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Dedication

WHAT IS AN ENGINEER AND WHAT DO ENGINEERS DO?

The answer is in the word itself. An er word ending means “the practice of.” For example, a farmer farms, a
baker bakes, a singer sings, a driver drives, and so forth. But what does an engineer do? Do they engine? Yes they
do! The word engine comes from the Latin ingenerare, meaning “to create.”

About 2000 years ago, the Latin word ingenium was used to describe the design of a new machine. Soon after,
the word ingen was being used to describe all machines. In English, “ingen” was spelled “engine” and people
who designed creative things were known as “engine-ers”. In French, German, and Spanish today, the word for
engineer is ingenieur.

So What Is an Engineer?
An engineer is a creative and ingenious person.

What Does an Engineer Do?

Engineers create ingenious solutions to society’s problems.

This Book Is Dedicated to All the Future Engineers of the World.
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Preface

TEXT OBJECTIVES

This textbook has two main objectives. The first is to provide students with a clear presentation of the
fundamental principles of basic and applied engineering thermodynamics. The second is to help students develop
skills as engineering problem solvers by nurturing the development of their confidence with basic engineering
principles through the use of numerous solved example problems. Problem-solving skills are not necessarily
learned simply by routinely solving more and more problems. The understanding of proven problem-solving
strategies and techniques greatly accelerates the development of problem-solving skills. Throughout the text, learn-
ing assessment exercises are included that have proven to be effective in helping students to understand and
develop confidence in their ability to solve engineering thermodynamics problems.

To meet these objectives, explanations are occasionally more detailed than those found in other texts, because
common learning difficulties encountered by students have been anticipated. If students can understand the text
by simply reading it, then the instructor has more flexibility in selecting lecture material. For example, an
instructor might choose to develop a few salient points from the reading and then work a few interesting
example problems, rather than present a complete derivation of all the assigned reading material.

CULTURAL INFRASTRUCTURE

What engineers do has an enormous impact on society and the world. Understanding how the great challenges
of engineering were met in the past can help students understand the importance of the theory and practice of
modern engineering principles. This text presents the historical background, the current uses, and the future
importance of the thermodynamic topics treated. By understanding where ideas come from, how they were
developed, and what external forces shaped the resulting technology, students will better understand their role
as engineers of the future.

Engineering is an exciting and rewarding career. However, students occasionally become disenchanted with their
engineering course work because they are unable to see the connection between what they are studying and
what an engineer really does. To combat this problem, the thermodynamic concepts in this text are presented in
a straightforward logical manner, and then applied to real-world engineering situations that are both timely and
interesting.

TEXT COVERAGE

This text was designed for use in a standard two-semester engineering thermodynamics course sequence. The first
part of the text (Chapters 1-10) contains material suitable for a Basic Thermodynamics course that can be taken
by engineers from all majors. The second part of the text was designed for an Applied Thermodynamics course
in a mechanical engineering program. Chapters 17, 18, and 19 present several unique topics (biothermody-
namics, statistical thermodynamics, and coupled phenomena) for those wishing to glimpse the future of the
subject.

xiii



TEXT FEATURES

1. Style. To make the subject as understandable as possible, the writing is somewhat conversational and the
importance of the subject is evidenced in the enthusiasm of the presentation. The composition of the
engineering student body has been changing in recent years, and it is no longer assumed that the students
are all men and that they inherently understand how technologies (e.g., engines) operate. Consequently, the
operation of basic technologies is explained in the text along with the relevant thermodynamic material.

2. Significant figures. One of the unique features of this text is the treatment of significant figures. Professors
often lament about the number of figures provided by students on their homework and examinations. The
rules for determining the correct number of significant figures are introduced in Chapter 1 and are followed
consistently throughout the text. An example from Chapter 1 follows.

EXAMPLE 1.6

The inside diameter of a circular water pipe is measured with a ruler to two significant figures and is found to be 2.5 inches.
Determine the cross-sectional area of the pipe to the correct number of significant figures.

Solution
The cross-sectional area of a circle is A = zD*/4, so Apipe = 7(2.5 inches)?/4 = 4.9087 in?, which must be rounded to 4.9 in?,
since the least accurate value in this calculation is the pipe diameter (2.5 inches), which has only two significant figures.

3. Chapter overviews. Each chapter begins with an overview of the material contained in the chapter.
4. Problem-solving strategy. A proven technique for solving thermodynamic problems is discussed early in the
text and followed throughout in the solved examples. The technique follows these steps:

SUMMARY OF THE THERMODYNAMIC PROBLEM-
SOLVING TECHNIQUE

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.

Step 3. Identify the type of system (closed or open) you have.

Step 4. Identify the process that connects the states or stations.

Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).

Step 7. Calculate the value(s) of the unknown(s).

Step 8. Check all algebra, calculations, and units.

Sketch — Unknowns — System — Process — Equations — Solve — Calculate — Check

5. Solved example problems. Over 200 solved example problems are provided in the text. These examples
were carefully designed to illustrate the preceding text material. A sample from Chapter 5 follows.

EXAMPLE P.1

Read the problem statement. An incandescent lightbulb is a simple electrical device. Using the energy rate balance on a
lightbulb, determine the heat transfer rate of a 100. W incandescent lightbulb.

Solution
Step 1. Identify and sketch the system (see Figure P.1 on the following page).
Step 2. Identify the unknowns. The unknown is Q.
Step 3. Identify the type of system. It is a closed system.
Step 4. Identify the process connecting the system states. The bulb does not change its thermodynamic state, so its
properties remain constant. The process path (after the bulb has warmed to its operating temperature) is U = constant.



Step 5. Write down the basic equations. The only basic equation thus far
available for a closed system rate process is Eq. (4.21), the general closed \ ( ,_I QA+
system energy rate balance equation: .
d d (mV? d (mgZ \ 0 v +
. . m . . . ,
Q_W=Z( )+a(2&>+a<gc>=u+KE+PE / -
i _—

Assume KE = PE = 0, and since U = constant, U = 0. This reduces the gov-

erning energy rate balance equation for this problem to Q — W = 0.

Write any relevant auxiliary equations. The only relevant auxiliary equation //_ \
needed here is that the lightbulb has an electrical work input of 100. W, so ’

that W = -100. W.

Step 6. Algebraically solve for the unknown(s): Q = W . .
Step 7. Calculate the value(s) of the unknowns: Q = W = -100. W (the

minus sign tells us that the heat is leaving the system).

Step 8. A check of the algebra, calculations, and units shows that they are , oo w "“’ T S
correct.

FIGURE P.1

Example P.1.

6. Example problem exercises with answers. Immediately following each solved example, several exercises
are provided that are variations on the theme of the solved example. The answers to the exercises are also
provided so that the student can build confidence in problem solving. For example, the exercises for the
preceding example problem might look something like this:

a. What would be the heat transfer rate if the lightbulb in the previous example is replaced by a 20.0 W
fluorescent lightbulb? Answer: Q = W = —20.0 W.

b. How would the lightbulb in the previous example behave if it were put into a small, sealed, rigid,
insulated box? Answer: Since the box is insulated, the heat transfer rate would be zero.

c. How would the internal energy of the incandescent lightbulb change if it were put into a small, sealed,
rigid, insulated box? Answer: Then, since Q = 0, I = =W = 100. W, and the internal energy increases
until the bulb overheats and fails.

7. Unit systems. Engineers today need to understand two types of units systems: classical Engineering English

units and modern metric SI units. Both are used in this text, with SI units used in many of the example and

homework problems.
8. Critical Thinking boxes. At various points in the chapters, special “Critical Thinking” boxes are introduced
to challenge the students’ understanding of the material. The example that follows is from Chapter 3.

CRITICAL THINKING

If we chose the color of a system as a thermodynamic property, would it be an extensive or intensive property?

9. Question-and-answer boxes. Students’ questions are anticipated at various points throughout the text and
are answered in a simple, direct manner. This example is from Chapter 4.

WHAT ARE HEAT AND WORK?

Heat is usually defined as energy transport to or from a system due to a temperature difference between the system and its
surroundings. This can occur by only three modes: conduction, convection, and radiation.

Work is more difficult to define. It is often defined as a force moving through a distance, but this is only one type of work
and there are many other work modes as well. Since the only energy transport modes for moving energy across a system’s
boundary are heat, mass flow, and work, the simplest definition of work is that it is as any energy transport mode that is
neither heat nor mass flow."

! Work can also be defined using the concept of a “generalized” force moving through a “generalized” displacement.



10. Case studies in applied thermodynamics. Scattered throughout the text are numerous case studies
describing actual engineering applications of specific thermodynamic concepts. Typical case studies include
the following topics:

Supercritical wastewater treatment; The “drinking bird”; Heat pipes; Vortex tubes; A hypervelocity
gun; GE 90 aircraft engine; Stirling engines; Stanley steamer automobile; Forensic analysis.

11. Historical vignettes. The text also contains numerous short stories describing human side of the
development of important thermodynamic concepts and technologies. The following example is from
Chapter 14.

IS IT DANGEROUS TO STUFF A CHICKEN WITH SNOW?

The great British philosopher and statesman Sir Francis Bacon (1561-1626) was keenly interested in the possibility of using
snow to preserve meat. In March 1626, he stopped in the country on a trip to London and purchased a chicken. He had the
chicken killed and cleaned on the spot, then he packed it with snow and took it with him to London. Unfortunately,
the experiment caused his death only a few weeks later. The 65-year-old statesman apparently caught a chill while stuffing
the chicken with snow and came down with terminal bronchitis. Refrigeration was clearly not something to be taken lightly.

12. Chapter summaries. Each chapter ends with a summary (including relevant equations) that reviews the
important concepts covered in the chapter.

13. End-of-chapter problems:

Homework problems. At the end of each chapter, an extensive set of problems is provided that is
suitable for homework assignments or solved classroom examples. The homework problems include
traditional ones that have only one unique answer, as well as modern computer problems, design
problems, and writing to learn problems that allow students more latitude.

The computer problems allow students to use spreadsheets and equation solvers in modern
programming languages to address more complex problems requiring a range of solutions.

The design problems provide an opportunity for students to carry out a preliminary design requiring
the use of the material presented in the chapter.

Writing to learn problems have a dual function. They allow students to enhance their understanding of
the subject by expressing themselves verbally in short, written essays about topics presented in the
chapter, and they also develop students’ writing and communication skills.

Create and solve problems are designed to help students learn how to formulate solvable
thermodynamics problems from engineering data. Engineering education tends to focus only on the
process of solving problems. It ignores teaching the process of formulating solvable problems. However,
working engineers are never given a well-phrased problem statement to solve. Instead, they need to react
to situational information and organize it into a structure that can then be solved using the methods
learned in college.

14. Appendices. There are two appendices in this text. Appendix A provides a list of unit conversions. Since
thermodynamics is laced with a variety of technical terms, some having Greek or Latin origin, Appendix B
provides a brief introduction to the etymology of these terms, in the belief that understanding the meaning of
the words themselves enhances the learning of the subject matter.

15. “Thermodynamic Tables to accompany Modern Engineering Thermodynamics” is included with new copies of this
text. This booklet contains Appendices C and D, tables, and charts essential for solving the text’s
thermodynamics problems.

The United States uses more than 10'7 (100 quadrillion) Btu of energy every year. But the really surprising fact
is that 45% of this energy ends up as waste heat dumped into the lakes, rivers, and atmosphere. Our energy
conversion technologies today are inefficient because we still rely on the burning of fossil fuels. As the 21st century
progresses and more and more countries strive to improve their standard of living, we will need to do a better job
of providing nonthermal energy sources. We can and will develop new energy-conversion technologies through a
detailed understanding and use of the principles of thermodynamics.
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Prologue

PARIS FRANCE, 10:35 am, AUGUST 24, 1832

The nurse closed the door quietly behind her as she left his hospital room. She knew her patient was
very sick, because for the past two days, he had been irritable and lethargic and now he was com-
plaining of a fever and muscle cramps. His eyes looked sunken and he was constantly thirsty; yester-
day, he vomited for hours. Sadi Carnot was only 36 years old, but that day he would die of cholera.

Sadi Carnot was born June 1, 1796, in the Luxembourg Palace in Paris. His father, Lazare Carnot,
was one of the most powerful men in France and would eventually become Napoleon Bonaparte's
war minister. He named his son Sadi simply because he greatly admired a medieval Persian poet
called Sa’di of Shiraz.

At the age of 18, Sadi graduated from the Ecole Polytechnique military academy and went on to a
military engineering school. Sadi’s friends saw him as reserved, but he became lively and excited
when their discussions turned to science and technology.

After the defeat of Napoleon at Waterloo in October 1815, Sadi’s father was exiled to Germany and
Sadi’s military career stagnated. Unhappy at his lack of promotion and his superiors’ refusal to give
him work that allowed him to use his engineering training, he took a half-time leave to attend
courses at various institutions in Paris. He was fascinated by technology and began to study the the-
ory of gases.

After the war with Britain, France began importing advanced British steam engines, and Sadi realized
just how far French designs had fallen behind. He became preoccupied with the operation of steam
engines; in 1824, he published his studies in a small book entitled Reflections on the Motive Power of
Fire. At the time, his book was largely ignored, but today it represents the beginning of the field we
call thermodynamics.

Because Sadi Carnot died of infectious cholera, all his clothes and writings were buried with him.
Who knows what thermodynamic secrets still lie hidden in his grave?

xxiii
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1.1 WHAT IS THERMODYNAMICS?

Thermodynamics is the study of energy and the ways in which it can be used to improve the lives of people
around the world. The efficient use of natural and renewable energy sources is one of the most important
technical, political, and environmental issues of the 21st century.

In mechanics courses, we study the concept of force and how it can be made to do useful things. In thermo-
dynamics, we carry out a parallel study of energy and all its technological implications. The objects studied in
mechanics are called bodies, and we analyze them through the use of free body diagrams. The objects studied
in thermodynamics are called systems, and the free body diagrams of mechanics are replaced by system diagrams
in thermodynamics.

THERMO—WHAT?

The word thermodynamics comes from the Greek words Oeppn (therme, meaning “heat”) and dvvapig (dynamis, meaning
“power”). Thermodynamics is the study of the various processes that change energy from one form into another (such as
converting heat into work) and uses variables such as temperature, volume, and pressure.

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00001-4
© 2011 Elsevier Inc. All rights reserved.
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Energy is one of the most useful concepts ever developed.! Energy can be possessed by an object or a system,
such as a coiled spring or a chemical fuel, and it may be transmitted through empty space as electromagnetic
radiation. The energy contained in a system is often only partially available for use. This, called the available
energy of the system, is treated in detail later in this book.

One of the basic laws of thermodynamics is that energy is conserved. This law is so important that it is called
the first law of thermodynamics. It states that energy can be changed from one form to another, but it can-
not be created or destroyed (that is, energy is “conserved”). Some of the more common forms of energy
are: gravitational, kinetic, thermal, elastic, chemical, electrical, magnetic, and nuclear. Our ability to effi-
ciently convert energy from one form into a more useful form has provided much of the technology we
have today.

1.2 WHY IS THERMODYNAMICS IMPORTANT TODAY?

The people of the world consume 1.06 cubic miles of oil each year as an energy source for a wide variety of uses
such as the engines shown in Figures 1.1 and 1.2.? Coal, gas, and nuclear energy provide additional energy,
equivalent to another 1.57 mi® of oil, making our total use of exhaustible energy sources equal to 2.63 mi> of oil
every year. We also use renewable energy from solar, biomass, wind (see Figure 1.3), and hydroelectric, in
amounts that are equivalent to an additional 0.37 mi® of oil each year. This amounts to a total worldwide

FIGURE 1.1
A cutaway of the Pratt & Whitney F-100 gas turbine engine.

FIGURE 1.2
Corvette engine.

! The word energy is the modern form of the ancient Greek term energeia, which literally means “in work” (en = in and ergon = work).
2 One cubic mile of oil is equal to 1.1 trillion gallons and contains 160 quadrillion (160 x 10'°) kilojoules of energy.
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FIGURE 1.3
Sustainable wind energy technology.

FIGURE 1.4
The Starship Enterprise in Star Trek. (Photo credit: Industrial Light & Magic, Copyright © 2008 by PARAMOUNT PICTURES. All Rights
Reserved.)

energy use equivalent to 3.00 mi® of oil each year. If the world energy demand continues at its present rate to
create the technologies of the future (e.g., the Starships of Figure 1.4), we will need an energy supply equivalent
to consuming an astounding 270 mi® of oil by 2050 (90 times more that we currently use). Where is all that
energy going to come from? How are we going to use energy more efficiently so that we do not need to use so
much? We address these and other questions in the study of thermodynamics.

The study of energy is of fundamental importance to all fields of engineering. Energy, like momentum, is a
unique subject and has a direct impact on virtually all technologies. In fact, things simply do not “work” with-
out a flow of energy through them. In this text, we show how the subject touches all engineering fields through
worked example problems and relevant homework problems at the end of the chapters.
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HOW IS THERMODYNAMICS USED IN ENGINEERING?

Mechanical engineers study the flow of energy in systems such as automotive engines (Figure 1.2), turbines, heat
exchangers, bearings, gearboxes, air conditioners, refrigerators, nozzles, and diffusers.

Electrical engineers deal with electronic cooling problems, increasing the energy efficiency of large-scale electrical power
generation, and the development of new electrical energy conversion technologies such as fuel cells.

Civil engineers deal with energy utilization in construction methods, solid waste disposal, geothermal power generation,
transportation systems, and environmental impact analysis.

Materials engineers develop new energy-efficient metallurgical compounds, create high-temperature materials for engines,
and utilize the unique properties of nanotechnology.

Industrial engineers minimize energy consumption and waste in manufacturing processes, develop new energy
management methods, and improve safety conditions in the workplace.

Aerospace engineers develop energy management systems for air and space vehicles, space stations, and planetary
habitation (Figure 1.4).

Biomedical engineers develop better energy conversion systems for the health care industry, design new diagnostic and
treatment tools, and study the energy flows in living systems.

All engineering fields utilize the conversion and use of energy to improve the human condition.

1.3 GETTING ANSWERS: A BASIC PROBLEM SOLVING

TECHNIQUE

Unlike mechanics, which deals with a relatively small range of applications, thermodynamics is truly global and
can be applied to virtually any subject, technology, or object conceivable. You no longer can thumb through a
book looking for the right equation to apply to your problem. You need a method or technique that guides you
through the process of solving a problem in a prescribed way.

In Chapter 4, we provide a more detailed technique for thermodynamics problem solving, but for the present,
here are seven basic problem solving steps you should know and understand.

1.

Read. Always begin by carefully reading the problem statement and try to visualize the “thing” about which
the problem is written (a car, engine, rocket, etc.). The “thing” about which the problem is written is called
the system in thermodynamics. This may seem simple, but it is key to understanding exactly what you are
analyzing.

Sketch. Now draw a simple sketch of the system you visualized and add as much of the numerical
information given in the problem statement as possible to the sketch. If you do not know what the “thing” in
the problem statement looks like, just draw a blob and call it the system. You will not be able to remember all the
numbers given in the problem statement, so write them in an appropriate spot on your sketch, so that they
are easy to find when you need them.

Need. Write down exactly what you need to determine—what does the problem ask you to find?

Know. Make a list of the names, numerical values, and units of everything else given in the problem
statement. For example, Initial velocity = 35 meters per second, mass = 5.5 kilograms.

How. Because of the nature of thermodynamics, there are more equations than you are accustomed to
working with. To be able to sort them all out, you need to get in the habit of listing the relevant equations
and assumptions that you “might” be able to use to solve for the unknowns in the problem. Write down all
of them.

A BASIC PROBLEM SOLVING TECHNIQUE

SR OROTHENCORN R

Carefully read the problem statement and visualize what you are analyzing.

Draw a sketch of the object you visualized in step 1.

Now write down what you need to find, that is, make a list of the unknown(s).

List everything else you know about the problem (i.e., all the remaining information given in the problem statement).
Make a list of relevant equations to see how to solve the problem.

Solve these equations algebraically for the unknown(s).

Calculate the value(s) of the unknown(s), and check the units in each calculation.

Read — Sketch —» Need — Know — How — Solve — Calculate
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6. Solve. Next, you need to algebraically solve the equations listed in step 5 for the unknowns. Because the
number of variables in this subject can be large, the unknowns you need to determine may be inside one of
your equations, and you need to solve for it algebraically.

7. Calculate. Finally, after you have successfully completed the first six steps, you compute the values of the
unknowns, being careful to check the units in all your calculations for consistency.

This technique requires discipline and patience on your part. However, if you follow these basic steps, you will
be able solve the thermodynamics problems in the first three chapters of this textbook. The following example
illustrates this problem solving technique.

EXAMPLE 1.1

A new racecar with a JX-750 free-piston engine is traveling on a straight level test track at a velocity of 85.0 miles per hour.
The driver accelerates at a constant rate for 5.00 seconds, at which point the car’s velocity has increased to 120. miph. Deter-
mine the acceleration of the car as it went from 85.0 to 120. mph.?

Solution

1. Read the problem statement carefully. Sometimes you may be given miscellaneous information that is not needed in the
solution. For example, we do not need to know what kind of engine is used in the car, but we do need to know that the car
has a constant acceleration for the 5.00 s.

2. Draw a sketch of the problem, like the one in Figure 1.5. Transfer all the numerical information given in the problem
statement onto your sketch so you need not search for it later.

T o

V;=85.0mph V,=120. mph

FIGURE 1.5
Example 1.1, solution step 2.

3. What are we supposed to find? We need the acceleration of the car.

4. We know the following things: The initial velocity = 85.0 mph, the final velocity = 120. mph, and the car accelerates for t = 5.00 s.

5. How are we going to find the car’s acceleration? In this case, the basic physics equation that defines acceleration is
a= dxz/dt2 = dV/dt, and if the acceleration a is constant, then we can integrate this equation to get Vina = Vinitial + at.
Note that the acceleration must be constant to use this equation. Aha, that is why the acceleration was specified as
constant in the problem statement. No additional equations are needed to solve this problem.

6. Now we can solve for the unknown acceleration, a:

_ Viinal = Vinitial
t

a

7. Now all we have to do is to insert the given numerical values and calculate the solution:

(120 _g85 miles>
o= hour/ _ miles
5 seconds hour/seconds

Now check the units. Miles per hour times seconds makes no sense. Let us convert the car’s velocity from miles per hour
to feet per second before we calculate the acceleration*:

iles 5280 feet/mile feet
Vi =(85m1 ) =125——
iitia hour/ \ 3600 seconds/hour second

and

iles 5280 feet/mile feet
Vina = (120. IE5) =176
final hour/ \ 3600 seconds/hour second

(Continued )
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EXAMPLE 1.1 (Continued )

Then, the acceleration becomes

176 —125 fe;etd -
a= second _ 193t _ 10 3 ft/s?
5 seconds second?

Remember, the answer is not correct if the units are not correct.

Following most of the Example problems in this text are a few Exercises, complete with answers, that are based on the
Example. These exercises are designed to allow you to build your problem solving skills and develop self-confidence. The
exercises are to be solved by following the solution structure of the preceding example problem. Here are typical exercise
problems based on Example 1.1.

Exercises

1. Determine the acceleration of the race car in Example 1.1 if its final velocity is 130. mph instead of 120. mph.
Answer: a = 13.2 feet/second’.

2. If the racecar in Example 1.1 has a constant acceleration of 10.0 ft/s?, determine its velocity after 6.00 s.
Answer: V = 126 mph.

3. A dragster travels a straight level % mile drag strip in 6.00 s from a standing start (i.e., Xinitial = Vinitias = 0). Determine the
average constant acceleration of the dragster. Hint: The basic physics equation you need here is Xgna = Vinital X t + (%)atzi
Answer: a = 73.3 ft/s%.

3 You may be wondering why there are decimal points and extra zeros added to some of these numbers. This is because we are indicating the number of
significant figures represented by these values. The subject of significant figures is covered later in this chapter.
* For future reference, there are “exactly” 5280 feet in one mile and “exactly” 3600 seconds in one hour.

1.4 UNITS AND DIMENSIONS

In thermodynamics, you determine the energy of a system in its many forms and master the mechanisms by
which the energy can be converted from one form to another. A key element in this process is the use of a con-
sistent set of dimensions and units. A calculated engineering quantity always has two parts, the numerical value
and the associated units. The result of any analysis must be correct in both categories: It must have the correct
numerical value and it must have the correct units.

Engineering students should understand the origins of and relationships among the several units systems
currently in use within the profession. Earlier measurements were carried out with elementary and often incon-
sistently defined units. In the material that follows, the development of measurement and units systems is pre-
sented in some detail. The most important part of this material is that covering modern units systems.

1.5 HOW DO WE MEASURE THINGS?

Metrology is the study of measurement, the source of reproducible quantification in science and engineering. It deals
with the dimensions, units, and numbers necessary to make meaningful measurements and calculations. It does not
deal with the technology of measurement, so it is not concerned with how measurements are actually made.

We call each measurable characteristic of a quantity a dimension of that quantity. If the quantity exists in the
material world, then it automatically has three spatial dimensions (length, width, and height), all of which are
called length (L) dimensions. If the quantity changes in time, then it also has a temporal dimension called time (t).
Some dimensions are not unique because they are made up of other dimensions. For example, an area (A) is a
measurable characteristic of an object and therefore one of its dimensions. However, the area dimension is the
same as the length dimension squared (A = L?). On the other hand, we could say that the length dimension is the
same as the square root of the area dimension.

Even though there seems to be a lack of distinguishing characteristics that allow one dimension to be recognized
as more fundamental than some other dimension, we easily recognize an apparent utilitarian hierarchy within a
set of similar dimensions. We therefore choose to call some dimensions fundamental and all other dimensions
related to the chosen fundamental dimensions secondary or derived. It is important to understand that not all systems
of dimensional analysis have the same set of fundamental dimensions.

Units provide us with a numerical scale whereby we can carry out a measurement of a quantity. They are estab-
lished quite arbitrarily and are codified by civil law or cultural custom. How the dimension of length ends up
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being measured in units of feet or meters has nothing to do with any physical law. It is solely dependent on the
creativity and ingenuity of people. Therefore, whereas the basic concepts of dimensions are grounded in the fun-
damental logic of descriptive analysis, the basic ideas behind the units systems are often grounded in the roots
of past civilizations and cultures.

ANCIENT UNITS SYSTEMS

Intuition tells us that civilization should have evolved using the decimal system. People have ten fingers and ten toes, so the
base 10 (decimal) number system would seem to be the most logical system to be adopted by prehistoric people. However,
archaeological evidence has shown that the pre-Egyptian Sumerians used a base 60 (sexagesimal) number system, and ancient
Egyptians and early American Indians used a base 5 number system. A base 12 (duodecimal)

number system was developed and used extensively during the Roman Empire. Today, mixed

remains of these ancient number systems are deeply rooted in our culture.

A fundamental element of a successful mercantile trade is that the basic units of commerce Cubit
have easily understood subdivisions. Normally, the larger the base number of a particular

number system, the more integer divisors it has. For example, 10 has only three divisors

(1, 2, and 5), but 12 has five integer divisors (1, 2, 3, 4, and 6) and therefore makes a con- IHan d
siderably better fractional base. On the other hand, 60 has an advantage over 100 as a

number base because the former it has 11 integer divisors whereas 100 has only 8.

The measurements of length and time were undoubtedly the first to be of concern to
prehistoric people. Perhaps the measurement of time came first, because people had to
know the relationship of night to day and understand the passing of the seasons of the
year. The most striking aspect of our current measure of time is that it is a mixture of
three numerical bases; decimal (base 10) for counting days of the year, duodecimal (base
12) for dividing day and night into equal parts (hours), and sexagesimal (base 60) for
dividing hours and minutes into equal parts.

Nearly all early scales of length were initially based on the dimensions of parts of the adult

human body because people needed to carry their measurement scales with them (see Foot |
Figure 1.6). Early units were usually related to each other in a binary (base 2) system. For '
example, some of the early length units were: half-hand = 2 fingers; hand = 2 half-hands;
span = 2 hands; forearm (cubit) = 2 spans; fathom = 2 forearms, and so forth. Measure-
ments of area and volume followed using such units as handful = 2 mouthfuls, jack = 2
handfuls, gill = 2 jacks, cup = 2 gills, and so forth.

Pace

FIGURE 1.6
Egyptian man with measurements.

Weight was probably the third fundamental measure to be established, with the development of such units as the grain
(i.e., the weight of a single grain of barley), the stone, and the talent (the maximum weight that could be comfortably
carried continuously by an adult man).

CRITICAL THINKING

Where are Roman numerals still commonly used today? How would technology be different if we used Roman numerals
for engineering calculations today?

NURSERY RHYMES AND UNITS

Many of the Mother Goose nursery rthymes were not originally written for children but in reality were British political
poems or songs. For example, in 17th century England, the treasury of King Charles I (1625-1640) ran low, so he imposed
a tax on the ancient unit of volume used for measuring honey and hard liquor, the jack (1 jack = 2 handfuls). The response
of the people was to avoid the tax by consuming drink measured in units other than the jack. Eventually, the jack unit
became so unpopular with the people that it was no longer used for anything. One of the few existing uses of the jack unit

(Continued)
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NURSERY RHYMES AND UNITS continued

today is in the term jackpot. Coincidentally, the next larger unit size, the gill (1 gill = 2 jacks), also fell into disuse. The
political meaning of the following popular Mother Goose thyme should now become clear (Figure 1.7):

Jack and Gill went up a hill to fetch a pail of water.
Jack fell down and broke his crown and Gill came tumbling after.

The Jack and Gill in this thyme are not really a little boy and gitl, they are the old units of volume measure. Jack fell down refers to the
fall of the jack from popular usage as a result of the tax imposed by the crown, Charles I. The phrase and Gill came tumbling after refers
to the subsequent decline in the use to the gill unit of volume measure. The “real” jack and gill of this thyme are shown in Figure 1.8.

Jack Gill
FIGURE 1.7 FIGURE 1.8
Jack and Jill. The real jack and gill.

CRITICAL THINKING

What other Mother Goose thymes or children’s songs are not what they seem?

1.6 TEMPERATURE UNITS

The development of a temperature unit of measure came late in the history of science. The problem with early
temperature scales is that all of them were empirical, and their readings often depended on the material (usually
a liquid or a gas) used to indicate the temperature change. In a liquid-in-glass thermometer, the difference
between the coefficient of thermal expansion of the liquid and the glass causes the liquid to change height
when the temperature changes. If the coefficient of thermal expansion depends in some way on temperature,
then an accurate thermometer cannot be made simply by defining two fixed (calibration) points and subdivid-
ing the difference between these two points into a uniform number of degrees. Unfortunately, the coefficients of
thermal expansion of all liquids depend to some extent on temperature; consequently, the two-fixed-point
method of defining a temperature scale is inherently prone to this type of measurement error.

In 1848, William Thomson (1824-1907), later to become Lord Kelvin, developed a thermodynamic absolute
temperature scale that was independent of the measuring material. He was further able to show that his thermo-
dynamic absolute temperature scale was identical to the ideal gas absolute temperature scale developed earlier,
and therefore an ideal gas thermometer could be calibrated to measure thermodynamic absolute temperatures.
Thereafter, the absolute Celsius temperature scale was named the Kelvin scale in his honor. Because it was a real
thermodynamic absolute temperature scale, it could be constructed from a single fixed calibration point once
the degree size had been chosen. The triple point of water (0.01°C or 273.16 K) was selected as the fixed point.
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THE DEVELOPMENT OF THERMOMETERS

Thermometry is the technology of temperature measurement. Although people have always been able to experience the
physiological sensations of hot and cold, the quantification and accurate measurement of these concepts did not occur
until the 17th century. Ancient physicians judged the wellness of their patients by sensing fevers and chills with a touch of
the hand (as we often do today). The Roman physician Galen (ca. 129-199) ascribed the fundamental differences in the
health or “temperament” of a person to the proportions in which the four “humors” (phlegm, black bile, yellow bile, and
blood) were mixed within the body.” Thus, both the term for wellness (temperament) and that for body heat (tempera-
ture) were derived from the same Latin root temperamentum, meaning “a correct mixture of things.”

Until the late 17th century, thermometers were graduated with arbitrary scales. However, it soon became clear that some
form of temperature standardization was necessary, and by the early 18th century, 30 to 40 temperature scales were in use.
These scales were usually based on the use of two fixed calibration points (standard temperatures) with the distance
between them divided into arbitrarily chosen equally spaced degrees.

The 100 division (i.e., base 10 or decimal) Celsius temperature scale became very popular during the 18th and 19th centu-
ries and was commonly known as the centigrade (from the Latin centum for “100” and gradus for “step”) scale until 1948,
when Celsius’s name was formally attached to it and the term centigrade was officially dropped.

° It was thought that illness occurred when these four humors were not in balance, and that their balance could be restored by draining off one of them
(i.e., by “bleeding” the patient).

Table 1.1 Early Temperature Scales

Inventor and Date Fixed Points

Isaac Newton (1701) Freezing water (0°N) and human body temperature (12°N)

Daniel Fahrenheit (1724)2 Old: Freezing saltwater mixture (0°F) and human body temperature (96°F)
New: Freezing water (32°F) and boiling water (212°F)

René Reaumur (1730) Freezing water (0°Re) and boiling water (80°Re)

Anders Celsius (1742)° Freezing water (0°C) and boiling water (100°C)

@ The modern Fahrenheit scale uses the freezing point of water (32°F) and the boiling point of water (212°F) as its fixed points. This change to
more stable fixed points resulted in changing the average body temperature reading from 96°F on the old Fahrenheit scale to 98.6°F on the
new Fahrenheit scale.

b nitially, Celsius chose the freezing point of water to be 100° and the boiling point of water to be 0°, but this scale was soon inverted to its present form.

The difference between the boiling and freezing points of water at atmospheric pressure then became 100 K or,
alternatively, 100°C, making the Kelvin and Celsius degree size the same.

Soon thereafter, an absolute temperature scale based on the Fahrenheit scale was developed, named after the
Scottish engineer William Rankine (1820-1872).

Some early temperature scales with fixed calibration points are shown in Table 1.1. Note that both the Newton
and the Fahrenheit scales are duodecimal (i.e., base 12).

EXAMPLE 1.2

Convert 55 degrees on the modern Fahrenheit scale (Figure 1.9) into (a) degrees Newton, (b) degrees Reaumer, and (c) Kelvin.

?Reﬂ 9K

(a) Fahrenheit  (b) Newton (¢) Reaumer (d) Kelvin

FIGURE 1.9
Example 1.2.
(Continued )
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EXAMPLE 1.2 (Continued )

Solution
(a) From Table 1.1, we find that both 0°N and 32°F correspond to the freezing point of water, and body heat (temperature)
corresponds to 12°N and 98.6°F (on the modern Fahrenheit scale) on these scales. Since both these scales are linear
temperature scales, we can construct a simple proportional relation between the two scales as
98.6-55 _ 12-x
98.6 -32 12-0

where x is the temperature on the Newton scale that corresponds to 55°F. Solving for x gives

98.6 —55

- 12(1—
X 98.6—32

) =4.14°N
(b) Since the Reaumur scale is also a linear scale with 0°Re and 80°Re corresponding to 32°F and 212°F, respectively, we
can establish the following proportion for the Reaumur temperature y that corresponds to 55°F:

212-55 _ 80—y

212-32 ~ 80-0
from which we can solve for

212-55

y= 80(1 - —) =10.2°Re
212-32
(c) Here we have 273.15 K and 373.15 K corresponding to 32°F and 212°F, respectively. The proportionality between these

scales is then

212-55 _ _ 373.15-z
212-32 ~ 373.15-273.15

from which we can compute the Kelvin temperature z that corresponds to 55°F as

212-55

z=373.15—(373.15 —27315)(212 >

) = 2859K

Notice that we do not use the degree symbol (°) with either the Kelvin or the Rankine absolute temperature scale symbols.
The reason for this is by international agreement as explained later in this chapter.

Exercises

4. Convert 20.0°C into Kelvin and Rankine. Answer: 293.2 K and 527.7 R.

5. Convert 30°C into degrees Newton and degrees Reaumur. Answer: 9.7°N and 24°Re.

6. Convert 500. K into Rankine, degrees Celsius, and degrees Fahrenheit. Answer: 900 R, 226.9°C, and 440.3°F.

1.7 CLASSICAL MECHANICAL AND ELECTRICAL UNITS SYSTEMS

The establishment of a stable system of units requires the identification of certain measures that must be taken
as absolutely fundamental and indefinable. For example, one cannot define length, time, or mass in terms of
more fundamental dimensions. They all seem to be fundamental quantities. Since we have so many quantities
that can be taken as fundamental, we have no single unique system of units. Instead, there are many equivalent
units systems, built on different fundamental dimensions. However, all the existing units systems today have
one thing in common—they have all been developed from the same set of fundamental equations of physics,
equations more or less arbitrarily chosen for this task.

It turns out that all the equations of physics are mere proportionalities into which one must always introduce a
“constant of proportionality” to obtain an equality. These proportionality constants are intimately related to the
system of units used in producing the numerical calculations. Consequently, three basic decisions must be made
in establishing a consistent system of units:

1. The choice of the fundamental quantities on which the system of units is to be based.

2. The choice of the fundamental equations that serve to define the secondary quantities of the system of units.

3. The choice of the magnitude and dimensions of the inherent constants of proportionality that appear in the
fundamental equations.

With this degree of flexibility, it is easy to see why such a large number of measurement units systems have
evolved throughout history.
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System Name

MKS (Sl)

CGS

Absolute English
Technical English

Engineering English

Type

MLt
MLt
MLt
FLt
FMLt

F

newton (N)
dyne (d)
poundal (pd)
pound force (Ibf)
pound force (lbf)

Table 1.2 Five Units Systems in Use Today

M

kilogram (kg)
gram (g)

pound mass (Ibm)
slug (sg)

pound mass (lbm)

L t gc = 1/k4

meter (m) second () 1 (dimensionless)
centimeter (cm)  second (s) 1 (dimensionless)
foot (ft) second (s) 1 (dimensionless)
foot (ft) second () 1 (dimensionless)
foot (ft) second (s) 32.174 lom-ft/lof-s?

The classical mechanical units system uses Newton's second law as the fundamental equation. This law is a

proportionality defined as

F =kyma

(1.1)

The wide variety of choices available for the fundamental quantities that can be used in this system has pro-
duced a large number of units systems. Over a period of time, three systems, based on different sets of funda-
mental quantities, have become popular:

m MLt system, which considers mass (M), length (L), and time (t) as independent fundamental quantities.
m  FLt system, which considers force (F), length (L), and time (¢) as independent fundamental quantities.
®  FLMt system, which considers all four as independent fundamental quantities.

Table 1.2 shows the various popular mechanical units systems that have evolved along these lines. Also listed
are the names arbitrarily given to the various derived units and the value and units of the constant of propor-

tionality, k;, which appears in Newton's second law, Eq. (1.1).

In Table 1.2, the four units in boldface type have the following definitions:

1 newton = 1kg-m/s>
1dyne =1g-cm/s?

1 poundal = 1 1bm-ft/s?

1slug = 11bf-s?/ft

(1.2)
(1.3)
(1.4)
(1.5)

These definitions are arrived at from Newton'’s second law using the fact that k; has been arbitrarily chosen to be
unity and dimensionless in each of these units systems.

Because of the form of k; in the Engineering English system, engineering texts have evolved a rather strange and
unfortunate convention regarding its use. It is common to let g. = 1/k;, where g. in the Engineering English
units system is simply

Engineering English units: g. = L 35174

and in all the other units systems described in Table 1.2, it is

All other units systems: g = 1

ly

Ibm-ft
fey Ibf - s? (1.6)
= 1 (dimensionless) (1.7)

This symbolism was originally chosen apparently because the value (but not the dimensions) of g. happens to be
the same as that of standard gravity in the Engineering English units system. However, this symbolism is awk-
ward because it tends to make you think that g, is the same as local gravity, which it definitely is not. Like ky, g is
nothing more than a proportionality constant with dimensions of ML/(Ft*). Because the use of g is so wide-
spread today and it is important that you are able to recognize the meaning of g. when you see it elsewhere, it
is used in all the relevant equations in this text. For example, we now write Newton's second law as

ma
&

F=

(1.8)

Until the mid-20th century, most English speaking countries used the Engineering English units system. But,
because of world trade pressures and the worldwide acceptance of the SI system, most engineering thermo-
dynamics texts today (including this one) present example and homework problems in both the old Engineering
English and the new SI units systems.

The dimensions of energy are the same as the dimensions of work, which are force x distance, and the dimen-
sions of power are the same as the dimensions of work divided by time, or force x distance + time. The corre-
sponding units and their secondary names (when they exist) are shown in Table 1.3.



m CHAPTER 1: The Beginning

WHICH WEIGHS MORE—A POUND OF FEATHERS
OR A POUND OF GOLD?

The avoirdupois (from the French meaning “to have weight”) pound contains 7000 barleycorns and is divided into 16
ounces. It was used primarily for weighing ordinary commodities, such as wood, bricks, feathers, and so forth. The troy
pound was named after the French city Troyes and was used to weigh only precious metals (gold, silver, etc.), gems, and
drugs. The English troy pound contains only 5760 barleycorns and is subdivided into 12 ounces, as was the original
Roman pound. The English word ounce is also derived from the Latin word uncia, meaning “the twelfth part of.”

Consequently, the avoirdupois pound is considerably larger (by a factor of 7000/5760 = 1.215) than the troy pound and
the coexistence of both pound units produced considerable confusion over the years. So a pound of feathers actually does
weigh more than a pound of gold, because the weight of the feathers is measured with the avoirdupois pound, whereas
the weight of the gold is measured with the troy pound. Today, all engineering calculations done in an English units
system are done with the 16 ounce, 7000 grain, avoirdupois pound.

Table 1.3 Units of Energy and Power

System Name Energy Power

MKS (SI) N-m = kg-m?/s? = joule (J) N-m/s = kg-m?%/s® = J/s = watt (W)
CGS dyn-cm = g-cm?/s = erg dyn-cm/s = g-cm?/s® = erg/s
Absolute English foot - poundal (ft- pdl) ft-pdl/s

Technical English ft-Ibf ft-Ibf/s

Engineering English ft-Ibf (1 Btu = 778.17 ft-1bf) ft-Ibf/s (1 hp = 550 ft-Ibf/s)

Note: 1 dyn=10° Nand 1 erg = 107 J.

EXAMPLE 1.3

In Table 1.2, the Technical English units system uses force (F), length (L), and time (t) as the | chunk = feet= 7 meters
fundamental dimensions. Then, the mass unit “slug” was defined such that k; and g. came \ ) ) .
out to be unity (1) and dimensionless. Define a new units system in which the force, mass, | |
and time dimensions are taken to be fundamental with units of Ibf, Ibm, and s, and the

length unit is defined such that k; is unity (1) and dimensionless. Call this new length unit

the chunk and find its conversion factor into the Engineering English and SI units systems

) 8 & e Y FIGURE 1.10
(Figure 1.10).
Example 1.3.

Solution
From Eq. (1.1), we see that the length unit must be defined via Newton's second law, F = k;ma. Since we want k; to be
unity and dimensionless, we set

B q .

k1 = — =1 (dimensionless)

ma
In our new system, we arbitrarily require 1 Ibf to be the force calculated from Newton’s second law when 1 lbm is acceler-
ated at a rate of 1 chunk/s*. Then, from the preceding k; equation, we get

11bf P
Tibm (1 chunkjs?) — | (dimensionless)
so that
_ . Ibf-s?
1chunk =1 Ibm

In the Engineering English units system, 1 lbf accelerates 1 Ibm at a rate of

ft

LIbf =32.174 88
B

_Foy_
a=Lg)=12 (32.174

lbm~ft)
Ibf -s2
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Since the lbf, Ibm, and s have the same meaning in both the new system and the traditional Engineering English units
system, it follows that

1M = 32.174&
s2 s2
and that
1 chunk = 32.174 ft = (32‘174ft)< 1m ) =9.806m
3281t
Exercises

7. Determine the weight at standard gravity of an object whose mass is 1.0 slug. Answer: Since force and weight are the
same, Eq. (1.8) gives F = W = mg/g.. From Table 1.2, we find that, in the Absolute English units system, g. = 1
(dimensionless). So the weight of 1.0 slug is W = (1.0 slug)(32.174 ft/s?)/1 = 32.174 slug (ft/s?). But, from Eq. (1.8),
we see that 1.0 slug = 1.0 Ibf-s/ft, so the weight of 1 slug is then W = 32.174 (Ibf-s?/ft)(ft/s*) = 32.174 Ibf.

8. Determine the mass of an object whose weight at standard gravity is 1 poundal. Answer: Using the same technique as in
Exercise 7, show that the mass of 1 poundal is m = Fg/g, = Wg/g. = (1 poundal)(1)/32.174 ft/s* = 0.03108 pdl-s/ft =
0.03108 lbm.

9. W. H. Snedegar whimsically suggested the following new names for some of the SI units®:

1 far = 1 meter (m); 1jog =1 m/s; 1 pant = 1 m/s’
1 shove = 1 newton (N); 1 grunt = 1 joule (J); 1 varoom = 1 watt (W)
1 lump = 1 kilogram (kg); 1 gasp = 1 pascal (Pa); 1 flab = 1 kg-m?

and so forth. Of course the Snedegar units would use the same unit prefixes as SI (see Table 1.5 later). For example, a
km would be a kilofar, a k] would be a kilogrunt, a MPa would be a megagasp, and an incremental length (incremental
far) would probably be called a near. In this system the fundamental mass, length, and time (M, L, t) units are the
lump, far, and second. All other Snedegar units are secondary, being defined by some basic equation. For example, the
secondary unit for velocity, the jog, is defined from the definition of the dimensions of velocity as length per unit time
(L/t), or 1 jog = 1 far/s. This can, however, produce some problems in usage. In mechanics, the units of microstrain
would be microfar/far. Since a microfar is closer to a near than a far, microstrain units would probably become a near/
far. Such logistical inconsistency often adds confusion to an otherwise well-defined system of units.

Determine the relation between the primary and secondary Snedegar units for (a) force, (b) momentum (ML/t), (c) accelera-
tion, (d) work, (e) power, and (f) stress (F/L?). Answers: (a) 1 shove = 1 lump-far/s% (b) 1 lump-jog = 1 lump- far/s%
(c) 1 pant = 1 far/s% (d) 1 grunt = 1 shove-far = lump-far’/s% (e) 1 varoom = 1 grunt/s = shove-far/s = lump - far’/s;
() 1 gasp = shove/far” = 1 lump/far-s?.

6 Snedegar, W. H., “Letter to the Editor,” 1983. Am. J. Phys. 51, 684.

EXAMPLE 1.4

Time passes. You graduate from college and go on to become a famous NASA design engineer. You have sole responsibility for
the design and launch of the famous Bubble-II space telescope system. The telescope weighs exactly 25,000 Ibf on the surface of
the Earth and is to be installed in an asynchronous Earth orbit with an orbital velocity of exactly 5000 mph (Figure 1.11).

a. What is the value of g, (in Ibm-ft/Ibf-s?) in this orbit?
b. How much will the telescope weigh (in Ibf) in Earth orbit where the local acceleration of gravity is only 2.50 ft/s”.

Weight=25,000. 1bf

V=5000. mph

FIGURE 1.11
Example 1.4.

(Continued )
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EXAMPLE 1.4 (Continued )

Solution

a. From the text, we see that g, is always a constant. It does not depend on the local acceleration of gravity. From Eq. (1.6)
and Table 1.2, we find that in the Engineering English units system g. = 32.174 Ibm - ft/Ibf-s*.

b. Since weight is force due to gravity, we have W = F = mg/g,, and the mass can be computed from m = Wg /g, or

(25,000 Ibf) (32.174 llll’;f“ﬁ‘)
m= = 8~/ = 25,0001bm
32174 %

Then the weight in Earth orbit is

Mgorbic _ (25,0001bm)(2.50 ft/s?)
- lbm - ft
Ibf - s2

Worbit = = 1940 Ibf

& 32.174

Exercises

10. Suppose you use the SI units system in Example 1.4. What is the value of g. in the orbit? Answer: 1.0 and dimensionless
(see Table 1.2).

11. Suppose the orbit in Example 1.4 changes so that the local acceleration of gravity is decreased from 2.50 ft/s” to 1.75 ft/s.
Determine the new weight of the telescope in orbit. Answer: Wy, = 1360 lbf.

12. If the telescope in Example 1.4 weighs 112 kN on the surface of the Earth, how much does it weigh on the surface of
the Moon, where the local gravity is only 1.60 m/s*? Answer: Wioon = 18.3 kN.

1.8 CHEMICAL UNITS

A good deal of energy conversion technology comes from converting the chemical energy of fuels into thermal
energy. Therefore, we need to be aware of the nature of units used in chemical reactions.

A chemical reaction equation is essentially a molecular mass balance equation. For example, the equation
A + B = C tells us that one molecule of A reacts with one molecule of B to yield one molecule of C. Since
the molecular mass of substance A, M,, contains the same number of molecules (6.022 x 10?%, Avogadro’s
constant) as the molecular masses Mg and M of substances B and C, the coefficients in their chemical
reaction equation are also equal to the number of molecular masses involved in the reaction as well as the
number of molecules.

Chemists find it convenient to use a mass unit that is proportional to the molecular masses of the substances
involved in a reaction. Since chemists use only small amounts of chemicals in laboratory experiments, the
centimeter-gram-second (CGS) units system has proven to be ideal for their work. Therefore, chemists defined
their molecular mass unit as the amount of any chemical substance that has a mass in grams numerically equal to the
molecular mass of the substance and gave it the name mole.

However, the chemists’ mole unit is problematic, in that most of the other physical sciences do not use the
CGS units system and the actual size of the molar mass unit depends on the size of the mass unit in the
units system being used. Strictly speaking, the molar mass unit used by chemists should be called a gram
mole, because the word mole by itself does not convey the type of mass unit used in the units system. Conse-
quently, we call the molar mass of a substance in the SI system a kilogram mole; in the Absolute and Engi-
neering English systems it is a pound mole; and in the Technical English system it is a slug mole. In this text,
we abbreviate gram mole as gmole, kilogram mole as kgmole, and pound mole as Ibmole. Clearly, these are all
different amounts of mass, since 1 gmole #1 kgmole # 1 Ibmole # 1 slug mole. For example, 1 pound mole
of water would have a mass of 18 lbm, whereas 1 gram mole would have a mass of only 18 g (0.04 Ibm),
so that there is an enormous difference in the molar masses of a substance depending on the units system
being used.

Since the molar amount n of a substance having a mass m is given by

g m (1.9)
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where M is the molecular mass’ of the substance, it is clear that the molecular mass must have units of mass/
mass-mole. Therefore, we can write the molecular mass of water as

My,o = 18 g/gmole = 181bm/lbmole = 18 kg/kgmole = ...

The numerical value of the molecular mass is constant, but it has units that must be taken into account when-
ever it is used in an equation.

EXAMPLE 1.5

A cylindrical drinking glass, 0.07 m in diameter and 0.15 m high, is three-quarters full of water
(Figure 1.12). Determine the number of kilogram moles of water in the glass. The density of

liquid water is exactly 1000 kg/m?>. — A

Solution

The mass of water in the glass is equal to the volume of water present multiplied by the density of 3/4 0.15
.15m

water, or

m = (R?L) x p = 7(0.035 m)?(0.75 % 0.15 m) (1000 kg/m>) = 0.433 kg

The molecular mass of water is 18 kg/kgmole, and Eq. (1.9) gives the number of moles present as
0.07m

n=1_ ol = 0.024 kgmole
Mg ke
kgmole

FIGURE 1.12
Example 1.5.
Exercises
13. Determine the number of Ibmole in a cubic foot of air whose mass is 0.075 Ibm. The molecular mass

of air is 28.97 lbm/lbmole. Answer: n = 0.00259 lbmole.
14. How many kilograms are contained in 1 kgmole of a polymer with a molecular mass of

2.5 x 10° kg/kgmole? Answer: m = 2.5 x 10° kg.
15. Exactly 2 kgmole of xenon has a mass of 262.6 kg. What is the molecular mass of xenon?

Answer: M = 131.3 kg/kgmole.

1.9 MODERN UNITS SYSTEMS

The units systems commonly used in thermodynamics today are the traditional Engineering English system and
the metric SI system. Table 1.4 lists various common derived secondary units of the SI system, and Table 1.5
shows the approved SI prefixes, along with their names and symbols.

You need to understand the difference between the units of absolute pressure and gauge pressure. In the Engi-
neering English units system, we add the letter a or g to the psi (pounds per square inch) pressure units to
make this distinction. Thus, atmospheric pressure can be written as 14.7 psia or as 0 psig. In the SI units system,
we add the word that applies (and not the letter a or g) immediately after the unit name or symbol. For example,
atmospheric pressure in the SI system is 101,325 Pa absolute or 0 Pa gauge. When the words absolute or gauge
do not appear on a pressure unit, assume it is absolute pressure.

In 1967, the degree symbol (°) was officially dropped from the absolute temperature unit, and the notational
scheme was introduced wherein all unit names were to be written without capitalization (unless, of course, they

HOW DO I KNOW WHETHER IT IS ABSOLUTE OR GAUGE PRESSURE?

When the clarifying term absolute or gauge is not present in a pressure unit in the textbook, assume that pressure unit is
absolute. For example, the pressure 15.2 kPa is interpreted to mean 15.2 kPa absolute.

7 Most texts call M the molecular weight, probably out of historical tradition. However, M clearly has units of mass, not weight, and
therefore is more appropriately named molecular mass.
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Dimension Name
Frequency hertz
Force newton
Energy joule
Power watt
Electric charge coulomb
Electric potential volt
Electric resistance ohm
Electric capacitance farad
Magnetic flux weber
Pressure or stress pascal
Conductance siemens
Magnetic flux density  tesla
Inductance henry
Luminous flux lumen
llluminance lux

Symbol

b

Table 1.4 Some Common Derived SI Units

Formula

1/s
kg-m/s?
N-m
J/is
A-s
W/A
V/A
C/V
V-s
N/m?
A/V
Whb/m?
Wb/A
cd-sr
Im/m?

Expression in Terms of SI Fundamental Units

S—1

m-kg-s?
m?.-kg-s
m?.-kg-s

A-s

m?-kg-s= A
m?-kg-s=-A2
m2.kg st A2
m?-kg-s2-A"’
m'.kg-s?
kg 6% A2
kg-s2. A
m?.-kg-s2 A2
cd-sr
m2.cd-sr

Source: Adapted from the American Society for Testing and Materials, 1980. Standard for Metric Practice, ASTM 380-79. Copyright ASTM.
Reprinted with permission. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428.

Table 1.5 SI Unit Prefixes

Multiples Prefixes Symbols
10'® exa E

10'° peta P

10" tera T

10° giga G

106 mega M

10° kilo K

10? hecto h

10° — —

10’ deka da

107" deci d

1072 cent c

107 mill m

107 micro p

1070 nano n

10712 pico p

107 femto f

1078 atto a

Source: Adapted with permission from the American Society for Testing and Materials, 1980.
Standard for Metric Practice, ASTM 380-79. ASTM International, 100 Barr Harbor Drive,
PO Box C700, West Conshohocken, PA 19428.

appear at the beginning of a sentence) regardless of whether they were derived from proper names or not. There-
fore the name of the SI absolute temperature unit was reduced from degree Kelvin to simply kelvin even though
the unit was named after Lord Kelvin. However, when the name of a unit is to be abbreviated, it was decided
that the name abbreviation was to be capitalized if the unit was derived from a proper name. Therefore, the kelvin abso-
lute temperature unit is abbreviated as K (not °K, k, or °k). Similarly, the SI unit of force, the newton, named
after Sir Isaac Newton (1642-1727), is abbreviated N. The following list illustrates a variety of units from the SI
and other systems, all of which were derived from proper names:

ampere (A), becquerel (Bq), celsius (°C), coulomb (C), farad (F), fahrenheit (°F), gauss (G), gray (Gy), henry (H),
hertz (Hz), joule (J), kelvin (K), newton (N), ohm (), pascal (Pa), poiseuille (P), rankine (R), siemens (S), stoke (St),
tesla (T), volt (V), watt (W), weber (Wb).
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CRITICAL THINKING

Suppose someone wanted to name a new unit of measure after you. What name would you choose and how would it be
abbreviated so that your unit would not be confused with other existing unit abbreviations?

Note that we still use the degree symbol (°) with the celsius and fahrenheit temperature units. This is due partly to
tradition and partly to distinguish their abbreviations from those of the coulomb and farad. In this text, we also
drop the degree symbol on the rankine absolute temperature unit, even though it is not part of the SI system. This
is done simply to be consistent with the SI notation scheme and because the rankine abbreviation, R, does not
conflict with that of any other popular unit. Note that abbreviations use two letters only when necessary to prevent
them from being confused with other established unit abbreviations or to express prefixes (e.g., kg for kilogram).®

All other units whose names were not derived from the names of historically important people are both written
and abbreviated with lowercase letters; for example, meter (m), kilogram (kg), and second (s). Obvious viola-
tions of this rule occur when any unit name appears at the beginning of a sentence or when its abbreviation is
part of a capitalized title, such as in the MKSA System of Units.

Also, a unit abbreviation is never pluralized, whereas the unit's name may be pluralized. For example, kilograms
is abbreviated as kg and not kgs, and newtons as N and not Ns. Finally, unit name abbreviations are never written
with a terminal period unless they appear at the end of a sentence. For example, the correct abbreviation of sec-
onds is s, not sec. or secs.

1.10 SIGNIFICANT FIGURES

Using the proper number of significant figures in calculations is an important part of carrying out credible engineer-
ing work. Two types of numbers are used in engineering calculations: exact values, such as an integer number used in
counting (e.g., 5 ingots of steel) or numbers fixed by definition (e.g., 3600 seconds = 1 hour); and inexact values, such
as numbers produced by physical measurements (e.g., the diameter of a pipe or the velocity or height of an object).

Every physical measurement is inexact to some degree. The number of significant figures used to record a
measurement is used as an indication of the accuracy of the measurement itself.

For example, if you measure the diameter of a shaft with a ruler that could be read to two significant figures, the
result might be 3.5 inches, but if it were measured with a micrometer that could be read to four significant
figures it might be 3.512 inches. So, when you are given a value for some variable as, say, the number 4, you see
that it is measured with a precision of only one significant figure. But if the value you are given is 4.0, you see
that it is measured with two significant figures, and 4.00 indicates it is measured with three significant figures.

“EXACT” NUMBERS HAVE AN INFINITE NUMBER
OF SIGNIFICANT FIGURES

Exact numbers, such as the number of people in a room, have an infinite number of significant figures. Exact numbers are not
measurements made with instruments. For example, there are defined numbers, such as 1 foot = 12 inches, so there are
“exactly” 12 inches in 1 foot. If a number is “exact,” it does not affect the accuracy of a calculation. Some other examples are
100 years in a century, 2 molecules of hydrogen react with 1 molecule of oxygen to form 1 molecule of water, 500 sheets of
paper in 1 ream, 60 seconds in 1 minute, and 1000 grams in 1 kilogram.

WHAT IS A “SIGNIFICANT FIGURE”?

A significant figure is any one of the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9. Zero is also a significant figure except when used
simply to fix the decimal point or to fill the places of unknown or discarded digits.

8 Non-SI units systems do not generally follow this simple rule. For example, the English length unit, foot, could be abbreviated f
rather than ft. However, the latter abbreviation is well established within society and changing it at this time would only cause
confusion.
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A number reported as 0.000452 has only three significant figures (4, 5, and 2), since the leading zeros are used
simply to fix the decimal point. But the number 7305 has four significant figures. The number 2300 may have
two, three, or four significant figures. To convey which ending zeros of a number are significant, it should be
written as 2.3 x 10 if it has only two significant figures, 2.30 x 10 if it has three, and 2.300 x 10> if it has four.
Remember that the identification of the number of significant figures associated with a measurement comes
only through a detailed knowledge of how the measurement is carried out.

Computations often deal with numbers having unequal numbers of significant figures. A number of rules have been
developed for various computations. The rule for addition and subtraction of figures follows. Next comes the rule
for multiplication and division of figures. The operation of rounding values up or down also follows specific rules.

Do you need to maintain the correct number of significant figures in all the steps of a calculation? No, just keep
one or two more digits in intermediate results than you need in your final answer. These rules are summarized
in Table 1.6.

RULE FOR ADDITION AND SUBTRACTION

The sum or difference of two numbers should contain no more significant figures farther to the right of the decimal point than
occur in the least accurate number used in the operation. For example, 114.2 + 1.31 =115.51, which must be rounded to
115.5, since the least precise number in this operation is 114.2 (having only one place to the right of the decimal point).
Similarly, 114.2-1.31 =112.89, which must now be rounded to 112.9.

This rule is vitally important when subtracting two numbers of similar magnitudes, since their difference may be much less
significant than the two numbers that were subtracted. For example, 114.212 — 114.0 = 0.212, which must be rounded to
0.2 since 114.0 has only one significant figure to the right of the decimal point. In this case, the result has only one signifi-
cant figure even though the “measured” numbers each had four or more significant figures.

RULE FOR MULTIPLICATION AND DIVISION

The product or quotient should contain no more significant figures than are contained in the term with the least number of sig-
nificant figures used in the operation. For example, 114.2 x 1.31 =149.602, which must be rounded to 150, since the term
1.31 contains only three significant figures. Also, 114.2/1.31 = 87.1756, which must be rounded to 87.2 for the same reason.

RULES FOR ROUNDING

1. When the discarded value is less than 5, the next remaining value should not be changed. For example, if we round
114.2 to three significant figures it becomes 114; if we rounded it to two significant figures it becomes 110; and
rounding it to one significant figure produces 100.

2. When the discarded value is greater than 5 (or is 5 followed by at least one digit other than 0), the next remaining
value should be increased by 1. For example, 117.879 rounded to five significant figures is 117.88; rounded to four
significant figures, it becomes 117.9; and rounding it to three significant figures produces 118.

3. When the discarded value is exactly equal to 5 followed only by zeros, then the next remaining value should be rounded
up if it is an odd number, but remain unchanged if it is an even number. For example, 1.55 rounds to two significant
figures as 1.6, and 1.65 also rounds to two significant figures as 1.6.

Table 1.6 Significant Figures

Number of Significant Figures Represented

Written Form of a Number by These Numbers
3or 0.1 or 0.01 or 0.001 or 3x 107° or 5x 10* One significant figure
3.1 or 50. or 0.010 or 0.00036 or 7.0 x 10° Two significant figures
3.14 or 500. or 0.0155 or 0.00106 or 7.51 x 10* Three significant figures
3.142 or 1,000. or 0.1050 or 0.0004570 or 3.540 x 10° Four significant figures
3.1416 or 10,000. or 0.0030078 or 1.2500 x 10* Five significant figures

3.14159 or 100,000. or 186,285 Six significant figures
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WHAT ABOUT INTERMEDIATE CALCULATIONS?

When doing multi-step calculations, keep one or two more digits in intermediate results than needed in your final answer. If
you round-off all your intermediate answers to the correct number of significant figures, you discard the information con-
tained in the next digit, and the last digit in your final answer might be incorrect. For example, the calculation 12 x 12 x
1.5 has an answer with two significant figures. But you should use the intermediate results without rounding because 12 x
12 = 144, and 144 x 1.5 = 216 — 220. But, if you round 144 to 140, you obtain 140 X 1.5 = 210, which is pretty far off.
It is best to wait until the end of a calculation to round to the correct number of significant figures.

Never round in the middle of a multi-step calculation, round only the final answer.

NOW TEST YOURSELF

The number 106.750 has ___ significant figures.
The number 0.0003507 has ___ significant figures.
The number 3.7 x 10* has ___ significant figures.
The number 2.7182818 has ___ significant figures.

pooe

(Answers: a. six, b. four, c. two, d. eight)

In a textbook, it is often awkward to write each value with the proper number of significant figures. However,
the examples and problems in this textbook have a specific number of significant figures indicated in the mea-
sured values. For example, a mass that has been measured to three significant figures is given as, say, 10.0 kg,
and a temperature measured to three significant figures is given as, say, 200.°C (note the decimal point). This is
followed throughout the remainder of this textbook.

EXAMPLE 1.6

The inside diameter of a circular water pipe is measured to two significant figures with a ruler measure and found to be
2.5 inches (Figure 1.13). Determine the cross-sectional area of the pipe to the correct number of significant figures.

D=2.5 inches

FIGURE 1.13
Example 1.6.

Solution

From elementary algebra, the cross-sectional area of a circle is A = nD?/4, so Apipe = (2.5 inches)?/4 = 4.9087 in? which
must be rounded to 4.9 in?, since the least accurate value in this calculation is the pipe diameter, with only two significant
figures.

Exercises
16. Determine the cross-sectional area of a circular metal rod measured to two significant figures with a tape measure and
found to be 0.025 m. Answer: A,; = 0.00049 m” to two significant figures.

(Continued )
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EXAMPLE 1.6 (Continued )

17. A cubical box is measured to three significant figures with a ruler and found to be 1.21 ft on one side, 1.22 ft on
another side, and 1.20 ft on the third side. Determine the volume of the box to the proper number of significant figures.
Answer: 1.77 ¢,

18. A shaft is measured with a micrometer and found to have a diameter of 1.735 inches (to four significant figures).
Determine the circumference of the shaft to the proper number of significant figures. Answer: 5.451 inches.

1.11 POTENTIAL AND KINETIC ENERGIES

In classical physics, the term potential energy usually refers to gravitational potential energy and represents the
work done against the local gravitational force in changing the position of an object. It depends on the mass m
of the object and its height Z above a reference level, written as

mgZ

. (1.10)

Potential energy = PE =k mgZ =

where k; is defined by Egs. (1.6) and (1.7) as 1/g, (see Table 1.2).

Kinetic energy represents the work associated with changing the motion of an object and can occur in two forms:
translational and rotational. The total kinetic energy of an object is the sum of both forms of its kinetic energy. The
translational kinetic energy of an object is the kinetic energy resulting from a translation velocity V, written as

2 2
_klmV =mV

trans — 2 2g (1.11)
C

Translational kinetic energy = (KE)

The rotational kinetic energy of an object is the kinetic energy resulting from a rotation about some axis with an
angular velocity o, written as

2 2
=k11% = o7 (1.12)

Rotational kinetic energy = (KE) =2
C

rot

where [ is the mass moment of inertia of the object about the axis of rotation.

The mass moment of inertia of an object is the integral of a mass element dm located at a radial distance r from
the axis of rotation:

I=/r2dm (1.13)

Table 1.7 provides equations for the mass moment of inertia of various common geometrical shapes with a total
mass m.

Table 1.7 Mass Moments of Inertia of Various Common Shapes

Iy = mL?%/2

Slender circular rod

Solid rectangular prism

_ 2 2
IX_m(aQ+b2)/12 /X:ng/Z R
Iy = m(@ + L3/12 y z N L mERa z
I, = mb® + L3/12 y =1, =
y

X
Thin rectangular plate
l=m(@® + bA/12
ly = ma?/12 Y
I, = mb?/12
Z
X X
[
Thin disk
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Table 1.7 continued

Solid circular cylinder
« = mR?/2
I, =1, =m@R%+ L3112

Hollow circular cylinder
I =m(R2+R3)/2

Solid sphere
Iy =1, = 1l, = 2mR?/5

Thin circular cylinder
I, = mR?

Solid circular cone
I, = 3mR?/10
ly =1, = 3m(R%/4 + L%/5

Hollow sphere
=1, =1, = 2mR¥/3

In the equations that follow in this chapter and throughout the text, the phrase kinetic energy can mean either
translational or rotational. You must be alert to the conditions present in the problem to choose the correct
form. Later in the text, general equations for the first law of thermodynamics are developed that include kinetic
energy terms. Usually only the translational kinetic energy expression is written out in these equations, but be
alert to the fact that this could change to rotational kinetic energy or a combination of both translational and

rotational kinetic energy in any problem.

The following examples illustrate the calculation of kinetic and potential energies in both SI and Engineering

English units systems.

EXAMPLE 1.7

Determine the potential energy of an automobile weighing 2000. 1bf when it is 8.00 ft off the floor on a hoist in a repair
shop (Figure 1.14). Express the result in both SI and Engineering English units.

Solution

The formula for the potential energy (PE) of an object of mass m at a distance Z above the reference height is given by Eq. (1.10) as

mgZ

We first calculate the automobile’s mass from its weight using Newton's second law, m = Fg/¢ = Weight g./g. In the SI units

system (see Table 1.2), we find that g =1 (dimensionless), so

N

vsz
=907 —= =906.9kg
m

(Continued )
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EXAMPLE 1.7 (continued)

Now, Weight=2000. Ibf
- Im \ _
Z = (8.00ft) (3.281 ﬁ) =2438m
Therefore,
2
PE = mgZ _ (907 kg)(9.81 r;l/s )(2.438 m) — 21,700 kg- m?/s )
‘ =21,700N-m =21,700] = 21.7kJ
In the Engineering English units system, we have
Ibm - ft
(2000.1bf) (32.174 8.00ft
. ( Zlbf‘sz) =2000. Ibm
I3 32.174ft/s
Here, Z = 8.00 ft, and from Table 1.2, we find that in the Engineering
English units system g, = 32.174 Ibm-ft/(Ibf-s?). Therefore, [ ~——\
2
PE = n;gZ _ (2000. lbm)(32.lfl;lrflt./;t )(8.00 ft) — 16,000 ft-Ibf FIGURE 1.14
32.174 Ibf.52 Example 1.7.

1 Btu
= (16,000 ftl = bf) <m> =20.6Btu
Exercises
19. If the automobile in Example 1.7 weighs 4000. Ibf instead of 2000. Ibf, determine its potential energy in SI and Engineering
English units. Assume all other variables (i.e., the height) remain unchanged). Answer: PE = 43.4 k] = 41.1 Btu.
20. Determine the potential energy in both SI and Engineering English units of a 3.00 Ibf textbook sitting on a table
28.0 inches above the floor. Answer: PE = 9.49 ] = 7.00 ft-1bf.
21. Determine the potential energy in SI and Engineering English units of a 4000. kg moose standing on the top of a house
5.00 m above the ground. Answer: PE = 196 k] = 186 Btu.

EXAMPLE 1.8

Determine the translational kinetic energy of a bullet having a mass of 10.0 grams traveling at a velocity of 3000. ft/s in both

SI and Engineering English units (Figure 1.15).
Mass=10.0 grams

V=3000. ft/s

-~

FIGURE 1.15
Example 1.8.

Solution
The formula for the kinetic energy (KE) of an object with mass m traveling at velocity V is given by Eq. (1.11) as

mv?
28

KE = Lkymv? =
2

In the SI units system, m = 10.0 g = 0.0100 kg, and

V= (3000. %) (3;;’; ﬁ) =914.4m/s

From Table 1.2, we find that g = 1 (dimensionless). Therefore,

2 2
KE = (0.0100kg2)((19)14.4m/s) = 4180

ko-
8 = 4180N-m = 4180 = 418K
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where 1] =1 N-m = 1 kg-m?/s”. In the Engineering English units system, V = 3000. ft/s, and m = 10.0 g = 0.0100 kg =
(0.0100 kg)(2.205 lbm/kg) = 0.02205 Ibm. From Table 1.2, we find that g = 32.174 Ibm-ft/(Ibf-s?). Therefore,

(0.02205 Ibm)(3000. ft/s)?

2(32.174 1}{)}“5)

KE = = 3084 ft-1bf

_ . 1 Btu _
= (3084 ft-1bf) (7778'17&“) =3.96Btu

Exercises

22. If the bullet in Example 1.8 has a mass of 16.0 g instead of 10.0 g, determine its translational kinetic energy in
both SI and Engineering English units. Assume all the other variables remain unchanged. Answer: KE = 6.69
k] = 6.34 Btu.

23. Suppose the bullet in Example 1.8 has a mass of 8.00 g and travels at a velocity of 1000. m/s. Determine its
translational kinetic energy in both SI and Engineering English units. Answer: KE = 4.00 kJ = 3.79 Btu.

24. Determine the translational kinetic energy of a baseball having a mass of 5.00 ounces thrown with a velocity of
90.0 mph. (Recall that 1 Ibm = 16 0z.) Answer: KE = 115 ] = 84.6 ft-1bf.

EXAMPLE 1.9

Determine the rotational kinetic energy in the armature of an electric motor rotating at 1800. rpm. The mass of the armature
is 10.0 Ibm, and its diameter is 4.00 inches (Figure 1.16).

Mass=10.0 Ibm

®=1800. rpm

4.00inches ‘9

FIGURE 1.16
Example 1.9.

Solution
We approximate the armature as a solid cylinder rotating about its axis. Next, from Table 1.7, we find the equation for the
mass moment of inertia of a solid cylinder, then calculate the mass moment of inertia of the armature to be

2
e (10.01bm) (2.00in) (%)] oot

2 2

Equation (1.12) gives the rotational kinetic energy of the armature as

> (o.139lbm-ﬁ2>[(1soo.§)(zﬂ@)(m)r

lw n rev 60s
KE)yo = 5 - = = 76.8 ft-Ibf
ot g, 2(32.1741bm~ﬁ>
Ibf - s2

Exercises

25. If the armature in Example 1.9 rotates at 2000. rpm instead if 1800. rpm, determine its new rotational kinetic energy.
Assume all the other variables remain unchanged. Answer: (KE);, = 94.8 ft-Ibf.

26. If the armature diameter in Example 1.9 is increased from 4.00 inches to 12.0 inches, determine its new rotational
kinetic energy. Assume all the other variables remain unchanged. Answer: (KE);o; = 690. ft-1bf.

27. Determine the rotational kinetic energy of the Earth as it rotates on its axis once every 24.0 h. The mass and radius of
the Earth are 5.976 x 10** kg and 6.37 x 10° m. Answer: (KE),o, = 2.56 x 10%° J.
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THERMODYNAMIC CASE STUDIES

Case study 1.1. The Anatomy of an Accident

A testing company is commissioned to build a facility to spin test the
impellers for large centrifugal compressors. A test impeller is spun in a
vacuum inside a thick-walled spin chamber until it bursts. The impeller
is driven by a small air turbine with a shaft that enters through the
top of the spin chamber, and the walls of the spin chamber are lined
with thick lead bricks to absorb the rotational kinetic energy of the
pieces of the impeller when it bursts (Figure 1.17).

During the initial test run, a 600. lbm, 30.0-inch diameter stainless
steel impeller is to be spun until it bursts as part of the acceptance test
of the facility. At about 1 am, the rotor reaches 14,000 rpm and bursts.
The people conducting the test are located in a room adjacent to and
one floor above the test chamber room. The burst makes a single
“thud” noise, typical of bursting rotors, but when the operators go to
the test room they find the corridor and stairwell full of dust and deb-
ris. Some of the lead bricks from inside the spin chamber are found in
the hallway, and one brick penetrated the test room wall and ended
up in the kitchen of a neighborhood house. The 3000 Ibm spin cham-
ber cover had been blown up through the ceiling and fell back down

Removable cover

AN

(Figure 1.18). The entry door into the test room was blown into an
adjacent parking lot, and the test room had extensive damage from
flying lead bricks and pieces of the impeller penetrating the walls.

The cover was bolted to the chamber with 24 1-inch diameter bolts
that could resist a total force of 1.90 x 10° Ibf. It is concluded that
the accident was caused by the impact of the impeller fragments
extruding the lead bricks vertically in the spin chamber, ultimately
exerting a force on the cover of about 2.10 x 10° Ibf. The spin
chamber contained all the radial burst forces, and only 5% of the
rotational kinetic energy escaped the chamber via the lead extruded
against the cover and forcing it off.

The moment of inertia of the impeller is measured and found to be
542 lbm - ft?, and the rotational kinetic energy of the impeller at
the point where it burst is

Rotational KE = % (Io*) = 7.80x 10°ft-Ibf = 10,000 Btu = 10.6 M]

which is equivalent to the explosive power of about 7.20 Ib of TNT
(or about 60 hand grenades).

Drive turbine

Test rotor

£ [

/1

J Containment

/ vessel

| 1 — Tead bricks

ﬁ —> Vacuum
:

FIGURE 1.17
Case study 1 illustration.

FIGURE 1.18
Case study 1, damage to centrifuge.




FIGURE 1.19
Case study 1.2, Z accelerator cross-section.

Case study 1.2. Sandia’s hypervelocity gun

The high-velocity impact of even a small particle having a mass of
only 1 g can have a disastrous effect on a spacecraft. To develop
shields against such an eventuality, engineers at the Sandia
National Laboratories developed a high-velocity launcher (gun)
that allows the testing of materials and equipment here on Earth.

Sandia’s hypervelocity launcher, known as the Z accelerator, is cap-
able of accelerating dime-sized projectiles a few centimeters to gain
information that can be used to simulate the effect of meteoroid
impact on spacecraft (Figure 1.19). The propulsion technique uses
the Z machine’s 20 million amps to produce a huge magnetic field
that expands in approximately 200 nanoseconds. The smooth accel-
eration produced by the expanding magnetic field produces a
smooth projectile acceleration rather than that produced by shock
of an explosion. When accelerated to a velocity of 20 km/sec, an
aluminum projectile is liquefied but not vaporized.

Hypervelocity impact testing is also an accurate method of deter-

M T

—_

|—| '. A “u‘d'*"‘
| 4

material will react when the pressure and temperature are changed
by specific amounts.

The energy required to launch a small projectile to 20 km/s is
about 15 times the energy required to melt and vaporize the pro-
jectile. Therefore, the energy must be imparted in a well-controlled
manner to prevent this from happening. This is achieved by using a
variable density assembly to impact a stationary projectile to propel
it to very high velocity without melting or fracturing.

The kinetic energy contained in a 1.00 g projectile launched at a
velocity of 20.0 km/s is

(KE),unay = (mV2)/2 = (1.00x 103 kg)(20.0x 103m/s)*/2
=200.x 10° kg(m/s)? = 200. x 10>N-m = 200. x 10%] = 200.KJ

which is about the same kinetic energy as contained in a 1000 kg
(2200 Ib) automobile traveling at 20 m/s (45 mph). The impact of
a 1.00 g object traveling at 20.0 km/s is spread over a very small

”

mining a material’s “equation of state,” which predicts how a  area, and the material damage produced is enormous.

SUMMARY

At the beginning of this chapter we saw the significance of understanding basic thermodynamics in a well-
rounded engineering education. A working definition of thermodynamics is presented and the value of thermo-
dynamics to all engineering fields discussed. A basic problem solving technique is presented that is used throughout
the text and expanded on in later chapters.

Engineers must have a sound understanding of how units systems are constructed and how the various popular
units systems relate to each other, because engineering units are not trivial. An accurate computation depends as
much on correct units management as it does on correct numerical calculation. In this chapter, the concepts of
units, dimensions, and metrology are also discussed. We see that ancient units of measurement evolved from a grow-
ing need to expand and quantify the elements of commerce and are undeniably woven into the history of civili-
zations. The historical evolution of these units often involved the binary doubling of size between successive
units. It is pointed out that temperature units came into use quite recently, and they have their origin in the com-
mon medical practice of sensing fever in the human body.

By the turn of the 20th century, classical mechanical and electrical units systems had been developed and were in
common use by engineers. Other units, such as chemical units, are also often used in engineering analysis.

The development of modern unit systems began in 1870 and is still going on. The United States is currently in the
process of converting all its commerce and technology into the SI system. Since it is not known exactly how
long this will take, textbooks such as this one present material in both the traditional Engineering English units
system and the SI units system so that you, the next generation of engineers, will be able to work with both
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systems when necessary. Finally, we saw how to apply the basic units systems to the calculation of the potential
and kinetic energy of systems.

Some of the more important equations developed in this chapter follow.
1. The equations for the conversion of temperature units:

T(°F) = % X T(°C) +32 = T(R) — 459.67

(

[
e
|

x [T(°F) —32] = T(K) — 273.15

X T(K) = 1.8 X T(K) = T(°F) + 459.67

H
—
=
e
Il
ol ule Vlun

=
o
|

XT(R) = W = T(OC) +27315

2. By Newton'’s second law, F = ma/g. and the dimensional constant g,

Ibm - ft
Ibf - s2

g =32.174 for the Engineering English units system
& = 1.0 (dimensionless) for the SI units system

3. The relation between mass (m) and moles (n) of a chemical substance with a molecular mass M:

n="=
M
4. The definitions of potential and kinetic energies:
Potential Energy = PE = m_gZ
C

. . . _ _ mv?2
Translational Kinetic Energy = (KE),,,.. = ?
(o
. . . _ _ Ia)z
Rotational Kinetic Energy = (KE) , = Ser
8c

Some of the important technical terms introduced in this chapter are given in the glossary shown in Table 1.8.
Many of these terms are used throughout the remainder of the text without further explanation.

Table 1.8 Glossary of Technical Terms Introduced in Chapter 1

Technical Term Meaning

metrology The study of measurement

dimension A measurable characteristic

duodecimal A base 12 number system

sexagesimal A base 60 number system

Newton’s second law F =ma/g.

newton 1 newton = 1 kg-m/s?

dyne 1 dyne = 1 g-cm/s?

poundal 1 poundal = 1 lom-ft/s?

slug 1 slug = 1 Ibf-s?/t

e The dimensional proportionality constant in Newton’s second law. In the Engineering English units system,
ge = 32.174 lom-ft/(Ibf-s?), and in the Sl units system g, = 1 and is dimensionless.

gmole The amount of any chemical substance that has a mass in grams numerically equal to the molecular mass
of the substance. This is called simply a mole in chemistry textbooks.

kgmole The amount of any chemical substance that has a mass in kilograms numerically equal to the molecular
mass of the substance.

lomole The amount of any chemical substance that has a mass in Ibm (pounds mass) numerically equal to the
molecular mass of the substance.

Sl Le Systéme International d’Unités (French)

Psia lof/in® absolute (pressure)

Psig Iof/in? gauge (pressure)




Problems (* indicates problems in SI units)
1.* Using the problem solving technique described at the beginning

of the chapter, work out your answer to the following question:
A fresh egg is released by an ancient pterodactyl flying
horizontally at 10. m/s at an altitude of 1500 km (Figure 1.20).
If it takes 15 s for the egg to hatch, will it hatch before it hits
the ground?

FIGURE 1.20
Problem 1.

2.

4.

During the construction of the Eads bridge across the Mississippi
river at St. Louis in 1873, Theodore Cooper, a young assistant civil
engineer, slipped on a loose board and fell 90. ft into the river
(Figure 1.21). He later reported that, during the fall, he rolled
himself into a ball and rapidly calculated the velocity with which
he would hit the water. After a deep plunge, he came to the surface
still clutching his pencil and was rescued by a nearby boat.
Neglecting air resistance, determine (a) how long it took him to
fall 90. ft, and (b) the velocity with which he hit the water.

If 1 gallon has a volume of 0.1337 ft’, then how many
mouthfuls of water are required to fill the moat of a castle that
is 1.0 pole deep, 1.0 fathom wide, and 1.0 furlong long

(Figure 1.22)? Note: 1.0 pole = 12 cubits = 18 feet, and

1.0 fathom = 4.0 cubits = 6.0 feet.

The gauge of shotguns is universally expressed as the number of
spheres of the diameter of the bore of the gun that can be cast
from 1 Ib of lead (Figure 1.23). This standardization procedure
came from the English Gun Barrel Proof Act of 1868. Taking the
density of the lead as 705 Ibm/ft’, develop a formula relating
the diameter of the gun barrel to the gauge of the gun. Compute
the barrel diameters for 20. gauge, 12. gauge, and 10. gauge
shotguns. (Note that the caliber of a gun is not the same as its
gauge. The caliber of a weapon is just the diameter of the bore

Problems

FIGURE 1.22
Problem 3.

FIGURE 1.23
Problem 4.

expressed in inches multiplied by 100. For example, a .38 caliber
pistol has a bore diameter of 0.38 inch).

5. Iflead is measured in avoirdupois ounces and silver is measured in
troy ounces, which weighs more (a) an ounce of lead or an ounce
of silver, and (b) a pound of lead or a pound of silver (Figure 1.24)?

One pound of lead One pound of silver

Which one weighs more?

FIGURE 1.24
Problem 5.

Eads Bridge
' 517 feet ,i
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FIGURE 1.21
Problem 2.
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6. Most people believe that the size of a shoe is the length of the shoe
in inches (Figure 1.25). Curiously, this is not the case. Shoe sizes
became standardized between 1850 and 1900 as factory-made
shoes became popular. The size standardization consisted of
defining the smallest shoe size at some fixed insole length, then
increasing the insole length by a fixed amount for each size
increment. The child’s size 0 shoe was specified to have a 31 inch
long insole and the adult size 1 shoe (there is no size 0 adult shoe)
was specified to have an 8% inch long insole. It was also decided
that each full size increment would represent an increase in insole
length by one barleycorn (3 inch), and an increase in girth
(the internal circumference of the shoe and the ball of the foot)
by % inch. Letters were chosen to denote shoe width increments,
and the difference in girth between these width increments
(for example, between a C and a D width shoe) is also 1 inch.

a. Determine the equations that relate the adult and child’s size
directly to insole length, and compute the insole length of
an adult size 10 shoe.

b. Compute the size of a child’s shoe that has the same insole
length as a size 1 adult shoe and explain why children’s
shoes are not available in size 14 or larger.

00
Q

One foot!

8d Common

o

8d Common brad

8d Flooring brad

8d Casing

8d Finishing

6d Shingle nail

< T O

8d Clinch nail

3d Fine nail

3d Slating nail

1 inch Barbed roofing nail

FIGURE 1.26
Problem 7.

monetary inflation since the 15th century if a pound of 6d nails
currently costs $1.00.

8. By 1724, Gabriel Daniel Fahrenheit (1686-1736) had
established his well-known temperature scale. This scale was based
on two fixed points: the freezing point of a water and ammonium
chloride solution (called 0°F) and the temperature of the human

- body (called 96°F). Later adjustments to the scale shifted the body
FIGURE 1.25 temperature to 98.6 EF. What advantages did the number 96 have
Problem 6. over, say, 100 as an upper end to this scale in 17247
9. Determine the units of thermal conductivity, k,, as defined by
7. The classification of carpenters’ nails is based on a unit system the following equation: Q = —kA(dT/dx), where Q is the heat
that is at least six centuries old. The penny system of nail sizing, transfer rate in watts, A is the cross-sectional area in m?, T is the
usually designated by d, the letter that was also the symbol for absolute temperature in K, and x is the distance in m.
the monetary penny or pence (i.e., 3d = 3 penny nail), 10. Determine the units of viscosity, y, in the following equation:
originated in medieval England.’ At that time, nails were sold 7 = pu(du/dy), where 7 is a shear stress, u a velocity, and y is a distance
by the hundred, and originally a hundred 3 penny nails cost 3 in (a) the Engineering English system, and (b) the SI system.
pennies. From this practice came the classification of nail sizes 11. Develop a unit conversion factor to convert the specific heat of a
according to the price per hundred (Figure 1.26). This system substance in calories/(g-K) into Btu/(lbm-R).
had the disadvantage that inflation in the monetary system 12. The specific internal energy of a system is 411.7 J/kg. Express
caused the size of the nails to change. By the end of the 15th this value in the following units: (a) ft-1bf/lbm, (b) kcal/kg, and
century, the classification became standardized according to (c) kwW-h/lbm.
Table 1.9'%; and from this point on, the size of the nails no 13. Determine the weight at standard gravity of 10.0 lbm in (a) Ibf,
longer corresponded to their actual cost. Estimate the percent of (b) poundals, (c) dynes, and (d) newtons.
Table 1.9 Nail Sizes
Nail Size
2d 3d 4d 5d 6d 7d 8d 9d 10d 12d 16d 20d 30d 40d 50d 60d
Length (inches) 100 125 1560 175 200 225 250 275 300 325 350 400 450 500 550 6.00
Number per pound 845 540 290 250 165 150 100 90 65 60 45 30 20 17 13 10

° The d is from denarius, the name of an old Roman silver coin.

19 Nails less than 2 penny in size are called tacks or brads, and nails larger than 60 penny are called spikes.



14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

Determine the mass of an object whose weight on the Moon,
where the local acceleration of gravity is 5.3 ft/s?, is 10.0
poundals in (a) lbm, (b) slugs, (c) g and (d) kg.

Determine the acceleration of gravity at the location where 3.0
slugs of mass weigh 50.0 N.

How much does 10.0 Ibm weigh on a planet where g = 322 fi/s*?
Determine the value of g at a location where a body with a
mass of 270. Ibm weighs 195 Ibf.

Develop a mechanical units system in which the mass is the stone,
the length is the angstrom (0.1 nm), and the time is the century.
(a) Define your own force unit and choose the magnitude of k;.
(b) Discuss the problems that would be encountered in
converting between your system and the SI system.

Develop a mechanical units system in which force (F), mass
(M), length (L), and time () are independent quantities, using
the kgf (kilogram force) for F, and kgm (kilogram mass) for M,
the meter for L, the second for t, and 9.81 kgm-m/(kgf-s?) as g..
Note the similarities between this units system (which is used
by some European engineers today) and the Engineering English
units system.

Develop an FLt mechanical units system in which g. = 1 and the
force is the pound force (Ibf), the length is the foot, and time is
the second. Define the mass in this system to be the pound mass
(Ibm) and determine the conversion between the primary units
(Ibf, ft, and s) and the secondary mass (Ibm) unit at standard
gravity. Note that this is not the same FLMt system used in the
Engineering English units system shown in Table 1.2. Explain the
differences and similarities between these two systems.
Determine the mass of 18 Ibm of water in (a) Ibmoles,

(b) gmoles, (c) kgmoles, and (d) slug moles.

How many kgmoles of nitroglycerine C3Hs(NOs3)s3 are contained
in 1.00 kg?

How many Ibmoles of TNT (trinitrotoluene) C;Hs(NO;); are
contained in a 1.00 lbm stick?

How many lbm are contained in 1.00 Ibmole of glucose CsH,04?
Determine the mass in Ibm of 1.00 Ibmole of Illinois coal
having a molecular structure of CjooHgsS,.1N1509 5.

What will 3.0 kgmoles of CO, weigh at standard gravity in

(a) N, and (b) Ibf?

Determine the molecular mass of a substance for which

5.0 gmoles weighs 10.x 10° dynes at standard gravity.

Create an absolute temperature scale based on Reaumur’s
relative temperature scale defined in Table 1.1, and name it after
you. Determine the boiling point of water in your new scale,
and the conversion factors between your scale and the Kelvin
and Rankine scales.

Create an absolute temperature scale based on Newton's relative
temperature scale defined in Table 1.1, and name it after you.
Determine the boiling point of water in your new scale, and the
conversion factors between your scale and the Kelvin and
Rankine scales.

Both the numerical value and dimensions of the universal gas
constant R in the ideal gas formula pV = nRT depend on
whether the temperature T is in Kelvin or Rankine absolute
temperature units. In 1964, at Washington University, St. Louis,
Missouri, Professor John C. Georgian recognized that, if the
universal gas constant were set equal to unity and made
dimensionless, then the ideal gas equation of state could be
used to define an absolute temperature unit in terms of the
traditional mass, length, and time dimensions from the

Problems a

result: T = p¥/n, where p is the absolute pressure, ¥ is the total

volume, n = m/M is the number of moles, and m and M are

mass and molecular mass, respectively.

a. Using T = p¥/n (i.e., set R =1), determine the equivalent
Georgian temperature unit in terms of the standard SI units
(m, kg, s). Call this new temperature unit the georgian, G.

b. Find the conversion factor between G and the SI units
system absolute temperature scale unit, K.

c. Find the conversion factor between G and the Engineering
English units system absolute temperature scale unit, R.

d. Determine the triple and boiling points of water in G

(Figure 1.27).
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FIGURE 1.27
Problem 30, part d.

31. Show that (4nep)(c? x 107) = 1 C?/(kg-m), where c is the
velocity of light = 2.998 x 10® m/s, and C is the charge in
coulomb (1C =1 A-s).

32. Show that eguoc? = 1.0, where & is the electric permittivity of a
vacuum = 8.8542 x 102 A?-s*/(kg-m®), and o = the magnetic
permeability of a vacuum = 4n x 10~ kg-m/(A-s)%

33. If the pressure inside an automobile tire is 32.0 psig in
Engineering English units, what is its pressure in SI units?

34. If your mass is 183 lbm in the Engineering English units system,
what is your weight in (a) the Engineering English units system
and (b) the SI units system?

35. If you weigh 165 Ibf in the Engineering English units system,
determine your mass in the following units systems:

(a) Engineering English, (b) SI, and (c) Technical English.

36.* The potential of a typical storm cloud can be as high as
10° volts. When lightning is produced, a typical lightning strike
can produces an electric current of 20,000 amps (Figure 1.28).
a. Determine the power contained in a lightning strike (in kW).

1=20,000 amps

10° volts

FIGURE 1.28
Problem 36.
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37.

38.

39.*

40.

41.

42.

43.

45.

46.

47.

b. If the earth is covered with 2000 lightning storms each
producing 100 strikes per second, determine the total
lightning electrical power available (in kW).

If a person reports the dimensions of a room from

measurements with a tape measure as 12 feet, 65 inches by

14 feet, 31 inches, how many significant figures are being

used?

If you measure time in hours with an accuracy of five significant

figures then convert it into seconds, to how many significant

figures should you report the answer in seconds?

An engineer reports a value of 1.3695 m/s for the velocity of

conveyer system.

a. How accurate (i.e., to how many significant figures) is the
velocity measurement?

b. If this velocity is calculated from a measurement of a
distance traveled divided by the time required, how
accurately (i.e., to how many significant figures) must the
distance and time be measured?

How accurate (i.e., how many significant figures can you

measure) is (a) a bathroom scale graduated in quarter pound

increments, (b) a yardstick graduated in eighth-inch increments,

() a 6-inch machinist's pocket rule graduated in %th inch

increments, (d) a 1-inch micrometer graduated in 75t inch

increments, and (e) an analog stopwatch graduated in one
hundredths of a second?

If you are reporting a distance of less than ten miles traveled in

your car from reading the odometer, how many significant

figures do you use?

If you are calculating the potential energy of an object for which

you know its mass to three significant figures, its height to two

significant figures, and the local gravity to four significant
figures, how many significant figures do you use in your final
answer?

If you are calculating the kinetic energy of an object for which

you measure the distance it travels with an instrument having

an accuracy of four significant figures, the time of travel with a

stopwatch accurate to three significant figures, and a mass

measured to an accuracy of three significant figures, how many
significant figures do you use in your answer?

Determine the potential energy of 1.00 kg of water at a

height of 1.00 m above the ground at standard gravity in (a)

the Engineering English units system and (b) the SI units

system.

Compute the kinetic and potential energies of an airplane

weighing 5.00 tons flying at a height of 30.0 x 10° ft at

500. mph (Figure 1.29). Give your answer in both SI and

Engineering English units. Assume standard gravity.

Assume the binding energy per molecule for liquid water at

212.°F is about 7.00 x 107%° ft-1bf/molecule. Then, assuming

all the binding energy is converted into mass, determine the
percent gain in mass when 1.00 Ibm (10?° molecules) of
liquid water vaporizes. Note: E = mcz/gc, where, in the

Engineering English units system, g = 32.174 lbm - ft/(Ibf-s?)

and ¢ = 9.84 x 10° ft/s.

The engine horsepower required to overcome rolling and air

resistance for a passenger vehicle is given by the dimensional

formula

3
Horsepower = [(53.0 hp-h )(Wv)+ (6.8 hp-h )CDAV3

1 -6
Iof-mi e mpe x10

<

FIGURE 1.30
Problem 48.

Aircraft weighs 5.00 tons

500. mph

30.0 x 103 feet

FIGURE 1.29
Problem 45.

where W is the vehicle weight in pounds force, V is the vehicle’s
road speed in miles per hour, A is the vehicle’s frontal area in
square feet, and Cp is a dimensionless drag coefficient. Convert
this formula into a dimensional formula that uses only the four
base units (i.e., eliminate all derived units such as horsepower
and mile) of

a. The Engineering English system (lbf, lbm, ft, s).

b. The SI system (N, kg, m, s).

48.* You are suddenly transported through time and space to an

unknown planet, where you find yourself face to face with a
hungry giant quadroplex creature. Your finely honed survival
skills as a successful, but mild-mannered, engineering student
lead you conclude that the beast has a mass of 1.00 x 10* kg
(gads!). In response to its unwanted affection, you quickly pick
up a stone and throw it vertically with a carefully calibrated
launch velocity of 10.0 m/s (Figure 1.30). Your well-trained eye
determines that the stone flies to a height of 20.0 m before it
begins to drop. Knowing that the initial kinetic energy and the
final potential energy of the stone must be equal, determine
(before the creature reaches you)
a. The value of g on this planet (in kg-m/N-s?).
b. The value of the local acceleration of gravity (in m/s?).
c. The local weight (in newtons) of the approaching giant
bulbous creature.




49. Using the CGS units system, determine the kinetic energy
of an automobile weighing 1.60 billion dynes traveling at
3000. cm/s.

50. Using the CGS units system, determine the potential energy of
a truck weighing 27.0 billion dynes at a height of 30.0x 10° cm
at standard gravity.

51. Using the Absolute English units system, determine the weight
of an object whose kinetic energy is 306.2 ft-poundal, when it is
traveling at a velocity of 10.0 ft/s.

52. Using the Absolute English units system, determine the kinetic
energy of an object traveling at 15.3 ft/s and weighing
40.0 poundal at standard gravity.

53. Using the Absolute English units system, determine the potential
energy of an object weighing 200. Ibm-ft/s* at a height of
3000. ft at standard gravity.

54. Using the Technical English units system, determine the mass of
an object having a potential energy of 705 ft-lbf when it is at a
height of 25.0 ft at standard gravity.

55. Using the Technical English units system, determine the
kinetic energy of a 197 slug mass traveling at a velocity
of 33.5 ft/s.

56.* Micrometeoroids have space station impact velocities of

19.0 km/s. Determine the impact kinetic energy in SI and
Engineering English units of a 1.00 g micrometeoroid traveling
at this velocity.

57. A 2000. Ibm meteoroid has a velocity of 23.0 x 10° mph
(Figure 1.31). Determine the kinetic energy of the meteoroid in
Engineering English and SI units.

FIGURE 1.31
Problem 57.

58.* The Sandia National Laboratory hypervelocity two-stage light gas
gun achieved muzzle velocities of 12.0 km/s with 0.500 g flat
plate projectiles. Determine the muzzle kinetic energy of the
projectiles in SI and Engineering English units.

59.* A thin disk with a diameter of 1.00 m and weighing 8.00 kg is
spun about its axis at 30.0 x 10° revolutions per minute.
Determine its rotational kinetic energy.

60.* The armature of a large electric motor can be thought of as
being composed of a slender solid circular rod (the motor drive
shaft) inside a large hollow circular cylinder (the armature

Problems

windings). If the motor shaft has a mass of 150. kg and a
diameter of 0.250 m, and the armature windings have a mass of
600. kg and an outside diameter of 1.50 m (the inside diameter
is the same as the outside diameter of the shaft), determine the
rotational kinetic energy stored in the motor when it is rotating
at 3600. rpm.

61. A 0.3125 Ibm baseball 2.866 inches in diameter is thrown
with a velocity of 80.0 mph and it simultaneously spins
about its axis at 5.00 rad per second (Figure 1.32). Determine
the total (translational plus rotational) kinetic energy of
the ball.

| 80.0 mph

5.00 radians/s

FIGURE 1.32
Problem 61.

62. A 12 Ibm bowling ball 8.59 inches in diameter is given a spin
of 1.0 revolution per second while traveling down the lane at
17 ft per second (Figure 1.33). Determine the total translational
plus rotational kinetic energy of the ball.

17 ft/s

1.0rev/s

FIGURE 1.33
Problem 62.

63.* The NASA space shuttle’s main engine high-pressure
turbopump rotors are cryogenically spin tested in a vacuum
at 40.0 x 10° rpm and —195°C. The rotor can be modeled as
a thin disk 0.600 m in diameter with an effective mass of
8.50 kg. Determine the rotational kinetic energy of the rotor
about its axis of rotation when it is running at the test
speed.

64. A great deal of research has been carried out at the Oak
Ridge National Laboratory in Tennessee on flywheel energy-
storage systems. The lab developed a 27.0-inch diameter
composite flywheel that can run at 40.0 x 10> rpm on
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40.0 x 10° rppm

Mass = 100. Ibm

I | 27.0 inch diameter

FIGURE 1.34
Problem 64.

65.

magnetic bearings (Figure 1.34). If this flywheel can be
represented as a thin disk with a mass of 100. Ibm,
determine

a. The rotational kinetic energy stored in the flywheel.

b. The energy storage capacity of this flywheel in W - h/Ibm.
Determine the energy-storage capacity in W-h/lbm of the
impeller in the Anatomy of an Accident case study presented in
this chapter.

66.* A manufacturer of a thin disk energy-storage flywheels claims to

have a flywheel made of a composite material mounted on
magnetic bearings. If the flywheel turns at 200. x 10° rpm and
has an energy-storage capacity of 50.0 W-h/kg, determine the
diameter of the flywheel.
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2.1 INTRODUCTION

Some students have difficulty with thermodynamics because it is such a broad subject. Engineering courses like
statics, dynamics, and materials focus on just a few topics. Thermodynamics, on the other hand, deals with
many issues that are common to a variety of engineering systems. A thermodynamic analysis can span the
gamut from a huge power plant to the smallest microscopic system. It can often be applied in a fairly simple
way to extremely complex systems (like biological systems) to provide profound results.

One of the most powerful aspects of thermodynamics is its “black box” approach to system analysis. It is not
necessary to know what takes place inside the box, it is necessary only to watch the box’s boundaries and see
what, and how much, crosses them. This is the essence of the balance concept, discussed later in this chapter. But
we begin by introducing some basic thermodynamic definitions.

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00002-6
© 2011 Elsevier Inc. All rights reserved.
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2.2 THE LANGUAGE OF THERMODYNAMICS'

This section deals with a series of definitions and technical terms fundamental to understanding the language of
thermodynamics. Some of these terms are already in our everyday vocabulary as a result of the broad-based use
of thermodynamics concepts in everyday life. It was popular among the 19th century scientists to coin technical
terms using Greek or Latin words instead of English. Consequently, many of the key terms (words) in thermody-
namics are really Greek or Latin words, which, in the 21st century, are probably foreign to you. But when these
terms are translated into English, you will find that their English meaning is identical to their thermodynamic
use. For example, the English translation of the term isothermal is simply constant temperature, which is the physical
meaning of what the term isothermal is meant to imply. Consequently, when Greek or Latin terms are introduced
in this text, their equivalent English translations also are given at that point. Appendix B at the end of this book
gives a more comprehensive analysis of the Greek and Latin origins of scientific and engineering terms. Though
this may seem like a small point to you at this stage, your understanding and ease with this subject are greatly
enhanced if you pay particular attention to the English meanings of these otherwise meaningless technical terms.

The name thermodynamics itself is an example of a Greek technical term. Basically, it means the process of
converting heat (thermo) into mechanical power (dynamics). Modern thermodynamics deals with more than just
thermal energy. It is more appropriately defined today as in the following box titled “Thermodynamics.”

There are four basic laws of thermodynamics: the zeroth, first, second, and third laws. Like all of the other basic
laws of physics, each of these laws is a generalization of observed events in the real world, and their “discovery”
was the result of an individual’s perception of how nature functions. Curiously, the order in which the thermo-
dynamic laws are named does not correspond to the order of their discovery. The zeroth law is attributed to
Fowler and Guggenheim in 1939; the first law to Joule, Mayer, and Colding in about 1845; the second law to
Carnot in 1824; and the third law to Nerst in 1907. The first and second laws are the most pragmatic and conse-
quently the most important to engineers. A thermodynamic analysis involves applying the laws of thermo-
dynamics to a thermodynamic system.

A thermodynamic system often is referred to as just a system. Its boundary is defined simply as its surface.

The system and its boundary are always chosen by the analyst (i.e., you); they are almost never specified in a
problem statement. It should be clear that, if different systems are used to analyze the same quantity, they
should produce the same results in each case. A system does not have to be fixed in space. It can move, deform,
and increase or decrease in size with time. Basically, there are three types of systems: isolated, closed, and open.

Figure 2.1 illustrates each of these types of systems. In Figure 2.1a, a pan of water is in a mass and energy
impervious insulated box, thus forming an isolated system. In Figure 2.1b, we have a closed system, wherein the
contents of the pan are closed by an airtight lid, but heat energy enters the pan from the burner. In Figure 2.1c,
water (mass) enters the pan by crossing the system boundary, so here the pan is an open system.

Notice that whether a system is open or closed depends on how the analyst views the system. Figure 2.1c could be
made into a closed system if the system boundary is extended to include the faucet, all the water pipe going back

THERMODYNAMICS

Thermodynamics deals with the laws that govern the transformation of energy from one form to another.

THERMODYNAMIC SYSTEM

The thermodynamic system is a volume of space containing the item chosen for thermodynamic analysis.

THERMODYNAMIC SYSTEM BOUNDARY

The surface of a thermodynamic system forms its boundary.

! Feel free to turn on your babble fish here, but do not put it in your ear just yet.



2.3 Phases of Matter ﬂ

System boundary System boundary System boundary

(a) Isolated System: Neither (b) Closed System: Mass (c) Open System: Both
mass nor energy can cross cannot cross the system mass and energy can cross
the system boundary. boundary, but energy can. the system boundary.
FIGURE 2.1

The three types of thermodynamic systems.

TYPES OF THERMODYNAMIC SYSTEMS

Isolated system. Any system in which neither mass nor energy crosses the system boundary.
Closed system. Any system in which mass does not cross the system boundary, but energy may cross the system boundary.
Open system. Any system in which both mass and energy may cross the system boundary.

CRITICAL THINKING

If we select your body as a thermodynamic system, is it an open or closed system? What happens to you if we force you to
be a closed system?

to the water treatment plant, and the water supply for the plant. But such a system would be too large to analyze
properly, since we must be able to find all the energy that crosses its boundary, at any point along the boundary.
Therefore, it is much easier to view Figure 2.1c as an open system with a small, well-defined system boundary.

The choices of the proper system, along with the proper form of the thermodynamic laws, always are decisions
that you, the analyst, must make whenever beginning to solve a thermodynamics problem. Making a sketch
of the system that shows the system boundary is a useful aid in making these decisions. The system sketch in
thermodynamics is equivalent to the free body diagram sketch in mechanics. Its value cannot be overstated.

2.3 PHASES OF MATTER

The physical phase of a substance is defined by the molecular structure of the substance. For example, water
can be described chemically as H,O, but it may exist in a number of molecular configurations. At low
temperatures, water takes on a rigid crystalline molecular structure, ice, but at higher temperatures its molecu-
lar structure becomes amorphous as it becomes a liquid and random as it becomes a vapor. We can easily
identify three common structural phases of matter: solid, liquid, and vapor (or gas). But, whereas only
one liquid phase or one vapor phase may be possible, many different solid molecular configurations of a
substance may exist.

The term homogeneous can be used to describe either physical or chemical uniformity. Here we use the term pure
substance to describe substances that are chemically uniform (Figure 2.2), and reserve the term homogeneous to
describe substances that are physically uniform (i.e., have a single physical phase). Hence, we define a pure
substance as anything that contains the same uniform chemical composition in all its physical phases. For exam-
ple, a mixture of water vapor and liquid water is a pure substance. On the other hand, air is not really a pure
substance, because when it is cooled sufficiently, some of its components condense into their liquid state, thus
changing the composition of the remaining gases.
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PURE
SUBSTANCE
ELEMENTS COMPOUNDS
Elements contain atoms of a Compounds contain atoms of
single atomic number and have two or more elements
well-defined physical chemically combined and have
properties. well-defined physical properties.
MIXTURE
HOMOGENEOUS MIXTURES HETEROGENEOUS MIXTURES

Homogeneous mixtures have
the same composition
throughout. The components
in the mixture are NOT
distinguishable from each
other, and different mixtures
have widely different physical
properties.

Heterogeneous mixtures do
NOT have the same composition
throughout. The components

in the mixture ARE
distinguishable, and different
heterogeneous mixtures may
have widely different physical
properties.

FIGURE 2.2
Pure substances and mixtures.

CRITICAL THINKING

From the previous discussion as to whether or not air is a pure substance, do you think that a more practical definition of
a pure substance should require only that the substance not change chemical composition under the conditions of a given
engineering process? For example, if air at atmospheric pressure is being heated from say 20°C to 200°C, then it would not
change chemical composition and therefore could be considered as a pure substance. If, on the other hand, this air is being
cooled from 20°C to —200°C, then it could not be considered a pure substance because the oxygen gas condenses into a
liquid at -183°C and this would change the chemical composition of the remaining gas.

We further define a homogeneous substance as anything that contains a single physical phase. Air at normal
atmospheric conditions is a homogeneous substance, but being a mixture of various gases, it is not a pure
substance. A mixture of liquid water and ice on the other hand is not a homogeneous substance, but it is a pure
substance. A pure substance that is also a homogeneous substance is called a simple substance. Liquid water is an
example of a simple substance.

Pure substances must be chemically uniform but need not consist of a single chemical species. For example,
a homogeneous mixture of uniform chemical composition can often be treated as if it were a single phase of a
pure substance. Air in its gaseous state is usually treated as a pure substance, even though it does not satisfy the
general definition of a pure substance.

2.4 SYSTEM STATES AND THERMODYNAMIC PROPERTIES

The thermodynamic state of a system can be either an equilibrium state or a nonequilibrium state. A thermo-
dynamic equilibrium state is defined by the values of its thermodynamic properties. A nonequilibrium state is
much more difficult to define and generally requires the existence of a condition called local thermodynamic
equilibrium, which exists when thermodynamic equilibrium occurs locally within a series of small volumes that
make up the system. Conversely, a thermodynamic property is any characteristic of a system whose numerical
value depends only on the (local) thermodynamic equilibrium state of the system and is independent of how
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that state was attained. Mass, volume, temperature, pressure, color, viscosity, magnetization, and so forth are all
possible properties.

The list of possible properties is quite long. Fortunately, not all properties are independent of each other. In fact,
a homogeneous system contains relatively few independent properties. The formula relating the dependent and
independent properties of a system is called a thermodynamic equation of state. Once the values of the indepen-
dent properties are known for a particular state, this formula can be used to calculate the values of all the
dependent properties at that state. The ideal gas formula, pv=RT, is an example of such an equation of state for
a simple system. In classical thermodynamics, there are two types of properties, intensive and extensive.

Most extensive properties can be converted into intensive properties by dividing the extensive property
by the system mass (or the number of moles) in the system. Intensive properties created in this way are called
specific properties. For example, the total volume of a system divided by the total mass of the system is the inten-
sive property called specific volume, and the total volume divided by the total number of moles of the system
is the intensive property called molar specific volume. To be able to tell the difference between extensive and
intensive properties in the formulae of this book, we adopt the notational scheme explained in the boxes.

Exceptions to this extensive property notation are uppercase T for temperature (which is an intensive property),
lowercase m for mass (which is an extensive property), and lowercase n for the number of moles (also an exten-
sive property). The letters T, m, and n for temperature, mass, and moles are the traditional symbols for these
quantities, and the symbols ¢, M, and N are the traditional symbols for time, molecular mass, and Avogadro’s
number, respectively.

INTENSIVE PROPERTY

An intensive property is any thermodynamic property of a homogenous system that is independent of mass. Examples are the
pressure, temperature, and density.

EXTENSIVE PROPERTY

An extensive property is any thermodynamic property of a homogenous system that depends on mass. Examples are the mass,
volume, and energy.

EXTENSIVE PROPERTY NOTATION

Extensive properties are symbolized by uppercase (capital) letters. For example, ¥, E, and U are the symbols for volume,?
energy, and internal energy.

2 In this text, ¥ represents total volume, and V represents the magnitude of velocity.

INTENSIVE PROPERTY NOTATION

Intensive mass-based properties are symbolized by lowercase letters, and intensive mole-based properties are symbolized
by lowercase letters with overbars. For example, v =¥/m,, e = E/m,, u = U/m are the symbols for mass-based specific
volume, specific energy, and specific internal energy. Similarly, 7, ¢, and @ are the symbols for molar specific volume, molar
specific energy, and molar specific internal energy.

CRITICAL THINKING

If we chose the color of a system as a thermodynamic property, would it be an extensive or intensive property?
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Table 2.1 Mass-Based and Mole-Based Specific Quantities

Mass-Based Specific Quantities Mole-Based Specific Quantities
v =¥/m v=¥/n

e=E/m e=E/n

ke = KE/m = V/?/2g, ke = KE/n = (m/n)(V2/2g.)

pe = PE/'m = gZ/9. pe = PE/n = (m/n)(9Z2/9¢)

HOW DO I DETERMINE THE STATE?

The state of a pure substance subjected to only one work mode is determined by the values of any pair of independent
intensive properties. If the pure substance is also homogeneous, then all its intensive properties are independent and any
two of them fix the state.

Exceptions to this intensive property notation are again temperature T (an intensive property), mass m (an
extensive property), and the number of moles n (another extensive property), as explained previously. Pressure,
p, is a natural intensive property that is not obtained by dividing something by the system mass.

The uppercase-lowercase notational scheme is also used for other thermodynamic quantities, such as kinetic energy,
potential energy, work, and heat, that are not thermodynamic properties. Total (mass dependent) values of these
quantities are given the uppercase symbols KE, PE, W, and Q, respectively. If we divide these quantities by the system
mass m, we get their specific (or per unit mass) forms, which are given the following lowercase symbols: ke = KE/m,
pe=PE/m, w=W/m, and q= Q/m. If we divide by the number of moles n in the system, we get the specific molar
values of these quantities, which are symbolized by lowercase letters with an overbar: ke = KE/n, pe = PE/n, = W/n,
and g = Q/n. These are summarized in Table 2.1.

Later, we discuss a general principle that provides an easy way to determine the number of independent proper-
ties in any system. In the meantime, you need to know that, for a pure substance (anything with a uniform
chemical composition in all its physical phases) subjected to only one work mode® (type of work), only two
independent intensive properties are required to determine its thermodynamic state.

A pure substance can be in any physical state—solid, liquid, vapor—or any combination of these states. Liquid
water with ice cubes in a glass is a pure substance system if the system boundary is drawn so that it does not
include the glass itself. If the system boundary is drawn outside the glass, then the system no longer contains a
pure substance (it contains water and glass). This illustrates the importance of carefully considering exactly what
the system is to be and where its boundaries are to be drawn.

2.5 THERMODYNAMIC EQUILIBRIUM

An equilibrium situation implies a condition of balance between opposing factions. There are many different kinds
of equilibria. A mechanical equilibrium exists when all the mechanical forces within a system are balanced so that
there is no acceleration (the study of mechanical equilibrium is called statics). A thermal equilibrium exists within a
system if there is a uniform temperature throughout the system. An electrostatic equilibrium exists within a system
when there is a balance of charge throughout the system. A phase equilibrium exists within a system when no
phase transformations (such as vaporization or melting) occur within the system. A system is said to be in chemical
equilibrium when no chemical reactions occur within the system. Since the subject matter of thermodynamics con-
tains all these types of phenomena, we lump all these definitions together to define thermodynamic equilibrium.

Classical equilibrium thermodynamics is based on the analysis of equilibrium states and therefore is analogous
to statics in mechanics. Since dynamic energy systems contain nonequilibrium thermodynamic states, they cannot be
analyzed by the methods of classical thermodynamics. Hence, the term thermodynamics appears to be a misnomer.
Some authors have proposed that classical thermodynamics could be more accurately titled thermostatics, to keep it
consistent with the titles used in mechanics. However, the origin of the term thermodynamics is more closely aligned
with the concept of converting heat (the thermo part) into work (the dynamics part). Consequently, the dynamics in ther-
modynamics should be thought of as the dynamics of the various processes of converting heat into work (or power).

* A work mode may be mechanical, electrical, magnetic, etc., but only one may be present in this instance. More complex systems with
multiple work modes are discussed in “The State Postulate” section of Chapter 4.



2.6 Thermodynamic Processes ﬂ
WHAT IS THERMODYNAMIC EQUILIBRIUM?

A system is said to be in thermodynamic equilibrium if it does not spontaneously change its state after it has been isolated.

2.6 THERMODYNAMIC PROCESSES

Engineering thermodynamics is primarily concerned with systems that undergo thermodynamic processes.
A system subjected to a thermodynamic process normally experiences a change in its thermodynamic state.
Consequently, we define a thermodynamic process as in the following box.

Neither the initial, final, nor any intermediate states need be in thermodynamic equilibrium during a thermo-
dynamic process. A process can change a system from one nonequilibrium state to another nonequilibrium state
via a path of nonequilibrium states. Figure 2.3 illustrates several process paths that change a system from an
initial state A to a final state B.

If a process path closes back on itself so that it is repeated periodically in time, then the thermodynamic process
is called a thermodynamic cycle. Figure 2.4 illustrates the definition of a thermodynamic cycle.

There is a difference between a thermodynamic cycle and a mechanical cycle. In a mechanical cycle, all the
mechanical components begin and end in the same geometrical configuration. For example, the engine of an
automobile goes through a mechanical cycle once per two crankshaft rotations for a four-stroke engine, but it
does not go through a thermodynamic cycle. For an automobile engine to go through a thermodynamic cycle
the engine’s exhaust would have to be converted back into air and fuel (the initial state).

Understanding the process path is extremely important in thermodynamic analysis because it often determines the
final state of the system. In most thermodynamic textbook problem statements, the process path is only vaguely
alluded to or else is hidden in one or more of the technical terms used. Therefore, in addition to deciding on the
type of system to use in the analysis of a problem and preparing a system sketch, you must also determine the
type of process that is occurring.

B
é \ L2 Initial state
< oo =)
g o ro‘e g
'8 g b ceSsl ? % \
E PO g @
2 5] Final state
= A =
Toce
S§ 3
Start Finish
Process variable Process variable
FIGURE 2.3 FIGURE 2.4

Three process paths that change the state of the system from Ato B. A thermodynamic cycle.

WHAT IS A THERMODYNAMIC PROCESS?

A thermodynamic process is the succession of thermodynamic states that a system passes through as it goes from an initial state
to a final state.

WHAT IS A THERMODYNAMIC CYCLE?

A system process is said to go through a thermodynamic cycle when the final state of the process is the same as the initial state
of the process.
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2.7 PRESSURE AND TEMPERATURE SCALES

Because of the historical manner in which the concepts of pressure and temperature evolved, we are forced to
deal with two scales for each. We have a relative and an absolute scale for both temperature and pressure
measurement. Some formulae allow the use of either scale in calculations, but other formulae require the use of
only absolute scales in calculations. Therefore, it is very important to know which scales are being used when
you are given values for temperature and pressure.

As we saw in Chapter 1, there are two common absolute temperature scales, Rankine (R) and Kelvin (K). They
are related as follows:*

T(R) = 3T(K) 2.1)
Each of these absolute scales has a relative scale, the common English Fahrenheit (°F) scale and the European
Celsius (°C) scale.® These two relative scales are related to each other by

T(°F) = %T("C) +32 (2.2)

and the respective absolute and relative scales are related by
T(R) = T(°F) +459.67 (2.3)
and

T(K) = T(°C) +273.15 (2.4)

Pressure can be viewed as a compressive stress. Thus, absolute zero pressure corresponds to a level of zero stress.
However, even though we generally do not encounter negative absolute pressures in thermodynamics, any finite
tensile stress in a fluid or a solid is equivalent to its being subjected to a negative absolute pressure. There is no
lack of consistency here; this is merely a standard sign convention for stress.

Because most gauges manufactured to measure pressure were designed to read zero at local atmospheric
pressure, their readings constitute a relative pressure scale, called gauge pressure.

To distinguish between gauge and absolute pressure values in our writing, we append the letter g or a to the
English units of the term. Therefore, the English pressure units psia and psig are to be read “pounds per square
inch absolute” and “pounds per square inch gauge,” respectively. SI pressure units should carry the identifying
words absolute or gauge (e.g., 3.75 MPa-absolute or 3.75 MPa-gauge). This is a clumsy indicator, and since
thermodynamic tables are always given in absolute pressure units and thermodynamic equations work with
absolute pressure units, SI pressures are generally assumed to be in absolute units even when not so specified.

Unless otherwise specified in a problem statement, the local atmospheric pressure should always be taken to be
the standard atmospheric pressure, which is 14.696 psia (or 14.7 psia) or 101,325 Pa (or 101.3 kPa). Figure 2.5
illustrates the meanings of relative and absolute temperature and pressure.

If you are given a formula with a quantity such as p or T in it, how do you know which scale to use?
The following boxed rule of thumb titled “How Do I Know When I Have to Use Absolute Pressure or Temperature?”
provides the answer.

In the ideal gas equation of state,
pV- = mRT (2.5)

both the quantities p and T stand alone, so that the values substituted for them must always be in an absolute
scale (psia and R or Pa-absolute and K). On the other hand, if a formula contains the difference in a quantity not
raised to a power, such as p, — p; (or Ap), or T, — T; (or AT), then the values assigned to that quantity may be in
either absolute or relative scale units. For example, if we have an ideal gas in a closed system of constant volume
¥, then when the gas is in state 1, we can write

1V = mRTy (2.6)

* Recall from Chapter 1 that, since 1967, we no longer use the degree prefix on the absolute temperature scales but retain it on the
relative scales. Hence, we write 100 R for a temperature of 100 rankine, not 100°R.

® The Celsius scale was also commonly called the centigrade scale. However, the centigrade—from the Latin for 100 (centi) divisions
(grade)—scale was developed by the Swedish astronomer Anders Celsius in about 1742; and in 1948, the centigrade scale was officially
renamed the Celsius scale.
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WHO DEVELOPED THE IDEAL GAS EQUATION OF STATE?

By 1662, the English chemist Robert Boyle (1627-1691) had conducted experiments establishing that the pressure of a gas
varies inversely with the volume when the temperature is held constant. In the early 1800s, the French physicists Jacques
Charles (1746-1823) and Joseph Gay-Lussac (1778-1850) independently determined that the volume ¥ of a gas increases
linearly with temperature when the pressure is held constant. The Charles/Gay-Lussac relation can be written as

v 1+aT

Vo +a

where T is in °C and ¥ is the volume of the gas at 0°C. The empirical constant « is the coefficient of thermal expansion of
the gas and was found to have the same value for all gases as the pressure approached zero.

o — 1 o—1
=0.003661°C~! = C
@ 273.15

Since a is the same for all gases at low pressure, the Charles/Gay-Lussac equation provides a single calibration point (at ¥))
temperature scale that is independent of the type of gas used, plus it defines the “size” of the degree (a¥) on the scale.

By 1820, the Boyle and Charles/Gay-Lussac results had been combined to produce the “ideal” gas equation of state:

pV- = mR [T(in °C)+ l} = mR[T(in °C) + 273.15]
a
and by then it was generally accepted that T (in °C) +273.15 corresponded to some sort of ideal gas absolute temperature
scale. However, the problem remained that this scale still appeared to depend on the thermometric measuring material (an

ideal gas) and therefore did not constitute a genuine “thermodynamic” absolute temperature scale.

Since the concept of an absolute temperature scale was not firmly established until 1848 by Lord Kelvin, it is remarkable
that the ideal gas equation of state, which depends on the use of an absolute temperature scale, was in use a full 30 years
earlier. However, historically, we find that empirical equations often precede theoretical explanations.

HOW IS GAUGE PRESSURE RELATED TO ABSOLUTE PRESSURE?

Absolute pressure = Gauge pressure + Local atmospheric pressure

HOW DO I KNOW IF A GIVEN SI PRESSURE IS ABSOLUTE OR GAUGE?

When an SI pressure appears in a textbook without such an identifier (e.g., 3.75 MPa), assume that it is an absolute
pressure (i.e., 3.75 MPa-absolute). Gauge pressures should always be identified as “gauge” to avoid confusion.

Temperature level Pressure
. level 2 A
Relative Gauge
Freezing point temperature Atmospheric pressure 2
of water pressure ‘ Absolute
Vacuum 1 pressure 2
Absolute Pressure
temperature level 1 ?
Absolute
pressure 1
Absolute Absolute
—
zero temperature ZETO pressure
(a) Temperature (b) Pressure

FIGURE 2.5
Relative and absolute temperatures and pressures.
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HOW DO I KNOW WHEN I HAVE TO USE ABSOLUTE PRESSURE
OR TEMPERATURE?

If pressure or temperature stands by itself or is raised to some power in an equation, then the values assigned to it must be
in an absolute scale of units.

and when it is changed to state 2, we can write
po¥ = mRT, (2.7)
Now, if we subtract Eq. (2.6) from (2.7), we get
(p2 = p1)¥ = mR(T, = Ty) (2.8)

Absolute pressure and temperature scales must be used in making calculations with Egs. (2.6) and (2.7), but
either absolute or relative scales may be used in Eq. (2.8). Relative scales can be used whenever the additive
term that converts a relative scale to an absolute scale cancels out within the formula, as it does when a simple
difference is taken.

Using relative scale values where absolute scale values should be used clearly leads to enormous calculational
errors. If in doubt, use values in the absolute scale units.

2.8 THE ZEROTH LAW OF THERMODYNAMICS

As previously mentioned, the zeroth law was one of the last thermodynamic laws to be developed. It was
introduced by R. H. Fowler and E. A. Guggenheim in 1939.°

This may seem trivial at first reading, but consider: If man A loves woman C and man B loves woman C, does it
follow that man A loves man B? One of the major values of the zeroth law is that it forms the theoretical basis
for temperature measurement technology. Consider the mercury in glass thermometer shown in Figure 2.6. The
zeroth law tells us that if the glass is at the same temperature as (i.e., is in thermal equilibrium with)
the surrounding fluid, and if the mercury is at the same temperature as the glass, then the mercury is at the
same temperature as the surrounding fluid. Thus, the thermometer can be graduated to show the mercury
temperature, and this temperature is automatically (via the zeroth law) equal to the temperature of its
surroundings.

ZEROTH LAW OF THERMODYNAMICS

Consider three thermodynamic systems, A, B, and C. If system A is in thermal equilibrium with (i.e., is the same tem-
perature as) system C and system B is in thermal equilibrium with system C, then system A is in thermal equilibrium
with system B.

CRITICAL THINKING

The text describes a love triangle that would not necessarily satisfy the zeroth law of thermodynamics. Can you think of
other human characteristics (e.g., hate) that might not satisfy this law? In the zeroth law, thermal equilibrium is the same
as temperature equilibrium, so that if Ty = T¢c and Ty = T, then the zeroth law requires that T, = Tg. Can we create yet
another thermodynamic law based on requiring a different physical property of systems A, B, and C to be in another
(say, mechanical rather than thermal) type of equilibrium? What thermodynamic value would this new “law” have?

¢ Fowler, R. H., Guggenheim, E. A., 1939. Statistical Thermodynamics. Cambridge University Press, Cambridge, MA.



2.9 The Continuum Hypothesis ﬂ

Zeroth law;
Te=Ts
LANANANANANAN] LA AAAAA and
TIy=Tg
Surrounding ~—— Glass, G therefore,
fluid, S Ty=Ts

Mercury, M

FIGURE 2.6
The zeroth law of thermodynamics applied to a mercury in a glass thermometer.

2.9 THE CONTINUUM HYPOTHESIS

While we recognize today the existence of the atomic nature of matter, we have not found an effective way to
apply the basic laws of physics to large aggregates of atomic particles except by a statistical averaging techni-
que. This is because the number of molecules in even a cubic centimeter of gas at standard atmospheric pres-
sure and temperature is so large (about 10?°) that we cannot simultaneously solve all the equations of
motion for each molecule. The statistical averaging process taken over large numbers of molecules produces a
continuum model for matter, and the continuum hypothesis simply states that large systems made up of many
discrete molecules or atoms may be treated as though they were made up of a continuous (i.e., nonmolecular)
material.

The continuum approach to thermodynamics works well so long as the dimensions of the systems being
analyzed are much larger than the dimensions of the molecules themselves and so long as the time interval over
which a process takes place is very much greater than the average time between molecular collisions. The
continuum thermodynamics breaks down when these conditions are violated, such as in the rarefied gas of
outer space. When continuum thermodynamics breaks down, another type of thermodynamics, called statistical
thermodynamics, can be used to solve problems.

The vast majority of engineering problems can be solved with continuum concepts, and they are the main focus
of this text. Two other technical terms are used to express these ideas, microscopic and macroscopic.

When we deal with differential quantities in continuum analysis, such as dx/dt, we do not infer that the differen-
tials shrink down to molecular dimensions and thus invalidate the continuum concept. Also, when we speak of
evaluating thermodynamic properties at a point in a continuum system, we extrapolate the continuum concept
in a mathematical sense only. The resulting mathematical functions and relations developed in macroscopic
system analysis are not valid in, and cannot be accurately applied to, microscopic systems.

MICROSCOPIC SYSTEM ANALYSIS

Microscopic system analysis is the analysis of systems at the atomic level. This is the domain of statistical thermodynamics.

MACROSCOPIC SYSTEM ANALYSIS

Macroscopic system analysis is the analysis of systems at the continuum level (i.e., molecular dimensions and time scales
do not enter into the analysis). This is the domain of classical and nonequilibrium thermodynamics.
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2.10 THE BALANCE CONCEPT

The balance concept is one of the most important and, oddly enough, most underrated concepts in physical science
today. It is basically nothing more than a simple accounting procedure. Consider some quantity X possessed by an
arbitrary system. Then the balance of X over the system during a macroscopic time interval 8t is

The gain in X The amount of X The net amount of X
by the system = ¢ transported into the — < leaving the system
during time &t system during time &t during time &t
(2.9)
The amount of X The amount of X
+ ¢ produced by the system p» — ¢ destroyed by the system
during time 6t during time &t
By using the word net to signify the difference between like terms, Eq. (2.9) can be simplified to
The net gain in The net amount of X The net amount of X
X by the system » = ¢ transported into the + ¢ produced by the system (2.10)
during time &t system during time 6t during time 6t
In symbol form, Eq. (2.10) can be further simplified to
XGain = XTranspon + Xproduction O Xg = X1 +Xp (2‘1 1)

where the subscripts G, T, and P refer to net gain, net transport, and net production, respectively. In equilibrium
systems, Eq. (2.11) is sufficient. But in nonequilibrium systems, X5, X7, and Xp may be functions of time.
In systems in which X, X7, and Xp change continuously in time, Eq. (2.11) can be differentiated with respect to
time to give a rate balance equation of X as

XG =XT +Xp (212)

where X¢ = dX¢/dt, Xr = dXp/dt, and Xp = dXp/dt. Equations (2.11) and (2.12) provide a full and general
account of the behavior of any property X of a system, and they are valid for any coordinate system.

EXAMPLE 2.1

The Rosalyn Computer Chip Manufacturing Company ships 120,000 chips per day to its customers and receives 100,000
chips per day from its suppliers (Figure 2.7). It manufactures 30,000 of its own chips per day, of which 3,000 are rejected as
defective and are destroyed. Determine the change in chip inventory at the end of each day.

30,000 chips/day
manufactured

100,000 chips /7

received/day @
120,000 chips / /
shipped/day 3,000 chips

rejected/day

FIGURE 2.7
Example 2.1.
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Solution
For each day of operation, Eq. (2.11) gives the net gain in chips as

Xe =Xr+Xp
where the net transport of chips into the facility is
X7 = 100,000 chips from suppliers — 120,000 chips to customers = —20,000 chips/day
and the net production of chips is
Xp = 30,000 chips manufactured — 3,000 chips rejected and destroyed = 27,000 chips/day
so the net gain in computer chips at the end of each day is
X¢ =Xr+Xp = —20,000+ 27,000 = 7,000 chips/day

So the chip inventory increases by 7,000 chips per day.

EXAMPLE 2.2

In 1798, the famous social scientist and economist Thomas Robert Malthus (1766-1834) discovered that, if relatively small
groups of animals are left undisturbed (Figure 2.8), their population often grows such that the sum of their net birthrate
and their net immigration rate into the population is directly proportional to the instantaneous value of the population.
This, since known as Malthus’s law of population growth, has been successfully applied to numerous types of populations,
such as humans and bacteria. Write a rate balance equation for this type of population growth rate and determine how the
instantaneous population varies with time.

FIGURE 2.8
Example 2.2.

Solution
Equation (2.12) gives the general rate balance: X¢ = X7 + Xp. Let N be the instantaneous population. Then, from the pro-
blem statement, we have

_dN

Yo=Y
CT

and according to Malthus’s law, the net birth and immigration rates are
XT +Xp =aN
where o is a constant of proportionality. Then, the complete Malthus population rate balance equation becomes

AN _

AR
a ¢

(Continued )
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EXAMPLE 2.2 (Continued )

Since this is a simple first-order ordinary differential equation, we can separate the variables to obtain

dWN = adt

Then defining Ny as the population at time t= 0, this equation can be integrated as
N t=t
dN
—= dt
/ N / “
No i=0

to give

And inverting the logarithm gives

or
N= Nge‘”.

Thus the population increases or decreases exponentially depending on the sign of a.

Exercises

1. Develop a balance equation for the number of hamburgers in your room. Answer: Net hamburgers in the room = Net
hamburgers brought into the room + Net hamburgers made inside the room.

2. The growth rate discussed in Example 2.2 is often called a geometric growth rate. Malthus argued that the food supply of
a population often grew only at a constant, or arithmetic, rate, dF/dt = f, where F is the size of the food supply at time ¢
and f is a constant. Write a rate balance equation for the food supply F using this growth rate and solve it for F as a
function of time t. Answer:

(d—F> =F(;=ﬂ=FT+Fp
dt Jsystem
and solving for F gives F = it + Fy, where F, is the size of the food supply at time ¢t =0.
3. In Example 2.2, the constant « is called the growth rate when it is greater than zero. Determine a general expression for
the time ¢ required for a population to double. Answer: tp = [In(2)]/a.

2.11 THE CONSERVATION CONCEPT

In classical physics, a quantity is said to be conserved if it can be neither created nor destroyed. The basic laws of
physics would not produce unique balance equations if it were not for this concept. Whereas a balance equation
can be written for any conceivable quantity, conserved quantities can be discovered only by human research and
observation. The outstanding characteristic of conserved quantities is that their net production is always zero,
and therefore their balance equations reduce to these simpler forms:

. XGain = X 2.13
When X is conserved, Xp;oduction = Xproduction = 0, and { Jcain Transport ( )

XGain = XTranspon (2~14)
This may not seem like much of a reduction at first, but it is a very significant simplification of the general
balance equations. It means that we need not worry about property production or destruction mechanisms and
how to calculate their effects. Equations (2.13) and (2.14) turn out to be very effective working equations for
engineering design and analysis purposes.

Thus far, scientists have empirically discovered four major entities that are conserved: mass (in nonnuclear
reactions), momentum (both linear and angular), energy (total), and electrical charge. These yield the four basic
laws of physics: the conservation of mass, the conservation of momentum, the conservation of energy, and the
conservation of charge. The conservation of energy is also called the first law of thermodynamics.

If we let E be the total energy of a system, then its conservation is written as

EProduclion =Ep=0 (2.15)
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or

Ep=0 (2.16)
and its resulting balance (or conservation law) equation is

Ec = Er (2.17)
or

Ec=Eq (2.18)

Equations (2.15) through (2.18) are elementary forms of the first law of thermodynamics. They are elementary
because, to be useful for calculation purposes, the terms Ey and Er, representing the system’s energy transport, must
be expanded into a sum of terms that accounts for all the energy transport mechanisms. This is taken up in detail in
Chapter 4.

EXAMPLE 2.3

Develop an accurate verbal descriptive form of the energy balance equation that incorporates the conservation of energy
principle for a system consisting of a cannon firing a projectile (Figure 2.9).

System boundar
y y \//

FIGURE 2.9
Example 2.3.

Solution
The complete literal descriptive energy balance equation is obtained from Eq. (2.10) as

Net energy of rojectil Net pr ion of .

et energy of the projectile etp o'du.ct ono N e o
and gases transported +< energy inside the =
) energy of the system
into the system system

Since energy is a conserved quantity, the net production of energy inside the cannon must be zero. Now, the net transport of
any quantity into a system is just the difference between the input and the output of that quantity; and since there is no
transport of energy into this system, then the net transport of energy is just the negative of the energy output. So the result-
ing literal descriptive form of the combined conservation of energy equation and energy balance equation for this system is

Net energy of the projectile Energy of the projectile N e e
and gases transported = —< and gases transported [
into the system out of the system &y Y

Exercises
4. Develop a conservation of momentum balance for a cannon firing a projectile. Answer: The conservation of momentum
balance equation is

Net momentum of the projectile Momentum of the projectile Net change in
and gases transported into the = —¢ and gases transported out of » = { the momentum of
system the system the system

(Continued )
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EXAMPLE 2.3 (Continued )

5. Develop a balance equation for the conservation of electric charge in a system. Answer: The conservation of charge
balance equation is

_ | Netchange in electric

- { chargein (or on) the system }

Net electric charge
transported into the system

From the resulting conservation of energy and momentum balance equations developed in Example 2.3 and
its Exercise 1, we can investigate the technology of the ballistic pendulum shown in Figure 2.10. The ballistic
pendulum was developed in 1740 by the English mathematician and engineer Benjamin Robins (1707-1751)
and operates on the principle that the deflection of the pendulum after impact is directly proportional to
the projectile’s impact velocity. Since the projectile is imbedded in the pendulum after impact, we choose to
view this as a closed system consisting of the projectile and the pendulum. Since the system is closed, there
can be no mass transport across the system’s boundaries; and because momentum transport requires the mass
to cross the system boundary, there is also no momentum transport in this system. Then, the conservation
of momentum equation for a closed system reduces to {Net change in momentum of the system} = 0. There-
fore, the initial momentum of the projectile/pendulum system must equal to the final momentum of this
system, or

[mpmjectilevprojectile}inma] = [(mprojeclile + mpendulum)vpendulum} final
After impact, the pendulum/projectile system swings through an angle 0, raising the center of gravity by

an amount h=R(1 - cos 0). Since the initial kinetic energy and the final potential energy of the
pendulum/projectile system must be equal, we can write

2

Vpendulum gh

(mprojeclile + mpendulum) T = (mprojeclile + Mpendulum ) E
c

or
vpendulum = [Zgh]l/z = [2gR(1 — Cos 9)11/2

Then, by combining these equations, we can determine the impact velocity of the projectile as

Mprojectile + Mpendul Mpendul
Vprojectile = ( PO e um> Vpendulum = (1 + M) [2gR(1 — Cos e)}l/z (2-19)
Mprojectile Mprojectile
\ \
\ \
\R \
<07\ \
\ \

Projectile of mass mypojeciile I —— ***L*]

—— 1> }
I —— ]

Pendulum of mass mj,equium

FIGURE 2.10

The operation of a ballistic pendulum.
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Therefore, by knowing the masses of the pendulum and the projectile and measuring R and 6, we can easily calculate
the impact velocity of the projectile. If the projectile is fired point blank into the pendulum, then the impact velocity
is essentially the muzzle velocity of the projectile. These concepts are illustrated in Example 2.4.

WHAT HAPPENS ON IMPACT?

You might wonder why we do not set the initial kinetic energy of the projectile equal to the final potential energy of the
pendulum/projectile system. Even though energy is conserved during the impact, this is not a perfectly elastic impact and
other forms of energy are involved in addition to kinetic and potential. Some of the projectile’s initial kinetic energy is con-
verted into heat through the friction and deformation that occur during the impact. Figure 2.11 illustrates what happens
when a .45 caliber bullet is fired into a 1 inch thick laminated Lexan plastic block. All the kinetic energy of the bullet has
been absorbed by the plastic.

FIGURE 2.11
Bullet in a Lexan block.

EXAMPLE 2.4

Determine the muzzle velocity of a weapon fired point blank into a ballistic pendulum causing the pendulum to deflect 15°.
The mass of the pendulum is 5.0 kg, the mass of the projectile is 0.01 kg, and the length of the pendulum support cable
is 1.5 m (Figure 2.12).

L=1.5m
‘ M=5.0kg

m=0.01kg

FIGURE 2.12
Example 2.4.
(Continued )
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EXAMPLE 2.4 (Continued )

Solution
From Eq. (2.19), we compute the muzzle velocity as

5.0kg
0.01kg

Mpendulum

Viprojectile = <1 + )[2gR(1 — cos 0)]'* = <1 + >[2(9.81m/s2)(1.5 m)(1 - cos 15°)]"/

Mprojectile
=5.0%x10%>m/s

Exercises

6. To bring down large game requires at least 2500. ft-Ibf of impact energy (the impact energy of a high-speed projectile is
its kinetic energy on impact). Determine the necessary impact velocity for the following projectiles (recall that there are
7000 grains in 1 lbm): (a) a 200. grain bullet, (b) 300. grain bullet, and (c) a 500. grain bullet. Answers: (a) 2370 ft/s,
(b) 1940. ft/s, (c) 1500 ft/s.

7. Determine the displacement angle produced when a 0.3125 lbm baseball traveling at 90.0 miles per hour is “caught” by
a ballistic pendulum having a 3.00 ft support cable and a mass of 180. Ibm. Answer: 1.33°.

2.12 CONSERVATION OF MASS

An important application of the balance equation is to one of the basic conserved physical quantities, mass.
Since mass is conserved in all nonnuclear reactions, its net production in any system is zero. Therefore,
Eq. (2.10) tells us that the mass balance equation has the form

{ Net gain in mass by the } _ { Net mass transported into }

system during time dt the system during time dt (2.20)

This statement can be cast in mathematical form via Eq. (2.11) as mg=my (since mp=0), and Eq. (2.12)
provides the rate form of this balance equation as nig =iy (since rip=0). In more precise mathematical
language, the mass balance (MB) measured over some time interval 6t can be written as

Mass balance (MB) over time 6t = (6m) e = Zmin - Zmom (2.21)
and the mass rate balance (MRB) becomes

Mass rate balance (MRB) = (ii—rf) = Zmin - zmout (2.22)
system

One of the most common uses of the conservation of mass balance equation is in chemistry. Chemical reaction
equations are simply mass balances. Though reaction equations are not usually written as equalities, the left-hand
side is the total mass of reactants used and the right-hand side is the total mass of products produced by the reac-
tion. Since mass is conserved in chemical reactions, these two masses must be equal. For example, the reaction
indicated by the equation A + B=C + D means that the mass of A plus the mass of B is the same as the mass of C
plus the mass of D. These equations are valid either for individual molecules or groups of molecules that bear the
same reaction relation as the individual molecules. These molecular groups, called moles, form the macroscopic
basis for chemistry and chemical engineering. This concept is illustrated in the following example.

EXAMPLE 2.5

The total mass of a system is conserved in a chemical reaction, but the mass of any particular chemical species is not neces-
sarily conserved. Show that the following chemical reaction is just a closed system mass balance for the chemical species
involved:

n,A+npB — n.C+nyD
where A, B, C, and D are the chemical species, and n,, ny, n, and n, are their molar amounts.
Solution

When a chemical reaction occurs in a closed system, the mass transport term vanishes and then a mass balance for a chemical
species X becomes “the mass of X gained in the reaction must equal the mass of X produced by the reaction and this must equal the



change in the mass of X due to the reaction”: mgx = mpy = dmy. Then, for a chemical reaction in a closed system, the mass
balance for each of the chemical species present can be written as

MGa = Mpy = SMy
mgp = Mpp = 6Mmp
mee = Mpc = bimc

mep = Mpp = 6Mmp
If we add these equations together, we get

omy + dmp + Sme + dmp = Mmpa + mpg + mMpc + Mpp

Now, since total mass must be conserved, it follows that

Zmp = Mpa + mpg +mpc +mpp = 0
then the previous equation can be written as
omy +émpg = —émc — dmp

If we now convert this equation into a molar equation by dividing each mass term by its corresponding species molecular
mass, then this equation becomes the stoichiometric chemical reaction equation n,A + n,B — n.C + n;D, where

_ omy __6mC
ﬂ_MA7 (i MC
_ omg omp

ny = ;o ng= —
v= M d Mp
and M,, Mg, Mc, and Mp are the molecular masses of chemical species A, B, C, and D. Consequently, all stoichiometric

chemical reaction equations are just molar mass balances that utilize the conservation of mass law.

SUMMARY’

In this chapter, we provide the definitions of many of the concepts necessary in the development of thermodynamics.
First, we review the phases of matter and define thermodynamic equilibrium. Then we see that one of the fundamental
elements underlying modern technology is the thermodynamic processes that systems undergo. Next we reexamine and
expand the pressure and temperature scales information given in Chapter 1. The zeroth law of thermodynamics is found
to provide an axiomatic way to develop temperature measurement technology, and the continuum hypothesis is found
to be a useful and valid analysis tool so long as the system’s dimensions are very large compared to those of the
molecules it contains. The balance and conservation concepts round out the chapter with an important discussion of
the form of all the equations used to represent the basic thermodynamic laws in this book.

Some of the more important equations introduced in this chapter are as follows.

1. The equations for the conversion of temperature units, Eqs. (2.1)-(2.4):

T(°F) = %T(°C) +32 = T(R) —459.67
T(°C) = g[T("F) —32] = T(K) - 273.15
T(R) = %T(K) = 1.8T(K) = T(°F) +459.67
T(K) = gT(R) = % =T(°C) +273.15

2. The equation for absolute to gauge pressure conversion:
Absolute pressure = Gauge pressure + Local atmospheric pressure
3. The general balance equations, (2.11) and (2.12), are
Xe=Xr+Xpand X¢c =Xr+Xp

” Well, what do you think of this course so far? Isn’t this a fascinating subject? I know, I know, it is a little vague right now, but it gets better.
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4. The ballistic equation, (2.19), is

v

projectile = <

Mprojectile + Mpendul Mpendul
projectile pendu um) Vpendulum — <1 + pendu um) [2gR(1 — cos e)}l/z

Mprojectile Mprojectile

5. The conservation mass, or mass balance (MB), Eq. (2.21), is

Mass balance(MB) over time 6t = ((Sm)systern = Zmin - Zmom

and the mass rate balance (MRB), Eq. (2.22), is

Mass rate balance(MRB) = (‘Z—T) = me - Zmom
system

Important technical terms introduced in this chapter are given in Table 2.2.

Table 2.2 Glossary of Technical Terms Introduced in Chapter 2

thermodynamics

thermodynamic system
system boundary
isolated system

closed system

open system

physical phase

pure substance
homogeneous system
simple substance
thermodynamic state

thermodynamic property

thermodynamic equation of state
intensive property

extensive property

mechanical equilibrium

thermal equilibrium

phase equilibrium
chemical equilibrium
thermodynamic equilibrium

nonequilibrium thermodynamics
thermodynamic processes

thermodynamic cycle

standard atmospheric pressure
absolute pressure

gauge pressure

absolute zero temperature
zeroth law of thermodynamics

the continuum hypothesis

microscopic system analysis
statistical thermodynamics
macroscopic system analysis
the balance equation

the conservation concept

The science and technology that deal with the laws that govern the transformation of energy
from one form to another

A volume containing the item chosen for thermodynamic analysis
The surface of a thermodynamic system
Any system in which neither mass nor energy crosses the system boundary

Any system in which mass does not cross the system boundary, but energy may cross the
system boundary

Any system in which both mass and energy may cross the system boundary

A molecular configuration of matter, categorized as either solid, liquid, or vapor (or gas)
A substance containing a uniform chemical composition in all its physical states

A system containing only a single physical phase of a substance

A homogeneous pure substance

The condition of a thermodynamic system as specified by the values of its independent
thermodynamic properties

Any characteristic of a thermodynamic system that depends on the system’s thermodynamic
state and is independent of how that state is achieved

A formula relating the dependent and independent properties of a system
Any property of a homogeneous system that is independent of the system mass
Any property of a homogeneous system that depends on the mass of the system

A situation where all the mechanical forces within a system are balanced so that there is no
acceleration of the system

A situation where there are no variations in temperature throughout the system
A situation where no phase transformations occur within the system
A situation where no chemical reactions occur within the system

A situation where a system does not have the capacity to spontaneously change its state after
it has been isolated

The study of systems that are not in thermodynamic equilibrium

The path of thermodynamic states that a system passes through as it goes from an initial state
to a final state

A situation where the final thermodynamic state of a process is identical with the initial
thermodynamic state of the process

14.696 psia, 29.92 inches of mercury, 101.325 kPa absolute
Gauge pressure plus the local atmospheric pressure
Absolute pressure minus the local atmospheric pressure
—273.15°C or —459.67°F

If system A is in thermal equilibrium with (i.e., is the same temperature as) system C, and
system B is in thermal equilibrium with system C, then system A is in thermal equilibrium with
system B

Large systems made up of many discrete molecules or atoms may be treated as though they
were made up of a continuous material

The analysis of a system at the atomic level.

The study of atomic level (i.e., microscopic) systems

The analysis of a system at the continuum level

An equation that accounts for all the changes in some quantity within a system
If a quantity is neither produced nor destroyed, then it is said to be conserved




Problems (* indicates problems in SI units)

1.

3.*

10.*

Define the following terms: (a) thermostatics, (b) open system,
(c) extensive property, (d) equilibrium, and (e) zeroth law.
Define the following terms: (a) thermodynamics, (b) closed
system, (c) intensive property, (d) macroscopic analysis, and (e)
isolated system.

A mixture of 1.0 kg of oxygen and 2.0 kg of hydrogen at
atmospheric temperature and pressure are placed in a closed
container. Explain (a) whether or not this mixture is a pure
substance, and (b) whether or not it is a homogenous substance.
Dry ice (solid CO;) and CO, vapor are in a sealed rigid
container. Does the CO, in this system constitute (a) a pure
substance, (b) a homogenous substance, (c) a simple substance?
Which of the following are extensive properties?

(a) Temperature, (b) volume, (c) density, (d) work, (e) mass.
Are the following extensive or intensive properties? (a) Total
energy, (b) temperature, (c) pressure, (d) mass.

Identify whether the following properties are intensive or
extensive: (a) Specific energy, (b) total energy, (c) temperature,
(d) molar mass.

Explain how color could be a thermodynamic property and
indicate whether it would be an intensive or extensive property.
Let us say we have 2.00 ft® of a liquid/vapor mixture of motor
oil at 70.0°F and 14.7 psia that weighs 97.28. Ibf where

g = 32.0 ft/s>. List the values of three intensive and two
extensive properties of the oil.

There once was a man who had 1.00 m? of air at 20.0°EC and
0.100 MPa with a specific volume of 0.840 m>/kg. List the
values of three intensive and two extensive properties of his air
(Figure 2.13).

Intensive properties

Extensive properties
1.

2.

FIGURE 2.13
Problem 10.

11.

12.

13.

A woman once collected 2000. Ibm of seawater at 50.0°F and
14.7 psia that occupied a volume of 56.0 ft. List the values of
three intensive and two extensive properties of her seawater.
How many independent property values are required to fix the
state of a pure substance subject to only one work mode?
Determine whether the following statements are true or false:
a. The mass of a closed system is constant and its boundaries
are not movable.
b. An open system is defined as a system that can exchange
only heat and work with its surroundings.

16.

17.

18.*

19.

20.

21.*

22.

23.*

24.

Problems m

c. An isolated system is completely uninfluenced by the
surroundings.

d. A thermodynamic property is a quantity that depends on the
state of the system and is independent of the process path by
which the system arrived at the given state.

e. When a system in a given state goes through a number of
processes and its final temperature is the same as the initial
temperature, the system has undergone a thermodynamic
cycle.

Identify the proper type of system (isolated, closed, or open) to

be used in the analysis of each of the following and explain the

reasons for your choice: (a) the Universe, (b) a kitchen
refrigerator, (c) an electrical generator, (d) a hydraulic pump,

(e) a living human being.

Determine the proper type of system (isolated, closed, or open)

to be used in analyzing each of the following items and explain

the reasons for your choice: (a) a bicycle, (b) a personal
computer, (c) a stereo system, and (d) a lawn water sprinkler.

Establish the correct type of system (isolated, closed, or open)

to be used in analyzing each of the following items and

explain the reasons for your choice: (a) the solar system,

(b) a carbonated drink dispensing machine, (c) an insulated

box of fruit buried deep in the ground, and (d) a lightbulb.

Which of the basic types of systems (isolated, closed, or open)

should be used to analyze each of the following items

and explain the reasons for your choice: (a) a flying insect,

(b) a black hole, (c) Niagara Falls, and (d) the great soaring

whipple bird of Mars.

As chief engineer for Thermodynamic Analysts Inc., your job is

to determine the proper type of system (isolated, closed, or

open) to be used in analyzing each of the following items
submitted to your company and to explain the reasons for your
choice: (a) a water pistol, (b) a flashlight battery, (c) a rubber
boot, and (d) 2 kg chocolate fudge candy in a thermally
insulated box buried deep in the Andes mountains.

An alien spacecraft has abducted you from a NASA space station

and demands to know the type of system (isolated, closed, or

open) NASA uses to analyze each of the following items, plus an
explanation of the reasons for the choice: (a) the space station
itself, (b) your pocket computer, (c) a can of tuna fish, and

(d) an old Madonna movie.

An automobile internal combustion engine by itself is an open

system because it draws in air and exhausts combustion

products. How could one construct system boundaries around

an operating internal combustion engine to cause it to become a

closed system?

Determine the specific volume of liquid water at 20.0°C that has

a density of 998.0 kg/m”.

Determine the mass of ammonia having a specific volume of

35.07 ft’/lbm in a container measuring exactly 3 ft by exactly

2 ft by exactly 1 ft.

Determine the volume of liquid mercury with a density of

3.87 kg/m’ having a mass of 2.00 kg.

A system consists of a mixture of 2.00 ft® of a liquid having a

density of 50.0 Ibm/ft® and 4.00 Ibm of a second liquid having

a specific volume of 0.0400 ft*/Ibm. The specific volume of

the mixture in the system in ft’/lbm is (a) 0.208, (b) 2.08,

() 0.022, (d) 2.048, or (e) none of these.
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

The equilibrium state of carbon at atmospheric pressure and
temperature is graphite. If diamond is the equilibrium form of
carbon only at very high pressures and temperatures, then why
does diamond exist at atmospheric pressure and temperature?
Water in equilibrium at 70.0°F and 14.7 psia is in the liquid
phase. If solid ice is in an equilibrium phase only at 32.0°F or
lower at atmospheric pressure, why does solid ice still exist
when you take it from the freezer and put it on the table at
room temperature?
Sketch the following process paths on p—v coordinates starting
from state (py, v1).
a. A constant pressure (isobaric) expansion from (p;, v;) to
(2, v2), where v, = 2v;.
b. A constant volume (isochoric) compression from (p,, v,) to
(P, v3), where p3 = 2p,.

c. A process described by p = p; + k(v—v,), where k is a constant,

from (ps3, v3) back to (p1, v1) again.
Sketch the following thermodynamic cycle on p — ¥ coordinates
for a substance obeying the ideal gas equation of state, p¥* = mRT.
a. An isothermal compression (i.e., decreasing volume) from

(pl,Vl> to (pz,vz)

b. An isobaric (i.e., constant pressure) expansion (i.e.,

)
(%)

d. An isochoric (i.e., constant volume) depressurization from

<p4,V4> to <p5,V5>.

e. An isobaric compression from (p5,¥5) back to (pl,V])‘

increasing volume) from <p2,¥2) to

c. An isothermal expansion from (p3,V3> to

A new thermodynamic cycle for an ideal gas is described by the
following processes:
(%),

(%)
(9)
()

. An isochoric decompression from <p5,V5> back to (pl,Vl).

. An isothermal compression from <p1,V1> to

. An isochoric compression from (pz,V2> to

a
b
c. An isobaric expansion from (pg,V3> to
d. An isothermal expansion from <p4,’v‘4) to
e

Sketch this cycle on pressure-volume coordinates.

Convert (a) 20.0°C into R, (b) 1.00°C into °F, (c) 56.0°F

into °C, (d) 253°C into K, and (e) 1892°F into R.

Convert (a) 32.0°F into °C, (b) 500. R into °F, (c) 373 K

into °C, (d) 20.0°C into R, and (e) -155°F into K.

Convert (a) 12.0°C into °F, (b) 6500. K into °C, (c) 1500. R
into °F, (d) 120.°F into K, and (e) -135°C into K.

Convert (a) 8900. R into K, (b) -50.0°C into °F, (c) 3.00 K into
°C, (d) 220.°C into R, and (e) 1.00 x 10°°F into °C.

Convert the following temperatures into kelvin:(a) 70.0°F,

(b) 70.0°C, (c) 70.0 R, and (d) 70.0° Reaumur. The Reaumur
temperature scale was developed in 1730 by the French scientist
René Antoine Ferchault de Réaumur (1683-1757). The freezing
and boiling points of water at atmospheric pressure are defined
to be 0° and 80.0° Reaumur, respectively.

Many historians believe that Gabriel Daniel Fahrenheit (1686—
1736) had established his well-known temperature scale by
1724. It was based on three easily measured fixed points: the
freezing temperature of a mixture of water and ammonium
chloride (0.00°F), the freezing point of pure water (32.0°F), and
the temperature of the human body (96.0°F). Later this scale
was changed to read 212°F at the boiling point of pure water,

*

36.

37.

38.

40.

41.*

42.

43.

which moved the body temperature from 96.0 to 98.6°F. Using

the original Fahrenheit scale (freezing point of water = 32.0°F

and body temperature = 96.0°F), determine

a. The temperature of the boiling point of pure water.

b. The conversion formula between the original Fahrenheit and
the modem Celsius temperature scales.

Convert the following pressures into the proper SI units:

14.7 psia.

5.00 atmospheres absolute.

1.00 x 10° dynes/cm? absolute.

30.0 Ibf/ft* gauge.

12.4 poundals/ft* absolute.

Convert the following pressures into psia:

1000. N/m? gauge.

3.00 MPa-absolute.

11.0 Pa-gauge.

20.3 kN/m? absolute.

556 GPa-absolute.

Wlll the continuum hypothesis hold for the following

thermodynamic states (and why)?

a. Air at 20.0°C and atmospheric pressure.

b. Liquid water at 70.0°F and 14.7 psia.

c. Steam at 1.00 psia and 100.°F.

d

e

o papp

opape

. Steam at 1.00 MPa absolute and 100.C.

. Air at 1.00 uN/m? absolute and 10.0 K.
Convert the following pressures into MPa-absolute:
100. psig.
2,000. kPa-absolute.
14.7 psia.
1.00 Pa gauge.
500. N/m? absolute.
Convert the following pressures into Ibf/ft> absolute:
14.7 psia.
100. Ibf/ft* gauge.
0.200 MPa-absolute.
1200. kPa-gauge.
1500. psig.
Convert the following pressures into N/m? absolute:
0.100 MPa-absolute.
14.7 psia.
25.0 psig.
100. Pa-absolute.
100. Pa-gauge.
In the late 18th century, it was commonly believed that heat
was some kind of colorless, odorless, weightless fluid. Today we
know that heat is not a fluid (it is primarily an energy transport
due to a temperature difference), but we still have many old
phrases and terms in our everyday and technical language that
imply that heat is a fluid (e.g., heat “pours” out of a hot stove
or heat always “flows” down a temperature gradient and so on).
Discuss whether or not heat can be generated or absorbed, and
using the balance concept, discuss whether or not it is a
conserved quantity.
In Example 2.2, the Malthus population law was evaluated and
found to produce an exponential growth or decay in the size of
the population. A more sophisticated population model includes
the effects of birth and death rates that vary linearly with the
instantaneous size of the population as

cpagpoORADS

LI

Birthrate = a; — /)N



44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

*

and

Deathrate = ay + f§,N

Ignoring the effects of immigration into the population,
determine the rate balance equation for this population and
show that it can be solved to produce the following population
function:

alp

N=—"—
(14e)
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where a = a; — a; and f§ = fi; + f,. Note that this model predicts a
limiting population size of a/f as t — .

Is the amount of gold reserves held by a nation a conserved
quantity? Explain what happens if more currency is put into
circulation while the currency base (e.g., gold reserves) is held
constant.

Use the balance concept to explain the changes in the wealth of
a nation. In particular, describe methods by which a nation can
add or lose wealth by transport across its boundaries, and show
how it can produce or destroy wealth within its boundaries.
Are the natural resources of a nation conserved in a
thermodynamic sense? If not, explain what would have to be
done to cause them to be conserved. Give a specific example
where this is currently being done.

Using Eq. (2.9), write a balance equation for the total potential
energy of a system during a time interval 8t. Is this potential
energy conserved? How can potential energy be produced or
destroyed within a system?

From Eq. (2.9), develop a balance equation for the gain in
kinetic energy of a system during a time interval 8¢. Is kinetic
energy a conserved quantity? How can kinetic energy be
produced or destroyed within a system?

Create a balance equation for the change in the number

of chairs in a classroom during a time interval 8¢ using

Eq. (2.9). Are classroom chairs a conserved quantity? Describe
how classroom chairs can be transported into and out of the
classroom and produced or destroyed within the classroom.
Using Eq. (2.9), prepare a balance equation for the gain in the
number of dollar bills in your pocket during a week. Are these
dollar bills a conserved quantity? How can dollar bills be
transported, created, or destroyed in your pocket?

Equation (2.10) provides a net balance equation for any quantity.
Use this equation to construct a net balance equation for the
change in the number of automobiles contained within the city
limits of Detroit, Michigan, during a time interval of 1 year. What
are some possible mechanisms for transport, production, and
destruction of automobiles?

Reproduction and death are production and destruction
mechanisms for humans. Using Eq. (2.10), develop a net
balance equation to predict the net gain in people in any given
family group over a time interval of 10 years.

Take a typical library as your system. Using Eq. (2.10), develop
a net balance equation for the net gain in books in the library
over the period of 6 months. Specify explicit transport,
production, and destruction mechanisms for the books.
Determine the muzzle velocity of a 10.0 g bullet that impacts a
5.00 kg ballistic pendulum 0.200 m below the fulcrum of the
pendulum and produces a 25.0° deflection.

b5.*

56.

59.

60.

Problems ﬂ

You are designing a ballistic pendulum for a baseball throwing
contest. The baseballs have a mass of 0.142 kg and the
pendulum is a 10.0 kg horizontal hollow cylinder closed on the
far end and suspended from the ceiling. Determine the length of
the suspension cords if the deflection of the cylinder is not to
exceed 20.0° when the baseball impact velocity is 40.0 m/s
(89.5 mph).

The muzzle velocity of a Daisy Red Ryder BB gun is 260 ft/s and
the mass of a BB is 7.5 x 10 Ibm. Determine the angle of
deflection of a 0.50 Ibm ballistic pendulum suspended 2.0 ft
from its support when impacted by the BB.

In 1945, the United States Army developed the largest artillery
weapon ever constructed. Called the Little David (Figure 2.14),
it has a bore of 900. mm and fires a 2.00 ton shell with a
muzzle velocity of 200. ft/s that produces a crater 38.0 ft wide
and 20.0 ft deep. As chief engineer of Army Ordnance, you are
to design a ballistic pendulum for this gun. If the distance from
the fulcrum of the pendulum to the point of impact is 10.0 ft,
how much mass would the pendulum have to contain if
deflection of its suspension cord is not to exceed 20.0°?

ABERDEEMN

FIGURE 2.14
Problem 57.

58.* The Sandia National Laboratory hypervelocity two-stage light gas

gun produces muzzle velocities of 12 km/s with 5.0 g
projectiles. A ballistic pendulum is to be designed for this gun.
It is to be suspended on cords 1.0 m long to produce a 15°
deflection when impacted by the gun’s projectile. Determine the
mass required for the pendulum.

Since mass is a conserved quantity, use Eq. (2.21) to develop a
conservation of mass balance equation over a time interval of

1 year for a system consisting of the entire Earth (do not forget
to draw a sketch of your system).

A person is trying to fill a 10.0 gallon bucket by hand with a
dipper (Figure 2.15). One dipper of water is added each second,
and the dipper holds 1.0 Ibm of water. Unfortunately, the bucket
has a hole in it and water leaks out at a rate of 0.50 lbm/s. How
long does it take for the person to fill the bucket? (Note: Water
weighs 8.3 1bf/gal at standard gravity.)
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FIGURE 2.15
Problem 60.

61.* Say you consume about 1.5 kg of solid food and about 1.0 kg
of liquid beverage per day. If you do not produce any waste
material during this time, draw a sketch of this system (you)
and use Eq. (2.21) to determine the increase in your mass at the
end of the day.

62.* The combustion chamber on a jet engine has air entering at a
rate of 2.0 kg/s while the fuel enters through a fuel injector at a
rate of 0.07 kg/s. Draw a sketch of this system and use Eq.
(2.22) to determine the mass flow rate of exhaust gases from
the engine.

63.* As your automobile travels down the highway, it consumes fuel

at a rate of 2.0 x 10~ kg/s and it consumes 20. kg of air for

every kg of fuel burned. Draw a sketch of this system and use

Eq. (2.22) to determine the mass flow rate of exhaust gases out

the tail pipe of your automobile.

A rigid tank is being filled with high-pressure oxygen gas at a

rate of 1.3 Ibm/h from an external source. Taking the tank as

your system, draw a sketch of the system being filled and use

Eq. (2.22) to determine the rate of gain in mass of the tank.

65.* A chemical reaction vessel has chemical A entering at a rate of
0.51 kg/m through a 0.020 m diameter pipe, chemical B
entering at a rate of 0.75 kg/m through a 0.050 m diameter
pipe, and chemical C entering at a rate of 0.011 kg/m through a
0.015 m diameter pipe. The reaction products are drawn off
through two pipes at the bottom of the vessel at a rate of
0.35 kg/m in a small 0.015 m diameter pipe and 0.67 kg/m
in a large 0.085 m diameter pipe. Determine the net rate of

*

64.

accumulation of chemicals in the vessel.

66. A new water spray nozzle head has 15 holes. If the mass flow
rate of water into the nozzle head is 0.13 lbm/s, determine the
mass flow rate of water through each hole.

67. A creative young engineer designed a hydraulic reaction multiplexer
that contains a constant mass. The unit has five inlet pipes,
numbered Inlet 1 through Inlet 5, and eight outlet pipes, numbered
Outlet 1 through Outlet 8. Each inlet pipe has twice the mass flow
rate of the previous numbered pipe (i.e., Inlet 2 has twice the mass
flow rate of Inlet 1 and so forth), and each outlet pipe has half the
mass flow rate of the previous numbered pipe (Figure 2.16). If the
mass flow rate in Inlet 1 is 10. Ibm/s, determine the mass flow rates
in all the remaining inlet and outlet pipes.

Inlets 1-5 Outlets 1-8
—
Each inlet —] — Each outlet
has twice —>————] — has half the
the mass Hydraulic mass flow
—
— .
flow rate of reaction [ rate of the
the previous ] multiplexer — previous
inlet. > outlet.
—— ] ——
-

FIGURE 2.16
Problem 67.

68.* 2.0 kg of hydrogen (H;) reacts with 16 kg of oxygen (O,) to
yield water (H,O). Determine the chemical equation for this
reaction on a kgmole basis, and find the amount of water
formed in kg.

69. 12 lbm of carbon (C) reacts with 24 Ibm of oxygen (O,) to
form 22 lIbm of carbon dioxide (CO,) plus an unknown
amount of carbon monoxide (CO). Determine the amount of
carbon monoxide formed in lbm, and find the chemical
equation for this reaction on a lbmole basis.

Writing to Learn Problems

The following questions are designed to assist in the learning process
through the development of writing skills. For these problems, you
should develop a written answer containing an opening thesis sen-
tence followed by the presentation of several supporting statements,
ending with a concluding section that supports the thesis. Equations
should be used only to supplement your written statements. Limit
your response to about two double-spaced pages per question. You
will need to find additional material in your library to complete
these assignments.

70. Write a set of instructions to an engineering student friend defining
a thermodynamic state and describing how to determine it from
its thermodynamic properties. Illustrate your instructions with
specific examples dealing with water.

71. Provide a detailed written explanation of a thermodynamic
cycle. Give three specific examples of thermodynamic cycles.
Chapter 9 contains numerous practical thermodynamic cycles
from which you may choose.

72. Write a letter to a nontechnical friend in which you explain the
zeroth law of thermodynamics. Define the law and create three
nontechnical examples where it applies.

73. Write a short science fiction story based on the continuum
hypothesis. First, describe the hypothesis as it is currently
understood, then create an imaginary scenario where it does not
work. Describe the consequences your new theory may have on
world order.

74. Write a short science fiction story based on the balance concept.
First, describe the concept as it is currently understood, then
create an imaginary scenario in which a new, as yet undiscovered,
term must be added to create a true balance. Describe the
consequences your new theory has on physics today.

75. Write a 500 word article for your high school newspaper on the
conservation of mass law. Is this a truly valid law or are there
cases in which mass is not conserved? If it is not a truly valid
law of physics, then why do we treat mass as conserved in most
engineering applications?
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3.1 THE TREES AND THE FOREST

Thermodynamics is like a forest. The tall trees in the center of the forest are the laws of thermodynamics. They
are surrounded by a thick underbrush of thorny bushes. These bushes are the thermodynamic properties. Some
are known by their common names, such as pressure, temperature, and volume. Others have Latin and Greek
names, like energy, enthalpy, entropy, and exergy. Before you can climb the tall trees of the thermodynamic laws to
look out over your energetic future, you must find your way through the thermodynamic underbrush that sur-
rounds them.

From the edge of the forest are barely visible paths that lead inward, but they intersect with other paths marked
with obscure signs like “This Way to Adiabatic Heat Engines” and “This Way to the Isotropic Pumps.” To survive
in this wilderness, you need to understand the symbiotic relationships between the bushes and the trees—that
is, the properties and the laws—and how to use them to solve engineering problems that enhance humankind.
This chapter gives you the tools to clear the paths toward the thermodynamic laws of the next chapter.

Modern Engineering Thermodynamics. DOI: 10.1016/B978-0-12-374996-3.00003-8
© 2011 Elsevier Inc. All rights reserved.
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3.2 WHY ARE THERMODYNAMIC PROPERTY VALUES IMPORTANT?

Since all of the basic laws of thermodynamics have terms containing key thermodynamic properties, we have to
determine numerical values for these properties before the laws can be used to solve a thermodynamics
problem. In other words, you cannot solve thermodynamic problems without accurate numerical values for the
system’s thermodynamic properties.

Thermodynamic property values can be determined from five sources:

Thermodynamic equations of state.
Thermodynamic tables.

Thermodynamic charts.

Direct experimental measurements.

The formulae of statistical thermodynamics.

SR WONE

This chapter deals with the first three sources. Source 4, the techniques of direct property measurement, are not
discussed in this text, but the information given in many of the thermodynamic problem statements can be
assumed to have come from such measurements. The last source, the formula of statistical thermodynamics, is
covered in Chapter 18 of this textbook.

Property values are often given in thermodynamic problem statements in the process path designation. For exam-
ple, if a system changes its state by an isothermal process at 250.°C, then we know that T; = 250.°C = T,. Thus,
the process path statement gives us the value of a thermodynamic property (temperature, in this case) in each
of the two states. Process path statements that imply that some property is held constant during a change of
state are quite common in thermodynamics.

3.3 FUN WITH MATHEMATICS

In the previous chapter, you were told that the values of any two thermodynamic properties are sufficient to fix
the state of a homogeneous (single-phase) pure substance subjected to only one work mode. This means that
each thermodynamic property of the a pure substance can be written as a function of any two independent thermo-
dynamic properties. Thus, if x, y, and z are all intensive properties, we can write

flxyz)=0 (3.1)
or

x=x(y,2)

y=7(x2)

z=2z(x,y)

Using the chain rule for differentiating the composite functions in the previous equations yields

_ (ox o0x
dx = (a)zdy + (&>de

9 4
(3) e+ ()

e e (5)

where the notation (0x/dy), means the partial derivative of the function x with respect to the variable y while hold-
ing the variable z constant. Substituting the expression for dy into the expression for dx and rearranging gives

(). = [(5). (), (B Je

Normally, the partial differential notation (dx/dy) automatically implies that all the other variables of x are held
constant while differentiation with respect to y is carried out. However, in thermodynamics, we always have a
wide choice of variables with which to construct the function x, but when we change variables, we do not
always change the functional notation. For example, we can write x = x(y, z) = x(y, w) = x(y, q), where each of

dy



3.3 Fun with Mathematics ﬂ

CRITICAL THINKING

If you have a composite function of the form f(x, y, z) = 0, where x = y + z, y = xz, and z = y/x, then are the following chain
rule differentials correct or not?

1. dx=dy+ dz.
2. dy = zdx + xdz.
3. dz = dy/x + dx]y.

these three functions has a different form, even though they all yield x. Since these functions are not the same, if
follows that their partial derivatives are not equal, or

(5)2().73),

That is why we always indicate which variables are held constant in partial differentiation. This also informs the
reader as to which independent variables are being used in a functional relation.

Equation (3.1) tells us that two of the three variables are independent. If we choose the independent variables
to be x and z, then the preceding equation, which relates x and z, is valid only if the coefficients of both dx and
dz are equal to zero (otherwise, they would not be independent). Then we have

= (G

(5).(2).»

5).-[&) 62
GLEL+ G -0

(GG~

Then, using the results of Eq. (3.2), we can write

HO@--

or

SO

We also must have

or

EXAMPLE 3.1

Show that, if the pressure p of a substance is a function of its temperature T and its density p, we can write
&), -G
ar ), \op/; ar),
Solution

From Eq. (3.3) with x = p, y = T, and z = p, we have

(),(%),&). =~

(Continued )
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EXAMPLE 3.1 (Continued )

Then, by multiplying this by (dp/dT), and utilizing Eq. (3.2), we get the desired result:
PN (%) - _(%
oT/,\op/r aT),
Exercises

1. Ifv = 1/p is the specific volume of the material in Example 3.1, show that the result in this example can be written as

(50) )= -(3),

2. [If a, b, and c are three independent intensive thermodynamic properties, use Egs. (3.2) and (3.3) to show that they can
be related by
(5
ac/v

(%)

)

3.4 SOME EXCITING NEW THERMODYNAMIC PROPERTIES
In Chapter 2, we introduced the specific volume v, an intensive property, as
v=¥/m (34)

where ¥ is the total volume' and m is the total mass of the system. We are now free to establish v as a function of
any two other independent properties. For a single-phase (i.e.,, homogeneous) pure substance subjected to only one
work mode, the pressure and temperature are independent properties, and for such a system, we can then write

v=u(p,T)

Differentiating this equation gives

ov ov
dv=(22) dp+ (%) ar
' <6P>T P+ or),
The coefficients of dp and dT in the previous equation reflect the dependence of volume on pressure and tem-
perature, respectively. Because these terms have such important physical meaning, we introduce the following

notation:

% (%)p = f = isobaric coefficient of volume expansion (3.5)
and

—% (g_;;)r =k = isothermal coefficient of compressibility (3.6)

where the thermodynamic term isobaric is from the Greek words iso meaning “constant” and baric meaning
“weight” or “pressure”; the term is to be taken to mean constant pressure in this text. Therefore, we can write

dv = —vkdp +vpdT
or

d—v" = pdT —xdp (3.7)
If x and f are constant (or averaged) over small ranges of temperature and pressure, then Eq. (3.7) can be inte-
grated to give

1115—? =p(T, = T1)—x(p2—p1)

! Remember that, in this text, volume is represented by the symbol ¥.. The symbol V is reserved for the magnitude of velocity.



3.4 Some Exciting New Thermodynamic Properties

or

vy = vi{exp[f(T2 = T1) —x(p2 — p1)]} (3.8)

Thus, v is seen to have an exponential dependence on p and T when f and « are constant. Table 3.1 gives values of
and « for copper as a function of temperature, and Table 3.2 gives values of # and « of various liquids at 20.°C (68°F).

Table 3.1 Values of $ and « for Copper as a Function of Temperature

B x 10° x x 10"
T (K) R K™ ft2/Ibf m?/N
100. 17.5 31.5 34.51 0.721
150. 22.8 41.0 35.08 0.733
200. 25.3 45.6 35.80 0.748
250. 26.7 48.0 36.47 0.762
300. 27.3 49.2 37.14 0.776
500. 30.1 54.2 40.06 0.837
800. 33.7 60.7 4413 0.922
1200. 38.7 69.7 49.30 1.030
Source: Material drawn from Zemansky, M. W., 1957. Heat and Thermodynamics, fourth ed. McGraw-Hill, New York. Reprinted by permission
of the publisher.

Table 3.2 Values of g and « for Various Liquids at 20.°C (68°F)

p x 108 k x 10"
Substance R K! ft/Ibf m?/N
Benzene 0.689 1.24 4550 95
Diethyl ether 0.922 1.66 8950 187
Ethyl alcohol 0.622 1.12 5310 111
Glycerin 0.281 0.505 1010 21
Heptane (n) 0.683 1.28 6890 144
Mercury 0.101 0.182 192 4.02
Water 0.115 0.207 2200 45.9

Source: Adapted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw Hill, New York.

EXAMPLE 3.2

A 1.00 cm® copper block at 250. K is heated in the atmosphere to 800. K (Figure 3.1). Find the volume of the block at 800. K.

7,=1.00 cm3 V,=?

re

State 1 State 2
at 250. K at 800. K

FIGURE 3.1
Example 3.2, problem.

Solution
Since the copper block changes state under atmospheric (constant) pressure, it undergoes an isobaric process. When p = con-
stant, Eq. (3.8) reduces to

vy = vi{exp|B(T2 — T1)]}

(Continued )
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EXAMPLE 3.2 (Continued )

and multiplying both sides of this equation by the mass m of the block gives the total volume ¥ as
V2 = mv, = Vi{exp[f(T> - Th)]}

It can be seen from Table 3.1 that f for copper is not constant in the temperature range of 250. to 800. K. To come up with
a reasonable value for an average 5, we must see how f varies with temperature. Figure 3.2 shows the data for § vs. T for
copper taken from Table 3.1.

80

70

60

50
awof—A

30

Bx100(K™

B vs. T for copper (data from Table 3.1)

20
0 200 400 600 800 1000 1200
Temperature (K)

FIGURE 3.2
Example 3.2, solution.

This figure shows that f varies linearly with T in the range of 250. to 800. K. The average value of § in this temperature range is
easily found to be
_ 60.7x107° + 48.0x10°°

Bavg = > =54.4x10°K"

Now we can calculate the final volume as

Vo = mu = Vi {exp[f(T, — T1)]}
(1.00 em?®) {exp[(54.4 x 10~ K~')(800. — 250. K)] }
=1.03cm?

Note that we could also fit a straight line to the § vs. T data between 250. and 800. K and come up with a formula of the
form = C;T + C,. Inserting this formula into Eq. (3.7) and integrating it (with dp = 0) yields a different (but equally valid)
relation among v, v,, Ty, and T,. This is left as an exercise at the end of this chapter.

Exercises

3. Use Tables 3.1 and 3.2 to find values for the isobaric coefficient of volume expansion f and the isothermal coefficient of
compressibility x for (a) copper at 1200. K, (b) benzene at 68°F, and (c) mercury at 20.°C. Answers: (a) § = 38.7 x 10™°
R =69.7x10° K and x = 49.30 107! ft?/Ibf = 1.030 x 107! m?/N; (b) = 0.689 x 10° R™' = 1.240 x 10° K’
and « = 4550 x 107! ft?/Ibf = 95.0 x 107! m%/N; (c) #=0.101 x 10° R = 0.182 x 10" K" and « = 192 x 107" ft¥/
Ibf = 4.02 x 107" m?/N.

4. Rework Example 3.2 for a 1.00 cm® block of solid platinum, whose average isobaric coefficient of volume expansion
over the temperature range from 250. K to 800. K is 3.00 X 10° K. Answer: ¥ = 1.017 cm’.

5. Liquid water at 68°F is isothermally compressed from 14.7 psia to 3000. psia. Determine the percent change in the
volume of the water, [(v; —v,)/v1] X 100. Answer: 0.94%.

3.5 SYSTEM ENERGY

For historical reasons, the total energy of a system that has no magnetic, electric, surface, or other effects is
divided into three parts. Classical physicists recognized two easily observable forms of energy: (1) the total
kinetic energy KE = mV?Rg,, and (2) the total potential energy PE = mgZ/g.. The remaining unobservable part of
the total energy is simply called the total internal energy U. Thus, the total energy E of a system is written as

E= U+ mV??2g. + mgZja. (3.9)
or

E=U +KE + PE (3.10)



3.6 Enthalpy m

WHO WAS AMALIE EMMY NOETHER?
PART 1

Emmy Noether was born on March 23, 1882, the first of four children. Her first name was Amalie, after her mother and pater-
nal grandmother, but she began using her middle name at a young age. Emmy was taught to cook and clean—as were most
girls of the time—and she took piano lessons. She pursued none of these activities with passion, although she loved to dance.

Emmy attended the Hohere Tochter Schule in Erlangen, Germany, from 1889 until 1897. She studied German, English,
French, and arithmetic and was given piano lessons. In 1900, became a certificated teacher of English and French in Bavar-
ian girls’ schools.

We use the simpler Eq. (3.10) when writing general expressions and the more complete Eq. (3.9) when calcula-
tions are required. Total internal energy is an all-inclusive concept that includes chemical, nuclear, molecular,
and other energies within the system. Since all mass has internal energy, the only systems that have zero internal
energy are devoid of matter.

We define a system'’s specific internal energy u as

u = Um (3.11)
where m is the system mass. We can now write Egs. (3.9) and (3.10) as
e E_, V2, & (3.12)
m 28 &
and
e=1u+ ke + pe (3.13)

where ke = V?2g, and pe = gZ/g,.

The specific internal energy u is an intensive property, like pressure, temperature, and specific volume; so, it too
can be written as a function of any other two independent properties. For a simple (i.e., homogeneous and pure)
substance, the temperature and specific volume are independent thermodynamic properties. So we can write

u=u(T, v)
then
du = (g—#)vdT + (g—;‘)Tdv (3.14)

The first term in Eq. (3.14) describes the temperature dependence of u, and the coefficient of dT is written as c,,
where

(g—;{) = ¢, = constant volume specific heat (3.15)
v

Then Eq. (3.14) becomes
- ou
du = ¢,dT + <6v>Tdv

Many of the equations of thermodynamics have groupings of similar terms. It is convenient to simplify the writ-
ing of these equations by assigning a single symbol and name to such a grouping. This is what was done in
Eq. (3.9) in defining the total system energy as the sum of three other energy terms. Also, it should be quite
clear that any function of a system'’s thermodynamic properties is also a thermodynamic property itself.

3.6 ENTHALPY

When we introduce the open system energy balance later in this text, we find that the properties u and pv are
consistently grouped together. For simplicity, then, we combine these two properties into a new thermodynamic
property called enthalpy, whose total and specific forms are defined as

H = U + pV = total enthalphy (3.16)
and

h = H/m = u + pv = specific enthalpy (3.17)
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WHY IS IT CALLED ENTHALPY?

The quantity u + pv has had many different names over the years. In the early years of thermodynamics, it was known at
various times as the heat function, the heat content, and the total heat. The term enthalpy comes from the Greek gvfalnoo,
meaning “in warmth,” and was introduced in 1922 by Professor Alfred W. Porter. He credited the coining of the name to
the Dutch physicist Kamerlingh Onnes (1853-1926). This name was officially adopted by the American Society of Mechan-
ical Engineers (ASME) in 1936.

EXAMPLE 3.3

The specific internal energy and specific volume of liquid water at a

temperature of 20.0°C and a pressure of 20.0 MPa are 82.77 kJ/kg and Water

0.0009928 m3/kg, respectively (Figure 3.3). Determine the specific u=82.77 kl/kg

enthalpy of the water under these conditions. v=0.0009928 m’/kg
T=20.0°C

Solution p=20.0 MPa

From Eq. (3.18), we have h=?

h=u+pv=_82.77Kk/kg + (20.0 x 10°kN/m?) (0.0009928 m*/kg)
FIGURE 3.3

=82.77Kk]/kg + 19.856 kN - m/kg = 103 kj /kg Example 3.3.

where we use the fact that 1 kJ = 1 kN - m. Notice that the units of the specific internal energy u and the pv product must be
exactly the same before these terms can be added. Consequently, we converted the pressure into units of kN/m? here so that the pv
product comes out in units of kN - m/kg = kJ/kg to match the units of u.

Exercises

6. If the specific internal energy and specific volume of raw sewage at 150.0 psia and 500.0°F are 115.0 Btu/lbm and
0.01700 ft*/lbm, respectively, determine the specific enthalpy of this material under these conditions. Answer: h =
115.5 Btu/lbm. (Hint: Check the units carefully and note that u is in Btu/lbm whereas the pv product is in ft - 1bf/
Ibm when the pressure is converted from Ibf/in? into Ibf/ft>. Since the u and pv terms must be in the exact same
units before they can be added, the pv product must be divided by 778.17 ft - Ibf/Btu.)

7. If the specific enthalpy and specific volume of mercury vapor at 6.000 MPa and 719.7°C are 381.0 kJ/kg and 0.006930 m>/kg,
respectively, determine the specific internal energy of this material under these conditions. Answer: u = 339.4 kJ/kg. (Hint:
Check the units carefully and note that h is in kJ/kg or kN - m/kg, whereas the pv product is in MN - m/kg. Convert the pressure
into kN/m? before or during the calculation so that h and the pv product have the same units.)

8. The specific internal energy and specific enthalpy of compressed liquid water at 5000. psia and 700.°F are 721.8 Btu/lbm
and 746.6 Btu/lbm, respectively. Determine the specific volume of this material under these conditions. Answer:

v = 0.0268 ft*/lbm. (Hint: See the hint for Exercise 6.)

Like specific internal energy, specific enthalpy can be a function of any two independent properties for a simple
substance subjected to only one work mode. For such a simple substance, the temperature and pressure are
independent, so we can write

h=h(T,p)
and
oh oh
= () a4t or 1
dh ( aT)pd + < ap)po (3.18)
The temperature dependence of h is important in classical physics, and the coefficient of dT is written as c,, where
(ah) . .
—) = ¢, = constant pressure specific heat (3.19)
oT/p

Then Eq. (3.18) becomes

oh
dh=c,dT+ =) d 3.20
& (ap)T b (3.20)



3.7 Phase Diagrams ﬂ

WHO WAS EMMY NOETHER?
PART 2

Emmy Noether never became a language teacher; instead she decided to attend the University of Erlangen to study mathe-
matics. Unfortunately, at that time, women were not allowed to enroll because the faculty felt that allowing female stu-
dents would “overthrow all academic order.” She could only audit classes with the permission of each professor whose
lectures she wished to attend. Nonetheless, on July 14, 1903, she passed the graduation exam.

During the winter of 1903-1904, she studied at the University of Gottingen, attending lectures by astronomer Karl
Schwarzschild and mathematicians Hermann Minkowski, Otto Blumenthal, Felix Klein, and David Hilbert. By then, restric-
tions on women'’s rights in Erlangen were rescinded and she returned there. She officially reentered the university on Octo-
ber 24, 1904, and declared her intention to focus solely on mathematics. In 1907, she received a doctorate in mathematics.

Other thermodynamic properties, such as entropy and availability, are introduced later in this text when they are
needed. It must be remembered, however, that not all thermodynamic properties are directly measurable. A pres-
sure gauge and a thermometer give us numerical values for p and T, but there are no instruments that give us
values of u and h directly. It takes much more sophisticated measurements to allow us to calculate accurate
values for u and h. More complex mathematical relations between thermodynamic properties are developed
after the reader is thoroughly familiar with the concept of entropy discussed in Chapter 7.

3.7 PHASE DIAGRAMS

A pure substance is composed of a single chemical compound, which may itself be composed of a variety of
chemical elements. Water (H,0), ammonia (NH3), and carbon dioxide (CO,) are all pure substances, but air is
not because it is a mixture of N,, O,, H,O, CO,, and so forth. All substances can exist in one or more of the
gaseous (or vapor), liquid, or solid physical states, and some solids can have a variety of molecular structures.
In 1875, the American physicist Josiah Willard Gibbs (1839-1903) introduced the term phase to describe the dif-
ferent forms in which a pure substance can exist. We now speak of the gaseous, liquid, and solid phases of a
pure substance, and we recognize that a pure substance may have a number of different solid phases.> Multiple
solid phases are called allotropic, a term that comes from the Greek words allos, meaning “related to,” and trope
meaning “forms of the same substance.” For example, graphite and diamond are allotropic forms of carbon.

A substance made up of only one physical phase is called homogeneous; if it is composed of two or more phases
it is called heterogeneous. Coexistent phases are separated by an interface, called the phase boundary, of finite thick-
ness across which the property values change uniformly. A system in which two phases coexist in equilibrium is
called saturated.

The number of degrees of freedom within a heterogeneous mixture of pure substances is given by Gibbs's phase rule as
f=C-P+2

where f is the number of degrees of freedom, C is the number of components (pure substances) in the mixture, and
P is the number of phases. Also, f can be interpreted to be the number of intensive properties of the individual
phases required to fix the state of the individual phases. For example, a homogeneous (P = 1) pure substance (C=1)
requires f=1— 1+ 2 =2 intensive properties to fix its state. Similarly, a homogeneous (P = 1) mixture of two pure
substances (C = 2) requires f=2 — 1 + 2 = 3 intensive properties to fix its state, and so forth. The case of a two-phase
(P =2) pure substance (C = 1), however, is misleading, because f=1—2 + 2 =1, but this simply means that each

SATURATED WITH WHAT?

The term saturated comes from the 18th century, when heat was thought to be a fluid. At that time, it was thought that a
substance could be saturated with heat, just like water can become saturated with salt or sugar. Today we recognize that
heat is not a fluid, and therefore the use of the word saturation in reference to a thermodynamic phase change is really a
misnomer. However, this term is now completely entrenched in modern thermodynamic literature and cannot be changed.

? Actually, matter can exist in a bewildering variety of phases beyond the common solid, liquid, and vapor forms. Ferromagnetic,
antiferromagnetic, ferroelectric, superconducting, superfluid, nematic, smectic, and so on are all valid phases.
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phase requires one intensive property to fix its state. Hence, two independent properties are required to fix the state
of the complete two-phase system. To find the state of a mixture of two phases, we need to know how much of each
phase is present, that is, the composition of the mixture. The phase composition in a liquid-vapor mixture is given
by a new thermodynamic property called the quality of the mixture, which is defined shortly.

A phase diagram is made by plotting thermodynamic properties as coordinates. Figure 3.4 illustrates typical p-T
and p-v phase diagrams for a substance that expands on freezing (such as water or antimony). When the p-T
and p-v diagrams are combined to form a three-dimensional p-v-T surface, thermodynamic surfaces arise, as
shown in Figure 3.5. Figures 3.6 and 3.7 show the similar plots for a substance that contracts on freezing (such
as carbon dioxide and most other substances).

The expansion or contraction behavior of a substance on solidification can be deduced either from the increase
or decrease in specific volume as the substance goes from a liquid to a solid, or from the slope of the fusion
line on the p-T diagram. If the p-T fusion line has a negative slope, then the substance contracts on melting; if it
has a positive slope, then it expands on melting.

The pure substance p-T phase diagram shown in Figures 3.4 and 3.5 is composed of three unique curves. The
fusion line represents the region of two-phase solid-liquid equilibrium, the vaporization line represents the region

[5) o
E Critical 5
8 point 7] \ Critical
& A
Gas 4
Vapor
Temperature Volume

FIGURE 3.4
Pressure-temperature and pressure-volume diagrams for a substance that expands on freezing (for example, water).

Pressure

FIGURE 3.5
The p-v-T surface for a substance that expands on freezing (for example, water).
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FIGURE 3.6

Pressure-temperature and pressure-volume diagrams for a substance that contracts on freezing (for example, carbon dioxide).

Pressure

FIGURE 3.7
The p-v-T surface for a substance that contracts on freezing (for example, carbon dioxide).

of two-phase liquid-vapor equilibrium, and the sublimation line represents the region of two-phase solid-vapor
equilibrium. These three lines intersect at one point, called the triple point, which is the only point where all
three phases can be in equilibrium simultaneously. The triple point on the p-T diagram appears as a line on the
p-v diagram, with the triple point simply being an end view of this line. Table 3.3 gives the property values at
the solid-liquid-vapor triple point of various substances. At the triple point of a pure substance, C=1, p=3, and
the number of degrees of freedom are f=1 -3 + 2 =0; that is, there is no flexibility in the thermodynamic state
and none of the properties can be varied and still keep the system at the triple point. The properties can be var-

ied along the various two-phase boundary lines but not at the three-phase triple point. If a substance has more
than one solid phase, then it also has more than one triple point.

When pressurized, most liquids freeze at a higher temperature because the pressure forces the molecules together.
However, at pressures higher than 1 atmosphere, water remains liquid at a temperature below 0°C due to the
strong hydrogen bonds in water. This is why ice melts under an ice skater’s blades and lubricates her or his move-
ment. The melting of ice under high pressures is also thought to contribute to the movement of glaciers.

When subjected to high pressures, water can form at least 15 solid phases. These phases differ by their crystalline
structure, ordering, and density. In 2009, ice XV was found at extremely high pressures and —143°C. Figure 3.8



m CHAPTER 3: Thermodynamic Properties

Table 3.3 Triple Point Data for Various Materials

Substance T (R) T (K) p (psia) p (kPa)
Ammonia (NHs) 351.7 195.4 0.89 6.16
Carbon dioxide (CO,) 389.9 216.6 75.98 523.8
Helium-4 (A point) 3.9 217 0.74 5.1
Hydrogen (Hy) 24.9 13.84 1.03 7.13
Neon (Ne) 44.2 24.57 6.35 43.77
Nitrogen (No) 113.7 63.18 1.84 12.67
Oxygen (Oy) 97.8 54.36 0.02 0.15
Sulfur dioxide (SO,) 355.9 197.7 0.02 0.17
Water (H.0) 491.7 273.16 0.09 0.62
Source: Adapted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.
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FIGURE 3.8
Phase diagram for water (not drawn to scale).

shows a more complete p-T phase diagram for water including 7 of its 15 known solid phases. Each intersection
of three phase transition lines forms a new triple point.

The vaporization curve for all known substances has a peak at a curious point, known as the critical point. This is
the state at which the densities of the liquid and the vapor phases become equal and, consequently, where the
physical interface between the liquid and the vapor disappears. At or above the critical state, there is no longer any
physical difference between a liquid and a vapor. Substances existing under these conditions are called gases. In
this text, we use the term gas to describe the state of any substance whose temperature is greater than its critical
state temperature. A substance in the vapor phase that does not meet the definition of a gas is called a superheated
vapor (sometimes just vapor). These definitions are illustrated in Figures 3.8 and 3.10. Table 3.4 gives the critical
state temperature, pressure, and specific volume for various common pure substances. A larger critical state data
table is given in Table C.12 of Thermodynamic Tables to accompany Modern Engineering Thermodynamics.

Notice in Table 3.4 that, at 14.7 psia and 70.°F (530. R), ammonia is a vapor (T, > 530. R). Also, it should be clear
from Figure 3.10 that, to liquefy any gas whose pressure is initially less than its critical pressure simply by increasing
its pressure alone, the gas must first be made into a vapor by lowering its temperature below its critical temperature.
Vapor-liquid condensation is shown by process A-B in Figure 3.10. Thus, for example, no matter how high the
applied pressure, hydrogen cannot be liquefied unless its temperature is below 59.9 R (see Table 3.4).



WHAT IS A “PHASE”?

3.7 Phase Diagrams ﬂ

A material “phase” is a physically distinct region of space that is chemically uniform with homogenous physical properties.
For example, imagine a system consisting of ice cubes and liquid water in drinking glass. The ice cubes are one phase
(solid), the water is a second phase (liquid). The glass itself is a different material in a solid phase.

Material phases are different states of matter, such as solid, liquid, gas, or plasma. It is possible for a material to have more
than one liquid or solid phase. For example, depending on the cooling process, metals can solidify into several distinct

crystal phases.

The liquid to vapor phase transformation is called vaporization (Figure 3.9), and the vapor to liquid phase transformation is
called condensation. Similarly, the solid to liquid phase transformation is known as melting, and the liquid to solid phase
transformation is called freezing or solidification. Finally, the solid to vapor phase transformation is known as sublimation,
and the vapor to solid phase transformation is deposition (or frost in the case of water).

FIGURE 3.9

What is a phase?
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FROM WHENCE COMETH THE GAS?

The term gas was coined by the Belgian chemist Jan Bapist Van Helmont (1577-1644), derived from the Greek word kego,

meaning “gaping void.”

FIGURE 3.10

Pressure, p

Critical point

[
-
~
Solid 3 o Supercritical fluid
§ Liquid (a gas)
Z
=
[
B
Triple point - 0\3‘\'6
A
N 'AQO“w\ Gas
Gon c\)(\l <]
!
S\‘b\\‘“ Vapor A

The definitions of a gas and a vapor.

Temperature, T



CHAPTER 3: Thermodynamic Properties

Several thermodynamic properties have discontinuities at the critical state; $, k, and ¢, become infinite there. Near
the critical state, a transparent substance becomes almost opaque due to light scattering caused by large fluctua-
tions in local density. This phenomenon, called critical opalescence, is illustrated in Figure 3.11. Notice the appear-
ance of the liquid-vapor interface in Figure 3.11b when the temperature becomes less than the critical temperature.

Table 3.4 Critical State Properties for Various Substances (see also Table C.12)

Substance T. (R) T. (K) P (psia) pc (MPa) Ve (ft3/Ibm) ve (m¥kg)
Ammonia (NH3) 729.9 405.5 1636 11.28 0.068 0.0043
Carbon dioxide (COy) 547.5 304.2 1071 7.39 0.034 0.0021
Carbon monoxide (CO) 240.0 133.0 507.0 3.50 0.053 0.0033
Helium (He) 9.5 5.3 33.2 0.23 0.231 0.0144
Hydrogen (Hy) 59.9 33.3 188.1 1.30 0.516 0.0322
Nitrogen (Ny) 2271 126.2 491.68 3.39 0.051 0.0032
Oxygen (Oy) 278.6 154.8 736.9 5.08 0.039 0.0024
Sulfur dioxide (SOy) 775.2 430.7 1143 7.88 0.030 0.0019
Water (H,0) 1165.1 647.3 3203.8 22.09 0.051 0.0032
Source: Van Wylen, G. J., Sonntag, R. E., 1986. Fundamentals of Classical Thermodynamics, third ed. Wiley, New York. Reprinted by
permission of John Wiley & Sons.

(a) (b) (© (d

FIGURE 3.11

The glass bulb contains carbon dioxide near the critical density pgincas and three balls with densities pa S peritical 28 = Periticars @nd

pc 2 peiica- In (@), the temperature is well above the critical temperature, leaving all the carbon dioxide in the gaseous state. In (0), the
temperature is only slightly above the critical temperature and the carbon dioxide has become foggy. In (c), the temperature is slightly
below the critical temperature and a meniscus has developed separating the gaseous and liquid states. In (d), the temperature is far
below the critical temperature and the density of the liquid has increased to the point where all three balls now float on the surface of
the liquid. (Source: Reprinted with permission from Sengers J. V., Sengers, A. L., 1968. The critical region. Chem. Eng. News 48, 104.)

HOW DO YOU MAKE A DIAMOND?

Diamond is the hardest naturally occurring material known, and it is also the most popular gemstone (Figure 3.12). For
centuries, it has been one of the most desirable and mysterious materials available. In 1772, the French Chemist Antoine-
Laurent Lavoisier (1743-1794) proved that diamond was just another crystalline form of carbon. He invested a
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considerable sum of money to purchase a small diamond, then he burned it in a controlled oxygen environment. When he
analyzed the resulting combustion gas, he found it to be just carbon dioxide.

FIGURE 3.12

A real diamond.

From that time forward, many attempts have been made to make synthetic diamond from pure carbon (graphite). How-
ever, diamond was not successfully synthesized until 1955, at the General Electric Corporation in Schenectady, New York,
when GE researchers compressed graphite to a pressure exceeding 1.5 x 10° psi (10. GPa) and 5000.°F (~3000.°C). Indus-
trial and gemstone quality synthetic diamonds have been commercially available since 1960.

The pressure-temperature phase diagram for carbon is shown in Figure 3.13. At low pressure and temperature, the solid car-
bon phase is called graphite. At very high pressures and temperatures, a second solid carbon phase appears with a different
atomic structure. This phase is the valuable gemstone diamond with which we are all familiar. However, the phase diagram
clearly indicates that graphite, not diamond, is the equilibrium form of solid carbon at room temperature and pressure.

Since phase changes are rate processes that increase rapidly with increasing temperature, what is happening to all diamonds
that are exposed to room temperature and pressure? What would happen to a diamond ring if you put it into an oven at
1000 or 2000°F? Can you suggest a practical way of making a synthetic diamond? Do you think that exposing graphite to
explosive loading using dynamite under controlled conditions would work?
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FIGURE 3.13
Phase diagram of a diamond.
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CASE STUDY: A NEW SUPERCRITICAL WATER TREATMENT

A major engineering challenge today is the development of an
effective waste disposal or destruction technique that produces no
toxic waste or emission itself. Hazardous wastes have historically
been discarded in ocean dumping, landfills, incineration, or long-
term storage. However, ocean dumping is now illegal and landfill
sites are becoming increasing difficult to manage due to concerns
about groundwater contamination.

A new technology has emerged as an effective way to eliminate thou-
sands of tons of organic wastes that are the by-products of modern
society. Called supercritical water oxidation, the technique exploits the
fact that, while most organic wastes are not soluble in water at nor-
mal temperatures, they are dissolved at high pressure and tempera-
ture (Figure 3.14). Once the organic wastes are dissolved, oxygen is

controlled combustion process. Operating at supercritical conditions
results in a single-phase homogenous reaction environment that
causes rapid oxidation of the organics, producing carbon dioxide,
water, nitrogen, and small amounts of other compounds, such as
ammonia and acids. Since the entire process is in a closed system,
no harmful products are released into the environment.

This technique has also been found to be an effective disposal
method for surplus military chemical wastes, such as nerve agents,
mustard gas, rocket fuels, TNT, and other explosives. More than
99.9% of the explosives are destroyed in less than 30 s at 600.°C.
Even radioactive wastes can be concentrated and stabilized by elim-
inating their organic components. The resulting radioactive compo-
nents can then be encased in molten glass and stored deep

added and an oxidation-reduction reaction occurs, much like a  underground.

Supercritical Water Oxidation (SCWO)
Supercritical
water vapor
Supercritical liquid water
218 atm -— -

Critical point

E Normal

E liquid water

3

z

Pressure %
n Water vapor
0.006 atm Triple point
0.01°C 374.14°C

Temperature ———

FIGURE 3.14
Supercritical water oxidation.

3.8 QUALITY

As mentioned earlier, in an equilibrium two-phase mixture, temperature and pressure cannot be varied indepen-
dently; therefore, either one or the other can be taken as an independent thermodynamic property, but not
both. Figure 3.15a shows the actual p-v diagram for water on log-log coordinates. Notice that, in the two-phase
regions (liquid plus vapor and solid plus vapor), the isotherms (lines of constant temperature) are parallel to
the isobars (lines of constant pressure), showing that pressure and temperature are not independent in this
region. To determine other thermodynamic properties of a mixture of phases, we need to know the amount of
each phase present. We do this with a lever rule applied to one of the phase diagram coordinates. Consider the
simplified liquid-vapor p-v diagram shown in Figure 3.15b.

Substances whose states lie on the saturation curve are called saturated. Substances whose states lie under the
saturation curve are called wet. Substances whose states are on the saturation curve but to the left of the critical
state are called saturated liquids, and those on the saturation curve to the right of the critical state are called satu-
rated vapors. Substances whose states are to the left of the saturation curve are called compressed or subcooled
liquids, and those to the right are called superheated vapors.

To help identify the properties of a system, we adopt the convention of using an f subscript on the symbols of
all thermodynamic properties of saturated liquids and a g subscript on the symbols of all thermodynamic prop-
erties of saturated vapors. Thermodynamic properties in the compressed (or subcooled) liquid region, the wet
(or mixture) region, and the superheated vapor (or gas) region carry no subscripts. Consequently, the specific
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Specific volume, v, m3/kg

(a)

p-v diagram notation. The actual p-v diagram for water plotted on log-log coordinates. (Source: Wood, B. D., 1982. Applications of Thermodynamics,
second ed. Addison-Wesley Publishing Co., Inc., Reading, MA. Reprinted with permission.)

volume of saturated liquid is written as vy and that of
saturated vapor as v, and the associated specific inter-
nal energies, enthalpies, and masses are written as uy,
ug, hy, hg, my, and my.

From Figure 3.16, we see that the total volume of a
substance whose state is in the wet (liquid plus vapor)
region is given by

¥ = mv = mpvp + mgu,
where m is the total mass given by
m=my + my
Dividing the equation for ¥ by m gives

Vim = v = msvg/m + mgvg/m (3.21)

Pressure, p

— Critical point

«— Saturated vapor line, x =1
™ Saturated

liquid line
x=0

liquid region

Superheated vapor
Liquid plus region
vapor (wet)

region, 0<x<1

Compressed or subcooled

Specific volume, v

(W)

FIGURE 3.15b
Schematic p-v diagram for the liquid, mixture, and vapor regions.

WHY USE F AND G SUBSCRIPTS?

The use of f and g as subscripts here is out of tradition. They come from the first letters of the German words flussig (for
liquid) and gas. More appropriate English subscripts might be ! for liquid and v for vapor, but they are not used.
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ve—vy Equation (3.21) is just a simple mass-based lever rule equation
<—Critical point relatmg a mixture thermodynamic property (v) to the thermo-
dynamic properties of the components of the mixture (v; and
*\\/ vg). We now define the quality x of a liquid plus vapor mixture
a - as the relative amount of vapor present, or
g [
z Ai“{'a] Quality = x Mass of vapor Mass of vapor
H state =Xx= T 1
£ N\ Y Mass of vapor + Mass of liquid Total mass
<— V=V —> or
m m
x=—23 =232 (3.22)
mp+mg  m
V/' Vv Vg

Specific volume, v Therefore, Eq. (3.21) can be written as

FIGURE 3.16 v=(1=x)vy + g (3:23)
The lever rule for calculating quality. which can be rearranged as
v=vr +x(V, — V) = vy + X0 (3.24)

where we define the magnitude of the liquid to vapor property change as
Vg = Vg —Vf (3.25)
From Figure 3.16, we see that another definition of quality is
v—vf

g

It should be clear from the definition of quality that its value has the following bounds

(3.26)

Saturated liquid : x =0
Saturated vapor : x =1

Wet (liquid plus vapor) region : 0 <x< 1

WHY DO THEY CALL IT QUALITY?

In the 19th century, there were a lot of steam engines.
Railroads, factories, ships, and so on all used steam engines
as their source of power. The people responsible for keeping
these engines running noticed that they worked better if the
steam contained more vapor than liquid. So, a mixture that
contained a lot of vapor and little liquid was said to be of

high quality. They defined this quality to be the ratio of the Vapor

mass of vapor to total mass of liquid plus vapor (Figure

3.17), or quality = x = mg/(my+ mg) = mg/m. On the other

hand, the amount of liquid present in a mixture is called | Liquid |

the moisture of the mixture, defined as moisture = my/m = High quality, Low quality,
1 — x. Since these definitions apply only to mixtures of low moisture high moisture

liquid plus vapor, they do not extend outside of the vapor FIGURE 3.17
dome. The condition where the quality x = 1.0 is reserved
for saturated vapor and does not apply to superheated
vapor. Similarly, the condition where quality x=0 is

Why do they call it quality? In all other single-phase regions
(compressed liquid, superheated vapor, gaseous), X is not defined,
reserved for saturated liquid and does not apply to com-  Decause these are single-phase homogeneous regions. Note that,
pressed liquid. Note that the quality x of a liquid-vapor mix- since the numerical value of quality is restricted to lie in the range
ture can never be less than 0 or greater than 1.0. That is, x from 0 to 1, no correct calculation can ever give a value of x less
always falls in the range 0 < x < 1.0. than O or greater than 1.0.
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Although Eq. (3.26) was developed using specific volume, an identical argument can be used to expand it to all
other intensive properties (except pressure and temperature), resulting in equations of the form

e h—hy
Ufg Ugg hy

In addition, the term my/m = 1 — x represents the relative amount of liquid present in the mixture, called the
moisture of the mixture.

(3.27)

EXAMPLE 3.4

Saturated water at 14.696 psia and 212°F has the following

properties: System
boundary
vy = 0.01672 f/lbm v, = 26.80 ft’/Ibm P
uf=180.1 Btu/lbm  u, = 1077.6 Btu/lbm ¥=3.00 ft’
hy=180.1 Btu/lbm h, = 1150.5 Btu/lbm m=0.200 Tbm
p=14.696 psia
If 0.200 lbm of saturated water at 14.696 psia is put into a
sealed rigid container whose total volume is 3.00 ft* (Figure

3.18), determine the following properties of the system:

The specific volume v. FIGURE 3.18
The quality, x, and moisture, 1 — x. Example 3.4

The specific internal energy u.
The specific enthalpy h.
The mass of water in the liquid and vapor phases, m;and m.

LI

Solution
The system is a closed rigid container.

a. The specific volume can be calculated directly from its definition, Eq. (3.4). as
v =¥/m = 3.00/0.200 = 15.0 ft*/Ibm
b. The quality can be calculated from Eq. (3.26) or (3.27) and Eq. (3.25) as

V=Y _ 15.0-0.01672
vg  26.80-0.01672

X = =0.559

or x = 55.9% vapor. Therefore, the amount of moisture present is 1 — x = 0.441, or the mixture consists of 44.1% moisture.
. The specific internal energy can be obtained by combining Eq. (3.27) with the definition ug = u, — us to give u = uy + xug =
ug + x(ug — uy), or

u=180.1 + (0.559)(1077.6 — 180.1) = 682 Btu/lbm

d. The specific enthalpy can be obtained by combining Eq. (3.27) with the definition hg, = hy — hy to give h = hy + xhy, =
hy + x(hg — hy), or
h=180.1 + (0.559)(1150.5 — 180.1) = 722 Btu/lbm
e. To obtain the mass of water in the liquid and vapor phases, we can use the original definition of quality given in Eq.

(3.22) to get my = xm = 0.559(0.2) = 0.112 Ibm of saturated water vapor and then my = (1 — x)m = m — m, = 0.088 lbm
of saturated liquid water.

EXAMPLE 3.5

What total mass of saturated water (liquid plus vapor) should be put into a 0.500 ft* sealed, rigid container at 14.696 psia so that
the water passes exactly through the critical state when the container is heated? Also, determine the initial quality in the vessel.

Solution
Processes carried out in sealed rigid containers are constant volume (or isochoric) processes. Therefore, the process path on a
p-v diagram is a vertical straight line, as shown in the p-v diagram of Figure 3.19. In this problem, we are given the final

(Continued )
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EXAMPLE 3.5 (Continued)

state (the critical state), and we are asked to determine a thermodynamic property (the mass) at the initial state. In Table 3.4
or Table C.12a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics, we find for water that p, = 3203.8
psia, T, = 1165.1R, and v, = 0.05053 ft3/lbm. Also, since both the volume and mass are constant here, v, = v; = v.. This
process can then be diagrammed as follows:

Constant volume

Initial state — Final state
process
p1 = 14.696 psia P2 = Pe
T, = 212°F (saturated) T, =T,
v, = v, (from the process path) V) =1,
Therefore,
V 4 \a 0.500 ft3
m= ——=—=—=——>"—-—___ =9901Ib
v v w 0.05053fC/Ibm m

We can now find the quality in the initial state by using Eq. (3.26) and the data given in Example 3.2 as

v—y Ve—1v 0.05053 —0.01672) ft3/1b
Pl A Sl )3 /Ibm =1.26x107 = 0.126% vapor
U1 Vg1 — Uy (26.8-0.01672) ft3/lbm

— Final state (critical point)
=)
=
S
p Il
=
14.696 Initial state
psia
. N

p-v diagram

FIGURE 3.19
Example 3.5. Note that, since the quality is not defined at the critical state (quality is one of the properties that has a discontinuity
there), no value for x» = X, can be given.

3.9 THERMODYNAMIC EQUATIONS OF STATE

In this section, we discuss some of the basic p-v-T equations of state for various substances. These equations can
be easily typed into a computer spreadsheet, which greatly simplifies the calculations and allows for studying
the effect of varying individual terms and plotting of the results. All engineering students today have access to a
computer, and numerous computer programs can be found on the Internet that calculate the thermodynamic
properties of water, refrigerants, and various other substances.

WHO WAS EMMY NOETHER?
PART 3

From 1908 to 1915, Emmy Noether taught at the University of Erlangen’s Mathematical Institute without pay, occasionally
substituting for her father when he was too ill to lecture. In the spring of 1915, she was invited to return to the University
of Géttingen by David Hilbert and Felix Klein. Their effort to recruit her, however, was blocked by the faculty: Women,
they insisted, should not become faculty. One faculty member protested: “What will our soldiers think when they return to
the university and find that they are required to learn at the feet of a woman?” Hilbert responded with indignation, stating,
“I do not see that the sex of the candidate is an argument against her admission as faculty.® After all, we are a university,

not a bath house.”
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When World War I ended, significant social changes occurred in Germany, including more rights for women. In 1919, the
University of Gottingen allowed Noether to proceed with her habilitation (eligibility for tenure), and she was given tenure
in June 1919.

She had a very successful career in advanced mathematics, and one of her most important but unheralded discoveries is
Noether's theorem, which proves a relationship between symmetries and conservation principles. This basic result was
praised by Albert Einstein in a letter to David Hilbert, when he referred to Noether’s “penetrating mathematical thinking.”
It was her work that led to formulations for several concepts of Einstein’s general theory of relativity.

3 The actual term is privatdozent, which means an unsalaried university “private” lecturer or teacher paid directly by the students.

CRITICAL THINKING

If an equation of state is an equation that relates thermodynamic properties of the system when it is in different thermody-
namic states, then what can you say about a system that has an equation of state of the form pT = constant, where p is the
absolute pressure and T is the corresponding absolute temperature of the system at any time?

Most materials have very complex thermodynamic equations of state, which are not given in textbooks. How-
ever, these complex equations are easily solved by computer programs like spreadsheets, Engineering Equation
Solver,* Matlab, and so forth, which are readily available today. Thermodynamic property programs can also be
found for PDAs and smart cell phones.’

While engineers in the 21st century use computer programs to find the thermodynamic property values they
need, thermodynamic courses still rely on the use of printed property tables and charts in textbooks. However,
students are encouraged to search out and use modern computer programs to solve problems or to verify that
their table or chart solutions are correct.

In this section, we focus on the relatively simple equations of state of incompressible substances, ideal gases,
and a few variations on the ideal gas equation. A more comprehensive discussion of the behavior of real gases
is given in a subsequent chapter.

3.9.1 Incompressible Materials

The simplest equation of state is that for an incompressible material. One of its equations of state is merely v =
constant. This equation can be used for either a solid or a liquid, but it cannot be used for a vapor or a gas.
Incompressible substances also have one other state equation, which specifies that the specific internal energy of
an incompressible material is a function of only one variable, temperature. Thus, the full set of state equations
that characterize an incompressible material are

v = constant (3.28)
and

u=u(T) (3.29)

The constant volume specific heat of an incompressible material is given by Eq. (3.15) as

() _du g
C = <0T>u =7 (since u is independent of v here) (3.30)

Because the specific enthalpy is defined as h=u + pv, Eq. (3.19) gives the constant pressure specific heat of an
incompressible material as

_(Oh\ _du  (9(pv)\ _ du _ _
cp_<ﬁ)ﬁ_ﬁ+(aT )p—d—T+PUﬂ—Cu—C(Whenﬂ—0) (3:31)

4 F-Chart Software, Box 44042, Madison, WI 53744 (info@fchart.com).
> For example, see enggtools.com, processacesoftware.com, and appstorehq.com/engineeringtables.
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since for incompressible materials v = constant and $=0. However, note that, since f is very small for most
liquids and solids (see Tables 3.1 and 3.2), these substances can be accurately modelled as incompressible mate-
rials. The subscripts p and v are meaningless for an incompressible material, and the simple phrase specific heat,
represented by the symbol ¢ with no subscript, is sufficient. Thus, for all incompressible substances, ¢, = c, = c.
Consequently, for these materials, we can write

T,
Uy — U =/ cdT (3.32)

Ty
and if ¢ is constant over the temperature range from T; to T,, then Eq. (3.32) becomes
u—u =c(Th—T) (3.33)
Also, since v, = v; = v here,
hy—hy =c(Ta=Ty) + v(pa—p1) (3.34)

Tables 3.5 and 3.6 list the specific heats of some materials whose liquid and solid phases accurately approximate
incompressible substances.

Table 3.5 Specific Heats of Various Liquids at Atmospheric Pressure
T c
Substance R K Btu/lbm - R kJ/kg - K
Benzene 520. 289 0.430 1.800
Butane (n) 492 273 0.550 2.303
Glycerin 510. 283 0.576 2.320
Mercury 510. 283 0.033 0.138
Propane 492 273 0.576 2.412
Water 492 273 1.007 4.186
Source: Some material drawn from Wark, K., Jr. 1988. Thermodynamics, fifth ed. McGraw-Hill, New York. Reprinted by permission of the publisher.

Table 3.6 Specific Heats of Various Solids at Atmospheric Pressure
T c

Substance R K Btu/lbm - R kJd/kg - K
Aluminum 360. 200. 0.190 0.797

540. 300. 0.215 0.902

720. 400. 0.227 0.949

900. 500. 0.238 0.997
Copper 540. 300. 0.092 0.386

851 473 0.096 0.403
Graphite 527 293 0.170 0.712
Iron 527 293 0.107 0.448
Lead 540. 300. 0.031 0.129

851 473 0.032 0.136
Rubber 527 293 0.439 1.84
Silver 527 293 0.056 0.233
Water (ice) 492 273 0.504 211
Wood 527 293 0.420 1.76
Source: Excerpted from Wark, K., Jr. 1988. Thermodynamics, fifth ed. McGraw-Hill, New York. Reprinted by permission of the publisher.
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EXAMPLE 3.6

Determine the change in specific internal energy and specific

enthalpy of an incompressible hardwood as it is heated from a 0%8(? MCPa 11(?81\4(153
temperature and pressure of 20.0°C, 0.100 MPa to a temperature
and pressure of 100.°C and 1.00 MPa (Figure 3.20). Assume the
wood has a constant density of 515 kg/m> and a constant specific
heat over this temperature and pressure range.
. State 1 State 2
Solution
The changes in specific internal energy and specific enthalpy of a  FIGURE 3.20
constant specific heat incompressible material are given Fxample 3.6.

by Egs. (3.33) and (3.34), and the specific heat of
wood is found in Table 3.6 to be ¢ = 1.76 kJ/kg- K.
Then, Eq. (3.33) gives

uy —uy =¢(To—Ty)
= (1.76 kJ/kg - K)[(100 + 273.15) — (20.0 + 273.15) K] = 141 kJ /kg

Notice that we could have used either °C or K for the temperature difference T, — T;. This is because the Celsius and Kelvin
degree sizes are exactly the same, only their zero points differ. From Eq. (3.34), we have v = 1/p = 1/515 = 0.00194 m>/kg
and

hy —hy = ¢(To = Th) + v(py —p1) = Uy —thy + v(p2 = p1)
=141 + (0.00194 m’ /kg) (1.00 x 10° — 100. kN/m?) = 143 kj /kg
where we have converted the units of pressure into kN/m? so that the units of u and of the pv product match exactly.

Exercises

9. Determine the changes in specific internal energy and specific enthalpy of liquid propane as it is heated from —90.0°C,
0.100 MPa to —50.0°C, 1.00 MPa. Assume that liquid propane has a constant density of 615 kg/m> and a constant
specific heat over this temperature and pressure range. Answer: u, —u; = 96.5 kJ/kg and h, — h; = 97.9 kJ/kg.

10. Determine the changes in specific internal energy and specific enthalpy of a block of iron as it is heated in an oven at
atmospheric pressure from 70.0°F to 250.°F. Assume that iron has a density of 490. Ibm/ft*> and a constant specific heat
over this temperature and pressure range. Answer: u, — u; = 19.3 Btu/lbm and h, — h; = 19.3 Btu/lbm.

3.9.2 Ideal Gases

The next simplest equation of state is that of an ideal gas. It is important because all gases approach ideal gas
behavior at low pressure. Like an incompressible substance, an ideal gas is also defined by two state equations,
both of which must be obeyed if a gas is to be called ideal. The first equation of state is the common ideal gas
law, which has the following four equivalent forms:

PV = mRT (3.35a)
pv =RT (3.35b)
p¥ = nRT (3-35¢)
o7 = RT (3.35d)

where n=m/M is the number of moles, ¥ = ¥/n is the molar specific volume, and R is the universal gas constant
whose value is

R = 1545.35 ft - Ibf/(Ibmole - R) = 1.986Btu/(lbmole - R)
= 8314 joule/(kgmole - K) = 8.314 kJ/(kgmole - K)

The second state equation used to define an ideal gas is that its specific internal energy is only a function of
temperature, or

u=u(T) (3.36)
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ARE “GREENHOUSE” GASES ALSO “IDEAL” GASES?

Many of the gases found in the Earth’s atmosphere behave as ideal gases, and a few are classified as “greenhouse gases.” Some
atmospheric gases trap the heat of sunlight that enters the Earth’s atmosphere just like the glass of a greenhouse traps the heat
of incoming sunlight. Many people now believe that increasing the atmospheric concentrations of these gases is producing a
global warming that will reach 3-10°F by 2100.

Atmospheric carbon dioxide is a major greenhouse gas. Oceans and growing plants remove billions of tons of atmospheric
CO, from the atmosphere every year, but since the 1700s, the burning of oil, coal, and gas and continued deforestation
have increased the atmospheric CO, concentration by about 30%.

Carbon dioxide is used extensively in carbonated beverages. It gives the beverage its sparkle and tangy taste, and because it
forms a weak acidic solution in water (carbonic acid), it inhibits the growth of mold and bacteria. Soft drinks are carbonated
by chilling the water and cascading it in thin sheets in an enclosure containing pressurized CO, gas, then flavoring is added.

If the amount of CO, absorbed in water increases with increased surface area, then does the pressure in a soda can increase or
decrease when you shake it? Answer: The pressure actually goes down a little as you shake it because more CO, is dissolved
due to the increased surface area produced by the shaking. But when you open it after shaking, it squirts a lot of bubbles
because there is now too much CO, in solution and it comes out rapidly, as the can is depressurized when you open it.

As in the case of an incompressible substance, Eq. (3.15) gives the constant volume specific heat of an ideal gas
(since u does not depend on v) as

and if ¢, is constant over the temperature range from T, to T,, then integration of Eq. (3.37) gives
Uy —uy = Cv(Tz—Tl) (338)

Thus, for a constant specific heat ideal gas, Eq. (3.38) is valid for any process (not just a constant volume process),
because the internal energy of an ideal gas does not depend on its volume. Note that, even for a constant pres-
sure (isobaric) process, Eq. (3.38) is valid when a constant specific heat ideal gas is used.

Combining Egs. (3.17) and (3.35b) gives the specific enthalpy of an ideal gas as
h=u+pv=u+RT (3.39)

From Eqs. (3.19) and (3.39), we see that the constant pressure specific heat does not depend on the
pressure, so

oh dh _ du
= (&) 4% _ 24 R 4
“ (aT)p ar —ar * (3.40)
And for an ideal gas, du/dT = ¢,, so Eq. (3.40) becomes
¢ =¢+R (3.41)

If ¢, is constant over the temperature range from T, to T,, integration of Eq. (3.40) gives
hz—hl = Cp(Tz—Tl) (342)

Thus, for a constant specific heat ideal gas, Eq. (3.42) is valid for any process (not just a constant pressure
process), because the enthalpy of an ideal gas does not depend on its pressure. Thus, even for an isochoric
(constant volume) process, Eq. (3.42) is valid when a constant specific heat ideal gas is used. Values of ¢, c,
and the gas constant R are given in Table 3.7 for a variety of common gases at low pressure that behave as
ideal gases. A larger table can be found in Table C.13 of Thermodynamic Tables to accompany Modern Engineering
Thermodynamics.

3.9.3 Variable Specific Heats

Note that, even though the values of ¢, and ¢, for an ideal gas do not depend on p and v, they may depend on
temperature. We can improve the accuracy of an ideal gas calculation by utilizing the concept of variable specific
heats. By integrating Eqns. (3.37) and (3.40), we obtain

T,
Uy — Uy =/ ¢, dT
Ty
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Table 3.7 Properties of Various Gases at Low Pressure (also see Table C.13)
R Cp Cy

Substance M Btu/lbm - R kd/kg - K  Btu/lbm-R kJ/kg-K Btu/lom-R kJ/kg K k=cy/c,
Air 28.97 0.0685 0.286 0.240 1.004 0.172 0.718 1.40
Argon (Ar) 39.94 0.0497 0.208 0.125 0.523 0.075 0.315 1.67
Carbon dioxide (COy) 44.01 0.0451 0.189 0.202 0.845 0.157 0.656 1.29
Carbon monoxide (CO)  28.01 0.0709 0.297 0.249 1.042 0.178 0.745 1.40
Helium (He) 4.003 0.4961 2.077 1.24 5.200 0.744 3.123 1.67
Hydrogen (H,) 2.016 0.9850 4124 3.42 14.32 2.435 10.19 1.40
Methane (CH,) 16.04 0.1238 0.518 0.532 2.227 0.408 1.709 1.30
Nitrogen (No) 28.02 0.0709 0.296 0.248 1.038 0177 0.742 1.40
Oxygen (Oo) 32.00 0.0621 0.260 0.219 0.917 0.157 0.657 1.39
Source: Reprinted by permission of the publisher from Reynolds, W. C., Perkins, H. C., 1977. Engineering Thermodynamics, second ed. McGraw-Hill, New York.
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FIGURE 3.21
Specific heats of selected gases (data from the National Bureau of Standards). (Source: Reprinted by permission of the publisher from
Reynolds, W. C., Perkins, H. C., 1977. Engineering Dynamics. McGraw-Hill, New York.)

and

T,
h2 —}’ll = / deT
T,

1

Table C.16 in Thermodynamic Tables to accompany Modern Engineering Thermodynamics contains values for these
integrals for air. (Note: The p, and v, columns are used for entropy values introduced later in this textbook).
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Figure 3.21 illustrates the temperature and pressure dependence of ¢, and ¢, for various common gases. Note
that the specific heat temperature dependence is fairly weak, and most ideal gases can be considered to have
constant specific heats over temperature ranges of a few hundred degrees.

EXAMPLE 3.7

Determine the change in specific internal energy and specific enthalpy of air as it is cooled in a closed, rigid tank from a
temperature and pressure of 240.°F, 150 psia to a temperature and pressure of 80.0°F and 14.7 psia (Figure 3.22). Assume
the air behaves as (a) a constant specific heat ideal gas and (b) as a variable specific heat ideal gas.

Solution

a.

b.

The changes in specific internal energy and specific enthalpy
of an ideal gas are given by Egs. (3.38) and (3.42). The constant pressure and constant volume specific heats of air are
found in Table 3.7 (or Table C.13) as ¢, = 0.240 Btu/lbm - R and ¢, = 0.172 Btu/lbm - R. Then Eq. (3.38) gives

u —uy = ¢,(Ty = T1) = (0.172 Btu/Ibm - R)[(80.0 + 459.67) — (240. + 459.67) R] = -27.5 Btu/Ibm
and from Eq. 3.42, we have
hy —hy = Cp(Tz = Tl) = (0.240 Btu/lbm ° R)(SOO = 240.0F) =-384 Btu/lbm

Notice that you can use either fahrenheit or rankine values when computing the temperature difference T, — T}
because the fahrenheit and rankine degree sizes are the same, only their zero points are different.

Values for u and h for variable specific heat air can be found in Table C.16. At T; = 240 + 459.67 = 700 R,
h; = 167.56 Btu/lbm and u; = 119.58 Btu/lbm; and at T, = 80 + 459.67 = 540. R, h; = 129.06 Btu/lbm and
u; = 92.04 Btu/lbm. Then the changes are

u; —u; =92.04-119.58 = -27.5,
and

hy —h; =129.06—-167.56 = -38.5

Exercises State | ———> Aiir (an ideal gas) ——> State 2

11.

12.

Determine the changes in specific internal energy and
specific enthalpy as air is heated at constant pressure of
0.100 MPa from 300. K to 1500. K. Assume air behaves as
(a) a constant specific heat ideal gas, and (b) as a variable
specific heat ideal gas. Answer: (a) u, — u; = 862 kj/kg
and h, — h; = 1205 KJ/kg; (b) up — u; = 991.38 kJ/kg and
hy — hy = 1335.8 kJ/kg. The difference in the results of (a)
and (b) is due to the large temperature difference between
the two states.

State 1 State 2
240.°F 80.0°F
150. psia 14.7 psia

Determine the changes in specific internal energy and
specific enthalpy as methane is compressed at constant
temperature of 20.0°C from 0.100 MPa to 10.0 MPa.
Assume that methane behaves as a constant specific

heat ideal gas. Answer: u, — u; = hy — h; = 0. The specific
; : ; FIGURE 3.22
internal energy and specific enthalpy of an ideal gas

depend only on temperature, so changing just the Example 3.7.

pressure on the gas does not alter the values of either
u or h.

Normally, only low molecular mass real gases at high temperature or low pressure obey the ideal gas equation
of state with good accuracy. For real gases with complex molecular structures or real gases approaching their
saturated vapor region, more complex equations of state are required. The following equations have modifica-
tions to the ideal gas p-v-T equation that are intended to account for observed real gas behavior.
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The Clausius equation of state accounts for the volume actually occupied by the gas molecules themselves. If we
let b represent the specific volume of the molecules themselves, then the Clausius equation of state is

pv=b) =

RT

(3.43)

In 1873, van der Waals included a second correction factor to account for the forces of molecular attraction.
These forces produce a net decrease in the observed pressure that is inversely proportional to v*>. The van der

Waals equation of state has the form

(p+ 1f’—2>(v—b) =RT

(3.44)

The values of the molecular coefficients a and b in Egs. (3.43) and (3.44) can be found in Table C.15 of
Thermodynamic Tables to accompany Modern Engineering Thermodynamics.

Other important real gas equations of state that are commonly used in engineering analysis are the Dieterici

equation,

p(v—0b) = RT exp[ — a/(RTv)]

and the Berthelot equation,

p(v—b) =RT -

(50

(3.45)

(3.46)

But perhaps the most useful, best known, and most accurate equations of state for real gases are those of Beattie

and Bridgeman,

p=(55)w+BRT-5

where

A=A¢(1-afv), B=Bo(1-b/v), ande:v

and Redlich and Kwong,

A

p(v=Db) =RT—L(v—b)

T

v+b

(3.47)

(3.48)

where Ay, By, a, b, and ¢ are constants, whose values for various gases can be found in Table C.15.

A more general form for a real gas equation of state is a power series expansion such as

A

=RT+ 2+
pU v v

C
v

+ + ...

(3.49)

where A, B, C, ... are all empirically determined functions of temperature. These equations are called virial expan-
sions, and the temperature dependent coefficients A, B, C, ... are called the virial coefficients.

EXAMPLE 3.8

When an artillery cannon using a nitrocellulose propellant is
fired, a maximum temperature of 2830°C is measured in
the breech behind the moving projectile. The density of the
propellant gases at this temperature is 200. kg/m?, and
the molecular mass of the propellant gases is 23.26 kg/kgmole.
The volume occupied by the molecules of the propellant gases
is b = 0.960 x 107> m>/kg (Figure 3.23). Determine the maxi-
mum pressure in the breech as the cannon fires.

FIGURE 3.23
Example 3.8.

(Continued )
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EXAMPLE 3.8 (Continued )

Solution

Since the temperature is very high, we can ignore the intermolecular forces in the propellant gases and use the Clausius
equation of state (this equation is known as the Noble-Abel equation in ballistics literature): p(v — b) = RT, where R = R/M
and R = 8314.3N - m/(kgmole - K) is the universal gas constant. Then,

— meax
Pmax = 30 _b)
where v = 1/p = 1/(200. kg/m?) = 5.00 x 10~ m?/kg; and
_ RTmw [8314.3 Ngm/(kgmolegK)] (2830 + 273.15K)
fpzer: = M(v—b) ~ (23.26 kg/kgmole)(5.00 x 1073 —0.960 x 10> m3/kg)

.
=2.7456 x 108 N/m? = (2.7456 x 10° N/m2)< 1Ibf/in )

6894.76 N/m?2
= 39,800 Ibf/in? absolute = 39,800 psia

Exercises

13. Determine the breech temperature in Example 3.8 if the breech pressure is 60.0 x 10> psia and all the remaining
variables are as given in the example. Answer: Tyeech = 4400°C.

14. Use the van der Waals equation of state to determine the pressure of water vapor at 100°C when the specific volume is
57.79 m?/kg. Answer: p = 2.98 kPa. (Hint: The values of a and b for water vapor can be found in Table C.15.)

WHO WAS EMMY NOETHER?
PART 4

When Adolf Hitler became chancellor of Germany in January 1933, one of the first actions of his administration was to
remove all Jews from government positions (including university professors). In April 1933, Noether received a notice that
her right to teach at the University of Gottingen had been withdrawn.

She joined the ranks of dozens of newly unemployed German professors who were searching for positions outside of Ger-
many. Albert Einstein and Hermann Weyl were subsequently moved to the Institute for Advanced Study in Princeton, and
late in 1933, Emmy Noether accepted a position at Bryn Mawr College, which is located ten miles west of Philadelphia,
Pennsylvania.

In 1934, Noether began lecturing at the Institute for Advanced Study in Princeton (then an all-male university), but she felt
that she was not welcome at the “men’s university, where nothing female is admitted.”

Emmy Noether once said, “If one proves the equality of two numbers a and b by showing first that a is less than or equal
to b, and then a is greater than or equal to b, it is unfair, one should instead show that they are really equal by disclosing
the inner ground for their equality.”

On April 14, 1934, Emmy Noether died suddenly after an operation for a pelvic tumor. Her body was cremated and her
ashes interred under the walkway around the cloisters of the M. Carey Thomas Library at Bryn Mawr College.

3.10 THERMODYNAMIC TABLES

Thermodynamic tables are generated from complex equations of state, which in turn were developed from
accurate experimental data. These tables are quick and easy to use, but they are not available for all materials of
engineering interest. Tables C.1 through C.13 in the Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics give the thermodynamic properties of a variety of substances. Basically, only three types of tables are
given there: pressure and temperature entry saturation tables, superheated vapor tables, and compressed or sub-
cooled liquid tables. The saturation tables contain properties only along the saturation curve (x=0 and x=1) and
no property values of liquid-vapor mixtures. These mixture properties must be calculated from the saturation
values and the quality using Eq. (3.27). The superheated vapor and compressed liquid tables provide values
throughout their regions of definition. Figure 3.24 illustrates the range of applicability of these tables.
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Regions of application of thermodynamic tables.

When thermodynamic data are given in problem statements, you normally are not told whether the state of
the system is compressed, saturated, or superheated. To decide which table to use, you must be able to deduce
the state of the system from the information given. This can be done by comparing the given properties with
the saturation properties at the same temperature or pressure. For example, suppose you are given water at
500°F and 1000. psia. How can you tell if it is a compressed liquid, saturated liquid, a mixture of liquid plus
vapor (i.e., wet), a saturated vapor, or a superheated vapor? The answer is obtained from the saturation data in
Table C.1a or C.2a of Thermodynamic Tables to accompany Modern Engineering Thermodynamics. These tables
tell you that, at 500°F, the saturation pressure is 680.8 psia, and at 1000. psia, the saturation temperature is
544.61°F. First of all, we could use the saturation pressure of 680.8 psia as a guide and note that the actual state
(500°F, 1000. psia) is at a pressure greater than that required to produce a saturated liquid at 500°F, conse-
quently the water must be in a compressed liquid state. Alternatively, we could use the saturation temperature
of 544.61°F as a guide and note that the actual state has a temperature (500.°F) that is less than that required
for a saturated liquid at 1000. psia (544.61°F), so again the water must be in a compressed (or subcooled)
liquid state. Consequently, we obtain all other desired property information from Table C.4a, the compressed
water table.

Similarly, in metric units, if you have water at 1.00 MPa and 200°C, a check of the saturation data in Table C.1b
reveals that, at 200.°C, the saturation pressure is 1.554 MPa, which is greater than the actual pressure of
1.00 MPa. Therefore, the actual state of the water must be in the superheated vapor region. A check of
Table C.3b reveals that this state can be easily found in the table.

How do you decide which table to use when you are given properties other than pressure and temperature? You use
the same basic technique. For example, suppose you are given 3.00 Ibm of water in a 15.0 ft® closed, rigid container
at 14.696 psia. The specific volume of the system, then, is v=15.0/3.00 = 5.00 ft’/Ibm. A check of Table C.2a reveals
that, at 14.696 psia, vy = 0.01672 ft*/Ibm, and v, =26.80 ft’/Ibm. Since the actual specific volume (5.00 ft*/lbm)
falls between these two values (vf < v < 1), the state of the water must be in the liquid plus vapor (wet) region, and
it therefore has a quality of x = (5.00 — 0.01672)/(26.8 — 0.01672) = 0.186, or 18.6%. To get more familiar with
these tables, it is recommended that you verify the states given in Table 3.8 for water.

Table 3.8 The States of Water Fixed by Various Combinations of Property Pairs
Pair of Independent Properties State (Correct Table to Use)

T = 500.°F, p = 1000. psia Compressed or subcooled liquid (C.4a)
p =1.00 MPa, T = 200.°C Superheated vapor (C.3b)

T=170°F, x=1.0 Saturated vapor (C.1a)

p = 14.696 psia, v = 5.00 ft%/lbm Liquid-vapor mixture (C.2a)

u = 500. Btu/lbm, p = 100. psia Liquid-vapor mixture (C.2a)

h =1192.6 Btu/lbm, T = 300.°F Superheated vapor (C.3a)

p =0.100 MPa, h = 200. kJ/kg Compressed or subcooled liquid (C.4b)
T =100.°C, v = 8.585 m°/kg Superheated vapor (C.3b)

v=0.10 m¥kg, x = 1.0 Saturated vapor (C.1b or C.2b)

h = 3157.7 kJ/kg, u = 2875.2 kd/kg Superheated vapor (C.3b)
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3.11 HOW DO YOU DETERMINE THE “THERMODYNAMIC STATE”?

First, remember that you need the values of only two independent intensive thermodynamic properties to fix the
state of a homogeneous material, and the problem statement always provides these values. Usually, you are
given the values of pressure, temperature, or specific volume in the problem statement. Sometimes specific inter-
nal energy or specific enthalpy also is one of the values given.

Second, choose one of the two given values and look up the corresponding saturation values (f and g) of the
other given property from the saturation tables in Thermodynamic Tables to accompany Modern Engineering Thermo-
dynamics, Tables C.1 and C.2, for your material and compare them with the given value. You can then determine
the state of your material by following the rules in Table 3.9.

For example, if you are given water at a pressure of 1.0 MPa and a temperature of 200.°C, then you could
choose pgiven = 1.0 MPa and look up T, at that value of pgjyen. From Table C.1 at pgiven = 1.0 MPa, you find that
Tgq = 179.9°C. Since your value of Tgjyen = 200.°C > Ty, = 179.9°C, the water must be in a superheated vapor
state. Similarly, if you choose Tgjyen = 200.°C instead of pgjven, then you would look up ps, at that value of Tgjyen.
From Table C.1 at Tgjyen = 200.°C, you find that py, = 1.554 MPa. Since your value of pgiyen = 1.0 MPa < pgy=
1.554 MPa, you again conclude that the water must be in a superheated vapor state.

While it is true that any pair of independent properties fix the state of a simple substance subjected to only one
work mode, you must be able to deduce the system’s thermodynamic state (compressed liquid, saturated liquid
or vapor, liquid-vapor mixture, or superheated vapor) from the data given in a problem statement to know in
which table to find the other properties required in the analysis. It is important to remember that thermodynamic
states are unique and a given pair of independent properties fix the state at only one point in the tables. It is there-
fore essential to understand how to determine which table to use in the solution of a thermodynamics problem.

In Example 3.9, we introduce notation of the form v(X°F, Y psia), which represents the value of the specific
volume evaluated at X°F and Y psia. For example, v(100.°F, 50. psia) means the value of the specific volume at
100.°F and 50. psia. This is a convenient way of recording the pair of independent intensive properties used to
determine the value of v. The same notation is used with the intensive properties u and h.

Table 3.9 How to Find the Thermodynamic “State”

Then You Have a
Properties Given in the Look Up in Compressed Mixture of Liquid  Superheated
Problem Statement Choose Appropriate Table Liquid If and Vapor If Vapor If
Pgivens Tgiven Pgiven Tsat at Pgiven Tgiven < Tsat Tgiven = Tsat Tgiven > Teat
Pgiven: Tgiven Tgiven Psat at Tgiven Pgiven > Psat Pgiven = Psat Pgiven < Psat
Pgivens Vgiven Pgiven vr and vy Ogiven < Uf vf < Ugiven < g Ugiven > Vg
Pgivens Ugiven Pgiven ur and ug Ugiven < Ur Ur < Ugiven < Ug Ugiven > Ug
Pgiven» Ngiven Pgiven hyand hg hgiven < hy hy < hgiven < hg hgiven > hg
Tgivens Ogiven Tgiven vr and vy Ugiven < Vf vf < Ogiven < Vg Ogiven > Vg
Tgivens Ugiven Tgven urand ug Ugiven < Us Us < Ugiven < Ug Ugiven > Ug
Tgivens Ngjven Taiven hy and hg hgiven < hy hy < hgiven < hg hgiven > hg

EXAMPLE 3.9

Find the specific volume and specific enthalpy of Refrigerant-134a at 100.°F
and 95.0 psia (Figure 3.25).

. R-134a
Solution T=100.°F
A check of Table C.7a of Thermodynamic Tables to accompany Modern Engineering p=95.0 psia
Thermodynamics reveals that the saturation pressure of Refrigerant-134a at v=17

h="?

100.°F is 138.83 psia. Since our actual pressure is less than the saturation pres-
sure, we must have superheated vapor. A check of Table C.8a reveals that
100.°F and 95.0 psia is indeed in the superheated region. However, 95.0 psia
is not a direct entry into this table, so we must use linear interpolation to find FIGURE 3.25
the needed values. This is how a linear interpolation for v is carried out: Example 3.9.




3.12 Thermodynamic Charts

v(100.°F, 95.0 psia) —v(100.°F, 90 psia)  v(100.°F, 100. psia) —v(100.°F, 90.0 psia)

95.0 psia—90.0 psia 100. psia—90.0 psia
or

v(100.°F, 95.0 psia) = v(100.°F, 90 psia)

<95‘O psia—90.0 psia

100, psia—90.0 psia) [¥(100.°F, 100. psia) —v(100.°F, 90.0 psia)]

=0.5751 + 0.500(0.5086—0.5751) = 0.54185 ft*/lbm

And interpolating for the specific enthalpy h gives

h(100.°F, 95.0 psia) —h(100.°F, 90.0 psia) _ h(100.°F, 100. psia) —h(100.°F, 90.0 psia)

95.0 psia—90.0 psia 100. psia—90.0 psia
or
h(100°F, 95 psia) = h(100.°F, 90 psia)
95.0 psia=90.0 psia\ i, 4 g o 100, psia) - h(100.°F, 90.0 psia)]
100. psia—90.0 psia
=118.39 + 0.500(117.73 -118.39) = 118.06 Btu/lbm
Exercises

15. Use Table C.1b to find the values of pgy vy, v,, Uy Ui, hy, and hy for saturated water at 100.°C. Answers: pg, = 0.1013 MPa,
vy = 0.001044 m>/kg, v, = 1.673 m’/kg, u; = 418.9 ki/kg, u, = 2506.5 kJ/kg, hy= 419.0 kJ/kg, and h, = 2676.0 kJ/kg.

16. Use Table C.3a to find the values of v, u, and h for superheated water vapor at 2000. psia and 1000.°F. Answers:
v = 0.3945 ft*/lbm, u = 1328.1 Btu/lbm, and h = 1474.1 Btu/lbm.

17. Use Table C.4b to find the values of v, u, and h for compressed liquid water at 30.0 MPa and 200.°C. Answers:
v =0.0011302 m?/kg, u = 831.4 kJ/kg, and h = 865.3 kJ/kg.

18. Use Table C.5a to find the values of T,y psay Vg and hy for saturated ammonia when vy = 0.02446 ft*/lbm and
hy = 53.8 Btu/Ibm. Answers: Tgy = 10.0°F, psy = 38.51 psia, v, = 7.304 ft3/lbm, and h, = 614.9 Btu/lbm.

19. Use Table C.8b to find the values of T and h for superheated Refrigerant-134a when the pressure is 0.500 MPa and the
specific volume is 0.06524 m>/kg. Answers: T = 140.°C and h = 382.42 kJ/kg.

6. Use Table C.11a to find the values of T, v, and h for saturated mercury at 1.00 psia and a quality of 50.0%. Answers:
T = Tga = 457.72°F, v = 24.211 ft3/lbm, and h = 77.321 Btu/lbm.

3.12 THERMODYNAMIC CHARTS

Experimental data, equations of state, and statistical thermodynamics results can be combined into very accurate
thermodynamic phase diagrams, called thermodynamic charts. These two-dimensional property diagrams can be
constructed with various useful thermodynamic properties as coordinates. For example, Figure 3.26 shows a spe-
cific volume vs. specific internal energy chart for water. This chart also includes lines of constant pressure, tem-
perature, and quality. Thus, given a pair of independent properties, such as p and T (or p and x in the wet
region), the u and v values can be immediately read from the coordinate axes. Notice that, in the wet region,
where 0 <x < 1, the constant temperature and constant pressure lines lie on top of each other, since p and T are
not independent in this region.

A series of similar charts for a variety of substances can be found in the charts portion of Thermodynamics Table
to accompany Modern Engineering Thermodymanics. It must be emphasized, however, that since the physical size of
these charts is very small, the values taken from them are not as accurate as those taken from a table for the
same substance, even if interpolation must be used within the table. Therefore, small charts like these are used
only when appropriate tables are not available or a state is to be fixed without using either pressure or tempera-
ture. For example, given values for u and v for water, it would be much easier to find the other thermodynamic
properties at that state using Figure 3.26 than to do a double interpolation within the water tables (however,
the accuracy still is not as good as using the tables).
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Thermodynamic properties of steam (H,0). (Source: Reprinted by permission of the publisher from Reynolds, W. C., Perkins, H. C.,

1977. Engineering Thermodynamics, second ed. McGraw-Hill, New York.)



WHO WAS EMMY NOETHER?

PART 5
To the Editor of The New York Times, May 5, 1935:
Within the past few days a distinguished mathematician, Professor Emmy Noether
(Figure 3.27), formerly connected with the University of Géttingen and for the past two
years at Bryn Mawr College, died in her fifty-third year. In the judgment of the most
competent living mathematicians, Friulein Noether was the most significant creative
mathematical genius thus far produced since the higher education of women began. In
the realm of algebra, in which the most gifted mathematicians have been busy for cen-
turies, she discovered methods which have proved of enormous importance in the
development of the present-day younger generation of mathematicians. Pure mathe-
matics is, in its way, the poetry of logical ideas. One seeks the most general ideas of
operation which will bring together in simple, logical and unified form the largest pos-
sible circle of formal relationships. In this effort toward logical beauty spiritual formulas
are discovered necessary for the deeper penetration into the laws of nature.
Born in a Jewish family distinguished for the love of learning, Emmy Noether, who, in
spite of the efforts of the great Gottingen mathematician, Hilbert, never reached the aca-
demic standing due her in her own country, none the less surrounded herself with a
group of students and investigators at Gottingen, who have already become distin-
guished as teachers and investigators. Her unselfish, significant work over a period of
many years was rewarded by the new rulers of Germany with a dismissal, which cost
her the means of maintaining her simple life and the opportunity to carry on her math-
ematical studies. Farsighted friends of science in this country were fortunately able to
make such arrangements at Bryn Mawr College and at Princeton that she found in
America up to the day of her death not only colleagues who esteemed her friendship
but grateful pupils whose enthusiasm made her last years the happiest and perhaps the
most fruitful of her entire career.
Albert Einstein
Princeton University, May 1, 1935

3.13 THERMODYNAMIC PROPERTY SOFTWARE

3.13 Thermodynamic Property Software a

FIGURE 3.27
Emmy Noether.

Very few 21st century engineers use tables and charts. Numerous computer programs can provide the numerical

values of properties. Some of the more common are listed in Table 3.10.

Since these programs do not all use the same property equations, they do not give exactly the same numerical
results. However, any differences are insignificant. In the examples and problems in this textbook, a variety of
sources (tables and computer programs) have been used, so you may expect to see differences between the
thermodynamic property values used here and values you find from other sources.

Table 3.10 Thermodynamic Property Software

Program Name Source Comments

Mini-NIST Reference Fluid Thermodynamic and  U.S. National Institute of Standards ~ This free program contains properties for water, CO,, No,

Transport Properties (REFPROP)? and Technology CH,4, R134a, propane, and dodecane

EES (Engineering Equation Solver) F-Chart Software This is an excellent program for solving thermodynamics
problems

MathCAD (Functions are available for the Parametric Technology Corporation  MathCAD can perform calculations with automatic unit

thermodynamic properties of various materialsb) (PTC) conversion and checking.

CATT (Computer-Aided Thermodynamic Tables)  John Wiley and Sons Incorporates color phase diagrams showing calculated points

Microsoft Excel (Spreadsheets available for Microsoft Corporation Numerous Excel spreadsheets for thermodynamic properties

thermodynamic properties of various materials) are available on the Internet

@ This free program can be found at www.boulder.nist.gov/div838/theory/reforop/MINIREF/MINIREF.HTM.
b For example, see www.icee.usm.edu/ICEE/conferences/Conference%20Files/ASEE2006/P2006072MCC.pdf.
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Table 3.11 Glossary of Technical Terms Introduced in Chapter 3

Isobaric process

Isochoric process

Internal energy

Enthalpy

Constant volume specific heat (c,)

Constant pressure specific heat (cp)

Allotropic
Triple point
Vaporization
Condensation
Melting
Solidification
Sublimation
Saturation
Critical state
Gas

Quality
Moisture
Wet vapor
Phase

Constant pressure process

Constant volume process

Total energy minus kinetic and potential energy

Internal energy plus the product of pressure and volume

The variation in specific internal energy with respect to temperature while holding
volume constant

The variation in specific enthalpy with respect to temperature while holding
pressure constant

Different solid forms of the same substance

The point where the solid, liquid, and vapor phases coexist in thermal equilibrium.

The transformation of a liquid into a vapor

The transformation of a vapor into a liquid or a solid

The transformation of a solid into a liquid (synonymous with fusion)

The transformation of a liquid into a solid (synonymous with freezing)

The transformation of a solid into a vapor

A condition that exists when two or more phases coexist in equilibrium

The peak of the vaporization curve

The state of any substance whose temperature is greater than that at the critical state
The ratio of the mass of vapor present to the total mass present

The ratio of the mass of liquid present to the total mass present (1.0 minus the quality)
A substance whose state is under the saturation dome

The physical state (or molecular configuration) of matter

SUMMARY

In this chapter, three of the five main techniques used in obtaining values for thermodynamic properties are dis-
cussed. Equations of state, thermodynamic tables, and thermodynamic charts are valuable tools needed in the

thermodynamic analyses that occur in the following chapters.

This chapter also introduces many new technical thermodynamic terms, most of which are listed in the glossary
in Table 3.11. The reader is urged to learn the definitions of these terms. They are freely used in the remaining

chapters under the assumption that their meaning is fully understood by the reader.

Here are some of the more important equations introduced in this chapter. Be careful not to try to use them

blindly without understanding their limitations.

1. General property relations, Eq. (3.2):

and Eq. (3.3):

@[]
HRE)-

2. The definitions of two new physical properties, Egs. (3.5) and (3.6)

and

p= 1 (3—;{) = isobaric coefficient of volume expansion
v »

K=

_1 (@) = isothermal coefficient of compressibility
T

v \dp

3. The definitions of the total and specific energy of a system from Egs. (3.9) and (3.12):

my? , mgZ

E=U+
28, &




10.

11.

and

2 A
e=E/m=u+V—+g—
28 &

The definitions of the constant volume and constant pressure specific heats from Egs. (3.15) and (3.18):
ou .
= <6_T) = constant volume specific heat
v

and

G = (%) = constant pressure specific heat
p

The general definition of enthalpy, Eq. (3.17):
h = u + pv = specific enthalpy

The general definition of quality from Eq. (3.22):

Mg mg

x mg+mg m quality

The definition of the specific volume of a mixture of liquid and vapor using quality, Egs. (3.23) and (3.24):

v=(1-x)vf +xvg = vy + xvp

where v = v, — vy
A more general definition of quality using other specific properties from Eq. (3.27):

For incompressible materials, we have from Eqs. (3.28), (3.33), and (3.34),
Vincompressible material = (V/m)incmopressible material — constant

and
(42 = U1 )incompressible material = ¢(T2 = T1)
so that
(h2 = 11)incompressible material = €(T2 = T1) + v(p2 —p1)

For constant specific heat ideal gases, we have, from Egs. (3.35),

p¥ = mRT = nRT
or

pv=RT
or
pv = RT

from Eq. (3.38),

(U2 = 1 )igeat gas = (T2 = Th),
and, from Eq. (3.42),

(h2 - hl)idealgas = CP(TZ - Tl)
For ideal gases, only the following relation, from Eq. (3.41), also holds:

=0 +R
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Problems (* indicates problems in SI units)

1.

10.

*

If p, v, and T are all intensive independent properties.
a. Show that the following relation is always valid:

AN——) (ﬂ)

), ar ) Nov/,
b. Verify this relation for the equation of state of an ideal gas.
Show that the following equations are valid:

8 o= =), (5

_ _(9p\ (oh

Show that
(), ()
Show that
-3, (3),
Show that

(), =0

A 0.200 m diameter sphere of solid copper is isothermally
compressed from 0.100 to 1000. MPa at 500.°C. Determine the
sphere’s diameter after the compression process.

Assuming that the isothermal coefficient of compressibility is
constant, determine the percent decrease in the volume of liquid
water that undergoes an isothermal increase in pressure of

100. x 10* psia.

Assuming that the isobaric coefficient of volume expansion is
constant, determine the percent increase in the volume of
liquid water that is heated at constant pressure from 50.0 to
212°F.

Some historical researchers believe that Gabriel Daniel
Fahrenheit (1686-1736) constructed his well-known
temperature scale based on the isobaric coefficient of volume
expansion of mercury rather than with fixed reference
temperatures. It is thought that he may have defined his degree
size to be the temperature change required to isobarically
change the volume of mercury by 1/10,000th of its value at the
zero point of his scale. Modern measurements established that
the isobaric coefficient of volume expansion of mercury at 0.00°F
is 1.015 x 10™* R™". Consider an ordinary glass thermometer
with a bore of radius r and a reservoir bulb of volume ¥, at the
bottom. Ignoring the expansion of the glass itself and assuming
that the isobaric coefficient of volume expansion is a constant,
determine the relationship between the change in length of the
mercury column (AL) and the bulb volume (%), the initial
length of the mercury column (L), the isobaric coefficient of
volume expansion (f), and the temperature change (AT). Is AL
independent of Ly? If not, then the temperature interval divisions
are not the same size along the length of the thermometer.
Determine the percent difference in AL between Ly = 0 and

Lo = 30.0 em if (¥,) = 0.500 cm® and 7 = 0.100 mm.

Assuming that all physical properties are constant, use Table 3.2
to find the percent change in the volume of liquid glycerin as it

12.

13.

14.

*

is heated from 20.0 to 150.°C while simultaneously being
pressurized from 0.100 to 10.0 MPa.

Use Table 3.2 to find the gauge pressure that would have to be
exerted on liquid diethyl ether to prevent any change in its
volume as it is heated from 0.00 to 50.0°C. Assume all the
physical properties are constant for this process.

Use Table 3.2 to find the temperature to which mercury needs
to be heated to prevent any change in its volume as it is
pressurized at 70.0°F from 14.7 to 1000. psia. Assume all
physical properties are constant for this process.

Using the relations p = constant and g = C; T + C,, integrate
Eq. (3.23) to obtain the result

vy = U1€Xp{[C1(T2 + Tl)/z + CQ](TQ —Tl)}
and show that this is the same as
V2 =1 exp[ﬂavg (TZ - Tl)}

where ﬁavg = (ﬂZ + ﬂl)/z
a. For an ideal gas, mathematically evaluate the partial

derivative (ou/ov)r.
b. What is the partial derivative (0h/dT), called for a real gas?
The enthalpy of a certain gas can be obtained from the
following equation:

h=(021)T + (1.2x107")T? + (0.32)p + (3.6)p”

where h is in Btu/lbm, T is in R, and p is in psia. Determine the
specific heat at constant pressure (c,) for this gas when the
temperature is 500. R and the pressure is 1 atm.

Using the property data given in the superheated steam tables,
estimate the specific heat at constant pressure for steam at

400. psia and 1000.°F.

17.* Using the property data given in the superheated steam tables,

18.

19.

20.

21.

22.

estimate the specific heat at constant pressure for steam at

30.0 MPa and 700.°C.

Sketch (neatly) the common p-T and p-v diagrams for water and

label

a. The critical state.

b. The triple point and triple point line.

c. The solid, liquid, and vapor regions.

d. Indicate the correct slope of the fusion line (i.e., either a
positive or negative slope).

Are the following statements true or false?

a. The specific volume of mercury is a function of temperature
only.

b. If ice is heated sufficiently, it always melts to form a liquid.

c. If water is at a pressure lower than the critical pressure, it is
always in the liquid phase.

d. If a mixture of liquid ammonia and ammonia vapor is
heated sufficiently in a rigid, sealed tube, the content of the
tube always becomes a vapor.

Define the following terms: (a) internal energy, (b) saturation,

(c) critical state, and (d) moisture.

Define the following terms: (a) isobaric, (b) isochoric,

(c) enthalpy, (d) quality, and (e) triple point.

a. Is quality (x) a thermodynamic property? Explain.

b. Mathematically define the specific heat at constant
pressure.



23.

c. For a saturated mixture of liquid and vapor, explain whether
or not the pressure and temperature can be varied
independently.

A vessel with a volume of 10.0 ft* contains 3.00 Ibm of a

mixture of liquid water and water vapor in equilibrium at a

pressure of 100. psia (Figure 3.28). Determine

a. The mass of liquid present.

b. The mass of vapor present.

=100, psia | «— Total volume=10.0 ft3

Vapor (|

Total mass of
liquid + vapor =3.00 Ibm

FIGURE 3.28
Problem 23.

24.¢

25.

217.

28.

30.*

31.

32.

33.

Determine the change in the specific internal energy of 3.00 kg

of graphite as it is heated at atmospheric pressure from 20.0 to

200.°C. Assume a constant specific heat.

Determine the change in the enthalpy of 5.00 Ibm of ice as it is

heated from 22.0 to 32.0°F under constant atmospheric

pressure. Assume a constant specific heat.

Determine the change in the specific internal energy of solid

aluminum as it is heated at atmospheric pressure from 300. to

500. K. Use an average specific heat over this temperature range.

Determine the change in the specific enthalpy of solid lead as it

is heated from 14.7 psia, 80.0°F to 1000. psia, 200.°F. The

density of lead is 710. Ibm/ft®>. Assume a constant specific heat.

Determine the change in the specific internal energy of 7.00 Ibm

of methane gas as it is heated from 32.0 to 200.°F at

atmospheric pressure. Assume ideal gas behavior.

Determine the change in the specific enthalpy of carbon dioxide

gas as it is heated at a constant pressure of 1 atm from 300. to

500. K. Assume ideal gas behavior.

Argon gas is heated in a constant pressure process from 20.0 to

500.°C. Assuming ideal gas behavior, determine

a. The ratio of the final to initial volumes.

b. The change in specific internal energy.

c. The change in specific enthalpy of the argon.

Helium gas is heated in a constant volume process from —200.

to 500.°F. Assuming ideal gas behavior, determine

a. The ratio of the final to initial pressures.

b. The change in specific internal energy.

c. The change in specific enthalpy of the helium.

Gaseous oxygen is heated in a constant temperature process

until its volume is doubled. Assuming ideal gas behavior,

determine

a. The ratio of the final to initial pressures.

b. The change in specific internal energy.

c. The change in specific enthalpy of the oxygen.

Using Figure 3.21, estimate the average values for the constant

pressure and constant volume specific heats for the following

gases and processes:

a. Carbon dioxide is heated at a constant pressure of 10,000 psia
from 1000. to 2000.°F.

b. Carbon dioxide gas is compressed isothermally at 1000.°F
from 0 to 10,000. psia.

34.

Problems m

c. Hydrogen gas is heated at a constant pressure of 0.00 psia
from 0 to 5000.°F.

d. Air is compressed from 0.00°F, 0.00 psia to 1000.°F, 5000.
psia.

Determine the changes in specific internal energy and specific

enthalpy as air is compressed from 0.00°F, 14.7 psia to 1000.°F,

5000. psia (Figure 3.29). Assume variable specific heat ideal gas

behavior.

—u,=?
M2 Ml !

hy—h,=?

T,= 1000. °F

State 1 State 2

FIGURE 3.29
Problem 34.

35. Professor John L. Krohn at Arkansas Tech University invented a

36.

37.

38.

39.

*

*

process whereby air is heated at constant volume from 60.0°F

and v = 3.30 ft}/lbm to a pressure of 180. psi. The air then

expands adiabatically to atmospheric pressure and v = 14.6 ft}/

Ibm. Assuming ideal gas behavior with variable specific heat,

determine

a. The temperature of the heated air (T,) in °F.

b. The heat transfer for the first process in Btu/lbm.

c. The work for the second process in Btu/lbm,

Professor Krohn uses the constant pressure specific heat

equation for water vapor given in by ¢, = A(B + CT + DT +

ET® + FT*), where A = 0.1102 Btu/lbm - R, B = 4.070,

C =-0.000616 R™!, D = 1.281 x 10°° R™?, E = —0.508 x 107°

R, F=0.0769 x 107"* R, and T is in Rankine (R). He wants

you to estimate the change in enthalpy for water vapor from

p1 = 14.7 psi, T; = 250.°F to p, = 14.7 psi, T, = 500.°F, and

compare this result to the change in enthalpy found in the

superheated steam tables.

In 1879, the French physicist Emile Amagat generated

experimental data in a mine shaft at Verpilleux, France, for his

research on the compressibility of gases. There, he used a vertical

column of mercury 327 m high to measure the compressibility

of nitrogen at a pressure of 430. atm. Assuming the temperature

at the bottom of the mine shaft was 30.0°C, determine the

specific volume of the nitrogen, assuming it is an ideal gas with

constant specific heats.

Calculate the specific volume of hydrogen (H,) gas at a

temperature of 20.0°C and a pressure of 11.0 MPa using

a. The ideal gas equation of state.

b. The Clausius equation of state (use the van der Waals value
for b).

Determine the temperature of water vapor at 200. psia when it

has a specific volume of 2.724 ft*/lbm using

a. The ideal gas equation of state.

b. The van der Waals equation of state.

c. The steam tables (Table C.3a).

Then compute the percentage error of a and b with the actual

value given in c.
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40.

41.

42.

43.

44,

45.

Determine the temperature of carbon dioxide (CO,) gas when it

is at a pressure of 2500. psia and has a density of 32.0 Ibm/ft>.

Assume constant specific heat ideal gas behavior.

Calculate the specific volume of propane at 1000. psia and

300.°F using

a. The ideal gas equation of state.

b. The Clausius equation of state (use the van der Waals value
for b).

Determine the pressure exerted by 10.00 lbm of steam at a

temperature of 1300.°F in a volume of 3.285 ft* using

. The steam tables.

. The ideal gas equation of state.

The van der Waals equation of state.

. Write down the van der Waals equation.

. Indicate which term corrects for the fact that the molecules

occupy a finite volume.

c. Indicate which term corrects for the fact that there are
attractive forces between the molecules.

d. How are the constants a and b in van der Waals equation
determined, and are they the same for all gases?

For superheated Refrigerant-134a at 100. psia and 100.°F,

determine the value of the specific volume

a. From the superheated vapor table.

b. Assuming it to be an ideal gas.

c. From the van der Waals equation of state.

Estimate the temperature to which water at the bottom of a 500. ft

deep lake would have to be heated before it would begin to

boil (Figure 3.30). (Note: Hydrostatic pressure = yz, where

7 = 62.4 Ibf/ft® is the specific weight of water, and z is the

depth below the free surface.)

op oD

Tei="

sat

z=500. ft

FIGURE 3.30
Problem 45.

46.

47.

48.*

One of the reasons for wearing a pressure suit in high
altitude or space work is that, without it, the pressure in the
body might become low enough to cause the blood to boil.
Assume blood behaves essentially as pure water (which is its
primary component) and that the body core temperature is
100.°F. Find the pressure at which this blood begins to
“boil.”

Refrigerant-134a contained in a tank at a pressure of 101.37 psia
has a specific volume of 0.4682 ft*/lbm. Using the proper
thermodynamic table, determine the value of the enthalpy of
the Refrigerant-134a under these conditions.

The vapor produced when the pressure on saturated liquid
water is suddenly reduced during a constant enthalpy process
is called flash steam, because it occurs so quickly that part of
the liquid appears to “flash” into vapor. Determine the final
temperature and the percentage of flash steam (i.e., the
quality) produced as the pressure on saturated liquid water at
2.00 MPa is suddenly reduced to 1.00 MPa in a constant
enthalpy process (Figure 3.31)

ffffffff = ——
- ! | =
p1=2.00MPa | Process: | || P2= ‘1 .00 MPa
x;=0.00 I —= ] x=?
hy=hg | 2= | m=hy |
L | L |
State 1 State 2
FIGURE 3.31

Problem 48.

49. What total mass of water must be put into a 1.00 fc sealed,
rigid container so that, when the container is heated, the
contents pass through the saturated vapor curve exactly at the

point where p = 2000. psia (Figure 3.32)

2000. psia
p

FIGURE 3.32
Problem 49.

50.* A rigid container contains 1.00 kg of water at the critical state.
Determine the volume of the vapor present in the container
after it has been cooled to 100.°C.

51. Suppose 0.667 lbm of water is put into a 1.00 ft® rigid container
at 14.7 psia and 212°F and sealed. The container is then heated.
a. At what temperature do the contents become a saturated

vapor or saturated liquid?
b. Which will it be—a saturated vapor or a saturated liquid?
c. Sketch this process on a p-v diagram.

52. A closed rigid container contains water in an equilibrium mixture
of liquid and vapor at 70.0°F. The mass of the liquid initially
present is 10.236 times the mass of the vapor. The container is
then heated until all the liquid becomes vapor. Determine
a. The initial quality.

b. The pressure in the container when the last bit of water
becomes vapor.
c. Sketch this process on a p-v diagram.

53.* It is desired to carry out an experiment that allows a visual

observation of a material passing through the critical state. An

empty, transparent, rigid, sealed container with a 2.00 x 10°° m?

internal volume is to be used.

a. How many kilograms of solid CO, (dry ice) should be put
into the container so that, when it is sealed and heated, its
contents pass directly through the critical state?

b. To what temperature (in °C) must the contents be heated to
be at the critical state?

c. What will be the pressure (in MPa) inside the container at
the critical state?

54.* Using the tables for compressed liquid water (Tables C.4),

determine the pressure increase required to raise the



specific enthalpy of saturated liquid water at 50.0°C by
1.00 kJ/kg.
55. Determine the properties required in Table 3.12.

Problems ﬂ

b. At this point, your reply is acknowledged with T = 200.°C,
p =1554.9 kPa, x = 0.23.

Is the acknowledgment from the Kara Maru or the enemy?

Explain.

Table 3.12 Problem 55 57. Using the tables in Thermodynamic Tables to accompany Modern
Engineering Thermodynamics, fill in the missing properties in
Substance Given Find Table 3.14.
a. Ammonia T = 0.00°C V=" 58. Using the tables and charts in Thermodynamic Tables to accompany
x =0.200 Modern Engineering Thermodynamics, fill in the missing properties
b. Water p = 400. psia x="7 in Table 3.15.
h =1000. Btu/lom 59. Using the tables and charts in Thermodynamic Tables to accompany
c. Water T =1500.°F u="7? Modern Engineering Thermodynamics fill in the missing properties
p = 400. psia in Table 3.16.
d. Refrigerant-134a ﬁ - ;?54'328?8;% v=7? 60. Using the tables and charts in Thermodynamic Tables to accompany
o wom Modern Engineering Thermodynamics, fill in the missing properties
in Table 3.17.

56.* The Kara Maru is a transport vessel that has inadvertently 61. a. Using only the thermodynamic tables in Thermodynamic
entered an enemy neutral zone. She carries 600 passengers and Tables to accompany Modern Engineering Thermodynamics, fill in
has radioed that she has blown her super-lumen drive system. the missing properties in Table 3.18.

The Star Command distress codes are taken from the tables of b. Using only the thermodynamic charts in the tables book, fill
the thermodynamic properties of water, because the enemy has in the missing properties in Table 3.19.
a very poor knowledge of this substance. Therefore, if there are  62. Using the tables and charts in Thermodynamic Tables to accompany
any errors in the code, it may be a trap and not a real distress Modern Engineering Thermodynamics, fill in the missing properties
call. Is the transmission in Table 3.13 correct? If not, what are in Table 3.20.
the errors? (Variations of less than 1% are not errors.) 63. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
Table 3.13 Problem 56 in Table 3.21.
64. Using the tables and charts in Thermodynamic Tables to accompany
Y 3 o h o Modern Engineering Thermodynamics, fill in the missing properties
p (kPa) T (°C) (m°/kg) (kd/kg) (kJ/kg) (quality) in Table 3.22.
600. 600. 0.6696 2801.7 3700.7 65. Using the tables and charts in Thermodynamic Tables to accompany
0.6113 0.0100 206.1 2375.3 2501.3 1.00 Modern Engineering Thermodynamics, fill in the missing properties
100. 996 0001043 4173 4174 000 in Table 3.23.
66. Using the tables and charts in Thermodynamic Tables to accompany
a. The standard reply to all such distress messages is to transmit Modern Engineering Thermodynamics, fill in the missing properties
the properties of water at 100% quality and 3000 kPa. What in Table 3.24.
are those values? 67. Using the tables and charts in Thermodynamic Tables to accompany
Modern Engineering Thermodynamics, fill in the missing properties
3000, kP 5 in Table 3.25.
?_: 5 - (kPe) Z : 9 68. Using the tables and charts in Thermodynamic Tables to accompany
Ve r) ' Modern Engineering Thermodynamics, fill in the missing properties
i in Table 3.26.
Table 3.14 Problem 57
Material T (°F) p (psia) u (Btu/Ibm) v (ft3/Ibm) p (Ibm/ftd) X
Water ? 60.0 ? ? ? 1.00
Water ? 80.0 ? ? ? 0.600
Ref.-134a ? 23.805 62.124 ? ?
Table 3.15 Problem 58
Substance p (psia) T (°F) v (ft*/lbm) h (Btu/lbm) u (Btu/lbm)
H.O 300. ? 0.7811 ? ?
H,O 300. 600. ? ? ?
Ref.-134a ? 70.0 0.2526 ? ?
Nitrogen 50.0 ? 1.00 ? ?
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Table 3.16 Problem 59

Substance p (psia) T (°F) v (ft3/Ibm) h (Btu/lbm)

Water 1000. 0.2326 ?

Ref.-134a 85.788 ? 111.33

Water 1000. ? ? 1505.9

Nitrogen ? -160. 0.250 ?

Table 3.17 Problem 60

Material p (psia) T (°F) v (ft3/Ibm) h (Btu/Ibm) u (Btu/Ibm) x (if applicable)
Water ? 35.0 ? ? ? 0.00

Water 1.00 ? ? ? ? 1.00

Water 14.7 1000. ? ? ? ?

Ref.-134a ? -40.0 ? ? ? 0.500

Table 3.18 Problem 61a

Material p (psia) T (°F) v (ft*/lbm) h (Btu/lbm) u (Btu/lbm) x (if applicable)
Water 14.7 300. ? ? ?

Ref.-134a 23.805 ? ? ? 1.00

Table 3.19 Problem 61b

Material T (°F) p (psia) h (Btu/lbm) v (ftsllbm) x (if applicable)
Carbon dioxide 0.00 ? ? 0.20

Nitrogen ? 100. 1.000 ?

Table 3.20 Problem 62

Material p (psia) T (°F) v (ft/Ibm) x (if applicable)
Water 5.00 300. ? ?

Water 100. ? 8.053 ?

Water 1000. 544.8 0.100 ?

Ref.-134a ? 0.00 ? 0.00

Mercury 1.00 ? ? 1.00

Table 3.21 Problem 63

Material p (psia) T (°F) v (ft3/Ibm) h (Btu/lbm) x (if applicable)
Water 1.20 ? ? ? 0.00

Water ? 220. ? ? 1.00

Water ? 32.018 ? ? 0.500

Water 8000. 2000. ? ? ?

Ref.-134a 21.203 0.000 0.01185 11.63 ?

Table 3.22 Problem 64

Material p (psia) T (°F) v (ftsllbm) h (Btu/lbm) x (if applicable)
H.O 600. 600. ? ? ?

H,O ? 200. ? ? 1.00

H,O 200. 1500. ? ? ?

H.O 14.696 ? ? ? 0.00

Ammonia ? 100. ? ? 0.00
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Table 3.23 Problem 65

Material p (psia) T (°F) v (ft3/Ibm) x (if applicable)
Water ? 300. 4.00 ?

Water 300. ? ? 0.500

Water 1.00 1000. ? ?

Mercury 1.00 ? ? 1.00

Ideal gas* 100. ? 5.00 ?

* Use the ideal gas equation of state with R = 50 ft - Ibf/(lbm - R.).

Table 3.24 Problem 66

Material p (psia) T (°F) v (ft3/Ibm) h (Btu/lbm) x (if applicable)
Water 40.0 ? ? ? 0.00

Water ? ? 51.03 1240.5 ?

Water ? 50.0 ? ? 1.00

Ref.-134a 243.86 ? ? ? 0.500

Ref.-134a ? 160. ? ? 1.00

Mercury 100. ? ? ? 1.00

Table 3.25 Problem 67

Material T (°F) p (psia) h (Btu/lbm) x (if applicable)
Ammonia 60.0 60.0 ? ?

Ammonia 60.0 ? ? 0.100

Mercury ? 60.0 38.44 ?

Ref.-134a 60.0 ? ? 1.00

Water ? 1.00 1336.1 ?

Water ? 1.00 ? 0.00

Table 3.26 Problem 68

Material p (psia) T (°F) v (ft3/lbm) x (if applicable)
H,O 466.3 460. ? 0.00

H.O 160. 363.6 ? 1.00

H.0 40.0 ? 6.00 ?

H>O 1000. 1000. ? ?

Ammonia ? 105 1.00 ?

Ammonia 100. 100. ? ?

Ref.-134a ? 200. ? 0.500

Ref.-134a 325 ? ? 0.00

Mercury 1000. ? ? 1.00

Computer Problems

These problems are designed to be done on a personal computer
using a spreadsheet or equation solver. The problems cannot be

done easily without the use of a computer. They are meant to fur-
nish an additional learning experience by providing new insights
into the operation of complex thermodynamic systems and
demonstrating the power of the personal computer in generating
and manipulating thermodynamic properties. In these problems,
log is the base 10 logarithm and In is the base e (i.e., natural)

logarithm.

69. In 1849, William Rankine proposed the following pressure-
temperature relation for saturated water:

logpsa = 6.1007 — 2731.62/ Ty — 396,945/T2,

where pg, is in psia and Ty is in R. Develop a computer program
that returns values for pg, in psia when Ty, is input in °F. Be sure
to include proper units on all input and output values. Using the
steam tables in Table C.1a of Thermodynamic Tables to accompany

Modern Engineering Thermodynamics, plot the percent error in your
calculated saturation pressure vs. input temperature utilizing data

at 32.0, 100., 200., 300., 400., 500., 600., and 700.°F.
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70.

71.

72.

In 1905, Knoblauch, Linde, and Klebe proposed the
following equation for the specific volume of superheated
steam:

v'=0.5962T/p— (1 + 0.0014p)(150,300,000/T° —0.0833)

where p is in psia, T is in R, and v is in ft’/lbm. Develop a
computer program that returns v when p and T are input.
Allow the use of either SI or Engineering English units.
Compare your results with steam table values at 0.10, 0.50,
1.00, 1.50, 2.00, 2.50, and 3.00 MPa along the 200.°C
isotherm. Plot these results as a percent error in v vs. p for

T = 200.°C.

Develop a computer program that calculates the pressure of
superheated ammonia vapor from the Beattie-Bridgeman
equation of state when the specific volume and temperature
are input from the keyboard. Allow the use of either SI or
Engineering English units. Using the superheated ammonia
tables (Table C.6), determine the percent error between your
calculated values of pressure and the correct values along the
100.°F isotherm. Plot this percent error vs. p utilizing actual
pressure data of 10.0, 30.0, 50.0, 70.0, 90.0, 140., and

180. psia.

The pressure-temperature relation for saturated ammonia can be
written as

logpsat =C - CZ/Tsat - CSIOg(Tsat) —CyTsqt + Cs Tsza[

73.

where
C, = 25.5743247
C, = 3295.1254
C3 = 6.4012471
Cy =4.148279x 1074
Cs = 1.4759945x10°°

In this equation pg, is in psia and Ty, is in R. Develop a computer
program that calculates in either SI or Engineering English units
(your choice) pgy in either psia or kPa when Ty, is entered in either
°F or °C. Make sure the screen clearly indicates the proper units on
the input information and all output values. Compare the resulting
output values with a series of corresponding saturation values given
in Table C.5 of Thermodynamic Tables to accompany Modern
Engineering Thermodynamics.

The p-v-T relation for superheated mercury vapor is

pv = RT — (T/v) exp(10.3338 — 312.095/T — 2.07951 In T)

where p is in N/m?, v is in m?/kg, T is in K, and R = 41.45 J/kg - K.
Develop a computer program that outputs p, v, and T with their
appropriate units when either (a) p and T are input or (b) v and
T are input. Allow the user to work in either the SI or Engineering
English units and to choose which type of input he or she wishes
to use. For extra credit, create an isometric three-dimensional plot
of a p-v-T surface using this equation of state.
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4.1 INTRODUCCION (INTRODUCTION)

In this chapter, we begin the formal study of the first law of thermodynamics. The theory is presented first, and
in subsequent chapters, it is applied to a variety of closed and open systems of engineering interest. In Chapter 4,
the first law of thermodynamics and its associated energy balance are developed along with a detailed discussion
of the energy transport mechanisms of work and heat. To understand the usefulness of the first law of thermo-
dynamics, we need to study the energy transport modes and investigate the energy conversion efficiency of
common technologies.

In Chapter 5, the focus is on applying the theory presented in Chapter 4 to a series of steady state closed sys-
tems, such as sealed, rigid containers; electrical apparatuses; and piston-cylinder devices. Chapter 5 ends with a
brief discussion of the behavior of unsteady state closed systems.

The first law of thermodynamics is expanded in Chapter 6 to cover open systems, and the conservation of mass
law is introduced as a second independent basic equation. Then, appropriate applications are presented, dealing
with a variety of common open system technologies of engineering interest, such as nozzles, diffusers, throttling
devices, heat exchangers, and work-producing or work-absorbing machines. Chapter 6 ends with a brief discus-
sion of the behavior of unsteady state open systems.

4.2 EMMY NOETHER AND THE CONSERVATION LAWS OF PHYSICS

Throughout the long history of physics and engineering, we believed that the conservation laws of momentum,
energy, and electric charge were unique laws of nature that had to be discovered and verified by physical experi-
ments. And, in fact, these laws were discovered in this way. They are the heart and soul of mechanics, thermody-
namics, and electronics, because they deal with things (momentum, energy, charge) that cannot be created nor
destroyed and therefore are “conserved.” These conservation laws have broad application in engineering and
physics and are considered to be the most fundamental laws in nature.

We have never been able explain where these laws came from because they seem to have no logical source. They
seemed to be part of the mystery that is nature. However, almost 100 years ago, the mathematician Emmy
Noether developed a theorem that uncovered their source,' yet few seem to know of its existence. Emmy
Noether’s theorem is fairly simple. It states that:

For every symmetry exhibited by a system, there is a corresponding observable quantity that is conserved.

The meaning of the word symmetry here is probably not what you think it is. The symmetry that everybody
thinks of is called bilateral symmetry, when two halves of a whole are each other’s mirror images (bilateral sym-
metry is also called mirror symmetry). For example, a butterfly has bilateral symmetry. Emmy Noether was talk-
ing about symmetry with respect to a mathematical operation. We say that something has mathematical
symmetry if, when you perform some mathematical operation on it, it does not change in any way. For exam-
ple, everyone knows that the equations of physics remain the same under a translation of the coordinate system.
This really says that there are no absolute positions in space. What matters is not where an object is in absolute
terms, but where it is relative to other objects, that is, its coordinate differences.

The impact of Emmy Noether’s studies on symmetry and the behavior of the physical world is nothing less than
astounding. Virtually every theory, including relativity and quantum physics, is based on symmetry principles.
To quote just one expert, Dr. Lee Smolin, of the Perimeter Institute for Theoretical Physics, “The connection
between symmetries and conservation laws is one of the great discoveries of twentieth century physics. But very
few non-experts will have heard either of it or its maker—Emily Noether, a great German mathematician. But it
is as ezssential to twentieth century physics as famous ideas like the impossibility of exceeding the speed of
light.”

Noether's theorem proving that symmetries imply conservation laws has been called the most important theo-
rem in engineering and physics since the Pythagorean theorem. These symmetries define the limit of all possible
conservation laws. Is it possible that, had Emmy Noether been a man, all the conservation laws of physics
would be called Noether’s laws?

! Noether, E., 1918. Invariante variationsprobleme. Nachr. D. Konig. Gesellsch. D. Wiss. Zu Gottingen, Math-phys. Klasse 1918, pp. 235-257.
An English translation can be found at http://arxiv.org/PS_cache/physics/pdf/0503/0503066v1.pdf.

2 Dr. Lee Smolin was born in New York City in 1955. He held faculty positions at Yale, Syracuse, and Penn State Universities, where
he helped to found the Center for Gravitational Physics and Geometry. In September 2001, he moved to Canada to be a founding
member of the Perimeter Institute for Theoretical Physics.



4.3 The First Law of Thermodynamics

AN EXAMPLE OF MATHEMATICAL SYMMETRY

Here is a story about Carl Friedrich Gauss (1777-1855). When he was a young child, his teacher wanted to occupy him for
a while, so he asked him to add up all the numbers from 1 to 100. That is, find X =1 + 2 + 3 + ... + 100. To the teacher’s
surprise, Gauss returned a few minutes later and said that the sum was 5050.

Apparently Gauss noticed that the sum is the same regardless of whether the terms are added forward (from first to last) or
backward (from last to first). In other words, X =1 + 2 + 3 + ... + 100 = 100 + 99 + 98 + ... + 1. If we then add these two
ways together, we get

X=1+2+3+...4+100

X=100+99+98+...+1
2X =101+101+...+101

So 2X = 100 x 101 and X = (100 x 101)/2 = 5050. Gauss had found a mathematical symmetry, and it tremendously
simplified the problem. What is conserved here? It is the sum, X. It does not change no matter how you add the numbers.

Table 4.1 Relation of Conservation Laws to Mathematical Symmetry
Conservation Law = Mathematical Symmetry

The laws of physics are the same regardless of where we are in space. This positional symmetry implies
that linear momentum is conserved.

The laws of physics are the same if we rotate about an axis. This rotational symmetry implies that angular
momentum is conserved.

The laws of physics do not depend on what time it is. This temporal symmetry implies the conservation of
energy.

The interactions of charged particles with an electromagnetic field remain the same if we multiply the fields
by a complex number €. This implies the conservation of charge.

Linear momentum
Angular momentum
Energy

Electric charge

In summary, Emmy Noether’s theorem shows us that (Table 4.1)

Symmetry under translation produces the conservation of linear momentum.
Symmetry under rotation produces the conservation of angular momentum.
Symmetry in time produces the conservation of energy.

Symmetry in magnetic fields produces the conservation of charge.

4.3 THE FIRST LAW OF THERMODYNAMICS

In this chapter, we focus our attention on the detailed structure of the first law of thermodynamics. To completely
understand this law, we need to study a variety of work and heat energy transport modes and to investigate the
basic elements of energy conversion efficiency. An effective general technique for solving thermodynamics pro-
blems is presented and illustrated. This technique is used in Chapters 5 and 6 and the remainder of the book.

The simplest, most direct statement of the first law of thermodynamics is that energy is conserved. That is, energy
can be neither created nor destroyed. The condition of zero energy production was expressed mathematically in
Eq. (2.15):

Ep=0 (2.15)
By differentiating this with respect to time, we obtain an equation for the condition of a zero energy production
rate:

T _f,=0 (2.16)

Whereas Egs. (2.15) and (2.16) are accurate and concise statements of the first law of thermodynamics, they are
relatively useless by themselves, because they do not contain terms that can be used to calculate other variables.
However, if these equations are substituted into the energy balance and energy rate balance equations, then the
following equations result. For the energy balance,

E¢ = Er +Ep (as required by the first law)
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or
Ec=Er (4.1)
The energy rate balance is
Ec = Er + Ep (as required by the first law)
or
Ec =Er (4.2)

From now on, we frequently use the phrases energy balance and energy rate balance in identifying the proper
equation to use in an analysis. So, for simplicity, we introduce the following abbreviations:

EB = energy balance
and
ERB = energy rate balance

In Chapter 3, we introduce the components of the total system energy E as the internal energy U, the kinetic
energy mV?/2g, and the potential energy mgZ/g,, or’
sz ng

+

E=U —
* 28; &

(3.9)
In this equation, V is the magnitude of the velocity of the center of mass of the entire system, Z is the height of
the center of mass above a ground (or zero) potential datum, and g is the dimensional proportionality factor
(see Table 1.2 of Chapter 1). In Chapter 3, we also introduce the abbreviated form of this equation:

E = U+KE+PE (3.10)
and similarly for the specific energy e,
E v: &
_E_, V. & 3.12
¢ m " 28( & ( )
and
e=1u+ke+pe (3.13)

In these equations, we continue the practice introduced in Chapter 2 of using uppercase letters to denote extensive
properties and lowercase letters to denote intensive (specific) properties. The energy concepts described in these
equations are illustrated in Figure 4.1.

In equilibrium thermodynamics, the proper energy balance is given by Eq. (4.1),
where the gain in energy E is to be interpreted as follows. The system is initially
in some equilibrium state (call it state 1), and after the application of some “pro-
cess,” the system ends up in a different equilibrium state (call it state 2). If we
now add a subscript to each symbol to denote the state at which the property is
to be evaluated (E; is the total energy of the system in state 1 and so forth), then
we can write the energy gain of the system as

. -
Velocity V

Internal System (either E¢ = Final total energy — Initial total energy (4.3)
energy open or closed)
or
=
Height=Z =T System boundary Ec=E-E (4.4)
and extending this to Eq. (3.9), we obtain
m 2 _yn2 mg
Ec=WUW-U1+—(V;=-V])+ | =) (Z—2Z 4.5
- o= =t 23 -vi)+ () -2 (4.5)
or
V2 -V?
FIGURE 4.1 Ec=m|uy —u; + 2 1 + §(22 —Zl):| (46)
System energy components. 2. &

3 In this text, we use the symbol V to represent the magnitude of the average velocity |V|, and the symbol ¥ to represent volume.



alternatively,
Eq = U, — U; +KE, — KE; + PE, — PE;
and

Eg = m(us —uy +ke; —ke; +pe, — pe;)

4.3 The First Law of Thermodynamics li%]

(4.7)

(4.8)

In most of the engineering situations we encounter, either the system is not moving at all or it is moving without

any change in velocity or height. In these cases,

Ec= Uz—Ul =m(u2—u1) =ET

EXAMPLE 4.1

Figure 4.2 shows that 3.00 Ibm of saturated water vapor at 10.0 psia is sealed in a rigid container aboard a spaceship traveling
at 25,000. mph at an altitude of 200. mi. What energy transport is required to decelerate the water to zero velocity and bring
it down to the surface of the Earth such that its final specific internal energy is 950.0 Btu/lbm? Neglect any change in the

acceleration of gravity over this distance.

p1=10.0 psia, x;=1.00

-

V;=2500. mph

Z,=200. miles
Sealed rigid
container
State 1
FIGURE 4.2
Example 4.1.
Solution

1,=950.0 Btu/1bm
Z,=V,=0

State 2

Let the system in this example be just the water in the container, then the process followed by the water is a constant
volume process (the water is in a “rigid, sealed container”). Therefore, the problem statement can be outlined as follows:

State 1 m = 3.0lbm, ¥ = constant
p1 = 10.0 psia
x1 = 1.00(saturated vapor)

State 2

uy = 950.0 Btu/lbm
v, = vy = 38.42ft%/lbm

v = 15(at 10.0 psia) = 38.42 ft*/lbm

Notice how the process path gives us the value of a property (v,) in the final state. To determine the required energy
transport, we use the energy balance Eq. (4.1), along with the definition of the energy gain term E; from Eq. (4.5):

EB: E; = Er + Ep, (as required by the first law)

and, assuming g is constant during this process,
mg

% (Z2-2y)

Ec =Er = UZ_U1+ﬂ(V22—V12)+
28
Here, V,=27,=0, so
mg
Er=U,-U - 2v2_"27
T 2-th=o Viz g
Table C.2a in Thermodynamic Tables to accompany Modern Engineering Thermodynamics gives
u; = 1,(10.0 psia) = 1072.2 Btu/lbm
and the problem statement requires that u, = 950.0 Btu/lbm. Therefore,

U, = mu; = (3.001bm)(1072.2 Btu/lbm) = 3216.6 Btu

(Continued )
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EXAMPLE 4.1 (Continued )

and
U, = muy = (3.001bm)(950.0 Btu/lbm) = 2850 Btu
SO

. 2
Er = (2850 — 3216.6) Btu— 43'002“’“’ {(25,000. mile/h) <75 A mﬂeﬂ

3600 s/h
1 Btu Ibm( &/ 2)
778.16ft-lbf _ 3.00 1Ibm(32.174 ft/s q . 1 Btu
X ) 174 lbmft <32 174 lbm~ft) (200. miles)(5280 ft/mlle)(778.16 ft~lbf>
7 Ibf-s2 T Ibf 82

= —366.6—80,550—4071 = — 85,000 Btu (to three significant figures)

Therefore, 85,000 Btu of energy must be transferred out of the water (Er is negative here) by some mechanism. This can be
done, for example, by having the spaceship (and the water) do work on the atmosphere by aerodynamic drag as it lands.

Exercises

1. What would be the value of u, in Example 4.1 if Er were zero? Answer: u, =29,300 Btu/lbm. (What is the physical state
of the water now?)

2. Which causes the larger change in Eg:
a. A velocity increase from 0 to 1 ft/s or an increase in height from 0 to 1 ft?
b. A velocity increase from 0 to 100 ft/s or a height increase from 0 to 100 ft?
Answers: (a) height, (b) velocity.

3. Determine the value of Er that must occur when you stop a 1300. kg automobile traveling at 100. km/h on a level road
with no change in internal energy. Answer: E; =502 K.

In nonequilibrium systems, we use the energy rate balance equation with E¢ defined as

. d m 2’ mg .
Ec=+(U+ -V +-22Z =E 4.9
¢ dt ( 2g€ & )system ' ( )

Equation (4.9) can become quite complicated for open systems whose total mass is rapidly changing (such as
with rockets), because it expands as follows (using U = mu):

. . V . g - V2 gZ . .
Ec=miu+—(V)+=-Z)|+|u+-——+5-|m=E 4.10
c=mlie g )+ £+ (e 224 i = by (410)
Notice that, in this equation, V = dV/dt is the magnitude of the instantaneous acceleration, and Z is the
magnitude of the instantaneous vertical velocity.

The equilibrium thermodynamics energy balance and the nonequilibrium energy rate balance are fairly simple
concepts; however, their implementation can be quite complex. Each of the gain, transport, and production
terms may expand into many separate terms, all of which must be evaluated in an analysis. Next, we investigate
the structure of the energy transport and energy transport rate terms.

4.4 ENERGY TRANSPORT MECHANISMS

There are three energy transport mechanisms, any or all of which may be operating in any given system: (1) heat,
(2) work,* and (3) mass flow. These three mechanisms and their sign conventions are illustrated in Figure 4.3.

Note that the sign conventions for heat and work shown in Figure 4.3 are not the same. Heat transfer into
a system is taken as positive, whereas work must be produced by or come out of a system to be positive. This is
the conventional mechanical engineering sign convention and reflects the traditional view that heat coming out

* The types of work transports of energy included here are only those due to dissipative or nonconservative forces. For example, the
work associated with gravitational or electrostatic forces is not considered a work mode because it is conservative (i.e., it is
representable by the gradient of a scalar quantity) and is consequently nondissipative. Energy transports resulting from the actions of
conservative forces have their own individual terms in the energy balance equation (such as mgZ/g, for the gravitational potential
energy).



4.4 Energy Transport Mechanisms

System System
boundary boundary
>/ — -W \/A/ = -W
7 14
+W ( * .
\ +Q .
Er ) : E
( v { -0 !
N -0 +E | Mass
—E ( flow
(a) Closed system (b) Open system

FIGURE 4.3
Energy transport mechanisms.

WHAT ARE HEAT AND WORK ANYWAY?

Heat is usually defined as energy transport to or from a system due to a temperature difference between the system and its
surroundings. This can occur by only three modes: conduction, convection, and radiation.

Work is more difficult to define. It is often defined as a force moving through a distance, but this is only one type of work;
there are many other work modes as well. Since the only energy transport modes for moving energy across a system's
boundary are heat, mass flow, and work, the simplest definition of work is that it is any energy transport mode that is
neither heat nor mass flow.’

> Work can also be defined using the concept of a “generalized” force moving through a “generalized” displacement, see Table 4.2 later in this chapter.

of a system is “lost” (i.e., negative), while work produced by a system (such as an engine) should be assigned a posi-
tive value.

By definition, a closed system has no mass crossing its system boundary, so it can experience only work and

heat transport mechanisms. Also, since the gain, transport, and production terms in the balance equation are

defined to be net values (see Eq. (2.10)), we define

1. The net heat transport of energy into a system = Y,Q;=Q and the net heat transport rate of energy into a
system=Y:Q; = Q.

2. The net work transport of energy out of a system = Y;W; =W and the net work transport rate of energy out of
a system =Y, W; = W.

3. The net mass transport of energy into the system = Y ;E; = Y Epa flow and the net mass transport rate of
energy into the system = YiE; = Y Eiass flow-

Thus, for a closed system, the total energy transport becomes

Er=Q-W (4.11)
and the total energy transport rate is
Er=Q-W (4.12)
For open systems, the same quantities are
Ep = Q—W+2Eﬂm§vsvs (4.13)
and
Er=Q—W + ks (4.14)

In Egs. (4.13) and (4.14), note that we write the summation signs on the net mass transport of energy terms,
but for simplicity, we do not write the summation signs on the work or heat transport terms. This is because
you often have open systems with more than one mass flow stream, but seldom do you have more than one
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type of work or heat transport present. However, you must always remember that W, W, Q, and Q are also net
terms and represent a summation of all the different types of work and heat transports of energy present. This is
illustrated in the following example.

EXAMPLE 4.2

Determine the energy transport rate for the system shown in Figure 4.4.

Fuel flow Top heat loss Exhaust flow
Eje;=15,000 Btu/min 180,000 Btu/h E,hause=500. Btu/min
ﬁ —
[t et I ____________ =1

I

1

i

System !

boundary | 200. hp
|
I

Bottom heat loss

—_— 54,000 Btu/h
50.0 hp
Electrical workout

FIGURE 4.4
Example 4.2

Solution
From Eq. (4.14), the total energy transport rate is

Er=Q - W+ Y Eps

where
Q = net heat transfer into the system
= —180.x 103 Btu/h —54.0 x 10® Btu/h = —234 x 10> Btu/h

and

W = net work rate out of the system = 200. hp +50.0 hp = 250. hp
while

ZEHmss = net mass flow of energy into the system

ow
= 15.0 X 10°Btu/min — 500.Btu/min = 14.5 X 103Btu/min
So
E1 = (-234 x 103 Btu/h)[1 h/(60 min)] — (250. hp)[42.4 Btu/(hp-min)] + 14.5 x 103 Btu/min = 0.00 Btu/min

Exercises

4. Determine the energy transport rate that occurs in Example 4.2 when the work mode directions are reversed.
Answer: Ep = 21.2 x 10° Btu/min.

5. Determine the net rate of energy gain of a closed system that receives heat at a rate of 4500. kJ/s and produces work at a
rate of 1500. kJ/s. Answer: E¢ = 3000. KJ/s.

6. An insulated open system has a net gain of 700. Btu of energy while producing 500. Btu of work. Determine the mass
flow energy transport. Answer: Epqs flow = 1.20 X 10> Btu.

The system of Example 4.2 has no net energy transport rate, even though it has six energy transport rates. Note
that the energy rate balance (Eq. (4.2)) for this system is Eg = Er; therefore, this system also has no net gain of
energy. That is, the total energy E of this system is constant in time.
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4.5 POINT AND PATH FUNCTIONS

A quantity, say y, that has a value at every point within its range is called a point function. Its derivative is written
as dy, and its integral from state 1 to state 2 is
2
/ dy=y:-n
1

Thus, the value of the integral depends only on the values of y at the end points of the integration path and is
independent of the actual path taken between these end points. This is a fundamental characteristic of point
functions. All intensive and extensive thermodynamic properties are point functions. Therefore, we can write

2 2 2
/ dE = E; — Eq; / du = up; —uy; / dm =my; —m
1 J1 1

A quantity, say x, whose value depends on the path taken between two points within its range is called a path
function. Since path functions do not differentiate or integrate in the same manner as point functions, we cannot
use the same differential and integral notation for both path and point functions. Instead, we let dx denote the
differential of the path function x, and we define its integral over the path from state 1 to state 2 as

and so forth.

/lzaxz 1%2 {Note: /lzax # (x2 —xl)} (4.15)

A path function does not have a value at a point. It has a value only for a path of points, and this value is
directly determined by all the points on the path, not just its end points. For example, the area A under the
curve of the point function w=f(y) is a path function because

dA =wdy = f(y)dy
and

2 Y2
/ dA = 1A, = f(y) dy = area under f(y) between the points y; and y,
1 Y1

Clearly, if the path f(y) is changed, then the area 1A, is also changed. Consequently, we say that 1A, is a path function.

We see in the next sections that both the work and heat transports of energy are path functions. Therefore, we write
the differentials of these quantities as dW and dQ, and their integrals as

r2
/ AW = W, (4.16)
J1
and
2_
/ dQ = 1Q, (4.17)
1
Since the associated rate equations contain the time differential, we define power as the work rate, or
W =dw/dt (4.18)
and, similarly, the heat transfer rate is
Q = dQjdt (4.19)

Each of the different types of work or heat transport of energy is called a mode. A system that has no operating work
modes is said to be aergonic. Similarly, a system that changes its state without any work transport of energy having

2
Since work and heat are not thermodynamic properties and therefore not point functions, / AW # W, —W; and
2 2 2 1
/ AW #AW. Similarly, / dQ+#Q,—Q, and / dQ+# AQ. Equations (4.16) and (4.17) are the only correct ways to write these
1 1 1

path function integrals.
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WHAT IS AERGONIC ANYWAY?

The term aergonic comes from the Greek roots a meaning “not” and ergon meaning “work,” and it should be interpreted to
mean “no work has occurred.” It is the analog of the word adiabatic, meaning no heat transfer has occurred, introduced
later in this chapter.

Substituting Eqs. (4.8) and (4.11) into Eq. (4.1) and rearranging gives the general closed system energy balance equation
for a system undergoing a process from state 1 to state 2 as

General closed system energy balance:
1Q2 = 1W3 = (B2 = E1) gytem (4.20)
= m[(u2 - ul) + (VZZ - Vlz)/(zgc) + (22 —Z )g/gC}syslem

and substituting Eq. (4.10) with m = constant and Eq. (4.12) into Eq. (4.2) gives the general closed system energy rate balance as

General closed system energy rate balance:

S i . y 5 4.21
Q -W= (dE/dt)system = (mu + mVV/gC + mg Z/gﬂ)system ( )
Similarly, substituting Eqs. (4.9) and (4.14) into Eq. (4.2) gives the general open system energy rate balance as
General open system energy rate balance:
(4.22)

Q -W+ ZEﬂmass = (d/dt)(mu+ sz/ZgC +mZ8/8¢)

system

where the mass of the system is no longer required to be constant.

occurred is said to have undergone an aergonic process. While there are only three modes of heat transport, there
are many modes of work transport. In the following segments, four mechanical work modes and five nonmecha-
nical work modes are studied in detail.

4.6 MECHANICAL WORK MODES OF ENERGY TRANSPORT

In mechanics, we recognize that work is done whenever a force moves through a distance. When this force is a
. =4 . . .
mechanical force F, we call this work mode mechanical work and define it as

—

— —
(dW) mechanical ( F applied by the Syslem) -dX — ( F ) ax’ (4.23)

applied on the system

CAN YOU ANSWER THIS QUESTION FROM 1936?

On page 66 of the October 1936 issue of Modern Mechanix is a discussion of the oddities of science that reads: “Modern
science states that energy cannot be destroyed. Scientists are now wondering what happens to the energy contained in a
compressed spring destroyed in acid.” How would you answer this question more than 70 years later?

The person who wrote this in 1936 did not understand the concept of internal energy. Then, neglecting any changes in
kinetic or potential energy, an energy balance on the system gives

1Q —1W2 = (E; _El)system = (-l )system

where Uy = Uycid + Uspring = (Macidlacid + Mspringlspring)- NOW, Uspring = F(AX), the work done in compressing the spring. Finally,
U, = Uaciduspring = (Macid + Mspring)Uacid+spring: If we make the reasonable assumption that the spring dissolved without any heat
transfer (;Q, = 0) and aergonically (;W, = 0), then the energy balance equation gives U, = U;, and solving it for the final
specific internal energy of the acid-spring solution, we find that

MacidUacid + Mispring Uspring

Ui -

acid + spring Macid + Mspring
So the answer to the 1936 question is this: The energy contained in the compressed spring ends up as part of the energy of the
combined acid-spring solution. That is, since the mechanical work that went into compressing the spring ended up as part of
the spring'’s internal energy, when the spring was dissolved in the acid, the internal energy in the spring became part of the
internal energy of the acid-spring solution.

Also, if we assume that the acid-spring solution is a simple incompressible liquid with an internal energy that depends only
on temperature, then we can write i, spring = ¢T, and we see that the energy contained in the compressed spring reappears
as an increase in the temperature of the resulting acid-spring solution.



4.6 Mechanical Work Modes of Energy Transport

\ T / - [ —> / Area A
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(a) Moving system boundary (c) Elastic work
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V. N .
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(b) Shaft work (d) Surface tension work
FIGURE 4.5
Four classical types of mechanical work.
or
x2 _ x2 N
— -
(1W2)mechanical = /1 ( F applied by the system) dx - /1 ( F applied on the systern) -dx (4'24)
X X

Note that our sign convention requires that work done by the system be positive, while work done on the system
be negative.

In thermodynamics, the four classical types of mechanical work (Figure 4.5) are

1. Moving system boundary work.
2. Rotating shaft work.

3. Elastic work.

4. Surface tension work.

These are very important work modes in engineering analysis and the following material provides a detailed
discussion of their major characteristics.

4.6.1 Moving System Boundary Work

Whenever a system boundary moves such that the total volume of the system changes, moving system boundary

work occurs. This is sometimes called expansion or compression work, and it has wide application in mechanical

power technology In thls case, the force is applied by the system through the pressure p (see Figure 4.5a), so
= pA and F-dX = pA -dX = pdV, where p is the pressure acting on the system boundary, A is the area vector

(deﬁned to be normal to the system bogndary and pointing outward), dx” is the differential boundary move-

ment, and d¥ is the differential volume A-dX". Consequently,

=pdv (4.25)

( W) moving
boundary

and for moving boundary work,

Moving boundary work:
(1 movmg / pdv (4.26)

boundary

EXAMPLE 4.3

The sealed, rigid tank shown in Figure 4.6 contains air at 0.100 MPa and 20.0 °C. The tank is then heated until the pressure
in the tank reaches 0.800 MPa. Determine the mechanical moving boundary work produced in this process.

(Continued )
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EXAMPLE 4.3 (Continued )

Heated sealed

Solution rigid container
Let the system be the material inside the tank. The process of 1 y
heating the .tank is one of constant volu.me (the tank is “rigid”). ,=0.100 MPa Work =
Therefore, since the system volume, ¥, is constant, d¥ = 0 and . p>=0.800 MPa
. . T,;=20°C
the moving boundary work is:
2 State 1 State 2
(1W2) moving = /1 pdV =0
poundary FIGURE 4.6
Example 4.3.

Therefore, no moving boundary work occurs during this process.

Since a “rigid” container cannot change its volume, its moving boundary work is always zero regardless of the
process it undergoes.

EXAMPLE 4.4

The weather balloon in Figure 4.7 is inflated from a constant pressure, compressed gas source at 20.0 psia. Determine the
moving system boundary work as the balloon expands from a diameter of 1.00 ft to 10.0 ft.

Solution
Assume the balloon is a sphere, then ¥ = 4/3 7R? = 1/ zD>. The process here P>=20.0 psia
is one of constant pressure, so p = constant, and p1=20.0 psia

2 2
(W2)noving = /1 pdv-=p /1 av =p(V, - V)

boundary

D,=10.0 ft dia
D,=1.00 ft dia

- (20.0@) <144 in2> (ﬁ) [(10.0° —1.00%) ft*]

in2 ft2 6
=1.51x10° ft-1bf
State 1 State 2
The work is positive because the balloon does work on the atmosphere as
it expands and pushes the atmosphere out of the way. FIGURE 4.7
Example 4.4.

Exercises

7. In Example 4.3, is the moving boundary work always zero for a sealed, rigid container? Are any other work modes
always zero for this type of system? Could a piston-cylinder apparatus be modeled as a sealed, rigid system? Answers:
Yes, no, no. (It is sealed and the components, the piston and the cylinder, are rigid, but the piston can move, producing
a change in the enclosed volume.)

8. Determine the moving boundary work for the balloon in Example 4.4 as it deflates from a diameter of 10. ft to a dia-
meter of 5.0 ft at a constant pressure of 20. psia. What does the work on the balloon? Answer: (; W) moving boundary =—1.3 X
10° ft-Ibf. The surrounding atmosphere does work on the balloon as it deflates, that is why the work is negative.

9. If the pressure inside a system depends on volume according to the relation p = K; + K ¥ + K3 /%, where Kj, K,, and K3
are constants, determine the appropriate equation for the moving boundary work done as the volume changes from
¥, to ¥ . Answer: ;W) =Ki(¥, = ¥) + K (¥ —¥)/2+ K5 In (¥ /¥).

moving boundary

To carry out the integration indicated in Eq. (4.26), the exact p = p(¥) pressure volume function must be
known. This function is usually given in the process path specification of a problem statement. For example, in
Example 4.3, the process is one of constant volume (the container is rigid), so d¥ = 0; and in Example 4.4, the
filling process is isobaric (p = constant), so the integral of Eq. (4.26) is very easy. In general, outside of these
two cases, the integration of Eq. (4.26) is not trivial and must be determined with great care.

As an example of a nontrivial integration of Eq. (4.26), consider a process that obeys the relation

p¥" = constant (4.27)
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or

n _ n
PV =pV)

where the exponent n is a constant. Such processes are called polytropic processes.®° The moving system boundary
work of any substance undergoing a polytropic process is

2 2
constant
(1W2)polytropic = / PdV = / Td'v
moving boundary J1 1
For n=1, this integral becomes
VZ V2
(lwz)polytropic (n=1) =p¥ In V. =P2V2 In v (4.28)
moving boundary 1 1
and for n # 1, it becomes
P2V, =¥
(1W2)p01ytropic (n#1), ? (4.29)

moving boundary

If the material undergoing a polytropic process is an ideal gas, then it must simultaneously satisfy both of the
following equations:

1. The ideal gas equation of state, p¥ = mRT.
2. The polytropic process equation, p¥" = constant.

Combining these two equations by eliminating the pressure p gives

mRTYV""! = constant
or, for a fixed mass system,
TV =T ¥

or

1-n _
L (Y2) () (4.30)
T1 Vl 4] ’
Similarly, eliminating ¥ in these two equations (for a fixed mass system) gives the polytropic process equations

for an ideal gas:

Polytropic process equations for an ideal gas

T, _ (p_z)(n—l)/nz (U_2>1_n (4.31)
Ty p1 41

Finally, if we have an ideal gas undergoing a polytropic process with n # 1, then its moving system boundary work
is given by Eq. (4.29), with p,¥, —p1¥, = mR(T, — T1) as the polytropic work equation for an ideal gas (n # 1):

Polytropic work equation for an ideal gas (n#1)

mR
(1W2)polytropic (n#1) = 1-n (TZ - Tl)
ideal gas
moving boundary

(4.32)

¢ The term polytropic comes from the Greek roots poly meaning “many” and trope meaning “turns” or “paths.”



m CHAPTER 4: The First Law of Thermodynamics and Energy Transport Mechanisms

EXAMPLE 4.5

Figure 4.8 shows a new process in which 0.0100 kg of methane (an ideal gas) is compressed from a pressure of 0.100 MPa
and a temperature of 20.0 °C to a pressure of 10.0 MPa in a polytropic process with n=1.35. Determine the moving bound-
ary work required.

Polytropic process

with n=1.35
Methane Methane
m;=0.0100 kg mz_ZO.OIOO kg
p,=0.100 MPa — | pz—lg.OMPa
Wy=1
State 1 Tl =20.0°C State 2 12
FIGURE 4.8
Example 4.5.
Solution

Since the methane behaves as an ideal gas and n # 1, we can find the work required from Eq. (4.32):

mR
(1W2)polylropic(n#l) - 1-n (Tz - Tl)
ideal gas
moving boundary

where the value of T, can be found from Eq. (4.31):

(n=1)/n -
p2 ( 10.0 MPa ><1‘35 V.35
T,=T (2 =(20.0+273.15K) (== = 967K = 694°C
2 1Q:1> (20.0+ )\5.700 MPa

Using Table C.13b of Thermodynamic Tables to accompany Modern Engineering Thermodynamics to find the value of the gas
constant for methane, Rpehane = 0.518 kJ/kg-K, Eq. (4.32) then gives

(0.0100kg)(0.518 kJ/kg-K)
(W2 polytropic (1) = T (967 —293.15) = —9.98 K]
ideal gas )
moving boundary

The work comes out negative, because it is being done on the system.

Exercises

10. Determine the work required in Example 4.5 if the final pressure of the methane is 0.500 MPa. Answer: —2.25 K]J.

11. If the work required in Example 4.5 is —5.00 kJ, determine the final temperature and pressure of the methane. Answer:
T,=631K, p,=1.92 MPa.

12. If the gas used in Example 4.5 were air, determine the work required to compress it polytropically from 14.7 psia, 70.0°F
to 150.°F with n=1.33. Answer: W, =—-285.1 ft-1bf

4.6.2 Rotating Shaft Work

Whenever a rotating shaft carrying a torque load crosses a system boundary, rotating shaft work is done. In this
case (see Figure 4.5b),

(aw)rolaflting =T.d6 (4.33)
sha

and, for rotating shaft work,

Rotating shaft work

2,
= [ Tde (4.34)
(1W2)rotating /l
shaft

where T is the torque vector produced by the system on the shaft and e is its angular displacement vector.
These two vectors are in the direction of the shaft axis. Normally, thermodynamic problem statements do not
require rotating shaft work to be calculated from Eq. (4.34). The rotating shaft work is usually openly given
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as part of the problem statement. For example, if you are analyzing an automobile internal combustion
engine producing 150. ft-1bf of work at the crankshaft, you must be able to recognize that (W) otating shaft =
150. ft-1bf.

WHEN IS SHAFT WORK NOT SHAFT WORK?

Suppose you have a system that contains a fluid, and this fluid is in contact with
a mixing blade or an impeller driven by a shaft passing through the system
boundary (see Figure 4.9). This would constitute an example of shaft work. _ Shaft work crosses the

The shaft and the blade or impeller are inside the system and their physical and _ il system ly)oundary

thermodynamic properties are part of the system'’s properties. You have a hetero- | .— System
genous system made up of the fluid and the solid shaft and blade. If the mass of boundary
the fluid is large enough and the size of the shaft and blade is small enough, then
their impact on the system’s properties can be neglected and the system can be
considered to consist of the fluid alone. However, this is not always the case. Sup- |
pose now you exclude the shaft and the blade or impeller from the system by

restricting the system to be only the fluid and redraw the system boundaries so FIGURE 4.9

that they pass along the surface of the shaft and blade (see Figure 4.10). Now,  Shaft work in a system containing a fluid.
your system consists of a pure substance (the fluid), but what kind of work mode

do you now have?

Since the only work modes we can analyze are “reversible,” the fluid medium cannot — No shaft work crosses
possess viscosity (fluid friction), and consequently, there can be no shear forces on ~Jl > the system boundary
the blade. The only force a viscousless fluid can exert on the blades is a pressure
force, p. As the blade moves, the system boundary must move accordingly to keep up
with it, and the pressure force on the blade must also move. This is just the definition
of the moving boundary work mode. Consequently, this type of shaft work is not really
shaft work at all, it is really moving boundary work.

System
boundary

Another example is the shaft work from an internal combustion engine. It is produced
inside the engine by moving boundary piston-cylinder work, and in a frictionless

FIGURE 4.10

reversible engine, these two work modes are equivalent. However, in a real engine, A new system boundary that omits the

where friction and other losses are present, these two work modes are not equivalent  Shaft and the blade.
(see Figure 4.11).

Not all shaft work can be viewed as moving boundary work. The shaft work from an electric motor or a mechanical gearbox
is not equivalent to moving boundary work (see Figure 4.12).

[\ Shaft work /M Shaft work
Reversible Real
J— — W,y (irrevefsible) — W < W,
engine
FIGURE 4.11
Reversible and irreversible work in an IC engine.
Wetee .
*c]c;t Wsh‘dl‘lfoul
Wihatt Wihaficin

Electric motor Mechanical gearbox

FIGURE 4.12
Shaft work from systems without internal moving boundaries.
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4.6.3 Elastic Work

Whenever we compress or extend an elastic solid (like a spring), we perform elastic work. Consider a force +F
applied on the end of an elastic rod (see Figure 4.5c). The normal stress ¢ in the rod is

'F
=+ (4.35)

>

where | F | is the magnitude of the force and A is the cross-sectional area of the rod. Since the force F and its
corresponding dlsplacement dx are always in the same direction, the vector dot product Fdx always reduces
to Fdx, where F = | F | and dx = |d% |, and when the force is applied on the system from the surroundings
rather than being produced by the system, the work is negative and its increment is

dW = —F-dx = —Fdx = — cAdx (4.36)
The strain ¢ in the rod is defined as

_dx _ Adv _Adx _ Y

e=T=A - ¥ - ¥ (4:37)
where L is the length of the rod and AL is its volume . Then,
Adx = dV = Vde (4.38)
and Eq. (4.36) becomes
dW = —oAdx = —oVide (4.39)
Therefore, for elastic work,
Elastic work
(4.40)

2
(lwz)elastic = _/1 oVde

EXAMPLE 4.6

Determine an expression for the work involved in deforming a constant volume elastic solid that obeys Hooke's law of elasti-
city (see Figure 4.13).

L < LvaL — W2
|» F=EA(AL/L)
State 1 State 2
FIGURE 4.13
Example 4.6.
Solution

Here we have ¥ = constant. Also, from strength of materials we can write Hooke’s law as ¢ = Ee, where E is Young's modulus

of elasticity. Then, Eq. (4.40) becomes
2 2 >
elastic — —/ oV de = —/ E¥ede = —EV/ ede
1 0 :
v

2_ 2
-ev(250) - - (o=

Thus, if €2 > €2, then (;W,) is negative and work is being put into the system; and if €3 <&?, then (;W,),,qic iS Positive
and work is being produced by the system. Note that both tensile strains (¢ > 0) and compressive strains (¢ < 0) are possi-
ble here. But, the resulting work formula deals only with £* and consequently gives the correct result regardless of the strain
direction.

(1W2)

elastic
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Exercises

13. What type of rigid system has zero elastic work regardless of the loading? Answer: A perfectly rigid system (E = ).

14. If the system analyzed in Example 4.6 was a rectangular steel bar, 1.0 inch square by 12 inches long, determine the elastic
work required to stress it from 0.0 to 10. X 10? Ibf/in’. Use Egeel = 30. x 10° Ibf/in. Answer: (;W5)ejastic = — 1.7 ft- Ibf.

15. Ten joules of elastic work is applied to a circular brass rod 0.0100 m in diameter and 1.00 m long. Determine the
resulting stress and strain in the bar if it is initially unloaded. Use Ep,ss=1.05 X 10'! Pa. Answer: o= 164 MPa and
£=1.56 x 107> m/m.

4.6.4 Surface Tension Work

Surface tension work is the two-dimensional analog of the elastic work just considered. Figure 4.5d shows a
soap film on a wire loop. One side of the loop has a movable wire slider that can either compress or extend the
film. As in the case of the elastic solid, the force and deflection are always in the same direction and the force is
applied to the system, so we can modify Eq. (4.36) to read

dW = - F-dx = —Fdx = —(20b) dx (4.41)

where o is the surface tension of the film, and b is the length of the moving part of the film. The factor of 2
appears because the film normally has two surfaces (top and bottom) in contact with air. Now, 2b-dx=dA =
change in the film’s surface area, so Eq. (4.41) becomes

dW = —o,dA (4.42)

and, for the surface tension work,

Surface tension work

2 (4.43)
(lwz)surface == / o5 dA
tension 1
EXAMPLE 4.7
Determine the amount of surface tension work required to inflate the soap D=0 y o,
bubble shown in Figure 4.14 from a diameter of zero to 0.0500 m. The surface ° _surf tension 7 2 D,=0.0500m
tension of the soap film can be taken to be a constant 0.0400 N/m. —
State 1 State 2

Solution FIGURE 4.14

Here, o= constant=0.0400 N/m. Note that we are not calculating the  Example 4.7.
surface area of the bubble here from its geometric elements, but wish

only to find the change in area between states 1 and 2. Consequently,

the area integral in this instance can be treated as a point function rather

than as a path function. So Eq. (4.43) becomes

2
(1W2) surface — _O'S/ dA = —o05(A2—Ay)
i 1

tension

where A; = 0. Now, since a soap bubble has two surfaces (the outside and inside films),

2
Ay = 2(47R?) = 2(47) (@) = 0.0157 m?
and
(W2) quface = — (0.0400 N/m)(0.0157 — 0 m?)

tension

—-6.28 x 107*N-m= —6.28 x 107%]
= —(6.28 x 107*J)(1Btu/1055J) = —5.96 x 107 Btu
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Table 4.2 Generalized Forces and Generalized Displacements

Work Mode Generalized Force F Generalized Displacement dy
Moving system boundary P (pressure) a¥ (volume)

Shaft T (torque) de (angular displacement)

Elastic —o (stress) ¥de (volume)

Surface tension —o5 (surface tension) dA (surface area)

Example 4.7 shows that it would take all of the surface tension energy stored in nearly 2 million 5 cm diameter
soap bubbles to raise the temperature of one pound-mass of water by one degree Fahrenheit.

Notice that, in each of the four cases of classical mechanical work, the work differential dW was given by the
product of what we can call a generalized force F and a generalized displacement dy; that is,

dW = Fdy (4.44)

where F and dy for each of the four classical mechanical work modes are identified in Table 4.2. In Eq. (4.44),
the scalar or dot product is implied if F and dy are vectors.

The application of these work modes may change the thermodynamic state of the system and thus may produce
a change in the system'’s thermodynamic properties. Finally, note that the generalized forces are all intensive
properties, whereas the generalized displacements are all extensive properties.

We can generalize the work concept to nonmechanical systems by including any work mode given by Eq. (4.44)
when the generalized force F is an intensive property forcing function and the generalized displacement dy is an
extensive property response function. We are now in a position to analyze the remaining work mode energy
transport mechanisms.

4.7 NONMECHANICAL WORK MODES OF ENERGY TRANSPORT

Of the wide variety of nonmechanical work modes available, the following five are of significant engineering
value:

Electrical current flow.
Electrical polarization.
Magnetic.

Chemical.
Mechanochemical.

R ONR

Materials are electrically classified as conductors, nonconductors (dielectrics or insulators), and semiconductors. A pure
conductor is a substance that has mobile charges (electrons) free to move in an applied electric field. They constitute the
flow of electrical current. Pure nonconductors have no free electrons whatsoever, and a semiconductor is a material that
behaves as a dielectric (nonconductor) at low temperatures but becomes conducting at higher temperatures.

As an electric field E is applied to a pure conductor, the free electrons migrate to the conductor’s outer surface,
where they create their own electric field, which opposes the applied field. As more and more electrons reach
the outer surface, the electric field inside the object grows weaker and weaker, eventually vanishing altogether.
At equilibrium, there is no electric field within a pure conductor.

A pure nonconductor has no free electrons with which to neutralize the applied electric field. The externally
applied field therefore acts on the internal molecules, and normally nonpolar molecules become polar and
develop electric dipoles. Some molecules are naturally polar in the absence of an electric field (e.g., water). The
applied electric field rotates and aligns the newly created or naturally polar molecules. Complete alignment is
normally prevented by molecular vibrations. But, when the applied field is strong enough to overcome the
vibration randomizing effects and further increases in field strength have no effect on the material, the material
is said to be saturated by the applied field. The process of electric dipole creation, rotation, and alignment in an
applied electric field is known as dielectric polarization.

Therefore, two work modes arise from the application of an electric field to a material. The first is the work asso-
ciated with the free electron (current) flow, and the second is the work associated with dielectric polarization.
For a pure conductor, the polarization work is always zero; and for a pure nonconductor, the current flow work
is always zero. We always treat these as separate work modes.
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4.7.1 Electrical Current Flow Work

Electrical current flow work occurs whenever current-carrying wires (pure conductors) cross the system boundary.
This is the most common type of nonmechanical work mode encountered in thermodynamic system analysis.
The generalized force here is the intensive property voltage (the electric potential) ¢, and the extensive property
generalized displacement is the charge ¢.” Then, assuming the voltage is applied to the system,

(dW) electrical — —(I)dq

current

and
2
(1W2)electrical = _/ d)dC] (4.45)
current 1
Electrical current i is defined as
_dq
dt
so dq =i dt, and
(EW) electrical — d)i dt (4446)

current
Then, electric current work is

Electrical current work

2
. 4.47
(1W2)eleclrical 2‘/1 q)ldt ( )

current
From Ohm’s law, the instantaneous voltage ¢ across a pure resistance R carrying an alternating current, described
by i =imax sin(2xft), is
¢ = Ri = Ripgay sin (2zft)

where f is the frequency and ¢pax = Rimax. Thus, Eq. (4.47) gives the electrical current work of n cycles of an
alternating electrical current applied to a pure resistance from time 0 to time t=rn/f as

t=nff
(W2 )eleclrical = ~ Pmaximax /0 sin?(2zft) dt

current

_(bmaximax(t/z) (4.48)

— it = —$2(t/R) = — iRt
where ¢, and i, are the effective voltage and current defined by ¢ = ¢y /v'2 and i, = imax/V/2.

Electrical work can exist in either open or closed systems (we do not consider the flow of electrons across a sys-
tem boundary to be a mass flow term). When the electron supply is going into a finite system, such as a battery
or a capacitor, Eq. (4.45) or (4.47) is convenient to use. But, when an essentially infinite supply of voltage and
current is used, it is more convenient to use the instantaneous rate at which electrical work is done, or the elec-
trical power, defined as

aw

(W)electn'cal = 7 = —oi (4.49)

current

OHM'S LAW

This law was discovered experimentally by George Simon Ohm (1787-1854) in 1826. Basically, it states that, for a given
conductor, the current is directly proportional to the potential difference, usually written as ¢ = Ri, where R is the electrical
resistance in units of ohms, where 1 ohm = 1 volt/ampere.

7 The electrical potential ¢ and the electric field strength vector E are related by E = —V (), where V() is the gradient operator.

117
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The instantaneous electrical power —¢i of an alternating current circuit varies in time with the excitation
frequency f. However, it is common to report the electrical power of an ac device as the instantaneous power
averaged over one cycle of oscillation, or

If
Wytectical =-f / didt = —fPrayimax / 1 sin?(2zft) dt

(pure resistance)

(4.50)
= — Pmaximax/2 = — i = —(ID?/R = —i2R

where ¢, and i, are the effective voltage and current defined earlier.

EXAMPLE 4.8

Consider the 120. V, 144 Q (ohm), alternating current incandescent lightbulb shown in Figure 4.15 to be a pure resistance.
Determine

a. The electrical current work when the bulb is operated for 1.50 h.
b. Its electrical power consumption.

Solution W«— 144 ohm

a. Since the voltage and current ratings of ac devices are always given in terms of their a) W,joe=? for 1.50 hour
effective values, ¢.=120. V and, from Ohm’s law, i,=¢/R=120./144=0.833 A. b) W=?

Then, from Eq. (4.48),
120y
el = — Belet = — (120.V)(0.833 A)(1.50 h)

o 150.V-A-h = —150.W-h LR 2l
Example 4.8.

(1W2)

b. From Eq. (4.50),

—dpie = —(120.V)(0.833A) = —100.V-A = — 100.W

(W)elearical =
current

The minus signs appear because electrical work and power go into the system.

Exercises

16. Determine the work and power consumption in Example 4.8 when the bulb is operated for 8.00 h instead of 1.50 h.
Answer: (;W,)eectrical = — 800. W-h, and Wejectrical = —100. W.

17. Determine the effective current drawn by a 1.00 hp ac electric motor operating on a standard 120. V effective power line.
Answer: i, =6.22 A.

18. Determine the electrical power dissipated by an 8-bit microprocessor computer chip that draws 90.0 mA at 5.00 V dc.
Answer: Welecical = —450. mW.

4.7.2 Electrical Polarization Work

The electric dipole formation, rotation, and alignment that occur when an electric field is applied to a noncon-
ductor ora semiconductor constitutes an electric polarization work mode. The generalized force is the intensive
property E (1n V/m), the electric field strength vector, and the generalized displacement is the extensive property
P (in A-s/m?), the polarization vector of the medium (defined to be the sum of the electric dipole rotation
moments of all the molecules in the system). Then, assuming the electric field is applied to the system,

- - —
(dW) electrical - E-dP (4.5 1)
polarization
and
2,
(1W2) electrical == ) E-dp (4.52)

polarization
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Table 4.3 The Electric Susceptibility of Various Materials

Material Temperature (°C/°F) e (dimensionless)
Air (14.7 psia) 20/68 5.36 x 107
Plexiglass 27/81 2.40

Neoprene rubber 24/75 5.7

Glycerine 25/77 41.5

Water 25/77 77.5

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.

Since the effect of the electric field is to orient the dipoles coincident with the field, then E and P are always
parallel and point in the same direction. Therefore, if we let the magnitude of E be E and the magnitude of P
be P, then Egs. (4.51) and (4.52) reduce to

(dW) electrical = —EdpP (4'53)
polarization
and
2
(1W2) electrical = - / EdP (4.54)
polarization 1

Many substances (particularly gases) correlate well with the following dielectric equation of state:
P = ey VE (4.55)

where ¥ is the volume of the dielectric substance, &, is the electric permittivity of vacuum (8.85419 x 1072 N/V?),
and y, is the electric susceptibility (a dimensionless number) of the material. Table 4.3 gives values of y, for various
materials.

EXAMPLE 4.9

The parallel plate capacitor shown in Figure 4.16 is charged to a potential 120. volts
difference of 120. V at 25.0°C. The plates are square with a side length of

0.100 m and are separated by 0.0100 m. If the gap between the plates is filled

with water, determine the polarization work required in the charging of the  water at

capacitor. 25.0°C

Solution
Here, we can use the dielectric equation of state, Eq. (4.55). Then, Eq. (4.54)
becomes

) 2 0.0100 m
(1W2 )eleclric =" / E dP T / (EOXeVE) dE == 6‘0)(e¥ (E% - E%)/Z
polarization 1 L FIGURE 4.16
From the problem statement, we have Bl e

V = AL = (0.100m)*(0.0100 m) = 1.00 X 10~* m?

If we assume that the electrical potential ¢ varies linearly between the plates, then
we can write

E=|-V(¢)| = (voltage difference)/(plate gap) with E; = 0 (uncharged plates)
and

_ 120V

_ 4
R 1.20 x 10" V/m (charged plates)

(Continued )
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EXAMPLE 4.9 (Continued )

From Table 4.3, we find that, for water, .= 77.5. Then,

(W2) eerric = —(8.85419%x 102 N/V?)(77.5)(1.00 x 10~*m?) x [(1.20 x 10*)* — 02V?/m?}/2

polarization

= —-494x10"°N-m= —-4.94%x10"¢]
The work is negative since it went into the capacitor (the system).

Exercises

19. How much voltage would be required to store 1.00 MJ of electrical polarization work in the capacitor of Example 4.9?
Answer: V=3.82 x 107 V.

20. Determine the electrical polarization work in Example 4.9 when the gap between the capacitor plates is filled with air at
20.0°C. Answer: (;Wa)polarization = —3.42 X 107" .

21. A capacitor is made from two concentric cylinders 0.100 m long. The diameter of the outer cylinder is 0.0200 m and the
diameter of the inner cylinder is 0.0100 m. The gap between the cylinders is filled with glycerine at 25.0°C. Determine the
electrical polarization work required to charge the capacitor when 120. V is applied. Answer: (;W5)polarization = —1.04 X 107107,

The polarization work is a small fraction of the total energy required to charge an entire capacitor. The total
work required o charge a capacitor is divided into two parts. The largest fraction goes into increasing the electric
field strength E itself, and the remaining goes into the polarization of the material exposed to the electric field.
Consequently, if the thermodynamic system you are analyzing is just the material between the plates of a capaci-
tor, then the only polarization work is done on the material and Eq. (4.54) gives the correct electrical work
mode value. On the other hand, if you are analyzing the entire capacitor (plates and dielectric), then Eq. (4.47)
must be used to determine the correct electrical work mode value.

4.7.3 Magnetic Work

Materials are classified as either diamagnetic, paramagnetic, or ferromagnetic. Diamagnetic materials have no per-
manently established molecular magnetic dipoles. However, when they are placed in a magnetic field, their mole-
cules develop magnetic dipoles whose magnetic field opposes the applied field (the Greek prefix dia means “to
oppose”). Paramagnetic materials have naturally occurring molecular magnetic dipoles. When placed in a mag-
netic field, these dipoles tend to align themselves parallel to the field (the Greek prefix para means “beside”). Fer-
romagnetic materials retain some magnetism after the removal of a magnetic field. The thermodynamic state of
these materials depends not only on the present values of their thermomagnetic properties, but also on their mag-
netic history. In this sense, ferromagnetic materials have a “memory” of their previous magnetic exposure.

As in the case of an electric field, the work associated with the initiation or destruction of a magnetic field con-
sists of two parts. The first part is the work required to change the magnetic field itself (as though it existed
within a vacuum), and the second part is the work required to change the magnetization of the material present
inside the magnetic field.

For calculating the total work of magnetization, the generalized force is the intensive property H (in A/m?), the mag-

netic field strength, and the generalized displacement is the extensive property ¥ B, the product of the system volume ¥
. 3 .. . = /. 2 . . . .

(in m’) and the magnetic induction B (in tesla or V-s/m”). Thus, assuming the magnetic field is applied to the system,

@aw) = —H-d(¥B) (4.56)

magnetic

. - - . . . . . . . .
and since H and B are always parallel and point in the same direction in magnetic materials, this reduces to

(@dw) = —H-d(VB) (4.57)

magnetic

where H is the magnitude of H and B is the magnitude of B. The magnetic induction can be decomposed into two
vectors as

— — —
B = poH +poM (4.58)

v S . . . . = .
where M is the magnetization vector per unit volume of material exposed to the magnetic field (in a vacuum, M is
equal to the null vector 0'), and yo =4z X 107 V-s/(A-m) is a universal constant called the magnetic permeability.
Inserting this information into Eq. (4.57) gives

(EW) magnetic — _MOI_Id(_‘VZ H) _:MOH d(VM) (459)

(total)
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Equation (4.59) is the differential of the total work associated with changing a material’s magnetic field. The first term
corresponds to the work required just to change the field itself (in a vacuum); and the second term corresponds to the
work associated with the alignment of the molecular magnetic dipoles of the material present inside the magnetic
field and represents the work of magnetization of the material exposed to the magnetic field. Hence, we can write

@dW) e = —poHd(¥ M) (4.60)
magnetization
A simple and useful equation of state for a magnetic field is
M=y, H (4.61)

where y,, is the magnetic susceptibility (a dimensionless number) of the material. The magnetic susceptibility is
negative for diamagnetic materials and positive for paramagnetic materials (see Table 4.4). For a constant
volume magnetization process, Eq. (4.61) can be used in Eq. (4.59) to give

(HW) magnetic — _MO'V(l +)(m)HdH

(total)

and assuming a constant volume and a constant magnetic susceptibility, this can be integrated to give the total
magnetic work:

Total magnetic work

H2 —H?
#) (4.62)

(W) g = ~ 101 20) (725

(total)

where the increment to the total work due to the actual magnetization of the exposed material is just the actual
magnetic work:

Actual magnetic work

H2 — H?
(1W2)material = _”OV)(m( 5 2 1)

magnetization

(4.63)

Table 4.5 summarizes the electrical and magnetic symbols used in this section.

Table 4.4 The Magnetic Susceptibility of Various Materials

Material Temperature (°C/°F) xm (dimensionless)
Mercury 18/26 -32x107°

Quartz 25/77 -1.65 x 107°

Ice 0/32 -0.805 x 107°
Nitrogen (14.7 psia) 20/68 —-0.0005 x 107°
Oxygen (14.7 psia) 20/68 0.177 x 107°
Aluminum 18/64 2.21 x 107

Platinum 18/64 29.7 x 107

Source: Reprinted by permission of the publisher from Zemansky, M. W., Abbott, M. M., Van Ness, H. C., 1975. Basic Engineering
Thermodynamics, second ed. McGraw-Hill, New York.

Table 4.5 Summary of Electrical and Magnetic Terms

Symbol Name Sl Units

E Electric field strength V/m

P Polarization A-s/m?

& Permittivity of free space 8.85419 x 10712 NA2
Xe Electric susceptibility Dimensionless

H Magnetic field strength A/m

B Magnetic induction Tesla or V-s/m?

M Magnetization A/m

"o Magnetic permeability 4n x 107" V-s/A-m
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EXAMPLE 4.10

The magnetic susceptibility of the diamond in the gold engagement ring shown in
Figure 4.17 is —2.20 x 107> at 20.0°C. Determine the (a) total magnetic and (b) material
magnetic work required to change the magnetic field of a 1 carat diamond having a
volume of 5.00 x 10~° m® from 0.00 to 1.00 x 10> A/m.

a) Wlnlal magnetic — ?

b) W,

. =7
naterial magnetic — *

\ y
v\ 1 carat diamond

Solution

a. The total magnetic work required is given by Eq. (4.62) as e

Example 4.10.

H2 - H?
(1W2)magnelic = _”OV(I +Xm)< - 2 1)

where pg=4n x 1077 V-s/A-m and y,, = —2.20 x 107>. Then,

7 V-s
(1W2)magnetic = —(472')(10 7T :

1.00x 10° — 0A?/m?
)(5.00>< 1076 m?)(1-2.20x 10°) (—/m>
= -3.14%107]

b. The magnetic work required to change the magnetic field strength inside the diamond alone is given by Eq. (4.63) as

HZ _H2
(1W2)material = —M0V1m< : 2 1)

magnetization

and, using the values from part a, we get
s . 1. 10° —0A%/m?
(zw) = —(47r><10‘7u>(5.00><10‘6ms)(—2.20><10‘5) 1.00x107 - 0A7/m”
magnetic A-m 2

=6.91x10"11]

Exercises

22. The magnetic susceptibility of gold is —3.60 x 107°. If the gold in the ring of Example 4.10 has a volume of 1.00 X 10™> m?,
determine the total magnetic work required to change the magnetic field strength of the ring (the gold plus the diamond)
from 0 to 1.00 X 10° A/m. Answer: (;W2)magneic = —9.42 X 107 J.

23. The magnetic susceptibility of a ferromagnetic material such as iron varies with the applied magnetic field. However, if we
assume it is constant over a small range of field strength at a value of 1800, then determine the (a) total work and (b) the
material work required to magnetize a rectangular iron bar 0.500 inches square by 6.00 inches long from an initial magnetic
field strength of zero to a magnetic field strength of 100. A/m. Answer: (;W2) o = (1Wa)ion =—2.78 X 107* .

4.7.4 Chemical Work

Chemical work occurs whenever a specific chemical species is added to or removed from a system. Here, the
generalized force is the intensive property u;, the Gibbs chemical potential of chemical species i, and the general-
ized displacement is the extensive property m; the mass of the chemical species added or removed.® Since any
number of chemical species may be involved in a process, we write the chemical work as the sum over all k of
the i species that are moved from the system to the surroundings as

k
(aw)chemical == Z/’lidmi (464)
i=1
and so
) k
(1W2)chemical = _/1 2/"1’ dm; (4.65)
i=1

8 In chemistry texts, the chemical potential is usually defined on a molar (i.e., per unit gram mole) basis. In this text, we define it as a
standard intensive (per unit mass) property.
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When the chemical potential is constant during the mass transfer from state 1 to state 2, Eq. (4.65) can be
integrated to give the chemical work of adding chemical species:

Chemical work of adding chemical species

k
(1W2)chemica1 == Z/‘i("’h - ml)i (4‘66)
i=1

p; = constant

Chemical work does not include the energy transports produced by chemical reactions, nor does it include the
energy transported across the system boundary with the mass transport itself. Mass flow energy transport is con-
sidered later in this chapter, and the energy transports of chemical reactions are studied in detail in Chapter 9.
The chemical work presented here essentially deals only with those energy transports involved in the mixing or
separating of chemical species.

4.7.5 Mechanochemical Work

Mechanochemical work occurs whenever there is a direct energy conversion from chemical to mechanical energy.
Animal muscles are examples of mechanochemical systems. Small mechanochemical engines have also been
built using this work mode, and Figure 4.18 shows a small hydraulic pump driven by a mechanochemical con-
tractile fiber. The “fuel” used in mechanochemical engines is not “burned,” as in a standard heat engine. Often
it is merely diluted and a small amount of chemical work is simultaneously extracted.

Mechanochemical work is calculated as basic mechanical work. The generalized force is the intensive property
f, the force generated by or within the mechanochemical system, and the generalized displacement is the exten-
sive property ¢, the mechanical displacement of the system. Therefore,

(dw) =fd¢ (4.67)

mechanochemical

Generally, the mechanochemical force f is not constant during the contraction-expansion cycle, so the total
mechanochemical work must be determined by a careful integration:

Mechanochemical work

2 (4.68)
(lWZ)mechanochemical =~/1 fdf

Note that, since the mechanochemical force comes from inside the system, a negative sign is not needed in Egs. (4.67)
and (4.68).

A system may be exposed to only one of these work modes of energy trans-
port, or it may be exposed to several of them simultaneously. Since work is
an additive quantity, to get the total (or net) work of a system that has more
than one work mode present, we simply add all these work terms together:

Total differential work of all the work modes present

(AW) oa = pd¥ +T-d0 — 5 de — o, dA
(4.69)
k
— didt — EdP — pugH d(¥M) — D s dmitfdé + -+
i=1
It is generally the engineer’s responsibility to determine the number and 7 //Coupling
type of work modes present in any problem statement or real world situa- d belt

tion. Often, the work modes of a problem are affected by how the system
boundaries are drawn (recall that boundary definition is a prerogative of the
problem solver). For example, if a system contains an electrical heater, then
electrical current work is done on the system. However, if the boundary is
drawn to exclude the heating element itself, then no electrical work occurs
and the energy transport becomes a heat transport from the surface of the FIGURE 4.18

Concentrated LiBr solution

heating element into the system. A simple mechanochemical Katchalsky engine.
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4.8 POWER MODES OF ENERGY TRANSPORT

In thermodynamics, the time rate of change of a work mode, dW/dt, is called power, and it represents the power
mode of an energy transport W. Dividing each of the previous nine differential work mode equations by the time
differential dt produces an equation for the associated power mode. These results, summarized in Table 4.6, are
useful in calculating the power (i.e., work rates) in problems in which continuous rate processes occur. While
continuous rate processes can occur in both closed and open systems, they are more common in open systems.

4.9 WORK EFFICIENCY

Notice that, in all the work mode formulae given so far, no mention was made of the efficiency of the work transport
of energy. This is because all the mechanical and nonmechanical work mode formulae discussed earlier were devel-
oped under the presumption of ideal circumstances, in which there were no friction losses or other inefficiencies
within the system. Under these conditions the work process could ideally be reversed at any time, and all the work
put into a system could be removed again simply by reversing the direction of the generalized force. Therefore, we
call all the mechanical and nonmechanical work (or power) mode formulae developed previously reversible work (or
power) formulae. Consequently—and this is very important—work or power calculations made with these formulae
do not agree with the measurement of actual work that occurs in a real system. In real systems that absorb work,
more actual work than that calculated from the previous formulae are required to produce the same effect on the sys-
tem, and in real work producing systems, less actual work is produced than calculated from the previous formulae.

In the real world, nothing is reversible. Not one of the work modes discussed earlier can actually be carried out
with 100% efficiency. Some are very close to being reversible (i.e., they have very high efficiencies) but none is
completely reversible. This lack of reversibility in the real world is due to a phenomenon of nature that we
describe with the second law of thermodynamics, which is discussed in detail in Chapter 7. Work modes with a
low degree of reversibility (i.e., high irreversibility) are those carried out with systems far from thermodynamic
equilibrium. Heat transfer, rapid chemical reactions (explosions), mechanical friction, and electrical resistance
are all common sources of irreversibility in engineering systems.

Engineers use the concept of a work transport energy conversion efficiency to describe the difference between
reversible and actual work. A general definition of the concept of an energy conversion efficiency is

Desired energy result

4.70
Required energy input ( )

Energy conversion efficiency = 5 =

Table 4.6 Power Modes of Energy Transport
Work Mode Power Equation
Mechanical moving boundary W), o =p%—‘? =p¥
bound%ry
Mechanical rotating shaft (W) ating =T(%) =Tw
shal
Mechanical elastic W) gastc = —0¥ (%) = —olté
i i i _ dA\ _ j
Mechanical surface tension (]/\/)SmlCe — (W) = A
tension
Electrical current (W)electrical = —¢i
current
Electrical polarization W)gorca = —E(%) - _EP
polarization
Magnetic (W)magnetic = —uo¥(1 +}(m)H(%>
= —po¥(1+xm)HH
Chemical (W)chemica\ = _Z:“i (#) = _Z#/mi
Mechanochemical (W)mechanochemica\ = f(%) = ff




4.9 Work Efficiency a

In the case of work-absorbing systems, such as pumps or compressors, we can use an equation similar to
Eq. (4.70) to define a work transport energy conversion efficiency, or reversible efficiency, nw, as work efficiency for
work-absorbing systems:

Work efficiency for work-absorbing systems

(%) = % x 100 = Wrev 100 (4.71)

act act
In the case of work-producing systems, such as engines or electrical generators, the reversible or work transport
energy conversion efficiency becomes:

Work efficiency for work-producing systems

nw (%) = % x 100 = Wact 100

rev Wiev

(4.72)

When these systems consist only of mechanical components, as, for example, in an internal combustion engine, the
work transport energy conversion efficiency is simply called the mechanical efficiency and nyy is usually written as 7,,.

Even though work transport energy conversion efficiencies are always less than 100%, not all energy conversion
efficiencies are less than 100%. The value of the efficiency depends on the nature of the desired result in
Eq. (4.70). An electrical resistance can convert electrical energy (the energy input) into heat (the desired result)
with an energy conversion efficiency of 100%, but when this process is reversed, we find that the conversion of
heat into work occurs with a much lower efficiency (a consequence of the second law of thermodynamics). On
the other hand, refrigeration systems normally produce more “desired result” (cooling) than it actually costs in
required energy input. Such systems normally have energy conversion efficiencies far in excess of 100%, not
because they violate any law of physics, but simply because of the way their energy conversion efficiency is
defined. Because it seems paradoxical to most people to speak of efficiencies in excess of 100%, we call such
efficiencies coefficients of performance (COPs) instead. For example,

Refrigerator cooling rate

cor =
( ) Refrigerator power input

refrigerator

EXAMPLE 4.11

The automobile engine shown in Figure 4.19 produces 150. hp on a test 1.101bm/min of fuel
stand while consuming fuel with a heat content of 20.0 x 10° Btu/Ibm at
a rate of 1.10 Ibm/min. A design engineer calculates the reversible power

output from the engine as 223 hp. Determine :
P & P —7 vvucluu] =150. hp

a. The energy conversion efficiency of the engine.
b. The work efficiency of the engine.

Solution W

reversible

=233hp
a. The energy conversion efficiency is given by Eq. (4.70) as

_ Desired energy result FIGURE 4.19
" Required energy input Example 4.11.

g

The desired energy result here is the engine output power, 150. hp. The required energy input here is the energy coming from
the fuel, 20.0 x 10° Btu/lbm x 1.10 Ibm/min x 60 min/h = 1320 x 10® Btu/h x (1 hp)/(2545 Btu/h) = 519 hp. Then,

_ 150.hp
~ 519hp

n, =0.289 =28.9%

b. Since an engine is a work producing machine, Eq. (4.72) gives the work efficiency as

{ 150.h
N = Wactual % 100 = 50 P

X100 = 67.3%
Wheversible 223 hp

(Continued )
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EXAMPLE 4.11 (Continued )

Exercises

24. If the energy conversion efficiency in Example 4.11 were 15.5%, what would be the power output of the engine
measured on the test stand for the same fuel flow rate? Answer: W,ca = 80.4 hp.

25. An engineer designs a pump that requires 1.30 kW of reversible power to operate. A prototype pump is made and taken
to the test laboratory. The actual power required to operate the prototype pump is measured at 1.50 kW. Determine the
work (or mechanical) efficiency of this pump. Answer: 1y = 86.7%.

26. A refrigeration system is powered by a 5.0 kW electric motor. It removes 18 x 10> J/s from the cold storage space. What
is the coefficient of performance of this refrigeration system? Answer: COP = 3.6.

Because of the many irreversibilities that occur within a system, we cannot calculate actual work absorbed or
produced from a theoretical formula. All efficiency values are determined from laboratory or field measurements
on the actual work of real operating systems. When energy conversion efficiencies are to be taken into account
in textbook problems, the efficiency values usually are provided within the problem statement. Experienced
engineers often have a “feel” for what the efficiencies of certain devices should be, and they can use these effi-
ciency estimations in their design calculations. Student engineers, however, are not presumed to be innately
blessed with this knowledge.

The general form of Eq. (4.70) allows the creation of many different types of efficiencies. There are ther-
mal, mechanical, volumetric, thermodynamic, and total efficiencies (to name just a few) in today’s engi-
neering literature. One should always be sure to understand the type of efficiency being used in any
calculation.

4.10 THE LOCAL EQUILIBRIUM POSTULATE

Surprisingly, there is no adequate definition for the thermodynamic properties of a system that is not in an
equilibrium state. Some extension of classical equilibrium thermodynamics is necessary for us to be able to
analyze nonequilibrium (or irreversible) processes. We do this by subdividing a nonequilibrium system into
many small but finite volume elements, each of which is larger than the local molecular mean free path, so
that the continuum hypothesis holds. We then assume that each of these small volume elements is in local
equilibrium. Thus, a nonequilibrium system can be broken down into a very large number of very small sys-
tems, each of which is at a different equilibrium state. This technique is similar to the continuum hypoth-
esis, wherein continuum equations are used to describe the results of the motion of discrete molecules (see
Chapter 2).

The differential time quantity dt used in nonequilibrium thermodynamic analysis cannot be allowed to go to
zero as in normal calculus. We require that dt > o, where o is the time it takes for one of the volume elements
of the subdivided nonequilibrium system just described to “relax” from its current nonequilibrium state to an
appropriate equilibrium state. This is analogous to not allowing the physical size of the element to be less than
its local molecular mean free path, as required by the continuum hypothesis. The error incurred by these postu-
lates is really quite small, because they are the result of second-order variations of the thermodynamic variables
from their equilibrium values. However, just as the continuum hypothesis can be violated by systems such as
rarefied gases, the local equilibrium postulate can also be violated by highly nonequilibrium systems such as
explosive chemical reactions. In the case of such violations, the analysis must be carried forward with techniques
of statistical thermodynamics.

Because of the similarity between the local equilibrium postulate and the continuum hypothesis, it is clear that
the local equilibrium postulate could as well be called the continuum thermodynamics hypothesis.

SIMPLE SYSTEM

Any two independent intensive property values are sufficient to determine (or “fix”) the local equilibrium state of a simple
system.
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4.11 THE STATE POSTULATE

To carry out a reversible work mode calculation using the formulae given earlier, we must know the exact beha-
vior of both the generalized force (an intensive property) and the generalized displacement (an extensive prop-
erty) for each work mode. Systems with multiple work modes have a variety of property values that must be
monitored during the work process to utilize the proper work mode formulae. Therefore, it seems reasonable to
expect that a simple relation exists between the number of work modes present in any given system and the
number of independent property values required to fix the state of that system. This is the purpose of the fol-
lowing state postulate:

The number of independent intensive thermodynamic property values required to fix the state of a closed sys-
tem that is

1. Subject to the conditions of local equilibrium,
2. Exposed to n (nonchemical) work modes of energy transport, and
3. Composed of m pure substances is n + m.

Therefore, a pure substance (m = 1) subjected to only one work mode (n=1) requires two (n + m=2) indepen-
dent property values to fix its state. Such systems are called simple systems, and any two independent intensive
properties determine (or “fix") its state.

The compression or expansion of a pure gas or vapor is a simple system. The work mode is moving system
boundary work, and any two independent intensive property values (p, v; p, T; v, T, etc.) fix its state. In fact, a
simple system occurs when each of the nonchemical reversible work modes just discussed is individually applied
to a pure substance. On the other hand, if two of them are simultaneously applied to a pure substance, then
n + m=3 and three independent intensive property values are required to fix the state of the system.

4.12 HEAT MODES OF ENERGY TRANSPORT

We now introduce the three basic modes of heat transport of energy. Since a good heat mode analysis is some-
what more complex than a work mode analysis and since its understanding is very important to a good engi-
neering education, most mechanical engineering curricula include a separate heat transfer course on this subject.
Consequently, this section is meant to be only an elementary introduction to this subject.

A system with no heat transfer is said to be adiabatic, and all well-insulated systems are considered to be adia-
batic. A process that occurs with no heat transport of energy is called an adiabatic process.

In the late 18th century, heat was thought to be a colorless, odorless, and weightless fluid, then called caloric. By
the middle of the 19th century, it had been determined that heat was in fact not a fluid but rather it represented
energy in transit. Unfortunately, many of the early heat-fluid technical terms survived and are still in use today.
This is why we speak of heat transfer and heat flow, as though heat were something physical, but it is not.
Because these conventions are so deeply ingrained in our technical culture, we use the phrases heat transfer, heat
transport, and the heat transport of energy interchangeably.

After it was determined that heat was not a fluid, late 19th century physicists defined heat transfer simply as
energy transport due to a temperature difference. In this framework, temperature was the only intensive property
driving force for the heat transport of energy.

Today, the simplest way to define heat transport of energy is as any energy transport that is neither a work mode
nor a mass flow energy transport mode. More precisely, modern nonequilibrium thermodynamics defines heat
transfer as just the transport of internal energy into or out of a system. With this definition, all other energy
transport modes are automatically either work or mass flow modes.

The basic heat transfer formulae were developed empirically and, unlike the previous work mode formulae, give
actual rather than reversible heat transport values. In fact, since heat transfer always occurs as a result of energy

WHAT DOES THE WORD ADIABATIC MEAN?

The term adiabatic was coined in 1859 by the Scottish engineer William John Macquorn Rankine (1820—-1872). It comes
from the Greek word, adwfaros, meaning “not to pass through.” In thermodynamics, it means heat does not pass through
the system boundary, or simply that there is no heat transfer. Adiabatic is the analog of the word aergonic (meaning “no
work”) introduced earlier in this chapter.
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spontaneously moving down a potential gradient (such as from high to a low temperature) and the reverse can-
not spontaneously occur, no heat transfer process can be reversed in any way whatsoever. Therefore, all finite
heat transfer processes are irreversible.

4.13 HEAT TRANSFER MODES

Heat transfer is such a large and important mechanical engineering topic that most curricula have at least one
required course in it. Heat transfer equations are always cast as heat transfer rate (i.e., Q) equations. To deter-
mine the amount of heat energy transport that occurs as a system undergoes a process from one equilibrium

2
state to another you must integrate Q over the time interval of the process, or 1Q, =/ Q dt. Normally, we
1

choose processes in which Q is constant in time so that the integral becomes simply 1Q, = Q (t, —t;) = Q(At),
where At is the time required for the process to occur.

Historically, the field has been divided into three heat transfer modes: conduction, convection, and radiation.
These three modes are briefly described next.

4.13.1 Conduction

The basic equation of conduction heat transfer is Fourier's law:

Qeond = —kA (%) (4.73)
where Q.ond is the conduction heat transfer rate, k; is the thermal conductivity of the material, A is the cross-
sectional area normal to the heat transfer direction, and dT/dx is the temperature gradient in the direction of
heat transfer. The algebraic sign of this equation is such that a positive Q.4 always corresponds to heat transfer
in the positive x direction, and a negative Q.4 always corresponds to heat transfer in a negative x direction.
Since this is not the same sign convention adopted earlier in this text, the sign of the values calculated from
Fourier's law may have to be altered to produce a positive when it enters a system and a negative when it leaves
a system.

For steady conduction heat transfer through a plane wall (Figure 4.20), Fourier’s law can be integrated to give

(Qcond)plane = - kIA (u) (474)

X2 — X1

and for steady conduction heat transfer through a hollow cylinder of length L, Fourier’s law can be integrated to give

. T; ide — Toutside
Q . = —2xlLk, {lml— .
( cond ) cylinder L In (Tinside / Toutside ( )

Table 4.7 gives thermal conductivity values for various materials.

X2
(a) Plane wall (b) Cylindrical and spherical

FIGURE 4.20
Thermal conduction notation in plane, cylindrical, and spherical coordinates.
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Table 4.7 Thermal Conductivity of Various Materials

Thermal Conductivity k;
Material Temperature (°C/°F) Btu/(h-ft-R) W/(m-K)
Air (14.7 psia) 27/81 0.015 0.026
Hydrogen (14.7 psia) 27/81 0.105 0.182
Saturated water vapor (14.7 psia) 100/212 0.014 0.024
Saturated liquid water (14.7 psia) 0/32 0.343 0.594
Engine oil 20/68 0.084 0.145
Mercury 20/68 5.02 8.69
Window glass 20/68 0.45 0.78
Glass wool 20/68 0.022 0.038
Aluminum (pure) 20/68 118.0 204.0
Copper (pure) 20/68 223.0 386.0
Carbon steel (1% carbon) 20/68 25.0 43.0

4.13.2 Convection
Convective heat transfer occurs whenever an object is either hotter or colder than the surrounding fluid. The
basic equation of convection heat transfer is Newton's law of cooling:

Qconv = hA(Too - Ts) (4.76)

where Q.. is the convection heat transfer rate, h is the convective heat transfer coefficient, A is the surface area
of the object being cooled or heated, T, is the bulk temperature of the surrounding fluid, and T is the surface
temperature of the object. The algebraic sign of Newton’s law of cooling has been chosen to be positive for
T > Ty (i.e., for heat transfer into the object). This corresponds to our thermodynamic sign convention for heat
transfer when the object is the system. The convective heat transfer coefficient h is always a positive, empirically
determined value. Table 4.8 lists typical heat transfer coefficients.

4.13.3 Radiation

All electromagnetic radiation is classified as radiation heat transfer. Infrared, ultraviolet, visible light, radio and
television waves, X rays, and so on are all forms of radiation heat transfer. The radiation heat transfer between
two objects situated in a nonabsorbing or emitting medium is given by the Stefan-Boltzmann law:

Qrad = 1:1—281A10_(T;l - Til) (477)

where Q.4 is the radiation heat transfer rate, F,_, is called the view factor between objects 1 and 2 (it describes how
well object 1 “sees” object 2), ¢, is the dimensionless emissivity or absorptivity (the hotter object is said to emit
energy while the colder object absorbs energy) of object 1, A; is the surface area of object 1, ¢ is the Stefan-
Boltzmann constant (5.69 x 107® W/m?-K* or 0.1714 x 107® Btu/h-ft*>-R?*), and T; and T, are the surface
temperatures of the objects. A black object is defined to be any object whose emissivity is ¢ = 1.0. Table 4.9 lists
some typical emissivity values. Also, if object 1 is completely enclosed by object 2, then F;_, = 1.0. For a comple-
tely enclosed black object, the Stefan-Boltzmann law reduces to

(Qrad)black = Ala(Tg - T;l) (4‘78)

enclosed

Table 4.8 Typical Values of the Convective Heat Transfer Coefficient

Convective Heat Transfer Coefficient h

Type of Convection Btu/(h - f2-R) W/(m?.k)
Air, free convection 1-5 2.5-25

Air, forced convection 2-100 10-500
Liquids, forced convection 20-3000 100-15,000
Boiling water 500-5000 2500-25,000

Condensing water vapor 1000-20,000 5000-100,000
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Table 4.9 Typical Emissivity Values for Various Materials

Material Temperature (°C/°F) Emissivity ¢ (dimensionless)
Aluminum 100/212 0.09

Iron (oxidized) 100/212 0.74

Iron (molten) 1650/3000 0.28

Concrete 21/70 0.88

Flat black paint 21/70 0.90

Flat white paint 21/70 0.88

Aluminum paint 21/70 0.39

Water 0-100/32-212 0.96

The sign convention in the Stefan-Boltzmann law has been chosen to be positive when T, > T;; therefore, the
“system” should be object 1 to achieve the correct thermodynamic sign convention. Also note that this equation con-
tains the temperature raised to the fourth power. This means that absolute temperature units must always be used.

4.14 A THERMODYNAMIC PROBLEM SOLVING TECHNIQUE

The previous 11 example problems have been relatively straightforward, mainly illustrating the use of specific
energy and work mode equations. However, most thermodynamics problems are not so straightforward, and
now we are ready to introduce a comprehensive thermodynamic problem solving technique that allows you to
set up and solve even the most complex thermodynamics problems.

Thermodynamic problem statements sometimes have the appearance of being stories full of technical jargon,
liberally sprinkled with numbers. All too often, your first instinct on being faced with such a situation is to cal-
culate something—anything—because the act of calculation brings about the euphoria of apparent progress
toward a solution. However, this approach is quickly stalled by the inability to reach the final answer, followed
by long frustrating periods of shoe shuffling and window staring until either enlightenment, discouragement, or
sleep occurs. This is definitely the wrong problem solving technique. A good technique must have definite start-
ing and ending points, and it must contain clear and logical steps that carry you toward a solution.

As a prelude to discussing the details of the problem solving technique, you should realize that the general
structure of a thermodynamic word problem usually contains the following three features.

1. A thermodynamic problem statement is usually a small “story” that is too long to be completely and
accurately memorized no matter how many times you read it. So simply reading the problem statement
once is usually not enough; you must translate it into your own personal environment by adding a
schematic drawing, writing down relevant assumptions, and beginning a structured solution.

2. To completely understand the problem statement, you must first “decode” it. That is, you must dissect and
rearrange the problem statement until it fits into a familiar pattern. Any problem solving technique is, of
course, based on the premise that the problem has a solution. Curiously, it is very easy to construct problem
statements that are not solvable without the introduction of extraneous material (judiciously called
assumptions).

3. Thermodynamic problem statements tend to be very wide ranging. They can be written about virtually any
type of system and can deal with virtually any form of technology. To give the problem statements a
pragmatic engineering flavor, they are usually written as tiny stories that are designed to reflect what you
will encounter as a working engineer.

Unfortunately, many students facing thermodynamics for the first time are overwhelmed by these factors. How
are you supposed to know anything about how a nuclear power plant operates, how the combustion chamber
of a turbojet engine functions, or how a boiler feed pump works if you have never actually seen one in opera-
tion? The key is that you really do not have to know that much about how these things work to carry out a
good thermodynamic analysis of them. But, you do have to understand how problem statements are written
and how to analyze them correctly. This is the core of the problem solving technique.

In fact, it would be possible to write a computer program that could solve any thermodynamic word problem.
What we are going to do is to show you how to solve thermodynamic problems by using a computerlike flow-
chart approach, as in Figure 4.21.

The technique is really very simple. First, you must learn to formulate a general starting point. Then you must
learn to identify the key logical decisions that have to be made as the solution progresses. Finally, when all the
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FIGURE 4.21
Flowchart for solving thermodynamic problems.

analysis and algebraic manipulations are complete, you make the necessary calculations (paying close attention
to units and significant figures) to obtain the desired results.

The steps to be followed are shown in Figure 4.21, and each step is discussed in detail next.
Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system or device described in the problem statement and determine the
material (air, steam, liquid water, etc.) with which you are working. Then, carefully define the part(s) you
choose to analyze by inserting a dashed line to identify the system boundary.

Step 2. Identify the problem’s unknown(s) by rereading the problem statement and picking out all the
things you are supposed to determine. Write them on your system sketch.

Step 3. Determine whether it is a closed system or an open system. If your system is closed, identify as
many of the state properties as you can. Most problems have only two states (initial and final), but some
also have intermediate states with which you have to contend. To keep the numerical values and units of
the state properties straight, list each one under a “state” heading.
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WHAT IS THE SECRET TO SOLVING THERMODYNAMICS PROBLEMS?

The secret to solving thermodynamic problems is to do the analysis first and do the calculations last, not the other way around.
The basic process for solving a thermodynamics problem is this:

Begin by carefully reading the problem statement completely through.

Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.

Step 3. Identify the type of system (closed or open) you have.

Step 4. Identify the process that connects the states or stations.

Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).

Step 7. Calculate the value(s) of the unknown(s).

Step 8. Check all algebra, calculations, and units.

The process is this:

Sketch — Unknowns — System — Process — Equations — Solve — Calculate — Check

For example, if you have a closed system that is initially at 14.7 psia with a specific volume of 0.500 ft*/lbm and by some
process it ends up at 200. psia at a quality of 90.0%, you should write this information on your work sheet in the follow-
ing form (always be sure to include the units on these values):

Process path

State] —— State2
p1 = 14.7 psia p2 = 200. psia
v, = 0.500ft’/lbm x, = 0.900

For example, if you have a flow stream entering the system at station 1 with a temperature of 300.°C and a pressure of
1.00 MPa, and a flow stream exiting the system at station 2 with a specific volume of 26.3 m*/kg and a quality of 99.0%,
you should write this information on your work sheet as (always be sure to include the units on these values):
Process path .
Station 1 Station 2

p1 = 1.00 MPa v, = 26.3 m¥kg
T, =300.°C x; =0.990

Here, too, we are trying to identify two independent property values at each station, because in simple systems, they fix the
state of the material at that station.

Notice that, for “simple” thermodynamic systems, we always are looking for the values of two independent
properties in each state. These two property values fix (i.e., determine) the state and we can then find the values
of any of the other properties needed at that state.

Often a problem statement gives only one property value at a system state. In this case, the remaining indepen-
dent property value at that state is usually given by the process path statement that indicates how that state was
achieved (e.g., an isothermal process tells us that T, =T;) or else it may be a problem unknown to be
determined.

If it is an open system, we are interested in any changes that occur in the system bulk properties of the system
plus all the properties of the entering and exiting flow streams. Flow stream properties are referred to as moni-
toring station properties, to clearly separate them from bulk system properties.
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Step 4. Now identify the process connecting the state or stations. The process path statement is usually given
in technical terms such as a closed, rigid vessel, meaning an isochoric (or constant volume) process will occur.
Proper identification of the process path is very important, because it often provides numerical values for state
properties (e.g., v, =, for a closed, rigid vessel) or heat, work, or other thermodynamic quantities (e.g., an
insulated or adiabatic system has 1Q, = Q =0, an aergonic system has W, = W =0, and so forth). When two
independent property values are given in the problem statement for each state or station of the system, the
process path is not necessary unless it provides values for heat, work, kinetic energy, or potential energy.

Step 5. Write down all the basic equations. Your work sheet should now have all the details of the
problem on it and you should not have to look at the problem statement again. The actual solution to the
problem is begun by automatically writing down (whether you think you need them or not) all the relevant
basic equations. Thermodynamics has only three basic equations:

a. The conservation of mass (which is also called the mass balance).

b. The first law of thermodynamics (which is also called the energy balance or the conservation of energy).

c. The second law of thermodynamics (which is also called the entropy balance).

In closed systems, the conservation of mass is automatically satisfied and need not be written down. Also, since
the entropy balance is not be introduced until Chapter 7, it does not enter into the solution of any problems until
then. So, for solving the closed system problems of Chapter 5, there is really only one relevant basic equation: the
first law of thermodynamics. In solving the open system problems of Chapter 6, there are two relevant basic
equations: the conservation of mass and the first law of thermodynamics.

Write any necessary auxiliary equations. All the equations developed in this book that are not one of the
three basic equations discussed previously are called auxiliary equations. For example, all equations of state
(ideal gas and incompressible materials), all work mode equations (mechanical, electrical, etc.), all heat
mode equations (conduction, convection, radiation), all property-defining equations (specific heats,

The easiest way to show the process path on your work sheet is to write the statement “Process: process name” on a connect-
ing arrow between the state or station data sets. In the closed system example used in step 3, if the state change occurs in a
closed, rigid vessel and we do not know the final quality, then we would write
Process: v = constant
State 1 — State2
p1 = 14.7 psia p2 = 200. psia
v; = 0.500 ft>/lbm v, = vy = 0.500 ft*/lbm

And, if the open system of step 3 is operated at a constant pressure (i.e., an isobaric process) and we do not know the final
quality, then we would write

Process: p = constant

Station 1 Station 2
p1 = 1.00 MPa v, =26.3m3/kg
T: = 300.°C pr=p1= 1.00 MPa

Always write down the complete general form of the basic equations. Do not try to second-guess the problem by writing
the shorter specialized forms of the basic equations that were developed for specific applications. Then, cross out all terms
that vanish as a result of given constraints or process statements. For example, for a closed, adiabatic, stationary system, we
write the energy balance as (see Eq. (4.20), where we have used the abbreviation KE = mV?/2g. and PE = mgZ/g.)

1Q2— 1W2 =m(u2—u1) 4F KEz—KEl‘I'PEz—PEl
L | |

= 0 (adiabatic (insulated) system) :|O (TS ~ e 60 T

Notice that we write why each crossed out term vanishes (“adiabatic” and “stationary” in this case). This makes the
solution easier to follow and to check later if the correct answer was not obtained.
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Unlike in some other engineering subjects, you will not be able to find all the algebraic manipulations already done for
you in example problems within the text or by the instructor in class. There are simply too many possible variations on a
problem theme to do this. Therefore, you have to carry out the mathematical manipulations suggested here to develop
your own working formulae in almost every problem. This is a fact of thermodynamic problem solving.

By this point you should be able to see your way to the end of the problem, because the mechanism for finding each of the
unknowns should now be clear. Determine the units on each value calculated and make sure that all values that are added
together or subtracted from each other have the same units. Often one of the unknowns is needed to find another; for
example, you may need to find ; W, from a work mode auxiliary equation to solve for ;Q, from the energy balance equation.

enthalpy, etc.), and all specialized equations (such as KE = mV?/2g,, etc.) are auxiliary equations. If the
proble