

H2 + ð1/2ÞðO2Þ ! H2O−285:8MJ/kgmoleH2O

Now Hess’s law states that the heats liberated or absorbed in these reactions are independent of the reaction
path, so we can rearrange them as

CO2 ! C+O2 +393:5MJ/kgmoleCO2

WHAT IS THE STANDARD REFERENCE STATE?

The standard reference state (SRS) is defined by the following temperature and pressure:

SRS temperature = T° = 25:0°C = 298K = 77:0°F = 537R

SRSpressure = p° = 0:100MPa = 14:5psia ≈ 1 atm

WHAT IS HESS’S LAW?

Using caloric theory, Henri Hess tried to extend Dalton’s interpretation of chemical reactions by attempting to find exam-
ples of the combination of caloric with chemical elements in simple mass ratios. He discovered that, for a given reaction,
the total amount of caloric (heat) involved was always the same, independent of the number of intermediate steps con-
tained within the reaction. Today, we know that this is really true only for aergonic, steady state, steady flow, open systems
and for isobaric, closed systems where the heat of reaction equals the change in total enthalpy (because enthalpy is a point
function and therefore independent of the actual chemical path taken by the reaction).
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and

H2O ! H2 + ð1/2ÞðO2Þ+ 285:8MJ/kgmoleH2O

Then, the combustion equation for the compound CnHm can be written as

CnHm + aðO2Þ ! nðC+O2 +393:5Þ+ m/2ð Þ H2 + 1/2ð ÞO2 +285:8ð Þ+HHVCnHm

! nðCÞ+ m/2ð Þ H2ð Þ+ n+m/4ð Þ O2ð Þ
+
�
n 393:5ð Þ+ m/2ð Þ 285:8ð Þ+HHVCnHm



Now, an oxygen balance on the original compound combustion equation gives a = n + m/4, so the O2 terms in
the previous equation cancel, and again using Hess’s law to rearrange this equation, we get

n Cð Þ+ m/2ð Þ H2ð Þ ! CnHm −
�
n 393:5ð Þ+ m/2ð Þ 285:8ð Þ+HHVCnHm



! CnHm + q °

f

� �
CnHm

(15.4)

where the HHV is in MJ/kgmole of compound. Consequently, the heat of formation in MJ/kgmole of the hydro-
carbon fuel CnHm at the standard reference state is

q °
f

� �
CnHm

= −½nð393:5Þ+ ðm/2Þð285:5Þ+HHVCnHm � inMJ/kgmole (15.5)

The use of this relation is illustrated in the following example.

EXAMPLE 15.6
To prevent the Universe from collapsing in a deadly hypergeometric spiral, you must quickly determine the heat of forma-
tion of methane gas CH4(g) at the standard reference state. Normally, you would react carbon and hydrogen gas in your
laboratory to form methane and measure its heat of formation during the reaction. Unfortunately, there is no known reac-
tion by which you can form methane by reacting solid carbon with hydrogen gas. How will you save the Universe?

Solution
Even though we do not know how to form CH4(g) from a direct reaction of solid carbon and hydrogen gas, we can use
Eqs. (15.4) and (15.5) with Tables 15.2 and 15.3 to calculate the heat of formation of CH4(g) at the standard reference
state. Tables 15.2 and 15.3 give the higher heating value (HHV) of CH4 as −890.4 MJ/kgmole. Then Eq. (15.5) gives

ðq°f ÞCH4
= − ½nð393:5Þ+ ðm/2Þð285:5Þ+HHVCnHm �
= − ½1ð393:5Þ+ ð4/2Þð285:5Þ+HHVCH4 �
= − ½393:5+2ð285:8Þ+ ð−890:4Þ� = −74:7MJ/kgmole of CH4

and then Eq. (15.4) becomes

CðsÞ+2½H2ðgÞ� ! CH4ðgÞ− 74:7MJ/kgmole of CH4

In this example, we denote the physical state of the substances in parentheses as solid (s), liquid (ℓ), or gas (g). Note that
the negative sign on the HHV of methane indicates that the combustion of methane is an exothermic (heat-producing)
reaction.

Exercises
16. The methane in Example 15.6 is replaced by acetylene gas. You must now determine the heat of formation of acetylene

gas, C2H2(g), at the standard reference state to save the Universe. Answer: ðq °
f Þacetylene = +227MJ=kgmole.

17. Oops, it is not methane or acetylene gas in Example 15.6, it is ethylene gas. So now, to save the Universe, you must
determine the heat of formation of ethylene gas, C2H4(g), at the standard reference state. Answer:
ðq °

f Þethylene = −52:4MJ=kgmole.
18. Well, I bet you are surprised to find out that, at the last minute, it was ethane gas that was actually used to generate the

deadly hypergeometric collapse of the Universe. To save all life in the Universe, you must now determine the heat of
formation of ethane gas, C2H6(g), at the standard reference state. Answer: ðq°f Þethane = −84:5MJ=kgmole:

Notice that, in this example, we do not take into account the heat of formation of H2 from atomic hydrogen H
or O2 from atomic oxygen O. This is because the elements used in the formation of a compound must be in
their stable molecular forms at the standard reference state. In the case of methane, the elements are solid carbon
(graphite), C, and diatomic hydrogen gas, H2.
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Consider a chemical reaction occurring in the steady state, steady flow,
aergonic, open system shown in Figure 15.5. The energy rate balance
(ERB) applied to this system yields

_Qr =∑
P

ð _mhÞ−∑
R

ð _mhÞ =∑
P

ð _nhÞ −∑
R

ð _nhÞ = _HP − _HR

where _Qr is the exothermic or endothermic heat transfer rate of the reac-
tion, and _HP and _HR are the total enthalpy rates of the products and reac-
tants, respectively.

If this reaction is to be used to determine the standard reference state
heat of formation of a compound, then the temperature and pressure of
the reactants and the products must be maintained by sufficient heat

transfer at 25.0°C and 0.100 MPa. In this case, the specific enthalpies of all the reactant elements are zero (by
definition), so _HR = _HR° = _Helements = _Helements° = 0, and the previous equation reduces to

_Qr° = _Qf° = _HP° = _Hcompound°

where _Qf° is the standard reference state heat rate of formation of the compound. In this case, the heat rate of for-
mation, the heat transfer rate of the reaction, and the total enthalpy rate of the products are all equal. We now
define the molar specific enthalpy of formation, hf°, of a compound at the standard reference state as

ðhf°Þcompound = _H°/ _n
� �

compound = _Qf°/ _n
� �

compound
= q °

f

� �
compound

(15.6)

where _n and q °
f are the molar flow rate and the molar heat of formation of the compound, respectively.

Because of our sign convention that heat energy entering the system is positive while that leaving the system is
negative, the heats and enthalpies of formation of exothermic reactions are always negative, while those of
endothermic reactions are always positive. Table 15.1 gives the specific molar enthalpies (heats) of formation for
some common compounds. Heats of formation can also be estimated from the atomic bond energies of the
compound.

Qr

ProductsReactants

System boundary

Reaction
vessel

FIGURE 15.5
A steady state, steady flow, aergonic reaction vessel.

Table 15.1 Molar Specific Enthalpy of Formation at 25.0°C (77.0°F) and 0.100 MPa

Substance M kg/kgmole or lbm/lbmole

hf°

MJ/kgmole Btu/lbmole

Carbon monoxide, CO(g) 28.011 −110.529 −47,522
Carbon dioxide, CO2(g) 44.011 −393.522 −169,195
Sulfur dioxide, SO2(g) 64.07 −296.83 −127,622
Water, H2O(g) 18.016 −241.827 −103,973
Water, H2O(ℓ) 18.016 −285.838 −122,896
Methane, CH4(g) 16.043 −74.873 −32,192
Acetylene, C2H2(g) 26.038 +226.731 +97,483

Ethylene, C2H4(g) 28.054 +52.283 +22,479

Ethane, C2H6(g) 30.070 −84.667 −36,403
Propane, C3H8(g) 44.097 −103.847 −44,649
Butane, C4H10(g) 58.124 −126.148 −54,237
Benzene, C6H6(g) 78.114 +82.930 +35,656

Octane, C8H18(g) 114.23 −208.447 −89,622
Octane, C8H18(ℓ) 114.23 −2411.952 −107,467
Carbon, C(s) 12.011 0 0

Oxygen, O2(g) 32.00 0 0

Hydrogen, H2(g) 2.016 0 0

Nitrogen, N2(g) 28.013 0 0

Note: Here, (g) indicates gas or vapor state and (ℓ) indicates liquid state.

Source: Van Wylen, G. J., Sonntag, R. E., 1976. Fundamentals of Classical Thermodynamics, SI Version, second ed. Wiley, New York, p. 496
(Table 12.3). Copyright © 1976 John Wiley & Sons. Reprinted by permission of John Wiley & Sons.
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EXAMPLE 15.7
The formation of 1 mole of water by the combustion of its elements can be written as

H2 + 0:5×O2 ! H2O+ qr

where qr is the heat transfer that occurs per mole of water formed. Suppose we wanted to make exactly 0.160 kg of liquid
water by this combustion reaction. Determine the heat transfer required to keep both the reactants (H2 and O2) and the pro-
ducts (H2O) at the standard reference state (25.0°C and 0.100 MPa) while this reaction takes place.

Solution
For the isothermal (25.0°C) and isobaric (0.100 MPa) combustion of 1.00 kgmole of hydrogen gas with 0.500 kgmole of
oxygen gas, Eq. (15.6) gives

ðqrÞSRS = q °
f = hf°

and since the reaction is at 25.0°C, the water formed is in the liquid state. Then, from Table 15.1, we find that ðhf°ÞH2OðlÞ =
285.838 MJ/kgmole. So, ðq°f ÞH2OðlÞSRS = 285.838 MJ/kgmole, and the heat transfer required for this reaction on a mass rather
than a molar basis is

qr =
qr
M

where M is the molecular mass. Finally, the total heat transfer required is Qr=mqr, or

Qr = mqr = m
qr
M

= ð0:160kgÞ −285:838MJ/kgmole
18:016 kg/kgmole

� �
= −2:54MJ

Exercises
19. Rework Example 15.7 and determine the heat transfer required for the formation of 0.160 kg of water vapor H2O(g) at

the SRS rather than liquid water. Answer: ðQrÞH2OðgÞ = −2:15MJ:
20. Repeat Example 15.7 and determine the heat transfer required for the formation of 1.00 kg of methane gas CH4(g) when

both the reactants and the products are at the standard reference state. Answer: ðQrÞCH4 ðgÞ = −4:67MJ:
21. Use the technique of Example 15.7 to determine the heat transfer required for the formation of 1.00 gallon (6.25 lbm)

of liquid octane C8H18(ℓ). Answer: ðQrÞC8H18ðℓÞ = −5880Btu:

15.7 HEAT OF REACTION
In the previous section, we saw that the heat of formation of a compound was the same as the heat of reaction
when that compound was formed from its elements at the standard reference state. An oxidation reaction of a
fuel is normally called combustion; therefore, the heat of reaction of the oxidation of a fuel in air or pure oxygen
is also known as the heat of combustion or the heating value of the fuel.

A bomb calorimeter is a closed, rigid (constant volume) vessel that can be used to determine the heat of reaction
of a liquid or solid fuel sample (see Figure 15.6). When the final temperature in the bomb has been reduced to
its initial standard state temperature of 25.0°C by the water bath, the resulting energy balance on the bomb is

Qr = mðuP − uRÞ = nðuP − uRÞ = UP −UR (15.7)

Then, from the definition of enthalpy, we can write

HP −HR = UP −UR + ðpVÞP − ðpVÞR
and, since the reactants are likely to be solids or liquids with a small volume and a low pressure, we can ignore
them and set ðpVÞR ≈ 0, then

HP −HR = UP −UR + ðpVÞP = Qr + ðnℜTÞP
which provides a convenient relation between the constant volume heat of reaction measured by the bomb
calorimeter and the total enthalpy change of the reaction occurring inside the bomb calorimeter.

The heat of reaction of gases, liquids, and some solids is more often measured in a steady state, steady flow, aer-
gonic calorimeter, similar to that shown in Figure 15.5. An energy rate balance on this type of calorimeter gives
the heat transfer rate of the reaction as

_Qr = _HP − _HR
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and dividing through by the fuel molar flow rate _n fuel gives the molar heat of reaction qr as

qr = _Qr/ _nfuel = hP − hR = hRP (15.8)

In this equation, we define the quantities

hR = _HR/ _nfuel =∑
R

_ni/ _nfuelð Þhi =∑
R

ni/nfuelð Þhi (15.9)

and

hP = _HP/ _nfuel =∑
P

_ni/ _nfuelð Þhi =∑
P

ni/nfuelð Þhi: (15.10)

where i= 1, 2, 3, … , n, and n is the number of reactants or products. In these equations, hR and hP are the total
reactant and product enthalpies per unit mole of fuel consumed. Combining Eqs. (15.9) through (15.11) gives
the molar heat of reaction as

qr =∑
P

ni
nfuel

hi −∑
R

ni
nfuel

hi (15.11)

The heating value of a fuel is the heat of reaction produced by the complete combustion of a unit mole
(or mass) of the fuel when both the reactants and the products are maintained at the standard reference state
(SRS). When the fuel contains hydrogen, the combustion products contain water that can be in either the
liquid or vapor phase. The higher heating value (HHV) is produced when the water in the combustion products
is condensed into the liquid state, and the lower heating value (LHV) occurs when this water is in the vapor
state:

HHV = qr at the SRS and liquidH2Oð Þ

LHV = qr at the SRS andH2Ovaporð Þ

The relation between these two heating values is simply

HHV = LHV −
nH2O

nfuel

� �
ðhfg°ÞH2O = LHV −

nH2O

nfuel

� �
44:00 MJ

kgmoleH2O

� �
(15.12)

where both the HHV and the LHV are in MJ/kgmole of fuel. In this equation, nH2O/nfuel is the number of moles
of water produced per mole of fuel burned, and ðhfg°ÞH2O = 44:00MJ=kgmole is the phase change molar specific

Mixer
motor

Water

Thermometer

Bomb (closed
rigid vessel)

Insulation

110 V

Fuse wire

Test sample

FIGURE 15.6
An adiabatic, constant volume bomb calorimeter.
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enthalpy of water at the standard reference state temperature (25.0°C or 77.0°F). Note that both the HHV and
the LHV are negative for heat-producing combustion reactions.

If the reactants and the products are both at the standard reference state, then Eq. (15.11) gives the standard refer-
ence state heat of reaction, qr°, as

qr° =∑
P

ni/nfuelð Þ hf°
� �

i −∑
R

ni/nfuelð Þ hf°
� �

i (15.13)

This equation can be used to determine the HHV and LHV heats of combustion tabulated in Tables 15.2
and 15.3, as illustrated in the following example.

CRITICAL THINKING

In the calculation of the higher and lower heating values, HHV and LHV, both the reactants and the products are at the
SRS. In the HHV calculation, all the water in the combustion products is condensed into a liquid, but in the LHV calcula-
tion, all this water is in the vapor phase. Wait a minute, how can you have all the LHV water in the vapor phase at the SRS
temperature of 25.0°C, which is clearly below the dew point temperature of water at the SRS pressure of 0.100 MPa (TDP=
Tsat(0.100 MPa)= 100°C)? The answer is that you cannot, so the LHV state does not really exist. But, if the LHV can never
be achieved, then what good is it? The answer is that the LHV is merely a benchmark value used for evaluating combustion
processes. For example, the HHV and LHV are most commonly used in the calculation of combustion efficiency ηcombustion,
defined as

ηcombustion =
Actual heat produced by a combustion process

HHV or LHV

In this calculation, the HHV is used if the temperature of the combustion products can be reasonably lowered below 100.°C
(as in industrial power plant boilers or domestic home furnaces), and the LHV is used when this is not possible (as in inter-
nal combustion engines). When the temperatures of the combustion products are necessarily above 100.°C, the LHV makes a
more reasonable benchmark for the calculation of a combustion efficiency (note that, since the LHV is less than the HHV, the
combustion efficiency is larger when the LHV is used).

Table 15.2 Molar Based Higher Heating Values (HHV) for Common Fuels Where Both
the Reactants and the Products Are at the SRS and the Water in the Combustion Products
Is in the Liquid Phase

Fuel

(HHV)molar

MJ/kgmole Btu/lbmole

Hydrogen, H2(g) −285.84 −122,970
Carbon, C(s) −393.52 −169,290
Carbon monoxide, CO(g) −282.99 −121,750
Methane, CH4(g) −890.36 −383,040
Acetylene, C2H2(g) −1299.60 −559,120
Ethylene, C2H4(g) −1410.97 −607,010
Ethane, C2H6(g) −1559.90 −671,080
Propylene, C3H6(g) −2058.50 −885,580
Propane, C3H8(g) −2220.00 −955,070
n-Butane, C4H10(g) −2877.10 −1,237,800
Benzene, C6H6(g) −3270.0 −1,406,000
n-Octane, C8H18(g) −5454.5 −2,345,000
n-Decane, C10H22(g) −6754.7 −2,904,000
Methyl alcohol, CH3OH(g) −764.54 −328,700
Ethyl alcohol, C2H5OH(g) −1409.30 −606,280

Source: Reprinted by permission of the publisher from Holman, J. P., 1980. Thermodynamics, third ed. McGraw-Hill, New York, p. 466
(Table 11-1).
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EXAMPLE 15.8
Determine the higher and lower heating values of methane. Note that, for the determination of the HHV and LHV, the com-
bustion reaction must occur with 100.% theoretical air and both the reactants and the products must be at the standard
reference state. For the HHV calculation, the water in the combustion products must be in the liquid phase, and for the
LHV calculation, it must be in the vapor phase.

Solution
For 100.% theoretical air, the combustion equation for methane is

CH4 +2:00
�
O2 +3:76 N2ð Þ
! CO2 + 2:00 H2Oð Þ+ 7:52 N2ð Þ

Since both the reactants and the products are at the standard reference state, we can use Eq. (15.13) to find the heat of
combustion, which is either the HHV or the LHV, depending on how the water term is handled. Then,

hR° =∑
R

ni/nfuelð Þ hf°
� �

i = hf°
� �

CH4
+ 2:00 hf°

� �
O2

+7:52 hf°
� �

N2

and, from Table 15.1, we find that

hf°
� �

CH4
= −74:873MJ/kgmoleCH4

Since O2 and N2 are the elements of the compound CH4, in their standard states (see Table 15.1), hf°
� �

O2
= hf°
� �

N2
= 0: Then,

hR° = −74:873MJ/kgmoleCH4: Similarly,

hP° =∑
P

ni/nfuelð Þ hf°
� �

i = hf°
� �

CO2
+2:00 hf°

� �
H2O ℓð Þ +7:52 hf°

� �
N2

From Table 15.1, we find that hf°
� �

N2
= 0, and

hf°
� �

CO2
= −393:522MJ/kgmoleCO2

hf°
� �

H2O gð Þ = −241:827MJ/kgmoleH2Ovapor

hf°
� �

H2OðℓÞ = −285:838MJ/kgmoleH2O liquid

Table 15.3 Mass Higher Heating Values (HHV) for Common Fuels Where Both the
Reactants and the Products Are at the SRS and the Water in the Combustion Products
Is in the Liquid Phase

Fuel

(HHV)mass

MJ/kg Btu/lbm

Hydrogen, H2(g) −142.9 −61,485
Carbon, C(s) −32,79 −14,108
Carbon monoxide, CO(g) −10.11 −4,348
Methane, CH4(g) −55.65 −23,940
Acetylene, C2H2(g) −49.98 −21,505
Ethylene, C2H4(g) −50.39 −21,679
Ethane, C2H6(g) −52.00 −22,369
Propylene, C3H6(g) −49.01 −21,085
Propane, C3H8(g) −50.45 −21,706
n-Butane, C4H10(g) −49.61 −21,341
Benzene, C6H6(g) −41.92 −18,026
n-Octane, C8H18(g) −47.85 −20,570
n-Decane, C10H22(g) −47.57 −20,451
Methyl alcohol, CH3OH(g) −23.89 −10,272
Ethyl alcohol, C2H5OH(g) −30.64 −13,180

Source: Reprinted by permission of the publisher from Holman, J. P., 1980. Thermodynamics, third ed. McGraw-Hill, New York, p. 466 (Table 11-1).
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Then,

hP°
� �

LHV = −393:522+ 2ð−241:827Þ+0 = −877:176MJ/kgmoleCH4

and

hP°
� �

HHV = −393:522+2ð−285:838Þ+0 = −965:198MJ/kgmoleCH4

Finally,

LHV = qr°ð ÞLHV = hP°
� �

LHV − hR° = −877:176− ð−74:873Þ
= −802:30MJ/kgmoleCH4

and

HHV = qr°ð ÞHHV = hP°
� �

HHV − hR° = −965:198− ð−74:873Þ
= −890:33MJ/kgmoleCH4

Note that this HHV is essentially the same as that listed in Table 15.2 for methane and that the HHV can be calculated from
the LHV using Eq. (15.12) as

HHV = LHV−
nH2O

nfuel

� �
ðhfg°ÞH2O = LHV−

nH2O

nfuel

� �
ð44:00MJ/kgmoleH2OÞ

= −802:3MJ/kgmoleCH4 −
2:00 kgmoleH2O
1:00 kgmoleCH4

� �
ð44:00MJ/kgmoleH2OÞ

= −890:3MJ/kgmoleCH4

Exercises
22. Use the methods of Example 15.8 to determine the higher heating value (HHV) of acetylene gas, C2H2(g).

Answer: HHVC2H2ðgÞ = −1299:6MJ=kgmole of C2H2(g).
23. Use the technique presented in Example 15.8 to determine the lower heating value (LHV) of propane gas, C3H8(g).

Answer: LHVC3H8ðgÞ = −2044:0MJ=kgmole of C3H8(g).
24. Repeat Example 15.8 for n-butane gas, C4H10(g). Answer: HHVC4H10ðgÞ = −2877:1MJ=kgmole of C4H10(g),

LHVC4H10ðgÞ = −2657:1MJ=kgmole of C4H10(g).

When the reactants or products are not at the standard reference state, then their enthalpies are determined from
Hess’s law by adding to the standard reference state enthalpies the change in enthalpy between the actual tem-
perature and pressure and the standard reference state temperature and pressure. Normally, we can ignore the
effect of pressure on enthalpy, so that the molar enthalpy of any compound at temperature T and pressure p is
hðT, pÞ, given by

hðT, pÞ = hf° + ½hðTÞ− hðT°Þ� (15.14)

If the material can be considered to be an ideal gas with constant specific heats over the temperature range from
the standard reference state temperature T° to the actual temperature T, then we can write

hðT, pÞ = hf° + cp T −T°ð Þ (15.15)

Otherwise, hðTÞ− hðT°Þ must be determined from a more accurate source, such as the gas tables in Thermo-
dynamic Tables to accompany Modern Engineering Thermodynamics (Table C.16c). Combining Eqs. (15.8), (15.9),
(15.10), and (15.14) gives the general formula for the heat of reaction (or combustion) of a substance not at
the standard reference state as

qr =∑
P

ni/nfuelð Þ�hf° + hðTÞ− hðT°Þ
i −∑
R

ni/nfuelð Þ�hf° + hðTÞ− hðT°Þ
i (15.16)

The use of Eq. (15.16) is illustrated in the following example.
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EXAMPLE 15.9
Compute the heat of reaction of methane when the reactants are at the standard reference state but the products are at 500.°C.
Assume that the product gases can be treated as ideal gases with constant specific heats and the combustion water is in its
vapor state.

Solution
Here, qr = hP − hR°, where, from Example 15.8, hR° = −74:873MJ/kgmoleCH4: Assuming all the components of the products
behave as ideal gases with constant specific heats, we can use Eq. (15.15) in Eq. (15.10) to find

hP =∑
P

ni/nfuelð Þ�hf° + cp T − T°ð Þ
i
= hf°
� �

CO2
+2:00 hf°

� �
H2O gð Þ +7:52 hf°

� �
N2

+
�
cp
� �

CO2
+2:00 cp

� �
H2O gð Þ + 7:52 cp

� �
N2



T −T°ð Þ

= −393:522+2:00ð−241:827Þ+0+ ½0:03719+2ð0:03364Þ
+7:52ð0:02908Þ�ð500−25Þ = −723:680MJ/kgmole CH4

where the molar specific heats are obtained from Table C.13b (note that they are converted from kJ/kgmole to MJ/kgmole
for use here). Then,

qr = −723:680− ð−74:870Þ = −648:810MJ/kgmole CH4

Exercises
25. Repeat Example 15.9 for a products temperature of 800.°C rather than 500.°C. Assume all other variables are

unchanged. Answer: qr = −552MJ=kgmole CH4.
26. Rework Example 15.9 for the case where the combustion products have been cooled to 30.0°C and the water in the

products is in the liquid state. Answer: qr = −889MJ=kgmole CH4.
27. Use the method of Example 15.9 to determine the heat of reaction of acetylene when the reactants are at the standard

reference state and the products are at 1000.°C. Answer: qr = −990MJ=kgmole C2H2.

In Example 15.9, note that, even though the nitrogen does not enter into the chemistry of the reaction, it does
enter into the thermodynamics of the reaction, because a significant portion of the heat of combustion went
into heating the nitrogen from 25.0°C to 500.°C. Thus, it is easy to see why the use of too much excess air can
reduce the net heat production of a combustion reaction and cause significant energy losses to the environment
via hot exhaust gases.

EXPLOSION LIMITS AND IGNITION TEMPERATURES
OF COMMON FUELS

Fuel burns continuously only when the amount of fuel and air present are within the explosion (or flammability) limits of the
reaction. A fuel−air mixture does not ignite when the mixture is below the lower explosion limit (LEL) or when it is above
the upper explosion limit (UEL). Both temperature and pressure affect these limits. For example, as the pressure of the mix-
ture decreases below atmospheric pressure, the UEL decreases and the LEL increases. However, as the pressure increases
above atmospheric pressure, the UEL increases but the LEL stays nearly constant. Also, as the mixture temperature increases,
the UEL increases and the LEL decreases.

The ignition temperature is the lowest combustion temperature at which more heat is generated by the combustion process
than is lost to the surroundings. A fuel−air mixture does not burn continuously if the combustion temperature is below
the ignition temperature, unless heat is supplied to the reaction from the surroundings.

Table 15.4 lists explosion limits and ignition temperatures for some common fuel−air mixtures. These LEL and UEL values
are lower and upper fuel to air ratio explosion limit percentages on a molar (or volume) basis.

Note that the LEL for hydrogen is higher than almost all the hydrocarbon fuels shown (including gasoline), making it less
dangerous from a LEL explosion point of view.
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15.8 ADIABATIC FLAME TEMPERATURE
The maximum possible combustion temperature occurs when combustion takes place inside an adiabatic (i.e.,
insulated) system. This temperature is called the adiabatic combustion temperature or the adiabatic flame tempera-
ture. In practice, though, the combustion temperature can never reach this temperature, because

1. No system can be made truly adiabatic.
2. The combustion reaction is always somewhat incomplete.
3. The combustion products ionize at high temperatures and thus lower the reaction temperature.

Nonetheless, the adiabatic flame temperature provides a useful upper bound on combustion temperatures and
can be used to estimate the thermal effects of combustion on material physical properties and exhaust gas states.

There are actually two types of adiabatic flame temperature, depending on whether the combustion process is
carried out under constant volume or constant pressure. The constant volume adiabatic flame temperature is the
temperature resulting from a complete combustion process that occurs inside of a closed, rigid vessel with no
work, heat transfer, or changes in kinetic or potential energy. The constant pressure adiabatic flame temperature is
the temperature that results from a complete combustion process that occurs at a constant pressure (like an
open flame) with no heat transfer or change in kinetic or potential energy. The constant pressure adiabatic
flame temperature is lower than the constant volume adiabatic flame temperature, because some of the combus-
tion energy is used to change the volume of the reactants and thus generates work.

For an open, constant pressure, adiabatic system, qr = 0 and Eq. (15.9) reduces to hR = hP, then,

∑
R

ni/nfuelð Þ½hf° + hðTÞ− hðT°Þ�i =∑
P

ni/nfuelð Þ½hf° + hðTAÞ− hðT°Þ�i

where TA is the adiabatic flame temperature and T is the temperature of the reactants. If the reactants are all at
the standard reference state and the products can all be treated as ideal gases with constant specific heats over
the temperature range from T° to TA, then the previous equation reduces to

∑
R

ni/nfuelð Þ hf°
� �

i =∑
P

ni/nfuelð Þ�hf° + cp TA −T°ð Þ
i
Now, let us suppose that all of the reactants except the fuel are elements; then, their hf° values are all zero. This
equation can now be solved for TA as

Open system, constant pressure, adiabatic, flame temperature when the reactants are at the SRS:

TA��open
system

= T° +

hf°
� �

fuel −∑
P

ni/nfuelð Þ hf°
� �

i

∑
P

ni/nfuelð Þ cpi
� �

avg

(15.17)

Equation (15.17) represents the only method for calculating the adiabatic flame temperature directly. It requires
ideal gas behavior, which is usually reasonable, and it requires constant specific heats over the range T° = 25.0°C

Table 15.4 Explosion Limits and Ignition Temperatures for Common Fuel–Air Mixtures

Substance LEL (%) UEL (%) Ignition Temp. (°F)

Carbon monoxide (CO) 12.5 74.0 1128

Hydrogen (H2) 4.00 75.0 968

Methane (CH4) 5.00 15.0 1301

Acetylene (C2H2) 2.50 81.0 763–824
Ethylene (C2H4) 2.75 28.6 914

Ethane (C2H6) 3.00 12.5 968–1166
Propylene (C3H6) 2.00 11.1 856

Propane (C3H8) 2.10 10.1 871

n-Butane (C4H10) 1.86 8.4 761

Gasoline 1.12 6.75 495
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to TA, which is not so reasonable unless average values are used (as noted in the equation). Average molar specific
heats for typical combustion products in the range 25 to 3000°C are given in Table 15.5. This range covers most
adiabatic flame temperatures.

In the case of a constant volume adiabatic closed system (Table 15.6), Eq. (15.7) tells us that uP = uR, and if the
reactants are at the SRS and the products can again be treated as ideal gases with constant (or average) specific
heats, it is easy to show that the adiabatic flame temperature in this system is given by

Closed system constant volume adiabatic flame temperature when the reactants at the SRS:

TA��closed
system

= T° +

uf°
� �

fuel −∑
R

ni/nfuelð Þhf°−ℜT°
�
∑
R

ni/nfuelð Þ−∑
P

ni/nfuelð Þ
	

∑
P

ni/nfuelð Þ cvið Þavg
(15.18)

where we again assume that the reactants contain only the fuel and its combustion elements. Also, we use the
definition of enthalpy to find

uf° = hf°− pvð Þ° = hf°−ℜT°

for the ideal gas products and the nonfuel reactants, where T° is the standard reference state absolute tempera-
ture (298 K or 537 R). Further, for most liquids and solids at the standard reference state, we can use the
approximation uf°

� �
fuel ≈ hf°

� �
fuel:

Table 15.6 Constant Volume Adiabatic Flame Temperatures of Common Hydrocarbon Fuels
when the Reactants Enter the Combustion Process at 25°C (77°F) and 1 Atm Pressure
and the Products Leave the Process at 1 Atm Pressure. The Combustion Is Stoichiometric
with No Excess Air

Fuel Oxidizer Tad (°C) Tad (°F)

Acetylene (C2H2)
Air 2500 4532

O2 3480 6296

Butane (C4H10)
Air 1970 3578

O2 3100 5612

Hydrogen (H2)
Air 2210 4010

O2 3200 5792

Methane (CH4)
Air 1950 3542

O2 2810 5090

Propane (C3H8)
Air 1980 3596

O2 2526 4579

MAPP gas (C3H4)
Air 2010 3650

O2 2927 5301

Wood Air 1980 3596

Table 15.5 Molar Specific Heats Averaged over the Temperature Range from 25 to 3000°C
(77 to 5400°F)

Substance

cpð Þavg cvð Þavg
kJ/(kgmole ·K) Btu/(lbmole ·R) kJ/(kgmole ·K) Btu/(lbmole ·R)

CO2 (g) 58.18 13.90 49.87 11.91

H2O (g) 42.50 10.15 34.19 8.17

O2 (g) 32.99 7.88 24.68 5.89

N2 (g) 31.18 7.45 22.87 5.46
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EXAMPLE 15.10
For liquid octane, C8H18 ℓð Þ, determine the following adiabatic flame temperatures when the reactants are in the standard
reference state (25°C and 0.100 MPa) and the combustion products are assumed to be ideal gases:

a. The open system (constant pressure) adiabatic flame temperature burning with 100.% theoretical air.
b. The open system (constant pressure) adiabatic flame temperature burning with 200.% theoretical air.
c. The closed system (constant volume) adiabatic flame temperature burning with 100.% theoretical air.

Solution
a. The combustion equation for octane burning with 100.% theoretical air is

C8H18 + 12:5
�
O2 +3:76 N2ð Þ
! 8 CO2ð Þ+ 9 H2Oð Þ+47 N2ð Þ

Since the products can be considered to be ideal gases, we can use Eq. (15.17) and the average specific heat values given
in Table 15.5. From Table 15.1, we find,

hf°
� �

fuel = hf°
� �

C8H18ðℓÞ = −249:952MJ/kgmole

hf°
� �

CO2
= −393:522MJ/kgmole

hf°
� �

H2OðgÞ = −241:827MJ/kgmole

and

hf°
� �

N2 = 0because it is an element

The open system constant pressure adiabatic flame temperature is given by Eq. (15.17), where

∑
P

ni/nfuelð Þ hf°
� �

i = 8 hf°
� �

CO2
+9 hf°
� �

H2O
+47 hf°

� �
N2

= 8 −393:522ð Þ+9 −241:827ð Þ+47 0ð Þ
= −5325MJ/kgmole of C8H18

and

∑
P

ni/nfuelð Þ cpi
� �

avg = 8
�
cp
� �

CO2



avg + 9

�
cp
� �

H2O



avg + 47

�
cp
� �

N2



avg

= 8 0:05818ð Þ+9 0:04250ð Þ+ 47 0:03118ð Þ
= 2:313MJ/

�
kgmole of C8H18ð Þ . K


Then, Eq. (15.17) gives

TA�� open
system

= 25:0°C+
−249:952MJ/kgmole fuel− −5325MJ/kgmole fuelð Þ

2:313MJ/ðkgmole fuel . KÞ = 2170°C = 3940°F

b. The reaction equation when 200.% theoretical air is used is

C8H18 + 2 12:5ð Þ�O2 + 3:76 N2ð Þ
! 8 CO2ð Þ+9 H2Oð Þ+12:5 O2ð Þ+94 N2ð Þ

The numerator in Eq. (15.17) is the same here as it was in part a, since we only added more elements to the reaction
side of the equation. The denominator represents the energy required to raise the temperature of all the product gases
and is consequently different from part a. In this case,

∑
P

ni/nfuelð Þ cpi
� �

avg = 8
�
cp
� �

CO2



avg +9

�
cp
� �

H2O



avg +12:5

�
cp
� �

O2



avg + 94

�
cp
� �

N2



avg

= 8 0:05818ð Þ+ 9 0:04250ð Þ+12:5 0:03299ð Þ+94 0:03118ð Þ
= 4:19MJ/

�
kgmole of C8H18ð Þ . K


Then, Eq. (15.17) gives

T
A��� opensystem

200% TA

=
−249:952− ð−5325Þ

4:19
+25:0 = 1240°C = 2260°F

(Continued )
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EXAMPLE 15.10 (Continued)

Thus, the addition of 100.% excess air, a practice sometimes necessary to get complete combustion in high-velocity
combustion processes, has the effect of reducing the adiabatic combustion temperature by nearly a factor of 2.

c. For a closed, constant volume system, the adiabatic flame temperature is given by Eq. (15.18). Since the fuel in this
example is a liquid, we can assume uf°

� �
fuel ≈ hf°

� �
fuel, and Eq. (15.18) becomes

T
A
�� closed
system

≈T° +

hf°
� �

fuel −∑
R

ni/nfuelð Þhf°−ℜT°
�
∑
R

ni/nfuelð Þ−∑
P

ni/nfuelð Þ
	

∑
P

ni/nfuelð Þ cvið Þavg

The numerator is

hf°
� �

fuel −∑
R

ni/nfuelð Þhf°−ℜT°
�
∑
R

ni/nfuelð Þ−∑
P

ni/nfuelð Þ
	

= −249:953− ð−5324:62Þ−0:0083143ð25:0+273Þ½1+12:4×4:76− ð8+ 9+ 47Þ�
= 5083:34MJ/ðkgmole of C8H18Þ

and the denominator is

∑
P

ni/nfuelð Þ cvið Þavg = 8
�
cvð ÞCO2



avg +9

�
cvð ÞH2O



avg +47

�
cvð ÞN2



avg

= 8 0:04987ð Þ+ 9 0:03419ð Þ+47 0:02287ð Þ
= 1:782MJ/½ kgmole of C8H18ð Þ . K�

Then, the constant volume adiabatic flame temperature is approximately

T
A
�� closed
system

≈ 25:0+
5083:34MJ/ðkgmole of C8H18Þ
1:782MJ/½ðkgmole of C8H18Þ . K� = 2880°C = 5220°F

Note that the constant volume adiabatic flame temperature in Example 15.10 is higher than the constant pressure adiabatic
flame temperature due to the energy used in the work performed in a constant pressure process, that is, pðV2 −V1Þ:

Exercises
28. Determine the open system constant pressure adiabatic flame temperature for the liquid octane in Example 15.10 when

the combustion occurs with 400.% theoretical air. Answer: TA= 664°C.
29. Determine the open system constant pressure adiabatic flame temperature for the liquid octane in Example 15.10 when

the combustion occurs with 800.% theoretical air. Answer: TA= 353°C.
30. Determine the closed system constant volume adiabatic flame temperature for the liquid octane in Example 15.10 when

the combustion occurs at 200% theoretical air. Answer: TA= 1610°C.

An alternate and somewhat more accurate approach to finding the adiabatic flame temperature is to use the gas
tables in Thermodynamic Tables to accompany Modern Engineering Thermodynamics (Table C.16c) to determine the
thermodynamic properties of CO2, H2O, O2, N2, and so forth. However, since TA and the other thermodynamic
properties at this state are unknown, TA must be determined by trial and error as follows:

1. hR is calculated from Eq. (15.9) utilizing Eq. (15.14) or (15.15) if necessary.
2. A trial value for TA is then assumed.
3. hP is the calculated from the hf°

� �
P values and the values of hðTÞ− hðT°Þ in Table C.16c.

4. If the value of hP calculated in step 3 equals that of hR calculated in step 1, then the correct value of TA is
assumed in step 2. Otherwise, a new TA value is chosen and the process is repeated until hP ≈ hR:

This manual iteration scheme is rather tedious, and inaccuracies are introduced by the linear interpolations in
Table C.16c required to obtain a solution. These inaccuracies can be eliminated by programming accurate molar
enthalpy formulae for the products into a microcomputer. The computer can then be programmed to calculate
the heat of combustion and iterate to find the adiabatic flame temperature in a small fraction of the time
required to carry out these calculations manually. Tables C.14 give accurate correlations for the variation in cp
with temperature for various substances. Using this information, we can determine accurate values for

hðTÞ− hðT°Þ =
Z T

T°
cp dT
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For example, the reaction for the combustion of liquid octane with Y % theoretical air is

C8H18 + ðY/100Þ12:5�O2 + 3:76 N2ð Þ
! 8 CO2ð Þ+ 9 H2Oð Þ+ ðY/100−1ÞO2 + 47ðY/100Þ N2ð Þ
To simplify matters, assume that, before the combustion, the reactants are at the SRS. Then, hðTRÞ= hðT°Þ and
hðTRÞ− hðT°Þ = 0 for all the reactants. The heat produced by this reaction when the combustion products are at
temperature TP is

qr =∑
R

ni/nfuelð Þðhf°Þi −∑
P

ni/nfuelð Þ½hf° + hðTPÞ− hðT°Þ�i

= ðhf°ÞC8H18
− 8½hf° + hðTPÞ− hðT°Þ�CO2

−9½hf° + hðTPÞ− hðT°Þ�H2O

− ðY/100−1Þ½hf° + hðTPÞ− hðT°Þ�O2
−47ðY/100− 1Þ½hf° + hðTPÞ− hðT°Þ�N2

The molar specific heat equations in kJ/(kgmole ·K), accurate to at least 0.43% over the range of 300 to 3500 K,
can be found in Table C.14b in Thermodynamic Tables to accompany Modern Engineering Thermodynamics as

Carbondioxide: ðcpÞCO2
= −3:7357+30:529θ0:5 −4:1034θ+0:024198θ2

Water: ðcpÞH2O = 143:05−183:54θ0:25 +82:751θ0:5 −3:6989θ

Oxygen: ðcpÞO2
= 37:432+ 0:020102θ1:5 − 178:57θ−1:5 +236:88θ−2

Nitrogen: ðcpÞN2
= 39:060− 512:79θ−1:5 +1072:7θ−2 −820:40θ−3

where θ° = T°/100 = 298/100 = 2:98, and θP = Tp/100. Integrating these equations from the SRS (θ°) to the
temperature of the combustion products (θP) gives

½hðTPÞ− hðT°Þ�CO2
= 100 ×

Z θP

θ°
ðcpÞCO2

dθ

= −373:57 θP − θ°ð Þ+2035:3
�
θPð Þ1:5 − θ°ð Þ1:5


− 205:17
�ðθPÞ2 − ðθ°Þ2
+ 0:8066

�ðθPÞ3 − ðθ°Þ3

½hðTPÞ− hðT°Þ�H2O = 100 ×

Z θP

θ°
ðcpÞH2Odθ

= 14,305: θP − θ°ð Þ−14,683:2
�
θPð Þ1:25 − θ°ð Þ1:25


+5516:7
�ðθPÞ1:5 − ðθ°Þ1:5
−184:95

�ðθPÞ2 − ðθ°Þ2

½hðTPÞ− hðT°Þ�O2

= 100 ×
Z θP

θ°
ðcpÞO2

dθ

= 3743:2 θP − θ°ð Þ+ 0:80408
�
θPð Þ2:5 − θ°ð Þ2:5


+35:714:
�ðθPÞ−0:5 − ðθ°Þ−0:5
− 23,688

�ðθPÞ−1 − ðθ°Þ−1

½hðTPÞ− hðT°Þ�N2

= 100 ×
Z θP

θ°
ðcpÞN2

dθ

= 3906:0 θP − θ°ð Þ+ 102,558
�
θPð Þ−1/2 − θ°ð Þ−1/2


− 107,270:
�ðθPÞ−1 − ðθ°Þ−1
+ 41,020

�ðθPÞ−2 − ðθ°Þ−2

To simplify the algebra, we define the following terms:

A = θP − θ° B = ðθPÞ1:25 − ðθ°Þ1:25 C = ðθPÞ1:5 − ðθ°Þ1:5
D = ðθPÞ2 − ðθ°Þ2 E = ðθPÞ2:5 − ðθ°Þ2:5 F = ðθPÞ3 − ðθ°Þ3

G = ðθPÞ−1/2 − ðθ°Þ−1/2 H = ðθPÞ−1 − ðθ°Þ−1 I = ðθPÞ−2 − ðθ°Þ−2
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Then, the heat of the combustion reaction becomes

qr =∑
R

ni/nfuelð Þðhf°Þi −∑
P

ni/nfuelð Þ½hf° + hðTPÞ− hðT°Þ�i

= ðhf°ÞC8H18
− 8½hf°− 373:57A+ 2035:3C−205:17D+0:8066F�CO2

− 9½hf° + 14,305:A−14,683:2B+5516:7C− 184:95D�H2O

− ðY/100− 1Þ½3743:2A+ 0:80408E+35,714:G−23,688H�O2

− 47ðY/100−1Þ½3906:0A+102,558G− 107270:H+41,020I�N2

From Table 15.1, we find

hf°
� �

C8H18ðℓÞ = −249:952MJ/kgmole, hf°
� �

CO2
= −393:522MJ/kgmole,

hf°
� �

H2OðgÞ = −241:827MJ/kgmole, and hf°
� �

N2
= hf°
� �

O2
= 0because they are elements:

While these equations are difficult to handle using a hand calculator, they are easily solved using an equation
solver or a spreadsheet. The spreadsheet in Figure 15.7 illustrates the process for the combustion of liquid
octane with 200% theoretical air. Typing control + tilde (Ctrl and Shift + ~) reveals the details, shown in
Figure 15.8.

FIGURE 15.7
Solving the equations with a spreadsheet.
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15.9 MAXIMUM EXPLOSION PRESSURE
The maximum possible internal pressure produced by combustion in a closed, rigid system is the pressure that
occurs at the adiabatic flame temperature. It is the pressure that occurs when the system is insulated or when
the combustion reaction occurs too fast for significant heat transfer to occur (as in explosions). This maximum
pressure can be estimated from the ideal gas equation of state as

Maximum explosion pressure:

pmax
explosion

=
npℜTA
Vp

(15.19)

where np is the total number of moles of product present in the volume, Vp, and TA is the adiabatic flame tem-
perature of the reaction. Even though the adiabatic flame temperature is never reached in practice, this value of
pmax is useful as an upper bound in explosion safety calculations.

FIGURE 15.8
Accessing the details.

CRITICAL THINKING

At the SRS, nitroglycerin (C3H5O9N3) is a highly unstable liquid that explodes 25 times faster and with 3 times the energy
of gunpowder. In 1867, Alfred Bernhard Nobel (1833–1896) found that clay soaked with nitroglycerin was much more
stable and less sensitive to shock than pure nitroglycerin. He called this safer form of nitroglycerin dynamite and manufac-
tured it and other explosives for many years. His company was very successful, and with some of the profits, he founded
the Nobel Prizes in physics, chemistry, literature, physiology or medicine, and peace. Would the maximum explosion pres-
sure of nitroglycerin be 25 times higher than the explosion pressure of an equal mass of gunpowder?
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EXAMPLE 15.11
We want to measure the heat of combustion of liquid octane by burning
it in the rigid, sealed, adiabatic bomb calorimeter shown in Figure 15.9.
The internal volume is of the combustion bomb is 50.0 × 10−3 ft3. We
insert 10.0 grams of fuel and fill the bomb with enough pure oxygen to
have 50.0% excess oxygen for the combustion reaction. Determine the
maximum possible explosion pressure inside the bomb when the fuel is
ignited.

Solution
The molecular mass of octane ðC8H18Þ is 114 kg/kgmole, so at 10.0 g
(0.0100 kg), it contains

ð0:0100 kgÞ/ 114 kg/kgmoleð Þ = 8:77× 10−5 kgmole

The reaction equation for 50.0% excess pure oxygen is

C8H18 +1:5 12:5ð Þ O2ð Þ ! 8 CO2ð Þ+ 9 H2Oð Þ+ 6:25 O2ð Þ
and 8.77 × 10−5 kgmole of octane yields

8:77×10−5
� �

8+9+ 6:25ð Þ = 2:00× 10−3 kgmole of product

or

2:00×10−3 kgmole
� �

2:2046 lbmole/kgmoleð Þ = 4:41×10−3 lbmole of product

We can estimate the adiabatic flame temperature for this closed system reaction from Eq. (15.18) using the temperature-
averaged molar constant volume specific heats found in Table 15.6:

TA closed
system

��� = T° +

hf°
� �

fuel −∑
R

ni/nfuelð ÞℜT°−∑
R

ni/nfuelð Þðhf°−ℜT°Þi

∑
P

ni/nfuelð Þ cvið Þavg

Since the fuel is in liquid form at a low pressure here, we use the approximation ð�u�f Þfuel ≈ hf°
� �

fuel: Since
ℜT° = ð0:0083143Þð298:15Þ = 2:4789MJ/kgmole is a constant, the numerator of Eq. (15.18) becomes

− 249:952− 1:5 12:5ð Þ 2:4789ð Þ−8 −393:522− 2:4789ð Þ
− 9 −241:827−2:4789ð Þ− 6:25 0−2:4789ð Þ = 5090MJ

and the denominator is

8ð0:04987Þ+9ð0:03419Þ+ 6:25ð0:02468Þ = 0:861MJ/K

Then, Eq. (15.18) gives

TAð Þbomb
calorimeter

= 25:0+ 5090
0:861

= 5930°C = 6210K = 11,200R

and Eq. (15.19) gives

Pmax =
npℜTA
Vp

=
4:41×10−3 lbmoleð Þ�1545:35 ft . lbf/ lbmole . Rð Þ
 11:2× 103Rð Þ

50:0× 10− 3ft3
� �

144 in2/ft2
� � = 10,600psi

Exercises
31. Determine the maximum explosion pressure in Example 15.11 for a bomb volume of 10.0 × 10−3 ft3 instead of 50.0 ×

10−3 ft3. Assume all the remaining variables are unchanged. Answer: pmax explosion= 53,900 psi.
32. If the amount of fuel used in the bomb calorimeter in Example 15.11 is 50.0 grams instead of 10.0 grams, determine

the maximum explosion pressure in the bomb. Assume all the remaining variables are unchanged.
Answer: pmax explosion = 53,900 psi.

33. If the bomb calorimeter in Example 15.11 is filled with 100.% excess oxygen instead of 50.0% excess oxygen, determine
the maximum explosion pressure in the bomb. Assume all the remaining variables are unchanged.
Answer: pmax explosion = 11,700 psi.

T = TA 
p = pmax

FIGURE 15.9
Example 15.11.

620 CHAPTER 15: Chemical Thermodynamics



More accurate calculations that include the energy-absorbing effects of chemical dissociation of the products at
high temperatures show that the maximum adiabatic flame temperature of octane with pure oxygen is only
about 3100 K (5580 R). Therefore, the maximum explosion temperature calculated in Example 15.11 is high by
a factor of about 2, and the actual maximum pressure inside the bomb calorimeter is closer to 5400 psi. Gas
pressures at this level can be very dangerous (especially at high temperatures) and the calorimeter must be
designed to withstand them.

15.10 ENTROPY PRODUCTION IN CHEMICAL REACTIONS
When the entropy rate balance is applied to a steady state, steady flow, open system combustion or reaction
chamber with isothermal boundaries at temperature Tb, the total entropy production rate for the reaction is

_Sp
� �

r =∑
out

_ms−∑
in

_ms− _Qr/Tb

=∑
out

_ns−∑
in

_ns− _Qr/Tb

where _Qr is the heat transport rate of the reaction. In most instances, the products exit the system mixed
together in a single flow stream, but the reactants can enter the system either (a) premixed in a single flow
stream or (b) in individual flow streams. If the reactants enter through separate flow streams, each carrying a
pure substance, then the entropy production rate of the mixing process that must occur inside the system before
the reaction can occur is included in the previous equation, which then has the form

_SP
� �

r = _nPsP −∑
R

_nisi − _Qr/Tb

On the other hand, if the reactants enter the system already mixed together in a single flow stream, then this
equation becomes

_SP
� �

r = _nPsP − _nRsR − _Qr/Tb

where the mixture molar specific entropies are given in Table 12.3 as

sP =∑
P

χ îsi and sR =∑
R

χi ŝi

where χi is the mole fraction of substance i, and ŝ is the partial molar specific entropy, defined in Chapter 12. If
both the reactants and the products can be considered mixtures of ideal gases that obey the Gibbs-Dalton ideal
gas mixture law discussed in Chapter 12, then si = ŝi, the molar specific entropy of gas i. If one or more of the reac-
tants or products is a liquid or a solid or if the mixture does not obey the Gibbs-Dalton ideal gas mixture law,
then a much more complex analysis must be carried out.

Assuming both the reactants and the products to be premixed ideal gases, the total entropy production rate of
the reaction is

_SP
� �

r = _nP∑
P

χisi − _nR∑
R

χisi − _Qr/Tb

=∑
P

_nisi −∑
R

_nisi − _Qr/Tb

WHAT IS C-4?

C-4 (or Compound 4) is an off-white plastic explosive that feels like modeling clay. About 91% of C-4 is an explosive
called RDX (C3H6N6O6) with the remainder being plasticizer and binder. C-4 is 1.34 times as explosive as trinitrotoluene
(TNT) and detonates with a pressure wave of about 8040 m/s (26,400 ft/s or about 18,000 mph).

C-4 is actually very stable. It can be detonated only by a combination of extreme heat and a shockwave brought about by
inserting and firing a detonating device. It cannot be detonated by a gunshot, by dropping it onto a hard surface, or even
by blowing it up. When ignited with a flame, C-4 burns slowly rather than explodes. Even though soldiers knew that burn-
ing C-4 produces poisonous fumes, during the Vietnam War, they used small amounts of it as fuel for cooking.
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and dividing through by the fuel molar flow rate _nfuel gives _SP
� �

r/ _nfuel = ðSPÞr/nfuel = sPð Þr , where sPð Þr is the specific
entropy production per unit mole of fuel consumed:

sPð Þr =∑
P

ni/nfuelð Þsi −∑
R

ni/nfuelð Þsi − qr/Tb (15.20)

In the case of a closed system with an isothermal boundary, the entropy balance equation gives the total entropy
production of the reaction as (see Eq. (7.77))

ðSPÞr = ðS2 − S1Þr − 1ðQrÞ2/Tb
= nPsP − nRsR − Qrð Þ/Tb

where the reactants and products are assumed to be mixed at the beginning and end of the reaction, respec-
tively. Again assuming the reactants and the products to be ideal gases and dividing through by the number of
moles of fuel present in the reactants gives

ðSPÞr/nfuel = sPð Þr =∑
P

ni/nfuelð Þsi −∑
R

ni/nfuelð Þsi − qr/Tb

which is identical to Eq. (15.20). This is as it should be, since the specific entropy production per unit mole of
fuel consumed should depend on only the reaction itself and not the analysis frame (i.e., open or closed) used
to determine it.

As in the case of enthalpy discussed earlier, we need a common zero point reference state from which to mea-
sure the entropies of all of the components in the reaction. Enthalpy and internal energy have no physically
well-defined absolute zero values. Even at absolute zero temperature, it can be shown that the enthalpy and
internal energy are not generally zero. Entropy, on the other hand, does have an absolute zero point dictated by
a state of absolutely perfect molecular order. This is the postulate called the third law of thermodynamics.

The primary value of the third law of thermodynamics as far as we are concerned is that it gives us a reference
state from which we can construct an absolute entropy scale. This means that we now have three thermody-
namic properties with well-defined absolute zero value states: pressure, temperature, and entropy. We assume
that all the substances we deal with have ordered crystalline, rather than amorphous solid, phases at absolute
zero temperature. Therefore, we can compute the absolute molar specific entropy of an incompressible substance
at any pressure and temperature from Eq. (7.32) in Chapter 7 as

�
s p,Tð Þabs



incompressible
substance

=
Z T

°
c dT/Tð Þ (15.21)

where c is the molar specific heat and T is in absolute temperature units (K or R). Similarly, the absolute molar
specific entropy in SI units of an ideal gas at any pressure and temperature can be determined from Eq. (7.35) in
Chapter 7 as

�
s p, Tð Þabs



ideal gas =

Z T

°
cP dT/Tð Þ−ℜ ln p/0:1 MPað Þ (15.22)

where T is in K and p is in MPa. Note that both c and cp ! 0 as T ! 0 therefore, Eqs. (15.21) and (15.22) can-
not be integrated by assuming constant specific heats in the temperature range from 0 to T.

WHAT IS THE THIRD LAW OF THERMODYNAMICS?

Unlike the first two laws of thermodynamics, the third law is not a statement about conservation or production. It was
developed from quantum statistical mechanics theories in 1906 by Walther Hermann Nernst (1864–1941), for which he
won the 1920 Nobel Prize in Chemistry. Basically, it states that the entropy of a perfect crystalline substance vanishes at
absolute zero temperature and is independent of the pressure at that point. That is,

lim
T!0

ðSÞperfect
crystal

= ∂S
∂p

� �����
T=0

= 0

Therefore, if we choose absolute zero temperature and any convenient pressure as a reference state for an entropy scale, we
have produced an absolute entropy scale (i.e., one with an absolute zero point). A pressure of 0.1 MPa (about 1 atm) is
usually chosen for the reference state pressure. Consequently, we construct an absolute entropy scale from the point S = 0
at 0.1 MPa and 0 K.
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Since all of the enthalpy values used thus far in this chapter are based on a standard reference state of T° = 25.0°C
and p° = 0.100 MPa, it would be convenient to be able to shift our absolute entropy scale to this reference state,
T °. To do this, we define s° to be the absolute molar specific entropy at the standard reference state and use
Eq. (7.35) with p= p° = constant to obtain

s° = s p°, T°ð Þabs =
Z T°

°
cP dT/Tð Þ

Values for the s° of various compounds can be found in Table 15.7. The absolute molar specific entropy at any
other state at pressure p and temperature T is given by

s p, Tð Þabs = s° +Δsðp° ! p, T° ! TÞ
where Δs represents the change in molar specific entropy between the state at (p°, T°) and that at (p, T). For an
incompressible substance, this becomes

�
s p, Tð Þabs



incompressible
substance

= s° +
Z T

T°
c dT/Tð Þ

and for an ideal gas it becomes

�
sðp, TÞabs



ideal
gas

= s° +
Z T

T°
cP dT/Tð Þ−ℜ ln p/p°ð Þ

If these substances have constant (or averaged) specific heats in the range of T° to T, then these equations can
be integrated to give

�
s p, Tð Þabs



incompressible
substance

= s° + c ln T/T°ð Þ (15.23)

and

½sðp,TÞabs�idealgas
= s° + cp ln T/T°ð Þ−ℜ ln p/p°ð Þ (15.24)

Table 15.7 Molar Specific Absolute Entropy and Molar Specific Gibbs Function of Formation
at 25.0°C and 0.100 Mpa

Substance

so go
f

kJ/(kgmole ·K) Btu/(lbmole ·R) MJ/kgmole Btu/lbmole

Carbon monoxide, CO 197.653 47.219 −137.150 −59,003
Carbon dioxide, CO2 213.795 52.098 −394.374 −169,664
Water, H2O(g) 188.833 45.132 −228.583 −98,333
Water, H2O(ℓ) 70.049 16.742 −237.178 −102,036
Methane, CH4 186.256 44.516 −50.751 −21,834
Acetylene, C2H2 200.958 48.030 +2011.234 +90,015

Ethylene, C2H4 2111.548 52.473 +68.207 +29,343

Ethane, C2H6 2211.602 54.876 −32.777 −14,101
Propane, C3H8 270.019 64.361 −23.316 −10,031
Butane, C4H10 310.227 74.146 −16.914 −7,276
Octane, C8H18(g) 466.835 111.576 +16.859 +7,253

Octane, C8H18(ℓ) 360.896 86.256 +6.940 +2,986

Carbon, CðsÞ 5.740 1.372 0 0

Oxygen, O2(g) 205.138 411.029 0 0

Hydrogen, H2(g) 130.684 31.234 0 0

Nitrogen, N2(g) 191.610 45.796 0 0

Source: Van Wylen, G. J., Sonntag, R. E., 1976. Fundamentals of Classical Thermodynamics, SI Version, second ed. Wiley, New York, p. 496
(Table 12.3). Copyright © 1976 John Wiley & Sons. Reprinted by permission of John Wiley & Sons. Data on C, O2, H2, and N2 are from the
Journal of Physical and Chemical Reference Data, 11, Suppl. 2 (1982). Used with permission.
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In the case of mixtures of ideal gases that obey the Gibbs-Dalton ideal gas mixture law, the absolute molar spe-
cific entropy of chemical species i, si, needed for the entropy balance of Eq. (15.20) is given by

si = si° +
Z T

T°
cpiðdT/TÞ−ℜ ln pi/p°ð Þ (15.25)

and, when cpi is constant (or averaged) over T° to T,

si = si° + cpi ln T/T°ð Þ−ℜ ln pi/p°ð Þ (15.26)

where pi is the partial pressure of chemical species i in the mixture.

Accurate integrated values can be found for si through the use of Table C.16c in Thermodynamic Tables to accom-
pany Modern Engineering Thermodynamics. Note that, in this table, we use the condensed notation

ϕi = si° +
Z

cpi dT/Tð Þ

so that Eq. (15.25) reduces for use with Table C.16c to

si = ϕi −ℜ ln pi/p°ð Þ (15.27)

Alternatively, a computer program could be easily written to calculate accurate integrated values for si:

The partial pressure pi of component i in the mixture is determined from the mixture composition via Eq.
(12.23) as

pi = χipm = wi Mm/Mið Þpm
where χi is the mole fraction, wi is the mass (or weight) fraction, Mi is the molecular mass of chemical species i
in the mixture, Mm is the equivalent molecular mass of the mixture, and pm is the total pressure of the mixture.

EXAMPLE 15.12
Calculate the entropy produced per mole of fuel when methane is burned with 100.% theoretical air. The reactants are pre-
mixed at 25.0°C at a mixture total pressure of 0.100 MPa, and the products are at 200.°C at a total pressure of 0.100 MPa. The
molar heating value of methane under these conditions with the water of combustion in the vapor phase is −134.158 MJ per
kgmole of methane. Assume constant specific heat ideal gas behavior for all the combustion components.

Solution
Equation (15.20) gives the required entropy production as

sPð Þr =∑
P

ni/nfuelð Þsi −∑
R

ni/nfuelð Þsi − qr/Tb

where we are given qr = −134:158MJ/kgmole and we assume that Tb = 200. + 273.15 = 473 K. The reaction equation for
100.% theoretical air is

CH4 +2½O2 +3:76ðN2Þ� ! CO2 +2ðH2OÞ+7:52ðN2Þ
The partial pressures of the reactants can then be found from Eq. (12.23) as

pCH4 = nCH4 /nRð Þpm =
�
1/ð1+2+ 7:52Þ
ð0:100Þ = ð1/10:52Þð0:100Þ

= 9:51 kPa
pO2 = 2/10:52ð Þ 0:100ð Þ = 19:0 kPa
pN2 = 7:52/10:52ð Þ 0:100ð Þ = 71:5 kPa

and the partial pressures of the products are

pCO2 = nCO2 /nPð ÞPm = 1/10:52ð Þ 0:100ð Þ = 9:51 kPa
pH2O = 2/10:52ð Þ 0:100ð Þ = 19:0 kPa
pN2 = 7:52/10:52ð Þ 0:100ð Þ = 71:5 kPa

Now,

∑
R

ni/nfuelð Þsi = sCH4 +2:00 sO2ð Þ+7:52 sN2ð Þ

where, from Eq. (15.26) with T= 298 K, and using Table 15.7,
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sCH4 = sCH4° −ℜ ln
�ðpCH4 inMPaÞ/ð0:100MPaÞ


= 186:256− 8:3143 ln 0:0951ð Þ
= 205:8KJ/ kgmole . Kð Þ

sO2 = 205:138− 8:3143 ln 0:190ð Þ
= 218:9 kJ/ kgmole . Kð Þ

sN2 = 191:610− 8:3143 ln 0:715ð Þ
= 194:4 kJ/ kgmole . Kð Þ

Then,

∑
R

ðni/nfuelÞsi = 205:8+2ð218:9Þ+ 7:52ð194:4Þ
= 2100 kJ/ðkgmole . KÞ

Also, for the products,

∑
P

ðni/nfuelÞsi = sO2 +2ðsH2OÞ+7:52ðsN2Þ

where, again from Eq. (15.26) with T= 473 K and using Table 15.7,

sCO2 = s°CO2 + ðcpÞCO2
ln 473

298

� �
−ℜ ln

�ðpCO2 inMPaÞ/ð0:100MPaÞ
� �
= 213:795+37:19 ln 473

298

� �
−8:3143ð ln 0:0951Þ

= 250:5 kJ/ðkgmole . KÞ
sH2O = 188:833+33:64 ln 473

298

� �
−8:3143ð ln 0:190Þ

= 218:2 kJ/ðkgmole . KÞ
and

sN2 = 191:610+ 29:08 ln 473
298

� �
− 8:3143ðln 0:715Þ

= 207:8 kJ/ðkgmole . KÞ
Then,

∑
p

ni/nfue1ð Þsi = 250:5+2ð218:2Þ+7:52ð207:8Þ
= 2250 kJ/ðkgmole . KÞ

Finally, the desired result is

ðspÞr = 2250−2100− −134,158/473ð Þ
= 434 kJ/ðkgmole . KÞ

Only about one third of the value of ðspÞr here is due to the reaction itself; the remaining two thirds come from the asso-
ciated heat transfer. Note that ðspÞr > 0, as required by the second law of thermodynamics.

Exercises
34. Determine the molar specific entropy produced in Example 15.12 if the temperature of the surface of the system

where the heat transfer occurs Tb is 20.0°C rather than 200.°C. Assume all the remaining variables are unchanged.
Answer: ðspÞr = 602 kJ/(kgmole ·K).

35. If the temperature of the products in Example 15.12 is 500.°C instead of 200.°C, determine the specific molar entropy
production for this reaction. Assume all the remaining variables are unchanged (including Tb). Answer: ðspÞr = 586 kJ/
(kgmole ·K).

36. Determine the specific molar entropy production in Example 15.12 if the pressure of the products of combustion is
0.200 MPa instead of 0.100 MPa. Answer: ðspÞr = 488 kJ/(kgmole ·K).

15.11 ENTROPY OF FORMATION AND GIBBS FUNCTION
OF FORMATION

Since the specific molar Gibbs function, g = h− T s, depends upon both h and s, it does not have an absolute
zero reference state. But, since s does have an absolute zero reference state, we cannot arbitrarily set the
molar specific entropies of the elements of the reaction equal to zero at the standard reference state, as
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was done earlier with their hf° values. Therefore, we define the molar specific entropy of formation, sf°, of a
compound as

ðsf°Þcompound = s°compound − ∑
elements

ni/ncompound
� �

si° (15.28)

Then, the molar specific Gibbs function of formation of a compound, gf°, is given by

ðgf°Þcompound = ðhf°Þcompound −T°ðsf°Þcompound (15.29)

where T° is either 298 K or 537 R depending on whether SI or English units are being used.

Table 15.7 lists values of s° and gf° for the same substances found in Table 15.1.

Note that, because the elements of the reaction are not considered to be compounds themselves (even though
they may be diatomic molecules), they cannot have an entropy of formation. Therefore, for all these elements,
we can set hf° = sf° = gf° = 0:

EXAMPLE 15.13
As in Example 15.6, the Universe is about to come to an end, except this time it can be saved if you can determine the
molar specific entropy of formation and the molar specific Gibbs function of formation for methane gas CH4(g). Would
you please save the Universe again?

Solution
In Example 15.6, we discovered that there is no known reaction by which we can form methane gas by reacting solid carbon
with hydrogen gas. However, in Example 15.6, we determined the specific molar heat of formation of CH4 using the
(hypothetical) reaction

CðsÞ+2ðH2ðgÞÞ ! CH4

Consequently, we can also determine the specific molar entropy of formation and the specific molar Gibbs function of for-
mation using the same reaction. Equation (15.28) gives

ðsf°ÞCH4
= sCH4° −

�
nC
nCH4

� �
sC° +

nH2

nCH4

� �
sH2°
	

and values for �s�CH4
, �s�C, and sH2° are found in Table 15.7. Then, the specific molar entropy of formation of methane is

ðsf°ÞCH4
= 186:256

�
5:740+2 130:684ð Þ
 = 80:852 kJ/kgmole . K

Equation (15.29) and Table 15.1 can be used to find the specific molar Gibbs function of formation of methane as

ðgf°ÞCH4
= ðhf°ÞCH4

−T°ðsf°ÞCH4

= −74:873MJ/kgmole− ð298:15KÞð−80:852 kJ/kgmole . KÞð1MJ/1000kJÞ
= −50:782MJ/kgmole

And you have saved the Universe again. Thanks.

Exercises
37. Using the technique of Example 15.13, determine the molar specific entropy of formation of carbon dioxide, CO2.

Answer: ðsf°ÞCO2
= 2.92 kJ/(kgmole ·K).

38. Using the results of Exercise 37 and the technique of Example 15.13, determine the molar specific Gibbs function of
formation of carbon dioxide, CO2. Answer: ðgf°ÞCO2

=−394.4 MJ/(kgmole ·K).
39. Following the technique of Example 15.13, determine the molar specific entropy of formation and the molar specific

Gibbs function of formation of water vapor, H2O(g). Answer: ðsf°ÞH2O
=−44.400 kJ/(kgmole ·K) and ðgf°ÞH2O

=
−228.600 MJ/(kgmole ·K).

15.12 CHEMICAL EQUILIBRIUM AND DISSOCIATION
In 1877, the Dutch chemist Jacobus Hendricus van’t Hoff (1852–1911) developed the basic principles of chemi-
cal equilibrium from the fundamental laws of thermodynamics. For this, among other things, he won the first
Nobel Prize for Chemistry in 1901.
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Irreversible reaction equations are written as nAA+ nBB ! nCC+ nDD with the implication that A and B are com-
pletely and irreversibly consumed in the reaction as C and D are produced. In an irreversible reaction equation,
the stoichiometric coefficients represent the actual number of moles of each element present in the reaction ves-
sel. In an equilibrium reaction equation, on the other hand, while the stoichiometric coefficients still represent
the number of moles that enter into the equilibrium reaction, they do not necessarily represent the number of
moles present in the reaction vessel. Therefore, the mole fraction concentrations present cannot be determined
from the equilibrium reaction equation alone. Consequently, we continue to use the symbol ni to represent the
total number of moles of species i present in the reaction vessel, but we must now introduce the symbol vi ≤ ni
to represent the number of moles of species i that actually enter into the equilibrium reaction.

For example, at high temperature, the reaction of A and B to form C and D may partially reverse and reform A
and B from C and D, and at equilibrium, both the forward and the reverse reactions take place simultaneously,
resulting in a reversible “equilibrium” composition containing all four substances. To denote a reversible chemical
equilibrium reaction that implies the coexistence of all four substances A, B, C, and D, we use a double arrow
between the reactants and the products and we use vi for the stoichiometric coefficients of the reaction, as follows:

vAA+ vBB ⇆ vCC+ vDD

Van’t Hoff argued that chemical equilibrium occurs only when a reversible system is in a state of constant uni-
form pressure and temperature. For a closed system whose only work mode is p−V , the combined first and sec-
ond laws in differential form (neglecting any changes in kinetic or potential energy) are

dQ− dW = dU = T dS−TdðSPÞ− pd V

or

T dS = dU+ p dV + TdðSPÞ = dH−V dp+TdðSPÞ (15.30)

where we use the definition of total enthalpy H = U+ pV, and dðSPÞ is the differential entropy production rate,
which is required to be greater than or equal to zero by the second law of thermodynamics. In Chapter 11, we
introduce the Gibbs function G as (see Eq. (11.7)) G = H−TS, and on differentiation, it becomes

dG = dH− T dS− S dT

Rearranging gives

T dS = dH− dG− S dT

and combining this result with Eq. (15.30) gives

dG = V dp− S dT −TdðSPÞ (15.31)

For chemical equilibrium, we require that, T, p, and SP all be constants; then dG = 0 and consequently G= con-
stant. Otherwise, for nonequilibrium chemical reactions that take place at constant temperature and pressure,
the second law of thermodynamics requires that

dG = −TdðSPÞ<0

or

G2 −G1 = −
Z

TdðSPÞ< 0

Consequently, we have the following three results for the Gibbs function of a chemical reaction that occurs at
constant temperature and pressure:

a. dG<0 ðorG2 −G1 < 0Þ implies that the chemical reaction has the potential to occur (but this does not imply
that it will spontaneously occur).

b. dG = 0 ðorG2 = G1 = constantÞ implies that chemical equilibrium exists and no further reactions can occur
beyond the equilibrium reactions.

c. dG>0 ðorG2 −G1 > 0Þ implies that the reaction cannot occur at all because to do so would violate the second
law of thermodynamics.

For a system that has undergone a chemical reaction at constant temperature and pressure, item b requires that a
final state of chemical equilibrium occurs only when GP′ = GR′ = constant, where P′ and R′ denote the products
and the reactants in the equilibrium reaction. Then,

GR′ =∑
R′

vigi =∑
P′

vigi = GP′ (15.32)
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Equation (15.31) can be written on a per unit mole basis for chemical species i with partial pressure pi and
negligible entropy production as

dgi = vi dpi − si dT

When the system has a constant temperature T and a constant total pressure pm and the substances involved can
be treated as ideal gases, this equation reduces to

d gi = vi dpi = ℜT dpi/pið Þ

which can be easily integrated from the standard reference state pressure p° to any other state at partial pressure
pi and temperature T as

gi p, Tð Þ = g•i p°,Tð Þ+ℜT ln pi/p°ð Þ (15.33)

where p° is the standard reference state pressure of 0.100 MPa, and g•i is known as the molar specific Gibbs
function at (unfortunately) a new reference state of 0.100 MPa and temperature T.

The new reference temperature is normally chosen to be the mixture temperature Tm rather than the traditional
standard reference state temperature of 25.0°C. Consequently, there are new fourth reference states for thermody-
namic properties discussed in this chapter. They are4

1. The arbitrarily chosen reference state (e.g., the triple point, as in the steam tables).
2. The standard reference state at 0.1MPa and 25°C.
3. The absolute value reference state at 0.1MPa and 0 K.
4. The mixture temperature reference state at 0.1MPa and Tm.

Although the introduction of an additional reference state at this point whose temperature is not given a fixed
value (like 25.0°C) tends to complicate the logic somewhat, it does simplify the notation and the resulting cal-
culations. Using the definition of the Gibbs function and some simple algebraic manipulation, we can arrive at
a working formula for calculating accurate values of giðp, TÞ by using property values listed in Table C.16c in
Thermodynamic Tables to accompany Modern Engineering Thermodynamics and Table 15.7. The required algebraic
manipulations are

g•i ðat p°, TÞ = ðgf°Þi + ½g•i ðat p°, TÞ− ðgf°Þi�
= ðgf°Þi + f½ðhðat TÞ−T sðat p°, TÞ�i − ½ðh°ðat T°Þ− T°s°ðat p°, T°Þ�ig

or

g•i ðat p°, TÞ = ðgf°Þi + ½hðat TÞ− h°ðat T°Þ�i − T½sðat p°,TÞ�i + T°½s°ðat p°, T°Þ�i (15.34)

where T° is the standard reference state temperature of 298 K or 537 R. The superscript ∘ on a quantity implies
that it is at the standard reference state, whereas the superscript • implies that it is at the new reference state of
T = Tm and 0.100 Mpa. Values for ðgf°Þi and ½s°ðat p°,T°Þ�i can be found in Table 15.7, and values for
½h ðat TÞ− h°ðat T°Þ�i and ½s ðat p°,TÞ�i (and also ½s°ðat p°,T°Þ�i) can be found in Table C.16c for various common
substances.

Substituting Eq. (15.33) into Eq. (15.32) gives

∑
R′

vig•i −∑
P′

vig•i = ℜT

�
∑
P′

vi ln pi/p°ð Þ−∑
R′

vi ln pi/p°ð Þ
	

= ℜT ln
�
∏
P′

pi/p°ð Þvi
− ln
�
∏
R′

pi/p°ð Þvi

 �

= ℜT ln
∏
P′

pi/p°ð Þvi

∏
R′

pi/p°ð Þvi

264
375 = ℜT ln

�
Ke



4 Confusing, isn’t it?
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Ke is the equilibrium constant for the reaction, defined as

Ke = exp

∑
R’

vig•i −∑
P’

vig•i

ℜT

2664
3775 (15.35)

and, from the previous equation, we also have

The equilibrium constant:

Ke =
∏
P′

pi/p°ð Þvi

∏
R′

pi/p°ð Þvi =
pC/p°ð ÞvC pD/p°ð ÞvDð…Þ
pA/p°ð ÞvA pB/p°ð ÞvBð…Þ (15.36)

Equation (15.36) indicates that the equilibrium constant is a measure of how much product has been generated
by the reaction. Equation (15.36) (or (15.37) later) is normally used to find the actual concentrations vi if the
equilibrium constant Ke is known, whereas Eq. (15.35) is normally used to find Ke if the vi are known.

EXAMPLE 15.14
Calculate the equilibrium constant for the reversible equilibrium water vapor dissociation reaction equation H2O⇆H2 + 1

2O2

at 0.1 MPa and at the following temperatures: (a) 298 K and (b) 2000. K.

Solution
Here, we do not have an irreversible reaction equation to contend with, so we can find Ke directly from Eq. (15.35). Then,

ℜT ln ðKeÞ =∑
R′

vig
•
i −∑

P′
vig

•
i = g•H2O − g•H2

− 1
2
g•O2

where the g•i are determined from Eq. (15.34).

a. At T = T° = 298K, Eq. (15.34) reduces to g•i = ðgf°Þi, then

ℜT ln ðKeÞ = ðgf°ÞH2O − ðgf°ÞH2
− 1

2
ðgf°ÞO2

and, since H2 and O2 are elements, their molar specific Gibbs function of formation is zero. Then, from Table 15.7, we
have for water vapor H2O(g)

lnKe =
�ðgf°ÞH2O



/ℜT = − 228:583

0:0083143ð298Þ = −92:3

and

Ke = expð−92:3Þ = 8:22× 10−41

(Continued )

WHAT DOES THE SYMBOL � ðÞ MEAN?

In these equations, we use ∏ as the symbol for repeated multiplication, just as we use ∑ as the repeated summation sym-
bol; that is,

∑
N

i=1
α1ð Þ = α1 +α2 +α3 +…+ αN ,

and

∏
N

i=1
= α1ð Þ× α2ð Þ× α3ð Þ× ð…Þ× αNð Þ
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EXAMPLE 15.14 (Continued)

b. At 2000:K = 3600:R and 0.100 MPa, Eq. (15.34) with Tables 15.7 and C.16c in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics give

g•H2O = ðgf°ÞH2O + ½ðhð2000:KÞ− hð298KÞ�H2O − 2000:½ðsð2000:KÞ�H2O +298½ðs°ð298KÞ�H2O

= −228,583+ ð35,540:1−4258:3Þð2:3258Þ− 2000:ð63:221Þð4:1865Þ+298ð188:833Þ
= −628900kJ/kbmole

g•H2
= 0+ ð26,398:5−3640:3Þð2:3258Þ− 2000:ð44:978Þð4:1865Þ+298ð130:684Þ
= −285,000 kJ/kgmole

and

g•O2
= 0+ ð29,173:9−3725:1Þð2:3258Þ
−2000:ð64:168Þð4:1865Þ+ 298ð205:138Þ = −417,000 kJ/kgmole

Note: The multipliers 2.3258 and 4.1865 in these equations are necessary to convert the Btu/lbmole and Btu/(lbmole ·R)
values in Table C.16c into kJ/kgmole and kJ/(kgmole ·K), respectively.
Then,

ℜT lnKe = −629,000− ð−285,000Þ− ð1/2Þð−417,000Þ
= −136,000 kJ/kgmole

so

ln Ke =
−136,000

8:3143ð2000:Þ = −8:18

and

Ke = expð−8:18Þ = 2:81×10−4

Exercises
40. Find the equilibrium constant for part b of Example 15.14 from the Table C.17 in Thermodynamic Tables to accompany Modern

Engineering Thermodynamics. Note that the numbers in this table are log10(Ke), and log10(Ke)= 2.30528 × log10(Ke)=
2.30528 × ln(Ke). Answer: From Table C.17, we find that Ke = 10−3.531= 0.000294.

41. Using the technique of Example 15.14, determine the equilibrium constant for the dissociation of N2 ≈ 2N at 2000. K.
Compare your answer with that obtained in Table C.17. Answer: log10(Ke)= 12.02.

42. Using the technique of Example 15.14, determine the equilibrium constant for the dissociation reaction of water
given in Example 15.14 at a temperature of 5300. R ≈ 3000. K. Compare your result with that given in Table C.17.
Answer: Ke = 0.0476.

The magnitude of Ke is a good indicator of the degree to which a reaction goes to completion. Generally, if Ke is
less than about 0.01 (or ln Ke < −4.6), then the reaction does not occur to any significant degree. However, if
Ke is greater than about 100 (or ln Ke > 4.6), then the reaction essentially goes to completion.

If the components of the reaction are ideal gases that obey the Gibbs-Dalton ideal gas mixture law, then the
partial pressures can be expressed in terms of the mole fraction χi and the total mixture pressure pm as
(see Eq. (12.23))

pi = χipm

Then, Eq. (15.36) reduces to

Ke =
∏
P′

χið Þvi

∏
R′

χið Þvi
pm
p°

� � ∑
P′
vi − ∑

R′
vi

� �
(15.37)

Note that the vi and the repeated multiplication ranges (P’ and R’) in Eqs. (15.36) and (15.37) come from the
equilibrium reaction equation, but the pi and χi in these equations come from only the products of the irreversible
reaction equation. For example, consider an equilibrium reaction equation for a simple dissociation of the form

vAA⇆ vBB+ vCC
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which is also subject to an overall irreversible reaction equation in which y% of the A present dissociates into B
and C as

A ! ð1− yÞA+ y½Adissociated�
Then, the overall irreversible reaction equation can be written as

A ! ð1− yÞA+ y
�
vB/vAð ÞB+ vC/vAð ÞC


and the equilibrium constant for this reaction is given by Eq. (15.37) as

Ke =
ðχBÞvBðχCÞvC

ðχAÞvA
pm
p°

� �vB+vC−vAð Þ
(15.38)

where χA, χB, and χC are determined from the products of the overall irreversible reaction equation as

χA =
1− y

1− y+ yðvB/vA + vC/vAÞ

χB =
yðvB/vAÞ

1− y+ yðvB/vA + vC/vAÞ
and

χC =
y vC/vAð Þ

1− y+ y vB/vA + vC/vAð Þ
Table C.17 lists values of the base-10 logarithm of Ke for a variety of simple dissociation reactions of this form
at various temperatures.

EXAMPLE 15.15
The overall irreversible carbon dioxide dissociation reaction equation wherein y% of the CO2 dissociates into CO and O2 is

CO2 ! ð1− yÞðCO2Þ+ yðCO2Þdissociated
subject to the reversible equilibrium dissociation reaction

CO2 ⇆CO+ 1
2
O2

Then the overall irreversible dissociation reaction equation is

CO2 ! ð1− yÞðCO2Þ+ yðCOÞ+ ðy/2ÞðO2Þ
For this reaction, determine

a. The variation in the degree of dissociation (y) with temperature at a total pressure of 0.100 MPa.
b. The influence of total pressure on the degree of dissociation (y) at 3000. K.

Solution
The total number of moles of product in the overall irreversible reaction equation is ð1− yÞ+ y+ y/2 = ð2+ yÞ/2. Then the
mole fractions of the products are

χCO2
= 2ð1− yÞ/ð2+ yÞ

χCO = 2y/ð2+ yÞ
χO2

= y/ð2+ yÞ
The reversible equilibrium dissociation reaction equation gives the stoichiometric coefficients, vi, as vCO2 = 1:0, vCO = 1:0,
and vO2 =

1
2. Then, Eq. (15.38) gives the equilibrium constant as

Ke =
ðχCOÞðχO2

Þ1/2
ðχCO2

Þ

" #
pm
p°

� �1+1/2−1ð Þ

=

2y
2+ y

� �
y

2+ y

� �1/2
2ð1− yÞ
2+ y

26664
37775 pm

p°

� �1/2

=
y

1− y

� �
y

2+ y

� �1/2" #
pm
p°

� �1/2
(Continued )
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EXAMPLE 15.15 (Continued)

a. To determine the required results for part a of this problem, we set pm = p° = 0:1MPa, and then Ke can be found in
Table C.17 for various temperatures. Our task is now to pick several reaction temperatures, look up their corresponding
Ke values, and solve the previous equation for y.

Squaring both sides of the preceding reversible equilibrium dissociation reaction equation and rearranging gives a
cubic equation in y:

y3 + 3α
1−α

y− 2α
1− α

= 0

where

α = K2
e

p°
pm

� �
A cubic equation in y has a simple algebraic solution. If we let

a = 3α
1−α

and b = − 2α
1−α

then the cubic equation becomes y3 + ay + b= 0, and the three roots of this equation are

y1 = A+B

y2 = − A+B
2

+ A−B
2

ffiffiffiffiffiffiffiffi
−3

p

y3 = − A+B
2

− A−B
2

ffiffiffiffiffiffiffiffi
−3

p

where

A = − b
2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
+ a3

27

r !1/3
and B = − b

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
+ a3

27

r !1/3
Note that, in evaluating these expressions, the cube root of a negative number is computed as the negative of the cube
root of the positive value of the number; that is, (−8)1/3=−(81/3)=−2.

If α is less than 1, then b2/4 + a3/27 > 0 and there is just one real root, given by y1. But if α is greater than 1, then
b2/4 + a3/27 < 0 and there are three real roots. The following procedure is a simple way of calculating these roots. Let
J= [(− (a/3)3]1/2 and K= J1/3. Then calculate L= arccos[−b/(2J)], M= cos(L/3), and N= (31/2)sin(L/3). The three roots are
then given by

y1 = 2K cosðL/3Þ
y2 = −KðM+NÞ
y3 = −KðM−NÞ

Note that the only valid root here is the one between 0 and 1. Table 15.8 lists several typical results using these solution
equations with p° = 0.1 MPa.

These results can then be plotted either by hand or with the use of computer software. The final plot showing
the variation in the degree of dissociation (y) versus reaction equilibrium temperature is shown in Figure 15.10.

b. With the solution from part a, it is a simple matter to generate reaction equations for various total pressures at T= 3000. K.
The curve in Figure 15.11 shows the results of this effort and provides a graphical representation of the effect of total
pressure on the degree of dissociation (y) at 3000. K.

Table 15.8 Typical Values for the Degree of Dissociation of Carbon Dioxide at Various
Temperatures and Pressures with p° = 0.100 MPa

Reaction
Temperature (K)

Reaction Pressure
pm (MPa) log10(Ke) Ke y

2000. K 0.100 MPa 2.863 0.0014 0.0154

3000. K 0.100 MPa 0.469 0.3396 0.4436

5000. K 0.100 MPa +1.387 24.378 0.9770

3000. K 1.00 MPa 0.469 0.3396 0.2453

3000. K 10.0 MPa 0.469 0.3396 0.1235
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FIGURE 15.10
Example 15.15, Solution, part a.
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FIGURE 15.11
Example 15.15, Solution, part b.

Exercises
43. Use the solution given in Example 15.15 to determine the dissociation equation for CO2 at 3000. K and 5.000 MPa.

Answer: CO2 → 0.8472(CO2) + 0.1528(CO) + 0.0764(O2).
44. Use the solution given in Example 15.15 to determine the dissociation equation for CO2 at 3000. K and 0.01000 MPa.

Answer: CO2 → 0.3194(CO2) + 0.6806(CO) + 0.3403(O2).
45. Use the solution given in Example 15.15 to determine the total mixture pressure that produces the following

dissociation reaction for CO2 at 3000 K: CO2 → 0.50(CO2) + 0.50(CO) + 0.25(O2). Answer: pm= 0.94 Pa.

An equivalent and perhaps more straightforward way of approaching a dissociation equilibrium reaction is illu-
strated in the next example.

EXAMPLE 15.16
Determine the amount of H2 produced as a function of temperature in the thermal dissociation of water vapor at the SRS
pressure (i.e., pm = p°).

Solution
The overall irreversible dissociation reaction equation for water vapor is

H2O ! ð1− yÞH2O+ yðvH2 ÞH2 + yðvO2ÞO2

(Continued )
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EXAMPLE 15.16 (Continued)

subject to the following reversible equilibrium dissociation reaction equation:

H2O ⇆ H2 +
1
2
O2

Thus, vH2 = 1:0 and vO2 =
1
2 , and the overall reaction equation becomes

H2O ! ð1− yÞH2O+ yH2 + ðy/2ÞO2

Thus, vH2O = 1, vH2 = 1, and vO2 =
1
2 , then Eq. (15.38) gives

Ke =
χH2

χ1/2O2

χH2O

pm
p°

� �ð1+1/2− 1Þ

where

χH2O =
2ð1− yÞ
2+ y

χH2
=

2y
2+ y

and χO2
=

y
2+ y

so that

Ke =
y

1− y
y

2+ y

� �1/2
ð1Þ1/2 =

y
1− y

y
2+ y

� �1/2
Arbitrarily choosing values for y and solving for Ke from the previous equation, then looking up the corresponding temperature
in Table C.17 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics gives the desired relation between the
amount of H2 present (y) and the system temperature (T). Table 15.9 illustrates some typical values.

Exercises
46. Determine the value of the equilibrium constant and the reaction temperature in Example 15.16 when the degree of

dissociation is y= 0.250. Answer: Ke= 1/9= 0.1111, then T= 3280 K.
47. If the equilibrium constant in Example 15.16 is 1.0, determine the degree of dissociation y for this reaction.

Answer: y= 2/3.
48. If the degree of dissociation in Example 15.16 is 0.8384, determine the base-10 logarithm of the equilibrium constant

and the temperature of the dissociation reaction. Answer: log10(Ke)= 0.450 and T= 5000. K.

15.13 RULES FOR CHEMICAL EQUILIBRIUM CONSTANTS
Tables of equilibrium constants are usually limited in size. This limitation can often be overcome by combining
reactions available in a table to produce a desired reaction. For example, many tables include equilibrium con-
stants for the water dissociation reaction H2O⇆H2 + ð1/2ÞO2. But what do you do if you need the reverse reac-
tion for the formation of water H2 + ð1/2ÞO2 ⇆H2O? Are the equilibrium constants for these two reactions the
same? The following three chemical equilibrium constant rules can be used to determine the equilibrium con-
stant for a reaction equation that is not listed in any table but can be constructed from reactions with known
equilibrium constants that are listed in a table.

Table 15.9 Example 15.16, Typical Values

y log Ke T(K)

0.001 −4.650 1710

0.010 −3.147 2020

0.100 −1.615 2850

0.500 −0.349 3950

EQUILIBRIUM CONSTANT RULE 1

Let Ke1 be the equilibrium constant for the reaction νAA+ νBB⇆ νCC+ νDD and let Ke2 be the equilibrium constant for the
reverse reaction νCC+ νDD⇆ νAA+ νBB: Then, these two equilibrium constants are related as follows: Ke2= 1/Ke1.
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EXAMPLE 15.17
Determine the equilibrium constants for the following reactions at 5000. K.

a. H2 + ð1/2ÞO2 ⇆H2O
b. O2 +N2 ⇆ 2NO
c. O2 + 3:76N2 ⇆2O+7:52N

Solution
a. Table C.17 gives equilibrium constant values for the spontaneous dissociation of water into hydrogen and water at

5000. K (H2O⇆H2 + ð1/2ÞO2) as Ke1= 100.450= 2.82. The formation of water from hydrogen and oxygen gases is simply
the reverse reaction, so rule 1 can be used to determine its equilibrium constant as Ke2= 1/Ke1= 1/2.82= 0.355.

b. The reaction O2 +N2 ⇆ 2NO is the same as the reaction 2½ð1/2ÞO2 + ð1/2ÞN2�⇆ 2NO, which can be obtained from the
reaction ð1/2ÞO2 + ð1/2ÞN2 ⇆NO that appears in Table C.17 by multiplying it by α= 2. From Table C.17 at 5000. K, we
find that the equilibrium constant for the reaction ð1/2ÞO2 + ð1/2ÞN2 ⇆NO is Ke1= 10−0.298= 0.504. Then, using rule 2,
we can calculate the equilibrium constant for the reaction O2 +N2 ⇆ 2NO as Ke2= (Ke1)

α.
c. In Table C.17, we find the reactions O2 ⇆ 2O and N2 ⇆ 2N. If we multiply the second reaction by 3.76 and add it to the

first reaction, we get the given reaction O2 þ3:76N2 ⇆ 2Oþ 7:52N and we can use rule 3 with α= 1 and β= 3.76.
At 5000. K, the equilibrium constant for the reaction O2 ⇆2O is Ke1= 10−1.719 = 52.4 and the equilibrium constant for
the reaction N2 ⇆ 2N is Ke2 = 10−0.570 = 0.269, then rule 3 gives the equilibrium constant for the combined reaction as
Ke3= (Ke1)

1(Ke2)
3.76= (52.4)1(0.296)3.76 = 0.376.

Exercises
49. Determine the equilibrium constant for the reaction H2 + ð1/2ÞO2 ⇆H2O at 2000. K. Answer: Ke = 3396.
50. Determine the equilibrium constant for the reaction at 5000. K. Answer: Ke= 1/0.2535= 3.945.
51. Determine the equilibrium constant for the reaction O2 +N2 ⇆NO+O+N at 5000. K. Answer: Ke= 1.890.

15.14 THE VAN’T HOFF EQUATION
Both the equilibrium constant Ke and the molar Gibbs function g•i depend on the mixture temperature T. To
investigate the temperature dependence of Ke, we differentiate Eq. (15.35) with respect to temperature to obtain

dKe

dT
= − 1

ℜT2

�
∑
R′

vig
•
i −∑

P′

vig
•
i

 !
−T d

dT
∑
R′

vig
•
i −∑

P′

vig
•
i

 !	
Ke

EQUILIBRIUM CONSTANT RULE 3

Let Ke1 be the equilibrium constant for the reaction νAA+ νBB⇆ νCC+ νDD and let Ke2 be the equilibrium constant for a sec-
ond reaction: νEE+ νFF⇆ νGG+ νHH. Then, the equilibrium constant for a third reaction, formed by multiplying the first
reaction by a constant α and adding it to the second reaction multiplied by a constant β,

αðνAA+ νBBÞ+ βðνEE+ νFFÞ⇆ αðνCC+ νDDÞ+ βðνGG+ νHHÞ
is

Ke3 = ðKe1ÞαðKe2Þβ:

EQUILIBRIUM CONSTANT RULE 2

Let Ke1 be the equilibrium constant for the reaction νAA+ νBB⇆ νCC+ νDD and let Ke2 be the equilibrium constant for the
reaction αðνAA+ νBBÞ⇆ αðνCC+ νDDÞ, where α is any constant. Then, these two equilibrium constants are related as follows:
Ke2 = ðKe1Þα.
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From Eq. (11.8), we have the relation dg = v dp− s dT, so that, for a constant pressure process, we can write

d g•i
dT

= −s•i

Introducing this result along with the definition of the molar specific Gibbs function, g = h−T s, into the equa-
tion for dKe/dT and rearranging gives

1
Ke

dKe

dT

� �
=

dð lnKeÞ
dT

= − 1
ℜT2 ∑

R′

vih
•
i −∑

P′

vih
•
i

 !
=

_Q r

ℜT2

or

The van’t Hoff equation:

dð lnKeÞ
dT

=
_Qr

ℜT2

(15.39)

where _Qr is the heat transfer rate of the reaction. This equation is known as the van’t Hoff equation. It shows
that, for a heat-producing (i.e., exothermic) reaction, the value of Ke decreases when the reaction temperature
increases and increases when the reaction temperature decreases. While for a heat-absorbing (i.e., endothermic)
reaction, the value of Ke increases when the temperature of the reaction increases and decreases when the reac-
tion temperature decreases. Since the equilibrium constant is a relative measure of the amount of product pre-
sent, by changing the reaction temperature, we can change the amount of product formed. For example,
consider the equilibrium equation for the formation of ammonia from hydrogen and nitrogen gas,
N2 + 3ðH2Þ⇆ 2ðNH3Þ−91:25 kJ. We can increase the amount of ammonia produced by increasing the Ke of the
reaction. Since the reaction is exothermic, this can be done by lowering the reaction temperature.

15.15 FUEL CELLS
The highly inefficient heat engine energy conversion technology that pro-
vided the mobile power for the technological developments of the 17th
through the 20th centuries is coming to an end. The thermal combustion of
chemical fuel to propel the heat engines of the past has come to be the
source of numerous worldwide social problems today. Chemical
and thermal pollution of the Earth’s air and water plus a continuously dimin-
ishing supply of suitable fuels is clearly signaling the end of the heat engine
era. But, what other, less ecologically damaging energy conversion technolo-
gies do we have to support the societies of the next few centuries?

What about electrical batteries? Technically, a battery consists of two or
more electrochemical cells that convert chemical energy directly into electri-
cal energy. The term battery, however, is often used to describe a single cell.
Figure 15.12 illustrates the basic elements of an electrochemical cell.

Ordinary commercial batteries are closed systems because no mass crosses
their boundaries; consequently, as they are used, they consume their stored
electrical energy and become discharged. If the electrolyte needed to oper-
ate the cell were continuously supplied from outside the cell, then it would
become an open system and would never become discharged. Such an open
system electrochemical cell is called a fuel cell.

Since a fuel cell (Figure 15.13) does not produce heat as its primary energy
conversion mode, it is therefore not a heat engine. Consequently, fuel cells
are not subject to the severe limitation of the Carnot (heat engine) efficiency,
and fuel cell efficiencies can approach 100% under the proper conditions.

Consider a general steady state, steady flow, open system. Neglecting any
changes in kinetic or potential energy, the energy rate balance on this sys-
tem gives its work transport rate of energy (i.e., power) as

_W =∑
in

_mihi −∑
out

_mihi + _Q =∑
in

_nihi −∑
out

_nihi + _Q

Current

Electrons

Electrodes

e+ e−

+−

Electrolyte

FIGURE 15.12
The operation of a basic electrochemical
cell using one electrolyte. Electrical
current is the time rate of change of
electrical charge, originally defined by
Benjamin Franklin to flow from the
positive to the negative terminal.
However, since electrons are the charge
carriers for current in conductors and the
charge of an electron is negative, the
direction of electron flow is actually from
the negative to the positive terminal.
Nonetheless, we maintain the old
concept of current flow from positive to
negative and call this the conventional
flow notation.
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WHY IS AN ELECTROCHEMICAL CELL CALLED A BATTERY?

The term battery was introduced by the American scientist and diplomat Benjamin Franklin (1706–1790) for describing a
group of interconnected capacitors. Though it technically means two or more items (like a cannon in an artillery battery),
today, single electrochemical cells are often referred to as batteries (e.g., the cells in a flashlight should be called flashlight
cells not flashlight batteries).

WHAT IS A FUEL CELL?

A fuel cell is an electrochemical open energy conversion system that converts the chemical energy of its fuel directly into
electrical work energy output by a chemical oxidation reaction.

Hydrogen Oxygen

Anode Cathode

Catalyst

Electric
power

Electrolyte

− +

H2 H2O

FIGURE 15.13
Fuel cell and fuel battery technology.

WHO INVENTED THE FUEL CELL?

Though fuel cells offer an exciting high-efficiency alternative to traditional heat engine energy conversion technology, they
are not a new concept. The credit for developing the first fuel cell is given to the British physicist and lawyer Sir William
Robert Grove (1811–1896). In 1839, he constructed a fuel battery that consisted of a test tube containing a platinum elec-
trode inverted in a sulfuric acid solution (Figure 15.14). When an electric current was passed through the cell to charge it,
the water in the electrolyte decomposed into hydrogen and oxygen inside the inverted test tube. When an electrical load
was applied to the electrodes, the hydrogen and oxygen recombined again to form water and produced an electrical cur-
rent. It is easy to see how this can become a true open system fuel cell if the hydrogen and oxygen are continuously sup-
plied from outside the system.

(Continued)
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and if the system has isothermal boundaries at temperature Tb, then the entropy rate balance gives its heat trans-
port rate as

_Q = Tb ∑
out

_misi −∑
in

_misi − _SP

 !
= Tb ∑

out

_nisi −∑
in

_nisi − _SP

 !
Combining these two equations and using the definition of the molar specific Gibbs function, g = h− Ts, gives

_W =∑
in

_mi h−Tbsð Þi −∑
out

_mi h−Tbsð Þi − Tb _SP

=∑
in

_n h− Tbs
� �

i −∑
out

_ni h− Tbs
� �

i −Tb _SP

=∑
in

_nigi −∑
out

_nigi −Tb _SP

(15.40)

where we assume that the temperature of the fuel cell reactants and products are the same as the system bound-
ary temperature (i.e., TR= TP= Tb). Note that the second law of thermodynamics requires that _SP ≥0:

We can now calculate the “reaction efficiency,” ηr, with the following general formula:

ηr =
The desired result

What it costs
=

_W

∑
in

_mihi −∑
out

_mihi
=

_W

∑
in

_nihi −∑
out

_nihi

or

ηr =

∑
in

_migi −∑
out

_migi − Tb _SP

∑
in

_mihi −∑
out

_mihi
=

∑
in

_nigi −∑
out

_nigi −Tb _SP

∑
in

_nihi −∑
out

_nihi
(15.41)

WHO INVENTED THE FUEL CELL? Continued

ax hy ax hy ax hy ax hy

hyax

FIGURE 15.14
Grove’s fuel cell/battery.

Fuel cell technological development continued sporadically throughout the 19th century until the dramatic technological
developments produced by the American inventor Thomas Alva Edison (1847–1931). Edison’s development of the light-
bulb and associated electrical generating and distribution system technology completely dominated the development of
electrical technology for 50 years. Beginning in the 1960s, with the emergence of the United States space program, interest
in fuel cell technology was rekindled and its development continues today. The outstanding energy conversion capability of
fuel cells plus their low pollution potential and wide variety of operating fuels make fuel cells one of the leading conten-
ders for heat engine replacement in the 21st century.
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The maximum power _Wmax and maximum reaction efficiency ðηrÞmax occur when the device is completely rever-
sible or _SP = 0: Then,

ðηrÞmax =

∑
in

_migi −∑
out

_migi

∑
in

_mihi −∑
out

_mihi
=

∑
in

_nigi −∑
out

_nigi

∑
in

_nihi −∑
out

_nihi
(15.42)

Utilizing Eq. (15.33), the molar forms of Eqs. (15.40), (15.41), and (15.42) are

_W =∑
R

_nig•i −∑
P

_nig•i −Tb _SP +ℜT ln ∏
R

pi/p°ð Þ _ni /∏
P

pi/p°ð Þ _ni
� 	

(15.43)

ηr =

∑
R

_nig•i −∑
P

_nig•i −Tb _SP +ℜT ln
�
∏
R

pi/p°ð Þ _ni /∏
P

pi/p°ð Þ _ni



∑
R

_nihi −∑
P

_nihi
(15.44)

and

ðηrÞmaximum
fuel cell
efficiency

=

∑
R

ni/nfuelð Þg•i −∑
P

ni/nfuelð Þg•i +ℜT ln
�
∏
R

pi/p°ð Þ ni/nfuelð Þ/∏
P

pi/p°ð Þ ni/nfuelð Þ

∑
R

ni/nfuelð Þhi −∑
P

ni/nfuelð Þhi
(15.45)

If the reactants or products are unmixed and the pressure of each species (or component) in the reaction is
0.1 MPa, then pi= p° and ∏P pi/p°ð Þni = ∏R pi/p°ð Þni = 1:0 in these three equations. Otherwise, if the reactants are
premixed or the product gases are mixed (as they normally are) at a total pressure pm, then the partial pressure of
each component gas must be determined. Further, if all the gases present are ideal gases that obey the Gibbs-
Dalton ideal gas mixture law, then the partial pressures can be expressed in terms of the mole fractions as
pi/p° = χipmð Þ/p°, where xi is the mole fraction of gas i and p° = 0.1 MPa. Then,

ln
h
∏ pi/p°ð Þni

i
= ln

�
∏ χipm/p°ð Þni


in Eqs. (15.43), (15.44), and (15.45).

In the case of a fuel cell, the output power appears as an electrical current I flowing through a potential
(voltage) difference ϕ, and using Ohm’s law we can calculate the actual power output of the cell as

_W = ϕI = I2Re

where ϕ is the cell voltage, I is its current flow, and Re is the external resistance (recall that work output must be
positive with our sign convention). Combining this equation with Eq. (15.40) gives the entropy production rate
of the fuel cell as

ð _SPÞfuel
cell

= ∑
P

_nigi −∑
R

_nig+ϕI

 !
/Tb ≥0 (15.46)

Also, it can be shown that the electrical current I produced by a fuel cell is given by

I = ð _nfuelÞjF
where I is in amperes when _nfuel is in kgmole/s. In this equation j is the total valence of the fuel ions in kgmole
of electrons per kgmole of fuel, and F is Faraday’s constant, defined as

F = ð6:023× 1026electrons/kgmole electronsÞð1:602× 10−19coulombs/electronÞ
= 96:487 kilocoulombs/kgmole electrons

but since 1 coulomb = 1 joule/volt = 1 J/V, this can be written as

F = 96,487 kJ/ðV . kgmole electronsÞ
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When there is no electron flow in the external circuit, there are no losses within the fuel cell and we can write
the maximum (or reversible) power output of a fuel cell as approximately5

_Wmax ≈ϕoI = ϕoð _n fuelÞ jF (15.47)

where ϕo is the open circuit voltage. Then, the maximum reaction efficiency of the fuel cell becomes

ðηrÞmax
fuel cell

=
ðϕojFÞ

∑
R

ni/nfuelð Þhi −∑
P

ni/nfuelð Þhi

EXAMPLE 15.18
Determine the maximum theoretical reaction efficiency, open circuit voltage, and maximum theoretical work output per
mole of hydrogen consumed for the hydrogen–oxygen fuel cell operating at 25.0°C and 0.100 MPa, shown in Figure 15.15.

Re

Electrolyte

Porous anode

Electrical load

Voltmeter

25.0°C

0.100 MPa

25.0°C

0.100 MPa

H2(g)

2H+

Porous cathode H2O(

O2(g)

)

FIGURE 15.15
Example 15.18.

The anode reaction is H2ðgÞ ! 2ðH+ Þ+2ðe− Þ:
The cathode reaction is 0:5½O2ðgÞ�+2ðH+ Þ+ 2ðe− Þ ! H2OðℓÞ:
The overall reaction is H2ðgÞ+ 0:5½O2ðgÞ� ! H2OðℓÞ:
Also, pi/p°ð ÞH2

= pi/p°ð ÞO2
= 1:0:

Solution
Equation (15.45) can be used to calculate the maximum energy conversion reaction efficiency as

ðηrÞmax =
g•H2 gð Þ + ð0:5Þðg•O2 gð ÞÞ− g•H2O ℓð Þ +ℜT ln 1:0

hH2 gð Þ + 0:5ð Þ hO2 gð Þ
� �

− hH2O ℓð Þ

where the g•i are determined from Eq. (15.34), and the hi are determined from Eq. (15.14). Since the pressure and tempera-
ture given in this problem statement are the standard reference state values, Eqs. (15.14) and (15.34) reduce to hi = hf°

� �
i

and g•i = gf°
� �

i
: Then, the maximum theoretical reaction efficiency equation becomes

ηrð Þmax =
ðgf°ÞH2 gð Þ + 0:5ð Þðgf°ÞO2 gð Þ − ðgf°ÞH2O ℓð Þ +ℜT ln 1:0

hf°
� �

H2 gð Þ + 0:5ð Þ hf°
� �

O2 gð Þ− hf°
� �

H2O ℓð Þ

WHAT IS j ?

The letter j represents the number of electrons involved in the cell reaction per kgmole of fuel consumed. For example, for
any hydrocarbon fuel, CnHm, j = nð4Þ+mð1Þ = 4n+m kgmole of electrons per kgmole of CnHm.

5 A small amount of internal irreversibility is generated in producing ϕo, so ϕo is slightly less than ϕrev = ϕmax.
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and, since the enthalpies and Gibbs functions of formation of the elements H2 and O2 are always zero, the maximum reac-
tion efficiency becomes (using Tables 15.1 and 15.7)

ηrð Þmax =
ðgf°ÞH2O ℓð Þ
hf°
� �

H2O ℓð Þ
=

237:178MJ/kgmole
285:838MJ/kgmole

= 0:830

or 83%. The theoretical open circuit voltage can now be determined from Eq. (15.48) as

ϕo = ∑
R

ni/nfuelð Þhi −∑
P

ni/nfuelð Þhi
" #�

ηrð Þmax



/jF

= − nH2O/nH2ð Þ hf°
� �

H2O ℓð Þ
h i�

ηrð Þmax



/jF

=

�
− 1 kgmoleH2O/kgmoleH2ð Þ − 285,838KJ/kgmoleH2Oð Þ
 0:8298ð Þ
2:00 kgmole electrons/kgmoleH2ð Þ�96,487 kJ/ V . kgmole electronsð Þ


= 1:23V

where j= 2.00 kgmole of electrons per kgmole of H2 (i.e., the valence of 2H+). Finally, Eq. (15.47) can be used to find

_Wmax/ _nfuel = Wmax/nfuel = ϕojF

= 1:23Vð Þ 2:00 kgmole electrons/kgmoleH2ð Þ
×
�
96,487KJ/ V . kgmole electronsð Þ


= 237,000 kJ/kgmoleH2 = gf°
� �

H2O ℓð Þ
ðto significant figuresÞ

Exercises
52. Determine the power produced by the fuel cell discussed in Example 15.18 per kilogram of H2 rather than per kgmole

of H2. Answer: _W/ _m= 118,600 kJ/(kg H2).
53. Determine the maximum thermal efficiency of the fuel cell discussed in Example 15.18 when the product H2O is at

116°C= 700. R and 0.100 MPa and the reactants are at the standard reference state. Answer: (ηT)max= 90.1%.
54. What would the theoretical open circuit voltage be for the fuel cell discussed in Example 15.18 if product H2O was at

116°C= 700. R and 0.100 MPa and the reactants were at the standard reference state. Answer: ϕ0= 1.32 V.

Table 15.10 lists the maximum theoretical reaction efficiencies and open circuit voltages for a variety of fuel cell materials at
the standard reference state. Those reactions showing efficiencies greater than 100% must absorb heat from the surroundings
to maintain steady state operation.

15.16 CHEMICAL AVAILABILITY
In Chapter 10, we define the thermodynamic property availability as the maximum reversible useful work that can be
produced by a system. Equation (15.43) describes the rate of work produced or absorbed by a steady state, open
system with negligible flow stream kinetic and potential energies. This equation becomes the maximum reversible
work rate when there are no losses within the system, or _SP = 0. Since this equation focuses on the energy

Table 15.10 Fuel Cell Maximum Reaction Efficiency and Open Circuit Voltage for Various
Fuels at 25.0°C and 0.100 MPa

Fuel Reaction ϕo Vð Þ ðηrÞmax %ð Þ
H2 +0:5ðO2Þ ! H2OðℓÞ 1.23 83.0

CO+0:5ðO2Þ ! CO2 1.33 90.9

CðsÞ+O2 ! CO2 1.02 100.2

C3H8 +5ðO2Þ ! 3ðCO2Þ+4ðH2OðgÞÞ 1.08 101.5

C8H18ðgÞ+ 12:5ðO2Þ ! 8ðCO2Þ+9ðH2OðℓÞÞ 1.10 96.3

Note: Unlabeled elements and compounds are in a gaseous (g ) physical state.
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transport rate due to the chemical species crossing the system boundary, it represents the net chemical flow
availability of the system, or

_A flow
chemical

� �
net

=∑
R

_ni½ðaf Þi�chemical −∑
P

_ni½ðaf Þi�chemical

=∑
R

_nig
.
i −∑

P

_nig
.
i +ℜT ln

∏
R

pi/p°ð Þ _ni

∏
P

pi/p°ð Þ _ni

264
375 (15.49)

and the specific molar flow availability of chemical species i is

½ðaf Þi�chemical = gi° +ℜT ln
pi
p°

� 	
(15.50)

The following example illustrates the use of this material.

EXAMPLE 15.19
Determine the net molar specific flow availability of the hydrogen–oxygen fuel cell operating at 25°C and 0.1 MPa analyzed
in Example 15.18. Assume that the ground state is the standard reference state, SRS (25°C and 0.1 MPa).

Solution
Recall that the reaction is H2 + 0.5 O2 → H2O. The fuel cell has three flow streams (H2, O2, and H2O), all at the SRS pressure pi= p°. Also,
since the Gibbs function at the SRS reduces to the Gibbs function of formation, Eq. (15.50) gives ½ðaf Þi�chemical = gi° +ℜT ln

�
1


= ðgf°Þi.

Consequently, ½ðaf ÞH2
�chemical = ½ðaf ÞO2

�chemical and ½ðaf ÞH2O�chemical = ðgf°ÞH2OðℓÞ = −237:178MJ=kgmole.

Then, the net molar specific flow availability is given by

_a flow
chemical

 !
net

=

_A flow
chemical

� �
net

nf
=∑

R

ðni/nf Þ½ðaf Þi�chemical −∑
P

ðni/nf Þ½ðaf Þi�chemical

= ðnH2 /nH2 Þ½ðaf ÞH2
�chemical + ðnO2 /nH2 Þ½ðaf ÞO2

�chemical − ðnH2O/nH2 Þ½ðaf ÞH2O�chemical

= 0+0− ð1Þð−237:178Þ = 237:178MJ/kgmoleH2

Exercises
55. Determine the net chemical flow availability of the fuel cell described in Example 15.19 when hydrogen is consumed at

a rate of 2.00 kgmole/min. Answer: [ _A(flow)net]chemical= 474.4 MJ/min.
56. Determine the molar specific chemical flow availability of oxygen in air at a total pressure of 3.50 MPa and the SRS

temperature of 25.0°C. Assume air consists of a mixture of 21.0% oxygen and 79.0% nitrogen on a molar basis. Answer:
[ _a(flow)O2]chemical= 4940 kJ/kgmole O2.

57. If all the flow streams entering and exiting the hydrogen–oxygen fuel cell discussed in Example 15.19 are at 1.00 MPa
instead of 0.100 MPa, determine the net chemical flow availability of the fuel cell per kgmole of hydrogen consumed.
Answer: [ _a(flow)net]chemical= 3090 kJ/kgmole H2.

SUMMARY
In this chapter, we deal with the fundamental elements of chemical thermodynamics. Chemistry has its roots in
thousands of years of alchemy; its accurate mathematical notation is relatively recent. The 19th century stoichio-
metric mass balance and the basic concepts of stereochemistry provide a framework on which an accurate combus-
tion analysis of organic fuels can be built. Concepts such as percent of theoretical air, fuel modeling, heat of
formation, and the standard reference state plus the first law of thermodynamics applied to a chemical reaction
lead to a useful understanding of the heat of combustion of a chemical compound. The adiabatic flame tempera-
ture and maximum explosion pressure calculations provide conservative upper bounds for real combustion pro-
cesses. The introduction of the third law of thermodynamics provides the basis on which to build an absolute
entropy scale that can be used to determine chemical reaction irreversibilities via the entropy balance. Also, the
Gibbs function from the combined first and second laws is found to be a controlling factor in chemical reactions,
chemical equilibrium, and dissociation reactions. Finally, fuel cell analysis provides a means of investigating the
maximum possible work that can be produced directly from a chemical reaction.
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The often complex formulae of chemical thermodynamics provide an excellent topic for personal computer soft-
ware development. In this chapter, simple Excel spreadsheet programs are developed for calculating heats of
combustion and dissociation equilibrium conditions. The reader is encouraged to utilize and modify this mate-
rial, to take full advantage of the computer’s ability to remove the tedium of calculation and expand the scope
of the analysis.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they were introduced to gain an
understanding of their use and limitations.

1. Air/fuel ratio. For a chemical reaction combustion equation of the form

αðFuelÞ+ βðO2 + 3:76N2Þ ! Products

the molar and mass air/fuel ratios are

ðA/FÞmolar =
αð1+3:76Þ

β
=
αð4:76Þ

β

ðA/FÞmass =
αð4:76ÞðMairÞ
βðMfuelÞ =

αð4:76Þð28:97Þ
βðMfuelÞ =

αð137:9Þ
βðMfuelÞ

where α and β are the stoichiometric coefficients in the reaction equation, and Mfuel is the molecular mass of
the fuel.

2. Stoichiometric reaction equation for the combustion of a hydrocarbon of the form CnHm in 100%
theoretical air:

CnHm + n+ m
4

� �
½O2 + 3:76ðN2Þ�6nðCO2Þ+ m

2

� �
ðH2OÞ+3:76 n+ m

4

� �
ðN2Þ

3. The temperature at which water condenses out of the products of combustion:

Tcondense = TsatðpH2OÞ
where pH2O= (χH2O/χtotal)ptotal is the partial pressure of the water vapor in the products.

4. The standard reference state (SRS):

Temperature: TSRS = T° = 25:0°C = 298K = 77:0°F = 537R

Pressure: pSRS = p° = 0:100MPa = 14:5 psia≈ 1 atmosphere

5. Molar specific heat of formation of a hydrocarbon CnHm in MJ/kgmole:

ðqf°ÞCnHm
= − ½nð393:5Þ+ ðm/2Þð285:5Þ+HHVCnHm �

6. Molar specific enthalpy of formation of a compound at the standard reference state is the same as its molar
specific heat of formation:

ðhf°Þcompound = ðqf°Þcompound

7. Molar heat of reaction:

qr =∑
P

ðni/nfuelÞhi −∑
R

ðni/nfuelÞhi

8. Higher and lower heating values of a fuel:

HHV = qr SRS andH2O in the liquid stateð Þ

LHV = qr SRS andH2O in the vapor stateð Þ
9. Open and closed system adiabatic flame temperature:

ðTAÞopen
system

= T° +

ðhf°Þfuel −∑
P

ðni/nfuelÞðhf°Þi

∑
P

ðni/nfuelÞðcpiÞE
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and

ðTAÞ closed
system

= T° +

hf°
� �

fuel −∑
R

ni/nfuelð ÞℜT°−∑
R

ni/nfuelð Þðhf°−ℜT°Þi

∑
P

ni/nfuelð Þ cvið Þavg

where ðcpiÞavg and cvið Þavg are found in Tables 15.5 and 15.6.
10. Molar specific entropy production for a chemical reaction:

sPð Þr =∑
P

ni/nfuelð Þsi −∑
R

ni/nfuelð Þsi − qr/Tb

11. Absolute molar specific entropy at temperature T and pressure p:

�
s p,Tð Þabs



incompressible
substance

= s° + c ln T/T°ð Þ

and

½sðp,TÞabs�idealgas
= s° + cp ln T/T°ð Þ−ℜ ln p/p°ð Þ

12. Molar specific entropy of formation:

ðsf°Þcompound = s°compound − ∑
elements

ni/ncompound
� �

si°

13. Molar specific Gibbs function of formation:

ðgf°Þcompound = ðhf°Þcompound −T°ðsf°Þcompound

14. Molar specific Gibbs function at the reference state of 0.1 MPa and the products or reactants mixture
temperature T:

g•i ðat p°, TÞ = ðgf°Þi + ½ðhðat TÞ− ðh°ðat T°Þ�i −T½sðat p°, TÞ�i + T°½s°ðat p°, T°Þ�i
15. Chemical equilibrium constant, based on Gibbs functions:

Ke = exp

∑
R’

vig
•
i −∑

P’

vig
•
i

ℜT

2664
3775

and, based on molar concentrations:

Ke =

∏
P′

χið Þvi

∏
R′

χið Þvi
pm
p°

� � ∑
P′

vi −∑
R′

vi

 !

16. The van’t Hoff equation:

dð lnKeÞ
dT

=
_Qr

ℜT2

17. Fuel cell maximum reaction efficiency:

ðηrÞmaximum
fuel cell
efficiency

=

∑
R

ni/nfuelð Þg•i −∑
P

ni/nfuelð Þg•i +ℜT ln ∏
R

pi/p°ð Þ ni/nfuelð Þ/∏
P

pi/p°ð Þ ni/nfuelð Þ
� 	

∑
R

ni/nfuelð Þhi −∑
P

ni/nfuelð Þhi

18. Fuel cell open circuit voltage:

ϕo =

ðηrÞmax
fuel cell

∑
R

ni/nfuelð Þhi −∑
P

ni/nfuelð Þhi
" #

jF
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where j= 4n + m kgmole electrons per kgmole of CnHm and F= 96,487 kJ/(V ·kgmole electrons) is Faraday’s
constant.

19. Fuel cell electrical current:

I = ð _n fuelÞjF
20. The specific molar flow availability of chemical species i:

½ðaf Þi�chemical = g•i +ℜT ln
� pi
p°




Problems (* indicates problems in SI units)
1.* Determine the mass in kg of one molecule of water.
2. Determine the mass in lbm of one molecule of methane.
3.* The density of benzene ðC6H6Þ is 879 kg/m3. Determine the

volume of
a. 1 kgmole of benzene.
b. 1 molecule of benzene.

4. Determine the percentage by mass of carbon in C8H18:

5. Determine the percentage by mass of aluminum in Al2O3:

6. Determine the percentage by mass of oxygen atoms in a
molecule of casein of milk, C708H1130O224N180S4P4:

7. Determine the percentage by mass of carbon, hydrogen, and
oxygen in methyl alcohol, CH3ðOHÞ:

8. The spectral analysis of a chemical compound gave the
following composition on a mass basis: 29.1% Na, 40.5% S,
30.4% O. Determine the chemical formula of this substance
(i.e., find x, y, and z in NaxSyOz).

9. How many lbm are in 1 lbmole of
a. C12H22O11 (sucrose, a typical carbohydrate).
b. C57H110O6 (stearin, a typical fat).
c. C3032H4816O872N780S8Fe4 (human hemoglobin, a typical

protein).
10.* Convert the following to mass units (kg or lbm): (a) 1.00

kgmole of CO2, (b) 2.00 × 10−3 lbmole of Fe2O3, (c) 6.00
gmoles of SO2, (d) 0.700 kgmole of CH4:

11.* Convert the following to molar units (kgmole or lbmole):
(a) 14.0 lbm of CO, (b) 0.370 kg of H2O, (c) 123 g of C2H2,
(d) 5.00 kg of C8H18:

12.* When 2.00 kgmoles of KClO3 are heated, 2.00 kgmoles of KCl
and 3.00 kgmoles of O2 are produced. If 50.0 kg of KClO3 are
heated, how many kg of KCl and O2 are produced?

13. Determine the reaction equation and molal analysis of the
combustion products for the combustion of carbon disulfide,
CS2, with
a. 100.% theoretical air.
b. 150.% theoretical air.
c. An air/fuel ratio of 47.6 moles of air per mole of fuel to

produce CO2, SO2, and excess air products.
14. Determine the reaction equation and molal analysis of the

combustion products of ammonia, NH3, on the surface of a
heated platinum wire in the presence of
a. 0.00% excess oxygen.
b. 125% theoretical oxygen.
c. 25.0% deficit oxygen to form NO, H2O, and excess air

products.

15. Determine the reaction equation and volumetric analysis of the
combustion products for the combustion of methyl alcohol,
CH3ðOHÞ, with
a. 100.% theoretical oxygen.
b. 150.% theoretical oxygen.
c. 50.0% theoretical oxygen.

16. Determine the reaction equation and volumetric analysis of the
combustion products for the combustion of natural rubber,
½C3H8�2000 or C6000H16,000ð Þ, with
a. 100.% theoretical oxygen.
b. 400.% excess oxygen.
c. 90.0% deficit oxygen.

17. Determine the reaction equation and molal air/fuel ratio for the
combustion of ethyl alcohol, C2H5 OHð Þ, with
a. 100.% theoretical air.
b. 100.% excess air.
c. 50.0% deficit air.

18. Determine the reaction equation and molal air/fuel ratio for the
combustion of dimethyl ketone (acetone), COðCH3Þ2, with
a. 0.00% excess air.
b. 100.% excess air.
c. 30.0% theoretical air.

19. Determine the reaction equation and molar fuel/air ratio for the
combustion of wood cellulose, C6H10O5, with
a. 100.% theoretical air.
b. 250.% excess air.
c. 25.0% deficit air.

20. Determine the reaction equation, molal analysis of the
combustion products, and mass air/fuel ratio for
the combustion of kerosene, C10H22, with 187%
excess air.

21. Determine the reaction equation, volumetric analysis of the
combustion products, and molal fuel/air ratios for the
combustion of tetraethyl lead, PbðC2H5Þ4, the common
antiknock gasoline additive, to form PbO, CO2, H2O, and
possibly excess air with
a. 100.% theoretical air.
b. 10.0% excess air.
c. An air/fuel ratio of 20.0 lbm of air per lbm of fuel.

22. Develop a reaction equation for the combustion of
polyethylene, ½CH2CH2�n, in 100.% theoretical air.

23. A simple alcohol can be obtained from a hydrocarbon by
replacing one of the hydrogen atoms by a hydroxyl group (OH).
Develop a reaction equation for the combustion of a generalized
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alcohol of this type, CnH2n+ 1ðOHÞ, in 100.% theoretical air and
test it out with
a. Methyl alcohol (also known as methanol or wood alcohol),

CH3ðOHÞ:
b. Ethyl alcohol (also known as ethanol or grain alcohol),

C2H5ðOHÞ.
c. Isopropyl alcohol, C3H7ðOHÞ:

24. Propane, C3H8, is burning with 130.% theoretical air in a camp
stove. Determine
a. The reaction equation.
b. The molar air/fuel ratio of the combustion.
c. The volumetric analysis of the combustion products.
d. The dew point temperature of the combustion products

if the total pressure of the combustion products is 14.7 psia.

25. The combustion of an unknown amount of benzene (x moles
of C6H6) in pure oxygen in a chemical reactor produces the
following dry exhaust gas analysis: 44.71% CO2 and 55.29% O2.
Determine
a. The actual molar and mass fuel/oxygen ratios.
b. The percent of theoretical oxygen used.
c. The molar percentage of water vapor in the exhaust gas

before it was dried for this analysis.

26. The combustion of an unknown amount of ethylene (x moles of
C2H4) in pure oxygen in a laboratory experiment produces the
following dry exhaust gas analysis on a molar basis: 84.75%
CO2 and 15.25% O2: Determine
a. The actual molar and mass oxygen/fuel ratios.

b. The percent of excess oxygen used.

c. The molar percentage of water vapor in the exhaust gas
before it was dried for this analysis.

27. The combustion of an unknown amount of acetylene (x moles
of C2H2) with pure oxygen in an oxyacetylene torch produces
the following dry exhaust gas analysis: 39.14% CO2 and 60.86%
O2: Determine
a. The actual molar and mass fuel/oxygen ratios.

b. The percent of excess oxygen used.

c. The molar percentage of each combustion product before the
exhaust gas was dried for this analysis.

28. An unknown amount of butane (x moles of C4H10) is burned
with pure oxygen in a bomb calorimeter. The dry gas molar
analysis of the products is 48.72% CO2 and 51.28% O2:

Determine
a. The actual molar and mass oxygen/fuel ratios.

b. The percent excess oxygen used.

c. The molar percentage of each combustion product before the
exhaust gas was dried for this analysis.

29. The combustion of an unknown amount of methane (x moles
of CH4) in a furnace results in the following dry exhaust gas
molar analysis: 9.52% CO2, 4.00% O2, and 86.47% N2:

Determine
a. The actual molar and mass air/fuel ratios.

b. The percent of excess air used.

c. The molar percentage of water vapor in the exhaust gas
before it was dried for this analysis.

30. The combustion of an unknown amount of propane (x moles of
C3H8) in an industrial oven produces the following dry exhaust
gas analysis on a volume basis: 5.52% CO2, 12.59% O2, and
81.89% N2: Determine
a. The actual molar and mass air/fuel ratios.

b. The percent of theoretical air used.

c. The volume percentage of water vapor in the exhaust gas
before it was dried for this analysis.

31. An unknown amount of ethane (x moles of C2H6) is burned in
a combustion chamber with air. The dry gas molal analysis of
the exhaust products is 6.64% CO2, 10.46% O2, and 82.9% N2:

Determine
a. The actual molar and mass fuel/air ratios.
b. The percent of excess air used.
c. The molar percentage of each combustion product before the

exhaust gas was dried for this analysis.
32. The combustion of an unknown amount of propylene (x moles

of C3H6) with air in a prototype space heater produced the
following dry exhaust gas molar analysis: 4.27% CO2, 15.05%
O2, and 80.68% N2: Determine
a. The actual molar and mass air/fuel ratios.
b. The percent of theoretical air used.
c. The molar percentage of each combustion product before the

exhaust gas was dried for this analysis.
33. The following dry exhaust volumetric analysis results from the

combustion of an unknown amount of octane (x moles of
C8H18) in a spark ignition internal combustion engine: 8.80%
CO2, 8.20% CO, 4.1% H2, 1.00% NO, 0.200% CH4, and
77.7% N2: Determine
a. The actual molar and mass air/fuel ratios.
b. The percent of theoretical air used.
c. The molar percentage of water vapor in the exhaust gas

before it was dried for this analysis.
34. The following dry exhaust gas molar analysis results from the

combustion of an unknown amount of kerosene (x moles of
C10H22) in a compression ignition internal combustion engine:
6.30% CO2, 9.40% CO, 4.70% C, 4.70% H2, 1.50% NO,
0.200% CH4, and 73.2% N2: Determine
a. The actual molar and mass air/fuel ratios.
b. The percent deficit air used.
c. The volumetric percentage of water vapor in the exhaust

gas before it was dried for this analysis.
35. An unknown hydrocarbon material is burned in a calorimeter

with air. An Orsat analysis indicates that the (dry) exhaust gas is
made up of only 17.5% CO2 and 82.5% N2, with no CO or O2

present. Determine
a. The fuel model ðCnHmÞ:
b. The composition of the fuel on a mass basis.
c. The percent theoretical air used.
d. The dew point temperature if the combustion products are at

0.101 MPa.
36.* An unknown hydrocarbon material is burned in air for chemical

analysis. An Orsat test indicates that the (dry) exhaust gas
contains no CO or O2 but consists of only 14.9% CO2 and
85.1% N2: Determine
a. The fuel model ðCnHmÞ:
b. The composition of the fuel on a percent mass basis.
c. The molar and mass air/fuel ratios used in the combustion

process.
d. The dew point temperature if the combustion products are at

0.101 MPa.
37. An Orsat analysis of the (dry) products of combustion of a gas

emanating from the bowels of a creature of immense hypocrisy
produces the following composition: 1.00% CO2, 19.2% O2,
and 79.8% N2: Determine
a. The chemical formula ðCnHmÞ and name of the gas.
b. The composition of the fuel on a percent molar basis.
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c. The percent excess air used in the combustion process.
d. The dew point temperature of the products at atmospheric

pressure.
38. An Orsat analysis of the (dry) products of combustion of an

unknown hydrocarbon indicates that it consists of only 26.1%
CO and 73.9% N2, with no CO2 or O2 present. Determine
a. The fuel model ðCnHmÞ:
b. The composition of the fuel on a percent mass basis.
c. The percent theoretical air used.
d. The dew point temperature of the combustion products at

atmospheric pressure.
39.* The combustion of a new fuel that is a mixture of a liquid

hydrocarbon and hydrogen gas is to be modeled as a single
hydrocarbon. An Orsat analysis of the dry exhaust products of
this new fuel shows 6.00% CO, 6.00% O2, and 88.0% N2

(no CO2 is present). Determine
a. The fuel model ðCnHmÞ of this mixture.
b. The percentages by mass of carbon and hydrogen present in

the mixture.
c. The mass air/fuel ratio used in the combustion process.
d. The dew point temperature of the exhaust products at

0.152 MPa.
40.* An unknown hydrocarbon fuel produced an Orsat dry exhaust

gas analysis of 8.30% CO2, 0.00% CO, 9.10% O2, and 82.6%
N2: Determine
a. The fuel model ðCnHmÞ:
b. The composition of the fuel on a percent mass basis.
c. The percent of theoretical air used.
d. The dew point temperature of the exhaust gas when it is at

0.1015 MPa.
41. Amounts of 9.70% CO2, 1.10% CO, 0.00% O2, and 87.2% N2

are found in the Orsat analysis of the dry exhaust gas produced
by the cataclysmic combustion of an unknown hydrocarbon
substance in air. Determine
a. The fuel model ðCnHmÞ of the hydrocarbon.
b. The mass percentages of carbon and hydrogen in the fuel.
c. The percent of deficit air used.
d. The molar percentage of water vapor in the exhaust before it

was dried.
42.* The Orsat analysis of the (dry) products of combustion of an

unknown hydrocarbon is 9.10% CO2, 8.90% CO, and 82.0%
N2 (no O2 is present). Determine
a. The fuel model ðCnHmÞ:
b. The mass percentages of C and H present in the fuel.
c. The molar air/fuel ratio and percent theoretical air used in

the combustion.
d. The dew point temperature at 0.106 MPa.

43.* The Orsat analysis of the (dry) exhaust gas from the combustion
of an unknown hydrocarbon is 1.10% CO2, 1.10% CO, 18.8%
O2, and 79.0% N2: Determine
a) The fuel model ðCnHmÞ,
b) The percent mass composition of the fuel,
c) The fuel/air ratio used, and
d) The dew point temperature at 0.644 MPa.

44.* The combustion of a mysterious unknown hydrocarbon fuel in
the dimensional stabilization module of the temporal drive unit
produces the following Orsat (dry) exhaust gas analysis: 4.50%
CO2, 1.90% CO, 14.1% O2, and 79.5% N2: Determine
a. The fuel model ðCnHmÞ and its probable name.
b. The percent mass composition of the fuel.

c. The percent of theoretical air used in the combustion.
d. The dew point temperature of the exhaust products at

1.00 MPa.
45. A Wingbarton hydrocarbon bomb explodes in the dry air near

an Orsat analyzer. A slightly injured but quick-witted technician
quickly carries out a dry gas analysis in the shattered remains of
the laboratory to produce the following results: 2.80% CO2,
0.500% CO, 16.2% O2, and 80.5% N2: Determine
a. The fuel model ðCnHmÞ and probable name of the

mysterious hydrocarbon explosive used in the Wingbarton
bomb.

b. The mass percentage composition of the carbon and
hydrogen in the bomb.

c. The percentage of excess air available in the laboratory when
the bomb exploded.

d. The dew point temperature in the lab after the bomb
exploded (assume atmospheric pressure).

46. An international espionage agent uses a computerized pocket-
sized Orsat apparatus to grab and analyze a dry sample of the
exhaust gases from the new air-breathing, hydrocarbon-burning,
Blood-Sucker guided missile. The Orsat readout is 6.20% CO2,
2.10% CO, 9.90% O2, and 81.8% N2: Determine
a. The fuel model CnHm and probable name of the Blood-

Sucker’s fuel.
b. The percentages of carbon and hydrogen by mass in the fuel.
c. The mass fuel/air ratio used by the missile.

47. An ancient internal combustion Mugwump bilge-pump engine
burns a mixture of obscure hydrocarbon fuels that can be
modeled as a single fuel. An Orsat analysis of the dry exhaust
gas from this engine gives the following results: 5.90% CO2,
5.50% CO, 7.50% O2, and 81.1% N2: Determine
a. The single fuel hydrocarbon model ðCnHmÞ:
b. The carbon and hydrogen composition by mass of this fuel.
c. The percent of theoretical air used in the engine.

48. An Orsat analysis of the combustion of a strange unearthly
hydrocarbon gas produces a (dry) result of 5.00% each for CO2,
CO, and O2, with N2 making up the remainder. Determine
a. The hydrocarbon fuel model CnHm for this strange and

somewhat putrid gas.
b. The mass composition of this gas.
c. The percent of excess air used in the combustion.

49. The coagulated remains of a fiendish mutant humanoid
creature that evolved on an oxygen-free planet are oxidized and
dried in air by a laser beam then processed through a nuclear-
powered Orsat analyzer that reports the following composition,
using a computerized synthetic voice: “Thee ox-see-gin, car-bon
de-oxside and car-bon mo-noxside conzentrations are each
exactly seven per-cent. Thee remaining gaz is nitrogen. Zis is
very unusual.” As chief engineer of the starship Entropy,
determine
a. The synthetic formula ðCnHmÞ of the mutant’s body tissue.
b. The carbon and hydrogen percentages by mass in the tissue.
c. The percent of excess air available in the atmosphere where

the tissue was oxidized.
50. An icky, unknown hydrocarbon fuel of the form ðCH2Þn is

burned with an unknown amount of excess air x in the
following gosh awful reaction:

ðCH2Þn +1:5nð1+ xÞ½O2 + 3:76ðN2Þ�
! nðCO2Þ+ nðH2OÞ+1:5nxðO2Þ+5:64nð1+ xÞðN2Þ
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An exhaust gas analysis of the products of this combustion
yielded the Table 15.11 percentage composition on a volume
basis. Using these data, determine
a. The temperature to which the exhaust must be cooled to

cause the water vapor to condense, if the exhaust is at a total
pressure of 22.223 psia.

b. The amount of excess air x used in the combustion process.
c. The air/fuel ratio on a mass basis.

In Problems 51 through 55, use Eqs. (15.4), (15.6), and the
higher heating value data given in Table 15.2 to compute the
molar specific enthalpy of formation at the standard
reference state, hf°

� �
compound, of each compound from its

elements. Compare your results with the values given in
Table 15.1.

51. Acetylene: 2½CðsÞ�+H2ðgÞ ! C2H2ðgÞ+ ðqf°ÞC2H2ðgÞ,ðhf°ÞC2H2ðgÞ = ?

52. Ethylene: 2½CðsÞ�+2½H2ðgÞ�!C2H4ðgÞ+ ðqf°ÞC2H4ðgÞ,ðhf°ÞC2H4ðgÞ = ?

53. Propane: 3½CðsÞ�+3½H2ðgÞ�!C3H6ðgÞ+ ðqf°ÞC3H6ðgÞ,ðhf°ÞC3H6ðgÞ = ?

54. Ethane: 2½CðsÞ�+ 3½H2ðgÞ� ! C2H6ðgÞ+ ðqf°ÞC2H6ðgÞ, ðhf°ÞC2H6ðgÞ = ?

55. Butane: 4½CðsÞ�+5½H2ðgÞ�!C4H10ðgÞ+ðqf°ÞC4H10ðgÞ,ðhf°ÞC4H10ðgÞ = ?

56. Repeat Example 15.8 using 150.% theoretical air.
57. Repeat Example 15.8 using 90.0% theoretical air. Assume the

hydrogen is much more reactive than the carbon and is all
converted into water.

58. Repeat Example 15.9 using 150.% theoretical air in the
combustion process.

59.* The higher heating value of glucose, C6H12O6ðsÞ, is
−2817:5 MJ/kgmole: Determine the standard reference state
molar specific enthalpy of formation of glucose using the reaction

C6H12O6ðsÞ+6½O2ðgÞ� ! 6½CO2ðgÞ�+6½H2OðℓÞ�
60. Determine the heat of combustion of propane (C3H8) gas with

100.% theoretical air when the reactants are at the standard
reference state, but the products are at 2000. R. Use the gas
tables in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics (Table C.16c).

61. Using the gas tables, Table C.16c, determine the heat of
combustion of liquid octane, C8H18(l), with 200.% theoretical
air when the reactants are at 537 R and the products are at
4000. R. Explain the significance of your answer.

62. Liquid ethyl alcohol at 77.0°F is burned in 100.% theoretical air.
Determine the heat produced per kgmole of fuel when the
products are at 540.°F. The molar specific enthalpy of formation
of this fuel is − 277:69MJ/kgmole:

63.* Methane gas (CH4) at −60.0°C is burned during a severe winter
with 200.% theoretical air at the same temperature. The
products of combustion are at 300.°C. Assuming constant
specific heats, find the heat released per kgmole of fuel.

64. Kerosene (decane, C10H22) with a density of 49.3 lbm/ft3 has a
HHV of 20,484 Btu/lbm and costs $0.500 per gallon. Calculate
the cost of 1.00 therm (105 Btu) obtained by burning kerosene.

65.* The explosive energy of a high explosive is defined to be the lower
heating value (LHV) of the detonation reaction. The heat of
formation of nitroglycerin, C3H5ðNO3Þ3, is −354 MJ/kgmole,
and its molecular mass is 227 kg/kgmole.
a. Find the values of a, b, c, and d in the following reaction

describing the detonation of nitroglycerin:

C3H5ðNO3Þ3 ! aðCO2Þ+ bðH2OÞ+ cðO2Þ+ dðN2Þ

b. Determine the explosive energy of nitroglycerin in MJ/kg.
66.* In Problem 65, the explosive energy of a high explosive was

defined to be the lower heating value (LHV) of the detonation
reaction. The heat of formation of trinitrotoluene (TNT),
C7H5ðNO2Þ3, is −54.4 MJ/kgmole, and its molecular mass is
227 kg/kgmole.
a. Find the values of a, b, c, and d in the following simplified

reaction describing the detonation of TNT:

C7H5ðNO2Þ3 ! aðCOÞ+ bðCH4Þ+ cðH2OÞ+ dðN2Þ

b. Determine the explosive energy of TNT in MJ/kg.
67. Determine the adiabatic flame temperature of methane (CH4)

burned in 400.% theoretical air in a steady flow process.
68. Determine the adiabatic flame temperature of acetylene

(C2H2) burned in a steady flow process with (a) 100.%
theoretical air, (b) 200.% theoretical air, and (c) 400.%
theoretical air.

69. Determine the adiabatic flame temperature of propane (C3H6)
burned in a steady flow process with (a) 0.00% excess air,
(b) 100.% excess air, and (c) 300.% excess air.

70. Determine the adiabatic flame temperature of benzene (C6H6)
burned in a steady flow process with (a) 0.00% excess air,
(b) 100.% excess air, and (c) 300.% excess air.

71.* Determine the adiabatic flame temperature and maximum
explosion pressure as 0.001 kgmole of butane (C4H10) is burned
in 100.% theoretical air in a 0.100 m3 adiabatic bomb
calorimeter.

72.* Determine the molar specific entropy production ðsPÞr for the
reaction C+O2 ! CO2, when both the products and the
reactants are at the standard reference state. Assume an
isothermal boundary at 298 K.

73.* Determine the molar specific entropy production ðsPÞr for the
combustion of methane in pure oxygen,
CH4 + 2ðO2Þ ! CO2 + 2ðH2OÞ, when both the products and the
reactants are at the standard reference state. Assume an
isothermal boundary at 298 K.

74.* Determine the molar specific entropy production ðsPÞr as
ethylene is burned in an adiabatic combustion chamber with
100.% theoretical air. The reactants are at the standard reference
state, but the products are at 5.00 MPa. The adiabatic flame
temperature is 2291.6°C. Assume constant specific heats
(Table C.13b).

75. Using the gas tables (Table C.16c), determine the molar specific
entropy production ðsPÞr for the combustion of propane with
100.% theoretical air. The reactants are at the standard reference
state. The products are at 2000. R and 4.00 MPa, and the
heat transfer from the combustion chamber is 571,126 Btu/
(lbmole ·R). Assume the combustion chamber has isothermal
walls at 2000. R.

76. Determine the molar specific entropy of formation sf° for (a)
CO, (b) CO2, and (c) H2O.

Table 15.11 Problem 50

Component Molecular Mass %

N2 28.0 77.4

O2 32.0 13.6

H2O 18.0 4.5

CO2 44.0 4.5

Total 100.0
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77. Determine the molar specific entropy of formation sf° for (a)
methane (CH4), (b) acetylene (C2H2), and (c) propane (C3H6).

78. Determine the molar specific entropy of formation sf° of liquid
octane C8H18(ℓ), and explain why it is negative.

79.* Determine the specific molar Gibbs function of formation gf° at
25.0°C and 0.100 MPa for the reaction C+O2 ! CO2, and
compare your result with the value given in Table 15.7.

80.* Use Eq. (15.35) and Table C.17 to find the molar specific Gibbs
function of formation at 25.0°C and 0.100 MPa of atomic
hydrogen gas from the equilibrium reaction H2 ⇄2H:

81. The equilibrium constant for the reaction
0:5ðN2Þ+ 0:5ðO2Þ⇄NO is 0.0455 at 4500. R and atmospheric
pressure. Assume that air at room temperature and atmospheric
pressure contains 21.0% oxygen and 79.0% nitrogen on a molar
basis.
a. As the dissociation occurs, does the total number of moles in

the reaction (i) increase, (ii) decrease, or (iii) remain constant?
b. The equilibrium constant formula (Ke) for the dissociation

equation is which of the following? (a) pNO

pN2 pO2
(b)

pN2 pO2
pNO

(c) pNOffiffiffiffiffiffiffiffiffiffiffi
pN2 pO2

p (d) ðpNOÞ2
pN2 pO2

c. Air at 4500 R and atmospheric pressure contains what
percentage of NO on a molar basis? (a) 0.617, (b) 1.803,
(c) 4.55, (d) more than 4.55, (e) less than 0.617.

82.* Determine the equilibrium constant (Ke) for the reaction
CH4 +H2O⇄CO+3ðH2Þ at 25.0°C and 0.100 MPa.

83.* Algebraically solve the cubic equation given in Example 15.15
for the degree of dissociation (y) and use Table C.17 to verify
the three example computer results given there for
a. pm = 0:100MPa, T = 2000:K:
b. pm = 0:100MPa, T = 3000:K:
c. pm = 1:00MPa,T = 3000:K:

84.* Carbon is burned with 100.% excess oxygen to form an equilibrium
mixture of CO2, CO, and O2 at 3000. K and 1.00 MPa pressure.
Determine the equilibrium composition when only the CO2

dissociates as CO2 ⇄CO+ 0:5ðO2Þ: Assume ideal gas behavior.
85.* The equilibrium constant for the water‒carbon monoxide

reaction CO+H2O⇄CO2 +H2 at 0.100 MPa and 1000. K is
Ke= 1.442. Determine the equilibrium mole fraction of each gas
present under these conditions. Assume ideal gas behavior.

86. Determine the maximum reversible electrical work output of the
fuel cell shown in Figure 15.16, where g is the specific Gibbs
free energy.

Fuel
cell

WE= ? 

Products
m = 0.0100 lbm/h
g = 1000. Btu/lbm

Fuel
m = 0.0100 lbm/h

g = 20,000. Btu/lbm

FIGURE 15.16
Problem 86.

87.* Determine the maximum theoretical efficiency, open circuit
voltage, and maximum theoretical work output per mole of
carbon consumed in a carbon‒oxygen fuel cell operating with
the reaction CðsÞ+O2 ! CO2, when each component in the
reaction is at 25.0°C and 0.100 MPa.

88.* Repeat Example 15.18 for a fuel cell that operates on hydrogen
and 100.% theoretical air (instead of pure oxygen), each at
25.0°C and 0.100 MPa.

89.* Determine the maximum efficiency and open circuit voltage for
the methane‒oxygen fuel cell, CH4 +2ðO2Þ ! CO2 +2½H2OðℓÞ�,
when each component in the reaction is at 25.0°C and
0.100 MPa.

90.* Repeat Problem 89 for the case where the reactants are premixed
to a total pressure of 0.100 MPa at 25.0°C.

91.* Determine the maximum efficiency and open circuit voltage for
the propane‒oxygen fuel cell,
C3H8 +5ðO2Þ ! 3ðCO2Þ+ 4½H2OðℓÞ�, when each component in
the reaction is at 25.0°C and 0.100 MPa.

92.* Repeat Problem 91 for a propane‒air fuel cell in which the
propane is premixed with 200.% theoretical air at a total
pressure of 0.100 MPa and 25.0°C. Assume the combustion
products are also mixed and are at a total pressure of 0.100 MPa
at 25.0°C.

93.* An inventor claims to have perfected a hydrogen‒oxygen fuel
cell, H2 +0:5ðO2Þ ! H2OðℓÞ, that produces 300 MJ per kgmole
of hydrogen consumed at 25.0°C and 0.100 MPa. Is this
possible? If not, what is the maximum possible power output?
Assume each component in the reaction is at 25.0°C and
0.100 MPa.

94.* Determine the open circuit, internal entropy production rate per
unit molar flow rate of CO in the carbon monoxide‒oxygen fuel
cell, CO+0:5ðO2Þ ! CO2, when each component in the
reaction is at 25.0°C and 0.100 MPa.

95. An inventor claims to have invented a fuel cell that contains a
catalyst for the ammonia reaction N2 +3H2 ! 2NH3 at the
standard reference state. The molar enthalpy of formation of
ammonia= −19,750 Btu/lbmole and the Gibbs function of
formation of ammonia= −7140 Btu/lbmole. Determine
a. The maximum theoretical reaction efficiency.
b. The maximum theoretical electrical work output of this fuel

cell per lbmole of N2 consumed.

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary thermal design as indicated. A detailed design
with working drawings is not expected unless otherwise specified.
These problems have no specific answers, so each student’s design is
unique.

96. Design a burner for a furnace that will produce 2:00× 106 Btu/h
at 1500. °F. Choose the fuel, flow rates, air/fuel ratio, burner
material, burner geometry, flow controls, and the like.

97. Design a bomb calorimeter to be used to measure the heat of
combustion of municipal solid waste. Because of the
heterogeneous nature of the waste, the test sample size must be
at least 1 lbm. Make the calorimeter either adiabatic or
isothermal. Assume all noncombustibles (e.g., metal, glass) have
been removed from the waste before it is tested.

98.* Design a system to produce 0.1 kg/h of hydrogen gas from the
catalytic reaction of methane and steam,
CH4 +H2OðgÞ ! 3ðH2Þ+CO, at 1500. R and 14.7 psia. Assume
the system has an equilibrium composition of
CH4 +H2OðgÞ ! aðCH4Þ+ b½H2OðgÞ�+ cðH2Þ+ dðCOÞ
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99.* Design a combustion chamber for a rocket that will oxidize
liquid hydrazine, N2H4ðℓÞ, with liquid hydrogen peroxide,
H2O2ðℓÞ, at 1.00 MPa and 2000. K as follows:
N2H4ðℓÞ+ 2ðH2O2ðℓÞÞ ! 4½H2OðgÞ�+N2, and that will supply the
rocket nozzle with 1000. kg/s of exhaust gas. Data:ðh°f ÞN2H4ðℓÞ =
50:417MJ/kgmole, and ðh°f ÞH2O2ðℓÞ = −187:583MJ/kgmole:

100. Design a benchtop laboratory-scale facility to produce methanol
from the reaction CO+ 2ðH2Þ ! CH3ðOHÞ: Determine all flow
rates, heat transfers, reaction vessel optimum temperature and
pressure, reaction vessel material, and geometry.

Computer Problems
The following open-ended computer problems are designed to be
done on a personal computer using a spreadsheet or equation solver.

101. Develop a spreadsheet to compute the LHV of gaseous octane
and use it to find the adiabatic flame temperature for (a) 100.%
and (b) 200.% theoretical air.

102. Develop a spreadsheet to balance the combustion reaction of
any simple alcohol of the type CnH2n+1ðOHÞ with excess or
deficit air or oxygen.

103. Develop a spreadsheet with temperature-dependent specific
heats for a hydrocarbon fuel of your choice listed in Table 15.1
to do one or more of the following:
a. Compute the heat of reaction of the fuel when the reaction

temperature and percent of excess air or oxygen are input by
the user.

b. Compute the adiabatic flame temperature of the fuel for any
excess air or oxygen value.

104. Develop an interactive computer program that outputs the
entropy production rate for any (or a series of) reaction(s) of
your choice. Input from the keyboard is in response to properly

formatted screen prompts for the stoichiometric coefficients, the
heat of reaction, the reaction temperature and pressure, and the
isothermal heat transfer boundary temperature. Use the program
to determine
a. The maximum pressure for a given isothermal boundary

temperature at which the reaction can occur.
b. The maximum isothermal boundary temperature possible for

any given reaction pressure and temperature.
105. Develop an interactive computer program that outputs the

equilibrium constant Ke when the stoichiometric coefficients are
input from the keyboard in response to properly formatted
screen prompts. Assume all the components obey the Gibbs-
Dalton ideal gas mixture law.

106. Develop an interactive computer program to replace Table C.17
for the dissociation of H2O, CO2, and NO. You have to find the
relevant information on H,O, and N in other texts if you wish
to also include the dissociation of H2,O2, and N2:

107. Develop an interactive computer program that outputs the
molar specific enthalpy hi

� �
, entropy sið Þ, and Gibbs function

gið Þ for any substance of your choice at any user input pressure
and temperature.

108. Develop an interactive computer program that outputs the
power and reaction efficiency of any reaction you desire. Apply
this program to a fuel cell analysis and plot the reaction
efficiency ηr vs.
a. The percent of excess oxidizer present.
b. The reaction temperature.
c. The reaction pressure.
d. The entropy production rate.
e. The fuel cell heat transfer rate _Q :

Assume isothermal boundaries and input Tb from the
keyboard along with all other necessary information.
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CHAPTER 16

Compressible Fluid Flow
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16.1 INTRODUCEREA (INTRODUCTION)
This chapter focuses the application of the laws of thermodynamics on the behavior of a very specific type of
fluid, a compressible fluid. An incompressible fluid has a constant density independent of the magnitude of the
applied pressure, but the density of a compressible fluid varies with the applied pressure.

However, a compressible fluid does not exhibit compressibility effects whenever it is used in a system. Suppose
you have a compressible fluid in a system in which pressure does not change significantly. Then, the effects of
compressibility (density changes) do not appear and the compressible fluid behaves like an incompressible
fluid. For example, in the heating and ventilating system of a building, the air flow rates are very low and the
pressure and density changes are also very small. Consequently, air (by definition, a compressible fluid) behaves

WHAT IS A COMPRESSIBLE FLUID?

A compressible fluid is any fluid whose density varies significantly with pressure.

WHEN CAN THE COMPRESSIBILITY OF A FLUID BE IGNORED?

As a general rule of thumb, when V2 ≪ Δp/Δρ, the compressibility of a fluid is negligible and it behaves like an incompressible
fluid.

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00016-6
© 2011 Elsevier Inc. All rights reserved. 651



like an incompressible fluid in this system. Conversely, air flowing at high speed through a gas turbine engine is
exposed to large pressure and density changes inside the engine; therefore, it does not behave like an incompres-
sible fluid. In general, if the kinetic energy of a compressible fluid is much less than the ratio of the pressure
change to its density change in the flow, then the fluid’s compressibility is negligible and it may be treated as
an incompressible fluid for engineering analysis purposes.

Consequently, a compressible flow is any flow in which the fluid density is not constant in time and space.
Though all real substances are compressible to some extent, in normal engineering practice, only gases and
vapors are significantly compressible. Liquids and solids are normally considered to be incompressible, except at
extremely high pressures, on the order of 105 psia (0.7 GPa) or more. Because many modern engineering sys-
tems deal with thermodynamic processes involving gases or vapors, it is important to understand the unique
flow characteristics of these substances.

In the previous chapters, we discuss the conservation of mass and energy and make extensive use of the one-
dimensional mass, energy, and entropy balance equations for open and closed systems. In this chapter, we intro-
duce the conservation of linear momentum law and the corresponding closed and open system one-dimensional
momentum balance equations and we apply these equations to systems containing compressible substances. The
conservation of linear momentum law, along with the conservation of mass and the two laws of thermody-
namics, complete the set of fundamental physical laws and corresponding balance equations necessary for
proper engineering design and analysis of all substances.

In this chapter, we characterize the basic properties of a compressible flow and apply them to subsonic and
supersonic flows. One of the main areas of application of compressible flows is in converging-diverging nozzles
and diffusers. Fluid compressibility produces the additional phenomena of choked flow and shock waves in these
flow systems. In Chapters 6 and 9 we studied the energy and entropy characteristics of nozzles and diffusers.
In this chapter, we discover that the conservation of linear momentum adds new facets to nozzle and diffuser
efficiency analysis for compressible fluids.

16.2 STAGNATION PROPERTIES
The stagnation state of a moving fluid is the state it would achieve if it underwent an adiabatic, aergonic decelera-
tion to zero velocity. The energy rate balance (ERB) for an adiabatic, aergonic, steady state, steady flow, single-
inlet, single-outlet open system with negligible change in flow stream potential energy reduces to

hin +V2
in/ð2gcÞ = hout +V2

out/ð2gcÞ
If we let the subscript o refer to the stagnation (or zero velocity) state, then Vο = 0, and the preceding equation
can be used to define the stagnation specific enthalpy ho as

ho = h+V2/ð2gcÞ (16.1)

WHY IS COMPRESSIBLE FLUID FLOW PART OF THERMODYNAMICS?

At the beginning of the 19th century, when the Industrial Revolution was in full swing and the technology of the high-
pressure steam engine was in the process of being developed, it became clear that, under certain circumstances, some very
peculiar things were happening inside the engine. At that time, engineers were trying to determine how to increase the
power output of a given engine while at the same time improving its operating efficiency. The relation between power out-
put and operating conditions of an adiabatic engine can be easily understood by applying the energy rate balance (neglect-
ing any changes in flow stream kinetic and potential energies):

_W = _mðhin − houtÞ
This equation clearly indicates that an effective way to increase the power output _W is simply to increase the mass flow rate
_m through the engine. This can be done by either increasing the inlet pressure or decreasing the exhaust pressure. As the inlet
pressure was increased, engineers found that the power output did in fact increase. But, when the exhaust pressure was
decreased, the power also increased, but only up to a certain point. Beyond a certain operating point, something “mysterious”
occurred. No matter how much the exhaust pressure was decreased below a certain level, the mass flow rate and consequently
the engine’s power did not increase further. They called this phenomenon choked flow, and it was not fully understood until
the study of compressible fluid flow was completely developed in the early 20th century. Therefore, compressible fluid flow is of
vital importance in the study of applied thermodynamics, because it helps engineers understand the effect that fluid compres-
sibility has on the thermodynamic performance of systems containing high-speed compressible working fluids.
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For an ideal gas or a low-pressure vapor with constant specific heats, this equation can be written as

V2/ð2gcÞ = ho − h = cpðTo −TÞ

or

To
T

= 1+ V2

2gccpT
(16.2)

where To is the stagnation temperature (the temperature at zero velocity).

EXAMPLE 16.1
While driving in your new sports car at 90.0 km/h in still air at 20.0°C, you put your hand out the window with your palm
toward the front of the car. What is the air temperature on the center of your palm?

Solution
First, draw a sketch of the system (Figure 16.1).

When your hand is placed perpendicular to the air flow, you should feel the stagnation pressure and temperature of the air
flow. The stagnation temperature is given by Eq. (16.2) as

To = T 1+ V2

2gccpT

� �
= ð20:0+ 273:15Þ 1+

ð90:0 km=hÞð1000m=kmÞð1h=3600 sÞð1 kJ=kg=1000m2/s2Þ
2ð1Þð1:004 kJ/kg .KÞð20:0+273:15KÞ

� �
= 294K = 20:3°C

So the stagnation temperature rise is not very much at this speed.

Exercises
1. How fast would the sports car in Example 16.1 have to travel

to produce a 1.00°C stagnation temperature rise at the center
of your hand? Answer: V = 161 km/h.

2. Suppose it is winter and the temperature of the air in
Example 16.1 is 0.00°C. What would be the stagnation
temperature rise at the center of your hand if all the other
variables remain the same? Answer: To – T = 0.310°C
(independent of the value of T).

3. Now, you are in an aircraft traveling at 800. km/h in air at
20.0°C. If you put your hand out the window now, what
is the air temperature at the center of your hand? Answer:
To = 318 K = 44.6°C.

16.3 ISENTROPIC STAGNATION PROPERTIES
If, in addition, we decelerate the flow reversibly (i.e., without friction or other losses) and aergonically, then the
entire process becomes isentropic and Eq. (7.38) of Chapter 7 can be combined with Eq. (16.2) to provide
equations for the isentropic stagnation pressure pos and the isentropic stagnation density ρos based on the isentropic
stagnation temperature To = Tos as

Tos
T

=
pos
p

� �ðk−1Þ/k
= vos

v

� �1− k
=

ρos
ρ

� �k−1

(7.38)

Then, Eq. (16.2) becomes

pos
p

= 1+ V2

2gccpT

� � k

k−1 (16.3)

20.0°C air
at 90.0 km/h

FIGURE 16.1
Example 16.1.

16.3 Isentropic Stagnation Properties 653



and

ρos
ρ

= 1+ V2

2gccpT

� � 1
k−1

(16.4)

where the os subscript has been added to indicate the isentropic stagnation state condition. These states are shown
schematically in Figure 16.2.

EXAMPLE 16.2
In Example 16.1, it was determined that the stagnation air temperature for air at 20.0°C traveling at 90.0 km/h = 25.0 m/s
was 20.3°C. Now determine the isentropic stagnation pressure and isentropic stagnation density of this air when the atmo-
spheric pressure is 0.101 MPa.

Solution
First, draw a sketch of the system (Figure 16.3).

Air at 20.0°C
and 90.0 km/h
(25.0 m/s)

Stagnation temperature gauge
reads 20.3°C

Atmospheric pressure = 0.101 MPa

FIGURE 16.3
Example 16.2.

For air, the specific heat ratio is 1.40, and when p = 0.101 MPa, Eq. (16.3) gives the isentropic stagnation pressure as

pos = p 1+ V2

2gccpT

� � k
k−1

= ð0:101MPaÞ 1+
ð25:0m/sÞ2 1 kJ/kg

1000m2/s2

� �
2ð1Þð1:004kJ/kg .KÞð20:0+273:15KÞ

0BB@
1CCA

1:40
1:40−1

= 0:1014MPa

Isentropic
stagnation

state

Actual
stagnation

state

Initial state

Increase in s due to
irreversibilities in the
real system 

ho

h

h

s

pos = constant
po = constant

p = constant 

V 2

2gc

FIGURE 16.2
An isentropic and a real deceleration to the stagnation state on a Mollier diagram.
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Note that pos is the same as p to three significant figures. At 20.0°C and 0.101 MPa flow stream conditions, the flow stream
density is

ρ =
p
RT

= 101kPa
ð0:286 kJ/kg .KÞð20:0+ 273:15KÞ = 1:21 kg/m3

Then, Eq. (16.4) gives the isentropic stagnation density as

ρos = ρ 1+ V2

2gccpT

� � 1
k−1

= ð1:21 kg/m3Þ 1+
ð25m/sÞ2 1 kJ/kg

1000m2/s2

� �
2ð1Þð1:004kJ/kg .KÞð20:0+ 273:15KÞ

0BB@
1CCA

1
1:40−1

= 1:1213 kg/m3

Note that ρos is the same as ρ to three significant figures. The following example shows that the use of an isentropic stagna-
tion state is not limited to ideal gases.

EXAMPLE 16.3
A new steam turbine design contains a flow nozzle that produces a flow of steam at 14.7 psia and 1000.°F at a velocity of
1612 ft/s. Determine the isentropic stagnation temperature, pressure, and density of this flow.

Solution
Equations (16.2, 16.3), and (16.4) are only for ideal gases. However, we can use the steam tables to solve this problem
as follows. Let station 1 be the exit flow stream from the nozzle and let station os be the same flow stream isentropically
decelerated to a zero velocity (stagnation) state. From Eq. (16.1), we have hos = h1 +V2

1 /2gc = h1 + 1612 ft/sð Þ2/
½2ð32:174 lbm .ft/lbf .s2Þð778:16 ft .lbf/BtuÞ� = h1 +51:90 Btu/lbm. Then, the station data become

Station 1 Station os

p1 ¼ 14:7psia sos ¼ s1 ¼2:1332 Btu=lbm .R

T1 ¼ 1000°F hos ¼ h1 þV2
1 =2gc ¼1534:4þ51:90 Btu=lbm¼ 1586 Btu=lbm

h1 ¼ 1534:4 Btu=lbm pos ¼ ? psia

s1 ¼ 2:1332 Btu=lbm .R Tos ¼ ? °F

ρos ¼ ? lbm=ft3

and using these values of sos and hos and the steam table, Table C.3a, in Thermodynamic Tables to accompany Modern Engineering
Thermodynamics a Mollier diagram for steam, or computerized steam tables, we find that pos ≈ 20. psia, Tos ≈ 1100°F, and ρos =
1/vos ≈ 1/(46.4 ft3/lbm) = 0.022 lbm/ft3.

Exercises
4. Determine the isentropic stagnation pressure in Example 16.2 if the air stream is moving at 500. km/h instead of

90.0 km/h. Assume all the other variables remain unchanged. Answer: pos = 0.112 MPa.
5. Use the steam tables or a Mollier diagram for steam to estimate the isentropic stagnation pressure of steam at 1100°F

and 600. psia traveling at 1600. ft/s. Answer: pos ≈ 800 psia.
6. If the isentropic stagnation temperature and pressure of the steam in Example 16.3 are 60.0 psia and 1500.°F, determine

the corresponding velocity of the steam at station 1, assuming all the other variables remain unchanged. Answer:
V ≈ 3670 ft/s.

16.4 THE MACH NUMBER
The Mach number M was introduced in 1929. It was named in honor of Ernst Mach (1838–1916), an Austrian
physicist and philosopher who studied high-speed compressible flow in the1870s. It is the dimensionless ratio
of the local fluid velocity V to the velocity of sound, c:

M = V/c (16.5)
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Sound is the propagation of pressure waves in a medium such as air. Sound is created by the motion or
vibration of an object, which causes pressure waves in the surrounding medium. A sound wave has the same
characteristics as any other type of wave. It has a wavelength, frequency, velocity, and amplitude. The velocity of
sound in air at 20oC (70oF) is approximately 344 m/s (1130 ft/s), or 770 miles per hour. The speed of sound is
often called the sonic velocity.

WHO WAS ERNST MACH?

Ernst Mach (1838–1916) was a physicist and philosopher who established the basic principles of modern scientific
thought. In 1864, Mach became professor of mathematics at the University of Graz in Austria. He spent his most produc-
tive years as a professor of physics at Charles University in Prague, from 1867 to 1895. In 1881, Mach began a study of the
flight of artillery shells using the new technology of photography. In this research, he discovered that the angle θ of the
shock cone radiating from the leading edge of a supersonic object was related to the speed of sound c and the velocity of
the object V by sin θ = c/V (see Figure 16.4), and θ was later called the Mach angle. The ratio of the local fluid velocity V
to the speed of sound in the fluid c came to be of fundamental value in the study of high-speed aerodynamics, and after
1930, it was called the Mach number (M = V/c).

V < c V = c V > c

θ

(a)

(b)

FIGURE 16.4
(a) The representation of a sound waves produced when an object moves from subsonic (V < c ) to sonic (V = c ) to supersonic
(V > c ) velocity. Generally, a conical shock wave sweeps back from the leading edge of the object with the cone angle proportional
to the ratio of the sonic velocity of the fluid to the supersonic velocity of the object, c/V. (b) The shadowgraph of a supersonic bullet
showing shock waves.

However, Mach would have probably considered his work in aerodynamics insignificant in comparison to his primary con-
tribution in establishing a connection between physics and psychology. He adopted David Hume’s position that a phenom-
enon can be understood from a scientific point of view only in terms of the human observations produced by the
phenomenon. This view leads to the very powerful conclusion that no law of physics is acceptable unless it is experimen-
tally verifiable. His strict definition of verifiability allowed the rejection of such long-held concepts as absolute time and
space and ultimately provided the framework for the acceptance of Einstein’s relativity theory.
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Table 16.1 lists the jargon terms developed to describe the different flow regimes. Transonic flow is a flow in
which the Mach number fluctuates around 1.0 by a small amount (±ε).

We can deduce a relation for the dependence of the isentropic speed of sound (or sonic velocity) c on local ther-
modynamic properties from a mass and energy balance analysis of a moving acoustical wave. Figure 16.5 shows
an open system attached to an isentropic sound wave moving at velocity c through a stationary fluid in a duct
that has a constant cross-sectional area A. Our coordinate system is attached to the moving wave, so the fluid
appears to be approaching the wave with velocity c. For an adiabatic, aergonic, reversible, steady state, steady
flow, single-inlet, single-outlet open system, the mass rate balance (MRB) reduces to

_min = _mout

or

ρAc = ðρ+ ∂ρsÞðAÞðc−∂VsÞ
= Aðρc− ρ ∂Vs + c ∂ρs −∂ρs ∂VsÞ

Where the subscript s indicates that entropy is held constant during the differentiation process. Neglecting
second-order differential terms (i.e., setting ∂ρs ∂Vs = 0), this equation can be rearranged to give

∂V
∂ρ

� �
s
= c/ρ (16.6)

Similarly, the energy rate balance for this system becomes

h+ c2/2gc = ðh+ ∂hsÞ+ ðc−∂VsÞ2/ð2gcÞ
Again neglecting second-order differential terms, this can be expanded and rearranged to give

∂h
∂V

� �
s
= c/gc (16.7)

Finally, the Gibbs Eq. (7.21) for an isentropic process yields

T∂ss = ∂hs − v∂ps = 0

System boundary attached to a moving sound wave

Upstream
properties

Downstream
properties

p

h
and s 

c c − ∂ Vs p + ∂ps
ρ + ∂ρs
h + ∂ ps
and s

ρ

FIGURE 16.5
An isentropic sound wave moving through a stationary fluid in a horizontal duct of constant cross-sectional area A. The coordinate
system is fixed to the moving wave so that the surrounding fluid appears to be moving. The s subscript is used to indicate isentropic
changes in the properties.

Table 16.1 Compressible Flow Mach Number Regimes (ε Is a Small Fluctuation)

Flow Regime Name

M<1 Subsonic

M = 1 Sonic

1− ε ≤ M ≤ 1+ ε Transonic

M>1 Supersonic

M≥5 Hypersonic
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or

∂h
∂p

� �
s
= v = 1

ρ
(16.8)

Multiplying Eq. (16.6) by Eq. (16.7) and dividing by Eq. (16.8) gives a relation for the sonic velocity c in terms
of the measurable properties p and ρ:

∂V
∂ρ

� �
s

∂h
∂V

� �
s

∂p
∂h

� �
s
=

∂p
∂ρ

� �
s
= ρ c/gcð Þ c/ρð Þ = c2/gc

or

c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gc

∂p
∂ρ

� �
s

s
(16.9)

Equation (16.9) is a valid equation for the isentropic sonic velocity in any compressible substance. In particular,
in the case of an ideal gas, Eq. (7.39) relates pressure and density for an isentropic process by

pvk = pρ–k = constant (7.39)

Solving for p = constant× ρk and taking the partial differential of p with respect to ρ gives

∂p
∂ρ

� �
s
= kp/ρ = kRT

where we use the ideal gas law, p = ρRT. Then, from Eq. (16.9), the speed of sound (sonic velocity) in an ideal
gas is

c
ideal
gas

=
ffiffiffiffiffiffiffiffiffiffiffiffi
kgcRT

p
(16.10)

and from Eq. (16.5),

M
ideal
gas

= Vffiffiffiffiffiffiffiffiffiffiffiffi
kgcRT

p (16.11)

EXAMPLE 16.4
Methane (CH4) gas at 35.0°C flows through a pipe with a velocity of 300. m/s. Determine the Mach number of the
methane.

Solution
The velocity of sound in methane at 35.0°C is given by Eq. (16.10). Using Table C.13b in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics for the values of the specific heat ratio and the gas constant for methane, we get

cmethane =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkmethaneÞðgcÞðRmethaneÞðTÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1:30Þð1Þð518 J/kgCKÞð35:0+273:15KÞp
= 456m/s

then, Eq. (16.5) (or (16.11)) gives the Mach number as

Mmethane =
300:m/s
456m/s

= 0:658

Exercises
7. Determine the Mach number of the methane in Example 16.4 if its velocity is reduced from 300. m/s to 3.00 m/s and

all the other variables remained unchanged. Answer: Mmethane = 6.58 × 10–3.
8. If the methane in the pipe in Example 16.4 is cooled to 0.00°C and all the other variables remain unchanged, determine

the new Mach number of the methane. Answer: Mmethane = 0.700.
9. If the gas in Example 16.4 is changed from methane to argon, determine the Mach number of the argon assuming all

the other variables remain unchanged. Answer: Margon = 0.917.
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Since for ideal gases cp − cv = R and k = cp/cv, we can write cp = R+ cv = kR/ðk−1Þ: Also, from Eq. (16.10), we
find that R = c2/ðkgc TÞ: Then, the equations for the isentropic stagnation temperature, pressure, and density
(Eqs. (16.2), (16.3), and (16.4)) for an ideal gas become

Tos
T

= 1+V2/ð2gccpTÞ = 1+ k− 1
2

M2 (16.12)

pos
p

= 1+ k−1
2

M2
� �k/ðk−1Þ

(16.13)

and

ρos
ρ

= 1+ k−1
2

M2
� �1/ðk−1Þ

(16.14)

Table C.18 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics contains tabulated values of
T/Tos, p/pos, and ρ/ρos for air ðk = 1:40Þ for various values of M. These tabulations were made using Eqs.
(16.12), (16.13), and (16.14) and may be used in place of these equations when convenient. Table 16.2 lists
various values of k = cp/cv and Figure 16.6 shows k at various pressures.

Table 16.2 Typical Values of the Specific Heat Ratio k

Gas k = cp/cv

Monatomic

Argon, helium, neon, xenon, etc. 1.67

Diatomic

Air 1.40

Nitrogen 1.40

Oxygen 1.39

Carbon monoxide 1.40

Hydrogen 1.40

Triatomic

Carbon dioxide 1.29

Sulfur dioxide 1.25

1 10 100 1000
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FIGURE 16.6
The variation in the isentropic exponent k = cp /cv of steam with pressure and temperature.
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EXAMPLE 16. 5
Find the velocity, isentropic stagnation temperature, and isentropic stagnation pressure on an aircraft flying at Mach 0.850 at
an altitude where the temperature is –20.0°C and pressure of 0.500 atm. Assume air is an ideal gas with a constant specific
heat ratio of k = 1:40 and a gas constant of R = 286 J/ðkg .KÞ:
Solution
From Eq. (16.11), we can calculate the aircraft’s velocity as

V = M
ffiffiffiffiffiffiffiffiffiffiffiffi
kgcRT

p
= ð0:850Þ ð1:40Þð1Þ 286m2/ s2 .Kð Þ½ � −20:0+ 273:15Kð Þf g1/2 = 271m/s

The isentropic stagnation pressure and temperature can be determined from Eqs. (16.12) and (16.13) as

Tos = T 1+ k−1
2

M2
� �

= ð−20:0+ 273:15KÞ 1+ 1:40− 1
2

ð0:850Þ2
h i

= 290:K = 16:6°C

and

pos = p 1+ k−1
2

M2
h ik/ðk−1Þ

= ð0:500 atmÞ 1+ 1:40−1
2

ð0:850Þ2
h i1:40/ð1:40−1Þ

= 0:802 atm = 81:3 kPa

Exercises
10. If the aircraft in Example 16.5 has a supersonic Mach number of 2.25 and all the other variables remain unchanged,

what would be its velocity? Answer: V = 717 m/s.
11. Determine the isentropic stagnation temperature of the aircraft in Example 16.5 if it is flying at a supersonic Mach

number of 1.30 and all the other variables remain unchanged. Answer: Tos = 339 K = 65.6°C.
12. If the aircraft in Example 16.5 is flying at a hypersonic Mach number of 6.50, determine the isentropic stagnation

pressure on the aircraft, assuming all the other variables remain unchanged. Answer: pos = 1300. atm.

Example 16.5 shows that, even at moderate subsonic velocities, there can be a considerable temperature and
pressure rise at the stagnation points of moving objects.

16.5 CONVERGING-DIVERGING FLOWS
We now investigate the effect of variations in the flow cross-sectional area on the Mach number of the flow. If we
differentiate the mass rate balance equation, _m = ρAv = constant, for an isentropic flow, we obtain

ρA ∂Vs + ρV ∂As +AV ∂ρs = 0

∂Vs/V + ∂As/A+ ∂ρs/ρ = 0

or

∂As/A = −∂Vs /V −∂ρs/ρ (16.15)

Next, we differentiate Eq. (16.1) for a constant isentropic stagnation enthalpy to get

∂hos = ∂hs +V ∂Vs/gc = 0

CRITICAL THINKING

Equations (16.12)–(16.14) are for the isentropic deceleration of an ideal gas to zero velocity (stagnation), and the resulting
isentropic stagnation pressure and temperature (pos and Tos) are valid only under these conditions. Would you expect the
actual values of the stagnation pressure and temperature (po and To) for a real (nonideal) gas undergoing a real (nonisen-
tropic) deceleration to zero velocity to be larger or smaller than their isentropic counterparts?
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or

∂hs = −V ∂Vs/gc

Now, we combine this with Gibbs Eq. (7.21) for an isentropic process to get

T ∂ss = ∂hs − v ∂ps = 0

or

∂hs = v ∂ps = ∂ps/ρ = −V ∂Vs/gc

then,

∂Vs/V = −gc ∂ps/ρV2 (16.16)

Substituting Eq. (16.16) into (16.15) and using Eqs. (16.5) and (16.9) gives the desired result

∂As/A = −∂Vs/V −∂ρs/ρ = gc/V2 − ∂ρ
∂p

� �
s

� 	
∂ps/ρð Þ

= gc/V2 − gc/c2½ � ∂ps/ρð Þ = 1−M2
� �

gc/V2ð Þ ∂ps/ρð Þ
or

∂A
∂p

� �
s
= ð1−M2Þ Agc

ρV2

� �
(16.17a)

Using Eq. (16.16), we can rewrite Eq. (16.17a) as

∂As

A
= ð1−M2Þ gc∂ps

ρV2
= ðM2 − 1Þ ∂Vs

V
(16.17b)

Equations (16.17a) and (16.17b) lead to slightly different but related conclusions about the nature of converging-
diverging flows.

Converging subsonic flow: ∂As < 0 and M < 1
■ Equation (16.17a). Converging flows are characterized by the fact that the area

becomes smaller in the direction of flow, or ∂As < 0. Subsonic flows are
characterized by the fact that M < 1. Since A, gc, ρ, and V are all > 0, Eq. (16.17a)
shows that (∂A/∂p)s must be > 0. Then, ∂ps must be < 0 since ∂As < 0 for
converging flows. Consequently, the pressure must decrease in the direction of a
subsonic converging flow.

■ Equation (16.17b). Since M < 1 and ∂As < 0 for subsonic converging flows
(Figure 16.7), then Eq. (16.17b) shows that ∂Vs must be > 0 for these flows.
That is, the flow velocity increases in subsonic converging flow. In Chapter 6,
we define a nozzle as a flow geometry that converts pressure into kinetic
energy, or ∂ps < 0 and ∂Vs > 0 in the direction of flow. Consequently,
converging subsonic flow corresponds to what we traditionally call nozzle flow.
Therefore, a converging passage carrying subsonic flow is called a subsonic
nozzle.

Converging supersonic flow: ∂As < 0 and M >1
■ Equation (16.17a). Here, ∂As is still < 0, but now M >1. Then, Eq (16.17a)

tells us that ∂ps must be > 0 and the pressure increases in the direction
of flow.

■ Equation (16.17b). If ∂As < 0 and M >1, then Eq. (16.17b) tells us that ∂Vs

must be < 0, or the flow velocity must decrease in the direction of flow. In
Chapter 6, we define a diffuser as a flow geometry that converts kinetic energy
into pressure, or ∂Vs < 0 and ∂ps > 0 in the direction of flow. Consequently,
a converging passage carrying a supersonic flow is called a supersonic diffuser
(Figure 16.8).

Diverging subsonic flow: ∂As > 0 and M < 1
■ Equation (16.17a). Diverging flows are characterized by the fact that the

area becomes larger in the direction of flow, or ∂As > 0. If the flow is

Throat

Decreasing pressure

M > 1
Δp > 0
ΔV < 0 

FIGURE 16.7
Converging subsonic nozzle.

Throat

Increasing pressure

M >1
Δp > 0
ΔV < 0 t

FIGURE 16.8
Converging supersonic diffuser.
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subsonic, M < 1, and Eq. (16.17a) tells us that ∂ps must be > 0. That is, the
pressure must increase in the direction of a subsonic diverging flow.

■ Equation (16.17b). In the case of diverging subsonic flow, Eq. (16.17b) tells us
that, since ∂As > 0 and M < 1, ∂Vs must be < 0, so the flow velocity must decrease
in the direction of flow. In Chapter 6, we learned that a device that converts
kinetic energy (∂Vs < 0) into pressure (∂ps > 0) is called a diffuser.
Consequently, a diverging passage carrying subsonic flow is called a subsonic
diffuser (Figure 16.9).

Diverging supersonic flow: ∂As > 0 and M > 1
■ Equation (16.17a). Since ∂As > 0 and M > 1 here, Eq. (16.17a) tells us

that ∂ps must be < 0 and the pressure must decrease in the direction
of flow.

■ Equation (16.17b). For ∂As > 0 and M > 1, Eq. (16.17b) tells us that ∂Vs must be
> 0 and the flow velocity must increase in the direction of flow. This again
corresponds to the definition of a nozzle as a device that converts pressure into
kinetic energy, so a diverging passage carrying supersonic flow is called a supersonic
nozzle (Figure 16.10). This is the type of nozzle used on the space shuttle rocket
engine, as shown in the schematic of Figure 16.11.

When M = 1.0 in Eq. (16.17b), ð∂As=AÞ = 0: This corresponds to a point of minimum cross-
sectional area. This point is called the throat of the device, characterized by the fact that it
can never have a Mach number greater than 1; that is Mthroat ≤1:0:

When the Mach number at the throat is equal to 1, we say that the throat is at its critical
condition and denote its properties in this state with a superscript asterisk. Then, M�

throat is
always equal to 1.0, and from Eqs. (16.12), (16.13), and (16.14), the critical condition
properties at the throat are1

T� = Tos
2

k+1

� �
(16.18)

p� = pos
2

k+1

� �k/ðk–1Þ
(16.19)

Throat

M < 1
Δp > 0
ΔV < 0

Increasing pressure

FIGURE 16.9
Diverging subsonic diffuser.

Throat

Decreasing pressure

M >1
Δp < 0
ΔV > 0

FIGURE 16.10
Diverging supersonic nozzle.

1 These are not the same as the thermodynamic critical state properties. The use of the word critical here refers to a different type of
phenomenon.

Fuel turbines
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FIGURE 16.11
Space shuttle rocket engine.
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and

ρ� = ρos
2

k+1

� �1/ðk−1Þ
(16.20)

When a subsonic nozzle and a supersonic nozzle are joined at their throats, they form a converging-diverging
nozzle that can be used to generate supersonic velocities. Also, connecting a supersonic diffuser to a subsonic
diffuser forms a converging-diverging diffuser that can be used to decelerate a supersonic flow and recover its
kinetic energy by converting it into pressure. These two converging-diverging geometries are often combined in
the design of a supersonic wind tunnel, as shown in Figure 16.12. Note that the diverging part of the nozzle
cannot become supersonic until the throat becomes critical at a Mach number of 1.0. This is called choked flow
and is discussed in the next section.

EXAMPLE 16.6
A converging-diverging nozzle is attached via a valve to a pipe holding compressed air at 1.00 MPa and 20.0°C. The valve is
opened and the air passes through the nozzle and into the atmosphere. Assuming isentropic flow throughout, determine

a. The exit Mach number.
b. The exit temperature.
c. The exit velocity.
d. The pressure at the throat of the nozzle.
e. The temperature at the throat of the nozzle.

Solution
First, draw a sketch of the system (Figure 16.13).

Valve

Pipe

1 MPa

Converging-diverging
nozzle

p = patm = 0.1013 MPa

20°C

FIGURE 16.13
Example 16.6.

(Continued )

M < 1 

M < 1 M < 1M > 1

Nozzle
throat
M* = 1

Diffuser
throat
M* = 1

Converging-
diverging
diffuser

Converging-
diverging

nozzle
Supersonic
test section

Fan
motor

FIGURE 16.12
A supersonic wind tunnel design.
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EXAMPLE 16.6 (Continued )

a. Assume air is a constant specific heat ideal gas with k = 1.40. Since the fluid is air, we can use either Table C.18
in Thermodynamic Tables to accompany Modern Engineering Thermodynamics with

p/pos = 0:1013 MPað Þ/ 1:00MPað Þ = 0:101

or Eqs. (16.12) and (16.13). Instead of interpolating in Table C.18, it is easier to solve Eq. (16.13) directly for M:

M = 2
k−1

pos/pð Þðk−1Þ/k − 1
h in o1/2

= 2
1:40−1

1:00
0:101

� �ð1:40− 1/1:40
−1

� 	
 �1/2
= 2:15

Note that this agrees with what we would have interpolated from Table C.18.
b. Here, Eq. (16.12) can be used to give

T =
Tos

1+ k−1
2

M2
= 20:0+ 273:15K

1+ 1− 1:40
2

ð2:15Þ2
= 152K = −121°C

c. Equation (16.11) can now be used to find the exit velocity as

V = M
ffiffiffiffiffiffiffiffiffiffiffiffi
kgcRT

p
= 2:15ð Þ 1:40ð Þ 1ð Þ 286m2/ s2 .K

� �� 

152Kð Þ� �1/2 = 530:m/s

d. Since the exit velocity is supersonic, the throat must be sonic; therefore, Eq. (16.19) can be used to determine the
throat pressure as

pthroat = p� = pos 2/ðk+ 1Þ½ �k/ðk−1Þ

= ð1:00MPaÞ 2
2:40

� �1:4/ð1::4− 1Þ
= 0:528MPa

e. Similarly, Eq. (16.18) can be used to calculate the throat temperature as

Tthroat = T� = Tos 2/ k+ 1ð Þ½ �
= ð20:0+ 273:15KÞð2/2:40Þ = 244K = − 29:2°C

Exercises
13. Determine the exit Mach number in Example 16.6 when the pressure in the pipe is 5.00 MPa and all the other variables

remain unchanged. Answer: Mexit = 3.20.
14. Determine the exit temperature in Example 16.6 if the temperature in the pipe is 65.0°C. Assume all the other variables

remain unchanged. Answer: Texit = 176 K = –97.4°C.
15. Determine the temperature and pressure at the throat of the nozzle in Example 16.6 if the temperature and pressure

inside the pipe are 65.0°C and 5.00 MPa. Assume all the other variables remain unchanged. Answer: T* = 8.64°C and
p* = 2.64 MPa.

Example 16.6 demonstrates that a very significant temperature drop can occur inside a supersonic nozzle. If the
flowing fluid is a vapor near its saturation state, it is possible that this type of cooling can cause the state to
drop through the vapor dome and produce a two-phase mixture inside the nozzle. This is a rather common
occurrence for low-temperature steam flow through a nozzle. However, the condensation process that produces
this phase change generally requires a longer time to complete than the resident time of the high-speed vapor in
the converging part of the nozzle. When this occurs, the vapor exits the nozzle’s throat in a nonequilibrium
state at a much lower temperature than the proper equilibrium saturation temperature at the exit pressure. This
nonequilibrium state is called supersaturated and is very unstable. After a sufficient time has passed, the fluid
undergoes a rapid condensation downstream from the throat due to a nucleation and growth process of the
second phase. This process is irreversible and causes the temperature of the two-phase mixture to rise to the
proper equilibrium saturation value (see Figure 16.14). The irreversible condensation process from a’ to b
shown in Figure 16.14 is sometimes called a condensation shock.
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16.6 CHOKED FLOW
The mass flow rate per unit area in an isentropic nozzle can be determined for an ideal gas from Eqs. (16.11),
(16.12), and (16.13) and the ideal gas formula, ρ = p/RT, as

_m /A = ρV = ðp/RTÞðMcÞ
= pMð ffiffiffiffiffiffiffiffiffiffiffiffi

kgcRT
p ÞðTos/TosÞ1/2ðpos/posÞ/RT

= posMðkgc/RTosÞ1/2ðTos/TÞ1/2ðp/posÞ

= posM
kgc
RTos

� �1/2
1+ k− 1

2
M2

� �ðk+1Þ/2ð1−kÞ
(16.21)

Figure 16.15 is a schematic of the variation in _m /A with the ratio of the back pressure pB to the upstream stagnation
pressure pos. When Mthroat = M� = 1:0, the nozzle is passing the maximum possible flow _mmax:

Since we always have Mthroat ≤ 1:0, clearly the maximum nozzle mass flow rate occurs when the throat velocity
is sonic. Then _m = _mmax, Mthroat = M� = 1:0, Athroat = A�, and Eq. (16.21) becomes

_mmax/A� = pos
kgc
RTos

� �1/2
k+1
2

� �ðk+1Þ/2ð1−kÞ
(16.22a)

Note that the value of _mmax/A� depends only on the
upstream isentropic stagnation properties and is comple-
tely independent of the downstream conditions. For air,
k = 1.40 and, in Engineering English units, this equation
reduces to

ð _mmax/A�Þair = 0:532 lbm
.
ffiffiffiffi
R

p
lbf .s

� 	
posffiffiffiffiffiffi
Tos

p
� �

(16.22b)

where _mmax must be in lbm/s, A� must be in in2, pos
must be in lbf/in2, and Tos must be in R. This is called
Fliegner’s (or sometimes Zeuner’s) formula and was
experimentally discovered in the 1870s. In metric
SI units, Eq. (16.22a) reduces to

ð _mmax/A�Þair = 0:0404
kg .

ffiffiffiffi
K

p

N .s

� 	
posffiffiffiffiffiffi
Tos

p
� �

(16.22c)

where _mmax must be in kg/s, A� must be in m2, pos must
be in N/m2, and Tos must be in K.

Ta

T

s

Tb
Ta′

pa = constanta

b

a′

pexit = pb = constant

FIGURE 16.14
Isentropic expansion of a vapor near its saturation at state a through a nozzle to a nonequilibrium supersaturated state at a’. This is
followed by an irreversible nucleation and condensation process to equilibrium state b.
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Mthroat < 1

Choked flow
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Mthroat = 1

FIGURE 16.15
The relative variation in dimensionless isentropic converging nozzle
air mass flow rate with increasing back pressure to upstream
stagnation pressure ratio. Since the Mach number in a converging
nozzle cannot exceed 1.0, the maximum flow rate through the
nozzle occurs when the Mach number at the throat is 1.0.
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EXAMPLE 16.7
Automobile safety equipment now includes air bags, which are essentially large balloons that inflate very quickly on vehicle
impact. To investigate the feasibility of using high-pressure compressed air to inflate bags, we want to determine the
minimum tube diameter necessary to completely fill a spherical air bag to a diameter of 3.00 feet in 30.0 milliseconds to a
pressure of 15.0 psia using air from a compressed air storage tank maintained at pos = 1500. psia and Tos = 70.0°F.

Solution
If the air bags are to be inflated from a high-pressure compressed air storage tank, the maximum air flow rate from the tank
corresponds to the minimum required fill-tube diameter operating under choked flow conditions. The average mass flow
rate of air into the bag is

_mavg =
Mass of air in the bag
Required bag fill time

=
ρairV bag

tfill

where

Vbag =
πD3

bag

6
=
πð3:00 ftÞ3

6
= 14:1 ft3

The temperature of the air entering the bag can be computed from Eq. (16.18) as

Tair = Tos
2

k+1

� �
= ð70:0+459:67RÞ 2

1:40+1

� �
= 441R

Consequently, the density of the air entering the bag at 15 psia is

ρair =
pair

RairTair
=

ð15:0 lbf/ft2Þð144 in2/f t2Þ
ð53:34 ft .lbf/lbm .RÞð441RÞ = 0:0918 lbm

ft3

The minimum diameter of the bag fill tube may now be determined from Eq. (16.22b) by setting _m avg = _mmax:

A�
tube =

πD2
tube

4
=

_mmax
ffiffiffiffiffiffi
Tos

p
0:532πpos

or

Dtube =
4 _m avg

ffiffiffiffiffiffi
Tos

p

0:532πpos

� 	1/2
=

4ð43:4 lbm/sÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
70:0+459:67R

p

ð0:532 lbm .
ffiffiffi
R

p
/lbf .sÞðπÞð1500: lbf/in2Þ

" #1/2
= 1:26 in

The graph in Figure 16.16 shows the variation in fill-tube diameter with compressed air pressure. Note that, even with
a storage tank at 4000. psia, a ¾-inch diameter fill tube is required. Also, since our analysis was for an isentropic process,
losses in the system would necessitate using a larger diameter to achieve the required inflation.

Considering the size of the fill tube and the financial cost of this type of inflation system, it is not surprising to find that air
bags are actually inflated by a rapid chemical reaction (explosion) that releases a large amount of gas in a short period.
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FIGURE 16.16
Example 16.7.
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Exercises
16. Determine the fill-tube diameter in Example 16.7 for a compressed air storage (stagnation) pressure of 3000. psia.

Assume all the other variables remain unchanged. Answer: Dtube = 0.890 in.
17. Suppose the air bag in Example 16.7 is filled with helium instead of air. Determine the minimum fill-tube diameter

required, assuming all the other variables remain unchanged. Answer: Dtube = 0.787 in.
18. Determine the air bag minimum fill-tube diameter in Example 16.7 if the variables are changed to Dbag = 1.0 m,

Tos = 20.0°C, pos = 10.0 MPa, and pbag = 0.103 MPa. Answer: Dtube = 0.0370 m.

When Mthroat = 1:0, the nozzle is passing its maximum flow rate and no changes made downstream of the throat
(such as lowering the exit pressure) will cause the flow to increase. Consequently, the nozzle is said to be choked
when the velocity of the fluid at its throat reaches sonic velocity.

Dividing Eq. (16.22a) by (16.21) gives the nozzle to throat cross-sectional area ratio for a supersonic nozzle at
its maximum flow rate, and for air ðk = 1:4Þ, this becomes

A/A� = 1
M

2
k+ 1

1+ k−1
2

M2
� �� 	ðk+1Þ/2ðk−1Þ

(16.23a)

for air (k = 1.40), this becomes

The ratio of the nozzle air flow cross-sectional area (A), where the Mach number is M,
to the throat cross-sectional area (A*), where the mach number is Mthroat = 1.0 is:

ðA/A�Þair = 1
M

1+ 0:2M2

1:2

� �3
(16.23b)

HOW DO AUTOMOBILE AIR BAGS WORK?

Why are air bags inflated with a chemical reaction rather than with compressed air? (See Example 16.7 for the answer.)

Air bags are widely used in automobiles to protect occupants in the event of collision. It is essential that the bag inflate
within a few milliseconds. Therefore, the gas must be nontoxic and nonflammable and be produced by a very rapid
chemical reaction.

Most air bags contain a mixture of solid sodium azide, NaN3, and iron oxide, Fe2O3, as the source of inflating gas because
sodium azide contains 65% nitrogen (by mass) and it decomposes very rapidly at temperatures of 350ºC or higher:

2NaN3 ! 2NaðℓÞ+3N2ðgÞ

and

6NaðℓÞ+ Fe3O2 ! 3Na2OðsÞ+ 2FeðsÞ

Because sodium azide is poisonous, all the products and reactants are kept in a sealed container with only the nitrogen gas
being allowed to enter the “air” bag.

The decomposition is initiated about 10 milliseconds into a crash by a fuse wire activated by a collision sensor. The
bag is completely filled within 30 milliseconds, and porous sections of the bag allow it to deflate in 100 to
200 milliseconds.

CRITICAL THINKING

The term choked implies an asphyxiating, suffocating, clogged, or otherwise impeded condition. How would you explain the
concept of choked flow as used in compressible fluid flow in nontechnical language to a liberal arts friend?
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For a circular cross-section, A/A� = D/D�ð Þ2. Figure 16.17 shows how this diameter ratio varies with Mach
number for air according to Eq. (16.23b). If a converging-diverging nozzle does not have the exact shape dictated
by Eq. (16.23a), it may still produce supersonic flow; however, the flow will not be isentropic.

EXAMPLE 16.8
To deflate an automobile tire, the valve core must be removed from the tire’s valve stem. When the core is removed, the
valve stem approximates an isentropic converging nozzle with an internal diameter of 0.0938 in. If the tire is initially at
50.0 psia (35.3 psig) and 70.0°F,

■ Is the flow in the open valve stem initially choked?
■ If so, at what tire pressure does it unchoke?
■ How long does it take to unchoke, if the tire is assumed to have a constant volume of 1.00 ft3 and a constant internal

temperature ðTosÞ of 70°F?

Solution
First, draw a sketch of the system (Figure 16.18).

a. From Eq. (16.19) for air (k = 1.40), the flow is choked if

pexit/pos < p�/pos =
2

k+ 1

� �k/ðk−1Þ
= 2

1+ 1:40

� �1:40/ð1:4−1Þ
= 0:528

Here, pexit/pos = 14:7/50:0 = 0:294, which is<0:528 therefore, initially, the flow
is choked.

b. The flow remains choked until the tire deflates to a pressure of

pos = pexit/0:528 = 14:7/0:528 = 27:8psia = 13:1psig

c. During the deflation process with a choked flow, _m = _mmax, then Eq. 16.22b
gives

_mmax = − dmT

dt

� �
= 0:532 A�pos/

ffiffiffiffiffiffi
Tos

p� �
where

A� =
πD2

exit

4
=
πð0:0938 inÞ2
4ð144 in2/ft2Þ = 4:80× 10−5 ft2

Also, Tos = 70:0°F¼ constant, and pos = mTRTos/VT , where mT and VT are the mass of air in the tire and the volume of the
tire, respectively.
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FIGURE 16.17
Diameter ratio variation in a converging-diverging isentropic nozzle for air ðk = 1:4Þ, from Eq. (16.23b).
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Example 16.8.
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Then,

dmT/dt = −0:532 A�mTRTos/ VT
ffiffiffiffiffiffi
Tos

p� �� 

= −0:532 A�R

ffiffiffiffiffiffi
Tos

p
/VT

� 

mT

= − 0:532 lbm .
ffiffiffiffi
R

p
/ lbf ⋅sð Þ� 


4:80×10−5ft2
� �

53:34 ft .lbf/ lbm .Rð Þ½ �

× ð70:0+459:67RÞ1/2/ð1:00 ft3Þ
h i

mT

= − ð0:0313 s−1ÞmT

or

dmT

mT
= − 0:0313ð Þ dt

Integrating this result from the initial mass in the tire mTi to the mass in the tire mTτ when the valve stem unchokes at time τ
gives

ln mTτ/mTið Þ = − 0:0313ð Þτ
or

τ = 31:95 ln mTi/mTτð Þ½ � seconds

Now, mTi/mTτ = posVT/ðRTosÞ½ �i/ posVT/ðRTosÞ½ �τ = posi/posτ , so

τ = 31:95 ln posi/posτð Þ = 31:95 ln 50:0/27:8ð Þ = 18:7 s

Exercises
19. Determine the time required for the valve stem in Example 16.8 to unchoke when the tire pressure is increased from

50.0 to 70.0 psia. Assume all the other variables remain unchanged. Answer: τ = 29.5 s.
20. If the internal temperature of the tire in Example 16.8 is maintained at 0.00°F rather than 70.0°F during the deflation

process, determine the time required for the valve stem to unchoke. Assume all the other variables remain unchanged.
Answer: τ = 20.1 s.

21. Suppose the valve core is not removed in Example 16.8 but instead the tire has a slow leak through a hole 1.00 × 10–4 inches
in diameter. Determine how long it would take for the leak hole to unchoke when all the other variables remain unchanged.
Answer: τ = 1.64 × 107 s = 190. days.

16.7 REYNOLDS TRANSPORT THEOREM
In Chapter 2, we define a closed system as any system in which mass does not cross the system boundary, but
energy (heat and work) may cross the boundary. An open system then is defined to be any system in which
both mass and energy may cross the system boundary. In classical mechanics, closed and open systems are
called Lagrangian and Eulerian systems, respectively; and their use in problem solving is referred to as Lagrangian
analysis and Eulerian analysis.

The Lagrangian analysis technique is named after the French mathematician Joseph Louis Lagrange (1736–
1813). Basically, it involves solving the equations of energy and motion for a fixed mass (or closed) system. The
Eulerian analysis technique is named after the Swiss mathematician Leonhard Euler (1707–1783). It involves
solving the equations of energy and motion for a nonconstant spatial volume (or open system). For a given
situation, usually one or the other of these techniques is easier to use, but regardless of their ease of application,
both must give the same results. Therefore, we must be able to mathematically transform our governing equa-
tions back and forth between these two analysis frames. The Reynolds transport theorem is a method of carrying
out this transformation.

In Chapter 2, we define a simple balance equation for any extensive property X as

XG = XT +XP (2.11)

and on a rate basis as

_X G = _XT + _XP (2.12)
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where _X = dX=dt is the rate of change of X within the system (either closed or open) we are analyzing, XG is the
net gain in X by the system, XT is the net amount of X transported into the system, and XP is the net amount of
X produced inside the system boundaries by some internal process. We note in Chapter 2 that, if X is conserved,
then XP = _XP = 0.

This balance equation is conceptually accurate. The only problem that arises in its use is that the form of the deri-
vative for the net gain rate of X by the system depends on whether the system is open or closed. We never had to
consider this in the past, because these two derivative forms happen to be identical for the simple one-dimen-
sional analysis discussed in this book. However, many times (especially in the study of fluid mechanics), a one-
dimensional analysis is not sufficient to solve the problem; and we have to expand to a multidimensional
approach, which is often supported by a computer-based numerical technique. Because of the basic power of the
Reynolds transport theorem in being able to transform differentiation operations back and forth between multidi-
mensional closed and open systems, because our general rate balance equations have such differentials, and
because we deal with both closed and open systems in thermodynamics, the Reynolds transport theorem is being
introduced at this point in its full three-dimensional form. We use it only to transform the left side of Eq. (2.12),
the system rate of gain term. The remaining transport and production rate terms are handled differently.

The Reynolds transport theorem is named after the British engineer and physicist Osborne Reynolds (1842–1912).
Its derivation is quite complex and is not presented here, but the interested reader may wish to consult fluid
mechanics texts for more information. Because there is a difference between the differentiation operation for a
closed system and that for an open system, we must create a new notation that acknowledges this difference.2

Therefore, let

_XG = DX
Dt

= the rate of gain of X by a closed Lagrangianð Þ system

where we use the operator symbol D/Dt to denote a fixed mass or closed system time derivative. The same time
derivative measured in an open system is given by the Reynolds transport theorem as

DX
Dt
⎵

Closed system
ðLagrangianÞ rate

=
Z
V

∂ðρxÞ
∂t

dV +
Z
A
ρxðV .dAÞ

⎵

Open system
ðEulerianÞ rate

(16.24)

where x = X/m is the intensive (specific) version of X, and V is the velocity vector of x as it crosses the surface
area element dA, as shown in Figure 16.19. The transport and production rate terms on the right side of
Eq. (2.12) can be generalized for a closed system to be of the form

_X T = −
Z
A
Jx .dA (16.25)

and

_X P =
Z
V
σx dV (16.26)

where Jx is the flux (flow per unit area per unit time) of x through the area element dA, and σx is the local produc-
tion rate per unit volume of x inside the volume element dV . Note that the closed and open systems described by
the Reynolds transport theorem do not have the same system boundary and in fact are not the same physical sys-
tem. A closed system that is to be considered equivalent to a given open system must be much larger than the
open system. It must be large enough to include all the mass that crosses the boundary of the open system during
the analysis period, and it is therefore always much larger than the open system it emulates. Consequently, equiva-
lent closed systems are generally quite awkward and difficult to define, and it was this characteristic that ultimately
provided the motivation for developing the open system (or Eulerian) analysis technique.

Combining Eqs. (16.24), (16.25), and (16.26) into the general rate balance Eq. (2.12) and rearranging it slightly
gives the generalized open system rate balance equation:Z

v

∂ðρxÞ
∂t

dV = −
Z
A
Jx .dA−

Z
A
ρxðV .dAÞ+

Z
V
σx .dV (16.27)

2 In fluid mechanics texts, this derivative is often given a special name, such as the material derivative or the substantial derivative.
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In a one-dimensional analysis, ρ, x, Jx, and V do not vary across their flow streams, and consequently, they do not
depend upon the cross-sectional area A. In the following equations, we denote the magnitude of a vector quantity
by using the same quantity symbol in italic rather than boldface type. For example, the magnitudes of V, Jx, and
dA are V, Jx, and dA, respectively. Then, in a one-dimensional flow, the following simplifications occurZ

A
J .dA = −ðJx

Z
A
dAÞin + ðJx

Z
A
dAÞout

= −∑
in

JxA+∑
out

JxA
(16.28)

and Z
A
ρxðV .dAÞ = −ðρxV

Z
A
dAÞin + ðρxV

Z
A
dAÞout

= −∑
in

ρVAx+∑
out

ρVAx

= −∑
in

_mx+∑
out

_mx

(16.29)

In Eqs. (16.28) and (16.29), we use the fact that the inflow area vector always points in a direction opposite to
the inflow velocity and flux, while the outflow area vector always points in the same direction as the outflow
velocity and flux vectors (see Figure 16.19), so that

ðJx .dAÞin = −ðJx dAÞin
and

ðV .dAÞin = −ðV dAÞin
whereas

ðJx .dAÞout = +ðJx dAÞout
and

ðV .dAÞout = +ðV dAÞout

For our one-dimensional analysis, we now require that the system volume V not be a function of time; then, we
can write Z

v

∂ðρxÞ
∂t

dV = d
dt

Z
V
ρx dV

dAin

(X, Vx, Jx)in

(X, Vx, Jx)out

Open system boundary of 
volume V and surface area A

Equivalent closed (fixed
mass) system boundary

Vsystem

dAout

dV

σx

CG

FIGURE 16.19
The vector quantities of Eqs. (16.24), (16.25), and (16.26) and the difference between the open and equivalent closed systems.
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and, from the definitions of ρ and x inside the differential volume dV , we get

ρx dV = ðdm=dVÞðdX=dmÞdV = dX

so that

d
dt

Z
V
ρx dV = d

dt

Z
V
dX = dX

dt

� �
sys

(16.30)

where Xsys is the value of dX integrated over the system volume V . Substituting Eqs. (16.28), (16.29), and
(16.30) into Eq. (16.27) gives the complete one-dimensional open system rate balance equation:

ðdX/dtÞsys
⎵

Net rate
of change
of X inside
the open
system

=
�
∑
in

JxAÞ−∑
out

JxA
�

⎵

Net “conduction”
ði:e:, non-mass
flowÞ transport
rate of X into
the open sytem

+
�
∑
in

_mx−∑
out

_mx
�

⎵

Net mass flow
transport rate
of X into the
open system

+
Z
V
σxdV

⎵

Net production
rate of X inside
the boundary of
the open system

(16.31)

If X is a conserved property like mass, energy, or momentum, then σx = 0 and the last term on the right side of
Eq. (16.31) vanishes. If X is not conserved, like entropy, then a formula must be found for the variation of σx
inside V so that the integration of σx over V can be carried out as indicated (this is what was done for the
entropy production terms discussed in Chapter 7).

EXAMPLE 16.9
Show that Eq. (16.31) reduces to the standard one-dimensional

a. Mass rate balance, Eq. (6.19).
b. Energy rate balance, Eqs. (6.4) and (6.5).
c. Entropy rate balance, Eq. (9.6).

Solution
a. For mass, X = m and x = X/m = m/m = 1. Mass is conserved, so σx = σ1 = 0, and since there are no conduction (i.e., non-

mass flow) mechanisms that move mass across a system boundary, Jx = J1 = 0. Then, Eq. (16.31) reduces to

dm/dtð Þsys =∑
in

_m −∑
out

_m

which is identical to the one-dimensional mass rate balance introduced in Eq. (6.19) of Chapter 6.
b. For energy, X = E and x = E/m = e. Energy is conserved, so σX = σe = 0, and the non-mass flow energy fluxes are

identified in Chapter 4 as heat and work, so Je = _q − _w . Then, Eq. (16.31) reduces to

ðdE=dtÞsys = _Q − _W +∑
in

_me−∑
out

_me

where

_Q =∑
in

_qA−∑
out

_qA and _W =∑
out

_WA−∑
in

_WA

are the net heat and work transport rates of energy, and e = u+V2/ð2gcÞ+mgZ/gc is the flow stream specific energy.
These results are identical to those for the one-dimensional energy rate balance originally presented in Chapter 6 in
Eqs. (6.4) and (6.5).

CRITICAL THINKING

The Reynolds transport theorem is a very powerful mathematical relation often used in advanced engineering courses. Can
you use it to visualize the difference between a Lagrangian (closed system of fixed mass) and a Eulerian (open system of
variable mass) fluid momentum rate balance analysis where X = mV?
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c. For entropy, X = S and x = S/m = s. Entropy is not conserved, so σs ≠0: The non-mass flow entropy flux is identified in
Chapter 7 as Js = _q /Tb: Then, for an isothermal (i.e., one-dimensional) boundary, Eq. (16.31) reduces to

dS/dtð Þsys =
_Q
Tb

+∑
in

_ms−∑
out

_ms+ _SP

where

_Q /Tb =∑
in

_q/Tb −∑
out

_q/Tb

is the net non-mass flow entropy transport rate, and

_Sp =
Z
V
σsdV

is the entropy production rate. These results are identical to those developed in Chapter 9 in for the one-dimensional
entropy rate balance originally presented in Eq. (9.6).

Exercises
22. Use Eq. (16.31) to produce a general closed system rate balance equation for an arbitrary property X. Answer:

∑
in

JxA−∑
out

JxA+
Z
V

σxdV = dX
dt

� �
system

23. Apply the general closed system rate balance equation developed in Exercise 22 to produce the steady state closed
system entropy rate balance equation. Answer:

∑
in

_q
Tb

−∑
out

_q
Tb

+
Z
V

σsdV = dS
dt

� �
system

= 0

or

_Q
Tb

+ _SP = 0

where

_Q
Tb

=∑
in

_q
Tb

−∑
out

_q
Tb

and _SP =
Z
V

σsdV

24. Use Eq. (16.31) to produce an availability rate balance for a steady state closed system. Answer:

_Q − _W +∑
in

_maf −∑
out

_maf + _I = dA
dt

� �
system

= 0

16.8 LINEAR MOMENTUM RATE BALANCE
The linear momentum rate balance (LMRB) for a one-dimensional open system can be easily developed from
Eq. (16.31) by letting X = mV and x = mV/m = V. Since momentum is conserved, σx = σV = 0: External forces are
the source of the non-mass flow momentum transport rate across the system boundary, so the one-dimensional
momentum flux, Jx = JV , is the external force per unit area, or

JV = Fext/Að Þgc
Then, Eq. (16.31) gives the LMRB as3

d
dt
ðmVÞ

open
system

=∑
net

ðFextÞgc +∑
in

_mV −∑
out

_mV (16.32)

3 The vector nature of momentum necessarily causes Eq. (16.32) to be three dimensional. The one-dimensional restriction on this
equation implies only that V and Fext are area averaged quantities over the surface of the system. However, components of V and Fext
may be in each of the three coordinate directions.
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where ∑netFext gc is the net sum of all the external forces acting on the system. Note that, for a closed system,
_m = 0 and mclosed system = constant. Then, Eq. (16.32) reduces to Newton’s second law for a fixed mass closed
system:

d
dt
ðmVÞ

closed
system

= m dV
dt

� �
closed
system

= ma
closed
system

=∑
net

Fext gc

Also, the external forces are normally divided into two categories: surface forces, such as pressure and contact
forces, and body forces, such as gravity and magnetic forces. That is,

∑Fext =∑Fsurface +∑Fbody

For a steady state, steady flow, single-inlet, single-outlet open system, Eq. (16.32) further reduces to

Linear momentum rate balance (SS, SF, SI, SO):

∑Fext = _mðVout −VinÞ/gc (16.33)

EXAMPLE 16.10
An air jet is used to levitate a 5.00 × 10–3 kg sheet of paper, as shown in Figure 16.20. The diameter of the jet at the nozzle
exit is 3.00 × 10–3 m and it is at atmospheric pressure at 20.0°C. Determine the velocity of the jet.

Solution
Assume the flow is steady state and steady flow. Then, the y
component of Eq. (16.33) is

Fy = −W = _mðVout −VinÞy/gc

where W is the weight of the paper, given by

W = mg/gc = ð5:00×10−3 kgÞð9:81m=s2Þ/ð1Þ = 0:0491N

and

ðVoutÞy = 0

Also, _m = ρAV = ρπD2V/4, where

ρ =
p
RT

=
101:3×103 kg/ðm .s2Þ

½286m2/ðs2 .KÞ�ð293:15KÞ = 1:21 kg/m3

Then,

W = _mðVinÞy/gc = ρAV2
in/gc = ρπD

2V2
in/4gc

So,

Vin =
4gcW
ρπD2

� �1/2
=

4ð1Þð0:0491 kg .m=s2Þ
ð1:21 kg=m3ÞðπÞð3:00×10− 3 mÞ2
" #1/2

= 75:7m=s

Exercises
25. The nozzle diameter in Example 16.10 is to be reduced from 3.00 × 10–3 m to 1.50 × 10–3 m. Determine the velocity of

the resulting jet required to levitate the sheet of paper, assuming all the other variables remain unchanged. Answer:
Vjet = 151 m/s.

26. Suppose the sheet of paper in Example 16.10 is replaced by a sheet of cardboard with a mass of 5 × 10–2 kg. Determine
the velocity of the jet required to levitate the cardboard, assuming all the other variables remain unchanged. Answer:
Vjet = 239 m/s.

27. If the air jet in Example 16.10 is at 0.00°C rather than 20.0°C, determine the velocity of the jet required to levitate the
sheet of paper assuming all the other variables remain unchanged. Answer: Vjet = 73.1 m/s.

Paper

W

0.003 m in diameter

Nozzle

Air flow

y

x

FIGURE 16.20
Example 16.10.

674 CHAPTER 16: Compressible Fluid Flow



16.9 SHOCK WAVES
Shock waves can occur only in compressible substances and are often thought of as strong acoustical (sound)
waves. However, they differ from sound waves in two important ways: They travel much faster than normal
sound waves, and there is a large and nearly discontinuous change in pressure, temperature, and density across
a shock wave. The thickness of a shock wave over which these changes occur is typically on the order of 10–7 m
(4 × 10–6 in.); consequently, large property gradients occur across the shock wave that make it very dissipative
and irreversible. The amplitude of a large shock wave, such as that created by an explosion or a supersonic air-
craft, decreases nearly with the inverse square of the distance from the source until it weakens sufficiently to
become an ordinary sound wave. The sonic boom heard at the surface of the Earth from a high-altitude supersonic
aircraft is the weak acoustical remnants of its shock wave.

Since strong shock waves are highly irreversible, they cannot be treated even approximately as isentropic
processes. Ordinary sound waves, on the other hand, are very much weaker by comparison and can sometimes
be modeled by isentropic processes.

When a shock wave occurs perpendicular (i.e., normal) to the velocity, it is called a normal shock, and it can be
analyzed with the one-dimensional balance equations. A shock wave that is inclined to the direction of flow is
called an oblique shock and requires a two- or three-dimensional analysis. We limit our analysis to normal shock
waves in this chapter.

The easiest way to generate normal shock waves for laboratory study is to use a supersonic converging-diverging
nozzle. Equation (16.13) gives the pressure profile along the nozzle in terms of the isentropic stagnation pres-
sure pos and the local Mach number M as

p/pos = 1+ k− 1
2

M2
� �k/ð1−kÞ

This equation is shown schematically along the nozzle in Figure 16.21. When the back pressure pB is greater
than the throat critical pressure p* given in Eq. (16.19), the Mach number at the throat is less than 1 and the
flow remains subsonic throughout the entire nozzle, with nozzle exit pressure pexit equal to the back pressure pB.
When pB is less than p*, the Mach number at the throat is equal to 1 and the flow becomes supersonic in the
diverging section of the nozzle. If pB/pos is between the points b and c on Figure 16.21, then a normal shock
occurs within the diverging section at the point where the flow can isentropically recover to pexit = pB. If we let
pE be the pressure at the exit of the supersonic nozzle when the flow expands isentropically throughout the
nozzle (see Figure 16.21), then when pB/pos is between the points c and d on Figure 16.21, a normal shock

ExitThroat

Shock waves

M = 1 at
throat

p*/pos
p/pos

pE/pos

a

b

d

c

Decreasing
back pressure

pB/pos 

pos pexit pB
(back

pressure)

Distance along the nozzle

1

FIGURE 16.21
The pressure distribution in a converging-diverging nozzle when the upstream stagnation pressure is held constant and the downstream
back pressure is decreased. Shock waves occur in the diverging section when the flow is supersonic but the back pressure is not low
enough to allow complete expansion to the end of the nozzle.
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occurs at the exit plane of the nozzle and pexit = pE < pB. Finally, when pB/pos is below point d on Figure 16.21,
shock waves occur downstream from the nozzle and pexit = pE > pB.

If we apply the mass, energy, entropy, and linear momentum balances to the normal shock wave system shown
in Figure 16.22, we can relate the upstream (x) and downstream (y) properties across the shock. Assuming a
steady state, steady flow, single-inlet, single-outlet, adiabatic, and aergonic system, the mass, energy, and linear
momentum rate balances give

Mass rate balance (MRB, SS, SF, SI, SO)

_mx = ρxAxVx = _my = ρyAyVy

but, since Ax = Ay = A in Figure 16.22,

ρxVx = ρyVy

Now, ρ = p/RT, so

ρxVx =
pxVx

RTx
=

kgcpxVx

kgcRTx
= pxMx

kgc
RTx

� �1/2
and

ρyVy = pyMy
kgc
RTy

� �1/2
= ρxVx

or

pxMxffiffiffiffiffi
Tx

p =
pyMyffiffiffiffiffi

Ty
p (16.34)

Energy rate balance (ERB, SS, SF, SI, SO, aergonic, adiabatic)

hox = hx +V2
x /ð2gcÞ = hy +V2

y /ð2gcÞ = hoy

CRITICAL THINKING

Normal shock waves form as a result of a piling up of pressure waves into a strong compression wave front. A similar phe-
nomenon occurs as gravity waves in the ocean approach a beach. The front of each wave steepens as it approaches the
beach, but unlike shock waves it eventually topples over forming a breaker. Shock waves do not topple over, they continue
to grow in strength as their velocity increases. The strength of a normal shock wave is defined as the ratio of the pressure
increase across the shock to the original pressure, or (py – px)/px. How would you define a similar strength for a gravity wave
in the ocean?

Open system moving
with shock wave

x y

Subsonic
My < 1

py, Ty, ρy, Vy

Supersonic
Mx > 1

px, Tx, ρx, Vx

FIGURE 16.22
A normal shock wave moving at supersonic velocity in a constant area adiabatic duct. The coordinate system here is fixed to the
shock wave.
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and, for an ideal gas with constant specific heats,

hox − hx = cpðTox − TxÞ = V2
x /ð2gcÞ

Since cp = kR/ðk−1Þ for constant specific heat ideal gases,

Tox/Tx = Tosx/Tx = 1+ k−1
2

V2
x

kgcRTx

� �
= 1+ k−1

2
M2

x

Similarly, for the downstream region, we can write that

α = − 1
v

∂v
∂p

� �
s

Since hox = hoy, then Tox = Toy = Tosx = Tosy and we can divide the preceding two equations to get

Tx
Ty

=
1+ k−1

2
M2

y

1+ k−1
2

M2
x

(16.35)

Linear momentum rate balance (LMRB, SS, SF, SI, SO)

Fx − Fy = ðpx − pyÞA = _mðVy −VxÞ/gc
or

px − py = ð _m/AÞðVy −VxÞ/gc
= ðρyV2

y − ρxV2
x Þ/gc

Now ρ = p/RT, so

px − py = kpyV2
y /ðkgcRTyÞ− kpxV2

x /ðkgcRTxÞ
= kðpyM2

y − pxM2
x Þ

or

px
py

=
1+ kM2

y

1+ kM2
x

(16.36)

Substituting Eqs. (16.35) and (16.36) into Eq. (16.34) yields an equation for Mx, My, and k, which can be
solved for Mx ≥ 1 andMy ≤1 to give

M2
y =

ðk−1ÞM2
x +2

2kM2
x +1− k

(16.37)

Because Eq. (16.34) is symmetrical in x and y, the x and y subscripts in Eq. (16.37) can be interchanged to
produce an equation for Mx in terms of My and k.

EXAMPLE 16.11
A nuclear explosion produces a normal shock wave that travels through still air with a Mach number of 5.50. The pressure
and temperature of the air in front of the shock wave are 14.7 psia and 70.0°F. Determine the pressure, temperature, and
wind velocity directly behind the shock wave.

Solution
If we attach our reference frame to the moving shock wave, it appears that the air is approaching it with a Mach number of
Mx = 5.50. The Mach number behind the shock wave can be determined from Eq. (16.37) with k = 1.40 as

My =
ð1:40− 1Þð5:50Þ2 +2

2ð1:40Þð5:50Þ2 + 1−1:4

" #1/2
= 0:409

(Continued )
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EXAMPLE 16.11 (Continued )

Then, the temperature directly behind the shock wave is given by Eq. (16.35) as

Ty = Tx

1+ k−1
2

ðMxÞ2

1+ k−1
2

ðMyÞ2

264
375 = ð70:0+ 459:67RÞ

1+ 1:40−1
2

ð5:50Þ2

1+ 1:40−1
2

ð0:409Þ2

264
375 = 3610R

and the pressure directly behind the shock wave is given by Eq. (16.34) as

py = px
Mx

My

Ty
Tx

� �1/2
= ð14:7 lbf/in2Þ 5:50

0:409

� �
3610R

70:0+ 459:67R

� �1/2
= 516 lbf/in2

Finally, the wind velocity directly behind the shock wave is just the relative velocity Vx – Vy, or

Vwind = Vx −Vy = Mxcx −Mycy = Mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcRTx

p
−My

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcRTy

p
= 5:50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:40ð32:174 lbm .f t/lbf × s2Þð53:34 ft .lbf/lbm .RÞð70:0+ 459:67RÞp

−0:409
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:40ð32:174 lbm .f t/lbf .s2Þð53:34 ft .lbf/lbm .RÞð3610RÞp

= 5:00×103 f t/s

These extremely high values for py, Ty, and the wind velocity show why large explosions produce so much damage to life and
property.

Exercises
28. Determine the Mach number directly behind the shock wave in Example 16.11 if the Mach number of the shock wave

itself is 4.0 and all the other variables remain unchanged. Answer: My = 0.434.
29. Use Eq. (16.36) to verify the pressure directly behind the shock wave calculated in Example 16.11. Answer: py = 516

psia (the same as determined in Example 16.11).
30. If the temperature in front of the shock wave in Example 16.11 is 0.00°F rather than 70.0°F and all the other variables

remain unchanged, determine the wind velocity directly behind the shock wave. Answer: Vwind = 4570 ft/s.
31. Determine the constant value assumed by My as Mx → 4. Thus, no matter how high Mx is, My can never be less than this

value. Answer: My (as Mx → 4) = [(k – 1)/2k]1/2 = 0.378 for air.

Equations (16.35), (16.36), and (16.37) have been tabulated for air ðk = 1:4Þ in Table C.19 in Thermodynamic
Tables to accompany Modern Engineering Thermodynamics. The reader is encouraged to use this table when its direct
entry is convenient. However, rather than interpolating for nondirect entry values, the equations just given can
be used to make accurate direct calculations, since they were used to generate the table.

Finally, an entropy rate balance on the shock wave gives

Entropy rate balance (SRB, SS, SF, SI/SO, A)

_sp = _mðsy − sxÞ≥0

So,

_Sp/ _m = sy − sx = cp ln Ty/Tx
� �

−R ln py/px
� �

= R ln px/py
� �

Ty/Tx
� �k/ðk−1Þh i

≥ 0
(16.38)

Therefore,

px/py ≥ Tx/Ty
� �k/ðk−1Þ

and by substituting Eqs. (16.35) and (16.36) into this relation, it can be shown that Mx ≥My: Consequently,
the second law of thermodynamics stipulates that shock waves can occur only in supersonic flows, from
Mx ≥1 to My ≤ 1 and can never occur in subsonic flows. Equation (16.38) is shown in Figure 16.23 for air
(k = 1.40).
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EXAMPLE 16.12
A spacecraft directional control thruster is a converging-diverging nozzle that uses high-pressure and high-temperature air.
The air enters with isentropic stagnation properties of 7.00 MPa and 2000.°C. The throat diameter is 0.0200 m and the
diameter of the exit of the diverging section is 0.100 m. Determine

a. The mass flow rate required for supersonic flow in the diverging section.
b. The Mach number, pressure, and temperature at the exit of the diverging section with this mass flow rate.
c. The outside back pressure required to produce a standing normal shock wave at the exit of the diverging section.

Solution
a. To have supersonic flow in the diverging section of a converging-diverging nozzle, the throat must have a Mach number of

unity (i.e., be choked). Therefore, the mass flow rate is the maximum value for air, in SI units, given by Eq. (16.22c), or

_m = _mmax = 0:0404 posA
�/

ffiffiffiffiffiffi
Tos

p� �
where A� = πðD�Þ2/4 = πð0:0200mÞ2/4 = 3:14×10−4 m2: Then,

_m =
0:0404kg .

ffiffiffiffi
K

p
/ðN .sÞ� 


7:00× 106N/m2ð Þ 3:14×10− 4 m2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2000:+273:15K

p = 1:86kg=s

b. Here, Aexit/A� = Dexit/D�ð Þ2 = 0:100/0:0200ð Þ2 = 25:0: Then, Eq. (16.23) can be inverted to find Mexit, and pexit and Texit
can be found from Eqs. (16.13) and (16.12), respectively. Unless these equations are programmed into a computer, this
can be a tedious set of calculations. Table C.18 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics
was created to eliminate this tedium by tabulating these equations. The preceding area ratio is a direct entry into this
table, so we use it and read

Mexit = 5:00

pexit/pos = 1:89×10−3 and

Texit/Tos = 0:16667

Then, pexit = 1:89×10−3ð Þ 7:00× 106N/m2ð Þ = 13:2kN/m2 and

Texit = 0:16667ð Þ 2000:+273:15Kð Þ = 378:8K

The velocity of sound at the exit is

cexit =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcRTexit

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:40ð Þ 1ð Þ 286m2/ s2 .Kð Þ½ � 378:8Kð Þ

p
= 390:m/s

then,

Vexit = cexitMexit = 390:m/sð Þ 5:00ð Þ = 1950m/s:

(Continued )
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FIGURE 16.23
A plot of Eq. (16.38) for air (k = 1.4) utilizing Eqs. (16.35), (16.36), and (16.37). Note that the second law of thermodynamics requires
that _Sp/ð _mRÞ≥0 for all processes.
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EXAMPLE 16.12 (Continued )

c. An exit plane shock wave is illustrated by region c to d in Figure 16.23. The required back pressure pB here is equal to
the downstream isentropic stagnation pressure posy necessary to cause a normal shock to occur in the exit plane. Then,
Mx = 5.0, px = 13.23 kN/m2, and Tx = 378.8 K. The downstream Mach number My can be found from Eq. (16.37), and
py can be found from Eq. (16.36). Finally, Eq. (16.13) can be used to find posy. However, Table C.19 is a tabular version
of these equations, and at Mx = 5.0, we again have a direct entry. From this table, we find that

My = 0:415 posy/posx = 0:06172

py/px = 29:00 posy/px = 32:654

Ty/Tx = 5:800

Here, posx = pos = 7.00 MPa; therefore, the required back pressure pB is

pB = posy = 0:06172ð Þ posx = 0:06172ð Þ 7:00× 103 kN/m2
� �

= 432 kN/m2

alternatively,

pB = posy = 32:654ð Þ px = 32:654ð Þ 13:23 kN/m2� �
= 432 kN/m2

Exercises
32. Determine the mass flow rate required for supersonic flow in the diverging section of the converging-diverging nozzle in

Example 16.12, if the compressed air is at 10.0 MPa and 20.0°C instead of 7.00 MPa and 2000.°C. Answer: _m= 7.42 kg/s.
33. Use Table C.18 to find the Mach number at the exit of the diverging section of the converging-diverging nozzle in

Example 16.12, if the diameter at the exit of the diverging section is increased to 0.14585 m. Assume all other variables
remain unchanged. Answer: Mexit = 6.00.

34. Use Table C.19 to determine the outside back pressure required to produce a standing normal shock wave at the exit of
the diverging section of the converging-diverging nozzle in Example 16.12, if the exit Mach number is 6.00 and the
upstream stagnation pressure is 7.00 MPa. Answer: pB = 208 kPa.

EXAMPLE 16.13
Air enters a converging-diverging nozzle with isentropic stagnation properties of 3.00 atm and 20.0°C and exhausts into the
atmosphere (i.e., pB = 1.00 atm). The exit to throat area ratio for the nozzle is 2.00. Determine the pressure, temperature,
and velocity at the exit.

Solution
We are given the upstream isentropic stagnation state of 3.0 atm, 20°C, and a back pressure of 1.0 atm. To find the condi-
tions in the exit plane, we must first determine whether or not a shock wave occurs inside the diverging section of the
nozzle. This occurs if pE < pB < p�, where from Eq.(16.19),

p� = pos
2

k+1

� �k/ðk−1Þ
= ð3:00 atmÞð0:528Þ = 1:58 atm

and, from Eq. (16.13),

pE = pos 1+ ðk− 1Þ/2½ �M2
E

� �k/ 1−kð Þ

Since we are given Aexit/A� = AE/A� = 2:00, we can find ME by inverting Eq. (16.23b). However, in this case, it is again much
easier to use Table C.18 for this area ratio and read (approximately), ME = 2:20 and pE/pos = 0:09352: Then, pE = 0.093252
× (3.0 atm) = 0.281 atm. Thus, pE < pB < p� here and a normal shock must occur somewhere in the diverging section of the
nozzle.

Since we now know that a shock wave occurs, we also need to know whether or not it occurs in the exit plane of the nozzle.
We could find Mx from the upstream and downstream isentropic stagnation pressures from the relation,

posy/posx = posy/py
� �

py/px
� �

px/posxð Þ
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by using Eqs. (16.13), (16.36), and (16.37). This results in the equation

posy
posx

=

k+1
2

M2
x / 1+ k−1

2
M2

x

� �h ik/ k−1ð Þ

2k
k+1

M2
x −

k−1
k+1

� �1/ k−1ð Þ = 1:00
3:00

= 0:333

However, it is quite tedious to solve this equation for Mx without using a computer, and since we have a direct entry
in Table C.19 at this value of posy/posx, we use this table in our solution. From Table C.19 at posy/posx = 0.333, we read
Mx ≈ 2.98 and My ≈ 0.476. From Table C.18 at M = Mx = 2.98, we find that A/A� ≈ 4.16. But our nozzle only has an
Ae/A* = 2.00, so the shock wave must be in the exit plane; therefore, pexit = pE = 0.281 atm, Mexit = ME = 2.20, and
Texit = 0.050813(293.15) = 148.96 K. The pressure readjustment from pexit to pB occurs outside the exit (see region c to d in
Figure 16.21). Finally, the exit velocity is given by

Vexit = Mexitcexit = Mexit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcRTexit

p
= 2:20ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:40ð Þ 1ð Þ 286m2/ s2 .Kð Þ½ � 148:96Kð Þp
= 537m/s

Exercises
35. Use Table C.18 to determine the exit Mach number and exit pressure in Example 16.13 for an exit to throat area ratio of

the converging-diverging nozzle of 6.78962. Assume all the other variables remain unchanged. Answer: Mexit = 3.50, and
pexit = 39.33 kPa.

36. Suppose the back pressure in Example 16.13 is increased from 1.00 atm to 2.16261 atm. Use Table C.19 to determine
the values of Mx and pexit. Answer: Mx = 2.00 and pexit = 1.695 atm.

37. Determine the exit temperature and velocity in Example 16.13, if the upstream stagnation temperature is reduced from
20.0°C to 0.00°C and all the other variables remain unchanged. Answer: Texit = 139 K and Vexit = 519 m/s.

16.10 NOZZLE AND DIFFUSER EFFICIENCIES
Inefficiencies in nozzles and diffusers result from irreversibilities that occur within their boundaries. Shock waves
and fluid friction (viscosity) in the wall boundary layer are the most common types of irreversibilities that occur.
If a nozzle or diffuser is not designed with exactly the correct wall contour, oblique shocks, boundary layer
separation, and turbulence destroy the nozzle’s performance.

Because nozzle and diffuser performance depend on their internal irreversibilities, we can base their efficiency
equation on the second law of thermodynamics by taking the isentropic nozzle and diffuser to be 100% efficient.
Then, since the function of a nozzle is to convert pressure (or thermal energy in the case of an ideal gas) into
kinetic energy, we can define its efficiency ηN to be (see Figure 16.24)

ηN =
Actual exit kinetic energy

Isentropic exit kinetic energy at the actual exit pressure

=
ðV2

exit/2gcÞactual
ðV2

exit/2gcÞisentropic
=

ðV2
exit/2gcÞactual

ðhinlet − hexitÞs
=

ðV2
exit/2gcÞactual

cpðTinlet − TexitÞs
and using Eqs. (7.38), (16.10), and (7.40), this can be written as

Nozzle efficiency

ηN =

k−1ð Þ
2

Vexit/cinletð Þ2

1− pexit/pinletð Þðk−1Þ/k
(16.39)

If the inlet velocity is very slow, then the entrance can be taken to be the isentropic stagnation state, or
pínlet = pos and cinlet = cos =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcRTos

p
: The pexit and Vexit terms in Eq. (16.39) are the actual exit pressure and exit

velocity values that must be determined from measurements on the actual nozzle. Typical efficiencies for well-
designed nozzles vary from 0.90 to 0.99 at high flow rates.

We can also define a nozzle velocity coefficient Cv for the nozzle in a similar way:

Cv =
Actual exit velocity

Isentropic exit velocity at the actual exit pressure
=

ffiffiffiffiffiffi
ηN

p
(16.40)
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Also, it is common to define a nozzle discharge coefficient Cd as

Cd =
Actualmass flow rate

Isentropicmass flow rate
=

_mactual

_misentropic
=

ρAVð Þactual
ρAVð Þisentropic

(16.41)

Typical nozzle discharge coefficients run from 0.60 for sharp-edged nozzles (i.e., orifices) at low flow rates to
0.99 for properly designed nozzles at high flow rates.

EXAMPLE 16.14
Helium enters a newly designed test nozzle at 456.2 kN/m2 and 283.7 K with a negligible velocity. The exit velocity,
temperature, and pressure are measured at the instant when the nozzle first becomes choked and are found to be 474.8 m/s,
370.4 kN/m2, and 260.1 K, respectively. For these conditions, determine the nozzle’s

a. Efficiency.
b. Velocity coefficient.
c. Discharge coefficient.

Solution
■ Equation (16.39) gives the nozzle’s efficiency ηN as

ηN =

k−1
2

Vexit/cinletð Þ2

1− pexit/pinletð Þðk−1Þ/k

For helium, k = 1.67 and R = 2.007 kJ/kg ·K, and since the flow enters the nozzle with a negligible inlet velocity, we can
take Tinlet ≈ Tosi and pinlet ≈ posi. Then,

cinlet ≈ cosi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:67Þð1Þ 2077m2/ðs2 .KÞ½ �ð283:7KÞ

p
= 992m/s

and

ηN =

0:67
2

474:8/992ð Þ2

1− 370:4/456:2ð Þ0:67/1:67
= 0:957

■ Equation (16.40) quickly gives the nozzle’s velocity coefficient Cv as

Cv =
ffiffiffiffiffiffi
ηN

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
0:957

p
= 0:978

Actual
nozzle
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specific kinetic
energy,
V2

e /2gc 
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FIGURE 16.24
The thermodynamic process path of a nozzle plotted on h–s coordinates.
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■ The nozzle’s discharge coefficient Cd is determined from Eq. (16.41) as

Cd =
ρAVð Þactual
ρAVð Þisentropic

=
ρeVeð Þactual
ρeVeð Þisentropic

Now,

ρexitð Þactual = pexit/RTexit =
370:4 kN/m2

2:077kN .m/ kg .Kð Þ½ �ð260:1KÞ = 0:686 kg/m3

Since the flow is choked, Mexit = 1.0, and the isentropic exit temperature and density can be determined from
Eqs. (16.18) and (16.20) as

Texitð Þs = T� = Tos 2/ðk+ 1Þ½ � = 283:7ð Þ 2/2:67½ � = 212:5K

and

ρexitð Þs = ρos 2/ k+ 1ð Þ½ �1/ðk–1Þ = pos/RTosð Þ 2/ k+1ð Þ½ �1/ðk–1Þ

=
456:2 kN/m2ð Þ 2/2:67ð Þ1/0:67

2:077 kN .m/ kg .Kð Þ½ � 283:7 Kð Þ = 0:503kg/m3

and

Vexitsð Þs = cexit js =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcR Tcð Þ j s

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:67ð Þ 1ð Þ 2077 m2/ s2 .Kð Þ½ � 212:5 Kð Þ

p
= 859m/s

then,

Cd =
0:686kg/m3ð Þ 474:8m/sð Þ
0:503 kg/m3ð Þ 859m/sð Þ = 0:754

Exercises
38. Your technician reports that there was an error in the sensor used to measure the nozzle exit velocity in Example 16.14.

The correct exit velocity is 426.3 m/s, not 474.8 m/s. Determine the new values for the nozzle’s efficiency, velocity
coefficient, and discharge coefficient, assuming all the other variables remain unchanged. Answer: ηN = 0.772,
Cv = 0.878, and Cd = 0.677.

39. Oops, the technician in charge of the nozzle test in Example 16.14 now tells you that the velocity sensor reading is
correct, it is the exit temperature sensor reading that was in error. The correct nozzle exit temperature is 271.5 K, not
260.1 K. Determine the new values for the nozzle’s efficiency, velocity coefficient, and discharge coefficient, assuming all
the other variables remain unchanged. Answer: ηN = 0.957, Cv = 0.978, and Cd = 0.722.

40. The nozzle in Example 16.14 is retested using air instead of helium. The same inlet conditions are used, but the
following new exit conditions are measured: Vexit = 190.1 m/s, pexit = 430.3 kPa, and Texit = 270.5 K. Determine the new
values for the nozzle’s efficiency, velocity coefficient, and discharge coefficient under the air test. Answer: ηN = 0.444,
Cv = 0.666, and Cd = 0.964.

The function of a diffuser, on the other hand, is to convert kinetic energy into pressure. Therefore, we define its
efficiency ηD as

ηD =
Isentropic enthalpy increase at the actual exit stagnation pressure

Inlet kinetic energy

=
hes − hinlet
V2
inlet/ 2gcð Þ =

hes − hinlet
hoi − hinlet

where hes is the enthalpy at the actual exit stagnation pressure but at the same entropy as the inlet state (see
Figure 16.25).

For an ideal gas, the diffuser efficiency becomes

ηD =
cpðTes −TinletÞ
V2
inlet/ð2gcÞ

=
TinletðTes/Tinlet −1Þ

V2
inlet/ð2gccpÞ
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An ideal diffuser has a negligible exit velocity, so
pes = pose and

Tes/Tinlet = pes/pinletð Þ k−1ð Þ/k = pose/pinletð Þ k−1ð Þ/k

Then, the equation for ηD becomes

ηD =
pose/pinletð Þ k−1ð Þ/k −1

k−1ð ÞM2
inlet/2

Now, from Eq. (16.13),

pinlet = posi 1+ k− 1
2

M2
inlet

� �− k/ðk−1Þ

so that the diffuser efficiency can be written in terms
of the inlet Mach number and the isentropic stagna-
tion pressure ratio as

Diffuser efficiency

ηD =
1+ k− 1

2
M2

inlet

� �
pose/posið Þðk−1Þ/k − 1

k− 1ð ÞM2
inlet/2

(16.42)

Therefore, for a constant isentropic stagnation pressure ratio, the diffuser efficiency decreases as the inlet Mach
number increases, asymptotically approaching the value (pose/posi)

(k–1)/k as the inlet Mach number goes to infinity.

A more direct measure of a diffuser’s ability to convert kinetic energy into pressure is the diffuser pressure recovery
coefficient Cp, defined as

Cp =
Actual dif fuser pressure rise

Isentropic dif fuser pressure rise
=

pexitð Þactual – pinlet
posi – pinlet

(16.43)

Because of flow separation from the diffuser wall, Cp values are typically around 0.6.

EXAMPLE 16.15
A subsonic diffuser for a spacecraft attitude control thruster has been tested in the laboratory with an inlet Mach number of
0.890, using pure nitrogen as the working gas. The inlet and exit isentropic stagnation pressures are measured and found to
be posi = 314.7 kPa and pose = 249.3 kPa. Determine, under these conditions, the diffuser’s (a) efficiency and (b) pressure
recovery coefficient.

Solution
a. The diffuser’s efficiency can be determined directly from the measured conditions using Eq. (16.42) as follows:

ηD =
1+ k−1

2
M2

inlet

� � pose
posi

� �ðk−1Þ/k
− 1

k−1ð ÞM2
inlet/2

=
1+ 1:40−1

2
0:8902

� �
249:3
314:7

� �1:40− 1
1:40 −1

1:40− 1
2

� �
0:8902

= 0:529 = 52:9%

b. The diffuser’s pressure recovery coefficient can be determined from Eq. (16.43), if we can determine the actual inlet and
exit pressures from the given data. Equation (16.13) can be used to relate the actual pressures to their isentropic
stagnation values as

pose
pe

= 1+ k− 1
2

M2
exit

� � k
k−1

and

posi
pi

= 1+ k− 1
2

M2
inlet

� � k
k−1

Inlet specific kinetic energy,V2
i  /2gc

se
s

si

he

hes

hoi

h

hi

pose

posi

pe

pi

Maximum (i.e., isentropic)
recoverable portion of the
inlet kinetic energy

Actual diffuser process

FIGURE 16.25
Thermodynamic process path of a diffuser plotted on h–s
coordinates.
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Since for a diffuser, Mexit ≪ Minlet, we can assume (pexit)actual = pe ≈ pose = 309.3 kPa. The inlet pressure can then be
calculated as

pinlet = pi =
posi

1+ k−1
2

M2
inlet

� � k
k−1

= 314:7kPa

1+ 1:40−1
2

0:8902
� � 1:40

1:40−1

= 188kPa

and Eq. (16.43) gives

Cp =
ðpexitÞactual − pinlet

posi − pinlet
= 249:3 kPa−188 kPa

314:7 kPa−188 kPa
= 0:484

Exercises
41. If the diffuser shape is modified in Example 16.15 so that the exit stagnation pressure is increased from 249.3 kPa to

261.5 kPa, determine the new values for the diffuser’s efficiency and pressure recovery coefficient, assuming all other
variables remain unchanged. Answer: ηD = 0.623 = 62.3% and Cp = 0.580.

42. A supersonic diffuser is also tested with the same inlet and exit conditions as the subsonic diffuser in Example 16.15,
except that the inlet Mach number is 2.45 instead of 0.890. Determine the efficiency and pressure recovery coefficient of
the supersonic diffuser. Answer: ηD = 0.882 = 88.2% and Cp = 0.778.

43. What value does the diffuser efficiency ηD approach as the exit isentropic stagnation pressure approaches the inlet
isentropic stagnation pressure (i.e., ηD → ? as pose → posi)? Answer: ηD → 1.00 = 100.%.

SUMMARY
In this chapter, we investigate the basic phenomena that occur in high-speed compressible flows of gases and
vapors. New concepts, such as the stagnation state, Mach number, choked flow, and shock waves, are introduced
to fully explain the basic characteristics of these flows. We focus our attention on converging-diverging nozzle
and diffuser flow geometries because of their industrial value and their ability to generate supersonic flows and
shock waves. Finally, we consider the overall performance of nozzles and diffusers in terms of their actual oper-
ating efficiencies.

We also introduce the Reynolds transport theorem in this chapter. This allows us to generalize our open system
balance concept and subsequently to easily develop a linear momentum rate balance for open systems.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they were introduced to gain an
understanding of their use and limitations.

1. Stagnation state specific enthalpy h0 of a fluid with specific enthalpy h and velocity V:

ho = h+V2/ð2gcÞ
2. Stagnation state temperature To of an ideal gas with a velocity V at a temperature T and a constant pressure

specific heat cp:

To = T 1+ V2

2gccpT

� �
3. Isentropic stagnation state properties denoted by an os subscript:

Tos
T

=
pos
p

� �ðk−1Þ/k
= vos

v

� �1− k
=

ρos
ρ

� �k−1
where

pos
p

= 1+ V2

2gccpT

� � k
k−1

and
ρos
ρ

= 1+ V2

2gccpT

� � 1
k−1

4. The Mach number M is the ratio of the fluid velocity V to the velocity of sound c in the fluid:

M = V/c
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5. The velocity of sound c in an ideal gas:

c
ideal
gas

=
ffiffiffiffiffiffiffiffiffiffiffiffi
kgcRT

p
6. The stagnation state properties in terms of the Mach number:

Tos
T

= 1+ k−1
2

M2,
pos
p

= 1+ k− 1
2

M2
� �k/ðk−1Þ

,
ρos
ρ

= 1+ k−1
2

M2
� �1/ðk−1Þ

7. The properties at the throat of a choked flow nozzle (denoted by an *):

T� = Tos
2

k+ 1

� �
, p� = pos

2
k+ 1

� �k/ðk–1Þ
, ρ� = ρos

2
k+1

� �1/ðk−1Þ
8. The choked flow mass flow rate equations:

_mmax/A� = pos
kgc
RTos

� �1/2
k+1
2

� �ðk+ 1Þ/2ð1− kÞ

and, for air (k = 1.40) in the Engineering English units system,

ð _mmax/A
�Þair = 0:532 lbm

.
ffiffiffiffi
R

p
lbf .s

� 	
posffiffiffiffiffiffi
Tos

p
� �

where _mmax is in lbm/s, A* is in in2, pos is in psia, Tos is in R, and the constant 0.532 has units of
lbm .

ffiffiffiffi
R

p
/ðlbs .sÞ: For air in the SI units system,

ð _mmax/A�Þair = 0:0404
kg .

ffiffiffiffi
K

p

N .s

� 	
posffiffiffiffiffiffi
Tos

p
� �

where _mmax is in kg/s, A* is in m2, pos is in N/m2, Tos is in K, and the constant 0.0404 has units of
kg .

ffiffiffiffi
K

p
/ðN .sÞ:

9. The general cross-sectional area ratio for a supersonic nozzle at its maximum flow rate:

A/A� = 1
M

2
k+ 1

1+ k−1
2

M2
� �� 	ðk+1Þ/2ðk−1Þ

and, for air (k = 1.40), this reduces to

ðA/A�Þair = 1
M

1+0:2M2

1:2

� �3
10. Thermodynamic property relations across a shock wave, where the subscript x denotes the upstream (Mx >1)

and the subscript y denotes downstream conditions (My <1):

pxMxffiffiffiffiffi
Tx

p =
pyMyffiffiffiffiffi

Ty
p ,

Tx
Ty

=
1+ k−1

2
M2

y

1+ k−1
2

M2
x

,
px
py

=
1+ kM2

y

1+ kM2
x

,

M2
y =

ðk−1ÞM2
x + 2

2kM2
x +1− k

ðfor Mx ≥1Þ

In the last expression Mx and My can be interchanged if My is known and Mx is the unknown.
11. The nozzle efficiency ηN, velocity coefficient Cv, and discharge coefficient Cd:

ηN =

k−1ð Þ
2

Vexit/cinletð Þ2

1− pexit/pinletð Þðk−1Þ/k
, Cv =

ffiffiffiffiffiffi
ηN

p
, Cd =

_mactual

_misentropic
=

ρAVð Þactua1
ρAVð Þisentropic

12. The diffuser efficiency ηD and pressure recovery coefficient Cp:

ηD =
1+ k−1

2
M2

inlet

� �
pose/posið Þðk−1Þ/k −1

k−1ð ÞM2
inlet/2

, Cp =
pexitð Þactual – pinlet

posi – pinlet
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Problems (* indicates problems in SI units)
1. Explain the difference between To and Tos.
2. Explain why we use both symbols To and Tos but use only pos

and do not refer to po at all.
3. The absolute maximum exit velocity from any type of nozzle

can be obtained by multiplying Eq. (16.2) by T and setting
T = 0 R. Then, ðVexitÞmax =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gccpTo

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gccpTos

p
: Determine the

absolute maximum exit velocity for the nozzle in Example 16.6,
and determine the percentage of this value achieved by the
actual exit velocity.

4.* Saturated water vapor at 150.°C enters an isentropic converging
nozzle with a negligible velocity and exits at 0.300 MPa.
Determine the exit quality, temperature, and velocity. Do not
assume ideal gas behavior.

5. Air flows in a circular tube with a velocity of 275 ft/s at a
temperature of 103°F and a pressure of 175 psig. Determine its
stagnation pressure and temperature.

6. Calculate the isentropic stagnation temperature and pressure
on your hand as you hold it outside the window of an
automobile traveling at 55.0 mph on a day when the static
temperature and pressure are 70.0°F and 14.7 psia.

7. Steam at 600.°F and 200. psia is traveling at 1500. ft/s. Determine
the isentropic stagnation temperature and pressure of the steam by
a. Assuming steam to be an ideal gas.
b. Using the steam tables (or Mollier diagram or computer

program).
8.* A steam jet with a static pressure and temperature of 10.0 MPa

and 400.°C has a velocity of 750. m/s. Determine the isentropic
stagnation pressure and temperature of the jet. Do not assume
ideal gas behavior.

9. Using Eq. (16.9), show that the speed of sound is infinite in an
incompressible substance.

10.* If the speed of sound in saturated liquid water at 90.0°C is
1530 m/s, determine the isentropic compressibility α of the water,
where

α = − 1
v

∂v
∂p

� �
s

11.* Determine the Mach number of a meteor traveling at 5000. m/s
through still air at 0.00°C.

12. Determine the Mach number of a bullet traveling at 3000. ft/s
through still air at 70.0°F.

13. The rotor of an axial flow air compressor has a diameter of
2.30 ft. What is the maximum rpm of the rotor such that its
blade tips do not exceed the local sonic velocity when the air in
the compressor is at 150.°F?

14.* Determine the stagnation temperature and Mach number of
carbon dioxide gas flowing in a 1.00 × 10–2 m diameter circular
tube at a rate of 0.100 kg/s. The temperature and pressure are
30.0°C and 0.500 MPa.

15.* The isentropic stagnation–static property formula given in Eqs.
(16.12) to (16.14) and (16.18) to (16.20) are valid only for ideal
gases. In Chapter 11, the conditions under which steam behaves as
an ideal gas are discussed (steam gas). Suppose steam at 4.00 MPa,
400.°C is to be expanded through a converging nozzle under
choked flow conditions. Use Eq. (16.18) to calculate T* and use the
steam tables (or Mollier diagram or computer program) with this
value of T* and s* = sos to find p* and ρ* = 1/v*. Then compare
these values with the ones calculated from Eqs. (16.19) and (16.20).

16. A nozzle is to be designed to accelerate the flow of air from a
Mach number of 0.100 to 1.00. Determine the inlet to exit area
ratio of the nozzle assuming isentropic flow.

17. A diffuser is to be designed to reduce the Mach number of air
from 0.90 to 0.10. Assuming isentropic flow, determine the exit
to inlet area ratio of the diffuser.

18.* Argon escapes into the atmosphere at 0.101325 MPa from a
1.00 m3 storage tank initially at 5.00 MPa and 25.0°C through a
converging-diverging nozzle with a throat area of 1.00 × 10–3 m2.
a. Is the flow through the nozzle initially choked?
b. If so, at what tank pressure does it unchoke?
c. How long does it take to unchoke if the tank is maintained

at 25.0°C?
19. Air at 100. psia and 70.0°F enters a converging nozzle with a

negligible velocity and is expanded isentropically until the exit
temperature is 32.0°F. Determine the exit Mach number and
pressure.

20.* Air at 150. kPa 100.°C enters a converging nozzle with a
negligible velocity and is expanded isentropically until the exit
pressure reaches 101 kPa. Determine the exit Mach number and
temperature.

21.* 1.86 kg/s of air flows through a converging-diverging supersonic
wind tunnel whose reservoir isentropic stagnation conditions are
18.0 atm at 300. K and whose exit Mach number is 4.80. If the
reservoir isentropic stagnation pressure is raised to 20.0 atm at
the same temperature, find the new mass flow rate and exit
Mach number if the exit pressure remains constant.

22.* Air enters a converging-diverging isentropic nozzle at 10.0 MPa
and 500. K with a negligible velocity and is accelerated to a
Mach number of 4.50. Determine the static temperature,
pressure, and density at (a) the throat, and (b) the exit. (c) Find
the exit to throat area ratio.

23. Low-velocity helium enters a converging-diverging isentropic
nozzle at 250. psia and 120.°F. It is accelerated to a Mach
number of 2.0. at the exit. Determine the static temperature,
pressure, and density at (a) the throat, and (b) the exit. (c) Find
the exit to throat area ratio.

24.* A converging-diverging nozzle is attached to a compressed air
reservoir at 1.00 MPa and 27.0°C. There are two positions in the
nozzle where A/A* = 2.00, one is in the converging section and
the other is in the diverging section. Determine the Mach
number, pressure, temperature, density, and velocity at each
section.

25.* Air at 0.500 MPa and 21.0°C enters an isentropic converging-
diverging nozzle with a negligible velocity. The exit to throat
area ratio of the nozzle is 1.34. If the throat velocity is sonic,
determine the exit static pressure, temperature, and Mach
number, if (a) the exit is subsonic and (b) the exit is supersonic.

26. A supersonic converging-diverging nozzle is to be designed to be
attached to a standard machine shop air supply having
isentropic stagnation conditions of 100. psia and 70.0°F. The
throat of the nozzle is to have a diameter of 0.250 in, and the
nozzle exhausts into the atmosphere at 14.7 psia. For an
isentropic nozzle, determine
a. The exit Mach number.
b. The exit temperature.
c. The mass flow rate of air through the nozzle.
d. The exit diameter of the diverging section.
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27.* Air enters a supersonic isentropic diffuser with a Mach number of
3.00, a temperature of 0.00°C, and a pressure of 1.00 × 10–2 MPa.
Assuming the air exits with negligible velocity, determine the exit
temperature, pressure, and mass flow rate per unit inlet area.

28.* Propane at 100. kPa 40.0°C is expanded isentropically through a
converging-diverging nozzle that has an exit to throat diameter
ratio of 2.00. The propane enters with a negligible velocity but
reaches sonic velocity at the throat. Determine the exit
temperature, pressure, and Mach number, if (a) the exit pressure
is high enough so that the exit velocity is subsonic and (b) the
exit pressure is low enough that the exit velocity is supersonic.

29. An isentropic converging-diverging nozzle that reaches a Mach
number of 4.00 at the exit, when the exit pressure is
atmospheric (14.7 psia) and the inlet isentropic stagnation
temperature is 70.0°F, is to be built using air as the working
fluid. Determine the required inlet isentropic stagnation
pressure, the exit static temperature, and the exit to throat area
ratio.

30. Acetylene at 50.0 psia, 65.0°F is accelerated through a
converging-diverging nozzle isentropically until it reaches an exit
pressure of 14.7 psia. Assuming the flow enters the nozzle with
a negligibly small velocity, determine the exit Mach number,
temperature, and exit to throat area ratio.

31.* Carbon dioxide gas at 13.8 MPa, 20.0°C is expanded
isentropically through a converging-diverging nozzle until its
exit temperature reaches –100.°C. Assuming the flow enters with
a negligible inlet velocity, determine the exit Mach number,
pressure, and exit to throat area ratio.

32. Steam at 800. psia, 600.°F expands through an uninsulated
nozzle to a saturated vapor at 600. psia at a rate of 100. lbm/h.
The surface temperature of the nozzle is measured and found to
be 450.°F. The entropy production rate of the nozzle is equal to
10.0% of the magnitude of the heat transport of entropy for the
nozzle. The potential energies and the inlet velocity can be
neglected, but the exit velocity cannot be neglected. Determine
a. The nozzle’s heat transfer rate.
b. The nozzle’s entropy production rate.
c. The nozzle’s exit velocity.
d. The exit area of the nozzle.

33. Determine the maximum possible mass flow rate of air through
a nozzle with a 1.00 × 10–3 m diameter throat and inlet
stagnation conditions of 5.00 MPa and 30.0°C.

34.* Determine the maximum flow rate of helium that passes
through a nozzle with a 1.00 × 10–2 m diameter throat from an
upstream stagnation state of 35.0 MPa at 27.0°C.

35. Determine the minimum throat diameter required for a nozzle
to pass 0.250 lbm/s of air from a stagnation state of 100. psia at
70.0°F.

36. Atmospheric air (14.7 psia, 70.0°F) leaks into an initially
evacuated 2.00 ft3 tank through a tiny hole whose area is
1.00 × 10–6 ft2. Determine the time required for the pressure in
the tank to rise to 0.528 times the atmospheric pressure, if the
air inside the tank is maintained at 70.0°F.

37.* A tiny leak in a 1.00 m3 vacuum chamber causes the internal
pressure to rise from 1.00 Pa to 10.0 Pa in 3.77 h when the
vacuum pump is not operating. Air leaks into the chamber from
the atmosphere at 101.3 kPa, 20.0°C, and the air inside the
chamber is maintained at 20.0°C by heat transfer with the walls.
Determine the diameter of the leak hole.

38. An initially evacuated 1.50 ft3 tank is to be isothermally filled
with air to 50.0 psia and 70.0°F. It is to be filled from a very
large constant pressure source at 100. psia and 70.0°F. The tank
is connected to the source by a single 0.125-inch inside
diameter tube. How long will it take to fill the tank?

39.* An initially evacuated 0.500 m3 tank is to be isothermally filled
with air to 1.00 MPa and 20.0°C. It is to be filled from a very
large constant pressure source at 2.50 MPa and 20.0°F. The tank
is connected to the source by a single 1.00 × 10–3 m inside
diameter tube. How long will it take to fill the tank?

40. Use the Reynolds transport equation (Eq. (16.31)) to develop a
formula for a one-dimensional angular momentum rate balance
(AMRB), and show that, for steady flow with a single inlet and a
single outlet, the AMRB reduces to

∑Text = _m ðV × rÞout − ðV × rÞin
� 


/gc

where Text = Fext × r is the torque vector due to external forces,
V is the average velocity vector, and r is the radius vector. Hint:
Start with X = m(V × r) and utilize the conservation of angular
momentum principle.

41. Use the linear momentum rate balance (LMRB) to show that
the thrust force F of a rocket engine nozzle (Figure 16.26) is
given by

F = _m Vexit/gcð Þ+ pexit − pað ÞAexit

and show that the absolute maximum thrust produced as
Mexit → ∞ is given by

Fmax = 2cp ρexitAexitTosð Þ+ pexit − pað ÞAexit

(Hint: See Problem 3.)

Rocket

pa

F

pex

Vex

Area Aex 

FIGURE 16.26
Problem 41.

42. The thrust F produced by the supersonic flow in the converging-
diverging nozzle of a rocket engine is
F = _m Vexit/gcð Þ+ pexit − pað ÞAexit , where pexit and Aexit are the
pressure and area at the nozzle exit and pa is the local
atmospheric pressure.
a. Suppose the stagnation temperature is increased by 100%

while maintaining the stagnation and exit pressures and
nozzle geometry constant. What is the percent increase in
thrust?

b. Suppose the stagnation pressure is increased by 100% while
maintaining the stagnation and exit temperatures and nozzle
geometry constant. What is the percent increase in thrust?
Hint: Assume the nozzle is choked in each case, and use air
as the exhaust gas.
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43. 0.800 lbm/s of air passes through an insulated converging
nozzle that has an inlet to exit area ratio of 1.59 to 1. The
nozzle is choked, and the stagnation temperature is 80.0°F. The
exit pressure is 14.7 psia. Determine the force required to hold
the nozzle in place.

44.* Determine the horizontal and vertical forces on the stationary
turbine blade shown in Figure 16.27 when it is exposed to a
0.300 kg/s jet of air at 100. m/s.

100. m/s0.300 kg/s

60.0°

Fx = ?

Fy = ?

FIGURE 16.27
Problem 44.

45.* Determine the horizontal and vertical restraining forces on the
air flow divider shown in Figure 16.28.

0.250 m diam

0.500 m diam

1.00 m diam

30.0°

60.0°

0.800 kg/s
150. m/s
0.600 MPa

Fx = ?

Fy= ?

3.50 kg/s
200. m/s
1.00 MPa

60.0 m/s
0.800 MPa

FIGURE 16.28
Problem 45.

46. What two conditions are required of an ideal gas to have
Tosy = Tosx across a normal shock wave?

47.* The flow conditions just downstream of a standing normal
shock wave in air in a wind tunnel are My = 0.500, py = 0.100
MPa, and Ty = 450. K. Determine the flow conditions just
upstream of the shock (i.e., Mx, px, and Tx).

48.* A nuclear blast generates a normal shock wave that travels
through still air with a Mach number of 5.00. The pressure and
temperature in front of the shock (i.e., downstream) are 0.101
MPa and 20.0°C. Determine the air velocity relative to a
stationary observer (i.e., the wind velocity), the pressure, and the
temperature immediately after the shock wave has passed.

49.* The upstream and downstream temperatures across a normal
shock wave in air are measured and found to be 306.3 and
717.6 K, respectively. Determine the upstream and downstream
Mach numbers and the pressure ratio across the shock wave.

50.* The upstream and downstream static pressures across a normal
shock wave in air are measured and found to be 0.500 and

3.00 MPa, respectively. Determine the upstream and downstream
Mach numbers and the temperature ratio across the shock wave.

51.* The upstream and downstream isentropic stagnation
pressures across a normal shock wave in air are measured
and found to be 124.6801 kPa and 0.101325 MPa, respectively.
Determine the upstream and downstream Mach numbers and
static pressure and temperature ratios across the shock wave.

52. A converging-diverging nozzle has an exit to throat area ratio of
2.00. The inlet isentropic stagnation air pressure is 2.00 atm and
the exit static pressure is 1.00 atm. This flow is supersonic in a
portion of the nozzle, terminating in a normal shock inside the
nozzle. Determine the local area ratio A/A*at which the shock
occurs.

53.* Air with a velocity of 450. m/s and a static pressure and
temperature of 1.00 MPa and 200. K undergoes a normal shock.
Determine the velocity and static pressure and temperature after
the shock.

54. Use the conservation of mass condition across a shock wave
ð _mx = _myÞ to show that

pxMxðTxÞ−0:5 = pyMyðTyÞ−0:5

55. Using Eqs. (16.34), (16.35), and (16.36), derive Eq. (16.37).
(Hint: Use Eqs. (16.35) and (16.36) to eliminate px/py andffiffiffiffiffiffiffiffiffiffiffi
Ty/Tx

p
in Eq. (16.34). Then, square both sides of the resulting

equation and solve for M2
y in terms of M2

x .)
56. Using Eqs. (16.13), (16.36), and (16.37), show that

Posy
Posx

=
ðk+1ÞM2

x /2

1+ ðk−1ÞM2
x /2

" #k/ðk− 1Þ
×

2kM2
x

k+1
− k−1

k+1

� 	1/ð1− kÞ

57. It may be shown algebraically that, across a normal shock,

Vx

c�
Vy

c�

� �
= 1:0

where c� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgcRT�p

is the sonic velocity at the throat.
Consequently, it has become customary to use the rather
awkward notation M* = V/c* so that this relation can be written
as M�

xM
�
y = 1:0: Table C.18 in Thermodynamic Tables to accompany

Modern Engineering Thermodynamics includes an M* column for
this purpose. Verify this relation for the normal shock data given
in Example 16.12 by
a. Calculating Vx,Vy, c*and Vx,Vy/(c*)

2.
b. Using Table C.18 to calculate M�

xM
�
y :

58. It can be shown, for a normal shock wave, that

ρy
ρx

= Vx

Vy
=

ðk+ 1ÞM2
x

ðk−1ÞM2
x + 2

Using this relation, determine the maximum density ratio
ðρy/ρxÞmax that can occur across a normal shock wave in air.

59. Use Eqs. (16.36) and (16.37) to develop the relation

py
px

= 1+ 2k
k+ 1

M2
x −1

� �
60. The strength of a normal shock wave is defined as py − px

� �
/px:

Using the results of Problem 55, show that this can be written as

py − px
px

= 2k
k+ 1

� �
M2

x − 1
� �
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61. Use Eqs. (16.35) and (16.37) to develop the relation

Ty
Tx

=
k−1ð ÞM2

x + 2
� 


2kM2
x − k− 1ð Þ� 


k+1ð ÞMx½ �2

62. In a supersonic wind tunnel utilizing air similar to that shown
in Figure 16.12, the converging-diverging nozzle section has
an inlet isentropic stagnation pressure of 3.20 atm. The test
section has a Mach number of 2.70, and the converging-
diverging diffuser section has an exit pressure of 1.00 atm.
Determine the efficiency of the converging-diverging diffuser
section.

63. Measurements on a prototype nozzle using air produce inlet and
exit temperatures of 70.0°F and 60.0°F, respectively, while the
exit velocity is 325 ft=s. Determine the nozzle’s efficiency and
velocity coefficient.

64.* An air diffuser has inlet and exit isentropic stagnation pressures of
3.50 and 3.10 MPa, respectively. The inlet velocity is 300. m/s and
the inlet static temperature is 27.0°C. Determine the diffuser
efficiency, pressure recovery coefficient, and exit static temperature,
if the air leaves the diffuser with a negligible velocity.

65.* 8.00 kg/s of air flows through a diffuser with an inlet diameter
of 0.0350 m and a static pressure and temperature of 0.500 MPa
and 22.0°C. The air exits through a diameter of 0.900 m at static
conditions of 0.540 MPa and 25.0°C. Determine the diffuser’s
efficiency and pressure recovery coefficient.

66. A diffuser decelerates 15.0 kg/s of carbon dioxide from 200. m/s
at 20.0°C and 0.800 MPa to 1.00 m/s at 30.0°C and 1.00 MPa.
Determine the diffuser efficiency, pressure recovery coefficient,
and the inlet and exit areas.

67.* Experimental measurements on a new methane fuel nozzle for a
furnace produce an exit velocity, pressure, and temperature for
methane of 335 m/s, 0.100 MPa, and 0.00°C. The upstream
stagnation pressure and temperature are 0.150 MPa and 22.0°C.
Determine
a. The nozzle efficiency.
b. The nozzle’s velocity coefficient.
c. The nozzle’s discharge coefficient.

68. A diffuser having an efficiency of 92.0% is to be used to reduce
the velocity of an air stream initially at 450. ft/s, 65.0°F, and
50.0 psia down to a Mach number of 0.100. Calculate
a. The exit to inlet area ratio Aexit/Ainletð Þ required.
b. The pressure recovery factor for the diffuser.

69. A sonic converging nozzle with a negligible inlet velocity and
inlet and throat areas of 2.00 in2 and 0.500 in2, respectively, has
a velocity coefficient of 0.820 when the upstream stagnation
pressure and temperature are 100. psia and 70.0°F. Determine
the thrust produced by the nozzle in atmospheric air.

Design Problems
The following are open-ended design problems. The objective is to carry
out a preliminary design as indicated. A detailed design with working
drawings is not expected unless otherwise specified. These problems do
not have specific answers, so each student’s design is unique.

70. Design a converging-diverging nozzle system that can be used to
demonstrate supersonic flow in the classroom. Choose a
convenient gas, inlet conditions, and exit Mach number.
Determine the necessary area ratios, pressures, and temperatures
throughout the system.

71.* Design an attitude control nozzle for a spacecraft that produces
50.0 N of thrust (see Problem 42) using compressed helium gas
stored at 50.0 MPa and 0.00°C. Assume the nozzle discharges
into a total vacuum. Specify the nozzle inlet, throat, and exit
areas as well as the exit Mach number.

72.* Design a system that has no moving mechanical parts to cool
machine shop compressed air at 0.500 MPa, 25.0°C to 0.00°C at
0.101 MPa. The outlet velocity must be at least 10.0 m/s. If
possible, fabricate and test your design.

73. Design a small demonstration wind tunnel to be driven from a
standard compressed air supply line at 100. psia and 70.0°F.
Assume that the maximum volumetric air flow rate available
from this supply is 10.0 ft3/min at 14.7 psia and 70.0oF. The
wind tunnel test section must be at least 1.00 inch in diameter
and must reach a Mach number of at least 2.25. The air may be
exhausted to the atmosphere, but it first must be decelerated to
subsonic velocity to minimize noise generation. If possible,
fabricate and test your design.

74.* Design a converging-diverging nozzle for a spacecraft thruster
that has an exit Mach number of 5.00 when using compressed
helium at 50.0 MPa, and 0.00°C. Assume the nozzle exhausts
into a total vacuum. Plot the nozzle diameter vs. length along
the nozzle, keeping the angle of the diverging wall to less than
10o with the horizontal to prevent flow separation. Show the
positions along the nozzle where M = 1, 2, 3, 4, and 5.
Determine the mass flow rate through your nozzle.

75. Design a system that produces a constant mass flow rate of
1.00 × 10–2 lbm/s of oxygen from one or more 3.00 ft3 high-
pressure storage bottles initially at 2000. psia and 400. R. The
oxygen must be delivered at 50.0 ft=s at 60.0°F and 175 psia.
The system must operate continuously for six months and must
have a fail-safe backup.

Computer Problems
The following open-ended computer problems are designed to be
done on a personal computer using a spreadsheet or problem
solver.

76. Develop a computer program that returns values for
T�/Tos, p�/pos, and ρ�/ρos, when k and the remaining variables
are input in response to a screen prompt.

77. Develop an interactive computer program that returns values for
p/pos, T/Tos, ρ/ρos, and A/A�, when k and M are input from the
keyboard in response to a screen prompt.

78. Develop an interactive computer program that returns values for
My , py/px, Ty/Tx, ρy/ρx, _S / _m , and posy/posx, when k and Mx are
input from the keyboard in response to a screen prompt.

79. Using Eqs. (16.35), (16.36), (16.37), and (16.38), plot _Sp/ð _mRÞ
vs. Mx for 1≤Mx ≤ 50 for (a) air, (b) carbon dioxide,
(c) methane, and (d) water vapor (use k = 1:33 here).

80.* Fanno line. An analysis of the adiabatic aergonic flow of a
viscous ideal gas with constant specific heats traveling through a
constant area duct can be carried out by combining the
continuity equation, the energy rate balance (Eq. (16.1)), and
the entropy rate balance (using Eq. (7.36)) to obtain the
following relation:

_Sp
_mcvð Þ = sout − sin

cv
= ln

Tout
Tin

Tos − Tout
Tos −Tin

� �k−1ð Þ/2" #
≥0
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A plot of this function is called the Fanno line for the flow. Plot
Tout vs. _Sp/ _mcvð Þ for air using 0≤Tout ≤Tin: Take Tos = 300K and
Tin = 290 K. Note that _S p/ _mcvð Þ is double valued in Tout and its
maximum value occurs at M = 1:0: Determine the two values of
Tout for which _Sp = 0 when Tos = 300K and Tin = 290 K.

81.* Rayleigh line. An analysis of the frictionless aergonic flow of an
ideal gas with constant specific heats traveling through a constant
area duct with heat transfer at the walls can be carried out by
combining the continuity equation and the linear momentum
rate balance equation to yield the following set of equations:

pout
pin

=
1+ kM2

in

1+ kM2
out

Tout
Tin

=
Mout

Min

� �2
×

1+ kM2
in

1+ kM2
out

Tosð Þout
Tosð Þin

=
Mout

Min

1+ kMin

1+ kMout

� �2
×
1+ k− 1

2
M2

out

1+ k−1
2

M2
in

and Eq. (7.37) gives sout = sin + cp ln Tout/Tinð Þ−R ln pout/pinð Þ:
For air, with (Tos)in = 100°C, pin = 0.5 MPa, Min = 0.5,
and sin = 2.2775 kJ/(kg ·K), generate the following plots for
0 ≤ Mout ≤ 10:
a. Tout vs. sout (this plot is called the Rayleigh line).
b. _Q / _m = cp Tosð Þout − Tosð Þin

� 

vs: Mout (this is the heat transfer

per unit mass to or from the air).
c. _Sp/ _mcp

� �
= sout − sinð Þ/cp − _Q / _m

cpTw
vs:Mout,

where Tw = 1
2 Tin + Toutð Þ is the mean wall temperature. Note

that sout is a maximum when Mout = 1.0.
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CHAPTER 17

Thermodynamics of Biological Systems
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17.1 INTRODUÇÃO (INTRODUCTION)
Over the years, thermodynamics has remained essentially an engineering discipline with only infrequent
applications elsewhere. In chemistry, courses entitled Physical Chemistry specialize in applying thermody-
namics to chemical systems of the type treated in Chapter 15 of this book. Only recently has the developing
field of bioengineering begun to apply the macroscopic mass, energy, and entropy balance concepts of classi-
cal thermodynamics to living systems. In this chapter, the results of applying these basic laws of thermody-
namics to biological systems are reviewed. The conclusions reached will help you understand how your body
functions and give you some insight into the operation of the complex molecular phenomena necessary to
sustain life on this or any other planet.

In this chapter, the basic thermodynamics of simple living systems (biological cells) is followed by discussions
of animal biological energy conversion efficiency, metabolism, nutrition, and exercise. Then, the fascinating
subjects of the limits to biological growth and an engineering view of living system mobility are presented. The
chapter ends, appropriately, with a thermodynamic discussion of biological aging and death. In this section, an
attempt is made to describe how and why living systems age differently from nonliving systems.

17.2 LIVING SYSTEMS
Only in the past few years has science begun to realize how the evolution of life is completely compatible with
the laws of physics. A key to this understanding has been the entropic explanation of self-organizing systems
and the connection between self-organization and energy flow. Self-organization can exist in both living and
nonliving systems, but living systems are self-organizing and self-replicating. The origin of life is apparently not
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an unusual phenomenon. Fairly complex living microscopic creatures existed on Earth within a few hundred
million years of its formation.

There is no clear-cut understanding of the scientific concept of life. Living systems have six recognized character-
istics: (1) molecular organization, (2) metabolism, (3) growth, (4) adaptation, (5) response to stimuli, and (6)
reproduction. But perhaps the best definition available today is that a system is said to be “living” if it sustains
its low-entropy molecular complexity (i.e., DNA) that contains hereditary information transmitted to offspring
on reproduction, by a metabolic energy transport from a high-energy source (food) to a low-energy sink (waste)
via catalytic macromolecules, called enzymes.

The different living systems on Earth have numerous items in common. For example, they all use the same class
of molecules for energy storage, the nucleotide phosphates. Also, of the billions of chemically possible organic
compounds, only about 1500 are actually used by living systems. And all these 1500 compounds are made with
less than 50 simpler molecular building blocks, utilizing no more than 24 of the available elements. Hydrogen
atoms make up 63% of all the atoms in the human body. Oxygen accounts for 25.5%, carbon 9.50%, nitrogen
1.40%, and the 20 remaining elements essential for mammalian life account for only about 0.60%. Only 3 of
the 24 elements known to be essential to life on this planet have atomic numbers greater than 34, and these 3
are needed in only trace amounts. Thus, since living systems are made up of the simplest atomic elements, they
can be expected to develop early on any planet that has the proper environmental conditions.

Living systems are organized around a cell structure of some kind. A cell is like a small factory whose main func-
tion is to carry out its metabolic process, and the cell boundaries appear to exist to provide the high enzyme con-
centration necessary for efficient metabolism. The smallest free-living cell known today is a pleuropneumonialike
organism that has a mass of only about 5 × 10–19 kg and has a diameter of only about 10–7 m (about one fifth of
the wavelength of visible light). This cell contains about 100 enzymes and can be seen only with a high-powered
electron microscope. The human body contains about 1014 cells with an average diameter of 10–5 m. Each cell
typically consists of a central nucleus, with the remaining material being the cytoplasm (see Figure 17.1). The che-
mical activity inside the cell is very high, with each enzyme entering into the synthesis of about 100 molecules per
second.

The oldest remnants of life on Earth are cellular microfossils that are over 3.5 billion years old. Since the age of
the Earth is only about 4.5 billion years, the thermal and chemical requirements for the evolution of living sys-
tems must have developed remarkably fast. All known living systems on Earth are water based and therefore
cannot exist far outside the temperature range from 0 to 100°C. It is amazing that the surface of the Earth had
regions in this temperature range for at least 80% of its existence.

Cell membrane

Vacuoles

Lysosome
Mitochondria

Nucleus
(contains chromosomes)

FIGURE 17.1
Schematic of a typical living cell.

WHAT IS METABOLISM?

Metabolism is the name given to the processes of breakdown and synthesis of large macromolecules within a cell.
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17.3 THERMODYNAMICS OF BIOLOGICAL CELLS
It is unlikely that a single energy source was directly responsible for the synthesis of all the organic molecules on
the newly formed Earth. In recent decades, laboratory experiments with the elements of carbon, hydrogen, oxy-
gen, and nitrogen have shown that basic organic compounds can be synthesized by a variety of energy sources
under early Earth conditions. Table 17.1 lists an estimate of the energy rate per unit area available on the surface
of the primitive Earth. Though solar radiation was clearly the largest source of energy, the energy contained in
long-wavelength (150 to 200 nm) ultraviolet light is so strong that it decomposes absorbing molecules rather
than building them. However, the water of the primitive Earth’s oceans protected complex organic molecules
from disruptive ultraviolet radiation until the Earth’s ozone layer developed. It was not until this protective
atmospheric layer had developed that life forms could leave the oceans and populate the dry land.

The most widely used source of energy for the synthesis of primitive organic compounds in the laboratory is an
electrical discharge in a mixture of gases. The most common compounds produced by this technique are amino
acids, with yields as high as 5%.

As concentrations of organic compounds built up in the primitive oceans, biological life processes began to
synthesize and replicate molecules. Enzymes and genetic molecules evolved, but reaction rates were limited by
the comparatively low concentrations of these essential building blocks. Specialized molecular barriers then
evolved that completely enclosed small volumes of fluid containing complex molecular machinery. These bar-
riers are called membranes and the resulting enclosure is called a cell. The purpose of biological membranes is to
maintain concentration differences that would be advantageous to the molecular operation of the cell. To do
this, the membrane must be able to transport certain ions against the concentration gradient (this is called active
transport). This requires that the membrane operate as an energy converter, with some of the internal energy of
the cell being used to maintain the various concentration gradients across the membrane. Table 17.2 lists some
ion concentrations inside and outside common human cells.

Table 17.1 Estimates of Energy Rates Available for the Formation of Simple Organic
Compounds, Averaged over the Surface Area of Primitive Earth

Source
Energy Rates
per Unit Area [KJ/(m2 · a)]

Electric discharge (lightning, etc.) 170

Solar radiation in the 0−150 nm range 71

Thermal quenching of hot gases from

Shock waves from meteors and lightning 46

Volcanoes 5.4

Highly ionizing radiation from

Radioactivity 1.0 km deep in the Earth 33

Solar wind 8.4

Cosmic rays 0.1

Source: Material drawn from Oró, J., Miller, S. L., Urey, H. C. Energy conversion in the context of the origin of life. In: Buvet, R., Allen, M. J.,
Massué, J.-P. (Eds.), Living Systems as Energy Converters. North-Holland Publishing, 1977, pp. 7–19, New York. Reprinted by permission of
Elsevier Science Publishers (Biomedical Division), Amsterdam, and the authors.

Table 17.2 Approximate Ion Concentration Inside and Outside Human Cells

Ion

Concentration in Osmoles per cm3 of Water

Outside the Cell Inside the Cell

Na+ 144 14.0

K+ 4.1 140

Mg2+ 1.5 31

Cl– 107 4.00

HCO−
3 27.7 10.0

SO2−
4

0.5 1

HPO2−
4 , H2PO

−
4

2.0 11

Note: One osmole is the number of gram moles of the substance that do not diffuse or dissociate in solution. Also, pHoutside = 7:4 and
pHinside = 7:0, where the concentration of hydrogen ions ðH+Þ in gmoles/L is 10−pH:
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Because cell membranes are molecular machines, their
exact structure is not yet completely understood. The
most universally accepted model of a membrane is the
bimolecular lipid leaflet structure shown schematically
in Figure 17.2. In this model, the membrane structure
consists of two parallel rows of phospholipid molecules
oriented with their hydrophobic chains pointing inward
and their hydrophilic (polar) ends pointing outward.
The inner and outer surfaces of the membrane are
covered with various protein layers, and the membrane
thickness is typically 7 to 10 nanometers ð10−9 mÞ: It is
also felt that the membrane must contain a uniform
distribution of holes, or pores, about 0.8 nm in
diameter, through which water and certain hydrated
ions can pass. Approximately 0.06% of the membrane
area is made up of these pores. The concentration of
materials inside the cell is determined exclusively by
concentration differences across the membrane.

Membranes of living cells maintain an electrical potential difference between the inside and outside of the cell.
With very small electrodes, a reasonably constant current can be continuously drawn from a cell. A cell can pro-
duce electricity in this way only if it has a molecular mechanism for maintaining an unequal ion charge differ-
ence across its membrane. Such membranes are known to contain a molecular level ion pump that transports ion
species in only one direction (into or out of the cell).

How much work is required to pump a charged ion from the solution outside the cell into the solution
inside the cell? The answer to this question can be developed by considering the transport process to be car-
ried out in two steps. First, consider moving an ion from infinity through a vacuum, through the membrane,
and into the cell. Assume in this first step that the cell membrane has no dipole layer (i.e., no net charge on
its surface) and the inside of the cell is electrically neutral. Now, as the charged ion moves from infinity to
the membrane, it encounters no resistance, so its transport work is zero. As it moves through the cell mem-
brane, it begins to feel electrostatic ion-solvent and ion-ion interactions. We lump all these interactions
together and call them chemical effects; therefore, the work done against these interactions in moving the
charged ion into the cell is called chemical work. The chemical work done in moving a mole of ions of chemi-
cal species i from infinity into an uncharged cell through a dipole layer–free membrane is equal to the molar
chemical potential μi of ion species i.

The second step in this process is to allow the membrane to have a dipole layer and allow the cell to have a net
internal charge. We call the work required to move the ion into this system of net charges the electrical work;
therefore, the total work required to move the ion from infinity through a dipole-layered membrane into a
charged cell is the sum of the chemical work plus the electrical work. This total work is called the electrochemical
work of the cell.

Define ϕk as the electrical potential (in volts) required to transport a unit charge of species i into the cell. Then,
the electrical work required to transport one ion of species i with valence zi kgmole of electrons per kgmole of
species i (and thus a charge zie) is zieϕic, where e is the charge on one electron. The electrical work required to
transport 1 mole of species i into the cell is Nozieϕic = ziFϕic, where No is Avogadro’s number and F = Noe =
Faraday’s constant = 96,487 kilocoulombs/kgmole of electrons. Let wECð Þic be the electrochemical work required
to transport 1 mole of species i with valence zi into a cell. Then, we can write

wECð Þic = WECð Þic/ni = μic + ziFϕic (17.1)

Unfortunately, neither μic or ϕic is directly measurable. They were introduced as conceptual quantities for the
purpose of separating chemical effects from electrical effects; however, only their combined effect can be
observed in the laboratory.

What can we measure? We can measure the electrical potential difference (i.e., voltage) between the inside and
outside of the cell. Now, as soon as we introduce an electrode into the cell, we set up a current path, so that the
measured potential Δϕm is not the same as the zero current (no electrode) equilibrium potential Δϕe: Again, Δϕe
cannot be measured, but we can get around that as follows. From Eq. (17.1), we find that the electrochemical
work required to move a mole of ions of species i with valence zi from infinity into the solution outside the cell is

wECð Þio = WECð Þio/ni = μio + ziFϕio (17.2)

70-100 Å Cell interior Proteins

ProteinsCell exterior

Nonpolar
ends

Polar
ends

FIGURE 17.2
Schematic of membrane construction.
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and that the electrochemical work required to move that same mole from infinity into the cell is

wECð Þic = μic + ziFϕic (17.3)

then, from Eqs. (17.2) and (17.3), we find that the zero current equilibrium electrical potential difference between
the inside and outside of the cell due to the presence of species i is

Δϕeð Þi = ϕic −ϕio = 1
ziF

wECð Þic − wECð Þio − μic − μioð Þ� 

(17.4)

The molar chemical potential of species i can be written for isothermal, dilute solutions as

μi = μ
o
i +ℜT ln ci (17.5)

where μi
o is the molar chemical potential when ci = 1:0,ℜ is the universal gas constant, T is the absolute tem-

perature, and ci is the molar concentration of i. Using Eq. (17.5), we can write Eq. (17.4) as

Δϕeð Þi = 1
ziF

wECð Þic − wECð Þio − μoic − μ
o
io

� �� 

+ ℜT

ziF
ln

cio
cic

(17.6)

To simplify the algebra, we call the first term on the right side of Eq. (17.6) Δϕo
e

� �
i, which is the value of Δϕeð Þi

when cic = cio: Then, Eq. (17.6) becomes

Δϕeð Þi = Δϕo
e

� �
i +

ℜT
ziF

ln
cio
cic

(17.7)

However, we still cannot measure either Δϕeð Þi or Δϕo
e

� �
i: At this point, we arbitrarily assign the electrical poten-

tial outside the cell the value zero, and we define the membrane potential Ei due to species i as

Ei = Δϕeð Þi − Δϕo
e

� �
i

which is given by Eq. (17.7) as

Ei =
ℜT
ziF

ln
cio
cic

(17.8)

At 37°C, Eq. (17.8) becomes (recall that 1 coulomb = 1 joule/volt)

Ei at 37°Cð Þ = 8314:3 J/ kgmole.Kð Þ½ � 37:0+ 273:15Kð Þ
zi 96,487 kilocoulombs/kgmoleð Þ ln

cio
cic

� �
=

26:7millivolts. kgmole electrons/kgmole ið Þ
zi

ln
cio
cic

� � (17.9)

where zi is the valence of species i in kgmole of electrons per kgmole of species i. Note that zi can be either posi-
tive or negative in this equation.

WHAT IS SO SPECIAL ABOUT A BODY TEMPERATURE OF 37°C?

As the temperature of an organism increases up to about 40ºC, the speed of its enzyme-catalyzed metabolic reactions
increases, because the molecules collide more frequently due to thermal agitation. But above 40ºC, the weak bonds that
control the functional shape of the enzymes begin to break, and they become ineffective at sustaining metabolism. For
many years, it was thought that life as we know it could not exist at temperatures above about 40ºC.

However, recently hyperthermophilic (“superheat-loving”) bacteria have been found in high-temperature environments,
such as deep sea volcanic hot vents. They grow at temperatures above 80°C and can survive to temperatures up to 113°C.
They are very tough life forms, even surviving temperatures as low as −140°C. It seems possible that they could have been
carried through space on meteoroids to populate planets.
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EXAMPLE 17.1
Using the concentration data provided in Table 17.2, determine the membrane potential in human cells of sodium, potas-
sium, and chlorine ions at 37.0°C.

Solution
Table 17.2 gives the concentration of sodium ions inside a human cell at 37.0°C as

cNa+
c
= 14:0osmoles/cm3

while the concentration of sodium ions outside the cell is

cNa+
o
= 144osmoles/cm3

The valence of a sodium ion is 1 kgmole electrons/kgmole Na+. Then, Eq. (17.9) gives the membrane potential of sodium as

ENa+ =
26:7mVðkgmole electrons/kgmoleNa+ Þ

zNa+ kgmole electrons/kgmoleNa+ ln
cNa+

o

cNa+
c

 !

=
26:7mVðkgmole electrons/kgmoleNa+ Þ

1kgmole electrons/kgmoleNa+
ln 144

14:0

� �
= 62:2mV

For potassium, Table 17.2 gives cK +
c
= 140osmoles/cm3 and cKþ

o
= 4:1osmoles/cm3: The valence of a potassium ion is also

1 kgmole electrons/kgmole K+, and Eq. (17.9) gives the membrane potential of potassium in a human cell as

EK + =
26:7mVðkgmole electrons=kgmoleK+ Þ

1kgmole electrons=kgmoleK+ ln 4:1
140

¼ �94:3mV

Finally, Table 17.2 gives cCl−c = 4:00 osmoles/cm3 and cCl−o = 107osmoles/cm3. The valence of a chlorine ion is –1 kgmole
electrons/kgmole Cl–, and Eq. (17.9) gives the membrane potential of chlorine in a human cell as

ECl− =
26:7mV ðkgmole electrons/kgmoleCl− Þ

−1 kgmole electrons/kgmoleCl−
ln 107

4:00
= −87:8mV

Exercises
1. Determine the membrane potential in human cells of magnesium ions, Mg2+, at 37.0°C. Answer: EMg2+ = –40:4mV:
2. Determine the membrane potential in human cells of sulphate ions, SO4

2–, at 37.0°C. Answer: ESO4
2− = 9:3mV:

3. Determine the membrane potential in human cells of dihydrogen phosphate ions, H2PO4
–, at 37.0°C.

Answer: EH2PO4
− = 45:5mV:

Actual measured potentials are generally in the range of –70 to −90mV and represent the cumulative effect of
all the ion species present. However, Na+, K+, and Cl– are the primary high-transport ions in most mammal
membranes, and their cell potentials, listed earlier, average out to about the measured value.

Applying the open system energy rate balance equation to a living cell gives

_Q− _W +∑
in

_me−∑
out

_me = dU
dt

� �
cell

Here, _Q is the irreversible metabolic heat transfer resulting from the life processes within the cell,∑
in
_me is the food

energy intake,∑
out

_me is the waste product output, and _W is the total work done on or by the cell. The food taken
into the cell can be generalized as glucose and molecular oxygen, and the waste products can be generalized as
carbon dioxide and water. The total work done on or by the cell is the electrochemical work done in maintaining
the chemical differences across the cell membrane, wECð Þi = wECð Þic − wECð Þio, and occasional p-V work done in
enlarging the cell plus γ-A surface tension work done in generating new membrane surface area. Then,

_W =∑ _mi
wEC

M

� �
i
+∑ _mi

μ
M

� �
i
+ γ _A + p _V (17.10)

where we have written all terms on a mass rather than a molar basis (using _n i = _mi/Mi, where Mi is the molecular
mass of species i) and the intensive properties have been assumed to be constant in time. Thus, the time rate of
change of the cell’s total internal energy is

dU
dt

� �
cell

= _Q−∑ _mi
wEC

M

� �
i
−∑ _mi

μ
M

� �
i
− γ _A − p _V +∑

in

_me−∑
out

_me
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Most of the various cellular processes that require energy
use adenosine triphosphate (ATP) as the energy source.
This compound has about 33 MJ/kgmole of energy
stored in each of two phosphate bonds. When these
bonds are split by enzyme action to form adenosine
diphosphate (ADP), their energy is then made available
for other uses. The cell contains many enzymes that can
catalyze the splitting of the ATP bonds and utilize the
liberated energy.

Energy storage reactions within the cell, on the other
hand, are limited to two basic types: photosynthetic
(in plant cells), wherein incoming light is used as the
energy source, and metabolism (in animal cells),
wherein the food brought into the cell (generally glu-
cose and molecular oxygen) is utilized to reconstitute
ATP from ADP, with the production of carbon dioxide
and water waste products, which must be expelled
from the cell. Figure 17.3 shows how these two energy
transport mechanisms are linked together in the life
cycle, and Figure 17.4 illustrates the ATP–ADP cycle.

An open system entropy rate balance applied to a
living cell gives

_Q
Tb

+∑
in

_ms−∑
out

_ms+ _SP = dS
dt

� �
cell

where Tb is the temperature of the cell boundary
(assumed isothermal here). Because the metabolic
heat must leave the cell for it to survive, we know that
_Q< 0: Also, _SP > 0 due to the irreversibilities of the life
process within the cell. Since food products are brought into the cell and waste products expelled,

∑
out

_me >∑
in
_me (as these two flow streams are at the same temperature and the molecular order of the waste

material is less than that of the food). For a cell to grow and continue to maintain its elaborate internal molecu-
lar order, we must have dS/dtð Þcell < 0, or

∑
in

_ms−∑
out

_ms+ _Q/Tb

�����
�����≥ _SP

which is perfectly reasonable so long as the cell remains alive (i.e., _Q< 0 and ∑
in
_me<∑

out
_me).

17.4 ENERGY CONVERSION EFFICIENCY OF BIOLOGICAL SYSTEMS
Metabolism is the name given to all anabolic (constructive) and catabolic (destructive) molecular processes
within a living system, and it is a direct measure of the energy used by the system. Because a living system is an
open system, it is more convenient to speak of its metabolic rate, that is, its energy usage per unit time. Part of
the metabolic energy can appear as physical work done by the system; part of it can appear as an increase in
total system internal energy (as in the case of growth); part of it can appear in the creation of high-energy items,
such as eggs, seeds, live offspring, and milk; and virtually all of the irreversibilities associated with these pro-
cesses appear as heat production within the system.

An open system energy rate balance for the life form shown in Figure 17.5 is

_Q − _W + ∑
in

_me−∑
out

_me⎵ = dU
dt

+ d
dt

mV2

2gc

� �
+ d

dt
mgZ
2gc

� �
Metabolic

heat transfer
ð<0Þ

Work done
onor by
the system

Food, oxygen
and
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Energy transport mechanisms in living systems.
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Life processes all have some degree of irreversibility. Therefore, _Q normally is negative since the internal irrever-
sibilities generally produce internal heat generation, which must be removed from the system if the system is
not to overheat.

Classically, the concept of work in thermodynamic analysis has been somewhat ambiguous. As discussed in
Chapter 4, during the development of thermodynamics, it was convenient to separate the changes in kinetic and
potential energies from the work term. These energy terms are written separately and usually grouped with the
system’s total internal energy change, as shown in Eq. (17.11). Thus, the work term in the thermodynamic
energy balance encompasses all the work transport of energy into or out of a system except the work associated
with changes in the system’s kinetic and potential energy. This can be quite confusing when analyzing biological
systems, since one of their major work modes in a social or cultural context is that of mobility, that is, running
and climbing, which are the kinetic and potential energy terms we are discussing. Also, whereas a classical ther-
modynamic system can either do work or have work done on it, in general, a biological system only does work
(i.e., the work term is always negative).

As with nonliving work-producing systems, we can define an energy conversion efficiency as

Energy conversion efficiency = ηE =
Desired energy result
Required energy input

(17.12)

The term energy used in this equation must include relevant kinetic and potential energy changes. For example,
the energy conversion efficiency of a human climbing a hill could be calculated by choosing the change in
potential energy of the person as the desired energy output, while ignoring other types of energy output simulta-
neously performed (such as aerodynamic drag against the atmosphere). This is acceptable, providing the mean-
ing of the efficiency is clearly defined in each case.

The required energy input part of Eq. (17.12) is more difficult to evaluate. Since, for warm-blooded animals,
the net _Q is always out of the system, it cannot be considered as a source of energy input. Also, one cannot
generally input useful energy into a biological system via changes in the system’s kinetic or potential energies.
Thus, what remains is

Required energy input = − dU
dt

Then, we may write Eq. (17.12) as

ηE =

_W + d
dt

mV2

2gc

� �
+ d

dt
mgZ
gc

� �
−dU/dt

= 1+
_Q

−dU/dt
(17.13)

and since both _Q and dU/dt are always negative, it is clear that Eq. (17.13) gives an energy conversion efficiency
that is always less than 100%.

Work done (W )

Waste energy out Food energy in

Heat loss (Q)

FIGURE 17.5
Energy flows in living systems.
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On the other hand, in the case of most plants and some animals, there is either direct energy conversion of
incoming solar radiation or a metabolic reduction resulting from direct body warming from incoming solar
radiation. Since radiation is one of the classical heat transfer mechanisms, solar radiation belongs to the _Q term.
In this case, part of the system’s _Q is actually incoming and used within the system and must be considered as
part of the total energy input.

The energy conversion efficiency of plant photosynthesis can be defined as

ðηEÞphotosynthesis =
Energy converted to organic molecules by photosynthesis ðper unit areaÞ

Solar energy input to earth ðper unit areaÞ (17.14)

This is quite low, typically ranging between 0.01 and 1.0%. Part of the reason for the low efficiency is that not
all the solar energy incident on a unit area of the Earth is intercepted by a plant. As plants become smaller and
more uniformly cover the Earth, this efficiency rises somewhat. For example, in the case of algae (a microscopic
one-celled plant), the photosynthetic energy conversion efficiency at a small densely packed test site can be as
high as 10%.

The energy conversion efficiency of animals can be defined as

ηEð Þanimal =
Rate of food energy stored in the body as complex organic molecules

Rate of energy taken into the body as food
(17.15)

EXAMPLE 17.2
Everyone has heard about the food chain, but few realize how inefficient it is in nature. The energy conversion efficiency from
sunlight to plant growth is only about 1.00%, the energy conversion efficiency of the plants eaten by grazing herbivores is about
20.0%, and the energy conversion efficiency of the carnivores who hunt and eat the herbivores is only about 5.00%. So the over-
all energy conversion efficiency from sunlight to carnivore is about (0.0100)(0.200)(0.0500) = 1.00 × 10−4 = 0.0100%. If the
average daily solar energy reaching the surface of the Earth is 15.3 MJ/d · m2, then how much land is required to grow the plants
needed to feed the herbivores eaten by a large carnivore that requires 10.0 MJ/d to stay alive?

Solution
Since our hunting carnivore requires 10.0 MJ of food per day, at a 5.00% food energy conversion rate, it must consume

10:0MJ/d
0:0500

= 200:MJ/d

of herbivore meat. The food energy conversion rate of the grazing herbivores is 20.0%, so they must consume

200:MJ/d
0:200

= 1000MJ/d

in plant food. At a 1.0% energy conversion rate, the plants consumed by the herbivore require

1000MJ/d
0:0100

= 1:00× 105 MJ/d

of solar energy. Since the average solar energy intensity on the surface of the Earth is 15.3 MJ/d ·m2, 100,000 MJ/d of solar
energy require an area of

100,000MJ/d
15:3MJ/d.m2 = 6540m2

and since 1 acre = 4047 m2, then

6540m2 1 acre
4047m2

� �
¼ 1:62 acres

of plant food is required to supply the food chain energy required to meet the 10 MJ/d needs on our carnivore.

Exercises
4. Using the results of Example 17.2, determine the number of carnivores that can be supported by herbivores living off

1500 acres of plants. Answer: 926 carnivores.
5. If the number of available herbivores in Example 17.2 increases dramatically and the carnivores’ hunting energy

expenditure is reduced to the point where their food energy conversion efficiency increases from 5.00% to 12.0%,
determine the amount of land required to support one carnivore. Answer: 0.675 acres/carnivore.

6. If the carnivore in Example 17.2 moves to a tropical climate where the solar intensity and the photosynthetic energy
conversion efficiency double, how much land would be required to support its food chain? Answer: 0.81 acres.
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Our conceptual understanding of physiological work is often quite different from our earlier (Chapter 4)
definition of thermodynamic work. For example, when an animal walks along a horizontal surface it does no
net thermodynamic work. There is no net change in kinetic or potential energy, and there is no appreciable slid-
ing friction between the animal’s feet and the ground. Only when the animal moves against an external force
(such as hydrodynamic drag or inertia forces) is any classical thermodynamic work done. Walking does involve
what we culturally call work, but in thermodynamic jargon the energy associated with constant velocity motion
along a horizontal plane (in the absence of hydrodynamic drag) merely involves a net conversion of internal
energy into heat. Thus, the thermodynamic efficiency of this type of motion in animals (or machines) is zero. If,
instead, an animal walks on a horizontal treadmill, then it does do thermodynamic work. This work appears as
friction or electricity, depending in the treadmill design. Part of the friction in this case is external to the animal
and is measurable as work in the classical thermodynamic sense. The remaining part of the energy expenditure
is internal losses within the animal and appears as metabolic heat. Note, however, that the thermodynamic
work efficiency of walking on a treadmill returns to zero if the entire treadmill apparatus is included in the sys-
tem with the animal.

A key element in understanding the thermodynamics of biological systems is comprehending the role of the heat
transfer term in the energy rate balance equation of these systems. Since this equation by itself is useful only if
you have just one unknown term, since it is not usually satisfactory to simply ignore or set equal to zero those
terms for which we do not have values, and since ðdU/dtÞsystem is perhaps the most difficult term of all to measure
accurately, then it becomes absolutely necessary that a means be found to give accurate measurements of _Q:

17.5 METABOLISM
The metabolic energy in the resting state is called the basal metabolic rate (BMR). The BMR is essentially the
energy required to keep the molecular machinery of life operating at a zero activity level. Similar measure-
ments at a higher activity level produce intermediary metabolic rate results. The basal metabolic rate for humans
depends on age, sex, height, general health conditions, and the like. Figure 17.6 shows the variation in the
average BMR per unit body surface area for human males and females as a function of age. It is not uncom-
mon to have BMR variations around these normal (or average) values of ±15% for any one individual.
Table 17.3 shows the breakdown in energy consumption comprising the BMR in the adult human body. The
large energy consumption of the brain is surprising; the brain of a five-year-old child may account for up to
50% of its BMR.

CRITICAL THINKING

The energy conversion efficiencies for plants and animals defined in Eqs. (17.14) and (17.15) are what we define in Chapter
10 as a first law efficiency. Can you use the general definition of a second law efficiency given in Chapter 10 to formulate a
second law efficiency for plants and animals? What difficulties are encountered in evaluating this new efficiency?
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FIGURE 17.6
Average BMR per unit area for humans vs. age.
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Measuring an animal’s metabolic heat transfer directly is called direct calorimetry. The technique is very difficult
to carry out because the animal’s conductive, convective, and radiation heat transport rates must all be measured
directly. This is commonly done by putting the animal in a closed box that has water circulating through all six
of its sides. If the outside of the box is well insulated, then an energy balance shows that all of the metabolic
heat produced by the animal ends up in the circulating water. However, virtually all metabolic measurements
done today use a method called indirect calorimetry, wherein the CO2 production and the O2 consumption are
measured instead. Generally, indirect calorimetric techniques are found to be as accurate as the direct techniques
and are usually considerably easier and less expensive to use.

The ratio of the number of moles of CO2 produced to the number of moles of O2 consumed during an indirect
calorimetry test is called the respiratory quotient (RQ), and its value depends on the type of food being metabo-
lized. For example, in the metabolism of 1 mole of a typical carbohydrate, glucose,

C6H12O6 +6ðO2Þ ! 6ðCO2Þ+6ðH2OÞ
6 moles of O2 and 6 moles of CO2 are involved. Therefore, the RQ of carbohydrate is 1.0. On the other hand,
the RQ of protein is 0.8 and that of fat is 0.7. An animal generally consumes a mixture of these substances, so
how do we know which value to use as the energy equivalent per liter of O2 consumed? Tests show that, under
basal conditions, the RQ is approximately 0.82 (which is very nearly the average value for the RQs of carbohy-
drate, protein, and fat), and it can be shown that this gives a mixture composition of these three substances that
corresponds to an energy equivalent of 20.2 MJ/m3 of O2, or 20.2 kJ/L of O2. Thus, if we measure the number
of liters of O2 consumed per unit time by an animal in the resting state and multiply this value by 20.2 kJ/L
O2, we obtain the resting energy consumption rate (or basal metabolic rate) of the animal. In the case of a fast-
ing (starving) animal, which is living on the consumption of its own body fat and protein, the energy equivalent
per liter of O2 consumed is 21.3 kJ/L O2.

Table 17.3 Breakdown of the Contributions to the Basal Metabolic Rate of the Various
Organs of the Adult Human Body

Organ Mass (kg) % of Body Mass % of BMR

Liver 1.5 2.14 27

Brain 1.4 2.00 20

Heart 0.3 0.43 10

Kidneys 0.3 0.43 8

Muscles 30.0 42.8 26

Remaining body tissue 36.5 52.2 9

Total 70.0 100.0 100.0

Source: Reprinted by permission of the publisher and the author from Margen, S. Energy metabolism. In: McCally, M. (Ed.), Hypodynamics and
Hypogravics,1968 ed. Academic Press, New York.

CRITICAL THINKING

The average basal metabolic rates per unit surface area for male and female humans are shown in Figure 17.6. Why do
you think the values for females are less than those for males over their life spans? Also, why do these curves level off at
about age 20?

WHAT IS KLEIBER’S LAW?

In 1932, Max Kleiber (1893–1976) published a paper, “Body Size and Metabolism,” which included a graph (Figure 17.7)
that showed that an animal’s metabolic rate scales to the three-quarter power of the animal’s mass, or BMR∝M3/4. Kleiber’s
law has been found to hold across 18 orders of size, from microbes to whales.

(Continued)
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A comparison of the basal metabolic rates for a large number of warm-blooded animals from mice to elephants
and birds produced the following empirical correlation, called Kleiber’s law:

BMR = 293 m3/4
� �

(17.16)

where BMR is the animal’s basal metabolic rate in kJ/d, and m is the animal’s body mass in kg. Thus, the basal
metabolic rate per unit mass of the animal is

BMR/m = 293ðm−1/4Þ = 293
m1/4

(17.17)

and it clearly increases with decreasing body mass.

EXAMPLE 17.3
Determine the basal metabolic rate (BMR) per unit mass of an 80.0 kg adult human and an 8.00 gram mouse. Since both
are warm-blooded mammals, explain why there is a difference in these values.

Solution
The basal metabolic rate per unit mass of a warm-blooded animal is given by Eq. (17.17) as

BMR/m = 293ðm−0:25Þ

WHAT IS KLEIBER’S LAW? Continued
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Kleiber’s law graph.

WHAT DO A BANANA, AN ORANGE, AND A PERSON HAVE
IN COMMON?

According to a new study, all living organisms share roughly the same resting metabolic rate when body size and tempera-
ture are taken into account. The finding suggests that widely diverse species burn energy in predictable patterns. “The [cor-
rected] basal metabolic rate of an apple or tree is remarkably similar to that of bacteria, which is remarkably similar to a
fish or person,” says James Gillooly, at the University of New Mexico in Albuquerque.
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where BMR is in kJ/d and m is in kg. Then, the BMR per unit mass of an 80.0 kg human is

ðBMR/mÞhuman = 293ð80:0−0:25Þ = 98:0 kJ
kg .d

and the BMR per unit mass of an 8.00 gram mouse is

ðBMR/mÞmouse = 293ð0:00800−0:25Þ = 980: kJ
kg .d

This calculation shows that the basal metabolic rate per unit mass of a mouse is ten times that of a human. This large differ-
ence is primarily due to the difference in surface area to volume ratio of these mammals. Since heat loss from the body is
primarily by convection heat transfer, which is proportional to surface area, and internal heat generation inside the body is
proportional to its volume, then as the ratio of surface area to volume increases the internal heat generation rate must also
increase if a mammal is to maintain its body temperature. To produce higher internal heat generation rates, small animals
must feed very often if they are not to starve.

It is a fact that the smaller any object becomes, the larger its surface area to volume ratio becomes. This is easiest to under-
stand with spherical objects. The surface area of a sphere is 4πR2 whereas its volume is (4/3)πR3. Therefore, its surface area
to volume ratio is

Surface area
Volume

� �
sphere

¼ 4πR2

4
3
πR3

¼ 3
R

and this ratio decreases inversely with increasing R. Thus, there is a lower limit to the size of warm-blooded animals. The
shrew and the hummingbird are the smallest known animals of this kind.

The body temperature of insects and cold-blooded animals is approximately equal to the temperature of their surroundings.
Consequently, there is no thermodynamic lower limit to their size.

Exercises
7. Determine the basal metabolic rate (BMR) and the basal metabolic rate per unit mass (BMR/m) of a 1300. kg elephant.

Answers: BMRelephant = 63,400 kJ/d and (BMR/m)elephant = 48.8 kJ/kg · d.
8. If a 0.500 gram house fly had to maintain the body temperature of warm-blooded mammal using the same internal

heat generation rate mechanisms, what would be its basal metabolic rate (BMR) and its basal metabolic rate per unit
mass (BMR/m)? Answers: BMRfly = 0.980 kJ/d and (BMR/m)fly = 1960 kJ/kg · d.

9. Since whales are aquatic mammals, determine the basal metabolic rate (BMR) and basal metabolic rate per unit mass of
a 136,000 kg (150. ton) great blue whale. Answer: BMRwhale = 2,080,000 kJ/d and (BMR/m)whale = 15.3 kJ/kg · d.

17.6 THERMODYNAMICS OF NUTRITION AND EXERCISE
The molecular form of the food we eat can be broken down into the following three categories:

1. Carbohydrates. Carbohydrates always contain hydrogen and oxygen atoms in a 2 to 1 ratio, as in water; and
they can have very large macromolecules built up from the glucose (C6H12O6) monomer, with molecular
masses as high as 2 × 106 (as in the case of plant starch and glycogen).

2. Proteins. Proteins are very large molecules containing carbon, hydrogen, oxygen, and often nitrogen. For
example, a single molecule of human hemoglobin (C3032H4816O872N780S8Fe4) contains a total of 9512 atoms
and has a molecular mass of 66,552 kg/kgmole.

3. Fats (glycerol and fatty acids). Fatty acids are much smaller molecules, with typically 16 or 18 carbon
atoms per molecule plus attached hydrogen atoms and a carboxyl group (—COOH) at one end. An example
of a saturated (with hydrogen atoms) fatty acid is shown in Figure 17.8. An example of the same acid
unsaturated is shown in Figure 17.9.

HOW DOES TEMPERATURE AFFECT METABOLISM?

Temperature governs metabolism through its effects on rates of biochemical reactions. Reaction kinetics vary with tempera-
ture according to Boltzmann’s factor e− E/kT , where T is the absolute temperature, E is the activation energy, and k is Boltz-
mann’s constant. The combined effects of body mass (M) and body temperature (T) on the basal metabolic rate can then
be written as BMR ∝M3/4e− E/kT , where E is the average activation energy for the enzyme-catalyzed biochemical reactions of
metabolism.
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The energy value of different foods is normally determined by direct calorimetry in a device called a bomb calori-
meter (see Figure 17.10). In this device, a sample of known mass is ignited in a pressurized atmosphere of excess
pure oxygen. The liberated heat of combustion is transferred to water surrounding the combustion chamber, and
it can easily be calculated from an energy balance on the calorimeter. The end product of this type of combus-
tion is always CO2 and H2O (and nitrogen products when the sample contains bound nitrogen). Since this is
exactly the same end state that occurs in the body as a result of enzyme decomposition of food molecules, the
same amount of energy must be released in each case. Thus, bomb calorimeter energy measurements represent
the total energy available in the sample that can be converted into heat or another form of energy.

Bomb calorimeter studies on dry (water-free) foods give the following averaged results for the specific energies
of the basic food components:

Carbohydrate: 18:0MJ/kg
Protein: 22:2MJ/kg
Fat: 39:8MJ/kg

)
Total energy content ðwater freeÞ

When these same substances are metabolized in the human body they produce the following specific energy
releases:

Carbohydrate: 17:2MJ/kg
Protein: 17:2MJ/kg
Fat: 38:9MJ/kg

)
Metabolizable energy content ðwater freeÞ

Using these two sets of values we can compute the food energy conversion efficiency of the human body as

ηcarbohydrate =
17:2
18:0

× 100 = 95:5%

ηprotein = 17:2
22:2

× 100 = 77:5%

ηfat =
38:9
39:8

× 100 = 97:7%

Thus, 22.5% of the energy in the protein we eat passes through the body unused. The low protein energy con-
version efficiency supports the theory that humans were not always meat-eating animals.
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FIGURE 17.10
A schematic of a typical bomb calorimeter.
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These energy content values were for dry or water-free foods. Most foods, especially carbohydrates, contain a
large amount of functional water (the mass of the human body, for example, is about 72% water). The energy
content of natural or wet food is lower that that of dry food due to the dilution effect of the energetically inert
water. The average natural state metabolizable specific energy content of the three basic food components is

Carbohydrate: 4:20MJ/kg
Protein: 8:40MJ/kg
Fat: 33:1MJ/kg

)
Metabolizable energy content natural state foods

Note the extraordinarily large specific energy content of natural state fat.

EXAMPLE 17.4
If the average meal consumed by an adult consists of about 45.0% carbohydrate, 15.0% protein, and 40.0% fat, determine
(a) the specific energy content of an average meal with natural state foods and (b) the total mass of an average meal needed
to provide 10.5 MJ per day.

Solution
a. The average energy content of natural (or wet) food components is

Carbohydrate: 4:20MJ/kg
Protein: 8:40MJ/kg
Fat: 33:1MJ/kg

Therefore, the specific energy content of the average meal is

eavg:meal = 0:450 4:20ð Þ+0:150 8:40ð Þ+ 0:400 33:1ð Þ = 16:4MJ/kgmeal

b. A person who requires a daily food energy intake of 10.5 MJ must then consume

_mavg:meal =
10:5
16:4

= 0:640 kg of average meal/day = 1:4 lbm of average meal/day

Exercises
10. Suppose the person in Example 17.4 who needed 10.5 MJ of food energy per day goes on a diet that requires a food

energy intake of only 5.0 MJ per day. What total mass of average meal food should this person consume per day?
Answer: _mavg:meal = 0:300kg avg:meal/d = 0:670:

11. If the amount of fat described in the average meal in Example 17.4 is reduced from 40.0% to 30.0% and the
carbohydrate and protein increase to 50.0% and 20.0%, respectively, determine the new specific energy content of
this meal and the total mass of this meal required to produce 10.5 MJ of food energy per day. Answer:
_mavg:meal = 0:770 kg avg:meal/d = 1:69:

12. People who live in very cold climates usually have diets that have a very high fat content. Suppose their average meal
consisted of 20% carbohydrate, 20% protein, and 60% fat. Determine the specific energy content of this meal and the
total mass of this meal required to produce 10.5 MJ of food energy per day. Answer: _mavg:meal = 0:470 kg avg:meal/d =
1:03 lbmavg:meal/d:

Overweight conditions place a greatly increased load on the heart and other organs. For example, each kilogram
of body tissue contains 0.885 km of tiny blood vessels. If an individual is 10. kg (22 lbm) overweight, the heart
must pump blood through an extra 8.9 km (5.5 miles) of small blood vessels.

EXAMPLE 17.5
People living in affluent societies generally know very little about starvation. Most feel that death is imminent if food is
withheld for only a week. However, we know that 1.00 kg of human body fat contains about 33.1 MJ of metabolizable
energy, and it would be useful to know:

a. The mass of body fat consumed per day if one uses 10.5 MJ of energy in normal activities.
b. How many days of total fasting are required to lose 10.0 kg of body fat.

Solution
a. A fasting person requiring 10.5 MJ of metabolizable energy per day consumes about

_mfat =
10:5MJ=d

33:1MJ=kg body fat
¼ 0:317kg of body fat=d

(Continued )
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EXAMPLE 17.5 (Continued )

b. The number of fasting days required to lose (consume) 10.0 kg of body fat is

t =
mfat

_mfat
=

10:0 kg of body fat
0:317 kg of body fat=d

¼ 31:3d

Exercises
13. If the person in Example 17.5 requires only 8.40 MJ per day instead of 10.5 MJ per day, how much fat would be lost

(consumed) by fasting just one day? Answer: mfat = 0.250 kg fat.
14. You are stranded in the wilderness without any food (but you have plenty of water to drink). If you have 15.0 kg of

excess body fat, how long can you wait to be rescued before your body fat is consumed by your metabolism of
9.00 MJ/d? Answer: t = 55.2 d.

15. Suppose you have absolutely no excess body fat, and you are stranded without food. Your body then begins to consume
your muscle protein, which has a metabolizable value of 8.4 MJ/kg. How much protein would you lose (consume) after
being stranded for 30.0 days with a metabolism of 10.5 MJ/da? Answer: mprotein = 12.5 kg protein.

Example 17.5 shows that, if you have 10. kg (220 lbm) of excess body fat, you can theoretically fast for
31.3 days just living on that body fat alone. This also gives you some idea why weight loss by dieting is such
a slow process. Fasting for long periods is not a medically sound method of weight loss since the body soon
begins to consume its own protein, and this can seriously affect the functioning of the body’s organ systems
(especially the heart). No one should ever willingly attempt a total fasting diet without consulting a qualified
physician.

Whereas most adult humans can survive long periods of fasting, they cannot withstand long periods without
water intake. Since the body continually loses water through the skin and lungs, it must be replaced or the body
soon becomes dehydrated and death quickly follows. Healthy adults have been known to fast for over 100 days,
but no human can survive for more than 10 to 20 days without water.

Tables 17.4 and 17.5 present the metabolizable energy content values for various common foods and the aver-
age energy expenditure requirements for various human exercises. Common nutritional tables today have food
energy content and exercise energy expenditure levels listed in Calories. The capitalization of the word Calorie
indicates what nutritionists call a large calorie, that is, a kilocalorie: 1 Calorie = 1000 calories = 1 kilocalorie. This
is confusing notation, since only the capital C tells you that it is not the normal calorie energy unit, a subtle
point often overlooked by the publishers of nutrition tables.

Table 17.4 Approximate Energy Content of Some Common Foods

Food

Metabolizable Energy Content

Calories MJ Btu

Fast foods (average values)
Hamburger 275 1.15 1090

Cheeseburger 325 1.36 1490

Quarter pound hamburger 450 1.88 1790

With cheese 550 2.30 2180

With cheese and bacon 650 2.72 2580

Fish sandwich 450 1.88 1790

With cheese 500 2.09 1980

Hot dog 300 1.26 1190

With chili or cheese 350 1.47 1390

Regular fries 250 1.05 992

Regular onion rings 350 1.47 1390

Baked potato 250 1.05 992

With sour cream and chives 450 1.88 1790

With chili and cheese 500 2.09 1980

With broccoli and cheese 500 2.09 1980

With bacon and cheese 550 2.30 2180

With cheese 550 2.30 2180
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Table 17.4 Approximate Energy Content of Some Common Foods continued

Food

Metabolizable Energy Content

Calories MJ Btu

Pizza (per slice, 8 slices per 13-in. pizza)

With cheese 350 1.47 1390

With cheese and pepperoni 500 2.09 1980

Salads (1 cup each)
Lettuce with French dressing 150 0.63 595

Potato with mayonnaise 375 1.57 1490

Chicken and mayonnaise 550 2.30 2180

Egg and mayonnaise 400 1.67 1590

Tuna fish and mayonnaise 500 2.09 1980

Drinks

Shakes (all flavors, 10 fluid ounces) 350 1.47 1390

Milk (skim, per pint) 180 0.75 714

Cola (all flavors, 10 fluid ounces) 130 0.54 516

Diet cola 0 0.0 0

Beer (per fluid ounce) 8 0.033 30

Whiskey (per fluid ounce) 38 0.16 150

Desserts

Ice cream (per pint, 10% fat) 600 2.51 2380

Pie (per slice, 8 slices per 9-in. pie) 300 1.26 1190

Chocolate candy (milk, per ounce) 150 0.63 595

Marshmallows (1 large) 25 0.10 99

Source: Jacobsen, M., Fritschner, S. The Fast-Food Guide. Workman Publishing, 1992, New York. Copyright © The Center for Science in the
Public Interest. Reprinted by permission of Workman Publishing.

Table 17.5 Approximate Adult Human Energy Expenditure in Exercise

Exercise

Energy Required during Exercise

Calories/h MJ/h Btu/h

Fast running 910 3.8 3610

Cross-country skiing 910 3.8 3610

Fast swimming 860 3.6 3410

Wrestling 810 3.4 3210

Boxing 690 2.9 2740

Hard cycling 600 2.5 2380

Jogging 600 2.5 2380

Football 600 2.5 2380

Fast dancing 600 2.5 2380

Basketball 550 2.3 2180

Handball 550 2.3 2180

Sawing wood 500 2.1 1980

Shoveling 500 2.1 1980

Tennis 480 2.0 1900

Climbing stairs normally 410 1.7 1630

Baseball 360 1.5 1430

Volleyball 360 1.5 1430

Fast walking 310 1.3 1230

Sexual intercourse 270 1.1 1070

Golf 240 1.0 952

Hoeing 190 0.8 754

Driving a car 140 0.6 556

Card playing 96 0.4 381

Watching TV 72 0.3 286

Basal metabolism 72 0.3 286
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EXAMPLE 17.6
Suppose you want to exercise off the energy added to your body as a result of eating one pint of ice cream by lifting
weights. The external work done by the body equals the change in potential energy of the weights as they are lifted (there is
no significant energy recovery within the body, however, when the weights are lowered again). Suppose you are lifting 490.
N (110. lbm) a vertical distance of 1.00 m, and you can make one lift in 1.00 second. Approximately how many lifts are
required and how long will it take to work off the energy content of the ice cream?

Solution
Each lift requires that an amount of energy be put into the weights of

mgZ/gcð Þweights = 490:Nð Þ 1:00mð Þ/ 1ð Þ = 490:N.m = 490: J

If we take the human body as the thermodynamic system and apply the energy rate balance and ignore all mass flow energy
movements into or out of the system during the exercise period (thus, we are ignoring perspiration energy losses and all O2

and CO2 exchanges), then we can write

_Q− _W = dU
dt

+ d
dt

mV2

2gc

� �
+ d
dt

mgZ
gc

� �� 	
body

Since the kinetic and potential energies of the human body do not change significantly during the exercise, we can set

d
dt

mV2

2gc

� �
+ d

dt
mgZ
gc

� �� 	
body

= 0

and the energy rate balance becomes

_Q− _W = dU
dt

� �
body

= _Ubody

Now, the external work rate that must be done by the system is

_W = −
mgZ/gcð Þweights

Δt
= 490: J

1:00s
= 490: J=s

It has been shown experimentally that the energy conversion efficiency of animal muscular contraction defined by
Eq. (17.12) is about 25%, or

ηTð Þmuscle =
_W

_Ubody
= 0:250

IS IT A Calorie OR A calorie?

When the word calorie is capitalized, it indicates what nutritionalists call a large calorie, or a kilocalorie. That is, in nutrition
jargon, 1 Calorie = 1 kilocalorie, yet it takes 1000 calories to equal 1 kilocalorie. Only the capital C distinguishes the two.
So, when a nutrition table indicates that your caloric intake should be 2500 Calories per day, it really means 2500 kilocal-
ories per day. Now, since 1 kilocalorie = 4.186 kilojoules, then 2500 Calories/d = 2500 kcal/d = (2500 kcal/d)(4.186 kJ/
kcal) = 10,465 kJ/d = 10.456 MJ/d.

From Table 17.5, we find that the energy expenditure required to jog, play football, or fast dance is about 600 Calories per
hour, and Table 17.4 tells us that the energy content of milk chocolate is about 150 Calories per ounce. So, if you want to
exercise off the energy content of one 1.5-oz milk chocolate candy bar you would have to jog, play football, or fast dance
continuously for

ð1:5ozÞð150Calories/ozÞ
600Calories/h

= 0:375hours

This is a lot of hard exercise for one small candy bar.
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Then, the rate of total internal energy expenditure within the body is

_U body =
− _W

ηTð Þmuscle
=

−490 J/s
0:250

= −1960 J/s

Therefore, _Q = _U + _W = −1960+ 490 = −1470 J/s: Consequently, the time, τ, required to produce a change in the total
internal energy of the system that equals the energy content of one pint of ice cream (see Table 17.4) is

τ = ΔU
_U

� �
body

=
− ð1pintÞð2:51MJ/pintÞ

−1:96×10−3MJ/s
= 1280 s = 21:3min

Hence, the 490. N weight in this example must be lifted continuously at a rate of one lift per second until a total of 1280
lifts have been made. This is clearly a great deal of physical labor just to overcome the enjoyment of a pint of ice cream.
Note that only 25% of the energy in the ice cream gets converted into external work while 75% of its energy is utilized else-
where within the body to keep the circulatory, respiratory, and other subsystems operating and is ultimately converted into
heat inside the body due to the internal irreversibilities of these processes.

Exercises
16. If the muscle efficiency in Example 17.6 is 30.0% instead of 25.0%, how many lifts would be required to work off the

energy content of the ice cream? Assume all the other variables remain unchanged. Answer: 1540 lifts.
17. If the 490 N weight in Example 17.6 is lifted only 0.50 m instead of 1.00 m, how long would it take to work off the

energy content of the ice cream? Assume all the other variables remain unchanged. Answer: τ = 2560 s = 42.7 min.
18. Suppose the person in Example 17.6 consumes a cheeseburger instead of a pint of ice cream. Assuming all the other

variables remain unchanged, how long would it take to work of the energy content of the cheeseburger?
Answer: τ = 694 s = 11.6 min.

Physiologically, it is very hard to lose weight by exercising alone. Most of the weight loss that appears after
exercising is really water loss due to perspiration. Perspiration is a convection-evaporation heat transfer mechan-
ism that removes the heat generated within the body due to the biological irreversibilities of exercise. Its func-
tion is to help maintain a constant body temperature. This type of water loss is quickly replaced in the meals
following the exercise and should never be considered as part of a permanent weight loss.

17.7 LIMITS TO BIOLOGICAL GROWTH
For purposes of simplification, consider living systems to have a characteristic length L such that their surface
and cross-sectional areas are proportional to L2 and their volumes are proportional to L3. The most obvious
effect of size on animal evolution is the ability of an animal’s skeleton to support its body weight. The ability
of a leg bone to withstand direct compression loading is proportional to its yield modulus and to the cross-
sectional area of the bone. Hence, the strength of a leg varies with L2. However, the body weight of the ani-
mal is proportional to its volume, which varies with L3. The ratio of body weight to leg loading then
increases with the animal’s size, L. Clearly there exists an upper limit (dictated by the elastic properties of
bone) to an animal’s growth, where its legs can no longer support its weight. The giant dinosaurs of 100 mil-
lion years ago apparently evolved up to this critical size. Some aquatic dinosaurs were too large to leave
the water because without the buoyant supporting force of the water their skeletons could not support their
body weight.

Even more crucial to mobile land animals are the bending stresses developed in their bones during walking and
running. Small animals can run with very nimble and flexible legs while heavy animals like elephants must
walk stiff legged to minimize leg bone bending stresses.

The internal heat generated by biochemical irreversibilities in animals is proportional to the amount of tissue
present, and consequently, it varies with L3. The rate of heat loss by an animal depends on the convective and
radiative heat transfer mechanisms, which in turn depend directly on the animal’s surface area and, conse-
quently, vary with L2. Therefore, the ratio of heat generation to heat loss is proportional to L3/L2 = L, and if an
animal’s size were to increase indefinitely, a point would eventually be reached where the animal would over-
heat and die. Thus, at least two mechanisms provide an upper limit to the size of animals: the strength of their
supporting tissue and their ability to maintain a moderate body temperature.

The rate at which oxygen and food reach the body’s cells depends on the volume of blood in the circulatory
system and the pumping capacity of the heart. The volume of blood delivered to the heart is proportional
to the cross-sectional area of the aorta and, consequently, varies with L2, whereas the volume of the heart
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itself is proportional to L3. Therefore, the ratio of blood flow rate to heart volume varies with L2/L3 = L−1, and
consequently, the heart pulse rate also varies with L–1. For mammals, the heart pulse rate has been correlated
with body mass according to

Heart pulse rate ðin beats per minuteÞ = 241ðm−0:25Þ = 241
m1/4

(17.18)

where the body mass m is in kilograms.

The same argument can be made for the respiratory system. The ratio of the gas transport rate through the lung
wall to the lung volume also varies with L–1, and the breathing rate is also proportional to L–1. Experimentally,
we find that the ratio of pulse rate to breathing rate is constant at about 4.5 in all mammals regardless of their
size. The breathing rate for mammals has been correlated with body mass as

Breathing rate ðin breaths per minuteÞ = 54:0ðm−0:25Þ = 54:0
m1/4

(17.19)

where the body mass m is in kilograms.

EXAMPLE 17.7
As a famous biomedical engineer, you are challenged on your medical exam to determine the heart rate and respiratory rate
of a 0.0300 kg mouse, a 70.0 kg human, and a 4000. kg elephant.

Solution
The heartbeat rate for mammals in beats per minute is given by Eq. (17.18) as

Heartbeat rate = 241ðm−0:25ÞBeats/min

so the heartbeat rates of the mouse, human, and elephant are

Heartbeat rateð Þmouse = 241ð0:0300−0:25Þ = 579:Beats/min
Heartbeat rateð Þhuman = 241ð70:0−0:25Þ = 83:3Beats/min
Heartbeat rateð Þelephant = 241ð4000:−0:25Þ = 30:3Beats/min

The respiratory rate of mammals in breaths per minute is given by Eq. (17.19) as

Respiratory ðbreathingÞ rate = 54:0ðm−0:25ÞBreaths/min

So the breathing rates of the mouse, human, and elephant are

Breathing rateð Þmouse = 54:0ð0:0300−0:25Þ = 130:Breaths/min
Breathing rateð Þhuman = 54:0ð70:0−0:25Þ = 18:7Breaths/min
Breathing rateð Þelephant = 54:0ð4000:−0:25Þ = 6:79Breaths/min

Exercises
19. Determine the heatbeat rate of a 2.80 kg house cat. Answer: 186 beats/min.
20. Determine the breathing rate of a 700. kg racehorse. Answer: 10.5 breaths/min.
21. Since whales are mammals, determine the heart rate of a 136,000 kg (150. ton) blue whale. Answer: 12.6 beats/min.

Because plants lack mobility, their size criteria are generally simpler than those for animals. The main strength
concerns in plants center on the buckling of their central trunk and excessive deflections of their cantilevered
limbs. Consider a circular cylinder of height h and diameter d. Then, for slender cylinders ðh/d>25Þ the critical
height for a cylinder buckling under its own weight can be shown to be

hcritical = 0:85 E
γ

� �1/3
d2/3 (17.20)

WHAT ABOUT BIRDS?

The pulse to breathing rate ratio is about 9.0 for all birds (regardless of their size) because birds have a continuous flow of
air in only one direction through their lungs, in contrast to the two-way in-out breathing of mammals. The unidirectional
air flow in birds is also countercurrent (in the opposite direction to) the blood flow in the lungs, thus improving the effi-
ciency of gas exchange.
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where E is the elastic modulus of the trunk and γ is its weight density. It can also be shown that the tallest self-
supporting homogeneous tapering conical column with base diameter d is about twice as tall as the critical
height given by Eq. (17.20). For live wood, the ratio of E/γð Þ1/3 is approximately 120. m1/3 for all trees. Thus,
the critical height of trees varies approximately with their base diameter to the 2/3 power according to

hcritical = 68:0 d2/3
� �

(17.21)

where hcritical and d are in meters and the coefficient 68.0 has units of m1/3.

EXAMPLE 17.8
Determine the critical buckling height of a small tree whose base diameter is 5.00 × 10–3 m.

Solution
From Eq. (17.21), we have hcritical = 68:0ðd2/3Þ = 68:0ð5:00×10− 3Þ2/3 = 1:99m:

Exercises
22. Determine the critical buckling height of a tree in your yard that has a base diameter of 8.00 in (0.203 m).

Answer: hcritical = 23.5 m (77.1 ft).
23. A wooden flag pole with a 6.00 in (0.152 m) base diameter is made from fresh wood. Determine its critical buckling

height. Answer: hcritical = 19.4 m (63.6 ft).
24. Determine the critical buckling height of a giant redwood tree with a base diameter of 6.00 m (20.0 ft).

Answer: hcritical = 225 m (738 ft). Note: Such trees seldom exceed a growth height of about 90 m (300 ft).

Tree limbs are sized to withstand the bending forces due to their own weight. If a branch is considered to be a
cantilever beam attached at an angle α to the trunk, then there exists a critical length ℓcrit that allows the tip of
the branch to extend horizontally. Longer branches droop below the horizontal and shorter branches point
upward at an angle approximately the same as their attachment angle α. It can be shown that the equation for
ℓcrit is identical in form to Eq. (17.20), except with a different multiplying constant (in this case the diameter
d is the limb diameter at the point of attachment). Thus, the shape and size of trees and other plants is propor-
tional to the 2/3 power of the base diameter of the limbs and trunk.

It can be shown that muscular power for animal locomotion is also proportional to the square of the character-
istic body dimension. Therefore, the work (i.e., power × time) done by a muscle is proportional to L2 × ðL/VÞ,
or L3, where V is the locomotion velocity. The kinetic energy of motion at constant velocity is also proportional
to L3 because the animal’s mass is proportional to its volume. Since both the work done by the muscle and the
system kinetic energy it produces are proportional to L3 (if we ignore any aerodynamic drag and acceleration
effects), we see that there can be no significant size effect in the horizontal locomotion of animals. That is,
all animals should be able to run at about the same maximum velocity on a horizontal surface.

Consider now an animal running uphill at constant velocity. The rate of energy expenditure in increasing
its potential energy (again, ignoring aerodynamic and other effects) is proportional to L3 × (dZ/dt). Since its
muscular power is always proportional to L2, an energy rate balance on the animal tells us that its ascent velo-
city dZ/dt must therefore be proportional to L–1. That is, the speed of an animal running uphill should be
inversely proportional to its size. A hill that a rabbit can easily run up may reduce a dog to a trot and a hunter
to a walk.

A similar argument can be made for large flying animals. It can be shown with an energy rate balance that the
rate of energy expenditure required for hovering or forward flight is proportional to L3.5. Since the flight muscles
can supply power only proportional to L2 (again ignoring aerodynamic drag and inertia), the ratio of required
power to available power is proportional to L1.5. Thus, an upper limit to the size of flying animals is quickly
reached. In the case of birds, their aerodynamic design sets this upper limit at about 16 kg (35 lbm).

WHY YOU CANNOT CATCH A RABBIT

Though observations of animals from rabbits to horses show that they can all run about the same maximum speed on a
horizontal surface, smaller animals can accelerate and decelerate (i.e., maneuver) much faster than larger animals
(people).
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17.8 LOCOMOTION TRANSPORT NUMBER
Air, water, and land constitute the three common transport media available on Earth. Accordingly, we assign the
following locomotion mechanisms to these media: air, flying; water, swimming; and land, crawling and running.
An effective way to study the energy consumption of locomotion is through the dimensionless locomotion
transport number T, defined as

T = P
wV

(17.22)

where P is the animal’s total rate of energy (power) expenditure during locomotion (often determined by
measuring the rate of O2 consumption during locomotion), w is the animal’s weight (not mass), and V is its
locomotion velocity. At zero velocity, P = Po (the BMR) and T becomes infinite. The most efficient transport
velocity is the velocity for which T is a minimum. If we ignore aerodynamic drag and assume that P is indepen-
dent of V, then T ! 0 as V ! ∞. The faster the animal moves, the more efficient is its locomotion. This,
clearly, is unrealistic, since aerodynamic drag becomes important at even moderate speeds and inertia also
becomes important because the animal increases its velocity by flexing its locomotion muscles (legs, wings,
etc.) faster. Therefore P cannot be independent of V.

We can represent total power expenditure during locomotion, P, as

P = Po +PD +Pm

HOW EFFECTIVE IS WALKING?

When you walk, some of the kinetic energy of your forward motion
is converted into potential energy as you rise on one foot, and a por-
tion of this potential energy is converted back into kinetic energy
again as you push forward and drop onto the other foot (Figure
17.11). The efficiency of slow walking is such that only about 65%
of your body’s kinetic energy is carried forward from one step to
another. Internal friction and other irreversibilities in your body con-
sume the remaining 35%. To keep moving, the lost kinetic energy
must be replaced by flexing the muscles in your legs, and this energy
ultimately comes from the food you eat.

When you get tired walking, you have used up your leg muscles’
energy reserve and your body cannot produce it from the stored
body fat as fast as it is needed by the muscles. Also, when you carry
a load in your arms or on your back when you walk, more energy is
lost through increased friction (though the percentage of body plus
load kinetic energy lost is about the same). However, African women
have somehow learned how to carry loads of up to one fifth of their
body weight in baskets on their head without using any additional
energy in slow walking.

Since 35% of the kinetic energy is 0.35(mV2/2gc) = 0.175(mV2/gc), and
muscle efficiency is only about 25%, then the total energy consumed
in slow walking is about 4(0.175)(mV2/gc) = 0.7(mV2/gc). For a 180.
lbm person walking at 3.00 ft/s, the energy requirement per step in
slow walking is

0:7ð180:lbmÞð3:00 ft/sÞ2/32:2 lbm:ft/lbf .s2 = 35:2 ft× lbf/step

and, if the walker has a velocity of 2.00 steps/s, then the energy
rate is

ð35:2 ft .lbf/stepÞð2:00 steps/sÞ = 70:4 ft:lbf/s×1Btu/778 ft .lbf = 0:0905Btu/s

Now, 1 Btu = 1.055 kJ, so the energy rate needed is 0.0905 × 1.055 = 0.0955 kJ/s, or 0.0955 kJ/s × (3600 s/h) = 344 kJ/h =
0.344 MJ/h. Table 17.5 lists “fast” walking as requiring 1.3 MJ/h. Since the basal metabolic rate is 0.3 MJ/h, then the fast
walking alone is 1.0 MJ/h, which is about three times the slow walking rate just calculated.

FIGURE 17.11
Person walking.
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where Po is the basal metabolic rate (BMR), PD is the power absorbed by aerodynamic drag, and Pm is the power
absorbed by the muscles. From fluid mechanics, we know that the power required to overcome viscous drag is
given by

PD = 1
2
ρACDV3

where ρ is the fluid density, A is the frontal projected area of the animal, and CD is its drag coefficient. We can
therefore determine the most efficient transport velocity by minimizing T as follows:

∂T
∂V

= 0 = − Po +Pm

wV2 +
ρACD V

w
+ 1

wV
∂Pm

∂V

� �
(17.23)

where we have assumed the weight to be constant during the locomotion. Equation (17.23) can be rewritten as

ρACD V3 +V
∂Pm

∂V

� �
− ðPo +PmÞ = 0 (17.24)

which could be solved for the most efficient locomotion velocity if we knew how Pm depends on V. If we
assume that Pm increases linearly with V, then we can write

Pm = KV

where K is a constant. Then, Eq. (17.24) becomes

ρACDV
3 −Po = 0

then,

Vmost efficient =
Po

ρACD

� �1/3
(17.25)

Figure 17.12 shows T vs. V for a 70 kg human. The minimum value of T occurs at about V = 1.75 m/s, which
corresponds to a fast walk. Locomotion velocities faster or slower than this value require more energy consump-
tion per distance traveled and are hence less efficient locomotion speeds.

Mechanical locomotion devices have the potential of altering the T vs. V curve by moving its minimum to a
higher velocity. Of course, the weight of the locomotion device must be added to the animal’s weight such that
w in Eq. (17.22) is

w = wanimal +wdevice

therefore, the weight of the locomotion device alone tends to decrease the value of V at minimum T. Bicyclists
are willing to carry along the extra weight of their machines, because at their most efficient velocity, their mini-
mum value of T is about 0.064, which is about 25% of their minimum value of T in normal leg locomotion
without the bicycle. In fact, the bicyclist has the lowest value of T ever measured for any animal or machine-
animal combination.

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5

T
ra

ns
po

rt
 n

um
be

r 
T

Minimum at V = 1.75 m/s

Velocity V (m/s)

FIGURE 17.12
The locomotion transport number vs. velocity calculated from Eq. 17.22 for a 70-kg human.
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EXAMPLE 17.9
Determine the locomotion transport number of a 60.0 kg person traveling at 15.0 miles per hour on a 15.0 kg bicycle while
expending 400. W of power pedaling.

Solution
Using Eq. (17.22) with P = 400: W,w = ð60:0+ 15:0Þð9:81Þ = 735N, and V = 15:0mph = 15:0miles/hð Þ 1:609km/mileð Þ =
24:14 km/h = 24,140m/h gives

T = P
wV

=
ð400:N.m/sÞð3600:s/hÞ
ð735NÞð24,140m/hÞ = 0:0812

Exercises
25. Determine the locomotion transport number of a 0.100 kg fish using 0.150 J/s to swim at a velocity of 0.500 m/s.

Answer: Tfish = 0.30.
26. An aircraft weighing 22.0 × 103 lbf uses 3.00 × 103 horsepower to fly at 200. mph. Determine its locomotion transport

number. Answer: Tairplane = 0.256.
27. Determine the most efficient velocity for the bicyclist in Example 17.9 if his or her basal metabolic rate is 73.1 J/s,

frontal area is 0.750 m2, aerodynamic drag coefficient is 1.50, and the local density of air is 1.21 kg/m3.
Answer: Vmost efficient = 3.77 m/s = 13.6 km/h.

Figure 17.13 presents data on the dimensionless loco-
motion transport number T vs. body mass for a large
variety of birds, fish, land animals, and machines. The
value of the locomotion transport number for an ani-
mal of a given mass clearly depends directly on the per-
centage of its body mass dedicated to locomotion
muscles. This percentage is greatest in fish, next largest
in birds, and smallest in two- and four-legged runners.
Note that fish have the lowest T values and are therefore
the most efficient mobile animals. Figure 17.13 also has
points for various machines, and the machines that are
the most efficient at transport are trains and ships.

The locomotion efficiency for a given animal becomes
much lower when it is forced to travel in a different
medium. A human consumes 30 times more energy in
swimming than does a fish of equivalent mass. Pen-
guins are highly adapted to swimming, but on land
they waddle around with a locomotion transport num-
ber twice as high as any land animal of equivalent mass.

17.9 THERMODYNAMICS OF AGING AND DEATH
There are several important theories of biological aging, but perhaps the most popular is that of molecular error
propagation. This theory states that molecular reproduction by enzymes is not perfect. The entropy production
of molecular synthesis over a significant period of time cannot be insignificant with regard to the information
content (or structure) of the molecule being synthesized. Thus, both evolution and aging depend on how the liv-
ing system responds to error accumulation at the molecular level. Ultimately, the errors build up such that the
system can no longer function properly and a catastrophic event leading to death occurs. Equation (17.11) is
the energy rate balance applied to the living system of Figure 17.5. It accounts for all the energy flows into and
out of the system and the state of the energy within the system at any time. It reveals nothing about the aging
process or life span of the system. However, the life span of mammals in captivity has been accurately correlated
with body mass as

Life span of mamals in yearsð Þ = 11:8 m0:2
� �

(17.26)

where the body mass m is in kilograms. Table 17.6 lists the pulse rates, breathing rates, and life spans of various
mammals calculated using Eqs. (17.18), (17.19), and (17.26). Except for human life span, the results of these
calculations are reasonably accurate.
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Even though we know that the metabolic heat generation rate _Q decreases with increasing age (e.g., see
Figure 17.6), this effect must be offset by increasing size (i.e., growth) and eating less or exercising less as age
increases. Experiments in which test animals were fed a very low (starvation level) daily diet showed that
they generally had a lower metabolic rate and lived longer than did their counterparts who were fed a normal
or excessive diet. These particular results, however, occur only when the starvation diet was begun before the
animal reached sexual maturity. If it was begun later in life, it had no significant effect on metabolic rate or on
life span.

An entropy rate balance on a living system is

_Q
Tb

+∑
in

_ms−∑
out

_ms+ _SP = dS
dt

(17.27)

The first term is the entropy transport due to the metabolic heat transfer, and since _Q< 0, it is negative. The
combination of the second and third terms is the net entropy transport into the system via the mass flow
of food, respiration, and wastes. Since the entropy of the incoming food is lower than the entropy of the
outgoing wastes (both are at the same temperature, but the molecular order of the food is more complex
than that of the wastes) and the input and output mass flow rates averaged over a long period of time are
essentially the same, these two terms taken together also are negative. The last term on the left side of
Eq. (17.27) is the rate of entropy production, which by the second law of thermodynamics must always be
positive. The term on the right side is the time rate of change of the entropy of the entire biological system,
and it can be either positive or negative depending on the net sign of the left side. Thus, we find that, for
any living system,

_SP >0

_Q
Tb

<0

∑
in

_ms−∑
out

_ms<0

But, these conditions alone are not sufficient to define a living system. The one characteristic that seems to make
a living system unique is its peculiar affinity for self-organization, and this characteristic corresponds to a contin-
ual decrease in the system’s entropy over its life span. As the system “lives,” it grows and ages and generally

Table 17.6 Metabolic Characteristics of Typical Mammals

Mammal Body Mass (kg)
Pulse Rate
(beats/min)

Breathing Rate
(breaths/min) Life Span (years)

Shrew 0.003 1030 230 3.7

Mouse 0.03 580 130 5.9

Rat 0.2 360 80 8.6

Cat 2.8 190 42 14

Dog 15.9 120 27 21

Horse 700 47 10 44

Elephant 4000 30 6.7 62

CRITICAL THINKING

Is life unique in your opinion? That is, are living systems scientifically distinguishable from nonliving systems? Given a
sealed box containing an object, how can you tell whether or not the object is living without opening the box? What physi-
cal tests could you perform to determine the life state of the object in the box?
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becomes more complex at the molecular level. Note that this does not happen with the aging of machines,
whose entropy generally increases monotonically with age. Consequently, we can postulate that living systems
are defined by the following unique characteristic:

_Q
Tb

+∑
in

_ms−∑
out

_ms

�����
�����> _SP (17.28)

and that death occurs when this inequality is violated. What does Eq. (17.28) tell us about the system as it ages?
Based on our experiences with the machinery of the Industrial Age, we intuitively feel that old age corresponds
to degeneration. In humans, the skin becomes wrinkled, teeth and hair are permanently lost, hearing and sight
diminish, joints stiffen—it seems as though people “wear out” as they become older. Actually, what are nor-
mally described as degenerative signs of aging are really the result of continued growth, that is, continued sys-
temic molecular organization. Skin becomes wrinkled because the collagen molecules of the skin crosslink to
form a more rigid (less elastic) and complex structure. The same thing happens in the lens of the eye, where the
macromolecular cross-linking makes the lens so rigid that the eye muscles can no longer change its shape to
make it focus properly. Molecular cross-linking also causes loss of hearing sensitivity, and cross-linking within
the lubricating fluid of the joints causes this fluid to thicken, which makes the joints arthritic and painful to
move. We also see cross-linking and thickening in other biofluids such as blood. It appears that growth in mole-
cular complexity continues long after physical maturity is reached and is the cause of many of the common
symptoms of aging. If a biological system were to continue to grow (but not add mass), then its ultimate state
would be one of complete rigidity with a very low entropy but with little mobility potential and very low preda-
tor survivability. Thus, a living system becomes more delicate as it ages beyond physical maturity and conse-
quently is more prone to death resulting from failure of one of its major subsystems, such as the circulatory or
the respiratory system. Cancer is curious in that it represents a reversion to cellular growth and appears to func-
tion as a mechanism for preventing the entropy of a living system from becoming too low.

According to the inequality of Eq. (17.28), the life span of a living system could be extended by decreasing
the system (or body) temperature. Thus, even though _Q is decreasing with age, the ratio _Q/Tb could be made
as large as desired by selectively lowering the body temperature. Figure 17.14 presents survival curves for com-
mon houseflies raised from birth in environments of different (but constant) temperatures. The longest life
spans occur at the lowest environmental temperature
(16°C). These insects have also been shown to exhibit
increased life spans when they were raised for part of
their lives at one temperature and then spent the
remainder of their lives at a lower temperature. Simi-
larly, their life spans have been shortened by raising
the environmental temperature slightly.

Using survival curves such as those of Figure 17.14,
researchers developed survival equations similar
to those used in describing the kinetics of first-order
chemical reactions,

dN
dt

= −kdN (17.29)

where N is the number of survivors at time t, and kd is a
death rate constant. The constant kd is often found to be
independent of t but dependent on the environmental

A POSSIBLE DEFINITION OF A LIVING SYSTEM (I.E., LIFE)

Living systems are uniquely characterized by a continuously decreasing entropy over their life spans.

dS
dt

� �
living system

= mds
dt

+ s dm
dt

� �
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FIGURE 17.14
Survival curves for houseflies raised at different constant
environmental temperatures.
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absolute temperature T. A plot of ln kd vs. ln T yields a straight line from which the following equation can be
obtained:

kd = αT exp
sd
ℜ

− hd
ℜT

� �� 	
(17.30)

where α is a constant, T is the absolute temperature, and sd and hd are the specific molar activation entropy and
enthalpy of death. It has been shown from data on the death of unicellular organisms and the irreversible ther-
mal denaturization of proteins that sd and hd are related by

sd =
hd
Tc

+ β (17.31)

where Tc = 330. K and is called the compensation temperature, and β is a constant equal to –276 kJ/(kgmole · K).
Equation (17.31) is often called a compensation law, because changes in sd are partially compensated for by
changes in hd, resulting in a relatively constant value of kd. The compensation is exact at T = Tc as can be seen
by substituting Eq. (17.31) into Eq. (17.30). For the common housefly, the data reduction gives hd ≈ 800 MJ/
kgmole. Since kd is the death rate constant, the smaller it is, the smaller the death rate becomes and the longer
the life span becomes.

Combining Eqs. (17.30) and (17.31) gives

kd = αT exp
hd
ℜ

T −Tc
T × Tc

� �
+
β
ℜ

� 	
 �
(17.32)

Now, because hd is such a large value and T < Tc for most living systems, a small decrease in T can produce a
significant decrease in kd. Using ℜ = 8:3143 kJ/ðkgmole.KÞ, hd = 800,000 kJ/kgmole, β = –276kJ/ kgmole.Kð Þ, and
Tc = 330. K, Eq. (17.32) becomes

kd
α = T exp 9:62× 104 T − 330:

330:×T

� �
−33:2

h in o
(17.33)

When T = 310. K (37.0°C), Eq. (17.33) gives kd/α = 8.03 × 10–21 K. But when T is lowered by just 2 degrees to
308 K (35.0°C), then kd/α drops by almost a factor of 8 to 1.06 × 10–21 K. If T is dropped all the way down to
293 K (20.0°C), then kd/α = 1.15 × 10–28 K, a drop of a factor of 107. Thus, the death rate constant is very sensi-
tive to the body temperature. It has been estimated by some researchers that, if the core temperature of humans
were lowered from its present value of 37°C down to 31°C, then the average age at death would increase from
about 75 to around 200 years.

EXAMPLE 17.10
The death rate constant for mice at 27.0°C is 0.0350 months–1. Determine the coefficient α in Eq. (17.33) for mice.

Solution
At T = 27.0°C = 300. K, we find, from Eq. (17.33), that

kd/α = 300: exp 9:62×104 300:− 330:ð Þ/ 330:ð Þ 300:ð Þ½ �−33:2
� 
� �

= 2:50× 10−25 K

then,

α = 0:035months–1/ 2:50×10− 25 K
� �

= 1:4× 1023months–1 .K−1

Exercises
28. Using the value for the coefficient α determined in Example 17.10, determine the death rate constant kd for mice at

30.0°C (303 K). Answer: kd = 0.846 months–1.
29. Integrate Eq. (17.29) to find an expression for the ratio of the number of animals surviving at time t to the initial

number of animals present, N/N0. Then, using the information given in Example 17.10, evaluate this expression to
determine the percentage of mice that survive to 5.0 months at 27°C. Answer: N/N0 × 100 = 84%.

30. Plot log(kd/α) vs. T for 30.0°C (303 K) ≤ T ≤ 40.0°C (313 K). Answer: See Figure 17.15.

(Continued )
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EXAMPLE 17.10 (Continued )
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FIGURE 17.15
Example 17.10, Exercise 30.

One of the most interesting unsolved problems in evolutionary biology is that of biological aging and
development. What determines the beginning and the end of growth? Why do some cells develop into one kind
of organ and other cells into a completely different organ? Also, there is a remarkable similarity between the
following biological groups:

■ The grouping of elements to form active biochemical entities (such as amino acids).
■ The grouping of these entities to form macromolecules.
■ The grouping of macromolecules to form cells.
■ The grouping of cells to form living creatures

(plants and animals).
■ The grouping of these living creatures into

productive units (families, industries, etc.).
■ The grouping of these families into cultures

(or societies).
■ The grouping of these cultures into nations.

Recently, West, Brown, and Enquist1 discovered a sin-
gle universal curve that describes the growth of many
diverse species. A plot of a dimensionless mass,
r = ðm/MÞ1/4, versus a dimensionless time variable,
τ = ðat/4M1/4Þ− ln ½1− ðm0/MÞ1/4�, for a wide variety
of species shows that growth curves for all organisms
fall on the same universal curve r = 1 – e–τ (shown as
a solid line in Figure 17.16), where a is a constant, t is
time, m0 is the mass at birth (i.e., at t = 0), and M is
the maximum body size. Their model identifies r as
the proportion of total lifetime metabolic power used
for maintenance and other activities and provides the
basis for deriving relationships for growth rates and
the timing of life history events.

Thus, there seems to be a common phenomenological
driving force that is not only responsible for the orga-
nization of molecular structure but is also responsible
for the organization of the cultural bonds of nations
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FIGURE 17.16
A plot of the dimensionless mass ratio, r = ðm/MÞ1/4, versus
the dimensionless time variable, τ = ðat/4M1/4Þ−
ln ½1− ðm0/MÞ1/4�, for a wide variety of species. (Source: Geoffrey
West, James Brown, and Brian Enquist, “A general model for
ontogenetic growth”. Adapted by permission from Macmillan
Publishers Ltd: Nature 413, no. 201, pp. 628–631, copyright 2001.)

1 Nature 413, (October 11, 2001), pp. 628–631.
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and beyond. The entropy balance and the second law of thermodynamics may well be the key to understanding
the fundamentals of both biomolecular and biosocial phenomena.

SUMMARY
Classical thermodynamics can be used to develop a fundamental understanding of the operation of biological
systems. The conservation laws of mass, momentum, and energy are all obeyed by biological systems. The
second law of thermodynamics seems to be critical in the understanding of the self-organization, growth, and
aging of these systems. It has been argued that evolution via natural selection would be impossible without
death; therefore, a death mechanism must be programmed into every living creature. On the other hand,
from a thermodynamic point of view, such an argument is not necessary. All one needs to do is to recognize
that no real process is completely reversible and that the entropy production for any real process is a positive
finite value. Thus, the internal irreversibilities would eventually accumulate to the point of system failure, or
death.

The field of biological thermodynamics covers not only individual living plants and animals but also (in ways
that we do not yet fully understand) interacting groups of plants and animals, societies, corporations, and
nations. Just as a living animal is made up of billions of living cells, each with its own unique function and
characteristics, a society is made up of many unique living animals, each having its unique function within the
society. Thus, the first and second laws of thermodynamics have the potential to also be the basic laws of social
organization, and they may contain the key to the birth, growth, maturity, and decline of social structures.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they were introduced to gain an
understanding of their use and limitations.

1. The membrane potential Ei at 37°C due to the presence of chemical species i is

Ei at 37°Cð Þ = 26:7millivolts. kgmole electrons/kgmole ið Þ
zi

ln
cio
cic

� �
2. The energy conversion efficiency of biological systems is

ηE =

_W + d
dt

mV2

2gc

� �
+ d

dt
mgZ
gc

� �
−dU/dt

= 1+
_Q

−dU/dt

3. The basal metabolic rate per unit mass of a mammal of mass m is

BMR/m = 293ðm−0:25Þ = 293
m1/4

4. The heart rate (pulse) for mammals of mass m is

Heart rate ðin beats per minuteÞ = 241ðm−0:25Þ = 241
m1/4

5. The breathing rate for mammals of mass m is

Breathing rate ðin breaths per minuteÞ = 54:0ðm−0:25Þ = 54:0
m1/4

6. The critical buckling height of a tree with a base diameter d is

hcritical = 68:0 d2/3
� �

7. The locomotion transport number T is

T = P
wV

where P is the total power expended in the transportation, w is the weight of the system, and V is its velocity.

8. The velocity that produces the most efficient transport process is given by

Vmost efficient =
Po

ρACD

� �1/3
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where Po is the basal metabolic rate, ρ is the local fluid density, A is the cross-sectional area normal to the
direction of motion, and CD is the drag coefficient of the system.

9. The life span of mammals of mass m is

Life span of mamals in yearsð Þ = 11:8 m0:2� �
10. The death rate constant kd for living systems at an environmental temperature T (in K) is

kd
α

= T exp 9:62× 104 T −330:
330:× T

� �
−33:2

h in o
where α is a species-specific constant.

Problems (* indicates problems in SI units)
1.* Use Eq. (17.9) to determine the membrane potentials of

hydrogen carbonate ðHCO−
3 Þ, hydrogen phosphate ðHPO =

4 Þ,
and hydrogen ðH+ Þ ions listed in Table 17.2.

2.* An alien scientist from a galaxy in the star system Luepke has
been able to directly measure the electrical potential required to
transport a unit charge of divalent carbon ions from outside a
human cell into the cell and finds it to be 4.10 μV. The alien
also measures the value of the chemical potential of the carbon
ion and finds it to be 0.520 J/kgmole. Using these
measurements, determine the amount of electrochemical work
required to transport 1.00 kgmole of carbon ions across the cell
membrane.

3.* A muscle contraction is brought about by the release of
calcium ions from storage vacuoles, where the calcium
concentration is 0.700 mg/mL, into the cell’s cytoplasm, where
its concentration is 0.100 mg/mL.
a. What is the electrical potential between the vacuole and the

cytoplasm?
b. If 1.00 mg of calcium ions is released in a contraction, how

much adenosine triphosphate (ATP) must be hydrolyzed
from adenosine diphosphate (ADP) according to the reaction
ATP+water ! ADP+P+ 29:3MJ/kgmole to restore the
muscle to its initial state?

4.* Assume that an individual adult in our society requires an
energy intake of 10.0 MJ/d. Let this energy come exclusively
from eating beef that was produced with a 10.0% energy
conversion efficiency. Let the beef be fed by corn produced with
another 10.0% energy conversion efficiency, and let the corn be
produced from sunlight with a 1.00% energy conversion
efficiency. Further, let the corn be grown in a region where the
solar energy flux is 20:0MJ/ m2 .dð Þ:
a. Compute the number of acres (1.000 acre = 4047 m2) of

land necessary to grow the corn required to feed the beef
ultimately consumed by one adult person.

b. If some 16.0 × 109 acres are available for cultivation on
Earth today, estimate the total population that can be
supported by this food chain.

c. If the current world population is 6.00 × 109 people and the
population growth rate is given by p = poexpð0:0300tÞ, where
p is the population at time t, po is the initial population, and
t is time measured in years from the present, determine the
number of years into the future when the population
calculated in part b will be reached.

5.* Stewart has a BMR of 160. kJ/d and climbs to the 13th floor of
his office building in 4.00 min while consuming only 0.0100 kg

of carbohydrate having an energy content of 17.2 MJ/kg. The
distance between the floors is 7.60 m. What is Stewart’s energy
conversion efficiency if he does not lose any weight during the
climb? Note: Stewart must supply energy to achieve his kinetic
energy motion, but this energy is not recovered when he stops.

6. Find the energy conversion efficiency of a 2000. lbf
thoroughbred racehorse with a 120. lbf jockey and tack running
1.25 miles on a flat track in 144 s. The horse accelerates to a
constant speed at the starting gate and maintains this speed
throughout the race. During the race, the horse expends energy
at the rate of 33,000. Btu/h. Ignore any aerodynamic effects.

7.* Greg, a professional weightlifter, has the capacity to convert his
internal energy into output work at a rate of 2.70 × 103 J/s. If
the distance from his chest to his extended arms is 0.750 m,
how much weight can he bench press in 2.00 s? What is the
horsepower output of his arms under these conditions? Assume
his arm muscles have an energy conversion efficiency of 25.0%.

8.* During an experiment, it was found that an 80.0 kg man lost
0.260 kg of body fat having an energy content of 33.1 MJ/kg by
lifting one 50.0 kg mass from the floor to a 1.50 m high shelf
every 5.00 seconds continuously for 4.00 hours. Ignoring
respiratory and perspiration losses, determine the energy
conversion efficiency of the muscular contractions.

9.* The per capita electrical power consumption in the United States
is about 200. kW · h/d. Suppose this power is generated by
having mice run in wheels that turn electrical generators. These
mice are to be feed Swiss cheese that has a metabolizable energy
content of 15.5 MJ/kg and costs $4.00 per kilogram. If the mice
have an energy conversion efficiency of 25.0%, how much will it
cost to buy the cheese needed to feed the mice who supply the
per capita energy needs?

10.* Determine the horsepower corresponding to 1.00 MJ/h. If, in an
average 24.0 h day, your energy output is 8.40 MJ, determine
your average daily horsepower output.

11.* In 6.00 h, the heat from a guinea pig melts 0.200 kg of ice in an
adiabatic calorimeter. Assuming that the heat of fusion of ice is
335 kJ/kg, determine the average metabolic heat production rate
of the animal while it is in the calorimeter.

12.* If a person’s body has a specific heat equal to that of water and
produces 6.28 kJ per min per kilogram of body mass, what is
the rate of increase in body temperature in °C per min if the
person is suddenly made adiabatic?

13.* Rumor has it that Frankenstein’s monster was brought to life by
charging it with 1.00 kW of power for 2.00 h, after which it
operated with an efficiency of only 25.0%.
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a. If the monster consumed its charged energy at a rate of
1.30 MJ/h, how long before it needed to be recharged again?

b. If the monster had a mass of 100. kg, what would be its
mean metabolic rate in MJ/d if it were a normal mammal?

14.* The heat of formation of glucose C6H12O6ð Þ is –996.4 MJ/
kgmole. Using the material presented in Chapter 15, determine
a. The amount of heat liberated (i.e., the heat of reaction) at

the standard reference state as 1 mole of glucose is
metabolized according to the reaction

C6H12O6 +6 O2ð Þ ! 6 H2O ℓð Þð Þ+6 CO2ð Þ+heat

b. How long does it take to completely metabolize 1.00 kg of
pure glucose at a basal metabolic rate of 0.300 MJ/h?

15.* Human blood contains 1.00 gram of glucose C6H12O6ð Þ per
liter, and the average person contains 5.20 L of blood. In
metabolizing glucose, 17.1 MJ/kg of energy is released, of which
50.0% is lost as heat and 50.0% is used to make adenosine
triphosphate (ATP).
a. How much energy could be stored in the ATP of the blood

of an average person?
b. If the metabolic heat of the glucose is removed from the

body by the evaporation of perspiration, how much
perspiration is evaporated per gram of glucose metabolized?
Assume the heat of vaporization of perspiration H2Oð Þ is
40.6 MJ/kgmole.

16.* During a weekend of fun and frolic, Homer, a humanities
student, consumes 8.50 kg of beer with a metabolizable energy
content of 1.10 MJ/kg. Homer then went to bed with the intent
of sleeping off his entire caloric intake of beer. Assuming he
falls asleep at 2:00 AM Wednesday morning, when should he
wake up?

17.* In an experiment, the contribution of Joe’s brain to his total
BMR was found to be 5.00 × 10–2 MJ/h.
a. What is Joe’s total mass?
b. How long would it take Joe to metabolize the energy content

of one candy bar containing 0.750 MJ while resting?
18.* A serious problem that arises in performing surgery on cats and

small dogs is the additional heat loss produced from an open
body cavity. For these small animals, this type of surgery
effectively doubles the normal heat loss rate. If the anesthetic
used depresses the BMR of a 5.00 kg dog by 50.0%, estimate the
resulting reduction in the animal’s body temperature from its
normal body temperature of 102°F (39.2°C) during 2.00 h of
a. Minor surgery not requiring the body cavity to be opened.
b. Major surgery requiring an open body cavity procedure.

Assume the body of the dog has a specific heat of
4.17 kJ/(kg · K).

19.* What is Superman’s top flying speed, if he gets all his energy by
eating as many 1.00 MJ chocolate candy bars as he wishes?
Neglect his potential energy, aerodynamic drag, and all other
losses.

20.* If you consume 25.0 Calories per day more food energy than
you use, how many years will it take you to gain 10.0 kg of fat
if there are 33.1 MJ per kg of body fat?

21.* During a basal metabolic test, Steve consumes 460. L of O2.
a. What is Steve’s body mass?
b. What is the change in his BMR oxygen intake if he loses

15.0 kg of body mass?
22.* Broiled lobster contains 3.60 MJ/kg of metabolizable food

energy. If Sharla has 45.0 min of hard cycling planned later in

the day, how much lobster can she eat so that she will be sure
not to gain weight?

23.* Suzanne Malaxos, 27, from Perth Australia, won the 12th
annual Empire State Building Run-Up in New York City by
climbing the 102 story building in 12 min and 24 s. If her body
mass is 50.0 kg, and each story is 4.00 m high, determine the
amount of body fat she consumed in the race. Assume a muscle
energy conversion efficiency of 25.0% and a body fat energy
content of 33.1 MJ/kg.

24.* You are at a tailgate party before a baseball game and have just
eaten three hot dogs with chili. The mass of the container and
the remaining contents of your quarter barrel of beer is 30.3 kg.
How many times would you have to lift this barrel 0.500 m in
2.00 s to work off the energy content of the hot dogs? How
many hours would it take to do this?

25. Gasoline has a heating value of 20.0 × 103 Btu/lbm. How many
10.0 oz colas must Ted drink to produce enough power by
turning a crank to light a 100. W lightbulb for the same number
of hours that an internal combustion engine running on
1.00 lbm of gasoline with an overall efficiency of 25.0% could
light the same bulb?

26.* Mark decides to build a cabin cruiser. After many hours of sawing
wood, it is determined that the sawing required a total of 63.0 MJ
of energy from Mark and 15.0% of this energy came from
protein (at 17.2 MJ/kg), 60.0% came from fat (at 33.1 MJ/kg),
and 25.0% came from carbohydrates (at 17.2 MJ/kg). Determine
the mass of protein, fat, and carbohydrates consumed in the
process.

27.* A 60.0 kg mountain climber makes a vertical climb of 2000. m
in 5.90 h. From a chemical analysis of the urine samples
collected during the climb, it is found that 2.00 × 10–2 kg of
water-free protein is catabolized. Assuming a 25.0% muscle
energy conversion efficiency, find
a. The percentage of the total energy need for the climb that

came from protein and the percentage that came from fat.
b. The mass of natural (wet) fat catabolized (i.e., consumed)

during the climb.
28.* If you consume two hamburgers, one regular fries, and one

10 oz cola, how many hours on this meal alone can you
(a) cross country ski, (b) play tennis, or (c) watch television?

29.* Brian is somewhat overweight and calculates that his excess
body fat contains 18.0 miles of extra small blood vessels. Brian’s
weight is stable, but he consumes 10.5 MJ/d of metabolizable
food energy. To reduce his weight, he decides to eat one fewer
cheeseburger per day plus jog for one hour per day.
a. How much extra fat does Brian have at the beginning of

his diet?
b. How many days does it take for Brian to eliminate this fat?

30.* Steve is jogging at a constant speed of 5.00 mph and encounters a
hill that requires an average energy expenditure rate of 3.10 MJ/h.
If the hill is 0.400 mi long, determine the mass of natural state
foods that Steve must consume to replenish the energy spent
climbing the hill, if he consumes
a. Only carbohydrate with an energy content of 4.20 MJ/kg.
b. Only protein with an energy content of 8.40 MJ/kg.
c. Only fat with an energy content of 33.1 MJ/kg.

31.* In a laboratory experiment, two engineering students are asked
to determine the caloric value of a commercial brand of diet
cocoa. They are provided with a bomb calorimeter, which had
to be calibrated by measuring the heat liberated by a substance
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with a known heat of combustion. They elect to use benzoic
acid, which has a known heat of combustion of 6.318 kcal/g.
The test consists of igniting a tablet of the test material inside
the bomb and measuring the temperature rise of the
surrounding water. The energy equivalent (EQ) of a bomb
calorimeter is defined to be the product of the mass of the
system multiplied by its specific heat. Then, the relation between
the heat liberated by a test sample and the measured
temperature change of the water is Q = EQðTfinal −TinitialÞ:
a. If the change in temperature of the water was 2.905°C when

a 1.1523 g tablet of benzoic acid is tested, determine the
energy equivalent of the calorimeter.

b. Then, a 1.0825-g tablet of diet cocoa is tested and produces
a temperature change of 1.699°C. Using the results of part a,
determine the caloric energy content of the cocoa in
kilocalories per gram.

32.* Rob, a young engineer, notices that, over a long period of time, he
has added 20.0 lbm (9.07 kg) of excess body fat and decides to
lose this extra weight by dieting alone. Rob’s activities are such that
his caloric intake and energy output are identical. He normally eats
two of the following meals per day, seven days per week: one
cheeseburger, one regular fries, and one 10.0 oz cola. Also, he
consumes 2.00 MJ per day of snack food while working. How long
will it take him to lose the extra 20.0 lbm of body fat by
a. Eliminating the daily snack food only?
b. Eliminating the daily snack food plus eating only one of

these meals per day?
c. Going on a total starvation diet with no food whatsoever

being consumed?
33.* Christine, an aspiring lawyer, notices that, over the past year, she

has added 10.0 lbm (4.54 kg) of excess body fat, and she
decides to work off this extra weight by jogging each evening
after work without changing her eating habits. She works 8.00
hours per day (including weekends) with an energy expenditure
rate of 0.600 MJ/h. The time spent not working or jogging is
spent sleeping or watching television at 0.300 MJ/h. Christine
eats two of the following meals per day, seven days per week:
one baked potato with cheese, one lettuce salad with French
dressing, and one pint of skim milk, plus she consumes 1.00 MJ
per day of munchies while working. How many hours must she
jog each night for three weeks to loose the extra 10.0 pounds?

34.* Do you eat like a bird? How much birdseed would a 70.0 kg
person have to eat in a day to consume proportionally as much
birdseed as does a 0.0120 kg sedentary canary per day? Birdseed
contains 60.0% carbohydrate, 12.0% protein, 6.0% fat, and
22.0% water.

35. Jim is a college wrestler weighing 145 lbf and he decides to
wrestle in the 132 lbf weight class for the upcoming season. He
plans to start his weight-loss program early so that he can be
down to the desired weight by the first practice of the season.
To accomplish this, he restricts his food intake to 1000. Calories
per day and begins an exercise program consisting of jogging for
20.0 min a day plus 10.0 min of other daily exercises that are
equivalent to climbing 20 flights of stairs at 12.0 ft per flight.
When he is not exercising, his average energy expenditure rate is
500. Btu/h for the remainder of the 24 h day.
a. What is Jim’s total energy expenditure during his 30.0 min

workout?
b. Assuming his excess weight is all body fat, how many days

before his first wrestling practice must he start the program?

36.* The amount of body fat on an average man is 19.0% of his total
mass. Tim has a body mass of 80.0 kg and it is determined that
24.0% of his total mass is body fat. He decides to swim 0.500 h
each day until his body fat has been reduced to the average. If
his daily caloric intake and energy output are equal before he
begins swimming and he does not change his caloric input, how
many days must he swim to reach his goal?

37. Mary Anne Sorensen’s airplane crashed on a mountain in the
Yukon wilderness. Sorensen weighed 150. pounds at the time of
the crash and 110. pounds when she was rescued 50.0 days
later. Assuming that death occurs when 50.0% of her body
weight is lost, estimate Sorensen’s survival time, assuming
a. A constant weight-loss rate.
b. An exponential weight loss–time relation of the form

w = woexpð−αtÞ, where α is a constant and wo is her weight
at the time of the crash.

38.* Tamara Arendt was in the same plane crash as Mary Anne
Sorensen (see the previous problem). Tamara was trained in
mountaineering and wants to hike down the mountain to
safety. However, it will take her 27.0 d of climbing at 15.0 h per
day with 9.0 h of rest per day to reach her destination. Her food
supply consists of 11.0 MJ of candy bars, 16.2 MJ of peanuts,
and 8.30 MJ of soda. The only body tissue she is able to
consume during the climb is body fat, which is 20.0% of her
initial body weight. When her body fat has been consumed she
will die of exhaustion. If she weighs 59.0 kg at the time of the
crash, is she better off waiting to be rescued with Mary Anne or
climbing down the mountain?

39. In 1638, Galileo estimated that a tree over 300. ft tall would
collapse under its own weight. Using the modern theory,
determine the diameter of the base of such a tree.

40. What is the maximum height of a California redwood tree
whose base diameter is 10.0 ft if its weight density is 40.0 lbf/ft3

and its elastic modulus is 1.30 × 106 psi?
41. Since the uncertainty in the exponent in Eqs. (17.18) and

(17.19) is ±0.0800, show that the total number of heart beats
and breaths that occur over a life span is approximately the
same for all the mammals listed in Table 17.6.

42.* In a laboratory test, a student’s resting pulse rate and lung
volume are measured and found to be 60.0 beats per minute
and 8.35 × 10–5 m3, respectively. What is the student’s
body mass?

43. Compute the locomotion transport number of a 4000. lbf
automobile using 60.0 hp to move at a speed of 55.0 mph.

44.* Compute the locomotion transport number of a pedal-powered
aircraft whose total mass (including the operator) is 126 kg.
The aircraft flies at 15.0 mph when the operator is supplying
1.50 hp to the pedals.

45.* It has been proposed to design a human powered vehicle (HPV)
whose total mass (including the 70.0 kg operator) is only
95.0 kg. The vehicle would be capable of traveling at 64.0 km/h
while the operator supplies power equal to that of a person
running at 5.00 m/s. Determine the locomotion transport
number of this vehicle.

46. While Paul is driving his classic 220 hp, 3000. lbf Mustang
convertible to his thermodynamics final exam, he is stopped by
a state patrolman for traveling 95 mph in a 55 mph speed zone.
Paul’s excuse to the police officer is that he is performing a
locomotion transport number homework experiment for his
thermo class. Having heard this excuse countless times before,
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the officer asks Paul for the value of his experimental LTN,
promising to release him if his answer is correct. Paul replies,
“0.29, sir.” The officer then consults the state patrolman’s guide
to locomotion transport numbers for the correct value. Does
Paul get arrested?

47.* Tom is a 75.0 kg bicyclist who recently averaged 42.0 km/h
during a 240. km race with an 8.40 kg racing bike. If he
consumes 4100. L of oxygen and has a muscle energy
conversion efficiency of 25.0%, determine
a. His rate of conversion of oxygen in L/min.
b. His locomotion transport number.

48. Sharla, weighing 140. lbf, absorbs 0.500 hp in her muscles
while pedaling a 7.00 lbf bicycle at 25.0 mph into a 5.00 mph
head wind in air at 70.0°F. Her frontal cross-section is 4.00 ft by
2.00 ft, and her drag coefficient is 0.500.
a. Compute her locomotion transport number.
b. Determine her most efficient velocity on the bicycle.

49.* Jim has a frontal cross-section of 2.00 m high by 0.500 m wide
and can run at 4.00 m/s and swim at 1.00 m/s. His drag
coefficients in air and water are 1.30 and 1.10, respectively.
What speeds should Jim run and swim at to be most efficient?
Assume Jim’s BMR is 0.300 MJ/h.

50.* Determine which of the following expends the most energy over
a 20.0 mi course:
a. A 126 kg pedal-powered aircraft flying at a speed of

15.0 mph with a locomotion transport number of 0.134.
b. A fast walking 75.0 kg person walking at a speed of

2.50 mph,
c. Determine the energy expenditure rates of the person

powering the aircraft and the person walking and comment
on the feasibility of maintaining these rates over the 20.0 mi
course.

51. If King Kong was ten times bigger than a normal human being,
a. Find his locomotion transport number while riding a bicycle

(assume his bicycle locomotion transport number is 25.0%
of the minimum value shown on Figure 17.12).

b. What was his most efficient walking velocity (assume the
same drag coefficient as for a human).

52. Convert the kd/α information associated with Eq. (17.33) from
metric units into Engineering English units.

53.* If a cold-blooded animal has an activation entropy of death of
3088 kJ/(kgmole · K) at 25.0°C, what is the change in kd/α for
the animal if it moves to an environment at 20.0°C?

54.* If the specific molar activation enthalpy of death is 800. MJ/
kgmole, the compensation temperature is 330. K, and the
constant β = −276 kJ/ðkgmole.KÞ, determine the specific molar
activation entropy of death.

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary design as indicated. A detailed design with
working drawings is not required unless otherwise specified by your
instructor. These problems have no specific answers, so each student’s
design is unique.

55. Design an inexpensive apparatus that measures the energy
conversion efficiency of an in vivo human arm or leg muscle.
Measure the oxygen consumption rate of the test subject to
determine the energy input rate. Include proper transducer

instrumentation for the necessary input data, and specify
adequate output electronics. Provide assembly and detailed
drawings sufficient to allow a technician to fabricate, assemble,
and test your design.

56. One of the problems with the commercially available bomb
calorimeters is that they can test only small samples on the
order of a few grams. Design a bomb calorimeter large enough
to burn a sample as large as 1 pound. Pay special attention to
safety considerations in your design. Do not attempt to
construct or test your design.

57. Design a system that measures the rate of metabolic
heat production of a small warm-blooded animal. You may
use either a direct or an indirect calorimetry technique.
Provide engineering drawings and instrumentation
specifications.

58. Design a whole body calorimeter that measures the
instantaneous metabolic heat loss rate from an entire human
body. Your system must be large enough or else sufficiently
mobile that measurements can be made while the test
subject is doing physical labor without restraint from your
system.

59. Design a variable resistance rowing exercise machine that has a
direct digital readout of the instantaneous energy expenditure
rate of the user. This means you have to specify or design
transducers that measure the instantaneous work rate (i.e.,
power) done on the machine. This power can be absorbed by
the machine either electrically or mechanically. Provide
assembly and detail drawings of your design plus specify all the
electronics necessary to process the transducer signals and
provide the proper digital output.

60. Design an apparatus that measures the metabolic heat loss rate
and surface temperature of a yeast culture or a small insect at
various environmental temperatures. Construct and calibrate this
apparatus if possible, and make enough measurements to plot
_Q /Tb for some living system vs. time at various environmental
temperatures. Does _Q /Tb increase or decrease as the
environmental temperature decreases?

Computer Problems
The following open-ended computer problems are designed to be
done on a personal computer using a spreadsheet, equation solver,
or programming language.

61. Develop an interactive computer program that returns the user’s
basal metabolic rate, oxygen uptake rate, carbon dioxide
production rate, pulse rate, and breathing rate when the user
inputs his or her mass or weight.

62. Develop an interactive computer program that outputs
the energy conversion efficiency of a person or an animal.
The user must be prompted for input data regarding work
performed, energy output resulting in increases in potential
or kinetic energies, and changes in body total internal
energy. You may assume that the specific internal energy of
the body is constant for activities that occur over short time
periods.

63. Develop an interactive computer program that provides the user
with the metabolizable energy content of foods chosen from a
menu. Allow the user to specify the desired energy units
(Calories, Btu, MJ) of the output.
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64. Develop an interactive computer program that returns the user’s
daily caloric food intake needs when the user selects his or her
activities from a screen menu and inputs the time devoted to
each activity.

65. Combine the programs of Problems 63 and 64 to produce an
interactive computer program that returns a series of three
possible exercise programs to achieve a weight-loss goal input

by the user. The user must also input his or her current caloric
consumption and physical activities. (Note: This is a computer
exercise only. You are not qualified to give medical advice to
anyone regarding eating or exercise habits, so do not allow
anyone, including yourself, to use your program to develop an
actual weight-loss schedule. Anyone seeking this advice must
consult a qualified physician.)
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CHAPTER 18

Introduction to Statistical Thermodynamics
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18.1 INTRODUCTION
In this chapter, we explore some of the basic concepts of statistical thermodynamics that lead to useful engineering
results. In Chapter 2, we discuss the difference between microscopic and macroscopic systems and note that classical
thermodynamics is based on a continuum macroscopic system approach. Recognition of the existence of atoms
and molecules was not necessary for the development of classical thermodynamics, the results of which are valid
for all processes in which the continuum hypothesis holds. Statistical thermodynamics, on the other hand, is
based on the use of standard statistical methods in the analysis of molecular behavior and, therefore, corresponds
to a microscopic system approach.

There are four basic attributes of statistical thermodynamics. First, it can be used to explain certain apparent
discontinuities in physical behavior, such as superconductivity. Second, it can be used to extend classical ther-
modynamic results into regions where the continuum hypothesis is no longer valid, as in the case of rarefied
gases. Third, it can often provide a molecular interpretation of physical phenomena that are observed at the
macroscopic level but originate at the molecular level (such as fluid viscosity). Fourth and perhaps most impor-
tant, it can function as a tool to provide accurate equations of state that describe the behavior of nonmeasurable
thermodynamic properties, such as internal energy, enthalpy, and entropy, as a function of measurable proper-
ties, such as pressure, temperature, and density, without resorting to experimental measurements. These
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equations of state are very useful when dealing with a substance for which empirically derived thermodynamic
tables and charts do not yet exist but the basic molecular structure of the substance is known.

In this chapter, we survey the main engineering results of statistical thermodynamics by treating its two main
components, kinetic theory and quantum statistical thermodynamics, as separate topics. The goal is the develop-
ment of thermodynamic property relationships and equations of state of engineering value.

18.2 WHY USE A STATISTICAL APPROACH?
To begin with, we should explain why we resort to a statistical approach rather than simply a molecular
approach. Suppose we have a large number of particles N in a box. To find out what happens inside the box
without using a statistical analysis, we would have to follow the motion of each of the N individual particles.
The motion of each particle must satisfy Newton’s second law, and because of collisions and long-range forces
between particles, each particle could conceivably influence the motion of every other particle in the box. Let Fij
be the force exerted on particle i by particle j. Then, the sum of all the forces on particle i due to all the other
j particles must equal the mass mi of particle i times its acceleration ai, or

∑
N−1

j=1

Fij = miai = mi
dVi
dt

� �
= mi

d2xi
dt2

� �
(18.1)

where the terms Vi and xi are the time-dependent velocity and position vectors of particle i. Since each of the
N particles must obey Eq. (18.1), and particle-particle interactions couple all N Eqs. (18.1) together, they must
all be solved simultaneously. Also, since Eq. (18.1) is a vector equation, there are really 3N scalar second-order
coupled differential equations to be solved.

For a typical gas at standard temperature and pressure, N ≈ 1020 molecules/cm3. Therefore, if we were to try to
follow the molecules of the gas contained in one cubic centimeter at STP using the methods of classical
mechanics, we would need to solve about 3 × 1020 scalar second-order coupled differential equations, each con-
taining 1020 terms. This is impossible today, even with the fastest digital computers. Hence, we must abandon
the approach of applying the equations of classical mechanics to each particle in the system. Instead of formu-
lating a theory based on knowing the exact position of each particle in time and space, we develop a theory
based on knowing only the average behavior of the particle.

18.3 KINETIC THEORY OF GASES
The elements of kinetic theory were developed by Maxwell, Boltzmann, Clausius, and others between 1860 and
1880. Though kinetic theory results are currently available for solids, liquids, and gases, we are concerned only
with the behavior of gases. The following eight assumptions underlie the kinetic theory of gases:

1. The gas is composed of N identical molecules moving in random directions.
2. There is always a large number of molecules (N≫ 1) in the system.

HOW DID IT ALL BEGIN?

The development of statistical thermodynamics began in the late 19th century, shortly after William Thomson (1824–1907)
and Rudolf Clausius (1822–1888) unified classical thermodynamics in the 1860s. Starting from basic mechanics principles,
James Clerk Maxwell (1831–1879) developed a simple molecular interpretation of ideal gas behavior called the kinetic theory
of gases, which led many physicists to conclude that all thermodynamic phenomena could be fully explained from mechanics
principles. However, the mechanical approach was never able to predict the classical thermodynamic laws of the conservation
of energy and positive entropy production; consequently, thermodynamics has held its own as an independent science.

In the 1870s, Ludwig Boltzmann (1844–1906) made great progress in the understanding of entropy, when he postulated
that a mathematical relationship existed between entropy and mathematical probability by arguing that equilibrium states
are not simply inevitable but merely highly probable states of molecular order.

Between 1900 and 1930. quantum mechanics blossomed under Max Planck (1858–1947), Albert Einstein (1879–1955),
Peter Debye (1884–1966), Niels Bohr (1885–1962), Enrico Fermi (1901–1954), Erwin Schrodinger (1887–1961), and
many others. It was only natural that their results be extended into the thermodynamic area whenever possible; thus
evolved the new area of “quantum statistical thermodynamics,” which is still an important research area.
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3. All the molecules behave like rigid elastic spheres.
4. The molecules exert no forces on each other except when they collide (i.e., there are no long-range forces).
5. All molecular collisions are perfectly elastic.
6. The molecules are always distributed uniformly in their container.
7. The molecular velocities range continuously between zero and infinity.1

8. The laws of classical mechanics govern the behavior of all molecules in the system.

Each of the N molecules has its own unique velocity Vi. Using this velocity, we can define the following
concepts for the system of molecules.

The average molecular velocity : Vavg = ∑
N

i=1

Vi
N

(18.2)

The root mean square molecular velocity : Vrms = ∑
N

i=1

V2
i

N

 !1/2
(18.3)

and in the limit as N → ∞, we can extend the summations in Eqs. (18.2) and (18.3) into integrals as follows

Vavg =
Z ∞

0

V
N

� �
dNV (18.4)

Vrms =
Z ∞

0

V2

N

� �
dNV

� �1/2
(18.5)

where dNV is the number of molecules with velocities between V and V + dV. We also define the translational total
internal energy Utrans as the sum of the kinetic energies of all the molecules in the system, or2

Utrans = ∑
N

i=1

miV
2
i /2

� �
(18.6)

Since assumption 1 requires that all the molecules have identical mass, we can set mi = m, and Eq. (18.6) becomes

Utrans =
m
2

∑
N

i=1
V2
i

 !
= 1

2
Nm

Consider now a spherical shell of radius R containing N≫ 1 molecules. The radial force Fr on the shell due to a
single molecular collision is (see Figure 18.1)

Frð Þper
molecule

= mar = m
dVr

dt
≈m

ΔVr

Δt

where ar and Vr are the radial components of the acceleration and velocity. Using the geometry shown in
Figure 18.1, this equation becomes

Frð Þper
molecule

≈m
Vi cos θ− ð−Vi cos θÞ

Δt
= 2mVi cos θ

Δt

and the total radial force on the shell due to collisions by all N molecules is

Frð Þtotal = ∑
N

i=1
Frð Þper

molecule

= ∑
N

i=1

2mVi cos θ
Δt

The internal pressure inside the shell can now be computed from

p =
Frð Þtotal
Area

= 1
4πR2

∑
N

i=1

2mVi cos θ
Δt

(18.7)

1 Clearly, no molecule can have a velocity greater than the speed of light, but allowing the velocities to range to infinity is of
tremendous mathematical value in the development of this theory. Though fundamentally wrong, we find that this assumption adds
little error to the results.
2 Since the formulae presented in this chapter were developed by physicists using the SI units system wherein gc = 1, I elected to set
gc = 1 in all the relevant equations in this chapter to simplify them somewhat. Thus, we write mV2/2 instead of mV2/ 2gcð Þ for kinetic
energy and so forth.
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In these equations, Δt is the time increment between successive molecular collisions. This can be calculated by
dividing the distance that a molecule travels between successive collisions by its velocity, or

Δt = 2R cos θ
Vi

Then, Eq. (18.7) becomes

p = 1
4πR2

∑
N

i=1

2mV2
i cos θ

2R cos θ
= m

4πR3
∑
N

i=1
V2
i (18.8)

Since the volume of the spherical shell is V = 4
3 πR

3, we can then write Eq. (18.8) as

pV = p 4πR
3

3
= m

3
∑
N

i=1
V2
i = 1

3
NmV2

rms (18.9)

In this equation, the product Nm is equal to the total mass of gas in the shell, mT, and therefore, Eq. (18.9) can
be written as

pV = 1
3
mTV2

rms (18.10)

If we now limit our attention to gases that obey the ideal gas equation of state, then Eq. (18.10) becomes

pV = 1
3
mTV

2
rms = mTRT (18.11)

where R is the specific gas constant given by

R = ℜ
M

= Nok
M

= k
m

(18.12)

where

ℜ = universal gas constant, 8314.3 J/(kgmole ⋅K) or 1545.35 ft ⋅ lbf/(lbmole ⋅R)
M = molecular mass (kg/kgmole or lbm/lbmole) of the gas
No = Avogadro’s number3 (or constant), 6.022 × 1026 molecules/kgmole

Path of
a molecule

R

R

Spherical
shell of
radius R

2R
 c

os
 θ

θ

θ

θ

θ

FIGURE 18.1
Motion of molecules inside a spherical shell of radius R.

3 In 1909, the French physicist Jean Perrin proposed naming this in honor of the Italian scientist Amedeo Avogadro, who, in 1811,
proposed that the volume of a gas at a given pressure and temperature is proportional to the number of atoms or molecules in the gas
regardless of the type of gas. Perrin won the 1926 Nobel Prize in Physics, mainly for his work in determining the value of the
Avogadro constant by several different methods. In 1971, the name was officially changed from Avogadro’s number to Avogadro constant
(NA) when the “mole” was introduced as a new fundamental unit in the International System of Units (SI). The change in name from
the possessive form Avogadro’s to the nominative form Avogadro is common usage today for all physical constants.
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k = Boltzmann’s constant, 1.380 × 10−23 J/(molecule ·K)
m = M/No, which is the mass of one molecule of the gas

Combining Eqs. (18.11) and (18.12), we find that pV = NkT, where N ¼ mT=m and N is the total number of
molecules. Also, combining the second half of Eq. (18.11) and the first and last parts of Eq. (18.12), we get

Vrms =
ffiffiffiffiffiffiffiffiffi
3RT

p
=

ffiffiffiffiffiffiffiffi
3kT
m

r
(18.13)

therefore, from Eq. (18.6), the kinetic theory interpretation of the translational total internal energy of an ideal gas is

Utrans =
1
2
NmV2

rms =
3
2
NkT (18.14)

We see from Eq. (18.14) that Utrans depends only on temperature, which is in agreement with our definition of
an ideal gas given in Chapter 3.

EXAMPLE 18.1
The qualifying examination for a very exclusive preschool in the future to which you want to send your child requires that your
child answer questions on the kinetic theory of gases. For example, every five-year-old child must (Figure 18.2) be able to compute

a. The root mean square molecular velocity.
b. The total translational internal energy.

for 1.00 kg of nitrogen gas at 20.0°C. How is this done?

FIGURE 18.2
Example 18.1.

Solution
a. The kinetic theory root mean square molecular velocity is given by Eq. (18.13) as

Vrms =
ffiffiffiffiffiffiffiffiffi
3RT

p

For nitrogen, R = 296 J/kg ⋅K = 296 N ⋅m/kg ⋅K = 296 m2/s2 ⋅K (from Table C.15b in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics), then Eq. (18.13) gives

Vrms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½296m2/ðs2 .KÞ�ð20:0+ 273:15KÞ

p
= 510:m/s

b. The kinetic theory total translational internal energy of a gas is given by Eq. (18.14) as

Utrans =
3
2
NkT

(Continued )
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EXAMPLE 18.1 (Continued )

Since the total mass of gas present is mtotal = mmoleculeN, where N is the number of molecules present, and mmolecule =
molecular mass/Avogadro’s number = M/No; for nitrogen,

mmolecule =
M
No

=
28:0 kg/kgmole

6:022×1026 molecules/kgmole
= 4:65×10−26 kg/molecule

then,

N = m
mmolecule

=
1:00 kg

4:65× 10−26 kg/molecule
= 2:15×1025 molecules

The total translational internal energy in 1.00 kg of nitrogen gas is

Utrans =
3
2
NkT = 3

2
ð2:15× 1025 moleculesÞ 1:380×10−23 J

molecule.K

� �
ð20:0+ 273:15KÞ

h i
= 131,000 J = 131kJ

Note that the kinetic theory internal energy is independent of gas pressure and depends only on gas temperature, which
is a characteristic of ideal gas behavior.

Exercises
1. Determine the root mean square velocity of the nitrogen gas in Example 18.1 when the temperature is increased from

20.0°C to 200.°C. Answer: Vrms = 648 m/s.
2. Suppose the nitrogen gas in Example 18.1 is replaced with water vapor. Determine the root mean square velocity and

mass of a water vapor molecule at 20.0°C. Answer: (mmolecule)water = 2.99 × 10−26 kg and (Vrms)water = 637 m/s.
3. Determine the number of water molecules in 1.00 m3 of saturated water vapor at 100.°C. Answer: Nwater = 2.00 × 1025

water molecules.

18.4 INTERMOLECULAR COLLISIONS
To better understand molecule-molecule collisions, imagine that all the molecules except one are frozen in
space. Then, the moving molecule travels through this stationary forest of molecules colliding with them at
random. This model can be further simplified if the moving molecule is enlarged to twice its normal diameter
while all the stationary molecules are reduced to points of zero diameter (see Figure 18.3). The area swept out
by the motion of the enlarged molecule is called its molecular collision cross-section, given by

σ = πð2rÞ2 = 4πr2:

Moving molecule
enlarged to twice
its normal diameter

The moving molecule’s
collision cross-section

Stationary molecules whose
diameters have been shrunk
to a point

FIGURE 18.3
A simplified model illustrating the molecular collision cross-section.

732 CHAPTER 18: Introduction to Statistical Thermodynamics



where r is the effective radius of the kinetic theory spherical molecule. Typical values for the effective radius of
simple molecules are given in Table 18.1.

The collision frequency F is the number of collisions per unit time made by the moving molecule, determined
from

F = σVrms
N
V

8
3π

� �1/2
where N/V = No/v = pNo/ℜT = p/kT is the number of molecules per unit volume, σ is the molecular collision
moving cross section, and Vrms is the root mean square velocity of the average molecule. The molecular mean
free path λ is defined to be the distance traveled between molecular collisions, calculated from

λ = 1
ðN/VÞσ (18.15)

WHAT ARE ATOMIC AND MOLECULAR RADII?

The distance from the center of the nucleus to the outer electron shell of an atom is called the atomic radius of that atom.
The distance from the nucleus to the outer shell depends on the electrostatic attraction that the nucleus exerts on the elec-
trons of the outer shell. The atomic radii increase as you move down in the periodic table, as electrons fill outer electron
shells. However, the atomic radii decrease as you move from left to right, across the periodic table, even though more elec-
trons are added to atoms. This is because the increasing nuclear charge “pulls” the electron clouds inward, making the
atomic radii smaller.

Molecules are much more complex and much less spherical. There are various techniques for measuring molecular geome-
try such as the effective molecular size a molecule displays in a solution. However, a molecule’s diameter can be estimated
as the cube root of the volume it sweeps out as it moves through space.

Table 18.1 Typical Values of the Effective Molecular Radius

Molecule Effective Radius, r (m)

He 1.37 × 10−10

Ne 1.30 × 10−10

Ar 1.82 × 10−10

H2 0.74 × 10−10

N2 1.10 × 10−10

O2 1.21 × 10−10

Br2 2.28 × 10−10

Cl2 1.99 × 10−10

F2 1.41 × 10−10

I2 2.67 × 10−10

HBr 1.41 × 10−10

HCl 1.27 × 10−10

HF 0.92 × 10−10

HI 1.60 × 10−10

H2O 1.50 × 10−10

CO 1.13 × 10−10

NO 1.15 × 10−10

CO2 2.30 × 10−10

NH3 2.22 × 10−10

CH4 2.07 × 10−10

Source: Material drawn from the JANAF Thermochemical Tables, first ed., 1961, Thermal Research Laboratory,
Dow Chemical Corporation, Midland, MI. Reprinted by permission.
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EXAMPLE 18.2
Determine the collision frequency and mean free path for neon at 273 K and 0.113 MPa. The molecular mass of neon is
20.183 kg/kgmole.

Solution
For neon,

m = M
No

=
20:183 kg/kgmole

6:022×1026 molecules/kgmole
= 3:35× 10−26kg/molecule

Then, the root mean square velocity of the neon molecules is given by Eq. (18.13) as

Vrms =
3kT
m

� �1/2
=

3 1:38× 10−23J/ðmolecule ⋅KÞ½ �ð273KÞ
3:35× 10− 26kg/molecule

� 	1/2
= 581m/s

From Table 18.1, we find that the radius of the neon molecule is 1.30 × 10−10 m,

so the collision cross-section is

σ = 4πr2 = 4πð1:30×10−10mÞ2 = 2:12× 10−19m2

and the collision frequency is

F = σVrms
N
V

8
3π

� �1/2
where

N
V

=
p
kT

=
0:113×106 N/m2

½1:380×10−23N ⋅m/ðmolecule ⋅KÞ�ð273KÞ = 3:00× 1025molecules/m3

then,

F = σVavg
N
V

8
3π

� �1/2
= ð3:00× 1025 molecules/m3Þ 8

3π

� �1/2
ð2:12× 10−19m2Þð581m/sÞ

= 3:40 × 109collisions/s

so that the molecular mean free path is given by Eq. (18.15) as

λ = 1
ðN/VÞσ = 1

ð3:00×1025molecules/m3Þð2:12× 10−19m2Þ = 1:57× 10−7m

Exercises
4. If the temperature of the neon in Example 18.2 is increased from 273 K to 1000. K, determine the new root mean

square velocity and collision frequency of the neon molecules. Answer: Vrms = 112 m/s and F = 6:5×109collisions/s:
5. Determine the collision cross-sectional area of methane molecules. Answer: σ = 5.38 × 10−19 m2.
6. Compute the molecular mean free path for carbon dioxide molecules at 300. K and 1.50 kPa. Answer: λ = 4.15 × 10−6 m.

18.5 MOLECULAR VELOCITY DISTRIBUTIONS
Theories attempting to explain population behavior in living systems often begin with the following simple dif-
ferential equation for the time rate of change of the population N:

dN
dt

= ±αN (18.16)

which says that the rate of change of the population N depends directly on the instantaneous value of the popu-
lation. If α is a constant, Eq. (18.16) can be integrated to give

N = N0e
±αt (18.17)

where N0 is the initial population at time zero. This equation predicts an exponential growth or decay in popu-
lation depending on the sign of α (see Figure 18.4). In biological systems, Eq. (18.17) is usually inaccurate over
long time intervals, because α is not constant but instead depends on a number of variables and is often depen-
dent upon N itself.
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The problem of determining the distribution of velocities among the molecules of a gas can be thought of as a
population problem, except that we are no longer interested in how the population size N varies with time, but
rather how it varies with molecular velocity. Using the general form of Eq. (18.16), we can postulate a velocity
distribution population model as follows:

dNV

dV
= f ðVÞN (18.18)

where α has been replaced by a more general function f(V), called the velocity distribution function. The problem
now is to find the mathematical form of f(V). For example, if we assume a Gaussian velocity distribution,
we have

f ðVÞ = �ffiffiffiffiffiffi
2π

p
δ
exp − V2

2δ2

� �
where δ is the standard deviation.

By utilizing the assumptions stated at the beginning of this section, Maxwell was able to show that f(V) is not
Gaussian, but instead has the following form:

f ðVÞ = 4ffiffiffi
π

p m
2kT

� �3/2
V2exp −mV2

2kT

� �
(18.19)

Substituting Eq. (18.19) into Eqs. (18.4) and (18.5), one finds that the average and root mean square velocities
have the following simple formulae:

Vavg =

ffiffiffiffiffiffiffiffi
8kT
πm

r
(18.20)

Vrms =

ffiffiffiffiffiffiffiffi
3kT
m

r
(18.21)

Figure 18.5 shows the shape of the distribution function f(V) for oxygen at 300 K as described by Eq. (18.19).

We call the velocity at which f(V) has a maximum the most probable velocity Vmp. It is determined by setting
df Vð Þ/dV = 0 and solving for V = Vmp, which, using Eq. (18.19), gives

Vmp =

ffiffiffiffiffiffiffiffi
2kT
m

r
(18.22)

By comparing Eqs. (18.20), (18.21), and (18.22), it is clear that Vmp <Vavg <Vrms, as shown in Figure 18.5.

Let
Z V2

V1

dNV = NðV1 ! V2Þ be the number of molecules with velocities between V1 and V2. Then, it follows from

Eq. (18.18) that

NðV1 ! V2Þ
N

=
Z V2

V1

f ðVÞ dV (18.23)

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10

Time

N
/N

0

Population growth
(α > 0)

Population decay
(α < 0)

FIGURE 18.4
Population growth and decay as predicted by Eq. (18.17).
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Substituting Eq. (18.19) into Eq. (18.23) and carrying out the integration gives

NðV1 ! V2Þ
N

= erfðx2Þ− erfðx1Þ− 2ffiffiffi
π

p ðx2e−x22 − x1e−x
2
1Þ (18.24)

where

x1 = V1/Vmp, x2 = V2/Vmp, and erfðxÞ = error function of x = 2/
ffiffiffi
π

p Z x

0
e− x2dx

Representative values for the error function can be found in Table 18.2. Note that erf(0) = 0 and erf(∞) = 1.

Table 18.2 Values of the Error Function

x erf(x)

0.0 0.0

0.1 0.1125

0.2 0.2227

0.3 0.3286

0.4 0.4284

0.5 0.5205

0.6 0.6039

0.7 0.6778

0.8 0.7421

0.9 0.7969

1.0 0.8427

1.2 0.9103

1.4 0.9523

1.6 0.9764

1.8 0.9891

2.0 0.9953

2.2 0.9981

2.4 0.9993

2.6 0.9998

2.8 0.9999

∞ 1.0

Note: For all x, erfðxÞ = 2ffiffi
π

p x− x3
3ð1!Þ +

x5
5ð2!Þ −

x7
7ð3!Þ +…

� �
, and exp − x2

� �
= 1− x2/1!+ x4/2!− x6/3!+ x8/4!−…

3

2

1

0
0 100 200 300 400 500 600 700 800 900 1000

Velocity (m/s)

f(
V

)×
10

00

Vmp= 395 m/s

Vavg= 445 m/s

Vrms = 483 m/s

FIGURE 18.5
The Maxwell velocity distribution function f (V ) for oxygen (O2 ) at 300 K as defined by Eq. (18.19).
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Equation (18.24) can be evaluated to find the fraction of molecules whose velocities lie in the range from
0 to V as

Nð0 ! VÞ
N

= erfðxÞ− 2ffiffiffi
π

p xe−x
2

(18.25)

and to find the fraction of molecules whose velocities lie in the range from V to ∞ as

NðV ! ∞Þ
N

= 1−
Nð0 ! VÞ

N
= 1− erfðxÞ+ 2ffiffiffi

π
p xe−x

2
(18.26)

where x = V/Vmp in each case.

EXAMPLE 18.3
Test assumption 7 at the beginning of this section by computing the fraction of neon molecules at 273 K whose velocities are
faster than (a) Vmp, (b) Vavg, (c) Vrms, and (d) c (the speed of light). Use the molecular data for neon given in Example 18.2.

Solution
a. The fraction having velocities greater than Vmp is given by Eq. (18.26) with x = Vmp/Vmp = 1:0 as

NðVmp ! ∞Þ
N

= 1− erfð1:0Þ+ 2ffiffiffi
π

p ð1:0Þ e−1:0

or

NðVmp ! ∞Þ
N

= 1− 0:8427+0:4151 = 0:5724

Thus, 57.24% of the molecules have velocities faster than Vmp.
b. Here, Eq. (18.20) gives

Vavg =

ffiffiffiffiffiffiffiffi
8kT
πm

r
, Vmp =

ffiffiffiffiffiffiffiffi
2kT
m

r
,

and

x =
Vavg

Vmp
=

ffiffiffiffiffiffi
8
2π

r
= 1:128

Therefore, the fraction of molecules having velocities greater than Vavg is given by interpolating in Table 18.2 to find

NðVavg ! ∞Þ
N

= 1− erfð1:128Þ+ 2ffiffiffi
π

p ð1:128Þe−1:272

= 1−0:8893+0:3566 = 0:4673

Consequently, 46.73% of the molecules have velocities faster than Vavg.

c. Here, Eq. (18.21) gives Vrms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kT/m

p
, so

x = Vrms/Vmp =
ffiffiffi
3
2

q
= 1:225

and

NðVrms ! ∞Þ
N

= 1− erfð1:225Þ+ 2ffiffiffi
π

p ð1:225Þe− 1:501

= 1−0:9168+0:3081 = 0:3913

or 39.13% of the molecules have velocities greater than Vrms.
d. It can be shown (see Problem 10 at the end of this chapter) that, when V/Vmp ≫ 1, the fraction of molecules with

velocities in the range from V to ∞ is approximately given by

NðV ! ∞Þ
N

≈ 2ffiffiffi
π

p x+ 1
2x

� �
e−x

2 ðfor x ≫ 1onlyÞ

(Continued )
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EXAMPLE 18.3 (Continued )

Consider x = V/Vmp = 10:00 then,

NðV ! ∞Þ
N

≈ 2ffiffiffi
π

p ð10:05Þe−100 = 4:22×10−43

Thus, only one molecule in about 1020 moles of a gas has a velocity ten times greater than Vmp. Now, the velocity of
light c is 3:00×108m/s, and for neon at 273 K. we have m = 3.35 × 10−26 kg (see Example 18.2), and
Vmp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT/m

p
= 474m/s: Thus,

x = V
Vmp

= c
Vmp

=
3:00×108m/s

474m/s
= 6:33× 105

so that

Nðc ! ∞Þ
N

≈ 2ffiffiffi
π

p ð6:33× 105Þe−4:0×1011 ≈0

Even though we allow molecules to move faster than the speed of light in our mathematical model, we find that, for all
practical purposes, this model predicts that virtually no molecules have velocities this fast at ordinary temperatures.

Exercises
7. Plot the actual value and the four-term series expansion of the error function given in Table 18.2 for 0.1 ≤ x ≤ 2.0 and

compare the results. Partial answer: The series expansion is valid only for x < 1.0, see Figure 18.6.
8. Determine the percentage of molecules in Example 18.3 that have velocities greater than twice the most probable

velocity. Answer: N(2Vmp → ∞)/N = 0.046 = 4.6%.
9. Determine the mean velocity in Example 18.3 (i.e., find the velocity V for which half the molecules have a velocity

greater than V and half have a velocity less than V) as defined by N(V → ∞)/N = 0.5 = 50%. Answer: V = 1.09 × Vmp.
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FIGURE 18.6
Example 18.3, Exercise 7.

18.6 EQUIPARTITION OF ENERGY
Equation (18.14) gives the total translational kinetic energy of a system of N molecules as 3

2 NkT. The principle
of equipartition of energy requires that the translational kinetic energy of an unrestricted molecule be equally
divided among the three translational degrees of freedom (one for each independent coordinate direction).
Therefore, the translational total internal energy in each of the x, y, and z coordinate directions must be one
third of that given in Eq. (18.14), or

ðUtransÞx = ðUtransÞy = ðUtransÞz = Utrans/3 = 1
2
NkT
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We can therefore conclude that the total energy of a system of N molecules with F degrees of freedom per
molecule is given by

U = F
2
NkT = F

2
mTRT

and that its specific internal energy is u = U/mT = FRT/2: From the definition of constant volume specific heat
introduced in Chapter 3, we have

cv =
∂u
∂T

� �
v
= ∂

∂T
F
2
RT

� �
v
= FR

2
(18.27)

and, since cp − cv = R for an ideal gas,

cp = R+ cv = 1+ F
2

� �
R (18.28)

finally the specific heat ratio k becomes

k =
cp
cv = F + 2

F
(18.29)

For a molecule containing b atoms, there are F = 3b degrees of freedom. If b = 1, then F = 3 and the three
degrees of freedom are all translational. If b = 2, then F = 6 and there are three degrees of freedom in transla-
tion, two in rotation and one in vibration. If b > 2, then F = 3b and there are three degrees of freedom in trans-
lation, three in rotation and 3b − 6 in vibration. In the case of monatomic (single-atom) molecules like He, Ne,
Ar, Kr, or Xe, there are only three degrees of freedom (all translational). Then Eqs. (18.27), (18.28), and
(18.29) give

cv = 1:5R

cp = 2:5R

k = 1:67

9>=>;Monatomic gases

For diatomic (two-atom) molecules, such as H2, O2, CO, or NO, we have b = 2 and consequently F = 3(2) = 6.
Then, we have

cv = 3R

cp = 4R

k = 1:33

9>=>;Diatomic gases

Similarly for triatomic gases, such as CO2, H2O, NO2, or SO2, we have b = 3 and F = 9. Then,

cv = 4:5R

cp = 5:5R

k = 1:22

9>=>;Triatomic gases

A comparison of these values with the measured specific heats of some real gases, given in Table 18.3, reveals
that, for simple molecules (e.g., monatomic gases), the kinetic theory works quite well. For complex molecules,
however, kinetic theory predictions are much less accurate.

In summary, the thermodynamic properties of an ideal gas as predicted by Maxwell’s kinetic theory are

pV = mRT

u2 − u1 = cv T2 − T1ð Þ
h2 − h1 = cp T2 −T1ð Þ
s2 − s1 = cp ln T2/T1ð Þ−R ln p2/p1ð Þ = cv ln T2/T1ð Þ+R ln v2/v1ð Þ
cp − cv = R

where

cv = FR/2

cp = 1 + F/2ð ÞR
F = 3b

b = number of atoms in themolecule
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EXAMPLE 18.4
Estimate the heat transfer rate required to heat low-pressure gaseous carbon tetrachloride (CCl4) from 500. to 1200. K in a
steady state, steady flow, single-inlet, single-outlet, aergonic (i.e., zero work) process at a flow rate of 1.00 kg/min.

Solution
The system here is just the gas in the heating zone. Neglecting the flow stream kinetic and potential energies, the energy rate
balance for this system reduces to

Q
:
+m

: ðhin − houtÞ = 0

so that

Q
:
= m

: ðhout − hinÞ = m
:
cpðTout −TinÞ

For CC14, b = 5; consequently, F = 3b = 15. Then, Eq. (18.28) gives

cp = ð1+ 15=2ÞR = 8:5×R

Now, the molecular mass of carbon tetrachloride is

M = 12:0+ 4ð35:5Þ = 154 kg=kgmole

and its gas constant is

R = ℜ
M

=
8:3143 kJ/ðkgmole ⋅KÞ

154kg/kgmole
= 0:0540 kJ/ðkg ⋅KÞ

so

cp = 8:5 0:0540 kJ/ðkg ⋅KÞ½ � = 0:459 kJ/ðkg .KÞ
Therefore,

_Q = 1:00 kg/minð Þ 0:459kJ/ðkg ⋅KÞ½ �ð1200:− 500:KÞ = 321 kJ/min

Exercises
10. If the mass flow rate of gaseous carbon tetrachloride in Example 18.4 is suddenly increased from 1.00 to 3.50 kg/min,

determine the new heat transfer rate, assuming all the other variables remain unchanged. Answer: _Q = 1120 kJ/min:
11. The exit temperature of the gaseous carbon tetrachloride in Example 18.4 is increased from 1200. K to 2000. K.

Determine the heat transfer rate, assuming all the other variables remain unchanged. Answer: _Q = 688 kJ/min:
12. The gas in Example 18.4 is changed from carbon tetrachloride to gaseous dichlorodifluoromethane (CCl2F2). Estimate the

heat transfer rate for this gas, assuming all the other variables in Example 18.4 remain unchanged. Answer: _Q = 409 kJ/min:

Table 18.3 Measured Values of the Specific Heats of Various Gases at 20.0ºC

Gas cv/R cp/R k = cp/cv

Monatomic
He 1.50 2.50 1.67

Ne 1.50 2.50 1.67

Ar 1.51 2.52 1.67

Kr 1.00 1.68 1.68

Xe 1.52 2.51 1.65

Diatomic

CO 2.51 3.51 1.40

NO 2.51 3.51 1.40

H2 2.44 3.42 1.40

O2 2.53 3.53 1.40

N2 2.50 3.50 1.40

Triatomic

CO2 3.48 4.48 1.29

SO2 3.97 4.97 1.25

H2O 3.05 4.05 1.33
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18.7 INTRODUCTION TO MATHEMATICAL PROBABILITY
If there are N mutually exclusive4 equally likely outcomes of an experiment, M of which results in event A, then
we write the probability of the occurrence of event A, PA, as

PA = M
N

(18.30)

Now, if PA = 0, then event A is impossible and if PA = 1, then event A is a certainty. Generally, probabilities do
not take on these extreme values but instead lie somewhere in the region

0≤PA ≤1

Let ~PA be the probability of event A not occurring. Then, because it is a certainty that either event A will occur
or it will not occur, we can write

PA + �PA = 1

EXAMPLE 18.5
a. Consider the toss of a single evenly weighted die. What are the six possible mutually exclusive results that can occur?
b. Now consider the toss of a pair of evenly weighted dice and add their individual results. What is the probability of each

of the resulting sums?
c. What is the most probable sum in item b?

Solution
a. Since the die is an evenly weighted cube, all six sides have the same probability of landing face up, so we have N = 6.

Consequently the six possible mutually exclusive results are

P1 = P2 = P3 = P4 = P5 = P6 = 1=6

Also, we can write

�P1 = �P2 = �P3 = �P4 = �P5 = �P6 = 5=6

b. The total number of combinations of results is shown in Table 18.4. From this table, it is seen that N = 6 × 6 = 36.
Using this table, we can construct an event vs. frequency table, as shown in Table 18.5. Thus, we can compute the
following probabilities for the sum of the results of the individual die:

P0 = P1 = 0 P5 = P9 = 4=36 = 1=9

P2 = P12 = 1=36 P6 = P8 = 5=36

P3 = P11 = 2=36 = 1=18 P7 = 6=36 = 1=6

P4 = P10 = 3=36 = 1=12

c. From Table 18.5, it is clear that in the toss of two evenly weighted dice, the number 7 is the most probable outcome,
appearing on the average of once every six tosses. It has a probability given by Eq. (18.30) of

P7 = 1=6 = 0:1667 = 16:67%

Exercises
13. If you toss an evenly weighted die, what is the probability that it will come up with an even number? Answer: P(even

number) = 1/2.
14. Suppose you have a four-sided instead of a six-sided die. How many outcomes for the sum when tossing two such dice

are possible, and what is the most probable outcome for the sum and what is its probability? Answer: M = 16, and
most probable sum = 5 (from 1 + 4, 4 + 1, 2 + 3, and 3 + 2), then P(most probable) = P5 = 4/16 = 0.25.

15. The probability of X not occurring is simply P(not X) = 1 − P(X). Using this concept, determine the probability of not
throwing a 7 as the sum of two six-sided dice. Answer: P(not 7) = 1 − P(7) = 1 − 1/6 = 5/6.

(Continued )

4 Mutually exclusive means that no two of the N outcomes can occur simultaneously.
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EXAMPLE 18.5 (Continued )

This probability concept can be used to further investigate the collision frequency characteristics of the kinetic
theory model of ideal gases. Let the number of molecular collisions occurring in an ideal gas during some time
interval Δt = t2 − t1 be δN, and let N(t) be the number of molecules of the gas at time t that have not yet had a
collision. Then, δN = N(t1) − N(t2). Since we define the Δ symbol to be evaluated at time t2 minus time t1, ΔN
becomes

ΔN = N t2ð Þ−N t1ð Þ = − δN

We postulate that δN will be proportional to the product of N(t), Δt, and the average molecular velocity Vavg as
follows:

δN = −ΔN∝−NVavgðΔtÞ

Table 18.4 The Total Number of Combinations of Tossing Two Dice

Die 1 Die 2 Die 1 Die 2

1 1 4 1

1 2 4 2

1 3 4 3

1 4 4 4

1 5 4 5

1 6 4 6

2 1 5 1

2 2 5 2

2 3 5 3

2 4 5 4

2 5 5 5

2 6 5 6

3 1 6 1

3 2 6 2

3 3 6 3

3 4 6 4

3 5 6 5

3 6 6 6

Table 18.5 An Event-Frequency Table for Tossing Two Dice

Sum M of Die Values Number of Results Producing Sum M Ways of Obtaining Sum M

0 0

1 0

2 1 1 + 1

3 2 1 + 2, 2 + 1

4 3 2 + 2, 1 + 3, 3 + 1

5 4 2 + 3, 3 + 2, 1 + 5, 4 + 1

6 5 3 + 3, 4 + 2, 2 + 5, 5 + 1, 1 + 5

7 6 6 + 1, 1 + 6, 5 + 2, 2 + 5, 4 + 3, 3 + 4

8 5 4 + 4, 5 + 3, 3 + 6, 6 + 2, 2 + 6

9 4 4 + 5, 5 + 4, 3 + 7, 6 + 3

10 3 6 + 4, 4 + 6, 5 + 6

11 2 6 + 5, 5 + 6

12 1 6 + 6
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This proportionality can be reduced to an equality by the introduction of a proportionality constant Pc, which
we call the collision probability. Then, the number of collisions that occur in time interval Δt becomes

δN = −PcNVavg Δtð Þ
In the limit as Δt → 0, this equation becomes

dN = −PcNVavgdt

Let Vavgdt = dX, where X is the distance between collisions. This equation can be written as

dN
N

= −Pc dX

which can be integrated to give

N = NðtÞ = N0 expð−PcXÞ (18.31)

where N0 = N(t = 0). In Eq. (18.15), we define the mean free path λ as the average distance between collisions,
which can be determined from X as

λ = Xavg =
1
N0

Z ∞

0
Xð−dNÞ

where the minus sign has been introduced because N(t) decreases with time, and therefore, dN < 0. From
Eq. (18.31), we find that

dN = −N0Pc expð−PcXÞdX
and the mean free path is given by

λ = 1
N0

Z ∞

0
XN0Pc expð−PcXÞdX = 1

Pc

Consequently, we have the result that the collision probability is exactly equal to the inverse of the mean free
path:

Pc =
1
λ
= σNV

where σ is the collision cross-section discussed earlier. Finally, Eq. (18.31) takes the form

NðtÞ = N0 expð−X=λÞ
so that, by the time all the molecules in the gas have traveled a distance of only one mean free path (X = λ),

N
N0

= e−1 = 0:368 = 36:8%

of them have not yet had a collision.

WHAT ARE THE GAMES CRAPS AND DICE?

Craps is a simplified version of the old game of hazard introduced in Europe during the Crusades. Craps is played between
two players. If the first throw is a 7 or 11 (a natural), the thrower wins immediately. If it a 2, 3, or 12 (craps, which was
called crabs in the old game of hazard), the thrower loses immediately. If any other number is thrown the thrower goes on
throwing until either the same number or a 7 occurs. If a 7 comes up before the first number thrown, the thrower loses;
otherwise, the thrower wins.

Most casino dice are custom-made of celluloid with a tolerance of one 10,000th of an inch (even the heat of a shootor’s hands
may slightly alter the size of a pair of dice). The celluloid is “cured” over a period of time to dry it out and give it stability.
Then, it goes through a series of milling operations to form it into a perfect cube. The shallow indentations that form the spots
are made on all six sides. These indentations are filled with a polyester resin, and the dice are then subjected to a final grinding,
which leaves them with smooth surfaces. Cheap plastic dice are polished in a mechanical tumbler similar to those used by lapi-
darists, but such mechanical polishing also gives them rounded edges which can affect the outcome of a throw. Some casinos
have dice made in odd sizes to prevent a dishonest player from switching loaded dice for honest dice. Dice in most casinos are
changed every 30 days to maintain precise sizing, and pairs of used dice are often given to customers as souvenirs.
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Probabilities of related events that are not mutually exclusive have the following interpretation. Assume that
event B depends in some way on another event A. Then, the conditional probability of event B occurring given
the fact that event A has already occurred is written PB/A. The compound probability that both events A and B
will occur is written as PAB. The relation between these two probabilities is the basic and logic probability state-
ment, written as

P A andBð Þ = PAB = PAPB/A = PBPA/B (18.32)

If events A and B are totally independent, their probabilities are uncoupled and PA/B = PA and PB/A = PB: Then,

P A andBð Þ = PAB = PAPB (18.33)

Similarly, the basic or logic probability statement can be written as

P Aor Bð Þ = PA + PB −PAB (18.34)

If events A and B are mutually exclusive (i.e., they cannot occur simultaneously), then PAB = 0 and P (A or B) = PA + PB.

EXAMPLE 18.6
In the draw of a single card from a full deck of playing cards, what is the probability that it will be an ace or a spade?

Solution
Equation (18.34) gives P (ace or spade) = Pace + Pspade − Pace of spades. Now,

Pace =
4
52

= 1
13

, Pspade =
13
52

= 1
4
, Pace of spades =

1
52

so

P ace or spadeð Þ = 4
52

+ 13
52

− 1
52

= 16
52

= 0:308 = 30:8%

Exercises
16. Instead of drawing either an ace or a spade in Example 18.6, determine the probability of drawing either a 2 or a 3 of

any suit. Answer: P(2 or 3) = 0.154 = 15.4% of the time.
17. What is the probability of drawing an ace of spades in Example 18.6? Answer: P(ace and spade) = 0.0192 = 1.92% of

the time.
18. Find the probability of drawing four aces in a row out of a standard 52 card deck. Hint: Initially, there are four aces

scattered among the 52 cards, but after the first ace is drawn, only three aces remain among 51 cards, and so forth.
Answer: P(ace and ace and ace and ace) = 3.7 × 10−6.

Table 18.6 lists the probability of the different five-card poker hands.

Table 18.6 Probabilities of Five-Card Poker Hands

Name of Hand
Number of Card Combinations
Giving This Hand Probability of the Hand

Royal flush 4 1.54 × 10−6

Straight flush 36 1.38 × 10−5

Four of a kind 624 0.00024

Full house 3,744 0.00144

Flush 5,108 0.00197

Straight 10,200 0.00392

Three of a kind 54,912 0.02113

Two pair 123,552 0.0475

One pair 1,098,240 0.42257

All other hands 1,302,540 0.50118

Total 2,598,960 1.00000
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The last mathematical concepts needed in our study of probability are those of permutations and combinations.
A specific ordered arrangement of N distinguishable objects is called a permutation. The total number of ways of
making different ordered arrangements of the N objects taken R at a time using no object more than once is
given by

PN
R = N!

ðN −RÞ! (18.35a)

where N! = NðN −1ÞðN − 2ÞðN −3Þ… ð3Þð2Þð1Þ is N factorial. Note that we define 0! = 1. Thus, the total
number of permutations of N distinct objects taken N at a time is

PN
R = N!/0! = N! (18.35b)

However, if the objects are allowed to be repeated within an arrangement, then the total number of arrange-
ments becomes

PN
N = NR (18.35c)

For example, the total number of permutations (arrangements) of the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
taken three at a time, using no digit more than once, is given by Eq. (18.35a) with N= 10 and R= 3 as

ðP10
3 Þ

using each
digit only once

= 10!
ð10−3Þ! =

10!
7!

= 10× 9× 8× 7!
7!

= 720 arrangements

But, if we allow each digit to be used more than once, then Eq. (18.35c) tells us that the number of permuta-
tions increases to

ðP10
3 Þ

using each
digit more than once

= 103 = 1000 arrangements

However, the total number of permutations (arrangements) of just the three digits 1, 2, and 3, using none of
these digits more than once is given by Eq. (18.35b) as

ðP3
3Þusing each

digit only once

= 3! = 3× 2× 1 = 6 arrangements

(they are 1, 2, 3; 1, 3, 2; 3, 1, 2; 2, 3, 1; 3, 2, 1; and 2, 1, 3), but if we allow these digits to be repeated, the
Eq. (18.35c) shows that the number of permutations increases dramatically to

ðP3
3Þusing each

digit more than once

= 33 = 27 arrangements

We define combinations as the ways of choosing a sample of R objects from a group of N objects without regard
to order within the sample (e.g., the groupings AB and BA are different permutations of A and B, but they are
the same combination of A and B). The total number of combinations of N unique objects taken R at a time
without using any object more than once is given by

CN
R =

PN
R

R!
= N!

ðN −RÞ!R! (18.36a)

But, if the objects are allowed to be repeated within the sample, then the number of combinations becomes

CN
R =

PN
R

R!
=

ðN +R−1Þ!
ðN −1Þ!R! (18.36b)

For example, we can determine the number of five-card hands that can be dealt out of a standard deck of 52
distinct cards (Table 18.6). Since the order in which the cards are received is not important, the number of com-
binations of 52 cards taken 5 at a time is given by Eq. (18.36a) as

ðC52
5 Þ

using each
card only once

= 52!
ð52− 5Þ!5! =

52× 51× 50× 49× 48× 47!
47!× 5!

= 2,598,960different hands
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and since there are 13 possible four-of-a-kind hands in the deck with each hand having any of the remaining
48 cards as the fifth card in the hand, the probability of getting a five-card hand with four-of-a-kind is

Pfour-of-a-kind hand = 13× 48
2,598,960

= 0:00024

or only 0.024% of the time. However, suppose each card is returned to the deck before the next card is drawn
so that a card can be drawn more than once (i.e., repeated), then the number of combinations of five-card
hands is given by Eq. (18.36b) as

ðC52
5 Þ

using each card
more than once

=
ð52+5−1Þ!
ð52− 1Þ!5! = 56× 55×54× 53× 52× 51!

51!× 5!
= 3,819,816 different hands

Suppose that not all objects in the group of N are different from each other. The number of permutations of
N objects, R1 of one kind, R2 of a second kind, … , Rk of a kth kind is given by

PN
R1,R2 ,…,Rk

= N!
R1!R2!R3!…Rk!

(18.37)

since the objects within the k groups are no longer unique, the total number of combinations and permutations
are equal, or

CN
R1,R2,…,Rk

= PN
R1,R2,…,Rk

EXAMPLE 18.7
Suppose you have to form a team of five students from a group of ten available students.

a. How many different five-person groups of officers could you form from the ten students if each student filled one of the
positions of president, vice president, secretary, treasurer, and events coordinator (i.e., the group is ordered), without
using any student more than once?

b. How many ordered officer groups could you form if you allowed students to be in more than one group?
c. How many officer groups could you form if the students were not assigned a position (i.e., the groups were not

ordered) but a student could not be in more than one group?
d. How many teams could you form if the students were not assigned a position (i.e., the groups were not ordered) and

students could be in more than one group?
e. If there are four men and six women in the group, how many different unordered ten-person groups could be formed?

Solution
a. Equation (18.35a) gives the number of ordered groups of R = 5 things chosen from a group of N = 10 as

P10
5

� �
using each
student only once

= 10!
ð10− 5Þ! =

10!
5!

= 10×9× 8× 7×6× 5!
5!

= 10× 9× 8×7× 6 = 30,240 groups

b. Equation (18.35c) gives the result when the students are allowed to be in more than one group:

ðP103 Þ
using each student
more thanonce

= 105 = 100,000 groups

c. If the students are not assigned a position within the group, but they are allowed to belong to only one group, then
Eq. (18.36a) gives the possible number of groups as

ðC10
5 Þ

using each
student only once

= 10!
ð10−5Þ!5! =

10× 9× 8×7× 6× 5!
5!× 5!

= 252 groups

d. If the students are not assigned a position within the group, but they are allowed to belong to more than one group,
then Eq. (18.36b) gives the possible number of groups as

ðC10
5 Þ

using each student
more thanonce

=
ð10+5−1Þ!
ð10−1Þ!5! = 14×13×12× 11× 10×9!

9!×5!
= 2002 groups
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e. If there are four men and six women in the group, then the number of different unordered ten-person groups that can
be formed is given by Eq. (18.37) as

P10
4,6 = 10!

4!×6!
= 10×9× 8× 7×6!

4× 3× 2×1× 6!
= 210 groups

Exercises
19. The available group in Example 18.7 suddenly drops from ten to six students from which to form the five-person

officer groups. How many different officer groups could you form without using any student more than once?
Answer: P6

55 = 720 groups:
20. Suppose you only need four officers instead of five in Example 18.7. How many different officer groups could you form

if you allowed students to be in more than one group? Assume ten students are still available for the officer positions.
Answer: P10

4 4 = 10,000 groups:
21. How many different arrangements are there of three black, seven red, and four green marbles?

Answer: P14
3,7,4 = 120,120arrangements:

18.8 QUANTUM STATISTICAL THERMODYNAMICS
We begin by defining the microstate of a group of molecules as the state produced by specifying the instanta-
neous energy state of each molecule of the group. We define the macrostate as the instantaneous average state of
the collection of molecules, and the thermodynamic equilibrium state as being the most probable macrostate. The
mathematical probability of macrostate A is defined as

PA =
WðAÞ
∑
i

WðiÞ
(18.38)

WHAT ARE PERMUTATIONS AND COMBINATIONS?

A permutation5 is an arrangement of a group of items in specific order. Consider the group of three items denoted by X, Y,
and Z. The number of ordered arrangements of these three items taking two at a time without allowing repetition (this is
called permutations without repetition) is

P3
2 = 3!

ð3!2Þ! = 6

These arrangements are XY, YX, YZ, ZY, XZ, and ZX. However, the number of ordered arrangements when repetition is
allowed (called permutations with repetition) is

P3
2 = 32 = 9

and these arrangements are XY, YX, YZ, ZY, XZ, and ZX plus the repeats XX, YY, and ZZ.

A combination is an arrangement of a group of items where the order does not matter. If order is not important within the
group, then the number of arrangements of the three items X, Y, and Z taking two at a time but not allowing items to be
repeated (called combinations without repetition) is

C3
2 = 3!

ð3!2Þ!2! = 3

and these arrangements are XY, YZ, and XZ (note that XY is the same as YX when the order within the group is not impor-
tant). But, if we allow repetition of the items within the groups, then the number of arrangements (called combinations
with repetition) becomes

C3
2 =

ð3+ 2!1Þ!
ð3!2Þ!2! = 6

and they are XY, YZ, and XZ plus the repeats XX, YY, and ZZ.

In summary, if the order does not matter, it is a combination. If the order does matter, it is a permutation.

5 The word permutation is from the Latin “per” (thoroughly) + “mutare” (to change).
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where W(A) is the number of ways that macrostate A can occur (i.e., the number of microstates per macrostate A),
and ∑iW(i) is the total number of macrostates possible.

Then, the condition we call thermodynamic equilibrium is simply the macrostate that has the largest value of P.

A macrostate is an overview of a complex situation, whereas a microstate describes the details of how each ele-
ment of the system functions. As an analogy, consider a national presidential election. The macrostates are the
various possible winners of the election, and the microstates are the various combinations of ways in which the
voters may cast their ballots.

Late in the 19th century, electrical discharge experiments in various gases produced light emission spectra that
were very unusual. Instead of being an emission with a continuous color frequency (like white light), the emis-
sions consisted of discrete spectral lines located at fixed wavelengths. Figure 18.7 shows the emission spectrum
of atomic hydrogen in the visible region of the electromagnetic spectrum. From these emission spectra, it was
clear that, if the emission phenomenon is attributed to photon ejection by electrons as they move from an
atom’s outer orbit to an inner orbit, then the electrons must occupy discrete orbits and consequently are not
simply clustered around the nucleus in a random manner.

In 1913, Niels Bohr hypothesized that the electron orbits of an atom were quantitized (i.e., made discrete)
according to the value of the electron’s angular momentum as

mω = mVr = n ħ
2π

where ω is the angular velocity of the electron, V is the electron’s orbital velocity, r is the radius of the orbit, ħ is
Planck’s constant, and n = 1, 2, 3, … is the (primary) quantum number. Therefore, the radius of an electron’s
orbit is given by

r = ħ
2πmV

n

As the years passed, other quantum numbers had to be introduced to account for such things as the elliptical
shape of the orbit (this accounted for the finite width of the emission lines and was called the azimuthal quan-
tum number), the splitting of the spectral lines in a strong magnetic field (the magnetic quantum number), the
magnetic moment associated with the direction of electron spin (the electron spin quantum number), and so
forth.

The continual modification of the original Bohr model required to make it conform to experimental observa-
tions started physicists looking for a new model. In 1924, Louis Victor Pierre Raymond de Broglie (1892–1987)
used an analogy between classical mechanics and geometric optics to formulate a dual particle-wave model for
matter. He argued that since the energy ε of a photon is given by

ε = ħv

where ħ is Planck’s constant and v is the photon’s frequency, and since Einstein’s mass-energy relation for the
photon is

ε = mc2

where m is its mass and c is the velocity of light, then the linear momentum p of the photon can be written as

p = mc = ħv
c

= ħ
λ
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FIGURE 18.7
The emission spectrum of atomic hydrogen.
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where λ = c/v is the wavelength of the photon. De Broglie then extended the argument to mass particles (like
electrons) by postulating that, for them,

p = mV = ħ
λ

where λ is the particle’s wavelength. This postulation was experimentally verified in 1927, when it was demon-
strated that electrons could be diffracted in a wavelike manner from a ruled diffraction surface. Thus, electrons
appeared to have both particlelike and wavelike behavior, and the duality principle of matter was established.

Once the wavelike character of matter was recognized, it became clear that the kinetic behavior of atomic parti-
cles ought to be governed by the same equations that govern the propagation of waves in a continuum. In
1926, Erwin Schrödinger developed an unsteady wave equation appropriate to matter waves of the form

∇2ψ =
2mðε− εpÞ

ε2
∂2ψ
∂t2

� �
(18.39)

where ψ is the wave function (the wave amplitude), ε is the total energy of the particle, εp is the potential energy
of the particle, m is the particle’s mass, and ∇2 is the differential operator defined by

∇2ð Þ = ∂2
∂x2

ð Þ+ ∂2
∂y2

ð Þ+ ∂2
∂z2

ð Þ

Remarkably, the solutions to (18.39) are inherently quantitized (i.e., solutions exist for only discrete values of ε);
thus, it has become a fundamental equation in quantum mechanics.

18.9 THREE CLASSICAL QUANTUM STATISTICAL MODELS
Consider a system composed of N =∑Ni particles that are distributed in some manner among εi energy levels.
Then, the total internal energy of the system is U=∑Niεi. The most probable distribution (Ni)mp of the N parti-
cles is the one that corresponds to the macrostate with the maximum probability P, and the total internal energy
of that macrostate is Ump =∑(Ni)mpεi. Once an equation for W is found, the distribution Ni that maximizes it
can easily be found by setting d(W)= 0 subject to the constraint that the total energy and total number of parti-
cles in the system are constant (i.e., dN= dU= 0), and solving for Ni= (Ni)mp.

A particle Ni has a total energy εi, which, in general, is made up of a number of energy modes. For example, we
could partition the total energy of the particle into kinetic energy, rotational energy, vibrational energy, and so
forth; and the particle’s total energy can be divided among these modes in many ways. The total number of
arrangements of a particle’s different energy modes that add up to a given energy level εi is called the degeneracy
of that energy level and is given the symbol gi.

The following three classical statistical models have been developed to describe the basic particle-wave nature of
certain material particles, and their corresponding W and (Ni)mp equations can be found in Table 18.7.

1. The Maxwell-Boltzmann model.6 Here, all the Ni particles are assumed to be indistinguishable from each
other and distributed among various degenerate energy levels. This model accurately represents the behavior
of most simple gases at low pressures.

2. The Fermi-Dirac model. Here, the particles are assumed to be indistinguishable and are distributed among
various degenerate energy levels with only one particle per degeneracy (gi) value. This model accurately
represents the behavior of electron and proton gases.

3. The Bose-Einstein model. Here, the particles are assumed to be indistinguishable and are distributed among
various degenerate energy levels with no limit on the number of particles per degeneracy. This model
accurately represents the behavior of photon and phonon gases.

The second law of thermodynamics states that Sp or _Sp ≥0, which implies that, at equilibrium, the entropy of a
closed system is a maximum. Also, since thermodynamic equilibrium corresponds to the system’s being in its
most probable macrostate, it is logical to assume that a functional relation exists between the entropy S of the
system and the statistical probability of the most probable macrostate, Wmp. We postulate that this relation has
the form:

S = f ðWmpÞ

6 This is called the “corrected” Maxwell-Boltzmann model in most statistical thermodynamics texts.
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The problem we now face is that the total entropy S of a system is an additive property whereas Wmp is not. In
the probability mathematics presented earlier, we found that the probability that independent events A and B
simultaneously occur is P (A and B) = PAB = PAPB, and since Wmp is related to mathematical probability through
Eq. (18.38), we can write

W A andBð Þ = WAWB

but

S A andBð Þ = SA + SB

Therefore, we must find a function f such that

S A andBð Þ = f WAð Þ+ f WBð Þ = f W A andBð Þ½ � = f WAWBð Þ

The only general function that satisfies this relation is the logarithm, since

lnWA + lnWB = lnWAWB

Therefore, we choose to set S proportional to ln Wmp. It can be shown that the constant of proportionality in
this relation is just Boltzmann’s constant k, so we end up with the following entropy-probability relation:

S = k lnWmp (18.40)

Thus, we see that entropy is a measure of the molecular order within a system.

18.10 MAXWELL-BOLTZMANN GASES
To limit the algebraic complexity of the resulting property formula, we restrict our attention to the Maxwell-
Boltzmann model. It can be shown that, for Maxwell-Boltzmann gases with N≫ 1,

u = RT2 ∂ lnZ
∂T

� �
(18.41)

and

h = u+RT (18.42)

where

Z =∑gi exp −εi/kTð Þ

Z is called the partition function of the system and gi is the degeneracy of the ith energy level εi. At high tempera-
tures, the number of quantum states (or degeneracy levels gi) available at any energy level is much larger than
the number of particles Ni in that energy level, or

gi
Ni

≫ 1

Table 18.7 Formula for Computing the Number of Microstates in the ith Macrostate
for Various Statistical Models

Model
Number of Microstates per
Macrostate, W Most Probable Distribution (Ni)mp

Maxwell-Boltzmann
∏
i

gi N!

Ni !
N
Z

� �
gi exp − εikT

� �
Fermi-Dirac ∏

i

gi !
Ni !ðgi −NiÞ! gi B exp

εi
kT

� �
+ 1

h i−1
Bose-Einstein

∏
i

ðgi +Ni −1Þ!
Ni !ðgi −1Þ! gi B exp

εi
kT

� �
− 1

h i−1
Note: Here, Z = ∑gi exp −εi/kTð Þ = partition function, and B = exp − μ/kTð Þ, where μ is the molar chemical potential.
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Then the number of microstates per macrostate for the three statistical models shown in Table 18.7 are
approximately the same; that is,

WBE ≈WFD ≈WMB = ∏
i

gNi
i

Ni!

Also, under this condition, the most probable particle distribution of these three models are approximately the
same

Nið Þ
BE
mp

≈ Nið Þ
FD
mp

≈ Nið Þ
MB
mp

= N
Z

� �
gi exp −εi/kTð Þ (18.43)

These two results can be inserted into Eq. (18.4) to produce an equation for entropy as follows. First, we calcu-
late lnWmp from Table 18.7 as

lnWmp =∑
i

Ni ln gi − lnNi!ð Þmp

We then use Stirling’s approximation:

lnN!≈N lnN −N

for the factorial term to obtain

lnWmp ≈∑
i

ðNiÞmp ln gi/Nið Þmp +1
h i

Then, we use Eq. (18.43) to evaluate the term

gi/Nið Þmp =
Z
N
exp εi/kTð Þ

which produces the result

lnWmp ≈∑
i

ðNiÞmp ln Z/Nð Þ+ εi/kT + 1½ �

which simplifies to

lnWmp ≈N ln Z/Nð Þ+1½ �+U/kT

The total entropy is now given by Eq. (18.40) as

S = Nk ln Z/Nð Þ+ 1½ �+U/T

and since Nk = Nℜ/No = nℜ = m/Mð Þℜ = mR, the specific entropy can be written as

s = R ln Z/Nð Þ+ 1½ �+ u/T (18.44)

The molecular model we consider here is that of a relatively simple molecule, in which the total molecular
energy can be separated into only three modes: translational, rotational, and vibrational. Then, the partition
function Z is made up of translational, rotational, and vibrational molecular energy storage mechanisms and
can be written as

Z = ðZtransÞðZrotÞðZvibÞ
Consequently, we can determine the molecular translational, rotational, and vibrational contribution to each of
the properties, u, h, and s. Because these partition functions depend on the geometry of the molecule, we begin
their study with the simplest possible structure, a monatomic gas.

18.11 MONATOMIC MAXWELL-BOLTZMANN GASES
For a Maxwell-Boltzmann monatomic gas, it can be shown that

Ztrans = Vð2πmkT/ħ2Þ3/2 (18.45)
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where V is the total volume of the system, ħ and k are Planck’s constant and Boltzmann’s constant, and
Zrot = Zvib = 0. Then, Eqs. (18.41), (18.42), and (18.44) give

u = 3
2
RT

h = u+RT = 5
2
RT

cv =
3
2
R

cp =
5
2
R

s = R ln ð2πm/ħ2Þ3/2ðkTÞ5/2/p
h i

+ 5
2

n o

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

For monatomic gases only

18:46að Þ

18:46bð Þ

18:46cð Þ

18:46dð Þ

18:46eð Þ

These formulae for u, h, cv, and cp are the same as those obtained from the kinetic theory of gases discussed
earlier in the chapter. The equation for entropy, on the other hand, is more complex and therefore one would
expect it to be more accurate. We now progress to the next most complex geometric molecular structure,
diatomic gases.

EXAMPLE 18.8
In a fiendish plan to incapacitate Superman, the arch villain Dorkmann proposes to compress 3.50 kg of krypton gas from
1.00 atmosphere, 20.0°C to 10.0 MPa, producing a concentrated and possibly toxic concentration of kryptonite. The foolish,
unschooled fiend intends to try to carry out the compression process adiabatically using only 100. kJ of work. But you, as
the ever-present hero Thermoperson, seeker of truth and wisdom, hold the power to foil the plan by computing

a. The final temperature of the krypton gas after compression.
b. The entropy production of the compression process.

Solution
a. The final temperature of the gas can be found from an energy balance and Eq. (18.46a) as

1Q2 − 1W2 = mðu2 − u1Þ = m 3
2
R

� �
ðT2 − T1Þ

where Rkrypton = ℜ/Mkrypton = 8.3143/83.80 = 0.0992 kJ/kg ·K. Since 1Q2 = 0 for an adiabatic compression, the energy
balance equation can then be solved for T2 as

T2 = T1 − 1W2

3mR/2
= ð20:0+273:15KÞ− −100: kJ

3ð3:50 kgÞð0:0992 kJ/kg ⋅KÞ/2 = 458K

b. An entropy balance using Eq. (18.46e) produces

1Q2

Tb
+ 1 SPð Þ2 = m s2 − s1ð Þ

= m R ln
ð2πm/ħ2Þ3/2ðkT2Þ

p2

5/2

+ 5
2

" #( )
−R ln

ð2πm/ħ2Þ3/2ðkT1Þ5/2
p1

" #
+ 5

2

( ) !

Solving this equation for 1(SP)2 gives

1 SPð Þ2 = mR ln T2
T1

� �5/2 p1
p2

� �" #

= ð3:50 kgÞð0:0992 kJ/kg ⋅KÞln 485K
293:15K

� �5/2 0:101325MPa
10:0MPa

� �� 	
= −1:16 kJ

kg .K

Since 1(SP)2 is less than zero here, it violates the second law of thermodynamics and this process can not possibly occur.
Therefore, Superman has nothing to worry about.

Exercises
22. If Dorkmann in Example 18.8 increases the work input to the process from 100. kJ to 1000. kJ with all the other

variables unchanged, would the process work then? Answer: Possibly, because now 1(SP)2 = 0.160 kJ/kg ·K, which, being
positive, does not violate the second law of thermodynamics.
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23. Alternatively, Dorkmann in Example 18.8 might choose to lower the final compression pressure to 1.00 MPa. Would
the process work under this condition, if all the other variables remain unchanged? Answer: No, because now

1(SP)2 = −0.358 kJ/kg ·K, which, being negative, violates the second law of thermodynamics.
24. However, instead of choosing either of the alternatives proposed in Exercises 22 and 23, Dorkmann in Example 18.8, for

some unknown reason, chooses to change the gas from krypton to helium. Will his original process work with this new
gas? Answer: No, since now 1(SP)2 = −32.8 kJ/k ·K, which, being negative, violates the second law of thermodynamics.

18.12 DIATOMIC MAXWELL-BOLTZMANN GASES
For a diatomic Maxwell-Boltzmann gas, it can be shown that the translational partition function is the same as
that for a monatomic gas, Eq. (18.45). However, now, 2 rotational and 1 vibrational degrees of freedom are pre-
sent. In this case, the rotational and vibrational partition functions are

Zrot =
T
σΘr

(18.47)

and

Zvib = 1− expð−Θv/TÞ½ �−1 (18.48)

where σ is the rotational symmetry number (the number of axes about which the molecule can be rotated 180°
and be indistinguishable from the original configuration), Θr is called the characteristic rotational temperature, and
Θv is called the characteristic vibrational temperature. Tables 18.8 and 18.9 give values for Θr, Θv, and σ for various
substances. The various components to the resulting specific property equations then become

utrans =
3
2
RT (18.49a)

urot = RT (18.49b)

uvib = ðuoÞvib + RΘv

exp Θv/Tð Þ− 1½ � (18.49c)

Table 18.8 Characteristic Vibrational and Rotational Temperatures
of Some Common Diatomic Materials

Material ΘvðKÞ ΘrðKÞ
H2 6140 85.5

HF 5954 30.3

OH 5360 27.5

HCl 4300 15.3

CH 4100 20.7

N2 3340 2.86

HBr 3700 12.1

HI 3200 9.0

Co 3120 2.77

NO 2740 2.47

O2 2260 2.09

Cl2 810 0.35

Br2 470 0.12

I2 309 0.05

Na2 230 0.22

K2 140 0.08

Source: From Lee, John F., Sears, Francis W., Turcotte, Donald L. Statistical Thermodynamics, © 1963. Addison-
Wesley Publishing Co., Inc, Reading, MA. Adapted from Table 10-1 on page 204. Reprinted with permission.

18.12 Diatomic Maxwell-Boltzmann Gases 753



Thus,

u = utrans + urot + uvib = ðuoÞvib + 5
2
RT + RΘv

exp Θv/Tð Þ− 1½ � (18.49d)

where

ðuoÞvib = RΘv/2 (18.50)

is the vibrational energy at absolute zero temperature. Similarly,

htrans =
5
2
RT (18.51a)

hrot = urot = RT (18.51b)

hvib = uvib = ðuoÞvib +
RΘv

exp Θv/Tð Þ−1½ � (18.51c)

Thus,

h = htrans + hrot + hvib = ðuoÞvib + 7
2
RT + RΘv

exp Θv/Tð Þ−1½ � (18.51d)

Then, we can find

ðcvÞtrans = 3
2
R (18.52a)

ðcvÞrot = R (18.52b)

ðcvÞvib =
R Θv/Tð Þ2 exp Θv/Tð Þ½ �

exp Θv/Tð Þ−1½ �2 (18.52c)

Thus,

cv = ðcvÞtrans + ðcvÞrot + ðcvÞvib = 5
2
R+

R Θv/Tð Þ2 exp Θv/Tð Þ½ �
exp Θv/Tð Þ− 1½ �2 (18.52d)

Table 18.9 Rotational Symmetry Number for Some Simple Materials

Material σ

Any diatomic molecule with two different atoms (e.g., HCl, HI, or NO) 1

Any diatomic molecule with two identical atoms (e.g., H2, O2, or N2) 2

Any triatomic molecule with two different atoms forming an isosceles triangle (such as H2O) or any linear triatomic
molecule (e.g., CO2 or NO2,)

2

Any quatratomic molecule with two different atoms forming an equilateral triangular pyramid (e.g., NH3) 3

Any molecule forming a plane rectangle (e.g., C2H4) 4

Any pentatomic molecule with two different atoms forming a regular tetrahedron with the carbon atom at the center of
mass (e.g., CCl4 or CH4)

12

WHAT IS ABSOLUTE ZERO TEMPERATURE?

In the diatomic Maxwell-Boltzmann model, the concept of absolute zero temperature corresponds to the cessation of all
translational and rotational molecular motion, but vibrational motion is still allowed to occur. Thus, the internal energy
does not vanish at absolute zero temperature in this model.
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and

ðcpÞtrans = 5
2
R (18.53a)

ðcpÞrot = ðcvÞrot = R (18.53b)

ðcpÞvib = ðcvÞvib =
R Θv/Tð Þ2 exp Θv/Tð Þ½ �

exp Θv/Tð Þ−1½ �2 (18.53c)

Thus,

cp = ðcpÞtrans + ðcpÞrot + ðcpÞvib = 7
2
R+

R Θv/Tð Þ2 exp Θv/Tð Þ½ �
exp Θv/Tð Þ−1½ �2 (18.53d)

Finally,

strans = R ln
�
2πm/ħ2
� �3/2ðkTÞ5/2/p
+ 5

2

n o
(18.54a)

srot = R ln T/ðσΘrÞ½ �+1f g (18.54b)

svib = R ln
�
1− exp −Θv/Tð Þ
−1 + Θv/Tð Þ/ exp Θv/Tð Þ−1½ �

n o
(18.54c)

Thus,

s = strans + srot + svib

= R ln
�ð2πm/ħ2Þ3/2ðkTÞ5/2/p
+ 5

2

n o
+R ln T/ðσΘrÞ½ �+ 1f g

+R ln
�
1− exp −Θv/Tð Þ
−1 + Θv/Tð Þ/ exp Θv/Tð Þ−1½ �

n o (18.54d)

These equations produce reasonably accurate results for diatomic gases at moderate to high temperatures, as
illustrated by the following example.

EXAMPLE 18.9
To test the diatomic Maxwell-Boltzmann gas equations just developed, compute the value of cv/R for nitrous oxide (NO) at
20.0°C and compare it with the measured result given in Table 18.3.

Solution
For a diatomic Maxwell-Boltzmann gas, the constant volume specific heat is given by Eq. (18.52d) as

cv =
5
2
R+

RðΘv/TÞ2expðΘv/TÞ
½expðΘv/TÞ−1�2

then,

cv
R

= 5
2
+

ðΘv/TÞ2expðΘv/TÞ
½expðΘv/TÞ− 1�2

From Table 18.8, we find that Θv = 2740 K for NO, so,

cv
R

� �
NO

= 5
2

+

2740
20:0+273:15

� �2
exp 2740

20:0+273:15

� �
exp 2740

20:0+ 273:15

� �
− 1

� 	
2

= 2:51

as in Table 18.3. Note that, since RNO = Y/MNO = 8.3143/30.01 = 0.2771 kJ/kg ·K, then (cv)NO = 0.2771 × 2.51 = 0.695 kJ/kg ·K
at 20.0°C.

(Continued )
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EXAMPLE 18.9 (Continued )

Exercises
25. Determine the values of cv and the ratio of cv/R for the nitrous oxide in Example 18.9 at 2000. K. Answer: (cv)NO =

0.930 kJ/kg ·K and (cv/R)NO = 3.36.
26. Using Eqs. (18.51a–d), compute the values for the specific enthalpy and the ratio of h/R for the nitrous oxide in

Example 18.9 at 20.0°C. Answer: hNO = 948 kJ/kg (htrans = 203 kJ/kg, hrot = 81.2 kJ/kg, hvib = 664 kJ/kg), and
(h/R)NO = 3420 K.

27. Using Eqs. (18.54a–d), compute the values of the specific entropy and the ratio s/R for the nitrous oxide in Example
18.9 at 20.0°C and a pressure of 1 atm. Answer: sNO = 6.63 kJ/kg ·K (strans = 5.03 kJ/kg ·K, srot = 1.60 kJ/kg ·K,
svib = 0.0003 kJ/kg ·K) and (s/R)NO = 23.9.

18.13 POLYATOMIC MAXWELL-BOLTZMANN GASES
Polyatomic gases are divided into two categories of molecular geometry: linear and nonlinear. Linear polyatomic
molecules have only 2 degrees of rotational freedom, as in the case of diatomic molecules. However, they have
3b−5 degrees of vibrational freedom, where b is the number of atoms in the molecule. Therefore, the equations
used to calculate the translational and rotational contributions to the molecular energy are the same as those
used for the diatomic molecule (i.e., parts a and b of Eqs. (18.49), and (18.51) through (18.54)). The equations
for the vibrational contribution to the molecular energy of a linear polyatomic Maxwell-Boltzmann gas are

uvib = ðuoÞvib +R∑
3b−5

i=1

Θvi

exp Θvi/Tð Þ−1½ � (18.55a)

hvib = uvib = ðuoÞvib +R∑
3b−5

i=1

Θvi

exp Θvi/Tð Þ− 1½ � (18.55b)

ðcvÞvib = R∑
3b−5

i=1

Θvi/Tð Þ2 exp Θvi/Tð Þ½ �
exp Θvi/Tð Þ− 1½ �2 (18.55c)

ðcpÞvib = ðcvÞvib = R∑
3b−5

i=1

Θvi/Tð Þ2 exp Θvi/Tð Þ½ �
exp Θvi/Tð Þ−1½ �2 (18.55d)

and

svib = R∑
3b−5

i=1
ln 1− exp −Θvi/Tð Þ½ �−1 + Θvi/Tð Þ/ exp Θvi/Tð Þ− 1½ �� �

(18.55e)

where the vibrational internal energy at absolute zero temperature is now found from

ðuoÞvib = ∑
3b−5

i=1
RΘvi/2 (18.56)

since there are now 3b−5 characteristic vibrational temperatures Θvi.

EXAMPLE 18.10
Carbon dioxide is a linear triatomic molecule that has the following characteristic temperatures

Θr = 0:562K

Θv1 = 1932K

Θv2 = Θv3 = 960:K

Θv4 = 3380K
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Determine the specific internal energy, specific enthalpy, and specific entropy of CO2 at a temperature of 1000. K and a pressure
of 1.00 atm.

Solution
The mass of the CO2 molecule is

m = M/No = 44:01/6:023× 1026 = 7:31× 10−26 kg/molecule

and the gas constant for CO2 is

R = ℜ/M = 8:3143/44:01 = 0:1889KJ/ kg ⋅Kð Þ

Equation (18.56) gives the vibrational specific internal energy at absolute zero temperature as

uoð Þvib = 0:1889ð Þ 1932+ 960:+ 960:+ 3380ð Þ/2 = 683kJ/kg

and Eq. (18.55a) gives the vibrational component of the specific internal energy as

uvib = 683+ 0:1889ð Þf 1932ð Þ exp 1:932ð Þ−1½ �−1

+2 960:ð Þ exp 0:960:ð Þ−1½ �−1

+ 3380ð Þ exp 3:380ð Þ−1½ �−1g = 992kJ/kg

The translational and rotational components are given by Eqs. (18.49a) and (18.49b) as

utrans =
3
2
RT = 3

2
0:1889ð Þ 1000:ð Þ = 283:4 kJ/kg

urot = RT = 0:1889ð Þ 1000:ð Þ = 188:9 kJ/kg

Then,

u = utrans + urot + uvib = 283:4+188:9+ 992 = 1465 kJ/kg

The specific enthalpy is now given simply by

h = u+RT = 1465+ 0:1889ð Þ 1000:ð Þ = 1654 kJ/kg

The translational and rotational specific entropy values are calculated from Eqs. (18.54a) and (18.54b). First, we calculate

2πm/ħ2
� �3/2

kTð Þ5/2/p = 2π 7:31×10–26ð Þ/ 6:626× 10–34ð Þ2
h i3/2
× 1:38× 10–23ð Þ 1000ð Þ½ �5/2/101,325

= 2:36×108 per molecule

and then Eq. (18.54a) gives

strans = 0:1889ð Þ 1n 2:36×108
� �

+ 5
2

h i
= 4:11 kJ/ kg ⋅Kð Þ

and Eq. (18.54b) with σ = 2 from Table 18.9 gives

srot = ð0:1889Þ ln 1000/ 2ð Þð0:562Þ½ �+ 1f g = 1:47 kJ/ðkg ⋅KÞ
Equation (18.55e) is then used to find the vibrational component of the specific entropy as

svib = 0:1889ð Þf ln 1− exp −1:932ð Þ½ �−1 + 1:932ð Þ exp 1:932ð Þ−1½ �−1

+ ln l− exp − 0:960ð Þ½ �−1 + 0:960ð Þ exp 0:960ð Þ−1½ �− 1

+ ln l− exp −0:960ð Þ½ �−1 + 0:960ð Þ exp 0:960ð Þ−1½ �−1

+ ln l− exp − 3:380ð Þ½ �−1 + 3:380ð Þ exp 3:380ð Þ−1½ �−1

= 0:527 kJ/ kg ⋅Kð Þ
Then, the specific entropy is

s = strans + srot + svib = 4:11+1:47+0:527 = 6:11 kJ/ kg ⋅Kð Þ

(Continued )
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EXAMPLE 18.10 (Continued )

Exercises
28. Note that the only property of a polytropic Maxwell-Boltzmann gas that depends on pressure is entropy. Compute the

entropy for the carbon dioxide in Example 18.10 if the pressure is increased from 1.00 to 10.0 atm. Assume all other
variables remain unchanged. Answer: s = 5.68 kJ/kg ·K (strans = 3.68 kJ/kg ·K, srot = 1.47 kJ/kg ·K, svib = 0.528 kJ/kg ·K).

29. Recompute the specific internal energy, enthalpy, and entropy of the carbon dioxide in Example 18.10 when the
temperature is lowered from 1000. K to 300. K but the pressure remains constant at 1.00 atm. Answer: u = 841 kJ/kg
(utrans = 85.0 kJ/kg, urot = 56.7 kJ/kg, uvib = 699 kJ/kg); h = 898 kJ/kg; s = 4.86 kJ/kg ·K (strans = 3.55 kJ/kg ·K,
srot = 1.24 kJ/kg ·K, svib = 0.0694 kJ/kg ·K).

30. Determine the specific internal energy, enthalpy, and entropy of the carbon dioxide in Example 18.10 for a temperature
of 5000. K and a pressure of 0.100 atmosphere. Answer: u = 6190 kJ/kg (utrans = 1420 kJ/kg, urot = 945 kJ/kg, uvib =
3832 kJ/kg); h = 7138 kJ/kg; s = 8.72 kJ/kg ·K (strans = 5.31 kJ/kg ·K, srot = 1.78 kJ/kg ·K, svib = 1.64 kJ/kg ·K).

The nonlinear polyatomic molecule has 3 translational degrees of freedom, 3 rotational degrees of freedom, and
3b−6 degrees of vibrational freedom. Thus, it has the same equations for the translational molecular energy as
in the linear polyatomic case, but the rotational and vibrational contribution equations are different. In this
case,

urot = hrot =
3
2
RT (18.57a)

ðcvÞrot = ðcpÞrot = 3
2
R (18.57b)

srot = R ln T/ðσΘrÞ½ �+ 3
2

n o
(18.57c)

and

uvib = ðuoÞvib +R∑
3b−6

i=1
Θvi/ exp Θvi/Tð Þ−1½ � (18.58a)

hvib = uvib = ðuoÞvib +R∑
3b−6

i=1
Θvi/ exp Θvi/Tð Þ−1½ � (18.58b)

ðcvÞvib = R∑
3b−6

i=1
Θvi/Tð Þ2 exp Θvi/Tð Þ½ �/ exp Θvi/Tð Þ−1½ �2 (18.58c)

ðcpÞvib = ðcvÞvib +R∑
3b−6

i=1
Θvi/Tð Þ2 exp Θvi/Tð Þ½ �/ exp Θvi/Tð Þ−1½ �2 (18.58d)

and

svib = R∑
3b−6

i=1
ln 1− exp −Θvi/Tð Þ½ �−1 + Θvi/Tð Þ exp Θvi/Tð Þ−1½ �−1� �

(18.58e)

where the vibrational internal energy at absolute temperature is now found from

ðuoÞvib = ∑
3b−6

i=1
RΘvi/2 (18.59)

since the nonlinear polyatomic molecule has 3b−6 characteristic vibrational temperatures Θvi.

SUMMARY
The subject of statistical thermodynamics is inherently mathematically complex and conceptually difficult. It is
often the subject of an entire advanced engineering course, usually at the graduate level. The material presented
in this chapter is intended only as an introduction to this subject.
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In this chapter, we summarize the essential concepts of statistical thermodynamics and present them in a simple
enough manner to make the results useful. This subject is very effective when experimental data are not available
and values of various thermodynamic properties are needed to carry out an engineering analysis. The interested
reader is encouraged to fill in the various theoretical gaps in the material presented in this chapter by additional
reading in this area.

Some of the more important equations introduced in this chapter follow. Do not attempt to use them blindly
without understanding their limitations. Please refer to the text material where they were introduced to gain an
understanding of their use and limitations.

1. The collision frequency F and mean free path λ of a moving gas molecule in a volume V containing N
molecules are given by

F = σ Vrms
N
V

8
3π

� �1/2
λ = 1

ðN/VÞσ
where σ = 4πr2molecule is the collision cross-section.

2. The average, root mean square and most probable molecular velocities are given by

Vavg =

ffiffiffiffiffiffiffiffiffiffi
8kT
πm

,

r
Vrms =

ffiffiffiffiffiffiffiffi
3kT
m

r
,Vmp =

ffiffiffiffiffiffiffiffi
2kT
m

r
3. The fraction of molecules with velocities between V1 and V2 is given by

NðV1 ! V2Þ
N

= erfðx2Þ− erfðx1Þ− 2ffiffiffi
π

p ðx2e−x22 − x1e
−x21Þ

x1 = V1/Vmp, x2 = V2/Vmp

4. The compound probability that both independent events A and B will occur is given by

P A andBð Þ = PAB = PAPB

5. The probability that either event A or B will occur is given by

P Aor Bð Þ = PA +PB − PAB

6. The number of different ordered arrangements (permutations) of N things taken R at a time without
repetition is given by

PN
R = N!

ðN −RÞ!
7. The number of different ordered arrangements (permutations) of N things taken R at a time allowing

repetition is given by

PN
N = NR

8. The number of different unordered arrangements (combinations) of N things taken R at a time without
repetition is given by

CN
R =

PN
R

R!
= N!

ðN −RÞ!R!
9. The number of unordered arrangements (combinations) of N things taken R at a time allowing repetition is

given by

CN
R =

PN
R

R!
=

ðN +R−1Þ!
ðN −1Þ!R!

10. The number of permutations or combinations of N things, R1 of one kind, R2 of a second kind, … , and
Rk of a kth kind is given by

PN
R1,R2 ,…,Rk

= CN
R1,R2,…,Rk

= N!
R1!R2!R3!⋯, . . . ,Rk!
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11. The statistical thermodynamic equations for a monatomic Maxwell-Boltzmann gas are

u = 3
2
RT

h = u+RT = 5
2
RT

cv =
3
2
R

cp =
5
2
R

s = R ln ð2πm/ħ2Þ3/2ðkTÞ5/2/p
h i

+ 5
2

n o

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

Formonatomic gases only

12. The statistical thermodynamic equations for a diatomic Maxwell-Boltzmann gas are

u =
RΘv

2
+ 5
2
RT +

RΘv

exp Θv/Tð Þ−1½ �

h = RΘv

2
+ 7
2
RT + RΘv

exp Θv/Tð Þ−1½ �

s = R ln ð2πm/ħ2Þ3/2ðkTÞ5/2/p
h i

+ 5
2

n o
+R ln T/σΘrÞ½ �+1f g

+R ln 1− exp −Θv/Tð Þ½ �−1 + Θv/Tð Þ/ exp Θv/Tð Þ−1½ �� �
cv =

5
2
R+

R Θv/Tð Þ2 exp Θv/Tð Þ½ �
exp Θv/Tð Þ−1½ �2

cp =
7
2
R+

R Θv/Tð Þ2 exp Θv/Tð Þ½ �
exp Θv/Tð Þ−1½ �2

13. The statistical thermodynamic equations for a linear polyatomic Maxwell-Boltzmann gas molecule are

u = 5
2
RT +∑

3b−5

i=1

RΘvi

2
+R∑

3b−5

i=1

Θvi

exp Θvi/Tð Þ−1½ �

h = 7
2
RT +∑

3b−5

i=1

RΘvi

2
+R∑

3b−5

i=1

Θvi

exp Θvi/Tð Þ−1½ �

s = R ln
�ð2πm/ħ2Þ3/2ðkTÞ5/2/p
+ 5

2

n o
+R ln T/ðσΘrÞ½ �+1f g

+R∑
3b−5

i=1
ln 1− exp −Θvi/Tð Þ½ �−1 + Θvi/Tð Þ/ exp Θvi/Tð Þ−1½ �� �

svib = R∑
3b−5

i=1
ln 1− exp −Θvi/Tð Þ½ �−1 + Θvi/Tð Þ/ exp Θvi/Tð Þ−1½ �� �

14. The statistical thermodynamic equations for a nonlinear polyatomic Maxwell-Boltzmann gas molecule are
the same as those for a linear molecule except the upper limit of 3b−5 in the summations is replaced by
3b−6.

Problems (* indicates problems in SI units)
1. Determine the number of diatomic nitrogen (N2) molecules in

1 in3 at 70.0°F and a pressure of 1.00 × 10−10 mm of mercury
absolute (a very high vacuum).

2.* Determine the mean free path and the collision frequency of
diatomic nitrogen at 1000. K and 10.0 MPa. The effective radius
of the nitrogen molecule is 1.10 × 10−10 m.

3.* For 1010 bromine (Br2) molecules confined in a volume of
1.00 m3 at a pressure of 1.00 Pascal, assume ideal gas kinetic
theory behavior and determine
a. The temperature in the container.
b. The mean free path between collisions.
c. The collision frequency F :
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4. Find the temperature T at which Vmp = c (the velocity of light)
for the neon atoms discussed in Examples 18.2 and 18.3.

5.* Hydrogen (H2) at 3.00 MPa and 1000. K is confined in a
volume of 1.00 m3. Determine Vavg, Vrms, Vmp, and the collision
frequency F :

6.* Oxygen (O2) at 300. K and 1.00 atm pressure is confined in a
volume of 1.00 × 10−4 m3. Determine
a. The number of oxygen molecules present.
b. The average molecular velocity.
c. The rms molecular velocity.
d. The most probable molecular velocity.
e. The number of molecules with a velocity in the range of 0 to

10− 4 m/s:
f. The number of molecules with velocities greater than

106 m/s:
7. Using the following infinite series expansion

expð−x2Þ = 1− x2/1!+ x4/2!− x6/3!+ x8/4!−…

show that the equivalent expansion for the error function is

erf xð Þ = 2ffiffiffi
π

p x− x3

3ð1!Þ +
x5

5ð2!Þ −
x7

7ð3!Þ +
…

� �
8. Show that Eq. (18.26) can be written as

NðV ! ∞Þ
N

= 2ffiffiffi
π

p
Z ∞

x
e−x

2
dx+ xe−x

2

� �
where x = V/Vmp:

9. Show that if a≫ 1, thenZ ∞

a
e−x

2
dx≈ 1

2a
e−a

2

(Hint: Set x = a + y, then dx = dy and the integral over dy have
limits from 0 to ∞.)

10. Using the results from Problems 8 and 9, show that for x≫1,

NðV ! ∞Þ
N

= 2ffiffiffi
π

p x+ 1
2x

� �
e−x

2

11. Using the equations of kinetic theory, it can be shown that the
number of molecules per unit time that leak out of an
isothermal pressurized container of volume V through a small
hole of area A is

_N leak = N/Vð Þ A/4ð ÞVavg

Show that the pressure in the container then decays according to

p = p0 exp −AVavgt/4V
� �

where Vavg = 8kT/πmð Þ1/2, and p0 is the pressure in the container
at time t = 0.

12.* Using the information given in Problem 11 and the equations
of kinetic theory, calculate the mass rate of separation of the
isotope U235 from a gaseous mixture of U238 and U235 by
a molecular sieve. The sieve is a porous pipe 0.0300 m in
diameter and 2000. m long. The area of each pore is
2.60 × 10−19 m2, and there are 109 pores per meter of pipe
length. The internal sieve temperature is 1000. K, and the partial
pressure difference of the U235 across the sieve is 10.0 Pa.

13. The probability of failure of a space shuttle primary computer
system is 1.50 × 10−3. This computer system has a secondary

backup computer system with the same failure probability. What
is the probability of simultaneous failure of both the primary
and secondary computer systems?

14. An eight-cylinder engine has one bad spark plug. If the
mechanic removes two spark plugs at random, what is the
probability that the defective spark plug is found on the
first try?

15. A single die is tossed. What is the probability that it will come
up with a value greater than 4?

16. Two dice are tossed. Determine the probability that their sum
will be greater than (a) 2, (b) 4, (c) 6, (d) 8, and (e) 10.

17. Two cards are to be drawn from a standard deck of 52 cards.
Calculate the probability that these two cards are an ace and a
10, drawn in any order.

18. A coin is flipped twice. Determine the probability that only one
head results.

19. Two coins are flipped simultaneously. Determine the probability
that at least one is a head.

20. If three coins are simultaneously flipped, what is the probability
of getting (a) at least two heads and (b) exactly two heads.

21. Show that CN
R ≡CN

N−R for any N and R.
22. An electronic component is available from five suppliers. How

many different ways can two suppliers be chosen from the five
available?

23. How many different ten-digit phone numbers can be made from
the digits 0 through 9 if the first three digits must be 414?

24. How many different six-digit automobile license plates can be
made using only the digits 0 through 9 if the digits may be
repeated?

25. How many different nine-digit social security numbers can be
made if
a. No digit is allowed to be repeated.
b. The digits can be repeated.

26. How many different three-letter “words” can be made from the
26 letters of the English alphabet without regard to vowels if the
letters can be used more than once per word?

27. A component subassembly consists of five pieces which can be
assembled in any order. A production test is to be designed to
determine the minimum time required to assemble the
subassembly. If each sequence of assembly is to be tested once,
how many tests need to be conducted?

28. A person is shopping for a new car. One dealer offers a choice
of five body styles, four engine types, ten color combinations,
three transmissions, and three accessory packages. How many
different cars are there to choose from?

29. Determine the collision probability of the bromine molecules in
Problem 4.

30.* A typical galaxy occupies a volume of about 1.00 × 1061 m3

and contains 1.00 × 1011 stars, each with an effective radius of
1.00 × 109 m. Determine
a. The collision probability of two stars within the galaxy.
b. The number of stars that will have experienced a collision by

the time they have traveled a distance of 0.0100 mean free
paths.

31. Show that, for a Maxwell-Boltzmann gas, the total enthalpy H is
given by

H = −N∂ð lnZÞ/∂β+NkTV ∂ð lnZÞ/∂V½ �
where β = 1/kT and the pressure is p = NkT ∂ lnZ/∂Vð Þ:
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32. Compute the percent error in Stirling’s approximation,
lnN!≈N lnN −N, for the following values of N: (a) N = 5,
(b) N = 10, and (c) N = 50.

33.* Use the Maxwell-Boltzmann formulae for diatomic gases and
calculate the value of cp for molecular iodine I2 at 0.00°C.

34. Use the Maxwell-Boltzmann formulae for diatomic gases and
calculate the value of cp/R at 2000.°C for (a) hydrogen,
(b) carbon monoxide, and (c) oxygen. Use the characteristic
vibrational temperatures found in Table 18.8. Compare your
results with the values given in Table 18.3.

35. An experimentally determined relation for the temperature
dependence of the constant pressure specific heat of molecular
oxygen O2 over a wide temperature range is

cp = 0:3598+47:81/T − 5:406/
ffiffiffi
T

p

where cp is in Btu/ lbm.Rð Þ and T is in R. Use the Maxwell-
Boltzmann equations for a diatomic molecule and attempt to
predict the coefficients of the first two terms (i.e., 0.3598 and
47.81) of the equation. (Hint: At very high temperatures,
exp Θv/Tð Þ≈1+Θv/TÞ: Explain why your results may not be very
accurate.

36. Use the Maxwell-Boltzmann formulae for diatomic gases and
calculate the value of cp for water vapor at 400.°F and 1.00 psia.
The characteristic temperatures of H2O are Θr = 0.337 R,
Θv1= 4131 R, Θv2 = 9459 R, and Θv3 = 9720R:

37.* The experimentally measured value for cv/R for ammonia, NH3,
at 15.0°C is 3.42. Use the Maxwell-Boltzmann formulae for
nonlinear polyatomic gases to calculate the value of cv/R for
ammonia, then compute the percent error in your result. The
characteristic vibrational temperatures of ammonia are
Θv1 = 1367K, Θv2 = Θv3 = 2341K, Θv4 = 4801K, and
Θv5 = Θv6 = 4955K:

38.* The experimentally measured value for cv/R for methane, CH4,
at 300. K is 3.2553. Use the Maxwell-Boltzmann formulae for
nonlinear polyatomic gases to calculate the value of cv/R for
methane, and then compute the percent error in your result. The
characteristic vibrational temperatures of methane are
Θv1 = Θv2 = Θv3 = 1879K,Θv4 = Θv5 = 2207K,Θv6 = 4197K, and
Θv7 = Θv8 = Θv9 = 4344K:

39.* Calculate the specific entropy of HF at 0.00°C and atmospheric
pressure.

40.* Calculate the change in specific entropy as HCl gas is heated at
a constant pressure of 2.00 atm from 300. to 3000. K.

41. Determine the heat transfer required to heat 11.3 lbm of HBr
gas from 100. to 1000.°F in a closed, rigid, 1.50 ft3 container.

42.* Determine the power produced as 0.300 kg/s of HI passes
through a steady state, adiabatic turbine from 2000. K, at
50.0 atm, to 1000. K at 1.00 atm pressure.

43.* Determine the entropy production rate for the turbine in
Problem 42.

Design Problems
The following are open-ended design problems. The objective is to
carry out a preliminary design as indicated. A detailed design with
working drawings is not required unless otherwise specified by the
instructor. These problems have no specific answers, so each student’s
design is unique.

44. Design a heater that raises the temperature of diatomic chlorine
gas from 70°F to 2500°F without changing the pressure
significantly. Do not assume ideal gas behavior. Use Eqs.
(18.49a) through (18.54d) to calculate the necessary
thermodynamic properties of chlorine. Provide an assembly
drawing of your design along with all the relevant
thermodynamic and design calculations.

45. Design a flow meter that uses a measurement of one or more of
the thermodynamic u, h, or s to calculate the mass flow rate _m :

For example, we can construct an open system such that _m can
be calculated from _Q , h1, and h2 as _m = _Q /ðh2 − h1Þ: Provide an
assembly drawing of your design along with all the relevant
thermodynamic and design calculations.

46. Using the equation given in Problem 11, design an
instrument that determines the porosity of a small, square,
flat test sample of material. Be sure to explain how to
calculate the porosity from the measurements taken. If
possible, set up an experiment and test your technique with
samples of known porosity. Provide an assembly drawing of
your design along with all the relevant thermodynamic and
design calculations.

47. Design a spring-loaded throttling valve that isothermally
throttles 8:30 lbm/s of molecular bromine gas from 1000. psia,
70.0°F, to atmospheric pressure using choked flow conditions
(see Chapter 16). Provide an assembly drawing of your design
along with all the relevant thermodynamic and design
calculations.

48.* Design a system that increases the temperature of 0.350 kg of
diatomic sodium gas Na2 from 1500. K at 20.0 kPa to 3000. K
simply by compressing it by some mechanism in a closed
system. No auxiliary heaters or coolers may be used. Provide an
assembly drawing of your design along with all the relevant
thermodynamic and design calculations.

Computer Problems
The following open-ended computer problems are designed to be
done on a personal computer using a spreadsheet, equation solver,
or programming language.

49. Using the equations from the kinetic theory of gases, write an
interactive computer program that returns values for u, h, and s
when p, T, M, and b are input by the user from the keyboard.
Allow the user to choose either the English or the SI units
system for the input values, and output values in the same units
system.

50.* Using the data on NO given in Example 18.9, plot curves of cp
and cv for NO vs. temperature for 0≤T ≤5000K: Compute at
least 100 points for each curve.

51. Using the equations for the thermodynamic properties of
diatomic gases given in the text, write an interactive computer
program that returns values for u, h, and s when p and T are
input by the user from the keyboard for one or more
(instructor’s choice) of the gases listed in Table 18.8. Assume
u0 = 0, and allow the user to choose to work in either the
English or the SI units system. Output values in the same units
system that was chosen for input values.

52.* Using the appropriate equations from the text, plot k = cp/cv vs.
T for molecular oxygen over the range 0≤ T ≤ 5000K:
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CHAPTER 19

Introduction to Coupled Phenomena
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19.1 INTRODUCTION
Physical phenomena are generally considered independent of each other. However, phenomenon can become
coupled whenever the presence of one physical phenomenon induces one or more other physical phenomena
to occur simultaneously. For example, the heat transport of energy through a system can induce a flow of electri-
cal energy under certain circumstances; similarly, the flow of electrical energy can induce the flow of heat. This
particular coupling is called the thermoelectric effect. Since energy is always conserved, in this case, some of the
thermal energy is converted directly into electrical energy by an internal mechanism. The energy conversion effi-
ciency from thermal energy directly into electrical energy is normally quite low; however, the reverse energy con-
version process (from electrical to thermal energy) can be 100% efficient. Some of the more common types of
direct energy conversion coupled phenomena are shown later in Tables 19.1 and 19.2. Notice that most of these
couplings have been known for a very long time.

19.2 COUPLED PHENOMENA
Coupled phenomena have the potential for future technological utilization as important direct energy conver-
sion processes. Today, they are used mainly in sensors to produce low-level electrical signals that are propor-
tional to the magnitude of the other phenomenon present. For example, the thermoelectric effect is commonly
used to produce a voltage proportional to the local temperature that can be read by an instrument or a computer.
Such a device is called a thermocouple, and it is used as a temperature sensor.
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The reverse thermoelectric process is also possible. The application of a voltage to the leads of a thermocouple
produces a heating or a cooling of the thermocouple junction. Though not very energy efficient, thermoelectric
cooling is an important source of localized cooling in industries where space is a premium.

Some of the many known types of coupled phenomena and their uses are illustrated in Tables 19.1 and 19.2.

Nearly every energy conversion process has an efficiency of less than 100%, due to energy dissipation within the
system, resulting from the inherent irreversibilities of the energy conversion process. The overall energy conver-
sion efficiency is the product of all the individual energy conversion efficiencies within the system. For example,
the technology in use today for providing electrical energy in your home consists of the following series of
energy conversion processes.

Chemical Thermal Mechanical Electrical HomeUse
Energy ! Energy ! Energy ! Energy ! Energy ! Environment

ðCombustionÞ ðTurbineÞ ðGeneratorÞ ðAppliancesÞ

so that ηoverall = ηTηmηgηEηH, and since each η is less than 1.0 (100%), the overall η can be quite small. Conse-
quently, there is considerable interest today in developing direct energy conversion technologies whose efficien-
cies are competitive with those of the conventional chemical and nuclear multilevel indirect energy conversion
technologies.

To understand the analysis of coupled phenomena, we introduce the concept of entropy production per unit
time per unit volume. Because these terms have the form of an entropy production rate per unit volume, they
are more conveniently called entropy production rate densities, abbreviated EPRD for convenience.

EPRD=Entropy production rate density

Table 19.2 Some Common Types of Direct Energy Conversion Coupled Phenomena

Energy Conversion Type Common Name Discoverer
Approximate Maximum
Efficiency

Thermal to mechanical
(thermomechanical)

Heat engine Hero of Alexandria (~150 AD) ~60% (Carnot)

Chemical to electrical
(electrochemical)

Battery and fuel cell Volta (1800) and Davy (1802) 80–100%

Thermal to electric (thermoelectric) Thermocouple Seebeck (1821), Peltier (1834),
Kelvin (1854)

~10%

Photoelectric Becquerel (1839) ~25%

Thermopile Weston (1884) 35–50%
Thermionics Edison (1883) ~40%

Vacuum tube Richardson (1912) ~40%

Mechanical to electrical
(mechanoelectric)

MHD and EHD
Piezoelectric

Faraday (1831)
Curie (1883)

85–95%
10−30%

Thermal to kinetic energy Thermal ionization Saha (1920) ~10%

Chemical to mechanical
(mechanochemical)

Animal muscles Appears in nature ~25%

Potential energy to electrical energy Kelvin water dropper Kelvin (1860) ~50%

Chemical to thermal (thermochemical) Combustion Appears in nature ~100%

Table 19.1 Some Examples of Known Coupled Phenomena

Electrical Magnetic Mechanical

Thermoelectric Thermomagnetic Thermomechanical

Photoelectric Photomagnetic Mechanochemical

Electrokinetic Galvanomagnetic Thermoelastic

Electrostriction Magnetostriction Piezoelectric

Electroluminescence Gyromagnetic Mechanocaloric

Electro-optical Magneto-optical Piezo-optical

Electrorheologic Electromagnetic Triboelectric
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In Table 19.3 JE= I/A= the current (electron) flux. Note that each σ listed in Table 19.3 has the form

σ = JX = J
!. X

!
= eJ : eX (19.1)

where J, J
!
, eJ = generalized (scalar, vector, or tensor) energy transport flux, and X, X

!
, eX = generalized (scalar, vec-

tor, or tensor) energy transport driving force producing the flux.

Table 19.4 identifies the various flux and force terms associated with the entropy production rate density formu-
lae given in Table 19.3.

For any system containing a number of entropy production rate densities resulting from the simultaneous opera-
tion of a number of irreversible processes, the total EPRD is simply the sum of all the individual EPRDs present
within the system. Also, the second law of thermodynamics requires that the total EPRD be positive, so

σtotal = σQ + ðσWÞvis + ðσWÞelect + ðσmÞdiff +…>0 (19.2)

Using the generalized flux-force formulation, this can be written for m such densities as

σtotal = JQXQ + ðJWXWÞvis +… =∑
m

i=1
JiXi >0 (19.3)

19.3 LINEAR PHENOMENOLOGICAL EQUATIONS
We begin by postulating that all simultaneously occurring physical phenomena that can be coupled are coupled
to each other in some way. This is succinctly stated in the “coupling postulate.”

For example, consider a system that has two energy transport fluxes, J1 and J2, which result from two generalized
forces, X1 and X2. The coupling postulate states that

J1 = J1ðX1, X2Þ
and

J2 = J2ðX1, X2Þ
Expanding J1 about the “equilibrium” state X1= X2= 0 using a Taylor’s series gives

J1ðX1, X2Þ≃J1ð0, 0Þ+ ∂J1
∂X1

dX1 +
∂J2
∂X2

dX2 +higher order terms

Table 19.4 Generalized EPRD One-Dimensional Flux and Force Formulae

Entropy Production
Rate Density (σ)

Generalized Energy
Transport Flux (J )

Generalized Energy
Transport Force (X )

σQ _q = q!/A = heat flux vector − 1
T2

dT
dx

� �
σWð Þvis μ dV

dx

� �
1
T

dV
dx

� �
σWð Þelect JE = I/A = electron flux ρeJe

T
= − 1

T
dϕ
dx

� �
σmð Þdiff _Jix = mass flux of chemical

species i in the x direction
d
dx

μ̂i
T

� �

Table 19.3 Entropy Production Rate Density One-Dimensional and Three-Dimensional
Formulae

Entropy Production Rate Density Due To EPRD Formula

Heat transport of energy
σQ = −

_q
T2

� �
dT
dx

� �
= q!.∇! 1

T

� �
Viscous dissipation

σWð Þvis =
μ
T

dV
dx

� �2
= eτ: ∇!V

!

Electrical energy dissipation
σWð Þelect= ρeJ2E /T = −E

!. J
!
E /T

Diffusion of n dissimilar chemical species σmð Þdiff =∑
n

i=1

_Jix .
d
dx

�μ̂i
T

�
=∑

n

i=1

J
!
i .∇
! μi

T

� �
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Now J1(0, 0) = 0 (if there are no forces, there are no flows, or fluxes) and very near the equilibrium state of the
system, we can write

dX1 ≈ΔX1= X1 −0 = X1

and

dX2 ≈ΔX2= X2 −0 = X2

so that near equilibrium, we have

J1=
∂J1
∂X1

� �
X1 +

∂J1
∂X2

� �
X2 (19.5)

and, similarly,

J2=
∂J2
∂X1

� �
X1 +

∂J2
∂X2

� �
X2 (19.6)

Now, we define the “primary” coefficients, L11 and L22, as

L11 = ∂J1
∂X1

L22 = ∂J2
∂X2

and the “secondary” or “coupling” coefficients, L12 and L21, as

L12 = ∂J1
∂X2

L21 = ∂J2
∂X1

Then, Eqs. (19.5) and (19.6) become

J1 = L11X1 + L12X2 (19.7)

J2 = L21X1 + L22X2 (19.8)

or, in general,

Ji =∑
m

j=1
LijXj (19.9)

where the summation notation implies that the summation is to take place over all m fluxes and forces present
in the system.

THE COUPLING POSTULATE

All the generalized flows (Ji) are dependent on (or coupled to) all the generalized forces (Xi) present within the system.1

That is, a functional “coupling” relationship exists between all generalized fluxes and all generalized forces within a system
of the form

Ji = JiðX1, X2, X3, X4, …Þ (19.4)

1 This is limited by the Curie principle, which states that, in an isotropic system, the forces and fluxes must be of the same tensor rank before they can be
coupled.
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Equations (19.9) are called the linear phenomenological equations, because they resulted from a linearization of the
general coupling postulate relationship (Eq. (19.4)) via a Taylor’s series expansion around the equilibrium state
X1= X2= 0. These equations therefore are valid for systems that are only slightly nonequilibrium. Consequently,
the linear phenomenological equations have a limited range of usage, but they are sufficiently accurate to
explain many of the known coupled effects shown in Table 19.1.

In 1931, Lars Onsager (1903–1976) proved that the coupling coefficients, Lij, formed a symmetrical matrix and
established what is now called the reciprocity relationship for these coefficients as

Lij = Lji (19.10)

The total EPRD for a system near equilibrium is found by combining Eqs. (19.3), (19.9), and (19.10) to yield

σtotal =∑
m

i=1

JiXi =∑
m

i=1

∑
m

j=1

LijXjXi >0 (19.11)

where Lij= Lji.

19.4 THERMOELECTRIC COUPLING
Consider the simultaneous near equilibrium flow of thermal and electrical energy in a system. Then, Eq. (19.3)
for the total EPRD is

σtotal = JQXQ + JEXE

where the fluxes JQ, JE and the forces XQ, XE are defined in Table 19.4. Also, Eq. (19.9) gives

JQ = LQQXQ + LQEXE (19.12)

and

JE = LEQXQ + LEEXE (19.13)

Equation (19.11) then becomes

σtotal = LQQXQ + LQEXQXE + LEQXQXE + LEEXE

and combining this with Onsager’s reciprocity relationship, LEQ= LQE, gives

σtotal = LQQXQ +2LQEXEXQ + LEEXE >0 (19.14)

Equation (19.12) explains how a heat flow JQ can occur even without the presence of a temperature difference
(XQ = 0), if the coupling coefficient LQE is nonzero and a voltage source XE exists within the system. Similarly,
Eq. (19.13) illustrates how a flow of electrical energy JE can exist with no apparent voltage source (XE = 0),
when heat transport occurs JQ with a nonzero coupling coefficient LEQ. Considerable thermoelectric technology
has developed around this simple coupled effect.

Thermoelectric heaters, coolers, and temperature measurement instruments (thermocouples) are common
devices today. To fully understand and utilize thermoelectric coupling, we must evaluate the primary (LQQ, LEE)
and secondary or coupling (LEQ= LQE) coefficients for any given system. Historically, many of the thermoelectric
coupling effects were discovered empirically by individuals long before an accurate thermodynamic understand-
ing of this phenomenon was known. These effects were originally thought to be independent phenomena and
had no adequate explanation. The important empirical thermoelectric discoveries occurred as follows.

19.4.1 The Seebeck Effect2
Heating one junction of a bimetallic (or semiconductor) closed circuit while simultaneously cooling the other
junction produces a flow of current in the circuit without an apparent voltage source being present. If two such
materials are joined at a single junction to produce an open circuit, then heating or cooling that junction pro-
duces an electrical potential (voltage) difference across the circuit that is directly proportional to the temperature
of the junction (see Figure 19.1).

2 Discovered in 1821 by the German physicist Thomas Johann Seebeck (1770–1831). It occurs because the free electron densities of
certain materials (metals and semiconductors) differ from one another at a given temperature. When two such materials are joined,
their junction appears as a voltage source due to electrons diffusing down the electron concentration gradient at the junction.

19.4 Thermoelectric Coupling 767



This early discovery gave rise to the relative Seebeck coefficient, αAB,
defined as (see Figure 19.2).

σAB = − lim
ΔT!0

ϕA −ϕB

ΔT

� �����
I=0

= −
dϕAB

dT

����
I=0

(19.15)

where ϕAB is the potential difference (known as the Seebeck voltage),
ϕA − ϕB. Thus, αAB is simply the negative value of the slope of the open
circuit voltage-temperature relationship for the pair of conductors. The
sign convention usually adopted for αAB is as follows. If the current flow
in conductor A is from the cooler junction (TC) to the hotter junction
(TH), then αAB is positive (see Figure 19.2). Both the terminals across
which ϕAB is measured must be at the same temperature, as shown in
Figure 19.1b, or else additional Seebeck voltages are generated at these
terminals.

A positive value for αAB corresponds to current flowing from TC to TH in
conductor A, and from TH to TC in conductor B. Also, it is possible to
assign “absolute” Seebeck coefficients to the pure conductors, αA and αB,
defined from

αAB = αA − αB

since a superconducting material below its transition temperature (i.e.,
where it becomes superconducting) has no measurable thermoelectric

effect (αS= 0). We can determine the absolute Seebeck coefficient of any material, say A, by joining it to a super-
conductor and measuring the resultant open circuit voltage-temperature slope.3 Then,

−
dϕAB

dT

����
I=0

= αAS = αA − αS = αA − 0 = αA

and once we know the absolute Seebeck coefficient for any one material, that material can be used as a reference
material (αR) to determine the absolute Seebeck coefficients of other materials as

αB = αBR + αR

Finally, we can easily determine a relationship between relative Seebeck coefficients as

αAB = αA − αB = ðαA − αCÞ− ðαB − αCÞ = αAC − αBC

19.4.2 The Peltier Effect4
Passing a current I through an isothermal bimetallic (or semiconductor) closed circuit causes heat absorption at
one junction and heat release at the other junction (see Figure 19.3).

Voltage
=φA − φB

φA> φB
and αAB> 0Current IV

Metal A

Metal B

Junction

Heat

φA

φB

FIGURE 19.2
The sign convention for the Seebeck coefficient, αAB.

Voltage

Metal A

Metal B

Junction

Heat

V

−

+

FIGURE 19.1
A schematic of the Seebeck effect.

Conductor A

Conductor B

Current I

TC

Peltier
heat

absorption
(cooling)

Peltier
heat

release
(heating)TH

FIGURE 19.3
A schematic of the Peltier effect.

3 This technique works only at very low temperatures (below 18 K). Other techniques are used at higher temperatures.
4 Discovered in 1834 by the French watchmaker turned physicist Jean Charles Athanase Peltier (1785–1845).
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This discovery was originally thought to be independent of the Seebeck effect and gave rise to a new parameter
called the relative Peltier coefficient, πAB, defined as

πAB = πA − πB =
_QP

I
(19.16)

where _QP is the Peltier heating or cooling rate, and πA and πB are the absolute Peltier coefficients for the pure
conductors. Later (see Eq. (19.33)), it was discovered that the Peltier and Seebeck coefficients are related by
πAB = TαAB (or πA= TαA), where T is the absolute temperature of the junction.

19.4.3 The Kelvin Effect5
When an electric current passes through a single homogeneous conductor along which a temperature difference
exists, heating or cooling of the conductor occurs, depending on the direction of the current flow relative to the
temperature difference (see Figure 19.4).

The Kelvin effect can be demonstrated by heating the center of a uniform wire while cooling its ends and pas-
sing a current through it. If we measure the temperatures at two points, A and B, equidistant from the center,
we find that TA ≠ TB. The electrical current has disturbed the temperature profile in the wire. This effect gave rise
to the Kelvin coefficient, τ, defined as

τ = lim
ΔT!0

_QK

IðΔTÞ =
_qK′

JEðdT/dXÞ (19.17)

where _qK′ is the Kelvin heating or cooling rate per unit volume, and JE = I/A is the electrical current density (or
electron flux). It can be shown that the Kelvin coefficient is related to the absolute Seebeck coefficient by
τ = −Tðdα/dTÞ, where T is the absolute temperature of the junction. For a thermocouple with conductors A and
B, the difference in the Kelvin coefficients for the two conductors is

τA − τB = τAB = −T d
dT

ðαA − αBÞ = −T dαAB
dT

19.4.4 The Fourier Effect6
A temperature difference in a homogeneous conductor produces a heat flow in the direction of decreasing tem-
perature (see Figure 19.5).

TC TA TH TB

Cool

Current I

Heat
Uniform conductor

TC < TH

FIGURE 19.4
A schematic of the Kelvin effect.

TH TC < TH

Heat outHeat in

x Area, A

FIGURE 19.5
A schematic of the Fourier effect.

5 Discovered in 1854 by the Irish mathematician, physicist, and engineer William Thomson (Lord Kelvin) (1824–1907).
6 Discovered in 1822 by the French mathematician Jean Baptiste Joseph Fourier (1768–1830).
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This effect gave rise to Fourier’s law of heat conduction,

_QF = −ktA
dT
dx

� �
(19.18)

or

_qF =
_QF

A
= −kt

dT
dx

� �
where _QF is the Fourier heat transfer rate, _qF is the Fourier heat flux, and kt is the Fourier coefficient (known
today as the thermal conductivity).

19.4.5 The Joule Effect7
An electrical current passing through a homogeneous isothermal conductor produces an internal heating of the
conductor which is independent of the direction of current flow (see Figure 19.6).

This effect gave rise to the Joule heating formula

_QJ = kJI
2Re (19.19)

or

_qJ = kJI2Re/A

where _QJ is the Joule heating rate, _qF is the Joule heat flux, Re is the electrical resistivity of the conductor, and kJ
is the Joule coefficient,

kJ = 778:17 ft .lbf/Btu = 0:293W .h/Btu = 1WLs/joule

Today kJ is recognized as being merely a units conversion factor and it is not normally written in the equation.
Therefore, from now on we write Eq. (19.19) simply as

_QJ = I2Re (19.20)

19.4.6 The Ohm Effect8
When an electrical current is passed through a homogeneous isothermal conductor, a voltage drop occurs in the
direction of current flow (see Figure 19.7).

This effect gave rise to Ohm’s law,

ϕ1 −ϕ2 = ReI (19.21)

where Re is Ohm’s coefficient, today called the electrical resistance of the
conductor.

All six of these effects occur simultaneously when thermal and electrical
energy simultaneously flow through a system. It should be apparent by now
that it is easier to comprehend thermoelectric effects through the coupling
Eqs. (19.12) and (19.13) than to master the six interrelated effects just dis-
cussed. However, these six effects are now an integral part of our engineering
jargon and technical literature, and they cannot be dispensed with so easily.
Therefore, we develop formulae for the thermoelectric primary and secondary
coefficients in terms of the coefficients of the six empirically discovered ther-
moelectric effects discussed. This provides continuity between the old and
the new interpretations of thermoelectricity.

Since the primary electrical coefficient LEE is the easiest to deal with, we begin
with it. Primary coefficients result from noncoupled phenomena, and pure
electrical effects are described by Ohm’s law. Ohm’s law can be cast into a
number of forms; for example,

ϕ1 −ϕ2 = ReI = IðρeL/AÞ = ρeðI/AÞL = ρeJEL

T TCurrent

Internal conductor
heating causes a heat
loss for an isothermal

conductor

FIGURE 19.6
A schematic of the Joule effect.

T = constant
φ1 φ2 < φ1

Current I

FIGURE 19.7
A schematic of the Ohm effect.

7 Discovered in 1841 by the English physicist James Prescott Joule (1818–1889).
8 Discovered in 1827 by the German physicist Georg Simon Ohm (1787–1854).
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where Re= ρeL/A is the electrical resistance, ρe is the electrical resistivity, L is the length of the conductor, A is the
cross-sectional area of the conductor, and JE= I/A is the electron flux in the conductor. Now, let

ϕ1 −ϕ2

L
= −

ϕ2 −ϕ1

L

� �
= − dϕ

dx
= ρeJE

and let the electrical conductivity ke be defined as

ke = 1/ρe

then we can rearrange Ohm’s law as

JE = I/A = − ke
dϕ
dx

� �
(19.22)

For purely electrical effects (no thermal effects, i.e., no temperature differences), Eq. (19.13) reduces to

JE
��
T¼constant = LEEXE

and Table 19.4 gives

XE = − 1
T

dϕ
dx

� �
Combining these equations produces

JE
��
T¼constant

= − LEE
T

dϕ
dx

� �
= −ke

dϕ
dx

� �
consequently, we find that

LEE = Tke = T/ρe (19.23)

The next easiest term to deal with is the coupling coefficient (LEQ = LQE), because it is simply related to the
Seebeck coefficient.9 The absolute Seebeck coefficient α is defined as

α = − dϕ
dT

����
I=0

= − dϕ
dT

����
JE=0

Equation (19.13) then gives, for zero current flow,

LE = LEQXQ + LEEXE = 0

and introducing the formula for XQ and XE from Table 19.4 provides

LEQ − 1
T2

dT
dx

� �����
I=0

+ LEE − 1
T

dϕ
dx

� �����
I=0

= 0

or

dϕ/dx
dTdx

� �����
I=0

=
dϕ
dT

����
I=0

= −
LEQ
TLEE

= −α (19.24)

So that

LEQ = LQE = αTLEE

and introducing LEE from Eq. (19.23) gives the coupling coefficient as

LEQ = LQE = αT2ke = αT2/ρe (19.25)

Combining Eqs. (19.12) and (19.13) with XQ= dT/dx= 0 (i.e., isothermal conditions) gives

JQ
JE

����
T=constant

=
LQE

LEE
=

_Qi

T
(19.26)

9 The phenomenological coefficients have been developed in terms of the Seebeck coefficient, because it is the easiest thermoelectric
coefficient to measure.

19.4 Thermoelectric Coupling 771



where _Qi is the isothermal heat transport rate “induced” by the presence of the electrical current I. From
Eqs. (19.24) and (19.26), we see that

α =
_Qi

IT
=

_Si
I

(19.27)

where _Si = _Qi/T is the isothermal entropy transport rate “induced” by the presence of the electrical current I.
This is the entropy transport rate due to the flow of electrons in the conductor.10

Fourier’s law represents pure thermal effects, but it is somewhat more difficult to interpret since it corresponds
to a condition of zero electron flow (JE= 0) but not necessarily a zero voltage difference. From Eq. (19.13) with
JE = 0, we find that

XE = −
LEQ
LEE

XQ

then, Eq. (19.12) gives

JQ
��
JE=0 = LQQXQ + LQE −

LEQ
LEE

� �
XQ =

LQQLEE − LQE
2

LEE

� �
XQ

where we use Onsager’s reciprocity relationship, LEQ= LQE. Now, by definition,

JQ
��
JE=0 =

_QF

A
= _qF

and Table 19.4 gives

XQ = 1
T2

dT
dx

� �
so

JQ
��
JE=0 = _qF = −kt

dT
dx

� �
= −

LQQLEE − LQE
2

LEET2

� �
dT
dx

� �
consequently,

kt =
LQQLEE − L2QE

LEET2 (19.28)

Therefore, the thermal conductivity of a substance is not a simple quantity. It is composed of all three pheno-
menological coefficients combined with the inverse of the absolute temperature squared. Substituting the formu-
lae for LEE and LQE from Eqs. (19.23) and (19.25) into Eq. (19.28) and solving for the remaining coefficient,
LQQ, gives

LQQ = T2ðkt + α2TkeÞ (19.29)

Substituting Eqs. (19.23), (19.25), and (19.29) along with the formulae for XQ and XE from Table 19.4 into
Eqs. (19.12) and (19.13) produces the linear phenomenological equations (in terms of the pure conductor
Seebeck coefficient) as

JQ= −ðkt + α2TkeÞ dT
dx

� �
− αTke

dϕ
dx

� �
(19.30)

and

JE = −ke
dϕ
dx

� �
− αke

dT
dx

� �
(19.31)

Also, substitution into the thermoelectric total EPRD formula of Eq. (19.14) gives

σthermoelectric =
1
T2

ðkt + α2TkeÞ dT
dx

� �
+ αTke

dϕ
dx

� �� 	
dT
dx

� �
+ 1

T
ke

dϕ
dx

� �
+ αke

dT
dx

� �� 	
dϕ
dx

� �
>0 (19.32)

10 Curiously, though work mode transport of energy cannot produce a direct entropy transport, it can induce a secondary entropy
transport.
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The Peltier and Kelvin coefficients are not independent from the Seebeck coefficient, so they need not be
introduced into the phenomenological coefficients. For example, the Peltier heat _QP is the heat transfer rate that
occurs when there is no temperature difference, dT/dx= 0= XQ. Therefore, from Eq. (19.12),

JQ
��
XQ=0 =

_QP

A
= _qP = LQEXE

or

_QP = AðαT2keÞ − 1
T

dϕ
dx

� �
= −αATke

dϕ
dx

� �
Also, from Eq. (19.13),

JE
��
XQ=0 = I/A = LEEXE

or

I = ATke − 1
T

dϕ
dx

� �
= −Ake

dϕ
dx

� �
Then, the Peltier coefficient π given in Eq. (19.16) becomes

π =
_QP

I
= αT (19.33)

Thus, the Seebeck and Peltier coefficients for a pure conductor are directly related by Eq. (19.33).

EXAMPLE 19.1
A 0.0100 m diameter copper bus bar is maintained at a constant temperature of 20.0°C and is subjected to a voltage gradi-
ent of 1.00 V/m. Determine the Peltier heat flow, _QP . The Seebeck coefficient for the copper is αcu = 3.50 × 10−6 V/K, and its
resistivity is ρe= 5.00 × 10−9 ohm meters.

Solution
The Peltier heat flow is given by Eq. (19.33) as

_QP = πI = ðαTÞI
where

I = AJE = A
ρe

− dϕ
dx

� �
Here, −dϕ/dx= voltage gradient= 1.00 V/m, so

I =
ðπ/4Þð0:0100mÞ2ð1:00V/mÞ

5:00×10−9Ω gm
= 1:57× 104 V/Ω = 1:57×104 A

Then

_QP = ð3:50×10−6 V/KÞð20, 0+273:16KÞð1:57× 104 AÞ = 16:2V .A ¼ 16:2W

EXAMPLE 19.2
The open circuit voltage of an iron-copper thermocouple is approximately given by

ϕfe-cu = ð−13:4 T + 0:014T2 +0:00013T3Þ×10−6 V

where T is in °C, not K. At 100.°C, determine

a. The relative Seebeck coefficient αfe-cu.
b. The relative Peltier coefficient πfe-cu.

(Continued )
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EXAMPLE 19.2 (Continued )

Solution
a. From Eq. (19.15), we have that

αfe-cu = −
dϕfe�cu

dT

����
I=0

Thus,

αfe-cu = −ð−13:4+0:028T +0:00039T2Þ× 10−6 V/K

where T is in °C not K. At T= 100.°C, this becomes

αfe-cuð100:°CÞ = 6:70× 10−6 V/K

b. From Eq. (19.33) we have11

πfe-cu = Tαfe-cu = ð100:+ 273:15KÞð6:70× 10−6 V/KÞ = 2:50×10−3 V

11 Note that, even though most of the temperature to voltage correlations published for thermocouples are written in terms of relative temperature units
(°C or °F), the multiplying temperature factor T in the Peltier and Kelvin coefficient equations is always in absolute units (K or R).

The following example illustrates the thermoelectric effect used in a temperature measurement circuit. Note par-
ticularly the result obtained in part c, where the effect of connecting the thermocouple wires to a remote instru-
ment using standard copper lead wires is investigated.

EXAMPLE 19.3
The chromel-alumel thermocouple circuit shown below has its cold junction at 0°C and its hot junction at 100.°C. Assum-
ing that the absolute Seebeck coefficients αch = 23.0 × 10−6 V/K and αal= −18.0 × 10−6 V/K are constant over this tempera-
ture range, determine

a. The open circuit thermoelectric (Seebeck) voltage for the chromel-alumel portion of the circuit.
b. The absolute and relative Peltier coefficients for each chromel-alumel junction.
c. The influence of the copper lead wires on the potentiometer voltage reading for the lead wire junction temperatures

shown in Figure 19.8.

20°C20°C

100°C0°C

25°C 25°C
b e

c d

a f

Chromel

Alumel Alumel

Copper

Potentiometer

FIGURE 19.8
Example 19.3.

Solution
a. The relative Seebeck coefficient for the chromel-alumel circuit is

αch-al = αch −αal = ½23:0− ð−18:0Þ�× 10−6 V/K = 41:0×10−6 V/K

and for a constant αch-al, Eq. (19.15) can be integrated to give

−ϕch-al = αch-alðTH −TCÞ = ð41:0× 10−6 V/KÞð100:−0KÞ = 4:1× 10−3 V = ϕal-ch

(note that ϕal-ch=−ϕch-al).
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b. The absolute Peltier coefficients at each junction are given by Eq. (19.33) as πch = αchT and πal = αalT, and we can
compute πch-al = πch − πal: At the 0.00°C= 273.15 K junction,

πch = ð23:0× 10−6 V/KÞð273:15KÞ = 6:28× 10−3 V

πal = ð−18:0× 10−6 V/KÞð273:15KÞ = −4:91×10−3 V

and

πch-al = ½6:28− ð−4:91Þ�×10−3 V = 11:2×10−2 V

At the 100.°C= 373.15 K junction,

πch = ð23:0× 10−6 V/KÞð373:15KÞ = 8:58× 10−3 V

πal = ð−18:0×10−6 V/KÞð373:15KÞ = −6:71× 10−3 V

and

πch-al = ½8:58− ð−6:71Þ�× 10−3 V = 15:3× 10−3 V

c. To determine the influence of the copper lead wires, we use Eq. (19.15) for the complete cu-al-ch-al-cu circuit connected
to the potentiometer. Using the junction notation shown in Figure 19.8, the potentiometer reading is ϕaf= ϕa − ϕf. We
can move around the circuit to evaluate this reading as

ϕa −ϕf = ðϕa −ϕbÞ+ ðϕb −ϕcÞ+ ðϕc −ϕdÞ+ ðϕd −ϕeÞ+ ðϕe −ϕf Þ

where

ϕa −ϕb = −
ZTa

Tb

αcudT =
ZTb
Ta

αcudT

ϕb −ϕc = −
ZTc
Tb

αaldT

ϕc −ϕd = −
ZTd
Tc

αchdT

ϕd −ϕe = −
ZTe
Te

αaldT

and

ϕe −ϕf = −
ZTf
Te

αcudT

Now, the contribution of the copper lead wires is

Δϕcu = ϕa −ϕb +ϕe −ϕf =
ZTb
Ta

αcudT +
ZTf
Te

αcudT

and if, as the circuit diagram shows, Ta = Tf and Tb= Te, then the influence of the copper leads is

Δϕcu =
ZTb
Ta

αcudT +
ZTa
Tb

αcudT =
ZTb
Ta

αcudT + −
ZTb
Ta

αcudT

0B@
1CA= 0

(Continued )
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EXAMPLE 19.3 (Continued )

Thus, if the copper lead wires have the same end point junction temperatures, then they do not contribute any net
Seebeck voltage to the circuit. Adding up all the potential differences around the circuit and using Ta= Tf and Tb= Te
gives

Δϕaf =
ZTb
Ta

αcudT +
ZTa
Tb

αcudT +
ZTc
Tb

αaldT +
ZTd
Tc

αchdT +
ZTb

Td

αaldT

Now,

ZTc
Tb

αaldT +
ZTb
Td

αaldT =
ZTc
Td

αEdT = −
ZTd
Tc

αaldT

so

ϕaf =
ZTd
Tc

ðαch −αEÞdT =
ZTd
Tc

ðαch-alÞdT = αch-alðTd − TcÞ

Consequently, the potentiometer measures the chromal-alumel thermoelectric effects only so long as all the lead wires
have equal junction temperatures.

19.5 THERMOMECHANICAL COUPLING
In this section, we investigate the open system coupling phenomena resulting from the coupling of simulta-
neous heat transfer and mass flow. This type of coupling is commonly called the thermomechanical effect.

In 1873, W. Feddersen reported having observed a flow of air through a porous plug brought about by only a
temperature difference on the opposite sides of the plug. There was no pressure drop across the plug, yet there
was a flow of air. We call the phenomenon of fluid flow induced by the presence of a temperature difference
rather than a pressure difference thermal osmosis.12 This effect has been observed in both gases and liquids.

In 1939, J. G. Daunt and K. Mendelssohn reported observing isothermal heat transfer caused by only a pressure
difference in a fluid. This is the reciprocal of the thermal osmosis effect and is often called the mechanocaloric
effect.

The thermal osmosis and mechanocaloric effects are secondary or coupled effects induced by the primary effects
of Fourier conduction heat transfer and Darcy-Weisbach pressure-driven mass flow. In thermomechanical sys-
tems, the fluxes are

1. Heat flux: JQ = _Q /A = _q
2. Mass flux: JM = _m /A = ρV , where ρ is the local density and V is the local velocity of the moving fluid. The

generalized forces are

Temperature gradient: XQ = − 1
T2

dT
dx

� �
Pressure gradient: XM = − v

T
dp
dx

� �
where v is the local specific volume of the moving fluid. Then, for near equilibrium conditions, Eq. (19.9)
gives the coupled heat and mass flux equations as

JQ = −
LQQ

T2
dT
dx

� �
−

vLQM

T
dp
dx

� �
(19.34)

and

JM = −
LQQ

T2
dT
dx

� �
− vLMM

T
dp
dx

� �
(19.35)

12 This phenomenon is also known as Knudsen effect and the fountain effect in the literature.
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Under isothermal conditions (dT= 0), Eq. (19.34) gives

JQ
��
T¼constant = −

vLQM

T
dp
dx

� �
(19.36)

This equation describes the mechanocaloric effect, which is usually modeled after Fourier’s law as

JQ
��
T¼constant = − ko

dp
dx

� �
(19.37)

where ko is an empirical material constant called the osmotic heat conductivity coefficient. Comparing Eqs. (19.36)
and (19.37), using Onsager’s reciprocity relation and ρ= 1/v, we see that

LQM = Tko/v = ρTko = LMQ (19.38)

Similarly, the mass flux under isothermal conditions (dT= 0) is given by Eq. (19.35) as

JM
��
T¼constant =

vLMM

T
dp
dx

� �
(19.39)

Now, two flow models can be used to interpret this equation. The first was formulated empirically in 1856 by
the French hydraulic engineer Henri Philibert Gaspard Darcy (1803–1858) for flow through porous media.
Appropriately called Darcy’s law, it states that the bulk fluid velocity in a porous material is given by

V = −
kp
μ

dp
dx

� �
(19.40)

where μ is the fluid viscosity and kp is called the permeability of the porous material.13 Comparing Eqs. (19.39)
and (19.40) and introducing the mass flux definition along with the relation ρ= 1/v produces

JM
��
T¼constant = ρV = −

ρkp
μ

dp
dx

� �
= − vLMM

T
dp
dx

� �
(19.41)

from which it is clear that the mass flow primary coefficient LMM is

LMM = ρ2Tkp/μ (19.42)

The other flow model that can be used in Eq. (19.39) was developed for flow through a circular tube and
is called the Darcy-Weisbach equation after Henri Darcy and the German engineer Julius Ludwig Weisbach
(1806–1871). In this model, the isothermal mass flux is given by

JM
��
T=constant = ρV = −

2Dgc
f V

dp
dx

� �
(19.43)

where D is the tube diameter and f is an empirically determined “friction factor.” The value of f can be found
in most fluid mechanics textbooks from a generalized curve of f versus the dimensionless Reynolds number,
ρVD/μ. It can be shown that, if the flow is laminar (ρVD/μ < 2000), then

JM
��
T¼constant = ρV = − ρD

2

32μ
dp
dx

� �
(19.44)

By comparing Eqs. (19.41) and (19.44), we see that these equations are similar and they become identical when
we define the effective permeability of a circular tube as

kp = D2/32 (19.45)

Thus, for very slow flow through a circular tube, we can write

LMM =
TðρDÞ2
32μ

(19.46)

Finally, combining Eqs. (19.34) and (19.35) to eliminate the term (v/T)(dp/dx) gives

JQ = −
LQQLMM − LQM

2

LMMT2

� �
dp
dx

� �
−

LQM

T
JM (19.47)

13 The common unit of measure of permeability is the darcy, which has the rather awkward definition of 1 darcy being the
permeability that allows the flow of 1 cm3/s of fluid with a pressure gradient of 1 atm/cm. The darcy is not an SI unit. The SI unit for
permeability is m2, where 1 darcy = 10−12 m2.
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and, when JM = 0, we get a situation of pure thermal conduction, which is described by Fourier’s law,
Eq. (19.18), as

JQ = _qF = _QF/A = − kt
dT
dx

� �
where kt is the thermal conductivity of the fluid. Setting JM = 0 in Eq. (19.47) and using Eq. (19.18) to solve for
LQQ gives

LQQ = ktT2 + L2QM/LMM

Using the results from Eqs. (19.38) and (19.42) for LQM and LMM in this equation produces

LQQ = ktT2 +Tμk2o/kp (19.48)

Substituting the formula for LQQ, LQM= LMQ, and LMM back into Eqs. (19.34) and (19.35) gives the final formula
for the coupled fluxes as

JQ = − kt +
μk2o
Tkp

� 	
dT
dx

� �
− ko

dp
dx

� �
(19.49)

and

JM = − ρko
T

dT
dx

� �
−
ρkp
μ

dp
dx

� �
(19.50)

Substituting these results into the total EPRD formula of Eq. (19.14) gives

σthermomechanical = kt +
μko
Tkp

� 	
1
T

dT
dx

� �2
+ 2ko

T2
dT
dx

� � dp
dx

� �
+

kp
μT

� �
dp
dx

� �2
(19.51)

When the system has reached a steady state condition with JM = 0, then Eq. (19.50) shows us that the pressures
and temperatures are coupled, so that

dp/dx
dT/dx

� �����
JM=0

=
dp
dT

� �����
JM=0

= − μko
Tkp

(19.52)

Here, dp is the pressure change “induced” by the temperature change dT under the condition of zero mass flow
rate. It is called the thermomolecular pressure difference.

Similarly, when the system has reached a steady state condition with JQ= 0, Eq. (19.49) gives

dp
dT

� �����
JQ=0

= − kt
ko

− μko
Tkp

= − kt
ko

+
dp
dT

� �
JM=0

���� (19.53)

It is conceivable that these equations may some day be found to provide a basic understanding of various
phenomena of industrial value, such as the vortex tube temperature separation effect discussed earlier.

EXAMPLE 19.4
A membrane with a permeability of 1.00 × 10−6 m2 separates two chambers filled with carbon dioxide gas. The gas has a
temperature of 300. K on one side of the membrane and 305 K on the other side. The osmotic heat conductivity (ko) of the
membrane with CO2 is 2.00 × 104 m2/s and the viscosity of the CO2 is 1.50 × 10−5 kg/(m · s). Determine the steady state
thermomolecular pressure difference across the membrane.

Solution
Since this is a steady state problem, we can use the result given in Eq. (19.52),

dp = − μko

kp
dT
T

� �
and, assuming μ, ko, and kp are all constants over the small temperature range of 300. to 305 K, we can integrate this equa-
tion to find

p2 − p1 = − μko
kp

� �
ln

T2
T1

� �
= −

ð1:50× 10−5 kg/ðm.sÞÞð2:00×104 m2/sÞ
1:00×10−6 m2

� 	
ln 305

300:

� �
= −4960N/m2
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In Example 19.4, the pressure difference and the temperature difference have opposite signs. However, the
osmotic heat conductivity (ko) can be negative for certain substances, and this produces pressure and tempera-
ture differences with the same algebraic sign.

Figure 19.9 shows two rigid insulated vessels connected by a capillary tube (or a tube filled with a porous sub-
stance, or one having a permeable membrane). If we construct this system so that there is either (1) zero heat
transfer between the vessels, (2) zero temperature difference between the vessels, or (3) zero pressure difference
between the vessels, then the following phenomena occur.

19.5.1 Zero Heat Transfer
When the vessels are at different pressures and temperatures but no heat transfer occurs between the vessels
(JQ = 0), Eq. (19.49) requires that a temperature gradient exists along the connecting tube of the form

dT
dx

= − ko
kt + μk2o/ðTkpÞ
� 	

dp
dx

� �
Then, from Eq. (19.50), the following mass flux occurs through the connecting tube:

JM
��
JQ=0 =

ρko
Tkt + μk2o/kp

−
ρkp
μ

� 	
dp
dx

� �
(19.54)

which vanishes only under the improbable circumstance of Tkt= 0.

19.5.2 Zero Temperature Gradient
When both vessels are at different pressures but equal temperatures, T = constant and dT/dx = 0. Then, Eqs.
(19.49) and (19.50) give

JQ
��
T=constant = −ko

dp
dx

� �
and

JM
��
T=constant = −

ρkp
μ

dp
dx

� �
So that, using Eq. (19.50), we can write

JQ
JM

� �����
T=constant

=
μko
ρkp

= − T
ρ

� �
dp
dx

� ������
JM=0

At this point, we define the isothermal energy transport rate _Qi that is “induced” by the thermomechanical mass
flow rate _m with14

JQ
JM

� �����
T=constant

=
_Qi

_m
=
μko
ρkp

(19.55)

Temperature T1 

Capillary tube, porous plug, 
or permeable membrane

Pressure p1

Temperature T2 

Pressure p2

FIGURE 19.9
The thermomechanical effect.

14 Notice that we appear to have a heat transfer here that is not due to a temperature difference. It is because such thermal energy
transports exist that we chose earlier to define heat transfer in general terms as a nonwork, nonmass flow energy transport.
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Then, these equations give

dp
dT

� �����
JM=0

= −
ρ _Qi

T _m
= − ρ _Si

_m
(19.56)

where _Si = _Qi/T is the isothermal entropy transport rate “induced” by the thermomechanical mass flow rate _m :

19.5.3 Zero Pressure Gradient
When both vessels are at different temperatures but at equal pressures, p = constant and dp/dx = 0. Then,
Eqs. (19.49) and (19.50) give

JQ
��
p=constant = − kt +

μk2o
Tkp

� 	
dT
dx

� �
and

JM
��
p=constant = − ρko

T

� �
dT
dx

� �
Then,

JQ
JM

� �����
p=constant

= Tkt
ρko

+
μko
ρkp

(19.57)

This time, we define the isobaric mass flow rate _m “induced” by the thermomechanical heat transfer rate _Qi as

JQ
JM

� �����
p=constant

=
_Q
_m

=
Tkt
ρko

+
μko
ρkp

(19.58)

Combining Eqs. (19.57) and (19.58) gives the isobaric mass flow rate induced by the thermomechanical heat
transfer in the thermomechanical system as

_mi =
ρ _Q

Tkt/ko + μko/kp
(19.59)

EXAMPLE 19.5
Both of the large vessels shown in Figure 19.10 are filled with saturated liquid water at 30.0°C. They are maintained isothermal
but have a pressure difference of 10.0 kPa. The interconnecting tube has an inside diameter of 0.0100 m and is 0.100 m
in length. It is filled with a porous material having a permeability of 1.00 × 10−12 m2. Careful measurements reveal that the
isothermal energy transport rate in this system is 15.0 J/s. Determine

a. The thermomechanical mass flow rate between the vessels.
b. The osmotic heat conductivity coefficient.
c. The isothermal entropy transport rate induced by the thermomechanical mass flow rate.

Temperature T2
T2 = T1 = 30.0°C

Pressure p2
p2 − p1 = 10.0 kPa

Tube filled with porous material

Pressure p1

Temperature T1

Saturated
liquid
water

0.100 m

FIGURE 19.10
Example 19.5.
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Solution
a. For an isothermal system, dT= 0 and Eq. (19.50) gives

JM = _m
A

= −
ρkp
μ

dp
dx

� �
so

_m = −
ρAkp
μ

dp
dx

� �
For saturated liquid water at 30.0°C, ρ= 996 kg/m3 and μ= 891 × 10−6 kg/(s ·m). Then,

_m =
ð996 kg/m3Þðπ/4Þð0:0100mÞ2ð10−12Þ

891× 10−6 kg/ðs.mÞ −
1:00× 104 N/m2

0:100m

� �
= −8:78× 10−6 kg/s

(Note that the mass flow rate is in the same direction as the pressure drop.)
b. We also have

JQ
��
T = constant =

_Qi

A
= −ko

dp
dx

� �
so that

ko = −
_Q /A

ðdp/dxÞ = −
ð15:0 J/sÞ/½ðπ/4Þð0:0100mÞ2�
ð−1:00×104 N/m2Þ/ð0:100mÞ = 1:91m2/s

c. From Eq. (19.56), we have

_Si =
_Qi

T
=

15:0 J/s
ð273:15+30:0KÞ = 0:0500 J/ðs.KÞ

EXAMPLE 19.6
If the vessels in Example 19.5 were maintained isobaric at a mean temperature of 30.0°C and the measured thermomechani-
cal heat transfer rate was 8.70 J/s, then find the induced isobaric mass flow rate and the resulting temperature difference
between the vessels.

Solution
From Eq. (19.59), we have

_mi =
ρ _Q

Tkt/ko + μko/kp

where the values of μ, ko, and kp are the same as in Example 19.5; and for saturated liquid water at 30.0°C, we have
kt = 0.610 W/(K ·m). Then, Eq. (19.59) gives

_m =
ð996kg=m3Þð8:70 J=sÞ

ð303KÞ½0:610 J/ðs.K .mÞ�
1:91m2/s

+
½891×10−6 kg/ðs.mÞ�ð1:91m2/sÞ

1:00× 10−12 m2

= 5:10× 10−6 kg=s

Then,

dT
dx

= − T
ρko

JM
��
p = constant = −T _m

ρko
= −

ð303KÞð5:10×10−6 kg/sÞ
ð996kg/m3Þð1:91m2/sÞ = −8:11×10−7 K/m

and so

dT = ΔT = ð−8:11×10−7 K=mÞð0:100mÞ = −8:11×10−8 K
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CASE STUDY: ELECTROHYDRODYNAMIC COUPLING

The term electrohydrodynamics is used to describe the phenomena
associated with the conversion of electrical energy into kinetic
energy and vice versa. For example, electrostatic fields can create
hydrostatic pressure (or motion) in dielectric fluids, and conversely,
a flow of dielectric fluid in an electrostatic field can produce a vol-
tage difference. This is now called this the viscoelectric effect.

Recently, various researchers attempted to formulate and solve the
combined conservation of mass, momentum, and charge equations
for these flows. The drawback to this approach is that it requires
the solution to extremely complex partial differential equations.
While using analytical or numerical methods may be very effective
for simple cases, it is still unrealistic for general flow-induced elec-
trostatic charging in complex geometries.

In 1985, the Renewable Energy Management Laboratory (REMLAB)
at the University of Wisconsin–Milwaukee began studying the cur-
ious effect of electrostatic generation in flowing dielectric fluids and
solid granules. Electrostatic generation has been known since
ancient times. It can easily be observed when certain materials (e.g.,
fur and amber) are rubbed together to produce a noticeable electro-
static charge. This phenomenon, known as the triboelectric effect,
has a large literature. It has a significant group of industrial applica-
tions (painting, printing, air purification, etc.) but it is most com-
monly encountered today as an electrical hazard causing unwanted
shock, electrical interference, and occasional explosions when elec-
trostatic discharges occur. Since the middle of the 18th century, it
has been known that electrostatic effects can occur in certain
(dielectric) moving fluids as well as solids. Today, this effect creates
large-scale electrostatic hazards in the petroleum, shipping, aircraft,
and agricultural industries.

The electrohydrodynamic, or viscoelectric, effect is similar to the
well-known electrokinetic effect, except that the electric field is per-
pendicular rather than parallel to the flow. It is also similar to the
electrorheological effect, except that a macroscopic conductive sec-
ond phase is not required. The viscoelectric effect is a transverse
field phenomenon similar to the Hall effect.

While hydrocarbons do not normally ionize appreciably, it only
takes one singly ionized impurity particle in 2↔ 1012 molecules to
produce large electrostatic charging in a moving dielectric fluid. Such
low-impurity trace concentrations are not yet easily detectable, but
they can have a devastating results on the low conductivities of these
fluids. In the area of hydrocarbons, very large electrostatic charges
have been known to develop in fuel-transport vehicles, refueling of
aircraft, filling of fuel storage tanks, filtering, and washing of fuel
shipping tanker compartments.

The production of excessive electrostatic charging in the petroleum, air-
craft, and combustible dust areas causes serious explosion and shock
hazards. There are numerous reports of fuel storage tanks exploding
while being filled and fuel tankers exploding while being cleaned due
to an apparent discharge arc forming between the fuel and an
unbonded conductor within the container. Also, a helicopter may
carry an electrostatic potential of as much as 100,000 V, and anyone
touching it before it has been grounded during a landing operation is
seriously injured by the electrical discharge through his or her body.

The most frequent form of electrostatic charging, called contact
charging, occurs at the molecular level at an interface of dissimilar
materials. The development of a large electrostatic potential
requires the physical separation of the materials, one of which
must be dielectric. Typical examples are a hydrocarbon fluid
flowing out of a metal pipe or into a metal vessel, film or paper
moving across a conductive web or roller, synthetic fabric rubbing
on a human, adhesive tape being applied or removed from a con-
ductor, plastic pellets filling a metal hopper, and so forth. While
much less of an electrostatic hazard, “inductive charging” can also
occur, as in the electrostatic generator used to test the continuity of
the transatlantic cable as it was being laid in the late 19th century.

In recent times, explosive electrostatic conditions have been pro-
duced by the flow of dielectric petroleum products during the filling
of marine oil tankers and the refueling of aircraft. Dry or wet air is
also a good dielectric and, consequently, is the source of numerous
motion-generated electrostatic hazards. The generation of atmo-
spheric lightning due to mesoscale circulation of air containing
water droplets, snow, sand, and volcanic dust is well known. Moving
aircraft and helicopter rotors and spacecraft also produce well-
known electrostatic hazards resulting from atmospheric air moving
over solid objects. Since 1979, there has been increasing interest in
dust explosions (in grain products, plastics, metals, etc.) caused by
electrostatic generation and discharge. In addition, the washing of
cargo tanks on marine chemical tankers (especially petroleum) with
water sprays has been identified as the source of several tanker
explosions due to electrostatic generation in the tank by the motion
of the water spray. Also, in the late 1970s, detrimental static electrifi-
cation produced by the flow of oil and other dielectric fluids used
for cooling and insulation in transformers began to be a source of
concern in the power system equipment industry.

The nonequilibrium thermodynamics theory for fluid electrody-
namics is based on a two-flow model: (1) fluid (mass) flow and
(2) electron flow. The corresponding linearly coupled nonequili-
brium thermodynamics flux equations are:

Jcurrent = i/Ai = Lϕϕ∇ϕ+ Lϕm∇ðp/ρÞ (19.60)

and

Jmass = _m /Am = Lmp∇ϕ+ Lmm∇ðp/ρÞ (19.61)

where i is the electrostatic electrical current, _m is the mass flow rate
of the fluid, Ai and Am are the current and mass flux cross-sectional
areas, ∇ϕ is the electrical energy gradient normal to the direction of
flow, and ∇(p/ρ) is the pressure energy gradient in the direction of
flow. Lϕϕ and Lmm are the primary coefficients obtained from Ohm’s
and Bernoulli’s laws and (assuming reciprocity holds) Lϕm = Lmϕ is
the secondary, or coupling, coefficient. In the SI system, these quan-
tities have the units shown in Table 19.5.

Lightning as a Renewable Energy Source
The idea of harnessing lightning to supplement our electrical power
needs has been considered numerous times in the past. But,
knowing when and where lightning will strike, capturing the light-
ning bolt, and finding the right materials that could withstand and
store the sudden surge of electricity are still substantial engineering
challenges.
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SUMMARY
In this chapter, we discuss the basic concepts of coupled phenomena. The linear phenomenological equations
are shown to accurately model near equilibrium thermoelectric and thermomechanical coupling. Thermoelectric
coupling is shown to consist of the Seebeck, Peltier, Kelvin, Fourier, Joule, and Ohm effects. Thermomechanical

Recent satellite data suggest that there are more than 3 million light-
ning flashes worldwide per day, or more than 30 flashes per second
on average. An average bolt of lightning can carry a current of
300,000 A, transfers a charge of up to 300 coulombs, has a potential
difference up to 10 GV (10,000 million volts), and lasts for tens or
hundreds of milliseconds. A moderate thunderstorm generates several
hundred megawatts of electrical power, which is enough energy to
supply the entire United States with electricity for 20 min.

The theoretical basis behind the existance of lightning has been a
source of debate for many years. However, since air is a dielectric
fluid that contains small charged particles (dust, ice, and liquid
water), it seems reasonable that lightning is simply a large-scale
manifestation of the viscoelectric effect. The conditions and para-
meters necessary to understand its formation can be found from
the viscoelectric coupling coefficients. The development of strate-
gically placed large lightning capture power plants, which would
rapidly convert the electrical energy of lightning into another
form of energy, would be a practical method of dealing with the
highly transient nature of lightning. For example, a lightning
strike could be used to rapidly dissociate water into hydrogen and
oxygen. The oxygen could be released into the atmosphere and
the hydrogen could be used to supply domestic energy through
fuel cells or direct combustion.

Figure 19.11 illustrates where lightning is abundant. The area
on earth with the highest lightning activity is located over
the Democratic Republic of the Congo in Central Africa. This
area has thunderstorms all year round as a result of moisture-
laden air masses from the Atlantic Ocean encountering
mountains.

FIGURE 19.11
The average yearly lightning flashes per square kilometer based on data collected by NASA satellites between 1995 and 2002. Places where less
than one flash occurred each year are light gray. The places with the largest number of lightning strikes are black. Much more lightning occurs
over land than ocean because daily sunshine heats up the land surface faster than the ocean. The map also shows that more lightning occurs near
the equator than near the poles.

Table 19.5 Case Study SI Units

Quantity Units

Jcurrent A/m2

Jmass kg/(s ·m2)

∇ϕ V/m = kg ·m/(s3 · A)

∇(p/ρ) N/kg = m/s2

Lϕϕ A2 · s3/(m3 · kg)

Lmm kg · s/m3

Lϕm A · s2/m3

Lmϕ A · s2/m3
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coupling deals mainly with thermal osmosis and mechanocaloric effects. Equations are developed to describe
the entropy production rates of both the thermoelectric and the thermomechanical coupling processes. A
modern case study of electrohydrodynamic coupling is discussed and the concept of the viscoelectric effect is
introduced to explain a number of known electrostatic phenomena in moving dielectric fluids and solids.
Modeling lightning as a viscoelectric effect may lead to its use as an important new renewable energy source.

Problems (* indicates problems in SI units)
1. Equation (19.11) gives the EPRD for a general binary system

as σ = L11X12 + 2L12X1X2 + L22X22 > 0. Show that, if X1 is held
constant, a minimum value in σ occurs when J2 = L12X1 + L22X2 = 0.
Assume all the Lij are constant here.

2. Equation (19.11) gives the EPRD for a general binary system as
σ = L11X12 + 2L12X1X2 + L22X22 > 0. This quadratic form has to
be positive for all positive or negative values of X1 and X2. Show
that this requires that
a. L11 > 0.
b. L22 > 0.
c. L11L22 > 2L12.

3. Show that the difference in Kelvin coefficients for a
thermocouple made of conductors A and B can be written in
terms of the open circuit voltage as τAB = T d2ϕAB/dT

2ð Þ:
4. Show that, if the Kelvin thermoelectric effect did not exist (i.e.,

if τAB were zero), then the voltage produced by a thermocouple
would always depend linearly on temperature.

5.* Table 19.6 gives the temperature-voltage conversion for an iron-
constantan thermocouple. Estimate its Seebeck coefficient at
2.00°C and at 200.°C, and compute the percent difference based
on the 20.0°C value.

6.* The absolute Seebeck coefficient for a material is given by α =
(300. + 150. T − T2) × 10−6 V/K, where T is in °C. Determine
the formula for the (a) Peltier and (b) Kelvin coefficients.

7.* Using the temperature to Seebeck voltage relationship for the
iron-copper thermocouple given in Example 19.2, determine
formulae for the Seebeck, Peltier, and difference in Kelvin
coefficients and evaluate them at 0.00°C and 200.°C.

8. Seebeck voltage (ϕ) to temperature (T) conversion for
thermocouples is often written in a power series of the form
T = a0 + a1ϕ + a2ϕ

2 + a3ϕ
3 + … + anϕ

n. Using this representation,
determine the formula for the (a) Seebeck, (b) Peltier, and
(c) Kelvin coefficients.

9.* Determine the EPRD in a semiconductor thermoelectric junction
that has the following physical properties:

Electrical resistivity = 1.10 × 10−5 ohm meters
thermal conductivity = 1.30 W(m · K)
Seebeck coefficient = (200. + 10.0 T − 0.0100 T2) × 10−6 V/K
Junction temperature = 400. K
The temperature gradient at the junction is 1000. K/m and the
voltage gradient is 0.0300 V/m.

10.* A thermocouple is connected to a battery. The cold junction is
maintained at 0.00°C while the temperature of the hot junction
varies. When the hot junction is at 100.°C, the relative Peltier
coefficient is measured to be 2.75 × 10−3 W/A, and when it is at
200.°C, it is 4.51 × 10−3 W/A. If the thermocouple potential is
given by ϕ = aT + b2, where T is in K, determine
a. The constants a and b.
b. The value of ϕ when the hot junction is at 100.°C and 200.°C.

11. Show that the entropy production rate per unit volume (σ) is
always positive for a thermocouple regardless of the values of
α, dT/dx, and dϕ/dx.

12. Show that the entropy production rate per unit volume (σ) for a
thermocouple must always be greater than (kt/T)(dT/dx)

2.
13.* Suppose the vessels used in Example 19.5 and 19.6 are arranged

so that no heat transfer occurs between them along the
interconnecting tube. If the pressure difference between the
vessels is 10.0 kPa, determine the required temperature
difference and mass flow rate in the interconnecting tube.

14.* Determine the numerical values of the thermomechanical
coupling coefficients (L11, L12, L21, and L22) for a liquid
undergoing very slow flow in a 1.00 mm diameter circular tube
at 0.00°C. The fluid data are

Viscosity = 9.20 × 10−5 kg/(m·s)
Thermal conductivity = 0.105 W/(m · K)
Density = 927 kg/m3

Osmotic heat conductivity = 3.72 × 10−3 m2/s.
15.* Determine the numerical values of the thermomechanical coupling

coefficients (L11, L12, L21, and L22) for a liquid that has the same
physical properties as saturated liquid water. The isothermal heat
flux is 2.76 W/m2 and the isothermal mass flux is 0.0100 kg/
(m2 · s) both at 20.0°C and a pressure gradient of −14.0 MPa/m.

16. Starting with Eq. (19.2), use Eqs. (19.38), (19.41), (19.42), and
(19.43) to derive the formula for σ for
a. Viscous flow through porous media.
b. Turbulent flow through circular pipes.
c. Laminar flow through circular pipes.

17. a. Show that, for an ideal gas in a thermomechanical system,
Eq. (19.54) can be written as

T
p

� �
dp
dT

� �
JM =0

=
dðlnðpÞ
dðlnðTÞ
� 	

JM =0
= −

_Si
_mR

where R is the specific gas constant.

Table 19.6 Problem 5

Temp. (°C) Seebeck voltage (mV)

18 0.916

19 0.967

20 1.019

21 1.070

22 1.122

– –
198 10.666

199 10.721

200 10.777

201 10.832

202 10.888
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b. For a Knudson gas, we know that _Si/ _mR = −1/2: Integrate
the result of part a to show that, for a Knudson gas in a
thermomechanical system, p2/p1 = (T2/T1)

1/2.
18. Figure 19.12 illustrates the basic operation of an

electrohydrodynamic (EHD) generator. This device exploits the
coupling of mass flow and electric current such that an electric
current is induced (i.e., generated) simply by the mass flow of
the liquid as shown. The system contains no moving parts
except for the liquid and easily produces a 20.0 × 103 V
potential difference. This device was used by William Thomson
(Lord Kelvin) to test the continuity of the transatlantic cable as
it was being laid at sea in 1858. The mass and electrical current
fluxes are related by

Jmass = ρV = −ðLME/TÞðdϕ/dxÞ− ðνLMM/TÞðdp/dxÞ
and

Jcurrent = I/A = −ðLEE/TÞðdϕ/dxÞ− ðνLEM/TÞðdp/dxÞ
subject to the following special “effects”:

Ohm’s law, Jcurrentð Þp=constant = − keðdϕ/dxÞ

Darcy-Weisbach law, Jmassð Þϕ= constant = − ρkp=μ
� �ðdp=dxÞ

¼− ρD2=32μð Þðdp=dxÞ
The mechanoelectric effect, (dϕ/dp)I=0 = km/p

1/2, where km is the
mechanoelectric coefficient.

Flow
control
valves

Stream breaks
into droplets

Metal rings

Electrical
power
output

Metal recievers
(act as storage
capacitors)

Insulators

Water reservoir

+

+

−

−

Nozzle

Water
drops

FIGURE 19.12
Problem 18.

a. Find formulae for LEE, LMM, LEM, and LME in terms of
measurable quantities (i.e., T, ke, D, μ, etc.).

b. Predict the existence of and find a formula for the mass flow
induced by the flow of an electric current when there is no
pressure drop. This is the reverse of the EHD generator
shown previously and is called EHD pumping.

c. Find a formula for the short-circuit current induced by the
mass flow of the EHD generator. This is called the streaming
current of the device.

Computer Problems
19.* The Seebeck voltage (ϕ) to relative temperature (T) conversion

for an iron-constantan thermocouple with an ice point (0.00°C)
reference is given over the range 0.00°C to 760.°C by T = a0 +
a1ϕ + a2ϕ

2 + a3ϕ
3 + a4ϕ

4 + a5ϕ
5, where T is in °C and ϕ is the

Seebeck voltage in microvolts (i.e., 10−6 V). The polynomial
coefficients given by the National Bureau of Standards are

a0 = −0.048868252
a1 = 19873.14503
a2 = −218614.5353
a3 = 11569199.78
a4 = −264917531.4
a5 = 2018441314.

a. Write an interactive computer program that asks the user for
the thermocouple voltage (in the proper units) and returns
the temperature, Seebeck, Peltier, and difference in Kelvin
coefficients (in proper units) to the screen.

b. Plot the Seebeck voltage and the Seebeck and Peltier
coefficients vs. temperature over the temperature range of
0.00°C to 700.°C using at least 100 points per curve.

20.* The Seebeck voltage (ϕ) to relative temperature (T) conversion for
a copper-constantan thermocouple with an ice point (0.00°C)
reference is given over the range −160.°C to 400.°C by T = a0 a1ϕ +
a2ϕ

2 + a3ϕ
3 + … + a7ϕ

7, where T is in °C and ϕ is the Seebeck
voltage in microvolts (i.e., 10−6 V). The polynomial coefficients
given by the National Bureau of Standards are

a0 = 0.100860910
a1 = 25727.94369
a2 = −767345.8295
a3 = 78025595.81
a4 = −9247486589
a5 = 6.97688 × 1011

a6 = −2.66192 × 1013

a7 = 3.94078 × 1014

a. Write an interactive computer program that asks the user for
the thermocouple voltage (in the proper units) and returns
the temperature, Seebeck, Peltier, and difference in Kelvin
coefficients (in proper units) to the screen.

b. Plot the Seebeck voltage and the Seebeck and Peltier
coefficients vs. temperature over the temperature range of
100.°C to 400.°C using at least 100 points per curve.
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Appendix A: Physical Constants
and Conversion Factors

PHYSICAL CONSTANTS
Avogadro’s number, NA = 6:023 × 1026 molecules/kgmole
Boltzmann’s constant, k = 1:381 × 10−23 J/ðmolecule .KÞ
Electron charge, e = 1:602 × 10−19C
Electron mass, me = 9:110 × 10−31 kg
Faraday’s constant, F = 96,487 kC/kgmole electrons = 96,487 kJ/ V .kgmole electronsð Þ
Gravitational acceleration (standard), g = 32:174 ft/s2 = 9:807m/s2

Gravitational constant, kG = 6:67 × 10−11m3/ðkg .s2Þ
Newton’s second law constant, gc = 32:174 lbm .ft/ lbf .s2ð Þ = 1:0 kg .m/ðN .s2Þ
Planck’s constant, ħ = 6:626 ×10−34 J .s/molecule
Stefan-Boltzmann constant, σ = 0:1714 × 10−8 Btu/ h .f t2 .R4

� �
= 5:670 × 10−8 W/ m2 .k4

� �
Universal gas constant ℜ = 1545:35 ft .lbf/ lbmole .Rð Þ = 8314:3 J/ kgmole .Kð Þ

= 8:3143 kJ/ kgmole .Kð Þ = 1:9858Btu/ lbmole .Rð Þ
= 1:9858 kcal/ kgmole .Kð Þ = 1:9858 cal/ gmole .Kð Þ
= 0:08314bar .m3/ kgmole .Kð Þ = 82:05 L .atm/ kgmole .Kð Þ

Velocity of light in a vacuum, c = 9:836 × 108 ft/s = 2:998 × 108 m/s

UNIT DEFINITIONS

1 coulomb ðCÞ = 1A .s 1 ohm ðΩÞ = 1 V/A

1 dyne = 1 g .cm/s2 1 pascal ðPaÞ = 1 N/m2

1 erg = 1 dyne .cm 1 poundal = 1 lbm . ft/s2

1 farad ðFÞ = 1 C/V 1 siemens ðSÞ = 1A/V

1 henry ðHÞ = 1 Wb/A 1 slug = 1 lbf .s2/ft

1 hertz ðHzÞ = 1 cycle/s 1 tesla ðTÞ = 1 Wb/m2

1 joule ðJÞ = 1N .m 1 volt ðVÞ = 1 W/A

1 lumen = 1 candela .steradian 1 watt ðWÞ = 1 J /s

1 lux = 1 lumen/m2 1 weber ðWbÞ = 1V .s

1 newton ðNÞ = 1 kg .m/s2

CONVERSION FACTORS

Length Energy

1m = 3:2808 ft = 39:37 in = 102 cm = 1010 A° 1 J = 1N .m = 1 kg .m2/s2 = 9:479 × 10–4 Btu

1 cm = 0:0328 ft = 0:394 in = 10−2 m = 108 A° 1 kJ = 1000 J = 0:9479Btu = 238:9 cal

1mm = 10−3 m = 10−1cm 1Btu = 1055:0 J = 1:055 kJ = 778:16 ft . lbf = 252 cal

1 km = 1000m = 0:6215miles = 3281 ft 1 cal = 4:186 J = 3:968 ×10−3 Btu

1 in = 2:540 cm = 0:0254m 1Cal ðin food valueÞ = 1 kcal = 4186 J = 3:968Btu

1 ft = 12 in = 0:3048m 1erg = 1 dyne .cm = 1 g .cm2/s2 = 10–7J

1mile = 5280 ft = 1609:36m = 1:609 km 1eV = 1:602 × 10−19J

(Continued)
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Area Power

1m2 = 104cm2 = 10:76 ft2 = 1550 in2 1W = 1 J/s = 1 kg .m2/s3 = 3:412Btu/h = 1:3405 × 10–3 hp

1 ft2 = 144 in2 = 0:0929m2 = 929:05 cm2 1 kW = 1000W = 3412Btu/h = 737:3 ft. lbf/s = 1:3405 hp

1 cm2 = 10−4 m2 = 1:0764 × 10−3 ft2 = 0:155 in2 1Btu/h = 0:293W = 0:2161 ft . lbf/s = 3:9293 × 10–4 hp

1 in2 = 6:944 ×10−3 ft2 = 6:4516 × 10−4 m2 = 6:4516 cm2 1 hp = 550 ft . lbf/s = 33000 ft . lbf/min = 2545Btu/h = 746W

Volume Pressure

1m3 = 35:313 ft3 = 6:1023 × 104 in3 = 1000 L = 264:171gal 1 Pa = 1N/m2 = 1 kg/ðm.s2Þ = 1:4504 × 10–4 lbf/in2

1 L = 10−3m3 = 0:0353 ft3 = 61:03 in3 = 0:2642 gal 1 lbf/in2 = 6894:76Pa = 0:068 atm = 2:036 in Hg

1 gal = 231 in3 = 0:13368 ft3 = 3:785 ×10−3 m3 1 atm = 14:696 lbf/in2 = 1:01325 × 105 Pa

= 101:325 kPa = 760mmHg1 ft3 = 1728 in3 = 28:3168 L = 0:02832m3 = 7:4805 gal

1 bar = 105 Pa = 0:987 atm = 14:504 lbf/in21 in3 = 16:387 cm3 = 1:6387 ×10−5 m3 = 4:329 × 10−3 gal

1 dyne/cm2 = 0:1Pa = 10–6 bar = 145:04 × 10–7 lbf/in2Mass

1 in Hg = 3376:8Pa = 0:491 lbf/in21 kg = 1000 g = 2:2046 lbm = 0:0685 slug

1 in H2O = 248:8Pa = 0:0361 lbf/in21 lbm = 453:6 g = 0:4536 kg = 3:108 ×10−2 slug

1 slug = 32:174 lbm = 1:459 × 104 g = 14:594 kg

Force

1N = 105 dyne = 1 kg .m=s2 = 0:225 lbf

1 lbf = 4:448N = 32:174 poundals

1 poundal = 0:138N = 3:108 × 10−2 lbf

MISCELLANEOUS UNIT CONVERSIONS

Specific Heat Units Density

1Btu/ðlbm .°FÞ = 1Btu/ðlbm .RÞ 1 lbm/ft3 = 16:0187 kg/m3

1 kJ/ðkg .KÞ = 0:23884Btu/ðlbm .RÞ = 185:8 ft. lbf/ðlbm .RÞ 1 kg/m3 = 0:062427 lbm/ft3 = 10–3 g/cm3

1Btu/ðlbm .RÞ = 778:16 ft . lbf/ðlbm .RÞ = 4:186 kJ/ðkg .KÞ 1 g/cm3 = 1 kg/L = 62:4 lbm/ft3 = 103 kg/m3

Energy Density Units Viscosity

1 kJ/kg = 1000m2/s2 = 0:4299 Btu/lbm 1Pa .s = 1N .s/m2 = 1 kg/ðm .sÞ = 10 poise

1Btu/lbm = 2:326 kJ/kg = 2326m2/s2 1 poise = 1 dyne .s/cm2 = 1 g/ðcm .sÞ = 0:1Pa .s

Energy Flux 1 poise = 2:09 × 10–3 lbf .s/ft2 = 6:72 × 10–2 lbm/ðft.sÞ
1W/m2 = 0:317Btu/ðh . ft2Þ 1 centipoise = 0:01 poise = 10−3 Pa .s

1Btu/ðh . ft2Þ = 3:154W/m2 1 lbf .s/ft2 = 1 slug/ðft .sÞ = 47:9Pa .s = 479poise

Heat Transfer Coefficient 1 stoke = 1 cm2/s = 10–4 m2/s = 1:076 × 10–3 ft2/s

1W/ðm2 .KÞ = 0:1761Btu/ðh . ft2 .RÞ 1 centistoke = 0:01 stoke = 10–6 m2/s = 1:076 ×10–5 ft2/s

1Btu/ðh . ft2 .RÞ = 5:679 W/ðm2 .KÞ 1m2/s = 104 stoke = 106 centistoke = 10:76 ft2/s

Thermal Conductivity

1W/ðm .KÞ = 0:5778Btu/ðh . ft.RÞ
1Btu/ðh . ft .RÞ = 1:731W/ðm .KÞ
Temperature

Tð°FÞ = 9
5 Tð°CÞ+ 32 = TðRÞ− 459:67

Tð°CÞ = 5
9
½Tð°FÞ−32� = TðKÞ−273:15

TðRÞ = 9
5 TðKÞ = ð1:8ÞTðKÞ = Tð°FÞ+459:67

T Kð Þ = 5
9
T Rð Þ = T Rð Þ/1:8 = T °Cð Þ+273:15

CONVERSION FACTORS (Continued)
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Appendix B: Greek and Latin Origins
of Engineering Terms

English is a complex combination of numerous languages and is thought by some to be the most colorful and
expressive language we have. To understand why English is such a complicated language, you need to be aware
of several milestones in the history of the English culture. Around 1000 BC, Celtic-speaking armies from central
Europe conquered the British Isles, and after several centuries of occupation, the language of the prehistoric
Britains was completely replaced by Celtic. Gaelic, Welsh, Irish, and Scotch are modern remnants of Celtic.

Britain was again conquered in the first century AD by the Roman empire, and for the next several centuries,
Latin words began to be absorbed into the British Celtic tongue. Also, some Greek words were introduced dur-
ing this period by Roman Christian missionaries.

In the fifth century, Britain was conquered by the Teutonic Angles, Saxons, and Jutes from Germanic Europe.
Their combined language, called Anglo-Saxon, was the basis of modern English (in fact the word English is really
Anglish).

In the eighth century, the Danish invaded parts of Britain and fragments of their language were assimilated into
the Celtic-Anglo-Saxon English.

In the 11th century, Britain was again conquered, this time by the French. Norman French then became the offi-
cial language of the country, but the masses continued to speak English. By 1500, the French had been driven
out, and English, now ripe with French words, was reestablished as the official language of the land. It is clear
that the English language has had a long, colorful history and the assimilation of numerous words from differ-
ent languages is one of the things that gives the English language versatility and complexity.

New words normally enter a language not as replacements for existing words but to describe new concepts or
ideas. The words most often taken from the occupying forces in Britain were of this type. The new concepts were
often, as they are today, from science, technology, or religion. During the Middle Ages, Arabian science and
technology were quite advanced. Consequently, technical words, such as algebra, alcohol, and alkali, entered
the English language (they can be recognized by the fact that they begin with the Arabic definite article, al).
The Greek language has had a much smaller impact than Latin on the evolution of English. Greek words have
generally entered the English language indirectly, having been absorbed into Latin first, borrowed directly from
Greek authors, or through the coining of new scientific or technical terms.

Long ago, it became customary for professionals to carry out their business in a dead language from an earlier
culture. Thus, the Romans used Greek, and the English used Latin (with a smattering of Greek). Whether this
was to keep the masses from understanding professional dialogue or merely to exercise scholarly activity is not
known. Even today, we go to either Latin or Greek to name a new scientific phenomenon or technology. Xerox,
for example, is a trade name that comes from the word xerography, which is Greek for “dry” (xero) “copying
process” (graphy).

Many long technical words are compound words formed from the following basic elements: (a) the root word,
(b) the combining vowel, and (c) the suffix or prefix. The root word is the core of any technical term. It can be
either Latin or Greek, and it is often linked to the prefix or suffix by a combining vowel. For example, therm is a
root word meaning “heat,” o is a connecting vowel, and dynamics is a suffix meaning “able to produce power.”
Thus, the term thermodynamics loosely translates as “the process of converting heat into power.”

A prefix is a syllable or syllables placed in front of a root word to alter its meaning. Table B.1 is a list of com-
mon Greek and Latin technical prefixes.
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A suffix is a syllable or syllables added to the end of a word to change the meaning of the root word or to form
a new word. Table B.2 is a list of common Greek and Latin technical suffixes.

Finally, Table B.3 is a short list of common technical Greek and Latin root words and their normal connecting
vowels.

There are also many hybrid technical words, such as automobile, which is composed of the Greek word aut
(“self”), a connecting vowel o, and the Latin word mobilis (“movable”).

Table B.1 Common Greek and Latin Technical Prefixes

Prefix Meaning Example

a- without or not asymmetric

dia- through diameter

hemi- half hemisphere

hyper- above hypersonic

hypo- under hypodermic

infra- below infrared

is- equal or constant isothermal

para- beside paramagnetic

peri- around perimeter

semi- half semicircle

syn- with or together synthetic

trans- across transport

Table B.2 Common Greek and Latin Technical Suffixes

Suffix Meaning Example

-e noun-forming, often means instrument metronome

-er one who worker

-ic, -al, -ar pertaining to electric, electrical

-ist one who specializes scientist

-graph instrument to record polygraph

-graphy process of recording xerography

-gram record electrocardiogram

-meter measuring instrument psychrometer

-ology the study of technology

-ologist one who studies technologist

Table B.3 Common Technical Greek and Latin Root Words

Root Word Meaning Example

aer/o air aeroplane

bar/o air weight barometer

electr/o electricity electromagnetic

therm/o heat thermodynamics

phon/o sound or voice phonograph

lith/o stone lithographer

flu/+i flow fluid, flux

hydr/o water hydrodynamic

hygr/o moist hygrocyst

psychr/o cold psychrometer

cry/o extreme cold cryogenic

xer/o dry xerography

meteor/o weather meteorology
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In English, the plural of a word is usually formed by adding s to the end of the word. However, in many Greek
and Latin technical terms, we retain all of their original spelling, including their plural ending. Table B.4 list
illustrates the proper plural ending for these words.

The first ending in the list is particularly important because it occurs in so many common technical terms. Other
examples are continuum, continua; medium, media; symposium, symposia; colloquium, colloquia; quantum,
quanta; and so forth. Thus, in technical writing, we should not refer to a singular data point, but rather to a sin-
gular datum point, or to a set of data points.

Occasionally, different Greek and Latin words mean the same thing, and this can be confusing when both are
used in the literature. This occurs, for example, in the names of numbers. Table B.5 illustrates this problem.

Thus, we begin to see the structure of thermodynamic terms such as energy (en meaning “in” plus ergon meaning
“work”), adiabatic (a meaning “without” plus dia meaning “through” plus bainein meaning “to go”), aergonic
(a meaning “without” plus ergon meaning “work”), entropy (en meaning “in” plus trope meaning “turning”),
enthalpy (en meaning “in” plus thalpos meaning “warmth”), isochoric, isothermal, isenthalpic, polytropic, and so
forth. If you understand the etymology of a word, it will cease to be a mysterious sound without connotation or
meaning.

Table B.4 Plural Endings

Singular Ending Plural Ending Example

-um -a datum, data

-a -ae formula, formulae

-on -a phenomenon, phenomena

-ix -ices matrix, matrices

Table B.5 Numbers

Greek Number Latin Number English Meaning Example

mon/o uni one or single monoplane, unicycle

di bi two or double disulfate, bicycle

tri, tripl/i tri three or triple triplicate, tripod

tetr/a quadr/a four or fourfold tetrahedron, quadrangle

pent/a quinqu/e five pentagon, quinquevalent

hex/a sex/a six, sixth hexadecimal, sexagenarian

hept/a sept/a seven, seventh heptagon, septet

oct/a oct/a eight, eighth octane

enne/a non/i nine or ninth ennead, nonillion

dec/i dec/i ten or tenth decimal

kil/o mille one thousand kilometer

mill/i one thousandth millimeter

poly mult/i many polytropic, multistage

hemi semi half hemisphere, semicircle
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Page numbers followed by f indicates a figure, t indicates a table and n indicates a footnote.

A
Absolute entropy scale, 206, 622
Absolute molar specific entropy, 622–623
Absolute pressure, 15, 40, 42
Absolute temperature scale, 8, 40, 212–216
Absolute zero, 40, 622, 754
Absorption refrigeration, 560–562
Absorptivity coefficients, 561, 583
Acetylene, 597f
Active transport, 695
Adenosine diphosphate (ADP), 699
Adenosine triphosphate (ATP), 699
Adiabatic device

cylinder steam engine, 457
heat exchanger, 184–186

Adiabatic flame temperature, 613–618
Adiabatic process, 127

entropy of, 298
evaporative humidification, 420
filling, 300

Adiabatic saturation temperature, 420–422
Adiabatic saturator, 420–421
Adiabatic system, 133, 184
Adiabatic throttling devices, 180, 284
Aeolipile, 474
Aergonic device

heat exchanger, 290
nozzles and diffusers, 175
throttling device as, 180

Aergonic flow
adiabatic, 305
isothermal, constant specific heat liquids,

305
isothermal, ideal gases, 305

Aergonic process, 108
Aging, 716–721
Air conditioner, 217, 536

characteristics of, 536f
Air conditioning, 424–425, 567, 575
Air standard cycle (ASC), 487

closed-loop, 486, 487f
refrigeration, 568

Alchemy, 592
Algae, efficiency of, 701
Aliphatic hydrocarbons, 597
Alkanes, 597
Alkenes, 597
Alkynes, 597
Allotropic forms, 65
Alternating electrical current, 117

Amagat, Emile, 413
Amagat compressibility factor, 433

partial volume ðVAiÞ, 433
Amagat’s law, 413

mixture of real gases, 430–438
Amagat specific volume, 433
Ampere, Andre Marie, 593
Ampere (A), defined, 639
Angular displacement vector, 112
Angular momentum, 101t, 748
Area, 695t, 787–788t
Aromatic hydrocarbons, 597
Arrow of time, 206
ASHRAE numbers, 549
ASME Boiler and Pressure Vessel Code, 159, 481
Atkinson cycle, 508–509
Atmospheric engines, 451

gas, 454
Atoms, 43, 206, 548, 597, 694
ATP-ADP cycle, 539f, 699
Availability, 65, 319–320

balance, 320
closed system, 327–331
open system, 334–335

chemical, 641–642
flow, 331–333
specific, 324

Availability function (A), 324
Average molecular velocity, 729
Average specific enthalpy, 194
Avogadro, Amado, 593, 730
Avogadro’s law, 593–594
Avogadro’s number, (No), 37, 593, 696
Avoirdupois, 12
Azimuthal quantum number, 748

B
Balance concept, 33, 44–46
Balmer, R.T., 304n
Basal metabolic rate (BMR), 702, 704

of the organs, adult human body, 703t
Beattie-Bridgeman equation, 384
Beattie-Bridgeman gas, 83
Becher, Johann Jochim, 148
Bending stresses, leg bone, 711
Bends, 416
Benz, Karl Friedrich, 503
Bernoulli, Daniel, 305
Bernoulli equation, 305
Berthelot, Pierre, 374

Berthelot equation, 83, 374–375
Binary cycle system, 483
Biological size and BMR, 702, 704
Biological systems, 693, 699–702
Birds, respiratory systems, 712
Black object, defined, 129
Blade erosion, 480
Body forces, 674
Bohr, Niels, 728, 748
Bohr model, 748
Boltzmann, Ludwig, 728
Boltzmann’s constant, 705, 750
Bomb calorimeter, 607, 608f, 706
Bose-Einstein model, 749
Boulton, Matthew, 453
Boyle, Robert, 41, 397
Boyle-Charles ideal gas equation, 397–398
Boyle’s law, 387
Brake power, Otto cycle, 505
Brayton, George, 495
Brayton cycle, 495–499

reversed, 569–572
Brinkman, H. C., 278
Brinkman number, 278

C
Calories, 708, 710
Calorimetry

bomb, 607, 608f, 706, 706f
indirect, 703
steady state, steady flow, aergonic, 607

Capacitor, electrical work mode value, 120
Carbohydrates, 705
Carnot, Nicolas Leonard Sadi, 208
Carnot cycle, 227, 537–539, 561

air standard cycle, 487, 487f
power cycle, 456–457
and Rankine cycle compared, 457, 458f,

466, 467f
Carnot heat engine, 254

heat pump as a, 217
Carnot isentropic efficiency, 517
Carnot thermal efficiency, 456, 537
Cascade vapor-compression, 554
Case studies, 296, 302

an accident, 24
drinking bird, 520–521, 520f, 521f
entropy production in open systems, 302
GE-IA, 523
GE90, 522
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Case studies (Cont.)
hydrodynamic flow systems, 305
Sandia hypervelocity gun, 25
Stanley steamer, 519–520
Stirling engine, 523–524
vortex tube, 302

Cavitation process, 315
C (coulomb), 17, 697
Cells, 636–641

ion gradients across membranes, 695
thermodynamics of biological, 695–699

Celsius, Anders, 40
Celsius temperature scale, 8
Center of gravity, 48
Centrifugal governor, 454
CFC’s, 552–554
Change of state, entropy produced by, 250
Characteristic temperature

diatomic materials, 753t
rotational, 753t
vibrational, 753t

Charge (q), 38, 100, 117, 696
Charles, Jacques, 41, 56
Charles’ law, 397
Charts, generalized, 384–396
Chemical equilibrium, 634–635

and dissociation, 626–634
Chemical potential, 696, 697
Chemical thermodynamics, 591–645
Chemical units, 14–15, 25
Chemical work, 122–123
Choked flow, 652, 665–669
Circulatory system, 711
Clapeyron, Benoit Pierre Emile, 370
Clapeyron-Clausius equation, 371
Clapeyron equation, 370–372
Clausius, Rudolph, 210, 211, 218, 456, 728
Clausius equation, 83
Clausius inequality, 221
Clerk, Dugald, 503
Closed loop, 470, 486, 488, 490
Closed system, 35, 56, 148

applications
availability, 327–331
first law, 147
second law, 249

availability, 327–331
balance equation, 135, 138
defined, 105, 323
entropy for, 219, 240
mass in, 133
time derivative, 670
real irreversible, heat engine, 214
stationary, 362
unsteady state processes, 157–159

Coefficient of performance (COP), 217–218,
537

Collision, 732–734
cross section, 732, 732f, 759
frequency, 733–734, 742
probability, 743

Combinations, two die, 742t
Combustion, 486, 507, 609t, 610t

amount of air required, 595
of a typical hydrocarbon, 596

Compensation law, 719
Compensation temperature, 719
Compounding (series staging), 466
Compound probability, 744
Compressibility of gases, 386
Compressibility factor (Z), 384–396, 433
Compressible flow

defined, 652
fluid, 652

Compression loading, leg bones, 711
Compression

of a pure gas, 127
work, 109

Compressor, 316t, 542, 548
Condensation, 69, 664
Condensation shock, 664
Condenser, 185, 453, 488, 581
Conditional probability, 744
Conduction heat transfer, 128, 322
Conductor, 116, 769
Conservation, 46–50, 100–101

of charge, 46
of energy, 46, 48, 171–173
of mass, 46, 50–51, 133, 171–173
in wet airstreams, 428
for an incompressible fluid, 178

of momentum, 48
Conservative fields, 320–321
Conservative forces, 321
Constant volume, 91, 220, 335, 377, 408,

613
Constitutive equations, 236
Container system boundary, 148
Continuous rate processes, 124
Continuum hypothesis, 43, 126
Convection heat transfer, 198t

coefficient of, 129
Converging-diverging flows, 660–664
Converging-diverging nozzle

diameter ratio variation, 668, 668f
normal shock waves from, 675
pressure distribution, 675f

Copper, beta and kappa for, 61
Cotton gin, 449
Coulomb (C), 16
Coulomb’s law, 354
Coupled phenomena, 763–784
Critical condition (throat), 662
Critical height of trees, 669
Critical mass fraction, 294, 295f
Critical opalescence, 70
Critical point, 384
Critical region, 70f
Critical state

properties of, 70t
pseudo specific volume, 386
specific volume, 68

Curie constant (C), 144
Curie substance, 144
Curr, John, 528
Curtis, Charles Gordon, 476
c (velocity of light), 738, 748
Cycle. See also Air standard cycle (ASC);

Atkinson cycle; ATP-ADP cycle; Binary
cycle system; Brayton cycle; Carnot

cycle; Diesel cycle; Ericsson cycle; Gas
power cycles; Heat engine cycle;
Lenoir cycle; Newcomen cycle; Otto
cycle; Power cycles; Rankine cycle;
Refrigeration cycle; Stirling cycle

mechanical, 39
thermodynamic, 39, 212, 457, 502

D
Dalton, John, 413, 593
Dalton compressibility factor, partial pressure

(pDi), 431
Dalton’s law, 414

mixtures of real gases, 435
Dalton specific volume (vDi), 431
Darcy-Weisbach friction factor, 314
Davy, Humphry, 764t
Death, 716–721
Death rate constant, 718–719
de Broglie, Louis Victor Pierre Raymond, 748
Debye, Peter, 728
Deficit air, 595, 597
Degeneracy (energy level), 749–750
Degree of superheat, 467
Degrees of freedom

gases, 756
linear polyatomic molecules, 756
nonlinear polyatomic molecules, 758

Degree symbol, use of, 17
Dehumidification, 425f, 427
DeLaval, Carl Gustaf Patrik, 476
DeLaval impulse turbine, 476, 477f
Density, 83, 174, 651, 655
Dew point, 418

water vapor and dry air mixtures, 418f
Diamagnetic materials, 120
Dielectric materials, 116
Diesel, Rudolf Christian Karl, 512
Diesel cycle, 512–516

air standard, 513f
Dieterici equation, 83
Diethyl ether, 547
Differential entropy balance, 227–229
Diffuser efficiency, 683–684
Diffuser pressure recovery coefficient (Cp), 684
Diffusers

subsonic, 662, 684
supersonic, 661, 685
thermodynamic process path, 684f

Diffusion, mixing by, and entropy, 271
Dimensional analysis, 6
Dimensions, 6, 11
Dipstick heater, 276
Direct calorimetry, 703
Dissipative flow

hydraulic, 300
viscous, 179

Dissociation
and chemical equilibrium, 626–634
versus equilibrium temperature, 632
versus reaction pressure, 632t

Double-acting cylinder, 520
Duality principle of matter, 749
Duty (engine), 452, 526
Dyne, defined, 11
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E
e (specific energy), 102, 707
E (total energy), 46, 62, 102, 106, 168, 749
EG (energy gain), 102
Edison, Thomas Alva, 477, 638
Effective molecular radius, 733t
Effective voltage, 117–118
Efficiency, Defined, 460t

of biological systems, 699–702
of food energy conversion, 706
of fuel cells, 636
of locomotion, 714, 716
of nozzle and diffuser systems, 681–685
second law, 340, 343, 345, 347
thermal. See Thermal efficiency
work, 124–126

Efficiency ratio, power plant, 482
Einstein, Albert, 84
Einstein’s mass-energy relation, 748
Elastic modulus (γ), 713
Elastic work, 114–115
Electrical device

example, 150–151
problem, 150

Electrical resistance, 125, 238, 770
Electrical resistivity, 238, 770
Electrical units

current, fundamental units, 10
fundamental equations, 10

Electrical work
current flow work, 117–118
polarization work, 118–120

Electric dipoles, 116
Electric field strength vector, (E), 118
Electric permittivity of a vacuum, 119
Electric potential, 117
Electric susceptibility, 119

various materials, 119t
Electrochemical work, cell, 696
Electrodynamic, 782
Electrohydrodynamic coupling, 782–783
Electron spin quantum number, 748
Electrostatic equilibrium, 38
Emission spectrum of atomic hydrogen, 748
Emissivity, 129
Empedocles, 592
Endothermic reaction, 606
Energy balance

general closed system, 108, 135
modified, 173, 282

Energy content
basic food components, 707
common foods, 708

Energy conversion
direct, 123, 701, 764
efficiency (η), 125, 340, 699–702
heat pump, 217, 339

nozzle, 174
Energy gain (EG), 102
Energy level, degeneracy of, 749
Energy rate balance

and biological rate of energy expenditure,
713

in a closed system, general, 108, 135, 138
equation for, 171, 285, 287

of life, 699
in a living cell, 698
modified, 172, 178, 296
in a nonequilibrium system, 104
in an open system, 698–699
general, 139, 171

in wet airstreams, 428
Energy rates of the primitive earth, 695
Energy transport

heat modes of, 127–128
in living systems, 699f
mechanical work modes, 108–116
mechanisms, 99–140
and nonconservative forces, 104
nonmechanical work modes, 116–123
rates, power modes of, 124

Engineering English units system, 12, 15, 25,
173

English Gun Barrel Proof Act, 27
Enthalpy

change, measuring, 207
correction chart, 391f
defined, 63
psychrometric, 426–427, 440

Entropy
and aging, 718
analysis, 297
and chemical reactions, 621–625
Clausius’ definition of, 218–221
correction chart, 394f
determining
closed system direct method, 250
closed system indirect method, 250

and Gibbs function of formation,
625–626

of phase change production, 239–240
production of. See also Entropy
production rate, 207, 237, 261, 281,
284, 579

diffusional mixing, 271
heat, 232–234
due to laminar viscous losses, 268, 307
mass flow, 280
work mode, 235–239

production ratio, 301, 301f
transport of
heat, 229–234
mass flow, 279–280
and the second law, 205–243
work mode, 231

Entropy balance
closed system, 250
equation, 240–241, 271
modified, 282, 309

Entropy production rate
fuel cell, 639
heat exchanger, 290–291
maximum, mixing liquids, 295f
for viscous effects, 269

Entropy rate balance
closed system, 240, 250, 672
equation for, 240–241
fuel cell, 636
general open system, 281
living system, 717

modified, 282, 296, 308
open system, 621, 699
problem, 281
shock waves, 678

Environment
as a heat transfer fluid, 185
temperatures and survival curves, 718f

Enzymes, 694–695
Equation of state

dielectric, 119
empirical, 400
ideal gas, 41, 79
ideal gas mixtures, 412
for a magnetic field, 121
of nonlinear rubber band, 369
simple magnetic substance, 400

Equilibrium, defined, 36, 630
Equilibrium constant, 629, 634–635
Equilibrium reaction, 627, 630
Equilibrium state, 36, 747
Equilibrium temperature, 421
Equipartition of energy, 738–741
Equivalent gas constant, mixture, 410, 439
Ericsson, John, 490
Ericsson cycle, 490–493
Essergy, 319
Ethane, 549, 597f
Ethylene, 394
Euler, Leonhard, 669
Eulerian analysis, 669
Evaporator, 542
Event-frequency table, 742t
Excess air, 595
Exercise, thermodynamics of, 46, 47–48, 50
Exergy, 319
Exothermic reaction, 606
Expansion

engines, 454
of a pure gas, 127
work, 400

Explosive energy, pressure vessels, 159–160
Extensive property

defined, 37
generalized displacements, 116
as a point function, 107

External combustion engine, 486, 505
External forces, 673

F
Factorial, 745
Fahrenheit, Gabriel Daniel, 28, 54, 92
Fanno line, 690
Faraday’s constant (F), 639
Farad (F), 639
Fats, 705
Fermi, Enrico, 728
Fermi-Dirac model, 749
Ferromagnetic material, 120
F (farad), 639
Fields

conservative, 321
electric, 116
magnetic, 120–121
scalar, 320
vector, 320
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First law of thermodynamics, 2, 46, 99–146
and efficiency, 528

Flash steam, 94, 164, 200
Fliegner’s formula, 665
FLMT system, 11, 29
Flowchart, problem solution, 130
Flowstream

kinetic energy, 173
mass flow rate, 169
specific potential energy, 174

Flow work, 168
FLt system, 11
Fluid friction, 113, 681
Food energy intake, 698
Force, defined, 105
Forcing function, 116
Fourier, Joseph, 769
Fourier’s law, 128, 233
Fowler, R. H., 42
Freezing, 69
Freon, 548
Friction factor, 518, 777
Friction power, Otto cycle, 505
Fuel cells, 636–641
Fulton, Robert, 454–455
Fundamental units

length, 6
time, 6

Fusion line, 66

G
gc (dimensional constant), defined, 26
Gage pressure, 40
Galen, Claudius, 9
Galilei, Galileo, 724
Gas compressor, 498
Gas constant (R), 220

equivalent, for a mixture (Rm), 441
Gases

defined, 68
properties at low pressure, 81t

Gas power cycles, 447–527
Gas tables, 382–384
Gas turbine aircraft engine, 499–502
Gäugler type of heat pipe, 234
Gaussian velocity distribution, 735
Gay-Lussac, Joseph Louis, 397
Gay-Lussac’s law, 397
Generalized displacement, 116
Generalized force (F), 116
General open system, 139, 171, 198, 353
Georgian, John C., 29
Gibbs, Josiah Willard, 65, 364
Gibbs chemical potential, 122
Gibbs-Dalton ideal gas mixture law, 414,

621
Gibbs function (G)

conditions for chemical reaction, 627
of formation, 625–626
and entropy, 625–626

Gibbs phase equilibrium condition, 366
Gibbs’ phase rule, 65
Goodenough, G. A., 404
Gorrie, John, 569
Grain, 424

Gram mole, defined, 14
Ground state

defined, 322
notation, 323

Grover, George M., 234
Guggenheim, E. A., 42

H
H (henry), 787t
Heat

of combustion, 607
defined, 1, 64
as a fluid, 208
of formation, 604–607
of reaction, 607–613

Heat engine
characteristics of, 449t
cyclic, 212, 212f

Heat entropy flux, 245
Heat exchange

closed loop, 470
open loop, 470
problem, 203, 358
regenerators, 470
shell and tube, 289
single-tube, single-pass, 289f, 290
temperature profiles, 290, 291f

Heat loss and animal size, 711
Heat pipes, 234
Heat production

energy losses, 612
entropy of, 232

Heat pump, 216
characteristics of, 536f

Heat rate (power plant), 151–152, 482
Heat transfer

coefficient of, 264, 266
modes of, 128–130
rate of, 150
reversible, 220, 227

Heat transport, 127
of entropy, 229–231

Helmholtz, Hermann Ludwig Ferdinand von,
363

Helmholtz function (F), 363, 365
Henry (H), 787t
Heracleitus, 592
Heron of Alexandria, 474
Hertz (Hz), 787t
Hess, Germain Henri, 604
Hess’ law, 604
Higher heating value (HHV), 608
Hilsch, Rudolph, 302
Homogeneous substance, defined, 36
Hooke’s law, 114
Horsepower, 30, 454
Humidification, 424
Humidity ratio (ω), 418, 440
Hydraulic flow systems, 306t
Hydraulic jump, 306
Hydrocarbons, 596

classification of, 596f
Hydrodynamic flow systems, 305–306
Hydroelectric water turbines, 187
Hz (hertz), 787t

I
IC engine. See Internal combustion engine
Ideal gas

Berthelot corrections, 374
diffuser efficiency, 684
internal energy of, 80
of a mixture, 412
and molar enthalpy, 391
in a polytropic process, 111

Ideal gas equation, 41, 619
Impulse turbine, 474
Incompressible materials

fluid, 135
liquids, 78
example, 79
specific heat of, 77

state equations for, 77
Independent events, 750
Indicated power, Otto cycle, 505
Indicated work, Otto cycle, 460
Indicator diagram, 455, 505
Indirect calorimetry, 703
Instantaneous electrical power, 118
Insulated rigid container, filling, 298f
Intensive properties

defined, 37
as point functions, 107

Intermolecular collisions, 732–734
Internal combustion engine, 125, 502

typical ceramic components, 517f
Internal energy of an ideal gas, 80
Internal heat flux, 232
International Bureau of Weights and

Measures (BIPM), 212
International Conferences on the Properties

of Steam, 396
International System of Units (SI), 730
Inversion temperature, 181
Ion pump, 696
Irreversibility

defined, 328
rate, 328

Irreversible processes
heat transfer, 227, 338
reactions, 627, 631
work, 250

Isenthalpic devices, defined, 180
throttling, 180
vapor-compression cycle, 544, 575

Isentropic compressibility, 687
compression ratio, 492

Isentropic efficiency
compressor, 312, 401
thermal efficiency, 461–466
Rankine cycle, 479

Isentropic pressure ratio, 488
Isentropic process, 223, 241–242, 383, 488,

666
expansion, supersaturated state, 665f

Isentropic sound wave, properties of, 657, 657f
Isentropic stagnation state, 654f

density, 653–655
enthalpy, 660
pressure, 654–655, 660, 684
properties of, 653–655, 685
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Isobaric coefficient of volume, 60, 75, 90
Isobaric process, 90t

mixing, 294
separation, 304

Isochoric process, 90t
Isolated system, defined, 35, 52t
Isomers, 597
Isothermal boundary temperature, 257
Isothermal coefficient of compressibility (κ),

60, 90, 376
Isothermal processes

filling, 300
flow, 162
laminar flow, 268, 307

Isothermal open system, human as, 425
Iteration technique

adiabatic flame temperature, 613–619
carbon dioxide dissociation, 631

J
J (joule), 16t, 787t
Jet engine, 494, 499
Joule, James Prescott, 164
Joule (J), 16t, 787t
Joule-Thomson coefficient (μJ), 181, 182f

estimating, 183
variation with pressure and temperature,

181
Joule-Thomson effect, 575

inversion temperature maximum, 181,
181t

K
Kay, W. B., 436
Kay’s compressibility factor, 436
Kay’s law, 435–436
Keenan, Joseph, 324
Kekulé, Friedrich August, 597
Kelvin (K), defined, 8, 16
Kelvin-Planck statement, 210–211
Kilogram (kg), defined, 17
Kinetic energy (KE)

defined, 20, 22
effect of velocity, 173t
flow stream, 173–174

Kinetic theory of gases, 728–732

L
Lagrange, Joseph Louis, 669
Lagrangian analysis, 669
Lavoisier, Antoine Laurent, 70
Law of constant heat sums, 604
Law of corresponding states, 385–386
Laws of thermodynamics, 2, 34, 58, 622
Length, fundamental units, 6
Lenoir, Jean Joseph Etienne, 493
Lenoir cycle, 493–495, 493f
Lever rule, 72, 74, 74f, 225
Life, defined, 693–694, 718
Lightning, 782
Liley, P. E., 445
Linde, Karl von, 181, 512
Linde process, 576f
Linear momentum rate balance, 426–430
Liquids, β and κ for, 61t

Lithium salt systems, 562
Living organisms, 704
Lm (lumen), 16t, 787t
Local environment, 322
Local equilibrium

fixing, 126
postulate, 126
thermodynamic, 36

Locomotion transport number, 714–716
versus mass, 716, 716f
versus velocity, 715, 715f

Locomotion work, 714
Log mean temperature difference, 290
Lower heating value (LHV), 608–609
Lumen (lm), 16t, 787t
Lux (lx), 16t, 787t

M
Mach, Ernst, 655
Mach number (M), 655–660

and choked flow, 663, 665–669
cross-sectional dependence, 660
and diffuser efficiency, 684
regimes, compressible flow, 657, 657t

Macroscopic system analysis, 43, 52t
Macrostate, 747
Magnetic field

induction, 120
permeability (μ0)
of a vacuum, 120

susceptibility, 121, 121t
work in, 120

Magnetization
vector, 120
work of, 120

Manual of the Steam Engine and Other Prime
Movers, 397

Mariotte, Edme, 397
Mariotte’s law, 397
Mass balance, equation for, 14, 50

mixture, 406
Mass flow rate, 426, 665

isentropic converging nozzle, 665f
isentropic nozzle, 665

Mass flow transport
of energy, 168
of entropy, 271

Mass fraction (wi), 406, 414
Mass rate balance

isentropic flow, 660
isentropic sound wave, 657, 657f
steady state, 172

Material derivative, 670
Mathematical probability, 741–747
Maximum

explosion pressure, 619–621
reversible work, 322

Maxwell, James Clerk, 367, 728
Maxwell-Boltzmann gases, 750–751

diatomic, 753–756
monatomic, 751–753
polyatomic, 756–758

Maxwell-Boltzmann model, 749–750, 754
Maxwell equations, 367–370
Maxwell’s kinetic theory, 739

Maxwell velocity distribution function, 736f
Maybach, Wilhelm, 502
Mean effective pressure (mep), 505, 505f
Mean free path, 126, 733–734, 743
Mechanical efficiency (ηm), 459, 460t

Otto cycle, 505
Mechanical equilibrium, 38, 52t
Mechanical units, fundamental equation, 11
Mechanical work, defined, 108
Mechanochemical work, 123
Melting, Clapeyron equation, 370–372
Membrane potential, 697
Membranes, 695–696
Mep diagram, 505f
Mercury, isobaric coefficient of volume

expansion, 60, 376
Mercury-water binary power plant, 483f
Metabolism, 694, 699, 705

heat transfer in, 703
in mammals, 702–705, 717t

Methane, heat of formation, 605
Metrology, 6, 26t
MKSA units, 17
Microscopic system analysis, 43, 52t
Microstates

of a group of molecules, 747
formula for computing, 750t

Midgley, Thomas, Jr., 548
Mixing, 271–273, 293–296

entropy production rate of, 294
Mixtures of gases and vapors, homogeneous

nonreacting, 438
MLt system, 11
Moisture, 74, 75, 603
Molar properties

enthalpy, ideal gas, 391
heat of reaction, 607–608

Molar partial properties, 409t
Molar specific properties

absolute entropy, 623t
enthalpy of formation, 606
entropy of formation, 626
Gibbs function of formation, 623t, 626
specific heats, average, 614t
volume, 37, 79

Mole (mol)
defined, 14
in a mixture nm, 406
number of (n), 37, 406, 619, 627

Mole-based properties, 37
Molecular disorder, 206
Molecular mass, 15

equivalent, 409, 412, 594
Molecular motion

collision cross section, 732
mean free path, 733
velocities, 729
distribution, 734–738

Molecule, 593, 732–733
Mole fraction xi, 406, 414
Mollier, Richard, 225
Mollier diagram

stagnation state, 654f
for water, 226f

Momentum, 206, 474
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Morland, Samuel, 397
Moving system boundary work, polytropic

process, 110–111
μ0 (magnetic permeability, vacuum), 120
μ0 (permittivity, vacuum), 29
Mutually exclusive, 741

N
Nernst, Walter Hermann, 206
Net transport, heat and mass, 138
Net work, 105
Newcomen, Thomas, 451
Newcomen cycle

reversible, 457
thermal efficiency, 457

Newcomen engine, thermal efficiency of,
466

Newton, Isaac, 16, 592
Newton (N), 16–17
Newton’s law of cooling, 129
Newton’s second law, fixed mass closed

system, 674
Nonconductor, 116
Normal shock, 675
Normal shock wave, strength of, 689
Noether, Emmy, 63, 65, 89, 100–101
Nozzle

discharge coefficient, 682
efficiency, 681
subsonic, 661
supersonic flow, 662
thermodynamic process path, 682f
velocity coefficient, 681

Nuclear reactor, 313
Nucleotide phosphates, 694
Null, 120
Number system, 7
Nutrition, thermodynamics of, 705–711

O
Oblique shock, 675, 681
Ohm, George Simon, 117
Ohm’s law, 117, 238, 639, 770
Ohms (Ω), 117, 787t
Ω (ohm), 117, 787t
Onnes, Kamerlingh, 64
Open loop, 470

Brayton cycle, 496f
internal combustion engines, 486, 496

Open systems
applications
first law, 167–198
second law, 279–310

biological systems as, 699
conservation of mass law, 172
defined, 35
flowstream, 105, 168f
time derivative, 670
unsteady state processes, 190–197,

297–308
Operating efficiencies, 459–466
Organic compounds, 596, 694–695, 695t
Organic fuels, 596–599
Orsat analysis technique, 599
Otto, Nikolaus August, 502

Otto cycle, 502–508
four-stroke isentropic, 503

Oxidation theory, 592
Oxygen poisoning, 416
Ozone layer, 552–554

P
Pa (pascal), 787t
Paramagnetic materials, 120–121
Parsons, Charles Algernon, 476
Partial differential notation, 58
Partial pressure

ratio (πi), 602
water vapor and dry air, 418f

Partial specific properties, 406, 408t
enthalpy (ĥi), 413
entropy (ŝi), 413
heats, 408, 409t
internal energy (ûi), 413
volume, mixture of real gases, 413

Partition function, 750–751
Pascal (Pa), 787t
Path function, notation, 107
Perkins, Jacob, 542, 542f, 543
Permutation, 745, 747
Phase boundary, 65
Phase diagrams, 65–72

gas-vapor transitions, 72
pressure-volume, 66f, 67f
for water, 68, 68f

Phase equilibrium, 38
transition, liquid to vapor, 370

Phases of matter, 35–36
Phenomenological equations, 765–767
Phlogiston, 592
Photosynthesis, efficiency of, 701
Piston-cylinder devices, 155–157, 569
Planck, Max, 206, 210, 728
Planck’s constant, 748, 752, 787
Planck’s radiation law, 236
Point function, 107

energy and entropy as, 327
μJ (Joule-Thomson coefficient), 181

Polarization
dielectric, 116
vector (P), 118

Polyatomic gases, 756
linear, 756

Polyatomic molecule, nonlinear, 758
Polytropic process, 111
Population model, molecular velocity, 735
Porter, Alfred W., 64
Potential energy (PE), 20–23, 26

effect of height, 174t
flowstream, 173–174

Poundal (unit), 11, 26t
Pound mole, defined, 14
Power cycles, vapor and gas, 447–527
Power plant, 151–152

as a closed system, 151
example, 151–152
performance, 481

Pressure, units of, 15, 40
Pressure gage, 65
Pressure staging (Rateau), 476, 477f

Priestley, Joseph, 560, 592
Prime mover, 449

adiabatic, 516
modern developments, 516–517

Problem statement, 131
basic elements, 101
classification by scenario, 135
classification by unknown, 135

Process path, 39, 39f, 58, 682f, 684f
Products, 53, 593
Prony, Gaspard Clair Francois Marie Riche

de, 460
Prony brake, 460
Properties

defined, 36
values of thermodynamic, 410

Proportionality constants, 10, 11, 743
Proteins, 703, 705
Pseudocritical pressure, 435
Pseudocritical temperature, 435
Pseudo reduced specific volume, 386
Pseudospecific volume, 431, 488
Psychrometrics, 417–420, 440

chart, 421, 421f, 426, 427f
enthalpy, 426–430, 427f, 440
psychrometer
sling, 421–424, 421f

Pure substance, 36, 38, 65
defined, 35
thermodynamic properties of, 58

Pythagoras, 592

Q
q (charge), 117
Quality, 72–76

defined, 66
lever rule relation, 225
steam turbine, 469

Quantum numbers, 748
Quantum statistical models, 749–750
Quantum statistical thermodynamics,

747–749

R
Radiation heat transfer, 129
Rankine, William John Macquorn, 127, 397,

457
Rankine cycle, 457–459

and Carnot cycle compared, 467f
with the ideal working fluid, 482f
isenthalpic throttling, 545
isentropic, 461, 487
with regeneration, 469–474, 470f
with reheat, 477–480
reversed, 542, 545
reversible, 457, 461
supercritical, 483f
with superheat, 466–469
thermal efficiency, 459, 461, 471
thermal efficiency with reheat, 478

Rankine cycle heat engine, 469
thermal efficiency of, 459, 461

Rankine cycle power plant with reheat, 478,
478f

Rankine equation, 371
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Ranque, Georges Joseph, 302, 578
Rateau, Auguste Camille Edmond, 476
Rate balance equation, 44

one-dimensional open system, 672
open system, 670

Rayleigh line, 690
Reactants, chemical, 593
Reaction efficiency, fuel cell, 640, 641t, 644
Reaction turbine, 474, 475f, 476
Real gases, 83–84. See also Ideal gas; Ideal

gas equation
equation, power series expansion, 83
mixtures, 430–438

Rèaumur, René Antoine Ferchault de, 54
Reciprocating heat engine, 458f
Redlich-Kwong equation, 384
Redlich-Kwong gas, 83
Reduced pressure (pR), 385–386, 433, 436, 578
Reduced specific volume (vR), 385

pseudo, 386
Reduced temperature (TR), 385–386, 431
Reference states, 157, 603
Reflections on the Motive Power of Fire, 208
Refrigeration cycle, closed-loop vapor, 542f
Refrigeration technology, 536, 539, 539f,

542, 548
Refrigerator

commercial, 562–568
household, 562–568

Regeneration, 469, 557
cascade, 557
multistage, 557
power cycle, 488
reversed Brayton cycle, 571
reversed Stirling cycle, 573f

Regnault, Henri Victor, 397
Relative efficiency, 460
Relative humidity, (ϕ), 418, 425, 440, 520
Relative pressure ðpr̂ Þ, 383
Relative volume (vr), 383
Resistive dissipation, 238
Respiratory quotient, 703
Respiratory system, 712, 718
Response function, 116
Reversible processes, 211, 227, 250–255, 338

heat engines in series, 213, 213f
work, 239

Reynolds, Osborne, 670
Reynolds transport theorem, 669–673
Rice, W., 316t
Richter, Jeremias Benjamin, 593
Rochas, Alphonse Eugene Beau de, 503
Rocket engines, Lenoir cycle in, 495
Root mean square molecular velocity, 729
Rotating shaft work, 112–113, 474
Rotational molecular energy, 751
Rotational partition function, 753
Rotational symmetry number, 753, 754t

S
S (siemens), 787t
Saturated fatty acid, 706f
Saturated liquids

defined, 72
quality, 72

Saturated vapors
defined, 72
quality, 72

Saturation tables, 84, 379
Savery, Thomas, 450
Savery’s fire engine, 450, 450f
Schmidt, E., 234
Schrodinger, Erwin, 728
Sealed rigid container, 148–149
Second law, Newton’s, 11, 26t, 26
Second law of thermodynamics, 207–208

analysis of refrigeration cycles, 579
analysis of vapor and gas power cycles,

518
and the most probable macrostate, 749
Clausius’ mathematical form Clausius

statement, 210, 221
efficiency
air conditioner, 217
heat engine, 210
heat exchanger, 347
heat pump, 217
refrigerator, 217

Kelvin-Planck statement, 209
and shock waves, 678

Semiconductor, 116, 578
Series staging, 466
Sexagesimal system, 7, 26t
Shaft work machines, 187–190, 296–297

graphical symbols for, 188f
Shock waves, 675–681, 676f
Siemens (S) (unit), 787t
Sign convention, work, 104, 109
Significant figures

definition, 17
rule for adding and subtracting, 18
rule for multiplying and dividing, 18
rules for rounding, 18

Signs, 57, 105, 169, 217
Simple substance, defined, 36
Simple systems, 126, 127
SI units

derived, 16t
fundamental, 16t
prefixes, 16t

Sling psychrometer, 421–424, 421f
Slug (unit), 11, 26t
Smeaton, John, 452
Societe Française de Physique, 302
Solar power plant, 252
Solidification, 66, 69
Sonic boom, 675
Sonic velocity, 656, 656f, 658, 667
Specific availability (a), 324
Specific energy (e), 37, 90, 102
Specific enthalpy (h), 63, 169, 173

change in, 82, 179, 187, 373, 392
incompressible substance, 176
of an ideal gas, 80
incompressible material, 77
vapors, 171

Specific entropy
change in, 223
isothermal, 374
numerical values for, 207, 221

production ratio, 301
temperature dependent part, 382

Specific heat
constant pressure, 64
ideal gas, 222
for a mixture (cpm), 408

constant volume, 63
incompressible material, 77
isothermal variation in, 375
for a mixture (cvm), 408

of gases, 81f
of incompressible materials, 77, 222
of liquids, 78t
ratio, 422, 659t, 739
of solids, 78t

Specific Helmholtz function ( f ), 363, 399
Specific internal energy (u), 63

at the SRS, 604
change in, 82, 439
ideal gas, 79

Specific kinetic energy (ke), 173, 180
Specific potential energy (pe), 174, 180
Specific properties, 37, 225

mixture, 408t, 409t
Specific volume (v), 37

critical state, 386
“pseudo” reduced, 386

Stagnation properties, 652–653. See also
Isentropic stagnation state

specific enthalpy, 652
temperature, 653

Stahl, Georg Ernst, 592
Standard reference state (SRS), 603–604

heat of reaction, 609
State of a system, 36
State postulate, 127
States of water, 85t
Statistical thermodynamics, 43
Steady flow condition, 172
Steady state

aergonic reaction vessel, 606f
open systems, 168, 284
steady flow, 172

Steam
condenser, 453
gas, 396
power plants, 480–486
reheat, 477
thermodynamic properties, 88f
turbine, 474–477
vapor, 396

Stefan-Boltzmann constant, 129
Stefan-Boltzmann law, 129
Stephenson, George, 452
Stirling, Robert, 488
Stirling cycle, 488–490
Stirling’s approximation, 751
Stoichiometric reactions

coefficients, 593
equations, 593–596

Strain ðϵÞ, 114
Su, Gouq-Jen, 386
Subcooled liquids, 72
Sublimation, 69

Clapeyron equation, 370–372
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Sublimation line, 67
Subsonic flows, and shock waves, 652
Substantial derivative, 670
Super alloy engine components, 517
Supercharging, 503, 517
Superheated vapor

steam, 399
specific volume, 37

tables, 84, 380
Superheating, Rankine cycle, 466
Supersaturated vapor, 664
Supersonic flow

and shock waves, 685
diffuser, 661
nozzle, 662, 662f

Supersonic wind tunnel, 663
Surcharging, 466
Surface forces, 674
Surface tension work, 115–116
Surroundings, 322
System boundary, defined, 148
Systeme International d’Unités, 26t
System energy components, 102f
Systems, types of, 1, 34
System total energy, 220

T
T (tesla), 787t
Tank-filling process, 190
Temperature separation, 302
Temperature (T)

scales, 28, 40–42
absolute, 212–216

thermodynamic, fundamental units, 34
units, 8–10

Tertullianus, Quintus Septimus Florens, 448
Tesla (T), 787t
Theoretical air, 595
Thermal conduction, notation, 128f
Thermal conductivity (kt), 770
Thermal efficiency (ηT)

Brayton cycle, 495–499
Carnot cold ASC, 488
chronology of steam engines, 466f
defined, 212
energy conversion, 125
Ericsson cycle, 490–493
Lenoir cycle, 493–495
Otto cold ASC analysis, 507
Otto cycle, 502–508
ratio, 482
reversed Rankine cycle, 545
of the Stirling cycle, 488–490
turbojet engine, 499

Thermal equilibrium, 38
Thermoclines, 528
Thermoelectric, 763
Thermodynamic charts, 87, 380–382
Thermodynamic cycle, 39
Thermodynamic loop classifications, 486f
Thermodynamic problems, solving, 58, 132

flowchart for, 131f
scenarios, 135

Thermodynamic problems, writing, 130

Thermodynamic process, 39, 51
defined, 39
power and refrigeration cycles, 461
problem classification by, 135

Thermodynamic properties, 36–38, 57,
60–62, 168, 406–412

at the critical state, 70
Thermodynamic software, 89, 89t
Thermodynamics, defined, 1
Thermodynamic system, defined, 34
Thermodynamic tables, 84–85, 378
Thermoelectricity, 578
Thermomechanical, 776–783, 779f
Thermometer, 8–9
Third law of thermodynamics, 206, 241, 622
Thompson, Benjamin (Count Rumford), 164
Thomson, William (Lord Kelvin), 8, 210, 212
Throat, 568, 662
Throttles, 180, 284–289
Throttling devices, 179–182

Calorimeter, 182–183
Time, fundamental units, 11, 11t, 12
Ton of refrigeration (unit), 541
Torque vector (T), 112
Total energy, 167–168, 749

defined, 62
internal (U), 62
system (E), 46, 62
transport
in a closed system, 105–106
in an open system, 105

Total entropy production, 236, 281
Translational energy

kinetic, 20–21, 26
molecular, 758
total internal, 729, 731

Translational partition function, 753
Transmutation, 592
Transonic flow, 657
Triple point, 67–68, 68t, 206
Troy pound, 12
Turbine, 474–477, 490, 498, 499–502

power plant, open loop, 491f
Turbocharger, 509–510
Turbocompounding, 517, 518f
Turbofan engine, 521
Turbojet engine, 130, 499, 521, 523
Turboprop, 521
Twinning, Alexander Catlin, 543

U
u (specific internal energy), 37, 39, 63–64,

378
U (total internal energy), 62–63, 698
Ultraviolet radiation, 552
Units

dyne, 11
newton, 11
ohms, 117
poundal, 11
psia (pounds per square inch absolute), 40
psig (pounds per square inch gage), 40
slug, 11
temperature, 8–10, 25–26
ton of refrigeration, 541

Units systems, 7, 10–14
Universal constants

gas constant (ℛ), 84, 391, 697, 787
magnetic permeability (μo), 120

Unsaturated fatty acid, 706f
Unsaturated hydrocarbons, 597, 706f
Unsteady state processes

closed system, 157–159
open system, 190–197, 297–308

V
v (specific volume), 37, 60, 75, 91
V (volt), 38t, 639
Valence, 639, 696
van der Waals, Johannes Diederik, 384
van der Waals equation, 83, 385
van der Waals isotherms, 385f
Van Helmont, Jan Bapist, 69
van’t Hoff, Jacobus Hendricus, 626
van’t Hoff equation, 635–636, 636, 644
Vaporization, 68–69
Vaporization line, 66
Velocity, 20, 102, 168, 173t
Velocity distribution

error function, 736
population model, 735

Velocity of light, 748
Velocity staging (Curtis), 476–477
Vibrational internal energy, 756, 758

diatomic gases, 739
nonlinear polyatomic molecules, 758
polyatomic linear gas molecules, 756

Vibrational molecular energy, 751
Vibrational partition function, diatomic gas,

753
Victoria hydraulic air compressor, 316t
View factor, 129
Virial coefficients, 83
Virial expansions, 83
Viscosity (μ), 37, 237, 273
Viscous dissipation, 236, 280
Voltage, 117, 641t, 764
Volt (V), 38t, 639
Volume ðVÞ, 335, 614t, 788
Volume flow rate, 187
Volume fraction (psi), 407, 439
Vortex tube, 302, 302f, 304, 578

W
W (watt), 12, 16, 16t, 787t
Walking beam, 451
Waste product output, 698
Water, thermodynamic properties, 76, 94
Water dust, 396
Water wheel operation, 209f
Watt, James, 453–454, 514
Wave equation, 749
Wave function, 749
Wb (weber), 16, 16t, 787t
Weber, H. C., 386
Weight, 7, 60, 405
Weight density, 713
Wet, defined, 72
Wet region, quality of, 85
Whitney, Eli, 449
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William III, King of England, 450
Windmills, 187
Work

biological system, 700
classical types of, 109
sign convention, 104

Work-absorbing systems, 125
Work differential, 116

Work efficiency, transport energy, 228, 297,
459

Working fluid, ideal, 482
Work mode

production of entropy, 235–239
transport of entropy, 231

Work-producing systems, 125, 228
Work transport rate of energy, 105, 636

Y
Young’s modulus of elasticity (E), 114

Z
Z (compressibility factor), 384–396
Zero, 378, 498, 603, 779–783
Zeroth law of thermodynamics, 42, 43f, 51
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