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Preface

The great German physicist Arnold Sommerfeld, in the preface to his book Ther-
modynamics and Statistical Mechanics, had this to say: “In contrast to classical me-
chanics, thermodynamics has withstood the quantum revolution without having its
foundations shaken.” A similar sentiment is echoed in the American physicist Arthur
Wightman’s tribute to Gibbs that “his contributions have survived 100 years of tur-
bulent developments in theoretical physics.” It is this resilience that makes a study
of thermodynamics such a rewarding experience. In fact, not only did thermodynam-
ics survive the revolutionary developments of quantum theory, it, in the hands of
the great masters Planck and Einstein, played midwife to the very birth of quantum
theory. Behind this resilience lies the great generality of the principles of thermo-
dynamics. Usually when principles are too general, their effectiveness gets limited.
But in the case of thermodynamics, its impact both on scientific thought as well as
its practical impact have been unmatched by any other field of science. As for the
latter aspect, the applications of thermodynamics range over physics, chemistry and
engineering, and of late over biology and even black holes!

With the epoch-making developments in Statistical Mechanics, there is an in-
creasing trend among physicists to treat thermodynamics as some sort of a second
fiddle. This is unfortunate indeed as in reality the powers of thermodynamics remain
undiminished. Of course, the two complement each other, making both of them even
stronger. It is also unfortunate in another sense that young readers get the mistaken
impression that statistical mechanics is easier while thermodynamics is nearly in-
comprehensible. This is partly because at that level, statistical mechanics is almost
algorithmic, while thermodynamics seems to require constant revision of its basic
tenets. In fact, one often needs, as for example in the case of magnetism, the guid-
ance of thermodynamics in proper applications of statistical mechanics.

In this book the focus is entirely on what Pippard calls Classical Thermodynam-
ics. My intention is certainly not to belittle the greatness of statistical mechanics. It is
more to highlight the elegance, power, and conceptual economy of thermodynamics.
To see how much of natural phenomena can be comprehended, even highly quanti-
tatively, by thermodynamics on its own. I find it gratifying that Max Planck, Fermi,
and Pippard have written their great books in a similar spirit. That this classical ther-
modynamics can be succesfully applied even to a manifestly quantum state like the
Bose-Einstein condensate is yet another example of the resilience mentioned above.

All this granted, I am sure many would like to ask “Why yet another book on ther-
modynamics?.” It is true that there are many many books on this subject, and some
of them are classics. I would say, in response, that first of all there should always be
space for more books. No two serious authors will have the same perspective and
emphasis. But on a more serious note, I found, while teaching courses on this sub-
ject at the Chennai Mathematical Institute, that even the classics were not uniform
in their choice of topics. By this I do not mean the applications part. They are too

xiii
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vast anyway to be included in any single book. I mean that even when it came to
the basic aspects there was this non-uniformity. It was, therefore, my desire to distill
in one book the essence of many of these classics, and more. It is unlikely that this
book is ever going to replace the classics. But my hope is that it will single hand-
edly complement most of them. As can be gleaned both from the Table of Contents
and the extensive subject index, I have given detailed coverage to a number of ba-
sic topics. I have also included historical background without interfering with the
scientific content, as I strongly believe that a history of ideas is as important as the
ideas themselves. My second goal was to help enlarge the scope of thermodynamics
for teaching purposes. My third goal was to produce a handy reference for experts. I
hope I have succeeded, at least to some measure, in these aspects. Needless to say, |
have not only relied on the great classics, but also on some pedagogically excellent
sources, which I have described at the end of chapter 2. I have also included a reading
guide to help the readers on the one hand, and teachers on the other.

Writing a book is a venture that can not be undertaken without the support and
encouragement of many. Firstly, I thank my daughter Shantala for prevailing over
me, time and time again, to write books to make my pedagogical skills available to
a larger audience. I thank both her and my wife, Jayanthi, for all the difficulties on
the personal front that had to be endured during the writing, and for the continu-
ous enthusiasm they showed throughout. I thank Prof. Dr. Gmehling and Prof. Joerg
Krafczyk of the Dortmund Data Bank for their immense help and permission to use
their data on water. I thank David Fausel and CRC Press for permission to repro-
duce data on specific heats from the Handbook of Chemistry and Physics. On the
production side, I thank Aastha Sharma, David Fausel, and Rachel Holt from Tay-
lor and Francis for patiently dealing with my never ending queries. Shashi Kumar’s
continuous help with LaTeX related matters and style files played a vital role in the
production of the manuscript. I thank him profusely for the same. I am indebted to
Rama Murthy of Indian Institute of Science for his meticulous drawing of the fig-
ures, and for his patience with many redrawings. I thank my friends Sharada Babu
and S.A. Prasad for their permission to use their father’s photograph in the dedica-
tion. I thank my uncle Prof. M. V. Narasimhan for innumerable discussions on heat
engines and entropy. Finally, I would like to thank the students of the 2010 batch of
BSc Honours(Physics) at the Chennai Mathematical Institute for sensitizing me as to
how to teach a subject like thermodynamics properly!

Chennai, February 2013 N.D. Hari Dass



Guide for readers and teachers

I have written this book with the objective that it can address i) beginning undergrad-
uate students, ii) more advanced undergraduate or beginning graduate students, iii)
teachers, and iv) experts and researchers. The entire material should be easily acces-
sible to all except the beginning undergraduate students. In this guide, I wish to point
out a practical road map to each one of these categories.

A basic knowledge of calculus is essential for all. My suggestion is to start with
chapter 16; the beginning undergraduates must first master the first two sections of
this chapter. After that, depending on their interest, they can master the rest of the
sections. For the other categories, I would recommend reading this entire chapter
thoroughly.

Teachers

Teachers can use this book in a variety of ways. They can use it to augment the
courses they are already teaching by using selective portions of the book as per their
requirements. They will benefit from the large number of solved examples and prob-
lems in each chapter. Alternately, they can split the material into two courses a) a
beginning undergraduate course, and b) an advanced course.

For the beginning undergraduate course: the first three sections of chapter 1, all of
chapter 2, skip sections 3.2 and 3.3 but otherwise cover all other sections of chapter
3, all of chapter 4, skip chapter 5 and chapter 6, cover all of chapter 7, skip chapter 8,
cover all of chapters 9 and 10, cover only the first three sections of chapter 11, only
the first two sections of chapter 12, skip chapter 13, cover the first two sections of
chapter 14, and skip chapter 15.

For the more advanced course, whatever was skipped above can all be covered.

Students

Beginning undergraduate students can follow the same guidelines as given to the
teachers above in designing a beginning undergraduate course. The more advanced
students will be able to follow the entire book.

It is highly recommended to understand the solved examples as well as attempt as
many problems as possible. It is also very important to follow the suggested reading
at the end of chapter 2.

Experts and Researchers

This category should find the entire book very useful. In several places, reference
has been made to original literature.

XV



xvi Guide for readers and teachers

Solution manual

A solution manual will be made available in which solutions to all the prob-
lems will be given. For lack of space many important topics like chemical reac-
tions, saturated solutions, surface tension of solutions, equilibrium in external force-
fields etc. could not be adequately discussed in the main text. These have been ad-
dressed in the solution manual. At any time, the author may be contacted at nd-
hari.dass@gmail.com for your suggestions, comments, and any help.



1 The Beginnings

Like all sciences, the subject of thermodynamics too grew out of systematizing em-
pirical data. Needless to say, data has no meaning unless viewed within a reasonably
well-defined conceptual framework. The beginnings of such a framework is of course
in day-to-day sense perceptions and experiences. The notion of hotness and coldness
must have been around for a very long time. An important part of this experience is
also the recognition that upon contact, the hotter body grows colder and the colder
body grows hotter.

Another very important, though somewhat abstract, empirical notion is that of
equilibrium. Taking the example of mixing, say, hot water with cold water, it was
recognized that after some reasonable time, the bodies reach a common hotness, and
left to themselves, would continue in that situation. In fact, experience tells us that
this property of equilibrium holds even when several objects are brought in contact.
So, for example, if three samples of water all with different hotnesses are mixed to-
gether, they would all reach the same hotness. This is true if instead of mixing the
same substance at different hotnesses, one brings in contact totally different materi-
als. For example, if a chunk of iron, a chunk of copper and a volume of water, all
with different hotnesses, are brought together, they would all reach the same hotness
eventually.

This leads to the following highly non-trivial property of thermal equilibrium: if
bodies A and B are in thermal equilibrium, and bodies B and C are also in ther-
mal equilibrium, then A and C are necessarily in thermal equilibrium. This obvious
sounding, innocuous looking property is so essential for the consistency of the sub-
ject of thermodynamics that Fowler [18] has suggested elevating it to the status of a
law, and consequently it is often called The Zeroth Law.

There are a few subtle points that are worth emphasizing in the context of thermal
equilibria. In the example of the mixing two substances mentioned above, it is clear
that some time has to elapse before equilibrium is reached. But how much time?
This is strictly speaking beyond the purview of thermodynamics discussed in this
book, which is called equilibrium thermodynamics. It turns out to be a very difficult
question anyway. For example, if we live in a static universe (which we do not) and
if the basic laws are laws of classical mechanics, the two systems will eventually
go out of equilibrium! Of course, one has to wait for super-astronomical times, but
in classical mechanics this is among the very few exact results. The phenomenon is
called Poincaré Recuurence. So, one has to wait long enough for equilibrium to set
up, but not wait too long. Even ignoring the Poincaré Recurrence, the very fact that
systems are not perfectly isolated can also take them out of equilibrium.

The other point is that the nature of the contact between systems has to be qual-
ified more carefully. Whatever has been said so far only holds when contacts are
such that only heat can be exchanged between the two systems. Such conditions are
usually called constraints, or more picturesquely called walls.
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1.1 Temperature and thermometry

A real progress in this process of theorizing and conceptualizing was the recogni-
tion of the notion of temperature as a measure of hotness. The main bases for this
concept are the following empirical facts: i) The fact that when bodies are in equi-
librium they acquire the same hotness would mean that they will also have the same
temperature. ii) The property of thermal equilibrium mentioned above has the im-
portant consequence that it would be possible to decide if two bodies are in thermal
equilibrium without having to bring them into actual contact; this can be done by
simply measuring their respective temperatures. If their temperatures are the same,
they have to be in thermal equilibrium.

That raises the question as to how to measure the temperature of a body. Since
the abovementioned aspects of thermal equilibrium do not depend on the relative
sizes of objects, an important corollary is that by making one of the objects, to be
eventually called a thermometer, very small, so that its contact with the bigger object
does not in any appreciable manner affect the thermal condition of the bigger object,
it would be possible to monitor the hotness of the bigger object by simply monitoring
the hotness of the smaller system or, in other words, its temperature.

That still leaves open the question as to how to decide what the temperature of the
smaller body, the thermometer, is. The empirical fact that heat affects the material
state of bodies can be exploited for answering this. It can be done by measuring one
of the properties of the thermometer, like its volume. For example, bodies expand
upon being heated (mostly, but there are very important exceptions like ice on heating
actually shrinks in volume). Therefore, properties like the volume of an object at
some prescribed pressure can be used as a measure of its temperature. This is the
basis of the so called thermometry.

But it may come as a shock to know that how this is to be done, i.e define the
temperature of the thermometer in terms of, say, its volume, is essentially arbitrary.
This can lead to troubling thoughts as to how a temperature scale that is fixed arbi-
trarily can play any role in a scientific theory. In particular, it can lead to worries as
to how, say, two different scales of temperatures so defined can still be compatible
with each other? We shall address these important concerns with an explicit model
for a thermometer. But it is worth pointing out that such basic difficulties are neces-
sarily there in every branch of physics. If we take time as an example, and a clock in
place of the thermometer, questions like what defines the quantity one calls time and
how exactly should the markings on a clock be determined are precisely the sort of
questions we are encountering in thermometry!

Let X (¢) be some temperature-dependent property of some system as a function
of its temperature t. It could, for example, be the volume of a gas under some fixed
pressure Py. But let us keep the discussion general and not specify what X (¢) is.
The thermometer can essentially be thought of as a measuring device for X(t), the
difference being that its readings give out temperatures in place of values of X.

The first thing one has to do is choose two fiducial points on the thermometer. In
simple words this means we should mark two positions on the thermometer which
correspond to the temperatures, according to this particular thermometer, of two stan-
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dard states. For example, these can be taken to be the freezing point of water and the
boiling point of water, both at one atmospheric pressure. Thus, thermometry is a re-
lation giving t in terms of the higher fiducial temperature Ty, lower fiducial temper-
ature 7, where the scale agrees with some standard scale, along with the measured
values of X at these three temperatures.

Let us arbitrarily mark the freezing point as 0 and the boiling point as 100 (as for
example in the Centigrade scale; in the Fahrenheit scale these would be 32 and 212
respectively) on all thermometers. Let the values of the quantity X at these fiducial
temperatures be Xy and Xjgp. Next, one subdivides this interval in X-space into N
uniform divisions with N+1 points. The value of X at the point labelled n is given by
X =Xy 4 (n—1)/N (X100 — Xo). There should be no confusion between the num-
bers in the superscript and those in the subscript. The numbers in the subscript refer
to the temperatures of the fiducial points (on the centigrade scale in this example),
while the superscripts refer to the marker positions. The important point to bear in
mind is that the markers on the thermometer corresponding to these values will also
be equally spaced as the thermometer is just a measuring device for X.

So far we made several arbitrary choices, even after fixing the substance to be used
in the thermometer as well as its property used for measuring temperatures. There
is one more arbitrariness, which may come as a surprise to some. Even though we
have N+1 equally spaced markers on the thermometer, it is not necessary to assign
numerical values to these markers in a uniform way! These numerical values will be
the *temperatures’ read out by the thermometer. Let us look at two concrete examples
to clarify the situation.

1.1.1 Uniform temperature scale

The simplest is to adopt a uniform or linear scale. In this case, the numerical values
attached to the markers (temperatures) are given by

tm (X" —Xo) _n—1

= = (I.D
100 X100 —Xo N

Thus we can mark one hundred points separated by At = 1 or two hundred points
separated by At = 0.5 etc. with Az = 1/N in general. The larger the number of
subdivisions, i.e the value of N, the more accurately can the temperature be measured
by this thermometer. We can work out the temperature dependence of X when this
temperature scale is used:

X100 —Xo ;

X(1) = X,
(1) =Xo+ 100

(1.2)
which says that X increases /inearly with t. But it should be borne in mind that this
linear behaviour of X is an artifact of the way this particular temperature scale was
defined. It is easy to generalize these considerations when the fiducial temperatures
are arbitrary, and even on an arbitrary scale and not just on the centigrade scale as
exemplified here.
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For many students, this can be a source of great confusion. Often it is asked, does
X really vary linearly with temperature? The point is that this question does not have
much content. To specify temperatures, one must say which scale of temperature
has been used. Depending on that, the same physical quantity may show different
temperature-dependence. In the above example, X (r) varies linearly with tempera-
ture simply because the temperature scale was as defined in eqn.(1.1). But we have
to show that physically sensible conclusions, like whether a body A is hotter than B,
or whether C and D are in equilibrium etc. are indeed independent of the arbitrary
definition of the temperature scale.

1.1.2 Non-uniform temperature scales

To clarify these, let us define another scale of temperature, and for ease of com-
parison take the same fiducial states, i.e freezing and boiling points of water at one
atmosheric pressure. Let us still call these 0 and 100 degrees respectively. But in-
stead of defining temperature according to eqn.(1.1), let us define it according to the

admittedly more complex
t X —-X -1
=y o) \/ " (13)
100 X100 — X() N

Even according to this new scale, when X = X the temperature t* = 0 and likewise
when X = Xjgp, t* = 100. Therefore at the fiducial states, by design, all temperature
scales agree. But they generally do not agree elsewhere. The temperature dependence
of X according to the new scale is

* t* ?
X (1) = Xo + (X100 Xb)(um) (1.4)
Now we see that the same physical quantity X has a quadratic temperature depen-
dence according to t*-scale. It should be kept in mind that X749,X( are physical
values of X and are therefore independent of any temperature scale.

Suppose we have two bodies A and B, and that our thermometer shows values
Xa,Xp when brought in contact with them. As already stressed, X4, Xp in themselves
do not depend on any temperature scale. Further, let X4 > Xp when A is hotter than
B. Then, according to the t-scale, 4 > 5 and indeed t is a good measure of hotness.
But it is easily seen that #; > 15 also, so that the ¢*-scale, which has nothing to do
with the t-scale, is also an equally good measure of hotness. Finally, if according to
t-scale the two bodies are in equilibrium, i.e t4 = 7, then from eqn.(1.2) X4 = Xp.
But from eqn.(1.4), ¢} = 5. This means that even according to the ¢*-scale, the two
bodies are in equilinrium.

Finally, note that it is possible to convert from one scale to another:

* * 2
t t t t
—-\/ = (1.5)
100 100 100\ 100
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and this conversion is such that a given value of t corresponds to a unique value of
t*, and vice versa. Because of this, one can, without any loss of generality, always
adopt the uniform scale. But it should be stressed that the natural scale to be adopted
depends on the function X (¢). For example, if X (t) = at?, it is obviously better to
adopt the non-uniform scale(quadratic in this case).

1.1.3 Materials for thermometry

Can any physical quantity play the role of X(¢) as long as it is temperature-
dependent? The answer is no. Before answering this in mathematical terms, note
that water has a peculiar behaviour at 4°C. Its density is maximum at this tempera-
ture, and decreases both as the temperature increases or decreases from this value.
So if we had used the density (or equivalently the volume) of water in a water ther-
mometer, we would have had the peculiar situation that the temperature would be
ambiguous. More precisely, it is two-valued, one of them above 4°C and the other
below. Hence the mathematical criterion for X (¢) to be admissible for thermometry
is that # = #(X) must be single-valued which also means that X (z) itself must be
a monotonically increasing or decreasing function of t. Here t can be with respect
to some other thermometer. While we have illustrated these important properties of
thermometry with just two examples, it is clear that there are infinitely many temper-
ature scales all equally valid.

Clearly the temperatures so measured will depend on the material used in the
thermometer, on how its properties depend on temperature as well as on the tem-
perature scale chosen. An apparent circularity at this stage can be removed by using
several types of thermometers, i.e depending not only on different materials but also
on different properties used for thermometry. Then different thermometers can be
calibrated against each other. The properties of the substances used in thermometers
must, however, obey the general mathematical criteria spelled above.

It is very important to emphasize that though temperature is a measure of hotness
or coldness of a body, there is no absolute quantification of hotness of a body. This
is because of the inherent arbitrariness in the choice of a temperature scale.

It will also become clear that no one substance or one property will suffice to
define a temperature scale with arbitrary range of parameters. At temperatures low
enough that a certain gas will liquefy, a gas thermometer based on this gas can not
obviously be used at low temperatures. In fact under extreme conditions of temper-
ature and pressure, radically different methods of thermometry will come into play.
Their design, the task of their accurate calibration etc. forms a fascinating part of
thermodynamics.

For a very illuminating account of the history of thermometers, including the very
early ones based on human physiology, see [47]. Thermometers based on gases at
low pressures and average temperatures were found to agree rather well with each
other best. We shall also see later that thermodynamics provides a very elegant way
of defining a universal scale of temperature which is independent of all such material
details.
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Example 1.1: Comparing thermometers

Consider two constant volume thermometers, one of which is based on an ideal gas,
and the other on a substance whose pressure at fixed volume follows the law P(T) =
aT + bT?, T being the absolute scale. Find expressions for the two temperatures T
and Ty in terms of T. Show that the temperature(on the absolute scale) at which the
discrepancy between the scales is maximal is always the mid-point between the fiducial
temperatures.

Let us take the ideal gas law to be P = ¢T, where ¢ depends on the molar
fraction of the ideal gas used in the thermometer and its volume. Let the
fiducial points for both the thermometers be at Ty,Tp with T4 < Tg. Ty read
on this scale is

T1:TA+(T37TA)P(T)7PA:T (1.6)
Pp—Py
irrespective of c. Likewise, the temperature 7> read on the thermometer with
the second material is

P(T)— Py aT +bT? —aTy —bT?
o =T, T —T, =T, T —T, 1.7
2=Tat (T =Ta) p " p = Tat (T A)aTBerTE?faTAbeAQ ("
It is easy to see that 75 can be recast as
TQ:T—i—b,(T—TA)(T—TB) (1.8)

where b’ is a constant depending on Ty, T and b/a (but not on b and a individ-
ually). Therefore the maximum deviation i.e To — Ty occurs at T = (T4 + 1) /2.
This is to be expected as everything is symmetric between T4 and Tp.

Example 1.2: Uniform and nonuniform scales

Consider two constant pressure thermometers both of which use an ideal gas as the
material. One adapts a uniform scale while the other adapts a quadratic scale. Take the
fiducial temperatures to be 0 and 100 on the celsius scale. If there are N subdivisions
in both cases, find Tl(") and Tz(").

On the uniform scale the temperature corresponding to the marker n is

(n) _ n—1
T, =100 N (1.9)

while on the quadratic scale

7" :100\/”;,1 (1.10)

Thus with 100 subdivisions the first nonzero marking will occur at a tempera-
ture of 10! Clearly, on the nonuniform scale one must take N to be sufficiently
large. If the first nontrivial reading is to be at t=1, N should be 10%. For that
case, the second nontrivial reading will be at 3 = v/2, the next at v/3 etc..
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Example 1.3: A water thermometer

Water has its maximum density at 4°C. Denoting this density as p4 and the density
of liquid water at 0°C as po, the variation of density can be modelled as p(t) = po +
t(pa—po)/4for 0 <t <4, and by p(t) = pa+ (t—4)(po — pa) /4 for the range t > 4.
Discuss the peculiarities of this water based thermometer.

It is clear that density as a function of temperature is not single valued in
this case. In fact, densities at temperatures ¢ + 7 and 7 — t(on the centigrade
scale) are both equal. Thus a thermometer based on water will not be able to
distinguish these temperatures when 7 < 4. However, when 7 >4, i.e when ¢t > 8,
density becomes a single valued function of temperature and water qualifies
to be a good thermometer material as per our earlier discussion. Else, one
will have to use separate water thermometers for the respective temperature
ranges above. However, it must be stressed that the differences in density are
very small in practice. The density at 0°C is 0.9999 g/cc while the density at
4°C is 1.0000 g/cc (definition).

1.2 Ideal gas laws

We now turn to a discussion of the thermal properties of the so called Ideal Gases.
An understanding of these is important from many different perspectives including
their relevance for the Gas Thermometers. Historically, long before these empirically
determined gas laws were established, thermometry had already reached a good de-
gree of sophistication. The gas thermometer designs shall be based on these laws. At
this stage it may be hard to motivate what one means by an ideal gas, but that should
become clearer as we proceed.

The immediate temptation for a modern reader is to think of PV = nRT, where
P and V are the pressure and volume respectively, while T is the temperature, n the
number of moles of the gas, and finally R is the so called Gas Constant (it is said that
the letter R is in honour of Regnault, whose work will appear prominently in any
discussion on the development of thermodynamics). But one should resist that for
several reasons, both historical as well as scientific. That this is so can immediately
be seen on noting that temperatures in this equation refer to the Kelvin or Absolute
scale, something that came much after the gas laws were discovered. Equally impor-
tantly, this single equation is a concatenation of three distinct, and equally important,
laws of gases. Each of these is conceptually different and each was discovered at
very different times. It is necessary to pay attention to these nuances to get a proper
understanding of what is collectively called the ideal gas law. That will also turn out
to be crucial to the understanding of gas thermometry.

Denoting temperatures by t (say, as measured by some thermometer according to
some chosen temperature scale), the first relevant law in this connection is the Boyle-
Mariotte law (Boyle 1658, Mariotte 1676; but in those days scientists often discussed
their researches in monographs published many years after their work), which states
that

POV = g (1) (1.11)
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This laws states that for a given mass of a gas, the product PV depends only on its
temperature. In the above, we have labelled the gases by an index i to allow for the
possibility that while for each species pressure is in inverse proportion to its volume,
the product PV could vary from gas to gas.

In most modern texts, this point is glossed over and the product is taken to be
the same for all gases. But careful historical accounts [42] have asserted that that
was not what Boyle had claimed in actuality. Though Boyle was careful enough to
clearly point out that the said relationship had only been established in a narrow
range of pressures and temperatures, it appears as if his experiments were done only
on air. Therefore the logical possibility that the functions 8() could be different must
be allowed for in a careful enunciation of the Boyle-Mariotte law.

For gas thermometry, it makes a considerable difference whether 6() is different
for different gases or not. In the physical ranges where 6(¢) satisfy the conditions for
consistent thermometry discussed above, if these products are not the same, any one
of them can be used to construct a bona-fide gas thermometer, and in general these
thermometers will not agree with each other, though all of them can be calibrated
against each other. Further, as explicitly shown in the section 1.1 on thermometry,
each of them can be brought to the linear form, a form associated with the text book
formulations, by choosing the thermometer material appropriately. But mention had
been made of the fact that a large number of gas thermometers agree rather well with
each other. This is only possible if for this class of gases the function 6(z) is the same
to a good accuracy. Boyle’s law does not claim any such universality.

In fact, the source of that universality lies in yet another of the gas laws, the so
called Gay-Lussac-Charles’s Law. Gay-Lussac announced his results in 1802 in the
journal Ann. de Chimie but even then he acknowledged the fact “..citizen Charles
had noticed the same property in these gases 15 years ago..”[1]. Therefore, it is ap-
propriate to call this law as the Gay-Lussac-Charles’s law. But what exactly did this
law claim, and what exactly is its impact on gas thermometry?

Unfortunately, textbooks and other modern accounts of this miss the essentials.
They also wrongly attribute to this law conclusions that were never claimed, and
what is worse, conclusions that obfuscate important scientific issues. For example,
many of them claim that according to this law, *for a given mass at constant pressure,
‘; is the same for all gases.” As commented before, the Kelvin scale was unknown
at the time, and consequently this could not have been the original formula. Some
others say that according to this law ’the fractional change in volume for a given
mass of any gas at constant pressure is proportional to the change in temperature’
while yet another source claims that according to this law ’the fractional change in
volume at constant pressure for a change in temperature of 1°C is the same for all
gases.’

Fortunately, the English translation of Gay-Lussac’s original French paper is
available [1]. He has recorded his claims in such a precise way as to be far more
useful for the current purposes than any of the modern renderings. It turns out that
Gay-Lussac did not study any detailed temperature dependence of volumes of gases
at constant pressure, nor did he study the the fractional changes in volume per de-
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gree Celsius. What he did show was, in his own words, All gases, whatever may be
their density and the quantity of water which they hold in solution, and all vapors
expand equally between the same degrees of heat. In this context, equal expansion
should be understood as the ratio of the change in volume to the original volume,
and the phrase same degrees of heat meaning given initial and final temperatures.
In fact, he studied the expansion as gases were heated, according to him, between
temperatures of melting ice and boiling water. In other words, the precise statement
of the Gay-Lussac-Charles’s law should be taken to be

Vg9

o " = f(P)e(0,100) (1.12)
VO

for all gases when their masses are held fixed. Here ¢(0,100) is a number that de-
pends on the two temperatures of 0 and 100 on the centigrade scale. Combining
eqn.(1.12) with the Boyle-Mariotte law of eqn.(1.11) would give

6 (100) — 68?(0)

6 (0) = f(P)¢(0,100) (1.13)

for all i. That is possible only if f(P) is a constant independent of P, and () (¢) =
0(t) for all i. Furthermore, f(P) can be taken to be 1 without loss of generality and in

that case ¢(0,100) = 9(103 ()0_)9(0) . Therefore, the true import of Gay-Lussac-Charles
law is that the product PV is indeed the same function of temperature for all gases.

This has the profound consequence that if Gay-Lussac-Charles and Boyle-
Mariotte laws are exact, all gas thermometers based on volumes of gases would
agree with each other. Gases for which these laws are exact will be called Ideal.
When any of the ideal gases is used as a material for a thermometer and a linear
scale is chosen, 0(t) = 6p(1 + o). In that case, the equal expansion of Gay-Lussac
is simply 100¢.

1.2.1 The Kelvin scale

Now we come to the second result of Gay-Lussac as declared by himself. according
to him, the equal expansion for all the gases was found to be 100/266.66 on the centi-
grade scale [1]. Equating this to 100 yields ot = 1/266.66.Now, 0(¢) = 6o (1 + o)
can be reexpressed as 0(t) = (6pa)(a~' +1). Hence, the temperature scale can be
taken to be T(¢) = 266.66 + ¢t. The modern value of the zero of Kelvin scale ex-
pressed in Celsius is 273.13 as against Gay-Lussac’s value of 266.66. But consider-
ing his times, his value is pretty close indeed. In terms of this new scale the gas law
will take the form PV = kT.

This new scale was introduced by Lord Kelvin and hence carries the name Kelvin
Scale. The Kelvin and centigrade scales are related by just a constant shift. Hence
temperature differentials on both scales are the same. Whereas in the earlier scale,
changes in volume at constant pressure were proportional to changes in temperature,
in the Kelvin scale, volumes of ideal gases are themselves proportional to tempera-
ture. The zero on this scale has the interpretation of being the temperature at which
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volumes of all ideal gases vanish if the pressure is kept nonzero. It is yet another
matter that before such a temperature almost every known gas becomes a liquid to
which the gas laws are no longer applicable.

In reality neither of the above mentioned laws is exact and deviations, even if
small, are frequent. Then the gas thermometers will not all agree with each other, and
there is really no criterion to choose one over the other. For each of them, a Kelvin-
like scale can be introduced, and for each of them their zero on the centigrade scale
will be somewhat different. The same Lord Kelvin also showed how a temperature
scale can be introduced without reference to any material, not even perfect gases (and
therefore independent of any gas law), which shall be called the Absolute Scale of
temperature. In practice, the Kelvin scales of ideal gases is very close to this absolute
scale.

The last ingredient in the gas law is the Avogadro’s law formulated in 1811. Avo-
gadro’s law, as formulated by him, said equal volumes of gases under the same ex-
ternal conditions of pressure and temperature contain equal number of corpuscles.
In modern terminology Avogadro’s corpuscles are the molecules. The seeds for this
law were laid in Dalton’s law of multiple proportions for chemical compounds and
Gay-Lussac’s law of integral volume ratios for gases .

Avogadro formulated this law with an atomistic view of matter. Though today we
know that the nature of matter is indeed atomistic, at the time of Avogadro, and to
even much later times, atomism remained a speculation. Even at the time of Boltz-
mann it remained so, and the first vindication of this age-long and profound conjec-
ture came only in the wake of Albert Einstein’s work on Brownian Motion in 1905.
As emphasized earlier, the spirit of thermodynamics is to involve as little as possible
of microscopic details, whether empirically well established or merely speculative,
in its description. On the other hand, it would be futile to completely ignore the mi-
croscopic reality. Therefore, what is needed is a very minimalistic attitude towards
microscopics.

With this in mind, the famous physical chemist Ostwald, a long time critic of
atomism, suggested to use the concept of moles instead of molecules. A gram-mole
of a gas would be a certain mass characterstic of the gas. For Hydrogen it is 2gms
etc. The Ostwald reformulation of Avogadro’s law would then read equal volumes
of gases under the same external conditions of pressure and temperature contain
equal moles of the gas. Stated this way, and with an operational way of determining
the number of moles in a given mass, all reference to atomism has been removed.
Another equivalent formulation is to say that all gases under the same external con-
ditions have the same molar volumes.

As an example of molar volumes, consider Hydrogen gas whose molar weight is
2gms. The density of Hydrogen gas at 0°C and 1 atm. of pressure is about 9.0 x 102
g/liter. The molar volume is easily calculated to be 22.2 liter. What is remarkable is
that a gram-mole of every gas occupies this very volume at the said pressure and
temperature. This is really a first glimpse into the atomic nature of matter.

The final form of the ideal gas law after combining all the three laws is

PV =nRT (1.14)
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where n is the number of moles, T the temperature in Kelvin, and R the so called gas
constant with a numerical value of 8.31 Joules/K.

1.2.2 Non-ideal gases

As already mentioned, in reality no gas is perfectly ideal and departures from the
gas laws discussed earlier are the rule rather than the exception. Many alternative
equations have been proposed, each with its positive as well as negative features.
Here are just a few of the most prominent ones.

van der Waals equation

2
<P+ ‘;72 ) (V —nb) = nRT (1.15)

Clausius equation

pe M (V —nb) = nRT (1.16)
T(V +nc)? B '
Dieterici equation "
P(V —nb) =nRT ¢~ vkr (1.17)

Of these the van der Waals equation played a major role in explaining the lique-
faction of gases. In a separate chapter we show how this equation provides a simple
model for almost everything that one needs to learn and understand in thermodynam-
ics.

1.3 Heat and specific heats

As we saw earlier a hotter body on contact with a colder body becomes itself colder,
while at the same time the colder body gets hotter. So it is legitimate to think in terms
of an exchange of heat between the two bodies. This is where the notion of heat
enters the subject. The above process, then, is described as the hotter body giving up
a certain amount of heat to the colder body. The concept at this stage is only intuitive
and heuristic. A quantification of this concept and finally an elucidation of the nature
of heat are among the prime objectives of thermodynamics.

The quantification is done through the following, arbitrarily chosen, criterion: the
unit of heat is a Kcal or kilocalorie, and it is the amount of heat needed to raise
the temperature of 1 Kg of water under one atmospheric pressure from 14.5°C to
15.5°C.

For any body, the specific heat c is given by the amount of heat required to raise
the temperature of 1 kg of the substance by 1K. Denoting the amount of heat by 40,
the definition of specific heat is ¢ = g% Note that while defining the calorie, the heat
transferred to water was at the constant pressure of one atmosphere. It will turn out
that the amount of heat required to raise the temperature of a body by a given amount
depends on the external conditions. Consequently there are many types of specific
heats. All this will be clarified in great detail as we go along.
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1.3.1 Nature of heat

One of the most important questions in thermodynamics concerns the nature of heat.
It is interesting that none of the gas laws required any understanding of heat for their
formulation. In fact their statement only involves the mechanical notion of pressure,
the geometrical notion of volume in addition to that of temperature and molar con-
tent. While temperature is a measure of hotness, it is not heat per se. This is indeed
a fortunate circumstance as far as the gas laws are concerned, as their validity is not
entangled with the correctness or otherwise of any particular theory of heat.

One of the earliest such was the Phlogiston theory. We shall not discuss this at
all. For one thing, this theory was discarded long ago, and more importantly it had
no predictive power whatsoever. The next serious contender was the Caloric theory,
chiefly propounded by Lavoisier. Unlike the Phlogiston theory, the caloric theory
was capable of making specific and some very sophisticated predictions. The funda-
mental and pioneering works of the genius Sadi Carnot were all based on this theory.
We shall describe Carnot’s seminal work in detail.

The basis of the caloric theory was the following: while heat may be added or sub-
tracted from bodies, it is not obvious whether a concept of a total heat contained by
a body in some thermodynamic state makes sense or not. The caloric theory claims
it does. This theory goes further and states that heat is an indestructible fluid. Con-
sequently, the total heat of a body is the sum total of all heat that has flown in and
flown out, there being no other mechanism to alter the amount of heat in the body.
More precisely, the caloric theory claims that heat is a state function very much like
pressure, volume, temperature etc. This aspect of caloric theory can be expressed in
a mathematically precise manner as then dQ is a perfect differential. We shall first
describe Carnot’s work based on this theory in detail, then discuss various arguments
and experiments that were put forward in its criticism before going on to develop
the theory of heat as understood by post-Carnot thermodynamics. Carnot’s theory
is remarkable in that even in a cyclic process where total heat absorbed has to be
necessarily zero in accordance with the caloric theory, net work can be produced.

The modern theory of heat, in contrast, refutes the caloric theory by claiming heat
can be created and destroyed by other agencies, principally work of various kinds
like mechanical, electrical, magnetic etc. Since it can easily be shown that work
can not be a state function, and in fact depends on the history of how one state was
transformed to another as a result of work performed, it follows that heat can not
be a state function either. The post-Carnot view is that heat is yet another form of
energy interconvertible with other forms of energy like mechanical, electrical etc.
Furthermore, the new thermodynamics specifies a precise conversion factor between
heat and work, a development as revolutionary as Einstein’s famous E = mc?2, in
both its conceptual depth as well as its scientific impact. Subsequently, the principle
of conservation of energy takes form as the First Law of Thermodynamics. Contrary
to the impression created that heat can be freely and completely converted to work,
thermodynamics imposes an absolute upper limit to the efficiency with which heat
can be converted to work. This is the content of the Second Law of Thermodynamics,
a law unsurpassed in its depth and a law that has impact even on the most modern
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branches of physics today.

Before turning to a description of Carnot’s work, we shall introduce in more pre-
cise terms notions very basic to the thermodynamic description as thermodynamic
states and their transformations, constraints and walls, and finally the notion of re-
versible and irreversible changes. Carnot uses all these notions in a precise manner in
a way that is completely consistent with their post-Carnot meanings. It appears to the
author that precise formulations of the notion of a state, of reversible and irreversible
process may indeed be due to Carnot himself.

1.3.2 States and transformations

States: By a Thermodynamic State we shall mean the equilibrium states of a system.
Though it would seem natural to include only stable equilibrium states, it turns out
useful to include even unstable and metastable equilibrium states also in the ther-
modynamic state space. So, a thermodynamic state of a single component system is
characterized by well defined values of temperature, pressure and volume. If it is a
multicomponent system, in addition to P, V and T, additional parameters like the mo-
lar fractions are needed to specify the state. If the system is also magnetic, then the
magnetic degrees should also be included.

Equations of State: These are relations between the parameters of a thermody-
namic state that lead to a complete thermodynamic specification of the system. For
example, in the ideal gas case PV = nRT is one such equation. For a more structural
meaning of these equations, please see chapter 6. There are as many equations of
state as there are independent degrees of freedom.

Transformations: Any change of state is a transformation. The changes in the
parameters during a general transformation could be anything subject to the equa-
tions of state. When the transformation connects states whose degrees of freedom
are very close (neighbouring states), the transformation is called infinitesimal. For
both kinds of changes (transformation) a further, very important, distinction should
be made between so called irreversible and reversible changes.

Reversible and Irreversible changes: We can try to illustrate these concepts by
considering a cylinder filled with a gas and fitted with a piston. Imagine the cylinder
in contact with a heat reservoir which is nothing but a body much larger than the
cylinder, kept at a constant temperature. We can imagine loading the piston with
enough weights to completely balance the gas pressure. If we increase the pressure
by a very small amount, the gas will quickly come to a new equilibrium position
at a slightly smaller volume. This is an example of an infinitesimal transformation.
Now reduce the pressure and the gas will start expanding; one can go on reducing the
pressure gently so that after some large number of steps both the volume and pressure
have changed substantially. This would amount to a change that is not infinitesimal.

Now imagine that there is friction between the piston and the cylinder walls. Ir-
respective of which way the changes are made, i.e increase of pressure or decrease
of pressure, the moving piston will dissipate heat. So a sequence of changes in pres-
sure P — P+ AP — P will dissipate energy both ways, and even though the gas has
been brought back to its original state, the surroundings have certainly undergone



14 The Principles of Thermodynamics

some change. When that happens, we say the change is irreversible. While reversible
changes are always infinitesimal, infinitesimal changes can be both reversible as well
as irreversible.

But for Carnot’s times this would not be a good example as it presupposes that
friction can lead to generation or creation of heat. Though admittedly correct from
the point of view of modern thermodynamics, such an assertion would not be tol-
erated by the caloric theory. So we should characterize reversible and irreversible
changes in a way that would be insensitive to the actual nature of heat. Such a char-
acterization would be: a reversible change, whether finite or infinitesimal, should be
such that at the end of the combined operation of the original process and its exact
reverse, no changes should have occurred in the surroundings. Any process not ful-
filling this will be deemed irreversible. Carnot indeed used such a refined notion in
his seminal work.

In the specific example of the steam engine, he cited effects such as the heating of
the boiler walls through conduction to be the ones that would spoil the reversibility
of the changes made on the water-steam system. Clearly if the system is expanded
to include not just steam and water, but also various surrounding elements includ-
ing the boiler walls, the seemingly irreversible nature of changes to the subsystem
of steam and water can be reconciled with reversible changes of the larger system.
Precisely such nuances concerning reversibility and irreversibility also show up in
the completely unconnected case of Quantum Measurements!

There is another aspect of irreversibility that is important to highlight; while re-
versible changes have necessarily to be slow (quasi-static) though the reverse is not
true, i.e not every slow change is reversible, sudden changes are, as a rule, irre-
versible. Imagine reducing the pressure on the piston suddenly and by a large amount.
The gas will go through various stages before eventually settling to a final equilib-
rium state. But the path from the initial state to the final is not representable as a se-
quence of intermediate equilibrium states. So in the, say, PV-diagram, an irreversible
change will appear as a sudden jump. The conceptually cleanest characterization of
irreversible changes is given in the context of the second law of thermodynamics, but
in the present context that would be like putting the cart before the horse.

Walls and Constraints Very often, useful and interesting changes are such that
some parameter is held fixed. For example, if we enclose gas in a box of fixed vol-
ume, only P and T are variable and because of the gas law only one of them is an
independent variable. So the set of possible changes is one-dimensional in contrast
to the full, unconstrained changes, which in this case are two-dimensional. Such
changes are called constrained and the constraint in this case is V = conct.. As in
this example, it is the walls that enforce the constraint, Callen picturesquely calls
all constraints as arising due to Walls even though literally that may not be the
case. Changes that maintain volume are called isochoric. Likewise, we can think
of changes under constant pressure, called isobaric. Changes at the same tempera-
ture are called isothermal. Systems can also be completely thermally insulated from
their surroundings and changes are then called adiabatic (care should be taken not to
confuse this word with what is used in classical mechanics). Such changes are also
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called isentropic, i.e the constraint being constant entropy, but we have to wait till
we have discussed the second law of thermodynamics for its justification. Lastly, it
is possible to consider transformations that do not change the number of moles. In
what follows, we shall focus only on such changes. We shall consider changes of
molar concentrations while dealing with phase equilibria.

1.3.3 Some examples

We now present some examples, based on the ideal gas law, to illustrate the concepts
discussed above. Let us start with reversible isochoric processes. Then the only in-
dependent variable for a simple single-component system is either P or T. Changing
one changes the other. An observable associated with such changes is the pressure

coefficient defined as Bp = ]1, (gi)v For one mole of an ideal gas this can easily be

worked out using the ideal gas law to be } At close to freezing point of water this
is close to 2%3 , the expansion coefficient used in gas thermometry.

Likewise, if we consider reversible isobaric processes, i.e processes under con-
stant pressure, the independent variables are now V and T. An observable associated

with such changes is the expansion coefficient defined by By = ‘1/ (g‘;)P It again

follows from ideal gas law that this is also }, same as the pressure coefficient.
The observable associated with reversible isothermal processes is the fractional

change of volume per unit change of pressure, i.e 7‘1, <‘3$)T It is defined with a

negative sign as the volume is expected to decrease with increased pressure. Called
the isothermal compressibility and denoted by k7, for ideal gases it equals 1/P, as
can easily be checked.

An example of an irreversible isothermal process is the mixing of two samples of
a gas at the same temperature but each sample having different volume and different
mass. Likewise, an example of an irreversible isobaric process is the mixing of two
samples of gas at the same pressure but different temperatures. The last two examples
bring out yet another aspect of irreversibility, namely a process is irreversible if it can
proceed spontaneously but not its reverse.

Actually, there are relationships between quantities characterizing these different
constrained processes. That follows from the triple product rule of partial derivatives:

JdP oT A%
(ar>v<av)P<aP>f1 (19

On using the other very important property of partial derivatives, namely,

d ay\ !
3)-2)

By

Kr

it is easy to show that

= PBp (1.20)
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It is to be noted that these relations are valid for all thermodynamic systems whether
they are solids, liquids, or gases. Among gases they hold for ideal as well as non-
ideal gases. It is the existence of such very general relationships that makes thermo-
dynamics so powerful. For example, knowing By, Bp would immediately determine
kr without a need for its independent determination.

Example 1.4: Work by ideal gases

Calculate the work done by an ideal gas for i) an isothermal expansion from volume
V1 to Vo at T; ii) an isothermal rarefaction from pressure Py to pressure Py at T; iii)
from volume V1 to Vo during an isobaric process at P; iv) from temperature Ty to T
during an isobaric process at P, and finally, v) from volume V; to Vo during an adiabatic
process.

For the ideal gas PV = nRT where n is the number of moles present. The
infinitesimal work done by the system is PdV, and the total work done is the
integral of this along the path describing the process. Without specifying a
path, it is meaningless to talk of the work done as the latter is path-dependent.

i) For isothermal processes T is constant. Since the question specifies
the changes in volume, pressure P is eliminated in favor of V according
to P=nRT/V. This gives the work done in going from V; to Va to be
W = [nRT(dV/V) to be nRTIn(Va/Vy). ii) In calculating the work done in
this case, we should eliminate the volume in favor of pressure. This leads to
dW = —nRTdP/P and the total work done is W = —nRT In(P/P;). It should
be recognized that this is the same expression as in i) but expressed in terms
of the pressures. iii) It is trivial to find out the work done in this case as
P remains constant, i.e W = P(Vo —V;). iv) Now we eliminate V in terms
of T to get dW=nRdT, therefore the work done is W =nR(To —T1). v) In
this case the adiabatic relation gives PV? = ¢, where the constant is deter-
mined by the initial pressure and volume. Straightforward integration yields
W =c(Vy "=V /(1-7).

Example 1.5: Work in arbitrary process

Show that the work done by a gas under arbitrary changes of temperature and pressure
can be determined in terms of the coefficient of volume expansion o and the isothermal
compressibility K. As a corollary show that for isochoric (constant volume) processes

(g; ) v 'g . Verify this for an ideal gas.

The work done is always given by PdV. V can always be taken to be a
function of T and P. Hence under arbitrary changes of T and P,

dW = PdV (T,P) = P( (g‘;)PdT+ (‘;‘;)po) =P(VodT —V iy dP) =PV (0.dT — kr dP)
(1.21)

Thus knowing the coefficient of volume expansion o and the isothermal com-
pressibility k7, one can always determine the work done under arbitrary
changes dT and dP.

For isochoric processes dV =0 and hence it follows from the above that

(3;)V = o/Kkr. For an ideal gas, it is easily seen that oo =1/T, ky =1/P and
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(gi)v —nR)V = P/T.

1.4 Sadi Carnot and the motive power of heat

Now we give a detailed account of Carnot’s seminal work Reflexions sur la Puissance
Motrice du Feu published in 1824, a clear three decades ahead of the formulation of
the first and second laws of thermodynamics. Fortunately, the English translation
Reflections on the Motive Power of Heat is available [5], making accessible to the
English speaking world this great treasure of science, which, unfortunately, was ig-
nored and antiquated even before its greatness was understood and appreciated. Its
greatness was revealed to the world of science largely due to William Thomson (Lord
Kelvin)’s epoch-making paper Account of Carnot’s Theory which appeared in 1849
[71], nearly a quarter of century after Carnot’s work was published. It is remarkable
that Thomson himself was a young man at the time, having just embarked on his
scientific career. The account given here is based both on the original work as well
as Kelvin’s paper.

Carnot’s style of presentation would clearly be found cumbersome and confusing
by the modern reader. It hardly has any equations, and almost all the chief results, of
which there really are very many, are derived in a verbose and descriptive manner.
Lord Kelvin’s account is decidedly more modern both in its perspective, as well as
in its presentation. It does make use of equations as well as of calculus. It gives
a mathematically precise meaning to Carnot’s axioms as well as his results. As a
result of this clarity, Kelvin is able to show that Carnot’s theory contains even more
remarkable results like what has come to be known as the Clapeyron Equation. But
even Kelvin’s account may be found somewhat verbose. In this book, the author
has given a succinct mathematical theory which covers all the principal conclusions
of both Carnot and Kelvin. It also points out very clearly the experimental data that
would have been acid tests for the Caloric theory, an objective that was at the heart
of Carnot’s work.

Carnot makes the Caloric Theory the cornerstone of his analysis, and says about
the former:’....This fact has never been called in question. It was first admitted with-
out reflection, and verified afterwards in many cases with the calorimeter. To deny
it would be to overthrow the whole theory of heat to which it serves as a basis. For
the rest, we may say in passing, the main principles on which the theory of heat
rests require the most careful examination. Many experimental facts appear almost
inexplicable in the present state of this theory. Nevertheless, he expresses his dis-
quiet about this theory quite clearly in the course of his thesis. In fact, to quote him
verbatim, The fundamental law that we propose to confirm seems to us to require,
however, in order to be placed beyond doubt, new verifications. It is based upon the
theory of heat as it is understood today, and it should be said that this foundation
does not appear to be of unquestionable solidity. New experiments alone can decide
the question.

The student of modern science may then wonder the usefulness or the need for
going into details of a work based on what is now known to be incorrect, namely, the
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caloric theory. The answer is that even such a student would be amazed to find how
many deep truths Carnot uncovered, based on wrong premises, that have neverthe-
less survived the later developments. It is indeed a valuable lesson on how scientific
theories are to be assessed. If one had concentrated only on these highly non-trivial
aspects, one may well have come to the conclusion, even to this date, that caloric
theory may after all be right!

The other important lesson that such a student would learn from Carnot’s work
is the precision with which scientific questions can be formulated, and the objective
way in which they can be answered. He introduced techniques of scientific enquiry
which were very original then, and are novel even now! His focus was not so much
on any actually practicable engine; rather, it was on narrowing in on the essentials
of an ideal engine, conceivable in the simplest way, unencumbred by needless com-
plications. It was a precursor par execellence to the later day gedanken experiments.
In its simplicity and range of applicability, its closest intellectual equivalent is the
Turing Machine of Computer Science. Finally, Carnot’s work is a testimony to the
true spirit of enquiry, honestly raising doubts about one’s own work and demonstrat-
ing unswerving faith in experiments as the only arbiters of scientific truth. In fact,
the author believes that one’s grasp of thermodynamics in particular, and science in
general, will be significantly enriched through an understanding of Carnot’s work.

Before proceeding to a description of his work, it is worth making note of the
milestones in the subject that were already known at the time of Carnot. The gas laws
of Boyle-Mariotte, Charles-Gay Lussac, and Dalton were firmly established. Specific
heat measurements by Clement and Desormes, as well as by Delaroche and Berard
were used by him as important experimental inputs in his analysis. The fact that
sudden compression of gases heats them up and equally, sudden rarefaction cools
them was known to him, and quantitative details provided by Poisson were used in
his analysis. In modern terminology, this refers to the so called adiabatic processes.
Carnot was well aware of Laplace’s work on the speed of sound, which had, in a
crucial way, corrected the earlier calculations of Newton by correctly incorporating
the adiabatic changes [35].

Carnot’s objectives: His main objective was to investigate the motive power of
heat. In modern usage, this means the ability of heat to provide mechanical work. The
first important step in this direction was his recognition that the effects of heat can be
manifold, like generation of electrical currents, chemical reactions, volume changes
etc., and that to lay the foundations of a particular effect of heat, it is necessary to
imagine phenomena where all other effects are absent. This is so that the relation
between cause (in this case heat), and the effect (in this case mechanical work), may
be arrived at through certain simple operations.

Therefore he focuses on systems where the sole effect of heat is in producing
mechanical work. In particular, where the mechanical effects arise out of increases
and decreases in volumes under varying conditions of temperatures and pressures.
The two precise questions Carnot sets out to answer are:

(i)What is the precise nature of the thermal agency which produces mechanical
work and nothing else?
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(ii))What is the amount of thermal agency needed to produce a given amount of
work?

With respect to the second question, he further raises the issue of whether there is
any limit to the amount of work produced by a given amount of the thermal agency.

Cycles Carnot argued that as thermal agency not only produces work, but also al-
ters the state of the system, it is in general not possible to disentangle the two aspects
of heat from each other. For example, when we heat a gas at constant temperature,
say, the gas expands leading to a change of state (to a new density) and at the same
time work is performed by the expanding gas against the pressure. To circumvent
this, Carnot envisages a sequence of operations that brings the body back to its orig-
inal state. That way, the body having been returned to its original state, the work
performed can be related solely to the thermal agency. Thus he introduced the novel
notion of cycles. It is very important to emphasize that in the caloric theory,
the total heat absorbed or given out in a cycle has to be exactly zero. Therefore
whatever Carnot calls the thermal agency, it can not be the total heat absorbed.

Equivalently, heat is also a function of the state only and ought to be representable
as a singlevalued function of the state Q(V,T), O(T, P) etc. In particular dQ is a per-
fect differential and partial derivatives like (‘38) ,
matically. This will be in great contrast to the situation in post-Carnot development
of the subject, which we shall name the new thermodynamics, for ease of reference.

Thermal agency according to Carnot Since in a cycle the body returns to its
original state, and as per the caloric theory the amount of heat in a body depends
only on its state, it follows that the total heat absorbed must necessarily be zero.
What, then, is the thermal agency responsible for producing work at the end of a
cycle, since it can not obviously be the heat absorbed?

Carnot observes, after a careful examination of various heat engines that perform
work, that in all of them heat enters the engine at a higher temperature, and leaves
at a lower temperature. So he asserts that it is this fall of the caloric from a higher
temperature to a lower temperature that characterizes the thermal agency. Hence,
according to Carnot, work arises not due to an actual consumption of caloric, but to
its transportation from a warm body to a colder body. He then likens the situation
to the manner in which a water wheel performs work. There the agency responsible
for work is the water falling from a height; the work performed depends both on the
quantity of water falling, as well as the height through which it falls. After the work
has been performed, the amount of water is unchanged.

In fact, Carnot, in the light of the caloric theory, sees a perfect parallel between
the water wheel and heat engines; the quantity of water of the former corresponding
to heat or the ’quantity of caloric’ of the latter, the height of fall of the former cor-
responding to the difference in the temperatures at which heat enters and leaves the
engine. The caloric theory says that the amount of caloric, which is neither creatable
nor destructible, is invariable, and in the water wheel the amount of water is likewise.
The comparison continues to be apt even when we consider another subtle concept
in Carnot’s work, i.e reversibility, as we shall see soon.

Ideal Heat Engines and Reversibility The next important question raised by

are perfectly meaningful mathe-
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FIGURE 1.1 The Water Wheel

Carnot concerned the notion of the most efficient utilisation of the thermal agency in
providing work. As is intuitively obvious, there should be no wastages of the thermal
agency. The following ingenious criterion was found by Carnot: the most efficient
(perfect) engine is such that, whatever amount of mechanical effect it can derive
from a certain thermal agency, if an equal amount be spent in working it backwards,
an equal reverse thermal effect will be produced. This laid the foundation for the
all important notion of reversibility in thermodynamics, and for that matter, quite
generally in physics. Recall our earlier characterization of a reversible change to be
such that at the end of the combined operation of the original process and its exact
reverese, no changes should have occurred in the surroundings. Clearly, Carnot’s
criterion ensures this.

FIGURE 1.2 A heat engine and its reverse in Carnot theory.

This criterion for reversibility can in principle allow irreversible changes of a type
where less work done in reverse could restore the original thermal agency. It would
be irreversible by the earlier criterion that the original operation combined with the
reverse would supply work to the surroundings at no cost of thermal agency. But such
an irreversible process can not be allowed as it amounts to a perpetual machine which
can supply indefinite amount of work at no cost. Hence the irreversibility must be
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such that, when run in reverse, it must take more work to restore the original thermal
agency. However, it is clear that perfectly reversible engines permit the construction
of perpetual machines; but they can not perform any useful work. In practice, perfect
reversibility is anyway not possible to achieve, and even perpetual machines of this
limited kind are not possible.

Quite obviously, the reverse process should first of all be a physically realizable
process. Taking the water wheel as the example, clearly the reverse process, i.e of
pumping water from a lower level to a higher level, is certainly physically realizable.
Now if the wheel mechanism and other mechanisms involved in the water wheel are
such that no work is dissipated in them, clearly the reversibility criterion of Carnot
will be fulfilled. In the case of the steam engine, wasteful effects like conduction
of heat through the walls of the boiler, for example, will degrade the efficiency for
obtaining maximum possible work and therefore reversibility requires their absence.

Therefore, the first important criterion for a perfect heat engine according to
Carnot is that it should be reversible. The criterion for reversibility enunciated by
him is conceptually the simplest and most straightforward, with no hidden assump-
tions. For future reference, it is worth emphasizing that it is logically independent of
the Second Law.

Universality of Ideal Heat Engines Just using the notion of reversibility, and
that of an ideal heat engine, Carnot proved a far reaching result concerning the uni-
versality of all ideal heat engines. It is indeed a stroke of genius. The important
question posed by Carnot was whether the maximum efficiency of ideal heat engines
depended on their design or not. In other words, given ideal heat engines of many
kinds, will some of them be more efficient than others or not?

FIGURE 1.3 Universality of Carnot engines FIGURE 1.4 Universality of Carnot engines

It would appear at first sight that the answer to such a very general question will
not be easy to find, but Carnot solves it in a truly ingenious manner. Suppose there
are two ideal heat engines C,C’ such that for the same thermal agency, i.e a certain
amount of heat Q falling through the temperatures Ty, 7, with Ty > Tp, they deliver
different amounts of work W, W' with, say, W/ > W. Carnot considers splitting W'
into W + AW, and use W to work C backwards. Then, since C is ideal and hence
reversible, run in reverse it will produce the same thermal agency as C but in reverse,
i.e it will extract Q from Ty, and deliver all of it to Ty . The net effect of running C’ and
the reverese of C together is then that no net thermal agency is used, yet there is net
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work AW produced. The cycles can be repeated forever producing work indefinitely
out of nothing. This, Carnot argues, is inadmissible and will violate the very basis of
physics.

Consequently, Carnot arrives at what is perhaps one of the most remarkable sci-
entific truths, namely, that all ideal heat engines must deliver the same amount of
work for a given amount of the thermal agency. It would still be possible to construct
perpetual machines but of the kind that perform no useful work.

The true import of this universality of all ideal heat engines is truly mind-
boggling. For any given ideal heat engine, this efficiency, i.e the amount of work
performed for a given amount of thermal agency (it should be carefully noted that
efficiency has a different meaning in the new thermodynamics), will naturally depend
on a number of properties of the substance employed in the engine. For example, in
the case of steam engines, it would involve such details as the latent heat, density
of both the liquid and vapor etc. Yet, the combined dependence has to be such as
to yield a universal efficiency. It has the further deep implication that, knowing the
value of this universal efficiency for one substance, say, air, would allow determina-
tion of some property of another substance, say the latent of steam at some particular
temperature, without the need for any experimental effort!

The only parallel one can think of is Einstein’s Principle of Equivalence in the
theory of Gravitation; there too, a theoretical principle, if true, would determine the
behaviour of all systems under the influence of gravitation if one knew their be-
haviour in accelerated frames. In that sense, Carnot’s universality is also a principle
of equivalence, i.e the equivalence of all ideal heat engines. One may even say that
it is conceptually on a firmer footing as its invalidation would lead to extraction
of indefinite amount of work at no cost, and hence the end of all physics, whereas
Einstein’s equivalence principle could in principle have been found to be invalid ex-
perimentally!

The Carnot Cycle The cycle of reversible changes that Carnot envisaged as a
means of addressing the question of efficiency of ideal heat engines consists princi-
pally of four stages in the following order: (i) an isothermal dilation at a temperature
Ty, (ii) an adiabatic dilation leading to a cooling from Ty to T; < Ty, (iii) an isother-
mal compression at Ty, and finally, (iv) an adiabatic compression. At the end of the
fourth stage, the system is to return to its original thermodynamic state at the begin-
ning of (i).

=
TAF

FIGURE 1.5 Schematic setup of a Carnot cycle

There is, however, a certain difficulty of an operational nature as the Caloric the-
ory requires that the heat absorbed during the first stage must exactly match the heat
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relinquished during the third stage. In other words, while the end points B and C
can be freely chosen, the end point D has to be so chosen that the last stage from D
restores the system to its original starting point, and it is not clear how to identify
such a D. To circumvent this, Kelvin, and Maxwell, suggested variants of the cycle,
which we shall take up shortly.

Though Carnot discussed the cycles both for an air engine in which the working
substance is any ideal gas, as well as the steam engine where the working substance
at every stage is water and steam in equilibrium, let us discuss the cycle for the air
engine first. This is because Carnot makes confusing statements about the realiza-
tion of a reversible steam engine, even in an ideal sense. As Kelvin remarks in his
commentary (he thanks Clapeyron for the clarification), there are no such difficulties
and even for the steam engine, the same sequence of steps can be followed. The only
thing to be kept in mind is that at all stages the temperature of the water equals the
temperature of vapor.

Carnot overcomes the operational
difficulties (i.e of ensuring that the heat
absorbed during (i) exactly matches
the heat relinquished during (iii)) as
follows (see next figure): start with
the system at A'(P,V',Ty and let
it, under isothermal expansion, go
to B(Pg,Vs,Ty); then let (ii) be the
adiabatic process taking B to any
C((Pc,Vc,T1)) such that C is at tem- !
perature 7p; in the next step, let
(iii) isothermally take C to any state
D((Pp,Vp,T1)); and let the adiabatic
process (iv) take D to A((Pa,Va,TH))
which is at the same temperature as FIGURE 1.6 Construction of a Carnot cycle.
the starting temperature Ty. The oper-
ational difficulty now manifests itself in that A need not necessarily be the same
state as A’, though both of them are at the same Ty . But the point of Carnot is that an
isothermal dilation starting from A has to reach A’, and from then on simply retrace
the earlier path A’B. Now to get the Carnot cycle as prescribed earlier, all one has to
do is identify the entire path AA’B with the stage (i). Since no heat enters or leaves
the system through the phases (ii) and (iv), it follows that the heat absorbed during
(i) has to necessarily match the heat given out during (iii).

Carnot had also explicitly characterized stage (iii) to be such that it gives out all
the heat the system had absorbed during (i). Kelvin points out that spelled that way,
this is the only part of the specification of the cycle that is explictly sensitive to the
correctness of the Caloric theory. Kelvin sought to free the description from this by
requiring the end point D of stage (iii) to be such that the fourth stage takes it to
the starting state of (i). Nevertheless, this does not solve the operational problem of
locating such an end point. Maxwell’s prescription, which is completely operational,
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was to start from some B at Ty, take it to some C at Ty via an adiabatic dilation, take
the system from C to any D, also at T}, through an isothermal dilation, take D to
some A, as long as it is at Ty, and finally an isothermal dilation from A has to take
it to B. It should be noted that this is pretty much the same strategy that Carnot also
advocates.

The cycle for an ideal steam engine can also follow the same four stages with the
important difference from gas engines being in the fact that isothermal trajectories
are also isobaric, i.e at constant pressure. This is because the vapor pressure of sat-
urated vapor depends only on the temperature. This fact, as beautifully analyzed by
Clapeyron [6] , actually allows the universal Carnot efficiency to be evaluated en-
tirely in terms of physically observable properties of the water-steam system, as will
be discussed shortly.

The cycles are shown for the steam engine, as well as the gas engine in the next
figure. For both of them, ABC is the expansion phase and CDA the contraction phase.
A part of both of these is isothermal (AB,CD), and the other adiabatic (BC,DA).
During the isothermal phases, for a given volume, the pressure during the expan-
sion(say, at P») is always higher than the pressure during contraction (at O2). No
such easy comparison is available during the adiabatic phases. By drawing the verti-
cals P;Q1,PsQs it is seen that at a given volume, the pressure during the expansion
is always higher than the pressure during contraction, as shown in the next figure.

FIGURE 1.7 Carnot cycles for air and steam engines.

Hence the mechanical work done by the system during expansion is greater than
the work done on the system during contraction. This way, Carnot concludes that
net work is done by the system at the end of the cycle. Kelvin uses the graphical
method to show that the work done is the same as the area of the curve ABCDA.
The graphical methods are originally due to Clapeyron. For the modern student, that
the area in the PV-diagram represents the work is a straightforward consequence of
calculus, but in the beginnings even this was a novel way of looking at things.

Carnot’s style of analysis As already mentioned, Carnot hardly made use of
equations in his analysis, which were mostly verbal, augmented at most by simple
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arithmetical manipulations. Nevertheless, he made so many far reaching conclusions
with remarkable precision. We shall demonstrate this by a finer mathematical analy-
sis whose conclusions, as shown, coincided with his assertions made verbatim. But,
to the modern reader, following Carnot’s logic, though impeccable, would indeed be
tiresome. We illustrate this by his analysis of the relationship between specific heats
of ideal gases, as an example.

First of all, he uses the Gay-Lussac law to argue that when a given mass of a gas is
heated at constant pressure from 0°C to 1 °C, the fractional increase in its volume is
the same for all gases and equals the fraction 2é7 (the modern value would be closer
to 2%3 ). Therefore, the gas initially at (P,V,0°C) would go to (P,V + 227 ,1°C) the
difference in heat between these two states is by definition the specific heat at con-
stant pressure (for the given mass). He also uses the experimental data of Poisson
that under an adiabatic compression which raises the temperature of air by 1°C,
its volume decreases by a factor of .l .. Therefore, the heat content of the gas at

116
(P,V,0°C) and at (P',V — 1‘1/6,10(]) are the same (here P’ is the pressure the gas
would have at 1°C when its volume is V — 1‘1/6). On the other hand, if the gas had
been heated at constant volume, the heat required to raise the temperature by 1°C is,
by definition, the specific heat at constant volume (again for the given mass). Hence,
the specific heat at constant volume is also the difference in heat between the states
(P",V,1°C) and (P',V — 1‘{6 ,1°C). Now these two states are at the same tempera-
ture but at different volumes. Carnot observes that the difference in their heat must
be proportional to the difference in the volume 1‘1/6. On the other hand, by similar
reasoning, the specific heat at constant pressure will equal the difference in heat be-
tween the states (P',V — %.,1°C) and (P,V + ,},,1°C); these are also at the same
temperature, and therefore, the difference in their heat must also be proportional to
the difference in their volume, which is now 1‘1/6 + 2‘(?7. It should be emphasized that

the proportionality factor is the same as before. Let us call it X, for ease of reference.

From this rather verbose analysis, he rightly concludes that the ratio of the specific
heat at constant pressure to the specific heat at constant volume is 1 + %ég, i.e the
constant pressure specific heat is always greater than the constant volume specific
heat. This is usually attributed to First Law, but Carnot’s analysis shows that it is
much more general. What is even more striking is his conclusion about the difference
in these two specific heats. By the reasoning given above, this difference must be
X 4~ While the number 1. was for air only, the number ., by Gay-Lussac law,
is the same for all ideal gases. Thus, the difference in the specific heats is completely
insensitive to the details of the individual gases. In fact, a little introspection shows
that Carnot need not have used Poisson’s data at all!

In the next step of the reasoning, too, Carnot displays absolute brilliance. He
considers two ideal heat engines working with different volumes and just by us-
ing some properties of the ideal gas equation such as that for a given fractional
change of pressure at the same temperature produces the same fractional change
of volume etc., he demonstrates that X - V is the same function of temperature for all

gases. Thus, the difference in the specific heat at constant pressure and the specific
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heat at constant volume being equal to X 2‘é—7, it is the same for all ideal gases at a

given temperature, and is independent of the density.

Introduction of symbolic manipulation already makes the above arguments,
though correct, more transparent. Let us, for ease of presentation, consider one mole
of a gas. The heating at constant pressure, leading to an increase of temperature by
1°C, and the adiabatic compression for air also leading to an elevation of the tem-
perature by 1°C can be described by the simple equations

OV + = 1)~ Q(BV,0)=Cp  Q(P.V

267’ ) 1)=Q(PV,0) (1.22)

116
The heating by one degree at constant volume is likewise described by
O(P",V,1)-Q(P,V,0) =Cy (1.23)

It immediately follows that

_ /1 , 115 - 1220 1
Cy = Q(P ,V,l)Q(P,V1—w,1)~<W>TV1_16
= @ _ o, 115 - aQ 1 1
r = ORVag ! Q(P’V116’1)N<8V>TV(116+267) (124

We have symbolized Carnot’s principal axiom that heat is a state function by using
Q(P,V,T). The factor X introduced earlier is precisely (g—g) -

1.4.1 Infinitesimal and finite cycles

In the above, changes of volumes and temperatures were very small. Let us
now discuss Carnot’s novel, and extremely useful, concept of infintesimal re-
versible cycles. These are reversible cycles where each of the four stages is
infinitesimally small. He argues that any finite reversible cycle can be shown
to be equivalent to a large number of suitably chosen infinitesimal cycles.
We illustrate how two Carnot cycles op-

erating between the same two temper-

atures Ty,T; can be combined into a A
single Carnot cycle. Consider two such 5 5
cycles A1B1C1D1A1 and A2B2C2D2A2 E :
as shown in the next figure, such T e
that the state A, is the same as the Ay
state B1, and D> the same as C;. We
can represent each cycle by the or-
dered set of its segments; for exam-
ple, AiB1C1D1A; can be represented
by AlBlaBlclaCIDlaDlAl' A segment
B1C; is to be understood as the ther- FIGURE 1.8 Composing Carnot cycles
modynamic reverse of the path A;B;.

2z
=
-

B, DG G
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Now the two cycles can be composed by considering the sequence of paths
A1B1,B1C1,C1D1,D1A1)+A1B1(A2) + (A2B2,B2Cy,CoD2,D2As) + Az (B1)Ar. On
the one hand, this is the sum of the two given Carnot cycles on recognizing that
A1B1(A2) cancels A3(B1)A; due to perfect reversibility of the ideal cycles. On the
other hand, in the total path, the segment B1C; cancels DsAs, leading to its reorga-
nization as A1Az,A2Ba,B2Ca,CoD2(C1),C1D1,D1A; which is the composite cycle.
This can be repeated for composing cycles operating between different combina-
tions of temperatures. It is very important to notice that reversibility is the key to this
composition of cycles.

The abovementioned way of composing Carnot cycles can be, by borrowing an
obvious analogy from electrostatics, called a composition in series, and is shown as
the bottom part of figure 1.8. However, one can also introduce the notion of compos-
ing Carnot cycles in parallel. In such an arrangement, the lower temperature of the
first cycle would be the same as the higher temperature of the second cycle etc.. This
is shown as the top part of the same figure.

Gas Engine Now we present the analysis of Carnot’s gas engine, not in his orig-
inal prosaic style, but in the succinct mathematical form used by Kelvin . As ex-
plained above, it suffices to analyze an infinitesimal cycle. Let (P,V,T) be the initial
state and let dQ be the heat absorbed during the first isothermal stage, and let dV be
the corresponding increase in volume, so that the state B at the end of the first stage
is (P(l—d‘}/),V(1+‘C/),T). The mean pressure during stage (i) is therefore P(1 — ‘215)
and the work done during this stage is dV - P(1 — ‘215 ). We need to calculate to second
order in accuracy.

During the second stage, let P, 6Vand 8T be the decrease in pressure, increase in
volume, and decrease in temperature, respectively. Hence the state C is (P(1 — d‘y )—
OPV(1+ “Z,V) + 8V, T — 8T). It is a good approximation, as can be checked easily,
to treat the corresponding variations during (iii) and (iv) to be the same as during (i)
and (ii). The ideal gas law, for one mole of gas, then requires

—VO8P+PSV =—ROT (1.25)

In fact, adiabaticity further restricts these variations, but as Kelvin has rightly re-
marked, it is not necessary to know them. The mean pressure during (iii) is there-
fore 8P less than the mean pressure during (i), and the net work done during
the isothermal stages is simply dV§P. The mean pressure during (ii) is therefore
P(1—4Y)— 9. The mean pressure during (iv) is likewise P4/ more than that dur-
ing (ii), and the net work done during the adiabatic stages is de‘y oV. The total
work done during the cycle is, therefore, (VP — Pov) d\y. On using eqn.(1.25), this
can be simplified as dW = 55 T dV . Following Kelvin , this is further reexpressed as

R

Y
v ( v ) T
This is the result that Carnot sought to find, and it expresses the motive power dW

that the thermal agency dQST will give rise to. According to the powerful universal-
ity argument of Carnot, the function p(7T') is the same universal function no matter

dW = u(T)dQ8T = dQS8T (1.26)
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how the heat engine is designed, or with what substance. For ideal gases, the above

mentioned derivation yields u(7) = v ( ;Z) .
W)z

1.5 Steam engines and the Clapeyron Equation

As already mentioned before, Carnot seems to have been under the impression that
for steam engines, a fully reversible cycle can not be maintained. He based this on
the premise that after the steam has condensed to water at the lower operating tem-
perature, the water would have to be heated to be at the starting point of the cycle.
It was Clapeyron, in 1834, two years after the untimely death of Carnot (he died in
a cholera epidemic at the age of 36), who showed that the ideal steam engine can
also be thought of as a reversible cycle with the same four stages that Carnot had
given for the gas engine, provided important features of liquid-vapor equilibrium are
taken into account. One of these is that in the P-V diagram for steam engines, the
isotherms are at constant pressure because saturated vapor pressure depends only on
temperature. The other is that water can absorb heat to become steam without any
change of temperature. The adiabatic curves are basically the same as the P-T dia-
grams of coexistence. We now present Clapeyron’s analysis of the motive power of
steam engines. In this work, Clapeyron puts to use, in an eloquent way, his graphical
method, which we have already discussed.

Again, let us consider only an infinitesimal cycle EFGH shown as a horizontal
strip in the figure. The work done is given by the area of this strip which is, to a good
approximation, the length EF multiplied by dP which is the thickness. The length EF
is essentially the change in total volume of the system upon absorbing the amount of
heat dQ. If [(T') is the latent heat (in the modern sense, i.e amount of heat required
to convert unit mass of water at temperature T to unit mass of steam at the same
temperature; in Carnot’s times the phrase latent heat was used in a different sense),
the mass dm of water converted to steam is dm = l‘(l%. The increase in volume of

steam is therefore dVieqm = ‘gf’ , Where py is the density of steam. No heat is lost to the
water as neither its pressure nor temperature changes. However, there is mass loss of
water, also by dm. This leads to a decrease in the volume of water by dV,,ger = — ‘;’:1 s
where p,, is now the density of water. Both the densities depend on T. Therefore,
EF = dV = dm(vy — vy,), where vy, v,, are the specific volumes, i.e volume per unit
mass of steam and water, respectively. Consequently, the work done during the cycle

isdWy=EF -dP = I(IT) (vs — vyw) dPdQ. This can be rewritten as follows:

vs—vw dP(T) s vw dP(T)
dWs_{ 1) dr }deT —>u(T)—{ W) dr } (1.27)

Now one can appreciate the true powers of the universality of ideal heat engines
propounded by Carnot. According to it, u(7T') is the same function of temperature
for all substances. The implication for steam-water coexistence can be deduced by
rewriting the above equation as

aP(T) _ gy 1T)

1.2
dr Vg — Vi (1.28)
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This is the famous Clapeyron Equation and it has been obtained from the Caloric
theory! The missing ingredient, however, was the function t(7'), and even Clapeyron
bemoans the lack of reliable experimental data that would determine it. Regnault’s
careful work on steam [60], which Kelvin made use of at the time of his commentary
on Carnot’s work, would only start to become available in 1847, the full descriptions
completed as late as 1870.

Returning to the specific heats of ideal gases, one gets

R

(CP *CV)(O) = 267[1(0)

(1.29)

We shall now go a step beyond Kelvin and give a completely mathematical treatment
of Carnot’s work.

Mathematical treatment of Carnot theory The starting point of Carnot’s con-
siderations was the Caloric Theory, which states that heat is a property of the system.
More precisely, it states that heat is a state function, and mathematically this amounts
to the existence of the heat function Q(V,T). It can equally well be expressed as

: 20 _ R
QO(P,V) or Q(P,T). As we have already seen, for ideal gases V(av)T = u(r)-

The Holy Grail of Carnot theory is the determination of both Q(V,T) and u(T).
Of course, knowing Q(V,T) for ideal gases at once gives ((7) which holds for all
substances. We develop the mathematical theory for ideal gases here, but it can be
extended to arbitrary cases.

Let us consider specific heat at constant volume Cy (we consider one mole of
the substance). By definition, the heat dQ required to raise the temperature by dT is
Cy(V,T)dT. We leave open the possibility that the specific heats could depend on
(V,T). In the caloric theory

CvdT = Q(P",V,T +dT)—Q(P,V,T) = (g?) dT — Cy = (3?) (1.30)
|4 %4

But Carnot finds it more useful to understand Cy in terms of heat required to change
volumes at constant temperature! That he does by invoking the properties under
adiabatic changes. Let 0,4V be the change in volume, under adiabatic changes, cor-
responding to a change 8,47 in temperature. For air, considered by Carnot for which
he quotes the experiments of Poisson, 8,4,V = V when 8,47 = 1°C. The mathe-

T 116
matical expression for adiabatic changes in the caloric theory is

Q(PaVaT)_Q(P/av+6adVaT+6adT) =0— (aQ> 6adv+ <8Q> 6adT:0
v ), ar ),
(131)

This is the same conclusion reached by Carnot, namely, the heat absorbed at constant
temperature in expanding by a small volume is the same as would be required to
raise the temperature, at constant volume, by a degree by which the temperature
would have increased under adiabatic compression by the same volume. What is
noteworthy is that Carnot arrives at it through only verbal manipulations!
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The second important assertion by him, again proved only verbally, is that the heat
given out, at constant temperature, only depends on the fractional increase in volume
and not on the increase in volume itself. To arrive at that conclusion, he makes use
of his result on the universality of ideal heat engines. In the mathematical formalism
this emerges as follows:

(90 R av
dg = (8V)Tdv_u(T) y (1.32)

In fact, Carnot enunciates this result for finite changes as well (also proved verbally!):
When a gas varies in volume without change of temperature, the quantities of heat
absorbed or liberated by this gas are in arithmetical progression, if the increments
or decrements in volume are found to be in geometrical progression. To see this in
our mathematical formulation, simply integrate eqn.(1.32), to give,

02— 01 = (T In Vi (1.33)

Though Carnot used Poisson’s data for air on adiabatic changes, he could well have
made that analysis more general as the law for adiabatic changes, in the form, PV? =
const., appears to have been known to Laplace, whose work on speed of sound is
cited by Carnot. But, as can be seen now, the mathematical theory of the caloric
gives the equivalent of this relation even when the specific heats are not constant.

To address this and other related issues, let us turn our attention to the specific
heats within the caloric theory. One of the differential forms of the fundamental
axiom of the caloric theory can be expressed as:

(00 a0
do = <3P>Vdp+(av>PdV (1.34)

Other equivalent forms using (P,T) or (V,T) as independent variables may also be
used. From the definitions Cy = <g?)P and Cy = (gg)v it immediately follows
that for ideal gases

_(dQ\ (aV\ R (a0 R (00
=), (or), =0 (o), e=v(r), 0

The ratio, 7y, of Cp to Cy in the caloric theory is given by

0
GvT) v (av)P _V(Q\ [P
= G T (90) P(ov),(50), 03
|4

Using the triple product rule of partial derivatives, one obtains

20 opP _ P 8P 5adV_
<3V)p<3Q>V<aV)Q% p TYWT) S, =0 (1.37)
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Which is incidentally the same equation for adiabatic changes in modern thermody-
namics too. Therefore, this particular equation does not care what the nature of heat
is.

Let us evaluate (aQ

4

20 — 90 20 opP P 71)
<9V>T <8V)PJr <3P)v<3V>T RCP— RV (1.38)

Combining this with the expression for 1 (7T'), one gets the remarkable equality

)T for an ideal gas directly from eqn.(1.34):

Cp—Cy = (1.39)

w(T)T
This is the mathematical derivation of Carnot’s result for the specific heats; and the
difference can only depend on temperature, with Cp always greater than Cy. Carnot
had concluded that if Cp — Cy was a constant, the specific heats must have a logarth-
mic dependence on volume. In our mathematical framework, this case amounts to fix-

ing 1 (T) to be 7 i.e hence (‘38) - KT, whose solutionis Q(V,T) =RT InV + f(T)

with f(T) being arbitrary. Therefore, Cy(V,T) = RInV + f'(T) and Cp(V,T) =
RInV + f'(T) + R. One can likewise explore the consequences of a constant Cy.
It is easy to see that this would imply Q(V,T) =Cy T + f(V), f(V) being arbitrary.
Then, Cp = Cy + f'(V) ﬁ. But Cp — Cy can only be a function of T which fixes
f'(V) =% with A a constant. Consequently Cp = Cy + 4.

Finally, we present the differential form of the caloric axiom for ideal gases in
a form that is closest to the present day first law. For that, we take (V,T) as the
independent variables:

dQ(V,T) = (aQ) dT + <8Q) dV =Cy(V,T)dT + (1.40)
\% T

R 4dv
aT av w(T) v
Carnot was very particular in his views about the importance of subjecting his
conclusions to rigorous experimental tests. He correctly foresaw specific heat data to
be the most important ones for this purpose. But the state of the art of these exper-
iments were not fine enough, and in fact, the data of Clement and Desormes which
made Carnot see some evidence for a logarthmic volume dependence were later
found to be incorrect. It is undoubtedly clear that had Carnot lived to see greater
precision in these experiments, he would have been the first to abandon the caloric
theory, and perhaps the first to have formulated the first and second laws of thermo-
dynamics! After all, the important ideas of Carnot and Clapeyron, in the hands of
Clausius, paved the way for these developments. However, despite his great con-
tributions, particularly the concepts of reversible cycles, universality of efficiencies,
and of maximum of attainable efficiencies, it can not be said that he knew of even
the broad contours of the first and second laws as understood today. For a critical
assessment, the reader is referred to [23], and to [65] for a different view.
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1.6

The Principles of Thermodynamics

Problems

Problem 1.1 Consider three gases with (P1,V1), (P2, V2) and (Ps,V3). It is found
that when the first two are in equilibrium the following condition is satisfied:
P1Vy = (Py +a/VZ)(Va — b), while the equation satisfied when the first and
the last are in equilibrium is P3(Vs —¢) = P1V; e~4/VsPlVi_ Find the respective
equations of state and identify them.

Problem 1.2 At very high temperatures the emissivity of a blackbody varying
as aT*, where T is in absolute scale, is used for thermometry. Devise both a
uniform and a suitable non-uniform scale thermometer based on this. Which of
the non-uniform scales will agree best with the absolute scale?

Problem 1.3 Show that constant volume thermometers using an ideal gas as
well as a van der Waals gas both yield the same temperature scale when uniform
scales are adopted. What is the relation of this common scale to the absolute
scale? Does this happen with constant pressure thermometers using the same
materials?

Problem 1.4 Thermocouples are bi-metallic junctions where a voltage difference
arises as a function of temperature. A thermometer is to be built out of a ther-
mocouple whose voltage varies linearly from 0 mV to 50 mV as the temperature
is varied from 0°C to 400°C. What is the temperature of the device when the
output voltage is 10 mV?

Problem 1.5 Two thermometers are constructed with uniform scales, one of
which is based on a metal whose resistance varies with T as R(T) = Ro(1 +
aT + bT2), and the other based on a thermocouple whose voltage varies as
V(T) =Vo(1+4cT? +dT3). Determine the temperatures 7} , T on them in terms
of T. Find the values of T at which they differ most from the absolute scale. Find
T where they differ from each other maximally.

Problem 1.6 It is believed that since birth radiactivity alone was responsible for
raising the internal temperature of earth by at least 2500 K. If the average coeffi-
cient of volume expansion of the internal part of earth is roughly 3.0- 107°K~1,
estimate by how much the radius of earth has increased since formation.
Problem 1.7 A mercury in glass thermometer is such that the change of area
A of the capillary with temperature is negligible. The coefficients of volume
expansion of mercury and glass are respectively oy, and og. If the volume of
mercury that just fills the bulb at 0°C is V, show that the length of the mercury
column in the capillary at t°C is given by L(¢) = (V/A) (04 — A3,1/3).
Problem 1.8 Calculate the work done by one mole of gas in expanding from V;
to Vo a) isothermally, and b) isobarically for i) ideal gas, ii) a van der Waals gas,
and iii) a gas obeying the Clausius equation.

Problem 1.9 Calculate the net work done when one mole of an ideal gas is heated
at constant volume till its temperature is tripled, then cooled at constant pressure
to the original temperature, and finally expanded isothermally to the initial state.
Problem 1.10 Repeat the above problem when the gas obeys the van der Waals
equation of state.

Problem 1.11 Calculate the work done in isothermally compressing the rubber
band of problem 4.8 from Lg to Ly/2.

Problem 1.12 The molar specific heat at constant volume of a substance is exper-
imentally determined to be 32R. What, according to Carnot theory, is its Clapey-
ron equation?



2 First Law—The E = Mc¢? of
Thermodynamics

There is a tendency, particularly among physicists, to view the first law of thermody-
namics as merely a consequence of the energy conservation principle of mechanics.
That is to some extent a valid perspective today, when atomism has been firmly es-
tablished and when thermodynamics is seen as the effective description of a very
large number of these microscopic constituents in terms of a very few macroscopic
thermodynamic degrees of freedom. But such a perspective would hardly have been
justified at the times (middle of 19th century) when the first law was established.
At that time, atomism was only a conjecture, however appealing. The true experi-
mental vindication of atomism came only with experiments on Brownian Motion,
immediately after Einstein’s path-breaking work in 1905.

In fact what the first law achieves, in effect, is the recognition of a new form of en-
ergy, i.e heat, and equally importantly, establishes a conversion factor (the mechan-
ical equivalent of heat) between this new form of energy and the older known forms
of mechanical energy. Hence this author likens this development, in a precise scien-
tific sense, to the revolutionary developments of the Special Theory of Relativity of
Einstein, where too a new form of energy was recognized, i.e mass, and furthermore
its conversion factor to the older known forms of energy was established through the
famous E = mc?. Actually, the first law achieves the recognition of two new forms of
energy, namely, heat and internal energy! We shall have more to say on this later on.
Recognizing new forms of energy is where the revolution is; the rest is evolution!

Once a new form of energy has been recognized, only then a new manifestation
of the energy conservation principle assumes meaning and significance. In E = mc?
such a manifestation takes, among other things, the dramatic form of nuclear energy,
with enormous impact (of both positive and negative types) for science and society.
It can be said, without any exaggeration, that the impact of first law on science and
society is no less than that of E = mc?. It is clear that without the establishment of a
conversion factor, no quantitative expression of this manifestation would have been
possible. In this chapter we describe in detail the makings of this revolution.

2.1 The fall of the caloric

Doubts about the correctness of the caloric theory had come to many minds. But
most of these remained only as opinions, not at a level to be taken seriously as scien-
tific hypothesis. The earliest important development is undoubtedly due to Benjamin
Thomson (1753-1814), also known as Count Rumford. He passed away nearly a
decade before Carnot published his Reflections.

As a cannoneer for Bavaria, he had noticed that vast amounts of heat would be
generated while boring the cannon barrels. While this in itself may not be in contra-
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diction with the caloric theory, what Rumford found was that heat could be extracted
on an almost continuous basis, as long as the boring went on. This fact would cer-
tainly cast some doubts on the caloric theory, and made Rumford suspect that the
heat output was actually correlated with the work done in boring. He conjectured
that heat was motion. What made his ideas scientific was that he attempted to quan-
tify this relationship, i.e he tried to measure the conversion factor.

One of the first such quantitative results he obtained was that two horses em-
ployed for 2 hrs 30 mins. would generate enough heat to melt 26.6 pounds of ice at
180°F (temperature scale used was Fahrenheit). Joule later argued that this repre-
sented 1034 foot-pounds of mechanical work based on Watt’s claim that the power
delivered by a horse was equivalent to 33,000 foot-pound. Horsepower or Hp is still
used as a unit of power. Watt was also among the early doubters of the caloric. He
expressed doubts, in the context of the steam engine, that all the heat absorbed at the
boiler would pass to the condenser. But again, this was only a doubt expressed and
not a serious critique of the caloric.

For that matter, even Rumford’s demonstration, which today would be clearly
taken as evidence that work can be converted to heat, can not, in any systematic man-
ner, be shown to contradict the caloric. This, as carefully analyzed by Kelvin in his
commentary on Carnot’s work, would require it to be shown beyond any doubt that
the caloric did not flow from other parts of the cannon, or that it did not flow into the
cannon from outside. Kelvin in fact analyzes Joule’s experiments on thermoelectric-
ity wherein he had observed heating of a conductor upon passage of electricity. He
points out that even there, careful experiments would be necessary to rule out cooling
in other parts, in which case the heat observed would merely be consequences of the
redistribution of the caloric.

Another important observation of Rumford was that heating caused no change
of weight in an object; the caloric theory would consequently require that heat as a
material object should be weightless. This too, while not constituting a conclusive
test against the caloric, raised the level of discomfort against it.

What perhaps came as a death blow to the caloric theory was the experiment of
Humphrey Davy (1778-1829) in 1799 (two years after Carnot’s birth!) wherein he
rubbed two pieces of ice against each other whereupon both ended up melting [10].
So the heat of melting could not have come from the caloric contained in either of the
ice cubes. But even this experiment has not been totally beyond reasonable doubts;
as late as 1926, it has been pointed out that this experiment was not carried out in a
vacuum [2], as has been popularized!

2.2 The path to the first law

Though many thoughts pointing to the so called first law can be found in the liter-
ature, the works and thoughts of Robert Mayer, James Joule and Helmholtz stand
out in their relative clarity. We briefly discuss the essential thoughts of these three
musketeers of thermodynamics. It is said that the three worked independently. The
predominant theme is that of energy conservation, though it must be emphasized that
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a mere extension of this known concept in mechanics to thermodynamics can not be
made that straightforwardly.

Robert Julius Mayer (1814-1878): Mayer is said to have explicitly stated that
energy is generally conserved, and to have equally explicitly claimed that heat and
mechanical energy are interconvertible. In a paper written in 1841, but never pub-
lished in any scientific journal, Mayer said 'motion is converted into heat,’ thereby
directly questioning the caloric theory.

He made his criticism of the caloric very precise and succint by his declaration,
in a brochure in 1845 (according to Ingo Miiller [47]), that 'the heat absorbed by
the vapor is always bigger than the heat released during condensation. Their differ-
ence is the useful work,’ in the context of the steam engine. There could not have
been a clearer assertion of the interconvertibility of heat and work, and was a clear
forerunner of the events leading to both the first and second law. Nevertheless, it still
amounted to only an opinion.

Mayer also came up with a way of estimating the mechanical equivalent of heat.
He did this by interpreting the difference between the specific heat C), at constant
pressure and C, the specific heat at constant volume as the work done against the
pressure of the gas. By using data on specific heats of Delaroche and Berard, and
Dulong’s value for the ratio of the two specific heats, he concluded the conversion
factor to be such that ’the fall of weight from 365 metres heats the same weight of
water by 1°C. This figure was eventually refined by Joule.

We have already seen that even caloric theory predicts that C,, is larger than C,,
and that the same data of Delaroche and Berard could not rule out these specific heats
from being consistent with Dulong values. So clearly Mayer’s calculation is no proof
of the incorrectness of the caloric theory, or more precisely, no proof that heat and
work were interconvertible. It was only an interpretation of the specific heat data on
the premise that heat and work are interconvertible. The caloric theory, which would
deny such an interconversion, would interpret the very same data in a completely
different way.

James Prescott Joule (1818-1889): Joule took the journey towards the creation
of thermodynamics that much further. As already mentioned, he discovered in 1843
the thermoelectrical phenomenon whereby passage of electricity through a conduc-
tor heats up the latter [72]. The interpretation of this effect in the caloric theory is
obscure at best. Even in this context Joule had begun to wonder whether the mechan-
ical power needed to run the generator was the eventual source of the heat developed
in the conductor. But Joule is best known for the very careful experiments he per-
formed to first show that mechanical work could be converted to heat, and then for
the careful measurement of the mechanical equivalent of heat. His setup was essen-
tially comprised of falling weights turning paddles in a liquid, which would heat up
the liquid through friction. By carefully measuring the rise in temperature of the lig-
uid, and correlating it to the equally carefully measured heights through which the
weights fell, he arrived at the following conversion factor: the heat required to raise
by 1°F one pound of water is equal and may be converted to a mechanical force
which can lift 838 pounds to a vertical height of 1 foot [47]. He refined these values
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through more measurements and in 1845 had given it as 772 pounds. The modern
statement of this conversion factor is

lcalorie = 4.18Joules 2.1

where a Joule is 1Kgm?/s?. Joule too was a firm believer in the conservation of
energy and that heat is the motion of particles.

22 A B

FIGURE 2.1 Joule’s apparatus for mechan- FIGURE 2.2 Joule’s free expansion
ical equivalent of heat. experiments.

Around 1845, a few years before Clausius gave the final, and complete, formu-
lation of the first law, Joule performed an experiment of deep significance, namely,
his experiment on the so called Joule Expansion. In the earlier versions of this exper-
iment, performed by Joule alone, gas occupying a volume at some temperature was
allowed, without any heat exchange with the environment, to expand into a region of
vacuum, as shown in the figure. What Joule observed was that there was no change
of temperature, though the volume had increased. A few years later (around 1852),
Joule and Kelvin performed a variant of this experiment, the so called porous plug
experiment, which showed a tiny drop in temperature. Gay-Lussac had performed
the same experiment, even before Joule, but had not noticed the drop in temperature.
Joule and Kelvin could observe the change because of the progress they had made
in measuring small temperature differences.

The Joule expansion effect provides a second characterization of an ideal gas as
one for which the temperature difference is strictly zero. It is very important to ap-
preciate that this is independent of the equation of state PV = nRT . The significance
of Joule expansion will be explained later in the context of both the first and second
laws.

Herman Ludwig Ferdinand von Helmholtz (1821-1894): Helmholtz was also
a firm believer of the atomistic view and of the conservation of energy. He made
the very astute, and subtle, observation that at the microscopic level there is really
no friction but only a redistribution of energy. As a consequence, he argued that
perpetuum mobile was impossible. We have seen that Carnot had clearly stated this
long ago without necessarily committing to an atomistic world view.

Though all these made contributions that were very pertinent for the formulation
of the first law, none of them really came close to it. In particular, none of them even
conceptualized internal energy, the bedrock of the first law. That task, as well as
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the task of giving a precise mathematical expression to the first law, was beautifully
undertaken by Rudolph Julius Emmanuel Clausius (1822-1888). He formulated
the first law in 1850 [7, 8, 9]. It is said that William John Rankine (1820-72) had
also given a formulation in 1850.

Clausius formulated both the first and second laws, more or less simultaneously,
in 1850. This has led some to erroneously state that the origins of the first law too
lay in the issues of the efficiency of heat engines. It is important to make a clear log-
ical separation between the foundations of these two pillars of thermodynamics. The
foundation of the first law lay in Clausius taking the equivalence between heat and
energy to its logical conclusions, culminating in its precise mathematical expression.
On the other hand, the second law concerned itself with the far more subtle issue of
the possible directions for the interconvertibility between these two forms of energy.
The first law says absolutely nothing about this.

This brief historical account would be woefully incomplete without mention of
James Clerk Maxwell (1831-1879), Josiah Willard Gibbs (1839-1903) and Lud-
wig Boltzmann (1844-1906). Indeed Gibbs is clearly the third of the Thermody-
namic Trinity, after Carnot and Clausius. Working largely by himself, at a time of
little tradition of theoretical physics in his country, this American scientist produced
his monumental work on thermodynamics On the equilibrium of heterogeneous sub-
stances in 1875 [19]. This is one of the most influencial scientific works. In it, Gibbs
introduced the concept of the Chemical potential, which, along with his phase rule
(also in this work), revolutionized physical chemistry. It is a historical travesty that
Gibbs chose to publish this in the obscure Transactions of the Connecticut Academy.
This, along with its ’abstract style and difficult representation,” according to Ost-
wald, made this great work practically unknown for a long time. His contributions,
in the words of A.S. Wightman, have survived 100 years of turbulent developments
in theoretical physics.’

Gibbs also laid the foundations for Statistical Mechanics and made significant
contributions to its development. His brilliant concept of ensembles has indeed
changed the very complexion of this subject. His book Elementary Principles in Sta-
tistical Mechanics [20] is famous for its enormous impact. Einstein is said to have
considered Gibbs as among the greatest men and most powerful thinkers.

Interestingly, even the beginnings of Statistical Mechanics can be traced to the
works of Clausius on kinetic theory. His 1857 work on the diffusion of molecules
greatly influenced Maxwell to undertake a major study in 1959 that culminated in
his pioneering work on velocity distributions. This in turn was a major influence
on Boltzmann who went on to formulate kinetic theory extensively. Kinetic theory
morphosed into what is currently understood to be Statistical Mechanics. Therefore
it would be fair to call Maxwell, Gibbs and Boltzmann the Statistical Mechanics
Trinity.

2.3 The first law of thermodynamics

We shall present here the main essence of Clausius’s formulation of the first law.
The starting point is the paradigmatic shift that heat and mechanical work are inter-
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changeable; obviously, this marks a fundamental departure from Carnot, who based
his Reflections on the premise that heat can neither be created nor destroyed. There-
fore, according to Clausius, at the end of a reversible cycle the net amount of heat
absorbed must equal the net work performed, i.e AQ = AW, whereas for Carnot
AQ = 0 while AW # 0.

FIGURE 2.3 A Carnot cycle

Almost everything else follows just from this initial departure, which is of course
a very radical departure. It is immediately obvious that heat can not be a state func-
tion as was the case in the caloric theory. If it were, dQ would have been a perfect
differential and AQ would have been zero, as in Carnot theory. That AW is not zero
is anyway familiar from mechanics where in general the work done around a closed
path is nonzero, and additionally depends on the path. In the thermodynamic context,
if the pressure P is a function only of volume (which can not be true in general), can
dW be a perfect differential.

At this stage, all that can be said is that

dQ = dw +dU (2.2)

where dU is a perfect differential, and therefore U is some state function. It is not
even necessary at this stage for U to be nonzero. But Clausius not only showed that
U has to be necessarily nonzero, he derived the integrability conditions for U in a
physically transparent manner. The reader is referred to Ingo Miiller’s book [47] for
more on the original papers of Clausius.

It is worth remarking at this stage that Clausius maintained the conceptual edifice
that Carnot had created, i.e concepts of cycles and reversibility. In fact, Clausius
goes to great pains to explain that he would like to keep as much as possible of
the structures that Carnot had introduced. This is a great tribute to Carnot indeed.
Clausius makes use of the fact, as done by Carnot and Kelvin too, that addition of
heat can alter both the temperature and volume of a system

dQ = M(V,T)dT +N(V,T)dV 2.3)

By definition, M = Cy (V,T). Clausius then considers an infinitesimal cycle, a con-
cept pioneered by Carnot. During the isothermal expansion let &7V (since the
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cycle is infinitesimal, the isothermal contraction in the third stage can also be
taken to be the same) be the change in volume. The heat absorbed during this
stage is therefore dQsp = N(V,T)8rV. For what follows, where the final quan-
tities of interest are second order in the variations, it is better to express this as
dQap = 5(N(V,T)+N(V + 67V))rV. This amounts to taking the mean value pre-
scription for N(V, T).

Likewise, the heat relinquished during the third stage CD is — 3 (N(V + &7V +
0oV, T —8pT)+N(V+069V,T — 0T ))8pV. We have denoted the changes during the
isothermal stages by 6r and those during the adiabatic stages by 8¢. The stages BC
and DA being adiabatic, dQpc = dQpas = 0. Writing these conditions out explicitly,
the expressions for the work done during the four stages can likewise be written
down, and the total work done during the cycle is given by

JdP
AW = 00T 61V 2.4
(8T>V oT 61 (2.4)
The total heat absorbed during the isothermal stages can be seen to be
JdN JdN
00 = 60T 61V — VooV 2.5
0= (Gr) 2rerv =3y ) 5rvao &

This can be simplified on noticing that the adiabaticity condition dQpc +dQps =0
becomes

dCy ON
TorV = \% 2.6
(0 ) ororv=(5) sevary 20
The final result for the net heat absorbed during the cycle is, therefore,
ON dCy
AQ = - VéoT 2.7
o={(ov), (%), yorvee 7

There are some features of this calculation that are worth emphasizing; firstly, all
quadratic variations of the type (dyX )2, where X,Y stand for (V,T) and (Q,T) re-
spectively, vanish identically. This is the advantage of using the mean value method.
Secondly, a naive estimate for the work done may have looked like dPdV, but the
calculation shows the need for a more careful treatment which shows the work done
to be as given by eqn.(2.4).

Equating AQ with AW as per the new paradigm, and in complete contradiction
of the caloric view point, one gets

(), ("), e

Clausius interpreted this as an integrability condition for the perfect differential dU
where
dU(V,T)=Cy(V,T)dT + (N(V,T)—P(V,T))dV 2.9)

culminating in the mathematical formulation of the first law:

dQ = dU + PdV (2.10)
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In this demonstration the work done was purely mechanical, but empirically it is
known that heat can manifest in other forms of energy like electrical work for exam-
ple. So it is natural to generalize the above equation to

dQ = dU +dw @2.11)

which shall henceforth be taken as the first law of thermodynamics. Several com-
ments are in order at this stage. On rather general grounds, Clausius has demon-
strated the existence of a hitherto unknown state function U. That it is not identically
zero is guaranteed by something as general as a nonvanishing Cy. In contrast, in the
caloric theory a nonvanishing Cy did not imply the existence of such a state function.
There, the only state function was the heat Q.

So the most important consequence of the interconvertibility of heat and work is
this new state function. Kelvin named it internal energy. That name suggests itself
from the new perspective of the equivalence of heat and energy. But it is indeed hard
to immediately connect this new notion of internal energy to other known forms of
energy like, for instance, mechanical energy. The fact that today we identify the inter-
nal energy with the energy of the atomic constituents of matter should not be brought
to have any bearing in this purely thermodynamic context. In fact, Sommerfeld takes
the view that the existence of internal energy should be viewed axiomatically with-
out any attempt to link it to the concept of energy in mechanics, and calls this the
first part of the first law. Once its existence is given, the power of thermodynamics
lies in extracting many deep truths without ever bothering further about the nature of
internal energy.

2.4 Some applications of the first law

We now consider various applications of the first law. Processes where some quanti-
ties are held fixed occur frequently in the description of a variety of circumstances.
For example, many processes take place where the pressure is fixed to be that of the
atmosphere. These are constant-pressure processes, also called isobaric. Likewise
processes taking place at some given temperature are also common. They are called
isothermal.

In the description of the atmosphere, a very important process is where a packet
of air is transported through, say, convection. Hardly much heat is transferred to the
packet during the course of its transport. This is an example of an adiabatic process.
In this particular instance, as the rate of heat transfer is extremely slow, the name adi-
abatic here may remind one of a similar name in mechanics referring to slowly vary-
ing parameters. But in thermodynamics, the word adiabatic simply means transfor-
mations with no exchange of heat. For example, quickly opening a valve controlling
a pressurised gas and reclosing it will still be an adiabatic process, though happening
very fast. The reason is that things happen so fast that no appreciable heat transfer
takes place. Of course, whenever something is happening very fast, something else
will be happening very slow!
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2.4.1 Internal energy of ideal gases

Let us first discuss a very important implication of first law for ideal gases. In sec-
tion 2.2 we discussed Joule’s experiment on free expansion of gases. In particular,
it was noted there that for ideal gases the temperature remained the same for adi-
abatic changes when no work was done during expansion. In other words, when
dQ =dW =0, dT = 0 for ideal gases. But by first law, when both dQ and dW van-
ish, so must dU. In other words

U U U
OdU<8T>VdT+<aV)TdVH<aV)TO (2.12)

That is, for ideal gases U (T') is a function only of temperature T. It should, however,
be stressed that dU = 0 for free expansion of all gases, even if they are not ideal. In
those cases U will not be a function of T alone, and changes in volume will induce
changes in T under free expansion.

2.4.2 lIsochoric changes

These are constant volume processes and are indeed very familiar. All changes, for
example, to a gas enclosed in a container are changes of this type. For the ideal gas,
these changes are characterized by P/T = const. In other words, the pressure is in
direct proportion to the temperature T. For all systems

U U U
dQ=dU+PdV = (aT)VdT—I—{(aV)T—i—P} dV —dQly = <8T>VdT—CVdT

The specific heat Cy at constant volume is, by definition, the heat capacity Z? in the

limit dT° — 0. This is one of the most important observables in thermodynamics. For
ideal gases for which U is a function of T only, dU = Cy (T)dT .

2.4.3 lIsobaric changes

These too must be very familiar. All changes occurring when the system is under,
say, atmospheric pressure, are examples of this. For ideal gases these changes are
characterized by V /T = const., i.e the volume is in direct proportion to T. For ideal
gases, the first law, in the light of previous remarks and the gas law PV = RT , can be
rewritten in the form

RT
dQ =Cy(T)dT + PdV = Cy(T)dT + RdT — p dpP (2.14)
For isobaric processes this takes the form
dQ = (Cy(T)+R)dT =Cp(T)dT (2.15)

The specific heat Cp follows its definition as Cp = dQ/dT |p. Thus, first law leads to
an extremely important result that for ideal gases

Cp(T)—Cy(T)=R (2.16)
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The analog of this for van der Waals gases is worked out in chapter 12.

Example 2.1: Land and Sea Breezes

The specific heat of rocks and generally of soil is roughly only a fourth of the specific
heat of water. Use this to explain the phenomenon of land and sea breezes.

The amount of solar heating, determined by the amount of heat received
from the sun per unit area is more or less the same both over the land and
the sea. Both for liquids and solids there is no appreciable difference between
Cp and Cy. During day time, the soil reaches a much higher temperature than
the ocean water as the specific heat of former is less than that of the latter. It
should be noted that the temperatures do not simply rise uniformly in time.
Both the soil and water reradiate till they reach equilibrium (at different
temperatures). Because of the higher land temperature, air over the land gets
hotter and lighter. Consequently, this hot air rises to reach upper parts of the
atmosphere. This creates a low pressure over the land, to fill which the cooler
air over the ocean rushes towards the land. This is the cool sea breeze.

At night, when the source of heating from the sun is not there, the soil cools
much faster, again owing to its much lower specific heat. The ocean, on the
other hand, loses its temperature relatively slowly. This reverses the situation
from what existed during the day in the sense that it’s the land that is cooler
than the ocean at night. Therefore, it is the air over the ocean that gets hotter
and lighter(relatively speaking), rising to upper atmosphere. The air from the
land rushes towards the ocean, creating the land breeze.

2.4.4 Adiabatic changes in an ideal gas

By the condition of adiabaticity, one has dQ = 0, and since the gas is ideal, the first
law requires

0=dQ=Cy(T)dT + PdV (2.17)
Now there are a variety of ways of realizing these conditions, depending on the
independent variables one chooses. Let us start with the case where these have been
chosen to be (V,T). We can use the ideal gas law to eliminate P and rewrite the
adiabaticity condition as

RT Cy(T)dT dVv
T)dT dv = = 2.18
Cy(T)dT + ", dV =0 k7 Ty =0 (2.18)

In cases where Cy is a constant, this equation can be integrated to give

Cy
VT kR = const. (2.19)

But in general, the adiabatic changes in an ideal gas are governed by

s(ry
Ve R = const. (2.20)

where S(T)’ stands for [ CV(?dT. In the next chapter we shall see that this is one of

the most important state functions in thermodynamics; it is the volume independent
part of the entropy of an ideal gas.
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2.4.5 Isothermal changes

We now turn to a discussion of the implications of first law for changes under con-
stant temperature. Most generally

U U
d‘Q:CV(V,T)dT—i—{(aV)T—i—P}dV - { <8V>T+P}dv 2.21)

For an ideal gas many simple consequences follow. Firstly, pressure is inversely pro-
portional to volume, i.e PV = const.; this is nothing but Boyle’s law. As we saw
earlier, U for ideal gases is independent of volume. Even for the general case for
which Cy depends on temperature, for isothermal changes there is no change in in-
ternal energy and the first law gives dQ = PdV . In this case too, the heat Q is a state
function! More explicitly

dv
dQ=PdV —dQ=RT" ~ —Q=RTlV (2.22)

Heat was a state function for isobaric changes too. Recall that the defining feature of
the Caloric theory was that Q was always a state function. Therefore, for isothermal
and isobaric processes things are indistinguishable from caloric theory. There is no
real conflict with the fact that heat is path-dependent; in these examples, the paths
have been fixed.

2.4.6 Heats of transformation

A very important class of processes is where there can be absorption of heat or re-
linquishing of heat without any change in temperature. Such a form of heat is called
latent heat. From first law it is clear that some other state variable must change. In-
deed, in all such cases there is a change in the phase of the system. Let us cite some
familiar examples. Ice at 273 K can absorb 80 cal/g of heat and turn into water, also
at 273 K. But the density of ice being lower than that of water, there is a change in
the volume of the system. Another example is that of water at its boiling point of 373
K. It can absorb 540 cal/g of heat to turn into steam, also at 373 K. Steam being a
gas, has a much lower density (hence much larger volume per unit mass) than water.
The worked example 2.3 should clarify the situation.

2.4.7 Enthalpy

For isobaric changes, first law implies that
dQ=dU+PdV =d(U+PV) (2.23)

i.e heat Q becomes a state function! Introducing the state function enthalpy H, de-
fined as H = U + PV, the above equation has the interpretation that for isobaric
changes dQ = dH. The significance of this follows from the fact that enthalpy is
always a state function irrespective of whether one is dealing with constant pressure
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processes or not. Therefore the enthalpy for a given state can be determined unam-
biguously. For isobaric processes, it becomes meaningful to talk about the heat of
transformation as the difference between enthalpies. The importance of this remark
lies in the fact that heat, which is in general path-dependent quantity, can, for iso-
baric processes, assume a path independent meaning.

Enthalpy and gas flows

It turns out that enthalpy is a useful quantity even when changes are not isobaric.
This is illustrated by the famous porous plug experiment of Joule and Kelvin. In this
setup gas flows from a region of pressure P; to a region of pressure P, through a
porous plug. The entire setup is thermally insulated so that there is no inflow or out-
flow of heat. There is a difference to this setup from the one for Joule free expansion;
in the current setup, a steady flow is maintained from external sources. Also, here the
gas expands against a pressure, and net work is done.

As emphasized by Pippard [54], the setup need not even be with real walls as
long as conditions of steady flow and thermal insulation are fulfilled. For example, a
pocket of air moving by convection over small distances over which the variation of
the gravitational potential can be neglected will also behave as described below.

PV, PV,

FIGURE 2.4 The porous plug experiment.

Consider the transfer of an amount of gas which occupies the volume V; on the
left hand side, and V5 on the right hand side. Therefore, on the left hand side of the
plug the work done is P;V; and on the right hand side it is -P,V5. Since AQ =0
it follows that the net change in internal energy must equal the net work done, i.e
Uy — U; = PV, — P,V5. But this is the same as the statement U; + PV, = H; =
Us + P,V = H,. That is, enthalpy is conserved through the flow!

It should be appreciated that the circumstance just considered is not one belonging
strictly to the domain of equilibrium thermodynamics. The gas is certainly not in
mechanical equilibrium. Nevertheless, there is steady state flow and that suffices to
apply the thermodynamic notion of enthalpy.

When the pressure is variable, eqn.(2.23) changes to

dQ=dU +PdV =d(U +PV) —VdP = dH — VdP (2.24)

It follows from either of them that Cp = (‘3‘;’ )P which is the precise analog of

Cy = (‘ng/ ) " For ideal gases for which Cy, and hence Cp from eqn.(2.16) are con-
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stants, it follows that U = CyT and H = CpT.
Joule coefficient and Joule-Thomson coefficient

The Joule effect, i.e cooling upon free expansion, and the Joule-Kelvin effect, i.e
the porous plug experiment (throttling) discussed before can be quantified through
the Joule coefficient ) and the Joule-Thomson coefficient u;r. In the adiabatic free
expansion the internal energy U does not change but there is an increase in volume
accompanied by a change in temperature (in general; for ideal gases there is no tem-
perature change). Thus the quantity n = (ga)u This coefficient is also defined as
n= (3; ) v by some. On the other hand, in the porous plug experiment or the Joule-
Kelvin process, it is the enthalpy that does not change. The relevant measure of this

effect is the Joule-Thomson coefficient pr = (3;) . Both these are irreversible

processes (see for example problem 3.2). Another important difference is that while
in Joule expansion no work is performed, in the Joule-Kelvin process work has to be
done on the system.

\_/
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T

FIGURE 2.5 Enthalpy and flows.

Example 2.2: Enthalpy and flows.

Consider adiabatic gas flows. Use the Euler equation for fluid flows to show that, for

an ideal gas,
2

"2 L V(¥)+H = const. (2.25)

where H is the enthalpy, V the flow velocity and V the external potential.
The Euler equation is
. v2 1= .
V_ =—-"VP-VV(F) (2.26)
2 p
where V,P,p are respectively the velocity, pressure and density of the fluid.
Since the flow is adiabatic, P = c1p?, with y the ratio Cp/Cy, and ¢; a constant.
Using this
1= - -
—VP=—1V U Tl = VCpT (2.27)
p y—1
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where we also made use of the ideal gas equation P = RTp. Putting everything
together, and identifying CpT with the ideal gas enthalpy, the desired result
follows.

Example 2.3: Boiling of water

Consider the process of boiling, say, 10 gms of water, at its normal boiling point of 373
K and 1 atm. of pressure; the density of water can still be taken to be approximately 1
gmicc. The density of steam at this temperature is, on the other hand, about 6.010~%
gm/cc. Work out the changes in the three quantities in the first law, i.e work done, heat
added, and internal energy.

The atmospheric pressure is 1.0110°Pa. The volume of steam is 16660 cc.
Therefore, the work done against the atmospheric pressure is P(vs —vy), which
is AW ~1.0110° - 16650Pa-cc i.e 1.67 kJ. The heat absorbed, i.e the latent heat
of vaporization, is 2260 J/gm (which translates to 540 cal/gm on using the
mechanical equivalent of heat). Since 10 gms of water is being boiled, the
latent heat absorbed AQ is 22600 J or 22.6 kJ.

According to the first law, the mismatch between these two must be due to
the change in internal energy of 10 gms of H2O in passing from water at 373
K to steam at 373 K. Therefore the change in internal energy AU is about
20.93 kJ.

The lesson to be learned from this example is that during boiling the inter-
nal energy of a given mass of steam at the boiling point increases in comparison
to the internal energy of the same mass of water at the same temperature.
At an atomistic level, this means that water molecules are less bound to each
other in steam than in water.

Example 2.4: The velocity of sound

Newton gave a theory of sound velocities taking the air to be at the same temperature
during the propagation of the sound wave. This was in disagreement with the observed
values. Laplace corrected Newton’s theory by treating the changes in pressure and
density adiabatically. Work out the details of both these.

The velocity of sound as given by the Newton-Laplace formula is

dp
V2= dp (2.28)

where p is the density of the gas. To obtain Newton’s expression for this, we
evaluate the required derivative under isothermal conditions. The ideal gas

law gives P = RT /Mp, where M is the mean molecular weight of the gas. For
air, it is about 28.9. Hence the velocity of sound according to Newton is

RT
e =y, (2.29)
Let us evaluate this for dry air at 293 K. Using the value of the gas constant R
to be 8.314 J/K, one finds v°*"*" to be close to 290 m/sec. But the measured
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value at this temperature was more like 343 m/sec. It was this discrepancy
which was resolved by Laplace, to whose treatment we now turn.

Laplace’s essential argument was that over the very short time scales in-
volved during the passage of a sound wave through a medium, the heat ex-
changes are minimal, and the problem of sound wave propagation has to be
treated by considering the changes to the medium as adiabatic. We derived
the adiabaticity conditions for an ideal gas as a relation between V and T.
But for the present purposes, it is more useful to get this relation in terms of
P and V, or equivalently, between P and p. This has been given as a problem
at the end of this chapter. When the specific heats are taken to be constant,
this relation is

P = const.p” (2.30)

where y=Cp/Cy and takes the value 1.4 for air. It is then easy to show that

dP/dp for adiabatic changes is actually yP/p. The velocity of sound then
becomes

RT

v?aplace =\/y Y 2.31)

This marks a substantial correction to the Newtonian value and gives for the
velocity of sound through dry air at 293 K to be 343.2 m/sec, very close to
the observed value!

Example 2.5: The adiabatic and isothermal atmospheres

It is a well known fact that upper parts of the atmosphere are much cooler than lower
parts. Explain this on the basis of an adiabatic atmosphere. How do these considera-
tions change if the atmosphere is considered to be isothermal instead? Show that there
is a characterstic height of the atmosphere.

The physics behind the aforementioned fact is that a pocket of air on ris-
ing to the upper parts expands adiabatically and therefore cools. The process
is adiabatic because over the time scales involved, no significant heat trans-
fer takes place. The atmosphere is on the whole in hydrostatic equilibrium.
Consider a thin slab of thickness dz(z is the height of the atmosphere) and
unit area. The mass of the element is pdz and the gravitational force is —pdzg
where g is the acceleration due to gravity and it is negative because it is down-
wards. The downward force due to pressure of gas above the slice is -(P+dP),
and the upward force due to pressure of gas below the slice is P. Hydrostatic
equilibrium is reached when these three forces add up to zero:

dpP

b= 8P (2.32)

Therefore, the pressure of the atmosphere always decreases with height.
If the atmosphere behaves adiabatically, P =ap?(a is a constant). Hence the
equilibrium equation, after using the ideal gas law P = lg p, can be rewritten
as
aT —1gM
=78 (2.33)
dz Y R
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Hence for an adiabatic atmosphere, temperature decreases linearly with height.
Using g= 9.8 m/s? along with the values of M and R given above, the rate of
decrease is 9.8 K/km. Actual rate is smaller than this.

If, on the other hand, we treat the atmosphere isothermally, we have P =
(RT/M)p and the hydrostatic equilibrium condition becomes

‘ZJ - ,iA;p P(z)=P(z=0)e” fr 2 (2.34)

In other words, the pressure (and hence the density) of an isothermal atmo-
sphere falls off exponentially with height. The scale of fall-off is determined by
the length scale L = RAZ, which can be called the height of the atmosphere. Its
numerical value is about 8.8 km! Of course, the atmosphere is far from being
isothermal.

2.5 Problems

Problem 2.1 Consider the melting of 100 gms of ice at 273 K and 1 atm. of
pressure. The densities of ice and water under these conditions are, respectively,
0.92 gms/cc and 1.0 gms/cc. The latent heat of fusion of ice is 80 cal/gm. Apply
the first law to determine the heat absorbed, the work done, and the change in
internal energy. Do you expect the internal energy per unit mass of water to be
greater or lesser than that of ice, and why?

Problem 2.2 Show that the conditions for adiabatic changes of an ideal gas

are governed by ¥ + y(T) d‘y =0 ar _ Y(YT()TL 4T = 0, and that they can

be integrated to PV? = const. and P = const.T i when the specific heats are
constant.

Problem 2.3 Show that for an atmosphere in hydrostatic equilibrium, the heat
Q is a state function at each height, i.e Q(V(h),T(h),h). Also show that H+gh-
Q=const. Apply this to the problem of the adiabatic atmosphere. The quantity
H+gh is sometimes referred to as the dry static energy.

Problem 2.4 An empty container is filled adiabatically at temperature Ty at
pressure Py with dry air. A volume Vj) is transferred from outside. Calculate the
final temperature of the air inside the container. Give a physical reasoning for the
rise in temperature.

Problem 2.5 Chemists find the so called enthalpy diagrams very useful. These
diagrams show various products of formation like H2O from Ho and Os etc.
along with their enthalpies, called enthalpy of formation, at, say, atmospheric
pressure. Draw such a diagram for Ho and O2 taking the enthalpy of the un-
combined constituents to be 0 when enthalpy of formation is as follows:H2O2(-
188),0H ~ (-230),H2O(vapor)(-242) and HoO(liquid)(-285). Calculate the heat
released when these are transformed into each other.

Problem 2.6 Consider a Carnot cycle operating with an ideal gas of constant
specific heats Cy,Cp. The cycle starts at Py, V and goes through the following
stages: an isothermal expansion to 2V{, a subsequent adiabatic expansion to 4V,
an isothermal compression to such a volume that an adiabat can connect this third
state to the original state, and finally an adiabatic compression to the original
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state. Separately calculate the total heat given out, and the total work done during
the cycle. Are they equal? Why?

Problem 2.7 In the Clement-Desormes experiment for measuring the ratio y of
specific heats for an ideal gas, one starts with the gas at some initial pressure
P; and temperature 77 in a container which is then allowed to adiabatically de-
compress to a pressure Po and temperature 7> by quickly opening and closing a
valve. The gas is then heated at constant volume till it reaches the original tem-
perature 77, but at a different pressure P3. Show how 7y can be determined from
a knowledge of Py, P2, P3. What fraction of the gas was lost to outside during the
adiabatic decompression?

Problem 2.8 Show that any two points on the P-V plane can be connected by a
combination of an isochore and an adiabat of the type PV? (note that the system
need not be an ideal gas). If the heat Q discharged by a system during isochoric
compression from P; to Py is given by A(Py — P,), calculate the internal energy
difference U (P,V) — U (Py,Vp) for arbitrary values of Py, Vy, P,V(Callen)(V).
Problem 2.9 Consider the air in a room, which is not airtight, being isobarically
heated to a higher temperature. If air is treated as an ideal gas, show that the total
internal energy of the air within the room does not change despite the heating.
Since the air escaping from the room goes to merely heat the outside and hence
that amount of heat is wasted, is there still any benefit to this way of heating?
Problem 2.10 A medium size iceberg weighs about 100,000 metric tons. If the
energy received from the sun is 2 cals/sq.cm in a minute, how long will it take to
completely melt such an iceberg if all the solar energy incident on 1 square km
is used for it? The latent heat of fusion of ice is 80 cal/g. Considering that the
cross-sectional area of such icebergs is about 1000 square metres, how long will
this iceberg last in its journey?

Problem 2.11 What fraction of ice will still remain after 1 Kg of ice has been
supplied with 200 kJ of heat(all at 273 K)?

Problem 2.12 The specific heat of a solid substance near absolute zero has been
found to vary with temperature as C (T) =2.0Te~39T J/mol.K. How much heat
will be needed to raise the temperature of 1 mol of this substance from 0 K to 10
K?

2.6 Suggested reading for this book in general

Though in this book the best of many sources has been distilled into one, it is never-
theless recommended that the reader consult as many different sources as possible.
There are some outstanding textbooks on thermodynamics, as well as on statistical
methods, but mostly books with thermodynamics as the main focus are suggested
here.

1. Robert Resnick, David Halliday, and Kenneth S. Krane, Physics, Vol. I [61]. This is
an excellent text with clear exposition and a large number of examples and problems.
Highly recommended that beginners and others start with this.

2. Enrico Fermi, Thermodynamics [17]. This is a classic that is very clearly written and its
particular speciality is the originality of presentation, and approaching problems from
many different angles. It is an excellent source to get a deeper understanding of the
thermodynamic potentials. It is also self-contained.
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10.

11.

12.

13.

14.

15.

16.

17.

The Principles of Thermodynamics

Max Planck, Treatise on Thermodynamics [57]. This is an excellent source book, with
surprisingly few equations, but with plenty of insight. Planck’s original works on the
third law are beautifully explained here.

Arnold Sommerfeld, Thermodynamics and Statistical Mechanics [64]. Though only a
small portion of the book is devoted to pure thermodynamics, this book is a must to get
a clarity regarding the basic issues in thermodynamics. It also has a very good collection
of problems along with their solutions in Sommerfeld’s impeccable style.

Evelyn Guha, Basic Thermodynamics [22]. This short book is extremely clearly written.
Whatever topics are covered, are covered well. It has a large number of very instructive
worked examples, and good problems. Beginners and experts alike will find this very
useful.

Y. V. C. Rao, Engineering Thermodynamics Through Examples [59]. This book illus-
trates many of the important concepts and results in thermodynamics. With over 750
very good worked examples, readers will benefit immensely from this source.

A. B. Pippard, Classical Thermodynamics [54]. This too is a classic and deals with a lot
of subtle issues, and great attention is paid to essential details, though often in very fine
print. Beginners may find this terse to read, but they should use it as often as they can.
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I [34]. In the typical Landau
style, this is a great book for a deeper understanding of the subject. There are illuminat-
ing problems and worked examples. But it is hard reading at first!

Herbert B. Callen, Thermodynamics and An Introduction to Thermostatistics [3]. This
is an indispensable source for a proper understanding of the logical structure of thermo-
dynamics. This too has an extensive coverage of all the important topics. It has many
problems and worked out examples. But it requires a certain mature understanding of
the subject before its fine print can be adequately appreciated (and admired!)

M. N. Saha and B. N. Srivastava, A Treatise on Heat [63]. This is an old classic whose
hallmark is the meticulous details that follow every discussion. This is also the place to
get an accurate account of the various epoch-making experiments in thermodynamics.
R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics [18]. Considered as
one of the authoritative sources in the subject.

Wolfgang Pauli, Thermodynamics and the Kinetic Theory of Gases [53]. This short but
delightfully original account of thermodynamics is must reading. Some sections are terse
but worth one’s while.

Walther Nernst, The New Heat Theorem [50]. In this book, Nernst gives an extremely
lucid and detailed account of the experiments and ideas that eventually led him to his
postulate.

Dilip Kondepudi and Ilya Prigogine, Modern Thermodynamics [33]. This is a book with
a more modern outlook on the subject, including non-equilibrium thermodynamics. It
has a good coverage of the applications of thermodynamics to chemistry.

Joseph Kestin, A Course in Thermodynamics [31]. This book, apart from treating all the
standard topics well, also includes a discussion of open systems.

Kerson Huang, Statistical Mechanics [26]. The main focus is on Statistical Mechanics,
but has good chapters on thermodynamics too.

Sadi Carnot, Reflections on the Motive Power of Heat [5]. Though this work marked the
essential beginnings of thermodynamics, my suggestion for the reader is to study it after
gaining a reasonable mastery over modern thermodynamics, to avoid confusion between
similar sounding concepts then and now. The English translation carries an expository
article by Kelvin, which makes Carnot’s ideas particularly transparent.



3 The Second and Third Laws

Soon after the first law, it became clear that while the first law, seen by many as
a manifestation of the conservation law for energy when thermal phenomena were
taken into account, while by some others like Sommerfeld [64] and Planck [57] as
an axiomatic law recognizing new forms of energy to which an extended form of
the conservation law can be applied, it still could not account for all facts of expe-
rience. For example, while first law could quantitatively forecast the amount of heat
necessary to convert 1 gm of water at its boiling point to 1 gm of steam at the same
temperature, it can not explain why 1 gm of steam does not spontaneously convert
itself to 1 gm of water accompanied by an amount of heat (which can, however, be
forecast by the first law). That the latter process does not take place is one of the facts
whose explanation is beyond the first law.

Likewise, another obvious fact of experience, which even those untutored in ways
of science would readily admit, is that heat only flows from a hotter body to a colder
body though the reverse is in no sense contradictory to the first law. Oxygen and
hydrogen can combine under the right circumstances to form water, but no one has
observed water on its own relapsing to the original condition. Forget about something
complicated as a chemical reaction, just mix hot and cold water to get water at an
intermediate temperature, but has anyone witnessed the resultant water going back
to the original mixture on its own? One can go on and compile a huge list of such
obvious facts.

As beautifully explained by Planck, a common feature to these facts is that there
is an element of directionality to them in that processes seem to proceed only one
way spontaneously. To that extent, processes that would be put on par as far as the
first law is concerned develop an asymmetry, making it meaningful to think of one
of them rather than the other as the initial event.

Unlike the first law, where postulating the equivalence of heat and energy culmi-
nated in a complete description, including its succinct mathematical expression, the
kind of facts mentioned above do not seem, at least on the surface, to have suffi-
ciently common threads, apart from the directionality mentioned above, that could
be used to give a comprehensive and quantitative description. So in essence, to para-
phrase Max Planck, “..when we pass from the considerations of the first law to that
of the second, we have to deal with a new fact, and it is evident that no definition,
however ingenious, although it contains no contradiction in itself, will ever permit
the deduction of a new fact.” Of course, the situation in this respect was not particu-
larly different in the case of first law either; there too, the new fact, namely, that heat
and energy are interconvertible, could never have been derived.

Rather than pretending to be able to derive the body of new facts embodying the
second law, the question to be asked is whether one of these facts can be taken to be
self-evident, and all other such facts can be derived from it consistently. Consistency
would require that in fact any of the new facts can be taken as an axiom and all
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others ought to be derivable from it. But the main difficulty is in stating the complete
essence of any one of such facts.

Historically, this was achieved most admirably through Clausius’s formulation of
the second law on the one hand, and Kelvin’s formulation on the other. Planck and
Maxwell added their formulations, which were essentially the same as these two,
but stated differently, laying emphasis on one aspect rather than the other. All of
them were expressions of the impossibility of the so called perpetual machines of the
second kind. But in this chapter, we shall start with a very different approach; this
is an extension of the perceptive remark by Sommerfeld that there are two distinct
aspects of the second law. What he calls the first part is what can be called the entropy
axiom, which postulates a state function that is now called entropy. To the author’s
surprise, the first part turns out to be fully equivalent to the entire second law! This
will be explained in detail. As will be seen, the entropy axiom is not some arbitrarily
picked postulate; for ideal gases, this is in fact a consequence of the first law. Before
proceeding further, we take a brief, but crucial, detour into perpetual machines.

3.1 Perpetuum mobiles

As the name indicates, a perpetuum mobile is a machine that keeps running forever.
For the purposes of our discussion we need to distinguish between three distinct
types of perpetuum mobiles.

If there is a reversible machine, one can contemplate running a combination of this
machine with its inverse. Whatever work is performed by the first in making certain
thermodynamic transitions can be fed into the reverese engine, bringing the system to
the starting point of the original machine. This can go on and on forever, constituting
a perpetual machine that runs forever. Since all the work performed by the original
machine has to be used to run the reverse machine, no net work can be performed
by perpetual machines of this type. They do not violate any physical principles. A
swinging pendulum in vacuum, without any frictional or dissipative losses, is indeed
a perpetual machine of this type. While perpetual machines of this type are possible
in principle, in practice it is impossible to devise a perfectly reversible machine, and
no perpetual machines of this kind can ever be considered. Frictional and dissipative
effects have to be strictly absent for their realization.

3.1.1 Perpetual machines of the first kind

Recall Carnot’s ingenious argument that all ideal heat engines have to have the same
efficiency. If not, running one of these ideal heat engines with the reverse of another
ideal heat engine would lead to a net combination that would produce useful work
without any thermal agency (in the caloric picture). Such a perpetuum mobile can
in addition run forever, thereby producing limitless work for nothing. Carnot found
that physically unacceptable as it implied lack of conservation of energy. Perpetual
machines of this kind, which violate conservation of energy, will be called perpetuum
mobiles of the first kind.
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3.1.2 Perpetual machines of the second kind

Now let us consider machines that never violate the first law, and hence the conser-
vation of energy in the extended sense described above. This still does not preclude
a machine from drawing heat from a resevoir and convert it completely into work.
Such machines will be called perpetuum mobiles of the second kind. If they existed,
the almost limitless heat reservoirs available in the universe can be used to run such
machines practically forever, producing work for ’free’ so to say. Though such ma-
chines do not violate the first law, or equivalently, the conservation of energy, their
existence certainly seems very implausible. Furthermore, combining such a machine
with a *normal’ machine like a refrigerator(more on them later) would produce a sit-
uation where heat can flow from a colder body to a hotter body without expending
any work. That too sounds very odd as in real life no such possibility has ever been
observed!

Let us sharpen this notion by pointing out a few cases that may superficially ap-
pear to be examples of this kind of perpetual machine. Firstly, in any reversible cycle,
first law demands AW = AQ, and it may appear that AQ has been completely con-
verted to work. But closer examination reveals that not all of AQ has been extracted
from a single reservoir. In fact, the heat drawn from the reservoir at a higher temper-
ature has not been fully converted to work, and part of it has been wasted (from the
perspective of a machine), and relinquished at some lower temperature. More pre-
cisely, AQ has not been extracted from a single reservoir or a reservoir that is at the
same temperature throughout (this is to rule out the logically permissible description
of the reservoirs at higher and lower temperatures as a single reservoir but whose
temperature is not the same throughout).

Again, if we consider isothermal expansion of an ideal gas, clearly the heat ab-
sorbed is fully converted to work as per the first law, i.e dQ = CydT + PdV —
dQ = PdV, and the heat has been extracted from a single reservoir. But this too
will not qualify to be a perpetual machine of the second kind for somewhat subtler
reasons. Firstly, the isothermal expansion changes the state of the system from (V,T')
to (V/,T); for it to act like a machine, the system will have to be eventually brought
back to its original state whereupon it will expel part of the heat absorbed.

Both these examples serve to provide the following sharper meaning to what a
perpetual mobile of the second kind can be:i) it has to absorb heat from a reser-
voir maintaining the same temperature throughout, i.e a single reservoir, ii) it should
convert the heat so absorbed fully into work without affecting any other changes.

3.2 The entropy axiom: the first part of second law
3.2.1 A bonanza from first law for ideal gases

As we saw from the previous chapter, Joule’s famous experiment on free expansion
implies that for ideal gases, the internal energy U is a function of T only. In fact, this
should be taken as an independent characterization of ideal gases from the gas law
PV = nRT; it is independent because it can not be derived from the gas laws without
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further assumptions. Now let us consider ‘TTQ

only mechanical work,

; according to the first law, considering

dTQ _ dUT(T) +an‘y = dA(T)+nRdInV 3.1

where U = dfl(TT). This is a remarkable result which states that for ideal gases, dTQ

is indeed a perfect differential even though dQ was not. This means that [ dTQ is yet
another state function. The interesting question is whether this is just an accident
valid only for ideal gases? Before attempting an answer to it, let us call dTQ as the
perfect differential dS, where S shall be called entropy. Clausius introduced this
concept in 1865, fifteen years after he formulated the first and second laws. The
entropy for the ideal gas, from above, is

T
S:/dU; )+annV+SO (3.2)

with Sy being an undetermined constant. When Cy of the ideal gas is constant, this
becomes

S=nCyInT +nRInV + S S=nCplnT —nRInP+S (3.3)

The existence of entropy as a state function is what Sommerfeld calls the entropy
axiom. We have seen that for ideal gases this is not really an axiom, and is in fact a
direct consequence of first law when combined with the two laws for ideal gases. In
general, U will not be a function of T alone and it is clear that the entropy axiom will
not always be valid.

3.2.2 A consequence of the entropy axiom

To explore the status of the entropy axiom for other than the ideal gases, let us con-
sider gases obeying the van der Waals equation that was introduced in chapter 1.

an2

(P+ V2

)(V —nb) = nRT (3.4)
If we consider in particular the so called ideal vdW gases, for which Cy = const.,
it is not hard to see that for the choice U(V,T) = nCyT — “"}2, dTQ is again a perfect
differential. This continues to be so as long as U (V,T) = f(T) — a"}Q , but for choices

other than these, ‘TTQ is indeed not an exact differential.

Therefore what the entropy axiom does on one hand is restrict the possible choices
of internal energy. In fact, one can obtain a precise expression of this restriction by
simultaneously demanding that dU as well as dTQ are perfect differentials. Taking

(V,T) as the independent variables, these integrability conditions are, respectively,

acv\ (9 (U
(av)f(aT(av)T)v G-
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(2, r)), ao

Simplifying this and using the previous equation, one arrives at one of the most
important equations of thermodynamics, i.e

U oP
(), (),

Eqn.(3.7) can be taken to be equivalent to the entropy axiom when the first law is
valid.
When applied to an ideal gas for which PV = nRT, it is seen that this equation

U
v )y

Earlier we had shown the converse, i.e when U is a function of T alone, the entropy
axiom is satisfied. In the vdW case too, the particular form of U(V,T) = f(T) — “"}2
is indeed a solution of eqn.(3.7)!

The discussion of the entropy axiom so far seems rather mathematically oriented,
without any obvious physical significance. Actually, the entropy axiom has very deep
physical significance, perhaps one of the deepest in physics! To bring this out, we first
demonstrate an equivalence between the entropy axiom, and universality of Carnot
cycles.

would require ( = 0, which is the same as U being a function of T alone.

3.3 Entropy axiom and universality of Carnot cycles

FIGURE 3.1 The Carnot engine obeying first law and its reverse

Recall that within the caloric theory, Carnot had reached the very important con-
clusion that all ideal heat engines must have universal efficiency if energy conserva-
tion (impossibility of perpetual mobiles of the first kind, according to Carnot) is to
be respected. Now, with the new paradigm of interconvertibility of heat and work, it
is pertinent to raise afresh the issue of the universality of all ideal Carnot cycles.



56 The Principles of Thermodynamics

But unlike in the caloric theory, now the Carnot cycle is characterized by the
amount of heat Oy absorbed by the system at the higher temperature Ty, and the
heat Q; < Qg relinquished at the lower temperature 77. Even in the new theory, the
notion of efficiency can still be kept to mean the amount of work performed per heat
absorbed at the higher temperature.

The important difference from the caloric theory is that the heat relinquished at the
lower temperature is no longer the same as that absorbed at the higher temperature,
but is in fact reduced by the amount of work performed. Consequently, the efficiency
is given by e = % = QHQ;HQL What is not clear a priori is that in the new theory, the
ratio Q—; is universal for all ideal heat engines.

What, if any, would go wrong if the efficiencies of all ideal heat engines were not
the same? Precisely the same kind of analysis that Carnot carried out earlier can be
done now too. The ideal Carnot cycle and its reverse are shown in the next figure.
In the reverse engine, heat Q; is absorbed at the lower temperature and Qg > Qy is
exhausted at the higher temperature after work equal to Qg — Q; = eQp has been
performed on the system. If there were two ideal Carnot engines C,C’ with efficien-
cies e, e’ > e, then a composite of C’ with the reverse of C (see figure) would extract
an amount of heat (¢ — e)Qp from the lower reservoir and convert it completely to
work W of the same magnitude, without expelling any heat at the higher reservoir.
In other words, a perpetuum mobile of the second kind would be possible! This can
only be avoided if the efficiencies of all ideal Carnot cycles, even in the new theory,
are the same.

FIGURE 3.2 Universality of the Carnot cycles FIGURE 3.3 Universality of the Carnot cycles

This line of thinking, as Carnot had already demonstrated earlier, puts severe re-
strictions on efficiencies of nonideal (i.e not reversible) heat engines too. While the
reverse of an irreversible (nonideal) Carnot cycle cannot be used, the argument can
still be made use of with the irreversible Carnot cycle in combination with the re-
verse of a reversible cycle; therefore, if the efficiency of an irreversible cycle exceeds
that of an ideal Carnot cycle, one can still construct a perpetual mobile of the second
kind. Therefore one can conclude that efficiency of an irreversible engine has to be
necessarily lower than a reversible engine.

We will now proceed to determine the conditions for the universality of ideal en-
gines. We can just use the same calculus that Clausius used to establish the existence
of internal energy U. So, considering an infinitesimal Carnot cycle, the efficiency
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de is given by de = N(V,ATV)V(STV‘ On using the results previously obtained, one gets

de = N(‘}_’T) (g;) y OT. Clausius is supposed to have been aware that for ideal gases

N(V,T) = P. This is also what follows from Joule’s experiment on expansions of
ideal gases. In the light of the first law, this implies that for ideal gases U is a function
of T only, and consequently dU(T) = Cy (T )dT. On combining this with eqn(2.11)
one concludes that N = P. Therefore, for ideal gases

1/9P dT
de = P<8T)VdT: ’ (3.8)

This is how Clausius fixed the universal Carnot function in the earlier Clapeyron
equation to be u(7T) = } leading to the modern form of the Clapeyron equation
which should aptly be called the Clausius-Clapeyron equation. However, to avoid
confusion because of this equation being referred to in current literature as Clapeyron
equation, we shall also continue with that practice with the understanding that the
latter is a shorthand for the former. It is of course to be recalled that the earlier
Clapeyron equation was based on the now defunct caloric theory, whereas Clausius
derivation is what follows from the new theory of heat; it is just that many quantities
(but of course not all) were insensitive to the actual nature of heat!

Now the requirement of universality of efficiencies of all ideal heat engines means
that in particular they must equal the efficiency of all ideal heat engines based on
ideal gases as the working substance, and one gets the extremely important conse-

quence that N(V,T) =T ( g’; ) v for all thermodynamic systems! On the other hand,

gl‘; = N — P. Therefore, universality of efficiencies of Carnot engines, in the
T
light of the first law, requires that

U oP
(), (),

Lo and behold, this is nothing but the condition for the entropy axiom! In other
words, the entropy axiom is equivalent to the condition of universality of all Carnot
engines. This is the underlying physical significance of the entropy axiom. But since
the universality is also equivalent to the impossibility of perpetual mobiles of the
second kind, we draw the powerful conclusion that the entropy axiom, what Som-
merfeld called the first part of the second law, is equivalent to the impossibility of
perpetual mobiles of the second kind. But the latter is one of the formulations of the
second law of thermodynamics, what Sommerfeld would have called the second part
of the second law. Therefore, the entropy axiom is not just the first part of the second
law, it is, at the same time, also its second part![24]

However, most people recognize second law in the form where it states that en-
tropy of a thermally isolated system never decreases. As the system while executing
a Carnot cycle is certainly not thermally isolated (except during the adiabatic stages),
one can not immediately see the consequence of the second law, so formulated, for a
Carnot cycle. Instead, we shall focus on the so called Clausius inequality which we
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shall later see to be equivalent to the form of the second law so stated. This inequality
states that for any cycle, not necessarily reversible, the following is always true:

ao <

T S
The equality holding only for reversible cycles. It is very important to stress that
though dTQ is a perfect differential, the integral of this over a path is the entropy
difference between the endpoints only if the path is reversible. That is why even
though dTQ has been integrated over a closed path in eqn.(3.10), the rhs is not zero!
Furthermore, the rhs can be negative so a naive interpretation of the integral as a
change of entropy would actually imply an entropy decrease! We shall return to a
fuller discussion of these subtleties shortly.

We shall now demonstrate that the entropy axiom, through its equivalence to the
impossibility of perpetual mobiles of the second kind via its equivalence to the uni-
versality of ideal Carnot cycles, indeed yields the Clausius inequality, without any
further assumptions. For that we make use of Clausius’s own ingenious construc-
tion.

Consider an arbitrary cycle é not
necessarily a reversible one. In execut-
ing this, let the system start at A; and
absorb an amount of heat (AQ); dur-
ing the segment AjAs at temperature
T;. The cycle is completed by absorb- Ti
ing (AQ)2 during A3A3 at T», and so on, . -
till the system returns to its starting state
A1 by absorbing (AQ), during A,A; at
T,. The sign of (AQ) can be positive or
negative.

Clausius’s ingenuity lay in picturing
the heat absorbed at each stage as the
heat relinquished during a reversible Carnot cycle operating between some arbitrary
temperature Ty and the temperature of the stage of C during which the heat was
absorbed. Clearly, there are, in addition to the cycle C, n Carnot cycles C1,Co,..,Cy
operating between Ty and the temperatures 71,75, .., T,,. This is schematically shown
in the figure for the stage A;A;4 1.

So, the cycle C starts at A1 and at the same time C; starts at £ and goes through
the reversible Carnot cycle by eventually delivering (AQ); to € during A;Ay at
temperature 7. It must therefore absorb % (AQ); from the reservoir at Ty. After C
and Cy,..,C, have been completed, all have returned to their original states; the total
heat absorbed from the single reservoir at Ty being

0 (3.10)

ol

FIGURE 3.4 Proving the Clausius inequality.

AQ);
AQ:TOZ( TQ) (3.11)

and this is completely converted to work, with no other changes. If this heat were pos-
itive, we would indeed have realized a perpetual machine of the second kind. On the
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other hand, if this heat were negative, the work done would have been on the system,
and this would only have amounted to a refrigerator, with no contradictions—the
case when AQ = 0 does not also contradict anything.

In conclusion, the entropy axiom is completely equivalent to a) universality of
all ideal heat engines, b) the impossibility of perpetual machines of second kind,
and consequently, c) Clausius inequality of eqn.(3.10). Later, we shall show how the
form of second law stating that entropy of thermally isolated systems never decreases
emerges from the Clausius inequality.

3.3.1 Ideal gas Carnot cycle

Let us consider a Carnot cycle whose working substance is an ideal gas. The states
visited during the cycle are (Ps,Va,Tn),(Ps,Vs,Th), (Pc,Vc, 1), (Pp,Vp,T1.). We
have already worked out the infinitesimal version of this cycle: in that case the ef-
ficiency was found to be dn = AW /Qy = dT /Ty, where Qp is the heat absorbed
from the higher tempeature reservoir and AW = Qp — QO the work done by the
cycle.

Earlier, in eqn. (3.8) we showed how
Clausius had determined the efficiency
of the infinitesimal ideal gas Carnot cy-
cle to be de = dT/T. Now we show
how the finite cycle works. Such a fi- A
nite cycle is shown schematically in B
the adjacent figure. The first law tells
that during isothermal changes dQ =
PdV = RVTdV. Hence the heat Qy ab- D
sorbed during the isothermal process at
Ty is Qg = RTy anB/VA« Likewise the
heat relinquished at the lower end is
O = RT;InVp /Ve. Using the expres-
sion for entropy given in eqn.(3.3) the
adiabaticity of the steps BC and DA re- FIGURE 3.5 Finite Carnot cycle
quires InV¢/Vp = InVp/V, and hence
In Vg/V4 = InVp/Vc leading to Qn /Ty = Q1 /T., with the resulting efficiency of
the finite cycle beingn = (Qy — 01)/On =1 —T1/Th.

During the isothermal stages AQ = AW. To compute the work done during the
adiabatic stages, one uses (from first law) that during such changes PdV = —dU and
hence the work done during an adiabatic change is just the negative of the change in
internal energy. But the internal energy for an ideal gas is a function of temperature
alone according to eqn. 3.7. Hence the work done during BC is U (Ty) — U(T.) and
that during DA is U(T;) — U(Tu ), and these cancel each other exactly. Therefore at
the end of the cycle too, the total heat absorbed equals the total work done.

Note that we have not assumed Cy to be a constant, so that the treatment given
here is the most general. When Cy depends on temperature, it is not straightforward
to get P as a function of V during adiabatic changes, so that an explicit evaluation
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of [ PdV would have been very difficult. But that step has been circumvented by
exploiting the fact that during such an adiabatic change dW = —dU.

3.3.2 Composition of Carnot cycles

Recall the earlier result that the efficiency of an infinitesimal Carnot cycle using an
ideal gas as a working substance, and working between 7 and T —dT is dn =dT/T.
How then should one relate this to the efficiency n = 1 — 71, /Ty of the finite cycle
operating between Ty and 77?7 Incidentally, the universality of all ideal heat engines
makes these considerations applicable to any Carnot cycle, not necessarily the ones
whose working substances are ideal gases.

A naive integration of dn from T, to Ty would give n = In Ty /Ty, a decidedly
incorrect result! Infinitesimal cycles had been justified on the correct premise that
finite cycles can be obtained, as a result of reversibility, by composing many infinites-
imal cycles (in fact Carnot had initiated this concept). Therefore, something is amiss
in the way the efficiencies have been compounded.

Carnot cycles in parallel and series To understand the intricacies better, let us
introduce the notion of compounding Carnot cycles in parallel and in series.

Consider two infinitesimal Carnot
cycles both of which are operating be-
tween the same temperatures T and T —

dT. By composing these in parallel we A \
mean a composite Carnot cycle, also 5 5
operating between the same tempera- e i
tures, and in such a way that the heat T ewe
extracted by the composite cycle at the A Ay By
higher temperature is the sum of the

heat extracted by the component cycles. BT
Likewise for the heat relinquished at the I

L)
lower temperatures. If Oy, Q) respec-

tively are the heat absorbed at T, the

work performed by the components are

oW = d?TQHﬁW’ = %Q}i and hence FIGURE 3.6 Carnot cycle compositions.

the total work done by the composite is

‘%T(QH + Q). Therefore the composite has the same efficiency as the efficiency
of the components(their efficiencies are the same as they operate between the same
temperatures).

Now let us turn to Carnot cycles in series. We shall say two Carnot cycles are in
series when i) the lower temperature of the first coincides with the higher temperature
of the second, and ii) the heat relinquished by the first cycle at its lower temperature
coincides with the heat absorbed by the second cycle at its higher temperature. If
N1, M2 are the efficiencies of the two components and Qg the heat absorbed at the
higher temperature of the first cycle, the heat relinquished at the lower reservoir of
the first cycle is (1 — 11) Qp. But this is the heat absorbed at the higher reservoir
of the second cycle whereupon the heat relinquished at the lower reservoir of the
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second cycle is (1 —12)Qp = (1 —1n1)(1 — n2)Qp. This means the efficiency of the
composite cycle is 112 = 1 — (1 —n1)(1 — M2) and this is not 11 + 12. In fact, the
composition rule for the series case is (1 —112) = (1 —11)(1 — n2). The efficiencies
in a serially connected case is not the sum because the heat input for the second is
not the same as the first, but is reduced.

More explicitly, if Qg (T) is the heat absorbed at the higher temperature T, the
work done in an infinitesimal cycle is dW = QHT(T)dT. So for the temperatures
Ty,T1,T»,..., Ty characterizing many cycles connected in series resulting in a com-
posite cycle operating between Ty and 77, it follows that Q”TET") is constant equalling

Q”T(HT”) ; hence the total work done W =3Y;(dW); = O (Th) ZiTiTi =0u(1— ;fl which
is the result for the finite cycle obtained earlier!

Composition of the cycles in the caloric theory It is instructive to compare the
above with what would obtain in the caloric theory, i.e for the cycles as originally
envisaged by Carnot. Because there too the universality of efficiencies was valid, for
cycles connected in parallel one would reach the same conclusion as above. But there
is a dramatic difference for cycles in series; now the heat absorbed at the higher end
of every component is the same! The rule for composing the efficiencies becomes
N12 = M1 + N2 and one obtains, as shown by Kelvin,

Ty
(T, Te) = | - u(r)dr (3.12)

L
Therefore, even if the efficiency of an infinitesimal cycle in caloric theory is chosen
to be dTT , to match the modern result, the efficiency of the finite cycle would have
become N (Ty,T1,) = In ?Z ! Therefore, even though it is true that in both theories, a
finite cycle can be obtained by composing many infinitesimal ones, the efficiencies
compose differently.

3.4 Historical formulations of second law

As already indicated in the opening lines of this chapter, what was needed was a suc-
cinct postulate that would encompass the nearly countless circumstances of experi-
ence that lay beyond the scope of the first law. As stated, such a postulate, although
differing in exact verbal details, was given by Clausius and Kelvin, and restated later
by Planck and Maxwell. We begin with the postulate of Clausius:

Clausius Postulate A rransformation whose only final result is to transfer heat
from a body at a given temperature to a body at a higher temperature is impossible.

The clause only final result is all important. Equivalently, the postulate of Clausius
can also be restated as heat can not, of itself, pass from a colder to a hotter body,
where again the phrase of itself is of critical importance.

As perceptibly noted by Fermi [17], this form of the postulate explicitly brings
in the notion of temperature, which is in fact absent in the general formulation of
the first law. As emphasized in the section on thermometry, though the numerical
value of temperature is dependent on details of thermometry, the notion of whether
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a given body is hotter or colder than another given body is absolute, and is indepen-
dent of thermometric details. Nevertheless, it may be worthwhile to give as precise a
meaning as possible to this postulate.

One is to use, as done by Fermi, a well established phenomenon like conduc-
tivity to unambigously identify the hotter(colder) of the bodies. so, Fermi proposes
to recast Clausius’s postulate as: If heat flows by conduction from A to B, then a
transformation whose only final result is to transfer heat from B to A is impossible.

Refrigerators It is also instructive to view the Clausius postulate as the impos-
sibility of perfect refrigerators. Recall that in a refrigerator heat Qy is actually ex-
tracted at the low temperature end and delivered as heat Oy > Oy, to the high tem-
perature end. Of course, work needs to be done to make this happen and that is what
the compressor does. So, in a precise sense, a refrigerator is a reverse heat engine.
The efficiency of a heat enginen = ¥ =1— 2L put refrigerators are described
by the so called coefficient of performance which is defined as the amount of heat
extracted per work done, i.e K = %L This is understandable as a good refrigerator
is the one that extracts maximum possible heat per work done. Therefore, the higher
the K, more efficient is the refrigerator. The formula for K is

or o T

K= = — K=
W Ow—-0L Ty — T,

(3.13)

But the range of values of K is 0 < K < e, whereas an efficiency is expected
to lie in the interval 0 < n < 1. It is, however, possible to define a refrigerator ef-
ficiency eg = K'il which lies in that range. What is the relationship between this
refrigerator efficiency, and the efficiency ng of the heat engine which is the reverse
of the refrigerator? As can easily be checked, that relationship is eg +ng = 1, and
not eg = Ng! To grasp the significance of this, consider a very inefficient refrigerator,
i.e one which expends a lot of work W in extracting very little heat Q; from the cold
chamber, thereby throwing out an enormous amount of Qg at the hotter reservoir.
The reverse of this inefficient refrigerator is the highly efficient heat engine which
takes a large amount of Qp, converting most of it to work and discarding a very small
amount of Qr at the cooler reservoir. Thus the process of reversal not only turns a
refrigerator into a heat engine, and vice versa, but also changes their efficiencies into
their complements in accordance with eg + ng = 1.

Now a perfect refrigerator is the one that transmits all the heat drawn at lower
temperature to the higher temperature reservoir without the need for any work, i.e
W = 0.But that is precisely what is forbidden by the Clausius postulate.

Kelvin Postulate A transformation whose only final result is to transform into
work heat extracted from a source which is at the same temperature throughout is
impossible.

In other words, the Kelvin postulate is explicitly prohibiting perpetual mobiles of
the second kind. In fact, the title of his paper on the second law was The impossibility
of a perpetual motion machine of the second kind. The reader will now be able to
appreciate the fine print in the concept of a perpetual mobile of the second kind that
we so carefully elaborated. Just as we emphasized the notion of a perfect refrigerator,
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one can now appreciate that a perpetual machine of the second kind is nothing but
a perfect heat engine. Therefore, the Kelvin postulate can also be restated as the
impossibility of a perfect heat engine.

Though it is hard to immediately see any commonality between the Clausius and
Kelvin postulates, we shall see that both are completely equivalent! Before demon-
strating that equivalence, we state the postulate as restated by Planck and Maxwell.

Planck Postulate It is impossible to construct an engine which will work in a
complete cycle, and produce no effect except the raising of a weight, and the cooling
of a heat reservoir.

Postulate of Maxwell Iz is impossible, by the unaided action of the natural pro-
cesses, to transform any part of the heat of a body into mechanical work, except by
allowing the heat to pass from that body into another at lower temperature.

Planck says that his restatement coincides fundamentally with those of Clausius,
Kelvin and Maxwell, and that he has selected his form because of its evident techni-
cal significance. It is of course closer in form to Kelvin’s postulate than Clausius’s.
Maxwell’s formulation, on the other hand, preserves the essentials of both the Kelvin
and Clausius forms. Therefore, we will be content to explicitly show only the equiv-
alence of the Clausius and Kelvin postulates, as the equivalence to the Planck and
Maxwell forms becomes obvious.

The perfect heat engine and the perfect refrigerator are schematically shown in
the next figure. That the Kelvin postulate implies the Clausius postulate is schemati-
cally shown in the figure The argument is that, if the Kelvin postulate holds, one can
envisage working a perfect heat engine with another heat engine which is driven by
the complete utilization of the work output of the perfect heat engine. This will in
effect result in a perfect regrigerator. That the Clausius postulate implies the Kelvin
postulate can likewise be shown by working a perfect refrigerator in conjunction with
a suitable heat engine to produce in effect a perfect heat engine, as shown schemati-
cally in figures.

FIGURE 3.7 The equality of Clausius and FIGURE 3.8 The equality of the
Kelvin formulations-I formulations-II

3.4.1 Consequences of Clausius Inequality

Therefore, the above mentioned postulates are all equivalent to the impossibility of
perpetuum mobiles of the first kind. We have already seen that that impossibility is
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equivalent to the Clausius inequality. Now we recount the argument of Clausius that
his inequality leads to the famous formulation of the second law according to which
entropy of a thermally isolated system never decreases.

First, let us consider the cycle relevant to the inequality to be reversible, i.e the
whole cycle of operations can be performed in reverse. Operationally, this amounts
to the replacement AQ — —AQ. But the Clausius inequality, being true for every
cycle, must hold for the reversed cycle too. In other words, for reversible cycles
AQ AQ
; S0-2¢ =0 (3.14)
Now consider two states A and B connected by two different reversible paths I and
II. Clearly a reversible cycle can be formed by traversing from A to B along I and
returning from B to A along II. Then, eqn.(3.14) implies that for reversible paths I
and II (with R denoting the reversible nature of the paths)

ao g -
/R,z T Jeu T =S(B) - S(A) (3.15)

Since the paths I and II are arbitrary, the implication is that [ f dQ/T is path in-
dependent and that it only depends on the states A and B. In particular, the integral
has to be S(B)-S(A), and the differential dS of the state function S, called entropy by
Clausius, is given by dS = dQ/T.

It should be emphasized that in our approach, where the starting point itself was
the existence of this function, defined precisely as above, this conclusion was built
in. But in the historical approaches of Clausius and Kelvin, this powerful conclu-
sion emerges from their innocuous sounding postulates! On the other hand, in the
approach where the entropy axiom is the starting point, the postulates of Clausius
and Kelvin (and consequently, those of Planck and Maxwell) follow as logical con-
sequences, as shown earlier.

Now let us investigate the con-
sequences of the Clausius inequality
when one of the paths connecting A and
B is irreversible. Then there is no ob-
vious connection between the original
cycle and the reversed cycle. Neverthe-
less, the Clausius inequality still holds
for the cycle formed by going from A
to B along the irreversible path, and re- FIGURE 3.9 Reversible and irreversible
turning from B to A along the reversible cycles.
one. Hence

B ao B dQ B 30
»[r,A T B R,A T <0 »[r,A T SS(B)*S(A) (316)

Some cautionary remarks are in order here. While one can sensibly talk about an
integral along a reversible path, it is by no means clear what one means by such an
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‘integral’ along an irreversible ’path’. First of all, when a set of irreversible trans-
formations take the state A to a state B, there need not even be a path in the space
of states (you can take it, for example, to be the P-V plane). Therefore, there is no
sensible way to talk of an ’integral’ along an irreversible path. What it means oper-
ationally is just summing dQ/T over various segments of the transformation which
may or may not form segments of a path in the P-V plane.

Secondly, if both A and B are given states, there is no big deal to eqn.(3.16) as
we then exactly know both S(A) and S(B), and the above equation serves to say
something about lhs and nothing useful about entropy per se. The meaning of the
above equation is as follows: start with some state A of the system and imagine the
outcomes of arbitrary sets of transformations, and consider the set of all states B that
these transformations take A to. Then the difference in entropy between B and A
must obey the above inequality.

In particular, let us thermally insulate the system and again consider all possible
transformations; we must put dQ = 0 in the above due to the condition of thermal
insulation, and one obtains

S(B) > S(A) 3.17)

which says that the result of an arbitrary transformation of a thermally insulated
system is such that its entropy never decreases. This is the famous Second Law of
Thermodynamics. It must be emphasized that just requiring the entropy axiom, and
nothing else, also guarantees this law.

For a reversible transformation, eqn.(3.15) with @0 = 0 yields S(B) = S(A), i.e re-
versible transformations of a thermally insulated system maintain the system entropy.
Furthermore, irreversible transformations of a thermally isolated system always in-
crease its entropy. Thus at last we have a quantitative criterion for irreversibility. This
criterion can also be stated equivalently as irreversible processes can never enhance
the efficiency of any heat engine. Stated that way, it sounds intuitive and obvious, but
the considerations of this chapter show that there is nothing really obvious about it.

3.5 Second law and irreversibility

What the second law can determine is the directionality of heat flow, something that
the first law is incapable of doing. As a result, the second law discriminates between
the initial and the final states of a general transformation of a system. Closely woven
into this fabric is the notion of irreversibility. Furthermore, entropy as a state function
provides a quantitative description of this directionality.

It is illuminating, and important, to introspect on these fundamental aspects. Let
us consider the Clausius postulate which denies the possibility of a perfect refrig-
erator. But the reverse of a perfect refrigerator is the process by which heat sponta-
neously flows from a hotter body to a colder body (see fig. 3.11), and there is nothing
impossible about that. Likewise, consider the reverse of a perfect heat engine, some-
thing forbidden by the Kelvin postulate (see fig. 3.10); this reverse is nothing but the
process by which work is completely converted to heat, and again there is nothing
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forbidden about that. Stated differently, while perpetuum mobiles of the second kind
are impossible, their reverses are commonplace!

FIGURE 3.10 The ideal heat engine and FIGURE 3.11 The ideal refrigerator and
its reverse. its reverse.

Therefore we see circumstances where certain processes are perfectly legitimate,
but their reverses are absolutely forbidden. This is another way of saying that certain
processes are irreversible. The nature and characterization of such irreversibilities is
the body and soul of the second law. As Planck points out, the situation is dramati-
cally different with perpetual mobiles of the first kind which in effect say that energy
can neither be absolutely created nor absolutely created. But then, the reverse of the
impossibility of a perpetuum mobile of the first kind is also an impossibility of the
perpetuum mobile of the first kind!

A subtle manifestation of this also happens with the demonstration above that
S(B) > S(A). But what in this really distinguished B from A? To understand that,
note that we composed the cycle by first going from A to B along the irreversible
direction, and then returned from B to A along the reversible path. We could equally
well have chosen the cycle by first going from A to B along the reversible path, and
then coming back to A from B along the irreversible direction. The same arguments
as before would now have given S(B) < S(A)! Is their a contradiction with what
we obtained earlier? No, as far as the irreversible processes are concerned, in the
first instance it was A which was the initial state, while in the second instance it
was B that was the initial state, and in both cases the second law is saying the same
thing, namely, S(final) > S(initial). It is not that it is meaningless to consider the
reverse of an irreversible path, it is that doing so interchanges the initial and final
states, and second law discriminates between them. A similar issue does not arise
with reversible processes.

Example 3.1: Extracting heat from a cold body

Find the minimum amount of work needed to extract 1 cal of heat from a body at 273
K(melting point of ice) and deliver to a room at 300 K(room temperature).

This example illustrates the heart of the second law, and is the way to
understand why heat does not flow spontaneously from a colder body to a
hotter body. If it could, no work would have been necessary in this problem,
but we shall see that a minimum of work is needed. This can be viewed as a
problem in refrigeration, as heat is being extracted at a lower temperature.
The refrigerator that is most efficient, i.e the one with the largest coefficient
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of performance K, will be the one which will require the least amount of work
for a particular amount of cooling. From eqn.(3.13) we see that for this case,
K =273/27 ~ 10.1

Again, by the definition K = 0 /W, it is seen that the work needed in this
case is W = Qr/K =~ 0.1cal. It should be noted that all temperatures have to
be in the Kelvin scale. It is also seen that the higher the temperature of the
room, the more work will be needed to transfer the same amount of heat.

It is also worth noting that the reverse of this refrigerator is a heat engine
operating between 300 K and 273 K; the Carnot efficiency for that is ng =
1—1Tp/Ty = 27/300 ~ 0.09. More generally, ng = (1+K)~L.

Example 3.2: Refrigerators as heaters

A refrigerator has to put out more heat than what it extracts from the cold chamber. Can
this heat be effectively used to heat a room? Compare the heating power of a refriger-
ator with that of direct heating, say, by electricity or gas. Take the outside temperature
to be 250 K(real cold!) and let it be desired to keep the interiors at a cozy 300 K. The
option of direct heating is by supplying P, kW(power in kilo-watts)

The idea is to make the entire outside at 250 K the ’cold chamber’ of a re-
frigerator on which work can be done at W kW. The coefficient of performance
for the required refrigerator is K = 250/(300—250) = 5. If the room were heated
directly, the rate at which heat would be supplied is Oy = Wj,. The amount of
heat Qp for the refrigerator can easily worked out to be Qi = (1+ K)W,, where
W, is the work to be performed by the refrigerator. Hence On = (1 +K)Wr =P,
Thus the power required by the refrigerator, W, is only 1/6 of the power for
direct heating!

Example 3.3: Entropy and irreversibility-I

Consider mixing 100 gms of water at 300 K with 50 gms of water at 400 K. Calculate
the final equilibrium temperature if the specific heat ¢ of water per gm is 1 cal/gm/K.
Calculate the change in entropy for this irreversible process.

This is a simple example of irreversibility, as the water so mixed will not,
on its own, go back to the two samples we started with. Hence we expect the
total entropy change to be positive. We can think of carrying out the steps in
a thermally insulated vessel, so there is no exchange of heat with the outside
world.

Since this is an irreversible process, eqn.(3.15) can not be used. In fact
this example shows how, even for an irreversible path, the entropy difference
between the initial and final states can be computed. The crucial fact to note is
that entropy is a state function, and as long as we can find even one reversible
path connecting the initial and final states of any process, even an irreversible
one, we can then use eqn.(3.15) to compute the required entropy difference.

Since the whole system is thermally insulated, we have from first law
dU +PdV =0. The PdV term requires some discussion. It is possible to consider
an arrangement that does not allow any changes in volume by, say, enclosing
both samples in rigid containers of the right side, and only allowing heat to
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be exchanged between them. In that case the PdV terms are strictly zero. But
in the case of liquids, the volume changes can be neglected to a good approx-
imation. In that case the PdV terms can be neglected. But the distinction
between the two circumstances should not be overlooked.

When volume changes are neglected, the specific heat in question can be
thought of as ¢, and if this is taken to be constant, which is again a pretty
good approximation for the range of temperatures considered, dU = mcdT .
Therefore

AU = 0=100(Tr —300) 4 50 (T — 400) Ty =333.33K (3.18)

Now consider heating 100 gms of water from 300 to 333.33 K. When
it is at the intermediate temperature 300 < T < 333.33, the entropy gain
upon heating by dT is dS = 100c¢(dT /T). Therefore entropy gain is AS; =
100 1n(333.33/300) cal/deg. In the same way, the entropy loss on reversibly
cooling 50 gms from 400 to 333.33 K is ASe = 50 In(333.33/400) cal/deg. Hence
the total change of entropy is AS =10.535—9.116 = 1.419 cal/deg. It is to be
noted that entropy has the same units as the gas constant R, i.e cal/deg, which
has the numerical value of 1.986 cal/deg.

Example 3.4: Entropy and irreversibility-Il

Consider the same problem as in example 3.3, but now for an ideal gas; take the first
sample to be one mole of the gas at Ty K, and the second one also one mole, but at Ty
K. Compare the calculated entropy difference with the known expression for the entropy
of an ideal gas as in eqn.(3.3)

Let us consider two versions, one where the volumes are fixed. Then the
relevant specific heat is Cy, and the same calculation as in the previous example
first gives Ty = (Ty +71)/2K, and, AS=Cy In (sz/THTl). The initial entropy,
according to eqn.(3.3) being S; =Cy InT; Ty + RInVyV,, and final entropy being
2Cy InTy 4+ RInVyVy, we see that the calculated entropy difference is (which it
must be) the difference of the explicit values of initial and final entropies.

If, on the other hand, the volumes are allowed to change as for example
in a constant pressure case, Ty still comes out the same as above but the
directly calculated entropy difference comes out to be Cpln(Tf2 /TuTy). The
initial entropy now is CpInTy Ty — 2RIn P, while the final entropy is 2CpInTy —
2RIn P, so the two differences again match.

The main lesson from this example as opposed to the previous one is that
there only difference of entropy was calculated whereas now, being the ideal
gas, we could use explicit expressions for entropy itself.

Example 3.5: Reversible and irreversible ice melting

How can a lump of ice at its melting point be completely melted into water reversibly?
Compare it with its irreversible melting by, say, tossing into water at, say, a temperature
10 K higher.

Any reversible process, as the name indicates, can be made to proceed in
both directions by suitably controlling the environment. Therefore one can
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reversibly melt ice by heating it with a reservoir whose temperature is very
very slightly above the melting point of ice. The process can be reversed, i.e the
resulting water refrozen by simply lowering the temperature of the reservoir
to a temperature that is very very slightly below the melting point of ice.
The reservoir can be taken to be at the same temperature as the melting
point during such reversible melting. Reversible melting can be achieved by
changing ambient pressures also.

The gain in entropy of ice is given by ASj.e = miT,,,;; where m is the mass of
the ice, and | the latent heat of fusion per gm. The entropy loss of the reservoir
is equal in magnitude but opposite in sign as the temperature of the reservoir
is the same as the temperature of ice, and the heat lost by the reservoir must
exactly match the heat gained by ice. So the total entropy change is zero, as
it should be for reversible changes.

In irreversal melting on the other hand, the temperature of the reservoir
(the hotter water) is at a temperature greater than the temperature of ice
by a finite amount. Hence the entropy loss by the reservoir is less than the
entropy gain by ice, making the total entropy change positive, characteristic of
irreversible changes. That this circumstance is irreversible may be understood
from the fact no small lowering of water temperature is going to result in
refreezing. However, dramatically cooling the water can result in refreezing
but in such a process the entropy loss by water is lower than the entropy gain
of ice, and again, the total entropy increases! Of course even in the so called
reversible melting, in real life there is always some irreversibility, however
small.

3.5.1 Second law and arrow of time

Does the fact that the entropy of a thermally isolated system never decrease have
anything to do with the arrow of time? Irreversibility is the distinguishing feature of
both of them. Existence of an arrow of time means time is not reversible, and that
distinguishes initial and final states. We saw that the second law too distinguishes
initial and final states. So it may appear that these two irreveribilities, i.e temporal
and thermodynamic, are related.

But it would be hasty to draw any conclusions on this very knotty issue. Firstly,
time has no role, whatsoever, to play in equilibrium thermodynamics. Therefore it is
fairly obvious that the irreversibility brought forth by the second law does not directly
have any bearing on issues of arrow of time. One may, somewhat crudely speaking,
think of temporal evolution of states of a thermally insulated system and then imagine
that second law of thermodynamics would imply that entropy is a decreasing function
of time.

But within equilibrium thermodynamics there is no meaningful way of doing this,
and this difficulty persists even when one passes on to equilibrium statistical mechan-
ics. The only formalism where time makes its presence explicitly known is in Boltz-
man’s kinetic theory and its modern variants. The celebrated H-theorem of Boltzman
indeed attempts to answer this question, and while it answers affirmatively the re-
lation between entropy and arrow of time in a manner that is satisfactory to most
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people, the extreme technical difficulties inherent in the theory are such that it can
not still be taken as an unambiguous proof.

3.5.2 Entropy and disorder

Though the notion of disorder is again unwarranted within the strict confines of
thermodynamics, it becomes a very powerful notion once we pass on to statistical
mechanics. There the picture that emerges is that entropy is an indicator of order,
suitably understood, of statistical systems. The higher the entropy, the more disor-
dered the system is. Furthermore, most systems become more and more ordered as
their temperature gets lower. In general the solid phase is more ordered than the lig-
uid phase of the same substance, the liquid phase more ordered than the gas phase
etc. There are interesting exceptions as for example Hes where at around 0.3 K the
liquid phase is more ordered than the solid phase. But even in that system at very low
temperatures the relation between temperature and order reestablishes itself.

3.5.3 Entropy and information

The connection between entropy and order also suggests a connection between en-
tropy and information. To appreciate this, note that a word with meaning in a lan-
guage is an ordered state of alphabets, while alphabets thrown in at random, an ob-
viously disordered state of alphabets, carries no meaning or information. Shannon
was the first one to use an entropy-like notion to characterize information and this
can easily be said to be one of the revolutionary developments in knowledge.

3.6 An absolute scale of temperature

We had earlier discussed the Kelvin scale of temperature in section (1.2.1). As already
noted there, the manner in which this scale was introduced depended on the ideal gas
assumption. Consequently, the Kelvin scale introduced that way explicitly depends
on the material used for thermometry. In reality, no gas is ideal and even the small
departure from idealness nevertheless introduces some material dependence to the
temperature scales.

A question of fundamental importance then is whether even in principle it is pos-
sible to introduce a temperature scale that does not at all depend on the material
introduced for the thermometry. The answer is in the affirmative, and what makes
this possible is the deep property of the universality of the efficiencies of all ideal (in
the sense of being perfectly reversible, and not in the sense that an ideal gas is the
working substance) Carnot cycles (engines). Such a temperature scale, independent
of the material used for thermometry, is called an absolute scale.

Before going into the details of such a scale, let us raise a question that ought
to have occurred to anyone about the temperatures that we have so far referred to
under so many different circumstances; namely, the scale according to which these
temperatures are measured as after all the numerical value of temperature depends
on the scale that has been used. One thing is clear though; the validity of the basic
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laws of thermodynamics can not be dependent on any particular temperature scale.
In fact, the first law, in its purest formulation dQ = dU + dW, does not even refer to
temperature explicitly! The second law, in whatever form one chooses to consider,
does however involve temperature explicitly.

But as explained in the section (1.1), a change of temperature scale, of whatever
complexity, is like a change of coordinates, and perfect differentials transform quite
unambiguously under such transformations, leaving the basic relations between per-
fect differentials unaltered. All this really means is that all the thermodynamic rela-
tions hold good even when temperature scales are used that depend on the materials
of thermometry, and no absolute scale need necessarily be used.

But what makes the notion of an absolute scale so powerful is that no single
material will be adequate for use in thermometry for all temperatures, and many
different scales may have to be used along with a knowledge of the precise map
between them. An absolute scale avoids such difficulties.

Now let us turn to the explicit construction of such an absolute scale. Firstly, let
us work with an arbitrary scale of temperature 8. Consider composing two Carnot
cycles Cy,C5 operating respectively between (61, 62) and (62, 65). Let Oy be the heat
absorbed by C; at 61, Q2 the heat given by C; at 8s; since the cycles are composed
in parallel (see section (3.32)), Q- is also the heat absorbed by Cs at 5. Finally, let
Q3 be the heat given up by Cs at 03. Therefore Q1 > Qs > Qs. Since the efficiency
1— Q2/01 is a universal function of 61, 8, even with respect to an arbitrary scale
of temperature, it follows that Q1 /Qx is also an universal function of these variables.
Let us call it f(6;,02). Likewise, Q2/03 = f(62,03). Applying the same reasoning
to the composite cycle C3 operating between 01, 03, it follows that,

f(01,03) = f(6:1,02)f(62,05) (3.19)

For this to hold for every 65, one must have

0(61)
¢(62)

where ¢ (6) is yet another universal function. As it is clear that (61, 62) > (64, 02)
whenever 6, > 0y, it follows that ¢(0) is a monoronically increasing function of
0 and furthermore, it is a positive function. Hence, from our discussions of sec-
tion (1.1), it follows that ¢ itself qualifies to be defined as a temperature according
to some scale. This is the absolute scale that we are looking for as T = ¢(0) will be
the same scale irrespective of the working substance used in the cycles. Hence for
Carnot cycles Qi /Qr = Ty /T, when the absolute scale, as defined above, is used.

It is worth emphasizing that if 0 is a particular parametrisation of the temperature
scale based on some particular material used for thermometry, the function ¢ will
depend both on the material and the parametrisation (refer to section (1.1) for an
elaboration of these important discussions). This means that though T is in itself a
scale that is independent of any material, the transformations 7 = 0, depend on
both of these.

f(61,602) = (3.20)
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Equality of ideal gas and absolute scales:

In subsection (3.3.1) it was shown
that for ideal gases, when the tempera-
ture scale is defined through PV = nRT,
Qw/Q1 = Ty/T;. This scale is called
the ideal gas temperature scale. Com-
parison with the absolute scale intro-
duced above reveals that T = a7, i.e
except for an overall constant multi- n
plicative factor, these two scales are
the same, and also the same as the
Kelvin scale. The overall factor is often
fixed by choosing the temperature of the
Triple point in the water-ice-vapor sys-
tem to be at 273.16 K.

Uniform and nonuniform absolute scales We introduced the absolute scale
above in a particularly simple way by choosing 7 = ¢(6). Even with that choice,
the problem of choosing a uniform scale for thermometry still remains. This is eas-
ily solved by arranging a number of Carnot cycles in series as shown in fig.(3.12).
Then, in an obvious notation, if 7; are the various temperatures, as measured in ab-
solute scale, one has 7;/Q; = const.. Therefore, T; — Ti—1 = ¢(Q; — Qi—1) = cW;.

Hence, if all W; are chosen equal, one gets a uniform scale, or, if W; ~ i, one gets
a quadratic scale etc. Clearly, there are many other ways of introducing scales that
are nevertheless still absolute. In fact, scales introduced through g(7') = ¢(0) are all
absolute as long as the function g has no material dependence. As explained in the
section 1.1, all such choices can be mapped to one another.

Absolute scales in caloric theory It is instructive to see how absolute scales
would be introduced in the caloric theory, at least as a lesson in learning! As shown
by Carnot, the universal efficiency in that theory took the form

FIGURE 3.12 Absolute scale of temperature.

O
n(6u,0L) = A dO u(6) =w(6y)—w(6r) (3.21)

'L
Therefore, even in the caloric theory an absolute scale can be introduced via T,,; =
w(0). Again both uniform and nonuniform absolute scales can be introduced. For
the particular choice of () = 1/, which we have seen to be the case for ideal gas
in modern thermodynamics, this gives rise to Kelvin’s famous logarithmic scale. Of
course, even in this case the efficiencies for finite cycles in the caloric theory and
modern thermodynamics are totally unrelated.

3.7 Applications of the first and second laws

In this chapter we shall explore some consequences of combining the first law with
the concept of entropy. While the former involves the inexact differential 4Q, intro-
duction of entropy trades this inexact differential with 7'dS. This, of course, is not a



The Second and Third Laws 73

perfect differential, but the advantage is that it has been written in terms of a perfect
differential dS and a state function T .

The total change in heat in going from a state A to state B through a sequence of
reversible changes, formally represented by the integral |, f dQ, is path dependent.
So, in order to know or specify this quantity, the entire history of the passage from A
to B, along with all the data for all the intermediate parts, have to be specified. That’s
too much information, and often it may not even be possible to provide it. That’s
the down side of the inexact differential 4Q, which nevertheless has a very clear and
measurable physical meaning.

On the other hand, if we consider the total change of dTQ in going through the
same sequence of reversible changes, it, represented by |, f dTQ does not depend on
the path taken. This quantity only depends on the difference of the entropy between
the states A and B. That’s really a miracle in a way, as just a weight factor of }
completely changes the situation. From a mathematical perspective, quantities like
dS can be used as we use differentials in calculus, but quantities like 40 can not.
Therefore, as long as we have expressions involving only the perfect differentials,
we can use all the machinery of differential calculus.

Let us start with the first law, for a system with a fixed number of moles,

dQ = dU + PdV (3.22)

Since U is a state function, we can take it to be a function of any two independent
variables (we are considering the simplest possible system now). These could be
(V,T), (P,T) or (P,V). And for each of them, we can use the rule for partial differenti-
ation of a function f(x,y)

df(x,y) = <‘;§> dx+ <g§> dy (3.23)
y X

Therefore

duU = <au) dP+(aU> dv (3.24)
\%4 P

Let us use each of these, one at a time, in the first law. Let us start with the first,

which yields,
U U
dQ{PJr(aV)T}dVJr(aT)VdT (3.25)

As it stands this is not a very useful relation as the partial derivatives are as yet

unrelated to observable quantities. Let us recall that specific heat is indeed an ob-

servable quantity and is experimentally measured as the ratio ﬁg as AT is made
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smaller and smaller, so that the ratio, in the spirit of calculus, can be approximated
by a derivative. At least that would be the naive expectation; but dQ is an inexact
differential and this limit, if symbolised by Z? is quite meaningless, mathematically.
Before coming up with an acceptable expression for specific heats, let us note that
on physical grounds there ought to be many different specific heats. This is because
the amount of heat required to raise the temperature of a body by a certain amount
depends on other physical circumstances like whether the heat was absorbed by the
system while maintaining its pressure or volume etc. In particular, less heat is re-
quired if volume is kept constant as no part of the heat goes off to doing work. We
denote the specific heat at constant volume by Cy. Let us apply eqn.(3.25) to such
constant volume processes; then dV = 0 and one gets

_dQ [(JU
&= ar = <8T)V (3:26)
and eqn.(3.25) can be recast as
dQ:CVdT—i—{P—f— <8U) }dV (3.27)
v /),

This is somewhat better than before, but still the partial derivative (gg) is some-
1%

thing that we have not related to any directly observable quantity. Now consider an
adiabatic process in which dQ = 0; then we find

U oT
P (av>T @ (av>s 528

This way we can relate all the partial derivatives occurring in eqn.(3.25) to observ-

able quantities!

2 2
The equality of the mixed partial derivatives gx af} = i afx also gives the condition

(5 (30)) ~(2.(30)), 629

Applying this to eqn.(3.27) one would get

dCy d U
= P 3.30
(5 ), = Gre+(5v),), o
which is a contradiction as ( 9 <au) ) already equals <3CV) due to the fact
ar\ov);)y W )y

that dU is a perfect differential. The contradiction is merely a pointer to the fact
that dQ is not a perfect differential. A closer inspection of the contradiction reveals
its source to be the PdV term. In consequence, the work done PdV can not be a
perfect differential either and should only be written as @W! Just as dS was a perfect
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differential though dQ = T'dS was not, dV is a perfect differential but PdV is not.
However, we shall soon come up with a very elegant fix for eqn.(3.30)!
Now let us turn to using the second of eqn.(3.24) in the first law to give,

U U
d‘Q(aP)TdP+<aT>PdT+PdV (3.31)

As it stands it has all of dP,dT,dV while only P,T are to be treated as independent;
therefore dV has to be expressed in terms of dP,dT using eqn.(3.23)

av av
dv = dP dT 3.32

(50), 27+ (5r), o
Substituting this in eqn.(3.31 gives

U A% U A%
dQ_KaP)T”(aP)T}"”{(ar>ﬁp<ar),a}” G-39)

Once again, the specific heat Cp is obtained by

_dQ,  (JU v
_dTP_(aT)P+P(aT>P (3.34)

The rhs can also be written as (a(U;TPV))P, introducing the notion of enthalpy

Cp

H = U + PV. In terms of enthalpy, Cp = (‘3’}1 )P looks very similar in structure to

Cy = (g?)v Using Cp, eqn.(3.33) can be written as

U A%
d‘Q—deT+{<aP>T+P(aP)T}dP (3.35)

Equations (3.27) and (3.35) are sometimes referred to as the dbar Q equations. They
are somewhat undesirable because of the presence of inexact differentials. On the
other hand, 4Q can be written as 7dS whereby both the equations will only con-
tain perfect differentials. The resulting equations are called TdS equations (jocularly
called the fedious equations!). By doing so more useful results can be obtained.

Let us start by recasting the first law itself in the TdS form:

TdS=dU+PdV — dU =TdS— PdV (3.36)

An immediate consequence of eqn.(3.36) is

S 1
(8U)V = (3.37)

In axiomatic approaches (see chapter 6), this is in fact taken as the defining relation
for temperature. The other TdS equations arising out of eqns.(3.27,3.35) are

U
cuar+{r (%) Yav

oU v
deT+{<aP>T+P(aP)T}dP (3.38)

TdS

TdS



76 The Principles of Thermodynamics

Let us first illustrate getting a relation between partial derivatives of a different type
than what we have obtained so far. From eqn.(3.36) it is easy to get

U a8
(av)T_T<av>TP -39

It is to be noted that we got this even though neither of the independent variables in
eqn.(3.36) has been held fixed. Once again, the integrability condition for the first of
eqn.(3.38) is

U
d Cy _ 0 P+ <8V)T (3.40)
o), \or T
%
On using the integrability condition for dU, ( 2 (?#)V)T = ( 2 (‘33)T)V and

Cy = (‘3(; ) v the above equation reduces to

U JP
(av)T_T<aT)VP G40

Eqn.(3.41) is a very important equation in thermodynamics from which many in-
teresting conclusions can be drawn. Comparing eqn.(3.39) and eqn.(3.41) one con-

cludes 35 9P
(av)rzz<aT)v G4

This is one of the so called Maxwell Relations and a much less tedious derivation of
it will be given later on. By similar manipulations one can show that

(0,3} -C), oo

Now we use the eqns.(3.41,3.43) to recast eqn.(3.38) in the form

JdP
TdS = CydT+T dv
vars (aT)V
TdS = deT—T(aV) dp (3.44)
ar ),

An important result follows on obtaining the integrability conditions for this pair of

equations:
JaCv\ %P aCp\ 2%V
(%), =7Gr),  (5),= (), o

Let us pause and reflect on what has been done; starting with the first law which
had a term dU that is not directly observable, we have recast it as equations where ev-
ery term is measurable in principle. Even though entropy is not directly measurable,
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TdS, being the amount of heat exchanged, is certainly measurable. Though we have
succeeded in writing first law in a form involving directly measurable quantities, it is
desirable to further express these measurable quantities in terms of properties of the
system. Examples of such properties are the specific heats Cy and Cp.

To do so, we introduce some additional properties. One of the first properties that
one can think about is thermal expansion. In principle one could introduce coeffi-
cients of linear and volume expansions, but as they are related let us just discuss
the coefficient of volume expansion. The idea is that if the temperature of a body is
increased by 0T and if as a consequence the volume increases by 8V, the coefficient
of volume expansion is VSSVT as 0T — 0. Just as in the case of specific heats, the
conditions under which this expansion is measured ought to be specified. Let us just
consider this coefficient under constant pressure.

The coefficient then, designated by « is given by o = ‘1/ (%)P This is indeed

one of the quantities that appears in the TdS equation involving Cp. But the par-

tial derivative that occurs in the TdS equation with Cy is (g;) . To relate this to

properties of a system requires more work. Let us first introduce the so called com-
pressibility. Imagine applying pressure to a gas, one would expect the volume of the

gas to decrease. The ratio ‘} (‘3‘;) is clearly a measure of how effectively the gas can

be compressed, i.e it is a measure of compressibility. As before, things depend on the
conditions of the experiment, and the important ones are when compression is carried
out isothermally or adiabatically. Therefore we have the isothermal compressibility
k7 and adiabatic compressibility Ks given by

1/ov 1/ov
KT:_V(z?P)T KSZ_V(&P)S (3.46)

A minus sign has been introduced as normally the volume decreases with increased
pressure, and in such cases the compressibility is positive.
Now (g’;) can be related to the expansion coefficient o and isothermal com-

pressibility k7 as follows: using

JoP oT Vv
(5r), (5v), (50), = G4
one gets

oP or\ '/ov\ ! v\ [V ' «
(8T>V:_<8V)P (QP)T :_(8T>P(8P)T Ky (349)

Hence the new form of TdS equations involving specific heats, volume expansion
coefficients and compressibilities is

T
Tds = CydT+* av
KT

TdS = CpdT —-TVodP (3.49)
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By equating the two TdS equations we get
aT
CvdT + y dV =CpdT —TVadP (3.50)
T

This equation involves dT,dV and dP, but only two among them are independent. So
one of them must be expressed in terms of the other two. Choosing dP and dV to be

independent, dT = (gg) dP+ (35) dV and we can rewrite the above as
1% P

aT aT PA% JdP
(C”‘CV){(aP)V"”(av>,f’v}‘T<8T)de‘T<aT)v"V:0
(3.51)

Since dP and dV are independent, their coefficients must both vanish and we get two
equations

oo (), (), () (),

~1
Because (gITD)V = (gi ) v etc., these two equations are identical, yielding the im-
portant relation
av)2 <8P) TVo?
Cr—Cy=-T = (3.53)
P (8T OV ). Kk

In simplifying we have made repeated use of the properties of partial derivatives.
We could have also considered adiabatic processes characterised by dS = 0. The two
TdS equations would then have yielded

JP A% A% JP
v _T(ar>v<ar)s C"_T<8T>P<ar>s G4

The ratio of specific heats y = g"/’ is yet another important property of systems. We

can use the previous equation and get

Cp__<8v) <8P) _<8P>‘1<av)‘1_(8v> <av)‘1_KT 3.55)
Cy  \dT )p\dT )¢ \oT ), \oT ) \oP),\9P)s ks

Therefore we have related the ratio of specific heats to the ratio of compressibilities.
This relationship holds for all systems and this illustrates the power of these manip-
ulations though they may have appeared very opaque and without focus in between.
We end this discussion by combining eqn.(3.55) with eqn.(3.54) to derive individual
expressions for the specific heats in terms of a, K, Ks:

2 2
“ S oty @ (3.56)

Cy=TV- .
Kr —Ks Kr Kr — Ks

Once again, the power of thermodynamics is in giving such totally general relation-
ships between various observables. It must however be emphasized that the observ-
ables themselves can not always be computed unless there is some additional infor-
mation, like the equation of state, or some accurate data. But such general relations
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are extremely valuable as they may circumvent limitations posed by the difficulties
of performing certain experiments. For example, it may turn out that measuring adia-
batic compressibilities is difficult experimentally; then a knowledge of ¥ and k7 can
be used to calculate k5. Another very important use of such general relations even
when all experiments can easily be performed is that they provide consistency checks
on measurements. The last feature is indispensable in experimental science.

3.8 Third law of thermodynamics - the Nernst-Planck postulate

A very important consideration in thermodynamics concerns the meaning of the zero
on the absolute scale of temperature, i.e 0 K. Though the full significance of this issue
can only be unravelled through considerations of Quantum Statistical Mechanics,
thermodynamics comes with very strong pointers that O K is indeed a very special
temperature.

A practical question that first comes to mind is whether this temperature is physi-
cally realizable, and if so, how? A somewhat related question is whether its existence
is in conformity with the first and second laws of thermodynamics. Let us begin by
recounting an objection to absolute zero that would be the first reaction by many.
This is based on the premise that a Carnot cycle operating between 0 K and any
other T, would be a perfect heat engine in the sense that its efficiency n =1 — 2 =1!
This would most directly contradict the Kelvin postulate and hence the second law.

Pippard, who in his book [54] has given a most comprehensive critique of the is-
sue of absolute zero, warns against accepting this ’objection’ uncritically. The point
is, in order to take this objection seriously, one has to carefully examine whether a
Carnot cycle with the lower reservoir at 0 K can operate at all. Recall that for the
operability of the Carnot cycle, there has to be an isothermal change in entropy at
the lower temperature as some property of the system, volume in the case of the tra-
ditional Carnot cycle, is varied. It’s only this feature that allows two distinct adiabats
to intersect the isotherm at 0 K, and make the Carnot cycle implementable. If we
call properties other than T collectively as &, then the operability of the Carnot cycle

with lower temperature at 0 K requires (gg)r # 0. Only then is absolute zero in
=0

contradiction with the second law.

Therefore, if the isothermal variation of entropy vanishes at absolute zero, one
can not have two distinct adiabats intersecting the T = 0 isotherm, and no Carnot cy-
cle can be operated, removing that particular objection to absolute zero. But evading
inconsistency with second law by taking refuge under the assumption of a vanish-

ing <3§ ) o’ lands one in a different kind of difficulty. That difficulty is that when

(g‘g)T 0= 0, absolute zero is simply unattainable! So there are two logically dis-

tinct aspects to the absolute zero issue; one being some system already existing in it,
and the other being the attainability of absolute zero from an initial 7' # 0K.

To see that when the isothermal variation of entropy at absolute zero vanishes, no
system initially at 7 # 0 can attain absolute zero, let us enquire into the operational
meaning of this attainability. As Pippard has emphasized, of all the ways of lowering
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FIGURE 3.13 Third Law

temperatures, adiabatic means are the most efficient, so let us only consider them. If
absolute zero is attainable adiabatically from some 7T;, we should have an adiabat,
say S, passing through both 7; and 0 K, as shown in the figure 3.13 shown in the
P-V plane for the case when & =V, but generalizations are obvious. Now continu-
ity would require the same to happen with a nearby adiabat, say, S’. Let O be the
T = 0 point on S and O’ be the 0 K point on §’. Since no two adiabats can ever
intersect, the curves S,$” have no common points, and consequently, the points O,0’
both corresponding to 0 K, must be distinct. This also means that in this example
( g ‘5 ) T 7 0.

But that is precisely when the conflict with second law would arise, as argued
before. To summarize, either the isothermal changes in entropy are not vanishing,
allowing absolute zero to be attainable but violate the second law, OR the isothermal
variations of entropy vanish, but then absolute zero is unattainable!

Negative Temperatures Some caveats with the above arguments ought to be
pointed out. If the 7 = 0 point lies in the interior of an isentropic surface (shown as
a line in the figures above), continuity would imply that at least some of the neigh-
bouring points could be at lower temperatures; but then they have to be at negative
temperatures! It is therefore pertinent to ask whether temperatures have to be nec-
essarily positive. If temperatures can be negative on, say, the centigrade scale, why
can they not be negative on the Kelvin scale? Some immediate objections to negative
temperatures on the Kelvin scale may come to mind; for example, the lhs of ideal
gas law is manifestly positive (though the issue of negative pressures too can be a
confusing one; see chapter 12 on van der Waals fluids for some discussion), so T has
to be positive. But this is not a very persuasive argument as it is eminently conceiv-
able that at such temperatures no gas is ideal. Another objection, more serious, can
be that a Carnot cycle operating between negative and positive temperatures may be
contradictory with an efficiency exceeding 1; but this too can not be that straightfor-
ward and would necessitate a critical examination of whether under such conditions
a Carnot cycle is at all operative. That issue is already very subtle even when the
lower temperature is 0 K, as we are finding out!

In fact, in classical statistical mechanics, there exist well known systems like spin
systems, two dimensional point vortices etc where the entropy as a function of inter-



The Second and Third Laws 81

nal energy reaches a maximum. Then from eqn.(3.37) it follows that temperature can
be both positive and negative in these systems. In the vortex gas case, as elegantly
shown by Onsager, the negative temperature sector is not only physical but mani-
fests itself observationally in very novel ways [51]. But what is common to all these
systems with both positive and negative temperatures is that the two sectors do not
communicate to each other, and no smooth transformations connect them. Therefore
in effect, one is dealing with systems where the temperature is always of one sign.

In classical thermodynamics temperatures are always understood to be positive.
Pippard points out that as long as specific heat of a system (isolated) does not vanish
as T — oo, the unattainability of absolute zero implies that temperatures in classical
thermodynamics can be consistently taken to be positive.

So, either the 7' = 0 points lie on the boundary, if any, of the isentropic surface,
or at the boundary of the physical region (P-V plane) above, if negative temperatures
are to be avoided, in the operational sense mentioned.

Returning to the discussion on the attainability or otherwise of absolute zero,
the situation turns out to be even more subtle. The conclusion that the second law
would be violated when gg o = 0 because that would allow a Carnot cycle to

be operated between 0 K and any higher temperature, itself requires greater scrutiny.
The point is that, as long as T # 0, an adiabatic process, characterized by AQ = 0, is
also an isentropic process characterized by AS = 0 as AQ = T AS. But precisely at
T = 0 this identification is no longer necessary. Even processes that are not isentropic
i.e AS # 0 are still adiabatic at 0 K! Thus at the lower end of the cycle, since no
heat is given out irrespective of whether the change involves isothermal changes
in entropy or not, there is no practical way of ensuring that the cycle is operable!
That an isotherm at 0 K also becomes an adiabat for these very reasons adds further
confusion.

Therefore, there is no way to conclude that the second law precludes the attain-
ability of absolute zero.

W. Nernst, the winner of the Nobel prize for chemistry in 1920, had been inves-
tigating for a long time the connection between thermodynamics and chemical equi-
libria, particularly of different phases of the same chemically pure substance. Such
problems consitute the fascinating field of study called thermochemistry. Nernst ini-
tially formulated his so called Heat Theorem which subsequently became the Nernst-
Planck postulate. As we shall see these issues were intricately interwoven with the
developments leading to the birth of quantum theory.

As narrated by Nernst in his book The New Heat Theorem [50], the precursor to
these developments lay in the early works of Berthelot and Thomsen (whom Nernst
calls the fathers of thermochemistry) in 1869—70. A proper understanding of these
ideas will require familiarity with the concept of thermodynamic potentials discussed
at length in chapter 8. According to Berthelot and Thomsen (reworded in modern
language), the condition for chemical equilibrium for changes that are isobaric and
isothermal (i.e under constant pressure and temperature) is the stationarity of the
quantity H = U — PV. This is called enthalpy. But developments in thermodynamics
had shown that this is in fact not correct generally, and that the correct condition for
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equilibrium under these circumstances is actually the stationarity of G = U — PV —
T'S. When dealing only with condensed states like liquids and solids, the PV term
can be dropped as there is hardly any change in it during transformations. In that
case, H can be replaced by the internal energy U, and G replaced by the Helmholtz
free energy F. The analysis given by Nernst in his book then follows.

Therefore the Berthelot-Thomsen principle, which was found to be a fairly good
guide at low temperatures, can only be tenable if one demands F = U (or more
generally, G = H) over a range of temperatures. At T = 0, this is what is to be
expected as long as 7S — 0 as T — 0 (note that the boundedness of S in the limit
need not be insisted upon — a point that will assume significance in what follows).
However, the validity of this principle in the neighbourhood of T = 0 would at least
require

dAF dAU dAG dAH
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This was the main point of a presentation Nernst had made in late 1905, and sub-
sequently published as a paper in 1906 [49, 48]. We have already seen that this by
itself suffices to preclude the attainability of absolute zero.

But it should be carefully noted that this condition on the changes in entropy dur-
ing transformations does not say anything about specific heats themselves. All it says
is that specific heats must be continuous during such phase transformations. In fact
Nernst himself was careful not to say anything about specific heats by themselves.

It was in the same year, i.e 1906, that Albert Einstein, inspired by Planck’s theory
of charged oscillators, gave his theory of the specific heats of solids. A key feature
of Einstein’s work was that the specific heats vanished (exponentially) near absolute
zero. Here was a theory that predicted a key consequence of the Nernst-Planck third
law at least five years before it was clearly formulated in 1911!

Several qualifications need to be made even regarding the preliminary form of the
third law that Nernst had enunciated in 1905. For one thing, the low temperatures that
were accessible to Berthelot and Thomsen were certainly not very close to absolute
zero, even by the wildest stretch of one’s imagination. Therefore, Nernst was extrap-
olating in a big way to the vicinity of absolute zero. As we shall see while discussing
Pomeranchuk cooling in He3, naive extrapolations of the old results for He3 would
have entirely missed the essential physics of the system! Nernst was himself aware
of this and he strongly advocated further experimental work at the time he made the
original conjecture.

In the next five years, he and his collaborators undertook vigorous experimen-
tal work on specific heats which culminated in a series of papers by Lindeman and
Nernst by 1911. The upshot of this very important body of work was the unambigu-
ous support for the vanishing of specific heats near absolute zero for a wide variety
of substances. Nernst openly acknowledged the influence of Einstein’s 1906 paper
in this context, and Einstein in return complimented Nernst in his concluding talk
of the First Solvay meeting for having removed, decisively, the many theoretical
confusions surrounding the topic.
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Somewhere around 1910, Max Planck added the crucial finishing touch to the for-
mulation of the third law, as understood even today. He elaborated on this in the third
edition of his treatise on thermodynamics that came out in 1910. Planck’s refinement
lay in postulating that not just changes in specific heats vanished at absolute zero,
but the specific heats themselves vanished at absolute zero. As a consequence, the
entropy of all systems must approach a universal constant, independent of the state
of the system. This refinement is crucial to removing the arbitrariness in entropy up
to additive constants, characterstic of all thermodynamics involving as it does only
entropy differentials. The importance of this for the determination of the so called
entropy constants is dealt at great length in the last chapter of this book.

It is said that Nernst himself was not so sympathetic to this extension by Planck,
seeing in it certain ad hoc elements. Planck readily admitted his inability to provide
any proofs for his conjecture. In fact, Einstein emphatically stated the indispensabil-
ity of quantum theory to an understanding of the third law.

Returning to the relevance of the original Nernst postulate, i.e AS=0at 7T =0,
the following observations are in order. It must be realized that all these peculiarities
apply precisely at absolute zero, and not to any other temperature, however close in
magnitude it is to zero. Thus none of these considerations can be taken as any ther-
modynamic barrier to reaching a temperature arbitrarily close to zero. The Nernst
Postulate in the light of this discussion can be taken to mean: By no finite series of
processes is absolute zero attainable.

This postulate only precludes reaching absolute zero in one or finitely many steps.
Now one can work backwards from this postulate, and conclude that on no isentropic
surface can be there be states belonging to both 0 K and to nonzero K; because if
there existed such an isentropic surface, one could have, with one adiabatic cooling
step, attained O K, starting from 7" s 0. This has the consequence that all states at 0
K must lie on a single isentropic surface. This single isentropic surface must also be
an isolated surface.

This is the essential content of the original Nernst postulate: As the temperature
tends to 0 K, the magnitude of entropy change in any reversible process tends to zero.
With the Planck refinement this becomes the statement that as the temperature tends
to 0 K, the entropy of all states tends to the same (constant) value. It is this that is
taken to be the form of the third law which should rightly be called the Nernst-Planck
heat theorem.

It should be noted that with this the third law has laid to rest the confusion as to
whether the 7 = 0K isotherm is only an adiabat (which it always is) or an isotherm
(which it could be, but need not be). The third law decrees that the isotherm at abso-
lute zero is necessarily an isentrope (i.e constant entropy).

Without loss of generality, at least in thermodynamics, this constant value of the
entropy at 0 K can be taken to be zero. This has the remarkable consequence that any
state at O K can be taken as a fiducial state, and an unambiguous expression for the
entropy of a state can be given as

A dT
S(A) = /0 o, (3.58)
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where X is any quantity that is held fixed like P,V etc., and the path of integration is
along X = const. This automatically determines the so called entropy constants and
in the last chapter of the book we discuss wide-ranging applications of these ideas.
In fact the Nernst-Planck theorem makes its appearance very frequently in this book,
testifying to its great importance. Many are of the opinion that in its importance, the
third law does not quite match the first and second laws. It is interesting to recall
Planck’s own words in this regard as stated by him in the preface to the famous
third edition of his treatise on thermodynamics: Should this theorem, as at present
appears likely, be found to hold good in all directions, then Thermodynamics will be
enriched by a principle whose range, not only from the practical, but also from the
theoretical point of view, cannot as yet be foreseen [57]. Prophetic words, indeed.
An important addendum, before we consider some consequences of the third law,
is the following: originally Nernst thought that the scope of this theorem was relevant
only to condensed systems such as liquids and solids. This was, in his words, due to
the uncertainty in the fate of gases at such low temperatures. But with Einstein’s
pioneering work on the quantum theory of ideal monatomic gases, it became clear
(Nernst was one of the first to stress this) that the third law was applicable to gases
too. In fact, Einstein’s theory predicted the entropy and specific heat (only Cy is well
defined for this system) of such ideal gases to vanish like 73/2 close to absolute zero.

We cite here some of its most immediate consequences. It is clear from eqn.(3.58)
that all specific heats like Cp,Cy etc. must vanish as T — 0 (else, the statement S — 0
as T'— 0 will not hold), and in particular Cp —Cy — 0 too. This is a clear demonstra-
tion that no gas can remain ideal down to absolute zero. In a curious remark, Pippard
points out that if all specific heats took nonvanishing constant values at all temper-
atures, the issue of reaching absolute zero would not even arise as then S — —oo!
Classical statistical mechanics, through the equipartition theorem, in fact predicts
such constant specific heats for all temperatures. It is only quantum theory that gives
specific heats dependent on temperature, and that too specific heats which vanish as
T —0.

Likewise, all partial derivatives like (gé)T, (g;ﬁ)T ... must all tend to zero in
this limit. Let us first consider the implications when <gf,) , — 0. By eqn.(3.44) it

follows that this is equivalent to (g‘;) — 0. But that is the same as Vo — 0 where
P

a is the coefficient of thermal expansion. Consequently, o« — 0 unless V — 0.
By the application of the same eqn.(3.44) it follows that (gé) , — 0 would imply

(g’; ) v — 0, i.e the coefficient of pressure expansion too vanishes at absolute zero.

This can be further related, through eqn.(3.48), to ,f‘T — 0. Though o vanishes in the
limit, it is not required that the isothermal compressivity kr do likewise (see problem
below).

We conclude by showing the direct relevance of results like these to the practi-

cal problems of cooling to very low temperatures. It is reasonable to parametrize



The Second and Third Laws 85

Cp(T,P), which, as we have seen above, vanishes at 0 K, by
Cp(T,P) ~TPA(P) + ... (3.59)

where b is some positive number. This should be a good description close to 0 K.
The resulting entropy, evaluated from eqn.(3.58) is given by S(7, P) ~ A(P) Tbb +.o.
By using the results above one concludes

Va A'(P)

—b

c A(P) (3.60)

i.e it approaches a finite value. A quantity of importance to all cooling techniques
is the so called cooling power defined essentially as Q, the dot representing a time

derivative. In the present context, this is the same as Q =T (g;) P. Therefore the
1%

cooling rate becomes Q = Vo TP. As there is no place for time in a thermodynamic
treatment, P is a non-thermodynamic quantity, determined by the actual details of
the cooling apparatus. But we see that as we approach 0 K, the prefactor vanishes.
This means that the amount of heat that can be extracted by a given cooling machine
rapidly goes to zero, making the cooling more and more inefficient.

What one may really be interested in is not so much in Q but in 7', the rate at which
the temperature can be lowered. This is readily obtained in this case by dividing Q
by Cp. But the latter too vanishes as T — 0 but at a slower rate. This is because
of eqn.(3.60), and one in fact gets T = T(‘é}‘f)P, showing that the rate of change
of temperature also goes to zero linearly with T, making the approach to absolute
zero only asymptotic. In chapter 14, devoted entirely to the issue of cooling to ultra
low temperatures, we shall see that these features are universal. In fact, the Nernst
postulate can be stated in a pragmatic language as all cooling rates must vanish as
absolute zero is approached.

3.9 Problems

Problem 3.1 1 kg of supercooled water at 260K suddenly freezes to form ice at
0° C. Calculate the change in entropy.

Problem 3.2 Analyze the irreversibility in the Joule free expansion, as well as in
the porous plug experiments. Show that a decrease of pressure while maintaining
enthalpy always leads to an increase of entropy. Likewise, show that a volume
increase maintaining U leads to an entropy increase.

Problem 3.3 1 kg of ice at 260 K is dropped into a thermally insulated vessel
containing 2 kg of water at 300 K. Calculate the equilibrium temperature, the
entropy change of ice, of water, as well as total entropy change. The specific
heat of ice is ¢; = 2.22J/gmK, that of water ¢,, = 4.19J/gmK, and the latent
heat of fusion is 333 J/g.

Problem 3.4 The molar specific heat Cy of a gas can be approximated by 1.5 R
in the temperature range of (300, 400) K, by 2.5 R in the range (400,1200)K, and
finally by 3.5 R for even higher temperatures. If one mole of this gas initially at
1500 K comes in thermal contact with one mole of it at 350 K, under conditions
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of fixed volume, calculate the final equilibrium temperature and the change in
entropy.

Problem 3.5 In helium liquefaction heat is removed from gas, possibly under
pressure. If the laboratory is at 300 K and if 500 mJ of heat is removed from
helium at 4 K, what is the minimum heat delivered to the room. Why is this heat
the minimum possible? What is the coefficient of performance?

Problem 3.6 In a heat engine with air as its medium, the intake is at 1 MPa. It is
exhausted to the atmosphere after an adiabatic expansion by a factor of 5. Find
the pressure of air after the expansion and the highest possible efficiency of this
engine.

Problem 3.7 The work done during the isothermal expansion at Ty of a substance
from V; to Vo is W = RTplnV, /Vy. If the entropy of the system is given by
S(V,T) = const.VT?® where a is a constant, find the equation of state P(V,T), as
well as the work done during an arbitrary isothermal expansion.

Problem 3.8 Of the two ways of increasing the efficiency of a Carnot cycle, i.e
a)Ty — Ty + AT or b)Ty — Ty — AT, which is preferrable if the costs involved
in both the changes are the same.

Problem 3.9 Consider two Carnot engines of equal efficiency operating between
Ty and Tp. Determine the intermediate temperature T, and its significance from
entropic arguments. Calculate the works performed by the two cycles as a frac-
tion of the heat intake at Q.



Carnot Cycles - The Turing
Machines of Thermodynamics

The great mathematician and computer scientist Alan Turing (1912-54) was born
more than a century later than Sadi Carnot, but nevertheless the closest intellectual
parallel to Carnot’s reversible cycle is the so called Turing machine. Turing distilled
in an imaginary machine’ of extreme purity and simplicity the entire essence of
computation. The so called Turing Machine was no blueprint for any actual comput-
ing machine but any computation, howsoever complex, could be analyzed on it. The
impact of the Turing machine was immense, creating entirely new areas of thought
like complexity theory, and was also instrumental in bringing information theoretic
perspectives to computer sciences.

The Carnot cycle too was a "heat engine’ of extreme purity and simplicity. It too
was no blue print for any actual engine, but captured within it the true essence of
all heat engines ever built and to be ever built! It too had an enormous impact on
the entire development of thermodynamics, greatly influencing the formulation of
the second law. For these reasons we think it is apt to think of Carnot cycles as the
Turing Machines of thermodynamics.

On a personal note too there are parallels between Sadi Carnot and Alan Turing;
both these great thinkers were short lived.

The cycle as envisaged originally by Carnot, and further elaborated later by Clau-
sius and Kelvin, was based on a mixture of isothermal and adiabatic processes. In
such cycles, heat is absorbed or relinquished only during the isothermal stages, and a
natural notion (at least from the point of view of heat engines) of efficiency emerges
as the work performed per heat absorbed at the higher reservoir. But Carnot’s con-
siderations hold for more general possibilities as long as they constitute reversible
cycles, though a rethink may be necessary as to what efficiency would mean, and
whether they possess the universality that Carnot cycle efficiencies did. In this chap-
ter we look at a variety of cycles, starting from the ones based on gases as originally
discussed by Carnot (but in the light of the first and second laws of thermodynamics)
and going on to others. The main emphasis will be on the thermodynamic aspects of
these cycles rather than their engineering aspects.

4.1 The gas Carnot cycles
4.1.1 The ideal gas cycles

Though the ideal gas cycle is one of the most important gas cycles in thermody-
namics, we have already extensively discussed it under various circumstances in the
earlier chapters. Hence we shall straight away consider cycles using van der Waals
gases as the working medium.

87
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4.1.2 The van der Waals cycle

We repeat the steps now for the perfect van der Waals gas for which, as already
noted, (P +a/V?)(V — b) = RT . From earlier results, we record the expressions for
the internal energy and entropy of a vdW gas

an?

U )= fi(r) -

S(T,V) = fo(T)+nRIn(V —nb)  (4.1)

where fi, f> are such that f; = Cy(T) and f} = CV}T). Once again we are keeping
the discussion general by not requiring Cy to be a constant. The heat absorbed and
work done during AB are Qa5 = RTy In (Vg —nb)/ (V4 —nb) and Wy = RTy In (Vg —
nb)(Vy —nb)+an*(1/Vg —1/V,). Note that in the vdW case, the heat absorbed and
work done are not equal during an isothermal process and the difference is due to
the fact that now, unlike in the ideal gas case, the internal energy also depends on
volume. During the adiabatic stages BC and DA there is obviously no heat absorbed,
and the work done are given by Wge = f1 (T ) — f1(T1) —an?(1/Vg—1/V¢), Wipa) =
fi(TL) — f1(Tw) —an*(1/Vp —1/V,). Note that the work done during these stages do
not cancel each other, and in fact their difference exactly compensates the difference
between heat and work during the isothermal stages so that at the end of the cycle
one indeed has AQ = AW as first law would demand.

From the expressions for entropy, one sees that during the adiabatic change BC,
F2(Ta) — f2(Tr) +nR1In (Vg — nb) / (V. — nb) = 0 and during DA, f>(Ty) — fo(T1) +
nR1n (V4 —nb)(Vp — nb) = 0. Using these, it is easily checked that Qy /Ty = O1/T1
for the vdW Carnot cycle.

Example 4.1: Exotic heat engines

In the Carnot cycle type, heat engines heat is extracted at a single high temperature
reservoir and relinquished at a single low temperature reservoir. This does not have
to be so. Consider an exotic reversible heat engine which extracts a known amount of
heat Qg from a single high temperature reservoir at Ty, but gives up unknown amounts
of heats Q1 and Q2 to two lower temperature reservoirs at T1,T> i.e Ty < Ty and
To < Ty. If the heat engine delivers a net amount of work W (also taken to be known),
find Q1,02 as well as the efficiency of the heat engine. If this were to be replaced by a
single reversible heat engine of the same efficiency, what should the temperature of its
lower reservoir be?

From first law it immediately follows that Qi = Q1+ Q2+ W. Since the heat
engine is reversible, it also follws that Qg /Ty = 01/T1 + Q2/T». In neither of
these equations does it matter that Q is positive or not, and likewise for Qs.
These two equations constitute two simultaneous equations for Q1,02 whose
explicit solution is easily worked out to be

o o B
QI_TH(Tszl){QH_TQ(QH_W)} 02 =

Th'T» { Tu
On— . (Qu—W
Tu(Ty — T2) T ( )
4.2)
The apparent singularity of these expressions when 77 = T should not be taken

seriously. In that case, the heat engine degenerates into one with a single low
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temperature reservoir at T =T} = T, and only the sum Q1 +Q2 =Qy —W is
determinate, and not Q1 and Qo separately.

The efficiency of this heat engine is of course given by n = W /Qp without
having to know any other details. If the heat engine were to be substituted by a
Carnot cycle, the low temperature reservoir would be at T/ = (Qy — W) /Qn - Ty

Example 4.2: Absolute scale again

Consider one mole of a gas described by the equation P(V —b) = RO, where 0 is the
temperature. It should be noted that this is the common equation one gets from the van
der Waals, Clausius, and Dieterici equations in the limit a — 0. Show that the internal
energy U is independent of volume. Show that Cp — Cy = R for this system. Assuming
Cy to be a constant independent of 0, calculate the the condition for adiabatic changes
expressed in terms of 0,V. By analysing a Carnot cycle based on this, show that 0
coincides with the absolute scale.

From the fundamental eqn.(3.7) it is readily seen that (gg ) 0" 6 (§§>V -

P =0. Therefore, the internal energy is a function of temperature only. If Cy
is a constant, U =Cy 0. That Cp —Cy = R here also can be seen on rewriting
the first law in TdS form

0dS = dU + PdV = Cyd® +Pd(V —b) = (Cy +R)d6 + (V —b)dP — Cp =Cy +R (4.3)

One also obtains, from this same equation

do d
dS=Cv o +RVYb—>S:CV1n9+R1n(V—b) (4.4)

Consequently the condition for adiabaticity is 8(V —b)Y~! = const. where y=
Cp/Cy.

Let us take the Carnot cycle to be as depicted in fig.(3.5). The heat
absorbed during an isothermal expansion from Vi to Vo is Q = [PdV =
ROIn(Vo —b)/(V1 —b). Hence the heat absorbed at the higher reservoir is
On = ROy In(Vg — b)/(V4 — b), while the heat relinquished at lower reservoir
is QO = RO, In(Ve —b)/(Vp —b). The condition for adiabaticity during DA
is Oy (Va —b)"~1 = 6,(Vp —b)"~L, while that during BC is 6y (Vp —b)7~! =
6.(Vc —b)7~L. Putting everything together one concludes Qy/Qr = 6y /6;. But
by universality of Carnot cycles this is also Ty /Tr.. Hence the 0 scale coincides
with the absolute scale.

4.2 The steam Carnot cycle

Now we work out the Carnot cycle where the working substance is water and steam
in phase equilibrium. The physics of this system is obviously more intricate than
that of a single gas ideal or otherwise. The first interesting difference brought about
is that isotherms here are also isobars! This is because the pressure in question be-
ing the vapor pressure depends only on temperature. Hence the PV diagram for the
cycle looks as shown. What complicates matters here is that as the volume of the
system changes, the mass of the liquid also changes. Let us consider a finite cycle,
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FIGURE 4.1 Steam engine

but subdivide the temperature range Ty, 77, to a large number of segments each dT
in extent. Let us consider the segment whose higher temperature is 7; and its lower
temperature 7; — dT. If Qg (T;) is the amount of heat absorbed at T, it goes to con-
vert M; = Qu(T;)/{(T;) mass units of liquid to vapor, where [(T') is the latent heat
per unit mass. There are two sources of change of toral volume; one is the volume
of the steam created upon absorption of the latent heat, and the other is the reduc-
tion in volume of the liquid for the same reason. Though the specific volume of the
liquid is much smaller than that of steam at temperatures close to the boiling point,
it is not so always. In fact, close to the critical point the two volumes approach
each other. So we shall not neglect the second effect. Then the change in volume is
(AV); = M;)(vs — v)(T;) where v is the specific volume, i.e volume per unit mass.
If we now consider the cycle which is of infinitesimal width along P but finite
along V, the work done at the end of the cycle is AW = AV dP and putting all the
factors in place
(vs—v;) dP(T) daT
AW =dpdV = Q0n 0Ty dr dT = Qp T 4.5)
where we made use of the Clausius-Clapeyron equation for dP/dT. But our dis-
cussions earlier would show that the way Clapeyron and Clausius arrived at the final
form of this equation was by requiring the universality of all Carnot cycles! Eqn.(4.5)
simply says that the efficiency of the Carnot cycle using water-steam as its substance
is the same as the efficiency of the gas cycles.

4.3 The Stirling engine

We now consider the so called Stirling Engine based on a reversible cycle that alter-
nately uses isochoric, i.e constant volume, and isothermal processes. A related cycle
is the Ericson cycle where instead of isochoric processes one has isobaric, i.e con-
stant pressure, processes. Robert Stirling introduced this machine in 1816, nearly a
decade before the publishing of Carnot’s Reflections. It is therefore remarkable that
this cycle comes so close to the expectations of Carnot, Clausius, and Kelvin! It is
shown schematically in the figure 4.2, depicted as a cycle in the PV-plane.
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FIGURE 4.2 The Stirling Cycle

The stage AB is isothermal, as in the Carnot cycle, at the higher temperature Ty
and heat Qg is absorbed as before. The stage BC is, however, isochoric, in contrast
to the Carnot cycle. Obviously, not only is work done during this cycle, heat is also
relinquished as the system goes from a higher temperature Ty to a lower one at 7y,
under constant volume. Hence the heat relinquished is fTT; Cy(V1,T)dT. Likewise,

the heat gained by the system during the isobaric stage DA is fTTLH Cy(Vo, T)dT. 1t
is to be noticed that in general these heats are not equal. They are the same as long
as Cy does not depend on volume, which is so both for ideal gases as well as vdW
gases.

It is easy to check that for both ideal gases and vdW gases, the relation Qy /Ty =
01/ Ty, holds in the case of the Stirling cycle. It is unlikely to be so for every work-
ing substance, and in that sense, Stirling cycles do not have that universality which
the Carnot cycles do. Recall that as long as one has alternating isothermal and adia-
batic stages as in Carnot cycles, this relation holds universally by virtue of Clausius
inequality. But before interpreting such a relation to mean that the efficiency of the
Stirling cycle equals the efficiency 1 = 1 — Ty, /Ty of the Carnot cycle, we need to de-
cide how the heat loss and gain during the isochoric phases are to be treated. Though
they cancel (at least in the circumstances mentioned above), it is not clear that the
efficiency is still to be computed as A/Qp; this is because the net heat absorbed
by the cycle is irrelevant for the purposes of computing efficiency. Also, during the
stages BC and DA the temperatures are not uniform.

It is in fact an ingenious part of the design of Stirling engines that takes care of
this issue and enables one to reason that indeed the efficiency of the Stirling cycle is
1—T;./Ty. That feature, called the regenerator (hence the reason that Stirling engines
are called regenerative), ensures as best as possible that the heat relinquished during
BC is fully utilised during DA. This is done by making the substance physically go
through the regenerator, which is nothing but a heat exchanger, during both BC and
DA. In other words, the regenerator retains the heat within the system which would
otherwise have been relinquished to the environment, and that too at temperatures
that lie in between Ty and 7. It is only when this regeneration is perfect that Stirling
cycles can achieve the Carnot cycle efficiency.

In practical terms, even if the regeneration is not perfect, it goes to improve the
overall efficiency and it is for this reason that Stirling engines are more efficient than,
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say, steam engines. It is a testimony to Stirling’s ingenuity that his engine, discovered
before Carnot, is likely to make a serious comeback in modern times. Apart from its
efficiency, the Stirling engine is also distinct by its ability to make use of diverese
sources of heat, not just those burning fuels. In fact in India, Dalmia Cements is
planning a 10 MW thermal plant based on Stirling engines using solar energy.

4.4 The Otto cycle

The Otto cycle is named after the four stroke internal combustion engine built by
Nikolaus Otto in 1876, and which forms the basis for almost all the automobile en-
gines today. Its thermodynamic essentials are an adiabatic compression from volume
Vi to Vi, during CD, an isochoric process at Vj, during DA that increases pressure,
an adiabatic expansion during AB from V, to Vi, and finally an isochoric process at
Vi during AB restoring the system to its original state. In engineering circles DA is
called the ignition stage, AB the power stage and BC the exhaust stage.

FIGURE 4.3 The Otto Cycle

To simplify the discussion let us take the working substance to be an ideal gas,
and that Cy is constant. Let us denote the temperatures at ABCD by Ty,Tp,Tc,Tp
respectively. Let the ratio Cp/Cy of the working substance be y. It is clear that heat Q
is absorbed during BC and Q' ejected during DA. As both these are constant volume
processes, Q = Cy (T — Tp) and Q' = Cy (T — T¢). Hence the thermal efficiency is

Ty — Tc

- 4,
Ty —Tp (4.6)

Notto = 1
The adiabaticity of AB means TCV;;_1 = TPVLY _1, and likewise the adiabaticity of

CD implies TAVLY = TBVEIFI. Using these conditions, eqn.(4.6) can be simplified

to
Vi

Vi
The ratio Vi /Vy, is called the compression ratio. The higher this ratio, the higher
is the efficiency of the Otto cycle. It is to be noted that the efficiency explicitly de-
pends on the substance through 7y, and hence the Otto cycle lacks the universality
of the Carnot cycle. Since the compression ratio can never be oo, the efficiency can

Notto = 1- ( )’)/—1 (47)
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never equal unity, so there is no fear of violating the second law. In practice, the
compression ratio can not be too high as the fuel mixture will become so hot during
compression that it will preignite, seriously compromising the cycle.

4.4.1 The Diesel cycle

The Diesel cycle is considerably different from the Otto cycle, though this too has
two adiabatic stages. Of the remaining two, one is an isochoric stage as in the Otto
cycle, but the other is an isobaric stage. The schematics of the cycle on the PV-plane
is shown in the figure.

The starting stage AB is an adiabatic
compression from Vg to Vi, as in the
Otto cycle. But the stage BC, which
was isochoric at V in the Otto cycle, g_ leooer o

is now an isobaric expansion from Vi e

to an intermediate volume V;. Heat Q _ 5

is absorbed during this stage. The next P e facchore
stage CD, as in the Otto cycle, is an adi- N
abatic expansion stage to Vg. Finally, }

the last stage DA is an isochoric stage, Vi ViV \%
again the same as in the Otto cycle.
Heat Q' is relinquished during DA. The
Diesel cycle is therefore characterized
by two compression ratios, r; = Vi /VL
and ro =V;/Vp.

Therefore, Q = Cp(Te — Tp), whereas Q' = Cy(Tp — T4). Note the occurrence
of different specific heats in these expressions. Hence the thermal efficiency of the
Diesel cycle is

FIGURE 4.4 The Diesel cycle

1Tp—Ty
=1 =
Ndiesel y TB — TA

The adiabaticity of CD gives eV, ' = TpV}y ", while adiabaticity of BA yields
TBVZ = TAVLY -1 Lastly, the constant pressure during BC means Tg/Vy = Tc/Vr.

(4.8)

These can be simplified successively to get Tp = TAr%/_l, Tec=Tgro =Tyro r71/_1, and
Tp = Tc (ro/r1)7~" = Ty r}. Putting everything together, the efficiency of the diesel
cycle in terms of the r1,ro is

1-y v
ry 'ry—1

Yy ro—1

Ndiesel = 1- (49)

Thus, even the diesel cycle is not universal.

4.5 The Brayton cycle

The Brayton cycle is in fact very close to the Otto cycle except that the two isochoric
stages of the Otto cycle are replaced by two isobaric stages. Since as far as ideal
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gases are concerned there is a sort of symmetry between P~! and V augmented with
1y
Y= v !, one expects the efficiency to be of the form 1 —r,” , where r, = Py /Py,

is the so called pressure ratio. We shall show by explicit evaluation that it is indeed
so. The cycle consists of first an adiabatic compression stage AB from low pressure

B lgober C

FIGURE 4.5 The Brayton Cycle

P, to higher pressure Py, then an isobaric stage BC at Py, a third stage which is an
adiabatic expansion along CD from Py to Pr, and finally an isobaric compression
along DA at P, bringing the system to its original stage at Py.

The heat Q absorbed during BC is Q = Cp(T¢ — T), and the heat relinquished
during DA is Q' = Cp(Tp — T) leading to the efficiency

Tc —Tp
Tp — Ty

Nbrayton = 1 (4.10)

Adiabaticity along AB gives TX PL1 = Tg P,}fy, and adiabaticity along CD gives
r=1
TCY P;fy = TDYPL1 ~7. Therefore, together they imply T J/Tx=Tc/Tp =r," . Hence
1y
Nbrayton = 1- rpy 4.11)

4.5.1 The magnetic Brayton cycle

So far we have constructed various cycles based on the (P,V,T) degrees of freedom.
In fact, one can construct reversible cycles for power generation as well as refriger-
ation using other attributes. In this section we show how a Brayton-like cycle can be
constructed for magnetic systems. All the necessary thermodynamics are elaborated
in chapter 8 on Magnetic Systems.

Though a general analysis of the magnetic Brayton cycle is pretty straightforward,
it is algebraically rather tedious, and the results not so transparent. For that reason,
we simplify the analysis by considering a hypothetical model for which the Curie
Law is taken to be exact. The two results that we shall be mainly using here are for
the entropy and specific heat at constant field:

Va B? Va B?

S(B,T) =So(T) ~ 5 75 (4.12)
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Here a is a parameter occurring in the Curie law, So(T') is the entropy in the absence
of magnetic fields, and Co(T) = T'S}, is the zero-field specific heat.

The schematics of a magnetic Brayton cycle in the entropy-temperature plane
(S-T) is shown in the next figure. Starting at P, the system absorbs heat while the
magnetic field is held constant at B;(isofield transformation) during PQ, then it is
adiabatically magnetized along QR so that the field value is By , then another isofield
transformation along RS brings it to S, where it is adiabatically demagnetized along
SP to the original state P. It is indeed a magnetic analog of the Brayton cycle previ-
ously considered, except that the isobaric stages there have been replaced by isofield
stages.

The analysis of this cycle is still rather messy mainly owing to the nature of the
adiabats in the problem. Therefore, we shall only analyse an infinitesimal version
of the cycle. We take the temperatures to be Tp = T,Tp = T +dT, and the fields
to be B; = B,By = B+ dB. These are the four independent parameters of the cycle.
Heat Q1 = }(Cg(B,T) +Cp(B,T +dT))dT is absorbed during PQ. Given 7p,Tp,

FIGURE 4.6 A Magnetic Brayton Cycle

the adiabats determine T, Tk, respectively. Now we use the following notation: if a
point (T,B) is connected to (7”, B+ dB) adiabatically, the shift T along the adiabat is
denoted by 6(T'). For example, in our case, Ts = T’ = T + 8(T'). The heat Q5 given
out during RS is then given by Qs = J(Cs(B+dB,T')+Cp(B+dB,T' +dT’))dT’.
Explicitly

VaB? Va?B?

L,
01 = (Co(T)+ o2 )dT+2(C0(T) T )(dT)?
W VaB2 1, Va®B? ,
0 = (CoT')+ ) T+, (C(r)~ " Har'y® @13)

The function §(7T') has to be determined by applying adiabaticity. Applying this to

the states P,S means S(B,T) = S(B+dB,T + 6(T)). Writing this out explicitly
VaB?
2T2

Va(B+ dB)?

So(T) T AT+ 8(T))?

=So(T+0(T)) (4.14)
It is not possible to solve for §(7) without further approximations. It is necessary to

compute Q2 — Q1 to quadratic order (compare the situation with Clapeyron’s treat-
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ment of the infinitesimal Carnot cycle). Furthermore, we treat the Curie law param-
eter a as small, and keep terms up to quadratic order in that too (turns out the effi-
ciency vanishes if only terms linear in a are retained!). After some algebra, the result
for 8(T) can be expressed as §(T) = 6*(T) + 6(T) where

VaBdB = V2a?B3dB

5°(T) = rey(T) 8(T)=— TSCo(T)? (4.15)

It is to be noted that while §* is linear in a, 8 is quadratic.
After even more algebra, the magnetic work done during the cycle, to the relevant
approximation is found to be

VaBdB VaB? §(T
0:-on=ar{@mcy+ EE YL we
Rather remarkably
5 (TYCh(T) + (Y (T)Co(T) + BB _ 4.17)

T2

so the part of Q2 — O linear in a vanishes! The final result for the efficiency of our
infinitesimal magnetic Brayton cycle is

3 5C}
— 213 0
dnmugbrayton - (Va) B (2T4C(2) + QCSTd) (418)
Clearly there is no universality to these cycles. Please see problem 4.5 for a complete
theory of magnetic Brayton cycle.

4.6 Carnot cycle with photons

We finally discuss a Carnot cycle with Photons. Of course, in the spirit of thermody-
namics, we should not be bringing any microscopics into the picture, and photons are
indeed such a microscopic aspect of electromagnetic radiation. A more appropriate
decription would be Carnot cycles with blackbody radiation. Blackbody radiation
refers to a state of electromagnetic radiation that is in thermal equilibrium, and is
consequently associated with a temperature. Once again, this Carnot cycle is of the
gedanken type, but touches on one of the most beautiful chapters in physics ever
written, bringing to the fore, more than ever, the power and elegance of thermody-
namics. Before delving into the Carnot cycle, let us discuss the thermodynamics of
blackbody radiation first.

4.6.1 The Thermodynamics of the radiation field

A blackbody is a hollow box whose walls are maintained at constant temperature.
Let us consider a very small opening in the box through which radiation can easily
get in, but not easily get out. Inside the cavity (hollow box) the radiation will be
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completely absorbed by the walls and re-emitted into the cavity. This process of ab-
sorption and remission brings the radiation into thermal equilibrium with the cavity,
and consequently assumes the same temperature as the latter.

That radiation, one of whose familiar forms is light, can be in a state of thermal
equilibrium is actually rather profound; it is as amazing as the possibility that light
could fall under gravity! Of course, the latter is not just a possibility now, it is a well
established consequence of Einstein’s General Relativity theory. It is indeed true that
the details of the mechanism by which radiation in a blackbody reaches equilibrium
are mired in various microscopic details, which, with our oft-stated intentions, shall
be kept out of purely thermodynamic descriptions. But a cursory description of them
shall not be out of place here.

The nature of these microscopics is twofold; firstly, at a purely classical level, the
electromagnetic field and its interactions with charges is completely described by
the Maxwell Equations (not to be confused with the Maxwell Relations discussed
elsewhere in the book). According to this, charges emit and absorb radiation, and
these processes can in fact be treated on par with chemical reactions where one
treats even radiation as a component. The other is the atomistic nature of matter,
which when combined with Quantum Theory provides a very succesful description
of the interaction between radiation and matter. This too supports the earlier picture
of treating this interaction essentially along the lines of chemical reactions, with
radiation itself as one of the chemical’ components.

But for the purposes of the thermodynamic description of radiation to be discussed
now, it suffices that there is exchange of energy between radiation and matter, and
that this will, depending on the circumstances, lead to a state of thermal equilibrium
even for radiation. Then, in keeping with the structure of thermodynamics, all that is
required are a specification of the degrees of freedom and the analog of equations of
state.

From Maxwell theory it follows that radiation can be characterized by an energy
density u, and a pressure p, and that these are related by p = u/3. The other feature is
that the energy density, u, related to U by U = Vu(T), depends only on temperature.
much like the situation in ideal gases. Now, it is not possible to derive these laws
in exactly the same way as PV = nRT could not be proved within thermodynamics,
but instead must be admitted as a characterization of ideal gases based on empirical
data. The same attitude has to be adopted as far as these thermodynamic equations
of state of radiation are concerned.

The rest follows from the laws of thermodynamics. Let us consider the first law
in the TdS form for this system:

1 V du 4u
= = T 4.1
ds T (dU + pdV) T dT dT + 3 TdV 4.19)

The exactness of the differential dS leads to the following integrability condition and
consequence:

d (Vdu (9 [(4u du  u I
(av <TdT)>T <8T <3T)>VH gr =4y o ul)=al” (4.20)
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This is a remarkable conclusion indeed; that u(T') is proportional to T* is the essen-
tial content of a law empirically established by J. Stefan. It was Boltzmann who gave
this thermodynamic derivation of it. According to Sommerfeld, Lorentz, in a memo-
rial address to Boltzmann, described the above thermodynamic derivation as a veri-
table pearl of theoretical physics[64]! The law is aptly called the Stefan-Boltzmann
law, and the familiar Stefan-Boltzmann constant o is related to a by o = ;7 with ¢
being the velocity of light.

Having obtained u(T), both U and S for the blackbody radiation follow immedi-
ately:

4
U(r,v)=avr*  S(T,V)= 3 avT? 4.21)

Comparison with ideal gases It is worth comparing the blackbody thermody-
namics with ideal gas thermodynamics. Firstly, the ideal gas system requires spec-
ification of three quantities, say, V,T,n, for specifying its states. But in the case of
the blackbody, only rwo seem to be sufficient. In other words, there is no notion of
a molecular weight for the photon gas! This is a very deep feature of the radiation
gas, and we shall refer to it at different points of this book. A related observation
[37] is that at any given temperature (and hence pressure), the volume of a photon
gas can be made to vanish! To visualize this, we can imagine the hollow box being
fitted with a piston; the zero volume can be achieved by pushing the piston all the
way down. The entire energy contained in U to start with will then have been passed
on to the reservoir, which maintains the walls at a fixed temperature. However, the
entropy of the zero volume state is zero even at nonzero temperatures, and this would
violate the expectations from third law that no adiabat connect T = 0 to T # 0, but
zero volumes are sort of bizarre!

Since the pressure p = "(3T ) is a function of T alone, every isothermal process of
the photon gas is, at the same time, an isobaric process too! This is reminescent of the
situation in the steam-water coexistent phase, where vapor pressure was a function
of temperature alone. There too, the amount of water in the vapor phase was not a
constant.

Since § = 43“ VT3, it follows that isentropic processes, which are also adiabatic,
obey VT3 = const. Another form for the adiabat is pV*/3 = const. This does bear a
close to resemblance to the adiabat of an ideal gas which took the form PV = const
with 7y taking the value 4/3. But in the case of ideal gases y had the interpretation of
being the ratio of the specific heats Cp/Cy. Does the adiabatic index of 4/3 for the
photon gas have a similar meaning?

It is clear that the index 4/3 does not have the same meaning because Cp for
the photon gas is a meaningless concept; this is so as during an isobaric process,
temperature also gets fixed and it is meaningless to talk of specific heats then! What

about Cy ? This does exist, and on using its definition Cy = (ng/ ) v’ takes the value
Cy = 4aV T?. Remarkably, this specific heat is in conformity with the third law,
which is of course a consequence of the entropy in eqn.(4.21) satisfying the third

law. The ideal gas Cy(T') can be any function of T, so in this respect the ideal gas
and the photon gas have compatible behaviours.
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We can go on and make a few more comparisons. By reasoning similar to the
above, it is easy to conclude that the concept of a volume expansion coefficient

‘1/ (g‘T/) also does not make sense for a photon gas and nor does the isothermal
P
compressibility —‘1, (‘3;) .

4.6.2 Photon Carnot cycle

FIGURE 4.7 A Carnot Cycle With Radiation

Now we consider a Carnot cycle whose working substance is blackbody radiation.
It is shown schematically in the P-V plane as shown in the diagram. Starting at the
state A with volume V, at temperature 7y, an isothermal expansion at Ty takes it to B
with volume Vg > V4. The heat absorbed is O = Ty (Sg — Sa) = 4a/3(Vg — Va)T}3.
Then an adiabatic stage takes B with volume Vp at Ty to C with volume V¢ at T;.
Therefore, V3T}3 = VcT. The third stage of the cycle is an isothermal compression
from C with volume V. at T, to the state D with volume Tp also at 7. The heat
relinquished during this stage is Oy, = 4a/3(Vc — Vp)T}*. Lastly, the system returns
from D to A along an adiabat and hence VpT? = V4T;3. The efficiency of the photon
Carnot cycle is, therefore,

O _ Ve=Vp 1o,
On Ve—Va Ty

But the adiabaticity conditions yield V4 /Vp = (T /Ty )? = Vg/Vc. Upon using these,
the efficiency of eqn.(4.23) becomes

Nphoton = 1- (4.22)

17

Nphoton = 1- Ty (423)

which is nothing but the efficiency of an ideal Carnot cycle.

If we had allowed V4 to take zero value, the entropy at A would have been zero
too. This would have been consistent only if Vp had been zero too, making V,/Vp
indeterminate. But then, we would not have needed to know this ratio at all as the
formula for the efficiency would have been 1 = 1 — V¢ /Vp(T1./Ty)* and only the
consequences of BC being an adiabat would have sufficed to evaluate it. The final
result, as can easily be checked, would still have been as given by eqn.(4.23).
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4.6.3 The thermodynamic gateway to quantum world

While the above considerations show how succesful thermodynamics had been in
capturing some essential features of the blackbody radiation, troubles began when
one attempted to go beyond the total energy density, total entropy etc., and attempt
to explain the frequency dependences in the observed spectrum of blackbody radi-
ation. The frequency distribution of the energy density was an observable feature,
and initial observations seemed to indicate that the energy density of radiation when
restricted to a particular frequency v seemed to obey the so called Wien law, which
can be roughly stated as

Uyee 7 (4.24)

We shall be very heuristic here, as we can not give a full and proper account of the
revolutionary developments that led to quantum theory. What we wish to do, instead,
is to give a flavor of how considerations based on entropy, in the hands of Planck
[55, 56] and Einstein [14], played a decisive role in finding the path to quantum
theory. Planck expressed the Wien law in quite a different, but equivalent form, by
invoking entropic considerations. That form turns out to be

d*s K

=" U (4.25)
where K’ is a different constant, but related to K introduced earlier. Integrating this
equation once and using 55 = L shows the desired equivalence to Wien’s law.

But soon afterwards data started becoming available at longer wavelengths and

here the behaviour seemed entirely different, and seemed to suggest

U, ~K'T (4.26)

What was confusing things further was that classical statistical mechanics gave
eqn.(4.26) for all frequencies (Rayleigh-Jeans law) but experiments clearly contra-
dicted it at high frequencies. Planck noticed that the experimental results at long
wavelengths (the Rayleigh-Jeans behaviour) could be stated equivalently as

d*s K"

=— 4.27

du? U? 4-27)
Planck at first sought a behaviour that would interpolate between these two limits. In-
stead of seeking that interpolation directly at the level of U, he sought to use entropy
as a guiding principle. He proposed

d’s o

dU? ~ U(B+U) (4.28)

as a relation interpolating between eqn.(4.25) and eqn.(4.27). Integrating once, one
gets
B

U:
(e ar —1)

(4.29)
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This can be identified with the famous Planck blackbody radiation formula on iden-
tifying o« = —k and B = hv where k,h are respectively the Boltzmann and Planck
constants. Instead of the interpolation formula for U, one can focus on the expres-
sion for the entropy obtained upon fully integrating eqn.(4.28):

U u. U

o)l (4.30)

U
S=k|(1 In(1
( +hv)n( + hv nhv
It was preciely the entropy of radiation that Einstein chose to concentrate on. In
particular, he chose to look at the entropy of radiation for high frequencies, i.e in the
limit when Wien’s law had been found to be valid experimentally:

U U
S~—k 1
n(hv

o ) 4.31)

Recall that U is the energy density, so expressed in terms of total energy E, Einstein
recast this as E v

S=k v In Vo
What was remarkable to Einstein was the close resemblance of this to the entropy of
an ideal gas expressed in the form S0 = ki In ‘ZJ , where ¢ is the energy per atom
(molecule) of the ideal gas. Einstein drew the far reaching conclusion that insofar as
its thermodynamic properties are concerned, blackbody radiation behaves like a gas
of particles, later christened photons by Gilbert Lewis.

But this revolutionary thought process could be brought to completion only with
the equally revolutionary ideas of the Indian physicist Satyendra Nath Bose, who
treated the photons as indistinguishable and introduced a new statistics that now goes
by the name of Bose-Einstein Statistics. The rest, as they say, is history. The subse-
quent impact of these ideas has been mind boggling, one of which is the discovery
of a new state of matter called the Bose-Einstein Condensate.

Of course, one has to depart from the strict confines of thermodynamics and foray
into statistical mechanics to make these connections, but the crucial role played by
thermodynamics, and in particular entropy, in these epoch-making connections is
undeniable.

(4.32)

4.7 Problems

Problem 4.1 Consider a real life heat engine operating between 77 and 75 with
T1 > T> that has an efficiency equalling 90% of the maximum possible. Likewise
consider a real life refrigerator working between 73 and T such that 7y < 73 and
which has a coefficient of performance that is also 90% of its maximum. If the
work output of the heat engine drives the refrigerator, find the ratio of the heat
absorbed by the heat engine to the heat relinquished by the refrigerator.
Problem 4.2 If a real life refrigerator has a coefficient of performance that is
50% of the theoretical maximum, what is the rate of entropy production per unit
power consumed?



102 The Principles of Thermodynamics

Problem 4.3 Discuss the details of a Carnot cycle with a Fermi gas (like Hes, or
neutrino gas, to be more exotic) as its working substance.

Problem 4.4 Discuss how a Carnot cycle operating with a quantum ideal gas
would work. Work out the cases when a) both the temperatures are above the
Bose-Einstein transition temperature and b) when both temperatures are below
the transition temperature. What happens when one is above, and the other below,
the transition temprature?

Problem 4.5 The magnetic Brayton cycle in the text was analyzed assuming
Curie law. Carry out this analysis when the magnetization is given by the classi-
cal Langevin theory.

Problem 4.6 The anomalous expansion of water at 4° C makes a Carnot cycle
operating in the vicinity of this temperature, say between 3° C and 5° C, rather
unusual. As both the isothermal expansion at the higher temperature and the
isothermal contraction at the lower temperature absorb heat (when pressures are
low enough), making it appear that heat is entirely converted into work, violating
the second law. Analyse this situation and show there is no such violation.
Problem 4.7 Plot the Otto, Brayton, and Diesel cycles in the temperature-entropy
(S-T) plane.

Problem 4.8 A rubber band can be envisaged as a one-dimensional system
whose length L plays the role of volume, and its tension .7 that of -P. The first
law for rubber bands then reads TdS = dU — .7 dL. The internal energy and ten-
sion are given by U = cLo T and .7 = (L — L) as long as L is not too different
from Lg. Construct a Carnot cycle with this rubber band as a working medium.
Problem 4.9 The compression ratio of an Otto cycle working with air is 10.
The temperature and pressure at the beginning of the compression cycle are 300
K and 1 atm. If combustion adds 50 kJ/mol of heat, find the temperature and
pressure at the end of each segment of the cycle, and the thermal efficiency.

Problem 4.10 Determine the compression ratio of an Otto cycle which delivers
maximum work for given T; and Ty. Why can’t the work be increased forever
by simply increasing Ty ?

Problem 4.11 Show that the observed increase of volume in freezing water to ice
would lead to a violation of the second law if at the same time the freezing point
increases with pressure (normal behaviour) by constructing a Carnot cycle based
on ice-water as the working substance. Are the conclusions sensitive to whether
heat is described by caloric or according to first law? This line of reasoning was
first pointed out by Kelvin.



Specific Heats:
Magnificent Bridges

5.1 A brief history

It is clear that thermodynamics as understood today has two, among many, deep
concepts at its very heart, namely, heat and temperature. The concept of specific
heat is what bridges these two. This is in the sense that specific heats tell us how a
certain amount of heat supplied to the system changes its temperature. Specific heats
have played decisive roles in so many fundamental developments including that of
thermodynamics itself. They played a key role in the development of quantum theory,
and even today they continue to play a central role.

In fact, so central was the role played in the development of quantum theory that
the final talk of the very first Solvay Meeting on Radiation and Quanta, held in 1911,
was entirely devoted to specific heats. It was titled The Present State of the Problem
of Specific Heats, and was delivered by none other than Albert Einstein, whose pi-
oneering work on the specific heats of solids had indeed opened the flood gates!
The first (1911) and the fifth (1927) (on Electrons and Photons) Solvay meetings are
considered legendary; while the first highlighted the immense crisis in physics at that
time, the second witnessed the essential culmination of quantum theory.

In essence, specific heats monitor the health of potential theories, and can be
called the thermometers for theories. It is the temperature and volume dependences
of specific heats that enable them to play this role. Such dependences are a major
difference from the early days when specific heats were thought to be constants char-
acterstic of systems. The temperature dependences, in particular, herald new thermo-
dynamic aspects that hitherto lay frozen. In that sense, as more and more of such
features, emerging essentially out of additional microscopic degrees of freedom, be-
come important, they leave their footprints on specific heats.

Many such features of specific heats are covered in quite some detail in various
parts of this book. We shall not repeat those details in this chapter. Instead, what we
shall do is try and give a bird’s eye view of the entire landscape of specific heats,
to enable one to perceive all such details within a single perspective. We start by
recounting some historical developments of this subject.

That adding "heat’ changes the ’temperature’ of a body must have been known
for a very very long time indeed. That heat can be added without changing the tem-
perature of a body must indeed have come as a surprise. This discovery is credited
to Joseph Black (1728-1799). Black is said to have slowly melted ice and shown
addition of heat still maintained the temperature of ice+water.

Early Scientific Studies One of the earliest, and scientifically systematic, works
to have experimentally determined the specific heat of gases was that of Delaroche
and Berard in 1813. This particular work stands out for many reasons. It was an
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essay that had won a prize competition of the famous Institut de France. It was
considered the most precise determination of specific heats of a number of gases. Its
influence went undiminished for nearly half a century.

We have already discussed the central role assumed by this experiment in Carnot’s
Reflections. Its results, according to Ingo Mueller [47], were also used by Robert
Mayer in his estimation of the mechanical equivalent of heat, and by Clausius too, in
his thinking on the internal heat. The incorrect values of the Delaroche and Berard
specific heats had their negative impact then.

But the most serious negative impact this experiment had was on Carnot’s work.
This work had unambiguously claimed that the gases it had studied, very close to
being ideal, had a volume dependence to their specific heats. As we have seen in our
detailed account of Carnot’s theory, the constancy of Cp — Cy in the caloric theory
required both Cy and Cp to have a mild logarithmic dependence on volume. Carnot
felt that the results of Delaroche and Berard supported such a behaviour.

The Delaroche-Berard results turned out to be erroneous, and the said volume
dependence of the specific heat of gases spurious. Had this grave error been detected
during Carnot’s lifetime, already close to two decades after the experiment, it is hard
to imagine the course that development of thermodynamics would have taken. It was
Regnault, in 1862, that showed the results of Delaroche-Berard to be spurious.

This episode not only highlights the extreme importance specific heats played in
the development of a fundamental theory, it also highlights how in science there can
be circumstances when completely wrong experiments hold sway for unreasonably
long periods! For a fuller historical account of this see Mendoza [46].

Dulong and Petit The next extremely important development was the experimen-
tal determination of the specific heat of solids by Pierre Louis Dulong and Alexis
Therese Petit in 1819. They found that the molar specific heats of all solids showed
a universal value of 3R, where R is the gas constant. Of course, they had only es-
tablished the constancy of the specific heats without relating the constant to the one
appearing in the ideal gas laws.

But soon it was found that the Dulong-Petit law was accurate only at high enough
temperatures. At intermediate and low temperatures there were significant deviations
from the 3R value. Before discussing the significance of these deviations, and their
remedies as pioneered by Einstein, let us continue with our historical narrative.

Another experiment of significance was that by Charles Bernard Desormes
(1771-1862) and Nicolas Clement (1779-1841), performed also in 1819. This mea-
sured the ratio of the specific heats y = Cp/Cy for (ideal) gases. They had established
the value of ¥ = 1.4 for air, a value which Carnot had used extensively in his Reflec-
tions. But as already mentioned elsewhere, Pierre Simon Laplace (1749-1827) had
used a similar value in his work in 1816 on the speed of sound, wherein he had
corrected a major flaw in Newton’s calculations.

Prominent among the early experiments on specific heats and other thermal prop-
erties is the series of very carefully planned determinations of the thermal properties
of steam by Henri Victor Regnault (1810-1878). He published them in a series of
reports, the first in 1847, and the next two in 1862 and 1870 [60]. Kelvin made exten-
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sive use of whatever data of Regnault was available at the time of writing his com-
mentary on Carnot’s work. His main aim was the determination of Carnot’s universal
function p(#). He could not come to any definite conclusions, nor could Clapeyron.

Thus, well before Carnot a great deal seems to have been known about the specific
heats Cy,Cp for gases. These too, and hence their differences Cp — Cy seemed to be
constants. It was a triumph for Clausius’s first law that it could naturally explain
the constancy of this difference. In fact, the first law and the entropy axiom lead to
a number of interesting relations involving specific heats, as detailed in chapter 3.
These relations are general enough to accommodate both temperature and volume
dependences of specific heats.

Specific heats of liquids and solids Though for gases Cp and Cy can be quite dif-
ferent, for liquids and solids, the difference between these two is not so great. There
are many ways of understanding this; the compressibilities of liquids and solids are
generally much lower than those of gases. The internal energies of liquids and solids
are also, to a good approximation, only functions of temperature alone.

In this context, it is worth recalling that for the case of the blackbody radiation,
Cp was ill-defined (see section 4.6). This was because of the exceptional behaviour
in that case wherein pressure was a function of temperature only, and therefore no
constant pressure process could result in any change of temperature. The situation
is the same with saturated vapor pressures of liquids, which also depend only on
temperature. So it is meaningless to talk of their Cp also.

5.2 Varieties of specific heats

While we have so far discussed Cp and Cy, it is clear that there is an infinite multitude
of specific heats! This arises from the fundamental premise of thermodynamics that
heat is not a state function. So the heat absorbed by a system in going from A at
temperature T to a neighbouring state A’ at temperature T + dT depends on the path
connecting the two states. Cp is the specific heat when the path in question is an
isobar, i.e P = const, and likewise Cy is the relevant specific heat when the path is
an isochore.

But any relation of the type, say, R(V,T) = const also defines a path, and clearly
there are infinitely many of them. So, it makes sense to define a specific heat Cg
whose meaning is AQ/AT as A — 0 while keeping R constant. From first law,

th =cvar+{(37), +P}av. Combining with (%) a7+ (35) av =0, one
gets

cn-err (&), ), (.-G,

Note that the factor (35 ) , + P can not vanish generically, as, if it did, 40 would be

a perfect differential. Using eqn.(3.7) this can be recast as

JoP v
CR(V,T)—CV(V,T)JrT(aT)V(aT)R (5.2)
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Though there is a multitude of specific heats, given Cy and Cp, or specific heats
Cx,Cy where X,Y are any two independent variables, any other Cg can be expressed
in terms of them, as for example,

Cr(V,T) :cv(v,r)+(cp—cv)@‘;)R(g‘f)P (5.3)

In addition to specific heats like these, one can have additional specific heats such
as C ,,Cp in magnetic systems. They too obey a number of properties analogous to
Cp,Cy, and these have been expounded in detail in the chapter on magnetic systems.
There we have also discussed the properties of additional specific heats Cs,C, that
arise in the superconducting systems. These details can be found in chapter 8.

5.2.1 Negative specific heats

With such a generalized notion of specific heats, it will come as no surprise that
specific heats can sometimes be negative. A classic case is that of the specific heat
of the steam-water system in coexistence. As already emphasized, Cp is the wrong
specific heat to consider. Instead, let us consider the path to be along the coexistence
curve, which is governed by the Clausius-Clapeyron equation. This is dealt with
at length later. Following Sommerfeld [64], if we call this specific heat Cy, then it
follows (see chapter 2 for details) that

dL L

Cs =Ci - 5.4
9 llq+dT T ( )

Here Cj;, is the molar specific heat of water in the liquid phase and L the molar

latent heat. He uses the experimentally determined values for L and j% at the boiling
point (just for illustration) T = 373K to estimate Cy. These values are L = 9.7 Kcal,

j% = —11.5cal /deg leading to Cy = —19cal/deg. So the specific heat of saturated
steam along the coexistence curve is indeed negative! The physical significance of
this is that when heat is added to the system, part of it goes off as latent heat and
part towards performing mechanical work that in the end some of the internal energy
has to be depleted. Curiously, there is a parallel to this in black hole thermodynamics

where adding energy to the black hole actually lowers its Hawking temperature!
Example 5.1: Cy of nitrogen

If it takes 4.2 kJ of electrical heating to raise the temperature of 2 moles of nitrogen, at
constant volume, by 100 K, calculate the Cy of nitrogen assuming that it behaves like
an ideal gas.

Since the process is at constant volume, the change in internal energy AU
must match the heat supplied by the electrical heater. Since nitrogen is said
to behave like an ideal gas, the change in internal energy at constant volume
is given by AU = nCyAT. Therefore Cy = AU /(nAT) = 21J/K. This is very
close to the value 5R/2 = 20.8/ which is the molar Cy of an ideal diatomic gas.
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Example 5.2: Cp in superconducting transitions

If the molar entropy difference between the normal and superconducting phases de-
pends linearly on T — T, show that there is a discontinuity in Cp at the transition
temperature and that this discontinuity is proportional to T.

The specific heat at constant pressure is given by Cp = T(g?) . The en-
tropy difference between the two phases is given to be of the form S;— S, =
a(T — T.)(this has to be so since the entropy difference vanishes at 7T¢), it is
readily seen that at T =T., Cp(T.) —Cp(T) = aT.

5.3 Specific heats and the third law

As we saw in our discussion of the (non)attainability of absolute zero, the third law
requires all entropies to vanish at absolute zero, and consequently all specific heats
must vanish as absolute zero is approached. The full implications of this are enor-
mous. It means that whatever be R, Cr must vanish in this limit. The ideal gas specific
heats obviously do not satisfy the third law which can be interpreted to mean that no
gas can behave ideally at temperatures very close to zero. In this book we have dis-
cussed a number of specific heats that do vanish in the limit of absolute zero. In the
last section of this chapter, an elaborate discussion is given of specific heats in the
context of the third law.

5.3.1 Specific heats and cooling powers

The Nernst-Planck postulate or the so called third law of thermodynamics precludes
the attainment of absolute zero. In practical terms, this translates to the fact that the
cooling powers of all cooling devices must vanish as absolute zero is approached.

The specific heats play a somewhat subtle role here. By the same third law, all
specific heats must also become vanishingly small in this limit. But a small specific
heat has also the consequence that for a given loss of heat, the drop in temperature
is large. This may give rise to the paradoxical thought that the third law actually
facilitates faster cooling. But there is no paradox as both the cooling rates as well as
specific heats are eventually governed by entropic considerations. It is instructive to
see this more quantitatively. Let us restrict attention to adiabatic cooling only.

As explained later on, the essence of the adiabatic cooling method consists in the
triple product identity

as d oT oT 1 as
(22),Gr ), Gos ), =2 Ge) = 7(G2), - 9
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Here & is some control parameter; in adiabatic demagnetization this is the magnetic
field etc. In the context of adiabatic demagnetization, to see that even though the
specific heat Cg vanishes as 7 — 0, the other factors in the numerator vanish even

faster, one should go beyond approximations like Curie law that are used in such
discussions. One can, for example, use the Langevin model with some ansatz for the
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non-magnetic specific heat so that they are in conformity with the third law. Then
one sees that in general cooling rates vanish much faster than specific heats.

5.4 Specific heats and microscopics

We have taken great care not to emphasize the atomistic aspects, with the desire to
showcase the powers and the immense scope of thermodynamics, and certainly not to
downplay the importance of the atomistic picture. On the other hand, it is clear that a
certain minimal atomic perspective should not be totally avoided, making everything
look too empirical. The behaviour of specific heats is a case in point.

At the level of thermodynamics, it suffices, for example, to know the empirically
determined Cy; the laws of thermodynamics then go on to predict a number of re-
lationships which too can be empirically tested. For example, even after restricting
attention to ideal gases only, it is enough from thermodynamics point of view to say,
for example, that Cy of some gas is 3/2 or 5/2; that one of them is monatomic or the
other is diatomic from the atomic point of view, adds no more content to the ther-
modynamic description. But it is clearly of importance to know this atomic aspect
should one wish to go further.

In fact, such constant values of Cy are clearly in contradiction of the Nernst postu-
late. The fix for this indeed exploits the atomic details. Since within thermodynamics
there is no scope for including such details, any fix must necessarily come from go-
ing beyond the thermodynamic description, as for example from going to Statistical
Mechanics. But it turns out that merely going to classical Statistical Mechanics will
not suffice, and the cures lie in purely Quantum Mechanical Aspects!

Anyway, returning to the issue of microscopics, a balance can be struck by taking
a few, but crucial results from microscopics (including possibly a statistical analy-
sis) as inputs into the thermodynamic formalism. For example, bringing in notions of
electrons and their properties into a thermodynamic discussion undoubtedly amounts
to too much microscopics. But a result from the quantum statistical mechanical anal-
ysis of a gas of electrons which says, for example, that their very low temperature
behaviour of specific heats is a linear temperature dependence, i.e C, ~ T, can simply
be incorporated into thermodynamics yielding a host of useful results and insights.
After that, there will never be a need to bring in the microscopics of electrons again.

Continuing in this vein, we could treat electrons as a thermodynamic ’component’
whose equations of state are prescribed. From our discussions of the blackbody ra-
diation, one can for example treat radiation as a component whose equations of state
are PV = U /3 and U = Vu(T). From a microscopic point of view, a statistical me-
chanical treatment of solids can be given in terms of the so called lattice vibrations.
From our point of view, it suffices to give an effective description of them by speci-
fying the equations of state. For example, the low temperature specific heat of such
lattice vibrations turns out to be of the form Cjuyice ~ a; T3. Incidentally, this was
also the behaviour of the low temperature specific heat of blackbody radiation(for
which Cp is a meaningless concept).

The linear dependence of the electronic specific heat was the leading order result,
valid in the immediate neighbourhood of absolute zero. At somewhat higher temper-
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atures there are additional corrections and the behaviour is C, = a, T + b, T3 + .. ..
So when one considers the contributions from both the electronic and lattice vibra-
tions, the total specific heat would have the behaviour C = a, T + (b, +a;)T> +.. ..
It is to be noted that both the electronic and lattice vibration specific heats obey the
third law.

In this manner, we could augment the list of possible thermodynamic compo-
nents. Further examples are magnetic systems for which we can introduce the mag-
netic specific heats, superconducting systems with specific heats Cs,C, for the su-
perconducting and normal components. The specific heat C; vanishes exponentially
e~ f(T) e 9T at very low temperatures, thereby satisfying the third law. Such ex-
ponential vanishing at low temperatures is also a feature of spin systems. For exam-
ple, in magnetic systems, even without any applied magnetic fields, the tiny atomic
magnets can be taken to be a thermodynamic system on their own, with their own
characterstic entropy, internal energy etc..It is in fact what underlies the phenomenon
responsible for Pomeranchuk Cooling because at very low temperatures the spin sys-
tem entropy dominates, and results in the curious outcome that the solid phase of
liquid He3 at these temperatures has higher entropy than the liquid phase.

5.5 Specific heats herald quantum theory!

As noted earlier, the Dulong-Petit law says that the molar specific heat of all solids
must be 3R. This value is also what classical statistical mechanics gives. But the ex-
perimentally observed specific heats deviate from this value, and in fact the Dulong-
Petit value is preferred only at high enough temperatures. Note that the Dulong-Petit
value does not obey third law whereas the experimental data certainly seems consis-
tent with the third law. A classical statistical mechanical treatment of solids, taking
into account an atomistic picture of the constituents and some presumed forces be-
tween the atoms still does not fix the problem. This is where Einstein’s seminal work
on specific heats comes into the picture. In laying the foundations of quantum theory,
this was as important as the work of Planck on the blackbody radiation and Bohr’s
work on the structure of atoms. Let us briefly visit Einstein’s ideas.

5.5.1 Einstein and specific heats

Einstein’s attention was focused on the experimental fact that the specific heat of
diamond at room temperature was anomalously low when compared to the Dulong-
Petit value of 6 cal/deg (see [52] for a detailed account). It is interesting to recall
the history of this anomaly. The Dulong-Petit work was published in 1819 [13].
Around 1840 de la Rive and Marcet [11] found that at low temperatures specific
heat of diamond was only 1.4 cal/deg, less than a fourth of the Dulong-Petit value.
Regnault, to whose pioneering works on the thermal properties of steam we have
already referred, reported a year later, a value around 1.8 cal/gm. De la Rive and
Marcet had worked at much lower average temperatures than Regnault. This was a
pointer to the fact that either the Dulong-Petit law was completely wrong, or that
specific heats could have appreciable temperature dependences.
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Heinrich Weber, some three decades later in 1872, undertook a careful reexami-
nation of the diamond case by accurately determining the specific heat of diamond
in the range 0-200 ° C. He found unambiguous evidence for a substantial tempera-
ture dependence of specific heats. By the observed trend at the higher temperatures,
he also conjectured that the DP-law would be correct at high temperatures. This he
confirmed in 1875 by going to temperatures as high as 1200 K, where he found a
value of 5.5 cal/gms as against the DP value of 6. It was Weber’s data that attracted
Einstein’s attention. Incidentally, Weber was one of Einstein’s teachers and it is said
that Einstein initially had done some of his doctoral work with him.

It is remarkable that these far reaching experimental discoveries had almost no
theoretical impact for another 30 years! An intervening theoretical development of
considerable significance was Boltzmann’s programmes of kinetic theory and sta-
tistical mechanics. In 1876, he had, based on these considerations, derived the DP
value of 3R for the specific heats of solids! The above mentioned clear experimental
evidence for temperature dependence of specific heats would run counter to these
theoretical developments, for which no simple fixes were available within kinetic
theory.

An experimental result of immense significance to this topic was provided in 1905
by James Dewar; he reported a value for the specific heat of diamond as low as
0.05 cal/deg at the then very low temperatures of less than 100 K, a temperature
region made possible by his own successful liquefaction of hydrogen a few years
earlier (1898). Dewar also conducted specific heat experiments on diamond at high
temperatures of around 2000 ° C, and concluded that at these high temperatures the
experiments confirmed the Dulong-Petit value rather accurately.

A complete parallel to this situation is to be found in the case of blackbody ra-
diation; there too, considerations based on equipartition theorem of kinetic theory
would give the Rayleigh-Jeans result, which, while in good agreement with data
on the low frequency spectrum, was in clear contradiction of Wien’s law found to
be valid at high frequencies. There too, no simple fixes to classical physics would
work, and only Planck’s bold ideas paved the way for further progress. While at
first Planck had only obtained an interpolation formula for which he had relied on
thermodynamic arguments, he later derived this interpolation formula based on his
revolutionary treatment of charged oscillators. The upshot of that derivation was that
the average energy of such oscillators had to be modified from the kT value inferred

from equipartition theorem to

E- v (5.6)

e% —1
This agrees with kT for low frequencies, and with hv ¢~ 7 behaviour of Wien’s law
at high frequencies.
In a stroke of genius, Einstein saw in this a way out of the specific heat problem!
His basic argument was disarmingly simple; he said that what must hold for the
Planckian oscillators must hold for the vibrating atoms of a solid too! He therefore
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proposed to replace the 3NKT value for the internal energy of a solid to

hv E265 hv
T)=3R =
w2 C(T)=3 &= 1

U=3R
el —1 (€5 —1)2

(5.7)

In making this proposal Einstein made the highly simplifying assumption that the
atoms in a solid vibrate with a single frequency v in all the three spatial directions.

Let us note some broad qualitative features of Einstein’s proposal. For that, instead
of concentrating on the frequency dependence as Planck had done in the case of the
blackbody radiation, let us concentrate on the temperature dependence. It is clear
from inspection that the behaviour in terms of temperature will be opposite to that
in terms of frequency; it is the high temperature behaviour that will be closer to the
equipartition theorem, while at low temperatures, the average energies and hence the
specific heats will be much lower than the expectations of equipartion theorem. In
the case of radiation, the average energy densities at high frequencies were the ones
that were lower (in fact, exponentially so).

Einstein compared his result of eqn.(5.7) with Weber’s data and found remarkable
agreement over a wide range of temperatures, if the only parameter in his theory
i.e Tg = hv/k is taken to be 1300 K for diamond. The origin of this characteristic
temperature is quantum mechanical. When this is high, as in the case of diamond,
quantum effects can manifest even at room temperatures. A schematic comparison
of the Weber data and Einstein prediction is shown in figure 5.1 (as it appeared in
Einstein’s 1906 paper [15, 78]): Thus Einstein had opened the gates of quantum

2t //
- /

4
/.

) I I L L
200 400 600 800 1000 1200

FIGURE 5.1 Comparison between Weber data and Einstein’s prediction [78, 15]

theory not only for radiation but for matter too. This marked a paradigm shift in our
understanding of matter, in a way completely different from the one pioneered by
Niels Bohr for an understanding of atomic structure.
It is instructive to examine the very low temperature behaviour of specific heats
in Einstein’s theory:
Tg

C(T) — 3R(TTE)2e— T (5.8)
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In other words, Einstein theory predicted a precipitous fall in specific heats at very
low temperatures!

The modern reader may find that reasonable as that is what the third law or the
Nernst-Planck Postulate would require. But this has to be viewed in the proper his-
torical perspective. In 1906, when Einstein’s paper was published, Nernst had not
formulated his postulate in the sense in which third law is understood today. In
1905, based on a large body of experimental work, Nernst had only conjectured that
changes in entropy would vanish at very low temperatures. As explained in chap-
ter 3, this only requires changes in specific heats to vanish, and not specific heats
themselves. The form of third law as recognised today only appeared in 1910 after
extensive researches by Nernst had shown that in fact even the specific heats of all
substances vanishes in the limit, and after Planck in 1910 had suggested modifying
Nernst’s original postulate to mean that in fact all entropies vanish in the limit.

However, on the basis of his very accurate measurements, Nernst pointed out that
even Einstein’s result was not in agreement with data at very low temperatures, and
that while specific heat of diamond indeed vanished at very low temperatures, it did
not fall as steeply as what eqn.(5.8) says; instead, he claimed a T3 like behaviour.
Again, one can see a parallel in the blackbody radiation case. There too, while the
energy density of monochromatic radiation had the same behaviour as in eqn.(5.7),
the fotal energy density, by which we mean energy density integrated over all fre-
quencies has a T* dependence, leading to a specific heat with a T3 behaviour for all
temperatures (see, for example, section 4.6).

5.5.2 Debye Theory

Nernst not only noted the discrepancy between Einstein’s result and the observed low
temperature behaviour, he suggested the remedy too, essentially along the lines that
the lattice vibrations are not monochromatic. It was Peter Debye in 1912 who com-
pleted Einstein’s treatment by including other lattice vibrations. The essential point
of Debye’s treatment was that the atoms, by virtue of their interatomic interactions,
vibrated more like coupled oscillators. The full problem was of such complexity that
Debye approximated the entire lattice of atoms by a continuous media and consid-
ered all its vibrations. Shortly afterwards Max Born and von Karman undertook a
detailed study of lattice vibrations taking into account the lattice structure. While
the vibrations considered by Debye obeyed the so called linear dispersion, as in the
case of the blackbody spectrum, the Born-von Karman theory had in addition the so
called optical branch for which the dispersion relations were no longer linear.

A subtlety with frequency spectrum that arises in this context, but which is absent
in the blackbody radiation case, has to do with the fact that the fotal number of
modes of lattice vibrations has to be finite being essentially given by 3N, where N
is the number of atoms. This translates to an upper limit to the value of the allowed
frequencies. An approximate value of this is given by the so called Debye frequency
p.

While all this would considerably complicate the integration over all frequencies
in general, certain simplifications are possible when dealing with the low temperature
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FIGURE 5.2 Comparing Einstein and Debye theories.

case. Then the optical modes can be neglected, and integration yields the 73 law for
specific heats. As already mentioned, the low temperature behaviour of the specific
heat of electron gas has a linear dependence in T, and therefore the Debye theory has
to be modified for metallic solids. We give some important, and essential, results for
the Debye theory. Further discussion of the Debye theory can be found in chapter
15. Just as in the Einstein theory, in Debye theory too there is a characteristic Debye
Temperature ©p = (£)1/3 ;. The low temperature behaviour of specific heats in

Debye theory is given by
122° (T \®
Cr R| — 5.9
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Likewise, the high temperature behaviour is given by
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So intricate are the full details of lattice vibrations that years later a controversy
arose between Max Born and C.V. Raman about the lattice dynamics of Diamond
(what started it all). Though Raman’s views on the lattice vibrations proved some-
what incorrect, he had nevertheless correctly identified modes that in modern par-
lance would be said to ehibit the so called van Hove singularities. The reader is re-
ferred to G. Venkataramans book Journey into Light for a fascinating and technically
complete discussion [76].

5.5.3 Specific heats of quantum ideal gases

The ideal gases too have specific heats that do not conform to the third law. Because
Cp—Cy =R, itis impossible to make both Cp,Cy vanish near absolute zero. One way
of getting around this, as already mentioned, is to note that no real gas would remain
ideal at such low temperatures, something that is borne out quite well experimentally.
Here idealness is considered in the sense of whether the atoms are interacting or not.



114 The Principles of Thermodynamics

But it should certainly be possible, in principle, to think of a non-interacting as-
sembly of particles. What then would be a consistent thermodynamic description of
it at very low temperatures? The fact that even for solids, a consistent picture follows
only if quantum behaviour is included, suggests looking for a quantum description
of ideal gases. Here too, the history of ideas that eventually led to a resolution of
these issues forms another of the bedrocks of quantum theory!

Recall our discussion of the blackbody radiation; Planck had sought the inter-
polation between the high and low frequency behaviours through considerations of
entropy. While Planck focused on obtaining the energy density from the interpolated
entropy, Einstein had focused on the entropy itself, and had made the remarkable
observation that the entropy could have been thought as if radiation was like a gas
of photons. The natural question that would have arisen is whether such a gas could
be treated by the statistical methods that Boltzmann had used in his kinetic theory.
Though Einstein’s work was in 1907, the answer to this had to await yet another rev-
olutionary development in 1924 at the hands of the Indian physicist Satyendra Nath
Bose, as briefly noted in chapter 4.

Bose was able to reproduce the Planck radiation formula by treating radiation as
a gas of particles. But in doing so, he had to introduce a radical departure from the
counting methods of Boltzmann. This amounted to the introduction of the completely
new concept of indistinguishability of identical particles. For example, there are six
ways of distributing distinguishable particles but only one way of doing so if they are
indistinguishable. Another feature, which was not explicitly stressed by Bose, was
the lack of any condition demanding the conservation of the total number of particles.
As we shall see elsewhere, this fact already manifests itself in the thermodynamics
of blackbody radiation by the vanishing Gibbs potential.

This work of Bose made a deep impression on Einstein, who immediately saw in it
ameans to solve the ideal gas problem quantum mechanically. Of course, there would
be important differences from the radiation case as the number of atoms of an ideal
gas is indeed conserved. But what Einstein’s genius recognized was that the counting
rules of Bose ought to apply to the ideal gas case too. The rest was a straightforward
application of Bose’s methods. The outcome was a radically new thermodynamics
of ideal gases! Just as Einstein had struck gold earlier with his simple but highly
perceptive observation that what must hold for the Planckian oscillators must also
hold for the lattice vibrations, he again struck gold by realising that Bose’s rules,
being of a counting nature, must apply not only to radiation quanta but also to atoms
of an ideal gas! We shall not go into the detailed derivations, but simply state the
crucial results.

The first surprise was a characterstic transition temperature Tpg, even for non-
interacting particles, that sharply separated the thermodynamic behaviour into two
regions; the numerical value of this transition temperature being given by

N o B2
kTpe ~ (. )2/3 5.11
BE (V) " (5.11)

Not surprisingly, this new temperature scale is of purely quantum origin. A surprising
feature is that masses have entered thermodynamics, something that we would not
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usually encounter in thermodynamics. Below Tpg the ideal gas is said to be in a
state of Bose-Einstein Condensation (BEC). But the phrase condensation has to be
understood with care as what is happening is no condensation of, say, the water-
steam type. Let us consider the very low temperatures for which obviously T < Tpg
holds. The following are the chief results for thermodynamics;

P=1{(5/2) ;‘; U= ‘;’ {(5/2)kT;; Cy = 1oR 4(5/2);3 = AT?/?

4
(5.12)
where Ay =i \/”?,fT is the thermal wavelength, and £ (5/2) = 1.34149 is the zeta
function with argument 5/2.

A rather striking result is that the pressure is independent of volume, and depends
only on temperature. Therefore, isobaric processes are also isothermal. We already
encountered this situation in the case of blackbody radiation also. Consequently, Cp
does not make sense. At very high temperatures, however, pressure depends both on
volume and temperature, and in fact the classical ideal gas law emerges.

In contrast, the pressure of a Fermi-gas (say, electron gas) at low temperatures
does not depend on temperature at all! This degeneracy pressure plays a big role in
the stability of White Dwarfs and Neutron Stars according to the seminal work by S.
Chandrasekhar.

The specific heat of the quantum ideal gas is the other surprise. It has a half-
integral dependence of T3/2 on temperature! This is a completely new temperature
dependence for specific heats than anything we have encountered so far. This be-
haviour is indeed consistent with the third law. For T > Tgg the behaviour of the
specific heat is entirely different, and eventually at very high temperatures it ap-
proaches the constant classical value. At T = Tpg, the specific heat is continuous,
but with a discontinuous slope characterstic of a cusp as shown in the figure:

312

FIGURE 5.3 The cusp behaviour seen in specific heats of BEC.

Specific heats and critical phenomenon The cusp singularity in the specific
heat of an ideal bose gas is only one example of the singular behaviour of specific
heats near transition temperatures. In fact such singular behaviours are generic rather
than exceptional. In the figure above, we display the behaviour of the specific heat
at the so called A-transition in Helium. An almost identical behaviour is seen in
a totally unconnected system, i.e the behaviour of magnetic specific heats near a
magnetic phase transition. This points to the great universality of the behaviour of
specific heats. As discussed in several parts of the book later on, one can have a
variety of situations whereby either the specific heats or some derivatives of them
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He ll Hel

FIGURE 5.4 The A transition. FIGURE 5.5 A magnetic transition.

become discontinuous. For example, in superconducting phase transitions, discussed
at length in chapters 10 and 11, there is a finite discontinuity in the specific heat. The
type of specific heat behaviour near a transition point becomes a diagnostic for the
type of phase transition. In certain second order transitions, the specific heats may
diverge as some power, i.e C ~ (T — T¢)%, as the critical point is approached. o is
one of the critical exponents, and what is amazing is that physically very distinct
situations like the critical point in a water-steam system and the critical point in the
so called three dimensional Ising model may possess the same critical exponents.

5.6 Problems

Problem 5.1 The molar specific heat of carbon at room temperature is around 6
J/mol, while that of lead at the same temperature is as high as 26.7 J/mol. Explain
this on the basis of the Einstein and Debye theories.

Problem 5.2 There are two solids, one of which has a specific heat of 2.7R and
the other has .15R, both at 300 K. What is the ratio of their Debye temperatures?
What is the ratio of their 7g?

Problem 5.3 A mixture consists of n; moles of a substance with specific heat
C7 cal/deg mole, a second with Cy etc. What is the molar specific heat of the
mixture?

Problem 5.4 Derive an expression for the molar specific heat at constant en-
thalpy. Derive an expression for it for a vdW fluid.

Problem 5.5 Determine the conditions when Cp > Cy. Can you think of any
counterexamples?

Problem 5.6 The Debye temperatures for Carbon and lead are 1860 K and 88
K respectively. Calculate the ratio of their specific heats at 300 K.

Problem 5.7 Consider a copper bowl of mass 100 gms which holds 300 gms of
water, and both are at 300 K. A very hot copper ball of 300 gms mass is dropped
into this bowl with water. It is observed that 10 gms of water is completely turned
into steam, while the remaining water and the bowl reach 100 °C. Calculate the
temperature of the wall if the specific heats of water and copper are, respectively,
4190 J/kg.deg and 387 J/kg.deg, and if the latent heat of vaporisation for water
at 100 °C is 540 cal/gm.

Problem 5.8 It is often assumed that in measuring temperatures the effect of the
thermometer may be neglected. Assess this assumption in the following case: a
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thermometer of mass 20 gms and a specific heat of 0.2 J/deg is at an initial tem-
perature of 15 °C. It is dipped into 300 gms of water, and the final temperature
of the water-thermometer combination is 45 °C. Find the initial temperature of
water.

Problem 5.9 21.6 gms of copper is in the shape of an annulus with inner radius
of 2.54 cms at 0 °C, and an aluminium ball with radius 2.54503 cms at 100 °C
just passes the annulus after reaching thermal equilibrium. Find the mass of the
ball if the coefficients of expansion of copper and aluminium are, respectively,
17- 1075/deg and 23 - 1075/deg. Their molar specific heats are, respectively,
24.4 J/mol and 24.3 J/mol.
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Structure of Thermodynamic
Theories

In this chapter we shall look into somewhat formal aspects of thermodynamics. What
we shall be looking at will be the general structure of thermodynamic theories. While
such considerations may not facilitate practical applications of the theory (even the
ideal gas case looks much more complicated than the usual treatments), they are very
important in clarifying its logical structure. We follow Callen in the elaboration of
this chapter, but unlike him, shall not stress any purely axiomatic approach.

There is a very clear parallel to be found in almost all important theories of
physics. Taking the example of classical mechanics, a practical approach would be to
concentrate on solving Newton’s equations with appropriate initial conditions. But a
more systematic understanding of Mechanics is obtained by studying it structurally.

The three laws of mechanics can be likened to the laws of thermodynamics. There
too, their evolution had strong elements of empirics combined with an axiomatic ap-
proach, which, as we have seen, is true of the thermodynamic laws too. While the
notions of position and velocity were amenable to direct observations, the notion
of momentum was axiomatic. Likewise in thermodynamics, while pressure, volume
and temperature are amenable to direct observation, notions of internal energy and
entropy have to be axiomatised. In mechanics, the state of a mechanical system was
fully specified by its momentum and position. In thermodynamics too there is a no-
tion of a state, and this is the state of thermal equilibrium, and such a state of a given
system is fully specified by specifying certain independent quantities like pressure,
temperature etc. In mechanics, one thinks in terms of the so called degrees of freedom
(d.o.f) which are the independent data required to specify a state.

In thermodynamics too we would like to ask what the degrees of freedom are.
In mechanics, the three laws ascribed to Newton define a framework within which
complete description of all mechanical systems is sought to be found. Such a de-
scription requires system-specific information which usually amounts to specifying
masses, force laws etc. What are the corresponding system-specific details needed
for a complete description of a thermodynamical system? Is there any systematics to
it or is to be done case by case?

In the mechanical example, while one could have worked just with velocities, the
axiomatic introduction of a momentum is indeed a great step forward conceptually. It
allows the extension of the structure of mechanics even to systems where description
in terms of velocities alone becomes clumsy. It is to be emphasized that at all times
one could have simply worked with Newton’s equation for acceleration.

A major difference between mechanics and thermodynamics is the irrelevance
of the notion of time in purely equilibrium thermodynamics. Then isn’t the name
"thermodynamics’ which implies some sort of dynamics misleading? In a strict sense
it is, but the notion of dynamics in thermodynamics has to be construed differently.
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So the basic structural question to be answered here is What constitutes a complete
description of a thermodynamic system? A good guess is that equation of state needs
to be specified. But what constitute bona-fide equations of state? Let us take the
simplest thermodynamical system, an ideal gas, as an example.

PV = nRT is frequently stated as the ideal gas equation of state. Recall that his-
torically this single equation was the merger of two distinct laws. Boyle’s law which
stated that at a given temperature PV = const., and Charle’s law which stated that
the rhs of Boyle’s law is linearly dependent on temperature (as often happens in sci-
ence, the names of Mariotti in connection with Boyle’s law, and of Gay-Lussac in
the context of Charles’s law, are frequently omitted). But does even this single com-
bined law completely characterise a thermodynamic system? Given just that, can we
compute ingredients that go into the first law like the internal energy U, the entropy S
etc..? No, one can not as can be seen simply by noting that a monatomic ideal gas, a
diatomic ideal gas all obey this equation. Therefore, this equation alone can not dis-
tinguish between them and hence is incapable of providing a complete description
of a thermodynamic system. In fact, that equation has to be supplemented with in-
formation, say, about the specific heat Cy, or equivalently, about the internal energy
U.

In the particular example of the ideal gas, that additional input is that U is a func-
tion of temperature alone, something which was experimentally established by the
Joule-Kelvin Process. This should be, for the ideal gas, treated as yet another law,
conceptually distinct from the law PV = nRT. If so, is this law completely indepen-
dent of the first law? More explicitly, having its origin in experimental data, could
this second law have been, in principle, different from the Joule-Kelvin law?

The answer turns out to be no and in fact PV = nRT implies, as a consequence
of the first law, that U is a function of temperature only. To see this, one uses the

relation oU 9P
(ov),=7(or), @D

which was already discussed in chapter 2. So it is not totally independent of
PV = nRT and yet it has more information than it as it is not enough for a complete
thermodynamic description. The resolution is that the precise functional dependence
of U on T is the true content of this second law, and that is truly independent of
PV = nRT. In particular, assumption of a constant Cy means that U = CyT.

Before going further, let us discuss another example where the corresponding
equation is

an?
<P+ V2 ) (V—nb) =nRT (6.2)

This is the celebrated van der Waals equation to which we have dedicated an en-
tire chapter later. Here we are using it only to exemplify the issues currently being
discussed.

Now applying eqn.(6.1) to this yields

U an?
),
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So in this example, the equation of state of eqn.(6.2) completely determines the vol-
ume dependence of U. Nevertheless, there is an unspecified function of T in U, as
before. In fact, given any equation of state of the form P = F(V,T), it follows from
eqn.(6.1) that U is not fully determined, and that the same freedom of the type f(7T')
persists.

This could give the impression that an equation of state specifying U is somehow
subordinate to one specifying P in terms of V and T. This is not so. To see that,
imagine that historically the Joule-Kelvin law, i.e U = U(T'), was known first for

an ideal gas. The same eqn.(6.1) would now give (gi)v = P whose solution is

P = f(V)T, with f an arbitrary function of V. This is of the same form as the ideal
gas law wherein f(V) = nRV.

For more general circumstances, given U = U (V, T), then eqn.(6.1) is nothing but
a first order differential equation for P in terms of T and where V just plays the role
of a constant. Clearly the solution is not unique as changing P by a term of the type
T f(V) does not alter the differential equation. Therefore, both the equations of state,
happily, are on the same footing. The fact that the said arbitrarinesses are only of the
type f(T) in U and T f(V) in P can simply be understood from the first law itself,
after use has been made of the entropy axiom:

1 P
TdS=dU+PdvV —dS= TdU = TdV (6.4)

It is clear that adding a AU = f1(T) and a 6% = f>(V) will not disturb S as a state
function, or equivalently, of dS as a perfect differential. This is the true content of
the need for two equations of state in these examples.

If on the other hand, we had rewritten the first law in its differential form as

dU = TdS — PdV (6.5)

then, adding a AS = f1(T) and a AP = f5(V) would not have upset the perfect
differential character of dU. Finally, specifying S as a function of U and V, or U as a
function of S and V, is completely consistent provided T and P are suitably identified.
We shall return to this later.

Following Callen, we shall call equations of the type f(P,V,T) = 0 as mechan-
ical equation of state, as they involve purely mechanical concepts like P and V. Of
course, it can not involve only such mechanical concepts and must involve temper-
ature, which is certainly not a mechanical concept. Without that, such an equation
would be irrelevant in thermodynamics. To that extent, mechanical equation of state
is a misnomer. In contrast, Callen calls the second category of equations, of which
the Joule-Kelvin law is an example, the thermodynamic equation of state.

It is again a good place to pause and make a comparison with the structure of
classical mechanics. There, for example, there is a clear distinction between the three
laws of Newton, and the law of Gravitational attraction, also due to Newton. The
first three are to be applied to every system, while the law of gravitational attraction
is to be applied only while focusing on gravitational phenomena. In this sense, the
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law of gravitational attraction, though being one of the laws of nature, is more like
specifying the equation of force. Likewise the force law f = —kx due to a spring.

In a completely analogous manner, the first and second laws of thermodynamics
are to be applied to all systems, while PV = nRT is to be applied only while de-
termining the thermodynamics of ideal gases. Therefore, PV = nRT has the same
significance in thermodynamics as did Newton’s law of gravitation in mechanics.
They are called equations of state. We already saw that for a single component sys-
tem we actually need two of them. For a generic thermodynamic system, how many
equations of state are both necessary and sufficient? We have also not addressed,
systematically, the issue of thermodynamic degrees of freedom, particularly their
number.

Let us recall that the differential forms of first and second laws still do not provide
a complete description of thermodynamic phenomena. This has to do with the fact
that they are unable to fix the so called entropy constants. We found in chapter 3 that
we need to postulate something additional for this. This is accomplished by Nernst’s
Theorem which is also called the Third Law of thermodynamics by some. So, like in
mechanics, we have three laws in thermodynamics too. The empirical relevance of
entropy constants is discussed in a separate chapter.

What about the zeroth law of thermodynamics and its mechanics counterpart?
Zeroth law formalises something that is intuitively obvious and yet conceptually in-
dispensable, that bodies in equilibrium have the same temperature. This can be taken
as defining the notion of temperature itself. Most often, this law only operates from
behind the scenes in the sense that one does not invoke it explicitly in any manipula-
tions. Something remarkably similar happens in mechanics. What truly underlies the
entire structural edifice of Newtonian mechanics is the concept of inertia and that of
the notion of inertial frames. Yet, this too plays only from behind the scenes, though
without it there are no scenes at all! So a characterization of inertial frames can be
taken to be the zeroth law of mechanics!

Let us return to our earlier remark that specifying either S as a function of U and
V, or of specifying U as a function of S and V is a completely consistent specification.
But the important question is whether either of them provides a complete specifica-
tion of thermodynamics. So far the discussion and examples have been restricted to
one mole of a single component substance. Let us relax that and consider arbitrary
amounts of the substance and in particular processes in which this amount is also
allowed to vary. In particular, the first law takes the form

TdS = dU + PdV — jidn (6.6)

where U is the so called chemical potential.

6.1 Extensive and intensive variables: general

Now the very important notion of extensive and intensive variables enters. Their
meaning has already been explained. The extensivity of V is in some sense obvious,
and so is the intensivity of P and T. The extensivity of U and S is less obvious, and is
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taken as axioms in thermodynamics. On a microscopic level, these depend on such
details as the range of inter-molecular forces, whether there are direct many body
forces etc.

Extensivity of U, S and V means U = nU,,S = nS,,,V = nV,,. Obviously,
Un,Sm, Vi are intensive. But these quantities which are intensive by construction
should be distinguished from P, T, i which are intrinsically intensive. We call vari-
ables like PT, i, which are intrinsically intensive as intensive variables of first class,
while variables that are intensive by construction as intensive variables of second
class. The reader is warned that this is a terminology that the author has introduced,
and may not be found elsewhere.

Just the requirement of extensivity imposes important restrictions. Let us first look
at the example of the ideal gas and consider n moles of it. From TdS = dU + PdV,
and U = nCRT,PV = nRT, it follows that

v av
dS = nCR R
S =nC T +n v

where Sy(n), the constant of integration is a constant only as long as n is held fixed.
But it can, at this stage, depend only on n, and can, for example, be used to fix the
correct dimensions for the arguments of the two logs. If this entropy is extensive it
must satisfy S(V,T,n) = nS,,(V;y, T). But for one mole of the substance, eqn.(6.7)
gives

— S(V,T,n) =nCRInT +nRInV + Sy(n) 6.7)

Su(Vi, T) =CRInT +RInV,, + 59 — Sy (Vin, T) = CRIn ; +RIn “im +R (6.8)
0 0
where now s is truly a constant, and has been used to make the arguments of the
logarithms dimensionless. It has to be understood that Ty, Vy are arbitrary constants
with dimensions of T and V, respectively. The significance of retaining an explicit
constant R will become clear shortly. The extensivity of volume yields V = nV,, and
consequently

T \%4
S(V.T,n) =nCR1 R1 R 6.9
(V,T,n) =n nTo—i—n nnvo—l—n (6.9)

One may wonder why one had to go through all this to get S(V,T,n) and not obtain
it by directly integrating eqn.(6.6)? The catch is that to do so would require an ex-
plicit knowledge of the chemical potential tt! Since we have determined the entropy
without the explicit knowledge of the chemical potential, but only invoking the ex-
tensivity of S, in effect it means that the chemical potential is in fact determined by
extensivity alone. We shall soon see that it is indeed so.

Now we consider processes in which all of (V,T,n) are variable. The differential,
dS, for such general processes is easily constructed:

dT dv T \%
dS = nCR R d R1 R1 6.10
S =nC T +n v + n{C nTO+ nnVo} (6.10)

from which it follows, on noting dU = nCRdT + dnU that

T
TdS=dU+PdV — udn H,u:foTCVlnT

|4
—RTIn . +RT (6.11)
0 nVy
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The important lesson is that the requirements of extensivity of S,U and V completely
fixes the chemical potential i, and furthermore it is fixed to be the same as the molar
Gibbs potential (note that for one mole of ideal gas RT = PV,,)! This is not an ac-
cidental result for the ideal gas only. The problem below will show it to be true for
the van der Waals case also. Actually it is true for any system as will be shown now.
Let Sy, Vin, Uiy be the molar quantities at T,P. Then the first law for one mole of the
substance reads:

TdS,, =dUy+ PdV, (6.12)

whereas for variable molar systems we have
TdS=dU+PdV — pdn (6.13)

Consistency between eqn(6.12), eqn.(6.13), and S = nS,,,V = nV,,,U = nU,, imme-
diately gives u = Uy, — T'S,, + PV, i.e the chemical potential is equal to the molar
Gibbs potential.

6.2 The Fundamental Equations

Following Callen, let us consider functional relations only among the extensive vari-
ables like (S,U,V,n..). Let us for clarity first focus on a single component system with
no other attributes like magnetism etc.. Callen calls such relations exclusively among
the extensive variables The Fundamental Relations. The reason for this nomenclature
will become obvious shortly. As it turns out, any one of the fundamental equations
provides a complete thermodynamical description!

Again a word of caution is in order; in most textbooks and even in many research
or technical articles, the phrase fundamental equations of thermodynamics is used
for the first and second laws. So it is not in that sense, but in a conceptually much
deeper sense, that this phrase is used by Callen for the equations to be discussed here.
Incidentally, the author has tried hard to locate the historical origins of this beautiful
and very apt terminology, but has failed in the task. So it is his surmise that credit for
this should go entirely to Herbert B. Callen.

For the one component system under consideration he writes down two such fun-
damental equations:

S=S(U,V,n) (6.14)

and
U=U(S,V,n) (6.15)

In the first, U is the independent variable while S is the dependent variable. The
fundamental equation of eqn.(6.14) is said to be in the entropy representation [3].
Likewise, eqn.(6.15) in which U is the dependent variable, is called the fundamental
equation in the energy representation.

If certain mathematical assumptions of continuity, monotonicity, single-
valuedness, and differentiability are made about the extensive variables, the two
forms of the fundamental equations will be equivalent. These assumptions are cer-
tainly very reasonable from the point of view of day-to-day experience and also
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from the empirics of thermodynamics. They are part of the axiomatic approaches to
thermodynamics ([4]). We shall not pursue the axiomatic formulations of thermody-
namics in this book.

If we scale the entire system, A times extensivity tells us that S — AS,U — AU,
V — AV, and n — An. From this it follows that the fundamental equations are both
homogeneous equations of degree one. More explicitly

S(AU,AV,An) = A(U,V,n) U(AS, AV, An) = AU(S,V,n) (6.16)

There are important consequences of this extensivity, one of which, i.e the equality
of it and G, has already been discussed. The other consequence, the so called Gibbs-
Duhem Relation will be derived after we have shown how the intensive variables of
the first class, 7', P, i arise from the fundamental equations. Our demonstration of the
fixing of U by extensivity also required the use of the First law. In what follows, we
shall see that the first law is a consequence of the differentiability of the fundamental
equations along with the identification of the intensive variables of the first class.

6.2.1 Intensive variables and the fundamental equation

The fundamental equations are relations among only the extensive variables, and are
homogeneous equations of first degree. It is therefore clear that partial derivatives of
the dependent variable in the fundamental equation with respect to the independent
extensive variables must be homogeneous of degree zero, i.e they are intensive vari-
ables. Let us first consider the energy representation of eqn.(6.15). The assumptions
of differentiability immediately yield

U U U
dU_(85)V7nds+(z9v)s7ndv+<8n)s7vdn (6.17)

At this stage, two approaches for further development can be considered. The first
one, which accepts the primacy of the first law, 7dS = dU + PdV — udn, would say
that we must identify the partial derivatives occurring in eqn.(6.17) with the intensive
variables of the first class, i.e (T, P, u). More precisely,

U U U
( as)v,n =TSV (av)s,n =—FSVn) ( on )s = ~HSVn)

(6.18)
The other approach, axiomatic in nature, is to define the intensive variables (T,P,ut)
by the above equation. That, on the surface of it, does not seem to have achieved
anything unless these quantities as defined above can be shown to have exactly the
same thermodynamic meaning that one normally attaches to them. This is indeed so,
and will be explicitly demonstrated in a later section.
Similar considerations in the entropy representation lead to

as as as
dsS= (aU)V,ndU+<8V>U,ndv+(a”)U,vdn (6.19)
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Again, the partial derivatives are identified with suitable combinations of the first
class intensive variables (T,P,u) either by invoking the first law, or axiomatically as
done in the case of the energy representation, leading to

s\ 1 s\ P IS\  u
(azf)v,nr (av)wr (a> ro 020

In the above, the functional dependence of (T,P,it) on (U,V,n) is understood. In both
the representations, monotonicity amounts to requiring T,P to be positive. But as
stated elsewhere, there can be systems with negative temperatures.

It is to be appreciated that in the axiomatic formulation, first law is merely a con-
sequence of the differentiability assumption. Of course, strictly speaking this is so
only after the identification of temperature, pressure, and chemical potential in the
axiomatic approach has been shown to be the same as in the traditional approach.
This is done later while discussing the conditions of equilibria in the axiomatic ap-
proach. It will be seen there that the second law is crucial for this.

6.2.2 The Euler relations

Let us explore the consequences of extensivity in the context of the fundamental
equations. Let us first consider the example of a single component system and its fun-
damental equation in the energy representation as given by the second of eqn.(6.16).
Differentiating that with respect to A gives

[ QUAS,AV, An) 8U(/lS,?LV,/In))
UC$‘CH) B S( IAS )Vﬁ ( IAV S;n

oo PUGS,AV, An) (6.21)
an %

Which, on using the definition of the intensive parameters in the energy representa-
tion, is the same as

U(S,V,n) =ST(AS,AV,An) —VP(AS,AV,An)+nu(AS,AV,An) (6.22)
which becomes, on using the intensive nature of (T,P,u),
U=TS—PV+un (6.23)

This is the Euler relation in energy representation. Its consequence, in this example,
is the equality of the chemical potential u with the molar Gibbs potential g with
G =U — TS+ PV. We already saw this earlier. A detailed discussion of G and other
thermodynamic potentials is given in the next chapter.

Completely analogous treatment holds for the derivation of the Euler equation in
the entropy representation
Ry Su=C (6.24)

S—1U+PV
T T T n
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6.2.3 The Gibbs-Duhem relations

Let us consider the differential form of the Euler relations in the energy representa-
tion:
dU =TdS+SdT — PdV —VdP+ pudn+ndu (6.25)

On using either the first law, or the differential form of the fundamental equation in
the energy representation, it is immediately seen that this leads to

SdT —VdP+ndu =0 du = —=SyudT + V,ydP (6.26)

This is the Gibbs-Duhem relation. It implies that the intensive variable of the first
class ¢ can not be varied independently. As already noted, u is the molar Gibbs
Potential G,, = U,, — T'S,,, + PV,,, and this form of the Gibbs-Duhem relation fol-
lows simply from first law, or again, the differential form of the fundamental relation
dU,, = TdS,, — PdV,,. It is instructive to derive the GD relation in the entropy repre-
sentation. The differential of the Euler equation eqn.(6.24) yields

u

1 1 P P u
dS=d dU +d dv —d -"d 6.27
S (T)U+T U+ (T)V+T (T)n 7dn (6.27)

The trick is not to expand d( .),d(%),d (%) further in terms of dT,dP,d as then we
would just recover the GD-relation in the energy representation. The meaning of the
exercise is to retain the variations of the respective intensive variables, which for the

entropy representation are 1,7 # After some elementary algebra, use of the first

T T?
law gives the GD-relation in the entropy representation as:
u 1 P
d =d d 6.28
() =d()Un+d( )V (628)

So even in the entropy representation, the variation of the intensive parameter corre-
sponding to n is not independent. We shall illustrate these concepts through explicit
examples shortly.

6.3 True equations of state

We already saw that even in the simplest example of the ideal gas, PV = nRT alone
does not fix the thermodynamic description completely, and that an additional equa-
tion specifying the functional dependence of U on T was necessary. Now we shall
see that from the structural point of view, PV = nRT can not really be treated as a
bona-fide equation of motion.

The definitions of the intensive variables of the first class, T,P and u, of eqn.(6.18)
and eqn.(6.20) are homogeneous equations of zero degree in terms of the respec-
tive extensive variables. To illustrate the implications, let us first consider the en-
ergy representation. Recall that a quantity Z(S,V,n) which is homogeneous of de-
gree zero must satisfy X(S,V,n) = X(AS,AV,An), and in particular, X(S,V,n) =
X(S/n,V /n)(as can be seen by choosing A = 1/n). It therefore follows that

T =T(Sm,Vn) P=P(Sn,Vn) w=wU(Sm,Vm) (6.29)
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Let us emphasize the salient features of these equations. Firstly, the number of in-
dependent variables is only two though we started with three independent extensive
variables (S,V, n). In essence, extensivity has trivialized the role of n as a degree
of freedom. Dependence on this variable of all thermodynamic variables is strictly
linear. Summarising, the number of thermodynamic degrees of freedom of a single
component system is only two. These can be chosen, as far as the fundamental equa-
tions are concerned, to be either (S,,,V,,) for the energy representation, or, (Uy,, Vin)
for the entropy representation.

The second feature, which is extremely important, is that these equations express
the two independent intensive variables of the first class, say, T and P, entirely in
terms of two independent intensive variables of the second class (S, Vin) or (Up,, Vi)
as the case may be. This, according to Callen, is what characterizes true equations of
state.

It is easy to appreciate now why in the ideal gas case PV = nRT or equivalently,
PV,, = RT would not be such a true equation of state; it involves more than one the
intensive variable of the first kind, i.e it involves both T and P in the same equation.
However, if a second equation of the type U(T) = nCRT, which is anyway needed
for the complete specification of the thermodynamics of ideal gases, is provided,
that can be cast as T = ?1’5 That is of the form of a true equation of state in the
sense elaborated earlier. Using that, the PV = nRT equation can also be recast as a
bona-fide equation of state, i.e P = CU‘?;

Since these points of view are likely to be unfamiliar, let us illustrate them with
yet another example, this time with the ideal van der Waals fluid case. The equation
that is commonly cited as the van der Waals equation of state is

2
(P+c‘l;12)(V—nb):nRT %P:Vfibf‘% (6.30)
This is not a proper equation of state for reasons similar to the ones put forward in the
ideal gas case. However, on supplanting with the idealness condition 7 = g’l’é which
is a proper equation of state in itself, the vdW equation of eqn.(6.30) can be recast in
the proper form

U a

P= —
C(Vp—b) V2

6.31)

6.4 Multicomponent systems

Let us generalize our considerations to a k-component system. Some important con-
ceptual differences arise even when all the components are ideal gases. The first of
these is the appearance of the so called entropy of mixing, and the second, somewhat
related to the first, is that chemical potentials are no longer the same as the molar
Gibbs potentials.

Let us begin by discussing the entropy of the composite system. If we denote
the i-th component system entropy by S, then additivity of entropy tells us that
the entropy of the total system is S = ¥,; (). Let the number of moles of the i-
th component be n;. The total number of moles in the mixture is denoted by N =
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> n;. Then the entropy of the i-th component is simply given by eqn.(6.9) with the
possibility that the constants 7, V; can be different for the different components. An
equivalent way of handling this is to add a piece n;s!) to each S (), and dropping the
nR piece from the earlier expression. Also, the specific heats will be different for
each component. Consequently

T %4 .
S= CiR1 R1 St 6.32
zi:n, i nTO—i—Ei:n, nnV0+zi“n’S0 ( )

i
This can be rewritten as

S:;niC,-Rln;; —|—2i:n,-RlnN‘;0 —i—zi:n,-sf)—REi: n,-ln;lvl (6.33)
Note that this total entropy is extensive, as each individual entropy in the sum is
extensive. The last term is the famous entropy of mixing. Its significance can be un-
covered by initially considering the components with volumes V; such that x: = X,
Then consider mixing the components. The entropy of mixing, a positive quantity,
is the difference between the final and initial entropies. This shows that entropy in-
creases upon mixing and the process is therefore irreversible, as is intuitively clear
anyway.

The internal energies (at some specified T,P) being U 0 = n,-U,sli), the total internal
energyisU =Y, n,-Un(f ). Since we are considering ideal gases as components, the total
pressure P is the sum of partial pressures as per Dalton’s law,i.e P =7 n,-P,f,’). Thus
the total Gibbs potential G is given by

G=U—-TS+PV= Zn (U —150 -+ P} +RT; miln (6.34)

Now let us consider the Euler equation in the energy representation, U =
U(S,V,{n;}) for the whole system. By repeating what was done for the single com-
ponent case, it is easy to see that the Euler equation now reads

U=TS—PV+Y wni  G=Y n (6.35)

where ; is the chemical potential for the i-th component. It is clear that the individual
chemical potentials U; need not (we will see that they actually can not) equal their
molar Gibbs potentials. In fact, on using eqn.(6.33) that

1 = G + RTIn ,nv (6.36)

The new feature is entirely due to the entropy of mixing. Though 1; explicitly de-

pends on n;, it is nevertheless intensive.
Finally, the number of degrees of freedom for a k-component system is kK + 1,
—_n

which in the energy representation can be taken to be S/N,V /N, {x;}, where x; = i
are the molar fractions, with 3, x; = 1.
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It is important, at this stage, to make a distinction between additivity and exten-
sivity. For example, entropies of spatially separated systems, entropies of mixtures
of ideal gases etc. are additive, even if they are not individually extensive. In fact, the
Gibbs paradox, in the case of a mixture of ideal gases, arose after invoking additivity
of non-extensive entropies.

6.5 Entropy of mixing and the Gibbs paradox

The so called Gibbs paradox arises on considering the possible changes in entropy
as a result of mixing. It should be stated at the very beginning that an entropy that is
extensive does not lead to any such paradox. However, such a paradox can arise from
an improper treatment of the additivity of entropy. One such improper treatment, for
example, is to start with the molar entropy of an ideal gas that was derived earlier in
eqn.(6.8),1.e

S =CRInT +RInV,, + s (6.37)

and incorrectly generalizing to the case of n moles occupying V as
S=nCRInT +nRInV + nsy (6.38)

While additivity of entropy has been invoked in arriving at this, extensively has not
been taken into account. We shall show here that the paradox arises only on use of
entropies as in this equation, and that all paradoxes disappear on using extensive
entropies as in eqn.(6.9).

To appreciate what this so called paradox is about, first consider two samples
of different ideal gases both at the same temperature and pressure T,P. The number
of moles in the first sample is n; while that in the second is ns. Therefore, their
volumes are V; = n1RT /P and Vo = naRT /P, respectively. We can imagine the two
volumes to be separated by a partition dividing a container of volume V =V; +V, =
(n1+n2)RT /P. Let us consider mixing these two samples by, say, lifting the partition
separating the two volumes. The final volume is V. The entropy before mixing is
given by

Sini = mCIRINT + nRInVy +nysY + naCoRINT + noRInVa 4 nasl?  (6.39)
while the entropy after mixing is
Stin=n1C1RInT +nRInV + nls(()l) +noCoRInT +noRInV + ngs((f) (6.40)

leading to the change in entropy, called entropy of mixing,

S Stin—S R1 V+ Rln " R " Rin " >0
- in—Oini =N n n n =-—-n n —-n n
mix = S fin T 2ini = LAy, TR S e T g

This result appears reasonable, and in conformity with experience as such mixings
are in general irreversible. In fact, such mixing entropy is essential for the consis-
tency of thermodynamics itself! If, for example, the salt could be separated from a
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saline solution (desalination) at no cost, one would end up with a perpetual machine
driven by osmotic pressure (discussed in chapter 9)!

Note that this mixing entropy is only a function of the concentrations. Since noth-
ing in the above referred to the nature of the gases, it is reasonable to conclude that
the above should hold even when the two gases are the same. Since this is such an
important point, let us verify by repeating the above for this case. Now the initial
configuration is two samples of the same gas, at the same temperature and pressure,
but with different number of moles n;,n5. The final configuration is the same gas,
at the same P, T but with n; + ny moles occupying a volume V = V; 4 V5. On noting
Ci=Cy=Cand s(()l) = s(()z) = s for this case, the initial and final entropies are given
by

Sini = (n14+n2)CRInT +nmRInVy +naRInVs + (n1 +na)so
Stin = (n1+n2)(CRInT +RIn(V; +V2) +50) (6.42)

Indeed, we get the same expression for the entropy difference as above.

But this is patently absurd as experience tells us that mixing two samples of the
same gas at the same P and T, and then repartitioning them can be performed re-
versibly, and hence there should be no entropy change in the mixing of ideal gases.
This is one version of the Gibbs paradox. It should be emphasized that as far as clas-
sical thermodynamics is concerned, it’s only the changes between thermodynamic
states that are reversible.

We shall now show that on using eqn.(6.9) this paradox just disappears. Repeating
the calculation for identical gases, but with the extensive entropies, it is easy to see
that

\% V.
St = (n1+n2)CRInT +niRIn n1 +nsRIn n2 + (n1 +n2)so
1 2
Vi+Va)
ser = CRInT +R1 ( 6.43
in (n1+n2)(CRInT + n(n1+n2)+50) (6.43)

The entropy difference indeed vanishes on noting Vi /ny = Vo /ng = (V1 + Vo) /(n1 +
ny) = RT/P.

But does extensive entropy change the mixing entropy calculated earlier? It does
not, because the difference between the two expressions for entropies consists of
—nRInn, and this does not change for either of the dissimilar gases in the process of
mixing. Let us explicitly carry out that calculation also to bring out some important
features of this case. Eqns.(6.44,6.40) are now replaced by

V- V-
et = MCiIRInT +niRIn ! +n1sél) +nyCoRInT +nyRIn > +n2s82)
? ny no
\% \%
Sjifﬁl ne = MCIRInT +nRIn +nlsgl) +1n2CoRInT +noR1n —|—n2s(()2)
? ny ny

(6.44)

The difference between these two, which is the mixing entropy, indeed takes the
same value as in eqn.(6.41).
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In terms of pressures, the difference between mixing of similar and dissimilar
gases is this: in the case of similar gases samples with (ny,V1,T,P) and (n2, V2, T, P)
mix to form (n1 +no, V1 +Va, T, P) while in the case of dissimilar gases, (n1,V1,T,P)
of first and (ng, Va2, T, P) of the second upon mixing go over to (ny,Vy + Va2, T, P ) and
(na,Vi + Vo, T, Py) respectively where Py = ny/(n1 +n2) and P, = na/(ny + ng) are
the partial pressures of the two gases in the mixture such that P, + P, = P.

Sometimes such mixtures are characterised loosely as being made up of ny + no
moles of a substance with average molecular weight of My, = (n1My +naMs)/(n1 +
n2) and average molar specific heat C,, = (n1C1 +n2C2)/(n1 + n2), occupying V at
(P,T). While that may work for some quantities, it fails to capture the entropy of
mixing which would vanish with such a description.

The other version of the Gibbs paradox is that the entropy of mixing changes
abruptly from a nonvanishing value for dissimilar gases to zero for mixing of similar
gases. This is so even if the actual physical differences between the two dissimilar
gases are very small, but not vanishing. For example, whether we mix O, and H»
with a ratio of molecular weights of 16, or we mix uranium-235 and uranium-238
with a ratio of molecular weights of 1.013, mixing entropy for given moles of mixing
is the same! This may appear paradoxical, but being a straightforward consequence
of thermodynamics, there is nothing paradoxical about it!

6.5.1 Extensivity revisited

Thus we have seen that taking entropy to be extensive removes the so called Gibbs
paradox while preserving the expression for the mixing entropy for dissimilar gases.
In many accounts of this paradox, an impression is created that one has to go to
quantum statistical mechanics along with notions of indistinguishability to ’resolve’
the paradox. We see that as far as classical thermodynamics extensivity is all that is
needed. Of course, extensivity can not be proved even in classical thermodynamics
any more than proving the second law of thermodynamics, for example. In fact, as
stated by Pauli [53], and emphasized again by Jaynes [28], the Clausius formulation
was really silent on this issue of extensivity. Two factors here are that that formula-
tion only required the extensivity of changes in entropy, i.e dS, and not of entropy
itself. To this extent, the Clausius formulation was incomplete. But Jaynes goes a
significant step ahead by arguing that this logical incompleteness has to be there ir-
respective of the theory, i.e even quantum statistical mechanics can not really prove
the extensivity of entropy. It is perhaps for this reason that Callen [3] has included
the extensivity of entropy as one of the axioms of thermodynamics obviating any
issues of its proof.

Apparently Gibbs was fully aware of all these nuances in his monumental work
of 1875 itself [19]. Interestingly, Jaynes opines that it was Gibbs himself who was
responsible for the subsequent confusions by what he said in his other classic El-
ementary Principles in Statistical Mechanics [20]! All this notwithstanding, conse-
quences of extensivity in thermodynamics have been spectacular, and the very role
of Gibbs concept of chemical potential, whose equality to the Gibbs potential is one
such consequences, is one tip of this massive iceberg!
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Example 6.1: Mixing entropy for gases

Calculate the entropy change when two moles of Ha gas is mixed with one mole of O2
gas at 300 K and one bar. Compare this to the change of total entropy when both of
them are isothermally doubled in volume. Treat both gases as ideal.

In this example, np, = L,ny, = 2 and ng, +ny, = 3. A straightforward
application of eqn.(6.41) gives, for the total entropy change during mixing,
Smix =R(3In3—2In2) =0.91R = 7.57J/K. The change in molar entropy during
isothermal expansion of an ideal gas from V; to Vo is As=RIn(Va/Vy). Hence
the total entropy increase when both the gases in this example isothermally
double their volumes is 3RIn2 which is 17.3 J/K. This gives a comparative
idea of the magnitudes of mixing entropies.

6.6 Worked out examples
6.6.1 Fundamental equations and equations of state

Let us look at some concrete examples. Obviously, the ideal gas case should be the
simplest. Let us imagine that instead of the usual PV = nRT and U = nCRT, we are
given one of the fundamental equations. According to what has been described so
far, a single fundamental equation should contain not only the equivalents of these
two equations, but also the first law.

Historically, this is of course not how the ideal gas laws were discovered, but as
has been emphasized before, the importance of the fundamental equation lies in the
clarity it gives to the structure of thermodynamics. It is not that it provides the most
user-friendly way of working out the thermodynamic properties, nor is it the most
likely equation to be discovered empirically as it involves the variables U and S that
are not directly observed, in contrast to P,V,T,n etc.

So for the purpose of this section, we work our way backwards from the usual
equations of the ideal gas to one of the fundamental equations. For both the repre-
sentations (energy and entropy), one essentially eliminates T in favour of U. Thus,
the expression for S discussed before takes the form

U 1% U 1%
S(U,V,n)=nCRIn ~ +nRln = =nRIn {( )¢ } (6.45)
nug nvgo nug  nvg
This is the fundamental equation in the entropy representation. Here ug,vo are con-
stants with dimensions of U,V. The corresponding equation in the energy represen-
tation can be obtained from this through inversion
N

U= nuo("‘v/O )€ encr (6.46)

We work out the details in the energy representation. Let us begin by computing the
intensive variables of first class:

r—(VY _U _Un p_Un (6.47)
3s )y, nCR™ CR cv,,
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Clearly these are the proper equations of state in the sense of Callen; they relate the
intensive variables (T,P) of the first class to only the intensive variables U,,, V,, of the
second class. The usual equations for ideal gases are easily recovered from them.

We see explicitly that there are only two degrees of freedom. It remains to evaluate
the third first class intensive variable ¢ and show that it is not really independent.
Evaluating the relevant partial derivative explicitly yields

U o Um(Sman) SmUm(Sman)
(50 ). = Un(su i ) Sntin

=Up+PVy—TS,,=Gn

(6.48)

Now we discuss the somewhat more involved example of the van der Waals fluid.

In that case, the internal energy U is not a function of T(in the usual treatment) alone.
To keep things transparent, let us look at only the ideal case where

2

U:nCRT—a"j ST = (Ut

v )/CR (6.49)

The equation for T is of the correct type despite the internal energy being dependent
on both T and V. The entropy of the ideal vdW fluid being

T V —nb T ..V —nb
S = nCR1 R1 = nR1 ¢ 6.50
n nT0+n noo n n{(TO) b } (6.50)
Hence the fundamental equation for the ideal vdW fluid in the entropy representation
is

S—ann{

(U+an2 Can}

(nuo) 1% ) nb
The fundamental equation in the entropy representation is still easily invertible. Con-
sequently the fundamental equation in the energy representation is

c 6.51)

1
nb c s an?
U= nCR — 6.52

””O(an> € 1% (6.52)

The two bona-fide equations of motion that follow are

1 a 1 a a
r— (v p— U - 6.53
CR( ’"+vm) C(Vmb)( "’+Vm> V2 (6.53)

Again, equations that are commonly called the vdW equation of state can be recon-
structed from these.

It is not always easy to work backwards from the standard equations to the funda-
mental equations. It is crucial that T be invertible in terms of U and V. An example
where this does not work is in the case of the so called Dieterici equation. This is
left as an exercise.
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6.6.2 Gibbs-Duhem relations

Now we show how to solve the Gibbs-Duhem relation for a few cases. We choose to
work in the entropy representation. Let us first treat the ideal gas case. In that case
7 =CR Ulm and £ = ‘Zl. Therefore

uy 1 P\ 1 1
d(T)_Umd<T)+de<T)_CRUmd<Um)+Rde<Vm) (6.54)

It is easy to integrate this to get

'L; = —CRInU,, — RInV,, + const. (6.55)

This is the same expression for y that we had earlier after the constant of integration
is fixed suitably.
Let us now consider the ideal vdW fluid for which U,, = CRT — ¢ and ’T’ =

Vin
R a CR .. cqs .
Vo T V2 Unt il - In the true spirit of what has been said in this chapter, one should

show that # is integrable in terms of a function of U,,, V,,. This can indeed be done,
but is algebraically a little messy.

Instead, we eliminate U,, in terms of T, V,, and integrate the Gibbs-Duhem relation
to find an expression for # in terms of 7', V,,. Then

u a \dT R a
d = —(CRT - Vind -
(T) (C Vm) 72 (Vm—b TV,?,)

2
= —CRA(InT) ~ rd(In(V;y — b)) + bRA((Vu—b) ") ~d(, "T)

m

(6.56)
The solution to this is
T Vw—b 2a Vin
= t. T —CRT1 —RT1 — RT 6.57

U = cons C nTO n b Ver Vb (6.57)

This is indeed the chemical potential for the vdW fluid if the constant of integration
is adjusted properly.

6.7 Axiomatic intensive variables and equilibrium

We now wish to demonstrate that the first class intensive variables defined axiomat-
ically have all the properties that have been ascribed to them through the traditional
empirico-axiomatic methods. For this we need the Second Law of Thermodynamics.
Either fully axiomatically or through the empirico-axiomatic methods of Clausius,
Kelvin and others, this law can be stated as every thermodynamic change of an iso-
lated system is such as to either increase the entropy or keep it stationary. Then
the condition for thermal equilibrium is that fotal entropy must assume its maximum
value. Stated in this manner, the fundamental equation in the entropy representation
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may appear to be playing a more fundamental role. This is not so, and completely
equivalent conclusions can be drawn from the energy representation.

Let us first consider thermal equilibrium. Consider two systems that are allowed to
exchange heat between them but the total system is isolated. Further, let the changes
be such that there are no changes in the volumes of the two systems, i.e AV} =
AV ) =0 and there is no chemical transfer so that An") = An(®) = 0. In such a cir-
cumstance, since total energy must be conserved one must have AU W =_AU®,
Additivity of entropy says S = S() 4+ () Then

st L s ) 1 1

= (8U<1>>v.ndU( - <8U<2>>v_,fw( "= T gV 20 63
At equilibrium, stationarity of S, i.e dS=0 implies 7(!) = T(?) i.e the subsystems in
thermal equilibrium must be at the same temperature. Thus the axiomatic definition
of temperature is consistent with the traditional concept of temperature. Furthermore,
if the two subsystems are not in equilibrium and let, for example, 7(!) > T(?) | then
dS > 0 implies dU") < 0, i.e if two systems in thermal contact are not in equilibrium,
then the energy (heat) flow is from the body at higher temperature to the one at lower
temperature if no work is being done and there is no material transfer.

Now we can relax the conditions of no volume change so the two systems can
perform work in addition to exchanging heat. By reasonings completely parallel to
the pure thermal equilibrium case we can write

r  p@
T T®)

11
dS=(. — . )du® 4

e )dvi) >0 (6.59)

where we have also used that the total volume of the system does not change though
the individual volumes can. Now the variations dU"),dV (1) are of course mutually
independent. Therefore at equilibrium where dS = 0 one must separately have 7'(1) =
7 and 1;23 = ;((?) i.e P() = P(?) Hence for thermo-mechanical equilibrium both
the temperature and pressure must be the same. Once again, let us consider two
substances which are at the same temperature but not in equilibrium. Then, as in the
earlier case, dS = (P(1) — P(?)) dVT(l) > 0 implies that if P(1) > P qv() < 0. This
again fully corresponds with the traditional concept of pressure.

Lastly one can show that in addition to exchange of heat and volume, the subsys-
tems can have chemical exchanges, then at equilibrium not only do the temperatures
and pressures have to be equal, the chemical potentials have to be the same. Further,
if the subsystems have the same temperature and pressure, but not the same chemical
potentials, there will be a net matter flow from the subsystem with a higher chemical
potential to the one with lower chemical potential.

6.7.1 Stability of equilibrium

The above conditions only ensure that the entropy is stationary at the equilibrium
point. This means that the state in question can still be stable, unstable or metastable
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(neutral). It is of course consistent to count only stable states as (equilibrium) states,
but it is useful to extend the notion of states in thermodynamics to include metastable
and even unstable stationary points of entropy. Otherwise, interesting and useful con-
figurations like supercooled liquids, superheated liquids etc. would be outside the
purview of thermodynamics.

However, for the state to be stable, the entropy has to reach its maximum value.
Therefore, the stationary point must actually correspond to a maxima. Let us consider

the hypothetical case where S only depends on U. From calculus, it then follows that
d%s
du? )
U and V, then in addition one expects gv‘g |(u,n) to be also negative. But that is not

< 0. If we now consider the more realistic situation of S depending on both

. L 2 2 2
enough; the matrix formed by the second derivatives §U~§ |(V,n) gvg \(U,,,) and 3?1 aSV
must be negative, i.e all its eigenvalues must be negative. For this case, since the
matrix is 2x2, the determinant must be positive. This leads to the additional condition

825 82S 825 2
<9U2)V,n <8V2>U_yn - (auav) 20 (6.60)

As they stand, these mathematical expressions for stability do not convey their phys-
ical meaning very clearly. For that, let us express the various second derivatives in
terms of physically observable quantities. Let us examine this issue in the entropy
representation. The reader is urged to work out the analogous results when, for ex-
ample, S is taken to be a function of (V,T).

From ( 98 )V = % it follows that
n

U
228 1 (/0T 1
(aU2>V,nT2 (aU)V,nCVT2 SO (661)

Thus one of the stability conditions requires that the specific heat Cy be positive.

Likewise, from (gé)u,n = £ it follows that
2%s 1 P %S 1
( 2) =— - -, (6.62)
A% Un TVkyn VT ﬁu_n UV vT [3[],,,

In these equations ky », Bu» are the compressibility and expansion coefficient under
the conditions of constant (U,n). They are not the compressibilities and expansion
coefficients introduced before, but can be related to them.

In fact stability analysis can also be performed for the maxima of Helmholtz free
energy F and Gibbs potential G. In terms of physical quantities, these conditions are:
Kr > Ks > 0,Cp > Cy > 0. For more details, please see [3].

6.8 Problems

Problem 6.1 Is the fundamental equation in the U-representation, U =
ANVeS/NR(A is a constant), consistent with all the known properties of a ther-
modynamic system? If not, make the simplest modification that would make it
SO.
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Problem 6.2 Find the intensive quantities T, P and the chemical potential u for
a system whose fundamental equation in the U-representation is given by U =
A(S2)V) ¢S/NR Determine the fundamental equation in the S-representation.
Problem 6.3 Is the fundamental equation in the S-representation, S =
AIn(UV /N?B)(A and B are constants), consistent with the third law? If not,
does it mean that such an equation is never acceptable? Compare this with the
ideal gas case.

Problem 6.4 For what values of a, 3, y is the fundamental equation, S = (NU* +
AVB)Y in the S-representation, physically acceptable?

Problem 6.5 As in the previous problem, determine the consistency conditions
for the constants ¢, 3,y occurring in the fundamental equation S = AU ayByy
where A is a positive constant. What further restrictions arise from stability,
which in this context requires the pressure P to be a monotonically increasing
function of the internal energy density. Apply to ideal gases and blackbody radi-
ation.

Problem 6.6 The molar entropy s, internal energy u, and the volume v of a
system are known to satisfy the U-representation fundamental equation u =
As? — Bv2. Determine the equations of state for this system and show that the
chemical potential u is negative of internal energy.

Problem 6.7 N moles of a system satisfying the fundamental equation u =
(A/v?)es/R for the molar quantities u,v.s, is initially at T, Py. Determine the
final temperature if it is adiabatically compressed to half its pressure.

Problem 6.8 Show that for all systems whose adiabats are given by PVK =
const., the internal energy U is given by

PV pvk
U—k71—|—Nf( NE ) (6.63)
where f is a suitable function. Apply this to a) ideal gases and b) blackbody
radiation.

Problem 6.9 The equations of state of a system are given to be u = APv and
Pv? = bT. Are they consistent thermodynamically? If not, find a simple modifi-
cation that will restore consistency.

Problem 6.10 Express the fundamental equation S = A(NVU) 1/3 in Euler form.
Problem 6.11 Given that T = A(s2/v) and P = B(s®/v?), determine the ratio
(A/B) for which the Gibbs-Duhem relation can be integrated. Find the chemical
potential u as a function of s,v.

Problem 6.12 Consider the fundamental equation

2 '
U=""\ N (6.64)
N

Determine the three equations of state giving T, B, and u as a function of S,N

and A/ .

Problem 6.13 The atmospheric air when dry is essentially a mixture of oxygen

and nitrogen in the molar ratio 1:4. It is required to separate air at 300 K and 1

bar into its pure components also at the same temperature and pressure. Treating

all components as ideal gases, what is the minimum power required to purify 10

mol/s of air? What is the role of the enthalpy of mixing in this?



Thermodynamic Potentials and
Maxwell Relations

7.1 Thermodynamic potentials

The notion of a potential plays a very important role in mechanics. Even without
solving dynamical equations like for example the Newton’s laws (which necessarily
bring in the notion of time), a knowledge of even the gross features of a potential,
like its maxima or minima (also called the stationary points), tells us about special
configurations called the stable(unstable) points. The significance of the stable con-
figurations, given by the location of the minima of the potential, is that if the system
when isolated happens to be in one such configuration, it will continue in it forever
(thereby making time irrelevant). One would say it is in a state of static equilibrium.

One may hope that in equilibrium thermodynamics too (where time is irrelevant)
there would be analogous potentials that would be helpful in identifying equilib-
rium states. In the mechanical system, the state was characterised by position. In
the full time-dependent description of a mechanical system, one would need both
position and momentum to characterize a state. But when one restricts attention to
static aspects, momentum plays no role. In equilibrium thermodynamics, a state is
characterised by some set of independent thermodynamic coordinates like P,T or P,V
etc. So the goal is to find functions of such thermodynamic coordinates whose gross
features like minima will identify equilibrium states.

Apart from this physical motivation, there is also a mathematical motivation
which amounts to finding state functions f(x,y,..) of the independent thermody-
namic coordinates (x,y,...) such that

df(x,y,..) =A1d& +AgdEy+ ... (7.1)

where A; are either coordinates or known functions, and so are &;. It should be noted
that any d f can always be written as

d d
df(x,y,...) = <8§> dx+ (8§> dy—+... (7.2)
Yoo X

The important difference between eqn.(7.1) and eqn.(7.2) is that in the case of the
former, the set of partial derivatives appearing in a generic expression like eqn.(7.2)
are known. It is not always easy to achieve this, and there will be integrability condi-
tions associated with eqn.(7.1); these are an essential part of the Maxwell relations.
We shall return to further mathematical properties of the thermodynamic potentials
later.

The reader may find the meaning, and even the usefulness, of these mathematical
aspects rather obscure at first. They will, of course, become clearer as we go on, and
more so after these concepts are repeatedly applied to concrete physical problems.
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In fact, thermodynamic potentials are very powerful, and practically indispensable,
tools for a finer understanding of thermodynamics.

The coordinates for a single component, non-magnetic material can be taken to
be (T, P),(T, V) or (V, T). In multicomponent systems, various concentrations are
also among the coordinates. In magnetic systems, magnetization is among the co-
ordinates. Likewise, for the simplest of the systems, S,U are for example, functions
to be considered. To get a clearer idea of what we are going to do, let us start with
the simplest possible system, i.e a single component non-magnetic system with fixed
number of moles; we shall return to an inclusion of more coordinates and functions,
and how the simple considerations will generalize, later.

7.1.1 Internal energy and enthalpy

The first law can be rewritten as
dU =TdS—PdV (7.3)

This is indeed of the form of eqn.(7.1). Some general features of such equations are
i) they are obviously dimensionally homogeneous, ii) one of the factors on the rhs is
intensive, while the other is extensive. In the internal energy example, U is extensive
and so are S and V, while P and T are intensive.

The specific heat at constant volume is given as the temperature derivative of U

at constant V, i.e Cy = (‘3?) . This motivates us to look for a state function whose
1%

temperature derivative at constant pressure gives Cp. It is straightforward to find it;
it is the enthalpy H = U + PV, and

dH=d(U+PV)=TdS+VdP (7.4)
and indeedCp =T <g;)P = (g?)P

7.1.2 Helmholtz free energy

In a mechanical system all the work done goes to change the energy of the system
and one has the equality AW = —AE. In thermodynamics, however, we have the
concept of internal energy U instead of E, and from first law we know that AW =
—AU + AQ. Therefore, depending on the sign and magnitude of the heat supplied
to the system, the work done may equal, be greater than, or even be less than the
change in the internal energy.

Now consider a system in the state A, at temperature Ty, such that it is in contact
with a reservoir at a constant temperature 7.;. The system can exchange heat with
this reservoir but is not necessarily in equilibrium with it. If it were in equilibrium
with the reservoir, the system would always be at the same temperature as the reser-
voir and we would be restricting ourselves to only isothermal transformations. Now
let us envisage the system making a sequence of heat exchanges with the reservoir
and finally ending in a state B.
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We have the fundamental entropy inequality

BdQ<

T < S(B)—S(A) (1.5)

Following Fermi [17], we again emphasize that the temperature occurring under the
integral sign is not the system temperature, but the temperature of the reservoir. Since
in our context, T}, is constant, we get, for the total heat Q45 received by the system
during the transformation from A to B

Oup = /A * 10 < T (5(B) — S(4)) (7.6)

Consequently we find that the work performed during the transition A — B satisfies
the inequality

Wap=U(A) —U(B) + Qap < U(A) —U(B) + Tres (S(B) — S(A)) (1.7)

The rhs of this equation involves both the system and environment state functions,
and is as such not a very natural quantity. However, we can choose the temperature of
the system to be the same as T,.s both initially and finally, but not necessarily during
the transformation.

This is a very important and subtle point often glossed over. Overlooking this
subtlety would give the impression that the Helmholtz free energy inequality to be
derived shortly is valid only for isothermal transformations. With the choice above
for Ty, Tp we have Ty = Tp = T,.s = T (say). Then, eqn.(7.7) takes the form

Wap =U(A)—U(B)+Qap < U(A) —U(B) +T (S(B) — S(A)) (7.8)
This allows the definition of a new state function
F=U-TS (7.9)
in terms of which we can write the work inequality as
Wag < F(A)— F(B) = —AF (7.10)

This state function F (also denoted by A in some texts, apparently for the German
word Arbeit for work) is called the Helmholtz free energy. It plays a fundamental
role in thermodynamics as well as Statistical Mechanics.

The inequality says that during any transformation of a thermodynamic system
such that the initial and final temperatures are the same, and the system exchanges
heat with a reservoir also at the same temperature, the work performed is bounded
by the negative of the change in Helmholtz free energy. The following are important
remarks in this context:

e Though T4 = Tp, the system need not be at the same temperature through-
out, i.e the transformation A — B need not be isothermal for the bound of
eqn.(7.10) to hold.
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e It certainly holds when the transformation is restricted to be isothermal.
This requires the system to be in equilibrium with the heat reservoir
throughout.

e An important physical significance of the free energy F is that its change in
any change consistent with the above restrictions gives the maximum work
that can be performed during the transformation.

¢ The equality holds when the transformation is reversible and in that case
Wag = F(A) — F(B) = —AF; in this case, the Helmholtz free energy be-
haves like energy in mechanical systems.

Now we discuss what is essentially the most important property of F. For this, con-
sider the system to be mechanically isolated, though continuing to be in contact with
the heat reservoir. Then Wyp is necessarily zero and we get

F(B) < F(A) (7.11)

This means that under the conditions stated above, a mechanically isolated system at
a minimum of F must necessarily be in a state of equilibrium. Otherwise, any trans-
formation has to only increase the free energy and that would contradict eqn.(7.11).

But is the converse also true? That is, if a system, subject to the above mentioned
restrictions, is in a state of thermal equilibrium, does it have to be at a minimum of
its free energy? This is a subtler issue. If the system is not at a minimum of F, there
will certainly be states with lower free energies. Therefore, unless there are some
barriers, specific to the system, that prevent transformations from taking the system
to these lower F states, the system will not be in equilibrium. But ruling out such
barriers requires additional considerations, and one can not say with all generality
that the system in a higher state of F will necessarily transform to a state with lower
F. But if one takes the attitude that 'unless otherwise specified’ the system will tend
towards minimising F, the minimum of F becomes both a necessary and sufficient
condition for thermal equilibrium.

7.1.3 Gibbs free energy

Now we introduce the Gibbs Free Energy, also called the thermodynamic potential
at constant pressure. The motivation for this stems from the fact that many impor-
tant transformations take place under conditions of constant temperature and con-
stant pressure. Notable among them are the phase transformations, which will be
discussed at length in chapter 14.

So we consider a transformation that is both isothermal (constant temperature)
and isobaric (constant pressure). It should be appreciated that the conditions dis-
cussed while defining the Helmholtz free energy F are such that, if the transfor-
mation is reversible, it is necessarily isothermal. But irreversible transformations
need not be isothermal. Nevertheless, the irreversible transformations can be taken
to be isothermal without any contradiction. If the volume of the system changes
from V(A) to V(B) during the isothermal-isobaric process, the work done is Wap =
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P(V(B) —V(A)), and the inequality eqn.(7.10) becomes
P(V(B)— V(A)) < F(A) — F(B) (7.12)
This immediately suggests the introduction of the state function
G=F+PV=U-TS+PV (7.13)

In terms of this state function, the isothermal-isobaric transformation A — B must
satisfy
G(B) < G(A) (7.14)

Once again, we conclude from this that a system at the minimum of G will be in
thermal equilibrium under conditions of constant temperature and pressure. In the
same spirit as the corresponding discussion for F, we take the minimum of G as a
condition for thermal equilibrium under these conditions.

Example 7.1: Potentials and intensive parameters

Show that a knowledge of the thermodynamic potentials enables the determination of
T and P as suitable partial derivatives.

Let us consider the potentials per unit mass, i.e u,s,h,f and g, and let v
denote the specific volume. We have the following differential identities:

du=Tds—Pdv dh=Tds+vdP df=—sdT —Pdv dg= —sdT +vdP (7.15)
Consequently, T and P can be obtained as the following partial derivatives:
=(), -G, GG, e
as /, s ) p v/ o),

The Gibbs free energy is not useful in this context.

7.2 Maxwell’s relations

With every equation of the type of eqn.(7.1) the following are associated:

aif\ _ aify _
(aél)&)A1 (8§2>51A2 (7.17)

. .- ... %f  _ 9%f .
An integrability condition as a consequence of E10E = 080, 1S

JdA JdA
(),
g & &1 &
Let us start by applying these considerations to the first law described in eqn.(7.3)
which has the same form as eqn.(7.1). The equations that follow are:

U U oT JdP
(as>v_T <&v>s_’) (&v>s_<as)v 719
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The last of these is traditionally called one of the Maxwell Relations, and following
Pippard, we denote it by M.1. Some authors (Huang) refer to the first two also as
Maxwell relations. We shall adhere to the traditional terminology. We have applied
our considerations to the internal energy U, even though the word potential may not
usually be applied to it. In a certain sense, to be made more precise shortly, one could
call U a thermodynamic prepotential. In a completely analogous fashion, one gets the
next set of relations by considering the enthalpy, H:

JH JH aT av
(5s), =7 Go)=v o Ge)m (), o

The Maxwell relation here will be designated M.2. Continuing in the same fashion,
we obtain two more sets of equations, by considering F and G respectively:

oF oF A JdP
<8T>V:‘S (av>T:‘P (av)T:<aT)v 72D

We call the Maxwell relation of eqn.(7.21) as M.3, and,

G G A P
<8T>p:‘S (8P>T:V (8P>T:‘(8T>p (7:22)

as M.4. The four Maxwell relations are not mutually independent. In fact they are all
mathematically equivalent to any one of them. Let us show how this follows from
the identities obeyed by partial derivatives. Let us consider M.4; both the lhs and rhs
can equivalently be rewritten as

<3£>S<gi)’)g§§k (7.23)

as

-1
On using <g§) = (g;) , one sees that this is just M.2! likewise, we rewrite the
P

P
0 b (3P>
(a‘i)S(a;)v_(g;)i (7.24)

lIhs and rhs of M.3 as
A

-1
On using (gg)P = <3T)v’ one sees that this is just M.1! Pippard has explicitly

shown the equivalence of M.1 and M.2 in his book. Thus all four Maxwell relations
are equivalent to a single relation (see also the problem 7.4 at the end of this chapter).
This is hardly surprising as they are all consequences of the first law. But what
is important is not whether the relations are independent in a mathematical sense
or not. Though mathematically dependent, each one of them plays a different role
in relating quantities that may be hard to obtain experimentally to those that can be
obtained more easily. That is the true import of the different Maxwell relations.
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Example 7.2: Determining enthalpy

It is often necessary to determine enthalpy as a function of T and P. Suppose there
is a substance whose constant pressure specific heat Cp(T) is a function of tempera-
ture alone. What consistency condition is to be satisfied by the coefficient of volume
expansion o.? With such a condition satisfied, find enthalpy as a function of T and P.

Let us consider enthalpy h as a function of T and P. Then a knowledge of
its partial derivatives can be used to find h explicitly. This is possible as these
partial derivatives can be expressed in terms of observables. Let us begin with
the enthalpy differential encountered in the example above. It follows from it
that

oh ds oh av
(aP>T=t(aP>T—|—V—> (8P>T:_T(8T)P+v:v(1_Ta) (7.25)

where use has been made of the Maxwell relation M.3. On the other hand,
one also has

oh on\“
dh = dT P =CpdT 1-Ta)dP 7.26
(51) 7 (35 p=crar v 7 720
Let Cp in this case be Cp(T). The integrability of h requires that v(1 —Ta)
must be a function of P alone. Denoting that function as f(P), the expression
for the enthalpy is

h(T,P) = / dTCp(T) + / dPf(P) (7.27)

7.2.1 How many different potentials?

We introduced four potentials U, H, F and G; the question that naturally comes to
mind is whether there are more, and how we can be sure that we have found them
all. We first answer this in the simple context of only two independent variables, and
then answer the question in general.

Starting with dU we find that it equals TdS — PdV as per the first law. The inde-
pendent variables here are S,V, and the dependent variables T,P are given by the first
two of eqn.(7.19). Can U be transformed into another state function which is now a
function of P, which was a dependent variable in the case of U, and of S, which was
an independent variable for U? This is an intermediate step where we have traded
only one of the independent variables (in this case V) to one of the dependent vari-
ables (in this case P). Clearly, this process can be carried out one at a time till all the
original independent variables have been swapped with all the original dependent
variables.

The underlying mathematics is called Legendre transform and we shall not go
into the details of this very beautiful concept, but simply illustrate how it works in
our thermodynamics context (it works in a very simple and straightforward way!). It
is obvious that by changing U to U’ = U + PV, one gets dU’' = dU + PdV +VdP =
TdS+VdP. Several important features of this very elementary manipulation deserve
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to be stressed; firstly, U’ is also a state function satisfying eqn.(7.1). The independent
variables for the specification of U’ are now (S,P) as againt (S,V) for U. Secondly,
the sign of VAP in U’ is opposite to that of PAV in U. We may call this elementary
operation a Legendre transform of U in the P,V variables.

Clearly, an independent Legendre transform of U in the S,T variables is also pos-
sible leading to yet another state function, say, U*, also obeying eqn.(7.1). The thrust
of these considerations is, therefore, that new thermodynamic potentials can be ob-
tained starting from old ones through the process of Legendre transforms. Posed this
way, the question as to the number of possible thermodynamic potentials boils down
to the number of possible independent Legendre transforms that can be performed.

The systematic way of answering that question is by studying the algebra of Leg-
endre transforms, or put in simpler terms, by finding out how two Legendre trans-
forms can be combined to yield a third. Let us look at U’ obtained by Legendre
transforming U in (P,V) variables. The structure of dU’ = T'dS + VdP indicates that
U’ too can be further Legendre transformed in two independent ways, in (P,V) or
in (S,T). For the sake of clarity in expressions, let us say that in (P,V) variables it
is Legendre transform 1, and in (S,T) variables it is 2. Further, let us denote by Al
the Legendre transform of A by transform i, and by A"/ the result of successively
transforming A by transforms i,j,..etc.

With this notation, U! = U’ and U? = U*. Quite obviously, (U')! = Ul =
U,(U*)? =U?? =U, and, U2 = U%!. The important rule we abstract is that re-
peated Legendre transforms in the same pair of variables do not generate new poten-
tials, and that the order of independent Legendre transforms is irrelevant. So in our
simplest example, starting with U (hence our choice to call it the prepotential), we
generate three more potentials U'=U' =U+PV=H,U>=U"=U-ST=F,
and U2 = U?! = U + PV — ST = G. Thus the answer to our earlier question is that
U,H,E,G are all the thermodynamic potentials one can have in the simplest case.

7.2.2 Inclusion of chemical potential

We will show the generalisation when we include the concentration N and the chemi-
cal potential |1, which is the case of three independent variables. If the concentration
of a substance is also considered as an independent variable, the first law generalizes
to

dU =TdS — PdV + udN (7.28)

where U is the chemical potential, and it plays the same role to N as what pressure
plays to V. The intensive variables (7, P, 1t) are given by

U U U
(as)wv =7 (av>S,N = <aN)S,V N 7:29)

while the corresponding Maxwell relations, now three in number, are given by

oT _(oP oT _(du (0P _(du
vV )sn S )yn \ON)gy, \9S)yy ON Sy_ WV )yn

(7.30)
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Now, it is possible to perform three independent Legendre transforms; in (P,V) de-
noted by 1, in (S,T) denoted by 2, and finally, in (1,N) denoted by 3. Using these we
construct the eight potentials (including U) and their differentials

U = U  dU =TdS—PdV+ udN (7.31)
Ul = U+PV=H  dH=TdS+VdP+ udN (7.32)
U? = U-TS=F  dF =—SdT —PdV + udN (7.33)
U = U-uN=U,  dU,=TdS—PdV—Ndu (7.34)
U'? = U'-TS=G  dG=—SdT +VdP+ udN (7.35)
U?** = U?-uN=F,  dFy=-SdT —PdV—Ndu (7.36)
U = UP+PV=H, dH,=TdS+VdP—Ndu (7.37)
ut?? = UM -uN=G, dG,=-SdT+VdP—Ndu (7.38)

where we have adopted the notation by Callan whereby X, = X — u N with X being
a potential in the absence of a chemical potential.

Thus at first glance we find 8 potentials for this case, pointing to a 2" rule for
the number of thermodynamic potentials. In addition to the previous four potentials
U,H,F,G we have four more U[u],H[¢t],F[¢t] and G[1t]. The new potentials are noth-
ing but the Legendre transforms of the previous potentials in the new direction.

But now there is a new subtlety that was absent when we had not included N
among the independent coordinates; this has to do with the fact that the Euler rela-
tion, expressing the consequences of extensivity, equates N to the Gibbs potential
(see chapter 6). This means that the ‘new’ potential G,; actually vanishes! Thus there
are only 7 new potentials instead of 8! There will be 21 Maxwell relations now. We
shall not write them down explicitly.

Thus the general answer is that if there are n independent variables, not counting
N, the total number of thermodynamic potentials, including U, is 2". Since each
potential generates n integrability conditions, one will have n - 2" Maxwell relations
in that case. On the other hand, if the independent variables includes N, there are
only 2" — 1 potentials and n(2" — 1) Maxwell relations.

7.3 Problems

Problem 7.1 The enthalpy of superheated steam at 300°C at 30 bar is roughly
3000 kJ/kg, while at 1 bar is 3080 kJ/kg. Likewise, the specific entropy at this
temperature is 6.54 kJ/kgK at 30 bar and 8.22 kJ/kgK at 1 bar. What is the max-
imum work that 1 kg of steam can deliver as it expands from 30 bar to 1 bar?

Problem 7.2 Show that for an ideal gas, the enthalpy at constant temperature is
independent of entropy. In particular, show that

oH o0H
(as>T:° (as>v:” 739

where y=Cp/Cy.
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Problem 7.3 Find the condition for the Cp of a gas to be independent of pressure.

Problem 7.4 Show that all the Maxwell relations involving only T,S,P,V are
equivalent to the single Jacobian condition:

oT as oT oS
(8P)v(8V>P’(av>P(ap>V:1 (7.40)

Problem 7.5 Derive the fundamental equations of an ideal gas in the F,G,H rep-
resentations. From each of them, derive the equations of state and the chemical
potential ut.

Problem 7.6 Derive the fundamental equations for the vdW fluid in the F-
representation.

Problem 7.7 Find the fundamental equation for blackbody radiation in the F-
representation. Derive from it the corresponding thermal and mechanical equa-
tions of state.

Problem 7.8 The fundamental equation for a system in the S-representation is
given by § = A(NU + BV?)'/2 where A,B are constants. Find the fundamental
equation in the G-representation. Determine the coefficient of volume expansion
« and the isothermal compressibility x7.

Problem 7.9 Show, by using the fundamental equation in the S-representation
for a mixture, that the Helmholtz free energy F for the system is additive, i.e
F(T,V.{N;} =3, F(T,V,N;). Also show that no other thermodynamic potential
satisfies this additivity.

Problem 7.10 For the rubber band model of problem 4.8, calculate the various
thermodynamic potentials. Find the Maxwell relations for this system. Show that
the tension at constant length increases with temperature if it is given that the
entropy of the band decreases when it is stretched at constant temperature.

Problem 7.11 Consider the molar fundamental equation in the u-representation:
u = Ae(V=v0)? o5/3R (4/3 (7.41)

a) For this system show that third law is satisfied, and in particular find the low
temperature behaviour of Cy; b) show that the high temperature behaviour of
Cy is in accordance with the Dulong-Petit law; c) show that the coefficient of
expansion « for this system vanishes at P=0. What happens to the volume at this
point?

Problem 7.12 Is it enough to know the Joule-Kelvin coefficient pyx = (g;)H

of a gas and its Cp as functions of T and P to determine the equation of state of
the gas? If not, what is the minimal additional information that is required for
this purpose?



8 Magnetic Systems

8.1 Introduction

A magnet is such an integral part of our world that it is natural to expect thermody-
namics to play a role in its description, or more generally, in the description of mag-
netic systems. That temperature has a central role to play in magnetism is revealed
by the fact that magnets lose their magnetism when heated. The power of thermo-
dynamics, as we have amply demonstrated so far, is in providing a fairly detailed,
and even quantitative, description of a system without invoking much of the micro-
scopic characterstics of the system. For the thermodynamics of magnetic systems too
we would like to achieve the same. Nevertheless, there are so many peculiarities of
magnetic systems vis a vis mechanical systems that some broad understanding of the
physics of magnetism is necessary to appreciate, and even correctly formulate, their
thermodynamics.

Magnetic materials can be in the form of solids, liquids, as well as gases. Ac-
cording to their magnetic properties, to be explained shortly, they are classified as
the so called Diamagnetic, Paramagnetic and Ferromagnetic substances. In addition
one can have anti-ferromagnetic as well as superconducting substances. The latter
display a number of novel magnetic phenomena. The quest for lower and lower tem-
peratures has also opened the gates to more and more novel magnetic phenomena.

Let us begin with the simplest physical situation of magnetic phenomena in free
space. Let us further restrict ourselves to the cases where neither the currents nor the
magnetic fields produced by them vary with time. This is called magnetostatics. As
far as thermodynamics is concerned, time plays no role anyway and it is only the
magnetostatics that is of interest.

Quantitatively, the magnetic field produced by a current is given by the Biot-
Savart Law. For example, a very long straight wire carrying a current I, measured in
amperes (A), produces a magnetic field

Mo I

= on R 8.1

at a distance R from it. The quantity L is called the permeability of free space.
Its dimensions are Newtons per ampere-squared (N /A?). Its numerical value is 47 x
1077 N/AZ. The dimensions of the magnetic field are Newtons per ampere-metre and
the ST unit is the Tesla (T), i.e 17 = 1N/(A.m). Its relation to the more commonly
used unit Gauss, which is actually the cgs unit, is 17 = 104 gauss. Actually the
magnetic field is a vector B, and what this equation gives is its magnitude. The force
exerted by a magnetic field B on a wire of length d/ (this is a vector as the elementary
length can point in different directions) is given by

dF =1dl xB (8.2)
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For more general circumstances the magnetic fields are obtained by solving the
Maxwell’s Equations:
VxB=puly V-B=0 (8.3)

here J is called the current density. Its magnitude J¢ is the current per unit area
perpendicular to the flow. Following Griffith, we have added a subscript ’f’ to the
current density to indicate it is the free current. An example of a free current is the
current that flows in a wire whose ends are connected to a battery. Soon, we will
introduce another type of current. These are equivalent to the Biot-Savart law. If you
are not familiar with these equations, do not worry! Just think of them as the precise
mathematical form of the laws governing the magnetic fields created by currents.

We next discuss the very important notion of magnetic dipole moments (magnetic
moments, for short) and magnetization. Consider a tiny loop of area Aa carrying a
current i. Using the Biot-Savart law, the magnetic field produced by this current loop
at distances much greater than its size can be shown to be

B(r) = Z‘t r15 3(Aa-r)r — r2Aa] (8.4)
The area element has been represented here by a vector whose magnitude is the area,
and whose direction is the direction of the normal to the area element. This is indeed
the field of a dipole as can be seen by comparing this with the form of the electric
field produced by an electric dipole. Therefore, eqn(8.4) tells us that an elementary
current loop behaves like a magnetic dipole moment m = iAa, as far as the magnetic
fields produced at large distances are concerned.

Let us now revisit the familiar bar magnet. It clearly produces a magnetic field
(otherwise, it would not be called a magnet!), yet visibly there are no currents flowing
anywhere. The common attitude taken then is to claim that the atomic structure of
the magnet is actually a source of currents, though these currents are not visible to
the naked eye because of their extraordinarily small size, and that the magnetic field
of the bar magnet is due to them. But the spirit of thermodynamics is to avoid relying
on such microscopic details. So what else can be one’s attitude to the puzzle of the
bar magnet?

The example of the elementary current loop tells us that the magnetic field can ei-
ther be thought of as being produced by the current in the loop, or as being produced
by an elementary magnetic dipole. In so far as one has information only about the
magnetic field, there is no way to distinguish one of these possibilities from the other.
The actual microscopic description could in principle have been in terms of elemen-
tary magnetic charges (magnetic monopoles) and dipoles constructed out of them.
Thermodynamics should be insensitive to which of the microscopic descriptions is
actually correct.

With such an attitude, we could ascribe the magnetic properties of a bar magnet as
due to magnetic moments, without asking any questions as to the microscopic origin
of these moments. Then the currents, as for example, in a solenoid, and magnetic
moments, as a description, for example, of bar magnets, are to be treated on the
same footing. This shall be our attitude in what follows. Rather than elementary
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magnetic dipole moments, what is relevant for thermodynamics is the concept of
magnetization, which is nothing but the total magnetic moment per unit volume, M,
added vectorially.

With this long, but necessary, introduction to the basics of magnetic phenom-
ena, we turn our attention to the task of a thermodynamic description of magnetic
phenomena. For that, we need to clarify both the nature of energy and of work in
magnetic systems.

Firstly, as per electrodynamics there is an energy density associated with the mag-
netic field itself, even without the presence of any material magnetic system.This
energy density of vacuum in the presence of a B field is 23:0 (Griffiths, Jackson). As
regards work, what is relevant is the work done in changing the magnetization in a
given magnetic field. This can be computed by using an elementary current carrying
loop as a model for the dipole moment, and adding the work done on all the elemen-
tary dipoles to get the work done in changing magnetization. A lucid account of this
can be found in Pippard. For an elementary dipole this is

W =8m-B (8.5)

Would it then be a correct way to obtain the First law for magnetic systems by adding
the magnetic energy density 21220 to internal energy density u, and adding the mag-

netic work, dW,, = §M - B to the PdV term in the usual first law? Reasonable as it
sounds, this recipe will actually turn out to be wrong! We shall explain the reasons
after describing the correct way of formulating the first law. For that we have to turn
to understanding magnetostatics in the presence of magnetic materials.

Before doing that, let us clarify the meaning of an external magnetic field. In
this context, it is very important to remember an advice from Pippard, which is to
always keep the actual experimental arrangement in mind while analysing any par-
ticular question. Otherwise, an excessive reliance on only the equations divorced
from the experimental arrangements can lead to a plethora of confusions. By ’actual
experimental arrangement’ he is of course not talking about nitty-gritty details of a
laboratory. Rather, his emphasis is on ’the measurable content’ of an experiment.

We digress here to point out that Pippard’s advice actually touches the very basic
chords of science. The final arbiter in science is the experiment, so when interpre-
tational problems arise, their resolution is really to be sought in what is measured
and how. Nowhere has this line of thinking proved more powerful than in the thorny
issues of Quantum Theory.

We could take a typical solenoid along with its battery which supplies the e.m.f for
it as the ’experimental arrangement’ in question. The current flowing in the coils of
the solenoid will then be a directly observable measure of the magnetic field. Imagine
placing an elementary current loop inside such a solenoid. Any attempt to change this
dipole moment, either in its orientation or in its magnitude, will set up an additional
e.m.f in the coils of the solenoid. Then, in order to maintain the original current, and
hence the original magnetic field, the battery will have to supply additional e.m.f
opposite to that induced by the changing dipole. This is tantamount to the battery
doing work on the system. This is the operational meaning of eqn.(8.5). Thus in the
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thermodynamic context, by magnetic system we not only mean the magnetic material
placed in the magnetic field, but also the solenoid along with its source of e.m.f. The
field produced by the solenoid in the absence of any magnetic material placed inside
it will be called the external magnetic field B,.

We finally turn to an analysis of the
situation when a magnetic material is
placed inside the solenoid. The situa-
tion becomes quite complex and here
we indicate in broad terms the result- Ve
ing picture. The current in the solenoid %—EN\H\
not only produces a magnetic field ev- " v
erywhere, it also induces a magnetiza- 5 SN
tion in the magnetic body. Therefore, -
to describe the system under consider- ‘\‘_/
ation, not only the magnetic field but
also the magnetization, which depends
both on the substance as well as its ther-
modynamic state, has to be specified.
We shall only give the most basic equa- FIGURE 8.1 A solenoid.
tions necessary for our purposes, but the
reader is strongly urged to consult Griffiths, Jackson, Callen etc.. Essentially, mag-
netization acts as an additional conserved (recall that we are restricting attention to
static phenomena) current Jy; = V x M, so that the Maxwell equation of eqn.(8.3)
now becomes

A

A}
A
1

A
1

J - AW AW Y
— 1 1 ]
i 7\ 7\ i

L M (8.6)
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The current Jy; = V x M is called the magnetization current density. It is also some-
times called the bound current density to distinguish it from the free current intro-
duced earlier.

Strictly speaking, one should have solved for B arising from the fotal current
density J = J s+ Jp, subject to V-M = 0. Such a B would have truly behaved like
a magnetic field. Though the mathematical trick employed to get VxH = J; is a
neat one in the sense that this equation is determined only by the free part of the
current density, physically the meaning of H is far from clear. For one thing, it is not
divergence free like a true magnetic field. Instead, V-H= —V - M.

Even though uoH and B, satisfy the same Ampere like equation, because their
divergences obey different equations, they are in general not equal. When there are
enough symmetries in the problem, like spherical symmetry etc., Ampere’s equation
alone is enough to determine H and in those situations, V- M is zero (Griffiths).
In such situations o H also equals the external field B,. The reader is encouraged
to go through the detailed treatment of the bar magnet in Sommerfeld’s treatise on
Electrodynamics, for a better understanding of these subtleties.

Therefore in general, if an external magnetic field is applied, the magnetic field
inside the system is different from this external field. As we have already seen, it

VxB=ugJs+VxM)—= VxH=]; H
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becomes necessary to introduce rwo distinct types of fields, B(x) and H (x). Also, as
noted before, the physical meaning of H is somewhat obscure. Even their names have
not been without controversy. As we have already seen, B (x) is the more fundamental
field; yet, H (x) is called the magnetic field by many. Having done that, it becomes
necessary to give another name to B that will distinguish it from H. To that end, B is
called by some as magnetic flux density, and by some others as magnetic induction.
The latter, as remarked by Griffiths, is particularly misleading as the word induction
has already been given an altogether different meaning.

Confusion in this regard does not stop there; as elaborated by Feynman, the quan-
tities B, H have dimensions that are not always the same! In a CGS system both of
them have the same dimensions, but not the same units! The CGS unit of B is the
gauss (G), while that of H is oersted (Oe). In an SI system, they don’t even have the
same dimensions; the dimensions of B are N/A.m while those of H are A/m. Accord-
ing to Griffiths, Sommerfeld is supposed to have said ’the unhappy term ’magnetic
field’ for H should be avoided as far as possible. It seems to us to that this term has
led into error none less than Maxwell himself’!

Before finally turning to addressing the issues of energy and work for magnetic
systems, we discuss the important notion of magnetic susceptibility. The source of
both the magnetic fields H, B, and the magnetization in the magnetic medium is the
same and that is the current J¢. In this sense, the example of the elementary current
loop is very different as its magnetic moment has an independent existence from the
source of the magnetic field. Thus, in the context of the magnetic systems, a varia-
tion of the external current already induces a change in the magnetization. This can
be expressed quantitatively through a functional dependence of M on the magnetic
field(s). We shall refrain from doing this in all generality, but do so for the class of
systems for which this dependence is linear. This is not such a great restriction, as
for a large number of systems of interest, this is a very good approximation. In fact,
for superconductors, it is even exact!

But here too there is a source of confusion; some authors define magnetic suscep-
tibility through M = y,, :?0 , while many others define it as M = ¥, H. As long as the
susceptibility y,, is very small, both work reasonably well. But when susceptibilities
are not small, as indeed happens in the context of superconductivity, to be discussed
in later chapters, the two versions have dramatically different consequences, and the
correct relation to use is

M=y,H (8.7)

In the table below, we list the magnetic susceptibilities of a few substances. Apart
from ferromagnetic materials, susceptibilities are usually very small.

This is a good place to explain the nomenclature of magnetic substances. Before
that, let us note the relation between the external field B, (or equivalently toH), and
the B-field. Using the various definitions and results obtained till now, it follows that
B=(1+ ﬁ’g)Be. Diamagnetic substances are those for which the susceptibility is
negative, as can also be gathered from the table (8.1). Physically, what is happening
is that the external fields induce in a diamagnetic substance currents that tend to
oppose the external field, thereby reducing it effectively, i.e B < B,. As we shall see
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later, superconductors are perfect diamagnets in the sense that B = 0 irrespective
of B,. In paramagnetic substances, with positive susceptibilities, just the opposite
happens. The induced magnetization actually enhances the external field, i.e B > B,.
For ferromagnetic substances, these considerations are not really applicable because
of the so called spontaneous magnetization because of which the magnetic system
may possess magnetization even in the absence of any external fields.

TABLE 8.1
Some magnetic materials and their magnetic susceptibility ;.

Name Type Temp(K) Am
Water Dia. 300 -9.0-10°6
Bismuth Dia. 300 -16.7-1075
Oxygen Para. 300 0.2:107°
Aluminium  Para. 300 2.2:107°
Iron Ferro. 300 3000

From electrodynamics it follows that the magnetic energy density is given by

u= ; B - H. In free space, upon using M = 0, it goes back to the earlier expression

2 . . . .

Uy = 23 o For materials for which M has a linear dependence on H, as in eqn.(8.7),
the variation of the magnetic energy takes the form

2
8um:H~6B:6u02H + uoH-8M (8.8)

It should be noted that the same variation could have equally well been written as

B2
Oup =29 —M-4B (8.9)
2o
We shall now argue that though both are equivalent, the former is better suited for
thermodynamic applications. Irrespective of which one of them is used, it is clear that
the thermodynamics of magnetic systems requires modifications to both the internal
energy and the work done. If we choose eqn.(8.9), the variation of the internal energy
has to be modified by d 2B:0 and the infinitesimal work by —M - dB. With the help of
suitable Legendre transforms (see chapter 9 and also later sections of this chapter),
we can make the work term look like +B - dM.

The problem with including f:o in the internal energy is that even when the ex-
ternal currents in our reference solenoid are kept constant, this term can change dra-
matically in a phase transition. A prime example is that of the superconducting phase
transition. After the system has become superconducting, the B inside the supercon-
ducting material becomes strictly zero (Meissner effect), whereas this is practical
equal to B, in the normal phase. This difficulty is only of a practical nature as in
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principle one can keep this term and keep track of its changes, though over whole
space. For the same reason, using B - dM or the other way round can lead to singu-
larities unless the susceptibility in the normal phase is carefully kept track of. Once
again, these difficulties are not one of principle, only one of practice.

Let us contrast this with what would ensue had one chosen eqn.(8.8) instead. Then
the internal energy density would have been modified by “Of 2. But when external
currents are fixed, this does not change during phase changes and as far as phase
changes in magnetic systems are concerned, it acts as a harmless constant and can be
ignored without any consequences. The work likewise has many nice features too;
the coefficient of dH never vanishes. When we apply these ideas to superconducting
transitions, these points will become more transparent.

As clarified earlier, in situations with symmetry, as will be the case mostly, toH
can be taken in value to be the external field B,. Therefore the energy and work

terms can be equivalently written as 23 “20 and B, - M respectively. However, it should
be kept in mind in general situations it is the H-field that should be used. Henceforth,
the H-field and equivalently the B,-field will be taken to be uniform. We introduce
the notation M = VM for the total magnetic moment in the volume V. Though both
the magnetic induction and magnetic fields are vectors, we have chosen the compo-
nent of the magnetization vector along the external field as the magnetization itself.
Clearly there may be circumstances where the full vector nature of these quantities
may be important, and in those cases this expression should be appropriately modi-
fied.
We can now write down the statement of first law as generalized to magnetic
systems
dU'=TdS—PdV + udN+B.d.# (8.10)

where U' =U — 23 : V. Before proceeding to build the thermodynamics of magnetic
systems based on this, and the second law, we bring out a number of features that
dlStlngUISh magnetic systems from mechanical systems. Comparing the magnetic
work B, -d.# with the mechanical work —PdV, one sees that there is a parallel
between the component of magnetization parallel to the external field and —V. But
there are many very important differences; in mechanical systems it made sense to
talk of processes at fixed volume. In magnetic systems, it is very difficult to con-
strain magnetization. Therefore fixed magnetization changes are often beyond one’s
reach. The other important difference is that while P,V were taken to be uniform in
space, neither the magnetic field nor magnetization is often uniform. As the source of
magnetic fields are currents, even the shape of the magnetic body is of importance.

One sees that in addition to the usual specific heats for mechanical systems, there
are now two additional specific heats Cg and C , (modulo our remarks about constant
magnetization processes). It should also be noted that ./ can be positive or negative,
while its analog in mechanical systems, -V, was always negative.

For many magnetic systems of interest, the PdV term is often very small com-
pared to Bd.# term, and in such circumstances, the simplified form of the first law
without the PdV term can be employed. A numerical comparison of these two terms
will be made later on.
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It is important to examine the issue of extensive and intensive variables in mag-
netic systems. The external field, B,, is obviously intensive as it does not depend on
the system volume. The total magnetization .#, on the other hand, is more subtle.
As mentioned before, the shape of bodies becomes important for magnetic systems.
If magnetization were to behave like —V, it should indeed be extensive. But because
of the shape dependence, magnetization does not strictly grow with volume, i.e it is
not strictly extensive. But in many substances this is a very small effect and ignoring
it would make .# extensive for all practical purposes. However, in superconducting
substances this could be very important and it may not be a good approximation to
treat magnetization as extensive. So a case by case scrutiny is essential and that, to
some extent, is antithetical to the spirit of thermodynamics!

Returning to magnetic susceptibility J,,, introduced in eqn.(8.7), this is the mag-
netic analog of compressibility in nonmagnetic systems. Compressibility was the re-

sponse of volume to pressure. It is quantified by the fractional change of volume with

1[0V
v\aopr

for isothermal changes etc. Now the analog of V is —.#, and of P is B. Therefore, in

pressure and is given by )X, where X depends on the precise conditions. Itis T

complete analogy with compressibility one can think of introducing /1/[ (%‘gfe/ )X. But

the actual definition of magnetic susceptibility differs from this though the essential
idea that it quantifies the response of magnetization to changes in B, is still retained.

The susceptibility definition introduced in eqn.(8.7), as stressed then, is really
suitable for linear systems. In general, there are actually two definitions used which
should be carefully distinguished; the first is y = ‘1,‘{;/: . The second, the so called

¥4
dB,

ditions that are fixed. For the large class of materials for which the magnetization
is linearly dependent on the external field, y equals y’. But ¥ can be a bad defini-
tion when there can be residual magnetization even after the external field has been
removed. This happens for ferromagnets. Therefore, one should use the differential
susceptibility always. In what follows, we shall mean by susceptibility the differen-
tial one, and drop the ’ notation.

Furthermore, if we had followed a strict analogy between .# and —V on the one

differential susceptibility, is given by yy = ‘1, ( ) , where X stands for the con-

dB.

But here too some notable differences between the two situations would make such
a choice somewhat unnatural. In the non-magnetic case the negative sign was mo-
tivated by the fact that mostly volume decreases with increase of pressure; in the
magnetic case, magnetization usually increases with increasing external field. The
other important difference is that while in the nonmagnetic case V never vanishes,
in the magnetic case .# can indeed vanish. Taking all this into account, the general
formula for susceptibility that has been given is the best.

Now we shall simply repeat everything we have done for the thermodynamics of
nonmagnetic systems. We shall drop the -PdV and u dN terms for the moment. This
is more to keep things from getting too cluttered, not for any deeper reasons. Later
on, when we discuss the magnetic analogs of the Maxwell relations, we shall restore

hand, and between k and ) on the other, we would have defined y as — /1// (3‘//[ )x'
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such terms to show their impact. Apart from convenience, for most systems under
consideration, it’s also a very good approximation to neglect these terms. When we
drop these terms, the only effective variables are T, B, and .# (only two of which
are independent). Other variables like P,V are not explicit, and in practice this means
that all quantities of interest depend very weakly on them. Then, the cases of interest
are when internal energy U™ (to avoid confusion, we denote the potentials by starred
quantities when P,V are neglected) is a function of (T, .#) or of (T, B,).

Let us begin with the so called dQ relations. In chapter 5.2, we had explicitly
worked out the cases when U is a function of (V,T) and (P, T), and had left the (P,V)
case as an exercise. Under the approximation of neglecting the PdV and udN terms,

oU* oU*
(5 ) oA (o), ~efe
oU* oM oU* /A
w = {(ar>geBe(ar>ge}d”{<aBe>TBE<aBe)T}dBe

8.11)

agQ

From this, the two magnetic specific heats C_;,Cp follow:

dU* dU* oM
Ca= ( ar >,// Cn= ( ar >B< aT > (612

Substituting these into eqn.(8.11), we get

oU*
ag = C///dT—f—{(a///)T—Be}d///
dU* oM
w© = CBed”KaBe)TBE<aBe)T}dBe

(8.13)

Consider applying the first of these to an adiabatic process for which dQ = 0. Then

oT oU*

—C = —B 8.14
jl (a//f>s <8///) ro ®19
As in the nonmagnetic case, Cp,, which is the analog of Cp there, can be expressed

as
J(U* —Be M)

Cp = 8.15

B, ( a7 N (8.15)

This motivates one to introduce the magnetic analog of enthalpy as H, = U* —

. . oH* .
B..# , and in terms of it, Cp, = ( a’rll ) . As we shall see when we introduce the
B,

thermodynamic potentials for magnetic systems more systematically, this nomen-
clature needs some care. The TdS equations can now be written down in complete
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analogy with the nonmagnetic discussion.

TdS = dU*—B.d#

aU*
T = T — B,
5 = cor{ (1) “nlaa
aU* oM
TdS = CBedT+{<aBe)TBe<&B€>T}ng (8.16)
As a consequence of the first equation
aU* as
=T B, 8.17
(8///)T (8///)T + @17

The integrability condition for the second of eqn.(8.16) along with the integrability
condition for dU, now expressed as a combination of dT and d.#, yields,

oU* 0B,
) (),

This is the precise analog of eqn.(3.7) which was first encountered in chapter 3. Like-
wise, the integrability condition for the last of eqn.(8.16), along with the integrability
condition for the magnetic enthalpy dH*, yields,

oM dU* oM
T(8T>Be(aBe>TBE<aBe)T (®19

As before, we combine the eqns.(8.16) with the two integrability conditions to obtain
the final form of the magnetic TdS equations:

9B,
T = T-T
ds Cupd (8T )}///d,///
TdS = Cp, dT—i—T(a(//l) dB, (8.20)
T ),

The integrability conditions for this pair of equations give:

iCr\ 9%B, Cs,\ a4
(a//Z)T“T(aTZ)% (aBe>T‘”(aT2>& (®:2D

Combining eqn.(8.17) with eqn.(8.18) yields the magnetic analog of one of the

Maxwell relations: 35 9B
(o), = (5r), ®22

A systematic exposition of the magnetic Maxwell relations will be given shortly.
We have already defined the magnetic susceptibility yx when X is held fixed;we
can specify X to be T for the isothermal susceptibility y7, and S for the adiabatic
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susceptibility ys. We could have introduced the magnetic analog of the coefficient of
thermal expansion as o, = ‘1/ (%“T/l )B . But we shall not do so to avoid a prolifera-
tion of symbols; instead we shall expliceitly display the temperature derivative of ..

However, it is useful to eliminate (%I;“) P in terms of quantities already introduced.

aBe _ /A 838 _ 1 oM
(aT)%_ _( T )Be(a//»T " Var ( or )Be (8.23)

This allows us to simplify the magnetic TdS equations further:

T (o
TdS = dTr d.
S CdT + Vir ( oT >Be /A
TdS = CpdT+T o1 dB, (8.24)
T ) p,
Equating the two TdS equations one gets
oM 1
= — dT+T d# —dB 8.25
0= (Cy—Cg,)dT + < P )Be {VXT M e} (8.25)

As in our discussion for the nonmagnetic case, we express dT in terms of d.# and
dB,as dT = (i/T/l)Bed% + (ggg)%dBe to rewrite the above as

oT aT oM 1
0_(C,//—CBE)(<8%>Bed///+(aBe)%dBe)jLT( o7 )Be {V%Td///—dBe}

(8.26)
Equating the coefficients of the independent variations d.# , dB, to zero we get the

two equations
aT oM
o), = 7(5r),

oT T (oM
(Ck/zCBe)<&///>Be = VXT(QT >B€ (8.27)

Using the definition of yr and the standard properties of partial derivatives, it is easy
to see that the two are actually identical. But we shall use the second of these as its
consequences are more transparent:

T (d.4\*
(Cs,—Cu) = Vi ( o7 )Be (8.28)

Again, let us apply the TdS equations eqn.(8.24) for adiabatic processes (dS = 0) to
derive explicit expressions for C 4 and Cg,:

T oM oM oM JB,
Co==yy, ( oT )( or >s Co. = ‘T< aT >Be(aT )s (8:29)
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The ratio of the magnetic specific heats,y , = gB/: can be worked out, after some
algebra, to be

Cu _Xs
Cs, xr

Using this, and eqn(8.28), one can work out the magnetic analogs of the expressions
for Cy,Cp obtained earlier.

This is a good place to bring out some fundamental differences between the
magnetic and nonmagnetic cases. In the nonmagnetic case, Cp — Cy is always pos-
itive. But an examination of eqn.(8.28) reveals that in the magnetic case the sign of
Cp, —C. 4 depends on the sign of y7 whereas in the nonmagnetic case this depended
on the sign of the compressibility kr which is always positive. On the other hand, the
isothermal magnetic susceptibility y7 can be positive or negative, depending on the
nature of the magnetic material.

For paramagnetic substances, the magnetization ./ along the external field is
positive whereas it is negative for diamagnetic substances. In other words yr is
small and positive for paramagnetic substances, but small and negative for diamag-
netic substances. Therefore Cp, > C 4 for paramagnetic substances while Cg, < C 4
for diamagnetic substances. The magnitude of the susceptibility is about 10~° for
diamagnetic substances and about 10~3 for paramagnetic substances.

Yo = (8.30)

Example 8.1: A diagrammatic interpretation of Cp, — C 4

Show that the first of the eqns.(8.27) can be given a diagrammatic meaning by drawing

two nearby magnetic isotherms at, say, T and T+dT, and taking a point on the lower

isotherm to two points on the upper isotherm via B, = const. and .# = const. processes

respectively.

An isotherm of a nonmagnetic

system such as a gas consisted of

a curve of, for example, pressure

P vs V at some given T. A mag-

T Twr netic isotherm can in general be

8 a surface. For example, if there is

pressure dependence of the mag-

A netic phenomena, the magnetiza-

tion at some temperature T can

M depend on both the pressure P

and the external field B,. Then

a magnetic isotherm could, for

example, be the two-dimensional

surface B, = B.(P,.#). In prac-

tice, pressure dependences are

small, and a magnetic isotherm would simply be a curve in the B, — # plane.

As emphasized in the text, then there is a precise analogy between P and B,
on the one hand, and between V and —.# on the other.

Now consider two neighbouring magnetic isotherms, and consider the sys-

tem in a state represented by the point A on the isotherm at T. Let a re-

versible process at constant B, take it to the state C on the isotherm at

FIGURE8.2 Cp, —Cy
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T+dT, and let d.# be the resulting change in magnetization. Likewise, let a
reversible process at constant . take it to the state B, again on the isotherm
at T4+dT. Consider the reversible cycle ABCA. The heat absorbed during AB
is dQap = C 4dT and the heat relinquished during CA is dQcs = Cp,dT. To
determine the heat absorbed during BC, we use eqn.(8.20) with d7 = 0. This

gives dQpe = —T (%) d.at.
The total heat absorbed during the cycle must match the total work, which

is just the area of ABC. But that is equal to dB, -d.# , This being second order
in smallness can be neglected. Thus we get

9B, B (9B, o
(C//—CBK)dT—T( f )‘///d.//f—O%C‘//—CBe —T( s )//( o )Bk (8.31)

In the last step we made use of the fact that d.Z during the step AC was
at constant B,. Clearly the same diagrammatic proof can be given for the
nonmagnetic case of eqn.(3.52).

Example 8.2: Magnetic Joule-Kelvin process

There is a magnetic analog to the Joule-Kelvin process wherein a magnetic
substance undergoes a suitable change of B, and .# under conditions of adia-
baticity as well as constant enthalpy. At first it is not clear whether we should
consider processes that keep the enthalpy H, however with magnetic contri-
butions, of eqn.(8.49) fixed, or keep the magnetic enthalpy H , of eqn.(8.54)
fixed.

If we want to maintain the nonmagnetic result that the Joule-Thomson
coeeficient vanishes for ideal gases, then one has to define the magnetic analog
to be the one where it is still H that is kept fixed, and not H 4. Then, since
dH = TdS+ B.d.# (we are ignoring pressure terms) entropy will increase while
maintaining H if d.# is negative. As emphasized earlier, —.# plays the role
of V now. To get the magnetic Joule-Thomson coefficient, we rearrange dH as

dH = TdS+Bed//l:{T(aS) +Be(8///> }dT
B, B,

aT oT
oM oM
T B 8.32
RUCIREIEHS, 63
With dH=0, the magnetic Joule-Thomson coefficient u 4 ;r becomes
o4 x4
T( T )B +Be(f”*e)T

Wy = o (8.33)

Cs, +Be( or )Bk

It is easy to verify that this vanishes for the magnetic analogs of ideal gases,
i.e systems for which .# has the form .# = f(B./T)!
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8.2 Thermodynamic potentials

Now we discuss the thermodynamic potentials that are relevant for magnetic systems.
We will continue to ignore the -PdV and p dN terms in the first law, but shall return to
a treatment inclusive of them shortly. We can follow the general procedure described
in chapter 9, and starting from the internal energy U* as the prepotential introduce
three additional thermodynamic potentials, U*-TS, U*-B,.# and U*-TS-B,.# . We
have already encountered the second of these which we called the magnetic enthalpy

"¢~ The first of these is the usual Helmholtz free energy F*(remember our conven-
tlon about starred potentials). We shall call the last of the three as magnetic Gibbs
potential G*,,.

It is not very important how we name the potentials, what are important are the
observable consequences stemming out of them. But it is clearly desirable to name
them in such a way that in the absence of magnetism they naturally reduce to the
nomenclature one would have adopted earlier. The observable consequences are cer-
tainly the Maxwell-like relations that follow, and their consequences, as also other
relations between properties of systems. A very important aspect of these potentials,
something we have discussed at length in the nonmagnetic context, are the various
equilibrium conditions encoded in them. We shall return to those aspects later on,
and we shall comment on the nomenclature issue then too.

It should be noted that even though the first two potentials, U* and F*, are the
same ones we had earlier, they now depend on two independent variables among the
three variables, namely, T, .# and B,. This will also be reflected in the expressions
for their differentials which will be different from their corresponding differentials
in the nonmagnetic context. Let us now display the four differentials in question:

U*(S,.#) = TdS+B.dH (8.34)
F*(T,.#) = —SdT +B.d.« (8.35)
dH ///(SB) = TdS—./#dB, (8.36)
dG*,(T,B,) = —SdT —./dB, (8.37)

As already noted above, the two magnetic specific heats are givenby C , = (ng]) P

and Cp, = (ag%, )B . The consequences of eqn.(8.34) are:

oU* oU* oT 0B,
(as)j, - h (M)fB“ (M)f(as) (8:38)
o) (), = (%)
I —B: - = (8.39)
), (o), o y
OHY,N o (OHT,N (TN (o
(as ) =T (aBe >S‘/’" (aB)S (as)g‘f‘"”

G, 3s oM
L (e (), G
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The third of the equalities in each of these equations constitutes a magnetic Maxwell
relation. As in the nonmagnetic case, they are not all independent. Only one of the
four is an independent relation, and the other three can be reduced to it. But, as
stressed before, the important issue is not of their mathematical independence. What
is important is how each one of them, possibly under different experimental circum-
stances, can be useful in relating some quantities to other observable quantities.
These relations once again point to some interesting differences from the non-

magnetic case. There (‘3?) was always negative but (gg
P

because volume V and entropy S are both positive. But now, the analog of V, which

) was always positive
T

. . . . . . IG* .
is —., can take either sign. So in the magnetic case while ( pr ) is always
B,

. IG* .
negative, ( 4 ) can have any sign.
T

OB,
The last of the magnetic Maxwell relations, ( gli ) .= (aé/r// >Be is particularly
interesting. For many magnetic systems, heating leads to loss of magnetism or to de-

magnetisation. In such situations, (%f ) is negative, and this particular Maxwell
Be

relation then implies that ( 591}9 ) is negative too. It means, that magnetizing a sam-
e)T

ple by placing it in an external magnetic field, while maintaining its temperature,
leads to a lowering of entropy! This will have a striking consequence for cooling
objects to very low temperatures, as will be discussed later.

What is remarkable is that such conclusions follow very generally without de-
tailed input as to the nature of the magnetic material etc., which once again speaks
of the great power of thermodynamic reasoning.

8.2.1 Inclusion of PdV and 1dn terms in dU

Now we discuss the thermodynamic potentials for magnetic systems without drop-
ping the —PdV and pdn terms in the first law. This will clarify a number of important
issues besides yielding more Maxwell and other relations. The first law then takes

the form
dU =TdS—PdV + udn+B.d.# (8.42)

8.2.2 Magnetic Euler relations

Before working out the generalization of the thermodynamic potentials for the mag-
netic case, it is important to establish the Euler relation for the magnetic case, as here
too, one of the potentials just vanishes as a consequence of the Euler relation. Let us
consider the fundamental relation in the U-representation:

U=U(S,V,n, ) (8.43)

The differential form of this being

U U U U
dU = <8S>”dS+ <av)“dV+ (an).dn—i— (8//1) dA (8.44)
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This leads to the identification of the intensive parameters for the magnetic case as

8U> <8U) <8U> (&U)
T = —P= u = Be =
< as Vo, M v S, M an V. ra S\V.n

(8.45)
The extensivity of U, as before, means U(AS,AV,An,A.#) = AU (S,V,n,.# ). The
magnetic analog of the Euler equation emerges exactly as in the nonmagnetic case:

nu=U+PV —ST — BeM (8.46)

Thus in the magnetic case too the chemical potential equals the magnetic Gibbs
potential.

8.2.3 Counting the magnetic potentials

Thus, the magnetic case, as per our counting of chapter 9, corresponds to n = 4,
including the number of moles . Therefore, there ought to be 15 thermodynamic
potentials (2" — 1), and 60 Maxwell relations (- (2" — 1)). All we have to do is just
take over the results for the n = 3 case explicitly worked out there (which was by
inclusion of the dN terms for a nonmagnetic case) and suitably adapt them to the
magnetic context. To avoid cluttering, we shall simply show the results for when the
number of moles is held fixed as generalization to include dn # 0 is straightforward.
Only in that case the potential G 4, exactly vanishes by virtue of the magnetic Euler
relation. The 8 potentials and their differentials are given by:

U = U  dU=TdS—PdV +B.d.# (8.47)
U = U+PV=H dH=TdS+VdP+B.d.# (8.48)
U? = U-TS=F  dF =—SdT —PdV + B.d./ (8.49)
U = U-Be#=Uy  dU,y=TdS—PdV — . #dB, (8.50)
U'? = U'-TS=G  dG=—SdT +VdP+ B.d.# (8.51)
U*® = U?-B.#M =Fy  dFy=—SdT —PdV —.#dB, (8.52)
Ul = U*+PV=H, dH,=TdS+VdP— #dB, (8.53)
vt = UY2—-B,.#4=Gy  dGy=—SdT+VdP— # dB, (8.54)

Now we address the issue of a consistent nomenclature for the thermodynamic po-
tentials of magnetic systems when pressure and volume also become important. It
is to be noticed from eqn.(8.47) that, when pressure and volume are ignored, pairs
of potentials become the same: H* = U*,G* = F*,H, =U",,G*, = F",. Conse-

quently, not only is (35;” >Be equal to Cp,, s0 is (ag;” )Be.

Our motivation for naming H*, as the magnetic enthalpy was that its temperature
derivative at constant magnetic B, gave Cp,. So the question is, in the general case
when pressure and volume are also taken into account, should we call H , the mag-
netic enthalpy or call U 4 that? A simple criterion to adopt is that in the absence