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Preface  

The advent of the gas turbine engine during the second world war demanded rapid 
developments in aerodynamic design and analysis techniques linked to wind tunnel 
and model testing, particularly for the evolution of high performance compressors. 
In response to this the field of 'Internal Aerodynamics' was born and has expanded 
with remarkable speed and complexity over the intervening half-century. In addition 
to a prolific literature of published papers portraying great diversity and impressive 
advances in this field, several textbooks have provided extremely helpful organisation 
and focus for the student or designer, including the works by Horlock (1958, 1966, 
1978), Dixon (1975), Gostelow (1984), Cumpsty (1989) and Lewis (1991). 

We should not forget that this activity was predated by the successful development 
of the steam turbine in the previous half-century, stemming largely in this country 
from the famous patent taken out by C. A. Parsons in 1884. The development of 
distributed electrical power through national or state grid systems led to an enormous 
growth in steam turbine technology within a competitive framework, leading to (a) 
progressive gains in performance, (b) a variety of design techniques, (c) an 
accumulation of company performance correlations, and (d) a remarkable expansion 
in unit size, e.g. from 30 MW to 660 MW since 1945. In parallel with this the gas 
turbine engine advanced rapidly as the major prime mover for both civil and military 
aircraft. The fields of internal aerodynamics for both steam and gas turbomachines 
have consequently come much closer together during the last 25 years. Similar 
developments of internal aerodynamics have also taken place during this period in 
the fields of mixed-flow and centrifugal pumps and fans, hydraulic turbines, ducted 
propellers and even wind generators, involving in many cases extremely erudite 
computer codes. Parallel developments in computer hardware and numerical methods 
have provided the incentive for ever-increasing power and sophistication of these 
important design tools whose use is now validated by considerable experience. 

On the other hand turbomachinery performance correlations have tended to be 
less public and to develop in more individualistic ways, largely due to the different 
approaches within engineering companies towards the use of dimensional analysis 
for correlation of previous experience or for performance optimisation. Traditionally 
dimensional analysis has been the province of scale model testing, to provide, for 
example, data banks for the systematic development of families of related turbo- 
machines such as pumps, fans and hydraulic turbines. As will be illustrated in Chapter 
1, the normal tradition is then to make use of global dimensionless groups linking, 
for example, model tests to predicted operation of the full scale prototype. The paper 
by S. F. Smith (1965) was of special historical significance in revealing the way forward 
to a more universal approach to performance analysis, in this case for axial turbines, 
by adopting local dimensionless performance variables (namely the flow coefficient 
~b and the work coefficient ~) which led to the specification of dimensionless velocity 
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triangles. The outcome was a powerful correlation of the available family of 
Rolls-Royce model turbines at their best efficiency points, which will be the principal 
subject addressed in Chapter 3. The subsequent publication of a steam turbine 
correlation by Craig and Cox (1971) mapped on the same basis confirmed that steam 
and gas turbines, although subject to obvious differences regarding the properties 
of their working substances, are in fact close relatives within the family of rotodynamic 
machines. The main outcome of these studies was a clear demonstration that the 
efficiency of an axial turbine is at least as dependent upon the chosen performance 
(th, @) duty as it is upon the blade profile aerodynamics. As will be outlined in Chapter 
3 for axial turbines and in later chapters for other turbomachine types, the 
dimensionless velocity triangles and thus the operating environment of the blade 
profiles are largely shaped by the chosen (th, @) duty. 

In the intervening period since the paper by S. F. Smith (1965), although there 
has been intensive effort to conquer the increasingly demanding design problems of 
internal aero-thermodynamics to cope with advances in size and performance of both 
steam and gas turbines, there has been less emphasis upon the unifying methodology 
of dimensional analysis implied by his paper. During the early part of this period, 
however, the present author and his colleague Dr T. H. Frost addressed the important 
matter of how to teach the subject of axial turbine performance analysis and stage 
selection at first degree level linked to the Rolls-Royce correlation or 'Smith' chart. 
The author also extended this general approach at Master's degree level to cover axial 
fans, compressors, pumps, propellers, ducted propellers and also mixed-flow 
turbomachines in order to provide a universal approach to performance analysis 
embracing a wide range of turbomachine types. Much of this work has been published 
in the research literature but is now drawn together in the present book in a form 
suitable for the student or the designer. Three major computer programs have also 
been provided on the accompanying disc to facilitate student project activity at the 
professional designer's level. The first of these, FIPSI, enables the user to attempt 
the complete thermodynamic layout of a multi-stage free-vortex gas turbine, checking 
the chosen stage duty (~b, ~) against the published 'Smith' chart, while keeping an 
eye on total-to-total efficiency, stage reaction at the hub and Mach number levels. 
The second PC program, CASCADE, provides a simple tool for blade profile 
selection to meet required inflow and efflux velocity triangles. The third program, 
STACK, provides the means for creating the geometry of up to ten blade profile 
sections from hub to tip with facility to stack the sections as required, for example 
on their centres of gravity, and for calculation of their geometrical properties such 
as area, centre of gravity, principal axes and second moments of area, for blade 
stressing purposes. The author has used these extensively with large classes of first 
degree students to introduce them to overall design requirements, performance 
analysis and prediction of multi-stage axial turbines. These major programs are 
provided as executable codes only. Source codes have also been provided on the PC 
disc for a range of other, simpler problems as a supplement to some of the teaching 
material within the text. 

Inevitably, Turbomachinery Performance Analysis cannot be undertaken with- 
out reference to some of the underlying fluid-dynamic processes central to the 
rotodynamic energy exchange. In view of this four chapters have been devoted to 
such material. Thus Chapter 2 concentrates on cascade analysis while Chapter 5 deals 
with simplified meridional flow analysis. Chapter 6 is devoted to the important subject 
of vorticity production in turbomachines and its influence upon meridional flows. 
Finally in Chapter 9, selected supporting fluid dynamic analyses are presented 
relevant to some of the computer codes provided on the accompanying PC disc. User 
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manuals for FIPSI, CASCADE and STACK are provided as Appendices I, II and 
III. The remaining chapters are devoted to the development of detailed performance 
analysis methodology for axial turbines (Chapter 3), axial compressors and fans 
(Chapter 4), mixed-flow and radial turbomachines (Chapter 7) and ducted propellers 
and fans (Chapter 8). 
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1 
Basic equations and 
dimensional analysis 

Introduction 

As its title suggests, the principal aim of this introductory chapter is to present an 
overall framework for the thermo-fluid dynamic design and performance analysis of 
turbomachines and thus to set in context the various analytical developments of the 
subsequent chapters. Turbomachines are often referred to as rotodynamic devices 
because they are specifically designed to tranfer energy to or from a so-called working 
fluid through the action of forces generated fluid-dynamically by a rotor. In most 
turbomachines the working fluid is guided in steady flow through an annular duct 
comprising a hub and casing as illustrated in Fig. 1.1 for (a) a single stage mixed-flow 
fan and (b) a multi-stage axial turbine. In the case of the fan shown here stator blades 
have been introduced at entry to generate a swirling flow upstream of the rotor. Fluid 
deflection in passing through the stator blade row is produced in Newtonian reaction 
to blade lift forces akin to those of an aerofoil. In the same manner, the rotor blades 
also generate lift forces which further modify the swirl distribution, thus producing 
rotor torque and therefore a demand for shaft input power. In this manner energy 
is transferred from the rotor to the fluid in the case of a fan, pump or compressor, 
resulting in an overall rise in specific enthalpy and an associated pressure rise. The 
reverse occurs in a turbine, which delivers shaft power in exchange for thermal energy 
taken from the working fluid resulting in a reduction of its specific enthalpy and an 
associated pressure drop. 

Whether it be a fan, pump, compressor or turbine, it is evident then that the design 
and performance analysis of a turbomachine must invoke principles of mass flow 
continuity, steady flow energy transfer and finally momentum changes and their 
associated reaction forces. Consequently for a full statement and analysis of such 
rotodynamic problems we must appeal to the following laws and related study fields 
of thermo-fluid dynamics: 

(1) The Continuity Equation. 
(2) The Steady Flow Energy Equation (which is in fact a statement of the First 

Law of Thermodynamics for steady flow systems). 
(3) Newton's Second Law of Motion. 
(4) The Second Law of Thermodynamics. 
(5) The laws of Aerodynamics or Hydrodynamics. 
(6) Dimensional analysis. 

The first three of these relate to the foregoing discussion. Due to thermodynamic 
irreversibilities such as frictional losses originating from fluid viscosity, the energy 
transfer processes will be less than perfect, requiting us to invoke also the Second 
Law of Thermodynamics, item (4). 

In principle items (1) to (4) provide a full statement of the underlying laws of the 
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Fig, 1.1 Mixed-flow fan and axial turbine: (a) mixed flow fan; (b) multi-stage axial turbine 

thermo-fluid dynamics of turbomachines. In addition to these, however, two other 
extremely important and useful fields of particular study have been introduced, 
namely (5) aerodynamics or hydrodynamics and (6) dimensional analysis, since these 
provide an enormous range of helpful practical engineering tools emerging from 
applications of the basic laws of thermo-fluid dynamics. Item (5) focuses specifically 
upon techniques for the selection of fluid-dynamically suitable blade profile shapes 
to achieve the rotodynamic energy transfer correctly and with good efficiency for a 
very wide range of turbomachine types. Dimensional analysis, item (6), provides quite 
different perspectives for the designer which are central to the main theme of this 
book and may be summarised as follows: 

(a) To enable reduced scale model laboratory tests to be used as predictive tools 
for complete turbomachines, model stages or local blade elements. 

(b) To provide a systematic framework for the development of families of related 
turbomachines as the basis for subsequent selection of the optimum overall 
configuration at the initial design or tendering stages (e.g. axial, mixed-flow 
and radial pumps). 

(c) To provide a unifying framework for the whole design process of a 
turbomachine, linking the prescribed design flow and head duties to velocity 
triangles and thus onward to aerodynamic detailed design. 

In the half-century following the second world war there has been an enormous 
volume of imaginative and creative effort invested in the relatively new field of 
Internal Aerodynamics, resulting in the production of an impressive array of 
numerical tools for aerodynamic design or analysis of turbomachines. Many of these 
techniques have been abstracted from the literature and have been presented in 
helpful interpretive textbook form for the designer by authors such as Horlock (1958, 
1966), Dixon (1975), Gostelow (1984), Cumpsty (1989) and Lewis (1991). Such 
developments have been spurred on by rapid advances in computer processing, 
memory and language power and friendliness combined with parallel progress in 
flexible numerical methods. Thus in the 1960s engineering analysts were perhaps 
over-preoccupied with the solution of the detailed fluid flow problems of turbo- 
machines to the neglect of overall considerations linked to dimensional analysis. The 
paper by S. F. Smith (1965) was pivotal in this respect, at least to the present author, 
in restoring the balance of design perspectives, since it demonstrated the crucial role 
of dimensional analysis in relating families of systematically designed and efficient 
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turbomachine stages operated at their best duty points and reveals how velocity 
triangles and consequent blade aerodynamics are linked to this. 

At the time of writing, in response to the even more rapid development of computer 
speed and capacity, there has been a quite different shift of emphasis away from these 
specific computer codes tailored to particular problems such as cascade and 
meridional flow analysis, towards commercial Computational Fluid Dynamic (CFD) 
codes of a more open ended variety. These are aimed at the direct solution of the 
above governing laws (1) to (4) for thermo-fluid dynamics within a widely adaptable 
geometrical framework to suit a broad range of engineering applications. Such codes 
may attempt to simulate real fluid flows including the effects of viscosity and 
turbulence in fully three-dimensional flows. Impressive and helpful though these are, 
there are two inherent dangers. Firstly the user is at the mercy of the computer code 
unless it is possible to maintain contact with and understanding of the core source 
code, its content and its interpretation, especially where choices of numerical model 
are involved. In view of this, educational contributions such as the prize-winning 
paper by Potts and Anderson (1991) are to be applauded. Secondly, and more 
important for turbomachinery design, there is a danger of losing sight once again 
of global parameters, such as overall dimensionless duty coefficients, and their 
influence upon overall turbomachinery performance. In other words CFD codes need 
to be used in harmony with overall dimensional analysis if a designer is to maintain 
the broad perspective as well as the intimate local view of his total design task. 

In order to shed more light on this point it may be helpful to consider the simplified 
flow diagram shown in Fig. 1.2 which highlights the main stages and decision sequence 
in the overall design of a multi-stage axial turbine. The three main computer programs 
provided on the accompanying PC disc, FIPSI, CASCADE and STACK, have been 
written to undertake not all but enough of these design or analysis tasks to enable 
the user to gain a feel for the overall framework for the design and performance 
analysis of a multi-stage axial turbine. User instructions for these three programs are 
given in Appendices I, II and III and their relationship to the overall design sequence 
is indicated in Fig. 1.2. 

The remainder of this chapter will be devoted to introduction of some of the basic 
equations referred to above for use in later chapters and to review some of the aspects 
of dimensional analysis also referred to above. Chapter 2 will explain in brief how 
the complex three-dimensional turbomachinery flow problem may be broken down 
into two equivalent and superimposed types of two-dimensional flow, namely the 
blade-to-blade or cascade flow and the meridional pseudo-axisymmetric flow referred 
to in Fig. 1.2. Chapter 3 will then address the background theory behind the design 
and performance analysis of multi-stage axial turbines, making use of dimensional 
analysis and related to the Rolls-Royce test stage correlation published by S. F. Smith 
in 1965 and to the program FIPSI. This will be extended to similar treatments for 
axial fans and compressors in Chapter 4. At this point a presentation of simplified 
meridional analysis will be developed in Chapter 5 linked to Pascal source codes also 
included on the PC disc. Since turbomachines function largely on vortex flow 
interactions, Chapter 6 will be devoted to the important mechanisms of vorticity 
production and their influence upon meridional flows. Following this, overall 
performance analysis will be presented in Chapter 7 for mixed-flow and radial 
turbomachines and in Chapter 8 for ducted propellers and ducted fans. Chapter 9 
concludes the book with the presentation of supporting aerodynamic theoretical 
treatments of selected problems including background theory underlying the program 
CASCADE but also a number of other source codes to help students who wish to 
develop similar design/analysis tools. 
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Fig. 1.3 Control volume for a mixed-flow fan 

1.1 Basic governing equations 
The basic physical laws (1) to (3) listed above will now be expressed in forms suitable 
for turbomachinery analysis. Let us first define a control volume to suit the mixed-flow 
fan shown here in Fig. 1.3. We will define the inlet plane 1-1 and the exit plane 2-2 
which have areas A1 and A2 respectively. For simplicity we will assume uniform entry 
and exit velocities C 1 and C2 and also constant densities/91 and Pa across the planes 
1-1 and 2-2. 

I.I.I Continuity equation 

Assuming the mass flow rate rh = dm/dt through the annulus to be conserved, we 
may express the principle of mass flow conservation through 

tn  = p l A 1 C  1 ~- p 2 A 2 C  2 (1.1) 

This is the most simple one-dimensional form of continuity equation, applicable to 
a system as a whole. If we wish to focus instead upon some local infinitesimal region 
of a system, an equivalent different form of this may be derived in any selected 
coordinate system. As shown by B. S. Massey (1989), and with reference to Fig. 
1.4(a), the continuity equation in plane cartesian (x,y) coordinates becomes 

acx acy 
t- = o  

Ox ay 

0OCx 0OCy 
= 0  

0x 0y 

for incompressible steady flow 

for compressible steady flow 

(1.2) 

For the annular control volume shown in Fig. 1.3 we may adopt a more appropriate 
(x,r) cylindrical coordinate system instead, whereupon the equivalent compressible 
flow continuity equation applicable to turbomachinery meridional flows becomes 

03pCx ~pc r [3~r 
~ - t -  . . . .  + . . . . .  0 (1.3) 

Ox Or r 

and we simply delete density p for the incompressible case. 
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Fig. 1.4 Fluid elements in plane and axisymmetric flow: (a) plane flow in (x,y) cartesian coordinates; 
(b) axisymmetric flow in (x,r) cylindrical coordinates 

1.1.2 Steady flow energy equation 

If the First Law of Thermodynamics is applied to the control volume defined in Fig. 
1.3 (Rogers and Mayhcw, 1992), we obtain the steady flow energy equation, 

- W : rh {(h2 - hi) + 1(c2 - c 2) + g(z2 - Z1)} (1.4) 

where Q = dQ/d t  is the rate of heat supply (if any) to the control volume and 
(,V = dW/d t  is the power extracted, h is the specific enthalpy and z the height of the 
duct in the gravitational field g. Ignoring the latter potential energy effects for our 
axisymmetric case, Fig. 1.3, the steady flow energy equation becomes 

- -  - -  1 2 Q - W = (h 2 + ~ C 2 )  - -  (h 1 + lc~1 ) = ho2 hol for compressible flow (1.5a) 
1 2  1 2  

- -  ( p E / f l  "+" ~ C 2 )  - -  ( p l / f l  "k- ~ C l )  - -  PoE-Pol for incompressible flow (1.5b) 

where we have divided throughout by rh to obtain the specific (i.e. per unit mass) 
m 

values of heat supply Q and work extraction W. ho is called the 'stagnation specific 
enthalpy', or 'stagnation enthalpy' for short, and Po is called the 'stagnation 
pressure'. 

1.1.3 Momentum equation - Euler pump and Euler turbine equations 

Instead of the full control volume of Fig. 1.3 we consider next the flow of fluid through 
the elementary stream tube q'0 passing through the pump rotor between stations 1 
and 2, Fig. 1.5. The torque z which must be supplied through the shaft to the rotor 
in order to change the tangential momentum of mass m of fluid from mcol to mco2 
may be found by applying Newton's second law to the elementary control volume, 
Fig. 1.5(b). This must take the relevant form for a rotating system, namely 

Applied torque = rate of change of moment of momentum 
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Fig. 1.5 Meridional flow through a turbomachine and flow through an elementary streamtube: (a) 
meridional flow through a pump or fan rotor; (b) streamtube flowing along the surface of revolution 
mapped out by the meridional streamline $o 

or expressed analytically, 

d 
-r= --~(mrco) 

= r h ( r 2 c 0 2 -  r l c o l )  

(1.6) 

The power input P then follows directly through 

= rhl~(reco2 - rico1) 

"-" ?fvl(U2co 2 -- U l C o l  ) 

(1.7) 

where l~ is the rotor angular velocity and U = r12 is the so-called 'blade speed'. If 
m 

we divide through by rh we obtain the specific work input W: 

dw/dm 
~r  = ~ = U 2 c02 - U 1 col  (1.8) 

Making use of the steady flow en_ergy equation (1.5) and neglecting the heat transfer 
rate into the control volume, i.e. Q = 0, we obtain finally the well-known Euler pump 
equation for fans with compressible fluids: 

ho2 -- hol -- U2 c02 - U1 col  for compressible flow (1.9a) 

For incompressible fluids, i.e. liquids or low Mach number gases, we may follow 
the same analysis through, using the incompressible steady flow energy equation 
instead, namely 

0 -- Vr = (P2 - P l ) / P  + ( c2 - c 2 ) / 2  [1.5bl 



8 Basic equations and dimensional analysis 

to obtain the corresponding form of the Euler pump equation, namely 

(Po2-Pol)/P = U2co2- U1 col for incompressible flow (1.9b) 

where Po = P + - ~  is the stagnation pressure. 
For a turbine rotor we simply reverse suffices 1 and 2 to obtain the Euler turbine 

equation, namely 

hol - ho2 = UlCol - U2co2 for compressible flow } (1.10) 

(Pol-Po2)/P = UlCol- U2co2 for incompressible flow 

The Euler pump and turbine equations as derived here are one-dimensional 
equations in the sense that they are applicable to unit mass of fluid flowing along the 
line mapped out by the elementary streamtube illustrated in Fig. 1.5(b). The 
circumferential projection of such infinitely thin stream tubes onto the (x, r) plane 
leads to the definition of a family of so-called meridional streamlines illustrated in Fig. 
1.5(a) of which the hub and casing form the boundary streamlines. It is clear that one 
Euler pump or turbine equation must be derived for each meridional streamline 
during the design phase for a turbomachine and that these equations will lead to a 
precise specification of the swirl velocity change from col to c02 required for a specified 
stagnation enthalpy change hol to ho2. The Euler pump or turbine equation is thus 
central to the design process, combining both the energy and momentum conservation 
laws, and will be referred to many times throughout this book. 

As with the continuity equation treatment in Section 1.1.1 above, it is possible and 
indeed necessary for detailed flow modelling to derive differential equations 
equivalent to the one-dimensional equations of this section in order to express the 
three-dimensional or more frequently two-dimensional axisymmetric equations of 
motion at any point in a turbomachine. It will be more helpful to leave this matter 
for fuller consideration in Chapters 6 and 7 where we will show how such equations 
may be used to derive the actual meridional streamline distributions such as that 
illustrated in Fig. 1.5(a). 

All of the basic governing equations required for the time being have now been 
derived. Further consideration will be given to the second law of thermodynamics 
in later chapters as needs demand. To conclude this chapter we will now give some 
preliminary consideration to dimensionless groups of special significance to the 
turbomachinery designer. 

1.2 Dimensional analysis 
An indication of the primary goals of dimensional analysis was given in the 
introduction to this chapter. In the present section attention will be drawn to two 
different levels of dimensional analysis and consequent dimensionless groups, 
namely 

(a) global dimensionless performance variables, artd 
(b) local dimensionless design and performance variables. 

The first of these may be more familiar to the student and is concerned with the key 
overall or global performance variables of a turbomachine such as flow rate, pressure 
rise and efficiency in the case of a fan or pump. Such global dimensionless groups 
will be derived in Section 1.2.1 to illustrate the power and scope of dimensional 
analysis to take advantage of laboratory-scale model testing as a design and 
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performance predictive tool. An extension of the use of global dimensionless variables 
for the selection of machine type, axial, radial or mixed-flow, to best suit a given 
operating duty specification will be outlined in Section 1.2.2 with reference to useful 
published correlations. 

The use of local dimensionless variables may be less familiar territory for the 
student and is the main theme of many of the subsequent chapters of this book where 
analytical developments will be laid out in detail for a wide range of turbomachine 
types. In view of this a brief outline only will be given in Section 1.2.3 to illustrate 
the main ideas and implications of this type of analysis, which involves selection of 
dimensionless performance coefficients for each meridional streamline such as ~0, 
Fig. 1.5. 

1.2.1 Overall dimensional analysis and global dimensionless performance 
parameters 

The fundamental basis of dimensional analysis is well covered in standard fluid- 
dynamic texts such as Massey (1989) or Shepherd (1965), including the use of 
Buckingham's ~r-theorem to derive dimensionless groups, and will be taken as read. 
For the present purpose we will approach the matter from the turbomachinery 
engineer's viewpoint by considering the performance analysis of a given centrifugal 
pump, drawing out its main key performance characteristics and showing how global 
dimensionless performance parameters can help to take advantage of scale model 
tests. 

For example, let us consider the twofold purpose of the centrifugal pump illustrated 
in Fig. 1.6, namely 

(a) to move fluid at a specified flow rate Q, and 
(b) to raise the fluid pressure through (P2--Pl), 
achieving both goals with high pumping efficiency r/. Alternatively we may regard 
the second duty requirement (b) as that of lifting the fluid through the height H in 
the gravitational field g, where Bernouilli's equation or the incompressible steady 
flow energy equation (1.5b) provides the connecting relationship 

P2 -- Pl = pgH (1.11) 

The effective 'pumping power' P (i.e. the useful power output of the pump) may 
then be calculated through 

P = rhgH = pQgH (1.12) 

where rh is the mass flow rate and p the fluid density. In other words, the pumping 
power delivered is the product of the two specified primary design duty parameters 
( Q , g H )  and is also proportional to g and p. The quantity gH is in fact the energy 
input to a unit mass of fluid passing through the pump and turns out to be a more 
useful parameter than simply H in subsequent dimensional analysis. We will term 
it the gravitational head. A suitable definition of overall hydraulic efficiency then 
follows from 

Pumping power 
7/= Shaft input power 

pQgH 

zN 

where ~-is the shaft input torque and N the rotational speed. 

(1.13) 
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Suppose we were to set ourselves the aim of finding out by experimental test how 
all the various features of the pump will affect its efficiency. The variety of factors 
involved could be summarised as follows" 

(1) The shape of each pump component such as the annulus and the blades. 
(2) The duty coefficients (Q,gH). 

In addition to these and of particular significance for model testing, we have 

(3) The fluid density p. 
(4) The rotational speed of the pump N. 
(5) The size of the pump which may be typified by any characteristic length 

scale, such as its maximum diameter D. 

Consistent units must obviously be used to specify all these parameters but we can 
continue the argument without reference to any particular system of units for the 
time being. The effect of all of these parameters upon the efficiency r/ may be 
expressed through the parametric equation 

7q= f(Q, gH, p,N,D) (1.14) 

Plant duty Machine design or 
parameters scale variables 

Here we have identified two groups. The first involves the design duty (Q, gH) which 
the pump is to provide. The second group includes the three items which the 
experimenter is free to vary independently on his model test facility, namely the type 
of fluid, categorised here through its density p, the speed N and size D. Clearly the 
one pump feature not accounted for by this parametric equation is the very one which 
will affect its efficiency most of all, namely its detailed shape. However, we have 
already stated that the present aim is to use small scale model tests to predict the 
performance of a full scale machine. The one feature which we must preserve if these 
tests are to be truly 'dynamically similar' is its shape. The model must be a true 
geometric scale of the prototype, in which case we can accept Eqn (1.14) as a correct 
representation of all the other relevant performance factors which will affect 



1.2 Dimensional analysis 11 

efficiency. There could of course be other influential factors such as the fluid viscosity 
but we will ignore these for the moment just to keep the argument simple. 

Now the most obvious choice of performance characteristics by which to express 
the pump's behaviour and quality are those shown in Fig. 1.7, namely curves of gH 
versus Q and of r/versus Q. Such curves are obtained by running the pump at constant 
rotational speed N while varying the flow rate Q by means of a throttle valve (~) in 
the delivery line, Fig. 1.6. In this case characteristic curves are compared for two 
pumps in the author's laboratory which have geometrically similar rotors but which 
are different in scale and have been tested at different rotational speeds. Pump A 
is 0.14 m in diameter and was tested here at 2600 rev min -1 whereas the smaller pump 
B is 0.1 m in diameter but was run at the higher speed of 3000 rev min -1. 

Fig, 1,7 Comparison of the characteristic curves of two pumps with similar geometry 

The two sets of characteristics bear little resemblance as one might expect and at 
first sight it would seem unlikely that the characteristics of pump A might be able 
to be inferred from pump B or vice versa. Dimensional analysis provides the way 
forward and in the process reduces the total number of variables involved. In its 
present dimensional form Eqn (1.14) states that the hydraulic efficiency is a function 
of five independent variables. Two of these are the primary characteristic duty 
parameters Q and gH. The other three represent design or test variables which may 
be varied independently, namely p, N and D. Since all five parameters have 
dimensions formed from all or some of the three basic dimensions of mass M, length 
L and time T, the zr-theorem states that the total number of independent parameters 
may be reduced from 5 to 5 -  3 = 2 by forming dimensionless groups. Applying the 
method of indices, the modified parametric equation then transforms to 

= f(q~, ~ )  (1.15) 
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where the dimensionless global duty parameters are as follows" 

dp = Q/(ND 3) Flow coefficient } 
= gH/(N2D 2) Head coefficient (1.16) 

The efficiency is thus dependent upon only two dimensionless parameters which 
represent the primary duty requirements of the pump, namely the production of flow 

and head rise ~ .  
If the test data for the two pumps previously considered are replotted as ~ - ~  and 

rt--~ characteristics instead, as shown in Fig. 1.8, they are found to be remarkably 
similar to one another, bearing in mind of course that although the overall blade and 
annulus geometries are generally true to scale, there will be differences of surface 
finish and more importantly of tip clearance between blade and casing, a parameter 
which is difficult to set precisely. Despite these minor departures from true 
geometrical similarity, both the head and efficiency characteristics follow the same 
pattern over a wide range of operating duties. Thus we may conclude from this study 
that one set of scale model test results would have been sufficient to predict the actual 
characteristic of both pumps and, if required, for a very much larger prototype, 
resulting in a considerable reduction in effort and cost. Furthermore from the 
dimensionless characteristics we may select a recommended design duty point (~ 
located somewhere close to the maximum efficiency. 

It is essential to use a consistent set of units for D, N, Q, g and H when evaluating 
and ~ .  All consistent sets will then deliver the same values for these truly 

dimensionless coefficients. We will adopt the SI system for which the dimensions and 
units of various useful quantities are summarised in Table 1.1. 

The reader may have noticed that the fluid density p does not as yet feature in 
the dimensionless coefficients, Eqn (1.16), since it is the only one of the five variables 
in Eqn (1.14) to include the mass dimension M. It is normal practice, however, to 
plot a third dimensionless characteristic to express power P versus flow Q. According 
to the 7r-theorem any pair of dimensionless variables may be combined to form a 

Table 1.1 Quantities and their dimensions and SI units 

Quantity Dimension Unit Symbol or 
combination 

Length L metre m 
Mass M kilogram kg 
Time interval T second s 
Velocity LT- 1 metres per second m s- 1 
Force MLT -2 newton N or kg m s -2 
Pressure ML-1T -2 pascal Pa or N m -2 
Work, heat ML2T -2 joule J or N m 
Power ML2T -3 watt W or J s -1 
Rotational speed T-1 radians per second rad s-1 
Frequency T-  1 hertz Hz or s- 1 
Density p ML -3 kilograms per metre 3 kg m -3 
Dynamic viscosity/z ML-1T- 1 poise kg m-1 s-1 
Kinematic viscosity v L2T - 1 stoke - 10 -4 m 2 s- 1 m 2 s- 1 
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Fig. 1.8 Dimensionless characteristics for two centrifugal pumps of different scale operating at different 
rotational speeds 

new variable. Thus if we manipulate Eqn (1.12) by dividing both sides by p N 3 D  5 
we obtain the dimensionless pumping power coefficient II" 

rl = p N 3 D  5 = N D  3 N2D2 = ~ (1.17a) 

Making use of the definition of efficiency, Eqn (1.13), the alternative shaft power 
input coefficient may then also be defined: 

Ilshaf t = II/r/= (I)xP'/r/ (1.17b) 

Thus the fluid density p is required at this point to introduce the mass dimension 
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M into the II group, p will also be required if we wish to extend the above treatment 
to include viscous effects. To achieve this let us modify the parametric equation (1.14) 
by including also the dynamic viscosity/z: 

71 = f (Q, gH, p, tz, N, D) 
Plant Fluid Design or  scale 
duty propert ies  var iables  

(1.18) 

We may now identify three groups of related variables as indicated. If we apply the 
7r-theorem to this six-parameter equation we will now obtain 6 -  3 = 3 dimensionless 
groups which are as follows" 

r /= f (~ ,  ~ ,  Re) (1.19) 

where the new dimensionless coefficient R e is called the machine Reynolds number 
and is defined as 

ND 2 ND 2 
Re = = (1.20) 

~lp v 

where v is the kinematic viscosity. 
It is more usual to think of the Reynolds number as the ratio between dynamic 

action and viscous action within an actual fluid, for which dimensional analysis 
generates the well-known form 

(Fluid velocity)x (Typical length) cD 
R e = = 

1,' b' 

R e for the overall turbomachine as stated by Eqn (1.20) can be better interpreted 
in relation to this if it is rearranged in the analogous form as follows: 

Re 
(Blade speed ND/2)x  (Typical length D) 

where tip blade speed ND/2 replaces fluid velocity c, and diameter D is chosen as 
the typical length scale. 

The essential point is that true dynamic similarity will now most certainly be 
obtained if we ensure that the following three conditions are satisfied: 

(1) True scale geometry of the model. 
(2) The same dimensionless duty coefficients (~, ~) .  
(3) Identical Reynolds number R e for both model and prototype. 

In such cases the two characteristic curves shown in Fig. 1.8 will be identical for both 
prototype and scale model with incompressible fluids. Unfortunately, however, this 
can present a practical difficulty since we must settle upon some particular rotational 
speed N in order to complete the constant speed characteristic tests to obtain the 
raw data Q and gH. To illustrate this let us compare the machine Reynolds numbers 
for the two pumps A and B. From Eqn (1.20), introducing the data given in Fig. 
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1.7, the ratio of the Reynolds numbers for these particular tests was 

" e A  
Re B = 1.306 67 

To ensure that pump B is tested at the same Reynolds number as pumnp A, the above 
expression may be inverted to give the appropriate speed of rotation for pump B, 
namely 

N B = N A (ReB 

which for the case under consideration is 3920 rev min -1. 

1.2.2 Selection of a suitable pump shape to suit a given application 

For the above development we happened to choose a so-called mixed-flow pump for 
which the annulus shape is partly axial and partly radial. The majority of pumps and 
fans in fact tend to be either axial or radial (centrifugal) in annulus shape. If we were 
to test several of each type of machine to obtain their ~ - ~  characteristics, a 
comparison would show the trends illustrated by Fig. 1.9. The centrifugal machine, 
having a restricted inlet orifice, would tend to exhibit low �9 values but would be 
capable of delivering higher �9 values due to the centrifugal effects (see Chapter 7). 
The axial machine is geometrically most suited to pass high flow rates and would 
exhibit the highest ~ values. Its head generating capacity would, however, be limited 
by the allowable lift coefficients of the blade aerofoils resulting in low ~ coefficients. 
Mixed-flow machines would show a compromise performance between these 
extremes. If we were to mark out the best efficiency point for each member of this 
family of machines we would obtain a curve �9 = f ( ~ )  similar to that shown in Fig. 
1.9. In reality, if we were to test a very large number of machines and record their 
performance in this way, we would obtain not a thin curve but a scatter plot or banded 
region. A much narrower scatter band and a more distinct relationship between 
optimum (~,  ~ )  duty and machine type could obviously be obtained if one individual 
designer were to build up a progressive family of machines on the same basis with 
continual reference back to this family history curve over a period of time. Such 
techniques enable the designer to select machine type off the shelf quite quickly based 
on proven experience. 

A much more familiar and very long established approach to machine shape 
selection takes advantage of two other dimensionless groups known as the specific 
speed and diameter, defined as 

NQ 1/2 
Ns = (gH)3/4 specific speed (1.21) 

D(gH) TM 

Ds = Q 1 / 2  specific diameter (1.22) 

so called because, while both contain the two plant variables Q and gH, the specific 
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relationship of best duty points 

speed Ns is also proportional to the rotational speed N and the specific diameter Ds 
is proportional to the diameter D. 

Originally due to Cordier (1953) and as given by Csanady (1964) in a useful 
discussion of this subject, the famous 'Cordier Diagram' is shown in Fig. 1.10, linking 
Ns with Ds for a wide range of pump types. The recommended ranges for pumps 
and fans are shown on the right-hand side. Although the plot is shown as a thin line, 
it is in reality a mean experience curve fitted through a scatter plot and only serves 
as an indication of the suitable machine type to select for a given application. In many 
situations it may well be possible to depart from this and to design high performance 
axial, mixed-flow or radial machines for the same situation, especially in the middle 
range of specific speed. 

To illustrate this last point it is of considerable interest to note the relationships 
between the (~, ~)  and (Ns, Ds) dimensionless groups. If we substitute Eqns (1.16) 
into (1.21) and (1.22) we obtain 

~1/2 ~r1/4 
Ns = ~ - ~ ,  Ds = (I)1/2 (1.23) 

or, put the other way round, 

1 1 
�9 = (1.24) 

NsO3s , 2 2 Ns Ds 
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Fig. 1.10 Cordier diagram showing empirical relationship between specific speed N s and specific 
diameter Ds for pumps and fans 

If the (Ns, Ds) Cordier line data are now introduced into these expressions, most 
interesting perceptions follow from replotting the Cordier diagram as an equivalent 
(~, ~ )  chart, Fig. 1,11. Here we observe immediately a more definitive shape of the 
optimum machine selection curve which is dominated by the influences of the 
centrifugal and axial machines. The centrifugal machines tend to settle for a fairly 
constant head coefficient in the region of �9 = 0.1 over a wide range of flow 
coefficients. The axial machines cope with a much wider range of head coefficients 
of roughly xlt = 0.005 to 0.05 over again a fairly wide �9 range. The mixed-flow 
machines are sandwiched in between in a very narrow range. One would expect a 
much greater spread of mixed-flow machines here for a progressively designed family 
of pumps or fans. The reason for this is almost certainly the designer's wish to settle 
for either an axial or a centrifugal machine wherever possible since these tend to offer 
less geometrical and therefore manufacturing complexity than the, mixed-flow 
machine which would need to be tailor-made. 

Before concluding this section two points should be mentioned. Firstly most 
manufacturers will have their own alternatives to the 'Cordier' diagrams shown here 
which will reflect the features and choices of their own special approach, although 
the same overall principles will apply. Secondly Csanady (1964) and others often 
include hydraulic turbines on the same (Ns, Ds) plot and Csanady has provided the 
interesting bar chart shown in Fig. 1.12 linking general turbomachine type to specific 
speed. 

A more recent review of industrial practice in expressing optimum machine 
selection has been given by ESDU (1980) specifically for fans. This is illustrated in 
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Fig. 1.13 in which the empirical information covered is compared with the above 
Cordier curves for both Ds-Ns and cI)--~ plots. Referring first to the Ds-Ns chart, 
the recommended areas for selection of axial fans and centrifugal fans certainly 
confirm the Cordier curve although centrifugals depart more significantly from it in 
the medium specific speed range. In the last two or three decades mixed-flow fans 
have received more attention for applications requiting both high flow rate and fairly 
high pressure rises such as nuclear reactor gas circulators and hovercraft fans. 
Cross-flow fans are a relative newcomer, widely used in ventilation and air 
conditioning, and now find a place on this chart. 

The ~ - ~  plot in Fig. 1.13 illustrates well how the transformation from Ds--Ns 
coordinates to ~--xt, coordinates using Eqns (1..24) exaggerates departure of the zones 
of ideal machine types from the Cordier curve. This is particularly so for centrifugal 
machines so far as the allowable flow coefficient range �9 is concerned, while the 
sprtad of recommended head coefficients �9 is relatively restricted. 

1.2.3 Local dimensionless design and performance variables 

As already indicated, a turbomachine may contain many and complex blade elements 
as illustrated by Fig. 1.1. Furthermore the flow within any single blade row may vary 
considerably from hub to casing, requiting detailed specification of blade profile for 
each meridional stream surface, Fig. 1.5. Thus it may seem optimistic to expect global 
dimensionless groups such as we have just considered to be able to do justice to such 



1.2 D imens iona l  analysis 19 

0.05 

i 

0.1 0.2 0.5 1.0 2.0 

I I I ' I I 

5.0 10.0 20.0 
I , I ' I  

Pelton wheel 

single jet 
"-1 I ~" 

Francis turbines Kaplan .a 

--i l-turbines ~ 

Pelton wheel 
t... . J  
I "  "1 

multi-jet 

P r o p ~ t u r b i n e s  

Centrifugal 
pumps 

(radial) 

Mixed-flow Propeller 
._L pumps ._L. pumps .a 
"-r "-r" (Axial) "7 

Centrifugal compressors 
L . J  

V and fans "-I 

, , ,  ,,, ,, , ,  

1 
m 

NQ 2 
Ns = 3 

(gH) ~ 
" i ' " ' ,  

L Axial flow comPressors, blowers . . . . . .  
r 

and ventilators 

Axial flow 
L d 

steam and gas turbines 

I I I i I i I I I 

0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 
Ns 

Fig. 1.12 Correlation of turbomachine type with specific speed 

complex internal flows. A completely different level of dimensional analysis has 
therefore been developed to deal with this problem and is indeed the main theme 
of this book. For example, let us consider how we might deal with the blade element 
generated by the intersection of the central meridional stream surface ~0 in Fig. 1.5. 
Instead of applying the formal procedures of the 7r-theorem, designers frequently 
select intuitively what seem to be appropriate dimensionless groups, and the popular 
choice for this mixed-flow fan would be as follows: 

= Cs2/U2 flow coefficient l (1 25) 
= Aho/U 2 work or head coefficient j 

For focusing upon a particular zone of the blade we are thus interested in the 
relationship between the local meridional velocity Cs and the local blade speed 
U = rI}. Since the blade speed for a mixed-flow machine varies from inlet to exit due 
to radius change, Fig. 1.5, the above are referred to just one station, namely the exit 
station 2 at the blade trailing edge. The work coefficient likewise focuses upon the 
local stagnation enthalpy rise as compared with the quantity U 2. 

All that is intended here is to draw attention to these alternative local dimensionless 
variables which have different values" for each meridional streamline. In practice 
attention is often focused upon the central meridional streamline only for the 
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Fig. 1.13 Optimum efficiency contours for various types of fan on (a) Ds-N s and (b) r  plots (by 
courtesy of Engineering Sciences Data Unit, ESDU, 1980) 

definition of a single ($ ,$)  duty to typify the blade row as a whole. For the 
development of experimental test correlations such as those given in Chapter 3 for 
axial turbines, this may be a necessary practical limitation. However, it will be shown 
in later chapters that such local (~b, $) duty parameters are closely related to the 
velocity triangle shape and therefore to blade aerodynamic behaviour for each 
meridional streamline, thus offering much deeper insights into the detailed perfor- 
mance of turbomachine stages and a much more productive framework for design 
and performance analysis. However, it will be left until Chapters 3, 4, 7 and 8 to 
develop this in some detail as a primary and most valuable tool for design and 
performance analysis of a wide range of turbomachines. 



2 
Two.d imens iona l  cascades  

Introduction 
From very early days in the history of axial turbines and compressors designers have 
treated the complex three-dimensional flow in such machines as the superposition 
of a number of two-dimensional flows which lead to more manageable blade design 
and profile selection techniques. As illustrated by Fig. 2.1, two types of flow may 
be identified, namely an assumed axisymmetric or so-called 'meridional flow' and 
a series of 'blade-to-blade' or 'cascade' flows. For example, for the axial turbomachine 
with cylindrical hub and casing shown here, it is quite reasonable to assume to begin 
with that the stream surfaces at entry to the annulus remain cylindrical as they 
progress through the machine. Each cylindrical meridional stream surface will then 
intersect the blade row to form a circumferential array of blade shapes known as a 
cascade. If one such cylindrical surface were unwrapped from its (x, rO) coordinates 
and laid out fiat onto the (x, y) plane as illustrated by Fig. 2.2, we would then obtain 
an infinite array of blade or aerofoil shapes stretching along the y axis. The full 
three-dimensional flow could then be modelled by a series of such plane two- 
dimensional cascades, one for each of the cylindrical meridional surfaces equally 
spaced between hub and casing. Six to ten sections would suffice to represent a typical 
steam turbine, gas turbine, compressor or fan blade row, although we will show just 
five here to simplify the diagrams. 

The advantage of this simple approach is that the Euler pump or turbine equations 
(1.9) and (1.10) may then be applied to each cascade section independently to 
determine the inlet and outlet velocity triangles for that particular blade section. The 

J 

o 

(a) (b) 

Fig. 2.1 Treatment of three-dimensional flow through an axial fan as superposition of axisymmetric 
meridional flow and two-dimensional cascade or blade-to-blade flows: (a) meridional streamlines; (b) 
cascade intersection of a cylindrical stream surface with a fan rotor blade 



22 Two-dimensional cascades 

t I 

YI 
X 

Fig. 2.2 Development of a cylindrical blade-to-blade section into an infinite rectilinear cascade in the 
(x,y) plane 

designer's task is then to select a suitable blade shape to achieve the required flow 
deflection from the inlet angle/31 to the outlet angle/32, measured relative to the 
rotor here, and to do so with the minimum loss of energy due to fluid friction. The 
requirements for this are threefold. Firstly care must be taken not to aerodynamically 
overload the cascade blades, a matter which will be dealt with in Sections 2.2 and 
2.7. Secondly the cascade must produce the correct fluid outlet angle/32 and hence 
deflection e =/31-/32. Thirdly it must achieve the latter with smooth inlet flow 
around the profile leading edges. These last two matters will be dealt with in 
Appendix II, Section 11.8, where the computer program CASCADE, provided on 
the accompanying PC disc, is used to select an optimum compressor cascade. 

The reader will immediately see also the strategic drafting advantages of this simple 
two-dimensional modelling of a flow that is in truth really three-dimensional. For 
example the full twisted blade shape of our fan rotor, Fig. 2.3, can be generated quite 
simply and in a form suitable for subsequent manufacture by NC or CNC machine 
tools, probably with some preliminary curve fitting of the data to provide say 100 
or more intermediate blade sections. 

As early in the history of gas turbines as 1952, however, C. H. Wu recognised the 
truly three-dimensional nature of the flow in his classic paper and proposed the 
remarkably sophisticated computational scheme illustrated in Fig. 2.4. The fully 
three-dimensional flow was again treated by the superposition of a number of 
two-dimensional flows, but in this case located on the so-called S-1 and S-2 stream 
surfaces. S-2 surfaces follow the primary fluid deflection caused by the blade profile 
curvature and its associated aerodynamic loading. Due to the variation of static 
pressure between the convex surface of blade No. 1 and the concave surface of blade 
No. 2 the curvature of each S-2 stream surface will differ, calling for the introduction 
of several surfaces for adequate modelling (just three S-2 surfaces are shown here). 
The S-1 surfaces, also shown in Fig. 2.4, are equivalent to the meridional surfaces 
of revolution which we have just considered in the simpler model illustrated in Figs 
2.1 and 2.2. In Wu's model, however, the S-1 surfaces are allowed to twist to 
accommodate the fluid movements caused by the variations of the three S-2 surfaces. 
The S-1 and S-2 surfaces in fact represent a selection of the true stream surfaces 
passing through the blade row. By solving the equations of motion for the flows on 
this adaptable mesh, successively improved estimates of the S-1 and S-2 surfaces may 
be obtained, allowing also for the fluid dynamic coupling between them. An iterative 
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Fig. 2.3 Stacking of blade profiles designed in the (x,y) cascade plane to form a fan blade" (a) five 
cascade sections between hub and casing" (b) blade sections stacked to form the fan blade; (c) view 
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approach to achieving a good estimate of the fully three-dimensional flow was fairly 
comprehensively laid out by Wu (1952) in a rigorous paper which was truly 20 years 
ahead of its time. It still remains today as an extremely useful presentation of the 
basic governing equations for compressible turbomachinery flows, and a remarkable 
early attempt at numerical modelling prior to the widespread availability of digital 
computers. 

The first major computational scheme based upon Wu's work was published' by 
Marsh (1966), dealing in effect with axisymmetric meridional flow located on an 
average S-2 surface. Subsequently alternative formulations of the governing equations 
were developed, notably the time-marching method of Denton (1982), opening the 
door to practicable design codes for compressible three-dimensional flow analysis. 
However, Potts (1987, 1991) was also able to adapt the time-marching method to 
study the twisting of Wu S-1 stream surfaces within highly swept turbine cascades. 
Apart from these and many other published schemes, industrial companies have 
developed their own codes for meridional analysis or taken advantage of commercial 
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codes. Crucial though this is for advancement of the thermo-fluid dynamic design 
of turbomachines, detailed review is beyond the scope of this book. Much more 
simplified meridional flow analysis treatments will be given in Chapter 5, followed 
in Chapter 6 by a detailed discussion of the mechanisms of vorticity production in 
turbomachines and their influence upon meridional flows. 

In Section 2.1 we will develop the overall fluid dynamic analysis of two-dimensional 
compressor and fan cascades including the definition of key performance parameters. 
Section 2.2 will be concerned with the efficiency of a compressor cascade viewed as 
a diffuser. Design and analysis of cascades by direct and inverse methods will be 
discussed in Sections 2.3 to 2.5. Means for selection of optimum cascades will be dealt 
with in Sections 2.6 and 2.7. The chapter is concluded with methods for predicting 
the fluid deviation or outlet angle in Section 2.8. Illustrative use of the program 
CASCADE will be made where relevant and familiarisation of the reader with this 
would be helpful. User instructions are given in full in Appendix II. 

2.1 C a s c a d e  d y n a m i c s  and p a r a m e t e r s  

In order to derive equations which express the fluid dynamic effect of a blade row, 
let us consider flow through the control volume abcd surrounding one blade of a 
compressor cascade, Fig. 2.5. Analysis is simplified if we select sides ab and dc to 
coincide with equivalent streamlines through adjacent passages. Sides ad and bc will 
be drawn parallel to the y axis and equal in length to the blade pitch t. Generally 
speaking the fluid passing through the control volume will be deflected through the 
angle e = f l l  - f12  in reaction to the lift force L. In addition there will be a drag force 
D at right angles to this caused by viscous shear stresses at the blade surface, resulting 
in an overall loss of stagnation pressure Apo. Subsequent analysis will show that L 
and D lie in the directions normal and parallel to the vector mean velocity Woo. As 
shown by the velocity triangles for the blade row, Fig. 2.5, Woo is defined as the vector 
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average of the inlet and outlet velocities W 1 and WE and is thus suitably representative 
of the general velocity level of the cascade. The vector mean angle/3o0 may thus be 
expressed in terms of the inlet and outlet flow angles fll and/32 through 

tan/3~ = l(tan ~1 + tan ~2) (2.1) 

For fans and compressors the lift coefficient C L serves as a most important indicator 
of profile aerodynamic loading and may be defined, together with the drag coefficient 
CD, in a form which links naturally with the established notion for isolated aerofoils, 
namely 

L D 
C t  = 1  2 C D - -  1 2 (2.2) ~pW~ ~pW~l ' 1 

Here L and D are defined as the lift and drag forces acting on unit length of aerofoil 
in the z direction (i.e. perpendicular to the x ,y  plane). Hence the additional 
dimension (unit) length is implied in the denominators of Eqns (2.2) to ensure that 
CL and CD are dimensionless. 

In order next to complete a force balance on the control volume, two alternative 
diagrams are shown in Fig. 2.6. Figure 2.6(a) shows the aerodynamic forces and their 
components X and Y acting on the compressor blade. Figure 2.6(b) on the other 
hand, shows the equal and opposite reaction forces acting on the control volume abcd 
and also the externally imposed pressure forces pi t  and p2t acting on ad and bc 
respectively. We first note that the lift force L and drag force D may be combined 
into the single aerodynamic force F acting on the blade profile. F may then be resolved 
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Fig. 2.6 Aerodynamic forces acting upon a compressor blade and applied forces acting on a control 
volume abcd: (a) blade force F and its components L and D or X and Y; (b) blade reaction force F 
and external pressure forces applied to control volume abcd 

into its components  parallel to the x and y axes, namely X and Y. A balance of forces 
on the control volume in the x direction may be stated as follows" 

(Force X applied by + (pressure force on a d ) -  (pressure force on bc)= 0 
the blade profile) 

We take note that the pressure forces on ab and dc are equal and opposite and may 
thus be ignored. Expressed analytically we thus have 

X = (P2 - P 1) t 

If we define stagnation pressure 

Po = P + �89 W2 

and make use of velocity triangles, Fig. 2.5, the above equation transforms into 

X = �89 2 - W2) t (Pol - Po2) t 
1 2 = ~pWx t (tan 2/31 - tan 2/32) - Apot 

= pW2t  tan/3oo (tan/31 - tan/32) - Apot (2.3) 

where Apo = P o l - P o 2  is the stagnation pressure drop across the cascade. In reality 
of course the stagnation pressure will vary across bc in passing through the blade 
wake. A long way downstream of the blade row, on the other hand, the wake will 
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have diffused across the blade pitch t sufficiently for us to regard the flow as uniform, 
whereupon the above analysis is valid. 

An analogous expression for the y component of the blade force F may be obtained 
by applying Newton's Second Law to the control volume. First we observe that the 
mass flow rate per unit length of blade is given by rh = pWxt. We then have 

(Force applied to (Rate of change of 
control volume in = momentum in y 
y direction) direction) 

o r  

- Y = rh(Wy2- Wyl) 

= pWZt (tan/32 - tan ill) (2.4) 

2 .1 .1  Case  1 - Frict ionless  flow 

To isolate the effect of the lift force L let us consider first the simpler case of 
frictionless fluid flow, for which the stagnation pressure loss Apo will be zero. Making 
use of Eqns (2.3) and (2.4) with Apo = 0, the angle % Fig. 2.6, then follows 
from 

X pW2xttan ~ (tan/31 - tan/32) 
tan a = ~ = pW2x t (tan 131 - tan 132) (2.5) 

= tan/3oo 

or a =/3~. Thus we see from Figs 2.5 and 2.6 that the lift force L is normal to the 
vector mean velocity W~, and its components are thus 

X =  Lsin/3~ I (2.6) 
Y =  L cos/3~ J 

2 .1 .2  Case  2 -  Real  cascades  with fluid friction 

For real fluids influenced by viscosity, however, the full X force equation (2.3) must 
be used including the loss term Apot. Now this may be attributed entirely to the drag 
force D taken in the direction normal to L. Thus making use of both Eqns (2.3) and 
(2.4) and resolving forces parallel to D we have 

D = Y sin/3~ - X cos /3~  

= Apot cos/3o~ (2.7) 

Introducing this into the definition of Co, Eqn (2.2b), we obtain 

o 
C D =  1 2 = 1 2 7cost   

~pW~l ~pW~ 

- cost3  

(2.8) 
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where the cascade loss coefficient ~'~ based upon vector mean velocity is defined 
a s  

Apo 
~oo = 1  2 ( 2 . 9 )  

~pWoo 

An expression for CL may be derived now as follows. First we obtain the lift force 
L from Eqns (2.3) and (2.4): 

L = Xsin/3oo + Ycos/3oo 

= pW2t(tan/31 - tan/32) sin/3oo - (Apot) sin/3oo 

= p W 2 t  (tan fll - -  tan/32) cos/3oo - (Apo t) sin/3oo 

Hence the lift coefficient, Eqn (2.2a), becomes 

t ( Apo ) ( / )  
C L --  2 7 (tan f l l  - -  tan fiE) COS floo - -  1' 2 sin/300 

~pW~ 
(2.10) 

t 
= 2 ~- (tan/31 - tan/32) cos/300 - CD tan/3oo 

We observe that the presence of viscous drag forces expressed through the drag 
coefficient Co results in a reduction of the lift coefficient below that of C L i  for a 
frictionless fluid, namely 

t 
CLi = 2 ~- (tan/31 - tan/32) cos/300 for frictionless flow (2.10a) 

We note also that CL is strongly affected by the term (tan f l l -  tan/32) which itself 
is closely related to fluid deflection (/31-/32) as we might expect. CL is also linearly 
dependent on the cascade pitch/chord ratio t/l as again we would expect, t/l and the 
'solidity' o-= l/t are thus important cascade geometrical parameters through which 
the designer can exercise close control over blade loading. 

In the case of axial fans, for which the blade spacing is often quite wide, e.g. 
t/l ,> 1.0, a rough guide to profile selection is provided by the abundance of published 
CL, Co data for isolated aerofoils such as that given by I. H. Abbott  and A. E. Von 
Doenhoff (1959) or F. Riegels (1961). This reveals that a lift coefficient of value 
CL = 1.2 would be close to the maximum achievable for many aerofoils. For a fan 
application a more conservative design value of say CL = 0.8 to 1.0 would be desirable 
to increase the allowable stall margin. An example will help to illustrate how one 
might then select a suitable pitch chord ratio. 

Example 2.1 

Problem 
Given f l l  = 65 ~ and 132 = 60 ~ estimate t/l for a fan cascade for which CL = 0.8. Given 
a CL/CD ratio of 30 calculate the loss coefficient. 

Solution 
From Eqn (2.1), 

13oo = arc tan ((tan 65 ~ + tan 60~ = 62.71 ~ 

CD = CL/30 = 0.026 67 



From Eqn (2.10), 

From Eqn (2.8), 
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C L d" C D tan/3oo 
2 (tan f l l  --  tan J~2) COS tim 

= 2.2519 

~ = C D  = 0.025 828 
(t/l) cos floo 

2.2 Diffuser ef f ic iency of a compressor cascade 

While the primary role of a fan is to move large volumes of air or other gas while 
raising its pressure sufficiently to overcome the duct system losses, priorities are 
reversed for an axial compressor. In view of the requirement for a large pressure 
rise, the primary role of the compressor cascade is that of a diffuser. The standard 
definition of diffuser efficiency r/D may then be applied: 

Actual pressure rise 
I"/D-" Ideal pressure rise 

P 2  --  P l  (2 11) 
= l o ( w ? -  

Application of the steady flow energy equation for incompressible flow to the control 
volume results in 

P 2 -  P l = �89 W2 -- W 2 ) -  A p o  

so that I'/D may be rewritten 

~Po 
rid = 1 -  l p ( W  2 _ W~) 

and after substitutions from Eqns (2.8) to (2.10) 

r/D = 1 - -  

= 1 -  

~Po 
pWx 2 tan 13oo (tan f l l  --  tan ~2) 

sin (2/300) (tan fll --  tan f12) 

(2.12) 

o r  

r/D=l-2( C~~~i ) 1 (2.13) 
sin (2/3~) 

As shown by Dixon (1975), quoting Howell (1945), the lift drag ratio CLi/C D varies 
weakly with/3oo for efficient cascades and may be assumed constant when differentiat- 
ing rto to estimate the optimum/300. Thus 

dn-----~D~4(CD)COS(2/3~176 = 0  f o r  (floo)opt 
d/3~ ~Li sin2 (2fl~) 
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This simple analysis shows that if we regard a compressor cascade as a diffuser 
the optimum performance requires that cos (2/3oo) = 0, that is/3o0 = 45 ~ This provides 
a very simple way forward as a basic design guide but of course ignores a wide range 
of other factors which may influence compressor performance such as annulus wall 
frictional losses, secondary losses due to the impact of the annulus wall boundary 
layer upon the blade row, and tip clearance losses due to leakage through the gap 
between blade tip and casing. Some of these matters will be dealt with briefly later 
where pertinent, but detailed reviews have been given by Dixon (1975) and Horlock 
(1958, 1966). 

Apart from these additional influences, closer consideration of the blade profile 
fluid dynamics reveals how far in practice the actual flow departs from that of  an 
equivalent diffuser. To illustrate this the blade surface pressure distribution fox a 
typical well-designed compressor cascade is compared in Fig. 2.7 with the pressure 
rise through an equivalent two-dimensional plane walled diffuser, Diffuser No. 1. 
For this purpose normal practice in dealing with compressor cascades is to define 
a dimensionless surface pressure coefficient Cpl based upon inlet dynamic head: 

Cpl -- Pl -- P12 (2.14) 
~pW1 

where p is the static pressure on the blade surface and Pl is the static pressure 
upstream of the cascade. 

The cascade considered here was designed and analysed using the program 
CASCADE, in order to deliver an ideal lift coefficient CLi -'- 1.15, given t/l = 1.0 and 
/3oo = 45 ~ To achieve this some preliminary analysis is required to determine fll and 
/32. Equations (2.1) and (2.10a) may be rearranged into the form 

tan fll + tan f12 = 2 tan/3oo 

CLi 
tan fll - tan fiE = t (2.15) 

2 7 cos/300 

providing a pair of simultaneous equations whose solution yields /31 = 54.59 ~ 
/32 = 30.69 ~ Making use of the design technique outlined in Appendix II, Section 
II.8, the cascade was designed for smooth inlet flow to deliver the required outlet 
angle and overall fluid deflection f l l -  f12--23.90~ 

Before making general observations about the predicted Cpl distribution it is of 
help to note the three following special values of the pressure coefficient Cpl if we 
apply its definition, Eqn (2.14), to conditions upstream and downstream of the 
cascade and also to the leading edge stagnation point. 

Upstream of the cascade, point A: 

(Cpl)upstream = P l - P l  1 2 = 0  ~PW1 

Downstream of the cascade, point C" 

P2--Pl  =1 [W2'~ 2 
(Cpl)downstream = 1 2 ~pW1 \Wl] 

= 1 -  (c~ 2 
cos/32 = 0.546 
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Fig. 2.7 Surface pressure distribution for a compressor cascade and equivalent, diffusers 

At the stagnation point on the blade profile leading edge where the pressure p equals 
the stagnation pressure Po, 

1 2 
P - P l  = Po - P l  = g p W 1  

so that 

(Cpl)stagnation = 1.0 

Interpretation of Cpl plots is made much easier by this observation. As we may 
see from Fig. 2.7, the static pressure in general rises for both the upper (convex) 
surface of the blades marked u and the lower (concave) surface marked I. As we 
approach the leading edge (x/l = 0) and the trailing edge (x/l = 1), the averages of 
the upper and lower surface Cpl values converge towards points A and C respectively, 
showing that the cascade is indeed raising the static pressure overall from Cpl --0 
to Cp l -0 .546  as required. 

Also shown in Fig. 2.7 is the Cpl curve for the equivalent plane-walled diffuser, 
Diffuser No. 1, connecting points A and C. It is immediately apparent just how far 
from this the actual compressor cascade Cpl departs. On the lower surface l the 
pressure remains a good deal higher than on the equivalent diffuser following a fairly 
rapid diffusion over the range 0 <x/l < 0.4. On the blade upper surface u, on the 
other hand, conditions are much more demanding than those required of the 
equivalent diffuser. First of all the static pressure falls rapidly from the leading edge 
stagnation point Cpl = 1.0 to a minimum value of Cpl = -0.6138 at location B where 
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x/l = 0.1656. Following this the static pressure has to rise more than double the overall 
(P2 - P l )  of the cascade over the remaining upper surface section BC. Thus the upper 
or convex surface of a compressor cascade is subjected to extremely high diffusions, 
in this example more than double those of the cascade overall equivalent diffuser. 
In view of this S. Lieblein (1956) developed an experimental correlation linking this 
blade upper surface diffusion between points B and C to cascade losses and loading 
limits, since boundary layer growth and stability on this section of a compressor blade 
are known to have dominating aerodynamic effects. We will return to this matter 
in Section 2.7. For the present purpose it will be instructive just to consider the 
equivalent diffuser for the upper surface section BC, shown here as Diffuser No. 2. 
The aim is to select its area A as a fraction of the area A1 at inlet with velocity W1 
such that the upper surface Cpl value is obtained along the diffuser. If the local 
velocity on the blade surface is Vs, then for incompressible flow the continuity 
equation gives 

A Wl 
A1 Vs 

But from the definition of Cpl  

p p1=1 Cpl  -" 1 2 ~pW1 

and hence for the equivalent diffuser to model the flow over the blade surface 
section BC, 

A 1 
(2.16) 

A--'q- = X/1 - Cpl 

From this we observe two things as compared with equivalent diffuser No. 1. First, 
much more overall diffusion is required. Second, heavy diffusion demands are made 
upon the trailing edge. In practice the thickening boundary layers would tend to 
separate close to the trailing edge, contributing to losses and tending also to unload 
the blade in that region. 

2.3 Specification of blade profile geometry 
The foregoing discussion suggests that considerable care is needed when designing 
compressors or fans to select profile shapes which will produce stable diffusing flows, 
particularly on the vulnerable upper surface. There are two approaches to blade 
profile selection which are often referred to as the direct (analysis) and inverse 
(synthesis) methods. These may be described briefly as follows" 

(1) Direct (or analysis) method. Blade profiles are generated by a systematic 
geometrical technique such as that illustrated in Fig. 2.8. Series of such 
cascades are then analysed either by experimental test or by theoretical 
analysis to identify the most efficient geometries and their detailed 
aerodynamic performance. 

(2) Inverse (or synthesis, PVD) methods. This technique allows the designer to 
specify the surface velocity or pressure distribution along the blade surface. 
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Fig. 2.8 Construction of a blade profile from a camber line and a base profile 

Extremely advanced mathematical analyses are now available to find the 
blade profile which will generate this. Such methods are often referred to as 
PVD (prescribed velocity distribution) analyses. 

Although inverse methods appear to offer the perfect solution for prescribing in 
advance the blade aerodynamic behaviour one would like, there are snags and we 
will mention these later, in Section 2.5. In engineering practice the systematic 
procedures of the direct method offer special attractions for building up experimental 
and theoretical data systematically for closely related families of cascades. This 
approach has formed the bedrock of compressor and turbine blade profile develop- 
ment. The geometrical method shown in Fig. 2.8 is widely used in the UK, the USA 
and elsewhere and follows that adopted for isolated aerofoil design. Aerofoil profiles 
are constructed by superimposing a standard profile half-thickness shape Yt normal 
to and on either side of a camber line Yc. The camber line shape is usually either 
a circular arc or a parabola. Thickness distributions, sometimes called 'base profiles', 
are tabulated in such texts as Riegels (1961) and Abbott and Von Doenhoff 
(1959). 

2.4 Use of program CASCADE to perform the direct 
analysis 

A limited number of well-known thickness distributions have been provided in the 
data file PROFILES for use with the program CASCADE in the standard published 
format. These are recorded in Table 2.1. Although they are likely to be adequate 
for most purposes, instructions are given in Appendix II for the inclusion of more 
base profiles if required. 
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Table 2.1 Sample of base profile thicknesses used in programs CASCADE and STACK 

c4 T4 NACA 0012 NACA 0015 NACA 66-010 NGTEmod 

Xt Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt Yt 

0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.000 0.0 0.0 0.00 
1.25 1.65 1.25 1.17 1.25 1.894 1.25 2.367 0.5 0.759 1.25 
2.50 2.27 2.50 1.54 2.50 2.615 2.50 3.268 0.75 0.913 2.50 
5.00 3.08 5.00 1.99 5.00 3.555 5.00 4.443 1.25 1.141 5.00 
7.50 3.62 7.50 2.37 7.50 4.200 7.50 5.250 2.5 1.516 7.50 

10.00 4.02 10.00 2.74 10.00 4.683 10.00 5.853 5.0 2.087 10.00 
15.00 4.55 15.00 3.40 15.00 5.345 15.00 6.682 7.5 2.536 15.00 
20.00 4.83 20.00 3.95 20.00 5.737 20.00 7.172 10.0 2.917 20.00 
30.00 5.00 30.00 4.72 25.00 5.941 25.00 7.427 15.0 3.53 30.00 
40.00 4.89 40.00 5.00 30.00 6.002 30.00 7.502 20.0 4.001 40.00 
50.00 4.57 50.00 4.67 40.00 5.803 40.00 7.254 25.0 4.363 50.00 
60.00 4.05 60.00 3.70 50.00 5.294 50.00 6.617 30.0 4.636 60.00 
70.00 3.37 70.00 2.51 60.00 4.563 60.00 5.704 35.0 4.832 70.00 
80.00 2.54 80.00 1.42 70.00 3.664 70.00 4.580 40.0 4.953 80.00 
90.00 1.60 90.00 0.85 80.00 2.623 80.00 3.279 45.0 5.0 85.00 
95.00 1.06 95.00 0.72 90.00 1.448 90.00 1.810 50.0 4.971 90.00 

100.00 0.00 100.00 0.00 95.00 0.807 95.00 1.008 55.0 4.865 92.50 
100.00 0.000 100.00 0.000 60.0 4.665 95.00 

65.0 4.302 97.50 
70.0 
75.0 
80.0 
85.0 
90.0 
95.0 

100.0 

3.787 100.00 
3.176 
2.494 
1.773 
1.054 
0.408 
0.0 

0.000 
1.375 
1.910 
2.680 
3.195 
3.600 
4.180 
4.550 
4.950 
4.820 
3.980 
3.250 
2.450 
1.740 
1.500 
1.270 
1.170 
1.080 
0.980 
0.000 

The program C A S C A D E  is able to construct the blade profile of your choice 
following the geometrical  strategy shown in Fig. 2.8 which concentrates the profile 
data points into the leading and trailing edge region. If we first construct a semi-circle 
of radius 1/2 as shown and divide it into M equal segments A~b = 2~r/M, camber  line 
Xc coordinates are then given by 

Xc 1 
= ~ (1 - cos ~b) (2.17) 

Camber  line Yc coordinates and slopes dyc/dxc may then be calculated. The  
half-thickness Yt may then be interpolated from the tabulated base profile data.  The  
coordinates of profile points a and b on the upper  and lower surface then follow 
from 

Xa -- Xc -- Yt sin 0c upper surface 1 (2.18a) 
Ya = Yc + Yt COS 0c . . . . .  J 

Xb = Xc + Yt sin 0c lower surface I (2.18b) 

Yb = Yc -- Yt COS 0 c . . . . .  J 
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where 0~ = arc tan (dyc/dxc) is the slope of the camber line. The camber angle 0 is 
defined in Fig. 2.8 together with the leading and trailing edge camber angles 01 
and 02. 

An interesting application of the direct method is shown in Fig. 2.9 where three 
different cascade profiles have been selected to achieve the same overall design 
requirements as the cascade shown in Fig. 2.7, namely 

(1) t/l = 1.0, f l l  : 54.59~ 132 = 30.69 ~ 
(2) shock-free inflow, and 
(3) three camber line types: 

(a) Circular arc. 
(b) Parabola with position of maximum camber xc / l -  0.3. 
(c) Parabola with position of maximum camber xc / l -  0.7. 

Fluid dynamic analysis of these three cascades illustrates the important effect which 
camber line shape has upon the surface pressure distribution and especially that of 
the upper surface u. By moving the position of maximum camber forward towards 
the leading edge, the blade loading Cp~-Cp~,  and centre of lift are also moved 
forward and vice versa. 

In case (b), (Xc/l)max--0.3, the upper surface pressure falls rapidly to avery low 
value Cp~ = -1 .0  at x/l = 0.2 and then diffuses steadily towards the trailing edge. On 
the lower surface the pressure remains almost constant over most of the chord length. 
This profile might exhibit better aerodynamic characteristics than profile (a) but 
would be less attractive for pumps where its low Cp~ u would reduce its threshold for 
resisting cavitation. 

Considering case (c), (Xc/l)max = 0 . 7 ,  moving the position of maximum camber 
towards the trailing edge has produced a fairly constant pressure over most of the 
upper surface 0.1 <x/l < 0.8 followed by a dramatic diffusion. Although the latter 
might result in flow separation approaching the trailing edge, this profile would 
certainly offer better cavitation performance due to its lightly loaded leading edge 
and generally higher upper surface pressure distribution. 

2.5 Design of a cascade  by the inverse method 

Two options are available for aerofoil or cascade design by the inverse method. 
Option A permits the designer to specify a prescribed velocity distribution (PVD) 

(and therefore pressure distribution) on both upper and lower surfaces, resulting in 
automatic synthesis of the entire profile to meet this specification. Although this 
sounds attractive the procedure has its setbacks. At worst the designer may choose 
an impossible PVD for which there is no corresponding blade profile. At best his 
chosen PVD may lead to unsuitable profile thickness distributions. 

In view of the latter problems, Wilkinson (1967) proposed Option B whereby the 
PVD is limited to the more aerodynamically sensitive upper surface only but a profile 
thickness is also prescribed. In effect the inverse method is then designing the camber 
line shape required to achieve the desired PVD on the upper surface. The velocity 
distribution on the lower surface is simply accepted to adjust freely to whatever it 
will. 

Theoretical techniques to achieve this, often quite ingenious, have been invented 
by many research analysts including Ackeret (1942), Railly (1965), Wilkinson (1967), 
Cheng (1981) and Lewis (1982) and some of these have been reviewed by Lewis 
(1991) for application to aerofoils, cascades and slotted aerofoils and cascades. Cheng, 
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Fig. 2.9 Effect of camber line shape on surface pressure distribution of a fan cascade designed for 
shock-free inflow with ,~1  --" 5 4.590 and /32 = 30.69 ~ 

applying this technique to the design of wind turbine blade sections, has shown that 
extremely high lift/drag ratios may be achieved. 

For commercial use a high lift fan cascade was required to produce a deflection 
from /31 = 67.45 ~ to /32 = 53.33 ~ The inverse boundary layer method of Stratford 
(1959) was used to prescribe the upper surface PVD as shown in Fig. 2.10. Further 
details of this, and of the inverse cascade analysis employed, have been published 
by Lewis (1982, 1991). The surface velocity vJW1 (i.e. normalised by the inlet velocity 
W1) was kept constant for the first 30% of the blade surface and then diffused to 
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Fig. 2.10 Inverse design of a fan cascade for prescribed velocity distribution on the upper surface 
and with a C4 base profile thickness (reproduced by courtesy of the American Society of Mechanical 
Engineers) 

a fairly high value of vs/W2 = 1.2 at the trailing edge. Adopting Option B, a C4 profile 
was selected to predetermine the profile thickness distribution. The outcome of the 
inverse computational procedure is shown in Fig. 2.10, namely a complete prediction 
of v~ for both surfaces and the consequent profile shape. Also shown is a back-check 
analysis of flow past the designed profile using the analysis program CASCADE 
which confirms that the required PVD was obtained. The predicted velocity on the 
lower surface is almost constant (Vs ~0.6)  and perfectly acceptable. 

2.6 'Shock-free'  inflow and opt imum incidence of a 
cascade  

In Section 2.4 we referred without explanation to the so-called 'shock-free' inflow 
condition. This terminology is a little unfortunate since it has nothing to do with the 
shock waves caused by compressibility effects in high speed flow. It is instead 
frequently used to refer to the particular inlet angle/31 for which the leading edge 
stagnation point is located precisely on the end of the profile camber line, Fig. 
2.11(b). For greater or smaller inlet angles the stagnation point will move instead 
onto the lower or upper surface respectively as illustrated. Shock-free inlet flow thus 
ensures the smoothest entry conditions into the cascade and is thus likely to be close 
to,the minimum loss situation. 

Most published correlations refer not to the optimum inlet angle ,/31 Of a cascade 
but to the optimum angle of incidence i since this parameter relates more directly 
to profile geometry. The angle of incidence i is defined as the angle between the inlet 
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\ 
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Fig. 2 .13  Typical cascade loss coefficients versus inlet angle: (a) ~', versus ~1; (b)~'x versus/31 

velocity vector W 1 and the tangent to the camber line. From Fig. 2.12 this can be 
related directly to /31 through 

i = / 3 1 -  A -  01 (2.19) 

In general i will not necessarily be zero but will normally be a small negative angle. 
For example, for case (a) shown in Fig. 2.7 designed for shock-free inflow, the 
shock-free incidence iSF is given by 

iSF = 54.59~176 x 41.5 ~ = -7 .44  ~ 

Designing for shock-free inflow is a simple matter using modern flow analyses such 
as the computer program CASCADE,  Appendix II, Section 11.8. However, the 
shock-free inlet angle or incidence may not necessarily coincide exactly with that for 
minimum loss, which will usually be one or two degrees greater (e.g. say/31 = 56.59 ~ 
i = -5 .44  ~ for the case under consideration). 

For the production of experimental correlations, on the other hand, there is no 
need to search for the shock-free inflow condition since the cascade loss coefficient 
may be measured directly by means of a wake traverse. The strategies involved have 
been adequately outlined by Horlock (1958), Gostelow (1984) and Cumpsty (1989) 
and will not be repeated here. A typical presentation of loss versus inlet angle for 
a compressor cascade is shown in Fig. 2.13 where the loss coefficient ~1 is normalised 
by the inlet dynamic head. ~'1 is defined as follows and may be related to ~'=, Eqn 
(2.9), through 

Apo (COSfla) 2 
~'1 - -  1 2 = ~ (2.20) 

~pW 1 COS fl~ 

Although cascade loss data are frequently plotted as ~1 versus /31 or i as shown 
in Fig. 2.13(a), this is to some extent misleading since the presence of ~pWll 2 in the 
denominator of ~'1 tends to distort the plot. A better approach is to plot the actual 
loss Apo instead or alternatively to define a loss coefficient based upon the velocity 
perpendicular to the cascade Wx, which is not a function of the inlet angle, fix may 
thus be defined as 

Apo 
~"x = i 2 = ~'1/cOS2 f l l  (2.21) 

~oW~ 
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As shown by Fig. 2.13(b), the resulting curve becomes roughly symmetrical about 
the inlet angle/31 = 38 ~ which can be taken as the optimum inlet angle. 

Because the loss curve Srx(/31) is fairly flat, identification of the minimum loss point 
is not always easy. The technique adopted by S. Lieblein (1956), illustrated in Fig. 
2.13(b), is much more definitive. At excessively high or low inlet angles the losses 
will suddenly begin to rise rapidly until the cascade reaches either positive or negative 
stall. Lieblein defined stall arbitrarily as the inlet angles or incidences for which the 
loss coefficient reaches twice the minimum value. The optimum inlet angle/31 is then 
taken as the average of the positive and negative stalling inlet angles. Stall is in reality 
the condition at high positive or negative incidence for which the fluid separates 
catastrophically from the blade surface resulting in sudden collapse of lift and increase 
in drag and therefore also of loss. Lieblein's definition of  (il l)opt is thus a sensible 
concept since it takes stall into consideration by ensuring a good stall margin on either 
side of the optimum or reference inlet angle. 

2.7 Diffusion factors for compressor cascades 

Early on in our discussion of cascade performance in Section 2.2 we considered the 
idea of the compressor or fan cascade as a diffuser and postulated the concept of an 
equivalent diffuser in Fig. 2.7 and Eqn (2.16). Examination of the blade surface 
pressure distribution revealed, however, that for a typical cascade the diffusion, i.e. 
pressure rise, demanded of the upper surface of the blade is always much greater than 
the overall pressure rise. Consequently the boundary layer developed on the upper 
surface exerts the predominant influence upon compressor cascade aerodynamic 
performance. S. Lieblein (1956), based on earlier unpublished work (Lieblein et al., 
1953), was the first to identify this principle and to develop the 'diffusion factor' 
technique as a means for setting suitable aerodynamic loading limits on compressor 
cascades. We will refer here to two of his definitions of diffusion factor. 

2.7.1 Local diffusion factor 

Previously, in Fig. 2.7, we considered the surface pressure coefficient Cpl defined by 
Eqn (2.14). Lieblein instead considers the surface velocity distribution and defines the 
local diffusion factor as 

Wma x - W 2 
Dloc = (2.22) 

Wmax 

where Wma x is the maximum surface velocity distribution and W 2 is the cascade outlet 
velocity. By experimental investigation of boundary layer behaviour, Lieblein has 
shown that Dloc should not exceed 0.5. 

Now Wma x will correspond to the minimum surface pressure point on the blade 
surface, namely location B in Fig. 2.7. But from Eqn (2.14), the maximum surface 
veloci ty  Wma x corresponding to local pressure Pmin may be expressed as 

Wmax - ~/1  - (Cp 1)min 
W1 

The local diffusion factor, Eqn (2.22), may thus be expressed in the alternative form 

D,oc = 1 _ (cos/31) 1 (2.23) 
cos/32 V'I (Cpl)min 
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u 

/ / / / / / / / / / / / / /  
Fig. 2.14 Boundary layer past a plane wall 

For our sample cascade, Fig. 2.7, (Cp l )min  = -0.62,/31 = 54.59 ~ = 30.69~ hence 
the predicted Dloc = 0.470 62 lies within the acceptable limit but quite close to it. 

A word should be said here about the underlying boundary layer criterion behind 
Lieblein's work. First we must define the concept of boundary layer momentum 
thickness 0 with reference to the flow past a plane wall, Fig. 2.14. Due to fluid friction 
the velocity u parallel to the wall will decrease from the mainstream value U at the 
edge of the boundary layer, y = 6, to zero at the wall, y = 0. The consequent 
decrement in momentum flux crossing the line ab may thus be expressed by the 
integral 

.6 

AM = P J0 u(U - u) dy (2.24) 

/ 

Dividing both sides by the factor pU 2 we obtain the definition of boundary layer 
momentum thickness: 

6 

0=f0  tdy (2.25) 

Figure 2.15, given by Lieblein (1956), shows O/l as a function of Dloc for the 
NACA-65 series of aerofoil cascades at their minimum loss incidence. From this 
summary of well-designed cascades it is clear that momentum thickness and therefore 
loss tend to increase dramatically for Dloc values greater than 0.5. This provides a 
simple limiting load criterion which can be applied to purely theoretical surface 
pressure predictions based upon frictionless flow methods such as the computer 
program CASCADE. 

Before we move on to Lieblein's alternative definition of diffusion factor DF it is 
helpful to point out that O/l may be related to the cascade loss coefficient ~'1 as follows. 
From Fig. 2.16 the momentum flux decrement for one blade wake pW2(Ou + Ol) may be 
related to an equivalent pressure force ApotCOS/32 due to stagnation pressure loss 
averaged over one blade pitch viewed along the exit velocity vector W2, 

ApotCOS ~2 = pW2(Ou + 0l) (2.26) 
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Fig. 2.15 Wake momentum thickness versus local diffusion factor for NACA-65 cascades at minimum 
loss incidence 

2 

I:/ I ~  
i 
I 

Fig. 2.16 Blade wake downstream of a cascade 

where 0. and 0/are the momentum thicknesses of the trailing edge boundary layers. If 
these are absorbed into a wake momentum thickness 0 = 0. + 0t, Eqn (2.26) may be 
rearranged to give 

~,~o (~) o (cos~,)2 
~'1 "- 1 2 = 2  

~ p W  1 COSfl2 COSfl2 
(2.27) 
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Fig. 2 .17  Wake momentum thickness versus overall diffusion factor DF for NACA-65 and C4 aerofoils 
at minimum loss incidence 

From this useful equation the reader may calculate the wake momentum thickness 
from the value of loss coefficient ~'1 or vice versa. 

2.7.2 Diffusion factor (earlier definition) 

Prior to the advent of computational fluid dynamics it was not easy to predict the 
maximum surface velocity Wma x. Lieblein et al. (1953) therefore developed the 
alternative form of diffusion factor DF based upon a postulated type of surface velocity 
distribution which in general resembled those measured on NACA-65 blades. Without 
repeating all the analysis involved, the final definition of DF is as follows: 

DF = 1 cos/31 ~_ (tan/31 - tan/32) (2.28) 
COS B2 2 

Lieblein's plot of O/l versus DF for the American NACA-65 and British C4 series of 
cascades is shown in Fig. 2.17, from which it is clear that DF = 0.6 imposes an upper 
limit for the allowable diffusion factors. In the case of our example cascade, Fig. 2.7, 
the predicted diffusion factor is thus DF = 0.5618. 

2.7.3 Selection of optimum pitch/chord ratio for a compressor cascade 

It follows from the above discussion that Eqn (2.28) may be rearranged to provide an 
expression for the maximum allowable pitch/chord ratio. If we introduce DF <~ 0.6, we 
obtain 

t 2 COS Ill/COS f12 -- 0 .8  
-~< (2.29) 
l cos/31 (tan/31 - tan/32) 
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Fig. 2.18 Definition of cascade nominal conditions (from Howell (1942) by courtesy of HMSO) 

For our example cascade for which we specified ~1--54.59~ /32 = 30.69 ~ the 
maximum allowable pitch chord ratio is thus t/l = 1.1623, as compared with the more 
conservative value t/l = 1.0 previously used when predicting the pressure distribution 
in Fig. 2.7. 

2.8 Nominal deflection and fluid deviat ion 

2.8.1 Nominal deflection 

An even simpler approach than that of Lieblein to the setting of cascade stall margins, 
postulated by A. R. Howell (1942, 1945) in the early days of gas turbine axial 
compressor development, has stood the test of time. Howell defined 'nominal' 
conditions for a compressor cascade as those relating to a fluid deflection e* =/31 -/32 
equal to 80% of the stalling deflection, Fig. 2.18. Following Horlock (1958), stalling 
deflection could be referred to maximum attainable deflection. Alternatively we could 
adopt the definition of stall discussed in Section 2.6 and illustrated in Fig. 2.13, namely 
that incidence for which the loss is double the minimum possible value. 

From experimental correlations Howell was able to obtain a relationship between e* 
and the nominal outlet angle/3~, for a wide range of practical cascade geometries, Fig. 
2.19(a), revealing the trends one would expect. Thus for a typical outlet angle, say 
/3~ = 30 ~ the nominal deflection e* decreases substantially as t/l increases. 

It is possible to compare this correlation with Lieblein's conceptually different 
diffusion factor approach outlined in Section 2.7. Equation (2.28) may be rearranged 
to read 

~-=2t{  c ~ 1 7 6  } 
cos/31 (tan/31 - tan/32) 

(2.30) 



2.8 Nominal  deflection and f luid deviation 45 

* 50 
I= 
0 .~,,4 

g 40 
o 

"~ 30 

0 
Z 20 

= t l l  

50 

10 

0.5 = t i t  

q~  

.~ 40 

~ 30 

20 

10 

�9 ! i | �9 1 . i 0 I ! 1 I I | 1 

0 20 40 60 ~ 0 20 40 60 ~ 
Nominal outlet angle f12* Outlet angle f12 

(a) (b) 
Fig. 2.19 Compressor cascade optimum deflection data, comparing A. R. Howell and S. kieblein:* (a) 
cascade nominal conditions (Howell, 1945) (reproduced by courtesy of the Institution of Mechanical 
Engineers); (b) data derived from Lieblein's method, Eqn (2.30) 

Introducing a conservative diffusion factor DF = 0.5 into this equation, solutions for 
/31 may be derived by an iterative procedure for prescribed values of t/l and /32, 
resulting in Fig. 2.19(b). The similarity of this to Howell's data for cascades at 
'nominal' conditions is quite remarkable for the extremely wide range of compressor 
cascades represented, Howell's correlation remaining slightly more conservative 
throughout (i.e. eLieblein > e*). 

2 . 8 . 2  F lu id  dev ia t ion  

In Section 2.6 and Fig. 2.12 we defined the incidence i as the angle between the fluid 
upstream velocity vector W1 and the blade leading edge camber line. Analogous to 
this is the fluid deviation 6 at exit from the cascade, Fig. 2.20, defined as the angle 
between the fluid exit velocity W2 and the tangent to the camber line at exit. 6 is thus 
given by 

= ~ 2 -  A + 0 2 (2.31) 

and is a fine measure of departure of the fluid deflection from the blade curvature. 
Thus in general fluid deflection e is less than the blade camber angle 0. 

An empirical correlation relating nominal deviation 6* to camber and pitch/chord 
ratio t/l has been given by Howell: 

8* = mO(t[l) n (2.32) 
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Fig. 2 .20 Definition of deviation angle 8 

where n = �89 for compressor cascades and n = 1 for compressor inlet guide vanes, and 

m = 0.23(2a/1) 2 +/3~/500 (2.33) 

Here a/l is the position of maximum camber from the leading edge as a fraction of 
blade chord and is the same as (xc/l)max, Section 2.4 and Fig. 2.8. 



3 
Principles of performance 
analysis for axial turbines 

Introduction 

Rapid progress in turbomachinery technology since the invention and development 
of the gas turbine during the second world war has called for conflicting requirements 
of both breadth, to meet manufacturing and marketing demands, and depth, to 
advance specialist fields such as stress and vibration analysis and turbomachinery fluid 
dynamics. Increasing computer power has tempted research and design engineers to 
focus excessively on detailed fluid flow problems without paying sufficient attention 
to overall factors which influence performance. In Chapter 1 we did indeed focus 
upon broader considerations with the help of dimensional analysis, to bring out the 
overall performance trends of families of related machines such as axial, mixed-flow 
and centrifugal pumps, Figs 1.9 to 1.12, making use of global dimensionless variables, 
Section 1.2. It is the purpose of the present chapter to show how dimensional analysis, 
based upon local dimensionless variables (see Section 1.2.3), can be used to provide 
a unified framework for performance analysis of axial turbines which integrates 
logically the three main fluid dynamic design activities, namely 

(a) choice of local dimensionless design duty coefficients (~b, ~), 
(b) velocity triangle design, and 
(c) fluid flow considerations (efficiency, losses, selection of blade shapes, etc.). 

Methodology in this area, valuable to designer, student and teacher alike, is a scarce 
commodity. A pivotal paper by S. F. Smith (1965) should be acknowledged as 
eminent. Presented to a specialists' meeting largely concerned with advanced fluid 
dynamics, this paper perhaps sat uneasily and seemed to attract relatively little 
interest at the time. Related to unpublished theoretical studies by Hawthorne (1956) 
discussed by Horlock (1966), this has in fact provided a simple and rational basis 
linking both experimental and theoretical performance analyses for axial turbines. 

The author's computer program FIPSI embodies the principles to be outlined in 
this chapter and enables the student to attempt the overall thermo-fluid dynamic 
layout of a multi-stage axial turbine. A 'screen-dump' of a typical three-stage turbine 
design is shown in Fig. 3.1 togeher with a summary of the input design data. To give 
some idea of the overall design sequence for such a machine the various steps may 
be related through the flow chart shown in Fig. 3.2, which is a development of the 
previous flow diagram Fig. 1.2 giving rather more specific detail. 

The program FIPSI is concerned with the first three stages of this procedure, 
namely 

(a) specification of overall duty requirements, 
(b) derivation of the consequent local dimensionless performance duty 

coefficients (~b, ~) and the checking of these against test data to decide upon 
the appropriate number of stages, and 
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Axis of  ro ta t ion  

Station rhub r t ip  Press.  T a m p  

No.  m m bar K 

1 0.300 0.450 2.50 1200.0 

2 0.283 0.466 1.90 1116.8 

3 0.260 0.489 1.41 1033.6 

4 0.229 0.520 1.02 950.5 

The rmodynamics  Des ign  data  Graph ics  File etc. 

Design input  data are  present ly  as follows :- 

Inlet  hub radius = 0.300 m Input  pressure  = 2 .500 bar  

Inlet t ip radius = 0.450 m Outle t  p ressure  = 1.020 bar 

N u m b e r  of  s tages = 3 Inlet  temp.  T I  = 1200.0 K 

Stator  aspect  ra t io  = 6.0 Rot .  speed = 6000.0  rays / ra in  

Ro to r  aspect  ra t io  = 8.0 Mass f low rate = 35.000 kg/s 

Tota l  to total  effy.  -- 9 2 %  

C p / C v  ra t io  gamma  = 1.40 Gas cons tant  R = 287.0 J /kg  K 

Other  calculated design data for  the above are:- 
Outlet hub radius = 0.2Z9 m Out le t  t emp.  T2 

Out le t  t ip radius = 0.520 m Flow coeff ,  fi 

Axial  veloci ty  = 136.42 m/s  Work  coeff ,  psi 
Last  s tage hub s ta lor  exit Much  No.  M2 = 0.773 

Last  s tage t ip ro tor  exit Much No.  M3 re la t ive  = 0.626 

= 950.5 K 

= 0 .57899 

= 1.50459 

< <Pres s  Air key and f i rs t  letter together to g a b  a m e n u >  > 

< <e .g .  AI t -T  pulls down the Thermodynamics m e n u >  > 

Fig. 3.1 Design of a three-stage axial turbine. Screen presentations from computer program FIPSI 

(c) the detailed thermodynamic and velocity triangle design for each blade row. 

We will begin by considering dimensional analysis for a single stage only in Section 
3.1. These generalised results will then be related to dimensionless velocity triangles 
in Section 3.2. Theoretical analyses will then be developed in Section 3.3 for 50% 
reaction stages and in Section 3.5 for stages of arbitrary reaction. Use of a simple 
loss correlation will be made in Section 3.4 to facilitate the prediction of total-to-total 
efficiencies, based on the Rolls-Royce test data for model turbine stages published 
by S. F. Smith (1965). In Section 3.7 we will extend the performance analysis to model 
turbines with zero interstage swirl. 

3.1 Dimensional analysis for a single stage 
Let us consider the idealised model stage shown in Fig. 3.3 consisting of one stator 
and one rotor. We will make the following assumptions: 

(1) Constant axial velocity Cx. 
(2) Constant mean radius r m = l(r h + rt). 
(3) Identical velocity vectors Cl and c3 at entry to and exit from the stage at the 

mean radius r m. 
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Fig. 3.3 Velocity triangles for turbine model stage 

Also shown in Fig. 3.3 are the velocity triangles at entry to and exit from both 
blade rows. All flow angles are measured relative to the machine axial direction with 
the following notation: 

Absolute velocity c 
Absolute flow angle a 
Velocity relative to rotor w 
Flow angle relative to rotor /3 

The four velocity triangles may be assembled into one single diagram for the stage 
as a whole as illustrated. 

Now let us focus upon the efficiency r/Tr of this stage and make the assumption 
that it will be dependent upon the followingvariables" 

rITr = f(Auho, hi, h2, h3,,, ~rrrrrrr~ ~,Cx' 172, W3,.~ ~_a 2, a 3,/.~, pj ,~AP~ s, ApoR)�9 (3.1) 

Thermodynamic Speed Velocity Properties Losses 
variables and size triangle of working 

shape substance 

There could of course be many other factors which would influence efficiency but 
most of these, such as flow leakage through the clearance gap between the rotor tip 
and the casing, can be subsumed into the losses. Here we can identify five different 
categories of influential factors" 

(1) Thermodynamic variables. The stage stagnation enthalpy drop Aho determines 
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(2) 
(3) 

(4) 

(5) 

the specific work output and signifies stage loading (see Steady Flow Energy 
Equation (1.5), Section 1.1.2). The specific enthalpies hi, h2 and h3 typify 
the progression in energy transfer through the stage. All four are 
independent design variables at the designer's disposal. 
Speed and size. Both are independent design variables. 
Velocity triangles. Four velocities are required to determine the shape of the 
velocity triangles, Fig. 3.3. The blade speed U =  rml)=  �89 h + rt)l) is already 
covered by item (2) above. Cx must be provided as an independent variable. 
c2 and w3 then follow from (1) above as dependent variables. 
Properties of working substance. The dynamic viscosity/x, density p and 
speeds of sound a2 and a 3 depend upon the physical and thermodynamic 
properties of the gas. 
Losses. We have assumed here that stator and rotor losses from all sources 
(profile drag, tip clearance loss, etc.) may be lumped into stagnation pressure 
losses Apo s and Apo R respectively in order to relate to cascade definitions 
such as Eqns (2.9) or (2.20). 

More detailed analysis interconnecting all these terms will evolve as we proceed. 
As a first step we may reduce the number of variables from 16 to 13 by application 
of Buckingham's 7r-theorem. If we select II, r m and O as repeating variables, Eqn 
(3.1) takes the form 

" f f l ' - f l ( T r 2 ,  ~ 3 ,  ""  ", ~ 1 3 )  (3.2) 

where the following dimensionless groups are formed: 

Aho hi 
~ 1  = "OTT 7I"2 --  ~'~2 r2m 7r3 --  ~-~2 r2m 

h 2  h 3  Cx 
7"1"4 --  ~-~2 rem 7r5 --  ~'~2 rem 7r6 = ~ r  m 

C2 

7r 7 = ~ r  m 

a 3  
7r10 - -  ~-~r m 

ApoR 
7r13 = prof,2 

W3 a 2  
7r 8 = l-~r m "tr9 = ~ r  m 

pr2f~ Apo s 
77"11 = /.l, 7r12 = P r2m lI 2 

(3.3) 

Now as they stand these groups are not all particularly helpful or useful and do not 
match those normally used in engineering practice. In fact the 7r-theorem permits 
us to combine these basic groups to form more appropriate alternatives. At this point 
we need to exercise engineering judgement to achieve this end. Thus the stage 
reaction R as normally defined absorbs 7r3, 71" 4 and 7r5 into a single group: 

R = Specific enthalpy drop across the rotor 

Specific enthalpy drop across the stage 

h2-h3 = 7r4-Tr5 

h i - h 3  7r3 - 7r5 

(3.4) 
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Similarly the stator and rotor exit Mach numbers may be defined" 

M 2 =  c2  = "n'7 
a2 7r9 

M3 w3 7r 8 
a3 7r10 

(3.5) 

and the loss coefficients may be expressed in terms of the exit velocities c2 and w 3 
relative to the blade rows: 

Apos  27r12 
= = 

ApoR 2"rr13 
~'R3 -- 1 2 -- 7T2 ~pw3 

Stator loss coefficient 

Rotor  loss coefficient 

(3.6a) 

(3.6b) 

As we shall see later, the most influential of all the dimensionless parameters are 
the flow coefficient ~b and work coefficient ~, defined as given. Introducing the blade 
speed U =  rmfl we have 

Cx 
6 = -~ = 7r6 Flow coefficient (3.7) 

Aho 
~' = --U-y = 7r2 Work coefficient (3.8) 

One of the remaining groups of special importance is "fill which, as it stands, may 
be identified as the stage Reynolds number based on mean radius: 

U r  m 
Rem = ~ = 71"11 (3.9) 

where v =  tz/p is the kinematic viscosity. Assembling these results, the original 
expression for r/Tr, Eqn (3.1), reduces to 

rrrT=f{cx Aho h 2 - h  3 c2 w3 c2 w3 Urm Apos  ApoR~ 
U' U 2 ' h l - h 3 '  U' U 'a2 '  a3' v ' lpc222' low 2] 

=i(\ q~, ~, R, c2 w3 3]/ U' U ' M2'M3' Rem' ~$2, ~'R 

t ~ ~ t v 
Duty Stage Velocity Mach Stage Loss 

coefficients reaction triangles numbers Reynolds coefficients 
number 

(3.10) 

Thus we have now reduced the number of variables which we expect to influence 
the efficiency from 15 to ten and these fall into six distinct categories as indicated. 
Further consideration in fact enables us to remove three of these categories entirely 
for the following reasons: 
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(1) Velocity triangles. We will show shortly in Section 3.3 that the two velocity 
triangle groups c2/U and w3/U are not independent variables but are in fact 
dependent entirely upon ~b and q~. That is 

C2 W3 
--~ = fl (th, qJ), --ff = f2(th, q0 (3.11) 

(2) Mach number and Reynolds number Furthermore, the loss coefficients ~'$2 
and ~'R3 can be shown by experiment to be dependent upon the exit Math 
numbers and a blade row Reynolds number. Since the losses will also depend 
upon the velocity triangles (e.g. exit gas velocity and fluid deflection or blade 
loading), we would also expect ~$2 and ~'R3 to depend upon ~b and qJ. These 
dependent relationships can be expressed through 

ffS2 "- f3 (t~, @, Re2, M2) 

~'R3 = f4(q b, qt, Re3,  M3) l 
(3.12) 

where blade row Reynolds numbers have been introduced based upon stator 
and rotor blade chords ls and IR: 

C21s 
Re2 = /,, 

WalR 
Re3 = 

1,, 

Stator Reynolds number l 

Rotor Reynolds number J 

(3.13) 

Thus finally we may reduce Eqn (3.10) to the form 

I'/T, I, = f(t~, ~, R,  ~'$2, ~'R3) (3.14) 

i i i d d 

The efficiency of our turbine stage has been shown to depend upon only five 
dimensionless variables which are sufficient to account for all of the 15 items we began 
with in Eqn (3.1). Of these, just three can be varied independently (i) by the designer 
while two are dependent (d) variables. Once a designer has selected the stage duty 
(~b, q0 and reaction R, the losses and thus efficiency will be determined. 

The reader may wonder what practical use this equation is to the designer except 
as a means for planning and interpreting experimental tests to create a data base for 
selecting suitable (~b, q0 duties for highly efficient turbines. Such a thought would 
be highly commendable as will be demonstrated in Section 3.4. However, by simple 
analysis in Section 3.5 we will show that this equation, expressed here only as a 
general parametric relationship, may in fact be developed into an explicit closed form 
which enables us to evaluate efficiencies directly for a given (~b, qJ), ~'sa and ~'R3, 
namely, 

1 )2} ( 12) ]  3,5, 1+ + ~ - +  1 - R  ~.$2 + ~2q_ ~ - + R  ~'R3 
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Fig. 3.4 Condition line for a gas turbine stage: (a) h-s  condition line; (b) ho-s condition line 

3.2 Total-to-total efficiency I~T T 

So far we have used total-to-total efficiency r/Tr without formal definition. Let us 
now correct this by consideration of the stage thermodynamics. The condition line 
1-2-3 recording the thermodynamic changes of state through the blade row can be 
plotted on an h-s diagram as illustrated in Fig. 3.4(a). Alternatively we may derive 
the stagnation enthalpies hol = hi + ~/2 etc. and plot the ho-s condition curve 
ol-o2-o3,  Fig. 3.4(b). From this we may then more easily visualise the definition 
of total-to-total efficiency r/Tr: 

Stagnation enthalpy drop 
rrrr = Ideal stagnation enthalpy drop 

ho 1 _ ho 3 (3.16) 

hol - ho3s 

h o l -  ho3s represents the maximum possible stagnation enthalpy drop for isentropic 
flow through an ideal loss-free turbine having the same overall pressure ratio Pl[P3. 
Thus we can identify the lost stagnation enthalpy (Aho)loss of the real turbine stage 
through 

(Aho)loss = ho3-  ho3s (3.17) 

Also, since Aho = h o l -  ho3, Eqn (3.16) for r/Tr may be expressed as 

Aho 1 
= (3.18) 

r/TT = Aho + (Aho)loss 1 + (Aho)loss 
Aho 
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Now our previous definitions of loss coefficient, Eqns (3.6), involved stagnation 
pressure losses Apo s and Apo R rather than stagnation enthalpy loss. To accommodate 
this we make use of the well-known thermodynamic relationship (Rogers and 
Mayhew, 1992): 

1 
dh = Tds + - d p  (3.19) 

P 

If we apply this along the reversible path 1-3s of the perfect turbine for which ds = 0, 
we obtain 

d h =  1 dp _ 
P 

(for the isentropic line 1-3s) 

If (Aho)loss is small we may thus make the assumption that 

1 
(Aho)loss =. (Apo)loss 

P 

where (mpo)los s represents the total loss of stagnation pressure for the stage, rrrr then 
approximates to 

1 
T/T T = (Apo)los s (3.20) 

1+ 
pAho 

Since (Apo)loss = Apos + ApoR we may introduce the dimensionless groups from Eqns 
(3.6) and (3.18) to obtain finally 

1 

r/Tr = 1 + 2-~[ ( U )  ~$2+ ( ~ ) ~ R 3  ] (3.21) 

To proceed further we need to derive relationships for c2/U and w3/U in terms of 
~b, @ and R by reference to the velocity triangles. We will first tackle the easier case 
of 50% reaction stages (R = 0.5), Sections 3.3 and 3.4. Following this we will go on 
to deal with stages of arbitrary reaction, Section 3.5. 

3.3 50% reaction stages 
From the definition of stage reaction, Eqn (3.4), for 50% reaction we have 

h 2 -  h3 0.5 
h i - h 3  

from which we obtain 

hi - h2 = h 2 -  h3 (3.22) 
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Fig. 3.5 Velocity triangles for a 50% reaction turbine stage 

The specific enthalpy drop across stator and rotor are thus equal. From this we may 
deduce that the velocity triangles are symmetrical as shown in Fig. 3.5. To be certain 
of this we will prove it as follows. Since the stagnation pressure remains constant 
through the stator, 

h i _ h 2 =  1 2 ~(c2 c 2) (3.23) 

Similarly, relative to the rotor (see Section 7.2), the relative stagnation enthalpy 
remains constant, resulting in 

h 2 _  h3 = 1 2 ~(w 3 w 2) (3.24) 

Equating these and introducing c 2 = c 2 + c21 etc., 

c ~ -  Cl ~ - w3 ~ - w~ 

hence 

c b -  ~1 - w~03- wb 

and 

(C02-  C01)(C02 W col ) -" ( w 0 3 -  Wo2)(w03 4- w02 ) 

but from the velocity triangles we observe that 

C02 4- Co1 = W03 Jr- W02 
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The previous equation then reduces to 

c 0 2 -  c o l  = w 0 3 -  w02 
Solving these last two equations we have finally 

C01 -- W02 and c02 = w03 (3.25) 

Thus for 50% reaction the velocity triangles are symmetrical as drawn in Fig. 3.5. 

Example 3.1 

P r o b l e m  
Given the design input data of the turbine shown in Fig. 3.1, calculate ~b and q~ 
assuming identical blade geometry at the mean radius for all three stages. 

Solu t ion  
The calculation for ~b is as follows. 

r m = l ( r  h + r t )  = 0.375 m 

U = r m O ,  = 0.375 x 27r x 6000/60 = 235.62 m s -1 

From the equation of state 

p = p l / R T 1  = 2.5 x 105/(287.0 x 1200) 
- 3  = 0.7259 kg m 

From the continuity equation 

Therefore 

and 

th = pCx zr(r 2 - r 2) 

Cx = 35.0/(0.7259 x 7 r ( 0 . 4 5 2  - 0 . 3 2 ) )  = 136.42 m s 

4~ = cx/U = 0.578 98 

- 1  

Next we calculate ~. 

( A h o ) t o t a l  = hol - -  h o 3  = h i  - h 3  since C 1 = C 3 

= c p ( T  1 - T 3 )  = "yR ( T I _  T3  ) 
7 - 1  

To find T3, 

hol - h o 3  hi - -  h3 T1-  T3 

r/Tr = hom- ho3s ~ hi - h3---~ = T1 - T3s 
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Fig. 3.6 Dimensionless velocity triangles for a 50% reaction turbine stage 

Therefore 

T 3 = T 1 - r / T r ( T  1 - T3s ) 

= 1200{1 - 0.92(1 - ( 1 . 0 2 / 2 . 5 ) ~  

= 950.53 K 

Substituting this into the equation for ( A h o ) t o t a l  above, 

( A h o ) t o t a  1 - -  

Hence for one stage 

1.4 x 287.0 
(1200 - 950.53) = 250 589 J kg -1 

0.4 

~ho = �89 • 250 589 = 83 529.7 J kg-1 

= Aho/U 2 = 1.504 58 

3.3.1 Dimensionless velocity triangles 

Let us now consider the factors which determine the general shape of the velocity 
triangles. By inspection of Fig. 3.5 we see that the overall shape is governed entirely 
by the three velocities Cx, Aco and U. Now we can show that Cx and Aco are uniquely 
related to the flow coefficient ~b and work coefficient ~ respectively. Thus from Eqn 
(3.7), 

Cx = ~U (3.26) 
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Also from the Euler turbine equation (1.10) 

Aho = U(Col + co2)= UAc 0 

where Col and c02 are the absolute values as shown in Fig. 3.5 and Aco is thus the 
change in peripheral w~hirl through either the stator or rotor. By definition 
Aho = OU 2, Eqn (3.8), so that finally 

Aco = ~U (3.27) 

The obvious strategy to follow at this point is to make the velocity triangles 
dimensionless by dividing all velocities by the blade speed U. The outcome of this 
is portrayed in Fig. 3.6 from which important and interesting conclusions may be 
drawn. We observe that the dimensionless velocity triangles and therefore the general 
blade shapes required to achieve them are totally determined by the stage duty 
coefficients ~b and ~. The dimensionless blade speed is of course unity. It follows 
also that all other angles and velocities may be expressed explicitly as functions of 
~b and ~. These may be summarised as follows. 

a l = f12 = a r c  tan ~b 

(0+1) 
i f 2  = f13 = a r c  tan 24~ 

c_ _w3 j 
_ _ q ~ 2 +  ( ~ b + l )  2 

C...~_ 1 = C_.~. 3 __ = t~ 2 + ~ ( ~ - -  1 )  2 

U U 

The fluid deflection angles for stator and rotor thus become 

(3.28) 

8 S = 8 R - -  a r c  tan (a I + Or2) 

- arc tan q~2_ 1 

1 44~2 

(3.29) 

It is quite clear therefore that the designer's choice of overall duty requirements and 
therefore of duty (th, ~), Fig. 3.2, will have a crucial effect upon the velocity triangles 
and thus upon blade aerodynamics. We will now go on to study some of these effects 
in relation to published data from experimental tests. 

Example 3.2 

Problem (a) 
Calculate the angles and velocities identified in Fig. 3.5 for the stages considered in 
Example 3.1 and comment. 
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Solution 
From solution of Example 3.1, the duty coefficients were ~b = 0.578 98, qJ = 1.504 58. 
Introducing these into Eqns (3.28) and (3.29) we have 

or1 = f 1 2 -  2 3 . 4 5 ~  

or2 = f13 --  7 6 . 9 8 ~  

e S = e R = 8 8 . 7 3  ~ 

c2 = w___2 = 1.3797 
U U 

Cl = c3 = w__g2 = 0.631 56 
U U U 

Modest interstage swirl 

Fairly high efflux angles from stator and 
rotor 

Fairly high fluid deflections required of 
stator and rotor 

Stator and rotor exit velocities fairly high 
compared with blade speed 

Interstage velocities kept well below blade 
speed 

Problem (b) 
Calculate exit Mach number from the stator. 

Solution 
M 2 is given by 

a2 V'yRT2 

where a2 = speed of sound, and T2 = temperature at exit from stator. 
To find T2 we can note the following. For identical stages with the same velocity 

levels Cx and U, the temperature drop per stage will be one-third of the overall 
temperature drop, namely 

A T s t a g  e = 1(1200 - 950.53) = 83.157 deg C per stage 

Since the stages are 50% reaction, half of this occurs through stator and half through 
rotor. Thus 

T2 = 1200-1  x 83.157 = 1158.42 K 

Hence from the equation for ME above, 

1.3797 x 235.62 
ME = V'l.4 x 287.0 x 1158.42 = 0.476 49 

3.4 An exper imenta l  correlat ion based on model tests 

All large manufacturers of gas and steam turbines do of course undertake extensive 
test work on models or prototypes leading to experimental correlations which act as 
a vital long term data base for future design and development. Such a correlation 
was published by S. F. Smith (1965) based upon 70 model turbine tests related to 
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Fig. 3.7 Model turbine instrumentation (Smith, 1965) (by courtesy of the Von Karman Institute) 

the post-war aircraft propulsion gas turbines of Rolls-Royce such as the Avon, Dart, 
Spey, Conway and others. The special model four-stage turbine test facility, 
illustrated in Fig. 3.7, had blade rows 15 to 20 inches (38 to 51 cm) in diameter and 
was supplied with air at 100 ~ to 200 ~ Such low temperatures, as compared with 
1000 ~ or more in the prototype, not only simplified the instrumentation needed 
for accurate assessment but also permitted easy matching of prototype Mach numbers 
at the smaller model scale. An additional advantage was the small power output of 
800 to 2000 bhp as compared with, for example, the 70000 bhp produced by the 
Conway. Matching of Reynolds number between model and prototype is another 
requirement to be met, but Smith reported little influence of blade chord Reynolds 
number upon efficiency for the bigger engines for which Ret tended to be in excess 
of 105 . 

The important outcome of this test series was the turbine efficiency correlation 
shown in Fig. 3.8. Each turbine was tested over a range of pressure ratios to determine 
its maximum efficiency point, for which ~b and q~ were then calculated. Thus each 
point plotted on Fig. 3.8 represents one particular test model turbine at its best duty 
point (~b, qJ), and its efficiency is entered adjacent to that point. A pattern emerges 
from the data immediately, from which contours of constant efficiency can be 
constructed revealing very distinct trends. The following comments are worthy of 
note: 

(1) All data points represent best efficiencies likely to be achievable. For 
example, a turbine designed to operate at ~b = 0.9, q~ = 1.2 might achieve at 
best 92% efficiency. 

(2) The best turbine design duty point to aim at, if efficiency is all that matters, 
is in the region of ~b = 0.6, q~ = 1.0. However, it should be observed that this 
lies on the edge of the available test data in this correlation. 

(3) The majority of test points, being related to a practical series of engines, 
were aimed at higher ~b and qJ values. A designer may thus accept some 
reduction of efficiency in order to increase mass flow (hence engine thrust) 
and stage loading (hence less blade rows/weight/cost). 

One important point which should be mentioned is that efficiencies were evaluated 
on the assumption of zero tip clearance. Losses due to flow through the clearance 
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Fig. 3.8 Efficiency correlation for turbine stage (Smith, 1965) (by courtesy of the Von Karman 
Institute) 

gap between blade end and annulus wall can be enormous compared with other 
losses. They can be eliminated from the correlation by repeating tests with increasing 
tip clearance and then extrapolating the results to simulate zero tip clearance. 
Alternatively, formulae analogous to those developed in Section 8.4.5 for fans can 
be used to estimate the tip leakage losses. These may then be subtracted from the 
measured stage losses before working out the total-to-total efficiency. 

3.4.1 Theoretical analysis by S. F. Smith 

S. F. Smith developed a most interesting theoretical analysis to explain the shape 
of these efficiency contours, as follows. He argued that the losses in any blade row 
will be proportional to the dynamic head or kinetic energy in the row. He proposed 
that the average kinetic energy in a blade row could be represented by �89 2 + ~) ,  
Fig. 3.6. For his 50% reaction stages Smith therefore defined the coefficient 
fs = Aho/(~ + ~)  as the ratio of the shaft work output to the sum of the mean kinetic 
energies within stator + rotor. He argued that we should expect a high efficiency when 
this ratio of work output to kinetic eneragy is high and to confirm this action he 
proceeded to plot contours of fs = Aho/(C~l+ c 2) onto a (4', ~') chart. 

It is indeed striking to compare the r/Tr contours of Fig. 3.8 with the fs contours 
of Fig. 3.9 which show a remarkable similarity, confirming Smith's hypothesis. By 
reference to the dimensionless velocity triangles, Fig. 3.6, we can derive an analytical 
expression for fs as follows: 

Aho Aho/U 2 
fs = 4 + c2 = (Cl/U) 2 + (c2/U) 2 (3.30) 

2q, 
44,2 + q,2 + 1 
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Fig. 3.9 Contours of blade row kinetic energy coefficients, after Smith (1965) 

From this expression we can estimate the optimum work coefficient for a given flow 
coefficient and hence obtain a theoretical curve of the form qJ = f(~b) which defines 
the optimum desirable design duty coefficients. Thus writing 

4fs 
,gg, 

2(4q~ 2 -  I//2 4- 1) _ 0 
(4q~2 + ~2 + 1)2 -- 

the optimum duty coefficient locus becomes 

~top t = N/'4q~2 + 1 (3.31) 

This is shown on Fig. 3.9 and to some extent follows the trend of optimum efficiency 
turbines of the Rolls-Royce correlation, Fig. 3.8. We will return to this later (see 
Eqn (3.35)). 

3.4.2 Theoretical performance analysis by R. I. Lewis (1978) 

A more rational and explicit approach which links directly with the generalised 
dimensional analysis of Sections 3.1 and 3.2 has been developed by the present author 
(Lewis, 1978). Let us pick up the argument from Eqn (3.21). For 50% reaction stages 
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Fig. 3.10 Loss weighting coefficients for 50% axial turbine stages 

since stator and rotor fluid deflection angles es and eR are identical, Fig. 3.6, it seems 
reasonable to assume equal loss coefficients, 

~'$2 = ~'R3 (3.32) 

But from Eqns (3.28) we recall that 

C2 __ W3 ~2 + qt+ 1) 2 
g -  -6 -= a( 

Introducing these into Eqn (3.21), the efficiency of our 50% reaction stage 
becomes 

1 

1 ) 
1 + ~b2+ ~ (I/t + 1)2~'$2 

1 + fL(~, ~) ~'s2 
= f(~b, q,, ~'s2) (3.33b) 

This equation thus agrees with the general result derived from dimensional analysis, 
Eqn (3.14), for the special case when R is fixed at 0.5 and ~R3 = ~'S2. However, we 
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have now succeeded in expressing rtTr in a most interesting and informative explicit 
form. Equation (3.33) states that the dimensionless losses and hence the efficiency 
are dependent upon the product of two factors different in kind: 

(1) Blade row aerodynamics. The loss coefficient ~'s2 depends entirely upon the 
detailed blade geometry and may be derived from cascade and other model 
tests, namely 

Ap~ [3.6a] 
~'$2 m 

~PC2 

(2) (4~, qO duty and velocity triangles. These losses are then scaled or 'given 
weight' by the parameter fL(tk, $) which we will call the 'weighting 
coefficient': 

fL = $2 + 4 ($ + 1)2 (3.34) 

This coefficient represents the velocity triangle environment and therefore the 
magnitude of local dynamic head within which the blades are to operate. As 
already established, Fig. 3.6, velocity triangles are also fixed by the duty 
coefficients (4~, q0. 

Now the analytical form of fL is different from the coefficient fs, Eqn (3.30), implicit 
in Smith's analysis although their physical significance is similar. The present analysis 
offers the additional advantage of the explicit form for rtTr, Eqn (3.33a), and the 
separation of the two influential factors (1) and (2) discussed above. Thus to raise 
efficiency we may proceed as follows: 

(1) First we must select a ($, $) duty to help us minimise fL($, $) before even 
choosing blade profiles. 

(2) Then we may concentrate on aerodynamic designto minimise blade row 
losses Apo s. 

If we assume for the moment that ~'s2 is independent of th and $, we can repeat 
the procedure of Section 3.4.1 to find the optimum weighting coefficient. Thus 
maximum rITT will correspond to minimum fL. For a prescribed value of ~b this follows 
from 

{ 1 } 1 OfL~ = q~2 + ( ~  + 1)2 ~_ (0 + 1) = 0 

from which, perhaps surprisingly, we obtain exactly the same result as yielded by 
the Smith approach, namely 

~opt = %/4~ b2 + 1 [3.31] 

This curve together with contours of constant fL are shown in Fig. 3.10. Once again 
there is a striking resemblance of these to the Rolls-Royce model test efficiency 
contours. We observe as expected that the loss weighting coefficients take on a lower 



66 Principles of performance analysis for axial turbines 

value within regions where efficiencies are found experimentally to be high and vice 
versa, confirming the strong influence of velocity triangle shape upon loss levels. 

A curve analogous to Eqn (3.31) could be picked out from the Rolls-Royce data. 
This will be found to lie close to the following curve which forms a simple designers' 
rule of thumb for selection of the experimentally optimum qJ for a given ~b: 

~opt.exp. "~ 0.65V'4~ b2 + 1 (3.35) 

Example 3.3 

Problem 
For the stage considered in Examples 3.1 and 3.2, estimate the blade row loss 
coefficient ~'s2 given a total-to-total efficiency of 93%. 

Solution 
From Eqn (3.33), 

,s2 ( 1 1 )  1 
fL(6, q,) 

But ~b = 0.578 98, qJ = 1.504 58 (Example 3.1) and r/a~r = 0.93, therefore 

1 { 1 (1.504 58 + 1)2} = 1.2651 fL = 1.504 58 0.578 982 + 

Thus 

~.S2 = ( 1 ~--.-.~- 1 ) /  1.2651 = 0.0595 

3.4.3 Influence of fluid deflection upon losses 

Shown in Fig. 3.11(a) are contours of constant fluid deflection compared with 
predicted contours of constant profile loss. The former follow from Eqn (3.29) for 
es and eR, while the latter were computed from the simple correlation due to 
Soderberg (1949) which has subsequently been expressed by Hawthorne (1956) in 
the following form, as outlined by Horlock (1966): 

~'2 = 0.025 1+ 
(3.36) 

~'2 here accounts for profile losses only. ~2sec is the secondary loss coefficient 
accounting for all other losses (except tip leakage loss) and is assumed to be 
proportional to the profile loss st2 and also to the reciprocal of the blade row aspect 
ratio H/b where b = I cos A is the axial chord and H = rt--rh is the blade height. Of 
course this is a very simple correlation which ignores other important influences such 
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Fig. 3.11 Contours of constant deflection and loss coefficient for 50% reaction axial turbine stages" 
(a) contours of constant deflection; (b) contours of constant profile loss coefficient 

as Reynolds number and Mach number. Nevertheless it yields quite credible results 
and offers the advantage of simplicity for preliminary design and performance studies. 
A number of observations may be made here. 

(1) If we ignore the effect of aspect ratio the profile loss coefficients ~'2 will bring 
out the main (~b, q,) trends, Fig. 3.11(b). 

(2) Fluid deflection is strongly dependent upon work coefficient q,. Thus more 
highly loaded stages require greater fluid deflections and consequently 
generate higher losses as we would intuitively expect. 

(3) The aerodynamic loss contours st2 (~b, qJ) bear no resemblance whatsoever to 
the efficiency contours. 

This last point is of particular interest regarding the discussion in Section 3.4.2. 
Clearly the duty coefficients (~b, q,) and thus velocity triangles have much stronger 
control over the general shape of the efficiency contours than do the blade profile 
aerodynamics. It is clear, however, from the loss contours of Fig. 3.11(b) that 
~'$2 = (~'2 + ~'2sec) will have the effect of reducing the efficiency levels at higher design 
values of q,. 

To conclude this section, predicted efficiency contours are shown in Fig. 3.12 based 
upon Soderberg's simple correlation and assuming a blade row aspect ratio of 
H/b = 10.0. These do indeed show a remarkable similarity to the Rolls-Royce 
efficiency contours bearing in mind (a) the wide range of (~b, q,) duties covered, (b) 
the simplicity of the loss correlation, and (c) the probable variation of aspect ratio 
H/b of the test stages. 

Finally, introducing Eqn (3.31) into (3.29), the fluid deflection of the theoretical 
optimum family of turbines would be 

/~S -- ER = a rc  tan 
4~bqJ ) 

4~b2_ ~2 q_ 1 -" arc tan (~) = 90 ~ 

In practice Eqn (3.35) gives a better curve fit for the optimum family of turbines, 
resulting in the experimental optimum deflection 

{ 2.6q~X/4~b 2 + 1 } 
(8S)opt.exp. = arc tan 2.31~b 2 + 0.5775 (3.37) 
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This is the region of 60 ~ for the range of high performance turbines for which 
0.5 < ~b < 0.8 and gives a very crude rule of thumb. It is of interest to note, however, 
that deflection angles well in excess of 60 ~ can be achieved with low loss in turbine 
cascades. The key point is that velocity triangles and thus the value of the loss 
weighting coefficient fL(q~, qt) have the overriding influence upon efficiency. Despite 
this, the selector of the model tests leading to Fig. 3.8 opted for many more highly 
loaded stages in the vicinity of ~b = 0.7, q~ = 1.6 for which the fluid deflection would 
be es = eR = 84.9 ~ The benefit reaped by choosing a higher work coefficient is the 
requirement of fewer stages resulting in reduced weight and manufacturing costs. The 
consequent performance cost incurred would be a reduction of efficiency, although 
the consequent fluid deflections of 84.9 ~ are aerodynamically well within reach. 

3.5 Stages with arbitrary reaction R 
Let us now generalise this analysis to stages with arbitrary reaction R, for which the 
velocity triangles will no longer be symmetrical, Fig. 3.3. 

The dimensionless velocity triangles are shown in Fig. 3.13. Swirl velocities Wo2/U 
and Co2/U may be related to ~b, qJ and R as follows. We recall that 

R -- h 2 -  h3 
hi _ ha [3.4] 

But since we are assuming c I = C3, then 

h i -  h3 = h o l -  ho3 = Aho = ~ U  2 
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Fig. 3.13 Dimensionless velocity triangles for axial turbine stages of arbitrary reaction 

Also, relative to the rotor, 

h 2 -  h 3 = �89 2 -  w 2) 

_- 1(2 w23 - w~2) 

Thus Eqn (3.4) becomes 

R = (Wo3 + Wo2)(Wo3- Wo2) 
2~U 2 

But from the Euler turbine equation (1.10) 

Aho = U(w03 + w02) = ~ U  2 

Introducing this into the previous equation we obtain 

W02 
= ~ -  R 

U 2 

Also 

and 

C02 
U 

W03 

U 

Wo2 + U q, 
U 2 

m +  1 - R  

W02 

U 
= 

2 

(3.38) 

(3.39) 
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Thus the gas exit velocities from stator and rotor become 

2 
( U )  2= ( U ) 2 +  ( - ~ ) = ~ b 2 +  ( ~ - + I - R )  

2 2 I// 2 (3.40) 

and the total-to-total efficiency, Eqn (3.21), becomes 

1 
r /T/ ,  = 1 

1 + a-7, [{~b 2 + (~/2 + 1 - R) 2} ~s2 + {~2 + (@/2 + R) 2} SrR3] 
zq  

(3.41) 

= f(@, th, R, ~'$2, ~'R3) 

r/Tr has thus been expressed explicitly as a function of the five dimensionless variables 
~b, qJ, R, srs2 and SrR3 as promised in Section 3.2. All angles and velocities in addition 
to Eqn (3.40) may also be expressed in terms of ~b, qJ and R as follows: 

and 

/2 + R -  1} 
Ot I = arc tan th 

/ 2 - R  + 1} 
Ot 2 -" arc tan 4, 

/32 = arc tan 4, 

{qd2 + R }  
f13 - -  arc tan ~b 

es = arc tan 4~2_ 02/4 + (R - 1) 2 = a l + a2 

eR = a r c  tan 4 , 2 _  1~2/4 + R 2 = ~ 2  -t- ~ 3  

C l _  Ca_ 
U - U - ~/th2 + (~/2 + g - 1)2 

W 2 _  
- i f -  V'~b 2 + (qd2-  R) 2 

3.5.1 Optimum reaction 

(3.42) 

(3.43) 

1 
r / = l +  L 

For any prescribed (~b, qJ) duty we may now estimate the stage reaction R which will 
produce maximum efficiency ~'Tr. The easiest approach is to define the dimensionless 
loss L from Eqn (3.41) expressed as 
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where 

1 
L = g-7 [{~b 2 + (~,/2 + 1 - R) 2} srs2 + {th 2 + (q,/2 + R) 2} ~'R3] 

zqJ 
(3.44) 

The minimum loss.and therefore maximum efficiency with respect to reaction R 
follows from 

OL } = 0 (3.45) 
~ 4,,q, 

where ~b, ~, are kept constant. If we assume that the loss coefficients are weak 
functions of R and may be assumed constant also, Eqn (3.45) yields finally 

ffs2 + qd2 (~rs2- ~R3) (3.46) 
R~ = ~'$2 q- ~'R3 

One possible solution to this which is true for all values of q, is 

R = 0.5 l (3.47) 
 's2 &3 J 

Although the stator and rotor velocity triangles are identical for this condition of 50% 
reaction, there would in reality be differences in the two loss coefficients. Even so, 
the strong indication is that 50% reaction will be close to optimum. 

3.5.2 Optimum ~ for a given ~ and R 

Alternatively we may search for the ~, value leading to minimum loss for given ~b 
and R values by writing 

4,,R 
= 0  

resulting in 

~opt = 2V't~ 2 + 1 + R ( R  - 1) (3.48) 

where we have also assumed that ~'s2 and ~'R3 are independent of q,. Two stages of 
special interest are the 50% reaction stages which we have already considered in some 
detail, and the 0% reaction or 'impulse' stages. For these reactions, Eqn (3.48) 
becomes 

I]/op t -'- V'4th 2 + 1 for R = 0.5 (3.49a) 

~ o p t - -  X/4~b 2 + 2 for R = 0.0 (3.49b) 

We observe that the theoretical ~opt for the 50% reaction case agrees with Eqn (3.31) 
of Section 3.4.1. 
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Fig, 3 ,14 Predicted total-to-total efficiency for axial turbines with 0% reaction (impulse stages) and 
blade aspect ratio H/b = 10 

3.5.3 Zero reaction or 'impulse' stages 

It is immediately apparent from Eqn (3.49b) that the theoretical optimum ~, value 
for an impulse stage is actually greater than that for a 50% reaction stage. This is 
borne out by the efficiency contours shown in Fig. 3.14 which were derived from 
the above analysis making use of Soderberg's loss correlation, Eqns (3.36). 
Comparing these with the predicted performance (~b, qJ) chart for 50% reaction stages, 
Fig. 3.12, we note the following main trends" 

(1) Over a wide range of practical flow coefficients 0.4 < th < 1.2 the impulse 
turbines will deliver a greater work coefficient q, than the 50% reaction 
machines (typically about 33% greater). 

(2) For low flow coefficients ~b < 0.6 the efficiency falls off much more rapidly 
with ~, for the 50% reaction stages. 

3.6 Variation of reaction with radius in a free vortex 
turbine stage 

In general a designer will introduce a variation of stage reaction R with radius. The 
simplest form of design is the constant loading free vortex stage for which the radial 
variation of R may be derived as follows. 

Constant loading 
If we decide to extract the same stagnation enthalpy Aho at all radii of our model 
stage, Fig. 3.3, we can relate the work coefficient qJ at any radius r to the value qJm 
at the mean radius r m through: 

- - ' - ~  = U 2 ~  "- ~m (3.50) 
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Free vortex 
For this type of stage (see Sections 5.1 and 6.3.4) the swirl velocities are assumed 
to vary with radius according to the potential flow field of a free vortex coincident 
with the axis. Thus the swirl velocity co2 downstream of the stator at radius r will 
be related to the value at r m through 

co2r = C o 2 m r m  (3.51) 

Now making use of Eqn (3.39) for coz/U, 

U = I - R + T = I - R +  

C~ m ]-gm'~-Sm---2 c~ 

= - + 2 

Thus finally R is given as a function of radius and reaction R m at the mean radius 
rm, through 

R = 1 - (1 - Rm) (3.52) 

Applying this result to stage 3 of the turbine shown in Fig. 3.1, the radial variation 
reaction is given in Table 3.1. 

A full th, q,, R and velocity triangle analysis is calculated for each of the three 
stages by the computer program FIPSI and saved onto the disc. Results for stage 
3 only are shown in Table 3.1. Of particular interest in the present context is the 
reaction which varies from -18 .4% at the hub radius rh to 50% at r m and 72.6% 
at tip r t. 

Hub section rh 
The possibility thus arises with a free vortex design that the stage reaction may 
actually be negative at the inner radius rh. Furthermore a high flow coefficient tk will 
be obtained and an extremely high work coefficient q,, in this case th = 0.891, 
q, = 3.563. Another feature which should be drawn out of the tabulated data is the 
high Mach number leaving the stator hub section, M2 = 0.773. Very high fluid 
deflections are also required at rh for both stator and rotor, namely es = 107.12 ~ 
eR = 126.46 ~ The hub section is thus subjected to extremely tough aerodynamic 
design requirements. Against this on the other hand are two mitigating factors: 

(1) At rh the blades are circumferentially pitched more closely, providing a 
narrower blade passage to facilitate fluid deflection. 

(2) The mass flow rate per unit of blade height, A&/Ar =pCx27rr, is small at r h 
so that high profile losses in that region will carry less weight. 

Tip section rt 
At the tip radius r t on the other hand the reaction is very high, R = 0.725 71, while 
the flow and work coefficients are quite low, 4~ = 0.429, ff = 0.825. Stator deflection 
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Table 3.1 Design parameters for a free-vortex axial turbine stage (stage no. 3 of Fig. 3.1) 

Dimensionless coefficients 

Radius Reaction fi psi M2 M3 

0.243 70 -0.183 93 0.891 3.563 0.773 0.453 
0.269 96 0.035 20 0.804 2.903 0.698 0.464 
0.29622 0.19868 0.733 2.411 0.638 0.477 
0.32248 0.323 87 0.673 2.035 0.589 0.492 
0.34874 0.421 86 0.623 1.740 0.549 0.508 
0.375 00 0.50000 0.579 1.505 0.515 0.526 
0.401 26 0.563 30 0.541 1.314 0.486 0.545 
0.427 52 0.615 30 0.508 1.158 0.461 0.564 
0.453 78 0.658 54 0.478 1.028 0.440 0.584 
0.48004 0.694 88 0.452 0.918 0.421 0.605 
0.50630 0.725 71 0.429 0.825 0.404 0.626 

M2 = absolute exit mach no. leaving the stator. 
M3 = relative exit mach no. leaving the rotor. 

Velocity triangle data 

Radius Alpha1 Alpha2 Stator Beta2 Beta3 Rotor 
deflection deflection 

0.244 33.843 73.276 107.119 65.613 60.849 126.462 
0.270 31.186 71.590 102.777 60.411 61.589 122.000 
0.296 28.883 69.937 98.819 53.949 62.438 116.387 
0.322 26.872 68.317 95.189 45.844 63.342 109.186 
0.349 25.106 66.734 91.839 35.737 64.266 100.003 
0.375 23.545 65.187 88.731 23.545 65.187 88.731 
0.401 22.158 63.677 85.835 9.829 66.087 75.916 
0.428 20.918 62.206 83.124 -4.110 66.959 62.850 
0.454 19.804 60.774 80.577 -16.835 67.797 50.962 
0.480 18.798 59.380 78.179 -27.534 68.597 41.063 
0.506 17.887 58.026 75.913 -36.125 69.358 33.233 

es = 75.91 ~ is less than that at the mean radius by a relatively small margin compared 
with rotor deflection which has the extremely small value of ~ R  = 33.23~ 

It should be pointed out that for the mean radius duty th = 0.579, ~ = 1.505, this 
stage is fairly highly loaded compared with the family of test stages shown on Fig. 
3.8. However,  the high reaction tip section, which is likely to have high efficiency 
also, passes a high mass flow rate per unit blade height and will thus play an important  
role in helping to raise the stage efficiency. On the debit side, however, is the crucial 
matter  of blade tip leakage losses. Because tip reaction is high the pressure drop 
across the rotor tip section is also high and hence the driving effect for creating tip 
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Fig. 3 .15  Predicted efficiency contours for reactions R at hub, mean and tip radii of model turbine 
stage based on profile losses only, using Soderberg's correlation 

clearance leakage losses. The magnitude of these will also be proportional to the 
mean relative dynamic head �89 2 (based upon rotor vector mean relative velocity 
woo) which will also unfortunately be high. Thus considerable effort is made to 
minimise tip leakage losses either by maintaining close clearances between blade tip 
and casing or by the use of 'banding' strip, a popular technique in steam 
turbines. 

3.6.1 Streamline efficiencies 

In order to bring out the variation in predicted performance of blade sections from 
hub to casing it is helpful to produce predicted efficiency contours for selected 
meridional streamlines based upon profile losses only. (~b, ~) charts for the hub, mean 
and tip sections of our model turbine are therefore shown in Fig. 3.15. From these 
we take note that the operating point for the stage falls closest to maximum possible 
efficiency at the tip section. At the mean radius, as already remarked above, the stage 
is quite heavily loaded, ~ = 1.5046, resulting in some sacrifice of local streamline 
efficiency. At the hub section the operating point falls excessively high on the (,h, ~) 
chart, r = 3.5626, resulting in a predicted streamline efficiency of only 89.59%. 
Predicted efficiencies here were calculated by Soderberg's correlation making use of 
profile losses only. A summary of predicted data is given in Table 3.2. 
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Table 3.2 Prediction of streamtube efficiencies for a free vortex axial turbine using Soderberg's 
correlation 

Radius fi psi Reaction e stator e rotor Efficiency 

0.2437 0.8910 3.5626 -0.183 92 107.1191 126.4620 89.589 917 
0.2700 0.8043 2.9033 0.035 21 102.7769 122.0001 90.970 849 
0.2962 0.7330 2.4113 0.198 68 98.8197 116.3869 91.999 679 
0.3225 0.6733 2.0346 0.323 87 95.1897 109.1860 92.813 646 
0.3487 0.6226 1.7397 0.421 87 91.8397 100.0037 93.505 865 
0.3750 0.5790 1.5046 0.500 00 88.7318 88.7318 94.129 091 
0.4013 0.5411 1.3141 0.563 30 85.8350 75.9170 94.691 503 
0.4275 0.5079 1.1576 0.615 30 83.1240 62.8503 95.166 909 
0.4538 0.4785 1.0275 0.658 54 80.5779 50.9625 95.528 799 
0.4800 0.4523 0.9182 0.694 88 78.1793 41.0642 95.775 830 
0.5063 0.4288 0.8254 0.725 71 75.9136 33.2336 95.926 332 

Mass weighted average streamtube efficiency = 94.0684% 
Stage efficiency including secondary losses = 92.3161%. 

The mass weighted streamline efficiency may be defined as 

rh'tpCx rtr-r dr 

,t/av e -- 

i rtpc x r dr 
h 

Assuming that p and Cx do not vary with radius, 'r/ave = 94.07% for this stage which 
falls extremely close to the streamtube efficiency at the mean radius, r/wa-= 94.13%. 
Assuming an aspect ratio H/b = 10, the predicted stage efficiency including an 
estimate of secondary losses becomes rtrrstage = 92.32% which is slightly low 
compared with the published experimental correlation, Fig. 3.8. 

3.7 Axial  turbines with zero interstage swirl 

During the period of rapid growth in steam power generation after the second world 
war, steam turbines were frequently designed with zero swirl velocity between the 
stages. The main reasons for this were: 

(1) It was felt that the carry-over kinetic energy 1 2 ~pc3 should be kept to a 
minimum to reduce possible 'carry-over' losses. Thus Kearton (1951) speaks 

, �9 1 2 of a carry-over coefficient which determines the fracUon of the ~pc3 leaving 
a rotor that remains available to the next stator. 

(2) It was easier to manufacture diaphragm (stator) blades from formed plate if 
the inlet angle was zero at all radii. 

(3) If O~ 1 = 0 : 3  = 0, a direct relationship exists between ~, and R which speeds up 
desk calculations. 

Although these reasons no longer apply due to greater understanding of turbo- 
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machinery fluid dynamics and advances in blade manufacture and computational 
facilities, such stages do in fact deliver very high efficiencies and are worth 
investigation at this point within the present performance analysis framework. 

The dimensionless velocity triangles are shown in Fig. 3.16 from which we can show 
that the reaction R reduces to 

- = R = h 2 - h 3  = h2 h3 1 2 

hi - h3 hol - ho3 ~tU 2 

= 1  q' 
2 

(3.53) 

Now from Eqn (3.42a) for stages that do have interstage swirl, we can show that 

R = 1 -  ~ - +  ~btanal (3.54) 

Thus in general R would be a function of ~b, qJ and Ot 1. The present type of stage 
is therefore a restricted family of turbines for which the reaction R is a function of 
qJ only. The design significance of this restriction can be seen if we tabulate qJ versus 
the interstage swirl Ot 1 for the typical reactions R = 0% and 50%, for a typical flow 
coefficient of ~b = 0.6. 
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Table 3.3 Influence of interstage swirl upon loading coefficient 
(assuming a flow coefficient ~b = 0.6) 

50% reaction 0% reaction (impulse) 

0~1 ~ I~/ 0~1 ~ I~/ 

0 1.000 00 0 2.000 00 
10 1.211 59 10 2.211 59 
20 1.436 76 20 2.436 76 
30 1.692 82 30 2.692 82 

As may be seen from Table 3.3, the effect of introducing swirl a l  between the stages 
is to increase the work coefficient qJ, which can also be verified by comparing Figs 
3.3 and 3.16. Even a modest swirl angle of al  = 10 ~ will produce a 21% increase in 
work coefficient for the 50% reaction section. 

3.7.1 Dimensionless velocity triangles and efficiency contours 

The following useful geometrical data may be obtained from the dimensionless 
velocity triangles" 

c~2 = es = arc tan (qd~b) 

/32 = arc tan (q~-l)~b 

f13 = arc tan (1/40 
(3.55) 

eR= f12 +133 = arctan{4~2 4~ql 0+1 

c2 v '62  + 
-6= 

-6 

(3.56) 

Introducing c2/U and w3/U into Eqn (3.21), the total-to-total efficiency becomes 

~' /q 'T = 

1 + - ~ ~  [(~b 2 + 02)~s2 + (~ b2 + 1) ~'R3] (3.57) 

= f ( 6 ,  q', 

We observe, compared with Eqn (3.41), that r/Tr is no longer a function of reaction 
R as an independent variable since R is itself an explicit function of qJ, namely 
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Fig. 3.17 Comparison of two performance prediction methods for axial turbines: (a) stages with zero 
interstage swirl al = 0 and aspect ratio H/b = 10 using Soderberg's correlation" (b) stages with 
symmetrical velocity triangles (50% reaction) (adapted from Craig and Cox, 1971) 

R = 1 - q,/2, Eqn (3.53). One (~b, qJ) chart will therefore suffice to cover all reactions. 
Predicted efficiency contours are shown in Fig. 3.17(a) making use of Soderberg's 
loss correlation. 

The predicted performance map is compared in Fig. 3.17 with a performance 
prediction method published by Craig and Cox (1971). Although this came from 
within the steam turbine industry, the aim was to present a comprehensive 
performance prediction for both steam and gas turbines in order to provide a 
cross-check with the model turbine test correlation of S. F. Smith, Fig. 3.8, with which 
it broadly agrees. Craig and Cox's stages were reported as having symmetrical velocity 
triangles, which would in other words be of 50% reaction. There is indeed very good 
agreement between the two prediction methods for the case q,= 1.0 which is 
encouraging, bearing in mind the simplicity of Soderberg's loss formulation as given 
here, Eqns (3.36). Indeed, for q, values below 1.5 there is generally good agreement 
between the two prediction methods. For q, > 1.5, however, the interstage swirl angle 
will become significant. Thus from Eqn (3.54), 

tan aa = (q, /2-  1 + R)/4~ 
= (q, - 1)/2~b for 50% reaction 

For this reason the efficiency values predicted by Craig and Cox fall off more rapidly 
for q,> 1.5 and especially so at low flow coefficients. 

3.7.2 Simplified theoretical analysis for optimum duty curve 

Following a similar approach to that outlined in Section 3.4.2, a theoretical optimum 
duty c u r v e  i~/op t = f ( ~ )  may be estimated if we extract the dimensionless losses L from 
the expression for r/Tr, Eqn (3.57), and minimise them: 

L = 2@ [(~b2 + 02) ~s2 + (4,2 + 1) ~R3I (3.58) 
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Thus ignoring the variation of ~'$2 and ~'R3 with ~, for minimum losses we have 

aL 
= 0  a,  

whereupon finally we obtain 

~op t - -  V(1 + ~3/~'s2)~b 2 + ~'R3/~S2 (3.59) 

If we a s s u m e  ~'R3]~'$2 ~ 1 this simplifies to 

I//op t ~-~ V'2~b 2 + 1 (3.60) 

In practice the stator and rotor loss coefficients ~'$2 and ~'R3 do vary with both 4~ 
and ~, and Eqn (3.59) does not fit the optimum duty curve. However, its form is 
reasonable if we introduce a scaling constant K, namely 

I//op t = KV2~b2 + 1 (3.61) 

where K = 0.626 gives an acceptable curve fit for the contours shown in Fig. 3.17(a) 
for which the aspect ratio was H/b = 10.0. Again, in practice, the majority of stages 
or streamline designs would lie above this curve, accepting some reduction of 
efficiency in order to reduce the total number of stages required, by imposing greater 
stage loading q,. 

3.7.3 Blade/speed or velocity ratio 

The blade/speed ratio or velocity ratio tris was a popular parameter in the early days 
of steam turbine development (Kearton, 1951), and is still useful for quick 
determination of the allowable streamline enthalpy drop Aho for a given blade speed 
U and reaction R. O'is is defined as 

Blade speed 
tris= Gas velocity for isentropic expansion Pl to P3 

U U 

V'2(hol-  ho3s) X/2Ahos 

(3.62) 

But from Fig. 3.4, 

Aho rtrr Ahos 
I//-- U2 = U2 

so that for turbine stages without swirl, 

~/rta~r 1 ~/r/a~r (3.63) 
tris= 2q, = 2 1 - R  

Thus for a given r/Tr, there is a direct relationship between tris and reaction R as 
given in Table 3.4. 
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Table 3.4 Relationship between blade speed ratio and reaction 
for stages with zero interstage swirl 

R O- i s /~  

0 0.50000 
0.1 0.527 05 
0.2 0.590 20 
0.3 0.597 61 
0.4 0.645 50 
0.5 0.707 11 
0.6 0.790 57 
0.7 0.91287 
0.8 1.11803 

Although less popular as a quick design aid, the following example illustrates 
its use. 

Example 3.4 

Problem 
For a blade speed Um= 100 m s -1 and reaction Rm = 0.5 at the mean radius rm of 
a turbine with al  = a3 = 0 ,  calculate the stagnation enthalpy drop, assuming 
r/Tr = 0.93. For constant load at all radii calculate the appropriate reaction at the 
hub radius rh = 0.75rm. 

Solution 
At rm 

1 /  0.93 
~ -" 2 1 - 0.5 = 0.681 91 

Therefore 

100 
A h o s = ~  = 2 0.681 91 = 1 0 . 7 5 3 k J k g  -1 

Aho = '0TrAhos = 0.93 X 10.753 = 10.0 kJ kg -1 
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Introduction 

We have already taken a close look at the aerodynamic performance characteristics 
of compressor cascades in Chapter 2, focusing in particular upon their role as 
diffusers. The purpose of a compressor or fan is twofold: 

(1) To raise the pressure of a gas flow. 
(2) To deliver a given mass or volume flow rate. 

The first of these requirements thus classes compressors and fans as diffusing 
machines whose aim is to convert fluid kinetic energy into pressure head, mainly by 
aerodynamic means. In contrast with this, axial turbines, as demonstrated in Chapter 
3, convert thermal energy into output power and their blade rows act as nozzles or 
flow-accelerating aerofoil cascades. Because of this, turbine blade rowsare  much 
more aerodynamically stable than compressor blade rows and as a general rule are 
easier to design. Furthermore the dimensional analysis strategy outlined in Chapter 
3 for selection of stage loadings and consequent velocity triangles works extremely 
well since the (~b, ~) contours for high performance stages, Fig. 3.8, are less subject 
to excessive stalling losses for a fairly wide band of flow coefficients ~b and work 
coefficients ~. Consequently theoretical performance analysis using the simple turbine 
loss correlation of Soderberg, Eqn (3.36), leads to a very credible framework for 
turbine stage selection based upon predicted (~b, ~) charts such as those shown in 
Figs 3.12, 3.14 and 3.15. 

Although we may anticipate much greater sensitivity of compressors and fans to 
losses and to stalling instabilities, attempts have been made to produce experimental 
(~b, ~) performance correlations for high quality compressors. These will be intro- 
duced in Section 4.3 of this chapter within a dimensional analysis framework which 
helps to relate the duty coefficients th and ~ to the velocity triangles. Theoretical 
cascade analysis developed in Chapter 2 will then be applied to link compressor 
aerodynamic loading parameters such as lift coefficient CL, drag coefficient CD and 
diffusion factor Df directly with the overall performance correlation, in Sections 4.4 
and 4.5. Dimensionless velocity triangles form the essential middle link in the 
following chain which provides a simple design rationale for selection of blade loading 
to achieve a prescribed duty: 

(1) Selection of (~b, ~) duty coefficients and number of stages to achieve the 
specified compressor or fan overall design flow rate and pressure rise. 

(2) Velocity triangles at the mean radius are then fully determined. 
(3) Blade pitch/chord ratio may then be selected to satisfy aerodynamic loading 

parameters such as lift coefficient and diffusion factor. 
(4) Finally, detailed blade geometry can be selected to ensure smooth entry flow 

and the correct fluid efflux angle from each blade row. 
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Fig. 4.1 Meridional view of a multi-stage axial compressor 

The discussion will be extended from compressors to fans in Section 4.6 although 
a fuller treatment of these, involving vortex design for blade sections from hub to 
casing, will be reserved for Chapter 5 which deals with the simple radial equilibrium 
model for meridional flows. 

More detailed consideration of the design process for high reaction axial fan stages 
will be given in Section 4.7, where use will also be made of the computer program 
CASCADE to illustrate a procedure for the completion of item (4) above. The 
present chapter will be concluded with a simple consideration of off-design 
performance estimation making use of theoretical predictions of outlet angle/32 versus 
inlet angle/31 derived from blade row analysis such as that provided by the computer 
program CASCADE. 

4 .1  D i m e n s i o n a l  a n a l y s i s  f o r  a n  a x i a l  c o m p r e s s o r  

The meridional view of a multi-stage axial compressor shown in Fig. 4.1 illustrates 
the main features of blading and annulus, namely: 

(1) An inlet guide vane blade row to provide pre-whirl into the first stage. 
(2) A set of repeating stages each comprising a rotor followed by a stator. 
(3) Contraction of the annulus area to maintain constant meridional velocity Cs as 

the gas density p increases due to compression. 
(4) Constant mean radius r m -- �89 h + rt). 

In practice (3) and (4) are not essential constraints and may be relaxed, but we will 
adopt them here since they lead to considerable simplifications. We can appreciate 
this by defining flow and work coefficients analogous to the turbine duty coefficients, 
Eqns (3.7) and (3.8), namely 

~b = c--L Flow coefficient 
U (4.1) 
Aho 

q, = U2 Work input coefficient 



84 

Inlet 
guide 
vanes 

Performance analysis for axial compressors and fans 

I C x = C s AC o = Cg 2 -- C01 L ( ~  

fli rm ~ -  

u 

Rotor f ~ f  U-rf~ 
R~ II~ 

...__ v 
u 

StatOrsl 

II II 

s / 

i _Ac~ co2 - c~i  

W 2 ~ 1  = C3 

W 1 c2 ~ ~ . , . ~ S  
- %  

u 

L... g ..1 I-- Vl 

~ =a,  /h Lf/~ w,rO a2 
C 3 = C ! 

1.0 
(a) (b) 

---~rf 

Irh 

Fig. 4 .2  Velocity triangles for a 50% reaction model compressor stage: (a) velocity vectors between 
the blade rows; (b) assembled velocity triangles for the stage 

From constraints (3) and (4) above it follows that the flow coefficient ~b will be 
identical for all stages. It would be logical also to provide the same specific work 
input and thus stagnation enthalpy rise Aho into each stage and therefore to select 
identical work input coefficients ~ for all stages. Consequently the velocity triangles 
and therefore blade profile design at the mean radius r m will be identical for all stages. 
Apart from the reduction in aerodynamic design work, two other benefits emerge 
from this. Firstly we may be able to reduce the manufacturing costs if identical blade 
profiles are to be generated for all stators and for all rotors. Secondly and perhaps 
more significantly, it seems that we need only undertake model tests for the 
development programme on the one configuration if all stages are identical. The 
obvious snag is that we have enforced the identical duty (4), ~) at the mean radius 
only. At other radii velocity triangles will vary, demanding the introduction of blade 
twist. Although this will be the same for all stages, as we will show in Chapter 5, 
the blades will be shorter in length through the compressor, Fig. 4.1, due to the 
increase in fluid density. Furthermore the growth of the annulus boundary layer on 
the hub and casing walls soon leads to major distortion of the meridional velocity 
Cs from hub to tip, so that conditions become less ideal for experimental simulation 
by a simple model stage designed to derive performance data applicable to all stages. 
Despite this setback it is still important to begin our design considerations within a 
manageable framework and for this purpose we will define the simple idealised 
compressor stage illustrated in Fig. 4.2. 

Since we have decided to opt for identical stage designs at the mean radius, it is 
useful to show here the blading and velocity triangles for stage I so that we can include 
also the inlet guide vane IGV. This is a special stator blade row at inlet to the 
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compressor which introduces the pre-whirl angle ot I required at entry to the first rotor 
R 1 in order to establish the repeating velocity triangles. Proceeding through the rotor 
and then the first stator S1 the fluid is ejected directly into stage 2 with the same 
entry velocity vector Ca = Cl, or3 - -  Oil. 

The individual velocity vectors at stations 0, 1, 2 and 3 are shown in Fig. 4.2(a) 
and the resulting assembled stage velocity triangles in Fig. 4.2(b). Following the 
strategy outlined for turbines in Chapter 3, it is extremely helpful also to create 
dimensionless velocity triangles by normalising all velocities with the blade speed U 
as also shown in Fig. 4.2(b). The dimensionless axial or meridional velocity then 
becomes equal to the flow coefficient. That is 

Cx r 
-~- = ~ = 4, ( 4 . 2 )  

But from the Euler pump equation (1.9a), the stagnation enthalpy rise is given 
by 

Aho = rm~(Co2- col) -- UAco (4.3) 

So that the dimensionless change in peripheral whirl through either rotor or stator 
becomes 

Aco AWo Aho 
U = U = - ~ =  ~ (4.4) 

The duty coefficients (~b, ~) thus predetermine the general shape of the velocity 
triangles, the only other controlling design feature being the stage reaction R. By 
analogy with the definition for axial turbines, Eqn (3.4), the conventional definition 
of stage reaction for axial compressors is as follows: 

R = Specific enthalpy rise across the rotor 
Specific enthalpy rise across the stage 

(4.5) 

R represents the fraction of overall specific enthalpy rise of the stage Ah produced 
by the rotor. For the case illustrated in Fig. 4.2 the reaction is 50%, i.e. R = 0.5, 
so that the rotor R 1 and stator S1 produce equal enthalpy rises. Consequently the 
velocity triangles are symmetrical. For axial turbines we were able to show by 
theoretical analysis in Section 3.5.1 that the optimum stage reaction would be close 
to 50%. Although some of the assumptions made there concerning stator and rotor 
aerodynamic loss coefficients were valid for the turbine with its accelerating cascade 
flow but are less valid for the diffusing cascades of axial compressors, nevertheless 
it is well known that 50% reaction places an axial compressor stage close to the 
optimum selection of velocity triangles. It is very reasonable, therefore, for our model 
stage to make the design selection of 50% reaction, i.e. R = 0.5, at the mean radius 
rm. Of course at other radii, due to vortex design considerations, R will depart from 
this ideal value as it did for turbines, Section 3.6 and Eqn (3.52). We will return 
to this matter again in the next chapter within the relevant context of vortex and radial 
equilibrium analysis. 

To conclude this section it will be helpful to draw together, as we did for turbines 
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in Section 3.1, the various parameters considered so far which we would expect to 
influence the total-to-total efficiency r trr  of an axial compressor and then to see how 
these relate to the dimensionless groups which we have defined already. First of all 
we must define total-to-total efficiency for a compressor and we will do this for our 
model stage with reference to its T-s and ho-s diagrams, Fig. 4.3. 

The conventional definition of rh--r is as follows: 

~'/TT - -  
Stagnation enthalpy rise for an ideal (reversible) stage 

Stagnation enthalpy rise for the actual stage 

ho3s - hol 

ho3 - hol 

(4.6) 

where the ideal stage is operating across the same pressure ratio p3]Pl . Due to fluid 
friction within the real stage, some of the ordered kinetic energy entering the blade 
rows is dissipated as heat during the diffusion processes which are so vulnerable to 
loss generation. The gas thus leaves the compressor stage at a temperature T3 higher 
than that of the ideal frictionless stage T3s, associated with an increase in specific 
entropy, s3 - Sl. 

Referring back now to our model stage, we could draw up the following list of 
variables which we would expect to have some effect upon the stage total-to-total 
efficiency: 

rITT = f(~ho, hl,h2,.h~, ~ Cx, ~ ,  ~,p,  ai, a 2, ApoR, Apos) 
-y -  y ) ~ J 

Thermodynamic Speed and Velocity Properties of Roto~r and 
variables size triangles working stator 

substance losses 

(4.7) 

At this point the reader is referred to Chapter 3, Section 3.1, where similar groupings 
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have been presented and discussed for axial turbines. The main differences here are 
selections of maximum velocities W l and c2 and associated local sonic velocities a l 
and a2, now all chosen at entry to the blade rows. Following arguments from 
dimensional analysis similar to those in Section 3.1, this equation may be simplified 
to the following dimensionless form: 

r/Tr = f{th, ~, R, W1 c2 ,M1, M2, Rem, ~'R, ~'S} 
,.~ ~ '--.r ,--v -~ 

Duty Stage Velocity Mach Stage Loss 
coefficients reaction triangles numbers Reynolds coefficients 

number 

(4.8) 

where th, ~, and R have been defined already, and 

M 1 = w__! 
a l  

C2 
M2 = - -  

a2 

Urm 
Rem = 

/2 

~R 

~S 

(ApoR)loss 
1 2 ~PWl 

(Apos)loss 
1 ~pc 2 

Rotor relative inlet Mach number 

Stator inlet Mach number 

Stage Reynolds number 

Rotor loss coefficient 

Stator loss coefficient 

(4.9) 

But from the dimensionless velocity triangles, Fig. 4.2(b), for our 50% reaction stage 
we can show that 

W1 __ C2 t~ 2 + (1 + qj)2 - - f f  - - ~  = 

~/ 1 w2_ Cl 4,2+ (1_~,)2 
--6- - - 6  = 

(4.10) 

so that Eqn (4.8) simplifies to 

r/Tr = f(~b, ~,, R, M1, M2, Rem, ~'R, ~'S) (4.8a) 
i i i d d d d d 

where the labels i and d have been added below to indicate independent and 
dependent design variables respectively. Let us comment on these in turn. 

Independent design variables 
The designer is free at the outset to select the design duty coefficients (th, ~,). As we 
will see later from experimental tests, the designer's choice will have a profound effect 
upon the stage efficiency rh~r attainable even with optimum aerodynamic design. The 
reason for this is that ~b and ~, entirely control the shape of the velocity triangles and 
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therefore the flow environment within which the blades must operate. For the 
moment we have adopted 50% reaction for our consideration of mean radius design; 
but R will also exercise direct contl:ol over velocity triangle shape and hence efficiency 
should we depart from this (see Sections 4.3 and 4.5 later). 

Dependent variables affecting ~TTr 
Experimental cascade tests show that the loss coefficients ~'R and srs are themselves 
dependent upon blade row Reynolds number and inlet Mach number. We would also 
expect loss levels to be directly influenced by the velocity triangle environment within 
which the blades have to operate and hence to depend directly upon ~b, $ and R. 
We can express this through 

SrR = fl(q~, q~, R, ReR, M1) ] 

~'s = f2(4, $, R, Res, M2) I 
(4.11) 

where the blade row Reynolds numbers ReR and Res are introduced based on rotor 
and stator blade chords IR and Is: 

ReR = w l IR 

Res = C21s 
(4.12) 

Adopting these instead of the machine Reynolds number, Eqn (4.9c), to cater for 
the individual blade row frictional effects, Eqn (4.8) may be further simplified to 

nTr = f(~b, q~, R, ~rR, ~'S) (4.13) 
i i i d d 

The efficiency of an axial compressor stage has thus been shown to depend upon 
five dimensionless parameters which are sufficient to account for all the 15 items 
originally listed in Eqn 4.7. Of these just three may be independently selected by 
the designer, namely th, qJ and R. The loss coefficients themselves are also dependent 
upon the duty (~b, q0 and reaction R but in addition are influenced by Reynolds 
number and Mach number. 

4.2 Simple analytical formulation for the total.to.total 
efficiency of a compressOr stage 

Equations such as (4.13) in parametric form are frequently used for model testing 
to ensure dynamic and thermodynamic similarity. As with axial turbines, Chapter 
3, we may go one stage further and convert Eqn (4.13) into a more useful analytical 
form. For the moment we will continue to assume the fixed reaction value R = 0.5. 
From the ho-s diagram, Fig. 4.3(b), let us define the stagnation enthalpy loss due 
to irreversibilities, namely 

(Aho)loss = ho3-  ho3s (4.14) 
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The stage stagnation enthalpy rise is given by 

Aho = h o 3 -  hol 

Hence the total-to-total efficiency, Eqn (4.6), becomes 

(4.15) 

ho3s - hol 
r/T T = ho3_ hol 

= 1 -  (Ah~176 
Aho 

= 1 -  (Ap~176 
pAho 

= 1 - + (  (Ap~176 2 (4.16) 

The reader is referred to the full treatment given for turbines in Section 3.2 for 
guidance on the thermodynamic approximation leading to the use of the stage 
stagnation pressure loss (Apo)los s in this last equation. Since 

(apo),oss = (aPoR),oss + (apos),oss 

introduction of Eqns (4.9) and (4.10) results in the dimensionless loss 

(Apo)los s 1 1 2 

= (~R+ ~S 1 

Finally, introducing this into Eqn (4.16), the total-to-total efficiency becomes 

(4.17) 

2-~-{ 1( 1 +  ~)2} (~'R "+ ~'S) (4.18) r/a-r = 1 - 4) 2 +~ 

Equation (4.18) is equivalent to the parametric equation (4.13) derived in general 
form from dimensional analysis for the fixed reaction R = 0.5, but is in the much 
more useful explicit form of an analytical relationship which shows exactly how rtrr 
depends upon the various dimensionless groups. From this we can make the following 
interpretation. 

The efficiency of a 50% axial compressor stage is dependent upon two main 
factors: 

(1) The stage duty coefficients (t h, qJ). 
(2) The blade row loss coefficients SrR and ~'s (i.e. the blade row aerodynamics). 

The initial selection of the stage duty point (t h, qJ) is crucial. Thus we could rewrite 
Eqn (4.18) in the form 

r/TT = 1 -fc(~,  ~)(~'R + ~'S) (4.18a) 

where the 'loss weighting coefficient' fc is given by 

1 { q~2 1 } 
fc(~b, 0 )=  ~ -  +~(1 + ~)2 (4.19) 
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Fig. 4.4 'Smith' charts for axial compressor stages of (a) 50%, (b) 70% and (c) 90% reaction (after 
M. V. Casey, 1987) 

~'R and ~'s represent, in effect, cascade loss coefficients, since these are the loss 
coefficients normally used in compressor cascade model testing. For the stage, 
however, we would need to pin onto these all other frictional losses such as tip leakage 
and secondary losses related to rotor and stator. Within the present context of stage 
performance analysis they summarise the inherent aerodynamic loss characteristics 
of the blades, fc on the other hand is dependent only upon (~b, qJ) and thus the velocity 
triangle environment into which the blades are immersed. We have called fc a 
'weighting coefficient' because it gives weight to the aerodynamic loss coefficients 
~'R and srs . The latter can be minimised by very careful blade profile design, backed 
by wind tunnel cascade testing. This will be all in vain if the duty (~b, qJ) and velocity 
triangles are badly chosen in the first place, resulting in an excessive value of f~. 

4 . 3  E x p e r i m e n t a l  c o r r e l a t i o n  of  o p t i m u m  a x i a l  c o m p r e s s o r  
s t a g e s -  ' S m i t h '  d i a g r a m s  

M. V. Casey (1987) has published a comprehensive performance prediction method 
for mean radius analysis of axial compressors with identical repeating stages. In 
addition to this he has provided 'Smith' diagrams for optimum axial compressor stages 
similar in principle to the turbine charts described in Chapter 3, Fig. 3.8, and we 
will focus attention upon these in relation to the foregoing discussion. A (~b, qJ) chart 
for optimum 50% reaction stages is shown in Fig. 4.4 based upon model tests of a 
range of axial compressor stages. Any point on this diagram will indicate the optimum 
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Table 4.1 Comparison of optimum axial turbine and compressor stages as indicated by the 
'Smith' diagrams 

q, na-r (%) 

Axial turbines 0.6 1.0 94.5 
Axial compressors 0.35 0.25 92.5 

efficiency likely to be attainable from a well-designed axial compressor matched to 
that (t h, q,) duty. Unfortunately the individual tests are not provided on this chart 
but efficiency contours have been curve-fitted through the test results, revealing the 
strong influence of both 4, and q, upon r/an:. 

It is helpful to compare trends with the turbine 'Smith' diagram, Fig. 3.8. For 
example, the most efficient machines possible according to these two correlations 
would have duty coefficients as shown in Table 4.1. 

The effectiveness of a compressor to fulfil its twofold task, as stated in the 
introduction to this chapter, may be judged 

(a) by the magnitude of ~b, typifying its capacity to move fluid, 
(b) by its pressure rise coefficient qJ, typifying its pressure raising capability, 
(c) and of course by its efficiency r/an:. 

It is clear from the above comparison that the effectiveness of the optimum axial 
compressor stage falls far short of that of the optimum axial turbine. The optimum 
value of 4, = 0.35 is very low for practical purposes and the suggested work coefficient 
q, = 0.25 is but a quarter of that for the optimum axial turbine stage. This is of course 
as expected for a turbomachine with diffusing blade rows for the reasons already 
discussed in the introduction to this chapter. 

However, the efficiency contours of the compressor 'Smith' diagram are quite fiat 
so that we could depart some way from the peak efficiency duty point recorded in 
Table 4.1 and select efficient compressor stages (e.g. r t rr  > 90%) for quite a wide 
range of (~b, q,) duties. (The same is of course true for axial turbines as can be seen 
from Fig. 3.8 where the bulk of models tested had duty coefficients well in excess 
of the optimum.) Thus axial compressor stages with high efficiency and stable flow 
may be designed for the more practicable range ~b = 0.5 to 0.9 and with work 
coefficients as great as q, = 0.4 to 0.45. We will illustrate this numerically in the next 
section after introducing further useful theoretical analysis. To summarise the present 
observations based upon Fig. 4.4, the sensible design range for axial compressor 
stages lies between the two curves 

I / top  t = O. 185 V'4q~ 2 + 1 

~max = 0.32 + 0.2~b J 
(4.20) 

4,4 Lift and drag coefficients and diffusion factor 
re.expressed in terms of duty coefficients 

The key dimensionless parameters that indicate profile aerodynamic quality are the 
lift and drag coefficients CL and CD, Eqns (2.2). Various relationships for these were 
derived in Chapter 2 for compressor or fan cascades that are useful for the assessment 
of aerodynamic performance based upon experimental cascade tests. What matters 
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in practice is the aerodynamic performance of the blade profiles when located within 
the velocity triangle environment of the actual machine. It will be helpful therefore 
to re-express CL and CD in terms of the duty parameters (~b, qJ) which we have just 
shown to have total control over the shape of the velocity triangles. Lift coefficient 
for a cascade was expressed in terms of the relative inflow and outflow angles f l l  and 
/32, the vector mean of these, /3o~, and the pitch to chord ratio, t/l, as follows: 

t 
CLoo = 2 7 (tan f l l  - -  tan f12) COS floo - -  C D tan/3oo [2.101 

But from the dimensionless velocity triangles, Fig. 4.2(b), we have 

tan f l l  "-- 1 + qJ 
2~b 

tan fiE -" 1 - q~ 
2~b 

(4.21) 

and hence 

1 1 
tan/3oo = ~ (tan f l l  + tan 132) = a-;-, zq~ 

(4.22) 

Introducing these into Eqn (2.10) we thus have the alternative form for CL~ involving 
the duty coefficients (th, q0: 

(t){ } 
CLoo = 2 7 V'4~ 2 + 1 2th (4.23) 

Let us consider next the drag coefficient CDoo a s  defined by Eqn (2.8): 

CDoo ----" 1 2 = ~'oo COS 13oo [2.8] ~pW~I 

where the cascade loss coefficient was based on the vector mean velocity Woo, 
namely 

(Apo)lo   
~'== 1 2 [2-91 ~pWg 

To apply this to our model compressor stage we need to convert to the form of loss 
coefficients based on entry velocities, Eqns (4.9d) and (4.9e). From the cascade 
analysis in Chapter 2 this would give 

,  O,lOSS 
~'1 = 1 2 = ~  ~pW1 

COSfll )2 
= ~'= COS/3= 

(4.24) 
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Fig. 4.5 Pitch/chord ratio as a function of 4) and r for 50% reaction axial compressor stages, for 
diffusion factors of (a) 0.5 and (b) 0.6 

so that CDo~ becomes, from Eqn (2.8) above, 

cos3   
C D ~  = ~'1 COS2 f l l  

= ~'1 ( 4 ~ 2 +  1)3/2 

(4.25) 

The third aerodynamic parameter of great help for cascade selection is the Lieblein 
et al. (1953) diffusion factor dealt with in Section 2.7.2, which may also be 
re-expressed in terms of (~b, qJ) coefficients as follows. Introducing Eqns (4.20) and 
(4.21) into Eqn (2.28) we have 

costa (;) DF = 1 c o s f l l  ~_ (tan f l l  -- tan f12) [2.28] 
COS fiE 2 

: 1_ j40 + 1- +  4.26, 
44) 2 + (1 + q~)2 V'44~ 2 + (1 + qO 2 

which may be rearranged to provide a formulation for selection of the pitch/chord 
ratio to suit any specified design duty, namely 

t 1 
= -~- { ~/44) 2 + (1 - qj)2 _ (1 - DF) V' 44) 2 + (1 + q0 2 } (4.27) 

As mentioned in Chapter 2 the diffusion factor should not exceed DF = 0.6 and a 
more modest value of say 0.5 will suffice for an aerodynamically conservative 
design. 

Equation (4.27) has been evaluated for a wide range of (th, q0 duties and t/l values 
resulting in the curves shown in Fig. 4.5 for diffusion factors of 0.5 and 0.6. 

Example 4.1 

Problem 
In Section 2.2 a compressor cascade was designed to turn the flow from ~1 -- 54.59~ 
to/32 = 30.69 ~ Calculate the duty coefficients (~b, qJ) and check the efficiency of a 
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stage using this cascade. Compare the pitch/chord ratios and ideal lift coefficients 
CLoo i (ignoring drag) for diffusion factors DF = 0.5 or 0.6. 

Solution 
From Eqn (4.22) 

~b = 1/(tan f l l  d- tan f12) -- 0 . 5  

From Eqn (4.21a) 

r = 2~b tan f l l  -- 1 = 0.406 62 

We note that this lies within the Omax limit suggested by Eqn (4.19). From Fig. 4.4 
the expected stage efficiency is about 90.3%. 

We may now evaluate Eqn (4.27) to give the recommended pitch/chord ratio for 
DF = 0.5 and 0.6. Then we may evaluate the ideal lift coefficient from Eqn (4.23) 
ignoring the drag coefficient CDo~, namely 

(t)( )  423a, 
CLoo i -" 2 7 V'4q~ 2 + 1 

The outcome is as follows" 

DF t/l CLooi 

0.5 0.731 0.849 72 
0.6 1.162 1.33641 

It is clear from this, as we might expect, that a reduction in pitch/chord ratio t/l will 
result in a reduction in aerodynamic blade loading as revealed by both the diffusion 
factor and the lift coefficient. 

Example 4.2 

Problem 
A compressor is to receive atmospheric air at 15 ~ and raise its pressure from 1.0 bar 
to 3.0 bar. The mean radius is to be 0.5 m and the rotational speed 5000 rev min -1. 
Select a suitable stage duty (~b, q0 and choose a suitable number of stages. Calculate 
the cascade inflow and outflow angles f l l  and/32 assuming 50% reaction and find the 
required pitch/chord ratio for a diffusion factor DF = 0.5. 

Solution 
From Fig. 4.4 we will opt for ~b = 0.5, q~ = 0.35, for which r/Tr = 91.5%. Next we 
can calculate the specific enthalpy rise per stage Ah = qjU2: 

U = rmI~ = 0.5 x 27r x 5000/60 = 261.8 m s - 1  

Therefore 

Ah = 0.35 x 261.82 x 10 - 3  = 23.99 kJ kg -1 
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Now the machine overall specific enthalpy rise is given by 

h o 2 -  h o l  = "r/Tr(ho2 s -- h o l  ) 

= 0.915 x 1.005 x 288.2{30"4/1"4- 1} 

= 97.72 kJ kg-1 

Therefore the number of stages = 97.72/23.99 = 4.0734. Let us therefore select four 
stages. We now need to recalculate ff from 

97.72x 1000 1 
~p = 261.82 x ~ = 0.356 44 

Note that the total-to-total efficiency will be slightly less than our original estimate, 
Fig. 4.4, but we will ignore this. From Eqns (4.21) and (4.22) the cascade inflow and 
outflow angles are 

1 + 0.356 44 } 
~1 -- arc tan 2 x 0.5 = 53"60~ 

{ 1 - 0 . 3 5 6 4 4 }  
/32 = arc tan 2 x 0.5 = 32"76~ 

Substituting for ~b = 0.5, ~ =  0.35644, DF = 0.5 into Eqn (4.27), the required 
pitch/chord ratio for stable efficient flow is t/l = 0.9723. 

Suppose we now decide to reduce the number of stages from four to three. The 
work coefficient will go up by 4/3 to ~ =  0.475 25. For the same diffusion factor 
DF = 0.5 and flow coefficient ~b = 0.5, the required pitch/chord ratio, Eqn (4.27), 
now becomes t/l = 0.501 214. Thus we would need almost double the number of 
blades to achieve the increased flow turning, in this case from 131 = 55.87 ~ to 
f12 = 27.69~ 

4.5 Compressor stages with arbitrary reaction 
So far in this chapter we have considered only 50% reaction axial compressor stages. 
Let us now extend the analysis to deal with repeating stages of arbitrary reaction 
R. The velocity triangles for these, shown in Fig. 4.6, are similar to those of the 
repeating 50% reaction stages illustrated in Fig. 4.2 in all but one respect, namely 
that they are no longer symmetrical. The dimensionless velocity triangles, Fig. 4.6(b), 
are now dependent upon the three variables ~b, ~ and R where the reaction R 
determines the degree of asymmetry. 

Let us begin by reconsidering the definition of reaction R given previously in Eqn 
(4.5): 

R = Specific enthalpy rise across the rotor 

Specific enthalpy rise across the stage 
h 2 - h 1 

= h 3 -  hi [4.5] 
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Fig. 4.6 (a) Velocity triangles and (b) dimensionless velocity triangles for repeating axial compressor 
stages of arbitrary reaction 

Since we are limiting the analysis to repeating stages for which entry and 
leaving velocities are identical, c3 = Cl, the denominator of Eqn (4.5) may be 
simplified to 

h3-hl= ( ho3- ~) - ( hol- ~) =ho3-hol= Aho (4.28) 

where Aho is the stage stagnation enthalpy rise. The numerator of Eqn (4.5) may 
be rewritten 

(4.29) 

But since there is no work or heat input through the stator, ho2 = ho3 and thus 
h o 2 - h o l  = Aho. Also since the axial velocity is assumed to be constant, 

c~ - c i  = (Cx ~ + c ~ )  - (Cx ~ + &) 
= C 2 __ C21 

= (co2-  co~)(co2 + col) 

From the Euler pump equation (4.3) 

Aho 
co2 - col = ~ = $U 

U 
(4.30) 

Introducing these results into Eqn (4.29) we have 

Ah0 
h 2 -  hi = A h o -  ~ ( C o 2  + col) (4.29a) 
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so that the reaction R, Eqn (4.5) above, becomes 

1 
R = 1 - ~ (co2 + col)  

providing a second equation for Col and c02, namely 

Cot 2 + CO1 "- 2U(1 - R) (4.31) 

Solving simultaneous equations (4.30) and (4.31) we have the dimensionless swirl 
velocities 

U 

C02 

1 c~ 1 - R - ~  

1 
~ = I - R + ~  
U 

1 Wol = 1 C~ = R + 
v --U- 

Wo2 Co2 = R _ I  
U = 1 - --~- ~ ,  

(4.32) 

and the remaining velocities also expressed in dimensionless form are thus 

Wl= ; $ 2 +  ( R + ~ )  2 Rotor relative inflow velocity --ff 

w2 ; th2+  ( R _ ~ )  2 Rotor relative outflow velocity 
-6- 

2 (4.33) 
Cl ;~b2+ ( a _ R _  2~__ ) Rotor entry and stage exit velocity I .~. m =  

uC2 qb 2 + (1 - R + ~ )  2 Stator inflow velocity J 

All angles of the velocity triangles can now also be expressed as functions of ~b, ~, 
and R as follows: for the rotor, 

/31 = tan-1 R + ~ q~ Relative inflow angle 

/32 = tan- 1 R - ~ 0 Relative outflow angle 

f ~ 1 ea = tan-1 4 ~2 + R2 - ~qpl Fluid deflection 

(4.34) 
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and for the stator, 

a e = t a n _ l { l (  21 )}  -~ 1 - R + qJ Inflow angle 

{ 1 (  1 )}  
% = al = tan-1 -~ 1 - R - ~ ~ Outflow angle 

1 Fluid deflection es = tan-1 4 ~2 + (1 - R)2 _ 4 02 

(4.35) 

4.5.1 Stage losses and efficiency 

The loss coefficients for rotor ~'R and stator ~'s have been defined by Eqn (4.9) and 
the total stage loss (Apo)los s follows from Eqn (4.17a). Introducing Wl/U and c2/U 
into this we have 

(Apo)lo s 
pU 2 

1 

-6 

1 2 

(4.17a) 

+ ~ ~'s + 1 - g + (4.36) 

The total-to-total efficiency then follows by substitution into Eqn (4.16), namely 

1 2 q~ 2 

In Section 4.1 we were able to show from dimensional analysis using the ~r-theorem 
that rla--r is dependent upon the five groups ~b, qJ, R, ~r R and ~'s in the general form 
expressed through Eqn (4.13). We have now shown that this relationship can be 
converted into the explicit analytical form given by Eqn (4.37) as a result of linking 
stage duty (~b, qJ) and reaction R to velocity triangles and thus to stage aerodynamics 
and thermodynamics. This is a most useful and extremely powerful reduction. 

4.5.2 Diffusion factors and selection of pitch/chord ratio 

Since the velocity triangles are no longer symmetrical for values of reaction R other 
than 0.5, the rotor and stator blade rows will have quite different profile geometry. 
In order to select suitable values of pitch/chord ratio t/l to control aerodynamic 
loading, it is again helpful to express the diffusion factor in terms of ~b, 0 and R for 
each blade row. Introducing Eqns (4.34) and (4.35) into the expression for DF, Eqn 
(2.28), we thus have for the rotor 

cos l(/) DFR = 1 c o s  ~1 ~. (tan f l l  -- tan f12) 
COS f12 2 R 
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= 1 - 6 2 + (R + qd2) 2 + 2 R V'6 2 --b (R + qd2) 2 

and for the stator 

DFs 1 COS Or2 c~ I = ~- (tan O~ 2 - -  tan o~3) 
COSO~ 3 2 \ / 7  s 

= 1 -  
]  439. 

t~ 2 "k- (1 - g + ~12) 2 + 1 S "~V/t~ 2 -k- ( 1 -  g + ~12) 2 

Inverting these we may obtain expressions for the pitch/chord ratios" 

(/)R = -~~/th2 + (R-~)2_ ~ (1- DFR) ~/th2 + (R+ _~)2 
. . . . . .  (4.40) 

( / ) s  _~~r  + ( I - R - _ ~ ) 2 _  _~ ( 1 -  DFs) ~/~2+ ( l - R +  2~---) 2 

4.6 Selection of optimum blade profile geometry using 
theoretical cascade flow analysis 

So far in this chapter we have considered only the selection of optimum duty 
coefficients th, q~ for an axial compressor stage and the influence of these, together 
with the reaction R, upon the velocity triangles. A simple design sequence was 
presented in the introduction to this chapter, the final stage of which involves selection 
of the cascade blade profile to achieve the following: 

(1) The correct fluid deflection and efflux angle f l2-  

(2) Acceptable aerodynamic loading. 
(3) Smooth entry flow. 

The second of these design requirements has already been catered for by specifying 
the diffusion factor DF as considered in Section 4.4, resulting in expressions for the 
cascade pitch/chord ratio, Eqns (4.27) and (4.40). Requirements (1) and (3) may then 
be met by use of cascade analytical design techniques such as that offered by the 
computer program CASCADE. The design objective is to select the stagger angle 
A and camber angle 0 needed to achieve the correct outlet angle ~ 2  with 'shock-free' 
inlet flow. A base profile thickness (e.g. C4 profile) and type of camber line (e.g. 
circular arc or parabola) must also be specified. 

Figure 4.7 shows curves of/32 versus/31 for 'shock-free' entry flow cascades made 
up by superimposing the C4 profile upon a circular arc camber line. (A, 0) plots are 
shown for three pitch/chord ratios. The curves were derived from multiple runs of 
the program CASCADE which enables the user to obtain the shock-free inlet angle 
/31 and its associated outlet angle/32 for a specified stagger A and camber 0. A set 
of such data may be obtained very rapidly with the help of CASCADE and provides 
a quick way forward for optimum cascade selection as illustrated by the following 
numerical example. 
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Fig. 4.7 Compressor cascades designed for 'shock-free' entry flow using computer program 
CASCADE 

Example 4.3 

Problem 
For the compressor considered in Example 4.2, select a suitable blade geometry for 
the mean radius section. Summary of given data: 

Inlet angle f l l  = 53.60~ 
Outlet angle /32 = 32.76 ~ 
Diffusion factor D F =  0.5 
Pitch/chord ratio t/l = 0.9723 

Solution 
From Fig. 4.7 we can select the stagger A and camber 0 to give smooth entry flow 
at the leading edge. Thus from the graph for t/l = 1.0 (which is close enough to the 
specified value of t/l = 0.9723 to suffice), we read off 

A ~ 41.5 ~ 

0 ~ 35 ~ 

To confirm or adjust this choice we can now run the program C A S C A D E  with this 
data, using the default profile thickness C4 and circular arc camber (see Appendix 
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Fig. 4.8 Predicted surface pressure distribution for compressor cascade - Example 4.3 

II for instructions in the use of CASCADE).  We find that the predicted outlet angle 
is then/32 = 32.8 ~ which is close enough to our design requirements, and the predicted 
'shock-free' inlet angle is 54.07 ~ which is also near enough to the design value to 
suffice. As proof of this we may check the surface pressure distribution, shown here 
as Fig. 4.8. 

From this we see that the stagnation point (for which Cpl = 1.0, Eqn (2.14)) is 
located directly on the profile leading edge, resulting in smooth entry flow as 
described in Section 2.6 and illustrated by Fig. 2.11. The pressure on the upper convex 
surface falls rapidly to a minimum value of  (Cpl)min = -0.572 at about x/l = 0.16 and 
then diffuses steadily towards the exit value of 

(t.,)/f'plXexit -- P21 -- 2Pl 
~pCl 

1 (cos.1)2 
COS ~2 

= 0.502 

[2.141 

Note that the theoretical analysis, being based upon potential flow modelling, 
predicts the trailing edge pressure distribution badly for x/l > 0.96 since there is also 
an implied stagnation point at the trailing edge associated with the Kutta-Joukowski 
condition which has to be imposed at that point. Despite this minor setback, Fig. 
4.8 gives us a firm indication that we have selected an aerodynamically acceptable 
blade cascade geometry. Furthermore, we may use the predicted Cpl plot to check 
the upper surface stability against the later version of diffusion factor Dloc due to 
Lieblein (1956) which was defined in Section 2.7.1, Eqn (2.23). Thus 

COS ~1 1 
Dlo c = 1 

COS~2 ~//1 -- (Cpl)min [2.23] 

= 0.436 
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Fig. 4.9 Velocity triangles at the mean radius for an axial fan stage 

According to Lieblein's experimental studies Dloc should be no greater than 0.5 which 
confirms that this cascade is conservatively designed as intended in Example 4.2. 

4.7 High reaction axial fan stages 

As discussed in Section 2.2 it can be argued, by considering its role as a diffusing 
device, that the optimum reaction of an axial compressor is in the region of 50%. 
Axial fans such as that illustrated in Fig. 4.9 are, on the other hand, of much higher 
reaction. The main aim is usually to move large volumes of gas with less emphasis 
on the demand for pressure rise. Many fans achieve this by means of a single rotor 
with no stator blade rows at all, for example for ventilation applications. Bearing 
in mind the definition of stage reaction for a compressor or fan, Eqn (4.5), such fans 
are clearly operating at 100% reaction. If the entry velocity Cl is axial there must 
of course always be some swirl velocity c02 downstream of the rotor, Fig. 4.9. If the 
level of this is sufficiently high then it may be advantageous to include also a 
downstream stator, as illustrated here, to return the flow at exit from the fan stage 
to the axial direction c3 = Cl. We will adopt this arrangement as our model fan stage 
and derive next the related equations for its design and performance analysis. 

The equations derived in Section 4.5 for compressor stages of arbitrary reaction 
are of course still applicable to our fan stage but with one restriction. There is to 
be zero swirl at entry, that is Col = 0. From Fig. 4.6 and/or Eqn (4.32a) we observe 
that this determines the reaction R as a function of work coefficient ~, namely 

R = I  0 2 (4.41) 

Thus for a fan comprising rotor plus stator without inlet guide vanes the reaction 
is no longer an independent variable once the design operating duty (~b, ~) has been 
chosen. For example, if we selected the design duty 4} = 0.5, ~ = 0.3 the fan stage 
reaction would be R = 0.85. From the 'Smith' charts for experimental test axial 



4.7 High reaction axial fan stages 103 

compressors, Fig. 4.4(c), the nearest reaction to compare with is 90% for which the 
proposed duty for our fan is in fact very close to optimum. The velocity triangles 
shown in Fig. 4.9 have been chosen to suit this prescribed duty. The blade profiles 
and cascade geometry shown in Fig. 4.9 have been selected by the procedures outlined 
in Section 4.6 for ensuring that the velocity triangles are actually delivered and with 
optimum aerodynamic performance setting the diffusion factor level at DF = 0.5. 

Introducing Eqn (4.41) into Eqns (4.32) to (4.40) of Section 4.5 we can now express 
all velocity triangle or other useful design data as functions of 4) and 0 as follows. 
Dimensionless velocities are given by 

W---! -- V't~2 -+ - 1 
U 

W'-"~2 = "V"~ 2 + (1 - I//) 2 
U 

C l  C__~3 -U- u-6  
(4.42) 

~2= v~+ 
U 

Flow angles are given by 

O~ 1 = Or3 = 0 

a 2 = tan- 1 (@/6) 

~1 -- tan- 1 (1/(f)) 

f12= tan- 1( l - q '  ) 4 )  

The total-to-total efficiency becomes 

1 
r /T r  = 1 - ~ - {  SrR(1 + 4) 2) + ~'S(~ 2 + I//2) } 

The diffusion factors, Eqns (4.38) and (4.39), become for the rotor 

j 2(/)( ) 4, 2 + (1 ~,)2 + 
D FR 1 

4)2+1 l R V'4~2+1 

and for the stator 

(4.43) 

(4.44) 

(4.45) 

OFs=' ' ) ,446, 
V ' ~  2 + I/12 + 2 S "V'~ 2 + I/12 

from which we may express the pitch/chord ratios as functions of 4), q~ and DF, 
namely 

2 
-- --~-" [V '~  2 + (1 - q,)2_ (1 - DFR)V'4~ 2 + 11 

2 
= ~-[4) - (1 - DFs) V'4}2 + q,21 

(4.47) 
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As can be seen from Fig. 4.9 the rotor blades for this fan are both highly staggered 
and widely spaced. The stator on the other hand is more typical of an axial compressor 
blade row. The numerical example which follows invites the reader to complete the 
detailed design of this fan for himself. 

Example 4.4 

Problem 
The mean radius section of an axial fan comprising rotor plus stator is to operate 
with duty ~b = 0.5, ~ = 0.3. Select suitable rotor and stator cascades making use of 
the program C A S C A D E .  What fraction of the stage pressure rise would be lost if 
we dispensed with the stator? 

Solution 
First of all assemble velocity triangle data. From Eqns (4.43) and (4.47) 

a2 = tan- l (0 .3/0.5)  = 30.964 ~ 

a3 = 0.0 ~ 

fll = tan- l (1 /0 .5)  = 63.435 ~ 

/32 = tan -1 { ( 1 -  0.3)/0.5} = 54.462 ~ 

(t/l)R = 2.0081 

(t/l)s = 1.3897 

By trial and error use of program C A S C A D E  the following stagger and camber angles 
were obtained using the C4 profile and circular arc camber for the given t/l values 
above: 

Blade row h ~ 0 ~ Shock-free data 

Inlet angle Outlet angle 

Rotor 58.2 37 63.44 54.40 
Stator 14.65 57.64 30.92 0.00 

The actual blade geometry for this fan is shown in Fig. 4.9 which illustrates the 
typical high stagger and wide spacing of the rotor. The fraction of pressure rise 
sacrificed if we dispense with the stator would be 

lpc2o2 l (co2/u)e 1 (Apo)stator 2 
(Apo)fan - (Apo)fan if/ 2 ~ = 0 . 1 5  

Alternatively from the definition of reaction Eqn (4.5), using also Eqn (4.41), 

(aPo)stator 
(Apo)fan 

= 1 - R  = 1 -  ( 1 - 1 ~ )  = 0 . 1 5  
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Fig. 4 .10  Variation of outlet angle /32 with inlet angle ~1 for two axial fan cascades of different 
pitch/chord ratios 

Thus the stator accounts for 15% of the stage pressure rise, a small but significant 
amount. 

4.8 Influence of pitch/chord ratio upon the deflection 
properties of cascades and upon the ~ - ~  
character ist ics of an axial fan 

In the example just considered the aerodynamically acceptable rotor blade spacing, 
corresponding to a slightly conservative diffusion factor of 0.5, was quite large, 
namely t/l = 2.008. For cascades with t/l in excess of 1.0 the variation of outlet angle 
/32 with inlet angle/31 is quite marked as illustrated by Fig. 4.10. 

Curves of/32 versus/31 are shown here for two cascades selected to deliver the 
prescribed duty of Example 4.4 with shock-free inflow but with completely different 
pitch/chord ratios, namely t/l = 2.008 and t/l = 1.0. The first of these has the geometry 
previously selected and tabulated above. The cascade parameters for the second 
cascade have the values t/l = 1.0 and A = 56.7 ~ again using the C4 profile thickness 
distributed on a circular arc camber line with O = 18 ~ Although one of these designs 
would have double the number of blades of the other and thus be aerodynamically 
very conservative, it would certainly do the job of matching and delivering the design 
duty velocity triangle requirements,/31 = 63.44 ~ /32 = 54.46 ~ On the other hand if 
we were to vary the inlet angle/31 over some range such as that shown in Fig. 4.10 
the outlet angle/32 and fluid deflection e =/31-/32 would differ dramatically away 
from the design duty. As a simple rule of thumb it can be assumed that for t/l < 1.0 
the outlet angle/32 would remain almost constant over a range of/31 values due to 
the fact that adjacent blades of the cascade now form distinct passages which are able 
to guide the fluid more strongly. For t/l >> 1.0 on the other hand the blades are tending 
to act as separate aerofoils so widely spaced that mutual aerodynamic interference 
becomes less significant. 

This leads us to another very important consideration in fan design, namely the 
off-design performance. In service conditions fans frequently have to be operated 
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Fig. 4.11 Predicted 'frictionless' characteristics for two fan cascades with different pitch/chord ratios 
but the same design duty 

away from the design (~b, q0 duty. For example, it may be cheap and convenient for 
us to select a constant speed electric drive for a simple ventilation fan and there are 
indeed many such installations. Any change in the flow coefficient ~b due to variations 
of the system resistance will then result also in a change of work coefficient qJ. To 
illustrate the outcome, 4~--qJ characteristics for the two fan designs under consideration 
are shown in Fig. 4.11. These are styled 'frictionless' characteristics since the 
predictions are based on ideal frictionless fluid theory. Nevertheless, they serve to 
illustrate the trends related to pitch/chord ratio. For the closely pitched blade row 
with t/l = 1.0, the slope of the 4~-qJ characteristic is very much greater due to rotor 
relative outflow angle being held almost constant at/32 = 54.46 ~ over the whole range 
of flows 0.2 < 4)<0.7. The flatter characteristic of the more widely spaced fan, 
t/l = 2.008, is due to the relaxation of aerodynamic loading of the blades acting now 
as almost independent aerofoils. 

Figure 4.11 has in fact been derived directly from the theoretically predicted 
cascade results shown in Fig. 4.10. Thus Eqns (4.43c) and (4.43d) may be rearranged 
to express the duty coefficients as functions of/31 and/32, namely 

4) = 1/tan/31 

tan/32 
q , = l  

tan/31 

(4.48) 

In practice as a consequence of this we would find that the fan with widely spaced 
blades would probably be able to operate over a wider range prior to blade stall and 
would tend to deliver higher pressure rises than the closely spaced fan for ~b values 
greater than the design duty. 



5 
Simplified meridional flow 
analysis for axial turbomachines 

Introduction 

The last two chapters have been concerned with the centre-line or mean radius design 
of turbines, compressors and fans, enabling us to define a single design duty (t h, if) 
representative of the performance of a given stage. We were able to express the 
dimensionless velocity triangles, normalised by the blade speed U = rI~, in terms of 
the flow coefficient ~b, the work coefficient ~ and the stage reaction R, leading us 
directly on to a rational analytic approach to blade profile design linked to stage mean 
duty (~b, ~p). 

In reality of course the stage performance will be determined not just by its 
centre-line section but will be the average of the whole flow from hub to casing. The 
real flow in a turbomachine is three-dimensional and indeed extremely complex. 
Conditions may vary considerably from hub to casing and the blades themselves will 
usually be both tapered and twisted as was illustrated in the introduction to Chapter 
2 and Fig. 2.3. 

We move on now to consider this problem of how to analyse the three-dimensional 
flow in turbomachines. The starting point for this was also given in Chapter 2 where 
the 'cascade' and 'meridional' flow structures were introduced mainly to provide a 
manageable design framework. As illustrated by Fig. 2.1, the fully three-dimensional 
flow can be treated for practical purposes as an axisymmetric or circumferentially 
averaged 'meridional flow', and a series of superimposed 'cascade' flows to define 
blade profiles at selected sections from hub to casing. 

Now so far for axial machines we have assumed that the meridional velocity Cs is 
constant for all meridional streamlines as illustrated for an axial fan in Fig. 5.1(a). 
Downstream of the rotor, however, the flow may be swirling quite considerably, 
resulting in an inward radial pressure gradient. This may well result in some radial 
shifts in the meridional streamlines as illustrated in Fig. 5.1(b). As a result of this 
the meridional velocity Cs will vary from hub to tip with consequent modification of 
the velocity triangles which must be taken into account before the blade profiles are 
designed. 

Meridional flow analyses to handle this design problem are extremely complex. 
In this chapter we will content ourselves with only the simplest techniques known 
as radial equilibrium analysis, Sections 5.2 and 5.3, and actuator disc theory, Sections 
5.4 and 5.5. Finally in Section 5.6 these analyses will be extended to deal with the 
design of a complete axial fan or compressor comprising several blade rows and 
including the meridional interference between them. Before turning to these, 
however, we will begin in Section 5.1 by considering the special case of flee-vortex 
design, the simplest and most popular method for three-dimensional design of axial 
turbomachines. 
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y_ll- 
(a) (b) 

Fig. 5.1 Meridional flow through an axial fan consisting of a single rotor only: (a) free-vortex axial 
fan; (b) non-free-vortex axial fan 

5 . 1  T h e  f r e e . v o r t e x  a x i a l  f a n  

In Section 4.7 we considered the mean radius design of an axial fan comprising a 
rotor followed by a stator, Fig. 4.9. The rational design procedure adopted to arrive 
at aerodynamically suitable blade profiles can be summarised as follows: 

Selection of optimum duty points (~b, ~,) from model test data 

Construction of dimensionless velocity triangles 

Use of computational fluid dynamics to select suitable blade profiles which 
will deliver the velocity triangles with stable and low loss flow 

Obviously the flow conditions at the mean radius are likely to typify the general 
performance of the fan but we are still left with the major task of designing the rest 
of the rotor blade which, as we will see, will vary considerably in both duty (t h, ~,) 
and consequent blade geometry from hub to tip. We need therefore to consider 
carefully what aerodynamic loading can be carried by each section of the blade and 
whether radial variations are likely to impose extreme aerodynamic difficulties in 
profile selection or off-design performance. 

As a first step towards the three-dimensional design of our fan rotor let us impose 
the reasonable constraint that the fluid should be given the same stagnation pressure 
rise for all meridional streamlines. For incompressible flow at radius r the Euler pump 
equation (1.9b), with zero pre-whirl upstream of the rotor (Col = 0 ) ,  may be 
written 

l~ = _1 ApoE = Uca2 = rl'lca2 (5.1) 
P 
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m 

where W is the specific work input and ADo E represents the stagnation pressure rise 
of a perfect (Euler) fan with frictionless loss-free flow. Thus we are actually adopting 
here a constant specific work input for all radii. Equating conditions at the mean 
radius rm to any other radius r we thus obtain 

r m C o 2 m  = rco2 = K (5.2) 

where K is a constant. The radial variation of co may thus be expressed 

K 
C0 2 -- __ 

r 
(5.3) 

and we see that the swirl velocity c02 downstream of the rotor is inversely proportional 
to radius. This corresponds to the well-known classical flow generated by a line vortex 
as illustrated by Fig. 5.2. In this case we have shown the flow field in the (x, y) plane 
is that induced by a line vortex of strength F lying along the z-axis between z = +~,  
for which the induced velocity is 

F 
Co = 27rr (5.4) 

In consequence of this the type of fan which we have selected is called a flee-vortex 
design_If we were to depart from the initial design constraint of equal specific work 
input W at all radii we could in fact select a very wide range of vortex designs and 
indeed we will return to this in Sections 5.4 to 5.6. For the present let us stay with 
'free-vortex', 'constant specific work' design and see where this leads. 

For incompressible flow the work input coefficient ~, Eqn (4.4), may be redefined 
as follows for radius r: 

APoE/P ApoE 
~,= U2 - pr2f~2 (5.5) 

Let us assume also that the meridional streamlines are cylindrical and the meridional 
velocity is thus constant and equal to Cx. The flow coefficient at radius r thus 
becomes 

Cx Cx 
~b-  U - rf~ (5.6) 

The duty coefficients at radius r may now be expressed in terms of the values (thm, ~m) 
selected at the outset for the mean radius rm. Making use of the free-vortex Eqn (5.2) 
we have 

6 = 6m , ~ t =  ~'m (5.7) 

and the radial variation of stage reaction R, Eqn (4.41), becomes 

R = 1 -  (5.8) 
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Fig. 5.2 Flow field induced in the (x,y) plane by vortex of strength F lying along the z-axis 

At this point it will be helpful to interpret the consequences of all this by considering 
a numerical example. 

Example 5.1 

Problem 
A fan is to be designed with a mean radius duty of ~b = 0.5, ~ = 0.3. If the hub/tip 
ratio h = rh/r t is to be 0.3 calculate the duty coefficients and reaction at eight radial 
stations equally spaced between hub and casing. Calculate the velocity triangle data 
and pitch/chord ratio of both rotor and stator assuming a diffusion factor of 0.5. 

Solution 
First let us relate the mean radius r m to the hub/tip ratio h = rh[r t. By definition 
r m = �89 h + rt) so that the ratio r/r m needed to evaluate Eqns (5.7) and (5.8) may be 
expressed as 

r _ r ( 2 ) ( ~ t )  1.-~(r~) 
rm l(r  h -I- rt) 1 + h 

It is usually more convenient numerically to use the tip radius r t to non-dimensionalise 
local radius r. Now we may complete Table 5.1. 

From this example we observe that the blade sections between the mean radius 
and blade tip, 0.65<r/r t<l .O,  are lightly loaded ( 0 . 1 2 7 < ~ < 0 . 3 )  and also have 
low flow coefficients (0 .325<th<0 .5 ) ,  the stage reaction lying in the range 



5.1 The free-vortex axial fan 111 

Table 5.1 Duty coefficients and stage reaction for a free-vortex fan 

r/r t dp ~ R 

0.3 hub 1.083 33 1.408 32 0.295 84 
0.4 0.812 51 0.792 20 0.603 90 
0.5 0.650 00 0.507 00 0.746 50 
0.6 0.541 66 0.352 08 0.823 96 
0.65 mean 0.500 00 0.300 00 0.850 00 
0.7 0.464 29 0.258 67 0.870 67 
0.8 0.406 25 0.198 05 0.900 98 
0.9 0.361 11 0.15648 0.921 76 
1.0 tip 0.325 00 0.12675 0.93663 

Table 5.2 Velocity triangle data and pitch/chord ratios for free-vortex fan of Example 5.1 

Rotor Stator 

r/r t f l l  ~ f12 ~ ( t / l )R ~ 2  ~ ( t / / ) S  

0.300 42.7094 -20.6526 0.597 27 52.4314 0.276 83 
0.400 50.9061 14.3469 0.490 84 44.2748 0.618 82 
0.500 56.9761 37.1789 0.865 75 37.9542 0.938 17 
0.600 61.5571 50.1039 1.567 08 33.0239 1.242 02 
0.650 63.4350 54.4623 2.008 10 30.9638 1.389 68 
0.700 65.0952 57.9415 2.500 86 29.1241 1.535 10 
0.800 67.8906 63.1343 3.628 40 25.9892 1.820 51 
0.900 70.1448 66.8242 4.933 02 23.4287 2.10(}34 
1.000 71.9958 69.5861 6.406 69 21.3058 2.376 00 

0.85 < R < 0.937. According to the 'Smith' chart for 90% reaction compressor stages, 
Fig. 4.4(c), the tip region of the blades will tend to have a low efficiency. There is 
no difficulty whatsoever in designing suitable blading for the tip region but losses 
will necessarily be high there because of the high relative velocities. 

If we consider next the inner region, 0.3 < r/r t < 0.65, problems of a different kind 
arise. We observe that ~ rises rapidly to the hub section value of 1.4 which is far 
in excess of what we would expect to achieve with a single stage fan, the flow 
coefficient ~b = 1.083 33 also being quite high. 

Let us now make use of Eqns (4.43) to calculate the various flow angles (see Fig. 
4.9). Assuming diffusion factors DR = Ds = 0.5 we may also calculate appropriate 
pitch/chord ratios. The outcome is given in Table 5.2. 

From this we observe the following about conditions at the blade root section" 

(1) Excessively large fluid deflections are demanded of both rotor and stator, 
namely eR = ~ 1  - f12 = 63.362~ es = a2 = 52.431 ~ 

(2) Extremely small pitch/chord ratios are required to achieve these deflections, 
namely (t/0R = 0.597 27, (t//)S = 0.276 83. 
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Although in theory we could design cascades to achieve these deflections, albeit 
with poor aerodynamic performance, the blades would exhibit such enormous taper 
that we would be hard placed to accommodate the root section of the blade, the 
chord of which would be over seven times greater than the chord at the mean 
r a d i u s  r m. 

One possible solution to the dilemma posed in Example 5.1 would be to select 
a higher hub/tip ratio. Thus from Tables 5.1 and 5.2 we see that quite acceptable 
(~b, ~,) duties and velocity triangles are obtained for r /r  t > 0.5 which indicates a suitable 
value for h. A second solution might be to adopt a less demanding (thm, ~'m) duty 
at the mean radius. The reader can make use of the simple Pascal program FVFAN, 
the source code of which is provided on the accompanying PC disc, to experiment 
with this. The most appropriate solution in practice, in order to maintain low values 
of hub/tip ratio and thus the maximum available annulus flow area, is to abandon 
our initial aim of designing for constant specific work W input at all radii. Instead 
we may progressively reduce W as we move radially inward from r m t o  rh and thereby 
reduce the pressure rise coefficient ~, to acceptable values, less than say 0.4. This 
will help to maintain much lighter aerodynamic loading in the blade root region but 
also pitch/chord ratios in excess of 1.0 and hence a wider stall-free range (see Section 
4.8). Unfortunately this approach would entail a departure from free-vortex flow, 
resulting in a non-uniform meridional velocity profile, Fig. 5.1(b). Complex 
calculations are required to evaluate the variation of Cs with radius and two of the 
most simple analyses will now be presented in Sections 5.2 to 5.5. 

5.2 Radial equilibrium analysis for axial turbomachines 
Figure 5.3(a) illustrates the manner in which the meridional streamlines shift radially 
inward progressively under the influence of the radial pressure gradient dp/dr 
generated by the swirling flow downstream of a blade row (a stator is shown here). 
In consequence of this there will be a steady growth in the slope of the axial velocity 
profile Cx. Some distance downstream of the blade row at station 3 the radial velocity 
component Cr will approach zero, resulting in the so-called radial equilibrium flow. 
A radial momentum balance is then achieved between the radial pressure gradient 
dp/dr and the angular momentum of the fluid rco. Our first task will be to derive 
this relationship by reference to the equilibrium of a small fluid element at radius 
r as illustrated in Fig. 5.3(b). Here we are adopting cylindrical polar coordinates 
(x, r, 0) where the x-axis is coincident with the axis of rotation of the turbomachine. 
The mass of the element, whose sides are of length dx, dr and r dO, is given by 

dm = pdx .  dr- r dO (5.9) 

If we now equate the radially inward pressure force on the faces of the element to 
its centrifugal acceleration, we obtain 

(p + dp)(r  + d r ) d O d x - p r d O d x  

( 1 
- 2  p+gdp 

) 2 
drdx sin ~ = dm c'b (5.10) 

r 

= pdx dr. rdO c2~ 
r 
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Fig. 5 .3  Radial equilibrium of a small fluid element downstream of a turbomachine blade row: (a) 
meridional streamline shift and axial velocity profile development; (b) pressure forces on a small fluid 
element at station 3 

which reduces to 
l d p  cEo 

= - -  (5.11) 
p dr r 

In radial equilibrium flow the radial pressure gradient is thus uniquely related to the 
swirl velocity co irrespective of the type of vortex flow. For the special case of 
free-vortex flow, introducing Eqn (5.4), we note that Eqn (5.11) reduces to 

1 dp F 2 
= (free-vortex flow) (5.11a) 

p dr 47r 2r 3 

and we will later show that the axial velocity Cx is constant for this special case. For 
all other vortex flows, for which rco is not constant, we need to relate the axial velocity 
Cx to Co and p. For simplicity let us first consider incompressible flow for which we 
may de'fine the stagnation pressure Po through 

P-2~ P c2 P--+c2 c2 c2~ (5 12) 

o - 7  +T=  o T + T + T  
Differentiating this equation with respect to r and putting Cr = 0, we have 

_ dcx dco 1 dpo l dp +cx +Co 
p dr - p dr - ~ r  dr 

Introducing dp/dr from Eqn (5.11), we have finally 

(5.13) 

which is known as the radial equilibrium equation for incompressible flow. 
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An equivalent equation for compressible flow can be developed by making use of 
the following thermodynamic relationship which links temperature T, specific entropy 
s and specific enthalpy h to p and p: 

T ds = dh - 1  dp 
P 

= d h o -  l d p o  
P 

(5.15) 

where the stagnation enthalpy is defined as ho = h + c2/2. Dividing throughout by 
dr and substituting for (1/p)(dpo/dr) in Eqn (5.14), we have finally the radial 
equilibrium equation for compressible flow: 

The axial velocity Cx is thus a function of the radial distribution not only of rco but 
also of ho and s. 

5,3 Solution of the radial equilibrium equation for the 
inverse and direct problems 

Two types of problem may be identified as follows: 

(1) 

(2) 

The 'Inverse' or 'Design' problem. In the design sequence outlined in Section 
5.1, once the velocity triangles have been selected ho and co are known at all 
radii as part of the design specification. The radial distribution of specific 
entropy s may also be obtained from a first estimate of the losses or r/x-r 
from model test data. Solution of the radial equilibrium Eqn (5.16) then 
yields a new estimate of the axial velocity distribution Cx and hence an 
updating of the velocity triangles and thus flow angles prior to blade profile 
selection. This is the design problem. 
The 'Direct' or 'Analysis' problem. We may postulate the opposite problem 
in which we are presented with an existing turbomachine of known blade 
geometry and asked to predict its fluid dynamic performance. This is the 
analysis problem. 

Theoretical analysis to deal with these two rather different problems will now be 
presented with the help of numerical examples in Sections 5.3.1 and 5.3.2. 

5.3.1 Solution of the inverse radial equilibrium problem 

This is best illustrated by considering the case of a set of inlet guide vanes which 
are to be designed to generate a solid body swirling flow. 

Example 5.2 'Solid body' swirl inlet guide vanes 

Consider the case of flow through an inlet guide vane blade row, Fig. 5.3(a). In this 
case the swirl velocity co is to be proportional to radius at station 3 a long way 
downstream of the blade row. We shall also assume that ho and s are both constant 



5.3 Solution o f  the radial equilibrium equation 115 

throughout the flow regime, namely 

co = kr (where k is a constant) 

ho = constant 

s = constant 

Problem 
Derive an analytical solution for Cx as a function of r. 

(5.17) 

Solution 
In view of Eqns (5.17b) and (5.17c), the radial equilibrium Eqn (5.16) reduces to 

dcx co d(rco) 
0 = Cx ~ ~ (5.16a) 

r dr 

which may be rewritten 

dc 2 2co d(rco) 

dr r dr 

and hence, after integration, at radius r we have 

Cx(r) = K 1 -  2 - -d(rco)  
r 

(5.18) 

Introduction of Eqn (5.17a) for the solid body rotation case then results in 

Cx = N/K1 - 2k 2 r 2 = V ' K  1 - 2 r  2 (5.19) 

The constant of integration K 1 can be evaluated by application of the mass 
flow continuity equation. Thus the mass flow rh through the annulus may be 
expressed as 

in = pCx 2 7rr dr = pCx 2 zrr dr 

stat ion 1 - (en t ry)  s tat ion 3 - (exit) 

(5.20) 

where Cx is the mean axial velocity and thus Cx = Cx at entry to the annulus. Assuming 
incompressible flow and introducing Eqn (5.19), Eqn (5.20) becomes 

Cx(r 2 - r2h) = 2 r V ' K 1 -  2k2r 2 dr 

1 
= 3--~ [ (K1-  2k2r2)3/2 _ ( g  1 - 2kir2) 312] 

(5.21) 

Because of the complexity of Eqn (5.21), K1 cannot be evaluated explicitly and can 
only be derived by successive approximations. Nevertheless a reasonable approximate 
analytical solution may be derived as follows. 
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Approximate solution matching Cx at the root mean square radius rms 
= 1 2 r 2) ThusEqn  Let us assume that Cx = Cx at the r.m.s, radius, namely rms  V ' ~ ( r  h + . 

(5.19) yields directly an estimate for K1, namely 

K 1 = C 2 + 2(Corms) 2 

= C 2 + 2c2~(rms/rt) 2 

= C 2 + c2~(1 + h 2) (5.22) 

Thus finally, at other radii r, from Eqn (5.18) we have 

c x  ] 
Cx ~ (5.23) 

Numerical solution of  the inverse problem 
A much more flexible approach applicable to any radial distribution of co is to 
evaluate Eqns (5.18) and (5.20) numerically. First let us define the function 

f(r) = 2 frh" COr d(rco) (5.24) 

so that Eqn (5.18) becomes 

Cx(r) = X/K 1 - f(r) (5.25) 

From the continuity equation (5.20) we may define a mass flow function 

rh 
S = m  

2~rp 

Cx (r 2 _ r2 ) = - ~  

= s rt r~/K1 _ f(r) dr 

h 

at - ~  upstream of blade row 

J at + ~  downstream of blade row 
(5.26) 

For numerical analysis, the annulus may be represented by m radial steps between 
hub and tip radii r h and rt of thickness Ar=  ( r t - rh ) /m.  f(r) may then be 
approximated at radius rj by 

J 
f (rj) = 2 E cOm''''~i (ri+ 1 Coi+ 1 -- ricoi) (5.27) 

i=1 rmi 

_ . 1  
where rmi = �89 i + ri+ 1) and Com i ~(coi+ 1 + coi). The mass function S may then also 
be evaluated numerically if Eqn (5.26) is rewritten 

In 

S 1 -- Ar E r m i ~ / / K 1 - f ( r i )  (5.28) 
i=1 



5.3 Solution of  the radial equilibrium equation 117 

Since the constant K1 is initially of unknown value, a method of successive 
approximations will be required. The technique adopted in the Pascal program 
RE-DES, provided on the accompanying PC disc, follows that of Newton. As a first 
estimate the value of K1 given by the approximate analytical method of Eqn (5.22) 
may be used to begin the process. We may then evaluate Sa and also the nearby value 
$2 given by 

m 

$2 = Ar E r m i ~ / / g l  -t- A K  1 - f ( r i )  (5.29) 
i=1 

where A K  1 is a small increment in K 1 (e .g .  AK1/K 1 = 0.01). A revised estimate of 
K1 then follows by extrapolation from 

- s 1  
(K1)revise d = K  I + A K  1 $ 2 _ S  1 (5.30) 

Application of this procedure to a solid body swirl with mean axial velocity Cx = 1.0 
and tip swirl velocity co = 1.0 produces the solution shown in Table 5.3, which shows 
the precise prediction from computer program RE-DES compared with the 
approximate analytical solution of Eqn (5.23). To achieve numerical accuracy it is 
necessary to interpolate the initial (r, co) data to provide many more radial steps. A 
Lagrangian interpolation procedure is included in RE-DES and for the above 
computations m = 400 radial divisions of the annulus were used. 

Results for two other vortex flows have also been calculated using RE-DES and 
these are shown in Table 5.4. Let us now consider these in turn. 

Example 5.3 Free-vortex flow 

Since the function f(r),  Eqn (5.24), is zero for this case, the axial velocity must be 
uniform and equal to the mean velocity Cx. This is borne out by the numerical 
prediction as can be seen from Table 5.4. 

Example 5.4 Constant swirl velocity c o 

Problem 
Following the lines of the analysis given in Example 5.2 for solid body flow, the reader 
is invited to derive the approximate radial equilibrium solution for the following 
vortex specification: 

Co = constant "l 

ho = constant 

s = constant 

(5.31) 

Solution 
Matching Cx at the r.m.s, radius, the analytical solution for this flow is given by 

cx Jl+2(C xt2 Cx In (5.32) 
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Table 5.3 Comparison of radial equilibrium axial velocity profiles for solid body swirl predicted 
by approximate analysis and by numerical method (computer program RE-DES) 

r co Cxoo Cxoo 
Approx. method, Numerical method, 
Eqn (5.52) axial velocity 

0.4 0.4 1.356 466 1.379 527 
0.5 0.5 1.288 410 1.312 666 
0.6 0.6 1.200 000 1.226 007 
0.7 0.7 1.086 278 1.114 941 
0.8 0.8 0.938 083 0.971 130 
0.9 0.9 0.734 847 0.776 591 
1.0 1.0 0.400 000 0.472 329 

Table 5.4 Radial equilibrium profiles predicted by program RE-DES for free-vortex and 
constant swirl flows 

Free-vortex swirl Constant swirl velocity 

r c o c x Co cx 

0.40 2.500 00 1.000 012 1.0 1.495 487 
0.45 2.222 22 1.000 008 1.0 1.414 537 
0.50 2.000 00 0.999 999 1.0 1.337 981 
0.55 1.818 18 1.000 005 1.0 1.264 742 
0.60 1.666 67 0.999 995 1.0 1.193 965 
0.65 1.538 46 1.000 003 1.0 1.124 930 
0.70 1.428 57 1.000 004 1.0 1.057 002 
0.75 1.333 33 1.000 005 1.0 0.989 579 
0180 1.250 00 1.000 001 1.0 0.922 057 
0.85 1.176 47 1.000 001 1.0 0.853 780 
0.90 1.111 11 1.000 002 1.0 0.783 979 
0.95 1.052 63 1.000 002 1.0 0.711 680 
1.00 1.000 00 1.000 001 1.0 0.635 532 

This is found to be in reasonable agreement with the precise result obtained from 
the numerical procedure. 

5.3.2 Solution of the radial equilibrium direct problem 

We now consider the 'direct' or 'analysis' problem in which the blade geometry and 
hence fluid deflection is specified and we are required to calculate the resulting axial 
velocity profile Cx(r). In reality, as illustrated previously in Fig. 5.3, radial equilibrium 
develops progressively as the fluid proceeds from -oo to +oo. Simple radial 
equilibrium theory, on the other hand, assumes that equilibrium is achieved 
completely by the time the fluid leaves the blade trailing edge. The contour abcd, 
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Fig. 5.4, would then typify the consequent approximation to the meridional 
streamlines, implying that the swirl angle a2 remains constant along cd. This is in 
fact a gross and unnecessary assumption which we will drop later when moving on 
to more sophisticated analysis in Section 5.4. On the other hand, it is helpful to 
progress analytically in stages and to look now for simple radial equilibrium solutions 
to the flow through a stator and a rotor on the present basis. 

Radial equilibrium direct analysis for a single stator 
Let us consider the simple case illustrated in Fig. 5.4 where ho and s are both constant 
and the swirl angle a2 downstream of the stator is specified as a general function 
of radius through 

C02 
tana2 = ~ = f(r)  (5.33) 

Cx2 

The radial equilibrium equation (5.16) then becomes 

dcx2 
Cx2 --d-~-r + 

Cx2 tan O~ 2 d 
r d--; (rCx2 tan a2) = 0 

which may be rewritten 

dcx2 
{ 1 + tan 2 r162 - ~ r  

tan ot 2 d ) 
+ (r tan a2) Cx2 -- 0 (5.34) 

r dr 

To summarise, this may be expressed as the linear first-order differential equation 

dcx_____g2 _ 
dr ~- R(r)Cxe = 0 (5.35) 
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where R(r) is a function of radius given by 

R(r) = 

t a n  ot 2 d (r t a n  or2) 

r dr 
1 + tan 2 a 2 

(5.36) 

The general solution of Eqn (5.35) is given by 

Cx2 = K exp ( -  f R(r) dr) (5.37) 

where the constant K must be determined from the continuity equation (5.20). 

Example 5.5 Constant a z stator 

Problem 
Derive an expression for CxE/Cx downstream of a stator given that tan Ot 2 - - c o n s t a n t .  

Solution 
The function R(r), Eqn (5.36), now reduces to 

1( tan2a2 ) = sin2a2 _ p  
R(r) = 1 + tan 20~ 2 r - -  

where p = sin 20~ 2. Thus 

f R(r) dr = In (r e) 

and 

exp ( -  f R(r) dr) = r -p 

Equation (5.37) thus yields the solution 

C x 2  = Kr-P 

Application of the continuity equation (5.20) then results in 

I 
rt 

Cx 7r(r 2 - r 2) = 27rK r I -p dr 

h 

27rK 

2 - p  
~ [ r 2 - p _  r2-p] 

and hence the constant K is determined through 

K = Cx(r2-  r2)(1 - p / 2 )  

r -P 
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Finally, putting h = rh/rt, we have the solution 

Cx2 __ ( 1 - h  2 ) (  sin2 a2) (~t 
Cx 1 - T  

sin2a2 ( 5 . 3 8 )  

Radial equilibrium direct analysis for a single rotor axial fan 
Let us consider next the flow through the axial fan rotor shown in Fig. 5.5. In this 
case we will assume that the relative outflow angle/32 is specified as a function of 
radius. For incompressible flow and zero inlet swirl col, the Euler pump equation 
may be written 

1 
.2. (Po2 -- Pol) = r12co2 (5.39) 
P 

If the inlet stagnation pressure Pol is constant we may differentiate the above to 
obtain 

1 d p o  2 = ~[~ d(rc02) 
p dr dr 

which may be introduced into the radial equilibrium equation (5.14) to yield 

dcx2 d(rco2) co2d ( r [ l -  c02) d 
C x 2 T  : ['~ dr r dr (rco2) = r -dr (rc~ (5.40) 

But from velocity triangles, Fig. 5.5, 

c~ = r ~ - -  w ~ } 

W o2 = Cx2 tan/32 
(5.41) 
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Introduction of these equations into Eqn (5.40) leads finally to the following 
first-order linear differential equation" 

dcx2 (tan f12 d 
{1 + tan 2 fiE} ~ "+" r dr (r tan f12) ) r -" 21~ tan f12 (5.42a) 

which may be summarised as 

dcx2 
d----~ + fl(r)Cx2 = fz(r) (5.42b) 

where the two functions of radius are given by 

f1(r) = ( tan [32 d (r tan f12) ) 1 
r dr 1 + tan 2/32 

21~ tan fiE 
f2(r) = 1 + tan 2 fiE 

(5.43) 

The standard procedure for solution of Eqn (5.42) is to multiply throughout by 
exp(ffl(r)dr) anti then integrate with respect to radius, resulting in 

ff2(r) (ffl(r) dr) dr + K1 exp 

Cx2 = (5.44) 

exp(ffl(r)dr) 

As for the previous example of the stator blade row, the constant K1 must be 
determined from the continuity equation (5.20). We observe that the stator solution, 
Eqn (5.37), is simply a subset of the above for the case when ~ = 0 and hence 
f~(r) = 0. For the free-vortex stator, on the other hand, since tan/32 = K1/r, f l ( r )  is 
also zero and Eqn (5.44) reduces as expected to Cx2 = K1 = Cx. 

Numerical solution of the direct problem for a fan rotor 
Although a solution has been obtained above in closed analytic form, the integrals 
in Eqn (5.44) would still in most cases need to be evaluated numerically. In view 
of this a better strategy is to solve Eqn (5.42) numerically. Thus after integration the 
solution may be expressed as 

Cx2 = L(r, r + K1 (5.45) 
where 

I 
r] 

L(Fj, Cx2 ) -- ( -- Cx2fl (rj) d- f2(t]) } dr 
h 

i 
~- Ar 2 { - Cx2fl(ri) + f2(ri) } 

i=1 

(5.46) 

where f12 and thus fl(ri) and f2(ri) are specified at m equally spaced radii from rh 
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Fig. 5.6 Flow diagram for numerical solution of radial equilibrium downstream of a rotor 
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to r t with Ar = (r t - rh) /m.  The constant of integration follows from the continuity 
equation (5.20) which leads to 

2 Is t K1 = Cx + (~_ r2 ) rL(r, Cx2) dr 

2Ar m 
Cx + (r 2 _ r2 ) ~ ri L(ri, Cx2) 

i=1 

(5.47) 

However, we note that Cx2 also appears in the expression for L(r, Cx2), Eqn (5.46), 
and an iterative approach is required as shown in Fig. 5.6. 

The computer program RE-ANAL, the source code of which is given on the 
accompanying PC disc, executes this computational sequence for which sample output 
is given in Table 5.5. 

Table 5.5 'Back to back' test using output from design radial equilibrium program RE-DES 
as input to analysis radial equilibrium program RE-ANAL 

Initial input data to 
RE-DES 

Output predicted by 
RE-DES 

Final output from 
RE-ANAL using f12oo 
values from RE-DES 
(column 4) 

r ca2 Cxoo [3200 Cx~ C02 

0.4 0.4 1.379 529 16.169 731 1.379 893 0.400 106 
0.5 0.5 1.312 669 20.851 998 1.313 066 0.500 151 
0.6 0.6 1.226 010 26.076 781 1.226 347 0.600 165 
0.7 0.7 1.114 944 32.122 009 1.115 265 0.700 202 
0.8 0.8 0.971 134 39.481 002 0.971 401 0.800 220 
0.9 0.9 0.776 596 49.209 612 0.776 830 0.900 272 
120 1.0 0.472 335 64.716 982 0.472 413 1.000 165 

Example 5.2 of a 'solid body swirl' stator is reconsidered here where co2 is 
proportional to radius r, columns 1 and 2. The axial velocity Cxoo and consequent exit 
swirl angle/3200 predicted by program RE-DES are recorded in columns 3 and 4. To 
check the accuracy of the two computer programs a 'back to back' test has been 
undertaken here in which the/3200 values output from RE-DES were used as input 
to the direct analysis program RE-ANAL, setting the rotational speed f~ = 0. The 
outcome is tabulated in columns 5 and 6 where Cxoo shows very close agreement with 
the results predicted by RE-DES, column 3. The ultimate test is the final prediction 
of the ca2 values, column 6, which are in very close agreement with the original design 
data. 

5.4 Actuator  disc theory appl ied to an axial  tu rbomachine  
blade row 

Actuator disc theory provides a simple means for improvement to radial equilibrium 
analysis to allow for the progressive development of the axial velocity profile through 
the blade row as illustrated by Fig. 5.7. The method has been extensively documented 
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by Horlock (1978) and more detailed analysis will be given in Chapter 6. In this 
section the basic principles and final results will be presented and applied to a single 
blade row. In later sections the method will be extended to a series of increasingly 
complex design and analysis problems. 

The concept of the actuator disc, borrowed from propeller theory, is illustrated 
in Fig. 5.7. The meridional disturbances which produce the radial shift of the 
streamlines are in fact caused by the shedding of vortex sheets y from the blade 
trailing edges. The mechanisms underlying this will be discussed in more detail in 
Chapter 6. In fact the vortex shedding builds up progressively from the leading edge 
to the trailing edge due to any variation of the blade circulation with radius. For 
simplicity, however, we will assume instead that the trailing vorticity is shed 
discontinuously in the plane AD of the so-called actuator disc. An actuator disc is 
thus a simple mathematical model of a blade row consisting of a plane discontinuity 
at which the fluid deflection and associated vortex shedding are assumed to occur 
instantaneously. 

Alternatively we could think of an actuator disc as a real blade row with the same 
cascade shape but with an infinite number of blades Z of infinitesimal chord l (i.e. 
Z ~  ~ as l---~ 0). Since the actuator disc represents the centre of vortex shedding, it 
would seem reasonable to locate AD in the plane of the centre of bound circulation 
F of the blade profiles, i.e. at the centre of lift. The usual practice is to locate AD 
at the one-third blade chord position for a stator as illustrated in Fig. 5.7 and at the 
half chord position for a high stagger rotor. Alternatively the centre of lift could be 
calculated from the pressure distributions predicted by the program CASCADE. If 
we now express the axial velocity in the form 

Cx = Cx + Cx (5..48) 
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Table 5.6 Actuator disc 
coefficients k 

rh/r t k 

0.3 3.2935 
0.4 3.2330 
0.5 3.1967 
0.6 3.1731 
0.7 3.1567 
0.8 3.1480 
0.9 3.1435 
1.0 3.1416 

Fig. 5.8 Growth of axial velocity perturbations through an actuator disc 

where Cx is a small perturbation of the mean axial velocity Cx, actuator disc analysis 
shows that the perturbations throughout the annulus are given by 

c; 
t 

CX= 

1 
= ~exp = F(x )  f o r  x < X A D  

r t -  rh 
1 

= 1 - ~ e x p  = F(x) f o r  x > XAD 
r t - r h 

(5.49) 

Cx= is the radial equilibrium perturbation which obtains as x--~ oo, Fig. 5.7, and k 
is a constant, the value of which depends upon the hub/tip ratio of the annulus, 
Table 5.6. 

The function F(x) has been evaluated in Fig. 5.8 for an annulus with rh/rt = 0.5, 
showing how the axial velocity perturbations grow exponentially from -oo to +~.  
It is of particular interest to note that the perturbations Cx reach exactly half of the 
radial equilibrium value Cx= at the plane of the actuator disc XAD = 0. At any other 
location (x,r) the axial velocity may thus be expressed in terms of the radial 
equilibrium axial velocity at the same radius through 

C x = C x Jr CxooF(x -  X A D  ) = C x -4- (Cxoo- C x ) F ( x -  X A D  ) (5.5o) 

5.5 Actuator disc analysis for a single rotor axial fan 
We are now in a position to improve on the numerical scheme for direct analysis 
considered in the last section. Let us make the following assumptions for our actuator 
disc model of the single rotor fan, Fig. 5.9" 

(1) The actuator disc is located at the  mid-chord position XAD. 
(2) The blade relative outlet flow angle ~ 2  is determined at the trailing edge 

plane xte. 
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Fig, 5,9 Location of actuator disc plane (AD) and trailing edge plane (te) for axial fan 

Equation (5.41) may then be rewritten 

W02 : Cxt e t an  f12 (5.51) 

Thus the radial equilibrium Eqn (5.40) may be modified to read 

dcx~ Wo2 d 
= ~ - - ( r 2 f l - r w o 2 )  Cx= dr r dr 

tan/32 (2ftr - d  ) 
-" Cxte r -~r (Cx ter  t a n  f12) 

(5.52) 

If/32 is specified as a function of radius, the above may be written in simplified 
form 

dcx~ 
dr = p(r, Cx~ ) (5.53) 

where 

p(r, Cx=) = Cxte tan f12 ( 2fir -- d 
Cx~ r d'r'r (Cxte r tan/32) ) (5.54) 

We note that Cxt e is a function of Cx= through Eqn (5.50), namely 

Cxt e = C x + c x ~ F ( x t e  - XAD ) = C x Jr (Cx~ - C x )  F(xte  - XAD ) (5.55) 

Equation (5.53) may now be integrated with respect to radius to provide a form of 
solution analogous to Eqn (5.45) suitable for iterative numerical analysis, namely 

Cx= = L'  (r, Cx=) + g l  (5.56) 
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where at radius rj 

i 
rj 

L'(rj, Cx~) = p(r, Cx~)dr 
h 

J 
~.Ar E p  i 

i=1  

(5.57) 

The previous iterative scheme, Fig. 5.6, may then be used with slight modification 
to achieve a numerical solution for Cx~ bysuccessive approximations and hence for 
Cx at any other axial location in the annulus making use of Eqn (5.50). 

Two computer programs are given on the accompanying PC disc which undertake 
actuator disc analyses for single blade rows. Program AD-ANAL solves the 'analysis' 
problem, predicting the fl0w through a blade row of prescribed efflux angle /32. 
Program AD-DES solves the opposite 'design' problem, predicting the efflux angle 
/32 required in order to generate a prescribed swirl velocity distribution c02. Studies 
will be undertaken in the next two sections to illustrate these design and analysis 
problems. 

5.5.1 Actuator disc design of a solid body swirl stator 

To bring out the deficiencies of radial equilibrium analysis, the r-c02 data given in 
Table 5.5 have been used as input into the actuator disc design program AD-DES 
and the results are given in Table 5.7. Although AD-DES has been written to deal 
with fan rotor design, a stator may also be designed by simply specifying zero speed 
of rotation, fl = 0. 

Two solutions are illustrated here as follows: 

(1) The radial equilibrium solution, obtained by placing the actuator disc 
artificially a very long way upstream of the blade row (XAD =--1000 was 
used here). 

(2) The actuator disc solution with the following locations: 
Leading edge located at XLE = 0.0 
Actuator disc located at XAD = 0.1 
Trailing edge located at XTE = 0.2 

Our design aim here is to predict the blade efflux angle/32 distribution which would 
generate the specified swirl velocity c02 given in column 2 with a mean axial velocity 
Cx = 1.0. Two observations may be made: 

(a) Solution (1) is in close agreement with the previous radial equilibrium 
solution shown in Table 5.5. 

(b) The true blade trailing edge efflux angles/32 according to actuator disc 
analysis, solution (2), differ significantly from the/32~ values a long way 
downstream delivered by radial equilibrium analysis. 

5.5.2 Actuator disc design and analysis of a single stage rotor axial fan 

For our second study let us reconsider the axial fan illustrated in Fig. 5.5 which 
comprises a single rotor only. Our aim will be to generate velocity triangle design 
data from an initial specification of c02 versus radius, including also meridional flow 
analysis by actuator disc theory. Program AD-DES will then be used to demonstrate 
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Table 5.7 Design of a solid rotation swirl stator blade row: comparison of radial equilibrium 
and actuator disc methods 

Initial input 
data 

Solution 1 
Radial equilibrium method 
XAD ~ -- 

Solution 2 
Actuator disc method 
XLE = 0.0, XAD = 0.1, XTE = 0.2 

r c02 CxTE fl2oo CxTE [32 

0.4 0.4 1.379 52 16.169 82 1.268 81 17.497 78 
0.5 0.5 1.312 66 20.852 20 1.221 45 22.261 73 
0.6 0.6 1.225 99 26.077 20 1.160 06 27.348 60 
0.7 0.7 1.114 91 32.122 79 1.081 39 32.915 60 
0.8 0.8 0.971 09 39.482 26 0.979 52 39.239 32 
0.9 0.9 0.776 57 49.210 37 0.841 75 46.915 40 
1.0 1.0 0.472 86 64.692 23 0.626 64 57.927 32 

how competitive designs may be postulated for different types of vortex flow co2(r) 
and in particular we will compare the free-vortex design method expounded fully in 
Section 5.1 with non-free-vortex swirl distributions. A suitable approach towards the 
latter would be to adopt a mixed-vortex which combines the two vortex types already 
considered, namely the free-vortex and the forced-vortex or solid-body swirl. Thus 
let us specify 

a 
co2 = - + br (5.58) 

r 

Control over the vortex mix and thus the radial distribution of loading may be 
exercised by careful selection of the constants a and b. However, a much better 
design strategy would be to consider instead the work coefficient ~, which may be 
expressed as l(a ) 

= ~ =  U = ~ ~ + b  (5.59) 

By specifying the work coefficient qJm at the mean radius r m and ~o at any other radius 
r0, Eqn (5.59) may be solved for the coefficients a and b to yield the following 
equation for ~(r): 

( l/r2-1/r2 ) 
= ~m q- ( ~ 0 -  ~m) 1/r E _ 1/r 2 (5.60) 

If we elect to specify the fan duty (t~m , ~m) at the mean radius, the swirl velocity 
distribution, from Eqn (5.59), becomes 

c02 ~, U ~ r 
m 

C x - t ~ m U  m ~ m r m  

1 r{ 
t~m rm I/tm 

+ (qJo- qhn)( 1/r2- 1/r2 
llrE-1/r2 ) } 

(5.61) 
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where Cx is the mean axial velocity. Close inspection confirms that this equation 
conforms with the original mixture of free-vortex and forced-vortex, Eqn (5.58), but 
instead makes use of much more helpful initial design data. Thus Co2 is now 
determined in terms of the design duty (~bm, ~'m) at rm, and for a prescribed work 
coefficient q'0 at any chosen reference radius r0. 

At this point attention might usefully be directed to the following two special vortex 
cases. 

(1) Free-vortex swirl (b = 0). A free-vortex swirl distribution is obtained if we 
specify that 

Co20 rm 

C 02m ro 

and hence t/,0 must be given the value 

= (5.62) 

As shown in Section 4.7 for zero inlet swirl, the reaction of such a rotor-only 
fan becomes 

~0 
R = I  

2 

for the free-vortex fan 

[4.41] 

Thus the radial variation of both work coefficient t/, and reaction will be very 
considerable for a free-vortex fan, as was shown in Table 5.1. 

(2) Forced-vortex or constant reaction fan rotor. A pure solid-body swirl or 
forced-vortex will be delivered by Eqn (5.61) by specifying q'o = q'm at the 
reference radius r0. In this case Eqns (5.60) and (5.61) reduce to 

~' = ~'m (5.60a) 

c02 qJm r 
= (5.61a) 

Cx q~m rm 

Thus a fan rotor designed to generate a forced-vortex exit swirl c02 will have 
the same work coefficient at all radii. From Eqn (4.41) we see that the 
reaction R will also be constant at all radii and equal to R = 1 -  ~m/2. 

Two fan designs have been completed on this basis using the program AD-DES 
for the common data specification given at the head of Table 5.8. For these designs 
a hub/tip ratio h = 0.4 was chosen and rm was set at the r.m.s, radius. At r m the 
selected duty coefficients w e r e  t~m = 0.5 and ~t m = 0.3. The hub section was chosen 
for the representative radius r0 at which the work coefficient was set at q'0 = 1.0875 
for the free-vortex fan (see Eqn (5.62)) and at 0.5 for the mixed-vortex fan. 
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Table 5.8 Vortex and loading specifications for two alternative fan designs 

Common design data: 

Hub/tip ratio h = rh/rt 
rm/r t (r.m.s. radius) 
Duty coefficients at rm: 

=0.4 
= 0.761 577 

t~m "- 0.5 

q,m --- 0 . 3  

Leading edge location Xle/r t - - 0 . 0  

Trailing edge location Xte/r t - - 0 . 2  

Actuator disc location XAD/rt = 0.1 
Reference radius r0 = 0.4 

Free-vortex design Mixed-vortex design 

r/r t Co2/C x ~b R Co2/Cx ~b R 

0.40 1.142 37 qJ0 = 1.0875 0.456 25 0.630 27 qJ0 = 0.600 00 0.700 00 
0.45 1.015 44 0.859 259 0.570 37 0.606 30 0.513 05 0.743 48 
0.50 0.913 89 0.696 000 0.652 00 0.592 00 0.450 86 0.774 57 
0.55 0.830 81 0.575 207 0.712 40 0.584 74 0.404 84 0.797 58 
0.60 0.761 58 0.483 333 0.758 33 0.582 75 0.369 84 0.815 08 
0.65 0.702 99 0.411 834 0.794 08 0.584 82 0.342 60 0.828 70 
0.70 0.652 78 0.355 102 0.822 45 0.590 08 0.320 99 0.839 50 
0.75 0.609 26 0.309 333 0.845 33 0.597 88 0.303 56 0.848 22 
0.80 0.571 18 0.271 875 0.864 06 0.607 76 0.289 29 0.855 36 
0.85 0.537 58 0.240 830 0.879 59 0.619 35 0.277 46 0.861 27 
0.90 0.507 72 0.214 815 0.892 59 0.632 35 0.267 55 0.866 23 
0.95 0.481 00 0.192 798 0.903 60 0.646 56 0.259 16 0.870 42 
1.00 0.456 95 0.174 000 0.913 00 0.661 78 0.252 00 0.874 00 

From Table 5.8 it can be seen that there is considerable radial variation of q, and 
reaction R for the free-vortex design as expected. On the other hand the mixed-vortex 
design exhibits only modest radial variation of R and reduced spread of the work 
coefficient qJ. Indeed, the objective of the mixed-vortex fan design here is to shift 
aerodynamic loading towards the blade tips by imposing greater work coefficients, 
at the same time unloading the blade root region. These competing fan designs make 
an interesting comparison, as illustrated by Table 5.9, giving an insight into the 
designer's art. 

The predicted velocity triangle data for these two designs are presented in Table 
5.9. From these data the pitch/chord ratio t/l was also calculated assuming a diffusion 
factor of DF = 0.5 and using Eqn (2.28). A blade chord scale was then obtained 
according to the following definition: chord scale = (chord at r)/(chord at rh). The 
following items of comparison between the two designs may be drawn out from the 
detailed design data in Table 5.9" 

(1) The axial velocity profile Cxt e at the trailing edge plane for the free-vortex 
fan is constant as we would expect for this constant work input design. 
For the mixed-vortex fan, on the other hand, Cxt e varies enormously from 
only 0.723 18 at the hub to 1.245 07 at the tip. This is the consequence of 
the increase of specific work input from hub to tip for the mixed-vortex 
design introduced by the forced vortex component  of the specified swirl 
c02, Table 5.8. 

(2) We notice considerable variation of the relative outlet angle/32 for the 
free-vortex design, which has a dramatic effect upon the rotor deflection eR. 
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Table 5.9 Comparison of free-vortex and mixed-vortex fan designs 

Free-vortex design 

r/r t Cxte] Cx cxJ Cx [31 [32 ~2 

0.4 1.0 1.0 46.410 
0.5 1.0 1.0 52.708 
0.6 1.0 1.0 57.599 
0.7 1.0 1.0 61.455 
0.8 1.0 1.0 64.546 
0.9 1.0 1.0 67.067 
1.0 1.0 1.0 69.154 

--5.252 
21.761 
39.149 
49.852 
56.827 
61.682 
65.250 

48.802 
42.424 
37.292 
33.136 
29.734 
26.918 
24.558 

r/rt eR q~te ~ t/l Chord scale 

0.4 51.661 0.951 97 1.087 50 0.4886 1.0000 
0.5 30.947 0.761 58 0.696 00 0.5503 1.1097 
0.6 18.450 0.634 65 0.483 33 0.9359 0.7830 
0.7 11.603 0.543 98 0.355 10 1.5460 0.5530 
0.8 7.719 0.475 99 0.271 87 2.3257 0.4201 
0.9 5.385 0.423 10 0.214 81 3.2494 0.3383 
1.0 3.904 0.380 79 0.174 00 4.3049 0.2837 

Mixed-vortex design 

r/r t Cxte[Cx cxJCx 131 132 ~2 

0.4 0.723 18 0.609 17 49.854 30.157 45.975 
0.5 0.783 91 0.694 91 55.247 42.609 40.428 
0.6 0.862 89 0.806 42 59.086 49.008 35.853 
0.7 0.952 01 0.932 24 61.932 52.667 32.332 
0.8 1. 046 82 1. 066 11 64.119 54. 996 29. 686 
0.9 1.144 95 1.204 65 65.851 56.520 27.696 
1.0 1.245 07 1.346 01 67.255 57.632 26.182 

r/rt eR q~te ~b t/l Chord scale 

0.4 19. 697 0. 688 45 0. 600 00 1. 2604 1.0000 
0.5 12.638 0.597 01 0.450 86 1.8468 0.8531 
0.6 10.078 0.547 63 0.369 84 2.1231 0.8905 
0.7 9.265 0.517 88 0.320 99 2.0783 1.0613 
0.8 9.153 0.498 27 0.289 29 1.8794 1.3413 
0.9 9.330 0.484 43 0.267 55 1.6444 1.7246 
1.0 9.623 0.474 11 0.252 00 1.4230 2.2142 
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(3) 

(4) 

Thus the cost of demanding constant specific work at all radii is that eR must 
vary from a mere 3.904 ~ at the tip section to an unrealistically high value of 
51.661 ~ at the hub. To achieve such high deflection from a diffusing cascade 
would in fact be very difficult and would be associated with high losses. The 
mixed-vortex fan, on the other hand, exhibits much more modest 
aerodynamic requirements with a much more uniform deflection eR in the 
range of 10 ~ to 20 ~ 
The deflection levels are reflected to some extent in the recommended t/l 
values for the two fans and in the consequent values of chord scale. The 
latter show that the free-vortex fan blade will taper considerably from hub to 
tip which is obviously advantageous for carrying centrifugal stresses. For the 
mixed-vortex fan, on the other hand, the blade chords actually increase with 
radius in order to accommodate the greater specific work and its associated 
aerodynamic loading. 
Because the specific work input increases towards the outer radii of the 
mixed-vortex fan, the greater outlet stagnation pressure produces two effects. 
Firstly the axial velocity profile increases in the tip region. Secondly, and 
consequently, the mass weighted power input is greater for the mixed-vortex 
design. Thus integrating from hub to tip, the average specific work inputs for 
the two designs are as follows: 

Specific work input, free-vortex design = 1.20 W kg -1 
Specific work input, mixed-vortex design = 1.2473 W kg -1 

The mixed-vortex fan is thus capable of transmitting more pumping power 
into the fluid, although unlike the free-vortex it will not be uniformly 
distributed but will be concentrated more towards the outer radii. 

The blade profiles at hub, arithmetic mean and tip sections for these two fans have 
been designed by means of the program CASCADE,  resulting in the camber and 
stagger angles shown in Table 5.10 which are required to achieve the correct outlet 
angle/32 with shock-free inflow. 

The resulting blade profiles are shown in Fig. 5.10, which reveals the marked 
difference in aerodynamic design requirements for these two types of fan vortex 
design. In particular the free-vortex fan blade is both strongly twisted and tapered, 
while the mixed-vortex fan blade has minimal twist and in fact increased blade chord 
at the tip section. 

5,6 Actuator disc theory applied to multiple blade r o w s -  
the design problem 

So far we have considered the meridional flow induced by a single blade row only, 
such as the inlet guide vanes shown in Fig. 5.7 or the axial fan rotor, Fig. 5.9. For 
these simple configurations the vortex flow created by the blade row is convected 
unhindered downstream and will grow progressively towards the radial equilibrium 
state as x ~ oo in the manner illustrated by Figs 5.7 and 5.8. More frequently an axial 
turbomachine will comprise several blade rows each designed to develop a new vortex 
swirl co = f ( r )  in order to control the energy transfer between blades and fluid. 
Horlock (1958, 1978) demonstrated the use of multiple actuator discs to model the 
consequential blade row interference and to predict the complex meridional flow for 
the whole assembly. 

A suitable actuator disc model to  simulate a two-stage axial fan is shown in Fig. 
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I 
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I)irection of moti~ 

(a) (b) 

Fig. 5.10 Comparison of fan rotor blade geometries for (a) free-vortex and (b) mixed-vortex 
designs 

Table 5.10 Cascade design parameters for free-vortex and mixed-vortex fan rotor design 
selected to achieve shock-free inflow, using the C4 profile and circular arc camber 0 

Design Section r/r t t/l A 0 

Free-vortex 

Mixed-vortex 

Hub 0.4 0.4886 18.44 58 
Mean 0.7 1.5460 54.2 32 
Tip 1.0 4.3049 65.0 40 

Hub 0.4 1.2604 38.5 38 
Mean 0.7 2.0783 55.62 34 
Tip 1.0 1.4230 61.4 30 

5.11 and we will consider here the design problem, which may be stated as 
follows: 

(1) The swirl distributions Col, c02 etc. generated by each blade row are 
prescribed as functions of radius and are assumed to be created at the 
actuator disc planes AD1, AD2 etc. 

(2) The resulting axial velocity profiles and swirl angles are then to be calculated 
for the leading and trailing edge planes of the blade rows, Xle and Xte. 

We observe from Fig. 5.11 that the vortex field emanating from each actuator disc 
is in effect terminated by the next actuator disc and replaced by a new vortex field. 
To simplify matters at this stage let us consider first the single vortex field bounded 
by just the first two actuator discs, Fig. 5.12. 

As illustrated above, the vortex field bounded by actuator discs AD1 and AD2 
may be treated as the superposition of vortex fields for two isolated actuator discs 
both extending to x = ~. The vortex field emanating from AD2 here is the negative 
of the vortex field emanating from AD1. Thus the first task required for solution 
of the meridional flow is calculation of the radial equilibrium solution for the vortex 
field created by AD1, yielding the axial velocity Cx~l = Cx + Cx~l. The axial velocity 
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Fig. 5.12 Vortex field between two actuator discs 

at any other location x in the annulus then follows from the actuator disc equation 
(5.55), applied to AD1 and AD2, namely 

Cx = Cx~l F(X - XAD1) -- Cxoo 1 F ( x  - XAD2) 

= Cx~l[F(x  - XAD1) -- F(x  - XAD2)] (5.63) 

Applying this to the entire set of four blade rows illustrated in Fig. 5.11, the axial 
velocity Cx at any location x becomes 

cx=Cx+cx 
3 

-- E C x ~ 1 7 6  - -  XADi) -- F ( X  --  XADi+  1)] 
i=1 

-I- C x ~  4 F ( X  - -  X A D 4 )  

(5.64) 
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The last term accounts for the vortex field created at the last actuator disc AD4 
which is assumed to extend to x = oo. From this discussion we may set out the simple 
flow diagram given in Fig. 5.13 to summarise the various stages required of the 
design process. The computer program MULTI has been written to perform this 
design sequence which will now be illustrated by considering the design of a two-stage 
axial fan. 

Specify annulus geometry rh, rt, l'l, Cx and for each blade row Xle,Xte,XAD 

I 
Specify Co as a function of radius downstream of each blade row 

I 
Solve the radial equilibrium equation for region downstream of each blade row 

I 
Calculate the axial velocity profiles at le and te locations, Eqn (5.64) 

I 
Calculate velocity triangle data and also ~b, q~, t/l etc. versus radius for each blade row 

Fig. 5.13 Flow diagram for meridional analysis and design of multi-stage fan by actuator disc 
theory 

5.6.1 Theory for constant specific work multi-stage axial fans 

In Section 5.5.2 analysis was developed for a single rotor axial fan for which the 
downstream vortex field was formed of a mixture of flee-vortex and forced-vortex 
swirl, Eqn (5.58). This strategy may be extended to multi-stage axial fans or 
compressors by specifying the swirl downstream of the stators and rotors through 

a 
= - - + br Co1 

r 

a 

Co2 = -  + br 
r 

downstream of a stator 

downstream of a rotor 

(5.65) 

Application of this to the two-stage fan illustrated in Fig. 5.11 will result in identical 
stages, each absorbing constant specific work at all radii. Thus from the Euler pump 
equation for compressible flow, Eqn (4.3), the specific work input of one stage at 
radius r is given by 

lYC(J kg -1) = Aho = U ( c o 2 -  col) 

= 2al) = constant (5.66) 

Thus the fan will deliver the same stagnation enthalpy rise Aho for all meridional 
streamlines from hub to casing, thereby preventing the possible accumulation of radial 
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strong gradients dho/dr and thus strong variations in the axial velocity profile at exit 
from the fan. This style of vortex design clearly offers great attractions although there 
are other limitations as we shall see. The constant a may be evaluated in terms of 
a specified duty (~bm, ~'m) at the mean or r.m.s, radius rm since 

Aho 2all 2a t~m 
~tm--"~m = U2 -" Cx rm 

and thus 

a rm ~m 
= (5.67) 

Cx 2 ~m 

The constant b may also be expressed in terms of useful initial design input variables 
by reference to the velocity triangles at the mean radius, Fig. 4.6. Thus adding Eqns 
(5.65) we obtain for the mean radius rm, 

b Col § co2 1 - Rm 
= = (5.68) 

Cx 2Cxrm q~mrm �9 

The dimensionless swirl velocities co/Cx are now prescribed at all other radii by 
introducing these results into Eqn (5.65), resulting in 

CO 2-~m ( ~  -~ ) 1 -- R m ( r ~ )  Cx -- (4-) § t~ m .... (5.69) 

with ( - )  for stators and (+) for rotors. The vortex field is thus determined entirely 
by the selection of the key overall design duty variables at the r.m.s, radius rm, namely 
~bm, ~'m and the reaction Rm. 

5.6.2 Sample design of a two-stage constant specific work axial fan 

To illustrate the above analysis, a two-stage fan will be designed for the following 
overall specification: 

Hub radius r h = 0.6 
Tip radius rt = 1.0 
r.m.s, radius rm = W'(~h + ~)/2 = 0.824 62 
At rm, ~bm = 0.5 

~t m - 0.25 
R m = 0.6 

The axial locations of leading edge, trailing edge and actuator discs for the four blade 
rows are specified as in Table 5.11 for a fairly tightly packed machine with a good 
deal of meridional interaction between the blade rows. 

The resulting design swirl distributions for stators and rotors as calculated with the 
Pascal program CONSTWK, given on the accompanying PC disc, are shown in Fig. 
5.14. 

Thus a fairly modest swirl co/Cx is introduced in the direction of rotation by the 
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Fig. 5.14 Design swirl distributions downstream of example two-stage axial fan stator and rotor 
blade rows 

Table 5.11 Axial location of two-stage fan blade rows and equivalent actuator discs 

Item Stator No. 1 Rotor No. 1 Stator No. 2 Rotor No. 2 

Leading edge Xle 0.0 0.15 0.3 0.45 
Trailing edge xte 0.1 0.25 0.4 0.55 
Actuator disc XAD 0.05 0.2 0.35 0.5 

first stator to precondition the entry flow to the first rotor. On the other hand, fairly 
substantial swirl velocities of the order co/Cx ~ 1.0 emanate from Rotor No. 1 and 
the pattern is repeated for the second stage. The axial velocity profiles predicted by 
actuator disc theory, using computer program MULTI, are shown in Fig. 5.15 for 
the leading and trailing edge planes, together with the radial equilibrium profiles. 

The following observations may be made from these results. 

(1) The radial equilibrium axial velocity profiles are identical for the regimes 
downstream of stators 1 and 2 and downstream of rotors 1 and 2 as one 
would expect for identical prescribed swirl distributions. 

(2) The radial equilibrium profiles slope much more heavily downstream of the 
rotors due to the stronger vortex flows. 

(3) The actuator disc smoothing effect tends to reduce the leading and trailing 
edge profile slopes for the rotors well below the radial equilibrium values. 

(4) The reverse is true for stator 2. Being sandwiched between two rotors, its 
axial velocity profile slope is greater even than that of its own radial 
equilibrium profile. 

(5) Stator 1, being subject to less mutual blade row interference, exhibits only 
modest profile slopes at Xle and Xte. 

(6) The radial equilibrium solutions alone would give a quite inaccurate 
prediction of the meridional flow which is dearly strongly influenced by 
mutual interference between the blade rows. 
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Fig. 5 .15  Axial velocity profiles at various locations in a two-stage fan 

Now we would expect the two stator designs to be quite different since stator 1 
receives zero swirl at inlet while stator 2 has to absorb the strong swirling flow 
emerging from rotor 1. On the other hand the two rotors receive and eject identical 
swirl velocities Col and c02 and we would hope therefore to be able to adopt identical 
blade profile geometry. Unfortunately, however, as shown by Fig. 5.15, the axial 
velocity profiles for the two rotors do in fact differ, resulting in slightly different 
velocity triangles. This is borne out by the tabulation of predicted relative inflow and 
outflow angles given in Table 5.12. 

5.6.3 Meridional flow reversals due to excessive vortex swirl 

As already explained with reference to the radial equilibrium equation (5.14) and 
as illustrated in Example 5.3, Section 5.3.1, the axial velocity Cx is constant for a 
free-vortex flow whatever the vortex strength, which makes it a very attractive design 
option, especially for turbines. For non-free-vortex flows, on the other hand, 
excessively high swirl distributions may produce such strong meridional disturbances 
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Table 5.12 Relative flow angles predicted for the two-stage fan rotors 

Rotor No. 1 Rotor No. 2 

r / r  t f l l  ~ f12 ~ f l l  ~ f12 ~ 

0.6 45.69 22.82 43.77 21.84 
0.7 49.44 31.83 48.18 31.02 
0.8 53.88 40.82 53.50 40.55 
0.9 59.06 50.35 59.95 51.11 
1.0 65.49 61.69 68.44 64.41 

that the axial velocity could become negative at the hub or the casing depending on 
the vortex type. In such situations the real flow would break down and reverse. 
Consequently no solution to the radial equilibrium equation would be possible. For 
example, the approximate solution for solid body swirl, Eqn (5.23), indicates that 
Cxt/Cx = 0 at the tip radius r t if the tip swirl velocity is set at Cot/Cx = 1.091 089 with 
a hub/tip ratio h = 0.4. 

This problem represents a real physical limit on practical design which can be 
detected during numerical analysis but is quite difficult to predetermine. For example, 
for the fan duty specified in Section 5.6.2 a design is impossible for a hub tip ratio 
h < 0.5 and the program MULTI has difficulty coping with such a specification and 
cannot compute Cx values in reversed flow regions. It is thus essential to avoid such 
flow regimes and there are two options available to the designer: 

(1) Prescribe a less powerful vortex type. 
(2) Increase the hub/tip ratio. 

We will now pursue the first of these two options. 

5.6.4 Power law vortex flows for low hub/tip ratio axial fans and compressors 

Although there are many possible types of vortex flow available, a wider range of 
constant specific work flows may be considered if Eqns (5.65) are modified as 
follows: 

a 
= _ _ + br p c01 

r 

a 
Co2 = -  + br  p 

t 

downstream of a stator 

downstream of a rotor 

(5.70) 

Following the same strategy as that outlined in Section 5.6.1 for multi-stage fans and 
compressors, the coefficients a and b may be expressed in terms of overall design 
parameters ~bm, qJm and Rm specified at the r.m.s, radius rm, resulting in the vortex 
specification 

c e  X Rm(r)  
<- (-+) 2-- m + 72m (5.7a) 
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Fig. 5.16 Axial velocity Cxh/Cx at the hub radius of a ten-stage axial compressor predicted by actuator 
disc theory assuming incompressible flow 

Fig. 5.17 Axial velocity profiles compared with radial equilibrium profiles for ten-stage axial 
compressor 

with ( - )  for stators and (+)  for rotors, p = 1.0 obviously corresponds to the special 
case of the forced vortex for the second term. More modest values of p < 1.0 will 
thus result in reduced meridional disturbances and axial velocity profile slopes and 
permit the designer to select a smaller value of hub/tip ratio if so desired. To illustrate 
this and to conclude this chapter the actuator disc solution has been undertaken using 
program MULTI for a ten-stage compressor with the following overall design 
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specification with p = 0.25" 

Hub/tip ratio rh/r t = 0.4 
r.m.s, radius rm/r t = 0.812 40 
A t  r m ,  t~m - -  0 . 5  

~t m "- 0 . 2 5  

R m = 0 . 5  

Vortex power coefficient p = 0.25 

Figure 5.16 illustrates how the meridional velocity at the hub radius builds up 
rapidly during the first two stages and settles down into a small periodic variation 
from stator to rotor around a value in the region of cxJCx = 1.52. The predicted axial 
velocity profiles at the stator and rotor trailing edge planes for stage 5 are compared 
in Fig. 5.17 with the related radial equilibrium solutions. 

From these studies two conclusions may be drawn. Firstly, the meridional flow 
tends to settle down fairly quickly to a regular pattern such that identical blade 
geometry could be adopted for all stages except the first and last. Secondly, the 
trailing edge axial velocity profiles for stator and rotor are almost identical and lie 
roughly half-way between the two radial equilibrium solutions for stator and rotor. 
It should be pointed out that an extra stator has been provided here downstream 
of the last stage to remove the exit swirl. 

A final and most important observation to make  is that in practice for a gas 
compressor the area should be reduced progressively proceeding through the stages 
to maintain constant axial velocity Cx as the density increases. Introduction of 
compressibility into actuator disc analysis to handle this problem will be dealt with 
in the next chapter. 



6 
Vorticity production 
turbomachines and 
upon meridional 

I n  

its 
flows 

influence 

Introduction 

The title of this chapter has been chosen with good reason, for turbomachines 
operate, as the Latin turbo suggests, by creating a whirling motion or vortex (again, 
Latin for whirlpool). Vorticity production is the prime mechanism for both the 
development of blade lift, as we have shown in Chapter 2, and energy transfer 
between fluid and rotating shaft, Chapters 1 and 5. In the last chapter flee-vortex 
machines, for which the swirl velocity obeys the law cor = constant, were shown to 
exhibit very simple meridional flow characteristics. Thus for incompressible flow 
through axial turbomachines with cylindrical hub and casing the axial velocity Cx and 
stagnation pressure Po are then constant, satisfying the radial equilibrium equation 
(5.14) for cylindrical flow. On the other hand a designer may prefer to specify some 
other swirl and/or stagnation pressure distributions. Radial equilibrium and actuator 
disc theory have been presented in Chapter 5 as two means for prediction of the 
consequent meridional disturbances. 

Similar design problems arise in non-cylindrical or 'mixed-flow' turbomachines as 
illustrated by Fig. 6.1. If the blades of a mixed-flow fan are designed to generate equal 
stagnation pressure rise Po2-Pol  for all meridional streamlines, the swirl velocity 
co2 will obey the free-vortex law co2r= constant. In this case, as for cylindrical 
machines, the meridional flow (defined as the circumferential average or equivalent 
axisymmetric flow) and streamline pattern will be uninfluenced by the presence of 
the blades, Fig. 6.1(a). Should the designer depart from free-vortex swirl, on the other 
hand, the blades will produce tangential vorticity COo which will cause meridional flow 
disturbances as illustrated by Fig. 6.1(b). 

c~ c~ 

~3 

~2 
~'1 ~0 

(a) (b) 

Fig. 6.1 Meridional streamlines in a mixed-flow fan: (a) meridional flow through empty annulus or with 
free-vortex blading; (b) meridional flow disturbances caused by non-free-vortex blading 
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The principal aims of this chapter are 

(a) to develop the meridional equations for axial and mixed-flow 
turbomachines, and 

(b) to show the underlying vortex production mechanisms linking two types of 
vorticity generated by turbomachinery blade rows, namely streamwise vorticity 
and smoke-ring vorticity. 

These matters will be dealt with in Sections 6.1 to 6.4, including a full derivation 
of the equations of motion for axisymmetric flow and the reduction of these to form 
a set of governing equations for turbomachinery meridional flows. The origin of the 
classical actuator disc solution for cylindrical annuli as already used in Chapter 5 will 
then be presented briefly in Section 6.5. To conclude this chapter, solutions will be 
developed for compressible flow through actuator discs, Section 6.5, including recent 
extensions of this to include annulus area changes needed to accommodate density 
decrease in multi-stage axial turbines. 
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(a) (b) 
Fig. 6.2 Elementary control volume (dv = dx.dr . rdO) in cylindrical coordinates: (a) view on face 1 
in the x,r plane; (b) view on face 2 in the r,O plane 

6.1 Equations of motion for axisymmetric flow 
In order to derive a set of governing equations for turbomachinery meridional flow we 
must first state the equations of motion for axisymmetric flow. These comprise" 

(a) the continuity equation, which invokes the physical principle of the 
conservation of matter, and 
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(b) the momentum equations, which invoke Newton's second law as applied to a 
fluid. 

These will be dealt with in turn in the following subsections, adopting cylindrical polar 
coordinates, (x,r, 0), Fig. 6.2. 

6.1.1 The continuity equation 

Applying the principle of conservation of matter to the elementary control volume 
dV = dx.dr.rdO, Fig. 6.2, the net mass flux leaving the control volume must be 
equated to zero. For axisymmetric flow all derivatives in the 0 direction such as 
a(pc0)/ao must be zero. Accounting for the mass flux through opposite pairs of faces 
of the element we thus obtain 

rgOC. 
(faces 2) {pc x + -~.-x dx - pCx} r d0 dr 

Ox 

0/:1C r 
(faces 3) {pC r + dr) (r + dr)dO dx - PCrr dO dx = 0 

Or 

(6.1) 

Neglecting terms of second order of smallness, this equation reduces to the continuity 
equation for axisymmetric steady compressible flow" 

OPCx ogpCr [~7 r 
+ + = 0 compressible flow (6.2) 

ax Or r 

For incompressible flow the density p is constant, resulting in the simpler form 

r r C r OCx~ + - - = 0  
ax 0r r 

incompressible flow (6.3) 

Alternatively the continuity equation may be expressed in vector form through 

div Pq = 0 compressible flow ] 
(6.4) 

div t~ = 0 incompressible flow 

Several important analytical derivations pertinent to meridional flows can be made 
from the continuity equation and we will return to this matter again in Sections 6.3 
and 6.6. At this point, on the other hand, it will be more helpful to introduce the 
momentum equations. 

6.1.2 The momentum equations for axisymmetric flow in Eulerian form 

If Newton's second law is applied to the elementary control volume, Fig. 6.3, then 
for any specified direction 

Applied forces on ) 
the control volume 

Rate of change of momentum of)  
the fluid crossing the boundary 
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Fig. 6.3 (a) Pressure forces on element; (b) momentum flux 
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pc x + OPCxdx 
#x 

Thus for the x direction we have the following. 

(1) Applied forces in x direction. These are given by: 

Applied forces in x direction 

= F x p d x ' d r ' r d O + p d r ' r d O - ( p + O P d x )  

(a x) = pdx .dr . rdO Fx P (6.5) 

where Fx is defined as the distributed body force per unit mass of fluid at point 
(x,r, 0). Distributed body forces can be introduced into a fluid by externally 
applied potential fields such as electrostatic, electromagnetic or gravitational 
force fields. In turbomachines body forces from such sources are rarely 
significant and real body forces such as lift and drag are applied at the blade 
surfaces and not throughout the fluid. On the other hand, in some meridional 
analyses, because of the assumption of an equivalent axisymmetric flow, it is 
helpful to smear the blade forces throughout the regions occupied by the blade 
rows and to include their influence upon the meridional flow as distributed body 
forces. 

(2) Momentum flux in x direction through ad and bc. The momentum flux through 
element faces ad and bc which are normal to the x direction is given by 

) ) Ox -~-x dX - pCx Cx dr . r d O 

( Ocx  OpCx + PCx dx. dr. r dO 
= Cx ox ox ] (6.6) 
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where the term involving the product (OpCx[OX)(OCx]Ox)dx 2 has been 
neglected, being of second order of smallness. 

(3) Momentum flux in x direction through ab and cd. It is perhaps less obvious 
that fluid is convected through the element sides ab and cd even though they 
are parallel to the x direction, due to the radial velocity component Cr. Such 
momentum flux can be expressed through 

- -4 t- r dO dx dr (6.7) 
- Cr Or p Or r 

where once again second-order terms have been neglected. Combining Eqns 
(6.5a) to (6.7) the momentum equation in the x direction becomes 

=~[ OpCr Per t OCx OC x _ l a p  apCx + + + Cx-- x + c, 
Fx p Ox Ox Or r Or 

But from the continuity equation (6.2) the term in braces {} is zero. 

Applying the same derivation procedure in the r and 0 directions the full set of 
momentum equations for axisymmetric flow may be obtained, namely 

G m D m  

G ~ D m  

1 3p Oc~ Oc~ 
-- + C r 

p O X  - Cx OX O r 

1 0 p  OCr OCr 
: -b C r p Or Cx Ox Or 

OCo OCo 
f ~ = Cx--~x -4- Cr Or 

4 
r 

COCr 
. 4 = .  

r 

(6.8) 

Together with the continuity equation (6.2) or (6.3), these form the equations of 
motion or Eulerian equations for axisymmetric inviscid (frictionless) fluid flow. 

6.1.3 Alternative form of momentum equations in terms of stagnation pressure 
and vorticity 

The momentum equations may be expressed in terms of the stagnation pressure Po 
if we introduce the definition 

Po = P + c2 c2 c2 

p p T + T + T  

Thus, differentiating these partially with respect to x and r, for incompressible flow 
we have the expressions 

10p _ 1 @o OCx OCr OCo 

p a x  - - V;x - - V;x 

1 @  1 @ o  
p Or p 3r 

~ ~  ~ C X 
0C x 0C r OC O 

- C r  - C O 
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so that Eqns (6.8) transform to 

F x  m m m  

F r  m n ~  

1 @ o  ( ~ C x t ~ C r )  t~r 0 

p OX - -  Cr Or OX -c~ 
= ( O C x O C r )  c O o r c O  1 apo -Cx 

p a r  Or Ox r Or 

0co Cr Orco 
Fo = cx -I- - - ~  

ax r Or 

(6.9) 

At this point it is helpful to introduce vorticity which in vectors is defined as 
tb = curl~. Expressed in cylindrical polar coordinates the three components of 
vorticity, Lamb (1945), become 

1 acor 1 aC r 
tOx - -  - 

r Or r 00 

1 aCx aCo 
tO r ~. _ 

r O0 Ox 

a c  r o c  x 

t~176 ax Or 

(6.10) 

For axisymmetric flows, since 0/00 = O, these reduce to 

1 Ocor 

r ar 

~ 0  

3x 

~r acx 
3x 3r 

(6.11) 

and we see immediately that the momentum equations (6.9) simplify to 

1 apo 
p Ox 

1 apo 
p Or 

~ _ . F x  = c rtO O -  C O to r 

- - ~ -  Fr= cotOx-CxtOO 

- -  F 0 - -  CxtO r - CrO) x 

In vector notation this may be stated as 

1 
- - g r a d p o - P =  ~ x tb = ~ x V x 
p 

(6.12) 

(6.13) 

In this form the momentum equations tell us that the presence of stagnation pressure 
gradients or distributed body forces within a fluid in motion are associated with 
distributed vorticity tb with vector direction normal to the local velocity ~. In 
axisymmetric flow since apoDO = 0 then the grad Po vector lies in the (x, r) meridional 
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plane. Thus the tangential vorticity component too, which is normal to the meridional 
velocity Cs, Fig. 6.1, will play the major role in controlling the meridional flow. 

Turbomachinery blade rows are designed to control and manipulate the swirl 
velocity co in order deliberately to produce changes of stagnation pressure Po or 
enthalpy ho in exchange for shaft work. Thus blade rows are in essence the producers 
of vorticity and later in Section 6.3 we will return to this important subject of vorticity 
production in turbomachines which is the key mechanism at the heart of meridional 
flow analysis. Before proceeding with this it will be helpful to reconsider briefly the 
radial equilibrium analysis of Chapter 5 in the light of the radial equation of motion. 

6.2 Comparison of the radial equilibrium equation with the 
true radial momentum equation 

The radial momentum equation (6.9b), in the absence of body forces, may be 
rewritten 

1 @o OCx co arco t~C r 
p ar =Cx 8r -~ Cx r Or Ox 

Now as shown in Chapter 5 the radial equilibrium equation (5.14) is given by 

1 dpo dcx co drco 
p dr =CXdr  -t r dr 

Radial velocity components Cr are assumed to be zero in radial equilibrium analysis 
and we see that these equations are identical apart from the last term, Cx(OCr/OX). 

Let us pause briefly to examine this assumption of radial equilibrium theory by 
reference to Fig. 6.4 which illustrates the behaviour of Cr and thus OcflOx in the 
neighbourhood of a single blade row. The meridional streamline radial shifts required 
to accommodate the build-up of the axial velocity profile Cx to its radial equilibrium 
value Cxo~ imply a growth and decay of Cr symmetrically about x = 0 as illustrated. 
Taking the differential of this curve, Fig. 6.4(b), we see that C~Cr/OX ~ 0 as x--~ +oo 
as expected for radial equilibrium at a long distance from the blade row. It is of 
interest to note that surprisingly OCr/OX will also vanish at x = 0, for example in the 
plane of an equivalent actuator disc (see Section 5.4). Curiously, in this plane the 
equation of motion momentarily reduces to the radial equilibrium equation even 
though Cr itself is non-zero. More important, however, are the regions A and B just 
upstream and downstream of the blade row where maximum meridional disturbances 
occur, of special importance should they interfere with neighbouring blade rows. 
Actuator disc theory as outlined in Chapter 5 provides a very good estimate of these 
meridional disturbances and associated mutual blade row interference for multi-stage 
cylindrical turbomachines. Here we observe that they are due to radial redistributions 
of mass flow caused by radial velocities Cr. These effects are vortical in nature and 
caused by the tangential vorticity too produced by the blade row, which provides the 
fluid dynamic link between velocity components Cx and Cr through its definition, Eqn 
(6.10c), namely 

0 )  0 = 
acr ac~ 
ax ~r 
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(a) 

9--- C x 

x 

c r 

(b) 
Fig. 6.4 Meridional disturbances due to tangential vorticity to o created by a blade row: (a) meridional 
streamline shift; (b) axial variation of Cr and aCr/aX 

6,3 Stokes' stream function and the governing equations 
for meridional flow 

In order to convert the above equations of motion into a set of governing equations 
suitable for meridional analysis it is helpful first to derive Stokes' stream function. 
To achieve this the continuity equation (6.2) may be rearranged to read as 
follows" 

tg(prcx) a(prcr) 
~ + ~ = 0  (6.14) 

ax Or 

By observation we can postulate that a function ~(x,r) exists such that 

1 aqJ 
Cx = or Or 

10q ,  for compressible flow 

C r =  p r Ox 

(6.15) 

The truth of this can be checked by back substitution, and ~, is known as Stokes' 
stream function. For incompressible flow p vanishes from the continuity equation and 
Eqns (6.15) become 

_ 1  ar 
Cx r Or 

1 ar 
C r ~-- 

r Ox 

for incompressible flow (6.16) 
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6.3.1 Properties of the stream function - incompressible flow 

Stokes' stream function has the characteristics of a potential whose derivative in a 
given direction multiplied by 1/r gives the velocity component at right-angles 
clockwise. Its other more significant property is that contours qJ = constant define 
the meridional streamlines. To confirm this, since qJ is a function of both x and r 
its derivative is given by 

d~ = dx + dr 
Ox Or (6.17) 

= r ( - c  r dx + c x dr) 

where use has been made of Eqn (6.16). 
Now the slope a of a meridional streamline, Fig. 6.5, is given by 

c r dr 
tan a = ~ = 

Cx dx 

or - Cr dx + Cx dr = 0 

Introducing this into Eqn (6.17) we see that along a meridional streamline 

o r  

dqJ=0 } 

qJ = constant 

(6.18) 

(6.19) 

Introducing Eqn (6.18) back into (6.17) the following useful result is obtained: 

O~ O~ = 0 (6.20a) Cx--~x + Cr Or 

In vector notation this becomes 

q" grad q~ = 0 (6.20b) 

v 

Cx 

C r 

Fig. 6.6 Slope of a meridional streamline r 
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In other words the gradient (derivative) of q, in the direction of the local meridional 
velocity ~ is zero. That is, qJ is constant along the meridional streamlines and hence 
its title s t ream f u n c t i o n .  

6.3.2 Governing equation in Stokes' stream function - incompressible flow 

If we now eliminate Cx and C r from the third vorticity component too, Eqn .(6.10c), 
by introducing Eqns (6.16), then 

CgC r t~C x = -~X r -~r tO o = _ _ 
ax ar ax ~ r 

and finally we have Stokes' equation for incompressible rotational axisymmetric 
flow" 

~q, laq, ~q, 
O~X 2 r Or t- --O--~ - = - tO ~ r (6.21) 

This is now our principal governing equation for incompressible meridional flow and 
its solution q, yields the meridional streamline distribution for an annular space 
containing a specified spatial distribution of tangential vorticity too. Although the 
numerical solution of this equation seems straightforward enough, subject to annulus 
wall boundary conditions q, = ~h and q, = ~ t  along hub and casing respectively, one 
big problem remains, namely the spatial distribution of too. This requires the 
derivation of an auxiliary equation linking too to the swirl velocity Co and the 
stagnation pressure Po. Further analysis to accomplish this will be undertaken in the 
next two subsections. 

6.3.3 
flows 

In the absence of body forces the momentum equations (6.12) become 

1 apo 
= Crto O -  CotO r 

p a x  

1 apo 
= Cotox - Cxtoo 

p ar 

0 = C x t o r -  Crtox  

Convection of stagnation pressure and angular momentum in axisymmetric 

(6.22) 

If the first two are combined to eliminate too we obtain 

0 Cx- x O 
@ Cr - ~ t  "= P C O ( C r t o x -  Cx tor )  

and introducing the third equation we have finally 

o r  

apo apo = 0  
Cx-~x "k" Cr ar 

~-grad Po = 0 

(6.23) 
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Comparing this result with Eqn (6.20) we see that Po, like the stream function q,, 
remains constant along the meridional streamlines. Thus, as might be expected, the 
stagnation pressure Po is conserved along the meridional streamlines. Now the third 
momentum equation (6.22), introducing the vorticity definitions for tax and tar from 
Eqns (6.11), may be expressed in similar format, namely 

or  

Orco Orco 
+ C  r = 0  Cx Ox Or 

q" grad (rco) = 0 

(6.24) 

Thus we see that angular momentum rco is also proven to be conserved along the 
meridional streamlines. These conservation laws may be summarised as follows" 

cor = f1($) l (6.25) 
Po ='f2(6) J 

and the quantities Po and cor are unique functions of $. 

6.3.4 Auxiliary equation for too 

We may now bring together all of these analytical/physical results to obtain an 
auxiliary equation linking Po and cor to the tangential vorticity too. Thus since 
Po = f2(q'), Eqn (6.25), while $ = f(x,r) (Section 6.3), the total derivative of Po with 
respect to $ may be expressed as 

1 dpo 1 @o dx 1 0/90 dr = 
p dq~ p Ox dq~ p Or dqJ 

Introducing Eqns (6.22a) and (6.22b), this becomes 

p dO = ~Oo Cr - ~  -- C x + Co tax - ' ~  -- tar (6.26) 

However, from Eqn (6.17) the first bracketed expression on the right-hand side 
reduces to -1/r. The second bracketed expression on the right-hand side may also 
be simplified if we use Eqn (6.25a) to obtain the total derivative of cor with respect 
to ~,, namely 

dcor Ocor dx Ocor dr 

de ax dO ar de 

and from the definitions of vorticity, Eqns (6.11a) and (6.11b), 

dcor { dx dr} 
d q/ = r - t a r " ~  + t a x - ~  
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Introducing these results into Eqn (6.26) and rearranging, we have finally an auxiliary 
equation for too as follows" 

d(cor) r dpo (6.27) 
~o=  Co d~ p dq, 

The tangential vorticity too has thus been found to depend entirely upon the 
distributions of the two key physical design quantities (cor), the angular momentum 
and Po, or the stagnation pressure. These are independently conserved along 
streamlines as proved in Section 6.3.3 for the annular regions between blade rows. 
The levels of cor and Po may of course be changed at a blade row as determined 
by the Euler pump or Euler turbine equations (1.9) and (1.10), Chapter 1. The actual 
vorticity too thus created, however, will depend only upon the gradient of cor or Po 
across the meridional streamlines d(cor)/dqJ and @o/dO. For the classic flee-vortex 
case as discussed in Section 5.1, Eqn (6.27) reduces to 

cor = constant 1 free-vortex flow 
Po = constant J (6.28) 

and hence too = 0 

Thus for free-vortex turbomachines the governing equation reduces to 

o ~  1 O0 o ~  
Ox 2 r Or t- - - ~  = 0 (6.29) 

In all other cases the meridional flow for incompressible turbomachines is described 
by the combined governing and auxiliary equation (6.21) and (6.27), namely 

6.4 Streamwise and smoke-ring vorticity 
As revealed by Eqn (6.27) the tangential vorticity too has two independent 
components, one produced by gradients of angular momentum d(cor)/dqJ and the 
other by gradients of stagnation pressure dpo/d~,. These have quite different physical 
origins which are illustrated in Fig. 6.6 and consequently have completely different 
properties which lead to their respective titles streamwise and smoke-ring vorticities. 
Let us deal with these in turn. 

6.4.1 Streamwise vorticity- constant stagnation pressure flows 

For constant stagnation pressure flows the equations of motion (6.22) reduce to 

OJ x tO r tO 0 
. . . . .  (6.31) 
C x C r C 0 C 
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Shed streamwise 
vorticity "Yshexl 6A 

Meridional streamline ~kl 

(a) (b) 
Fig. 6.6 Streamwise and smoke-ring vorticity in turbomachine meridional flows: (a) streamwise vorticity 
shed from a turbomachine blade; (b) smoke-ring vorticity due to presence of grad Po 

In this case the local vorticity vector cb lies parallel to the velocity vector d, a condition 
which can be defined as 'streamwise vorticity'. By analogy with the trailing vortex 
systems downstream of an aircraft wing, a vortex sheet Tshed will be shed from the 
trailing edge of a non-free-vortex turbomachine blade, Fig. 6.6(a), which will spiral 
downstream following the swirling flow created by the blade row. For this situation 
the tangential vorticity, Eqn (6.27), reduces to 

d(cor) (6.32) 
~oo = Co d~ 

where ~o0 is the tangential component of the shed vortex sheet Tshed, which is assumed 
to be smeared circumferentially across the blade pitch as a distributed swirling 
vorticity d~. 

Bearing in mind that cor = fl(~') as previously proved, Eqn (6.25a), the streamwise 
vorticity equation (6.32) becomes 

1 dfx(@) 1 
~oo = - fl(~') = - F1(r (6.33) 

r d$ r 

where FI(~,) is a function of ~,. This equation shows that the tangential component 
of streamwise vorticity in turbomachines obeys the convection law ~oor = FI(~,) and 
is thus constant along a given meridional streamline ~,. Thus if the streamline radius 
changes, as in mixed-flow machines, ~0 will also change in strength inversely with 
radius. 
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6.4.2 Smoke-ring vorticity - flee-vortex or non-swirling flows 

If either Co = 0 or cor = constant, the streamwise vorticity is zero and the first term 
of Eqn (6.27) vanishes, reducing the tangential vorticity to 

rdpo  
to0 = (6.34) 

p d~ 

Recalling the conservation law for stagnation pressure from Eqn (6.25b), namely that 
Po = f2(~), the above equation becomes 

r df2(~ ) 
too = = - rF2( ~) (6.35) 

p d~ 

where F2(~,) is a function of ~,. In this case the tangential vorticity obeys a quite 
different convection law, namely that to0/r = -F(~) ,  and is thus constant along a given 
meridional streamline ~. From the definitions of vorticity components, Eqn (6.11), 
it is clear that fox and tO r are both zero for the flows presently under consideration. 
As the only vorticity component present in the fluid, too takes the form of smoke-ring 
vorticity concentric with the x-axis as illustrated in Fig. 6.6(b). 

As a check upon Eqn (6.35) we can apply the circulation theorem of Kelvin, 
devised in 1869, to this elementary smoke-ring vortex tube of cross-sectional area 
8A. As proved by Kelvin the circulation around the perimeter of 6A, w .ds, which 
is defined as the strength of the vortex tube, remains constant as it convects with 
the fluid. As previously proved by Helmholtz in 1858, the strength of a vortex tube 
also equals the total vorticity flux through its cross-sectional area, in this case too6A. 
Thus by Kelvin's theorem 

too6A = constant (6.36) 

These laws apply only to a control mass that contains the same fluid making up an 
actual vortex tube. Thus we can also state for incompressible flow that the vortex 
tube volume remains constant, namely 

2zrr6A = constant (6.37) 

Dividing Eqns (6.36) by (6.37) it follows that to0/r = constant along the drift path 
~1 of the vortex tube in agreement with Eqn (6.35). 

6.4.3 Axisymmetric flows involving a mixture of both streamwise and smoke-ring 
type vorticity components 

In general, gradients of both cor and Po will be present in turbomachines and the 
associated complex vortex motion will comprise both streamwise and smoke-ring 
type vorticities. The governing equations for the general turbomachine will then 
reduce to 

2 1 0r o'2 , 
Ox 2 r Or ~ - - ~ - =  FI (0 )+  r2F2(~ ') (6.38) 
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Equivalent actuator disc 
representing the fan rotor 

A 

Fig. 6.7 Representation of a mixed-flow fan rotor by an equivalent actuator disc 

where 

dcor 
FI(~) = cor d~ 

1 dpo 
F2(~) = P d~ 

(6.39) 

Thus the solution of an incompressible meridional flow field via Eqn (6.38) is possible 
provided the functions FI(~,) and F2(~,) are fully determined. This is the case once 
(cor) and Po have been specified as functions of ~,. 

6.4.4 Example of the mixed-flow fan 

The foregoing equations were derived in the absence of distributed blade forces (see 
Section 6.3.3) and are thus only applicable in blade-free spaces. A suitable strategy 
for analysis of the mixed-flow fan illustrated in Fig. 6.1 would be to represent the 
blade row by an equivalent actuator disc, the blade lift forces being assumed to be 
concentrated in its plane AD, Fig. 6.7. 

In region 1 upstream of the rotor the entry flow is irrotational so that FI(~,) and 
F2(~,) are both zero. In region 2 downstream of the rotor we have 

dCoEr 1 dpo 2 FI(r = c o 2 r  , F 2  = 
dg, p d$ 

But the Euler pump equation (1.9b) for this situation, with zero pre-whirl, 
becomes 

1 
--(Po2 -- Pol) = arco2 [1.9b] 
P 
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Equivalent actuator disc AD 
Fig. 6.8 Physical assumption of linearised actuator disc theory 

Thus finally the governing equation for the fan problem may be fully stated in terms 
of Po2 only through 

~g, 1 ag~ oCg, 
Or 2 r Or F = 0  

( P o 2  --  Pol)/P ) 1 d p o  2 
"- ~-~2 +rE p dqJ 

Region 1 

Region 2 
(6.40) 

6.5 Analytical solution for linearised cylindrical actuator 
disc theory 

Early in the history of meridional flow analyses exact solutions to Eqns (6.30) were 
obtained by Bragg and Hawthorne (1950) and these have been discussed in full by 
Horlock (1978) in his extensive text on actuator disc theory. These solutions formed 
a most important benchmark in this subject and the genesis of many of the physical 
concepts presented in this chapter. They were, however, restricted to certain classes 
of flow and were succeeded by more generally applicable linearised analyses such 
as that adopted in the last chapter. The aim in this section is to derive the cylindrical 
actuator disc solution from the governing equations (6.38) and (6.39) in linearised 
form for flow through a single blade row with the following assumptions: 

(1) The blade row is represented by a plane actuator disc at which the vorticity 
too is created discontinuously. 

(2) The vorticity too is assumed to be convected downstream of the actuator disc 
along the undisturbed streamlines. 

The terms on the right-hand side of Eqn (6.38) being non-linear presented difficulties 
for numerical reduction in the 1950s and assumption (2) provided, in effect, a 
linearisation of those terms since the vorticity too could now be approximated as 
follows. From Eqn (6.38) 

r(oo = FI(~)+ r2F2(~) 
Fl(r) + r2F2(r) (6.41) 

= f ( r )  
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For the single blade row depicted in Fig. 6.8 the governing equation (6.36) 
simplifies to 

s 1 6 2  1 a r  s 1 6 2  - F(r )  for x > 0  
0x 2 r Or ~- ~ = (6.42) 

= 0  for x < 0  

Since this equation is linear its solution can be compounded from three com- 
ponents: 

q~ = ~( r )  + q/oo(r) + q/(x, r) (6.43) 
(a) (b) (c) 

where term (a) represents the uniform stream Cx at entry to the duct x = -oo, (b) 
represents the radial equilibrium flow at exit x = oo, and (c) is a smoothing function 
which merges the flow progressively between these two extremes. Equation (6.42) 
may now be replaced by three independent equations as follows: 

- - - -  + = 0 Uniform stream - ~  < x < oo (6.44) 
r Or 

1 a ~  ~ ~  Radial equilibrium 
- - - -  + = - F(r )  (6.45) 

r ar ar 2 perturbation for x > 0 

: - tOor 

02 q/ Irrotational smoothing 02q/ 1 Oq/ I- = 0  (6.46) 
OX 2 r Or or 2 perturbation for - ~  < x < oo 

Bearing in mind the definition of stream function, Eqn (6.16a), the first equation 
may be integrated once to yield 

loaI~ 
Cx . . . .  constant (6.47) 

r 3r 

The second equation (6.45) likewise may be integrated once to give the radial 
equilibrium velocity perturbation directly from the specified vorticity tOo: 

_ 1 a~" I,~ ~ 
Cx~ r Or toodr + K (6.48) 

where the constant K is chosen such that the velocity perturbation Cxoo provides no 
contribution to mass flow through the annulus, that is 

rh t PCx=2'rrr dr = 0 

or (6.49) 

i t  . K = r2 _ r2 r too d r d r  
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Thus solutions to Eqns (6.44) and (6.45) have been obtained explicitly in terms of 
the specified mean axial velocity Cx and tangential vorticity too respectively. The 
solution of Eqn (6.46) may be obtained by separation of variables, Hildebrand (1956), 
as an infinite series of the following form" 

qt' = r ~ An{Jl(knr ) + v n Yl(knr)} e +-k'x 
n = l  

(6.50) 

where Jl(knr) and Yl(knr) are Bessel functions of the first and second kind of first 
order and An,vn are arbitrary constants. The coefficients k,, are determined by 
specification of zero radial velocity perturbation Cr. Thus from Eqn (6.16b) 

p 

Cr -- 
1 0r 
r Ox 

o o  

(+) 2 knAn(Jl(knr)  + vn Yl(knr)} e(+-)~x = 0 
n = l  

Application of this at hub and tip radii r h and r t for the nth term results in 

J1 (kn rh) + Vn Y1 (kn rh) = 0 

Jl(knrt) + ~'n Yl(knrt) = 0 

and eliminating Un we have 

Jl(knrh) Yl(knrt) - Jl(knrt) Yl(knrh) = 0 (6.51) 

Solutions of this equation for the coefficients kn are given in Table 5.6, Section 5.4, 
for hub/tip ratios in the range 0.3 < rh/r t < 1.0. The remaining boundary conditions 
to be satisfied are as follows. 

(1) Boundary conditions at entry and exit. For the smoothing perturbation to 
vanish at +~  let us propose separate solutions upstream and downstream of 
the blade row with the appropriate sign convention as follows: 

o o  

qt~ = r 2 Anl{Jl(knr) + vn Yl(knr)} ek'x 
n = l  

o o  

d/~ = r 2 An2{Jl(knr) + Vn Yl(knr)} e -knx 
n--1 

x < 0  

x > 0  

(6.52) 

(2) Smooth matching of  cr at x = O. In reality the vorticity too is shed 
progressively by the blades from leading edge to trailing edge. For 
mathematical simplicity, however, we will replace the blade row by a plane 
discontinuity at x = 0 or actuator disc at which too is shed discontinuously. 
However, although this implies that swirl velocities co also change 
discontinuously at the actuator disc, the meridional velocity components Cx 
and cr in the (x,r) plane develop smoothly over -oo < x  < oo. This will be 
achieved if the two solutions, Eqns (6.52), are matched at the actuator disc. 
Since Cr =-(1/r)(O~/Ox) we have 
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o o  

Crl : -- Z knAnl{Jl(knr) + vn Yl(knr)} ek'x 
n--1  

x _ O  

o o  

' Z knAn2{Jl(knr) + vnYl(knr)} e-k~x x > 0 Cr 2 -- 

n = l  

Matching these two solutions at x = 0 we have 

o o  o o  

-- ~ k n A n l { J l ( k n r ) +  Pn Y l ( k n r ) }  = Z k n A n 2 { J l ( k n r )  + Pn Yl(knr)} 
n = l  n = l  

This condition is satisfied if, term by term, 

A n l  = - A n 2  = A n 

whereupon we have finally the solution 

OQ 

~' = (++_)r Z An{Jl(knr) + Vn Yl(knr)} e (+-)k'x 
n = l  

(6.53) 

with (+)  for x < 0 and ( - )  for x > 0. 
(3) Smooth matching of  Cx at x = 0. The axial velocity Cx may now be expressed 

a s  

for x<_0 
0 

Cxl = Cx + 2 An -~r {Jl(knr) + Pn Yl(knr)} e k"x 
n--1  

o o  Z 0 
Cx2 -- C x Jr- Cxoo - A n  -~r { J l ( k n r )  + Vn Yl(k~r)} e -k~x for x >- 0 

n = l  

(6.54) 

Thus matching the upstream and downstream axial velocity solutions at x = 0, 
by stating Cxl = Cx2, we have 

2 An{Jl(knr) + vn Yl(knr)} ='2 Cx~ 
n = l  

(6.55) 

Since Cx~ is a known function of radius once too is prescribed, Eqn (6.48), the 
coefficients An, Vn may be derived by Fourier-Bessel analysis term by term. 

6.5.1 Simplified actuator disc solution 

To avoid the complexity of Fourier-Bessel analysis simple results follow if we assume 
that the first term of the Bessel series in Eqns (6.55) predominates. Neglecting all 
terms except n = 1 we could approximate Eqn (6.55) as 

A l{Ji (kl r) + vl Yi (kl r) } ~- Cxd = �89 
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and thus the solution for Cx, Eqns (6.54), reduces to the simple actuator disc 
formulation used in Chapter 5, Eqns (5.49) and (5.50)" 

Cx = Cx + lc,xoo e k'x for x < 0 ] 
(6.56) 

= Cx + Cx=(1 - � 8 9  -k ' x )  for x > 0  

where the coefficient k I is related to the k values listed in Table 5.6 through 
k l  = k / ( r t -  rh). 

6.6 Compressible flow actuator disc theory 
The first attempt to extend actuator disc theory to compressible flows was published 
by Hawthorne and Ringrose (1963). This was followed by a broader-ranging paper 
by Lewis and Horlock (1969) which was mainly concerned with the influence upon 
meridional flows of blockage due to blade thickness, linking this to compressibility 
effects. Appendix 1 of the latter reference contains the basis of a compressible flow 
linearised actuator disc theory similar to that to be presented here. Let us begin with 
the continuity equation (6.14) for compressible flow and the consequent definition 
of Stokes' stream function: 

1 ar 
Cx = pr Or 

1 Oq, 
Cr = pr Ox 

(6.15) 

Introduction of these expressions into the tangential vorticity component too, Eqn 
(6.11), results in 

O~C r 8C x 

too= 8x 8r 

Expanding the partial derivatives, this can be rearranged to read as follows: 

s162 
Ox 2 

1 ar s 1 6 2  
r -~r ~ - ~  - P r w ~ - r C r ~x + r C x ~rr (6.57) 

The strategy adopted here has been to separate the Stokes' operator onto the 
left-hand side of the equation and to consign all terms involving the density p to the 
fight-hand side. These include the following: 

(1) Disturbances due to the presence of tangential vorticity too (we note that 
these are now weighted by the density p for this case of compressible flow). 

(2) Disturbances due to the density gradients Op/Or and Op/Ox. We will consider 
these in more detail in the next section. 
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(a) (b) 
Fig. 6.9 Curvilinear grid (s,n) in the meridional plane - and small element abed" (a) meridional velocity 
components; (b) resolution of elementary normal dn 

6.6.1 Curvilinear coordinates (s,n) in meridional flow 

A useful way forward at this point, leading to a better interpretation of the density 
gradient terms in Eqn (6.57), is to introduce the curvilinear coordinates (s,n) 
illustrated in Fig. 6.9 for general mixed-flow turbomachines. Coordinate s lies along 
the local meridional velocity vector Cs and is thus coincident with the contours 
~p = constant which map out the meridional streamlines. Coordinate n is defined as 
normal to s thus creating a curvilinear (s,n) grid. Let us consider the small element 
abcd located at (s,n) where the meridional velocity c~ makes the angle a with the 
x-axis, Fig. 6.9(a). The side ad of the element is of length dn and is normal to Cs, 
Fig. 6.9(b). From these two triangles, we have the relationships 

c o s a = C x  = dr 
Cs dn 

Cr dx 
sin a = ~ = 

Cs dn 

(6.58) 

Now density will in general be a function of x and r, say p = p(x, r), and a very useful 
result follows if we take its total derivative normal to the meridional streamlines 
dp/dn. Thus 

dp 0/9 dx @ dr 

dn ax dn ar dn 



164 Vorticity produc t ion  in turbomachines  and its influence upon merid ional  f lows  

and introducing Eqns (6.58) 

dp C r ~p C x @ 

dn Cs Ox Cs Or 

Thus finally, the compressibility terms on the right-hand side of the governing 
equation (6.57) become 

@ @ dp 

It is useful to note here that the operator --Cr(O/OX ) "1- Cx(O/Or) performs the differential 
of a quantity normal to the meridional streamlines d/dn multiplied by the meridional 
velocity G. The governing equation (6.57) for compressible meridional flow now 
becomes 

a2r 1 ar s  dp 
ax 2 r ar ~- ~r  2 = - Prt~176 + rcs-~n (6.59) 

Another important result follows from a reconsideration of EqrL (6.17) for compres- 
sible flow. Thus 

ar ar 
dd/= dx + dr 

Ox ar 

= -- prcrdx -t- prcx dr 

Introducing Eqns (6.58) this transforms into 

d e  = p r c s ( - d x  sin a + dr cos a) 

= prcs(dn sin 2 a + dn COS 2 a )  - -  prcs dn 

Thus finally the meridional velocity Cs is given by 

Cs "-- 

1 d~ 
pr dn 

(6.60) 

For numerical computation Eqn (6.59) could be rewritten more conveniently 

s  lar  s  d~ ldp 
~ m  

Ox 2 r Or t- ~ = - pno o + dn p dn (6.61) 

A full numerical analysis would thus require an iterative process such as that illustrated 
in Fig. 6.10. Alternatively for cylindrical annuli we could make the linearising 
assumption that the compressible term in Eqn (6.59) may be approximated to 

dp dp 
rCs -~n "~ rCx ~ (6.62) 
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Fig. 6.10 Flow diagram for turbomachinery compressible meridional flow analysis 

Inherent in this is the assumption that p is a function of radius only and thus the 
governing equation (6.59) approximates to 

s 1 6 2  1 0r s 1 6 2  dp 
ar 2 r ar 4- ~ x  2 ~ - prto o + rCx -~r (6.63) 

= Fl ( r )+  Fz(r) 

where Fl(r )  covers the rotational meridional flow disturbances leading to the actuator 
disc solution via Eqns (6.42) through to (6.55), and F2(r) covers the compressible 
flow disturbances. Since both are functions of radius only we would expect to be able 
to adopt the actuator disc solution equations (6.55) directly to handle the compres- 
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sible flow problem. Although this is possible, a more direct analysis, offering also 
deeper perception of the physical nature of compressible flows, follows from adoption 
of the velocity potential instead of the stream function. This will be introduced in 
the next section. 

6.6.2 Analogy between compressible flows and incompressible flows with source 
distributions 

The continuity equation in vector form has already been stated as follows: 

div p~ = 0 Compressible flow 1 [6.4] 
div ~ = 0 Incompressible flow J 

The equation for incompressible flow may be further developed to accommodate 
spatial distributions of source strength S, defined as fluid created at any point per 
unit volume per unit time. Equation (6.4b) then becomes 

div ~ = S (6.64) 

An analogy with compressible flow follows if the vector derivative of Eqn (6.4a) is 
expanded, namely 

div p~ = p div ~ + ~. grad p = 0 

Rearranging this, the compressible ftow continuity equation may be expressed as 

1 
div~ : - - - ~ . g r a d p  

(6.65) P 
= o r  

The quantity on the right-hand side, -(1/p)~.gradp, which absorbs all of the 
compressibility effects could be treated analytically as an equivalent distributed source 
density or in incompressible flow; thus Eqns (6.64) and (6.65) are identical in form. 
In the one case the Poisson term S is due to distributed source strength. In the other 
case the Poisson term or is caused by local gradients of fluid density. 

Let us now apply this idea to the free-vortex turbine stator illustrated in Fig. 
6.11(a), modelled by an actuator disc AD. In this free-vortex case the flow is 
irrotational and there is no tangential vorticity too shed from the blade row. Instead 
the fluid is assumed to undergo a sudden drop in density in the plane of the actuator 
disc, or in other words a sudden rise in specific volume. As shown by Lewis and 
Horlock (1969) this is physically analogous to the incompressible flow through a 
source actuator disc, Fig. 6.11 (b), the streamline shifts and velocity distributions being 
the same. These authors have presented a full exposition, the main outline of which 
will be given here. Since too is to be zero, Eqn (6.11c) becomes 

tgC r aC x 
s  ~ 0 

ox ar 
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Fig. 6.11 Analogy between (a) compressible irrotational meridional flow through an axial turbine 
free-vortex stator and (b) flow through an equivalent source actuator disc AD 

which implies the existence of the velocity potential function th(x,r) such that 

ar ar 
C x = ~  and Cr= 

ax Or 
(6.66) 

The continuity equation (6.65) then becomes 

1 
div grad ~b = or = - --  ~. grad p 

P 

or for axisymmetric flow 

s 10~h 
Ox2 + -  r gJr 

t~2 t~ C x O~ p C r O~p 

+ ' ~ -  = pax  p Or 

c s dp 
= S(x, r) 

p d s  

(6.67) 

where use has been made of Fig. 6.9 to establish the operator on the right-hand side, 
cs(dp/ds) = Cx(Op/Ox)-t-Cr(Op/Or). S(x,r) is the distributed source strength of the 
equivalent incompressible flow. The physical meaning of this is that the compressible 
flow disturbances are caused when the density changes along the direction of the 
meridional velocity Cs. For a turbine dp/ds will assume large values due to flow 
acceleration within the blade row. Elsewhere upstream and downstream of the stator 
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under consideration, Fig. 6.11(a), cs(dp/ds) is likely to be negligible by comparison. 
It is thus plausible to replace the blade row by a source actuator disc S(r) as illustrated 
in Fig. 6.1 l(b) in which the source strength generated within the blade row is assumed 
to be created instantaneously. For all values of x except x = XAO, Eqn (6.67) then 
reduces to 

1 04) or 024) + -  + = 0 (6.68) 
ax 2 r ar 

As shown by Lewis and Horlock (1969) the general source distribution S(r) may be 
expanded as the Bessel series 

oo 

S(r) = S m - 2 Z ankn{Jo(knr) + Vn Yo(knr)} 
n--1 

OQ 

= S m "" 2 Z a n k n Z ~  
n=l 

(6.69) 

where Zo(kn r) is a combination of Bessel functions of zero order of the first and 
second kind and Sm is the mean disc source strength defined by 

a m  - "  

I rt 
2 S(r)rdr 

.'rh 

rt 

(6.70) 

For the time being let us consider the flow field induced by the disc source alone 
in the absence of net throughflow as illustrated by Fig. 6.12. The general solution 
of Eqn (6.68) for a disc source S(r) located at x = 0 is then as follows: 

oo 

t~ = (_)x1Sm + Z a n Z o ( k n r ) e - ( + - ) k n x  

n--1 
oo 

Cx = ( + ) � 8 9  Z a n k n Z ~  
n--1 

' Z C r ~- -- a n k n Z l ( k n r  ) e - ( + )  k ' x  
n-1 

(6.71) 

with the sign convention (+)  for x > 0 ,  ( - )  for x < 0 .  The coefficients an follow 
directly from Fourier-Bessel analysis, namely 

an --- 
frh 'trS(r) Zo(knr) dr 

kn{[rh Zo(knrh)] 2 - [rt Zo(knrt)] 2} 
(6.72) 
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Fig. 6.12 Flow genera ted  by a source disc of non-uniform strength S(r) in a cylindrical annulus 

A simple approximate solution can be derived with assumptions analogous to vortex 
actuator disc analysis. If for example the first eigenvalue only of the Bessel series 
is present, the velocity perturbations close to the actuator disc with x > 0  but 
x---) 0 are 

Cxd -" �89 - alklZ0(kl r) = �89 

1 dS(r) 
Crd = -- a l k l Z l ( k l r )  = 2kl dr 

Elsewhere in the duct we then have 

(6.73) 

CXcr == Cr d(-t-)lSm --e-(___)k,x(-F)(Cxd--lSm)e-(+--)klx== 2kl I dS(r)dr e-(___)kix (-I-) l[Sm + ( S ( r ) -  Sm)e -(+)kax] } (6.74) 

6.6.3 Solution for compressible flow through a turbomachine actuator disc 

So far the only influence introduced into the flow field is the source disc S(r). 
Equation (6.71) shows that this emits a net flux Sm 7r(r 2 - r  2) and Eqn (6.74) shows 
that this leaves the duct at +oo with a uniform velocity Cx+_~ = (+)lSm. To simulate 
compressible flow through a turbomachine blade row let us first superimpose a 
uniform stream Cx. The axial velocity distribution combining both S(r) and Cx then 
becomes 

Cx - -  C x  - 1 a m  - l (S(r)  - am) e k'x 

Cx = C x  d- 1 S  m Jr- l (S(r)  - am) e - k ' x  
for x < 0 ~ (6.75) 
for x > 0  J 
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Fig. 6.13 Flow through streamtube with sudden change in density p and axial velocity Cx across a 
compressible flow actuator disc AD: (a) streamtube through compressible actuator disc; (b) equivalent 
source disc 

where the duct entry and exit velocities are thus 

Cxl = C x - l s  m at x = - -~  ] 
(6.76) 

Cx2 = Cx + 1Sm at x = + 

We need now to relate the source strength S(r) of the incompressible flow so far 
considered to the density change across the actuator disc in the equivalent 
compressible flow problem. For the stream tube $1 crossing the actuator disc plane 
AD, Fig. 6.13(a), both p and Cx will change discontinuously at XAD but the mass flow 
per unit area pCx will be conserved. Thus in crossing the plane AD 

d(pcx) = pdcx + Cx dp = 0 

For finite changes in density Ap across the actuator disc the jump in axial velocity 
Acx may be approximated by 

ACx ~ _ Cx Ap ~ l ( C x  1 q- Cx2) Pl - P2 (6.77) 
Pm l(p 1 d-/92) 

Pm is the average of upstream and downstream densities Pl and P2 at radius r. Cxl 
and Cx2 are the mean velocities upstream and downstream, already related to Sm 
through Eqn (6.76). For the equivalent incompressible source disc of strength (Sr), 
chosen to produce the same axial velocity jump Acx the continuity equation may be 
applied to the small control volume abcd, Fig. 6.13(b), namely 

Rate of creation of fluid internally = volume flow across boundary abcd 

or S(r) = Acx-~ �89 q- Cx2 ) Pl - P2 
Pm 

(6.78) 
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Now the mean axial velocities upstream and downstream can be related to one 
another by application of the mass flow continuity equation at +oo, namely 

I rt & = CxlP127rrdr = Cx2P22zrrdr 
h 

(6.79) 

For the single stator blade row under consideration here, Pl is constant and the above 
equation thus yields the ratio Cx2/Cxl" 

Cx2 

cxl 

i rtpl r dr 
h 

i rtp2r dr 

h 

p l ( / ~ t - / 2 h )  

frh t 2 P2 r dr 

(if Pl = constant as for case of a single stator) (6.80) 

The previous solution for incompressible flow through a source disc, Eqn (6.75), now 
transforms to that for compressible flow: 

Cx ._ Cx I + (P2 Cx2-  Pl Cxl ) _1 ekax for x < 0 
Pm 2 

Cx Cx 2 _ (P2 Cx2-  Pl Cxl) 1 -klx = - e  for x > 0  
tim 2 

(6.81) 

The original actuator disc analysis due to Hawthorne and Ringrose (1963) resulted 
in the following alternative solution including extra terms involving the axial Mach 
numbers Mxl and Mx2: 

(p2Cx2-  Pl Cxl)(1 - M21)  1/2 eklX/(1_M21)1/2 
Cx "~ Cxl + (1 - M21)1/2p1 + (1 - M22)1/2p2 for x < 0 

(p2Cx2-  Pl C x l ) ( 1  - M22)  1/2 
Cx = Cx2 - (1 - M21)1/2p1 -[- (1 - /~x22)1 /2p2  

e -klx/(1-M2x2)1/2 for x > 0 
(6.82) 

For small axial Mach numbers the terms ( 1 -  M21) and ( 1 -  M22) approximate to 
unity and the two solutions are then identical, justifying the simpler formulation given 
by Eqn (6.81). 

Example 6.1 

The main features of such flows are illustrated by Figs 6.14 and 6.15 for the stator 
belonging to a turbine stage with the overall specification shown in Table 6.1. 



172 Vorticity production in turbomachines and its influence upon meridional flows 

Table 6.1 Specification for model turbine stage 

Hub/tip ratio rh/r t = 0.6 
At r.m.s, radius: 

Flow coefficient t~m "-0.5 
Work coefficient q~m = 1.0 

Exit Mach no. at rh, M2h = 1.0 
Total to total efficiency r/Tr = 92% 
Zero swirl upstream of stator 
Free-vortex swirl distribution downstream of 
stator 
Perfect gas assumed with the properties of air 

1.6 

Cx 

Cxl 1.4 

[ 

1.2 

0.8 
-0.6 -0.4 -0.2 0.0 0:2 o14 0.6 

x 

I ~ hub o tip i 

Fig. 6.14 Growth of axial velocity at hub and tip radii of an axial turbine by compressible actuator 
disc theory 

The development of the axial velocity expressed a s  Cx/fxl at hub and tip radii are 
shown in Fig. 6.14 over the range -0 .6  < x  < 0.6. The following features are worthy 
of note: 

(1) Due to the overall decrease in gas density the mean axial velocity increases 
overall by the ratio Cx2/C~I = 1.2853. 

(2) Since the local gas density drop ( P l -  P2) is greater at the hub than at the 
tip, the consequent axial velocity jump ACx across the actuator disc is likewise 
greater. 

(3) In view of (2), cx/Cxl at the hub and tip radii follow the pattern shown in 
Fig. 6.14 upstream and downstream of the blade row. 

The consequent axial velocity profiles from hub to tip are shown in Fig. 6.15, 
limited here to the annulus entry and exit planes x = +1.0 and the planes just 
upstream and downstream of the actuator disc at x = 0. The radial variation of density 
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Fig. 6.15 Axial velocity profile development through an axial turbine stator predicted by compressible 
actuator disc theory 

p2(r) is thus responsible for maximum axial velocity disturbances as great as 10% 
close to the blade row. For this stator, which is typical of practical gas or steam turbine 
stage loadings, there are thus significant flow disturbances induced by the large 
density gradients as the gas expands through the blade row. These result in large 
increases of Cx in the axial direction and also smaller but significant variations of Cx 
in the radial direction. On the other hand, in practice the cylindrical annulus assumed 
here, Fig. 6.11, would be replaced by a conical expanding annulus chosen to maintain 
constant mean axial velocity Cx, thus requiring an annulus area ratio for the blade 
row of A2/A1 = C x 2 / C x l .  

Analysis to determine P2/Pl 
To complete the above computations it is necessary to evaluate p2/Pl in terms of the 
specified data. To begin with, P2/Pl may be related to T2/T1 following Example 3.1 
of Chapter 3: 

P2=pl T2TI[ 1 -  r/Trl ( 1 -- TT~21 ) } v/(v-1) (6.83) 

T1 and T2 may also be related through the enthalpy drop across the stator at any 
radius r: 

Ah = cp(T 1 - T2) = �89 4 )  = 
2 

and thus 

T 1 - T 2 -- (6.84) 
2Cp 
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Applying this equation at the hub radius r h" 

T1-  T2h = ~ (6.84a) 
2Cp 

Dividing the last two equations results finally in 

: 1  (1 r l  r l  ] (6.85/  

Now the exit temperature at the hub T2h can be expressed in terms of the given Mach 
number M2h. Thus 

C2h C2h 
m2h = ~ = 

a2h V'TRT2h 

where a2h is the local speed of sound, or 

C2h Uh2(~  + ~b2h) 

T2h = yRM2h = (3,_ 1)cpM2h (6.86) 

where tha = dPm(r/rh) and g'h = ~m(r/rh) 2. Combining Eqns (6.84a) and (6.86) we then 
have finally 

TEh 1 

TI 1+ Y--IM2h ( 2  4}2+ $2h ) $2 h 

(6.87) 

The density ratio across the stator blade row at any radius is thus now fully specified 
in terms of the given data rh / r t ,  ~m, ~m, M2h and ~Tr through Eqns (6.83), (6.85) 
and (6.87). 

6.6.4 Compressible meridional flow through a turbine stage 

The previous analysis may be extended with little difficulty to model a complete 
turbine stage by the introduction of a second actuator disc to represent the rotor. 
Assuming that there is no swirl at entry to and at exit from the stage and that Cx3 ~- Cxl , 
the overall enthalpy drop may be expressed as 

~ U  2 = hol - h03 ~ h i  - h3 = Cp(T1 - T3) 

If h 0 1 -  h03 is to be equal at all radii, 

T3= T3h= T l - ~  
Cp 
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Rotor actuator disc I 

Axis of rotation 

Fig. 6 .16  Compressible flow through a turbine stage in a cylindrical annulus predicted by actuator 
disc theory 

and introducing Eqn (6.86) to eliminate U2/Cp 

73 
T1 

~h ) T2h 
=l--(3,--1)M~h 4)2+~h T1 (6.88) 

By analogy with Eqn (6.83), the density at exit from the stage then becomes 

p3=Pl  1 -  1 - - ~ -  1 
r/TT 

(6.89) 

The previous compressible actuator disc analysis may then be applied to account 
for the radial distribution of density jump P3-  P2 across the rotor actuator disc, 
resulting in the solution shown in Fig. 6.16. The blade row annulus geometry selected 
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Fig. 6.17 Compressible flow through turbine stage with gap of 0.5 between stator and rotor (blade 
height = 0.4) 

here represents a tightly packed stage with blade aspect ratios of 5.0 and with a typical 
gas turbine stage loading as specified in Table 6.1. 

The main features to note here are as follows: 

(1) The mean velocity jumps f r o m  Cxl = 1.0 at inlet to Cx2 = 1.3 between the 
blade rows and then to Cx3 = 1.65 at exit from the stage. 

(2) The greater density drop across the rotor tip produces ~ the reverse behaviour 
of the upstream and downstream perturbations as compared with the stator. 

(3) Interference between the stator and rotor increases the level of the axial 
velocity perturbations in between the blade rows to variations of +7.5% from 
the mean. 

(4) The reverse is true in the regions upstream and downstream of the stage 
where the disturbances are less than those of the individual blade rows. 

Features (3) and (4) are brought out by Fig. 6.17 which shows the velocity 
perturbations at hub and tip for a blade row spacing of 0.5, which is sufficiently wide 
to minimise blade row interference. The individual behaviour of stator and rotor is 
clearer from this example from which it can be seen that they produce opposite trends 
at hub and tip. Thus the highest velocity jump Acx across the stator occurs at the 
hub, AB, and for the rotor at the tip, CD. 

Comparing Fig. 6.17 with Fig. 6.16 it is clear that the velocity disturbances upstream 
and downstream of the stage are reduced for the closely packed blade rows, whereas 
the disturbances between stator and rotor are substantially increased by blade row 
interference in close proximity. 

As mentioned previously it is not usual practice to adopt a cylindrical annulus. 
A better strategy to maintain similar velocity triangles and (~b, qJ) duty at the mean 
radius r m is to expand the annulus area to try to maintain constant mean axial velocity 
Cx. Figure 6.18 illustrates an attempt to achieve this by simply adapting the cylindrical 
actuator disc solution to fit a suitably flared annulus. The blade row region was first 
chosen as illustrated to represent the confines of the stage. Conical hub and casing 
contours were then chosen with Overall area ratio to enforce equal entry and exit 
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Fig. 6.18 Compressible flow through annulus with area increase to maintain constant mean axial 
velocity 

mean axial velocities Cx = 1.0. For all other x locations the Cx values shown in Fig. 
6.17 were simply scaled to satisfy mass flow continuity. While this cannot be justified 
rigorously from a fluid-dynamic point of view, it does at least offer a simple design 
approach leading to a first-order assessment of meridional disturbances due to 
compressibility. From Fig. 6.18 one can conclude that these disturbances will in 
general be small outside the confines of the stage. Within the stage, however, where 
the density gradient 'action' is taking place, there will be much more significant 
variations in Cx which need the attention of a more advanced analysis. The plane 
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Fig. 6.19 Compressible flow through model stage with smeared actuator disc representation of stator 
and rotor 

actuator disc model over-exaggerates these effects by concentrating the fluid 
divergence into the two actuator disc planes. The paper by Lewis and Horlock (1969) 
outlined a method for smearing source and vortex actuator discs across the blade 
region and this has been extended to compressible actuator discs recently by Lewis 
(1995). This leads to improved estimations of the activity within the blade row region 
as illustrated by Fig. 6.19 in which the density gradients were assumed to be evenly 
distributed between leading edge and trailing edge for both stator and rotor. Although 
considerable velocity disturbances are still predicted, they are much reduced in 
amplitude. Modern throughflow and time-marching numerical methods should 
provide much better resolution of these problems but are beyond the scope of the 
present discussion. 



7 
Mixed- f low and 
turbomachines  

radial 

Introduction 
In the early days of the development of the aircraft gas turbine engine there was fair 
competition between the multi-stage axial compressor and the centrifugal compressor 
as contenders for the same task, namely the delivery of large volume flow rates of 
air to the engine with fairly high pressure ratios. Competition was fair in the sense 
that these quite different devices have their own particular advantages and 
disadvantages. As illustrated by Fig. 7.1(a) and the data shown in Figs 1.11 and 1.13 
and the related discussion in Section 1.2.2 of Chapter 1, several stages of an axial 
compressor would be required to deliver the same pressure ratio as that which can 
be produced by a single stage centrifugal compressor. 

On the other hand, for the same inlet area and meridional inlet velocity Csl, the 
centrifugal compressor presents two inconvenient geometrical features. Firstly the exit 
diameter must be much greater than the inlet diameter to obtain the centrifugal effect 
and consequent high head rise. Secondly the flow path is turned radially outwards, 
delivering the air unhelpfully in the radial direction and requiring an exit volute. The 
axial compressor, on the other hand, while presenting the expense of its many blade 
rows, is geometrically ideally suited to the general throughflow requirements of a 
modern aircraft gas turbine engine which will comprise an axial turbine and an axial 
bypass fan in addition to the multi-stage axial compressor. 

For more general applications fans fall into the three categories illustrated in Fig. 
7.1(b), namely axial, mixed-flow and radial (or centrifugal). These configurations and 
their general characteristics have been very helpfully reviewed by ESDU (1980) to 
assist the non-specialist with fan selection and with tender appraisal, including the 
presentation of Fig. 1.13. Regions for optimum efficiency of each category of fan are 
plotted first against axes of specific diameter Ds versus specific speed Ns and secondly 
against axes of �9 versus �9 where these coefficients are defined as in Eqns (1.16) 
and (1.23), namely 

O 
N D  3 

g H  
xtt = N2  D 2 

[1.16] 

(I) 1/2 

N s = xir 

xi1'1/4 

D s - -  (i)1/2 

Specific speed 

Specific diameter 

[1.231 
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Csl 
Csl 

(a) 

rE. 

(b) 
Fig. 7.1 Meridional flow through (a) axial and centrifugal compressors and (b) axial, mixed-flow and 
radial fans 

The spread of 'practice' recorded in Fig. 1.13(a) is generally quite close to the 
well-known curve of Cordier (1953) and marks out axial fans as suited to high specific 
speeds while centrifugals are the appropriate choice for low specific speeds. To 
summarise, the selection ranges suggested by Fig. 1.13(a) are given in Table 7.1. 

Table 7.1 Recommended selection ranges for axial, mixed-flow and radial fans 

Specific speed Ns range Fan type 

0.5 to 2.0 Radial 
2.1 to 3.2 Mixed-flow 
1.4 to 13.0 Axial 

These data suggest quite wide ranges of Ns appropriate for axial and centrifugal 
or radial fans even with a measure for possible overlap in the middle range, 
1.4 <Ns  <2.0.  Alternatively in this range it may be just as appropriate to select 
instead a mixed-flow fan, so named because its configuration is a mixture of both 
the axial and the radial machines, Fig. 7.1(b). Such fans have fulfilled a crucial role 
in high technology applications such as gas-cooled nuclear reactor circulators and 
hovercraft lift fans for which a combination is required of high mass flow rate and 
fairly high pressure ratio (i.e. more than that capable of a single stage axial) at high 
efficiency. The range of applications suggested by Table 7.1 and Fig. 1.13 is, however, 
unnecessarily restricted and simply reflects the limits set by 'practice'. It would be 
perfectly possible for mixed-flow fans to serve a much wider range of specific speeds 
than the above data suggest, offering perhaps the advantages of fewer stages than 
an axial fan or the more suitable throughflow annulus shape as compared with a 
radial fan. 
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Fig. 7.2 Cordier diagram for fans replotted on  ((]),~) axes 

Much more revealing is the re-presentation of the same optimum fan data against 
the axes �9 and ~ ,  Fig. 7.2, where use has been made of Eqns (1.24) to transform 
the data to a form more given to physical interpretation. According to this format 
axial fans stand out as suitable for low pressure rise applications and centrifugal fans 
for high pressure rise. Mixed-flow practice here has obviously been quite narrowly 
restricted to the intermediate �9 range. The guidelines are given in Table 7.2. 

Table 7.2 Recommended selected ranges for axial, mixed-flow and radial fans 

Range for �9 = gh/N2D 2 Fan type 

0.006 to 0.09 Axial 
0.04 to 0.06 Mixed-flow 
0.07 to 0.4 Radial 

Although there is an enormous spread of �9 here over the range 0.006 < ~ < 0.4, 
calling for selection of an appropriate fan type to ensure high efficiency, there is no 
similar obvious link between �9 and machine type observable from Figs 1.13(b) and 
7.2. All three fan types offer a fairly wide spread of possible design flow coefficients 
which will provide an efficient machine for a specified �9 with a good deal of overlap. 
This is an important observation in support of the use of ~ ,  �9 axes for presentation 
of optimum test data for machine selection rather than N~,Ds axes. 

In the present context these data highlight the different performance patterns 
progressing through from axial to mixed-flow and on to radial fans or pumps, calling 
for a physical explanation. With this in mind we will begin in Section 7.1 by 
reconsidering the Euler pump equation and the origins of work input and energy 
transfer to the fluid in the general mixed-flow turbomachine. This will lead on to the 
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derivation of the property rothalpy relevant to energy transfer in rotating systems 
with radial flow, Section 7.2. Dimensionless velocity triangles will then be considered 
in Section 7.3 to link stage duty based on local dimensionless variables (~b, q0, machine 
overall radius ratio (r2/rl) and annulus area ratio (A2/A1) with expressions for stage 
efficiency to link with the performance philosophy developed in Chapters 3 and 4 
for axial turbines and compressors. 

The handling of the general three-dimensional design problem of a mixed-flow 
turbomachine by the combination of an axisymmetric meridional flow and a series 
of mixed-flow cascades will be introduced in Section 7.4. To conclude the chapter, 
Section 7.5 will be given to the problems of the relative eddy and the related slip 
which occur in radial and mixed-flow pumps and fans and appropriate correlations 
for their estimation. 

7.1 Origins of specific work input in mixed-flow fans and 
pumps 

The potential ability of radial and mixed-flow fans and pumps to deliver higher head 
rise coefficients than axial machines is revealed if the Euler pump equation is 
re-expressed relative to the rotor. As shown in Chapter 1, Eqn (1.9a) and Fig. 1.5, 
the Euler pump equation for a mixed-flow fan may be expressed as 

m 

W = h o 2 - h o l  = U2c02 - U1r (7.1) 

where if" is the specific work input (J kg-1), U = rI~ is the local blade speed and 
co is the absolute swirl velocity. Now co is related to the swirl velocity wo measured 
relative to the rotor at any point at radius r within the rotor, through 

co = U + wo = rf~ + wo (7.2) 

where Co and Wo are defined as positive in the direction of the rotor blade velocity 
U. Introduction of this into Eqn (7.1) results in the following alternative and revealing 
form of the Euler pump equation: 

1~ = h o 2 -  h o l  = U 2 w 0 2 -  U 1 wol + U 2 - U? 

= I~(r2 WOE- rl wol) + I~2(r2- rE) (7.3) 
wor  in ut) wor  ) 

--  due to aerodynamic -t- due to Coriolis 
forces forces 

For axial machines, since r = constant, this reduces to 

m 

W = f~rl(wo2- Wol) (7.3a) 

In this special case all the specific work input derives from the blade aerodynamic 
forces set up in reaction to the fluid deflection e = f l l -  f12, F i g .  7.3. For the case 
of the mixed-flow fan, on the other hand, we are able to identify two separate s o u r c e s  

of work input as stated by Eqn (7.3). These are as follows: 

(1) Specific work input due to aerodynamic forces results from the change in 
angular momentum of the flow viewed relative to the rotor, IrE WOE- rlWoll. 

(2) A second specific work contribution completely independent of blade profile 



7.1 Origins of specific work input in mixed-flow fans and pumps 183 

Fig. 7.3 Velocity triangles for an axial fan 

Fig. 7.4 Coriolis acceleration and force on a particle of mass m in a rotating slider 

shape and therefore of aerodynamics and entirely dependent upon meridional 
streamline radial shift between inlet rl and exit r2, Fig. 7.4, namely 
fl2(r 2 - r2 ) .  This can be identified as originating from the Coriolis forces 
exerted on the fluid by the rotor by virtue of their radial component of 
velocity Cr. To confirm this let us consider the simpler but analogous 
situation of a solid particle of mass m being propelled radially outwards with 
velocity ~ = dr/dt in a rotating radial slider, Fig. 7.4. The Coriolis acceleration 
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Fig. 7.5 Centrifugal compressor rotor showing inducer and radial sections 

of the particle will be 2k1~, resulting in the Coriolis force normal to r of 
F = 2m~l~. The shaft power input is thus 

d W  = FrO = 2mr dr ~"~2 
dt -~ (7.4) 

Integrating between r 1 and r 2 the specific work done on the particle is thus 

f f , = W  i rE - -  = 21~2r dr = 1~2(r 2 - r 2) (7.5) 
m 

1 

which is identical to the second term on the right-hand side of Eqn (7.3). 

This observation is of considerable importance. Apparently energy may be trans- 
ferred from rotor to fluid in large measure simply by imposing meridional streamline 
radially outward shift. In other words the annulus design for mixed-flow turbo- 
machines becomes as crucial to the specification of work input and hence enthalpy 
or head rise as the selection of blade profile shapes is for axial machines, Chapter 
2. Furthermore it is obvious from Eqn (7.3) that a very large head rise will result 
from the specification of a large radius ratio r2/r 1. 

Another appropriate design technique might be to maximise the work input and 
consequent head rise due to aerodynamic forces by attempting to set WOE = 0 by 
adopting radial blading. 

The typical centrifugal compressor rotor depicted in Fig. 7.5 meets all of these 
objectives. First of all the flow enters an inducer section which in many respects is 
like an axial compressor blade row. The task of the inducer is to turn the flow from 
its relative inlet angle/31 towards the axial direction before it begins its large radius 
change from rl to r E. The fluid then enters the main radial section of the impeller 
where it is first turned from the axial direction to the radially outward direction. All 
of the relative swirl Wol at inlet has now been absorbed and the aim is to eject the 
fluid at the blade tips with zero relative swirl velocity wOE = 0. In practice this proves 
impossible with purely radial blades at exit as illustrated in Fig. 7.5 due to 'relative 
eddy' and its related 'slip', matters to which we will return later in Section 7.5. 



7.2 Stagnation enthalpy relative to a rotor and rothalpy 185 

7.2 Stagnation enthalpy relative to a rotor and rothalpy 
As shown in Section 1.1.2 the steady flow energy equation for a turbomachine may 
be expressed as 

0 - I,V = (h2 + �89 - (hi + �89 

= ho2-  hol 

[1.5] 

where stagnation enthalpy is defined as 

C 2 

ho = h +-~- (7.6) 

The heat transferred into the system per unit mass Q will normally be negligible. 
For a stator the specific work input W will also be zero so that 

o r  ho2 = hol ~ for a stator (7.7) 
ho = constant J 

Thus stagnation enthalpy is conserved through a stationary blade row, even if there 
are frictional losses. 

For a rotor, on the other hand, the specific work W is non-zero so that the steady 
flow energy equation becomes 

m 

h o 2 -  hol = - W (7.8) 

Suppose, however, that we were to sit on the rotor and observe the relative flow. 
In such a rotating laboratory the turbomachine rotor would now appear to us to be 
stationary and thus we might justifiably expect the stagnation enthalpy measured 
relative to our observer's framework to be conserved. To test this let us define relative 
stagnation enthalpy as we did for the non-rotating reference frame, Eqn (7.6), 
namely 

W 2 

(ho)re I = h + --~ (7.9) 

where h is the specific enthalpy and w is the fluid velocity which we observe relative 
to our rotating framework. Adopting cylindrical polar coordinates (x,r,O) the 
absolute velocity components Cx, Cr and Co at radius r may be related to the velocity 
components viewed relative to the rotor Wx, Wr and Wo through 

CX ~ WX 1 

C r = W r 

co= rl) + Wo 

(7.10) 

Rotation obviously has no effect upon axial and radial velocity components but only 
upon the 0 component as already stated by Eqn (7.2). The stagnation enthalpy ho 
may now be related to (ho)rel at the point P within the mixed-flow fan or pump rotor 
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Fig. 7.6 Meridional flow through mixed-flow turbomachines: (a) mixed-flow pump or fan rotor; (b) 
Francis turbine 

depicted in Fig. 7.6, as follows: 

1 2  1 2  1 2  
ho = h + ~Cx + ~Cr + ~Co 

1 2 = h + lw2 + ~W r + �89 + Wo) 2 
1 2 ~ r 2 ~ 2  = h + lw2 + ~W r + 1W2 +-  -1- rl)wo 

U 2 
= ( h o ) r e  I + rOwo + - ~  

(7.11) 

At rotor inlet 

h o l  = (ho l ) r e l  + r 1[~W01 -I- 
v? 
2 (7.12) 

If these equations are subtracted, then at any point P within the rotor 

h o - h o l  = (ho) re  I - ( ho l ) r e l  + ~ ( r w  O - r 1Wol) q 

u 2 u 2 

2 2 

But for a location such as that of P on a meridional streamline within the rotor, the 
Euler pump equation (7.3) may be adapted to give the local value of ho, namely 

h o - h o l  = l)(rwo- r 1 wol  ) + U 2 -  U? (7.3a) 

Subtracting the last two equations we have finally the steady flow energy equation 
expressed relative to the rotor, whether it be a turbine, pump, compressor 
or fan: 

v v? t (h~  2 = ( h ~  2 ( 7 . 1 3 )  

= I = constant along a meridional streamline 

The quantity I = ( h o ) r e  I - U2/2 is called the rothalpy and the energy conservation law 
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applicable to rotating fluid systems is that the rothalpy I remains constant along a 
meridional streamline passing through the rotor. We note also that in non-rotating 
systems such as stators, since U = 0 the rothalpy is equal in value to the stagnation 
enthalpy, I = ho. 

It follows immediately from the above that turbomachines designed to operate in 
a non-rotating framework may move off design performance if located in a spinning 
environment. Thus even in earth-bound laboratories the stagnation enthalpy will not 
be conserved precisely due to the earth's rotation, although the errors involved in 
assuming this are trivial since the variation of U = rI~ from bottom to top of the 
turbomachine is negligible. The same may not be true for turbomachines installed 
on space platforms spun to generate artificial gravity, which could be subject to more 
significant departure from intended duty if such rotational effects were not carefully 
considered at the design stage. 

7 , 3  D i m e n s i o n l e s s  p e r f o r m a n c e  p a r a m e t e r s  f o r  m i x e d - f l o w  
f a n s  a n d  p u m p s  

Following similar arguments to those which led to a rational performance analysis 
for axial turbines (Chapter 3) and axial compressors and fans (Chapter 4), we would 
expect the general performance of a mixed-flow fan or pump to depend upon a 
number of leading geometrical or fluid-dynamic design variables, some independent 
and some dependent. Thus we might anticipate that the total-to-total efficiency */an: 
would be influenced by the following minimal selection of 11 likely design 
variables" 

t i t  r = f(Cs2 , Woo, U2, rl, r2,A1,A2, Aho, (Apoi01oss , p,/.t) ~, .; k .; k 2 Y Y ~f Velocity Annulus Head Fluid 
triangles geometry rise physical 

properties 

(7.14) 

Velocity triangles and annulus geometrical data are shown in Fig. 7.7 where 
attention is focused on the mean meridional streamline q~o as representative of the 
average stage performance from hub to casing. Cs2 and U2 are the meridional and blade 
velocities applicable at the rotor trailing edge flow exit point P2. w~o is the vector mean 
velocity relative to the fan rotor, that is the vector average of W l and w2, typifying 
velocity levels relative to the rotor blades, rl and r2 are as defined in Fig. 7.7(a) 

Cs2 d 

i / / o \ \ \ \ ~ ~ - ~ ,  r2 f12 w2 b~,~i 2- ...... ] 

i ;1 -""'~r ~1  ~ "x~l~2~ 

U2 r~ 

(a) (b) 

Fig. 7,7 (a) Meridional annulus geometry and (b) veloci~/triangles for a mixed-flow fan 
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and A1 and A2 are the annulus areas at the leading and trailing edge planes viewed 
along the directions of Csl and c~2, which may be approximated as follows: 

A1 = 7r(r21 - r21)/cos X1 ] 
A2 = 7r(r22 - r22)/cos X2 

(7.15) 

Here gl and X2 are the leading and trailing edge 'lean' angles as defined in Fig. 7.7(a) 
and (rhl,rtl) and (rh2,rt2) are the hub and tip radii of the rotor leading and trailing 
edges. Selecting suitable dimensionless groups, r/Tr may be expressed alternatively as 
follows: 

r/TT = f(q~, @, r2rl, ~,A1A2 ~ ,  Re2 ) (7.16) 

with the following definitions 

~p- Cs2/U2 
= Aho/U 2 

rE/rl 
A 2/A1 
(ApoR)loss 

"~176 1 2 ~pwoo 

2r2 U2 
Re2 = 

Flow coefficient 

Work input or head coefficient 

Annulus radius ratio 

Annulus area ratio 

Rotor loss coefficient 

Machine Reynolds number 

(7.17) 

Although Eqn (7.16) provides immediate guidelines for data reduction and selection 
of suitable correlation formats for systematic model tests (e.g. Oh, qJ) charts for specified 
ranges of r2/rl and A2/A 1), it is in parametric form only and gives no indication of the 
likely dependency of r/Tr on the six dimensionless variables. It is possible to move 
towards a more rational analytical equivalent equation to do just that with the help of 
the velocity triangles, Fig. 7.7(b). Let us consider the case of an incompressible fluid 
for which r/a~r is defined as 

Actual stagnation pressure rise 
flair = Frictionless ideal stagnation pressure rise 

Apo -- (Apo)loss 
Apo 

1 2 (7.18) 

From velocity triangles, Fig. 7.7(b), 

w (c l+Cs2) +(W l+WO)2 4{( A2)2 } 
2 2 " = ~2 1 + ~11 + (v l  + U2 -- r 
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Fig. 7 . 8  Loss weighting coefficients for mixed-flow fans for three different radius ratios r2/r I with 
constant annulus area ratio A2/A 1 = 1.0 

But from the definition of flow coefficient, Cs2 = ~)U2,  and from the Euler pump 
equation (1.9a), with zero inlet swirl c01 = 0, Aho = U2c02 = q~U 2 and thus c02 = qJU2. 
The previous equation then becomes 

= (7.19) 

Finally the total-to-total efficiency of the fan or pump may be expressed in the 
following dosed analytical form" 

r/TT=a - ~'= 4) 2 1 + ~ -  7 + l - - q ,  

= 1 -- f(4~, ~, q/r2, A21A 1) ~'~ 

(7.20) 

The losses are thus the product of the profile loss coefficient ~'= and the loss weighting 
coefficient f. 

To summarise: 

(1) The loss coefficient ~'~ is dependent upon the blade profile shape and the 
consequent boundary layer development. It Will also be dependent upon the 
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Reynolds number R e 2  , accounting for the last dimensionless variable listed in 
Eqn (7.17). 

(2) The magnitude of the weighting coefficient f is a unique analytical function of 
the selected duty (~b, ~) and the annulus geometry through (rl/r2) and (A 1/A2), 
namely 

( A l) +(rl f = -~-~ 1+ - - + 1 - ~  
rE 

(7.21) 

This powerful method of analysis thus brings out quite clearly the primary influence 
which the dimensionless groups will exercise over the expected efficiency of a 
mixed-flow fan. Irrespective of the detailed profile aerodynamic characteristics as 
represented here by ~ ,  the rotor losses will depend directly upon the weighting 
coefficientfwhich is itself governed by the selected duty loading (r ~) and the annulus 
geometry (r2/rl, A2/A1). To illustrate these dependencies fhas  been evaluated in Fig. 
7.8 for a wide range of (~b, ~) duties and for r2/rl = 1.0, 1.5 and 2.0 with constant 
annulus a r e a  A 2 / A  1 = 1.0. Figure 7.8(a) represents the limiting case of an~axial 
machine (r2/rl = 1) for which the loss weighting coefficients exhibit the highest values. 
As might be expected the duty coefficients ~b and ~ exercise the strongest influence 
over f, but for a typical (~b, ~) duty the radius ratio r2/rl will produce significant changes 
in predicted efficiency as illustrated by the following example. 

Example 7.1 

Problem 
Assuming a rotor loss coefficient ~'~ = 0.08, estimate and compare the mean streamline 
efficiency of mixed-flow fans of varying r2/rl for a prescribed duty of ~b = 0.6, 

= 0.35. 

Solution 
Making use of Eqns (7.20) and (7.21), the data tabulated in Table 7.3 may be obtained. 
According to this simple example, gains in rotor efficiency are indicated for increasing 
radius ratio r2/rl, with the important reservation that we have assumed the same loss 
coefficient ~ for all four designs. Bearing in mind, however, that the (~b, ~) duty 
loading is the same for all four machines, this may not be too unreasonable an 
assumption for this simple study aimed merely at revealing trends. 

To conclude this section the weighting coefficients are shown in Fig. 7.9 for two 
mixed-flow fans of radius ratio r2/rl = 2.0, but with different area ratios, one diffusing 

Table 7.3 Predicted efficiency of mixed-flow fans as a function of radius ratio r2/r 1 

r2/n f ~ nTr = 1 - f ~  
(%) 

1.0 1.43646 0.08 88.51 
1.5 1.083 29 0.08 91.33 
2.0 0.936 46 0.08 92.51 
2.5 0.857 89 0.08 93.14 
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Fig, "/'.9 Effect of annulus area ratio Az/A1 upon loss weighting coefficients for a mixed-flow fan with 
radius ratio r'2/rl = 2.0 
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Fig. 7,10 Dimensionless velocity triangles for a mixed-flow fan 

v 

(A2/A1 = 1.25) and the other accelerating (A2[A 1 = 0.75). There is clearly a gain in 
rotor efficiency offered by the accelerating annulus, although of course this would 
impose additional demands on the downstream diffusing requirements of the exit 
stator or volute. 

7.3.1 Dimensionless velocity triangle relationships 

Dimensionless velocity triangles may be constructed if all velocities in Fig. 7.7(b) are 
divided by the rotor exit blade speed U2. The outcome of this is shown in Fig. 7.10. 

The various flow angles can now be expressed in terms of the chosen dimensionless 
groups as follows. The absolute exit swirl angle is given by 

a2 = tan-l(qdth) (7.22) 
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and the relative swirl angles are given by 

tan (Z /1 
f12 =" t a n - a { +  ( 1 - O ) }  

r l  
l - g , +  - -  

/3oo = tan-  1 r2 

;i 1+ 

The fluid deflection relative to the rotor then follows from 

8 r =  ~ 1 - - ~ 2  

rlAl 
~b r ~  2 l + g ,  

tan-1 - - -  ( r l A i  

~-2- (1 - ~) \ r2A2 

(7.23) 

(7.24) 

Table 7.4 Velocity triangle data for a range of mixed-flow fans 

Prescribed duty A2/A1 = 1.0 
~b = 0.6, q~ = 0.35 

A 2 [ A  1 =0 . 75  

r2/rl a2 f12 [31 [3oo 8 R [31 [3oo E R 

1.00  3 0 . 2 5 6  47 .291  59 .036  53.973 11 .746  65 .772 57.529 18.482 
1 .25 3 0 . 2 5 6  47 .291  53 .130  50.389 5.839 60 .642 54.090 13.352 
1 .50  3 0 . 2 5 6  47 .291  48 .013  47.654 0.722 55.981 51 .429  8.690 
1 .75 3 0 . 2 5 6  47 .291  43 .603  45.507 -3.688 51.780 49 .316  4.489 
2.00 3 0 . 2 5 6  47 .291  39 .806  43.781 -7.485 48.013 47 .603  0.722 

The above equations have been evaluated for a family of mixed-flow fans to illustrate 
the influence of r2[r 1 and A2/A 1 upon the velocity triangles, Table 7.4. The following 
observations may be made from these data: 

(1) Exit flow. As can be seen from Eqns (7.22) and (7.23b) the absolute and 
relative exit swirl angles a2 and/32 are in fact dependent only upon the fan duty 
(~b, qJ) and are thus the same for all of the fans considered here. 

(2) A2/AI = 1.0. It is of special interest to note that the rotor deflection angle eR 
decreases as the design value for r2/rx is increased. Indeed, if r2/rl > 1.538, then 
/32 >/31 and the blade profiles must be those of an accelerating (turbine) cascade 
rather than those of a diffuser. Surprisingly, eR is then negative. 
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(3) A2/A1 = 0.75. With this modest contraction of the annulus area, significantly 
greater fluid deflections e R are required to deliver the same duty ~b and e a then 
remains positive (i.e. diffusing) for all radius ratios r2/r 1. 

Item (2) illustrates rather dramatically the discussion already presented in Section 7.1 
regarding the two origins of specific work and hence work coefficient qJ in mixed-flow 
turbomachines, namely 

(a) Coriolis forces, and 
(b) aerodynamic (Newtonian reaction) forces. 

For large radius ratios the specific work input due to Coriolis forces is simply too great 
and therefore negative specific work must be supplied by the aerodynamic forces for 
delivery of the specified work coefficient q~. To illustrate this further we could express 
the work coefficient as the sum of these two contributions thus: 

I/t "- I/tAero" + I/tCor. (7.25) 

From the Euler pump equation (7.3), dividing through by U 2 we then have 

~Cor.=l-- ( r l )  2-r2 

I/tAero.=l/t--l+ (r~-~) 2 
(7.26) 

From the second of these equations it follows that the blade profile aerodynamics will 
be those of a turbine rather than a compressor unless 

r 2 1 Limits of r2/r I for positive 
< ~ aerodynamic specific work input (7.27) rl X/1 - 

However, some caution is needed at this point, since this limit does not actually 
coincide with that of zero deflection. Thus from Eqn (7.24) we see that eR is positive 
only if 

-- r ra A (11 de,ection imits o,r ,ra,orpositive R 
The explanation for this is subtle and not of easy perception. From the Euler pump 
equation (7.3) we see that the specific work input from blade profile aerodynamics may 
be expressed as 

WAero. = ~( r2w02-  rl wol) (7.29) 

For zero deflection the relative swirl velocities are equal, namely wol " -  W02 , whereas 
in Eqn (7.29) for zero specific work we must have the condition of equal relative 
angular momentum rl wol = re wOE. Thus the radial shift rl to r2 does in fact influence 
also the aerodynamic work input and it would seem that a small measure of negative 
rotor deflection can still produce some pumping effect. 
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7 . 4  G e o m e t r i c a l  t e c h n i q u e s  f o r  d e a l i n g  w i t h  d e s i g n  a n d  
a n a l y s i s  o f  m i x e d - f l o w  c a s c a d e s  

As already discussed in the introduction to Chapter 2, the fully three-dimensional 
flow through axial turbomachines can be modelled with sufficient accuracy in most 
cases by a series of two-dimensional blade-to-blade or cascade flows superimposed 
upon a circumferentially averaged axisymmetric meridional flow. This strategy was 
illustrated in Fig. 2.1 for an axial fan located within a cylindrical annulus. The 
intersection of a cylindrical meridional stream surface with the blades then generates 
a cylindrical cascade which can be developed into an infinite rectilinear or straight 
cascade in the flat (x,y) plane, Fig. 2.2, by simply unwrapping the cylinder and laying 
it flat on the (x,y) plane. 

Figure 7.11 illustrates the equivalent quasi-two-dimensional modelling of the much 
more complex three-dimensional flow through a mixed-flow turbomachine, in this 
case the Francis turbine previously considered in Section 7.2, Fig. 7.6(b). The 
circumferentially averaged meridional flow for this machine forms a series of coaxial 
stream surfaces of revolution between hub and shroud (casing), Fig. 7.11(a), which 
enter the inlet guide vanes radially and leave downstream of the runner axially. The 
annulus is designed to turn the flow from radial to axial in the zone occupied by the 
turbine runner, resulting in a wide range of geometries of the so-called elementary 
turbines located on each surface of revolution. Thus along the shroud meridional 
surface a-a the flow is predominantly that of an axial turbine. Along the hub stream 
surface b-b, on the other hand, the elementary turbine b--b is subject to a very large 
radial shift from rl to r2 resulting in large loading contributions due to Coriolis 
forces. 

A typical stream surface ~o somewhere in between the hub and shroud will intersect 
the guide-vanes and runner blades as illustrated in Fig. 7.11(b). The guide-vane blade 
profiles then form on this axisymmetric surface what is usually referred to as a radial 
(or circular) cascade, stationary in space. The runner blades, on the other hand, form 
a mixed-flow (sometimes called radial-axial) cascade rotating on the surface of 
revolution. 

The geometrical complexity at first sight seems gross by comparison with the axial 
machine for which the equivalent two-dimensional cascade model in the (x,y) plane 
was so easily obtained, Fig. 2.2. In fact relatively simple geometrical transformations 
can be found to convert the radial or mixed-flow blade-to-blade geometry into 
equivalent straight cascades and the related procedures required to achieve this will 

r 1 ] Radial guide vanes 
~- r2 

b 

i ~ I ~i\ "Runner 
blades 

j , 

(a) (b) 

Fig. 7.11 Intersection of a meridional surface of revolution with the blade rows of a Francis turbine: 
(a) meridional streamlines; (b) surface of revolution for meridional streamline ~o 
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Fig. 7.12 Flow diagram of overall design/selection of mixed-flow turbomachine blading 
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Fig. 7 .13  Transformation of a mixed-flow cascade into an equivalent straight cascade" (a) mixed-flow 
cascade in the z-plane; (b) straight cascade in the ~'-plane 

be derived in the next two subsections. Before moving on to consider these it may 
be helpful to summarise the overall design strategy needed for developing the blade 
geometry of mixed-flow turbines, pumps or fans, which is presented as a flow diagram 
in Fig. 7.12. 

The key fluid-dynamic elements in any such complex iterative scheme are: 

(1) The design and analysis of mixed-flow cascades (boxes 3 to 5). This involves 
the handling of both the complex geometrical problem and the fluid flow 
analysis to ensure the correct aerodynamic performance, especially the fluid 
turning angle and consequent loading. 

(2) Meridional flow analysis to determine the shapes of the surfaces of revolution 
and the distribution of the meridional velocity cs. 

The geometrical content of item (1) will be dealt with next, followed in Section 
7.5 by an initial consideration of the fluid flow aspects of mixed-flow cascades. Full 
details of a theoretical fluid-dynamic design and analysis method for mixed-flow 
cascades have been given by the author elsewhere (Lewis, 1991). This technique 
is based on boundary integral modelling by the surface vorticity method, the 
foundations of which are developed in Chapter 9 for aerofoils and cascades and 
also for axisymmetric flows past bodies and ducts. Regarding item (2), some 
important fundamentals and governing equations for meridional flow have already 
been given in Chapters 5 and 6 .  
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7.4.1 Conformal transformation of a mixed-flow cascade into an equivalent 
straight cascade 

Figure 7.13 illustrates the transformation of a typical meridional stream surface of 
revolution (in the z-plane) into an infinite straight cascade (in the ~'-plane) for the 
case of a mixed-flow fan or pump. The equivalent axes in the two planes are as 
follows: 

(1) Distance s measured along the meridional streamline from some datum P in 
the z-plane is equivalent to coordinate ~ in the ~'-plane. 

(2) Circumferential distance rO is equivalent to coordinate r/. 

If the complex variable ~" = ~ + i t / is  an analytic function ~" = f(z) of the complex 
variable z = s + irO, not only the blade geometry but also the flow field in the z-plane 
may be transformed across to the ~'-plane or vice versa. The reader is referred to 
advanced fluid-dynamics texts such as Batchelor (1970) for a full treatment of 
conformal transformation. For the present purpose the condition of conformality may 
be described quite simply by reference to the two equivalent elementary areas ds. rdO 
and d~. dr/shown in Fig. 7.13. For the transformation to be conformal these elements 
must be geometrically similar, that is 

(1) The corner angles should be the same. 
(2) Equivalent sides (such as ds and d~: or rdO and dr/) should bear a fixed ratio. 

In both planes all corner angles are 7r/2 satisfying condition (1). Condition (2) may 
be stated as follows: 

d~ ds 

dr/ rdO 
(for conformality) (7.30) 

Following Young (1958), this may be achieved by the separate coordinate transforma- 
tions 

ds 
d ~ = m =  /, 

dr /=  dO 

1dr} 
r sin 3' (7.31) 

where 3, = sin-l(dr/ds) is the local cone angle of the meridional streamline, Fig. 7.13. 
Integration of these equations gives us the direct coordinate transformations: 

f l d s  I 1 dr t sc = r r sin 7 (7.32) 

r / = O  

From the second of these equations it is clear that the mixed-flow cascade of say Z 
blades transforms into an infinite straight cascade in the ~" plane stretching between 
?7 = +o0 and of pitch 

2ql" 
t = ~  (7.33) 

Z 



198 Mixed-flow and radial turbomachines 

Equation (7.32a) may be integrated numerically if y is specified as a function of r. 
On the other hand for true conical surfaces with angle 3' = constant, Eqn (7.32) 
becomes 

1 In(r) } 
s~ = sin y 

, 1 = 0  
(7.34) 

7.4.2 Pitch/chord ratio and stagger of a mixed-flow cascade 

At first sight the awkward geometry of a mixed-flow cascade would seem to rule out 
the  definition of representative pitch/chord ratio and stagger, Fig. 7.13(a). This 
problem is resolved by the transformation method. Thus in the transformed ~'-plane, 
Fig. 7.13(b), the blade chord is given by l = (s~2 - S~l)/CosA, and making use also of 
Eqn (7.33), the pitch/chord ratio becomes 

t _ 27r cos A 

l Z(sr2- ~1) 
_ 2~r cos A sin y 

Zln(r2/rl) 

(7.35) 

The stagger angle A can be calculated from the given leading and trailing edge 
coordinates of the mixed-flow blade row (rl, 01) and (rE, 02) by reference again to the 
transformed cascade in the ~'-plane: 

7/2 - -  '01 ( 0 2  - -  0 1 ) s i n  y 
tanA = ~ 2 -  ~1 ln(r2/rl) (7.36) 

Example 7.2 

Problem 
Calculate A and t/l for a mixed-flow cascade given the following data, as in Fig. 
7.13" 

Number  of blades Z = 8, y = 30 ~ 

r 1 = 50 mm 01 = 0 
r2 = 75 mm 02 = 45 ~ 

(leading edge coordinates) 
(trailing edge coordinates) 

Solution 
From Eqn (7.36) 

From Eqn (7.35) 

A = t an -11  

71" 
45 •  

180 
x sin 30 ~ 

In (75/50) 

= 44.084 ~ 

t 
- = 0.6957 
l 
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7.4 .3  Axial  and radial blade rows 

Axial and radial blade rows are special cases of the mixed-flow cascade for which 
the cone angle y is equal to zero and zr/2 respectively. 

Axial blade rows 
Thus for an axial blade row, since the stream surface is cylindrical, r = constant, the 
transformation Eqns (7.32) reduce to 

x (rO) 
~: = - ,  r /=  (7.37) 

r r 

As illustrated by Fig. 2.2 and discussed already in Chapter 2, this is equivalent to 
simply unwrapping and flattening out the cylindrical meridional surface, generating 
identical blade profile geometry in the r 

Radial guide vanes 
For radial cascades, on the other hand, Eqns (7.34) are applicable and setting 3' = 7r/2 
we obtain 

s c = In (r), r /=  0 (7.38) 

The analytical relationship between the complex coordinates ~" = f(z)  may now be 
determined since 

~" = r + i t / =  In r + i0 = In (r e i~ 
(7.39) 

= lnz 

which is a very well-known conformal transformation between Cartesian and polar 
coordinate systems. 

The application of this log transformation to a straight cascade of turbine blades 
is shown in Fig. 7.14. In this case the fluid flows from right to left in the ~'-plane in 
order to simulate a set of radial inflow guide vanes such as might be used at entry 
to the Francis turbine previously shown in Fig. 7.11. The straight cascade shown here 
was designed using the program STACK with a stagger of )t = 45 ~ a circular arc 
camber with angle 0 = 30 ~ and pitch/chord ratio t/l = 1.0. The circular cascade was 
transformed from this by embedding the above coordinate transformations into a 
Quattro Pro spreadsheet. 

Velocity transformation 
For stator cascades such as this inlet guide-vane blade row, it is also possible to 
transform the complex velocity in the if-plane qc = u~ + iv~ from the straight cascade 
to its value qz = Uz + iVz at the equivalent point in the z-plane. By introducing the 
complex potential to = ~b + iqJ the following general relationship is then applicable 
(Batchelor, 1970): 

Uz 
dw dw d~" 

- i V z =  dz - d~ dz 

d~ 
= 

(7.40) 
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Fig. 7.14 Transformation of a set of radial inflow guide vanes into an equivalent straight cascade 
(a) radial guide vanes in the z-plane; (b) transformed straight cascade in the ~'-plane 

But from Eqn (7.39) d~/dz = 1/z, and the last equation then reduces to 

1 
m 

q z = r q ~  (7.411 

Thus velocities calculated by straight cascade analysis in the ~-plane can be 
transformed across to the radial cascade simply scaled by 1/r. 

For rotors, on the other hand, an allowance must be made for the 'relative rotation ~ 
in fluid dynamic analyses. This matter is too complex to be dealt with here but ha,. 
been discussed in detail by Lewis (1966, 1991) and is handled by the author's software 
MIXEQU. The physical nature of the 'relative eddy' or 'slip' flow will be discussed 
next. 

7.5 Relat ive eddy and slip flow in radial and mixed-f low 
turbomachines 

As early as 1928 Busemann published his classic paper on prediction of the flo~ 
through centrifugal pump rotors with logarithmic spiral blades, using conforma] 
transformation theory. It was already fully realised that the flow viewed relative tc 
a centrifugal pump or fan is strongly influenced by the so-called 'relative eddy' whict, 
is introduced when transforming from stationary coordinates to a system which rotate, 
with the rotor. For example, consider the simple radial bladed centrifugal impellel 
illustrated in Fig. 7.15. 

Let us assume that the flow enters without swirl, Col = 0, and is thus irrotational 
Fig. 7.15(a). Adopting polar coordinates (x,r, O) which are stationary relative to the 
laboratory, the vorticity to will be zero. From its definition, Eqn (6.10a), we ther, 
have 

aCo Co 1 aC r 

to= Or "r r r O0 0 (7.421 

with the sign convention that both to and the rotor angular velocity 1} are definec 
as anticlockwise positive. 



7.5 Relative eddy and slip flow in radial and mixed-flow turbomachines 201 

+ 
t0=0 

Relative eddy 

+ 
~el = - 2 0  

J 

c d 

(a) (b) (c) 

Fig. 7.15 Relative eddy and slip flow in a radial bladed pump impeller: (a) zero vorticity to in stationary 
coordinates; (b) vorticity Wre I in rotating coordinates and relative eddy; (c) streamline flow relative to 
blade passage abcd 

Let us now consider the flow as viewed by an observer sitting on and travelling 
with the rotor. The velocity components (Wr, wo) relative to his coordinate system 
which rotates with the rotor are related to those in the stationary coordinates (Cr, Co) 
through Eqns (7.10b) and (7.10c). Introducing these into Eqns (7.42) results in the 
following expression for the relative vorticity tore I as seen by the observer: 

OWo Wo lo3w r 
tOrel = O-r--- -k- r r O0 -- -- 21~ (7.43) 

Thus viewed relative to the rotor the entire flow field is filled with vorticity tore I Of 
strength 213, i.e. double the rotor angular velocity fl but clockwise in direction. 
Because of this, the packet of fluid contained within any blade passage such as abcd, 
Fig. 7.15(b), being temporarily cut off from fluid in neighbouring blade passages, 
tends to rotate in the clockwise sense as illustrated, producing the slip velocity W0s 
along the exit line cd. Superimposing the throughflow on top of this the streamline 
pattern of the relative flow will be similar to that illustrated in Fig. 7.15(c). Instead 
of leaving radially parallel to the blades, the flow slips backwards in the direction 
opposite to rotation, resulting in a reduction in the anticipated head rise. To account 
for this the slip factor may be defined as follows: 

Actual swirl velocity at rotor exit c02 
tr = (7.44) 

Swirl velocity with perfect guidance by the blades c~2 

where cb2 is based on the ideal machine in which the relative flow at exit follows 
the blade direction exactly. Thus for radially bladed machines cb2 = U2 = r213 and 
the slip factor becomes 

U 2 -- WOs WOs 
or= = 1 (7.45) 

U2 U2 

The slip factor will thus always be less than unity and provides a simple basis for 
implementing the relative eddy slip flow correction. Thus from the Euler pump 
equation (7.1) the predicted frictionless head rise becomes 

h o 2 -  ho l  = U2c02  = orU2c'02 (7.46) 

where c~2 assumes perfect guidance by the blades at exit from the rotor. 
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Fig. 7,16 Typical streamline pattern for a radial bladed centrifugal impeller and predictions of slip factor 
for a wide range of geometries and blade numbers: (a) streamline pattern with 20 blades; (b) slip factors 
for range of geometries 

7.5.1 Predicted slip factors for radial bladed centrifugal machines 

Theoretical analyses of radial bladed rotors were undertaken by Stanitz (1952) using 
finite difference methods and by Lewis (1966) by conformal transformations, both 
methods permitting the prediction of streamline patterns. Results are compared in 
Fig. 7.16 for a 20-bladed rotor with radius ratio rl/r2 = 0.65. Stanitz imposed a 
boundary condition of radial entry flow at rl. Lewis's method, on the other hand, 
modelled the entry flow also and Fig. 7.16(a) shows the predicted flow with prewhirl 
put equal to the blade speed, col = rlf~. The methods are in good agreement and 
reveal strong slip flow at the rotor exit. Predicted slip factors according to Lewis's 
theory are compared with the results of Busemann (1928) in Fig. 7.16(b) for a very 
wide range of radial bladed impellers but with zero prewhirl, col = 0, showing 
excellent agreement. Two cases calculated by Stanitz are also shown and are found 
to be in good agreement. Although Stanitz assumed the presence of prewhirl 
col -- r 1 ~ for these cases, the blades are sufficiently tightly packed for the entry flow 
at rl to exercise almost insignificant influence over the exit flow at r2. 

Of special interest in relation to this last point are the contours of constant 
pitch/chord ratio superimposed upon Fig. 7.16(b). These were obtained from Eqn 
(7.35), introducing y = zr (for radial meridional flow) and A = 0 (zero stagger for 
radial blades). For t/l < 1.0 the slip factor or is almost constant for a given number 
of blades as rl/r2 is reduced. For t/l > 1.0, on the other hand, the slip factor falls off 
considerably as either (a) the number of blades is reduced or (b) rl/r2 is increased. 
This behaviour pattern is much in line with that of axial cascades as discussed in 
Chapter 4, Section 4.8 in relation to fans. As a general rule it is advisable to select 
the blade number Z and the radius ratio rl/r2 such that t/l < 1.0 in order to maintain 
high slip factors and thus high head rise. For radial bladed machines this design 
constraint can be fed into Eqn (7.36) to give recommended minimum blade numbers, 
namely 

277" 
Z > (for t/l < 1.0) (7.47) 

ln(r2/rl) 
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Fig. 7.17 Velocity triangles for a swept-back centrifugal impeller with blade angle 

7.5.2 Slip factors for swept-back centrifugal impellers 

A typical centrifugal pump impeller and its exit velocity triangles are shown in Fig. 
7.17 with blade exit angle/3~ leaning backwards in the opposite direction to rotation 
II. Due to the influence of the relative eddy, however, the actual efflux angle/32 will 
be greater than/3~. Constructing the velocity triangles the effect of slip is to reduce 
the exit swirl by the slip velocity cos. The previous definition of slip factor, Eqn (7.44), 
is still valid and for swept-back impellers it becomes 

C02 COs COs or= =1  = l -  
CP02 Ct02 U 2 - Cr2 tan/3~ 

= 1 -  
co/U2 

1 - 4' tan 13[ 

(7.48) 

The slip factor is thus generally dependent upon two parameters, namely 

(1) The dimensionless slip velocity cOs~U2- that is, the slip velocity as a fraction 
of the tip blade speed U2. 

(2) The flow coefficient th = Cr2/U2 based on exit radial velocity Cr2. 

First we should take notice that item (2) does not apply for radially bladed rotors 
since/3~ is then zero and Eqn (7.48) reduces to 

COs 
tr = 1--77", (for radial blades only) (7.49) 

u 2  

In this case Busemann's theoretically predicted or values, Fig. 7.16(b), are applicable 
irrespective of the flow coefficient 4,. 
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Fig. 7.18 Dimensionless head-flow characteristic for a backward-swept centrifugal rotor 

Secondly, we can deduce from the earlier discussion of the physical origin of 
relative eddy flows that the magnitude of the slip velocity c02 = W0s is dependent 
mainly upon the relative vorticity 2II and the blade passage shal~e, Section 7.5.1 Thus 
for a constant speed characteristic ~b = Cr2/U2 versus qJ = gh/U~, since f~ is constant 
the dimensionless slip factor coJU2 can be determined from any convenient duty 
(~b, q0. The obvious choice of duty to make is the 'shut-off' head ho for which the 
flow coefficient is zero, ~bo = 0. From Eqn (7.49) we then have 

COs 
= 1 - tro (7.50) 

U2 

where tro is the slip factor for zero mass flow. Introducing this into Eqn (7.48), the 
slip factor for any other flow rate ~b becomes 

t r o -  ~b t a n / 3 [  
tr = 1 - ~b tan/3~ ( 7 . 5 1 )  

The dimensionless characteristic (th, q0 curve for the impeller is illustrated in Fig. 7.18, 
in which point O is the shut-off head duty ~b = 0, qJ = qJo. Its equation follows from 
the Euler pump equation since 

gh Co2 

_ , ch ( 
(for zero prewhirl machines) 

1 - Wb2u2 ) = or(1 - ~b tan/3~) (7.52) 

Introducing Eqn (7.51)into this, we have finally the alternative expression for the 
constant speed characteristic curve in terms of the shut-off head slip factor tro: 

qJ = tro - 4~ tan/3[ (7.53) 

1We will return to this assumption later at the end of Section 7.5.3. 
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Fig. 7.19 Predicted shut-off head slip factors Oo for swept-back centrifugal impellers, after Busemann 
(1928) 

Thus the theoretical frictionless characteristic (losses have been ignored here) is linear 
and is determined by the vane angle/3~ and the shut-off head coefficient qJo, which, 
from Eqn (7.53), is given by qJo = tro. 

The maximum flow which can be delivered at point M on the characteristic, Fig. 
7.18, is thus for the condition q, = 0, namely 

~bM = fro/tan/3~ (7.54) 

Busemann (1928), in his comprehensive foundation paper on this subject, gave 
shut-off head slip factors for a wide range of vane angles for centrifugal impellers 
with logarithmic-spiralled blades (i.e. with constant vane angle/3 =/3~ from leading 
edge to trailing edge). Figure 7.16(b) shows Busemann's results for the special case 
/3 = 0 ~ for radial blades. A selection of his predicted data for vane angles in the useful 
range for swept-back rotors is shown in Fig. 7.19 for/3 = 10 ~ 20 ~ and 40 ~ Busemann's 
classical model as given was restricted to infinitely thin log-spiral blades. It is possible 
to extend his method to a family of blades with finite profile thickness and camber 
as shown by Fisher and Lewis (1972) for the case of radial blades, but these are of 
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Fig. 7.20 Predicted work coefficients for swept-back centrifugal impellers with shock-free inflow, after 
Busemann (1928) 

limited scope. An alternative, extremely powerful and flexible numerical method for 
dealing with radial or mixed flow rotors of arbitrary profile shape was published in 
full by Fisher (1975) and reviewed in brief by Lewis, Fisher and Saviolakis (Lewis 
et al., 1972). This method, which employs boundary integral modelling techniques, 
includes the influence of relative eddy and slip flow and has been validated against 
exact solutions and experimental test. The author has more recently reviewed this 
in depth (Lewis, 1991) and developed PC software for design and analysis of arbitrary 
mixed flow turbomachines including a simple meridional analysis. 

7.5.3 Shock-free inflow data for swept-back centrifugal impellers 

As explained already in Section 2.6, the term 'shock-flee inflow' refers to the 
optimum inlet angle fll at entry to a blade row for which the stagnation point is located 
exactly on the leading edge resulting in smooth entry flow and hence low losses. This 
will correspond to some duty point (~be, qJe), Fig. 7.18, for which the entry 
aerodynamics are optimum and the efficiency is therefore likely to be close to its 
maximum value. (~be, qJe) would thus be a sensible choice for design duty. To help 
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with design duty selection Busemann used his theoretical analysis to produce the 
curves shown in Fig. 7.20. 

For a given vane angle /3, number of blades Z and radius ratio rl/r2, the work 
coefficient for shock free inflow qJe has a unique value available from these curves. 
The corresponding flow coefficient t~e then follows from the characteristic curve, Eqn 
7.53, namely 

t~e---- (O" o -- q~e)/ tan/3~ ( 7 . 5 5 )  

As already stated, Busemann's data, both Figs 7.19 and 7.20, are applicable only 
to rotors with thin backward-swept log-spiral blades and with zero prewhirl, col = O. 
Numerical methods such as the author's MIXEQU computer code are able to 
lift these restrictions totally and provide accurate (although only frictionless) 
design/analysis facilities for the whole range of radial or mixed-flow fans or turbines, 
usually with incompressible flow. An example will help to illustrate the use of the 
above analysis. 

Example 7.3 

Problem 
A centrifugal pump has eight log-spiral blades with vane angle/3 = 70 ~ and radius 
ratio rl/r2 = 0.6. Use the above data and analysis to estimate the following: 
(1) The shut-off work coefficient qJo. 
(2) The maximum flow coefficient ~bM. 
(3) The shock-free duty (the, q~e). 
For shock-free flow calculate the relative inlet and outlet angles,/31 and/32, and the 
slip factor try. 

Solution 
(1) From Fig. 7.19, % 
(2) From Eqn (7.54), 

= 0.85. 

~bM = go/tan/3~ = 0.85/tan 70 ~ = 0.309 37 

(3) From Fig. 7.20, q~e 
curve), 

= 0.33, and thus from Eqn (7.53) (the characteristic 

~e = (~ - q~e)/tan/3~ = 0.1893 

Calculation of fll  

tan f l l  -" 

Hence f l l  -- 62.26~ 
Calculation of f12 

rl ~~ --- r2 ~'~ X cr2 X ~ - -  r l  - ~ ~ ( r l )  2 

Crl Cr2 Crl r2 r2  

tan f12 --- 
w02 U 2 -  c02 U 2 -  ~'U2 1 - 

Cr2 Cr2 Cr2 r 

Hence f12 -- 74.22~ 
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Note that the relative eddy increases/32 but decreases /31 as compared with the 
vane angle/3 for the case of shock-free inflow. 

From Eqn (7.51) the slip factor for shock-free inflow is 

0.85 - 0.1893 tan 70 ~ 
= 0.6874 

~ = 1 - 0o 1893 tan 70 ~ 

Reconsideration o f  the assumption regarding Cos 
In Section 7.5.2 a crucial assumption was made regarding the slip velocity Cos that 
led to simplifications, namely that the slip velocity 'is dependent mainly upon the 
relative vorticity 2~ and the blade passage shape'. Now co is vectorially equal to 
w 2 -  w~, Fig. 7.17. Thus the slip velocity represents the departure of the actual exit 
velocity relative to the rotor from the actual blade exit angle. Clearly this is influenced 
by the relative eddy 2f~ but also by any variation of the inflow angle/31 at different 
flow coefficients. As was shown in Chapter 2 for straight cascades, the outlet angle 
/32 will depend upon the inlet angle/31 (in this case with no relative eddy for the 
straight cascade), but significantly so only if the pitch/chord ratio is greater than unity. 
Applying this to centrifugal machines, the foregoing analysis and use of Busemann's 
data is therefore valid provided t/l < 1. From Eqn (7.35) this is satisfied for log-spiral 
blades if 

27r cos/3 

Zln(r2/r l )  
< 1.0 (7.56) 

In most practical designs t/l will be less than unity and the above procedures are then 
justified. The full Busemann analysis does not in fact require this assumption but 
is rather more complex and difficult to apply. 

7.6 Some other slip factor formulations for radial and 
mixed-f low fans and pumps 

One of the earliest slip factor formulations was proposed by Stodola (1927) based 
upon the assumption which was qualified in the last paragraph. Referring to Fig. 7.21, 
Stodola assumes that the slip velocity cOs is approximately equal to the circulation 
velocity around the throat circle C of diameter d due to the relative eddy. Thus 

o r  

Circulation ~ (vorticity inside circle)x area 
d 2 

C os ,rd ~ 2I~ ,r ~ 
4 

The diameter d may also be approximated by 

27rr2 
d ~  t2 cos /3~  Z cos/3~ 

where t2 is the circumferential pitch at radius r2. Combining these equations we have 
finally 

COs -= 
"/rr 2 ~'~ COS ~ 

Z 
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Fig. 7.21 Throat section of swept-back impeller 

and from Eqn (7.48) the slip factor approximates to 

tr = 1 - (,r/Z) cos/3~ (Stodola) (7.57) 
1 - 4) tan/3~ 

Stanitz (1952) undertook a remarkably thorough and penetrating theoretical study 
of centrifugal and mixed-flow compressors by finite difference modelling, concentrat- 
ing mainly on radially bladed machines but including some studies with modest 
sweep-back angles/3 of 26.56 ~ and 45 ~ . In addition to slip factors his analysis delivered 
detailed streamline predictions, such as that shown already in Fig. 7.16(a), for various 
flow coefficients and also blade surface velocity distributions indicating the presence 
of a standing eddy with reversed flow at low 4, values and the special influence of 
compressibility. According to his findings the slip velocity Cos was dependent upon 
blade number Z only, and the earlier expression of Stanitz and Ellis (1950) was 
justified irrespective of vane angle/3, namely 

Cos = 0.63r21~Tr/Z 

so that the slip factor, Eqn (7.48), can then be expressed as 

0.637r/Z 
or = 1 -  (Stanitz) (7.58) 

1 - 4,2 tan/3~ 

Although compressibility was found to influence his predicted streamline patterns 
within the blade passage, Stanitz found its influence upon slip factor to be negligible 
for the cases considered. 

7.6.1 Slip factors for mixed-flow fans and pumps 

Lewis (1966) derived exact conformal transformation solutions for mixed-flow 
turbomachines with straight blades of zero stagger. This analysis was later extended 
by Fisher and Lewis (1972) to profiled symmetrical or cambered blades. Although 
there is a lack of data on slip factors for mixed-flow machines, these analyses have 
established that a correct estimate of tr for a mixed-flow fan or pump with cone angle 
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3', Fig. 7.13, is given by that for an equivalent radial machine with M blades 
where 

Z 
M = (7.59) 

sin 3' 

This follows directly from the conformal transformation theory outlined in Section 
7.4.1, although in this case transforming the mixed-flow cascade into an equivalent 
radial (rather than straight) cascade. The analysis of Stanitz (1952) confirms this 
approach. Thus all of the foregoing formulations may be applied directly to 
mixed-flow pumps and fans. 



8 
Ducted propellers and fans 

Introduction 
The main function required of the various turbomachines considered so far is the 
rotodynamic transfer of energy between an impeller and the fluid passing through 
a carefully prescribed constraining annulus such as that of the mixed-flow fan 
illustrated in Fig. 8.1(a). In the case of a pump or fan the requirement is to 'move 
a given volume flow rate of fluid while at the same time increasing its stagnation 
pressure or enthalpy, these two tasks being typified by the related duty coefficients 
(th, ~) as defined by Eqns:(4.2) and (4.4). 

The ship or aircraft propeller is no less a rotodynamic pumping device by means 
of which shaft input work may be converted into energy increase of the through-flow 
fluid. As illustrated by Fig. 8.1(b), however, the operational requirements of a 
propeller are usually quite different from those of an axial or mixed-flow fan, even 
though the blade shapes and the aerodynamic/rotodynamic mechanisms are very 
similar. Firstly propellers operate in 'open water' so that the energised fluid is finally 
delivered at ambient pressure p~. Secondly the main purpose of a propeller is usually 
the production of thrust for the purpose of propulsion. This is achieved in reaction 
to the momentum developed by the jet exit velocity Vj as a result of the energy 
transferred to the fluid. The basic principles underlying this will be elaborated in 
Section 8.1 including a suitable definition of propulsive efficiency. 

The ducted propeller or fan illustrated in Fig. 8.2(a) sits half-way between these 
two extremes. Firstly, such devices are required to operate in the 'open water' 
situation and to deliver thrust in reaction to a fluid jet Vj delivered finally at ambient 
pressure. On the other hand the propeller is now located within a duct of short length. 
Although the duct in a sense fulfils the role of the turbomachine annulus casing in 
guiding the fluid through the blade space, its primary duty is much more important 

Poo ~ p =  

I I  
vj 

_ / _ ~  

(a) (b) 

Fig. 8.1 Turbomachine and propeller configurations: (a) mixed-flow fan; (b) open propeller 
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Fig. 8.2 Ducted propeller and by-pass fan configurations: (a) ducted propeller or fan; (b) by-pass 
engine 

and complex than this. For ducted propulsors the total forward thrust T is shared 
between the propeller Tp and the duct Td. Typically in a highly loaded unit the duct 
may actually supply as much as 30% of the total thrust. The benefit of this feature 
is twofold, namely (a) an increase in the total possible achievable thrust for a given 
propeller diameter and (b) an increase in propulsive efficiency. The basic principles 
underlying this will be explained in Section 8.2. A design and performance analysis 
will be developed in Sections 8.3 and 8.4 including a discussion of the main fluid 
dynamic loss mechanisms and related analysis. A simple method for prediction of 
the off-design performance characteristics will be developed in Section 8.5. 

8.1  O n e - d i m e n s i o n a l  a c t u a t o r  d i s c  p e r f o r m a n c e  a n a l y s i s  
fo r  o p e n  p r o p e l l e r s  

Figure 8.3 depicts the flow viewed relative to a propeller and illustrates the slipstream 
contraction associated with the progressive rise of the through-flow velocity from Va 
a long way upstream to Vjo in the downstream jet. For simplicity we shall assume 
here that the specific work input and consequent stagnation enthalpy (compressible 
fluids) or stagnation pressure (incompressible fluids) is the same for all streamlines 
passing through the area swept out by the propeller and that the through-flow velocity 
rises to Vpo in the plane of the propeller. Applying Newton's second law, the propeller 
thrust is then given by 

Tp = rh(Vjo - Va) (8.1) 

where the mass flow rate rh through the propeller is given by 

~rD 2 
rh = p---~- Vpo (8.2) 

and where for simplicity we are neglecting the area occupied by the propeller hub. 
Thus 

~rD 2 
Tp = p ~ Vpo(Vjo- Va) (8.3) 
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Fig. 8.3 Development of an open propeller jet flow 
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Alternatively we may obtain an equally valid but different expression for thrust in 
terms of the pressure rise P 2 -  Pl across the propeller. At this point it is appropriate 
to model the propeller by an equivalent actuator disc as illustrated in Fig. 8.3 and 
as discussed in Section 5.4 in relation to axial fans. The pressure force acting on the 
disc is then given by 

7rD 2 
Tp = ( P z - p l )  4 (8.4) 

Let us consider the case of inviscid incompressible flow. In many propeller 
applications the swirl velocity in the wake will also be small compared with Vjo, 
whereupon we may appeal to the energy equation in the form of Bernoulli's equation, 
from which 

1 2 
p~  - p l  = ~p (V jo  - V2a) (8.5) 

In other words the pressure rise introduced by the actuator disc is finally converted 
into increased kinetic energy in the wake. Combining Eqns (8.4) and (8.5) 

P wD2 (V2o- V2a) 
T p =  8 

p,n.D 2 
(Vjo- Va)(Vjo + Va) 

(8.6) 

Eliminating Tp from Eqns (8.3) and (8.6), the following result is obtained for flow 
through an open propeller actuator disc: 

gpo -- I(V a -k- gjo ) (8.7) 

and thus we see that the relative through-flow velocity Vpo in the plane of the actuator 
disc is the average of the relative velocities Va and Vjo at x = +~.  
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Various dimensionless parameters have been defined for handling propeller 
performance analysis but of particular importance are the thrust coefficient CTo and 
the propulsive efficiency 7/p. CTo is defined as 

CTo = 
rp 

1 2 7 r D 2  

~pVa 4 
(8.8) 

which, through Eqn (8.6), is given in terms of the dimensionless jet velocity 
Vjo/Va by 

CTo = \ Va - 1 = a 2 -  1 (8.9) 

where 

Vjo = a (8.10) 
Va 

A suitable definition of propulsive efficiency may be expressed as 

~'/p = 
Propulsive power delivered to vehicle, P 

P 

P +  Ew 

Shaft input power, Ps 

(8.11) 

Thus the shaft input P~ has to provide both the useful propulsive power P and the 
kinetic energy losses Ew dissipated ultimately by the jet wake, which may be 
expressed as follows. Firstly the propulsive power P delivered to the vehicle may be 
expressed through 

P = Tp Va = Thrust • speed of vehicle 

= pTrD.___~ 2 (V2o - V 2) V a . 

8 

= pTrD2V3a (a 2 -  1) (8 12) 
8 

Secondly the wake kinetic energy loss due to mixing of the jet finally at x = o0 is 

ew = �89 Va) 2 

and making use of Eqns (8.2) and (8.7) 

EW "~ 
p,rrD 2 

16 (Vjo-  Va)2(Va + Vjo) 

p,n.D2 V 3 
( a -  1)2(a + 1) 

16 

(8.13) 
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Fig. 8.4 Open propeller propulsive efficiency versus Vjo/V a and GTo: (a) effect of jet velocity upon rip; 
(b) effect of thrust coefficient upon T/p 

Introducing these results into Eqns (8.11), the propulsive efficiency may be expressed 
directly in terms of Vjo/Va through 

2 2 
= = (8.14) "rip 1 + Vjo]V a 1 + a 

Alternatively, eliminating Vjo/Va from Eqn (8.9), r/p may be expressed as a unique 
function of the thrust coefficient only, namely 

2 

'0p ~- 1 + V'I + C T o  (8.15) 

Graphs portraying these important and very interesting functional relationships are 
shown in Fig. 8.4. As the jet velocity ratio Vjo/Va is increased to raise the design 
choice of thrust coefficient CTo, SO the kinetic energy dissipated in the propeller wake 
will also increase, resulting in a progressive reduction of propulsive efficiency, Fig. 
8.4(a). 

This is also borne out by Fig. 8.4(b) which reveals a very rapid reduction of r/p 
as the selected design value of CTo is increased for lightly loaded propellers in the 
range 0 < CTo < 1.0 and a progressive reduction of r/p for higher values of CTo. To 
obtain a feel for likely practical levels of CTo it is necessary to consider the propeller 
blade hydrodynamic or aerodynamic loading and this we will undertake in the next 
section in relation to the earlier consideration of axial fans in Chapter 4. 

8.1.1 Velocity triangles and duty coefficients for open propellers 

Inlet and outlet velocity triangles for flow at some reference radius such as the r.m.s. 
or mean radius of the propeller are shown in Fig. 8.5. Dimensionless velocity triangles 
have also been assembled from these by normalising all velocities with the blade speed 
U. Adapting the duty coefficients (~b, ~,) defined for fans and compressors, Section 



216 Ducted propellers and fans 
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Nom~lised velocity triangles 

Fig. 8 .5  Velocity triangles for a propeller.. 

4.1, for the propeller in incompressible flow, we then have 

r 
U 

= pU 2 

(8.16) 

where flow coefficient ~b relates to the axial velocity Vpo in the plane of the propeller. 
Combining Eqns (8.4), (8.8) and (8.7) the thrust coefficient may be developed as 
follows: 

_ P 2 -  P l _ �89 w~)( Vpo~ 
CTo -- 1 2 -- 1 2 

~ p V a  ~ p V p o  V a  ] 

w 2 - w 2 (1 + a) 2 
= U2~2 •  

But from the dimensionless velocity triangles 

- -ff  = [1 + t~ 2] - [ ( 1  - 0) 2 + t~ 2] 

= 0(2 - O) 

so that Cxo is related to the duty coefficients ~k and ~, and the jet velocity ratio a 
through 

CT o -- 
~ ( 2 -  ~)(1 + a) 2 

4q~ 2 
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Fig, 8,6 Thrust coefficient versus duty coefficients (~,~) at the r.m.s, radius of an open propeller 

Eliminating a by means of Eqn (8.9) we have finally an identity relating th, ~ and 
CTo, namely 

~ 2 -  ~)(1 + ~/1 + CTo) 2 
CTo = 4~b2 (8.17) 

For a specified propeller blade (~b,~) duty (i.e. loading) at the r.m.s, radius, this 
equation may be solved for CTo by successive approximations resulting in the 
functional relationship plotted in Fig. 8.6. CTo values are shown here for the practical 
range of work coefficients applicable to axial fans, 0 < ~ < 0.3, and for a very wide 
range of flow coefficients, 0.5 < ~b < 1.5. Although in the field of propellers the thrust 
coefficient CTo presents itself as an obvious primary design/selection variable 
typifying the propeller's main duty as a thrusting device, data maps such as Fig. 8.6 
provide an essential link to aero/hydrodynamic constraints on the permissible blade 
loading expressed through the duty coefficients (~b, ~). This link extends yet further 
to the velocity triangles and thus to the operating environment of the blading as 
illustrated already by Fig. 8.5. 

Example 8.1 

Problem 
Determine the thrust coefficient, the relative flow angles fll and t2 and the pitch/chord 
ratio for a propeller with specified blading duty th = 0.55, @= 0.15 at the r.m.s. 
reference radius. Assume a conservative diffusion factor of DF = 0.4. 

Solution 
From Fig. 8.6 a first estimate of CTo = 1.55 may be obtained. Refining this by 
successive solution of Eqn (8.17) results finally in the solution 

CTo = 1.5446 
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From velocity triangles we then have 

f l l  - -  arc tan (1/4)) = arc tan (1/0.55) = 61.189 ~  o8,) 
/32 = arc tan 4) = arc tan \ ~  = 57.095 ~ 

From Section 4.7, Eqn (4.47a), by analogy with a high reaction axial fan, the 
pitch/chord ratio is given by 

_t = 2 {V,b 2 + (1 - @)2_ (1 - DF)V'4~ 2 + 1} 

= 4.369 

As might be expected, for this lightly loaded propeller (~, = 0.15), the pitch/chord 
ratio is much higher than would be expected for a typical axial fan (see Example 4.4) 
p. 104. We need to bear in mind that an open propeller does not have the benefit of a 
surrounding duct or annulus which enables axial fan blades to generate lift from hub to 
tip. Propeller blades must be designed to unload their aerodynamic lift forces 
progressively to zero at the blade tips resulting in the shedding of helical vortices in the 
tip region which also lead to additional induced drag. Some discussion of this will be 
given in Section 8.4.1 but it is outside the present objectives and scope to provide 
specific details of these complex fluid-dynamic design problems and their solution. A 
wide variety of propeller blade design and profile selection methods to handle this are 
covered in the literature, ranging from lifting line and lifting surface theories (Glover, 
1970; Pien, 1961; Kerwin and Lee, 1978; Weissinger and Maass, 1968) to the cascade 
strip method which is followed here in Chapters 2 and 4 based on turbomachinery 
thinking. The objective at this point will be to turn our attention instead to a class of 
propulsors much more akin to fans and pumps for which turbomachinery methodology 
is more certainly applicable, namely ducted propeller systems. 

8.2 Kort Nozzle and Pump Jet ducted propellers 
The operating environment of a propeller may be modified considerably by locating it 
within a surrounding annular duct which itself becomes an important component of 
the propulsive system. As illustrated in Fig. 8.7 there are two types of ducted propulsor 
which have been widely used, namely the Kort Nozzle and the Pump Jet. These have 
quite different performance features and applications which are as follows. 

The Kort Nozzle propulsor (Fig. 8.7(a)) has an accelerating duct designed to 
increase the mass flow swallowing capacity of the propeller by raising the velocity 

~p in the propeller plane and therefore the jet momentum rhVj and total thrust. The 
uct itself can provide a considerable proportion Td of the total thrust T = Tp + Td 

of such propulsors, typically 25-30%. As will be shown later, an additional important 
advantage of a Kort Nozzle propulsor is its capacity to develop much higher 
propulsive efficiency than an open propeller of the same total thrust and to achieve 
this with a smaller propeller diameter. Kort Nozzles are thus very attractive for the 
propulsion of heavily loaded vehicles requiring good fuel economy and have 
consequently been widely used for the propulsion of trawlers and tugs at the small 
scale and also for supertankers and bulk carriers at the large scale where draft imposes 
severe upper limits on propeller diameter. They also offer attractions for light 
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Fig. 8.7 (a) Kort Nozzle (accelerating duct) and (b) Pump Jet (decelerating duct) ducted 
propellers 

low-speed aircraft and hovercraft and for submersibles and other ocean survey 
vehicles for which the possibility of a steerable duct provides the advantages of 
additional vector thrust. 

The Pump Jet propulsor, on the other hand, has a diffusing duct as illustrated by 
Fig. 8.7(b), designed to reduce the velocity Vp and to raise the 'ambient' pressure 
in the propeller plane. The advantages of this are twofold. Firstly the propeller will 
be more resistant to cavitation. Secondly, as a consequence of this and also of the 
reduced levels of velocity relative to the propeller blades, the noise propagation may 
be significantly reduced. Such features could be advantageous for fairly high speed 
vessels operating close to the free surface with low submergence, where cavitation 
in particular is a distinct possibility. Military applications are thus pertinent here. 
Function must override propulsive efficiency rip as the governing factor over design 
choice since in general for such devices r/p will prove to be less than that of an open 
propeller of the same total thrust while the propeller diameter will be greater. 

Also indicated on Fig. 8.7 is the sense of the duct circulation. Thus the duct may 
be thought of as an annular aerofoil generating a bound circulation F and consequent 
lift. In general we would expect the sense of the circulation to match that of the 
camber. Thus the negative camber of the Kort Nozzle duct profile will generate an 
anticlockwise circulation F (Fig. 8.7(a)) and an associated radially inward 'lift' force 
on the duct. Conversely the positive camber of the Pump Jet duct will generate 
clockwise circulation F resulting in radially outward duct thrust. If we think of the 
duct circulation F as a ring vortex, it is evident that it will induce additional mass 
flux through the propeller plane for the Kort Nozzle and reduced mass flux (and hence 
a diffusing effect) for the Pump Jet. Duct shape is thus crucial for the proper 
functioning of a ducted propulsor and has been the subject of considerable theoretical 
and experimental research. Crucial though such fluid dynamic techniques are for the 
design and development of high performance ducted propulsors with correctly 
matched duct and propeller geometries, they must be based upon an initial sound 
overall dimensional analysis capable of revealing the various interactions between 
suitably defined overall dimensionless design/performance parameters. Thedevelop- 
ment of such an analysis will be the main purpose of the next two sections. 
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8.3 Dimensional analysis for ducted propellers 
Following similar arguments the analysis in Section 8.1 may be extended to ducted 
propellers for which the total thrust may be expressed as 

,.trD 2 
T =  p---~--Vp(Vj- Va) (8.18) 

= T p + T d  

In this case it is convenient to define an additional dimensionless variable to account 
for the duct thrust, namely the thrust ratio ~': 

T ' - -  
Propeller thrust = Tp (8.19) 

Total thrust T 

As before, Eqn (8.4), the propeller thrust Tp may be related to jet velocity Vj by 
applying Bernoulli's equation to yield 

,trD 2 p,a.D 2 
Tp = (P2 - Pl) 4 = ~ (v2 - v2) (8.20) 

= ~-T 

Eliminating T from Eqns (8.18) and (8.20) results in the following expression for the 
velocity Vp in the propeller plane: 

Va + Vj (8 .21 )  
Vp= 2r 

Comparing this with the analogous result for open propellers, Eqn (8.7), we note 
that the thrust ratio ~-influences Vp as shown in Table 8.1. 

Table 8.1 Effect of duct thrust on velocity Vp in the plane of a ducted propeller 

Duct thrust Thrust ratio Type of ducted Comparison with 
Tp r propeller equivalent open 

propeller 

Positive ~- < 1.0 Kort Nozzle Vp > Vpo 
Zero r=  1.0 Open propeller Vp = Vpo 
Negative z > 1.0 Pump Jet Vp < Vpo 

The thrust ratio ~-thus has a profound effect upon the velocity level in the propeller 
plane and unequivocally determines whether a ducted propulsor is a Kort Nozzle 
( r <  1.0) or a Pump Jet (~'> 1.0). 

The propulsive efficiency for an open propeller was shown to be a function of the 
thrust coefficient CTo only, Eqn (8.15). For a ducted propulsor, on the other hand, 
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adopting the same basic definition of propulsive efficiency, Eqn (8.11), we would 
expect r/p to exhibit the following general form of relationship: 

np= f(CT, r) (8.22) 

where both CT and z can now be regarded as the available overall independent 
design variables. By analysis similar to that in Section 8.1 this general equation 
may be transformed into an explicit form which determines quite definitively the 
influence of both CT and r upon r/p. To achieve this the thrust coefficient may first 
be expressed as 

CT 
Te + Td 

1 2 7rD2 

"~pVa 4 

1{ } 
- -z pV2a rtD2 

4 
(8.23) 

Introducing Tp from Eqn (8.20) then yields 

1 2 
CT 

which may be inverted to reveal the dependency of the jet velocity Vj/Va upon the 
independent design variables CT and z, namely 

Vj = V'I + rCT (8.24) 
Va 

Now as already suggested, the previous definition of propulsive efficiency for open 
propellers, Eqn (8.11), is no less valid here for ducted propellers, namely 

Propulsive power delivered to vehicle, P P 
= [8.11] 

l"/p -- Shaft input power, Ps P + Ew 

where, making use of Eqn (8.20), the propulsive power P is given by 

P = Thrust x vehicle speed = T V  a 

= PrrD.__~ 2 (V 2 - V2a)V a 

8r 

(8.25) 

The wake kinetic energy loss Ew, making use also of Eqns (8.2) and (8.21), 
becomes 

EW 1 rh(Vj-  Va) 2 1 7rD 2 Vp(Vj- Va) 2 

_ P ~ D  2 
- 16---~ ( V j -  Va)2(Va + Vj) (8.26) 
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Fig. 8.8 Propulsive efficiency for ducted propellers as a function of C T and ~- 

Introducing P and Ew into Eqn (8.11) above, results finally in 

~ p  - -  

1 + V j / V  a 

which is identical to the result obtained for open propellers, Eqn (8.14), as might 
be expected. However, if Vj/Va is replaced by substitution from Eqn (8.24), 
propulsive efficiency r/p is finally expressed as an explicit function of CT and r. Thus 
Eqn (8.22) transforms to 

2 
"tiP = 1 + V'I + rCT (8.27) 

and from Eqns (8.21) and (8.24) the velocity in the propeller plane is given by 

1 
V =-~r  I + V ~  =:~-~(1 + V' 1 + ~'CT) (8.28) 

The evaluation of Eqn (8.27) is displayed in Fig. 8.8 as a series of curves of r/p 
versus Cx for a range of �9 values coveting a large spread of design duties. The 
following conclusions may be drawn" 

(1) Propulsive efficiency l?p decreases always with propulsor thrust coefficient CT 



(2) 

(3) 

(4) 
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as would be expected due to the increased jet velocity Vj and the consequent 
wake kinetic energy dissipation Ew. 
For a given design choice of CT the propulsive efficiency will be increased by 
selection of thrust ratio in the range z <  1.0, corresponding to a Kort Nozzle. 
Conversely, for a given design choice of CT, the propulsive efficiency will be 
reduced if a Pump Jet duct is chosen for which z > 1.0. 
The open propeller corresponds to the situation r = 1.0 for which there 
would be zero duct thrust so that there would be little point in retaining the 
duct. 

Example 8.2 

Problem 
A propulsor is to be chosen to deliver a thrust coefficient CT = 2.0. Compare three 
designs for which r = 0.7, 1.0 and 1.3 respectively. 

Solution 
By substitution into Eqns (8.27) and (8.28), the following table may be completed: 

Design no. CT r Type Vp/Va "qp 

1 2.0 0.7 Kort Nozzle 1.820 85 0.784 56 
2 2.0 1.0 Open propeller 1.366 03 0.732 05 
3 2.0 1.3 Pump Jet 1.114 37 0.690 28 

If we regard Design No. 2 as the open propeller standard for comparison, the 
following conclusions may be drawn: 

(1) 

(2) 

Design No. 1. Selection of a Kort Nozzle with this fairly typical value of 
z = 0.7 will result in a 5.2% gain in propulsive efficiency. However, the 
velocity Vp in the propeller plane will then be about 33% greater than that 
of the equivalent open propeller. This will result in lower static pressure 
levels thus raising the cavitation threshold. 
Design No. 2. Selection of the Pump Jet will result in a lower Vp value, thus 
raising the static pressure level in the propeller plane, which will help to 
reduce the possibility of cavitation. However, the cost of this gain will be a 
reduction in propulsive efficiency r/p by 4.2% by comparison with the 
equivalent open propeller. 

Following the analyses of Van Manen and Oosterveld (1966) and Lewis (1972), 
Eqn (8.28) may be used to derive the ratio of Vp to Vpo for an open propeller of 
the same thrust coefficient CT, namely 

Vp _-1{1+_ V'I+~Cx].. - (8.29) 
Vpo z 1+  X / l +  CT 

This relationship is shown graphically in Fig. 8.9 for the practical range of ducted 
propellers and provides a useful quick visual reference for design use and discussions 
such as Example 8.2. 
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Fig. 8.9 Comparison of velocity in the plane of open and ducted propellers 

One more extremely important matter which impinges upon design choice is the 
effect of the duct upon propeller size. From the definition of thrust coefficient, Eqn 
(8.23), 

1 7rD 2 
T = -~ pV 2 - - ~  CT (8.30) 

Thus for a ducted propeller of diameter D and an open propeller of diameter Do 
but with the same total thrust T, 

D ;.CT~ / Cp~ (8.31) 
Do = ~TT = T Cp 

where the propeller thrust coefficient Cp is defined as 

Tp 
Cp = 

1 "r/'O 2 (8.32) 
"2 pv2 4 

Making use of Eqn (8.20) this transforms to 

Cp = P2 - P l  
1 2 (8.33) ~pv~ 
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C.. is thus the dimensionless pressure rise produced by the propeller and is indicative 
ot vpropeller loading. 

Equation (8.31) is shown graphically in Fig. 8.10 from which the following 
conclusions may be drawn: 

(1) 

(2) 

(3) 

The diameter ratio D/Do reduces for Kort Nozzles ( z<  1.0) and increases for 
Pump Jets ( r >  1.0). 
Thus considering an open propeller, point A, and a ducted propeller with the 
same thrust T but with r = 0.7, point B, the propeller diameter is reduced to 
83.67% as a result of transferring 30% of the thrust onto the duct. In this 
case the pressure coefficients of both the propellers have been assumed 
equal, Cp = Cpo. 
One attraction of a Kort Nozzle is that provided close tip clearance is 
maintained, the propeller blades may be loaded more heavily towards the tip 
region, permitting higher total propeller thrust coefficients. Point C on Fig. 
8.10 illustrates the case of a modest increase by 20% of the propeller loading 
while retaining a thrust ratio r = 0.7, resulting in a reduced diameter 
compared with the open equivalent propeller of D/Do = 0.763 74. At the 
same time, recalling Fig. 8.8, the propulsive efficiency will be increased. 
These factors confirm the multiple advantages of the use of Kort Nozzles 
where there are constraints on propeller diameter and where fuel economy is 
important. 

8.4 More detailed performance analysis for ducted 
propellers 

The foregoing analysis is extremely powerful for displaying the influence of the 
primary design variables CT and z upon propulsive efficiency rl , but is based upon 
the premise that the only significant losses are those of the wa~e jet kinetic energy 
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dissipation Ew. Replacing the shaft input power by P = TVa, Eqn (8.12), the 
propulsive efficiency, Eqn (8.11), may then be written in the approximate form 

1 1 
jet KE losses Ew (8.34) 

1+ 1+ 
shaft power TV a 

As shown by Lewis (1972) in a comprehensive paper on ducted propeller performance 
analysis as seen from a turbomachine viewpoint, the last equation should be expanded 
to include losses from four other sources" 

r/p = 
ew Sw Fp Fa TL (8.35) 

1+ TVa + r V a  ~- r V a  q- r V a  -I-~rVa 

Ew and Sw now cover kinetic energy losses due to both axial and swirl velocities in 
the downstream jet, Fp and Fd account for propeller and duct frictional losses, and 
TL accounts for the tip leakage losses at the propeller blade tips. Each loss is 
normalised here by the thrust power TVa. In order to derive expressions for these 
in terms of design variables, some considerations of dimensional analysis are 
necessary at this point. 

8.4.1 Detailed dimensional analysis for ducted propellers 

The losses and hence the propulsive efficiency depend upon a large number of 
operational and geometric variables, most of which are at the outset independent 
design variables, r/p may thus be expressed as a function of these variables grouped 
as follows: 

r/p = f ( T ,  Va, n, r, D, rh, ld, lp, Z, 6, CDd, CDp) (8.36) 

System Machine Frictional 
variables design coefficients 

variables 

(rev s-  ), rh is hub radius, ld is duct length, lp is propeller where n is rotational speed 1 
chord, Z is the number of blades and 8 is the tip clearance. System variables would 
normally be prescribed for the designer in the initial specification. Frictional 
coefficients CDd for the duct and CDp for the propeller will depend upon both the 
machine shape and the operating conditions and thus, like r/p, are dependent 
variables. 

By formation of conventionally accepted dimensionless groupings, the number of 
variables may be reduced spontaneously from 12 to nine, resulting in 

rip = f ( ~ f  , ~,r' h , ld/D,v t/lp, 8/D,~ ,~CDd'yCDp) (8.37) 

System Machine Frictional 
variables design coefficients 

variables 
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where in addition to previous definitions of CT and z, 

V 
a (advance coefficient) (8.38) J= nD 

h = rh D/2 (hub/tip ratio) (8.39) 

t 

lp 
zrD 

= (propeller tip pitch/chord ratio) (8.40) 
Zlp 

A number of  alternative system parameters are frequently used in the propeller 
literature. Although not strictly pertinent to the present analysis they will be listed 
here for completeness, namely, 

T ,/r 
Kr = p~-n2 r,~4 = -~ CT J2 (thrust coefficient) (8.41) 

O 
KQ = pn2D 5 (torque coefficient) (8.42) 

N P  1/2 (KQ)  1/2 
Bp = Va5/2 = 33.08 - ~  (loading coefficient) (8.43) 

ND 101.27 
6v = = (velocity coefficient) (8.44) 

Va J 

In the last two items the speed of rotation N is expressed in rev min -1, D in feet, 
Va in knots and P in horse power. 

All the appropriate dimensionless groups involving independent variables have now 
been defined and we may proceed to express the various losses in Section 8.4 in terms 
of these. 

8.4.2 Axial and swirl jet kinetic energy losses 

The dimensionless jet axial kinetic energy loss follows from Eqns (8.24) to (8.26), 
namely 

Ew = 1 (V'I + "rCT-- 1) (8.45) 
TV a 2 

where the assumption is retained that Vp and V i are constant at all radii. This would 
indeed be the case for a free-vortex propeller, which combines uniform loading 
Apo = P o 2 - P o l  with a free-vortex swirl co2r = constant, Section 5.1. These are also 
related through the Euler pump equation 

~Po = co2rf~ 
p (8.46) 

= constant for free-vortex swirl 
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Now the swirl kinetic energy created at the propeller plane may be expressed as 

I I rt rt C202 P Vp 2"rrr dr c2o2 r dr Sw= -T 
h �9 h 

Substituting for Vp from Eqn (8.28), this becomes 

S w -- p'rrVa - 2----~ (1 + V'I + -rCT)I (8.47) 

Making use of the Euler pump equation (8.46), the integral I may be evaluated for 
flee-vortex propellers as follows: 

I = c 2 r d r  = ( Ap~ 2_1 dr 
h h \ p f l  r 

Ap2o Cfiot V2a 
= 4p 2 ,tr2 n2 In (l/h) = 16,tr2n2 In (l/h) 

(8.48) 

where the propeller tip loading coefficient Go t is defined as 

~ P o t  
Got--  1 2 (8.49) ~pVa 

Now from the definition of thrust coefficient CT, Eqn (8.23), 

1 2 "n'D2 
TVa= CT~pVa'- ~ Va 

Thus finally, the dimensionless swirl loss of a flee-vortex ducted propeller be- 
comes 

Sw 

TVa 
C~ot V2 

= 47r 2 rCT n 2 D 2 (1 + ~/1 + rCT) In (l/h) 

_ Cfiot j2 
(1 + V' 1 + TCT) In (l/h) 

- 4,rr2 rCT 

(8.50) 

Lewis (1972, Appendix II) has shown that the tip loading coefficient Go t may be 
expressed for free-vortex ducted propellers through 

Cpo t "rr2(1-h2){ ~/ 2rCTJ21n(1/h)}  
= j 2  In(l/h) 1 - 1 - ~ - 0 -  h-~ (8.51) 

so that the swirl loss SwlTV a is known explicitly as a function of all the independent 
design variables r, Ca-, J and h. 
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F i g .  8.11 Radial distributions of propeller loading and swirl velocity for free-vortex and fourth-order 
power law designs of ducted propeller for hub/tip ratio h = 0.25: (a) propeller loading; (b) 
downstream swirl 

Power law loading 
Free-vortex design has simplicity as its main advantage but results in unrealisable 
hub loadings for low hub/tip ratio propellers and bad downstream flow at the hub 
where swirl velocities are high. As a remedy for this Lewis (1972) postulated a 
near-free-vortex design with swirl velocities and thus blade loadings which taper 
rapidly to zero in the hub region as illustrated by Fig. 8.11. This is achieved by 
imposing a power law loading defined as follows: 

a thrt)m 
r (8.52) 

Apo t 1 - h m 

where m is an integer. From the Euler pump equation (8.46a) the corresponding swirl 
velocity is given by {l  hrt)m} 

c02 = r_At r (8.53) 
Co2t r 1 - -  h m 

Figure 8.11 provides a comparison of the propeller loading and swirl distributions 
produced by the power law design (for m =4)  with the free-vortex design for a low 
hub/tip ratio h = 0.25 and illustrates how the excessive swirl velocities in the hub 
region are removed by this technique. The previous analysis for Sw culminating in 
Eqn (8.47) remains valid. In this case evaluation of the integral I, substituting Eqn 
(8.52) into Eqn (8.48), results finally in 

Sw _ C:o t  J2  
TE a - -  4,n.2,rC T (1 + V' 1 + TCT)A(h) (8.54) 
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propulsor with CT = 4.0 and z = 0.7: (a) fourth-order power law loading; (b) free-vortex loading 

where the loading coefficient Cpo t is given by 

"rr2B(h) [ ~/ 2ZCTJ2A(h)} 
Cpo t = j2A(h) 1 -  1 -  zr2B(h ) (8.55) 

a n d  t h e  f u n c t i o n s  A(h) a n d  B(h) are  g i v e n  by  

1 h2m) ln(a - h)  - 2 (1 - h m) + (1 - 
m 

A(h)  = (1  - hm) 2 ( 8 . 5 6 )  

( 1 - h 2 ) - ( m - 2 2 h 2 ) ( 1 - h  m-z) 

B(h) = 1 -  h m (8.57) 

Figure 8.12 illustrates the dependency of the swirl losses S[TV a upon the hub/tip 
ratio for a specified typical duty of CT = 4.0, z = 0.7 and for a wide range of advance 
coefficients J. As might be expected the losses are generally higher for the free-vortex 
design than for the power law vortex. The losses are strongly dependent upon the 
advance coefficient J and increase rapidly for J > 0.4. On the other hand, the losses 
are a fairly weak function of hub/tip ratio above practical values of, say, h >0.2. 

Examination of Eqns (8.45) for Ew/TV a and of Eqns (8.47) to (8.55) for Sw/TVa 
reveals that both the axial and swirl kinetic energy loss coefficients are functions of 
zCT, the propeller thrust coefficient. These losses are shown graphically in Fig. 8.13 
for free vortex design with a hub/tip ratio h = 0.25, covering the practical range of 
Kort Nozzle propulsors. While both losses increase with rising "rCT it is clear that 
the swirl losses do so much more rapidly and begin to escalate for very highly loaded 
propellers with large advance coefficients J. For a typical design value J = 0.5, on 
the other hand, jet kinetic energy losses due to swirl are less than half of those due 
to axial velocities but of course are still significant. 
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8.4.3 Propeller frictional losses Fp/TV a 

If the stagnation pressure loss (Apo)los s due to blade profile drag is assumed equal 
for all meridional streamlines, the total power loss from this source will be 

r r D  2 
Fp = 4 (1 - h 2) Vp(Apo)los s 

Making use of Eqns (8.23) and (8.28), the dimensionless loss then becomes 

Fp 1 -- h 2 (Apo) los  s ( 8 . 5 8 )  
T V  a = 27"C T { 1 + V' 1 + TC T} 1 2 ~OVa 

1 2 The most obvious way of dealing with the last term, (Apo)loss/~PVa, is to consider 
the blades in relation to cascade analysis. As shown in Chapter 2, Eqn (2.9), the 
most appropriate definition of cascade loss coefficient applicable here is that based 
on vector mean relative velocity Woo: 

(APo)loss 
~'~176 1 2 [2.91 ~pW~ 

Now from velocity triangles, Fig. 8.5, 

0 +(1 (8.59) 
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Combining these results, 

(apohoss 
1 2 ~pV/, 

2 r  

If this is now applied to the propeller tip radius D/2, making use of the definition 
of advance coefficient J and introducing the rotational speed II = 2~n, 

j = V a ~ r V a  ( V a )  (8.60) 
nD = lID~2 = ~r --~ 

The previous equation then becomes 

Substitution of this result into Eqn (8.58) yields finally 

1h2 (  t)2} 
TVa = 2---~T { I+V ' I+ ' rCT}  7 4~2+ 1----~- sroo (8.61) 

= f('r, CT, J, h, t~t , ~ t ,  ~oo) 

The propeller profile losses have thus been expressed as an explicit function of 
six independent design variables plus the loss coefficient ~'oo. Losses will thus depend 
upon two main groups of design variables: 

(1) The overall propulsor duty specification CT, r and J. 
(2) The blade row duty (~bt, q't) which has been stated here for the tip section. 

As shown in Chapter 2, Eqn (2.8), the cascade loss coefficient ~oo can be expressed 
in terms of the profile drag coefficient CDp through 

l 
~'oo = 7 CDp sec/3oo 

l 1 ]  
= 7 CDp--~-t 4, 2 

= f(t/l, CDp , t~t , ~t) 

q't ( 1 
(8.62) 

Introducing this into Eqn (8.61) we have finally the more useful form 

1i ( / TV a = 2ge T { 1 + V' 1 + "rC T} ~ t  t~t2 4- 1 - - ~  CDp (8.63) 

= f (T ,  CT, J, Ct, Ot, h, t/l, CDo) 

Propulsor Propeller Machine Cascade 
duty duty geometry drag coefficient 
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Although it is helpful to bring out the dependency upon propeller tip duty (t~t , ~t)  
in these expressions, these coefficients themselves may also be expressed in terms 
of the propulsor duty (~', CT, J) as follows" 

and 

~t 

~t  "- gp _- J Vp = ~ J  {1 + W'l + zCT} (8.64) 
7rnD 1r V a 27rz 

~ P o t  
p(qrnD) 2 -" 1 2 ~ --" ~pVa r 

l - h 2  { 

2 In (l/h) 

2,rC T j2 In (l/h) } 
1 - 1 - ,rr2(1 _ h2)2 for flee-vortex loading 

B(h) ~/1 
= 2 ~ )  { 1 -  - 

2"rCTJ2A(h) } 
,n.2 B(h) 2 for power-law loading 

(8.65) 

where A(h) and B(h) have already been given as Eqns (8.56) and (8.57) respec- 
tively. 

8 .4 .4  Duct  frictional losses Fd/TV a 

The usual method for defining a suitable drag coefficient is to regard the duct as an 
annular aerofoil located in open water of velocity Va. Adopting the conventional 
definition of Cd for aerofoils, CDd is then defined as 

Drag in open water 
CDd = 1 2 (8.66) ~pVa 7rDld 

When combined with a propeller, on the other hand, the high velocity on the inner 
surface will tend to generate dominating losses and it would seem reasonable to 
assume that the duct drag Dd is that corresponding to a uniform stream Vp, 
namely 

1 2 D d = CDd~pVp 7rDld 

The power losses due to duct drag are then 

Fd Dd Va 
TVa TVa 

( )2 
4 ld V___IZ CDd 

CTDVa 

1 
(1+ W ' l +  " r C T ) 2 ( - - ~ ) C D d  (8.67) 

which may be expressed in the general form 

TVa 
(8.68) 
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Fig. 8.14 Duct loss weighting coefficient fd as a function of C T and r 

where the weighting coefficient fd is a function of the propulsor duty (z, CT) only, 
namely 

1 (1 + V1 + ~CT) 2 (8.69) 
/ a =  ~2CT 

The duct losses are thus a function of three dimensionless design variables: 

(1) Duct profile shape which will determine its drag coefficient CDd- 
(2) Duct aspect ratio ld/D where ld is the duct chord length. 
(3) Propeller duty (r, CT) which determines fd. 

Weighting coefficients are shown in Fig. 8.14 for the practical range of propulsor 
duties, revealing that duct losses will tend to grow in significance as either thrust ratio 
r or propulsor thrust coefficient CT is reduced. 

8.4.5 Tip leakage losses TL/TVa 

In some applications a conventional propeller with rounded blades may be used, 
in which case the blade lift reduces progressively to zero approaching the blade 
tips, Fig. 8.15(a), with associated shedding of a vortex sheet. Calculation of the 
corresponding energy loss is an integral part of conventional propeller design 
methods. In the present turbomachinery context, on the other hand, our concern 
is with Kaplan-type propeller blades which attempt to retain substantial blade 
loading as close as possible to the tip region. Inevitably, due to the practical necessity 
of retaining a small but finite clearance 8 t between the blade tip and the duct, 
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Fig. 8.15 Vortex shedding from ducted propeller blade tips: (a) open propeller type with rounded blade 
tips; (b) Kaplan-type propeller with loaded blade tips 

the blade loading will ultimately reduce rapidly to zero in a region of the order 
of St, with the shedding of an associated concentrated tip vortex as illustrated in 
Fig. 8.15(b). Adopting the analysis of Hesselgreaves (1969) for axial fans, Lewis 
(1972) has shown that the loss due to the consequent 'tip leakage' flow may be 
approximated by 

= ,-.Loo W~ (8.70) 
T V  a 5 C T 

Now from Chapter 2, Eqn (2.10), the lift coefficient is given by 

t 
CLoo --  2 -7- (tan J~l --  tan f12) COS floo --  C D  tan/3oo 

~p 
[2.10] 

where, from velocity triangles (Fig. 8.5), 

1 
tan/31 = ~b' tanfl2 = ~ (8.71) 

Neglecting the effect of Co the tip section lift coefficient may thus be approximated 
in terms of the blade duty (~bt, St) through 

t ~t 
CLoo 2 

~p X/4h 2 + (1 - @t/2) 2 

Making use of Eqns (8.59) and (8.60), 

woo = rr V'{ ~b 2 + (1 - Ot/2) 2} 
Va J 
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so that finally the tip leakage loss, Eqn (8.70), becomes 

T V  a - 5 O CT J'''--'~ - ' -2"-  

8 t t 1/2 

21 3/4 

(8.72) 

The tip leakage losses are thus a function of the dimensionless tip clearance ~t/D, 
the tip section pitch/chord ratio t/lp and a loss weighting coefficient ftl dependent upon 
the propulsor duty (z, CT,J) and the propeller tip section duty (~bt, @t), namely 

ft1=645 CTJ 3 ~r3 ~t/2{th2+ ( 
_~) 2 } 3/4 

1 - (8.73) 

Example 8.3 

A breakdown of the predicted losses based on the above formulations is shown here 
in Table 8.2 including the consequent predicted propulsive efficiency r/p for a typical 
Kort Nozzle ducted propeller for a wide range of duties. The performance 
characteristic (CT, r,J) data have been derived by Lewis (1972) from the published 
experimental results of Van Manen and Oosterveld (1966), and values of other design 
data have been assumed as follows: 

Tip section t/lp = 1.82 
Duct aspect ratio ld/D = 0.5 
Propeller drag coefficient CDp = 0.006 (based on NACA 64-008) 
Duct drag coefficient CDd = 0.02 (pessimistic value to include hub) 

The following points are worthy of note" 

(1) To obtain the above characteristic data a suitable approach would be to keep 
the propulsor forward velocity Va constant and to vary the propeller speed of 
rotation n in order to change the advance coefficient J = Va/nD over the 
given range 0.372 <J<0.610.  

(2) Over this range of J the thrust coefficient CT varies enormously from 2.7 to 
7.57. 

(3) Curiously, however, the propeller duty at the tip radius varies very little from 
the central design duty ~bt = 0.316 87, @t = 0.041 01. Furthermore the vector 
mean flow angle relative to the blade tips/3~ also varies by only 2 ~ over the 
operating range, demonstrating a remarkable advantageous feature of ducted 
propellers. The effect of the duct in augmenting the velocity Vp in the 
propeller plane is such that, if the propeller rotational speed is increased, Vp 
also increases, the outcome being that the angle of attack/31 and the vector 
mean angle/3~ remain almost unchanged over 2.7 < CT< 7.57. Thus the duct 
provides the optimum hydrodynamic environment for the propeller blades, 
enabling typical Kort Nozzle propulsors to operate over a very wide range of 
thrust coefficients Ca,. 

(4) The predominant loss is that contributed by the jet axial kinetic energy 
Ew/TVa. Next in line is the propeller profile loss Fp/TVa. Together these 
provide about 78% of the total losses at the lowest Ca- rising to 86.3% at the 
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Table 8.2 Predicted loss coefficients for Van Manen Screw Series B4-55 with Nozzle 
No. 19A 

CT | 2.7 3.5 4.5 6.0 7.57 
z I Van Manen and 0.785 0.751 0.725 0.7 0.675 
J Oosterveld (1966) 0.610 0.525 0.471 0.410 0.372 

~b t ] Propeller duty 0.342 11 0.323 20 0.316 87 0.305 79 0.304 52 
qh ~ at tip radius 0.045 02 0.041 06 0.041 01 0.039 93 0.040 00 
/3~ 70.71 ~ 71.74 ~ 72.07 ~ 72.67 ~ 72.74 ~ 

Ew/TVa 0.383 11 0.452 43 0.532 29 0.640 18 0.735 90 
S w / T V  a 0.112 90 0.107 37 0.113 14 0.117 68 0.124 77 
Fp/TV a 0.177 85 0.212 60 0.227 70 0.256 77 0.272 15 
Fd/TV a 0.045 99 0.042 75 0.039 71 0.036 60 0.034 95 

Total loss 0.719 85 0.815 14 0.912 84 1.051 22 1.167 75 

Predicted propulsive efficiency 58.14 
np (%) 

55.09 52.28 48.75 46.13 

highest CT, both varying considerably over the operating range. Swirl losses 
Sw/TVa are small by comparison but by no means insignificant. On the other 
hand, the thrust losses due to duct drag are trivial by comparison. 

8.5 Prediction of Kort Nozzle ducted propeller 
character ist ic  curves 

Each set of (CT, r,J) data given at the top of Table 8.2 were derived from 
experimental tests. Thus for a given forward speed Va in open water J = Va/nD can 
be varied simply by changing the propeller rotational speed n. The above measured 
data are then usually expressed by two characteristic curves of the form ~" versus CT 
and J versus CT. In the following sections simple theoretical analyses will be presented 
which produce remarkably good predictions of off-design characteristics r(CT) 
and J(CT) for Kort Nozzle propulsors given a prescribed central design duty 
(CTo, ~o,Jo). 

8.5.1 The "r(CT) characteristic 

Lewis (1973) developed the following method for predicting the z(CT) characteristic 
beginning with the hypothesis that the duct forward thrust Td is proportional to the 
square of the radially inward downwash velocity induced by the jet wake, Fig. 
8.16. 

To establish the relationship between To and the wake shed vorticity Fw let us 
consider first the analogy with the fiat plate aerofoil shown in Fig. 8.17. The lift 
generated as a result of its total bound vorticity F is given by the Magnus law, 
L = pWF. But from the theory for the flat plate aerofoil (Batchelor, 1970), the 
magnitude of F is given by 

F = ~'lW sin a 

where l is the chord length, W the mainstream velocity and a its angle of attack 
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Fig. 8 .16 Radially inward downwash velocities induced by Kort Nozzle wake 

Fig. 8 .17 Forward thrust T on a flat plate aerofoil at negative incidence 

(negative here). Thus the forward component of the lift L, i.e. the forward thrust 
T, is given by 

T = L sin a = pzrl(W sin a) 2 

oc (downwash velocity) 2 

For any other profiled aerofoil with zero lift at zero incidence the same result may 
be argued qualitatively. Extending this argument now to an annular aerofoil when 
used to shroud a propeller, Fig. 8.16, the radial inward downwash velocity 
experienced by the duct is caused by the tubular vortex sheet Fw sandwiched between 
the high velocity jet Vj and the outer advance velocity flow Va. As argued by Lewis 
(1973), the downwash velocity is proportional to the strength Fw of the vortex tube, 
so that the previous equation may be applied here to give an expression for the 
consequent duct thrust, namely 

Td ~ F 2 (8.74) 

where the vortex strength Fw (see Chapter 9, Section 9.5.3) is given by 

rw = - ( v j -  Va) (8.75) 
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Improving slightly upon Eqn (8.20) by subtracting the hub area from the propeller 
swept area, the propeller thrust becomes 

vj 2 
Tp - (102 -P l )  - - ~  (1 - h 2) - pV 2 Va 

1 "n'D 2 
= r T  = 'tOT- ~ pV2a 4 

- 1 }  ~~3----~2 ( 1 - h  2) 

(8.76) 

which reduces to the following, slightly more accurate, development of Eqn (8.24): 

~/ rCT Vj = 1 + (8.76a) 
Va 1 --~2 

Finally the jet bounding vorticity is related to (r, CT) through 

Fw = 1 + 1 
Va 1 -~2  (8.77) 

Now the duct forward thrust To may also be expressed as 

1 7rD 2 
T 0 = ( 1 - z ) T = ( 1 - z ) C T ~  V 2 4 (8.78) 

Introducing the last two results into the downwash equation (8.74) we have the 
proportionality 

(1 - '/')CT0r 1 + 1 - h 2 1 

Recalling our hypothesis that this condition is true for all thrust coefficients, it may 
be applied also to the central design duty (CTo, Zo), resulting in the following 
identity: 

(1 --r)CT 
(1 - to) CTo 

~/ ,/.CT 11 2 1 + 1 _ - ~ 2  

7.o CTo 

or, rearranging to isolate r, 

~/1+ 

r - l - ( 1 - z o )  ~/1+ 

,/.CT 2 
1 - h  2 11 
'to CTo 
1 - h 2 

CTo 
CT 

(8.79) 
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which has the general form of the required performance characteristic r =f(CT). 
However, r cannot be completely isolated but does also appear on the right-hand 
side of Eqn (8.79). Its solution must therefore be obtained by successive approxima- 
tion, with each improved estimate of r being reintroduced into the right-hand side. 
Convergence is found to be rapid. 

8.5.2 The J ( C T , ' r )  characteristic 

The J(Cr, r) characteristic represents the relationship between speed of rotation and 
thrust. Since thrust is dependent upon blade loading and velocity triangles, which 
differ for each radius, we shall assume that conditions at the r.m.s, radius rms are 
representative of the integrated effect of the whole propeller, defining 

rms = V'l(r2h + ~ )  (8.80) 

At this radius the cascade static pressure rise coefficient Cpm follows directly from 
velocity triangles, Fig. 8.5: 

P2 -- Pl  = tan 2 film -- tan2 fl2m (8.81) Cpm = 1 2  pVp 

It can be shown that for cascades with pitch/chord ratio greater than 1.0, the fluid 
deflection e =/31 -/32 remains almost constant for small variations of/31 such as were 
shown to occur in Kort Nozzle propulsors in the previous section. Thus we may assert 
the following assumption for the off-design duty: 

8 = film-- fl2m = eo = fllmo-- ~2mo (8.82) 

Now from Eqn (8.76) Cpm may be derived from another direction: 

Cpm - 1 - h 2 

Introducing Eqn (8.76a) into (8.28a), 

Va 2z 

Vp (1 + V'I + rCT/(1 -- h2)) 
2,1 h2,( 1+ 

CT 1 - h  2 
1) (8.83) 

so that Cpm becomes 

Cpm 4(1 _ h2)r( ~ 1  + ,rC T )2 
= CT 1 - -  h 2 1 (8.84) 

Finally we may eliminate film from Eqn (8.82) to produce a system of equations 
involving J, CT, r and/32m. Thus film may be expressed as 

Um 2"n'n rms Va 
tan ~lm = - -  = 

Vp V a Vp 

(J 1+ q-C T 
1 - h 2 1) 

(8.85) 
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Fig. 8,18 Ka 4-55 propeller in 19A duct - predicted and measured characteristics 

The computational procedure is then as follows: 

(1) 

(2) 
(3) 
(4) 

(5) 

(6) 
(7) 

For the given design duty (CTo, Zo, Jo), first calculate z as directed in Section 
8.5.1 for the stated off-design value of CT. 
Derive the cascade pressure coefficient Cpm from Eqn (8.83). 
Make a first guess at the off-design advance coefficient J. 
Hence derive fl2m from Eqn (8.81) and calculate the fluid deflection at rms, 
namely e = f i lm-  fl2m- 
Obtain a new estimate of J by scaling the previous one to enforce constant 
fluid deflection, namely J' = (e/eo)J. 
Damp the solution, e.g. by replacing J with 0.9 x J + 0.1 x J ' .  
Repeat from (1) to (6) until convergence is obtained. 

As can be seen from Fig. 8.18, remarkably accurate predictions were obtained by 
the application of this simple analysis to the N.S.M.B. propeller Ka 4-55 located 
within duct 19A taking a central design duty of CTo = 6.25 for which ~'o = 0.677 and 
Jo = 0.358. Theory agrees with experiment quite closely over most of the extremely 
wide range of duties, namely 1 < CT < 25. The experimental curves shown here were 
derived from the N.S.M.B. data published by Van Manen (1962). Data from this 
source are given in terms of the alternative dimensionless coefficient KT both for 
the system and for the duct. From Eqn (8.41) conversion to CT is given by 
C T = (8]Tr) .KT/J  2. 

The predicted propulsive efficiency likewise agrees extremely well with measured 
results abstracted from Van Manen (1962) as shown by Fig. 8.19, the only region 
of substantial disagreement being at very low thrust coefficients CT < 1.2. Perhaps 
the main reason for this excellent agreement is the fortunate fact that for typical Kort 
Nozzle propulsors the jet wake remains almost constant in diameter for a wide range 
of operation. To establish the truth of this an expression for jet diameter/propeller 
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Fig. 8 .20  Predicted jet diameter contraction ratio for N.S.M.B. Ka 4-55 propeller in Nozzle 19A 

diameter may be obtained as follows. From mass flow continuity we have 

7rD 2 
VP 4 

( l - h 2 )  = Vj= 1rO~= 
4 

(propeller plane) (downstream jet) 

from which 

D ) Vj=Va 1 
Djoo = Va V p ( 1 - h  2) 
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Fig. 8.21 Predicted and measured characteristic performance curves for N.S.M.B. propeller Ka 4-55 
in 19A duct at P/D ratios of 0.6, 1.0 and 1.6: (a) 'r(CT) characteristics; (b) J(CT,~') characteristics 

After substitution from Eqns (8.76a) and (8.83), we have finally 

D ~ 1+ l _ h 2  1 1+ l _ h 2  (8.86) 

Figure 8.20 shows that the downstream jet wake remains almost exactly cylindrical 
over the whole operating range of the ducted propulsor under consideration, 
validating the use of the downwash condition which led to the r(Cx) characteristic 
equation (8.79). 
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Pitch datum line 

% 

Fig. 8 .22  Definition of blade pitch angle j~p 

As we have seen already from Eqn (8.79), the predicted thrust ratio z can be 
expressed as a function of CT only irrespective of propeller blade geometry. This 
is borne out by Fig. 8.21(a) which compares the predicted "r(CT) characteristic with 
experimental results adapted from the experimental data published by Van Manen 
(1962) for the additional pitch ratios P/D = 0.6 and 1.6. Results for P/D = 1.0 have 
already been shown in Fig. 8.18 and have been omitted here to emphasise the 
negligible influence of the pitch change. Blade geometric pitch P at any radius r is 
defined as 

P = 2~rr tan tip (8.87) 

where tip is the geometric pitch angle marked out by the pitch datum line, Fig. 8.22, 
tangential to the pressure side of the propeller blade. The geometric pitch P is 
frequently constant for sections at all radii of a given propeller, but should P actually 
vary, the value at 70% of tip radius is adopted as the geometric mean pitch. 
The Ka 4-55 propeller considered above is designed for a uniform pitch ratio 
P/D = 1.0. 

The results shown in Figs 8.18 and 8.21 correspond to blade setting angles/3p of 
10.81 ~ 17.66 ~ and 26.99 ~ respectively and in effect represent the characteristics of 
three completely different propellers operating within the same N.S.M.B. 19A duct. 
The three related experimental "r(CT) conform closely to the single theoretical 
characteristic predicted by Eqn (8.79) and thus demonstrate dramatically the almost 
total control over the thrust ratio z imposed by the duct geometry. 

On the other hand, qui~e different J(Ca-, z) characteristics are obtained for the three 
blade settings, demonstrating, as expected, the close relationship between advance 
coefficient J = Va/nD and blade geometric pitch ratio P/D. Once again the curves 
predicted by the simple theory presented above agree with experimental tests 
remarkably well, with significant errors to be found only at very low thrust 
coefficients. Balabaskaran (1982) undertook extensive aerodynamic investigations of 
this particular ducted propeller, confirming both the towing tank experimentation of 
Van Manen (1962) and the above fairly modest performance prediction method. He 
was able to improve upon this by using cascade theory such as that forthcoming from 
the program CASCADE provided with this book, enabling him to remove the 
assumption adopted in Section 8.5.2 of constant fluid deflection e. 
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Introduction 

An overview of the overall design and performance analysis for a multi-stage axial 
turbine was presented in Chapter 3, Fig. 3.2, which put into context the three 
computer programs FIPSI, CASCADE and STACK provided with this book. Table 
9.1 summarises the main stages of this overall design sequence. 

Table 9.1 Main stages of the overall design sequence for turbomachines 

Task Program 

(a) 
(b) 

(c) 

II (d) 

III (e) 

Initial duty specification. 
Use of dimensionless parameters (e.g. th, ~ data) for 
overall design choices and performance analysis. 
Detailed thermodynamic design leading to the definition 
of velocity triangles. 

Detailed fluid dynamic design to generate blade shapes 
which will produce the required velocity triangles. This 
involves: 
(i) Cascade analysis. 
(ii) Meridional analysis. 

Mechanical design: 
(i) Generation of blade shapes and stacking of profiles 

to form a complete blade. 
(ii) Stress and vibration analyses. 

FIPSI 

CASCADE 

STACK 

The main thrust of this book so far has been to provide an analytical framework 
which links items (a), (b) and (c) for axial turbines (Chapter 3), axial compressors 
and fans (Chapter 4), mixed-flow and radial turbomachines (Chapter 7), and ducted 
propellers and fans (Chapter 8). For example, the computer program FIPSI enables 
the reader to complete a full thermodynamic layout for a multi-stage gas turbine with 
cross-checks on selection of stage duty coefficients (~b, ~) and related stage efficiency, 
hub reaction and Mach number levels. FIPSI delivers a complete specification of 
velocity triangles from hub to casing as input to stage (d), aerodynamic design. 

The main purpose of the present chapter is to provide the theoretical basis 
underlying the program CASCADE, which executes the double task of creating blade 
geometry as described in Section 2.4 followed by fluid flow analysis to predict outlet 
angle 132 for the given inlet angle /31, and the related blade surface pressure 
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Fig. 9.1 (a) Boundary layer and (b) surface vorticity equivalent for potential flow modelling; (c) 
self-convection of a surface vorticity sheet 

distribution. CASCADE thus enables the reader to design blade profiles which will 
produce the specified velocity triangles and also to predict off-design performance 
of the chosen blading. This will be covered in Sections 9.1 to 9.4. The particular type 
of analysis adopted here is the vortex element boundary integral method which is 
relatively simple to commit to computer code and economic to run. Although viscous 
constraints and aerodynamic loading indices such as diffusion factors have been 
discussed in Chapter 2, the present treatment will be limited only to incompressible 
inviscid flows. In his research monograph Vortex Element Methods for Fluid Dynamic 
Analysis of Engineering Systems (Lewis, 1991), the present author has extensively 
reviewed and expounded the fundamentals of this powerful and flexible flow analysis 
technique with applications to a wide range of turbomachinery configurations 
including extensions to vortex cloud simulation of viscous fluid flows. The only 
applications additional to cascades to be summarised in this chapter will be the 
extension of surface vorticity modelling to axisymmetric flow past bodies of 
revolution, ducts and ducted propellers, Section 9.5. 

9.1 T h e  p h y s i c a l  b a s i s  of  s u r f a c e  v o r t i c i t y  m o d e l l i n g  

In all real fluid flows a boundary shear layer exists adjacent to any solid surface, Fig. 
9.1(a), containing sufficient vorticity to reduce the fluid velocity from Vs at the outer 
edge a-b of the shear layer to zero on the wall c-d just inside the shear layer. The 
vorticity is continuously convected downstream and replenished by convection from 
upstream and by the creation of more vorticity in the slip-flow or sub-layer adjacent 
to the wall. This new vorticity is then diffused away from the wall by the fluid 
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"y(s)ds 

vorticity sheet 
d e 

Vsi 

I_ _1 
I~ -1 

Fig. 9.2 Enlarged view of surface vorticity element 

viscosity, thus maintaining the shear profile of the boundary layer. Motion within 
the boundary layer therefore involves a balance between dynamic normal stresses 
due to convection and tangential shear stresses due to viscous action. The Reynolds 
number Re represents the ratio between these stresses. Let us define Re in terms 
of a representative body length l, namely Re = (vsl)/v. If Re is increased by 
progressively reducing the kinematic viscosity v, the diminishing influence of viscous 
diffusion will result in a thinner boundary layer. As Re ~ oo so the boundary layer 
transforms into an infinitely thin vorticity sheet as illustrated by Fig. 9.1(b) and this 
concept forms the basis of the physical model underlying the surface vorticity method 
of potential flow analysis. Thus in inviscid 'potential' flows the bounding surface of 
any body may be represented by a surface vorticity sheet of strength 7(s) per unit 
length at point s on the surface. Two observations may be made at this point: 

(1) The velocity jumps discontinuously from zero below the vorticity sheet at 
points actually on the body surface to Vs just outside the vorticity sheet. 

(2) The vorticity sheet convects itself along the surface with velocity v~ = lvs, 
implying that vorticity must be supplied from upstream, Fig. 9.1(c). 

Item (1) suggests a suitable boundary condition to impose at the body surface later 
for fluid flow modelling, namely that the velocity Vsi just inside the vorticity sheet 
and parallel to the surface is to be zero: 

Psi----O ( 9 . 1 )  

Let us now define the contour abcd surrounding a small element ds of the surface 
vorticity sheet, Fig. 9.2, where ab and dc are parallel to the streamlines while da 
and bc are vanishingly small. The circulation around abcd, defined clockwise positive, 
may be equated to the total amount of vorticity enclosed by the contour, that is 

(Vso -- l,'si ) (iS "- )t(S) ds  (9.2) 

Introducing Eqn (9.1), this reduces to 

7(s) = Vso = Vs (9.3) 

In other words the local vortex sheet strength 7(s) is exactly equal to the surface 
velocity Vs in potential flow past a body. Equations (9.1) and (9.3) thus provide the 
key to surface vorticity modelling of potential flows as originally propounded by E. 
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Fig. 9,3 Surface vorticity model to simulate flow of a uniform stream Vs past a plane wall: (a) infinite 
vortex sheet 7(s) between x = __ oo; (b) vortex sheet 7(s) plus uniform stream 7(s)/2 

Martensen (1959), often referred to as the Martensen method. The procedure may 
be summarised as follows: 

(1) 

(2) 

(3) 

(4) 

The body surface is covered by a surface vorticity sheet of initially unknown 
strength 7(s). 
A surface boundary condition Vsi = 0 is imposed on the inner surface of the 
sheet. This is stated in the form of an integral equation to be derived in the 
next section. 
The integral equation is solved for a selection of discrete surface vortex 
elements at surface locations Sn resulting in the required 7(Sn) values. 
The local surface velocity Vsn follows directly from Eqn (9.3) since 
Vsn---- ]/(Sn). 

9.1.1 Surface vorticity simulation of flow past a plane wall 

A simple example of surface vorticity modelling which helps to bring out the essential 
features is illustrated in Fig. 9.3, namely flow past a plane wall. Let us consider first 
the velocity field induced by a vortex sheet of strength 7(s) lying along the x-axis 
between +o0, Fig. 9.3(a). The vorticity will induce uniform velocity fields parallel 
to the x-axis but in opposite directions above and below the sheet as illustrated, 
Vsl = -Vsu. By taking the circulation around the element abcd as before, for this case 
we obtain 

'y(S) ds  = Vsu ds  - Vsl a s  ~- 2Vsu ds  
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Fig. 9.4 Surface vorticity model for flow past a two-dimensional body in a uniform stream IN= 

resulting in 

Vsu "- - -  Vs l - ' -  �89 ( 9 . 4 )  

If we now superimpose a uniform stream of strength Vsu parallel to the x-axis over 
the whole flow field, the outcome will be as illustrated in Fig. 9.3(b). Above the x-axis 
the velocity will be that of a uniform stream of strength Vs = y(s). Below the x-axis 
the velocity will be zero, so that we may replace this by a solid boundary. It follows 
also from this argument that the vortex sheet of the real flow convects itself parallel 
to the body surface with velocity Vc = Vsu = 7(s)/2. 

9.1.2 Martensen's boundary integral equation 

We consider next the flow past a two-dimensional body immersed in a uniform 
stream Wo~ inclined to the x-axis at an angle aoo, Fig. 9.4. Applying the principles 
just outlined, the flow may be modelled by clothing the body surface with a vorticity 
sheet of appropriate strength 7(s) where s is measured clockwise around the body 
perimeter from some zero datum O such as the leading edge in the case of an 
aerofoil. Now the velocity dqm n at some surface location Sm induced by the vortex 
element 7(Sn)dSn at location Sn will be normal to the radial vector rm, and will be 
of magnitude 

T(sn)dsn  
dqm n - -  ( 9 . 5 )  

2 7rr mn 
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In order to state the surface boundary condition, Eqn (9.1), dqm n needs to be resolved 
parallel to the body surface at Sm, namely 

dvsm n= dqm ncO,s tim + ' ~ -  t~mn = 
COS ~m d- -~ -- (~mn 

)t(Sn)dSn 
27rtmn 

(9.6) 

where tim is the body profile slope at s m. For computational purposes it proves more 
convenient to first express the components of dqm n parallel to the x- and y-axes in 
terms of the (x,y) coordinates of points Sm and Sn. Thus 

d U m n = ] t ( s n ) d s n  (Ym-Yn) 
27rrmn sin ~bmn = 27rr2mn ")t(Sn)dSn 

dVmn = ~ t ( S n ) d S n  ( Xm-Xn  ) 
- 27rrmn cos t~mn=-  2,trr2mn )t(sn)dsn 

(9.7) 

Resolving d Umn and d Vmn parallel to the surface at s m and adding them we obtain 

dvcm n -- dUmn cos tim -F dVmn sin t im 
1 {(Ym--yn)COSflm--(Xm--Xn)Sinf lm)  

- 2zr (Xm -- Xn) 2 + (Ym -- Yn) 2 ')t(Sn) dSn 
(9.8) 

The self-convection velocity Vcm parallel to s m due to the entire sheet can now be 
obtained by integration of Eqn (9.8) to yield 

V c m = ~ d v c m n = ~ k ( s m ,  Sn)]t(sn)dsn (9.9) 

where the coupling coefficient k(Sm,Sn) linking points s m and s n is given by 

1 { (Ym- 
k(sm, Sn) = " ~  

Yn) COS ~m -- (Xm -- Xn) sin tim 
(X m -- Xn) 2 -b (Ym -- Yn) 2 

(9.10) 

Now the contour integral in Eqn (9.9) actually runs through the centre of the sheet 
and gives us the convection velocity equivalent to Vc. Fig. 9.3. As indicated in the 
previous section we must therefore subtract y(Sn)/2 to obtain the velocity just inside 
the sheet, namely 

Vsmi = _ 1 ~(Sm) + ~ k(sm, S n) ")t(Sn) dsn (9.11) 

In addition to this we must account for the component of the uniform stream resolved 
parallel to the surface at Sm, namely 

Wsm = Uoo cos ~m + Voo sin ~m 
= Woo(cos otoo cos ~m + sin aoo sin ~m) 

(9.12) 
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Data input 
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Fig. 9.5 Representation of body surface by straight line elements 

. . . . _  
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X,x 

Combining the last two equations to cover all contributions to Vsi , the boundary 
condition at Sm, Eqn (9.1), may be expressed as 

-- ~]/(Sm) + k ( s  m, Sn) )t(Sn) dsn + Woo(COS O~oo COS ~m + sin a~ sin ~m) = 0 (9.13) 

9.1.3 Numerical representation of Martensen's boundary integral equation 

For satisfaction of the boundary condition of parallel flow at the body surface, Eqn 
(9.13) is to be obeyed at all locations Sm. A practical approach which approximates 
to this with good accuracy in practice involves selection of a finite number M of 
so-called 'pivotal' points representative of the body surface, Fig. 9.5. 

This can be achieved most simply if the surface is represented by M straight line 
elements of length /~kS n with pivotal points (Xn,Yn) located at the centre. The 
continuous vorticity sheet is then replaced by M finite vortex elements of strength 
7(s~)ASn and Eqn (9.13) transorms into the linear equation 

M 

g ( s m ,  Sn) )t(Sn) = - U~ cos tim - Voo sin tim (9.14) 
n=l 

where the modified coupling coefficients K(sm,Sn) are given by 

aSn{ 
K(S m, Sn) = k ( sm,  Sn) ~ks n = 

(Ym -- Yn) COS ~m -- (Xm -- Xn) sin tim ] 

(Xm -- Xn) 2 + (Ym -- Yn) 2 
(9.15) 

Several comments are needed at this point. Firstly, the summation in Eqn (9.14) is 
equivalent to evaluation of the contour integral of Eqn (9.13) by the trapezium rule. 
Secondly, one such equation must be written for each pivotal point (Xm,Ym) resulting 
in a set of M linear equations for the M initially unknown surface vorticity values 
3'(Sl), 7(s2),..., 7(SM). Thirdly, the term �89 of Eqn (9.13) has been absorbed into 
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m 

rm 

Fig. 9.6 Curvature of element m 

the coupling coefficient g(sm,Sm) which is also indeterminate, a problem to be de~ilt 
with in the next section. 

9.1.4 The self-inducing coupling coefficient K(sm, Sm) 
Following up this last point, the coupling coefficient K(sm,Sm) may be expressed as 

g(Sm, Sm) = _ 1 + g~nm (9.16) 

where, from Eqn (9.15), gmm is given by 

Asm lim [ (ym - yn) cOS flm - (xm - xn) sin flm } (917) 
Kmm - 2.a" Sm--,Sn (Xm -- Xn) 2 + (Ym -- Yn) 2 

Since both numerator and denominator approach zero as s m ---> S n this expression is 
finite but indeterminate. As shown in full by Lewis (1991, page 23), application of 
L'Hospital's rule twice over results in 

I(mm 
A S m {  - d 2 y m  [dX2 } 

2"rt" [l + (dym/dxm)2] 3/2 

_ l~Sm ~ A[~m 

47rrm 4zr 

(9.18) 

where rm is the internal radius of curvature of element m and Aflm is the change 
in profile slope from one end of the element to the other, Fig. 9.6. 

Thus the so-called 'self-inducing' coupling coefficient K(sm,Sm) , which represents 
the velocity induced parallel to the surface at Sm by element ~kS m itself, may be 
expressed with good approximation by 

K(sm, Sm) = 
1 A[~ m 

2 4zr 
1 

2 
~m+l  -- t im-1 

87r 

(9.19) 
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where Aflm is evaluated as half the change in slope of the neighbouring elements 
Sm-- 1 and Sin+ 1, namely l(flm+ 1 - -  tim-- 1)- 

9.2 Computat iona l  scheme for f low past a body in a 
uniform s t ream 

The linear equations (9.14) have the matrix form 

Kll  K12 K13 � 9  

K21 K22 K23 . . .  

K31 K32 K33 . . .  

�9 �9 �9 

�9 �9 �9 

KM1 KM2 KM3 

KIM I T(S1) ' rhSl 

K2M I Y(S2) rhs2 

K3M. I ')t(S3)" = rhs3. 

KMM / "}/(S M) rhSM 

(9.20) 

(Coupling coefficient matrix) Vorticity rhs 
vector vector 

with the simplified coupling coefficient notation Kmn 
sides 

=-- g(sm,Sn) and the right-hand 

rhsm = -Uoo cos tim - Voo sin ~m (9.21) 

Generally speaking the dominant coefficients of the coupling coefficient matrix will 
be those lying on the leading diagonal K11 , K22 , e tc . ,  and solution of the equations 
by matrix inversion is appropriate. A suitable numerical sequence is then as 
follows" 

(1) Input M + 1 sets of raw body profile data coordinates (An, Yn) as illustrated 
in Fig. 9.5. Note that for profile closure XM+I = X1 and u = Y1. 

(2) Define the pivotal points (Xn,Yn) and element slopes/3n, namely 

Xn -- �89 Jr" g n + l ) ,  Yn -" �89 -1- Yn+ 1) (9.22) 

~ n ' - a r c t a n (  yn+l-yn )Xn+l _ Xn (9.23) 

(3) Set up the coupling coefficient matrix using Eqns (9.15) and (9.19). 
(4) Evaluate the rhs vector using Eqn (9.21). 
(5) Invert the coupling coefficient matrix. 
(6) Multiply the rhs vector by the inverted matrix to obtain the solution 

= 

Example 9.1 Flow past a circular cylinder 

The exact solution for the flow of a uniform stream Uoo past a circular cylinder is 
well known (Batchelor, 1970), the surface velocity being given by 

Vs = 2Uoo cos th (9.24) 
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Fig. 9.7 Profile data specification for a circular cylinder 

Coordinates of circle 

X n = a(1-cos4)n) 
Yn = a'sin(hn 

U O0 

n =  1. . .M 

Table 9.2 Flow of a uniform stream U~ = 1.0 past a circle 

Element Surface vorticity Exact solution 
number method Vs 

k' s 

1 0.444 495 0.445 042 
2 1.245 450 1.246 980 
3 1.799 734 1.801 938 
4 1.997 553 2.000 000 
5 1.799 734 1.801 938 
6 1.245 456 1.246 980 
7 0.444 498 0.445 042 
8 -0.444 498 -0.445 042 
9 - 1.245 458 - 1.246 980 

10 - 1.799 740 - 1.801938 
11 -1.997 558 -2.000 000 
12 - 1.799 737 - 1.801938 
13 - 1.245 459 - 1.246 980 
14 -0.444 501 -0.445 042 

where 4) is defined in Fig. 9.7 together with expressions for the data points (X , ,  Yn). 
A Pascal code C Y L I N D E R . P A S  which implements the above procedure is provided 
on the accompanying PC disc, output from which is shown in Table 9.2. 

For a simple representation of the cylinder by as few as 14 elements the prediction 
of Vs by the surface vorticity method agrees with the exact solution to within 
0.1%. 

9.2.1 The problems of the singular matrix and leakage flux 

Before moving on to extend this analysis to lifting aerofoils and cascades let us 
consider one important  property of the coupling coefficient matrix. 

The arrows shown in Fig. 9.8 represent the coupling coefficients in column n, in 
other words the velocities IPsm n parallel to each element m induced by a vortex of 
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Vortex of unit sheet strength 
din = 1.Oxds n 

n O  - 

w n 

m 

Note that Vsm n - Kmn 

Fig. 9.8 Circulation around profile interior induced by element of unit sheet strength at n 

unit sheet strength d F n  = 1.0 x dsn located on element n. If we now take the sum 
of the products g m n  Z~kS m for column n, Eqn (9.20), we thus obtain 

KlnA~S1 + g2nz~ks2 -]-... + KMnZXSM = 
M 

E Km,~Sm 
m--1 

=__ ~ Vsmn dSm (9 .25)  

= C, circulation around profile interior 

For each column n this represents the circulation around the profile interior due to 
the vorticity on element n. Since the vorticity sheet is just outside the body surface, 
the circulation C must be zero. Thus this summation for each column should ideally 
be zero. In practice due to numerical approximation C will be very small but not 
quite zero, implying the presence in the above solution of some leakage flux through 
the surface to accommodate the apparent tiny residual internal circulation. 

If, on the other hand, the sums of all columns were identically zero, the matrix 
would be singular and without the specification of some further constraints no solution 
would be forthcoming. The necessity to impose a trailing edge Kutta-Joukowski 
condition solves this dilemma for lifting bodies which we will consider next. 

9.3 Lifting aerofoils 
Simulation of the flow past aerofoils introduces two new problems. Firstly, for thin 
body profiles, coupling coefficients on the back-diagonal are inaccurate. Secondly 
there is the need to impose the trailing edge Kutta-Joukowski condition related to 
the generation of lift. These matters will be dealt with in the next two subsec- 
tions. 
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Kll  K12 K13 K14 / ~ ~  ' /  

K21 K22 K23 ~ / / ~ 2 6  

K31 K32 / ~ / ~  K35 K36 

K41 / ~ / ~  K44 K45 K46 

6 

2 

4 

Fig. 9.9 Back-diagonal coupling coefficients linking opposite body profile points 

9.3.1 Back-diagonal correction 

To illustrate this problem the full matrix is shown in Fig. 9.9 for a thin profile, 
adopting just six elements for simplicity. 

Coefficients on the back-diagonal represent the mutual influence of vortex elements 
directly opposite one another, namely g16 and K61, K25 and K52, K34 and K43. As 
shown in detail by the present author (Lewis, 1991), for very thin bodies such as 
aerofoils these coupling coefficients become both large and inaccurate, resulting in 
considerable residual circulation C, Eqn (9.25). The recommended procedure to 
correct for this, first advocated by Jacob and Riegels (1963), is to enforce zero internal 
circulation C = 0 for each column. To illustrate this, application of Eqn (9.25) to 
column 4 of Fig. 9.9 results in 

1 
K34 --- - 3 ~ (K14~kSl q" K24~$2 -b g44z~ 4 + g54z~s 5 q- g64z~ks6) (9.26) 

If this estimate for K34 and all the other back diagonal coefficients is used instead 
of the normal value as given by Eqn (9.15), 'numerical leakage flux' is eliminated, 
ensuring that the body profile is a true streamline of the flow. However, the matrix 
will then be singular and insoluble without further actions such as those to be 
considered next. 

9.3.2 Introduction of bound circulation 

The most obvious way of making the matrix non-singular is to impose also a value 
for the circulation F = ~Vs ds around the outside of the body profile. F is called the 
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Fig. 9.10  Flow past a circular cylinder with circulation of strength F = 4r 

bound circulation and is thus given by the total net vorticity on the body surface, 
namely 

; 
M 

ds -" ~ T( Sn ) Z~kSn 
n = l  

or in more detail 

~/(s1)As 1 -t- ')/(S2)Z~ 2 -t- 'Y(s3)As 3 " 4 - . . .  -t- "Y(SM)~tS M = F (9.27) 

If this equation is added to any one of the Martensen equations (9.20), the matrix 
will become non-singular and will deliver a solution for the flow with prescribed 
bound vorticity F. Better practice is the addition of Eqn (9.27) to every equation 
of the matrix. The mth equation (9.14) then becomes 

M 

( g ( s  m, Sn) q- i~iSn) T(Sn) "~ - Uoo cos  t im -- Voo sin t im d- F 
n = l  

(9.28) 

A Pascal source code MAGNUS.PAS which applies this strategy to the flow past 
a circular cylinder with prescribed circulation F is included on the accompanying PC 
disc. Output is shown in Fig. 9.10 for a 22-element simulation in comparison with 
the exact solution (Batchelor, 1970), namely 

F 
Vs = 2/./= sin 0-~ 27 ra  (exact solution Fig. 9 10) (9.29) 

where a is the radius of the cylinder. The chosen circulation for this example was 
of value F = 4~raU=, which is just sufficient to reduce the velocity to zero at 0 = 37r/2 
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, Vs = 7 ( ~  

Fig. 9.11 Trailing edge flow and the Kutta-Joukowski condition 

at the centre of the bottom surface as can be checked from the exact solution 
above. 

9.3.3 Trailing edge Kutta-Joukowski condition 
In reality we are unable to prescribe the bound vorticity F which, for aerofoils, will 
be strongly controlled by flow in the trailing edge region. As illustrated by Fig. 9.11 
the flow direction on both upper and lower surfaces will be from left to right 
approaching the trailing edge. The sign of the local surface velocity and associated 
vorticity, Vs = y(s), are defined as clockwise +ve. Thus a suitable statement of the 
Kutta-Joukowski trailing edge condition would be achieved by imposing the 
constraint of equal and opposite vorticity strengths of the two surface elements te 
and te + 1 which form the trailing edge, namely 

~(Ste) -- --'Y(Ste+l) (9.30) 

One way to proceed is to replace F by a unit bound vortex so that Eqn (9.28) 
becomes 

M 

Z (g(sm' Sn) + z2~Sn) "}t(Sn) = - (U~176 cos tim + Voo sin/3m) + 1 
n=l  

Since the right-hand side has two independent components, we may break this linear 
equation into separate equations for Woo and F, namely 

M 

Z (K(sm, Sn) + ASh) 7a (S~) = -- (Uoo cos/3m + Voo sin/3m) 
n=l  

M 
Z (K(sm' Sn) +ASn) T2(Sn) 
n=l  

= 1  

(9.31) 

Vs, = y(s,,)= 71(s,,)+ FTz(s,) (9.32) 

which deliver separate solutions for ~1(S) and 72(s). Since these use the same coupling 
coefficient matrix this procedure demands no additional major computing require- 
ments. Now for any particular bound vortex F the final solution may be expressed 
by recombining the separate solutions through 
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Introducing this expression into the trailing edge equation (9.30) we may then obtain 
the following solution for the aerofoil bound vorticity: 

F = - ')tl(Ste) + ' ) t l (Ste+l)  

~2(Ste) + ')t2(Ste+ 1) ( 9 . 3 3 )  

As it stands the solution of Eqn (9.31) is required for each mainstream velocity 
specification (Woo, aoo). A further simplification is obtained if Eqn (9.31a) is broken 
down yet again into two separate equations for unit uniform streams Uoo = 1 and 
Vo~ = 1 in the x and y directions, resulting in the following three independent unit 
equations: 

M 

E (K(sm' Sn) + z~Sn)'Yu(sn) = - -  C O S  tim for U= = 1, V= = 0 
n = l  

M 

2 (g(Sm' Sn) + z~ISn) ]tv(Sn) = -- sin/3m for Uo~ = 0, V= = 1 (9.34) 
n = l  

M 

E (g(Sm 
n = l  

, Sn) + ~kSn)'YF(Sn) = 1 for F = I  

These may be solved once and for all and the results recombined for any desired 
values of Uoo, Voo in the following manner. First apply the Kutta condition, Eqn (9.33), 
to the two unit uniform stream solutions to give the unit bound vortex strengths Fu 
and Fv, namely 

Fu  = _ 'yu(Ste) + ~u(Ste+ 1) 

'YF(Ste) + )tF(Ste+ 1) 

Fv = - Yv(Ste) + yv(Ste+i) 
Yr(Ste) + Yr(Ste+ 1) 

(9.35) 

The solution for any specified values of U~ and V~ then becomes 

v~. = U~[Yu(Sn) + ru yr(s.)] + Voo[~v(Sn) + Fv yr(sn)l 

and the total bound vorticity is given by 

(9.36) 

F = U~ F~ + V~ Fv (9.37) 

Example 9.2 Flow past an aerofoil 

The program AEROFOIL.PAS (source code given on accompanying PC disc) 
completes this computation, an example of which is shown in Fig. 9.12 for profile 
NACA0012 with a circular arc camber line and angle 0 = 30 ~ Either of the programs 
CASCADE or STACK may be used to generate the profile coordinates following 
the standard geometrical specification explained in Section 2.3, the data being 
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Fig. 9.12 Comparison of surface pressure distribution predicted by programs CASCADE and 
AEROFOIL 

recorded in the file RAWDATA. The predicted distribution of surface pressure 
coefficient Cp, as defined by Eqn (2.14), is compared here with that predicted by 
the program CASCADE, for which an extremely wide blade pitch t/l = 100 was 
introduced to simulate the isolated profile. The two programs are in close 
agreement. 

9.3.4 Computational flow sequence for programs AEROFOIL.PAS and 
BLADEROW.PAS 

To conclude this section the overall computational flow sequence for prediction of 
the flow past an aerofoil is illustrated in Fig. 9.13. All the procedures up to and 
including calculation of the unit solutions are totally independent of the mainstream 
velocity W~ and are calculated once and for all for the given aerofoil profile. The 
program then permits the selection of successive values of Woo and aoo as required. 
The reader is referred to the source code AEROFOIL.PAS for further details. 

This same computational sequence is appropriate for surface vorticity analysis of 
turbomachine cascade flows which will be considered in the next section. 

9.4 Turbomachine cascades 

The previous analysis may be extended quite easily to deal with turbomachine aerofoil 
or blade cascades by introduction of an alternative coupling coefficient K(sm,Sn) 
which automatically accounts for the complete array of blades located between 
y = +oo, Fig. 9.14(a). To derive an expression for K(sm,S,) consider first the infinite 
array of point vortices of strength F, Fig. 9.14(b). As shown by Traupel (1945) and 
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Fig. 9.13 Computational sequence for programs AEROFOIL and BLADEROW 
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developed in detail by Lewis (1991), the complex conjugate velocity induced by the 
infinite vortex array may be expressed as 

iF (2 )  i F ( e Z + l )  (9.38a) u - i v = - ~ c o s h  = - ~  e ~ - 1  

_ iF(s inhx- i s iny)___  (9.38b) 
2t cosh x - cosy 

Most cascade treatments transform this to normalised coordinates of the following 

iF 
u - iv -- --~- 

form" 
sinh 27rx i sin 2-try 

t t 

cosh 27rx 2"try 
- -  COS 

t t 

Separating the real and imaginary parts, the (u, v) velocity components are thus 

U = 

V = 

sin 
F t 

2~ry 

2t 
cosh ~ - 

2,rx 270, 
COS 

t t 
2 ~ x  

sinh 
t 

2t 
cosh ~ - 

2,rx 
COS 

2try 

(9.39) 

t t 
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Fig. 9.15 Velocity triangles for a compressor cascade 

V OO 

Applying this to the cascade surface elements "}/(Sn) dSn,  Fig. 9.14(a), the cascade 
coupling coefficient, following the previous strategy for single bodies and aerofoils, 
Eqns (9.8) and (9.15), become 

K(sm,  Sn) -- Umn COS [~m + l"mn sin ~m 

271" 
As__.___~n sin ~ (Ym -- Yn) COS t im -- sinh 2zr t (Xm - xn)  sin tim 

2t cosh 27r 2zr 
t (Xm - Xn) - cos t (Ym - Y n) 

(9.39a) 

This equation is applicable for m :r For the case m = n, it can be shown that the 
self-inducing coupling coefficient g ( s m , S m )  is in fact identical to that for the single 
aerofoil, Eqn (9.19). 

9.4.1 Solution of the direct or analysis problem for a cascade 

The function of a turbomachine ' cascade is to produce fluid deflection from the 
uniform stream W1 at x = -oo to W2 at x = +oo. This is accomplished by the bound 
vorticity F developed by the blades. Thus, as illustrated by Fig. 9.14(b), the F 
array produces a change in velocity v parallel to the line of the cascade from v_o~ 
upstream to v+o~ downstream. By taking the circulation around the contour abcd 
it follows that 

F F 
v_o~- 2t ' v+o~- 2t (9.40) 

If a uniform stream Wo~ is now superimposed onto the vortex array identical to that 
in the cascade plane, the overall velocity triangles will be identical to those of the 
actual blade row and are shown in Fig. 9.15, which may be compared with Fig. 2.5 



264 Selected supporting fluid dynamic analysis 

of Chapter 2. In real applications, however, it is hardly practicable to specify the 
vector mean flow (W~,/3~). Let us consider instead the solution of the more realistic 
direct problem in which the cascade geometry is already fully specified and we wish 
to predict its fluid-dynamic behaviour for a prescribed inflow (W1,/31). 

From Fig. 9.15, making use also of Eqn (9.37), the upstream and downstream 
velocities in the y direction are thus 

F Fu Fv 
V1-- Voo q - -~  = Voo+ Uoo-~  "+" Voo 2t 

F Fu Fv 
V2= V~176 2t= V~176176176 -V~176 2t 

(9.41) 

Since U 1 -- U 2 : Uoo, dividing this equation throughout by Uoo results in 

Fu Fv 
tan fll = tan fl~ + -~- + -~- tan/3oo 

tan f12 -" tan/3oo Fu Fv 2t 2t tan/3oo 

(9.42) 

Adding these equations results in the expression for /3oo derived in Chapter 2, 
namely 

tan/3oo = X(tan fll "}" tan/32) (2.1) 

Subtracting Eqns (9.42) and using the last expression to eliminate /3oo results 
finally in 

[(aFv,2/) (2 )ru] 
/32 = arc tan 1 + Fv/2t tan f l l -  1 + Fv/2t --~ (9.43) 

Thus for any chosen inlet angle i l l ,  the outlet angle/32 is immediately calculable from 
the two unit solutions which deliver the unique values of Fu and Fv, Eqns (9.35), 
derived in the previous section for the single aerofoil but equally applicable for the 
cascade. 

9.4 .2  Shock-free inflow conditions 

As already discussed in Section 2.6 and illustrated by Fig. 9.16, shock-free inflow 
is the fluid-dynamic ideal to achieve minimum profile losses. The stagnation point 
will then be located directly on the leading edge of the profile. By analogy with the 
Kutta-Joukowski trailing edge condition, Section 9.3.3, smooth leading edge flow 
will occur when the surface velocities Vs on elements 1 and M closest to the leading 
edge are equal and opposite (remembering the convention that Vs is +ve when 
clockwise). Thus, by analogy with Eqn (9.30), for shock-free inflow we will have 

VSI=--VsM or "Y(S1)=--'Y(SM) (9.44) 



9.5 Axisymmetric bodies, ducts and ducted propellers 265 

4 

3 

, ,  v 

Fig. 9.16 Shock-free inflow conditions 

Substituting from Eqn (9.36) and rearranging, the vector mean angle for shock-free 
inflow is thus 

fl~SF= _ arctan ( yu(sl) + yu(sM) + Fu(yr(sl) + yr(sM)) ) 
~/v(Sl) + Vv(SM) + Fv(3,r(sl) + Vr(SM)) 

The shock-free inflow angle then follows from Eqn (9.42a), namely 

(9.45) 

{Fu ( Fv)  
fllSF = arc tan -~- + tan/30o 1 + - ~  (9.46) 

Example 9.3 Flow past a compressor cascade 

The source code for a simple PASCAL program BLADEROW is provided on the 
accompanying disc to show how the above cascade analysis can be converted into 
computer code. BLADEROW receives as input (x,y) profile coordinate data 
generated by the blade design program STACK which is stored in the file 
RAWDATA. The more advanced program CASCADE performs both profile design 
and flow analysis (user instructions are given in Appendix II) and also stores the raw 
profile coordinates in the file RAWDATA. A comparison of predicted surface 
pressure distributions from both CASCADE and BLADEROW is shown in Fig. 9.17 
for the default cascade geometry, which the user will find presented when undertaking 
a new run of program CASCADE, but with the modified inlet angle/31SF = 63.706 ~ 
corresponding to shock-free inlet flow. The surface pressure coefficient Cpl is that 
defined by Eqn (2.14) and the two programs are found to be in good agreement 
including also the predicted outlet angle/32 = 29.161 ~ 

9.5 Axisymmetric bodies, ducts and ducted propellers 
The previous analysis may be extended with relative ease to simulate axisymmetric 
flows. This will now be developed progressively beginning with flow past a body of 
revolution, Section 9.5.1, proceeding to flow past an annular aerofoil or duct, Section 
9.5.2, and concluding with simulation of a complete ducted propeller, Section 9.5.3. 
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Fig. 9.18 Axisymmetric surface vorticity model for body of revolution 

The aim will be to develop surface vorticity boundary integral models capable of 
predicting the detailed incompressible inviscid fluid flow. 

9.5.1 Flow past a body of revolution 

The flow past a body of revolution located in a uniform stream Woo parallel to the 
x-axis, Fig. 9.18, may be modelled by the introduction of a sheet of ring vorticity 
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Fig. 9.19 Flow past a sphere modelled with 21 surface elements 

located on the body surface and of strength y(s) = Vs. Martensen's integral equation 
(9.13) for this situation becomes 

-- l~l(Sm) + ~ g (Sm,  Sn)'}t(Sn)dSn "at" Woo cos  tim = 0 (9.47) 
J 

where the coupling coefficient may be expressed as 
m 

g(Sm,  Sn) = Umn COS ~m Jr- 1Jmn sin t im (9.48) 

where (Umn , Vmn ) are the velocity components induced at surface point m due to a 
unit ring vortex at n. Gibson (1972) has shown that these may be expressed as 
follows: 

Umn = -- 

Vmn = 

1 ( 
2 7rr n V'X 2 + ( r + 1) 2 

x/r ( 
2rrrnN/X2 + (r + 1) 2 

K(k)- [ 
K(~:)- [ 

1,] ) 
1 + X2 q'- ( r -  1) 2 E(k) 

1 + x2 + ( r -  1) 2 E(k) 

(9.49) 

K(k) and E(k) are complete elliptic integrals of the first and second kind and k is 
given by 

~/x 4r k = 2 + (r + 1) 2 = sin 4) (9.50) 

where the dimensionless coordinates (x,r) linking body surface locations m and n 
are defined as 

Xm--Xn rm ( 9 . 5 1 )  X - - ~  , r - -  
rn rn 
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Fig. 9.20 Annular aerofoil or ducted propeller duct 
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A method for evaluation of K(k) and E(k) by use of 'look-up' tables has 
been documented in full by the present author (Lewis, 1991), together with 
relevant computer code, and this technique has been implemented in the program 
AXISYM.PAS for which the source code is provided on the accompanying PC disc. 
A full derivation for the self-inducing coupling coefficient is also given, namely 

 m(,nS rm 
K (Sm, Sm)  = 2 47r 47rr m Z~S m COS tim (9.52) 

The first two terms on the right-hand side are identical to those for the plane aerofoil 
and cascade flows, Eqn (9.19). The extra third term accounts for the self-propagation 
velocity of the ring vortex element/~m Of unit sheet strength at m and is analogous 
to the well-known property of a smoke-ring vortex. A formulation for the latter was 
given by Lamb (1945) from which the above expression was adapted by Ryan (1970) 
and by Lewis and Ryan (1972). A full explanation and derivation has been given 
by Lewis (1991, pp. 154--157). 

A comparison is shown in Fig. 9.19 between the surface velocity distribution vJW~ 
predicted by program AXISYM and the exact solution for the flow past a sphere, 
namely 

Vs 3 . 
W~ = ~sm 4) (9.53) 

Precise prediction is obtained for this or any other more complex body shape, 
examples of which have been given by Lewis (1991), including comparisons with 
experimental test. 

9 .5 .2  Annu lar  aerofoils  or engine cowls 

As the first step towards the modelling of a complete ducted propeller or fan we 
consider next the flow past an axisymmetric duct or engine cowl located in a uniform 
stream W~. Such a device may be perceived alternatively as an annular aerofoil such 
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Fig, 9,21 Surface pressure distribution on annular aerofoil NACA 662-015. Comparison of program 
DUCT.PAS prediction with experimental tests by Hill (1975, 1978) 

as that illustrated by Fig. 9.20 for the aerofoil NACA 662-015. Duct aspect ratio is 
defined as (trailing edge radius rte)/(chord l), which for this example is set at 
rte/l = 0.835. The previous computational sequence specified in Fig. 9.13 is again 
completely appropriate and the plane aerofoil analysis of Section 9.3 may be adapted 
quite easily by simply replacing the coupling coefficients K(sm,Sn) , Eqns (9.15) and 
(9.19), by the ring vortex equivalents just derived for the body of revolution, Eqns 
(9.48), (9.49) and (9.52). Being in effect an annular or ring aerofoil, however, the 
duct will generate a bound circulation F and a consequent radial thrust (equivalent 
to the lift of a two-dimensional aerofoil). Thus unlike the body of revolution it is 
necessary to impose the trailing edge Kutta-Joukowski condition exactly as explained 
in Section 9.3.3. 

All of these features have been built into the computer program DUCT.PAS for 
which the source code is included on the accompanying PC disc. The predicted 
surface pressure distribution, expressed as a dimensionless pressure coefficient 
Cp "- (19- poO/~oW=,~ 2 is compared with experimental aerodynamic test data in Fig. 
9.21, for the aerofoil NACA 662-015, showing good agreement. It is of interest to 
note that although this profile is symmetrical and the mainstream velocity Woo is 
parallel to its chord line, the pressure on the inner surface is actually lower than that 
on the outer surface. Since Vs will behave in the reverse manner it is clear that this 
duct, despite having zero camber, will in fact develop anti-clockwise circulation F 
resulting in a slight increase of mass flux through the space occupied by the duct. 

V. P. Hill (1975, 1978) constructed this duct with considerable precision to obtain 
a really reliable experimental benchmark for testing annular aerofoil theories, 
including also flows with incidence in the range 0~ aoo < 15 ~ He also extended 
surface vorticity modelling to deal with incidence effects. A fairly extensive literature 
covers earlier work based on linearised aerofoil theory which was ably reviewed by 
Weissinger and Maass (1968). Although source panel methods were well established 
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in the 1960s, e.g. Smith and Hess (1966), surface vorticity modelling was still 
undeveloped for duct flows until the publication by Ryan (1970) out of which the 
work of Hill and others developed. 

9.5.3 Ducted propellers 

A complete ducted propeller system may be modelled in the manner illustrated in 
Fig. 9.22. First of all the body of revolution and annular aerofoil solutions of Sections 
9.5.1 and 9.5.2 may be combined for simulation of the propeller boss and surrounding 
duct. Secondly the discontinuity across the edge of the downstream jet wake from 
the jet velocity Vj to the mainstream advance velocity Va may be modelled by a 
semi-infinite vortex tube Fw. Here we will consider only the free-vortex propeller and 
its circumferentially averaged effect. In reality the blade bound vortices would be 
shed from the blade tips as a structure of helical vortices extending downstream to 
x = oo. The circumferential model of this comprises a vortex tube emanating from 
the blade tips in the form of a helically spiralling vortex sheet. The tangential or 'ring' 
vorticity component of this sheet, which forms a tube, is of special importance here 
since it induces velocity components (Uw, Vw) due to the propeller and its infinite wake 
which must be accounted for in the flow simulation model. We will return to this 
matter again shortly, having first considered the overall structure of the boundary 
integral equations and their consequent matrix form for simulation of this problem, 
namely 

i ][ ] ' Effect of Effect of 
hub upon duct upon 

itself hub 

[ ][ ] Effect of Effect of 
hub upon duct upon 

duct itself ] 

~(S1 

T(S2 

~'(sM 

rhSl 
rhs2 

rhs3 

rhSM 

(9.54) 

Since two bodies are to be represented, the coupling coefficient matrix may be 
partitioned as shown in Eqn (9.54). Sub-matrices Mll and M22 will be identical to 
the coupling coefficient matrices for the isolated hub and duct as given in Sections 
9.5.1 and 9.5.2, accounting for the effect of each body upon itself. Sub-matrices M12 
and M21 on the other hand introduce the mutual interference effects between hub 
and duct. 

Initially the coupling coefficient matrix may be set up in the usual manner just as 
if hub and duct were a single body. Following this, as recommended for the annular 
aerofoil in Section 9.5.2, back-diagonal correction must then be applied to the 
elements in sub-matrix M22 followed by imposition of the trailing edge Kutta- 
Joukowski condition. These matters are too complex for further explanation here 
but have been dealt with in more detail by Ryan and Glover (1972), Gibson (1972), 
Gibson and Lewis (1973) and Lewis (1991). Appropriate procedures are embedded 
in the computer program DUCTPROP.PAS included on the accompanying PC 
disc. 

The actual Martensen equation for this ducted propeller simulation may be 
developed from Eqn (9.47) as follows: 

--~t(Sm) + K(sm, Sn)T(sn)ds n = - ( V  a + U w ) C O S ~ m - -  V w S i n / 3  m (9.55) 
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Fig. 9.22 Free-vortex ducted propeller model applied to N.S.M.B. 19A duct with centre-body 

where Va is the vehicle advance velocity and (Uw, Vw) are the velocity components 
induced by the propeller and wake. As shown by Gibson (1972) and fully explained 
by Lewis (1991), these may be expressed analytically as follows" 

rw( 
Uw = -~-~ A-t  x [K(k)-(r-1)H(n k)]) 

V'x2 + (r + 1)2 r+ 1 ' 

2rw [ E(k)_ ( l _ k__~ ) K(k) ] 
Vw = ,trkEN//x2 + (r + 1) 2 

(9.56) 

where (x,r) are the dimensionless coordinates defined by Eqns (9.51), Fw is the 
strength of the ring vortex tube which extends from x = 0 to x = oo and the constant 
A is given by 

A=~r if r < l  

=~r/2 if r = l  

= 0  if r > l  

(9.57) 

H(n,k) is the complete elliptic integral of the third kind given by Dwight 
(1963) as 

( Ir/2 d a  
II(n, k) = 

J0 (1 - n sin E a)~v/1 - k 2 sin E a 
(9.58) 
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Fig. 9.23 Surface pressure distributions for 19A duct with Ka 4-55 N.S.M.B. propeller 

where the parameter n is defined as 
4r 

n = (1 + r) 2 (9.59) 

The evaluation of all of these equations is completed by the program 
DUCTPROP.PAS and the reader is referred to the source code for further detail. 
The only remaining item needing further action is the allocation of a value to the 
vortex tube strength Fw. This may be related directly to the wake jet velocity Vj 
since 

Fw = - ( V j -  Va) (clockwise +ve) (9.60) 

Hence as shown in Chapter 8, Eqn (8.24), Fw may be expressed as a function of 
propeller thrust coefficient zCT through 

F...~w = 1 - V'I  + "rCT (9.61a) 
Va 

As shown by Lewis (1991, p. 201), this may be modified to allow for hub blockage, 
giving 

rw / 
Va = 1 -  ~ /1+  l _ h 2  (9.61b) 

Duct surface pressure distributions predicted by the program DUCTPROP.PAS 
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Fig. 9.24 Pressure on duct surface element 

are compared in Fig. 9.23 with experimental results obtained by aerodynamic model 
tests (Balabaskaran, 1982; Lewis and Balabaskaran, 1983). The 19A duct (Van 
Manen and Oosterveld, 1966) was combined with the Netherlands Ship Model Basin 
Ka 4-55 propeller located in the mid-plane as illustrated in Fig. 9.22. For the 
theoretical calculations a tip clearance of 2% of the propeller diameter was assumed 
with the propeller plane located at 55% of the duct chord. Test results are shown 
in Fig. 9.23 for a very wide range of advance coefficients J = 0.224, 0.36 and 0.551, 
resulting in enormous variation of pressure coefficient Cp, defined as 

Cp --" P--P=1 2 (9 .62)  
~pv~ 

The surface vorticity modelling of program DUCTPROP.PAS and its axisymmetric 
simplifying assumptions have delivered remarkably good predictions. This computer 
code is intended only for the simulation of accelerating Kort Nozzles for which it 
clearly forms a powerful design/analysis tool. It would, however, be a relatively simple 
matter to adapt the code to handle Pump Jets or even by-pass fan configurations. 
The pressure distributions shown here typify Kort Nozzle characteristics of very low 
suction pressures on the duct inner surface upstream of the propeller followed by 
a rapid pressure rise through the propeller plane. The pressure distribution on the 
duct outer surface tends towards ambient conditions Cp ~ 0.0, as also does Cp on 
the inner surface downstream of the propeller. 

Once the surface pressure distribution is known the duct thrust Tp. may be obtained 
by integration. Thus for the surface element ds of slope/3 at radius r on the duct 
(Fig. 9.24), the forward horizontal component of thrust d T may be expressed as 

d Td = --p" 27rr ds. sin/3 (9.63) 

Introducing the gauge pressure p - p =  for convenience, the total duct thrust is then 
f 

Td = - ~b (p - po~)27rr sin/3 ds 
J 

= - 7rpV 2 ~ Cp sin/3 r ds (9.64) 
! 

The duct thrust coefficient, Eqns (8.8) find (8.23), then becomes 

CTd -" 1 2 7rd2 

~pVa 4 

=---'~ Cp sin/3 r ds 
(9.65) 
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Theoretical predictions 

r -  Experimental 

J -  Experimental 

v C  T 

Fig. 9.25 Comparison of predicted and experimental characteristics for Ka 4-55 propeller located in 
19A duct 

The program DUCTPROP.PAS performs this calculation for specified input values 
of propeller thrust coefficient CTp providing a prediction of the overall propeller 
characteristic parameters CT = CTp + CTd and z = CTp/CT. 

The z-CT characteristic predicted by DUCTPROP.PAS for the selected Kort 
Nozzle propulsor is compared with the experiments of Balabaskaran (1982) in Fig. 
9.25. Also included there is the J-CT characteristic predicted by the simple 
one-dimensional analysis given in Chapter 8, Section 8.5.2, and embodied in the 
computer code TAWCT.PAS. These two analyses and computer codes provide a 
comprehensive design and analysis toolkit for ducted propellers which is able to 
predict both overall performance characteristics and detailed fluid-dynamic be- 
haviour. 
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'FIPSI' 

A computer program for selection and performance 
analysis of axial turbine stages 

1.1 Introduct ion and overview 

'FIPSI' is a computer program for the design of multi-stage axial turbines. The 
underlying concepts, attributed originally to S. F. Smith (1965), have been further 
developed by Lewis (1978a,b) for teaching purposes. Smith published experimental 
data (~b,~ charts) for an assembly of Rolls-Royce model turbines, each recorded at 
its optimum efficiency point. The outcome was a series of efficiency contours plotted 
on a (th,ff) chart as shown below in Fig. 1.6. The dimensionless coefficients tk and 
~k are defined as follows: 

Cx 
~b =---~ Flow coefficient (shown as fi on screen) 

Aho 
qJ =--U~ Work coefficient (shown as psi on screen) 

where Cx is the axial velocity, U the blade speed and Aho the stagnation enthalpy 
drop across one stage. The (<h,qJ) chart is based upon values at the mean radius rm, 
defined as 

r m = �89 b + r t ip)  

FIPSI enables you to complete the velocity triangle design of a multi-stage gas 
turbine with facility to check the stage centre-line design duty (~b,~) against the 
performance chart. The program goes on to undertake a complete three-dimensional 
design based upon 11 sections between hub and casing with the following 
assumptions: 

(1) The centre-line radius rm is the same .for all stages. 
(2) The axial velocity is also constant. 
(3) The centre-line design is the same for all stages and has 50% reaction. 
(4) Free-vortex design is adopted with equal work done at all radii. 

Various other visual checks are available to present your design data graphically 
on the monitor. These include: 

(a) a view of the annulus geometry, and 
(b) details of velocity triangle data, stage reaction and exit Mach numbers from 

hub to casing. 

These will be explained with the help of 'screen-dumps' in the next section. 



276 Appendix I 

Thermodynamics Design data Graphics File etc. 

Des ign input data are presently as follow~ :- 

Inlet hub radius = 0.300 m Input pressure 

Inlet tip radius = 0.450 m Outlet pressure 

Number of  stages = 3 Inlet temp. TI 

Starer aspect ratio = 6.0 Rot. speed 

Rotor aspect ratio = 8.0 Mass flow rate 

Total to total e f fy .  

Cp/Cv fatio gamma = 1.40 Gas constant R 

= 2.500 bar 

= 1.020 bar 

= 1200.0 K 

= 6000.0 revs/min 

= 35.000 kg/s 

= 92% 

= 287.0 J/kg K 

Other calculated design data for the above are:- 
Outlet hub radius = 0.229 m Outlet temp. T2 

Outlet tip radius = 0.520 m Flow coeff, fi 

Axial velocity = I36.42 m/s Work coeff, p s i  
Lest stage hub starer exit Math No. M2 = 0.773 

Last stage tip rotor exit Mach No.  M3 relative = 0.626 

= 950.5 K 

= 0.57899 

= 1.50459 

rill II < <Press Air key and first letter together to grab a menu> > 
< <e.g. AII-T pulls down the Thermodynamics menu> > 

Fig. 1.1 Bar menu and default design data 

1.2 Ma in  bar  m e n u  and de fau l t  tu rb ine  des ign  

All the various design or viewing options are available from the main bar menu as 
shown in Fig. 1.1. To get started type the program name fipsi at the keyboard and 
press the < E N T E R >  or < R E T U R N >  key. A title page will be presented with the 
instruction to press < E N T E R >  once more in order to proceed. Having done this 
the monitor screen will appear as shown in Fig. 1.1. A bar menu offering a selection 
of four options is spread across the top of the page. Below this a page full of detailed 
data is presented for the default design already embedded into the program. 

The strategy for using FIPSI is to edit these data using the bar menu as many times 
as you wish until you have accomplished the turbine design of your choice. To access 
the bar menu simply hold down the ALT key while pressing the first letter of the 
menu item which you wish to select. This same instruction is also written at the bottom 
of the screen, Fig. 1.1. The program is in fact menu driven and all you have to do 
is to obey the instructions which appear on the screen. 

Just to summarise, the role of the four bar menu selections is as follows" 

Thermodynamics 
To edit the thermodynamic design data such as pres- 
sures and temperatures. 

Design data 
To edit other machine design data such as speed and 
size. 
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Graphics 
To view the present status of your design on the fi-psi 
chart, to check velocity triangles and to view the 
annulus geometry. 

File etc. 
To enable you to save your work, quit, go temporarily 
into DOS or reverse the video presentation. 

The first two options are thus editing menus and the third menu provides detailed 
viewing of the design in its present state. 

1.3 P u l l - d o w n  m e n u s  

When you access the bar menu with, for example, ALT-T, you will automatically 
enter a pull-down menu, in this case the one shown in Fig. 1.2. All of the four 
pull-down menus are shown in Figs 1.2 to 1.5 and are self-explanatory. The arrow 
keys on the keyboard will enable you to switch to a different pull-down menu using 

---> or 1' ~ to select the required highlighted item on a given pull-down menu. 
There is no need for further explanation - just try it for yourself. 

Once you have selected the item of your choice just press < E N T E R >  and obey 
all the instructions presented to you at the screen. Any changes to the [Ther- 
modynamics] or [Design data] will then appear as an update on the design data sheet 
of the main menu. 

Fig. 1.2 Thermodynamics pull-down menu 



Fig. 1.3 Machine overall design pull-down menu 

Fig. 1.4 Graphics presentation pull-down menu 



Fig. 1.5 File etc. pull-down menu 

Fig. 1.6 FIPSI chart and velocity triangles 
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f J  

ir i 

I I  I 
I I  I 

o 

Station 
No. 

rhub 
Ill 

rtip Press. Temp 
m bar K 

1 0.300 0.450 2.50 1200.0 
2 0.283 0.466 1.90 1116.8 
3 0.260 0.489 1.4I 1033.6 
4 0.229 0.520 1.02 950.5 

A x i s  o f  rotation 

Fig. I,T Overall annulus geometry and thermodynamic data 

1.4 Viewing options 
Three possibilities are available from the [Graphics] pull-down menu, Fig. 1.4, as 
follows: 

(1) If the [Fi/psi chart] option is selected and entered the screen presentation will 
be similar to that shown in Fig. 1.6. The centre-line velocity triangles, which 
are the same for all stages, are shown in dimensionless form (i.e. all 
velocities are divided by the blade speed Um= rmfl). Below this is shown the 
standard (~b,qJ) duty chart for the ideal model test stages with contours of 
constant efficiency. Your own design is plotted on this as a square marker i 
and your selected design duty coefficients are also recorded to the left. By 
returning to the main menu you can then change the design data to adjust or 
improve your design in relation to the optimum test stages. Incidentally you 
can also first read off the efficiency value from the chart (e.g. rt = 93% for 
the default turbine) and update your estimate of this with the menu sequence 
[Thermodynamics] [Efficiency tot. to tot.]. For example, the default turbine 
has a fairly heavy loading coefficient qJ = 1.5045 which can be reduced if you 
select four stages instead of the default number of three, using the menu 
sequence [Design data] [Number of stages]. 

(2) Selection of the [View annulus] option results in the presentation shown in 
Fig. 1.7. Overall annulus geometry (i.e. hub and tip radii) and 
thermodynamic data (i.e. temperature and pressure) are tabulated at entry, 
station 1, and after each stage, namely 2, 3, etc. 

(3) Selection of the [View stage data] option results in the presentations shown 
in Figs 1.8 and 1.9, namely detailed stage design data. Whenever you update 
the main menu, the program goes on to undertake a detailed design for all 
stages for 11 sections from the hub radius to the tip radius. It assumes a 
free-vortex design for simplicity and consequently a constant 'work done' and 
axial velocity. Thermodynamic properties and full velocity triangle data are 



Fig. 1.8 Overall data for selected stage 

Fig, I.g Detailed velocity triangle data and exit Mach no. data for selected stage 
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all evaluated. Many of these data are presented in Figs 1.8 and 1.9 for visual 
checking. First of all you will be asked to select a particular stage for viewing 
such as stage 3 as shown in Fig. 1.8. It is quite helpful just to check quickly 
the stage reaction from hub to tip and the level of highest likely Mach 
number. Thus for the default design we have slightly negative reaction at the 
hub section which is not disastrous but just at the sensible limit here. Mach 
numbers at the stator exit are of more concern but here reach no more than 
about 0.76 at the hub section. If you now hit any key on the keyboard you 
will be presented with Fig. 1.9, which shows detailed velocity triangle and 
exit Mach numbers relative to both stator and rotor of your selected stage. 
Thus we see here that fluid deflections of about 126 ~ are required of the 
rotor hub section due to the slightly negative reaction found there, and fairly 
large stator deflections too. These heavy aerodynamic demands may be 
lightened by selecting four stages rather than three as already suggested for 
this default design. 

1.5 [File etc.] option 
The last bar menu item [File etc.], Fig. 1.5, offers the following series of tools to 
organise files or to switch settings: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

[Save and exit] enables you to record your data into a text file which you will 
be invited to name (see Section 1.7). 
[Quit]. If you select this option you will simply quit the session without 
saving your work. 
[Read data from file] enables you to pick up from where you left Off last 
time, assuming that you remembered to use item (4) below before quitting. 
[File design data] enables you to save your present design data into a file 
named TURBINE.DAT. If you wish to resume the work at a later date, it is 
essential to use this option before using [Quit] or [Save and exit]. 
[Go to DOS] enables you to leave FIPSI temporarily and enter DOS in order 
to carry out some other work. To leave DOS and return back to FIPSI 
simply enter 'exit' at the DOS prompt. 
[Reverse video] simply reverses paper and ink colours for the graphics 
presentations. If you wish to do screen dumps, slightly better quality may be 
obtained with reverse video. To obtain a screen dump: 
(a) Enter DOS. 
(b) Type the DOS graphics command appropriate to your printer. 
(c) Return to FIPSI and select one of the [Graphics] viewing options. 
(d) Hit the Print Screen key. 

1.6 Disc file FIPSI.DAT 
The experimental test data which forms the basis of the (~b,O) performance chart are 
stored in file FIPSI.DAT and must be available on the working disc. A printout of 
this is given in Section 1.8, annotated to indicate the various items. It would be 
perfectly possible to replace this with your own set of test data if you so wished 
provided you retain the same format. 
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1.7 Contents of output data file JUNK for the default 
turbine design 

I n l e t  h u b  r a d i u s  = 
I n l e t  t ip  r a d i u s  = 
Outle t  h u b  r a d i u s  = 
Outle t  t ip  r a d i u s  = 
S t a to r  a s p e c t  r a t i o  = 
N u m b e r  of s t a g e s  = 
R o t a t i o n a l  speed  = 
M a s s  f low r a t e  = 
Ax ia l  ve loc i ty  = 
Cp/Cv r a t i o  g a m m a  = 
Gas c o n s t a n t  R = 
F low coeff, fl = 
Work  coeff, ps i  = 
Tot. to tot. eff ic iency = 

0 V E ~  DESIGN DATA 

0 .300  m 
0 .450  m 
0 .229 m 
0 .520  m 
6.0 
3 

I n l e t  p r e s s u r e  = 2 .500  b a r  
Out le t  p r e s s u r e  = 1.020 b a r  
I n l e t  t emp.  T1 = 1200.0  K 
Outle t  t emp.  T2 = 950 .5  K 
Ro to r  a s p e c t  r a t i o  = 8.0 

6000 .0  r e v s / m i n  
35 .000  kg/s  
136.42 m/s  
1.4O 
287 .0  J / k g  K 
0 . 5 7 8 9 9  
1 .50459  
92.0% 

S ta t i on  X 

m 

0.000  
0 .072 
0.161 
0 .272 

ANNULUS GEOMETRY 
AND 

THERMODYNAMIC DATA 

r h u b  r t ip  Press .  Temp.  
m m b a r  K 

0 .300 0 .450 2 .500  1200.0  
0 .283 0 .467 1.901 1116.8  
0.261 0 .489 1.412 1033.7  
0 .229 0.521 1.020 950.5  

DETAILED STAGE DESIGN 
AND 

PERFORMANCE ANALYSIS DATA 

Stage No. 1 

DIMENSIONLESS COEFFICIENTS 

Rad ius  ReAct ion fl p s i  M2 

0 .29081  0 .16861  0 .74661  2 . 5 0 1 7 9  0 .600  
0 . 3 0 7 6 5  0 . 2 5 7 1 3  0 .70575  2 . 2 3 5 4 4  0 .569  
0 . 3 2 4 4 9  0 . 3 3 2 2 2  0 .66913  2 . 0 0 9 4 8  0 .542  
0 . 3 4 1 3 3  0 . 3 9 6 4 8  0 .63612  1 .81611 0 .517  
0 . 3 5 8 1 6  0 .45189  0 .60622  1 .64938  0 .496  
0 . 3 7 5 0 0  0 . 5 0 0 0 0  0 . 5 7 9 0 0  1 .50459 0 .476  
0 . 3 9 1 8 4  0 . 5 4 2 0 5  0 .55412  1 .37806  0 .459  
0 . 4 0 8 6 7  0 . 5 7 9 0 0  0 .53129  1 .26685  0 .443  
0 .42551  0 . 6 1 1 6 6  0 . 5 1 0 2 7  1 .16858  0 .429  
0 .44235  0 . 6 4 0 6 6  0 . 4 9 0 8 4  1 .08131 0 .416  
0 . 4 5 9 1 9  0 . 6 6 6 5 3  0 .47285  1 .00347  0 .403  

M2 - abso lu te  ex i t  M a c h  No. l eav ing  t h e  s t a t o r  
M 3 - - - r e l a t i v e  ex i t  M a c h  No. l eav ing  t h e  r o t o r  

M3 

0 .437  
0 .446  
0 .455  
0 .465  
0 .475  
0 .485  
0 .496  
0 .507  
0 .519  
0.531 
0 .543  
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VELOCITY TRIA_I~GLE DATA 

Radius  A l p h a l  A l p h a 2  Sta tor  Beta2 Beta3 
deflect ion 

0 .29081 29.331 70.275 99.606 55.400 62.257 
0 .30765  27.974 69.228 97.202 50.646 62.827 
0 .32449 26.729 68.195 94.924 45.145 63.413 
0 .34133 25.582 67.177 92.759 38.807 64.005 
0 .35816  24 .524 66.174 90.698 31.590 64 .598 
0 .37500  23.545 65.187 88.731 23.545 65.187 
0 .39184  22.637 64.214 86.852 14.856 65.767 
0 .40867  21.793 63.258 85.051 5.849 66.337 
0 .42551 21.008 62.317 83.325 - 3 . 0 7 1  66 .894  
0 .44235 20 .274 61.393 81.667 - 11.516 67.437 
0 .45919  19.588 60.484 80.072 - 19.215 67.965 

Rotor  
def lect ion 

117.657 
113.473 
108.557 
102.812 

96 .188  
88.731 
80 .623  
72.185 
63 .823  
55.921 
48 .750  

Stage No. 2 

DIMENSIONLESS COEFFICIENTS 

Radius  Reac t ion  fi ps i  

0 .27089  0 .04184 0 .80152 2 .88328 
0 .29171 0 .17374 0.74431 2 .48637 
0 .31254  0 .28016 0 .69472 2 .16612 
0 .33336  0 .36728 0 .65133 1.90398 
0 .35418  0 .43948 0 .61304 1.68670 
0 .37500  0 .50000 0 .57900 1.50459 
0 .39582  0 .55122 0 .54854  1.35046 
0 .41664  0 .59495 0 .52113 1.21886 
0 .43746  0 .63259 0 .49633 1.10559 
0 .45829  0 .66522 0 .47378 1.00741 
0 .47911 0 .69369 0 .45319 0 .92175 

M2 = absolute  exi t  Mach  No. leaving  the  s t a t o r  
M3 = re la t ive  exi t  Mach  No. leaving  the  ro to r  

M2 

0.667 
0.621 
0.582 
0.549 
0.520 
0.495 
0.472 
0.453 
0.435 
0.419 
O.405 

M3 

0.445 
0.455 
O.466 
0.478 
0.491 
0 .504 
0.518 
0.533 
O.548 
0 .564 
0.579 

VELOCITY TRIANGLE DATA 

�9 Radius  A l p h a l  A l p h a 2  Sta tor  Beta2 Beta3 
deflect ion 

0 .27089 31.099 71.531 102.630 60.205 61 .618 
0 .29171 29.255 70.218 99.474 55.163 62.287 
0 .31254  27.602 68.927 96.529 49.131 62 .996 
0 .33336  26.113 67.657 93.770 41.915 63 .724  
0 .35418  24.767 66.410 91.177 33.377 64.458 
0 .37500  23.545 65.187 88.731 23.545 65.187 
0 .39582  ~ 22.432 63.987 86.419 12.739 65.903 
0 .41664  21.415 62.811 84.225 1.591 66.602 
0 .43746  20.482 61.659 82.141 - 9 . 1 3 4  67.281 
0 .45829  19.624 60.532 80.156 - 18.825 67.937 
0 .47911 18.832 59.429 78.262 - 2 7 . 1 9 0  68.569 

Rotor  
def lect ion 

121.823 
117.450 
112.127 
105.639 

97 .834  
88.731 
78.642 
68 .193 
58 .147 
49 .112  
41 .379  
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Stage No. 3 
DIMENSIONLESS COEFFICIENTS 

Radius  Reac t ion  fi ps i  M2 

0 .24370 - 0 . 1 8 3 9 3  0 .89096 3 .56267 0.773 
0 .26996 0 .03520 0 .80429 2 .90326 0.698 
0 .29622 0 .19868 0 .73299 2 .41132 0.638 
0 .32248 0 .32387 0 .67330 2 .03459 0.589 
0 .34874  0 .42186 0 .62260 1.73972 0.549 
0 .37500 0 .50000 0 .57900 1.50459 0.515 
0 .40126 0 .56330 0.54111 1.31410 0.486 
0 .42752 0 .61530 0 .50787 1.15762 0.461 
0 .45378 0 .65854  0 .47848 1.02752 0.440 
0 .48004  0 .69488 0 .45230 0 .91817 0.421 
0 .50630  0.72571 0 .42884 0 .82540 0.404 

M2 = absolute  exit  Mach  No. leaving the  s t a to r  
M3 = relat ive exit  Mach  No. leaving the  ro to r  

M3 
0.453 
0.464 
0,477 
0.492 
0.508 
0.526 
0.545 
0.564 
0.584 
0.605 
0.626 

VELOCITY TRIANGLE DATA 
Radius  A l p h a l  A lp h a2  Sta tor  Beta2 Beta3 

deflection 

0 .24370  33.843 73.276 107.119 65.613 60.849 
0 .26996  31.186 71.590 102.777 60.411 61.589 
0 .29622  28.883 69.937 98.819 53.949 62.438 
0 .32248 26.872 68.317 95.189 45 .844  63.342 
0 .34874  25.106 66.734 91.839 35.737 64.266 
0 .37500  23,545 65.187 88.731 23.545 65.187 
0 .40126  22.158 63.677 85.835 9.829 66,087 
0 .42752 20.918 62.206 83.124 - 4 . 1 1 0  66.959 
0 .45378  19.804 60.774 80.577 - 16.835 67.797 
0 .48004  18.798 59.380 78.179 - 27.534 68.597 
0 .50630  17.887 58.026 75.913 - 3 6 . 1 2 5  69.358 

Rotor  
deflection 

126.462 
122.000 
116.387 
109.186 
100.003 

88.731 
75.916 
62 .850 
50.962 
41 .063  
33.233 

1.8 

6 
11 
94.0 

Contents of the (~, # data file FIPSI.DAT 

0.4 1.02 
0.45 1.13 
0.5 1.21 
0.55 1.28 
0.6 1.3 
0.65 1.3 
0.7 1.28 
0.72 1.25 
0.74 1.15 
0.73 1 
0.7 0.84 

{Number  of c o n s t a n t  efficiency con tours}  
(Nu mb er  of fi,psi da ta  in  f i rs t  con tou r )  

(Value of tota l  to to ta l  efficiency) 

(Eleven fi,psi values for this contour) 
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16 
93.0 

19 
92.0 

l g  
g l . 0  

0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.785 
0.8 
0.81 
0.82 
0.83 
0.825 
0.81 
0.8 

0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.84 
0.86 
0.87 
0.88 
0.887 
0.89 
0.888 
0.885 
0.88 
0.865 

0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 

1.12 
1.24 
1.35 
1.45 
1.54 
1.63 
1.68 
1.67 
1.64 
1.6 
1.57 
1.5 
1.25 
1.2 
1 
0.92 

1.26 
1.41 
1 .545 
1.66 
1.77 
1.84 
1.89 
1.88 
1.86 
1.8 
1.75 
1.7 
1.6 
1.5 
1.4 
1.3 
1.2 
1.1 
1 

1.4 
1.57 
1.7 
1.82 
1.93 
2.02 
2.27 
2.11 
2.1 

{Same format  for r ema in ing  five con tours )  

(Efficiency contour  No. 2} 

{Efficiency contour  No. 3} 

(Efficiency contour  No. 4} 
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18 
90.0 

18 
89.0 

0.85 
0.9 
0.95 
0.96 
0.97 
0.972 
0.97 
0.965 
0.95 
0.925 

0.4 
0.5 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 
1 
1.018 
1.035 
1.037 
1.035 
1.027 
1.015 
0.975 

0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 
1 
1.03 
1.07 
1 .O9 
1.09 
1.08 
1.065 
1.035 

2.06 
1.95 
1.78 
1.7 
1.6 
1.5 
1.4 
1.3 
1.2 
1 

1.57 
1.87 
2.1 
2.18 
2.24 
2.28 
2.29 
2.27 
2.2 
2.12 
1.89 
1.8 
1.6 
1.5 
1.4 
1.3 
1.2 
1 

2.06 
z.17 
2.27 
2.34 
2.39 
2.42 
2.44 
2.45 
2.43 
2.37 
2.28 
2.2 
2 
1.8 
1.6 
1.4 
1.2 
1 

{Efficiency con tou r  No. 5} 

{Efficiency con tou r  No. 6} 



Appendix II 

'CASCADE' 

A computer program for design and analysis of 
turbomachine cascades 

I1.1 Introduct ion and overv iew 

CASCADE is a computer program for the fluid dynamic design and analysis of 
turbomachine cascades. Blade profile geometry is generated by superimposing a 
profile thickness distribution normal to a camber or mean line which can be either 
a circular arc or a parabola, as described in Section 2.3. Alternatively the program 
will accept 'raw data', namely a set of (x,y) profile coordinates as explained in Section 
11.2.2. Once the blade row geometry has been selected the program undertakes a 
fluid flow analysis based on the surface vorticity cascade method outlined in Chapter 
9, Section 9.4, to predict the outlet flow angle/32 and surface pressure distribution 

Profile Camber line Stagger, t/l Inlet angle Design/analyse Qui l /DOS/Fi le  

********** 'Design Mode" ********** 

Cascade data are presently as follow~:- 

Profile thickness is the C4 profile 

Profile lhickness scale = 1.0 

Camber line lype is circular arc 
x/l of  maximum camber = 0.5 

Camber angle lhela = 60.0 

Stagger angle lamda = 45.0 

Pitch/chord ratio = t .0 

Fluid inlet angle betal = 60.0 

< <Pres~ All key and first leller together lo grab a m e n u >  > 

< <e .g .  AII-C pulls down the Camber m e n u >  > 

Fig. I1.1 Main bar menu 
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�9 =: ,=:Hit any key to proceed. :> :=- 

I"! Inlet angle Beta1 60.00 d e g r ~  

17 Outlet angle Beta2 28.94 degrees 

0 Shock-free Beta1 63.70 dc~:jrc, cm 

0 Shock-free Bet~2 29.16 dc~: j r~ 

90.0 

Beta2 ~ 

0.0 

-90.0 
-90.0 0.0 Beta1 ~>" 90.0 

Fig. 11.2 Graphical output for default cascade 

1.0 

cpl 

0.0 

-1.0 
0.0 x/I 1.0 

Cpl or Cp2 for a specified inlet angle ill" All of these data are presented graphically 
at the screen and filed onto the hard disc in tabular form. To provide a quick overview 
it will be helpful to illustrate the two main screen presentations at this point, namely 
the main bar menu, Fig. II.1, and the predicted output, Fig. II.2. 

The program is managed by a bar menu system with pull-down menus and is for 
use on IBM-compatible PCs with either mono or colour graphics. The use of each 
menu is explained in Sections II.2 to II.7. Below the bar menu there is a presentation 
of the current design data. Initially when the program is run a default design is set 
up automatically and comprises the data shown in Fig. II.1. Use may then be made 
of the bar menu to change any of these data in order to select whatever cascade 
geometry is of interest to the user. 

Whenever the user so wishes, the current cascade data may be converted into an 
actual design and subjected to fluid flow analysis by accessing the Design/analyse 
option in the bar menu. The output is then presented graphically at the computer 
terminal. Figure II.2 shows the output for the default cascade data recorded in Fig. 
II.1. 

Three graphs are presented here as follows: 

(1) Cascade geometry. A small picture is presented showing the shape of the 
cascade to provide a quick visual check. 

(2) Output angle versus inlet angle. A graph is plotted of the predicted fluid 
outlet angle f12 for a very wide range of fluid inlet angles ill- 

(3) Surface pressure distribution. A graph is presented showing the predicted 
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surface pressure coefficient Cpl or  Cp2 versus fractional distance along the 
chord line x/l. The surface pressure coefficients are defined as follows: 

' P - P l  
Up1 -- 1 2 for a compressor (II. 1) 

~pW1 

Cp2 = Pl - P22 for a turbine (11.2) 
~pW~ 

The default design illustrated in Fig. 11.2 is a compressor cascade for which the stagger 
is positive, +45 ~ A turbine cascade is selected by simply specifying a negative stagger 
value, e.g. - 6 0  ~ The program then automatically selects either Cpl or Cp2 as defined 
above. 

II.1.1 How to run the program 

Before running the program CASCADE it is essential to have the file profiles 
available in the current directory. The contents of this are given in Section 11.9 and 
may be extended to include other profile thicknesses by following the given format. 
To run the program simply enter its name cascade at the keyboard. The title page 
which is then presented at the screen can be removed by hitting any key, whereupon 
the main bar menu and default design data, Fig. II.1, will then appear at the screen. 
To access any item in the bar menu simply press down the Alt key while hitting the 
first character of the keyword as explained at the bottom of the screen. 

11.1.2 Main bar menu 

Referring back to Fig. II.1, there are six keywords in the main bar menu which 
perform the following functions: 

Profile To select the profile base thickness distribution. 
Camber line To select the camber angle and type of curvature. 
Stagger, t/l To select the cascade geometrical parameter stagger and 

pitch/chord ratio. 
Inlet angle To select the inflow angle/31. 
Design/analyse To convert the above design data into a cascade and calculate its 

fluid-dynamic performance. 
Quit/DOS/File To enable you to quit, to go temporarily into DOS, to file your 

current work or to read the previous work from file, or to 
reverse the video presentation. 

We will now deal with these in more detail in the following six sections. 

11.2 Prof i le  m e n u  

Before we consider use of the profile menu it will be helpful to explain the method 
used here to create turbomachine blade profiles as illustrated in Fig. 11.3. This follows 
the standard gas turbine convention of superimposing a base profile thickness (xt,Yt) 
either side of a camber line (xe,yc). 

If we now access the Profile menu by entering Alt-p we obtain the pull-down menu 
shown in Fig. 11.4. 
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Fig. 11.3 Method of construction of a turbomachine blade profile 

Fig. 11.4 The Profile pull-down menu 

11.2.1 Selection of a base profile thickness 

The 1' $ arrow keys enable us to highlight the profile of our choice, which may 
then be accepted by pressing <Ente r> .  Thus in Fig. 11.4 the axial compressor Profile 
- C4 had been selected. Following this the user is invited to specify the profile 
thickness scale. If the value 1.0 is entered then the standard profile thickness shape 
will be used to generate the Yt values, Fig. 11.3, otherwise some other value may be 
used to thicken or thin the profile. The first six items on this pull-down menu provide 
a range of typical profile thicknesses to suit many turbomachine applications. 
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Profile Camber line Stagger, t/l Inlet angle Design/analyse Qui t /DOS/Fi le  

**** '*****  "Raw Data '  Mode **** '*****  

Profile x,y coordinates have been read from disc file R A W D A T A  

The following bag menu item is disabled with this option 

Camber line 

The remaining bar menu items are accessible 

Profile 

S tagge t, t/1 

Inlet angle 

Design/quit  

Q nit/DOS/file 

* * *  to resume "Design" mode 

" * *  to select new cascade geometry 

' * "  to select a new betaI value 

" " *  to proceed with the design/analysis 

" * "  to quit or organise files 

Present status of cascade ts as follows 

, ~tagger - ~ . 0  (lee 
r'! ratio = ~ 0 

i ~niet an.~ie = a0.0 (le~, 
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 11.5 Raw data option 

Fig. 11.6 Camber line menu 

11.2.2 Raw data option 

The last item, however, is quite different in function, enabling us to adopt a profile 
already expressed in x,y profile coordinates and stored in file rawdata. If we select 
the Raw data pull-down menu then a new screen presentation is displayed as 
illustrated in Fig. 11.5. The procedure is explained on screen, involving the suspension 
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0.80 

Profile m e n u  

Position of 
maximum 
camber. 

0.40 

0 O0 
"0.0 L Oa.x2O 0.40 0.60 0.80 1.()0 

x I "--= chord 
_ . . . ,  

Fig. 11,7 Parabolic camber line 

Fig. 11.8 Menu for selecting cascade geometry 

of the Camber line pull-down menu. With this option the given profile shape read 
from rawdata can be set at your own choice of stagger and camber and a flow analysis 
undertaken at any chosen flow inlet angle/31. The format for data in file rawdata 
is as illustrated in Section II.10, and the author's other program STACK, for 
geometrical design and stacking of turbomachine blade profiles, saves its output into 
a file of the same name, rawdata, which can contain up to eleven different 
profiles. 
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negative/~1 

positive /~1 

~ positive 

t 

~ N  negative 

Compressor Turbine 
cascade cascade 

Fig. 11.9 Definition of cascade geometry 

11.3 C a m b e r  l ine m e n u  

The Camber line pull-down menu has three options as shown in Fig. 11.6. These have 
the following functions: 

Camber angle For editing the value of the camber angle 0, Fig. 11.3. 
Circular arc type For specifying a circular arc camber line shape. 
Parabolic type For specifying a parabolic camber line shape. If this option is 

selected, the user is invited to specify the position of 
maximum camber, xmax/chord, Fig. II.7. 

11.4 C a s c a d e  g e o m e t r y -  S t a g g e r ,  t/I m e n u  

The Stagger, t/l menu (Fig. 11.8) has two options permitting the selection of the two 
items which determine the cascade geometry, namely the stagger angle A and the 
pitch/chord ratio t/l. These are defined in Fig. 11.9 which illustrates two cascades. 
For the compressor or fan cascade the stagger angle is defined as positive and for 
the turbine cascade as negative as illustrated. 

11.5 In le t  a n g l e  m e n u  

This menu (Fig. II.10) enables the user to change the flow angle/3~ at entry to the 
cascade. The sign convention for/31 is defined in Fig. 11.9 and the sign convention 
for the outlet flow angle /32 is the same, namely +ve above the x-axis and _ve 
below. 

11.6 D e s i g n / a n a l y s e  m e n u  

This menu is shown in Fig. II.11. 
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Fig. I1.10 Inlet angle menu 

Fig. I1.11 Menu for cascade design, drawing and flow analysis 

11.6.1 The Design & draw option 

When the designer wishes to assess the current state of a design, two options are 
made available from this menu. The Design & draw option constructs the cascade 
geometry from the profile and cascade data which has been selected and then presents 
it on screen as illustrated by Fig. 11.12. This provides a visual check that there have 
been no serious errors in selecting the variougvariables, for example the wrong sign 
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Fig. 11.12 Cascade geometry presented on-sc reen  

for the stagger h. The geometry shown in Fig. II. 12 is that of the default design which 
is a compressor cascade. 

11.6.2 The Flow analysis option 

Alternatively a prediction of the fluid flow behaviour may be obtained for the present 
design of cascade by selecting the second pull-down menu, Flow analysis. First of 
all the geometry shown in Fig. 11.12 will be presented, followed by the flow data 
shown in Fig. 11.13, which is in fact the same as that already illustrated in Fig. 
11.2 in the introduction, Section II.1, where an overview has already been given. 
To assist the design optimisation process graphs are plotted of the blade surface 
pressure distribution as defined in Eqns (II.1) and (11.2) and the deflection data 
fll ve r sus  f12" 

Selection of optimum inlet angle 
A table is presented giving the predicted outlet angle f12 for the selected inlet angle 
/31, marked also by I-q on the graph. Inaddit ion to this, the shock-free inlet angle 
and its associated outlet angle are also presented to provide the designer with an 
estimate of the optimum inflow angle for his chosen cascade geometry. Shock-free 
inflow is defined as the/31 value for which the stagnation point coincides precisely 
with the blade leading edge position. This condition is also plotted as point o on 
the graph. In practice this will be quite close to the inlet angle for minimum profile 
loss. Also shown at the top of the screen is the instruction: 

< <  Hit any key to proceed. > >  
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f <<Hit any key to proceed>> I 1.0 

Cp 1 

0.0 

-1 .0  

0.0 x/l 

l-3 Inlet angle Beta1 60.00 degrees 

[--1 Outlet angle Beta2 28.94 degrees 

O Shock-free Betal 63.70 degrees 

O Shock-free Beta2 29.16 degrees 

90.0 r 

Beta2 ~ 

0.0 

-90.0 

-90.0 0.0 Betal  o 90.0 

Fig. 11.13 Graphical output from Flow analysis option 

1.0 

Hitting any key then results in the following presentation: 

Do you wish to select a new inflow angle? 
Enter y or n *** 

Entering y in answer to this results in an invitation to enter a new value for the inflow 
angle/31, 

Enter new value of Beta1 

after which the flow will be recalculated and a new version of Fig. 11.13 presented. 
This enables the designer to experiment with the choice of inflow angle in order, 
for example, to select the optimum cascade shape for the job in hand. Thus if the 
shock-free value of/31 = 63.7 ~ is entered the resulting pressure distribution will be 
much smoother in the leading edge region. 

11.7 Qui t /DOS/F i le  m e n u  

This pull-down menu (Fig. 11.14) offers a variety of management tools as follows: 

Quit This menu brings the session to an end, resulting in the 
recording of data into the following files: 
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Fig. 11.14 Menu for handling files and other tools 

Go to DOS 

File this design 

Design from file 

Reverse video 

rawdata This file contains (x,y) coordinates of the last blade 
profile but set at zero stagger. Sample data for the 
default design, Fig. 11.14, are given in Section II.10. 

testdata This file contains a record of all the work undertaken 
using the Design/analyse bar menu, Section II.11. 

This menu enables the user to leave the program temporarily 
and enter DOS to undertake other work. To re-enter program 
CASCADE and resume work where you left off, just enter 
'exit' at the DOS prompt. 
To save the current design parameters in order later to pick up 
the work where you are now leaving it. 
To resume from where you left off after using the previous 
menu File this design. 
To reverse the ink and paper colours for the graphical 
presentations. These are initially set with black ink on white 
paper. Use of this menu reverses this to white ink on black 
paper. The main benefit of this is for screen dumping for which 
the reverse video usually gives a better result. Use of this menu 
a second time causes the screen presentation to revert back to 
normal. 

II.7.1 Screen dumping of results 

Hard copies of graphical presentations such as Figs 11.12 and 11.13 may be obtained 
by screen-dumping. To achieve this enter the [Graphics] command (using the 
appropriate option for your printer) before running the CASCADE program. 
Alternatively, if you forgot to do this before beginning the session, use the Go to 
DOS pull-down menu to go temporarily into DOS and then use the [Graphics] 
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command before returning to C A S C A D E .  Then press the Print Screen key whenever 
you wish to dump the graphical presentations to the printer. 

11.8 E x a m p l e -  design of an opt imum compressor cascade 
To illustrate the use of the program C A S C A D E  let us consider the selection of 
optimum profile geometry to meet  prescribed aerodynamic requirements which are 
to be as follows: 

Design requirements 
We will adopt the case considered in Chapter  2, Fig. 2.7, where we are given 
fll  ---- 54.59~ f12 = 30.69~ C4 profile, circular arc camber-line. Let us also specify that 
the loading must be conservative compared with the maximum allowable diffusion 
factor of DF = 0.6. 

The first task is to estimate a suitable value for the pitch/chord ratio t/l. Substituting 
the above data into Eqn (2.30) for DF = 0.6 gives the maximum allowable value 
t/l = 1.1623. Since we are asked to produce a conservative design let us adopt the 
slightly smaller value t/l = 1.0. Back-substitution into Eqn (2.28) then yields a 
conservative diffusion factor of DF = 0.5618. 

Now we can proceed to use the program C A S C A D E  to find the camber 0 and 
stagger A values to deliver the required ~2 with shock-free inflow/31. There  are two 
practical approaches as follows. 

Solution - first method, interpolation 
For a first crude estimate of cascade geometry we could guess that the stagger might 
approximate to the average of fl l  and 132 (see Fig. 2.5 for a perception of this). On 
the other hand we might expect the camber angle to be rather bigger than the fluid 
deflection, say 1.5 x (131-/32). Thus our first estimation will be as follows: 

A ~ 1(54.59~ + 30.69 ~ = 42.64 ~ 43 ~ 

0 ~- 1.5 • (54.59 ~  30.69 ~ = 35.85~ ~ 36 ~ 

The strategy to be followed now is to study four test cascades around these values 
using the program C A S C A D E  in order to predict their shock-free performance,  and 
then to interpolate to estimate the required stagger and camber. The four test cases 
chosen for illustration are shown in Table II.1. 

Table II.1 Test cases for program CASCADE 

Shock-free inlet and outlet 
angles from CASCADE program 

Case no. A ~ O~ ~opt ~opt 

1 40 35 52.37 31.32 
2 40 45 55.22 28.23 
3 45 35 57.09 36.82 
4 45 45 59.79 33.80 
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Fig, 11,15 Plot of trial cascades 1 to 4 for interpolation of required ,~ and 0 values to achieve specified 
design point with shock-free inflow 

The four shock-free 'ideal' test cases are plotted II in F ig. 11.15 together with the 
required design point o. From this plot the estimated stagger and camber, 
interpolating by eye, are as follows: 

A ~ 40.8 ~ 0 ~ 40 ~ Solution by interpolation 

A re-run of CASCADE using these values confirms that this is an excellent choice 
which will deliver the required outlet angle /32 with almost precisely shock-free 
inflow. 

Solution - second method, trial and error 
Alternatively A and 0 may be estimated by trial and error starting from the same first 
guesses as before. The following cause-and-effect relationships are of some help in 
this otherwise rather more random approach to design: 

(1) Outlet angle f12 is strongly controlled by A for t/l <<. 1.0. 
(2) Deflection increases with camber angle 0. Consequently fiE will then decrease 

for a compressor cascade and increase for a turbine. 
(3) Increase in either stagger or camber will increase the shock-free inflow angle 

for a compressor cascade, the reverse being true for a turbine, although care 
is needed over the signs of/31 for the turbine case. 

Table II.2 provides an example of arriving at a reasonable solution after six iterations 
of this rather subjective approach. 

Although the final design is slightly different from method 1 it is very close to the 
ideal cascade required. 
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Table II.2 Design of a shock-free compressor cascade by trial and error selection of stagger 
and camber angles 

Target design values 

54.59 ~ 30.69 ~ 
Iteration h ~ 0 ~ fll ~ f12 ~ fl]opt J~opt 

1 43 36 54.59 34.26 55.49 34.31 
2 40 36 54.59 31.10 52.66 31.02 
3 40 38 54.59 30.46 53.23 30.40 
4 40.2 38 54.59 30.67 53.42 30.62 
5 40.7 39 54.59 30.88 54.18 30.86 

6 40.5 39 54.59 ~ 30.67 ~ 53.99 30.64 
Final design Shock-free angles 

11.9 Contents of data file profiles 
The file profiles contains a selection of base profile thickness coordinates with the 
following format: 

C4 

T4 

17 
0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0  
1 .250000  1 .650000  
2 . 5 0 0 0 0 0  2 . 2 7 0 0 0 0  
5 . 0 0 0 0 0 0  3 . 0 8 0 0 0 0  
7 . 5 0 0 0 0 0  3 . 6 2 0 0 0 0  

10 .000000  4 . 0 2 0 0 0 0  
1 5 . 0 0 0 0 0 0  4 . 5 5 0 0 0 0  
2 0 . 0 0 0 0 0 0  4 . 6 3 0 0 0 0  
3 0 . 0 0 0 0 0 0  5 . 0 0 0 0 0 0  
4 0 . 0 0 0 0 0 0  4 . 6 9 0 0 0 0  
5 0 . 0 0 0 0 0 0  4 . 5 7 0 0 0 0  
6 0 . 0 0 0 0 0 0  4 . 0 5 0 0 0 0  
7 0 . 0 0 0 0 0 0  3 . 3 7 0 0 0 0  
6 0 . 0 0 0 0 0 0  2 . 5 4 0 0 0 0  
9 0 . 0 0 0 0 0 0  1 .600000  
9 5 . 0 0 0 0 0 0  1 .060000  

1 0 0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0  

17 
0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0  
1 .250000  1 .170000  
2 . 5 0 0 0 0 0  1 .540000  
5 . 0 0 0 0 0 0  1 .990000  
7 . 5 0 0 0 0 0  2 . 3 7 0 0 0 0  

1 0 . 0 0 0 0 0 0  2 . 7 4 0 0 0 0  

Profi le n a m e  
N u m b e r  of (xt,  Yt) c o o r d i n a t e s  

17 (xt,  Yt) p a i r s  for t h i s  profi le.  
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15 .000000  
20 .000000  
30 .000000  
4 0 . 0 0 0 0 0 0  
50 .000000  
60 .000000  
70 .000000  
80 .000000  
90 .000000  
95 .000000  

100 .000000  
N A C A 0 0 1 2  

18 
0 .000000  
1 .250000 
2 .500000  
5 .000000  
7 .500000  

10 .000000  
15 .000000  
20 .000000  
25.000OOO 
30 .000000  
4O.O0OOOO 
50 .000000  
60 .000000  
70 .000000  
80 .000000  
90 .000000  
95 .000000  

100 .000000  
N A C A 0 0 1 5  

18 
0 .000000  
1 .250000 
2 .500000  
5 .000000  
7.5OOO0O 

10 .000000  
15 .000000  
20 .000000  
25 .000000  
30 .000000  
40 .000000  
50.000000 
60.000000 
70 .000000  
80 .000000  
90 .000000  
95 .000000  

100 .000000  

3 .400000  
3 .950000  
4 .720000  
5.OOOOOO 
4 .670000  
3 .700000  
2 .510000  
1 .420000 
O.85OOO0 
0 .720000  
0 .000000  

0 .000000  
1 .894000 
2 .615000  
3.555O00 
4 .200000  
4 .683000  
5 .345000  
5 .737000  
5 .941000  
6 . 0 0 2 0 0 0  
5 .803000  
5 .294000  
4 .563000  
3 .664000  
2 .623000  
1 .448000 
0 .807000  
0 .000000  

0 .000000  
2 .367000  
3 .268000  
4 .443000  
5 .250000  
5 .853000  
6 .682000  
7 .172000  
7 .427000  
7 .502000  
7 .254000  
6 .617000  
5 .704000  
4 .580000  
3 .279000  
1 .810000 
1 .008000 
0 .000000  

In addition to, or as an alternative to the six 
profile thicknesses tabulated here, the designer 
may edit the file profiles to suit his own 
requirements. Simply follow the above format 
for each profile thickness. 



Naca66-010  
26 

0.0 
0.5 
0.75 
1.25 
2.5 
5.0 
7.5 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
4O.O 
45.O 
50.O 
55.0 
60.0 
65.0 
70.0 
75.0 
80.0 
85.0 
90.0 
95.0 

100.0 
NGTEmod 
2O 

0.0 
0.759 
0.913 
1.141 
1.516 
2.087 
2.536 
2.917 
3.53 
4.oo~ 
4.363 
4.636 
4.832 
4.953 
5.0 
4.971 
4.865 
4.665 
4.302 
3.787 
3.176 
2.494 
1.773 
1.054 
O.4O8 
0.0 

0 .000000  
1 .250000 
2 .500000  
5 .000000  
7 .500000  

10 .000000 
15 .000000 
20 .000000  
30 .000000  
40.OOOOOO 
50.0000O0 
60 .000000  
70 .000000  
80 .000000  
85.O0OOOO 
90 .000000  
92 .500000  
95 .000000  
97 .500000  

100 .000000  

0 .000000  
1 .375000 
1 .910000 
2 .680000  
3 .195000  
3 .600000  
4 .180000  
4.5500OO 
4 .950000  
4 .820000  
3 .980000  
3 .250000  
2 .450000  
1 .740000 
1 .500000 
1 .270000 
1 .170000 
1 .080000 
0 .980000  
0 .000000  
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I1.10 Conten ts  of da ta  f i le r a w d a t a  

1 
37 
0 .000000 0.000000 
0.001263 0.015536 
0.018483 0.038649 
0 .051934 0.066698 
0 .100736 0.096883 
0 .163370 0.125813 
0 .237550 0.150439 
0.320445 0.168477 
0 .408956 0.178613 
0 .500000 0.179675 
0 .590410 0.171342 
0 .677138 0.154552 
0 .757434 0.131014 
0.828941 0.103156 
0 .889792 0.074039 
0 .938420 0.046618 
0 .973142 0.022915 
0 .993362 0.006035 
1.000000 0.000000 
0 .991446 0.002648 
0 .966550 0.010530 
0 .927606 0.024107 
0 .876253 0.041388 
0 .813847 0.058684 
0 .742566 0.073427 
0 .664882 0.083936 
0 .583238 0.089055 
0 .500000 0.088275 
0.417395 0.081783 
0.337535 0.070011 
0 .262450 0.054002 
0.193843 0.036027 
0.133219 0.018544 
0.082040 0.004027 
0 . 0 4 1 8 2 4  - 0 . 0 0 5 2 0 4  
0 .013930 - 0 . 0 0 6 8 5 4  
0 .000000 0.000000 

Number  of profiles 
Number  of (x3r) profile coordinates  

37 (xfr)  coordinates  

This file contains final profile coordinates recorded clockwise around the blade 
perimeter, beginning and ending at the leading edge. The profile is set at zero stagger 
as illustrated in Fig. II.3(c). 

It is also possible to create the file rawdata by using the blade design and stacking 
program STACK. In this case up to ten profiles may be designed and the first 
parameter in the above data set accordingly followed by that number of (x,y) data 
sets. CASCADE may then be used to flow-analyse any of these. Simply follow the 
instructions presented on the screen. 
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I1.11 Sampl e contents of output file testdata for the 
default design 

The following contents of the output file testdata were obtained by running the 
program C A S C A D E  and then using the menu sequence Design/analyse . . .  Flow 
analysis to complete the blade design and fluid flow calculation for the unaltered 
default cascade. 

This file contains a complete record of all the work which is undertaken in a given 
sitting before finally quitting and is thus very valuable for later review of your 
intermediate stages in developing a cascade design. If you wish to keep it for later 
use, remember to copy it into another file for safe keeping! Each time you start a new 
run of C A S C A D E  the file testdata is closed and re-opened! 

***** Record  of Des ign  Work  ***** 

N e w  Case 

***** Camber  Line a n d  Ha l f  T h i c k n e s s  ***** 

x/1 yc2  h a l f  y t~  

0 . 0 0 7 5 9 6  0 .004341  0 . 0 1 2 8 6 2  
0 . 0 3 0 1 5 4  0 .016723  0 . 0 2 4 8 3 9  
0 . 0 6 6 9 8 7  0 .035362  0 . 0 3 4 7 6 3  
0 . 1 1 6 9 7 8  0 . 0 5 7 7 1 4  0 . 0 4 2 4 0 3  
0 . 1 7 8 6 0 6  0 .080920  0 . 0 4 7 4 0 8  
0 . 2 5 0 0 0 0  0 .102220  0 . 0 4 9 8 0 0  
0 . 3 2 8 9 9 0  0 . 1 1 9 2 4 4  0 . 0 4 9 9 6 9  
0 . 4 1 3 1 7 6  0 .130198  0 . 0 4 8 5 9 8  
0 . 5 0 0 0 0 0  0 .133975  0 . 0 4 5 7 0 0  
0 . 5 8 6 8 2 4  0 .130198  0 . 0 4 1 3 0 0  
0 . 6 7 1 0 1 0  0 . 1 1 9 2 4 4  0 . 0 3 5 8 3 6  
0 . 7 5 0 0 0 0  0 .102220  0 . 0 2 9 7 3 7  
0 . 8 2 1 3 9 4  0 .080920  0 .023481  
0 . 8 8 3 0 2 2  0 . 0 5 7 7 1 4  0 . 0 1 7 6 7 3  
0 .933013  0 .035362  0 . 0 1 2 4 8 7  
0 . 9 6 9 8 4 6  0 .016723  0 . 0 0 7 0 1 5  
0 . 9 9 2 4 0 4  0 .004341  0 . 0 0 1 9 4 5  

***** Des ign  P a r a m e t e r s  ***** 

Profile t h i c k n e s s  is the  C4 base  prof i le  
Profile t h i c k n e s s  scale = 1.0 
Camber  l ine  type  is c i r cu l a r  a rc  
x/1 of m a x i m u m  c a m b e r =  0.5 
Camber  ang le  t h e t a  = 60.0 
S tagger  ang le  l a m d a  = 45.0 
P i t ch / cho rd  r a t io  t/1 = 1.0 
Fluid  in le t  ang le  b e t a l  = 60.0 
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***** Blade Profi le  ***** 

x y 

0 .000631  0 . 0 0 7 7 6 8  
0 . 0 0 9 8 7 3  0 . 0 2 7 0 9 3  
0 . 0 3 5 2 0 9  0 . 0 5 2 6 7 3  
0 . 0 7 6 3 3 5  0 . 0 8 1 7 9 0  
0 . 1 3 2 0 5 3  0 . 1 1 1 3 4 8  
0 . 2 0 0 4 6 0  0 . 1 3 8 1 2 6  
0 . 2 7 8 9 9 7  0 . 1 5 9 4 5 8  
0 .364701  0 . 1 7 3 5 4 5  
0 . 4 5 4 4 7 8  0 . 1 7 9 1 4 4  
0 . 5 4 5 2 0 5  0 . 1 7 5 5 0 8  
0 . 6 3 3 7 7 4  0 . 1 6 2 9 4 7  
0 . 7 1 7 2 8 6  0 . 1 4 2 7 8 3  
0 . 7 9 3 1 8 8  0 . i 1 7 0 8 5  
0 . 8 5 9 3 6 6  0 . 0 8 8 5 9 8  
0 . 9 1 4 1 0 6  0 . 0 6 0 3 2 9  
0 .955781  0 . 0 3 4 7 6 7  
0 . 9 8 3 2 5 2  0 . 0 1 4 4 7 5  
0 .996681  0 . 0 0 3 0 1 7  
0 . 9 9 5 7 2 3  0 . 0 0 1 3 2 4  
0 . 9 7 8 9 9 8  0 . 0 0 6 5 8 9  
0 . 9 4 7 0 7 8  0 . 0 1 7 3 1 9  
0 . 9 0 1 9 2 9  0 . 0 3 2 7 4 7  
0 . 8 4 5 0 5 0  0 . 0 5 0 0 3 6  
0 . 7 7 8 2 0 6  0 . 0 6 6 0 5 6  
0 . 7 0 3 7 2 4  0 .078681  
0 . 6 2 4 0 6 0  0 . 0 8 6 4 9 5  
0 . 5 4 1 6 1 9  0 . 0 8 8 6 6 5  
0 . 4 5 8 6 9 8  0 . 0 8 5 0 2 9  
0 . 3 7 7 4 6 5  0 . 0 7 5 8 9 7  
0 . 2 9 9 9 9 3  0 . 0 6 2 0 0 6  
0 . 2 2 8 1 4 6  0 . 0 4 5 0 1 5  
0 .163531  0 . 0 2 7 2 8 6  
0 . 1 0 7 6 3 0  0 . 0 1 1 2 8 6  
0 . 0 6 1 9 3 2  - 0 . 0 0 0 5 8 8  
0 . 0 2 7 8 7 7  - 0 . 0 0 6 0 2 9  
0 . 0 0 6 9 6 5  - 0 . 0 0 3 4 2 7  
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b e t a l  
60 .000002  

***** Fluid Flow Ana lys i s  Output  ***** 

be ta2  be t a in f  
28 .944236  48 .806297  

C1 inf  

1 .553013 

x/1 

0 .000631 
0 .009873  
0 .035209  
0 .076335  
0 .132053  
0 .200460  
0 .278997  
0 .364701  
0 .454478  
0 .545205  
0 .633774  
0 .717286  
0 .793188  
0 .859366  
0 .914106  
0 .955781 
0 .983252  
0 .996681 
0 .995723  
0 .978998  
0 .947078  
0 .901929  
0 .845050  
0 .778206  
0 .703724  
0 .624060  
0 .541619  
0 .458698  
0 .377465  
0 .299993  
0 .228146  
0 .163531 
0 .107630  
0 .061932  
0 .027877  
0 .006965  

Shockfree  in le t  angle  *** out le t  angle  

63.71 29.16 

v e ~ c l  c p l  

0 .089072  0 .992066  
0 .810870  0 .342490  
1.043871 - 0 . 0 8 9 6 6 6  
1 .172848 - 0 . 3 7 5 5 7 4  
1 .252750 - 0 . 5 6 9 3 8 3  
1 .292715 - 0 . 6 7 1 1 1 3  
1 .298880 - 0 . 6 8 7 0 8 9  
1 .280432 - 0 . 6 3 9 5 0 6  
1.241971 - 0 . 5 4 2 4 9 3  
1 .182944 - 0 . 3 9 9 3 5 8  
1 .109494 - 0 . 2 3 0 9 7 6  
1 .029374 - 0 . 0 5 9 6 1 1  
0 .947414  0 .102407  
0 .869248  0 .244409  
0 .800752  0 .358797  
0 .728572  0 .469183  
0 .622611 0 .612355  
0 .490643  0 .759270  
0 .490643  0 .759269  
0 .504801 0 .745176  
0 .505936  0 .744029  
0 .483908  0 .765833  
0 .464630  0 .784119  
0 .457655  0 .790551 
0 .459038  0 .789284  
0 .467292  0 .781638  
0 .483094  0 .766620  
0 .506257  0 .743703  
0 .537967  0 .710591 
0 .583639  0 .659365  
0 .645510  0 .583316  
0 .722467  0 .478042  
0 .816200  0 .333818  
0 .934111 0 .127436  
1.077991 - 0 . 1 6 2 0 6 6  
1 .020543 - 0 . 0 4 1 5 0 7  

cp2 

0 .975698  
1 .014044 
2 .337798  
3 .213572  
3 .807236  
4 .118851 
4 .167787  
4 .022034  
3 .724869  
3 .286426  
2 .770651 
2 .245734  
1.749451 
1.314481 
0 .964094  
0 .625965  
0 .187410  
0 .262609  
0 .262609  
0 .219438  
0 .215924  
0 .282715  
0 .338727  
0 .358430  
0 .354547  
0 .331127  
0 .285125  
0 .214928  
O. 113502  
0 .043412  
0 .276360  
0 .598830  
1 .040609 
1 .672785 
2 .559568  
2 .190282  
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***** Outlet  Angle  v e r s u s  In l e t  Angle  ***** 

B e t a l  Beta2 

- 8 0 . 0 0 0  23 .137  
- 7 5 . 0 0 0  24 .713  
- 7 0 . 0 0 0  25 .499  
- 6 5 . 0 0 0  25 .975  
- 6 0 . 0 0 0  26 .299  
- 5 5 . 0 0 0  26 .536  
- 5 0 . 0 0 0  26 .720  
- 4 5 . 0 0 0  26 .868  
- 4 0 . 0 0 0  26 .993  
- 3 5 . 0 0 0  27 .100  
- 3 0 . 0 0 0  27 .195  
- 2 5 . 0 0 0  27 .280  
- 2 0 . 0 0 0  27 .359  
- 15.000 27 .432  
- 10.000 27 .503  

- 5 . 0 0 0  27.571 
0 .000 27 .637  
5 .000 27 .704  

10.000 27 .772  
15.000 27 .842  
20 .000  27 .915  
25 .000  27 .992  
30 .000  28 .077  
35 .000  28 .170  
40 .000  28 .275  
45 .000  28 .396  
50 .000  28 .540  
55 .000  28 .717  
60 .000  28 .944  
65 .000  29.251 
70 .000  29 .695  
75 .000  30 .413  
80 .000  31 .797  



Appendix II I 

'STACK' 

A computer program for geometrical design 
and analysis of turbomachine cascade blades 

II1.1 Introduct ion and overview 

STACK is a computer program for undertaking the geometrical design of turbo- 
machine blade profiles or aerofoils based upon the method outlined in Chapter 2, 
Section 2.4, Fig. 2.8. Blade profile coordinates are thus generated by superimposing 
a 'base profile' thickness normal to a mean camber line which can be either a circular 
arc or a parabola. In this respect it undertakes profile design tasks which are identical 
to those of the flow analysis program CASCADE. On the other hand its functions 
are entirely geometrical and its main role is that of blade stacking. In other words, 
and as illustrated by Fig. III.1, the designer may specify several sections from hub 
to casing of a turbomachine from his previous aerodynamic design work and stack 

Fig. II1.1 Output from program STACK 
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,, P r o f i l e  C a m b e r  l ine  G e o m e t r y  D i s p l a y  S e c t i o n  Q u i t / s a v e / D O S  

* * * * * * * S e c t i o n  N o .  I * * * * * * * 

Profile data are presently as f o l l o w s  :- 

Profile thickness is the C4 base profile 

P r o f i l e  thickness scale = t . 0  

C a m b e r  l ine  t y p e  is c i r c u l a r  arc 

x/ l  o f  m a x i m u m  c a m b e r  = 0 . 5  

C a m b e r  a n g l e  = 0 . 0 d e g  

S t a g g e r  a n g l e  = 0 . 0 d e g  

Chord l e n g t h  : t 0 0 . 0 r a m s  

S t a c k i n g  l ine  x = 0 . 0 r a m s  

S t a c k i n g  l ine  t, = 0 . 0 r a m s  

--: <: P r e s s  A i r  k e y  a n d  f i r s t  letter together to g r a b  a m e n u  > > 

. . . .  e . g .  A I t - T  pu l l s  down the T h e r m o d y n a m i c s  m e n u >  > 

Fig. 111.2 Main bar menu for program STACK 

these on top of one another in some appropriate manner. For example, the five 
sections shown here are stacked upon their centres of gravity so that in the case of 
a rotor there would then be no centrifugal bending stresses. Section properties such 
as area, centre of gravity, principal axes and second moments of area are calculated 
for each section designed and recorded on file on exit from the program. Simple 
instruction for getting started will now be given, including an introduction to the main 
bar edit menu. 

I I I . l . l  How to run the program STACK 

Before running the program STACK it is essential to have the file profiles available 
in the current directory. This is the same file as that used for the program CASCADE 
and contains a range of base profile thicknesses entered according to the format 
presented in Section 11.9 of Appendix II. To run the program simply enter its name 
stack at the keyboard. The title page which then appears at the screen can be removed 
by hitting any key, whereupon the main bar menu will be presented. 

III.1.2 Main bar menu 

Figure III.2 shows the main menu for STACK consisting of the top bar menu for 
design and display, below which the current design data are recorded for the given 
section, in this case Section No. 1. There are six keywords in the main bar menu 
which enable the user to perform the following activities: 

Profile To select the profile base thickness. 
Camber line To select the camber angle and type of camber-line curvature. 
Geometry To select profile stagger angle and scale and various options to 

fix the blade stacking line. 
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Fig. 111.3 Profile geometry pull-down menus 

Display 

Section 

Quit/save/DOS 

For visual presentation of the single section during design or the 
complete set of stacked profiles. 
To select a given section for further design work or display out 
of a possible total of eleven sections. 
To enable the user to quit the session, to save the current work 
or to exit to DOS. 

We will now deal with these in more detail in the following sections. 

111.2 Menus for editing blade profile geometry 
The first two pull-down menus, shown in Fig. 111.3, enable the user to select the 
profile shape, namely the base profile thickness and the camber line. To access these 
simply enter Alt-P or Alt-C as instructed by the comment at the bottom of the screen. 
Since the procedures involved in using these pull-down menus are identical to those 
undertaken by the program CASCADE, no further instructions will be given here 
and the reader is referred to Appendix II where full details have been presented. 
The only significant difference is that of the first profile pull-down menu GEOMDATA 
which enables the user to recover previous work from a file of that name. Further 
comments about this will be made later in Section 111.6. 

111.3 The Geometry menu 

The third bar menu Geometry (Fig. 111.4) and its pull-down menus provide the 
remaining tools for blade design which are as follows: 

Stagger For setting the blade stagger angle A which will be +ve for a 
compressor and _ve for a turbine. 



312 Appendix III 

Fig. 111.4 The Geometry pull-down menu 

Chord For choosing the blade chord length in mm. 
x-y axes 
Shift x axis 
Shift y axis Tools for blade stacking. 
Autostack 
Stack on C of G 

The first two of these complete the design of the actual blade shape. The remainder  
can then be used to shift the position of the blade profile in the (x,y) plane in a variety 
of ways. Let us consider these in turn. 

111.3.1 Completion of a blade design 

To illustrate this we will begin by prescribing the basic blade profile parameters  for 
the five sections shown in Fig. III.1, which are shown in Table III.1. 

Table III.1 Example test case with five sections 

Section Base Camber 0 ~ Stagger Chord l Location of 
no. profile ;t ~ (mm) stacking line 

Type Value 

1 NACA0012 Circ. arc 70 40 100 C. of G. 
2 NACA0012 Circ. arc 60 45 95 C. of G. 
3 NACA0012 Circ. arc 50 50 90 C. of G. 
4 NACA0012 Circ. arc 40 55 85 C. of G. 
5 NACA0012 Circ. arc 30 60 80 C. of G. 
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Fig. 111.5 Section No 1 of test case stacked on the leading edge 

First use the Profile menu to select the base profile NACA0012 in place of the 
default profile C4. When making this selection the user is asked to specify the profile 
thickness, which we will set here as 1.0. By entering some other value the base profile 
may be thickened or thinned as required. 

Next use the Camber line menu to select a camber angle of 700 ~ for 8ction No. 
1 instead of the default value of 0 ~ We note from Fig. 111.3 that the default camber 
line is already a circular arc, so that no change in that parameter is required. 

Finally access the Geometry menu and then seleci Stagger from the pull-down menu 
to reset the stagger angle to the required value for Section No. 1 of A = 40 ~ By using 
the Display bar menu the outcome of these choices may be presented graphically at 
the screen as shown by Fig. 111.5. 

111.3.2 Tools for blade stacking 

As can be seen from this example, any such new blade profile design will be stacked 
on its leading edge unless subsequent use is made of the various stacking tools listed 
in Section 111.3 and shown in Fig. 111.4. The first three of these pull-down menus 
enable the user to reposition the (x,y) axes (menu x-y axes), or to shift them 
independently (menus Shift x axis and Shift y axis), and the reader is invited to 
experiment with these. 

The pull-down menu Autostack, on the other hand, enables the designer to stack 
the blade profile relative to position along and perpendicular to the chord line in 
answer to the following questions presented on the screen: 

x/chord for stacking line?---> 
y/(max.camber)?---> 

<enter value> 
<enter value> 
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of rotation 

X 

Q Axis of rotation 

(a) (b) 

Fig. 111.6 Two examples of the use of pull-down menu Autostack: (a) stacking on the camber 
line; (b) stacking on the trailing edge 

Axis  of  rotation 

l 
Fig. 111.7 Section No 1 stacked on its centre of gravity 

For example, if the values x/chord = 0.5 and y/(max.camber) = 1.0 are entered, for 
this blade based on a circular arc camber, the profile will be stacked on the actual 
camber line at mid-chord as illustrated by Fig. III.6(a). If, on the other hand, the 
values entered are x/chord = 1.0 and y/(max.camber)= 0.0, the profile will be 
stacked on its trailing edge as illustrated by Fig. III.6(b). Try x/chord = 0.0, 
y/(max.camber) = 0.0! 

The last of the stacking tools, Stack on C of G, is of obvious value for the design 
of rotors for which it is important to stack the sections on their centres of gravity, 
thereby eliminating bending stresses due to centrifugal force. If this menu is accessed 
all of the blade profile sections that have been designed will be thus stacked 
automatically. The program STACK does in fact calculate the profile section areas, 
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Fig. 111.8 The Display pull-down menu 

centres of gravity, principal axes and second moments of area about the principal 
axes and deposits these data in the file section.dat. 

Application of this procedure to Section No. 1 is presented in Fig. 111.7 which shows 
the first step towards generating the full set of five blade profiles as previously shown 
in Fig. III. 1. Sample output for the full test case of five sections as specified in Table 
III.1 and as recorded in the file section.dat is included in Section 111.8 and we will 
now deal with the remaining pull-down menus required to achieve this. 

111.4 T h e  D i s p l a y  m e n u  

Three options are available with the Display menu. Figure 111.8 provides an example 
of the use of the first pull-down menu This section only. It is important to mention 
that when designing a new section it is not accepted and cannot be saved onto file until 
it has been displayed using either the This section only menu or the Add datum profile 
menu.  

The next pull-down menu, Add datum profile, has the effect of displaying both 
the section presently being designed and Section No. 1. The idea behind this feature 
is that Section No. 1 will normally be the blade root section. When designing a section 
at some other radius of a blade row it can be helpful to see how this relates 
geometrically to that at the hub radius. An example of this will be presented in the 
next section. 

The third pull-down menu, Stack all profiles, does as it says and Fig. III.1 provides 
an example of its use. 

111.5 T h e  S e c t i o n  m e n u  

The pull-down menu for choosing a given section is shown in Fig. 111.9 from which 
it can be seen that eleven possible sections are available for design. For example, 
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Fig. 111.9 The Section selection pull-down menu 

Prof i le  C a m b e r  line G e o m e t r y  Display Sec t ion  Q u i t / s a v e / D O S  

. . . . .  - ,  

* * * * * * * Sec t ion  , , , ,  ,,~r̂ .'~ �9 �9 �9 �9 �9 �9 �9 

Prof i le  da ta  are p resen t ly  as fol lows :- 

Prof i le  th ickness  is the N A C A 0 0 1 2  base prof i le  

Prof i le  th ickness  scale = t .0  

C a m b e r  line type is c i rcu la r  arc 

x/l of  m a x i m u m  camber  = 0.5 

C a m b e r  angle  = 60 .0deg  

S t agge r  angle  = 45 .0deg  

C h o r d  l eng th  = 95 .0 rams  

S t a c k i n g  line x = 0 .0rams 

S t a c k i n g  line y = 0 .0mms  

< < P r e s s  Al l  key and f i rs t  le t te r  t oge the r  to g rab  a m e n u >  > 

< <e .g .  A I t - T  pulls down  the T h e r m o d y n a m i c s  m e n u >  > 
. . . . .  

Fig. II1.10 Design data entered for Section No. 2 

to proceed with the design of Section No. 2 move the cursor down with the ~ arrow 
key and once the correct section has been highlighted hit the <Enter>  key. When 
you have entered in all the relevant data from Table III.1, Section No. 2, the screen 
data presentation will be as illustrated in Fig. III.10. 

Making use of the Display bar menu and the Add datum profile pull-down menu 
option, the resulting screen presentation is as shown in Fig. III.11. Section No. 2 
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Axis of rotation 

Fig. II1.11 Section No. 2 using Add datum profile menu 

is presented together with the datum Section No. 1. The assumption made here is 
that neither section has as yet been subjected to the restacking options so that both 
are stacked as entered, namely on their leading edges. Thus the reader could now 
use the Stack on C of G option to check the general appearance for this mode of 
stacking and, for example, its implications for machining of the final twisted 
blade. 

The reader is now in a position to complete all of the five section designs as 
prescribed in Table III.1 and stack them as required, for example on their centres 
of gravity as illustrated by Fig. III.1. 

111.6 T h e  Q u i t / s a v e / D O S  m e n u  

The final menu is that illustrated in Fig. 111.12, which enables the completion of 
various administrative tasks now to be described. 

Quit 

Save & resume 

This menu enables the user to end the session. Note that any 
work not saved before quitting will be lost. 
This menu may be used at any time during design work and 
enables the user to deposit data on file as follows: 
geomdata Contains the basic parameters of the current design 

to enable the user to resume work on a later 
occasion. 

rawdata Contains the actual profile (x,y) coordinates for 
those profiles currently designed. 

seetion.dat Contains a record of all of the properties of the 
profiles currently designed including C. of G., area, 
principal axes and second moments of area. 
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Fig. 111.12 The Quit/save/DOS menu 

Go to DOS 

Reverse video 

(Alternatively new file names may be chosen in response to 
invitations presented at the screen to avoid overwriting previous 
work.) 
This menu enables the user to leave the program temporarily 
and enter DOS to undertake other work. To re-enter the 
program STACK and resume work where you left off, just 
enter 'exit' at the DOS prompt. 
Use of this menu reverses paper and ink colours for the 
graphical presentation. The main reason for this is to provide 
an alternative and better quality of screen-dump to printer of 
the graphical presentations. Use of this menu a second time 
causes the screen presentation to revert back to normal. 

111.7 S c r e e n  d u m p i n g  of  r e s u l t s  

Hard copies of graphical presentations such as Fig. 111.1 may be obtained by 
screen-dumping. To achieve this enter the [Graphics] command (using the ap- 
propriate option for your printer) before running STACK. Alternatively, if you 
omitted to do this before starting the session, use the Go to DOS pull-down menu 
to go temporarily into DOS and then use the [Graphics] command before returning 
to STACK. Subsequently just press the Print Screen key whenever you wish to dump 
a graphical presentation. 
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111.8 Contents of file sect ion.dat  

Sect ion  
No. 

1 
2 
3 
4 
5 

Profi le  

******* Sec t ion  G e o m e t r i c a l  D a t a  ******* 

T h i c k n e s s  C a m b e r  Type x m a x / c h o r d  S t a g g e r  

NACA 0 0 1 2  1 .0000 7 0 . 0 0 0 0 0  c i r c u l a r  a r c  0 . 5 0 0 0 0  4 0 . 0 0 0 0 0  
NACA 0 0 1 2  1 .0000 6 0 . 0 0 0 0 0  c i r c u l a r  a r c  0 . 5 0 0 0 0  4 5 . 0 0 0 0 0  
NACA 0 0 1 2  1 .0000 5 0 . 0 0 0 0 0  c i r c u l a r  a r c  0 . 5 0 0 0 0  5 0 . 0 0 0 0 0  
NACA 0 0 1 2  1 .0000 4 0 . 0 0 0 0 0  c i r c u l a r  a r c  0 . 5 0 0 0 0  5 5 . 0 0 0 0 0  
NACA 0 0 1 2  1 .0000 3 0 . 0 0 0 0 0  c i r c u l a r  a r c  0 . 5 0 0 0 0  6 0 . 0 0 0 0 0  

******* Sec t ion  d a t a  b a s e d  on  axes  t h r o u g h  t h e  C. of G. ******* 
X a n d  Y axes  a r e  t a k e n  p a r a l l e l  a n d  n o r m a l  to t h e  c h o r d  l ine  

Sect ion  
No. 

A r e a  Cen t re  of g r a v i t y  I x x  Iyy  I x y  
sq r  r a m s  X r a m s  Y r a m s  m m s A 4  m m s A 4  m m s A 4  

f r o m  t h e  l ead ing  edge 

8.6002E+02 4.1587E+01 1.1997E+01 1.9709E+04 4.9329E+05 2.8043E+04 
7.6692E+02 3.9622E+01 9.6859E+00 1.3046E+04 3.9247E+05 1.8962E+04 
6.8140E+02 3.7623E+01 7.5935E+00 8.5588E+03 3.1000E+05 1.2377E+04 
6.0279E+02 3.5597E+01 5.7040E+00 5.6017E+03 2.4274E+05 7.7184E+03 
5.3052E+02 3.3550E+01 4.0085E+00 3.6831E+03 1.8811E+05 4.4692E+03 

Sec t ion  

******* Da ta  for  p r i n c i p a l  axes  ******* 
******* Angle  of Iu  ax i s  is r e la t ive  to ca scade  x axis .  ******* 

s t a g g e r  Angle  of Iu  Iv  
Ill ax i s  

No. degrees  degrees  m m s A 4  m m s A 4  

1 4 0 . 0 0 0 0 0  4 3 . 3 7 7 0 8  1 .8054E + 04  4 .9494E + 05 
2 4 5 . 0 0 0 0 0  47 .85391  1 . 2 1 0 1 E + 0 4  3 . 9 3 4 2 E + 0 5  
3 5 0 . 0 0 0 0 0  5 2 . 3 4 7 2 3  8 . 0 5 1 5 E + 0 3  3 . 1 0 5 0 E + 0 5  
4 5 5 . 0 0 0 0 0  5 6 . 8 6 2 2 4  5 .3508E + 03 2 .4299E + 05 
5 6 0 . 0 0 0 0 0  6 1 . 3 8 7 3 8  3 . 5 7 4 9 E + 0 3  1 . 8 8 2 1 E + 0 5  
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Index 

Actuator disc theory, 124--6, 
158--62 

analysis of single rotor axial 
fan, 126-33 

analytical solutions, 158-62 
compressible flow, 162-78 
density discontinuity, 170 
meridional perturbation 

growth, 126 
mixed-flow fan, 157-8 
mixed vortex rotor, 129-33 
model of blade row, 125 
multiple blade rows, 133-42 
power law loading, 140-2 
solid body swirl stator, 128 
source actuator disc, 167-9 

AD-ANAL.PAS (PC source code 
on disc), 128 

AD-DES.PAS (PC source code 
on disc), 128 

Advance coefficient (ducted 
propeller), 227, 240-3 

Aerodynamic forces, 25, 193 
Aerofoil theory, Martensen's 

method, 255 
AEROFOIL.PAS (PC source 

code on disc), 259, 260, 261 
Annular aerofoil (or cowl), 

268-70 
Annulus geometry, 187-91, 280, 

281 
Aspect ratio, 66 
Axial fan radial equilibrium 

single rotor direct analysis, 
121-4 

Axial flow pumps, fans and 
compressors, 16-20, 82-106, 
108 

Axial velocity profile 
actuator disc, 125-7, 135, 

139-41 
compressible actuator disc, 

169-78 
radial equilibrium, 108, 114-24 
smeared actuator discs, 178 

Axisymmetric flow 
Martensen's equation, 267 

past annular aerofoil or engine 
cowl, 268-70 

past body of revolution, 266-8 
past ducted propeller, 270-3 

AXISYM.PAS (PC source code 
on disc), 268 

Back-diagonal correction (in 
Martensen's method), 256 

Base profiles, 33-4, 301-3 
Blade pitch angle (propellers), 

244 
Blade row interference, 133, 

138-9 
BLADEROW.PAS (PC source 

code on disc), 260-1, 265, 
266 

Blade-speed ratio, 80 
Blade stacking, 23, 291,311-15 
Blade-to-blade flow, 21-2 
Bound circulation, 125, 219, 

256-9 
Boundary layer 

momentum thickness, 41-3 
surface vorticity equivalent, 

246 
Buckingham's 7r-theorem, 9, 11, 

51 

Camber line, 33, 291 
position of maximum camber, 

35,293 
Carry-over kinetic energy, 76 
CASCADE (PC executable code 

on disc), 22, 30, 33-4, 37, 
99-100, 104, 125, 133, 
245-6, 259--60, 265-6 

user instructions, Appendix II, 
288-308 

Cascade 
fan and compressor, 25 
flow, 21, 22 
geometry, 25 

Cascade dynamics, 24-9 
lift and drag coefficients, 25 
loss coefficient, 28, 39 

Centrifugal pump or compressor, 
9-15, 18-19, 184, 202-10 

Characteristic curves 
axial fan, 105--6 
centrifugal impeller, 204-10 
Kort nozzle ducted propeller, 

237-43 
pump, 11-13 

Circular cylinder flow, 253-4 
Circulation, 247, 255 
Compressible actuator disc, 

162-78 
Compressor cascade 

diffusion factor, 40-3 
optimum incidence, 37, 40, 

99-100 
role as a diffuser, 30-2 

CONSTWK.PAS (PC source 
code on disc), 137 

Continuity equation, 5, 145 
Control volume 

cascade, 24-5 
mixed-flow fan, 5 

Convection of 
angular momentum, 153 
smoke-ring vorticity, 155--6 
stagnation pressure, 152 
streamwise vorticity, 154-5 
vortex sheet, 247, 249-50 

Cordier diagram, 16-18 
Coriolis acceleration and force, 

182-4, 193 
Coupling coefficients 

(Martensen's) 
axisymmetric flow, 267-8 
cascade, 262 
plane flow, 250-3 

Craig and Cox axial turbine 
correlation, 78 

Curvilinear meridional 
coordinates, 163 

CYLINDER.PAS (PC source 
code on disc), 254 

Deflection, influence on losses, 
66, 67 

Deviation angle, 45, 46 
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Diffuser efficiency, 29 
Diffusion factors (Lieblein), 32, 

40-3 
axial compressors, 93, 98-9 
axial fans, 103 

Dimensional analysis 
axial compressors, 86--8 
centrifugal pump, 8-20 
ducted propellers, 220-37 
mixed-flow fans and pumps, 

187-93 
single turbine stage, 48-54 

Dimensionless velocity triangles 
axial compressors, 84-5, 87, 

96 
axial fans, 103 
axial turbine, 58-9, 69 
mixed-flow fans, 191-2 
zero inter-stage swirl turbine, 

77-9 
Direct (analysis) method, 33-5 
Drag force and coefficient, 25, 

27, 92-3 
Duct (annular aerofoil) frictional 

loss, 226, 233--4 
Ducted propellers, 270-3 
DUCT.PAS (PC source code on 

disc), 269 
DUCTPROP.PAS (PC source 

code on disc), 270, 272-3 
Duty coefficients 

axial compressor, 85, 87 
axial fan (free-vortex type), 

109 
centrifugal impeller, 204 
open propeller, 216 

Duty point (4', $) 
compressor, 83 
turbine, 61, 65, 275 

Dynamic similarity, 10-13 

Efficiency contours (prediction), 
72, 75, 79 

Elementary turbines, 194 
Engine cowl, 268-70 
Euler pump equation, 7, 85, 96, 

182 
Euler turbine equation, 8 

FIPSl (PC executable code on 
disc), 47-8, 245 

user instructions, Appendix I, 
275-87 

First law of thermodynamics, 6 
Flow coefficient 

axial compressor, 83 
axial turbine, 52, 275 
centrifugal impeller, 203 
mixed-flow fan, 188 
pump, 19 

Francis turbine, 186, 194 
Free-vortex 

axial fan, 108-12, 131-2 
axial turbine, 73-4, 275 
ducted propeller, 228-30, 233 

FVFAN.PAS (PC source code on 
disc), 112 

Global performance variables, 8, 
12 

Governing equations for 
compressible actuator discs, 

164-5, 169-77 
meridional flow, 144, 150-4 
source actuator discs, 166--9 

i 

Head coefficient (for a pump), 
19 

Impulse turbine stages, 72 
Incidence angle, 38 
Inducer section, 184 
Inlet guide vanes, 84, 114 

constant swirl, 117-18, 120 
free-vortex, 117 

Inverse (design) method, 35-7 

Jet kinetic energy (downstream 
of a propulsor), 214, 221 

Jet wake velocity 
ducted propeller, 221 
open propeller, 212-14 

Kelvin's theorem, 156 
Kinetic energy coefficients (S. F. 

Smith), 63 
Kort nozzle ducted propeller, 

218-19 
Kutta-Joukowski trailing edge 

condition, 255, 258, 269 

Lift/drag ratio, 29 
Lift force, coefficient 

axial compressor, 91, 92 
cascade, 25, 27-8 

Lifting aerofoil theory, 255-60 
Loading coefficient, 227 
Local performance variables 

pumps, 9 
turbines, 47 

Logarithmic-spiralled blades, 
205-6 

Loss coefficients 
axial fan or compressor, 87-8 
axial turbine, 52, 65 
mixed-flow fan, 188-9 

Loss weighting coefficients 
axial compressor, 89 
axial turbine, 64-5 
ducted propeller, 234 
mixed-flow fan, 189-91 

Mach number, 60, 87 
MAGNUS.PAS (PC source code 

on disc), 257 
Martensen's equation 

axisymmetric flow, 267 
ducted propellers, 270 
plane flows, 251 

Martensen's method for 
potential flow analysis, 
247-55 

Meridional disturbances, 150 
Meridional flow, 7, 21, 107-42, 

143-78, 180 
Meridional section 

axial compressor, 83 
Francis turbine, 195 
mixed-flow fan, 186 

Meridional streamline or stream 
surface, 7-8, 21 

axial fan, 108 
mixed-flow fan, 143, 187 
radial shift, 183-4 

Mixed-flow cascades, 194-200 
Mixed-flow pumps and fans, 7, 

17-20, 157, 179-210, 186 
Mixed-vortex fan, 129-33 
Model compressor stage, 84 

arbitrary reaction, 95-9 
50% reaction, 85, 88, 89 

Model turbine stage 
experimental correlation (S. F. 

Smith), 48, 60-3, 279 
theoretical correlations, 62-8 

Momentum equations, 
axisymmetric flow 

Eulerian form, 145-7 
vorticity form, 147-8 

MULTI.PAS (PC source code on 
disc), 136, 138, 140-1 

Newton's laws 
applied to cascade, 27 
applied to propulsor, 212 
applied to pump rotor, 6 

Nominal conditions for 
compressor cascades 
(Howell), 44--6 

One-dimensional analysis for 
propulsors 

ducted propellers, 212-17, 
220-2 

open propellers, 212-17 
Optimum axial turbine and 

compressor stages, 91 
Optimum blade profile 

geometry, 99-101,299 
Optimum ($, $) duty 

axial turbines, 63-6, 71, 79-80 
mixed-flow pumps and fans, 

180-1 
Optimum incidence, 37, 40 
Optimum pitch/chord ratio 

compressor cascade, 43-5 
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Optimum reaction, axial 
turbines, 70-1 

Pitch/chord ratio selection 
axial compressor, 93, 99 
axial fan, 103 
mixed-flow fan, 198 
open propeller, 218 

Power-law vortex 
axial fan, 140 
ducted propeller, 229-33 

Profile (blade) 
construction, 33, 291,311-15 
base profiles, 33-4, 291,301-3 

Propeller (ducted) 
detailed losses, 226-36 
downstream jet velocity, 221 
propeller plane velocity, 220, 

222, 224 
propulsive power and 

efficiency, 221-2 
thrust coefficient, 221 
thrust ratio, 220 
wake kinetic energy losses Ew, 

221 
Propeller frictional loss, 226, 

231-3 
Propeller (open) 

actuator disc model, 213 
downstream jet velocity, 212, 

215 
duty coefficients ~b, ~k, 216 
pitch/chord ratio, 218 
propulsive thrust, power and 

efficiency, 213-14 
thrust coefficient, 214, 216-17 
velocity triangles, 215-16 
wake kinetic energy losses Ew, 

214 
Propulsive efficiency 

ducted propeller, 221-2, 226, 
242 

open propeller, 214-15 
Propulsive power 

ducted propeller, 221 
open propeller, 214 

Pump jet, 218-19 
PVD method, 35-7 

Radial cascades, 199-200 
Radial equilibrium 

analysis, 112-24 
direct problem, 114, 118-24 
downstream of a rotor, 121-4 
downstream of a stator, 

119-20 
inverse problem, 114-18 
radial equilibrium equation, 

113-14, 149 
Radial momentum equation, 149 
Radial turbomachines, 179-210 
Reaction 

arbitrary reaction axial 
compressor, 95-9 

arbitrary reaction axial 
turbine, 68--72 

axial fans, 102 
axial turbine, 51 
50% reaction axial 

compressor, 85-95 
50% reaction axial turbine, 

55-60 
variation with radius, axial 

fans, 109-10 
variation with radius, axial 

turbine, 72-5 
RE-ANAL.PAS (PC source code 

on disc), 124 
RE-DES.PAS (PC source code 

on disc), 117-19, 124 
Relative eddy, 184, 200-3 
Reynolds number 

axial compressors, 87-8 
axial turbine stator and rotor, 

53 
machine Reynolds number, 

14-15, 52, 87, 188 
mixed-flow fan, 188 

Rothalpy, 185-7 

Selection of pumps and fans, 
15-20, 180-1 

Shock-free inflow, 37-8, 264-5 
axial compressor blade rows, 

99-101,299-301 
Shut-off head, centrifugal 

impellers, 205-8 
SI units, 12 
Slip factors 

Busemann analysis 202, 205-6 
definition, 201, 203 
Lewis & Fisher analysis, 202, 

206, 209 
shut-off head slip factor, 204-5 
Stanitz analysis, 202 
Stodola analysis, 208-9 

Slip flow, 184, 201,203, 208 
Slipstream contraction, 

propulsor, 212-18 
Smeared actuator discs, 178 
Smith charts 

axial compressors, 90, 102 
axial turbines, 62, 279 

Smoke-ring vorticity, 154-8 
Soderberg's loss correlation, 

66-8, 72, 75, 79 
Solid body swirl, 114 
Specific speed and diameter, 15, 

18-20, 180-1 
Specific work, origins of, 182-4 
Speed of sound, 51 
STACK (PC executable code on 

disc), 245, 265 

user instructions, Appendix 
III, 309-19 

Stage losses 
axial compressor, 88-9, 98 
axial turbine, 55, 65, 70-71, 

79-80 
Stagger 

axial cascade, 25, 38, 46 
mixed-flow cascade, 198 

Stagnation enthalpy, 6 
Stagnation point, 31, 38 
Stagnation pressure, 6, 26 

losses, 55 
rise in fans and compressors, 

89, 109 
Stall and stall margin, 40 
Steady flow energy equation, 6, 

7, 29 
Stokes 

equation, 152 
stream function, 150 

Streamline efficiency, 75-6 
mass weighted, 76 

Streamwise vorticity, 154-8 
Sub-layer, 247 
Surface pressure coefficient, 30 
Surface vorticity model, 246-53 

aerofoils, 255-60 
axisymmetric flow, 265-9 
cascades, 260-5 
ducted propellers, 270-4 
plane two-dimensional flow 

246-55 
Swept back impellers, 203-8 
Swirl kinetic energy loss, ducted 

propulsor, 226-31 
S1, $2 Wu surfaces, 22, 24 

Tangential vorticity in 
axisymmetric flow, 149, 151, 
153-6 

Thrust, thrust coefficient 
ducted propeller, 220-1 
open propeller, 213-14, 217 

Thrust ratio, ducted propellers, 
220 

Tip leakage losses, 226, 234-6 
Torque coefficient, ducted 

propellers, 227 
Total-to-total efficiency 

axial compressor, 86, 88-9, 98 
axial fans, 103 
axial turbines, 50, 52, 54--5 
mixed-flow fans, 188-9 
prediction for axial turbines, 

64, 68, 70, 72, 75 
zero interstage swirl turbines, 

78 
Transformation of mixed-flow 

cascade to straight cascade, 
196-200 
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Turbine stages 
arbitrary reaction, 68-72 
50% reaction, 55--60 

Vector mean angle and velocity, 
25, 263-4 

Velocity coefficient, ducted 
propellers, 227 

Velocity ratio or blade/speed 
ratio, 80 

Velocity transformation for 

axial fan, 102 
axial turbine, 50, 56, 58, 69, 

279 
cascade, 25 
mixed-flow fans and pumps, 

187, 191 
open or ducted propeller, 216 
zero interstage swirl turbine, 

77 
Vortex, potential, 109-10 
Vortex array, 262-3 

mixed-flow cascades, 199-200 Vortex shedding 
Velocity triangles propeller blade, 235 

axial compressor, arbitrary stator, 125,. 156 
reaction, 96-9 Vorticity components in 

axial compressor, 50% axisymmetric flow, 148 
reaction, 84 Vorticity production in 

axisymmetric flow, 143-58, 
154 

streamwise and smoke-ring 
vorticity, 155-8 

Wake kinetic energy loss 
ducted propeller, 221, 226-31 
open propeller, 214 

Work coefficient 
axial compressor, 83 
axial turbine, 53, 275 
centrifugal impeller, 204 
mixed-flow fan, 188 
pump, 19 

Zero interstage swirl axial 
turbines, 76-81 
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