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Foreword 

Turbomachinery is a subject of considerable importance in a modern industrial civilization. 
Steam turbines are at the heart of central station power plants, whether fueled by coal 
or uranium. Gas turbines and axial compressors are the key components of jet engines. 
Aeroderivative gas turbines are also used to generate electricity with natural gas as fuel. 
Same technology is used to drive centrifugal compressors for transmitting this natural gas 
across continents. Blowers and fans are used for mine and industrial ventilation. Large 
pumps are often driven with steam turbines to provide feedwater to boilers. They are used 
in sanitation plants for wastewater cleanup. Hydraulic turbines generate electricity from 
water stored in reservoirs, and wind turbines do the same from the flowing wind. 

This book is on the principles of turbomachines. It aims for a unified treatment of the 
subject matter, with consistent notation and concepts. In order to provide a ready reference 
to the reader, some of the developments have been repeated in more than one chapter. This 
also makes possible the omission of some chapters from a course of study. The subject 
matter becomes somewhat more general in three of the later chapters. 
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CHAPTER 1 

INTRODUCTION 

1.1 ENERGY AND FLUID MACHINES 

The rapid development of modern industrial societies was made possible by the large-
scale extraction of fossil fuels buried in the earth's crust. Today oil makes up 37% of 
world's energy mix, coal's share is 27%, and that of natural gas is 23%, for a total of 
87%. Hydropower and nuclear energy contribute each about 6% which increases the total 
from these sources to 99%. The final 1% is supplied by wind, geothermal energy, waste 
products, and solar energy. Biomass is excluded from these, for it is used largely locally, 
and thus its contribution is difficult to calculate. The best estimates put its use at 10% of 
the total, in which case the other percentages need to be adjusted downward appropriately 
[54]. 

1.1.1 Energy conversion of fossil fuels 

Over the the last two centuries engineers invented methods to convert the chemical energy 
stored in fossil fuels into usable forms. Foremost among them are methods for converting 
this energy into electricity. This is done in steam power plants, in which combustion of 
coal is used to vaporize steam and the thermal energy of the steam is then converted to 
shaft work in a steam turbine. The shaft turns a generator that produces electricity. Nuclear 
power plants work on the same principle, with uranium, and in rare cases thorium, as the 
fuel. 

Principles of Turbomachinery. By Seppo A. Korpela 1 
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2 INTRODUCTION 

Oil is used sparingly this way, and it is mainly refined to gasoline and diesel fuel. The 
refinery stream also yields residual heating oil, which goes to industry and to winter heating 
of houses. Gasoline and diesel oil are used in internal-combustion engines for transportation 
needs, mainly in automobiles and trucks, but also in trains. Ships are powered by diesel 
fuel and aircraft, by jet fuel. 

Natural gas is largely methane, and in addition to its importance in the generation of 
electricity, it is also used in some parts of the world as a transportation fuel. A good 
fraction of natural gas goes to winter heating of residential and commercial buildings, and 
to chemical process industries as raw material. 

Renewable energy sources include the potential energy of water behind a dam in a river 
and the kinetic energy of blowing winds. Both are used for generating electricity. Water 
waves and ocean currents also fall into the category of renewable energy sources, but their 
contributions are negligible today. 

In all the methods mentioned above, conversion of energy to usable forms takes place 
in a. fluid machine, and in these instances they are power-producing machines. There are 
also power-absorbing machines, such as pumps, in which energy is transferred into a fluid 
stream. 

In both power-producing and power-absorbing machines energy transfer takes place be-
tween a fluid and a moving machine part. In positive-displacement machines the interaction 
is between a fluid at high pressure and a reciprocating piston. Spark ignition and diesel 
engines are well-known machines of this class. Others include piston pumps, reciprocating 
and screw compressors, and vane pumps. 

In turbomachines energy transfer takes place between a continuously flowing fluid stream 
and a set of blades rotating about a fixed axis. The blades in a pump are part of an impeller 
that is fixed to a shaft. In an axial compressor they are attached to a compressor wheel. In 
steam and gas turbines the blades are fastened to a disk, which is fixed to a shaft, and the 
assembly is called a turbine rotor. Fluid is guided into the rotor by stator vanes that are 
fixed to the casing of the machine. The inlet stator vanes are also called nozzles, or inlet 
guidevanes. 

Examples of power-producing turbomachines are steam and gas turbines, and water and 
wind turbines. The power-absorbing turbomachines include pumps, for which the working 
fluid is a liquid, and fans, blowers, and compressors, which transfer energy to gases. 

Methods derived from the principles of thermodynamics and fluid dynamics have been 
developed to analyze the design and operation of these machines. These subjects, and heat 
transfer, are the foundation of energy engineering, a discipline central to modern industry. 

1.1.2 Steam tu rbi nes 

Central station power plants, fueled either by coal or uranium, employ steam turbines to 
convert the thermal energy of steam to shaft power to run electric generators. Coal provides 
50% and nuclear fuels 20% of electricity production in the United States. For the world 
the corresponding numbers are 40% and 15%, respectively. It is clear from these figures 
that steam turbine manufacture and service are major industries in both the United States 
and the world. 

Figure 1.1 shows a 100-MW steam turbine manufactured by Siemens AG of Germany. 
Steam enters the turbine through the nozzles near the center of the machine, which direct 
the flow to a rotating set of blades. On leaving the first stage, steam flows (in the sketch 
toward the top right corner) through the rest of the 12 stages of the high-pressure section 
in this turbine. Each stage consists of a set rotor blades, preceded by a set of stator vanes. 
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Figure 1.1 The Siemens SST-600 industrial steam turbine with a capacity of up to 100-MW. 
(Courtesy Siemens press picture, Siemens AG.) 

The stators, fixed to the casing (of which one-quarter is removed in the illustration), are 
not clearly visible in this figure. After leaving the high-pressure section, steam flows 
into a two-stage low-pressure turbine, and from there it leaves the machine and enters a 
condenser located on the floor below the turbine bay. Temperature of the entering steam 
is up to 540° C and its pressure is up to 140 bar. Angular speed of the shaft is generally 
in the range 3500-15,000 rpm (rev/min). In this turbine there are five bleed locations for 
the steam. The steam extracted from the bleeds enters feedwater heaters, before it flows 
back to a boiler. The large regulator valve in the inlet section controls the steam flow rate 
through the machine. 

In order to increase the plant efficiency, new designs operate at supercritical pressures. 
In an ultrasupercritical plant, the boiler pressure can reach 600 bar and turbine inlet tem-
perature, 620°C. Critical pressure for steam is 220.9 bar, and its critical temperature is 
373.14°C. 

1.1.3 Gas turbines 

Major manufacturers of gas turbines produce both jet engines and industrial turbines. Since 
the 1980s, gas turbines, with clean-burning natural gas as a fuel, have also made inroads 
into electricity production. Their use in combined cycle power plants has increased the 
plant overall thermal efficiency to just under 60%. They have also been employed for 
stand-alone power generation. In fact, most of the power plants in the United States since 
1998 have been fueled by natural gas. Unfortunately, production from the old natural 
gas-fields of North America is strained, even if new resources have been developed from 
shale deposits. How long they will last is still unclear, for the technology of gas extraction 
from shale deposits is new and thus a long operating experience is lacking. 

Figure 1.2 shows a gas turbine manufactured also by Siemens AG. The flow is from 
the back toward the front. The rotor is equipped with advanced single-crystal turbine 
blades, with a thermal barrier coating and film cooling. Flow enters a three-stage turbine 
from an annular combustion chamber which has 24 burners and walls made from ceramic 
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tiles. These turbines power the 15 axial compressor stages that feed compressed air to the 
combustor. The fourth turbine stage, called a power turbine, drives an electric generator in 
a combined cycle power plant for which this turbine has been designed. The plant delivers 
a power output of 292-MW. 

Figure 1.2 An open rotor and combustion chamber of an SGT5-4000F gas turbine. (Courtesy 
Siemens press picture, Siemens AG.) 

1.1.4 Hydraulic turbines 

In those areas of the world with large rivers, water turbines are used to generate electrical 
power. At the turn of the millennium hydropower represented 17% of the total electrical 
energy generated in the world. The installed capacity at the end of year 2007 was 940,000 
MW, but generation was 330,000 MW, so their ratio, called a capacity factor, comes to 
0.35. 

With the completion of the 22,500-MW Three Gorges Dam, China has now the world's 
largest installed capacity of 145,000 MW, which can be estimated to give 50,000 MW of 
power. Canada, owing to its expansive landmass, is the world's second largest producer of 
hydroelectric power, with generation at 41,000 MW from installed capacity of 89,000 MW. 
Hydropower accounts for 58% of Canada's electricity needs. The sources of this power 
are the great rivers of British Columbia and Quebec. The next largest producer is Brazil, 
which obtains 38,000 MW from an installed capacity of 69,000 MW. Over 80% of Brazil's 
energy is obtained by water power. The Itaipu plant on the Parana River, which borders 
Brazil and Paraguay, generates 12,600 MW of power at full capacity. Of nearly the same 
size is Venezuela's Guri dam power plant with a rated capacity of 10,200 MW, based on 20 
generators. 

The two largest power stations in the United States are the Grand Coulee station in the 
Columbia River and the Hoover Dam station in the Colorado River. The capacity of the 
Grand Coulee is 6480 MW, and that of Hoover is 2000 MW. Tennessee Valley Authority 
operates a network of dams and power stations in the Southeastern parts of the country. 
Many small hydroelectric power plants can also be found in New England. Hydroelectric 
power in the United States today provides 289 billion kilowatthours (kwh) a year, or 33,000 
MW, but this represents only 6% of the total energy used in the United States. Fossil fuels 
still account for 86% of the US energy needs. 
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Next on the list of largest producers of hydroelectricity are Russia and Norway. With its 
small and thrifty population, Norway ships its extra generation to the other Scandinavian 
countries, and now with completion of a high-voltage powerline under the North Sea, 
also to western Europe. Norway and Iceland both obtain nearly all their electricity from 
hydropower. 

1.1.5 Wind turbines 

The Netherlands has been identified historically as a country of windmills. She and 
Denmark have seen a rebirth of wind energy generation since 1985 or so. These countries 
are relatively small in land area and both are buffeted by winds from the North Sea. Since 
the 1990s Germany has embarked on a quest to harness its winds. By 2007 it had installed 
wind turbines on most of its best sites with 22,600 MW of installed capacity. The installed 
capacity in the United States was 16,600 MW in the year 2007. It was followed by Spain, 
with an installed capacity of 15,400 MW. After that came India and Denmark. 

The capacity factor for wind power is about 0.20, thus even lower than for hydropower. 
For this reason wind power generated in the United States constitutes only 0.5% of the 
country's total energy needs. Still, it is the fastest-growing of the renewable energy 
systems. The windy plains of North and South Dakota and of West and North Texas offer 
great potential for wind power generation. 

1.1.6 Compressors 

Compressors find many applications in industry. An important use is in the transmission 
of natural gas across continents.' Natural-gas production in the United States is centered 
in Texas and Louisiana as well as offshore in the Gulf of Mexico. The main users are the 
midwestern cities, in which natural gas is used in industry and for winter heating. Pipelines 
also cross the Canadian border with gas supplied to the west-coast and to the northern states 
from Alberta. In fact, half of Canada's natural-gas production is sold to the United States. 

Russia has 38% of world's natural-gas reserves, and much of its gas is transported to 
Europe through the Ukraine. China has constructed a natural-gas pipeline to transmit the 
gas produced in the western provinces to the eastern cities. Extensions to Turkmenistan 
and Iran are in the planning stage, as both countries have large natural-gas resources. 

1.1.7 Pumps and blowers 

Pumps are used to increase pressure of liquids. Compressors, blowers, and fans do the 
same for gases. In steam power plants condensate pumps return water to feedwater heaters, 
from which the water is pumped to boilers. Pumps are also used for cooling water flows in 
these power plants. 

Figure 1.3 shows a centrifugal pump manufactured by Schmalenberger Stromungstech-
nologie GmbH. Flow enters through the eye of an impeller and leaves through a spiral 
volute. This pump is designed to handle a flow rate of 100m3/h, with a 20 m increase in 
its head. 

In the mining industry, blowers circulate fresh air into mines and exhaust stale, con-
taminated air from them. In oil, chemical, and process industries, there is a need for large 
blowers and pumps. Pumps are also used in great numbers in agricultural irrigation and 
municipal sanitary facilities. 
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Figure 1.3 A centrifugal pump. (Courtesy Schmalenberger GmbH.) 

Offices, hospitals, schools and other public buildings have heating, ventilating, and air 
conditioning (HVAC) systems, in which conditioned air is moved by large fans. Pumps 
provide chilled water to cool the air and for other needs. 

1.1.8 Other uses and issues 

Small turbomachines are present in all households. In fact, it is safe to say that in most 
homes, only electric motors are more common than turbomachines. A pump is needed in 
a dishwasher, a washing machine, and the sump. Fans are used in the heating system and 
as window and ceiling fans. Exhaust fans are installed in kitchens and bathrooms. Both an 
airconditioner and a refrigerator is equipped with a compressor, although it may be a screw 
compressor (which is not a turbomachine) in an air-conditioner. In a vacuum cleaner a fan 
creates suction. In a car there is a water pump, a fan, and in some models a turbocharger. 
All are turbomachines. 

In addition to understanding the fluid dynamical principles of turbomachinery, it is 
important for a turbomachinery design engineer to learn other allied fields. The main ones 
are material selection, shaft and disk vibration, stress analysis of disks and blades, and 
topics covering bearings and seals. Finally, understanding control theory is important for 
optimum use of any machine. 

In more recent years, the world has awoken to the fact that fossil fuels are finite and that 
renewable energy sources will not be sufficient to provide for the entire world the material 
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conditions that Western countries now enjoy. Hence, it is important that the machines that 
make use of these resources be well designed so that the remaining fuels are used with 
consideration, recognizing their finiteness and their value in providing for some of the vital 
needs of humanity. 

1.2 HISTORICAL SURVEY 

This section gives a short historical review of turbomachines. Turbines are power-producing 
machines and include water and wind turbines from early history. Gas and steam turbines 
date from the beginning of the last century. Rotary pumps have been in use for nearly 200 
years. Compressors developed as advances were made in aircraft propulsion during the 
last century. 

1.2.1 Water power 

It is only logical that the origin of turbomachinery can be traced to the use of flowing water 
as a source of energy. Indeed, waterwheels, lowered into a river, were already known to 
the Greeks. The early design moved to the rest of Europe and became known as the norse 
mill because the archeological evidence first surfaced in northern Europe. This machine 
consists of a set of radial paddles fixed to a shaft. As the shaft was vertical, or somewhat 
inclined, its efficiency of energy extraction could be increased by directing the flow of water 
against the blades with the aid of a mill race and a chute. Such a waterwheel could provide 
only about one-half horsepower (0.5 hp), but owing to the simplicity of its construction, it 
survived in use until 1500 and can still be found in some primitive parts of the world. 

By placing the axis horizontally and lowering the waterwheel into a river, a better design 
is obtained. In this undershot waterwheel, dating from Roman times, water flows through 
the lower part of the wheel. Such a wheel was first described by the Roman architect and 
engineer Marcus Vitruvius Pollio during the first century B.C. 

Overshot waterwheel came into use in the hilly regions of Rome during the second 
century A.D. By directing water from a chute above the wheel into the blades increases the 
power delivered because now, in addition to the kinetic energy of the water, also part of the 
potential energy can be converted to mechanical energy. Power of overshot waterwheels 
increased from 3 hp to about 50 hp during the Middle Ages. These improved overshot 
waterwheels were partly responsible for the technical revolution in the twelfth-thirteenth 
century. In the William the Conquerer's Domesday Book of 1086, the number of watermills 
in England is said to have been 5684. In 1700 about 100,000 mills were powered by flowing 
water in France [12]. 

The genius of Leonardo da Vinci (1452-1519) is well recorded in history, and his 
notebooks show him to have been an exceptional observer of nature and technology around 
him. Although he is best known for his artistic achievements, most of his life was spent in 
the art of engineering. Illustrations of fluid machinery are found in da Vinci's notebooks, 
in De Re Metallica, published in 1556 by Agricola [3], and in a tome by Ramelli published 
in 1588. From these a good understanding of the construction methods can be gained and 
of the scale of the technology then in use. In Ramelli's book there is an illustration of a 
mill in which a grinding wheel, located upstairs, is connected to a shaft, the lower end of 
which has an enclosed impact wheel that is powered by water. There are also illustrations 
that show windmills to have been in wide use for grinding grain. 
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Important progress to improve waterwheels came in the hands of the Frenchman Jean 
Victor Poncelet (1788-1867), who curved the blades of the undershot waterwheel, so that 
water would enter tangentially to the blades. This improved its efficiency. In 1826 he came 
up with a design for a horizontal wheel with radial inward flow. A water turbine of this 
design was built a few years later in New York by Samuel B. Howd and then improved by 
James Bicheno Francis (1815-1892). Improved versions of Francis turbines are in common 
use today. 

About the same time in France an outward flow turbine was designed by Claude Burdin 
(1788-1878) and his student Benoit Fourneyron (1802-1867). They benefited greatly from 
the work of Jean-Charles de Borda (1733-1799) on hydraulics. Their machine had a set of 
guidevanes to direct the flow tangentially to the blades of the turbine wheel. Fourneyron 
in 1835 designed a turbine that operated from a head of 108 m with a flow rate of 20 liters 
per second (L/s), rotating at 2300 rpm, delivering 40 hp as output power at 80% efficiency. 

In the 1880s in the California gold fields an impact wheel, known as a Pelton wheel, 
after Lester Allen Pelton (1829-1918) of Vermillion, Ohio, came into wide use. 

An axial-flow turbine was developed by Carl Anton Henschel (1780-1861) in 1837 and 
by Feu Jonval in 1843. Modern turbines are improvements of Henschel's and Jonval's 
designs. A propeller type of turbine was developed by the Austrian engineer Victor Kaplan 
(1876-1934) in 1913. In 1926 a 11,000-hp Kaplan turbine was placed into service in 
Sweden. It weighed 62.5 tons, had a rotor diameter of 5.8 m, and operated at 62.5 rpm 
with a water head of 6.5 m. Modern water turbines in large hydroelectric power plants are 
either of the Kaplan type or variations of this design. 

1.2.2 Wind turbines 

Humans have drawn energy from wind and water since ancient times. The first recorded 
account of a windmill is from the Persian-Afghan border region in 644 A.D., where these 
vertical axis windmills were still in use in more recent times [32]. They operate on the 
principle of drag in the same way as square sails do when ships sail downwind. 

In Europe windmills were in use by the twelfth century, and historical research suggests 
that they originated from waterwheels, for their axis was horizontal and the masters of 
the late Middle Ages had already developed gog-and-ring gears to transfer energy from 
a horizontal shaft into a vertical one. This then turned a wheel to grind grain [68]. An 
early improvement was to turn the entire windmill toward the wind. This was done by 
centering a round platform on a large-diameter vertical post and securing the structure of 
the windmill on this platform. The platform was free to rotate, but the force needed to 
turn the entire mill limited the size of the early postmills. This restriction was removed in 
a towermill found on the next page, in which only the platform, affixed to the top of the 
mill, was free to rotate. The blades were connected to a windshaft, which leaned about 15° 
from the horizontal so that the blades would clear the structure. The shaft was supported 
by a wooden main bearing at the blade end and a thrust bearing at the tail end. A band 
brake was used to limit the rotational speed at high wind speeds. The power dissipated by 
frictional forces in the brake rendered the arrangement susceptible to fire. 

Over the next 500 years, to the beginning of the industrial revolution, progress was 
made in windmill technology, particularly in Great Britain. By accumulated experience, 
designers learned to move the position the spar supporting a blade from midcord to quarter-
chord position, and to introduce a nonlinear twist and leading edge camber to the blade 
[68]. The blades were positioned at a steep angles to the wind and made use of the lift 
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force, rather than drag. It is hard not to speculate that the use of lift had not been learned 
from sailing vessels using lanteen sails to tack. 

A towermill is shown in Figure 1.4a. It is seen to be many meters tall, and each of 
the four quarter-chord blades is about one meter in width. The blades of such mills were 
covered with either fabric or wooden slats. By an arrangement such as is found in window 
shutters today, the angle of attack of the blades could be changed at will, providing also a 
braking action at high winds. 

Figure 1.4 A traditional windmill (a) and an American farm windmill (b) for pumping water. 

The American windmill is shown in Figure 1.4b. It is a small multibladed wind turbine 
with a vertical vane to keep it oriented toward the wind. Some models had downwind 
orientation and did not need to be controlled in this way. The first commercially successful 
wind turbine was introduced by Halladay in 1859 to pump water for irrigation in the Plains 
States. It was about 5 m in diameter and generated about one kilowatt (1 kW) at windspeed 
of 7 m/s [68]. The windmill shown in the figure is a 18-steel-bladed model by Aermotor 
Company of Chicago, a company whose marketing and manufacturing success made it the 
prime supplier of this technology during the 1900-1925. 

New wind turbines with a vertical axis were invented during the 1920s in France by 
G. Darrieus and in Finland by S. Savonius [66]. They offer the advantage of working 
without regard to wind direction, but their disadvantages include fluctuating torque over 
each revolution and difficulty of starting. For these reasons they have have not achieved 
wide use. 

1.2.3 Steam turbines 

Although the history of steam to produce rotation of a wheel can be traced to Hero of 
Alexandria in the year 100 A.D., his invention is only a curiosity, for it did not arise out 
of a historical necessity, such as was imposed by the world's increasing population at the 
beginning of the industrial revolution. Another minor use to rotate a roasting spit was 
suggested in 1629 Giovanni de Branca. The technology to make shafts and overcome 
friction was too primitive at this time to put his ideas to more important uses. The age 
of steam began with the steam engine, which ushered in the industrial revolution in Great 
Britain. During the eighteenth century steam engines gained in efficiency, particularly 
when James Watt in 1765 reasoned that better performance could be achieved if the boiler 
and the condenser were separate units. Steam engines are, of course, positive-displacement 
machines. 
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Sir Charles Parsons (1854-1931) is credited with the development of the first steam 
turbine in 1884. His design used multiple turbine wheels, about 8 cm in diameter each, 
to drop the pressure in stages and this way to reduce the angular velocities. The first of 
Parson's turbines generated 7.5 kW using steam at inlet pressure of 550 kPa and rotating at 
17,000 rpm. It took some 15 years before Parsons' efforts received their proper recognition. 

An impulse turbine was developed in 1883 by the Swedish engineer Carl Gustav Patrik 
de Laval (1845-1913) for use in a cream separator. To generate the large steam velocities he 
also invented the supersonic nozzle and exhibited it in 1894 at the Columbian World's Fair 
in Chicago. From such humble beginnings arose rocketry and supersonic flight. Laval's 
turbines rotated at 26,000 rpm, and the largest of the rotors had a tip speed of 400 m/s. He 
used flexible shafts to alleviate vibration problems in the machinery. 

In addition to the efforts in Great Britain and Sweden, the Swiss Federal Institute of 
Technology in Zurich [Eidgenossische Technische Hochschule, (ETH)] had become an im-
portant center of research in early steam turbine theory through the efforts of Aurel Stodola 
(1859-1942). His textbook Steam and Gas Turbines became the standard reference on the 
subject for the first half of last century [75]. A similar effort was led by William J. Kearton 
(1893-?) at the University of Liverpool in Great Britain. 

1.2.4 Jet propulsion 

The first patent for gas turbine development was issued to John Barber (1734-C.1800) in 
England in 1791, but again technology was not yet sufficiently advanced to build a machine 
on the basis of the proposed design. Eighty years later in 1872 Franz Stolze (1836-1910) 
received a patent for a design of a gas turbine power plant consisting of a multistage axial-
flow compressor and turbine on the same shaft, together with a combustion chamber and a 
heat exchanger. The first U.S. patent was issued to Charles Gordon Curtis (1860-1953) in 
1895. 

Starting in 1935, Hans J. P. von Ohain (1911-1998) directed efforts to design gas turbine 
power plants for the Heinkel aircraft in Germany. The model He 178 was a fully operational 
jet aircraft, and in August 1939 it was first such aircraft to fly successfully. 

During the same timeframe Sir Frank Whittle (1907-1996) in Great Britain was de-
veloping gas turbine power plants for aircraft based on a centrifugal compressor and a 
turbojet design. In 1930 he filed for a patent for a single-shaft engine with a two-stage axial 
compressor followed by a radial compressor from which the compressed air flowed into a 
straight-through burner. The burned gases then flowed through a two-stage axial turbine 
on a single disk. This design became the basis for the development of jet engines in Great 
Britain and later in the United States. 

Others, such as Alan Arnold Griffith (1893-1963) and Hayne Constant (1904-1968), 
worked in 1931 on the design and testing of axial-flow compressors for use in gas turbine 
power plants. Already in 1926 Griffith had developed an aerodynamic theory of turbine 
design based on flow past airfoils. 

In Figure 1.5 shows the De Havilland Goblin engine designed by Frank Halford in 1941. 
The design was based on the original work of Sir Frank Whittle. It is a turbojet engine 
with single-stage centrifugal compressor, and with can combustors exhausting the burned 
combustion gases into a turbine that drives the compressor. The remaining kinetic energy 
leaving the turbine goes to propulsive thrust. 

Since the 1950s there has been continuous progress in the development of gas turbine 
technology for aircraft power plants. Rolls Royce in Great Britain brought to the market 
its Olympus twin-spool engine, its Dart single-spool engine for low-speed aircraft, and in 
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Figure 1.5 De Havilland Goblin turbojet engine. 

1967 the Trent, which was the first three-shaft turbofan engine. The Olympus was also 
used in stationary power plants and in marine propulsion. 

General Electric in the United States has also a long history in gas turbine development. 
Its 1-14, 1-16, 1-20, and 1-40 models were developed in the 1940s. The 1-14 and 1-16 
powered the Bell P-59A aircraft, which was the first American turbojet. It had a single 
centrifugal compressor and a single-stage axial turbine. Allison Engines, then a division of 
General Motors, took over the manufacture and improvement of model 1-40. Allison also 
began the manufacture of General Electric's TG series of engines. 

Many new engines were developed during the latter half of the twentieth century, not only 
by Rolls Royce and General Electric but also by Pratt and Whitney in the United States 
and Canada, Rateau in France, and by companies in Soviet Union, Sweden, Belgium, 
Australia, and Argentina. The modern engines that power the flight of today's large 
commercial aircraft by Boeing and by Airbus are based on the Trent design of Rolls Royce, 
or on General Electric's GE90 [7]. 

1.2.5 Industrial turbines 

Brown Boveri in Switzerland developed a 4000-kW turbine power plant in 1939 to Neucha-
tel for standby operation for electric power production. On the basis of this design, an 
oil-burning closed cycle gas turbine plant with a rating of 2 MW was built the following 
year. 

Industrial turbine production at Ruston and Hornsby Ltd. of Great Britain began by 
establishment of a design group in 1946. The first unit produced by them was sold to 
Kuwait Oil Company in 1952 to power pumps in oil fields. It was still operational in 
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1991 having completed 170,000 operating hours. Industrial turbines are in use today as 
turbocompressors and in electric power production. 

Pumps and compressors 

The centrifugal pump was invented by Denis Papin (1647-1710) in 1698 in France. To be 
sure, a suggestion to use centrifugal force to effect pumping action had also been made by 
Leonardo da Vinci, but neither his nor Papin's invention could be built, owing to the lack 
of sufficiently advanced shop methods. Leonhard Euler (1707-1783) gave a mathematical 
theory of the operation of a pump in 1751. This date coincides with the beginning of 
the industrial revolution and the advances made in manufacturing during the ensuing 100 
years brought centrifugal pumps to wide use by 1850. The Massachusetts pump, built in 
1818, was the first practical centrifugal pump manufactured. W. D. Andrews improved 
its performance in 1846 by introducing double-shrouding. At the same time in Great 
Britain engineers such as John Appold (1800-1865) and Henry Bessemer (1813-1898) 
were working on improved designs. Appold's pump operated at 788 rpm with an efficiency 
of 68% and delivered 78 L/s and a head of 5.9 m. 

The same companies that in 1900 built steam turbines in Europe also built centrifugal 
blowers and compressors. The first applications were for providing ventilation in mines 
and for the steel industry. Since 1916 compressors have been used in chemical industries, 
since 1930 in the petrochemical industries, and since 1947 in the transmission of natural 
gas. The period 1945-1950 saw a large increase in the use of centrifugal compressors in 
American industry. Since 1956 they have been integrated into gas turbine power plants and 
have replaced reciprocating compressors in other applications. 

The efficiencies of single stage centrifugal compressors increased from 70% to over 80% 
over the period 1935-1960 as a result of work done in companies such as Rateau, Moss-GE, 
Birmann-DeLaval, and Whittle in Europe and General Electric and Pratt & Whitney in the 
United States. The pressure ratios increased from 1.2 : 1 to 7 : 1. This development 
owes much to the progress that had been made in gas turbine design [26]. 

For large flow rates multistage axial compressors are used. Figure 1.6 shows such a 
compressor, manufactured by Man Diesel & Turbo SE in Germany. It has 14 axial stages 
followed by a centrifugal compressor stage. The rotor blades are seen in the exposed rotor. 
The stator blades are fixed to the casing, the lower half of which is shown. The flow is from 
right to left. The flow area decreases toward the exit, for in order to keep the axial velocity 
constant, as is commonly done, the increase in density on compression is accommodated 
by a decrease in the flow area. 

1.2.6 Note on units 

The Systeme International (d'Unites) (SI) system of units is used in this text. But it is still 
customary in some industries English Engineering system of units and if other reference 
books are consulted one finds that many still use this system. In this set of units mass is 
expressed as pound (lbm) and foot is the unit of length. The British gravitational system 
of units has slug as the unit of mass and the unit of force is pound force (lbf), obtained 
from Newton's law, as it represents a force needed to accelerate a mass of one slug at the 
rate of one foot per second squared. The use of slug for mass makes the traditional British 
gravitational system of units analogous to the SI units. When pound (lbm) is used for mass, 
it ought to be first converted to slugs (1 slug = 32.174 lbm), for then calculations follow 
smoothly as in the SI units. The unit of temperature is Fahrenheit or Rankine. Thermal 
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Figure 1.6 Multistage compressor. (Courtesy MAN Diesel & Turbo SE.) 

energy in this set of units is reported in British thermal units or Btu's for short. As it is a 
unit for energy, it can be converted to one encountered in mechanics by remembering that 
1 Btu = 778.17 ftlbf. The conversion factor to SI units is 1 Btu = 1055 J. Power is still 
often reported in horsepower, and 1 hp = 0.7457 kW. The flow rate in pumps is often given 
in gallons per minute (gpm). The conversion to standard units is carried out by noting 
recalling that 1 gal = 231 in3. World energy consumption is often given in quads. The 
conversion to SI units is 1 quad =1.055 EJ, where EJ is exajoule equal to 1018 J. 



CHAPTER 2 

PRINCIPLES OF THERMODYNAMICS AND 
FLUID FLOW 

This chapter begins with a review of the conservation principle for mass for steady uniform 
flow, after which follows the first and second laws of thermodynamics, also for steady 
uniform flow. Next, thermodynamic properties of gases and liquids are discussed. These 
principles enable the discussion of turbine and compressor efficiencies, which are described 
in relation to thermodynamic losses. The final section is on the Newton's second law for 
steady and uniform flow. 

2.1 MASS CONSERVATION PRINCIPLE 

Mass flow rate m in a uniform flow is related to density p and velocity V of the fluid, and 
the cross-sectional area of the flow channel A by 

rh = pVnA 

When this equation is used in the analysis of steam flows, specific volume, which is the 
reciprocal of density, is commonly used. The subscript n denotes the direction normal to 
the flow area. The product VnA arises from the scalar product V • n = V cos 9, in which 
n is a unit normal vector on the surface A and 9 is the angle between the normal and the 
direction of the velocity vector. Consequently, the scalar product can be written in the two 
alternative forms 

V ■ n A = VA cos 9 = VnA = VAn 

Principles of Turbomachinery. By Seppo A. Korpela 15 
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in which An is the area normal to the flow. The principle of conservation of mass for a 
uniform steady flow through a control volume with one inlet and one exit takes the form 

PiViAnl = p2V2An2 

Turbomachinery flows are steady only in a time-averaged sense; that is, the flow is periodic, 
with a period equal to the time taken for a blade to move a distance equal to the spacing 
between adjacent blades. Despite the unsteadiness, in elementary analysis all variables are 
assumed to have steady values. 

If the flow has more than one inlet and exit, then, in steady uniform flow, conservation 
of mass requires that 

^TpiViAni =Y,PeVeAne (2.1) 
i e 

in which the sums are over all the inlets and exits. 

■ EXAMPLE 2.1 
Steam flows at the rate m = 0.20 kg/s through each nozzle in the bank of nozzles 
shown in Figure 2.1. Steam conditions are such that at the inlet specific volume is 
0.80 m3/kg and at the outlet it is 1.00 m3/kg. Spacing of the nozzles is s = 5.0 cm, 
wall thickness at the inlet is t\ = 2.5 mm, and at the outlet it is t2 = 2.0 mm. Blade 
height is b — 3.0 cm. Nozzle angle is a2 = 70°. Find the steam velocity at the inlet 
and at the outlet. 

Figure 2.1 Turning of flow by steam nozzles. 

Solution: The area at the inlet is 

Ax =b(s-h) = 3 ( 5 - 0 . 2 5 ) = 14.25 cm2 

Velocity at the inlet is solved from the mass balance 

m = piVxAx = 
Vi 
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which gives 
. . mVl 0.20 • 0.80 • 1002 

V\ = —,— = = 112.3 m/s 1 A1 14.25 ' 
At the exit the flow area is 

A2 = b(s cos a2 -t2)= 3[5cos(70°) - 0.20] = 4.53cm2 

hence the velocity is 

. . rhv2 0.2 ■ 1.00 • 1002 . . . _ . 
V2 = —r~ = = 441.5 m/s A2 4.53 ' 

2.2 FIRST LAW OF THERMODYNAMICS 

For a uniform steady flow in a channel, the first law of thermodynamics has the form 

m (m + pwi +-V? + gzA + Q = fa (u2 + p2v2 + -V2
2 + gz2) +W (2.2) 

The sum of specific internal energy u, kinetic energy V2/2, and potential energy gz is 
the specific energy e = u + \V2 + gz of the fluid. In the potential energy term g is 
the acceleration of gravity and z is a height. The term p\V\, in which p is the pressure, 
represents the work done by the fluid in the flow channel just upstream of the inlet to move 
the fluid ahead of it into the control volume, and it thus represents energy flow into the 
control volume. This work is called flow work. Similarly, p2v2 is the flow work done by 
the fluid inside the control volume to move the fluid ahead of it out of the control volume. It 
represents energy transfer as work leaving the control volume. The sum of internal energy 
and flow work is defined as enthalpy h = u + pv. The heat transfer rate into the control 
volume is denoted as Q and the rate at which work is delivered is W. Equation (2.2) can 
be extended to multiple inlets and outlets in the same manner as was done in Eq. (2.1). 

Dividing both sides by m gives the first law of thermodynamics the form 

hi + 2Vi +9Zi+q = h2 + -Vi +gz2+w 

in which q = Q/rn and w = W/fn denote the heat transfer and work done per unit 
mass. By convention, heat transfer into the thermodynamic system is taken to be a positive 
quantity, as is work done by the system on the surroundings. 

The sum of enthalpy, kinetic energy, and potential energy is called the stagnation 
enthalpy 

h0 = h+-V2+gz 

and the first law can also be written as 

h0i+q = h02 + w 

In the flow of gases the potential energy terms are small and can be neglected. Similarly, 
for pumps, the changes in elevation are small and potential energy difference is negligible. 



1 8 PRINCIPLES OF THERMODYNAMICS AND FLUID FLOW 

Only for some water turbines is there a need to retain the potential energy terms. When the 
change in potential energy is neglected, the first law reduces to 

1 1, hi + »V{+q = h2 + -V2 ■w 

In addition, even if velocity is large, the difference in kinetic energy between the inlet and 
exit may be small. In such a case first law is simply 

hi + q = h2 + w 

Turbomachinery flows are nearly adiabatic, so q can be dropped. Then work delivered by 
a turbine is given as 

w = h0i — h02 

and the work done on the fluid in a compressor is 

w = h02- h0i 

The compressor work has been written in a form that gives the work done a positive value. 
Hence the convention of thermodynamics of denoting work out from a system as positive 
and work in as negative is ignored, and the equations are written in a form that gives a 
positive value for work, for both a turbine and a compressor. 

■ EXAMPLE 2.2 

Steam flows adiabatically at a rate m = 0.01 kg/s through a diffuser, shown in Figure 
2.2, with inlet diameter Di = 1.0 cm. Specific volume at the inlet v\ = 2.40 m3/kg. 
Exit diameter is D2 = 2.5 cm, with specific volume at the outlet v2 = 3.80m3/kg. 
Find the change in enthalpy neglecting any change in the potential energy. 

Figure 2.2 Row through a diffuser. 

Solution: The areas at the inlet and outlet are 

TTD2 ^O.Ol2 „ o c 1 A _ 5 2 Ai = —- 1 = — - — = 7.85 -10 5 m2 

irD2 TTO.0252 

4.91 -10"4m2 
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The velocity at the inlet is 

rhui 0.01-2.4 
V\ = —,— = r = 305.6 m/s 

Ai 7.85 ■ 10-5 ' 

and at the outlet it is 

m^2 0.01 ■ 3.8 
Vo = —;— = T = 77.4 m/s 2 A2 4.91 -10"4 ' 

Since no work is done and the flow is adiabatic, the stagnation enthalpy remains 
constant hoi = -̂02- With negligible change in potential energy, this equation 
reduces to 

h2 - fti = \v? - l-Vi = i(305.62 - 77.42) = 43.7kJ/kg 

2.3 SECOND LAW OF THERMODYNAMICS 

For a uniform steady flow in a channel the second law of thermodynamics takes the form 

m ( s 2 - s i ) = [2%d£+ f2 s'pd£ (2.3) 

in which s is the entropy. On the right-hand side (RHS) Q' is the rate at which heat is 
transferred from the walls of the flow channel into the fluid per unit length of the channel. 
The incremental length of the channel is d£, and the channel extends from location l\ to £2-
The absolute temperature T in this expression may vary along the channel. In the second 
term on the RHS, s' is the rate of entropy production per unit length of the flow channel. If 
the heat transfer is internally reversible, entropy production is the result of internal friction 
and mixing in the flow. In order for the heat transfer to be reversible, the temperature 
difference between the walls and the fluid has to be small. In addition, the temperature 
gradient in the flow direction must be small. This requires the flow to move rapidly so that 
energy transfer by bulk motion far exceeds the transfer by conduction and radiation in the 
flow direction. 

As Eq. (2.3) shows, when heat is transferred into the fluid, its contribution is to increase 
the entropy in the downstream direction. If, on the other hand, heat is transferred from 
the fluid to the surroundings, its contribution is to reduce the entropy. Entropy production 
s'p is caused by irreversibilities in the flow and is always positive, and its contribution is 
to increase the entropy in the flow direction. For the ideal case of an internally reversible 
process entropy production vanishes. 

2.3.1 Tds equations 
The first law of thermodynamics for a closed system relates the work and heat interactions 
to a change in internal energy U. For infinitesimal work and heat interactions the first law 
can be written as 

dU = SQ- 5W 
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For a simple compressible substance, defined to be one for which the only relevant work is 
compression or expansion, reversible work is given by 

SWS =pdV 

This expression shows that when a fluid is compressed so that its volume decreases, work 
is negative, meaning that work is done on the system. For an internally reversible process 
the second law of thermodynamics relates heat transfer to a change in entropy by 

SQs = TdS 

in which it must be remembered that T is the absolute temperature. Hence, for an internally 
reversible process, the first law takes the differential form 

dU = TdS-pdV 

Dividing by the mass of the system converts this to an expression 

du = Tds — pdv 

between specific properties. Although derived for reversible processes, this is a relationship 
between intensive properties, and for this reason it is valid for all processes; reversible, or 
irreversible. It is usually written as 

Tds = du + pdv (2.4) 

and is called the first Gibbs equation. 
Writing u = h — pv and differentiating gives du = dh — pdv — vdp. Substituting this 

into the first Gibbs equation gives 

Tds = dh — v dp (2.5) 

which is the second Gibbs equation. 

2.4 EQUATIONS OF STATE 

The state principle of thermodynamics guarantees that a thermodynamic state for a simple 
compressible substance is completely determined by specifying two independent thermo-
dynamic properties. Other properties are then functions of these independent properties. 
Such functional relations are called equations of state. 

In this section the equations of state for steam and those of ideal gases are reviewed. 
In addition, ideal gas mixtures are considered as they arise in combustion of hydrocarbon 
fuels. Combustion gases flow through the gas turbines of a jet engine and through industrial 
turbines burning natural gas. Preliminary calculations can be carried out using properties 
of air since air is 78% of nitrogen by volume, which, although contributing to formation 
of nitric oxides, is otherwise largely inert during combustion. Later in the chapter a 
better model for combustion gases is discussed, but for accurate calculations the actual 
composition is to be taken into account. Also in many applications, such as in oil and gas 
production, mixtures rich in complex molecules flow through compressors and expanders. 
Their equations of state may be very complicated, particularly at high pressures. 
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2.4.1 Properties of steam 

It has been found that a useful way to present properties of steam is to construct a chart, such 
as is shown in Figure 2.3, with entropy on the abscissa and temperature on the ordinate. 
On the heavy line water exists as a saturated liquid on the descending part on the left and as 
saturated vapor on the right. Away from this vapor dome, on the right water is superheated 
vapor, that is to say steam; and to the left, water exists as a compressed liquid. The state 
at the top of the vapor dome is called a critical state, with pressure pc = 220.9 bar and 
temperature Tc = 374.14°C. At this condition entropy is sc = 4.4298kJ/(kg ■ K) and 
enthalpy is hc = 2099.6 kJ/kg. Below the vapor dome water exists as a two-phase mixture 
of saturated vapor and saturated liquid. Such a state may exist in the last stages of a steam 
turbine where the saturated steam is laden with water droplets. 

T(°C) P(bar) 800 300150 60 15 5 1 0.4 
finn 1000 500 200100 30 10 2 0.6 0.2 

s[kJ/(kg-K)] 

Figure 2.3 Ji-diagram for water. 

The lines of constant pressure are also shown in Figure 2.3. As they intersect the vapor 
dome, their slopes become horizontal across the two-phase region. Thus they are parallel 
to lines of constant temperature, with the consequence that temperature and pressure are 
not independent properties in the two-phase region. To specify the thermodynamic state in 
this region, a quality denoted by x is used. It is defined as the mass of vapor divided by the 
mass of the mixture. In terms of quality, thermodynamic properties of a two-phase mixture 
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are calculated as a weighted average of the saturation properties. Thus, for example 

h = (1 — a:)/if + xhg 

or 
h = h{ + xhfg 

in which h{ denotes the enthalpy of saturated liquid, hg that of saturated vapor, and their 
difference is denoted by hfg = hg — /if. Similarly, entropy of the two-phase mixture is 

S = Sf + CCSfg 

and its specific volume is 
V = V{ + XVfg 

Integrating the second Gibbs equation Tds = dh — vdp between the saturated vapor and 
liquid states at constant pressure gives 

his = T s fg 

The first law of thermodynamics shows that the amount of heat transferred to a fluid flowing 
at constant pressure, as it is evaporated from its saturated liquid state to saturated vapor 
state, is 

q = hg — hi = hfg 

and this is therefore also 
1 = T(sg ~ s f ) = T s f g 

States with pressure above the critical pressure have the peculiar property that if water at 
such pressures is heated at constant pressure, it converts from a liquid state to a vapor state 
without ever forming a two-phase mixture. Thus, neither liquid droplets nor vapor bubbles 
can be discerned in the water during the transformation. This region is of interest because in 
a typical supercritical steam power plant built today water is heated at supercritical pressure 
of 262 bar to temperature 566°C, and in ultrasupercritical power plants steam generator 
pressures of 600 bar are in use. Steam at these pressures and temperatures then enters a 
high-pressure (HP) steam turbine, which must be designed with these conditions in mind. 

Steam tables, starting with those prepared by H. L. Callendar in 1900, and Keenan 
and Kays in 1936, although still in use, are being replaced by computer programs today. 
Steam tables, found in Appendix B, were generated by the software EES, a product of the 
company F-chart Software, in Madison, Wisconsin. It was also used to prepare Figures 2.3 
and 2.4. Its use is demonstrated in the following example. 

■ EXAMPLE 2.3 

Steam at pi = 6000 kPa and T\ = 400° C expands reversibly and adiabatically 
through a steam turbine to pressure p2 = 60 kPa. (a) Find the exit quality and (b) 
the work delivered if the change in kinetic energy is neglected. 

Solution: (a) The fhermodynamic properties at the inlet to the turbine are first found 
from the steam tables, or calculated using computer software. Either way shows that 
hi = 3177.0kJ/kg and si = 6.5404kJ/(kg • K). Since the process is reversible 
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and adiabatic, it takes place at constant entropy and s2 = si- The exit state is in the 
two-phase region, and steam quality is calculated from 

a a = j ^ j f = 6-5404-1.1451 = 
2 sg-sf 7.5314 - 1.1451 

in which sf = 1.1451 kJ / (kg • K) and sg = 7.5314kJ/(kg • K) are the values of 
entropy for saturated liquid and saturated vapor at p2 = 60 kPa. Exit enthalpy is 
then obtained from 

h2 = h(+ x2h{g = 359.79 + 0.8448 • 2293.1 = 2297.0 k J / k g 

(b) Work delivered is 

Ws = hi-h2= 3177.0 - 2297.0 = 880kJ /kg 

The calculations have been carried out using the EES script shown below. 

" S t a t e 1" 
Tl=400 [C] 
pl=6000 [kPa] 
hl=ENTHALPY(Steam,P=pl,T=Tl) 
sl=ENTR0PY(Steam, P=pl,T=Tl) 

"State 2" 

p2=60 [kPa] 
s 2 = s l 
sf2=ENTR0PY(Steam,P=p2,X=0) 
sg2=ENTR0PY(Steam,P=p2,X=l) 
x 2 = ( s 2 - s f 2 ) / ( s g 2 - s f 2 ) 
hf2=ENTHALPY(Steam,P=p2,X=0) 
hg2=ENTHALPY(Steam,P=p2,X=l) 
h2=( l -x2)*hf2+x2*hg2 

"Performance C a l c u l a t i o n s " 
wt=h l -h2 

The results are: 

hl=3177 [kJ /kg ] h2=2297 [kJ /kg ] 
hf2=359.8 [kJ /kg ] hg2=2653 [kJ /kg ] 
pl=6000 [kPa] p2=60 [kPa] 
s l = 6 . 5 4 [kJ /kg-K] s2=6.54 [kJ /kg-K] 
Tl=400 [C] x2=0.8448 wt=879.9 [kJ /kg] 

Calculation of enthalpy and steam quality at state 2 could have been shortened by 
simply writing 

P2=60 [kPa] 
h2=ENTHALPY(Steam, P=p2, S=sl) 
x2=QUALITY(Steam, P=p2, S=sl) 

The Ts diagram is a convenient representation of the properties of steam, for lines of 
constant temperature on this chart are horizontal in the two-phase region, as are the lines of 
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constant pressure. Isentropic processes pass through points along vertical lines. Adiabatic 
irreversible processes veer to the right of vertical lines, as entropy must increase. These 
make various processes easy to visualize. An even more useful representation is one in 
which entropy is on the abscissa and enthalpy is on the ordinate. A diagram of this kind 
was developed by R. Mollier in 1906. A Mollier diagram, with accurate steam properties 
calculated using EES, is shown in Figure 2.4. 

The enthalpy drop used in the calculation of the work delivered by a steam turbine is 
now represented as a vertical distance between the end states. If the exit state is inside the 
vapor dome, there is a practical limit beyond which exit steam quality cannot be reduced. 
In a condensing steam turbine quality at the exit is generally kept above the line x = 0.955. 
Below this value droplets form, and, owing to their higher density, they do not turn as readily 
as vapor does, and thus on their impact on blades, they cause damage. A complicating 
factor in the analysis is the lack of thermodynamic equilibrium as steam crosses into the 
vapor dome. Droplets take a finite time to form, and if the water is clean and free of 
nucleation sites, their formation is delayed. Also, if the quality is not too low, by the time 
droplets form, steam may have left the turbine. 

The line below which droplet formation is likely to occur is called the Wilson line. It is 
about 115 kJ/kg below the saturated vapor line, with a steam quality 0.96 at low pressures 
of about 0.1 bar. The quality decreases to 0.95 along the Wilson line as pressure increases 
to 14 bar. Steam inside the vapor dome is supersaturated above the Wilson line, a term that 
arises from water existing as vapor at conditions at which condensation should be taking 
place. 

■ EXAMPLE 2.4 

Steam from a steam chest of a single-stage turbine at pi = 3 bar and T\ = 440° C 
expands reversibly and adiabatically through a nozzle to pressure of p = 1 bar. Find 
the velocity of the steam at the exit. 

Solution: Since the process is isentropic, the states move down along a vertical line 
on the Mollier chart. From the chart, steam tables — or using EES, enthalpy of 
steam in the reservoir — is determined to be hi = 3358.7 kJ/kg, and its entropy is 
s\ = 8.1536kJ/(kg • K). For an isentropic process, the exit state is determined by 
P2 = lbar and s2 — 8.1536kJ/(kg • K). Enthalpy, obtained by interpolating in the 
tables, is h2 = 3039.2 kJ/kg. 

Assuming that the velocity in the steam chest is negligible, the exit velocity is 
obtained from 

h^h2+l-V2
2 

or 
V2 = y/2(ht - h2) = V ^ 3 3 5 8 - 7 - 3039.4) 1000 = 799.1 m/s 

An EES script used to solve this example is shown below. Conversion between 
kilojoules and joules is carried out by the statement convert (kJ, J ) : 

"State 1" 
pi=3 [bar] 
Tl=440 [C] 
hl=ENTHALPY(Steam, P=pl, T=T1) 
sl=ENTR0PY(Steam, P=pl, T=T1) 

"State 2" 
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s [kJ/(kg-K)] 

Figure 2.4 Mollier diagram for steam. 

p2=l [bar ] 
s2=sl 
b.2=ENTHALPY (Steam, P=p2, S=s2) 
V2=sqrt (2* (hl-h.2) * c o n v e r t ( k j , J ) ) 

The results are: 

hl=3359 [kJ /kg ] h2=3039 [kJ /kg ] 
s1=8.154 [kJ /kg-K] s2=8.154 [kJ /kg-K] 
p l = 3 [bar ] p2=l [bar ] 
Tl=440 [C] V2=799.3 [m/s] 

To the left of the saturated liquid line water exists as a compressed liquid. Since specific 
volume and internal energy do not change appreciably as a result of water being compressed, 
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their values may be approximated as 

v(T,p)^vt(T) 

u(T,p)*uf(T) 
Enthalpy can then be obtained from 

h(p,T) a ut(T) + pvf(T) 

which can also be written as 

h(p,T) = Uf(T)+MT)vf(T) + ( p - P f ( T ) K ( T ) 

or as 
h = hf + vi(p - Pf) (2.6) 

in which explicit dependence on temperature has been dropped and it is understood that all 
the properties are given at the saturation temperature. 

Consider next the calculation of a change in enthalpy along an isentropic path from the 
saturated liquid state to a compressed liquid state at higher pressure. Integration of 

Tds — dh — vdp 

along an isentropic path, assuming v to be constant, gives 

h = hi +v{(p-pf) (2.7) 

This equation is identical to Eq. (2.6). Both approximations use the value of specific volume 
at the saturation state. 

■ EXAMPLE 2.5 

Water as saturated liquid at pi = 6 kPa is pumped to pressure p2 = 3400 kPa. 
Find the specific work done by assuming the process to be reversible and adiabatic, 
assuming that the difference in kinetic energy between inlet and exit is small and 
can be neglected. Also calculate the enthalpy of water at the state with temperature 
T2 = 36.17°C and pressure p2 = 3400 kPa. 

Solution: Since at the inlet to the pump water exists as saturated liquid, its tempera-
ture is 7\ = 36.17°C, specific volume is V\ = V{ — 0.0010065 m3/kg, and entropy is 
Sl = Sf = 0.5208 kJ/(kg ■ K). At this state its enthalpy hi — h{ = 151.473 kJ/kg. 

Along the isentropic path from state 1 to state 2s, Eq. (2.7), gives the value 
of enthalpy h2sa = 154.889 kJ/kg. On the other hand, the value using EES at 
p2a = 3400 kPa and s2s = 0.5208 kJ/(kg • K) is h2a = 154.886kJ/kg, which for 
practical purposes is the same as the approximate value. Hence the work done is 

ws = h2s -hi = 154.89 - 151.47 = 3.42kJ/kg 

From Eq. (2.6) at pressure 3400 kPa an approximate value for enthalpy becomes 

h2ta. = 151.473 + (3400 - 6) • 0.0010065 = 154.889 kJ/kg 

whereas an accurate value obtained by EES for compressed liquid is 154.509 kJ/kg. 
These values are shown at points 1 and 2t in Figure 2.5. 
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State 2s 
T, =36.26°C 
'2s = 154.886 kJ/kg 
<2sa= 154.889 kJ/kg 

State 2f 
72 = 36.17°C 
h2t = 154.509 kJ/kg 
/? = 154.889 kJ/kg 

p = 3400 kPa 

6kPa State 1 
T: = 36.17°C 

/i,= 151.473kJ/kg 

Figure 2.5 An illustration of how to obtain an approximate value for the enthalpy of compressed 
liquid. 

2.4.2 Ideal gases 

An ideal gas model assumes that internal energy is only a function of temperature u 
and the equation of state relates pressure and specific volume to temperature by 

pv RT or p = pRT 

u(T) 

(2.8) 

in which R is an ideal gas constant. It is equal to the universal gas constant, R = 
8.314 kJ /(kmol • K), divided by the molecular mass M of the gas, so that it is calculated 
according to R = R/M. The ideal gas model has been shown to be valid for various gases 
at low pressures. From Eq. (2.8) it follows that enthalpy for an ideal gas can be written in 
the form h = u + RT, and this shows that enthalpy is also a function of temperature only. 

Specific heats for an ideal gas at constant volume and constant pressure simplify to 

cv(T) 
du 
df 

du 
df 

and 
_ fdh\ _ dh 

dTjp dT 
cP{T) 

Differentiating next, h = u + RT gives 

dh = du + RdT 

from which it follows that 

so that du = cv(T)dT 

so that dh = cp(T)dT 

or cp(T)dT = cv(T)dT + RdT 

cP(T) = cv{T) + R 

Thus even if specific heats depend on temperature, their difference does not. Henceforth 
the explicit dependence on temperature is not displayed. With 7 = cp/cv denoting the 
ratio of specific heats, the relations 

R -yR 
7 — 1 7 — 1 

follow directly. The values of cv,cp, and 7 are shown for air in Figure 2.6. 

(2.9) 
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Figure 2.6 Specific heats for air and their ratio. 

An approximate value for the ratio of specific heats is obtained from the equipartition 
of energy principle of kinetic theory of gases. It states that each degree of freedom of a 
molecule contributes ^R to the specific heat at constant volume. For a monatomic gas there 
are three translational degrees of freedom: one for each of the three orthogonal coordinate 
directions. This means that for monatomic gases 

cv = -R cp= -R 7 = - = 1.67 

If a molecule of a diatomic gas is regarded as a dumbbell, the rotational degrees of freedom 
about the two axes giving the largest moments of inertia contribute each one degree of 
freedom and the third is neglected. The vibrational degrees of freedom are not excited at 
relatively low temperatures. Hence, for diatomic gases the specific heats are 

5 7 7 
c„ = --R cp= -R 7 = - = 1.40 

Since air is made up mainly of the diatomic N2 and O2, Figure 2.6 shows that the equiparti-
tion principle explains the low-temperature behavior of specific heats very well. Activation 
of greater number of vibrational modes takes place as temperature is increased. 

Products of combustion flowing through a gas turbine consist of complex molecules, and 
the reasoning above suggests that the ratio of specific heats for them is closer to unity than 
for diatomic molecules, for all three rotational and low-level vibrational modes are excited. 
For combustion gases the value 7 = 1.333 is appropriate. For superheated steam at low 
pressures the value 7 = 1.3 is acceptable, and for steam that is just below the saturated 
vapor line Zeuner's empirical equation 7 = 1.035 + O.lx is often used, with x as the steam 
quality. At saturation condition x = 1, and this gives 7 = 1.135 for saturated steam. 
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2.4.3 Air tables and isentropic relations 

In this section the influence of temperature variation of specific heats on the thermodynamic 
properties of air are considered. Entropy for ideal gases can be determined by first writing 

in the form 

and integrating. This gives 

Tds = dh — vdp 

dT dp 

s(T2,p2) - s(Ti,pi) - s°(T2) - s°(Ti) - i ? l n ^ 
Pi 

(2.10) 

in which s° is defined as 

AT) 
T t^dT 

Vef J 

Entropy is assigned the value zero at the reference state, Tref = 0 K and pret- = 1 atm. The 
value of entropy at temperature T and pressure p is then calculated from 

s(T,p) = s°(T)-R\n P 
Pref 

For a reversible process s2 = si, and Eq. (2.10) shows that 

s°(r2)-s°(Ti) P2 

Pi 

which can be also be written as 

Defining a reduced pressure as 

exp R 

p2 = exp[SQ(r2)/i?] 
P l exp[S?(T1)/JR] 

pT{T) - exp 
s°(T) 

R 
it is seen that pT is only a function of temperature. The ratio of pressures at the endpoints 
of a reversible process can now be expressed as 

P2 _ PT2 

P2 Prl 

Specific volume ratio can be obtained from the pressure ratio by using the ideal gas law 
pv = RT to recast the pressure ratio into the form 

P2_ _ RT2jh_ _ Pr2 
pi v2 RTi pvi 

Solving for the specific volume ratio yields 

V2_ 

Now defining vT(T) = RT/pT(T) allows the specific volume ratio to be written as 
V2 _ Vr2 

Vl VTi 

The values of s°(T),pr(T) and vr(T) are listed in the air Table (B.4) in Appendix B. 

" RT2 ' 
[Pr(T2)\ 

\Pr(Tl)] 
RTi 
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EXAMPLE 2.6 

Air enters a compressor at p\ = 100 kPa and T\ = 300 K. It is compressed 
isentropically to p2 = 1200 kPa. Assuming that there is no change in the kinetic 
energy between the inlet and the exit, find the work done by the compressor using 
the air tables. 

Solution: Reversible work done is 

wc = h2s - hi 

At Ti = 300 K, prl = 1.386 and hi = 300.19 kJ/kg. For an isentropic process 

V2 1200 
pr2 = —pri = -TT^T 1 - 3 8 6 = 1 6 - 6 3 2 

Pi 100 

Temperature corresponding to this value of pr2 is T2s = 603.5 K and h2s = 
610.64 kJ/kg. Hence 

wc = h2s -hi= 610.64 - 300.19 = 310.45 kJ/kg 

When specific heats are assumed to be constant, integrating the Tds equations gives 

s2 - si = cv In —- + R in — 
Ti vi 

or 

Ti pi 
s2 — Si — cp In — R In ■ 

For an isentropic process, the first of these gives 

/ T \ - x / ( 7 - i ) 
V2 1-1-2 

vi \n 

and the second one can be written as 

/ T \ 7 / (7 -1) P2 ±2 
Pi \Ti 

Eliminating the temperature ratios gives 

/ x 7 / \ 7 

V2 f l V / 92 X 

V\ \V2/ \ P l 

The next example illustrates the use of these equations for the same conditions as in the 
previous example. 
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EXAMPLE 2.7 

Air enters a compressor at p\ = 100 kPa and Ti = 300 K. It is compressed 
isentropically to p2 — 1200 kPa. Find the work done by the compressor assuming 
constant specific heats with 7 = 1.4 and using variable specific heats and EES. 

Solution: Work done is 
wc = cp(T2s - 7 \ ) 

Temperature T2$ is found from 

/ \ ( 7 - l ) / 7 
T2s=T1(— I =300-12 0 4 / 1 - 4 = 610.18 K 

Hence 

wc = cp(T2s - Tj) = 1.0045 (610.18 - 300) = 311.58kJ/kg 

Carrying out the calculations with EES gives 

"State 1" 
pl=100 [kPa] 
Tl=300 [K] 
sl=ENTROPY(Air,P=pl,T=Tl) 
hl=ENTHALPY(Air,T=Tl) 

"State 2" 
p2=1200 [kPa] 
s2s=sl 
h2s=ENTHALPY(Air,P=p2, S=s2s) 
T2s=TEMPERATURE(Air, H=h2s) 

"Work" 
wc=h2s-hl 

The results are: 

hl=300.4 [kJ/kg] h2s=611.2 [kJ/kg] 
pl=100 [kPa] p2=1200 [kPa] 
s1=5.705 [kJ/kg-K s2s=5.705 [kJ/kg-K] 
Tl=300 [K] T2s=603.7 [K] wc=310.8 [kJ/kg] 

Owing to the relatively small temperature range, the error made in assuming constant 
specific heats is quite small. The difference between the computer calculation and 
using the air tables arises from interpolation and it is insignificant. 

2.4.4 Ideal gas mixtures 

Kinetic theory of ideal gas mixtures originates from the intuitive notion that the pressure on 
the walls of a vessel containing a gas is caused by the momentum of colliding molecules. 
This suggests that at relatively low densities each molecular species may be assumed to act 
independently. 
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Dalton's model is based on such a consideration, and it states that the mixture pressure 
is equal to the sum of the component pressures p%, which each of the molecular species in 
the mixture would exert if it were to exist alone at the mixture temperature and volume. 
Expressed algebraically, this is 

P - Pi + P2 H \-Pn 

When ideal gas behavior can be assumed, the component pressure Pi can be represented by 

NiRT 

in which iVj is the number of moles of the ith component, T is the mixture temperature, 
and V is the mixture volume. The value of the universal gas constant in SI units is 
R = 8.314 kJ/(kmol • K). 

For the mixture the ideal gas law is 

NRT 

and AT is the number of moles in the mixture. Dividing the last two equations by each other 
gives 

Ni 
Pi = -j-jrP = ViP 

and here y, is the mole fraction and Pi is the partial pressure of the ith component. It is 
equal to the component pressure only for ideal gases. 

Other properties of an ideal gas mixture can be obtained by a generalization of Dalton's 
rule, called the Gibbs-Dalton rule. Thus internal energy of a mixture is given by 

u = u1 + u2 + --- + un 

Since the internal energy of the ith component can be written as 

Ui = NiUi 

in which U; is the internal energy per mole of the ith species, the internal energy of the 
mixture can be expressed as 

U = iViiii + N2u2 + ■■■ + Nnun 

Dividing this by the total number of moles gives 

u = t/jUi + y2u2 H h ynun 

On a mass basis internal energy can be written as 

U = miUi + m2u2 + • • • + mnun 

in which rrii is the mass of the ith component. Dividing this by the mass of the mixture 
gives 

U = X\U\ + X2U2 + ■ ■ ■ + XnUn 

and here Xi = rrii/m is the mass fraction of the ith component. Similar equations hold for 
enthalpy: 

h = Vihi + y2h2 H h ynhn 
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h = Xihi + x2h2 -\ h xnhn 

Using the Gibbs-Dalton rule, entropy of the ith component in an ideal gas mixture behaves 
as if it existed alone at the mixture temperature and its own partial pressure. Thus 

S = JVxai(r,pi) + N2s2(T,p2) + ■■■ + Nnsn(T,Pn) 

or 
S = miSi(T,p1) + m2s2(T,p2) H \-mnsn(T,pn) 

On a molar basis the specific entropy is 

s = yiSi(T,v) + y2s2(T,v) -\ \-ynsn(T,v) 

and on a mass basis it is 

s = xis1(T,p1) +x2s2(T,p2) H \-xnsn(T,pn) 

Gibbs equation for the ith component can be written as 

Tdsi — dhi — Vi dpi 

in which Vi = V/rrii is the specific volume of the ith component. Using the ideal gas law 
PiVi = RiT puts the Gibbs equation into the form 

By assuming the specific 

or on a molar basis 

dsi 
dT R dpi 

Vi 

heat to be constant, integrating this 

Asi = 1 T 2 

cP,i In — ■ 
J-i 

-RMP-^ 
Pi,I 

gives 

Asi = Cpti In — - R In 
T\ Pi,i 

The pressure term on the right is called the entropy of mixing. In combustion reactions, 
once the combustion is complete, the mixture of combustion products may be considered a 
pure substance, just as is done for atmospheric air. Expansion through a turbine then takes 
place at a constant mixture composition and the entropy of mixing vanishes. If the specific 
heats are assumed to be constant, then, in order to carry out the calculations, it only remains 
to determine the specific heat and molecular mass of the mixture. 

The molecular mass of the mixture is obtained from 
m1+m2 + ---+mn NxMi + N2M2 H + NnMn M = = 

AT N 
= yiMi+y2M2 + \-ynMn 

The mixture specific heat is 
n _ 

5P = Yl y^p1 and Cp = ~M 
i—\ 
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From earlier studies of combustion it may be recalled that combustion of methane with a 
stoichiometric amount of theoretical air leads to the chemical equation 

CH4 + 2(02 + 3.76N2) -> C 0 2 + 2H20 + 7.52N2 

Assuming that the water in the products remains as vapor, the total number of moles in the 
gaseous products is 10.52. If the amount of theoretical air is 125% of the stoichiometric 
amount, then the previous chemical equation becomes 

CH4 + 2.5(02 + 3.76N2) -> C 0 2 + 2H20 + 0.5O2 + 9.40N2 

and the number of moles of gaseous products is 12.90. The next example illustrates the 
calculation of the mixture specific heat. 

■ EXAMPLE 2.8 

Consider the combustion of methane with 125% of theoretical air. Find the molecular 
mass of the mixture and the specific heat at constant pressure. 

Solution: The number of moles of each species has been calculated above and are as 
follows: -/VCo2 — 1 ,NH2O = 2,7Vo2 = 0.5, and 7VN2 = 9.4. Hence the total number 
of moles is N = 12.9 and the mole fractions are yco2 = 0.0775, 2/H2O = 0.1550, 
yo2 = 0.0388, and y^2 = 0.7287. The molecular masses and specific heats of 
common gases are listed in the Appendix B. Using them, the molecular mass of the 
mixture is given by 

M = yco2MCo2 + VH2OMH2O + yo2Mo2 + y^2M^2 

= 0.0775 • 44.0 + 0.1550 • 18.0 + 0.0388 ■ 32.0 + 0.7287 ■ 28.0 
= 27.845 kg/kmol 

The molar specific heat at constant pressure is then 

cP = 2/co2cpco2 + 2/H2OCPH2O + 2/o2cpo2 + 2/N2CPN2 

= 0.0775 • 37.3292+0.1550 • 33.5702+0.0388 • 29.3683+0.7287 ■ 29.1533 
= 30.480 kJ/(kmol-K) 

The mixture specific heat is 

cp = ^- = 1.0946 kJ/(kg-K) 

As pointed out by Cohen et al. [15], it has been found that for combustion products of jet 
fuel it is sufficiently accurate to use the values 

cp = 1148 J/(kg • K) R = 287 J/(kg • K) 7 = | 

As inspection of Figure 2.6 shows that the value of 7 decreases and that of cp increases 
as temperature increases. Hence, if the actual mean temperature during a process is lower 
than that for which these values apply, then the value of 7 is too large in the calculation 
in which it is used to determine the temperature change, and therefore this leads to an 
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excessively large change in the temperature. But then the value of cp is too low and the 
product cp AT to determine the enthalpy change during the process is nearly correct, as it 
involves compensating errors. By a similar argument the constant values 

cp = 1004.5 J / (kg-K) i? = 287J/(kg-K) 7 = 1.4 

can be used for air. 

2.4.5 Incompressibility 

The important distinction between an incompressible fluid and incompressible flow is 
introduced next. Incompressibility may, on one hand, mean that specific volume does not 
change with pressure, but it is allowed to change with temperature. A stricter model is to 
have the specific volume remain an absolute constant. In liquid water even large changes 
in pressure lead to only small changes in the specific volume, and by this definition it is 
nearly incompressible, even if its specific volume changes appreciably with temperature. 
In the flow of gases at low speeds pressure changes are mild and the flow is considered 
incompressible, even if the fluid is clearly compressible. 

With these distinctions in mind, consider a strictly incompressible fluid. With v constant, 
the first Gibbs equation reduces to 

du = Tds 

This shows that internal energy changes only if the entropy changes. If the flow is adiabatic, 
entropy increases only as a result of irreversibilities, and hence this can be the only cause 
of an increase in internal energy. Similarly, if the flow is reversible and adiabatic, then 
internal energy must remain constant. As a consequence, the first law of thermodynamics 
in such a flow takes the form 

a + i*+ m = ? + ^ Vf +gZl = ̂  + -Vj+ gz2 + ws (2.11) 

Thermal energy terms are completely absent, and this equation involves only mechanical 
energy. When no work is done, it reduces to 

a + ̂ + m = ? + ^ + 0^1 + S*i = — + o y 2 + 9Z2 (2.12) 

which is the familiar Bernoulli equation. Its usual development shows that for inviscid 
flows 

1 , 

p + -pV + pgz = p0 

is constant along a streamline, with the constant p0 called the Bernoulli constant. 
2.4.6 Stagnation state 

Stagnation state is defined by the equations 

h0 = h+-V2+gz (2.13) 

s0 = s 

It is a reference state that may not correspond to any actual state in the flow. As was 
pointed out earlier, enthalpy ho is called the stagnation enthalpy and h is now called the 
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static enthalpy. Other properties, such as pressure, temperature, specific volume, or density 
are designated similarly. This definition fixes to each static state in the flow a corresponding 
unique stagnation state. The stagnation state is arrived at by a thought experiment in which 
the flow is decelerated isentropically to zero velocity while it descends or ascends to a 
reference elevation. 

From the definition of a stagnation state, integrating Tds = dh — vdp from a static state 
to its stagnation state gives the following equation, since ds = 0: 

ho — h = vdp = — 
JP JP P 

For an incompressible fluid this reduces to 

ho — h = 
P P 

Substituting for ho from Eq. (2.13) into this gives 

Po=P+^pV2+pgz (2.14) 

This is the same equation that defines the Bernoulli constant, which is now seen to define 
the stagnation pressure for an incompressible fluid. This expression can also be used in 
low-speed compressible flow as an approximation to the true stagnation pressure. 

2.5 EFFICIENCY 

In this section various measures of efficiency for turbomachinery flows and their relationship 
to thermodynamic losses are discussed. 

2.5.1 Efficiency measures 

Work delivered by a turbine is given as the difference between inlet and exit stagnation 
enthalpy. A greater amount of work would be delivered along a reversible path to the same 
exit pressure. With w the actual work and ws the isentropic work, their ratio 

w h0i ~ h03 
Vtt = — = T r— (2-15) 

ws h 0 i - h03s 
is called a total-to-total efficiency. In the analysis of a turbine stage inlet to a stator (nozzle) 
is given label 1 and 3 is the exit state from the rotor. Label 2 is reserved to identify a state 
between the stator and the rotor. The process line for an adiabatic expansion between static 
states hi and h$ is shown in Figure 2.7, which also shows the process line between the 
stagnation states hoi and /io3- In addition to the constant pressure lines corresponding to 
these states a line of constant stagnation pressure po3i is drawn. This stagnation pressure 
corresponds to an end state along a reversible path with the same amount of work as in the 
actual process. As will be shown below, the loss of stagnation pressure Apo = Po3i — P03 
is a measure of irreversibility in the flow. However, a stagnation pressure loss calculated in 
this way is only an estimate, and for a stage the losses across a stator and rotor need to be 
calculated separately. This is discussed in'Chapter 5 and Chapter 6. 
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Figure 2.7 Thermodynamic states used to define a turbine efficiency. 

If no attempt is made to diffuse the flow to low velocity, the exit kinetic energy, for 
example, a single-stage turbine, is wasted. For such a turbine a total-to-static efficiency is 
used as a measure of the efficiency. By this definition efficiency is given as 

r?ts 
'01 *03 

^ 0 1 — ^ 3 s 
(2.16) 

and the larger value of the denominator, caused by the wasted kinetic energy, reduces the 
efficiency. 

The total-to-total efficiency is clearly also 

% t 
fti + i V f - f t a I T / 2 

2 V 3 

hi + \V? h* l T / 2 
2 V3s 

(2.17) 

The flow expands between the static states with enthalpy hi and h3, with states 01 and 03 
as the corresponding stagnation reference states. For an isentropic expansion to pressure 
P3, the static enthalpy at the exit is / i 3 s . To find its corresponding stagnation pressure, the 
exit velocity V3s would have to be known. A consistent theory can be developed if it is 
assumed that the state 03s lies on the constant-pressure line p03- Then integrating the Gibbs 
equation along the constant-pressure p 3 line and also along the constant po3 line gives the 
two equations 

^03 

from which 

«3 " S i 

T3s 

c P l n „ 

'03 

3s 
S3 - si = In 

Tr 
or 

03s 

TQ3 

T3 

TQ3S 

TQ3S 

From the definition of a stagnation state the following two equations are obtained 

To3s vi 
T3 2cpT3 Tc 1 + 

3s 

V2 
v3s 

2cpT3 s 
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and the equality of the temperature ratios on the left-hand sides (LHSs) of these equations 
shows that 

V3s V T3s 

so that V3 > V3S, but without a great loss of accuracy the temperature ratio is often replaced 
by unity, and then V3s is replaced by V3. 

If a stage is designed such that V\ — V3, then the kinetic energy terms in the numerator 
of Eq. (2.17) be canceled. If next the approximation V3 = V3s is used, then Eq. (2.15) for 
total-to-total efficiency reduces to 

hi - h3 

Vt = 
hi - h3s 

the more familiar definition of turbine efficiency from the study in the first course of 
thermodynamics. In a multistage turbine the exit state would need a different label. It will 
be denoted by label e when the distinction needs to be clarified. 

■ EXAMPLE 2.9 

Steam enters an adiabatic multistage turbine at static pressure of 80 bar, static tem-
perature 520°C, and velocity 50m/s. It leaves the turbine at pressure 0.35 bar, 
temperature 80° C, and velocity 200 m/s. Find the total temperature and pressure at 
the inlet, total temperature and pressure at the exit, total-to-total efficiency, total-to-
static efficiency, and the specific work done. 

Solution: Using steam tables static enthalpy and entropy of steam at the inlet and 
exit are 

hi = 3447.8 kJ/kg Sl = 6.7873 kJ/(kg • K) 

he = 2645.0 kJ/kg se = 7.7553 kJ/(kg • K) 

Stagnation enthalpies are 

1 502 

ftoi = hi + -Vi2 = 3447.8 + J-J^ = 3449.1 kJ/kg 

1 2002 

h0e = he + ~V% = 2645.0 + ^ - ^ = 2665.0 kJ/kg 

Had the flow been isentropic, the exit state would have corresponded to pe = 0.35 bar 
and ses = Si. This is inside the vapor dome at quality 

ses - sf 6.7873 - 0.9874 c c o i 
U.oOZl sg - Sf 7.7148 - 0.9874 

and the enthalpy at this state is 

hes =h{ + xes(hs - h{) = 304.20 + 0.8621 • (2630.7 - 304.20) = 2309.9kJ/kg 

Assuming that Ves = Ve then gives 

1 2002 

hoe, = hes + 2Ve2 = 2309.9 + ^ - ^ = 2329.9 kJ/kg 
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and the total-to-total efficiency is 

= feoi ~ h0e = 3449.1 - 2665.0 = 
Vu h01-h0es 3449.1-2329.9 

The total-to-static efficiency is 

h01 - h0e 3449.1 - 2665.0 aQQQ 
r/ts = = = 0.6883 
, t s hoi-hes 3449.1-2309.9 

and the definition of efficiency when kinetic energy changes are neglected is 

hi-he 3447.8-2645.0 
rt /ii - /ies 3447.8 - 2309.9 

The specific work delivered is 

w = h01- h0e = 3449.1 - 2665.0 = 784.1 kJ/kg 

Consider next a single-stage centrifugal compressor. The flow leaving the impeller enters 
a diffuser section, and then a volute. These stationary parts of the machine are designed to 
decelerate the flow so that at the exit velocity is well matched with the desired flow velocity 
in the discharge pipe. Since kinetic energy from the impeller is utilized in this way, it is 
again appropriate to define the efficiency as the total-to-total efficiency. It is given by 

f?tt = — = T 7— (2.18) 
w ft03 - /ioi 

The process lines between the stagnation states and the corresponding static states are 
shown in Figure 2.8. Now, as for the turbine, the state 03s is assumed to be on the constant-
pressure line P03, and the sketch reflects this. Had the same amount of compression work 
been done reversibly the exit stagnation pressure would have been y>03i> which is also shown 
in the figure. 

In ventilating blowers no use is made of the exit kinetic energy and in such applications 
the total-to-static efficiency is used. In these cases efficiency is defined as 

_ fas — hpi 
<l03 — " 0 1 

Since h3s is smaller than /io3S, the efficiency is likewise smaller, and the difference accounts 
for the wasted kinetic energy. To be sure, in ventilating a space, high velocity may be needed 
to blow off light particulate matter sitting on the floors or attached to walls. In this case 
a blower may be placed upstream of the ventilated space and forced draft used to remove 
the particles. In induced draft contaminated air is drawn from the ventilated space into a 
blower and the kinetic energy in the exhaust stream is lost to the surroundings. 

■ EXAMPLE 2.10 

Air is drawn into a fan of diameter D = 95.4 cm from atmosphere at pressure 
101.325 kPa and temperature 288.0 K. The volumetric flow rate is Q = 4.72 m3 /s 
of standard air, and the power to the fan is W ■= 2.52 kW. The total-to-total efficiency 
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Figure 2.8 Thermodynamic states used to define a compressor efficiency. 

of the fan is 0.8. (a) Find the total-to-static efficiency, (b) Find the stagnation pressure 
rise across the fan. 

Solution: As air is drawn from the atmosphere at standard temperature and pressure 
into the blower, it undergoes a reversible adiabatic acceleration to the inlet of the 
blower. The inlet stagnation pressure is therefore poi = 101.325 kPa, and the 
stagnation temperature is Toi = 288.0 K. The density of standard air is p = 
1.225 kg/m3, and this corresponds to the actual density in the atmosphere in this 
situation: 

Poi Poi 
RTQI 

The mass flow rate is therefore 

101325 
287 ■ 288.0 

1.225 kg/m3 

TO = pQlQ = 1.225 • 4.72 = 5.78kg/s 

The fan flow area and velocity are 

1 „o o . . Q 4.72 
-TTD2 = 0.715 m2 V 

The specific work is 
W 2520 

w m 5.78 

0.715 

435.8 J/kg 

6.6 m/s 

and the isentropic work is 

Ws = r)ttw = 0.8 • 435.8 = 348.7 J/kg 

The total-to-static efficiency may be written as 

??ts 
T, 3s 101 T03s - T01 - V2/(2cp) 
TQS — TQI '03 ■Toi mt v3 6.62 

0.8 
2w 2 • 436 0.75 
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(b) The stagnation pressure rise can be calculated from 

P03-P01 = pws = 1.225-348.7 = 427Pa = 43.6 mm H 2 0 

The exit states were labeled with subscript 3 even though this machine does not have 
anything that functions as a stator. 

■ 
In a multistage compressor with large pressure and temperature differences, the variability 
of specific heats with temperature needs to be factored in to obtain an accurate result. This 
is illustrated in the next example. 

■ EXAMPLE2.il 

Air from the atmosphere flows into a multistage compressor at pressure 1 bar and 
temperature 300 K. The ratio of total pressures across the compressor is 30, and its 
total-to-total efficiency is 0.82. (a) Find the loss of stagnation pressure during this 
compression process, assuming specific heats to be constant, (b) Find also the loss 
in stagnation pressure assuming specific heats to vary with temperature. 

Solution: (a) The inlet to the compressor is labeled as state 1, and its exit is denoted 
as e. The isentropic compression gives the stagnation temperature 

Tm{ — ) = 300-30 1 / 3 5 = 792.8K 
( 7 " l ) / 7 

/ FUe \ 
101 \P0lJ 

From the definition of efficiency 

_ TQ2S — J p i 
/ t t /-*-] rj-\ 

J 0 2 — J o i 

the exit temperature is 

T0e = Toi + — (T0es - Toi) = 300 + ^ ( 7 9 2 . 8 - 300) = 901.0 K 
T]tt U.»2 

If the same amount of work had been done isentropically, the pressure ratio would 
have been 

Poa / T 0 e V / ( 7 _ 1 ) / 9 0 1 \ 3 ' 5
 tont 

Poi \ToiJ V300, 
Hence poei = 46.94 bar and the loss of stagnation pressure is Apoi = Pod — Poe = 
4 6 . 9 4 - 3 0 = 16.94 bar. 
(b) For variable specific heats, at Toi = 300 K, from air tables pri — 1.386 and 
h01 = 300.19kJ/kg. Hence 

P r e = P r l ^ = 1.386 • 30 = 41.58 
Poi 

From air tables Toes = 771.32 K and hoes = 790.56 kJ/kg. Using the definition of 
total-to-total efficiency 

^Oes —ho\ 
mt = -7——7— 

"Oe — " 0 1 
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gives for the exit enthalpy the value 

, , , h0es-h01 o n n i n , 790.56-300.19 SQH „ „ , , , , 
hoe = h0i H = 300.19 H —— = 898.26 kJ/kg 

f]u U.82 

From the air tables for this value pvei = 65.71. It then follows that 

POei Prei 
65.71 Poi Pri 1-386 47.41 

and poei = 47'.41 bar. Hence the loss of stagnation pressure is ApoL = Pod — Poe = 
47.41 — 30.0 = 17.41 bar. There is now some difference in the calculated results 
because the temperature range between inlet and exit states is large. 

2.5.2 Thermodynamic losses 

The effect of thermodynamic losses is illustrated by considering an increment on either a 
turbine or a compressor process line, as shown in Figure 2.9. From the Gibbs equation 

Tds = dh — vdp 

the slope of the constant-pressure line is 

dh 
~8s~ = T 

which shows that this slope is equal to the absolute temperature on an enthalpy-entropy 
(hs) diagram The enthalpy change between the end states may be considered to be made up 
of two parts. The irreversible change in enthalpy is dhf — Tds, and the isentropic change 
is obtained by setting ds = 0, which gives dhs = v dp. Substituting these back into the 
Tds equation shows that in this notation 

dh — dhs + dhf 

For a compressor, all three terms are positive. For a turbine, dhf is positive, but dh and 
dhs have negative values. The irreversible process associated with dhf is called reheating, 
or internal heating. Although the former term is in general use to describe this, the latter is 
better for it reflects what is happening physically. In other words, the irreversibilities cause 
an increase in temperature. 

The nature of the irreversibilities may be further illustrated by considering a flow channel 
that extends from an inlet at location Hi to some general location t. The first law of 
thermodynamics for this control volume is 

Q + m (ui+pivi + -Vf+gzA = rh (u + pv + -V2 + gz\ +W 

Differentiating this with respect to £ and rearranging gives 

• du A' 
mTi=Q 

d(pv) 1 dV1 dz 
dt 2 d£ y di 

W' (2.19) 
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J 

dh,' 

i 

1 

/ 

= vdp 

' 2SJ 

y p+dp 

i •i 

\ dh 

2 i / 1 
^Tdh = 

s s+ds 

P 

1 
Tds 

\ 

s s+ds, p+dp 

,-- h+dh 

y~ h 

(a) (b) 

Figure 2.9 (a) An infinitesimal irreversible process in a turbine; (b) an infinitesimal irreversible 
process in a compressor. 

in which the rate of heat transfer and work interaction per unit length along the element di 
have been defined as 

dQ_ 
d£ 

W' 
dW 
~dJ 

Clearly, in those parts of the flow in which there are no heat interactions Q' = 0 and 
similarly W' = 0 in those parts where there are no work interactions. 

Differentiating the second law of thermodynamics 

i ( s - s i ) 
T 

d£- s'pd£ 

with respect to £ gives 
. ds Q' 

md£ = Y + s* (2.20) 

2.5.3 Incompressible fluid 

For an incompressible fluid, density and its reciprocal specific volume are constant. For 
this kind of fluid the first Gibbs equation reduces to 

ds du 

Combining this with the second law in Eq. (2.20) gives 

. du 
m- r+TS' (2.21) 

As was remarked earlier, the second term on the right shows that internal energy in incom-
pressible flow always increases as a result of-irreversibilities. The first term on the right 
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side shows that internal energy increases by heat transfer into the fluid, but decreases when 
heat is lost to the surroundings. Integrating Eq. (2.21) gives 

i re2 

u2-u1=q+~ Ts'di (2.22) 
l r 2 

m 

Substituting Eq. (2.21) into Eq. (2.19) puts the latter into the form 

U{pv) 1 dV2 dz 
™{-^r + 2-dr+9di)+W' = ~T*v 

Integrating this gives 

Piv + \Vi + S*i = P2V + \vi + gz2+w+~ I Ts'p di (2.23) 
l z m Ji1 

In Eqs. (2.21) and (2.23) absolute temperature T multiplies the entropy production rate s'p 
and it is the product Ts'p, having the dimensions of energy flow rate per unit length of the 
channel, which represents a thermodynamic energy loss. 

In the first law of thermodynamics, flow work, kinetic and potential energy, and external 
work, are all associated with mechanical energy. On the other hand, internal energy and 
heat interaction are thermal energy terms. Viewed from this perspective Eq. (2.22) may be 
said to be a thermal energy balance and Eq. (2.23) a mechanical energy balance. The term 
associated with entropy production represents an irreversible conversion of mechanical 
energy into internal energy and is the reason why it is also called a thermodynamic energy 
loss. In contrast to a conservation principle in which there are no terms that would represent 
conversion of one form of energy to another, in a balance equation such conversion terms 
are present. Further examination shows that heat transfer to, or from, an incompressible 
fluid changes only the internal energy and not the pressure, velocity, or elevation. These 
quantities change only as a result of work done or extracted, and they decrease as a result of 
irreversibilities in the flow. It is customary not to make a distinction between conservation 
and balance principles in practice, and often the principle of conservation of mass, for 
example, is called simply the mass balance. This practice will also be followed in this text. 

For an incompressible fluid stagnation pressure has been shown to be given by 

Po = P + ^pV2 + pgz 

Making use of this relationship, Eq. (2.23) takes the form 

P02 = poi ~ pw - ^ / 2 Ts'p di (2.24) 

This shows that stagnation pressure changes because of a work interaction with the sur-
roundings and it drops because of irreversibilities in the flow. 

2.5.4 Compressible flows 

For compressible flows the first law of thermodynamics is written for a flow extending from 
location t\ to an arbitrary location £, as 

Q + m(h! + -V? +gzx) = W + m (h + -V2 + gz 
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or in terms of stagnation enthalpies as 

Q + rhh0i = W + mh0 

Differentiating gives 

Q'-W' = m^- (2.25) 

The second law of thermodynamics in the differential form has been shown to have the 
form 

ds Q' , 

Writing next the second Tds equation between stagnation states as 
ds _ dh0 dp0 Tod£-^l'V°^i 

and substituting ds/di from this into the second law leads to 
. dh0 . dp0 T0-, ., 

Using Eq. (2.25) to eliminate dho/d£ yields the equation 

dpp _ /To 
d£ ~ \T 7nvo^={-£-l)Q'-Tos'p-Wl (2.26) 

Turbomachinery flows are adiabatic so the heat transfer term may be dropped. 
In an adiabatic flow integrating Eq. (2.26) gives 

P02 ^ f^2 

vQdp0 + w = - - T0s' d£ (2.27) 
POI m Jti 

If the same amount of work had been done reversibly, then the exit stagnation pressure 
would have been different. Because the work done is the same, the pressure po2i lies along 
the constant ho2 line. A process line for this is shown in Figure 2.7, except that in that 
figure the exit enthalpy ho3 corresponds to the enthalpy ho2-

Integrating next Eq. (2.26) for a reversible process gives 
(•P02i 

v0 dpo + ws = 0 (2.28) 
'Poi 

Thus, since it has been stipulated that w = ws, subtracting Eq. (2.27) from Eq. (2.28) gives 
rP02i i r^i 
I v0 dpo = — / T0s' d£ 

Jp02 m Jil 
Integration of this along the constant h02 line means that T02 remains constant and factors 
out after the substitution VQ = RTo/po- Then, carrying out the integration gives 

i ? l n ^ l = - / s'd£ 
P02 ™ ' -

his equati 

S2 — si = sp = .Rin ' 

But in an adiabatic flow mds = s' d£, and this equation reduces to 
P02i 

P02 

This relates the entropy increase to a loss in stagnation pressure. A simpler development 
of this result is given in later chap*0*"0 
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EXAMPLE 2.12 

The inlet stagnation temperature to a multistage turbine is 1400 K, and the inlet 
stagnation pressure is 1000 kPa. The pressure ratio is 10, and the total-to-total 
efficiency of the turbine is 0.89. Assuming that gases flowing through the turbine 
have 7 = | and R — 287 J/(kg • K), find the specific entropy production during the 
expansion assuming constant specific heats. 

Solution: In this multistage turbine the inlet state is denoted by 1 and the exit by e. 
Assuming constant specific heats the definition of total-to-total efficiency reduces to 

_ 7QI — Tpe _ 1 — Tpe/Tpi 
??tt — ~ ~ or jjtt — - — —— 

J 01 — JOes 1 — J 0es / J 01 

from which 
Toe , /-, Toei 
— = 1-T)ti[l- — 

The isentropic temperature ratio is 

0es lPOe\ 0.5623 

so that 

and 

T0i VPOI ) 101/4 

r0es = 1400 • 0.5623 = 787.3 K 

' 0 e 1400 [1 - 0.89(1 - 0.5623)] = 854.7 K 

Since the amount of work done is proportional to the difference between the stagnation 
temperatures, if this work had been done reversibly the exit pressure would reach the 
value pod which is higher than before. It can be calculated from 

Poa fT0ey/(l-1) /854.7\4
 n i o o n 

Wei _ I Oe \ _ I \ = 0 _ 1 3 8 9 Poi \ToiJ \U00 

Hence poei = 1000 • 0.1389 = 138.9 kPa. Since the pressure ratio is 10, the exit 
stagnation pressure is P02 = 100 kPa, and the stagnation pressure loss is 

Pod -Poe = 138.6 - 100 = 38.6 kPa 

This represents 4.3% of the overall pressure difference poi — P02 = 900 kPa. The 
entropy production is calculated to be 

S p = = i ? l n ^ l = 287 1n^=9.4J/(kg.K) 
POe 1UU.U 
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2.6 MOMENTUM BALANCE 

In this section the use of momentum balance is illustrated in applications of interest in 
turbomachinery. In uniform steady flow in a channel the momentum balance reduces to 

m ( V 2 - V i ) (2.29) 

in which F p is a pressure force and F v is a viscous force. The force F m is present if the 
control volume cuts across the solid parts of the machine. If the control volume contains 
only fluid, this term is absent. Weights of the fluid and hardware have been omitted with 
the understanding that when stress analysis is carried out, they will be taken into account. 
The first illustration on the use of the momentum equation is to calculate the force a that 
deflection of a jet causes on a fixed vane. 

■ EXAMPLE 2.13 

Consider a jet of water that flows into a vane at an angle a i . The vane is equiangular 
with a2 = —oil, and it turns the flow so that it leaves at a negative angle a2, as shown 
in Figure 2.10. Positive angles are measured in the counterclockwise direction from 
the x axis. The jet velocity at the inlet is V, and pressure surrounding the jet and the 
vane is atmospheric. Find the y component of the force on the vane. 

Figure 2.10 Turning of a flow by a vane. 

Solution: The inlet to the vane is denoted as station 1 and the exit as station 2. Since 
the streamlines are straight, both at the inlet and at the exit, pressure at both of these 
locations is equal to the atmospheric pressure pa across the jet. Then, with gravity 
neglected, Bernoulli equation shows that velocity at the exit is the same as at the 
inlet, so that Vi=V2 = V. 

Momentum equation in the y direction gives 

rn{V2y - Vly) py 

in which the force Fpy is the y component of the pressure force exerted by the vane 
on the fluid. An equal and opposite force apts on the vane and it is denoted by Ry. 
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At the inlet V\y = V sin a\ and at the exit Viy — V sin c*2, and for a negative value 
of ct-i this velocity component points in the minus y direction. The force on the blade 
is therefore 

Ry = mV(smai — sin a^) 
The mass flow rate is m = pVA. Since the blade is equiangular, 012 = —a\. 
Substituting gives the force as 

Ry — 2pAV2 sin ax 

The force is largest when a\ = 90° and the flow is turned 180°. g 

Consider again the flow shown in Figure 2.10, but now let the blade move in the y direction 
with velocity U, as shown in Figure 2.11. It is known that Newton's second law is valid 
in all coordinate systems that move at constant speed. Thus the momentum balance given 
by Eq. (2.29) is also valid for a control volume that moves with a uniform velocity U, if 
all velocities are to be replaced by relative velocities. In fact, noting that the relationship 
between the absolute velocity V and relative velocity W is given by 

v = w + u 
and substituting this into Eq. (2.29) gives 

m(W 2 + U - W i - U) = F p + F v + F m 

or 
m(W 2 - W i ) = F p + F v + F m (2.30) 

In the next example the momentum balance is used to analyze the force on a moving blade. 

■ EXAMPLE 2.14 
Consider a waterjet directed at a blade that moves with speed U. The angle 0:2 of the 
jet is such that the relative velocity meets the blade smoothly at the angle /J2. The 
blade is shaped such that it deflects the flow backward at an angle $3 = —02, as is 
shown in Figure 2.11. (a) Find the work done on the blade per unit mass of the flow 
and the blade speed for maximum work by carrying out the analysis in a set of fixed 
coordinates, (b) Carry out the same analysis in a set of moving coordinates, and find 
the y component of the force on the blade. 

Solution: (a) The analysis is carried out first in fixed coordinates. Station 1 is now 
the inlet to a nozzle (not shown) that issues the water at station 2 at velocity V2 at 
angle ct<i. Station 2 is also the inlet to the moving blade, and its exit is station 3. The 
force that the blade exerts on the fluid is 

Fpy = m(V3 s ina3 - V2 sina2) 

and with Ry = —Fpy the force on the blade is 

Ry = rh(V2 sin a2 — V3 sin a3) 

Assuming that there are no losses, applying the first law to the control volume shown 
gives 

V&, , -L Tr2 P a . i T A 2 , / I T I \ 
— + ^V2 = 1" ~V3 + Ws (2-31) 
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Figure 2.11 A water jet impinging on a moving blade. 

and since the rate at which work is delivered to the blade is W = RyU, then 

ws — U(V2 sin 0:2 — V3 sin 0:3) (2.32) 

Substituting this into Eq. (2.31) gives 

\v% = \Vi + U(V2 sin a2 - V3 sin a3) (2.33) 

As is shown in the vector diagrams for the velocities in Figure 2.11, the x and y 
velocity components of absolute and relative velocity are related by 

W2 cos fa = V2 cos a2 W2 sin fa = V2 sin a.2 — U (2.34) 

Squaring each equation and adding them yields 

Wl = V2
2 + U2 - 2V2 U sin a2 

which is a form of a law of cosines. A similar equation is obtained at the exit, namely 

Wz cos fa = V3 cos a3 W3 sin fa = V3 sin a3 — U (2.35) 

from which another law of cosines is 

Wl = Vi + U2 - 2V3U sin a3 

Solving the laws of cosines for V2 sin a.2 and V3 sin 0:3 and substituting them into 
Eq. (2.32) reduces it to 

W2 = W2 

so that Wi = W3. Thus the relative velocity at the exit is the same as at the inlet. 
This means that an observer in moving coordinates sees that the blade changes only 
the direction of the flow, but not its magnitude. 

Substituting from Eqs. (2.34) and (2.35) into Eq. (2.32) gives 

ws = U[V2 sin a2 - (W3 sin fa + £/),] = U(V2 sin a2 + W2 sin fa - U) 
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since /33 = -(32 and W3 = W2. Also W2 sin j32 = V2 sin a2 - U, so that 

wa = 2U(V2 sin a2 - U) 

From this equation it is seen that ws = 0 when [/ = 0, or U — V2 sin 0:2. In the 
former case the load on the blade is too large and cannot be made to move. In the 
second case the load is too low, and the blade is free-wheeling. The condition for 
maximum power to the blade is obtained by differentiating ws with respect to U and 
setting it to zero. This gives 

dws 

~dU 
V2 sin a2 — 2U = 0 or U_ 

v2 

1 
sin a2 

For a2 = 90° the maximum work is done by the jet on the blade when the blade 
moves at half the jet speed. 
(b) If the moving coordinates are used, then 

R„ 

Substituting W3 = W2 and /33 

m(W2 sin/32 — W3 sin/33) 

= -j32 gives 

Ry = 2mW2 sin ̂ 2 = 2m(V2 sina2 - U) 

and with the rate of work done W = RyU, the specific work becomes 

ws = 2U(V2 sin a2 - U) 

as before. 
■ 

Next, the momentum equation is applied to situations in which the results may be used to 
quantify thermodynamic losses. 

■ EXAMPLE 2.15 

Water with density p = 1000 kg/m3 and velocity V\ = 20 m/s flows into a sudden 
expansion as shown in Figure 2.12. The supply pipe has a diameter D\ = 7 cm, 
and the pipe downstream has a diameter D2 = 14 cm. Find the increase in pressure 
P2 -Pi-

Figure 2.12 Flow in a channel with a sudden expansion. 

Solution: Mass balance gives 

AXVY=A2V2 



MOMENTUM BALANCE 5 1 

Thus 
y2=y i!=2o(s)2=5-°m/s 

As the water enters a sudden expansion, it detaches from the boundaries and moves 
into the larger space as a jet. Regions of recirculating flow develop at the upstream 
corners. Flow speed in these corners is sufficiently low to make the pressure uniform. 
The pressure across thejet at the exit plane is therefore equal to that in the recirculating 
regions. The stream velocity rises from small backflow in the recirculating regions 
to a large forward velocity in the jet. This leads to appreciable viscous forces in the 
free shear layers forming the jet boundary. Such free shear layers are unstable to 
small disturbances and roll up into vortices. These cause mixing of the low velocity 
fluid in the recirculating zone with the fast flow in the jet. As a consequence, the 
jet spreads and fills the channel. In the mixing zone the shear forces along the walls 
influence pressure much less than the mixing, and therefore they may be neglected. 

Applying the momentum balance in the x direction leads to 

pA2V2(V2 - Vi) = (pi - p2)A2 

in which the mass balance, m = pV\A2 was used. Thus 

P2 - P i = pV2(Vi -V2) 

and the numerical value for the pressure increase is 

p2-p! = 1000 • 5.0(20 - 5.0) = 75 kPa 

As the area A2, is increased the exit velocity is reduced and finally becomes zero. In 
that case p2 = p\. This is the situation of a jet discharging to an atmosphere and then 
the exit pressure is equal to the atmospheric pressure. 

The loss in stagnation pressure in a sudden expansion is 

Poi - P02 =Pi + -^pVx -Vi-^pVi = 2py?-pViV2 + -pV2
2 = -p(V!-V2)2 

or 
Poi - P02 = -z 1000 (20 - 5)2 = 112.5kPa 

If the flow were to diffuse to the exit pipe without irreversibilities, there would be 
no loss of stagnation pressure and the exit pressure could be calculated from the 
Bernoulli equation. It would have the value 

P2i ~Pi = \p(V? - V2) = ^1000(202 - 52) - 187.5 kPa 

above the inlet pressure. Contrasting this to the value 75 kPa calculated in the actual 
case shows that not all pressure is recovered, and the irreversibility can be regarded 
as a loss in pressure. 

This underscores the importance of a well-designed diffuser to recover as much of 
the pressure as possible. The reduction of kinetic energy in diffusion goes into flow 
work on the fluid particles ahead, causing pressure to increase. If part of the kinetic 
energy is dissipated by viscous action in mixing, less is available for increasing the 
pressure. This is clearly true if the sudden expansion takes place into a vast reservoir, 
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for then all the kinetic energy leaving the pipe will be dissipated in the reservoir and 
none is recovered. g 

As a third example on the application of the momentum balance, consider how mixing of 
a stream in a constant-area duct changes the pressure. This requires the use of the balance 
equations in their integral forms. 

■ EXAMPLE 2.16 

An incompressible fluid flows in channel of cross-sectional area A, as shown in 
Figure 2.13. The flow is in the z direction with a nonuniform velocity profile 
V\ — V(l + f(x,y)) at station 1 with the nonuniformity such that V is the average 
velocity. As a result of mixing, the flow enters station 2 with a uniform profile. Find 
the pressure change between stations 1 and 2. Work out the solution when the inlet 
velocity consists of two adjacent streams, one moving with velocity V(l + fa) and 
the other with velocity V ( l + /(,). Note that, since V is the average velocity, either 
fa or / t must have a negative value. 

V////////(//////////S///////J///////////////////n -

a w;;;;;;#Jss/sss/sssjssssss/s;ssssssssss>s;;y>jM 
V(1+f(x,y)) 

rs/sssssssss/fsss/ssss/ss//sssssssss/sssss/l>ss//ssi 

;;;;;;/;>;/;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;/;J;;;;A 

Figure 2.13 Mixing in a constant area channel. 

Solution: Integral form of the mass balance 

m= [ PVldA= I PV2dA 
JAi J A2 

applied to a control volume between stations 1 and 2 gives, with A = A\ = A2 and 
V2 = V this expression can be written as 

f V(l + f(x,y))dA = VA 
JA 

Since V is the constant average velocity this yields the condition 

[ f(x,y)dA = 0 
JA 
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The x component of the momentum equation applied to this control volume gives 

/ PV2dA - [ pV2dA = (PI-P2)A 
JA2 JA1 

Again, since at the exit velocity Vi = V is uniform, this can be written as 

-pV2A + p [ V2(l + f(x,y))2dA = ( K - P l ) A 
JA 

Wall shear has been neglected under the assumption that mixing influences the 
pressure change much more than does wall shear. 

Expanding the integral leads to 

f(l + f2(x,y))dA = f(l + 2f(x,y) + f2(x,y))dA = A + f f2(x,y)dA 
J A J A JA 

for, as shown above, the middle term is zero. Denoting 

P = j j f2(x,y)dA 

the pressure increase is seen to be 

P2-P1=PV2P 

With the velocities as shown on the bottom half of the figure, mass balance gives 

AaVa + AbVb = AV 

and since A = Aa + Ab, this reduces to 

y =
 V<>Aa + VbAb 

Aa+Ab 

Writing 
Va = V{1 + fa) and Vb = V(l + fb) 

and solving for fa and fb gives 

f _ Va _ _ (Va- Vb)Ab fa — TA t 
V VaAa + VbAb 

and 
, Vb (Vb-Va)Aa 
Jb = 77 - J- ~ V VaAa + VbAb 

The value of f2 is the area-weighted average 

ji _ RK + ftAb _ (Va - Vb)2AaAb 

Aa + Ab (VaAa + VbA, 

Hence the pressure increase is 

V2 -Pi = p{Va - Vb) 
2 AaAb 

(Aa + Atf 
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As a special case, consider the situation in which Vf, = 0. Then 

V = 4^T and Va-V=J«Ab 
Aa + Ab Aa + Ab 

and 
P2-Pi=pV(Va-V) (2.36) 

This is the same result that was developed in Example 2.15. B 

In these examples the momentum equation could be used to obtain information about the 
downstream pressure. This was possible because the viscous forces could be neglected. 
Such a situation also characterizes many turbomachinery flows in which the important force 
balance is between the inertia of the flow and pressure forces. 

EXERCISES 

2.1 Steam flows through a bank of nozzles shown in Figure 2.1 with wall thickness 
i2 = 2 mm, spacing s = 4 cm, blade height b = 2.5 cm, and exit angle «2 = 68°. The exit 
velocity V2 = 400 m/s, pressure is p2 = 1-5 bar, and temperature is T2 = 200°C. Find 
the mass flow rate. 

2.2 Air enters a compressor from atmosphere at pressure 102 kPa and temperature 42°C. 
Assuming that its density remains constant, determine the specific compression work 
required to raise its pressure to 140 kPa in a reversible adiabatic process, given an exit 
velocity of 50 m/s. 

2.3 Steam flows through a turbine at the rate of rn — 9000 kg/h. The rate at which 
power is delivered by the turbine is W — 440 hp. The inlet total pressure is poi = 70 bar, 
and total temperature is T01 = 420° C. For a reversible and adiabatic process, find the total 
pressure and temperature leaving the turbine. 

2.4 Water enters a pump as saturated liquid at total pressure of poi = 0.08 bar and leaves 
it at p02 = 30 bar. The mass flow rate is rh = 10,000 kg/h and assuming that the process 
takes place reversibly and adiabatically, determine the power required. 

2.5 Liquid water at 700 kPa and temperature 20°C flows at velocity 15 m/s. Find the 
stagnation temperature and stagnation pressure. 

2.6 Water at temperature Ti = 20° C flows through a turbine with inlet velocity V\ = 
3 m/s, static pressure p\ = 780 kPa, and elevation z\ = 2 m. At the exit the conditions 
are V2 = 6 m/s, p2 = 100 kPa, and z2 = 1.2 m. Find the specific work delivered by the 
turbine. 

2.7 Air at static pressure 2 bar and static temperature 300°K flows with velocity 60 m/s. 
Find total temperature and pressure. 

2.8 Air at static temperature 300° K and static pressure 140 kPa flows with velocity 
60 m/s. Evaluate the total temperature and total pressure of air. Repeat the calculation 
assuming that the airspeed is 300 m/s. 

2.9 Air undergoes an increase of 1.75 kPa in total pressure through a blower. The inlet 
total pressure is one atmosphere, and the inlet total temperature is 21°C. Evaluate the exit 
total temperature assuming that the process is reversible adiabatic. Evaluate the energy 
added to the air per unit mass flow. 
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2.10 Air enters a blower from the atmosphere where pressure is 101.3 kPa and temper-
ature is 27°C. Its velocity at the inlet is 46 m/s. At the exit the total temperature is 28°C 
and the velocity is 123 m/s. Assuming that the flow is reversible and adiabatic, determine 
(a) the change in total pressure in millimeters of water and (b) the change in static pressure, 
also in millimeters of water. 

2.11 The total pressure, static pressure, and the total temperature of air at a certain point 
in a flow are 700 kPa, 350 kPa, and 450 K, respectively. Find the velocity at that point. 

2.12 Air has static pressure 2 bar and static temperature 300° K while flowing at speed 
1000 m/s. (a) Assuming that air obeys the ideal gas law with constant specific heats, 
determine its stagnation temperature and stagnation pressure, (b) Repeat part (a) using the 
air tables. 

2.13 At a certain location the velocity of air flowing in a duct is 321.5 m/s. At that 
location the stagnation pressure is 700 kPa and stagnation temperature is 450 K. What is 
the static density at this location? 

2.14 Air flows in a circular duct of diameter 4 cm at the rate of 0.5 kg/s. The flow is 
adiabatic with stagnation temperature 288 K. At a certain location the static pressure is 
110 kPa. Find the velocity at this location. 

2.15 Saturated steam enters a nozzle at static pressure 14 bar at velocity 52 m/s. It 
expands isentropically to pressure 8.2 bar. Mass flow rate is m = 0.7 kg/s. Find the 
exit area, assuming that (a) steam behaves as an ideal gas with 7 = 1.135, and cp = 
2731 J/kg K; (b) the end state is calculated with properties obtained from the steam tables. 

2.16 A fluid enters a turbine with total temperature of 330 K and total pressure of 700 kPa. 
The outlet total pressure is 100 kPa, and assume that the expansion process through the 
turbine is isentropic. Evaluate (a) the work per unit mass flow assuming that the fluid is 
incompressible with a density 1000 kg/m3, (b) and assuming that the fluid is air. 

2.17 Air flows through a turbine that has a total pressure ratio 5 to 1. The total-to-
total efficiency is 80%, and the flow rate is 1.5 kg/s. The desired output power is to 
be 250hp (186.4kW). Determine (a) the inlet total temperature, (b) the outlet total 
temperature, (c) the outlet static temperature given an exit velocity 90 m/s. (d) Then draw 
the process on a Ts diagram and determine the total-to-static efficiency of the turbine. 

2.18 A blower has a change in total enthalpy of 6000 J/kg, an inlet total temperature 
288 K, and an inlet total pressure 101.3 kPa. Find (a) the exit total temperature assuming 
that the working fluid is air, (b) the total pressure ratio across the machine, given a total-to-
total efficiency of 75%. 

2.19 A multistage turbine has a total pressure ratio of 2.5 across each of four stages. The 
inlet total temperature is TQI = 1200 K and the total-to-total efficiency of each stage is 
0.87. Evaluate the overall total-to-total efficiency of the turbine by assuming that steam is 
flowing through it. Steam can be assumed to behave as a perfect gas with 7 = 1.3. Why is 
the overall efficiency higher than the stage efficiency? 

2.20 Gases from a combustion chamber enter a gas turbine at a total pressure of 700 kPa 
and a total temperature of 1100 K. The total pressure and total temperature at the exit of the 
turbine are 140 kPa and 780 K. Assuming that 7 = | is used for the mixture of combustion 
gases, which has a molecular mass of 28.97 kg/kmol, find the total-to-total efficiency and 
the total-to-static efficiency of the turbine, for an exit velocity of 210 m/s. 
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2.21 Air enters a compressor from atmosphere at 101.3 kPa, 288 K. It is compressed to 
a static pressure of 420 kPa, and at the exit its velocity is 300 m/s. The compressor total-
to-total efficiency is 0.82. (a) Find the exit static temperature by assuming that Vis = Vi-
(b) Find the exit static temperature, without making the assumption that Vis is equal to Vi-

2.22 Liquid water issues at velocity V\ — 20 m/s from a bank of five oblique nozzles 
shown in Figure 2.14. The nozzles with wall thickness t = 0.2 cm are spaced s = 4 cm 
apart. The nozzle angle is a\ = 70°. Using the mass and momentum balance, (a) find the 
downstream velocity Vi, (b) find the pressure increase in the flow, (c) show how to deduce 
this result from Eq. 2.36. (d) Assuming that the thickness of the wall is vanishingly small, 
what is the change in pressure? 

k? 
Figure 2.14 Nozzles with an oblique discharge. 

2.23 Consider the flow shown in Figure 2.14. Prove that the kinetic energy lost in the 
flow as it moves to the downstream section is equal to that associated with the transverse 
component of the velocity. Neglect the wall thickness of the nozzles. 



CHAPTER 3 

COMPRESSIBLE FLOW THROUGH 
NOZZLES 

In this chapter the dynamics and thermodynamics of compressible fluid flow through nozzles 
are discussed. First, the isentropic relations are developed and applied to a converging and 
a converging-diverging nozzle. After that normal shock relations are given. Then nozzle 
flows with friction are presented, various loss coefficients are introduced, and wet steam 
behavior is discussed. The last topic of the chapter is the Prandtl-Meyer expansion. 

3.1 MACH NUMBER AND THE SPEED OF SOUND 

Consider a stationary fluid in which a weak pressure wave travels to the right at velocity 
c, as is shown on the top part of Figure 3.1. Pressure and other thermodynamic properties 
change across the wavefront. Ahead of the front in the stagnant fluid velocity V = 0, and 
its pressure has the value p and its density is p. After the front has passed through a given 
location, let the velocity there be A y and pressure and density be p + Ap and p + Ap, 
respectively. It is advantageous to shift to a frame of reference that moves to the right with 
speed c, for in that frame the front is stationary. Hence the balance principles in their steady 
form can be applied to a stationary control volume containing the front. In this frame fluid 
approaches the control volume with speed c from the right. Mass balance then gives 

pcA = (p + Ap){c~AV)A (3.1) 

Principles of Turbomachinery. By Seppo A. Kcfrpela 57 
Copyright © 2011 John Wiley & Sons, Inc. 
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Carrying out the multiplications on the right-hand side, (RHS) and assuming that the 
pressure wave is weak so that AVAp can be neglected reduces this equation to 

AV = 
cAp 

(3.2) 

With the positive x direction pointing to the right, the x component of momentum equation, 

p + Ap 

p + Ap 

AV V=0 

P 

Stationary frame 

r 

p+Ap ! 

C-AV - * - ! 

p + Ap 
L 

i P 

r. 

P 

Moving frame 

Figure 3.1 Sketch illustrating a weak pressure wave. 

obtained from Eq. (2.29) and applied to this control volume, gives 

pcA[c - (c - AV)] = {p + Ap)A - pA 

which reduces to 
pcAV = Ap 

Substituting the expression for AV from Eq. (3.2) into this gives 

Ap 

Since the pressure wave is assumed to be weak, the entire process may be assumed to be 
isentropic. In that case the speed of the wave is given by 

dp 
dp 

(3.3) 

This quantity is called the speed of sound because sound waves are weak pressure waves. 
For an ideal gas, for which pp"1 is constant in an isentropic process, taking logarithms and 
differentiating gives 

dp dp 
In p — 7 In p = constant 7— = 0 

P P 
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from which can be formed the partial derivative 

dp\ p 
— = 7 - = 7RT 
dPJs P 

Speed of sound c for a perfect gas is therefore given by 
c = y/'jRT = ^jRT/M 

For air R = R/M = 8314/28.97 = 287 J/(kg • K) and 7 = 1.4 the speed of sound 
at T = 300 K is c = 347 m/s. For combustion gases with R = 287J/(kg • K) and 
T = 1200 K it is c = 677.6 m/s. For gases of large molecular mass the speed of sound is 
small and the opposite is true for gases of low molecular mass. For example, the refrigerant 
R134a, or tetrafluoroethane, with a chemical formula CH2FCF3, has a molecular mass of 
M = 102.0 kg/kmol. Its ratio of specific heats is 7 = 1.14. Hence at T = 300 K the 
speed of sound in R134a is only c = 167 m/s. For helium at the same temperature, speed 
of sound is c = 1019 m/s. 

Mach number is defined to be the ratio of the local fluid velocity to the local sound speed 

c 

Subsonic flows have M < 1, supersonic ones have M > 1, and for hypersonic flows 
M » l . Flows for which M ~ 1 are called transonic. 

3.1.1 Mach number relations 

In an ideal gas with constant specific heats the definition of stagnation enthalpy 

h0 = h+^V2 

can be recast as 
y 2 _rr , ( 7 - l ) T , 2 _ ^ A , 7 - 1 , , 2 To = T+— =T+ v ' 'V1 = T 1 + -^^M 
2cp 27K 

from which 

T 2 
From the definition of a stagnation state, it follows that 

frp \ 7 / ( 7 - l ) . / T \ l / ( 7 - l ) 
Po / - ' o \ Po Mo 
V \T J p 

These can be written in terms of Mach number as 

\ 7 / ( 7 - l ) 
^ = ( l + ^ M 2 ) (3.4) 

and 
/ 1 \ l / ( 7 - l ) 

Po {-, , 7 - l » , 2 X . 1 + ^Y7M ) (3-5) 
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These equations are in dimensionless form, and they represent the most economical way to 
show functional dependence of variables on the flow velocity. 

Equation (3.4) for pressure can be expanded by the binomial theorem1 for small values 
of Mach number. This leads to 

?° = 1 + 2 M 2 + 1M4 _ lh^lMZ + ... = l + l M
2 ( l + ~M2 + 

p 2 8 48 2 V 4 

which, when only the first two terms are retained, can be rearranged as 

p 21RT 2p 

so that 
Po = V + ^pV2 

For incompressible fluids this was taken to be the definition of stagnation pressure. In fact, 
it is seen to be approximately valid also for flows of compressible fluids when M -C 1. In 
practice, this approximation is quite accurate if M < 0.3. 

■ EXAMPLE 3.1 

At a certain location in a flow of air static pressure has been measured to bep = 2.4 bar 
and stagnation pressure, p0 = 3 bar. Measurement of the total temperature shows it 
to be To = 468 K. Find the Mach number and flow rate per unit area. 

Solution: Static temperature can be determined from 

/ D \ ( 7 - D / 7 / 2 4 \ 1 / 3 - 5 

T = T0 I — \ = 468 ( — j = 439.1 K 

Then, solving 

T 2 
for Mach number gives M = 0.574. With Mach number known, velocity can be 
determined from V = Mc. Speed of sound at this temperature is 

c = y/jRT = VIA ■ 287 • 439.1 = 420.0 m/s 

so that the velocity is 
V = Mc = 241 m/s 

Static density is given by 

_ JP_ _ 240000 
P~ ~KT ~ 287-439.1 

Hence the mass flow rate per unit area is 

m 

1.904 kg/nr* 

pV = 1.904 • 241 = 458.9 kg/(s • m2) 

'Binomial theorem gives the expansion (l + a ) n = l + n a + ^^ j— -a 2 -f ^-^—^^—^-a3 + ■ 
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3.2 ISENTROPIC FLOW WITH AREA CHANGE 

Consider a one-dimensional isentropic gas flow in a converging-diverging nozzle as shown 
in Figure 3.2. Since the mass flow rate is 

■imuuiuA 

'W7777//////////J 

Figure 3.2 A converging-diverging nozzle. 

rh — pVA 

and m is constant, taking logarithms and then differentiating yields 

dp 
P 

dA 
A 

dV_ 
V 0 

Since in adiabatic flow ho is constant, differentiating 

1, h0 = h+~V2 

gives 
dh = ~VdV 

Gibbs relation Tds — dh — dp/p for isentropic flow leads to the relation 

dh = -dp 
P 

Equating the last two expressions for enthalpy change gives 

-VdV 1 
-dp ■ 

dp 
dp ■■ 

,dp 
P ~ P \dP/s ' P 

Using this to eliminate density from the mass balance and simplifying it gives 

dV dA 
{Mz - 1 ) -

V A 
(3.6) 

From this it is seen that for subsonic flow, with M < 1, an increase in area decreases the 
flow velocity. Thus walls of a subsonic dijfuser diverge in the downstream direction. For 
supersonic flow with M > 1 a decrease in area leads to diffusion. Since a nozzle increases 
the velocity of a flow, in a subsonic nozzle flow area decreases and in supersonic flow it 
increases in the flow direction. 
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In a continuously accelerating flow dV > 0, and Eq. (3.6) shows that at the throat, 
where dA = 0, the flow is sonic with M = 1. If the flow continues its acceleration to 
a supersonic speed, the area must diverge after the throat. Such a converging-diverging 
nozzle, shown in Figure 3.2, is called de Laval nozzle. The assumptions made in arriving 
at these results are that the flow is steady and one-dimensional and that it is reversible and 
adiabatic. It has not been assumed that the fluid obeys the ideal gas law. 

It was shown in the previous chapter that Mach number is a convenient parameter for 
expressing the relationship between the static and stagnation properties. By assuming ideal 
gas behavior and constant specific heats, the expressions 

To 
T = 1 + 7 -M2 

^ = ( 1 + 
P 

Po 

^ M 2 

7 lM2 

were obtained. Inverses of these ratios for a gas with 7 — 1.4 are shown in Figure 3.3. 

7/ (7 -1) 

1/(7-1) 

0.01 

0.001 

Mach number M 

Figure 3.3 Pressure, density, and temperature ratios as functions of Mach number. 

At sonic condition, denoted by the symbol (*), and for which M = 1, they reduce to 

0.8333 T0 

P* 
Po 

P* 

7 + 1 

-( 2 
V7+1 

- ( 2 

7/ (7-1) 

Po , 7 + 1 
The numerical values correspond to 7 = 1.4. 

0.5283 

1/(7-1) 
= 0.6339 
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Mass balance for a compressible flow, which obeys the ideal gas model, can be written 
as 

Multiplying and dividing the RHS by stagnation pressure and the square root of stagnation 
temperature, and expressing p/po ratio in terms of temperature ratio T/TQ gives 

^ ( 7 - 1)T0 V T 

which can be recast as 

F = \ v = / 1 + -h—M2 (3.7) 
Ap0 \rv-i 

This is called a. flow function. Denoting the area at which the flow would reach M = 1 by 
A*, the previous equation at this state gives 

^r= VY^I I T J (3-8) 
The ratio of the last two equations is 

A _ l ( 2 , 7 - l „ 2 ( 7 + l ) / 2 ( 7 - l ) 
+ -M'A 1 (3 9) 

A* M V7 + 1 7 + 1 ) 
In the usual case area A* is the throat area in a supersonic flow through a converging-
diverging nozzle. But this equation is useful also when there is no location in the actual 
flow where M = 1 is reached. Then A* can be regarded as a reference area. In the same 
manner in which stagnation properties are reached in a thought experiment in an isentropic 
deceleration of the flow to a rest state, so can the area A* in a thought experiment be 
taken to be an area at which the sonic condition is reached in a hypothetical extension of a 
properly designed and operated variable area duct. If the velocity V* denotes the velocity 
at the location where M = 1, it can be used as a reference velocity, and a velocity ratio can 
be written as 

V HT ( 2 7 - 1 9 \~ 1 / 2 

— =M\\—=M\ - + 1—-M2) (3.10) 
V* V T* V 7 + 1 7 + 1 / 

This and the area ratio are shown in Figure 3.4. Maximum flow rate per unit area takes 
place at the throat where M = 1. It is given by Eq. (3.8) as 

A* ^ ( 7 - 1 ) 7 1 , W + l / 

EXAMPLE 3.2 

Air flows through a circular duct of diameter D = 10 cm at the rate of m = 1.5kg/s. 
At a certain location, static pressure is p = 120 kPa and stagnation pressure is 
T0 = 318 K. At this location, find the values for Mach number, velocity, and static 
density. 
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100 

10 

0.1 
0.1 1 10 

Mach number M 

Figure 3.4 Area and velocity ratios as functions of Mach number. 

Solution: Since the mass flow rate and diameter of the duct are known, mass balance 

TO = pVA 

can be recast into a form in which the known quantities of area, pressure, and 
stagnation temperature appear and Mach number is the only unknown. Thus 

TO = J^M^RTA = pMA^ T RTQ 
7 

or 
TO RT0 „ , . „ 7 - 1 , ^ 9 x 1 / 2 

' M( l + -L——M2)1'2 
pA y 7 

Squaring both sides leads to a quadratic equation for M2, which may be simplified 
and cast into the standard form: 

M4 + _2_^__J_(j»Y^i>=0 
7 —1 7 — 1 \pA J 7 

For the data given this reduces to 

M 4 + 5M2 - 0.828 = 0 

and solving it gives M = 0.40. Static temperature is then 
To 318 

1 + V M 2 1-032 

and the velocity and density are 

V = M^-fRT = 140.8 m/s 

308.1 K 

120 P = 
RT 0.287-308.1 

1.357 kg/m3 
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3.2.1 Converging nozzle 

A converging nozzle is shown in Figure 3.5. Consider a flow that develops from upstream 
stagnation state and in which backpressure p^ is controlled by a throttling valve located 
downstream of the nozzle. When the valve is closed there is no flow. With a slight opening 
of the valve pressure in the nozzle follows the line marked 1 and the flow leaves the nozzle 
at exit pressure pe = pbi • The mass flow rate corresponds to condition labeled 1 in the 
bottom right part of the figure. As the back pressure is reduced to pb2 pressure in the 
nozzle drops along the curve 2 and the mass flow rate has increased to a value indicated by 
the label 2. A further decrease in the back pressure increases the flow rate until the back 
pressure is reduced to the critical value p^ = p* at which point Mach number reaches unity 
at the exit plane. Further reduction of the exit pressure has no effect on the flow upstream, 
for the disturbances caused by further opening of the valve cannot propagate upstream of 
the throat when the velocity there has reached the sonic speed. The flow at this condition is 
said to be choked and its mass flow rate can no longer be increased. How the flow adjusts 
from this exit pressure to the value of back pressure cannot be analyzed by one-dimensional 
methods. 

Flow rate through the nozzle can be determined at the choked condition if, in addition 
to the stagnation pressure and stagnation temperature, the throat area is known. This is 
illustrated in the next example. 

/////////II/II//K 

/77777777777777777J 

P/Po 

P7Po Vwvw 
e " 0 

4 

P 

3 

!P0 

. 2 

X 1 

\o 
Pb/Po 

Figure 3.5 Flow through a converging nozzle. 

EXAMPLE 3.3 

Air at stagnation temperature T0 — 540 K and stagnation pressure po = 200 kPa 
flows isentropically in a converging nozzle, with exit area At = 10 cm2. (a) If the 
flow is choked, what are the exit pressure and the mass flow rate? (b) Assuming that 
the backpressure is pb = 160 kPa, find the flow rate. 
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Solution: (a). With the flow choked, the pressure ratio is 

Pe 

PO 
0.5283 

from which the exit pressure is determined to be pe = 106 kPa. The flow rate can be 
obtained by first calculating the flow function 

F* 7 
Vl^l \ 7 + l 

( 7 + l ) / 2 ( 7 - l ) 

which has the numerical value 

F* 1.4 
1.281 

/OA \2.4 

Then the mass flow rate per unit area can be determined to be 

m F*p0 1.281 • 200,000 
At ^/cJF0 V1004.5 ■ 540 

347.9 kg/(s-m2) 

so the flow rate is m = 0.348 kg/s. 
(b). The second part of the example asks for the flow rate when back pressure is 
Pb = 160 kPa. Since this pressure is larger than the critical value 106 kPa, the flow 
is no longer choked and pe = pt>- The exit Mach number is obtained from 

Po 

Pe 
1 

J-^M? 
7/ (7-1) 

Solving for Me gives 

Mfi 
Po\ 

( 7 - l ) / 7 N 

I " 1 \\PeJ 

The flow function at this Mach number is 

1/2 

= [5(1.25 1/3.5 i l / 2 0.574 

e VY^i 
and its numerical value is 

1.4 • 0.574 

lMe (, , 7 - l 2 1 + 
- ( 7 + l ) / 2 ( 7 - l ) 

/0.4 
(1+0.2-0.5742) 3 = 1.049 

The mass flow rate can then be determined from 

Fp0At 1.049 • 200,000 • 10 
m s/cplh V1004.5 ■ 540 • 1002 0.285 kg/s 
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3.2.2 Converging-diverging nozzle 

Consider the operation of a converging-diverging nozzle in the same manner as was 
described for the converging one. The flow rate is adjusted by a regulating valve downstream 
of the nozzle. With the valve closed there is no flow and the pressure throughout equals the 
stagnation pressure. As the valve is opened slightly, flow is accelerated in the converging 
part of the nozzle and its pressure drops. It is then decelerated after the throat with rising 
pressure such that the exit plane pressure pe reaches the backpressure p f This corresponds 
to case 1 shown in Figure 3.6. Further opening of the valve drops the backpressure and the 
flow rate increases until the valve is so far open that the Mach number has the value one at 
the throat and the pressure at the throat is equal to the critical pressure p*. After the throat 
the flow diffuses and pressure rises until the exit plane is reached. The pressure variation is 
shown as condition 2 in the figure. If the valve is opened further, acoustic waves to signal 
what has happened downstream cannot propagate past the throat once the flow speed there 
is equal to the sound speed. The flow is now choked and no further adjustment in the mass 
flow rate is possible. 

Po 

Po 

V0 = 0 

'// <//////////n 

/7777777777m 

p/pa 

P'/Po 

Normal shock 

1 

->■ 

L____ 
^ 1 

4 

^A/w**" 5 
^ v w > ^ — " 

Figure 3.6 Supersonic nozzle with a shock in the diverging part of the nozzle. 

The adjustment to the backpressure is now achieved through a normal shock and diffusion 
in the diverging part of the nozzle. This situation is shown as condition 3 in Figure 3.6. 
Flows with normal shocks are discussed in the next section. A weak normal shock appears 
just downstream of the throat for backpressures slightly lower than that at which the flow 
becomes choked, and as the backpressure is further reduced, the position of the shock 
moves further downstream until it reaches the exit plane, which is shown as condition 4 in 
the figure. After this any decrease in the backpressure cannot cause any change in the exit 
plane pressure. Condition 5 corresponds to an overexpanded flow, since the exit pressure 
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has dropped below the backpressure and the adjustment to the backpressure takes place 
after the nozzle through a series of oblique shock waves and expansion fans. 

There is one value of backpressure for which the flow is isentropic and supersonic all 
the way to the exit plane, and at this condition the exit plane pressure reaches the value of 
the backpressure. This corresponds to one of the two solutions in the area ratio graph of 
Figure 3.4. It is also shown by line 6 in Figure 3.6. For backpressures below this value, the 
flow is said to be underexpanded as its pressure remains above the backpressure. The flow 
adjusts to the backpressure by expanding through a series of oblique expansion waves and 
shock waves as schematically shown by line 7 in the figure. 

In flows through turbomachinery blade passages, the flow channel is not symmetric 
about its centerline and oblique shocks may appear in the flow channel itself. In aircraft 
propulsion the aim is to build lightweight machines with large mass flows. This requires 
small blade passages and large velocities, which leads to locally supersonic flow. The next 
example illustrates the conditions for isentropic supersonic flow. 

■ EXAMPLE 3.4 

Air flows isentropically in a converging-diverging nozzle, with a throat of area of 
10 cm2, such that at the exit Me = 2. The supply pressure and temperature at the 
inlet are 2 bar and 540 K, respectively, and the inlet velocity is negligibly small, (a) 
Find the fluid properties at the throat, (b) the exit area, pressure, and temperature, 
and (c) the flow rate. 

Solution: (a) At the stagnation state density is 
»o 200 , , „ 

°̂ = 4 = 0287^540 = L 2 9 ° 5 k g / m 

Since the flow is supersonic downstream of the throat, it is sonic at the throat. Hence 

p* = 0.5283 po =0.5283-2 = 1.056 bar 
T* = 0.8333 T0 = 0.8333 • 540 = 450.0 K 
p* = 0.6339 po = 0.6339 ■ 1.32905 = 0.8180 kg/m3 

V* = ^J^RT* = Vl-4 • 287 • 450.0 = 425.2 m/s 

(b) At the exit plane, where Me = 2, temperature is 

To 540 

1 + ^ — M. 

and pressure and density are 

7 - 1 ^ 2 1 + 0.2-4 300 K 

7/ (7 -1) /Qf )0 \ 3 - 5 

Pe=Po[?J = 2 ( - j = 25.56 kPa 

vi/(7-i) /800\2-5 

po ( ^ = 1-2905 — = 0.2969 kg/m3 ;§r-"-(sj 
Since the throat area is A* = 10 cm2, exit area is obtained by first calculating the 
area ratio 

-IT = 7 7 7 + ± TMe =-Z- = 1-6875 
A* Me \ 7 + 1 7 + 1 ' / 2 
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from which the exit area is Ae = 16.875 cm2. 
(c) The mass flow rate is obtained from 

m = p*A*V* = 0.8180 • 0.001 • 425.2 = 0.348 kg/s 

Examination of Figure 3.4 shows that for a given area ratio A/A*, the Mach number can 
be supersonic or subsonic. The supersonic solution requires a low exit pressure, and this 
was examined in the previous example. To find the subsonic solution, Eq. (3.9) needs to be 
solved for Mach number when the area ratio is given. This can be carried out with Matlab's 
f zero function. Its syntax is 

x=fzero(@(x) F ( x ) , [ x l , x 2 ] ) ; 

This finds the value of x that satisfies F(x) = 0, with the zero in the range \x\, X2] ■ 
To obtain the subsonic solution, in the following Matlab script Mach number is bracketed 

to the range [0.05,1.0]. The variable k is used for 7, and a is the area ratio. 

c lea r a l l ; 
a=1.6875; k=1.4; 
M = fzero(@(M) fa rea (M,a ,k ) , [0 .05 ,1 .0 ] ) 

The function f area is defined as 

function f = farea(M,a,k) 
f = a - ( l /M)*( (2 / (k+ l ) )* ( l+0 .5*(k - l )*M~2) ) - (0 .5* (k+ l ) / (k - l ) ) ; 
y,The name of t h i s M-file i s farea . 

The result is: 

M=0.3722 

A separate function file is not needed if this is written as: 

a=1.6875; k=1.4; 
M = fzero(@(M) a- ( l /M)*( (2 / (k+D) . . . 

(1+0.5*(k-1)*M~2))"(0.5*(k+1)/(k-1)) , [0.05,1.0]) 

3.3 NORMAL SHOCKS 

In a converging-diverging duct two isentropic solutions can be found for a certain range 
of backpressures. If the backpressure is reduced slightly from that corresponding to the 
subsonic branch of the flow, a normal shock develops just downstream of the throat where 
the flow is now supersonic. It will be seen that the flow after the shock is subsonic and 
there is a jump in pressure across the shock. After the shock, the flow diffuses to the 
backpressure. A Schlieren photograph of a normal shock is shown in Figure 3.7. The 
shock is seen to interact with the boundary layers along the walls, and downstream of the 
shock this interaction influences the flow across the entire channel. Still, one-dimensional 
analysis gives good results even in this part of the flow. 
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Figure 3.7 Interaction between a normal shock and wall boundary layers. (Photograph courtesy 
Professor D. Papamoschou.) 

The flow through a shock can be analyzed by considering a control volume around the 
shock. Since the flow is adiabatic, the energy equation reduces to 

hx + \vt = hy + \v* (3.12) 

where the subscript x denotes the upstream state and subscript y, the downstream state. 
Mass balance for this control volume yields 

771 

■j=PxVx = pyVy (3.13) 

and A is the area at the location of the shock. The momentum equation becomes 

m(yy-Vx) = (px-py)A (3.14) 

since the wall friction can be neglected. Pressure increase across the shock is thus 

Til 

Pv-Px = ^{Vx-Vv) (3.15) 

Making use of the mass balance, this equation takes the form 

Px + PxVt = Py + PyVy2 (3.16) 

Since the flow is adiabatic, the energy equation, if ideal gas behavior is assumed, may be 
written as 

cPTx + \vl = cpTy + l-V* (3.17) 
or as 

TQX = Toy (3.18) 
From the definition of stagnation state the expression 

Tx 2 
is obtained, and a similar equation holds on the downstream side. Hence their ratio yields 

(3.19) Ty 
Tx 

i + V M ' 
1'+ ^r^MJ 
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Making use of the ideal gas relation p = pRT and the mass balance pxVx = pvVy in this 
equation gives 

Ty_ = Vy_Px_ = Py_ Vy_ 
Tx Vx Py Px Vx 

and, using V = Mc to eliminate the velocities, leads to 

Ty _ PyMyCy _ Py My 
Tx pxMx 

Cx Px 

Mx 

from which 
Ty _(Py\2(My^ 
Tx \PxJ \MX 

Combining this with Eq. (3.19) gives 

(3.20) 

Py _ Mx 
-Ml 

v* My /x + I^IM* 
(3.21) 

For an ideal gas pxVx = "fpxM^, and a similar equation holds on the downstream side. 
Substituting these into Eq. (3.16) gives 

Py _ 1+7M, 2 

px 1 + 7M2 

Equating Eqs. (3.21) and (3.22) gives 

(3.22) 

MXJI + ^-1M? MVJI + 1-IM?, ly 

1 + 7M2 1 + 7 M2 

This is clearly satisfied if Mx = My, but in this case nothing interesting happens and the 
flow moves through the control volume undisturbed. Squaring both sides yields a quadratic 
equation in My. Solving it gives the result 

2 + ( 7 - l ) A £ 
My 2 7 M | - ( 7 - I ) {XZi) 

This equation relates the upstream and downstream Mach numbers across a shock, and the 
expression is plotted in Figure 3.8. It shows that upstream states have Mx > 1 and those 
downstream have My < 1. As will be shown below, only in this situation will entropy 
increase across the shock, as it must. 

Pressure before and after the shock is obtained by substituting Eq. (3.23) into Eq. (3.22), 
giving the result 

^ = ^-Ml - 2 ^ (3.24) 
Px 7 + 1 7 + 1 

This shows that if Mx = 1, there is no pressure jump. Denning the fractional increase in 
pressure as measure of the strength of the shock, the strength is defined as 

^ - l = ^1~{M2
x-l) (3.25) 

Px 7 - 1 
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The temperature ratio across a shock is obtained by substituting the value of M 2 from 
Eq. (3.23) into Eq. (3.20). The result is 

Ty _ [ 2 7 M , 2 - ( 7 - l ) ] [ 2 + ( 7 - l ) M j 
Tx 

The density ratio is 

(7+l)2MJ 

Py _ Vy _ ( 7 + l)M2
x 

Px Vx 2 + ( 7 - 1 )M 2 

Since T0x = T0y, Eq. (3.11) shows that 

P0y_ = K 
POx A* 

(3.26) 

(3.27) 

(3.28) 

This equation is useful for finding the area at which a shock is located when the upstream 
Mach number is known. 

The ratio of stagnation pressures across a shock is obtained from 

POy = POyPy Px 
POx Py Px POx 

(3.29) 

which takes the form 

PQ]L_( (7 + 1)M2 

POx 

2 \ 7 / 7 - 1 7 + 1 
2 + ( 7 - l ) M x V V 2 7 M x

2 - ( 7 - l 

The changes in properties across the shock are shown in Figure 3.8. 

100 

1/(7-1) 
(3.30) 

0.01 

Figure 3.8 Normal shock relations for 7 = 1.4. 
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3.3.1 Rankine-Hugoniot relations 

A relationship between the pressure and density ratio across the shock can be obtained 
from the momentum equation 

Px Py-Px= PxVx ~ PyVy = PxVx ( 1 

which, when solved for upstream velocity, gives 

y2 = \(Py-Px)Py'\ 1 / 2 

l(py ~ Px)Px. 

A similar expression is obtained downstream of the shock: 

Py 

Vy 

The energy equation across the shock is 

1 

(Py -Px)Px 

{Py ~ Px)Py_ 

1/2 

hx + 2^x =K+ 2Vv 

Since 

">x My — Cp\J-x -Ly) 
7 - 1 \P: 

Py_ 

Py 

the energy equation can be written as 

7 Px Py ~ Px Py 7 Py Py ~Px Px 

from which 

7 - 1 Px %{py ~ px) Px 7 - 1 Py 2(Py ~ Px) Py 

' 7 + l P y 
Px _ 

Py 

Solving this for the density ratio gives 

7 - IP* 
7 + 1 Py_ 
7 - 1 Px 

Py_ 
Px 

7+lPj/ 

7 - lPx 
7 + 1 | Py 

7 - 1 Px 

(3.31) 

(3.32) 

(3.33) 

Equations (3.32) and (3.33) are known as Rankine-Hugoniot relations [62,40]. 
The strength of the shock is obtained from the first of the Rankine-Hugoniot equations. 

It is 
27 (Py 

Py 1 _ 7 " 1 \Px - 1 
1 

Px 
7-1 . 

Py - 1 
(3.34) 
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and similarly for the density ratio 

Py_ 
Px 

1 + 2+l(Pv_1 
27 \Px 

1 + ^ 1 ( ^ - 1 
27 \Px 

(3.35) 

Entropy change across a shock is given by integrating 

Tds = du — pdv 

across the shock. This gives 

sy - sx = cv In - f + R In -^ = cv In f -^ 
J- T. Vx, \ -L x. 

7 - 1 

The temperature ratio is 
T 2̂/ Py Px 
-L x Px Vx Px Py 

so that the entropy change can also be written as 

sy - sx = cv In ( -^ ] ( — ) 
\PxJ \Py) 

Substituting the expression for py / px from Eq. (3.34) to this and noting that cv = R/{^—\), 
this equation can be recast as 

^ — ^ - l n | ^ ) - 7 l n 
Px 

1 + l+l(Py_1 
27 \P. 

+ 7 In i + l^lfPy.! 
27 \Px 

For weak shocks py/px is just slightly greater than one. For this reason, let pv/px = 1 + e, 
and on substituting this in the previous equation and expanding in Taylor series for small 
value of e, leads to 2 

sy - sx _ 72 - 1 fpy ^ _ 7 2 - l (py_ _ 1
N 4 

or 

127
2 \p: 87

2 \P: 

Sy-Sx = 7 + 1 {Pv_i\ _ 7 + 1 (Pv_l\ 4. 
i? 127

2 \Px ) 87
2 Ux ) 

Using Eq. (3.25) to express the shock strength in terms of Mach number gives 

i i 3 (7 + l)2 (7 + 1)= 
(3.36) 

This shows that were Mx < 1, entropy would decrease across the shock. Thus shocks 
are possible only for Mx > 1. Furthermore, entropy increases only slightly across weak 
shocks. 

2For small values of £ series expansion yields ln(l +'e) = e — e2 /2 + e3 /3 — e4/4 
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The stagnation pressure change across weak shocks can also be developed by writing 
Ml = 1 + e in 

POy_f (7 + l)A£ V 7 7 " 1 / 7 + 1 ^ ^ 
Pox V2+(7-l)MaV V 2 7 M | - ( 7 - l ) 

and expanding the resulting expression in for small values of e. The result, when written 
in terms of M% — 1, is 

? ° » = 1 - - 1 ( M 2 - l ) 3 + — ^ (M 2 - l ) 4 + .-- (3 37) 
po, 3(7+l)2^ s j (7 + I)3 { x ' 

This is an important result as it shows that flows through weak shocks experience only a 
small loss in stagnation pressure. In fact, Eq. (3.37) may be shown to be accurate to 1% for 
Mx < 1.2, and for Mx = 1.2 it gives poy/pox = 0.986, or a stagnation pressure drop of 
less than 2%. The significance of this result for turbomachinery design is that in transonic 
flows with shocks stagnation pressure losses are relatively small. 

3.4 INFLUENCE OF FRICTION IN FLOW THROUGH STRAIGHT NOZZLES 

There are various ways in which the irreversibilities caused by friction have been taken into 
account in studies of nozzle flow. These are discussed in this section. First, a polytropic 
efficiency is introduced, and it is then related to a static enthalpy loss coefficient, which, 
in turn, is related to a loss of stagnation pressure. Next, nozzle efficiency and the velocity 
coefficient are discussed. After this the equations for compressible flow in a variable-area 
duct with wall friction are given. In the discussion that follows, the flow is adiabatic and 
no work is done. Therefore the stagnation temperature remains constant, and assuming 
constant specific heats and ideal gas behavior, the relation 

Y = 1 + 1-^TM2 (3-38) 

remains valid for adiabatic flow even when friction is present. 

3.4.1 Polytropic efficiency 

The concept of polytropic efficiency follows from examining the Tds equation 

Tds = dh — vdp 

for an isentropic process 
dhs=vdp (3.39) 

and a nonisentropic one. A polytropic efficiency of an incremental expansion process is 
defined as 

_ dh 
Vp~dh~s 

so that dh = r]pdhs. The process is shown in Figure 2.9a in Chapter 2. Substituting this 
into Eq. (3.39) and making use of the ideal gas relation gives 

dh = cpdT = T]„y dp = nD dp 
P 
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From this follows the relation 

dT = T?P(7 - 1) dp 

T I P 

A polytropic index n is now introduced via the equation 

(3.40) 

?-l = Ikh^l sothat r^f^V-U (3.41) 
n 7 ' \ n J \-y-lJ 

and Eq. (3.41) can also be written as 

(3.42) 
7?p + 7(1 - r)p) 

Assuming that rjp and hence also n remain constant along the entire expansion path, 
integrating Eq. (3.40) yields 

T> / \ ( n — l)/n 

Rewriting this as 
n-l = l n r 2 /T i 

n lnp2/pi 
gives an equation from which the polytropic exponent may be calculated, if the inlet and 
exit pressures and temperatures have been determined experimentally. Real gas effects have 
been incorporated into the theory by Shultz [69], Mallen and Saville [55], and Huntington 
[42]. 

If the inlet state is a stagnation state, then, writing Eq. (3.43) as 

-i-oi _ I Pen \ 

and making use of the ideal gas relation in Eq. (3.44) it follows that 

m = (±m_\ Poi = ( P°l\ 
P2 \T2 J p2 V P ) 

(3.44) 

Finally, using Eq. (3.38) the pressure and density ratios may be written as 

/ i \n/ln— 1) / , \ l / ( n - l ) 

The flow velocity is 

V = M^/rRT = M^-fRTo ( 1 + -̂ —— M2 1 

which can be used to express the mass flow rate per unit area at the throat in the form 

mJ^T^ 7 / 7 - 1 \-(«+D/2(«-i) 
V \ = ~7=M2, 1 + ^ M 2 (3.45) 
POIA2 V7 - 1 V 2 y 
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With the conditions at the inlet fixed, M2 is the only variable in this equation. Differentiating 
with respect to M2 gives that value of Mach number at the throat for which the maximum 
flow rate is achieved. This operation leads to 

2 2 2 ( n - l ) 2 

which, when simplified and solved for Mi, gives 

Mt = ^ ^ - 1 (3.46) 

in which the subscript indicates that this is the Mach number at the throat at a choked 
condition. Two alternative forms are 

It is seen that Mach number at the throat is slightly less than one. Making use of this value 
of Mach number the critical pressure ratio becomes 

/ 2 W ( n - l ) 
pt ' ' (3.48) 
Poi \ n + 1 

This has the same form as the expression for isentropic flow when 7 replaced by n. 
Substituting Mt from Eq. (3.47) into Eq. (3.45) gives 

- ) m a x ^ 2 W 0 1 , 0 1 ( — ) (3.49) 

Velocity at the throat at this condition is 

Vt = ^2cp(Tm - Tt) = J^~RTt (^r - l\ = Vv^RTt 

in which the relation Toi/Tt = [n + l ) /2 was used. Alternatively, velocity at the throat 
may be determined from Vt = Mt \/jRTt. 

■ EXAMPLE 3.5 

Air in a reservoir, with temperature 540 K and pressure 200 kPa, flows into a converg-
ing nozzle with a poly tropic efficiency r/p = 0.98. The throat area is At = 10 cm2. 
(a) If the flow is choked, what are the exit pressure and the mass flow rate? (b) Given 
that the backpressure is pb = 160 kPa, find the mass flow rate. 

Solution: (a) The polytropic exponent is 

7 1.4 
%, + 7 ( l -%>) 0.98 + 1.4-0.02 

and the Mach number can then be determined to be 

1.389 

n - \ / 1 . 3 8 9 - 1 _ „ 
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With the flow choked, pressure and temperature at the throat are 
,n/(n-l) / 0 \1.389/0.389 

Pt = Poi I r I = 200 
n + 1 

Tt 
27} 01 

1.389+1 

2-540 

106 kPa 

n + 1 1.389 + 1 
Mass flux at the throat at choked condition is 

-(n+l)/2(n-l) 

452.1 K 

m 
Poi 

7 ,T / n + 1 -M2 343.42kg/(s-m2) 

and, with A 

iZToi V 2 
10 cm2, flow rate is 

m = 0.343 kg/s 

(b) Forpb = 160 kPa the flow is not choked. Hence Mt is calculated from 

Mt. = \ J 7 - 1 
and the mass flux at the throat is obtained from 

Poi 
Pb 

(n-l)/n 

0.5678 

m 
At-fhVt-poiym[lvlt 7 Aft f 1 + 7 - r ^ M 2 

-(n+l)/2(n-l) 

281.7kg/(s-m2) 

Hence the mass flow rate is 
m = 0.282 kg/s 

By comparing this to the calculation in Example 3.3 for an isentropic flow, the mass 
flow rate is seen to be slightly smaller for the polytropic process. g 

Since the sonic state does not appear anywhere in the actual flow, it serves as a reference 
state. At the sonic state the static properties may be calculated from the stagnation state 
upstream by using the following equations: 

p 
Poi 7 + 1 

P 
Poi 7 + 1 

Since Toi remains constant, the relationship between the static temperature at the sonic 
state and its value at the inlet is 

T* _ T* T0i 
T\ ~ ToT^T 7 + 1 1 + 7 - 1 

Mr 
or rp* 

2 ■ T l A f ? 
Ti 7 + 1 7 + 1 

The pressure ratio is clearly 

and the density ratio is 
Pi 

Pi 
Pi 

2 7 - 1 
7 + " 7 

7 + 1 7 + 1 
M2 

2 7 - l „ 2 -, + 7 + 1 - 7 + 1 Mf 

n/(n-l) 

l/(n-l) 
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Figure 3.9 The thermodynamic states for a flow through a nozzle with friction. 

3.4.2 Loss coefficients 

In addition to the polytropic efficiency, there are other measures of irreversibibty in nozzle 
flow. The first of these is the loss coefficient for static enthalpy, defined as 

c 
ho - h 2s ho - h 2s 

i02 
2 2 

(3.50) 

where the end states are as shown in Figure 3.9. The numerator is the change in enthalpy 
owing to internal heating. 

This may also be written as 

c = h 02 {h02 - h2) vl v2
2 1 

ho2 - h2 v2
2 1 

in which cv = V2/V2s is called a velocity coefficient. For given inlet conditions and exit 
pressure, the static enthalpy loss coefficient may be related to the polytropic efficiency, as 
the next example illustrates. 

■ EXAMPLE 3.6 

Air in a reservoir, with temperature 540 K and pressure 200 kPa, flows in a converging 
nozzle with a polytropic efficiency r]p = 0.98. (a) Find the static enthalpy loss 
coefficient, given an exit pressure of p2 — 160 kPa. (b) Find the velocity coefficient. 
(c) Find the loss in stagnation pressure. 

Solution: (a) As in the previous example, the polytropic exponent is 

7 1.4 
7 ? p + 7 ( l - ? 7 p ) 0 : 9 8 + 1 . 4 - 0 . 0 2 

= 1.389 
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The exit temperature is therefore 

T a = r ° i ( S ) < = 5 4 n ^ ' =5o7-29K 

and the Mach number at the exit is 

( n - l ) / n / , f i „ N 1.389/0.389 

M2 = ,U- (^-l)= J±- (_^_ _ ,) = 0.5678 
V ^ _ 1 V T 2 / y 0.4^506.29 J 

The exit velocity is therefore 

V2 = M2^/jRT2 = 0.5678\/l.4-287-507.3 = 256.34m/s 

The temperature T2s is obtained from the expression for isentropic expansion 

Hence the static enthalpy loss coefficient is 

2cp(T2_- T2s) _ 2 • 1004.5 • (507.29 - 506.65) 
r = — '^ r±L = i '- = n 01976 
<" V? 256.342 U 'U y / ° 

(b) The velocity coefficient is then 

1 
= 0.9903 v yrrc 

(c) The loss of stagnation pressure is obtained by noting that 

P02 P02P2 (TnV^-V (T^Y1^-" (Tz^-V 
POl V2 P01 \T2 J \T02 

Hence 

P „ s ^fpv 2 0 o ( i S ) "= 1 9 , l l k P a 
The loss in stagnation pressure is Ap0 = Poi — P02 = 890 Pa. Because the values 
of poi a nd P02 are nearly equal, on subtracting one from the other, a number of 
significant figures are lost. If the value of the static enthalpy loss coefficient is 
known, the polytropic efficiency may be calculated by reversing the steps in this 
example. _ 

The ratio of stagnation pressures P02/P01 may also be developed by integrating the Gibbs 
equation 

Tds = dh — v dp 

along the constant p2 line. This gives 

s2 - si-~ CpIn—-
J-2s 
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Similarly, integrating it between states 01 and 02 along the constant ho line leads to 

S2 — s\ = / cm 
P02 

Hence 
/rp \ 7 / ( 7 - l ) 

P_02 = fT±\ 
Poi \T2 ) 

This may also be written as 
T / « \ ( 7 - l ) / 7 / „ A „ \ ( 7 - l ) / 7 / A „ \ ( 7 - l ) / 7 
J- 2s I P02\ I POI - A-PO \ — M 
?2 VPOl/ V POI / V POI 

in which Ap0 = Poi — Po2- Assuming that Ap 0 /poi *C 1 and making use of the binomial 
theorem, the following approximation can be used 

T2s = 1 7 - 1 Ap 0 

?2 7 P01 

which may be also recast as 

T2 - T2s = 7 - 1 App 
T2 7 Poi 

and from which 
i?T2Ap0 Apo/Poi 

" 2 - ^2's — — 7777-j 
P 0 1 1 + ^ M 2

2 

2 2 

so that the static enthalpy loss coefficient is 

Apo/poi 
c V f i + ^—iM.2 

2 A I ^ " J U 2 
2 z V 2 

For small values of exit Mach number this reduces to 

Apo/An 
c 

2 V2 

and this is often called a stagnation pressure loss coefficient. 
Another measure of the loss of stagnation pressure is given by 

v _ Poi ~ P02 
J P — 

P02 ~ P2 

which may be written as 
Y = P01/P02 ~ 1 

P I - P 2 / P 0 2 
The pressure ratios in this expression are 

/T \ 7 / ( 7 - l ) 

P02 _ I 102 

P2 
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and 
7 / (7 -1 ) Pol = (T2s 

P02 \T0i, 
and the definition of static enthalpy loss coefficient, Eq. (3.50), can be rewritten as 

T2 
C T02 

T2 
1 

Substituting these into the expression for the stagnation pressure loss coefficient gives it 
the form 

Yn 

i -C ( | f -1 
-7 / (7 -1 ) 

1 

Tr 

or 

Y„ 
1-C 

02 

X^IM? 

-7 / (7-1) 

-7 / (7-1) 

1 - 1 + 7 "iM9
2 -7/(7-1) 

For small M2 this reduces to Yp = £. The development indicates that the value of ( is 
not dependent on Mach number, but the loss of stagnation pressure is, and therefore also 
the value of Yp. For this reason ( ought to be favored over other measures of irreversiblity 
[18]. However, it is worthwhile to be familiar with the various loss coefficients, as they 
have been and still are in use in the analysis of turbine nozzles. 

3.4.3 Nozzle efficiency 

The nozzle efficiency is defined as 

7?N 
hi - h2 

hi - h2s 

or, since the stagnation enthalpy remains constant so that hi + V^/2 
relation can be rewritten as 

h2 + V2
2/2, this 

m 
V2

2 

2(Ai - h2s) 
Similarly, when hi + Vf/2 = h2s + V2

2
s/2 is used to rewrite the isentropic enthalpy 

change in the denominator in terms of kinetic energy differences, nozzle efficiency takes 
the alternative form 

m 
v2

2 

vl - v? 
If the fluid enters the nozzle from a large reservoir where Vi = 0, nozzle efficiency becomes 

VN 
V2

2 

2(/i0i - h2s) 
Yl vl 

Thus nozzle efficiency can be interpreted as a ratio of the actual increase in kinetic energy 
of the flow to that in reversible adiabatic 'flow. Nozzle efficiency takes into account the 
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losses in the entire nozzle, from its inlet to its exit. If the nozzle is a converging-diverging 
type and the flow is subsonic, then most of the losses take place in the diverging part in 
which the flow diffuses to a low velocity. Nozzle efficiency of a converging nozzle has a 
value very close to unity. 

For a flow that starts from the stagnation state nozzle efficiency 

VN = 
V2

2 

2cp(T0 -T2s) 

may be further manipulated into the form 

7 - 1 
m 

Ml 
1 

T2s \ TQI 

Toi. 

Expressing the isentropic temperature ratio T2s/T0i and T0i/T2 as 

P2 
Poi 

( 7 - l ) / 7 Ik 
T2 

7 - 1 
Mi 

and solving the resulting equation for the pressure ratio gives 

P2_ 
Poi 

(7 - 1)M| 1 7 / ( 7 - 1 ) 

77N(2 + ( 7 - l ) M 2
2 ) (3.52) 

The following development of an expression for mass flow rate through a converging 
nozzle makes use of this equation. In such a nozzle the exit area A2 is equal to the throat 
area At, and the mass flux, which is the mass flow rate per unit area, at the throat is given 
by 

7 _ [T^ 
RT0i A-rPtVt^PtMt\RT0,\Tt 

or 
m 
A Poi 

7 Pt M t W l 
7 - 1 

RT0i Poi V 2 

Substituting the pressure ratio from Eq. (3.52) into this gives 

1 7 / ( 7 - 1 ) 

M 2 

m 
A Poi 

7 
RTQI 

1 
(7 " 1)M- Mt 1 7 - 1 Mi 

-,1/2 

77N(2 + ( 7 - l ) M t
2 ) 

(3.53) 
In this equation square of Mach number appears and therefore differentiating this equation 
with respect to respect to Mt

2 and setting the result to zero gives the value of Mt for 
maximum mass flux at the throat. Carrying out the differentiation gives the equation 

(7 - 1)2(1 - m)M? - [(7 - 1)3T/N - 27]M2 - 2m = 0 

From this the throat Mach number at the condition of maximum mass flux is obtained as 
1/2 

M, (7 - 1 V>m -1 )-27+V/[(7- l ) (3??N-l)-27]2^r ? N( l - r ? N)(7- l ) 2 

2 ( 7 - 1 ) 2 ( 1 ' - 7 ? N ) 
(3.54) 
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If the nozzle efficiency is known, then polytropic efficiency can be calculated by equating 
the Mach number obtained from Eq. (3.54) to Mt = 1/(71 — l ) / (7 — 1). For 7 = 1.4 and 
7/N =0.98 the polytropic exponent becomes n = 1.3868. 

Neither the polytropic efficiency nor the overall nozzle efficiency reveals how the length 
and shape of the nozzle influence the magnitude of irreversibilities in the flow. These issues 
are discussed in the next section. 

3.4.4 Combined Fanno flow and area change 

Compressible flow with friction in constant-diameter ducts goes by the name Fanno flow, 
and for this flow the momentum equation is used to relate pressure and velocity changes 
to wall friction. There are two closely related friction factors in use. The Fanning friction 
factor is defined as 

The Darcy friction factor is 4 times the Fanning value, / = 4 / . Care must be exercised 
that the right one is used. The Darcy friction factor can be calculated for turbulent flow 
from the Colebrook formula 

1 
77 -2 log 10 + 

2.51 
3.7 ' RevTV 

e/Dh (3.55) 

in which e is a root-mean-square (RMS) roughness of the walls and D^ is a hydraulic 
diameter, equal to D^ = 4A/C. Here A is a cross-sectional area and C is a wetted 
perimeter. 

Since this equation is nonlinear, the value of / for given Re has to be determined 
iteratively; that is, an initial guess can be obtained by assuming Reynolds number Re to be 
so large that the second term in the parentheses may be neglected. The value of / obtained 
from this calculation is then substituted on the RHS. In this way a new value of / is then 
found, and it is sufficiency accurate that the iterations can be stopped. In the equations that 
follow, the Fanning friction factor is used, but the equations are left in a form in which 4 / 
appears explicitly. 

pdA 

pA 

X... C dL 

(p+dp)(A-dA) 

Figure 3.10 A converging nozzle with friction. 

To analyze the combined effects of friction and area change, equation of continuity and 
energy are used together with the momentum equation. The ̂ -component of the momentum 



INFLUENCE OF FRICTION IN FLOW THROUGH STRAIGHT NOZZLES 8 5 

balance for the control volume, shown in Figure 3.10, gives 

pAV(V + dV - V) = pA -pdA - {p + dp){A - dA) - rwCcosadL 

Since in the sketch the flow area decreases, the downstream area is written as A — dA. In 
order to draw the vector p dA in the correct direction for a converging channel, the area 
change must be assumed to have the sign that is consistent with the sketch. 

Making use of the relations C = AA/Dh and cos a dL = dx in this equation and 
neglecting the small term dp dA, reduces it to the form 

4TW pVdV = —dp pr~dx 

Introduction of the Fanning friction factor puts it into the form 

pVdV = -dp - ^~^pV2dx 
Dh 2 

Using the ideal gas relation and definition of Mach number to establish the equality pV2 = 
jpM2 gives, after each term has been divided by p, the equation 

* + 2f^ + l M ! 4 / £ = 0 ,3,6, 
p 2 Vz 2 L>h 

To see the effect of area ratio and friction on the flow, this equation is next recast into a 
form in which the first two terms are expressed in terms of area ratio and Mach number. The 
second term is considered first. Since V2 = M2/yRT, taking logarithms and differentiating 
this gives 

dV2 _ dM2 dT 

Next, since in adiabatic flow To is constant, taking logarithms and differentiating the 
adiabatic relation T0 = T(l + ^ M 2 ) gives 

dT 
T 

V M * dM* 
l^~lM2M2 

(3.57) 

and eliminating dT jT between the last two equations gives 

dV2 1 dM2 

V2 i , 7 - 1 , ,2 M2 (3.58) 
l + ^—Mz 

Next, an equation between Mach number, area ratio, and friction factor is obtained by 
taking logarithms and differentiating the mass balance m = pAV. This gives 

dp dA dV n 

p A V 

A similar operation on the ideal gas relation p = pRT leads to 

dp _ dp dT 
7 " 7 + ^ 
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Eliminating the term involving density between these two equations gives 

dp __dA_^dV^ dT 
~p~ ~ A 2 V2 + T 

Substituting this expression for dp/p into Eq. (3.56) gives 

dA 1/ , » , 2 ^ 2 dT jM2 -dx n 

Substituting Eqs. (3.57) and (3.58) into this yields the form 

1 - M 2 dM2 dA , 7 M 2 -dx 
2 + (7 - 1)M2 M2 A 2 J D 

from which the qualitative behavior of the flow can be seen. For sufficiently low backpres-
sure this equation shows that in a converging duct with dA/A < 0 both terms on the right 
are positive. Hence in a flow that begins from a stagnation state, the Mach number increases 
in the flow direction, as was also true in isentropic flow. If the nozzle has a throat with 
dA = 0, the right side is still positive and the Mach number must still increase as it passes 
through the throat. This means that the Mach number is less than unity at the throat. In a 
supersonic nozzle the flow may reach M — 1 in the diverging part, with dA/A > 0, when 
the terms on the RHS exactly cancel. Stagnation pressure may be calculated by solving 

dj^ = ->Hf%- (3.60) 
Po 2 Dh 

which shows that it drops only because of friction. 
In steam turbines high-pressure steam is admitted into the turbine from a steam chest, 

to which it has entered via a regulated valve system. From the steam chest it flows first 
through a nozzle row arranged as shown in Figure 3.11. After leaving the nozzles it enters 
an interblade gap and then a set of rotor blades. Steam enters the nozzles in the axial 
direction, and the nozzles turn it into the general direction of the wheel velocity. 

Shroud band 

Rotor blades 

Nozzle \ 
Disk 

Diaphragm 

Figure 3.11 Steam turbine nozzles and blades. (Adapted from Keenan [47].) 

Curvature of the nozzle passage does not introduce new complications into the analysis 
of frictional flow except, of course, at the initial stage when the geometry is laid out. 
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To illustrate turning of steam into the direction of the turbine wheel rotation, in the next 
example, and as shown in Figure 3.12, the nozzle shape is a combination of a circular arc 
followed by a straight-line segment. The length of the arc is chosen such that the following 
straight line continues tangentially from the arc, and its direction is such that the flow leaves 
the nozzle at the correct angle. 

Wet steam may be assumed to follow an ideal gas model with adiabatic index from 
Zeuner's equation 7 = 1.035 + 0.1a;. But usually as steam expands, it remains in a 
supersaturated state, provided the state does not drop too far into the two phase-region. 
In such a case isentropic flow is better modeled with an adiabatic index 7 = 1.3. This 
calculation is illustrated in the next example. 

■ EXAMPLE 3.7 

Consider steam flow through the nozzle shown in Figure 3.12. The nozzle is rect-
angular, 3 cm in height, and its width at the inlet is 5.12 cm. The nozzle walls are 
made up of a circular arc of radius R = 2.85 cm and a straight section at the nozzle 
angle a = 75°. At the inlet steam is dry and saturated with pressure pi = 275 kPa 
and Mi = 0.1. The friction factor is assumed to be 4 / = 0.032. Find the steam 
conditions through the nozzle, assuming that it remains supersaturated as an ideal 
gas with 7 = 1.3. 

1 2 3 4 5 6 7 8 

x(cm) 

Figure 3.12 Offset nozzle and its grid. 

10 11 12 

Solution: Since at the inlet steam is saturated vapor atp; = 275 kPa, its temperature 
is XI = 403.7 K and specific volume is v; = 0.6578 m3/kg. The speed of sound at 
the inlet is 

c; = y/^RTi = Vl-3-461.5-403.7 = 492.1 m/s 
Hence the speed at the inlet is V\ = c\M\ = 49.2 m/s and the mass flow rate is 

ViAi 49.3-3-5.12 
m 0.6578 • 1002 0.116 kg/s 

In order to check the value of friction factor, the size of the hydraulic diameter is 
needed. For the inlet section it is 

AA 2Lb 2-0.0512-0.03 _ „ 
D* = ^ = LTl= 0.0512 + 0.03 = ° - 0 3 7 8 m 
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With steam viscosity 1.322 ■ 10 kg/(m • s), the Reynolds number comes out to be 

p a
 ViDh> 49-3 • 0-0378 

R e = ~ ^ r = 0.6578-1.322-10-s = 2 1 4 ' 3 ° ° 
The value of the friction factor from the Colebrook formula is seen to be about 
4 / = 0.032, for a pipe with relative roughness e/D^i = 0.006. If the roughness of 
the pipe is known, a more accurate value can be determined and the value clearly 
varies along the flow path. This variation is ignored, and the value 4 / = 0.032 is 
used in the calculations. 

To establish cross sections for the flow channel, the circular arc of the left wall 
was divided into angular increments of 3°. The increment dy between the last two 
points was chosen as an approximate vertical separation for the points along the 
straight-line segment. The actual number of points was chosen such that the realized 
vertical separation was closest to this value of dy. This procedure resulted in 52 
grid points. Next, the circular arc along the right wall was divided into 51 arcs of 
equal length, and the corresponding points on the left boundary were recalculated by 
choosing 52 points equally spaced in the value of their y coordinate. The locations 
of the corresponding x coordinates were then obtained by interpolation, based on the 
previously calculated base points along the left boundary. A sample grid is shown in 
Figure 3.12. 

It is assumed that the flow properties are uniform on each cross section. This 
construction makes the flow path for the first element somewhat longer than the 
others, but the change in the flow properties is rather small in this region in which 
the cross-sectional area is large. Clearly, there are other ways in which to divide the 
flow nozzle into suitable sections. 

The governing equations can now be solved, for example, by the Euler method, 
in which derivatives are replaced by forward differences. Equation (3.59) in finite-
difference form is 

[2 + (^-l)mi]mi{Ai+i-Ai) 7m?[2+ (7 - l)mj] . jXi+i 
+ / . ; - H 4 / : 

Xi 

l-rrii Ai 2(1-mi) J A 

in which m, = Mf. 
To check the convergence, in addition to calculating the base with 51 elements, the 

number of elements was increased also to 166 and then again successively roughly 
doubled to 4642 elements. Accuracy to two significant figures can be obtained with 
about 180 grid points. Three significant figures takes over 1000 elements. The results 
are shown in Table 3.1, in which Me and pe/p\ are the exit values for isentropic flow 
and Mef and pei/pi are for a flow with friction. 

The areas at the inlet and outlet are 

Ai = 15.360 cm Ae = 3.976 cm 

Hence, with Mi = 0.1 at the inlet, the flow function is 

m^T0 7 M l / 7 - I ^ + 1 ) / 2 h - 1 } 
= V r = + 1 + J Mz = Q 2 3 6 Q 

APo v / 7^T V 2 l ' 
Therefore the flow function at the exit is 

*-«£-<>■•» ' - T ^ T O ^ * ) ' 
-(7+l)/2(7-l) 
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Table 3.1 Convergence of the solution for steam flow through a nozzle 

N 

51 
166 
340 
689 
1386 
2782 
4642 

Me 

0.3914 
0.4156 
0.4207 
0.4232 
0.4245 
0.4251 
0.4254 

Met 

0.4018 
0.4238 
0.4293 
0.4321 
0.4335 
0.4341 
0.4344 

Pe/Pl 

0.9104 
0.9009 
0.8985 
0.8973 
0.8967 
0.8964 
0.8962 

Pef/pi 

0.8942 
0.8828 
0.8798 
0.8783 
0.8776 
0.8772 
0.8771 

An exit Mach number for isentropic flow is obtained from the expression for the flow 
function. This gives Me = 0.4258 and a normalized pressure pe/pi = 0.8960. The 
numerical solution is seen to agree with this. 

Plots of Mach number and normalized pressure for isentropic flow and for frictional 
flow are shown in Figure 3.13. Friction is seen to increase the Mach number, as was 
also seen in the previous example. Similarly, pressure drops more rapidly in frictional 
flow. 

Figure 3.13 Mach numbers and normalized pressure for a steam flow through a nozzle. At the 
inlet Mi =0.1 and pi = 275 kPa. Dashed lines correspond to frictional flow and solid lines, to 
isentropic flow. 

The plots in this figure are shown with axial distance on the abscissa, and therefore 
they do not show clearly how the variableschange along the streamline through the 
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centerline of the nozzle. In particular, in the entrance region the flow moves approx-
imately in the negative y direction and a small increase in x coordinate corresponds 
to a large increase in the path length. Hence the Mach number appears to increase 
more rapidly than it would have if the path length had been used on the abscissa. 

■ 
In the foregoing example, length of the nozzle was taken into account explicitly. Since the 
irreversibilities are clearly a function of both the surface roughness and the length of the 
flow passage, this is an improvement over assigning a polytropic exponent to the process, 
or by estimating the nozzle efficiency by past experience. However, an objection may be 
raised in the use of friction factors, obtained experimentally from flow of incompressible 
fluids in pipes, to compressible flow with large area change. In addition, experiments have 
shown that flows through curved nozzles develop secondary flows and these increase the 
losses. To account for them it has been suggested that the friction factor might be increased 
by some factor, but this procedure is not satisfactory, since it does not take into account the 
amount of turning. But lack of better alternative has forced such choices on the designer in 
the past. Today, it is possible to carry out computational fluid dynamics CFD simulations 
to take account of frictional effects better than the one-dimensional analysis discussed here 
yields. Nevertheless, it is still worthwhile to carry out a one-dimensional analysis by hand 
and by use of effective software, such as Matlab and EES, for such methods increase 
intuition, which is difficult to gain by CFD alone. 

3.5 SUPERSATURATION 

Consider again a steam flow through a nozzle, with steam dry and saturated at the inlet. 
As the steam accelerates through the nozzle, its pressure drops, and, if the process were to 
follow a path of thermodynamic equilibrium states, some of the steam would condense into 
water droplets. The incipient condensation may begin from crevices along the walls, in 
which case it is said to be by heterogeneous nucleation. The word nucleation suggests that 
the droplets start by molecular processes at nucleation sites and that incipient nucleation 
processes are distinct from those that cause the droplet to grow after it has reached a finite 
size. Homogeneous nucleation may begin at dust particles, or ions, carried in the vapor. 
At the nucleation sites the intermolecular forces that bind a vapor molecule to a site are 
stronger than those between two isolated vapor molecules. Once a molecular cluster is 
formed, the surface molecules form a distinct layer on which intermolecular forces on the 
liquid side are sufficiently strong to keep the molecules in this layer from evaporating into 
the vapor phase. The macroscopic manifestation of the distinct structure of a surface layer 
is the surface tension of liquids. 

Kinetic theory of gases and liquids shows that there is a distribution of energy among 
the molecules, some having higher, some lower energy, than others. The more energetic 
molecules in the liquid are more prone to leave the liquid surface, and the molecules in 
the vapor phase with lower than average kinetic energy are more likely to condense. In a 
droplet of small size the phase boundary is curved, and then net force on a surface molecule 
originates from fewer neighbors than when the phase boundary is flat. As a consequence, 
the smaller the liquid droplet, the weaker is the binding of the surface molecules. Hence 
liquid in small droplets is more volatile, and its vaporization takes place at lower temperature 
than it would if the phase boundaries were flat. In other words, at any given temperature 
vapor is formed more readily from smaller droplets than from large ones, and they can 
evaporate into a saturated vapor. This leads to supersaturation. 
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PlP, 

Figure 3.14 Illustration of a condensation shock from Binnie and Woods [8]. 

Both the evaporation and droplet formation by homogeneous nucleation take place at 
conditions not allowed by thermodynamic equilibrium. The practical effect is that steam 
flowing through a nozzle will not readily condense by homogeneous nucleation, and its 
temperature may drop quite far below the saturation temperature before nucleation takes 
place. Under these conditions the vapor is also said to be undercooled or subcooled. 

When clean, dry, and saturated steam enters a nozzle, it remains supersaturated to a 
lower value of quality than if it were contaminated with foreign particles or ions. For clean 
steam the limit of supersaturation is marked by the Wilson line with a quality of 0.96 when 
the inlet steam is dry and saturated and has a pressure of 0.1 bar, and the quality drops to 
0.95 along the Wilson line as the inlet pressure is increased to 14 bar. 

When steam conditions pass the Wilson line, a condensation shock is formed. Binnie 
and Woods [8] have measured the pressure change across such a condensation shock, and 
their results are shown in Figure 3.14. They also carried out calculations to predict the 
pressure rise across the shock. More extensive analysis of condensation shocks has been 
carried out by Guha [31]. 

For purposes of calculation, the Wilson line will be assumed to correspond to constant 
quality of x = 0.955. By this measure the Wilson line is reached by isentropic expansion 
when enthalpy is 143.5 kJ/kg below the saturation line at pressure of 0.1 bar and 115 kJ/kg 
at 14 bar. Supersaturated steam above x = 0.955 can be assumed to behave as an ideal 
gas with 7 — 1.3. Thus dry saturated steam at inlet temperature T\ and pressure p\, when 
it expands isentropically to pressure p2» reaches a temperature 

T2 = T i Fl) 
( 7 - l ) / 7 

The saturation pressure corresponding to temperature T2 is denoted by pss and the ratio 
of the pressure P2 to which the expansion takes place and pss is called the degree of 
supersaturation. It is given by 

S = ,— (3.61) 
Pss 
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The equilibrium temperature Tu corresponding to pressure P2 is larger than T2, and the 
amount of undercooling is given by Tu — T^. 

■ EXAMPLE 3.8 

Steam expands from condition pi = 10 bar and T\ = 473.2 K isentropically through 
a nozzle to pressure P2 = 3.60 bar. Find the degree of supersaturation and the 
amount of undercooling. 

Solution: At the inlet condition the entropy of steam is Si = 6.693 kJ/(kg • K). 
At pressure P2 = 3.60 bar and entropy S2 = 6.693 kJ/(kg • K) the steam quality is 
X2 = 0.9541. Thus the quality is close to the Wilson line. Assuming that the steam 
is supersaturated, its temperature is 

T 2 = T 1 ( J M = 473.2 ( ^ ) = 373.6K 

Saturation pressure corresponding to this temperature is pss = 1.028 bar. Hence the 
degree of supersaturation is 

S= ^ ° = 3.502 1.028 

The saturation temperature corresponding to P2 — 3.6 bar is Tu — 413.0 K, and the 
amount of undercooling is 39.4 K. 

3.6 PRANDTL-MEYER EXPANSION 

3.6.1 Mach waves 

Consider a source of small disturbances that moves with supersonic speed to the left, 
as shown in Figure 3.15. The source produces spherical acoustic waves that propagate 

Figure 3.15 Illustration of the formation of Mach cone 

outward with speed c. Next, consider five instances of time, the present time and four 
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preceding instances of time, separated by equal time increments. At time — 4 At the source 
was at location 4V At to the right of the present location and the wavefront which formed 
at time —4Ai has moved a distance AcAt from the source. Similar reasoning applies to 
disturbances formed at -3At, —2At, and —At. The spherical wavefronts generated at 
these times are shown in the figure. Examination of the figure reveals that a region of 
influence of the disturbances is inside a cone with cone angle // given by 

sin// V 
1 

M 
(3.62) 

If a fluid moves to the right at speed V and meets a body at rest, the acoustic signal from 
the body is again a spherical wave. It travels upstream with the absolute velocity c — V and 
downstream with velocity c + V. In supersonic flow c — V is negative and the disturbance 
cannot influence the flow outside a cone with cone angle fi given by Eq. (3.62). This is 
called a Mach cone. 

In a two-dimensional flow in which the source of small disturbances is a line perpendic-
ular to the plane of the paper, the cone becomes a wedge. The region inside the cone, or 
the wedge, is called a zone of action, that outside is a zone of silence. The dividing surface 
between these zones is called a Mach wave. 

3.6.2 Prandtl-Meyer theory 

In a supersonic flow over an exterior corner, shown in Figure 3.16a, as the flow turns, Mach 
waves emanating from the sharp corner form an expansion fan. Since the flow is supersonic 
and moves to a larger area, its Mach number increases and pressure drops. 

Leading Mach line 

(a) 
Expansion fan 

Terminal Mach line 

(b) 

Figure 3.16 Supersonic expansion of flow over a convex corner. 

The expansion fan is located in the region between the Mach waves oriented at angles 
sin/xi = ci/Vi = 1/Mi and sin ^2 = C2/V2 = I/M2, with \±i defining the terminal 
Mach wave at which V is parallel to the downstream wall. Such an expansion fan is said 
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to be centered about the corner. Upstream of the leading Mach wave, pressure is uniform 
and the incremental pressure drop across a given Mach wave is the same regardless of 
where the flow crosses it. If the expansion fan is considered to consist of a discrete number 
of Mach waves, then the wedges between successive Mach waves are regions of constant 
thermodynamic properties. 

Turning of the flow across one Mach wave is shown in Figure 3.16b. From the law of 
sines 

V + dV _ sin(7r/2 + fi) 
V ~ sin(7r/2 - fi - dO) 

or 
dV cos fi 1 + 
V cos /i cos d9 — sin /j, sin dO 

The angle d9 is small and is assumed to increase in the clockwise direction so that the 
previous equation can be written as 

dV cos a 1 
1 + V cos [i — d9 sin /j, 1 — d9 tan \x 

Again making use of the smallness of d9, this can be expanded by binomial theorem, and 
the following equation is obtained: 

—— = d9 tan \JL 

Since tan/i = c/\/V2 + c2 = l / \ / M 2 — 1, this can be written as 

d9 = VM2 - 1 ~ (3.63) 

Taking logarithms and differentiating V = Msj^RT gives 

dV _dM 1 dT _ 1 dM2 1 dT 
~V~ ~ W + 2^T ~ 2 M 2 + 2~¥ 

The same operations on T0 = T[l + (7 - l)M2/2)] give 

T l + ^—M' 

Using this to eliminate dT/T from the previous equation leads to 

dV 1 dM2 

V J, , 7 - 1 , ^ M2 
2 ( 1 + J—r- M' 

This can now be substituted into Eq. (3.63), which is then written as 

sjM2-\ dM2 

d9 7 - l ^ A M2 

2 1 + ~—M 
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Next defining, 

and integrating gives 

„ „ , [M y^P^l dM2 

V(M) = J^—r tan"1 J I — - ( M 2 - 1) - tan"1 V ^ 2 - 1 (3.64) 

so that a flow that expands to a state at which the Mach number is M2 turns by an amount 

82 - 0\ = vi - v\ 

If the coordinates are aligned such that 9\ = 0, then 

V2 = V\ + #2 

Two common situations are encountered. First, the wall along which the flow moves 
has a convex corner of known magnitude. Hence the angle 62 is known and the angle V2 
can be determined and then the M2 calculated from Eq. (3.64). The second situation is 
one in which the flow leaves as a jet from a nozzle to a space in which the backpressure is 
known. The next example illustrates the flow over a known convex corner. 

■ EXAMPLE 3.9 

Consider a supersonic air flow over a convex corner with angle 62 = 10°, when the 
inflow moves in the direction of 6\ = 0°. The upstream Mach number is Mi = 1.46, 
pressure is p\ = 575.0 kPa, and temperature is T\ = 360.0 K. Find the Mach 
number, temperature, and pressure after the expansion is complete. 

Solution: The solution is obtained by the following Matlab script. 

Ml=1.46; k=1.4; thetadeg^lO; theta=thetadeg*pi/180; 
mul=atan(l/(sqrt(Ml~2-l)))*180/pi; 
nul=sqrt((k+l)/(k-l))*atan(sqrt((k-l)*(Ml~2-l)/(k+l))) ... 

-atan(sqrt(Ml"2-l)); 
nu2=nul+theta; 

M2 = fzero(@(M2) nu2+sqrt((k+l)/(k-l))* ... 
atan(sqrt((k-l)*(M2~2-l)/(k+l))) ... 

-atan(sqrt(M2~2-D), [1.4,4]); 
Result: 
mul=43.23 deg 
M2=1.800 

The angle of the leading Mach wave is //1 = 43.23°. After that, the Prandtl-Meyer 
function at the inlet is calculated and when converted to degrees, it is v\ = 10.73°. 
The Prandtl-Meyer function for complete turning is obtained as 

V2 = Vl+02 = 10.73° + 10° = 20.73° v2 = 0.3618 radian 

Since the Prandtl-Meyer function is implicit in the downstream Mach number, its 
value is obtained by invoking Matlab's fzero function. An assumed range of 
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downstream Mach numbers is given as [1.4,4], or something similar. The value of 
Mach number after the expansion is M2 = 1.8. 

This problem can also be solved by EES software, and for that the syntax is 
simpler. Only the following statements are needed: 

Ml=1.46; k=1.4; theta2=10 [deg] 
n u l = s q r t ( ( k + l ) / ( k - l ) ) * a r c t a n ( s q r t ( ( k - l ) * ( M l " 2 - l ) / ( k + l ) ) ) 

- a r c t an ( sq r t (Ml~2- l ) ) ; 
nu2=nul+theta2; 
n u 2 = s q r t ( ( k + l ) / ( k - l ) ) * a r c t a n ( s q r t ( ( k - l ) * ( M 2 - 2 - l ) / ( k + l ) ) ) 

-a rc tan(sqr t (M2~2- l ) ) ; 

In this script the two equations that are split into two lines must be placed on a single 
line in EES. The second statement is a nonlinear equation for the unknown M2. Its 
root is found by EES's solution engine. It is possible to give the program an initial 
guess if the default value is not satisfactory. 

To find the temperature after expansion, stagnation temperature is first determined. 
It is obtained from 

-^ = 1 + 7-^— Ml = 1 + 0.2 • 1.462 = 1.426 T0 = 513.48 K 
Xi 2 

Downstream temperature is calculated from 
rp -i 

— = 1 + ±^—Ml so that T2 = 311.55 K 
T2 2 z 

Downstream pressure is therefore 

T2Y/h-1) / 3 1 1 . 5 5 ^ 3 5 

p2=Pll^L\ = 575.0 = 346.7kPa 
F \ T i / I 3 6 0 - 0 0 / 

The second application of Prandtl-Meyer theory is from Kearton [46], who considers a 
steam nozzle such as that shown hi Figure 3.17. Assuming isentropic and choked flow, the 
Mach number at the throat is unity. Hence the speed of sound and the velocity are equal 
and the Mach waves are perpendicular to the flow and therefore aligned with the exit cross 
section of the nozzle. In addition, v(M\) = 0. Next, an angle <f> is defined to be that 
between the leading Mach wave and a Mach wave at any location in the expansion fan. 
Hence 

</,= ! -n + 9 

in which 6 is the angle by which the flow has turned at this location. Since v(M) — 
v{Mi) +d, then 

7T i 1 
cj) = u{M) H t a n - 1 

VM2-l 
or 

7 + 1 tan™1 J^—l-(M2 -l) + l - tan"1 \ / M 2 - 1 - tan"1 

7 - 1 V 7 + 1 2 v JW 
But from a right triangle it is seen that 

tan"1 y/M2 - 1 + tan"1 . = ^ 
VM2-l 2 
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so the expression for 0 reduces to 

7 - 1 
7 + 1 

t a n " 1 , / ^ — - ( M 2 - l ) 
7 + 1 

(3.65) 

Initial direction 

Figure 3.17 Expansion of steam from a choked nozzle. 

The term inside the square root on the RHS of Eq. (3.65) can be replaced by a pressure 
ratio, for 

\ 7 / ( 7 - l ) 
1 + " 

V 
and therefore 

Po 7"±M2 

7 - 1 
7 + 1 

(M2 - 1) 
7 + 1 

Substitution yields 

( 7 - l ) / 7 
1 

Denoting 

if follows that 

and therefore 

7 - 1 
7 + 1 tan 

\r 
( 7 - l ) / 7 

8 = <f> 7 - 1 
7 + 1 

t a n 5 ■■ 
\ 7 + l 

( 7 - l ) / 7 

(7" l ) /7 
2 7 + 1 / p 

cos2 5 = — 
2 VPo 

This can be reduced further using the identity 2 cos2 x = 1 + cos 2a:. Hence 

1 + cos(2(5) = (7 + 1) 
Po 

( 7 - l ) / 7 

(3.66) 

(3.67) 
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Rewriting this in terms of <fi gives 

1 + cos(2 7 - 1 
( 7 + 1 ) P 

(7-l)/7 

7 + 1 " ' \Po, 
which can be solved for the pressure ratio. The final form is 

7/(7-1) 

(3.68) 

V 
Po 

1 + C 0 S ( 2 V ^ l 
7 + 1 

!♦' 

Streamlines can be calculated by considering a control volume of a wedge-shaped region 
with an inlet at the throat and exit coinciding with an arbitrary Mach wave in the expansion 
fan. The lateral boundary is taken to be a streamline across which there is no flow. Since 
the component of velocity perpendicular to a Mach wave is the local sonic velocity, it is 
this component that carries the flow trough the inflow and outflow boundaries of the chosen 
control volume. For this reason, the continuity equation reduces to 

P\A\C\ = pAc 

Since the nozzle is rectangular, A = rb, in which b is the nozzle height and r is the 
distance from the corner to the chosen streamline. At the throat the area is A\ — rib, and 
r\ is the distance from the corner to the same streamline. Hence 

r_ _ P\Ci _ pi f~T_ 
ri pc p\J Ti 

In isentropic flow T/T\ = ( p / p i ) ' 7 - 1 ^ 7 , and this equation reduces to 

n P \PI 

From Eq. (3.67) the expression 

(7-l)/27 -(7+l)/27 

. , \ 1/2 / N (7-l)/27 

7 + 1 \ f p x 

2 / \Po, 

is obtained. With sonic conditions at station 1, the pressure ratio there is 

(3.69) 

Po 
Pi 

7 + iy/(7-1) 

. 2 ) 
so that 

1/2 

and Eq. (3.69) can be recast as 

_P_ . 
Pi cos Tzlt 

7 + l ' 

7 + 1 

27/(7-1) 

(7-i)/27 

Hence the distance from the corner to the streamline bounding the control volume is 

r _ 1 
r~i ~ ~/ ;„ i \(7+i)/(7-i) 

cos 

(3.70) 
7 - 1 , 
7 + l ' 
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Some streamlines have been plotted to Figure 3.17. Now, letting r\ denote the width of 
the nozzle at the throat, the corresponding streamline is seen to leave the nozzle before its 
end. If the nozzle shape were to coincide with the contour of this streamline, the Prandtl-
Meyer flow would be an exact solution of the equations for inviscid compressible flow 
through a nozzle of this shape. Since the nozzle wall is straight, the solution presented is 
an approximation to the actual situation. 

Equation (3.65) may be recast into the form 

tan(vfrr0) = ^Wi^^~l 

and since l/\/M2 — 1 = tan p, the following relation is obtained 

t a n / i = A/- 1-—cot J——<f> (3.71) 
7 + 1 V 7 + 1 

For a given exit pressure lower than the critical one, the angle <f> can be found from 
either Eq. (3.66) or from Eq. (3.68), and Eq. (3.71) is then used to determine the angle of 
the terminal Mach wave. After that, the amount of turning of the flow is obtained from 

7T 
#2 = <t> ~ ~ + Pi 

The flow direction is given by ct2 = «i — #2-

■ EXAMPLE 3.10 

Consider steam flow from a low-pressure nozzle such as shown in Figure 3.17, with 
nozzle angle a = 65°. At the inlet of the nozzle steam is saturated vapor at pressure 
po = 20 kPa. Steam exhausts into the interblade space, where pressure is 8 kPa. 
Find the angle 6 by which the flow turns on leaving the nozzle, the far downstream 
velocity, and its direction. 

Solution: Since at the inlet steam is saturated, its adiabatic index, according to 
Zeuner's equation, is 7 = 1.135. Denoting station 1 to be the throat and station 2 the 
exit where the backpressure is P2 = 8 kPa, the ratio of backpressure to stagnation 
pressure ispi/po = 8/20 = 0.4, and therefore the flow is choked. The Mach number 
after the expansion is 

M2 
Po f~l)h _ 1 
P2J 

= 1.306 
^ 7 - 1 

With this value of Mach number the temperature at the exit is 

/ \ ( 7 - l ) / 7 / o \0.135/1.135 T*=T°yi) = 3 3 3 - 2 U ) =298-8K 

The sonic speed at the exit is 
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Hence V2 = M2C2 = 516.9 m / s . Angle 4>2 can be calculated using Eq. (3.65), with 
the result that <p2 = 47.44°. The Mach angle at the exit is 

fJ-2 = sin - 1 1 
Mo 

= tan 
1 

V(Mi - 1) 
49.97° 

Hence the amount of turning is 

02 = 02 + A<2 - x = 4 7 - 4 4 ° + 4 9 - 9 7 ° - 9 0 ° = 7 - 4 l C 

The flow angle after turning is complete is 

a2 = ax - 92 = 65° - 7.41° = 57.59° 

The extent of the jet after it has reached the backpressure is 

r 1 

n 
cos 

7 ~ 1 ; 

7 + l ' 

(7+1)7(7-1) 
1.412 

3.7 FLOW LEAVING A TURBINE NOZZLE 

There is a second way to calculate the exit flow that does not rely on the Prandtl-Meyer 
theory. It is illustrated next for a flow from the steam nozzle shown in Figure 3.18. The 
mass balance equation gives the following relationship 

Figure 3.18 Steam nozzle analysis by mass balance. 

m 
i4iVi A2V2 

vi v2 
in which the areas can be related to angles by the geometric relations 

L\ L2 
C O S a i = COSQI2 = 

s s 
Since Ai/A2 = L1/L2, the jet angle 0.2 at the exit can be calculated from 

Vxv2 c o s a 2 = 77—cos a i 
V2vi 

(3.72) 
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EXAMPLE 3.11 

Consider the steam flow from a low-pressure nozzle as shown in Figure 3.17, with 
nozzle angle a = 65°. At the inlet of the nozzle steam is saturated vapor with 
7 = 1.135, at pressure po = 20kPa. Steam exhausts to the interblade space, where 
pressure is 8 kPa. Using the continuity equation, find the angle 0 by which the flow 
turns on leaving the nozzle, the far downstream velocity, and its direction ab-
solution: The data given are the same as in the previous example, in which the values 
T2 = 298.8 K and V2 = 516.9 m/s were determined. Stagnation-specific volume, 
obtained from the steam tables, is v0 = 7.66m3/kg. At the throat Mi = 1, so that 

/ ^ + lV/(7-l) / 2 1 „ .U/0 .135 
„ 1 = W o ( l ± i j = 7 . 6 6 ( ^ p J =12.43m3/kg 

2T0 2 • 332.2 
Tl = 7TT = n35TT = 312-1K 

Hence 
1.135-8314-312.1 V1 = ^RTi = ^ - =404.5 m/s 

Far downstream the specific volume is 

RT2 8.314-298.8 _ „ 3/1 
v2 = = r ^ = 17.25 m3/kg 

p2 18-8 

and the velocity was determined earlier to be V2 = 516.9 m/s. Hence 

VlV2 404.5 ■ 17.25 
C 0 S a 2 = V^[ C ° S a i = 516.9 - 12.43 C ° S ( 6 5 } = °-46° 

and the flow angle is a2 = 62.7°, and the flow turns by only 9 = 2.3°. This is 5° 
less than what is obtained by the Prandtl-Meyer theory. 

■ 
There is a limit on the extent to which the flow can turn. This limit is reached when the 
axial component of velocity of the jet reaches sonic speed. The condition may be analyzed 
by writing the mass flow rate in terms of the flow function F(M). This results in the 
equations 

rhyfipTo = F(Afi)Aipoi = F(M2)A2p02 
so that 

F(M2) = F (M 1 )4^ 5 1 
A2P02 

For a nozzle of constant height 

Ai L\ s c o s a i cos oil 
A2 L2 s cosoi2 cosa2 

The axial component of velocity at sonic speed can be written as 

Vx2 = V2C0SCC2 = M2 \J^RT2 cos a2 = ^jRT2 

so that cosa2 = l/M2. 
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Substituting and simplifying gives 

from which M2 may be determined. 

■ EXAMPLE 3.12 

Steam with 7 = 1.3 flows from a low-pressure nozzle shown in Figure 3.17, with 
nozzle angle a = 65°. The throat at the exit plane is choked. Find the limiting Mach 
number and the value of «2 for the flow. 

Solution: With flow choked at the throat, Mi = 1, and 

7 / 7 + 1N-(7+D/2(7-D L 3 

f ^ ± i ) = 4 = ( l + 0.5-0.3)"23/6 = 1.389 
V 2 y voT3v 

Since cos 0:2 — I/M2, assuming no losses so thatpo2 = Poi> the relation 

F{M2) cos a2po2 = -F* cos aipoi 

can be written as 

- ( 7 + l ) / 2 ( 7 - l ) 

VT = U 2 2 1 + -!——M£ = F * c o s a i 

With Q;I = 65°, solving this for M | gives 

2 
M | = 

7 - 1 
7 1 Po2f7-1)/(7+1)_1 

A/7 - 1 -F* c o s ai P01 
2.9314 

so that M2 = 1.712. Therefore 

a2 = c o s - ( £ ) = M - i ( ^ ^ 54.26" 

This is an 8.4° greater amount of turning than was calculated in the previous example. 
■ 

It has been mentioned that a flow for which Prandtl-Meyer analysis is valid requires a 
nozzle in the shape of a streamline, which together with that along the opposite wall, define 
the flow stream. If this is not the case, the flow is more complicated, consisting of expansion 
waves that reflect from the adjacent nozzle wall and the jet boundary of the flow that leaves 
the nozzle. An alternating set of oblique shocks and expansions fans form in the jet as it 
moves downstream. 

The turbine nozzle may also be designed such that the throat is upstream of the exit plane, 
in which case the flow may become supersonic at the exit plane. Then, in an underexpanded 
expansion, the flow adjusts to the backpressure through a set of shocks emanating from the 
trailing edge. The stagnation pressure losses are small if the Mach number is just slightly 
supersonic, as Eq. (3.37) shows. Such complex flows are beyond the scope of the present 
text. 
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EXERCISES 

3.1 Conditions in an air reservoir are 680 kPa and 560 K. From there the air flows 
isentropically though a convergent nozzle to a backpressure of 101.3 kPa. Find the velocity 
at the exit plane of the nozzle. 

3.2 Air flows in a converging duct. At a certain location, where the area is A\ =6 .5 cm2, 
pressure is p\ = 140 kPa and Mach number is Mx = 0.6. The mass flow rate is, fa = 
0.25 kg/s. (a) Find the stagnation temperature, (b) If the flow is choked, what is the size 
of the throat area? (c) Give the percent reduction in area from station 1 to the throat, (d) 
Find the pressure at the throat. 

3.3 Air flows in a convergent nozzle. At a certain location, where the area is A\ = 5 cm2, 
pressure is p\ = 240 kPa and temperature is T\ = 360 K. Mach number at this location is 
Mi = 0.4. Find the mass flow rate. 

3.4 The area of a throat in a circular nozzle is At = 1 cm2. For a choked flow find the 
diameter where M\ = 0 . 5 . Determine the Mach number value at a location where the 
diameter is D^ = 1.941 cm. Assume the flow to be isentropic and 7 = 1.4. 

3.5 In a location in a circular nozzle where the area is Ai = 4, Mach number has the 
value M\ = 0.2. Find the diameter at a location where M = 0.6. 

3.6 Air flows through a circular duct 15 cm in diameter with a flow rate 2.25 kg/s. The 
total temperature and static pressure at a certain location in the duct are 30° C and 106 kPa, 
respectively. Evaluate (a) the flow velocity, (b) the static temperature, (c) the total pressure, 
and (d) the density at this location. 

3.7 Conditions in an air reservoir are 380 kPa and 460 K. From there the air flows 
through a convergent nozzle to a backpressure of 101.3 kPa. The polytropic efficiency of 
the nozzle is r\p = 0.98. Find, (a) exit plane pressure, (b) exit plane temperature, and (c) 
the velocity at the exit plane of the nozzle. 

3.8 Air issues from a reservoir at conditions 260 kPa and 540 K into a converging nozzle. 
The nozzle efficiency is estimated to be ryn = 0.986. The backpressure is pb = 101.3 kPa. 
Find, (a) exit Mach number, (b) exit plane temperature, (c) exit plane pressure, and (d) exit 
velocity. 

3.9 At the inlet to a nozzle the conditions are Mi = 0.3, poi = 320 kPa, and T0i = 
430 K. The flow is irreversible with polytropic exponent n = 1.396. Show that 

T1 /n \ 7 / ( 7 - l ) / „ \(n-\)/n 
J-02 I POl \ I Pi 
T2 \Pl ) \Pl, 

Find the Mach number at a location where pi =210 kPa. 

3.10 Flow from a reservoir with poi = 260 kPa and T0i = 530 K flows through a nozzle. 
It is estimated that the static enthalpy loss coefficient is C = 0.020. The exit pressure is 
P2 = 180 kPa. (a) Find the exit Mach number, (b) Find the polytropic efficiency of the 
nozzle. 

3.11 A two-dimensional nozzle has a shape 

4 x(x - 1) 
- - + 5 2(x + 2) 
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The nozzle stretches from 0 < x/a < 2(A/2 - 1). The throat is at xt/a = 2(A/2 - 1). The 
scale factor a is chosen such that the half-width of the nozzle at x = 0 is 4a/5. Assume 
that 4 / = 0.02 and the inlet Mach number is M\ = 0.5. Calculate and plot p/p\ as a 
function of x. Calculate the Mach number along the nozzle and graph it on the same plot. 

3.12 Steam enters a nozzle from a steam chest at saturated vapor state at pressure 
po = 0.8 bar. It expands isentropically through a steam nozzle. Find the degree of 
supersaturation when it crosses the Wilson line at x = 0.96. 

3.13 Consider a supersonic flow over a convex comer with angle #2 = 5°, when the 
inflow moves in the direction of 6\ = 0 ° . The upstream Mach number is Mi = 1.1, 
pressure is p\ = 130 kPa, and T\ = 310 K. Find, (a) Mach number, (b) temperature, and 
(c) pressure after the expansion is complete. 

3.14 Consider the steam flow from a low-pressure nozzle at an angle a = 65°. At the 
inlet of the nozzle steam is saturated vapor at pressure po = 18 kPa. Steam exhausts into 
the interblade space, where pressure is 7 kPa. Find the angle 6 by which the flow turns on 
leaving the nozzle, the far downstream velocity, and its direction. 

3.15 Consider the steam flow from a low-pressure nozzle at angle a = 65°. At the inlet 
of the nozzle steam is saturated vapor at pressure po — 18kPa. Steam exhausts to the 
interblade space, where pressure is 7 kPa. Using the continuity equation, find the angle 0 
by which the flow turns on leaving the nozzle, the far downstream velocity, and its direction 
a2-



CHAPTER 4 

PRINCIPLES OF TURBOMACHINE 
ANALYSIS 

In this chapter the fundamental equation for turbomachinery analysis is developed from the 
moment of momentum balance. It gives an expression for the shaft torque in terms of the 
difference in the rate at which angular momentum of the working fluid leaves and enters a 
properly chosen control volume. Since power delivered (or absorbed) by a turbomachine 
is a product of torque and angular speed, a relationship between the flow rates of angular 
momentum at the inlet and exit, the rotational speed of the shaft, and power is obtained. 
The equation derived this way is called the Euler equation of turbomachinery. It is the 
most important equation in the study of this subject. 

In earlier chapters power transferred to, or from, a turbomachine was expressed as the 
product of mass flow rate and a change in stagnation enthalpy. By equating the expression 
for work from the Euler equation of turbomachinery to the change in stagnation enthalpy, 
concepts from fluid mechanics become linked to thermodynamics. This link is central to 
understanding the performance of turbomachines. 

In applying the momentum of momentum balance to a stationary control volume angular 
momentum is usually expressed in terms of absolute velocity of the fluid. In the analysis 
of the rotating blades velocity relative to the rotor is also needed. From it, together with 
the absolute velocity and the blade velocity, one can construct a velocity triangle. These 
velocity triangles are discussed first in this chapter. They are followed by the development 
of the Euler equation for turbomachinery. After that the work delivered, or absorbed, 
is recast in an alternative form and a concept of degree of reaction is developed. One 
measure of the effectiveness at which work transfer takes place in a turbomachine is called 
utilization. Although this concept is not extensively used today, it is introduced and its 
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relationship to energy transfer and reaction is developed. The final section is on the theory 
of scaling and similitude, both of which are useful in determining the performance of one 
turbomachine from the known performance of a similar one. 

4.1 VELOCITY TRIANGLES 

The velocity vector of a fluid particle that flows through a turbomachine is most conveniently 
expressed by its components in cylindrical coordinates. The vector sum of radial and axial 
components 

Vm = Vrer + Vzez (4.1) 
is called the meridional velocity, for it lies on the meridional plane, which is a radial plane 
containing the axis of rotation. The various velocity components are shown in Figure 4.1. 

Figure 4.1 Meridional and tangential components of absolute velocity. 

For axial machines the radial component of velocity is small and can be ignored, making 
the meridional velocity equal to the axial velocity. Similarly, at the outlet of a centrifugal 
compressor, or a radial pump, the axial velocity vanishes and the meridional velocity then 
equals the radial velocity. 

The absolute velocity V is the sum of the relative velocity W and the velocity of the 
frame, or blade velocity U. They are related by the vector equation 

V = W + U (4.2) 
By the usual construction this gives a velocity triangle, shown in Figure 4.2. 

The angle that the absolute velocity makes with the meridional direction is denoted by 
a, and the angle that the relative velocity makes with this direction is f3. These are called 
the absolute and relative flow angles. 

From Eq. (4.2) and Figure 4.2 it is seen that the meridional components yield 

Vm = Wm (4.3) 

and the tangential components are given by 

vu^wu + u (4.4) 
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Figure 4.2 A typical velocity triangle. 

These velocities are related to the meridional velocity by 

Vu = Vm tan a Wu = Wm tan (3 (4.5) 

It is convenient to denote the tangential component by the subscript u and to take it positive 
when it is in the direction of the blade motion. Tangential components are associated with 
the blade forces; meridional components, with the rate at which fluid flows through the 
machine. 

EXAMPLE 4.1 

Consider the velocity diagram shown in Figure 4.3. The magnitude of the absolute 
velocity is V\ = 240m/s, and the flow angle is a\ = —20°. The blade speed is 
U = 300 m/s. Find the magnitude of the relative velocity and its flow angle. 
Solution: The axial velocity is given by 

Vxl = Vi cosai = 240cos(-20°) = 225.5 m/s 

and Wx\ =VX\. The tangential components of the absolute and relative velocities 
are calculated as 

Vul = Vi sinai = 240sin(-20°) = -82.1 m/s 

Wul = Vul-U = -82.1 - 300 = -382.1 m/s 
Hence the magnitude of the relative velocity is 

'Wlx + Wlx = \j22^.h2 + 382.22 = 443.7 m/s 

and the flow angle of the relative velocity becomes 

-382.1' A = tan"1 ( ^ . 1 = t a ^ 1 

225.5 -59.4° 

The foregoing example illustrates the sign convention for angles. Positive angles are 
measured from the meridional direction, and they increase in counterclockwise direction. 
Negative angles become more negative in the clockwise direction. Strict adherence to this 
convention will be followed, and this makes computer calculations easy to implement. 
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Figure 4.3 A velocity diagram illustrating negative flow angles. 

4.2 MOMENT OF MOMENTUM BALANCE 

Consider a flow through a pump, shown in the schematic diagram in Figure 4.4. To apply 
the moment of momentum equation, a control volume is chosen to include both the pump 
impeller and the fluid. The velocity vector is written in cylindrical coordinates as 

V = Vrer + Veee + Vzez (4.6) 

in terms of the unit vectors e r , e$, and ez. A working equation for the angular momentum 
balance for a uniform steady flow is 

ra(r2 x V2 - r i x Vi) (4.7) 

On the right side, T m is the torque the shaft exerts on the impeller and Tf is a contribution 
from fluid pressure and viscous stresses. The z component of this equation is obtained by 
taking its scalar product with ez. Thus 

me, (r2 x V2 - n x Vi) - ez ■ T m = T 

Owing to symmetry about the axis of rotation, pressure forces do not contribute to the axial 
torque, as they have radial and axial components only. Viscous forces act in the direction 
opposite to rotation and increase the required torque in a shaft of a compressor and decrease 
it in a turbine. These are neglected, or T is taken to be the net torque after they have been 
subtracted, or added. Rotation is taken to be clockwise when the pump is viewed in the flow 
direction. Hence the rotation vector is fl = Qez. In order for the shaft to rotate the pump 
impeller in this direction, torque must be given by T m = ez T, and thus ez ■ T m = T. 
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e9& 

Shaft 

Figure 4.4 A schematic of a pump and a flow through it. 

In cylindrical coordinates the radius vector is r = rer + zez, so that 

r x V 
er ee ez 
r 0 z 
Vr V6 Vz 

-erzVe - ee(rVz - zVr) + ezrVe 

and 
ez • (r x V) = rVe 

Hence the angular momentum equation becomes 

T = m{r2Ve2 - nVei) 

4.3 ENERGY TRANSFER IN TURBOMACHINES 

The power delivered to a turbomachine is given by 

W = T • ft = TO = mn{r2V02 - nVei) 

The blade speeds are U\ = rifi, and U2 = r20., and r\ and r2 are the mean radii at the 
inlet and outlet. Dividing this equation by the mass flow rate gives an expression for the 
work done per unit mass, 

w = U2V02 - C/iVfli (4.8) 
This is the Euler equation for turbomachinery. 

As was already done in Figure 4.2, it is common to relabel the various terms and call the 
axial component of velocity Vx and denote the component of the velocity in the direction 
of the blade motion as Vu. In this notation there is no need to keep track of whether the 
rotor moves in clockwise or counterclockwise direction. The sense of rotation, of course, 
depends also on whether the rotor is viewed from the upstream or downstream direction. 
With these changes in notation, the Euler equation for turbomachinery may be written as 

U2V,, C/iKi (4.9) 
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This gives the work done by the shaft on the rotor, and it is thus applicable to a compressor 
and a pump. For turbines, however, power is delivered by the machine, and the sign of 
the work would need to be changed. Since it is generally known whether the machine is 
power-absorbing or power-producing, work transfer will be taken as positive, and the Euler 
turbine equation is written as 

w = U2Vu2 - U3Vu3 (4.10) 

For turbines, since a stage consists of a stator followed by a rotor, the inlet to the stator is 
designated as location 1, the inlet to the rotor is location 2, and the exit from the rotor is 
location 3. 

For an axial turbomachine U\ =U2 = U. Work delivered by a stage is then given by 

w = U(Vu2 - Vu3) 

Its calculation is illustrated in the next example. 

■ EXAMPLE 4.2 

The shaft of small turbine turns at 20000 rpm, and the blade speed is U = 250 m/s. 
The axial velocity leaving the stator is Vx2 = 175 m/s. The angle at which the 
absolute velocity leaves the stator blades is a2 = 67°, the flow angle of the relative 
velocity leaving the rotor is f33 = —60°, and the absolute velocity leaves the rotor at 
the angle a3 = —20°. These are shown in Figure 4.5. Find (a) the mean radius of the 
blades, (b) the angle of the relative velocity entering the rotor, (c) the magnitude of 
the axial velocity leaving the rotor, (d) the magnitude of the absolute velocity leaving 
the stator, and (e) the specific work delivered by the stage. 

Stator 

Figure 4.5 An axial turbine stage. 

Solution: (a) The mean radius of the rotor is 

U 250 • 60 
ft 20, 000 • 2TT 

11.94 cm 

With the axial velocity and flow angle known the tangential component of the velocity 
is 

Vu2 = Vx2tana2 = 175tan(67°) = 412.3 m/s 

and therefore 

W„ Vu2 - U = 412.3 - 250 = 162.3 m/s 
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Since WX2 = ■vx2 

02 = tan 

At the exit of the rotor 

so that 

vx3 

Vu3 = wu3 

u 

-i (Wu2 

\wx2. 

+ u 

= tan"1 ( ^ ) = 42.8° 
175 

Vx3 tan a3 = Vx3 tan j33 + U 

2 5 0 182.7 m/s 
t a n a 3 - tan/33 tan(-20°) - tan(-60°) 

(b) The absolute velocity is obtained by first calculating the tangential component 

Vu3 = Vx3tana3 = 182.7 tan(-20°) = -66.5 m/s 

and then 

^3 = yjv£3 + V%3 = ^182.72 + 66.52 = 194.4 m/s 

(c) Specific work done is 

w = U(Vu2 - Vu3) = 250(412.3 + 66.5) = 119.7kJ/kg 
As the flow expands through the turbine, its density decreases, and to accommodate 
this, the product of axial velocity and cross-sectional area needs to increase. Often 
axial machines are designed to keep the axial velocity constant. In this example 
the axial velocity increases by a small amount, and the cross-sectional area must be 
adjusted to account for the increase in velocity and a decrease in density. 

■ 
Work delivered by an axial turbine with constant axial velocity across a stage can be written 
as 

w = U(Vu2 - Vu3) = UVx(tana2 - t ana 3 ) 
Dividing by U2 gives 

w Vx 77̂ - = — (tano:2 - t a n a 3 ) U^ U 
Defining the blade-loading coefficient and flow coefficient as 

gives a nondimensional version of this equation: 

ip — (/>(tan «2 — tan a3) 

The blade loading coefficient is an appropriate term for %p, since it is the blade force times 
the blade velocity that gives the work. Also, the flow coefficient 0 is a ratio of the axial 
velocity to blade velocity and is thus a measure of the flow rate through the machine. Much 
use will be made of these nondimensional parameters, for they are independent of the size 
of machine, and their values for best designs have been established over many years of 
practice. 

As another example of the general use of the Euler equation for turbomachinery, analysis 
of a centrifugal pump is considered next. 
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EXAMPLE 4.3 

Water at 20°C leaves a pump impeller with an absolute velocity of 13.94 m/s at 
the angle 72.1°. The blade speed at the exit is 25.17m/s, and the shaft speed is 
3450 rpm. The absolute velocity is axial at the inlet. The flow rate is 18.0 L/s. 
Find (a) the magnitude of the relative velocity and its flow angle /32, (b) the power 
required, and (c) the outlet blade radius and the blade height assuming that the open 
area at the periphery is 93% of the total area. The pump is shown in Figure 4.6. 

U= 25.17 m/s 

V= 13.94 m/s 

a, = 72.1° 

P, = - 70.2°\ 

W= 12.65 m/s 

V= 13.26 m/s 

V =4.29 m/s 

W ,= -11.91 m/s 

Figure 4.6 Pump exit and its velocity diagram. 

Solution: (a) The tangential component of the absolute velocity at the exit is given 
by 

Vu2 = V2sina2 = 13.94 sin(72.1°) = 13.26m/s 

and its meridional component, which is radial here, is 

Vr2 = 1/2 cosa2 = 13.94 cos(72.1°) = 4.29m/s 

The tangential component of the relative velocity is determined as 

Wu2 = Vu2 - U = 13.26 - 25.17 = -11.91 m/s 

Since the radial component of the relative velocity is Wr2 = Vr2 = 4.29 m/s, the 
angle of the relative flow can be calculated as 

f32 = tan 1 / Wu 2 tan 
-11.91 

-70.2° 
Wr2) V 4-29 

The magnitude of the relative velocity is then 

W2 = \fw^+Wl2 = V4.292 + 11.912 = 12.65 m/s 

A velocity triangle can now be completed. The flow angle of the relative velocity is 
approximately equal to the blade angle x, and in this pump the impeller blades curve 
backward; that is, they are curved in the direction opposite to blade rotation. 
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(b) Since the flow is axial at the inlet, Vul = 0, and the work done is 

w = U2Vu2 = 25.17 • 13.26 = 333.88 J/kg 

With density of water at 20° C equal to p = 998 kg/m3, the mass flow rate is 

m = pQ = 998 • 0.018 = 17.964 kg/s 

and the power required is W = mw = 17.964 • 333.88 = 6.0 kW. 
(c) The outlet radius is 

U2 25.17-30 „ „ „ 
r2 = -^- = = 6.97 cm 2 n 3450 • 7T 

With the flow rate Q = 0.018 m3/s, the outlet area is 

Q 0.018 4nn 2 A2 = T7- = = 42.0cm2 

Vr2 4.29 

The blade height is then 

A2 42.0 
0.93 • 2TT • r2 0.93 • 2TT • 6.97 

1.03 cm 

The blade-loading coefficient and flow coefficient are defined in terms of the tip speed 
of the blade at the exit: 

/ w 3 3 3 ' 8 8 n^ov A Vr2 4 2 9 niTn 
C/j 25.17^ t/2 25.17 

4.3.1 Trothalpy and specific work in terms of velocities 

Since no work is done in the stator, total enthalpy remains constant across it. In this section 
an analogous quantity to the total enthalpy is developed for the rotor. Specifically, consider 
a mixed-flow compressor in which the meridional velocity at the inlet is not completely 
axial and at the exit from the blades not completely radial. The work done by the rotor 
blades is 

w = hQ2-h0l = U2Vu2-UlVul (4.12) 

When this equation is written as 

h0i ~ UiVui = h02 - U2Vu2 

the quantity 
I = ho- UVU 

is seen to be constant across the impeller. It can also be written as 

/ = h+ l-v2 - uvu = h + \vl + l-v2 - uvu 

Adding and subtracting U2/2 to complete the square gives 

I = h+\vl + \{Vu-Uf -\u2 = h+\vl + \wl-\u2 
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or since Vm = Wm, and W2 = W^ + W2, it follows that 

\w!-\u2 = k2 + \w2-h I = h!+ ^W2 - -U2 = h2 + -W2 - -U2 (4.13) 

is constant across the impeller. The quantity / is called trothalpy? 
Solving Eq. (4.13) for h\ and h2 and substituting them into the equation for work 

w = h02-h01=h2 + ~V2-h1 + ̂ V2 (4.14) 

gives, after / has been canceled, the following equation: 

1—2 1 W 2 , l
TT2 I ! , r 2 1 T J / 2 , 1 r r 2 *=zV{--wi + -ui-\-v{--wt + jJi 

Rearranging gives the form 

w = \{V2 - V2) + \{U2 - U2) + \(W2 - W2) (4.15) 

Equating this and Eq. (4.14) leads to 

h2-h1 = \{U2 - U2) + ̂ {W2 - W2) (4.16) 

From Eq. (4.14) it is seen that the work done in a centrifugal pump increases the kinetic 
energy and the static enthalpy. Equation (4.16) shows first that the static enthalpy increase 
involves moving the fluid into a larger radius, resulting in increased pressure. The second 
term causes an increase in pressure as the relative velocity is reduced; that is, diffusion with 
W2 < W\ leads to pressure recovery. The pressure is increased further in the volute of a 
centrifugal pump where diffusion of the absolute velocity takes place. Since this diffusion 
is against an adverse pressure gradient, the kinetic energy at the exit of the impeller cannot 
be so large that its deceleration through the volute causes separation of boundary layers 
and a great increase in irreversibility. The use of these concepts is illustrated in the next 
example. 

■ EXAMPLE 4.4 

A small centrifugal pump with an impeller radius r2 = 4.5 cm operates at 3450 rpm. 
Blades at the exit are curved back at an angle /32 = —65°. Radial velocity at the exit 
is Vr2 = Wr2 = 3.0 m/s. Flow at the inlet is axial with velocity Vi = 4.13 m/s. The 
mean radius of the impeller at the inlet is r\ =2 .8 cm. (a) Find the work done using 
Eq. (4.12). (b) Calculate the kinetic energy change of the relative velocity, absolute 
velocity, and that associated with the change in the blade speed and calculate work 
done using Eq. (4.15). Confirm that the two methods give the same answer. 

Solution: (a) Blade speed at the exit is 

^ 0.045 ■ 3450 • 2TT 
U2 = r2VL = — = 16.26 m/s 

3This quantity is commonly called rothalpy, a compound word combining the terms rotation and enthalpy. Its 
construction does not conform to the established rules for formation of new words in the English language, namely, 
that the roots of the new word originate from the same language. The word trothalpy satisfies this requirement as 
trohos is the Greek root for wheel and enthalpy is to put heat in, whereas rotation is derived from Latin rotare. 
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Since Wr2 = Vr2, the tangential component of the relative velocity is 

Wu2 = y r 2 tan/32 = 3.0 tan(-65°) = -6 .43m/s 

Tangential component of the absolute velocity is then 

Vu2 = U2 + Wu2 = 16.26 - 6.43 = 9.83 m/s 

Since the flow at the inlet is axial Vu\ = 0, the inlet does not contribute to the work 
done as calculated by the Euler equation for turbomachinery, which reduces to 

w = U2Vu2 = 16.26 • 9.83 = 159.7 J/kg 

(b) Magnitudes of the relative and absolute velocities at the exit are given by 

W2 = JWl2 + W?2 = A/6 .43 2 + 3.02 = 7.10 m/s 

V2 = ^V*2 + Vr% = \ /9.832 + 3.02 = 10.27 m/s 

Since the flow is axial at the inlet. Vx\ = V\ = 4.13 m/s. The blade speed is 

0.028-3450^ 
U\ — rAl = = 10.11 m/s 

30 ' 

Tangential components of the expression relating absolute and relative velocity give 

Wul =Vul-Ui=0- 10.11 = -10.11 m/s 

and therefore the magnitude of the relative velocity is 
Wi = \Jwlx + W^ = v

/10.112+4.132 = 10.92 m/s 

The kinetic energy changes are 

\(v2-v\) = ^(10.272-4.132) = 44.21 m2/s2 = 44.21 J/kg 

\{U2 ~ Uf) = ^(16.262 - 10.112) = 80.99m2/s2 = 80.99J/kg 

]-{Wl - W%) = ^(10.932 - 7.102) = 34.51 m2/s2 = 34.51 J/kg 

Their sum checks with the direct calculation of the work done. 

Since there is no swirl at the inlet, Vui = 0, the work done is independent of the inlet 
conditions. This means that when work is represented in terms of kinetic energy changes, 
terms involving inlet velocities must cancel. Velocity triangle at the inlet is a right triangle 
with W\ as its hypothenuse, so that V? + [/2 = W±. Hence in this case 

and using the law of cosines gives w = U2Vu2, as it should. 
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4.3.2 Degree of reaction 

Degree of reaction, or reaction for short, is defined as the change in static enthalpy across 
the rotor divided by the static enthalpy change across the entire stage. For the turbine this 
is given as 

h2 - h3 R 
hi - h3 

Since an enthalpy change is proportional to a pressure change, the degree of reaction can 
be regarded in terms of pressure changes. In compressors pressure increases downstream, 
and in order to keep the adverse pressure gradient small, the value of reaction provides a 
means to assess the strength of this gradient. 

Work delivered by a rotor in a turbine is 

l . . o , 1 , w = h02- h03 = h2 + ~V2
2 -h3- -Vf 

Since for nozzles (or stator) /i0i = ho2, work can also be written as 

w = h1-h3 + ± (V2 - V2) 

Solving the last two equations for static enthalpy differences and substituting them into the 
definition of reaction gives 

\{Vf-V2)+W 
R~\{vi-v2) + w

 ( 4 1 7 ) 

Substituting Eq. (4.15) for work into this and simplifying leads to 

U2-UI + W2-W2 
"■ T/2 _ T/2 , 172 _ TT-2 , W 2 _ M/2 ^ - 1 0 J 

In a flow in which V\ = V2, the reaction R = 1. Such a machine is a pure reaction 
machine. A lawn sprinkler, rotating about an axis is such a machine, for all the pressure 
drops take place in the sprinkler arms. They turn as a reaction to the momentum leaving 
them. 

The steam turbine shown in Figure 3.11 is an axial machine in which U2 = U3 and 
its reaction is zero when W2 = W3. For the rotor buckets shown, the blade angles are 
equal but opposite in sign and by adjustment of the flow area to account for the increase 
in specific volume, the magnitude of the relative velocity can be made constant across the 
rotor. Hence, since the trothalpy is also constant across the rotor, enthalpy change across it 
vanishes and the reaction becomes R — 0. 

■ EXAMPLE 4.5 

Consider an axial turbine stage with blade speed U = 350 m/s and axial velocity 
Vx = 280 m/s. Flow enters the rotor at angle a2 = 60°. It leaves the rotor at angle 
a3 — —30°. Assume a stage for which a\ = a3 and a constant axial velocity. Find 
the velocities and the degree of reaction. 

Solution: Since axial velocity is constant and the flow angles are equal at both the 
entrance and exit of the stage, the velocity diagrams at the inlet of the stator and the 
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exit of the rotor are identical. From a velocity triangle, such as shown in Figure 4.2, 
the tangential velocities are: 

Vu2 = Vxta,na2 = 280.0 tan(60°) = 484.97m/s 

Vu3 = Vxtanai = 280.0 tan(-30°) = -161.66m/s 

and work done is 

w = U{Vu2 - Vu3) = 350(484.97+161.66) = 226.32 k J / k g 

Tangential components of the relative velocities are 

Wu2 = Vu2 - U = 484.97 - 350.00 = 134.97 m / s 

Wu3 = Vu3 - U = -161.66 - 350.00 = -511 .66 m / s 

Hence 
V2 = A/V„2

2 + V? = \ /484.97 2 + 280.02 = 560.00 m / s 

V3 = J v ^ + V* = \ / l 61 .66 2 + 280.02 = 323.32 m / s 

VF2 = ^ W ^ 2 + W 2 = \ / l 3 4 . 9 7 2 + 280.02 = 310.83 m / s 

T^3 = ^/VF2
3 + 1^2 = V 5 H . 6 6 2 + 2 8 0 . 0 2 = 583.26 m / s 

Since U2 = U3, the expression for reaction is 

= W3
2 - Wj = 583.262 - 310.832

 = 

2zz; 2 -226 ,320 

A reaction ratio close to one-half is often used to make the enthalpy drop, and thus 
also the pressure drop, in the stator and the rotor nearly equal. _ 

4.4 UTILIZATION 

A measure of how effectively a turbine rotor converts the available kinetic energy at its 
inlet to work is called utilization, and a utilization factor is defined as the ratio 

w 
(4.19) w+\Vf 

The denominator is the available energy consisting of what is converted to work and the 
kinetic energy that leaves the turbine. This expression for utilization equals unity if the exit 
kinetic energy is negligible. But the exit kinetic energy cannot vanish completely because 
the flow has to leave the turbine. Hence utilization factor is always less than one. Maximum 
utilization is reached by turning the flow so much that the swirl component vanishes; that 
is, for the best utilization the exit velocity vector should lie on the meridional plane. 

Making the appropriate changes in Eq. (4.15) to make it applicable to a turbine and 
substituting it into Eq. (4.19), gives an expression for utilization 

. vf-vf + ul-ui + wj-wl 
v2 + m - m + wi - w? ( ' 
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in terms of velocities alone. 
Next, from Eq. (4.17) it is easy to see that the work delivered is also 

Substituting this into Eq. (4.19) gives 

2 2 I 

V2 - RV2 

'V?-RV?\ 
, 1-R ) 

-{l-R)V$ 

(4.21) 

£ - V2-RV2 ( 4 ' 2 2 ) 

In the situation in which R = 1 and therefore also V2 = V\, this expression becomes 
indeterminate. It is valid for other values of R. 

In a usual design of a multistage axial turbine the exit velocity triangle is identical to the 
velocity triangle at the inlet of a stage. Under this condition V\ = V3 and ct\ =0:3, and 
the utilization factor simplifies to 

vi - vi £ = W^k (4'23) 
The expression for work reduces to 

vi - vi w = 2M) (4-24) 
With velocities expressed in terms of their tangential and axial components, this becomes 

2(1 -R) 

or 
, VJ sin2 a2 + Vx\ - (VJ sin2 a3 + Vx%) 

W~ 2(1 - R) { ' 

At maximum utilization 0:3 = 0 and the work is w = UVU2- Equating this to the work 
given in Eq. (4.25) leads to the equality 

TTv «n Vism2
a2 + Vx\-Vx% 

C / y 2 S m a i = 2(1^) 

from which follows the relation 

U (Vi2-Vi3)/Vi+sin2a2 
V2 2(1-R)sma2 

(4.26) 

The left-hand side (LHS) is a speed ratio. It is denoted by A = U/V2. Since Vx2/V2 
cos a2, this reduces to 

1 - vx%/vi 

from which the ratio 

2(1 — R)sma2 

V2 

- # = l - 2 ( l - i ? ) A s i n a (4.28) 
V4 
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is obtained. For maximum utilization, V3 = Vxs, and solving Eq. (4.23) for this ratio gives 

K23 _ 1 ~ £m 
v2

2 1 — emR 

Here the subscript m designates the condition of maximum utilization. Equating the last 
two expressions and solving for em gives 

2Asina2 
1 — 2RX sin «2 

(4.29) 

If a stage is designed such that VX3 = Vx2, then the speed ratio in Eq. (4.27) may be written 
as follows: 

s in 0:2 
A i-vxyv* 

2 ( l - i ? ) s i n a 2 2(1 - i?) 
Substituting this into Eq. (4.29) and simplifying gives 

sin a2 
1 — 7? cos2 a2 

(4.30) 

(4.31) 

This is shown in Figure 4.7. 

Figure 4.7 Maximum utilization factor for various degrees of reaction as a function of the nozzle 
angle. 

It was mentioned earlier that a rotary lawn sprinkler is a pure reaction machine with 
R — 1. Its utilization is therefore unity for all nozzle angles. Inspection of Figure 4.7, 
as well as Eq. (4.31), shows that maximum utilization factor increases from zero to unity, 
when the nozzle angle a2 increases from zero to a2 = 90°. Hence large nozzle angles 
give high utilization factors. Typically the first stage of a steam turbine has R = 0, with a 
nozzle angle in the range from 65° to 78°. 

Many turbines are designed with a 50% stage reaction. For such a stage j3% = —a2 and 
0:3 = — j32- Also V3

2 = W%. Work delivered by a 50% reaction stage is 

w = U(Vu2 - Vu3) = U(Vu2 - Vx tan 183) = U{Vu2 + Vx t ana 2 ) 
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w = U(Vu2 + Wu2) = U(Vu2 + Vu2 -U) = U(2V2 sina2 - U) 

The quantity w + V2/2 becomes 

l . „ , 1. w + -vi = w + -wi = w ~dvx
2 + (vu\-uy) 

hence 

w+^Vi =w+ i(y2
2 - 2UV2 sina2 + U2) 

and the utilization factor from Eq. (4.19) is given as 

2U(2V2sina2-U) 
2U(V2sma2-U) + Vi + U2 

In nondimensional form this is 

2A(2sina2 - A ) 
(4.32) 

2A(sina 2 -A) + l + A2 

Figure 4.8 gives a graphical representation of this relation. By differentiating this with 

1.0 

Figure 4.8 Utilization factor for an axial turbine with a 50% reaction stage. 

respect to A, shows that the maximum utilization factor is at A = sin a2, and the maximum 
utilization is given by 

2 sin2 a2 
£m — 1 + sin a2 

which is consistent with Eq. (4.31). 
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EXAMPLE 4.6 

Combustion gases flow from a stator of an axial turbine with absolute speed V2 = 
500 m/s at angle a2 = 67°. The relative velocity is at an angle f32 = 30° as it enters 
the rotor and at (33 = —65° as it leaves the rotor, (a) Find the utilization factor, and 
(b) the reaction. Assume the axial velocity to be constant. 

Solution: (a) The axial and tangential velocity components at the exit of the nozzle 
are 

Vx = V2cosa2 = 500 cos(67°) = 195.37m/s 

Vu2 = V2 sina2 = 500 sin(67°) = 460.25 m/s 

Since Wx = Vx, the tangential component of the relative velocity is 

Wu2 = Wx tan/32 = 195.37 tan(30°) = 112.80 m/s 

so that 

W2 = \Jw% + Wl2 = V195.372 + 112.802 = 225.59 m/s 

Next, the blade speed is obtained as 

U = Vu2 - Wu2 = 460.25 - 112.80 = 347.46 m/s 

Since the axial velocity remains constant, at the rotor exit the tangential component 
of the relative velocity is obtained as 

Wu3 = Wxtan/33 = 195.37 tan(-65°) = -418.96 m/s 

so that 

W3 = yjW% + W%3 = \ / l95.372+418.962 = 462.27 m/s 

Tangential component of the exit velocity is then obtained as 

Vu3 = Wu3 + U = -418.96 + 347.46 = -71.50 m/s 

At the exit 

t a n a 3 = TT~ = ' = -0.366 so that a3 = -20 .1 c 

Vx 195.37 

and the absolute velocity at the exit is 

V3 = yVj* + V%3 = v/195.372 + 71.502 = 208.04 m/s 

To calculate the utilization factor using its definition Eq. (4.19), work is first deter-
mined to be 

w = U(Vu2 - Vu3) = 347.46 ■ (460.25 + 71.50) = 184, 763 J/kg 

the utilization factor then becomes 
w 184763 

0.895 iy3
2 184763 + 0.5-208.04 
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(b) Reaction is obtained from 

„ W?-W? 462.272 - 225.592 

R = — = = 0.44 
2w 2•184763 

As a second example, consider an axial turbine stage in which both utilization factor and 
reaction are given, together with the nozzle angle and efflux velocity from the nozzle. 

■ EXAMPLE 4.7 

An axial turbine operates at reaction R — 0.48 with utilization factor e = 0.82. 
Superheated steam leaves the nozzles at speed V2 = 430 m/s in the direction a2 = 
60.6°. Find the (a) work delivered by the stage and (b) relative flow angles at the 
inlet and exit of the rotor. Assume the axial velocity to be constant through the stage. 

Solution: Since the axial velocity is constant, the expression for the utilization factor 
may be written as 

rl T/2 ^ 2 ~~ ^ 3 1 _ c o s ° 2 / COS2 0:3 
V2

2 - RV3
2 1 - R cos2 a21 cos2 a3 

Solving for the ratio of cosines gives 

^ = JJ-±- = J i - 0 - 8 2 = 0.5448 
cosa3 Ml-Re V 1 - 0.48 ■ 0.82 

Thus 

c o s a 3 = n f ^ o =0-901 and a3 = ±25.7° 
0.5448 

There are two solutions. Which to choose? Inspection of Figure 4.8 shows that the 
curves of constant nozzle angle are concave downward so that for given utilization 
factor there are two speed ratios that satisfy the flow conditions. It is clear, however, 
that the speed ratio must be less than one, for blades cannot move faster than the 
flow. This is not yet a sufficient guideline for the correct choice for the sign, but after 
calculations have been carried out for both angles, the proper angle becomes clear 
after the fact. In addition, turbine blades typically turn the flow over 80°, and on this 
basis the negative angle may be tentatively chosen as being the correct one. 

Next, the velocity components at the inlet to the blades are calculated: 

Vx = V2cosa2 = 430cos(60.6°) = 112.1 m/s 

Vu2 = y 2 s ina 2 = 430sin(60.6°) = 374.6 m/s 

With the axial velocity constant, the tangential component at the exit is: 

Vu3 = K c t ana 3 = 311.1 tan(-25.7°) = -101.6 m/s 

The magnitude of the absolute velocity at the exit is thus 

V3 = JV? + V*3 = 234.3 m/s 
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(a) Work delivered by the turbine may now calculated from 

w = 
eVf 0.82 • 234.32 

w + \V3
2 2(1 - e) 2(1 - 0.82) 

(b) The blade speed is obtained from the expression 

125,015kJ/kg 

Thus A = U/V2 ~ 262.5/430 = 0.61, and since this number is less than one, the 
negative angle gives the correct solution. 

It is worthwhile also to calculate the extent by which the blades turn the relative 
velocity. Tangential components of the relative velocity at the inlet and exit of the 
blade row are 

Wu2 = Vu2 - U = 374.6 - 262.5 = 112.1 m/s 

Wu3 = Vu3 - U = -101.6 - 262.5 = -364.1 m/s 

The flow angles of the relative velocity are finally 

and the amount of turning is 28° + 59.9° = 87.9°. 
For the positive exit flow angle, a3 = 25.7°, and the tangential velocity becomes 

Vu3 = Vxtsnia3 = 211.1 tan(25.7°) = 101.6 m/s 

and therefore the magnitude of V3 is the same as before; so is the work delivered 
since the utilization factor is the same. The blade speed, however, is changed, as it is 
now calculated to be 

w 1 2 5 0 1 5 , c ™ / 
U = = = 457.9 m/s 

Vu2 - Vu3 374.6 - 101.6 ' 
Consequently the blade speed ratio is A = U/V2 = 457.9/430 = 1.06, a value 
greater than one. Therefore this angle is the incorrect one. Proceeding with the 
calculation, the tangential velocities of the relative motion are: 

Wu2 = Vu2 - U = 374.6 - 457.9 = -83.3 m/s 

Wu3 = Vu3 - U = -101.6 - 457.9 = -356.3 m/s 

Calculating the flow angles of the relative velocity gives 

A—-(£)-«--( i irr)-"■•■ 
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Now the flow turns only -21.6° + 59.3° = 37.7°. This small amount of turning is 
typical of compressors, but not of turbines. Another way is to check the value of blade-
loading coefficient. It is i\> = w/U2 = 125,015/262.52 = 1.82 for the negative 
angle. Experience shows that blade-loading coefficients in the range 1 < ip < 2.5 
give good designs. 

■ 
The examples in this chapter have illustrated the principles of turbomachinery analysis. 
Some of the fhermodynamic properties that appear in the examples are extensive, and 
some are intensive. Few are nondimensional, and of these the ones encountered so far 
include the blade-loading coefficient, flow coefficient or speed ratio, reaction, utilization 
factor, and Mach number. In addition, flow angles of the absolute and relative velocities 
are nondimensional quantities. Once the nondimensional parameters, including the flow 
angles, have been chosen, a choice is made for the magnitude of the exit velocity from the 
nozzles or the value of the axial velocity. The blade speed can then be calculated. In order 
to complete the aerothermodynamic analysis, fhermodynamic losses need to be estimated. 
After this, all the intensive parameters will be known. 

For this much of the analysis there was no need to introduce any extensive variables. But, 
for example, a rate at which a liquid needs to be pumped, or a power delivered by a turbine, 
are typical design specifications. The size of the machine depends on these extensive 
variables. Thus the cross-sectional flow areas are calculated with these specifications in 
mind together with the size of rotor or impeller. Their diameter and the blade speed 
determine the rotational speed of the shaft. In large machines rotational speeds are low; in 
small machines they are high. Undoubtedly a design iteration needs to be carried out so 
that the machine conforms to a class of successful past designs. This includes also a stress 
analysis and vibrational characteristics of the blades, disks, and shafts. The next section 
introduces other aspects of the use of nondimensional variables. 

4.5 SCALING AND SIMILITUDE 

The aim of scaling analysis is to compare the performance of two turbomachines of similar 
design. Thus it is also used to relate the performance of a model turbomachine to its 
prototype. Both tasks are carried out in terms of proper nondimensional variables. In 
this section the conventional nondimensional groups for turbomachinery are introduced, 
scaling analysis of a model and a prototype is reviewed, and performance characteristics 
of a compressor and a turbine are presented. 

4.5.1 Similitude 

Similitude broadly refers to similarity in geometry and flow in two turbomachines. More 
precisely, dynamic similarity is obtained if the ratios of force components at corresponding 
points in the flow through these machines are equal. A necessary condition for dynamic 
similarity is kinematic similarity, which means that streamline patterns in two machines 
are the same. To achieve this, the two machines must be geometrically similar. This means 
that they differ only in scale. Proportionality of viscous force components implies that the 
Reynolds number is the same for the two machines. To obtain full dynamic similarity, the 
two flows must have similar density distributions, for then inertial forces are proportional 
at two corresponding points in kinematically similar flows. This is trivially satisfied for an 
incompressible fluid of uniform density, but for compressible fluids Mach numbers must be 
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the same at two corresponding points in the flow. The definition of Mach number involves 
temperature, which together with pressure determine the value of density. Thus, in flows 
in which the Mach numbers match, forces at corresponding points in kinematically similar 
flows are proportional to each others and the flows are said to be dynamically similar. 

In courses on fluid dynamics, systematic methods are presented for finding dimensionless 
groups. They consist of deciding first what the important variables are, and grouping 
them in categories of geometric parameters, fluid properties, operational variables, and 
performance variables. 

The most obvious geometric variable is the diameter D of the rotor. Density p and 
viscosity p are the two most common fluid properties encountered in turbomachinery 
flows, and since the fluid particles move along curved paths through the machine, the flow 
is dominated by inertial effects. This means that pressure force is in balance with inertial 
force and viscous forces are small when compared to these. Since the inertial term is 
proportional to density, in turbomachinery flows density is a more important fluid property 
than viscosity. 

The rotational speed fl of the rotor is the most important operational variable. It is 
conventionally given in revolutions per minute, and in many performance plots it is not 
converted to the standard form of radians per second. The performance variables include 
the volumetric flow rate Q and the reversible work done per unit mass ws, and quantities 
such as the power W, related to them. 

4.5.2 Incompressible flow 

The meridional velocity in a turbomachine accounts for the rate at which fluid flows through 
a machine. Thus the ratio Vm/U is a measure of the flow rate. As has been seen already, 
this ratio is used in theoretical analysis, but in testing it is converted and expressed in terms 
of more readily measurable quantities. The meridional velocity times the flow area equals 
the volumetric flow rate, and the blade speed is equal to radius times the rotational speed. 
Then, with Vm proportional to Q/D2 and blade speed proportional to QD, the combination 

^ = <n* (433) 

is dimensionless. It is called a flow coefficient. 
A nondimensional variable that includes the fluid viscosity \i will lead to some form of 

Reynolds number, such as Re = pVmD/fi, for example. The usual form, however, is 

p£W2 Q.D2 

Re = = 

in which v is the kinematic viscosity and the blade speed, proportional to Q.D, is used in 
place of the meridional velocity. If the boundary layers on the flow passage do not separate, 
viscous forces remain important only near the walls. Thus, as the machine size increases, 
boundary-layer regions become a smaller part of the flow. One contributing factor to losses 
in turbulent boundary layers is the size of wall roughness, which depends on manufacturing 
methods used. Hence, for example the casing and the impeller of two pumps of different 
size, but manufactured the same way may have about equal roughness. Since more of the 
flow through the larger pump does not contact the walls of the flow channel, this part of 
the flow does not experience as great a loss as does the flow through the boundary layer. 
This concept goes by the name scale effect, and it makes the performance variables quite 
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independent of Reynolds number, provided the machine is sufficiently large. It is for this 
reason that in large machines Reynolds number effects are ignored in preliminary design 
and also that efficiency increases with machine size. This discussion of the influence of 
Reynolds number applies at a design condition. However, when turbomachines are operated 
at off-design conditions, boundary layers may separate. In worst cases such operation can 
be catastrophic. Thus the Reynolds number enters the theory of turbomachines indirectly 
through its influence on the behavior of boundary layers. 

The most important performance variable is the work done on the fluid, or delivered by 
the machine. Its nondimensional form is the work coefficient 

^ ~ n2D2 

in which ws is the isentropic work and the product QD in the denominator is proportional 
to the blade speed, so that the denominator has the units of energy per unit mass, as does 
isentropic work. 

In the Bernoulli equation 

1 , 1 , 
Pi + 2pVl + p9Zl =P2 + 2pV2 + P9Z2 

the kinetic energy term shows that in this form the units of each term are energy per 
unit volume, since density has replaced mass. Furthermore, weight equals mass times 
gravitational acceleration, and specific weight of a fluid is defined as pg. Dividing each 
term by pg gives 

Pl ■ , 1 T/2 , , P2 , 1 T / 2 , 
— + 7TV\ +Z1 + — + 7TV2 + *2 pg 2g pg ?g 

and each term has the dimensions of energy per unit weight of the fluid, which can be 
reduced to a length, as the potential energy term shows. From hydraulic practice it is 
common to call the first term in this equation a pressure head. The second term has the 
name kinetic energy or dynamic head, and the third term is an elevation head. The sum is 
called the total head. 

The first law of thermodynamics applied to a flow through a pump gives 

P1 i 1l/2 , , Vl . l T / 2 , 
1" 2^1 +9Zi+ws = H 2 V2 + 9zi 

which can also be written as 
ws = gH 

and here H is the change in the total head across the pump. Pump manufacturers report 
the performance of pumps in terms of their head, making the values independent of the 
fluid being pumped. They also report a value for efficiency, so that actual work may be 
determined as w = ws/r). 

From the definition of total pressure, isentropic work for an incompressible fluid can 
also be calculated from 

P02 ~ P01 
Ws = 

P 
which shows that if the total pressure change across the pump is reported, then, to obtain 
the work done, density of the fluid being pumped needs to be known. 
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Also from the hydraulic practice comes the custom of expressing pressure as a height of 
a mercury, or a water column, particularly in fans and blowers in which the pressure rise is 
small. The conversion is carried out by the manometer formula 

Ap = pmgd (4.34) 

in which pm is the density of the manometer fluid and d is the manometer deflection. As a 
consequence of the discussion above, for a pump, the work coefficient may be written as 

fa - n2D2 

Power coefficient may be introduced as 

W 
Pd pWD5 

Here W is the actual rate at which work is done. Hence, multiplying the denominator of 
fa by the mass flow rate and dividing it by a quantity with dimensions of mass flow rate, 
namely, by p f2D D2, gives this form, except that efficiency of the machine must also be 
taken into account. It is easy to see that the power coefficients for a turbine with efficiency 
rjt and compressor with efficiency r]c are 

"d = Vtfafa Pd 
Vc 

respectively. 
For dynamically similar situations two machines have the same values of the nondimen-

sional parameters fa and fa. They are also expected to have the same efficiency if the 
scale effect is neglected. This means that for machines 1 and 2 the following relationships 
are true: 

/ ws \ = / ws \ / Q 
\n2D2Ji \n2D2J2 \ O D 3 I \nD3 

EXAMPLE 4.8 

Liquid water with density p = 998 kg/m3 flows through an axial flow pump, with a 
rotor diameter of 30 cm at a rate of 200 m3/h. The pump operates at 1600 rpm, and 
its efficiency is i]p = 0.78. The pump work is 180 J/kg. If a second pump in the 
same series has a diameter of 20 cm and operates at 3200 rpm, at the condition of 
same efficiency, find (a) flow rate, (b) the total pressure increase across it, and (c) the 
input power. 

Solution: (a) Since the pumps are geometrically similar and their efficiencies are the 
same, dynamic similarity may be assumed. Thus 

Qi Q* n n^D* o n n 3200 ■ 203
 3 

Q2 = Q I T ^ 3 = 200 1 g n n --■ = 118.5m /h nxD\ ft2D3 ^ ^'n-tDf 1600-303 

and the mass flow rate is 

998 • 118.5 , , 
TO2 = PQ2 = 3 6 0 Q - = 32.86 kg/s 
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(b) With equal work coefficient and efficiency, it follows that 

wsi ws2 UL\D\ i Q n 3 2 0 0 2 - 2 0 2 

sm = sm W2=wiwm=18016002. so2 =320J/kg 

The total pressure rise is given by 

Ap02 = pw2r\ so that Ap02 = 998 • 320 • 0.78 = 249.1 kPa 

(c) Pumping power is 

W2 = m2w2 = 32.86 • 320 = 10.5 kW 

Since the ratio of rotational speeds and flow rates are used in the calculations, there 
was no need to covert them to standard units. B 

4.5.3 Shape parameter or specific speed 

Flow coefficient and work coefficient can be combined in such a way that the diameter is 
eliminated. Raising the result to a power such that it becomes directly proportional to the 
rotational speed, gives a parameter that is called the specific speed, which is given by 

a..(9j"(^)'"=a^ (435) 
SID3J \ gH J (gHfl 

This equation is of relevance to pumps and hydraulic turbines, since the working fluid for 
them is a liquid. It shows that machines with low flow rates and high pressure rise have low 
fis. In centrifugal machines the inlet area, which is close to the shaft, is relatively small, 
and to keep the inlet velocity within a desirable range, the flow rate is relatively low. The 
centrifugal action causes a large pressure rise in such machines. Both make the specific 
speed low. In axial pumps and turbines a large flow rate is possible, as the annulus area is 
far from the axis and is therefore large. This leads to a high specific speed. The shape of 
the machines thus changes from a radial to an axial type as the shape parameter increases. 
Thus a better name for Qs would be a shape parameter. Diameter does not appear in the 
definition of the specific speed, but since the velocity must be kept within reasonable limits, 
it appears implicity through the flow rate, with a larger flow rate requiring a larger machine. 
Shapes for pumps are shown in Figure 4.9. The figure shows that large machines have 
higher efficiencies owing to the scale effect discussed above. 

4.5.4 Compressible flow analysis 

For compressible flows temperature must be listed among the fundamental dimensions. It 
appears in the definition of Mach number, M = V/c, and with c the speed of sound, equal 
to c = ^JjRT for an ideal gas, the ratio of specific heats appears as an additional parameter. 

Flows with Mach numbers less than 0.3 can be approximated as incompressible. Hence, 
in low-Mach-number flows, the influence of Mach number will be slight. Testing of cen-
trifugal compressors with refrigerants as working fluids also shows that their performance 
depends only weakly on the ratio of specific heats [17]. This is useful to notice, for then 
performance maps generated for air are not expected to lead to large errors when they are 
used for other gases. 
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Figure 4.9 Shapes of pumps with increasing specific speed. (Modified from a graph in Stepanoff 
[74].) 

In compressible flows the volumetric flow rate is replaced by the mass flow rate, as only 
the latter is constant through a machine. Conventional practice is to replace the volumetric 
flow rate with m/poi, where poi is the inlet stagnation density. The other parameters 
include a modified blade Mach number QD/coi, Reynolds number poiflD2/p, and the 
ratio of specific heats. In the definition of cm the inlet stagnation temperature is used. 

The functional relationship between the reversible work and these parameters can be 
expressed as 

Ah0s t ( rh SID p01nD2 \ 
/ . n n . v ~ . : >7 (4-36) fl2D2 J V P O I ^ 3 ' coi ' p 

For an ideal gas it was shown in Chapter 2 that 

Ah 0s 1 

^01 

which may be recast as 

7 - 1 

4)1 

P02\ 

POl] 

( 7 - l ) / 7 

A/ln 

n2D2 n2D2 7 - I 
P02\ 

POl) 

( 7 - l ) / 7 

Since the blade Mach number and the ratio of specific heats are already taken as independent 
parameters, the ideal work coefficient can be replaced by a stagnation pressure ratio. This 
is done, regardless of whether the gas is ideal. 

The flow coefficient may be written as 

m coi coi m,^/RT0i 
p01nD* p0ic01D2nD nDpm^D2 
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Again, since the blade Mach number and 7 are already counted as independent parameters, 
inspection of the right side shows that the flow coefficient may be modified to 

, my/RT01 

P01D2 

The power coefficient is manipulated into the form 

W mcv AT0 m 1 c§! AT0 

Poi^3-D5 ~ p o i ^ 3 ^ 5 ~ poi^D3 7 - 1 n2D2 IbT 

The first factor on the right is the original flow coefficient. It is multiplied by a factor 
dependent only on 7 and the reciprocal of the blade Mach number squared. Since all these 
factors have been taken into account separately, the power coefficient may be replaced by 
AT0/T01. Hence 

/1 _ n o . / - T * H - ' : >7 (4-37> P01 V P01D2 ' \/-iRTQi' n 

and 

-7^=f2\ =^-,-T===, ,7 (4.38) 
T01 V PoiDz V7i?T0i \i ) 

Efficiency is another performance variable and is functionally related to the parameters 
listed on the right in the equations above. For an ideal gas undergoing compression, it can 
be calculated from 

_ T02s — Tg\ _ TQI 
TQ2 — TQ\ ATQ 

P02 _ * 

P01 

For a particular design and fluid, the geometric parameters and 7 are fixed. This allows 
the flow coefficient and the blade Mach number to be replaced by 

P01 VToi 

These are not dimensionless. Alternatively, the corrected mass flow rate and the rotational 
speed 

rnc = ^ Z ^ nc = " (4.40) 

are used, in which subscript r refers to a reference condition. 

4.6 PERFORMANCE CHARACTERISTICS 

Use of the performance map is illustrated in this section by representative compressor and 
turbine maps for an automotive turbocharger. It is used to precompress air before it is 
inducted to an internal combustion engine, thereby allowing a larger mass flow rate than 
is possible in a naturally aspirated engine. A turbocharger is shown in Figure 4.10. It 
consists of a centrifugal compressor and a radial inflow turbine. The exhaust gases from 
the engine drive the turbine. Shaft speeds vary from 60,000 to 200,000 rpm in automotive 
applications. 
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Figure 4.10 A turbocharger. (Photo courtesy NASA.) 

4.6.1 Compressor performance map 

To characterize the performance of a compressor, the pressure ratio is typically plotted as 
a function of the flow coefficient, as is shown in Figure 4.11. Here the flow rate and the 
rotational speed are modified to a corrected flow rate and a corrected shaft speed 

This particular compressor map is for a centrifugal compressor of an automotive tur-
bocharger manufactured by BorgWarner Turbo Systems, similar to that shown in Figure 
4.10. Air is drawn in from stagnant atmosphere with reference pressure por = 0.981 bar 
and reference temperature TQT — 293 K. These are the nominal inlet stagnation properties. 

Efficiency curves are superimposed on the plot on a family of curves at constant corrected 
speed, given in rpm. The constant speed curves terminate at a line called a surge line. If 
the flow rate decreases beyond this, the blades will stall. Severe stall leads to a condition 
known as surge. Under surge conditions the flow may actually reverse direction, leading 
to a possible flameout in a jet engine. 

In an automotive application the operating speed of the turbomachine follows the engine 
speed of the internal combustion engine. When the shaft speed is increased, the operating 
condition moves across the constant speed curves in the general direction parallel to the 
surge line to lower efficiency. At large flow rates the flow in the blade passages will choke 
and this is indicated by the sharp drop in the constant-speed curves. 

4.6.2 Turbine performance map 

A sample plot of turbine characteristics is shown in Figure 4.12 for the radial inflow turbine 
of the same BorgWarner turbocharger. Inlet to the turbine is identified by the label 3, and 
its exit is a state 4. Pressure ratio is given as the ratio of stagnation pressures at states 3 and 
4. Inlet reference temperature has a value T^r = 873 K. The rotational speed of the shaft 
is corrected by the square root of the ratio of the reference temperature to its actual value at 
the inlet. This arises from the square root dependence of speed of sound on temperature. 
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Figure 4.11 Characteristics of a centrifugal compressor. (Courtesy BorgWarner Turbo Systems.) 

Since the exit pressure from the turbine is close to the atmospheric value, the pressure 
ratio is determined by the inlet pressure to the turbine, which in turn is related to engine 
pressure. A high pressure ratio leads to choking of the turbine. Thus an increase in the 
pressure ratio no longer increases the flow rate and the lines of constant speed remain flat, 
as seen in Figure 4.12. 

Efficiency curves are also flat near choking conditions, for the aerodynamic design is 
optimized for these conditions. This is in contrast to the small envelope of high efficiency 
at low pressure ratios when the turbine can still accommodate a large change in the mass 
flow rate as the pressure ratio is increased. 

Although it would be desirable to have a consistent representation of the dimensionless 
parameters, this is not yet a common practice. Hence, the dimensions and units in each of 
the parameters need to be examined for each performance map encountered. 

EXERCISES 
4.1 Steam enters a rotor of an axial turbine with an absolute velocity V2 = 320 m/s at an 
angle a2 = 73°. The axial velocity remains constant. The blade speed is U = 165 m/s. 
The rotor blades are equiangular so that /33 = —f32, and the magnitude of the relative 
velocity remains constant across the rotor. Draw the velocity triangles. Find (a) the relative 
flow angle /32, (b) the magnitude of the velocity V3 after the flow leaves the rotor, and (c) 
the flow angle az that V3 makes with the axial direction. 

4.2 Water with density 998 kg/m3 flows in a centrifugal pump at the rate of 22 L/s. The 
impeller radius is r2 = 7.7 cm, and the blade width at the impeller exit is b2 = 0.8 cm. If 
the flow angles at the impeller exit are a2 = 67° and /32 = —40°, what is the rotational 
speed of the shaft in rpm? 
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Figure 4.12 Characteristics of a radial inflow turbine. (Courtesy BorgWarner Turbo Systems.) 

4.3 In a velocity diagram at the inlet of a turbine the angle of the absolute velocity is 60° 
and the flow angle of the relative velocity is -51.7°. Draw the velocity diagram and find 
the value of U/V and Vx/U. 

4.4 A small axial-flow turbine has an output power of 37 kW when handling 1 kg of air 
per second with an inlet total temperature of 335 K. The total-to-total efficiency of the 
turbine is 80%. The rotor operates at 50,000 rpm and the mean blade diameter is 10 cm. 
Evaluate (a) the average driving force on the turbine blades, (b) the change in the tangential 
component of the absolute velocity across the rotor, and (c) the required total pressure ratio 
across the turbine. 

4.5 The exit flow angle of stator in an axial steam turbine is 68°. The flow angle of the 
relative velocity leaving the rotor is —67°. Steam leaves the stator at V% = 120m/s, and 
the axial velocity is Vx2 = 0.41f/. At the exit of the rotor blades the axial steam velocity 
is VX3 — 0.42(7. The mass flow rate is TO = 2.2kg/s. Find (a) the flow angle entering 
the stator, assuming it to be the same as the absolute flow angle leaving the rotor; (b) the 
flow angle of the relative velocity entering the rotor; (c) the reaction; and (d) the power 
delivered by the stage. 

4.6 The axial component of airflow leaving a stator in an axial-flow turbine is Vx2 = 
175 m/s and its flow angle is 64°. The axial velocity is constant, the reaction of the stage is 
R = 0.5, and the blade speed is U = 140 m/s. Since the reaction is 50%, the relationships 
between the flow angles are j32 = -a3 and a2 = —03- Find the flow angle of the velocity 
entering the stator. 

4.7 The airflow leaving the rotor of an axial-flow turbine is Vx$ = 140 m/s and its flow 
angle is 0°. The axial velocity is constant and equal to the blade speed. The inlet flow 
angle to the rotor is a2 = 60°. Find the reaction. 
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4.8 A large centrifugal pump operates at 6000 rpm and produces a head of 800 m while 
the flow rate is 30,000 L/min. (a) Find the value of the specific speed, (b) Estimate the 
efficiency of the pump. 

4.9 A fan handles air at the rate of 500 L/s second when operating at 1800 rpm. (a) What 
is the flow rate if the same fan is operated at 3600 rpm? (b) What is the percentage increase 
in total pressure rise of the air assuming incompressible flow? (c) What is the power input 
required at 3600 rpm relative to that at 1800 rpm? Assume that the operating point of the 
fan in terms of the dimensionless parameters is the same in both cases. 

4.10 An axial-flow pump having a rotor diameter of 20 cm handles water at the rate of 
60 L/s when operating at 3550 rpm. The corresponding increase in total enthalpy of the 
water is 120 J/kg and the total-to-total efficiency is 75%. Suppose that a second pump in 
the same series is to be designed to handle water having a rotor diameter of 30 cm and 
operating at 1750 rpm. For this second pump what will be the predicted values for (a) the 
flow rate, (b) the change in the total pressure of water, and (c) the input power? 

4.11 A small centrifugal pump handles water at the rate of 6 L/s with input power of 5 
hp and total-to-total efficiency of 70%. Suppose that the fluid being handled is changed to 
gasoline having specific gravity 0.70. What are the predicted values for (a) flow rate, (b) 
input power, and (c) total pressure rise of the gasoline? 

4.12 A blower handling air at the rate of 240 L/s at the inlet conditions of 103.1 kPa for 
total pressure and 288 K for total temperature. It produces a pressure rise of air equal to 
250 mm of water. If the blower is operated at the same rotational speed, but with an inlet 
total pressure and total temperature of 20 kPa and 253 K. What are (a) the predicted value 
for the mass flow rate and (b) the total pressure rise? 

4.13 Consider a fan with a flow rate of 1500 cfm, [cubic feet per minute (ft3/min)] and 
a shaft speed of 3600 rpm. If a similar fan one half its size is to have the same tip speed, 
what will the flow rate be at a dynamically similar operating condition? What is the ratio 
of power consumption of the second fan compared to the first one? 

4.14 A fan operating at 1750 rpm at a volumetric flow of 4.25 m3/s develops a head of 
153 mm of water. It is required to build a larger, geometrically similar fan that will deliver 
the same head at the same efficiency as the existing fan, but at the rotational speed of 1440 
rpm. (a) Determine the volume flow rate of the larger fan. (b) If the diameter of the original 
fan is 40 cm, what is the diameter of the larger fan? (c) What are the specific speeds of 
these fans? 

4.15 The impeller of a centrifugal pump, with an outlet radius T-I = 8.75 cm and a blade 
width 62 = 0.7 cm, operates at 3550 rpm and produces a pressure rise of 522 kPa at a 
flow rate of 1.5 L/min. Assume that the inlet flow is axial and that the pump efficiency 
is 0.63. (a) Find the specific speed, (b) Show that Eq. (4.15) for work reduces tow = 
(K22 + U$ - W%2)/2, and calculate the work two ways and confirm that they are equal. 



CHAPTER 5 

STEAM TURBINES 

5.1 INTRODUCTION 

The prime mover in a steam power plant is a steam turbine that converts part of the thermal 
energy of steam at high pressure and temperature to shaft power. Other components of the 
plant are a steam generator, a condenser, and feedwater pumps and heaters. The plants 
operate on various modifications of the Rankine cycle. The basic Rankine cycle, operating 
between 40°C and 565° C, has a Carnot efficiency of 37%. Modifications, including 
superheating, reheating, and feedwater heating, increase the efficiency by approximately 
an additional 10%. 

Most large power plants have two reheats and three or more turbines. The turbines 
are said to be compounded when steam passes through each of them in series. The high-
pressure (HP) turbine receives steam from the steam generator. After leaving this turbine 
the steam is reheated and then enters an intermediate-pressure (IP) turbine, also called a 
reheat turbine, through which it expands to an intermediate pressure. After the second 
reheat the rest of the expansion takes place through a low-pressure (LP) turbine, from 
which it enters a condenser at a pressure below the atmospheric value. 

A turbine from which the steam leaves at quality near 90% is called a condensing turbine. 
An extraction turbine has ports from which steam is extracted for feedwater heating. An 
induction turbine receives steam at intermediate pressures for additional power generation. 

In a noncondensing or backpressure turbine, steam leaves at superheated conditions 
and the thermal energy in the exhaust steam is used in various industrial processes. A 
well-designed combined heat and power plant generates appropriate amount of power to 
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drop the steam temperature and pressure to values that meet the process heating needs. 
District heating is an application in which steam is used at even lower temperatures than in 
many industrial processes. An important consideration in providing the heating needs of 
an economy is to match the source to the application. Combined heat and power plants are 
designed with this in mind. 

In modern coal-burning power plants axial steam turbines are typically housed in three, 
four, or five casings. Many LP turbines are double-flow type, and their single casing 
accommodates a pair of turbines in which steam flows in opposite directions to balance 
axial forces on the turbine shaft. When two or more turbines are connected to a common 
shaft, they are said to operate in tandem, and the plant is said to be a tandem compound 
type. If the steam is directed to a set of turbines on different shafts, then the system is said 
to be cross-compounded. For example, a 1000-MW power plant could have an HP turbine 
and an IP turbine on a single shaft and three LP turbines on a different shaft. Rotational 
speeds are typically either 3600 or 1800 rpm; the lower speed for the LP turbines, that 
have larger rotors in order to accommodate the larger volumetric flow rate of steam at low 
pressure. The large volumetric flow rate at the low pressure end requires very long blades. 
As an example, a General Electric/Toshiba LP steam turbine running at 3600 rpm has 
blades 1016 mm in length and a flow area 8.2 m2 in the last stage. When this is designed to 
run at 3000 rpm for generating electricity at 50 Hz, the blades of the last stage are designed 
to be 1220 mm long, with a corresponding flow area 11.9m2. For a 26-stage steam turbine 
the hub-to-casing radius ratio for the last stage may have a value 0.42, whereas for the first 
stage a typical value is 0.96. 

Outlet pressures from the boiler vary from a subcritical lOMPa to a supercritical 
30 MPa, or more. The condenser pressure is below the atmospheric pressure, typically 
about 8 kPa, which corresponds to a saturation temperature of 41°C. This makes the overall 
pressure ratio equal to 1250 for a conventional plant and 3 times this for supercritical plants. 
In a 400-MW power plant the HP turbine provides about 100-MW, and power at about an 
equal rate is delivered by the IP turbine. A double-flow LP turbine delivers the remaining 
200-MW. The pressure ratios are 4.5 doe the HP turbine and 3 for the IP turbine. The LP 
turbine has ports for extracting steam to feedwater heaters at pressure ratios ranging from 
1.5 to 4.5. 

Owing to the large inlet pressure, design of the HP turbine differs from that of the others. 
The first stage is designed for low reaction, so that most of the pressure drop takes place at 
the nozzles feeding this stage. This brings the steam to a very high velocity as it enters the 
first rotor. However, the pressure is now sufficiently low that leakage flow through seals 
is tolerable. Later stages are designed for higher reaction, and in IP and LP turbines the 
reaction is close to 50%. 

Table 5.1 lists some typical designs and rated power outputs for coal-burning steam 
power plants. Designations such as 1SF and 3DF refer to one single-flow and three double-
flow turbines [23]. At the preliminary design stage steam inlet pressure to the HP turbine 
is specified. Intermediate pressures at which reheating takes place are then calculated 
according to how much moisture is allowed at the exit of the HP and IP turbines. A similar 
decision is made for the reheat (RH) turbine to determine the appropriate pressure at the 
inlet of the LP turbines. 

The steam turbine industry is very large. The annual worldwide electricity generation 
from steam plants is 38.5 EJ (exajoules) equal to 1.2 TW (terawatts) of generated power. 
This means that on the order of 10,000 steam turbines are in use. The major manufactures 
include GE power systems in the United States, Siemens, Alstom, and Ansaldo Energia in 
western Europe, Mitsubishi Heavy Industries, Hitachi and Toshiba in Japan. Many of the 
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Table 5.1 Fossil steam power turbine arrangements 

Output Steam pressure 
(MW) Reheats (MPa) HP IP RH LP 

50-150 
150-200 
250-450 
450-600 
450-600 
600-850 
600-850 
850-1100 
850-1100 

Oorl 
1 
1 
1 
1 
1 

1 or 2 
1 

lo r 2 

10.1 
12.5 
16.6 
16.6 
24.2 
16.6 
24.2 
16.6 
24.2 

1SF 
1SF 
1SF 
1SF 
1SF 
IDF 
1SF 
IDF 
1SF 

-
1SF 
1SF 
1SF 
1SF 
IDF 
1SF 
IDF 
1SF 

-
-
-
-
-
-

IDF 
-

IDF 

1SF 
IDF 
IDF 
2DF 
2DF 
2DF 
2DF 
3DF 
3DF 

steam turbines in eastern and central Europe are supplied by LMZ in Russia and Skoda in 
the Czech Republic. 

World's wide production of electricity during the year 2008 was 18,800 billion kWh. 
In standard units this is 67.7 EJ. In thermal plants electricity generation is fueled by coal, 
natural gas, oil, and uranium. Coal provides 27 EJ; natural gas, 13 EJ; and oil, 3 EJ of 
the generated electricity. Nuclear fuels provide 10 EJ. The remaining 12 EJ comes from 
hydropower and a small amount from wind. In coal, fuel oil, and nuclear power plants the 
working fluid is water and these steam plants provide 57% of the generated electricity. The 
other 43% comes in about equal amounts from hydropower and from gas turbine power 
plants fueled by natural gas [43]. Since these figures relate to production of electricity, they 
do not take into account the energy value of coal, gas, and uranium that needs to be mined. 
A rough value for thermal efficiency of fossil fuel plants is 38% and therefore the energy 
content of the fuels delivered to the plants is a factor of 2.6 larger. Ordinarily the energy 
requirement for mining and transporting the fuel needed by power stations is not factored 
into the energy evaluation, as it should be. 

5.2 IMPULSE TURBINES 

This section begins with a discussion of impulse turbines and how a single-stage turbine is 
compounded to multiple stages by two methods. These are called pressure compounding, 
or Rateau staging, and velocity compounding, or Curtis staging. Both are used to reduce 
the shaft speed, which in a single-stage impulse turbine may be intolerably high. 

5.2.1 Single-stage impulse turbine 

Carl Gustaf Patrik de Laval (1845-1913) of Sweden in 1883 developed an impulse turbine 
consisting of a set of nozzles and a row of blades, as shown in Figure 5.1. This turbine 
is designed to undergo the entire pressure drop in the nozzles and none across the rotor. 
For sufficiently low exit pressure, converging-diverging nozzles accelerate the steam to a 
supersonic speed. The angle of the relative velocity approaching the rotor blades is (32, and 
the exit angle has a negative value (3^. For equiangular blades /3s = —fa- This gives the 
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blades a bucket shape because at the design condition the actual metal angles of the blades 
are close to the flow angles of the relative velocity. 

The blades change the direction of the momentum of the flow, and this gives an impulsive 
force to the blades. This is the origin of the name for this turbine, for it appears as if the 
fluid particles were executing trajectories similar to a ball striking a wall and caused to 
bounce back by an impulsive force. But if the surface forces on the blades are examined, it 
is clear that the difference between the high pressure on the concave side of the blade and 
the low pressure on the convex side is the actual cause of the blade force. A combination 
of a nozzle row and a rotor row make up a stage. For this reason the de Laval turbine is 
also called a single-stage impulse turbine. 

Work done on the blades is given by 

w K2 ~ h03 = U(Vu2 - Vu3) 

and since the relative stagnation enthalpy is constant across the rotor 

h2 + \wl 1, -Wi (5.1) 

As seen from the hs diagram in Figure 5.1 irreversibilities cause the static enthalpy to 
increase from h2 to ho, and then Eq. (5.1) shows that W$ is less than W2. For equiangular 
blades, this means that the tangential and axial components of the relative velocity must 
decrease in the same proportion. 

Nozzle / ' Rotor hn„h, 

/)„, ft, „ 
2s' 3ss, 

Figure 5.1 Single-stage impulse turbine and its Mollier chart. 

It is assumed that steam flows into the nozzles from a steam chest in which velocity is 
negligibly small. The nozzle efficiency, as shown in the previous chapter, is given by 

/ioi — h2 ho2 — h2 

"01 — n2s 

and the second expression follows since /IQI = 
ho2 — h2s 

ho2. This can also be written in the form 

m C N 
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in which the velocity coefficient for the nozzle has been defined as CN = V^/V^. The loss 
of stagnation pressure across the nozzles is Ap0LN = Poi — Po2- Examination of Figure 
5.1 shows that the velocity coefficient is defined such that it represents the loss of kinetic 
energy in the nozzles. 

For the rotor CR = Wz/Wzs, but since the state 3s is the same as state 2, the velocity 
coefficient for the rotor is also CR = W3/W2. The loss of stagnation pressure is given by 
APOLR = P02K — P03R- The constant pressure lines p02R and p03R are shown in Figure 
5.1. The velocity coefficient CR has been defined such that the decrease in kinetic energy of 
the relative velocities represents a thermodynamic loss. The sum of the separate stagnation 
pressure losses across the nozzles and the rotor gives a different and correct value for the 
total loss than what was calculated in Chapter 2, where this loss in stagnation pressure was 
determined for the entire stage. 

The efficiency of the rotor is defined as 

^R = i r~ 
because the kinetic energy leaving the rotor is assumed to be wasted. Since h^ = h%s this 
can also be written as 

w 
VR IV2 

2 V2 
The product 

can be written as 
??tS 

ho2 — h,2 ho2 — ho3 hoi — ^03 
ho2 — h,2s ho2 — hss hoi — }l3ss 

since ft-2 = hss and ft-2s = hsss and the standard definition of the total-to-static efficiency 
is recovered. With this introduction, the principles learned in Chapter 3 are next applied to 
a single-stage impulse steam turbine. 

■ EXAMPLE 5.1 

Steam flows from nozzles at the rate 0.2 kg/s and speed 900 m/s. It then enters the 
rotor of single-stage impulse turbine with equiangular blades. The flow leaves the 
nozzles at an angle of 70°, the mean radius of the blades is 120 mm, and the rotor 
speed is 18,000 rpm. The frictional loss in the rotor blades is 15% of the kinetic 
energy of the relative motion entering the rotor, (a) Draw the velocity diagrams at 
the inlet and outlet of the rotor with properly calculated values of the inlet and outlet 
flow angles for the relative and absolute velocities, (b) Find the power delivered by 
the turbine, (c) Find the rotor efficiency. 

Solution: (a) The blade speed is 

^ 0.12-18,000-27T 
U = rfl = = 226.2 m/s 

60 ' 

and the axial velocity is 

Vx2 = V2 cosa2 = 900 cos(70°) = 307.8 m/s 

and the tangential component of the absolute velocity at the inlet to the rotor is 

Vu2 = V2 sina2 = 900 sin(70°) = 845.7m/s 
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The tangential component of the relative velocity entering the rotor is therefore 

Wu2 = Vu2 - U = 845.7 - 226.2 = 619.5 m/s 

so that the relative flow speed, since Wx2 = Vx2, comes out to be 

W2 = yJWix2 + Wl2 = V307.82 + 619.52 = 691.8 m/s 

The inlet angle of the relative velocity is then 

fc = t a n - ( ^ ) = t a n - («**)= 63.6° 
\Wx2) V 307.8 y 

Since 15% of the kinetic energy of the relative motion is lost, at the exit the kinetic 
energy of the relative flow is 

-Wi = - ( 1 - 0.15)Wf and W3 = V0.85 • 691.82 = 637.8m/s 

For equiangular blades, j33 = —f32, and the axial velocity leaving the rotor is 

Wx3 = W3cosP3 = 637.8 cos(-63.6°) = 283.8 m/s 

and the tangential component of the relative velocity is 

Wu3 = W3smP3 = 637.8sin(-63.6°) = -571.2 m/s 

The tangential component of the absolute velocity becomes 

Vu3 = U + Wu3 = 226.2 - 571.2 = -345.0 m/s 

Hence, with Vx3 = Wx3, the flow angle at the exit is 

and the velocity leaving the rotor is 

V3 = ^ /V^ + yu
2
3 = V283.82 + 3452 = 446.7 m/s 

The velocity triangles at the inlet and outlet are shown in Figure 5.2. 

(b) The specific work done on the blades is obtained as 

w = U(Vu2 - Vu3) = 226.2(845.7 + 345.0) = 269.3 kJ/kg 

and the power delivered is 

W = mw = 0.2 • 269.3 = 53.87 kW 

(c) The kinetic energy leaving the nozzle is 

iK,2 = i900 2 =405 .0kJ /kg 
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Figure 5.2 Velocity diagrams for a single stage impulse turbine. 

and the rotor efficiency therefore becomes 

w 269.3 
m VJ/2 405.0 0.665 66.5% 

Of the difference 1 — T̂ R a fraction is lost as irreversibilities and the rest as kinetic 
energy leaving the rotor. The latter is obtained by calculating the ratio V*/2 to V% 1% 
which is (446.7/900)2 = 0.246. Hence loses from irreversibilities are 1 — 0.665 — 
0.246 — 0.089, or about 9%. It turns out that the blade speed in this example is too 
low for optimum performance, as will be shown next. g 

As the theory of turbomachinery advanced, measures more general than the velocity co-
efficients to account for irreversibility replaced them. A useful measure is the increase in 
the static enthalpy by internal heating. The loss coefficients £N and £R are defined by the 
equations 

ho - ho 1 
;CN^2

2 / I 3 - h, 1 
3s CKW- (5.2) 

2^ z 2 
with the thermodynamic states as shown in Figure 5.1. Since the stagnation enthalpy is 
constant for the flow through the nozzle, it follows that 

1, 
i 2s -Yl = h2 

1, 
:V? 

which is rearranged to the form 

hi - h2s = ^(NVi = ±Vj 

With VS2 = V2/CN, this equation can be expressed as 

V^ = 1 _ 
V2a ~ 

--y? 

CN 

Since the relative stagnation enthalpy is constant for the rotor, 

(5.3) 

h: 3s wi h3 + l-wl 
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and this equation can be rewritten in the form 

from which 

k3 - h3s = ̂ Rwi = -wi - -wi 

W3 1 
cn = ~ = / r — - (5.4) 

The stagnation pressure loss across the nozzles is ApoLN = Poi — P02. and the stagnation 
pressure loss across the rotor is A^OLR = P02R — P03R- The relative stagnation pressures 
are determined by first calculating the relative stagnation temperatures, which are obtained 
from 

2 rr rp , ^ 3 W4 „ „ Wi 
T02R = T2 + -— T 0 3 R = T3 + 

and then relative stagnation pressures are determined from 

P02R _ / 7Q2R V 7 P03R _ (^03R \ 
VI ~ V T2 ) P3 ~ \ T3 ) 

To calculate the total-to-static efficiency, from rjts = VNVR m e nozzle efficiency is first 
determined from 

2 1 
VN = % = (5.5) 

J- + <,N 
and then the rotor efficiency needs to be found. This is done by manipulating its definition 
into the form 

1 1 = h03 - h 3 s = \VJ + (hs - h3s) 
VR h02 - h03 w 

which can be recast as 
±_1 = YI±CRWI 
VR %W 

Then, using 
vu2 = u+wu2 vu3 = u + wu3 

the work done on the blades may be written as 
w = U{Vu2 - Vu3) = U(Wu2 - Wu3) = U{W2 sin/32 - W3 sin/33) 

For equiangular blades (33 = —f32 and making use of the relationship W3 = W2/y/l + CR 
this equation takes the form 

w = UW2 (1 + 1 ) sin/?2 
V V I + CR/ 

or, with further substitution of W2 sin f32 = V2 sin a2 — U, it is 

r r ( l + \ / l +CR) ,rr ■ r n , - —. 

w = U — ( V 2 s m a 2 -U) (5.7) 
v l + CR 

The numerator of Eq. (5.6) still needs to be expressed in terms of V2 and a2, as was done 
for work. After the component equations for the velocities 

W3 cos P3 = V3 cos a3 W3 sin (33 + U = V3 sin a3 
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are squared and added, the relationship 

Wi + 2UW3 sin j33 + U2 = Vf 

is obtained. Making use of Eq. (5.4), the term V3 + C R W | c a n be written as 

/ 2 , , W2 Wi 2UW2smP2 2 (RWl 
/ 3 + CRM/3 = — + U + 

i + CR V I + CR I + CR 

T/2 , > W 2 W 2 2 £ W 2 s m / 3 2 r r 2 

^3 + CR^S = W2 rr^rr- + U 

v i + CR 
The relative velocity W2 is next expressed in terms of V2 and a2. Again, the component 
equations for the definition of relative velocity give 

W2 cos /32 = V2 cos a2 W2 sin /32 = V2 sin a2 — U 

which, when squared and added, lead to 

Wl = V2
2 - 2UV2 sin a2 + U2 

Hence the expression for V% + (RW2 takes the final form 

2 2 (V2 - 2E/Vr
2sina2+2C/2)(1 + CR) - 2U(V2sma2 - U)VTTCR~ 

v3 + CRW3 = — — 
1 + CR 

The equation for the efficiency can now be written as 

1 1 = (V2
2 - 2UV2 sma2 + 2U2)(1 + CR) - 2U(V2 sina2 - £ / )yT+^a 

7?R " 217(1 + CR + V^+CR)(V2 sina2 - £/) 

Introducing the speed ratio A = U/V2 into this gives 

1 _ (1 - 2Asina2 + 2A2)(1 + CR) - 2A(sina2 - A)VTTCR~ 

VK ~ 2A(1 + CR + \ / l + CR)(sina2 - A) 

The rotor efficiency now can be expressed as 

2A(1 + CR + Vr+CR)(sina2 - A) 
VR = 7—7 (5-8) 

1 + CR 
and the stage efficiency as 

2A(1 + CR + yrTCR")(sina2 - A) 
% s = m m = ( I + CN)(I + CR) ( 5-9 ) 

By making use of Eqs. (5.3) and (5.4) this can also be written as 

rfcB = 2A4(1 + cR)(sina2 - A) (5.10) 

The blade speed at which the stage efficiency reaches its maximum value is obtained by 
differentiating this with respect to A and setting the result to zero. This gives 

^ = 2 4 ( l + C R ) ( s ina 2 -2A) = 0 
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Figure 5.3 Efficiency of a single-stage impulse turbine: ideal and actual with CN 
CR = 0.940, and a2 = 70°. 

0.979, 

and the maximum efficiency is obtained when the speed ratio is 

U 1 . 
A 

Vo sm «2 

This equation is independent of the velocity coefficients. For typical nozzle angles, in the 
range from 65° to 75°, the speed ratio A = U/V2 is about 0.47, so that the blade speed at 
this optimum condition is about one-half of the exit velocity from the nozzles. The turbine 
efficiency at this value of U/V2 is 

1 
^tSop (1 + cR) sin2 a2 

so that for CN = 0.979, CR = 0.940, and a2 = 70°, the stage efficiency at the optimal 
condition is r/tSopt = 0.821. Figure 5.3 shows the stage efficiency for these parameters and 
for an ideal case, with CN = 1 and CR = 1. 

EXAMPLE 5.2 

Steam leaves the nozzles of a single-stage impulse turbine at the speed 900 m/s. 
Even though the blades are not equiangular, the blade speed is set at the optimum for 
equiangular blades when the nozzles are at the angle 68°. The velocity coefficient of 
the nozzles is CN = 0.97, and for the rotor blades it is CR = 0.95. The absolute value 
of the relative flow angle at the exit of the rotor is 3° greater than the corresponding 
inlet flow angle. Find (a) the total-to-static efficiency, and (b) find again the total-to-
static efficiency of the turbine, assuming that it operates at the same conditions, but 
has equiangular blades. If one efficiency is higher than the other, explain the reason; 
if they are the same, give an explanation for this as well. 
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Solution: (a) With the optimum operating blade speed determined from 

1 1 
U = -V2sma2 = -900sin(68°) =417.2 m/s 

the velocity components at the exit from the nozzles are 

Vx2 = V2cosa2 = 900cos(68°) = 337.2 m/s 

Vu2 = y 2 s ina 2 = 900sin(68°) = 834.5 m/s 

the velocity components of the relative velocity are 

Wx2 = Vx2 = 337.2 m/s Wu2 = Vu2 - U = 834.5 - 417.2 = 417.3 m/s 

The magnitude of the relative velocity is 

w2 = \JW12 + Wl2 = \/337.22 + 417.32 = 536.4 m/s 

The angle at which the relative velocity enters the rotor row is 

*—-(£0='»-1 (^)-51«-
and the exit angle is f33 = —51.06° — 3° = —54.06°, and the magnitude of the 
relative velocity is W3 = CRW2 — 0.95 • 536.4 = 509.6 m/s. Work delivered by the 
rotor is 

w = U(Wu2 - Wu3) = U{1 + cRC)W2 sin/32 

in which C — sin \/3s\/ sin /32 = 1.041 and CR = 0.95. Therefore the work delivered 
is w = 346.23 kJ/kg. Since the exit kinetic energy is wasted, its value is needed. 
The exit velocity components are 

Vx3 = Wx3 = W3 cos /?3 = 509.6 cos(-54.06°) = 299.1 m/s 

Vu3 = W3sin(33 + U = 509.6 sin(-54.06°) +417.2 = 4.6 m/s 

Hence 
v3 = \]vx3 + K23 = \ /299.12+4.62 = 299.1 m/s 

In the calculation of rotor efficiency the rotor loss coefficient is (R = 1/c2^ — 1 = 
0.208, so that 

= 2w = 2-346,230 = 

VR 2w + V3
2 + (RW3

2 2 -346,230 + 299.12 • 0.1026 • 509.62 

and since T/N = c2^ = 0.972 = 0.941 the total-to-static efficiency becomes 

Vts = ??N??R = 0.941 • 0.855 = 0.805 

(b) If the blades were equiangular and the turbine were to operate at its optimal 
condition, the total-to-static efficiency would be 

Its = 2 C N ( ! + CR) sin2 a2 = 0.789 
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The loss of efficiency for equiangular blades is caused by the exit kinetic energy now 
being larger than before. When the blades are not equiangular, even when the turbine 
is not operated at its optimum blade speed, it has a high efficiency because the exit 
velocity is nearly axial and the turbine has a high utilization. For equiangular blades 
the exit flow angle is slightly larger and therefore the flow is faster, with more of the 
kinetic energy leaving the stage. 

5.2.2 Pressure compounding 

The optimum blade speed for a single stage impulse turbine is about one half the exit 
velocity from the nozzles. Such a high blade speed requires a high shaft speed, which may 
lead to large blade stresses. To reduce the shaft speed, two or more single-stage impulse 
turbines are arranged in series and the steam is then expanded partially in each of the set of 
nozzles. This decreases the velocity from the nozzles and thus the blade speed for optimal 
performance. This arrangement, shown in Figure 5.4, is called pressure compounding, or 
Rateau staging, after Auguste Camille Edmond Rateau (1863-1930) of France. Between 
any two rotors there is a nozzle row. The pressure drop takes place in the nozzles and none 
across the rotor. As the steam expands, its specific volume increases and a larger flow area 
is needed in order to keep the increase in velocity moderate. One approach is to keep the 
mean radius of the wheel constant and to increase the blade height. When this is done the 
blade speed at the mean radius remains the same for all stages and the velocities leaving 
and entering a stage can be made equal. Such a stage is called a repeating stage, or a 
normal stage. 

Pressure across stages 

V 

Absolute velocity across stages 

Figure 5.4 Sketch of a multistage pressure-compounded impulse turbine and the pressure drop and 
velocity variation across each stage. 
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Consider a multistage pressure-compounded impulse turbine with repeating stages. 
Unlike in the single-stage turbine, the flow now enters the second set of nozzles at a 
velocity close to the exit velocity from the preceding stage, and the function of the nozzle is 
to increase it further. The process lines are shown in Figure 5.5. The stagnation states 03, 

Figure 5.5 The process lines for a pressure-compounded impulse stage. 

03s, and 03ss are reached from the static states 3, 3s, and 3ss, which are on the constant 
pressure line p3. As was discussed earlier, it does not necessarily follow that the states 03s 
and 03ss are on the constant-pressure line po3 since the magnitudes of the velocities V3S 
and V3ss in 

ho3s — h3s + -V3s h03ss = h3ss + -V3ss 

are not known. However, a consistent theory can be developed if it is assumed that the 
stagnation states 03s and 03ss are on the constant pressure line p$3 and their thermodynamic 
states are then fixed by the known value of pressure and entropy. The previous equations 
then fix the magnitudes of V3s and V3SS to definite values. 

With this assumption the Gibbs equation 

Tds = dh — vdp ds dT dp 
c» — — ft— 

p T p 
when integrated between states 03s and 03 and then between states 03ss and 03s along the 
constant pressure line po3 and similarly along the corresponding states along the constant 
pressure line p3 give 

s2 - si cDln TQ3S 

TQ3SS 

and 
S2 - s i = cp In 

t 3 s 

If 

s3- s2 = cp 

s3 - s 2 

In Tp3 

TQ3S 

,ln-
3ss t 3 s 
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from which 
— = ^~ and ^ - = ^~ (5.11) 
J03s J-3s -L03ss J 3 s s 

and from these it follows that 

7*03 _ TQ3S _ Tp3ss 

T3 T3s T3ss 

Expressing these temperature ratios in terms of Mach numbers yields 

-*3 ^ J 3 s * J 3ss ^ 

so that M 3 = M 3 s = M 3 s s . 
The stage efficiency for a pressure-compounded stage is the total-to-total efficiency 

hoi — hos 
%t = T T 

flOl — ft03ss 

which can be recast into the form 

1 1 _ hos — / l03 s s _ hp3 ~ hp3s + hp3s — hp3ss 

Vtt hoi — /l03 ^01 — ^03 

Subtracting one from each side of both Eqs. (5.11), multiplying by cp, and rearranging 
gives 

ho3 — ho3s = ~7^—(^3 — h3s) ho3s ~ ho3ss = Tf, (^3s — h3ss) 
J-3s 13ss 

Substituting these into Eq. (5.13) leads to 

1 777—(«3 -h3a) + — — { h 3 s - h 3 s s ) 
1 = - ^ ^ (5.14) 

or, since the temperature ratios are the same, according to Eqs. (5.12), this expression for 
efficiency becomes 

1 (1 + 1-^M\ ) (h3 - h3s + h2- h2s) 
— - 1 = ^ '- (5.15) 
m w 

The Mach number at the exit of the rotor is quite low and is often set to zero. It is, of 
course, easily determined once the work and exit velocity have been calculated. Then 

w V? V3 
T03 = T 0 i - - T 3 = T 0 3 - - ^ and M 3 cP 2cp y/^RT3 

Ignoring the Mach number and introducing the static enthalpy loss coefficients gives 

J_ _! = c*wl±ML (5.16) 
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The relationship W% = c^W2 may be substituted into this, giving 

r?tt 2w 
or 

_ 2w 
^ " — 7 2~fj7—, /■ ir2 , o (5-17) 

2 

The relative velocity W2 can be written as 

Wl = Vf - 2V2Usina2 + U2 

so that 
1 x = CR4(^2 2 ~ 2V2Usma2 + £/2) + CN^2 

vu 2w 
The work delivered by the stage is 
w = U(Vu2 - V03) = U(Wu2 - Wu3) = £7(1 + cR)Wu2 = [7(1 + cR)(y2sirm2 - U) 

Substituting A = U/V2 into the previous expression for the stage efficiency, it takes the 
form 

J _ _ 1 = C R 4 ( 1 - 2 A s m Q 2 + A2) + CN 
??tt 2A(1+ cR)(sina2 - A) 

Defining the quantity /L as 

A2 - 2Asina2 + 1 + CN(1 + CR)/CR 
/L = 2(1 + CR + v/rTC^/CR)(Asin a2 - A2) 

in which the relation cR = 1/V'l + CR has been used, the stage efficiency can now be 
written as 

from which it is clear that /L is a measure of the losses. The maximum value for the effi-
ciency of a pressure-compounded stage is obtained by minimizing / L . Thus differentiating 
it with respect to A and setting the result to zero gives 

2 2(CR + CN(1 + C R ) ) , , CR + CN(1 + CR) _ n A : A^ — U 
CRSina2 CR 

Of the two roots 

_ u _ CR + CN(I + CR) + V (CR + CN(I + CR))(CR + CN(I + CR) + CRSIH2 a2) 

V2 CR sin a2 

is the correct one, as the second root leads to U/V2 ratio greater than unity. This would 
mean that the wheel moves faster than the approaching steam. The stage efficiency now 
can be written as 

= 2A(l + c R ) ( s i n a 2 - A ) 
Vu 2 A ( l + c R ) ( s i n a 2 - A ) + CRCR(A2-2Asina2 + l) + CN 

The stage efficiencies for various nozzle angles are shown in Figure 5.6 for both a pressure-
compounded stage and for a single-stage impulse turbine with exit kinetic energy wasted. 
The efficiency curves for the pressure-compounded stage are quite flat at the top and 
naturally higher as the exit kinetic energy is used at the inlet of the next stage. 
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Figure 5.6 Stage efficiencies of single stage impulse turbines with nozzle angles in the range from 
60° to 78° with (N = 0.02 and £R = 0.14; the exit kinetic energy is wasted for the set of graphs with 
lower efficiency, and the family of graphs of higher efficiency are total-to-total efficiencies applicable 
to a pressure-compounded turbine stage. 

5.2.3 Blade shapes 

Some details of the construction of impulse blades are considered next. The equiangular 
blades are shown in the sketch Figure 5.7. The concave side of the blade is circular, drawn 
with its center a distance ccot /?2/2 below the midchord point. Here c is the length of the 
chord and the radius of the circular arc is given by 

2 sin ^ 2 

To establish the geometric dimensions of the blade, a line segment of length equal to the 
interblade spacing is marked off from the center along the line of symmetry. This point 
becomes the center of the circular arc of the concave side of blade j . The convex side 
of the blade i consists of a circular arc that is drawn from the same origin and its extent 
is such that a straight-line segment in the direction of the blade angle meets the exit at a 
location that gives the correct spacing to the blades; that is, the radius of the arc is chosen 
such that this line segment is tangent to the arc at point a. This point is chosen at the 
location of the intersection of a perpendicular from the trailing edge of blade j to this line 
segment. The blade at the inlet is made quite sharp, and at the outlet the blade may also 
have a straight segment extending past the conventional exit plane. In a multistage turbine 
the extent of the straight segment controls the spacing between the exit of the rotor and the 
inlet to the next set of nozzles. These nozzles are usually designed to have an axial entry. 
If the turbine operates at design the conditions and the absolute velocity at the exit is axial, 
then the steam flows smoothly into these nozzles. At off-design conditions, the flow angle 
at the entry will not match the metal angle of the nozzles, leading to increased losses in 
the nozzles, particularly for blades with sharp edges. In order to improve steam turbine's 
operation at a fractional flow rate, absolute values of the flow angles, at both inlet and exit, 
are made larger by 2° or 3° and in a multistage turbine for the blades next to the last stage 
this may be 4° or 5°. For the last stage the, range from 5° to 10° is used [46]. 
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Impulse blading is designed to ensure equal pressures at the inlet and exit of the rotor. 
However, owing to irrereversibilities, temperature increases across the rotor, and this causes 
the specific volume to increase. Since mass flow rate is constant, mass balance gives 

A2W2 cos /32 ^3 W3 cos j33 
m — = 

in which Vx2 = W2cosji2 and Vx3 = W3cos(53 have been used. Since f33 = —/32 and 
W3 < W2, then with v3 > v2, the flow area has to be increased. This is done by increasing 
the height of the blade. However, it is also possible to alter the exit angle as was mentioned 
above. 

Figure 5.7 Equiangular bucket blade shape. (Modified from Kearton [46].) 

For blades that are not equiangular the absolute value of the outlet blade angle in most 
impulse turbines is larger than the inlet angle. For them the radius of the concave surface 
of the blade is given by 

R =
 c 

sin/32 +sin|/33 | 
The offset between the leading and trailing edges in this case is 

x = R(cosP2 — cos \P3\) 

With |/33| = /?2 + 3° the bisector of the blade profile will lean to the right, as shown in 
Figure 5.8. The channel width at the exit is given by d = b (s cos \{33\ — t), in which t is 
the trailing edge blade thickness. For a flow with mass flow rate m and specific volume ^3 
mass balance gives 

mv3 = W3Zb(scos \(33\-t) (5.19) 

in which Z is the number of blades in the rotor. For a given spacing of the blades, their 
thickness and number, and for a specified mass flow rate and exit specific volume, this 
equations shows that only two of the three parameters: blade height b, relative velocity 
W3, and flow angle \/33\, may be chosen independently. If it is possible to accommodate 
the increase in specific volume in the downstream direction by an increase in the blade 
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height, then this equation shows that increasing |/?3| decreases the channel width d, and 
this leads to an increase in the relative velocity W3. Equation (5.1) then shows that since 
the trothalpy is constant, the static enthalpy decreases. A drop in static enthalpy along the 
flow is associated with a drop of pressure, as process lines on a Mollier diagram show. The 

Figure 5.8 Bucket construction details for unequal blade angles. (Modified from Kearton [46].) 

acceleration of the flow increases the force on the blade, for by the momentum principle 

Fu = m(Vu2 - Vu3) = m{Wu2 - Wu3) 

and since Wu3 is negative, an increase in its magnitude increases the force component Fu. 
It has become conventional to call this additional force a reaction force in analogy to the 
thrust force given to a rocket being a reaction to the exit momentum leaving the rocket 
nozzle. Reaction turbines are discussed more fully in the next chapter. 

5.2.4 Velocity compounding 

A second way of compounding a turbine was developed by the American Charles Gordon 
Curtis (1860-1953). In his design steam first enters an impulse stage, and as it leaves this 
stage, it enters a stator row of equiangular vanes. They redirect it to the second rotor row 
of equiangular blades, but of course with a different magnitude for their angles than in the 
first row. All the pressure drop takes place in the upstream nozzles, and thus no further 
reduction of pressure takes place as the steam moves through the downstream stages. There 
are practical reasons for not fitting the turbine by more than four stages. Namely, work 
done by later stages drops rapidly. In this kind of Curtis staging, velocity is said to be 
compounded from one stage to the next. 
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Consider an n-stage Curtis turbine with equal velocity coefficients cv for each blade 
row. Analysis of the first stage is the same as for a single-stage impulse turbine. Work 
delivered is 

wln = U(Vu2 - Vu3) = U{Wu2 - Wu3) 
As was shown above for equiangular blades, Wu3 = —cvWU2, and work delivered by the 
first stage may be written as 

Win = U{\ + Cv)Wu2 

In the same way work delivered by the second and third stages are 

w2n = U{l + cv)Wu4 

and 
w3n = [7(1 + cv)Wu6 

If the relative velocity Wui is related to Wu2 and WUQ is related to Wui, work from each 
stage can be expressed in terms of Wu2. With VU4 = —cvVu3 for equiangular stator blades, 
WU4 can be written as 

Wui = Vu4-U = -cvVu3 -U = -cv(Wu3 + U)-U = -cv(-cvWu2 + U)-U 

in which Wu3 = —cvWu2 has been used. Hence the final result is 

Wu4 = c2
vWu2 - (1 + cv)U 

Similarly 
Wu6 - c2

vWu4 - (1 + cv)U 
Substituting Wu4 from the previous expression into this gives 

wu6 = 4 w u 2 - ( i + cv)(i + ̂ )[/ 
Work delivered by each of the three rotors is then 

Win = U(l +Cv)(V2SillQ;2 - U) 

w2n = U{l+cv)cl(V2sma2 - U) - (1 + cv)(l + cv)U2 

w3n = U{1 + cv)c4
v(V2sma2 -U)-(l + cv)(l + cv + cl + c3

v)U2 

Work delivered by the next stage is easily shown to be 

win = U(\ + cv)cl(V2 sina2 - U) - (1 + cv)(l + cv + c2
w + cl + c\ + cl)U2 

Inspection of these shows that work delivered by the nth stage is4 

2n -2 

wnn = U{\ + cv)c2
v
n-2(V2sma2 -U)-(l + cv) Y, < " 1 [ / 2 

1=1 

which can also be written as 

wnn = U(l + cv)c2
v
n-2(V2sma2-U)-(^^](l-c2,n-2)U2 (5.20) 

4That this conjecture is true can be shown by first proving by mathematical induction the three term recurrence 
relationship Wi+2,n — (1 + Cv)wi+i,n + Cvwi,n = 0 between the stages and solving this difference equation. 
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Optimum operating conditions are now developed for turbines with different numbers 
of wheels. Work delivered by the single wheel of single-stage turbine is given by 

wi = U{\ + cv)(V2sina2 -U) 

and the optimum blade speed was shown in the beginning of this chapter to be 

U 1 
- = - 8 1 n a 2 

At the optimum speed work from a single-stage turbine is 

1 + Cv ,r2 ■ 2 
w\ = —-—V2 sin a.2 

and if cv = 1, this is 
w\ — -V22sin2a2 

Work delivered by a two-wheel Curtis turbine is, u>2 = w\2 + w22, or 

w2 = U{1 + cv)(l + cv)(V2 sina2 - U) - (1 + cv)(l + cv)U2 

and when this is differentiated with respect to U and the result is set to zero, the optimum 
blade speed is found to be 

U _ (1 + c2,)sina2 

V2 ~ 2(2 + cv + 4 ) 
For cv = 1 this reduces to 

U 1 
— = - sin a2 V2 4 

Hence a two-wheel Curtis turbine can be operated at about one-half the shaft speed of a 
single-stage impulse turbine. At the optimum speed, work delivered by a two-wheel turbine 
is as follows: 

(l + c v ) ( l + c 2 ) 2
T / 2 ^ 2 

4(2 + cv + c?) 
For Cv = 1 this reduces to 

w 2 = A/n — 9X K2 sin a 2 

w2 = -F 2
2 s in 2 a 2 

which is exactly the same as in a single-stage turbine. For a three-wheel Curtis turbine 
work delivered is w^ = W13 + W23 + W33, and the expression for the work, when written 
in full, is 

w3 = C/(l+cv)(l+cv+cv)(y2sina2 - f /)-( l+cv)( l+cv+c2+cv)C/2-( l+cv)( l+cv)f /2 

Differentiating this to determine the value of blade speed for which work is maximum gives 

U_ _ (1 + c 2 + c v ) sin q2 

V2 ~ 2[(1 + cv + 4) + (1 + cv + cv + cv) + (1 + cv)] 

and for cv = 1 this reduces to 
U 1 
— = - sin a2 V2 6 
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and the work delivered at this speed is 

(i + Cv)(i + 4 + 4)2
 T,2, 

4(3 + 2cv + 2c2, + 4 + 4) 
w3 = .,„ , „_ , „_o^ .3 , . ^ 2 sin a2 

Finally, the optimum blade speed for a four-wheel turbine is 

U (1 + 4 + 4+cl)sma2 

v2 2[(i+4+4+4)+(i+Cv+4+4+4+4)+{i+cv+4+4)+(i+cv)} 
and work delivered at this speed is 

(i + cv)(i + c ; + 4 + ^ ) 2
 ir2 . 2 

WA = — -+ ^ - — Vnsin a2 

4{4 + 3cv+ 34+ 24+ 24 + 4 + 4) 
Although velocity compounding with four wheels have been built in the past, they are no 
longer in use. 

If Cv = 1 for a two wheel turbine the ratio of the work done is 3:1 between the 
first and second stage. If further stages are included, the work ratios become 5 :3 :1 and 
7 : 5 : 3 : 1 for three and four stage turbines respectively, and the optimum blade speeds 
drop to U = sin a2^2/6 and U = sin 0:2^2/8. As has been shown, addition of successive 
stages does not increase the amount of work delivered by the turbine in the ideal case, and 
its advantage lies entirely in the reduction of the shaft speed. When irreversibilites are 
taken into account turbines with multiple stages deliver less work than does a single-stage 
impulse turbine. 

■ EXAMPLE 5.3 

Consider a velocity-compounded two-stage steam turbine. The velocity at the inlet 
to the nozzle is axial and it leaves the nozzle with speed V2 = 850 m/s at angle 
a.2 = 67°. The blade speed is U — 195.6 m/s. The velocity coefficient for the 
nozzle is CN = 0.967 and for the rotors they are CRI = 0.939 and CR2 = 0.971. 
For the stator between the rotors it is cs = 0.954. The rotors and the stator are 
equiangular. Find the efficiency of the turbine. 

Solution: The axial and tangential velocity components are 

Vx2 = V2 cosa2 = 850cos(67°) = 332.1 m/s 

Vu2 = y 2 s ina 2 = 850sin(67°) = 782.4 m/s 

The relative velocity components are Wx2 = Vx2 = 332.1 m/s and 

Wu2 = Vu2 - U = 782.4 - 195.6 = 586.8 m/s 

so that 
W2 = yJW%2 + Wl2 = \ /332.12+586.82 = 674.3 m/s 

and the flow angle becomes 
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The flow angle of the relative velocity leaving the first rotor is /33 = —60.49°, and 
its relative velocity is 

W3 = cR1W2 = 0.939 • 674.3 = 633.2 m/s 

so that its components are 

Wx3 = W3cos/?3 = 633.2 cos(-60.49°) = 311.9 m/s 

Wu3 = W3smP3 = 633.2 sin(-60.49°) = -551.0 m/s 

The axial component of the absolute velocity entering the stator is Vx3 = Wx3 = 
311.9 m/s, and its tangential component is 

Vu3 = Wu3 + U = -551.0 + 195.6 = -355.4 m/s 

Therefore 

^3 = \JVX3 + Kf3 = V3H.92 + 355.42 = 472.9m/s 

and the flow angle is 

— - '(£) = -- '(=S) — 
The flow angle leaving the stator is a4 = —a3 = 48.74° and the magnitude of the 
velocity is 

V4 = csV3 = 0.954 • 472.9 = 451.1 m/s 

The components are 

Vx4 = V4cosa4 = 451.1 cos(48.74°) = 297.5 m/s 

Vu4 = V4 sin a4 = 451.1 sin(48.74°) = 339.1 m/s 
The axial component of the relative velocity is Wx4 = Vx4 = 297.5 m/s, and its 
tangential component is 

Wu4 = Vu4-U = 339.1 - 195.6 = 143.5 m/s 

so that 
W4 = y/wgi + W%4 = V297.52 + 143.52 = 330.3 m/s 

and the flow angle is 

/ ^ t a n - f ^ U t a n - f ^ = 25.75° 
\wx4) V 297.5; 

At the inlet of the second rotor relative velocity is at the angle/35 = — /34 = —25.75°, 
and its relative velocity is 

W5 = cR2W4 = 0.971 • 330.3 = 320.7 m/s 

so that its components are 

Wx5 = W5cosP5 = 320.7 cos(-25.75°) = 288.9 m/s 
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Wu5 = W5smP5 = 320.7 sin(-25.75°) = -139.3 m/s 

The axial component of the absolute velocity leaving the second rotor is Vx5 = 
WX5 = 288.89 m/s, and its tangential component is 

Vu5 = Wu5 + U = -139.3 + 195.6 = 56.3 m/s 

For the exit velocity, this gives the value 

V5 = ̂ V^3 + V*3 = \/288.92 + 56.32 = 294.3 m/s 

and the flow angle is 

„5=,.»-(^)^m-(|g)^l.»3= 
Work delivered by the two stages are 

Wl2 = U{Vu2 - Vu3) = 195.6(782.4 + 355.4) = 222.6 kJ/kg 

w22 = U{Vui - Vu5) = 195.6(339.1 - 56.3) = 55.3kJ/kg 

so the total work is 

w2 = Wl2 + w22 = 222.6 + 55.3 = 277.9 kJ/kg 

If all the velocity coefficients had been equal to cv = 0.96, the work would have been 

w* = i J r ^ i r ^ 8 i i i 2
a 2 = 285.4 kj/kg 

4(2 + cv + c$) 

The total-to-total efficiency is 
1 1 = VJ + C R 2 ^ I + CsKt2 + CmWj + CN^2

2 

With 

i " ! = n.̂ 5 " J = O-0 6 9 4 & = ̂  * 1 
CN = 4 - 1 = ^ ^ " 1 = ° - 0 6 9 4 C s = = I ~ 1 = r I ^ - 1 = 0-0988 

and 
1 1 . 1 

3" 
^R2 

the reciprocal of efficiency is 

C M =sr 1 = o ^ - 1 = 0-1341 ^ ^ - ^ o ^ - ^ 0 - 0 6 0 6 

1 _ 294.32+0.0606-320.72+0.0988-451.12+0.1341-633.22+0.0694-8502 

^ ~ + 2 ■ 277, 890 

= 1.390 

so that r?tt = 0.719. 
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5.3 STAGE WITH ZERO REACTION 

A stage design that is closely related to the impulse stage is one with zero reaction. As 
Eq. (4.18) shows, for such a stage W3 = W2> and since trothalpy does not change across 
the rotor, neither does the static enthalpy. If the axial velocity is constant, then the blades 
need to be equiangular with (33 = —(32- The processes lines are shown in Figure 5.9. If the 

Stator 

Figure 5.9 Process lines for a turbine with 0% reaction. 

exit kinetic energy is wasted, the stage efficiency is the total-to-static efficiency: 

This is now rewritten in the form 

*oi h 03 

hm 

1 
Tits 

1 
ft-03 ~ hzs \V3 + h3- h3ss 

h 
which can be recast further as 

I T / 2 1 
7?ts 

1 
2 ^ 3 + ^ 3 

'01 

'3s 

h 03 

<-3s 

h 01 h, 03 

h3ss V3
2 + CnWi + C N ^ 

2w hoi — hos 

The work delivered by the stage is 

w = U{Vu2 - K3) = U(Wu2 - Wu3) = 2UWu2 = 2U(V2sina2 - U) 

As before, the component equations for velocities are 

W3 cos /J3 = V3 cos a3 W3 sin P3 + U = V3 sin a2 

and squaring and adding them gives 

Vf = Wl + 2UW3 sin /33 + U2 
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Since W3 = W2 and 03 = —02, this can be written as 

Vi = W | - 2UW2 sin 02 + U2 

Similarly 
W2 cos 02 — V2 cos a.2 W2 sin 02 = V2 sin o-i — U 

which when squared and added give 

Wf = Vf - 2UV2 sin a2 + U2 

When these are included in the expression for efficiency, it takes the form 

1 _ V2
2 - WV2 sin a2 + 4E/2 + CR(^2

2 - 2UV2 sin a2 + £/2) + CN ̂ 2 
%s ~ W(y2sma-U) 

This can be written as 

rhM = T+K 
in which, after the substitution \ = U/V2 has been made, /L is given by 

1 - 4 A s i n a 2 + 4A2 + CR(l - 2 A s i n a 2 + A2) + CN 
/L 4A(sina — A) 

The maximum efficiency is obtained by minimizing the loss /]> Thus differentiating / L 
with respect to A and setting it to zero yields 

A 2 _ 2 ( 1 + CR + CN) A 1 + CR + CN = Q 

CR sin a2 CR 

and the maximum efficiency is at the speed ratio 

_ 1 + CR + CN - V (1 + CR + CN)(1 + CR + CN - CR sin2 a2) 
CR sin a2 

The efficiency may be written as 

4A(sina2 — A) 
%s 

l + CR(A2-2Asina2 + l)+CN 

These results are shown as the lower set of curves in Figure 5.10. The efficiencies of a 
zero reaction stage for various nozzle angles are slightly lower than those for the pressure-
compounded impulse stage shown in Figure 5.6. The graphs for a 0% repeating stage 
are also shown. Both are denoted by r)s, which is to interpreted appropriately, either as 
repeating stage, or as single stage with kinetic energy wasted. 

The efficiency of a repeating stage is obtained from 

4A(sina2 — A) 
f?tt -

(CR - 4) A2 + (4 - 2CR) A sin a2 + CR + CN 

with maxima at speed ratios 

CR + Cs - v (CR + CN)(CR + CS - CR sin a2) 
A = CR sin a2 

These are left to be worked out as an exercise. 
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Figure 5.10 Stage efficiencies of single-stage and pressure-compounded zero-reaction turbines 
with nozzle angles in the range from 60° to 78° with CN = 0.02 and £R = 0.14; the exit kinetic 
energy is wasted for the set of graphs with lower efficiency, and the family of graphs of higher 
efficiency are total-to-total efficiencies applicable to a pressure-compounded turbine stage. 

5.4 LOSS COEFFICIENTS 

A simple correlation for the loss coefficients was developed by Soderberg [72]. In the 
definition 

h-h3 = \cv2 

V replaced by V2 for the stator and by W3 for the rotor. The loss coefficients are calculated 
from 

C = 0.04 +0.06 ( ^ 

in which e is the amount of turning of the flow. For the nozzles the amount of turning is 
£N = &2 — o?3, and for the rotor it is £TR = fa ~~ fa- In both expressions the angles are in 
degrees. Soderberg's correlation is based on steam turbine designs, which commonly have 
axial entry into the nozzles, but it gives good results for the flow through the rotor as well, 
for the loss appears to depend mainly on the deflection of the flow. 

■ EXAMPLE 5.4 

Steam enters the nozzles of single-stage impulse turbine axially and leaves from the 
nozzles with speed V2 — 555 m / s at angle 0.-2 — 74°. The blade speed is U = 
260 m / s . The exit flow angle of the relative velocity from the rotor is fa = —65°. 
What is the efficiency of the stage if the exit kinetic energy is wasted? 

Solution: The tangential and axial velocities at the exit of the nozzles are 

VU2 = V2 sin a2 = 555 • sin(74°) = 533.5 m / s 

Vx2 = V2 cosa2 = 555 • cos(74°) = 153.0m/s 

The components of the relative velocity at this location are 

Wu2 = Vu2-U = 533.5 - 260 = 273.5 m / s Wx2 = Vx2 = 153.0 m / s 

u/v 
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Hence 
W2 = \JW12 + W^2 = V153.02 + 273.52 = 313.4 m/s 

and the flow angle of the relative velocity is 

The amount of turning by the nozzles and by the rotor blades are 

eN = a2 - ax = 74° eR = fo ~ Ps = 60.78° + 65° = 125.78° 

The static enthalpy loss coefficients are 

74 \ 2 „ „ „ _ , _ „ „ „ / 1 2 5 . 7 8 x 2 

CN = 0.04 + 0.06 I — I = 0.07286 CR = 0.04 + 0.06 I - ^ - 1 = 0.1349 

and the velocity coefficients are therefore 

cN = ; = 0.9654 cR = , = 0.9387 

At the exit of the rotor the relative velocity has the magnitude 

W3 = cRW2 = 0.9387 • 313.4 = 294.2 m/s 

and its components are 

Wu3 = W3sin/33 = 294.2 sin(-65°) = -266.6 m/s 

Wx3 = W3cos/33 = 294.2 cos(-65°) = 124.3 m/s 
The components of the absolute velocity at the exit are 

Vu3 = U + Wu3 = 260 - 266.6 = -6.6 m/s Vx3 = Wx3 = 124.5 m/s 

Hence 
v3 = \jyx3 + K23 = V124.32 + 6.62 = 124.5 m/s 

and the flow angle is 

— "■ -(£)-"■- ' ( i l H M ° 
The work delivered by the turbine is 

w = U(Vu2 - Vu3) = 260(533.5 + 6.60) = 140,430 J/kg 

The nozzle efficiency is 

m = 4 = 0.96542 = 0.9321 

and the rotor efficiency is 
_ 2w _ 2-140,426 

VR ~ 2w + V£ + (nW$ ~ 2 • 140,426 + 124.52 + 0.1349 • 294.22 ~~ °" 

The turbine efficiency is therefore 

Vts = mVR = 0-9321 • 0.9118 = 0.850 
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EXERCISES 

5.1 Steam leaves the nozzles of a de Laval turbine with the velocity V2 = 1000 m/s. The 
flow angle from the nozzle is «2 = 70°. The blade velocity is U = 360 m/s, and the mass 
flow rate is 800kg/h. Take the rotor velocity coefficient to be CR = 0.8. The rotor blade 
is equiangular. Draw the velocity diagrams and determine (a) the flow angle of the relative 
velocity at the rotor, (b) the relative velocity of the steam entering the blade row, (c) the 
tangential force on the blades, (d) the axial thrust on the blades, (e) the power developed, 
and (e) the rotor efficiency. 

5.2 The diameter of a wheel of a single-stage impulse turbine is 1060 mm and shaft 
speed, 3000 rpm. The nozzle angle is 72°, and the ratio of the blade speed to the speed at 
which steam issues from the nozzles is 0.42. The ratio of the relative velocity leaving the 
blades is 0.84 of that entering the blades. The outlet flow angle of the relative velocity is 3° 
more than the inlet flow angle. The mass flow rate of steam is 7.23 kg/s. Draw the velocity 
diagram for the blades and determine (a) the axial thrust on the blades, (b) the tangential 
force on the blades, (c) power developed by the blade row, and (d) rotor efficiency. 

5.3 The wheel diameter of a single-stage impulse steam turbine is 400 mm, and the shaft 
speed is 3000 rpm. The steam issues from nozzles at velocity 275 m/s at the nozzle angle 
of 70°. The rotor blades are equiangular, and friction reduces the relative velocity as the 
steam flows through the blade row to 0.86 times the entering velocity. Find the power 
developed by the wheel when the axial thrust is Fx = 120 N. 

5.4 Steam issues from the nozzles of a single-stage impulse turbine with the velocity 
400 m/s. The nozzle angle is at 74°. The absolute velocity at the exit is 94 m/s, and its 
direction is —8.2°. Assuming that the blades are equiangular, find (a) the power developed 
by the blade row when the steam flow rate is 7.3 kg/s and (b) the rate of irreversible energy 
conversion per kilogram of steam flowing through the rotor. 

5.5 Carry out the steps in the development of the expression for ratio of the optimum 
blade speed to the steam velocity for a single-stage impulse turbine with equiangular blades. 
Note that this expression is independent of the velocity coefficient. Carry out the algebra 
to obtain the expression for the rotor efficiency at this condition, (a) Find the numerical 
value for the velocity ratio when the nozzle angle is 76°. (b) Find the rotor efficiency at this 
condition, assuming that CR = 0.9. (c) Find the flow angle of the relative velocity entering 
the blades at the optimum condition. 

5.6 Steam flows from a set of nozzles of a single-stage impulse turbine at a2 = 78° with 
the velocity V2 = 305 m/s. The blade speed is U = 146 m/s. The outlet flow angle of the 
relative velocity is 3° greater than its inlet angle, and the velocity coefficient is CR = 0.84. 
The nozzle velocity coefficient is CN = 1. The power delivered by the wheel is 1000 kW. 
Draw the velocity diagrams at the inlet and outlet of the blades. Calculate the mass flow 
rate of steam. 

5.7 Steam flows from a set of nozzles of a single-stage impulse turbine at an angle 
a2 = 70°. (a). Find the maximum total-to-static efficiency given velocity coefficients 
CR = 0.83 and CN = 0.98. (b) If the rotor efficiency is 90% of its maximum value, what 
are the possible outlet flow angles for the relative velocity. 

5.8 The nozzles of a single-stage impulse turbine have a wall thickness t = 0.3 cm and 
height b — 15 cm. The mean diameter of the wheel is 1160 mm and the nozzle angle is 
«2 = 72°. The number of nozzles in a ring is 72. The specific volume of steam at the exit 
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of the nozzles is 15.3 m3/kg and the velocity there is V2 = 366 m/s. (a) Find the mass flow 
rate of steam through the steam nozzle ring, (b) Find the power developed by the blades 
for an impulse wheel of equiangular blades, given that the velocity coefficient is CR = 0.86 
and CN = 1.0. The shaft turns at 3000 rpm. 

5.9 The isentropic static enthalpy change across a stage of a single-stage impulse turbine 
is Ahs = 22 kJ/kg. The nozzle exit angle is a2 = 74°. The mean diameter of the wheel 
is 148 cm and the shaft turns at 1500 rpm. The blades are equiangular with a velocity 
coefficient of CR = 0.87. The nozzle velocity coefficient is CN = 0.98. (a) Find the steam 
velocity at the exit from the nozzles, (b) Find the flow angles of the relative velocity at the 
inlet and exit of the wheel, (c) Find the overall efficiency of the stage. 

5.10 An impulse turbine has a nozzle angle a2 = 72° and steam velocity V2 = 244 m/s. 
The velocity coefficient for the rotor blades is CR = 0.85, and the nozzle efficiency is 
?7N = 0.92. The output power generated by the wheel is W = 562 kW when the mass flow 
rate is m = 23 kg/s. Find the total-to-static efficiency of the turbine. 

5.11 A two-row velocity-compounded impulse wheel is part of a steam turbine with 
many other stages. The steam velocity from the nozzles is V2 = 580 m/s, and the mean 
speed of the blades is U = 116 m/s. The flow angle leaving the nozzle is a2 = 74°, and 
the flow angle of the relative velocity leaving the first set of rotor blades is fa = —72°. The 
absolute velocity of the flow as it leaves the stator vanes between the two rotors is Q4 = 68°, 
and the outlet angle of the relative velocity leaving the second rotor is $5 = —54°. The 
steam flow rate is m = 2.4 kg/s. The velocity coefficient is cv = 0.84 for both the stator 
and the rotor row. (a) Find the axial thrust from each wheel, (b) Find the tangential thrust 
from each wheel, (c) Find the total-to-static efficiency of the rotors defined as the work out 
divided by the kinetic energy available from the nozzles. 

5.12 A velocity-compounded impulse wheel has two rows of moving blades with a mean 
diameter of D = 72 cm. The shaft rotates at 3000 rpm. Steam issues from the nozzles 
at angle a2 = 74° with velocity V2 = 555 m/s. The mass flow rate is m = 5.1 kg/s. 
The energy loss through each of the moving blades is 24% of the kinetic energy entering 
the blades, based on the relative velocity. Steam leaves the first set of moving blades at 
03 = —72° the guide vanes between the rows at 0:4 = 68° and the second set of moving 
blades at /3s = —52°. (a) Draw the velocity diagrams and find the flow angles at the blade 
inlets both for absolute and relative velocities, (b) Find the power developed by each row 
of blades, (c) Find the rotor efficiency as a whole. 

5.13 Steam flows from the nozzles of a 0% repeating stage at an angle a2 = 69° and 
speed V2 = 450 m/s and enters the rotor with blade speed moving at U = 200 m/s. Find 
(a) its efficiency when the loss coefficients are calculated from Soderberg's correlation and 
(b) the work delivered by the stage. 

5.14 For a repeating stage the efficiency of a 0% reaction, by neglecting the temperature 
factors show that the approximate form of the total-to-total efficiency is 

4A(sin a2 — A) 
VU = (CR - 4)A2 + (4 - 2CR)A sin a2 + CR + CN 

and its maximum values is at the condition A = U/V2 given by 

CR + Cs - y (CR + CN)(CR + Cs - CR sin2 a2) 
CR sin a2 



CHAPTER 6 

AXIAL TURBINES 

In the previous chapter the impulse stages of steam turbines were analyzed. This chapter 
extends the development of axial turbine theory to reaction turbines. These include gas 
turbines and all except the leading stages of steam turbines. The extent of the global steam 
turbine industry was mentioned in the last chapter. Gas turbine industry is even larger, 
owing to the use of gas turbine in a jet engine. Gas turbines are also used for electric 
power generation in central station power plants. In addition, they drive the large pipeline 
compressors that transmit natural gas across continents and provide power on oil-drilling 
platforms. 

The chapter begins with the development of the working equations for the reaction 
stages. These relate the flow angles of the absolute and relative velocities to the degree of 
reaction, flow coefficient, and the blade-loading coefficient. Three-dimensional aspects of 
the flow are considered next. Then semiempirical theories are introduced to calculate the 
static enthalpy rise caused by internal heating, which is then used to develop an expression 
for the stage efficiency. After this the equations used to calculate the stagnation pressure 
losses across the stator and the rotor are developed. 

6.1 INTRODUCTION 

Two adjacent blades of an axial reaction turbine are shown in Figure 6.1. Their spacing 
along the periphery of the disk is called the pitch. The pitch increases in the radial direction 
from the hub of the rotor to its casing. The nominal value of the pitch is at the mean radius. 

Principles of Turbomachinery. By Seppo A. Korpela 165 
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The lateral boundaries of the flow channel are along the pressure and suction sides of the 
blades and the endwalls along the hub and the casing. 

The flow is from front to back in Figure 6.1. The blade chord is the straight distance 
from the leading edge of the blade to its trailing edge. Its projection in the axial direction 
is the axial chord. The path of a fluid particle, as it passes through the blade passage, is 
curved and thus longer than the chord. 

Figure 6.1 Flow channel between two adjacent turbine blades. 

The annular region formed from the blade passage areas is called the flow annulus. The 
annulus area is calculated as 

A = 2irrm(rc - rh) = Tr{r% - rl) 

if the mean radius rm is taken as the arithmetic average 

1 / 

of the casing radius rc and the hub radius rh. The blade height, or span, is b = rc — r^ and 
2irrm = Zs, in which Z is the number of blades and s is the mean pitch or spacing of the 
blades. Therefore the annulus area is also A = Zsb. 

An alternative is to define a mean radius such that the flow area from it to the hub and 
to the casing are equal. This definition leads to the equality 

A?™ - rl) = ir(rl - f2
m) 

which, when solved for fm, gives 

r^+rl 
2 rm = 



TURBINE STAGE ANALYSIS 167 

In using this RMS value of the radius, the annulus area is clearly 

A = 7r(rc
2 - rl) = 2n(f2

m - r2
h) = 27r(rc

2 - f2J 

The distance between the tip of the rotor blade and the casing is called a tip clearance. This 
is kept small in order to prevent tip leakage flow in the rotor. Because the tip clearance is 
small, in the discussion that follows the distinction between the casing radius and tip radius 
is usually ignored. The stator blades, as shown in Figure 6.2, are fixed to the casing, and 
their tips are near the hub of the rotor blades. In many designs, their tips are fastened to a 
diaphragm that extends inward. At the end of the diaphragm a labyrinth seal separates it 
from the rotating shaft. The seal prevents the leakage flow that is caused by the pressure 
difference across the stator. Since the seal is located close to the shaft, the flow area for the 
possible leakage flow is small. 

S R 

Seal 

-P -k-i 
Figure 6.2 A stage of an axial turbine. 

Axial turbines are commonly designed such that the axial velocity remains constant, or 
nearly so. Therefore as the gas expands through the turbine the annulus area must increase 
from stage to stage. This flaring of the annulus is accomplished by changing the hub radius, 
the casing radius, or both. If both are changed the mean radius can be kept constant. 

6.2 TURBINE STAGE ANALYSIS 

Consider a turbine stage as shown schematically in Figure 6.3. It consists of a stator 
followed by a rotor. As in the previous chapter on steam turbines, the inlet to the stage is 
station 1 and the outlet from the stator is station 2, which is is also the inlet to the rotor. The 
outlet from the rotor, and hence the stage, is station 3. For a normal stage in a multistage 
machine the magnitude and direction of the velocity at the outlet of the rotor are the same 
as those at the inlet to the stator. Pressure, temperature, and density naturally change from 
stage to stage. 

Work delivered by a turbine stage is given by the Euler equation for turbomachinery 

w = U(Vu2 - Vu3) = U(Wu2 - Wu3) (6.1) 
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Figure 6.3 Velocity triangles for a turbine stage. 

For the situation shown in Figure 6.3, the inlet flow angle of the absolute velocity is negative 
as the flow enters the stator. For the rotor a deflection is the difference in the swirl velocities 
Vu2 — VU3 = Wu2 — Wus. It is also measured by the amount of turning, (32 — 03. The 
amount of turning across the stator is given by a2 — &\- Clearly, if a stage is to deliver 
a large amount of the work, for a given blade velocity, turning across the rotor must be 
large. A typical value is 70°, and it rarely exceeds 90°. A large deflection also means that 
the average pressure difference between the pressure and suction sides of a blade must be 
large. Such blades are said to be heavily loaded. 

In order to achieve a large amount of turning in the rotor, the stator must also turn the 
flow, but in the opposite direction. The velocity diagrams in Figure 6.3 show that, as the 
stator deflects the flow toward the direction of rotation, the stream velocity increases. Since 
the stagnation enthalpy remains constant across the stator, it follows that 

h1 + \v? = h2 + \v? hl-h2=
l-{vi-v?) 

and the increase in kinetic energy leads to a drop in the static enthalpy. This expression 
may be written as 

(ui - u2)+piv1 - p2v2 = - {V2
2 - i f ) 

It shows that the increase in kinetic energy comes from conversion of internal energy and 
from the difference in the flow work done in pushing the fluid into and out of the flow 
passage. This may also be written in a differential form. By considering station 2 to be an 
arbitrary location, and differentiating, yields 

_du _ d{pv) _ ldV^ _ dV 
~~dl d£~ ~ 2~dT ~ ~di 

in which d£ is an element of length along the flow path. This shows that a drop in the 
internal energy increases the kinetic energy of the flow, as does the net pv work term in 
this small section of the channel. That both terms have the same sign is clear for an ideal 
gas, for then du = cv dT and d{pv) = RdT and since internal energy drops in the flow 
direction, so does temperature and pv. The ratio of these contributions is 

du = 1 
d(pv) 7 — 1 

with the numerical value corresponding to 7 = | . Thus the conversion of internal energy 
contributes more to the increase in kinetic energy than the flow work. 
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As the gas passes through the rotor, it is directed back toward the axis, reducing its 
kinetic energy. The work delivered by the stage is given by 

w = h02- h03 = h2-h3 + - (V% - V£) (6.2) 

With the reaction defined as the static enthalpy drop across the rotor divided by the static 
enthalpy drop across the stage, for positive stage reaction h2 > h3. An exception to this is 
an expansion at constant pressure in impulse blades. Equation (6.2) may be written as 

w = u2-u3 + p2v2 - p3v3 + - (V2 - V32) (6.3) 

and, since each term is expected to be positive, each contributes to the work delivered by 
the turbine. This is illustrated in the following example. 

■ EXAMPLE 6.1 

Consider the flow of combustion gases, with 7 = | and R = 287 J/(kg • K), through 
a normal turbine stage such that the flow angle at the exit of the rotor is the same 
as that entering the stator, and a\ = a3 = —14.4°. The inlet total temperature is 
T0i = 1200 K. The axial velocity is constant Vx = 280 m/s. The flow leaves the 
stator at angle a2 = 57.7°. The mean radius of the rotor is r = 17 cm, and the rotor 
turns at 20,000 rpm. (a) Find the work done and the drop in stagnation temperature 
across the stage, (b) Determine the flow angles of the relative velocity at the inlet 
and exit of the rotor, (c) Calculate the contribution of internal energy and flow work 
in increasing the kinetic energy through the stator. (d) Calculate the contributions of 
internal energy, flow work, and kinetic energy to work delivered by the stage. 

Solution: (a,b) The specific heats at constant pressure and volume for the gas are 

iR 
cp = -!—- =4 ■ 287= 1148 J/(kg • K) cv=cp-R= 1148-287 = 861 J/(kg • K) 

7 - 1 

The blade velocity is 

„ 0.17-20,000-TT „ „ „ . 
U = rQ = -^ = 356.0m/s 

OK) 

The tangential component and the magnitude of the absolute velocity leaving the 
stator are 

Vu2 = y x t a n a 2 = 280tan(57.7°) = 442.9m/s 

V2 = -y/v;2 + Vl2 = A/280 2 + 442.92 = 524.0 m/s 

The tangential component and the flow angle of the relative velocity at the rotor exit 
are 

Wu2 = Vu2 - U = 442.9 - 356.0 = 86.9 m/s 

At the exit of the rotor for a normal stage a 3 = a\ and the velocities are 

Vu3 = K t a n a 3 = 280tan(-14.4°) = -71.9 m/s 
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V3 = yJV* + V*3 = \/2802 + 71.92 = 289.1 m/s 

The tangential component and the flow angle of the relative velocity there are 

Wu3 = Vu3 - U = -71.9 - 356.0 = -427.9 m/s 

A = tan"1 ( ^ ) = t a n - (=*™) = -56.8° \WXJ \ 280 ) 
Work delivered by the turbine is 

w = U(Vu2 - Vu3) = 356.0 (442.9 + 71.9) = 183.3 kJ/kg 

and the stagnation temperature drop across the rotor is 

AT0 = ^ = ^ = 159.7K 
cp 1.148 

(c) At the inlet to the stator the static temperature is given by 

V? 289.12 

7\ = T01 - -±- = 1200 - = 1200 - 36.4 = 1163.6 K 

At the exit of the stator the static temperature is 

V? 524.02 

T2 = T02 - -Z- = 1200 - = 1200 - 119.6 = 1080.4 K 

so that 

ul-u2= cv{Tx - T2) = 0.861 (1163.6 - 1080.4) = 71.6kJ/kg 

and 

Pivi -p2v2 = R(TX - T 2 ) = 0.287(1163.6 - 1080.4) = 23.9kJ/kg 

Increase in the kinetic energy across the stator is 

\ (V2
2 ~ V,2) = i(524.02 - 289.12) = 95.5kJ/kg 

which also equals the sum of the previous two terms. 
(d) Since the stagnation temperature drop across the rotor is ATQ — 159.7 K, the 
stagnation temperature after the rotor is 

Tos = T02 - AT0 = 1200 - 159.7 = 1040.3 K 

and 

V? „ 289.12 
(3 — J03 

Up 

T3=TQ3 5_ = 1040.3 - """' = 1040.3 - 36.4 = 1003.9K 
2cD 2-1148 

The contributions to work are 

u2-u3 = cv(T2 - T3) = 0.861 (1080.4 - 1003.9) = 65.8kJ/kg 
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and 

P2V2 ~ P3V3 = R(T2 - T3) = 0.287 (1080.4 - 1003.9) = 21.9kJ/kg 

In a normal stage the increase in kinetic energy across the stator is equal to its decrease 
across the rotor. Hence the decrease in kinetic energy across the rotor is 

- {V2 ~ V%) = T;(524.02 - 289.12) = 95.5kJ/kg 

The sums of internal energy changes and pv work, and the change in kinetic energy 
across the rotor, add up to the work delivered by the stage. 

6.3 FLOW AND LOADING COEFFICIENTS AND REACTION RATIO 

The work delivered by a stage is given by 

w = U(Vu2 - Vu3) = U(Wu2 - Wu3) 

which, if Vx = Wx is constant across the stage, may be written as 

w = UVx(ta.na2 — tanas) = UVx(ta,n (32 — tan f33) (6.4) 

Let 4> = Vx/U denote a flow coefficient and ijj = w/U2 a blade-loading coefficient. 
Then, dividing both sides of this equation by U2 gives the Euler turbine equation in a 
nondimensional form as 

ip = 0( tana2 — tana 3 ) (6.5) 

Other names for the blade-loading coefficient are work coefficient and loading factor. In 
addition to tp and <f>, a third nondimensional quantity of importance in the theory is the 
reaction ratio R, introduced previously. It was defined as the ratio of the static enthalpy 
change across the rotor to that across the entire stage. Hence 

h2-h3 hi - h3- (hi - h2) hx - h2 

hi - h3 hi- h3 hi - h3 

Reaction naturally falls into the range 0 < R < 1, but it was seen to be slightly negative 
for a pure impulse stage. This equation shows that the reaction is zero, if the entire static 
enthalpy drop takes place in the stator. 

Recalling that the total enthalpy of the relative motion, given by Eq. (4.13), remains 
constant across a rotor in an axial stage, it follows that 

h2 + \w2 = h3+l-W2 

or 
h2-h3=l- (W2 - W2) 

Hence, if W2 = W3 the reaction is zero. Across the stator the stagnation enthalpy is 
constant so that 

hi-h2 = \ (V2 - V2) 
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The value of V\ is smallest for an axial entry, and this equation shows that the static enthalpy 
drop across the stator increases and reaction decreases for increasing V2. In addition, a 
large deflection of the flow across the stator leads to a large V2. 

It is useful also to think of R in the incompressible limit, for then in an isentropic flow 
across the stator internal energy remains constant and in the pv work only the pressure 
changes. Thus pressure changes are directly proportional to changes in static enthalpy. 
Hence in this limit a large reaction means a small pressure drop across the stator and a large 
decrease in pressure across the rotor. 

The reaction may be related to the flow angles by noting first that Vy = V£i + V^i and 
V2

2 = Vx
2
2 + V%2- Then, for constant axial velocity Vx\ = Vx2, and the change in enthalpy 

across the stator may be written as 

hl-h2 = i(K2
2 - O = ^ , 2 ( t a n 2 a2 - tan2

 Ql) 

For a normal stage V\ = V3, and therefore h\ — h3 = ft-01 — h03. With w — hoi — ho3, 
Eq. (6.6) for the reaction may be written as 

R=l 

or as 

V£ (tan2 oi2 — tan2 a3) 
~2 ^C/2 

A2 
,2 „.. + „ „ 2 . R = 1 - j— (tan2 a2 - tan2 a3) (6.7) 

zip 
Substituting xp from Eq. (6.5) into this gives 

R = 1 — -0( tan«2 + tan«3) (6.8) 

Next a2 is eliminated, again using Eq.( 6.5), and the important result 

ip = 2(l- R-<pt&na3) (6.9) 

is obtained. It shows that a decreasing R increases the loading. A small R means that 
the pressure drop across the rotor is small, but the large loading is the result of a large 
deflection. In the stator the flow leaves at high speed at large angle a2. The high kinetic 
energy obtained this way becomes available for doing work on the rotor blades. The flow 
is then deflected back toward the axis and beyond to a negative value of a3, so that the last 
term in this equation is positive. Hence, for R fixed, an increase in the absolute value of 
a3, obtained by increasing it in the direction opposite to U, leads to a large deflection and 
a large value for the blade-loading factor ip. Thus a fairly low value of R and high turning 
gives heavily loaded blades and a compact design. 

Equations (6.5) and (6.8), written as 

tp tanc*2 — t a n a 3 = — (6.10) 

tan « 2 + t a n 0:3 = — (6.11) 

when solved for the unknown angles, give 

l-R-ip/2 l-R + ip/2 ^ , „ s 
t a n a 3 = tana2 = (6.12) 
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Experienced turbomachinery designers choose the flow and loading coefficients and the 
degree of reaction at the outset and then determine the flow angles from these equations. 
These are true only for a normal stage. If the axial velocity does not remain constant, the 
proper equations need to be redeveloped from the fundamental concepts. 

Similar expressions are next developed for the flow angles of the relative velocity. The 
Euler turbine equation may be written as 

w = U(Wu2 - Wu3) = UVx{tanP2 - tan ft) 

which after dividing through by U2 gives 

ip = </>(tanft - t a n ft) (6.13) 

To arrive at the second equation relating the relative flow angles to the nondimensional 
parameters, the reaction ratio 

h2 - h3 

hi - h3 

is converted into an appropriate form. Since the stagnation enthalpy of the relative motion 
is constant across the rotor, the relation 

k2-h3 = ±wi-±w2 

follows. Then, since Wx2 = Wx3, the term on the right may be rewritten in the form 

h2-h3 = \{W2
3 + W2

3 - W2
2 - W2

2) = \{W2
u3 - W2

2) = ^ Vx
2(tan2 ft - tan2 ft) 

In addition, for a normal stage, h\ — h3 = hoi — ho3 = w = U2ip. When this and the 
previous equation are substituted into the definition of reaction ratio, it becomes 

V2 (tan2 ft - tan2 ft) cf>2
 2 2 

R=T—im— or R=^(tan h"tan N 

Substituting tp from Eq. (6.13) into this gives 

R = — — (tan ft + tan ft 

This and Eq. (6.13) written as 

t a n f t - t a n f t = — (6.14) 
o p 

t a n f t + t a n f t = (6.15) 

when solved for the flow angles of the relative velocity, give 

t anf t = - ^ t anf t = - ^ (6.16) 

The flow angles may now be determined if the value of the parameters <f>, tb, and R are 
specified. With four equations and seven variables, any three may be specified and the 
other four calculated from them. One such calculation is illustrated in the next example. 
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EXAMPLE 6.2 

Combustion gases with 7 = | andcp = 1148 J/(kg-K) flow through an axial turbine 
stage with <f> = 0.80 as the design value for the flow coefficient and ip — 1.7 for 
the blade-loading coefficient. The stage is normal with flow into the stator at angle 
a\ = —21.2°. The absolute velocity of the gases leaving the stator is V2 = 463 m/s. 
The inlet stagnation temperature is T0\ = 1200 K, and the total-to-total efficiency is 
0.89. (a) Find the flow angles for a normal stage, and the amount of turning by the 
stator and the rotor, (b) Calculate the work delivered by the stage, and the drop in the 
stagnation temperature, (c) Determine the static pressure ratio across the stage. 

Solution: (a) With a 3 = a\, solving 

ip = 2(1 - R-<pta,na3) 

for R gives 

R=l- -^ - 4>t&na3 = 1 - 0.85 - 0.8tan(-21.2°) = 0.46 

The remaining flow angles are 

t a n a 2 = — — ^ - ^ = 1.737 a2 = 60.08° 

tan/3 3 = ~ ( f i + ^ / 2 ) = - 1 , 6 3 8 fa = -58.59° 
<P 

t a n f e = ~ ( f i ~ ^ / 2 ) =o ,4 8 7 /32 = 25.97° 

The amounts of turning by the stator and the rotor are 

a2-a3 = 81.27° /32 - /33 = 84.57° 

(b) The axial velocity is 

Vx = V2cosa2 = 463cos(60.08°) = 231.0 m/s 

and the blade speed is 

<p 0.8 ' 

Hence the work done may be calculated from 

w = xbU2 = 1.7 • 288.72 = 141.7kJ/kg 

and the drop in stagnation temperature is 

AT0 = ^ = H ^ = 123.4K 
cp 1.148 

The isentropic work is obtained by dividing the work w by the stage efficiency, which 
is the total-to-total efficiency, 

w 141.7 
??tt 0.89 
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(c) The static temperature at the inlet is 

V? 247 82 

T1=T01
 L = 1200 — = 1173.3 K 

2cp 2-1148 

Neither the static nor the stagnation pressure is known at the inlet, but their ratio can 
be calculated from 

Poi \ToiJ V 1200 

The stagnation temperature at the exit of the stage comes out to be 

w 141.7 
T03 = T01 - - = 1200 - — - = 1076.6 K 

cp 1.148 
The exit velocity from the stage is 

Va = ^ = f3l
01° = 2 4 7 . 8 m / s 

cosa3 cos(-21.2°) ' 

and therefore the static temperature at the exit is 

V? 247.82 

T3 = T03 - -^ = 1094.7 - — — = 1049.8 K 
2cp 1148 

This can be used to calculate the ratio of static to stagnation pressure at the exit: 

«..raY'h",,.r^?Y=o.8o« 
P03 \T03J V1 0 7 6 - 5 / 

The stagnation temperature at the isentropic end state is determined to be 

T03s = T01 - — = 1200 - i ^ | = 1061.3 K 
cp 1.1148 

and the stagnation pressure ratio across the stage is therefore 

Poi {TotV^-V / 1 2 0 0 ^ 4 

= 1.635 P03 \To3sJ V 1061.3, 

The ratio of static pressures across the stage can now be determined: 

Pi Pi Poi Pos 0.9138 ■ 1.635 
P3 Poi P03 P3 0.9043 1.652 

The representative values for an axial turbine stage ip = 1.7, <p = 0.8 and R = 0.46 
give these values for the stagnation and static pressure ratios and the amount of 
turning comes out to be about 80°- 85°. In addition, the stagnation pressure drop of 
ATQ = 123.4 K is representative for a stage. 
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6.3.1 Fifty percent (50%) stage 

A 50% reaction stage has equal static enthalpy drops across the stator and the rotor. For 
such a stage, Eq. (6.9) reduces to 

ip = 1 — 2<p t an «3 (6.17) 

The blades and velocity triangles are shown in Figure 6.4. To achieve a high efficiency, 
the flow angle at the inlet is kept only slightly negative, but if some of the efficiency is 
sacrificed to achieve higher performance, the inlet flow angle may reach a\ = —45°. For 
such a stage, a flow coefficient may have a value of </> = 0.75, which then gives ip = 2.5. 
Gas turbines for aircraft are designed for high performance and low weight. Hence the 
number of stages is kept as low as possible and materials that withstand high stresses are 
used for the turbine blades. 

V = 

Stator 

Turbine stage 

W2IU 

Figure 6.4 Blading for a 50% reaction turbine. 

For a 50% reaction stage Eqs. (6.12) and (6.16) for absolute and relative flow angles 
reduce to 

tanof3 

and 
tan/?3 

From these it is seen that 

l - V 

20 

2(j> 

tan a3 — — tan p2 

tana2 

tan/32 

tanof2 

1 + V> 
2<j) 

l - V 

20~ 

— tan Pi With their absolute values less than 90°, these equations are satisfied if a3 

a2 = —03- Since Wx = Vx, it follows that 

(6.18) 

(6.19) 

(6.20) 

-/32 and 

wl = wl + wl, u3 = Vx + Wl t an 2 p3 

= V% + Vl t an 2 a2 = V? + V*2 = V2
2 

By a similar argument it can be shown that W% = V3
2. Hence 

w3 = v2 w2 = v3 
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A combined velocity diagram is shown also in Figure 6.4. It is constructed by drawing the 
inlet and exit velocity diagrams with a common side of distance U. If all velocities are 
then divided by U, the diagram is normalized with a right side of length unity. The blade-
loading coefficient ip can be identified as the vertical distance between the left vertices of 
the two triangles. For a constant axial velocity, widths of the triangles are the same and 
in a normalized diagram equal to the flow coefficient 0. The results for the angles and 
velocities show that the velocity triangles for 50% reaction stage are symmetric. 

■ EXAMPLE 6.3 

Combustion gases, with 7 = | andR = 287 kJ/(kg-K), flow through a 50% reaction 
stage of an axial turbine, that has a total-to-total efficiency r]u = 0.91 and design 
flow coefficient 0 = 0.80. The flow into the stator is at an angle ct\ = —14.0°, 
and the axial velocity is Vx = 240 m/s and constant across the stage. The inlet 
stagnation temperature is Toi — 1200 K. (a) Find the flow angles for a normal 
stage, and the amount of turning by the stator and the rotor, (b) Find the work 
delivered by the stage and the drop in the stagnation temperature, (c) Show that 
1/^ts = 1/^tt + (p2/2tp cos2 a3 and calculate the total-to-static efficiency. 

Solution: (a) The blade-loading coefficient is 

rp = l - 2<£ tan o<3 = 1 - 2 • 0.8tan(-14.0°)) = 1.40 

The remaining flow angles are 

1-ip 
t ana 2 = » *= 1-50 so that a2 = 56.3° 

20 
and 

fa = - a 2 = -56.3° fa = -a3 = 14.0° 

The amount turning by the stator and rotor are 

a2-a3 = 70.3° fa - fa = 70.3° 

(b) The blade speed is 

TT V* 2 4 0 Qnnn / U = — = —- = 300.0 m/s 
0 0.8 ' 

Hence the work delivered may be calculated from 

w = <0£/2 = 1.40 ■ 300.02 = 125.9 kJ/kg 

and the drop in stagnation temperature becomes ATo = w/cp = 109.7 K, since 
cp = 1148 J/(kg • K). The isentropic work is 

t«. = ^ = ^ = 138.4kJ/kg 
r)tt 0.91 

(c) The total-to-static efficiency is obtained from 

hoi ~ h03 h0i ~ h03 w 
»7ts hoi - h3s hoi - h03s + Vl/2 ws + V3

2J2 
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Assuming that Vzs = V3 so that 

1 ws + V^2/2cos2a3 _ 1 

w %t 

1 0.82 

0.91 2-1.40 cos2(-14°) 

The total-to-static efficiency is therefore 77ts = 0.745. 

2lp COS2a3 

= 1.342 

6.3.2 Zero percent (0%) reaction stage 

Consider a stage for which R = 0. Equation (6.16) then shows that 

tan /33 = - tan j32 or / 3 3 — —f52 

Assuming that the axial velocity constant, it follows from these that W2 = W3. If the flow 
angles were to be equal to the blade angles, then the blade would have a symmetric bucket 
shape, as shown in Figure 6.5. With low reaction the blades are heavily loaded. This stage 

Figure 6.5 Blades for a 0% reaction stage. 

reaction and the impulse stage were discussed in Chapter 5 for steam turbines, and the 
differences between them were shown to be slight. Since the flow enters the nozzles from a 
steam chest, the inlet to the nozzles is naturally axial, and if most of the pressure drop takes 
place across the nozzles, the stage reaction is close to zero. Here the 0% reaction stage is 
considered as a special case of a stage with an arbitrary reaction. 

The normalized velocity diagram for a stage with a3 = 0 is shown on the right hand 
side (RHS) of Figure 6.5. For a normal stage with axial entry and with R — 0, the relation 

ip = 2(1 -_R + 0 t a n a 3 ) 

reduces to ip = 2. Thus the line indicating the blade loading is twice as long as blade speed 
line. 
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EXAMPLE 6.4 

A normal stage with R = 0 operates with axial entry. The nozzle turns the flow by 
64°. (a) Find the flow coefficient, (b) What is the discharge velocity from the nozzles, 
if the axial velocity is Vx = 240 m/s? (c) Calculate the work delivered by the stage 
and the drop in the stagnation temperature, given gases with cp = 1148 J / ( k g • K). 

Solution: (a) From 
V> = 2(1 - R-(j)ta,nai) 

a stage with R = 0 and axial entry has tp — 2. Next, solving 

1 + ^ / 2 tanct2 = ; 
<P 

for 4>, gives 
0 = 2 c o t a 2 = 2cot(64°) = 0.9755 

(b) The discharge velocity is 

T/ V* 240 
V2 = = -. r = 547.5 m/s 

cosc*2 cos (64°) 
(c) The blade speed is 

[ / = K = _ ? 4 0 _ = 2 4 6 . 0 m / s 
6 0.9755 ' 

and the work delivered and the drop in the stagnation temperature are 

w = ij)U2 = 121.1 k J / k g AT 0 = — = ^ | = 105.5 K 

6.3.3 Off-design operation 

When a turbine is operated away from its design conditions, the incidence of the flow 
entering the blades changes, and this will increase the thermodynamic losses in the flow. 
The angle at which the flow leaves the stator tends not to change, however; nor does the 
angle of the relative velocity leaving the rotor. By recasting the Euler turbine equation 

w = U(Vu2 - Vu3) 

in terms of the exit angles gives an equation that shows how the turbine performs under 
off-design conditions. Replacing the exit velocity by 

vu3 = u + wu3 

gives 
w = U{~U - Wu3 + Vu2) = -U2 + UVx(tana2 - tan/33) 

Dividing though by U2 yields 

iP = - 1 + 0 ( t a n a 2 - t a n / 3 3 ) (6.21) 
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The departure angle from the stator a2 is positive, and the exit angle of the relative velocity 
/?3 from the rotor is usually negative. Therefore the term in parentheses is positive. As 
these angles are close to the metal angles that are set by the design, they are fixed and the 
trigonometric terms in Eq. (6.21) tend to remain constant when the machine is operated 
away from its design condition. Thus Eq. (6.21) represents an operating line through the 
design point. 

Figure 6.6b shows this operating line. As the flow rate is increased beyond its design 
value, the flow will eventually choke, and the flow coefficient no longer increases. In Figure 
6.6a the velocity triangles illustrate how the incidence changes as the flow rate decreases. 
The design condition is denoted by subscript d and off-design, by o. With the exit flow 
angles held constant, the value of tb + 1 drops in proportion to a drop in <f>, and as the sketch 
shows, both «3 and f32 decrease in absolute value as the flow coefficient is reduced. This 
means that incidence of the flow to the vanes and blades decreases. Although the improper 
incidence leads to larger losses, these can be reduced by making the leading edges of the 
blades and vanes well rounded. 

Figure 6.6 Off-design performance comparison. 

■ EXAMPLE 6.5 

In an axial turbine stage, flow leaves the stator at V2 = 350 m/s in the direction 
a2 — 60°. Its blade-loading coefficient is tp = 1.8 and flow coefficient is 4> — 0.7. 
Assuming that the axial velocity is reduced by 25 m/s from its design condition, find 
the percent reduction in the reaction. 

Solution: The axial velocity at the design condition is 

Vx = V2cosa2 = 350cos(60°) = 175 m/s 

and the reaction is 

R = 1 + j - - <j>t&na2 =.l + 0.9 - 0.7tan(60°) = 0.688 



THREE-DIMENSIONAL FLOW 1 8 1 

Hence the angle of the relative flow leaving the rotor is 
R + ^/2 0.688 + 0.9 

tan/33 = —!—= — = -2.2678 /33 = -66.2 
<p U. r 

Reduction of the axial velocity by 25 m/s gives V^n = 150 m/s, and with the blade 
speed constant the new value of flow coefficient is 

K = ^ * = ~ 0 . 7 = 0.6 
Vi 175 

Assuming that the flow angles a 2 and /33 remain constant, the new value for blade-
loading coefficient is 

Vn = " I + j(<P + 1) = " I + ^ ( 1 - 8 + 1) = 1.4 

A new value for reaction is then obtained from the equality 

+ R + ^/2 fln + ^n/2 
tan/33 = = 

<p 0n 
and it gives 

Hence the percent reduction for the reaction is (0.688 — 0.661)/0.688 = 0.039 or 
about 4% when the axial velocity is reduced by 14.3%. 

■ 
The values of the flow coefficients in the foregoing examples were chosen to be in their 
typical range 0.5 < <fi < 1.0 and the blade-loading coefficients were chosen to be in their 
range of 1.4 < ip < 2.2. The reaction turned out to be generally close to 0.5, except, 
of course, for the zero-reaction stage. The typical stagnation temperature drop across the 
rotor is 120 K - 1 5 0 K. 

6.4 THREE-DIMENSIONAL FLOW 

In the last stages of gas turbines, and certainly for steam turbines that exhaust to below 
atmospheric pressure, the blades are long in order to accommodate the large volumetric 
flow rate. Since the blade speed increases with radius, a simple approach is to construct 
velocity triangles at each element of the blade. As a consequence, the blade loading and 
reaction may vary considerably along the span of the blade. But this approach does not 
take into account the pressure variation properly. The aim of this section is to take into 
account the influence of the pressure increase from the hub to the casing in a flow with 
a swirl velocity and as a result also of the variation of the reaction and the blade loading 
along the span of long blades. 

6.5 RADIAL EQUILIBRIUM 

Consider a flow in which fluid particles move on cylindrical surfaces. Applying the 
momentum balance in the radial direction to the control volume shown in Figure 6.7 gives 

- 2 K s i n ( — ) pVudr =prd9 - (p + dp)(r + dr)d6 + 2 (p+ -dp) drsin ( — j 
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The left side represents the rate at which the radial component of momentum leaves the 
control volume and the right side is the net pressure force. Viscous terms have been 
neglected. Noting that sm(d9/2) « 0/2 for small dO, simplifying, and dropping higher-
order terms reduces this equation to 

I dp 
p dr 

V2 
= 0 (6.22) 

The first term represents the net pressure force on a fluid particle of unit mass. The second 
term is the centrifugal force. Since the second term is positive, the pressure gradient must 
increase in the radial direction so that the sum of the two terms vanishes. Therefore, if the 
flow has a swirl component, its pressure must increase from the hub to the casing. 

p+dp 

Figure 6.7 Radial equilibrium condition on a fluid element. 

If the radial velocity is small, the definition of stagnation enthalpy can be written as 

Differentiating gives 

h0 = h+1-(Vx
2 + V*) 

dh0 _ dh dVx_ dVu 

dr dr dr dr 
The Gibbs equation Tds = dh — dp/p can also be written as 

ds dh 1 dp 
dr dr p dr 

and substituting into this dh/dr from Eq. (6.24) and dp/dr from Eq. (6.22) gives 

dh0 ds T dVx Tr dVu V2 

dr dr dr dr r 

(6.23) 

(6.24) 

(6.25) 

which can be rewritten as 

dh o T— = y ^ + Y^L — (ry ) 
dr dr dr r dr 
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If neither HQ nor s varies with r, then the left side is zero and this equation reduces to 

dr r dr 

For a given the radial variation of Vu, the variation of the axial velocity with r can be 
determined by solving this equation. 

6.5.1 Free vortex flow 

Let the radial variation of the tangential velocity be given by rVu = K. Then the second 
term in Eq. (6.26) vanishes, and Vx is seen to be constant. The work done on the blades by 
the fluid passing through a streamtube at radial location r of the rotor is given by 

w = U(Vu2 - Ka) = fir(^ - ^ ) = n(K2 - K3) 
r r 

Since this is independent of r, the work done is the same at each radial location. The 
meanline analysis that has been used in the previous chapters is thus justified if the tangential 
velocity distribution follows Vu = K/r. 

The degree of reaction has been shown to be 

R= l - - 0 ( t a n a 2 + t a n a 3 ) = 1 - — (Vx t ana 2 + Vx t ana 3 ) = 1 - — {Vu2 + Vu3) 

or 

2Q,r2 

Hence the degree of reaction increases from the hub to the casing. The mass flow rate 
through the annulus is given by 

rh = 2irVx / pr dr 
Jrh 

since Vx is constant. The integration could be carried out were the density variation with 
the radial position known. It is found by noting first that a free vortex design leads to equal 
work done on each blade element, and therefore the stagnation temperature will remain 
uniform in the annulus. The loss of stagnation pressure takes place in the wake as the flow 
leaves a blade row. There is also a loss in the endwall boundary layers and in the tip region 
of the blades. Secondary flow losses are more evenly distributed across the annulus. To 
make analytical progress, it is assumed that entropy and thus also stagnation pressure are 
uniform across the flow channel. This can be achieved by good lateral mixing of the flow. 
Even if such mixing cannot be justified, if this assumption is made, the stagnation density 
is also uniform. Of course, irreversibilities still cause the stagnation pressure loss in the 
flow direction. The density ratio may be written as 

P_ = /TV'^-V = /^-y2/2c£y/(7-D = / _ _^2 x i / h -D 

Po \ToJ V To J V 2cpT0 

The velocity in this expression is seen to vary with radius according to 

v2 = v2 + v2 = v2 + v2 r-^ 
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Here r m is the mean radius, at which the tangential velocity is Vum. Defining y = r/rm, 
the mass balance can be converted to the form 

r 2 / ( l + K) / V2 V2 i \ 1/(7-1) 
v x urn 

*/(!+*) V 2CPTO ^cpT0y2
/ 

rh = 27rVxr2
mPo h _ _JE_ _ _»^_L ) y d y (6.27) 

J2K/(1 + K) V 

in which rc/rm = 2 / (1 + K) , rh/rm = 2 K / ( 1 + K ) , and K = r^/rc. This integral can be 
evaluated in closed form, at least for values of 7 for which 1/(7 — 1) is an integer. But, for 
example, if 7 = | , the result of the integration is sufficiently complicated, that it is better 
to proceed by numerical integration. 

Cohen et al. [15] use the mean radius as a reference value and express at the inlet to the 
rotor, the free vortex velocity distribution in the form 

r2mVu2m = r2Vu2 

which can be recast as 
r2mVx2 t a n a 2 m = r2Vx2 t an a2 

from which it follows that 
t a n a 2 = —— tana^m (6.28) 

T2 

Here r 2 denotes an arbitrary radial position at the inlet of the rotor. Similarly, at the exit 

t an a-i = —— tan a^m (6.29) 

The relative velocity at the inlet is Wu2 = VU2 — U, from which 

tan y02 = tan «2 
U 

or 

Similarly 

r2 1 tan /?2 = tan a2 — (6.30) 

tan /3 3 = t a n a 3 — (6.31) 
^3m03 

These equations are valid even if the axial velocity differs between the inlet and exit of the 
rotor. 

■ EXAMPLE 6.6 

Combustion gases with 7 = | and R = 287 J / ( k g • K) expand through a turbine 
stage. The inlet stagnation temperature is T0i = HOOK and the stagnation pressure 
is P01 = 420 kPa. The mean radius is r m = 0.17 cm, and it is constant across the 
stage. The turbine is flared so that the axial velocity remains constant. The hub-to-
casing radius is K2 = 0.7 at the inlet and K3 = 0.65 at exit of the rotor. The flow 
angles at the mean radius at the inlet are a2m = 60.08° and /3 2 m — 25.98°. At the 
exit the corresponding angles are a?,m = —21.20° and /?3m = —58.59°. The axial 
velocity is Vx = 231 m / s . (a) Plot the inlet and exit flow angles along the span of 
the blades, (b) Determine the reaction at the hub. (c) Calculate the mass flow rate 
using both numerical integration and the mean density. 
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Solution: (a) The reaction at the mean radius of this stage can be obtained by adding 
both parts of Eq. (6.16) together and doing the same for Eq. (6.12) and then dividing 
one by the other. This gives 

1 _ tan a2m + tan a3m 

Rm tan j32m + tan /33m 

Substituting the values of the angles gives Rm = 0.460. The flow coefficient is then 
obtained from 

4>m = * . R = 0-800 
tan a2 m - tan p2m 

and the blade-loading coefficient is 

■tp = 2(1 — Rm — 0 m tana3 m ) = 1.700 

The flow angles are next calculated using Eqs. (6.28) - 6.31. At the hub 

1 + K 9 1.7 
tan «2h = ~i—~ t a n a 2 m = -— tan(60.08°) =2.11 a2 h = 64.64° 

2K2 1.4 

tan/32h = i ± ^ t a n a 2 m - - ^ - \ = 1.08 /32h = 47.22° 
2K2 1 + re2 (f> 

At the casing 

t ana 2 c = + K2 t a n a 2 m = ~y tan(60.08°) = 1.48 a2c = 55.90° 

tan (32c = ^ - ^ tan a2m ~ —?— \ = 0.0064 /32c = 0.37° 
2 1 + K2 cp 

The exit angles are calculated similarly. They are 

a3h = -26.72° /33h =-55 .90° a3c = -17.74° /33c = -61.41° 

The variation in flow angles along the span is obtained from Eqs. (6.28) - (6.31), 
which, together with the blade shapes, are shown in Figure 6.8. 

(b) The reaction at the hub is 

Rh = 1 Y [ ~o J ( t a n a2m + t a n a?im> 

= 1 - ^ C^A (tan(60.08°) + tan(-21.2°)) = 0.204 

(c) The mass flow rate is calculated from Eq. (6.27). The stagnation density is 
Poi 420,000 3 

^ 1 = i ^ 1
= 2 8 7 T T l 0 0 = 1 - 3 3 0 k g / m 

With hub radius rh = 0.14 m, and casing radius, rc = 0.20 m, numerical integration 
gives 

m = 15.068 kg/s 
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Figure 6.8 Variation of flow angles along the span for a gas with 7 = 1.4. 

Cohen et al. [15] suggested that a very good approximation may be obtained by 
ignoring the density variation along the span and using its value at the mean radius. 
Since 

Kx2m = Vxtana2m = 231 tan(60.08°) = 401.40 m/s 

the mean temperature is 

T2m = T02 

Hence 

V2 + V\ x u2m = 1100 
2c„ 

2312+401.42 

2-1148 = 1006.6 K 

p2m — P02 
12m 

T< 02 

1/(7-1) 

- ( ^ ) * — " «/-■ 
The flow rate is then 

m = n(r2 - rl)p2mVx = 2irrm(rc - rh)p2myx 

= 2TT • 0.17 • 0.06 • 1.019 • 231 = 15.086 kg/s 

The approximation of using the density at the mean radius is seen to be excellent. 

6.5.2 Fixed blade angle 

A design with a free vortex tangential velocity distribution has the attractive feature that 
each blade element delivers the same amount of work and that the axial velocity remains 
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constant. On the other hand, the reaction varies quite strongly along the span of the blade. 
Other design possibilities exist. For example, if the nozzle angle is kept constant along 
the span, manufacturing cost of nozzles can be reduced. As the flow moves through the 
nozzles its stagnation enthalpy will not change, and, if the radial entropy gradients may be 
neglected, the equation for radial equilibrium 

dr dr dr dr r 

reduces to 
TrdVx Tr dVu V2

 n 
V - 4- V - -I — = 0 

dr dr r 
as before. This can also be written as 

dr l 2 x 2 " / r 

' X ' ' U Since VU = V sin a and V2 + V2 = V2 this becomes 

dV V2sin2a 

or 

If the angle a is constant, 

dr 

dV _ 
V 

integrating gives 

V{r) 
vm 

r 

- sin2 a 
dr 
r 

(T) 

0 

(6.32) 

In addition, Vu = V sin a and Vx = V cos a, so that for constant a 

sin2QT/ _ _ s i n 2 Q m T / 
' v u — ' m *um 

For nozzles the exit flow angle is quite large (often between 60° and 70°). Therefore sin2Qf2 
is in the range 0.75 - 0.88 and the velocity distribution is nearly the same as for a free 
vortex. The rotor blades may then be twisted properly to give the free vortex distribution 
at their exit. 

6.6 CONSTANT MASS FLUX 

It has been seen that, if the tangential velocity varies inversely with radius, axial velocity is 
independent of radius. Since the density varies also, Horlock [35] suggested that a designer 
might decide to hold the axial mass flux pVx constant. This requires the blade angle to vary 
in such a way that 

pVcos a = pm Vm cos am 

remains independent of radius. The flow angle in terms of the velocity and density ratios 
is therefore 

cos a Vmpm = - — — (6.33) cos am V p 
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From the definition of stagnation temperature 

7 - 1 , ^ _rr (, , 7 - 1 . ,2 T0 = T I 1 + ^-M'j = Tm I 1 + ^~M, 

the ratio of the static temperature to its value at the mean radius is 

T 2 + ( 7 - 1)M2 

It then follows that 

and 

Tm 2 + ( 7 - 1)M2 

p / 2 + ( 7 - l ) M ^ \ 1 / ( 7 " 1 ) 

p m V 2 + (7 - l)Af 

P 2 + (7^1)M2V/ ( 7-1 ) 

Pm V2 + ( 7 - l ) M 2 . 
The velocity ratio is obtained from the definition of Mach number: 

V _ M j~T _ M / 2 + ( 7 - l ) M , 2 x l / 2 

Vm Mm\Tm M m V 2 + ( 7 - l ) M 2 

The ratio of cosines of the flow angles can now be written as 

cos a Mm ( 2 + (7 - 1)M2 N ^ W ^ " 1 ) 
cosaTO M V2 + ( 7 - l ) M 2 , 

From the equation for radial equilibrium it follows that 

dV . 2 dr 2 dr 
—— — —sin a— = (cos a — 1) — 
V r r 

and by logarithmically differentiating Eq. (6.37) yields the equation 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

cos2 a-I)— (6.39) 
M2(2 + ( 7 - l ) M 2 v 'r 

Dividing through by cos2 a — 1 and integrating both sides gives 

[Mc 2dM rc 1 
I = JMh M(2 + (7 - l)M2)(cos2 a - 1) = l n r ^ = l n K ( 6 ' 4 0 ) 

so that 
K = e"1 

Since the highest Mach number is at the hub, the way to proceed is to set it at an acceptable 
value. This may be slightly supersonic. Then, if the flow angle and Mach number are 
known at the average radius, Eq. (6.38) can be used to find the value of a^. After that 
Eq. (6.38) is rewritten as 

cos a Mh ^2 + ( 7 - l ) M 2 V 7 + 1 ) / 2 ( 7 _ 1 ) 

— (6.41) cosah M \ 2 + ( 7 - l ) M ^ 
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and this is substituted for cos a in the integrand of Eq. (6.40). Finally, by trial, the value 
of Mc needs to be chosen so that the numerical integration gives the desired radius ratio K. 
For a flow at the exit of the nozzle the stagnation temperature is known, and with the mean 
Mach number known, the mean temperature Tm can be determined. After that, the other 
ratios are calculated from Eqs. (6.34) - (6.37). 

To obtain the radial locations that correspond to the calculated values of the thermody-
namic properties, Eq. (6.39) is written as 

2dM dr 
M(2 + ( 7 - l ) M 2 ) ( c o s 2 a - l ) 

(6.42) 

and this is solved numerically using a fine grid. 
Results from a sample calculation for M^ = 1.15 are shown in Figure 6.9. Panel (a) 

shows the variation of the thermodynamic variables, normalized with respect to their values 
at the mean radius. Since the flow resembles a free vortex type, the largest velocity is at 

(a) 

69° 

68° 

a 

67° 

66° 

65° 
0.2 0.4 0.6 0.8 

(r-rhV(rc-rh) 
0.2 0.4 0.6 0.8 1.0 

Figure 6.9 (a) Temperature, density, pressure, and velocity along the span for a gas with 7 
(b) flow angle leaving a nozzle as a function of the radial location. 

1.4; 

the hub. The temperature there has the smallest value, since the stagnation temperature 
is constant across the span. Hence the Mach number is largest at the hub and drops to a 
value Mc = 0.6985 at the casing for a flow with radius ratio K = 0.6. Four significant 
figures were used to make sure that K was also accurate to the same number of significant 
figures. Radial equilibrium theory shows that pressure increases from the hub to the casing 
in a flow with a swirl component of velocity. The density follows the ideal gas law and it 
increases from the hub to the casing. The flow angles are shown in Figure 6.9b. The value 
at the mean radius was set at am = 68° and its value at the hub happens to come out to 
be the same. At the casing the flow angle drops to ac = 66.18° and the entire variation is 
seen to be quite slight. 
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6.7 TURBINE EFFICIENCY AND LOSSES 

Three methods are in common use for the calculation of losses in axial turbines. The 
correlation by Soderberg was introduced in Chapter 5. The other two methods are based 
on the original work of Ainley and Mathieson [2] and the studies of Craig and Cox [16]. 
The former is discussed below; the latter is presented by Wilson and Korakianitis [81] in 
their text on gas turbines. In this section analytical results are developed that relate the 
stage efficiency to the flow parameters. They enable the calculation of efficiency contours 
by methods introduced by Hawthorne [33] and Smith [71], and further developed by Lewis 
[50]. Horlock [35] gives a comprehensive review of the early work. 

6.7.1 Soderberg loss coefficients 

The loss correlation of Soderberg makes use of the static enthalpy loss coefficient 

_ h- hs 

2 y 

with V replaced by Vi for the stator and by Wz for the rotor. The nominal value of the loss 
coefficient is calculated from 

C* = 0.04 + 0.06 ( ^ ) 2 

in which e is the amount of turning, es = a2 — a 3 for the stator and £R = fa — /?3 for 
the rotor. The angles are in degrees. The nominal value, identified with superscript star, 
is for a blade height-to-axial chord ratio b/cx = 3.0 and Reynolds number equal to 105. 
For different values of blade height to axial-chord-ratio, a new value for stator vanes is 
calculated from 

C = (1 + O (0-993 + 0 .021y) - 1 

and for the rotor, from 

< = (1 + O (0.975 + 0 .075y) - 1 

If Reynolds number differs from 105, the Reynolds number correction is obtained from 

The Reynolds number is based on the hydraulic diameter, which is given approximately by 
the expression 

2s6cosa2 

for the stator and by 

Dh 

for the rotor. 

S COS «2 + b 

2s6cos/33 
s cos ^3 + b 
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6.7.2 Stage efficiency 

The process lines for a turbine stage are shown in Figure 6.10. The states of static enthalpy 
are drawn such that the enthalpy drop across the rotor is slightly larger than that across 
the stator. The reaction therefore is slightly larger than one-half. An isentropic expansion 
through the stator takes the process from state 1 to state 2s, whereas the actual end state is 
at state 2. The stagnation enthalpy remains constant through the stator and its process line 
is horizontal. The stagnation pressure in the interblade gap is denoted by po2-

Figure 6.10 Thermodynamic states for expansion across a turbine stage. 

The irreversible expansion across the rotor takes the process to state 3, with a correspond-
ing stagnation stagnation enthalpy ho3 and stagnation pressure po3. The loss of stagnation 
pressure is discussed in the next subsection. The losses can be related to efficiency by first 
writing (as was done for steam turbines) the efficiency as 

^01 — ^03 
»7tt 

and then manipulating it into the form 

_1 , _ hp3 — hp3ss 

ritt h0i ~ h 

*01 — "03ss 

h3 - h3aa + V£ - V£ss 

03 

This can be further rearranged as 

1 
??tt 

- 1 
(h3 - h3s) + (h3s - h3ss) 

w 

2w 

YL 
2w 
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The first term in the numerator is simply 

h3 ~ h3s = -CRW* 

Next, integrating the Gibbs equation along the constant-pressure line p3 from state 3ss to 
3s gives 

, T3s s2-si= cp In —— 
J-3ss 

Similarly, integration along the constant pressure line p2 yields 

T2 s2 - Si = cp In ; 
t-2s 

Equating the RHSs gives 
T3s = T2 

T3ss T2s 

Subtracting one from each side, rearranging, and multiplying by cp gives 

(6.43) 

h3s — h3ss — ——(h2 — h2s) 
J-2s 

Since T3ss/T2s = T3s/T2 and 

h2 ~ h2s = -Cs^ 2
2 

the expression for efficiency can be written as 

1 1 
2sw T2 

(RWi + ^CsV? + ( 1 -
L

3SS V' 

In the last term the equality V3
2
ss/V3

2 = T3sa/T3 was used, which follows from the fact 
that M3 = M3ss, as was shown in Chapter 5. Furthermore, since Vx = W3COS/33 = 
V2 cos a2 = V3 cos 0:3, the expression for efficiency can be recast as 

1 
1 

ritt 2?/> 

Often this is approximated by 

1 

CR , T3s Cs 
COS2/33 T2 COS2Qf2 

T, 3SS 

COS2Ct3 

1 CR CS 

rjtt 2tp \cos2/33 cos 2 a 2 

It will shown in an example that the error in using this approximation is very small. 

(6.44) 

(6.45) 

6.7.3 Stagnation pressure losses 

The stagnation pressure drop across the stator can be related to the static enthalpy loss 
coefficient by first integrating the Gibbs equation along the constant-stagnation-pressure 
line/ioi = h02: 

' Po i ' 
S2 ~ Si Rln 

P02 
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Similarly, integrating the Gibbs equation along the constant-pressure line p2 gives 

S2-Sl = 7^Tlnte 
/ T \7/(7"l) 

Equating the RHSs gives 

P02 \T 2 | 

The definition for the static enthalpy loss coefficient 

1 

can be written as 

from which 

2s = 7,CsV2 

7 - 1 . w 2 , T2-T2s = -^CsMi1RT2 

T2 A 7 - 1 x ' 
T . 1 - ^ C s M | 
J2s V ^ 

Since the second term involving the Mach number is small, this can be expanded as 

T2s 2 Sb 2 

The pressure ratio P01/P02 is therefore 

and expanding this gives 
^ = l + ^CsM| 
P02 2 

The expression for the stagnation pressure loss now takes the form 

ApoLS = 0P02CS-M22 = -^/902CsV2
2 

Z I ±2 

or 
APOLS = P02 (1 + ^ M2

2) 1 Cs V2
2 (6.46) 

Since the loss coefficient C$ is rather insensitive to Mach number, this shows how the 
stagnation pressure loss increases as compressibility becomes important. 

The development of the stagnation pressure loss across the rotor is similar. It will be 
carried out in detail in order to highlight the use of stagnation properties on the basis of 
relative velocity. First, the stagnation enthalpy of relative motion is defined as 

frosR = h3 + -Wj 

and in using the Mach number in terms of W3, defined as 

W3 
M3R = 7TS5! 



194 AXIAL TURBINES 

this can be rewritten in the form 

T3 2 3 R 

The relative stagnation pressure is calculated from 

P3 " V 1 + 2 MsR 

Since /102R = /k>3R across the rotor, integrating the Gibbs equation along the line of 
constant relative stagnation enthalpy and also along the constant-pressure line p%, gives 

s 3 - s 2 = i ? l n s 3 - s2 = cp In —— 
P03R -*3s 

so that 
Pom = (Ts_V^-1] 

P03R \T3s) 

From the definition for static enthalpy loss coefficient for the rotor 

h3 ~ h3s = \CnWi 

the temperature ratio 

is obtained. Noting again that the term involving the Mach number is small and expanding 
the RHS gives 

~ - = 1 + ^ C R M 3
2

R 
±3s ^ 

and the pressure ratio P02R/P03R is therefore 

P03R \ 2 

Expanding this gives 

1 + K R M | R 
P03R 2 

The stagnation pressure loss across the rotor is therefore 

ApoLR - -P03RCR^3R = ^^^P03RC,RW% 
Z I I3 

or 

APOLR = P03R ( 1 + ^ M f n J \CRW^ (6-47) 
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EXAMPLE 6.7 

Combustion gases with 7 = § and cp = 1148 J/(kg ■ K) flow through a normal 
turbine stage with R = 0.60. The flow enters the stator at a.\ = —33.0° and leaves 
at velocity V2 = 450 m/s. The inlet stagnation temperature is 1200 K, and the inlet 
stagnation pressure is 15 bar. The flow coefficient is <f> = 0.7, the blade height-to-
axial chord ratio is b/cx = 3.5, and the Reynolds number is 105. Find the efficiency 
of the stage. 

Solution: The blade-loading coefficient is first determined from 

■4> = 2(1 - R - 0 t a n a 3 ) = 2(1 - 0.6 - 0.7tan(-33°)) = 1.709 

The flow angle leaving the stator is 

, (l-R + ip/2\ 1 / l - 0 . 6 + 1 . 7 0 9 / 2 \ „„ O J O a2 = tarT1 -—^— = t a n - 1 ^- '— = 60.84° / l - 0 . 6 + 1 . 7 0 9 / 2 \ 
V 0J ) 

and the angle of the relative velocity leaving the stage is 

1f-R-i!/2\ j / - 0 . 6 - 1 . 7 0 9 / 2 \ & = tan"1 I - ^ - J = tan"1 ( — '— \ = -64.30° 

The angle of the relative velocity at the inlet of the rotor is 

h = t a n - ( = ^ ) = t a n - ( ^ ± i M ? ) = 19.99° 

The deflections are therefore 

es = a2 - ai = 60.84 + 33.00 = 93.84° 

£R = P2- Ps = 19.99 + 64.30 = 84.29° 

and the loss coefficients can now be calculated. First, the nominal values are 

/ f o \2 / 93 8 4 \ 2 

Cs = 0.04 + 0.06 ( ^ J = 0.04 + 0.06 ( ^ 5 - I =0.0928 

and 
/ £■„ \ 2 / 84 29" 

CR = 0.04 + 0.06 ( - £ - ) = 0.04 + 0.06 - — - I = 0.0826 
1 \ 

V100V " ' " ' ' V ioo~ 

When corrected for b/cx = 3.5 they are 

Cs = (1 + Cs) (o.993+0.021y ) - 1 = (1 + 0.0928) (0.993+ ^ y 1 ) = 0-0917 

(R = (1 + CR) ( o . 9 7 5 + 0 . 0 7 5 ^ ) - l = (l+0.0826) ( o . 9 7 5 + ^ ^ j =0.0788 

The axial velocity is 

Vx = V2cosa2 = 450cos(60.84°) = 219.26 m/s 
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and the tangential velocity leaving the rotor is 

Vu3 = 14 t ana 3 = 219.26 tan(-33°) = -142.39 m/s 

so that 
Vs = \l^x + Vus = \/219.262 + 124.392 = 261.44 m/s 

The blade speed is U = Vx/<fi = 219.26/0.7 = 313.23 m/s. The tangential compo-
nent of the relative velocity leaving the stage is 

Wu3 = Vu3 - U = -142.39 - 313.23 = -455.62 m/s 

so that 

W3 = y % 2 + W%3 = A/219 .26 2 + 455.622 = 505.63 m/s 

The work done by the stage is w = ipU2 = 1.709 • 313.232 = 167.69 kJ/kg. An 
approximate value for the stage efficiency may now be obtained by setting T3ss = T2s 
and T3ss = T3 in 

1 (nWi + ^(sVi + (l " | f ) V3
2 

so that this expression evaluates to 

1 1 0.0788 • 505.632 + 0.0917 • 4502 „ n „ 
I = — 0.124 

77tt 2 ■ 167690 

with the result that r)tt = 0.8965. 
To see the extent to which neglecting the temperature ratio T3s/T2 and the ki-

netic energy correction changes the efficiency, these terms are calculated next. The 
isentropic stage work is ws = W/T]U - 167.69/0.8965 = 187.05 kJ /kg . With 
T02 = Toi = 1200 K, the exit temperature is 

T03 = T02-™ = 1 2 0 0 - ^ = 1053.9 K 
cp 1148 

and for an isentropic process it is 

. T03ss = T 0 2 - ^ = 1 2 0 0 - 1 ^ = 1037.1 K 
cp 1148 

The static temperature at the exit is 

V2 252 092 

T 3 = T 0 3 - ^ = 1053.9- ^ = 1024.2 K 

and T3ss can be calculated from 

T3ss = ^ T 3 = ^ i 1024.2 = 1007.8 K s T03 1053.9 
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From the definition of static enthalpy loss coefficient across the rotor 

T3 s = T3 - W% = 999.0 - ° - ° 7 8 8 - 5 0 5 - 6 3 2 = 1015.4 K 

In addition 
T2 = T02 - -^- = 1200 - „ ~ : ,„ = 1111.8K 

V2
2 4502 

2cp 2 -1148 
so that 

1 0.0788 • 505.632 + ±2IM Q 0 g l 7 . 4 5 Q 2 + r} _ I2gL|)261.442 

1 = i i i i ^ m^M = 0.1154 
y?tt 2 • 167690 

Therefore the total-to-total efficiency of the stage is r?tt = 0.8965, which to four 
significant figures is the same as that without the temperature and velocity correction. 
The temperature correction makes the loss through the rotor lower, but the velocity 
correction adds slightly to the losses, with the net result that these are compensating 
errors, and the shorter calculation gives an accurate result. 

The stagnation pressure at the exit of the stator is obtained from 

P02 2 

The Mach number is 

V2 450 
M 2 = . ' = . = 0.690 

VjRT2 Vl-333-287- 1111.8 
so that 

poi 2 • 0.0917 ■ 0.6902 „ 1500 
— = 1 + 5 = 1.0291 P02 = 7 7 ^ 7 = 1457.6 kPa 
P02 3 1.0291 

and the stagnation pressure loss across the stator is 

Ap0Ls = 1500 - 1457.6 = 42.4 kPa 

To calculate the loss of stagnation pressure across the rotor, the relative and absolute 
Mach numbers at the exit are determined first: 

V3 261.44 
M3 = ; ' = . = 0.4176 

s/WTz Vl-333-287- 1024.2 
W3 505.63 

M 3 R = , ; L = . = 0.8077 
V7RT3 Vl .333 • 287 • 1024.2 

Then stagnation pressure at the exit is 

«-=»»(^r"i,=iMo(w)'-,B,u,kp' 
and P3 is 

/ - 7 - 1 „ V 7 / ( 7 _ 1 ) / 0 4 1 7 6 2 \ - 4 

P3 = P03 1 + L^^Ml = 836.8 1 + — = 746.14 kPa 
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The stagnation pressure po3R is obtained from 

\ 7 / ( 7 - l ) 
P03R = P 3 1 l ^ M 2 

3R = 746.14 1 + 0.8077" 
6 

1127.5 kPa 

and the value of P02R is then 

P02R = P03R ( l + |CflM3
2

R) = 1127.5 (l + I 0.088 • 0.80772") = 1166.1 kPa 

so that the loss of stagnation pressure across the rotor is 

APOLR = H66.1 - 1127.5 = 38.6 kPa 

6.7.4 Performance charts 

A useful collection of turbine performance characteristics was compiled by Smith [71] in 
1965. His chart is shown in Figure 6.11. Each design is labeled in a small circle by the 
value of efficiency that may be achieved for a given choice of flow coefficient <j> = Vx/U 
and a stage-loading coefficient ip = w/U2 = Aho/U2. The curves of constant efficiency 
are based on a theory by Smith. He took blade losses other than tip losses into account, 
and for this reason the actual values of efficiency are expected to drop slightly. 

Lines of constant efficiency 
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Flow coefficient $ = VJU 

Figure 6.11 Variation of measured stage efficiency with stage loading coefficient and flow 
coefficient for axial-flow turbines. (Adapted from Smith [71].) 

The flow coefficients in the range from 0.6 < <j> < 1.0 give uncorrected efficiencies in a 
range from 90% to 94%, depending on how heavily loaded the blades are. Typical turbines 
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have a blade loading coefficient in the range 1.5 < ip < 2.2, but there are designs outside 
this range. 

Smith's method for calculating the main features of the performance characteristics has 
been extended by Lewis [50]. The present discussion follows Lewis, who suggests writing 
the efficiency in the form 

1 

The calculations in the foregoing example show that / L can be approximated by 

/ L 

Since 

it follows that 

cosa^ 

tan«2 

CP Wl + Cs^l l 
2w 2ip 

l-R + tp/2 

<*mM% 

(6.48) 

(6.49) 

V 0 2 + (1 - R + ^ / 2 ) 2 

and the velocity ratios may be written as 

Yi u 

tan/33 

cos/33 

1 -R + 

-(R + rf>/2) 

R + ijj/2 
vV 2 + 0R + V>/2)2 

i, 

and 

so that 

U R + 2 

1 
2AP 

R i, Cs + [1-R + *l> 

This may be expressed in a more convenient form by defining v = CS/CR a nd -PL = JL/CR> 

so that 

FT, 
1 

24> "+lR+t + v 1 -R + i> (6.50) 

and the efficiency can now be written as 

i + ^LCR 

The maximum efficiency is obtained by minimizing FL with respect to tp with the value of 
CR assumed to remain constant. Then, if the ratio v is also assumed to remain constant, 
differentiating and setting the result to zero gives 

dFL 1 

l 
^ 2 

R+±yvu-R+± 
«+lR+t + 1-R + 1> = 0 
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which, when solved for tp, leads to 

Ipn 
+ R2 + is(<j)2 + (1 - Rf 

l + v 

For v = 1 and R= \ this reduces to 

V»m - V 7 ^ 2 + 1 

Contours of constant F L are obtained by rearranging Eq. (6.50) first as 

^ 2 + 4[v(l-R)+R-2Fh] + 4 # 2 + fl2 + ̂ 2 + (1 - fl)2)] = Q 

(6.51) 

(6.52) 

l + v 

and solving it for tp. This gives 
l + i/ 

V> = 
2FL-v(l-R)-R±^4Fl-4FLlv(l-R)+R}+4vR(l-R)-is-(l + v)24 

l + y 

For i? = 0.5 and Cs = Cfl = 0-9, the two branches of each of the curves are shown Figure 
6.12. The knee of the curves is where the discriminant is zero, namely, at 

V 

Figure 6.12 Contours of constant efficiency for an axial turbine stage with R = 0.5, Cs = 0.9, 
and £R = 0.9; also shown is the curve of least losses. 

_ yjAF2 - AFh[v{l -R) + R]+v- AvR{\ =R) 
4>m~ 1 + v 

The locus of points of the blade-loading coefficient for which the losses are minimum, 
obtained from Eq. (6.52), is also shown. As stressed by Lewis, when the efficiency is 
written as 

»7tt 
1 

1 + F L C R 
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the factor FL depends primarily on the shape of the velocity diagrams, which, in turn, are 
completely determined by ip, <p, and R. The irreversibilities are taken into account by fa 
and Cs- These depend on the amount of turning, but their influence on the shape of the 
efficiency contours is less than the influence of the flow angles. 

The results in Figure 6.12 are qualitatively similar those in Figure 6.11, but they differ 
in important details. In the calculations the loss coefficients were assumed to be constant 
with values CR = Cs = 0.09. They clearly depend on the amount of turning and thus on 
the values of ip, <fi, and R. As mentioned, Smith subtracted out the tip losses, and they are 
not included in Soderberg's correlation, either. The experiments on which the Smith plot 
is based were carried out on a test rig at low temperature, and therefore the results do not 
represent real operating conditions. The amount of turning today is approaching 90° or 
even higher [19]. This is achieved by using computational fluid dynamic analysis to design 
highly three-dimensional blades. In fact, the high efficiencies achieved today make further 
increases in efficiency more and more difficult to achieve [21]. 

The actual loss coefficients using the Soderberg correlation are easily included in the 
calculations, and the contours of constant efficiency and the deflection for a 50% reaction 
are shown in Figure 6.13. The results are based on a blade height-to-axial chord ratio of 

3.0 
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1.5 
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0.5 

0 0.5 1.0 1.5 

Figure 6.13 Contours of constant efficiency and deflection for a stage with R = 0.5, b/cx = 3, 
and Re = 106. 

b/cx = 3, and the Reynolds number was set at Re = 105. From the expression 

ip = 2(1 - R-(j)tana3) 

it is seen that when (p — 0 and R — \, the blade-loading coefficient is ip = 1. If this 
stage has an axial entry with 0:3 = 0, the loading coefficient is ip = 1 for any value of 
(p. Examination of the figure shows that for an axial entry, as <p is increased to 0.5, the 
efficiency increases to slightly over 0.92 and decreases from there as <p is increased. Since 
the stage reaction is 50% the flow turns across the rotor and stator by an equal amount. At 

\ 

6=140°/' 1 2 0 ^ ^^7^~~~ 
/ 0 . R 4 / / ^<U\tf/ 0.86 

/ y ^ y __——^l_o.90 ><- \ 

g ^ ^ ~7>r' \ J \$L §2&** 
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<p = 0.5 and ip = 1, since a^ — a.\ = 0, the flow angle «2 is 

a2 = t a n - i (l~R^,2\ = tan"1 (2) = 63.4° 

On the other hand, if the entry angle is chosen to be a 3 = ot\ = —45°, then 

ip = 1 + 20 

and at <p = 0.5 the blade-loading coefficient would be ip = 2. The flow angle leaving 
the nozzle would then be «2 = 71.56°, and the flow angles for the rotor would have the 
values /?2 = 45° and 03 = —71.56°. Hence the deflection would reach £R = 116.56°. 
This is larger than that recommended, and the inlet angle is too steep. These calculations 
show that good designs are obtained for a range of flow coefficients of 0.5 < <j> < 1.5 and 
the blade-loading coefficient in the range 0.8 < ip < 2.7, for then the deflection is less 
than 80°. As the flow coefficient is increased from 0.5 to 1.5, the inlet flow angle may be 
changed from an axial entry to one with 0:3 = —30°. 

Contours of constant-rotor-loss coefficients are shown in Figure 6.14. They are seen 
to follow the shape of the deflection lines in Figure 6.13. When there is no turning, the 
loss coefficient is £R = 0.04 and the line for £FI = 0.05 corresponds to a turning of 
& - & = 40°. 

0.11 0.10 0.09 0.08 

01 , , , , , , ,—1 
0 0.2 0.6 0.6 0.8 1.0 1.2 1.4 

Figure 6.14 Lines of constant rotor loss coefficients for a stage with R = 0.5, b/cx = 3, and 
Re = 106. 

For a zero-reaction stage the contours of constant efficiency are given in Figure 6.15. 
Since R = 0, the equation 

ip = 2(1 - R-4>tana3) 
shows that at <j> = 0 the loading coefficient is ip = 2. The lines of constant turning for the 
rotor are now straight lines, owing to the relationship $3 = — P2 and 

ip = 0(tan/?2 — fan/33) = 2<£ tan 02 
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If the deflection is kept at 70°, then /32 — 35°, and at <f> = 1.5 the blade-loading coefficient 
is ip = 2.1 and the efficiency is close to 0.87. At 0 = 0.5 the blade-loading coefficient 
has the value tp = 0.7 and the efficiency is slightly over 0.92. For axial entry ip = 2 
independent of <j>, and an efficiency of slightly under 0.89 may be maintained for the range 
of <b from 0.3 to 0.8. 

V 

Figure 6.15 Contours of constant efficiency and deflection for a stage with R = 0, b/cx = 3, and 
Re = 105. 

6.7.5 Zweifel correlation 

Zweifel [85] examined losses in turbines and developed a criterion for the space-to-chord 
ratio at which losses are the smallest. He put the loading of the blades into a nondimensional 
form by dividing the driving force by an ideal one defined as as the pressure difference 
P02 — Pz times the axial chord. The stagnation pressure P02 is the maximum possible 
pressure encountered and p% is close to the minimum one as the flow accelerates through 
the passage. The ratio becomes 

ipi 
pVxs(Vu2 - Vu3) 

(Po2 -Ps)cx 

in which cx is the axial chord length. This can be written as 

s pVr
x

2(tana2 — tan a3) ip-i 
\pvi 

or 
T/>T = 2— cos2a3(tana2 — tanas) (6.53) 

In examining the performance of various turbines, Zweifel determined that the losses are 
minimized when ip^ = 0.8. With this value for V'T, this equation is used to determine the 
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spacing of the blades. With the spacing known, the cross-sectional area of the flow channel 
and its wetted area may be calculated and the Reynolds number determined. This may then 
be used to obtain the loss coefficients from the Soderberg correlation. For the rotor the 
flow angles of the absolute velocities are replaced by the relative flow angles. 

6.7.6 Further discussion of losses 

Ainley [1] carried out an experimental study of losses in turbines at about the same time as 
Soderberg. His loss estimates are shown in Figure 6.16 for a flow that turns only by about 
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Figure 6.16 Stagnation pressure loss coefficients for turbine blades as a function of incidence, with 
s/c = 0.77 and b/c = 2.7 at Reynolds number Re = 2 • 105, from measurements by Ainley [1]. 

40° and thus has fairly small losses at the design condition. He presented the results in the 
form of a stagnation pressure loss coefficient, defined as 

Y = Poi ~ -PQ2 
P P02 ~ P2 

The denominator of this expression clearly depends on the Mach number and therefore, so 
does the value of the loss coefficient. The losses are separated into profile losses, secondary 
flow losses, and the losses in the annulus boundary layers. The profile losses, associated 
with the growth of the boundary layers along the blades, are lowest at a few degrees of 
negative incidence. The secondary flow losses dominate at all values of incidence. The 
losses in the annulus boundary layers represent a small addition to the secondary flow 
losses, and they are typically grouped together as it is difficult to separate them from each 
other. 

The physical cause of the secondary flows is the curvature along the flow path. From 
study of fundamentals of fluid dynamics, it is known that pressure increases from concave to 
convex side of curved streamlines. This transverse pressure gradient gives rise to secondary 
flows for the following reason. In the inviscid stream far removed from the solid surfaces 
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viscous forces are small and inertial forces are balanced by pressure forces. The transverse 
component of pressure force points from the pressure side of one blade to the suction side 
of the next one, and the transverse component of the inertial force is equal and opposite to 
this. 

Figure 6.17 Secondary flows in a channel between two blades. 

In the endwall boundary layer viscous forces in the main flow direction retard the flow, 
with the result that inertial forces in the boundary layers are smaller than those in the 
inviscid stream. However, owing to the thinness of the endwall boundary layers, pressure 
distribution in these layers is the same as in the inviscid stream. For this reason the 
unbalanced part of the pressure force causes a transverse flow in the endwall boundary 
layers toward the suction side of the blade. This is shown schematically in Figure 6.17. 
This secondary flow takes place in both endwall boundary layers. Continuity requires that 
there be a return flow across the inviscid stream. The return flow is more diffuse than that 
in the boundary layers as it occupies a large flow area. The effect is the development of two 
counterrotating secondary vortices, with axes in the direction of the main stream. Thus a 
secondary flow exists in these vortices. If this were all, the secondary flow would be easy 
to understand. But the flow in the boundary layer near the casing is also influenced by a 
vortex that develops at the tips of the rotor blades. This interaction increases the intensity 
of the secondary flow and the axis of the vortex migrates from the pressure side of the blade 
to the suction side as it traverses the flow passage. A sketch of this is shown in Figure 6.18. 
Further complication arises from the unsteadiness of the flow caused by a discrete set of 
rotor blades passing by the row of stator vanes. 

6.7.7 Ainley-Mathieson correlation 

Ainley and Mathieson [2] continued the work of Ainley [1] on turbine cascades. Their 
results are shown Figure 6.19. The flow enters the nozzles axially and leaves at the angle 
a?2 indicated. The profile loss coefficient Fp a is seen to vary both with the space-to-chord 
ratio and the amount of turning of the flow. The two curves in the figure, for which the flow 
deflects 75° and 80°, are marked with dashed line, for the flow is seldom turned this much. 
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TO*** 

Suction side Pressure (side 

Figure 6.18 Distortion of tip vortex as it moves through the passage. 

To facilitate the use of these results with hand calculators (or in short computer calcu-
lations), they have been fitted with two parabolas. The data in Figure 6.19 are correlated 
reasonably well by the biquadratic fit 

Y — 
1 pa — 

+ 

- ° - 6 2 7 ( i S ) ) + 0 - 8 2 1 ( i S ) ) - 0 - 1 2 9 

1.489 ( ^ - 1.676 ( ^ ) + 0.242' (3 
-0.356 ( ^ ) + 0 . 3 9 9 ( ^ ) + 0 . 0 0 7 7 

(6.54) 

0.08 

0.04 

Figure 6.19 Stagnation pressure loss coefficients for nozzles, as measured by Ainley and Mathieson 
[2]. 
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EXAMPLE 6.8 

A nozzle row is tested with air. The air enters the row axially and leaves it at angle 
60°. The space-to-chord ratio is s/c — 0.7. The inlet pressure is poi = 200kPa, 
stagnation temperature at the inlet is T0i = 540 K, and the exit static pressure is 
p2 = 160 kPa. Find (a) the exit stagnation pressure and (b) the static enthalpy loss 
coefficient. 

Solution: (a) For s/c = 0.7, the stagnation pressure loss coefficient is 

.2 

Y — 
1 pa — 

+ 

-°-6 2 7(0+ O-8 2 1(^))-0-1 2 9 . 
L 4 8 9 ( ^ ) 2 - L 6 7 6 ( ^ ) + 0 - 2 4 2 

0.7^ 

0.7 

/ ar\ \ / fid \ 
-0.356 ( — J + 0.399 f — j + 0.0077 = 0.0272 

Examination of Figure 6.19 shows that this value is smaller than what can be read 
from the figure, which suggests that it should be increased to 0.032. If this error can 
be tolerated, solving next 

P01 ~ P02 Y — 
P02 ~ P2 

for p02 gives 

P02 
Poi + ypaP2 _ 200 + 0.0272 ■ 160 

1 +Ypa ~ 1.0279 198.94 kPa 

so that Apos = 106 kPa. A more accurate value using the actual charts is 1.24 kPa. 
(b) The exit static temperature is 

T( 02 M ( 7 - l ) / 7 

540 
160,000 V 1/3.5 

507.44 K 
Pm) V 198,9137 

and velocity is therefore 

V2 = ^2cp(T02 - T2) = y/2 ■ 1004.5(540 - 507.44) = 255.77m/s 

These give a Mach number value of M2 = V^/y/jBT^ = 0.566. The stagnation 
density at the exit is 

P02 
Po2 198,940 1.284 kg/m3 

RT02 287 ■ 540 

The static enthalpy loss coefficient is calculated from 

4Apos/po2 4 • 1060/1.284 
Cs y2

2(2 + (7 - 1)M|) 255.772(2 + (1.4 - 1)0.5662) 0.0237 



208 AXIAL TURBINES 

The experiments of Ainley and Mathieson [2] also included the influence of the space-
to-chord ratio for impulse blades. This is shown in Figure 6.20. Again, the approach 
velocity is at zero incidence. Since the rotor blades have the shape of impulse blades, the 
different curves are labeled by the relative flow angles. In a two-stage velocity compounded 
steam turbine, the stator between the two rotors has equiangular vanes as well, but this is 
an exceptional situation in turbines. Ainley and Mathieson showed that the results from the 
nozzles with axial entry and the impulse blades can be combined for use in other situations. 
This is discussed below. 
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Figure 6.20 Loss coefficients for impulse blades, fa 
measured by Ainley and Mathieson [2]. 

-fa, and Re = 2 • 105, M < 0.6, as 

The data shown in Figure 6.20 can be fitted to a biquadratic expression. 

Y pe 

+ 

.1.56 (^-) + 1.55 (^-)- 0.064 

«3(Si)2-3-4 3O+ 0-2 9 0 (6.55) 

°«©+°-S) 0.078 

This is a reasonably good fit even if it was forced to a simple second-order polynomial 
form. On the basis of values obtained from Eqs. (6.54) and (6.55), Ainley and Mathieson 
recommend that for blades for which the inlet angle is between the axial entry of nozzles 
and that of the impulse blades, the stagnation pressure loss coefficient can be estimated 
from 

YP = Y„: (6.56) 
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The subscripts in this expression have the following meaning: Yp is the profile loss at 
zero incidence; Ypa is the profile loss coefficient for axial entry, and Ype is the profile loss 
coefficient for equiangular impulse blades. The absolute values are needed in the exponent 
because a\ could be negative. 

For a rotor the angle, a.\ is replaced by fa and a2 is replaced by fa. Thus Eq. (6.56) 
takes the form 

^P 
/V2 

*pa + | o ] (,Jpe Jpa j 0.2 < ( 6 - 5 ? ) 

In evaluating the loss coefficient from Eq. (6.55) for impulse blades, a2 is replaced by fa 
for rotor blades, since fa will be positive and fa = —fa. The ratio of maximum thickness 
to the length of the chord in these expressions is t/c, with a nominal value of 20%. Should 
it be greater than 25% the value t/c = 0.2 is used. If it is less than 15%, its value is set at 
t /c = 0.15. 

6.7.8 Secondary loss 

Secondary and tip losses require examination of lift and drag on the rotor blades. Unlike 
in the case for an airfoil, for which lift is the force component perpendicular to incoming 
flow direction, in turbomachinery flows the direction of the lift is defined as the force 
perpendicular to a mean flow direction. This, together with other important geometric 
parameters, is shown in Figure 6.21. The mean direction is obtained by first defining the 
mean tangential component of the relative velocity as 

wum=l-{wul + wu2) 

which can be rewritten in the form 

Wum = -Wx(t&nfa + tan fa) 

Next, writing Wum = Wx tan /3m gives 

tan/3m — -( tan/32 + tan/?3) 

and /?m defines the mean direction. For the situation shown in the figure tan /3m is negative 
and so is Vum. 

Next, applying the momentum theorem to the rotor, the force in the direction of the 
wheel motion is given by 

Fu = PsWx(Wu3 - Wu2) = psW^t&nfa - tan/32) 

This is the force that the blade exerts on the fluid per unit height of the blade. The reaction 
force Ru = — Fu is the force by the fluid on the blade, and it is given by 

Ru = psWl(tan fa - tan/33) (6.58) 

The component of the reaction forces are related to lift L and drag D by 

Rx = D cos Pm — L sin /3m Ru = D sin /3m + L cos /3m 
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Figure 6.21 Illustration of flow angles, blade angles, mean direction, and lift and drag forces on a 
rotor. 

The magnitude of the drag force has been drawn larger in the figure than its actual size, to 
make the sketch clearer. If it is neglected, the reaction Ru is related to lift by 

Ru = L cos /3m 

and Eq. (6.58) can be written as 

L cos j3m = psW% (tan (32 — tan /33) 

Introducing the lift coefficient leads to the expression 

Cr 
L/c s\ Wl (tan/32 - t a n / ? 3 © V2 

v m 
cos/?„ 

Since Wx = Wm cos j3m this reduces to 

Ch = 2 ( - ) (tan/32 - tan /33) cos (3n (6.59) 

The secondary flow and tip losses according to Dunham and Came [24] are expressed as 

YB + Yk 0 . 0 3 3 4 ^ + B(k-
cos pi \c 

0.78 ch cos2/33 

s/cj cos3/?n 
(6.60) 

The second term, in which the gap width k appears, accounts for the tip losses. The 
parameter B = 0.47 for standard blades and B = 0.37 for shrouded blades. A shrouded 
blade is shown in Figure 3.11 in Chapter 3. 

The loss coefficients are similar for the stator. The mean flow direction is given by 

t ana n 
1 ( tanai + tan a2) 
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and the lift coefficient is 

CL = 2 I - J (tan «2 — tana.\) cos an 

The loss coefficient of the secondary flows is 

Ys = 

as there are no tip losses. 

■ EXAMPLE 6.9 

-I \ COS «i J Wc, 
v2 2 

^ cosza2 

/ cos3am 

(6.61) 

Combustion gases, with 7 = § and cp = 1148 J/(kg • K), flow through a normal 
turbine stage with R = 0.60. The flow enters the stator at a.\ = —33° and leaves 
at velocity V2 — 450 m/s. The inlet stagnation temperature is T01 = 1200 K, and 
the inlet stagnation pressure is 15 bar. The flow coefficient is <p = 0.7, blade height-
to-axial chord ratio is b/cx = 3.5, and the Reynolds number is 105. The blades are 
unshrouded with B = 0.4, and the tip-gap-to-blade height ratio is k/b = 0.02. Find 
the stagnation pressure loss across the stator and the rotor based on Ainley-Matheison 
correlations. 

Solution: The blade-loading coefficient is first determined from 

ip = 2(1 - R - 0 t a n a 3 ) = 2(1 - 0.6 - 0.7tan(-33°)) = 1.709 

The flow angle leaving the stator is 

Qf2 = t a n 
1 - R + V>/2 

= tan 
1 -0 .6 +1.709/2 \ 

0.7 
60.84° 

Hence the mean flow angle is 

ttn tan ( tanai + tan 02) 29.74° 

The lift coefficient is 

CLS = 2 I - j (tan 0:2 — tana\) cos am 

= 2 • 0.9(tan(60.84) - tan(-33)) cos(29.74) = 3.82 

The secondary loss coefficient for the nozzles is 

YsN = 0.0334 \ ^ ^ = 0.0434 
0 COS^QJm 

The value of profile losses obtained from Eqs. (6.54) and (6.55) are 

Fp a N = 0.0269 yp e N = 0.1151 

so that for the particular nozzle row 

YT p N ^paN + ( ^ p e N — ^ p a N ) 
t/c 
02 

| a i / a 2 | 
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comes out to be 

YpN = 0.0269 
-33 
60.84 

(0.1151 ^0.0269) 0.0529 

Thus the stagnation pressure loss coefficient is YN = YPN + YSN = 0.0963. 
For the rotor, the angle of the relative velocity leaving the stage is 

/ ? 3 = t a n - 1 ( ~ J ? ~ V ; / 2 | = t a n - 1 -0 .6-1 .709/2^ = _ 6 4 3 0 

0.7 

and the angle of the relative velocity at the inlet of the rotor is 

_1f-R + ip/2\ _j / - 0 . 6 +1.709/2 \ ft tan tan 0.7 
20.0° 

The mean flow angle is 

A, 

The lift coefficient is 

tan -(tan/32 + tan/33) -40.6° 

C L R = 2 (-) (tan/32 - tan ft) cos/3n 

= 2 • 0.9[tan(20) - tan(-64.3)] cos(-40.6) = 3.34 

The secondary flow and tip losses can then be determined from 

rsi YkR 0.0334 ^ + Brk 

cos/32 

0.78 Ch \2 cos2ft 

YsR + Y, 1 
sR-t--<kR = 0.0334 COs{,64:r) +0.47-0.02078 

cos(20.0°) 

From Eqs. (6.54) and (6.55) the profile losses coefficients are 

YpaR = 0.0322 YpeR = 0.1334 

s/cj cos3/3n 

3.34\2cos2(-64.3°) 
09~j cos3!-40.6°I 

0.075 

so that 

is 

Y pR 

YpR = 

Yr paR 

0.0322 + 

(YpeR — YpaR) 
t/c 
02 

-20.0° 
-64.3° 

(0.1334-0.0322) 

102/% I 

0.0419 

The stagnation pressure loss coefficient for the rotor is therefore YR = YPR + YSR + 
YkR = 0.1169. 

The stagnation pressure loss across the nozzle row is obtained from 

YN 
P01 ~ P02 

P02 - V2 
P01 - P02 = YN(po2 - Vi) 
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Dividing through by po2 gives 

m I + YJI P2 

P02 

Since the temperature T2 is 

P02 
1 + *N 

To 

1-02 

7/ (7-1) ' 

VZ 4502 

T2=T02 = 1200 
u 2c„ 2-1148 

1111.8K 

and M2 = V2/y/jRT2 = 0.690, the stagnation pressure ratio is 

.4" 
P01 
P02 

1 + 0.0963 1 
1111.8 
1200 

1.02534 

Hence p02 = 1500/1.02534 = 1462.9 kPa, and the stagnation pressure loss is 
Ap0LS = 37.2kPa. 

The static pressure at the exit is 

V2 = P02 1 + 
7"V2 -7/ (7-1) 

1462.9 1 
6902 

2 V V 6 
Some preliminary calculations are necessary for the rotor. First 

Vx = V;COSQ!2 = 450cos(60.84) = 219.3 m / s 

1078.0 kPa 

and then 

W2 = 
Vx 219.3 

cos/32 cos(20°) 

Vx 219.3 
cos/33 cos(-64.3°) 

Vx 

233.4 m / s 

505.6 m / s 

219.3 
cosc*3 cos(—33°) 

261.5 m / s 

Also 

V 219 3 
U = — = - ^ - ^ = 3 1 2 . 2 m / s w = ipU2 = 1.709 • 313.22 = 167.69 k J / k g 

so that 

and 

Next 

0.7 

W 167 69 
T0 3 = T02 = 1200 - — — - = 1053.7 K 

c„ 1148 

T/2 ofil ^2 

T3 = T03 - - ^ - = 1053.7 - „ , ; .„ = 1024.2 K 
ZCn 2-1148 

TQ3R — T3 + 2c„ 
1024.2 + 

505.62 

2 •1148 

and since T02R = T03R 

7/ (7-1) 
P02R = p2 I - ^ - ! = 1078.0 

1111.8 

1135.5K 

= 1128.3kPa 
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The stagnation pressure loss coefficient for the rotor is 

P02R — P03R 
YR = 

P03R - P3 

so that 

H ( I - - ^ = 1 -» = i + y R ( i - ^ - ) = i + FR 
P03R V P03R) \ To3R / 

7 / (7-1) ' 

The numerical value for the pressure ratio is 

P02R 

P03R 
1 + 0.1169 1 -

/1024.2 
V 1135.5 1.040 

andpo3R = 1172.9/1.040 = 1128.28 kPa. Hence the stagnation pressure loss across 
the rotor is ApoLR = 44.6 kPa. The value obtained the by Soderberg correlation was 
38.6 kPa, but that correlation neglects the tip losses. For the nozzle row the loss is 
APOLS = 37.lkPa, and the Soderberg correlation gave 42.4 kPa. Ainley-Mathieson 
and Soderberg correlations are therefore in reasonable agreement. 

6.8 MULTISTAGE TURBINE 

6.8.1 Reheat factor in a multistage turbine 

Consider next a multistage turbine with process lines as shown in Figure 6.22. The 
isentropic work delivered by the jth stage is denoted as WjS, whereas the actual stage work 
is Wj. The stage efficiency is defined to be 

Vs 
Wj 

and it is assumed to be the same for each stage. With 

Wjs = hoj — /lo,j + l,s 

the sum over all the stages gives 

N N 

j = i j = i 

The isentropic work delivered by the turbine is ws = hoi — ho,N+i,ss- A reheat factor 
is defined as 

Y^N ... v^JV 
RF 

j=1 wjs _ r, J2j=i Wj 

w, Vs w 
N in which w = ^2j=1 Wj, so that 

RF 
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Oj 

Oj+1 

Figure 6.22 Processes in a multistage turbine. 

Since the slope of constant-pressure line increases as temperature increases, it follows that 

N 

j = l 

and R F > 1. Hence 77 > r]s, and the overall efficiency of a turbine is greater than the 
stage efficiency. The reason is the internal heating, for the increase in static enthalpy by 
irreversibilities becomes partly available as the expansion proceeds over the next stage. 
The increase in the overall efficiency depends on the number of stages. 

If the ideal gas model can be used, then the actual and ideal work delivered by the first 
stage are 

w = cp(Toi - T02) ws = cp(Toi - T02s) 
Since 

-MD2s 

T01 
P02_\ 

P01) 

( 7 - l ) / 7 

the temperature difference for the isentropic process becomes 

\ ( 7 " l ) / 7 ' 
TQI — T02S — 2c 01 

Letting 

'P02V 

The actual temperature drop is then 

x = 1 
( 7 - l ) / 7 

1 

then 

P02Y 
P 0 1 / 

Tr\\ — Tms — xTi 01 

(01 '02 7]SXT{ 01 so tha t To2 = T 0 1 ( l - 7 7 s x ) 
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Assuming that the pressure ratio and the efficiency are the same for each stage, similar 
analysis for the next stage gives 

T02 - T03 = r,xT02 so that T03 = T02 (1 - %x) = T01 (1 - r)sx)2 

and for the Nth stage 

T0,N - T0tN+i = VsxToiN so that T0>N+1 = T0i(l - r]sx)N 

The work delivered by the entire turbine can then be expressed as 

w = cp(T0i - T02) + cp(To2 - T03) H h CV(T0,N - T0,N+I) = cp(T0i - T0,JV+I) 

which can be written as 
w = CpT0i[l - (1 - r)sx)N] 

The isentropic work by the entire turbine is given by this same equation when r]s = 1, or 

ws = cpT01[l - (1 - x)N] 

The isentropic work can also be written as 
v ( 7 - l ) / 7 " 

W, = C„T( 

and therefore 

p ^ O l 

w 

1 P0,N+1 

POl 

1 - (1 - risx)N 

Ws P0,JV+1 

POl 

( 7 " l ) / 7 

so that the reheat factor becomes 

Vs 
Vs 

l-(l-r,sx)N 

/„ \ ( 7 - l ) / 7 _ 

V POl ) 

6.8.2 Polytropic or small-stage efficiency 

The polytropic process was introduced in Chapter 3. Here it is used for a small stage. If 
the stagnation enthalpy change is small across a stage, the stage efficiency approaches the 
polytropic efficiency. Consider the situation for which the ideal gas relation is valid and 
for which an incremental process is as shown in Figure 6.23. The temperature drops for 
actual and ideal processes are related and given by 

For an isentropic expansion 

dT0s dp0 

To Po 

rjp dT0s = dT0 

7 dT0 dp0 

Vp(l ~ 1) To Po 
Integrating this between the inlet and the exit gives 

lQ,N+l 

T0i 
P0,N+1 

POl 

( 7 - l ) f ? p / 7 
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Figure 6.23 Processes across a small stage. 

The reheat factor can then be written as 

RF = 

Po,iv+i 
Poi 

( 7 - 1 ) » 7 P / T 

^P 
VP 

P0,N+1 

POI 

( 7 - l ) / 7 ' 

The relationship between the turbine efficiency and polytropic, or small-stage efficiency is 

1 - I -r 

( 7 - ! ) W 7 

1 
( 7 - l ) / 7 

in which r = Poi/poe is the overall pressure ratio of the turbine. This relationship is shown 
in Figure 6.24. 

This completes the study of axial turbines, which began in the previous chapter on steam 
turbines. Wind turbines and some hydraulic turbines are also axial machines. They are 
discussed later. Many of the concepts introduced in this chapter are carried over to the next 
one, on axial compressors. 

EXERCISES 

6.1 At inlet to the rotor in a single-stage axial-flow turbine the magnitude of the absolute 
velocity of fluid is 610 m/s. Its direction is 61° as measured from the cascade front in 
the direction of the blade motion. At exit of this rotor the absolute velocity of the fluid 
is 305 m/s directed such that its tangential component is negative. The axial velocity 
is constant, the blade speed is 305 m/s, and the flow rate through the rotor is 5kg/s. 
(a) Construct the rotor inlet and exit velocity diagrams showing the axial and tangential 
components of the absolute velocities, (b) Evaluate the change in total enthalpy across the 
rotor, (c) Evaluate the power delivered by the rotor, (d) Evaluate the average driving force 
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Figure 6.24 Turbine efficiency as a function of pressure ratio and polytropic efficiency for a gas 
with 7 = 1.4. 

exerted on the blades, (e) Evaluate the change in static and stagnation temperature of the 
fluid across the rotor, assuming the fluid to be a perfect gas with cp = 1148 J/(kg • K). (f) 
Calculate the flow coefficient and the blade-loading coefficient. Are they reasonable? 

6.2 A small axial-flow turbine must have an output power of 37 kW when the mass flow 
rate of combustion gases is 0.5kg/s, and the inlet total temperature is 410 K. The value 
of the gas constant is 287 J/(kg • K) and 7 = 4/3. The total-to-total efficiency of the 
turbine is 80%. The rotor operates at 50,000 rpm, and the mean blade diameter is 10 cm. 
Evaluate (a) the average driving force on the turbine blades, (b) the change in the tangential 
component of the absolute velocity across the rotor, and (c) the required total pressure ratio 
across the turbine. 

6.3 A turbine stage of a multistage axial turbine is shown in Figure 6.3. The inlet gas 
angle to the stator is a\ = —36.8°, and the outlet angle from the stator is a-i — 60.3°. 
The flow angle of the relative velocity at the inlet to the rotor is 02 = 36.8° and the flow 
leaves at /33 = -60.3°. The value of the gas constant is 287 J/(kg • K) and 7 = 4/3. (a) 
Assuming that the blade speed is U = 220 m/s, find the axial velocity, which is assumed 
constant throughout the turbine, (b) Find the work done by the fluid on the rotor blades 
for one stage, (c) The inlet stagnation temperature to the turbine is 950 K, and the mass 
flow rate is m = 400kg/s. Assuming that this turbine produces a power output of 145 
MW, find the number of stages, (d) Find the overall stagnation pressure ratio, given that its 
isentropic efficiency is r)tt = 0.85. (e) Why does the static pressure fall across the stator 
and the rotor? 

6.4 A single-stage axial turbine has a total pressure ratio of 1.5 to 1, with an inlet total 
pressure 300 kPa and temperature of 600 K. The absolute velocity at the inlet to the stator 
row is in the axial direction. The adiabatic total-to-total efficiency is 80%. The relative 
velocity is at an angle of 30° at the inlet of the rotor and at the exit it is —35°. If the 
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flow coefficient is (f> = 0.9, find the blade velocity. Use compressible flow analysis with 
cp = 1148 J/(kg • K), 7 = §, and R = 287 J/(kg ■ K). 

6.5 An axial turbine has a total pressure ratio of 4 to 1, with an inlet total pressure 650 kPa 
and total temperature of 800 K. The combustion gases that pass through the turbine have 
7 = | , and R = 287 J/(kg • K). (a) Justify the choice of two stages for this turbine. Each 
stage is normal stage and they are designed the same way, with the blade-loading coefficient 
equal to 1.1 and the flow coefficient equal to 0.6. The absolute velocity at the inlet to the 
stator row is at angle 5° from the axial direction. The adiabatic total-to-total efficiency is 
91.0%. Find, (b) the angle at which the the absolute velocity leaves the stator, (c) the angle 
of the relative velocity at the inlet of the rotor, (d) the angle at which the relative velocity 
leaves the rotor, (f) Draw the velocity diagrams at the inlet and outlet of the rotor, (g) What 
are the blade speed and the axial velocity? A consequence of the design is that each stage 
has the same work output and efficiency. Find, (h) the stage efficiency and (i) the pressure 
ratio for each stage. 

6.6 For a steam turbine rotor the blade speed at the casing is U = 300 m/s and at the 
hub its speed is 240 m/s. The absolute velocity at the casing section at the inlet to the 
rotor is V2c = 540 m/s and at the hub section it is V2h = 667 m/s. The angle of the 
absolute and relative velocities at the inlet and exit of the casing and hub sections are 
a2c = 65°, f33c = -60° , a2 h = 70°, and (33h = -50° . The exit relative velocity at 
the casing is W3c — 456 m/s and at the hub it is W3h = 355 m/s. For the tip section, 
evaluate (a) the axial velocity at the inlet and exit; (b) the change in total enthalpy of the 
steam across the rotor; and (c) the outlet total and static temperatures at the hub and casing 
sections, assuming that the inlet static temperature is 540° C and inlet total pressure is 
7 MPa, and they are the same at. all radii. Assume that the process is adiabatic and steam 
can be considered a perfect gas with 7 = 1.3. The static pressure at the exit of the rotor is 
the same for all radii and is equal to the static pressure at inlet of the hub section. Repeat 
the calculations for the hub section, (d) Find the stagnation pressure at the outlet at the 
casing and the hub. 

6.7 Combustion gases, with 7 = | and R = 287kJ/(kg • K), flow through a turbine 
stage. The inlet flow angle for a normal stage is a.\ = 0 ° . The flow coefficient is <j> = 0.52, 
and the blade-loading coefficient is xp = 1.4. (a) Draw the velocity diagrams for the stage. 
(b) Determine the angle at which relative velocity leaves the rotor, (c) Find the flow angle 
at the exit of the stator. (d) A two-stage turbine has an inlet stagnation temperature of 
T01 = 1250 K and blade speed U = 320 m/s. Assuming that the total-to-total efficiency 
of the turbine is r)tt = 0.89, find the stagnation temperature of the gas at the exit of the 
turbine and the stagnation pressure ratio for the turbine, (e) Assuming that the density 
ratio across the turbine based on static temperature and pressure ratios is the same as that 
based on the stagnation temperature and stagnation pressure ratios, find the ratio of the 
cross-sectional areas across the two-stage turbine. 

6.8 Steam enters a 10-stage 50%-reaction turbine at the stagnation pressure 0.8 MPa 
and stagnation temperature 200° C and leaves at pressure 5kPa and with quality equal to 
0.86. (a) Assuming that the steam flow rate is 7kg/s, find the power output and the overall 
efficiency of the turbine, (b) The steam enters each stator stage axially with velocity of 
75 m/s. The mean rotor diameter for all stages is 1.4 m, and the axial velocity is constant 
through the machine. Find the rotational speed of the shaft, (c) Find the absolute and 
relative inlet and exit flow angles at the mean blade height assuming equal enthalpy drops 
for each stage. 
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6.9 Combustion gases enter axially into a normal stage at stagnation temperature TQI = 
1200 K and stagnation pressure poi = 1500 kPa. The flow coefficient is 0 = 0.8 and the 
reaction is R = 0.4. The inlet Mach number to the stator is Mi = 0.4. Find, (a) the blade 
speed and (b) the Mach number leaving the stator and the relative Mach number leaving 
the rotor, (c) Using the Soderberg loss coefficients, find the efficiency of the stage, (d) 
Repeat the calculations with inlet Mach number Mi = 0.52. 

6.10 For a normal turbine stage fluid enters the stator at angle 10°. The relative velocity 
has an angle —40° as it leaves the rotor. The blade-loading factor is 1.6. (a) Determine the 
exit angle of the flow leaving the stator and the angle of the relative velocity as it enters the 
rotor. Determine the degree of reaction, (b) For the conditions of part (a), find the angle 
at which the flow leaves the stator and the angle of the relative velocity entering the rotor, 
as well as the degree of reaction, (c) Calculate the total-to-total efficiency using Soderberg 
correlations. Take the blade height to axial chord ratio to be b/cx = 3.5. (d) Determine the 
stagnation pressure loss across the stator, given that the inlet conditions are Xbi = 700 K 
and poi = 380 kPa, and the velocity after the stator is V2 = 420m/s. 

6.11 For Example 6.6, write a computer program to calculate the mass flow rate and plot 
the variation of the reaction from the hub to the casing. 

6.12 For a normal turbine stage the exit blade angle of the stator at 70° and relative 
velocity has angle —60° as it leaves the rotor. For a range of flow coefficients 0 = 0.2 — 0.8, 
calculate and plot the gas exit angle from the rotor, the angle the relative velocity makes as 
it leaves the stator, the blade-loading coefficient, and the degree of reaction. Comment on 
what is a good operating range and what are the deleterious effects in flow over the blades 
if the mass flow rate is reduced too much or if it is increased far beyond this range. 

6.13 For a normal turbine stage fluid enters the stator with the inlet conditions TQI = 
HOOK and poi = 380kPa. The inlet flow angle is 10°, and the velocity after the stator 
is V2 = 420 m/s. The relative velocity has angle —40° as it leaves the rotor. The blade-
loading factor is 1.6. (a) Determine the exit angle of the flow leaving the stator and the 
angle of the relative velocity as it enters the rotor. Determine the degree of reaction, (b) 
For the conditions in part (a), calculate the flow exit angle and the angle of the relative 
velocity entering the rotor, (c) Calculate the stagnation pressure losses across the stator and 
the rotor using Ainley-Mathiesen correlations. Take the space to axial chord ratio equal 
to s/cx = 0.75 and assume that the maximum thickness-to-chord ratio is t/c = 0.22. (d) 
Determine the stagnation pressure loss across the stator, assuming the inlet conditions are 
TQi = 1100 K, and p01 = 380 kPa, and the velocity after the stator is V2 = 420 m/s. 



CHAPTER 7 

AXIAL COMPRESSORS 

In Chapter 4 it was pointed out that axial compressors are well suited for high flow rates 
and centrifugal machines are used when a large pressure rise is needed at a relatively low 
flow rate. To obtain the high flow rate, gas enters the compressor at a large radius. The gas 
is often atmospheric air and as it is compressed, it becomes denser and the area is reduced 
from stage to stage, often in such a way that the axial velocity remains constant. As in 
axial turbines, this may accomplished keeping the mean radius constant and by reducing 
the casing radius and increasing the hub radius. In jet engines high pressure ratios are 
obtained by pairing one multistage compressor with a turbine sufficiently powerful to turn 
that compressor. This arrangement of a turbine and compressor running on the same shaft 
is called a spool. A second spool consisting of intermediate-pressure (IP) compressor and 
turbine is then configured with a compressor in front of, and a turbine behind, the central 
high-pressure (HP) spool. The shaft of the IP spool is hollow and concentric with that 
of the HP spool. These high and intermediate pressure spools serve as gas generators to 
provide a flow to a low-pressure (LP) turbine that drives the fan in a turbofan jet aircraft or 
a generator for electricity production in a power plant [64]. 

The larger IP compressor turns at a lower speed than the HP spool in order to keep 
the blade speed sufficiently low to ensure that compressibility effects do not deteriorate 
the performance of the machine. In a typical spool one turbine stage drives six or seven 
compressor stages. The stage pressure ratio has increased with improved designs, reaching 
1.3 and 1.4 in modern jet engine core compressors [64]. 

Pipeline compressors are often driven by a power turbine that uses a jet engine spool as 
the gas generator. Alternatively, a diesel engine may provide the power to the compressor. 
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An industrial compressor manufactured by MAN Diesel & Turbo SE in Germany is shown 
in Figure 7.1. It has 14 axial stages and one centrifugal compressor stage with shrouded 
blades. 

Figure 7.1 A 14-stage axial compressor with a single centrifugal stage. (Photo courtesy MAN 
Diesel & Turbo SE.) 

The first section of this chapter is on the stage analysis of axial compressors. The theory 
follows closely that discussed in the previous chapter for axial turbines. Then empirical 
methods for calculation the flow deflection across the stator and rotor are introduced. 
After that a semiempirical method for allowable diffusion limit is discussed. Too much 
diffusion leads to separation of boundary layers, which may be catastrophic, with complete 
deterioration of the compressor performance. Next, the efficiency of a compressor stage is 
defined, followed by methods to calculate stagnation pressure losses. Three-dimensional 
effects will receive mention as well. Once the stagnation pressure losses have been related to 
flow angles, reaction, blade loading, and flow coefficient, an estimate of the stage efficiency 
can be obtained. The task of a compressor engineer is to use this information to design a 
well-performing multistage axial compressor. 

7.1 COMPRESSOR STAGE ANALYSIS 

A compressor stage consists of a rotor that is followed by a stator. In contrast to flow in 
turbines, in which pressure decreases in the direction of the flow, in compressors flow is 
against an adverse pressure gradient. The blade-loading coefficient is kept fairly low in 
order to prevent separation, with design range 0.35 <ip< 0.5. As a result, the amount of 
turning is about 20° and does not exceed 45° [19]. A typical range for the flow coefficient 
is 0.4 < <fi < 0.7. If the flow is drawn into the compressor directly from an atmosphere, it 
enters the first stage axially. However, a set of inlet guidevanes may be used to change the 
flow angle cx\ to the first stage to a small positive value [18]. 
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7.1.1 Stage temperature and pressure rise 
Figure 7.2 shows a typical compressor stage. Since the rotor now precedes the stator, the 
inlet to the rotor is station 1 and its outlet is station 2. The outlet from the stator is station 3 
and for a repeating stage the flow angles and velocity magnitudes there are equal to those 
at the inlet to the rotor. 

Figure 7.2 A typical axial compressor stage. 

Work done by the blades is 
w = U(Vu2~Vul) 

or 

(7.1) 

w = ^02 — /ioi = UVX (tan a2 — t ana j ) = UVx(t&n /32 — tan/3i) 
With w = cp(T03 — T0i), this can also expressed in the form 

w AT0 UVX 

CpToi foi C-nTl p-tOl 
-(tan/32 — tan/3i) 

which gives the nondimensional stagnation temperature rise. From the definition of stage 
efficiency 

TQ3S ~ T0i 

T03 — TQI 

the stage pressure ratio can be written as 

P03 

P01 
l + %t 

AT0 

to i 

7/ (7 -1) 

The stage temperature rise can also be written in the form 

AT0 

Toi 
U V2 

(7-l)TT-f-(tan/32-tan/3i) 
Vx C01 

For axial entry, Vx is the inlet velocity. In terms of the flow coefficient and stagnation Mach 
number, defined as 

Vx C0l 
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the temperature rise takes the form 

^ = ( 7 - l ) ^ ( t a n / 3 2 - t a n A ) 
J-oi 9 

A typical inlet velocity is Vx = 150 m / s , and an inlet stagnation temperature is TQI 
300 K. The stagnation Mach number is therefore 

M 0 1 = ^ = , 1 5 ° = 0 . 4 3 2 
coi V l . 4 - 2 8 7 - 3 0 0 

The actual Mach number is obtained by noting that 

Vx coi ,,,. /Thi %/r (^ , 7 - 1 , ^ 1/2 

Ml = - ^ - ^ = M 0 i W ^ - = M 0 i 1 + - ^ - M j * 
coi ci V Ti V 2 

so that 
Mi , M0i 

M0i — , = and Mi 
1 + V M | V1 " V^oi 

Hence for this value of the stagnation Mach number, M i = 0.440. For a flow coefficient 
</> = 0.56 (and axial entry), the relative velocity is at an angle 

If the relative velocity is turned by 12°, the exit flow angle is fa — —48.75°. With these 
values, nondimensional stagnation temperature rise is 

A7-1 M 2 

— ± = ( 7 - l ) - f ( t a n / 3 2 - t a n / 3 1 ) 

0 4-0 4322 

= . (tan(-48.75°) - tan(-60.75°)) = 0.086 
u.oo 

so that the actual stagnation temperature rise is ATQ = 25.8°. Assuming a stage efficiency 
r)s = 0.9, the stage pressure rise is 

— = (1 + 0.9 • 0.086)3,5 = 1.30 
Poi 

This falls into the typical range of 1.3 - 1.4 for core compressors. 
The relative Mach number may be quite high at the casing, owing to the large magnitude 

of the relative velocity there. With K = r\Jrc the blade speed at the casing is Uc = 
2C//(1 + K ) . Hence the relative flow angle, for K = 0.4, at the casing is 

fac — tan 1 

( l + «) 
and the relative mach number is 

t a n " ( i ^ L 5 6 ' = 6 8 - 6 ° 

Mi 0.44 
M1Rc = ±— = = 1.21 

cospic 0.365 

Hence the flow is supersonic (or transonic). As has been mentioned earlier, shock losses is 
transonic flows do not impose a heavy penalty on the performance of the machine and are 
therefore tolerable. 
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7.1.2 Analysis of a repeating stage 

Equation (7.1) for work can be rewritten in a nondimensional form by dividing both sides 
by U2, leading to 

tp = 0( tana 2 — tana i ) = (j>(ta,n(52 — tan/3i) (7.2) 

The reaction R is the ratio of the enthalpy increase across the rotor to that over the stage 

_ h2 - hi _ h3 - hi + h2 - h3 _ _ h3 - h2 

h3 -hi h3- hi h3 - hi 
The work done by the blades causes the static enthalpy and kinetic energy (as seen from 
Figure 7.2) to increase across the rotor. In the stator stagnation enthalpy remains constant, 
and the static enthalpy and, therefore also a pressure increases, are obtained by decreasing 
the kinetic energy. In a design in which the areas are adjusted to keep the axial flow 
constant, the reduction in kinetic energy and increase in pressure result from turning the 
flow toward its axis. A similar argument holds for the rotor, but now it is the stagnation 
enthalpy of the relative flow that is constant. Hence pressure is increased by turning the 
relative velocity toward the axis. The velocity vectors in Figure 7.2 show this turning. 
The amount of turning of the flow through the rotor and stator are quite mild. A large 
deflection could lead to rapid diffusion and likelihood of stalled blades. Since compression 
is obtained in both the stator and the rotor, intuition suggests that the reaction ratio ought 
to be fixed to a value close to 50% in a good design. But in the first two stages, at least, 
where density is low and blades long, reaction increases from the hub to the casing and the 
average reaction is made sufficiently large to ensure that the reaction at the hub is not too 
low. 

In the Figure 7.3 the thermodynamic states are displayed on a Mollier diagram. The 
distances that represent the absolute and relative kinetic energies are also shown. The 
relative stagnation enthalpy across the rotor remains constant at the value /IORI = hi + 
W2/2 = h2 + W2/2. The relative Mach number and the relative stagnation temperature 
are related by 

T 2 R 

and the corresponding stagnation pressure and density are 

POR = /TOR V 7 ^ ^ POR = / T O R V / ( 7 _ 1 ) 

P \T ) P \T ) 

The loss of stagnation pressure across the rotor is given by PORI — PoR2- Across the stator 
the loss isp02 — Po3-

For the stator /102 = ̂ 03 and therefore 

h2 + \v2
2 = h3 + \v2 or h3-h* = ±V2-\v2 

Since V2 — V2
2 + V2

2 and V3 — V2
3 + V2

3 and the axial velocity Vx is constant 

h3-h2 = -{V2
2 - V2

3) = -V2(Un2 a2 - tan2 a3) 
For normal stage V\ = V3 and foo3 — ^01 = h3 ~ hi. Since no work is done by the stator, 
across a stage 

w = h03 - h0i = h3 - hi = tpU2 
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Figure 7.3 A Mollier diagram for an axial compressor stage. 

Using these equations the reaction ratio, with a\ = a^, may be expressed as 

V^ (tan2 a2 — tan2 a.\) 
~ ~ ~2 Whp 

Substituting tp from Eq. (7.2) into this gives 

R = 1 — -</>(tana2 + t ana i ) 

Eliminating next oti from this, with the help of Eq. (7.2), yields 

i) = 2(1 - i ? - 0 t a n a i ) 

i? = 1 — ——(tan2 a.2 — tan2 a i ) 

(7.3) 

(7.4) 

Equations (7.2) - (7.4) are identical to Eqs. (6.5), (6.8), and (6.9) for turbines, provided a.\ 
is replaced by 0̂ 3. Hence the flow angles for the stator can be calculated from 

t a n a 
l-R-ip/2 

t an 0:2 
l-R + xp/2 

(7.5) 

Similarly, for the rotor, the flow angles can be determined from 

tan/3i 
R + ip/2 

tan/32 
R-ip/2 

(7.6) 

In these four equations there are seven variables. Thus, once three have been specified, the 
other four can be determined. For example, specifying R, tp, and <p>, it is easy to obtain the 
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flow angles. Suggested design ranges for these have already been mentioned. The situation 
changes if the axial velocity is not constant because then two flow coefficients need to be 
introduced. Equations (7.5) and (7.6) no longer hold, and the angles must be calculated 
using basic relations from velocity diagrams and definitions of blade-loading coefficient 
and reaction. Similarly, fundamental definitions need to be used if the flow angles entering 
and leaving are not the same. 

There are two situations of particular interest. First, for a 50% normal reaction stage, 
these equations show that 

tancti = — tan/?2 a\ = —02 

tan OL2 = — tan /3i a2 = ~Pi 

and the velocity triangles are symmetric. Second, from Eq. (7.4) it is seen that for axial 
entry, with a>\ = 0, the blade-loading coefficient is related to reaction by ip — 2(1 - R) 
and thus cannot be specified independently of the reaction. If the loading coefficient is to 
be in the range 0.35 < tp < 0.5, the stage would have to be designed for a reaction greater 
than 50%. But if the flow enters the stator at a small positive angle, then the blade loading 
can also be reduced by reducing the flow coefficient. The calculations for this situation are 
illustrated in the following example. 

■ EXAMPLE 7.1 

A normal compressor stage is designed for an inlet flow angle a\ = 15.8°, reaction 
R — 0.63, and the flow coefficient <f> = 0.6. (a) Find the blade-loading factor, (b) 
Determine the inlet and exit flow angles of the relative velocity to the rotor and the 
inlet flow angle to the stator. 

Solution: (a) The value 

ip = 2(1 - R - </>tanai) = 2(1 - 0.63 - 0.6tan(15.8°)) = 0.4 

for a blade loading coefficient falls into a typical range. 
(b) The flow angles are 

+ _ 1 / l - J R + ^ / 2 \ _x / l - 0 . 6 3 + 0.2\ AOKAO a2 = tan { j = tan { - j = 43.54 

1f-R~i>/2\ , /-0.63-0.2\ r ,1„0 

*=tan (—* ) = tan I o.6 ) = -5414 

lf-R + ^/2)\ , f-0.63 + 0.2\ „„„_ 
h = tan- ( — f t l ) = tan- ( Q 6 ) = -35.61° 

The rotor turns the relative velocity by A/3 = j32 — Pi = 18.53°, and the stator 
turns the flow by Aa = 27.74°. These are also in the acceptable range. The velocity 
triangles in Figure 7.2 were drawn to have these angular values. A similar calculation 
shows that for a 50% reaction the blade-loading coefficient would increase to 0.66 
and the amount of turning would be 38.34° in both the stator and the rotor. a 

In order to keep the diffusion low, a flow deflection of only 20° is typically used across the 
compressor blades [18]. A large deflection would lead to a steep pressure rise and possible 
separation of the boundary layer. A simple criterion, developed by de Haller, may be used 
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to check whether the flow diffuses excessively [20]. He suggested that the ratios Vi/V2 
and W2/W1 should be kept above 0.72. These ratios can be expressed in terms of the flow 
angles, and for a normal stage they give the following conditions: 

£ = ^ > 0 . 7 2 ^ = ^ > 0 . 7 2 
V2 cosai W\ cosp2 

In the foregoing example when R = 0.63 

Vi _ cosa2 _ cos(43.54°) _ „ ? , W2 _ cos ft _ cos(-54.14°) _ „ ? 9 

V2 ~ cosai ~ cos(15.80°) ~ ' w[ ~ cos/32 ~ cos(-35.63°) ~~ 

so the de Haller criterion is satisfied. If the reaction is reduced to R = 0.5, then for both 
the rotor and the stator, these ratios are 

cosa2 _ cos(54.14°) _ 
cosai cos(15.80°) 

and now the de Haller criterion is violated. On the basis of this comparison the higher 
reaction keeps the diffusion within acceptable limits. 

It has been mentioned that there is another reason why the reaction should be relatively 
large for the first two stages. Since the gas density there is low, to keep the axial velocity 
constant through the compressor, a large area and thus long blades are needed. This causes 
reaction to vary greatly from the blade root to its tip. To see this, consider again the equation 

w = U(Vu2 -Vul) = n(rVu2 - rVul) 

If the tangential velocity distribution is given by free vortex flow for which rVu is constant, 
then each blade section does the same amount of work. For a blading of this kind the 
equation for reaction 

R = 1 — - 0 ( t a n a 2 + t ana i ) 

may also be written as 

D , Vu2 + K l , C2+C1 
R=1" 2U =l~^MT 

where C\ = rVu\ and C2 = rVu2. Since U = rUm/rm, in which subscript m designates 
a condition at the mean radius, for this flow the reaction takes the form 

R = l - ~ 

which shows that the reaction is low at the hub and increases along the blades. Thus, if the 
reaction at the mean radius is to be 50%, the low reaction at the hub causes a large loading 
and greater deflection of the flow. This leads to greater diffusion. 

If guidevanes are absent, the flow enters the stage axially. Hence a.\ = 0 and Eq. (7.4) 
reduces to tp = 2(1 — R). When this is substituted into Eqs. (7.5) and (7.6) the following 
relations are obtained: 

2(1 -R) 1 „ 2R-1 
tan«2 = 7 tanpi = ta,np2 = 

<P <P <t> 

Two of the parameters could now be assigned values and the rest calculated from these 
equations. 
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Another way to proceed is to use the de Haller criterion for the rotor flow angles and set 

cos ft 4>2 + {2R-l)2 
cos ft y q>2 + 1 

in which D R = 0.72, or slightly larger than this. This method of designing a stage is 
discussed in the next example. 

■ EXAMPLE 7.2 

A compressor stage is to be designed for axial entry and a reaction R = 0.82. Use 
the de Haller criterion to fix the flow angles for the stage design. 

Solution: With a\ = 0 and R = 0.82, the blade loading coefficient is ip = 0.36. 
Using the de Haller criterion, with DR = 0.72, for limiting the amount of diffusion 
in the rotor, the flow coefficient can be solved from Eq. (7.7). This yields 

(2R - 1)2 _ /0.722 - (2 • 0.82 - If = Q ^ 
1 - Dl V 1 - 0.722 

The remaining calculations give 

_, [2-2R\ , / 0.36 \ o „ 1 i l 0 
a 2 = t a n ( - r ~ r t a n (04753)=37-14 

A = t a n"1(4)= t a n"1(-oi53)=- 6 4 - 5 8 0 

Thus the de Haller criterion for the stator becomes 

Ds = cosas = coS(37.14°) = Q7Q7 

coscti cos(0°) 

and for the rotor it is 

cos ft cos(-64.58°) „ „„„ 
rj "-1 v /_ n yon 

R ~ cos ft ~ cos(-53.40°) ~ 
in agreement with its specified value. The deflection across the stator is Aa = 37.14°, 
and across the rotor it is A,3 = -53.40° + 64.58° = 11.18°. B 

The velocity triangles of the foregoing example, drawn with U as a common side, are shown 
in Figure 7.4. The example shows that even if the flow turns by greater amount through the 
stator, it diffuses less than in the rotor. The reason is that the turning takes place at a low 
mean value of a. In fact, were the flow to turn from, say, —10° to 10°, there would be no 
diffusion at all, because the magnitude of the absolute velocity would be the same before 
and after the stator. Thus it is the higher stagger of the rotor that leads to large diffusion 
even at low deflection. For this reason, the de Haller criterion needs to be checked. 

The deflection, represented by the change in the swirl velocity, is shown as the vertical 
distance in the top left of the diagram. Dividing it by the blade speed gives the loading 
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Figure 7.4 Velocity triangles on a common base for an axial compressor stage. 

coefficient. The ratio of the horizontal Vx to blade speed is the flow coefficient. Thus a 
glance at the horizontal width of the triangles and comparison with the blade speed shows 
that the flow coefficient is slightly less than 0.5. The extents of turning across the stator 
and rotor are shown as angles A a and A/3, respectively. The decrease in magnitude of the 
velocity across the stator is slightly larger than the length of the side opposite to the angle 
A/3 in the triangle with sides W\ and W2. Similarly, the length of the side opposite to the 
angle A a in the triangle with V\ and V2 as its sides indicates the extent of reduction of 
the relative velocity. Hence inspection confirms that even slight turning, may lead to large 
diffusion when the blades are highly staggered. 

7.2 DESIGN DEFLECTION 

Figure 7.5 shows typical results from experiments carried out in a cascade tunnel [37]. 
It shows the deflection and losses from irreversibilities for a given blade as a function of 
incidence. The incidence is i = a2 — \ 2 , in which \ 2 is the metal angle. The losses increase 
with both positive and negative incidence, but there is a large range of incidence for which 
the losses are quite low. The deflection increases with incidence up to the stalling incidence 
es, at which the maximum deflection is obtained. At this value losses have reached about 
twice their minimum value. This correspondence is not exact, but since the losses increase 
rapidly beyond this, a stage is designed for a nominal deflection of e* = 0.8ers, which also 
corresponds to an incidence at which the loss is near its minimum. As shown in the figure, 
at this condition the incidence is slightly negative. But for another cascade it may be zero, 
or slightly positive. The loss coefficients have been defined as 

WR 
h2 - h2 

2 1 

ha ~ h 
U)S 

3s 
I T / 2 
2 V2 
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The upstream velocity is now the reference velocity. The relationship between these and 
those based on the downstream velocity is 

WR = CR 
COS2 / ? 2 

cos2 /3i 
COS tti 

WS = CS 2 
C O S z OL<i 
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Figure 7.5 Mean deflection and stagnation loss coefficient as a function of incidence. (Drawn after 
Howell [37].) 

The conclusion from a large number of experiments is that the nominal deflection is 
mainly a function the gas outlet angle and the space-chord ratio of the cascade. The camber 
and incidence are additive, and both are responsible for the amount of deflection of the 
flow. For the cascade shown in Figure 7.5, the nominal deflection is 30° with incidence at 
—4°. Thus the camber is quite low, making the blades rather flat. From such experiments a 
universal correlation, shown in Figure 7.6, that relates the deflection to the exit angle with 
solidity a = c/s as a parameter was developed by Howell [37]. Solidity is the ratio of the 
length of the blade chord to the spacing of the blades. It increases with reduced spacing, 
and the term suggests that in this case the solid blades fill the flow annulus more than the 
open passages. As the solidity increases the flow follows the blades better. 

A curve fit for the nominal deflection, suitable for computer calculations, is 

e* = (-3.68cr2+17.2cr+4.3) 5 ^ ( 1 2 . ^ - 5 4 . 3 . ■ «"»£- 8.7cr2+36.4cr + 6.1 

(7.8) 
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For example, for a cascade with a = 1.2, if the relative velocity leaves the rotor at angle 
ct3 = 30°, the nominal deflection is e* = 21.92°. For a cascade with solidity a = | and 
the flow leaving the stator at a 3 = —10°, the nominal deflection is e* = 30.7°. For given 
e* and a^, this equation is quadratic in er. Its solution has an extraneous root with a value 
greater than 3 and it needs to be rejected. 

This equation can also be used to calculate the deflection across a rotor by replacing a^ 
with — 02- The two examples worked out earlier in this chapter show that the deflection 
is larger across the stator than across rotor and that the angle at which the gas leaves the 
stator is not large. The flow over the rotor is turned less, and the absolute value of its exit 
angle is quite large. These are consistent with the results shown in Figure 7.6. 
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Figure 7.6 Nominal deflection as a function of gas outlet angle and solidity. Drawn after Howell 
[37]. 

An alternative to Eq. (7.8) is the tangent difference formula, which for the rotor is 

and a similar equation 

tan 02 — tan /3jf 

tan a? — tan aj 

1.55 
1 + 1.5/CTR 

1.55 
1 + 1.5/ag 

(7.9) 

(7.10) 

holds for a stator. They provide a quick way to calculate the nominal deflection and fit the 
data well over most of the outlet angles. At low deflections they underpredict the deflection, 
by about 3° at a^ = —10° and low solidity. Indeed, at a% = —10° and a = | the tangent 
difference formula gives s* = 26.7°, whereas Eq. (7.8) yields 30.7°. Typically the flow 
does not leave the stator at a negative angle so that such exit angles are just outside the 
range of usual designs. 

For a normal stage with constant axial velocity the nondimensional equation for work is 

ip = 0(tan Q!2 — tan a\) = 0(tan /?2 - tan Pi) 
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The tangent difference formulas now show that the solidity for the rotor is the same as that 
for the stator, as the design is based on nominal conditions. It is determined by solving 

ip* 1.55 
<p* 1 + 1.5/cr 

for a. In order to prevent resonance vibrations, the number of blades in the rotor is slightly 
different from the number of stator blades. Thus the spacing is changed, but the same 
solidity can still be achieved by changing the length of the chord. 

■ EXAMPLE 7.3 

A normal compressor stage is designed to have the flow leave the stator at the angle 
ot\ = 12.60°. Assume that the optimum design condition for least losses is achieved 
when the reaction is R = 0.68, and the flow coefficient 0 = 0.56. For a normal 
stage, find the blade loading factor, and the optimum value for the solidity. Check 
also that the de Haller criterion is satisfied. 

Solution: The loading coefficient is first determined from 

ip = 2(l-R- 0 t a n a i ) = 2(1 - 0.68 - 0.56tan(12.6°)) = 0.39 

and the flow angles are 

0,-«m-.(I^)-^(I^±!^)-^ 

A — - ( ^ ) — - ■ ( ^ ^ ) — 
! f-R + ip/2)\ ! / - 0 . 6 8 +0.195 \ 

A = tan"1 ( — ^ ) = tan"1 ( Q , 5 6 j = "40.90° 

The deflections are therefore 

£s = 30.00° £R = 16.48° 

The diffusion factors are 
cosQ2 = cos(42.60°) = 7 M cos/3i = cos(-57.38°) = 

cos en cos(12.60°) ' cos/32 cos(-40.90°) 
so that the diffusion in the rotor is marginally too high. If the solidity is calculated 
from the tangent difference formula, it yields 

1.5 r/> 
a= — = 1.22 

1 . 5 5 0 - ^ 

In actual machines the values of (f>, ip, and R vary across the span, owing to the change 
in the blade velocity with the radius, and ip tends to be high near the hub and low near the 
casing. The reaction is low near the hub and high near the casing, as R moves in opposite 
direction to the loading coefficient. The blade angles are adjusted to counteract the natural 
tendency that causes the values to change so that the loading can be kept more uniform. A 
50% reaction ratio is common, and the blade-loading coefficient is typically in the range 
0.3 < ip < 0.45. 
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7.2.1 Compressor performance map 

Compressor blades tend to be quite thin, with maximum thickness-to-chord ratio of 5%. If 
the solidity is high, the blades guide the flow well. An operating condition in which the 
flow coefficient, <po, is larger than its design value, <pd, is shown in Figure 7.7. It is seen that 
an increase in the flow rate causes a decrease in the blade-loading coefficient. This effect 
becomes amplified downstream as the density does not change according to design, and the 
difference cumulates from stage to stage. This subject is discussed in Cumpsty [18], who 
shows that the last stage is one that is likely to choke. Similarly, examination of Figure 7.7 
shows that if the flow coefficient decreases, the blade loading coefficient increases. The 
blades now become susceptible to stall, and the last stage controls the stall margin. 

\ \ Slope = -(tana. - tanp ) 

\ Choking 

Figure 7.7 Normalized velocity triangles at design and off-design operation and their performance 
characteristics. 

This reasoning can be carried out analytically be rewriting the Euler equation of turbo-
machinery 

w = U(Vu2-Vul) 
into a different form. Substituting 

vu2 = u + wu2 

into the previous equation gives 

w = U(U + Wu2 - Vul) = U[U - Vx(tanai - t<m/32)} 

and dividing next each term by U2 gives 

ip = 1 — </>(tanofi — t&n/32) 

For a normal stage the exit angle from the stator is a\, and the exit angle of the relative 
velocity from the rotor is ft2. These then tend to remain constant even at off-design 
conditions. Furthermore, the latter angle is'usually negative so that the term in parentheses 
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is positive. With the trigonometric factors constant, this means that increasing the flow 
coefficient decreases the loading. 

This equation gives the compressor characteristic for an ideal compressor. It is a straight 
line with a negative slope when the blade-loading coefficient is plotted against the flow 
coefficient. This is shown in Figure 7.7b. The actual compressor characteristic is also 
shown, and the differences away from the design point are caused by irreversibilites. Far 
away from the design point to the left, the blades stall and at even lower flow rates (smaller 
4>) the compressor may experience surge. This means that the flow can actually reverse its 
direction and flow out the front of the compressor. For this reason compressors are operated 
some distance away from the stall line. To the right of the design point irreversibilities 
again cause deviation from the theoretical curve, and as the flow rate increases, the blade 
row will choke. 

7.3 RADIAL EQUILIBRIUM 

The mean line analysis on which most of the calculations in this text are based ignores the 
cross-stream variation in the flow. In axial-flow machines this means that only the influence 
of the blade speed, that increases with radius, is taken into account. Today it is possible to 
carry out calculations by CFD methods to resolve the three-dimensional aspects of the flow. 
However, as was seen in the discussion of axial turbines, the elementary radial equilibrium 
theory advances the understanding on how the important variables, such as the reaction and 
the loading, vary from the hub to the casing. There (and in Appendix A) it was shown that 
the principal equation to be solved is 

^=r*+l^+^+e a u ) 
dr ar dr dr r 

The first term on the right represents the entropy variation in the radial direction. Owing to 
the entropy production in the endwall boundary layers, tip vortices, and possible shocks, 
this is likely to be important near the walls. However, if the flow mixes well in the radial 
direction, entropy gradients diminish and it may be reasonable to neglect this term. Of 
course, irreversibilities would still cause entropy to increase in the downstream direction, 
even if it does not have radial gradients. 

The stagnation enthalpy is uniform at the entrance to the first row of rotor blades, and if 
every blade section does an equal amount of work on the flow, it will remain uniform even 
if the stagnation enthalpy increases in the direction of the stream. As a consequence, the 
term on the left side of this equation may be neglected, and the equation reduces to 

V« + n^ + !2=0 (7.12) 
dr dr r 

This is a relationship between the velocity components Vu and Vx. If the radial variation 
of one of them is assumed, the variation of the other is obtained by solving this equation. 
For example, as was seen in the discussion of axial turbines, if the axial component Vx is 
assumed to be uniform, then the radial component must satisfy the equation 

dVu dr 

the solution of which is rVu = constant. This is the free vortex velocity distribution. 
Before and after a row of blades the tangential velocity is 

v - Cl v - C2 

r r 
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It was observed earlier that the expression for work is now 

w = U(Vu2 - K i ) = rfi ( ^ - ^ ) = n(c2 - Cl) 

so that the work is independent of radius. This justifies dropping the term dho/dr in 
Eq.(7.11). 

7.3.1 Modified free vortex velocity distribution 

The free vortex velocity distribution is a special case of the family of distributions 

Vul=crn-- Vu2=crn+d (7.13) 
r r 

in which n is a parameter. Regardless of the value of n, each member of this family has a 
velocity distribution for which each blade section does an equal amount of work, as seen 
from 

w = U(Vu2 - Vul) = nr (- + -)= 2nd 

With the mean radius rm the same at the inlet and the exit, a nondimensional radius may be 
introduced as y = r/rm. The tangential velocity components for a free vortex distribution 
with n = — 1 may now be written as 

a b a — b a b a + b 
Vui = = Vu2 = —I— = 

y y y y y y 

When the Eq. (7.12) for radial'equilibrium is recast into the form 

T/ dVx Vu d 
ay y dy 

it shows that for this velocity distribution RHS vanishes, as the substitution shows 

T r dVx a — b d(a — b) 
Vx —— = —7, ; = 0 Vx — constant 

dy yz dy 

Clearly, the same result is obtained for the outlet, as only the sign of b needs to be changed 
to describe the tangential velocity there. This reduced equation now shows that the axial 
velocity is constant along the span of the blade, but it does not follow that it has the same 
constant value before and after the blade row. The axial velocities can be made the same 
by proper taper of the flow channel. 

The reaction is given by 

R=l- - — ( tana2 + t a n a 2 ) = 1 - - — 
2 U 2 Umy 

Here U = rfl = rUm/rm, or U = Umy was used. Since Vu2 + Vu\ = 2a/y, the reaction 
is 

R = l a 

Umy2 

If Rm is the reaction at the mean radius y = 1, then a = Um{\ — Rm) and the reaction can 
be written as 

R(y) = 1 - (1 - Rm) \ 
y 
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Figure 7.8 Reaction as a function of the radial position on the blade for a free vortex velocity 
distribution for K = 0.4. 

The parameter 6 can be related to the work done. From 

U{VX l»2 Vul) = 2Umb 

J-2 and b = w/2Um = ^ipmUm, in which ipm = w/U^ 
Another way to represent the data is to introduce a nondimensional radial coordinate 

z = (r - rh)/(rc - r h) , so that 

K = l + K1 
1 - K 2 1 - K 

in which K = rh/rc. Clearly, the hub is now at z = 0 and the casing, at z = 1. The 
variation in the reaction as a function of this variable is shown in Figure 7.8, for the hub 
to tip radius K = 0.4 and for values of the mean reaction in the range 0.5 < Rm < 0.8. 
The graphs show that increasing the mean reaction lifts the negative reaction at the hub to 
a positive value. 

Since the axial velocity is constant, the mean flow angles are given by Eqs. (7.5) and 
(7.6) for specified values of reaction, flow coefficient, and blade-loading coefficient. In this 
flow the flow coefficient and blade-loading coefficient vary along the blade only because 
the blade speed varies. Their local values, and that of the reaction, are given by 

y 
■<!> 

Ipn 
R = (1 — Rm) -^ 

The angles are then obtained from 

Qi = tan 1 (l-R-tp/2 
tan 

R + ^/2" 
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Figure 7.9 Flow angles as a function of the radial position on the blade for a free vortex velocity 
distribution for a stage with K = 0.6. At the mean radius i?m = 0.5, and a\m = 30°, /3 l m = —50°, 
Q 2 m = 50° and /32m = -50° , with <£m = 0.565 and tpm = 0.347. 

a 2 = tan 
l - R + ^/2 

P2 t an 
R jP/2\ 

$ ) 
They are shown in Figure 7.9 for the situation for which Rm = 0.5, a\m = 30°, j3\m = 
—50°, a2m = —50°, and /3 2 m = —30°. This stage is a typical one deeper into the 
compressor, where blades are shorter {K = 0.6 ) and reaction can be kept at 50% without 
becoming negative at the hub. In fact, the reaction at the hub is i?h = 0.111, and the blade-
loading coefficient and flow coefficient there are tph = 0.617 and 4>h = 0.754. The relative 
flow undergoes a large deflection at the hub of the rotor, as the flow angle changes by 43.8°. 
Furthermore, as the hub is approached, /32 changes sign, and at (r — r h ) / ( r c — rh) = 0.146 
the relative flow is exactly in the axial direction. 

Since the axial velocity is independent of the radius in the free vortex blading, 

Vi cos a\ = Vim cos a i m W2 cos /32 = W2m cos /3 2 m 

and dividing the first equation by CQI and the second by CQ2 gives 

M, 01 M, cos a i m 
0 1 m ' M„2 R = Mi 

c o s a i 

The stagnation Mach numbers can be calculated from 

Mim 

02mR/ 
COS / 3 2 n 

COS/32 

M< Olr 
y/l + ^M^ 

M)2mR 
M2mR 

1 + 2 J U 2 m R 

The absolute and relative Mach numbers are then obtained from 
Moi , , M 0 2 R Mi 

1 2 J W 0 1 

M 2 R 

1 7 - 1 M2 

2 i v J 0 2 R 
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Figure 7.10 Radial variation of the Mach number as a function of radial position on the blade at 
the entrance to the stator and the relative Mach number at the entrance to the rotor. In both cases 
the respective Mach numbers were 0.65 at the mean radius. The other parameters are the same as in 
Figure 7.9. 

Figure 7.10 shows that the relative Mach number has a minimum near the hub, where the 
relative velocity changes sign. It rises rapidly to a very high value at the shroud. For this 
reason its design value at the mean radius cannot be very large. The stagnation temperature 
increases across the rotor, and so does its speed of sound. This reduces the Mach number 
as the flow enters the stator. This was not taken into account in the graphs shown, for both 
Mach numbers were chosen to have the value 0.65 at the mean radius. 

7.3.2 Velocity distribution with zero-power exponent 

Another member of the velocity profiles given by Eq. (7.13) is 

Vui=a Vu2 = a + -
y y 

for which n = 0. At the inlet, the radial equilibrium equation in this case reduces to 

V, dy y y2Jdy 
-(ay-b) a2 ab 

y y2 

Integrating both sides from y = 1 to some arbitrary location gives 

V\ - V\ 2 / 1 
a In y + ab [ 1 

y 
Corresponding expression at the exit is obtained by changing the sign of b. It is 

Vz — V2 ., , 1 
a In y — ab \ 1 

V 
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The axial velocity now depends on the radial coordinate. For this reason the reaction is 
calculated from 

R = 1 h3-h2 V2 - V2
 = V2

2 - Vx\ + V2
2 - V2, 

hn-fn 2w 2U(Vu2~Vul) 

If the taper is set such that the axial velocity at the mean radius is the same at the inlet and 
the outlet, then subtracting the two equations for the axial velocity gives 

Vx\ ~ Vli = 4a6 ( - - 1 
\y 

and the sum and difference terms in V2
2 — V2

X
 = (Yu2 — KuXK^ + Ku) are 

26 
Vu2 -Vul = — Vu2 + K i = 2a 

V 
Hence, with U = Umy, the reaction may be written as 

and, with the reaction equal to Rm at y = 1, the parameter a is obtained from the expression 
a- = Um(Rm — 1). The reaction depends on the radius as 

R(y) = 1 + (1 - Rm) (1 - -
V V 

As shown above, work done is uniform and b — \tj)Um. 

7.3.3 Velocity distribution with first-power exponent 

A velocity distribution with n = 1 in Eq. (7.13) can be expressed as 

b b 
K i = ay Vu2 = ay+-

y y 
The radial equilibrium equation at the inlet now reduces to the form 

dVx ( b \ d / 2 2ab 2 

Integrating this from y = 1 to an arbitrary location gives 

Vxi - K2im = 4a61ny - 2a2 (y2 - 1) 

and the same operations at the exit yield 

V?2 ~ V2
2m = -iablny - 2a2(y2 - 1) 

The reaction is calculated from 

h3 - h2 V2 - V2 V2
2 - Vx\ + V2

2 - V2
X 

h3-h! 2w 2U(Vu2-Vul) 
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Figure 7.11 Normalized axial velocities before and after the rotor and reaction as a function of the 
radial position on the blade for a first power velocity distribution, for <j>m = 0.55, rp = 0.18, Rm = 
0.7, and K = 0.4. 

Again, if the taper of the annulus is such that the velocities at the common mean radius are 
equal, then the difference of the squares of the axial velocities is 

V^-V^ = -8ablny 

and the difference and the sum of the swirl velocities are 

26 
Vu2 ~ Vul = 

y 

Hence the reaction may be written as 

R=l 

Vu2 + Vui = 2ay 

2a a 

With R = Rm at y = 1, the parameter a = Um(l — Rm). Similarly, b = \ipUm. The 
reaction, shown in Figure 7.11, can be written as 

R(y) = l-(l-Rm)(l-2\ny) 

Also shown are the axial velocities before and after the rotor. They are given by the 
expressions 

um 

V*2 
um 

= y/<f?m + 2(1 - Rm)^\ny - 2(1 - i?m)2(y2 - 1) 

y/fa - 2(1 - Rm)ipiny - 2(1 - Rm)2(y2 - 1) 

in which 4>m = Vxm/Um is the flow coefficient at the mean radius. 
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7.4 DIFFUSION FACTOR 

Earlier in this chapter the de Haller criterion was used as a criterion to ensure that the 
diffusion in the flow passages would not be strong enough to cause separation of the 
boundary layers. The adverse pressure gradient associated with diffusion is seen in Figure 
7.12, which shows a typical stator blade surface pressure measurement, plotted as a pressure 
coefficient Cp = (p — P2)/(po2 — P2) against the fractional distance along the chord for 
three different values of solidity a = c/s. The bottom branch of the curve gives the 
suction-side pressure distribution and the top branch, that for the pressure side of the blade. 
Under ideal conditions at low Mach number the spike in the pressure coefficient on the top 
branch should reach unity at the stagnation point located near the leading edge. From there 
the pressure falls as the flow accelerates to a location of maximum blade thickness followed 
by diffusion toward the trailing edge. Near the trailing edge the flow may accelerate slightly 
owing to its orientation and camber. On the suction side of the blade the negative spike 
is caused by the need for the flow to negotiate the blunt leading edge of the blade as it 
flows from the location of the stagnation point to the suction side. Pressure then increases 
sharply from the suction spike all the way to the trailing edge as the flow diffuses. This 
diffusion must be kept within acceptable limits. The difference in the value of pressure at 
any given chord location is a measure of the local loading on the blade and, as seen from 
Figure 7.12, the blade becomes unloaded as the trailing edge is approached. 

Since the blade force is obtained by integrating the pressure acting over the blade surface, 
the area inscribed by the curves represents the blade force normal to the chord. As the 
solidity increases, this force is reduced, but now with reduced spacing, more blades can be 
fitted to the rotor wheel to carry the load. Increased solidity lifts the value of the minimum 
pressure, with the result that the pressure gradient decreases. Therefore, the flow can be 
turned by a greater amount without danger of boundary-layer separation. 

A local diffusion factor is defined as 

,-. Vmax — V3 
Moc = v2 

in which ym a x is the velocity at the location of minimum pressure. This definition would be 
useful, if the profile shape were known and Vmax could be easily calculated. It can, in fact, 
be done quite readily with a computer code for inviscid flows. But before this became a 
routine task, an alternative was sought. Lieblein and Roudebush [51] suggested a diffusion 
factor of the form 

B f = ^ + ' ^ ! ( 7 . ,4) 
V2 la V2 

The first part is similar to the local diffusion factor, and the second part accounts for the 
amount of turning and the solidity of the blade row. Since reduced turning and higher 
solidity both contribute to lighter loading on the blades, diffusion is expected to diminish 
by both effects. The Lieblein diffusion factor for the stator can be expressed as 

COS Q!3 — COS Ct.2 1 
DFs = \--—(tano;2 — tana3)cosa2 (7-15) 

COS « 3 2<7s 

and for the rotor it takes the form 

cos p2 - cos Pi 1 
DFR= h -—(tan/?i - tan/32)cos/3i (7.16) 

cos P2 2<rR 
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Figure 7.12 Pressure coefficient for a cascade with different solidities. 

It is known that a boundary layers thicken faster in a flow with an adverse pressure gradient 
than when there is none. A relationship may be developed between diffusion and the 
boundary-layer thickness. Figure 7.13 is a plot of the diffusion factor as a function of the 
ratio of the momentum thickness of the boundary layer to the length of the chord 6/c. The 

0.06 

0.04 

0.02 

0.00 

Figure 7.13 Dependence of the momentum thickness of the boundary layer on diffusion factor. 
(Drawn after Lieblein and Roudebush [51].) 

curve begins its upward bend at the momentum thickness-to-chord ratio of about 0.007, 
and this corresponds to DF = 0.45. Thus values below these give good designs. For larger 
DF values the stagnation pressure losses grow appreciably. 
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Equations (7.15) and (7.16) are two additional equations among the design variables. In 
an earlier section it was shown that specifying the values for i?, tp, 4> fixes the flow angles. 
With the tangent difference formulas and the two diffusion factor formulas, three more 
equations are added, but solidity is the only new unknown. Hence in principle the designer 
has the freedom to choose only one of the parameters, such as reaction, or else violate 
either the tangent difference equation, or one of the diffusion factor equations. However, 
if the design is such that either DFs or DFR, or both are less than 0.42, then the tangent 
difference formula fixes the solidity. Thus the choice for the acceptable range of values of 
reaction, blade loading, and the flow coefficient to achieve the mild diffusion restricts the 
design parameter space. The typical design ranges 0.35 < ip < 0.5 and 0.4 < <p < 0.7 
reflect this. 

7.4.1 Momentum thickness of a boundary layer 

The momentum thickness of a boundary layer is related to the diffusion factor in Figure 
7.13. It and the displacement thickness are now discussed further. The latter is denoted by 
5* and is introduced by the expression 

S*V{ (V( - V(y))dy (7.17) 

in which Vf is the uniform velocity outside the boundary layer of thickness S. Clearly, this 
equation can be rewritten as 

V(y)dy = V{(5-6*) (7.18) 

and its interpretation is shown with the aid of Figure 7.14, in which the shadowed areas in 
parts (a) and (b) are equal according to Eq. (7.17). Figure 7.14b shows the blocking effect 
of the boundary layer; that is, the flow can be envisioned to have velocity Vf to the edge 
of S* and inside the layer to have zero velocity, as if the flow were completely blocked. 
Another way to say this is that if the wall were to be displaced by 5*, the same mass flow 
rate would exist in the inviscid flow as in a real flow without a displacement of the wall. 

(a) (b) (c) 

Figure 7.14 Illustration of displacement and momentum thickness. 

The momentum thickness 9 is defined by the equation 

9V{= / V(y)(V(-V(y))dy 
Jo 

(7.19) 
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This can be written as 

rS 
9V2 = V{ [ V(y)dy- f V2(y))dy = V{

2(6-6*)~ I V2(y))dy 
Jo Jo Jo 

and reduced to the form 

/ V2(y))dy = V2(S -6*-0) (7.20) 
Jo 

This is also illustrated in the Figure 7.14, and it shows that the momentum thickness 
contributes a further blockage. Because the integrand in Eqs. (7.18) and (7.20) vanishes 
beyond the boundary layer thickness, 5 can be replaced by the channel width L, in which 
case these become 

i-L 

V(y)dy = V{(L - 6*) (7.21) 
/o / ' 
Jo and 

/ V2(y))dy = V2(L-5* -9) (7.22) 
Jo 

Consider now the flow in a compressor cascade. Figure 7.15a shows two blades and 
boundary layers along them. As the boundary layers leave the blades, they form a wake 
behind the cascade. On the suction side the boundary layer is thicker than on the pressure 
side owing to the strongly decelerating flow there. Consider next the control volume in 
Figure 7.15b. The inflow boundary is at some location just before the trailing edge, and 
the outflow boundary is sufficiently far in the wake where mixing has made the velocity 
uniform. The side boundaries are streamlines that divide one flow channel from the next. 
Mass balance for this control volume gives 

m 

or 

[ PV(y)dy = pLV3 
Jo 

(L - S*)pV{ = LpV3 

in which m' is the mass flow rate per unit width. The displacement thickness 5* is that of 
the boundary layer on the suction side of the blade; the boundary layer along the pressure 
side has been ignored. Dividing through by L gives 

m 1 - - )pVt = pV3 (7.23) 
L V L, 

The x component of the momentum equation gives 

rL rL 
f pV2dy- f pV2(y)dy = (p-p3)L 

Jo Jo 

in which the shear stress has been neglected, as it is very small along the dividing streamlines 
in the wake and also small along the blade surfaces, which now account for a small fraction 
of the control surface. This can be expressed as 

PV2L - pVf
2(L -F-0) = (p- P3)L 
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Figure 7.15 Flow in the wake of a compressor cascade. 

Dividing through by L gives 

P - p3 = pvi -(^-j) pyi + ] W 

Adding the term pVf
2 / 2 to both sides, and subtracting pV£/2 from both sides, gives 

1 1 1 A* 1 f) 
P0~P03=P+ 2^f2 - (P3 + 2^32) = 2 ^ 3 2 - (1 " ^)P^f2 + 2 ^ + ZPVf2 
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Making use of Eq. (7.23) puts this into the form 

»-»»=Ki-T)a"7-G-T)',?+£'* 
Simplifying this gives 

P0-P03 (S_lY , ^ 
\Pv? \L) + L 

The stagnation pressure loss takes place mainly in the decelerating boundary layer and the 
wake, so that it is reasonable to take po = Po2- Also, the first term on the right is much 
smaller than the second one and can be neglected. Thus the stagnation pressure loss is 
related to the momentum boundary-layer thickness by 

P02 - P03 29 

Finally, Vf is approximately V3 and L 

P02 

hpv? 
= scos 

~P03 

«3> 

L 

so that 
20 

1 T ,2 - ( 7 - 2 4 ) 
|pVg scosa3 

The boundary-layer thickness on the pressure side of the blade was neglected in the analysis. 
If it is included, as it should, the only change is that the momentum thickness is now the 
sum of the momentum boundary-layer thicknesses on both sides of the blade. It is, in fact, 
this thickness that is shown in the experimental data relating it to the diffusion factor. If 
DF = 0.45 is taken as the design value then at this value, the momentum boundary-layer 
thickness is given as 9 = 0.007c, so that the stagnation pressure losses for the stator and 
rotor are 

P02 ~ P03 _ 0-014 as PQ\R-~PO2R _ 0-014 aR 

\pV$ cosa3 \pW2 cos/32 

The stagnation pressure losses and and their relation to stage efficiency are discussed further 
in the next section. 

7.5 EFFICIENCY AND LOSSES 

The various stagnation pressure losses in a compressor stage are shown in Figure 7.16. It 
dates from 1945, and the estimates reflect the way in which compressors were designed 
then. Today the design flow coefficient has been lowered to the range 0.4 < <\> < 0.7, and 
the losses are expected to be smaller as designs have improved. The data show that, owing 
to boundary-layer separation and blade stall, profile losses become a major loss component 
when a compressor is operated far from its design condition. Profile losses are associated 
with the boundary layers along the blades, and the annular losses come from the boundary 
layers along the endwalls of the flow annulus. Secondary flow arises from the interaction of 
the annulus boundary layers and the inviscid stream, which set up a circulation in the plane 
normal to the primary flow. Dissipation in the secondary flow accounts for these losses. 

7.5.1 Efficiency 

The stage efficiency is defined by 

ho3ss — ho\ , , , -. /l03 — ho3ss 

'to = T. u— s o t h a t 1 - %t = -r r— 
ft03 — ft01 "03 — ftoi 
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Figure 7.16 Losses in a typical compressor stage. (Drawn after Howell [37].) 

where the states are as shown in Figure 7.3. This can be written as 

^ 3 — ^ 3 s s 
1 -r]tt 

v;2 - v;2 

^3 v3ss 
2w 

The numerator of the first term on the right is 

^-3 — h3ss = /I3 — / l3 s + h,3s — Jl3ss 

From the definition of static enthalpy loss coefficient, the first of these can be written as 

1 
h3 - h3s = -CsV^ 

and the second term is 
h3s ~ h, 3ss L-p-L 3 CvTz* 1 

T3s 

Integrating the Gibbs equation along the constant-pressure lines p2 and p 3 between states 
with entropies si and s2 gives 

T"2s_ __ T3ss 

T2 ~ T3s 

so that the previous equation can be recast as 

^3s ^ 3 s s 
t 3 s (h2 - h2s) 

When written in terms of the static enthalpy loss coefficient, this becomes 

i3s — i^ss 
r2T3-1&W2-

The velocity term on the right in the expression for efficiency is 

V? - V? 
y 3 y 3ss 

2w 

v 3ss \ r 3 
V3

2 ) 2w 
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But is has been shown in Chapter 5 that M3ss = M3. Therefore V3
2
ss/V3

2 = T3ss/T3, and 
the expression for the efficiency now takes the form 

(sV3
2 + (RW2 

1 -%t 

2
T3s 

T2 
1 - | ) ^ 

1w 

The first and the last term have a common factor in V3, and they could be combined. 
However, for a typical stage the temperature factor of the last term has a value of about 
0.008. If this is neglected and the term T3s/T2 is set to unity, the right side is simplified 
somewhat. Therefore the reduced equation 

1 - r / t t 
CsVJ + CRWJ 

1w 

although simple to use, underestimates the losses by about 1.5%. 
The relationship to stagnation pressure loss can be developed by writing for the stator 

h3 - h3s = cp(T3 - T3s) = cpT3 1 t3s cpT3 
Voz\ 
Pm) 

(7-1)7' 

which can be rewritten and then expanded for small stagnation pressure loss as 

h3 - h-3s cPT3 

cPT3 

1 P03 ( 7 - l ) / 7 ' 

Po3 + Ap0Lsy 

7 - 1 ApoLS P3 ApoLS 

cpT3 1 - 1 
ApoLS 

P03 

- ( 7 - l ) / 7 ' 

Thus 

7 P03 

h3 - h3 

P03 P3 

ApoLs/P3 

1 + 

A similar analysis for the rotor gives 

/i2« = cp(T2 - T2s) = cpT2 I 1 

i^V2 

To 

7/ (7 -1) 

cPT2 
1 _ (P0*2^\ 

\P0Rl) 

(7-1)7' 

which can be rewritten and then expanded for small stagnation pressure loss as 

h2 - h2s = cpT2 1 P0R2 
( 7 - l ) / 7 

cPT2-

Therefore 

PoR2 + ApOL: 

7 - 1 AppLR _ P2 AppLR 
7 P0R2 P0R2 Pi 

A P O L R / P 2 

--cpT2 1 - 1 + 
AppLR 
P0R2 

- ( 7 - l ) / 7 ' 

ho - h2 

1 + ^ M ? R2 

7 / (7-1) 
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The stagnation pressure losses can now be written as 

1 f 2 
7/ (7-1) 

(7.26) 

7 / (7 -1) 
C R ^ 2 I 1 + ^ M i 2 ) (7.27) APOLR _ I, „ , 2 / , , 7 - 1 , , 2 

and 

~P2 2 
Since the rotor turns the flow toward the axis, the magnitude of the relative velocity 
diminishes and the relative Mach number leaving the rotor is fairly small. The same is 
true for the absolute Mach number leaving the stator. Hence, if the Mach number terms in 
Eqs. (7.26) and (7.27) are neglected, then with some loss of accuracy, substituting the these 
expressions for the stagnation pressure losses into Eqs. (7.25), gives 

COS P 2 COS « 3 

l - ^ = ( - § L - + - ^ ) ^ ; (7-29) 

Since Vx = V3 cos a^ = W2 cos p~2 the efficiency may be rewritten in the form 

' CR , Cs W 2 

vcos2ai cos2/3i/ 2tp 

7.5.2 Parametric calculations 

The development of the theory for axial compressors has been carried out in terms of 
assumed values for a flow coefficient <j>, a blade-loading factor ip, and a reaction ratio R. 
These three quantities are nondimensional parameters and are sufficient for calculating the 
flow angles. Solidity was obtained from experimental measurements of deflection for given 
flow outlet angle. It was used to establish the permissible diffusion, and the stagnation 
pressure coefficient for profile losses was established. The efficiency can then be cast 
in terms of the loss coefficients for the rotor and the stator. This is the most effective 
way to display results, and when the actual parameters for a machine are given, all the 
important results are quickly calculated from the nondimensional ones. Thus flow angles 
for a compressor stator and rotor have been shown to be 

l-R-ip/2 l-R + rp/2 
t ana i = tan 0:2 — ; 

R + ^/2 R-iP/2 
— tan pi = - — tan p2 = ; 

<f> 4> 
Hence with <fi, ijj and R given, they can be determined. The rest of the calculations then 
follow directly. Results from such calculations are shown in Figure 7.17. The flow 
coefficient was taken to be <p = 0.6 and the degree of reaction, R = 0.4. For Figures 
7.17a - 7.17c, the Lieblein diffusion factor was taken to be equal to 0.45, and solidities 
of the rotor and stator were calculated in terms of this value. Figure 7.17a represents the 
diffusion in the flow. If the stagnation pressure losses are neglected and the flow is assumed 
incompressible, then 

P2 + i;pV2
2=P3 + -pVi 
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Figure 7.17 Design study for a compressor cascade with diffusion factor, DF 
coefficient <b = 0.6, and reaction R = 0.4. 

0.45, flow 

and 

PZ ~P2 Yl 
v2

2 

Hence this also gives the pressure rise in a nondimensional form. A similar expression 
applies for the rotor. This nondimensional pressure rise should not be greater than 0.48, 
according to the recommendation by de Haller [20]. The de Haller criterion shows that the 
blade-loading factor must be kept below 0.39. 

Figure 7.17b shows that if the de Haller criterion is obeyed, the stage efficiency is 
around 0.96. This efficiency calculation should not be considered conclusive, as it ignores 
the annulus and secondary flow losses, as well as losses from the tip region. The Figure 
7.17c shows solidity to be near unity for both the rotor and the stator if the Lieblein 
diffusion factor is kept at 0.45. It turns out that Howell's criterion is also satisfied under 
these conditions. To be sure, the Howell's criterion shows that the solidity ought to be the 
same for the rotor and stator. So the system is overconstrained. The diffusion factor then 
becomes a check that the design parameters have been reasonably chosen. Figure 7.17d 
shows what happens to the diffusion factor as the solidity is varied independently. For a 
blade row of high solidity, diffusion is reduced as the load per blade is reduced. 
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7.6 CASCADE AERODYNAMICS 

The development of axial compressor blade shapes has been carried out in extensive 
experiments in cascade tunnels. Such tunnels are designed to test in a two-dimensional 
arrangement, either a row of rotor blades, or a row of stator vanes. Both are shown in Figure 
7.18 in which the flow moves from left to right. The blades are characterized by their chord, 
camber, thickness, and height. The axial chord cx is the chord's projection along the x 
axis. In Figure 7.18b the blade (or metal) angle at the inlet is \2, and at the outlet it is \3-
The flow incidence is defined as the difference between the flow angle and the metal angle. 
Thus i = «2 — X2 at the inlet to the stator, and since the angles are negative, incidence is 
i = \Pi — xi | at the inlet to the rotor. The figure is drawn to show a positive incidence for 
both. The angle 5 = a^ — X3 a t m e exit of the stator is called deviation. Although the flow 
tends to leave at the exit metal angle, it turns slightly toward the suction surface. 

The general orientation of the blades is given by the stagger angle £ and their curvature, 
by the camber angle 0. The lines that form a triangle on the stator blade in the Figure 
7.18b has the included angle \2 — £ on the left, £ — X3 on the right, and w — 9 at the top. 
These add up to TT. Hence 6 = \2 — X3- These relationships are also true for the rotor in 
which negative angles are encountered. The exit metal angle \2 of the rotor has the same 
designation as the inlet metal angle to the stator. It will always be clear whether the rotor 
row or stator row is analyzed, so separate symbols are not needed. 

Figure 7.18 An axial compressor rotor cascade. 

7.6.1 Blade shapes and terms 

Today the designer is no longer constrained to the blade shapes that were in use during the 
early period of compressor development. Members from the NACA-65 series of blades in 
the United States were adopted as the base profiles. In the Great Britain blade designation, 
such as 6C7/25P40, carries with it the pertinent information about the maximum thickness 
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b and its location from the leading edge a. The notation means that the maximum thickness 
is 6% of the chord, so that b/c = 0.06. The next item C7 describes how the thickness 
is distributed over the blade. Next is the camber angle, which here is 25°. After that 
the letter P designates this to be a blade with a parabolic camber, with the location of 
maximum thickness at 40% from the leading edge; that is, a/c = 0.4. The circular arc 
profile 10C4/30C50 has 10% thickness and 30° camber. Its maximum thickness always 
occurs at the midchord point. 

For parabolic arc profiles defining Oi = xi ~ £ a nd 82 = £ - X2, the angles 0i and 82 
are given by 

cb 
tan#i = tan #2 

cb 
a{c -

and, if the location of maximum camber a is close to the midchord position, these can be 
approximated by 

tan 0i = tan #2 
4a 3 c - 4 a 

From these it follows that 

1 
4tan0 

(1 + 16 tan2 (9) _3_ 
16 

where 8 = #1 + 82. For blades for which the position of maximum camber is near the 
midchord point, useful approximations [18] to these are 

71 = 1 + 2 1 ( ' - » ; ) 1 — 2 ( 1 cJ 

7.6.2 Blade forces 

Figure 7.19 shows a typical stator of an axial compressor. The x component of the 
momentum equation applied to a control volume consisting of the flow channel for the 
stator gives 

psVx{Vx3 - Vx2) = s(p2 - p3) + Fx 

and if the axial velocity remains constant, this reduces to 

Fx = s(p3 -p2) 

Using the definition of stagnation pressure for an incompressible flow, this becomes 

F± 
s 

1 (v2
2 - v£) - A P 0 L (7.30) 

in which ApoL is the loss in stagnation pressure. 
The force Fx is per unit height of the blade. Since the axial velocity is taken to be 

constant and a3 < a2, inspection of the magnitudes of V2 and V3 shows that V3 < V2 and 
therefore also p3 > p2, as it ought to be in a compressor. Hence the force Fx that blades 
exert on the fluid is positive. The y component gives 

psVx(Vu3 - Vu2) 
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Figure 7.19 Compressor stator. 

and the minus sign is inserted tin the right side to render the numerical value of Fy positive, 
because Vu3 < VU2. This equation may also be written as 

p 
— = pVx

2(.trnia2 - t ana 3 ) (7.31) 
s 

Since VX2 = Vx3, the kinetic energy difference in Eq. (7.30) may be expressed as 

vi-vi = 0& + V&-V& + V&) 
= Vu3 - Vus = (vU2 - vu3)(vu2 + yu3) 

Next, let the mean tangential velocity be 

VUm= ^{Vu2 + Vu3) 

then using this definition and inspection of Figure 7.19 gives 

Km = Vxtanam = - y ( t a n a 2 + tana 3 ) 

in which the mean gas angle am is defined by the expression 

t a n a m = -(tan<22 + tana 3 ) (7.32) 

The x component of the force may now be written as 

Fx = psVx
2{t&na.2 — tana 3 ) t a n a m — sAp0^ (7.33) 
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In addition to the axial and tangential components of forces, the lift and the drag force 
are also shown in Figure 7.19. They are the forces that the blades exert on the fluid. Lift 
and drag are obtained by resolving the resultant along the direction of the mean flow angle 
and one perpendicular to it. With the resultant expressed as 

F = FJ - Fy] 

the component D parallel and L normal to the mean flow vector, as shown in Figure 7.19c, 
are 

L = Fx sin am + Fy cos am (7.34) 

D = —Fx cos am + Fy sin am (7.35) 

Introducing Eqs. (7.33) and (7.31) into Eq. (7.34) gives 

L = psV^(tana.i — tanas) secam — sApoL sinam 

The lift coefficient now becomes 
„ L 2 ApoL sinam 
CL = i Tr0 = - (tan a2 - tan a3) cos am - , 

yV^c a ±PV£ cr 

Substituting Eqs. (7.30) and (7.31) into Eq. (7.35) gives 

D = s ApoL cos am (7.36) 

The choice in defining the direction of drag and lift as parallel and perpendicular to the 
mean flow direction as given by the angle am is guided exactly by this result, since the 
stagnation pressure drop from profile losses should depend mainly on the drag and not the 
lift. 

Defining next the drag coefficient as 

in which c is the chord, and making use of the preceding equation, gives 

_ Ap0LCOsam 

For the stator the stagnation pressure loss can be written as 

APOLS = -zpC&VS = -zpVi T a 2' m c o s a m 

so that 
Cs = ^ ? ^ C D (7.38) 

cos^ am 
in which Vm/V-j = cos 0:3/ cos a m has been used. For the rotor similarly 

CK = ^ ^ C D (7.39) 
cos^ /3m 

The drag coefficients in these expressions are not the same, but are the appropriately 
calculated ones for the stator and the rotor., As will be seen below, the various losses 



256 AXIAL COMPRESSORS 

are expressed in terms of the drag coefficients, and their sum gives the total. The two 
preceding equations can then be used to relate the drag coefficients to the static enthalpy 
loss coefficients. 

The expression for the lift coefficient for the stator can now be written as 
2 

CL = — (tan a2 — tan 0:3) cos am — Cn tan am 

In a typical unstalled blade Co ~ 0.025CL, and, as will be shown shortly, it is advantageous 
to keep am less than 45°. Under these conditions the drag term may be neglected. This 
gives the following expression for the lift-to-drag ratio: 

CL L 2 cos2 a 3 — = — = — (tana-2 - t a n a 3 ) 5 CD D CS cos2am 

To make use of these expressions for compressor rotors, the flow angle a2 is replaced by 
/?i and a 3 by /32 and the rotor loss coefficient CR is substituted for Cs-

7.6.3 Other losses 

The drag coefficients for annulus losses are given by 

CDa = 0.02 J 
0 

in which b is the blade height, and the annulus losses become a smaller fraction of the total 
losses as the blade height increases. Secondary losses are a complicated subject, but all 
these complications are sidestepped by calculating the loss coefficient from the expression 

CDs = 0.018C£ 

The tip losses arise from a tip vortex and leakage loss through the tip clearance for the 
rotor. They are taken into account by the empirical relation 

CDt = 0-29 jCl/2 

where bt is the tip clearance. 
The total loss coefficient is then obtained by summing these 

CD = C D P + Cua + CDs + CDt 

The equivalent drag coefficients for secondary and tip losses are a way of expressing the 
total pressure loss on the same basis for profile and annulus losses. With the sum of drag 
coefficients determined, the total static enthalpy loss coefficient can be calculated from 
either Eq. (7.38) or (7.39). The calculation of losses using the method outlined above 
has been questioned over the years [18, 21], for it is clear that in the complicated flow 
structure with highly staggered blades, dividing the losses neatly into constituent parts and 
adding them is suspect. Modern CFD analysis gives a powerful alternative that can be used 
to calculate stagnation pressure losses. Even if the modern methods are an improvement 
over what has been done in the past, there are still hurdles to overcome. One important 
advancement has been to develop methods to include unsteady interactions between moving 
and stationary blade rows. The theory still hinges on accurate methods to calculate local 
entropy production of a turbulent velocity and temperature fields. New turbulence models 
and large-eddy-simulation methods show promise and for this reason industry has moved 
to rely more and more on CFD to resolve the flow fields in compressors and turbines. 
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7.6.4 Diffuser performance 

The expression for the lift-to-drag ratio can be used to assess under which conditions a 
compressor cascade performs well as a diffuser. The diffuser efficiency is defined as 

P3 -P2 
VD = 

P3s ~ P2 

which is the ratio of the static pressure rise to the maximum possible. The labels are chosen 
to reflect that diffusion through the stator is considered. In a reversible adiabatic flow the 
stagnation pressure remains constant and 

P02 ~ P03s =Pl~ P3s + -jPWZ - V3s) = ° 

Hence 

P3s-p2 = \P{Vi-Vl) 

Assuming that V3 = V3s, the diffuser efficiency can thus be written as 

P3 -P2 
m ~ \P{vi - vi) 

Now 

Fx - s(p3 - p2) Fx = Fv tan am - sAp0S Fy = psV*(tan a2 - tan a3) 

so that 
P3 - P2 = pV% t a n a m ( t a n a 2 - t ana 3 ) - Ap0LS 

Thus 
_ .. APOLS 

pV£ tan am(tan a2 — tan a3) 
or in terms of CD and CL the diffuser efficiency can be written as 

VD = 1 - n ■ r, 

GL sin 2am 

The maximum efficiency is determined by differentiating. Thus 
dr]D 4 C D cos 2an 
dam CL sin2 2an 

0 

Hence am = 45° at the condition of maximum diffuser efficiency and for C D / C L = 0.05 
the efficiency is 90%. This result is due to Horlock [34]. 

7.6.5 Flow deviation and incidence 

Before the blade angle can be set, the deviation at the exit from the blade row must be 
established. The flow deviation is given by S = a2 — Xi, in which \2 is the blade angle. 
Deviation is positive when the flow deflects from the pressure side toward the suction side. 
A positive deviation for the stator is shown in Figure 7.19, and for the rotor the flow is 
deflected in the opposite direction. 
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Deviation is an inviscid flow effect and not related to viscosity and therefore to losses. 
It can be regarded as incomplete turning of the flow. Hence, to obtain the desired turning, 
blades need to be curved more than in the absence of deviation. 

Carter [14] recommends that deviation be calculated from 

5* =m9,'S 

at the design conditions, and Howell [37] proposed the formula 

a2 

m = 0.92— + 
500 

for m, in which a^ is given in degrees and a/c is the ratio of maximum thickness to the 
chord. 

■ EXAMPLE 7.4 

A compressor stage with reaction ratio R = | , and stator outlet metal angle X3 = 3°. 
The camber angle is 9 = 34°, pitch chord ratio is s/c = 0.88, and the position of 
maximum camber a/c — 0.5. The ratio of the blade height to the chord is b/c = 2. 
For 50% reaction the rotor flow angles have the same magnitudes as those for the 
stator, but they are of opposite sign. Find (a) the deviation of the flow leaving the 
stator, (b) the deflection, and (c) the flow coefficient and blade-loading coefficient, 
assuming that the inflow is at zero incidence. 

Solution: (a) The flow deviation is calculated first. Since a 3 = X3 + <5*' the fl°w 

angle can be calculated from 

„ s „ „a . s o& . s 
a3=X3+^-=X3+0.92W- + ^ J -

Solving this for 0:3 gives 

, _ X3 + 0 . 9 2 ^ ( 9 ^ _ 3 + 0.92 • 0.25 • 34 v
/ 0 l 

1-^nx/f 1 - H v C T 
11.04° 

500 V c -1- 500 

so that 5* =a*3-xs = 11.04° - 3° = 8.04°. 
(b) The nominal deflection is calculated by first solving 

1-55 
tan a9 — tan a , = r-2 6 l + 1.5s/c 

for a*2. It yields 

a% = t a n - 1 ( t ana? + —— = t a n - 1 0.1927 + ' „ „„ ) = 40.8° 2 1 3 . i + i . 5 s / c y y 1 + 1.5-0.. 

Thus the nominal deflection is 

e* = al- a% = 40.8° - 11.0° = 29.. 
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If the metal angle at the inlet to the stator is set at \2 =40.8°, then the flow enters 
the stator at zero incidence. If the metal angle is set, say, to \2 = 37°, then the 
incidence angle is i* = a*2 - xi = 40.8 - 37 = 3.8°. 
(c) Since for a normal stage a\ = a^the flow coefficients is obtained from 

1 1 0.943 
t a n a ^ + t a n a ^ 0.866 + 0.195 

and the blade-loading coefficient, from 

ip = 4>{ta,nal - tuna^) = 0.943(0.866 - 0.195) = 0.634 

This value for the blade-loading coefficient is above the high end of the usual range 
0.3 - 0.45 of industrial practice. The flow coefficient is in the common range for 
axial compressors. For 50% reaction, the blading of the rotor is identical to that of 
the stator and the flow angle from the rotor would be 40.7°. 

7.6.6 Multistage compressor 

The polytropic efficiency was introduced for turbines in the previous chapter. For a 
small change in the stagnation enthalpy across a stage, the stage efficiency approaches the 
polytropic efficiency. For an ideal gas the incremental process is as shown in Figure 7.20. 

T+dT 

Figure 7.20 Processes across a small compressor stage. 

The relation between the temperature increases for an actual and an ideal process is 
given by 

dT0s = T]p dT0 

For an isentropic expansion 

dT0s dpo 
cD^=— = R or P T0 po (7 - 1) T0 po 

7??p dT0 _ dp0 
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Integrating this across an infinite number of infinitesimally small stages gives 

To,N + l P0,N + 1 ( 7 - l ) W 7 

Toi V Poi 

A reheat factor, defined as R F = j]p/rj, can then be written as 

\ ( 7 - 1 ) A / P 7 

R F 
VP 

P0,N+1 

Poi 

P0,N+l 

P01 

(7~ l ) /7 
1 

The relationship between the turbine efficiency and polytropic or small-stage efficiency is 

r ( 7 - l ) / 7 _ I 

^ ~ T - ( 7 - 1 ) / ' J P 7 - 1 

in which r = poe/poi is the overall pressure ratio of the turbine. This relationship is shown 
in Figure 7.21. 

Figure 7.21 Compressor efficiency as a function of pressure ratio and polytropic efficiency for a 
gas with 7 = 1.4. 

In a multistage compressor the upstream stages influence those downstream. Smith 
[70] measured velocity and temperature profiles after each stage of a 12-stage compressor. 
These are shown in Figure 7.22, and examination shows that annulus boundary layers 
cause large decrease in the axial velocity and increase in total temperature. Although it 
has been assumed that average stagnation temperature does not change in adiabatic flow, 
the local values may change. These influences are taken into account by modifying the 
Euler equation for compressor work by introducing a work-done factor A and expressing 
the work done as 

^03 ~ h0i = MJ(Vx2 - Vxi) 
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Figure 7.22 Velocity and temperature profiles in a 12-stage compressor. (From Smith [70].) 

Comparing different compressors Howell and Bondham recommend a work-done factor 
in the range 0.86 to 0.96, the smaller corresponding to a compressor with 20 stages and 
the larger value is applicable to a compressor with only two stages [38]. Their results are 
shown in Table 7.1. 

Table 7.1 Work-done factor A in axial compressors with different number of stages. 

stages 1 2 3 4 5 6 7 8 9 
A 0.982 0.952 0.929 0.910 0.895 0.883 0.875 0.868 0.863 

stages 10 11 12 13 14 15 16 17 18 
A 0.860 0.857 0.855 0.853 0.851 0.850 0.849 0.848 0.847 

7.6.7 Compressibility effects 

The influence of Mach number on losses is substantial, and the loss coefficient increases 
rapidly with the incidence angle as Mach number at the inlet is increased from 0.4 to 0.8. 
A way in which a designer can help the situation is to choose a blade for which the location 
of maximum thickness is nearer to the leading edge. 
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EXERCISES 

7.1 The inlet and exit total pressures of air flowing through a compressor are 100 and 
1000 kPa. The inlet total temperature is 281 K. What is the work of compression if the 
adiabatic total-to-total efficiency is 0.75? 

7.2 Air flows through an axial fan rotor at mean radius of 15 cm. The tangential 
component of the absolute velocity is increased by 15 m/s through the rotor. The rotational 
speed of the shaft is 3000 rpm. (a) Evaluate the torque exerted on the air by the rotor, 
assuming that the flow rate is 0.471 m3/s and the pressure and temperature of the air are 
100 kPa and 300 K. (b) What is the rate of energy transfer to the air? 

7.3 The blade speed of a compressor rotor is U = 280 m/s, and the total enthalpy change 
across a normal stage is 31.6kJ/kg. If the flow coefficient <p = 0.5 and the inlet to the 
rotor is axial, what are the absolute and relative gas angles leaving the rotor? 

7.4 Air flows through an axial-flow fan, with an axial velocity of 40 m/s. The absolute 
velocities at the inlet and the outlet of the stator are at angles of 60° and 30°, respectively. 
The relative velocity at the outlet of the rotor is at an angle —25°. Assume reversible 
adiabatic flow and a normal stage, (a) Draw the velocity diagrams at the inlet and outlet of 
the rotor, (b) Determine the flow coefficient, (c) Determine the blade-loading coefficient. 
(d) Determine at what angle the relative velocity enters the rotor, (e) Determine the static 
pressure increase across the rotor in pascals. The inlet total temperature is 300 K and the 
inlet total pressure is 101.3 kPa. (f) Determine the degree of reaction. 

7.5 Air flows through an axial-flow compressor. The axial velocity is 60% of the blade 
speed at the mean radius. The reaction ratio is 0.4. The absolute velocity enters the 
stator at an angle of 55° from the axial direction. Assume a normal stage, (a) Draw the 
velocity diagrams at the inlet and outlet of the rotor, (b) Determine the flow coefficient, (c) 
Determine the blade-loading coefficient, (d) Determine at what angle the relative velocity 
enters the rotor, (e) Determine at what angle the relative velocity leaves the rotor, (f) 
Determine at what angle the absolute velocity leaves the stator. 

7.6 A single stage of a multistage axial compressor is shown in Figure 7.2. The angle 
at which the absolute velocity enters the rotor is a\ — 40°, and the relative velocity at the 
inlet of the rotor is ji\ = -60°. These angles at the inlet of the stator are a2 = 60° and 
/32 = —40°. The mean radius of the rotor is 30 cm, and the hub-to-tip radius is 0.8. The 
axial velocity is constant and has a value Vx = 125 m/s. The inlet air is atmospheric at 
pressure 101.325 kPa and temperature 293 K. (a) Find the mass flow rate, (b) What is the 
rotational speed of the shaft under these conditions? (c) What is the power requirement of 
the compressor? 

7.7 A single stage of a multistage axial compressor is shown in Figure 7.2. The angle at 
which the absolute velocity enters the rotor is a\ — 35°, and the relative velocity makes an 
angle of fii = -60°. The corresponding angles at the inlet to the stator are a2 = 60° and 
/32 = —35°. The stage is normal, and the axial velocity is constant through the compressor. 
(a) Why does the static pressure rise across both the rotor and the stator? (b) Draw the 
velocity triangles, (c) If the blade speed is U = 290 m/s, what is the axial velocity? 
(d) Find the work done per unit mass flow for a stage and the increase in stagnation 
temperature across it. (e) The stagnation temperature at the inlet is 300 K. The overall 
adiabatic efficiency of the compressor is r)c = 0.9, and the overall stagnation pressure ratio 
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is 17.5. Determine the number of stages in the compressor, (f) How many axial turbine 
stages will it take to power this compressor? 

7.8 The blade speed of a rotor of an axial air compressor is U = 150 m/s. The axial 
velocity is constant and equal to Vx = 75 m/s. The tangential component of the relative 
velocity leaving the rotor is WU2 = —30 m/s; the tangential component of the absolute 
velocity entering the rotor is Vu\ = 55 m/s. The stagnation temperature and pressure at 
the inlet to the rotor are 340 K and 185 kPa. The stage efficiency is 0.9, and one-half of the 
loss in stagnation pressure takes place through the rotor, (a) Draw the velocity diagrams 
at the inlet and exit of the rotor, (b) Find the work done per unit mass flow through the 
compressor, (c) Draw the states in an hs diagram. Find the (d) stagnation and static 
temperatures between rotor and stator, and (e) stagnation pressure between rotor and stator. 

7.9 Air from ambient at 101.325 kPa and temperature 20°C enters into a blower axially 
with the velocity 61 m/s. The blade tip radius is 60 cm, and the hub radius is is 42 cm. 
The shaft speed is 1800 rpm. The air enters a stage axially and leaves it axially at the 
same speed. The rotor turns the relative velocity 18.7° toward the direction of the blade 
movement. The total-to-total stage efficiency is 0.87. (a) Draw the inlet and exit velocity 
diagrams for the rotor, (b) Draw the blade shapes, (c) Determine the flow coefficient and 
the blade-loading factor, (d) Determine the mass flow rate, (e) What is the specific work 
required? (f) What is the total pressure ratio for the stage? (g) Determine the degree of 
reaction. 

7.10 Air from ambient at 101.325 kPa and temperature 300 K enters an axial-flow com-
pressor stage axially with velocity 122 m/s. The blade casing radius is 35 cm, and the 
hub radius is 30 cm. The shaft speed is 6000 rpm. At the exit relative velocity is at an 
angle —45°. The total-to-total stage efficiency is 0.86. (a) Draw the inlet and exit velocity 
diagrams for the rotor, (b) Draw the blade shapes, (c) Determine the flow coefficient and 
the blade-loading factor, (d) Determine the mass flow rate, (e) What is the total pressure 
ratio for the stage? (f) Determine the degree of reaction. 

7.11 Perform design calculations for a compressor stage with blade loading factor in the 
range tp = 0.25 to ip = 0.55, flow coefficient <f> = 0.7, and reaction R = 0.6. Keep the 
diffusion factor equal to 0.45. Calculate and plot 1 — 77, solidity, and the static pressure rise 
1 — V2/V1 for rotor and stator (including the de Haller criterion). What are the stagnation 
losses across stator and rotor? 

7.12 A normal compressor stage has a reaction ratio R = 0.54, and stator outlet metal 
angle %3 = 14.5°. The camber angle is 9 = 32°, pitch chord ratio is s/c = 0.82, and 
the position of maximum camber a/c = 0.45. The ratio of the blade height to the chord 
is b/c =1 .7 . (a) Find the deviation of the flow leaving the stator. (b) Find the deflection. 
(c) Find the flow coefficient and blade-loading coefficient by assuming the inflow at zero 
incidence. 

7.13 The circular arc blades of a compressor cascade have camber 9 = 30° and maximum 
thickness at a/c = 0.5. The space-to-chord ratio is s/c = 1.0. The nominal outflow angle 
is 0:3 = 25°. (a) Determine the nominal incidence, (b) Determine that lift coefficient at 
the nominal incidence given a drag coefficient of C-Q = 0.016. 

7.14 Air with density 1.21 kg/m3 flows into a compressor stator with velocity V2 — 
120m/s and leaves at angle 03 = 30°. If the Leiblein diffusion factor is to be held at 
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0.5 and the the stagnation pressure loss across a compressor stator is 0.165 kPa, assuming 
incompressible flow, what is the static pressure increase across the stage? 

7.15 Air at temperature 288 K and at pressure 101.325 kPa flows into a compressor with 
10 stages. The efficiency of the first stage is 0.920 and the second stage, 0.916. For the 
remaining stages, the stage efficiency drops by 0.004 successively so that the last stage has 
an efficiency of 0.884. The axial velocity is constant, and the flow angles are the same at 
the inlet and exit of each of the stages. Hence the work done by each stage is the same, (a) 
Find the overall efficiency of the compressor, (b) Find the overall efficiency by using the 
theory for a polytropic compression with small stage efficiency r]p = 0.902. 

7.16 Air flows in a axial flow fan of free vortex design, with hub radius r^ = 7.5 cm and 
casing radius 17 cm. The fan operates at 2400 rpm. The volumetric flow rate Q = l . l m 3 / s 
and the stagnation pressure rise is 3 cm H2O. The fan efficiency is 7?tt — 0.86. (a) Find the 
axial velocity, (b) Find the work done on the fluid, (c) Find the absolute and relative flow 
angles at the inlet and exit of the rotor when the inlet is axial. 

7.17 Consider an axial-flow compressor in which flow leaves the stator with a tangential 
velocity distributed as a free vortex. The hub radius is 10 cm and the static pressure at 
the hub is 94 kPa, and the static temperature there is 292 K. The radius of the casing is 
15 cm, and the static pressure at the casing is 97 kPa. The total pressure at this location is 
101.3 kPa. Find the exit flow angles at the hub and the casing. 



CHAPTER 8 

CENTRIFUGAL COMPRESSORS AND 
PUMPS 

This chapter is on centrifugal compressors and centrifugal pumps. Both achieve in a single 
stage a much higher pressure ratio than their axial counterparts. Large booster compressors 
are used in natural-gas transmission across continental pipelines and in offshore natural 
gas production. Multistage centrifugal compressors, also known as barrel compressors, 
are employed when very high delivery pressure is needed. When compressed air at high 
pressure is needed for industrial processes, a radial compressor fits this application well. 
Centrifugal compressors are often an integral part of a refrigeration plant to provide chilled 
water in HVAC systems. In contrast to these large compressors, small centrifugal compres-
sors are found in a turbocharger and a supercharger in which rapidly changing operating 
conditions call for a machine of low inertia. 

Centrifugal pumps operate on the same principles as compressors, but handle liquids in 
various industrial, agricultural, and sanitary applications. Small pumps perform a variety 
of tasks in households. The number of units of various kind of compressors and pumps is 
quite large, making their manufacture an important industry. 

A sketch of a centrifugal compressor is shown in Figure 8.1. The axial part of the 
impeller at the inlet is called an inducer. The flow enters the impeller axially, or perhaps 
with a small amount of swirl, and leaves the wheel peripherally. Thus, in this machine the 
flow at the inlet has no radial component of velocity and at the outlet the axial component 
vanishes. In many blowers and fans the inducer section is left out. An example is the 
so-called squirrel cage fan, which provides large flow rates with modest pressure rise for 
certain industrial needs and which is also familiar as a small exhaust fan in a bathroom and 
a kitchen. 

Principles of Turbomachinery. By Seppo A. Korpela 
Copyright © 2011 John Wiley & Sons, Inc. 
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Direction of rotation 

Figure 8.1 A sketch of a centrifugal compressor. 

The blades, or vanes as they are called, in the impeller may be shrouded (as in the last 
stage of the compressor in Figure 1.6 in Chapter 1). Such impellers are used in multistage 
compressors, which, owing to the large load, require a large shaft, and the possible axial 
movement is better tolerated by a shrouded impeller than an unshrouded one. In an impeller 
with many vanes some of the vanes do not reach all the way into the inducer, for the finite 
thickness of the blades leaves less flow area and cause possible choking of the flow. The 
vanes that extend all the way to the inlet of the inducer are curved at the inlet sufficiently 
that the relative velocity enters the vanes tangentially when the absolute velocity is axial. 

8.1 COMPRESSOR ANALYSIS 

The velocity triangles at the inlet and outlet of a centrifugal compressor are shown in Figure 
8.2. At the inlet the axial direction is to the right; at the outlet the radial direction is to the 
right and normal to U. When the work done is written in terms of kinetic energies, it is 

" = \(V2
2 - V,2) + \{Ul - V?) + \(W? ~ Wl) 

It is clear that in order to obtain a high pressure increase in the compressor, the work transfer 
must be large. Only the first term on the right accounts for an actual increase in kinetic 
energy, and the other two represent increases in other thermodynamic properties. If the 
work done is written as 

w = h02 ~ hoi ^h2~h1 + -(V2
2 - V?) 

then equating the right sides of this and the previous equation gives 

hi + \(W? - Ul) = h2 + \{Wi - Ui) 

This is a statement that the trothalpy remains constant across the compressor wheel. Writing 
this as 

h2 - hi = u2 - ui + p2v2 - pivi = i {U\ - Ul + Wl - Wl) (8.1) 
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shows that the two kinetic energy terms on the right represent an increase in the internal 
energy of the gas and the difference in the flow work between the exit and the inlet. 

Inlet Outlet 

Figure 8.2 Velocity triangles for a centrifugal compressor. 

Comparing Eq. (8.1) to the equation obtained for a rotor of an axial machine, it is seen 
to reduce to it when U at the inlet and the outlet are the same. In that case the increase 
in static enthalpy across the rotor was seen to arise from the decrease in relative velocity 
across the rotor. This effect is still there, but more importantly, enthalpy and thus pressure 
now rises owing to the centrifugal effect of a larger outlet radius. This increase in pressure 
is present even in absence of any flow, and thus does not have a loss associated with it. It 
is substantially larger than the diffusional effect of the relative velocity. 

The expression for work in the form 

w u2vu2 - uxvul 
shows that a large amount of work can be done on the air if both the blade speed U2 
and Vu2 are large. However, a flow with a large Vu2 and therefore a large V2, may be 
difficult to diffuse to a slow speed in the volute. This must be taken into consideration in 
the design. The velocity diagrams in Figure 8.2 have been drawn to illustrate a general 
situation. Typically, in air compressors, air is drawn from the atmosphere and it is without 
a tangential component and therefore enters the compressor with a\ = 0. However, 
a maldistribution of the flow through the impeller and the vaned space at the exit may 
influence the upstream condition and lead to some swirl. In addition, in the second and the 
subsequent stages of a multistage compressor the inlet air might have some prerotation, 
and there are also single stage compressors with special vanes at the inlet that give the 
flow a small amount of swirl, with positive swirl decreasing the work and negative swirl 
increasing it. 

8.1.1 Slip factor 

At the exit of the blades of a centrifugal compressor the flow deviates in much the same 
way as was encountered in axial compressors. To account for it, a slip factor is introduced 
as 

i Vu2 - vu2 , Vus 
a = l - — u 2 — = 1 - u 2 -

Here Vu2 is the actual velocity, and V^2
 m e velocity if there were no slip. The slip velocity 

is defined as Vus = V^2 — Vu2. The flow angle of the relative velocity at the outlet is 
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typically negative and greater in absolute value than the blade angle \2- The deviation is 
from the pressure side toward the suction side of the blades. From the equations 

Ki = U2 + Vr2 tan X2 Vu2 = U2 + Vr2 tan /32 

the slip velocity can be determined, and then the slip coefficient can be expressed as 

<J = 1 - — (tan X2 ~ tan/32) 
U2 

This can also be written as 

aU2 = U2 + Wu2 - Vr2 tan%2 = Vu2 - Vr2 tan%2 

or in the more convenient form 

Vu2=aU2 + Vr2tanX2 (8.2) 

In addition, writing Vr2 = Vu2/ tana2, substituting and solving for Vu2, gives 

aU2 Vu2 
1 tanx2 (8.3) 

tan«2 

If there is no inlet swirl, then w = U2Vu2, and this equation becomes 

1 tanx2 (8.4) 

tanci2 

For radial blades \2 = 0, and Eq. (8.3) reduces to 

Vu2 = aU2 

The range of slip factor is 0.83 < a < 0.95, and the higher value is obtained if the number 
of blades is large and the flow is guided well. 

The actual and ideal velocities are shown in Figure 8.3. Stodola gave the following 

(b) 

Secondary vortex 

Figure 8.3 Illustration of slip. 
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argument to estimate the slip factor [75]. The fluid flow through the rotor is irrotational 
in the laboratory frame, except for that part of the flow that moves right next to the solid 
surfaces. Therefore, relative to the blade, the spin of the fluid particles (i. e. their vorticity) 
must be equal and opposite to that caused by the rotating coordinates. Hence a secondary 
forced vortex that rotates at the angular velocity fl, as shown, can be assumed to exist in 
the flow channel. If s is the spacing between the blades along the peripheral circle, the 
diameter of the secondary vortex is roughly Ds = scosx2, as the construction in Figure 
8.3b shows. Hence the slip velocity can be taken to be 

v = A^ = DaU2 = U2SCOSX2 
us ~ 2 ~ D ~ D 

If Z is the number of blades, then TTD = sZ, so that s/D = TT/Z and the slip velocity 
takes the form 

TTU2 cos \2 

and the slip factor is 

Stanitz [73] recommends 

1 n C O S * 2 «Z ^ 
0" = 1 — (8.5) 

0.63?r 
(7=1- —^- (8.6) 

for the slip coefficient and assures it to be good in the range —45° < \2 < 45°. Other 
efforts to establish the value for the slip velocity include those by Busemann for blades of 
logarithmic spiral shape. A synthesis of his and other results was carried out by Wiesner 
[80], who recommends the expression 

,/COS Y2 

8.1.2 Pressure ratio 

The Euler equation for turbomachinery is 

w = h03- h0i = U2Vu2 - UiVui 

and the ideal work is 
wa = ho3SS — hoi 

The states for the compression process are shown in the Mollier diagram in Figure 8.4. 
With 77tt = ws/w from these equations, it follows that 

\ ( 7 - D / 7 j 
— = 1 + \^Vtt{U2Vu2 - C/1K1) (8.8) 
P01 / IRTQI 

Since the inlet velocity is axial and therefore small, the stagnation enthalpy /ioi is only 
slightly larger than h\. The line of constant trothalpy 

hr + \w* -\U* = h2 + \wl -\ul 

is shown in Figure 8.4, as well as the magnitudes of the various kinetic energies. In 
particular, the blade velocity U\ is smaller than U2, and the relative velocity diffuses across 
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02 03 

Figure 8.4 The thermodynamic states in a centrifugal compressor. 

the rotor, so that W\ > W2. The kinetic energy leaving the rotor is quite large. The 
loss of stagnation pressure across the rotor is Ap0 LR = po2i — P02, and across the volute 
it is ApoLS = P02 — Po3- The pressure po2i is the stagnation pressure for an isentropic 
compression process in which the same amount of work has been done as in the actual 
process. 

The rotor efficiency is given by 

??R = 
h, 02s ^01 
h02 — h, 

(8.9) 
01 

With 7?R known, the stagnation temperature T02S can be calculated from Eq. (8.9), and the 
stagnation pressure P02 can then be calculated from 

P02 = P01 
TQ2S 

T01 

7/ (7 -1) 

In addition, integrating the Gibbs equation along the line of constant P02 and along the line 
of constant ft-02 between the states with entropies si and s2 gives 

P02i 
P02 T, 02s 

7 / (7 -1 ) 

from which p02i can be calculated. 
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For an axial inlet flow Vu\ = 0 and introducing Vu2 = 1PU2 into Eq. (8.8), the pressure 
ratio can be written as 

P03 

P01 
[l + ( 7 - l ) ^ t A C ] 7 / ( 7 - 1 ) (8.10) 

in which M0u = U2/CQI. A plot of this relation is shown in Figure 8.5. Similarly, the 
pressure ratio across the rotor alone is 

P02 

P01 

It was seen earlier that in the expression for constant trothalpy 

[l + ( 7 - D ^ < . ] 7 / ( 7 _ 1 ) (8.11) 

Po_3 
P01 

Mn 

Figure 8.5 Pressure ratio as a function of blade stagnation Mach number, for various values of 
iprjtt and for gas with 7 = 1.4. 

h*-hx = \(U*-Ul) + \{W*-W*) 

the first term on the right side is a kinematic effect and therefore represents a reversible 
process. If the left side is written as 

h2 - hi = h2 - h2s + h2s - h\ 

then the reversible enthalpy change may be written as 

h2s - hi - \{U\ - Ul) + (1 - f)\{W2i - Wi) 

and for the irreversible change 

h2-h2s = f-{W2i-Wl) 
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in which / is the fraction of the change in relative kinetic energy lost to irreversibility. The 
static enthalpy loss coefficient £R in 

h2 ~ h2s = 1-CKWI 

k-'dr1) 
is related to / by the equation 

CB 
■ - , 2 

The ratio (1 — ??R)/(1 — 7jtt) of rotor losses to the total losses is between 0.5 and 0.6. Hence 
for r/tt = 0.8, the rotor efficiency is about T?R = 0.89. 

Writing the rotor efficiency as 

= h2s~h1 + ±(V£-V?) 
VR h2-h1 + \{V2-V?) 

and assuming that V2s = V2, this becomes 

= h2s - fa2 + fea - /t! + \{V2
2 - V?) 

m ~ h2-hl + \{V2-V?) 

which can also be written as 

h2 ~ h2s = _ CnWl = __ (nW[ 
w 2w 2ipU$ m = i = i — - z - ^ - = i 

Squaring and adding the component equations 

W2 sin f32 = Vu2 - U2 W2 cos /?2 = V* 

gives 

In addition 

so that 

Wi = Vl2 - 2Vu2U2 + Ul + K2
2 

vu2 
Vr2 = 

t ana 2 

M - 1 o, , ^ 

and the rotor efficiency can be written as 

TT2 = 1 - 2 ^ + ^ 2 — (8.12) 
U2 s in a2 

, . ( l - 2 ^ + ^ 2 /sm 2 a 2 ) 
??R = 1 - C R ^ 

in which 

tana2 

Solving the equation for rotor efficiency for £R gives 

(1 " T?R)2^ 

ip = 1 (8.13) 
tanx2 

CP 
1 - 2 ^ + V>2/sin <*2 



COMPRESSOR ANALYSIS 273 

For a typical case xi = —40° and c*2 = 67°. With a — 0.85, these equations give 
ip = 0.627, and for a rotor efficiency r/R = 0.89, the loss coefficient is £R = 0.656. 
This appears to be quite large, but when calculating the stagnation pressure losses this is 
multiplied by W| , which is small because the flow will have been diffused through the 
rotor. In addition, a typical value for W1/W2 = 1.6. For these values the fraction of 
the relative kinetic energy lost to irreversibility is / = 0.38. This number accords with 
Cumpsty's [18] review of the field. Although this number appears to be large, in a typical 
compressor the centrifugal effect accounts for over three quarters of the pressure rise and 
the diffusion of the relative velocity the rest. Hence 38% loss keeps the rotor efficiency 
still over 90%. 

■ EXAMPLE 8.1 

Air flows from atmosphere at pressure 101.325 kPa and temperature 288 K into a 
centrifugal compressor with radial blades at the exit of the impeller. The inlet velocity 
is V\ = 93m/s, and there is no preswirl. The compressor wheel has 33 blades, and 
its tip speed is U2 = 398 m/s. The total-to-total efficiency is r/tt = 0.875. Find (a) 
the stagnation pressure ratio and (b) the power required assuming that the mass flow 
rate is rn — 2.2 kg/s. Use the Stanitz formula to find the slip coefficient. 

Solution: (a) Since the air comes from the atmosphere, where it is stagnant, the atmo-
spheric pressure and temperature are the inlet stagnation properties. The stagnation 
speed of sound is 

coi = V7-R7bi = Vl.4-287-288 = 340.2 m/s 

and the stagnation blade Mach number is therefore 

Ui 398 
Mou = — = irr^ = 1.17 

coi 340.2 
The Stanitz slip coefficient is 

, 0.63TT 
1 - — = 0 . 9 4 

Since for radial blades Eq. (8.4) shows that ip = a, the pressure ratio can be calculated 
from 

M = [1 + ( 7 _ l)arhtMltpH'*-1'> = (1 + 0.4 • 0.94 • 0.875 • 1.172)3'5 = 3.674 
P01 

(b) The stagnation temperature for an isentropic process is 

/ \ ( 7 - l ) / 7 
T03. = Tni — = 288 • 3.6741/35 = 417.7K 

KPOIJ 

and the ideal work is therefore 

ws = cp(T03s - T01) = 1004.5(417.7 - 288) = 130.29 kJ/kg 

The actual work is w = ws/r]tt = 130.29/0.875 = 148.90 kJ/kg, and the power 
required has the value W = rhw = 2.2 • 148.90 = 327.6 kW. 
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8.2 INLET DESIGN 

Similar design limitations are encountered in the design of centrifugal compressors as in 
axial compressors. Namely, absolute and relative velocities must be kept sufficiently low to 
ensure that shock losses do not become excessive. The blade speed for high-performance 
compressors with a stainless-steel is kept below 450 m/s owing to limitations caused by 
high stresses. 

Typically the inlet stagnation pressure and temperature are known, and when atmospheric 
air is compressed, they are the ambient values. If the compressor is not equipped with 
vanes to introduce preswirl into the flow, the absolute velocity is axial. This velocity is also 
uniform across the inlet. The inlet hub and shroud radii are rih and ri s , and the inlet area 
is 

A\ = 7r(r2
s — r2

h) = 7rr2
s(l — K2) where K = — 

?~ls 

The flow rate 
m = piA-iVi 

may be expressed in a nondimensional form by diving it by the product poiirr^coi. Fol-
lowing Whitfield and Baines [79], this is written as 

$ = , ; " 2 = ^ 4 ( 1 - « 2 ) ^ c o s / 3 l s (8.14) . . <2) P o i s e d An r% coi 

The inlet velocity V\ is is related to the relative velocity at the shroud by V\ = W\s cos /3is. 
In addition, W\s = \ZU2

S + V2 and since the blade speed is highest at the shroud, so is Wis, 
and /3is has the largest absolute value there. With r\s/r2 = U\s/U2, the nondimensional 
mass flow rate may be written as 

A n ^ 2 c o i 
3>=—T£(1~K2)—cos f3ls 

and it can be further manipulated into the form 

* = ̂ f%^§4(i-^^»sA, «8,5) 
A)l V c l / U2 c01 °1 c01 

which can be written as 

3 / 2 M3 

* = — ( £~ ) ^ T ( l - « 2 ) ( 1 -cos2/3 l s )cos/3 l s 
PLflj-Y Ml**n -2vi _ 2 
An \T0J M0

2„ 

Here M I R S = W\s/ci is the relative Mach number at the shroud. Defining next 

the preceeding equation can be written as 

10u 

(1 + V M l R s C O S As) 
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Graphs calculated from Eq. (8.16) are shown in Figure 8.6. The angle f5\s at which the 
flow rate reaches its maximum value is obtained differentiating this equation with respect 
to cos/3is and setting the derivative to zero: 

cos4 f3ls - 3 + j f l 2 R s cos2 pls + -±- = 0 (8.17) 
2 ^ His , 2 

J W lRs M l R s 
The solution of this equation is 

Another way to plot the data is shown in Figure 8.7. The optimum angle from Eq. (8.18) 
is /3ls = —57.15° for M I R S = 0.6, and if the relative Mach number is increased to 
M I R S = 1.2, the optimum angle is /3is = —62.56°. In the incompressible limit the 
optimum angle is j3\s = —54.74°. 

Equation (8.16) can be recast also in the form 

g I =
 Pl (Wl-V?\ c' ^ ci 

pm \ c\ ) cgj ci coi 

and further as 

Solving this for M2
Rs gives 

2 _ *,2 , * f ^ , 7 - 1 . , 2 
( 3 7 - l ) / ( 2 7 - 2 ) 

M/R s = M( + ^ ^1 + ^ M ( 

This result is plotted graphically in Figure 8.8. Since M\ = MIRSCOS/?IS, the lines of 
constant cos /3is are straight on this set of graphs and the optimum angle is at the minima 
of the curves. 

■ EXAMPLE 8.2 

In an air compressor the relative Mach number is M\RS = 0.9 at the shroud of the 
impeller. The inlet stagnation pressure and temperature are 101.325 kPa and 288 K. 
The mass flow rate is m = 1.2 kg/s. The hub-to-shroud radius ratio is 0.4, and the 
inlet flow is axial. Determine (a) the rotational speed of the impeller, (b) the axial 
velocity, and (c) the inducer shroud diameter, assuming that the inducer is designed 
for optimum relative flow angle, and that the compressor operates at the design point. 

Solution: The stagnation density is 

poi 101325 3 
P01 = 1U^ = 2 ^ 2 8 8 - 1 - 2 2 5 9 k g / m 

and the stagnation speed of sound is 
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Figure 8.6 Nondimensional mass flow rate for given inlet angle of relative flow with relative Mach 
number as a parameter, for a gas with 7 = 1.4. 

M„ 

Figure 8.7 Relative Mach number for given inlet angle of relative flow with nondimensional flow 
rate as a parameter, for a gas with 7 = 1.4. 

The optimum relative flow angle can be found from 

cos2 /3is mr)(-f 4 M 2
R s 

(3 + 7 M? R s )2 
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M„ 
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Figure 8.8 Relative Mach number for given inlet Mach number with nondimensional flow rate as 
a parameter and for a gas with 7 = 1.4. 

With 7 = 1.4 and M 1 R s = 0.9 this gives 

2 . 3 + 1 . 4 - 0 . 8 1 
cos /3is = 1 - 4 1 

4 -0 .81 
2-0 .81 l~ V~ (2 + 1.4-0.81)2 I 

and therefore /3is = —59.70°. Next value of $f is calculated from 

M 3
R s ( l - C O S 2 / 3 i s ) c O S / ? l s 

0.2546 

$ f 
( l + V M m s c o s 2 / 3 l s ) 

and it yields the value 

0.93(1 - cos 2 ( -59.7°) ) cos ( -59 .7 

( 3 7 - l ) / ( 2 7 - 2 ) 

$ f 
(1 + 0 . 2 - 0 . 8 1 cos 2 ( -59 .7° ) ) 4 0.2333 

The equality 

$ 
\-K2 

can next be rewritten as 

m $ f ( l - K2)poic\ 01 
,ooicoi7rr| r/2 

^ 2 

After t/2 = r20, is substituted and r\ canceled from both sides, this can be solved 
for f2 with the result: 

^(1-K2)CLTT V0.2333 • 0.84 • 1.225 • 340.173 ix _ r l „ 
Q = \l —i . ' U1 = — = 4 7 , 5 1 0 r p m 

m 1.2 
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(b) The inlet Mach number is 

Mx = M1Rscos/3le = 0.9 cos(-59.7°) = 0.454 

and hence the inlet static temperature has the value 

T l - i + ^ i M | " 1 + 0.2-0.4542 " 2 7 6 ' 6 K 

The static density comes out to be 

/ j i \ 1/(7-1) / 2 7 6 6 \ 2 ' 5 

pi = "»{it) =1-2259(wJ =1-1081kg/-3 

and the axial velocity is 

Vi = Mj V7.RT1 = 0.454V1.4-287-276.6 =151.4m/s 

The mass flow rate, 

m = pxAiVi = p\-Kr\s{l - K2)VI 

when solved for n s gives 

r i s = W pl7r(l-^i = V 1.1081-J'-L-151.4 = °-°521 m 

so that the inducer diameter of the impeller is D l s = 10.42 cm. 

8.2.1 Choking of the inducer 

The inducer is shown in Figure 8.9. The flow is axial at the inlet, and the relative velocity 
forms an angle Pi at the mean radius and j3is at the shroud. The corresponding blade 
velocities are U\ and L71S with C/ls = r\sU\/r\m. The blade angle is xi, and the stagger is 
£. The throat width is denoted by t. From the shape of the blade, its thickness distribution, 
and the stagger, the width of the throat can be determined. As the sketch shows, a reasonable 
estimate is given by t = s cos xi- A typical value for incidence i = fix — xi is —4° to —6° 
[63]. 

Mass balance in the form 

Pi rh = piAxWi cos A = —frA^M^^RT^ cos/3i 
HI1 

can be written in terms of functions of the relative Mach number, by introducing the ratios 

TQK 
TI 

T°R - 1 + ^ M f R 

and 
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V. 

Figure 8.9 Detail of the inlet to the inducer. 

with the result that the mass balance takes the form 

POR-4ICOS/3I 7 / 7 - 1 , 1 , 2 
m = = = = = M i R 1 + — — Mx 

VCpToR V7 - 1 V 2 
At the throat the mass flow rate can be expressed as 

R 

-(7+l)/2(7-l) 

, u / PORA 7 , , A . 7 -m = ptAtWt = -7===-7==MtK I H -
7"V [tR 

A/CP^OR V7 

Equating the mass flow rates in the two preceding equations gives 

A1Mmcos(il AtMtR 

-(7+l)/2(7-l) 

If the flow is choked, MtR = 1, and this equation reduces to 

(7+l)/2(7-l) 

At 
Ai cos /3] = Mi R 

7 - 1 
7 + 1 7 + 1 M?K 

-(7+l)/2(7-l) 

(8.19) 

(8.20) 
■"■1 ^^^ Hi- \ 1 < * I ' * / 

Figure 8.10 shows the graphs of the relative Mach number as a function of the effective 
area ratio for various values of the relative throat Mach number. If more accurate numerical 
values are needed than can be read from the graphs, they are easily calculated from 
Eq. (8.19). 

Substituting A\ cos /?i from Eq. (8.19) into 

gives 

m = p\A\W\ cos/3i 

h+l=lM2 )(7+D/2(7-l) 
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Figure 8.10 Throat area for a choked inducer for a gas with 7 = 1.4. 

which, when multiplied and divided by poiCoii c a n be written as 

m = PoiCoiAtMtR- 1 + iJW?R)(7+1)/2(7"1) 

1 7 - 1 M?) ( 7 + l ) / 2 ( 7 - l ) (1 + V^t 2 R) ( 7 + l ) / 2 ( 7 - l ) 

In this equation the ratio of the two terms involving relative and absolute Mach numbers 
can be written as 

1 + V M m _ ftl + \Wl _ hl + \Vl + \Ul 
l + V M i 2 h^ + \v? ^1 + 2^1 

so that 

= 1 + il = 1 + ^ 1 " ? 
2/i, 01 2 r2 

m = P01C01 A-W t R 

1 + 7 - l ^ 2 

2 coi 
7 - 1 M, t R 

( 7 + l ) / 2 ( 7 - l ) 

This shows that the mass flow rate increases as the blade speed increases. This happens 
even after the flow chokes, for then this equation becomes 

m = poiCoiAt 
2 7 ~ 1 Uj 

7 + 1 7 + 1 c§i 

2 \ ( 7 + l ) / 2 ( 7 - l ) 

With increased blade speed more compression work is done on the gas, and its pressure, 
temperature, and density, all increase in the flow channel. Thus at the choked throat the 
higher velocity, given by Vt = \/^RTt, and higher density result in an increased flow rate. 



EXIT DESIGN 2 8 1 

8.3 EXIT DESIGN 

The characteristic design calculation in turbomachinery flows involves the relationship 
between the flow angles and the flow and blade loading coefficients. Density differences 
between the inlet and the exit of the impeller are considered only when the blade heights 
are determined. This was largely ignored in the axial compressor theory, as the annulus 
area could be reduced to keep the axial velocity constant. In radial compressor calculations 
the situation is somewhat more complicated, as the comparable criterion of constant axial 
velocity is absent. In this section the characteristics of the exit of the impeller are discussed. 

8.3.1 Performance characteristics 

If the inlet is axial, the work done is 

w u2v, 2 ^ 2 (8.21) 

Since VU2 = t/2 + W2 sin/32 and Vr2 = W2 cos/32, where Vr2 is the radial velocity at the 
exit, this can be written as 

w U2(U2 + W2 sin/32) = Ul + Vr2U2 tan/32 

Denning the blade-loading coefficient for a centrifugal machine as tp = tu/C/f and the flow 
coefficient as </> = Vr2/U2, this equation can be recast in the form 

i\) — 1 + 4> tan /32 (8.22) 

This is a straight line in the performance plot shown in Figure 8.11. If /32 > 0, the 
characteristic is rising and for /32 < 0, it is falling. The outlet velocity diagrams in the 
same figure show what happens to the absolute velocity in these two cases. It is clearly 
much larger in a machine with a rising characteristic. 

V 

Figure 8.11 Idealized characteristic of a centrifugal machine. 

Pressure rise in a centrifugal compressor takes place not only across the impeller but 
also in a vaned or vaneless diffuser and a volute. The latter are the stationary components 
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of the machine and can be viewed as the stator. This is a useful way of thinking about the 
machine, and the degree of reaction can again be defined as the ratio of the static enthalpy 
rise across the rotor to the total. 

If the outlet velocity from the impeller is large, then the flow needs to be diffused by 
a large amount in the stationary components of the machine. In order to prevent the flow 
separation and the irreversibilites associated with it, the diffusion in the volute must be 
kept sufficiently mild. This can be controlled by curving the blades backward, in order to 
reduce the absolute velocity at the outlet of the impeller. 

Backward-swept blades have an another decisive advantage; namely, the operation of 
the machine is stable. If the flow rate is reduced by increasing the load, for example by 
partially closing a valve downstream, on a falling characteristic of backward-swept blades, 
the blade-loading coefficient increases leading to higher enthalpy and thus also pressure at 
the outlet of the impeller. Hence a higher pressure rise is obtained across the machine. This 
counteracts the increase in flow resistance, and a new stable operating point is established. 
On the other hand, for forward-swept blades a drop in the flow rate decreases the pressure 
across the machine and thus leads to further drop in the flow rate in the system. Thus the 
operation of a compressor with forward-swept blades is inherently unstable. 

If the flow angle a2 of the absolute velocity at the outlet is in the range 63° - 72° a good 
design is obtained, and the best designs are in the range 67° - 69°. For radial blades, which 
are common, there is a wide range of fairly high efficiency. Radial blades have the added 
advantage that they experience no bending by centrifugal loads, and the state of stress tends 
to be dominated by tensile stresses. 

The pressure ratio has been shown to be 

^ ( 7 " 1 ) / 7 = 1 + (7 - D * t ^ » = l + (7 - l M M l 
c o i vPOl / 

and the temperature ratio is 

in which the blade-loading coefficient is given by Eq. (8.13). The exit Mach number can 
also be expressed in terms of the blade stagnation Mach number MQU. The definition of 
exit Mach number can be rewritten as 

, , V2 Vu2 Coi C02 
1V12

 = = 

c2 coi sin a2 c02 c2 

which can be rearranged to the form 

M2 
VU2 (T01\1/2 (T02\1/2 ^M0u I 1 + ^ M 2 

coi sina2 \T02 J \T2 ) sina2 y 1 + (7 - l)ipM§u 

Solving this for M2 gives 

M2 = ^ ° » (8.23) 
sin2 a2 + (7 - l)^-Mou(sin2 a2 - \ij}) 

The inlet Mach number can be written in terms of MQU as well. First, the definition of Mi 
can be written in the form 

y2 TJ2 2 1 
M2 = — = —^- — 

1 c\ c2,! c\ tan2/3is 
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and then using Uis = r l sC/2 / r2 and c^/cl — T0i/Ti in this leads to 

T0 

7 - 1 
Mi 

Solving this for M\ gives 

Mi M0uris/r2 

/ t an 2 /3 i s 
7 - 1 

(8.24) 
M2 -is. 

2 °"r2
2 

The relative inlet Mach number at the shroud is M I R S — M\j cos /3is. These relations are 
shown graphically in Figure 8.12 in the manner following Whitfield [78]. The blade angle 
varies from \2 = 0° for radial blades in increments of —10° to \2 = —60°. The outlet 
angle was assumed to be a2 = 67° and the inlet flow angle, j3\B = —60° at the shroud. 
The slip factor was assumed to be a = 0.85, and the total-to-total efficiency was taken to 
be rju = 0.8. The radius ratio has the value r\s/r2 = 0.6. With these values fixed a typical 
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Figure 8.12 Exit Mach number, pressure ratio, and relative inlet Mach number as functions of 
blade stagnation Mach number for various blade angles %2- The exit flow angle is «2 = 67° and at 
the inlet j3\s = 60°. The slip factor is a = 0.85 and rjtt = 0.8. The radius ratio is r\s/r2 = 0.6, 
and 7 = 1.4. 

design would have M0u = 1.4 and, say \2 = —30°. These give a blade-loading coefficient 
of if; = 0.683, an exit Mach number of M 2 = 0.9, a pressure ratio of P03/P01 = 3.84, and 
a relative Mach number at the inlet shroud of M I R S = 1.17. 

8.3.2 Diffusion ratio 

The diffusion ratio for the relative velocity is discussed next. It is obtained by first writing 
at the inlet 

Wls sin Pls = Uis 
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and then developing the relative velocity at the outlet into a convenient form. Starting with 

W2 sin j32 = Vu2 - U2 W2 cos /32 = Vr2 

and squaring and adding them gives 

Wl = Vl2 - 2Vu2U2 + Ul + K2
2 

Noting that Vr2 = Vu2/ t&na2, and dividing by U2, gives 

Wi , „ , V>2 
- | = l - 2 ^ + . 2 (7| sin at; 

a result that was developed earlier in this chapter. Hence the diffusion ratio becomes 

Wls 

w2 
sin/3ls-i 

uls/u2 

/ l - 2^ + T ^ -
/ sin «2 

which in terms of the radius ratio is clearly 

Wls rls/r2 

W-2 n \ V>2 

sin,»isWl - 2ip + — sin a2 

This ratio should be kept below Wis/W2 < 1.9. For radius ratio r\s/r2 = 0.7, graphs 
of the diffusion ratio as a function of \2 are plotted in Figure 8.13 for various values of 
the exit flow angle a2. A typical design might have a2 = 67° and if the diffusion ratio 
Wis/W2 = 1.9 is chosen, then \2 = -28.2°. 

8.3.3 Blade height 

The blade height at the exit is determined by equating the mass flow rates at the inlet and 
the outlet of the rotor. Writing the mass flow rates in terms of the flow functions as 

^ ^ = F1(M1) 
Poi-Ai 

and 
m^/cpT02 — - b2{M2) P02M 

Diving the former by the latter gives 

M= / l ^"po iF i (Mi) 
Ax V T01 p 0 2 F2(M2) 

The area ratio is seen to depend on the pressure ratio across the rotor, which is 

P o 2 (t , I ^\ 1 T\t2 \7/(7-l) 
—- = (1 + (7 - l)r?R^M0u) 
P01 
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W, 
Is 

Figure 8.13 Diffusion ratio for a = 0.85, inlet flow angle /?is 
7 = 1.4, as a function of \2 and for various values of a2. 

-60°, rls/r2 = 0.7, and 

and the temperature ratio, which is 

TQ2 

'01 

The area ratio 

1 + (7 - 1)^M0
2

U 

2irbr2 M= 

A± 7rrfs(l - K2) 
yields the blade height to radius ratio b2/r2, as 

b A2 rl (1 - K2) 

7-2 A i r i 

To establish the area ratio in Eq. (8.25), the flow function Fi(Mi) can be calculated in 
terms of M0u, since Eq. (8.24) gives the relationship between Mi and M0u. Similarly, 
Eq. (8.23) is a relationship between M2 and M0u. Thus the blade width-to-radius ratio can 
now be calculated for various values of MQU. The graphs shown in Figure 8.14 are again 
patterned after Whitfield [78]. 

8.4 VANELESS DIFFUSER 

As the compressed gas leaves the rotor, it enters a vaneless space in which it diffuses to a 
lower velocity. The mass balance at the exit of the rotor can be written as 

rh = p22Tvr2b2V2 cos a2 

A similar equation at the end of the diffusion process at r2e is 

m = P2e2nr2eb2eV2e cos a2e 
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Figure 8.14 Blade width-to-radius ratio for a = 0.85, TJR = 0.9 and 77a = 0.8. At the inlet 
/Sis = —60° and 0:2 = 65°. At the exit \2 = —40°. The hub-to-shroud radius ratio is K = 0.4, and 
the gas has 7 = 1.4. 

so that 
P2r2b2V2 cosa2 = p2er2eb2eV2e cosa2e 

These mass balances can also be cast in the nondimensional forms: 

m i / c p T 0 2 

P0227T 

m\JcpTQ2e 

r2b2F2cosa2 

'- r2eb2eF2e COS a 2 e 

(8.26) 

P02e27T 

The stagnation temperature is constant so that T02e = To2- If it assumed that there are no 
losses, then since no work is done, po2e = P02- In addition, if the channel has a constant 
height, equating the foregoing two equations gives 

?*2e-F2e cos a 2 e = r2-F2 cos a 2 

For a free vortex velocity distribution 

T2eVu2e = r2Vu2 

(8.27) 

r2eV2e sin a 2 e = r2V2 sin a2 (8.28) 

For a channel of constant width b2 = b2e, so that dividing this equation by Eq. (8.26), 
yields 

tan a2e t an a2 

P2e Pi 
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Since both T0 and p0 are taken as constant, it then follows from the ideal gas relation that 
P02 = Po2e- Multiplying the left side of this equation by p02e and the right side by p02 
gives 

1 + 1_}LM? 
2e 

1/(7-1) 
tan a2e 1 + 7' 1 -Ml 

1/(7-1) 
t an 0:2 (8.30) 

When the conditions at the exit of the rotor are known, this equation and Eq. (8.27) are two 
equations for the two unknowns M2e and a2e for a specified location r2e. 

Mach number M2e as a function of the radius ratio is shown in Figure 8.15 for a flow 
with M2 = 1.2 at the exit of the rotor and flow angles in the range 62° < a2 < 70°. The 

0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2 1.25 

Figure 8.15 Mach number for a gas with 7 = 1.4 as a function of radius ratio r2e/?"2 for flow 
angles at the exit of the rotor in the range 62° < 0:2 < 70° and Mi = 1.2. 

value of M2e at r2e/r2 = 1.30 is seen to be in the range 0.82 - 0.85, as the flow angle is 
increased from 62° to 70°. The diffusion of velocity is shown in Figure 8.16. 

In the incompressible limit the mass balance and the irrotational flow condition give 

r2V2 cos a2 = r2eV2e cos a2e r2V2 sina2 = r2eV2e sina2e 

Taking ratio of these two equations gives tan 0:2 = tan a2e indicating that the flow angle 
remains constant. In this case 

V2e _ T2 

V2 r2e 

and the diffusion varies inversely with the radius ratio. The compressible flow approaches 
this condition as the flow angle moves toward 90°. Since the Mach number at any given 
radius is higher for the larger flow angles, density is lower, and Eq. (8.29) shows that the 
flow angle is now smaller. The change in flow angles is shown in Figure 8.17. That the 
flow angle a2e increases with radius means that the flow remains longer in the vaneless 
space and therefore experiences losses as the boundary layers grow in a decelerating flow 
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Figure 8.16 Diffusion ratio for a gas with 7 = 1.4 as a function of radius ratio r2e/?*2 for flow 
angles at the exit of the rotor in the range 62° < 02 < 70° and M2 = 1.2; the incompressible flow 
case corresponds to constant flow angle. 

in a narrow channel. For this reason, the vaneless space is kept small and vanes are inserted 
to guide the flow into the volute. 

More information on losses can be found in Cumpsty [18] and in Whitfield and Baines 
[79]. The function of the vaned diffuser is to reduce the area over which the diffusion takes 
place. The vanes may be in the form of airfoils, triangular channels, or what are called 
island diffusers. For the triangular channels a rule of thumb is to keep the opening angle at 
less than 12°. Again, Whitfield and Baines give more information, including results from 
a more advanced analysis. 

■ EXAMPLE 8.3 

Air from a centrifugal compressor leaves the blades at angle a2 = 67.40° and 
M2 = 1.1 at the radius ri = 7.5 cm as it enters a vaneless diffuser. (a) Find the 
radial location at which the flow reaches the sonic condition, (b) Find the Mach 
number at radius r2e = 0.10 cm. 

Solution: (a) It is assumed that there are no losses, and denoting the sonic state by 
star, Po2 = p02, and 

P02 , P02' , * 
tan 0:2 = tan a 

Pi P* 
The density ratio at the inlet to the vaneless diffuser is 

/ _ 1 \ 1 / ( 7 ~ 1 ) 

£21 = (l + 1-^Ml\ = (1 + 0.2 • l.l2)2-5 = 1.719 
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Figure 8.17 Difference in flow angles during the diffusion process, with angle at exit of the rotor 
in the range 62° < Q2 < 70° and Mi = 1.2, and the ratio of specific heats 7 = 1.4. 

and at the sonic state it is therefore 

P" V 2 

The flow angle at the sonic state is 

A > a _ / 7 + n = 1.22-5 = 1.577 

* , -1 I P02 P , \ , - 1 
a = t an tan a2 = t an 

V P2 P02 

The radial location where M — 1 is 

1.719 
1.577 

tan(67.40°) 69.09° 

r* = r2 ^ i = 0.075 ^ l ^ ^ l = 0.0801 m 
F* cos a* 1.281 cos(69.09°) 

in which 

VT^T 
7 ^ 1 , 

2 
M2(l + ±-^zM$ 

- ( 7 + l ) / 2 ( 7 - l ) 1.4 
/0A 

1.1(1 + 0.2- 1 .12)- J=1.271 

and 
~ / ~ + l \ - ( 7 + l ) / 2 ( 7 - l ) 1 4 

F* =-^2=^ ( 2±1) = -±l( l .2)- 3 = 1.281 

(b) The two equations 

r 2 e cos a2eF2e = r2 cos a2F2 

and 

tan a2e 

(l + ^Ml) — TJl^T) t a n a 2 
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are to be solved simultaneously for a2e and M2e. The angle can be eliminated using 

1 
COS 0!2e 

V 1 + tan2 a2e 

Substituting, simplifying, and rearranging gives 

r2ejM2e 

VT^Vl + ^Mfe 

1/(7-1) / x \ 1/(7-1) 
r cos a2F2\l I 1 + -^—M'L 1 + 1 + -—r-Mk2 I tan2 a2 

Solving this by iteration gives M2e = 0.7571. g 

A well designed vaned diffuser improves the efficiency by 2% or 3% over a vaneless one. 
However, this comes at a cost, for at off-design operation the efficiency of a vaned diffuser 
will deteriorate; that is, a compressor with a vaned diffuser will have a narrow operating 
range at the peak efficiency, owing to stalling of the vanes. To widen the range, adjustable 
vanes can be implemented into the design at added complexity and initial cost. The payback 
is reduction in operating costs at higher efficiency. A low-cost option is to have a vaneless 
diffuser, which has a lower efficiency but a flatter operating range near peak efficiency. As 
the flow leaves the vaneless, or vaned, diffuser, it enters a volute. Its design with respect to 
pumps is discussed at the end of this chapter. 

8.5 CENTRIFUGAL PUMPS 

The operation and design of pumps follows principles similar to those of centrifugal 
compressors. Compressibility can be clearly ignored in pumping liquids, but it may also 
be neglected in fans in which the pressure rise is slight. 

The first law of thermodynamics across a pump is 

w = h02 - h0i = (u2 + ~ + - V? + gZl J - (m + — + -V2
2 + gz2 

In incompressible fluids, as was discussed in Chapter 2, internal energy increases only as 
a result of irreversibilities in an adiabatic flow. Hence, if the flow through the pump is 
reversible and adiabatic, internal energy does not increase and u2 = u\. In this situation 
the preceding equation reduces to 

Pi • lir2 , _ \ (V\ , 1T,2 
P

+2vi+9Z>)-{i; + 2v'+^ 
The total head developed by a pump is defined as 

P2 , X T,2 , \ / P i , 1 T,2 H = + ^ 2 + Z 2 " + ^Vi+Z^ 
\pg 2g ) \pg 2g 

so it represents the work done by a reversible pump per unit weight of the fluid. On the 
unit mass basis the reversible work is 

w3 = gH 
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Since the total head is readily measurable, the pump industry reports it, as well as the 
overall efficiency, in the pump specifications. 

The shaft power to the pump is given by 

V 
The overall efficiency r/ can be expressed as the product 

V = ??m??vr?h 

in which rjh is a hydraulic efficiency, rjv is a volumetric efficiency, and -qm is a mechanical 
efficiency. The hydraulic efficiency accounts for the irreversibilities in the flow through the 
pump. If the loss term is written as 

gHL = u2~ui 

then 
w = ws+ gHL = gH + gHL 

and the hydraulic efficiency is defined as 

ws gH 
w gH + gHL 

The hydraulic efficiency may be calculated from the empirical equation 

0.4 
% = 1 - Q I T I (8-3D 

where Q is in liters per second. If the volumetric flow rate is given in gallons per minute, as 
is still done in part of the pump industry today, the constant 0.4 has to be replaced by 0.8. It 
is in this form that this expression for hydraulic efficiency appears in the Pump Handbook 
[45]. 

A typical set of pump performance curves is given in Figure 8.18. (The quantity on the 
right ordinate axis, N P S H R = required net positive suction head, and its significance is 
discussed later in conjunction with consideration of cavitation.) For an impeller diameter 
of 31cm and flow rate of 18L/s, the delivered head is 48 m at the shaft speed of 1750 
rpm. The efficiency at this condition is about 0.63. The contours of constant efficiency 
and the power for pumping water are shown. Since the reversible work is ws = gH, and 
w = Ws/rih, the power calculated using W = rhw, then, because of leakage flow through 
the clearances from the exit of the impeller back to the inlet, work will be redone on some 
of the fluid as it crosses the impeller, and the value obtained will be too low. To correct for 
this, the power into the impeller is obtained from 

WR = (m + rhi,)w 

in which m^ is the leakage flow. The power transferred to the fluid is 

W = rhw 

and the ratio of these two expression for power is defined as the volumetric efficiency. 
Hence it also equals the ratio of the mass flow rates and can be written as 

_ rh _ Q Q _ W 
rh + rh-L Q + QL QR WK 
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Figure 8.18 A typical set of performance curves for a centrifugal pump at 1750 rpm. 

in which Q R is the flow that passes over the blade passage. The volumetric efficiency for 
large pumps with flow rates of 600 L/s reaches 0.99 and for small pumps with flow rates 
of 3 L / s it drops to 0.86. Logan [52] correlated the volumetric efficiency according to 

Vv c_ 
Qn (8.32) 

The constants are given in Table 8.1 as a function of the specific speed fls — fl^/Q/ws , 
with the flow rate in liters per second. 

Table 8.1 Correlation for volumetric efficiency 

Os C n 
0.20 0.250 0.500 
0.37 0.122 0.380 
0.73 0.047 0.240 
1.10 0.023 0.128 

Finally, there is bearing friction and disk drag that are not taken into account in the 
impeller losses. Hence, if the power needed from the prime mover to power the pump is 
W0 then the power delivered to the rotor WR, is less than this. Their ratio is defined as the 
mechanical efficiency 

% 
WR 

The power loss from mechanical friction can be estimated. But if the overall efficiency, 
hydraulic efficiency, and the volumetric efficiency are obtained from empirical relations, 
then the mechanical efficiency can be determined from the equation r\ = r\\{q^r\m. 



CENTRIFUGAL PUMPS 293 

As reported by Cooper in the Pump Handbook [45], the overall efficiency has been 
correlated by Anderson and is given by 

77 = 0.94-0.08955 
1.660Q\ [3.56 

n ) 
-0.21333 

-0.29 
, 0.8364 \ l o g i ° l -^r) (8.33) 

The original correlation is in a mixed set of units, and even after it has been converted 
here to a form in which Q is given in liters per second and fl in radians per second, it 
is not in a dimensionless form. Be as it may, according to Cooper, it gives satisfactory 
values for the overall efficiency, except at the upper half of the specific speed range, and he 
suggests that for large-capacity pumps the dashed line in Figure 8.19 be used. This figure 
gives a graphical representation of Eq. (8.33). The surface roughness of the flow passage 
is denoted by erms and its value is in micrometers, with erms = 3.56 /jm for the graphs 
shown. 

0.005 

Figure 8.19 Efficiency of centrifugal pumps according to the correlation of Anderson, as quoted 
by Cooper [45]. 

The number of blades in the impeller is in the range 5 < Z < 12, and the empirical 
equation of Pfleiderer and Petermann [59] 

6.5 T2 + Tu 
r2 - ru 

(X2 + As) (8.34) 

can be used to calculate this number. It shows that Z increases as r\s/r2 increases. 
Analysis of double-flow (double-suction) pumps, a sketch of which is shown in Figure 

8.20, follows closely the analysis of single-flow pumps. The flow rate Q/2 is used to 
calculate the hydraulic and volumetric efficiencies as well as the specific speed. The 
mechanical efficiency is close to that for a single-flow pump. In the next section Cordier 
diagram is used to determine the size of a pump. When it is used for a double-flow pump, 
the entire flow rate Q is used in the definition of the specific diameter. 
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Figure 8.20 A double-flow pump. 

8.5.1 Specific speed and specific diameter 

A useful chart for pump selection was developed by Cordier. It is shown in Figure 8.21. 
The abscissa in the chart is the specific diameter, and the ordinate is the specific speed. 
These are defined as 

A 
D(gH) 1/4 

V a 
It was seen in Chapter 4 that specific speed is used to select a pump of certain shape. Once 
selected, the size of the pump can be obtained using the Cordier diagram. The curve has 
been constructed such that for the size selected, optimal efficiency is obtained. 

Since the total head is reported, it is more convenient to define the blade loading 
coefficient in terms of the reversible work rather than the actual work. Therefore, the 
loading coefficient is defined as 

A Ws gH_ 

and the subscript s serves as a reminder that this definition differs from the conventional 
one. With tp = w/U^, the relation tj)B = -qip relates the two definitions. 

Another way to size pumps is given by Cooper in [45]. With a specified flow rate and 
head rise across a pump, the rotational speed is first chosen, with the understanding that 
the higher the speed, the more compact is the pump. Once the rotational speed is fixed, the 
flow coefficient </> = Vrn2/U2 can be obtained from the correlation 

(/> = 0.1715Vf2s 

A correlation for the blade-loading coefficient is 

A 0.386 

a 
1/3 

(8.35) 

(8.36) 
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Figure 8.21 Cordier diagram for fans and pumps. (Adapted from Csanady [17].) 

and after the loading coefficient is determined, the blade speed is obtained from 

U2 

After that, the impeller radius is calculated from r2 = U^/Sl and the flow meridional 
velocity determined from Vm2 = 4>U2- Finally the blade thickness 62 is determined from 

27rr2K„2 

where QR is the sum of the delivered flow Q and the leakage flow QL- Shapes of the 
velocity diagrams for low and high specific speeds are shown in Figure 8.22. Since 

4>s 
w. rjw r]Vu2U2 

the relationship 

~m 
vu2 
u2 

ui ui 

tps 0.383 

is obtained. When the specific speed is high, Vu2 becomes much smaller than U2 and 
vanes have a large backsweep. The backsweep reduces as the specific speed decreases. 
It also decreases because lowering the specific speed lowers the efficiency. A sufficient 
reduction in the specific speed leads to forward-swept vanes, and such pumps are prone 
to unstable operation if the load changes. When the specific speed becomes very low, the 
centrifugal pump is no longer suitable for the application and it should be replaced by 
a positive displacement pump, such as a screw pump or a rotary vane pump. In typical 
designs VU2 is slightly over 0.5 of U2, and then the absolute values of both flow angles are 
quite large. For such pumps the exit relative flow angle ranges from —65° to —73°. 
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Figure 8.22 Velocity triangles for a low and a high specific speed centrifugal pump. 

In the discussion of compressors an optimum inlet flow angle for the relative velocity 
was found, which gives the largest flow rate with a given relative Mach number. In the 
incompressible limit this gives 0is = —54.74°. A range from —65° to —80° is typical for 
pumps, which means that a flow rate lower than the optimum is obtained for a fixed relative 
velocity. 

For axial entry the volumetric flow rate can be written as 

Q = A1V1=nr2
la{l-K?)JW?a-rlW 

Solving this for W^s gives 

WTs = ris& + 7r2( l -K2)2 r f 

When r i s is small, the second term causes W\s to be large, and when ri s is large, the first 
term increases the value of W\s. The value of r\s for which W\s is minimum, is given by 

T\s 
V2Q 

1/3 

7T(1-K2)fi 

Typical values of K are in the range from very small to about 0.5. The smallest value of 
the hub radius r\h depends on the size of the shaft. The shaft diameter is easily determined 
from elementary torsion theory, once the torque is known. For double-suction pumps, in 
which the shaft penetrates the entire hub, K is typically 0.5. These guidelines are illustrated 
next with examples. 
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EXAMPLE 8.4 

A pump is to be selected to pump water at the rate of 50 L/s. The increase in total 
head across the pump is to be 35 m. An electric motor, connected with a direct drive 
and a rotational speed of 3450 rpm, provides the power to the pump. Water is drawn 
from a pool at atmospheric temperature and pressure. Its density is p = 998 kg/m3. 
(a) Determine the type of pump for this application and its efficiency, assuming 
erms = 3.56 yum. (b) Calculate the pump diameter, (c) Estimate the pump efficiency 
and the power needed. 

Solution: (a) The specific speed of this pump is 

fi„ = JWQ_ 
( 5 f f ) 3 / 4 

3450 ■ 7T v'cTos 
30 (9.81 • 35)3/4 1.013 

From Figure 4.9 a pump with Francis-type impeller is chosen. The efficiency, 
calculated from Eq. (8.33), is r\ — 0.815. 
(b) To determine the size of the pump, a Cordier diagram may be consulted. The 
specific diameter is estimated to be Ds = 3.1 so that the impeller diameter is 

D = DS 
Q _ 3.1^/005 

{gH)1/* ~ (9.81 -35)1/4 

(c) The power required is 

pQgH 
W = 

V 
998 ■ 0.05 ■ 9.81 • 35 

0.815 

16.1 cm 

21.0 kW 

The specific speed of the pump in Example 8.4 is about the upper limit for centrifugal 
pumps. Beyond this value pumps fall into the category of mixed-flow type. In mixed-flow 
pumps the edge of the blade on the meridional plane is inclined with respect to the radial (or 
axial) direction. If the meridional velocity is perpendicular to the edge, then the effective 

dA=2izrdb 

Figure 8.23 Sketch for calculation of blade width. 

radius for calculating the volumetric flow rate is determined from the construction shown 
in Figure 8.23. 
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The differential area is dA = 2-rrr db and dr = sin ip db. Hence 

- 2 ^ ^ = n(rl - rl) = n(rlt - r 2 t ) ( r l t + r2 t) = + 

r i t sinip smi(3 sin^j 

Thus the effective radius is the mean radius rm = i ( r n + r2t) and A2 = 2nrmb. 

EXAMPLE 8.5 

A pump handles water at the rate of 10 L/s with a head of 100 m across the pump. 
The power is provided by an electric motor with shaft speed 3450 rpm. Water is at 
20° C with density p = 998m3/kg. (a) Calculate the specific speed of the pump. 
(b) Determine the flow coefficient and the blade-loading coefficient, (c) Find the 
directions of the absolute velocity and the relative velocity of water leaving the 
impeller, (d) Find the tip radius of the impeller, (d) Find the power needed. 

Solution: (a) The specific speed of this pump is 

_ nVQ _345Q.7r VOM _ 
s " (5ff)3/4 " 30 (9.81 • IOO)3/4 " 

(b) The flow coefficient is determined from 

4> = 0 . 1 7 1 5 ^ ^ = 0 .1715^0.2061 = 0.0779 

and the blade loading coefficient is obtained from 

0.386 0.386 
Ws = —nr = 77X = 0.6535 
v fii/3 0.2061V3 

From ips = gH/U^ the blade tip speed is 
/ w „ 9-81 • 100 „ a _ 

U> = \l— = V ^ 6 5 3 5 - = 3 8 - 7 m / s 

(c) The hydraulic efficiency is 

0.4 0.4 

and the work done is therefore 
ws 9.81 • 100 1.266 kJ/kg 
r]h 0.775 

The tangential and radial components of the velocity are 

Vu2 = ^- = ^ ^ = 32.7 m / s Vr2 = <j>U2 = 0.0779 • 38.7 = 3.01 m / s 
L/2 38.7 

so that the flow angle is 

*2 = ta„-.(£W.(5|I)=84.72-
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The tangential and radial components of the relative velocity are 

Wu2 = Vu2 -U2 = 32.7 - 38.7 = -6.0 m/s Wr2 = Vr2 = 3.01 m/s 

and therefore 

, - i / W M _.„„-i f - ™ A = tan U S J = t a n UorJ=-63-61° 
(d) The impeller radius can be calculated to be 

U2 38.7 • 30 
r2 = TT= 3450^7= °-1 0 7 2 m 

The volumetric efficiency is obtained by first finding the constants in Eq. (8.32) 
by interpolation. They are C = 0.2454 and n = 0.4957 for fis = 0.2061. The 
volumetric efficiency is then 

C , 0.2454 _ „ 
* = * " ^ = * " IQoliar = ° - 9 2 1 6 

so that QK = Q/r)v = 0.01/0.9216 = 0.01085 m2/s. The blade width is therefore 

52 = 77— = o nin-77 q m = 0 ' 0 0 5 3 m h^ = ° ' 5 3 C m 

2?rr2 Vm2 27T • 0.1077 • 3.01 
(c) The overall efficiency is determined from Eq. (8.33) to be 77 = 0.66. Hence the 
power to the pump is 

fr=pggg = 998-10-9-81-l(0 
n 1000 • 0.66 

In the next example the number of vanes and their metal angle are also considered. 

EXAMPLE 8.6 

Water flows axially into a double-suction centrifugal pump at the rate of 0.120 m3/s. 
The pump delivers a head of 20 m while operating at 880 rpm. The hub-to-shroud 
ratio at the inlet is 0.50, and the relative velocity makes an angle —73° at the inlet. 
(a) Find the reversible work done by the pump, (b) What is the work done by the 
impeller? (c) Find the radius of the impeller and the inlet radius of the shroud. 
(d) Determine the blade width at the exit of the impeller, (e) Assume a reasonable 
number of blades and calculate the blade angle at the exit. Use the Pfleiderer equation 
to determine more accurately the number of blades and recalculate the blade angle at 
the exit if needed. 

Solution: (a) The reversible work is 

ws=gH = 9.81 • 20 = 196.2 J/kg 

(b) The hydraulic efficiency is 

0.4 0.4 
Vh = 1 - —— = 1 — = 0.856 
' n i / 4 6 0 i / 4 
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and the actual work by the impeller is 

ws 196.2 
w rjh 0.856 

229.1J/kg 

(c) The specific speed is 

n = j W g = 880-, Vom = a 4 3 1 
3/4 30 • 196.23/4 

w. 

and the loading coefficient is 

0.383 0.383 n CfVT 

^ = ^ = o ^ 3 T ^ = 0-507 

Therefore the impeller tip speed is 

196.2 
U2 - Vw^A 

0.507 
21.25 m/s 

and the impeller radius is 

U2 21.25 -20 nnn 
r2 = — = = 0.231 m 

2 Q 880 • 7T 
The volumetric flow rate can be written as 

7 r r l s ( l - K
2 )C/ l s TT(1 - K 2 )S> 3

S 
= A1V1 

Solving this for n s gives 

tan(-/3is) tan(^is) 

ris = 
Qtan(-/3is) 
7 T ( 1 - K 2 ) 0 _ 

-,1/3 

so that 

and 

ru 
60 ■tan(73°) •30 

1000 • 7r2(l - 0.502) • 880 

1/3 

0.0967 m 

rih = ^ l s = 0.5 • 0.0967 = 0.0483 m 

and thus the blade speed at the shroud is 

0.0967 • 880 • 7T 
Ula = risfl 30 

- = 8.91 m/s 

(d) The flow coefficient is 

4> = 0 . 1715 \ / ^ = 0.1715^0.431 = 0.1125 

and the radial velocity at the exit is then 

Vr2 = <t>U2 = 0.1125 • 21.25 = 2.39 m/s 
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To calculate the leakage flow, the coefficients for the expression of volumetric are 
interpolated to be 

C = 0.1094 n = 0.3564 
so that 

and the flow through the exit is 

QR=®=-±§- =0.123 m3/s 
r/v 0.975 

Hence the blade width has the value 
QR 0.123 

3.55 cm 
2irr2Vr2 2 • 7T • 0.231 ■ 2.39 

(e) The tangential component of the exit velocity is calculated to be 

and the flow angle at the exit is 

---(£)—-(££)-™ 
The tangential component of the relative velocity becomes 

Wu2 = Vu2 -U2 = 10.78 - 21.25 = -10.47 m/s 

so that the flow angle is 

Next, the number of blades is assumed. Let Z — 6, and the blade angle is guessed to 
be, say, \2 = —60°. Then the slip coefficient is calculated from 

V5osx^ \/cos(-60°) 
a = X " zo.7 = ! ^ 7 = ° ' 7 9 8 

and the equation 
Vu2 = aU2 + Vr2 tan \2 

is solved for \2, giving 
, -x(Vu2-°U2\ . -x( 10-78 -0 .798 -21.25^ 

X 2 = tan ( — ^ r ^ J = t a n ^ — j = -68.86 

Now a new value of a is obtained from 
Jcosx2 1/cos(-68.86°) 

With this value for CT, repeating the calculation gives X2 = —70.7° and a = 0.836. 
The number of blades can now be calculated from Pfleiderer's equation 

Z = 6.5 [ I±WM cos (§±+M\ = 6.00 
l-ru/r2J V 2 

so that the initial guess was correct. One more iteration gives \2 = — 71. lc 
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8.6 FANS 

An industrial fan with a wide impeller and blades in the shape of airfoils is shown in Figure 
8.24. The impeller has no inducer, and the flow enters the fan axially. It then turns and 
enters the blade passage radially. The increase in radius between the inlet and outlet is quite 
modest, and for this reason such fans also have a low pressure rise and for this reason the 
flow can be considered incompressible. The blades can be made quite long, which gives a 
large flow area. Since the flow at the inlet is radial, at the inlet Wr\ = V\ and Wu\ = —U\. 

Figure 8.24 A centrifugal fan. 

The blades are oriented such that the relative flow enters at the angle fti obtained by solving 

Since the width of the flow areas at the inlet and exit are the same, and the density change is 
ignored, the radial velocities are related by r\Vr\ = 7*2V̂ 2. With an inlet velocity without 
swirl, the work done is calculated in the same way as for centrifugal pumps. 

8.7 CAVITATION 

Common experience shows that water pressure increases with depth in a quiescent pool of 
water. Similarly, pressure decreases in a vertical pipe flow if the fluid moves to a higher 
elevation, not only because of this hydrostatic effect, but as a result of irreversibilities 
caused by turbulence and wall friction. If the inlet of the pipe is a short distance below 
a surface of a body of water, the pressure at the inlet of the pipe is the difference in the 
hydrostatic head and the drop caused by the dynamic head plus the frictional pressure loss. 
As a consequence, for an upward-moving flow the pressure in a sufficiently long pipe may 
drop enough to reach the saturation pressure corresponding to the prevailing temperature. 
The saturation pressure for water at 20° is 2.34 kPa. 

After the saturation pressure has been crossed, vapor bubbles begin to form in the 
stream. When this happens in the blade passage of a turbomachine, the flow is said to 
undergo cavitation. The effects of cavitation are harmful, and the performance of the 
pump deteriorates. The work done by each element of the impeller vane increases the fluid 
pressure, and as the flow moves in the flow passages, it carries the bubbles into regions of 
higher pressure. There they collapse. The collapse is a consequence of an instability in 
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the size and shape of the bubble. As the instability develops the bubble flattens out, and a 
liquid from the back accelerates toward the center, forming a jet that pierces through the 
bubble. These impinging jets from the bubbles located next to the impeller of the pump 
cause erosion. This kind of cavitation damage is seen also in marine propellers. 

Any dissolved air tends to come out of the liquid at low pressures. These small air 
bubbles act as nucleation sites for bubble formation. They are aided in turbulent flow by 
local negative pressure spikes. The kinetics of nucleation, turbulence, and growth rates 
of bubbles are complicated subjects and make prediction of cavitation difficult. Hence 
pump manufacturers rely on experimentation to determine when the pump performance is 
significantly affected. A comprehensive review of the mechanisms of cavitation is given 
by Arakeri [4] and by Brennen [10, 9]. 

A pressure difference called net positive suction pressure (NPSP) is defined as 

PN = P + ^PV2 ~ Pv 

in which pv is the saturation pressure, p is the static pressure, and V is the velocity at the 
pump end of the suction pipe (which is the inlet to the pump). When expressed in units of 
a height of water, the net positive suction pressure is called the net positive suction head 
(NPSH). 

The manufacturer tests the pump and gives a value for the required net positive suction 
head, N P S H R . This increases with the flow rate as the accelerating flow into the inlet 
causes the pressure to drop. The application engineer can now determine what is the 
minimum total head at the pump end of the suction pipe and from this determine the actual 
net positive suction head, N P S H A . In order to avoid cavitation, N P S H A > N P S H R . In 
the lower half of Figure 8.18 is a curve showing values (on the ordinate on the right) for 
the N P S H R as a function of the flow rate. 

A suction specific speed is defined as 

ss (5NPSH)3/4 

For a single-flow pump a rough rule is to keep the suction specific speed under Qss = 0.3 
and for a double flow, under f2ss = 0.4 . 

■ EXAMPLE 8.7 

A pump draws water at the rate of 20 L/s from a large reservoir open to atmosphere 
with pressure 101.325 kPa. As shown in Figure 8.25, the pump is situated a height 
z = 4 m above the reservoir surface. The pipe diameter is 7.6 cm, and the suction pipe 
is 10 m in length. The entrance loss coefficient is K\ = 0.8, the loss coefficient of the 
elbow is Ke = 0.6, and the pipe roughness is 45 /x m. Find the suction specific speed 
given a shaft speed is of 1800 rpm. The viscosity of water is 1.08 • 10~3 kg/(m • s). 

Solution: A control volume containing the water in the reservoir and in the suction 
pipe is 

so that 

PI + \vp -pv=Pa- pgzi - (f^- + Ki + KA l-Pv£ - Pv 
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Figure 8.25 A pumping example illustrating possible cavitation. 

and the positive suction head is 

NPSH 
,L K2 Pv 

pg 
n 2g pg D 

The velocity in the pipe is calculated as 

K 
Q__ 4Q_ 4 - 2 0 

irDl 1000 • TT ■ 0.0762 

and the Reynolds number has the value 

Re 
pVpD p-^p 998 ■ 4.41 ■ 0.076 

1.08-10"3 

= 4.41 m/s 

309,620 

The friction factor can now be calculated from Eq. (3.55) in Chapter 3. For a 
commercial steel pipe with roughness 0.045 mm, its value is / = 0.0187, and the net 
positive suction head is therefore 

NPSH 101325 10 \ 4 412 

4 - ( 0 . 0 1 8 7 ; r ^ +0.6+0.8 
3782 

998-9.81 " V °- 0 7 6 

The value of the suction-specific speed becomes 

tly/Q 1800 • TIVO.020 

2 • 9.81 998 • 9.81 
= 2.14m 

a (5NPSH)3/4 30(9.81 • 2.14)3/4 2.72 

Since the suction specific speed is lower than the criterion Q,ss = 3.0, the pump on 
this basis will not experience cavitation. However, if the pump in Figure 8.18 is used, 
then this flow rate shows the value of N P S H R = 2.1 m to be close to that calculated 
here, so that inception of the cavitation is close. 
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8.8 DIFFUSER AND VOLUTE DESIGN 

8.8.1 Vaneless diffuser 

In the vaneless space in a flow without spin the tangential component of the velocity follows 
the free vortex distribution. This is a consequence of the law of conservation of angular 
momentum, if no moment is applied to the fluid particles. Thus 

rVu = r2Vu2 

and, if the vaneless diffuser has a constant width, then, for an incompressible flow, the 
equation 

p1-KrbVr = p2zr2bVr2 

reduces to 
rVr = r2Vr2 

This and the condition for irrotationality rVu = constant then yields 

rV = r2V2 

This is a special case of the general result discussed for centrifugal compressors. Since 
Vu = Vr tan a, the flow angle a remains constant. 

From the flow trajectories constructed to Figure 8.26, it is easy to see that the flow angle 

Figure 8.26 Logarithmic spiral with a = 70° and 10 cm < r < 30 cm. 

is given by 
rd9 

tana = —— 
dr 

which for a constant flow angle can be integrated to 
02 — 01 = In — tan a 

n 
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The curve traced out is a logarithmic spiral. The incremental length of the path is 

dL = \Jdr2 + r2 d62 = J(l + tan2 a)dr = -^~ 

and integrating this gives r-i — r\ = Lcosa. In the spirals shown in the Figure 8.26 
a = 70°. Therefore a spiral which starts at r = 10 cm and 9 = 0 and ends at r = 30 cm 
will have traversed and angular distance 0 = 172.9°. As the flow angle approaches 90°, 
the length of the path increases greatly. 

8.8.2 Volute design 

In this section the calculations involved in the design of a volute are discussed. A schematic 
of a volute cross section for a centrifugal pump is shown Figure 8.27, in which the various 
radii are indicated. The diffuser includes a constant-width vaneless space, followed by a 
section with a linearly increasing gap, and then a circular volute. Although the principles 
for the calculation are straightforward, the details lead to complicated equations. 

volute 

vaneless diffuser 

impeller 

Figure 8.27 Sketch for volute design. 

The side view of the pump is shown in Figure 8.28. The volute is a channel around the 
impeller in which the flow area increases slowly, leading to a decrease in velocity and thus 
an increase in pressure. The upstream section of the volute begins at a tongue, or cutwater, 
and the volute returns to the same location after turning 360°. It then transitions into a 
conical diffuser that is connected to a high pressure delivery pipe. 

The exit blade radius is labeled r-i, and the blade height is designated as b^. The vaneless 
diffuser begins at radius r^ and has a width 63. In order to slide the impeller into the casing, 
radius r% is made slightly larger than 7-2. For large pumps for which the casing is split in 
half, the impeller and the shaft can be lowered into place, and for a such a pump r2 can be 
larger than r3. The width of the vaneless diffuser 63 is just a couple of millimeters larger 
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Figure 8.28 Centrifugal pump and its volute. 

than the blade height &2- For purposes of illustration, the radii r2 and rz are assumed to 
be equal. With the radius r^ decided, how the volute is developed depends on the design 
practice of each pump manufacturer. One possibility is to have the volute begin with a 
diffuser of trapezoidal cross section. The half-angle S of the sidewalls and the height of 
the trapezoid is chosen such that a volute of circular cross section is fitted to the trapezoid 
in such a way that the slope of the circular section is the same as that of the sidewalls of 
the trapezoid at the point where they join. This is shown in Figure 8.27. The radii r$ and 
re increase in the flow direction in order to accommodate the increase in flow entering the 
volute. The calculations for this kind of design are illustrated in Wirzenius [83], and his 
analysis is partly repeated below. 

The angle around the volute is 0, and it is convenient to measure this angle from the 
tongue or lip of the volute. The design of the tongue region requires special attention to 
make a smooth transition to the main part of the volute. The volute is to be designed in such 
a way that the pressure at the exit of the impeller is uniform and independent of <\>. In such 
a situation the rate of flow into the volute is the same at every angular location, and, if Q$ 
is the volumetric flow rate through the volute at the angle </>, then by simple proportionality 

where Q is the total flow rate. Let Vu be the tangential component of the velocity in the 
volute. Then 

Q4> = f VudA= f C' Vub{r)dr 
J Aj, Jr3 

in which b(r) is the volute width at the radius r. 
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The flow is assumed to be irrotational, and the tangential velocity therefore varies with 
r as 

K = Vu2 
T2 

with VU2 the tangential velocity leaving the impeller. Hence 

2TT 

r5 b(r) 
Q = Vu2r2 I -^dr 

Solving this for <fi gives 

2irVu2r2 
r4 b(r) 

dr -
r5b^dr+rb-^dr 

■dr 

>r3 Jr4 Jr5 

It remains to evaluate the integrals. To organize the work, let 

h = r b^dr i2 = r Mdr h = r b± 
J r$ ' Jr4 ' J r$ ' 

For the first integral b(r) = 63. Hence 

T h rdr K 1 r 4 

h =h — = 63 In — 
Jr3 r r3 

The channel width b{r) for the linearly diverging part is given by 

b(r) = b3 + 2(r ~r4)ta,nS 

Hence 
7,5 b3 + 2tan<5(r — r4) r§ 

dr = (03 — 2r4 tan o) In \- 2{r§ — r4) tan o 
With the aid of trigonometric relationships 

r5 =r4 + R 

the second integral therefore evaluates to 

cos 6 
tan 5 2 tan S 

(8.37) 

I2 = (63 -2r4tan<5)ln 1 
R cos S 
r4 tan S 2r4 tan 5 

+ 2Rcos5 - 6 3 

The radius that gives I2 = 0 is the minimum radius Rmin = 63/2 cos <5; that is, the 
triangular section of the volute increases as the volute radius increases in the downstream 
direction. Therefore the radius r$ also increases as R increases, whereas the radii r4 and 
r3 remain fixed, as does the angle S. 

The integral I3 is the most complicated of the three integrals. The width of the volute at 
location r is given by b{r) = 2R sin 9. Also r = r§ — R + R cos 6. Let 

r e _ 1 _ ^ 5 . _ l i , cosS _ ^3 
R ~ R ~ R tan<5 2i?tan<5 

+ sin<5 

so that 
1 T\ 

R sin S 2i?tan£ 
(8.38) 
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The integral ^3 now can be written as 

b(r) 
dr = 2R 

TT/2+5 
sin 

R 
-d6 = 2R 

^ s i n 2 ! 
c + cos ( 

-d6 

Evaluation of this leads to 

2R (^ +S) -cosS-2Vc2 - ltan" 
1 1 + tan(<5/2) 

T 1 - tan(<5/2) 

Collecting the results gives the design formula 

27rr2r4K2 {h {, r4 V 
Q T4 

In^ i 

+ 
63 2tan<5 In 1 

•̂3 2 , 

R cos 8 
ri tan S 2r4 tan S + 2- 1 + C (i+') 

cos 5 — 2\/c2 — 1 tan / c - l l + t a n ( J / 2 ) \ 
c + 1 l-tan(<5/2) J 

(8.39) 

The calculation now proceeds by starting with Rmin and incrementing R by AR, so that 
the new value of R is i?m;n + Ai?. Next, the value of c is determined from Eq. (8.38) 
and r$ is calculated from Eq. (8.37). Then r%, the outer extent of the volute, is determined 
from re = (1 + c)R, but this is not needed in the calculation of angle <j>. The value of 
angle <fr is finally determined from Eq. (8.39). These values then trace out the volute and 
its trapezoidal base. 

EXERCISES 

8.1 An industrial air compressor has 29 backward-swept blades with blade angle —21°. 
The tip speed of the blades is 440 m/s, and the radial component of the velocity is 110 m/s. 
Air is inducted from atmospheric conditions at 101.3 kPa and 298 K with an axial velocity 
equal to 95 m/s. The hub-to-tip ratio at the inlet is 0.4. The total-to-total efficiency of the 
compressor is 0.83, and the mass flow rate is 2.4 kg/s. Find: (a) The total pressure ratio 
using the Stodola slip factor and (b) the tip radius of the impeller. 

8.2 A centrifugal compressor has 23 radial vanes and an exit area equal to 0.12 m2, where 
the radial velocity is 27 m/s, and the tip speed of the impeller is 350 m/s. The total-to-total 
efficiency is 0.83. (a) Find the mass flow rate of air, given that the total pressure and 
temperature are 101.3 kPa and 298 K at the inlet, (b) What is the exit Mach number? (c) 
If the blade height at the exit is b = 3 cm and there is no leakage flow, what is the tip radius 
of the impeller? (d) Find the rotational speed of the compressor wheel, and the required 
power neglecting mechanical losses. 

8.3 A centrifugal compressor has an axial inlet and the outlet blades at an angle such 
that the tangential component of the exit velocity has a value equal to 0.9 times the blade 
speed. The outlet radius is 30 cm, and the desired pressure ratio is 3.5. The inlet stagnation 
temperature is T0\ = 298 K. If the total-to-total efficiency of the compressor is 0.8, at 
what angular speed does it need to be operated? 

8.4 A small centrifugal compressor as a part of a turbocharger operates at 55,000 rpm. 
It draws air from atmosphere at temperature 288 K and pressure 101.325 kPa. The inlet 
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Mach number is Mi = 0.4, and the flow angle of the relative velocity is /3\s = —60° at the 
shroud. The radius ratio at the inlet is K = vih/T"is = 0.43. (a) Find the blade speed at the 
inlet shroud and (b) the mass flow rate, (c) If the inducer is choked, what is the throat area? 

8.5 A centrifugal compressor in a turbocharger operates at 40,000 rpm and inlet Mach 
number Mi = 0.35. It draws air from atmosphere at temperature 293 K and pressure 
101.325 kPa. The radius ratio is r\s/r2 = 0.71, and the diffusion ratio is W\sjWi = 1.8. 
The inlet angle of the relative velocity at the shroud is fiis = —63°. The slip factor is 
a = 0.85, and the flow angle at the exit is «2 = 69°. Find (a) the tip speed of the blade at 
the inlet, (b) the tip speed of the blade at the outlet, (c) the loading coefficient, and (d) the 
metal angle at the exit. 

8.6 A small centrifugal compressor draws atmospheric air at 293 K and 101.325 kPa. At 
the inlet rih = 3.2 cm and r\s = 5 cm. The rotor efficiency of the compressor is 0.88. The 
relative Mach number at the inlet shroud is 0.9 and the corresponding relative flow angle is 
/?is = —62°. At the outlet the absolute velocity is at angle a^ = 69°. The diffusion ratio 
is Wis/W2 — 1.8 and the radius ratio is ris/r2 — 0.72. Find, (a) the rotational speed of 
the shaft, (b) the blade-loading coefficient w/C/f, (c) the flow coefficient <f> = Vr2/U2, and 
(d) the blade width at the exit. 

8.7 Show that in the incompressible limit the angle of the relative velocity at the inlet is 
optimum at 54.7°. 

8.8 Show that the expression for the dimensionless mass flow rate for a compressor with 
preswirl at angle a.\ is 

_ MfR(tano;i - tan/3is)2cos3/?is 

\ l sin a.\ J 
Plot the results for a.\ = 30°, with /3is on the abscissa and $f on the ordinate, for relative 
Mach numbers 0.6,0.7,0.8. For a given mass flow rate, does the pre-swirl increase or 
decrease the allowable relative Mach number, and does the absolute value of the relative 
flow angle increase or decrease with preswirl? 

8.9 Water with density 998 kg/m3 flows through the inlet pipe of a centrifugal pump at 
a velocity of 6 m/s. The inlet shroud radius is 6.5 cm, and the hub radius is 5 cm. The 
entry is axial. The relative velocity at the exit of the impeller is 15 m/s and is directed 
by backward-curved impeller blades such that the exit angle of the absolute velocity is 
OL2 = 65°. The impeller rotates at 1800 rpm and has a tip radius of 15 cm. Assume that the 
rotor efficiency of the pump is 75%. Evaluate (a) the power into the pump, (b) the increase 
in total pressure of the water across the impeller, and (c) the change in static pressure of 
the water between the inlet and outlet of the impeller, (d) What is the ratio of the change 
in kinetic energy of the water across the impeller to the total enthalpy of the water across 
the pump, the change in the relative kinetic energy, and the change in the kinetic energy 
owing to the centrifugal effect as a fraction of work done? (e) If the velocity at the exit 
of the volute is 6 m/s, what is the ratio of change in static pressure across the rotor to the 
change in static pressure across the entire pump? 

8.10 A centrifugal-pump that handles water operates with backward-curving blades. The 
angle between the relative velocity and the tip section is 45°. The radial velocity at the tip 
section is 4.5 m/s, the flow at the inlet is axial, and the impeller rotational speed is 1800 
rpm. Assume that there is no leakage and that the mechanical friction may be neglected, and 
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that the total-to-total efficiency is 70%. (a) Construct the velocity diagram at the impeller 
exit and (b) evaluate the required tip radius for a water pressure rise of 600 kPa across the 
pump, (c) For the total pressure rise of 600 kPa, evaluate the difference between the total 
and static pressure of water at the impeller tip section. 

8.11 A centrifugal water pump has an impeller diameter D2 = 27 cm, and when its shaft 
speed is 1750 rpm, it produces a head H = 33 m. Find, (a) the volumetric flow rate, (b) 
the blade height at the exit of the impeller assuming that there are no leakage losses, and 
(c) the blade angle at the exit of the impeller, given that it has 11 blades. 

8.12 A centrifugal water pump has an impeller diameter of D% = 25 cm, and when its 
shaft speed is 1750 rpm, it delivers 20 L/s of water. Find, (a) the head of water delivered 
by the pump, and (b) the power needed to drive the pump, (c) The impeller has nine blades. 
Use the Stanitz slip factor to find the blade angle at the exit of the impeller, (d) Use the 
Wiesner slip factor to find the blade exit blade angle. 

8.13 A centrifugal pump delivers water at 0.075 m3/s with a head of 20 m while operating 
at 880 rpm. The hub-to-shroud radius ratio at the inlet is 0.35, and the relative velocity 
makes an angle of —52° at the inlet, (a) Find the reversible work done by the pump, (b) 
What is the work done by the impeller? (c) Find the impeller radius and the inlet radius 
of the shroud, (d) Determine the blade width at the exit of the impeller, (e) Assume a 
reasonable number of blades, and calculate the blade angle at the exit. Use the Pfleiderer 
equation to determine more accurately the number of blades and recalculate the blade angle 
at the exit if needed, (f) What is the power required to drive the pump? 

8.14 A fan draws in atmospheric air at 0.4 m3/s at pressure 101.32 kPa and temperature 
288 K. The total pressure rise across the fan, which has 30 radial blades, is 2.8 cm of 
water. The inner radius is 14.8 cm, and outer radius is 17.0 cm. The rotational speed of the 
fan is 980 rpm and the hydraulic efficiency is the fan is 0.78. Use the Stanitz slip factor. 
(a) Assuming that velocity into the fan is radially outward, find the angle of the relative 
velocity at the shroud at the inlet, (b) Determine the power to the fan, given that 4% is lost 
to mechanical friction, (c) Find the angle blade angle at the exit. 

8.15 A pump draws water at the rate of 75 L/s from a large tank with the air pressure 
above the free surface at 98.00 kPa. The pump is z = 2 m above the water level in the 
tank. The pipe diameter is 14.0 cm, and the suction pipe is 20 m in length. The entrance 
loss coefficient is K\ = 0.2, and the loss coefficient of the elbow is Ke = 0.6 and the pipe 
roughness is 55 /xm. Find the suction specific speed given a shaft speed of 1800 rpm. The 
viscosity of water is 1.08 • 10~3 kg/(m • s). 

8.16 Consider a volute consisting only a of circular section in which the tangential 
velocity varies as Vu = K/r, and r is the location from the center of the volute to a location 
on the circular section, (a) Show that the value of K in terms of the volumetric flow rate 
Q, the radius of the circular section R, and the radius to the center of the of the circular 
section a, is given by 

Q K = , 
27ri?(A - T F ^ T ) 

in which A = a/R. (b) For R = 0.5 m, a = 2 m, and Q = 1.5m3/s, find the pressure 
difference p2 — Pi at the centerline, between the outside and inside edges of the section. 



CHAPTER 9 

RADIAL INFLOW TURBINES 

The best known use of radial inflow turbines is in automobile turbochargers, but they also 
appear as auxiliary power turbines and, for example, in turboprop aircraft engines. They are 
used in processing industries (including refineries), natural-gas processing, air liquefaction, 
and geothermal energy production. In the automotive application burned gases from the 
engine exhaust manifold are directed into a radial inflow turbine of the turbocharger, which 
powers a centrifugal compressor on the same axis. The compressor, in turn, increases the 
pressure and density of the supply air to the engine. As the engine speed may change 
quite rapidly, turbochargers must respond to the changing operating conditions nimbly. 
Therefore they are made light in weight and low in inertia. 

A sketch on the left side in Figure 9.1 shows a side view of a radial inflow turbine. It 
looks like a centrifugal compressor, but with a reversed flow direction. Hot gases enter 
through a volute and move into a vaned stator, which redirects them into a vaneless space 
and then into the rotor. On the right is a front view of the rotor. The velocity diagrams 
at the inlet and exit are shown in Figure 9.2. For best efficiency, the inflow angle fa is 
negative. But the blades at the inlet are typically radial, which means that the entering 
flow is at a negative incidence. Since the blades operate in a high-temperature environment 
and material strength diminishes as temperature increases, radial blades can withstand the 
imposed loads better than curved blades. It is for this reason that the blade angle at the 
inlet is set at \2 = 0. The rotor turns the flow toward the axis as it passes through the flow 
channel, so that its radial velocity is zero at the exit and the absolute velocity is axial. For 
this reason these machines are also called 90° inward-flow radial (IFR) turbines. 

Principles of Turbomachinery. By Seppo A. Korpela 313 
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Figure 9.1 Radial inflow turbine. 

9.1 TURBINE ANALYSIS 

The velocity diagrams in Figure 9.2 are similar to those for centrifugal compressors, and 
at the exit the absolute velocity is axial, as it is at the inlet of a compressor. Work delivered 

Inlet Exit 

2 W, 

Figure 9.2 Velocity diagrams for a radial inflow turbine. 

by the turbine, if written in terms of kinetic energies, is given by 

\{v?-vi) + \(u,. 1 
^ ) + j ^ w4 (9.1) 

Examination of this equation shows that increasing the inlet velocity V2 increases the work. 
This is achieved by orienting the stator blades such that the flow enters the rotor at a large 
nozzle angle o^- Similarly, a small value for W2 increases the work, and this is obtained 
by directing the relative velocity radially inward at the inlet. The same reasoning leads to a 
design in which the exit velocity V3 is axial and therefore as small as possible and in which 
the relative velocity W3 is large. This can be obtained by making the magnitude of the 
flow angle of the relative velocity \/3s\ large. Finally, a large U2 and a small U3 increase 
the work delivered. 

The usual expression for work 

w u2vu2 - u3vt K3 (9.2) 

leads to same conclusions, namely, VU3 should be small and VU2 large. Similarly, U2 should 
be large and U3 small, which means that the ratio r2/rz ought to be reasonably large. Work 
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could be increased by making VU3 negative, but this would also increase the absolute value 
of fa, and the exit relative Mach number might become so large as to cause the flow to 
choke. If the exit swirl is eliminated, the expression for work becomes 

w = U2Vu2 

When this equation is compared to Eq. (9.1) it is clear that the terms involving the exit 
station in that equation must cancel. 

Since the blade speed L73 = r^fl is smallest at the hub, if the exit velocity V3 is designed 
to be uniform across the exit plane, then the flow angle Psa and therefore also the blade 
angle must be turned more at the shroud than at the hub. This means that the relative 
velocity and the relative Mach number M 3 R at the shroud will be the largest on the exit 
plane. They must be kept sufficiently small to prevent choking. 

The equation for work delivered by a turbine 

when written in the form 

CP{TQI — T03) 

, T03 
CPTQI TQI 

defines a nondimensional specific work intensity s w = w/cpT0i = W/mcpT0i, also 
known as a power ratio. If the exit kinetic energy is wasted (as is often the case), it is 
appropriate to use the total-to-static efficiency as the proper measure of efficiency. It is 
defined as 

r?ts 

1 _ T^l 
TQI — T03 _ TQI 
foi — T3ss _ T3SS 

T01 
which is clearly also 

1 
»7ts 

T03 
T01 

P3_ 
P01 

( 7 - l ) / 7 

Solving this for the pressure ratio gives 

/ c \ ~ T / ( 7 - 1 ) 
M = ( 1 _ £21) (9.3) 

Graphs of the pressure ratio as a function of sw are shown in Figure 9.3. Power ratios in 
the range 0.15 < s w < 0.25 correspond to pressure ratios in the range of 2 < P01/P3 < 3 
for typical values of efficiency. From the pressure ratio, and an estimate of the efficiency, 
the power ratio can be calculated. 

The expression for work can be written as 

W = CpToiSw 

and with a typical power ratio s w = 0.2 and inlet stagnation temperature T0i = 1000 K, 
the specific work is w = 229.60 k J / k g in expansion of combustion gases with cp — 
1148 J / (kg • K). Thus the stagnation temperature drop is 200 K. If the relative flow is 
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Figure 9.3 Pressure ratio for a gas with 7 = 1.4 as a function of power ratio, or total-to-static 
efficiency ?7ts = 0.8 to r]tB = 1-0 with adjacent graphs incremented by 0.02. 

radially inward and there is no exit swirl, the Euler turbine equation shows that w = L7| , 
so that a typical blade speed is 479 m/s. The size of the machine depends on the mass 
flow rate. Thus, as a rough estimate, a turbocharger operating at shaft speed of 40,000 rpm 
gives an inlet radius of about 10 cm, and one operating at 200,000 rpm gives a radius of 
2 cm. A turbocharger from an automobile and with a rotor diameter of approximately 3 cm 
is shown in Figure 9.4. 

Figure 9.4 An automotive turbocharger. 

At the exit, in addition to being uniform, the axial velocity V3 should be small, so that 
the exit kinetic energy is small. Whatever exit kinetic energy is left in the exit stream may 



TURBINE ANALYSIS 317 

be recovered in an exit diffuser. Ideally the exit diffuser would reduce the velocity to zero 
as the flow enters the atmosphere. For isentropic flow the work delivered in this situation is 

ws = /i0i - h3ss = -V£ (9.4) 

and the quantity V0 is called a spouting velocity. The kinetic energy associated with the 
spouting velocity is a convenient replacement for the maximum work that this turbine can 
deliver. This equation can also be interpreted as defining what velocity would be reached 
in a frictionless nozzle as the flow expands from pressure poi to the exit static pressure p3. 
The equation for work can now be written as 

or as 

2cpT0i \ p o i . 

If the relative flow entering the turbine is radial and there is no exit swirl, then, the definition 
of total-to-static efficiency can be written as 

»hs = — = -jrf (9-5) 

The largest value for U2/V0 according to this equation is 0.707, but since the highest 
efficiency is obtained with /32 in the range from —20° to —40°, and the nozzle angle is 
typically 0.2 = 70°, this result needs some modification and a typical range for this ratio is 
0.55 < U2/V0 < 0.77. 

Since the isentropic work is given by Eq. (9.4), the value of the spouting velocity gives 
a way to calculate an initial estimate for the blade speed. With the value of blade speed U2 
known, the magnitude of the stresses can then be calculated. A compact design calls for a 
large shaft speed. 

■ EXAMPLE 9.1 

A radial inflow turbine with radial blades at the inlet operates at 62,000 rpm. Its inlet 
diameter is D2 = 12.6 cm. The gases enter the blades radially and leave without exit 
swirl. The supply temperature is TQI = 1150 K, the pressure ratio of the turbine is 
P01/P3 = 2, and the mass flow rate is m = 0.31 kg/s. The ratio of specific heats is 
7 = 1.35 and the gas constant is R = 287 J/(kg • K). Find (a) the ratio U2/V0, in 
which Vo is the spouting velocity, (b) the total-to-static efficiency, and (c) the power 
delivered by the turbine. 

Solution: (a) The specific heat is 

*-#-^-i™-K, 
and the isentropic static temperature at the exit is 

/ \ ( 7 - l ) / 7 
T3ss = T01 ( — ) = 1150 • o.5°-35/1-35 = 960.84 K 

\P01J 
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The isentropic work is therefore 

ws = cp(Toi - T3ss) = 1107(1150 - 960.84) = 209.40kJ/kg 

and the spouting velocity is 

Vo = V2w~s = A/2 • 209,400 = 647.1 m/s 

The blade speed at the inlet is 

^ 12.6 -62,000 -7T „„„„ . 
U*=T**= 2 .100-30 = 4 0 9 - ° m / s 

so that the ratio U2/V0 becomes 0.632. 

(b) Since there is no exit swirl, the work becomes 

w = Ul = 167.31 kJ/kg 

and the stagnation temperature drop amounts to 151°C. The total-to-static efficiency 
comes out to be 

w 167.31 
r?ts = — = = 0.799 
/ts ws 209.40 

(c) The power delivered is 

W = mw = 0.31 • 167.31 = 51.87 kW 

The next example gives an analysis for a choked rotor passage. 

■ EXAMPLE 9.2 

Combustion gases with 7 = 1.35, Cp = 1107 J/(kg-K) and R = 287 J/(kg-K) flow 
from conditions poi = 390 kPa and T01 = 1150K through a radial inflow turbine 
to an exit pressure p3 = 100 kPa. The total-to-static efficiency is 77ts = 0.8, and the 
flow leaving the stator is choked with M% = 1. (a) Find the work delivered by the 
turbine, given that the relative velocity at the inlet of the rotor is radial and that flow 
leaves without swirl, (b) Find the angle of the absolute velocity at the inlet of the 
rotor. 

Solution: Since the stator is choked, the static temperature at the exit of the stator is 

T2 = - ^ - - T o 2 = 978.7 K 
7 + 1 

and the velocity is 

V2 = y/jRT2 = v^l.35 • 287 ■ 978.7 = 615.8 m/s 

Solving the definition of total-to-static efficiency 
_ rpi — T03 

/tS ry\ rrt 
J01 — J-3ss 
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for the exit stagnation temperature gives 

T03 

J o i 

n ^ ( 7 - l ) / 7 ' 

P3 

so that 
T03 = 1150 [1 - 0.8 (1 - 3.9-0-35/1.35)] = 8W5 K 

Work delivered by the turbine is therefore 

w = cp(Toi - T03) = 1107(1150 - 876.5) = 302.80 kJ/kg 

This is also 
w = Ul 

so that 
U2 = y/w= v/302,800 = 550.27 m/s 

The flow angle at the inlet to the rotor is 

a2 = sin"1 (y-j = s in - 1 (0.893) = 63.3° 

The foregoing two examples assumed that the relative velocity at the inlet to the rotor is 
radial and that there is no exit swirl. In the next section a general development based 
on this assumption is carried out in order to relate the important flow parameters to the 
total-to-static efficiency. 

9.2 EFFICIENCY 

The total-to-static efficiency of a turbine is 

__ hgi — hp3 

" 0 1 — n3ss 

with the thermodynamic states as shown in Figure 9.5. This can be written as 

1 -, ^03 — hsss 

flu h0i - h03 

If the turbine is fitted with a diffuser and its exit pressure is p^, then, if the flow exhausts 
to the atmosphere, the pressure p^ is the atmospheric pressure and the small amount of 
residual kinetic energy is lost into the atmosphere. In this situation the pressure p3 is below 
the atmospheric value. If the flow through this diffuser were reversible, then the pressure 
P\ would correspond to the stagnation pressure poz- In this case the appropriate efficiency 
to use is the total-to-total efficiency. On the other hand, if the flow is not diffused and the 
flow is exhausted to the atmosphere directly, then the exit pressure p3 is the atmospheric 
pressure and the residual kinetic energy is lost. In this case the efficiency is the total-to-static 
efficiency. The numerator can be rewritten as 

1 Vo + /i3 - /i3., + /i3., - ha 103 — 'I'Zss — 1Z v3 T ' ' 3 — '*3s T "3s — n3ss 
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* o i W °1 

Figure 9.5 Velocity triangles and Mollier chart for a radial inflow turbine. 

Next, integrating the Gibbs equation along the constant pressure lines p2 and p3 gives 

T3s T2 = T3s 

T2s T3ss 
thus Ts 2s 

Ik 
T2 

Adding minus one to both sides of the first of these equations, multiplying by cp, rearranging, 
and using the second equation, gives 

fi38 - h3ss = -=^-(h2 - h2s) = ~^r(h2 - h2s) 
J-2s J-1 

As a consequence the expression for efficiency is 

in which loss coefficients 

h3 ~ h3s 

2w 2w + T2 2w 

-XRWJ TCS^2 

have been substituted for the internal heating terms. Making use of the relationships 
w = J7|i U2 = V2 sma2 , U3 = -V3 tan £3, U3 = -W3 sin/33, and U3 = r3U2/r2 turns 
this equation into 

1 _ 1 
»7ts 2 ) ^ rp 

(cot2/33 + CR CSC2/33) + -^ Cs csc2a2 T2 

(9.6) 
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The temperature ratio in this expression can be written in a form from which it is easy to 
calculate. First, it is recast as 

^ = 1 - ^ ( T 2 - T 3 + T 3 - T 3 s ) 
J2 J-2 

in which temperature difference T2 — T3 is obtained from 

w = U2 = h, 

Solving this for T2 — T3 gives 

T2-T3 

2 — "-02 - ^03 — cp(T2 — T3) + -V2 - - v 3 :V? 

- ui -lv2
2 + \v2 

c n \ 2 2 2 2 3 

But the from the velocity diagrams in Figure 9.2, since (32 — 0 and 0:3 = 0, it is seen that 

v2
2 = wi + ui wi = v£ + u$ 

so that 

and therefore 

n 2c, ■(wi-wi + ui-Ui 

1 1 
-(Wi - W2 + Ui - U2 + CRW2) 

T2 2cpT2 

in which CR = 2cp(T3 — T3s)/W2 has been used. This can now be written as 

T3s , 1 
1 T2 2cpT2 

and, with C/3 = U2r3/r2, as 

{Ui c s c ^ 3 - U2
2 cot2a2 + U2

2 - U£ + CR[/3 CSC'/33) 

Ik 
T2 

1 2cpT2 

1 + ( ? ) ((! + CR) csc2/33 - 1) - cot2a2 

From 

so that 

'02 

ui 

ZCTI -v2 2cpT2 = 2cpTo2 - Ui csc2a2 

T°2 ^ • 2 7 - 1 , , 2 • 2 
— 1 I sin a2 = -——M2 sin a2 2cpT2 

and it follows that the temperature ratio can also be written as 

2 

T2 
1 7 1 1/2 ■ 2 

—-— Mj sin a2 
1 ( ( 1 + C R ) C S C 2 / 3 3 - 1 ) - c o t 2 a 2 

The value of Cs is measured in a stationary test apparatus, and the total-to-static efficiency 
can be measured from the overall balance for the turbine [15]. The value of CR can then 
be determined from the theory developed above. These calculations are illustrated in the 
following example. 
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EXAMPLE 9.3 

In a radial-inflow turbine, combustion gases, with 7 = | and cp = 1148 J/(kg • K), 
leave the stator at the angle a2 = 67°. The rotor blades at the inlet are radial, with 
a radius r2 = 5.8 cm. At the outlet the shroud radius of the blade is r3s = 4.56 cm, 
the hub-to-shroud radius ratio is K = 0.35, and the relative flow makes an angle 
(83 = —38° with the axial direction at the exit. The relative velocity at the inlet 
to the rotor is radial. The power delivered by the turbine is W — 58.2 kW when 
the mass flow rate is m — 0.34 kg/s and the rotational speed is 64,000 rpm. The 
stagnation temperature and pressure at the inlet to the stator are T01 = HOOK and 
poi = 2.5 bar. The static enthalpy loss coefficient for the flow across the stator is 
Cs = 0.08. The outlet static pressure is p3 = 1 bar. Find (a) the Mach number at 
the inlet of the rotor, (b) the total-to-static efficiency, and (c) the static enthalpy loss 
coefficient of the rotor. 

Solution: (a) The blade speed at the inlet is 

^ 0.058 • 64000 • 7T 
U2 = r2Vt = — = 388.72 m/s 

ou 

and since the relative flow is radial, Vu2 = U2 and 

sin 0:2 sm(o7°) 

Since T02 = T0i, the static temperature at the inlet is 

V? 422.292 

T2=T02
 2- = 1100 = 1022.3 K 

2cp 2-1148 

and the Mach number becomes 

V2 422.29 
M2 = . * = . = 0.675 

V7RT2 v^l.333 • 287 • 1022.3 
(b) The specific work is given by 

W 58200 

and the stagnation temperature at the outlet is therefore 

T03 =T01-- = 1100 - ¥±£ = 950.9 K 
cp 1.148 

In an isentropic process to the exit pressure the static temperature at the exit is 

( 7 - l ) / 7 / -, \ 0.25 

\P01J V2-5 
T3ss=T01[^) =1100 1 — 1 =874.8K 

and the total-to-static efficiency is therefore 

TQI - T03 1100-950.9 rjt, = = = 0.662 /ts T0i - T3ss 1100 - 874.8 
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(c) If in the expression for efficiency the temperature ratio T3s/T2 is set to 1, then 
the static enthalpy loss coefficient £R can be solved from 

1 
??ts 

- 1 = 
1 

" 2tan2/33 

(rsV Ca 
\r2J 2sin2/33 \ r 2 , 

) 2 + ^ 
' 2sin2a2 

With Cs = 0.08, fa = -38°, and r3 = (r3s + r3 h) /2 = 0.0308m, solving this 
equation gives £R = 0.6256. Now the temperature ratio is calculated as 

^ = l - ^ M 2
S i n 2 a 2 T2 2 2 1 + ( ^ J ((l + CR)csc 2 /3 3 - l ) -co t 2 a 2 = 0.8876 

Substituting this into Eq. (9.6) and repeating the calculation with the new temperature 
ratio gives CR = 0.6399. The static loss coefficient for the rotor is larger than that for 
the stator, not only because the flow path is long but also because the flow undergoes 
a great deal of turning through the rotor. 

9.3 SPECIFIC SPEED AND SPECIFIC DIAMETER 

The specific speed, defined as 

3/4 
Ws 

characterizes the shape of a turbomachine, and a machine with a small specific speed has a 
low flow rate and a large specific work. A related quantity is the specific diameter given by 

D* 

It is small in axial turbines because the flow rate is large and the work per stage is relatively 
small. For radial inflow turbines this quantity is large because the work per stage is large 
and the volumetric flow rate is rather small. The product of specific speed and specific 
diameter is 

Jws Vo 

When the work is given by w = £/f, this reduces to 

fls-Ds = 2 ^ t e (9-7) 

Balje [5] has constructed a large number of diagrams with specific speed on the abscissa 
and specific diameter as the ordinate. A Balje diagram for radial inflow turbines is shown 
in Figure 9.6, and the region of highest efficiency falls into the range 0.2 < fls < 0.8. 
The corresponding specific diameter can be calculated according to Eq. (9.7). Lines of 
constant r3 /r2 are also drawn with an optimum value near 0.7. The recommended range 
is 0.53 < r3/r2 < 0.66. The slight discrepancy in this range and the optimum value 0.7 
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arises from different loss model being used to calculate the results and scant experimental 
data to verify them. Here the radius 

*"3 ^rk + rl) 
is used to define the mean exit radius. The line QSDS = 2 corresponding to rjts = 1 has 
been drawn into the Balje diagram as well. 

Figure 9.6 A Balje diagram for a radial inflow turbine. (Drawn after Balje [5].) 

EXAMPLE 9.4 

Combustion gases, with 7 = | , R = 287 J/(kg • K), and cp = 1148 J/kgK, flow 
through a radial inflow turbine. It is designed to deliver 152 kW of power. The 
exit pressure is atmospheric at P3 = 101.325 kPa. The stagnation temperature to 
the turbine is T0i = 960 K, and the loss coefficient of the stator is Cs = 0.08. The 
ratio of the blade radii at the exit is K = rs^/rss = 0.35. The rotor speed is 42,000 
rpm, the blade speed is Ui = 440 m/s, and the flow angle to the inlet of the rotor is 
c*2 = 72.1°. Use a design point from the Balje diagram with Da = 2.6, fis = 0.71 
and 77ts = 0.79, and choose r^,s = 0.75r2. Find (a) the mass flow rate, (b) the 
inlet Mach number, and (c) the blade width at the inlet. Assuming that the absolute 
velocity is uniform at the exit, find (d) the relative Mach number at the exit at the 
shroud and the hub, and (e) the ratios Wss/W2 and W^h/W^-
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Solution: 
(a) The spouting velocity is first determined from the ratio 

U2 nsDs 2.6-0.71 : a 6 5 2 ? 

so that 

The specific work is 

V0 23/2 23/2 

440 
V° = 06527 = 6 7 4 - 2 m / s 

w = \Jl = 4402 = 193.60 kJ/kg 

and the mass flow rate is therefore 

W 152.00 „ w n r l . 
m = ^ = l93^0=°-7 8 5 k g / s 

(b) The inlet radius of the rotor has the value 

U2 440-30 „ _ 
r 2 = 7T = 4 ^ 0 0 0 ^ = ° - 1 0 ° m 

and the relative and absolute velocities at the inlet are 

W2 = U2cota2 = 440cot(72.1°) = 142.1 m/s 

Uo 440 
V2 = -r-=— = . , „ n , , = 462.38 m/s 

sina2 sin(72.1°) ' 
The inlet Mach number is obtained by first calculating the static temperature at the 
inlet 

T2 = T 0 2 - ^ - = 9 6 0 - ^ ^ = 8 6 6 . 9 K 
2cp 2 • 1148 

and then the Mach number at the inlet is 

V2 462.38 nnnn 
M2 = , ", = , = 0.803 

VlRT2 Vl-333- 287 -866.9 
(c) From the definition of the stator loss coefficient the isentropic inlet static temper-
ature is 

T/2 d(\2 3 8 2 

T2S = T 2 - C s ^ = 866.9-0.08 ^ - T I ^ = 8 5 9 . 4 K 

and the isentropic static temperature at the exit is 

T/2 (V7A 2 2 

T3ss =T01--*-= 960 - — — - = 762.0 K 2cp 2 • 1148 

hence the inlet stagnation pressure to the stator has the value 

/ rp \ 7/(7-1) / 9 6 0 \ 4 

P 0 i = P 3 ( ^ J = 1 0 1 - 3 2 5 ( ^ j = 255.2 kPa 
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At the inlet to the rotor the static pressure is 

T 2 s \ 7 / ( 7 - 1 } „ „ „ / 8 5 9 . 4 N 4 

p 2 = P o i ^ j =255-2U6U0j =163-9kPa 

so that the density at the inlet becomes 

P2 = lk = 0.287 3 8 6 6 . 9 = a 6 5 9 k g / i n 3 

The blade height can now be determined from the mass balance 

TO 0.785 
0.0133 m 

27rr2p2V/2 cos a2 TT • 0.020 • 0.659 • 462.4 cos(72.1°) 

The ratio of the inlet blade height to the inlet radius is 62/r2 = 0.133. 
(d) The rotor shroud and hub radii are 

r3s = 0.75r2 = 0.75 ■ 0.1 = 0.075 m r3h = Kr3s = 0.35 • 0.075 = 0.0263 m 

When the Balje diagram is used, the average exit radius is its root mean square value 

r3 = \l\(rlh+rl)= 0.0562 m 

The blade speed at the mean radius is therefore 

^ 0.0562 • 42,000 • TT „„„„ . 
U3 = r3n = ^ = 247.2 m/s 

At the shroud and the hub the blade speeds are 

„ 0.075 • 42,000 • TT „ _ , 
U3s = r3sn = ^ = 330.0 m/s 

and 
U3h = U3s— = 330 = 115.5 m/s 

r3s 0.075 
To calculate the exit velocity, the exit Mach number is needed. First, the exit 
stagnation temperature is found to be 

w 193,600 
J03 = J02 = 960 ,_ ,„ = 791.4K cp 1148 

Rearranging the mass balance 

TO = p3V3A3 = ——M3^~iRT3 Kl3 

leads to 
1/2 

* lRT03-M3(l + ^ M ! 
P3A 
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which on squaring can be written as a quadratic equation in Mf 

»,4 2 *,2 2RT03rh2 

3 7 - 1 7 ( 7 - l ) ^ § 

and after numerical values are inserted this reduces to 

Ml + 6 M | - 0.2548 = 0 

Solution of this is M3 = 0.205. 
(e) The exit velocity can now be determined by first calculating the static temperature 
at the exit 

T3 = T03 (l + -^Mi) = 785.8K 

which gives the exit velocity 

V3 = M3V7-RT3 = 0.2(Wl.333- 287 -785.8 = 112.6 m/s 

Since the absolute velocity is axial at the exit, the angles that the relative flow makes 
at the shroud and the hub at the exit are 

«-=- - m —- ■ m)— 
The relative velocities at the shroud and hub are 

W3a = JUl + V£ = \/330.02 + 112.62 = 348.7 m/s 

W3h = y/u^ + Vf = \ / l l 5 .5 2 + 112.62 = 161.3 m/s 

and at the inlet the relative velocity is 

W2 = y % 2 - [/| = \/462.42 - 142.12 = 142.1 m/s 

Hence the relative velocity ratios are W3s/W2 = 2.45 and W^/W^ = 1.14. The 
relative Mach numbers are M 3 R S = 0.636 and M3Rh = 0.294. g 

In the foregoing example the mass balance was used to link the upstream and downstream 
states. Depending on what kind of information is known, this may become a somewhat 
involved calculation. The general approach is to express the mass balance in terms of the 
flow function. Upstream, this leads to 

fnJcpT02 
= b2 cos a2 

and downstream the corresponding statement is 

P03^3 
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in which the flow function is 

/ . , _ ■ , x - ( l / 2 ) [ ( 7 + l ) / ( 7 - l ) ] 
F = , ' M 1 + - M 

The term cos a2 appears in the upstream expression because it is the radial inflow velocity, 
Vr2 = V^coso^. that enters the expression for the mass flow rate. Downstream the 
corresponding factor is missing because it is assumed that the absolute velocity is axial. 

Dividing these gives 
A.2 F3 T02P03 

The temperature ratio is 
A3 F2 cos a2 V T03 P02 

T02 = 1 
T03 1 - Sw 

and the pressure ratios may be written as 

P03 __ P03 P3 POI 

P02 Pz P01 P02 

in which 

and 

In addition 

P03 _ ( 1 + 1 ^ 1 M2 
7/ (7 -1) 

P3 

7/ (7 -1) 
POI _ 

P3 V 7-1 

P01 ^ f T2 

P02 \T2s 

7/ (7 -1) 

= I 1 - Cs 

Substituting gives 

A , = F3 ( 1 + ^Mj Y7^-^/ e^m-V 1 
A3 F2cosa2 ^ l - C s V ^ 2 / V Ths) v T ^ 7 ^ 

From this it is clear that if the power ratio sw can be determined and the total-to-static 
efficiency and the stator loss coefficient can be estimated, then the mass balance in this 
form involves only M2, M3, and the area ratio A2/A3 as unknowns. Hence, if two of 
these can be determined in other ways, this equation may be solved for the third. Clearly, 
if the area ratio is the only unknown, then it can be solved from this explicitly. However, 
if one of the Mach numbers is unknown, then an iterative solution of a nonlinear equation 
must be carried out. This can be readily performed with the aid of a computer. In hand 
calculations, it may be worthwhile to calculate the results directly from 

m = p2A2Vr2 = /03-A3V3 

by assuming one of the unknowns and then using the mass balance to check that the other 
converges by iterations to its correct value. 

A collection of typical ranges of parameters for a well-designed radial inflow turbines 
has been compiled by Logan [52]. It is reproduced as Table 9.1. 
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Table 9.1 Design parameters for a radial inflow turbine. Source: Logan [52]. 

Parameter 

a.i 
/°3 
r3h/r3s 
r3h/V2 
r3/r2 
b2/r2 

U2/V0 

W3/W2 

v3/u2 
CR 
CN 

Typical range 

68° - 76° 
-50° - -70° 

< 0 . 4 
< 0 . 7 

0.53-0.66 
0.1-0.3 

0.55-0.8 
2 - 2 . 5 

0.15-0.5 
0 .4-0.8 

0.06-0.24 

9.4 STATOR FLOW 

The flow enters the stator row from a volute and leaves into a vaneless space. In the 
vaneless space, if losses are neglected, the flow may be assumed to be irrotational. The 
same assumption was made when the flow in the vaneless space in a centrifugal compressor 
was considered. In such an irrotational flow the tangential component of velocity varies 
inversely with radius, and thus rVu is constant. Since mass flow rate is constant 

m = 2irr2eb2ep2eVr2e = 2nr2b2p2Vr2 

and, as Figure 9.1 shows, the subscript in r2e refers to a radius at the exit of the stator 
blades, and r2 is the exit of the vaneless space and therefore also the inlet to the rotor. This 
equation can be recast as 

b2ep2er2e 
Vr2 — K-2e b2p2T2 

For a gap of constant width &2e = b2. The density ratio influences only the radial component 
of velocity, and since this component is much smaller than the tangential component only a 
small error is made if the density is assumed constant. If the density difference is ignored, 
then this equation and rVu = constant can be written as 

v -v r2e v -v T2e 

Vr2 — Vr2e *u2 — Vu2e 

r2 r2 
Dividing gives 

VU2 Vu2e = tan a.2 
Vr2 Vr2e 

so the flow angle a2 remains constant. The calculations are illustrated next. 

■ EXAMPLE 9.5 

A combustion gas mixture, with the ratio of specific heats 7 — | and gas constant 
R = 287 J/(kg • K), has a specific heat cp = 1148 J/(kg • K). These gases flow 
through a radial inflow turbine with the inlet stagnation temperature Toi = 1015 K 
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and the stagnation pressure at the exit of the stator is po2e = 8.5 bar. The mass 
flow rate is fa = 2.8 kg/s. The outlets of the stator blades are at the circle of radius 
r2e = 11.2 cm, where the flow angle is a2e = 74.0°. The stator blade height is 
b = 1.7cm. The inlet of the rotor blade is at r2 = 9.8 cm and at the exit of the rotor 
the shroud radius is rss = 7.7 cm and the hub radius is r3h = 2.7 cm. The shaft 
rotates at 40,000 rpm and the turbine efficiency is r]u = 0.89. At the exit the absolute 
velocity is axial. Find (a) the Mach number at the inlet to the rotor; (b) the power 
delivered by the turbine; (c) the Mach number at the exit of the turbine, assuming that 
the exit static pressure is lbar; (d) the flow angle of the relative velocity at the inlet 
to the rotor; and (e) the blade-loading coefficient I/J = w/U2, the flow coefficient 
<t> = Vr2/U2, and the specific speed of the turbine. 

Solution: (a) If the thickness of the trailing edge of the stator blades is ignored, the 
flow area leaving the stator is 

c\ 1 1 O 1 7 
A2e = 2irr2eb = '„ ' ' ' = 0.01196 m2 

100 • 100 
To determine the exit Mach number, the flow function is first calculated. It has the 
value 

mjc^g = 2.8^1148-1015 = Q 7 g 
2e ^2eP02eCosa2e 0.01196 • 850,000 • cos(74°) 

Now the exit Mach number is obtained by iteration from the nonlinear equation 

- ( l / 2 ) [ ( 7 + l ) / ( 7 - l ) ] 
2̂e = ^ = M 2 e ( 1 + ^ — W | = 1.078 

With 7 = | , its solution is M2e = 0.557. The temperature can now be determined 
from 

T2e = T02 (l + 1 ^ M l \ = 1015 (l + ^ f ^ ) = 965.1 K 

and the pressure is 

"-"»(^r""-8-5(s)*-■•*"-
The static density is therefore 

p2e 6.948-105 „ „„, , , 
p2e = J-^- = = 2.508 kg/m3 
He RT2e 287-965.1 s / 

The exit velocity is next determined from 

V2e = M2e^RT2e = 0.557^1.333-287-965.1 = 338.5m/s 

and the radial velocity component is 

Vr2e = V^cosc^e = 838.5 cos(74°) = 93.3 m/s 
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The tangential velocity component of the flow leaving the gap is 

Vu2 = — Vu2e = ^ 325.4 = 371.9 m/s 
r2 9.8 

and ignoring the density change in the radial term the corresponding value of the 
velocity component entering the blade is 

Vr2 = — Vr2e = -— 93.3 = 106.6 m/s 
r2 9.8 

The magnitude of the absolute velocity is therefore 

^2 = y/v?2 + Vl2 = A/106.6 2 + 371.92 = 386.9 m/s 

The static temperature at this location is 

ra = r 0 2 - g = 1015_!^ = 949.8K 
and the Mach number is therefore 

M2 = - ^ = = l
 3 8 6 - 9 =0.642 

VlRT2 ^1.333-287-949.8 
If the density difference had been taken into account in the radial term, Mach number 
would have increased only to M2 = 0.644. 
(b) The tip speed of the rotor blade is 

9.8-40,000-^ 
U^=r^= 10Q.30 = 4 1 0 - W s 

and the tangential component of the relative velocity is 

Wu2 = Vu2 -U2= 371.9 - 410.5 = -38.6 m/s 

Since Wr2 = Vr2, the flow angle of the relative velocity is 

(c) Since there is no exit swirl, the work delivered becomes 

w = U2Vu2 = 410.5 • 371.9 = 152.67 kJ/kg 

and the isentropic work is 

w 152.67 , „ 
^ = ^ = l ) ^ = m-54kJ/kg 

The power delivered by the turbine is therefore 

W = raw = 2.8 • 152.67 = 427.5 kW 
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(d) The stagnation temperature at the exit is 

Tos = T02 - » = 1015- ^ J Z ° = 882.0 K 
cp 1148 

and the corresponding temperature for an isentropic flow is 

rr ^ Wc i m _ 171,540 „ „ _ „ „ 
To3s =T02 = 1015 = 865.6 K 

cp 1148 
The exit stagnation pressure is therefore 

» = M , ( ^ f ^ 8 . 5 ( ^ f ) 4 = 44,6lra 
With the exit area 

A3 = 7r(r|s - r | h ) = TT(0.0772 - 0.0272) = 0.01634 m2 

the exit flow function is equal to 

m^pWs 2.8^1148 • 882.0 n0QA 
r^t = = = U.oo4 

A3p03 0.01634 • 449,550 
and the Mach number can then be obtained by iteration from the nonlinear equation 

~ / ~ _ 1 \ - ( l / 2 ) [ ( 7 + l ) / ( 7 - l ) l 
F3 = -7=JM* ( l + J L 2 _ M 3 2 ) = 0 - 3 8 4 

in which 7 = | . The solution is M3 = 0.169. The exit static temperature is then 

l + ^ - M f j =882.0 f l + - ^ — J =877.8K 

so that the exit velocity becomes 

V3 = M3^/-fRT3 = 0.315^1.333- 287 -877.8 = 97.9 m/s 

The volumetric flow rate is therefore 

Q3 = V3A3 = 97.9 • 0.01634 = 1.60 m3/s 

(e) The blade-loading coefficient is 

w 152,670 „ 

and the flow coefficient is 

± Vr2 106.6 
U2 410.5 

0.260 

The flow coefficient for radial inflow turbines is usually less than 0.5. The specific 
speed is 

0 _ nyoi _ 40,000 ■ TTVYM _ 
s " u-o-75 " 30-171,540°-75 _ 
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and the specific diameter is 

__ D2w°s-25 _ 0.196-171,540025 

J-)s — y== — — 0.15 

VQ3 Vim 
These are in the range for good radial inflow turbines designs. 

■ 
In the foregoing example losses in the stator and vaneless gap were not taken into account 
explicitly. In the next section methods to include them in the analysis are discussed. 

9.4.1 Loss coefficients for stator flow 

Baskharone [6] gives a correlation for the velocity coefficient for a flow through the stator: 

0 \ /j s cos am \ /Re \ 
v s cos a2e — te — 5*) \ b / \ Ref / 

in which Ref = 2.74 • 106 is a reference Reynolds number. It is based on the blade chord 
c and exit velocity V2e- The angle am is the average flow angle between a\ and a2e. The 
spacing of the blades is s, and their height is b. The trailing-edge thickness of the blades 
is te. The sum of the pressure- and suction-side displacement thicknesses is 5* — 5* + 5* 
and similarly for the total momentum thickness 9. It is assumed that the suction-side 
thicknesses are 5* = 3.55* and 9S = 3.59p. The pressure-side values are obtained from 

5; _ 1.72 9P _ 0.664 
c VRe c VRe 

which are valid for laminar flow when Re < 2 • 105, and for turbulent boundary layers, 
when Re > 2 • 105, they are 

5* _ 0.057 9P _ 0.022 
~C ~ Rel/6 7" ~ Rgl/6 

Baskharone also recommends a model proposed by Khalil et al. [48] for taking into 
account the losses in the gap. It can be written as 

yg = YrYaYy[Yb 

in which 
Y = PQ2e ~ P02 

S P02e ~ Vl 

is the stagnation pressure loss coefficient and 

Yr = 0.193 I 1 - — T2e 

Ya = 1 + 0.0641 (a2e ~ a2f) + 0.0023(a2e - a2 f ) 2 

YM = 1 + 0.6932(M02e - M02f) + 0.4427(M02e - M02f )2 

n = 1 + 0 .0923(^ - ^ ) + 0 .0008(^ - ^ ) 2 

b bf b Of 

Here Mo2e = ^W\/7-ft7o2 and the reference values are 

a2i = 70° M02f = 0.8 b{ = r2e/10 

The angle a2e is measured in degrees. 
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EXAMPLE 9.6 

A gas with 7 = f and cp = 1148 J/(kg • K) flows through a radial inflow turbine. 
The conditions at the inlet to the stator are T0i = 1015 K and poi = 7.5 bar. At the 
inlet the flow angle is a\ = 20° and Mach number is M\ = 0.14. The gas leaves 
the stator at angle a2e — 71° and pressure p2e = 4.9 bar. The number of stator 
vanes is Z = 37, their trailing edge thickness is te = 1.5 mm, their chord length is 
c = 2.8 cm, and their span is b = 0.9 cm. The radii are r\ = 12.0 cm, r2e = 10.5 cm, 
and r2 = 10.0 cm. Assume the kinematic viscosity to be v = 90 • 10~6 m2/s. Find 
the stagnation pressure loss across the stator and the gap. 

Solution: The static temperature at the inlet is 

Ti=T01[l + ~-Mt) = 1015 ( 1 + —^— } =1011.7K 

and the static pressure is 

T X 7/(7-D /10H.7N 4 

p l = P 0 1 U t > =™{-m<r) =7-40bar 

which give for the static density the value 

Pl = M\=2874lJl l .7= 2-5 5 k g / m 3 

The velocity at the inlet is 

Vi = Mi ^7-RTi = 0.14\/1.333-287-1011.7 = 87.1 m/s 

and its radial component is 

Vrl = Vicosai = 87.1cos(20°) = 81.86 m/s 

Mass balance may be written as 

m = pi2irribVrl = P2^r2ebVr2s 

Introducing the flow function, the nondimensional mass flow rate may be written as 

raJ^T^ ( 7 - l V(i/2)[(7+D/(7-i)] 
V p - Mi cosai ( 1 + -!-— M\ = Fx cosai 

at the inlet and at the exit it is 

V P = M2e cosa2 ( 1 + ^—M^ = F2e cosa2 
A2eP02e 

Since the flow is adiabatic, 7b 1 = TQ2, and if it is assumed to be isentropic, then it 
follows thatpoi = Po2e- With Ay = 2nrib and A2e = 2nr2eb, the mass balance 
gives the relationship 

F z e = F i ncc-sai 
' r2ecosa2e 
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The value of Fi is 

7 M l / 7 - l \-(V2)[(7+i)/(7-Dl 4 ^ . 1 4 / 0.142, 
F I = ^ T ( 1 + V M I J = ^ ( 1 + — ) =0-3196 

and therefore 

10.5cos(71°) 
Solving the nonlinear equation 

- ( l / 2 ) ( 7 + l ) / ( 7 - l ) ] 
, / 1 -I- 1 1 M? \ ^ = ^ ( l + ^ * £ 

with this value of F2e and 7 = | , yields M2e = 0.538. Static temperature at the exit 
of the stator is 

T2e = T02 ( 1 + ^ M f e ) = 1015 (1 + ° ^ _ j = 9 6 8 2 K 

_ 1 / n C;QO2 
— M2 I 

2 

and the velocity is 

V2e = M2e^jRT2e = 0.538^1.333 • 287 • 968.2 = 327.85m/s 

Introduction of the flow function into the development assumes that the flow is 
isentropic. It is anticipated that no correction is needed, as V2e is only used to 
calculate the Reynolds number in the loss correlation. The value of the Reynolds 
number is 

^ = ^ = Q n
3 2 7 f 6

2 l = l - 0 2 - 1 0 5 
v 90 • 10"6 ■ 100 

The displacement thickness on the pressure side is therefore 

A* - L 7 2 c - 1-72 ■ 2.8 _ 4 
6p ~ ReV2 " 100 • (1.02 ■ 105)V2 " i 5 i ' i U m 

Since the suction side displacement thickness is assumed to be 3.5<5*, the sum be-
comes 5* = 6.79 • 10~4 m. The momentum thickness on the pressure side is 

0.644c 0.644-2.8 r nr n n _ 5 

°p = B&* = 100- (1.02- i 0 5 ) 1 / 6 = 5 - 6 5 - 1 0 m 

and with the suction side thickness assumed again to be 3.5#p, the sum is 6 — 
13.8 • 10~4 m. Next, the spacing can be obtained from 

27rr2e 27T-10.5 
S2 = ^ = T 0 0 T 3 7 = 0 - ° 1 7 8 m 

The average flow angle is a2m = 45.5°, and the velocity coefficient is obtained from 

c£ = 1 - 1.8 ( - ) f 1 + ?lcosa^ R e 00 v s2 cos a2 — te — S* J \ b ) Ref 

with 

6 13.8-10" 
s2cosa2-te-6* 0 .0178cos(71°)-1 .5-10- 3 -6 .79- 10" 0.381 
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and 
s2 cos a2m =1 0.178 cos(45.5°) = 

6 0.009 
the velocity coefficient becomes 

9 102,000 
c2 = 1 - 1.8 • 0.381 • 2.389 ' = 0.939 so that cv = 0.969 

The actual exit velocity is therefore 

V2e = cvV2es = 0.969 ■ 327.8 = 317.7 m/s 

As anticipated, the difference from the ideal is such that no correction is needed. The 
static temperature at the exit of the stator is now 

V2 317 72 

T2e = T 0 2 - ^ = 1015- ^ ^ = 9 7 1 . 0 K 

and the Mach number at the exit does not change significantly, for it is M2e = 0.521. 
The stagnation pressure is now 

The loss of stagnation pressure across the stator is therefore 

APOLS = Poi - P02e = 750.0 - 584.9 = 165.1 kPa 

To determine the stagnation pressure loss across the gap, the stagnation Mach 
number at the inlet to the gap is needed. With Toi = TQ2, it is 

M02e = - ^ = = , 3 2 4 - 5 = 0.5028 
VlRT02 Vl-333-287-1015 

The stagnation loss coefficients for the gap are 

Yr = 0.193 ( l - j j j ^ j =0.00919 

Ya = 1 + 0.0641(71-70) +0.0023(71 - 70)2 = 1.0664 
YM = 1 + 0.6932(0.5028 - 0.8) + 0.4427(0.5028 - 0.8)2 = 0.8410 

Yb = 1 + 0 . 0 9 2 3 ( ^ - 1 0 ) + 0 . 0 0 0 8 ( ^ - 1 0 ) 2 = 1.1561 

and the overall loss coefficient comes out as 

Yg = 0.00919 • 1.0664 • 0.8410 ■ 1.1561 = 0.00952 

The stagnation pressure at the inlet to the rotor is therefore 

P02 = Po2e ~ Yg(P02e - P2) = 589.6 - 0.00952(589.6 - 490) = 588.6 kPa 
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and the stagnation pressure loss across the gap is 

APOLG = P02e ~ P02 = 589.6 - 588.6 = 1.0 kPa 

Hence this loss is relatively small, and upstream of the rotor the stagnation pressure 
loss is 

APOLS + AJJQLG = 165.1 + 1.0 = 166.1 kPa 

Note that the Mach number increases across the stator from 0.14 to 0.52 owing to the 
acceleration of the flow as a result of the turning. There is a significant density change 
associated with this acceleration. 

As has been shown above, across the gap the flow angle does not change for irrotational 
flow. Since the gap is also quite narrow, the area does not decrease greatly and the 
acceleration of the flow is rather slight. For this reason it is possible to assume the flow to 
be incompressible across the gap and calculate it by the formula 

V -V T2e 

Vr2 — Vr2e 
T2 

This cannot be used for the stator flow, and using it in the foregoing example would have 
yielded for the radial component of the stator exit velocity the value 

K2 e = Vri— = 81.86 ^ ? = 93.55m/s 
r2e 10.5 

and the exit velocity would have been 

Vr2e 93.55 
V2e = = 7i^-r = 287.4 m/s 

COSO!2 C 0 S ( 7 1 ° ) 

This would have been significantly in error as the correct value came out to be 324.5 m/s. 

9.5 DESIGN OF THE INLET OF A RADIAL INFLOW TURBINE 

The foregoing developments and examples illustrate the basic methods for carrying out 
design calculations for radial inflow turbines. The loss calculations for the stator and 
interblade gap, together with the expression for the overall efficiency and its appropriate 
value obtained from the Balje diagram, are sufficient to determine the loss through the 
rotor. Table 9.1 gives the appropriate geometric length ratios for a design. Methods to 
obtain some of these values are developed from the theory discussed in this section. This 
work has been carried out, among others, by Rodgers and Geiser [63], Rohlik [65], and 
Whitfield [78]. The extensive study by Whitfield as been included in the book by Whitfield 
and Baines [79]. The following development follows their studies. 

Since 

nT< 01 

the blade loading coefficient is 

* Ul U* M & , 7 - 1 
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in which the blade stagnation Mach number is 

U2 Ma 
VrRToT 

This is based on the inlet stagnation temperature as a reference value. 
If at the exit the flow has no swirl component and at the inlet the relative velocity is 

radially inward, then w = U2, ar>d the blade-loading coefficient is 

w 

Experiments have shown that efficiency is increased if — 40° < fi2 < —20°. This introduces 
a negative incidence into the flow since the blade angle \i is invariably zero. The blade-
loading coefficient is now given by 

, vu2 u2 + wu2 ip = — = = 1 + (pt&nfo 
U2 U2 

in which the flow coefficient is defined as 

The flow angle of the relative velocity is the range j32 min < &i < 0, and fi2 min is chosen 
such that the blade loading coefficient is in the range 0 < tp < 1. 

9.5.1 Minimum inlet Mach number 

Whitfield [78] has shown how to optimize the inlet to the rotor by choosing (for a given 
power ratio) the absolute and relative flow angles that give the smallest inlet Mach number. 
Improper flow angles might lead to high inlet Mach numbers, and a possibility for choking. 
Following his development, the tangential velocity is first written as 

vu2 = u2 + wu2 = u2 + vu2
t-^ 

t ana 2 

in which the second equation follows by using 
Vu2 = Vr2 tan a2 Wu2 — Wr2 tan j32 

together with Vr2 = Wr2. Multiplying through by Vu2 and rearranging gives 

/ _ t a n ^ X = 

\ tan a2 ) 

The right side is the work delivered, and since this is related to the power ratio, it will be 
taken to be a fixed quantity. Dividing both sides by V2 leads to 

. 2 / tan/32\ sin a2 [ 1 = u (9.8) 
\ tan a2 J 

in which 
= U2Vu2 _ U2Vu2 C2

02 
U T/2 2 T/2 

v2 c 0 2 V2 
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or 
sw 1 s 

(7 - 1) Af022 m ^02 

where the following notation has been introduced: 

m = M£2 7 - 1 

The inlet stagnation Mach number has been defined as 

V2 M, 02 VrR7o2 

which can be written also as 

M2 _Yl-Yl±-M2ll_ 
02 ~ r2 ~~ r2 r2 ~ 2 Tno c02 c2 c02 -102 

so that 
M2 

M2 = ^ 2 ( 9 9 ) 
02 1 + ^ M f 

Dividing Eq. (9.8) next by cos2 a2, and noting that 1/ cos2 «2 = tan2 a2 + 1, gives 

(1 — u) tan2 «2 — tan /?2 tan a2 — u = 0 

or 
(m - s) t an 2 a 2 - m tan/32 tan a2 - s = 0 (9.10) 

For given values of sw, M2, and ^2. this quadratic equation can be solved for tan a2- The 
solution is displayed in Figure 9.7 with /32 and sw as parameters. 

For a given power ratio and relative flow angle, the minimum of each curve is sought 
next. To find it, let a — tan 0:2 and b = tan/?2- This puts Eq. (9.10) into the form 

s ( l +a2) 
(m — s)a2 - mba- s = 0 m =—. - f (9.11) 

a(a - 0) 
The minimum for m, for a fixed s and b, is obtained by setting the derivative of this with 
respect to a to zero. Thus 

dm _ 2s(a - b)a2 ~ s(2a - &)(1 + a2) _ 
da a2(b — a)2 

and this reduces to 
ba2 + 2a - b = 0 

Solving this quadratic equation gives 

- i±v / r+6 2 
a = 1 

Substituting this value of a into Eq. (9.11) gives 

2s 
m = . 

lTv/TT62 

(9.12) 

(9.13) 
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Figure 9.7 Inlet Mach number as a function of the nozzle angle for different relative flow angles 
and the power ratio with 7 = 1.4. 

for the minimum of m as a function of s and fa- Since 

A/I + &2 = V1 + tan2 j3: cos/32 

Eq. (9.12) becomes 

t a n a 2 
■ cos /32 ± 1 

sin/32 

Next, making use of the identities 

a ifil . 2 &2 
cos p2 = cos —— sin — 

■ o o ■ & & 

sin p2 = I sin — cos — 

inEq. (9.14) leads to 

t a n « 2 

The positive sign gives 

- c o s 2 ( / 3 2 / 2 ) + s i n 2 ( / 3 2 / 2 ) ± l 
2sin(/32/2)cos(^2/2) 

f & t an CK2 = tan —— 

(9.14) 
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which is rejected because Figure 9.7 shows that a^ > 0 and fa < 0. The negative sign 
gives 

P2 ^ . frc , fa" 
tan o;2 = — cot: or tan a2 = tan 

hence 
a 2 = 2 + y 

when TO is minimum. Substituting this into Eq. (9.13) gives 

2s cos fa 
m = a T 

cos fa =F 1 

Since the minus sign gives a negative m, the positive sign is chosen. This then gives 
2 s cos fa 

Equation 9.9 shows that 

M2 

Ml 

1 + COS fa 

M0
2

2 

(9.15) 

7 - 1 , , 2 
02 

(9.16) 
-M, 

Substituting the value of M02 min from Eq. (9.15) into this gives, after simplification 

M2 
2sv cos/32 

1/2 

(9.17) 
\ 7 - l / 1 + (1 - sw)cosfa_ 

The minima for the curves, as seen from Figure 9.7, are at nozzle angles in their usual 

M, 

Figure 9.8 Minimum Mach number as a function of the power ratio for 7 = 1.4 with angle 02 as 
a parameter. 
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range between 60° < a2 < 80°. For a given M2, sw, and /32, there may be two angles a2 
that satisfy Eq. (9.10). The smaller angle is to be chosen. The larger angles put a limit on 
how large the inlet Mach number can be. As a2 —¥ 90°, t ana 2 —> oo, and the second of 
Eqs. (9.11) shows that m = s. This means that at a2 = 90° the inlet Mach number is 

M2 
2sv 

L ( 7 - l ) ( 2 - s w ) 

1/2 

In particular, for 7 = 1.4 and sw = 0.15, M2 = 0.637, as the graph shows. Figure 9.8 
shows how the minimum Mach number depends on the power ratio and that its dependence 
on the angle /32, and correspondingly on a2, is weak. 

■ EXAMPLE 9.7 

Gas with 7 = 1.4, and R = 287J/(kg • K) flows into a radial inflow turbine. 
The inlet stagnation temperature is TQI = HOOK, and the design-specific work is 
w = 165.74 kJ/kg. (a) Find the value of the total-to-static efficiency that would give 
a pressure ratio of P01/P3 = 2.0. (b) At what angle should the flow leave the stator 
in order for M2 = 0.62 be the minimum possible Mach number at the exit of the 
stator? (c) Find the blade speed at this condition, (d) Assume that the blade speed 
is increased to C/2 = 460 m/s and that the flow angle and the magnitude of the exit 
velocity from the stator remain the same. Find the new value for the relative flow 
angle /32 entering the rotor. 

Solution: (a) From the expression 

W = SwCpT()l 

the power ratio is 
1 6 5 J 4 ° 0.15 

1004.5-1100 
The pressure ratio is related to the power ratio and the total-to-static efficiency by 
Eq. (9.3), so that 

Sw 0-15 n„_ 
J7ts = ? TTT" = 77TT = 0.835 
' ' p3 \ (7~l)/7 1 - 0.&/™ 

vPOl. 

(b) The flow angle at the minimum inlet Mach number is obtained from the equation 

M2 = 
2sw \ cos/?2 

-11/2 

Kj-lJ 1 + (1 - sw)cos/32 

which, when solved for cos /32, gives 

M2 

cos & = ——. —-+J- — 2 p2 = -24.74° 

The minus sign must be chosen for the angle. At the minimum 

a2 = 90° + — = 90° - 12.37° = 77.63° 
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(c) To determine the blade speed, the velocity leaving the nozzle is needed, and 
therefore the stagnation Mach number is calculated first as: 

M02 = , M 2 = - °-6 2 = 0.5975 
/l + 1^±Ml V l + 0-2-0-6^ 

The exit velocity from the stator is therefore 

V2 = M02^/jRT02 = 0.5975^1.4-287-1100 = 397.2m/s 

and the tangential and radial components are 

Vu2 = V2sina2 = 397.2 sin(77.63°) = 388.0 m/s 

Vr2 = V2cosa2 = 397.2 cos(77.63°) = 85.10 m/s 

The blade speed can be obtained, for example, from 

w 165,740 innn . 
C/2 = ̂  = ^ 8 ~ - 4 2 7 - 2 m / s 

(d) If the blade speed is increased to U2 = 460 m/s and the nozzle exit speed and 
direction are the same, then the new work done is 

w = U2Vu2 = 460 • 388 = 178.48 kJ/kg 

The new value for the tangential component of the relative velocity is 

Wu2 = Vu2 -U2= 388.0 - 460.0 = -72.0 m/s 

Since the radial component of the inlet velocity remains the same, the flow angle is 

& = tan-i (^] = tan-i (zll) = _40.2° 

It is expected that the total-to-static efficiency will be somewhat lower at this angle. 
If the efficiency drops greatly, adjustable stator blades may be used to adjust the exit 
stator angle, which then influences the incidence. However, in a turbocharger an 
increase in blade speed comes from a larger cylinder pressure and a larger flow rate 
through the engine. Hence the radial component of the inlet velocity to the rotor also 
increases. The control of the stator blade angle must account for this as well. g 

9.5.2 Blade stagnation Mach number 

The blade stagnation Mach number is yet another parameter of interest. It is obtained from 
the definition of the power ratio, which may be written as 

so that 
M0u 

U2 Vu2 sw 

coi coi 7 - 1 

U2 sw coi c2 

coi 7 _ 1 c2 V2sma2 
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Since T0i = T02, this may be written as 

M, Ou 
Sw 1 T02 

7 — 1 M2 sin a2 V T2 

and further as 

M, 
1 

7 - 1 MA 
1/2 

Ou (9.18) 
7 — 1 M2 sin a?2 

For a given power factor s w / ( 7 — 1), the relative flow angle /32, and Mach number M 2 , 
Eq. (9.10) can be solved for a2 and the nondimensional blade speed M0u can be calculated 
from Eq. (9.18). These results are shown in Figure 9.9. Even if the blade speed is higher 
than the absolute velocity, the blade stagnation Mach number is based on the larger sonic 
speed and it therefore does not become as high as the inlet Mach number. This graph is 
useful when it is linked to the maximum attainable efficiency. 
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Figure 9.9 Blade stagnation Mach number as a function of Mi for 7 = 1.4 and for various power 
ratios and/32 = -20° . 

Experimental data for the total-to-static efficiency, measured by Rodgers and Geiser 
[63], are shown in Figure 9.10. The abscissa in this figure is the ratio of the blade speed to 
spouting velocity. Since 

1, 
:Vrn2 = C p T 0 i ( l -

T, 3ss 
) = Cpioi 

* J-01 »7ts 

the ratio of the spouting velocity to the stagnation speed of sound is 

2sv Vn 

coi V (7 - l)??ts) 
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hence 

M0u 
U2 2sv 

Vo V (7 - lHs) 
For 7 = | , ryts = 0.9, and sw = 0.15, the factor involving the square root is unity. 
For values 77ts = 0.8 and sw = 0.2, this equation yields MQU = I.22U2/V0. Hence a 
turbine with a reasonably low power ratio and stagnation blade Mach number in the range 
0.70 < M0u < 0.75 operates in the region of highest efficiency. Also, Figure 9.9 shows 
that under these conditions M2 is quite high. 

V3IU2 
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Figure 9.10 Total-to-static efficiency contours redrawn from the data of Rodgers and Geiser [63]. 

9.5.3 Inlet relative Mach number 

The inlet relative Mach number can be calculated by writing the component equations 

V2 sin «2 = U2 + W2 sin fo V2 cos 0:2 = V2 cos fo 

and then squaring and adding them. This yields 

y2
2 = [/f + W% + 2U2W2 sin/32 

and after each term is divided c\ = 7-RT2, and the definition Mu = U2/C2 is substituted, 
then after rearrangement this reduces to 

M2
2
R + 2MU sin (32M2K + M 2 - M2

2 = 0 

The solution of this is 

M2 R = -My. sin p2 + \JMl - Ml cos2 & 

in which the term Mu may be related to M2 by 

Mu = Mou\l~ = M0u \1 + —j-™2 
7 - 1 MA 

1/2 1 + l ^ M 2 

7 — 1 / M2 sin a2 
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because the blade stagnation Mach number MQU is given by Eq. (9.18). These results are 
plotted in Figure 9.11. 

0.7 

M„c 
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Figure 9.11 The relative inlet Mach number M2R as a function of M2 for various power ratios 
and for /32 = -20° and 7 = 1.4. 

9.6 DESIGN OF THE EXIT 

The blade height at the exit is to be chosen sufficiently large to reduce the relative velocity 
low enough that the relative Mach number at the shroud does not reach unity. In this 
section its value is related to a nondimensional mass flow rate and the exit Mach number. 
In addition, the optimum angle of the relative flow at the exit is found. 

9.6.1 Minimum exit Mach number 

If the turbine operates under conditions such that the absolute velocity at the exit is axial, 
then the mass balance can be written as 

m = p3V3A3 = p3V3ix(r2
3s - r2

3h) = p3V3Trr2
3a{l - K2) 

in which K = r3h/r3s. This can be changed to 

m 
_P3_ M3^RT3Trr2

3s(l - K2 

Multiplying and dividing the right side by poi = P01RT01 and introducing the inlet 
stagnation speed of sound c 0 l = ^RT0i converts this equation into 

2 ,-t 2\ P3 (TQI 
m = poic0iirr3s(l - K ) — 

P01 \ T 3 

1/2 
M3 
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A form of a flow coefficient may now be defined as 

* = — ^ = ̂  (~)1/2M/-f(l ~ K2) A)iCoi7rr| poi \T3 J r% 

in which the denominator is large because it is a product of the stagnation density and the 
speed of sound at the upstream conditions (conditions at which both of these are large) and 
a fictitious large flow area -nr\. Substituting U3s/U2 = ^3s/^2 into this gives 

^-l^) 1 ^ 1 -^) (9-19) P 3 TmY A f , r i ' i ^ 

Next, the absolute Mach number at the exit is related to the exit relative Mach number at 
the shroud of the blade. The relative velocity at the shroud is 

wl = vi + ul 
Dividing through by C/| leads to the following expression 

ul = wi_Yl 
m ul ul 

W2 2 2 1/2 2 2 

~~ „2 . 2 r / 2 r2 „2 r / 2 
c 3 c 0 1 u2 c 3 c 0 1 u2 

MJRs - Mj T3 

M2
au T01 

Substituting this into Eq. (9.19) leads to 

T, \ 1 / 2 . , M|„„ - Ml 
Poi U J M 3 M 0

2
O * = — \^-\ Ma^^^a-O 

which when solved for Af3RS gives 

^,JH2 1 / „,_-, \ l / 2 / „ . . \ / T - . X 1 ^ 

3Rs = IV13 ' M*.=tf + ̂ ± l + l^lMtV' f*>^(T" 
1-K2M3\ 2 V VP3 (03 

where the pressure ratio and the stagnation temperature ratio are given by 

/ „ \ - 7 / ( 7 - l ) T 

Poi / -. sw \ i 0 i 

Defining £? as 

in which 

P3 \ VtsJ T03 

„ x -7/(7-1) 
B = $ , [1 v 

^ %sy v^r 

* f = $0M0
2J(1 - K

2) (9.20) 

the relative Mach number at the exit has the form 
,1/2 

2 , o f 1 , 7 - 1 M 3 ^ = M3̂  + B l ^ ? 
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The minimum value of M$Rs as a function of Mf, with other parameters held fixed, is 
obtained by differentiation: 

dM!Rs , B (I , 7 - l ^ / 2 > 
dMl l 2M$ VMI + 2 

Setting this to zero gives the following equation for M 3. 

This fourth-order polynomial equation in M3 is now numerically solved for M3, and then 
Af3RS is determined from 

M 3Rs l\ + ^- (1 + ^ ^ M f d M3 V 2 J 

1/2 

The results are shown graphically in Figure 9.12, with the minima of M3RS marked by 
small circles. Since the absolute velocity at the exit is axial, it follows that 

M3 V3 
= COS 0 3 s M3Rs W3s 

This equation shows that lines of constant 03s are straight lines in Figure 9.12. The relative 
flow angle is plotted in Figure 9.13. It shows that the minimum relative Mach number at the 
exit occurs when /33 = —56° for poi/p3 = 2 and T̂ S = 0.85. Clearly, since the absolute 
velocity is axial, the Mach nufnber for the absolute flow is less than that for the relative 
flow. 

9.6.2 Radius ratio rSs/r2 

From the exit velocity diagram 

This equation applies at every radial location r3 of the exit, and r3 now denotes a radius 
that varies from the hub to the tip. It is assumed that the angle /33 changes with radius such 
that the exit velocity V3 is uniform. With U3 = U2r3/r2, this may be written as 

U2 W2r3 
sin /33 = - — - — — 

vvi W3 r2 
therefore the radius ratio can be written as 

r3 W3 W2 . 
r2 W2 U2 

From the inlet velocity diagram the tangential components give 

U2 = V2 sin a2 — W2 sin /32 

or 
U2 V2 . 
— = — sina3 - s i n 0 2 
W2 W2 
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M„ 

Figure 9.12 Relative Mach number as a function of Mach number, with $ / as a parameter. The 
pressure ratio is P01/P3 = 2, with rjts = 0.85 and 7 = 1.4. The locations of the minima of MSRS 
are marked by circles. 

From the radial components 

V2 cos 02 v2 
V2 cos a2 = W2 cos 02 —— = 

W2 cos a2 
Substituting this into the previous expression gives 

U2 sin a2 cos j32 — cos a2 sin 02 sin(ai2 — 02) 11 
W2 cosa2 cosa2 

which is just the law of sines. 
The radius ratio may now be written as 

7-3 _ W3 c o s a 2 s i n | / ? 3 | 
r2 W2 s in(a2 - P2) 

If the angle f32 is chosen to be that for a minimum inlet Mach number, then f32 = 2a2 — 90, 
and sin(a2 — f32) = sin a2, and this expression reduces to 

r, = M ^ s i n ^ 
r2 W2 t a n a 2 

At the shroud it is clearly 
r3s _ W3Ssin| /33 s | 
r2 W2 t an a2 

Substituting a2 = 90 + ^2/2 gives the alternative form 

»-3s ^33 . 02 . a ,„ - - . 
— = -T7T- t an — sin 03s (9.22) 
r2 W2 2 
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M, 

Figure 9.13 The flow angle of the relative velocity at the exit as a function of Mach number, with 
<l>f as a parameter. The pressure ratio is poi/p3 = 2, with r/ts = 0.85 and 7 = 1.4. The locations of 
the angle corresponding to minima of M^B.S are marked by circles. 

Rohlik [65] suggested that the relative velocity ratio W3/W2 = 2 gives a good design, or 
if the relative velocity at the shroud is used, then W3s/W2 = 2.5 is appropriate [79]. 

9.6.3 Blade height-to-radius ratio b2/r2 

The final parameter to be determined is the blade height-to-radius ratio 62 /V2 at the inlet. 
By casting the mass balance 

m = P2Vr2A2 = p3V3A3 

in terms of the flow functions, the area ratio becomes 

A3 _ F2 cos a3 /T03po2 _ F2cosa3 /T03p02Poi P3 
A2 ~ F3 T02 P03 T02P0I P3 P03 

The stagnation pressure ratio P02/P01 is related to the static temperature ratio T2IT2S by 
integrating the Gibbs equation along the constant-pressure line P2 and along the line of 
constant stagnation temperature TQI = T02. Equality of entropy changes then gives 

P02 

Po\ 
Ik 
T2 

7/ (7 -1) 

From the definition of the static enthalpy loss coefficient in the stator 

h2 - h2s Cs 11/2 
2 V2 
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the relationship 
T 2s _ 1 A 7 - 1 »^2 

is obtained. In addition, 

\ 7 / ( 7 - l ) 
—- = 1 - sw and = 1 
Toi poi \ »7ts/ 

so the area ratio can now be written as 

7 - 1 f 2 
7/ (7-1) 

* ^ ^ r * 7 ' 1 ^ " V i 
A2 F 3 V W w l 1 + 7^IM| 

2 3 

The blade width at the inlet is now obtained by writing the reciprocal of the area ratio as 
o 

A2 2irr2b2 ( r2 \ b2 1 
M 7r(r|s - r | h ) V r 3 s / r - 2 l - K 2 

in which K = r^/rzs. Solving for the blade height gives 

r2 2\r2)K VA3 

For a radial inflow turbine with a pressure ratio P01/P3 — 2, total-to-static efficiency 
T]ts = 0.85, the stator static enthalpy loss coefficient Cs = 0.15, K = 0.2, and 7 = 1.4, the 
graphs for 62/^2 are shown in Figure 9.14. Turbines operated at low power factor have a 
blade height of about one fourth the inlet radius r2. 

9.6.4 Optimum incidence angle and the number of blades 

For centrifugal compressors the Stanitz slip factor was given as 

a = — with CT = 1 — 
Vu2 Z 

in which Z is the number of blades and V^2 is the tangential velocity component in the 
absence of slip. For radial blades V^2 = U2. Using this expression at the inlet to the rotor 
gives 

K2 0.63TT 

U2~ Z 
Since 

vu2 = ■u2 

the ratio Vu2/U-2 

+ wu2 = 

> becomes 

u2 + wr2 

vu2 
u2 

tan/32 

tan 

= U2 + Vr2 

tan a2 

a2 — tan (32 

tan/3; '2 

' tano;2 
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Figure 9.14 Blade width-to-radius ratio as a function of the relative velocity ratio Wss/W? for 
relative flow angles corresponding to minimum Mach number at the inlet and at axial exit. The 
pressure ratio is poi /p3 = 2, with r)ts = 0.85, 7 = 1.4, and the static enthalpy loss coefficient of the 
stator is £s = 0.15. The exit hub to shroud radius ratio is K = 0.2. 

At the condition of minimum inlet Mach number, at which 0:2 = 7r/2 — (82/2, this reduces 
to 

Vu2 R 
— = COS / ? 2 

Hence the number of blades is related to the fa by 

0.63TT 
cosp2 = 1 — 

If this angle corresponds to the optimum nozzle angle for a minimum Mach number at the 
entry, then the substitution fa = 2c*2 — ^ gives 

1 
cosa2 = 

This formula for the optimum nozzle angle was developed by Whitfield [78]. The second 
half of this chapter has been based on his original research on how the rotor blade design 
might proceed. The optimum angle is plotted in Figure 9.15 along with Glassman's 
suggestion 

TV 

Z = —(110 — 0:2) tana2 

These results agree when the number of blades is 13, but the incidence in the Glassman 
correlation decreases more rapidly as the number of blades increases. 

■ EXAMPLE 9.8 

Combustion gases with 7 = f and R = 287 J/(kg • K) enter the stator of an radial 
inflow turbine at T0i = 1050K and poi = 250kPa. The power produced by the 
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Figure 9.15 Optimum incidence angle fii as a function of the number of blades Z according to 
Glassman [27] and Whitfield [78]. 

turbine is W = 232 kW at shaft speed of 35,000 rpm. The Mach number at the exit 
of the stator is M2 — 0.69, and the flow angle there is a2 = 67°. The efficiency 
of the turbine is 7]ts = 0.89, and the static enthalpy loss coefficient for the stator 
is Cs = 0.15. There is no swirl in the exit flow, and the design seeks to have the 
incidence at the inlet to be at angle j32 = —18.9°. Find (a) the exit blade radius 
entering the turbine and (b) the exit static pressure, (c) Given the exit Mach number 
M3 = 0.5 and a ratio of the hub-to-shroud radius of blade of 0.3, find angle of the 
relative flow at the shroud radius of the exit. Find (d) the ratio Wss/W2 for the 
machine and (e) the blade height b2 at the inlet. 

Solution: (a) The stagnation speed of sound at the exit of the stator is 

C01 = \/lRT0l = Vl.333 • 287 • 1050 = 633.9m/s 

and the stagnation Mach number leaving the stator is therefore 

M2 0.69 
M02 = 

i + V M f \/i + 
0.664 

0.692 

This gives the velocity leaving the stator the value 

V2 = M02coi = 0.664 • 633.9 = 421.0 m/s 

The velocity components are then 

Vu2 = V2 sin a2 = 421.0 sin(67°) = 387.5 m/s 

Vr2 = V2cosa2 = 421.0 cos(67°) = 164.5 m/s 
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With Wr2 = Vr2, the relative velocity is 

w Wr2 164.49 
W2 = — = -,—-—r = 173.9 m/s 

cos/32 cos(-18.9°) 

and its tangential component is 

Wu2 = W2smfi2 = 173.9-sin(-18.9°) = -56.3m/s 

The blade speed comes out to be 

U2 = Vu2 - Wu2 = 387.5 + 56.3 = 443.8 m/s 

and the radius has the value 

U2 443.8-30 _ , 
r2 = ~n = 3 ^ 0 0 0 ^ = 0 1 2 1 m 

(b) The work delivered by the turbine is 

w = U2Vu2 = 443.8 • 387.5 = 172.00 kJ/kg 

and the stagnation temperature at the exit is therefore 

T03 = T02 - - = 1050 - ^ ^ = 900.2 K 
cp 1.148 

With the total-to-static efficiency r)ts = 0.89 the isentropic work becomes 

w° = — = 7riF = 1 9 3-2 6 k J / ks 
r?ts 0.89 

so that the exit static temperature at the end of the isentropic process has the value 
T3ss = Toi - — = 1050 - ^ ^ = 881.7 K d cp 1.148 

and the static pressure at the exit is 

T^V^-V _/881.7N4 

p3 = Pol -^- =250 = 124.3kPa 
FA wi yToi j y 1050 j 

(c) To calculate the conditions at the shroud, first the mass flow rate is obtained from 

W 232 
m = - = — = 1.349 kg/s 

and then the stagnation density at the inlet: 

poi 250,000 3 
P o i = i ^ = 2 8 7 T T 0 5 0 = ° - 8 3 0 k g / m 

Using these, the nondimensional mass flow rate becomes 

m L349 
~ poiCoiTrrf ~ 0.830 ■ 633.9 • TT • 0.1212 " 
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The stagnation blade Mach number has the value 

U2 443.8 
Mu = — = 7^77: = 0.70 

C01 633.9 

which is used to calculate the modified nondimensional flow rate 

$ 0 M 2 _ 0.0557 • 0.702 
<j>f 

( 1 - K 2 ) 1 - 0.09 
0.030 

With the exit Mach number M3 = 0.5, the relative shroud Mach number can now be 
obtained from 

M3 R s L u f + * f (l + 'lf-1Ml]1/2p01(T 
3 M3 V 2 V P3 V? 

2 0.03 / 0.52 250 / 1050 
°-5 + 0.5 V 1 + 6 124.3 V 900.32 

\ 1/2" 

" ) 
0 3 / 
1/2 

= c 

1/2 

0.619 

The flow angle is therefore 

33s COS 
( M3 \ 
\M3Rs) -cos 

0.50 
0.609 

-36.1° 

(d) To calculate the relative velocity at the shroud, the temperature T3 is needed. It 
is given by 

T03 900.2 

1 + ^Mi 1 + 0.52 864.2 K 
2 J " 3 * ' 6 

The relative velocity at the shroud is therefore 

W3s = Af3RsV/7i?T3 = 0.619V1.333 • 287 • 864.2 = 355.9 m/s 

and the ratio of relative velocities is 

W3s 355.9 
25. _ — 2 05 

W2 173.86 
This is in the typical range for good designs. 
(e) To determine the blade height at the inlet, the flow areas are calculated next. At 
the exit the shroud radius is obtained by first calculating the blade speed there. Its 
value is 

U3s = W3ssin|/33s| = 355.9sin|36.1°| = 209.7m/s 

The shroud radius is now obtained as 

U3s n i 0 209.7 r3s = r 2 — = 0 . 1 2 1 ^ ^ = 0.0572m 

The exit area is of size 

A3 = 7r(r|s - r | h ) = 7rr|,(l - K2) = TT • 0.05722(1 - 0.32) = 0.00936m2 



356 RADIAL INFLOW TURBINES 

The flow functions at the inlet and exit of the turbine blade are 

7 ^ 2 / 7 " 1 , ̂  -< 1 / 2 ) [ h + 1 ) / ( T- 1 ) ] 4 • 0 . 6 9 ^ / 0.692V3-5 

7 M 3 / ! x-(i/2)[(7+i)/(7-i)] 4 . 0 . 5 ^ 3 / 0 .5 2 V 3 ' 5 

The area ratio is now 

A3 = F2COSa2 /7^_P3_ A - C s V M l V 
A2 F3 V T01 P03 I 1 + V M ! / 

1.202 /900.2 250 / l - 0 . 1 5 ^ \ 
1.001 V 1050 124.3 I 1 + °# 

V 6 

0.718 

so that 
A2 , 0.00936 _ _ 2 

i2 = ̂  = W = ai304m 

and the blade height is 

A2 0.1304 
o2 = = = 0.0171 m 

27rr2 2TT • 0.121 

or 69 = 1.71 cm. 

EXERCISES 

9.1 Combustion gases with 7 = § and cp = 1148 J/(kg ■ K), at T0i = 1050 K and 
P01 = 310 kPa enter a radial inflow turbine. At the exit of the stator M2 = 0.9. As the 
flow leaves the turbine, it is diffused to atmospheric pressure atp4 = 101.325 kPa. The 
total-to-total efficiency of the turbine is r)tt = 0.89. Find the stator exit angle. 

9.2 During a test air runs through a radial inflow turbine at the rate of m = 0.323 kg/s 
when the shaft speed is 55,000 rpm. The inlet stagnation temperature is T0i = 1000 K, 
and the pressure ratio is P01/P3 = 2.1. The blade radius at the inlet is r-z = 6.35 cm. The 
relative velocity entering the blade is radial, and the flow leaves the blade without swirl. 
Find (a) the spouting velocity, (b) the total-to-static efficiency, and (c) the power delivered. 

9.3 A radial turbine delivers W = 80 kW as its shaft turns at 44,000 rpm. Combustion 
gases with 7 = | and cp = 1148 J/(kg • K) enter the rotor with relative velocity radially 
inward at radius r2 = 8.10 cm. At the exit the shroud radius is r^s — 6.00 cm and at 
this location M3RS = 0.59. The exit pressure is p$ = 101.325 kPa and exit temperature 
is T3 = 650 K. The inlet Mach number is M2 = 0.9. Find the hub to shroud ratio 
K = r^/rzs at the exit. 

9.4 A radial inflow turbine rotor, with rotor inlet radius T2 = 9.3 cm and blade height 62 = 
1.8 cm, turns at 42,000 rpm. Its working fluid is a gas mixture with cp = 1148 J/(kg • K) 
and 7 = | . The exhaust pressure is p^ = 101.325 kPa, and the total-to-static efficiency 
is rjts = 0.82. The nozzle (stator) angle is.0,2 = 67°, and the velocity coefficient for the 
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flow through the stator is cv = 0.96. The Mach number at the exit of the stator is 0.8. Find 
(a) the inlet stagnation pressure to the stator, and (b) the stagnation pressure loss across the 
stator. 

9.5 Gas with 7 = § and cp = 1148K/(kg • K) flows in a radial inflow turbine, in 
which the inlet stagnation temperature is T0i = 980 K and the inlet stagnation pressure 
is Poi = 205.00 kPa. The exit pressure is p3 = 101.325 kPa, and the exit temperature is 
T3 = 831.5 K. The stagnation temperature at the exit is T03 = 836.7 K. The pressure at the 
inlet to the rotor is T2 = 901.6 K, and the pressure is p2 = 142.340 kPa. The shaft speed 
is 160P00 rpm, and the radius ratio is r3/r2 = 0.57. Assume that the relative velocity is 
radial at the inlet and that there is no exit swirl. Find (a) the total-to-static efficiency, (b) 
the flow angles a2 and fi3, and (c) rjs and TJR. 

9.6 For an exit with no swirl, show that 

j W = s i n ( a a - f t ) r * /r» 
W2 cosa2 r2 y r3 

in which r is the radius at an arbitrary location of the exit plane of the blade and r3 and f33 
are the mean values of the exit radius and angle. Show further that at the mean radius 

W3 _ sin(q2 - fc) r3 

W2 cos a2 sin /33 r2 

and plot the angle /33 for the range 0.53 < r3/r2 < 0.65 when W3/W2 = 2 and a2 = 70° 
and/32 = -40°. 

9.7 An inexpensive radial inflow turbine has flat radial blades at both the inlet and the 
exit of the rotor. The shaft speed is 20,000 rpm. The radius of the inlet to the rotor is 
10 cm and the mean radius at the exit is 6 cm. The ratio of blade widths is b3/b2 = 1.8 
and the flow angle is a2 = 75°. The inlet stagnation temperature is Toi — 420 K and the 
exhaust flows into the atmospheric pressure 101.325 kPa. Assume that the gases that flow 
through the turbine have 7 = § and cp = 1148 J / (kg • K) and the velocity coefficient of 
the nozzle is CN = 0.97 and the rotor loss coefficient is CR = 0.5. (a) If the power output is 
10 kW, what is the mass flow rate? Find (b) the static temperature at the exit of the stator, 
(c) the static temperature at the exit, (c) the blade height at the inlet and the exit, (d) the 
total-to-total efficiency, and (e) the total-to-static efficiency. 

9.8 Combustion gases with 7 = § and cp = 1148 J/(kg • K) enter a stator of a radial 
flow turbine with Tm = 1150 K, p01 = 1300 kPa, and Mx = 0.5, and with a flow rate of 
m = 5.2 kg/s and with the flow angle a2 — 72°. The radius of the inlet is r\ — 17A cm, 
the exit from the stator is at r2e = 15.8 cm, and the inlet to the rotor is at r2 = 15.2 cm. 
The chord of the stator is c = 4.8 cm, and the width of the channel is b = 1.2 cm. The 
rotational speed of the rotor is 31,000 rpm and the blade loading coefficient is ip = 1.3. The 
exit static pressure is p3 = 320 kPa. The trailing-edge thickness of the 17 stator vanes can 
be ignored. Find (a) the total-to-static efficiency of the turbine, (b) the stagnation pressure 
loss across the stator, and (c) the stagnation pressure loss across the gap. 

9.9 Combustion gases with cp = 1148 J/kgK and gas constant R = 287J/kgK enter 
the stator of a radial inflow turbine at the stagnation pressure poi = 346 kPa and stagnation 
temperature T0i = 980 K. They enter the rotor at the speed V2 = 481.4 m/s with the 
relative flow making an angle (32 = —35° and exhaust into the atmosphere at 101.325 kPa. 
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The total-to-static efficiency of the turbine is r)ts = 0.83. Find (a) the angle at which the 
flow enters the rotor and (b) the relative Mach number at the inlet. 



CHAPTER 10 

HYDRAULIC TURBINES 

Hydroelectric power plants are important providers of electricity in those countries in 
which there are large rivers or rainy high mountain regions, or both. In the United States 
large hydropower installations exist in the western states of Washington, Oregon, Idaho, 
and Nevada. The Tennessee Valley Authority, (TVA) has a large network of dams and 
hydropower stations in Tennessee and other southeastern states. Smaller plants in New 
England account for the rest of the installed capacity. In addition to the United States, large 
hydropower installations exist in Canada, Brazil, Russia, and China. Norway, Switzerland, 
Sweden, and Iceland obtain a large part of their power needs from hydroelectricity, and 
Norway in particular exports its excess generation. About 7% of primary energy pro-
duction and 17% of total electricity generation in the world are obtained by hydropower. 
Hydropower plants exceeding 30 MW are designated as large plants. Plants with generation 
from 0.1 to 30 MW fall into a range of small plants and those with capacity below 0.1 MW 
are classified as microhydropower. Although hydropower is a clean form of energy, its 
negative aspects relate to blocking of fish migration paths and displacement of populations 
from valleys that have been cultivated for hundreds of years by local communities. 

10.1 HYDROELECTRIC POWER PLANTS 

The preliminary design of a power plant begins with the siting analysis, which consists of 
determining the available flow rate of water and its head. The rate of water flow depends 
on the season, and for large power plants with high capital costs, dams are used not only to 
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increase the head, but to store water for the dry season. When the water flow is sufficient, 
several turbines can be housed in the same plant. 

A schematic of a hydroelectric power plant is shown in Figure 10.1. In small installations 
with high head a forebay is included and is made large enough that debris flowing into 
it will settle to the bottom. The floating debris is caught by an inlet screen. In a large 
installation the reservoir formed by an impound dam serves the same purpose. When the 
waterflow is regulated into the forebay, the head can be held constant and the turbine can 
be operated at its design condition. From the forebay the flow passes through a penstock 
into an inlet volute. After this the water is directed through a set of adjustable wicket or 
inlet gates to the runner. From the turbine the water is discharged into a draft tube and from 
there through a tailrace to the tailwater reservoir. 

Figure 10.1 Hydroelectric power plant. 

The elevation difference between the headwater and tailwater, denoted by Hg, is called 
the gross head. For a control volume with an inlet just below the free surface at the upper 
reservoir and an exit just below the free surface of the lower reservoir, the pressures at the 
inlet and exit are both atmospheric. Owing to the size of these reservoirs, the entering and 
leaving flow velocities are negligibly small. Hence the energy balance reduces to 

gHg = ws + ^2 gHLi 
i 

in which Y^i H^i is the head loss in the headwater, the penstock, the draft tube, and the 
exit to the tailwater. If the losses were absent ws = gHE would be the reversible work 
delivered by the turbine. It is customary, however, to include the spiral volute and the draft 
tube as part of the turbine and call the difference He = Hg — H^p the effective head, in 
which HLP represents the upstream loss. Then only the exit kinetic energy from the draft 
tube is a loss not attributed to the turbine. Efficiency now might be called the total-to-static 
efficiency, but this is not a customary practice. Clearly, the exit kinetic energy loss can be 
made small by making the draft tube long with a mild increase in area along its length. 

In the same way as for centrifugal pumps the overall efficiency r\ is a product of three 
terms as, 

V = VrnVvVh 
in which r]m is the mechanical efficiency and rjv is the volumetric efficiency. The hydraulic 
efficiency rfo takes into account the various losses in the equipment downstream of the 
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penstock. The overall efficiency can be written as 

= WQWR W 
71 WRW pQgHe 

in which W0 is the power delivered by the output shaft, WR is the actual power delivered 
to the runner, and W is the rate at which the water does work on the turbine blades. 

The hydraulic efficiency is defined as 

_ W _ _w_ 
pQgHe gHe 

If in the definition of effective head, the head losses in inlet spiral, the draft tube, and exit 
losses had also been subtracted out, the effective head would be smaller and the hydraulic 
efficiency larger. 

There is some leakage flow that does no work on the turbine blades. For this reason the 
power delivered to the runner is 

WR = p(Q - QL)w 

in which QL is the volumetric flow rate of the leakage. The ratio 

WR = p(Q - Qh)w = Q - QL 

W pQw Q 
shows that the volumetric efficiency is also 

Q-QL 

The mechanical efficiency is defined as the ratio 

_ Wo 
Vm — ■ 

WR 

and the difference between WR and W0 is caused by bearing friction and windage. 

10.2 HYDRAULIC TURBINES AND THEIR SPECIFIC SPEED 

The operating ranges for the three main types of hydraulic turbines are shown in Figure 
10.2. In rivers with large flow rates Kaplan turbines and Francis turbines are used and 
Pelton wheels are the appropriate technology in very mountainous regions. A Pelton wheel 
is an impulse turbine in which a high-velocity jet impinges on buckets and the flow enters 
and leaves them at atmospheric pressure. Kaplan turbines are axial machines and handle 
large flow rates at relatively low head. They are mounted vertically with the electrical 
generators on the floor above the turbine bay. A bulb turbine is similar to a Kaplan turbine, 
but with a horizontal axis. Its handles even larger flow rates than does a Kaplan turbine 
at lower head. For Francis turbines the runner can be designed to accommodate a large 
variation in flow rates and elevation. A Deriaz turbine is similar to a Kaplan turbine, but 
with a conical runner. Turbines are classified according to their power-specific speed: 

ilJW/p 
Qsp ~ (gHe)V* 
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2000 

10 100 
Flow rate (m3/s) 

1000 

Figure 10.2 Types of hydraulic turbine and their operating ranges. (Drawn after charts by Sulzer 
Hydro Ltd. and Voith Hydro.) 

Since 

this reduces to 

w = r,pQgHe 

a ftvW 
sp (<7#e)3/4 

so that flsp = ,ff}Qs. For a well-designed hydropower station the overall efficiency at 
design condition is often greater than 0.9, and for this reason there is only slight difference 
between the two forms of specific speed. 

Examination of Figure 10.2 shows that in the range where Pelton wheels are appropriate, 
the increased flow rate at a given head is accomplished by increasing the number of jets. In 
addition, if the flow rate is sufficient, multiple penstocks and Pelton wheels may be located 
at the same site. 

The power-specific speeds of various machines are given in Table 10.1. It shows that 
the specific speed increases as the effective head decreases. Thus the high-specific-speed 
Francis runners operate at lower heads. For calculation of the specific speed, the shaft speed 
is needed. Since hydraulic turbines are used for electricity generation, the shaft speed must 
be synchronous with the frequency of the electric current. With some exceptions the 
frequency / is 50 Hz in Europe and Asia and 60 Hz in North and South America. To obtain 
the proper value for the line frequency, the shaft speed is to be 

n 
120/ 

in which the number of poles in the electric generator is P, which may vary from 2 to 48, 
and there is no fundamental reason why it could not be even higher. The number 120 is 
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twice the 60 s in a minute, and the factor 2 arises from the fact that both ends of a magnet 
in an electric machine behave similarly. Thus a generator with 16 poles delivering energy 
at line frequency 50 Hz needs a turbine shaft speed of 375 rpm according to this formula. 
This is a typical shaft speed for large turbines. 

Table 10.1 Power specific speed ranges of hydraulic turbines. 

Type 

Pelton wheel 

Francis 

Kaplan turbine 
Bulb turbine 

Single jet 
Twin jet 
Three jet 
Four jet 

Low-speed 
Medium-speed 
High-speed 
Extreme-speed 

Q 

0.02-
0.09-
0.10-
0.12-

0.39-
0.65 
1.2-
1.9-

1.55-
3 -

3P 

-0.18 
-0.26 
-0.30 
-0.36 

-0.65 
-1 .2 
-1.9 
-2.3 
-5.17 
-8 

r/% 

88 -90 
89 -92 
89 -92 

86 

9 0 - 9 2 
93 

9 3 - 9 6 
89 -91 
8 7 - 9 4 

10.3 PELTON WHEEL 

A Pelton wheel is shown in Figure 10.3. This machine provides an excellent way of 
producing power if the water reservoir is high. Water from the reservoir flows down a 
penstock and then through a set of nozzles that are directed against buckets fastened to a 
wheel. Penstocks are constructed from steel or reinforced concrete. Early ones were made 
of wood stave. Pelton wheels have been generally used if the total head is greater than 
300 m. There is one installation in Switzerland in which the water head is 1700 m. An 
important advantage of Pelton wheels is that the machine can accommodate water laden 
with silt, for the erosion damage of its blades is easy to repair. 

A Pelton wheel with six jets is shown in Figure 10.3. The number of buckets in the wheel 
can be calculated by an empirical formula of Tygun (cited by Nechleba [57]), namely, 

D 
2d 

+ 15 

in which D is the wheel diameter and d is the jet diameter. In analysis of a Pelton wheel, 
the exit velocity is close to being axial and therefore is as small as possible. Generally the 
exit losses are ignored. The calculations are illustrated next. 

■ EXAMPLE 10.1 

A Pelton wheel generates W0 = 1MW of power as it operates under the effective 
head of He — 410 m and at 395 rpm. Its overall efficiency is r\ = 0.84, the nozzle 
velocity coefficient is CN = 0.98, and the blade speed is U = 37m/s. Find (a) 
the specific speed and the recommended number of jets, (b) the wheel diameter, 
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Figure 10.3 A six-jet Pelton wheel. (Drawing courtesy Voith Siemens Hydro.) 

the diameter of the jet, as well as the recommended number of blades, and (c) the 
mechanical efficiency. 

Solution: (a) The shaft power 

W0 — ripQgHe 

solved for the flow rate gives 

W 106 

0.297 kg/s ^ T)pgHe 0.84 • 998 • 9.81 • 410 

and the specific speed comes out to as 

ily/Q _ 395 • 7ry/fl297 _nnAAa 
s " (gHe)V* ~ 30 • (9.81 • 410)3/* " U"U44b 

For this value of specific speed, one jet is sufficient. 
(b) The jet velocity is given by 

V2 = cNV
/2gHe = 0.98\/2 • 9.81 ■ 410 = 87.90 m/s 

so that the cross sectional area is 

Q 0.297 9 A=£r = —— = 0.00337 m2 

V2 87.90 

and the jet diameter is 

AA 4 ■ 0.00337 a = \ — = \ = 0.0655 m = 6.55 cm 
V 7T V TT 
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The diameter of the wheel is 

D 
2U 2-37-30 
n 395 • 7T 

and the number of buckets comes out to be 

„ D _ 179 

1.79 m 

2d 15 
2-6.55 

15 = 28.6 or 29 

When using Tygun's formula for calculating the number of buckets, the typical range of 
diameter ratio 6 < D/d < 28 gives the range 18 < Z < 29 for a single wheel. 

Consider a Pelton wheel in which the work done by the jet is 

w = U(Vu2 - Vu3) 

Owing to symmetry, only the stream deflected to the right needs to be analyzed. The inlet 
and outlet velocity diagrams are shown in Figure 10.4. 

Buckets 

Nozzle 

Outlet velocity 
triangle 

V, 

Pelton wheel 

Inlet velocity 
triangle 

Figure 10.4 Setup for Pelton wheel analysis. 

The fluid pressure at the inlet and exit is atmospheric, and frictional effects along the 
blades reduce the relative velocity to W3 = cvW"2, in which cv is the velocity coefficient. 
At the inlet the flow is entirely tangential and thus VU2 = V2 and W2 = V2 — U. The 
tangential component at the exit is 

Vu3 = U + Wz sin p3 = U + cvW2 sin /33 

Substituting W2 = V2 — U, gives 

u, = C / ( l / 2 - t / ) ( l - c v s i n ^ 3 ) 

From this equation it is clear that the maximum power is obtained for /33 = —90°, with 
other parameters held constant. It is not feasible to construct the buckets with such a 



366 HYDRAULIC TURBINES 

large amount of turning, as the water would not clear the wheel. For this reason in actual 
installations /33 is in the neighborhood of —65°. Any water that is partly spilled during the 
operation does no work on the blades. This spillage is taken into account by the volumetric 
efficiency. 

In the expression for the overall efficiency 

the hydraulic efficiency can be written as the sum of the nozzle efficiency and the rotor 
efficiency 

in which 
v2

2 
m = y-2 

"0 

and Vo = \/2gHe is the spouting velocity. The rotor efficiency is then 

w 
I T / 2 
2 V2 

The mechanical losses are taken to be proportional to U2, with the proportionality constant 
denoted by Ku. The fluid dynamic losses in turbulent flows are often proportional to the 
square of the flow velocity, and therefore the windage losses should have this dependence 
on the blade speed. Then 

Hence 

wa 
VrnVv ^ 

ri = Vh hv ~ 

2rjvw 
V ~ 2gHe 

WR - PQ\KUU2 KUU2 

W Vv 2w 

KUU2\ _ ( KJJ2\ w 
2w ) V v 2w ) gHe 

-K2;l'v^w-K-u2> 
Substituting the expression for work into this and replacing Vo by V^/y^N gives 

V = ^[2VvU(V2 -U)(l- cvsin/33) - KJJ2) 

This can be written is terms of the ratio of the blade speed to the nozzle velocity A = U /V2, 
as follows: 

r, = 7?N(2T?VA(1 - A)(l - cvsin/33) - Ku\2) 

To determine the rotational speed at which the power is maximum, this expression is 
differentiated with respect to A while other parameters are held fixed. Setting the result to 
zero gives 

$ = 2jjv(l - 2A)(1 - cvsin/33) - 2KU\ = 0 

from which 
_ 1 - cv sin j33 

An 2r)v(l -c v s in /3 3 ) + Ku 
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At this value the maximum efficiency is 

TJNVU1 - c v s in / ? 3 ) 2 

Vn 277v(l - c v s i n ^ 3 ) + Ku 

If Ku — 0 then rym = 1 and this reduces to 

IJmax = 2^N?7v(l - Cv s in /3 3 ) = %))Rmax)?v 

in which the maximum rotor efficiency is 

7?Rmax = n ^ 1 - C v S m / ? 3 ) 

The efficiency of the Pelton wheel as a function of the speed ratio A = U/V2 is shown in 
Figure 10.5. 

Figure 10.5 Efficiency of a Pelton wheel for various values of the windage loss coefficient. 

EXAMPLE 10.2 

A Pelton wheel operates with a gross head of 530 m and a flow rate of 9 m3/s. 
The penstock length is 800 m, its diameter is 1.2 m, and its RMS roughness is 0.1 
mm. The minor losses increase the equivalent length of the penstock to 880 m. The 
hydraulic efficiency is % = 0.84, and the shaft speed is 650 rpm. Find (a) the 
effective head and the power delivered by the turbine and (b) the specific speed and 
from it the recommended number of jets and the number of buckets in the wheel. 
The nozzle coefficient is CN = 0.97, and the ratio of the blade speed to the discharge 
velocity is A = U/V2 = 0.45. 

Solution: (a) The velocity of water in the penstock is 

v ._ Q _ 4Q 
Vp ~ A ~ vDl 

4-9 
r-1.22 7.96 m/s 
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The Reynolds number is therefore 

P V D £ = 998 .7 .96 .12 = 

[i 1.01 • 10~3 

The Colebrook formula gives the friction factor the value / = 0.0116, so that the 
head loss is 

A ^ = 0 : 1 1 6 _ ^ 8 0 ^ : 9 6 ! = 2 7 4 m 

Dp2g 1.2-2-9.81 
The gross head is measured as the elevation difference between the headwater and 
the nozzle. Only the upstream losses are included in the calculation of the effective 
head, and whatever kinetic energy is left after the water is discharged from the wheel 
is taken into account in the turbine efficiency. Thus the turbine efficiency is the 
total-to-static efficiency. The effective head is He = 530 — 27.4 = 502.6 m. 

The power delivered is 

Wo = r]pQgHe = 0.84 • 998 • 9 • 9.81 ■ 502.6 = 37.20 MW 

(b) The specific speed comes out to be 

n = " ^ = 6 5 ° • " ^ = 0 3 4 7 
s (gHe)3/4 30 • (9.81 • 502.6)3/4 

The recommended number of jets is four. Hence the discharge from each jet is 
Qj = 2.25 m3/s. By calculating the discharge velocity as 

V2 = cN^2gHe = 0.97V2 • 9.81 • 502.6 = 96.32m/s 

the nozzle diameter can be determined as 

d=J^ = J 4"9 =0.173m 
V KV2 V 4 ■ TT • 96.32 

and the blade speed is U — 0.451^ = 43.35 m/s. Therefore the diameter of the 
wheel is 

„ 2U 2 • 43.35 -30 
D= — = = 1.27m 

n 650 • TT 

and the number of buckets is 

^ + 1 5 -
2d 2-17.3 

D 127 
Z = — + 15 = -——- + 15 = 18.7 or Z = 19 

EXAMPLE 10.3 

A Pelton wheel operates with an effective head of 310 m producing 15 MW of power. 
The overall efficiency of the turbine is rj = 0.84, the velocity coefficient of the nozzle 
is CN = 0.98, and the velocity coefficient of the rotor is cv = 0.85. The angle of 
the relative velocity leaving the rotor is /?3 = —73°. The wheel rotates at 500 rpm, 
and the ratio of the blade speed to nozzle velocity is 0.46. (a) Give a recommended 
number of jets to which the supply flow should be split and the number of blades 
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on the wheel, (b) Find the mechanical and volumetric efficiencies given the value of 
Ku — 0.05. (c) Find also the optimum speed ratio. 

Solution: (a) The volumetric flow rate can be calculated from 

W0 = r]pQgHe 

which gives 

Q = ^ = ^ = 5.88m3/s 
^ rjpgHe 0.84 • 998 • 9.81 ■ 310 ' 

The spouting velocity is 

V0 = \/2gHe = A/2-9.81 -310 = 78.0m/s 

so that the nozzle velocity comes out as 

V2 = cNV0 = 0.98 • 78.0 = 76.43 m/s 
The blade speed is therefore U = XV2 = 0.46 • 76.43 = 35.15 m/s. With the specific 
speed qual to 

1VQ = 500-TryCT = 
s (5F e ) 3 / 4 30 • (9.81 • 310)3/4 

the suitable number of jets is N = 4. The flow rate from each jet is therefore 
Q] — Q/N — 1.47 m3/s, and for this flow rate and velocity the nozzle diameter is 

4Qj / 4 • 1.47 
-KV-2, V 7T • 76.43 

The wheel diameter is 

2U 2 -35.16 -30 
D = —— = — = 1.343 m 

Q 500 • 7T 

so that the recommended number of buckets on the wheel is 

D 134 3 
Z = ^ + 15 = ^-^ + 15 = 19-3 or Z = 20 

2d 2 • 15.6 
(b) The specific work done by the jet on the rotor is 

w = U(V2-U){l-cvsm{33) 
= 35.16(76.43 - 35.16)(1 - 0.85sin(-73°) = 2630.4 J/kg 

The nozzle efficiency and rotor efficiencies are 

_ 2 • 2630.6 

2 " 2 ' 
m = cz

N = 0.98^ = 0.960 VR = j ^ = ? 6 1 6 2 - 0.900 

Hence the hydraulic efficiency is 7?h = ?7N77R = 0.960-0.900 = 0.864. The mechanical 
efficiency is obtained from 

, KUU2 

Vm = 1 - -7; 
2r]vw 
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Solving for r]v from 

V 
V = VhilvVm gives rjv 

and substituting this into the previous equation leads to 

Kull2r]hr]m 
Vm = 1 7. 

lr\w 
which when solved for rjm results in 

(, ^ KuU^Y1 (, , 0.05-35.162-0.864V1 

T]m={1 + ^2^r) ={1+ 2-0.84-2630.6 ) = °" 

The volumetric efficiency is therefore 

_ V _ 0.84 
Vv ~ mJh, ~ 0.864 • 0.988 " 

The optimum speed ratio is 

7yv(l-cvsin/33) 
^opt — 2i]v(l -cvs in/33) + Ku 

0.984(1 - 0.85sin(-73°)) 
^ ^ U- = 0 493 

2 • 0.984(1 - 0.85 sin(-73°)) + 0.05 

10.4 FRANCIS TURBINE 

A schematic of a Francis turbine is shown in Figure 10.6. It is a radial inward turbine 
similar in principle to the radial turbine discussed in Chapter 9. The flow enters the turbine 
through a set of adjustable inlet guidevanes, located downstream of a spiral volute and a 
penstock. The spiral volute is absent in Figure 10.1. Both the volute and the penstock may 
be absent if the head is low, but the flow capacity is large. In that case the turbine can be 
placed into a pit. The shape of the draft tube is conical with a straight axis. An alternative 
is to curve the axis as is shown in Figure 10.1. This way, the draft tube can be longer and 
the diffusion milder over its length. 

The shape of the runner depends on the specific speed and thus on the flow rate and the 
effective head, with a low speed-runner having radial inlet and outlet. As the specific speed 
increases, the flow is turned such that it leaves in the axial direction. These modifications 
are illustrated in Figure 10.7. 

The flow leaves a low-specific-speed runner in a radial direction, and it receives no 
further guidance from the blades as it turns toward the axial direction and then enters the 
draft tube. When the flow rate increases, the velocity in this turning region also increases, 
and in order to reduce it, the flow must be guided into the axial direction by properly shaped 
blades. The blade design aims to reduce the tangential component of the velocity to zero. 

For a given flow rate and effective head Figure 10.2 is a guide to what kind of turbine 
is best suited to the proposed power plant site. There is some latitude in the choices. 
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Figure 10.6 Francis turbine. 

The axes in the figure are in terms of extensive properties and, as usual, an engineering 
design proceeds also in terms of not only intensive properties but, if possible, in terms of 
nondimensional parameters. The power-specific speed is one of them. The other is the 
specific diameter, defined by 

_ £>2(flHe)1/4 

s ~ VQ 
The loading coefficient, tp and the flow coefficient < , defined as 

1>: n2D% 
Q 

can be related to the specific speed and the specific diameter. It is readily shown that 
1 1 

r/j-. 

The ratio of the blade speed to the spouting velocity Vo 

lh SID2 1 
Vo 

nHi>B = 

\f2,gHe is 
1 

Balje has shown that for hydraulic turbines the locus of maximum efficiency tends to be in 
the range 0.6 < U2/V0 < 1.1. This is equivalent to 0.1 < tp < 0.35, with Pelton wheels 
and Francis turbines in the high end of this range for tp and Kaplan turbines in the low 
end [5]. Figure 10.8 is a plot with specific speed on the abscissa and specific diameter on 
the ordinate, with some lines of constant loading and flow coefficient added. The figures 
of different runners are placed where their efficiency is the highest. Pelton wheels with 
multiple jets are not shown. 

The flow angles shown for the different runners in Figure 10.7 can be calculated by 
noting that 

VU2 _ UlVu2 _ W 

Vr2 ~ 
tan«2 U2V7 2Vr2 UoVr, 
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Figure 10.7 Shapes of Francis turbine runners. 

and since Q = nD2b2Vr2, a n d w = r]hgHe, this can be written as 

r]hgHeTTD2b2 
tanai2 U2Q 

From the definition of the specific speed the ratio 

Q Ws^gTTe 

follows immediately, and with fl = 2U2/D2 and VQ = \/2gHe, the formula for the tangent 
of a2 can further be written as 

t a i l o r 
4??hv/27r6r U2 

Ws V0 

in which the ratio 6r = b/D2 appears. A graph of this ratio appears in the book by Nechleba 
[57]. A quadratic curve fit over the range Of the power-specific speeds for Francis turbines 
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Figure 10.8 Specification map of hydraulic turbines. 

gives 

In addition, the fit 

br = -0.0505fti, + 0.26f2sp + 0.018 

£ = 0.74J4238 

over 0.39 < Q.sp < 2.3 gives the range 0.59 < U2/V0 < 0.90. The results of the 
calculations are shown in the Table 10.2. For these the hydraulic efficiency was taken to 
have the constant value % = 0.9 and for simplicity the mechanical and volumetric losses 
were neglected. 

The angle /32 can be determined from the exit velocity diagram, which yields 

tan/32 = sina2 — U2/V2 

and it is easy to show that the ratio U2/V2 is 

ft4 
U* = 
V2 (477^)2^5 

COSC*2 

tan a2 sin a2 

For low-specific-speed runners the flow angle a2 is quite large and the angle /32 at first 
drops quite quickly as flsp increases, but then it settles to a value around —35° for the 
high-speed runners. 
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Table 10.2 Flow angles for various power-specific speeds for a Francis turbine of hydraulic 
efficiency ?7h = 0.9. 

" 'sp 

0.39 
0.65 
1.20 
1.90 
2.30 

6r 

0.11 
0.17 
0.26 
0.33 
0.35 

U/Vo 

0.59 
0.67 
0.77 
0.86 
0.90 

Ct2 

80.0° 
73.8° 
61.1° 
46.0° 
38.0° 

P2 

49.5° 
-2.9° 

-33.3° 
-35.8° 
-34.0° 

Neither the head, nor the volumetric flow rate, was needed to determine the shape of 
the velocity triangle, since the shape involves only angles and the ratio of two of its sides. 
These are nondimensional quantities. In a design for a given site, the head and flow rate 
are known, and there exist empirical relations that relate the specific speed to the effective 
head. One such equation is by Mozorov (cited by Nechleba [57]) can be written as 

/ TT \ 0-57 

n s p = 0 .82f -^ 

in which Hv = 100 m has been chosen as a reference head. After that the diameter can 
be calculated from the calculated value of the specific diameter. Similarly by gathering 
data from a large number of installations, Lugaresi and Massa [53] carried out a statistical 
analysis and developed the correlation 

„ \ 0.512 
a = 1.14. „ 

The reference head is again Hv = 100 m. This correlation is based on the specific speed 
rather than power-specific speed, and is to be preferred over the proposal of Mozorov, as 
it is based on a more recent and larger set of turbines. It is important to note that these 
correlations are to be used as a guide and individual designs may differ from them. The 
use of the correlations is illustrated next. 

■ EXAMPLE 10.4 

A small Francis turbine is contemplated for a small power plant with an effective head 
of 220 m and capacity of 1.9 m3/s. The line frequency is 60 Hz and the anticipated 
overall efficiency is 77 = 0.94. Neglect mechanical and volumetric losses, (a) 
Determine the power delivered by the turbine, (b) What is your recommendation for 
the shaft speed if the electric line frequency is 60 Hz? (c) What should the diameter 
D2 of the runner be, and what is the tip speed of the blade? 

Solution: (a) The power can be calculated readily as 

W0 = r]PQgHe = 0.94 • 998 • 1.9 • 9.81 • 220 = 3.85 MW 

(b) Examination of Figure 10.2 shows that a single-jet Pelton wheel and a Francis 
wheel are suitable for the site. It is therefore anticipated that a Francis turbine of 
low specific speed is a reasonable choice. Using the correlation for specific speed in 
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terms of the effective head gives 

/ioo\0-512 
fls = 1.14 = 0.7614 

\220y 

and then from the definition of the specific speed the shaft speed can be determined 
to be 

n O s ( g g e ) 3 / 4 0.7614(9.81 ■ 220 ) 3 / 4 30 
SZ — —-—■==!■ = = = — = 1641 r p m 

If the shaft speed is taken to be 1800 rpm, then the number of poles in the generator 

„ 120/ 120-60 , 
P = —PT- = = 4 

n i8oo 
(c) With this shaft speed the specific speed is 

_ n V 3 _ 1800 ■ 7rvT9 _ 
s (gHe)^ 30 • (9.81 • 2 2 0 ) 3 / 4 

and the power-specific speed is $7sp = ^/rjQs = %/0.94 0.821 = 0.796. The velocity 
ratio is 

~ =0 .74f t f D
2 3 8 = 0.701 

V0
 sp 

The specific diameter can then be calculated from 

Ds = ^ U ^ = ° - 7 0 1 ■ ^ = 2.415 
ns 0.821 

and the diameter is 

Ds^/Q 2.415x/T9 
D2 = , \?IA = -, „ , , = 0.488 m 

( 5 H e ) 1 / 4 (9.81-220)1/4 

The blade speed is therefore U<i = D2^/2 = 46.0 m/s. 
■ 

To obtain more accurate results, the volumetric flow rate at the inlet to the runner can be 
calculated from 

Q = (TTD2 - - ^ - ) b2Wr2 
V cos/32/ 

in which t is the blade thickness, Z is the number of blades, and Wr2 is the radial component 
of the relative velocity with the flow angle /32, at the inlet. The number of blades can be 
taken to be between Z = IIV0/C/2 and^ = l3Vo/U2, which for the typical range of U2/Vo 
comes close to 16 blades. The runner in Figure 10.9 has 17 blades, which is appropriately 
a prime number to prevent some resonance vibrations. 

As the flow enters the draft tube, the axial velocity Vxs can be obtained from the 
expression for the volumetric flow rate, which is 

Q = ^-vx3 (lo.i) 

It is assumed that the flow enters without swirl so that Vx% = V3. For the conical draft 
tube shown in Figure 10.6, the length of the tube is 2.5 - 3 times the diameter D3 and its 
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Figure 10.9 Francis turbine viewed from downstream. 

submerged length into the tailwater ranges from O.5D3 to D3. Since the function of the 
draft tube is to diffuse the flow, its flare must be kept small enough to prevent separation. 

The diffuser efficiency is defined as 

_ 2gHd 2gHd/V3
2 

in which H& is the head loss in the diffuser. For a conical diffuser the peak efficiency is at 
the cone angle 20 = 6° and has a value of about TJ^ max — 0.9. Defining the loss coefficient 
Kd via the equation 

vi Hd = Kd -

it can readily seen that it can be expressed in terms of the diffuser efficiency as 

Kd = (1 - Tfc) ( l - ^ l 

Since all the kinetic energy leaving the draft tube is dissipated in the tail water pool, the 
exit loss is 

= vi = viyl = Aivi 
e 2g V3

22g A\ 2g 
so that the loss coefficient based on the velocity V3 is 

e A\ 

The draft tube and exit loss coefficients and their sum are shown as a function of the ratio 
A4/A3 in Figure 10.10. If the inlet and exit diameters D3 and D4 are known, so is the area 
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Figure 10.10 Loss coefficients for a draft tube. 

ratio, and the inlet velocity V3 to the draft tube is determined from Eq. (10.1). These then 
give a way to calculate the head loss in the draft tube. The true reversible work is given by 

which can then be compared to the actual work so that the true efficiency of the turbine can 
be determined. 

10.5 KAPLAN TURBINE 

A Kaplan turbine is shown in Figure 10.11. It is an axial-flow turbine suitable for large 
installations and it generally operates under a head ranging from 20 to 70 m. The guidevanes 
are similarly adjustable as in a Francis turbine. Its runner is a propeller type, typically 
having 3 to 6 blades, but for smaller flow rates the number may reach 10. Each blade can 
be adjusted to the proper flow conditions by rotating it about its axis. This makes the power 
plant perform well also at off-design flow rates. In a typical installation the runner, turning 
at 120 rpm, might have a blade with 1 m hub radius and 3 m tip radius, with a volumetric 
flow rate of 200m3/s through a turbine. Such a turbine produces around 74.5 MW of 
power from a single turbine. 

A bulb turbine is similar to a Kaplan turbine but with a horizontal axis. A power plant 
based on a bulb turbine can be constructed at a lower cost than one with a Kaplan turbine. 
It can be used at low heads of 4 - 10 m when the speed of the flow is increased by proper 
design of the inlet channel. The design output power ranges between 100 kW and 50 MW 
for blade diameters between 0.8 and 8.4 m. 
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Figure 10.11 Kaplan turbine. 

As the flow moves through the axial turbine its relative velocity is turned only moderately 
and by differing amounts at the hub and the tip of the blade. The blades extend over a 
considerable distance, and the local velocity of the blade U — rQ increases outward. For 
this reason, for shockless entry, the absolute value of the blade angle must increase toward 
the tip. Thus the blade is oriented quite broadside to the flow at the tip. The flow, having 
started from stationary conditions at the headwater, remains free of vorticity as it flows into 
the turbine. Hence the tangential velocity has the free vortex distribution 

K = rVu2(r) = r 2 t y u 2 t 

in which r2t refers to the tip radius. If the exit swirl is absent then the work delivered is 

w = U2Vu2 = rQVu2t— - QVu2tr2t = KQ. r 
which is independent of the radial location. This is the same result as was found when the 
axial turbines were discussed in Chapter 6. 

An equation similar to that of Morozov for Francis turbines, can be obtained from the 
graphical result in Nechleba [57] for Kaplan turbines. However, by using data from more 
recent installations, Schweiger and Gregory [67] give the equation 

/ I T \0.486 

a = 2.76f-^J (10.2) 
in which the reference head has been chosen to be HT = 30 m. In addition, the hub-to-tip 
radii ratio may be correlated as 

— = o.8-o.insp 
n 

The number of blades increases with decreasing specific speed, with 3 blades when the 
power specific speed is 5.2 and and 10 blades when the power-specific speed drops to 1.7. 
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EXAMPLE 10.5 

The Otari power plant in Japan delivers 100 MW of power when the flow rate is 
220 m3/s and the effective head is 51 m. The diameter of the Kaplan turbine is 
D2t = 6.1 m, and the hub-to-tip ratio is K = 0.6. The generator has 48 poles and 
delivers power at a line frequency of 50 Hz. (a) Find the efficiency of the turbine. 
(b) Calculate the flow angles entering and leaving the rotor. 

Solution: (a) The efficiency is 

= Wo = 108
 = 

V pQgHe 998 • 220 • 9.81 • 51 

(b) Since the line frequency is 50 Hz and the generator was chosen to have 48 poles, 
the shaft speed is fl = 120 • 50/48 — 125 rpm. The tip speed of the runner blade is 

D2t 6 . 1 - 1 2 5 - T T 
U2t = " = = 39.9 m/s 

* 2 2-30 ' 

The axial velocity is uniform and is given by 

v 4Q 4-220 
V^ = n2 n 2T = TTu\ 7TM\ = 17-76m/s 

■KD^X-K1) 7r • 6.1^(1 - 0.62) 
Since each blade element delivers the same amount of work, the tangential velocity 
at the tip can be determined from 

VgHe 0.91-9.81-51 
VU2t — —^— = = 11.41 m/s 

U2i 39.9 ' 

The flow angles for the absolute and relative velocities can now be determined. They 
are shown in Figure 10.12 across the span of the blades. To illustrate the calculations, 
at the mean radius r2m = 2.44 m the absolute velocity makes an angle 

. -1fVu2trt\ . _! f 11-41 -3.05^ 
Q 2 m = t a n {V^r)=tlin (,17.76- 2.44 j = 5 ° - 5 

The tangential component of the relative velocity at this location is 

r 39 9 • 2 44 
Wu2m = Vx2ta,na2m - U2t— = 11.76tan(50.5°) ' ' = -17.68m/s 

r t 3.05 

and the flow angle is 

R . _ ! / ^ 2 m \ _! ̂ - 17 .68^ 

The flow leaves the runner axially. Therefore the tangential component of the relative 
velocity is WU3m = —U2trm/rt and with the axial velocity constant, the flow angle 

a t - l ^ u 3 m \ . _! ̂ -39 .9 2.33^ 
/?3m = t a n l " ^ 7 j = t a n { 11-76- 3.05 j = ~ 6 9 - 8 
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Figure 10.12 Flow angles for the turbine. 

Small turbines have been excluded from Figure 10.2. The single-jet Pelton wheel with low 
flow rate extends past the left margin of the graph. Some who live far from the electricity 
grid and have access to streams with headwaters in high hills have built power plants using 
such small Pelton wheels. An alternative is a turgo turbine, shown in Figure 10.13a. It 
operates at the effective head of 50 - 250 m. The analysis is similar to those for single 
stage steam turbines and a Pelton wheel. The nozzle angle is about 70°. 

A crossflow turbine, also called a Banki-Mitchell turbine, can be operated under heads 
between 5 and 200 m, but it is generally used in rural settings with ample flow rates and low 
head. It is shown in Figure 10.13b. It looks like a waterwheel, but the blades are designed 
is such a way that as water flows through the turbine, it does work on both the leading set 
of blades and on the trailing set. Because the axis is horizontal, the shaft and the blades 
can be made long to accommodate a large flow. 

10.6 CAVITATION 

Cavitation takes place in a hydraulic turbine if the minimum pressure drops below the vapor 
pressure of water at the prevailing temperature. For this reason, elevation of the plant in 
relation to the tailwater needs to be properly chosen. In addition, since the atmospheric 
pressure drops with increasing elevation, the margin between the minimum pressure and 
the vapor pressure diminishes, and this is to be taken into account. With large runners in 
hydroelectric power plants, the cavitation damage can become very expensive, not only in 
equipment repair but also in the unavailability of the plant during repairs. 

The physical basis of cavitation is discussed in the review paper by Arakeri [4], who also 
proposes alternative criteria that factor in more precisely the location of the local minimum 
in pressure. In this section, however, the typical engineering criterion is used. The static 
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Figure 10.13 Illustrations of a turgo turbine (a) and a crossflow or a Banki-Mitchell turbine (b). 

pressure at the exit of the turbine is given by 

h-r— + W S - h — + -Hd 
pg 2g pg ^g 

in which the last two terms represent the exit head loss and the head loss in the diffuser 
and Hs is the elevation of the turbine above the tailwater. The net positive suction pressure 
is defined as the sum of the static pressure head and the dynamic head minus the vapor 
pressure head of water at the ambient temperature 

„ P3 , Vi pv 

P9 2gr pg 

Substituting from the previous equation gives 

Hsv = Hs + — h Hd 
pg 25 

The head loss in the draft tube has been shown to be 

i f d - ( i - % ) — Y g — 

Dividing through by the effective head leads to the definition of the Thoma cavitation 
parameter a, as 

= Hsv = Pa-Pv _ Hs Vl _ H^ 
a ~ He ~ pgHe He 2gHe He 

Critical values for this parameter have been given by Moody and Zowski [56] for Francis 
turbines as 

<7C =0.006 + 0 . 1 2 3 ^ 

and for Kaplan turbines as 
ac = 0.100 + 0.037f^p

5 

They are shown in Figure 10.14. 
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Figure 10.14 Critical Thoma parameter for Francis and Kaplan turbines. 

EXERCISES 

10.1 A Pelton wheel operates from an effective head of He = 300 m and at a flow rate 
of 4.2 m3/s. The wheel radius is T2 = 0.75 m, and rotational speed is 450 rpm. The water 
that leaves the penstock is divided into 5 streams. The nozzle coefficient is CN = 0.98 
for each nozzle. Impulse blades turn the flow into the direction /J3 = —65°, and as a 
result of friction, the relative velocity reduces by an amount that gives a velocity coefficient 
cv = 0.90. Find (a) the efficiency of the turbine, (b) the power-specific speed, and (c) the 
nozzle diameter and the number of buckets in the wheel. 

10.2 The velocity diagrams for the runner of a small Francis turbine are shown in Figure 
10.15. The discharge is 4.5m3/s, the head is 150m of water, and the rotational speed is 
450 rpm. The inlet radius is r2 = 0.6 m, and the water leaves the guidevanes at angle 
«2 = 72° and velocity V2 = 53.3 m/s. It leaves the turbine without swirl, (a) Find the 
velocity coefficient of the stator (inlet spiral and gates), (b) Find the inlet angle of the 
relative velocity /32. (c) What is the output power? (d) What is the torque on the shaft? 
(d) Determine the power-specific speed and comment on whether the runner shape in the 
figure is appropriate. 

10.3 The pressure at the entrance of a Francis turbine runner is 189.6 kPa, and at the exit 
it is 22.6 kPa. The shaft turns at 210 rpm. At the exit the flow leaves without swirl. The 
inlet radius is r2 — 910 mm, and the exit radius is r3 = 760 mm. The relative velocity 
entering the runner is W2 = 10.2 m/s, and the flow angle of the relative velocity leaving 
the runner is ^3 = —72°. The blade height at the inlet is 62 = 600 mm. (a) Compute the 
stagnation pressure loss in the runner, (b) Find the power delivered by the turbine. 

10.4 A Francis turbine has an inlet radius of r2 = 1450 mm and outlet radius of r% = 
1220 mm. The blade width is constant at t> = 370 mm. The shaft speed is 360 rpm and 

1 

0.6 
0.4 
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0.06 
0.04 

on? 

Region of 
no cavitation 
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Figure 10.15 A runner of a Francis turbine. 

the volumetric flow rate is Q = 16.7m3/s. The flow enters the runner at «2 = 78°. Water 
leaves the the turbine without swirl, and the outlet pressure p3 = 35 kPa. The loss through 
the runner is 0.20 Wf /2g m. Find the pressure p2 at the inlet and the head loss through the 
runner. 

10.5 The relative velocities at the inlet and the exit of a Francis turbine are Wi = lO.Om/s 
and Ws = 33.7 m/s. The shaft speed is fi = 200 rpm. The inlet radius of the runner is 
r-2 = 1880 mm, and the outlet radius is r3 = 1500 mm. The runner blade width is constant 
at b — 855 mm. Find (a) the flow rate through the turbine and (b) the torque, assuming that 
the flow leaves without exit swirl. 

10.6 A Francis runner is to be designed for an effective head of He — 140 m and flow 
rate Q = 20 m3/s. Assume that the efficiency is r\ = 0.9 and that there is no exit swirl. Use 
the formula of Lugaresi and Massa to calculate the specific speed. Use the other formulas 
in the text to obtain &r and U2/V0 from £lsp. Assume that the mechanical and volumetric 
losses are negligible. Find, (a) the specific diameter on this basis, (b) the diameter at the 
inlet, (c) the blade speed at the inlet, and (d) the flow angles of the absolute and relative 
velocities at the inlet. 

10.7 Water enters the runner of a Francis turbine with a relative velocity at angle —12°. 
The inlet radius is 2.29 m, and the mean radius at the exit is 1.37 m. The rotational speed 
is 200 rpm. The blade height at the inlet is 62 = 1-22 m, and at the exit the inclined width 
of the blade is 63 = 1.55 m. The radial velocity at the runner inlet is 10.0 m/s, and the 
flow leaves the runner without swirl. Evaluate (a) the change in total enthalpy of the water 
across the runner, (b) the torque exerted by the water on the runner normalized to a metric 
ton per second, (c) the power developed, (d) the flow rate of water, and (e) the change in 
total pressure across the runner when the total-to-total efficiency is 95%, and the volumetric 
and mechanical losses can be neglected, (f) What is the change in static pressure across 
the runner? 

10.8 The Otari number 2 power plant in Japan delivers 89.5 MW of power when the flow 
rate is 207 m3/s and the head is 48.1 m. The diameter of the Kaplan turbine is D-it = 5.1 m 
and the hub to tip ratio K = 0.56. The generator has 36 poles and delivers power at a line 

V, 
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frequency of 50 Hz. (a) Find the efficiency of the turbine, (b) Calculate and flow angles 
entering and leaving the rotor, and construct a graph to show their variation across the span. 



CHAPTER 11 

HYDRAULIC TRANSMISSION OF POWER 

The subject of this chapter is hydraulic transmission of power by fluid couplings and torque 
converters. In these the driver shaft turns impeller blades of a centrifugal pump, and the 
driven shaft is powered by a radial turbine. The pump and its driver shaft are also called a 
primary and the turbine and the driven shaft, a secondary. The working fluid is oil, and the 
work done by the pump increases the oil pressure, which then drops as the oil flows through 
the turbine. The work done by the pump is greater than that delivered by the turbine; the 
difference is lost to irreversibilities. 

Transmission of power by hydraulic means offers the advantages of quiet operation, 
damping of torsional vibrations, and low wear. As both the pump and the turbine are in a 
common casing, these machines are compact and safe to use in industrial settings. Such 
advantages come with some loss in efficiency when hydraulic transmissions are compared 
to rigid couplings. 

11.1 FLUID COUPLINGS 

A fluid coupling was invented by Hermann Fottinger while he was an engineer at AG Vulcan 
in Stettin, Germany.5 Such a coupling is shown in Figure 11.1. It is toroidal in shape with 
a centrifugal pump on the primary side and a radial inflow turbine on the secondary side. 

5H. Fottinger (1877-1945) received a PhD from TH Miinchen in 1904 and moved to work at AG Vulcan. In 1909 
he left the company to assume a professorship in marine engineering at the Technical University of Danzig. From 
there he moved to the Chair of Turbomachinery of the Technical University of Berlin in 1924. 

Principles of Turbomachinery. By Seppo A. Korpela 385 
Copyright © 2011 John Wiley & Sons, Inc. 



3 8 6 HYDRAULIC TRANSMISSION OF POWER 

Impeller 

Figure 11.1 Sketch of a fluid coupling. 

There are no guidevanes in the torus, and absence of a fixed member means that there is 
no restraining torque on the housing. Hence a free body diagram, cutting across both the 
driver and the driven shaft, shows that the torques in these shafts are equal. This result is 
independent of the shape of the blades. 

11.1.1 Fundamental relations 

The flow moves outward to a larger radius in the pump and inward in the turbine through a 
set of straight radial blades in both. Since the fluid flows from the primary to the secondary, 
the flow rate in each is the same. The torque exerted by the impeller blades on the fluid is 

Tv = PQ{r2Vu2-rlVul) 

Similarly, the torque that the fluid exerts on the turbine blades is 

Ts = PQ(r2Vu2 - nVul) 

Owing to irreversibilities in the coupling, the transmitted power is lower than the power 
inflow on the driver shaft. Therefore, with power given by W = Tfi, the output shaft must 
rotate at a lower speed than the input shaft. The difference in rotational speeds is called 
slip, denoted by s, and written in normalized form as: 

1 ip i £s 

fin a 
fin 

From the equation for power 

Wn = Tfir Ws = TQS 

the efficiency is given as 

a 
fin 

The dissipated power causes the temperature of the oil to increase, which, in turn, leads to 
heat transfer to the housing and a rise in its temperature. With the increase in temperature 
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of the hardware, the dissipated energy is then transferred as heat to the surroundings. The 
fractional loss of power is given by 

Wp-Wa * , fis 
—^-. = 1-77 = 1 - — = s 

Wp ^p 
and this gives an alternative meaning for slip. In steady operation efficiency of a fluid 
coupling reaches 96-98%. During transients slip increases, and so does the loss. This is 
of secondary importance, because the coupling was invented to transmit power smoothly 
precisely during such transients. 

■ EXAMPLE 11.1 

A prime mover delivers power to a fluid coupling at 140 kW, with a shaft rotating at 
1800 rpm, and with a slip of 3%. (a) What is the shaft torque? (b) What is the power 
flow in the output shaft? (c) Find the rotational speed of the driven shaft, (d) At what 
rate is energy is dissipated as heat to the surroundings? 

Solution: (a) Torque on the shaft is 

T=WR= 140,000-30 = 7 4 2 J N . m 

ftp 1800 n 

(b) The efficiency of the coupling at this operating point is 

7 7 = - p = l - s = l - 0.03 = 0.97 
i 'p 

and the power delivered is 

WS = T)WP= 0.97 ■ 140 = 135.8 kW 

(c) The output shaft rotates at 

fts = 0.97 ftp = 1746 rpm 

(d) The power dissipation rate is 

Wd = (1 - 77) Wp = 0.03 • 140 = 4.2 kW 

The two half-toroids making up the fluid coupling are each fitted with a set of radial blades. 
A typical number is 30 blades, but in order to avoid resonance vibrations, each half has a 
slightly different number. Better guidance is obtained by increasing the number of blades, 
but this comes at the cost of increased frictional losses and thus a slower circulating flow 
rate for the oil in the coupling. The flow rate is an operating characteristic of a coupling 
and needs to be estimated. This is carried out next. 
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Figure 11.2 Velocity triangles for a fluid coupling. 

11.1.2 Flow rate and hydrodynamic losses 

Analysis of fluid couplings can be carried out by methods familiar from the analysis of 
centrifugal pumps and radial inflow turbines. The vector diagrams are shown in Figure 
11.2. Since the relative velocity leaving the turbine and that leaving the pump are radial, 
the equation for the torque can be written as 

T = PQ(npr2
2 - nsrj) (11.1) 

where 

n = -{Ri + Ra) Tl Rr, 

according to the labels in Figure 11.1. The power dissipation in the coupling is T(QP — Qs). 
This can be estimated by noting that the losses consist of the losses at the inlets to the pump 
and the turbine and the frictional losses along the flow passage. 

Analysis of inlet losses is left as an exercise. It is based on destruction of the difference in 
the tangential component of the velocity [58]. When carried out, it shows that at the inlet to 
the turbine the tangential component of velocity undergoes a change equal to (fip — Qs)^2-
Hence the kinetic energy change is equal to (fip — fi s ) 2 r | /2 per unit mass. This kinetic 
energy is dissipated into internal energy of the fluid by turbulent mixing. Similarly, at the 
entrance to the pump the kinetic energy change is (fip — fls)2r2/2. Hence the shock losses 
in the coupling amount to (f2p — Q,s)2{r2 + r | ) / 2 . 

Inside the coupling, owing to skin friction, losses, as in pipe flow, are proportional to 
the square of the meridional velocity. If the effective friction factor is denoted by / the 
losses can be expressed as fLQ2/2Dy,A2 in which L is the length of the flow path, A is the 
cross-sectional area, and D^ is the hydraulic diameter D^ = AA/C. In this expression C 
is the circumference of the toroidal cross section. For fully turbulent flows, / is practically 
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constant. The losses can now be expressed as 

T(np - ns) = ~PQ (fip-fi ,rW+r2
2) + / 

L Q2 

(11.2) DhA\ 

Eliminating the torque between Eqs. (11.1) and (11.2) gives for the flow rate the expression 

Q = Anpr2 «2 
1 -

Substituting this into the equation for torque gives 

1 - 1 - 1 -
Try \lT 

(11.3) 

(11.4) 

This shows that the torque varies as the square of the rotational speed of the driver shaft. 
Increasing the load on the driven shaft increases the torque as well, up to a maximum value, 
which corresponds to such a large load that the driven shaft stops turning. The maximum 
torque is given by 

The equation for torque can now be expressed as 

"l *'s 

2 s 'p 

The power delivered is Ws = Tfls, so that it can be written as 

wa = naTmji 

or in nondimensional form as 

Ws 

T fi 

r2 O ' 2 s i P 

Try \lT 

The performance curves are shown in Figure 11.3. If the load on the driven shaft is very 
large, the coupling will experience a large slip and only a small amount of power will be 
transmitted to the driven shaft. Similarly, for light loads the torque is small and a small 
amount of power is needed to turn the shaft. Here again the power flow is low. Hence there is 
a maximum for some intermediate value, which depends on the dimensions of the coupling. 
For the characteristics shown r\/r2 — 0.6, and the maximum is at f2s/f2p — 0.642. The 
range 0.6 < r\jr2 < 0.8 is typical. 

By dimensional analysis, a torque coefficient can be defined and it depends on the slip, 
the Reynolds number, and geometric parameters, the most important of which is the ratio of 
the volume V of the space occupied by the working fluid and the cube of the outer diameter. 
These dependencies can be written as 

CV T 
PniD5 f[s, 

pnpD2 v_ 
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The flow through a coupling, as in other turbomachines, is dominated by inertial forces and 
the influence of the Reynolds number on the torque coefficient is much weaker than that 
caused by the slip. The only other parameter that needs to be investigated is the volume 
ratio. 
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Figure 11.3 Characteristics of a fluid coupling with r\jr2 = 0.6. 

11.1.3 Partially filled coupling 

It was observed early in the development of fluid couplings that the torque could be 
reduced by filling the coupling only partially with fluid. Modern couplings have chambers 
into which some of the fluid can be drawn. Similarly, extra fluid can be added into the 
coupling. This provides a smooth start, and the amount of fluid can be adjusted to obtain 
the best efficiency during the nominal operating conditions. 

The performance of a partially filled coupling is shown in Figure 11.4, where the 
parameter V/Vm is the ratio of the actual volume of the fluid to that in a fully filled 
coupling. One way to see that torque must decrease in a partially filled coupling is to 
note that when some of the flow channels are starved for fluid, they are not effective in 
providing a full force into the turbine blades. Although such a fluid distribution is possible 
in principle, it is more likely that the fluid distribution is such that each channel is only 
partially filled and then the fluid is crowded to the pressure side of each blade in a pump, 
with the suction side lacking its share. Now the loading of the turbine blades is similar to 
that in an impulse turbine, but since the blades are flat, they do not perform well under this 
loading. As a consequence, an equally large pressure increase is not possible in the pump 
as in a completely filled coupling, and the torque is reduced. The graphs in this figure 
were drawn to match the results shown in Pfleiderer [58]. For couplings in use today, such 
performance data are obtained from manufacturers' catalogs. 
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Figure 11.4 Partially filled coupling characteristics. 

In addition to steady rotation, torsional vibrations may be present in the input shaft. 
Such torsional motions do not influence the flow in the coupling greatly, so they are not 
transmitted to the output shaft. The vibrations can be further suppressed by placing the 
coupling near the node of such a vibrational motion in the shaft, if it is not possible to 
change the natural frequency of the load. Fluid couplings vary in size, with small ones 
handling about one kilowatt. For those in the 2000 kW range, the outer diameter reaches 
over 1 m. They contain over 100 L of oil and have a mass approaching 2000 kg. 

11.2 TORQUE CONVERTERS 

The torque converter was also invented by H. Fottinger, while working at Vulcan Shipbuild-
ing, where he was interested in finding an efficient way of connecting steam turbines to 
marine propellers. As the name suggests, torque converter changes and usually increases 
the input torque to a different output value. In order to achieve this, a set of guidevanes, 
fixed to the frame, direct the fluid into an impeller, which rotates with the input shaft. On 
the output shaft is a set of runner, or turbine, blades. To obtain the larger output torque, 
the blade shapes must be such that the fluid experiences a larger change in the tangential 
velocity through the turbine than through the pump. A torque converter with a single-stage 
radial outflow turbine is shown in Figure 11.5. More complicated designs having three 
turbine stages and two stationary guidevane stages exist. They have a wider operating range 
of high efficiency. 
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Figure 11.5 Sketch of a torque converter. 

11.2.1 Fundamental relations 

In order to keep the analysis general, the velocity triangles in Figure 11.6 are also drawn to 
depict the general situation. The equation for the output torque from the turbine is 

Ts = pQ(r2Vu2 - r3Vu3) 

and the torque in the input shaft is 

TP = pQ(r2VU2 ~ nVui) 

For the fixed member the equation is 

T{ = pQ(nVul - r3Vu3) 

Adding the last two shows that 
TS = TP + Tt 

Examination of the velocity diagrams shows that at the inlet to the turbine the velocities 
are similar to those of an impulse turbine. Namely, the absolute velocity is at a steep angle 
to the axial direction. As the fluid flows through the turbine, its relative velocity is changed 
first toward the axis and then beyond it to a negative angle. Since at the exit of the turbine 
the axial velocity is in the direction exactly opposite to that at the inlet of the pump, the 
velocity diagram on the bottom part of the figure has been reflected about the vertical axis 
to reflect this. Also, at the inlet to the turbine, the absolute velocity is identical to the 
absolute velocity at the exit of the pump and the blade speed is lower than that of the pump. 

A configuration of a torque converter that more closely reflects a centrifugal pump and a 
radial inflow turbine would have these two components as mirror images across the vertical 
centerline. The fixed member would then occupy only the lower part of the converter. In 
this case for a symmetric fixed member, the exit of the turbine would be at the same radius 
as the inlet to the pump. 
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Figure 11.6 Velocity triangles for a torque converter. 

The power in the input shaft is Wp = Tpf2p and in the output shaft it is Ws = TSQ,S. 
The efficiency, given by 

V = 

must be less than unity owing to irreversibilities. To obtain a large increase in torque, 
the output shaft must rotate substantially slower than the input shaft. For sufficiently large 
output load, the output shaft can be stopped. Under this situation the efficiency of the torque 
converter drops to zero and the irreversibilities cause its temperature to rise considerably. 
The irreversibilities are now mainly shock losses, although frictional loss is still substantial. 
A light load on the output shaft gives no torque multiplication at all, and as the shock losses 
vanish, the small losses are now almost entirely frictional losses. 

■ EXAMPLE 11.2 

A torque converter, when operating with a slip equal to 0.8, multiplies the torque in 
the ratio of 2.5 : 1. The circulatory flow rate in the converter is 140 kg/s. For the 
primary element, the ratio of inner to outer mean radii is 0.55 and the blade speed of 
the primary at the outer mean radius is 50 m/s. The axial velocity remains constant 
throughout the flow circuit. The absolute velocity at inlet to the primary and the 
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relative velocity at the exit of the primary are both axially directed. Evaluate the 
power developed by the secondary element in this torque converter. 

W^ 

Primary inlet Primary exit 

Figure 11.7 Velocity triangles for Example 11.2. 

Solution: Let the inlet to the impeller be denoted by 1, the inlet to the runner by 
2, and the inlet to the guidevanes as 3. The design and operation is such that the 
tangential velocity at the inlet to the impeller zero and the tangential component of 
the relative velocity to the runner vanishes also. For this reason the velocity diagrams 
are as shown in Figure 11.7. 

Since the inlet angular momentum to the primary is zero, the torque is Tp = 
pQriVU2 and the input power is Wp — TQ,p. Therefore 

Wp = pQU2Vu2 = pQUl = 140 • 502 = 350.0kW 

Since the torque ratio is 2.5 and the slip is 0.8, it follows that 

2.5 ■ 0.2 = 0.5 

and Ws = 0.5 • 350.0 = 175.0 kW. There is a large irreversiblity in the flow as the 
large torque multiplication requires heavily loaded blades. (Note that the ratio of the 
radii was not needed.) 

11.2.2 Performance 

To illustrate how the general analysis may proceed, consider the torque converter shown 
in Figure 11.5. Assume that the blades are radial at the exit of the primary so that the 
angles at which the relative velocity leaves is zero and similarly for the flow at the exit of 
the secondary. Then, since the velocity does not change in magnitude or direction as the 
flow leaves the primary and enters the secondary, at the inlet of the secondary the angular 
momentum is ^ V ^ = ?*2̂ pu2 = r^flp- On the basis of what has been learned of the 
turbomachines studied so far, if the deviation is ignored, the exit angles of the relative 
velocity leaving the primary and the secondary do not change during the operation, and 
neither does the angle of the absolute velocity of at the exit of the fixed member. Then 
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dimensional analysis of this particular torque converter, which also has fixed value for the 
diameter ratio, shows that the torque of the primary is related to the angular speed ratio and 
Reynolds number as 

Cn 
Tn 

pft2£>5 *[%•*> 
where the Reynolds number is Re = pQ,pD2/ii. Similarly for the secondary 

Cs 
Ts 

pWD5 

Dividing these gives 

= /2 

a 

Re 

The efficiency is also a function of the same nondimensional groups 

V = 9 ,Re 

(11.5) 

(11.6) 

(11.7) 

(11.8) 

Again the influence of the Reynolds number is much weaker than the angular velocity ratio 
[41]. 

Typical plots of the torque ratio and efficiency are shown in Figure 11.8. Experimental 
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Figure 11.8 Performance curves for a torque converter. 

evidence suggests that the torque coefficient of the primary Cp is independent of the speed 
ratio; that is, the amount of slip taking place in the torque converter influences mainly the 
downstream components. The primary torque is given by the angular momentum balance 

Tp = pQ(npr2 - r iKx i ) 
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With Vui = Vxi tan a\ = Q tan a i /A, the torque coefficient of the primary is then 

Tp Q (r\ Qritanai 
P (&l%,\ fipr3 ^ 2 Ar3Qp 

The reaction torque of the secondary is given by 

Ts = PQ(npr2
2 - Var2

3) 

and the torque coefficient of the secondary is 

,-, _ Ts _ Q i r2 S ls 

'p'3 " p ' 3 

The torque ratio becomes 

Pni4 nprf \r2 nP 

r2H'$ " s / ^ ' p 
TP rllrl - Qritan a i M ^ P r i 

The efficiency of the torque converter is then 

_ rsfts _ {r\irl - ns/np)ns/rip 
Tpflp r\jr\ - Qr\ tanai/ylrffip 

(11-9) 

(11.10) 

Since Cp is assumed to be constant, it follows that Q/Qp is constant, and for a given torque 
converter the torque ratio is seen to decrease linearly with the speed ratio fis/fip. The 
efficiency then varies parabolically, being zero when the secondary shaft either is fixed or 
rotates at the value given by 

" s __ r2 
s 'p '3 

At the point of maximum efficiency the speed ratio decreases to about one-half of this 
value. That the experimental curves of Figure 11.8 do not follow this theory exactly is 
caused by variation of Cp with the speed ratio. 

Another design is shown in Figure 11.9. The output shaft is concentric with the input 
one, and the inlet mean radius of the fixed member is the same as its exit radius. This 
design is analyzed in the next example. 

■ EXAMPLE 11.3 

The mean radii of a torque converter of the type shown in Figure 11.9 are r\ = 10 cm 
and ri = 15 cm. The primary operates with Qp = 3000 rpm, and the secondary 
rotates at Qs — 1200 rpm. The blades of the primary are oriented such that the angle 
of the relative flow at the exit is /3P2 = 35°. The exit angle of the relative velocity of 
the secondary is /3S3 = —63°. The fixed blades are shaped such that the exit velocity 
from them is at the angle an = 55°. The axial velocity is constant throughout the 
converter, and its value is Vx = 15 m/s. Determine the flow angles and calculate the 
torque ratio Ts/Tp and the efficiency of the torque converter. 

Solution: The blade speeds are first determined as 

Upl = ri n p = — = 26.78 m/s 
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Figure 11.9 Torque converter with concentric shafts. 

0.15- 1200 -7T o o r . 
Us2 = r2tts = — = 18.85 m/s 

U. s3 r3ftp = 

30 
0.10-1200-7r 

30 
12.57 m/s 

Next, the tangential velocity at the exit of the primary is determined. Since the flow 
angle of the relative flow is given, the tangential component Wpu2 is 

Wpu2 = 14tan/?p2 = 15tan(35°) = 10.50 m/s 

and the tangential component of the absolute velocity is 

Vpu2 = Up2 + Wpu2 = 39.27 + 10.50 = 49.77 m/s 

The flow angle is therefore 

Q p 2 = tan"1 ( ^ - ) = tan"1 f ^ T ) = 73.23° 
Vx 15.00 

The absolute velocity and its flow angle at the inlet of the secondary are the same as 
those leaving the primary. Hence Vsu2 = 49.77 m/s. The relative velocity entering 
the secondary has the tangential component 

Wsu2 = Vsu2 - Us2 = 49.77 - 18.85 = 30.92 m/s 

and its flow angle is 

Ps2 = tan" W« su2 

vx 
tan 

30.92 
15.00 

= 64.12° 
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At the exit of the secondary the tangential velocity component of the relative velocity 
is 

Wau3 = Vx tan/3s3 = 15tan(-56°) = -22.24m/s 

so that the component of the absolute velocity and its flow angle are 

Vsu3 = Wsu2 + Us3 = -22.24 + 12.57 = -9.67 m/s 

as3 = tan-i (Y^A = tan-i (zMl) = _32.81° 
V Vx ) \ 15.00 ) 

The flow enters the fixed member at the same velocity as it leaves the secondary. 
Hence Vfu3 = —9.67 m/s. At the exit of the fixed member 

Vfui = 14 tan an = 15tan(55°) = 21.42 m/s 

The flow enters the primary with this tangential velocity and angle, so that Vpui = 
21.24 m/s. The relative velocity at the inlet of the primary is then 

Wpul = Vpul - Upl = 21.42 - 26.18 = -4.76 m/s 

The torques are 

Ts = PQ(r2Vsu2 - r3Vsu3) = 8A3pQ 

Tp = PQ(r2Vpu2 - nVpul) = 5.32pQ 

T{ = pQ{nViul - r3Viu3) = 3.11/oQ 

Hence 
Ts 8.43 Tsns 1200 
Tt = 5 ^ 2 = 1 - 5 8 ^ ^ = L 5 8 2 5 0 0 = 0 - 7 6 1 

The velocity triangles for the preceding example are close to what are shown in Figure 
11.6. 

EXERCISES 

11.1 A fluid coupling operates with oil flowing in a closed circuit. The device consists 
of two elements, the primary and secondary, each making up one-half of a torus, as shown 
in Figure 11.1. The input power is 100 hp, and input rotational speed is 1800 rpm. The 
output rotational speed is 1200 rpm. (a) Evaluate both the efficiency and output power of 
this device, (b) At what rate must energy as heat be transferred to the cooling system, to 
prevent a temperature rise of the oil in the coupling? 

11.2 (a) Carry out the algebraic details to show that the expression for the flow rate 
through a fluid coupling is given by Eq. (11.3) and assuming that for a low value of slip the 
friction factor is related to the flow rate by an expression 

t - JL - CA^ 
1 ~ R^ ~ pQD 

find the dependence of the flow rate on the slip for small values of s. (b) Carry out the 
algebraic details to show that the expression for the torque of a fluid coupling is given by 
Eq. (11.4). What is the appropriate form for this equation for low values of slip? 
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11.3 A fluid coupling operates with an input power of 200 hp, 5% slip, and a circulatory 
flow rate of 1500 L/s. (a) What is the rate at which energy as heat must be transferred 
from the coupling in order for its temperature to remain constant? (b) What would be 
the temperature rise of the coupling over a period of 30 min, assuming that no heat is 
transferred from the device and that it has a mass of 45 kg, consisting of 70% metal with a 
specific heat 840 J/(kg • K), and 30% oil with a specific heat 2000 J/(kg • K)? 

11.4 In the fluid coupling shown in Figure 11.1 fluid circulates in the direction indicated 
while the input and output shafts rotate at 2000 and 1800 rpm, respectively. The fluid is an 
oil having a specific gravity of 0.88 and viscosity 0.25 kg/(m • s). The outer mean radius 
of the torus is r-i = 15 cm and the inner mean radius is r\ = 7.5 cm. The radial height is 
b = 2^ /15 . The axial flow area around the torus is the same as the flow area at the outer 
clearance between the primary and secondary rotors. Given that the relative roughness of 
the flow conduit is 0.01, find the volumetric flow rate and the axial velocity. 

11.5 Show that the kinetic energy loss model at the inlet to the turbine given by 

— r 2 ( i i p — ils) 

is based on the conversion of the change in the one-half of the tangential component of the 
velocity squared, irreversibly into internal energy. To show this, note that the incidence 
of the relative velocity at the inlet to the turbine is 02 since the blades are radial. This 
leads to a leading-edge separation, after which the flow reattaches to the blade. After 
this reattachement the radial component of the relative velocity is the same as in the flow 
incident on the blade. 

11.6 For a fluid coupling for which r\JT2 = 0.7, develop an expression which from 
which by differentiation the value of the slip at which the power is maximum may be 
obtained. 

11.7 A torque converter operates with oil flowing in a closed circuit. It consists of a 
torus consisting of a pump, a turbine, and a stator. The input and output rotational speeds 
are 4000 and 1200 rpm, respectively. At this operating condition the torque exerted on the 
stator is twice that exerted on the pump. Evaluate (a) the output to input torque ratio and 
(b) the efficiency. 

11.8 A torque converter multiplies the torque by is designed to have to provide a torque 
multiplication ratio of 3.3 to 1. The circulating oil flow rate is 500 kg/s. The oil enters the 
fixed vanes in the axial direction at 10 m/s, and leaves at an angle 60° in the direction of 
the blade motion. The axial flow area is constant. Find the torque that the primary exerts 
on the fluid and the torque by the fluid on the blades of the secondary. The inlet and outlet 
radii of fixed vanes are 15 cm. 

11.9 Develop the Eqs. (11.7) and (11.10). At what ratio of the rotational speeds is the 
efficiency maximum? From this and the experimental curves shown in the text, estimate 
(a) the ratio rijr?, and (b) the value of Qr\ tan a\jAr\^\v. 



CHAPTER 12 

WIND TURBINES 

A brief history of wind turbines was given in Chapter 1. The early uses for grinding grain 
and lifting water have been replaced by the need to generate electricity. For this reason 
the designation windmill has been dropped and it has been replaced by a wind turbine. 
Wind turbines, such as are shown in Figure 12.1b, are the most rapidly growing renewable 
energy technology, but as they provide for only 0.5% of the primary energy production 
in the world, it will take a long time before their contribution becomes significant. Since 
the installed base of wind turbines is still relatively small, even a large yearly percentage 
increase in their use does not result in a large increase in the net capacity. But the possibility 
of growing wind capacity is large. The most windy regions of the United States are in the 
North and South Dakotas. These states, as well as the mountain ridges of Wyoming, the 
high plains of Texas, and the mountain passes of California, have seen the early gains in 
the number of wind turbines. 

In countries such as Denmark and Germany, the growth of wind turbine power has been 
quite rapid. The winds from the North Sea provide particularly good wind prospects both 
onshore and offshore in Denmark's Jutland region. In fact, during the year 2011, 22% 
of Denmark's electricity was generated from wind, and the entire power needs of western 
Denmark are provided by its windfarms on the windiest days. The installed capacity 
of 3800 MW in Denmark in year 2010 come from 5000 units. Because she adopted wind 
technology early, Denmark's old wind turbines are being replaced today with larger modern 
units. Denmark's electricity production from wind in 2010 was about 7810GWh per year. 
The capacity factor is a modest 23% cent, owing to the intermittency of wind. 

Principles of Turbomachinery. By Seppo A. Korpela 401 
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(a) (b) 

Figure 12.1 A Darrieus rotor (a) and a windfarm of modern wind turbines (b). 

In Germany during the years 2001-2004 wind turbines were put into operation at the 
rate of two each day. The installed capacity was about 27,000 MW in 2010 and this was 
based on some 18,000 units. They provided about 36,500 GWh of electricity a year, giving 
a lower capacity factor than that in Denmark. 

The cost of generating electricity from wind has dropped greatly since the 1980s. With 
the rising costs of fossil fuels and nuclear energy, it is now competitive with the plants 
using these fuels as sources of power. 

12.1 HORIZONTAL-AXIS WIND TURBINE 

Aerodynamic theory of wind turbines is similar to that of airplane propellers. Propeller 
theory, in turn, originated in efforts to explain the propulsive power of marine propellers. 
The first ideas for them were advanced by W. J. M. Rankine in 1865. They are based 
on what has come to be called the momentum theory of propellers. It ignores the blades 
completely and replaces them by an actuator disk. The flow through the disk is separated 
from the surrounding flow by a streamtube, which is called a slipstream downstream of 
the disk. For a wind turbine, as energy is drawn from the flow, the axial velocity in the 
slipstream is lower than that of the surrounding fluid. Some of the energy is also converted 
into the rotational motion of the wake. 

The next advance was by W. Froude in 1878. He considered how a screw propeller 
imparts a torque and a thrust on the fluid that flows across an element of a blade. This blade 
element theory was developed further by S. Drzewieci at the beginning of the twentieth 
century. During the same period contributions were made by N. E. Joukowski in Russia, 
A. Betz and L. Prandtl in Germany, and F. W. Lancaster in Great Britain. These studies 
were compiled into a research monograph on airscrews by H. Glauert [28]. He also 
made important contributions to the theory at a time when aerodynamic research took on 
great urgency with the development of airplanes. In addition to marine propellers, aircraft 
propellers, and wind turbines, the theory of screw propellers can also be used in the study 
of helicopter rotors, hovercraft propulsion, unducted fans, axial pumps, and propellers in 
hydraulic turbines. The discussion below begins by following Glauert's presentation. 

The aim of theoretical study of wind turbines is to determine what the length of blades 
should be for nominal wind conditions at a chosen site, and how the chord, angle of twist, 
and shape should vary along the span of the blade to give the blade the best aerodynamical 
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performance. Thickness of the cross section of the blade is determined primarily by 
structural considerations, but a well-rounded leading edge performs better at variable wind 
conditions than a thin blade, so the structural calculations and aerodynamic analysis are 
complementary tasks. 

12.2 MOMENTUM AND BLADE ELEMENT THEORY OF WIND TURBINES 

In momentum theory airscrew is replaced by an actuator disk. When it functions as a 
propeller, it imparts energy to the flow; when it represents the blades of a wind turbine, it 
draws energy from the flow. 

12.2.1 Momentum Theory 

To analyze the performance of a windmill by momentum theory, consider the control 
volume shown in Figure 12.2. The lateral surface of this control volume is that of a 
streamtube that divides the flow into a part that flows through the actuator disk and an 
external stream. Assuming that the flow is incompressible, applying the mass balance to 
this control volume gives 

AaV = AVd = AbVb 

in which Aa is the inlet area and Ab is the outlet area. The approach velocity of the wind is 
V and the downstream velocity is Vb. The disk area is A, and the velocity at the disk is V .̂ 

Figure 12.2 Control volume for application of the momentum theory for a wind turbine. 

If there is no rotation in the slipstream and velocity and pressure at the inlet and exit are 
uniform, then an energy balance applied to the control volume gives 

m l ^ + V 
P 2 

W + rh Pa , 1 K2 (12.1) 

which gives for the specific work the expression 

1 
(V*-VJ) (12.2) 

Introducing the stagnation pressures 

p0+ = Pa + -^PV2 P0- =Pa + ^pVb 
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into Eq. (12.1), gives for the specific work the alternate form 

w = (12.3) 
P 

and the specific work is evidently uniform across the disk. Making use of the fact that 
velocity Vd at the disk is the same on both sides, this can also be written as 

w = P+~P- (12.4) 
P 

in which p+ and p_ are the corresponding static pressures. Force balance across the disk 
gives 

Fd = {p+~p.)A (12.5) 

The force on the disk is also obtained by applying the momentum theorem to the control 
volume and assuming that the pressure along its lateral boundaries has a uniform value pa. 
This yields 

Fd = [ PVd(V - Vb)dA = PAVd(V - Vb) (12.6) 
J A 

and Fd here and in Eq. (12.5) is the force that the disk exerts on the fluid. It has been taken 
to be positive when it acts in the upstream direction. Equating Eq. (12.6) to Eq. (12.5) and 
making use of Eq. (12.3) gives 

pw 

(V-Vb)(V + Vb) 

Velocity at the disk is seen to be the arithmetic mean of the velocities in the free stream 
and in the far wake. Changes in velocity, total pressure, kinetic energy, and static pressure 
in the axial direction are shown in Figure 12.3. 

A consequence of this analysis is that power delivered by the turbine is 

W = pAVd w = AVd (Po+ - po-) = AVd (p+ -p-) = FdVd 

This is a curious result, for in the previous chapters the work delivered by a turbine was 
always related to a change in the tangential velocity of the fluid, which produces a torque on 
a shaft. To reconcile this, one may imagine the actuator disk to consist of two sets of blades 
rotating in opposite directions such that the flow enters and leaves the set axially. Each 
rotor extracts energy from the flow with the total power delivered as given above. Also, 
since the velocity entering and leaving the disk is the same, it is seen that work extracted 
is obtained by the reduction in static pressure across the disk. This sudden drop in static 
pressure is shown schematically in Figure 12.3. 

It is customary to introduce an axial induction, or interference factor, defined as 

V-Vd 

pVd( 

Substituting Eq. (12.2) for work g 

Vd(V-

from which it follows that 

vb) = 

y-vb: 
;ives 

\(v>-

vd = 

) = p+-

- vb
2) = 

\iv + 

-p-

V 
vb) 
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Velocity 

pa
+jpv-iM/2 

Total pressure 

IPK 2 

Kinetic energy Static pressure 

Figure 12.3 Variation of the different flow variables in the flow. 

so that the velocities at the disk and far downstream are 

Vd = (l-a)V Vb = (l-2a)V (12.7) 

The second of these equations shows that if a > | , there will be reverse flow in the wake 
and simple momentum theory has broken down. The axial force on the blades is given by 

Fd = PVd{Vb - V)A = 2a(l - a)PAV2 

A force coefficient defined as 
Fx 

(^.T \pv2 4a(l - a) 

is seen to depend on the induction factor. The power delivered to the blades is 

W 1 
PVdA(V2 - Vb

2) = 2o(l - afpAV3 

from which the power coefficient, defined as 

W 
Or, hAV3 = 4 a ( l - a ) 2 

(12.8) 

(12.9) 

(12.10) 

(12.11) 

is also a function of the induction factor only. Maximum power coefficient is obtained by 
differentiating this with respect to a, which gives 

4 ( l - a ) ( l - 3 a ) - 0 so that 
1 

a — — 
3 

If the efficiency is defined as the ratio of power delivered to that in the stream moving with 
speed V over an area A, which is pAV3/2, then the efficiency and power coefficient are 
defined by the same equation. The maximum efficiency is seen to be 

V 
16 
27 0.593 
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2 3 4 5 6 7 
Tip speed ratio RC1IV 

Figure 12.4 Efficiencies of various wind turbines. 

This is called the Betz limit. Efficiencies of various windmills are shown in Figure 12.4. 
Depending on their design, modern wind turbines operate at tip speed ratios Rfl/V in the 
range 1-6. In the upper part of this range the number of blades is from one to three, and 
in the lower end wind turbines are constructed with up to two dozen blades, as is shown in 
the American wind turbine in Figure 1.4. 

The flow through the actuatpr disk and its wake patterns have been studied for propellers, 
wind turbines, and helicopters. Helicopters, in particular, operate under a variety of 
conditions, for the flow through the rotor provides a thrust at climb and a brake during 
descent. The various flow patterns are summarized in the manner of Eggleston and Stoddard 
[25] in Figure 12.5. The representation of the axial force coefficient was extended by Wilson 

Figure 12.5 Operational characteristics of an airscrew. (After Eggleston and Stoddars [25].) 
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and Lissaman [82] to the brake range a > 1, by rewriting it as 

Cx = 4a|l - a\ 

This explains the diskontinuity in the slope at a = 1. For a < 0, the airscrew operates as 
a propeller. The limit of vanishing approach velocity corresponds to a tending to a large 
negative value at a rate that keeps Vd finite while V tends to zero. Under this condition 
the airscrew functions as an unducted axial fan. Since the flow leaves the fan as a jet, 
pressure is atmospheric short distance into the wake, and with a pressure increase across 
the fan, pressure will be lower than atmospheric at the inlet to the fan. This low pressure 
causes the ambient air to accelerate toward the front of the fan. At a given rotational speed, 
proper orientation of the blades gives a smooth approach. A slipstream forms downstream 
of the fan, separating the wake from the external flow. The wake is in angular rotation, and 
vorticity that is shed from the blades forms a cylindrical vortex sheet that constitutes the 
boundary of the slipstream. As a consequence, at the slipstream boundary velocity changes 
discontinuously from the wake to the surrounding fluid. This discontinuous change and 
rotation are absent in the flow upstream of the disk where the flow is axial, if the small 
radial component near the disk is neglected. 

As the approach velocity increases to some small value V, the airscrew functions as a 
propeller, in which case V can be taken to be the velocity of an airplane flying through 
still air. The continuity equation now shows that the mass flow rate m across the propeller 
comes from an upstream cylindrical region of area Aa, given by Aa = rii/pV, and the area 
decreases as the velocity V increases. 

A further increase in the approach velocity leads to a condition at which a = 0. At 
this state no energy is imparted to, or extracted from, the flow, and the slipstream neither 
expands nor contracts. As the velocity V increases from this condition, the angle of attack 
changes to transform what was the pressure side of the blade into the suction side, and the 
airscrew then extracts energy from the flow. The airscrew under this condition operates as 
a wind turbine. The blades are naturally redesigned so that they function optimally when 
they are used to extract energy from the wind. In a wind turbine pressure increases as it 
approaches the plane of the blades and drops across them. The diameter of the slipstream, 
in contrast to that of a propeller, increases in the downstream direction. 

For a > \ the slipstream boundary becomes unstable and forms vortex structures that 
mix into the wake. This is shown in Figure 12.5 as the turbulent wake state. The theoretical 
curve in the figure no longer holds, and an empirical curve of Glauert gives the value of 
the force coefficient in this range. At the condition a = 1 the flow first enters a vortex ring 
state and for large values, a brake state. Flows in these regions are sufficiently complex 
that they cannot be analyzed by elementary methods. 

The aim of wind turbine theory is to explain how the induction factors change as a result 
of design and operating conditions. When the theory is developed further, it will be seen 
that wind turbines operate in the range 0 < a < \, which is consistent with the momentum 
theory. 

12.2.2 Ducted wind turbine 

Insight can be gained by repeating the analysis for a wind turbine placed in a duct and then 
considering the limit as the duct radius tends to infinity. Such an arrangement is shown 
in Figure 12.6. Applying the momentum equation to the flow through the control volume 
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containing the slipstream gives 

Fd- I pVb{Vb - V)dAb = R + PaAa - PbAb 
JAb 

(12.12) 

in which R is the x component of the net pressure force that the fluid outside the streamtube 
(consisting of the slipstream and its upstream extension) exerts on the fluid inside. For the 
flow outside this streamtube, the momentum balance leads to 

Pa(Ae - Aa)-Pb(Ae -Ab)-R = PVC(VC - V)(Ae - Ab) 

which can be recast as 

R = Pa{Ab - Aa) + (Pa - Pb)(Ae - Ab) + pViy - Vc)(Ae - Aa) 

The pressure difference pa — pb can be eliminated by using the Bernoulli equation 

Pa + ^pV2 =Pb + ̂ pVc
2 

which transforms the expression for R into 

R = Pa(Ab - Aa) ~\(V2- V2)(Ae - Ab) + PV(V - Vc)(Ae - Aa) 

or 
R = Pa(Ab -Aa)-±{V- Vc) [(V + Vc)(Ae - At) - 2V(Ae - Aa)} 

The continuity equation for the flow outside the slipstream yields 

V 

V 

R | 

-~"~~* R — 

vc 

1 

t K 'f, 

Duct wall 

Figure 12.6 A ducted wind turbine. 

so that 

Vc(Ae ~ Ab) - V(Ae - Aa) 

V -V, = V 
Ab 

Ae-Ab 

Substituting these into the equation for R leads to 

V + Vc = V ■ 2A„ Ah 

AP-Ab 

fl=p«(^-^)-^»*(^_y 
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This shows that, as Ae becomes large in comparison to Aa and Ab, then 

R = pa{Ab~Aa) 

The extra term then accounts for the variable pressure along the streamtube boundary. 
That the pressure is not exactly atmospheric along this boundary is also clear by noting 
that whenever streamlines are curved, pressure increases in the direction from the concave 
to the convex sides. Also, as the axial velocity decreases, pressure increases, but this 
is compensated partly by the flow acquiring a small radial velocity as the area of the 
streamtube increases downstream. 

Equation 12.12 for the force on the blades now takes the form 

Fd- f PVb{Vb-V)dAb = R + PaAa PbA b 

I \ A 1 tr2 \Ab Aa) 
= {Pa-pb)Ab--PV A e _ A 

= \p{V?-V2)Ab-l-pV2{Ab~Aa)2 

2 r v c ' " T Ae-A b 

Since 

v2 - v2 = (yc - v)(vc + v) = v2 

this can be written as 

/2Ae-Aa-At 

V Ae-Ab 

Fd- f PVb(Vb - V)dAb - \pV2 (Ah Aal [Ae(Aa + Ab) - 2AaAb] 
JA„ 2 (Ae - Ab)z 

For large Ae this reduces to 

Fd= f PVb{V -Vb)dAb (12.13) 
JAb 

This is equivalent to Eq. (12.6) obtained above. It is now assumed that this equation is also 
valid for each annular element of the streamtube shown in Figure 12.6. The differential 
form can be written as 

dFd = pVb{V - Vb)dAb = PV{V - Vb)dA 

The analysis based on this equation is called a blade element analysis and is justified if 
no interactions take place between adjacent annular elements. This assumption has been 
criticized by Goorjian [30], but evidently in many applications of the theory the error is 
small. 

12.2.3 Blade element theory and wake rotation 

Wake rotation was included in the theory by Joukowski in 1918 and its presentation can be 
found in Glauert [28]. This theory is considered next. 

The continuity equation for an annular section of the slipstream gives 

Vdx dA = Vbx dAb or Vdx rdr = Vbx rbdrb (12.14) 
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The axial component of velocity at the disk is denoted by Vdx and in the far wake is Vbx. 
The value of the radial location rb far downstream depends on the radial location r at the 
disk. Since no torque is applied on the flow in the slipstream after it has passed through the 
disk, moment of momentum balance for the flow yields 

rVdu Vdx2irr dr — rbVbu Vbx2nrb drb 

in which Vdu is the tangential component of velocity just behind the disk and Vbu is its 
value in the distant wake. Using Eq. (12.14), this reduces to 

rVdu = rbVbu (12.15) 

This means that the angular momentum remains constant. If the rotation rate is defined by 
w = Vdu/r, then this can be written as 

r2cu = r2tob (12.16) 

Velocity triangles for the flow entering and leaving the blades are shown in Figure 12.7. 
Since trothalpy is constant across the blades, it follows that 

V.. 

r n 

Before 

\A 

After 

Figure 12.7 A velocity triangle for the flow leaving the blades of a wind turbine. 

h+ + \w\ = h^+ l-W2_ 

and for isentropic incompressible flow, this reduces to 

P+ + \p(Vl + r2Q2) = v- + \p[Vl + (rn + ru)2} 

which simplifies to 

P+ = P- + P \ 0 + 2 u ) r w 

The Bernoulli equation upstream of the disk yields 

(12.17) 

^ + > = ^ + M 
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and downstream it yields 

P - 1 
P 

, ~ir2 , 1 2 2 Pb , 1 T A 2 , " ' ■ 2 2 
+ 2 ^ + 2 r W = 7 + 2 ^ + 2 ^ 

Adding the last two equations and using Eq. (12.17) to eliminate the pressure difference 
p+ — p- leads to 

Pa Pb-\vbl-V^+[n + -nu}b)rlu}b 
P P 2 

Differentiating this with respect to rb gives 

_ldpb = 1 _^(V2 _ y2] , A_ 
pdrb 2drb

(bx ' drb 
tf. + ^ujb ) r̂ Wft 

(12.18) 

Since the radial pressure variation in the downstream section is also given by 

p drb rb 

equating these two pressure gradients produces 

= rbub 

or 

1 d 
2~dVb 

l_d_ 
Ydrb 

(Vbl ~ V2) -

(Vb
2
x - V*) 

drb 
^ + xwb ) r\ub ■nub 

drb 

drb 

2 2 d-U)b 2 

rbu)b -rbwb- rbwb 

2dujb\ 
bdrb) 

- tob I 2rbub + r\ 

drlujb 

drb 
(12.19) 

Momentum balance for the streamtube containing the flow through the disk yields 

/ pVbx(Vbx - V)dAb = / (pa- pb)dAb - Fd 

JAh JAb 

Assuming that this is also valid for an annular element yields 

dFd = pVbx{V - Vbx)dAb + {pa - pb)dAb 

This elemental force is related to the pressures difference across the disk, which according 
to Eq. (12.17) can be related to rotation as 

dFd = (p+ - p-)dA = p (n + -r2co 

When Eq. (12.14) is used, this takes the form 

dFd = pUl+ ^r2w) ^dAb 
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Therefore the momentum balance for an elemental annulus becomes 

pVbxiV - Vbx) + Pa ~ Pb = P ( ft + T^2 ) r2uj7T' 

Eliminating the pressure difference pa — pb by making use of Eq. (12.18) gives 

Vbx{V - Vbx) - \{V2 - V2
X) + (to + i W b ) riui O i l l\ 2 Vbx 

n+2U} rlJWx 

which simplifies to 

(v-vbx)2 _ {n + \Lobybu}b 
2Vbx Vbx 

(ft + \w)r2uj 
Wx 

(12.20) 

This is the main result of Joukowski's analysis. If ojb is now specified, then Eq. (12.19) 
can be solved for Vbx(rb)- After this, from Eq. (12.16), rotation w{r, rb) at the disk can 
be obtained as a function of r and r;,. The axial velocity Vdx(r,rb) at the disk is then 
obtained from Eq. (12.20). Substituting these into the continuity equation [Eq. (12.14)] 
gives a differential equation that relates rb to r. Appropriate boundary conditions fix the 
values for the integration constants. 

12.2.4 Irrotational wake 

The analysis of the previous section is valid for an arbitrary rotational velocity distribution 
in the wake. An important special case is to assume the wake to be irrotational. Then 
r2ui = r2Ub = k is constant. Equation (12.19) then shows that Vbx is constant across the 
wake, and Eq. (12.20) can be recast in the form 

Vdx [1 

Vbx [2 

Writing Eq. (12.14) as 

(V - Vbx)2 
n+2r>]k 

Vdx _ rbdrb 

Vhx r dr 
and making use of it in Eq. (12.21) leads to 

^ + 2 ^ 1 ^ (12.21) 

(V - Vbx)2 - ftfc n drb 
k2 drb 

~2^b~ 
-Vlkrdr — 

k2 dr 

Integrating this gives 

'1 
(v - vbxy ftfc n ^ - - l n -

2 2 eRb 
-flk-

k2 r 

where R is the disk radius and Rb the downstream slipstream radius. Owing to the 
logarithmic singularity, the lower limits of integration were taken to be eR and eRb, so that 
as e tends to zero, eR/eRb tends to R/Rb. Thus the solution takes the form 

\(V-Vbx) ■Clk 1 In 
rRb 
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The most reasonable way to satisfy this equation is to choose the r dependence of rb to be 

Rb 

for the logarithmic term then vanishes and the second term is a constant, which balances 
the first constant term. Thus an equation is obtained that relates the far wake axial velocity 
to the slipstream radius Rb 

i , „ „ ,2 ~ . (- R2 

2(V - Vbxy = Qk \1 - j ^ j (12.22) 

Furthermore the following ratios are obtained: 

4 = ^ = ^ = | (12-23) 
rg u Vdx Rl 

Following Glauert's notation [28] this equation can be put into a nondimensional form by 
introducing the parameters 

, V Vdx Vbx q k 
A = - — (i = - — Hb Rn ^ Rn ™ Rn n R2n 

In terms of these parameters, Eq. (12.22) can be written as 

q = y? (A - nb? 
2 {(i-(ib) 

Equation (12.18), namely 

Pa Pb _ l n r 2 T/2N , (r, , l,.\„2 

(12.24) 

evaluated at the edge of the slipstream, where pb = p a , gives 

In terms of the nondimensional parameters this can be transformed into 

1-(X^M)=(l + ^ ) q - (12.25) 

Eliminating q between this and Eq. (12.24) gives 

4(A* - iib)(2(jt -fib-X)= (i(X ~ (ib)3 (12.26) 

Equations (12.25) and (12.26) determine (i and (ib in terms of ratio A and q. Equation 
(12.26) can be written as 

V = 7,{X + (Ln) + — (12.27) 
2 8(fj, - (ib) 

or in dimensional variables as 

2V °x' 8{Vdx-Vbx)WR2 
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This shows that 
Vdx>1-{V + Vbx) 

Since rotation of the flow takes place only in the wake, this means that the axial velocity in 
the wake Vbx is smaller than its value in a nonrotating wake. 

Introducing the induction factors a and b by equations 

fi = A(l — a) 

and substituting them into Eq. (12.27) gives 

1 
1 - A 

fib = A(l - b) 

2(l-a)b2 

4(6 - a) 
(12.28) 

which, when solved for a, gives 

36 
i - ^ A V - ^ K i -A262)2 + (2 - 6)A26] 

It is customary in wind turbine analysis to replace the advance ratio A by its reciprocal 
X = Rtt/V, the tip speed ratio, and plot the values of 6 as a function of a with the tip 
speed ratio as a parameter. The curves, shown in Figure 12.8, clearly indicate that for X 
greater than 3, the approximation b = 2a is quite accurate. 

Figure 12.8 Induction factors for an irrotational wake. 

For large values of X the induction factor a can be approximated by 

b b2 / b\ 1 / 1 
a = 2 " 4 ( 1 - 2 ) x ^ + 0 ( x ^ 

or after replacing b by 2a in the higher-order terms, as 

a(l — a) 
X2 + 0 X4 
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Similarly 
a(l 

2a 1 X2 Ol± 
This formula gives an estimate of the extent to which the axial velocity in the wake has 
been reduced as a result of wake rotation. 

The expression for torque is 

dT = 2-7TpVdxrVdur dr = 2npVdxkrdr 

which when integrated over the span gives 

T = PAVdxk 

Hence the torque coefficient 

Vdxk 
pAil2E? il2R3 H 

is given by the parameter q. With W = Til, the power coefficient becomes 

Til _2q_ b2(l-a)2 

p ~ pVA\V2 ~~ A3 ~~ b-a 

Since r2to is constant, the rate of rotation in an irrotational wake increases with decreas-
ing radius and for small enough radius the rotation rate becomes unreasonably large. This 
leads to an infinite value for the power coefficient. To remedy this, the wake structure needs 
modification, and a reasonable model is obtained by making it a combination of solid body 
rotation at small radii and free vortex flow over large radii. The power coefficient for this, 
called the Rankine combined vortex, was stated by Wilson and Lissaman to be 

Cp = b^bZaJ l2aN + &(1 ~ N)] 

in which N = il/u>mSiX. The details on how to develop this are not in their report, and it 
appears that in order to develop it, some assumptions need to be made [82]. 

12.3 BLADE FORCES 

The blade forces can be calculated at each location of the span by the blade element analysis. 
This is carried out for an annular slice of thickness dr from the disk, as is shown in Figure 
12.9. Across each blade element airflow is assumed to be the same as that for an isolated 
airfoil. The situation in which wake rotation is ignored is considered first. Then the general 
analysis including wake rotation and Prandtl's tip loss model is discussed. 

12.3.1 Nonrotating wake 

If the wake rotation is ignored, the velocity triangle at the midchord is as shown in Figure 
12.10. The approach velocity at the disk is (1 — a)V and the blade element moves at the 
tangential speed ril. The broken (dashed) line gives the direction of the chord and thus 
defines the blade pitch angle 9, which is measured from the plane of the disk. The angle 
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Figure 12.9 Illustration of a blade element. 

Figure 12.10 Illustration of the relative velocity across a blade. 

of attack is a, and the flow angle of the relative velocity is <j> = a + 9, also measured from 
the plane of the disk. 

The x and y components of the blade forces, expressed in terms of lift and drag, are 

dFx = {dL cos (f> + dD sin (f>)dr dFy = (dL sin (p — dD cos (p)dr 

For small angles of attack the lift coefficient is 

CL = 2-K sin a = 2n sm(<f> — 9) = 27r(sin <p cos 9 — cos (f> sin 9) 

From the velocity triangle 

. (l-a)V rn 
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so the lift coefficient can be written as 

-(l-a)V 
Cx. = 2n 

W 
rtt 

smt 

On an element of the blade of width dr, if drag is neglected, the x component of the 
force on the blade is 

dFx = Lcos<j>dr = ~PW2CCL COS(pdr 

or 
dFx — 7rpc[(l — a)V cos 9 — rfl sin 9]rfl dr 

so that the blade force coefficient is 

dFT rfl c ^x \pV22'Kr dr V r 
rVL 

(1 — a)cos# —— sin( 

The ratio c/r is part of the definition of solidity, which is defined as a = cdr/2nr dr 
c/2nr. With x = r£l/V, the blade speed ratio, the blade force coefficient becomes 

Cx = 2irax[(l — a) cos 9 — x sin9] 

The blade force coefficient can also be written as 

Cx = 4a(l - a) = 4a|l - a\ 

(12.29) 

(12.30) 

where the absolute value signs have been inserted so that the propeller brake mode, for 
which the induction factor is larger than unity, is also taken into account. Following Wilson 
and Lissaman [82], the values of Cx from both Eqs. (12.29) and (12.30) are plotted in 
Figure 12.11. The operating state of the wind turbine is at the intersection of these curves. 

Glauert empirical 

Figure 12.11 Blade force coefficient for different values of the interference factor. (Drawn after 
Wilson and Lissaman [82]). 

The straight lines from Eq. (12.29) have a negative slope slope that depends mainly on the 
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solidity times the blade speed ratio and weakly on angle 9. The blade force coefficient 
becomes zero at a = 1 and a — 0. At the former condition the blade pitch angle is 6 = 0, 
and at the latter condition it is 9\ = tan_ 1( l / : r ) . Increasing the blade angle further from 
this changes the operation from a windmill to a propeller. At a = 0, loading on the blades 
vanishes. 

For a = 1, the blade angle becomes negative and the wind turbine operates as a propeller 
brake on the flow; that is, with a propeller turning in one direction and the wind attempting 
to turn it in an opposite direction, the result is a breaking action on the flow. This is best 
understood from the operation of helicopters. As they descend, their rotors attempt to push 
air into the direction in which they move and thereby cause a breaking action on their 
descending motion. 

Since in the far wake the axial velocity is (1 — 2a) V, for states in the range \ < a < 1 
the simple momentum theory predicts a flow reversal somewhere between the disk and the 
far wake. Volkovitch [77] has shown that this anomaly disappears for yawed windmills 
and momentum theory is still valid. Blade angles for a working range can be obtained 
by equating the two expressions for the blade force coefficient and solving the resulting 
equation for the interference factor. This gives 

a = — 2 + nxa cos 9 ± v ( 2 — irxa cos 9)2 + Snax2 sin 9 

The two solutions of this equation are at points A and B, with point B corresponding to 
plus sign of the square root. The solution on this branch is unstable and can be ignored. 
The angle 92 is that for which the discriminant vanishes, and it can be determined as a root 
of 

(2 - nxa-cos02)4 - 6 4 7 T 2 , T V ( 1 - cos2 92) = 0 (12.31) 

For a wind turbine at the span position where a = 0.03 and blade speed ratio is x = 4, this 
comes out to be 92 = 12.76°. 

The experimental curve of Glauert is for free-running rotors, which thus have a power 
coefficient zero. These correspond to states of autorotation of a helicopter. A line drawn 
through the data gives Cxe = C\ — 4(v/CT — 1)(1 — a), in which C\ = 1.8 is the value of 
the blade force coefficient at a = 1, as obtained from the experimental data. The straight 
line touches the parabola at a* = 1 — \\/C\ = 0.33. 

■ EXAMPLE 12.1 

Develop a Matlab script to establish the value of 92 for various values of solidity and 
tip speed ratio. 

Solution: The discriminant given by Eq. (12.31) is a fourth order polynomial in 
cos8s; hence the Matlab procedure roo t s can be used to find the roots of this 
polynomial. Two of the roots are complex and can be disregarded. There is also an 
extraneous root, which arose when the expressions were squared. The script below 
gives the algorithm to calculate the roots: 

sigma=0.03; x=4; 
c(l)=(pi*x*sigma)~4; c(2)=-8*(pi*x*sigma)"3; 
c(3)=24*(pi*x*sigma)~2*(l+8*x~2/3); 
c(4)=-32*pi*x*sigma; c(5)=16-64*(pi*sigma*x~2)~2; 
r= roo t s ( c ) ; 
theta=min(acos(r)*180/pi) ; 
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For a = 0.03 and x = 4 this gives 62 = 12.76° 

12.3.2 Wake with rotation 

Figure 12.12 shows a schematic of a flow through a set of blades. As the blades turn the 
flow, the tangential velocity increases. If its magnitude is taken to be 2a'rQ, after the blade, 
at some location as flow crosses the blade it takes the value a'rQ.. It is assumed that this 
coincides with the location at which relative velocity is parallel to the chord.6 

When drag is included, the axial force is given by 

dFx = (L cos 4> + D sin <j))dr 

and the torque is dT = r dFy, or 

dT = r (L sin (f> — D cos (j>)dr 

Denoting the number of blades by Z, these can be expressed as follows: 

dFx = -pW2Zc(CL cos 4> + CD sin <j>)dr (12.32) 

dT = ^pW2Zcr(Ch sin 0 - CD cos <j))dr (12.33) 

If the influence of wake rotation on the value of the static pressure at the exit is neglected, 
the momentum equation applied to an annular streamtube gives 

dFx = {V - Vb)p2irrVd dr = 4a(l - a)V2pnr dr 

Equating this to dFx in Eq. (12.32) gives 

]-W2Zc{CL cos <j> + CD sin0) = 4nra(l - a)V2 (12.34) 

The velocity diagram at the mean chord position is shown on the upper part of Figure 
12.12. The relationships between the flow angle, relative velocity, and the axial and 
tangential components of absolute velocity are 

sin 0 = V
 w ' cos 4> = ± ^ — (12.35) 

With solidity defined now as a = Zc/2irr, Eq. (12.34) can be recast as 

a cr(CL cos 4> — CD sin <j>) 
I - a 4 sin2 </> 

Similarly, angular momentum balance applied to the elementary annulus gives 

dT = rVu dm = rVupVd2irrdr = 4a''(1 - a)pVSlr'i'K dr 

(12.36) 

6This assumption is based on the examination of the induced velocity by the vortex structure in the wake. 
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Figure 12.12 Illustration of the increase in tangential velocity across the disk. 

and equating this to dT in Eq. (12.33) and making use of Eq. (12.35) yields 

a' CT(CL sin (j> — CD cos cf>) 

1+a' 4 cos 6 sin < 
(12.37) 

Equations (12.36) and (12.37) can now be used to calculate the relationship between 
the parameters as follows. For a given blade element at location r/R, tip speed ratio 
X — RQ/V, and pitch angle 9, the solidity is a = Zc/2nr and the local blade speed ratio 
is x = Xr/R = rfl/V. With assumed values for a and a', the angle <f>, as seen from 
Figure 12.12, is calculated from 

tan< 
1 - a l 
1 + a' x 

(12.38) 

and the angle of attack can then be determined from a = cf> — 9. 
After this the lift coefficient can be calculated from the theoretical relation CL = 27r sin a 

and the value of the drag coefficient is found from experimental data. It is often given in 
the form CD = £CL with e having a value in the range of 0.003 < e < 0.015 as CL 
increases toward 1.2. After this the value of a is calculated from Eq. (12.36) and a' from 
Eq. (12.37). With these new estimates the calculations are repeated until the induction 
factors have converged. These calculations are demonstrated in the next example. 

EXAMPLE 12.2 

A three-bladed wind turbine with a rotor diameter of 40 m operates at the tip speed 
ratio 4. The blade has a constant cord of 1.2 m and a pitch angle of 12°. The 
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drag-to-lift ratio is 0.005. Calculate the axial and angular induction factors at r/R = 
0.7. 

Solution: For given a the lift and drag coefficients are calculated from 

CL = 2-n- sin a CD = ECL 

The rest of the solution is carried out by iterations. First, for initial guesses for a and 
a' 

1 - a l tan< 1 + a' x 
is solved for <j>. Then the axial and tangential force coefficients are defined as 

Cx = CL COS 4> + CD sin <j> Cy = CL sin <p — CD cos <j> 

and the axial and tangential induction factors are calculated from 

a oCx a ®Cy 
I — a 4 sin2 <f> 1 + a' 4 cos <fi sin < 

or in explicit form, from 

a Gx , ^ a Gy 

4sin (p + aCx 4cos<j>sincf> - aCy 

Now a new value of <fi can be determined, and the process is repeated. After the 
iterations have converged, the final value of the angle of attack is determined from 

a = 4>-9 

A Matlab script gives the steps to carry out the calculations: 

X=4; rR=0.7; R=20; theta=12*pi/180; 
Z=3; c=1.2; ep=0.005; a ( l )=0 ; ap( l )=0; 
x=rR*X; 
p h i ( l ) = a t a n ( ( l - a ( l ) ) / ( ( l + a p ( l ) ) * x ) ) ; 
a lpha (1 )=ph i ( l ) - t he t a ; 
CL(l )=2*pi*s in(a lpha(D); CD(l)=ep*CL(l); 
Cx( l )=CL(l )*cos(phi ( l ) )+CD(l)*s in(phi (D) ; 
Cy( l )=CL( l )*s in(ph i ( l ) ) -CD( l )*cos(ph i (D) ; 
sigma=Z*c/(2*pi*R*rR); imax=5; 
for i=2:imax 

a ( i )=s igma*Cx( i - l ) / (4*s in (ph i ( i - l ) ) "2+s igma*Cx( i - l ) ) ; 
ap ( i )=s igma*Cy( i - l ) / (4*s in (ph i ( i - l ) )*cos (ph i ( i - l ) ) - s igma*Cy( i -D) ; 
p h i ( i ) = a t a n ( ( l - a ( i ) ) / ( ( l + a p ( i ) ) * x ) ) ; 
a l p h a ( i ) = p h i ( i ) - t h e t a ; 
CL(i )=2*pi*s in(a lpha( i ) ) ; CD(i)=ep*CL(i); 
Cx( i )=CL(i )*cos(phi ( i ) )+CD(i)*s in(phi ( i ) ) : 
Cy( i )=CL( i )*s in(ph i ( i ) ) -CD(i )*cos(phi ( i ) ) ; 

end 
f i d = f o p e n ( ' i n d u c t i o n ' , ' w ' ) ; i= [ l : imax] ; 
fpr in t f ( f id , '•/.12i7„12.8f,/.12.8f\n', [ i ; a ; a p ] ) ; 
f c l o s e ( f i d ) ; 

Convergence of the induction factors a and a' are given as follows: 
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i a a' 

1 
2 
3 
4 
5 

0.00000 
0.06665 
0.06366 
0.06389 
0.06387 

0.000000 
0.009046 
0.007349 
0.007451 
0.007443 

The induction factor for the wake rotation is seen to be one order of magnitude smaller 
than that for axial flow. Were the tip speed ratio smaller, the wake rotation would be more 
pronounced. The next example extends the analysis to the entire span. 

■ EXAMPLE 12.3 

A three-bladed wind turbine with a rotor diameter of 40 m operates at the tip speed 
ratio 4. The blade has a constant chord of 1.2 m and the blades are at 4° angle of 
attack. The drag-to-lift ratio is 0.005. Calculate the pitch angle along the span from 
r/R = 0.2 to 1.0. 
Solution: The procedure for calculating the local parameters is the same as in the 
previous example. An outer loop needs to be inserted to extend the calculations to 
all the span locations. Results are shown in the table below. 

r/R 

0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 
1.0000 

<t> 

50.2024 
38.8601 
31.1403 
25.7391 
21.8146 
18.8599 
16.5662 
14.7392 
13.2521 

e 

46.2024 
34.8601 
27.1403 
21.7391 
17.8146 
14.8599 
12.5662 
10.7392 
9.2521 

a 

0.0169 
0.0204 
0.0246 
0.0292 
0.0341 
0.0392 
0.0443 
0.0497 
0.0551 

a1 

0.0237 
0.0131 
0.0089 
0.0068 
0.0055 
0.0046 
0.0039 
0.0035 
0.0031 

Examination of Figure 12.12 shows that as the blade speed increases toward the tip, the 
pitch angle decreases as the tip is approached. This also causes the flow angle <fi to decrease 
and the lift force to tilt toward the axial direction. This means that the tangential component 
of lift, which is the force that provides the torque on the shaft, diminishes. The same effect 
comes from the increase in induction factor along the span, for then the axial velocity across 
the blades at large radii is low, and this causes the lift force to tilt toward the axis. Another 
way to think about this is that an increase in the induction factor leads to lower mass flow 
rate and thus to lower work done on the blade elements near the tip. 

The induction factor also varies in the angular direction, because in a two- or three-
bladed wind turbine much of the flow does not come close to the blades at all, and hence 
this part of the stream is not expected to slow down substantially. Thus the induction factor 
in this part of the flow deviates from the factor that holds for an actuator disk. 
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The azimuthal variation of the induction factor has been calculated by Burton et al. [13] 
at four radial locations for a three-bladed wind turbine with the tip speed ratio of six. Their 
results are shown in Figure 12.13. 

120 180 240 

Azimuthal position 

360 

Figure 12.13 Azimuthal variation of induction factors for a three-bladed turbine at four radial 
locations. (Drawn after Burton et al. [13].) 

The axial force and torque can now be calculated for the entire disk from 

rR 

Fx =4P-KV2 / a{l-a)rdr 
Jo 

T = 4p7iW / a'(l - a)r3dr 
Jo 

(12.39) 

(12.40) 

The power is then obtained as W = Tfi. A performance calculation for an actual wind 
turbine is given in the next example. 

■ EXAMPLE 12.4 

A three-bladed wind turbine with a rotor diameter of 40 m operates at the tip speed 
ratio 4. The blade has a constant chord of 1.2 m, and the blades are at 4° angle of 
attack. The drag-to-lift ratio is 0.005. The wind speed is V = 10 m/s, and air density 
can be taken to be p = 1.2kg/m3. Only the blade along r/R = 0.2-1.0 is to be 
used to calculate the total force and torque. 

Solution: The calculation proceeds as in the previous example. After the results 
have been stored for various radial locations, the integrals can be evaluated by using 
the trapezoidal rule: 

f f{x)dx = ^L J2(f(xt) + f(xi+1)) = Ar J2 / ( * 0 + ^ ( / ( z i ) + ZOO) 
Ja z i=\ Li=i 

The part of the blade close to the hub is ignored and in the numerical integrations 
of Eqs. (12.39) and (12.40) the lower limit of integration is replaced by r/R = 0.2. 
The result of the integration gives the values 

Fx = 10, 783 N T = 51,403N-m W = 102.8 kW 
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for the blade force, torque, and power. 

12.3.3 Ideal wind turbine 

Glauert [28] developed relations from which the pitch angle can be calculated for a wind 
turbine with the highest value for the power coefficient. Simple relations are obtained if 
drag is neglected. Under this assumption Eq. (12.36) becomes 

a Zc CL cos <j> 
I — a 8irr sin2 < 

and Eq. (12.37) reduces to 
a' Z C C L 

1 + a' 8"7TT COS ( 

Diving the second by the first gives 

tan20=(i-4)^ (12.41) 
1 + a' I a 

The velocity diagram at midchord shows that 

(I-a) 
tancp = (1 + a')x 

in which the blade speed ratio is x = rfl/V. Making use of this expression reduces 
Eq. (12.41) to 

a'(l + a')x2 = a(l-a) (12.42) 

The power delivered by the turbine is 

rR rR 
W= ndT = 4npVn2 (l-a)ar3dr 

Jo Jo 
and the power coefficient can be written as 

Cp = - | / (1 - a)a'x3dx (12.43) 
X Jo 

Since the integrand is positive, the maximum power coefficient can be obtained by max-
imizing the integrand, subject to the constraint Eq. (12.42).7 Hence, differentiating the 
integrand and setting it to zero gives 

da' 
( 1 " a ) ^ = a 

and the same operation on the constraint leads to 

(l + 2 a V ^ = l - 2 a 
da 

7 A problem of this kind is solved by methods of variational calculus and Lagrange multipliers. Owing to the form 
of the integrand, the direct method used above works. 
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Equating these gives 
( l - a ) ( l - 2 a ) =a'(l+2a')x2 (12.44) 

Solving Eq. (12.42) for x2 and substituting into this gives 

1 + 2a! I-2a 
l + o' 

from which 
l - 3 o 
4 a - 1 

(12.45) 

I This equation shows that for | < a < | , the value of a' is positive, and that as a 
then a' —> oo. Also, as a —> | , then a' —> 0. Substituting 1 + a' from Eq. (12.45) into 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

Figure 12.14 Power coefficient for optimum wind turbine. 

Eq. (12.42) yields 
a'x2 = ( l - a ) ( 4 a - l ) 

iji This shows that for a — \, the product a'x2 — 0 and that for a — | , the value is a'x 
The power coefficient can now be determined by integrating 

2 
9 ' 

c„ X 
/ (1 - a)a' 

Jo 
x dx 

for various tip speed ratios X. The results for this calculation are presented in the graph in 
Figure 12.14. For high tip speeds when a = | and a'x2 = | the Betz limit Cp = | | = 
0.593 is approached. 

With the coefficients a and a' known at various radial positions, both the relative velocity 
and the angle (j> can be determined. From these the blade angle for a given angle of attack 
can be calculated. 

12.3.4 Prandtl's tip correction 

It has been seen that lift generated by a flow over an airfoil can be related to circulation 
around the airfoil. An important advance in the aerodynamic theory of flight was developed 
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independently by Kutta and Joukowski, who showed that the magnitude of the circulation 
that develops around an airfoil is such that flow leaves the rear stagnation point move to the 
trailing edge. The action is a result of viscous forces, and the flow in the viscous boundary 
layers leaves the airfoil into the wake as a free shear layer with vorticity. The vorticity 
distribution in the wake is unstable and rolls into a tip vortex. In such a flow it is possible to 
replace the blade by bound vorticity along the span of the blade and dispense with the blade 
completely. For such a model, vortex filaments exist in an inviscid flow, and according to 
the vortex theorems of Helmholtz, they cannot end in the fluid, but must either extend to 
infinity or form closed loops. This is achieved by connecting the bound vortex into the tip 
vortex, which extends far downstream. 

2nR/Z 

Figure 12.15 Wake vorticity. Drawn after Burton et al. [13]. 

For a wind turbine with an infinite number of blades, the vortex system in the wake 
consists of a cylindrical sheet of vorticity downstream from the edge of an actuator disk, 
as shown in Figure 12.15, and bound vorticity along radial lines starting from the center. 
From there an axial vortex filament is directed downstream. The angular velocity in the 
wake in this model is a result of the induced velocity of this hub vortex, and it explains why 
an irrotational vortex flow in the wake is a reasonable model. 

When the number of blades is finite, vorticity leaves the blades of a wind turbine in 
a twisted helical sheet owing to rotation of the blades. One model is to assume that it 
organizes itself into a cylindrical vortex sheet. The twisted sheets are separated since the 
blades are discrete. Prandtl [60] and Goldstein [29] developed ways to take into account 
the influence of this vorticity, which now is assumed to be shed from the blade tips. 

Prandtl's model is based on flow over the edges of a set of vortex sheets distance d apart, 
as shown in Figure 12.16. As the sheets move downstream, they induce a periodic flow 
near their edges. This leads to lower transfer of energy to the blades. 

Prandtl's analysis results in the introduction of factor F, given by 

F ■ cos exp 
w{R-r) 

into the equation for the blade force of an elemental annulus. The distance d between 
helical sheets is given by 

d 
2ITR 
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V 

V 

Figure 12.16 Prandtl's tip loss factor. 

as the diagram in Figure 12.16 shows. The sine of the flow angle at the tip is 

( l - a ) V 
sm<pt Wt 

so that 
n(R-r) _ \7(R~r 

d ~ 2 
Wt 

R ) (l-a)V 
Following Glauert and assuming that 

w1_w_ 
R ~ r 

yields 

The relative velocity is 

so that 
W 

W ir(R-r) _ 1 (R-r" 
~~d _ 2 V r ) {l-a)V 

W= y/(l - a)2V2 + (rfi)2 

(rO)2 X2 

(l-a)V (l-a)2V2 (1 - a)2 R2 

which gives 
n(R-r) = lz(R 

d 2 1 i / l + 
X2 

(1 - a)2 R? 

The tip loss correction factor is then given by 

F = — cos 
7T 

exp \-\Z{T 1 4/1 + 
X2 

(1 - a)2 R? 
(12.46) 

The tip loss factor calculated for four tip speed ratios is shown in Figure 12.17 for a 
two-bladed wind turbine. As the expression in Eq. (12.46) shows, decreasing the number 
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of blades moves the curves in the same direction as decreasing the tip speed ratio. Both 
of these increase the spacing d and make the winding of the helix looser. Conversely, an 
actuator disk with an infinite number of blades results in F = 1. The blade force is thus 
reduced by factor F for a wind turbine with a discrete number of blades. The axial force 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

r/R 

Figure 12.17 Prandtl's tip loss factor for two-bladed wind turbine with tip speed ratios X = 3,4,5,6 
at various radial positions r/R. 

and torque are given by 

dFx = ApTrV2a(l - a)Frdr dT = 4PTrttVa'(l - a)Fr3dr 

and in terms of the axial and tangential force coefficients, these are 

dFx = \>pW2ZcCxdr 

Equating these gives 

87ro(l -a)V2F = ZCW2CX 

Making use of 

( l - o ) V 
cost 

dT = -PW2ZcCyrdr 

8ira'{l - a)VVLr2F = ZcW2Cy 

{l + a')rn 
W sin< W 

and solving for a and a' then gives 

aCx rd, 
AF sin^ aCx AF cos 6 sin 6 — aCv 

(12.47) 

These can now be used to calculate the wind turbine design and performance parameters. 
For the data given in the previous examples, if the lift coefficient is kept at C\, = 0.3 along 
the entire span (corresponding to an angle'of attach of 2.74° ), then the pitch angle and 
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induction factors are as shown in table below. The results differ slightly from those in 
which the tip correction was neglected. 

r/R 

0.2000 
0.3000 
0.4000 
0.5000 
0.6000 
0.7000 
0.8000 
0.9000 

0 

44.0145 
32.8470 
25.7736 
21.0284 
17.6605 
15.1463 
13.1644 
11.4195 

o 

41.2778 
30.1103 
23.0369 
18.2917 
14.9237 
12.4095 
10.4277 
8.6828 

a 

0.0176 
0.0224 
0.0279 
0.0340 
0.0408 
0.0491 
0.0612 
0.0876 

a' 

0.0168 
0.0095 
0.0066 
0.0051 
0.0043 
0.0037 
0.0035 
0.0038 

12.4 TURBOMACHINERY AND FUTURE PROSPECTS FOR ENERGY 

In some sections of this book the reader's attention has been drawn to how the present 
primary energy resources of the world are used and how important turbomachines are in 
converting the energy in fossil fuels into shaft work. Turbomachines powered by hydro-
electric energy and wind energy are the main two machines that contribute to significant 
forms of renewable energy in the mix. It is unfortunate that they account for such a small 
fraction of the world's energy supply, because the fossil energy resources will be mostly 
exhausted during this century. The recent high prices for oil are a signal that soon the 
world's aging oil fields will be unable to keep up with the demand of the world's growing 
population (which in 2011 reached 7 billion). The production curves for oil, natural gas, 
and coal are bell-shaped, and the significant event on the road to their exhaustion is when 
each production peak will be passed. After that, the world will need to get by with less of 
these nonrenewable fuels. The peak production for world's oil is likely to occur before the 
year 2015, and the production peaks for natural gas and coal will not be far behind. Coal, 
which is thought to be the most abundant of the three, has seen its reserve-to-production 
ratio drop from 227 years to 119 years during the first decade of the present century. A 119-
life for the existing reserve might seem like a long time, but the 108-year drop during the 
last decade indicates that the rate at which the reserves decrease is quite rapid. In addition, 
the reserve-to-production ratio gives a misleading number, as it assumes that production 
stays flat until the resource is completely exhausted. A 40-year reserve-to-production ratio 
is, in fact, an indication of a production peak [49]. 

In the United States coal became the primary source of energy in the late 1800s overtaking 
biomass, which met the energy needs of the early settlers. It took some 40 years for coal's 
share to rise from 1% to 10% of the mix and the historical record shows similar timespans 
for the rise of oil and natural gas as well. Nuclear energy's share, after 50 years of effort, is 
still less than 10% of the energy supply in the United States. The prospects for renewable 
forms to offset the growing population and its growing demand for energy are exceedingly 
slim. Decisions to launch a comprehensive strategy for coping with the exhaustion of fossil 
fuels have been delayed many times despite warnings throughout the last century [11, 39]. 
Still installed wind energy capacity is increasing rapidly (even if not rapidly enough), and 
wind power offers the best possibility of becoming a significant source of energy in the 
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United States. Denmark in particular has demonstrated that wind power can make up a 
sizeable fraction of a country's energy supply with a continuous and sustained effort. 

EXERCISES 

12.1 Reconsider the ducted wind turbine, but now let the duct be a cylindrical control 
volume Ae in cross sectional area. Show that the axial force on the blades is 

Fd = PAbVb(V - Vb) 

which is in agreement with Eq. (12.6). 

12.2 The nondimensional pressure difference can be expressed as 

P+ ~Pa 

in which the pressure difference is that just upstream the disk and the free stream, (a) 
Use the momentum theory for a wind turbine to express this relationship in terms of the 
interference factor a. For which value of a is this maximum? Interpret this physically, (b) 
Develop a similar relationship for the expression 

Pa-P-

and determine for which value of a is this the maximum? 

12.3 A wind turbine operates at wind speed of V = 12 m/s. Its blade radius is R = 20 m 
and its tip speed radius RQ/V = 4. It operates at the condition Cp = 0.3. Find (a) the 
rate of rotation of the blades, (b) the power developed by the turbine, (c) the value of the 
interference factor a using the momentum theory, and (d) the pressure on the front of the 
actuator disk, assuming that the free stream pressure is 101.30 kPa. 

12.4 Using the axial momentum theory, calculate the ratio of the slipstream radius to 
that of the disk radius in terms of the interference factor a. If the wind turbine blades are 
80 m long, what is the radius of the slipstream far downstream? What is the radius of the 
streamtube far upstream? 

12.5 In a wind with speed V = 8.7 m/s and air density p = 1.2 kg/m3, a wind turbine 
operates at a condition with Cp = 0.31. Find the blade length, assuming that the power 
delivered to the turbine is to be W = 250 kW. 

12.6 Consider a three-bladed wind turbine with blade radius of R = 35 m and constant 
chord of c = 80 cm, which operates with a rotational speed of ft = 10 rpm. The wind 
speed is V = 12 m/s. (a) Find the axial and tangential induction factors at r = 10 m, 
assuming that the angle of attack is 6° and CD = O.OlCx,. (b) Find the axial force and 
the torque, assuming the air density is p = 0.12 kg/m3. (c) Calculate the axial force and 
the torque by assuming that the induction factors are uniform and equal to their values at 
r/R = 0.6. 



Appendix A 
Streamline curvature and radial equilibrium 

A.1 STREAMLINE CURVATURE METHOD 

In this appendix the governing equations for the streamline curvature method are developed. 
The derivation of the acceleration terms follows that of Cumpsty [18]. The blade surfaces 
may be highly curved, but it is useful to visualize locally flat surface patches in them. 

A.1.1 Fundamental equations 

The acceleration of a fluid particle is given by its substantial derivative 

<9V 
a = — + V - V V 

at 
in which the unsteady term vanishes in steady flow. The second term represents the spatial 
acceleration of the flow. In cylindrical coordinates the gradient operator can be written as 

_ d eg d d 
dr r 89 z dz 

By defining the meridional component as 

* m *m^m Vrer ~r Vz^z 
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the velocity vector can also be written as 

V = Vmem + Veee 

The scalar product of the unit vector in the direction of e m on the meridional plane and the 
gradient operator gives the directional derivative in the direction of the unit vector: 

_ 8 8 8 
&m ' V — — — \&m ' er) 7T~ ' l ^ m * ez) ~7\ 

dm or dz 
The term in the tangential direction has dropped out because the vector e m is orthogonal 
toe,?. 

The angle between the directions of e m and ez is denoted by <f>. In terms of this angle 
the partial derivatives may be written as 

d_ _ . , d , 8 
dm 

and the gradient operator takes the form 

s m 0 — + c o s v „ am or oz 

V = e — + ^ — 
dm r 88 

The acceleration of a fluid particle can now be expressed as 

a = (Vmem + Veee) ■ ( e m - h ee- 7-r J (Vmem + Veee) 

which leads to 
d Vg d 

Vm — (Vmem + V0ee) H -7^(Vmem + Veee) 

When this is expanded, it reduces to 

a — em ^m n en ~t ee vm er 
dm R dm r 

To arrive at these relations, the formulas 

dm R 36 dm 88 
were used. The radius of curvature of a streamline on the meridional plane is denoted by R 
and is taken as positive when the streamline is concave away from the z axis. The direction 
of the unit vector e„ is perpendicular to the direction of vector e m on the meridional plane 
in such a way that a right-handed triple (en, ee, em) is retained. Since this was obtained 
by rotation by the angle 4> about the axis of ee, the n direction coincides with the radial 
direction and the m direction coincides with z direction, when the angle <p is zero. 

Consider next a direction specified by the unit vector eq on the meridional plane. It 
is inclined to the radial direction by angle 7. This and other angles are shown in Figure 
A. 1. The angle 7 is the sweep angle of the blade at its leading edge. It is positive for a 
sweep toward the positive z direction. The angle between direction e,j and the m axis is 
IT/2 — (7 + 0). Hence the component of acceleration in the direction eq is 

XT, 9Vm , . V* . .„ 8Ve . . V0
2 

aq = (e, ■ em) Vm-^- - {eq ■ e„) — + (e, ■ ee) Vm-^ - (e, • er) — 
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Figure A.l Unit vectors on the meridional plane (a) and the angle of lean (b). 

This reduces to 

dV V2 V2 

aq = sin(7 + <p)Vm-^- - cos(7 + <j>)-^- COS7— 
dm R r (A.1) 

Next, let the unit vector et denote a direction normal to eq on the meridional plane. The 
component of acceleration in this direction is given by 

3V V2 

at = (et ■ em) Vm— (et • en) — (et-e9)Vm— _ ( e t . e r ) — 

which reduces to 

dV V2 V2 

at = cos(7 + <j>)Vm—^ + sin(7 + </>)-^ - s i n 7 - ^ 
dm R r 

Finally, the acceleration component in the tangential direction can be written as 

dVg 
ae = Vm dm 

If the blades lean at an angle e from the meridional plane, in the direction opposite to 9, the 
acceleration components aq and a# can be used to construct new components that lie on the 
plane containing a blade with this lean angle. The transformation to this plane is equivalent 
to rotation of the surface about the axis containing the unit vector et. With ee denoting the 
unit vector obtained by rotating eq by angle e counterclockwise, the acceleration component 
in the direction of ee is given by 

ae = (ee ■ eq)aq + (ee • ee)ae + (ee ■ et)at 

which reduces to 
ae = cos eaq— sin e ae 

The Euler equation for an inviscid flow in vector notation is 

!,-, F 
— V p + -
P P 

(A.l) 
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The components of this equation in any direction can now be obtained by taking its scalar 
product with a unit vector in the chosen direction. The component in the direction of ee is 

p de p 
and its component in the direction of eq is 

aq = -1-9/ + ^ (A.3) 
pdq p 

The acceleration component aq is the acceleration in the q direction. The pressure term on 
the right side of Eq. (A.3) can be modified by making use of the Tds relation 

n<9s dh 1 dp 
dq dq p dq 

The directional derivative of the stagnation enthalpy 

T- (A.4) 

ho = h+\(V^ + Ve
2) 

in the q direction is 
dh 
dq 

dh0 

dq Vm 
dVm 

dq 
Ve 

dVg 

Using this in the expression for the pressure gradient in Eq. (A.4) leads to 
,ds I dp 

pdq 
Substituting this into Eq. (A.3) gives 

sin(7 + <p) Vm 

,ds 

_dho dVrn 
dq dq dq Ve 

T-

■ cos(7 + 4>) 

V} 

V2 

R 
dV„ 

Vr 

dV9 

dq 

dVm 

(A.5) 

(A.6) 

(A.7) 

dq 

With q 
cos 7 

dm 

-^- + COS7-2- + Ve-^- + -J± 

dq r dq p 

terms involving Vg on the RHS can be combined to yield: 

dV2 

dq + P(9)V™ = T(q) 

where the functions P(q) and T(q) are defined as 

cos (7 + (p) sin(7 + 1 
P(q) 

T(q) 

dVrr, 
R V„. dm 

dh0 

dq 
T%-U^-Fi 

(A.8) 

(A.9) 

(A. 10) 

(A. 11) 

In a flow passage of constant height the meridional direction is the z direction and q can 
be replaced by r. In addition, the streamlines do not bend in the direction of the axis z, so 
that the radius of curvature R tends to infinity. If the there is no sweep 7 is zero, and if the 
stagnation enthalpy and entropy do not vary across the channel, then, in the absence of a 
blade force, this equation reduces to 

dV2 Ve d 
-T~ + —^-(rVg) 
dr r dr 

0 (A. 12) 

This is the simple radial equilibrium equation used in Chapters 6 and 7. 
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A.1.2 Formal solution 

Since Eq. (A.9) is nonlinear, it must be solved numerically. One way to carry this out is 
to first find its formal solution. Ignoring the nonlinearity and treating P(q) and T(q) as 
functions of q, the equation 

8V2 

-^+P{q)V^=T{q) (A.13) 

becomes a first-order differential equation with variable coefficients. Its solution can then 
be obtained by using an integrating factor, or by variation of parameters. 

To simplify the notation, first the variable V^ is replaced by U and the homogeneous 
solution of Eq. (A. 13) is seen to be 

Uh = Ce-$p{q)dq (A. 14) 

To obtain the particular solution to Eq. (A.13), the solution is assumed to have the form 

Up = H{r)e-fp{x)dx 

which, when inserted into the equation and after rearrangement, yields 

Comparing this to Eq. (A.13) shows that 

or 

Integrating leads to 

dq 

dq 

H{q)= rT{q')etiP^di"dq< 

Up = e - •& P{q')dql f" e''o p^">dq"T(q')dq' (A.15) 
JaO 

IqO 

Therefore, the particular solution is 

ri 

IqO 

The complete solution in the original variable is 

V£(q) = V^e~ -ft n*'W + e tfo W f e/,'o' p^q")dq" T{q')dq' (A.16) 
JqO 

If the sweep angle 7 is zero, the q direction is the r direction. In such a case integrations in 
Eq. (A.13) are with respect to r. With the lower limit of integration the middle streamline, 
the solution becomes 

Vl(rM) = Vle~ KM p^dr' + e" /.M *V)*-' f JlM
 p(r'">dr"T(r')dr' (A.17) 

JrM 

and the integration constant is identified as the meridional velocity squared on the middle 
/ 2 

' M 
streamline, Vj^ = V^TM)- The streamlines are then laid out such that each streamtube 
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has the same mass flow rate, and grid is set up on the qz plane, with grid points on 
the streamlines a specified distance apart. The solution then proceeds by iteration. The 
simplest situation is to consider the intergap region so that the blades are not present. The 
quasiorthogonals q can be spaced and oriented such that the first one is aligned with the 
trailing edge of a blade and the last one with the leading edge of the next blade row. The 
curvature is calculated at the grid locations, and the velocity gradients are determined by 
finite-difference approximations. This fixes the values of P and T. Integration of Eq. (A. 17) 
from the central streamline toward the hub and the casing gives the velocity field. Next, 
the mass flow rates are calculated for each streamtube. The residual is examined, and 
the streamlines are adjusted so that the fluid again flows at the same rate through each 
streamtube. The process is repeated until convergence for the location of the streamlines 
is obtained. This requires the use of relaxation. 
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Table B.l Thermodynamic Properties 

T p v{ ■ 103 ve U{ 
°C bar m3/kg m3/kg kj/kg 

0.01 
1 
2 
3 
4 

0.00611 
0.00657 
0.00706 
0.00758 
0.00814 

1.0002 
1.0002 
1.0001 
1.0001 
1.0001 

206.136 
192.439 
179.762 
168.016 
157.126 

0.00 
4.18 
8.40 
12.61 
16.82 

5 
6 
7 
8 
9 

0.00873 
0.00935 
0.01002 
0.01073 
0.01148 

1.0001 
1.0001 
1.0001 
1.0002 
1.0002 

147.024 
137.647 
128.939 
120.847 
113.323 

21.02 
25.22 
29.41 
33.61 
37.80 

10 
11 
12 
13 
14 

0.01228 
0.01313 
0.01403 
0.01498 
0.01599 

1.0003 
1.0004 
1.0005 
1.0006 
1.0008 

106.323 
99.808 
93.740 
88.086 
82.814 

41.99 
46.17 
50.36 
54.55 
58.73 

15 
16 
17 
18 
19 

0.01706 
0.01819 
0.01938 
0.02064 
0.02198 

1.0009 
1.0011 
1.0012 
1.0014 
1.0016 

77.897 
73.308 
69.023 
65.019 
61.277 

62.92 
67.10 
71.28 
75.47 
79.65 

20 
21 
22 
23 
24 

0.02339 
0.02488 
0.02645 
0.02810 
0.02985 

1.0018 
1.0020 
1.0023 
1.0025 
1.0027 

57.778 
54.503 
51.438 
48.568 
45.878 

83.83 
88.02 
92.20 
96.38 
100.57 

25 
26 
27 
28 
29 

0.03169 
0.03363 
0.03567 
0.03782 
0.04008 

1.0030 
1.0033 
1.0035 
1.0038 
1.0041 

43.357 
40.992 
38.773 
36.690 
34.734 

104.75 
108.93 
113.12 
117.30 
121.48 

30 
31 
32 
33 
34 

0.04246 
0.04495 
0.04758 
0.05033 
0.05323 

1.0044 
1.0047 
1.0050 
1.0054 
1.0057 

32.896 
31.168 
29.543 
28.014 
26.575 

125.67 
129.85 
134.03 
138.22 
142.40 

35 0.05627 1.0060 25.220 146.58 
40 0.07381 1.0079 19.528 167.50 
45 0.09593 1.0099 15.263 188.41 
50 0.12345 1.0122 12.037 209.31 

of Saturated Steam, Temperature Table 

ug hi hg Si Sg 
kJ/kg kJ/kg kJ/kg kJ/kgK kJ/kgK 

2375.3 
2375.9 
2377.3 
2378.7 
2380.0 

0.01 
4.183 
8.401 
12.61 
16.82 

2501.3 
2502.4 
2504.2 
2506.0 
2507.9 

0.0000 
0.0153 
0.0306 
0.0459 
0.0611 

9.1562 
9.1277 
9.1013 
9.0752 
9.0492 

2381.4 
2382.8 
2384.2 
2385.6 
2386.9 

21.02 
25.22 
29.42 
33.61 
37.80 

2509.7 
2511.5 
2513.4 
2515.2 
2517.1 

0.0763 
0.0913 
0.1063 
0.1213 
0.1361 

9.0236 
8.9981 
8.9729 
8.9479 
8.9232 

2388.3 
2389.7 
2391.1 
2392.4 
2393.8 

41.99 
46.18 
50.36 
54.55 
58.73 

2518.9 
2520.7 
2522.6 
2524.4 
2526.2 

0.1510 
0.1657 
0.1804 
0.1951 
0.2097 

8.8986 
8.8743 
8.8502 
8.8263 
8.8027 

2395.2 
2396.6 
2397.9 
2399.3 
2400.7 

62.92 
67.10 
71.28 
75.47 
79.65 

2528.0 
2529.9 
2531.7 
2533.5 
2535.3 

0.2242 
0.2387 
0.2532 
0.2676 
0.2819 

8.7792 
8.7560 
8.7330 
8.7101 
8.6875 

2402.0 
2403.4 
2404.8 
2406.1 
2407.5 

83.84 
88.02 
92.20 
96.39 
100.57 

2537.2 
2539.0 
2540.8 
2542.6 
2544.5 

0.2962 
0.3104 
0.3246 
0.3388 
0.3529 

8.6651 
8.6428 
8.6208 
8.5990 
8.5773 

2408.9 
2410.2 
2411.6 
2413.0 
2414.3 

104.75 
108.94 
113.12 
117.30 
121.49 

2546.3 
2548.1 
2549.9 
2551.7 
2553.5 

0.3670 
0.3810 
0.3949 
0.4088 
0.4227 

8.5558 
8.5346 
8.5135 
8.4926 
8.4718 

2415.7 
2417.0 
2418.4 
2419.8 
2421.1 

125.67 
129.85 
134.04 
138.22 
142.41 

2555.3 
2557.1 
2559.0 
2560.8 
2562.6 

0.4365 
0.4503 
0.4640 
0.4777 
0.4914 

8.4513 
8.4309 
8.4107 
8.3906 
8.3708 

2422.5 146.59 2564.4 0.5050 8.3511 
2429.2 167.50 2573.4 0.5723 8.2550 
2435.9 188.42 2582.3 0.6385 8.1629 
2442.6 209.33 2591.2 0.7037 8.0745 
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Table B.l (C< 

T p 
°C bar 

55 0.1575 
60 0.1993 
65 0.2502 
70 0.3118 
75 0.3856 

80 0.4737 
85 0.5781 
90 0.7012 
95 0.8453 
100 1.013 

105 1.208 
110 1.432 
115 1.690 
120 1.985 
125 2.320 

130 2.700 
135 3.130 
140 3.612 
145 4.153 
150 4.757 

160 6.177 
170 7.915 
180 10.02 
190 12.54 
200 15.55 

210 19.07 
220 23.18 
230 27.95 
240 33.45 
250 39.74 

260 46.89 
270 55.00 
280 64.13 
290 74.38 
300 85.84 

310 98.61 
320 112.8 
340 145.9 
360 186.6 

374.12 220.9 

id) 

vf ■ 103 vg 

m3/kg m3/kg 

1.0146 9.5726 
1.0171 7.6743 
1.0199 6.1996 
1.0228 5.0446 
1.0258 4.1333 

1.0290 3.4088 
1.0324 2.8289 
1.0359 2.3617 
1.0396 1.9828 
1.0434 1.6736 

1.0474 1.4200 
1.0515 1.2106 
1.0558 1.0370 
1.0603 0.8922 
1.0649 0.7709 

1.0697 0.6687 
1.0746 0.5824 
1.0797 0.5090 
1.0850 0.4464 
1.0904 0.3929 

1.1019 0.3071 
1.1142 0.2428 
1.1273 0.1940 
1.1414 0.1565 
1.1564 0.1273 

1.1726 0.1044 
1.1900 0.0862 
1.2088 0.0716 
1.2292 0.0597 
1.2515 0.0501 

1.2758 0.0422 
1.3026 0.0356 
1.3324 0.0302 
1.3658 0.0256 
1.4037 0.0217 

1.4473 0.0183 
1.4984 0.0155 
1.6373 0.0108 
1.8936 0.0070 
3.1550 0.0031 

Uf Ug 

kJ/kg kJ/kg 

230.22 2449.2 
251.13 2455.8 
272.05 2462.4 
292.98 2468.8 
313.92 2475.2 

334.88 2481.6 
355.86 2487.9 
376.86 2494.0 
397.89 2500.1 
418.96 2506.1 

440.05 2512.1 
461.19 2517.9 
482.36 2523.5 
503.57 2529.1 
524.82 2534.5 

546.12 2539.8 
567.46 2545.0 
588.85 2550.0 
610.30 2554.8 
631.80 2559.5 

674.97 2568.3 
718.40 2576.3 
762.12 2583.4 
806.17 2589.6 
850.58 2594.7 

895.43 2598.7 
940.75 2601.6 
986.62 2603.1 
1033.1 2603.1 
1080.4 2601.6 

1128.4 2598.4 
1177.4 2593.2 
1227.5 2585.7 
1279.0 2575.7 
1332.0 2562.8 

1387.0 2546.2 
1444.4 2525.2 
1569.9 2463.9 
1725.6 2352.2 
2029.6 2029.6 

h{ hg 

kJ/kg kJ/kg 

230.24 2600.0 
251.15 2608.8 
272.08 2617.5 
293.01 2626.1 
313.96 2634.6 

334.93 2643.1 
355.92 2651.4 
376.93 2659.6 
397.98 2667.7 
419.06 2675.7 

440.18 2683.6 
461.34 2691.3 
482.54 2698.8 
503.78 2706.2 
525.07 2713.4 

546.41 2720.4 
567.80 2727.2 
589.24 2733.8 
610.75 2740.2 
632.32 2746.4 

675.65 2758.0 
719.28 2768.5 
763.25 2777.8 
807.60 2785.8 
852.38 2792.5 

897.66 2797.7 
943.51 2801.3 
990.00 2803.1 
1037.2 2803.0 
1085.3 2800.7 

1134.4 2796.2 
1184.6 2789.1 
1236.1 2779.2 
1289.1 2765.9 
1344.1 2748.7 

1401.2 2727.0 
1461.3 2699.7 
1593.8 2621.3 
1761.0 2482.0 
2099.3 2099.3 

sf ss 
kJ/kgK kJ/kgK 

0.7679 7.9896 
0.8312 7.9080 
0.8935 7.8295 
0.9549 7.7540 
1.0155 7.6813 

1.0753 7.6112 
1.1343 7.5436 
1.1925 7.4784 
1.2501 7.4154 
1.3069 7.3545 

1.3630 7.2956 
1.4186 7.2386 
1.4735 7.1833 
1.5278 7.1297 
1.5815 7.0777 

1.6346 7.0272 
1.6873 6.9780 
1.7394 6.9302 
1.7910 6.8836 
1.8421 6.8381 

1.9429 6.7503 
2.0421 6.6662 
2.1397 6.5853 
2.2358 6.5071 
2.3308 6.4312 

2.4246 6.3572 
2.5175 6.2847 
2.6097 6.2131 
2.7013 6.1423 
2.7926 6.0717 

2.8838 6.0009 
2.9751 5.9293 
3.0669 5.8565 
3.1595 5.7818 
3.2534 5.7042 

3.3491 5.6226 
3.4476 5.5356 
3.6587 5.3345 
3.9153 5.0542 
4.4298 4.4298 
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Table B.2 Thermodynamic properties of saturated steam, pressure table 

p 
bar 

0.06 
0.08 
0.10 
0.12 
0.16 

0.20 
0.25 
0.30 
0.40 
0.50 

0.60 
0.70 
0.80 
0.90 
1.00 

2.00 
2.50 
3.00 
3.50 
4.00 

5.00 
6.00 
7.00 
8.00 
9.00 

10.00 
11.00 
12.00 
13.00 
14.00 

15.00 
16.00 
17.00 
18.00 
19.00 

20.00 
25.00 
30.00 
35.00 

T 
°C 

36.17 
41.49 
45.79 
49.40 
55.30 

60.05 
64.95 
69.09 
75.85 
81.31 

85.92 
89.93 
93.48 
96.69 
99.61 

120.2 
127.4 
133.5 
138.9 
143.6 

151.8 
158.8 
165.0 
170.4 
175.4 

179.9 
184.1 
188.0 
191.6 
195.1 

198.3 
201.4 
204.3 
207.1 
209.8 

212.4 
224.0 
233.9 
242.6 

vi • 103 

m 3/kg 

1.0065 
1.0085 
1.0103 
1.0119 
1.0147 

1.0171 
1.0198 
1.0222 
1.0263 
1.0299 

1.0330 
1.0359 
1.0385 
1.0409 
1.0431 

1.0605 
1.0672 
1.0731 
1.0785 
1.0835 

1.0925 
1.1006 
1.1079 
1.1147 
1.1211 

1.1272 
1.1329 
1.1384 
1.1437 
1.1488 

1.1538 
1.1586 
1.1633 
1.1678 
1.1723 

1.1766 
1.1973 
1.2165 
1.2348 

ve 
m 3/kg 

23.737 
18.128 
14.693 
12.377 
9.4447 

7.6591 
6.2120 
5.2357 
3.9983 
3.2442 

2.7351 
2.3676 
2.0895 
1.8715 
1.6958 

0.8865 
0.7193 
0.6063 
0.5246 
0.4627 

0.3751 
0.3158 
0.2729 
0.2405 
0.2150 

0.1945 
0.1775 
0.1633 
0.1513 
0.1408 

0.1318 
0.1238 
0.1167 
0.1104 
0.1047 

0.0996 
0.0800 
0.0667 
0.0571 

ut 
kJ/kg 

151.47 
173.73 
191.71 
206.82 
231.47 

251.32 
271.85 
289.15 
317.48 
340.38 

359.73 
376.56 
391.51 
405.00 
417.30 

504.49 
535.12 
561.19 
584.01 
604.38 

639.74 
669.96 
696.49 
720.25 
741.84 

761.67 
780.06 
797.23 
813.37 
828.60 

843.05 
856.81 
869.95 
882.54 
894.63 

906.27 
958.92 
1004.59 
1045.26 

Kg 

kJ/kg 

2424.0 
2431.0 
2436.8 
2441.6 
2449.4 

2455.7 
2462.1 
2467.5 
2476.1 
2483.1 

2488.8 
2493.8 
2498.1 
2502.0 
2505.5 

2529.2 
2537.0 
2543.4 
2548.8 
2553.4 

2561.1 
2567.2 
2572.2 
2576.5 
2580.1 

2583.2 
2585.9 
2588.3 
2590.4 
2592.2 

2593.9 
2595.3 
2596.5 
2597.7 
2598.6 

2599.5 
2602.3 
2603.2 
2602.9 

hi 
kJ/kg 

151.47 
173.74 
191.72 
206.83 
231.49 

251.34 
271.88 
289.18 
317.52 
340.43 

359.79 
376.64 
391.60 
405.09 
417.40 

504.70 
535.39 
561.51 
584.38 
604.81 

640.29 
670.62 
697.27 
721.14 
742.85 

762.80 
781.31 
798.60 
814.85 
830.21 

844.78 
858.66 
871.93 
884.64 
896.86 

908.62 
961.92 
1008.2 
1049.6 

hg 

kJ/kg 

2566.5 
2576.0 
2583.7 
2590.1 
2600.5 

2608.9 
2617.4 
2624.5 
2636.1 
2645.3 

2652.9 
2659.5 
2665.3 
2670.5 
2675.1 

2706.5 
2716.8 
2725.2 
2732.4 
2738.5 

2748.6 
2756.7 
2763.3 
2768.9 
2773.6 

2777.7 
2781.2 
2784.3 
2787.0 
2789.4 

2791.5 
2793.3 
2795.0 
2796.4 
2797.6 

2798.7 
2802.2 
2803.3 
2802.6 

Sf 

kJ/kgK 

0.5208 
0.5921 
0.6489 
0.6960 
0.7718 

0.8318 
0.8929 
0.9438 
1.0257 
1.0908 

1.1451 
1.1917 
1.2327 
1.2693 
1.3024 

1.5301 
1.6073 
1.6719 
1.7276 
1.7768 

1.8608 
1.9313 
1.9923 
2.0462 
2.0947 

2.1387 
2.1791 
2.2165 
2.2514 
2.2840 

2.3148 
2.3439 
2.3715 
2.3978 
2.4230 

2.4470 
2.5543 
2.6453 
2.7250 

ss 
kJ/kg K 

8.3283 
8.2272 
8.1487 
8.0849 
7.9846 

7.9072 
7.8302 
7.7676 
7.6692 
7.5932 

7.5314 
7.4793 
7.4342 
7.3946 
7.3592 

7.1275 
7.0531 
6.9923 
6.9409 
6.8963 

6.8216 
6.7602 
6.7081 
6.6627 
6.6224 

6.5861 
6.5531 
6.5227 
6.4946 
6.4684 

6.4439 
6.4208 
6.3990 
6.3782 
6.3585 

6.3397 
6.2561 
6.1856 
6.1240 
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Table B.2 (Continued) 

p T vt ■ 103 vg ut 
bar °C m3/kg m3/kg kJ/kg 

40.00 
45.00 
50.00 
55.00 
60.00 

250.4 
257.5 
264.0 
270.0 
275.6 

1.2523 
1.2694 
1.2861 
1.3026 
1.3190 

0.0498 
0.0441 
0.0394 
0.0356 
0.0324 

1082.18 
1116.14 
1147.74 
1177.39 
1205.42 

65.00 
70.00 
75.00 
80.00 
85.00 

280.9 
285.9 
290.6 
295.0 
299.3 

1.3352 
1.3515 
1.3678 
1.3843 
1.4009 

0.0297 
0.0274 
0.0253 
0.0235 
0.0219 

1232.06 
1257.52 
1281.96 
1305.51 
1328.27 

90.00 
95.00 
100.0 
105.0 
110.0 

303.4 
307.3 
311.0 
314.6 
318.1 

1.4177 
1.4348 
1.4522 
1.4699 
1.4881 

0.0205 
0.0192 
0.0180 
0.0170 
0.0160 

1350.36 
1371.84 
1392.79 
1413.27 
1433.34 

115.0 
120.0 
125.0 
130.0 
135.0 

321.5 
324.7 
327.9 
330.9 
333.8 

1.5068 
1.5260 
1.5458 
1.5663 
1.5875 

0.0151 
0.0143 
0.0135 
0.0128 
0.0121 

1453.06 
1472.47 
1491.61 
1510.55 
1529.31 

140.0 
145.0 
150.0 
155.0 
160.0 

336.7 
339.5 
342.2 
344.8 
347.4 

1.6097 
1.6328 
1.6572 
1.6828 
1.7099 

0.0115 
0.0109 
0.0103 
0.0098 
0.0093 

1547.94 
1566.49 
1585.01 
1603.55 
1622.17 

165.0 
170.0 
175.0 
180.0 
185.0 

349.9 
352.3 
354.7 
357.0 
359.3 

1.7388 
1.7699 
1.8033 
1.8399 
1.8801 

0.0088 
0.0084 
0.0079 
0.0075 
0.0071 

1640.92 
1659.89 
1679.18 
1698.88 
1719.17 

190.0 
195.0 
200.0 
205.0 
210.0 

361.5 
363.7 
365.8 
367.9 
369.9 

1.9251 
1.9762 
2.0357 
2.1076 
2.1999 

0.0067 
0.0063 
0.0059 
0.0055 
0.0050 

1740.22 
1762.34 
1785.94 
1811.76 
1841.25 

215.0 371.8 2.3362 0.0045 1878.57 
220.9 374.1 3.1550 0.0316 2029.60 

u g ht he S{ sg 

kJ/kg kJ/kg kJ/kg kJ/kgK kJ/kgK 

2601.5 
2599.3 
2596.5 
2593.1 
2589.3 

1087.2 
1121.9 
1154.2 
1184.6 
1213.3 

2800.6 
2797.6 
2793.7 
2789.1 
2783.9 

2.7961 
2.8607 
2.9201 
2.9751 
3.0266 

6.0690 
6.0188 
5.9726 
5.9294 
5.8886 

2584.9 
2580.2 
2575.1 
2569.6 
2563.8 

1240.7 
1267.0 
1292.2 
1316.6 
1340.2 

2778.1 
2771.8 
2765.0 
2757.8 
2750.1 

3.0751 
3.1211 
3.1648 
3.2066 
3.2468 

5.8500 
5.8130 
5.7774 
5.7431 
5.7097 

2557.6 
2551.1 
2544.3 
2537.1 
2529.5 

1363.1 
1385.5 
1407.3 
1428.7 
1449.7 

2742.0 
2733.4 
2724.5 
2715.1 
2705.4 

3.2855 
3.3229 
3.3592 
3.3944 
3.4288 

5.6771 
5.6452 
5.6139 
5.5830 
5.5525 

2521.6 
2513.4 
2504.7 
2495.7 
2486.2 

1470.4 
1490.8 
1510.9 
1530.9 
1550.7 

2695.1 
2684.5 
2673.4 
2661.8 
2649.7 

3.4624 
3.4953 
3.5277 
3.5595 
3.5910 

5.5221 
5.4920 
5.4619 
5.4317 
5.4015 

2476.3 
2465.9 
2455.0 
2443.4 
2431.3 

1570.5 
1590.2 
1609.9 
1629.6 
1649.5 

2637.1 
2623.9 
2610.0 
2595.5 
2580.2 

3.6221 
3.6530 
3.6838 
3.7145 
3.7452 

5.3710 
5.3403 
5.3091 
5.2774 
5.2450 

2418.4 
2404.8 
2390.2 
2374.6 
2357.7 

1669.6 
1690.0 
1710.7 
1732.0 
1754.0 

2564.1 
2547.1 
2529.0 
2509.7 
2488.9 

3.7761 
3.8073 
3.8390 
3.8714 
3.9047 

5.2119 
5.1777 
5.1423 
5.1054 
5.0667 

2339.3 
2319.0 
2296.2 
2269.7 
2237.5 

1776.8 
1800.9 
1826.7 
1855.0 
1887.5 

2466.3 
2441.4 
2413.7 
2381.6 
2343.0 

3.9393 
3.9756 
4.0144 
4.0571 
4.1060 

5.0256 
4.9815 
4.9331 
4.8787 
4.8144 

2193.9 1928.8 2291.0 4.1684 4.7299 
2029.6 2099.3 2099.3 4.4298 4.4298 
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Table B.3 Thermodynamics 

T v u h s 
°C m3/kg kJ/kg kJ/kg kJ /kgK 

p = 0.06 bar 

36.17 
80 
120 
160 
200 
240 
280 
320 
360 
400 
440 
500 

23.739 
27.133 
30.220 
33.303 
36.384 
39.463 
42.541 
45.620 
48.697 
51.775 
54.852 
59.468 

2424.0 
2486.7 
2544.1 
2602.2 
2660.9 
2720.6 
2781.2 
2842.7 
2905.2 
2968.8 
3033.4 
3132.4 

2566.5 
2649.5 
2725.5 
2802.0 
2879.2 
2957.4 
3036.4 
3116.4 
3197.4 
3279.5 
3362.6 
3489.2 

8.3283 
8.5794 
8.7831 
8.9684 
9.1390 
9.2975 
9.4458 
9.5855 
9.7176 
9.8433 
9.9632 
10.134 

p = 0.7 bar 

89.93 
120 
160 
200 
240 
280 
320 
360 
400 
440 
480 
520 

2.368 
2.5709 
2.8407 
3.1082 
3.3744 

3.6399 
3.9049 
4.1697 
4.4342 
4.6985 
4.9627 
5.2269 

2493.8 
2539.3 
2599.0 
2658.7 
2718.9 
2779.8 
2841.6 
2904.4 
2968.1 
3032.8 
3098.6 
3165.4 

2659.5 
2719.3 
2797.8 
2876.2 
2955.1 
3034.6 
3115.0 
3196.2 
3278.5 
3361.7 
3446.0 
3531.3 

7.4793 
7.6370 
7.8272 
8.0004 
8.1603 
8.3096 
8.4498 
8.5824 
8.7083 
8.8285 
8.9434 
9.0538 

p = 1.5 bar 

111.37 
160 
200 
240 
280 
320 
360 
400 
440 
480 
520 
560 

1.1600 
1.3174 
1.4443 
1.5699 
1.6948 
1.8192 
1.9433 
2.0671 
2.1908 
2.3144 
2.4379 
2.5613 

2519.3 
2594.9 
2655.8 
2716.7 
2778.2 
2840.3 
2903.3 
2967.2 
3032.0 
3097.9 
3164.8 
3232.9 

2693.3 
2792.5 
2872.4 
2952.2 
3032.4 
3113.2 
3194.8 
3277.2 
3360.6 
3445.1 
3530.5 
3617.0 

7.2234 
7.4660 
7.6425 
7.8044 
7.9548 
8.0958 
8.2289 
8.3552 
8.4756 
8.5908 
8.7013 
8.8077 

of superheated steam 

T v u h s 
°C m3/kg kJ/kg kJ/kg kJ /kgK 

p = 0.35 bar 

72.67 
80 
120 
160 
200 
240 
280 
320 
360 
400 
440 
500 

99.61 
120 
160 
200 
240 
280 
320 
360 
400 
440 
480 
520 

4.531 
4.625 
5.163 
5.697 
6.228 
6.758 
7.287 
7.816 
8.344 
8.872 
9.400 
10.192 

1.6958 
1.7931 
1.9838 
2.1723 
2.3594 
2.5458 
2.7317 
2.9173 
3.1027 
3.2879 
3.4730 
3.6581 

2472.1 
2483.1 
2542.0 
2600.7 
2659.9 
2719.8 
2780.6 
2842.2 
2904.8 
2968.5 
3033.2 
3132.2 

2630.7 
2645.0 
2722.7 
2800.1 
2877.9 
2956.3 
3035.6 
3115.8 
3196.9 
3279.0 
3362.2 
3488.9 

p= l.Obar 
2505.5 
2537.0 
2597.5 
2657.6 
2718.1 
2779.2 
2841.1 
2904.0 
2967.7 
3032.5 
3098.3 
3165.2 

2675.1 
2716.3 
2795.8 
2874.8 
2954.0 
3033.8 
3114.3 
3195.7 
3278.0 
3361.3 
3445.6 
3531.0 

7.7148 
7.7553 
7.9637 
8.1512 
8.3229 
8.4821 
8.6308 
8.7707 
8.9031 
9.0288 
9.1488 
9.3194 

7.3592 
7.4665 
7.6591 
7.8335 
7.9942 
8.1438 
8.2844 
8.4171 
8.5432 
8.6634 
8.7785 
8.8889 

133.55 
160 
200 
240 
280 
320 
360 
400 
440 
480 
520 
560 

0.6060 
0.6506 
0.7163 
0.7804 
0.8438 
0.9067 
0.9692 
1.0315 
1.0937 
1.1557 
1.2177 
1.2796 

p - 3.0 bar 

2543.4 
2586.9 
2650.2 
2712.6 
2775.0 
2837.8 
2901.2 
2965.4 
3030.5 
3096.6 
3163.7 
3231.9 

2725.2 
2782.1 
2865.1 
2946.7 
3028.1 
3109.8 
3191.9 
3274.9 
3358.7 
3443.4 
3529.0 
3615.7 

6.9923 
7.1274 
7.3108 
7.4765 
7.6292 
7.7716 
7.9057 
8.0327 
8.1536 
8.2692 
8.3800 
8.4867 
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Table B.3 (Continued) 

T 
°C m3/kg 

u 
kJ/kg kJ/kg kJ /kgK 

T v u h s 
°C m3/kg kJ/kg kJ/kg kJ /kgK 

p = 5 bar 

151.86 0.3751 2561.1 2748.6 6.8216 
180 0.4045 2609.5 2811.7 6.9652 
220 0.4449 2674.9 2897.4 7.1463 
260 0.4840 2738.9 2980.9 7.3092 
300 0.5225 2802.5 3063.7 7.4591 
340 0.5606 2866.3 3146.6 7.5989 
380 0.5985 2930.7 3229.9 7.7304 
420 0.6361 2995.7 3313.8 7.8550 
460 0.6736 3061.6 3398.4 7.9738 
500 0.7109 3128.5 3483.9 8.0873 
540 0.7482 3196.3 3570.4 8.1964 
560 0.7669 3230.6 3614.0 8.2493 

p = 7 bar 

164.97 0.2729 2572.2 2763.3 6.7081 
180 0.2846 2599.6 2798.8 6.7876 
220 0.3146 2668.1 2888.4 6.9771 
260 0.3434 2733.9 2974.2 7.1445 
300 0.3714 2798.6 3058.5 7.2970 
340 0.3989 2863.2 3142.4 7.4385 
380 0.4262 2928.1 3226.4 7.5712 
420 0.4533 2993.6 3310.9 7.6966 
460 0.4802 3059.8 3395.9 7.8160 
500 0.5070 3126.9 3481.8 7.9300 
540 0.5338 3194.9 3568.5 8.0393 
560 0.5741 3229.2 3612.2 8.09243 

p = 1 0 b a r 

179.91 0.1945 2583.2 2777.7 6.5861 
220 0.2169 2657.5 2874.3 6.7904 
260 0.2378 2726.1 2963.9 6.9652 
300 0.2579 2792.7 3050.6 7.1219 
340 0.2776 2858.5 3136.1 7.2661 
380 0.2970 2924.2 3221.2 7.4006 
420 0.3161 2990.3 3306.5 7.5273 
460 0.3352 3057.0 3392.2 7.6475 
500 0.3541 3124.5 3478.6 7.7622 
540 0.3729 3192.8 3565.7 7.8721 
580 0.3917 3262.0 3653.7 7.9778 
620 0.4105 3332.2 3742.7 8.0797 

p = 15 bar 

198.32 0.1318 2593.9 2791.5 6.4439 
220 0.1405 2638.1 2849.0 6.5630 
260 0.1556 2712.6 2945.9 6.7521 
300 0.1696 2782.5 3036.9 6.9168 
340 0.1832 2850.4 3125.2 7.0657 
380 0.1965 2917.6 3212.3 7.2033 
420 0.2095 2984.8 3299.1 7.3322 
460 0.2224 3052.3 3385.9 7.4540 
500 0.2351 3120.4 3473.1 7.5699 
540 0.2478 3189.2 3561.0 7.6806 
580 0.2605 3258.8 3649.6 7.7870 
620 0.2730 3329.4 3739.0 7.8894 

p = 20bar 

212.42 0.0996 2599.5 2798.7 6.3397 
240 0.1084 2658.8 2875.6 6.4937 
280 0.1200 2735.6 2975.6 6.6814 
320 0.1308 2807.3 3068.8 6.8441 
360 0.1411 2876.7 3158.9 6.9911 
400 0.1512 2945.1 3247.5 7.1269 
440 0.1611 3013.4 3335.6 7.2539 
480 0.1708 3081.9 3423.6 7.3740 
520 0.1805 3150.9 3511.9 7.4882 
560 0.1901 3220.6 3600.7 7.5975 
600 0.1996 3291.0 3690.2 7.7024 
640 0.2091 3362.4 3780.5 7.8036 

p = 30bar 

233.90 0.06667 2603.2 2803.3 6.1856 
240 0.06818 2618.9 2823.5 6.2251 
280 0.07710 2709.0 2940.3 6.4445 
320 0.08498 2787.6 3042.6 6.6232 
360 0.09232 2861.3 3138.3 6.7794 
400 0.09935 2932.7 3230.7 6.9210 
440 0.10618 3003.0 3321.5 7.0521 
480 0.11287 3073.0 3411.6 7.1750 
520 0.11946 3143.2 3501.6 7.2913 
560 0.12597 3213.8 3591.7 7.4022 
600 0.13243 3285.0 3682.3 7.5084 
640 0.13884 3357.0 3773.5 7.6105 
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Table B.3 (Continued) 

T 
°C 

250.38 
280 
320 
360 
400 
440 
480 
520 
560 
600 
640 
680 

295.04 
320 
360 
400 
440 
480 
520 
560 
600 
640 
680 
720 

324.75 
360 
400 
440 
480 
520 
560 
600 
640 
680 
720 
760 

V 

m 3/kg 

0.04978 
0.05544 
0.06198 
0.06787 
0.07340 
0.07872 
0.08388 
0.08894 
0.09392 
0.09884 
0.10372 
0.10855 

0.02352 
0.02681 
0.03088 
0.03431 
0.03742 
0.04034 
0.04312 
0.04582 
0.04845 
0.05102 
0.05356 
0.05607 

0.01426 
0.01810 
0.02108 
0.02355 
0.02576 
0.02781 
0.02976 
0.03163 
0.03345 
0.03523 
0.03697 
0.03869 

u 
kJ/kg 

h 
kJ/kg 

p = 40 bar 

2601.5 
2679.0 
2766.6 
2845.3 
2919.8 
2992.3 
3064.0 
3135.4 
3206.9 
3278.9 
3351.5 
3424.9 

2800.6 
2900.8 
3014.5 
3116.7 
3213.4 
3307.2 
3399.5 
3491.1 
3582.6 
3674.3 
3766.4 
3859.1 

p = 80bar 

2569.6 
2661.7 
2771.9 
2863.5 
2946.8 
3026.0 
3102.9 
3178.6 
3254.0 
3329.3 
3404.9 
3480.9 

2757.8 
2876.2 
3018.9 
3138.0 
3246.2 
3348.6 
3447.8 
3545.2 
3641.5 
3737.5 
3833.4 
3929.4 

p = 120 bar 

2513.4 
2677.1 
2797.8 
2896.3 
2984.9 
3068.4 
3149.0 
3228.0 
3306.3 
3384.3 
3462.3 
3540.6 

2684.5 
2894.4 
3050.7 
3178.9 
3294.0 
3402.1 
3506.1 
3607.6 
3707.7 
3807.0 
3906.0 
4004.8 

s 
kJ/kgK 

6.0690 
6.2552 
6.4538 
6.6207 
6.7688 
6.9041 
7.0301 
7.1486 
7.2612 
7.3687 
7.4718 
7.5711 

5.7431 
5.9473 
6.1805 
6.3630 
6.5192 
6.6589 
6.7873 
6.9070 
7.0200 
7.1*274 
7.2302 
7.3289 

5.4920 
5.8341 
6.0739 
6.2589 
6.4161 
6.5559 
6.6839 
6.8029 
6.9150 
7.0214 
7.1231 
7.2207 

T 
°C rr 

276.62 
280 
320 
360 
400 
440 
480 
520 
560 
600 
640 
680 

311.04 
320 
360 
400 
440 
480 
520 
560 
600 
640 
680 
720 

336.75 
360 
400 
440 
480 
520 
560 
600 
640 
680 
720 
760 

V u l h s 
L3/kg kJ/kg kJ/kg kJ/kgK 

p 

0.03244 
0.03317 
0.03874 
0.04330 
0.04739 
0.05121 
0.05487 
0.05840 
0.06186 
0.06525 
0.06859 
0.07189 

P 

0.01802 
0.01925 
0.02330 
0.02641 
0.02911 
0.03160 
0.03394 
0.03619 
0.03836 
0.04048 
0.04256 
0.04461 

P = 

0.01148 
0.01421 
0.01722 
0.01955 
0.02157 
0.02343 
0.02517 
0.02683 
0.02843 
0.02999 
0.03152 
0.03301 

= 60 bar 

2589.3 
2604.7 
2719.0 
2810.6 
2892.7 
2970.2 
3045.3 
3119.4 
3193.0 
3266.6 
3340.5 
3414.9 

= 100 bar 

2544.3 
2588.2 
2728.0 
2832.0 
2922.3 
3005.8 
3085.9 
3164.0 
3241.1 
3317.9 
3394.6 
3471.6 

: 140 bar 

2476.3 
2616.0 
2760.2 
2868.8 
2963.1 
3050.3 
3133.6 
3214.7 
3294.5 
3373.8 
3452.8 
3532.0 

2783.9 
2803.7 
2951.5 
3070.4 
3177.0 
3277.4 
3374.5 
3469.8 
3564.1 
3658.1 
3752.1 
3846.3 

2724.5 
2780.6 
2961.0 
3096.1 
3213.4 
3321.8 
3425.3 
3525.8 
3624.7 
3722.7 
3820.3 
3917.7 

2637.1 
2815.0 
3001.3 
3142.5 
3265.2 
3378.3 
3485.9 
3590.3 
3692.5 
3793.6 
3894.1 
3994.2 

5.8886 
5.9245 
6.1830 
6.3771 
6.5404 
6.6854 
6.8179 
6.9411 
7.0571 
7.1673 
7.2725 
7.3736 

5.6139 
5.7093 
6.0043 
6.2114 
6.3807 
6.5287 
6.6625 
6.7862 
6.9022 
7.0119 
7.1165 
7.2167 

5.3710 
5.6579 
5.9438 
6.1477 
6.3152 
6.4616 
6.5940 
6.7163 
6.8309 
6.9392 
7.0425 
7.1413 
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Table B.3 (Continued) 

T v u h s 
°C m3/kg kJ/kg kJ/kg kJ /kgK 

347.44 
360 
400 
440 
480 
520 
560 
600 
640 
680 
720 
760 

365.81 
400 
440 
480 
520 
560 
600 
640 
680 
720 
760 
800 

400 
440 
480 
520 
560 
600 
640 
680 
720 
760 
800 

0.00931 
0.01105 
0.01427 
0.01652 
0.01842 
0.02013 
0.02172 
0.02322 
0.02466 
0.02606 
0.02742 
0.02876 

0.00588 
0.00995 
0.01223 
0.01399 
0.01551 
0.01688 
0.01817 
0.01939 
0.02056 
0.02170 
0.02280 
0.02388 

0.00383 
0.00712 
0.00885 
0.01019 
0.01135 
0.01239 
0.01336 
0.01428 
0.01516 
0.01600 
0.01682 

p = 160 bar 

2431.3 
2537.5 
2718.5 
2839.6 
2940.5 
3031.8 
3117.9 
3201.1 
3282.6 
3363.1 
3443.3 
3523.4 

2580.2 
2714.3 
2946.8 
3104.0 
3235.3 
3353.9 
3465.4 
3572.6 
3677.2 
3780.1 
3882.1 
3983.5 

p = 200 bar 

2296.2 
2617.9 
2775.2 
2892.3 
2993.1 
3085.5 
3173.3 
3258.2 
3341.6 
3424.0 
3505.9 
3587.8 

2413.7 
2816.9 
3019.8 
3172.0 
3303.2 
3423.2 
3536.7 
3646.0 
3752.8 
3857.9 
3961.9 
4065.4 

p = 280 bar 

2221.7 
2613.5 
2782.7 
2908.9 
3016.8 
3115.1 
3207.9 
3297.2 
3384.4 
3470.3 
3555.5 

2328.8 
2812.9 
3030.5 
3194.3 
3334.6 
3462.1 
3582.0 
3697.0 
3808.8 
3918.4 
4026.5 

5.2450 
5.4591 
5.8162 
6.0433 
6.2226 
6.3761 
6.5133 
6.6390 
6.7561 
6.8664 
6.9712 
7.0714 

4.9331 
5.5521 
5.8455 
6.0534 
6.2232 
6.3708 
6.5039 
6.6264 
6.7408 
6.8488 
6.9515 
7.0498 

4.7465 
5.4497 
5.7472 
5.9592 
6.1319 
6.2815 
6.4158 
6.5390 
6.6539 
6.7621 
6.8647 

T v u h s 
°C m3/kg kJ/kg kJ/kg kJ /kgK 

357.06 
360 
400 
440 
480 
520 
560 
600 
640 
680 
720 
760 

P = 
0.00750 
0.00810 
0.01191 
0.01415 
0.01596 
0.01756 
0.01903 
0.02041 
0.02173 
0.02301 
0.02424 
0.02545 

P = 

: 180 bar 

2374.6 
2418.3 
2671.7 
2808.5 
2916.9 
3012.7 
3101.9 
3187.3 
3270.5 
3352.4 
3433.7 
3514.7 

: 240 bar 

2509.7 
2564.1 
2886.0 
3063.2 
3204.2 
3328.8 
3444.5 
3554.8 
3661.7 
3766.5 
3870.0 
3972.8 

5.1054 
5.1916 
5.6872 
5.9432 
6.1358 
6.2971 
6.4394 
6.5687 
6.6885 
6.8008 
6.9072 
7.0086 

400 
440 
480 
520 
560 
600 
640 
680 
720 
760 
800 

0.00673 
0.00929 
0.01100 
0.01241 
0.01366 
0.01480 
0.01587 
0.01690 
0.01788 
0.01883 
0.01976 

2476.0 
2700.9 
2839.9 
2952.1 
3051.8 
3144.6 
3233.3 
3319.6 
3404.3 
3488.2 
3571.7 

2637.5 
2923.9 
3103.9 
3250.0 
3379.5 
3499.8 
3614.3 
3725.1 
3833.4 
3940.2 
4046.0 

5.2365 
5.6511 
5.8971 
6.0861 
6.2456 
6.3866 
6.5148 
6.6336 
6.7450 
6.8504 
6.9508 

400 
440 
480 
520 
560 
600 
640 
680 
720 
760 
800 

P 

0.00237 
0.00543 
0.00722 
0.00853 
0.00962 
0.01059 
0.01148 
0.01232 
0.01312 
0.01388 
0.01462 

= 320 bar 

1981.0 
2509.0 
2720.5 
2863.4 
2980.6 
3084.9 
3182.0 
3274.6 
3364.3 
3452.3 
3539.2 

2056.8 
2682.9 
2951.5 
3136.2 
3288.4 
3423.8 
3549.4 
3668.8 
3784.0 
3896.4 
4006.9 

4.3252 
5.2325 
5.5998 
5.8390 
6.0263 
6.1851 
6.3258 
6.4538 
6.5722 
6.6832 
6.7881 
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Table B.4 Thermodynamic Properties of Air 

T 

K 

200 
210 
220 
230 
240 

250 
260 
270 
280 
285 

290 
295 
300 
305 
310 

315 
320 
325 
330 
340 

350 
360 
370 
380 
390 

400 
410 
420 
430 
440 

h 

kJ/kg 

199.97 
209.97 
219.97 
230.02 
240.02 

250.05 
260.09 
270.11 
280.13 
285.14 

290.16 
295.17 
300.19 
305.22 
310.24 

315.27 
320.29 
325.31 
330.34 
340.42 

350.49 
360.58 
370.67 
380.77 
390.88 

400.98 
411.12 
421.26 
431.43 
441.61 

s° 

kJ/(kg-,K) 

1.29559 
1.34444 
1.39105 
1.43557 
1.47824 

1.51917 
1.55848 
1.59634 
1.63279 
1.65055 

1.66802 
1.68515 
1.70203 
1.71865 
1.73498 

1.75106 
1.76690 
1.78249 
1.79783 
1.82790 

1.85708 
1.88543 
1.91313 
1.94001 
1.96633 

1.99194 
2.01699 
2.40142 
2.06533 
2.08870 

Pr 

0.3363 
0.3987 
0.4690 
0.5477 
0.6355 

0.7329 
0.8405 
0.9590 
1.0889 
1.1584 

1.2311 
1.3068 
1.-3860 
1.4686 
1.5546 

1.6442 
1.7375 
1.8345 
1.9352 
2.149 

2.379 
2.626 
2.892 
3.176 
3.481 

3.806 
4.153 
4.522 
4.915 
5.332 

vr 

1707.0 
1512.0 
1346.0 
1205.0 
1084.0 

979.0 
887.8 
808.0 
738.0 
706.1 

676.1 
647.9 
621.2 
596.0 
572.3 

549.8 
528.6 
508.4 
489.4 
454.1 

422.2 
393.4 
367.2 
343.4 
321.5 

301.6 
283.3 
266.6 
251.1 
236.8 

T 

K 

450 
460 
470 
480 
490 

500 
510 
520 
530 
540 

550 
560 
570 
580 
590 

600 
610 
620 
630 
640 

650 
660 
670 
680 
690 

700 
710 
720 
730 
740 

h 

kJ/kg 

451.80 
462.02 
472.24 
482.49 
492.74 

503.02 
513.32 
523.63 
533.98 
544.35 

554.74 
565.17 
575.59 
586.04 
596.52 

607.02 
617.53 
628.63 
638.63 
649.22 

659.84 
670.47 
681.14 
691.82 
702.52 

713.27 
724.04 
734.82 
745.62 
756.44 

s° 

kJ/(kg•K) 

2.11161 
2.13407 
2.15604 
2.17760 
2.19876 

2.21952 
2.23993 
2.25997 
2.27967 
2.29906 

2.31809 
2.33685 
2.35531 
2.37348 
2.39140 

2.40902 
2.42644 
2.44356 
2.46048 
2.47716 

2.49364 
2.50985 
2.52589 
2.54175 
2.55731 

2.57277 
2.58810 
2.60319 
2.61803 
2.63280 

Pr 

5.775 
6.245 
6.742 
7.268 
7.824 

8.411 
9.031 
9.684 
10.37 
11.10 

11.86 
12.66 
13.50 
14.38 
15.31 

16.28 
17.30 
18.36 
19.84 
20.64 

21.86 
23.13 
24.46 
25.85 
27.29 

28.80 
30.38 
32.02 
33.72 
35.50 

Vr 

223.6 
211.4 
200.1 
189.5 
179.7 

170.6 
162.1 
154.1 
146.7 
139.7 

133.1 
127.0 
121.2 
115.7 
110.6 

105.8 
101.2 
96.92 
92.84 
88.99 

85.34 
81.89 
78.61 
75.50 
72.56 

69.76 
67.07 
64.53 
62.13 
59.82 
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Table B.4 (Continued) 

K 

750 
760 
770 
780 
790 

800 
820 
840 
860 
880 

h 

kJ/kg 

769.29 
778.18 
789.11 
800.03 
810.99 

821.95 
843.98 
866.08 
888.27 
910.56 

900 932.93 
920 955.39 
940 977.92 
960 1000.55 
980 1023.25 

1000 1046.04 
1020 1068.89 
1040 1091.85 
1060 1114.86 
1080 1137.89 

1100 1161.07 
1120 1184.28 
1140 1207.57 
1160 1230.92 
1180 1254.34 

1200 1277.79 
1220 1301.31 
1240 1324.93 
1260 1348.55 
1280 1372.24 

kJ/(kg ■ K) 

2.64737 
2.66176 
2.67595 
2.69013 
2.70100 

2.71787 
2.74504 
2.77170 
2.79783 
2.82344 

2.84856 
2.87324 
2.89748 
2.92128 
2.94469 

2.96770 
2.99034 
2.99034 
3.03449 
3.05608 

3.07732 
3.09825 
3.11883 
3.13916 
3.15916 

3.17888 
3.19834 
3.21751 
3.21751 
3.25510 

Pr 

37.35 
39.07 
41.31 
43.35 
45.55 

47.75 
52.59 
57.60 
63.09 
68.98 

75.29 
82.05 
89.28 
97.00 
105.2 

114.0 
123.4 
123.4 
143.9 
155.2 

167.1 
179.7 
193.1 
207.2 
222.2 

238.0 
254.7 
272.3 
281.3 
310.4 

57.63 
55.54 
53.39 
51.64 
49.86 

48.08 
44.84 
41.85 
39.12 
36.61 

34.31 
32.18 
30.22 
28.40 
26.73 

25.17 
23.72 
22.39 
21.12 
19.98 

18.896 
17.886 
16.946 
16.064 
15.241 

14.170 
13.747 
13.069 
12.435 
11.835 

K 

1300 
1320 
1340 
1360 
1380 

kJ/kg kJ/(kg • K ) 

1700 
1750 
1800 
1850 
1900 

1950 
2000 
2050 
2100 
2150 
2200 
2250 

1395.97 
1419.76 
1443.60 
1467.49 
1491.44 

1400 1515.42 
1420 1539.44 
1440 1563.51 
1460 1587.63 
1480 1611.79 

1500 1635.97 
1520 1660.23 
1540 1684.51 
1560 1708.82 
1580 1733.17 

1600 1757.57 
1620 1782.00 
1640 1806.46 
1660 1830.96 
1680 1855.50 

1880.1 
1941.6 
2003.3 
2065.3 
2127.4 

2189.7 
2252.1 
2314.6 
2377.4 
2440.3 
2503.2 
2566.4 

3.27345 
3.29160 
3.30959 
3.32724 
3.34474 

3.36200 
3.37901 
3.39586 
3.41217 
3.42892 

3.44516 
3.46120 
3.47712 
3.49276 
3.50829 

3.52364 
3.53879 
3.55381 
3.56867 
3.58355 

3.5979 
3.6336 
3.6681 
3.7023 
3.7354 

3.7677 
3.7994 
3.8303 
3.8605 
3.8901 
3.9191 
3.9474 

330.9 11.275 
352.5 10.747 
375.3 10.247 
399.1 9.780 
424.2 9.337 

450.5 8.919 
478.0 8.526 
506.9 8.153 
537.1 7.801 
568.8 7.468 

601.9 
636.5 
672.8 
710.5 
750.0 

791.2 
834.1 
878.9 
925.3 
974.2 

1025 
1161 
1310 
1475 
1655 

1852 
2068 
2303 
2995 
2837 
3138 
3464 
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Ainley-Mathieson correlation 
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axial compressor 

50% reaction, 227 
blade-loading coefficient, 225 
cascade, 252 
de Haller criterion, 228 
deflection, 228 
design deflection, 231 
diffusion factor, 242 
flow angles, 227 
flow coefficient, 225 
flow deviation, 258 
free vortex defined, 236 
free vortex design, 228, 236 
Lieblein diffusion factor, 242 
multistage reheat factor, 260 
off-design operation, 234 
optimum diffusion, 257 
other losses, 247, 257 
performance characteristics, 234 
polytropic efficiency, 259 
pressure ratio, 221, 224 
radial equilibrium, 235 
reaction, 225 
solidity, 233 

stage efficiency, 250 
stage stagnation temperature rise, 223 
static enthalpy loss coefficients, 250 
typical range for blade-loading coefficient, 222 
typical range of flow coefficient, 222 
work-done factor for multistage compressors, 260 

axial turbine 
0% reaction stage, 178 
50% reaction stage, 176 
Ainley-Mathieson correlation for losses, 205 
blade-loading coefficient, 172 
constant mass flux, 188 
fixed nozzle angle, 187 
flow angles, 173 
flow coefficient, 172 
free vortex design, 183 
hub-to-casing ratio, 136 
multistage reheat factor, 215 
off-design operation, 180 
performance characteristics, 199 
polytropic efficiency, 216 
pressure ratio, 193 
radial equilibrium, 181 
reaction, 172 
secondary losses, 208 
Smith chart, 199 
Soderberg loss coefficients, 190 
stage, 167 
stage efficiency, 191 
stage stagnation temperature drop, 181 
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stagnation pressure losses for a stage, 193 
Zweifel correlation, 204 

balance principle defined, 44 
blade-loading coefficient 

axial compressor, 225 
axial turbine, 172 
defined, 111 

blade element theory for a wind turbine, 409 
blade shapes 

axial compressor, 253 
Francis turbine, 373 
single-stage steam turbine, 150 

boundary layer 
displacement thickness, 244 
momentum thickness, 244 

British gravitational units, 13 
buckets, 151 
bulb turbine, 361 

specific speed, 363 
casing, 166 
cavitation 

hydraulic turbines, 380 
pumps, 303 

centrifugal compressor 
blade height, 285 
characteristics, 281 
choking of inducer, 280 
diffusion ratio, 284 
history, 12 
illustration of a modern multistage, 12 
inducer, 265 
natural-gas transmission, 5 
optimum inducer angle, 276 
slip, 268 
vaneless diffuser, 287 

centrifugal pump 
cavitation, 303 
efficiency, 291,293 
flow and loading coefficients, 294 
history, 12 
industrial uses, 5 
specific diameter, 294 
specific speed, 294 
vaneless diffuser, 305 
volute design, 306 

choking, 65, 67 
compressor, 235 

chord and axial chord, 166 
Colebrook formula for friction, 84, 368 
combustion 

specific heat of gases, 35 
theoretical air, 34 

compressible flow 
area change, 61 
choked flow, 65 
converging-diverging nozzle, 67 
converging nozzle, 65 
Fanno flow with area change, 84 
friction in nozzle flow, 75 
Mach waves, 92 
overexpanded, 68 

speed of sound, 58 
underexpanded, 68 

compressor 
characteristics of a radial inflow turbine, 131 
choking, 131 

computer software EES, 22 
conservation principle defined, 44 
Cordier diagram, 294 
corrected flow rate, 130 
Dalton's model for a mixture of ideal gases, 32 
Darcy friction factor, 84 
diffusion ratio 

centrifugal compressor, 284 
radial inflow turbine, 350 

double-suction pump, 293 
efficiency 

axial compressor stage, 225 
axial turbine stage, 191 
centrifugal compressor, 273 
centrifugal pump, 291 
hydraulic turbine, 363 
nozzle, 82 
polytropic, 75 
pressure-compounded steam turbine stage, 149 
radial inflow turbine, 315, 319 
Rankine cycle, 135 
rotor, 139 
steam power plant, 137 
total-to-static, 37, 139 
total-to-total, 36 

electricity production, 2 
endwalls, 166 
energy engineering, 2 
energy resources 

biomass, 1 
fossil fuels, 1 
hydraulic, 359 
wind energy, 401 

enthalpy 
relative stagnation, 225 
stagnation, 17 

Euler equation for turbomachinery, 109 
Fanning friction factor, 84 
Fanno flow, 84 

stagnation pressure loss, 86 
fifty percent (50%) reaction stage, 176 
flow angles of absolute and relative velocity, 106 
flow coefficient, 111, 125 

axial compressor, 225 
axial turbine, 172 

flow function, 63 
flow work, 17 
fluid coupling 

advantages, 385 
efficiency, 387 
flow rate, 389 
losses, 388 
partially filled, 390 
primary, 385 
secondary, 385 
toroidal shape, 386 
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torque coefficient, 390 
Francis turbine, 362, 370 

specific speed, 363 
friction factor 

Colebrook, 84 
Darcy, 84 
Fanning, 84 

gas turbine 
electricity generation, 4 
industrial, 11 

Gibbs-Dalton model for ideal gases, 33 
Helmholtz vortex theorem, 426 
hub, 166 
hydraulic turbine 

bulb turbine, 361 
capacity factor, 4 
crossflow or Banki-Mitchell turbine, 380 
effective head, 360 
electricity generation, 5 
Francis turbine, 362, 370, 373 
gross head, 360 
history, 8 
Kaplan turbine, 361, 377-378 
mechanical efficiency, 361 
overall efficiency, 360 
Pelton wheel, 362 
pit turbine, 371 
power-specific speed, 362 
synchronous speed, 363 
turgo, 380 
volumetric efficiency, 361 

incompressible fluid 
internal energy and irreversibility, 35 
stagnation pressure, 44 

induced and forced draft, 39 
induction factor, 405 
internal heating, 42 
jet engine 

gas generator, 221 
history, 11 
spool, 221 

Kaplan turbine, 361 
number of blades, 378 
specific speed, 363 

kinetic theory of specific heats for gases, 28 
Mach number, 59 
manometer formula, 127 
mass conservation principle, 16 
meridional velocity, 106 
mixing and pressure change, 53 
Mollier diagram, 24 
moment of momentum balance, 108 
momentum equation, 47 
nondimensional groups, 125 
normal shock, 68-69 
nozzle 

efficiency, 83 
polytropic process, 76 
static enthalpy loss coefficient, 79 
steam, 87 
velocity coefficient, 79 

nuclear fuels—uranium and thorium, 1 
nucleation—homogeneous and heterogeneous, 90 
oblique shock, 68 
off-design operation of an axial turbine, 180 
overexpanded flow, 68 
Pelton wheel, 362 

number of buckets, 363 
specific speed, 363 

Pfleiderer correlation for pumps, 293 
pitch, 166 
polytropic efficiency, 216, 259 
positive-displacement machine, 2 
power-absorbing machine, 2 
power-producing machine, 2 
power-specific speed, 362 
power coefficient, 127 
power ratio of a radial inflow turbine, 315 
Prandtl-Meyer theory, 93 
pressure compounding, 146 
pressure ratio 

axial compressor, 224 
axial turbine, 193 
steam turbine, 136 

pressure recovery partial, 51 
pressure side of blade, 166 
primary energy production 

wind energy, 401 
radial equilibrium 

axial compressor, 235 
axial turbine, 181 
constant mass flux, 188 
first power exponent, 241 
fixed nozzle angle, 187 
zero-power exponent, 240 

radial inflow turbine, 313 
Balje diagram, 324 
blade height, 351 
efficiency, 319, 345 
minimum exit Mach number, 347 
number of blades, 352 
optimum incidence, 352 
optimum inlet, 339 
radius ratio, 350 
recommended diffusion, 350 
specific diameter, 324 
specific speed, 324 
stator flow, 329 
stator loss coefficients, 333 
typical design parameters, 328 

Rankine combined vortex wake, 415 
reaction 

axial compressor, 225 
axial turbine, 172 
definition, 116 
in terms of kinetic energies, 116 

reheat factor 
axial compressor, 260 
axial turbine, 215 

renewable energy, 1 
Reynolds number, 125 
rothalpy, 114 
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rotor efficiency 
centrifugal compressor, 270 

scale effect, 125 
scaling analysis, 124 
shape parameter, 128 
shock 

normal, 68-69 
Rankine-Hugoniot relations, 73 
shock relations, 72 
strength, 75 

similitude, 125 
slip, 268 
slip stream, 402 
sonic state, 62 
specific diameter 

centrifugal pump, 294 
radial inflow turbine, 323 

specific speed, 128 
centrifugal pump, 294 
hydraulic turbines, 361, 363 
radial inflow turbine, 323 

speed of sound, 59 
influence of molecular mass, 59 

spouting velocity, 317 
stage 

axial compressor, 223 
axial turbine, 167 
normal, 167 

stagnation density, 60 
stagnation pressure, 60 
stagnation pressure loss and entropy, 45 
stagnation pressure losses 

axial turbine, 193 
profile losses for axial compressor, 247 

stagnation pressure 
low Mach number, 60 

stagnation state 
defined, 36 

stagnation temperature, 60 
static enthalpy loss coefficients, 141 
steam tables, 22 
steam turbine, 3 

blade shape, 151 
electricity production, 2 
history, 10 
nozzle coefficient, 138 
pressure compounding, 146 
rotor efficiency, 139 
single-stage impulse, 138 
single-stage optimum blade speed, 144 
Soderberg correlation, 160 
types, 136 
velocity compounding, 152 
zero-reaction stage, 158 

steam 
computer software EES, 22 
condensation shock, 91 
equation of state, 22 
Mollier diagram, 24 
supersaturation, 24, 90 
undercooling, 91 

Wilson line, 24 
Zeuner equation, 28 

streamline curvature method, 431 
subsonic flow defined, 59 
suction side of blade, 166 
supercritical and ultrasupercritical steam cycle, 3 
supersonic flow defined, 59 
swirl velocity, 168 
thermodynamics 

compressed liquid, 26 
equation of state for air, 29 
equation of state for steam, 22 
first law, 17 
Gibbs equations, 20 
ideal gas, 27 
ideal gas mixutures, 31 
incompressible fluid, 35 
second law, 19 

three-dimensional flow 
axial compressor, 235 
axial turbine, 181 

tip clearance and leakage flow, 167 
torque converter 

efficiency, 393, 396 
torque multiplication, 391 

total head, 291 
transonic flow defined, 59 
trothalpy, 114 
turbine characteristics of a radial inflow turbine, 132 
turbocharger, 130 
turbomachine 

definition of, 2 
history, 7 
household use, 6 
names of components, 2 

Tygun formula, 363 
underexpanded flow, 68 
unloading of a blade, 242 
utilization 

definition, 117 
maximum, 119 
relation to reaction, 118 

variable specific heats, 41 
velocity compounding, 152 
velocity triangle, 106 
ventilating blower, 39 
volute, 306 
water wheel history, 7 
Wilson line, 24 
wind energy 

capacity factor, 401 
Denmark, 401 
Germany, 401 
installed capacity, 5 
United States, 401 

wind turbine, 401 
actuator disk, 403 
American windmill, 9 
Betz limit, 406 
blade element theory contributions by 

N. E.Joukovsky, 409 
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blade element theory development by S. Drzewieci, 
402 

blade element theory of W. Froude, 402 
blade forces for a nonrotating wake, 415 
capacity factor, 5 
ducted turbine, 408 
Glauert theory for an ideal turbine, 424 
history, 8 
induction factors for an irrotational wake, 415 
momentum theory, 403 
momentum theory of W. J. M. Rankine, 402 
operation as a propeller, 407 

power coefficient, 406 
Prandtl's tip correction, 426 
pressure drop across the actuator disk, 404 
Savonius rotor, 9 
tip speed ratio, 406, 414 
velocity at the actuator disk, 404 
wake rotation, 409 

windmill, 401 
work coefficient, 126 
zero percent (0%) reaction, 158, 178 
Zeuner's equation, 87 
Zweifel correlation, 204 
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