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Preface 

 
 
 
 
 
 
 
The effects of vibrations on the behavior of mechanical and structural systems are 
often of critical importance to their design, performance, and survival. For this reason 
the subject of mechanical vibrations is offered at both the advanced undergraduate 
level and graduate level at most engineering schools. I have taught vibrations to me-
chanical and aerospace engineering students, primarily seniors, for a number of years 
and have used a variety of textbooks in the process. As with many books of this type, 
the emphasis is often a matter of taste. Some texts emphasize mathematics, but gen-
erally fall short on physical interpretation and demonstrative examples, while others 
emphasize methodology and application but tend to oversimplify the mathematical 
development and fail to stress the fundamental principles. Moreover, both types fail 
to stress the underlying mechanics and physics to a satisfactory degree, if at all. For 
these reasons, there appeared to be a need for a textbook that couples thorough 
mathematical development and physical interpretation, and that emphasizes the me-
chanics and physics of the phenomena. The book would need to be readable for stu-
dents with the background afforded by a typical university engineering curriculum, 
and would have to be self-contained to the extent that concepts are developed, ad-
vanced and abstracted using that background as a base. The present volume has been 
written to meet these goals and fill the apparent void.    
 Engineering Vibrations provides a systematic and unified presentation of the 
subject of mechanical and structural vibrations, emphasizing physical interpretation, 
fundamental principles and problem solving, coupled with rigorous mathematical 
development in a form that is readable to advanced undergraduate and graduate uni-
versity students majoring in engineering and related fields. Abstract concepts are de-
veloped and advanced from principles familiar to the student, and the interaction of 
theory, numerous illustrative examples and discussion form the basic pedagogical 
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approach. The text, which is extensively illustrated, gives the student a thorough un-
derstanding of the basic concepts of the subject, and enables him or her to apply these 
principles and techniques to any problem of interest. In addition, the pedagogy en-
courages the reader’s physical sense and intuition, as well as analytical skills. The 
text also provides the student with a solid background for further formal study and 
research, as well as for self study of specialized techniques and more advanced topics. 
 Particular emphasis is placed on developing a connected string of ideas, con-
cepts and techniques that are sequentially advanced and generalized throughout the 
text. In this way, the reader is provided with a thorough background in the vibration 
of single degree of freedom systems, discrete multi-degree of freedom systems, one-
dimensional continua, and the relations between each, with the subject viewed as a 
whole. Some distinctive features are as follows. The concept of mathematical model-
ing is introduced in the first chapter and the question of validity of such models is 
emphasized throughout. An extensive review of elementary dynamics is presented as 
part of the introductory chapter. A discussion and demonstration of the underlying 
physics accompany the introduction of the phenomenon of resonance. A distinctive 
approach incorporating generalized functions and elementary dynamics is used to 
develop the general impulse response. Structural damping is introduced and devel-
oped from first principle as a phenomenological theory, not as a heuristic empirical 
result as presented in many other texts. Continuity between basic vector operations 
including the scalar product and normalization in three-dimensions and their exten-
sions to N-dimensional space is clearly established. General (linear) viscous damping, 
as well as Rayleigh (proportional) damping, of discrete multi-degree of freedom sys-
tems is discussed, and represented in state space. Correspondence between discrete 
and continuous systems is established and the concepts of linear differential operators 
are introduced. A thorough development of the mechanics of pertinent 1-D continua 
is presented, and the dynamics and vibrations of various structures are studied in 
depth. These include axial and torsional motion of rods and transverse motion of 
strings, transverse motion of Euler-Bernoulli Beams and beam-columns, beams on 
elastic foundations, Rayleigh Beams and Timoshenko Beams. Unlike in other texts, 
the Timoshenko Beam problem is stated and solved in matrix form. Operator notation 
is introduced throughout. In this way, all continua discussed are viewed from a uni-
fied perspective. Case studies provide a basis for comparison of the various beam 
theories with one another and demonstrate quantitatively the limitations of single 
degree of freedom approximations. Such studies are examined both as examples and 
as exercises for the student. 
 The background assumed is typical of that provided in engineering curricula at 
U.S. universities. The requisite background includes standard topics in differential 
and integral calculus, linear differential equations, linear algebra, boundary value 
problems and separation of variables as pertains to linear partial differential equations 
of two variables, sophomore level dynamics and mechanics of materials. MATLAB is 
used for root solving and related computations, but is not required. A certain degree 
of computational skill is, however, desirable. 
 The text can basically be partitioned into preliminary material and three major 
parts: single degree of freedom systems, discrete multi-degree of freedom systems, 
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and one-dimensional continua. For each class of system the fundamental dynamics is 
discussed and free and forced vibrations under various conditions are studied. A 
breakdown of the eleven chapters that comprise the text is provided below. 
 The first chapter provides introductory material and includes discussions of 
degrees of freedom, mathematical modeling and equivalent systems, a review of 
complex numbers and an extensive review of elementary dynamics. Chapters 2 
through 4 are devoted to free and forced vibration of single degree of freedom sys-
tems. Chapter 2 examines free vibrations and includes undamped, viscously damped 
and Coulomb damped systems. An extensive discussion of the linear and nonlinear 
pendulum is also included. In Chapter 3 the response to harmonic loading is estab-
lished and extended to various applications including support excitation, rotating im-
balance and whirling of shafts. The mathematical model for structural damping is 
developed from first principle based on local representation of the body as comprised 
of linear hereditary material. The chapter closes with a general Fourier Series solution 
for systems subjected to general periodic loading and its application. The responses of 
systems to nonperiodic loading, including impulse, step and ramp loading and others, 
as well as general loading, are discussed in Chapter 4. The Dirac Delta Function and 
the Heaviside Step Function are first introduced as generalized functions. The relation 
and a discussion of impulsive and nonimpulsive forces follow. The general impulse 
response is then established based on application of these concepts with basic dynam-
ics. The responses to other types of loading are discussed throughout the remainder of 
the chapter. Chapter 5, which is optional and does not affect continuity, covers 
Laplace transforms and their application as an alternate, less physical/nonphysical, 
approach to problems of vibration of single degree of freedom systems.  
 The dynamics of multi-degree of freedom systems is studied in Chapter 6. The 
first part of the chapter addresses Newtonian mechanics and the derivation of the 
equations of motion of representative systems in this context. It has been my experi-
ence (and I know I’m not alone in this) that many students often have difficulty and 
can become preoccupied or despondent with setting up the equations of motion for a 
given system. As a result of this they often lose sight of, or never get to, the vibrations 
problem itself. To help overcome this difficulty, Lagrange’s equations are developed 
in the second part of Chapter 6, and a methodology and corresponding outline are 
established to derive the equations of motion for multi-degree of freedom systems. 
Once mastered, this approach provides the student a direct means of deriving the 
equations of motion of complex multi-degree of freedom systems. The instructor who 
chooses not to cover Lagrange’s equations may bypass these sections. The chapter 
closes with a fundamental discussion of the symmetry of the mass, stiffness and 
damping matrices with appropriate coordinates. 
 The free vibration problem for multi-degree of freedom systems with applica-
tions to various systems and conditions including semi-definite systems is presented 
in Chapter 7. The physical meanings of the modal vectors for undamped systems are 
emphasized and the properties of the modal vectors are discussed. The concepts of 
the scalar product, orthogonality and normalization of three-dimensional vectors are 
restated in matrix form and abstracted to N-dimensional space, where they are then 
discussed in the context of the modal vectors. The chapter closes with extensive dis-
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cussions of the free vibration of discrete systems with viscous damping. The problem 
is examined in both N-dimensional space and in the corresponding state space. 
Analogies to the properties of the modal vectors for undamped systems are then ab-
stracted to the complex eigenvectors for the problem of damped systems viewed in 
state space. Forced vibration of discrete multi-degree of freedom systems is studied in 
Chapter 8. A simple matrix inversion approach is first introduced for systems sub-
jected to harmonic excitation. The introductory section concludes with a discussion of 
the simple vibration absorber. The concepts of coordinate transformations, principal 
coordinates and modal coordinates are next established. The bulk of the chapter is 
concerned with modal analysis of undamped and proportionally damped systems. 
The chapter concludes with these procedures abstracted to systems with general (lin-
ear) viscous damping in both N-dimensional space and in state space. 
 The dynamics of one-dimensional continua is discussed in Chapter 9. Correla-
tion between discrete and continuous systems is first established, and the concept of 
differential operators is introduced. The correspondence between vectors and func-
tions is made evident as is that of matrix operators and differential operators. This 
enables the reader to identify the dynamics of continua as an abstraction of the dy-
namics of discrete systems. The scalar product and orthogonality in function space 
then follow directly. The kinematics of deforming media is then developed for both 
linear and geometrically nonlinear situations. The equations governing various one-
dimensional continua are established, along with corresponding possibilities for 
boundary conditions. It has been my experience that students have difficulty in stating 
all but the simplest boundary conditions when approaching vibrations problems. This 
discussion will enlighten the reader in this regard and aid in alleviating that problem. 
Second order systems that are studied include longitudinal and torsional motion of 
elastic rods and transverse motion of strings. Various beam theories are developed 
from a general, first principle, point of view with the limitations of each evident from 
the discussion. Euler-Bernoulli Beams and beam-columns, Rayleigh Beams and Ti-
moshenko Beams are discussed in great detail, as is the dynamics of accelerating 
beam-columns. The various operators pertinent to each system are summarized in a 
table at the end of the chapter. 
 The general free vibration of one-dimensional continua is established in Chap-
ter 10 and applied to the various continua discussed in Chapter 9. The operator nota-
tion introduced earlier permits the student to perceive the vibrations problem for con-
tinua as merely an extension of that discussed for discrete systems. Case studies are 
presented for various rods and beams, allowing for a direct quantitative evaluation of 
the one degree of freedom approximation assumed in the first five chapters. It further 
allows for direct comparison of the effectiveness and validity of the various beam 
theories. Properties of the modal functions, including the scalar product, normaliza-
tion and orthogonality are established. The latter is then used in the evaluation of am-
plitudes and phase angles. Forced vibration of one-dimensional continua is discussed 
in Chapter 11. The justification for generalized Fourier Series representation of the 
response is established and modal analysis is applied to the structures of interest un-
der various loading conditions. 
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 The material covered in this text is suitable for a two-semester sequence or a 
one-semester course. The instructor can choose appropriate chapters and/or sections 
to suit the level, breadth and length of the particular course being taught.  
 To close, I would like to thank Professor Haim Baruh, Professor Andrew Nor-
ris, Ms. Pamela Carabetta, Mr. Lucian Iorga and Ms. Meghan Suchorsky, all of Rut-
gers University, for reading various portions of the manuscript and offering helpful 
comments and valuable suggestions. I would also like to express my gratitude to Ms. 
Carabetta for preparing the index. I wish to thank Glen and Maria Hurd for their time, 
effort and patience in producing the many excellent drawings for this volume. Fi-
nally, I wish to thank all of those students, past and present, who encouraged me to 
write this book. 
 

William J. Bottega  
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1 
Preliminaries 

 
 
 
 
 
 
 
The subject of mechanical vibrations is primarily concerned with the study of re-
peated, or nearly repeated, motion of mechanical systems. As engineers, we may be 
interested in avoiding excessive vibration in a structure, machine or vehicle, or we 
may wish to induce certain types of vibrations in a very precise manner. Stealth of a 
submarine is intimately connected to vibration suppression, and earthquakes can have 
dramatic effects on engineering structures. The response and durability of an engi-
neering system to short duration, high intensity, loading is a function of the vibration 
characteristics of the system as well. Most of us have experienced the effects of vibra-
tions in our everyday lives. We might feel undesirable vibrations in an automobile, or 
similarly while riding a bicycle. Likewise we might observe the vibration of an air-
plane wing while flying to or from a vacation, on our way to visiting friends or rela-
tives, or while traveling on business. We all enjoy the benefit of vibrations when we 
have a conversation on a telephone or when we listen to music coming from our ste-
reo speakers. Even our ability to speak stems from the vibrations of our vocal chords. 
 The earliest modern scientific studies of vibrations are generally attributed to 
Galileo, who examined the motion of the simple pendulum and the motion of strings. 
Based on his observations, Galileo arrived at a relationship between the length of the 
pendulum and its frequency and described the phenomenon of resonance, whereby a 
system exhibits large amplitude vibrations when excited at or near its natural fre-
quency. Galileo also observed the dependence of the frequencies of a string on its 
length, mass density and tension, and made comparisons with the behavior of the 
pendulum. The fundamental understanding of mechanical vibrations was advanced in 
the centuries that followed, with the development and advancement of mechanics and 
the calculus. Investigations toward this end continue to the present day. 

 1 
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    Figure 1.1  A two bar mechanism.
 
 To study vibrations properly we must first understand and bring into context 
certain preliminary material that will be used throughout this text. Much of this mate-
rial is presented in the present chapter, while other material of this type is introduced 
and discussed in subsequent chapters of this book as needed. The preliminary mate-
rial presented in this chapter includes a discussion of the concepts of degrees of free-
dom, mathematical modeling and equivalent systems, and a review of complex num-
bers. The chapter finishes with an extensive review of elementary dynamics. 
 

1.1  DEGREES OF FREEDOM 

When we study the behavior of a system we need to choose parameters that describe 
the motion of that system and we must make sure that we are employing enough pa-
rameters to characterize the motion of interest completely. That is to say, if we know 
the values of these variables at a particular instant in time then we know the configu-
ration of the system at that time. Consider, for example, the two (rigid) bar mecha-
nism shown in Figure 1.1. Note that if we know the location of pins B and C at any 
time, then we know the configuration of the entire system at that time, since the 
lengths of the rigid rods are specified. That is, we know the location of every particle 
(e.g., point) of the system. It may be noted that the location of pins B and C may be 
characterized in many ways, some more efficient than others. We may, for example, 
describe their locations by their Cartesian coordinates (xB , yB) and (xC , yC), or we may 
describe their locations by the angular coordinates θAB and θBC , as indicated. Both sets 
of coordinates describe the configuration of the mechanism completely. A combina-
tion of the two sets of coordinates, say (xB , yB) and θBC , also describes the configura-
tion of the system. It may be seen, however, that if we choose the angular coordinates 
then we only need two coordinates to describe the configuration of the system, while 
if we choose the Cartesian coordinates we need four, and if we choose the mixed set 
of coordinates we need three. We see that, for this particular system, the minimum 
number of coordinates needed to characterize its configuration completely is two. 
This minimum number of coordinates is referred to as the degrees of freedom of the 
system. We also note that the two angular coordinates may not be expressed in terms 
of one another. They are said to be independent in this regard. In general then, the 
number of degrees of freedom of a system refers to the number of independent coord-  
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Figure 1.2  Sample single degree of freedom systems: (a) mass-spring system, (b) simple 
pendulum. 
 
inates needed to describe its configuration at any time. Examples of one degree of 
freedom (1 d.o.f.) systems, two degree of freedom systems (2 d.o.f.), ‘N’ degree of 
freedom systems (N d.o.f. — where N is any integer) and continuous (infinite degree 
of freedom) systems are discussed in the remainder of this section. 
 

Single Degree of Freedom Systems 
Single degree of freedom systems are the simplest systems as they require only one 
independent coordinate to describe their configuration. The simplest example of a 
single degree of freedom system is the mass-spring system shown in Figure 1.2a. For 
the system shown, the coordinate x indicates the position of the mass measured rela-
tive to its position when the massless elastic spring is unstretched. If x is known as a 
function of time t, that is x = x(t) is known, then the motion of the entire system is 
known as a function of time. Similarly, the simple pendulum shown in Figure 1.2b is 
also a one degree of freedom system since the motion of the entire system is known if 
the angular coordinate θ is known as a function of time. Note that while the position 
of the bob may be described by the two Cartesian coordinates, x(t) and y(t), these 
coordinates are not independent. That is, the Cartesian coordinates (x ,y ) of the bob 
are related by the constraint equation, x2 + y2 = L2. Thus, if x is known then y is 
known and vice versa. Further, both x(t) and y(t) are known if ( )tθ is known. In ei-
ther case, only one coordinate is needed to characterize the configuration of the sys-
tem. The system therefore has one degree of freedom.  
 

Two Degree of Freedom Systems 
The two bar mechanism described in the introduction of this section was identified as 
a two degree of freedom system. Two other examples include the two mass-spring 
system shown in Figure 1.3a and the double pendulum depicted in Figure 1.3b. In the 
first case, the configuration of the entire system is known if the position of mass m1 is 
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Figure 1.3  Sample two degree of freedom systems: (a) two-mass two-spring system, (b) dou-
ble pendulum. 
 
 
known and the position of mass m2 is known. The positions are known if the coordi-
nates u1 and u2 are known, where u1 and u2 represent the displacements of the respec-
tive masses from their equilibrium configurations. Likewise, the motion of the double 
pendulum is known if the angular displacements, θ1 and θ2, measured from the verti-
cal equilibrium configurations of the masses, are known functions of time. 

General Discrete Multi-Degree of Freedom Systems 
Two degree of freedom systems are a special case of multi-degree of freedom sys-
tems (systems with more than 1 d.o.f.). Thus, let us consider general N degree of 
freedom systems, where N can take on any integer value as large as we like. Exam-
ples of such systems are the system comprised of N masses and N + 1 springs shown 
in Figure 1.4a, and the compound pendulum consisting of N rods and N bobs shown 
in Figure 1.4b and the discrete model of an aircraft structure depicted in Figure 1.4c. 
 

Continuous Systems 
To this point we have been discussing discrete systems — systems that have a finite 
(or even infinite) number of masses separated by a finite distance. Continuous sys-
tems are systems whose mass is distributed continuously, typically over a finite do-
main. An example of a continuous system is the elastic beam shown in Figure 1.5. 
For the case of a linear beam (one for which the strain-displacement relation contains 
only first order terms of the displacement gradient), the transverse motion of the 
beam is known if the transverse deflection, w(x, t), of each particle located at the co-
ordinates 0 x L≤ ≤  along the axis of the beam is known. 
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Figure 1.4  Sample N-degree of freedom systems: (a) N-mass N+1-spring system, (b) com-
pound pendulum, (c) discrete model of aircraft structure. 
 
 
 The systems we described above are all examples of mathematical models that 
may represent actual systems. Each has its place depending, of course, on the particu-
lar system and the degree of accuracy required for the given application. In most 
cases there is a tradeoff between accuracy and facility of solution. Too simple a 
model may not capture the desired behavior at all. Too complex a model may not be 
practical to solve, or may yield results that are difficult to interpret. The modeler must 
choose the most suitable representation for the task at hand. In the next section we 
shall discuss how some complicated systems may be modeled as much simpler sys-
tems. Such simplifications can often capture dominant behavior for certain situations. 
We shall examine the vibrations of single degree of freedom systems in the next three 
chapters. The behavior of discrete multi-degree of freedom systems and continuous 
systems will then be examined in subsequent chapters. The richness of the behavior 
of such systems and the restrictions imposed by simplified representations will also 
be discussed.  
 

      Figure 1.5  Elastic beam: an example of a continuous system. 
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1.2 EQUIVALENT SYSTEMS 

In many applications the motion of a certain point of the system is of primary con-
cern, and a single type of motion is dominant. For such cases certain simplifications 
may be made that allow us to approximate a higher degree of freedom system by a 
lower degree of freedom system, say a single degree of freedom system. Such simpli-
fications shall be demonstrated in this section. Simplifications of this type approxi-
mate one type of motion (the lowest mode) of the many possible motions of discrete 
multi-degree of freedom systems and continuous systems. Thus, even if such a repre-
sentation adequately represents a particular mode, it cannot capture all possible mo-
tion. Therefore, such approximations are only suitable for applications where the mo-
tion that is captured by the simplified model is dominant. Results of simplified mod-
els may be compared with those of multi-degree of freedom and continuous systems 
as they are studied in full in subsequent chapters of this text. The concept of equiva-
lent systems will be introduced via several examples. In these examples, an equiva-
lent stiffness is determined from a static deflection of a continuous system such as an 
elastic beam or rod. Since the inertia of the structure is neglected, such models are 
justifiable only when the mass of the beam or rod is much smaller than other masses 
of the system. 
 

1.2.1  Extension/Contraction of Elastic Rods 

Elastic rods possess an infinite number of degrees of freedom. Nevertheless, if the 
mass of the rod is small compared with other masses to which it is attached, and if we 
are interested only in the motion of a single point, say the unsupported end, the elastic 
rod may be modeled as an equivalent elastic spring as discussed below. 
 Consider a uniform elastic rod of length L, cross-sectional area A, and elastic 
modulus E. Let x correspond to the axial coordinate, and let the rod be fixed at the 
end x = 0 as shown in Figure 1.6. Further, let the rod be subjected to a tensile force of 
magnitude F0 applied at the end x = L, as indicated. If u(x) corresponds to the axial 
displacement of the cross section originally located at x then, for small axial strains 
ε (x), the strain and displacement are related by 
 

 
Figure 1.6  (a) Elastic rod subjected to axial load, (b) equivalent single degree of freedom 
system. 
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 ( ) dux
dx

ε =  (1.1) 

 
The constitutive relation for an elastic rod in uniaxial tension/compression is 
 
 ( ) ( )x E xσ ε=  (1.2) 
 
where σ is the axial stress in the rod. It follows from Eqs. (1.1) and (1.2) that the re-
sultant membrane force, N(x), acting over the cross section at x is given by 
    

 ( ) ( ) duN x x A EA
dx

σ= =  (1.3) 

 
Consideration of the equilibrium of a differential volume element of the rod yields its 
governing equation as 

 
2

2 ( )d uEA n x
dx

=  (1.4) 

 
where n(x) represents a distributed axial load. For the present problem n(x) = 0, and 
the boundary conditions for the rod of Figure 1.6 are stated mathematically as 
 

 0(0) 0,      
x L

duu EA
dx =

F= =  (1.5) 

 
Integrating Eq. (1.4), with n(x) = 0, imposing the boundary conditions (1.5), and 
evaluating the resulting expression at x = L gives the axial deflection of the loaded 
end, ∆L , as 

 0
L

F L
EA

∆ =  (1.6) 

 
Rearranging Eq. (1.6) then gives the relation 
 
 0 LF k= ∆  (1.7) 
where 

 EAk
L

=  (1.8) 

 
Equation (1.7) may be seen to be the form of the constitutive relation for a linear 
spring. Thus, if we are only interested in the motion of the free end of the rod, and if 
the mass of the rod is negligible, then the elastic rod may be modeled as an equivalent 
spring whose stiffness is given by Eq. (1.8). In this way, the continuous system (the 
elastic rod) is modeled as an equivalent single degree of freedom system. 
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1.2.2 Bending of Elastic Beams 

As discussed earlier, continuous systems such as elastic beams have an infinite num-
ber of degrees of freedom. Yet, under appropriate circumstances (loading type, kin-
ematical constraints, mass ratios, etc.) a certain type of motion may be dominant. 
Further, as a simple model may be desirable and still capture important behavior, we 
next consider several examples of elastic beams modeled as equivalent single degree 
of freedom systems. 

The Cantilever Beam 
Consider a uniform elastic beam of  length L, cross-sectional area moment of inertia I 
and elastic modulus E that is supported as shown in Figure 1.7a. Let the beam be sub-
jected to a transverse point load of magnitude P0 applied on its free end, and let ∆L 
correspond to the deflection of that point as indicated. Suppose now that we are only 
interested in the motion of the point of the beam under the load, and that the inertia of 
the beam is negligible compared with other masses that the beam will ultimately be 
connected to. If we wish to construct an equivalent single degree of freedom system 
for the beam then we must seek a relation between the applied load and the load point 
deflection of the form 
 
 0 LP k= ∆  (1.9) 
 
where the parameter k is an equivalent stiffness. That is, we wish to treat the beam as 
an equivalent elastic spring of stiffness k as shown in Figure 1.7b. To find k, let us 
consider the static deflection of the beam due to the applied point load. If w(x) corre-
sponds to the deflection of the centerline of the beam at the axial coordinate x, then 
we know from elementary beam theory that the governing equation for the transverse 
motion of an elastic beam subjected to a distributed transverse load of intensity q(x) is 
of the form 
 
 
  

 
 Figure 1.7  (a) Cantilever beam, (b) equivalent single degree of freedom system. 
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4

4 ( )d wEI q x
dx

=  (1.10) 

 
where q(x) = 0 for the case under consideration. The boundary conditions for a beam 
that is clamped at the origin and loaded by a point load at its free end are 
 

 
2 3

02 3
0

(0) 0,      0,     
x x L x L

dw d w d ww EI EI
dx dx dx= = =

= = = = P−  (1.11) 

 
Integrating Eq. (1.10) with q(x) = 0, imposing the boundary conditions of Eq. (1.11) 
and evaluating the resulting solution at x = L gives the load point deflection  
 

 
3

0( )
3L

P Lw L
EI

∆ ≡ =  (1.12) 

 
Solving Eq. (1.12) for P0 gives the relation 
 
 0 LP k= ∆  (1.13) 
where 

 3

3EIk
L

=  (1.14) 

 
We have thus found the equivalent stiffness (i.e., the stiffness of an equivalent spring) 
for a cantilever beam loaded at its free edge by a transverse point load. We shall next 
use this result to establish mathematical models for selected sample structures.  
 

Side-Sway of Structures 
In the previous section we found the equivalent stiffness of a cantilever beam as per-
tains to the motion of its free end. In this section we shall employ that stiffness in the 
construction of a dynamic single degree of freedom model of a one-story structure 
undergoing side-sway motion as may occur, for example, during an earthquake. 
 Consider a structure consisting of four identical elastic columns supporting an 
effectively rigid roof of mass m, as shown in Figure 1.8a. Let the columns, each of 
length L and bending stiffness EI, be embedded in a rigid foundation as indicated. 
Further, let the mass of the roof be much larger than the mass of the columns. We 
shall consider two types of connections of the columns with the roof, pinned and 
clamped/embedded. 
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Figure 1.8  Side-sway of one-story structure with pinned connections at roof: (a) repre-
sentative structure, (b) roof with columns represented as equivalent springs, (c) equiva-
lent system. 

 
 
 

  Pinned Connections 
Let the columns be connected to the roof of the structure as shown in Figure 
1.8a. If we are interested in side-sway motion of the structure as may occur dur-
ing earthquakes, and if the mass of the columns is negligible compared with the 
mass of the roof, then the columns may be treated as cantilever beams as dis-
cussed earlier. For this purpose, the structure may be modeled as four equiva-
lent springs, each of stiffness k as given by Eq. (1.14) and shown in Figure 
1.8b. This, in turn, is equivalent to a mass attached to a single effective spring 
of stiffness keff (see Section 1.3), given by 

 

 3

124eff
EIk k

L
= =  (1.15) 
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Figure 1.9  Side-sway of one-story structure with clamped connections at roof: (a) 
structure in motion, (b) deflection of column showing inflection point A. 

 
 

Clamped Connections 
If the columns are embedded (framed) into the roof structure, as shown in Fig-
ure 1.9a), the deflections differ from those for the pinned case. One way to de-
termine the equivalent stiffness of a beam that is clamped-fixed at one end and 
clamped-free at the other is to solve Eq. (1.10) with q(x) = 0 subject to the 
boundary conditions 

 

 
3

03
0

(0) 0,      =0,     
x x L x L

dw dw d ww E
dx dx dx= = =

= = = −I P  (1.16) 

 
in lieu of the boundary conditions of Eq. (1.11). It may be seen that only the 
last condition differs from the previous case. This approach, however, will be 
left as an exercise (Problem 1.6). Instead, we shall use the results for the canti-
lever beam to obtain the desired result. This may be done if we realize that, due 
to the anti-symmetry of the deformation, the deflection of the column for the 
present case possesses an inflection point at the center of the span (point A, Fig-
ure 1.9b). Since, by definition, the curvature and hence the bending moment 
vanishes at an inflection point such a point is equivalent to a pin joint. Thus, 
each of the columns for the structure under consideration may be viewed as two 
cantilever beams of length L/2 that are connected by a pin at the center of the 
span. The total deflection of the roof will then be twice that of the inflection 
point, as indicated. Therefore, letting  and in Eq. (1.13) 
gives, for a single clamped-fixed/clamped-free  column, that 

/ 2L L→ / 2L L∆ → ∆

 

 3

12EIk
L

=  (1.17) 
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Figure 1.10  Side-sway of multi-story structure: (a) multi-story building, (b) equivalent dis-
crete system. 
 
 

As for the pinned roof structure considered earlier, the four equivalent springs 
for the present structure act in parallel (see Section 1.3) and are thus equivalent 
to a single effective spring of stiffness 
 

 3

484eff
EIk k

L
= =  (1.18) 

 
Note that since, for this case, the columns are embedded in the roof and hence 
provide greater resistance to bending and therefore to lateral translation of the 
roof than for the pinned case, the effective stiffness is higher (by a factor of 4) 
than the stiffness for the pinned case. 
 

Multi-Story Buildings 
Consider the N-story building shown in Figure 1.10a. Let each floor of the 
building be connected by four columns below it and four columns above it, 
with the obvious exception that the roof (floor number N) has no columns 
above it. Let each floor, numbered j = 1, 2, …, N from bottom to top, possess 
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mass mj and let the ends of the columns be embedded into the floors. The 
ground floor, j = 0, is fixed to the ground. Further, let each column that con-
nects floor j with floor j −1 possess bending stiffness EjIj, as indicated, where Ej 
and Ij respectively correspond to the elastic modulus and area moment of iner-
tia of the column. If we are interested in side-sway motion of the building, and 
if the masses of the columns are negligible compared to those of the floors, 
then the building may be represented by the equivalent discrete N – degree of 
freedom system shown in Figure 1.10b. It follows from our discussions of a 
single story building with end-embedded columns that the equivalent stiffness 
of the jth spring may be obtained directly from Eq. (1.18). Hence, 
 

 3

48
    ( 1,2,... )j j

j

E I
k j

L
= = N  (1.19) 

 
 

The Simply Supported Beam 
We next construct an equivalent single degree of freedom system for a simply sup-
ported beam subjected to a transverse point load applied at the midpoint of the span. 
The equivalent stiffness of this structure can, of course, be found by solving Eq. 
(1.10) subject to the appropriate boundary conditions. However, we shall use the 
equivalent stiffness of the cantilever beam, Eq. (1.14), as a shortcut to establish the 
equivalent stiffness of the present structure, as was done earlier for the modeling of 
side-sway of a single story building. Toward this end, let us consider a simply sup-
ported beam of length and bending stiffness EI, and let the beam be subjected 
to a transverse point load of magnitude Q

2L L=�
0 = 2P0 applied at the center of the span as 

shown in Figure 1.11a. Consideration of the differential beam element on the interval 
2dx x dx− ≤ ≤ 2  (Figure 1.11b) shows that the problem is equivalent to that of half 

of the structure on 0 x L≤ ≤  subjected to a transverse point load of magnitude P0 
acting at the edge x = 0 (Figure 1.11c). This, in turn may be seen to be equivalent to 
the problem of the cantilever beam shown in Figure 1.11d. Next, let ∆0 correspond to 
the deflection of the cantilever beam under the point load P0. It may be seen that ∆0 
also corresponds to the center-span deflection of the beam of Figure 1.11a. It then 
follows from Eq. (1.12) that  
  

 
3 3

0 0
0 3 6

P L Q L
EI EI

∆ = =  (1.20) 

and hence that  
 0Q k 0= ∆  (1.21) 
where 

 3 3

6 48EI EIk
L L

= = �  (1.22) 
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Figure 1.11  Simply supported beam: (a) beam subjected to point load at center of span, (b) 
free-body diagram of segmented beam, (c) half span problem, (d) equivalent cantilever beam, 
(e) equivalent single degree of freedom system.  
 

Compound Systems 
In many applications a beam may be attached to another structure, or to compliant 
supports. The effect of the second structure, or the compliance of the supports, may 
often be represented as a linear elastic spring, in the manner discussed throughout this 
section. As before, and under similar circumstances, we may be interested in repre-
senting the primary beam as an equivalent linear spring, and ultimately the combined 
structure of the beam and spring as a single equivalent spring. We shall do this for 
two related cases as examples. 
 We next consider and compare the two related systems shown in Figures 1.12a 
and 1.12b. In each case the system consists of a simply supported elastic beam to 
which a spring of stiffness ks is attached at the center of the span. In the first case the 
other end of the spring is attached to a rigid foundation while a point load is applied 
to the beam at center span (Figure 1.12a), while in the second case the bottom edge of  
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Since we are interested in the vertical motion of the center-span of the beam we 
may model the beam as an equivalent linear spring. It follows that the effective 

ven by Eq. (1.22). The 

 

Figure 1.12  Compound system of elastic beam and spring: (a) fixed spring, (b) loaded spring. 
 
 
the spring is free to translate and a point load is applied to that edge (Figure 1.12b). 
 
 

Simply Supported Beam Attached to a Fixed Spring 

stiffness, kbeam, of the equivalent spring for the beam is gi
stiffness of the compound system consisting of the two springs may then be ob-
tained by superposition, as shown in Figure 1.13. For this case, the springs are 
seen to act in parallel and thus to act as a single equivalent spring whose stiff-
ness, keq, is the sum of the stiffnesses of the two parallel springs (see Section 
1.3). We therefore have that   
 

3

6
eq

EIk k k kbeam s sL
= + = +  (1.23) 

 
 

 
    Figure 1.13  Equivalent system for beam and spring of Figure 1.12a. 
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  Figure 1.14  Equivalent system for beam and spring of Figure 1.12b. 
 
 

Simply Suppo
Let us again consider a sim  attached to a linear 
spring of stiffness ks  load is applied to the free 
edge of the spring (Figure 1.1 n, if we are only interested in the 
motion of the point of the b the point load (the center-

an of the beam), we may model the beam as an equivalent linear spring as we 
4, it may 

be seen that the two springs act in series and hence that the effect of the two 
springs is equivalent to that of a single equivalent spring. As shown in Section 

ompound system of 

 

 

rted Beam Attached to a Loaded Spring  
ply supported elastic beam

. In this case, however, a point
2b). Once agai

eam that lies directly over 
sp
did for the previous case. Using superposition, as shown in Figure 1.1

1.3, the stiffness of the equivalent spring representing the c
the two springs in series is given by 

( ) ( ) ( ) ( )3

1 1
1 1 6 1eq

beam s s

k
k k L EI k

= =
+ +

 (1.24) 

 Torsion of Elastic Rods 

tion 1.2.1 we examined axial motion

 
 

1.2.3

In Sec  of elastic rods and the bending of elastic 
eams. In each case we found the stiffness of an equivalent elastic spring for situa-
ons where we would be concerned with axial or transverse mo
f the structure. This stiffness could then be used in the const

 system representation for situations where the mass of the 
d or beam is much smaller than other masses of the system. An example of the use 

f such a representation was in the side-sway motion of a roof structure. In this sec-
 stiffness of an equivalent torsional spring rep-

of an elastic rod of circular cross section. In this 

b
ti tion of a single point 
o ruction of a simpler, 
single degree of freedom
ro
o
tion we shall determine the analogous
resenting the rotational resistance 
regard, such a model will be applicable in situations where we are interested in small 
rotational motion of a single cross section at some point along the axis of the rod, say 
at its free end, and when the mass moment of inertia of the rod is small compared 
with other mass moments of the system. 



1│ Preliminaries  17 

 
 
 Figure stem. 
 
 

Single Rod 
C of length L, 
shear m
nd and be subjected to a twisting moment (torque) of magnitude T0 at its free end, as 
own in Figure 1.15a. Let a coordinate x originate at the fixed end of the rod and run 

 1.15  Torsion of elastic rod: (a) elastic rod, (b) equivalent 1 d.o.f. sy

onsider a long thin elastic rod of circular cross section. Let the rod be 
odulus G, and polar moment of inertia J. Further, let the rod be fixed at one 

e
sh
along the axis of the rod, and let ( )xθ correspond to the rotation of the cross section 

cated at coordinate x quilibrium equation for torsion 
f a uniform elastic rod subjected to a distributed torque (torque per unit length) 

lo  as indicated. The governing e
o

( )xµ is given by  

 
2

2 ( )GJ x
dx

µ=  (1.25) 

 
where ( ) 0x

d θ

µ =  for the present case. The boundary conditions for the case under 
consideration are 

 0( ) 0,     
L

dL GJ
dx θ

θθ
=

= = T  (1.26) 

 
Integrating Eq. (1.25), with µ = 0, imposing the boundary conditions defined in Eq. 

.26), and evaluating the resulting expression at 
s 

(1 x = L gives the rotation at the free 
end of the rod a

 0( )L
LL

GJ
θ θ≡ = T  (1.27) 

or 
0 T Lk θ=T  (1.28) 

here 

 T
GJk
L

=  (1.29) 

w
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 tion of two elastic rods.   Figure 1.16  Rigid disk at junc
 

he parameter kT is the stiffness of an equivalent torsional spring (Figure 1.15b) 
simulating the motion of t tic rod subjected to a torque at that 
edge and fixed at the other ed will be used in Chapters 
2–8 for applications where t  is small compared with 
other mass moments of the s
 

Compound Systems 
ain degree of 

 modeled as an 

As a first example, suppose we are interested in the motion of the rigid disk 
tion of two elastic rods such that all axes of revolution are coin-

he masses of the rods are small compared to that of the disk 

T
he free edge of an elas

ge (Figure 1.15b). This model 
he moment of inertia of the rod
ystem. 

In practice, the supports to which an elastic rod is secured have a cert
compliance. If we wish to include this effect, the support may be
equivalent torsional spring. In addition, many mechanical systems are comprised of 
several connected elastic rods. If we are interested in the motion of a single point, and 
if the masses of the rods are small compared with other masses of the system, then we 
may model the system as an equivalent single degree of freedom system in a manner 
similar to that which was done for beams. We do this for two sample systems in this 
section. 
 
connected to the junc
cident (Figure 1.16). If t
we may treat the resistance (restoring moment) imparted by the two elastic rods as 
that due to equivalent torsional springs. The effect of the two rods fixed at their far 
ends is then equivalent to a single torsional spring whose stiffness is the sum of the 
stiffnesses of the individual rods as given by Eq. (1.29). (See also the discussion of 
parallel springs in Section 1.3.1.) Hence, the two rods may be represented as a single 
torsional spring of stiffness 
 

 
1 2

( ) 1 1 2 2

1 2

eq
T T Tk k k

L L
= + = +  (1.30) 

 
As another example, let us consider the effect of a compliant support of tor-

sional stiffness k

G J G J

Ts, on the rotation of the rigid disk at the free end of an elastic rod of 
torsional stiffness GJ and length L (Figure 1.17). The equivalent stiffness for this 
system is found from an analogous argument with that of the beam attached to a load- 
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   Figure 1.17  Elastic rod with compliant support. 
 
ed spring. (See also t  Section  1.3.2.) 
The combined on of a rigid disk at 
the free end of t

 

 

he discussion of springs connected in series in
effect of the rod and compliant support on the moti
he rod is then that of a single torsional spring of stiffness 

( ) ( )
( ) 1

1
eq

T
Ts

k
L GJ k

=
+

 (1.31) 

 
Similar expressions may be found for the effect of two elastic rods connected in se-

es as shown in Figure 1.18. 
9. The torsional mo-

on of the discrete system comprised of N rigid disks connected to N+1 elastic shafts 

 
 

ri
 Finally, consider the multi-component shaft of Figure 1.1
ti
aligned sequentially, as shown, is directly analogous to the side-sway motion of a 
multi-story building considered in Section 1.2.2. Thus, each rod may be modeled as 
an equivalent torsional spring, with the corresponding stiffnesses given by

( )    ( 1,2,..., 1)j jj
T

j

G J
k j N

L
= =

    Figure 1.18  Elastic rods in series. 
   

+  (1.32) 
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    Figure 1.19  Multi-component shaft. 

 

 we push down on a floating body we observe that the body deflects into the fluid. 
e also observe that the fluid exerts a resistance to the applied force that restricts the 

the floating body. If we subsequently release the body we 
 to its original position, first bobbing about that position 

 the figure as an 
uiv

 
   Figure 1.20  (a) Floating body, (b) equivalent system. 

1.2.4  Floating Bodies 

If
W
extent of the deflection of 
will observe that it returns
before eventually coming to rest. The fluid thus exerts a restoring force on the float-
ing body and may, under appropriate circumstances, be treated as an equivalent elas-
tic spring. We next compute the stiffness of that equivalent spring. 
 Consider the vertical motion of a rigid body of mass m that floats in a fluid of 
mass density ρf , as shown in Figure 1.20. We shall not consider wobbling of the 
body here. That will be left to the chapters concerned with multi-degree of freedom 
systems (Chapters 6–9). We wish to model the system shown in
eq alent mass-spring system. We thus wish to determine the stiffness provided by 
the buoyant effects of the fluid, say water. 
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 Let ∆g be the deflection of the body due to gravity and thus correspond to the 
initial equilibriu to the free 
surface of the fluid as indica ection of the body 
due to a force F rough the centroid 
of the body (and  us first determine 
∆g .  
 Archimed  of the displaced 
water is equal t d statics, that the 

with depth from the free 
surface. Given this, under its own weight 
alone is as shown i h coordinate meas-
ured from the sta tional accel-
eration, then th
 
 y

m configuration of the bottom surface of the body relative 
ted. Let ∆F represent the additional defl

 that is subsequently applied along a vertical axis th
 thus does not cause any rotation of the body). Let

es Principle tells us that, at equilibrium, the weight
o the weight of the body. We also know, from flui

pressure acting on the surface of the body varies linearly 
the free-body diagram for the floating body 

n Figure 1.21. Letting y correspond to the dept
tionary surface of the fluid, and g represent the gravita

e (gage) pressure, p, is given by 

fp gρ=  (1.33) 
 
The buoyant force, F , the resultant force acting on the bottom surfacbg e (y = ∆g) of the 
body is thus given by 
 
 bg f gF p A g Aρ= = ∆  (1.34) 
 
where A is the area of the bottom surface of the body. Now, the balance of forces in 

e vth rtical direction, ΣFe y = 0, gives 
 
 0f gg A mgρ ∆ − =  (1.35) 
 
which is seen to be a statement of Archimedes Principle. Solving for the deflection, 
∆g, gives 

 g
f

m
Aρ

∆ =  (1.36) 

       Figure 1.21  Free-body diagram of floating body under its own weight. 
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 Figure rce. 
 
Let us next deter F. The free-
body diagram re exerted 
n the bottom surface of the body is given by  

 1.22  Free-body diagram of floating body subjected to an applied fo

mine the additional deflection due to the applied force 
 for this case is shown in Figure 1.22. For this case, the pressu

o
 

( ) f g Fp gρ= ∆ + ∆  (1.37) 

 
where ∆ cated. The 
resultant force 
 
 

F is the additional deflection due to the applied force F, as indi
acting on the bottom surface of the body is then given by 

buoy bg bFF F F= +

bg is given by Eq. (1.34), and 

bF f FF g A

 (1.38) 
 
where F
  
 ρ= ∆  (1.39) 
 

it is 
itial equilibrium configuration. The effective stiffness of the 

The force FbF is evidently the restoring force exerted by the fluid on the body as 
oved away from its inm

fluid, k, is then given by the coefficient of the associated defection appearing in Eq. 
(1.39). Hence, 
 fk g Aρ=  (1.40) 

.2.5 The Viscous Damper 

ety of ways, 
e following model captures the characteristics of a standard viscous damper. 

Consider a long cylindrical rod of radius Ri
uid of viscosity µ that is contained within a cylinder of radius Ro possessing rigid  

 of the cylinder be coincident, as shown in Fig-
e 1.23, and let the rod be moving through the fluid with velocity v0 in the axial di- 

 

1

A simple type of dissipation mechanism typically considered in vibrations studies is 
that of viscous damping. Though damping may be introduced in a vari
th
  that is immersed in a Newtonian 
fl
walls. Let the axis of the rod and that
ur
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     Figure 1.23  Rod moving through viscous fluid contained within cylinder. 
 
 
rection, as indicated. For such a fluid the shear stress, τ, is proportional to the rate of 
deformation. If we define the z-axis to be coincident with the axes of the cylinder and 

e roth d, and let r be the radial coordinate measured from this axis, then the shear 
stress may be expressed as 
 

 r zv v
z r

τ µ
∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠

 
where vr and v  of the fluid. 
If no slip condi ls, the fluid 
velocity profil hat 
 

 

 

z represent the radial and axial components of the velocity
tions are imposed on the fluid at the rod and cylinder wal

e varies logarithmically, as indicated in Figure 1.24, such t

( )
( )0

0

ln ln
( )  ,     0

ln
o

z r
i

R r
v r v v

R R
−

= =  

 
he shear stress acting on the surface of the rod is then seen to be given by 

 
T

 
( ) 0ln

i

o i

R v
R R
µ

τ
−

=  

 
 

 
    Figure 1.24  Flow field of damper fluid. 
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        Figure 1.25  Representation of viscous damper. 

It follows that the result scous fluid is given 
by 
 

 
ant force, Fd, applied to the rod by the vi

0dF A cvτ= = −  
where 

 
( )ln

i

o i

A Rc
R R

µ
=  

 
and A is the surface area of the rod. 

As demonstrated by the above example, the force applied to the body by the 
is linearly propor-

tional to the speed, v per. Hence, in gen-
eral, the damping force is 
 
 

 
linear viscous fluid damper opposes the motion of the body and 

, at which the body travels relative to the dam

dF cv= −

 is referred to as the damping coefficient
d schematically as a piston or dashpot (Fi

 (1.41) 
 
where the constant c . A viscous damper is 
typically represente gure 1.25). 
 

.2.6  Aero/Hydrodynamic Damping (Drag) 

ir or water, as shown in Figure 1.26. It is generally comprised of both viscous and 
e effects. However, for incompressible flows of classical fluids at very low 
ds numbers, 

1

Drag is a retarding force exerted on a body as it moves through a fluid medium such 
s aa

pressur
Reynol

1v LRe ρ
µ

≡ ≤   

where ρ and µ are respectively the (const
the fluid, v is the magnitude of the v

ant) mass density and (constant) viscosity of 
elocity of the fluid relative to the body and L is a 

characteristic length of the body, the drag force exerted on the body is predominantly 
due to friction and is linearly proportional to the velocity. Thus, for such flows, 
 
 DF c v= −  (1.42) 
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    Figure 1.26  Body moving through flui
 

d medium. 

where, for a sphere, 
 6c Rπ µ=   
 
and R is the diameter of the sphere. Equation (1.42) is seen to be of identical form to 
Eq. (1.41). Thus, from a vibrations perspective, the low Re drag force and the viscous 

rce affect the system in the same way. This is not surprising since, for low Rey-

.3  SPRINGS CONNECTED IN PARALLE

ively, the dis-
placement nner identical 

m of linear 
spri ental ways 

 which linear elastic springs may be connected: (a) in parallel (Figure 1.27a), and 
binations of these 

o fundamental configurations. In this section we shall obtain the effective stiffness 
ngs corresponding to these two fundamental configurations. We 

egin with a discussion of parallel springs. 

fo
nolds numbers, the drag force is predominantly frictional. For larger Reynolds num-
bers the drag force depends on the velocity in a nonlinear manner, with the specific 
form depending on the range of Reynolds number, and Eq. (1.42) is no longer valid. 
 

1 L AND IN SERIES 

When linear springs are connected to one another and viewed collect
 of the outermost points is related to the applied load in a ma

to that of a single spring. That is, when viewed collectively, the syste
ngs behaves as a single equivalent linear spring. There are two fundam

in
(b) in series (Figure 1.27b). Other arrangements correspond to com
tw
of the equivalent spri
b
 

 
Figure 1.27  Compound springs: (a) springs in parallel, (b) springs in series, (c) equivalent 
system.  
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1.3.1

Consid th the other 

ted. If the ance ∆ to the right (or left) then 
each spring exerts a restor ∆ (j = 1, 2, …, N)  acting on the 
plate, as shown in the free-body  Figure 1.28. The total restoring 
force, that is the resultant of all th erted by the springs on the plate, is then 
the sum of the individual restori  
 

 ff

   Figure 1.28  Free-body diagram for springs in parallel. 

 Springs in Parallel 

er a rigid plate attached to any number of elastic springs, say N, wi
end of the springs connected to a fixed rigid wall as shown in Figure 1.27a. Let the 
stiffnesses of the springs that comprise the system be respectively designated kj (j = 1, 
2, …, N) as indica plate is displaced a dist

ing force of the form Fj = kj 
 diagram depicted in

e forces ex
ng forces. Thus, 

1 1

N N

j j e
j j

F F k k
= =

= = ∆ =∑ ∑ ∆  (1.43) 

where 

 
1

N

eff j
j

k k
=

= ∑  (1.44) 

hose stiffness is 
qual to the sum of the stiffnesses of the individual springs that comprise the system. 

    

 
The system of parallel springs therefore behaves as a single spring w
e

1.3.2  Springs in Series 

Consider a system of N springs connected end to end (i.e., in series), and let one end 
of spring number 1 be attached to a rigid wall as shown in Figure 1.27b. In addition, 
let an external force P be applied to the free end of spring number N. Further, let kj (j 
= 1, 2, …, N) correspond to the stiffness of spring number j, and let ∆j represent the 
“stretch” (the relative displacement between the two ends) in that spring. Note that 
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since spring 1 is fixed at one end, the stretch in that particular spring, ∆1, is also the 
absolute displacement of the joint connecting spr  ing 1 and spring 2. Let ∆* represent

e absolute displacement of the free end of the system (i.e., the displacement of joint 
ber N measured with respect to its rest position), and t

pplied force P. The displacement ∆* then also represent
he stretch of an equivalent spring with effective stiffness keff. We wish to 
e keff such that the relationship between the applied force and its displace-

ent is of the form  

th
num hus the displacement of the 
a s the total stretch in the sys-
tem, or t
determin
m
 

*effP k= ∆  (1.45) 

 Figure 1.29. It then follows from Newton’s Third Law applied at 
it assumption that the springs are massless, that  

 
To do this, let us first isolate each spring in the system and indicate the forces that act 
on them as shown in
each joint, and the implic
 
 1 1 2 2 ... N Nk k k P∆ = ∆ = = ∆ =  (1.46) 
 
Dividing through by the stiffness of each individual spring then gives the relations 
 

    ( 1,2,..., )j
j

P j N
k

∆ = =  (1.47) 

 
Now, as discussed earlier, the deflection of the load is equal to the total stretch in the 
system. Further, the total stretch of the system is equal to the sum of the individual 
stretches. Hence, 

 1 2* ...
N

N j∆ = ∆ + ∆ + + ∆ = ∆
1j=

∑  (1.48) 

 
S ) gives the relation ubstitution of each of Eqs. (1.47) into Eq. (1.48
 

 
1 2 1

1* ...
N

N jj

P P P P
k k k k

=

∆ = + + + = ∑  (1.49) 

or 

*
eff

P
k

∆ =  (1.50) 

   Figure 1.29  Free-body diagram for springs in series. 

where 
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1 2 1

1 1 1 1 1...
N

k k k k k
= + + + =

eff N jj=
∑  (1.51) 

 
quation (1.51) gives the relation between the effective sti

lent spring and the stiffnesses of the springs that comprise the system. 

.4  A BRIEF REVIEW OF COMPLEX NUMBERS 

During the course of our study of vibrations we shall find that many pertinent func-
s and solutions may be expressed more generally and more compactly using 

complex representation. Likewise, solutions to many vibrations problems are facili-
ted by the use of complex numbers. In this se

ve certain identities that will be used throughout this text. 
et us consider numbers of the form 

 

E ffness of the single equiva-

 

1

tion

ta ction we briefly review complex num-
bers and deri
 L
 

z x iy= +  (1.52) 
 

1i ≡ − . The number x is said to be the real part of the complex number z, where 
and y is said to be the imaginary part of z. Alternatively, we may write 
 

Re( ),   Im( )x z y z= =  (1.53) 
 

he complex conjugate of z, which we shall denote as , is defined as zcT
 
 z x iy≡ −c  (1.54) 

The product of a complex number and its conjugate may be seen to have the property 

 

 

 
22 2cz z x y z= + =  (1.55) 

 
where z  is called the magnitude of the complex number z. Alternatively, we may 
write 
 2 2mag( )z z x y z z= = + = c  (1.56) 
 

he complex number z may be expressed in vector form as z = (x, y), and may be 
presented graphically in the complex plane as
e magnitude and argument of z as the radius or length, r, of the line from the origin 

oint (x, 

T
re  shown in Figure 1.30. We then define 
th
to the p y) and the angle, ψ, that this line makes with the x-axis, respectively. 
Hence, 
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r

z: (x,y)

Re (z)

Im (z)

z c: (x,-y)

r

 
    Figure 1.30  Graphical representation of a complex number and its conjugate. 
 
 
 2 2 mag( )r x y z z z z= + = = = c  (1.57) 
and 

( )1tan arg( )y x zψ −= =  (1.58) 
 
Both z and zc zc  iare displa that yed in Figure 1.30 where it is seen s the reflection of 
z through the real axis. It is also seen from Figure 1.30 that a complex number and its 
conjugate may be expressed in terms of its magnitude, r, and its argument, ψ, as 
 

 
(cos sin )
(cos sin )

z r i
z r i

ψ ψ

ψ ψ

= +

= −c  (1.59) 

 
Note that if ψ = ω t, where the parameter t is the time, then ω corresponds to angular 
frequency, a quantity that will be central to our studies of vibrating systems. In this 
case, ω is the angular rate (angular velocity — see Section 1.5) at which the radial 
line segment connecting the origin and point z (i.e., the “vector” z) rotates about an 
axis through the origin and perpendicular to the complex plane. 

The forms given by Eqs. (1.59) will lead us to further identities that will be 
sefu series 
pres  and sin , 

 

 
u l to us in our study of vibrations. Toward this end, let us first recall the 

entation for cosψ ψre
 

2 4

3 5

cos 1
2! 4!

sin
3! 5

ψ ψψ

ψ ψψ ψ

= − + −

= − + −

"

"
 (1.60)  



30 Engineering Vibrations 

 
Let us next t e the complex sum of the two series as follows, 
 

ak

2 3

cos sin 1i iψ ψψ ψ ψ
⎛ ⎞ ⎛ ⎞

+ = − + + − +" "

2

2! 3!

( ) ( )                      1
1! 2! 3!
i iψ ψ

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + + +
3( )iψ

+"    

                      ie ψ=
 
Similarly, letting ψ ψ→ −  in the above expressions gives the identity 
 
 cos sin ii e ψψ ψ −− =  
 
Combining the above two results gives Euler’s Formula, 
 
 cos sinie iψ ψ ψ± = ±  (1.61) 
 

omplex numbers and their conjugates may be written
ormula. Substitution of Eq. (1.61) into Eqs. (1.59) giv

forms for a complex number and its conjugate, 

iz x iy r i re

C  in useful forms using Euler’s 
F es the summary of the various 

 
(cos sin ) iz x iy r i re ψψ ψ

 
(cos sin ) ψψ ψ −

= + = + =
 (1.62) 

= − = − =c

 
Lastly, letting iψ ψ→ − in Eq. (1.60) and paralleling the development of Eq. (1.61) 
gives the analog of Euler’s Formula for hyperbolic functions, 

 
 

cosh sinhe ψ ψ ψ± = ±  (1.63) 

s of func l greatly facili-
roughou

ynamics is the study of motion. As such, the princ
ur study of vibrations. In fact, vibrations may be v

he subject known as Analytical 

 
The complex form tions, and Euler’s Formula in particular, wil
tate our analyses th t this text. 
 

1.5 A REVIEW OF ELEMENTARY DYNAMICS 

D iples of dynamics are central to 
o iewed as a subset of dynamics, 
focusing on certain types of motions. For the study of mechanical and structural vi-
brations, which constitutes the scope of this book, we are interested in classical me-
chanics. In this section we shall review some of the basic principles of Newtonian 
Mechanics, while certain concepts and principles of t
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Mechanics will be introduced in Chapter 6. (The reader who is well grounded in ele-
entary dynamics may proceed to Chapter 2 without loss 
rst discuss the dynamics of single particles, and then extend these ideas to particle 

 concepts will then be abstr

eformable bodies is in-
oduced in Chapter 9. 

The study of dynamics can be separated into
inetics. Kinematics is the study of the geometry of motion. That is, it is the study of 

d the response (motion) of the bodies to these 
rces. The notion of a particle is an idealization. A particle is a body that has mass 

but no volume. It is thus a point that moves through space. We shall see that, for 
equately described by that of a 
 finite bodies will be examined 

m of continuity.) We shall 
fi
systems. These acted to a continuum, viewed as a continu-
ous distribution of matter or particles, with the dynamics of rigid bodies presented as 
a special case at the close of this section. The dynamics of d
tr
  two sub-areas, kinematics and 
k
how we describe a given motion mathematically. Kinetics, on the other hand, deals 
with the forces imparted on bodies an
fo

many situations, the motion of a finite body may be ad
particle. The consequences of such an idealization for
in subsequent sections. More generally, a body may be viewed as an assemblage of 
particles. We first review the kinematics of particles. 
 

1.5.1  Kinematics of Particles 

As stated in the introduction to this section, kinematics is the study of the geometry of 
motion. In this section we introduce fundamental mathematical measures that charac-
terize the motion of a particle. 

Basic Kinematic Measures 
In order to locate a particle, we must specify its location with respect to some refer-
ence. Therefore, let us define a coordinate system with origin at point “O.” All quan-
tities are then measured with respect to this point. Alternatively, we may view such 
quantities as those “seen by an observer standing at O.” In this context, the location of 
a particle at a particular time is defined as the position of the particle at that time. We 
thus introduce the position vector 
 

 
    Figure 1.31  A particle and its trajectory. 
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Figure 1.32  Displacement of a particle.

( )r r t=
G G  (1.64) 

 
hich is represented as the directed line segment between the origin O and the loca-
on of the particle at time t, as shown in Figure 1.31.  

lled the particle’s tra-
ory at two instants in 

me, t and t + ∆t, as shown i tion of the particle be-
tween these two points icle and is defined by the 
displacement vector 
 
 

w
ti
 The path that the particle follows during its motion is ca

ctory. Let us consider the particle at two points along its trajectje
ti n Figure 1.32. The change in posi

is called the displacement of the part

( ) ( )r r t t r t∆ ≡ + ∆ −
G G G

ize how quickly the particle is changi
ent by quantifying the rate at which th

e of change of the position vector is ca
ty over a given time interval, ∆t, is s
e duration of the interval. The averag

 (1.65) 
 

If we wish to character ng its location we must 
continue our developm e position of the particle 
is changing. The time rat lled the velocity vec-
tor. The average veloci imply the ratio of the 
change of position to th e velocity is thus 
 

 ( ) ( )r r t t r tv ∆ + ∆ −
≡ =avg t t∆ ∆

G G GG  (1.66) 

 
T city, at a given time t is established by he instantaneous velocity, or simply the velo

 letting the time interval approach zero. Thus, the instantaneous velocity at time t is
given by 
 

 
0 0

( ) ( )( ) lim lim
t t

d r r r t t r tv t
dt t t∆ → ∆ →

∆ + ∆ −
≡ = =

∆ ∆

G G G GG  (1.67) 

 



1│ Preliminaries  33 

If one considers the displacement vector between two positions of the particle, and 
lets this vector get smaller and smaller as shown in Figure 1.32, it is seen that as 

 the vector  and becomes tangent to the path at time t. It follows 
om Eq. (1.67) that the velocity vector is always tan

partic . 

r d r∆ →
G G0t∆ →

fr gent to the path traversed by the 
le

 To characterize how the velocity changes as a function of time we introduce its 
rate of change. The time rate of change of the velocity vector is referred to as the ac-
celeration vector, or simply the acceleration. Paralleling our discussion of velocity we 
first introduce the average acceleration, 
 

( ) (
avg

v v t t v ta
t t

∆ + ∆ −
≡ =

∆ ∆
)G G GG  (1.68) 

he instantaneous acceleration is then  

 

 
T
 

 
0 0

( ) ( )( ) lim limd v v v t t v ta t ∆ + ∆ −
≡ = =

t tdt t t∆ → ∆ →∆ ∆

G G G GG  (1.69) 

 

Relative Motion 
onsider the motions of two particles, A and B, and let ( ) and ( )A Br t r tG GC  be the corre-

lat ng) with p

 particle A may be expressed in terms of the positions of the two particles 
ith r

sponding position vectors of the particles with respect to a common origin O. Further, 
let / ( )B Ar tG correspond to the position vector of particle B as seen by an observer trans-

ut not rotati article A, as indicated in Figure 1.33. It may be seen 
from the figure that, through vector addition, the relative position of particle B with 
respect to

ing (b

w espect to the origin O by the relation 
 
 / ( ) ( ) ( )B A B Ar t r t r t= −

G G G  (1.70) 
 
 
 

 
    Figure 1.33  Two particles in motion. 
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 Eq. (1.70) with respect to time gives the relative velocity of particle Differentiation of
B with respect to particle A, 
  
 / ( ) ( ) ( )B A B Av t v t v t= −

G G G  (1.71) 
 
where ( ) and ( )A Bv t v tG G are, respectively, the velocities of particles A and B with re-
spect to O. Differentiating Eq. (1.71) gives the corresponding relative acceleration, 
 

/ ( ) ( ) ( )B A B Aa t a t a t= −
G G G  (1.72) 

here are the accelerations of the indicated particles with respect to 
e origin. The relative velocity 

 
 

 ( ) and ( )A Ba t a tG Gw
th / ( )B Av tG is interpreted as the velocity of particle B as 
seen by an observer that is transl  not rotating) with particle A. The relative 
acceleration  is in

Coordinate Systems 
It is often expedient to use a p  for a particular problem or 
application. We next consi -polar and spherical coordi-
nates, and expr vectors in terms of their 
components with respect to

Cartesian Coordinates 
Let  represent unit base vectors oriented along the x, y, z coordinate axes, 

, as indicated in Figure 1.34. As the basis vectors are constant in di-
rection as well as magnitude for this case, it follows that their derivatives with 

, velocity and accelera-

( )
x y z

r t x t i y t j z t k

v t v t i v t j v t k x t i

a t

= + +

= + + = +

=

ating (but
/ ( )B Aa tG terpreted similarly. 

articular coordinate system
der Cartesian, path, cylindrical

ess the position, velocity and acceleration 
 these coordinate systems. 

, ,i j k
GG G

respectively

respect to time vanish. It then follows that the position
tion vectors expressed in terms of their Cartesian components, are respectively 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

GG GG
G

 ( ) ( )y t j z t k+
GG

�
G G GG � �  (1.73) 

( ) ( ) ( ) ( ) ( ) ( )x y za t i a t j a t k x t i y t j z t k+ + = + +
G GG G G G
�� �� ��

 

G

   Figure 1.34  Cartesian Coordinates. 
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  Path Coordinates 
Let s represent a coordinate along the path traveG rsed by a particle, as indicated 

resent the unit vector that is tangent to the path in the in Figure 1.35. Let te  rep
ction of increasing s dire at a given point, let neG  represent the unit normal to the 

path directed toward the center of curvature at that point, and let b t ne e e≡ ×
G G G  be 

the corresponding unit binormal vector that completes the triad of basis vectors, 
as indicated. We note that, though the basis vectors are of unit magnitude, their 
directions are constantly changing as the particle proceeds along its trajectory. 
n fact, it is easily shown that  I

 

t n
se e
ρ

=
�G G� �  (1.74) 

 
here

 

 ρ�w  is the radius of curvature of the path at the point in question. Since 
t) measures the distance along the path, and hence locates the particle at a 

given time, it follo
 

 

s(
ws that the speed is given by 

( ) ( )v t s t= �  

 vector is always tangent to the path

( ) ( ) ( ) ( )t tv t v t e t s t e

 
Since the velocity , we have that 
 

 = =
G G G�

75) and incorporating the ident

 (1.75) 
 
Differentiating Eq. (1. ity stated by Eq. (1.74) 

on i ial components. Hence, gives the accelerati n terms of its normal and tangent
 

2

( ) ( ) ( ) ( )t t n n t n
sa t a t e a t e s t e e
ρ

= + = +�� �G G G GG �  (1.76) 

 
 

 

 
    Figure 1.35  Path coordinates. 
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    Figure 1.36  Cylindrical-polar coordinates. 

  Cylindrical Po
Let R,θ, z, represent nates of a particle at a 
given instant, as i

 

lar Coordinates 
 the radial, angular and axial coordi

ndicated in Figure 1.36. Let , ,R ze e eθ
G G G

l three basi
represent the corre-

sponding unit vectors. Though the magnitude of al s vectors remains 
constant, the directions associated with the first two are constantly changing as 
the particles moves along its trajectory. The relation between the time deriva-
tives of the first two unit vectors is similar to that for the basis vectors associ-
ated with path coordinates. The position vector expressed in terms of its com-
ponents in cylindrical-polar coordinates takes the form  
 

( ) ( ) ( )R zr t R t e z t e= +
G G G  (1.77) 

rentiating Eq. (1.77) with respect to time, and noting that 

 

 
Diffe
 

andR Re e e eθ θθ θ= = −
G G G G� �� �

ng velocity vector  

  
 
gives the correspondi
 

 ( ) ( ) ( ) ( )R R z z Rv t v t e v t e v t e R e R e z eθ θ θθ= + + = + +
G G G G G G�� � z

G  (1.78) 
 

Differentiating again gives the acceleration vector in terms of its cylindrical-
polar components as 
 

 ( ) ( )2( ) ( ) ( ) ( ) 2R R za t a t e a R Rθ θ= + −
G G ��

z R zt e a t e e R R e z eθθ θ θ+ = + + +
G G G G G� �� �� ��  (1.79) 
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    Figure 1.37  Spherical coordinates. 
 
 

Spherical Coordinates 
et r, θ, ϕ represent the radial, polar angle and azimuth coordinates and let L
, ,re e eϕθ
G G G  represent the corresponding unit vectors, as indicated in Figure 1.37. 

lar and path coordinates, the unit vectors associated with spherical co-
ordinates have constant magnitude but constantly change direc
the motion of the particle. Therefore, their time derivatives do not vanish. Pro-

As for po
tion throughout 

ceeding as we did for path and polar coordinates, we first express the position 
vector in terms of its spherical components. This is simply  
 

( ) ( ) rr t r t e=
G G  (1.80) 

ifferentiating Eq. (1.80) gives the velocity vector in terms of its spherical 
omponents. Hence,  

 sv t v t e r e

 
D
c
 

( ) ( ) ( ) ( ) cor r re v t e v t e r e rθ θ ϕ ϕ θ ϕθ ϕ ϕ= + + = + �

ives the corresponding expression for the acceler

+
G G G G G G G� �  (1.81) 

 
Differentiating again g ation 
vector as  

 

 ( )

( )

2 2 2 2

2 2

( ) ( ) ( ) ( )

cos      cos 2 sin

1                                                      + sin cos
r

r r

r

a t a t e a t e a t e

dr r r e r r e
r dt

d r r
dt

θ θ ϕ ϕ

e

θ

ϕ

ϕϕ θ ϕ θ θ ϕ ϕ

ϕ θ ϕ ϕ

= + +

⎡ ⎤⎡ ⎤= − − + −⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+⎢ ⎥⎣ ⎦

G G G G

G G� ��� � �

G��

�  (1.82) 
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1.5.2 Kinetics of a Single Particle 

Class ental laws posed by Newton, and 
the in o

Newto
Newt
parap

 that state unless 
an unbalanced force. 

ewton’s Second Law 

rce. This is stated mathematically by the well-known re-
tion 

ical mechanics is based on the three fundam
tegrals of ne of them. We first discuss Newton’s Laws of Motion. 

n’s Laws of Motion 
on’s three laws of motion form the basis for our study of dynamics. They are 
hrased below. 

Newton’s First Law 
 body at rest, or in motion at constant velocity, remains inA

acted upon by 

N
If a body is acted upon by an unbalanced force, its velocity changes at a rate 
proportional to that fo
la

F m a=
G G  (1.83)  

 
where F

G
 is the force acting on the particle, aG  is the time rate of change of the 

velocity of the particle and m is the mass of the particle. The mass (or inertia) 
of the particle is seen to be a measure of the resistance of the particle to 
changes in its velocity. The larger the mass, the larger the force required to 
produce the same rate of change of velocity. 

Newton’s Third Law 
If a body exerts a force on a second body, the second body exerts an equal and 
opposite force on the first body. 

 principle, the motion of a particle is completely defined by these laws. However, it 
 from an alternate perspective. Certain inte-

and lead to other principles of classi-

h the increment of the position vector, 

 
In
is often convenient to approach a problem
grals of Newton’s Second Law accomplish this, 
cal mechanics. These principles are discussed in the following sections.  
 

Work and Kinetic Energy 
If we take the scalar dot product of the mathematical statement of Newton’s Second 
Law, Eq. (1.83), wit drG , multiply and divide 
the right hand side by the resulting expression between two points on 
the pa
 
 

 dt, and integrate 
rticle’s trajectory we arrive at the Principle of Work-Energy, 

2 1= ∆ =W� T� −T T  (1.84) 
where 

 
2

1

r

r
F dr≡ ∫

G

G

G GiW  (1.85) 
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is the
to pos

 work done by the applied force in moving the particle from position 1 1( )r r t≡
G G  

ition 2 2( )r r t≡
G G , t1 and t2 are the times at which the particle is at these positions,  

  
2  (1.86)  1

2 m v≡T
 
is the en
terms
tial, n

 kinetic ergy of the particle, and vj
 = v(tj). It is instructive to write Eq. (1.85) in 

 of path coordinates. Hence, expressing the resultant force in terms of its tangen-
ormal and binormal components, noting that tdr ds e=

G G , substituting into Eq. 
) and carrying through the dot product gives (1.85

 

 
2

[
2s s

] ( )
1 1

t t n n b b t t
s s

F e F e F e ds e F ds+ + = ∫= ∫ G G G Gi  (1.87) 

 
here 1 1 2 2 from Eq. (1.87) that only the tangential com-

force in 
oving the particle from position 1 to position 2 is independent of the particular path 

along which the particle moves. Let us denote this force as 

W

 s  = s(t ) and s  = s(t ). It is seen w
ponent of the force does work. 

Path Dependence, Conservative Forces and Potential Energy 
Let us consider a particular type of force for which the work done by that 
m

( )CF
G

. The work done by 
such a force,  
 

 
2

1

( ) ( )
r

C C

r
F dr≡ ∫

G

G

G GiW  (1.88) 

 
is thus a function of the coordinates of the end points of the path only. If we denote 

is function as − U, where we adopt the minus sign

 

2

1

2

( )
2( )

r
C

r

r

F dr s

th  for convention, then 
 

[ ]1( )s= − −∫
G

G

G

G

1

                   
r

dr

= −∆

= − ∇∫ G

Gi

Gi

U U
 (1.89) 

here  is the gradient operator. Comparison of the integrals on the right and left 
and sides of Eq. (1.89) gives the relation 

U

U

 
w  ∇
h
 
 ( )CF = −∇

G
U  (1.90) 

 
It is seen from Eq. (1.90) that a force for which the w e is independent of the 
path traversed is derivable from a scalar potential. 

ork don
Such a force is referred to as a con-

rvative force, and the corresponding potential function as the potential energy. se
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F h the work done is 
d e forces. It is seen 

orces that do not fall into this category, that is forces for whic
ependent on the path traversed, are referred to as nonconservativ
om Eq. (1.89) that only the difference in potential energy between positions, or its 

. The potential energy is defined through its 
f the work done by a 

e

red energy” or “the ability to do work”. Examples of conservative 
rces are the gravitational force and the force of an elastic spring. Examples of non-

onservative forces are friction forces, damping for
the thrust of a rocket. 

If we partition our forces into conservative and nonconservative then the work-

onservative 
rce and a resultant nonconservative force, 

fr
gradient, enters the formulation and thus the potential energy is defined to within an 
arbitrary constant. It is often convenient to introduce a ‘datum’ in order to assign a 
definite value to the potential energy
change. Hence, the change in potential energy is the negative o
conservative force in moving a particle between two positions. The potential energy 
is thus seen to be the work that would be done if the process were reversed. That is, it 
is the work that would be done by the conservative force if th  particle were to move 
from the latter position to the former position. The potential energy may therefore be 
iewed as “stov

fo
c ces, and follower forces such as 

 
energy principle, Eq. (1.84), may be written in an alternative form. Toward this end, 
let the resultant force acting on a particle be comprised of a resultant c
fo ( )CF

G
( )NCF
G

 and , respectively. Hence, 
 

C( ) ( ) ( )C NC NF F F F= + = −∇ +
G G G G

U  (1.91) 

where we have incorporated Eq. (1.90). Substituting Eqs. (1.91) and (1.88) into Eqs. 
.85) and (1.84), and rearranging terms, gives the alternate form of the work energy 

le

 

(1
princip  
 ( )NC = ∆ +W ∆T U  (1.92) 

here 
r

NC NC

r

w

 )
2

1

( ) (F≡ ∫
G

G

G
drGi  (1.93) W

 
is the work of the nonconservative force. Note that the work of the conservative force 
is already taken into account as the change in potential energy. Thus, ( )NCW  repre-
sents the work of the remaining forces (those not included in ∆U) acting on the parti-
cle.  
 

Example 1.1 – Work done by the weight of a body 
A car travels between two points, A 
and B, along the road shown. Evalu-
ate the work done by the weight of 
the car as it travels between these two 
points. 

 
                                                                            Figure E1.1-1 
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   Figure E1.1-2  Kinetic diagram for veh

sed in terms of the Cartesian coordinates shown as 
 

j

icle. 
 

Solution 
The kinetic diagram corresponding to the car at a generic point along the path is 
shown in Figure E1.1-2. The weight and the increment in position may be ex-
pres

W mg= −
G G

  (a) 
and 

 d r dx i dy j= +
G GG  (b) 

 

 
A

r s y

y

 
where the relation between the coordinates x and y depends on the specific 
equation that describes the road (not given). We next evaluate the work done by 
the weight by substituting Eqs. (a) and (b) into Eq. (1.85). Thus, 

B B B

A Ar s
F dr mg j dx i dy j⎡ ⎤ ⎡ ⎤= − + = −⎣ ⎦ ⎣ ⎦∫ ∫ ∫G

mgdy
G G G G GG  (c) 

 Ay

i i

 
Hence, 

(W mg y )B= −W
 
It may be se

−  (d) 

en that the work done by the weight depends only on the coordi-
nates of the end points of the path. The particular road on which the car travels 

 of the 
weight the weight is 
then a conservati is then, by definition, 
 

 

�

between the two points A and B is thus immaterial as far as the work
is concerned. Since the work done is independent of path, 

ve force. The change in potential energy 

mg y∆ = ∆U  (e) 
 
If we choose ou ) to be at A, we re-
cover the elem

r datum (the level of zero potential energy
entary formula 

 
mgh=U   

 
where h  y – yA is the height above the datum. =
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Example 1.2 – Work done by a follower force 
Consider the motion of a rocket car as it moves along a straight track or along a 
circular track between two points A and B, as shown. For simplicity, let us as-
sume that the magnitude of the thrust is constant throughout the motion. The 
thrust, , which is always tangent ttT T e=

G G o the path, is an example of what is 
referred to as a “follower force,” since it follows the direction of the path of the 
particle. 

 
         Figure E1.2  Rocket car traversing two different tracks. 
 

olution 

A

R

T

1

2

T

B

 

T = T0 = co
 to B along the straight track (Path 1) clear

 

S
For nstant, the work done by the thrust as the rocket car moves from 

ly differs from that done along the A
circular track (Path 2). Specifically, using Eq. (1.87), we have that 
 

(1) T R=W W (2)
0 02         2T Rπ≠ =   

 
Since the work done clearly depends on the particular path traversed by the car, 

 
the thrust is then a nonconservative force. 

 

 

Example 1.3 – Potential energy of elastic springs 
Determ  potential energy of (a) a deformed linear spring of stiffness k ine the
and (b) a deformed torsional spring of stiffness kT.  
 
Solution 
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 Figure E1.3  Displacement and restoring action: (a) linear spring, (b) torsional spring. 

) 
s stretched from 

nce (unstretched) configuration to the current configuration is readily 

 

 
(a
The work done by the restoring force of a linear spring as it i
the refere
evaluated as 
 

( ) 21
2

0

s
s ks ds ks= − = −∫ � �W  (a) 

s is the stretch in the spring (Figure E1.3a). The 
 
where 
e

corresponding potential 
nergy of the deformed spring is then, from Eq. (1.89), 

  
 ( ) 21s ks= 2U  (b) 

ote that it is implicit in the above expression that the datum is chosen as the 
ndeformed state of the spring [as per the lower limit of integration of Eq. (a)]. 

 torque and then using Eq. 
nce, 

 

  
N
u
 
(b) 
The potential energy of the deformed torsional spring is similarly determined 
y first calculating the work done by the restoringb

(1.89). He
 

( ) 21
2

0

TS
T Tk d k

θ

θ θ θ= − = −∫ � �W  (c) 

and 
 ( ) 21

2
TS

Tk θ=U  (d) 
 
where it is implicit that that the datum is taken as the undeformed state of the 
torsional spring. 
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Conservation of M
A system for which only to be a conservative 
system. If this is the ca
 

 

echanical Energy 
 conservative forces do work is said 

se, that is if 

2

1

( ) 0
r

NC

r
F dr =∫

G

G

G Gi  (1.94) 

 
then Eq. (1.92) reduces to the statement that 
 
 0∆ + ∆ =T U   
 
This m
 
 

ay also be expressed in the alternate form 

constant= + =E T U  (1.95) 
 
where
of con
forces l energy. 
 

Example 1.4 

 E is the total mechanical energy of the system. Equation (1.95) is the statement 
servation of mechanical energy of the system. It is thus seen that conservative 
conserve mechanica 

A coaster traveling with speed v0 enters a vertical loop of radius R and proceeds 
around the loop as shown in Fig. E1.4-1. (a) If the total mass of the coaster and 
its passengers is m, determine the force exerted by the track on the coaster as it 
moves around the loop (i.e., as a function of the angular coordinate θ ). (b) 
What is the minimum entry speed for the coaster to successfully traverse the 
loop? 
 

v
0

R

 
   Figure E1.4-1  Roller coaster and loop. 
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Solution 
We first draw the kinetic diagram (dynamic free-body diagram) of the coaster 

E1.4-2. This displays the forces that 
er) on one figure, and the inertia 

“forces” (the response of the particle) on anoth
cally a pictorial statement of Newton’s Second (and Third) L

more informative if we choose the former. 
We shall therefore solve the problem using path coordinates.  

 help of the kinetic diagram, and the incorporation of Eq. (1.76), 

 

N

R

mg

mv

mv 2

=

.

          Figure E1.4-2  Kinetic 
 

diagram for coaster. 

at a generic location, as depicted in Figure 
act on the “particle” (in this case the coast

er. The kinetic diagram is basi-
aw. 

 
(a) 
For this particular problem it is convenient to work in either path of polar coor-
dinates. It is, however, somewhat 

 With the
the component of the statement of Newton’s Second Law along the normal di-
rection is written as 
 

2

cos mvN mg
R

θ+ =  

 
which, when solved for the normal force N, gives 
 

 
2

cosmvN mg
R

θ= −  (a) 

 
In order to find N(θ ) for a given v0 we must first determine v(θ ). That we re-
quire the velocity as a function of position suggests that we should employ the 
work-energy principle. It is evident from Eq. (1.87) that the normal force does 
no work. Since the only other force acting on the coaster is the weight, which is 
a conservative force, we know that the energy of the system is conserved 
throughout its motion. Evaluating Eq. (1.95) at the entrance and at the current 
point of the loop gives the relation 

 
 

2 21 1
02 2(1 cos )mv mgR mvθ= + +  (b) 
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where we have chosen the entrance level of the loop as our datum. Solving Eq. 
(b) for mv2 and substituting the resulting expression into Eq. (a) gives the nor-
mal force as a function of location around the loop. Hence, 
 

 
2

0( ) (2 3cos )
mv

N mg
R

θ θ= − +  � (c) 

) 
 may be seen upon inspection of Eq. (c) that the normal force, N, achieves its 

 value when θ = 0. Thus, the critical entry speed (the minimum speed 

 

 
(b
It
minimum
at which the coaster can round the loop without leaving the track) is determined 
from conditions at the top of the loop. Further, when the coaster is about to fall 
away from the track, 0N → . Substituting these values of θ and N into Eq. (c) 
gives the critical entry speed 
  

0 5crv g=  R (d) 
 

�

 

Linea
We obtained the Principle of
over space. We shall next consider an integral of Newton’s Second Law over time 
that is generally concerned with translational motion.  

Let us multiply Newton’s Second Law, Eq. (1 3), by the differential time in-
crement dt and integrate between two instants in time, t1 and t2, during the particle’s 
motio lse-Momentum, 
 

( ) (
t

t

r Impulse and Momentum 
 Work-Energy as an integral of Newton’s Second Law 

 .8

n. Doing this results in the Principle of Linear Impu

 1)
2

1
2F dt mv t mv= −∫

G G G

or, equivalently, 
 

 (1.96) t

= ∆℘
G G
I  (1.97) 

 
2

1

t

t

where

 F dt≡ ∫
G G
I  (1.98) 

linear impulse imparted by the force F
 
is the 

G
 over the time interval ∆t = t2 − t1, and 

  
( ) ( )t mv t℘ ≡
G G  (1.99) 
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is the 
partic
during
 

onservation of Linear Momentum 
If the linear impulse vanishes over a given time interval, Eqs. (1.96) and (1.97) re-
duce to the statements 
 

linear momentum of the particle at time t. Thus, a linear impulse that acts on a 
le for a given duration produces a change in linear momentum of that particle 
 that time period. 

C

2 1( ) ( )mv t mv t=
G G  (1.100) 

constantmv
or 
 ℘= =

G G  (1.101) 

 this occurs, the linear momentum is said to be conserved over the given time 
. 

 
When
interv

ngular Impulse and Momentum 
In the previous section we established an integral, over time, of Newton’s Second 

aw that led to the principle of linear impulse-momentum. We next establish the rota-
tional analogue of that principle.  

 product of Newton’s Second Law, Eq. (1.83), with 

al
 

A

L

 Let us form the vector cross
the position vector of a particle at a given instant. Doing this results in the relation 
 
 O OM H=

G G� (1.102)  
where 
 OM r F= ×

G GG  (1.103) 
 
is the moment of the applied force about an axis through the origin, and  
 

OH r mv= ×
G G G  (1.104) 

red to as the angular momentum, or m
. Let us next multiply Eq. (1.102) by the differential time increment dt, and 

tegrate the resulting expression between two i
le’s motion. This results in the statement of the 

omentum,  

t t t t
t

v

 
is oment of momentum, of the particle  refer
about O
in nstants in time, t1 and t2, during the 
partic Principle of Angular Impulse-
M

 [ ] [ ]
2t

r F dt r m r mv
2 1

1
= =

× = × − ×∫
GG G G G G  (1.105) 

r, equivalently, o
 O OH= ∆

G G
J  (1.106) 

where 
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O

F

  
 

    Figure 1.38  Central force motion. 
 
 

2 2

1 1

t t

O O
t t

M dt r F dt≡ = ×∫ ∫
G G GGJ  (1.107)  

 
is the angular impulse about an axis through O, imparted by the force F

G
, or simply 

the angular impulse about O. The angular impulse is seen to be the impulse of the 
oment om f the applied force about the origin. 

m Conservation of Angular Momentu
If the angular impulse about an axis vanishes, then Eqs. (1.105) and (1.106) reduce to  
the equivalent statements 
 
 [ ] [ ]

2 1t t t t
r mv r mv

= =
× = ×
G G G G  (1.108) 

or 
constantOH r mv= × =

G G G  (1.109) 

e given time interval. When this is so, the angular momentum is said to be 
onserved about an axis through O. It should be
e conserved about an axis through one point and not anoth

    Figure 1.39  System of N particles. 

 
over th
c  noted that angular momentum may 

er. An example of this is b
when a particle undergoes central force motion, where the line of action of the ap-
lied force is always directed through the same point (Figure 1.38). p

 

F
p

r
p

r
G

f
pq

m
p

m
1

m
q

m
2m

N

�G�

f
qp

r
p/G

 



1│ Preliminaries  49 

1.5.3 Dynamics of Particle Systems 

Mechanical systems are typically comprised of many particles. In fact, rigid bodies 
and deformable bodies may each be considered as an assemblage of a continuous 

ibution of particles with certain characteristic constraints. In this section we ex-
nd t e concepts discussed for a single particle to general particle systems. These 

as needed. We begin by 

Equations of Motion 
onsider the N particle system shown in Figure 1.39. Le
nt the mass of particle p, and let 

distr
te h
results may then be abstracted to more complex systems, 
examining the equations of motion for a system particles. 

C t mp (p = 1, 2, …, N) repre-
prG  represent its position vector with respect to a se

fixed reference frame, as shown. In addition, let pF
G

 be the resultant e ternal force 
acting on particle p, and let pqf

xG
(p,q = 1, 2, …, N) be the internal force exerted on 

particle p by particle q. (We assume that the resultant internal force that a particle 
exerts on itself vanishes. Thus, 11 22 ... 0NNf f f= = = =

G G G G
). The resultant internal force 

 of the system is then acting on particle p by all other particles
 

    
N

*

1
p pq

q

f f
=

≡ ∑
G G

  

llows from Newton’s Third Law that 

qp pqf f p q= − =

 
It fo
 
 )N

G G
   ( , 1,2,...,  

and hence that 

 *

1 1 1

0
N N N

p pq
p p q

f f
= = =

= =∑ ∑∑
G G G

 (1.110) 

 
pplying Newton’s Second Law to each particle individually givesA

ti
 the set of equa-

ons 
 *    ( 1, 2,..., )p p p pF f m a p N+ = =

GG G  (1.111) 
 
Adding the equations for all of the particles, and incorporating Eq. (1.110) gives the 
relation 

 
1

N

p p
p

F m a
=

= ∑
G G  (1.112) 

where 

 
1

N

p
p

F F
=

≡ ∑
G G

 (1.113) 

 
is the resultant external force acting on the system. 
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 Let us next consider some point G thG at moves with the system of particles and 
let ( )Gr t be the position vector of that point measured with respect to the fixed refer-
ence frame defined earlier. Further, let / ( )p Gr tG  correspond to the position of particle p 
as seen by an observer translating with point G. It then follows from Eqs. (1.70)–
(1.72) and Figure 1.33 that 
 
 /    ( 1,2,..., )p G p Gr r r p N= + =

G G G  (1.114) 
 

/    ( 1,2,..., )p G p Gv v v p N= + =
G G G  (1.115)  

 
 /    ( 1,2,..., )p G p Ga a p Na= + =

G G G  (1.116) 
 
where /p GvG  and /p GaG  are, respectively the velocity and acceleration of particle p as 
seen by an observer translating with ion of Eq. (1.116) into Eq. 
(1.112) and regrouping terms gi
 

 point G. Substitut
ves 

 ( )
2

1 1/ 2 2 / /2 ...G G G N
dF ma m r m r m r
dt

= + + + +
G G G G G

N G  (1.117) 

where 

1

N

p
p

m ≡ m
=

∑  (1.118) 

 the total mass of the particle system. If we now define the point G such that 

 

 
is
 

/
1

0
N

p p G
p

m r
=

=∑ G  

r, equivalently, that 

(1.119)  

o

 
1

1 N

G p
p

r r
m

=

≡ ∑G G  (1.120) 

 
then Eq. (1.117) reduces to the familiar form 
 
 GF ma=

G G  (1.121) 

The point G defined by Eq. (1.120) is referred to as the center of mass of the system. 
n from Eq. (1.121) that the motion of the center of mass is governed by New-

ton’s Second Law of Motion. Thus, the center of mass of the system behaves as a 
ngle particle whose mass is equal to the total m

Principles of Work-Energy and Impulse-Momentum for a single particle also hold for 
e center of mass of a particle system. The motion of a system of particles can be 

g as a particle and the motion of 

 

It is see

si ass of the system. It follows that the 

th
described by the motion of the center of mass actin
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the system relative to the center of mass. If the motion relative to the center of mass is 
negligible for a given application, then Eq. (1.121) and its integrals adequately de-
scribe the motion of the system. 

Work and Energy 
The total kinetic energy of the system is the sum of the kin
idual particles that comprise the system. Summing the ki

rating Eq. (1.115) gives the total kinetic energy of the system in the form 

etic energies of the indi-
v netic energies and incorpo-

 

2 21 1 1 /2 2 2
1 1

N N

p p p G
p p

m v v mv m
= =

= = +∑ ∑G GiT

be s t th

d the kinetic energy of motion of the system rela-
ve to the center of mass. The total work done on the system may be similarly parti-

 adding the work done by the external and internal forces act
idual particles, and incorporating Eq. (1.114). Hence, 

(1)

*

1 1

p G p G

p G

N Nr r r

p p Gv  (1.122) 

 
It may een tha e total kinetic energy of the system may be partitioned into the 
sum of two kinetic energies: the kinetic energy of motion of the center of mass of the 
system acting as a single particle, an
ti
tioned by ing on the indi-
v
 

 
(1)
/

*
/

p G

( 2) ( 2)( 2 )
/

(1)p p p
r rp p

G p p p G
r

F f dr F dr
= =

⎡ ⎤= + =⎣ ⎦∑∫ ∫
G G G

G G
F f dr⎡ ⎤+ +⎣ ⎦∑∫ G

G GG G GG G Gi iW

one by 

the second term may be seen to be the work done by the forces acting on the individ-
al particles in moving them along their trajectorie

 Summing the work-energy relations of the individual particles gives the Work-
ple for a Particle System, 

 

i (1.123) 

 
The first integral on the right hand side of Eq. (1.123) is seen to be the work d

e resultant external force moving along the trajectory of the center of mass, while th

u s relative to the center of mass. 

Kinetic Energy Princi
 

( 2)

(1)

2 2* (2) (1)
N

1 1
2 2

1 1 1

p

p

N Nr

p p p p p p p
rp p p

F f dr m v m v
= = =

⎡ ⎤+ = −⎣ ⎦∑ ∑ ∑∫
G

G

GG Gi  (1.124) 

aralleling the development of Eq. (1.84) with Eq. (1.121) replacing Eq. (1.83), or 
mply applying Eq. (1.83) for the center of m
nergy Principle for the Center of Mass of a Particle System, 

 
P
si ass directly, gives the Work-Kinetic 
E
 

 
( 2)

(1)

2 2(2) (1)1 1
2 2

G

G

r

G G G
r

F dr mv mv= −∫
G

G

G Gi  (1.125) 

 
Substitution of Eqs. (1.122), (1.123) and (1.125) into Eq. (1.124), and incorporating 
Eq. (1.119), gives the Work-Kinetic Energy Principle for motion of a system relative 
to its center of mass, 
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( 2)
/

(1)
/

2 2* (2) (1)1 1
p G

p G

N N Nr

/ / /2 2
1 1 1

p p
r

F f dr m v m v⎡ ⎤ p G p p G p p G
p p p= = =

+ = −⎣ ⎦∑ ∑ ∑∫
G

G

GG G  (1.126) i

n 1.5.2. Do-
g this results in the alternative forms of Eqs. (1.124)–(1.126), respectively, as 

 

 
Equations (1.124)–(1.126) hold for all particle systems. When a subset of the forces 
that act on the system are conservative, these work-energy relations can be written in 
alternative forms, replacing the work done by the conservative forces by correspond-
ng changes in potential energy, as discussed for single particles in Sectioi

in
 

( )NC = ∆ + ∆W T U  (1.127) 

measured following the center 
ass, and a subscript rel indicates work, kinetic energy and potential energy 

easured relative to the center of mass. 

inear Impulse and Momentum 

 by 
ultip

ch particle of the system. Either ap-
roach gives the relation 

 

 
 ( )NC

G G G= ∆ + ∆W T U  (1.128) 
 
 ( )NC

rel rel rel= ∆ + ∆W T U  (1.129) 
 
where the superscript NC indicates work done by nonconservative forces, a subscript 

 indicates work, kinetic energy and potential energy G
of m
m

L
The impulse-momentum principles for particle systems may be obtained in a manner 
similar to that employed to obtain the work-energy principles. We first consider linear 
impulse and momentum. 
 The linear impulse-momentum relation for each particle may be obtained
m lying Eq. (1.111) by dt and integrating between two instants in time. Alterna-
tively, we could simply apply Eq. (1.96) for ea
p
 

2

1

*
2 1( ) ( ) ( 1,2,..., )

t

p p p p p p
t

F f dt m v t m v t p N⎡ ⎤+ = − =⎣ ⎦∫
GG G G  (1.130) 

for a 
particle system given by 

( ) ( )
N Nt

 
The total linear momentum of a system of particles is the sum of the momenta of the 
individual particles. If we add the linear-momentum relations for the individual parti-
les, and recall Eq. (1.110), we obtain the Linear Impulse-Momentum Principle c

 

 
2

1
2 1

1 1
p p p p

t p p

F dt m v t m v t= −∑ ∑∫
G G G  (1.131) 

= =
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where  is the resultant external force acting on the system, as defined by Eq. 
3). 
Multiplying Eq. (1.121) by dt, and integrating over the given 

Principle of Linear Impulse-Momentum for the center of mass of a particle 
stem

 F
G

(1.11
 time interval, 
gives the 
sy , 

 
2

1

2 1( ) ( )
t

G G
t

F dt mv t mv t= −∫
G G G  (1.132) 

 
Substituting Eq. (1.115) into Eq. (1.131), and subtracting Eq. (1.132) from the result-

g expression gives the Principle of Linear Impulse-Momentum for motion relain tive 
 the center of mass, 

1 1

( )
N N

p p G p p
p p

m v t m v
= =

=∑ ∑G G

 is seen from Eq. (1.133) that the linear momentum for 

 altered but the total momentum of the sys-
this phenomenon may be seen when a cue ball col-

   

to
 

 1( )G t  (1.133) / 2 /

 
motion relative to the center It

of mass is always conserved. Further, it may be seen from Eqs. (1.131) and (1.132) 
that if the resultant external impulse acting on the system vanishes over a given time 
interval then the total momentum of the system is conserved, and the velocity of the 
center of mass is constant during this time interval. Thus, in such situations, the mo-
mentum of the individual particles may be
tem is unchanged. An example of 
lides with a set of billiard balls.  

Angular Impulse and Momentum 
Let us next take the vector cross product of the position vector of particle p with Eq. 
(1.111). This gives the relation 
 
 ( 1,2,..., )p pM H p N= =

G G�  (1.134) 
here w

*
p p p pM r F f⎡ ⎤≡ × +⎣ ⎦

GG GG  

nd 

(1.135)  

a
 p p p pH r m v≡ ×

G G G  (1.136) 
 
are, respectively, the moment of the forces acting on particle p about an axis through 
the origin O, and the angular momentum of particle p about O. Summing Eq. (1.134) 
ver all particles of the system, noting that it is implicitly assumed that each external 

force is collinear with its reciprocal, and recalling Eq. (1.110) gives the relation 
o

 

O OM H=
G G�  (1.137)  

where 
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N

O p pM r F
1p=

≡ ×∑
G GG  (1.138) 

p

and 

 
1

N

O p p
p

H r m v
=

≡ ×∑
G G G  (1.139) 

spectively correspond to the resultant moment of the external forces about O, and 

stants in time, we obtain the Principle of Angular Impulse-
omentum for the particle system, 

 

 
re
total angular momentum of the system about an axis through O.  
 If we next multiply Eq. (1.137) by the differential time increment dt, and inte-
grate between two in
M

2

1

2 1( ) ( )
t

O O O
t

M dt H t H t= −∫
G G G

 (1.140)  

or, in expanded form, 
 

 
2

2 1
1 1 1 1

N N Nt

p p p p p p p pt t t tt p p p

r F dt r m v r m v
= =

= = =

⎡ ⎤ ⎡ ⎤× = × − ×⎣ ⎦ ⎣ ⎦∑ ∑ ∑∫
GG G G G G  (1.141) 

 
Proceeding for the center of mass as for a single particle gives the Principle of Angu-
lar Impulse-Momentum for the center of mass of a particle system, 
 

 G
t

r F dt [ ] [ ]
2

2 1
1

t

G G G Gt t t t
r mv r mv

= =
× − ×× =∫

GG G G G G  (1.142) 

 (1.115) into Eq. (1.141), subtracting Eq. (1.142) from 
e resulting expression and incorporating Eq. (1.119) gives the Principle of Angular 
pulse-Momentum for motion relative to the center of m

1 1 1

N N Nt

p G p p G p p G t ttp p p

r F dt r m v

 
Substitution of Eqs. (1.114) and
th
Im ass,  
 

 / /p G p p G t t
r m v

2

2 1
1

/ / / = =
= = =

⎡ ⎤× = × ⎡ ⎤− ×⎣ ⎦∑ ∑∫
GG G G

quations (1.140)–(1.143) are the statements of an
ral particle systems. 

⎣ ⎦∑ G G  (1.143) 

 
E gular impulse-momentum for gen-
e
 
 

Example 1.5 
Consider a circular disk comprised of a skin of mass ms, a relatively rigid core 
of mass mc and a compliant weave modeled as n identical linear springs of 

k and negligible mass, as shownstiffness . The length of each spring when un-
stretched is R0 = Rs − Rc − ε. The disk is translating at a speed v0 in the direction 
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indicated when the skin fragments into four identical pieces and separates from 
the remaining structure. If the fragments travel at the same speed relative to the 
core, and at equal angles as viewed from the core, determine the absolute ve-
locity of the fragments if the energy loss due to the fragmentation is negligible. 
Assume that the fragmentation occurs instantaneously. 
 

    Figure E1.5  Fragmented disk. 
 

e imposed by the 
weight of the ball is vanishingly small. (See the discussion of nonimpulsive 
forces in Chapter 4.) Therefore, since there are no extern
the system, the total linear momentum of the system is c
the interval of interest. For these conditions, Eq. (1.132) tells us that the veloc-

 

Solution 
If the fragmentation occurs instantaneously, then the impuls

al impulses acting on 
onserved throughout 

ity of the center of mass is unchanged. Thus, 
 

 0( )Gv t v=
G G  (a) 

  
If the energy of fragmentation is negligible, then the work done by the noncon-
servative forces vanishes and the energy of the system is conserved. 
apply Eq. (1.129) with 

We next 
( ) 0NC

rel =W . This gives 
 

 2 21 10 0 0s relm v n k2 2 ε⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦  (b) 
 
where vrel is the speed of the fragments relative to the center of mass. Solving 
for v  gives 

 

rel

rel
s

n kv
m

ε=  (c) 
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Substitution of Eqs. (a) and (c) into Eq. (1.115) gives the absolute velocities of 
the fragments, 

1,2 0 2 s

n kv v i j
m

ε ⎡ ⎤= + ±⎣ ⎦
G GG G  � (d-1,2)  

 

3,4 0 2 s

n kv v i j
m

ε ⎡ ⎤= − ±⎣ ⎦
G GG G  � (d-3,4) 

 
 
 

1.5.4 Kinematics of Rigid Bodies 

A rigid body is an idealization that, in certain applications, may capture the dominant 
motion of the body. Alternatively, we may be interested in motions such as vibrations 
where the circumstances are such that the rigid body portion of the motion is unim-
portant to us, for example in predicting structural or material failure in aircraft or 
ther vehicular structures. In such cases it may be necessary to identify the rigid body 

id body motion, and hence 

 dy may be considered to be a continuous distribution of particles, and 
hence
stitue
of pa
of par
are re
the m
shall r motion of rigid bodies. 

motion of rigid bodies is comprised
l first consider each type of m

 

     
    Figure 1.40  Rigid body in pure translation. 

o
portion of the response and subtract it out. In any event rig
the dy amics of rigid bodies, is of interest. n

A rigid bo
 a particle system, for which the relative distances and orientations of the con-
nt particles remains fixed. Therefore, the principles pertaining to the dynamics 
rticle systems discussed in Section 1.5.3 may be applied to this particular class 
ticle systems. As the relative motions of the particles that comprise a rigid body 
stricted, it is expedient to incorporate these constraints into the description of 
otion. In this regard, we first discuss the kinematics of rigid body motion. We 

strict the overall discussion herein to planar e
The   of two basic motions — translation 

and rotation. We shal otion separately and then together. 



1│ Preliminaries  57 

Pure 
Trans n for which the velocity vectors are the same for each and every 
oint of the body throughout the motion. As a result of this, the orientation
ody with regard to a given reference frame is preserved throughout the mo

demonstrated in Figure 1.40. 

ure Rotation 
As the relative distances between particles or points of a rigid body remain fixed, it is 
vident that if one point on the body is fixed with regard to translation (say pinned) as 

in Figure 1.41, then each point on the body traverses a circular path about the axis 
through the fixed point. The most general motion of a rigid body with one point fixed 
is therefore equivalent to a rotation about an axis through the fixed point. 

of a rigid body with a fixed point is known, 

Translation 
lation is a motio

p  of the 
b tion, as 

P

e

 It is apparent that if the rotation 
then the displacement of each and every particle or point of the body is known. Fur-
ther, the velocity and acceleration of each point is known if we know the first and 
second time rates of change of this angle, Letting the z-axis correspond to the axis of 
rotation, we introduce the angular displacement, θ

G
, the angular velocity, ϖG , and the 

angular acceleration, αG , respectively defined as  
 
 ( )t kθ θ=

GG
 (1.144) 

 

 ( ) ( )d t k t k
dt
θϖ ϖ θ≡ = =
G G GG �  (1.145) 

 

 ( ) ( ) ( )d t k t k t k
dt
ϖα α ϖ θ≡ = = =
G G G GG ���  (1.146) 

 
where k

G
 is the corresponding unit vector parallel to the axis. 

 
 
   

 
otion of a rigid bod ne point fixed: pure rotation. 

 
        Figure 1.41  M y with o



58 Engineering Vibrations 

 
      Figure 1.42 Velocity and acceleration of generic point of a rigid body in pure rotation. 
 
 
 As each particle of the body traverses a circular path about the axis of rotation, 

 follit ows from Eqs. (1.78), (1.79), (1.145) and (1.146) that the velocity and accelera-
tion of a point on the body located a radial distance r from the axis of rotation are 
respectively given by 
 
 ( ) ( )v t r t e rθθ ϖ= = ×

G G G G�  (1.147) 
and 

2( ) ( ) ( )r rϖ ϖ+ × ×  (1.148) 
 

ra t r e r eθθ θ α= − = ×
G G G G G G G G�� �

where  is the position vector of the point on the body in question, and ( )r tG reG , eθ
G  are 

nit vectors in the directions indicated (Figure 1.42). 

l Motion 
onsider the representative body shown in Figure 1.43 and t

B. Suppose that you are translating but not rotating with point A and that you are ob-
Then, since the body is 

gid, and therefore

u
 

Genera
C wo generic points, A and 

serving the motion of point B which is painted on the body. 
ri  / constantB Ar =

G , the motion of point B that you would observe 
 simply that point moving in a circular path around you at distance /B ArGis . It is evi-

d body in general motion (i.e., no point on the body is fixed) the 
relative motion between two points on the body is purely rotational. Therefore, from 
Eqs. (1.147) and (1.148 acceleration of particle B 
with respect to particle 
 
 

dent that, for a rigi

), the relative velocity and relative 
A are, respectively, 

/ /( )B A B Av t rϖ= ×
G G G

/ /( )

 (1.149) 
 
 /B A B A Ba t r r Aα ϖ ϖ= × + × ×

G G G G G G

tion of Eqs. (1.149) and (1.150) into Eqs. (1.71) and (1.72) 

 (1.150) 
 
Substitu gives the velocity 
and acceleration of point B with respect to the fixed reference frame at O. Hence, 
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          . 
 
 

Figure 1.43 General motion of a rigid body

( ) ( ) /B A B Av t v t rϖ= + ×
G G G G  (1.151) 

 
/ /( ) ( )B A B Aa t a t r rB Aα ϖ ϖ= + × + × ×

G G G G G G G  (1.152) 

olling Motion 
ider a rigid wheel that rolls along the surface of a track such that no slip occurs 

etween the surface of the wheel and the surface of the track. Su
 as rolling without slip. If the wheel rolls without slipping, then the velocity of the 

t point with respect to the track 
ust vanish. Consider a wheel of radius R that is rolling on a stationary track, as 

shown in Figure 1.44. Let the velocity and tangential component of the acceleration 
metric center, of the wheel be designated as vC and aCt respectively, 

ng and adheres 

 
Equations (1.151) and (1.152) are statements of Euler’s Theorem, which says that the 
most general motion of a rigid body is equivalent to the translation of one point on 
the body and a rotation about an axis through that point.  
 

R
Cons
b ch motion is referred 
to
point of the wheel in instantaneous contact with the track must have the same velocity 
as the track. Thus, the relative velocity of the contac
m

of the hub, or geo
and let the angular velocity and angular acceleration of the wheel be ϖ(t) and α(t), 
respectively. Let us next consider a small time interval ∆t during the motion of the 
wheel, and let ∆s be the displacement of the hub during this time. Further, let ∆θ rep-
resent the corresponding angle through which the wheel rotates. If we imagine a piece 
of tape attached to the circumference of the wheel peels during rolli
point by point to the surface of the track as shown, it is evident from the figure that 
 
 s R θ∆ = ∆  (1.153) 
 
Dividing both sides of the above equation by the time increment and taking the limit 
s  gives the relation a  0t∆ →

 
( ) ( )Cv t R tϖ=  (1.154) 
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ifferentiating with respect to time gives the companion relation 

s

R

v ,a

,

c c
t

  Figure 1.44  Wheel rolling without slip. 
 
 
D
 
 ( )Cta R tα=  

An extension of the above arguments that accounts fo

(1.155) 
 
 r rocking of the wheel 
shows that the relations stated in Eqs. (1.154) and (1.155) hold for rolling on curved 
tracks as well. For rolling on curved tracks the normal component of the acceleration 
of the hub does not vanish identically ( 0)Cna ≠  as it does for flat tracks. Formally, 
regardless of the curvature of the track, the velocity of the point of the wheel (say, 
oint P) that is instantaneously in contact with the surface of the track is found from p

Eq. (1.151) as 
 
 / /( ) ( ) ( )P C P C C C Pv t v t r v t rϖ ϖ= + × = − ×

G G G G G G G  (1.156) 
 
Recognizing that for no slip 0Pv =

GG , the above expression gives  
 
 / ( ) ( )C C P Cv r v t R tϖ ϖ= × ↔ =

G G G  (1.157) 
 
regardless of the curvature of the track. 
 To this point we have established how the motion of a rigid body may be de-
scribed. We next discuss the physical laws that govern this motion. 
 

1.5.5 (Planar) Kinetics of Rigid Bodies 

A rigid body may be considered as an assemblage of particles that are subject to cer-
in kinematical constraints. We can therefore apply
on 1.5.3 and exploit the constraints and the ki
ped in Section 1.5.4. 

 

ta  the principles established in Sec-
ti nematics of rigid body motion devel-
o
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         Figure 1.45  Rigid body, showing generic mass element. 
 
 
 Let us consider a rigid body as a continuous distribution of mass. Let dm be the 
mass of a differential volume element as shown in Figure 1.45. We have thus re-

the discrete particle system of Section 1.5.3 by a continuous distribution of 
discrete parti-

s follows; 

a x y z t→
G G G G G G  

 (1.158) 

here the Cartesian Coordinates (x, y, z) are indicat

placed 
mass. The associated position, velocity and acceleration vectors for the 
les are similarly replaced by corresponding vector functions ac

 
 ,   ( ) ( , , , ),   ( ) ( , , , ),   ( )p p p pm dm r t r x y z t v t v x y z t a t→ → → ( , , , )
 
 

ed simply to emphasize the spatial w
dependence of the vectors. The actual coordinate system employed may be any con-
venient system, such as polar or spherical. Further, since all quantities involved are 
now continuous functions of the spatial coordinates, summations over discrete masses 
are replaced by integrals over the entire mass, and hence volume, of the body. Thus, 
for any quantity λ

G
, 

 

 
N

1

( ) ( , , , )p p
mp

m t x y x t dmλ λ
=

→∑ ∫
G G

 (1.159) 

he equation governing the motion of the center of mass, Eq. (1.121), may be directly 
pplied to any particle system including the system tha
ence, 

 

Equations of Motion 
T
a t comprises a rigid body. 
H

F Gm a=
G G  (1.160) 

 V  (1.161) 

 

 
however, the total mass of the system is now given by 

( , , )
m V

m dm x y z dρ= =∫ ∫
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where ρ is the mass density (mass per unit volume) of the body. 
 Let us next express Eqs. (1.137)–(1.139) in terms of continuous functions using 
Eqs. (1.158) and (1.159). Doing this gives the equations governing rotational motion 
about the center of mass, and about an arbitrary point P. Hence, 
 

G GM I α=
G G  (1.162) 

 
 [ ]/P G G P GM I r m aα= + ×

G G G G  (1.163) 
 
where GM

G
 and PM

G

ss and the resu
 are, respectively, the resultant moment about an axis through the 

center of ma ltant moment about an axis through P of the external 
forces acting on the body. Further, the parameter 
 

2
G rel 

m
I r dm= ∫  (1.164) 

 the mass moment of inertia (the second moment of the mass) about the axis though 
 
is
the center of mass of the body, and 
 
 ( , , ) ( , , )rel relr x y z r x y z≡

G  
 
is the distance of the mass element, dm, from that axis.  

If one point of the body is fixed with regard to translation, say point P as in 
igures 1.41 and 1.42, then the acceleration of the center of mass is obtained from Eq. 

 
F
(1.148) which, when substituted into Eq. (1.163), gives the equation of motion for 
ure rotation, p

 
 P PM I α=

G G  (1.165) 
where 
 2

/P G G PI I r m= +
G  (1.166) 

 
s the moment of nei

th
 i rtia about the axis through P. Equation (1.166) is a statement of 

e Parallel Axis Theorem. Equations (1.160), (1.162) and (1.163) govern the motion 
f a rigid body. For the special case of a rigid body with o

to translation, these equations reduce to Eq. (1.165). 

motion that were established above for a rigid body. 

o ne point fixed with regard 

 

Work and Energy 
The relations that govern work and energy for a rigid body may be found by applying 
the corresponding relations for particle systems in a manner similar to that which was 
done to obtain the equations of motion. Alternatively, we can operate directly on the 
equations of 
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 , with the total mass m interpreted as 
energy relation for translational 

Equation (1.125) can be applied directly
iven by Eq. (1.161). This gives the work-kinetic g

motion of the center of mass of a rigid body, 
 

2

2
1

2
1

1 1
2 2

G

G

r

G G G
r

2F dr mv mv= −∫
G

G

G Gi

y the resultant exter-

ass may be found in 
n analogous fashion. We, therefore, first form the scalar dot product of the govern-
g equation for rotational motion about the cen
ental rotational displacement and then integrate the resulting expression between 
o configurations. We thus obtain the work-kinetic en

gid body about the center of mass, 

 (1.167)  

 
The left hand side of Eq. (1.167) corresponds to the work done b
nal force acting on the body as it follows the trajectory of the center of mass, while 
the right hand side is the change in kinetic energy of translational motion of the body. 
The work-energy relation for motion relative to the center of m
a
in ter of mass, Eq. (1.162), with incre-
m
tw ergy relation for motion of a 
ri
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The expression on the left-hand side of Eq. (1.168) corresponds to the work done by 

e resultant moment of the external forces about 
s it rotates between the two configurations. The right-hand side is the corresponding 

oint fixed, 

th the axis through the center of mass 
a
change in kinetic energy of rotational motion (i.e., motion relative to the center of 
mass). Performing the same operation on Eq. (1.165) gives the work-kinetic energy 
rinciple for a rigid body with one pp
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2 21 1
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θ

θ θ θ= −∫
G
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GG � �i  (1.169) 

C

 
The kinetic energy for this case is, of course, observed to be purely rotational. 
 Let us next partition the forces and moments acting on the body into conserva-
tive and nonconservative forces and moments as follows, 
 

( ) ( )C NF F F= +
G G G

  (1.170) 
 

( ) ( )C NCM M M= +
G G G

  (1.171) 

here the superscript C and superscript NC denote conservative and nonconservative, 
 
w
respectively. Proceeding as in Section 1.5.2, the work done by the conservative forces 
are each, by definition, independent of path and thus may be expressed as (the nega-
tive of) a change in potential energy. Hence, 
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2
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( ) ( )
r

C F

r
F dr = −∆∫

G

G

G Gi U  (1.172) 
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( ) ( )C MM d
θ

θ
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G

G

GG
i U  (1.173) 

 
Substitution of Eqs. (1.170)–(1.173) into Eqs. (1.167)–(1.169) gives the alternate 
forms of the work-energy relations for a rigid body,  
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GG �i U  (1.176) 

 
If the work done by the nonconservative forces and moments vanish, then the total 
mechanical energy of the body is conserved. 
 

Impulse and Momentum 
he relations that govern impulse and momentum for a r

integrating the corresponding equations of motion for translation and rotation over 
me. Hence, multiplying Eqs. (1.160), (1.162), (1.163) and (1.165) by dt and integrat-

1( )G

T igid body may be found by 

ti
ing between two instants in time gives the linear and angular impulse-momentum 
relations for a rigid body. We thus have the impulse-momentum principle for a rigid 
body, 
 

 
2

2( )
t

G
t1

F dt mv t=∫ mv t−
G G G  (1.177) 

e likewise obtain the angular impulse-momentum prin
body about the center of mass, 

 
W ciple for rotation of a rigid 

 

 
1

2 1( ) ( )G G G
t

2t

M dt I t I tϖ ϖ= −∫
G G G  (1.178) 

 
and the angular impulse-momentum principle about an arbitrary point P 
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( ) ( )r mvϖ
2

2 1
/ / / /

t

P G G P G P G G P G Pt t t t
M dt I r mv Iϖ 

1t
= =

= + × −⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦∫
G G G G

int, 

t

P P P
t

+ × ⎤
G G G  (1.179) 

 
Equations (1.177)–(1.179) pertain to a rigid body in general motion. If point P is 
fixed with regard to translation, the above equations may be replaced by the angular 
impulse-momentum principle about a fixed po
 

 ( )
2

1

2 1( )M dt I t Iϖ ϖ= −∫ t
G G G

 an impulse in one of the equations vanishes then th
id to be conserved. It may be seen that, for a given 
m may be conserved about one point while not about another. 

Example 1.6 

 (1.180) 

 
If e corresponding momentum is 
sa force system, angular momen-
tu
 
 

A uniform rigid rod of mass m and length L is pinned at 
one end as shown. If the rod is released from rest when 
horizontal, determine the velocity of the tip when the 
rod is vertical. Also determine the reactions at the pin. 

 
 
 
             Figure E1.6-1                                                                          
 

Solution 

e forces and moments act on the body.  

 
Let us first consider the kinetic diagram for the system (Figure E1.6-2), where 
it may be observed that only conservativ

 
             Figure E1.6-2  Kinetic diagram for swinging rod. 
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( ) 0NC
OM =

GG
Application of Eq. (1.176) with gives  

 
 [ ]21

20 0 ( / 2) cosOI mg Lθ⎡ ⎤= − + −⎣ ⎦
�

on. Solving 
for the angular speed, and using Eq. (1.78) and the relation IO = mL3/3, gives 
the speed of the tip of  the rod as 
 

0θ −  (a) 
 

where we have chosen the datum to be at the horizontal configurati

 
0 0tip θ θ= =

  
 directed to the left. 

 We next apply Eq. (1.165) and solve f

3v L gLθ= =�  (b) 

or α to get 

�

 
 

2 0
0

( / 2)sin 0 
O

mg L
Iθ

θ

θα α
=

=

= = −

s. (b) and (c) and the 
relation IO = mL /3, gives the reactions at the pin, 
 

 

=  (c) 

 
Then, applying Eq. (1.160) in component form along the horizontal and vertical 
directions when θ = 0, and incorporating the results of Eq

3

2( / 2) 0HF m L α= =  � (d-1) 

 
 

2 3
2 2( / 2)     V V 2.5F mg m L F m g gθ− = ⇒ = + =⎡ ⎤⎣ ⎦� mg  (d-2) 

 
�

 

some fundamental issues pertinent to the 
udy

eling 
propr
of elementary dynamics. With this basic background we are now ready to begin our 
study of vibrations. Additional background material will be introduced in subsequent 
chapters, as needed. 
 
 

 

1.6 CONCLUDING REMARKS 

In this chapter we discussed and reviewed 
st  of vibrations. These included the concepts of degrees of freedom and the mod-

of complex systems as equivalent lower degree of freedom systems under ap-
iate circumstances. We also reviewed complex numbers and the basic principles 
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BLEMS 

1.1 Assess the number of degrees of freedom for the system shown in Figure 
P1.1. 

Fig. P1.1                                                  Fig. P1.
                                                           

1.2

 
1.3

freedom for the system shown in 
Figure P1.3. 

                                                                                            Fig. P1.3 

1.4 A 200 lb weight is placed at the free end of a cantilevered beam that is 10 ft 
in length and has a 2"

 

                                   2 

 Assess the number of degrees of freedom for the system shown in Figure 
P1.2. 

Assess the number of degrees of  

                                                                                
  

× 4" rectangular cross section (Figure P1.4). Deter-
mine the elastic modulus of the beam if the weight deflects ½ inch.                                                                          

 



68 Engineering Vibrations 

                                 Fig. P1.4                                                  Fig. P1.5 
 

1.5 Determine the elastic modulus of the beam of Problem 1.4 if it is simply 
supported and the weight is placed at the center of the span (Figure P1.5). 

   
1.6 Determine the effective stiffness of 

nt single degree of free-
dom system for the cantilever beam 

this by 

 appropriate boundary conditions.        Fig. P1.6 

 

an equivale

whose free end is embedded in a 
rigid block that is free to move 
transversely as indicated. Do 
solving the elementary beam equa-
tion with the

         

1.7 A flat raft with a 6 ft ×  6 ft 
surface floats in a fresh wa-
ter lake. Determine the de-
flection of the raft if a 190 
lb man stands at the geomet-

1.7   

1.8 Determine the stiffness of a single equivalent spring that represents the 
three-spring system shown in Figure P1.8.  

                    Fig. P1.                                      Fig. P1.
 

1.9 Determine the stiffness of a single equivalent ts the 
three-spring system shown in Figure P1.9. 

 
1.10 A 2m aluminum rod of circular cross section  is welded end 

 to a 3m steel rod of circular cross section and radius 3cm as shown. If 

ric center. 
                                                                                             Fig. P
                                                                                                 

9 

spring that represen

 and 2cm radius

8                

to end
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the steel rod is fixed at one end and the axes of the two rods are coincident, 
 the free end of the composite rod if it is pulled 

                  

    
               
 

1.11 Determine the rotation of the free end of the rod of Problem 1.10 if a torque  
that end (Figure P1.1

              
 

 n 

n 

              
                                                       
 
     
     
                                                           Fig. P1.12 

      
 

1.13 -
 
 

e beam struc-

   
                                                                                          Fig. P1.13                                                   

determine the deflection of
axially by a force of 10N at the free end as indicated.                                         

   
                                              Fig. P1.10 

of 200N-m is applied at 1).  

                                               Fig. P1.11 

1.12 Determine the effective stiffness of a
equivalent single degree of freedo
system that models side-sway motio
of the frame shown in Figure P1.12. 
                
                                                               

m    

  
                                   

Determine the effective stiff
ness of an equivalent single
degree of freedom system
that models th
ture shown in Figure P1.13. 
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1.14 Determine the effective stiffness of an equivalent single degree of freedom 
system that models the beam shown in Figu

 
re P1.14. 

 

 

wom
         
 

1.16 

 

 
1.17  

 

 

ig. 

                                                          Fig. P1.14 
 
 
1.15 A raft consists of a board 

sitting on four cylindrical 
floats, each of 2 ft radius 
and oriented vertically as 
shown. If the raft sits in sea 
water, determine the deflec-
tion of the raft if a 125 lb 

an sits at its geometric center.                        Fig. P1.15    

Determine the effective stiffness of the multi-rod system shown in Figure 
P1.16. 

                                                               Fig. P1.16 

Determine the effective torsional stiffness of the multi-rod system shown in
Figure P1.17 when it is twisted at the center of the span. 

                    
                                                                        

 
 
 
 
 
 
                                                           F P1.17 
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1.18 Determine the effective stiffness of the multi-beam system shown in Figure 

 

 

  

   

P1.18. (Neglect twisting.) 

   Fig. P1.18 

1.19 Use Euler’s Formula to establish the identities 

cos      and     sin
2 2

e e ei i i ie
i

ψ ψ ψ ψ− −+ −  

 
 

1.20 Use Eq. (1.63) to show that 
 

   

ψ ψ= =

cosh     and    sinh
2 2

e e e eψ ψ ψ

ψ ψ
− −+ −

= =  
ψ

 
 

1.21 
 
 

Consider the function 

1
2( ) ( 1

2) ( )i if a ib e a ib eθ θθ −= +

ere a and b are real numbers. Show that f can be written in the for

+ −  
 
 wh m 
 
 1 2( ) cos sinf C Cθ θ θ= +  
  

and determine the values of C 
 
 

1.22 Consider the co
 

 

1 and C2. 

mplex number 

a ibz
c id

+
=

+
 

 and d are real. Determine Re(z) and Im(z).  
 
 where a, b, c
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1.23 A cart is attached to an elastic tether of stiffness k as shown. Determine the 
moves from point A to point C; (a) 

if the cart traverses path AC, and (b) if the cart traverses path ABC. The 

 

      
 

1.24 A block o mine the work 
done by B and back to A 
along path 1. ion force as the block 
moves fro  4. What do your 
results show?

  Fig. P1.24 

 deflected by an angle θ0 
and released from rest. Determine the velocity of the 

hen the rod passes through the vertical. The 
mass of the rod may be considered negligible and the 
spring is untorqued when θ  = 0. 

                                       
                                                    

                                                                                    Fig. P1.25 

work done by the tether force as the cart 

tether is fixed through a hole in point A and is unstretched when the cart is at 
that location. 

Fig. P1.23 

f mass m moves in the horizontal plane. (a) Deter
 the friction force if the block moves from A to 

 (b) Determine the work done by the frict
m A to B to C to D to A along paths 1, 2, 3 and

 

 
 

1.25 The timing device shown is

mass m w

   
   

  

y

x

B

C

A

D

4

3

1

2
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1.26 Derive the equations of motion for the mass-spring-damper system shown, 
(a) using Newton’s Second Law and (b) using the Principle of Work – En-

 .26 

1.27 A tire of mass m and radius of gyra-
tion rG and outer radius R rolls with-

  

ergy. 

  
 

  Fig. P1

out slipping down the hill as shown. 
If the tire started from rest at the top 
of the hill determine the linear and 
angular velocities of the tire when it 
reaches the flat road.  

                                                                         Fig. P1.27 

h 

R



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  



   

2 
Free Vibration of Single Degree of 
Freedom Systems 

 
 

 
 
 
The most fundamental system germane to the study of vibrations is the single degree 
of freedom system. By definition (see Section 1.1), a single degree of freedom system 
is one for which only a single independent coordinate is needed to describe the mo-
tion of the system completely. It was seen in Chapter 1 that, under appropriate cir-
cumstances, many complex systems may be adequately represented by an equivalent 
single degree of freedom system. Further, it will be shown in later chapters that, un-
der a certain type of transformation, the motion of discrete multi-degree of freedom 
systems and continuous systems can be decomposed into the motion of a series of 
independent single degree of freedom systems. Thus, the behavior of single degree of 
freedom systems is of interest in this context as well as in its own right. In the next 
few chapters the behavior of these fundamental systems will be studied and basic 
concepts of vibration will be introduced. 
 

2.1 FREE VIBRATION OF UNDAMPED SYSTEMS 

The oscillatory motion of a mechanical system may be generally characterized as one 
of two types, free vibration or forced vibration. Vibratory motions that occur without 
the action of external dynamic forces are referred to as free vibrations, while those 
resulting from dynamic external forces are referred to as forced vibrations. In this 
chapter we shall study free vibrations of single degree of freedom systems. We first 
establish the general form of the equation of motion and its associated solution. 
 
 

 75 
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   Figure 2.1  Mass-spring system. 
 

2.1.1 Governing Equation and System Response 

It was seen in Chapter 1 that many mechanical systems can be represented as equiva-
lent single degree of freedom systems and, in particular, as equivalent mass-spring 
systems. Let us therefore consider the system comprised of a mass m attached to a 
linear spring of stiffness k that is fixed at one end, as shown in Figure 2.1. Let the 
mass be constrained so as to move over a horizontal frictionless surface, and let the 
coordinate x measure the position of the mass with respect to its rest configuration, as 
indicated. Thus, x = 0 corresponds to the configuration of the horizontally oriented 
system when the spring is unstretched. We wish to determine the motion of the mass 
as a function of time, given the displacement and velocity of the mass at the instant it 
is released. If we let the parameter t represent time, we will know the motion of a 
given system if we know x(t) for all times of interest. To accomplish this, we must 
first derive the equation of motion that governs the given system. This is expedited by 
examination of the dynamic free-body diagram (DFBD) for the system, also known 
as the kinetic diagram, depicted in Figure 2.2. In that figure, the applied force acting 
on the system (the cause) is shown on the left hand side of the figure, and the inertia 
force (the response) is shown on the right hand side of the figure. The kinetic diagram 
is simply a pictorial representation of Newton’s Second Law of Motion and, as was 
seen in Section 1.5, greatly aids in the proper derivation of the governing equations 
for complex systems. In Figure 2.2, and throughout this text, we employ the notation 
that superposed dots imply (total) differentiation with respect to time (i.e., 

/x dx dt≡� , etc.). Stating Newton’s Second Law mathematically for the one-
dimensional problem at hand, we have that 
 
 kx mx− = ��   
 
 
 

 
    Figure 2.2  Kinetic diagram. 
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Upon rearranging terms and dividing through by m, we obtain the governing equation 
 
 2 0x xω+ =��  (2.1) 
where 

 k
m

ω =  (2.2) 

 
Equation (2.1) is known as the harmonic equation, and the parameter ω is referred to 
as the natural (circular) frequency. It may be seen that the natural frequency defines 
the undamped system in the sense that all the parameters that characterize the system 
are contained in the single parameter ω. Thus, systems with the same stiffness to 
mass ratio will respond in the same way to a given set of initial conditions. The 
physical meaning and importance of the natural frequency of the system will be es-
tablished once we determine the response of the system. As the solution of Eq. (2.1) 
will give the motion of the system as a function of time, we shall next determine this 
solution. 
 Suppose the mass is pulled some distance away from its equilibrium position 
and subsequently released with a given velocity. We wish to determine the motion of 
the mass-spring system when it is released from such an initial configuration. That is, 
we wish to obtain the solution to Eq. (2.1) subject to a general set of initial condi-
tions. To do this, let us assume a solution of the form 
 
 ( ) stx t Ce∼  (2.3) 
 
where e is the exponential function, and the parameters C and s are constants that are 
yet to be determined. In order for Eq. (2.3) to be a solution to Eq. (2.1) it must, by 
definition, satisfy that equation. That is it must yield zero when substituted into the 
left-hand side of  Eq. (2.1). Upon substitution of Eq. (2.3) into Eq. (2.1) we have that 
 
 ( )2 2 0sts Ceω+ =  (2.4) 

 
Thus, for Eq. (2.3) to be a solution of Eq. (2.1), the parameters C and s must satisfy 
Eq. (2.4). One obvious solution is C = 0, which gives ( ) 0x t ≡  (the trivial solution). 
This corresponds to the equilibrium configuration, where the mass does not move. 
This solution is, of course, uninteresting to us as we are concerned with  the dynamic 
response of the system. For nontrivial solutions [ ( ) 0x t ≠  identically], it is required 
that . If this is so, then the bracketed term in Eq. (2.4) must vanish. Setting the 
bracketed expression to zero and solving for s we obtain 

0C ≠

 
 s iω= ±  (2.5) 
 
where 1i ≡ − . Equation (2.5) suggests two values of the parameter s, and hence two 
solutions of the form of Eq. (2.3), that satisfy Eq. (2.1). Since Eq. (2.1) is a linear 
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differential equation, a linear combination of these solutions is also a solution. Thus, 
the general solution to Eq. (2.1) is given by  
 
 1 2( ) i t i tx t C e C eω ω−= +  (2.6) 
 
where C1 and C2 are complex constants. While Eq. (2.6) is a form of the general solu-
tion to Eq. (2.1), the solution may be written in alternative forms that lend themselves 
to physical interpretation. If we apply Euler’s Formula, Eq. (1.61), to Eq. (2.6) we 
find that the solution may be expressed in the alternate form 
 
 1 2( ) cos sinx t A t A tω ω= +  (2.7) 
where 
 1 1 2 2 1 2   and    ( )A C C A i C C= + = −  (2.8) 
 
are real constants. Let us further define two additional constants, A and φ, such that 
 
 (2 2 -1

1 2 2 1    and    tan )A A A A Aφ= + =  (2.9) 
or, equivalently,  
 1 2cos     and    sinA A A Aφ φ= =  (2.10) 
 
Substitution of Eqs. (2.9) and (2.10) into Eq. (2.7) provides the alternate, and physi-
cally interpretable, form of the solution given by 
 
 ( ) cos( )x t A tω φ= −  (2.11) 
 
The constant A is referred to as the amplitude of the oscillation, and the constant φ is 
called the phase angle. The reason for this terminology will become apparent shortly. 
Equations (2.6), (2.7) and (2.11) are different forms of the same solution. Each has its 
place. The last form, Eq. (2.11), allows for the most direct physical interpretation. 
The constants of integration are evaluated by imposing the initial conditions. Clearly, 
once one pair of integration constants is determined then all integration constants are 
determined.  
 The system is put into motion by displacing the mass and releasing it at some 
instant in time. We shall take the instant of release as our reference time, t = 0. Thus, 
if at the instant of release the mass is at position x0 and is moving at velocity v0, the 
initial conditions may be formally stated as 
 
 0(0)  ,    (0) (0) 0x x x v v= = =�  (2.12) 
 
Imposition of the initial conditions, Eq. (2.12), on the solution given by Eq. (2.7) 
yields 
 1 0 2 0    and    A x A v ω= =  (2.13) 
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T 
A 

−A 

x 

x 
0 

t φ 
t 

( t ) 

 

 Figure 2.3  Time history of a harmonic oscillator in free vibration. 

 follows from Eqs. (2.7) and (2.13)  that the response is given by 

 

 
 
 
 
It
 

0
0( ) cos sin

v
x t x t tω ω

ω
= +  (2.14) 

qs. (2.9), (2.11) and (2.13) that the response is also given by the 
quivalent form 

 
It follows from E
e

( ) cos( )x t A tω φ= −  (2.15) 
here 

 
w

( )22
0 0A x v ω= +  (2.16) 

and 

 1 0

0

tan
v
x

φ
ω

− ⎛
= ⎜ ⎟

⎝ ⎠

⎞
 (2.17) 

ts equilibrium 
osition. It is also seen that the cosine function is shifted by an amount 

 
A plot of the response described by Eq. (2.15) is displayed in Figure 2.3. It may be 
seen from the figure that A is indeed the amplitude of the oscillations. It corresponds 
to the magnitude of the maximum displacement of the mass during its motion and 
therefore represents a bound on the displacement of the mass from i
p
 

tφ φ ω=  (2.18) 
 
along the time axis. This time difference is referred to as the phase shift, or phase lag, 
of the response in that the response is shifted from, or lags behind, a pure cosine re-
sponse by this amount of time. It is seen from Eq. (2.17) that the pure cosine response 
(φ  = 0) corresponds to the case of vanishing initial velocity (v0 = 0). From a physical 
perspective, for such initial conditions, the mass is initially displaced (held) away 
from its equilibrium configuration, say x0 > 0, and released from rest. The mass then 
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immediately begins to move toward the equilibrium configuration, eventually passes 
it and moves away from it, and so on, as described by the cosine function. For the 
case of nonvanishing initial velocity the mass is initially displaced away from the 
equilibrium configuration, say x0 > 0, and “launched” with an initial velocity, say v0 > 
0, as if the mass is thrown or hit with a baseball bat or a golf club. For such initial 
conditions, the mass first moves further away from the equilibrium configuration, 
until it stops for an instant and reverses its direction. The time to this first direction 
reversal is the phase lag, tφ . For subsequent times the mass follows the pure cosine 
function as if it were released from rest. The initial velocity thus causes the system to 

peats itself (i.e., it is periodic) at time intervals of 2π /ω. In this context, the quantity 

lag behind the initially quiescent system by tφ .  
 It may be seen from Figure 2.3, as well as from Eq. (2.15), that the response 
re
 

2T π
ω

=  (2.19) 

times t = t + nT, where n is 
ny integer. The response therefore has the property that 

 
is referred to as the period of the vibratory response. If the mass is at a certain posi-
tion x at time t, the mass will be at the same location at 
a
 

( ) ( )     ( 1, 2,...)x t nT x t n+ = =  (2.20) 

rameters introduced in this section (along with sample units) is 
iven in Table 2.1. 

    Tab ration Paramet
MBOL N ITS 

 
Equation (2.20) is characteristic of all functions of period T and is, in fact, the formal 
definition of a periodic function. The inverse of the period is the natural frequency ν. 
It corresponds  to the rate at which the vibrations are occurring and hence to the num-
ber of oscillations, or cycles, that the system goes through per unit of time. The fre-
quency ν differs slightly from the natural circular frequency ω, which is related to ν, 
and represents an angular rate in the complex plane as discussed in Section 1.4. A 
summary of the pa
g
 
 
      

le 2.1  Free Vib ers 
SY DEFINITIO SAMPLE UN
A amplitude et meters, fe
T = 2π /ω = 1/ν period seconds 
ν = 1/T = ω / 2π natural frequency cycles per second 
ω = 2πν = 2π /T lar) frequency er second natural (circu radians p
φ phase angle radians 
tφ  = φ / ω phase shift seconds 
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 Figure 2.4  Freeze-frame depiction of motion of mass-spring system. 

e same instant. The process 
en starts all over again and repeats itself continuously. 

 

 
 
 
The corresponding physical depiction of the motion described by Eq. (2.15) is 
sketched, at selected instants in time, in Figure 2.4. Recognizing that the slope of the 
x vs. t  plot of Figure 2.3 corresponds to the velocity of the mass at any instant in 
time, the solution given by Eq. (2.15) and its plot (Figure 2.3) offer the scenario de-
picted in Figure 2.4. It may be seen that the mass moves first in one direction, slows, 
then stops and subsequently reverses its direction when t = tφ = φ / ω. The mass then 
continues to move in the opposite direction and eventually slows, stops and reverses 
direction again. The mass then moves in its original direction and eventually reaches 
its initial position and achieves its initial velocity at th
th
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Example 2.1 
A 2 kg block sits on a frictionless table and is connected to a coil of stiffness 
4.935 N/m. The mass is displaced 1 m and released with a velocity of 2.721 
m/sec. Determine the natural frequency of the system and the amplitude and 
phase lag of the response. Sketch and label the time history of the response. 
 
Solution 
The natural frequency of the mass-spring system is calculated from Eq. (2.2) to 
give 

 4.935 1.571 rad/sec
2

k
m

ω = = =  (a) 

 
The natural period of the motion is then, from Eq. (2.19),  
 

 2 2 4.0 secs
1.571

T π π
ω

= = =  (b) 

 
The amplitude of the motion is found using Eq. (2.16). Hence, 
 

 ( ) ( )22 2
0 0 (1) 2.721 1.571 2 mA x v ω= + = + =

2  (c) 
 
The phase angle is calculated using Eq. (2.17). We thus obtain 
 

 1 10

0

3tan tan 63.36 1.088 rads
(1.571)(1)

v
x

φ
ω

− −⎛ ⎞ ⎛ ⎞
= = = ° =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (d) 

 
The phase lag is then, from Eq. (2.18), 
 

 1.088 1.571 0.693 secstφ φ ω= = =  (e) 

   Figure E2.1 Time history of response. 
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φ 
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 Example 2.2 
Consider side-sway motion of the elastic column of length L and bending stiff-
ness EI, which is pinned to a rigid mass m as shown (Figure E2.2a), where the 
total mass of the column is much smaller than that of the supported mass. If ρ 
is the mass density of the column and A is its cross-sectional area, determine 
the response of the structure when the supported mass is displaced a distance x0 
from the equilibrium position and then released from rest at that position.  

 
     Figure E2.2  (a) Column-mass structure, (b) equivalent system. 

 
Solution 
If ρAL m we may treat the column-point mass system as the equivalent sin-
gle degree of freedom system shown in Figure E2.2b, as discussed in Section 
1.2.2. For the particular structure under consideration we have, from Eq. (1.14)

�

, 

  
that 

33eqk EI L=   
 
It then follows from Eqs. (2.2) and (2.19) that the natural frequency of the sys-

m is 
 

 

te

3

3EI
mL

ω =  (a) 

nd the natural period is 
 

 

a

3

2
3
mLT
EI

π=  (b) 

ition x0 then v0 = 0. The re-
onse is then found from Eqs. (2.15)–(2.17) to be 

 

 
If the mass is released from rest from the initial pos
sp
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 0 3

3( ) cos EIx t x
mL

= t  (c) �

 
The structure therefore oscillates from side to side at the frequency given by 
Eq. (a) with amplitude A = x0,  as described by Eq. (c).  

 
 
 

Example 2.3 
A 20 lb wheel of 15 inch radius is attached to a 3 ft long axle that is supported 
by a fixed frictionless collar, as shown. The axle is 1 inch in diameter and its 
mass is negligible compared with that of the wheel. If the wheel is rotated 
slightly and released, a period of 0.1 seconds is observed. Determine the shear 
modulus of the axle. (Assume that the mass of the wheel is uniformly distrib-
uted.) 
    

Figure E2.3-1 and axle. 

olution 
mass of the axle is small compared with that of the wheel, the axle 

 first derive the equation of motion for the equivalent system, with the 
z-a

 
  Figure E2.3-2  Equivalent system. 

    Wheel 
 
S
Since the 
may be modeled as an equivalent torsional spring as discussed in Section 1.2.3. 
This renders the equivalent single degree of freedom system shown in Figure 
E2.3-2. 

Let us
xis chosen to coincide with the axis of the shaft. In this regard, we apply Eq. 

(1.165) to the present problem with the help of the kinetic diagram of Figure 
E2.3-3. 
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  Figure E2.3-3  Kinetic diagram. 

  
,  

 
 

 Hence

T zzk Iθ θ− = ��   
or 

 2 0θ ω θ+ =��  (a) 
where  

T

zz

k
I

ω =  (b) 

 
he stiffness of the equivalent system is given by Eq. (1.29) as 

 

T
 

Tk GJ L=  (c) 
 

here G, J, and L  are respectively the shear modulus, area polar moment of in-

 

w
ertia, and length of the axle. Further, the mass moment of inertia for a disk of 
mass m and radius R is 
 

21
2zzI mR=  (d) 

 
ubstitution of Eqs. (c) and (d) into Eq. (b) and solving for the shear modulus 

 

S
gives 
 

( )
( )

222 2

2 44

22 64
32

T zz
mR Lk L I L mR LG

J J T T DD
ω π π

π
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 (e) 

 
ubstitution of the given values of the various parameters into Eq. (e) gives the 

 

S
value 
 

2
6

2 4

[20 /(32.2 12)](15) (3 12)64 8.43 10 psi
(0.1) (1)

G π × ×
= =  × (f) �
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xample 2.4 

 

E
A 200 lb man floats on a 6 ft by 2 ft inflatable raft in a quiescent swimming 
pool. Estimate the period of vertical bobbing of the man and raft system should 
the man be disturbed. Assume 
that the weight of the man is 
distributed uniformly over the 
raft and that the mass of the raft 
is negligible. 
 
 
Solution 

 of the stiffness of the water, as pertains to the 

 e thus have from Eq. (1.40) that 

The effect
man and the raft, is modeled as an equivalent spring as 
discussed in Section 1.2.4. The corresponding equivalent 
system is shown in the adjacent figure.  
 
 
W

 
( ) 62.4[(2)(6)] 749 lb/fteq waterk g Aρ= = =  (a) 

 
he natural frequency of the system is then obtained from Eq. (2.2) as 

 

T
 

749 11.0 rad/sec
200 / 32.2

ω = =  (b) 

 
quation (2.19) then gives the period as 

 

E
 

2 0.571 sec
11.0

T π
= =  (c) 

 
ow, from Table 2.1, 

 

N
1 1.75 cps

0.571
ν = =  � (d) 

 
hus, the man will oscillate through a little less than 2 cycles in a second. (How 

 

T
does this compare with your own experience?) 
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Figure 2.5  Mass-spring sy vertical configuration with 

ring unstretched, (c) vertical equilibrium configuration and generic position of mass in mo-

.1.2 The Effect of Gravity 

idered systems modeled as an equivalent mass-spring 
ivalent mass-spring system was aligned horizontally 

o the static deflection of the mass as depicted in Figure 2.5, and let 
sociated free body diagram of the equilibrated system shown in 

 
 Figure 2.6  Free-body diagram for mass in equilibrium. 

stem: (a) in horizontal equilibrium, (b) 
sp
tion. 
 

2

In the previous section we cons
system. In those models the equ
along a frictionless surface, and so gravity was not a factor. Suppose now that we take 
the horizontally configured mass-spring system in its undeformed configuration as 
depicted in Figure 2.5a and hold the mass so that the spring remains unstretched as 
we rotate the system until it is aligned vertically as shown in Figure 2.5b. Let us next 
allow the mass to deflect very slowly until the system comes to equilibrium as shown 
in Figure 2.5c. Let x measure the position of the mass with respect to its position 
when the spring is unstretched, and let u measure the deflection of the mass from its 
equilibrium position in the vertical configuration as indicated. 

Static Deflection 
Let xst correspond t
us consider the as
Figure 2.6. For equilibrium the forces must sum to zero and hence the gravitational 
force and the spring force must balance. Thus, 
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stkx mg=  (2.21) 
 
where g is the gravitational acceleration. 

Dynamic Response 
Suppose now that the mass of the vert ented system is deflected away from 
its equilibrium position and released. The corresponding dynamic free body diagram 
of the mass is shown in Figure 2.7. Ap n of Newton’s Second Law gives 
 

ically ori

plicatio

mg kx mx− = ��  (2.22) 

hich, after substitution of Eq. (2.21) and rearra

0x

 
 
w nging terms, takes the form 
 
 (mx k x )st+ − =  (2.23) ��
Let 
 stu x x= −  (2.24) 

on of 
e system expressed in terms of the position rel
on. Hence, 

 
represent the displacement of the mass from its equilibrium position. Substituting Eq. 
(2.24) into Eq. (2.23) and noting that xst is a constant gives the equation of moti
th ative to the equilibrium configura-
ti
 
 2 0u uω+ =��  (2.25) 

here ω is given by Eq. (2.2). It follows from Eqs. (
 
w 2.15)–(2.17) that 
 

( )t( ) cosu t A ω φ= −  (2.26)  
where 

 ( )22
0 0A u v ω= +  (2.27) 

 

1 0 
0 ⎠

tan
v
u

φ
ω

− ⎛ ⎞
= ⎜ ⎟

⎝
 (2.28) 

   
     Figure 2.7  Kinetic diagram for vertical motion. 
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and u0 and v0 are, respectively, the initial displacement and initial velocity of the 
ass. Consideration of Eq. (2.26) shows that the m

position in precisely the same manner that the mass of the horizontally oriented sys-
tem oscillates about its (unstr  position. Thus, from a vibrations 
perspective, gravity has no ef stem except to change the 
position about which the mass 
 
 

Example 2.5 

m ass oscillates about its equilibrium 

etched) equilibrium
fect on the behavior of the sy
oscillates. 

A block of mass m ks that is suspended from  is attached to a spring of stiffness 
a long cantilever beam of length L and bending stiffness EI as shown in Figure 
E2.5a. If the mass of the block is much greater than the mass of the beam, de-
termine the natural frequency of the system.   

 
Figure E2.5  Elastic beam with suspended mass: (a) physical system, (b) rep
of compound system with beam as equivalent 1 d.o.f. system, (c) equivalent sy

d spring combination. 

Solution 
The natural frequency of an equivalent single degree of freedom
stiffness keq and mass m is given by Eq. (2.2) as 

resentation 
stem for 

beam an
 

 system of 

 

 eqk
m

ω =  (a) 

 
e therefore need to determine the equivalent stiffness keq . 

y be modeled as a spring of stiffness kbm, where, 
om Eq. (1.14), 

 

W
 The equivalent single degree of freedom system is realized by first con-
sidering the equivalent system for the beam alone. As discussed in Section 
1.2.2, a cantilever beam ma

33bmk EI= L  (b) 

fr
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The composite beam-spring structure is thus represented as two springs con-
nected in series as shown in Figure E2.5b. The  two spring structure may in 

rn be represented as an equivalent single spring of stiffness keq as shown in 
Figure E2.5c and discussed in Section 1.3.2. We then have, from Eq. (1.51), 
that 

 

tu

( )1eq
s bmk k+
skk =  (c) 

 
Substituting Eq. (b) in to Eq. (c) gives the equivalent stiffness of the beam-
spring-mass system as 
 

 
( )31 3

s
eq

k
k

k L
=

+

 

s

 
Substitution of Eq. (d) into Eq. (a) gives the natural frequency sought. Hence, 
 

EI
 (d) 

( )31 3
s

s

k m

k L EI
ω =

+
 � (e) 

 
 may be seen that the expression in the numerator of Eq. (e) corresponds to 

covered if the beam has infinite bending stiffness. That 
, it may be seen that 

  

It
the natural frequency of the mass-spring system attached to a rigid support, and 
that this frequency is re
is

  as  sk m EIω → →

-
 

natural frequency of the system. Such behavior is characteristic of mechanical 
systems in general. 

 

∞  
 
We thus see that the effect of adding compliance to the support of the mass

ring system, in this case the flexibility of an elastic beam, is to lower thesp

  

Example 2.6 
Consider the small two wheel trailer of known mass mA (shown in end view in 
Figure E2.6-1). Let the tires of the trailer be modeled as elastic springs, each of 
unknown stiffness k/2, as indicated, and let a removable package of unknown 
mass, mB, be secured to the trailer as shown. How might we measure (a) the 
stiffness of the spring and (b) the mass of the package if there is no scale avail-
able in our laboratory? (c) If the natural period of oscillation of the trailer is in-
creased by a factor of 1.05 when hauling the package, determine the weight of 
the package as a percentage of the weight of the unloaded trailer.  
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   Figure E2.6-1  Two wheel trailer carrying package. 
 
Solution 
If we displace and release the known mass, mA, with or without the unknown 
mass, m , attached we may measure the period of vibration (or equivalentlyB  the 
corresponding itude and phase of the 
motion. The latter two are imm e present problem. 
Thus, we may deter nown mass of 
the package in term the measured period 
for both the one ma
 
(a) 
Let us first re n and then release the 

ailer (mass m ), and trace the subsequent motion of the lone mass on a re-
ppearance to that 

own in Figure E2.6-2. We may then read off the period, TA, of the motion of 
 mass from this trace. Equations (2.2) and (2.19) then give, for the 

 

natural frequency), as well as the ampl
aterial for the purposes of th

mine the stiffness of the springs and the unk
s of the known mass of the trailer and 
ss and two mass systems. 

move the package. Let us next push down o
tr A
cording device. The trace of the response will be similar in a
sh
the single
trailer alone, 

2
A

A A

k
T m
πω = =  (a) 

 

 
   Figure E2.6-2  Free vibration of trailer alone. 
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Equation (a) may be solved for k to give the spring stiffness in terms of the 
known m
 

 

ass and measured period, 

24 A

A

mk
T

π
=  � (b) 

 
(b) 
Let us next secure the package in the trailer and then pull and release the com-
bined mass system (Figure E2.6-1). We then trace and record the resulting mo-
tion, which would appear as in Fig. E2.6-3, and read off the corresponding pe-
riod, TA+B, from the plot. Once again, we substitute the measured value of the 
eriod into Eqs. (2.2) and (2.19) to determine the natural frequency for the 

 

p
combined mass system. Thus, 
 

2π
A B

A B B

k
T m m

ω +
+

= =
+

 (c) 

 
Equation (c) may now be solved for mB. This gives the unknown mass in terms 

n mass and measured spring stiffness as 

 

A

of the know
 

2

24
A B

B A
k Tm m

π
+= −  (d) 

 
Substitution of Eq. (b) into Eq. (d) gives the unknown mass of the package in 
terms of the known mass of the trailer and the measured periods of the single 
nd combined mass systems. Hence, a

 

( )2 1B A A B Am m T T+
⎡ ⎤= −⎣ ⎦  � (e)  

 
 
 

 
 Figure E2.6-3  Free vibration of trailer with package.  
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(c) 
rom Eq. (e), 

 

F
2(1.05) 1 0.1025B

A

m g
m g

= − =  � (f) 

 
Thus, the weight of the package is 10.25% of the weight of the unloaded trailer.   

 
 
 

2.1.3 and Energy   

Consi ince there are no 
mech s for energy dissipation in this ideal system, the total mechanical energy 
of the erved. As discussed in Section 1.5, the total mechanical energy 
f the system, E, consists of the sum of the kinetic energy of the system, T, and 

l energy of the system, U . Thus, for such a conservative system, 
 
 

  Work 

der a system for which there are no dissipation mechanisms. S
anism
 system is cons

o the 
potentia

constant= + =E T

 is evident from Eq. (2.29) that during any motion of the system, the kinetic energy 
creases as the potential energy decreases, and vice versa. It then follows that  

   when   = =T T
 (2.30) 

U  (2.29) 
  
It
in
 

 
U Umax min

max min   when   = =T T U U
 
Let us now focus our attention on the simple mass-spring system of Figure 2.1. For 
this particular system Eq. (2.29) may be stated explicitly as 
 
 2 21 1 constantmx kx+ =�  (2.31) 2 2

bstitution of Eqs. (2.30) into Eq. (2.31), and equating the resulting expressions, 
 
Su
gives the identity 
 2 21 1

max max2 20 0mx kx+ = +�  (2.32) 
 

hus, for this simple system, the maximum potential e
ring achieves its maximum extension (contraction). T
otion is about to reverse itself, at which point the mass stops momentarily. Con-

2) for k/m 
nd evaluating Eq. (2.15) at the instants of maximum p

T nergy is achieved when the 
sp his occurs at the instant the 
m
versely, the potential energy of the system vanishes when the stretch in the spring 
vanishes. Thus, the mass achieves its maximum kinetic energy, and hence its maxi-

um speed, as the mass passes through this configuration. Solving Eq. (2.3m
a otential energy and maximum 
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kinetic energy gives the natural frequency of the system in terms of the amplitude of 
the motion and the maximum speed of the mass. Hence, 

 

 
2

2 max
2m

vk
A

ω = =  (2.33) 

 
where ( ) ( )v t x t≡ �  is the velocity of the mass and thus corresponds to the slope of the 
x vs. t trace (Figure 2.3), and xmax = A (the amplitude of the oscillation). Finally, note 
that when we differentiate Eq. (2.31) with respect to t, we obtain the equality 
 
 ( ) 0x mx kx+ =� ��  

 
We thus recover the equation of motion for the mass-spring system, Eq. (2.1), for 

≠ . This should not surprise us since the work-energy principle is an integral of 
ewton’s Second Law (Section 1.5.2). Such an
ethod for the derivation of equations of motion f

 

 classic problem in mechanics in general, and vibrations in particular, is the problem 
f the simple pendulum. The pendulum consists of a “bob” of mass m that is attached 

to the end of a rod or cord of length L and negligible mass. The rod is pinned to a 

coord

 

    
   Figure m. 

 
 

x� 0
N  approach provides an alternative 
m or conservative systems. 

 

2.1.4 The Simple Pendulum 

A
o

rigid support at its opposite end, as shown in Figure 2.8. In that figure, the angular 
inate θ measures the position of the rod with respect to its (downward) vertical 

configuration, and the path coordinate s locates the position of the bob with respect to 
its position in that configuration, as indicated. 
 
 

 2.8  The simple pendulu
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he Equations of Motion 
he e atio several ways. In 
e context of the discussions of this and the preceding chapter, we may use New-

 total energy of the system, as per Eq. (2.31), and then  
 time. The latter approach will be demonstrated and em-

       Figure 2.9 Kinetic diagram for bob of simple pendulum. 

T
T
th

qu ns of motion for the simple pendulum may be derived in 

ton’s laws or we may form the
differentiate with respect to
ployed in a subsequent section. We shall here apply Newton’s laws directly. We 
therefore first consider the dynamic free-body diagram of the system (Figure 2.9). In 
that figure the parameter P corresponds to the tension in the rod, g is the gravitational 
acceleration, and the inertial force has been resolved into its tangential and normal 
components. Writing Newton’s Second Law in component form along the normal 
and tangential directions of the path of the bob, we have 

 

 2

sin

cos

mg ms
smg P m
L

θ

θ

− =

− + =

��
�  

Rearranging terms gives 
sin 0s g θ+ =��  (2.34)  

and 
2

( ) cossP t m g
L

θ
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

�
 (2.35) 

It may be seen that the mass drops out of the equation that governs the tangential 
omponents since both the restoring force (the weigh

portional to the mass. It is thus seen that the motion along the path is independent of 
e mass. Once the motion s(t) is known, the time history of the tension in the cord 

 

c t) and the inertia force are pro-

th
may be computed using Eq. (2.35). We are therefore interested in solving Eq. (2.34).  
To do this, it is convenient to express the above equations solely in terms of the angu-
lar coordinate θ. In this regard, we substitute the kinematical relationship 
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 s Lθ=  (2.36) 
 
into Eq. (2.34) and divide by L. Doing this renders the equation of motion to the form 
 

sin 0g
L

θ θ+��

imilarly, Eq. (2.35) takes the form 

 =  (2.37) 

 
S
 

2

( ) sinP t mg
g L
θ θ

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

�
  (2.38) 

The solution of Eq. (2.37) determines the motion of the pendulum as a function of 
me. It may be seen that the only system parameter 

pendulum is the length of the rod (or cord). It is seen from Eq. (2.38), however, that 
the tension in the rod (or cord) depends on the mass of the bob, as well as the length 

ution is nontrivial and will be examined in 
ict our attention to small motions 

nt by “small” momentarily), an ap-

 

ti that affects the motion of the 

of the rod (or cord), as one might expect. 

Linearization and the “Small Angle Response” 
Equation (2.37) is seen to be a nonlinear differential equation and is valid for all val-
ues of the angular displacement θ. Its sol
detail in the next section. However, if we here restr
about the vertical (we shall specify what is mea
proximate, yet very applicable, solution is easily established. To obtain this solution 
we shall first linearize Eq. (2.37) and then determine the solution to the resulting 
equation. To do this, let us first consider the series representation of the sine function 
given by 
 

 
3 5 2 4

sin ... 1 ...
3! 5! 3! 5!
θ θ θ θθ θ θ

⎡ ⎤
= − + − = − + −⎢ ⎥

⎣ ⎦
 (2.39) 

 
If we limit ourselves to motions for which  (where θ is, of course, measured in 

dians) then all terms involving θ  within the brackets on the ri
(2.39) may be neglected. We thus make the approximation 

2 1θ �
ra ght-hand side of Eq. 

 
 sinθ θ≈  (2.40) 

oximating it by its domi-
ant linear term. Substitution of Eq. (2.40) into Eq. (2.37) gives the linearized equa-
on of motion of the pendulum, 

 

 
In doing this, we have linearized the sine function by appr
n
ti
 

2 0θ ω θ+ =��  (2.41) 
where 
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g
L

ω =  (2.42)  

 
is the natural frequency of the system. Equation (2.41) is seen to correspond to the 

x replaced 
(2.17) that the free-vibration response of the pendulum is given by 

t A

h by θ. It therefore follows from Eqs. armonic equation, Eq. (2.1), with 
(2.15)–
 
 )t( ) cos(θ ω φ= −  (2.43) 
where 

 ( )22
0 0A θ χ ω= +  (2.44) 

 

1 0

0

tan
χ

φ
ωθ

− ⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (2.45) 

(0)     and    (0)

 

and 
 00θ θ θ χ= =�

are respectively the initial angular displacement and angular velocity of the pendu-
m. The response is thus seen to be harmonic with

 

 (2.46) 
 

lu  period 

2 2T
g L

π π
ω

= =  (2.47) 

olely on the parameters of 
e system (in this case the length of the rod or cord). It will be seen that the exact 

eriod of the free vibration response, the respons
(2.37), is dependent on the initial conditions described by Eq. (2.46) as 

ell. It will also be seen that this exact period is asymptotic to the approximate con-

 

 
The natural frequency and natural period of the harmonic oscillator, and hence of the 
linear model of the pendulum, is a constant that depends s
th
p e of the nonlinear pendulum de-
scribed by Eq. 
w
stant period given by Eq. (2.47). It will be demonstrated in an example at the end of 
the next subsection, and in Problem 2.24, that the constant period predicted by the 
linear model is a reasonable approximation of the actual period, even for moderate 
initial displacements. 

 

Example 2.7 
A child’s swing consists of a seat hanging from four chains. A 
child is sitting quietly in a swing when a parent gently pulls and 
releases the seat. If the parent observes that it takes approxi-
mately 2 seconds for the child and swing to return, what is the 
length of the swing’s hoist? 
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Solution 
From Eq. (2.47), 

 
2T
g L
π

=  

 

(a) 

olving for L and substituting the observed period and the value of g gives the 
he hoist as 

S
length of t
 

2 2232.2 3.26 3 -3
2 2
TL g
π π

⎛ ⎞ ⎛ ⎞ ′ ′ ′′= ≅  � (b)  = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
 
   

Example 2.8 
A uniform rigid disk of mass m and radius rD is released from rest from some 
initial position along a circular track segment of radius R as shown. Determine 
the resulting small amplitude motion if the disk rolls without slipping.  
 

 
    
 

 
Solution
Kinema tion of the 
geom dius of 
curvature of that path. Further, let vG be the (linear) speed of the geometric cen-

 and normal compo-
nents of the (linear) acceleration of that point, respectively, as indicated. We 

en have the following kinematical relations between the path coordinate s and 
r displacement θ (see Section 1.5): 

 

Figure E2.8-1  Disk rolling on circular track. 

 
tics: Let s represent the path coordinate following the mo

etric center of the disk, and let ρ = R − rD be the corresponding ra

ter of the disk and let aGt and aGn represent the tangential

th
the angula
 

( )Ds R rρθ θ= = −  (a) 
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    sk. 
 

 
 

Figure E2.8-2  Kinetic diagram for rolling di

( )G Dv s R r θ= = − ��  (b) 

 ( )Gt Da s R r θ= = − ����  (c) 

 
2

2( )Gn D
sa R r θ
ρ

= = −
� �  (d) 

 
urthermore, since the disk rolls without slipping we have, from Eqs. (1.154) 

and (1.155), the following no slip conditions 
tangential component of the linear acceleration of the center
angular velocity, ϖ, and the angular acceleratio

F
between the linear speed and the 

 of the disk, and the 
n, α : 

 
 G Dv rϖ=  (e) 
 Gt Da rα=  (f) 
  

Substituting Eq. (b) into Eq. (e), and Eq. (c) into Eq. (f), gives the relations 
 

 DR r

Dr
ϖ θ

−
= �  (g) 

D

D

R r
r

α θ��  (h)  
−

=

to 
associated equations of motion. To do this, we first consider the ki-

netic diagram for the system (Figure E2.8
point of contact of the disk with the track is labeled P. The rotational equation 
of motion of a rigid body about some poin
present problem as 

 

 
inetics: Having established the kinematics of the system, we are now ready K

derive the 
-2). In that figure, the instantaneous 

t P, Eq. (1.163), is rewritten for the 

 

/P G G P GM I r maα= + ×∑
G G G G  (i) 
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nent in the direction of the normal to that plane. Taking 
oments about an axis perpendicular to the plane and through the contact point 

P, and substituting these moments into Eq. (i), give
 

where /G PrG is the position of point G as seen by an observer translating with 
point P. Since the disk rolls in a single plane, the only nontrivial component of 
Eq. (i) is the compo
m

s 

 2
/sinD G G P Pmgr I mr Iθ α α α= − − = −  (j) 

where 
2

/ P G G PI I mr= +  (k) 
 
is the moment of inertia of the disk about an axis through the contact point. 

urther, for a uniform disk, the geometric center and the center of mass coin-
cide. The moment of inertia of a uniform disk of 

 its geometric center G is given by 
 

 

F
radius rD about an axis 

through

21
2G cm DI I mr= =  (l) 

 

 
Substitution of Eq. (l) into Eq. (k) gives the moment of inertia about the axis 
through P as 

23
2P DI m r=  (m) 

Substitution of Eq. (h) into Eq. (j), and rearra
otion of the disk in terms of the angular displacement θ. Hence, 

 
nging terms, gives the equation of 

m
 

sin 0
eff

g
L

θ θ+ =��  (n) 

where 
 3

2 ( )eff DL R r= −  (o) 
 
Comparison of Eq. (n) with Eq. (2.37) shows that the rigid disk rolling on a cir-
cular segment of track behaves as a pendulum
parameter Leff therefore represents an effective rod length. As for the pendulum, 

linearize Eq. (n) if we restrict the motions of the disk to those for 
which . Hence, employing the appro

) simplifies to the harmonic equation in θ, 

 

 with a rod of length L = Leff. The 

we may 
ximation given by Eq. (2.40), Eq. 2 1θ �

(n
 

2 0θ ω θ+ =��  � (p) 
 
with the natural frequency identified as 
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2
3( )eff D

g g
L R

ω = = 
r−

 (q) 

3)–(2.46), with ω and T interpreted ac-
. 

 
he response is then given by Eqs. (2.4T

cordingly
 
 

Example 2.9 
A glider of mass m and radius of gyration r  teeters on its belly just before lift-G
ing off the ground. The center of mass of the craft lies a distance ℓ from the 
geometric center of the fuselage of radius R, as indicated. Determine the period 
of the small angle motion if no slip occurs. 

 
   Figure E2.9-1  Teetering glider. 
 
Solution 
The kinetic diagram for the system is shown in Figure E2.9-2. We next der

 

ive 
e equation of motion of the system by taking moments about the contact point 

u  of the center of mass. For 
o slip conditions, we have from Eq. (1.155) that the acceleration of the geo-

ter is 
 

th
P. To do this, we m st first establish the acceleration
n
metric cen

Oa R iθ=
GG ��  (a) 

 

   Figure E2.9-2  Kinetic diagram for glider. 
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    Figure E2.9-3  Relative motion of glider. 
 
 
The acceleratio metric center is seen to 

148) and (a), the accel-
eration of the center of 
 

 ) G  (b) 

 
or small angle motion, let us linearize the above expression. Thus, neglecting 

 representation of the 
cceleration of the center of mass as 

 

n of the center of mass relative to the geo
be pure rotation (Figure E2.9-3). From Eqs. (1.72), (1.

mass with respect to the ground is 

( ) (
/

2 2    sin cos cos sin

G O G Oa a a

R i i jθ θ θ θ θ θ θ θ θ

= +

⎡ ⎤= + − + +⎣ ⎦

G G G

G G�� � �� � ��A A

F
terms of second order and above gives the approximate
a
 

( )Ga R iθ≅ −
GG ��A  (c) 

 
We next take moments about the contact point. Hence, 

 
[ ]/sin G G P G z

mg I r maθ θ− = + ×
G G��A  (d) 

 
inearizing the left hand side and substituting Eq. (c) gives the equation of mo-

 

L
tion as 

2 2( )Gmg m r Rθ θ⎡ ⎤− = + −⎣ ⎦
��A A  (e) 

 
ringing nonvanishing terms to one side and dividing by the coefficient of B

θ�� gives the equation of motion as 
 

 0gθ θ
effL

+ =��  (f) 

where 
 2 2( )eff GL r R⎡ ⎤= + −⎣ ⎦A A  (g) 
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Thus, 
2

effg Lω =  (h) 
 
The period for small angle motion of the glider is then 
 

  
2 2( )2 2T π π

= = 2 G

eff

r R
gg L

π
ω

+ −
=

A
A

 (i)  �

 
 
 

onse 
 the previous subsection we approximated th

pendulum, Eq. (2.37), by its linear counterpart, Eq. (2.41). The latter was seen to be 
the h tions with constant pe-
riod. The ate equation are limited 
to line r differential equations. Solving the exact nonlinear equation of motion, Eq. 
(2.37 r nt approach. We shall here examine e nonlinear respon
and assess how well the linear approximation represents the motion of the pendulum. 

e first consider the static response. 

Static Response  
For the static case, Eq. (2.37) reduces to the equilibrium equation given by 

Finite Angle Resp
In e equation of motion for the simple 

armonic equation and therefore yielded sinusoidal solu
methods used to obtain the solution to the approxim

a
), requires a diffe e th se 

W
 

 
 sin 0mgL θ =  (2.48) 
 

The roots of Eq. (2.48) yield the solution, and hence the corresponding equilib-
rium configurations, defined by 

 
     ( 0,1, 2,...)n nθ π= =  (2.49) 
 

Thus, the exact equation of motion gives the two distinct equilibrium configu-
rations, 0, ,θ π= shown in Figure 2.10. These obviously correspond to align-

rtically downward and vertically upward, respectively. If we 
ter-

ment of the rod ve
parallel the above calculation with Eq. (2.41), it is seen that the linear coun
part to Eq. (2.48) only gives the configuration 0.θ =  Evidently the upward 
configuration is not predicted by the lineari
stricted our attention to angles that are sm

zed equation of motion since we re-
all compared to unity in that ap-

proximation. In other words, when we linearized Eq. (2.37), we restricted our 
attention to angles close to the first equilibrium configuration (n = 0).  
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  Figure ndulum. 
 
The omissi l of what may happen 
when an equation, or sy
 ard) equilibrium configura-
tion, we intuitively . That is, we expect 
that the pendulu is given even 
the sm ze this instability. 
To do this we system, which for the 
case under con ose the lower equi-

brium position of the bob as our datum (i.e., the level of zero potential en-
ithin allow-

ble m mass, is given by  
 
 

2.10  Equilibrium configurations of the simple pe

on of equilibrium configurations is typica
stem of equations, is linearized. 

If we focus our attention on the second (upw
 know that this configuration is unstable

m will move away from this configuration if it 
allest perturbation (“nudge”). It is instructive to analy

must establish the potential energy of the 
sideration is solely due to gravity. If we cho

li
ergy), then the potential energy of the system at any other point, w

otions of the a

(1 cos )mgL θ= −U  (2.50) 
 

 Figure 2.11  Potential energy n of angular displacement.  of the simple pendulum as a functio

2

1

2
0

mgL
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A sketch of this function is displayed in Figure 2.11. Let us next take the de-
rivative of the potential energy with respect to the angular displacement θ, and 
set the resulting expression to zero. This results in the equation 

 

 sin 0d mgL
d

θ
θ

= =
U  (2.51) 

 
which is seen to be the equilibrium equation, Eq. (2.48), the solution of which 

 

yields the roots that correspond to the equilibrium configurations of the system 
as established previously. What we have effectively done is apply the statement 
of conservation of mechanical energy, Eq. (1.95), for the particular (conserva-
tive) single particle system under consideration. It may be seen that the equilib-
rium configurations correspond to points on the potential energy curve for 
which the function is stationary (i.e., points where the derivative of the poten-
tial energy vanishes, and hence where  the  potential energy is a relative mini-
mum or maximum). Additional information regarding the behavior of the sys-
tem at these points can be attained by examination of the second derivative of 
the potential energy of the system. Thus, differentiating Eq. (2.51) with respect 
to θ  gives 

2

2 cosd mgL
d

θ
θ

=
U  (2.52) 

 
Evaluation of this expression at each of the equilibrium configurations shows 

 

that  
2

2
0

2

2

0

0

d mgL
d

d mgL
d

θ

θ π

θ

θ

=

=

= + >

= − <

U

U
 (2.53) 

 
 may be observed that the second derivative of the potential energy is positive It

for the stable configuration (θ = 0) and negative for the unstable configuration 
(θ = π). This is also seen by examination of Figure 2.11. These characteristics 
may be understood by analogy with a marble that is perched either at the bot-
tom of a well or at the top of a hill whose profile is similar to that of the poten-
tial energy function shown in Figure 2.11. When in the well, the potential en-
ergy of the marble will increase 2 2( / 0)d dθ >U as the marble is perturbed 
away from its equilibrium configur he marble will return to, or 
remain in the vicinity of, that configuration when the perturbation is removed. 
In contrast, when the marble is at the top of the hill its potential energy will de-
crease 2 2( / 0)d dθ <U as it is perturbed away from its equilibrium configura-
tion, an e to move away from the equilibrium configuration after 
the perturbation is removed. In general for any system, whether single degree 

ation. Further, t

d it will continu
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of freedom or multi-degree of freedom, the convexity of the potential energy of 
that system at a given equilibrium configuration establishes the stability or in-
stability of that configuration. 

 

Dynamic Response 
In this section we shall obtain a solution to the equation of motion, Eq. (2.37), 
without any restriction on the size of the angular displacement. Because of the 
nonlinear nature of the problem, we shall obtain the response in the form 

( )t t θ=  rather than the conventional form ( ).tθ θ=  
 It may be seen from the dynamic free-body diagram for the system (Fig-
ure 2.9) that the tension in rod, P, is always perpendicular to the path of the bob 
and therefore does no work throughout the motion of the particle. Further, the 
only other force acting on the bob is its own weight, which is a conservative 
force. Finally, the pin at O is assumed to be frictionless and thus exerts no 
transverse shear or moment on the rod and hence on the bob. The total energy 
of the system is therefore conserved throughout the motion. If we take θ = 0 as 
our datum for the gravitational potential energy, then the statement of conserva-
tion of mechanical energy for the pendulum may be written in the explicit form 

 
 2 2 2 21

02(1 cos ) (1 cos )mgL mL mgL mL1
02θ θ θ χ− + = − +�  (2.54) 

 
 where 0(0)θ θ=  and 0(0)θ χ=� . Solving Eq. (2.54) for θ�  gives 
 

 ( ) 2
0

2 cos cosd g
dt L
θ

0θ θ χ= − +  (2.55) 

 
 which may be rearranged to the form  
 

 
( ) 2

0 0
2 cos cos

ddt
g

L

θ

θ θ χ
=

− +
 (2.56) 

 
We remark that Eq. (2.55) could also be obtained by first multiplying the equa-
tion of motion, Eq. (2.37), by θ� , exploiting the identity 
 

    ( )21
2d dθθ θ=��� � t   

 
and then integrating the resulting expression and solving for θ� . We bypassed 
these calculations by starting from the statement of conservation of energy, 
since the work-energy principle is, in fact, an integral of the equation of motion 
(see Section 1.5). 
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 Let us next integrate Eq. (2.56) over the time interval [0, t] and divide the 
resulting expression by the period of oscillation of the linear response, 

 0
2T
g L
π

≡  (2.57) 

 
 Doing this gives the response as 
 

 

( )
0

2
0 0

0

1
2

2 cos cos

t dt
T

g L

θ

θ

θ
π χ

θ θ

≡ =
⎛ ⎞

− + ⎜ ⎟
⎝ ⎠

∫  (2.58) 

 
where t  is the normalized time. Equation (2.58) is the solution we are seeking 
and may be integrated for given initial conditions to give the response. 
 Let us next consider motions for which the bob is released from rest 

0( 0)χ = . In this way we exclude possible motions for which the bob orbits the 
pin. We also know, from conservation of energy, that the motion is periodic. 
Further, by virtue of the same arguments, we know that the time for the bob to 
move between the positions θ = θ0 and θ = 0 is one quarter of a period. Like-
wise, the reverse motion, where the bob moves from the position θ = 0 to 
θ = θ0, takes a quarter of a period to traverse as well. Taking this into account 
and utilizing the equivalence of the cosine function in the first and fourth quad-
rants in Eq. (2.58) gives the exact period, T, of an oscillation of the simple pen-
dulum, 

 

 
( )

0

00 0

14
2 2 cos cos

T dT
T

θ θ
π θ θ

≡ = ⋅
−∫  (2.59) 

 
where T  is the normalized period. It is seen that the “true” period depends on 
the initial conditions, that is 0( )T T θ= , while the period predicted by the linear 
approximation is independent of the initial conditions. We might expect, how-
ever, that the two solutions will converge as 0 0θ → . It is left as an exercise 
(Problem 2.24) to demonstrate that this is so. The integral of Eq. (2.59) may be 
applied directly, or it may be put in a standard form by introducing the change 
of variable 

 

 ( )1 1sin sin 2
q

ϕ − ⎛ ⎞
≡ ⎜

⎝ ⎠
θ ⎟  (2.60) 

 where 
 ( )0sin 2q θ≡  (2.61) 
 
 After making these substitutions, Eq. (2.59) takes the equivalent form 
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 2 ( , / 2)T q π
π

= F  (2.62) 

 where 

 
2 20

( , )
1 sin

dq
q

β ϕβ
ϕ

≡
−∫F  (2.63) 

 
is referred to as an Elliptic Integral of the First Kind, and ( , / 2)q πF  is called a 
Complete Elliptic Integral of the First Kind.  Elliptic integrals are tabulated in 
tables in much the same way as trigonometric functions and, in an analogous 
way, are also available in certain mathematical software. Equation (2.62), or 
equivalently Eq. (2.59), is normalized by the period that is predicted by the lin-
ear approximation. It thus allows for a direct comparison of the response pre-
dicted by the linear approximation with that predicted by the exact nonlinear 
model.  

 

Example 2.10 
Determine the percent error in approximating the true period of a simple pendu-
lum by the period predicted by the linear approximation for an initial angular 
displacement of 30 degrees. Do the same for initial angular displacements of 15 
degrees and 10 degrees. 
 
Solution 
We must first evaluate the normalized period for 0 30θ = ° . For this initial an-
gular displacement, Eq. (2.61) gives 
 

 sin(30 / 2) 0.2588q = ° =  (a) 
 
The corresponding value of the complete elliptic integral is found from a table, 
using software, or from numerical integration of Eq. (2.63). We here use the 
MATLAB function “ellipke” to compute 
 

 (0.2588, / 2) 1.598π =F  (b) 
 
Substitution of Eq. (b) into Eq. (2.62) gives the normalized period 
 

 2 (1.598) 1.017T
π

= =  (c) 

Finally,  

 0 1 11 1 0.01672
1.017

T T
T T
−

= − = − =  (d) 

Hence,  
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    % Error = 1.67%     � (e) 
 

Carrying out similar calculations gives, for 0 15θ = ° , 1.005T =  and 
 
   % Error = 0.498% (f) �
 
and, for , 0 10θ = ° 1.002T =  and 
 
   % Error = 0.200% (g) �
 
It is seen that the linear approximation gives quite accurate values of the period 
for small, and even for moderate, initial angular displacements. 

 
 
 

2.2 FREE VIBRATION OF SYSTEMS WITH VISCOUS DAMPING 

In all physical systems, a certain amount of energy is dissipated through various 
mechanisms. Hence, the vibrations considered in the previous section, though impor-
tant, applicable and representative for many applications, conserve energy and are 
therefore idealistic in that sense. It is therefore of interest to examine and to character-
ize to the extent possible, the effects of damping on the vibratory behavior of me-
chanical systems. The inclusion of some damping and its influence on the vibratory 
behavior of single degree of freedom systems is the subject of the next two sections. 
In particular, we shall discuss the effects of viscous damping in the present section 
and damping due to Coulomb friction in Section 2.3. Structural (material) damping 
and its effects on vibrating systems will be introduced in Chapter 3 (Section 3.4). 
 

2.2.1  Equation of Motion and General System Response  

A simple type of dissipation mechanism often considered in vibrations studies is that 
of viscous damping. It was demonstrated in Section 1.2.5 that the force applied to a 
body by a linear viscous damper opposes the motion of the body and is linearly pro-
portional to the speed at which the body travels relative to the damper. In this section 
we derive the equations of motion and obtain the general solution for systems pos-
sessing this type of damping.  
 Consider the system comprised of a mass, m, attached to a spring of stiffness k, 
and a viscous damper with damping coefficient c (see Section 1.2.5), where the oppo-
site end of the spring and the damper are fixed, as shown in Figure 2.12. Let x(t) de-
note the displacement of the mass, measured from its equilibrium configuration. We 
shall be interested in the response of the system after it is initially displaced and re-
leased. The corresponding kinetic diagram for the system is shown in Figure 2.13. 
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    Figure 2.12  Mass-spring-damper system. 
 
 
 Applying Newton’s Second Law along the horizontal direction gives 
 
 kx cx mx− − =� ��

0

 
 

which, after rearranging terms, takes the form 
 
 22x x xωζ ω+ + =�� �  (2.64) 
where 

 
2 2

c c
m mk

ζ
ω

= =  (2.65) 

 
and ω is given by Eq. (2.2). The parameter ζ is referred to as the damping factor, 
while ω is seen to correspond to the natural frequency when no damping is present. 
(It will be seen shortly that, when damping is present, ω no longer corresponds to the 
frequency of oscillation.) 
 

 
      Figure 2.13  Kinetic diagram for mass-spring-damper system. 
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 To determine the response of the mass-spring-damper system we must solve 
Eq. (2.64). To do this we shall proceed as we did for the undamped system. Hence, 
we first assume a solution of the form 
 
 ( ) stx t Ce∼  (2.66) 

here C and s are (complex) parameters that are yet to be determined. Substitution of 
 
w
this expression into the governing equation (2.64) results in the characteristic equa-
tion 
 
 2 22 0s sωζ ω+ + =  (2.67) 

hich yields the roots w
 2 1s ωζ ω ζ= − ± −  (2.68) 

he response of the system is thus comprised of the sum of two solutions of the form 

2.2.2  Underdamped Systems )

 
T
of Eq. (2.66) corresponding to the two roots of Eq. (2.68). It is evident from Eqs. 
(2.66) and (2.68) that the behavior of the system is characterized by whether the 
damping factor is less than, greater than, or equal to unity. We shall consider each 
case separately. 
 

 2( 1ζ <  
Systems for which ζ  2 < 1 are refer s unred to a derdamped systems. When the square 
of the damping factor is less than unity, the characteristic roots given by Eq. (2.68) 
may be written as 
 ds iωζ ω= − ±  (2.69) 

here w
 21dω ω ζ= −  (2.70) 

 will be seen that ωd corresponds to the frequency of oscillation of the damped sys-
 
It
tem (the damped natural frequency). Substitution of each of the characteristic roots 
defined by Eq. (2.69) into Eq. (2.66) gives two solutions of the form 
 
 ( ) di ttx t Ce e ωζω ±−∼  (2.71) 

he general solution to Eq. (2.64) consists of a linear combination of these two solu-
 
T
tions. Hence, 
 
 1 2( ) d di t i ttx t e C e C eω ωζω −− ⎡ ⎤= +⎣ ⎦  (2.72) 
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The terms within the brackets of Eq. (2.72) are seen to be identical in form to the 
right-hand side of Eq. (2.6). It therefore follows from Eqs. (2.6)–(2.11) that the solu-
tion for the underdamped case (ζ  2 < 1) may also be expressed in the equivalent forms 
 
 [ ]1 2( ) cos sint

d dx t e A t A tζω ω ω−= +  (2.73) 
and 
 ( ) cos( ) ( )cos( )t

d d dx t Ae t A t tζω ω φ ω−= − = φ−  (2.74) 
where 
 ( ) t

dA t Ae ζω−=  (2.75) 
 
and the pairs of constants (A, φ), (A1, A2) and (C1, C2) are related by Eqs. (2.8), (2.9) 
and (2.10). The specific values of these constants are determined by imposing the 
initial conditions 
 
 0 0(0)      and     (0)x x x v= =�  
 
on the above solutions. Doing this gives the relations  
 

 
( )0

1 0 2 2
,

1

v
A x A 0xω ζ

ζ

+
= =

−
 (2.76) 

and 

 
( ) ( )

2
0 0 0 01

0 2 2
1 , tan

1 1

v x v x
A x

ω ζ ω ζ
φ

ζ ζ
−

⎛ ⎞+⎡ ⎤ +⎣ ⎦ ⎜= + =
⎜− −⎝ ⎠

⎟
⎟

 (2.77) 

 
It may be seen from Eqs. (2.74) and (2.75) that the response of the system corre-
sponds to harmonic oscillations whose amplitudes, Ad(t), decay with time at the rate 
ζω (= c/2m). It may be noted that the frequency of the oscillation for the under-
damped case is ωd, as defined by Eq. (2.70). It follows that the corresponding period 
is 

 
2

2 2

1
d

d

T π π
ω ω ζ

= =
−

 (2.78) 

 
and that the associated phase lag is  
 
 dtφ ω φ=  (2.79) 

 
Note that the frequency of the damped oscillations is lower, and hence the corre-
sponding period is longer, than that for the undamped system (ζ = 0). It is thus seen 
that damping tends to slow the system down, as might be anticipated. 
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x 

t 

A d 
T d 

t φ 

0 

 
      Figure 2.14  Characteristic response history of an underdamped system. 
 
 
 A typical response history of an underdamped system is shown in Figure 2.14. 
It may be noted that, unlike the undamped case, the underdamped system will gener-
ally exhibit a nonvanishing phase shift for vanishing initial velocity (v0 = 0). The 
phase shift corresponds to the instant at which the time dependent amplitude and the 
displacement first become equal. Inclusion of the damping force in the development 
presented in Section 2.1.2 shows that the effect of gravity is the same for damped 
systems. That is, the damped system will exhibit decaying oscillations about the equi-
librium configuration corresponding to the statically stretched spring due to gravity 
alone, with x(t) and x0 measured relative to the equilibrium position of the mass. 
 
 

Example 2.11 
A 4 kg mass is attached to a spring of stiffness 400 N/m and a viscous damper 
of coefficient 16 N-sec/m as shown. If the mass is displaced 0.5 m from its 
equilibrium position and released from rest, determine the position of the mass 
after it has oscillated 
through 3 cycles from 
the point of release. 
Evaluate the ratio of the 
magnitude of the dis-
placement  to the initial 
displacement at this in-
stant. 
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 Solution  
The undamped natural frequency and the damping factor may be calculated 
from the given parameters as 
 

 / 400 / 4 10 rad/seck mω = = =  (a) 
and 

 16 0.2
2 2(4)(10)

c
m

ζ
ω

= = =  (b) 

  
The damped natural frequency and the associated damped natural period are 
then obtained by substituting Eqs. (a) and (b) into Eqs. (2.70) and (2.78), re-
spectively. Hence, 

  
 2 21 10 1 (0.2) 9.798 rad/secdω ω ζ= − = − =  (c) 
  

 2 2 0.6413 secs
9.798d

d

T π π
ω

= = =  (d) 

 
 The initial conditions for the problem are 
  
    0(0) 0.5m     and      (0) 0x x x v0= = � = =  (e) 

 
The amplitude coefficient A and phase angle φ may be evaluated by substitut-
ing Eqs. (b) and (e) into Eqs. (2.77). We thus have that 
 

 0

2 2

0.5 0.5103 m
1 1 (0.2)

xA
ζ

→ = =
− −

 (f) 

and 

 1 1

2 2

0.2tan tan 11.54 0.2014 rads
1 1 (0.2)

ζφ
ζ

− −
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟→ = = ° =

⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (g) 

 
Now, the time to the completion of 3 cycles is  
 

 3 3 3(0.6413) 1.924 secsdt T= = =  (h) 
 
The amplitude at this instant is then computed using Eq. (2.75). This gives 
 

  (i) (3 ) 0.2(10)(1.924)
3( ) (3 ) (0.5103) 0.01088 mdT

d d dA t A T Ae eζω− −= = = =
 
Next, 
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( ){ }3cos( ) cos( 3 ) cos 3 2

                     cos(6 0.2014) 0.9798
d d d d dt Tω φ ω φ ω π ω φ

π

− = ⋅ − = ⋅ −

= − =
 (j) 

 
Finally, substitution of Eqs. (i) and (j) into Eq. (2.74) gives the desired response 
 

 
3

(3 ) cos( 3 ) 0.01066 m
d

d d d dt Tx A T Tω φ
=

= ⋅ − =  (k) �

 
The ratio of the displacement after three cycles to the initial displacement is 
given by 

 
0

(3 ) 0.01066 0.02132
0.5

dx T
x

= =  (l) �

 
It is seen that the displacement of the damped oscillation reduces to 2.1% of its 
original value after three cycles. 

 

 

2.2.3  Logarithmic Decrement (measurement of ζ ) 

Suppose we have an underdamped system (ζ 2 < 1) and we wish to measure the 
damping coefficient, ζ. How might we accomplish this? Let us imagine that we dis-
place the mass of Figure 2.12 an initial distance, release it, and then plot a trace of the 
ensuing motion as depicted in Figure 2.15. Let us consider the displacements meas-
ured at two instants in time occurring one period apart, say at two consecutive peaks, 
as indicated. Let the displacement at time t = t1 be denoted as x(t1) = x1, and the dis-
placement measured at t = t2 be denoted as x(t2) = x2. It follows from Eq. (2.74) that 
the displacements at these instants are given by 
 

 
1

2

1

2 2

cos( )

cos( )

t
d

t
d

x Ae t

x Ae t

ζω

ζω

1ω φ

ω φ

−

−

= −

= −
 (2.80) 

 
Since the measurements are taken at times separated by one period, we have the rela-
tion 
 2 1 dt t T= +  (2.81) 
It then follows that  
 
 { }2 1cos( ) cos ( ) cos( )d d d dt t T 1tω φ ω φ ω− = + − = −φ  (2.82) 
 
Next, let us take the ratio of the displacements measured a period apart. This gives 
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0

x 1 
x 2 

T d 

x 

t 
Figure 2.15  Two measurements taken one period apart.  

 
 

 

 
1 1

2 1

2 2

( )1 11

2 2 1

cos( ) cos( )
cos( ) cos( )

d

t t
Tt td d

t t
d d

Ae t Ae tx e e
x Ae t Ae t

ζω ζω
ζωζω

ζω ζω

ω φ ω φ
ω φ ω φ

− −
−

− −

− −
= = =

− −
=  (2.83) 

 
The logarithmic decrement, δ , is defined as the natural log of this ratio. Hence, 
 

 1

2
2

2ln
1

d
x T
x

πζδ ζω
ζ

⎛ ⎞
≡ = =⎜ ⎟

−⎝ ⎠
 (2.84) 

 
where we have used Eq. (2.78) to eliminate the period. Solving for ζ gives the inverse 
relation 

 
2 24

δζ
π δ

=
+

 (2.85) 

 
It is seen that δ completely determines ζ . We may therefore measure successive 
peaks off of an x-t plot, take the natural log of the ratio, and substitute the logarithmic 
decrement into Eq. (2.85) to determine ζ . It may be seen from Eqs. (2.84) and (2.85) 
that for light damping 2 2( 1, or equivalently 4 )2ζ δ π� � , 
 

 
2
δζ
π

≈  (2.86) 
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Let us next consider n+1 successive instants in time, such that adjacent instants are 
separated by a natural period on the displacement plot for an underdamped system 
(Figure 2.15). If we let xj and xj+1 represent the jth and  j+1st measurement, then we 
have from Eq. (2.84) that 
 

 
1

ln j
d

j

x
T

x
δ ζω

+

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.87) 

 
Let us next take the ratio of the first and last displacement measurements. Using the 
above identity in the resulting expression gives 
 

 ( )1 1 2

1 2 3 1

d d
nT nn

n n

xx x x e e
x x x x

ζω ζω

+ +

= ⋅⋅⋅ = = T  (2.88) 

 
Evaluating the natural log of  this expression gives the relation 
 

 1

1

1 ln
n

x
n x

δ
+

⎛
= ⎜

⎝ ⎠

⎞
⎟  (2.89) 

 
 
Thus, we may measure two displacements separated by n periods (∆t = nTd) and cal-
culate the logarithmic decrement using Eq. (2.89). We may then determine the damp-
ing coefficient ζ  using Eq. (2.85) or, under appropriate circumstances, Eq. (2.86). 
 
 Finally, another useful relation is obtained if we take the inverse natural log of 
Eq. (2.89), rearrange terms, and substitute Eq. (2.84) into the resulting expression. 
This yields the relation 
 
 

22 1
1 1 1 1

d nn Tn
nx x e x e x e π ζ ζζωδ − −−−

+ = = =  (2.90) 
 
 

Example 2.12 
A portion of an automobile suspension system consists of an elastic spring and 
a viscous damper, as 
shown. If the spring is 
chosen such that k/m = 40 
sec-2, determine the allow-
able range of the ratio c/m 
so that any oscillations that 
occur will decay by a fac-
tor of 95% within 1 cycle. 
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Solution 
It is required that x2 = 0.05 x1. Thus, from Eq. (2.84), 
 

 1ln 2.996
0.05

δ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (a)  

   
Using Eq. (2.85), we calculate the damping factor to be 
 

 
2 2

2.996 0.4304
4 (2.996)

ζ
π

= =
+

 (b) 

 
Substituting Eq. (b) into Eq. (2.65) and solving for c/m gives the value for the 
desired ratio as 

 -12(0.4304) 40 5.444 secc m = =  (c) 
 
Thus, in order for an oscillation to decay at the desired rate, the damper must be 
chosen such that 

 -15.444 secc m ≥  (d) �
 

 
 
 

Example 2.13 (Ex. 2.11 revisited) 
A 4 kg mass is attached to a spring of stiffness 400 N/m and a viscous damper 
of coefficient 16 N-sec/m as shown in Figure E2.11. If the mass is displaced 
0.5 m from its equilibrium position, and released from rest, determine the posi-
tion of the mass after it has oscillated through 3 cycles. 
 
Solution 
The given the initial conditions are  
 

 0(0) 0.5 m     and     (0) 0x x x v0= = � = =  (a) 
 
As in our prior analysis of this problem (Example 2.11), we first calculate the 
undamped natural frequency and the damping factor. We thus have 
 

 400 4 10 rad/seck mω = = =  (b) 
and 

 16 0.2
2 2(4)(10)

c
m

ζ
ω

= = =  (c) 
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We next employ Eq. (2.90) where, for the present problem, n = 3 and x1 = 0.5 
m. This gives the desired position directly as 
 

  (d-1) 3(0.2)(10)(0.6413)(3 ) 0.5 0.01066 mdx T e−= = �
Equivalently, 

 
26 (0.2) 1 (0.2)(3 ) 0.5 0.01066 mdx T e π− −= =  (d-2) �

 
 
 

2.2.4  Overdamped Systems 2( 1ζ > )

t

Systems for which ζ 2 > 1 are referred to as overdamped systems. For such systems, 
the characteristic roots given by Eq. (2.68) are all real. Substitution of these roots into 
Eq. (2.66) gives the solution for the overdamped case as 
 
 ( ) ( )

1 2( ) tx t C e C eζ ω ζ ω− − − += +z z  (2.91) 
where 
 2 1ζ= −z  (2.92) 
 
An equivalent form of the solution is easily obtained with the aid of Eq. (1.63) as 
 
 [ ]1 2( ) cosh sinhtx t e A t A tζω ω ω−= +z z

2

 (2.93) 
and 
 1 1 2 2 1  ,  A C C A C C= + = −  (2.94) 
 
Upon imposing the initial conditions 0(0)x x=  and 0(0)x v=� , Eq. (2.93) gives the 
integration constants as 

 ( )0
1 0 2 2

  ,  
1

v x
A x A 0ω ζ

ζ

+
= =

−
 (2.95) 

 
The solution for the overdamped case then takes the form 
 

 
( )0 0

0( ) cosh sinht v x
x t e x t tζω ζω

ω ω
ω

− +⎡ ⎤
= +⎢ ⎥

⎣ ⎦
z

z
z  (2.96) 

 
where z is given by Eq. (2.92). Consideration of the exponential form of the solution, 
Eq. (2.91), shows that both terms of the solution decay exponentially. A typical re-
sponse is depicted in Figure 2.16. 
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x 0 

x 

t 
0 

   Figure 2.16  Typical response history of an overdamped system. 
 
 

Example 2.14 
The automobile system of Figure E2.12 is initially at rest when it is impacted, 
imparting an initial vertical velocity of 0.5 m/sec. Determine the maximum ver-
tical displacement of the system if c/m = 19 sec-1. 
 
Solution 
For the given system, k/m = 40 sec-2, c/m = 19 sec-1, and the initial conditions 
are x0 = 0 and v0 = 2 m/sec. Thus, from Eqs. (2.2), (2.65) and (2.92), 
 

 40 6.32 rad/secω = =  (a) 
 

 19 1.50
2 2(6.32)
c mζ

ω
= = =  (b) 

and 
 2(1.5) 1 1.12= − =z  (c) 

 
Differentiating Eq. (2.96) once with respect to time, setting the resulting ex-
pression to zero, and imposing the condition of vanishing initial displacement 
gives the time to the maximum displacement, t*, as 
 

 1 1.12* tanh 0.965
1.50

tω − ⎛ ⎞= =⎜ ⎟
⎝ ⎠

z  (d) 
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 Hence, 
 * 0.641 [(1.12)(6.32)] 0.136 secst = =  (e) 
 

Substitution of the nondimensional time, Eq. (d), or the dimensional time, Eq. 
(e), into Eq. (2.96) gives the maximum deflection. Thus, 

 

 

*0
max

1.50(0.136)

( *) sinh( *)

0.5       sinh(0.965)
(6.32)(1.12)

       0.0647 m 6.47 cm

tv
x x t e t

e

ζω ω
ω

−

−

= =

=

= =

z
z

 (f) �

 
 
 

2.2.5  Critically Damped Systems 2( 1ζ )=  
It was seen in the prior two sections that the response of an underdamped system  (ζ 2 
< 1) is a decaying oscillation, while the response of an overdamped system (ζ 2 > 1) is 
an exponential decay with no oscillatory behavior at all. A system for which ζ 2 =1 is 
referred to as critically damped since it lies at the boundary between the under-
damped and overdamped cases and therefore separates oscillatory behavior from 
nonoscillatory behavior. We examine this case next. 
 For critically damped systems, the characteristic roots given by Eq. (2.68) re-
duce to 
 ,s ω ω= − −  (2.97) 
 
When substituted into Eq. (2.66), these roots yield the solution for the critically 
damped case in the form 
 
 ( )1 2( ) tx t A A t e ω−= +  (2.98) 
 
where the factor t occurs because the roots are repeated. Imposition of the initial con-
ditions, 0(0)x x=  and 0(0)x v=� , renders the response given by Eq. (2.98) to the 
form 
 

( )0 0 0( ) tx t x v x t e ωω −= + +⎡ ⎤⎣ ⎦  (2.99) 

ial velocity 

 
 
Representative characteristic responses are displayed in Figure 2.17. It is seen from 
Eq. (2.99) that when the initial displacement and the init are of opposite 
sign and the latter is of sufficient magnitude, such that 0 0 1v xω < − , then the dis-
lacement passes through zero once and occurs at time 

 
p
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0 0

1
at t

v x ω
= =

−
 (2.100) 

 
Thus, for this situation, the displacement is initially positive and then becomes nega-
tive for t > ta . The mass then continues to move in the opposite direction, and eventu-
ally achieves a displacement of maximum magnitude, after which it changes direc-
tion. The displacement then decays exponentially. The change in direction occurs 
when . Imposing this condition on Eq. (2.99) and solving for the time gives the 
time to maximum overshoot as 

0x =�

 

 1
os at t t

ω
= = +  (2.101) 

 
This maximum displacement following reversal of direction is referred to as the 
“overshoot.” Thus, from Eq. (2.99), we have that the overshoot is given by 
 

 ( 1)0( ) 2.718os ost
os os

os os

x 0 txx x t e e
t tω ω

+= = − = −  (2.102) 

 
To visualize this phenomenon let us imagine that we pull the mass in one direction, 
hold it, and then “throw” the mass toward its equilibrium configuration. The mass 
then moves in this direction, and eventually passes through the equilibrium configura-
tion. At some later time, the mass stops for an instant (the displacement at this instant 
is the “overshoot”). It then reverses its direction and travels back toward the equilib-
rium position asymptotically. 
 

    Figure 2.17  Characteristic response histories of critically damped systems. 

0

x 

v 0 > 0 

v 0 = 0 

< 0 (case b) v 0 
t 

x 0 

v 0 < 0 (case a) 

x os 
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Example 2.15 
A plank that bridges a small segment of a body of still water is pinned at one 
end and sits on a pontoon at a distance L from the pin as shown in Fig. E2.15-1. 
The plank is of length 3L , the cross-sectional area of the pontoon is 1 m2 and 
the total mass of the plank and the pontoon together is 100 kg. It is desired to 
attach a viscous damper of coefficient 1200 N-sec/m at some distance l along 
the plank to minimize the effects of vibration. (a) Assume “small angle” mo-
tion of the plank and determine the ratio of the attachment length of the damper 
to that of the pontoon which will cause the system to achieve critical damping, 
and in so doing establish the allowable range of l/L that will prohibit (free) os-
cillatory motion. (b) If the 
pontoon is raised, held, and 
then pushed downward and 
released at a clockwise an-
gular speed of 1.5 rad/sec at 
an angle of 0.1 rads coun-
terclockwise from its level 
at equilibrium, determine 
the overshoot (if any) of the 
float if the system is criti-
cally damped. The density 
of water is ρw = 1000 kg/m3.           Figure E2.15-1  Plank and float system.  
 

olution S
(a) 

solve tTo his problem we must (i) establish an equivalent system (recognizing 

 
    Figure E2.15-2  Equivalent system. 

that the buoyant force exerted on the pontoon by the water acts as a restoring 
force, (ii) derive the equation of motion for the pontoon using this model, (iii) 
put the governing equation in the form of Eq. (2.64) and establish the effective 
damping factor, ζ, and the undamped natural frequency, ω. (iv) We can then set 
the damping factor to unity and solve for the desired value of the length ratio in 
question. 
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(i) The equi , using Eq. (1.40), 

Figure E2.15-3  Kinetic diagram. 

valent system is shown in Figure E2.15-2 where
  

 (1000)(9.81)(1) 9810 Neff wk gA /mρ= = =  (a) 

 

e 

 
(ii) To derive the governing equation of motion for the equivalent system we 
first draw the kinetic diagram shown in Fig. E2.15-3. As we need the rotational
acceleration of the plank and the velocity of the damper, as well as the dis-
placement of the mass, it is convenient to express our equations in terms of th
angular coordinate ( )tθ . 
 The damping force, Fd, and the spring force, Fs, are respectively 

 
 

d lF cs clθ= = ��  (b) 

 
and 

sins eff L effF k y k L θ= =  (c) 
 

he inertia force of the pontoon may be resolved into its normal and tangential 

 

T
components, fl nm a  and fl tm a , with regard to the circular path described by the 
float, where an and at are respectively the normal and tangential components of 
the acceleration of the pontoon, and mfl is its mass. Thus, if s = Lθ is the path 
coordinate for the pontoon, we have from Eq. (1.76) that 
 

2
2sm a m m Lfl n fl flL

θ= =
� �  (d) 

 Lfl t fl flm a m s m θ= =��

[Note that we could have just as easily used pol
 = L.] The moment of inertia of the plank about hinge O is given by  

 
 

��  (e) 
 

ar coordinates, Eq. (1.79), with 
R

 
( ) 21

3
pl

O pl plI m L=  (f) 
 
where mpl and Lpl respectively correspond to the mass and length of the plank, 
nd we have modeled the plank as a (uniform) rod. For tha

le
e present problem the 

ngth of the plank is given as 
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3plL L=   
 
Upon substituting this into Eq. (f), the momen
by 

 

t of inertia of the plank is given 

( ) 2 21
3

pl
O pl pl plI m L m L= =  (g) 

 
We are now ready to write the equation of motion for the plank-pontoon-
damper system. 

fl

  
(iii) Let FH and FV represent the horizontal and vertical reactions at pin O, re-
spectively. Taking moments about pin O, and using Eqs. (a)–(e) and (1.163), 
gives the rotational equation of motion for the plank. Thus, 
 

( )
/

pl
O O fl O flM I r mα= + ×
G G G G : a

 
( ) ( )2� �� ��

 
( ) 2

flm L θ+ ��
 (h) 

( sin )( cos )

                                               

eff pl fl

pl

cl l k L L m L m L L

m

θ θ θ θ θ+ = − −

= −

a, about O, of an equivalent rod with a singularity at r = L in 
 

 

 
(Note that the coefficient of the angular acceleration in Eq. (h) is simply the 
moment of inerti
the otherwise uniform mass distribution.) Upon rearranging terms, the equation
of angular motion takes the form 
 

2 2 2 sin cos 0mL cl k Lθ θ θ θeff+ + =�� �  (i) 
where 

 pl flm m m= +  (j) 

is the total mass of the system. If we divide through by mL2 
small angle assumption and linearize Eq. (i) by setting 

 
and employ the 

sin cosθ θ θ≈ , the 
equation of motion of the plank-pontoon-damper system reduces to the familiar 

 
form 

22 0θ ωζθ ω θ+ + =�� �  (k) 
where 
 

(1000)(9.81)(1) 9.90 rad/sec  (l)  
100

eff wk g A
m m

ρ π
ω = = = =

and 

 

 

( )2

2
c l L
m

ζ
ω

=  (m) 
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(iv) For critical damping, we set ζ  = 1 in Eq. (m) and so itical 
length ratio. Doing this gives 
 

lve for the cr

1/ 22 2(9.90)(100) 1.28=  (n)  
1200cr

l m
L c

ω⎛ ⎞ ⎡ ⎤= =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

Thus, for the system to avoid free vibratory behavior, the length rat
such that  

 

 
io must be 

1/ 2
2 1.28l mk

L c
⎡ ⎤

≥ =⎢ ⎥
⎣ ⎦

 � (o) 

(b) Let us first check to see that there will be an overshoot. Hence, 

 

 

 
0 0 1.5 [9.9( 0.1)] 16.67 1v ωθ = − = − < −   

 
Since the ratio satisfies the requisite inequality, we anticipate that the plank will 
pass through its equilibrium position one time before retu
cally. We now proceed to calculate by how much. To deter

e first calculate the time to the overshoot. Substitution of the given initial 

.100) gives the time to crossing the equilibrium position as 
 

rning to it asymptoti-
mine the overshoot, 

w
conditions and the value of the undamped natural frequency given by Eq. (l) 
into Eq. (2

1 0.196  secs
(1.5) /( 0.1) 9.9at = =

− −
 (p) 

me to over-
oot as 

 

  
ubstitution of  Eqs. (l) and (p) into Eq. (2.101) then gives the tiS

sh
10.196 0.297 secs

9.90os

 
The overshoot may now be determined using Eq. (2.102). Thus, 
 

t = + =  (q) 

 0.297( 0.10)2.718 0.0458 rads
(9.90)(0.297)os eθ −

= − =  � (r) 
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    Figure 2.18 Mass-spring system on rough surface. 

2.3  COULOMB (DRY FRICTION) DAMPING 

The m ss of the single degree of freedom system considered in Section 2.1 was as-
sumed to move along a frictionless uppose that we relax the assumption of 
the frictionless surface (Figure of friction affect the re-
sponse of the mass-spri ssipative (nonconservative) 
force we know that the energ conserved (Section 1.5.2). 
We therefore anticipate th fect on the motion of the 
mass. Let’s examine how. 

Consi ationary block that sits on a frictional surface and is acted upon by a 
force , as shown in Figure 2.19a. The corresponding free-body diagram is shown in 
Figure 2.19b. It is seen from the free-body diagram that the applied force, F, is bal-

 

 
 
 

a
surface. S

 2.18). How will the presence 
ng system? Since friction is a di

y of the system will not be 
at friction will have a damping ef

2.3.1  Stick-Slip Condition 

der a st
F

anced by the friction force, Fµ , provided that 

 s sF N mgµ µ µ< =  (2.103) 
 
where µs is the coefficient of static friction for the pair of surfaces in mutual contact, 
and N is the (compressive) normal force exerted on the block by the support. Once 
the magnitude of the friction force, and hence that of the applied force, achieves the 
critical level ||F||cr where 
 

s scr
F N mµ µ= = g  (2.104)  

 
sliding begins. The friction force then maintains the magnitude 
 
 k kF N mgµ µ µ= =  (2.105) 
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Figure 2.19  Equilibrium of block on rough surface: (a) block under a
body diagram. 

pplied load, (b) free-

roughout the motion, where µk is the coefficient of kinetic friction and 

 
 
th 1k sµ µ≤ < . 
Conversely, if during motion the mass should stop momentarily, and if the applied 

rce drops below the critical value while the mass is stationary, then the motion of 
e mass will cease. Thus, if ||F|| falls below ||F||cr as defined by Eq. (2.104), then the 

motion of the mass is mass-spring system of 
interest, we anticipate rection, stop for an in-
stant, then move in th hen move in the origi-
nal direction, stop for an i  this is the case 
will be confirmed short stem, the force ap-
pearing in Eqs. (2.103 oring force of the spring, Fs 
= −kx, at the instants bstituting F  for F in 

fo
th

 arrested (i.e., the mass “sticks”). For the 
 that the mass will first move in one di
e opposite direction, stop for an instant, t

nstant and reverse direction, and so on. That
ly. In this regard, for the mass-spring sy

) and (2.104) is replaced by the rest
 when the velocity of  the mass vanishes. Su s

Eq. (2.104) and solving for x gives the associated critical displacement, ||x||cr , as 
 

cr
x fµµ=  (2.106)  

where 

 k

F mgf
k k

µ
µ µ≡ =  (2.107) 

and 

 1s

k

µ
µ

µ
≡ ≥  (2.108) 

 
The parameter fµ is seen to be the static displacement of the mass if subjected to a 
constant force having the magnitude of the friction force. After incorporating Eqs. 
(2.106)–(2.108) into Eqs. (2.103)–(2.105), the stick-slip criterion for the mass-spring 
system may be stated as follows; 
 

If, at time , ( ) 0 

then ( ) 0 provided that ( ) .

If not, 0 for .

s s

s s

s

t t x t

x t x

x t t

t fµµ+

= =

> ≥

≡ >

�

�

�

  (2.109) 

 
 



2│ Free Vibration of Single Degree of Freedom Systems 129 

    Figure 2.20  Kinetic diagram. 
 

2.3.2  System

Let us consid on 2.1, however, let us 
now relax the assu mass slides is frictionless 
(Figure 2.18). The ki  Figure 2.20. When 
motion occurs, the 105) and its di-
rection is always he friction force 
reverses direct e the problem we 
therefore write  and 

 Response 

er once again the mass-spring system of Secti
mption that the surface on which the 
netic diagram for the present case is shown in

magnitude of the friction force is given by Eq. (2.
 opposite to that of the velocity of the mass. Thus, t

ion whenever the mass reverses direction. To solv
 the equations of motion for each case, 0x >� 0x <� , separately. 

Applying Newton’s Second Law as depicted in Figures 2.20a and 2.20b, respectively, 
and rearranging terms gives 
 

   ( 0)x x f x

µ

ω ω
 

2 2    ( 0)x x f x
µ

ω ω

2 2+ = − >

+ = + <�� �
 

�� �
(2.110) 

 
 Eqs. (2.2) and (2.107), respectively. The solution for where ω and fµ are given by

each case is easily found by adding the particular solution corresponding to the ap-
propriate right-hand side of Eq. (2.110) to the complementary solution given by Eq. 
(2.11). Thus, in each case, the response is of the form of a harmonic oscillation with a 
constant shift in displacement, fµ∓ . Hence, 
 

 
( ) cos( )      ( 0)

( ) cos( )      (

x t A t f x

x t A t f x
µ

µ

ω φ

ω φ

+ +

− − 0)

= − − >

= − +

�

�
 (2.111) 

 
Since each solution is only 

<

valid for the sign of the velocity indicated, each of the 
bove forms yields the response for only half of a cycle. a
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   Figure 2.21  Typical response history over one cycle. 

As the solutions described by Eqs. (2.111) are valid on intervals bounded
shing of the velocity, and hence when the mass is about to reverse it

et us consider the motion between the corresponding instants in time. If we st
easurements” in this way, then the initial velocity of each half cycl

e phase angle appearing in Eqs. (2.111) vanishes ( 0)φ ± = . Likewise, th
ement for each half cycle is given by the final displacement of the
and the amplitude of the half cycle is adjusted accordingly (see Fi

ncrement between half cycles in this way to obtain the full
tion of time. It will, however, prove sufficient to examine a single cycle in

Let us now consider the motion through one cycle, beginning at time 

e initial 
displac  prior half 
cycle, gure 2.21). 
One can i  response as a 
func  detail. 
  and 
concluding at time , where the period T is related to the frequency ω 
hrough Eq. (2.19). We shall take the reference displacement as positive, therefore the 

ass moves to the left )  for the first half of the cycle as indicated in Figure 

0t t=
 0t t T= +

t
m ( 0x <�
2.21. Let 0A A− =  correspond to the amplitude of the half cycle that begins at time 

=  Eqs. (2.111) then gives 0t t . The second of
 
 0 0( )x t A fµ= +  (2.112) 
 
which can, of course, be solved for the amplitude A0 for given 0 0( )x t x= . Similarly, 
 
 ( ) ( )0 02x t T A fµ+ = − −  (2.113) 
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W ext perform a similar calculation for the second half of the cycle (te n T/2
t of Eqs.

0 +  t ≤  
t

≤
0 + T ) using the firs  (2.111) together with Eq. (2.113) as the initial condi-

tion. This gives 
 02A f Aµ

+ = −  (2.114) 
 

ituting Eq. (2.114) into the first of Eqs. (2Su
p

bst .111) and evaluating the resulting ex-
ression at t = t0 + T gives the displacement at that particular instant as 

 
 0 0( ) 3x t T A fµ+ = −  (2.115) 

et ∆ correspond to the reduction in deflection over the cycle. Then, subtracting Eq. 
.115) from Eq. (2.112) gives the reduction 

 
L
(2
 

0 0
4

( ) ( ) 4 k mgx t T x t f
kµ

µ
∆ = + − = =  (2.116) 

er half of the cycle is ∆/2. The displacement reduction is clearly the 
me for each and every cycle. Thus, the effect o

ration response of the simple harmonic oscillator. However, the damping rate is seen 

iscous damp-
he frequency of oscillation and hence the perio

iction. Further, the motion terminates when

 

 
It is similarly seen, by subtracting Eq. (2.113) from Eq. (2.112), that the reduction in 
displacement ov
sa f dry friction is to damp the free vi-
b
to be constant causing the oscillations to decay in a linear manner for this case, as 
shown in Figure 2.22, rather than in an exponential manner as for the viscous damper 
iscussed in Section 2.2.2. It is also seen that, unlike for systems with vd

ing, t d is unaltered by the presence of 
fr  0x =�  and ||x|| < ||x|| . At this point, the cr

s through to that point. Let n = 1, 2, …, 
present the half-cycle number and let xn represent the corresponding peak displace-
ent at the end of that half-cycle. It is seen from Figures 2.21

spring force can no longer overcome the friction force. 
 To determine the time at which the mass sticks and motion subsides, let us con-
sider the number of half-cycles the mass goe
re
m  and 2.22 that 
 
 0 0n (2 1) 2x A n f x n fµ µ

 
The stick-slip condition, Eq. (2.109), tells us that motion will continue beyond a 
given peak provided that  
 
 

= − − = −  (2.117) 

0 2x n f fµ µµ− ≥  (2.118) 
 
The value of n for which sticking occurs is thus the first value of n for which the ine-
quality of Eq. (2.118) is violated. Solving the corresponding equality for n gives the 
critical parameter 
 



132 Engineering Vibrations 

Τ = 2π/ω 

x cr 

4f µ 

x 

t 

0 

 
Figure 2.22  Response history of system with Coulomb damping from onset to cessation of 
motion. 
 
 

 01
2cr

x
n

fµ

µ
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.11

parameter ncr will not be an integer. Thus, according to the crit
09) together with Eq. (2.118), the value of the integer n at which st
 described as follows: 

 is the first value of  that is greater than or equal to 

9) 

 
In general, the erion of  
Eq. (2.1 icking 
occurs is
 
 stick crn n n  (2.120) 
 

he time, t  , at which sticking of the mass occurs is then T stick
 
 2stick stickt n T=  (2.121) 

he mass is thus seen to stick at the first peak that lies between the dotted horizontal 
nvelope, ||x|| = ||x||cr , shown in Figure 2.22. 

 
T
e
 
 

Example 2.16 
A 2 kg mass attached to a linear elastic spring of stiffness k = 200 N/m is re-
leased from rest when the spring is stretched 10 cm. If the coefficients of static 
and kinetic friction between the mass and the surface that it moves on are µs = 
µk = 0.1, determine the time after release at which the mass sticks and the cor-
responding displacement of the mass.  
  
Solution 
We first calculate the natural frequency and
Hence, 

 period using Eqs. (2.2) and (2.19). 
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200 1
2

ω = = 0 rad/sec  (a) 

 

 2 0.628 secs
10

T π
= =  (b) 

 

 
We next evaluate the displacement parameter defined by Eq. (2.107), giving 
 

(0.1)(2)(9.81) 0.00981 m
200

fµ = =  (c) 

 
The half-cycle number for which stick occurs is next obtained by evaluating 
Eq. (2.108), and substituting this result, along with Eq. (c), into Eq. (2.119). 
This gives 

0.1 0.10.5 4.60  (d) 
0.00981 0.1crn ⎡ ⎤= − =⎢ ⎥⎣ ⎦

Thus, from Eq. (2.120), 

 

 

5stickn =  (e) 

at 
hich the motion of the mass is arrested is found by substituting Eqs. (b) and 

(e) into Eq. (2.121), giving 
 

 

 
Therefore, the mass comes to rest after going through 2½ cycles. The time 
w

5 (5) 1.57 secs
2stickt t= = =  (f) 

 
Finally, we

(0.628)

 have from the given initial conditions that x0 = 0.10 m. The dis-
placement of the mass at the sticking point is then fo
thus find that 

 

und using Eq. (2.117). We 

 
5 0.1stickx x= = 0 2(5)(0.00981) 0.0019 m 0.19 cm− = =  (g) �

 
  
 

2.4  CONCLUDING REMARKS 

 this chapter we have examined the behavior of single d
when they are free from forces from outside of the system. That is, no dynamic exter-
nal forces were considered. Rather, only the forces exerted by one part of the system 
on another part of the system (internal forces) entered into the problem. In this regard, 

In egree of freedom systems 
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the sp
which
the sp pers were considered to be massless. That is, the models consid-
ered apply to systems for which the mass, represented as a block or bob etc., is much 
reater than the masses of the objects represented as springs and dam s such
lastic beams. The only external force that was considered was the static gravitational 
orce, e effect of which was simply to shift the equilibrium configuration about 

which he mass oscillated for the case of the mass-spring-damper system. For the 
simpl um the gravitational force was seen to act as a restoring force in the 
spirit of that of an elastic spring for a mass-spring system. Gravity was seen to also 

Newtonian fluid acting on a floating body. This 
resulted in the representation of the fluid as an equivalent elastic spring. 

sting to note 
at t

ring, the viscous damper and, in the case of Coulomb friction, the surface upon 
 the mass moved were all considered to be part of the system. We remark that 
rings and dam

g per  as 
e
f  th

t 
e pendul

play a role in the buoyant force of a 

 The mathematical process of linearization was demonstrated for the problem of 
the simple pendulum. The complex nonlinear equation of motion for the pendulum 
was simplified and took the form of the simple harmonic oscillator for situations 
where the amplitudes of the angular motions were suitably restricted. It was seen, 
however, that when this was done the second (vertical) equilibrium configuration was 
not predicted. This is typical of what occurs when linearization is performed; some 
information is lost. It was, however, seen that the oscillatory behavior of the pendu-
lum was well represented by the linearized equation for a fairly wide range of ampli-
tudes. It is instructive to remark here that the Euler-Bernoulli beam equations, used in 
this and the prior chapter to represent the members of certain structural systems as 
equivalent linear springs, are also obtained by linearization of more complex models. 
Such beam equations are valid for a restricted range of strains (infinitesimal), rota-
tions and deflections. More correct models include the small strain and moderate ro-
tation model typically used to examine buckling behavior (both static and dynamic). 
These issues are discussed in greater detail in Chapter 9. For truly finite deflections 
the structure must be modeled, more correctly, as an elastica. It is intere
th he equation governing the tangent angle as a function of distance along the axis 
for the (quasi-static) elastica is identical to the nonlinear equation of motion (angle of 
rotation as a function of time) for the simple pendulum, with the parameters suitably 
interpreted. 
 The effects of two types of damping were considered. These included viscous 
and Coulomb damping. Other types of damping that influence the vibratory behavior 
of mechanical systems include structural/internal/material or hysteresis damping, and 
aerodynamic damping, though these are often treated as effective viscous damping in 
practice. The effects of structural damping will be discussed in Chapter 3.  
 At this point we have an understanding of the vibratory behavior of single de-
gree of freedom systems when free of external dynamic forces. We are now ready to 
examine the motion of such systems due to time dependent external excitation. 
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PROBLEMS 

2.1 The mass of a mass-spring system is displaced and released from rest. If the 20 
gm mass is observed to return to the release point every seconds, determine 

  

ess is 50 lb/in. When one package is accidentally knocked off the scale the 
hat is 

2.3 the natural frequency for side-sway motion of the one story structure 
shown in Figure 1.8. Do the same for the structure shown in Figure 1.9. What is 
the relation between the two and hence what is the effect of embedding the col-
umns in the roof on the motion of the structure? 

 system is represented as a 4 kg mass attached to a 

 label the response history of the system. 

phase lag for the motion? Sketch 
and label the response history of the system. 

 2 
the stiffness of the spring. 

2.2 Two packages are placed on a spring scale whose plate weighs 10 lb and whose 
stiffn
remaining package is observed to oscillate through 3 cycles per second. W
the weight of the remaining package? 

 
Determine 

  
2.4 A single degree of freedom

spring possessing a stiffness of 6 N/m. Determine the response of the horizon-
tally configured system if the mass is displaced 2 meters to the right and re-
leased with a velocity of 4 m/sec. What is the amplitude, period and phase lag 
for the motion? Sketch and

 
2.5 A single degree of freedom system is represented as a 2 kg mass attached to a 

spring possessing a stiffness of 4 N/m. Determine the response of the vertically 
configured system if the mass is displaced 1 meter downward and released 
from rest. What is the amplitude, period and 
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A 30 cm aluminum rod possessing a circular cross 
section of 1.25 cm radius is inserted into a testing 
machine where it is fixed at one end and attach

2.6 

ed 
to a load cell at the other end. At some point during 

 
                                                                                 Fig. P2.6 

2.7 

cell slips, releasing that end of the rod. If 

 
2.8 loating in water. Measure 

tor and calculate its natural 
ding on your particular ice 

tray.) Confirm your “experiment.” Place an ice cube in water, displace it 
slightly and n oscil-
lation with your wrist watch, or a 

 
2.9 re the 

ddenly 
re re-

cillations of the manometer fluid about its equi-

         
 
2.10 

e weight if it has been welded to the beam. 

a tensile test the clamp at the load cell slips, releas-
ing that end of the rod. If the 20 kg clamp remains 
attached to the end of the rod, determine the fre-
quency of the oscillations of the rod-clamp system?  

 
 

A 30 cm aluminum rod possessing a circular cross section of 1.25 cm radius is 
inserted into a testing machine where it is fixed at one end and attached to a 
load cell at the other end. At some point 
during a torsion test the clamp at the load 

the 20 kg clamp remains attached to the 
end of the rod, determine the frequency of 
the oscillations of the rod-clamp system. 
The radius of gyration of the clamp is 5 cm.               

Determine the natural period of a typical ice cube f
the dimensions of a typical cube from your refrigera
frequency in water. (The dimensions may vary depen

        Fig. P2.7 

 release it. Make an approximate measure of the period of a

stop watch if available. Repeat 
this operation several times and 
compare the average measured 
value with the calculated value.                    

The manometer shown is used to measu
pressure in a pipe. If the pipe pressure is su
reduced to atmospheric (the gage pressu
duced to zero), determine the frequency of the os-

              Fig. P2.8  

librium configuration if the total length of the 
manometer fluid is L and the tube is uniform.                          
                                                                                                Fig. P2.9 

The tip of cantilever beam of Problem 1.4 is displaced 1˝ and released from 
rest. Determine the response of th
Sketch and label the response. 
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2.11 
he response of the weight if it 

has been welded to the beam. Sketch and label the response. 

2.12   1.6 if 
st. The beam and moveable 

em 1.4. 
 
2.13 ailroad yard. The stop con-

e end and 
welded to a rigid plate at the other. The plate is hooked to the stationary rail-

d 

tem after docking.                                                     Fig. P2.13 

2.14 

 
 
 
2.16 

 water 
 center-
 lies a 

troid G, 

moment of inertia IG, determine the fre-

 
         

 
 

.17 A woman observes that the chandelier hanging in the hallway of her home is 
swinging to and fro about every three seconds. What is the length of the chan-
delier’s cable?  

The center span of the simply supported beam of Problem 1.5 is displaced 1˝ 
and released at a speed of 13.9 in/sec. Determine t

 
Determine the response of the movable support for
the support is displaced 1˝ and released from re
support have the properties of the beam and weight of Probl

A railroad car of mass m is attached to a stop in a r
sists of four identical metal rods of length L, radius R and

the system of Problem

 elastic modulus E 
that are arranged symmetrically and are fixed to a rigid wall at on

road car as shown. In a docking 
maneuver, a second car of mass 
m approaches the first at spee
v1. If the second car locks onto 
the first upon contact, determine 
the response of the two car sys-

 
Determine the response of the 200 lb. raft of Problem 1.7 if the man suddenly 
dives off. 

 
2.15 Determine the response of the 200 lb. raft of Problem 1.15 if the woman sud-

denly dives off. 

The line of action of the resultant buoy
force exerted on a ship by the
passes through a point Q along the
plane as indicated. If the point Q
distance A above the ship’s cen
and the ship possesses mass m and mass 

ant 

quency of small angle rolling. 

 
 

            Fig. P2.16 

 
2
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2.18 The bob of a simple pendulum is 
immersed in a medium whose re-
sistance ay be represented as a 
spring of stiffness k connected at 

m

distance a from the base of the rod 
as shown. Determine the natural 
frequency of the system.  

  
                                                             Fig. P2.18 

2.19 
igible m ss supported by a torsional spring at its 

s k , where k /mgL > 1, determine the pe-
evice as a function of the attachment length, 

 0. 
 

         

.20 A circular tube of 1 m inner diameter stands in the vertical plane. A  6 gm mar-
ble of 1.5 cm laced in the t  and then re-
leased. Determine the time it takes for um height 
on the opposite rise. What is the frequency

 
2.21 The system shown consists of a rigi mass m, 

and an elastic belt of stiffness k. Determ e system. 
The belt is unstretched when θ = 0.  

 
 
 

               Fig. P2.21 

 

 
                                                                        
 
 

The timing device shown consists of a movable cylinder of known mass m that 
is attached to a rod of negl a
base. If the stiffness of the spring i
riod of small angle motion of the d
L, if the spring is untorqued when θ =

T T

                   Fig. P2.19                                              Fig. P2.20 
 
2

 diameter is p ube, held at a certain height
the marble to reach its maxim

 of the marble’s motion? 

d rod, a flywheel of radius R and 
ine the natural frequency of th
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2.22 wly rotated 

through angle θ0 and then released from rest.  

2.23 
ssless rod which, in turn, is pin-connected 

to a wheel at radi f the wheel 
about an axis throu  of the sys-
tem. (The spring i ‘O’.) 

proximation i
 
2.25 A singl mass attached to a 

spri er whose coefficient 
is 1 N-sec/m. (  configured system 
if the mass is displaced 2 meters to the right and released with a velocity of 4 

 system. (b) Determine the re-
sponse and plot its history if the damping coefficient is 5 N-sec/m. (c) Deter-

 
2.26 

leased from rest. Plot and la-
bel the response history of the system. (b) Determine the response and plot its 

 
2.27 

 

Determine the response of the flywheel of Problem 2.21 if it is slo

 
The cranking device shown consists of a mass-spring system of stiffness k and 
mass m that is pin-connected to a ma

us R, as indicated. If the mass moment of inertia o
gh the hub is IO, determine the natural frequency

s unstretched when connecting pin is directly over hub 

 
  Fig. P2.23  

 
2.24 Use the software of your choice (or, if this is not option, any suitable mathe-

matical tables at your disposal) to evaluate the period of the finite motion of a 
pendulum when it is released from rest at a series of initial angles within the 
range 0 < θ0 < π. (a) Plot the normalized period as a function of the initial an-
gle. (b) Determine the initial angle at which the percent error for the linear ap-

s (i) less than 5%, (ii) less than 1%.  

e degree of freedom system is represented as a 4 kg 
ng possessing a stiffness of 6 N/m and a viscous damp

a) Determine the response of the horizontally

m/sec. Plot and label the response history of the

mine the response and plot its history if the damping coefficient is 10 N-sec/m. 

A single degree of freedom system is represented as a 2 kg mass attached to a 
spring possessing a stiffness of 4 N/m and a viscous damper whose coefficient 
is 2 N-sec/m. (a) Determine the response of the horizontally configured system 
if the mass is displaced 1 meter to the right and re

history if the damping coefficient is 8 N-sec/m. 

A 12 kg spool that is 1 m in radius is pinned to a viscoelastic rod of negligible 
mass with effective properties k = 10 N/m and c = 8 N-sec/m. The end of the 
rod is attached to a rigid support as shown. Determine the natural frequency of 
the system if the spool rolls without slipping. 



140 Engineering Vibrations 

   Fig. P2.27 

A viscous damper with coefficient c is fixed

 
 
2.28  at one end 

and is attached to the cylindrical mass of the timing de-
vice of Probl
natural

 
 

 

2.29 (a) A ma 6 seconds. After a 
-spring-damper system is ob-

served to oscillate with a period of 3.0 seconds. Determine the damping factor 
for the system. (b) A mass-spring-damper system is displ  

orded and displayed, 
om the measured re-

 

   Fig. P2.29 

em 2.19 at the other end. Determine the 
 frequency of the system.  

                                                                                    Fig. P2.28 

                                                     
ss-spring system oscillates freely with a period of 2.

viscous damper is attached, the resulting mass

aced and released
from rest. The time history of the motion of the mass is rec
as shown (Figure P2.29). Estimate the damping factor fr
sponse. 

0 2 4 6 8 10 12
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2.30 A diving board that is 7 feet in length, has a cross-sectional area of 2 ft2 and a 
specif ffness kT = 
13.45 103 ft-lb/rad and a viscous damper of coefficient c that is located 2 feet 
ahead of the spring’s pivot, as shown. Assuming that the flexure of the board is 
accounted for in the model of the spring, and hence that the board may be 
treated as rigid, determine the value of c so that the oscillations will decay to 
2% of their initial amplitude within 5 cycles. 

 

    Fig. P2.30 
 
2.31 A simple pendulum is immersed in a viscous fluid. If the resistance of the fluid 

near s s damper attached a distance a 

 

 
2.32 Deter  board of 

Probl  2.30. 

T  
of the door as indicated, and a damper is to be in-
stalled near t
from slammi
damping coeffici
the damp
hinge.
            

ic weight of 48 lb/ft3 is supported by a torsional spring of sti
×

can be modeled by the li pring and viscou
from the support, determine the critical value of c. 

   Fig. P2.31 

mine the critical value of the damping coefficient for the diving
em

 
 
2.33 A screen door of mass m, height L and width A is 

attached to a door frame as indicated. A torsional 
spring of stiffness k  is attached as a closer at the top

he bottom of the door to keep the door 
ng. Determine the limiting value of the 

ent so that the door closes gently, if 
er is to be attached a distance a from the 

                                                                                                          
                                     Fig. P2.33                       
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2.34 De t vershoot if the lem 2.25 is critically damped and 
v0 = − 4 m/sec. 

2.35 vershoot if the system of Problem 2.26 i
v0 = − 2 m/sec.  

mass attached to a 
ents of static and kinetic 

 are µs = µk = 0.1, and the 
ith a velocity of 4 m/sec, 
ks and the corresponding 

 
2.37  2 kg mass attached to a 

 kinetic 
ictio  betw en the  µs = 

tween successive periods 
f the oscillations?  

 way of the Principle of Work-Energy, that the decay in dis-
placement per cycle for a mass-spring system with coulomb friction is 

termine he o system of Prob

 
Determine the o s critically damped and 

 
2.36 A single degree of freedom system is represented as a 4 kg 

spring possessing a stiffness of 6 N/m. If the coeffici
friction between the mass and the surface it moves on
mass is displaced 2 meters to the right and released w
determine the time after release at which the mass stic
displacement of the mass.  

A single degree of freedom system is represented as a
spring possessing a stiffness of 4 N/m. If the coefficients of static and
fr n e  block and the surface it moves on are respectively
0.12 and µk = 0.10, determine the drop in amplitude be
during free vibration. What is the frequency o

 
2.38 Use the work-energy principle, Eq. (1.84) or Eq. (1.92), to arrive at Eq. (2.116). 

That is show, by

4 k mg kµ∆ = . 
 
 



   

3 
Forced Vibration of Single Degree of 
Freedom Systems – 1:                    
Periodic Excitation 

 
 
 
In Chapter 2 we studied the response of single degree of freedom systems that were 
free from external loading. In doing so we established parameters that characterize 
the system and discussed the motion that would ensue if the system was disturbed 
from equilibrium and then moved under its own volition. In this and the next chapter 
we shall study the response of single degree of freedom systems that are subjected to 
time dependent external forcing, that is forcing which is applied to the system from 
an outside source. In the present chapter we consider forcing that is continuously ap-
plied and repeats itself over time. Specifically, we now consider forcing that varies 
harmonically with time, and forcing that is periodic but is otherwise of a general na-
ture. We begin with a discussion of the general form of the equation of motion for 
forced single degree of freedom systems, followed by a discussion of superposition. 
 

3.1 STANDARD FORM OF THE EQUATION OF MOTION 

It was seen in the previous two chapters that a mass-spring damper system is repre-
sentative of a variety of complex systems. It was also seen that the equations of mo-
tion of various single degree of freedom systems took on a common general form. 
We therefore consider the externally forced mass-spring-damper system to initiate 
our discussion. 
 Consider the system comprised of a mass m attached to a spring of stiffness k 
and a viscous damper of damping coefficient c that is subjected to a time dependent 
force F(t) as shown in Figure 3.1. The mass moves along a frictionless surface, or 
hangs vertically, as indicated. In either case, x(t) measures the displacement of the      

 143 
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mass from its equilibrium configuration. The corresponding dynamic free body dia-
gram (DFBD) is depicted in Figure 3.2. Applying Newton’s Second Law along the x 
direction gives 
 
 ( )kx cx F t mx− − + =

)

 
 
which, when rearranged, takes the form 
 
 2 22 (x x x f tωζ ω ω+ + =  (3.1) 
where 

 ( )( ) F tf t
k

=  (3.2) 

and 

 
2

c
mk

ζ =     and    k
m

ω =   

 
respectively correspond to the viscous damping factor and undamped natural fre-
quency introduced in Chapter 2. An equation of motion expressed in the form of Eq. 
(3.1) will be said to be in standard form. Equation (3.1) is seen to be of the same gen-
eral form as Eq. (2.64), but with nonvanishing right hand side. It may be seen that, for 
the mass-spring-damper system, the quantity f(t) has units of length.  
 

3.2 SUPERPOSITION 

In this section we shall establish the principle of superposition for the specific class of 
linear systems under consideration. This principle shall be of great importance in 
evaluating the response of the many types of systems and loading considered 
throughout our study of linear vibrations. We consider the mass-spring-damper sys-
tem to represent the class of systems of interest. 
 

        Figure 3.1  Mass-spring-damper system subjected to external forcing. 
 



3│ Forced Vibration of Single Degree of Freedom Systems – 1  145 

 
       Figure 3.2  Kinetic diagram for mass-spring-damper system. 
 
 
 Suppose the mass of the system of Figure 3.1 is simultaneously subjected to 
two different forces F1(t) and F2(t). Let x1(t) correspond to the response of the system 
when it is subjected to F1(t) alone, and let x2(t) correspond to the response of the sys-
tem when it is subjected to F2(t) alone. Further, let 
 
 1 1 2 2( ) ( )     and    ( ) ( )f t F t k f t F t k= =  
 
If this is so then each force-displacement pair, {F1, x1} and {F2, x2}, must separately 
satisfy Eq. (3.1). Hence, 
 
 2 2

1 1 1 12 ( )x x x fωζ ω ω+ + = t

( )

 (3.3) 
 
 2 2

2 2 2 22x x x fωζ ω ω+ + = t  (3.4) 
 
Adding Eqs. (3.3) and (3.4), and exploiting the fact that the differential operators are 
linear, gives the relation 
 

 { } { } { } {
2

2 2
1 2 1 2 1 2 1 22 2d d }x x x x x x f

dtdt
ωζ ω ω+ + + + + = + f

( )

  

 
or, equivalently, 
 
 2 22x x x f tωζ ω ω+ + =  (3.5) 
where 
 1 2( ) ( ) ( )x t x t x t= +  (3.6) 
and 

 1 2
1 2

( ) ( )
( ) ( ) ( )

F t F tf t f t f t
k
+

= + =  (3.7) 

 
Equation (3.5) is seen to be identical to Eq. (3.1), and the response is seen to be the 
sum of the responses to the individual forces. We thus see that the response of the 
system subjected to two forces acting simultaneously is equal to the sum of the re-
sponses to the two forces acting individually. This process can be extended to any 
number of forces and is referred to as the principle of superposition. What permits 
this convenient property to occur when we add Eqs. (3.3) and (3.4) to get Eq. (3.5) is 
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the fact that the differential operators in Eq. (3.1), and hence in Eqs. (3.3) and (3.4), 
appear to first power only as does the displacement. If this was not the case (say, for 
example, one or more of the operators was squared) then it is evident that the equa-
tion resulting from the sum of the individual equations of motion would not be of the 
same form as the original two equations. 
 
 

Example 3.1 
Determine the response of an undamped mass-spring system to an applied 
force of the form 0( ) (1 )F t F bt= + , where 0F  and b are constants. 
 
Solution 
Let us consider the applied force as the sum of two forces 1 0( )F t F=  and 

2 0( )F t F b= t . Let us further determine the response of the system (the solution) 
to each force acting separately. Thus, let us solve the following two problems: 
 

 2 2 0F
x x

k
ω ω+ =  (a) 

 2 2 0F
x x

k
ω ω+ = bt  (b) 

 
The solutions to Eqs. (a) and (b) are readily obtained as 
 

 0
1 1 2( ) cos sin

F
x t A t A t

k
ω ω= + +  (c) 

 0
2 1 2( ) cos sin

F
x t B t B t bt

k
ω ω= + +  (d) 

 
respectively. Based on the principle of superposition, the response of the sys-
tem in question to the given applied force is obtained by add-
ing Eqs. (c) and (d). Hence, 

0( ) (1 )F t F bt= +

 

 0
1 2

(1 )
( ) cos sin

F bt
x t C t C t

k
ω ω

+
= + +  (e) 

where 
 1 1 1 2 2   and   C A B C A B2= + = +  

 
and the constants of integration, C1 and C2, are determined from the specific 
initial conditions for a given problem. 
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 In preparation for the development and analyses of the next section, we finish 
the present discussion by establishing a result for complex forces and displacements 
(forces and displacements possessing both real and imaginary parts). To accomplish 
this, let us multiply Eq. (3.4) by the imaginary number 1i ≡ −  and add Eq. (3.3) to 
the resulting expression. This gives the differential equation 
 
 2 2 ˆˆ ˆ ˆ2 ( )x x x f tωζ ω ω+ + =  (3.8) 
where 
 1 2ˆ( ) ( ) ( )x t x t ix t= +  (3.9) 
and 

 1 2
1 2

( ) ( )ˆ ( ) ( ) ( )
F t iF tf t f t if t

k
+

= + =  (3.10) 

 
It is seen from the above superposition that the real part of the complex response is 
the response to the real part of the complex force and the imaginary part of the com-
plex response is the response to the imaginary part of the complex force. We shall use 
this important property in the developments and analyses of the next section, and 
throughout our study of vibrations. 
  

3.3 HARMONIC FORCING 

An important class of forcing in the study of vibrations, both fundamentally and with 
regard to applications, is harmonic excitation. In this section we shall consider the 
specific class of forces whose time dependence is harmonic. That is, we shall con-
sider forces that vary temporally in the form of sine and cosine functions.  
 

3.3.1  Formulation 

Let us consider forcing functions of the form 
 
 0( ) cos    and   ( ) sin0F t F t F t F t= Ω = Ω  (3.11) 
 
where F0 = constant is the amplitude of the applied force and Ω is the frequency of 
the applied force. The latter is referred to as the forcing frequency or the excitation 
frequency. 
 We can solve the problem of harmonic forcing for time dependence in the form 
of cosine or sine functions individually, however that will be left as an exercise. In-
stead we shall solve both problems simultaneously by using the principle of superpo-
sition (Section 3.2) together with Euler’s Formula, Eq. (1.61). Let us combine the two 
forcing functions described by Eqs. (3.11) by defining the complex forcing function  
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 0 0
ˆ ( ) cos sin i t

0F t F t iF t F e Ω= Ω + Ω =  (3.12) 
 

It follows from Eqs. (3.8)–(3.10) that once the response to the complex force is de-
termined then the response to the cosine function will be the real part of the complex 
response and the response to the sine function will be the imaginary part of the com-
plex response. We shall therefore solve the problem  
 
 2 2 2

0
ˆˆ ˆ ˆ2 ( ) i tx x x f t f eωζ ω ω ω Ω+ + = =  (3.13) 

where 
 0 0f F k=  (3.14) 
 
It may be seen that the parameter f0 corresponds to the deflection that the mass of the 
system would undergo if it was subjected to a static force of the same magnitude, F0, 
as that of the dynamic load. 
 The general solution of Eq. (3.13) consists of the sum of the complementary 
solution and the particular solution associated with the specific form of the forcing 
function considered. Hence, 
 
 ˆ ˆ ˆ( ) ( ) ( )c px t x t x t= +  (3.15) 
 
where subscripts c and p indicate the complementary and particular solution, respec-
tively. The former corresponds to the solution to the associated homogeneous equa-
tion, as discussed in Chapter 2. Incorporating Eqs. (2.11), (2.74), (2.93) and (2.98) 
gives the general solutions for undamped and viscously damped systems as 
 
  (3.16) ( ) cos( ) ( )          (0 1)t

d px t Ae t x tζω ω φ ζ−= − + ≤ <
 
 [ ]1 2( ) cosh sinh ( )   ( 1)t

px t e A t A t x tζω ω ω ζ−= + +z z >  (3.17) 
 
 ( )1 2( ) ( )             ( 1)t

px t A A t e x tω ζ−= + + =  (3.18) 
 
where ωd and z are defined by Eqs. (2.70) and (2.92), respectively. The constants of 
integration are evaluated by imposition of the initial conditions on the pertinent form 
of the response, Eq. (3.16), (3.17) or (3.18), after the specific form of the particular 
solution is determined. 
 It is seen that the complementary solution damps out and becomes negligible 
with respect to the particular solution after a sufficient amount of time. (Note that the 
undamped case, ζ = 0, is an idealization for very light damping. Since all systems 
possess some damping we shall, for the purposes of the present discussion, consider 
the complementary solution to decay for vanishing damping as well.) Since we are 
presently considering forces that act continuously over very long time intervals, the 
particular solution for these cases corresponds to the steady state response of the sys-
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tem. As an example, imagine that we are modeling the behavior of a machine or ve-
hicle that is switched on and then runs for the entire day. The normal operating state 
will be achieved a short time after the system is turned on, after the transients have 
died out. This state is referred to as the steady state, and the response during this time 
is referred to as the steady state response. Thus, for any loading which repeats itself 
over long intervals of time, including the present harmonic loading, we denote the 
particular solution as xss. Thus, xp ↔  xss for the class of loading considered in this 
chapter. We first examine the steady state response for undamped systems and then 
study the effects of  damping on forced vibrations. 
 

3.3.2  Steady State Response of Undamped Systems 

Though all systems possess some degree of damping it is instructive, as well as prac-
tical, to examine the response of  undamped systems. We therefore first consider the 
special case of vanishing damping.  
 To establish the steady state response we seek to determine the complex func-
tion ˆssx  that, when substituted into the left hand side of Eq. (3.13) with ζ = 0, results 
in the right hand side of that equation. Given that the time dependence of the forcing 
function is exponential, and given that differentiation of exponentials results in expo-
nentials, let us assume a particular solution of the form 
 
 ˆˆ ˆ( ) ( ) i t

p ssx t x t Xe Ω= =  (3.19) 
 
where is a (possibly complex) constant to be determined. Substitution of the as-
sumed form of the solution, Eq. (3.19), into the governing equation, Eq. (3.13), re-
sults in the algebraic equation 

X̂

 
 2 2 2

0
ˆ( ) i t i ti Xe fω ω eΩ Ω⎡ ⎤Ω + =⎣ ⎦    

 
which may be solved for  to give X̂
 

 0
2

ˆ
1

fX =
− Ω

 (3.20) 

where  
 /ωΩ ≡ Ω  (3.21) 
 
Equivalently, 
 ˆ iX Xe− Φ=  (3.22) 
where 
 ( )0 0X f= Γ Ω  (3.23) 
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 ( )0 2

1
1

Γ Ω =
− Ω

 (3.24) 

and 

    0   when   1
  when   1π

Φ = Ω <

Φ = Ω >
 (3.25) 

 
Substituting Eq. (3.20) into Eq. (3.19) and using Euler’s Formula gives the particular 
solution 
 

 [ ] [ ]0
2

ˆ ( ) cos( ) sin( ) cos sin
1ss

fx t X t i t t i t= Ω − Φ + Ω − Φ = Ω + Ω
− Ω

 (3.26) 

 
As discussed at the end of Section 3.2, the response to the real part of a complex forc-
ing function is the real part of the complex response. Likewise, the response to the 
imaginary part of a complex forcing function is the imaginary part of the complex 
response. Thus, pairing Eq. (3.26) with Eq. (3.12) in this sense, we find the following 
responses:  
 
if 0( ) cosF t F= tΩ , then 
 

 0
2( ) cos( ) cos

1ss
fx t X t t= Ω − Φ = Ω

− Ω
 (3.27) 

 
if 0( ) sinF t F t= Ω , then 

 0
2( ) sin( ) sin

1ss
fx t X t t= Ω − Φ = Ω

− Ω
 (3.28) 

0

f(t) 

x(t) 

t 

t 

f 
0 

−f 
0 

0 

0 

f 

−f 

0 

0 

     Figure 3.3  Typical time histories of excitation, and response,( ),f t ( ),x t for 1.Ω >  
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The parameter X is seen to be the amplitude of the steady state response. Conse-
quently, the parameter Γ0 is referred to as the magnification factor, and the angle Φ is 
seen to be the phase angle of the steady state response measured with respect to the 
excitation.  
 It may be seen that the steady state response is in phase with the force when the 
excitation frequency is less than the natural frequency of the system and that the re-
sponse is π radians out of phase with the force, and hence lags the force by tlag = π /ω, 
when the excitation frequency is greater than the natural frequency. Thus, when in 
steady state motion, the mass oscillates about its equilibrium position with frequency 
Ω and constant amplitude X, completely in phase or 180 degrees out of phase with the 
force according to Eq. (3.25). Typical time histories of the excitation and the corre-
sponding response of the system are displayed in Figure 3.3 for the case when 1Ω > . 
In addition, it may be seen that the magnification factor corresponds to the ratio of the 
amplitude of the deflection induced by the applied harmonic force to the static deflec-
tion that would be produced by an applied static force having the same magnitude as 
the dynamic force. The magnification factor therefore measures the magnification of 
the static response due to the dynamic nature of the applied force and mechanical 
system and, as will be demonstrated in subsequent sections, is an important parameter 
in design considerations where vibratory behavior is pertinent. 
 
 

Example 3.2 
A 4 kg mass is attached to a spring of stiffness 2 N/m. If the mass is excited by 
the external force F(t) = 5cos2t N, determine the amplitude and phase of the 
steady state response. Write down the response. Plot the steady state response 
of the system and label pertinent measures. 
 
Solution 
For the mass-spring system, the natural frequency is 
 

 2 .7071 rad/sec
4

ω = =  (a) 

 
The frequency of the given excitation is Ω = 2 rad/sec. Thus, 
 

 2 2.828 ( 1)
0.7071

Ω = = >  

 
It then follows from Eq. (3.25) that 
 

 πΦ =  (b) 
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The amplitude of the steady state response is next computed using Eq. (3.23). 
Hence, 

 
2

5 2 0.357 m = 35.7 cm
1 (2.828)

X = =
−

 (c) 

 
The steady state response of the mass-spring system is now calculated using 
Eq. (3.27). Thus, 
 

 ( ) 0.357cos(2 ) 0.357cos 2  m 35.7cos 2  cmssx t t t tπ= − = − = −  (d) 
 
The force and response histories are displayed below (Figure E3.2). 
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    Figure E3.2 
 

 
  

Example 3.3 
The teetering glider of Example 2.9 undergoes a sustained breeze while on the 
ground. The force imposed by the breeze consists of a constant uniform lift 
force of magnitude 0F  (< mg) and a nonuniform time dependent perturbation. 
The perturbation of the wind force manifests itself as the equivalent of two har-
monic forces, each of magnitude Fε and frequency Ω, mutually out of phase 
and acting at the half length points of the wings as indicated. If FL lags FR by 
180°, determine the steady state response of the glider. 
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               Figure E3.3  Glider with wind load perturbation. 

 
Solution 
The perturbed portion of the wind forces may be expressed as follows: 
 

 ( ) sinRF t F tε= Ω   
 

 ( ) sin( ) sinLF t F t F tε επ= Ω − = − Ω   
 
To derive the equations of motion for the present case, we augment the kinetic 
diagram of Example 2.9 by including the wind forces. The inertia portion of the 
kinetic diagram remains the same. Adding the moments of the wind forces to 
the development of Example 2.9, and linearizing as for that problem, gives the 
equation of motion for the forced system as 
 
   2 2sin ( )GLF t mg m r Rε θ θ⎡ ⎤Ω − = + −⎣ ⎦  (a) 
 
Rearranging terms gives the equation of motion for the wind excited glider as 
 

 sin
eff eff

LFg g t
L L mg

εθ θ+ = Ω  (b) 

where 
 2 2( )eff GL r R⎡ ⎤= + −⎣ ⎦  (c) 

 
Equation (b) may be written in the “standard form” 
 

 2 2 sinf tεθ ω θ ω+ = Ω  (d) 
where 
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 2

eff

g
L

ω =  (e) 

and 

 
LFf
mg

ε
ε =  (f) 

 
With Eqs. (d)–(f) identified, the response can now be written directly from Eq. 
(3.28). Doing this we find that the steady state response of the glider is  
 

 
( )2

( ) sin
1 eff

f
t t

L g
εθ = Ω

− Ω
 (g) 

 
 
 
 The discussion to this point has pertained to excitation frequencies for which 

.ωΩ ≠  However, upon examination of Eqs. (3.23), (3.24), (3.27) and (3.28), it is 
seen that the amplitude, and hence the solutions, become singular when 

2 1 ( ).ωΩ = Ω =  Though this tells us that something interesting occurs when the 
forcing frequency takes on the value of the natural frequency of the system, the solu-
tions given by Eqs. (3.26)–(3.28) are actually invalid when 1.Ω =  This becomes 
evident when we go back and examine the equation of motion for this special case 
(ζ = 0). We must therefore re-solve the problem for the case where the forcing fre-
quency equals the natural frequency of the system. 
 

The Phenomenon of Resonance 
When ζ = 0 and 1Ω = (Ω = ω), Eq. (3.13) reduces to the form 
 
 2 2

0ˆ ˆ i tx x f e ωω ω+ =  (3.29) 
 
It is seen that, for this case, the time dependence of the forcing function is of precisely 
the same form as the solution to the corresponding homogenous equation studied in 
Section 2.1. Thus, any solution of the form ˆ( ) i tx t Ce ω= will yield zero when substi-
tuted into the left-hand side of Eq. (3.29). The particular solution for this special case 
is therefore found by seeking a solution of the form 
 
 ˆˆ ( ) i t

ssx t Cte ω=  (3.30) 
 
where is a (complex) constant. Substituting Eq. (3.30) into Eq. (3.29) and solving 
for the constant gives 

Ĉ
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 1
02Ĉ i fω= −  (3.31) 

 
Substituting Eq. (3.31) back into Eq. (3.30) and using Euler’s Formula gives the par-
ticular solution of Eq. (3.29) as 
 

or 
[ ]

[ ]

1
02

1
02

( ) sin cos

( ) cos( / 2) sin( / 2)

ss

ss

x t f t t i t

x t f t t i t

ω ω ω

ω ω π ω π

= −

= − + −

 (3.32) 

 
As per earlier discussions, the real part of the solution is the response to the real part 
of the complex forcing function, and the imaginary part of the solution is the response 
to the imaginary part of the complex forcing function. Thus, 
 
when 0( ) cos ,F t F tω=  
 
 1

02( ) sin ( )cos( / 2)ssx t f t t X t tω ω ω π= = −  (3.33) 
 
when 0( ) sin ,F t F tω=  
 
 1

02( ) cos ( )sin( / 2)ssx t f t t X t tω ω ω π= − = −  (3.34) 
 
where 
 1

02( )X X t f tω= =  (3.35) 
 
is the (time dependent) amplitude of the steady state response. It is seen that, when 
the forcing frequency is numerically equal to the natural frequency of the undamped 
system, the steady state response of the system is out of phase with the force by 
Φ = π/2 radians and hence lags the force by tlag = π /2ω. The amplitude, X, is seen to 
grow linearly with time. A typical response is displayed in Figure 3.4. We see that, 
when the undamped system is excited by a harmonically varying force whose fre-
quency is identical in value to the natural frequency of the system, the steady state 
response increases linearly in time without bound. This phenomenon is called reso-
nance. Clearly the energy supplied by the applied force is being used in an optimum 
manner in this case. We certainly know, from our discussions of free vibrations in 
Chapter 2, that the system moves naturally at this rate (the natural frequency) when 
disturbed and then left on its own. The system is now being forced at this very same 
rate. Let’s examine what is taking place more closely. 

To better understand the mechanics of resonance let us examine the work done 
by the applied force over one cycle of motion, nT < t < (n + 1)T, where T is the period 
of the excitation (and thus of the steady state response as well) and n is any integer. 
We shall compare the work done by the applied force, F(t), for three cases; (i) 1,Ω <  
(ii) 1Ω >  and (iii) 1Ω = .  
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0

x(t) 

t 

   Figure 3.4  Time history of the response of a system at resonance. 
 
 
 From the definition of work given in Section 1.5.2 [see Eqs. (1.85) and (1.87)], 
and utilization of the chain rule of differentiation, the work done by the applied force 
for the single degree of freedom system under consideration is seen to be given by the 
relation 

 
2 2

1 1

x t

x t
Fdx Fx dt= =∫ ∫W  (3.36) 

 
where  x1 = x(t1), x2 = x(t2) and, for the interval under consideration, t1 = nT and T2 
= (n + 1)T for any given n. 
 For the sake of the present discussion we will assume, without loss of general-
ity, that the forcing function is of the form of a cosine function. The response is then 
given by Eq. (3.33). Typical plots of the applied force and the resulting steady state 
response for cases (i)–(iii) are displayed as functions of time over one cycle in Fig-
ures 3.5a–3.5d, respectively. Noting that the slope of the response plot corresponds to 
the velocity of the mass, we can examine the work done by the applied force qualita-
tively during each quarter of the representative period considered for each case. 

Case (i): 1Ω <  
Consideration of Figures 3.5a and 3.5b shows that F > 0 and 0ssx < in the first 
quadrant. Thus, it may be concluded from Eq. (3.36) that W < 0 over the first 
quarter of the period. If we examine the second quadrant, it is seen that F < 0 
and during this interval. Hence, W > 0 during the second quarter of the 
period. Proceeding in a similar manner, it is seen that F < 0 and during 
the third quarter of the period. Hence, W < 0 during this interval. Finally, it 
may be observed that F > 0 and during the fourth quarter of the period. 
Therefore, W > 0 during the last interval. It is thus seen that the applied force 
does positive work on the system during half of the period and negative work 
during half of the period. Therefore, the applied force reinforces the motion of 
the mass during half of the period and opposes the motion of the mass during 
half the period. In fact, the total work done by the applied force over a cycle 

0ssx <
0ssx >

0ssx >
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vanishes for this case. Hence, the motion of the mass remains bounded for 
situations when 1Ω < . 

Case (ii): 1Ω >  
Proceeding as for case (i), it is seen from Figures 3.5a and 3.5c that W > 0 dur-
ing the first and third quarters of the period, and that W < 0 for the second and 
fourth quarters of the period. Thus, as for case (i), the applied force does posi-
tive work on the system during half of the period and negative work during half 
of the period. It therefore reinforces the motion of the mass for half of the cycle 
and opposes it during half of the cycle. As for case (i), the total work done by 
the applied force during a cycle vanishes and the motion of the mass remains 
bounded. 

Case (iii): 1Ω =  
For this case it may be seen, upon consideration of Figures 3.5a and 3.5d to-
gether with Eq. (3.36), that F > 0 and during the first and fourth quarters 
of the period. Hence, W > 0 during these intervals. It may be similarly observed 
that  F < 0 and during the second and third quarters of the period. There-
fore W > 0 during these intervals as well. Thus, for the case when Ω = ω, the 
applied force does positive work in moving the mass during the entire period. 
Hence, during resonance, the phase relationship between the applied force and 
the response of the system is such that the force continuously reinforces the 
motion of the mass (does positive work). The amplitude of the displacement of 
the mass thus increases continuously. It is seen that, during resonance, the sys-
tem uses the work imparted by the applied force in the most optimum manner 
possible. 

0ssx >

0ssx <

 

0

0

0

   

0

F(t) 

x/X(t) 

x/X(t) 

x/X(t) 

t 

(a) 

(b) 

(c) 

(d) 

Figure 3.5  Time histories of (a) the applied force, and the corresponding steady response of 
the system when (b) 1Ω < , (c) 1Ω > , and (d) 1Ω = . 
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Example 3.4 
A 10 kg mass is attached to the 
end of a 1 m long cantilever beam 
of rectangular cross section as 
shown. If the mass attached to the 
30 mm by 5 mm beam is driven 
by a harmonic point force it is 
found that the beam vibrates violently when the forcing frequency approaches 3 
cps. Determine Young’s Modulus for the beam. 

 
 Solution 
 The beam has clearly achieved resonance at this frequency. Hence, 

  
 2 2 (3) 6  rad/secω πν π π= Ω = = =  (a) 

 
 From Eqs. (2.2) and (1.14), 
 

 2
3

3k E
m mL

ω = =
I  (b) 

 
Solving Eq. (b) for Young’s Modulus, substituting Eq. (a) into the resulting ex-
pression and evaluating the final form in terms of the given values of the sys-
tem parameters yields 

 

 
2 3 2 3

11 2
3

(6 ) (10)(1) 1.05 10  N/m
3 3 0.005(0.030) 12
mLE
I

ω π
= = = ×

⎡ ⎤⎣ ⎦
 (c)  

  

 
 

Example 3.5  
A system consisting of a 1 kg mass attached to a spring of stiffness k = 900 
N/m is initially at rest. It is subsequently excited by the force F(t) =5cos(30t) N, 
where t is measured in seconds. (a) Determine the displacement of the mass 
due to a static force of equivalent magnitude. (b) Determine the displacement 
of the mass 25 seconds after the given time dependent force is applied. 

  
 Solution 
 (a) 
 Applying Eq. (3.14): 

 

 0
0

5 0.00556 m
900

F
f

k
= = =  (a) 
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 (b) 
 Applying Eq. (2.2): 
 

 900 30.0 rad/sec
1

k
m

ω = = =  (b) 

  
 Now, for the given excitation, Ω = 30 rad/sec. Hence, 
 

 30 1
30ω

Ω
Ω = = =  (c) 

 
This is evidently a resonance condition for the undamped system under consid-
eration. 
 Though we argued that the complementary solution damps out after 
some time for real systems, it is instructive to include it for the present problem 
since the system is initially at rest and since the time of interest after application 
of the load is finite. Therefore, we have from Eqs. (3.16) and (3.33) that the 
forced response is given by 

  
 1

02( ) cos( ) sinx t A t f t tω φ ω= − + ω  (d) 
 
 To evaluate the constants of integration, A and φ, we must impose the 
given initial conditions on Eq. (d). Doing so we find that 
 

 (0) 0 cos( )x A φ= = −  
  either  0  or  cos( ) 0A φ⇒ = − =  (e) 

and 
 (0) 0 sin( )x Aω φ= = − −  
  either  0  or  sin( ) 0A φ⇒ = − =  (f) 

 
Since both cos(−φ) and sin(−φ) cannot vanish simultaneously, we conclude 
from Eqs. (e) and (f), that 
 

 0A =  (g) 
 
Upon substitution of Eq. (g) into Eq. (d) it is seen that the response of the sys-
tem which is initially at rest is simply the steady state response 

 
 1

02( ) sin ( 0)x t f t t tω ω= ≥  (h) 
 
Substitution of the given values of the system parameters into Eq. (h), or 
equivalently Eq. (3.33), gives the displacement in question. Hence, 
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 { }25

(0.00556) (30)(25)sin 30(25) 1.55 m
2t

x
=

= =  (i) 

 
 It is interesting to note that  
 

 25

0

1.55 279
0.00556

tx
f
= = =  (j) 

 
Thus, within the first 25 seconds of application, the dynamic force deflects the 
initially resting mass by a factor of 279 times greater than the deflection that 
would be imparted by a static force of equal magnitude. (We remark that, at 
this stage, the system may have passed beyond the critical damage state or be-
yond the range of validity of the linear spring model employed, depending on 
the actual system being represented by this model and its dimensions and mate-
rial properties.) 

 
 
 

The Phenomenon of Beating 
It was seen that resonance of an undamped system occurs when the mass is harmoni-
cally forced at a frequency equal to the natural frequency of the system. Another in-
teresting phenomenon occurs when such a system is forced harmonically at a fre-
quency very near, but not equal to, the natural frequency of the system. We examine 
this situation next. 
 Consider a single degree of freedom system subjected to sinusoidal forcing 

 If the system is initially undisturbed when the force is applied, i.e.; 
if  and , then the response is found by incorporating Eq. (3.28) into 
Eq. (3.16) and then imposing the stated initial conditions. Doing this, we find that the 
response takes the form 

0( ) sin .F t F t= Ω
(0) 0x = (0) 0x =

 

 0
2( ) sin sin

1
f

x t t tω⎡ ⎤= Ω − Ω⎣ ⎦− Ω
 (3.37) 

 
The solution described by Eq. (3.37) is valid for all .ωΩ ≠  However, let us now re-
strict our attention to the situation where the forcing frequency is very near, but not 
equal to, the natural frequency of the system ( ωΩ ≈ ). For this case, the solution can 
be simplified somewhat and, more importantly, it can be put into a form that has a 
clear physical interpretation. 
 If the forcing frequency is very close in value to the natural frequency of the 
system, the quotient appearing in Eq. (3.37) can be simplified as follows: 
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[ ]

0 0 0
2 (1 )(1 ) 1 (1 ) 21

0f f f f
ε ε ε

= =
− Ω + Ω + −− Ω

≅  (3.38) 

where 
 1    (|| || 1ε ε≡ − Ω )  (3.39) 
 
Let us next introduce the average between the excitation and natural frequencies, aω , 
and its conjugate frequency, .bω  Hence, 
 

 
2a

ωω + Ω
≡  (3.40) 

 

 1
22b

ωω εω− Ω
≡ =  (3.41) 

 
Next, let us use the first of the identities 
 

 sin    and   cos  
2 2

i i i ie e e e
i

ψ ψ ψ ψ

ψ ψ
− −− +

= =  

 
(see Problem 1.19) in the trigonometric terms of Eq. (3.37). Doing this, then incorpo-
rating Eqs. (3.40) and (3.41) and regrouping terms gives  
 

 sin sin 2 sin
2 2

b b a ai t i t i t i te e e et t
i

ω ω ω ω

tω ε ω
− −⎛ ⎞⎛ ⎞− +

Ω − Ω = − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Using the aforementioned identities (Problem 1.19) once again simplifies the above 
equality to the convenient form 
  

 
1
2

sin sin 2sin cos sin
                          2sin( )cos

b a

a

t t t t
t t

tω ω ω ε ω
εω ω

Ω − Ω = − +

≅ −
 (3.42) 

 
Finally, substituting Eqs. (3.38) and (3.42) into Eq. (3.37) gives the desired physically 
interpretable form of the response as 
 
 ( ) ( )sin( / 2)ax t X t tω π≅ −  (3.43) 
where 

 0 1
2( ) sin( )

f
X t tεω

ε
=  (3.44) 
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0 

X(t) 
x(t) 

t 

X res 

            Figure 3.6  Time history of response when ,ωΩ ≈  demonstrating beating. 
 
 
The response described by Eqs. (3.43) and (3.44) is sketched in Figure 3.6. It may be 
seen from the solution, and with the aid of the figure, that the system oscillates at the 
average value of the excitation and natural frequencies and within an envelope corre-
sponding to a time dependent amplitude that oscillates at the much slower frequency 
ωb = εω / 2. This phenomenon is referred to as beating. It is also seen that the re-
sponse is out of phase with the excitation by Φ ≅ π / 2 radians and hence that the dis-
placement lags the force by tlag ≅ π / 2ωa for beating as for resonance. Thus, when the 
forcing frequency is very near but not equal to the natural frequency of the system, 
the system nearly achieves resonance. However, in this case, the response does not 
“run away,” but rather is “captured” and remains bounded with the amplitude oscil-
lating at a relatively slow rate. In fact, if we make the small angle approximation for 
the sine function in Eq. (3.44), 
  

 0 1 1
02 2( ) sin( )

f
X t t f tεω ω

ε
= ≈  

 
and let aω ω≈  in the sine function of Eq. (3.43), then the solution takes the form 
 
 1

02( ) sin( / 2)x t f t tω ω π≈ −  
 
which is identical to the resonance solution given by Eqs. (3.34) and (3.35). Thus, as 
indicated in Figure 3.6, beating parallels resonance for times small compared with the 
natural period of the system. 
 Our study of the behavior of undamped systems subjected to harmonic forcing 
has revealed some interesting and important characteristics. We shall next examine 
how damping alters this behavior. 
 

3.3.3  Steady State Response of Systems with Viscous Damping 

In this section we consider the response of viscously damped systems to harmonic 
excitation. It was seen in Section 3.3.1 that the complimentary solution damps out 
over time. This is not the same for the particular solution associated with the steady 
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state response. We shall first obtain the corresponding solution and then examine the 
associated response under various conditions. As for the case of vanishing damping, 
we shall obtain the response for both cosine and sine excitation functions simultane-
ously by solving the corresponding problem for complex excitation. The governing 
equation is given by Eq. (3.13). 
 We seek to determine the function which, when substituted into the left-hand 
side of Eq. (3.13) results in the exponential function on the right-hand side of that 
equation. As for the case of vanishing damping considered in Section 3.3.2, we as-
sume a particular solution of the form 
 
 ˆˆ ( ) i t

ssx t Xe Ω=  (3.45) 
 

where is a complex constant that is yet to be determined. Substitution of Eq. (3.45) 
into Eq. (3.13) results in the algebraic equality 

X̂

 
 2 2

0
ˆ( ) 2 ( ) i t i ti i Xe fωζ ω ω 2 eΩ Ω⎡ ⎤Ω + Ω + =⎣ ⎦  

 
which when solved for gives X̂
 

 
( )

0
2

ˆ
1 2

fX
i ζ

=
− Ω + Ω

 (3.46) 

 
where Ω  is defined by Eq. (3.21). Let us next multiply both the numerator and the 
denominator of Eq. (3.46) by the complex conjugate of the denominator. This will put 
the complex amplitude in the usual complex form ˆ ˆRe Im ˆX X i X= + . Hence, multi-
plying the right hand side of Eq. (3.46) by the unit expression 
 

 
( )
( )

2

2

1 2

1 2

i

i

ζ

ζ

− Ω − Ω

− Ω − Ω
 

 
gives the alternate form of the complex amplitude 
 

 
( ) ( )

( )20
2 22

ˆ 1 2
1 2

f
X i ζ

ζ
⎡ ⎤= − Ω − Ω⎣ ⎦− Ω + Ω

 (3.47) 

 
Equation (3.47) can be expressed in exponential form with the aid of  Eq. (1.62). This 
gives 
 ˆ iX Xe− Φ=  (3.48) 
where  
 ( )0

ˆ ;X X f ζ= = Γ Ω  (3.49) 
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( ) ( )2 220

1

1 2

X
f ζ

Γ ≡ =
− Ω + Ω

 (3.50) 

and 

 1
2

2tan
1

ζ− ⎛ ⎞Ω
Φ = ⎜ − Ω⎝ ⎠

⎟  (3.51) 

 
Substitution of Eq. (3.48) into Eq. (3.45) gives the particular solution to Eq. (3.13). 
Hence,  
 
 [ ]( )ˆ ( ) cos( ) sin( )i t

ssx t Xe X t i tΩ −Φ= = Ω − Φ + Ω − Φ  (3.52) 
 
From our discussion of superposition in Section 3.2 we see that if the force is of the 
form of a cosine function then the response is given by the real part of Eq. (3.52). 
Likewise, if the force is of the form of a sine function then the corresponding re-
sponse is given by the imaginary part of Eq. (3.52). It follows that  
 
if 0( ) cosF t F= tΩ , then 
 
 0( ) cos( ) ( ; ) cos( )ssx t X t f tζ= Ω − Φ = Γ Ω Ω − Φ  (3.53) 
 
and if 0( ) sinF t F= tΩ , then 
 
 0( ) sin( ) ( ; ) sin( )ssx t X t f tζ= Ω − Φ = Γ Ω Ω − Φ  (3.54) 
 
It is seen that, after the transients die out, the system oscillates with the frequency of 
the excitation, but that the displacement of the mass lags the force by the time tlag 
= Φ / Ω. The angle Φ is thus the phase angle of the steady state response and charac-
terizes the extent to which the response lags the excitation. (The phase angle Φ 
should not be confused with the phase angle φ associated with the transient or free 
vibration response appearing in Eqs. (3.16) or (2.15), respectively.) The parameter X, 
defined by Eq. (3.49), is seen to be the amplitude of the steady state response of the 
system to the applied harmonic force. The amplitude of the response is seen to de-
pend on the effective static deflection, f0, the damping factor, ζ, and the frequency 
ratio Ω . Representative plots of the applied force and the resulting steady state re-
sponse are displayed as functions of time in Figure 3.7. 
 It may be seen from Eq. (3.49) that the parameter Γ corresponds to the ratio of  
the amplitude of the dynamic response to that of the effective static response. For this 
reason, Γ is referred to as the magnification factor as it is a measure of the magnifica-
tion of the response of the system to the harmonic force above the response of the 
system to a static force having the same magnitude. Note that Eq. (3.24) is a special 
case of Eq. (3.50). That is,  
    ( ) ( )0 ,0Γ Ω = Γ Ω  
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Φ/Ω 
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f 0 Γ 

Γ 0 f − 

0 
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      Figure 3.7  Time histories of excitation and corresponding steady state response.  
       
It may be seen from Eqs. (3.50) and (3.51) that, for a given system, the parameters Γ 
and Φ are solely dependent on the frequency ratio Ω . Plots of the magnification fac-
tor and the corresponding phase angle of the steady state response are displayed in 
Figures 3.8 and 3.9 as functions of the ratio of the excitation frequency to the un-
damped natural frequency of the system for a range of values of the damping factor.  
 Consideration of Figures 3.8 and 3.9 reveals several important features. It is 
seen that the magnification factor, and hence the response of the system, achieves a 
maximum when the frequency ratio is at or near 1Ω = , depending on the value of the 
damping factor for the particular system of interest. (We shall discuss this optimum 
response shortly.) We note that in all cases, except zero damping, the response is 
bounded. We also note that 1Γ →  and 0Φ →  as 0Ω → , regardless of the value of 
the damping factor. This is the static limit. That is, as 0Ω → , the magnitude of the 
dynamic response approaches that of the static response, and the motion of the mass 
becomes synchronized with the applied force as the frequency of the excitation be-
comes small compared with the natural frequency of the system. The system there-
fore behaves quasi-statically when the forcing frequency is low enough. We have all 
had the experience of trying to carry a delicate object very slowly so as not to disturb 
it. When we do this, we are attempting to achieve the static limit for the object we are 
carrying. In the opposite limit, we see that 0Γ →  and πΦ →  as Ω → ∞ , regard-
less of the damping factor. That is, the system is essentially unaffected by the applied 
harmonic force when the frequency of the excitation is very large compared with the 
natural frequency of the system. Hence, for this case, the motion of the mass is com-
pletely out of phase with the force. Under these conditions, the period of the excita-
tion is very small compared with the natural time scale of the system, the period of 
free vibration, so the system effectively does not “sense” the excitation for large 
enough forcing frequencies. As this limit is approached, the force is essentially mov-
ing too fast for the system to react to it, so the system remains almost stationary. 
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Figu  

Figure 3.9  Phase angle as a function of frequency ratio for various values of the damping 
factor. 

re 3.8  Magnification factor as a function of frequency ratio for various values of the
damping factor. 
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 It is seen from Figure 3.8 that for a large range of values of ζ the amplitude of 
the dynamic response of the system achieves its maximum when 1Ω ≈

 is large en
at which the peak response 

. It may be 
observed that the maximum shifts left, to lower values of the frequency ratio, as the 
damping factor increases. In fact, if the damping of the system ough, no 
maximum is seen at all. To determine the frequency ratio 
occurs, ,pkΩ = Ω

 ratio, set 
 we simply differentiate the magnification factor with respect to the 

frequency the resulting expression to zero and solve the corresponding equa-
tion for .pkΩ  Doing this, we find that Γ = Γmax when 
 

 ( )21 2 0 1 2pk ζ ζΩ = Ω ≡ − < <  (3.55) 

 
This is the resonance condition for the damped system. It is seen that 1pkΩ →  as 

0ζ →
discussed 
for 

, which recovers the resonance condition for the case of vanishing damping 
in Section 3.3.2. It may be further seen from Figure 3.8 and Eq. (3.55) that 

1 2ζ >  no peak is achieved in the Γ vs. Ω curve. In fact, for these cases, 
with the equality being achieved when 1Γ ≤ .0Ω =

ow things do
 Damping is thus seen to retard 

the motion of the system and therefore to sl wn. It should be emphasized 
that in the above measures the forcing frequency is divided by the natural frequency 
for vanishing damping. Recall that the natural frequency, ωd, for an underdamped 
system )ζ < is given by Eq. (2.70), from which it follows that  
 

 

2( 1

2

2

1 2 1
1

pk
pk

d

ζ
ω ζ
Ω −

Ω ≡ = <
−

 (3.56) 

 
Thus, fo ishing damping, the peak response is seen to occur when the forcing 
frequency is less than the damped natural frequency as well, though it may be noted 
that 

r nonvan

pk pkΩ . It may be seen from Figure 3.9 that< Ω / 2πΦ ≈ at resonance. 

Example 3.6 

 

A mechanical system represented as a mass-spring-damper system has the 
properties m = 4 kg,  k = 2 N/m and c = 3 N-sec/m. Determine the a  of mplitude
the steady state response of the system, (a) if the mass is subjected to the exter-
nal force F(t) = 5sin2t N, (b) if it is subjected to the force ( ) 5sinF t tω= N, (c) 
if it is s  Nubjected to the force F(t) = 5sin(ωd t) , and (d) if it is subjected to the 
force F(t) = 5sin(Ωpk t) N. (In each case, seconds.) t is in 
 
Solution 
Let us first calculate the system parameters. Hence, 
 
 

2 .7071 rad/sec  (a) 
4

k
m

ω = = = 
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 3 0.5303
2 2(0.7071)(4)

c
m

ζ
ω

= = =  (b) 

 

 2 21 0.7071 1 (0.5303) 0.5995 rad/secdω ω= −ζ = − =  (c) 
 
 
 

 

 
Further, for each case, 

0
0

5 2.5 m
2

F
f

k
= = =  (d) 

 
) (a

For this case, 

 2 2.828Ω
Ω = = =  

0.7071ω
(e) 

For this excitation frequency the magnification factor is 
 

 
calculated as 

( ) ( )

[ ]

2 22

2 22

1

1 2

1  0.1313
1 (2.828) 2(0.5303)(2.828)

ζ
Γ =

− Ω + Ω

= =
⎡ ⎤− +⎣ ⎦

  (f) 

 
We now calculate the c
 

orresponding amplitude of the steady state response, 

(g) 
 

et us compare the amplitude of the steady state response just calculated with 
mplitude calculated in Example 3.2 for the same system without damping 

e same excitation. For the undamped system the amplitude of the 
culated to be X = 35.7 cm. We see that the damp-

ing has reduced the amplitude of the response by
equency.  

or the case where the forcing frequency has the same value as the undamped 
natural frequency, 

 

0 (2.5)(0.1313) 0.3283 m 32.83 cmX f= Γ = = =   

L
the a
subjected to th
steady state response was cal

 about 3 cm at this excitation 
fr
 
b) (

F

1Ω =  
and hence, 
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1 1 0.9429
2 2(0.5303)ζ

Γ → = =  (h) 

 
Thus, the amplitude of the steady state response when the excitation frequency 
has the same value as the undamped natural frequency is 
 

 (2.5)(0.9429) 2.355 mX = =  (i) 

) 
For the case where the excitation frequency has the same value as the dam
atural frequency,  

 

 
(c

ped 
n
 

2
21

1 (0.5303) 0.8478
ω ζ

ω
−

Ω = = − =  (j) 

 
The magnification factor is then 
 

 
[ ]2 22

1.061
1 (0.8478) 2(0.5303)(0.8478)⎡ ⎤

1
Γ = =

− +

 
agnitude of the steady state sponse for this excitation frequency is 

⎣ ⎦

 (k) 

Thus, the m
 

re

(2.5)(1.061) 2.653 mX = =   (l) 
 
(d) 
For the peak (resonance) response, the normalized excitation frequency is cal-
culated using Eq. (3.55). Hence, 
 

2 21 2 1 2(0.5303) 0.6615pk ζΩ = − = − =  (m)  
 
The magnification factor for the peak (resonance) response is next calculated to 
be 
 

[ ]2 22

1 1.112  (n) 
1 (0.6615) 2(0.5303)(0.6615)

Γ = =
⎡ ⎤− +⎣ ⎦

 response at resonance is then 
 
The amplitude of the steady state
 

(2.5)(1.112) 2.780 mX = =   (o) 
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  xample 3.7 E
A sensor and actuator are attached to a mechanical system in an effort to con-
trol any vibrations that may occur. The total mass of the system is 6 kg, its ef-
fective stiffness is 2 N/m and its coefficient of viscous damping is 3.7 N-sec/m. 
If the sensor detects a sustained harmonic vibration of amplitude 60 cm and 
frequency 2 rad/sec, what force must be applied by the actuator to counter the 
observed motion? 
 

     Figure E3.7-1  Mass-spring system with applied force and actuator force. 

Solution 
o counter the observed motion, the actuator must apply a force that would 

uce a motion that is equal in magnitude and 180˚ out of phase with the ap-
s, using superposition, we wish the actuator to apply a force 

 

 
 

T
prod
plied force. That i
such that 
 

( ) ( ) ( ) 0obs actx t x t x t= + =  (a) 
 
Since the observed motion is sustained (i.e., is steady state) our objective can 
be accomplished by applying a force that is of equal amplitude and 180˚ out of 
hase with the applied force. (See Figures E3.7-1 and E3.7-2.) We must there-

fore determine m the motion of the 
system detect

   Figure E3.7-2  Time history of applied force and actuator force. 

p
 the characteristics of the applied force fro

ed by the sensor.  

F(t) 

0 

t 

F applied F actuator 
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 We may determine the amplitude of the applied force from the amplitude 

  (b) 

(The phase angle is unknown, but is merely a refe
rce that is 180˚ out of phase with the applied force will produce a response 

 

 

of the observed response as follows. The observed response may be expressed 
mathematically as 
 

( ) sin( ) 0.6sin(2 ) mobs obs obsx t X t t= Ω − Φ = − Φ
 

rence in this case. Note that a 
fo
that is 180˚ out of phase with the observed motion and Eq. (a) will be satisfied.) 
For the modified system, 
 

2 0.5774 rad/seck
m

ω = = =  (c) 
6

and 

 3.7 0.5340
2 2(0.5774)(6)

c
m

ζ
ω

= = =  (d) 

 
Hence, for the observed steady state motion, 
 

 2 3.464
0.5774

Ω = =  (e) 

 
 

 

Now, from Eq. (3.49), 
 

0F
X f0obs k

= Γ = Γ  (f) 

Hence, 
 

 
[ ]

0 2 22

(2)(0.6) 13.93 N
1 1 (3.464) 2(3.464)(0.5340)

obsF = = =
Γ ⎡ ⎤

k X

− +

l force as the sine function 

⎣ ⎦

 (g) 

 
If we reference the externa
 

0( ) sin 13.93sin 2F t F t t= Ω =  (h) 

the actuator must apply the force 
 

act

 
then 

 ) N( ) 13.93sin(2 ) 13.93sin(2F t t tπ= − = −

 

 (i) 
 
to counter the effects of the excitation. 
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Example 3.8 
A 20 lb rigid baffle hangs in the vertical plane. The 
baffle is 5 ft in length and is restrained by a viscous 
damper of coefficient 1 lb-sec/ft attached at mid-
span as shown. A motor exerts a harmonic torque 
at the support causing the baffle to waffle at a pre-
scribed rate. Determine the range of allowable ex-
citation frequencies if the magnitude of the applied 
torque is 2.5 ft-lbs and the maximum allowable de-
flection of the baffle is 6 inches. 
 

olution 
e draw the corresponding 

inetic diagram and then take moments about the support at O.  Hence, 
 

S
We first derive the equation of motion. To do this, w
k

 ( ) cos
2c sin

2 O
L LM t c v mg Iθ θ θ=  (a) 

where  

 

− −

 

sin
2cv

dt
cos

2
d L Lθ θ θ⎛ ⎞ =  (b) 

and 

= ⎜ ⎟
⎝ ⎠

21
3OI mL=  (c) 

  

 

 
for a uniform baffle. Next, we note that 

 

max
max max

6" (1'/12")
5 'L

θ
∆ ×

Θ ≡ = = =

 
Making the small angle approximation in Eq. (a) an
the equation of motion for the baffle as 
 

0.1 rads  (d) 

d rearranging terms gives 

 21I cLθ θ+ + 1
4 2 ( )O mgL M tθ =  (e) 

( )

 
We next put Eq. (e) in standard form by dividing through by IO and grouping 
terms accordingly. Doing this we arrive at the equation 
 

2 22 f tθ ωζθ ω θ ω+ + =  (f) 
 where 
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2 2 3
2O

mgL g
I L

ω = =  (g) 

21 3
2 4 8O

cL c
I

 
mω

 (h) ζ
ω

= =

nd a
( )( )

2
 M t

mgL
 (i) 

 
Since phase is unimportant for the present analysis let us take t

e sine function 

 

f t =

he excitation as 
th
 

0( ) sinM t M t= Ω  (j) 

Substituting Eq. (j) into Eq. (i) gives 

 

 

 
0( ) sinf t f t= Ω  (k) 

where 
0

0 2
Mf

mgL
=  (l) 

 
We next compute the values of the system pa
properties. Hence,  
 

rameters using the given system 

3 (32.2)1.5 3.108 rad/sec
2 5

g
L

ω = = =  (m) 

and 
3 (1) 0.1943=  (n)  
8 (3.108)(20 / 32.2)

ζ =

e of the applied moment. Hence, 

 

 
The amplitude of the excitation function is similarly computed from Eq. (l) and 
he given amplitudt

 

0
(2.5) 0.05

(20)(5) 2
f = =  (o) 

From Eq. (3.54), we know that the response o

 

 
f the baffle will be of the form 

 
( ) sin( )t tθ = Θ Ω − Φ  

where 
0fΘ = Γ  (p) 
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and the magnification factor, Γ, is given by Eq. (3.50). The constraints on the 
system require that 

max 0.1 radsΘ < Θ =  (q) 
 
Substitution of Eq. (q) into Eq. (p) gives the relation  

 

 
max

0

0
f

Θ
Γ − =  (r-1) 

 

 
Expanding Γ in the above relation gives the polynomial 
 

( ) ( )( )
2

22 22 0

max ⎥⎠
2 1 2 1 0

f
ζ

⎛ ⎞
⎢ ⎥Ω − − Ω + − =⎜ ⎟

Θ⎢ ⎝⎣

⎡ ⎤

⎦
 (r-2) 

ng 
 
which defines the bounds on the allowable excitation frequencies. Substituti

qs. (d), (n) and (o) into Eq. (r-2) and solving for E Ω  gives the bounds on the 
llowable frequency ratios as a

 
0.7752,  1.117Ω =  (s) 

Now,  
 3.108ωΩ = Ω = Ω  

 
Upon substituting the values listed in Eq. (s) i

at the frequencies of the applied torque must

  

to satisfy the constraints imposed on the ba
  

nto the above expression we find 
 lie in the ranges  th

 
2.41 rad/sec    and    3.47 radΩ < Ω > /sec

 
ffle. 

 

Sharpness of the Resonance Peak 
any applications it is desired to have the maximum perform

chieved within a narrow range of excitation frequencies. The pe
tic speakers, transducers, and telephone receivers fall in this category. The necessity 
of a c uires that the resonance peak of the associated Γ vs.

In m ance of the system 
a rformance of acous-

Ω  lean peak response req
plot, Figure 3.8, be as sharp as possible ( 1)ζ . In this way, a relatively small devia-

n the driving frequency will not excite vibrations o appreciable amplitude. It 
nsures that a relatively large v

tion i f 
also i alue of the amplitude will be achieved when the 
driving frequency is such that the frequency ratio lies within a narrow band in the 
icinity of the peak. It is useful to characterize the

situat
v  sharpness of the peak for such 

ions. 
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Figure 3.10  Typical plot of magnification factor versus frequency ratio for lightly damped 
system, show

0  

x x 

Ω a Ω b 
1 

1 

Ω/ω

Γ 

Λ 

half power points 

ing resonance peak, half-power points and band width.  
 
 
 To characterize the sharpness of the peak of a typical Γ vs. Ω  curve (see Figure 
3.10) we must establish some measure of the width of th on of its 
height. A standard approach is to define these measures in terms of work and energy, 
or average power, over one cycle of the response of the system cular, we shall 
employ as our measure the average power imparted by the appli d force acting on the 
system over a cycle of the response. Specifically, let PQ repr age power 
of the applied force when operating at the excitation frequency associated with the 
peak response (i.e., when 

e peak as a functi

. In parti
e

esent the aver

)pkΩ = Ω  as defined by Eq. (3.55). Further, let aΩ and 
bΩ

th
Pb =

correspond to the excitation frequencies at which the average power imparted by 
e applied force over a cycle is half that associated with the peak response (i.e., Pa = 

 PQ /2). The corresponding points on the associated Γ vs. Ω  curve are referred to 
as the half power points. The width of the peak at this level of the average power is 
referred to as the band width, Λ, and is seen to characterize the sharpness of the peak. 
(See Figure 3.10.) The bandwidth is thus defined as 
 
 b aΛ ≡ Ω − Ω  (3.57) 
 
To evaluate the sharpness of the peak explicitly, we must express these quantities in 

rms of the parameters of the system. We do this next. te
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 As discussed in Section 1.5, the work done by the forces acting on a mass may 
be partitioned into two parts; the work done by the conservative forces acting on the 
ody and the work done by the nonconservative forces acting on the body. As shown 
 the s

b
in  aforementioned section, the work of the conservative force  may be expressed 
as the negative of the change in potential energy of the system. For a mass-spring-
damper system, the potential energy is simply the elastic energy of the spring. We 
further partition the remaining work into that done by the applied force, F(t), and that 
done by the viscous damping force, dF cx= − . When this is done Eq. (1.92) takes the 
form 
 
 dext + = ∆ + ∆W W T U  (3.58) 
w ere 

 
2 2

1 1

( )
x t

ext
x t

h

F t dx F x dt= =∫ ∫W  (3.59) 

 
is the work done by the applied force, 
 

 
1t

2 2

1

2
x t

d d
x

F dx= = −∫ ∫ c x dtW

ts in time, x1 = x(t1) and x2 = 
(t2). 

 (3.60) 

 
is the work done by the viscous damping force, U and T are respectively the potential 
and kinetic energy of the system, t1 and t2 are two instan
x Recall that the steady state response of the system given by Eqs. (3.53) and 
(3.54)  is purely harmonic. Therefore, if we consider the motion of the system over 
one cycle (i.e., t2 = t1 + Tss, where Tss = 2π/Ω), then the change in potential energy and 
the change in kinetic energy vanish over this interval. For this situation, Eq. (3.58) 
gives the equality 
  
 ( )ext d sst T= − ∆ =W W  (3.61) 
 
Evaluating Eq. (3.60) for an applied force of the form of either of Eq. (3.11), together 

ith the corresponding steady state response given by Eq. (3.53) or Eq. (3.54), gives 
e work done by the viscous damper and thus by the a

 (3.62) 
 

 is seen that the integrand of the right most integral of Eq. (3.59) corresponds to the 
e is evaluated with the aid of Eqs. (3.62) and 

.49) to give 

w
th pplied force over a cycle as 
 

2 2
ext d c X= − = ΩW W 

It
power. The average power over a cycl
(3
 

2

1

 
3 2c fΩ3

2 201
2 2 2

t

avg ext
tss

cF x dt X
T π π π

Ω Ω
= = = = Γ∫P W  (3.63) 
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As stated at the outset of the present discussion, the sharpness of the resonance peak 
will be characterized by the average power. 
 It may be seen from Eq. (3.63) that the average power imparted by the applied 
force over a cycle achieves a maximum when the amplitude of the response, X, 
achieves a maximum. It follows from Eq. (3.49) that the amplitude, and hence the 
average power, achieves a maximum when the magnification factor, Γ, achieves a 
maximum. For sys 1 2ζ < ) tems possessing a resonance peak (systems for which 
and, in particular, those systems possessing very light damping )( 1ζ the maximum 
alue of the magnification factor, Γpk, is referred to as t
y factor may be expressed in terms of the damping factor alone by substituting Eq. 

v he quality factor, Qf. The qual-
it
(3.55) into Eq. (3.50). Thus, 
 

 ( )
2 22 1

1 1;f pk pkQ ζ
ζζ ζ−

4) 

 follows from Eq. (3.63) that  

≡ Γ = Γ Ω = ≈  (3.6

 
It
 

 
3 2

20c f
Q

Ω
≡ =  (3.65) 

max 2Q avg fπ
P P

quation (3.64) allows for the evaluation of the damping factor by m
he quality factor from the Γ vs

 
E easurement of 
t . Ω  curve for a given system. 

To determine the bandwidth we must first evaluate the excitation frequencies at 

 when the equality 

 
the half power points. It may be seen from Eqs. (3.65) and (3.63) that the frequency 
ratios at which Pavg = PQ/2 is achieved occur
 

 ( );
2
fQ

ζΓ Ω =  (3.66) 

 
is satisfied. The frequency ratios associated with the half power points will be desig-
nated as Ω .aΩ and bΩ , and may be found by solving Eq. (3.66) for  Substitution of 
Eqs. (3.50) and (3.64) into Eq. (3.66), and rearranging terms, gives the fourth order 
polynomial equation for the frequency ratios associated with the half power points. 
Hence, 

( ) ( )2 22 21 2 8ζ ζ 0− Ω + Ω − =  (3.67) 

hen expanded, Eq. (3.67) may be solved for the square of the frequency ratio to 

 
 
W
give 
 2 21 2  ,     1 2a bζ ζ≅ − Ω ≅ +  (3.68) Ω
for 1ζ . It follows from Eqs. (3.68), and the definition of bandwidth as stated by 

q. (3.57), that  E
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 ( )( )2 2 2 4b a b a b a ζΩ − Ω = Ω + Ω Ω − Ω ≅ Λ =  (3.69) 
 
Solving Eq. (3.69) for Λ gives the bandwidth in terms of the damping factor as 
 

2 ζΛ ≅  (3.70) 

he bandwidth, as given by Eq. (3.70), character
for a given system. Finally, substitution of Eq. (3.70) into Eq. (3.64) gives the relation 
etween the quality factor and the bandwidth, 

 
T izes the sharpness of the resonance 

b
 

 1
fQ ≅

Λ
 (3.71) 

 
Thus, measurement of the quality factor determines the bandwidth directly.  

 
 

Example 3.9 
A harmonic force is applied to the mass of a lightly damped system. The exci-
tation frequency is slowly varied, and the magnitude of the displacement of the 
mass is measured as a function of the excitation frequency giving the record 
shown in Figure E3.9. Determine the damping factor of the system. What is the 
bandwidth? 

       

 

 

0.333 

2.0 

1.0 

X 

1 Ω/ω 

(inches) 

   Figure E3.9 
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f the displacement parameters Xpk and f0 may be read directly from 

lot of the test data. Then, using Eqs. (3.49) and (3.64) along with these 
values, we calculate the quality factor 
 

 

Solution 
The values o
the p

0

2 6
0.333

pk
f pk

X
Q

f
≡ Γ = = =  (a) 

 
The damping factor may now be determined by substituting Eq. (a) into Eq. 
(3.64) and solving for ζ. This gives 
 

 1 1 0.0833
2 2(6)fQ

ζ = = =  (b) 

 
Finally, using Eq. (3.71), the bandwidth is calculated to be 
 

 1 1 0.1667
6fQ

Λ ≅ = =  (c) 

 
 

3.3.4

In ma
by th  example, to minimize the magnitude of 
the tr itted force so as not to damage the support or what is beyond or attached to 

. Similarly, we may wish to minimize the magnitude
d sound transmission through the boundary so as to

system et. In contrast, we may wish to maximize, or at least optimize in some 
sense
 per system that is subjected to a harmoni-
cally varying force applied to the mass (Figure 3.1) as our representative system. 

 Newton’s Third Law, and the associated dynamic free body diagram display
 Figure 3.11, it is seen that the force transmitted to the support by the vibrating s

tem is mprised of the elastic spring force and the viscous damping force. Hence, 
 

    Figure 3.11  Kinetic diagram for mass-spring-damper system and support. 

 

  Force Transmission and Vibration Isolation 

ny applications it is of interest to determine the force transmitted to the support 
e oscillating system. We may wish, for
ansm

it  of the transmitted force to 
avoi  keep the operation of the 

 qui
, the amount of information transmitted via this force.  
Let us consider the mass-spring-dam

From ed 
in ys-

 co
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22trF cx kx m x xωζ ω⎡ ⎤= + = +⎣ ⎦     (3.72) 

press the applied force in 
 
For the sake of the present discussion, it is convenient to ex
the exponential form of Eq. (3.12). Substituting Eq. (3.12) and the corresponding 
complex form of the steady state solution, Eq. (3.52), into Eq. (3.72) gives the com-
plex form of the transmitted force as  
 
    ( )0

ˆ 1 2i t i
trF F e i eζΩ − Φ⎡ ⎤= + Ω Γ⎣ ⎦  (3.73) 

 
where Γ and Φ are given by Eqs. (3.50) and (3.51), respectively. It may be seen from 
Eq. (3.51), with the aid of Figure 3.12, that 
 
    ( )2cos 1      and     sin 2ζΦ = − Ω Γ Φ = ΩΓ  (3.74) 
 
Applying Eq. (1.61) to the exponential term within the brackets, and employing the 
identities of Eq. (3.74), renders the complex representation of the transmitted force to 
the form 
    ( )ˆ i t

tr trF F e Ω −Ψ=  (3.75) 
where 
    ( )0tr ;F F ζ= ϒ Ω  (3.76) 

ansmitted force,  
 
is the magnitude of the tr
 

 ( ) ( ) ( )2
; ; 1 2ζ ζ ζϒ Ω = Γ Ω + Ω  (3.77) 

and 

( )
3

1
22

2tan
1 2

ζ

ζ
−

⎧ ⎫Ω⎪ ⎪Ψ = ⎨ ⎬
− Ω + Ω⎪ ⎪⎩

    
⎭

 (3.78) 

   Figure 3.12  Geometric relation between Γ and Φ. 
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Figure 3.13  Phase angle of transmitted force as a function of frequency ratio for various 
values of the damping factor. 
 

smitted force lags 
lag . Plots of the 

phase angle as  for vari-

 
if 

0 0.5 1 1.5 2 2.5 3

Ψ 

Ω/ω 

ζ = 1.0 

ζ = 0.5 

ζ = 0.3 

ζ = 0.2 

ζ = 0 ζ = 0.1 ζ = 0.05 

ζ = 0 

π 

π/2 

 
The latter is the phase angle that measures the extent that the tran
behind the applied force. The corresponding lag time is thus t  = Ψ/Ω

a function of the frequency ratio are displayed in Figure 3.13
ous values of the damping factor. Finally, it follows from Eq. (3.75) that  

0( ) cosF t F= Ωt  then 

 ( )0 ; cos( )trF F tζ= ϒ Ω Ω − Ψ  (3.79) 

 
if 0( ) sinF t F t= Ω then 

 ( )0 ; sin( )trF F tζ= ϒ Ω Ω − Ψ  (3.80) 

 
 It may be seen from Eqs. (3.76) and (3.77) that the magnitude of the force 
transmitted to the support is the product of the magnification factor and a nonlinear 
function of the damping factor and frequency ratio, as well as of the magnitude of the 
applied force. We shall characterize the frequency dependence of the transmitted 
force in a manner analogous to that for the steady state displacement. To do this we 
define the transmissibility,  
 

    ( )
0

;
F

trF
ζ≡ = ϒ ΩRT�  (3.81) 
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F
in

igure 3.14  Transmissibility as a function of frequency ratio for various values of the damp-
g factor. 

is given by Eq. (3.77). The transmissibility is thus the ratio of the magni-
mitted force to the magnitude of the applied force, and is seen to give 

all pertinent information concerning the force transmitted to the support by the sys-
tem. P ots of the transmissibility as a function of the frequency ratio are displayed in 

r various values of the damping factor. It is seen from the figure that the 
maxim  force transmitted to the support occurs when the maximum displacement 

esonance conditions), which is to be expected. Setting 

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
ζ = 0 

ζ = 0.1 

ζ = 0.15 

ζ = 0.2 

ζ = 0.3 

ζ = 0.5 
ζ = 1.0 

1.414 Ω/ω 

Υ 

 
 
where ϒ  
tude of the trans

l
Figure 3.14 fo

um
occurs (i.e., at r ϒ  to unity and 
solving for the frequency ratio, we find that  
 

 when 0trF F=
 0   and   2Ω = Ω =  (3.82) 
 
regardless of the value of ζ, as demonstrated in Figure 3.14. It may be noted from the 
figure that the magnitude of the transmitted force reduces to less than the magnitude 
of the applied force (i.e., to less than that which would occur for a static force of the 
same magnitude) when 2Ω >

itted fo
. We may also note that increasing the damping fac-

tor increases the transm rce in this frequency range. Thus, if the force transmit-
ted to the support is a consideration in the design of a system, then it would be desir-
able to operate the system in the aforementioned frequency range, and with minimum 
damping, provided that the desired frequency range can be achieved without passing 
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through resonance. The desired frequency range may also be achieved if the system 
can be restrained during start-up, or a large amount of damping can be temporarily 
imposed until the excitation frequency is sufficiently beyond the resonance fre-
quency. To close, it is seen that if the system is operated in the desired frequency 
range and possesses low damping, then the vibrations of the system become isolated 
from the surroundings. This is a very desirable result in many situations. 
 

Example 3.10 
Consider the system of Example 3.6. (a) Determine the magnitude of the force 
transmitted to the support if the system is excited by the external force F(t) = 
5sin2t N, where t is measured in seconds. Also determine the lag time of the re-
action force with respect to the applied force. (b) Determine the magnitude of 
the transmitted force at resonance. 
 
Solution 
(a) 
From Part (a) of Example 3.6, ζ = 0.5303, 2.828Ω =  and  Γ= 0.1313. Substi-
tuting these values into Eq. (3.77) gives the transmissibility as 
 

20.1313 1 [2(0.5303)(2.828)] 0.4151= ϒ = + =RT

Thus, 42% of the applied force is transmitted to the support. The magnitude of 
the force transmitted to the support is then, from Eq. (3.81), 

 (a) 
 

 

 
 0 (5)(0.4151) 2.076 NtrF F= = =RT  (b) 

 
The corresponding phase angle is calculated using Eq. (3.78). Hence, 
 

 
[ ]

3
1

22

2(.5303)(2.828)tan 85.24 1.48  rads
1 (2.828) 2(.5303)(2

−
⎧ ⎫

8
.828)

⎪

⎪

⎪Ψ = = ° =⎨ ⎬
− +⎪⎩ ⎭

 
It follows that 
 

 (c) 

1.488 2 0.7440 secslagt = Ψ Ω = =  (d)  
 
(b) 
For this case we have from Part (d) of Example 3.6 that 0.6615Ω =  and 
Γ= 1.112. Thus, 
 

 21.112 1 [2(.5303)(0.6615)] 1.358= + =RT  (e) 
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The magnitude of the force transmitted to the support is then 
 

 (5)(1.358) 6.790 NtrF = =  (f) 
 

  
 

Example 3.11 
The beam of Example 3.4 was designed on the basis of a static analysis. If the 
structure is to support harmonic loads at or below the static design level, deter-
mine the range of allowable frequencies of the applied load. 
 
Solution 

 static analysis predicts that the mA aximum transverse shear occurs at the sup-
 is then the force that is transmitted to the support since the resultant 
 in the beam vanishes. The problem is therefore to determine the fre-

s corresponds to 
e situation where  

port. This
l forceaxia

quency range for the applied dynamic load at which the magnitude of the force 
transmitted to the support is equal to the magnitude of the applied force (which 

e take to be equal to the level of the static design load). Thiw
th

1=RT  (a) 

 

 
and hence, from Eq. (3.82) and Figure 3.14, that 
 

2Ω =  (b) 
 

rom Example 3.4, the natural frequency of the system is 6π rad/sec. Substitut-

 

F
ing this value into Eq. (b) gives 
 

( )2 ( ) 2 26.7 rad/sec 4.24 cpsω πΩ = = 6 = =  (c) 
 
The allowable operating range is thus 

 26.  
 

7 rad/secΩ >  (d) 
 

 
 

3.4 S

In Chapter 1, and thereafter, we employed models of equivalent single degree of 
eedom systems based on stiffnesses derived from the quasi-sta

elastic structures. Such models assume that the elastic moduli are constants that can 

TRUCTURAL DAMPING 

fr tic behavior of linear 
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be me that elastic struc-
tures such as rods, beams, plates and shells, and their simplified 1 d.o.f. counterparts, 
o oscillate at natural frequencies often adequately pred ted based on these mod

It is, however, also observed (even in our every day experiences) that the vibrations 
 in 
us 

edium, but rather must be a function of internal friction of the material comprising 
the st  this section we discuss and develop a model of internal friction 
for th

3.4.1 inear Hereditary Materials 

The c
the st
assum
the cu
nal fr
we sh
pend 
avio ry of the loading are referred to as 
aterials with memory. Materials for which 

linear hereditary materials. We shall be interested in the behavior of structures com-
prised
    Consider a material for which the current state of strain is dependent, not only on 

e current state of stress, but on the entire hi
the purposes of the present discussion, let us consider a specimen of such a material 
loade
during a tension test or a torsion test. Let

asured from simple quasi-static experiments. It is observed 

d ic uli. 

of such structures decay with time. Such damping is seen when structures oscillate
 vacuum, as well. The damping cannot then be a result of some external viscoa

m
ructure itself. In
e case of structures subjected to harmonic excitation. 
    

 L

onstitutive relations (the stress-strain relations) for the elastic materials used in 
ructural models relate the current stress and the current strain. They implicitly 
e that the history of loading does not affect the current strain, and thus that only 
rrent level of the load is influential. In order to account for the effects of inter-

iction (which, as discussed in Section 1.5, is by its very nature nonconservative) 
all relax this implicit restriction and allow the current value of the strain to de-
on the history of the stress as well as on its current level. Materials whose be-
r depends on the histoh hereditary materials, or 

m this relation is linear are referred to as 

 of linear hereditary materials.  

th story of stress to the present time. For 

d in a simple manner, say in uniaxial tension or in pure shear, as would occur 
( )tσ represent the stress at some point in the 

body at time t and let ( )tε represent the corresponding strain at that time. Consider a 
eneric stress history as depicted in Figure 3.15a and let the inc

time t ue to the increment in stress at some prior time τ (Figure 3.15b) be related to 
that in ence, let 
 

  

g rement in strain at 
, d
crement in stress in a linear fashion. H

 d( ) ( ) ( )d t tε τ σ τ τ= −J  (3.83)  
 
where ( )t τ−J is a material property referred to as the creep function. A material that 
beys the constitutive relation given by Eq. (3.83) is referred to as a linear hereditary 

. Let us sum the strains due to the stress states at all prior times to obtain the 
strain at the current time. Thus, 

o
material

 

    
0

( ) ( ) ( )
t

t t d
t

ε τ σ τ τ= −∫ J  (3.84) 
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   Figure 3.15  Generic stress and strain histories. 
 
where t0 is the initial (reference) time. An integral of the type that appears in Eq. 
(3.84) is called a convolution integral. Such integrals will be introduced and em-
ployed in a different context in Chapter 4. In a similar manner, the stress at the cur-
rent time t is related to the strain history by the convolution integral 
 

    ( )
t

t

t

(a)

(b)

t

.

0

( )
t

t dσ τ ε τΞ −∫  (3.85) 

 
where Ξ(t − τ) is referred to as the relaxation function for the material. In this section 
we shall be interested in the behavior of structures comprised of linear hereditary 
materials when they are subjected to harm  excitation. 
 

3.4.2  Steady State Response of Linear Hereditary Materials 

et us consider the response of systems after they are operating for tim

=

onic

L es long enough 
died out. That is, let us consid

extend the reference tim
finity to

d

for all transients to have er the steady state response of 
ese systems. For such situations, we e back through nega-th

tive in  capture the entire history of loading. In this case Eq. (3.84) assumes 
the form 
 

    (
t

t t) ( ) ( )ε τ σ τ τ
−∞

= −∫ J  (3.86) 

of the linear hereditary materia
e shift 

 
To discuss the response ls to harmonic excitation it is 
convenient to introduce the tim
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    tξ τ= −  (3.87) 
 
into Eq. (3.86). The stress-strain relation then takes the form 
 

    d
0

( ) ( ) ( )t tε ξ σ ξ ξ
∞

= −∫ J  (3.88) 

 
where we are now integrating back in time. Let us next consider the situation where 
the stress history varies harmonically in time. Hence, let us consider the stress history 
of the form 
 
    0( ) i tt eσ σ Ω=  (3.89) 
 
where σ0 = constant. Substitution of the harmonic stress form, Eq. (3.89), into the 
constitutive relation, Eq. (3.8  8), gives the corresponding strain history
 
    0( ) i tt eε ε Ω=  (3.90) 
where 
    0 0( )iε σ= Ω ΩJ  (3.91) 
and 

0
( ) ( ) ie dξξ ξ

∞
− ΩΩ = ∫J J     (3.92) 

 
he parameter ( )ΩJ is known as the complex compliance of the material and may be T

recognized as the Fourier transform of its counterpart J. As ( )ΩJ is generally a com-
plex function of the excitation frequency, it may be expressed as the sum of its real 
and imaginary parts. Hence, we may express the complex compliance in the form 

    i
 

( ) ( ) ( )R IΩ = Ω + ΩJ J  (3.93) J
 
where ( )RJ Ω is referred to as the storage compliance and ( )IJ Ω  is called the loss 
compliance.  Substitution of Eq. (3.93) into Eq. (3.91) and solving for σ0 renders the 
relation between the magnitudes of the stress and strain to the form 
 
  0 0

ˆ ( )Eσ ε= Ω   (3.94) 

 the complex elastic modulus of

   

 
where ˆ ( )E Ω is defined as  the material given by 
 

ˆ ( ) ( ) ( )E E iEΩ = Ω + Ω  (3.95) 
with 
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2 2

( ) ( )
( ) ( ) RE E       and    

( )
I

( )

Ω − Ω
Ω = Ω =

Ω Ω Ω Ω

J
 (3.96) 

J

J J

 
( )E ΩThe parameters E(Ω) and are referred to as the storage modulus

is seen that the components of
eneral, dependent on the excitation frequency. An analogous development may be 

G G iG

 and the loss 
modulus, respectively. It  the complex modulus are, in 
g
used to establish the corresponding shear modulus of the material during a state of 
pure shear imposed, say, during a torsion test. If this is done, the corresponding com-
plex shear modulus takes the form 
 
    ( )ˆ ( ) ( )Ω = Ω +

f the complex 
tic storage modulus) an
e modulus) are indepe

re equal to the corresponding elastic modulus, E, and shear modulus, G, that 
ng quasi-static tests, then 

rial lies solely in the imaginary part of the corresponding modulus (the elastic 
loss modulus). For such materials, Eqs. (3.95) and (3.9

 

Ω  (3.97) 
 
where the associated shear storage modulus and shear loss modulus are generally 
dependent on the excitation frequency. 

If we restrict our attention to materials for which the real part o 
elastic modulus (the elas d the real part of the complex shear 
modulus (the shear storag ndent of the excitation frequency and 
hence a
would be measured duri the frequency dependence of the 
mate
loss modulus or the shear 7) 
take the respective forms
 
    ˆ ( ) ( )E E iEΩ = + Ω  (3.98) 
and 
    ˆ ( ) ( )G G iGΩ = + Ω  (3.99) 
 
In this way, the standard elastic constants, E and G, together with the frequency de-

and ) ( )G Ωpendent loss moduli, (E Ω characterize the m
f harmonic loading. These parameters may be measured directly, and therefore pro-

ial t

 
e standard elastic constants in any structural model of interest, for the loading type 

 may be done, for exam
nd beam models discussed in Chapters 9–11, or for the simplified representations of 

ditary 
al behavior introduced above into the 

 point. 

 

aterial behavior for the case 
o
vide an equivalent characterization of the behavior of the mater o that provided by 
the creep function, J, for the case of harmonic excitation. 
 The complex moduli defined by Eqs. (3.98) and (3.99) may be substituted for
th
under consideration. This ple, for the continuous dynamic rod 
a
such structures considered thus far. We shall next incorporate the model of here

ateri approximate representations for structural  m
systems employed to this
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    Figure 3.16  Kinetic diagram for structure. 
 
 

3.4.3 Steady State Response of Single Degree of Freedom Systems  

When the mass of a structural member, such as a beam or rod, is small compared 
with the other mass measures of a system, and we are primarily interested in the mo-
tion of a single point on that structure, we often approximate that system as an 
equivalent single degree of freedom system. We next incorporate the effects of inter-
nal friction into such models. 
 If, in the equivalent single degree of freedom models of the elastic systems 
discussed in Chapter 1 and employed to this point, we replace Young’s modulus, E, 
and the shear modulus, G, by the complex elastic modulus, ˆ ( ),E Ω and complex shear 
modulus, ˆ ( ),G Ω respectively defined by Eqs. (3.98) and (3.99), then the equivalent 

iffness in each case will be replacst ed by an equivalent com of the 

   

plex stiffness, ˆ( ),k Ω
form 

[ ]ˆ( ) ( ) 1 ( )k k ik k iγΩ = + Ω = +  (3.100) 

equivalent elastic stiffness as co

Ω 
 

here k = constant is the mputed in Section 1.2 and w
 
    ( ) ( )k k= Ω  (3.101) 
 
is the structural loss factor. It follows from the corresponding dynamic free body 
diagram (Figure 3.16) that the equation of motion for a ha

γ Ω

rmonically excited system 
ith w material damping takes the form of that for an undamped system with the spring 

stiffness replaced by the complex stiffness defined by Eq. (3.100). If we introduce the 
harmonic excitation in complex form, then the equation of motion for the correspond-
ing equivalent single degree of freedom system takes the form 
 
    0

ˆˆ ˆ( ) i tmx k x F e Ω+ Ω =  (3.102) 
or equivalently 

[ ]2 2
0ˆ ˆ1 ( ) i tx i x f eω γ ω Ω+ + Ω =  (3.103)     
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where the familiar parameters f0 and ω are defined by Eqs. (3.14) and (2.2), respec-
tively. We next parallel the approach of Sections 3.3.2 and 3.3.3 to obtain the particu-
lar solution, and hence the steady state response of the structurally damped system 
described by Eq. (3.103). We thus assume a solution of the form 
 
    ˆˆ( ) i tx t Xe Ω=  (3.104) 
 

it into Eq. (3.103). Solving the resulting algebraic equation for  and 
) gives the particular 

   

X̂and substitute 
substituting the corresponding expression back into Eq. (3.104

lution so
( )

0ˆ( ) ( ) i tx t f e Ω −Φ= Γ Ω  (3.105) 
where 

 0F
0f k

 (3.106) 

 

    

=

( )22 2

1( )
1 γ

Γ Ω =
− Ω +

 (3.107) 

an

    

d 
1

2tan
1

γ− ⎧ ⎫Φ = ⎨ ⎬
− Ω⎩ ⎭

 (3.108) 

 
are, respectively, the magnification factor and phase angle of the structura mped 
respon

lly da
se. Employing Euler’s Formula, Eq. (1.61), in Eq. (3.105) and equating real 

s the steady state response for the
ons as follows: 

and imaginary parts give  explicit harmonic excita-
ti
 

 0( ) cosF t F= Ωt  then 

   

if
 

( )0( ) ( ) cosssx t f t= Γ Ω Ω − Φ  (3.109)  
 
if 0( ) sinF t F t= Ω  then 
 
    ( )0( ) ( )sinssx t f t= Γ Ω Ω − Φ  (3.110) 
 
A comparison of Eqs. (3.107)–(3.110) with Eqs. (3.50), (3.51), (3.53) and (3.54) sug-

 effective damping factor gests the definition of the
 

( )( )
2eff

γζ Ω
Ω ≡

Ω
     (3.111) 
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which is seen to be dependent on the excitation frequency. Thus, the loss factor ( )γ Ω  
is often referred to as the structural loss factor. Equations (3.111) and (3.101) together 
with Eq. (2.65) suggest the definition of an effective damping coefficient of an equiva-
lent, but frequency dependent, viscous damper in the form 
 

( ) ( )k γ Ω  (3.112) ( )eff
kc Ω    Ω ≡ =

Ω Ω

xample 3.12 

 
Hereditary materials are also referred to as viscoelastic materials.  
 
 

E
A 1' 1" 1/16" metal strip is suppor× × ted by rollers at its edges. Young’s 
modulus of the strip is measured in a quasi-static test as 3 × 107 psi. A 3 lb 
weight is bonded to the beam at center-span and the lower edge of the beam is 
excited by a harm  is set onic force as indicated. When the excitation frequency
at 6 cps, the time h f the weight is observed to be istory of  the displacement o
out of phase with the force by 30°. Determine the loss factor, the effective 
damping factor and the damp-
ing coefficient of the beam 
for the given frequency. 
 
Solution 
We first determine the effective stiffness of the equivalent single degree of 
freedom system. The area moment of inertia of a cross section is 
 

3
5 4(1)(1/16) 2.035 10  in

12
I −= = ×  (a) 

 
t found using Eq. (1.22). The effective stiffness is nex Hence, 

 
7 5

3

48(3 10 )(2.035 10 ) 16.95 lb/in 203.4 lb/ft
(12)

k
−× ×

= = =  (b) 

 
 

 

It then follows that
203.4 46.72 rad/sec

3 / 32.2
ω = =  (c) 

 

 

The excitation frequency is 
  

 d/sec2 (6) 37.70 raπΩ = =
Hence, 

 (d) 
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 37.70 46.72 0.8069Ω = =   
 
From Eq. (3.108), the structural loss factor is computed as 
 

(e)

2

2

1 tan(30 )

  .2015
 (f) 

1 (0.8069) (0.5774) 0

γ ⎡ ⎤= − Ω °⎣ ⎦
⎡ ⎤= − =⎣ ⎦

 
giving 

 

 

Now, the effective damping factor is computed using Eq. (3.111) 

(0.2015) 0.1249
2(0.8069)2eff

γζ = = =
Ω

  (g) 

 

 
Finally, the effective damping coefficient is found using Eq. (3.112) to give 
 

(203.4)(0.2015) 1.087 lb-sec/ft
37.70eff

kc γ
= = =

Ω
 (h) 

 
   
 

3.5 SEL APPLICATIONS 

In thi
excita
synchronous w
 

3.5.1  Motion of the Support 

In ma en and undergoes 
motion. Examples include earthquake loadings on buildings and devices attached to 

achinery. In this section we consider the response of single degree of f
ms that are excited in this manner. 

 onsider the system shown in Figure 3.17, and let the foundation undergo the 
prescr F(t) as indicated. The associated kinetic diagram for the 
system ure 3.18. Since the spring force is proportional to the rela-

ve displacement of the mass with respect to the suppor
ortional to the relative velocity of the mass with respect 

tion o motion is found from Newton’s Second Law as follows; 
 
 

ECTED 

s section, we examine three representative applications that involve harmonic 
tion. These include harmonic motion of the support, the unbalanced motor, and 

hirling of rotating shafts. 

Harmonic

ny applications the support or foundation of the system is driv

m reedom sys-
te

C
ibed displacement x
 is displayed in Fig

ti t, and the damping force is 
prop to the support, the equa-

f 

( ) ( )F Fk x x c x x mx− − − − =  
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  Figure 3.17  Mass-spring-damper system with movable support. 

 
or 
 

 

22 ( ) ( ) 0F Fx x x x xωζ ω+ − + − =  (3.113) 

elative Motion 
Let u(t) measure the displacement of the to the moving foundation, and 
ence measure the stretch in the spring. Hence, 

R
mass relative 

h
 

( ) ( ) ( )Fu t x t x t= −  (3.114) 
 

elative velocity of the mass with respect to the 
foundation and therefore measures the rate at which the viscous damper is being 

)t  (3.115) 
 

n and is seen to have the 

It then follows that ( )u t represents the r

separated. Substitution of Eq. (3.114) into Eq. (3.113) gives the governing equation in 
terms of the relative motion of the mass as 
 
 22 (Fu u u xωζ ω+ + = −

Equation (3.115) is valid for any form of support excitatio
form of the governing equation for the damped harmonic oscillator subjected to a 
time dependent force. As we are presently interested in harmonic motion of the sup-
port let us consider support motion in the form 
 
 0( ) sinFx t h t= Ω  (3.116) 
 
 

 
 suFigure 3.18  Kinetic diagram for system with pport motion. 
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Figure 3.19  Normalized amplitude of relative motion as a function of frequency ratio for 
arious values of the damping factor. 
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where h0 is the amp de of the displacement of the foundation. Substitution of the 
prescribed support displacement given by Eq. (3.116) into Eq. (3.115) gives the equa-
tion of motion in the form 
 

2 2 02 sinu u u f tωζ ω ω+ + = Ω  (3.117) 
here w

 2
0 0f h= Ω  (3.118) 

 
and, as before, / .ωΩ = Ω  Equation (3.117) is seen to be in standard form. Therefore, 
the steady state response may be written directly from Eq. (3.54), with appropriate 
change of variables. Thus, 
 
 )0( ) sin(ssu t U t= Ω −

here 
Φ  (3.119) 

w
 ( )2

0 0 ;U h ζ= Ω Γ Ω  (3.120) 

 
is the amplitude of the st are given by Eqs. (3.50) 

respectively. The phase angle Φ measures the degree that the relative 
otion of the mass lags the motion of the support. 

eady state response, and  Γ and Φ 
and Eq. (3.51) 
m
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It may be seen that the ratio of the amplitude of the relative motion of the mass 
to the amplitude of the motion of the support is given by 
 

 ( )20

0

;
UU
h

ζ≡ = Ω Γ Ω  (3.121) 

 
The normalized amplitude, ,U

hat the 
 

0) th

characterizes the relative motion of the support excited 
system in the same sense t magnification factor, Γ, characterizes the absolute 
motion of a system excited by a harmonic force applied to the mass. It may be noted 
from Eqs. (3.121) and (3.5 at when 2 1Ω , 1U ≈  and hence 0 0U h≈  regardless 
of the excitation frequency. Plots of the normalized amplitude are disp d as func-
tions of the frequency ratio for various values of the damping factor in Figure 3.19. 
The phase angle is seen to be of the same form as that for the case of the harmoni-
cally forced mass. Hence the plots of the phase angle displayed in Figure 3.9 pertain 
to the present case as well, but with the current interpretation. 

Absolute Motion 
The solution given by Eq. (3.119) gives the motion of the mass of the support excited 
system as seen by an observer moving with the support. We next determine the mo-
tion of the mass as seen by an observer attached to a fixed reference frame.  
 The absolute steady state motion of the mass, that is the motion with regard to a 

tion of the support appear on the right-hand side. 
ence

laye

fixed reference frame, is obtained by first rearranging Eq. (3.113) so that all terms 
associated with the prescribed mo
H , 
 
 2 22 2 F Fx x x x xωζ ω ωζ ω+ + = +  (3.122) 
 
Equation (3.122) is valid for any excitation of the foundation. As for relative motion, 

e are here interested in harmonic motion of the foun
however, expedient to solve for the absolut

x form. Hence, let us consider the complex for

w dation in the form of Eq. 
e motion of the mass in (3.116). It is, 

comple m of the support motion 
 
 0Fˆ ( ) i tx t h e Ω=  (3.123) 

m of the sine function of interest. Substitution of 
q. (3.123) into Eq. (3.122) gives the differential eq
sponse as 

 
After solving, we shall extract the imaginary part of the solution, as it will correspond 
o the response to forcing in the fort

E uation governing the complex 
re
 

( )2 i t2 2
0ˆ ˆ ˆ2 1x x x h iωζ ω ω eζ Ω+ + = +

The right-hand side of Eq. (3.124) may be viewed as the superposition of two har-
monic forces,  

Ω  (3.124) 
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 (1) (1)
0 0( ) i t i tf t f e h eΩ Ω= =  

and 
 (2) (2) i t

0 0( ) 2 i tf t f e ih eζΩ Ω

the response of the 
stem to the two forces is the sum of the responses to each of the excitations applied 
dividually. In addition, Eq. (3.124) is in standard

(3.51) for the two forces of Eq. (3.124) and summing gives the complex form of the 
eady state response as 

= = Ω  
 

 follows from the Principle of Superposition (Section 3.1) that It
sy
in  form. Applying Eqs. (3.47)– 

st
 
 ˆˆ ( ) i t

ssx t Xe Ω=  (3.125) 
where 
 ( )0

ˆ 1 2iX h e i ζ− Φ= Γ + Ω  (3.126) 

 
and  Γ and Φ are given by Eqs. (3.50) and Eq. (3.51), respectively. Next, paralleling 
the development of Eqs. (3.73)–(3.74) gives the steady state response for the absolute 
motion of the mass as 
 

( )ˆ ( ) i t
ssx t Xe Ω −Ψ=  (3.127) 

where 

 ( ) ( ) ( )2

0 0; ; 1 2X h hζ ζ ζ= ϒ Ω = Γ Ω + Ω  (3.128) 

a

    

nd 

( ) ( )
3

1
2

2tan ζ−

21 2ζ

⎧ ⎫Ω⎪ ⎪Ψ = ⎨ ⎬
− Ω + Ω⎪ ⎪⎩ ⎭

 the motion of the foundation is given by Eq. (3.116) then

 (3.129) 

 
If  the steady state response 
of the support is given by the imaginary part of the complex response, Eq. (3.127). 
Hence,  
 
 0( ) sin( )ssx t h t= ϒ Ω − Ψ  (3.130) 
 
T racterized by the ratio of the ampli-
tu of the motion of the foundation 

he absolute motion of the mass is seen to be cha
de of the motion of the system to the amplitude 

 

 ( )
0

;XX
h

ζ≡ = ϒ Ω  (3.131) 

 
omparison of Eqs. (3.131C ) and (3.81) shows that the same functional form governs 
oth the response for the present case and the force transmib tted to a fixed support, 
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though the parameters they represent have, of course, very different interpretations. 

 systems with appropriate interpretation of the parameters. 

ted to the Moving Support 
he kinetic diagram of the system (Figure 3.18) together with Eq. (3.113) shows that 

Thus, the plots displayed in Figures 3.13 and 3.14 characterize the absolute motion of 
support excited
 

Force Transmit
T
the force transmitted to the support by the system is 
 
 trF cu ku mx= + = −  (3.132) 
 
Substitution of the steady state response, Eq. (3.130), into the right-hand side of Eq. 

.132) gives the transmitted force as (3
 
 sin( )tr trF F t= Ω − Ψ  (3.133) 
where 

0trF k h= T  (3.134) 
and 

 
( )

( ) ( )

22

2
1 2ζΩ + Ω

2 221 2ζ
= Ω ϒ =

− Ω + Ω
T  (3.135) 

Example 3.13  

 
 

The foundation of a one-story building un-
dergoes harmonic ground motion of magni-
tude 2 inches and frequency 4 cps. If the roof 
structure weighs one ton, the bending stiff-
ness of each of the four identical 12 ft col-
umns is 64 10× lb-ft2 and the structural damp-
ing factor at this frequency is estimated to be 
0.1, determine the steady state response of 
the structure. Also determine the magnitude 
of the shear force within each column. 

 
 Solution 

The effective stiffness of the structure may be computed using Eq. (1.18) to 
give 

 
6

3 3

48 48(4 10 ) 1.1
(12)eff

EIk
L

×
= = =

Hence,  

51 10  lb/ft×  (a) 
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5

3

48 1.11 10 42.3 rad/sec
(2000 / 32.2)

eff EI
m mL

ω ×
= = = =  (b) 

 
The excitation frequency is given as 
 

k
 

4 cps 2  rads/cycle 8  rad/secπ πΩ = × =  (c) 
Thus, 

 8π
Ω = 0.594

42.3
=  (d) 

 
Now, to calculate the amplitude of the response using Eq. (3.128) we first com-
pute ϒ , giving 
 

 
( )

( ) ( )
[ ]

[ ]

2 21 2 1 2(0.1)(0.594)ζ+ Ω +
ϒ = =

2 2 2 22 2
1.53

1 (0.594)1 2ζ
=

⎡ ⎤− +− Ω + Ω ⎣ ⎦

 (e) 

he amplitude of the steady state response is 
 

2(0.1)(0.594)

 
T then 

0 2(1.53) 3.06X h ′′= ϒ = =  (f) 
 
The phase angle is next computed using Eq. (3.129) g
 

 

iving 

( )

[ ]

3
1

22

2

2tan
1 2

0.0633 rads
)

ζ

ζ
−

⎧ ⎫
Ω⎪ ⎪Ψ = ⎨ ⎬

− Ω + Ω⎪ ⎪⎩ ⎭

⎪3
1

2

2(0.10)(0.594)   tan
1 (0.594) 2(0.1)(0.594

−
⎧ ⎫⎪= =⎨ ⎬

⎪− +⎪⎩ ⎭

 (g) 

0) gives the steady state response 

 

 
Substituting Eqs. (c), (f) and (g) into Eq. (3.13
of the building, 
 

( ) 3.06sin(8 0.0633)ssx t t   (inches)π= −
 
The force transmitted to the support is compute
For 2 1ζ  we have 

 (h) 

d from Eqs. (3.134) and (3.135). 

  
 5 2 3

0 (1.11 10 )(2 /12) (0.594) (1.53) 9.99 10  lbtrF k h ⎡ ⎤= = × = ×⎣ ⎦T  (i) 
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Finally, the shear force in each of the four columns is one quarter of the 
transmitted force. Hence,  

 

total 

 
34 2.50 10  lbtrV F= = ×  (j) 

 
 

 
 

xample 3.14  Vehicle Traveling on a Buckled Road E
During very hot weather roads often suffer thermal buckling. If the buckle is 
sinusoidal, as shown, the rise of the buckle, y, may be expressed as a function 
of the distance along the road, ξ, in the form 0 sin(2 )y y πξ λ= , where y0 is 
the amplitude of the buckle (the maximum rise) and λ is the wavelength (the 
spatial period) of the buckle. Those of us that drive, or even just ride, all know 
that the ride over a bumpy road is often worse at particular speeds. If a vehicle 
modeled as the equivalent, lightly damped, single degree of freedom system 
shown rides along the 
buckled road at con-
stant speed, v0, deter-
mine the value of the 
speed at which the am-
plitude of the vehicle 
vibration achieves a 
maximum. Also deter-
mine the magnitude of 
the force transmitted to 
the axle at this speed. 
 
 

 Solution 
The vehicle 
which causes the vehicle to rise and dip as it follows the contou
The first thing we need to do is determine the vertical motion of the wheel as a 
function of time. Since the vehicle travels at constant speed, the horizontal 
omponent of the velocity is constant. The distance traveled in the horizontal 

 

moves to the right at constant speed v0 over the buckled road, 
r of the road. 

c
direction is then given by 
 

0v tξ =  (a) 

s indicated in the figure. Substitution of Eq. (a) into the given equation for the 

 

 
a
road deflection gives the vertical motion of the wheel as 
 

0 siny y t= Ω  (b) 
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where 
 02 vπ λΩ =  (c) 

 (vertical) excitation of the support, 
y(t) identified with 

 
With the vertical motion of the wheel hub given by Eq. (b), it may be seen that 

e present problem corresponds to one ofth
with ( )Fx t  and y0 identified w th h0. Since the damping
the vehicle’s suspension system is “light” ) , the maximum vertical 
sponse of the vehicle will occur when 

i  in 
re-2( 1ζ

1Ω ≅ . Substituting Eq. (c) into the reso-
nance condition, ωΩ ≅ , and solving for the velocity gives the critical speed of 
the vehicle, 

 
2crv

mπ
=  kλ (d) 

 
The magnitude of the force transmitted to the axle is found using Eq. (3.134) 
and (3.135) with 1Ω ≅  and 2 1ζ . This gives
 

 

 0

2tr
k y

F
ζ

≅  (e) 

 
Substituting Eqs. (c) and (
force at the critical speed
 

d) into Eq. (e) gives the magnitude of the transmitted 
 as 

 
( )

0 0
02

2 2trF
k y y k mv

c m c
π

ω λ
= =  (f)   

 
 
 
 
 
 

 
          Figure 3.20  Rotor system with imbalance. 
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3.5.2 d Motor 

 ma systems the situation exists w
tating body is not evenly distributed. (In reality

ase to some extent in all systems.) If, for examp
the sense that the mass of the rotor is not quite symmetrically distributed throughout 
its cro
We ex

Equa
Consi
sentat in Fig
shaft,  the distribution of the mass of the rotor be slightly nonuniform. A 

mple way to model this situation is to represen en distribution of mass
int mass embedded in a uniform distribution of mass. We shall thus 

consider an eccentric point mass, me, to be embedded in the rotor and located a dis-
tance 
lar rat θ , of erator to the eccentric mass is 
then  Ωt. Finally, let the vertical displacement of the axis of rotation relative to its 

m position be x. We are interested in the 
lts from the rotation of the nonuniform rotor. 

 o derive the equation of motion of the composite system it is useful to first 
expre

  Unbalance

In here the mass of a supposedly axi-ny practical 
etric rosymm , this will likely be the 

c le, a motor is slightly unbalanced in 

ss section, unwanted vibrations of the motor or its support system can occur. 
amine this phenomenon in the present section. 

tion of Motion 
der a circular wheel or shaft rotating within the frictionless sleeve of the repre-
ive system shown ure 3.20. Let the total mass of the system, including the 
 be m, and let

si t the unev  as 
an eccentric po

 from the axis of rotation, as indicated. If the shaft rotates at a constant angu-
e Ω, the angular displacement,  the radial gen

θ =
equilibriu motion x(t) of the system that re-
su

T
ss the Cartesian coordinates ( , )e ex y that establish the position of the eccentric 
 in terms of the vertical displacement of the axis of rotation and the angular dis-

ent of the rotor or flywheel. The de
mass,
placem sired relations are found, with the aid of 
Figure 3.21, as 

( ) ( ) sinex t x t t= + Ω  (3.136) 
( ) cosey t t= − Ω  (3.137) 

  
   Figure

 

 3.21  Description of motion of the system. 

t t

x(t)
x

e
(t)

sin

x

y
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We next isolate each of the bodies that comprise the idealized system. The corre-
In those diagrams the 

mass of the rotor is labeled mw, and the resultant internal forces acting on the wheel, 
lock are labeled 

sponding dynamic free-body diagram is shown in Figure 3.22. 

( ) ,wF ( )eF and ( ) ,bF  respectively. A the eccentric mass and the b
subscript x indicates the corresponding vertical component of that force. With the aid 
of the kinetic diagrams, the vertical component of Newton’s Second Law may be 
written for each body as 
 
 [ ]( )b

x e wF kx cx m m m x− − = − −   

 ( ) 2 sine
x e eF m x m x t⎡ ⎤= = − Ω Ω⎣ ⎦  (3.138) 

( )w
x wF m= x   

 
We next sum Eqs. (3.138) and note that the internal forces sum to zero via Newton’s 
Third Law. This results in the governing equation for the vertical motion of the entire 
system 
 2 sinemx cx kx m t+ + = Ω Ω  (3.139) 
 
When rearranged, Eq. (3.139) takes the standard form 
 
 2 2

02 sinx x x f tωζ ω ω+ + = Ω  (3.140) 
where 

 ( ) 2
0 0

ef f
m

m
= Ω = Ω  (3.141) 

 
  

 
           Figure stem.  3.22  Kinetic diagram for each component of the sy
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Steady State Response 
The steady state solution of Eq. (3.140) is given by Eq. (3.54) with appropriate inter-
pretation of the parameters. Hence, the steady state response of the unbalanced motor 
is given by 

 ( )2( ) sin( ) in(e
ss

m
x t X t t

m
= Ω − Φ = Ω Ω  (3.142) 

 
where Γ and Φ are given by Eqs. (3.50) and Eq. (3.51), respectively. The ratio of the 
irst moments of the mass

; s )ζΓ Ω − Φ

, f
 

( )2 ;
e

mX
m

ζ≡ = Ω Γ ΩQ  

 seen to characterize the response of the unbalanced motor. We note that when 

(3.143) 

 
is

2 1Ω , 1≈Q  and hence 
 
 eX m m≈  (3.144)  

hus, for large frequency ratios the amplitude of the response is effectively independ-
e normalized (first) mass mo-

e function as the normalized 
mplitude of the relative motion associated with harmoni

orresponding plots of that function displayed in Figure 3.
acteristics of the response for the unbalanced motor, as well. Plots of 

e associated phase angle are shown in Figure 3.9.
3.19 it may be seen that n the vicinity of 

 
T
ent of the excitation frequency. It may be seen that th

ent defined by Eq. (3.143) is characterized by the samm
a c motion of the support, Eq. 

19 then de-(3.121). The c
scribe the char
th  Upon consideration of Figure 

max→Q Q i 1Ω = as may be expected. It 
ay also be seen that  and 0→Q 0Φ →  as 0Ω → , and also that  and 1→Qm

πΦ →  as Ω → ∞ . These trends may be put into context by examination of the mo-
ter of mass of the system. 

The location of the center of mass of the block-rotor-eccentric mass system 
shifts as the block moves up and down and the eccentric mass rotates with the rotor 
about the corresponding axis of rotation. The vertical location of the center of mass is 
found, as a function of time, by applying Eqs. (3.136) and (3.142) to Eq. (1.120). This 
gives 

 

tion of the cen

( ) sin( ) sine
cm

m
x t X t t

mX
⎡ ⎤= Ω − Φ + Ω⎢ ⎥⎣ ⎦

 (3.145) 

 
Recall, from our earlier discussion, that  and 0→Q 0Φ →  as .0Ω →  It is seen 
from Eq. (3.145) that, in this extreme, 
 

 sine
cm

m
x t

m
→ Ω   
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Thus, in the static limit, the excitation is so slow compared with the natural motion of 
nter of mass 

slowly moves up and down as the eccentric mass rotates very slowly about the axis of 
 extreme, recall that  and 

the system that the block essentially remains stationary (X = 0) and the ce

1→Q πΦ →  as Ω → ∞ . It is rotation. In the opposite
seen from Eq. (3.145) that, in this extreme, 
 

 1 sine
cm

m
x X t

mX
⎡ ⎤→ − + Ω →⎢ ⎥⎣ ⎦

0   

Thus, in this limit, the center of mass of the system remains essentially stationary 

 to compensate. This scenario is in keeping with that for 
e high (excitation) frequency response found for the cases discussed in previous 

ions in that, in this extreme, the excitation is so rapid that 
ssentially does not respond to the excitation.  

he force transm support can be obtained by adopting the development of 
ection 3.3.4 to the present case. To do this, we 
ate response given by Eq. (3.142) into Eq. (3.72) an

 

while the eccentric mass rotates rapidly about the axis of rotation, and the block 
moves rapidly up and down
th
sect the system as a whole 
e
 

Force Transmitted to the Support 
itted to the T

S substitute the amplitude of the steady 
d parallel the development lead-st

ing to Eq. (3.80). This gives the force transmitted to the support of the unbalanced 
motor as 
 
 sin( )tr trF F t= Ω − Ψ  (3.146) 
where 

 ( ) ( )
2 21 2tr eF k X k m mζ= + Ω = Ω ϒ  (3.147) 

 
ϒ  is defined by Eq. (3.7 Ψ is gi  Eq. (

 

7) and ven by 3.78). 
 

Example 3.15 
A 4 kg motor sits on an isolation mount possessing an equivalent stiffness of 64 
N/m and damping coefficient 6.4 N-sec/m. It is observed that the motor oscil-
lates at an amplitude of 5 cm when the rotor turns at a rate of 6 rad/sec. (a) De-
termine the offset moment of the motor. (b) What is the magnitude of the force 
transmitted to the support at this rate of rotation? 
 
Solution 

meters ω and ζ. Hence, 
 

(a) 
Let us first determine the system para
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64 4 rad
4

k
m

ω = = = /sec  (a) 

and 

 6.4 0.2
2 2(4)(4)

c
m

ζ
ω

= = =  (b) 

 
Therefore, 

6 1.5
4ω

Ω
Ω = = =  (c) 

 
Substituting Eqs. (b) and (c) into Eq. (3.143) gives the ratio of the first inertial 
moments as 
 

 
[ ]

2
2

2 22

(1.5) 1.623
1 (1.5) 2(1.5)(0.2)

= Ω Γ = =
⎡ ⎤− +

Rearranging Eq. (3.143) and substituting Eq. (d) gives the offset moment 

⎣ ⎦

Q  (d) 

 

 
(4)(0.05) 0.1232 kg-m

1.623e
mXm = = =
Q

 (e) 

 
(b) 
To determine the magnitude of the transmitted force, we simply substitute the 
given displacem

 

ent and effective stiffness, as well as the computed damping 
factor and frequency ratio, into Eq. (3.147). Ca

magnitude of the force transmitted to t
rrying through the computation 
he support as gives the 

 

[ ]2(64)(0.05) 1 2(0.2)(1.5) 3.732 N  (f)  trF = + =

 
   

 

Example 3.16 
Determine the amplitude of the response of the system of Example 3.15 when 
the rotation rate is increased to 60 rad/sec. 
 
Solution 
For this case, 

 60 15
4

Ω = =  (a) 

and hence 
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2 225 1Ω =  (b) 

herefore  and 
 

 

 
 1≈QT

0.1232 0.03080 m 3.08 cm
4

em
X

m
≈ = = =  (c) 

 
Let us next calculate the amplitude using the “exac

 

t” solution. Hence, 
 

[ ]

2

22

(15) 1.004
1 (15) 2(0.2)(1

= =
⎡ ⎤− +⎣ ⎦

Q  (d) 

 

25)

 
The amplitude of the steady state response is then 
 

0.1232 (1.004) 0.03092 m 3.09 cm
4

em
X

m
= = = =Q  (e) 

 
Comparing the two answers we see that the error in using the large frequency 
pproximation is  

 

a
 

3.09 3.08% error 100% 0.324%
3.09

−
= × =  (f) 

 
  

 

3.5.3

Cons
tic sh k be offset a dis-
tance m the axis of the shaft as shown, and let the shaft-disk system be spinning 
bout its axis at the angular rate Ω. Further let the mass of the shaft be very sm
mpared with the mass of the disk and thus be considered negligible. The system 

may then be modeled as an equivalent single degree of freedom system as shown in 
Figure 3.24. In this regard, let k represent the equivalent elastic stiffness of the shaft 

 bending (Section 1.2.2), and let c represent some effective viscous damping of the 
system y be provided, for example, by oil in the bearings, by structural 
damp
proble
 

 Synchronous Whirling of Rotating Shafts 

ider a circular disk of mass m that is coaxially attached at center span of an elas-
aft as shown in Figure 3.23. Let the center of mass of the dis
ℓ fro

a all 
co

in
. The latter ma

ing (Section 3.4) or by aerodynamic damping (Section 1.2.6). To examine this 
m, we first derive the equations of motion for the disk during whirl. 
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 o derive the equations of motion, we must apply Newton’s Second Law of 

otion to the system of interest. In order to this we must first obtain xpressions 
e acceleration of the center of mass during this relatively complex otion. If po

O refers to the geometric center of the disk then we have, from Eq. (1.72), that the 
accele
metric  and hence of the axis of the shaft, by the relation 
 

O

   Figure 3.23  Whirling shaft. 

T
M  e for 
th m int 

ration of the center of mass of the disk is related to the acceleration of the geo-
 center of the disk,

/G O Ga a a= +  (3.14 8) 
 

 
      Figure 3.24  Equivalent system.  
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where and correspond to the absolute acceleration of the center of mass and the 
absolute acce ration of the geometric center, respectively, and 

Ga Oa
le /G Oa  is the relative 

acceleration of the center of mass with respect to the geometric c  (i.e., the accel-
eration of the center of mass as seen by an observer translating, but not rotating, with 
point O). For the present problem, it is convenient to work in polar coordinates. The 
acceleration of the geometric center is then given by Eq. (1.79) as 
 
 

enter

( ) ( )2 2O Ra R R e R R eθθ θ θ= − + +  (3.149) 
 
where R is the radial distance of the geometric center of the disk from the axis be-
tween the supports (the z-axis) as shown in Figure 3.23. Thus, R(t) represents the 
amplitude of the whirling motion. The relative acceleration of the center of mass with 
respect to the geometric center is similarly obtained, with the aid of Figure 3.25. We 

us find that  

e

t t e

th
 

2a t t/

2

cos( ) sin( )

                + cos( ) sin( )

G O Rθ⎡= − Ω − + Ω Ω −
 

θ

θ

θ θ

⎤Ω⎣ ⎦
⎡ ⎤Ω Ω − − Ω Ω −⎣ ⎦

 (3.150) 

g rate is numerically equal to the rotational ra
hirling motion remains steady. We therefore, at thi
 motions for which 

 
  (3.151) 
       
Integration of the first of Eqs. (3.151) with respect to time gives the angular dis-
placement of the whirl as 
 
 

 
where θ is the angular displacement of the geometric center about the axis connecting 
the supports, as indicated in Figure 3.24, and we have employed the fact that the off-
set, , of the center of mass is constant for a rigid disk. The kinematic relations de-
scribed by Eqs. (3.148)–(3.150) are valid for general whirling of the system. 

For synchronous whirl, we restrict our attention to motions for which the whirl- 
in te of the shaft, and for which the 

s juncture, restrict our attention w
to

constant    and    constantRθ = Ω = =

tθ = Ω − Φ  (3.152) 
 
where Φ is seen to measure the lag of the whirl angle with respect to the spin angle 
(see Figure 3.25). Substituting Eqs. (3.151) and (3.152) into Eqs. (3.149) and (3.150), 
and then substituting the resulting expressions into Eq. (3.148), gives the acceleration 
of the center of mass of the system during synchronous whirl as 
 
 ( )2 cos sinG Ra R e θe⎡ ⎤= −Ω + Φ + Φ⎣ ⎦  (3.153) 

here w
 R R≡  (3.154) 
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         Figure 3.25  Inertial and axial reference frames. 
 
 
is eration evaluated, 
w system of interest. 

 the normalized ampli l
e are now ready to apply Newton’s Second Law of Motion to the 

write the equations of motion for our system in terms of polar coordinates, 

tude of the whirling motion. With the acce

We thus 
substitute Eqs. (3.151)–(3.153) into these equations, and equate components. This 
gives the governing equations for the system along the radial and circumferential 
directions, respectively, as 
 

( )2

2

cos

sin

kR m R

c R m

− = − Ω + Φ
 

− Ω = − Ω Φ
 (3.155) 

 
Solving the first of Eqs. (3.155) for cos Φ , the second for sin Φ , and dividing the 

tter by the former gives the phase angle in terms of the damping factor and the spin 
te of the shaft as 

la
ra
 

1
2

2tan ζ−

1
⎧ ⎫Ω

Φ = ⎨ ⎬ 
− Ω⎩ ⎭

her

 (3.156) 

 
e Ωw is the ratio of the spin rate of the shaft 

e system and ζ is the damping factor. It may be seen that Eq. (3.156) is identical to 

n the rotation of the 
ccentric mass about the geometric center of the disk (see Figure 3.25) and the mo-
on of the geometric center about the axis between the supp

cond) of Eqs. (3.74) into the first (second) of Eqs. (3.155) gives the normal-

to the undamped natural frequency of  
th
Eq. (3.51). Thus, the plots displayed in Figure 3.9 pertain to the current problem as 
well, with suitable interpretation. However, recall that for structural damping the 
damping factor is dependent on the excitation frequency. (See Section 3.4) For the 
present case, the angle Φ represents the phase difference betwee
e
ti orts. Substitution of the 
first (se
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ized amplitude of whirling as a function of the normalized spin rate and the damping 
factor. Hence, 
 

 ( )2 ;RR ζ≡ = Ω Γ Ω  (3.157) 

 
It may be seen that the normalized amplitude given by Eq. (3.157) is of the identical 
functional form as Eq. (3.121). The associated plots displayed in Figure 3.19 there-
fore describe the normalized amplitude for the problem of synchronized whirl, as 
well. Recall, however, that for structural damping the damping factor is dependent on 
the excitation frequency. 
 

xam .E ple 3 17 
A 50 lb rotor is mounted at center span of a 6 ft shaft having a bending stiffness 
of  lb-in2. The shaft is supported by rigid bearings at each end. When 620 10×
operating at 2000 rpm the shaft is strobed and the rotor is observed to displace 
off-axis by ½ inch. If the damping factor for the system is 0.1 at this frequency, 
determine the offset of the rotor.  
 
Solution 
The effective stiffness for transverse motion of the shaft is determined using 
Eq. (1.17) to give 
 

6

3 3 3

12 (20 10 )2 192 192 10, 290 lb/in
( / 2) (6 12)

EI EIk
L L

×
= × = = =

×
 (a)  

 
(See Problem 1.14.) The natural frequency of the system is then computed to be 
 

10, 290 282 rad/sec
50 /(32.2 12)

ω = =
×

  (b) 

 
The rotation rate of the rod is given as 
 

 2000rev/min 2 rad/rev 1min/60sec 209 rad/secπΩ = × × =  (c) 
 
Hence, 

 209 0.741
282

Ω = =  (d) 

 Now, 

 
[ ]

2
2

2 22

(0.741) 1.16Ω Γ = =  (e) 
1 (0.741) 2(0.10)(0.741)⎡ ⎤− +⎣ ⎦
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Rearranging Eq. (3.157) and substituting the observed displacement and Eq. (e) 
gives the offset 
 

 2 0.432 inches
1.16

= = =
Ω Γ

 (f) 

 

0.5R

 
 

3.6  RESPONSE TO GENERAL PERIODIC LOADING 

To th
jected to excitati
consid
that ar
in com  in engineering systems. A ratcheting action, 
a uneven cam driving a mechanism or a parent pushing a child on a swing are just 
three  In this section we study the response of single degree of freedom 
system
forcin ic loading is a special case. We shall see that the response to 
harmonic loading is intimately related to the response to other types of periodic load-

3.6.1

We shall consider the class of time dependent excitations that are applied to systems 
 long span of time and whose temporal form rep

tervals (see Figure 3.26). The forces and hence the asso
scribe them, may be discontinuous as in the case of periodically applied pulses such 
as those im Such periodic forces are 
repres defined as functions pos-

 

       Figure 3.26  Generic periodic function. 

is point we have studied the response of single degree of freedom systems sub-
ons that vary harmonically with time. That is the forcing functions 

ered were of the form of cosine or sine functions. We next consider excitations 
e periodic, but not necessarily harmonic, in time. Such excitations are prevalent 
mon everyday systems as well as

examples.
s that are subjected to this broader class of excitations, namely general periodic 

g of which harmon

ing. 
 

 General Periodic Excitation 

over a very eats itself over specified 
in ciated functions that de-

parted by a parent pushing a child on a swing. 
nted mathematically by periodic functions which are e

sessing the property
 

2-2

F(t)

t
-
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 )( ) (F t F tτ+ =  (3.158) 
 
where
  of the equation of motion for single degree of freedom sys-
tems is given by Eq. (3.1), and is repeated here for convenience. Hence, 

)

 t is the time and τ is the period of application of the force.  
The standard form

 
2 22 (x x x fωζ ω ω+ + =  t

here now 
)

w
( ) (f t f tτ+ =  (3.159) 

which is related to F(t) by Eq. (3.2) for a mass-spring-damper system, or by analo-
 evident from Eq. (3.2) 

that

 

gous relations for other single degree of freedom systems. It is
( )f t is periodic and has the same period as F(t). We wish to determine the gen-

eral form of the steady state response of single degree of freedom systems (or equiva-
lently establish an algorithm to determine the steady state response of systems) sub-
jected to excitations that vary periodically with time. To do this we shall first resolve 
the applied force into its projections (components) onto a set of periodic basis func-
tions. That is we shall express ( )f t  in terms of its Fourier series.  
 Functions such as ( )f t are basically vectors in infinite dimensional space (see 
Chapters 9 and 10). We can therefore express a function as the sum of the products of 
its components with respect to a set of mutually orthogonal basis functions just as we 
can express a vector in three dimensional space as the sum of the products of its com-
ponents with respect to three mutually orthogonal basis vectors. In three dimensional 
space there must be three basis vectors. In function space there must be an infinite 
umber of basis functions. For the class of  periodic functions under consideration, 

the set of functions  
n

 
 ( ) ( ){ }cos 2 / ,sin 2 / 0,1, 2,...p t p t pπ τ π τ =  

 
forms such a basis. These functions have the property that  
 

 ( ) ( )
/ 2

/ 2
cos 2 / sin 2 / 0   ( , 0,1, 2,...)p t q t dt p q

τ

τ
π τ π τ

−
= =∫  (3.160) 

 

( ) ( )
/ 2

/ 2

0 ( ) ( , 0,1, 2,...)2 cos 2 / cos 2 /   
2;1 ( ) ( , 0;1, 2,...)

p q p q
p t q t dt

p q p q

τ

τ
π τ π τ

τ −

≠ =⎧
= ⎨ = =⎩∫         (3.161) 

 

 ( ) ( )
/ 2

/ 2

0 ( )2 sin 2 / sin 2 /   ( , 1, 2,3,...)
1 ( )

p q
p t q t dt p q

p q

τ

τ
π τ π τ

τ −

≠⎧
= =⎨ =⎩∫  (3.162) 

 
e set are thus mutually orthogonal in this sense (Chap-The functions that comprise th

ters 9 and 10). 
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( )f t i Let us express the excitation function n terms of its Fourier series. Hence, 
 

 0
1 1

( ) cos sin( ) ( )c s
p p p p

p p

f t f f t f t
= =

= + Ω + Ω∑ ∑  (3.163) 

here 

∞ ∞

w
2     ( 1, 2,...)p

p pπ
τ

Ω = =  (3.164) 

nd the associated Fourier components are given by
 

 a
 

 
/ 2

0
/ 2

1 ( )f f t dt
τ

ττ −
= ∫  (3.165) 

 
which is seen to be the average value of the excitation ( )f t over a period, and 
 

 
/ 2

( ) 2 ( ) cos      ( 1, 2,...)c
p pf f t t dt p

τ

τ
= Ω =∫  (3.166) 

/ 2τ−

d an

 
/ 2

( )

/ 2

2 ( )sin      ( 1, 2,...)s
p pf f t t dt p

τ

ττ −
= Ω =∫  (3.167) 

 
which are the Fourier coefficients (components) of the cosine and sine basis func-
tions, respectively. These coefficients are thus the components of the given forcing 
function with respect to the harmonic basis functions. [The equations for the Fourier 
omponents arise froc m multiplying Eq. (3.163) by cos ptΩ  or sin ptΩ , then integrat-

period τ and incorporating Eqs. (3.160)–(3.162).] At this point we are 
minded of certain characteristics regarding convergence of a Fourier series repre-
ntation, particularly for functions that possess discontinuities. Notably, that the 

average value of the func-
on at points of discontinuity, and that the series does not converge uniformly. 

if the series for such a function is truncated, the partial sums 
henomenon whereby overshoots (bounded oscillatory spikes) relativ

occur in the vicinity of the discontinuity. With the Fourier series of an arbitrary peri-
odic excitation established, we now proceed to obtain the general form of the corre-

ing steady state response. 
 

 Steady State Response 

We next substitute the Fourier series for the excitation into the equation of motion for 
the system. The equation of motion then takes the form 

ing over the 
re
se
Fourier series of a discontinuous function converges to the 
ti
Rather, exhibit Gibbs 
P e to the mean 

spond

3.6.2
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2 2 2 2 ( )2 cos sins( )
0

1 1

c
p p p p

p p
x x x f t f tωζ ω ω ω ω

∞ ∞

+ + = + Ω + Ω∑ ∑  (3.168) f
= =

defined by Eq. (3.16
Eq. (3.1) we are, in effect, treating the system as if it is subjected to an equiva-

 of harmonic forces and a constant force. Recall that the constant force is 
e average value of  From the superposition princ

w that the response of the system to the system of forces is the sum of the re-
 state response to F(t) 

o the individual Fourier compo-
ents of F(t). The steady state response for the general periodic force may thus be 
und directly from Eqs. (3.53) and (3.54) for each Ω

( )c s

 

 
We see that by incorporating the expansion 3) in the right hand 
side of 
lent system
th iple discussed in Section 3.2 ( ).f t
we kno
sponses to the individual forces applied separately. The steady
therefore corresponds to the sum of the responses t
n
fo p. Hence, 
 

 0
1

( ) ( )ss p p
p

( ) ( )x t x x t x
=

t
∞

⎡ ⎤= + +⎣ ⎦ (3.169) 

here 

∑  

w
0 0x f=  

 
(3.170) 

( )( ) ( )( ) cosc c
p p p p px t f t= Γ Ω − Φ  (3.171)  

 
( )( ) ( )( ) sins s

p p p p px t f t= Γ Ω − Φ  (3.172)  
 

 ( )
( ) ( )

( )
2 22

1;     1, 2,...
1 2

p p

p

pζ
ζ

Γ ≡ Γ Ω = =
− Ω + Ω

 (3.173) 

 

 

p

( ) 1
2

2
; tan     ( 1, 2,...)

1
p

p p
p

p
ζ

ζ −
⎧ ⎫Ω⎪ ⎪Φ ≡ Φ Ω = =⎨ ⎬

− Ω⎪ ⎪⎩ ⎭
 (3.174) 

 

 ( )   1, 2,...p
p p

ω
Ω

Ω ≡ =  (3.175) 

 
For vanishing damping  
 

( )
( )

2 cos
1

c
pc

p p
p

f
x t= Ω

− Ω
  (3.176) 

and 

 
( )

( )
2 sin

1

s
ps

p p

f

p

x t= Ω
− Ω

 (3.177) 
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as per Eqs. (3.  the damp-
in  the excita-

27) and (3.28). Note that for the case of structural damping
g factor will generally have a different value for each harmonic, Ωp, of
on. That is, for the case of structural damping, ti

 
 ( )    ( 1,2,...)p p pζ ζ ζ→ ≡ Ω =  (3.178) 
 
Thus, for practical purposes, one must have an extensive knowledge of the structural 
damping factor if this approach is to be used for systems with appreciable structural 
damping. 
 
 

Example 3.18 
A parent pushes a child on a swing whose chains are 6 ft long, as shown. The 
force history exerted by the parent is approximated by the sequence of periodi-
cally applied step pulses of 0.75 second duration applied every 3 secs as indi-
cated. Determine the motion of the child if the magnitude of the applied force is 
1/10th the combined weight of the child and the seat. Assume that the system is 
free from damping and that the mass of the chain is negligible. 

 

    
 

Figure E3.18-1 

Solution 
The equation of motion is derived by following the procedure for the simple 
pendulum of Section 2.1.4. The kinetic diagram
ure E3.18-2, where we have assumed that the pushing forc
to the path. Writing Newton’s Second Law along the tangential direction, rear-

 

 for the system is shown in Fig-
e is applied tangent 
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ranging terms and linearizing the resulting expression gives the equation of mo-
tion for the child on the swing as 
 

2 2 ( )f tθ ω θ ω+ =  (a) 
where 

 

( )F t( )f t
mg

=  (b) 

and 

 

32.2 2.317 rad/sec
6

g
L

ω = = =  (c) 

g is pushed periodically we may express the applied force in 

 

 

 
Since the swin
terms of its Fourier Series. The frequencies of the Fourier basis functions are 
then computed as 

2 2
3p

p pπ π
τ

Ω = =  (d) 

  
 from which it follows that 

 

 2 2 0.904
(2.317)(3)p

p p pπ π
ωτ

Ω = = =  (e) 

 
We next compute the Fourier components of the applied force. The force is de-
scribed over the interval 3 3t− ≤ ≤ seconds by 
 

   0

0 ( 3 0)
( )  (0 0.75)

0 (0.75 3)

t
F t F t

t

− ≤ <⎧
⎪= ≤ <⎨
⎪ ≤ <⎩

 (f)  

 
 

 
 Figure E3.18-2  Kinetic Diagram. 
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Substituting Eq. (f) into Eqs. (3.165)–(3.167) and carrying through the integra-
tion gives 
 

/ 2 0 0.75 1.5
0 1 0

F
dt dt+ ∫

 
0

/ 2 1.5 0 0.75

0

1 1 1( ) 0
3 3 3

(0.1)    0.025
4 4

f f t dt dt
mg

F mg

τ

ττ − −
= = +

= = =

∫ ∫ ∫
 (g) 

f0 is the average value of f over a period), 
 

 

 
(note that 

/ 2
( )

/ 2

0 0.75 1.5
0

1.5

2 2 2      0 cos cos 0 cos
3 p p p

Ft dt t dt t dt

ττ −

−
= ⋅ Ω + Ω + ⋅ Ω∫ ∫ ∫  (h) 

0 0.75

2 ( )cos

3 3
sin( / 2)      0.1

c
p pf f t t dt

mg
p
p

τ

π
π

= Ω

=

∫

 

 
and 

/ 2
( ) 2s

τ

/ 2

0 0.75
0

1.5 0 1.5

( ) sin

2 2      0 sin sin
3 3 3

p p

p p p

f f t t dt

Ft dt t d
mg

ττ

π

−

− −

= Ω

= ⋅ Ω + Ω +

∫
∫ ∫ ∫

Substituting Eqs. (d)–(i) into Eqs. (3.169), (3.170), (3.176) and (3.177) gives 
onse of the child and swing, 

02 0 sint t dt⋅ Ω  (i) 

[1 cos( / 2)]      0.1 p
p

π−
=

 

the steady state resp
 

 [ ]{ }2
1

( ) 0.025
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(1 0.816 )

ss

p

t

p p t p p t
p p

θ

π π π π
π

∞

=

=

+ −
−∑  

    radi (j) 
 

ans
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Example 3.19 
A motor is configured to drive a system at the constant rate . A controller al-0F
ters the sense of the applied force over specified time intervals of duration as t
indicated by the force history shown. Determine the response of the mass-
spring-damper system.   

 
 

 p
with period 

 

F(t)

F
o

F
o

3t2t

1 1

4tt-t-2t
t

Solution 
The force applied to the single degree of freedom system is clearly eriodic 

2tτ =  (a) 

ay be described over the interval
 

 t t t− ≤ ≤and m  by the relations 

 

 
0

0

( ) ( 0)
( ) (0 )

F t F t t t
F t F t t t

= − − ≤ ≤
= ≤ ≤

 (b) 

We may therefore represent the force imparted by the motor by its Fourier Se-
ries, where the frequencies of the Fourier basis functions are 
 

 

 

2
p t

p pπ π

 

 

τ
Ω = =  (c) 

Hence, 

p
p

t
π

ω
Ω =  (d) 

 
We next evaluate the Fourier components of the applied force. Substituting Eq. 

–(3.167) and carry

 

(b) into Eqs. (3.165) ing through the integration gives  
 

/ 2 0
0 0 0 0

/ 2 0 0

1 1 1 1( )
2 2 2

t t

t
0

F t F F Ff t dt dt t dt t dt t
t k t k t k k

τ

ττ − −
= = − + = =∫ ∫ ∫ ∫  (e) 

 

 

f

0
( ) 0 0

0

2 2sin sin 0
2 2

t
s

p p
t

F Ff t t dt t t dt
t k t k−

= − Ω + Ω =∫ ∫ p  (f) 
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0
( ) 2c F

[ ]

0 0

0 0

10 0
2 2 2 2

cos cos cos
2 2
2 2

      1 cos 1 ( 1)

p p p p
t

p

02 2t tF Ff t t dt t t dt t t dt
t k t k t k
F t F t

p
p k p k

π
π π

−

+

= − Ω + Ω = Ω

⎡ ⎤= − − = − + −⎣ ⎦

∫ ∫ ∫

With the Fourier components of the applied force calculated, we now deter-
mine the steady state response of the system by substituting Eqs. (d)–(g) into 
Eqs. (3.169)–(3.175). In doing so we obtain the steady state response of the 
system as 
 

 (g) 

 

1
0

2 2
1
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π
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22

1
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p tπ ω
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⎡ ⎤
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3.7 CONCLUDING REMARKS 

In thi  freedom systems 
that ar citation, that is excitation that repeats itself at regular 

time. We began by studying sy
cted to external forces that vary harmonically in ti

onding to motion of the support, unbalanced motors and synchro-
ating shafts. In each case the steady state response was seen to be 

rongly influenced by the ratio of the excitatio
undamped motion, and the viscous damping factor. A notable feature is the phe-
nomenon of resonance whereby the mass of the system undergoes large amplitude 
motio
tems ncy. It 
was seen that at resonance the work of the external force is used in the optimal man-

ndamped systems the amplitude of the steady state response was seen to
row linearly with time. The related phenomenon of beating was seen to occu
stems with vanishing damping, when the excitation frequency was very close to but 

ot equal to the natural frequency. In this case the system is seen to oscillate at the 
verage between the excitation and natural frequency, with the amplit

monically with very large period. For viscously damped systems the peak re-
sponse was seen to occur at values of the excitation frequency away from the un-
damped natural frequency, and at lower frequencies for a force excited system, the 
damping slowing the system down. We remark that in some literature the term reso-

s chapter we have considered the motion of single degree of
e subjected to periodic ex

intervals over long periods of stems which were sub-
je me. We also considered classes of 
applications corresp
nous whirling of rot
st n frequency to the natural frequency 

n when the excitation frequency achieves a critical value. For undamped sys-
this occurs when the forcing frequency is equal to the excitation freque

ner. For u  
g r, for 
sy
n
a ude oscillating 
har
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nance is associated solely with undamped systems, and the term resonance frequency 
with the excitation frequency equal to the undamped natural frequency. We here use 

e terms to mean the peak/maximum response and the frequency at which it oc
In all cases the amplitude of the steady state response is characterized by a magnifica-
tion factor, or related expression, which measures the effect of the dynamics on the 
amplitude of the response. In addition, the steady state response lags the excitation 
with t
The p
The f
cal fr ond which the system is essentially isolated from the effects  
of vibration, was identified. A model for structural damping was presented, based on 
the mechanics of linear hereditary materials. The model was adapted to single degree 
f freedom systems and took the form of an effective viscous damp g factor tha

generally dependent on the frequency of the excitation. We finished by studying the 
motio stems subjected to general periodic loading based on the principle of 
superposition and using Fourier Series. In the next chapter we shall study the re-

onse of single degree of freedom systems subjected to excitations that are of fin
duration in time.  
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PROBLEMS 

3.1 The mass of the system of Problem 2.1 is subjected to the force 
( ) 250cos 4F t t= dynes, where t is in seconds. Determine the response of the 

system. Plot the response and identify the amplitude, period and lag time. 
 
3.2 The load cell clamp attached to the end of the rod of Problem 2.6 is observed to 

oscillate with an amplitude of 0.1 cm when attached to a driving mechanism 
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operating at the rate of 1 cps. Determine the magnitude of the force imparted by 
the mechanism.  

 
3.3 The wheel of Example 2.3 is subjected to a harmonic torque of frequency 15 

rad/sec and magnitude 10 lb-ft. Determine the amplitude of the steady state re-
sponse of the system. 

 
3.4 A 3000 pound cylindrical pontoon having a radius of 6 feet floats in a body of 

fluid. A driver exerts a harmonic force of magnitude 500 lb at a rate of 200 cy-
cles per minute at the center of the up-
per surface of the float as indicated. (a) 
Determine the density of the fluid if 
the pontoon is observed to bob with an 
amplitude of 1 foot. (b) What is the 
magnitude of the bobbing motion of 
the pontoon when the excitation fre-
quency is reduced to 5 rad/sec?                                         

                                                                                                     Fig. P3.4 
 

 directed harmonic force 
 
3.5 A horizontally 0( ) sinF t F t= Ω acts 

.5 

on the bob of mass m of a simple pendulum of length L. De-
termine the steady state response of the pendulum. 

 
 
                                                                    
 
                                                                                                                      Fig. P3
 
3.6 The left wheel of a conveyor belt is locked into position when the motor is ac-

cidentally switched on, exerting a harmonic torque 0( ) sinM t M t= Ω about the 
hub of the right wheel, as indicated. The mass and radius of the flywheel are m 
and R, respectively. If no slipping occurs between the belt and wheels the effec-
tive stiffness of each leg of the elastic belt may be represented as k/2, as shown. 
Determine the response of the system at resonance. What is the amplitude of 
the response at a time of 4 natural periods after the motor is switched on?  

                             

   Fig. P3.6 
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3.7 -up for ground testing is modeled as shown, where a brace 

represented as a torsional spring of stiffness kT has been attached at the pivot 

ters deviates from the prescribed force by adding a per-
turbation in the form of a harmonic thrust of small amplitude. Thus, the force 

An aircraft mock

support to restrain excessive yawing. It is assumed that during a test, both 
thrusters will exert a constant force of magnitude F0. However, during a simu-
lation, one of the thrus

applied by this thruster takes the form 0( ) (1 sin )F t F tε= + Ω , as indicated, 
where 1ε . Determine the steady state yawing motion of the mock-up. What 
is the amplitude of the response at resonance? 

 

 
3.8 

 
3.9 Th d k of iven by the torque

 
   Fig. P3.7 
 

The tip of the beam of Problem 1.4 is subjected to a sinusoidal force whose 
magnitude is 1% of the supported weight. Determine the motion of the sup-
ported mass if the excitation frequency is tuned to 98% of the natural frequency 
of the system. Plot and label the response. 

e is Example 2.8 is dr ( ) 2 cos( / )M t mgr gt R=  (posi-
tive clockwise). Determine the small angle 

 
3.10 A horizontally directed harmonic force 

motion of the disk. 

0( ) sinF t F t= Ω
ine the steady state 

acts on the mass of the 
timing device of Problem 2.28. Determ response of the de-
vice. 

 
3.11 De t rque transmitte port of the system of Problem 3.3. termine he to d to the sup
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3.12 The mount for the system of Problem 3.1 is to be replaced by a mount having 

 
3.13 

(a) Determine the de
ue to 

 natural frequency of an elastic 
beam possessing the same geometry and elastic modulus (Problem 3.8) the am-
plitude of the deflection of the supported weight is measured to be 12.5 inches. 
Determine the structural loss factor of the system for this excitation frequency.   

 
3.14 The base of the inverted pendulum shown is attached to a cranking mechanism 

causing the base motion described by

the same stiffness as the original but possessing appreciable damping. If the 
system is to be driven by the same force during operation, determine the mini-
mum value of the damping coefficient needed by the mount so that the force 
transmitted to the base never exceeds 150% of the applied force.  

A viscoelastic beam is configured as in Problem 1.4 and is subjected to a har-
monic edge load of magnitude 1000 lb. flection of the 
beam d a static load of the same magnitude as the dynamic load. (b) When 
the frequency of the excitation approaches the

0 .( ) (1 cos )x t X t= − Ω
 > mgL. 

 Determine the 
steady state motion of the pendulum if kT

3.15 

 
   Fig. P3.14 
 

Determine the range of excitation frequencies for which the amplitude of the 
(absolute) steady state motion of the roof of the structure of Example 3.13 will 
always be smaller than the amplitude of the ground motion. 

 

 
                                                             Fig. P3.16 
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3.16 An automatic slicer consists of an elastic rod of length L and axial stiffness EA 
attached to the hub of a semi-circular blade of radius R and mass m, as shown. 
If the base of the rod is controlled so that its horizontal motion is described 
by 0 ,( ) sinx t h t= Ω  determine the motion of the blade during the cutting proc-
ess. What force must be applied to the rod by the motor in order to produce this 
motion?  

3.17 

 
3.18 

controller is embedded in the system and can provide an effective moment M(t) 

 
A structure identical to the building of Example 3.13, but with unknown damp-
ing factor, undergoes the same ground motion. If the magnitude of the steady 
state response is 2.75 inches, determine the structural loss factor for that excita-
tion frequency.  

The pitching motion of a certain vehicle is studied using the model shown. A 

about the pivot, as indicated. If the base at the right undergoes the prescribed 
harmonic motion 0( ) siny t y t= Ω while the base at the left remains fixed, de-
termine the moment that must be applied by the actuator to compensate for the 
base motion so that a passenger within the vehicle will experience a smooth 
ride? 

 

tact, determine the 
steady state motion of the boy.  

 
3.20 A controller is attached to the pendulum of Problem 3.5. If a sensor measures 

the amplitude of the motion of the pendulum driven by the applied force to be 
X1, determine the moment that must be exerted by the actuator to maintain the 
quiescence of the system. 

   Fig. P3.18 
 
 
3.19 A 150 pound boy stands at the edge of the diving board of Problem 2.30, pre-

paring to execute a dive. During this time, he shifts his weight in a leaping mo-
tion, moving up and down at the rate of 1 cps. If, at the apogee of each bob his 
feet just touch the board so that they are nearly losing con

 



3│ Forced Vibration of Single Degree of Freedom Systems – 1  225 

3.21 Suppose the block sitting at the center of the simply supported beam of Prob-

en the motor o

ent of the rotor.                                               Fig. P3.21 

ch that the belt moves with constant speed v0, determine the 
vertical motion of the wheel. What is the critical speed of the belt? (Assume 

 

 
   Fig. P3.22/P3.23 
 
3.23 Determine the horizontal motion of the flywheel of Problem 3.22, and the cor-

responding critical speed of the fanbelt, if the cross-sectional area of the rod is 
A.   

 
3.24 Several bolts on the propeller of a fanboat detach, resulting in an offset moment 

ampli f the boat when the fan rotates 
eight 

of the boat and passengers is 

 

of the undamped natural frequency of the shaft if the 
radius of the shaft is 1 inch? 

lem 1.5 corresponds to a motor whose rotor spins at a constant rate. If the beam 
is observed to deflect with an amplitude 
of 3 inches (about the static deflection) 
wh perates at 50% of the 
critical rate of rotation determine the 
offset mom

 
3.22 A flywheel of radius R and mass m is supported by an elastic rod of length L 

and bending stiffness EI, as shown. The wheel possesses an offset moment meℓ 
and is connected to the rest of the system by a fan belt, as indicated. If the fly-
wheel rotates su

that no slip of the belt occurs and that its stiffness is negligible.) 

of 5 lb-ft. Determine the tude of bobbing o
at 200 rpm, if the total w

1000 lbs and the wet area 
projection is approximately 
30 sq ft. What is the ampli-
tude at 1000 rpm?  

                                                               Fig. P3.24 
 
3.25 The damping factor for a shaft-turbine system is measured to be 0.15. When the 

turbine rotates at a rate equal to 120% of the undamped natural frequency of the 
shaft, the system is observed to whirl with an amplitude equal to the radius of 
the shaft. What will be the amplitude of whirling when the rotation rate of the 
turbine is reduced to 80% 
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3.26 Determine the amplitude of whirling motion of the system of Example 3.17 if 
the supports permit in-plane rotation as well as spin.  

Determine the response of the system of P
sawtooth force history shown in Figure P3

 x F 

 t
 0.25  0.5  0.75− 0.25 −0.5

 2.0

 0

 (inches)

 (secs)

 
3.27 roblem 3.1 when it is subjected to the 

.27. 

 
  Fig. P3.27 

 
3.28 Determine the response of the right wheel of the conveyor belt of Problem 3.6 

if the left wheel is locked and the alternating step torque shown in Figure P3.28 
is applied to the right wheel by the motor. 

 
3.29 structure of Example 3.13 if the base motion is 

soid shown in Figure P3.29. Neglect the effects 

 
 
 
 
 

-4 -2 2

250

F(t)

4 6 t

(dynes)

(secs)

 

M
0

/2 3  /2/2

-M

t

0

M(t)

--

 
   Fig. P3.28 

Determine the response of the 
described by the stuttering sinu
of damping. 

  Fig. P3.29 
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 damping is negligible. 

 
 Fig. P3.30 

h susp ss k and negligible damping, is 

nd (b) the force transmitted to the 
block.  
 

3.30 Determine the response of the vehicle of Problem 3.18 when the right base 
undergoes the step motion shown in Figure P3.30 and

y
0

3-3 --5 5 7

y(t)

t

  
 
3.31 A vehicle of mass m, wit ension of stiffne

traveling at constant speed v0 when it encounters the series of equally spaced 
semi-circular speed bumps shown. Assuming that no slip occurs between the 
wheel and the road, determine (a) the motion of the engine block while it is 
traveling over this part of the roadway a

 
   Fig. P3.31 
  



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  



   

4 
Forced Vibration of Single Degree of 
Freedom Systems – 2:                               
Nonperiodic Excitation 

 
 

 
To this point we have considered the response of systems to excitations that are con-
tinuously applied over a very long period of time. Moreover, we restricted our atten-
tion to excitations that vary periodically in time. Though such excitations are clearly 
important in the study of vibrations, engineering systems may obviously be subjected 
to other forms of excitation. A system may be at rest when it is first excited by a peri-
odic or other continuously varying force. Alternatively, an engineering system may 
be subjected to a short duration load, a pulse, which can clearly affect its response 
and performance. Examples of such transient excitation include the start-up of an 
automobile engine, the behavior of a machine before it achieves steady state opera-
tion, the loads on an aircraft during take-off or landing, or the impact of a foreign 
object on a structure. In addition, a system may be subjected to loading that does not 
fall into any particular category. In this chapter we shall examine the behavior of sin-
gle degree of freedom systems that are subjected to transient loading and to the gen-
eral case of arbitrary excitation. 

  

4.1  TWO GENERALIZED FUNCTIONS 

To facilitate our study of the response of single degree of freedom systems to tran-
sient and general excitation it is expedient to introduce two generalized functions, the 
Dirac Delta Function and the Heaviside Step Function. The qualification “general-
ized” is employed because these mathematical entities do not follow the traditional 
definitions and rules of ordinary functions. Rather, they fall into the category of “dis-
tributions.”  

 229 
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δ (t) 

) 

δ (t − a) 

) 

a 

−τ/2 τ/2 

0 

t 

t 

Ο ∼ 1/τ (a) 

(b) 

     
             
    Figure 4.1 The Dirac Delta Function (unit impulse). 
 

4.1.1  The Dirac Delta Function (Unit Impulse) 

Consider a function, )(tδ
�

, which is of the form shown in Figure 4.1a. The function in 
question is effectively a spike acting over the very small time interval 

2/2/ ττ ≤≤− t , and the maximum height of the function is of the order of the in-
verse of the duration, as indicated. The specific form of the function is not specified. 
However, its integral is. The generalized function just described is referred to as the 
Dirac Delta Function, also known as the unit impulse function, and is defined in 
terms of its integral as follows: 
 

 
/ 2

0 / 2
lim ( ) 1t dt

τ

τ τ
δ

→ −
=∫

�
 (4.1) 

 
The integral of the unit impulse is dimensionless, hence the dimension of the unit 
impulse corresponds to that of the inverse of the independent variable. Thus, for the 
case under discussion, the Dirac Delta Function has units of 1/t. It may be seen that 
the delta function has the property that  
 

 
0 ( 0)

( )
1 ( 0)

t t
t dt

t
δ

−∞

<⎧
= ⎨ >⎩∫

�
 (4.2) 

Likewise, 

 
1 ( 0)

( )
0 ( 0)t

t
t dt

t
δ

∞ <⎧
= ⎨ >⎩∫

�
 (4.3) 
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a t 

f (t) 

          Figure 4.2  Generic function ( )f t , with unit impulse in background.  
 
If we introduce a time shift so that the delta function acts in the vicinity of  t = a, as 
indicated in Figure 4.1b, we see that the unit impulse has the following properties: 
 

 
/ 2

0 / 2
lim ( ) 1

a

a
t a dt

τ

τ τ
δ

+

→ −
− =∫

�
 (4.4) 
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( )
1 ( )

t t a
t a dt
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δ
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<⎧
− = ⎨ >⎩∫

�
 (4.5) 

 

 
1 ( )

( )
0 ( )t

t a
t a dt

t a
δ

∞ <⎧
− = ⎨ >⎩∫

�
 (4.6) 

 
Another useful property of the Dirac Delta Function is found when we consider the 
integral of its product with some regular well behaved function,  (See Figure 
4.2.) Piecewise evaluation of that integral takes the form  

( ).f t

 

 

/ 2

0

/ 2

0 0/ 2 / 2

( ) ( ) lim ( ) ( )

lim ( ) ( ) lim ( ) ( )

a

a

a a

f t t a dt f t t a dt

f t t a dt f t t a dt

τ

τ

τ

τ ττ τ

δ δ

δ δ

∞ −

→−∞ −∞

+ ∞

→ →− +

− = −

+ − +

∫ ∫
∫ ∫ −

� �

� �  

  
It may be seen from Eqs. (4.5) and (4.6) that the first and third integrals on the right-
hand side of the above expression vanish. Further, over the infinitesimal time interval 
bounded by the limits of integration for the second integral on the right-hand side, the 
function f (t) effectively maintains the constant value f (a) and can be taken out of the 
corresponding integrand. Application of Eq. (4.4) on the resulting expression then 
gives the identity 

 ( ) ( ) ( )f t t a dt f aδ
∞

−∞
− =∫

�
 (4.7) 

 
We next define the derivative of the unit impulse. 
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As for the delta function itself, the derivative of the Dirac Delta Function is de-
fined through its integral. To motivate this, consider the integral  
 

 ( ) ( ) ( ) ( ) ( ) ( )f t t a dt f t t a f t t a dtδ δ δ
∞ ∞+∞

−∞−∞ −∞
⎡ ⎤− = − − −⎣ ⎦∫ ∫

� � �� �  

 
where we have assumed that we may perform integration by parts with the delta func-
tion as we do for regular functions. We may argue that the term in brackets vanishes 
at the limits and thus that 
 

 ( ) ( ) ( ) ( ) ( )f t t a dt f t t a dt f aδ δ
∞ ∞

−∞ −∞
− = − − = −∫ ∫

� �� � �  (4.8)  

 
Regardless, we take Eq. (4.8) as the definition of the derivative of the Dirac Delta 
Function. The above procedure may be extended to give the jth derivative of the delta 
function as 
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( ) ( ) ( )

( )( ) ( ) ( 1) ( ) ( 1)
j j

j j
j j

t a

d d f tf t t a dt t a dt
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δ δ
∞ ∞

−∞ −∞
=

− = − − = −∫ ∫
j

j

d f� �
 (4.9) 

 
We next introduce a (generalized) companion function to the Dirac Delta Function. 
 

4.1.2   The Heaviside Step Function (Unit Step) 

Consider a function of the form shown in Figure 4.3a. Such a function can rep-
resent, say, a sudden start-up of a system to a constant operating level if the times of 
interest are large relative to the start-up time. The function in question is seen to be 
discontinuous at the origin, jumping from zero for t < 0 to unity for t > 0.  This gener-
alized function is referred to as the Heaviside Step Function, also known as the unit 
step function. It is formally defined as follows, 

( )tH

 

 
0 ( 0)

( )
1 ( 0)

t
t

t
<⎧

= ⎨ >⎩
H  (4.10) 

 
The unit step function is dimensionless. If we introduce a time shift so that the jump 
occurs at t = a (Figure 4.3b), we have that  
 

 
0 ( )

( )
1 ( )

t a
t a

t a
<⎧

− = ⎨ >⎩
H  (4.11) 

 
The Heaviside Step Function is inherently related the Dirac Delta Function. This rela-
tion is discussed next. 
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(a)

(b)

1

0 t

H (t)

H (t - a)

1

0 a t

 
    Figure 4.3  The Heaviside Step Function (unit step). 
 
 

4.1.3   Relation Between the Unit Step and the Unit Impulse 

When Eqs. (4.2) and (4.10) are compared, it is evident that  
 

 ( ) ( )
t

t dt tδ
−∞

=∫
�

H  (4.12) 

 
Similarly, comparison of Eqs. (4.5) and (4.11) gives the relation 
 

 ( ) (
t

t a dt t aδ
−∞

)− = −∫
�

H  (4.13) 

 
Since the unit step and unit impulse functions are related in this way, the derivatives 
of the Heaviside Step Function may be defined as the inverse operation. Equations 
(4.12) and (4.13) therefore suggest the definition of the derivative of the unit step 
function as 
 

 ( ) ( )d t
dt

tδ=
�

H  (4.14) 

 

 ( ) (d t a t a
dt

δ )− = −
�

H  (4.15) 

 
Both the Dirac Delta Function and the Heaviside Step Function will prove to be very 
useful in describing the loading and response for various types of transient excitation, 
as well as for the development of the response for arbitrary excitation. 
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4.2   IMPULSE RESPONSE 

Engineering systems are often subjected to forces of very large magnitude that act 
over very short periods of time. Examples include forces produced by impact, explo-
sions or shock. In this section we examine the response of single degree of freedom 
systems to such loading. It will be seen that the response to impulse loading provides 
a fundamental solution from which the response to more general loading types may 
be based. Toward these ends, we first classify forces into two fundamental types. 
 

4.2.1  Impulsive and Nonimpulsive Forces 

Time dependent forces may be classified as impulsive or nonimpulsive. Impulsive 
forces are those that act over very short periods of time but possess very large magni-
tudes, such as the forces associated with explosions and impact. Nonimpulsive forces 
are those that are well behaved over time, such as the gravitational force, the elastic 
spring force and the viscous damping force. Impulsive and nonimpulsive forces are 
defined formally in what follows. With the qualitative descriptions of these two types 
of forces established we now proceed to formally define impulsive and nonimpulsive 
forces mathematically.  

Impulsive Forces 
Forces that act over very short periods of time, such as those due to explosions or 
impact, may be difficult to measure directly or to quantify mathematically. However, 
their impulses can be measured and quantified. In this light, an impulsive force is 
defined as a force that imparts a finite (nonvanishing) impulse over an infinitesimal 
time interval. Formally, an impulsive force F(t) is a force for which  
 

  (4.16) 
0 0

lim ( ) 0
t

t
F t dt

∆

∆ →
→ ≠∫ I

 
where I is the impulse imparted by the impulsive force F. Consequently, and in light 
of Eqs. (4.7) and (4.16), an impulsive force may be expressed in the form 

 
 ( ) ( )F t tδ=

�
I  (4.17) 

 
where )(tδ

�
is the Dirac Delta Function discussed Section 4.1. 

Nonimpulsive Forces 
Nonimpulsive forces, such as spring forces, damping forces and the gravitational 
force, are forces that are well behaved over time. Since such forces are finite, the im-
pulse they produce over infinitesimal time intervals is vanishingly small. Formally, a 
nonimpulsive force is a force F(t) for which 
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  (4.18) 
0 0

lim ( ) 0
t

t
F t dt

∆

∆ →
→∫

 
With the mathematical description of impulsive and nonimpulsive forces established, 
we next determine the general response of a standard single degree of freedom sys-
tem to an arbitrary impulsive force. 
 

4.2.2   Response to an Applied Impulse 

Consider a mass-spring-damper system that is initially at rest when it is subjected to 
an impulsive force F(t), as shown in Figure 4.4. Let us next apply the principle of 
linear impulse-momentum, Eq. (1.96), to the initially quiescent system over the time 
interval when the impulsive force defined by Eq. (4.17) is applied. Hence, 
 

 [ ]
0 0

0 0
( ) (0 ) (0 )t dt kx cx dt m x xδ

+ +

− −

+ −⎡ ⎤− + = −⎣ ⎦∫ ∫
�

� � �I  (4.19) 

 
where m, k and c correspond to the mass, spring constant and damping coefficient of 
the system, respectively. Since the spring force and damping force are nonimpulsive 
forces, the second integral on the left-hand side of Eq. (4.19) vanishes. Since the sys-
tem is initially at rest, the corresponding initial velocity is zero as well. The impulse-
momentum balance, Eq. (4.19), then reduces to the relation 
 
 (0 )mx += �I  (4.20) 
 
If we consider times after the impulsive force has acted (t > 0) then, using Eq. (4.20) 
to define the initial velocity, the problem of interest becomes equivalent to the prob-
lem of free vibrations with the initial conditions 
 

 
      Figure 4.4  Mass-spring-damper system subjected to an impulsive force. 
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 0 0(0) 0    and    (0)x x v x≡ = ≡ =� I m  (4.21) 
 
Recognizing this, the response can be written directly by incorporating the initial 
conditions stated in Eq. (4.21) into the solution given by Eqs. (2.73) and (2.76). The 
motion of an underdamped system is then described as follows: 
 
 ( ) 0    ( 0)x t t= <   
 

 ( ) sin     ( 0)t
d

d

x t e t t
m

ζω ω
ω

−= >
I  

 
Let us next incorporate Eq. (4.10) into the above solution. The response of the under-
damped system to the impulse I can then be restated in the compact form 
 
 ( ) ( )x t t= IG  (4.22) 
where 

 1( ) sin ( )t
d

d

t e t
m

ζω ω
ω

−≡G tH  (4.23) 

 
is the unit impulse response (the response of a single degree of freedom system to an 
impulse of unit magnitude applied at t = 0). In Eq. (4.23), is the Heaviside Step 
Function and ω, ζ and

( )tH
dω are given by Eqs. (2.2), (2.65) and (2.70) respectively. 

 The response to an impulse applied at t = τ is found by incorporating a time 
shift into Eq. (4.22). The motion of the system for this case is then  
 
 ( ) ( )x t t τ= −IG  (4.24) 
 
The response of a system to an impulse is evidently of fundamental, as well as of 
practical, importance in its own right. In addition, the response of engineering sys-
tems to impulse loading is fundamental to their response to loading of any type. This 
relation is discussed in the next section. 
 
 

Example 4.1 
A system consisting of a 4 kg mass, a spring of stiffness 400 N/m and a damper 
of coefficient 16 N-sec/m is initially at rest when it is struck by a hammer. (a) 
If the hammer imparts an impulse of magnitude 2 N-sec, determine the motion 
of the system. (b) Determine the response if the hammer again strikes the mass 
with the same impulse 10 seconds later. (c) Determine the response of the sys-
tem if instead, the second strike occurs 6.413 seconds after the first. 
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Solution 
The damping factor, natural frequency and natural period are easily computed 
to be (see Example 2.11) 
 

 
2

400 4 10 rad/sec,    16 [2(10)(4)] 0.2,

10 1 (0.2) 9.798 rad/sec,    2 9.798 0.6413 secsd dT

ω ζ

ω π

= = = =

= − = = =
 (a) 

 
(a) 
The unit step response for the system is computed from Eq. (4.23) giving 
 

 
(0.2)(10)

2

1( ) sin(9.798 ) ( )
(4)(9.798)

      0.02552 sin(9.798 ) ( ) (m/N-sec)

t

t

t e t

e t t

−

−

=

=

G H

H

t

⎦

 (b) 

 
Substitution of the given impulse and Eq. (b) into Eq. (4.22) gives the response 
of the system as 
 

  (c) 
2

2

( ) (2) 0.02552 sin(9.798 ) ( )

      0.05104 sin(9.798 ) ( ) (meters)

t

t

x t e t t

e t t

−

−

⎡ ⎤= ⎣
=

H

H
Hence, 
 

 2

( ) 0   ( 0)
( ) 0.05104 sin(9.798 )   ( 0)t

x t t
x t e t t−

= <

= >
 (d) �

 
 
(b)  
The response of the system to the two impulses is the sum of the response to 
each impulse applied individually. Hence, 
 

  (e) 
{ }

2

2( 10)

( ) 0.05104 sin(9.798 ) ( )

                      sin 9.798( 10) ( 10)  (m)

t

t

x t e t t

e t t

−

− −

⎡= ⎣
⎤+ − − ⎦

H

H

 
Thus, 
 

{ }

2

2 2( 10)

( ) 0 (m)  ( 0)
( ) 0.05104 sin(9.798 ) (m)  (0 10 secs)

( ) 0.05104 sin(9.798 ) sin 9.798( 10)  (m)  ( 10 secs)

t

t t

x t t
x t e t t

x t e t e t t

−

− − −

= <

= < <

⎡ ⎤= + −⎣ ⎦ >

     (f) �
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(c) 
Paralleling the computation of Eq. (e) gives 
 

  (g) 
{ }

2

2( 6.413)

( ) 0.05104 sin(9.798 ) ( )

                        sin 9.798( 6.413) ( 6.413)  (m)

t

t

x t e t t

e t t

−

− −

⎡= ⎣
⎤+ − − ⎦

H

H

 
The response of the system before the second impulse is applied (0 < t < 6.413) 
follows as  
 

  (h-i,ii) 2

( ) 0 (m)  ( 0)
( ) 0.05104 sin(9.798 ) (m)  (0 6.413 secs)t

x t t
x t e t t−

= <

= < <
�

 
However, for later times, Equation (g) can be simplified by noting that the ap-
plication of the second pulse occurs at precisely ten natural periods after the 
first pulse is imparted. Thus, for these times, 
 

 
( )2 12.83

4 2

( ) 0.05104 1 sin 9.798

      1.905 10 sin(9.798 ) (m)  ( 6.413 secs)

t

t

x t e e t

e t t

−

−

⎡ ⎤= +⎣ ⎦
= × >

 (h-iii) �

 
 
 

Example 4.2 
A tethered 1 pound ball hangs in the vertical plane 
when it is tapped with a racket. Following the tap 
the ball is observed to exhibit oscillatory motion 
of amplitude 0.2 radians with a period of 2 sec-
onds. Determine the impulse imparted by the 
racket. 
 
 

 Solution 
From Eq. (4.22), the path of the ball as a function 
of time takes the form  
 

 ( ) ( ) ( )s t L t tθ= = I G  (a) 
 
The ball and tether are evidently equivalent to a pendulum of length L. The 
natural frequency for small angle motion of the ball is then, from Eq. (2.42), 
 

 g Lω =  (b) 



4│ Forced Vibration of Single Degree of Freedom Systems – 2  239 

 
Substituting the frequency into Eq. (a) gives the small angle response of the 
ball as 

 ( )( ) sin ( )t g L t
m L

θ
ω

=
I

H t  (c) 

 
where I is the unknown impulse imparted by the racket and L is the unknown 
length of the tether. The length can be determined from the period of the ob-
served motion as follows. The natural period for small angle motion of a pen-
dulum, and hence of the tethered ball, is from Eq. (2.47) or Eq. (b) 
 

 2T
g L
π

=  (d) 

 
The length of the cord may now be computed using Eq. (d), giving 
 

 
2 2

2 2

32.2(2) 3.263 ft
4 4
gTL
π π

= = =  (d) 

 
Next, it follows from Eq. (c) that the amplitude of the observed motion is re-
lated to the magnitude of the applied impulse by 
 

 m Lθ ω= I  (e) 
 
Solving Eq. (e) for I and substituting Eq. (d) and the observed amplitude gives 
the impact imparted by the racket on the ball as  
 

 (0.2)(3.263)(1/ 32.2)(2 / 2) 0.06367 lb-secLmθ ω π= = =I  (f) �
 
 
 

4.3  RESPONSE TO ARBITRARY EXCITATION 

In this section we develop the response of an initially quiescent single degree of free-
dom system to a force of arbitrary form, based on the response to impulse loading. 
Toward this end, consider the generic time dependent force, F(t), shown in Figure 
4.5a. Let us further consider the impulse of the force over the particular time inter-
val ,t dτ τ τ≤ ≤ + as indicated. The impulse, dI, imparted by the force on the mass 
during this particular differential time interval is thus given by 
 
 ( )d F dτ τ=I  (4.25) 
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F(t)

(a)
F(   )d

t 

x(t)
x(t)

(b) dx(t;    )

t 

 Figure 4.5  Generic time histories of force and corresponding system response. 
 
The increment in the response of the system at some later time t to the particular in-
crement of the impulse acting during the interval ,t dτ τ τ≤ ≤ +  as depicted in Figure 
4.5b, is obtained using Eq. (4.24) and takes the form 
 
 ( ; ) ( ) ( ) ( )dx t d t F t dτ τ τ τ τ= − = −IG G  (4.26) 
 
The response at time t to the impulses imparted by the force F during all times t<τ  
is obtained by superposing the responses of each of the corresponding impulses. 
Hence, “summing” all such increments gives the general form of the total response of 
the system as 

 
0

( ) ( ) ( )
t

x t F t dτ τ τ= −∫ G  (4.27) 

 
Equation (4.27) is referred to as the convolution integral and it gives the response of 
an initially quiescent system to any force history F(t).  
 An alternate form of the convolution integral is obtained by introducing the 
coordinate shift ττ −= t  into Eq. (4.27). This transforms the corresponding integral 
to the form  

 
0

( ) ( ) ( )
t

x t F t dτ τ τ= − −∫ G  

 
which, after reversing the direction of integration, gives the response as 
 

 
0

( ) ( ) ( )
t

x t F t dτ τ τ= −∫ G  (4.28) 
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Either convolution integral, Eq. (4.27) or Eq. (4.28), may be used to obtain the re-
sponse of an initially quiescent system to any force F(t). In the next two sections we 
employ the convolution integral to obtain the response of single degree of freedom 
systems subjected to a number of fundamental loading types. The response to other 
types of loading are then obtained, using these results, in Section 4.6. Finally, in Sec-
tion 4.7, the convolution integral is used to assess the maximum peak response for 
systems subjected to transient loading. 
 

4.4  RESPONSE TO STEP LOADING 

We next consider the situation where a system is loaded by a force F(t) that is applied 
very rapidly to a certain level F0 and is then maintained at that level thereafter (Figure 
4.6). If the rise time is small compared with the times of interest then the loading may 
be treated as a step function. Such loading is referred to as step loading and may be 
represented mathematically in the form 
 
 0( ) ( )F t F t= H  (4.29) 
 
where is the unit step function. The response is easily evaluated by substituting 
Eq. (4.29) into the convolution integral defined by Eq. (4.27). Hence, for an under-
damped system, 

( )tH

 

 ( )0
0

0 0
( ) ( ) ( ) sin ( ) ( )

t t
t

d
d

Fx t F t d e t d
m

ζω ττ τ τ ω τ τ
ω

− −= − = −∫ ∫H G H t  (4.30) 

 
Performing the required integration gives the step response 
 
 0( ) ( )x t f t= S  (4.31) 
where 

 
2

( ) 1 cos( ) ( )
1

t

d
et t

ζω

ω φ
ζ

−⎡ ⎤
⎢≡ − −
⎢ ⎥−⎣ ⎦

S t⎥ H  (4.32) 

 
is the unit step response, 
 

    Figure 4.6  Step loading. 

F(t) 

F 0 

t 
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 0 0f F k=  (4.33) 
 
for a mass-spring-damper system, 
 

 21dω ω ζ= −  (4.34) 
and 

 1

2
tan

1

ζφ
ζ

−
⎧ ⎫⎪ ⎪= ⎨ ⎬

−⎪ ⎪⎩ ⎭
 (4.35) 

 

Example 4.3 
The beam and mass system of Example 3.4 is ini-
tially at rest when an actuator suddenly applies a 
constant downward force whose magnitude is half 
the weight of the system. Determine the motion of 
the  beam and block. Plot the time history of the re-
sponse. 

                      
                                                                                                 Figure E4.3-1 
Solution 
From Example 3.4, m = 10 kg and ω = 6π rad/sec. Hence, 
 

  (a) 2 2(6 ) (10) 360  N/mk π π= =
 
We shall take the time at which the force is first applied to the structure as t = 0. 
Now, the magnitude of the applied force is simply half the weight of the block. 
Further, since the force is applied suddenly, its time dependence may be taken 
as a step function. Thus, 
 

 1 1
0 2 2( ) ( ) ( ) (10)(9.81) ( ) 49.1 ( ) NF t F t mg t t t= = − = − = −H H H H  (b) 

 
It follows that 

 0
0 2

49.1 0.0138 m
360

F
f

k π
−

= = = −  (c) 

 
Substitution of the Eq. (c) and the known natural frequency into Eq. (4.31), 
with ζ = 0, gives the motion of the system as 
 

 
( ) 0.0138[1 cos 6 ] ( ) m 

      1.38[1 cos 6 ] ( ) cm
x t t t

t t
π

π
= − −
= − −

H
H

 (d) �
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Recalling that the deflection x(t) is measured from the equilibrium configura-
tion of the 10 kg  mass, it may be seen that the system oscillates about the equi-
librium configuration associated with quasi-static application of the actuator 
force. A plot of the response is shown in Figure E4.3-2. 
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   Figure E4.3-2 
 

 
 
 

Example 4.4 
A package of mass m is being shipped in the (rigid) crate shown, where k and c 
represent the stiffness and damping coefficient of the packing material. If the 
system is initially at rest, determine the response of the package if the crate is 
suddenly displaced a distance h0 to the right, (a) when damping is negligible 
and (b) when the system is underdamped. 

 
 

 
   Figure E4.4-1  Package inside crate. 
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   Figure E4.4-2  Kinetic diagram of package. 
 
 
Solution 
The first thing we must do is derive the equation of motion for the system. To 
accomplish this we first draw the kinetic diagram for the package. Let x(t) cor-
respond to the motion of the package and let  xC(t) represent the motion of the 
crate. To establish a convention, let us assume that the package displaces to the 
right relative to the crate. When this is so the left spring is in tension and the 
right spring is in compression, as indicated. Similarly, if the relative velocity of 
the package with respect to the crate is assumed positive (i.e., to the right) both 
the left and right dashpots act in the direction indicated.  
 We next apply Newton’s Second Law, based on the forces shown in the 
kinetic diagram (dynamic free-body diagram). Doing this gives 
 
  ( ) ( ) ( ) ( ) xmxxcxxkxxcxxk CCCC ������ =−−−−−+−   
 
which upon rearranging takes the form 
 
   )(2)(222 tkxtxckxxcxm CC +=++ ����  (a) 
 
Note that we have brought  the expressions for the displacement and velocity of 
the crate to the right-hand side of the equation since the excitation enters the 
problem through the prescribed motion of the crate. Equation (a) is valid for 
any prescribed motion of the crate. Let us next consider the specific excitation 
under consideration. 
 Since the crate is suddenly moved a given distance, the displacement of 
the crate is readily expressed as a function of time with the aid of the Heaviside 
Step Function. Hence, 
 
   0( ) ( )Cx t h t= H  (b) 
 
The corresponding velocity of the crate is then found by direct application of 
Eq. (4.14) to the expression for the displacement just established. This gives 
 
   )()( 0 thtxC δ

�
� =  (c) 
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Substitution of Eqs. (b) and (c) into Eq. (a) gives the explicit form of the equa-
tion of motion for the problem at hand. Thus, 
 
   mx 0 02 2 2 ( ) 2 ( )cx kx c h t k h tδ+ + = +

�
�� � H

( )

 (d) 
 
It is useful to put the above equation of motion in standard form. Doing so 
gives 
 
   N

1 2

2 2 2
0

( ) ( )

2 ( )
f t f t

x x x t h tωζ ω ω δ ω+ + = +
� �

�  (e) �� �	
I H

where 
 
   0k h c k= =

�
I I  (f) 

 
   2 2  andk m           c mω ζ ω= =  (g,h) 
 
(a) 
For negligible damping, c = ζ = 0 and the governing equation, Eq. (e), reduces 
to the form 
 
   2 2

0

( )

( )
f t

x x hω ω+ =�� t�	
H  (i) 

 
The response is obtained directly from Eq. (4.31) as 
 
   ( )0( ) 1 cos 2  ( )x t h k m t t⎡= −⎣ H⎤

⎦  (j) 

 
and is sketched in Figure E4.4-3. It is seen that the package oscillates about the 
new equilibrium configuration of the crate. 
 
 

x 

t 

h 0 

0 

 
  Figure E4.4-3  Time history of response for negligible damping. 
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(b) 
When damping is taken into account, the response of the package to the com-
bined effects of the damping and stiffness forces, f1 and f2 of Eq. (e), may be 
obtained using superposition. In this context, the response of the package is 
simply the sum of the responses to the two forces acting individually. Direct 
application of Eqs. (4.22) and (4.31) then gives the response of the package as 
 

 0
0 2

( ) sin ( ) 1 cos( ) ( )
1

t
t

d d
d

h c ex t e t t h t
m

ζω
ζω ω ω t

ω ζ

−
−

⎡ ⎤
⎢ ⎥= + − −
⎢ ⎥−⎣ ⎦

H H �φ  (k) 

or 

 ( )0 0 2
( ) ( ) sin cos ( )

1

t

d d
ex t h t h t t t

ζω

ζ ω ω φ
ζ

−

⎡ ⎤= + − −⎣ ⎦
−

H H  (l) �

 
where ωd and φ are given by Eqs. (4.34) and (4.35), respectively. It may be seen 
from Eq. (l) that the package oscillates about the new equilibrium position of 
the crate, with the amplitude of the oscillation decaying exponentionally with 
time. 

 
 

4.5  RESPONSE TO RAMP LOADING 

We next consider an initially quiescent single degree of freedom system that is sub-
sequently excited by a force that increases linearly with time. If we consider the load 
to be activated at time t = 0, then the excitation is such that the magnitude of the load 
is zero for t < 0 and increases linearly with time for t > 0, as depicted in Figure 4.7. 
Such loading is referred to as ramp loading, and may be expressed mathematically as 
 
  (4.36) ( ) ( )F t F t t= � H
 
where is the (constant) rate at which the loading is applied to the system. It may be 
noted that the ramp function with unit loading rate

F�
( 1F )=� is simply the integral of the 

unit step function and is a generalized function. It follows that the derivative of the 
unit ramp function is the unit step function.  
 The response to ramp loading may be determined by direct substitution of the 
forcing function defined by Eq. (4.36) into the convolution integral, Eq. (4.27). 
Hence, 

   ( )

0

1( ) sin ( ) ( )
t

t
d

d

x t F e t d
m

ζω ττ ω τ τ
ω

− −⎡ ⎤= −⎣ ⎦∫ � H t  

 
Carrying out the integration gives the response to the ramp loading as 
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   Figure 4.7  Ramp loading. 

 
 
 ( ) ( )x t f t= �R  (4.37) 
where 
 f F k=� �  (4.38) 
 
for a mass-spring-damper system, and 
 

 
( )21 22 2( ) cos sin ( )t

d d
d

t t e t t tζω
ζζ ζ ω ω

ω ω ω
−

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥≡ − + −⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

R H  (4.39) 

 
is the unit ramp response. The interpretation of the parameter f� in Eq. (4.37) is ad-
justed accordingly for systems other than mass-spring-damper systems. 
 
 

Example 4.5 
The man and the raft of Example 2.4 are at rest when a long rope is lowered to 
the raft. If the man guides the rope so that it forms a coil whose weight in-
creases at the rate of 0.5 lb/sec, determine the vertical motion of the raft during 
this process. (mrope�mman) 

   Figure E4.5-1  Rope lowered to man on raft. 
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Solution 
From Example 2.4, keq = 749 lb/ft, ζ = 0 and the natural frequency of the un-
damped system is ω = 11.0 rad/sec. It is evident, from the given loading, that 
the problem at hand corresponds to ramp loading of the man and raft, with 

 The applied force may be expressed mathematically as 0.5 lb/sec.F =�
 

 ( ) 0.5 ( )F t t t= H  (a) 
 
where t = 0 represents the instant that the rope first comes into contact with the 
man and raft. It follows that 
 

 40.5 6.68 10  ft/sec
749

f −= = ×�  (b) 

 
Substituting Eq. (b), ζ = 0 and ω = 11.0 rad/sec into Eqs. (4.37) and (4.39) 
gives the motion of the raft during the loading process as 
  

 [ ]4 51
11( ) 6.68 10 sin(11 ) (t) 6.07 10 11 sin(11 ) (t)  ftx t t t t t− −= × − = × −⎡ ⎤⎣ ⎦ H H  � (c) 

 
The time history of the response is displayed in Figure E4.5-2. 

 

−0.5 0 0.5 1 1.5 2 2.5 3
0
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30x/A 
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Figure E4.5-2  Time history of vertical motion of man and raft as rope is lowered  
 . 5( 6.07 10 ftA −= × )
 
 
 

4.6  TRANSIENT RESPONSE BY SUPERPOSITION 

Many transient loads and pulses may be constructed from combinations of the basic 
step and ramp functions, as well as other functions, by way of superposition. The 
corresponding response is then simply the sum of the responses to the participating 
functions. To demonstrate this approach, we consider the response of an equivalent 
mass-spring-damper system to two basic forcing functions, the rectangular pulse and 
the linear transition to constant load. 
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    Figure 4.8  The rectangular pulse. 
 
 
 
 

4.6.1  The Rectangular Pulse 

Consider a rectangular pulse of magnitude 0 applied to a single degree of freedom 
system over the time interval 21

F
ttt <<  as depicted in Figure 4.8. The pulse can be 

expressed as the sum of two step loads, as indicated. The pulse may thus be repre-
sented mathematically in the form  

 
   [ ]0 1( ) ( ) ( )2F t F t t t t= − − −H H  (4.40) 

 
From the superposition principle established in Section 3.1, the response of the sys-
tem to this pulse is then given by the sum of the responses to the individual step load-
ings. Hence, upon application of Eq. (4.31), the motion of the system is given by 
 
    [ ]0 1 2( ) ( ) ( )x t f t t t t= − − −S S  (4.41) 
 
When expanded, Eq. (4.41) takes the form  
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{ }

1

2

( )

0 12

( )

2 22

( ) 1 cos ( ) ( )
1

            1 cos ( ) ( )
1

t t
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1x t f t t t t

e t t t t

ζω

ζω

ω φ
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ω φ
ζ

− −

− −

⎧⎡ ⎤⎪⎢ ⎥= − − − −⎨
⎢ ⎥−⎪⎣ ⎦⎩

⎫⎡ ⎤ ⎪⎢ ⎥− − − − − ⎬
⎢ ⎥− ⎪⎣ ⎦ ⎭

H

H

    (4.42) 

 
Thus, 
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e t t t t

ζω
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− −
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− −
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⎡ ⎤
= − − − < <⎢ ⎥

⎢ ⎥−⎣ ⎦
⎡

= − −⎢
⎢ −⎣

⎤
− − − >⎥

⎥− ⎦

 (4.43) 

 
where 0  and f φ  are given by Eqs. (4.33) and (4.35), respectively. 
 

Example 4.6 
Determine the motion of the system of Example 4.3, (a) if the actuator force is 
suddenly removed 10.5 seconds after first being applied to the structure, (b) if 
the actuator force is suddenly removed 10 seconds after first being applied to 
the structure. 
 
Solution 
(a) 
For this situation, the force may be expressed as the step loading 
 

 [ ]( ) 49.1 ( ) ( 10.5)  NF t t t= − − −H H  (a) 
 
The response then follows by direct application of Eqs. (4.41)–(4.43), for an 
undamped system. We thus have that 
 

[ ] [ ]{ }( ) 1.38 1 cos(6 ) ( ) 1 cos{6 ( 10.5)} ( 10.5)  cmx t t t t tπ π= − − − − − −H H  (b) 
 
Expanding equation (b) gives the motion of the system as 
 

  (c) [ ]
[ ]

( ) 0   ( 0)
( ) 1.38 1 cos(6 )  cm   (0 10.5 secs)

( ) 1.38 cos(6 ) cos{6 ( 10.5)} cm ( 10.5 secs)

x t t
x t t t

x t t t t

π

π π

= <

= − − ≤ <

= − − ≥

�

 
It may be seen that the motion of the system between the time the force is first 
applied and when it is removed is identical to that predicted in Example 4.3, as 
it should be. It is also seen that, after the actuator force is removed, the system 
oscillates about the original equilibrium configuration, x = 0. The time history 
of the motion of the beam-block system is displayed in Figure E4.6-1. 
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Figure E4.6-1  Time history of the motion of the beam-mass system when the actuator 
force is removed 10.5 seconds after it is first applied. 
 
 
(b) 
The forcing function for this case may be expressed in the form 
 

 [ ]( ) 49.1 ( ) ( 10)  NF t t t= − − −H H  (d) 
 
Proceeding as for the previous case yields the response 
 

[ ] [ ]{ }( ) 1.38 1 cos(6 ) ( ) 1 cos{6 ( 10)} ( 10)  cmx t t t t tπ π= − − − − − −H H  (e) 
 
Expanding Eq. (e) gives the explicit form 
 

  (f) [ ]
[ ]

( ) 0   ( 0)
( ) 1.38 1 cos(6 )  cm   (0 10 secs)

( ) 1.38 cos{6 ( 10)} cos(6 ) 0 cm ( 10 secs)

x t t
x t t t

x t t t t

π

π π

= <

= − − ≤ <

= − − = ≥

�

 
The time history of the motion is displayed in Figure E4.6-2. Note that, for this 
case, the system comes to rest after the actuator force is removed. This is be-
cause the amplitude of the oscillation to that point corresponds to the static de-
flection due to the actuator force, and because the time between the instant the 
force is first applied to the beam and the time it is removed is precisely an inte-
ger multiple of the natural period of the system. The force is therefore removed 
at the exact instant that the system passes through the original equilibrium posi-
tion and is about to reverse direction. At this instant the position and velocity 
are both zero. This situation is equivalent to a free vibration problem in which 
the initial conditions vanish identically. The system thus remains in the equilib-
rium configuration, x = 0,  for all later times. 
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Figure E4.6-2  Time history of the motion of the beam-mass system when the actuator 
force is removed 10.0 seconds after it is first applied . 

 

 
 

Example 4.7  
A vehicle travels at constant speed over a flat road when it encounters a bump 
of rise h0 and length L, having the shape shown. Determine the response of the 
vehicle to the disturbance in 
the road if the shape may be 
approximated as harmonic 
and, assuming that the hori-
zontal speed of the vehicle 
is maintained, that the wheel 
rolls over the bump without 
leaving the surface of the 
road. Damping is negligible. 

 

Solution 
ion for the path of the vehicle when it traverses the bump is given, in 

  

 
 

The equat
terms of the indicated coordinates, as 
 

 ⎥⎦
⎤

⎢⎣
⎡ −=

L
hy πξξ 2cos1)( 0         (0 < ξ < L) (a) 

here h0 is the rise of the bump and L is its length. Since the vehicle travels at 

  

 
w
constant speed, the horizontal position of the vehicle may be expressed as a 
function of time as 
 
 tv0=ξ  (b) 
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where v0 is the speed and ξ is measured from the start of the bump, as indicated. 
Substitution of Eq. (b) into Eq. (a) gives the vertical motion of the wheel as a 
function of time. Hence, 
 

   [ ]0

( ) 0                        ( 0)
( ) 1 cos    (0 )
( ) 0                        ( )

L

L

y t t
y t h t t t
y t t t

= <

= − Ω < <

= >

  

or 
 

 
[ ] ( )
[ ][ ]

0 0

0

( ) 1 cos ( ) 1 cos ( )

      1 cos ( ) ( )
L L

L

y t h t t h t t t t

h t t t t

= − Ω − − Ω − −⎡ ⎤⎣ ⎦
= − Ω − −

H H

H H
 (c)  

 
where 
   2 LtπΩ =  (d) 
and 

 0Lt L v=  (e) 
 
is the time that it takes for the vehicle to traverse the bump. The problem is thus 
equivalent to that of a single degree of freedom system subjected to prescribed 
motion of its support. The equation of motion is then given by Eq. (3.122) 
which, for vanishing damping and support motion given by Eq. (c), takes the 
form 

 2 2x x yω ω+ =��  
or 
 

  [ ] [ ]2 2 2
0 0( ) ( ) cos ( ) ( )L Lx x h t t t h t t t tω ω ω+ = − − − Ω − −�� H H H H  (f) 

 
It may be seen from Eqs. (c) and (f) that the system is excited by the superposi-
tion of a rectangular pulse and a cosine pulse. We shall solve Eq. (f) two differ-
ent ways.  
 The response to the rectangular pulse is found directly from Eq. (4.42), 
while the response to the cosine pulse can be evaluated using the convolution 
integral, Eq. (4.27). Thus, 
 
 [ ] ( )0 0( ) 1 cos ( )  1 cos ( )L Lx t h t t h t t t tω ω= − − − − −⎡ ⎤⎣ ⎦H H   

               ( )
 

0
 0

1cos sin  ( ) 
t

k h t d t
m

τ ω τ τ
ω

− Ω −∫ H  

        ( )
 

0
 0

1cos  sin ( )
t

L Lk h t t d t t
m

τ ω τ τ
ω

+ Ω − −∫ H −  
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which, after carrying out the integration and using trigonometric identities and 
lengthy algebraic operations, takes the form 
 

 
( )

( ) ( ) ( )

2
0

2
0

( ) 1 cos cos ( )

          1 cos cos ( )L L L

x t h t t t

h t t t t

ω β ω β

ω β ω β

⎡ ⎤= + Ω − Ω⎣ ⎦
⎡ ⎤− + Ω − − Ω − −⎣ ⎦

H

H t t
 � (g) 

 
where 

   
( ) ( )2

1 1
1 1 2 Lt

β
ω π ω

= =
− Ω −

2  (h) 

 
 Though the use of the convolution integral to obtain the response is, in 
principle, straightforward it required a great deal of algebraic and trigonometric 
manipulation for the current loading type. [The reader is invited to evaluate the 
corresponding convolution integrals to obtain the solution (g).] An alternative, 
and perhaps simpler, approach to solving Eq. (f) is to use the solutions pertain-
ing to harmonic excitation developed in Chapter 3. To do this, we shall first ob-
tain the response to the first forcing function on the right hand side of Eq. (c). 
The solution to the second forcing function will then be the same as the first but 
with a time shift (t replaced by t − tL). The actual response will be obtained by 
superposing the two solutions. 
 The general solution to Eq. (f) is given by the sum of the complementary 
and particular solutions. Hence, with aid of Eqs. (2.7) and (3.27), the general 
form of the response (1) ( )x t to the first forcing function 

[ ](1)
0( ) 1 cos ( )f t h t t= − Ω H   is given by 

 
  [ ](1) (1) (1)

1 2 0( ) cos sin 1 cosc px t x x A t A t h tω ω β= + = + + − Ω  (i) 
 
Imposing the quiescent initial conditions 0)0()0( == xx � gives 
 
   ( ) βω 2

01 Ω= hA ,     02 =A  
Hence, 
 
  ( )2(1)

0( ) 1 cos cos ( )x t h t t tω β ω β⎡= + Ω − Ω⎣ H ⎤⎦  (j) 

 
The solution (2) ( )x t associated with the second forcing function,  

[ ](2)
0( ) 1 cos ( ) ( )L Lf t h t t t t= − − Ω − −H ,  is then simply given by 

 
 ( )2(2)

0( ) 1 cos ( ) cos ( ) ( )L L Lx t h t t t t t tω β ω β⎡ ⎤= − + Ω − − Ω − −⎣ ⎦ H  (k) 
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The total response to the bump is then obtained by superposition. Hence, add-
ing Eqs. (j) and (k) gives 
 
 (1) (2)( ) ( ) ( )x t x t x t= +  
 
         ( )2

0 1 cos cosh tω β ω β⎡= + Ω − Ω⎣ H ( )t t⎤
⎦   (l) 

 
    ( ) ( ) ( )2

0  1 cos cos ( )L L Lh t t t tω β ω β⎡ ⎤− + Ω − − Ω − −⎣ ⎦ H t t  

 
which is identical to Eq. (g) obtained using the convolution integral. The ex-
plicit form of the response is then 
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( ) { }

{ }

2
0

2
0

( ) 0    ( 0)

( ) 1 cos cos     (0 )

( ) cos cos ( )

                           cos cos ( )     ( )

L
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L L

x t t

x t h t t t t

x t h t t t

t t t t t

ω β ω β

β ω ω ω

= <

⎡ ⎤= + Ω − Ω < <⎣ ⎦
⎡= Ω − −⎣

⎤− Ω − Ω − >⎦

 (m)    �

 
 
 

4.6.2   Linear Transition to a Constant Load Level 

We next consider loading that consists of a linear transition over time τ to a constant 
load level, 0 , as depicted in Figure 4.9. For this case, the loading function may be 
constructed as the sum of two opposing ramp functions. Thus, 

F

 

  0 0( )  ( ) ( ) ( )
F FF t t t t tτ τ
τ τ

= − −H H −  (4.44) 

 
The response of a single degree of freedom system to this loading is then the sum of 
the responses to the individual ramp functions. Hence, 
 

    [0( ) ( ) ( )
f

x t t t ]τ
τ

= − −R R  (4.45) 

 
where R (t) is given by Eq. (4.39) and, for a mass-spring-damper system, 
 
 0 0f F k=  (4.46) 
 
Expanding Eq. (4.45) gives the explicit form of the response of the system as 
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t τ 0 

          Figure 4.9  Linear transition to a constant level of force. 
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 (4.47) 

 

Example 4.8 
Determine the motion of the raft of Problem 4.5 if the loading of the rope is 
completed 20 seconds after the first of it touches down. 
 
Solution 
For the present problem τ = 20 seconds and, from Eq. (b) of Example 4.5,  
 

 4
0 6.68 10  ft/secf fτ −= = ×� 2  (a) 

 
Substituting these values into Eqs. (4.45) and (4.47) gives the response  
 

 
[ ]{

[ ] }

5( ) 6.07 10 11 sin(11 ) ( )

                            11( 20) sin11( 20) ( 20)  ft

x t t t t

t t t

−= × −

− − − − −

H

H
 (b) 

 
It is seen from Eq. (b) that during the 20 second drop of the rope, the motion of 
the raft is identical to that described by Eq. (c) of Example 4.5. After the drop is 
completed, that is for seconds, the vertical motion of the raft is described 
by  

20t ≥

   
 [ ]5( ) 0.0134 6.07 10 sin11( 20) sin(11 )  ft   ( 20 secs)x t t t t−= + × − − ≥  (c) �
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Note that the static deflection due to the weight of the entire rope is  
 

 4(6.68 10 )(20) 0.0134 ftrope
static

eff eff

W F f
k k

τ τ −∆ = = = = × =
� �  (d) 

 
Since x(t) is measured from the equilibrium position of the man and raft it may 
be seen from Eq. (c) that, after the rope has completed its drop, the system oscil-
lates about the new equilibrium position of the combined raft, man and rope 
system. 

 
 
 In this section we have demonstrated the use of superposition to obtain the re-
sponse of linear systems to pulses that can be constructed by adding together other 
pulses for which we already know, or can easily obtain, the response to. This tech-
nique was used to obtain the response of single degree of freedom systems to two 
sample pulse forms: the rectangular pulse and the linear transition to a constant load 
level. It should be emphasized that this technique is not restricted to these sample 
pulse forms, but rather can be applied to many other pulse forms as well. In the next 
section we study a procedure to characterize and compare the response of systems to 
various forms of short duration pulses, and the sensitivities of different systems to a 
given pulse.  
 

4.7  SHOCK SPECTRA 

Engineering systems are often subjected to loads possessing large magnitudes acting 
over short periods of time. Excitations for which the duration is on the order of, or 
shorter than, the natural period of the system upon which they act are referred to as 
shocks. As shocks may have detrimental effects on engineering systems, compromis-
ing their effectiveness or causing significant damage, the sensitivity of a system to 
shocks must generally be taken into account in its design. It is therefore of interest to 
characterize the response of a given system to shocks of various forms, and also to 
compare the sensitivities of different systems (or the same system with different val-
ues of the system parameters) to a given type of shock. This is generally accom-
plished by determining and interpreting the shock spectrum for a given type of pulse 
and system. This is the subject of the present section. 
 In the present section we consider the response of single degree of freedom 
systems to shock, and establish a measure for comparison. To do this we must first 
identify the parameters that characterize a shock and the parameters that describe the 
system of interest. In this context, a shock of a given type may be distinguished by its 
magnitude and duration. Alternatively, the shock may be characterized by its impulse. 
Since the effects of damping generally accrue over time, and since damping tends to 
retard motion, damping is typically neglected when considering the severity of the 
response of systems to shock. The system may thus be defined by its natural fre-
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quency for vanishing damping, or equivalently by the corresponding natural period. 
The severity of the response of a system, and hence the sensitivity of that system, to a 
given shock may be characterized by the magnitude of the maximum deflection of the 
mass. Evaluations can then be made by comparing the maximum peak response for 
different values of the shock and system parameters. 
 For the purposes of comparison, a natural timescale (normalized time) is ob-
tained by dividing the time by the natural period of the system in question. Similarly, 
a natural length scale (normalized response) is obtained by dividing the dynamic de-
flection of the mass by the characteristic static deflection (the ratio of the magnitude 
of the applied force to the stiffness of the system). The sensitivity of various systems 
to a given type of  shock may then be characterized by plotting the normalized maxi-
mum peak response (the maximax) of the system as a function of the normalized du-
ration of the pulse. In this way a “universal” plot is created. Such a plot is referred to 
as the Shock Spectrum or Shock Response Spectrum. 
 In general, the maximum peak response for an initially quiescent undamped 
single degree of freedom system subjected to a shock, F, of duration t*, may be ob-
tained using the convolution integral of Section 4.3. When this is done the maximax 
may generally be found from the convolution integral 
 

    
 

max
 0 max

1 ( )sin ( )
t

x F t
m

τ ω τ τ
ω

= −∫ d  (4.48) 

 
The plot of 0maxx f  vs. πω 2** tTt =  is the Shock Response Spectrum for 
pulses of the form of F. It should be noted that the peak response as defined above is 
not unique to any particular shock, but rather may be the same for various cases. 
 We shall next generate the shock spectra for two sample shock types; those in 
the form of a rectangular pulse, and those in the form of a half-sine pulse. The spectra 
for other pulse types may be found in a similar manner.  

 
 

Example 4.9 – Shock Spectrum for a Rectangular Pulse 
Consider a single degree of freedom system subjected to a rectangular pulse of 
magnitude F0 and duration t*, as shown. Determine the shock spectrum for this 
type of pulse.   

F 

t 0 

F 
0 

t* 

   Figure E4.9-1 
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Solution 
The response of a single degree of freedom system to a rectangular pulse was 
established in Section 4.6.1. If we neglect the effects of damping, the response 
of the system to the rectangular pulse is obtained from Eq. (4.43) as 
 
   )0(0)( <= ttx  (a) 
 
   [ ]0( ) 1 cos (0 *)x t f t t tω= − < ≤  (b) 
 
   [ ] *)(cos*)(cos)( 0 tttttftx >−−= ωω  (c) 
 
where 2 Tω π= is the natural frequency of the system and T is the correspond-
ing natural period. The peak response may occur either (i) during the time in-
terval that the applied pulse is active (0 < t < t*), or (ii) after the pulse subsides 
(t > t*). 
 
(i) 0 < t < t* : Initial Spectrum  
The maximum response of the system, while the applied pulse is active is de-
termined by consideration of Eq. (b). For short duration pulses ( * 0.5 )t T< it is 
seen from Eq. (b) that 
 

   2max

0

1 cos * 2sin ( * ) ( * 0.5 )
x t t T t
f

ω π= − = < T

T

 (d-1) �

 
For long duration pulses , it is seen that ( * 0.5 )t ≥
 

 max

0

2    ( * 0.5 )
x

t T
f

= >  (d-2) �

 
It may be seen from Eqs. (d-1) and (d-2) that the initial shock spectrum for the 
rectangular pulse increases monotonically as the duration of the pulse in-
creases, and reaches a plateau when the duration of the pulse is at least half the 
natural period of the system (Figure E4.9-2). 
 
(ii) : Residual Spectrum *t t>
We next consider the maximum response achieved by the system after the 
pulse subsides. To find the time (t = tpk) at which the peak response occurs for 
this case, and hence to find the peak response when t > t*, we take the deriva-
tive of  Eq. (c), set it to zero and solve for the time. Hence, 
 



260 Engineering Vibrations  

   [
pk

pk

tt
tt

tttf
dt
dx

=
=

−−−== ωωω sin*)(sin0 0 ]  (e) 

 
With the aid of the identity sin(a) – sin(b) = 2 cos{(a + b)/2} sin{(a − b)/2}, 
Eq. (e) takes the form 
 
   { } { }1 1

2 22cos (2 *) cos * 0pkt t tω ω− =  (f) 

 
Hence, 
 

 * (2 1)
2 2pk
tt nω πω = + −  (g) 

 
Evaluating Eq. (c) at t = tpk and substituting Eq. (g) into the resulting expression 
gives the maximum response 

 

   max

0

*2sin
x t

f T
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (h) �

 
A plot of Eq. (h) (the residual shock spectrum) is displayed in Figure 4.9-2 
along with the initial shock spectrum described by Eq. (d). It may be seen that 
the maximum displacements are larger and hence the residual spectrum domi-
nates for short duration pulses while the initial spectrum dominates for large 
duration pulses. It may also be seen that the most sensitive systems are those 
for which the duration of the pulse is at least as large as half the natural period 
of the system (i.e., those for which 5.0* ≥Tt ). The complete shock spectrum 
is indicated by solid lines in Figure E4.9-2. 
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     Figure E4.9-2  Shock spectrum for a rectangular pulse. 
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 Example 4.10 – Response Spectrum for Rectangular Support Motion 
Determine the shock spectrum for a single degree of freedom system when the 
time history of the motion of the support is in the form of a rectangular pulse of 
amplitude h0 and duration t*. 

x 

t 0 

h 
0 

t* 

F 

   Figure E4.10-1 
 
Solution 
The motion of the support shown in Figure E4.10-1 may be expressed in the 
form 

 [ ]0( ) ( ) ( *)Fx t h t t t= − −H H  (a) 
 
Substitution of Eq. (a) into Eq. (3.122) gives the equation governing absolute 
motion as 
 

 [ ]2 2
0 ( ) ( *)x x h t t tω ω+ = − −�� H H  (b) 

 
Thus, the present problem is identical in form with that of Example 4.9, with f0 
replaced by h0. The absolute motion of the mass then follows from Eq. (4.43) 
or Eqs. (a)–(c) of Example 4.9 with f0 replaced by h0. For the present problem, 
the extension/compression of the equivalent elastic spring is described by the 
motion of the mass relative to the support, 
 

 ( ) ( ) ( )Fu t x t x t= −  (c) 
 
Hence, 

 
   ( ) ( ) 0 ( 0)u t x t t= = <  (d) 
 
   0( ) cos (0 *)u t h t t tω= − < ≤  (e) 
 
  [ ]0( ) ( ) cos ( *) cos ( *)u t x t h t t t t tω ω= = − − − >  (f) 
 
We see from Eq. (e) that the maximum relative deflection of the mass while the 
pulse is active is 
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 max

0

1
u
h

=  (g) �

 
Equation (g) describes the initial shock spectrum. Since the deflection of the 
support vanishes for t > t* the relative motion and absolute motion are the same 
during this interval. The residual spectrum is thus described by Eq. (h) of Ex-
ample 4.9 with f0 replaced by h0. Hence,  

  

   max

0

*2sin
u t
h T

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (h) �

 
The complete shock spectrum is formed by taking the larger of the values com-
puted from Eqs. (g) and (h) for a given value of the pulse duration. The shock 
spectrum is displayed in Figure E4.10-2. 
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       Figure E4.10-2  Shock spectrum for rectangular support motion. 

 
 
 

Example 4.11 – Shock Spectrum for a Half-Sine Pulse 
Consider a single degree of freedom subjected to a pulse in the form of a half-
sine wave, as indicated. For this case the duration of the pulse is t* = T*/2, 
where T* is the period of the sine function. Determine the shock spectrum for 
this type of pulse. 

t 

F 
F 0 

t* 

     Figure E4.11-1  A half-sine pulse. 
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t 

F 
F 0 

t* 

 
          Figure E4.11-2  Pulse represented as superposition of sine waves. 
 

 
Solution 
The forcing function for this pulse takes the form 
 

   
[ ]0

0 0

( ) sin  ( ) ( *)
       sin ( ) sin ( *) ( *)
F t F t t t t

F t t F t t t t
= Ω − −

= Ω + Ω − −

H H

H H
 (a) 

 where  
    2 * /T *tπ πΩ = =  (b) 

 
(see Figure E4.11-2). Substitution of Eq. (a) into Eq. (4.48) gives 
 

  

0

0

0

0

( ) sin sin ( ) ( )

         sin ( *) sin ( * ) ( *)

t

t

Fx t t d t
m

F
t t t d t

m

τ ω τ τ
ω

τ ω τ τ
ω

= Ω −

+ Ω − + −

∫
∫

H

H t−
 (c) 

 
Carrying through the integration gives the response to the half-sine pulse as 
 

 ( )
( )

{ }

2
0

( ) 1 sin * sin ( )
2 *1 2 *

                               sin ( *) * sin ( *) ( *)
2 *

x t Tt t t t
f tT t

Tt t t t t t t
t

π ω

π ω

⎧⎡ ⎤= −⎨⎢ ⎥⎣ ⎦− ⎩

⎫⎡ ⎤+ − − − − ⎬⎢ ⎥⎣ ⎦ ⎭

H

H

 (d) 

 
We must next determine the maximum values of the response and when they 
occur. We shall consider two intervals, (i) the time interval during which the 
pulse is still active (t < t*) and (ii) the interval after the pulse subsides (t > t*). 
The maximum displacements will then be plotted as a function of the duration 
of the pulse, constructing the shock spectrum for the half-sine pulse. 
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(i) 0 < t < t* : Initial Spectrum 
To determine the time at which the maximum deflection occurs we take the de-
rivative of the response, set it to zero and solve for the time. The response of 
the system while the pulse is active is, from Eq. (d),  
 

 
( )

( )2
0

( ) 1 sin * sin
2 *1 2 *

x t Tt t t
f tT t

π ω⎡ ⎤= −⎢ ⎥⎣ ⎦−
 (e) 

 
Differentiating Eq. (e) and setting the resulting expression to zero gives 
 

 cos cos 0t tωΩ − =  
 
Now, using the identity cos(a) − cos(b) = −2 sin{(a + b)/2} sin{(a − b)/2} in 
the above expression gives the equivalent statement 
 

 { } { }1 1
2 2sin ( ) sin ( ) 0tω ω tΩ + Ω − =  (f) 

 
It may be seen that Eq. (f) is satisfied if either 
 

     or    
2 2

t n t nω ωπ πΩ + Ω −⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=     (n = 0, 1, 2, …) (g) 

 
Equation (g) thus yields two sets of peak times (times that render the response 
an extremum), 
 

 ( ) 2    ( 0,1, 2,...)
pk

a nt nπ
ω

= =
Ω +

 (h-1) 

and 

 ( ) 2    ( 0,1, 2,...)
pk

b nt nπ
ω

= =
Ω −

 (h-2) 

 
It remains to establish which set renders the response the true maximum. 
 Substituting Eq. (h-1) into Eq. (e) and noting that sin( 2 ) sint n tω π ω=∓  
and that 

 ( ) 2 22 2a
pk

n nt n nπ ω πω π π
ω ω

Ω
− = − = −

Ω + Ω +
 

 
gives the responses at the first set of extrema as 
 

 
( )( )

( )
0

1 sin
1a

pk

a
pkt t

x f
ω=

=
− Ω

tΩ  (i) 
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Similarly, substituting Eq. (h-2) into Eq. (e) and noting that 
 

 ( ) 2 22 2b
pk

n nt n nπ ω πω π π
ω ω

Ω
+ = + =

Ω − Ω −
 

 
gives the second set of extrema as 
 

 
( )( )

( )
0

1 sin
1

b
pk

b
pkt t

x f
ω=

=
⎡ ⎤+ Ω⎣ ⎦

tΩ  (j) 

 
It may be seen by comparing Eqs. (i) and (j) that 
 

 ( ) ( )a b
pk pkt t t t

x x
= =

>  

and hence that 
 ( )max a

pkt t
x x

=
=  (k) 

 
Substituting Eqs. (h-1) and (i) into Eq. (e) gives the maximum response during 
the interval for which the pulse is active as 
 

 
( ) ( )

max

0

1 2sin
1 2 *1 2 *

x n
f tT t

π
T

⎧ ⎫⎪ ⎪= ⎨ ⎬
+⎡ ⎤− ⎪ ⎪⎩ ⎭⎣ ⎦

 (l) �

 
where tpk < t* and, from Eq. (h-1), 
 

 1 *
2

tn
T

< +  (m) �

 
Since n must be an integer, it is seen from Eq. (m) that no maxima occur when 
the duration of the pulse is less than half the natural period of the system. 
  
(ii) t > t* : Residual Spectrum 
Evaluating Eq. (e) for t > t* gives the response of the system after the pulse has 
subsided as 
 

 
( )

[2
0

( ) 2 * sin sin ( *)
2 * 1

x t T t t t t
f T t

ω ω= +
⎡ ⎤−⎣ ⎦

]−  (n) 

 
Differentiating Eq. (n) and setting the resulting expression to zero gives 
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 [ ]cos cos ( *) 0
pkt t

t t tω ω
=

+ − =   

 
which, after using the identity cos(a) + cos(b) = 2cos{(a + b)/2}cos{(a − b)/2}, 
takes the alternate form 
 

 ( ){ } { }1 1
2 2cos * cos * 0t t tω ω− =  (o) 

It follows that 

 * (2 1)
2 2pk
tt nω πω = + −  (p) 

 
Substituting Eq. (p) into Eq. (n) gives the maximum response after the pulse 
has subsided as 
 

 
( )

( )
( )max

2
0

2 *
2 cos

2 * 1

x t T
t T

f t T
π=

⎡ ⎤−⎣ ⎦

*  (q) �

 
A plot of the residual spectrum is displayed in Figure E4.11-3, along with the 
initial spectrum. For a given range of the pulse duration ratio t*/T, the greater 
of the initial or residual maxima form the shock spectrum. It may be seen that 
the residual spectrum dominates when the duration of the pulse is less than half 
the natural period of the system while the initial spectrum governs for t* > T / 2  
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                               Figure E4.11-3  Shock spectrum for a half-sine pulse. 
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Example 4.12 – Motion of the Support in Form of a Half-Sine Wave 
Consider a shock in the form of a sudden motion of the support of a mass-
spring-damper system (such as in Example 4.10). Set up the equations that de-
scribe the shock spectrum of the system if the time history of the displacement 
of the support is in the form of a half-sine pulse.  

 
Solution 
The motion of the support is of the form 
 

 0

0 ( 0)
( ) sin   (0 *)

0 ( *)
F

t
x t h t t t

t t

<⎧
⎪= Ω < <⎨
⎪ >⎩

 (a) 

 where 
 2 * /T *tπ πΩ = =  (b) 

 
The motion can be described formally by the equation 
 

 
[ ]

[ ]
0

0

( ) sin ( ) ( *)

        sin ( ) sin ( *) ( *)
Fx t h t t t t

h t t t t t t

= Ω − −

= Ω + Ω − −

H H

H H
 (a') 

 
The equation that governs the absolute motion of the mass is, from Eq. (3.122), 
 

 ( ) ( ) ( )Fm x t k x t k x t+ =��  (c) 
 
(i) 0 < t < t* :  Initial Spectrum 
During the interval that the pulse is active the equation of motion takes the 
form 

 0( ) ( ) sinm x t k x t kh t+ =�� Ω  (d) 
 
The absolute response may be determined directly from Eq. (e) of Example 
4.11 by letting F0 = kh0. Hence, 
 

 
( )

( )2
0

( ) 1 sin * sin
2 *1 2 *

x t Tt t t
h tT t

π ω⎡ ⎤= −⎢ ⎥⎣ ⎦−
 (e) 

 
The relative displacement of the mass with respect to the support is then 
 

 
( )
( )

( ) ( )2
0 0

2 *( ) ( )( ) 2 * sin * sin
1 2 *

F T tx t x tu t T t t t t
h h T t

π ω
−

⎡ ⎤= = −⎣ ⎦−
 (f) �
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 ( ) ( ) ( )20 2 * cos * cos 2pk pku T t t t tπ π= = −� T  (g) �
 
The roots of Eq. (g) yield the times tpk < t* at which the relative displacement is 
an extremum for a given value of the pulse duration. These values can be sub-
stituted into Eq. (f) to determine the corresponding maximum displacement. 
The plot of the corresponding maximum displacement as a function of the 
pulse duration then yields the initial shock spectrum.  

  
(ii) t > t* : Residual Spectrum 
For this time interval, the absolute displacement of the mass may be obtained 
directly from Eq. (n) of Example 4.11 by letting F0 = kh0. Since after the pulse 
subsides xF = 0 it follows that u(t) = x(t) and hence, from Eq. (q) of Example 
4.11, that 
 

 
( )

( )
( )max max

2
0 0

2 *
2 cos

2 * 1

u x t T
t T

h h t T
π= =

⎡ ⎤−⎣ ⎦

*   � (h) 

 
The larger of the values of the initial and residual spectra form the shock spec-
trum for the system under support shock. The generation of the shock spectrum 
for this case is left as a project for the reader (Problem 4.20). 

  
 
 

4.8  CONCLUDING REMARKS 

In this chapter we have focused our attention on single degree of freedom systems 
subjected to transient loads of various types. We began by introducing two general-
ized functions and their properties, operations and relations. These functions allowed 
us to formally obtain the response of single degree of freedom systems to impulse 
loading. A representation of the response of initially quiescent systems to arbitrary 
loading was developed based on the response to impulse loading and took the form of 
the convolution integral. The convolution integral can be used to determine the re-
sponse of a system to any loading, given the time history of the load. This formula-
tion was used to determine the response of systems to the specific forms of step load-
ing and ramp loading. For linear systems superposition may be used to construct solu-
tions of complex loading types from the known responses of loads that, together, 
comprise the loading of interest. This was done explicitly for two loading types, step 
loading and linear transition to constant load level. The method may, of course, be 
used to obtain solutions of other load types. The chapter finished with a discussion of 
shock spectra, a characterization of the severity of the response of a system to a given 
type of pulse or shock. Specific spectra were presented for rectangular pulses and 
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half-sine pulses. The methodology outlined could be used to develop the response 
spectra for other types of pulses as well. 
 

BIBLIOGRAPHY 

Greenberg, M.D., Applications of Green’s Functions in Science and Engineering, Prentice-
Hall, 1971. 

Meirovitch, L., Elements of Vibration Analysis, 2nd ed., McGraw-Hill, New York, 1986. 
Meirovitch, L., Fundamentals of Vibrations, McGraw-Hill, Boston, 2001. 
Thomson, W.T., Theory of Vibration with Applications, 4th ed., Prentice-Hall, Englewood 

Cliffs, 1993. 
Tse, F.S., Morse, I.E. and Hinkle, R.T., Mechanical Vibrations, Theory and Applications, 2nd 

ed., Prentice Hall, Englewood Cliffs, 1978. 
 
 

PROBLEMS 

4.1 Consider the function 4( ) 2 .f t t=  Evaluate the following integrals: 

(a) 
10

0
( ) ( 3)f t t dδ −∫ t
�

           (b)      
10

0
( ) ( 3)f t t dδ −∫ t
��   

(c) 
10

0
( ) ( 3)f t t dδ −∫ t
���            (d)     

10

0
( ) ( 3)f t t dδ − t∫
���  

 
4.2 Consider the function 4( ) 2 .f t t=  Evaluate the following integrals: 

(a) 
10

0
( ) ( 3)f t t d−∫ H t           (b)     

10

0
( ) ( 3)f t t d−∫ �H t  

(c) 
10

0
( ) ( 3)f t t d−∫ ��H t           (d)     

10

0
( ) ( 3)f t t d−∫ �� H t  

 
4.3 The mass of the system of Problem 2.25 is subjected to an impulse of ampli-

tude 20 N-sec. Determine the response history of the system. 
 
4.4 A 12 inch wrench is attached to the hub of the wheel of 

Example 2.3 and extends horizontally, as indicated. De-
termine the rotational history of the wheel if a tool sud-
denly falls on the free end of the wrench, imparting an 
impulse of magnitude 10 lb-sec at that point. (The 
wrench may be treated as rigid for the purposes of the 
present problem.)                                                                         Fig. P4.4/P4.5 
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4.5 A 12 inch wrench is attached to the hub of the wheel of Example 2.3 and ex-
tends horizontally, as indicated. After a tool suddenly falls and strikes the free 
end of the wrench, the wheel is observed to oscillate at its natural frequency 
with an amplitude of 0.15 radians. Determine the impulse imparted by the tool. 

                                                                                      
4.6 The timing device of Problem 2.19 is tapped to initiate motion. Determine the 

magnitude of the impulse required so that the motion of the device has an am-
plitude Θ0. 

 
4.7 A 10 N dead load is suddenly applied to the mass of the system of Problem 

2.26a. Determine the response history of the system. 
  
4.8 A flat 225 lb raft with a 6 ft ×  6 ft surface floats in a fresh water lake. Deter-

mine the response history for vertical motion of the system when a 120 lb boy 
suddenly jumps onto the float. Assume that the jump is primarily horizontal so 
that the vertical component of the boy’s velocity is negligible as he lands on the 
raft. Also assume that the boy doesn’t “bounce” on the raft after landing. 

 

   Fig. P4.8 
 
4.9 Determine the motion of the one-story building of Example 3.13 if the base 

suddenly moves 2 inches to the right. 
 
4.10 The diving board of 

Problem 2.30 is at rest 
when a 110 lb boy 
stands at its edge. De-
termine the response 
of the diving board af-
ter the boy jumps into 
the pool. 

 
 
 
                                                            Fig. P4.10 
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4.11 The spool of the system of Problem 2.27 is initially at rest when it is pulled on 
by a force whose magnitude increases linearly with time at the rate of 0.1 
N/sec. Determine the motion of the spool assuming that no slipping occurs be-
tween the spool and the ground. 

 
4.12 Solve Problem 4.11 if damping is negligible and the magnitude of the force 

increases parabolically with time such that the rate of application of the load in-
creases at the rate of 0.1 N/sec2. 

 
4.13 Determine the yawing motion of the aircraft mock-up of Problem 3.7 if the 

thrust supplied by one of the engines suddenly deviates from the norm by a fac-
tor of ε for a time interval of duration τ.  

 
4.14 Determine the time history of the response of the system of Problem 2.21 

when, over the interval 0 t τ< < , the flywheel is loaded at a constant rate to 
the ultimate level M0 and then maintained at that level. 

 
4.15 Differential settlement of a segment of roadway causes a small drop of magni-

tude h. Repairs are performed effecting a transition ramp of length L between 
the two segments of the roadway. A vehicle travels at constant speed v0 along a 
flat road when it encounters the drop. Assuming that the driver maintains the 
same horizontal speed throughout his motion, determine the vertical motion of 
the vehicle during and after it encounters the drop. The vehicle never leaves the 
roadway and the vertical speed due to gravity is negligible. 

 

 
   Fig. P4.15 
 
4.16 Determine the response of the system of Problem 3.1 when it is subjected to a 

half-sine pulse of 250 dyne amplitude and 0.25π seconds duration. 
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4.17 Determine the response of a standard mass-spring-damper system when it is 
subjected to a sinusoidal transition of duration t* to a constant load of magni-
tude F0.  

 
F(t)

F
o

t* t

   Fig. P4.17 
 
4.18 Determine the time history of the response of a standard mass-spring-damper 

system when it is subjected to a triangular pulse of magnitude F0 and total dura-
tion 2τ, when the ramp-up and ramp-down times are of the same duration. 

  Fig. P4.18 
 

F(t)

F
o

2 t

4.19 Determine the shock spectrum for a linear system subjected to the transition 
loading of Section 4.6.2. 

 
4.20 (Project) Use Eqs. (f), (g) and (h) of Example 4.12 to generate the shock spec-

trum for a system whose base undergoes a motion in the form of a half-sine 
pulse. 

 
4.21 (Project) Determine the shock spectrum for a linear system subjected to a trian-

gular pulse of magnitude F0 and total duration t*, when the ramp-up and ramp-
down times are of the same duration.  



   

5 
Operational Methods 

 
 
 
 
 

 
 
In this chapter we shall study an alternate approach to solving vibration problems for 
mechanical systems. This approach is used in various situations, particularly with 
regard to systems analysis and vibration control. (The reader may bypass this chapter 
and continue on to subsequent chapters without any loss of continuity.) 
 Operational methods, in the present context, refer to techniques associated with 
integral operators and are also known as integral transform techniques. We shall here 
be interested in the particular transform attributed to Laplace. When applied, an inte-
gral transform maps an ordinary differential equation (o.d.e.) to an algebraic equation 
in terms of a transformed dependent variable. The algebraic equation may then be 
solved directly for the transformed dependent variable, and that variable may then be 
inverted (mapped back) to give the solution to the original problem. We first review 
the Laplace transform and some of its properties.  
 

5.1 THE LAPLACE TRANSFORM 

Consider some real functi n ξ of a real variable t. The Laplace transform ofo ( )tξ , 
which we shall denote as ( ) ,sξ  is defined by the relation 
   

 { }
0

( ) ( ) ( )sts t e tξ ξ ξ
∞

−= ≡ ∫� L dt  (5.1) 

 
where s is a complex variable such that  Re(s) > s0 > 0, and L{ξ} is read “L operating 
on ξ .” Equation (5.1) maps the function ξ(t) to the function ( ).sξ  In all applications 
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of the Laplace transform considered in this text, the inversions (i.e., the inverse map-
pings) may be accomplished by algebraic manipulation and inspection, as will be 
discussed shortly. In this regard, many pertinent Laplace transforms are evaluated 
below as examples. The Laplace transforms of many other functions may be found in 
published mathematical tables.  
 Though we shall have no need to employ it in our present study of vibrations, 
the formal inverse Laplace transform is presented for completeness, and for situations 
where functions are encountered such that their inverses are not readily available. For 
these situations, the associated inverse transform that maps ( ) ( )s tξ ξ→  is given by 
 

 { }1 1( ) ( ) ( )
2

i
st

i
t s e

i

β

β
ξ ξ ξ

π

+ ∞
−

− ∞
= ≡ ∫L s ds

t

 (5.2) 

 
where the integration is performed in the complex plane and β > s0 defines what is 
referred to as the Bromwich line. The reader is referred to the variety of applied 
mathematics texts for discussion of  the evaluation of the inversion integral for arbi-
trary functions. In the remainder of this section we shall evaluate the Laplace trans-
forms of a variety of pertinent functions. We will then apply this technique to vibra-
tion analysis in subsequent sections. 
 

5.1.1 Laplace Transforms of Basic Functions 

We next evaluate the Laplace transform of some basic functions of interest. These 
functions include the generalized functions introduced in Chapter 4 (the unit impulse 
function, the unit step function and the unit ramp function), as well as the exponential 
and harmonic functions. All are easily evaluated by straightforward integration and 
may be verified by the reader. 
 

The Unit Impulse  
The Laplace transform of the Dirac Delta Function (the unit impulse) is obtained by 
setting ( ) ( )tξ δ=  in Eq. (5.1) and using Eq. (4.7). Doing this, we find that 
  

 { }
0

( ) ( ) 1stt e t dtδ δ
∞

−= =∫L  (5.3) 

Similarly, 

 { }
0

( ) ( )stt e t dt se τδ τ δ τ
∞

− −− = − =∫L  (5.4) 
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The Unit Step Function  
The Laplace transform of the Heaviside Step Function (the unit step function) is ob-
tained by setting ( ) ( )t tξ = H  in Eq. (5.1) and evaluating the resulting integral. This 
gives  

 { }
0 0

1( ) st stt e dt e 1
s s

∞∞
− −= = − =∫L H  (5.5) 

Similarly,  

 { }
0

( ) ( )
s

st st et e t dt e dt
s

τ

τ
τ τ

−∞ ∞
− −− = − = =∫ ∫L H H  (5.6) 

 
 

The Unit Ramp Function   
The Laplace transform of the unit ramp function is obtained by substituting the func-
tion ( ) ( )t t tξ = H (the unit ramp function) into Eq. (5.1) and evaluating the resulting 
integral. Carrying out this calculation gives 
  

 { } 2
0 00

1( ) 0
st

st sttet t te dt e dt
s s

1
s

∞−∞ ∞
− −= = − + =∫ ∫HL +   

Hence,  

 { } 2

1( )t t
s

=HL  (5.7) 

 

The Exponential Function 
The Laplace transform of the exponential function  is obtained by direct 
evaluation as 

( ) att eξ =

 { } ( )

0

1( ) at s a ts e e dt
s a

ξ
∞

− −= = =
−∫L  (5.8) 

The Harmonic Functions 
The Laplace transform of the harmonic functions cos tω  and sin tω  can be evaluated 
with the aid of Eq. (5.8) and the two identities  
 

 cos     and    sin
2 2

i i i ie e e e
i

ψ ψ ψ

ψ ψ
− −+

=
ψ−

=  (5.9) 

 
(see Problem 1.19).  Now, from Eqs. (5.8) and (5.9), 
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 { } { } { } 2 2

1 1 1cos
2 2( ) 2( )

i t i t st e e
s i s i s

ω ωω
ω ω ω

−⎡ ⎤= + = + =⎣ ⎦ − + +
L L L      

Hence, 

 { } 2 2cos st
s

ω
ω

=
+

L  (5.10) 

Similarly,  

 { } 2sin t
s

ωω 2ω
=

+
L  (5.11) 

 

Harmonic Functions with Exponential Amplitudes 
Two more functions of evident interest for our study of vibrations are the combina-
tions ( ) cosatt e tξ ω=  and .( ) sinatt e tξ ω=  The Laplace transform of these compos-
ite functions are evaluated in a manner similar to that for the harmonic functions 
alone. Hence,  
 

 { } { } { }( ) ( )1 1cos
2 2( )

at a i t a i te t e e 1
2( )s a i s a i

ω ωω
ω ω

+ −⎡ ⎤= + = +⎣ ⎦ − − − +
L L L  

 
Combining the two fractions gives the desired transform 
 

 { } 2 2cos
( )

at s ae t
s a

ω
ω

−
=

− +
L  (5.12) 

 
A similar calculation gives the companion transform 
 

 { } 2 2sin
( )

ate t
s a

ωω
ω

=
− +

L  (5.13) 

 

5.1.2  Shifting Theorem 

Consider a function f (t) that is shifted by time τ, as shown in Figure 5.1, but is oth-
erwise arbitrary. Let us evaluate the Laplace transform of such a function. The shifted 
function may be represented as 

 
 ( ) ( ) (f t f t tτ )τ τ= − −H  (5.14) 
 
where H (t) is the Heaviside Step Function defined in Chapter 4. We wish to evaluate 

{ }( )f tτL . Thus, letting ( ) ( )t f tτξ = in Eq. (5.1) gives 
 

  



5│ Operational Methods 277 

 

f 

 
tτ 

        Figure 5.1  Generic function shifted by time τ.  
 
 

 { }
0

( ) ( ) ( ) ( )st stf t e f t t dt e f tτ
τ

τ τ τ
∞ ∞

−= − − = −∫ ∫HL dt−  (5.15) 

 
Next, let us introduce the time shift 
 
 t̂ t τ= −  (5.16) 
 
from which it follows that ˆdt dt= . Incorporating Eq. (5.16) into Eq. (5.15) gives 
 

  ˆ ˆ( )

0 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )s t s st sf s e f t dt e e f t dt e f sτ τ τ
τ

∞ ∞
− + − − −= = =∫ ∫

Hence, 
 { } { }( ) ( ) ( )sf t t e fττ τ −− − =HL tL  (5.17) 
 
 

5.1.3  Laplace Transforms of the Derivatives of Functions 

We have seen that establishing the dynamic response of a mechanical system gener-
ally involves solving a differential equation. It is therefore of interest to evaluate the 
Laplace transform of the derivatives of a function. The Laplace transform of the de-
rivative of a function is determined by substituting that derivative into Eq. (5.1) and 
performing integration by parts. Doing this we find that  

 

 { } 00 0
( ) (0) ( )st st stdt e dt e s e dt s

dt
ξ sξ ξ ξ ξ

∞ ∞∞− − −⎡ ⎤= = + = − +⎣ ⎦∫ ∫L ξ   

Hence, 
 { } (0) ( )s sξ ξ ξ= − +L  (5.18) 
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The Laplace transform of the second derivative of a function is similarly obtained by 
defining a second function equal to the derivative of the first and applying Eq. (5.18). 
This gives the Laplace transform of the second derivative as 
 
 { } 2( ) (0) (0) ( )t s sξ ξ ξ ξ= − − +L s  (5.19) 
 
This process can be continued to obtain the Laplace transform of any order deriva-
tive. It is seen that the Laplace transforms of the derivatives of a function are simply 
functions of the transform of the function itself and of the associated initial condi-
tions. We can therefore anticipate that taking the Laplace transform of an ordinary 
differential equation results in an algebraic equation involving these parameters.  
 

5.1.4  Convolution 

In the previous section we evaluated the Laplace transforms of the product of har-
monic functions and exponential functions directly, with the aid of Euler’s Formula. 
In this section we develop a general expression for the determination of the Laplace 
transforms and the associated inverses of the products of arbitrary functions. 
 Consider two functions, and( )f t ( )g t , and their respective Laplace transforms, 

( )f s and ( ).g s  It follows from Eq. (5.1) that 
 

 
0 0

( ) ( ) ( ) ( ) ( ) ( )s sg s f s g s e f d f e g s dτ ττ τ τ
∞ ∞

− −= =∫ ∫ τ  (5.20) 

 
Expressing ( )g s in terms of its definition in the right most integral of Eq. (5.20) and 
employing the shifting theorem, Eq. (5.17), gives 
 

 { } { }
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )sg s f s f e g t d f g t t dττ τ τ τ τ
∞ ∞

−= = −∫ ∫L L H τ−  

 
and thus, 
 

 
0 0

( ) ( ) ( ) ( ) ( )stf s g s f e g t t dt dτ τ τ
∞ ∞

−= − −∫ ∫ H τ   

 
Now, interchanging the order of integration gives 
 

 
0 0

( ) ( ) ( ) ( ) ( )stf s g s e f g t t d dtτ τ τ τ
∞ ∞

−= − −∫ ∫ H  

 
which may be written as 
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 0 0
( ) ( ) lim ( ) ( ) ( )

                     lim ( ) ( ) ( )

st

st

f s g s e f g t t d dt

e f g t t d

τ τ τ τ

dtτ τ τ τ

Τ Τ
−

Τ→∞

∞ ∞
−

Τ→∞ Τ Τ

= − −

+ −

∫ ∫
∫ ∫

H

H −
 

 
The second term on the right-hand side is seen to vanish in the limit. Finally, from the 
definition of the Heaviside Step Function, Eq. (4.11), it is noted that H (t – τ) = 0 for 
τ  > t. Hence, we finally have the relation 
 

 
0 0

( ) ( ) ( ) ( )
t

stf s g s e f g t d dtτ τ τ
∞

−= −∫ ∫  (5.21) 

 
Equation (5.21) may be expressed in the form 
 
 { }( ) ( ) ( ) ( )*f s g s f t g t= L  (5.22) 
where 

 
0

( ) ( ) ( ) ( )*
t

f t g t f g t dτ τ τ≡ −∫  (5.23) 

 
is referred to as the convolution of f and g, and the integral on the right-hand side as 
the convolution integral, also known as the Faltung Integral. It follows that the in-
verse Laplace transform of a product of two functions is given by 
 
 { }1 ( ) ( ) ( ) ( )*f s g s f t g t− =L  (5.24) 

 
Equation (5.24) is very useful in a variety of applications. 
  
 

5.2 FREE VIBRATIONS 

Recall the standard form of the equation of motion pertaining to single degree of 
freedom systems, Eq. (2.64),  
 
 22 0x x xωζ ω+ + =  

 
and the associated initial conditions 
 
 0 0(0)  ,   (0)x x x v= =  
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Taking the Laplace transform of the governing equation, exploiting the property that 
Laplace transformation is a linear operation and using Eqs. (5.18) and (5.19), results 
in the algebraic equation for the transformed displacement 
 
 [ ]2 2(0) (0) ( ) 2 (0) ( ) ( ) 0x s x s x s x s x s x sωζ ω⎡ ⎤− − + + − + + =⎣ ⎦  (5.25) 
 
Equation (5.25) may be solved for ( )x s  to give 
 

 
( )0

2

2
( )

2
v s x

x s
s s

ωζ 0
2ωζ ω

+ +
=

+ +
 (5.26) 

 
If we compare the denominator of  Eq. (5.26) with the characteristic function Z(s), 
the left-hand side of Eq. (2.67), it is seen that the denominator corresponds to the 
characteristic function. Further, let us recall that the roots of the characteristic equa-
tion Z(s) = 0 yield the exponents of Eq. (2.66) and hence the general form of the solu-
tion. Let us next factor the denominator of Eq. (5.26) to give the form 
 

 
( )

( ) ( )
0 02

( )
d d

v s x
x s

s i s i
ωζ

ζω ω ζω ω
+ +

=
+ + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (5.27) 

 
where ωd is defined by Eq. (2.70) for underdamped systems. It may be seen that the 
singularities of the transformed displacement, the values of s for which the bracketed 
expressions in the denominator of Eq. (5.27) vanish, correspond to the roots of the 
characteristic equation Z(s) = 0. In order to invert the transformed displacement, and 
hence to obtain the response x(t), it is desirable to express Eq. (5.27) in a form, or 
combination of forms, that corresponds to the Laplace transform of functions that we 
have already established or are listed elsewhere. This may be accomplished by multi-
plying the respective factors in the denominator back again, and regrouping terms. 
The transformed displacement then takes the form 
 

 
( )

( )
( )

( )
0 0

0 2 2 22
( )

1d d

s v x
x s x

s s

ζω ω ζ ω
2ζω ω ζω ωζ

+
= +

+ + + +−
 (5.28) 

 
Equation (5.28) may now be inverted by direct application of Eqs. (5.12) and (5.13).  
This gives the free vibration response as 
 

 { } ( )0 01
0 2

( ) ( ) cos sin
1

t t
d d

v x
x t x s x e t eζω ζωω ζ

tω ω
ζ

− − −
⎡ ⎤+

= = + ⎢ ⎥
⎢ ⎥−⎣ ⎦

L  (5.29) 

 
Substituting Eqs. (2.6)–(2.11) puts the response in the form identical to Eq. (2.74). 
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5.3 FORCED VIBRATIONS 

We next consider the response of single degree of freedom systems when they are 
subjected to externally applied forces.  
 

5.3.1  The Governing Equations 

Recall the general equation of motion in standard form, Eq. (3.1), 
 
 2 22 ( )x x x f tωζ ω ω+ + =  (5.30) 
 
The right-hand side of Eq. (5.30), , is seen to correspond to the specific ap-
plied force (the force per unit mass acting on the system). Taking the Laplace trans-
form of Eq. (5.30) results in the algebraic equation 

2 ( )f tω

 
 2

0( ) ( ) ( ) ( )s x s s f sω− =Z Z  (5.31) 
where 
 2( ) 2s s s 2ωζ ω= + +Z  (5.32) 
 
 ( )0 0( ) 2 0s v ωζ= + +Z s x  (5.33) 
 
and  The function Z(s) is referred to as the mechanical impedance 
of the system. Equation (5.31) may be solved for 

{ }( ) ( ) .f s f t≡ L
( )x s  to give 

 

 
2

0( ) ( )
( )

( )
f s s

x s
s

ω +
=

Z
Z

 (5.34) 

 
which may then be inverted for given ( )f s . It may be noted that the inverse trans-
form of Z0(s)/Z(s) is given by Eq. (5.28). Also note that Eq. (5.34) reduces to Eq. 
(5.26) when . If the system is initially at rest it may be seen that Z0f = 0(s) = 0, and 
hence that 
 
 2( ) ( ) ( )s f s x sω=Z  (5.35) 
 
In this context, the mechanical impedance is seen to correspond to the (specific) force 
per unit displacement in the space of the transformed variables. The inverse of the 
impedance,  
  
 1 2( ) ( ) ( ) ( )s s x s f sω−= =Q Z  (5.36) 
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( )x s( )f s Q(s) 

         Figure 5.2  Block diagram for forced vibration problem. 
 
 
is referred to as the mechanical admittance (transfer function) and, in the present con-
text, is seen to correspond to the displacement per unit (specific) force in the trans-
formed space. From a systems perspective, ( )f s and ( )x s may be viewed as input-
output pairs, with Q(s) the corresponding transfer function as depicted in the block 
diagram of Figure 5.2. Both Z(s) and Q(s) characterize the system and are important 
parameters in certain applications (such as control theory). 
 

5.3.2  Steady State Response 

Let us next consider the response of single degree of freedom systems to external 
time dependent forces. In particular, let us first consider the response to harmonic 
forcing. Thus, let us consider the external force of the form 
 
    [ ]0 0( ) cos sini tf t f e f t i tΩ= = Ω + Ω   (5.37)   
 
It follows from Eq. (5.8), or equivalently from Eqs. (5.10) and (5.11), that 
  

 0( )
ff s

s i
=

− Ω
 (5.38) 

 
The transform of the response is then readily obtained by substituting Eq. (5.38) into 
Eq. (5.34). This gives 
 

 
2 2

0 0 0 0
2 2 2 2

( ) ( )
( )

( )( 2 ) ( ) ( ) d

f s f s
x s

s i s s s i s
ω ω

ωζ ω ζω ω
+ +

= =
− Ω + + ⎡ ⎤− Ω + +⎣ ⎦

Z Z
 (5.39) 

 
The physical response is found by inverting Eq. (5.39). This can be done by expand-
ing the denominator and using partial fractions. However, it is expedient as well as 
instructive to perform the inversion using the convolution theorem. To do this we first 
partition Eq. (5.39) using Eqs. (5.8), (5.12) and (5.13). We then incorporate the result-
ing expression into Eq. (5.23) to get 
 

 { }1 2 ( )
0

0
( ) ( ) sin ( )

t
i t

d ax t x s f e e xτ ζωτ dω ω τ τ τ− Ω − −⎡ ⎤= = +⎣ ⎦∫L  (5.40) 
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where xa(t) is given by Eq. (5.29). Evaluating the integral in Eq. (5.40) gives the re-
sponse of the system as 
 

 
( ) [0

2
( ) ( ) ( )

1 2

i t
t

a b
f e ]x t e x

i
ζω

ζ

Ω
−= +

− Ω + Ω
t x t+  (5.41) 

where 
 ωΩ ≡ Ω  (5.42) 
  

 ( )2 2

2
( ) 1 2 cos sin

1
a d

i
dx t i t ζζ ω ω

ζ
t

⎡ ⎤+ Ω⎡ ⎤ ⎢ ⎥= Γ − Ω − Ω +⎣ ⎦ ⎢ ⎥−⎣ ⎦
 (5.43) 

 

 
( )0 0

2
( ) cos sin

1
b d

v x
dx t t

ω ζ
tω ω

ζ

+
= +

−
 (5.44) 

 
and Γ is given by Eq. (3.50). The second term in Eq. (5.41) may be seen to tend to 
zero for large t, and thus will become negligible after sufficient time has elapsed fol-
lowing the start-up of the system. Therefore, neglecting the decaying term in that 
expression gives the steady state response as 

 
 ( ) (

0( ) ; i t
ssx t f eζ )Ω −Φ= Γ Ω  (5.45) 

 
where Γ and Φ respectively correspond to the magnification factor and phase angle 
of the steady state response, as discussed in Section 3.3.3. The response given by Eq. 
(5.45) is seen to be identical with that described by Eq. (3.52) as, of course, it should 
be. 
 

5.3.3  Transient Response 

We next consider the response of initially quiescent systems to short duration loads 
(pulses). It is seen from Eq. (5.33) that Z0 = 0 for systems that are initially at rest. 

Impulse Response 
Consider a single degree of free system, say a mass-spring-damper system that is 
subjected to an impulse of the form 
 

 ( ) ( )f t t
k

δ=
I  (5.46) 
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where k is the stiffness of the spring, I is the magnitude of the impulse, and ( )tδ  is 
the Dirac Delta Function. The Laplace transform of the excitation is found directly 
from Eq. (5.3) to be 
 
 ( )f s = I k  (5.47) 
 
The response is found by substituting Eq. (5.47) into Eq. (5.34) and inverting the re-
sulting expression. Then, using the inversion results of the free vibration analysis 
performed earlier in this chapter, with mv0 replaced by I, gives the response to an 
impulse as 
 ( ) ( )x t t= I G  (5.48) 
where 

 1( ) sin ( )t
d

d

t e t
m

ζω ω
ω

−=G tH  (5.49) 

 
It is seen that Eq. (5.48) compares directly with Eq. (4.22). The response to step load-
ing may be similarly obtained using the Laplace transform approach. The calculation 
is left as an exercise for the reader. 

Ramp Loading  
Consider next a transient load that varies linearly with time. We thus consider an ex-
citation of the form 
 ( ) ( )f t f t t= H  (5.50) 

 
where f  is a constant. The Laplace transform of this forcing function is given by Eq. 
(5.7). Hence, for the given loading function, 
 

 2( ) ff s
s

=  (5.51) 

 
The transform of the displacement is then obtained by substituting Eq. (5.51) into Eq. 
(5.34). This gives 

 
2

2( )
( )
fx s

s s
ω

=
Z

 (5.52) 

 
The response may be obtained by inverting Eq. (5.52) using the convolution theorem. 
Thus, 

 2

0

sin
( ) ( )

t
d

d

e
x t f t d

ζωτ ω τ
ω τ

ω

−

= −∫ τ  (5.53) 

 
Evaluating the integral, we obtain the response to the ramp loading as 
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 ( ) ( )x t f t= R  (5.54) 
where 

 
( )21 22 2( ) cos sin ( )t

d d
d

t t e t t tζω
ζζ ζ ω ω

ω ω ω
−

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= − + −⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

R H  (5.55) 

 
is the unit ramp response. Equation (5.55) compares directly with Eq. (4.37) as, of 
course, it should. 
 

5.4 CONCLUDING REMARKS 

In this chapter we introduced an alternate approach to vibration problems using 
Laplace transforms. The basic definition was established, the shifting theorem estab-
lished and the convolution integral derived. The transforms of fundamental relevant 
functions were determined and the solutions for free and forced vibration problems 
were developed. The concepts of mechanical impedance and admittance were also 
introduced. 
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PROBLEMS 

5.1 Evaluate the Laplace transform of the step function 0 .( )F tH  
 
5.2 Evaluate the Laplace transform of the step function 0 .( )F t τ−H  
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5.3 Evaluate the Laplace transform of the ramp function 0( ) ( ) ( )f t f t tτ τ= ⋅ − ⋅ −H  
where  0 constant .f =

 
5.4 Verify Eq. (5.11) by evaluating { }sin .tωL  
 
5.5 Verify Eq. (5.13) by evaluating { }sin .ate tωL  
 
5.6 Evaluate the mechanical impedance and the mechanical admittance of the sim-

ple pendulum. 
 
5.7 Evaluate the mechanical impedance and the mechanical admittance of the sys-

tem of Problem 3.6 when one wheel is fixed. 
 
5.8 Evaluate the mechanical impedance and the mechanical admittance of the 

structure of Example 3.13. 
 
5.9 Use the Laplace transform approach to obtain the solution to Example 3.1 if the 

system is initially at rest. 
 
5.10 Use the Laplace transform approach to determine the motion of the mass of 

Example 3.5 if it is subjected to the applied force 2( ) 0.05F t t= N. 



   

6 
Dynamics of Multi-Degree of Freedom 
Systems 

 
 
 
 
 

 
 
Actual mechanical systems generally possess many, if not an infinite number, of de-
grees of freedom. Further, many continuous systems may be adequately modeled as 
discrete systems with many degrees of freedom. It is therefore of practical, as well as 
fundamental, interest to understand the nature of such systems. The next three chap-
ters are devoted to the study of vibrations of discrete multi-degree of freedom sys-
tems. Examples of such systems include the multi-story building shown in Figure 
6.1a, the motorcycle frame shown in Figure 6.1b and the compound pendulum dis-
played in Figure 6.1c. The analysis of multi-degree of freedom systems requires the 
introduction of many new concepts that will be used in conjunction with the ideas and 
concepts presented thus far. Before we can examine the vibratory behavior of these 
rather complex systems, we must first develop the facility to derive the equations of 
motion that describe them. Acquisition of this capability will also allow for the repre-
sentation and characterization of the various systems, as well. Toward this end, we 
first introduce multi-degree of freedom systems by example and derive the governing 
equations for selected systems using Newtonian Mechanics in Section 6.1. Though a 
useful approach, and most certainly a fundamentally correct one, the derivation of the 
equations of motion by direct application of Newton’s laws is often cumbersome and 
tedious for systems other than relatively simple assemblages. To facilitate the deriva-
tion of equations of motion for all multi-degree of freedom systems we introduce 
aspects of a subject area known as Analytical Dynamics in Section 6.2. In particular, 
we focus our attention on the development and application of Lagrange’s Equations 
as an alternate, and often more convenient, approach for deriving the governing equa-
tions of complex systems. 

 287 
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        Figure 6.1  Examples of multi-degree of freedom systems. 
 

6.1 NEWTONIAN MECHANICS OF DISCRETE SYSTEMS 

In this chapter, and in the two chapters that follow, we shall be interested in the be-
havior of systems possessing many degrees of freedom. We will introduce the topic 
through several representative examples using the principles of elementary dynamics 
discussed in Section 1.5. Sample systems include mass-spring systems, multiple pen-
dulum systems and rigid frames. We begin with a discussion of a simple two degree 
of freedom system, the results of which are then generalized to systems with any 
number of degrees of freedom. 
 

6.1.1  Mass-Spring Systems 

Mass-spring systems, with or without damping, are appropriate representations for 
many physical systems such as the multi-story building shown in Figure 1.10 and 
other elastic structures from submarines to aircraft. The derivation of the equations of 
motion for simple systems, such as masses and springs in series, is easily accom-
plished by direct application of Newton’s Laws of Motion. In this section, we demon-
strate how this is done by first introducing two examples; a two degree of freedom 
system consisting of two masses subjected to external forces and three springs, and a 
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three degree of freedom system consisting of three masses and three springs excited 
by the motion of its base. We then extend these results to the formulation for analo-
gous N-degree of freedom systems, where N is any integer.  
   

Example 6.1 
Consider a system consisting of two masses, m1 and m2, connected by three 
elastic springs with stiffnesses k1, k2 and k3 respectively, as indicated in Figure 
E6.1-1. Let the masses be subjected to the externally applied forces F1 and F2, 
respectively, and let u1 and u2 
represent the corresponding dis-
placements from equilibrium of 
the masses, as shown. We wish 
to derive the equations of motion 
for this system using Newton’s 
Laws of Motion.   

                                         Figure E6.1-1  Two-mass three-spring system. 
                                                                 
 
Solution 
To derive the equations of motion for the system, we must derive the equation 
of motion for each mass individually. To do this we first isolate each mass and 
draw its kinetic diagram as shown in Figure E6.1-2. Note that Newton’s Third 
Law is implied in the figure. For the sake of convention, we take u2 > u1 > 0 
throughout our derivation. This renders all but the third spring to be in tension 
as a reference. Results to the contrary in subsequent analyses may then be in-
terpreted accordingly.  

    Figure E6.1-2  Kinetic diagram. 
 
With the individual kinetic diagrams drawn, we may directly apply Newton’s 
Second Law to each mass of the system. We then have 

 
 1 1 1 2 2 1 1( ) 1F k u k u u m u− + − = ��   
 2 2 2 1 3 2 2( ) 2F k u u k u m u− − − = ��   
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which when rearranged gives the equations of motion for mass 1 and mass 2, 
respectively, as 
 

 1 1 1 2 1 2 2 1

2 2 2 1 2 3 2 2

( )
( )

m u k k u k u F
m u k u k k u F

+ + − =
− + + =

��
��

 (a)  

 
Note that the equation governing m1 depends on the displacement of m2 as well 
as the displacement of m1, while the equation governing the second mass also 
involves the displacements of both masses. The equations, and hence the mo-
tions of each mass, are said to be coupled. This, of course, makes physical 
sense since we might anticipate that the motion of one mass is dependent on the 
motion of the other since they are connected through the springs. This particu-
lar type of coupling is referred to as stiffness coupling since the coupling is 
manifested through the stiffness elements of the system (in this case the elastic 
springs). We shall elaborate on this and other types of coupling later in this sec-
tion.  
 It is seen that this two degree of freedom system is governed by two 
(coupled) equations of motion. This is the case for two degree of freedom sys-
tems, in general. A three degree of freedom system will be governed by three 
equations of motion, and so on. Thus, an N-degree of freedom system will be 
governed by N equations of motion. While it is cumbersome to work with 
many equations individually, the governing equations, and hence any analysis 
and interpretation is made easier and cleaner by writing the equations in matrix 
form. Analyses may then be performed using the methods of matrix analysis, 
and of linear algebra in general. Toward this end, Eqs. (a) may be easily written 
in matrix form as 

 

 1 2 21 1 1

2 2 32 2 2 2

0
0

k k km u u
k k km u u F
+ −⎡ ⎤⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫

+ 1F
=⎨ ⎬ ⎨⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

��
�� ⎬ ⎨ ⎬  (b) 

 
 or, in the compact form 
 
 + =��mu ku F  (c) 
 where 

  (d) 1

2

0
0

m
m

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
Tm m

 
 is referred to as the mass matrix of the system,  
 

 1 2 2

2 2 3

k k k
k k k
+ −⎡ ⎤

= =⎢ − +⎣ ⎦
Tk ⎥ k  (e) 
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is referred to as the stiffness matrix of the system, and a superposed “T” implies 
the transpose of the matrix. The matrices m and k are seen to contain the prop-
erties of the system. Similarly, 

 

 1

2

( )
( )

F t
F t

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
F  (f) 

 
 is the force matrix for the system,  
 

 1

2

( )
( )

u t
u t

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  (g) 

 
 is the displacement matrix, and  
 

 1

2

( )
( )

u t
u t

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

��
��

��
u  (h) 

 
is the acceleration matrix. In general, we wish to solve Eq. (b), or equivalently 
Eq. (c), for u(t). 
 Consideration of Eqs. (d) and (e) indicates that both the mass matrix and 
the stiffness matrix for this system are symmetric. This is typical of such sys-
tems and will be found to apply generally. It may also be seen that, for this par-
ticular system, the mass matrix is diagonal while the stiffness matrix is not. 
This is because, as discussed earlier, this particular type of system is coupled 
through the stiffnesses but not through the masses. As we will see, coupling can 
occur through the masses or through the stiffnesses, or through both. 

 
  

Example 6.2 
Consider the system comprised of three masses and three springs shown in 
Figure E6.2-1. Further, let the support/base of the system be subjected to a 
“prescribed” motion u0(t). Derive the equations of motion for this system. 

    Figure E6.2-1  Three-mass three-spring system. 
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   Figure E6.2-2  Kinetic diagram. 

 
 
Solution 
The procedure will be similar to that of Example 6.1. However, for this case, 
the masses of the system are not subjected to explicit applied forces. Rather, the 
forcing enters the problem through the motion of the support.  
 As in the previous example, we first isolate each mass and draw the cor-
responding kinetic diagram for each (Figure E6.2-2). We note that the dis-
placement of the support, u0, does not vanish identically for this case, and 
hence the stretch in spring 1 and the associated spring force are then u1 − u0 and 
k1(u1 − u0), respectively. We next write Newton’s Second Law for each mass as 
follows 
 

 
1 1 2 2 1 1 1 0

2 2 3 3 2 2 2 1

3 3 3 3 2

( ) (
( ) (

( )

m u k u u k u u
m u k u u k u u
m u k u u

)
)

= − − −

= − − −

= − −

��
��
��

 (a) 

 
Regrouping terms in each of Eqs. (a) and bringing all terms except that associ-
ated with the base motion to the left hand-side of the equations results in  
 

 1 1 1 2 1 2 2 1 0( ) (m u k k u k u k u t)+ + − =��  
 2 2 2 1 2 3 2 3 3( )m u k u k k u k u 0− + + − =��  (b) 
 3 3 3 2 3 3 0m u k u k u− + =��  

 
The above equations governing the displacements of the masses of the system 
may be written in matrix form as 
 

 + =��mu ku F  (c) 
where 
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1
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3

0 0
0
0 0

m
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⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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2 2 3

3 3
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0

k k k
k k k k

k k

+ −

3

⎡ ⎤
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥−⎣ ⎦

k  (e) 

 

 
1 0 ( )

0
0

k u t⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

F  (f) 
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2
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 ,    
u u
u
u u

2u
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪= = ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

��
�� ��

��
u u

⎪
 (g, h) 

 

 

N-Degree of Freedom Mass-Spring-Damper Systems 
The formulations of Examples 6.1 and 6.2 can be generalized to a system comprised 
of any number of masses, say N, connected in series by a system of springs and 
dampers as shown in Figure 6.2. For this particular system the state of the system is 
known if the position, or equivalently the displacement, of each of the N masses is 
known as a function of time. By definition (see Section 1.1), a system that requires N 
“coordinates” to describe its state, possesses N degrees of freedom. The system pres-
ently under consideration is, therefore, an N-degree of freedom system. The equations 
of motion for this system are relatively simple to derive using Newton’s Laws of Mo-
tion. (This, however, will not always be the case.) 

The kinetic diagram for mass mj (j = 1, 2, …, N) is depicted in Figure 6.3. Writ-
ing Newton’s Second Law for this generic mass gives 
 
 
 

      
       Figure 6.2  N-mass, N+1-spring, N+1-damper system. 
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  Figure 6.3  Kinetic diagram for N-mass system.  

 
 
 ( ) ( ) ( ) ( )1 1 1 1 1 1j j j j j j j j j j j j j j jF k u u c u u k u u c u u m u− − + + + +− − − − + − + − =� � � � ��  
 
which, after rearranging terms, takes the form 
 
 1 1 1 1 1 1 1 1( ) ( )j j j j j j j j j j j j j j j jm u c u c c u c u k u k k u k u F− + + + − + + +− + + − − + + − =�� � � � j  (6.1) 

                                                                               (j = 1, 2, …, N

The m tion of the system is therefore described by N equations of the form of Eq. 

) 
 
o

(6.1). We here present a general case, so we shall consider the displacement of the 
left support to be a prescribed function, 0 0 ( )u u t= , and we shall consider the right 
support to be fixed ( 1 1 0N Nu u+ += =� ). The s for each mass, and hence for the 
entire system can be trix form as 
 

 equation
arranged in ma

 + + =�� �mu cu ku F  (6.2) 

here 

 
⎥
⎥

 (6.3) 

 
 the mass matrix, 

 =  (6.4) 

 
 the stiffness matrix, 

 
w
 

1

2

0 0
0 0

0 0 N

m
m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢
⎢
⎣ ⎦

"
"

# # % #
"

Tm m

is
 

1 2 2

2 2 3 3

3 3 4

1

( ) 0 0
( )

0 ( ) 0

0 0 ( )
N

N N N

k k k
k k k k

k k k
k

k k k +

+ −⎡ ⎤
⎢ ⎥− + −⎢ ⎥
⎢ ⎥= − +
⎢ ⎥

−⎢ ⎥
⎢ ⎥− +⎣ ⎦

…
% #
%

# % % %
…

Tk k

is
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( )

0 ( ) 0

0 0 ( )
N

N N N

c c c c
c c c

c
c c c +

⎢ ⎥− + −⎢ ⎥
⎢ ⎥= − + =
⎢ ⎥

−⎢ ⎥
⎢ ⎥− +⎣ ⎦

% #
%

# % % %
…

Tc c  (6.5) 

 
 the damping matrix, and 

 
#

 (6.6) 

 
are the acceleration, velocity and displacement matrices, respectively, and 

 

1 2 2( ) 0 0c c c+ −⎡ ⎤…

2 2 3 3

3 3 4

1

is
 

1 1 1

2 2 2

( ) ( ) ( )
( ) ( ) ( )

,     ,     ,

( ) ( ) ( )N N N

u t u t u t
u t u t u t

u t u t u t

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

�� �
�� �

�� �
# #

�� �

u u u

 
1 1 0 1 0

2

( ) ( ) ( )
( )

( )N

F t k u t c u t
F t

F t

+ +⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

�

#
F  (6.7) 

 
 the force matrix. Note that if the left base is fixed, then we set is 0 0 0u u= =� in the 

or damper 

y be noted that for this class of system, the stiffness and damping matrices 

force matrix, Eq. (6.7). If the right end is free (there is no spring at the 
right end of the system), then we respectively set kN+1 = 0 in the stiffness matrix, Eq. 
(6.4), and cN+1 = 0 in the damping matrix, Eq. (6.5). The reader may wish to verify 
that the equations for the system of Example 6.1 may be obtained by setting c = 0, N 
= 2 and 0 0 0u u= =� in the above formulation. Similarly, the equations for the system 
of Exam  be obtained by setting c = 0, N = 3 and kple 6.2 may 4 = 0 in the above for-
mulation. 
 It ma
are banded. That is, nonzero elements occur along or near the diagonal of the matrix. 
This is so because, for this system, the springs and dashpots are connected in series 
and therefore a given mass is only directly acted upon by the springs and dashpots 
connected to its neighboring masses. The matrices would not be banded if nonadja-
cent masses were connected (for example if a spring connected m1 with mN , etc., as 
well as m2). Banding of matrices provides a computational advantage for the analysis 
of large systems. However, for general systems, such convenient banding does not 
always occur directly. 
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    Fi m. 

6.1.2  The Double Pendulum 

at of a multiple pendulum. We here consider the 

Kinematics 
 coordinates (ξ, η) aligned with the deflected position of the first rod at 

gure 6.4  The double pendulu
 

Another exemplary problem is th
double pendulum (Figure 6.4) for simplicity. The pendulum is comprised of two 
masses m1 and m2 that are pinned to rigid rods (or cords) of length L1 and L2, respec-
tively. One end of the first rod is pinned to a rigid support, as indicated. For this sys-
tem the coordinates θ1 and θ2 measure the displacement of the two masses. The sys-
tem therefore possesses two degrees of freedom. In this section we will derive the 
equations of motion for the double pendulum using Newton’s Laws of Motion. It will 
be seen that, even for this relatively simple two degree of freedom system, the deriva-
tion is quite complex and must be carefully implemented. (The difficulty in deriving 
the governing equations for systems of this type possessing more than two degrees of 
freedom, say the triple or quadruple pendulum, is compounded accordingly.) The 
governing equations for the double pendulum are considered again in Section 6.2, 
where the advantage of Lagrange’s Equations will become apparent. For the moment, 
however, let us derive the corresponding equations of motion using traditional vector 
mechanics. To do this, we must first evaluate the acceleration of each mass with re-
spect to a common, and convenient, reference frame. 

Consider the
the instant of observation. Since mass m1 moves along a circular path, its acceleration 
is easily expressed in terms of polar coordinates (see Section 1.5.1), and is thus of the 
same form as that for the mass of the simple pendulum of Section 2.1.4. Hence,  
 

(1) 2
1 1 1a L e L eξ ηθ θ= +

G G G�� �  (6.8) 

here

 
 
w  eξ

G and eη
G  correspond to unit vectors in the axial and normal directions of the 

first rod, respectively. 
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 Figure
 

he acceleration of mass m2 may be expressed as the sum of the acceleration of mass 
m1 and the acceleration of mass m2 as seen by an observer translating, but not rotat-

a

 6.5  Kinetic diagram for the double pendulum. 

 
T

ing, with mass m1 (see Section 1.5.1). Thus,  
  
 (2) (1)a a= + (2 /1)G G G  

he above form may be decomposed into its components along the (ξ, η) directions,  
nd may be expressed in terms of the angular coordinates θ1 and θ2 as follows: 

 
T
a
 
 (2) (2) (2)a a e a eξ ξ η η= +

G G G  (6.9) 
here 

1 2 2 2 2

(2) 2 2
1 1 2 2 2 2

cos

sin cos

a L L L

a L L L
ξ

η

w
(2) 2 sinθ θ ψ θ ψ

 
θ θ ψ θ ψ

= + −

= + +

�� �� �

� �� �  (6.10) 

nd 
 
a

2 1ψ θ θ= −  (6.11) 

inetics 
With the expressions for the acceleration established, we may now derive the equa-

otion for the system. To do this we first isolate each mass and draw the 

 

K

tions of m
associated kinetic diagram (Figure 6.5). Once this is done we can express Newton’s 
Second Law for each mass. For this system, it is more expedient to take the moment 
of Newton’s Second Law about the common origin, O, for each mass individually.  
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We then have, for the first mass,  
  

(1) (1) (1)
0 1M r m a= ×∑
G G G

: 

 1 1 1 1 1 1 1 2 1 1 1 1sin cos sinL m g L F L P L m Lθ θ ψ− + + = ��  θ
 
r, after rearranging, 

L m gL L P F L

o
 
 m 2

1 1 1 1 1 1 1 2 1 1 1sin sin cosθ θ ψ θ+ − =��  (6.12) 

 may be seen that the unknown internal force P2 appears in Eq.
rce in terms of the chosen coordinates and their derivatives, we write out the ξ 

 
It  (6.12). To find this 
fo
component of Newton’s Second Law for mass m2. Thus, 
 

(2) (2)
2F m aξ ξ=∑ : 

 2
2 2 1 2 1 2 1 1 2 2 2 2sin sin cos ( cos sin )P m g F m L L Lψ θ θ θ θ ψ θ− − + = + −�� �� � ψ  (6.13) 

 
olving Eq. (6.13) for P2 and substituting the resulting expression into Eq
liminates the unknown internal force and gives the equation of motion for mass m1 

1                                        ( ) sin ( ) cosm m gL F F L

S . (6.12)  
e
as 

 
2 2

1 2 1 1 2 1 2 2 2 1 2 2( ) cos sinm m L m L L m L Lθ θ ψ θ ψ

1 2 1 1 1 2 1θ θ+ + = +
 (6.14) 

Linearization of Eq. (6.14) about θ1 = θ2 = 0, as discussed in Section 2.1.4, renders 
e corresponding equation of motion for mass m1 to the form 

1)F L+  (6.15) 

o obtain the equation of motion for mass m2 we proceed in a simila
us take the moment about the origin of the statement of Newton’s Second Law for 

2

+ + −�� �� �

 

th
 
 2

1 2 1 1 2 1 2 2 1 2 1 1( ) ( ) (m m L m L L m m gL Fθ θ θ+ + + + =�� ��
1 2

 
T r manner. We 
th
mass m2. Hence, 
 

(2) (2)
0

(2)M r m= ×∑
G G Ga : 

 22 2 2 1 2 2 1 1 2
(2) (2)

2 1 1 2 2 2 1 2 2 2

cos sin sin ( cos ) ( cos cos )

( sin sin ) ( cos ) sin

P L P L L F L L
m g L L m a L L m a Lξ η

ψ ψ ψ ψ θ θ

θ θ ψ

− + + +

− + = + +
 

ψ

Substituting Eqs. (6.10) and (6.13) into the above expression then gives the desired 
rm of the governing equation as 

2 2 2 2

2 2 2 2 2 2

n sin (1 cos )

                                                   sin cos

m L

m gL F L

 

fo
 

2
2 1 2 1 1cos sim L L 2 2θ ψ θ⎡ +⎣

�� � ψ θ θ ψ ψ

θ θ

⎤ ⎡ ⎤+ − −⎦ ⎣ ⎦
+ =

�� �
 (6.16)  
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Linearization of Eq. (6.16) about θ1 = θ2 = 0 renders the corresponding equation of 
otion for mass m2 as 

 

quations (6.15) and (6.17) describe the coupled motion of the double pendulu
r the class of mass-spring systems discussed previously, it i
ese equations in matrix form. When this is done, the equation of (small angle) mo-

0

( )
                                                                             

m gL

m

 2
2 1 2 1 2 2 2 2 2 2 2 2m L L m L m g L F Lθ θ θ+ + =�� ��  (6.17) 

 
E m. As 
fo s of interest to express 
th
tion for the double pendulum takes the form 
 

2
1 2 1 11 2 1 2 1 2 1

2

( ) 0( ) m m gLm m L m L L
m L L m L 2 2 22 1 2 2 2 2

1 2 1

2 2

 
F F L

F L

θ⎨ ⎬
θθ

θ
⎧ ⎫⎡ ⎤ +⎡ ⎤ ⎧ ⎫+ ⎪ ⎪ +⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭
+

⎪ ⎪

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

 (6.18) 

r, equivalently, 
 

��
��

o
+ =��mu ku F  

where 

L
 

m

2
1 2 1 2 1 2

2
2 1 2 2 2

( )m m L m L L
m L L

⎡ ⎤+
= ⎢ ⎥

⎣ ⎦
m  (6.19) 

 

 1 2 1

2 2

( ) 0
0

m m gL
m gL

+⎡ ⎤
= ⎢ ⎥

⎣ ⎦
k  (6.20) 

 

 1 2 1

2 2

( )F F L
F L
+⎧ ⎫

= ⎨ ⎬
⎩ ⎭

F  (6.21) 

 

 1

2

θ
θ

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  (6.22) 

 
ote that, for this system, the elements of the d

lar displacements and the elements of the force matrix are actually moments. Thus, 
we speak of the “displacement matrix” and of the “force matrix” in the most general 

N isplacement matrix are actually angu-

sense, with their elements interpreted accordingly. It may be seen that this system is 
coupled through the mass matrix. Such coupling is referred to as inertial coupling. 
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.1.3  Two-Dimensional Motion of a Rigid Frame 

onsider the motorcycle frame shown in Figure 6.6. The frame has mass m and 
cated a horizontal distance 
t of inertia about an axis 

 
 

Figure 6.6  Motorcycle frame. 

 

6

C
length L = L1 + L2, as indicated. Its center of mass G is lo
L  from the rear of the bike, as shown, and its momen1
through the center of mass is IG. The tires are modeled as elastic springs, with the 
respective stiffnesses k1 and k2, that resist vertical motion as shown. We shall derive 
the equations of motion for this twice, using different sets of coordinates. It will be 
seen that the type of coupling is dependent on the coordinates chosen to describe the 
motion of the system. 
 

Figure 6.7  Kinetic diagram for motorcycle frame. 
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Case 1: Translation of, and Rotation About, the Center of Mass 
he coordinate that 

inate that measures 
respect to the equi-

A natural set of coordinates to describe the motion of the frame is t
describes the lateral position of the center of mass, and the coord
the rotation about an axis through that point (both measured with 
librium configuration of the system). These measures are denoted as yG and θ, respec-
tively, as shown on the kinetic diagram of Figure 6.7a. Writing Newton’s Second 
Law for the vertical motion of the frame gives 
 

y yF ma=∑ : 
( sin ) (k y L k y 1 1 2 2 sin )G G GL myθ θ+ = ��  

 
hich for sm motion simplifies to 

0my k k y k L k L

− − −

w
 

all angle 

 1 2G G 2 2 1 1( ) ( )θ+ + + − =��  (6.23) 

e next write the equation of  rotational motion of the frame about its center of m
ence, applying Eq. (1.162), 

 

 
W ass. 
H

G GM I α=∑ : 

 2 2 2 1 1 1( sin ) ( sin )G Gk y L L k y L L IGθ θ θ+ − − = ��−   
 

all angle motion simplifies to 

1 1 2 2( ) 0k L k L+ + =��  (6.24) 

qs. (6.23) and (6.24) can be combined and represented in matrix

G

k k k L k L+ −⎡ ⎤

which for sm
 

2 2
2 2 1 1( )G GI k L k L yθ θ+ − 

 
E  form as 
 

 1 2 2 2 1 1
2 2( ) ( )0 0

G Gm y y
k L k L k L k LI θ θ

⎡ ⎤

2 2 1 1 1 1 2 2

( ) ( )0 0⎧ ⎫

⎣ ⎦

⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ − +⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

��
��  (6.25) 

or 
 + =��mu ku 0  
where 

 
0

0 G

m
I

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
m  (6.26) 

 

 2 2
2 2 1 1 1 1 2 2

( ) (
( ) ( )

k k k L
k L k L k L k L

+1 2 2 2 1 1)k L−⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

k  (6.27) 

and 

 Gy
θ

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  (6.28) 
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It 5), or Eqs. (6.26) and (6.27) 
th es for this choice of coordinates. Note 

may be seen from Eqs. (6.23) and (6.24), or Eq. (6.2
at the system is coupled through the stiffness
at the equations completely decouple if the parameters of the system are such that 

3
 the rear of the frame as shown in the corresponding kinetic diagram of Figure 

cate the same point 

th
k1L1 = k2L2. 

Case 2: Translation of, and Rotation About, an Arbitrary Point 
Consider the vertical translation of some arbitrary point “P” located a distance L  
from
6.7b, and the rotation about an axis through that point. Let L4 lo
from the front end of the frame and LP locate that point with respect to the center of 
mass, as indicated. In this case we choose the lateral displacement of point P, yP, and 
the angular displacement, θ, to describe the motion of this two degree of freedom 
system. We next parallel the development of Case 1, but with the present set of coor-
dinates. 

We first note that the lateral displacement of the center of mass may be ex-
pressed in terms of the lateral displacement of point P and the rotational displace-
ment. Hence, 

  
 sin   G P Py y L θ= +  (6.29) 
 
and, after differentiating twice with respect to time, 
 

( )2 cos sinG P Py y L θ θ θ θ= + −�� ��� ��  (6.30) 

ewton’s Second Law then gives the equation of lateral motion as 
 

 

 
N

( )2
1 3 2 4( sin ) ( sin ) cos sinP P P Pk y L k y L m y Lθ θ θ θ θ θ⎡ ⎤− − − + = + −⎣ ⎦

�� ���  

 
where P is the distance between points P and G, as indicated in Figure 6.7b. For 

all angle motion, the above equation of translational motion simplifies to 
 

We next write the equation rotational motion about an axis through P. Applying Eq. 
.163) for the present system gives the equation of rotational mot

 L
sm

 1 2 2 4 1 3( ) ( ) 0P P Pmy mL k k y k L k Lθ θ+ + + + − =����  (6.31) 
 

(1 ion of the frame as 
 

 2 4 4 1 3 3( sin ) cos ( sin ) cos

cos
P P

G G P

k y L L k y L L

I my L

θ θ θ θ

θ θ

+ − −

= − −�� ��
 (6.32) 

 
For small angle motion, the equation of rotational motion simplifies to 
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2 2
2 4 1 3 2 4 1 3( ) ( )P G G PmL y I k L k L y k L k Lθ θ+ + − + + =���� 

 
0  (6.33) 

quations (6.31) and (6.33) may be combined and expressed in matrix form as 

P P P

P G

m mL k k k L k Ly y
mL I k L k L k L k Lθ θ

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− +⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

��
��  (6.34) 

elasti-
ally. However, if the location of point P (and hence the ratio L3/L4) is chosen such 

E
 

+ −1 2 2 4 1 3
2 2

2 4 1 3 2 4 1 3

( ) ( ) 0
( ) ( )

 
0⎨ ⎬

⎩ ⎭
 
It may be seen from Eq. (6.34) that the system is coupled both inertially and 
c
that 3 4 2 1L L k k= , then the stiffness matrix will be diagonal, and the sy
nly be coupled inertially. For this case the equation of motion reduces to th

stem will 
o e form 
 
 + =��mu ku 0  
where 

 P

P G

m mL
mL I

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
m  (6.35) 

 
1 2 2 4 1 3 1 2

2 2 2 2
2 4 1 3 2 4 1 3 2 4 1 3

( ) ( ) ( )⎡ 0
( ) ( ) 0 ( )

k k k L k L k k
k L k L k L k L k L k L

+ − +⎡ ⎤ ⎤
= →⎢ ⎥ ⎢ ⎥− + +⎣ ⎦ ⎣ ⎦

k  (6.36) 

nd 

 

a
Py

θ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

u  (6.37) 

Note that if point P corresponds to one of the edges of the frame, say the left edge, 
L3 = L and L4 = 0. It may be seen that, for this choice of coordinates, the equa-

tions that govern the system cannot be decoupled. 
We thus see that, in general, the equation

mass matrix, the stiffness matrix, or through both. (For damped sys-

 previous section 
as easily derived by direct application of Newton’s Laws of Motion. This, however, 

will not usually be the case when one considers complex systems that exhibit multi-
uations the vector approach is generally cumbersome 

 

then 

 s of motion of a system may be cou-
pled through the 
tems, coupling may occur through the damping matrix as well.) We also see that a 
proper choice of coordinates can simplify the equations of motion.  
 

6.2 Lagrange’s Equations 

The equation of motion for the N-degree of freedom system comprised of a series of 
springs, dampers and masses in rectilinear motion considered in the
w

dimensional motion. For such sit
and a scalar technique is often desirable. An approach from an area of mechanics 
known as Analytical Dynamics will help in this regard. This is the utilization of La-
grange’s Equations. Though the development is somewhat abstract, the implementa-
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tion is rather straightforward. Once it is mastered, the application of Lagrange’s 
Equations for the derivation of the equations of motion for complex multi-degree of 
freedom systems can be accomplished with a fair amount of ease. In this section we 
develop Lagrange’s Equations and demonstrate their utilization in deriving the equa-
tions of motion for multi-degree of freedom systems. We first introduce the concept 
of virtual work. 
 

6.2.1  Virtual Work 

To begin, let {q1, q2, …, qN} represent the set of independent “generalized coordi-
nates” used to describe the motion of some N-degree of freedom system. These may 
e, for example, b

th
the linear coordinates (u1, u2) used to describe the displacements of 

e two mass system connected in series, the angular coordinates (θ1, θ2, θ3) em-
 motion of a triple pendulum, the combination of linear and 
,θ ) adopted to describe the motion of the motorcycle frame 

ployed to describe the
angular coordinates (y
discussed earlier, or some other type of coordinate description. Further, let 
 
 1 2( , ,..., , )l l Nr r q q q t=

G G  (6.38) 
 
denote the position vector of mass ml (l = 1, 2, …, M). Consider a set of virtual in-
crements in position (virtual displacements) of the various mass elements of the sys-
tem that are consistent with the constraints of the system, but are otherwise arbitrary. 

hat is, consider the increments T
 

    ( 1,2,..., )lr l Mδ =
G   

 
such that the constraints of the system are not violated. The operator δ  is used to de-
note the differential increment rather than d since the increments are considered vir-
tual (possible, but not actual). The virtual increments in position are thus referred to 
s virtual displacements. [As an example, suppose we were to consider the virtual 
otion of the ladder/rod that is constrained to move along the vertical wall and hori-

ontal wall, as indicated in Figure 6.8. For this system, the virtual displacement (the 

a
m
z
increment in position) of mass A must be vertical and that of mass B must be horizon-
tal in order to comply with the constraints imposed on system due the wall, the floor, 
and the rigid rod. Thus, virtual displacements through the walls or off the tracks are 
not permitted. Further, the possible displacements of the two masses/rod ends cannot 
be independent of one another but, rather, must be related through the geometry of 
the rigid rod. Thus, for the constrained rod, 
  
 2 2 2

A         2s 2 0A B A B Bs s L s s sδ δ+ = → + =  
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s
A

A

L

B

s
B

 
    Figu tem. 
 
 

here sA and sB respectively locate the positions of mass A and mass B, as indicated.] 
em, the virtual work 

one by the external force and by the resultant internal force acting on mass ml , as the 
ass moves through the corresponding virtual displacement 

re 6.8  Example of a constrained sys

w
Returning to the discussion of a general N-degree of freedom syst
d
m lrδ G , is then 
 
 ( )( ) ( )ext int

l l l lF F rδ δ= +
G G Gi�W

int
l lj

j

F
=

=

 (6.39) 

where, 
MG

( )

1
∑ 

G
P  (6.40) 

e internal force exerted on mass ml by mass mj, and it is understood that 
= =

GG
P P P  (i.e., no mass exerts a force on itself). It follows from New-

n’s Third Law that

ljP  is th
= =

G G
G

11 22 ... 0MM

 jl l= −
G G

P P  (to j l, j = 1, 2, …, M),
 

 
1

int
l

j

F
=

=∑ ∑∑
G

he work done by the forces acting on each particle of the system as 
xpressed by Eq. (6.39), and noting that the internal forces of the system sum to

as expressed by Eq. (6.41), gives the total virtual work done on the system as 

 and hence that 

( )
11 12 1 1 2

1 1

( ... ) ... ( ... ) 0
M M M

lj M M M MM
l l= =

= + + + + + + + + =
GG G G G G G G

P P P P P P P (6.41) 

 
Thus, adding t
e  zero 

 

 
1 1

M M

l l l
l l

F rδ δ δ
= =

= =∑ ∑
G GiW W  (6.42) 

 
where lF

G
 includes external forces, and those internal forces for which the associated 

isplacement can differ from that of the force’s mirror imd age.  



306 Engineering Vibrations 

6.2.2 The Canonical Equations 

nge’s Equations from 
lied to the individual particles that comprise the 
rgy statement.  

Now that the concepts of generalized coordinates and virtual work have been estab-
lished we proceed to develop the general statement of Lagra
Newton’s Second Law of Motion app
system and converting them to an ene
 Writing Newton’s Second Law for mass ml , we have 

 

 
2

( ) ( )
2

ext int l
l l l

d r
F F m

dt
+ =

GG G
 

or 
2

( ) ( )
2 0     ( 1, 2,..., )ext int l

l l l
d rF F m l M
dt

+ − = =
GG G

  (6.43) 

 
ing the scalar dot product of Eq. (6.43) with its corresponding virtual displace-

ent gives 

 

Tak
m

2
( ) ( )

2 0     ( 1, 2,..., )ext int l
l l l l

d rF F m r l M
dt⎣ ⎦

δ
⎡ ⎤

+ − = =⎢ ⎥
GG G Gi  (6.44) 

equations for all masses that comprise the system and noting Eqs. 
.41) and (6.42) results in the statement 

 

 
Summing the 
(6

 ( )
1

0l l l l
l

F m r rδ
=

⎡ ⎤
M

− =⎣ ⎦∑
G G G��

seen to be a work type statement. We next wish to convert this statement to 
ork-energy form. 

 It follows from Eq. (6.38) that 

i  (6.45) 

 
which is 
w

 

 1 2
1 2q q∂ ∂ 1

... N j
N jj

dq dq dq dq
q q

=
∂ ∂

 (6.46) 

by dt becomes 

N
l l l l

l
r r r r

dr
∂ ∂ ∂ ∂

= + + + = ∑
G G G GG

 
which, after dividing through 
 

 1 2
1 2dt q q∂ ∂ 1

...
N

l l l l l
l N j

N jj

dr r r r r
r q q q q

q q
=

∂ ∂ ∂ ∂
≡ = + + + =

∂ ∂∑
G G G G GG� � � � �  (6.47) 

It follows from Eq. (6.47) that 
 

 

     ( 1, 2,..., ; 1, 2,..., )l l

j jq q∂ ∂�
r r l M j N∂ ∂

= = =
G G�

 (6.48) 
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Since the virtual displacements correspond to possible displacements and therefore 
of actual displacements, it follows that 

crement in position can be expressed in the form of Eq. (6.46).
possess the functional properties the virtual 
in  Hence, 
 

 1 2
1 2 1

...
N

l l l l
l N j

N jj

r r r rr q q q q
q q q q

δ δ δ δ δ
=

∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂∑
G G G GG  (6.49) 

 
ith the identities stated by Eqs. (6.48) and (6.49) established, we no

valuation of Eq. (6.45). We shall perform this evaluation term by term
order.  

W w return to the 
e  and in reverse 

 et us take the second expression in Eq. (6.45), substitute Eq. (6.49), and inter-
change the order of summation. This gives 
 

L

1 1 1

M M N N M
l l

l l l l l j l l j
jl l j

r rm r r m r q m r q
q 1 1

1 1

                 

jj l

N M
l l

l l l l j
j jj l

q

r rd dm r m r q
dt q dt q

δ δ δ
= = =

⎛ ⎞∂ ∂
= =

δ

= =

= =

⎜ ⎟⎜ ⎟∂⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= ⎢ − ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑∑

∂∑ ∑ ∑ ∑ ∑
 

G G

G GG G� �i i

 

If we next incorporate the identity specified by Eq. (6.48) in the first term of the last 
bracketed expression, and interchange the order of differentiation in the second term, 

the form 

G G G G�� �� ��i i i

 

the above equation takes 
 

( ) ( )
1 1 1

M N M
l l

l l l l l l l j
l j l

r rdm r r m r m r qδ δ

1 1
2 2

1 1

                 

j j

N M

l l l l l l j
j jj l

dt q q

d m r r m r r q
dt q q

δ

= = =

⎡ ⎤⎛ ⎞

= =

∂ ∂
= ⎢

∂ ∂⎝ ⎠

⎡ ⎤∂ ∂
= −⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑∑

− ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦
∑ ∑∑

G G� �G G G G�� � �i i i

 
�

G G G G� � � �i i
�

 

inally, 

 

F

1 1

M N

l l l j
j jl j

dm r r q
dt q q

δ δ
= =

⎛ ⎞∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∑ ∑G G�� i
�
T T  (6.50) 

where 

1
1 2 1 2 2

1

( , ,..., ; , ,..., )
M

N N l l lr r
l

q q q q q q m
=

= = ∑ G G� �i  (6.51)  � � �T T

tal kinetic energy of the system. To evaluate the first term in Eq. (6.45), let us 
rst decompose the resultant force acting on a given mass into th

d nonconservative forces (see Sections 1.5.2 and 1.5.3). Thus, let 

 

 
is the to
fi e sum of resultant 
conservative an
 

( ) ( )     ( 1, 2,..., )C NC
l l lF F F l M= + =
G G G

 (6.52) 
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where ( )C
lF
G

 is the resultant conservative force acting on mass ml and ( )NC
lF
G

 is the 
corresponding resultant nonconservative force. The total work done on the system as 
it moves through the virtual displacements lrδ

G (l = 1, 2, …, M) may then be similarly 
artiti  

NC

=

p oned as
 

 ( ) ( ) ( )

1 1 1

M M M
C NC C

l l l l l l
l l l

F r F r F rδ δ δ δ δ δ
= =

= = + = +∑ ∑ ∑
G G GG G Gi i i ( )W W

represent the increment in total work done on the system 
y the conservative and by the nonconservative forces, respectively. As discussed in 
ection 1.5.2, the (change in) potential energy of a system is the negative of 
one by the conservative forces in moving the system between two config
he increment in potential energy then follows accordingly. Hence, 

W  (6.53) 

 
where ( )CδW  and ( )NCδW  
b
S the work 
d urations. 
T
 
 ( )Cδ δ= −W U  (6.54) 
where   
 1 2( , ,..., )Nq q q=U U  (6.55) 
 
is the total potential energy of the system. Upon, substitution of Eq. (6.54), Eq. (6.53) 

kes the form ta

 ( )

1

M
NC

l l
l

F rδ δ δ
=

= − +∑
G Gi U W  (6.56) 

 
where it follows from Eq. (6.55) that 
 

1 2
1 2 1

...
N

N jq
N jj

q q q
q q q q

δ δ δ δ
=

∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂
U U U

U

ent in total work of the nonconservative forces 
 terms of the generalized coordinates. This includes the work of any forces that are 

ot included in the total potential energy. It follows from Eqs. (6.49) an

N
NC

δ∂∑ U  (6.57)  

 
Lastly, we wish to express the increm
in
n d (6.53) that   
 

( ) 1 1 2 2
1

... N N j j
j

Q q Q q Q q Q qδ δ δ δ δ
=

= + + + = ∑W  (6.58) 

where 

( )

1

  ( 1, 2,... )
M r∂NC l

j l
jl

Q F j N
q

=

= =
∂∑
GG

 i  (6.59) 

Q1, Q2, …, QN} represents the set of “generalized” forces associated one to 
h the elements of the set of generalized coordinates {q1, q2, …, qN}. Substitu-

tion of Eqs. (6.57) and (6.58) into Eq. (6.56) gives 

 
The set {
one wit
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1 1

M N

l l j j
jl j

F r Q
q

qδ δ
= =

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂⎝ ⎠

∑ ∑
G Gi U  (6.60) 

rnate form of that equation. Doing 
is results in 

 
Having evaluated both expressions of Eq. (6.45) in terms of the generalized coordi-
nates, we may now substitute back to obtain an alte
th
 

 
1 j j jj =

0
N

j j
dQ q
dt q q q

δ
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪− ⎢ − + ⎥ =⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦

∑ �
T T U  (6.61) 

 with the constraints imposed on the system. They are otherwise arbi-
ince each δqj (j = 1, 2, …, N) appearing in Eq. (6.61) is arbitrary, that equation 

 identically satisfied only if the corresponding coefficients (th
that equation) vanish identically. This results in N equations of the form

⎩ ⎭
 
Now, recall that the only restriction on the virtual displacements was that they must 
e compatibleb

trary. S
is e expressions within 
braces in  
 

     ( 1, 2,..., )j
j j

d Q j N
dt q q

⎛ ⎞∂ ∂
− = =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠�

L L  (6.62) 

where 
 ≡ −T UL  (6.63) 
 
is referred to as the Lagrangian. The equations defined by Eq. (6.62) are referred to 
s Lagrange’s Equations and may be used to derive the eq
ulti-particle systems.  

.2.3  Implementation 

1. Establish a set of independent generalized coordinates to describe the mo-
tion of the system. 

l and kinetic energy functionals for the system and the vir-

a uations of motion for 
m
 

6

The governing equations for any discrete system can be derived directly from La-
grange’s Equations. A simple procedure for this purpose is delineated below. 
  

2. Form the potentia
tual work of the applied forces. 

3. Express the virtual work and potential and kinetic energy of the system in 
terms of the chosen set of independent coordinates. 

4. Determine the generalized forces for each degree of freedom. The corre-
sponding generalized forces may be identified as the coefficients of the 
variations (virtual increments) of the chosen set of generalized coordinates, 
as per Eq. (6.58). 
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5. Substitute the generalized forces and the pertinent potential and kinetic en-
ergy expressions into Eqs. (6.62) and perform the indicated operations for 

6. 
 
Several e ted next to elucidate this process.   
 
 

x

each degree of freedom. The result is the equations of motion for the system. 
Express the equations of motion of the system in matrix form.  

xamples are presen

E ample 6.3 
Use Lagrange’s Equations to derive the equations of motion for the 3-mass 3-
spring system depicted in Figure E6.2-1, when u0 = 0 and each mass is forced.  
  
Solution 
The system is easily identified as having three degrees of freedom, and the dis-

 the three masses, u , u  and u , respectively, are the obvious placements of 1 2 3
choice of generalized coordinates for this case. Hence, for the system under 
consideration, N = 3 and we have chosen { } { }1 2 31 2 3, , , ,q q q u u u↔ . The virtual 

splacements are thus readily identified as 1 2 3  The corresponding 
rk done by the applied forces as the masses move through these vir-

 
 

δu , δu  and δu .di
virtual wo
tual displacements is then simply 

( )
1 1 2 2 3 3

NC F u F u F uδ δ δ δ= + +W  (a) 
 
where the generalized forces are identified as simply the applied forces.  (What 
would the generalized forces be if we were to include damping? – See Example 
6.4.) Thus, for the present case, we have the simple correspondence  
 
   { } { }1 2 3 1 2 3, , , ,Q Q Q F F F↔  (b) 

 

 
Next, the total potential and kinetic energies of the system are easily expressed 
in terms of the chosen coordinates as 
 

2 21 1 1 2
2 3 1 1 2 2 12 2, ) ( )u k u k u u+ − +1 3 3 22( , ( )u u k u u= = −U�U  (c) 

 
2 21 1 1 2

as the difference between the kinetic and 
l energy of the system. Hence, 

1 2 3 1 1 2 2 3 12 2 2( , , )u u u m u m u m u= = + +� � � � � �T T  (d) 
 

ecall that the Lagrangian is defined 

 

R
potentia = −T UL . 
 
E

Now, substituting Eqs. (b)–(d) into Eq. (6.63) and evaluati
quations (6.62) gives 

 

 

ng Lagrange’s 
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j = 1: 

   ( ) [ ]1 1 1 1 1 2 2 1 1
1 1

    ( )Q m u k u k u u F
dt q q dt
d d⎛ ⎞∂ ∂

− = → − − + − =⎜ ⎟
∂ ∂

egrouping terms results in the equation of motion for the first mass, 

 

⎝ ⎠
�

�
 L L

 
R
 

1 1 1 2 1 2 2 1( )m u k k u k u F+ + − =��  (e) 
 

   

j = 2: 

( )2 2 2 2 2 1 3 3 2 2    ( ) ( )( 1)d dQ m u k u u k u u F
⎛ ⎞∂ ∂

− = → + − + − − =⎜ ⎟   
2 2dt q q dt∂ ∂

�L L  

This results in the equation of motion for the secon

 

⎝ ⎠�
 

d mass, 
 

2 2 2 1 2 3 2 3 3 2( )m u k u k k u k u F− + + − =��  (f) 
 

 3: j =

( ) [ ]3 3 3 3 3 2 3    ( )d dQ m u k u u F
⎛ ⎞∂ ∂

− = → − − − =⎜ ⎟ 
3 3dt q q dt∂ ∂

�L L  

which gives the equation of motion for the third mass, 

 

⎝ ⎠�
 

 
3 3 3 2 3 3 3m u k u k u F− + =��  (g) 

 
qs. (e)–(f) may be combined in matrix form as 

 

 2 2 2 2 3 3 2 2

3 3 30 0 0

u F
u F

m u k

E

1 1 1 2 20 0 ( ) 0
0 0 ( )

m u k k k
m u k k k k

+ − 1 1

3 3 3k u F⎪ ⎪ ⎪ ⎪⎥⎦ ⎩ ⎭ ⎩ ⎭

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪⎢ ⎥ ⎢ −⎣ ⎦ ⎩ ⎭ ⎣��
 � (h) 

 (6.2)–(6.6) for the case where 
 = 3, k4 = 0 and c = 0. 

 

⎧ ⎫ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥+ − + −⎨ ⎬

��
��

 
Equation (h) may be compared directly with Eqs.
N 0 0u ≡ , 

 
 
 

Example 6.4 
Use Lagrange’s Equations to derive the equations of motion for the 3-mass 3-
spring 3-damper system of Figure E6.4-1. 
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Solution 
To derive the equations of m st add the virtual work 
of the viscous dam rtual work of the applied forces when 
evaluating the total vir  the nonconservative forces that act on 

. We may then proceed as we did for the undamped 3 mass system of 
, with the c diagram depicted in Figure E6.4-

ual work done by the nonconservative forces is given by 

 

Figure E6.4-1 

otion for this system we mu
ping forces to the vi

tual work done by
the system
Example 6.3. Thus aid of the kineti
2, the virt
 

[ ] [ ]
[ ]

( )
1 1 2 2 3 3

1 1 1 2 2 1 1 2 2 2 1 3 3 2 2

3 3 3 2 3

        ( ) ( ) ( )

                                                       ( )

NC Q u Q u Q u
F c u c u u u F c u u c u u u

F c u u u

δ δ δ δ

δ δ

δ

= + +

= − + − + − − + −

+ − −

� � � � � � �

� �

W

 (a) 

 
he generalized forces are then given by the coefficients of theT

p
 virtual dis-

lacements in Eq. (a). Hence, 
 

21 1 1 2 1 2( )Q F c c u c u= − + +� �  (b) 
 32 2 2 1 2 3 2 3( )Q F c u c c u c u= + − + +� � �  (c) 
 33 3 3 2 3Q F c u c u= + −� �  (d) 
 

gies for the damped system are the same as for 
e undamped system of the previous example. Therefore, incorporating the 

damping forces into the generalized forces in the 
ample 6.3 modifies the right hand side of the resultin
example to the form 
 

Figure E6.4-2  Kinetic diagram. 

The potential and kinetic ener
th

development put forth in Ex-
g matrix equation of that 
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1 1 1 2 2 1

2 2 2 2 3 3 2

3 3 3 3 3

( ) 0
( )

0

F F c c c u
F F c c c c u
F F c c

+ −⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥→ − − + −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

�
�
�

 
u

 (e) 

f Example 6.3, then bring-
ing the damping terms to the left-hand side of the resulting matrix equation, 
renders the governing equation for the damped three mass sy
 

1 2 2 1 1

2 2 3 3 2 2

3 3 3 3

0 0 ( ) 0

                            ( )
0

m u c c c u

k k k k u F
k k u F

+ −⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪

⎪ ⎪⎢ ⎥+ − + − =⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦ ⎩ ⎭

�� �

 
Replacing Eq. (e) for the right-hand side of Eq. (h) o

stem to the form 

1 1 1 2 2 1

2 2 2 2 3 3 2

3 3 3 3 3

0 0 ( )
0 0 0

( ) 0

m u c c c c u
m u c c u

k k k u F

⎢ ⎥+ − + −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

+ −⎡ ⎤ ⎧ ⎫

�� �
�� �

⎡
⎢ ⎥

 � (f) 
⎧ ⎫

    ⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

 
Equation (f) may be compared directly with Eqs. (6.2)–(6.6) for e case wh
N = 3, and c4 = k4 = 0. 

 

 th ere 
0 0u ≡

 

Example 6.5 
Use Lagrange’s Equations to derive the equations of motion for the double 
pendulu Figure 6.4. Use tm of he angular displacements θ1 and θ2 as the gener-
alized coordinates for this two degree of freedom system.  
 
Solution 
For the current system N = 2 and{q1, q2} ↔ {θ1 ,θ2}. Before proceeding to form 
the energy functional and evaluate the virtual work of the applied forces it is 
convenient to relate the Cartesian and polar coordinates of each of the two 

asses of the system. It may seen from the figure that  m
 

1 1 1 1 1 1sin  ,     cosx L y Lθ θ = =

 

 (a-1,2) 
and 

2 1 1 2 2 2 1 1 2 2sin sin  ,     cos cosx L L y L Lθ θ θ θ= + = +  (b-1,2) 
 
These expressions will be helpful in implementing and interpreting what fol-
lows. 

We next form the potential energy functional. Since the potential energy 
fined in terms of its change (Section 1.5.2) we must first 
hall choose the point corresponding to the rest configura

ass, m2, as the common datum for both masses. The potential energy for the 
system is then given by 

 
is de choose a datum. 

tion of the lower We s
m
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 )1 1 2 2 1 1 2 1 2 1 2 2( ) (m gh m gh m g L L y m g L L y= + = + − + + −U  (c) 

 

 
Substituting the coordinate transformation described by Eqs. (a) and (b) into 
Eq. (c) gives the potential energy in terms of the angular coordinates θ1 and θ2  
as 

[ ] [ ]1 1 1 2 2 1 1 2 2 )(1 cos ) (1 cos ) (1 cosm g L L m g L Lθ θ θ= − + + − + −U  (d) 
 
The kinetic energy of the system is easily written as 
 

 ( ) ( )2 2 2 2 2 21 1 1 1m v m v m x y m x y= + = + + +� � � �T  (e) 1 1 2 2 1 1 1 2 2 22 2 2 2

 
Substituting Eqs. (a) and (b) into Eq. (e) gives 

 

 

( ) ( )

( ) (2 2

2 1 1 1 2 2 2 1 1 1 2 2

2
1     cos cos sin sin
2

m L L L Lθ θ θ θ θ θ θ

⎣ ⎦

⎡ ⎤+ + + − −⎢ ⎥⎣ ⎦
� � � �

 (f) 

 
 
 

2 2

1 1 1 1 1 1 1
1 cos sinm L Lθ θ θ θ⎡ ⎤= + −⎢ ⎥

� �T

)2θ

 
hich, when expanded, takes the simple form w

2 2 2 21 1
1 2 1 1 2 2 2 2 1 2 1 2 1 22 2( ) cos(m m L m L m L L )θ θ θ θ θ= + + + −� � � �T θ  (g) 

It is instructive to note that Eq. (f) could be obtained directly by calculating the 
lative velocity of m2 with respect to m1 and adding it to the velocity of the 

 in Figure 6.5 and discussed in 
f each mass in terms of its com-

ponents with respect to the path coordinates of the first mass at a given instant 
in time, we have 
 

 

 

re
first mass using the reference frame depicted
Section 6.1.2. Hence, expressing the velocity o

1 1 1v L eξθ=
G G�  (h) 

 

2 1 2 /1 1 1 2 2 2 1 2 1cos( ) sin( )v v v L e L e eξ ξ ηθ θ θ θ θ θ ⎡ ⎤= + = + − + −⎣ ⎦
G G G G G G� �  (i) 

It follows directly
 
  that 
 2v v v L2 2

1 1 1 1 1θ= =
G G �i  (j) 

and 
 2 22 2 2 2 2

2 2 2 1 1 1 2 1 2 2 1 2 22 cos( )v v v L L L Lθ θ θ θ θ θ= = + − +
G G � � �i �  (k) 
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Substitution of Eqs. (j) and (k) into Eq. (e) then gives the kinetic energy in the 
form of Eq. (f). 

The last things we must determine before we
 are the generalized forces Q1 and Q2. To do this we must evalua

tual work of the applied forces F1 and F2. Since the indicated 
the horizontal, the virtual work of these forces is simply 

 NC F x F x

 
tions

 can apply Lagrange’s Equa-
te the vir-

forces act along 

 
( )

1 1 2 2δ δ δ= +  (l) 

1

W
 
However, we must express everything in terms of the chosen generalized coor-
dinates, θ1 and θ2. Now, it follows from Eqs. (a) and (b) that 
 

1 1 1cosx Lδ θ δθ=  
nd 

 

(m-1) 
a

2 1 1 1 2 2 2cos cosx L Lδ θ δθ θ δθ= +  (m-2) 
 

ubstitu -1) and (m-2) into Eq. (l) gives the virtual work of the S
applied forces 

tion of Eqs. (m
in the desired form. Hence, 

 
( )( )

1 1 2 2 1 2 1 1 1cosNC Q Q F F L 2 2 2 2cosF L θ δθ  (n)  δ δθ δθ θ δθ= + = + +W

1 2

 
From Eq. (6.58), the generalized forces associated with the chosen coordinates 
are the coefficients of the virtual displacements δθ  and δθ . These may be read 
irectly from Eq. (n) to give d

 
( )1 1 2 1 cosQ F F L 1θ= +  (o-1) 

 
 

2 2 2 2cosQ F L θ=  (o-2) 
 
[N
cation of Eq. (

ote that the generalized forces may have also been computed by direct appli-
6.59).] It may be seen that, for t

actually moments. This is, of course, as it should be since the vir
lacements are angular. Equations (d), (g) and (o) m

rectly into Eqs. (6.62) and (6.63). Carrying
ith {q , q θ  ,θ }, gives the equations of motion for the double pendu-

his case, the generalized forces 
tual dis-are 

p ay now be substituted di-
 through the required calculations, 

w 1 2} ↔ { 1 2

lum. Hence,  
 
j = 1: 

 1
1 1

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L   
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c2 2

1 2 1 1 2 1 2 2 2 1 2 1 2 2 2 1

1 2 1 1 1 2 1

( )

1

os( ) sin( )
                                        ( ) sin ( ) cos
m m L m L L m L L

m m gL F F L
θ θ θ θ θ θ θ

θ θ
+ + − − −

+ + = +

�� �� �
 (p) 

 = 2: 

 

 
j

2
2 2

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L  

 

{ }

2
2 1 2 1 2 1 1θ

 

2 1

2 2
2 2 2 2 2 1 2 1

2 2 2 2 2 2

cos( ) sin( )

   sin( ) 1 cos( )

                                                  sin cos

m L L

m L

m gL F L

θ θ θ θ θ

θ θ θ θ θ θ

θ θ

⎡ ⎤− + −⎣ ⎦
⎡ ⎤+ − − − −⎣ ⎦

+ =

��

�� �  (q) 

 
hich are identical with Eqs. (6.14) and (6.16), respectively. Linear

θ1 = θ2 = 0 and putting the resulting expressions in matrix form gives the gov-
erning equation for small angle motion, 

1 2 1

2 2

( )
                                                                             

�

w izing about 

 
2

1 2 1 11 2 1 2 1 2 1
2

2 1 2 2 2 2

( ) 0( )
0

m m gLm m L m L L
m gLm L L m L

 2 2 2

F F L
F L

⎦ ⎭
+

θθ
θθ

⎧ ⎫⎡ ⎤ +⎡ ⎤ ⎧ ⎫+ ⎪ ⎪ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎣⎣ ⎦ ⎩ ⎭ ⎩

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

 � (r) 

 hich is, of course, identical to Eq. (6.18). 
 

��
��

w

 

Example 6.6 
A docked utility tram consists of a barrow of mass m2 suspended from an over-
head frame of mass m1 by rods of length L as shown. The frame is latched to a 
rigid wall by an elastic coupler of effective stiffness k. A cable exerts a tension 
force F  on the1  frame and a controller exerts a torque M about the pivot point. 
Environmental forces are represented by the horizontal force F2 acting though 
the attachment point of the barrow as indicated. If the stretch of track in the vi-
cinity of the docking station is hori-
zontal and the mass of the connecting 
rods and the spin of the barrow, as 
well as its moment of inertia about its 
own axis, are negligible derive the 
equations of motion for the system 
using Lagrange’s Equations. Lin-
earize the resulting equations by as-
suming small relative motion of the 
suspended car.                                              Figure E6.6-1  Docked utility tram.                                                               
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Solution 
T w dy sesses two he t o bo  system evidently pos

 freedom. The horizontal coordinate 

on and rotation of the barrow it is convenient to partition the motion of the lat-

 

degrees of
u and the angular coordinate θ, shown in the 
adjacent figure, are the obvious choices for our 
generalized coordinates. The former measures 
the absolute displacement of the frame with 
respect to the fixed track and the latter meas-
ures the relative displacement of the barrow 
with respect to the frame. 
                                                              
 

    Figure E6.6-2  Coordinates. 

 Since we have both pure translation of the frame and combined transla-
ti
ter in terms of its horizontal and vertical components. We shall take our origin 
at the equilibrium position of the frame. For consistency we shall set our datum 
to coincide with our datum at the level of the frame as well. Thus, let (x1 = u, 0) 
locate the frame and let (x2, y2) locate the car. It then follows that 
 

2 2sin  ,     cosx u L y Lθ θ= + = −  (a-1,2) 

The kinetic energy is then easily computed as 

 

 

 

{ }
( )

2 2 21 1
1 2 2 22 2m u m x y⎡ ⎤= + +

2 221 1
1 22 2

2 2 21 1
1 2 2 12 2

   cos sin

   2 cos

m u m u L L

m m u m L x L

θ θ θ θ

θ θ θ

⎣ ⎦

⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦

⎡ ⎤= + + +⎣ ⎦

� �� �

� �� �

 (b) 

 
The potential energy of the system at some generic configuration is 

 

� � �T

 
21

2 cosku mgL θ= −U  (c) 

Next, we determine the generalized forces asso
ates. To do this, we evaluate the virtual work done by the applied forces and 

 

 
ciated with our chosen coordi-

n
moment and express the work in terms of the chosen coordinates u and θ. The 
generalized forces then correspond to the respective coefficients of the varia-
tions (virtual increments) of the generalized coordinates. Now, for a small vir-
tual motion of the system it is clear that the virtual work done by the applied 
actions is 
 

1 2 2F u F x Mδ δ δ δθ= + +W  (d) 
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e wish to express Eq. (d) in terms of the two independent coordinates u and 

 

W
θ.  This is accomplished by first evaluating the variation (“virtual differential”) 
of Eq. (a-1), which gives the relation  
 

2 cosx u Lδ δ θ δθ= +  (e) 
 

ubstituting Eq. (e) into Eq. (d) and regrouping terms gives the virtual work in 

 

S
the desired form 
 

( ) ( )1 2 2 cosF F u F L Mδ δ θ= + + +W� δθ  (f) 
 

 follows from Eqs. (f) and (6.58) that 

 2

It
 

1 1Q F F= +  (g-1) 
and 

 2 2 cosQ F L Mθ= +  (g-2) 
 

ith the kinetic and potential energies expressed in terms of the chosen gener-W
alized coordinates, and the corresponding generalized forces evaluated, we can 
now substitute these expressions into Lagrange’s Equations and determine the 
sought after equations of motion for the system. Thus, substituting Eqs. (b), (c), 
(g-1) and (g-2) into Eqs. (6.62) and (6.63) and carrying through the indicated 
operations, with {q1, q2} ↔ {u, θ}, gives the equations of motion for the sys-
tem. Hence,  

j = 1: 
 

 1
1 1

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L  

 
 2 (h-1) 

 
= 2: 

( ) 2
1 2 2 1  cos sinm m u m L ku F Fθ θ θ θ⎡ ⎤+ + − + = +⎣ ⎦

�� ���  �

j 

 2
2 2

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L  

 
2

2 cos sinm L L u uθ θ θ θ+ −�� ��� �( )
2             sinm uLθ θ

⎡ ⎤
⎢ ⎥⎣ ⎦

+ �� 2sin cosgL F Lθ θ⎡ ⎤ M+ = +
⎣ ⎦

 � (h-2) 
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Linearizing Eqs. (h) and expressing the resulting equations in matrix form gives 

 
)
⎫

the equation of motion 
 

1 2 2 1 2
2

2 2 2 2

( ) 0 ( )
0 (

m m m L k F Fu u
m L m L m gL F L Mθ θ
+ +⎡ ⎤ ⎡ ⎤ ⎧⎧ ⎫ ⎧ ⎫

+ =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥ +⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩

��
��  ⎬

⎭
(i) 

 

�

 
 

Example 6.7 
Consider the motorcycle frame of Section 6.1.3. Suppose a rider of mass mb sits 
rear of the center of mass a distance ℓ and that the padding and support for the 
seat is represented as a spring of 
stiffness kb attached to the frame at 
that point, as shown. In addition, let 
the road conditions be such that the 
bases undergo the prescribed verti-
cal deflections y01(t) and y02(t), re-
spectively, and let the frame be sub-
jected to dynamic loading repre-
sented by the vertical forces F1(t) 
and F2(t) applied at the indicated 
ends of the frame and directed 
downward and the force Fb(t) ap-
plied to the rider. Use Lagrange’s 
Equations to derive the equations of 
motion of the system. Linearize the 
equations for small rotations and 
express them in matrix form. 
 

        Figure E6.7-1  Motorcycle and rider. Equivalent system. 

olution 
hoose the vertical deflection of the center of mass, yG, the rotation of 

                              Figure E6.7-2  Coordinates. 

 
S
We shall c
the frame, θ, and the vertical deflection of the rider, yb, as our generalized coor-
dinates for the present analysis. Thus, (q1, q2, q3) 
↔  (yG, θ, yb). (See Figure E6.7-2.) Further, we 
shall measure all deflections from their equilib-
rium positions. The deflections of the end points 
of the frame and of the point of the frame at 
which the seat is attached, y1, y2 and yℓ are ex-
pressed in terms of the chosen coordinates as 
follows:                                      
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 1 1 2 2sin ,     sin ,     sinG G Gy y L y y L y yθ θ θ= − = + = −A A  (a-1, 2, 3) 
 
It follows that 
 

 1 1 2 2cos ,     cosG Gy y L y y Lδ δ θ δθ δ δ= − = + θ δθ

b

 (b-1, 2) 
 
The virtual work of the applied forces is then 
 

 1 1 2 2

1 2 2 2 1 1      ( ) ( ) cos
b b

G b

F y F y F y
F F y F L F L F y

δ δ δ δ
δ θ δθ δ

= + +

= + + − +

W�
 (c) 

 
from which we deduce the generalized forces 
 

 1 1 2 2 2 2 1 1 3,    ( ) cos ,     bQ F F Q F L F L Q Fθ= + = − =  (d-1, 2, 3) 
 
The kinetic and potential energies for the system are, respectively, 
 

 2 21 1 1
2 2 2G G bmy I m yθ= + +��T 2

b�  (e) 
and 
 

 
21

1 1 012
21 1

2 2 022 2

( sin )

      ( sin ) ( sin )
G

G b G

k y L y

k y L y k y y

θ

θ θ

= − −

+ + − + − −A 2
b

U
 (f) 

 
Substituting Eqs. (d), (e), and (f) into Eqs. (6.62) and (6.63) and carrying 
through the indicated operations, with (q1, q2, q3) ↔  (yG, θ, yb), gives the equa-
tions of motion for the system. Hence,  

 
j = 1: 

 1
1 1

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L  

 

 1 2 2 2 1 1

1 2 1 01 2 0

( ) ( )sin
                                                       

G b G b b bmy k k k y k L k L k k y

2F F k y k y
θ+ + + + − − −

= + + +

�� A
 (g-1) �

 
 
j = 2: 

 2
2 2

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L  
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( )

2 2 1 1
2 2 2

2 2 1 1

2 2 1 1 1 1 01 2 2 02

( ) cos

      ( )sin cos
       cos cos

G b G

b

b b

I k L k L k y
k L k L k
k y F L F L k L y k L y

θ θ

θ θ

θ θ

+ − −

+ + +

+ = − + −

�� A
A

A
 (g-2) �

 
j = 3: 

 3
3 3

 d Q
dt q q

⎛ ⎞∂ ∂
− = ⇒⎜ ⎟

∂ ∂⎝ ⎠�
L L  

 
 sinb b b G b b b bm y k y k k y Fθ− − − =�� A  (g-3) �
 

 
Linearizing equations (g-1)–(g-3) for 1θ � and expressing the resulting equa-
tions in matrix form gives 
 

 
1 2 2 2 1 1

2 2 2
2 2 1 1 2 2 1 1

0 0
0 0
0 0

( ) ( )
          ( ) ( )

                                                

G

G

b b

b b b G

b

b b b

b b b

m y
I

m y

k k k k L k L k k y
k L k L k k L k L k k

k k k y

θ

θ

⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭
+ + − − −⎡ ⎤ ⎧ ⎫

⎪ ⎪⎢ ⎥+ − − + + + ⎨ ⎬⎢ ⎥
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A
A A A

A

( )
1 2 1 01 2 02

2 2 1 1 1 1 01 2 2 02

( )
      

b

F F k y k y
F L F L k L y k L y

F

+ + +⎧ ⎫
⎪ ⎪= − + −⎨ ⎬
⎪ ⎪
⎩ ⎭

� (h) 

 
It may be seen that if we let mb, kb and Fb  0 in Eqs. (g) and (h) we obtain 
the equations for the frame derived in Section 6.1.3 using Newton’s Law’s of 
Motion directly. If we let the excitations vanish identically, as well, Eq. (h) be-
comes identical with Eq. (6.25). 

→

 
 
 

6.2.4  The Rayleigh Dissipation Function 

In Example 6.4 we derived the equations of motion for a viscously damped system 
using Lagrange’s Equations and included the effects of damping by calculating the 
virtual work of the damping forces to obtain the corresponding generalized forces. 
For systems with linear viscous damping it is possible to formulate a dissipation func-
tion which may be included on the left hand side of Lagrange’s Equations in the spirit 
of the kinetic and potential energies to augment that formulation. This would replace 
the calculation of the virtual work and inclusion of the associated generalized forces 
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due to damping. To develop this formulation we separate the forces due to damping 
from the remaining forces in Eq. (6.45) and thereafter. Equation (6.45) then takes the 
form  

 ( )( )

1

0
M

d
l l l l l

l

F F m r rδ
=

⎡ ⎤+ −⎣∑ =⎦
G G G G�� i  (6.64) 

where 
 ( ) ˆd

l l lF c r= −
G G�  (6.65) 

 
and  is a linear combination of the coefficients of the dampers attached to mass l. In 
contrast to its interpretation in Eq. (6.45), l

l̂c
F
G

 now represents all active forces that 
impinge on mass l except those due to damping. With this distinction, let us now pro-
ceed as in Section 6.2.2. All computations are the same, but now we shall evaluate 
the contributions of the damping forces separately. Toward this end, we determine the 
product 
 

 ( ) 1
2

1 1 1

ˆ
M M M

d l l
l l l

j j jl l l

r r
l̂ l lF c r c r r

q q q
= = =

∂ ∂ ∂
= − = −

∂ ∂ ∂∑ ∑ ∑
G G�G G G G�i i

� �
� �i  (6.66) 

Thus, 

 ( )

1

M
d l

l
j jl

rF
q q

=

∂ ∂
= −

∂ ∂∑
GG

i
�
R  (6.67) 

where 

 1
1 2 2

1

ˆ( , ,..., )
M

N l
l

q q q c r r
=

= = ∑ l l
G G� �� � � iR R  (6.68) 

 
is called the Rayleigh Dissipation Function. Paralleling the development of Section 
6.2.2, and incorporating Eq. (6.67), results in the alternate statement of Lagrange’s 
Equations given by 
 

     ( 1, 2,..., )j
j j j

d Q j N
dt q q q

⎛ ⎞∂ ∂ ∂
− + = =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠� �

RL L  (6.69) 

 
The equations of motion for a discrete system with viscous damping may be derived 
by formulating the Rayleigh dissipation function for that system, in addition to the 
potential and kinetic energies of the system and the virtual work of the applied forces, 
and substituting each into Eq. (6.69) and performing the indicated operations. Such a 
formulation may be advantageous when using certain numerical techniques for large 
scale systems. In this case we would construct the function from the damping forces. 
In the present context, the above approach provides an alternative to the basic formu-
lation of Section 6.2.2  where the equations of motion for discrete systems are derived 
by computing the virtual work of the damping forces, identifying the corresponding 
generalized forces, formulating the kinetic and potential energies and utilizing the 
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fundamental form of Lagrange’s Equations given by Eq. (6.62), as was done in a very 
straightforward manner in Example 6.4. 
 

Example 6.8 
Formulate the Rayleigh dissipation function for the system of Example 6.4 and 
use it to derive the equations of motion for that system. 
 
Solution 
For this problem the generalized coordinates are simply the displacements of 
the masses from their equilibrium positions. Thus, (q1, q2, q3) ↔ (x1, x2, x3). We 
seek a function whose derivatives with respect to the velocities of the masses 
will yield the corresponding damping forces. Toward this end let us consider 
the function    
 

 ( ) ( )2 22 21 1 1 1
1 1 2 2 1 3 3 2 4 32 2 2 2c x c x x c x x c x= + − + − +� � � � �R �  (a) 

 
Evaluating the derivatives of R with respect to each velocity gives the follow-
ing: 

 1 2 1 2
1

( )c c x c x
x

∂
= + −

∂
�

�
R

2�  (b-1) 

 

 2 1 2 3 3 2 3
2

( )c x c c x c x
x

∂
= − + + −

∂
� �

�
R �  (b-2) 

 

 3 2 3 4 3
3

( )c x c c x
x

∂
= − + +

∂
�

�
R �  (b-3) 

 
The kinetic and potential energies are given by Eqs. (c) and (d) of Example 6.3. 
The virtual work done for the present case is simply 
 

 1 1 2 2 3 3F x F x F xδ δ δ δ= + +W  (c) 
 
The generalized forces may be read directly from Eq. (c) and are seen to be 
simply the applied forces themselves. Substituting all of the above into Eq. 
(6.69) and carrying through the calculations gives the equations of motion 
stated in Eq. (f) of Example 6.4. 
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6.3 SYMMETRY OF THE SYSTEM MATRICES 

The physical properties of linear mechanical systems were seen to be described by 
the mass, stiffness and damping matrices appearing in the general equation of motion 
 
 + + =�� �mu cu ku F  (6.70) 
 
For each of the representative systems considered in Sections 6.1 and 6.2 these matri-
ces were seen to be symmetric. In this section we show that the system matrices of all 
linear mechanical systems are symmetric when the corresponding motions are ex-
pressed in terms of a set of linearly independent coordinates. 
 

6.3.1  The Stiffness Matrix 

For the moment, let us restrict our attention to linear elastic systems subjected to 
quasi-static loading. Under these circumstances Eq. (6.70) reduces to the algebraic 
form 
 =ku F  (6.71) 
 
Pre-multiplying Eq. (6.71) by k-1 gives the relation 
 
 =u aF  (6.72) 
where 
 1−=a k  (6.73) 
 
is the compliance matrix, also known as the flexibility matrix. The symmetry of the 
stiffness matrix will be established by considering the work done by the applied 
loads. 
 

A

1

2 BQ(A)

Q

0
q(A) q(B)0

      
       Figure 6.9  Load-deflection paths. 
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 The constitutive (stress-strain) relations, and hence the load-deflection rela-
tions, for a linear elastic solid are, by definition, linear. Likewise, the load-deflection 
relations for a system comprised of linear elastic springs, Eq. (6.72), are linear as 
well. If we consider a single generalized force Q applied to a linear system, and the 
associated generalized displacement q of the system at the load point, the correspond-
ing load-deflection path will plot as a straight line as shown in Figure 6.9. If the sys-
tem is initially in the undeformed state when the force Q is applied, and Q is in-
creased slowly from 0 to Q(A) the load-point deflection increases accordingly to the 
value q(A). The work done as the state of the system progresses along path OA is, by 
Eq. (1.85), 
 

 
( )

( ) ( ) ( )1
2

0

Aq
A

OA

A AF dr Q dq Q q= = =∫ ∫
G GiW  (6.74) 

 
That is, the work done by the force Q in bringing the system to state A corresponds to 
the area under the curve OA (the area of triangle OAq(A)). Suppose now that the sys-
tem is deformed further, say by some other force, so that the deflection under the first 
force increases to say q(B) while Q is maintained at the value Q(A) throughout the sub-
sequent deformation process. During this process the system progresses along path 
AB in the Qq-plane (Figure 6.9). The additional work done by the constant force Q 
during this process is then 
 

 
( )

( )

( ) ( ) ( )
B

A

q
AB A BA

AB q
F dr Q dq Q q= = =∫ ∫
G GiW  (6.75) 

 
where  
 ( ) ( ) ( )BA Bq q q= − A  (6.76) 

 
(The integral is seen to correspond to area q(A)AB q(B).) The total work done by the 
force applied at the point in question in bringing the system to state B is thus 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2
OB OA AB A A A BAQ q Q q= + = +W W W  (6.77) 

 
With the work of a given load during the segmented process established, let us next 
consider an arbitrary elastic system subjected to generalized forces at any two points l 
and j (j,l = 1, 2, …). Let Ql and Qj represent these forces and let ql and qj represent the 
corresponding generalized displacements (generalized coordinates). Suppose that the 
force Qj is first applied, increasing from zero and deforming the system from the ref-
erence (undeformed) state so that the point of application deflects to the value ( )j

jq  
and point l deflects by the amount ( ) .j

lq  (See, for example, the frame in Figure 6.10a-
1.) Next let a load be applied at point l. Let it increase slowly from zero deforming 
the system further so that the additional deflections at points j and l due to the load at 
point l are, respectively, ( )l

jq and  (See, for example, the frame in Figure 6.10a-2.)   ( ) .l
lq
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        Figure 6.10  Physical example of load-deflection scenario. 
 
 
With the aid of Eq. (6.77), the total work done by both forces in bringing the system 
to its current state is calculated as 
 
 ( , ) ( ) ( ) ( )1 1

2 2
j l j l l

j j j j l lQ q Q q Q q= + +W  (6.78) 
 
Now, from Eq. (6.72),  
 
 ( ) ( ) ( ) ( ),   ,    ,    j j l l

j jj j l lj j j jl l l ll lq a Q q a Q q a Q q a Q= = = =  (6.79) 
 
Substituting Eqs. (6.79) into Eq. (6.78) gives the work to the present state as 
 
 ( , ) 2 21

2
j l 1

2jj j jl j l ll la Q a Q Q a Q= + +W  (6.80) 
 
Let us next reverse the order of application of the forces and compute the work done 
in bringing the system to its present state. Paralleling the development for the previ-
ous case, but with the order reversed as demonstrated for the example frame in Fig-
ures 6.10b-1 and 6.10b-2, the work done in bringing the system to the current state is 
 
 ( , ) ( ) ( ) ( )1

2
l j l j j

l l l l j jQ q Q q Q q= + +W 1
2  (6.81) 



6│ Dynamics of Multi-Degree of Freedom Systems 327 

This is also found by simply interchanging the indices in Eq. (6.78). Substituting Eqs. 
(6.79) into Eq. (6.81) gives the work for this load order as 

  
 ( , ) 2 21

2
l j

ll l lj l j jj ja Q a Q Q a Q= + +W 1
2  (6.82) 

 
By definition of an elastic system all work is recoverable and the work done in bring-
ing the system to its current configuration is independent of the loading path. That is, 
it is independent of the order in which the loads are applied. Thus, 
 
  (6.83) ( , ) ( , )l j j l=W W
 
Substituting Eqs. (6.80) and (6.82) into Eq. (6.83) gives the identity 
 
 lj jla a=  (6.84) 
 
Equation (6.84) is valid for any pair of points (j,l = 1, 2, …) in the system and implies 
that the deflection at one point of an elastic system due the force at a second point of 
the system is equal to the deflection at the second point due to a force of equal magni-
tude applied at the first point. This is known as Maxwell’s Reciprocal Theorem and is 
applicable to continuous as well as discrete systems. Since we are presently interested 
in discrete systems, we shall take j,l = 1, 2, …, N. Hence, when written in matrix 
form, Eq. (6.84) implies that 
 
 =a aT  (6.85) 
 
It then follows from Eq. (6.73) that 
 
  (6.86) =k kT

 
The stiffness matrix is thus symmetric, which is what we set out to show.  
 

6.3.2 The Mass Matrix 

The inherent symmetry of the mass matrix, when written in terms of a set of linearly 
independent coordinates, may be shown by consideration of the kinetic energy of the 
system. Let the position vector of a generic mass of the system be described in terms 
of some set of generalized coordinates as described by Eq. (6.38). Substituting Eq. 
(6.47) into Eq. (6.51) gives the kinetic energy of the system as 
 

 
1 1 1 1

1 1
2 2

M M N N
n n

n n n n j l
j ln n j l

r r
m r r m q q

q q
= = = =

⎧ ⎫∂ ∂⎪ ⎪= = ⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑
G G� �G G� � �i iT �  (6.87) 

 
Changing the order of summation renders the kinetic energy to the form 
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1 1 1

1
2

N N M
n n

n j
j lj l n

r rm q
q q

= = =

⎧ ⎫∂ ∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
∑∑ ∑ lq

G G� �
� �iT  

 
Hence, the kinetic energy of an N-degree of freedom system is 
 

 1 1
2 2

1 1

N N

jl j l
j l

m q q
= =

= =∑∑ � �� �T q mqT  (6.88) 

where 

 
1

M
n n

jl n
j ln

r rm m
q q

=

∂ ∂
=

∂ ∂∑
G G� �
i  (6.89) 

 

 
11 1

1

N

N N

m m

m m N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
m  (6.90) 

and 

 
1

N

q

q

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

�
� #

�
q  (6.91) 

 
It is evident from Eq. (6.89) that 
 
   ( , 1, 2,..., )jl ljm m l j N= =  (6.92) 
Thus,     
 =m mT  (6.93) 
 
for any linear system whose motion is described by a set of generalized coordinates. 
 

6.3.3 The Damping Matrix 

To show the symmetry of the damping matrix for linear systems whose motions are 
expressed in terms of a set of generalized coordinates we shall proceed in an analo-
gous manner as for the mass matrix, but with the Rayleigh dissipation function re-
placing the kinetic energy. Thus, 
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 1 1 1 1

1 1 1

1 1ˆ ˆ
2 2

1 ˆ                            
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M M N N
n n

n n n n j l
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N N M
n n

n j
j lj l n

r r
c r r c q q

q q
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q q

= = = =

= = =

lq
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 (6.94) 

Hence, 

 1 1
2 2

1 1

N N

jl j l
j l

c q q
= =

= =∑∑ � �� �R q cqT  (6.95) 

where 

 
1

ˆ
M

n n
jl n

j ln

r rc c
q q

=

∂ ∂
=

∂ ∂∑
G G� �
i  (6.96) 

and 

 
11 1

1

N

N N

c c

c c N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
c  (6.97) 

 
It is evident, from Eq. (6.96), that 
 
      (6.98)   ( , 1,2,..., )jl ljc c l j N= =
 
and hence that  
    =c cT  (6.99) 
 
The symmetry of the system matrices will be of great importance in our studies of 
both free and forced vibrations of multi-degree of freedom systems. 
  
 

6.4  CONCLUDING REMARKS 

In this chapter we considered the mathematical description of multi-degree of free-
dom systems. We first used the Newtonian approach to derive the equations of mo-
tion for certain representative systems. We then introduced the notions of generalized 
coordinates and virtual work and, with these, derived Lagrange’s Equations — a gen-
eral statement of the equations of motion expressed in terms of the potential and ki-
netic energies of the system and the virtual work of forces for which a potential func-
tion is not or cannot be written. Thus, once the generalized forces are identified for a 
given problem through the virtual work of the actual forces and moments, Lagrange’s 
Equations basically provide a recipe for the derivation of the equations of motion for 
the specific system of interest. Derivations for selected systems were performed by 
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direct application of Newton’s Laws of Motion and by Lagrange’s Equations and 
compared. It was seen that the derivation of the equations of motion for complex sys-
tems is simplified a great deal when implemented using Lagrange’s Equations. Once 
the technique is mastered, Lagrange’s Equations provide a convenient and relatively 
simple scalar procedure for deriving the equations of motion for complex mechanical 
systems. The chapter concluded with a proof of Maxwell’s Reciprocal Theorem 
which, for discrete systems, implies that the stiffness matrix is symmetric for all lin-
ear systems. Finally, it was shown that the mass and damping matrices for all linear 
mechanical systems whose motions are expressed in terms of a set of linearly inde-
pendent coordinates are symmetric as well. 
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PROBLEMS 

6.1 Use Lagrange’s Equations to derive the equation of motion for a simple mass-
spring-damper system. 

 
6.2 Use Lagrange’s Equations to derive the equation of motion of the simple pen-

dulum. 
 
6.3 Use Lagrange’s Equations to derive the equation of motion for the timing de-

vice of Problem 2.19. 
 
6.4 Use Lagrange’s Equations to derive the equation of motion for the constrained 

rod shown in Figure P6.4. 
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        Fig. P6.4                                                         Fig. P6.5 
  
6.5 The pendulum with elastic constraint shown in Fig. P6.5 is subjected to a hori-

zontally directed force applied to the mid-span of the rod as indicated. Use La-
grange’s Equations to derive the equation of motion for the system. The spring 
is unstretched when θ = 0. The masses of the rod, roller and spring are negligi-
ble.  

 
6.6 Derive the equations of motion 

for the crankshaft system shown 
in Figure P6.6 using Lagrange’s 
Equations. The spring is unde-
formed when the connecting pin 
A is directly above or below the 
hub of the wheel.                                                        Fig. P6.6 

 
6.7 Use Lagrange’s Equations to derive 

the equations of motion for the con-
strained hook and ladder shown. 
The spring is untorqued when θ = 0 
and the tip of the ladder is subjected 
to a downward vertical force F2 as 
indicated.                                                                            Fig. P6.7                       

 
6.8 A tram consists of a rigid frame of mass mf from which a passenger compart-

ment of mass mc and radius of gyration rG is pinned to the frame at the car’s 
center of mass as shown in Figure P6.8. The wheels of the tram frame are of 
radius R and negligible mass mw and roll without slip during motion. A motor 
applies a torque M to one of the wheels, thus driving the system, and the pas-
senger compartment is subjected to a wind force whose resultant acts through a 
point that lies a distance a below the pin, as indicated. If an elastic guide cable 
of effective stiffness k is attached to the frame as shown, derive the equations of 
motion for the system using Lagrange’s Equations. 2

0( )c GI m r=  
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                                                        Fig. P6.8 
 
6.9 Use Lagrange’s Equations to derive the equations of motion for the coupled 

pendulum shown in Figure P6.9. 

 
                                                               Fig. P6.9 
 
6.10 A conveyor belt system consists of two flywheels of mass m1 and radius R1, 

and mass m2 and radius R2, respectively. The wheels are connected by an elas-
tic belt as shown in Figure P6.10. If no slip occurs between the wheels and belt, 
the effective stiffness of each leg is k, as indicated. Finally, a motor applies a 
torque M1 to the left wheel and a torque M2 to the right wheel as shown. (a) Use 
Lagrange’s Equations to derive the equations of motion for the system. (b) 
Check your answer using Newton’s Laws of Motion. 

            
                                                             Fig. P6.10 
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6.11 A square raft of mass m and side L sits in water of specific gravity γw. A uni-
form vertical line force of intensity P acts downward at a distance a left of cen-
ter of the span. (a) Use Lagrange’s Equations to derive the 2-D equations of 
motion of the raft. (b) Check your answers using Newton’s Laws of Motion. 

 
6.12 Two identical bodies of mass m are connected by 

a spring of stiffness k and constrained to move in 
rectilinear motion as shown. Derive the equations 
of motion for the system. 

                                                                                                               Fig. P6.12 
 
6.13 Use Lagrange’s Equations to derive the governing equations for two dimen-

sional motion of the elastic dumbbell satellite shown in Figure P6.13. 

 
                                 Fig. P6.13                                                    Fig. P6.14 
 
6.14 Use Lagrange’s Equations to derive the equations of motion for the inverted 

elastic pendulum shown in Figure P6.14 if the massless rod is of length L. 
 
6.15 Use Lagrange’s Equations to derive the Equations of motion for the pulley sys-

tem shown in Figure P6.15. The wheel has radius R and I = mR2. 

                               Fig. P6.15                                                        Fig. P6.16  
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6.16 A motor supplies a torque M through a drive shaft whose moment of inertia is 

I1. The shaft of radius R is connected to the pulley system shown in Figure 
P6.16. If the cable is elastic with effective stiffness k, as indicated, the moment 
of inertia of the pulley is I2 and the cable supports a suspended mass m as indi-
cated, derive the equations of motion of the system using Lagrange’s Equa-
tions. 

   
                                                                            
6.17 Use Lagrange’s Equations to derive the equations of motion for the pulley sys-

tem shown in Figure P6.17. 

6.18 shown is restrained by an elastic rod of effective 
mo

cated. The mass of each whee
equations of mo

 
6.19 A rigid rod of length L

base of mass mb  through
shown. The ba
indicated. Derive the equati
ing Lagrange’s Equations. 

 

         
 
6.20  center of an offshore platform as shown. 

The total mass of the crane and platform is m and the mass of
tical floats of ra-
 is LB, derive the 

                   Fig. P6.17                                                              Fig. P6.18 
  

The elastic fan-belt system 
stiffness k1 while a tor supplies a torque M to the right flywheel, as indi-

l is m. Use Lagrange’s Equations to derive the 
tion for the system. 

, and mass ma is connected to a rigid 
 a torsional spring of stiffness kT as 

se sits on an elastic support of stiffness k as 
ons of motion of the system us-

 
 
 

                                                                                                            Fig. P6.19 

A crane is attached to the geometric
 the boom is neg-

ligible. The square platform has side L and sits atop four iden
dius R. If the length of the horizontal projection of the boom
equations that govern planar motion of the structure. 
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6.21 

nal inte-
rior co  

 as indicated. 

 
6.22 

         
 

                                           Fig. P6.20 

A certain submarine is modeled as shown, for simple calculations of longitudi-
motion. The mass of the hull and frame structure is 2ms and that of the 

mpartment is mc. The hull and interior compartment are separated by
springs of stiffness k, and the longitudinal stiffness of the hull is ks
Derive the equations that govern longitudinal motion of the boat. 

 
                                                              Fig. P6.21 

Use Lagrange’s Equations to derive the equations of motion for the linked sys-
tem shown in Figure P6.22. The mass of the rigid connecting rod is negligible 
compared with the other masses of the system.  

 
                  Fig. P6.22                                             Fig. P6.23 
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6.23 mass extends radially from the periphery of a solid 
R, as shown. The hub of the wheel is attached to 

mass and equivalent torsional stiffness kT. A sleeve 
of m nected to the wheel by an elastic 

 and unstretched length L, and a transverse force F(t) is ap-
plied L + R.  The spoke is sufficiently lubricated 

Lagrange’s Equations to derive the equa-
tions of stem.  

 
6.24 egligible mass connects two identical cylindrical 

floats, R and mass ma. The system floats in a fluid of 
 center of the span 

 

         
 
6.25 

 and shear modulus 
G. The ends of the rod are embedded in rigid supports as shown. The spans be-
tween the disks and between the disks and the supports are each of length L. 

are subjected 
to 

 

                                                         Fig. P6.25 

 

A rigid spoke of negligible 
wheel of mass mw and radius 
an elastic axle of negligible 

ass m is fitted around the spoke and con
spring of stiffness k

to the end of the rod of length 
so that friction is not a concern. Use 

motion for the wheel sy

A rigid rod of length L and n
each possessing radius 

mass density ρf. A block of mass mb is suspended from the
by an elastic spring of stiffness k as shown, and a downward vertical force of 
magnitude F is applied to the suspended mass, as indicated. Derive the equa-
tions of motion of the system using Lagrange’s Equations. 

 
                                             Fig. P6.24 

Three identical rigid disks, each of mass m and radius R, are attached at their 
centers to an elastic shaft of area polar moment of inertia J

Derive the equations of angular motion for the system if the disks 
the twisting moments M1, M2 and M3, respectively.  

    
  
 
6.26 Use Lagrange’s Equations to derive the equations of motion for the triple pen-

dulum whose bobs are subjected to horizontal forces F1, F2 and F3, respec-
tively. 
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                      Fig. P6.26                                                            Fig. P6.27 
 

The assembly of Problem 6.23 is mounted on a movable base of mass m6.27 
agrange’s Equations to derive the equations of motion for the 

augmented system.  

6.28 
k and undeformed length L. The system rolls without slip 

motion of 
the wheel s

 
6.29 tion for the coupled 

    

  

b as 
shown. Use L

 
   Fig. P6.28 
 

Two wheels, each of mass m and radius rw, are connected by an elastic coupler 
of effective stiffness 
around a circular track of radius R, as shown. Derive the equations of 

ystem.  

Use Lagrange’s Equations to derive the equations of mo
trio of pendulums shown.  

  

 Fig. P6.29 
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6.30 f a rigid frame of mass ma and length L that is supported at 

each end by elastic springs of stiffness k. Two identical blocks of mass mb are 

rive the equations of motion for the system. 

  
 

6.31 C d as it undergoes 
tight per odeled as 

lage 
wall. about its respective 

 of inertia Io 
equati r the aircraft.  

6.32 

 
 

 
 

                                                                                 Fig. P6.

.33 Derive the equations of motion for the elastically coupled wheel system of 
Problem 6.28 if a damper of coefficient c is attached as shown in Figure P6.33. 

A system consists o

mounted at either end of the frame atop mounts of stiffness k as shown. Use 
Lagrange’s Equations to de

 Fig. P6.30 

   Fig. P6.31 
 

onsider an aircraft traveling at constant altitude and spee
iodic rolling motion of the fuselage. Let the wings be m

equivalent rigid bodies with torsional springs of stiffness kT at the fuse
 In addition, let each wing possess moment of inertia Ic 

connection point and let the fuselage of radius R have moment
about its axis. Derive the ons of rolling motion fo

 
 

Derive the equation of motion for the system of Prob-
lem 6.19 if the support possesses damping of coeffi-
cient c.  

 
 
 

 32 
 
6
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   Fig. P6.34 
 
6.34 Derive the equations of m ss-spring-damper system 

shown in Figur
 
 
6.35 Derive the or belt system of Problem 6.10 if 

the elastic belt is replaced by a viscoelastic belt of the same stiffness and damp-
. 

 
  

   Fig. P6.33 

 

otion for the compound ma
e P6.34. 

equations of motion for the convey

ing coefficient c as shown

 Fig. P6.35 
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6.36 Derive the equations of m  otion

for the system of Problem 6.15 

 
 
 

 

.37 Derive the equations of motion for longitudinal motion of the submarine of 
Problem 6.2 d to the hull and 
damping of coefficient c is introduced to the compartment mounts, as shown. 

 

if a damper of coefficient 2c is 
inserted into the left support as 
shown, and the elastic cable is 
replaced by a viscoelastic cable 
of the same stiffness and damp-
ing coefficient c as indicated. 

 
 
 
 
                                                                Fig. P6.36 
 
6

1 if damping of effective coefficient cs is introduce

 

   Fig. P6.37 



   

7 
Free Vibration of Multi-Degree of 
Freedom Systems 

 
 
 
 
 
 
 

In this chapter we consider the behavior of discrete multi-degree of freedom systems 
that are free from externally applied dynamic forces. That is, we examine the re-
sponse of such systems when each mass of the system is displaced and released in a 
manner that is consistent with the constraints imposed on it. We are thus interested in 
the behavior of the system when is left to move under its own volition. As for the 
case of single degree of freedom systems, it will be seen that the free vibration re-
sponse yields fundamental information and parameters that define the inherent dy-
namical properties of the system. 
 

7.1 THE GENERAL FREE VIBRATION PROBLEM AND ITS SOLUTION 

It was seen in Chapter 6 that the equations that govern discrete multi-degree of free-
dom systems take the general matrix form of Eq. 6.2. We shall here consider the fun-
damental class of problems corresponding to undamped systems that are free from 
applied (external) forces. For this situation, Eq. 6.2 reduces to the form 
 
 + =��mu ku 0  (7.1) 
 
where, for an N degree of freedom system, m and k are the N N×  mass and stiffness 
matrices of the system, respectively, and u is the corresponding 1N ×  displacement 
matrix. To solve Eq. (7.1), we parallel the approach taken for solving the correspond-

 341 
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ing scalar problem for single degree of freedom systems. We thus assume a solution 
of the form 
 i te ω=u U  (7.2) 

 
where U is a column matrix with N, as yet, unknown constants, and ω is an, as yet, 
unknown constant as well. The column matrix U may be considered to be the spatial 
distribution of the response while the exponential function is the time dependence. 
Based on our experience with single degree of freedom systems, we anticipate that 
the time dependence may be harmonic. We therefore assume solutions of the form of 
Eq. (7.2). If we find harmonic forms that satisfy the governing equations then such 
forms are, by definition, solutions to those equations. 
 Substitution of Eq. (7.2) into Eq. (7.1), and factoring common terms, results in 
the form 
 2 i te ωω⎡ ⎤− =⎣ ⎦k m U 0  
 
Assuming that 0ω ≥ , we can divide through by the exponential term. This results in 
the equation 
 2ω⎡ ⎤− =⎣ ⎦k m U 0  (7.3) 
 
which may also be stated in the equivalent forms, 
 
  (7.3') 2ω=kU mU
and 
 λ=

�
kU U  (7.3") 

where 
 1 2   and     =λ ω−=

�
k m k  

 
Thus, solving Eq. (7.1) for u(t) is reduced to finding  pairs that satisfy Eq. 
(7.3), or equivalently Eq. (7.3'). A problem of this type may be recognized as an ei-
genvalue problem, with the scalar parameter 

2( , )ω U

2ω  identified as the eigenvalue and the 
column matrix U as the corresponding eigenvector. An N degree of freedom system 
will generally possess N eigenvalues and N eigenvectors. The solutions of the eigen-
value problem, when substituted into Eq. (7.2), will give the solution to Eq. (7.1) and 
hence the free vibration response of the system of interest. 

Natural Frequencies 
One obvious solution of Eq. (7.3) is the trivial solution U = 0. This corresponds to the 
equilibrium configuration of the system. Though this is clearly a solution correspond-
ing to a physically realizable configuration, it is evidently uninteresting as far as vi-
brations are concerned. We are thus interested in physical configurations associated 
with nontrivial solutions. From linear algebra we know that a matrix equation Ax = b 
may be row reduced. If the rows or columns of the matrix A are linearly independent 
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(that is, no row can be expressed as a linear combination of the other rows) then the 
corresponding matrix equation can be reduced to diagonal form, and the solution for 
x can be read directly. In matrix form, 
 

 
1 1 1 1 1

 :           =
0

0 N N N N Nn

a x b x b 1a

x b x ba

⎛ ⎞

a

⎧ ⎫ ⎧⎧ ⎫ ⎧ ⎫
⎜ ⎟

⎫
⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= → = = ⇒⎜ ⎟

⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎜ ⎟ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎝ ⎠

% # # # #Ax b Ax b  

 
It is evident that det 0.≠A  A matrix A whose rows are linearly independent is said 
to be nonsingular. Similarly, if Eq. (7.3) is row reduced to diagonal form then the 
matrix ⎦  is nonsingular and the solution, U, can be read directly. However, 
since the right-hand side of Eq. (7.3) is the null matrix, this will yield the trivial solu-
tion U = 0. Therefore, for nontrivial solutions we require that the matrix  
be singular. That is, we require that at least one of the rows (or columns) of the ma-
trix can be expressed as a linear combination of the others. This means that the set of 
linear equations represented by Eq. (7.3) corresponds to, at most, N – 1 equations for 
the N unknowns U

2ω⎡ −⎣ ⎤k m

2ω⎡ ⎤−⎣ ⎦k m

j (j = 1, 2, …, N). (The importance of this property will become 
apparent later in our analysis.) If the rows of the matrix 2ω⎡ ⎤−⎣ ⎦k m  are linear de-
pendent (i.e., at least one row can be written as a linear combination of the others) 
then when the corresponding system of equations is row reduced, at least one row 
will become all zeros. The determinant of such a matrix clearly vanishes identically. 
Thus, if A is a singular matrix, then 
 

 

11 12 1

21 22 2det 0

0 0 0

N

N

a a a
a a a

= =

"
"

# # % #
"

A  

 
(This property is often taken as the definition of a singular matrix.) Therefore, for Eq. 
(7.3) to yield nontrivial solutions, we require that  
 
 2 2( ) det 0ω ω⎡ ⎤≡ − =⎣ ⎦k mF  (7.4) 
 
If the elements of the mass and stiffness matrices, k and m, are specified then Eq. 
(7.4) results in an Nth order polynomial equation (the characteristic equation) in terms 
of the parameter ω2 of the form 
  
  (7.5) 2 2 2 1 2

1 1( ) ( ) ( ) ... ( ) 0N N
N Nω µ ω µ ω µ ω µ−

−= + + + +F 0 =
 
where µj (j = 0, 1, 2, …, N) are functions of the mass and stiffness parameters for the 
particular system. The characteristic equation will yield N roots,  
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 2 2 2

1 2, ,..., N
2ω ω ω ω=  (7.6) 

 
(It is customary to label the frequencies in ascending order, according to their magni-
tude. That is, ω1

2 < ω2
2 < … < ωN

2.) Since the assumed form of the solution given by 
Eq. (7.2) is harmonic, the roots of Eq. (7.5) correspond to frequencies, and the char-
acteristic equation is referred to as the frequency equation for the system. Recall that 
we are presently considering systems that are not subjected to applied dynamic 
forces. These frequencies are therefore referred to as the natural frequencies of the 
system. An N degree of freedom system is seen to possess N natural frequencies, each 
of which are dependent upon the parameters of the system through Eq. (7.4). The 
eigenvalues that satisfy Eq. (7.3) (the eigenvalues of m-1k) thus correspond to the 
squares of the natural frequencies of the system. Recall that we seek the (ω2, U) pairs 
that satisfy Eq. (7.3). We must therefore determine the eigenvector associated with 
each eigenvalue (frequency). This is discussed following Example 7.1.  
 

Example 7.1 
The system shown consists of 
two identical masses of mass m 
connected by three identical 
elastic springs of stiffness k. If 
the outer springs are fixed at 
one end, as shown, determine 
the natural frequencies of the system.                     Figure E7.1 
 
Solution 
The equation of motion for this system is obtained from Eq. (b) of Example 6.1 
by setting m1 = m2 = m and k1 = k2 = k3 = k, or equivalently from Eq. (6.2) by 
letting N = 2 and c = 0 and inputting the given mass and stiffnesses into the re-
sulting expression. Since we are interested in free vibrations, the force matrix is 
the null array F = 0. This gives  
 

 + =��mu ku 0  (a) 
with 

   1

2

u
u

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  (b) 

 

 
0 1

0 0
m

m
m

0
1

⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

m
⎦

1
2

 (c) 

and 

 
2 2

2 1
k k

k
k k

− −⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣

k
⎦

 (d) 
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The frequency equation for the system is then obtained as follows: 
 

 
2

2 2
2

(2 )
( ) det 0

(2 )
k m k

k k m
ω

ω ω
ω

− −⎡ ⎤= − = =⎣ ⎦ − −
k mF  (e) 

 
or 
 

 2 2 2 2( ) (2 ) 0k m kω ω= − − =F  
 
After rearranging, the above relation results in the algebraic equation 
 

 
2

2 2 2( ) 4 ( ) 3 0k k
m m

ω ω ⎛ ⎞− + ⎜ ⎟
⎝ ⎠

=  (f) 

 
Equation (f) is readily solved for ω2 to give the two roots (eigenvalues) 
 

 2 , 3k k
m m

ω =  (g) 

 
The natural frequencies of the system under consideration are then  
 

 1 2 ,     3k m k mω ω= =  (h) �
 
 

 

Natural Modes 
Each natural frequency ωj (j = 1, 2, …, N) corresponds to a solution of Eq. (7.5). The 
associated eigenvector, the matrix U(j), for the frequency ωj is found by substituting 
that particular frequency into Eq. (7.3) and solving the resulting algebraic system of 
equations. Note that if the matrix U(j) satisfies Eq. (7.3) then the matrix αU(j), where α 
is an arbitrary scalar, satisfies that equation as well. That is  
 
 2ω α⎡ ⎤− =⎣ ⎦k m U 0  

 
The eigenvectors are thus, at most, unique to within a scalar multiplier. (Graphically 
this means that the length of the vector in N dimensional space is arbitrary. Hence, 
only the orientation of the vector in that space is determined.)  
 Recall that the matrix 2ω⎡ ⎤−⎣ ⎦k m  is singular and therefore has, at most, N − 1 
independent rows. Thus there are, at most, N − 1 independent algebraic equations to 
determine the N elements of the matrix U(j). In matrix form, 
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2 ( )
11 11 12 1 1

2 ( )
21 22 22 2 2

2 ( )
1 2

( ) 0
( ) 0

( ) 0

j
j N

j
j N

j
N N NN j NN N

k m k k U
k k m k U

k k k m U

ω
ω

ω

⎡ ⎤ ⎧ ⎫− ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪−⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦

"
"

# # % # ##
"

 (7.7) 

 
It follows that, when expanded, the above matrix equation will yield, at most, N − 1 
independent equations. This means that we can, at most, determine the relative mag-
nitudes (the ratios) of the elements of U(j). Therefore the direction, but not the length, 
of U(j) is determined. Solving Eq. (7.7) for the elements of U(j), gives  
 

 

( )
1
( )

( ) 2

( )

j

j
j

j
N

U
U

U

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
U  (7.8) 

 
to within a scalar multiplier. The lack of determinacy of an eigenvector is typically 
resolved by choosing the magnitude of one element, say the first, as unity. Alterna-
tively the elements are normalized so as to render the length of the vector as unity. 
We shall discuss this process, in detail, later in this chapter. Since the eigenvectors 
that satisfy Eq. (7.3) define the relative motion of the various mass elements for a 
given frequency of the system they are referred to as the modal vectors, modal matri-
ces, mode shapes or simply the modes of the system. When normalized (their lengths 
made unity) they are referred to as normal modes. It may be seen from Eq. (7.2) that 
the motion of the system associated with each  pair corresponds to oscilla-
tions at the rate of that natural frequency, with the masses moving relative to one an-
other in the proportions described by the modal matrix. It will be seen that any mo-
tion of the system consists of a linear combination of these fundamental motions. 

2 ( )( , )j
jω U

 
 

Example 7.2 
Determine the modal vectors for the two-mass three-spring system of Example 
7.1. 
 
Solution 

 Recall from Example 7.1 that, for the system under consideration, 
 

 
0

0
m

m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

m  (a) 
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2

2
k k
k k

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

k  (b) 

 
 1 2 ,     3k m k mω ω= =  (c-1,2) 

 
Substitution of the elements of the mass and stiffness matrices of Eqs. (a) and 
(b) into Eq. (7.7) with N = 2 gives 
 

  (d) 
2 ( )

1
2 ( )

2

(2 ) 0
,      ( 1, 2)

(2 ) 0

j
j

j
j

k k U
j

k k U
ω

ω
⎡ ⎤ ⎧ ⎫− − ⎧ ⎫⎪ ⎪ = =⎢ ⎥ ⎨ ⎬ ⎨ ⎬− − ⎪ ⎪⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦

 
Each natural frequency – modal matrix pair ( )( ), j

jω U must satisfy Eq. (d). 
 
j = 1:  
The modal matrix associated with the frequency ω1 is found by setting j = 1 in 
Eq. (d) and substituting Eq. (c-1). This gives 
  

 
(1)
1
(1)
2

0
0

k k U
k k U

⎧ ⎫−⎡ ⎤ ⎪ ⎪ =
⎧ ⎫

⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎪ ⎪⎣ ⎦ ⎩⎩ ⎭ ⎭
 (e) 

 
or, after expanding the matrix equation, 
 

 
(1) (1)
1 2

(1) (1)
1 2

0

0

k U k U
kU kU

− =

− + =
 (f) 

It follows that 
  (g) (1) (1)

2 1U U=
 
Consider the square matrix, 2

1ω⎡ ⎤−⎣ ⎦k m , of Eq. (e). Note that the second row  
of that matrix is simply the negative of the first. Correspondingly, we observe 
that the second equation of Eq. (f) is simply the first equation multiplied by −1. 
This occurs because we rendered this matrix singular by setting its determinant 
to zero in order to obtain nontrivial solutions. Recall that when a matrix is sin-
gular, then at least one row can be expressed as a linear combination of the oth-
ers. Since this singular matrix has only two rows then one is a scalar multiple of 
the other. We thus have only one distinct equation for the two unknowns  
and  Therefore the modal matrix is unique to within a scalar multiple. 
Hence, from Eq. (g), 

(1)
1U

(1)
2 .U

 

 
(1)

(1) 1
1(1)

2

1
1

U
U

α
⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨
⎪ ⎪ ⎩ ⎭⎩ ⎭

U ⎬  (h) 
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where α1 is an arbitrary scalar constant. For definiteness, we shall choose       
α1 = 1. The modal vector associated with the frequency 1 k mω =  is then 
given by 

 (1) 1
1

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
U  (i) 

 
Note that, as an alternative, we could have chosen the value of α1 so that the 
corresponding vector has unit magnitude in some sense of normalization. If we 
do this in the conventional sense (we shall discuss normalization in Section 
7.3.3), the modal matrix takes the form 
 

 (1) 11
12

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
U  (i') 

 
j = 2: 
The modal matrix associated with the frequency ω2 is found by setting j = 2 in 
Eq. (d) and substituting Eq. (c-2). This gives 
 

 
(2)
1
(2)
2

0
0

k k U
k k U

⎧ ⎫− −⎡ ⎤ ⎪ ⎪ =
⎧ ⎫

⎨ ⎬ ⎨ ⎬⎢ ⎥− − ⎪ ⎪⎣ ⎦ ⎩⎩ ⎭ ⎭
 (j) 

 
Expanding Eq. (j) gives 
 

 
(2) (2)
1 2
(2) (2)
1 2

0

0

kU kU
kU kU

− − =

− − =
 (k) 

Hence, 
  (l) (2) (2)

2U U= − 1

and 

 
(2)

(2) 1
2(2)

2

1
1

U
U

α
⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬−⎪ ⎪ ⎩ ⎭⎩ ⎭

U  (m) 

 
where α2 is an arbitrary scalar constant. If we choose α2 = 1 for definiteness, 
the modal vector associated with the frequency 2 3k mω =  is given by 
 

 (2) 1
1

⎧ ⎫
= ⎨ ⎬−⎩ ⎭

U  (n) 

 
Alternatively, we could choose α2 so that the associated vector has unit magni-
tude. Doing this gives 
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         Figure E7.2-1  Natural modes of the system depicted in Figure E7.1.  
 
 
 

   (2) 11
12

⎧ ⎫
= ⎨ ⎬−⎩ ⎭

U  (n') 

 
The depictions of the system for each of the modes are shown in Figure E7.2-1. 
It may be seen that when the system vibrates in the first mode, it does so at the 
frequency 1 k mω = , and with both masses moving in the same direction 
(left or right) and with the same magnitude. During this motion, the center 
spring is unstretched, and so the two masses behave as if they are a single mass 
of magnitude 2m as indicated in Figure E7.2-2. The combined stiffness of the 
outer spring during this mode is 2k. Thus, for the first mode, the system be-
haves as a single degree of freedom system of mass 2m and stiffness 2k and 
hence ω1 is given by Eq. (c-1).  

 
       Figure E7.2-2  Effective behavior of system in first mode. 
 
When the system vibrates in the second mode it does so at the frequency 

2 3k mω = and the motion of the second mass is the reflection of the motion 
of the first. When vibrating in this “accordion mode,” the two masses move to-
gether and apart symmetrically about the center of the middle spring. The mid-
point of the center spring remains stationary (and is referred to as a node). 
Thus, the motion is equivalent to that of two independent masses of mass m at-
tached to a fixed spring of half the actual length, and hence twice the stiffness 
2k [see Eq. (1.8) of Section 1.2.1], as well as to an outer spring of stiffness k as 
shown in Figure 7.2-3. This, in turn, is equivalent to two independent masses of 
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mass m attached to single fixed springs of stiffness 3k, as indicated. The natural 
frequency of each of these single degree of freedom systems is then given by 
Eq. (c-2). 
 

 
     
     Figure E7.2-3  Effective behavior of system in second mode. 

 
 
 

Free Vibration Response 
Once the set of frequency-mode pairs{ }( )2 , | 1,2,...,j

j jω =U N

)jω

 is determined, then 
the set of solutions of the form of Eq. (7.2) is determined. Recall that the eigenvalues 
are the squares of the frequencies. Therefore, both +ωj  and −ωj , together with the 
modal vector U(j), provide solutions of the desired form. Since the governing equa-
tion, Eq. (7.1), is linear the general solution consists of a linear combination of the 
individual modal solutions. Hence, 
 

  (7.9) (( ) ( ) ( ) ( )
1 2

1 1

( ) ( ) j

N N
i t i tj j j j

j j

t t C e C eω −

= =

= = +∑ ∑u u U

 
where ( )

1
jC and ( )

2
jC   (j = 1, 2, …, N) are constants of integration. Alternate forms of 

the response are found by substituting Euler’s Formula, Eq. (1.61), into Eq. (7.9) and 
paralleling the development for the free vibration solution of single degree of free-
dom systems (see Section 2.1). This gives the response for the N-degree of freedom 
system in the equivalent forms 
 

 ( )( ) ( ) ( )
1 2

1

( ) cos sin
N

j j j
j j

j

t A t A tω ω
=

= +∑u U  (7.10) 

and 

 (( ) ( )

1

( ) cos
N

j j )j j
j

t A tω φ
=

= ∑u U −  (7.11) 

 
where the various integration constants are related as follows: 
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2( ) ( ) ( )

1 2
j jA A A= +

2j  (7.12) 
 

 ( )1 ( ) ( )
2 1tan j j

j A Aφ −=  (7.13) 
 

 ( ) ( ) ( )
1 1 2

j jA C C= + j  (7.14) 
 

 ( )( ) ( ) ( )
2 1 2

j jA i C C= − j

2u

 (7.15) 
 
Consideration of Eq. (7.11) indicates that any free vibration response consists of  the 
superposition of a harmonic vibration of each mode oscillating at its particular natural 
frequency. The constants A(j) (j = 1, 2, …, N) are seen to correspond to the amplitudes 
of the modes and indicate the relative participation of each mode in the total response 
of the system. Similarly, the constants φj (j = 1, 2, …, N)  are seen to correspond to the 
phase angles of the individual modes during free vibration. The set of constants {A(j), 
φj; (j = 1, 2, …, N)} are determined from the initial conditions  
 

 

1 1

2

(0) (0)
(0) (0)

(0)  ,     (0)

(0) (0)N N

u u
u

u u

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪= = ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

�
�

�
# #

�

u u

⎪

 (7.16) 

 
imposed on the system. The initial displacements and initial velocities of each mass 
element of the system must be specified to determine the explicit form of the free 
vibration response. 
 
 

Example 7.3 
Determine the free vibration response of the two-mass three-spring system of 
Examples 7.1 and 7.2 if it is released from rest with the second mass held at its 
equilibrium position and the first mass held 1 unit of distance from its equilib-
rium position. 
 
Solution 
The specified initial conditions may be written in matrix form as  
 

 
1 0

(0)  ,     (0)
0 0

⎧ ⎫ ⎧
=

⎫
=⎨ ⎬

⎩ ⎭ ⎩ ⎭
�u u ⎨ ⎬  (a-1, 2) 
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Substituting the modal vectors given by Eqs. (i) and (n) of Example 7.2 into 
Eq. (7.11) with N = 2 gives the general free vibration response of the system as 
 

 1 (1) (2)
1 1 2 2

2

( ) 1 1
cos( ) cos( )

( ) 1 1
u t

A t A t
u t

ω φ
⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭⎩ ⎭
ω φ−  (b) 

 
 where 
     1 2 ,     3k m k mω ω= =  (c-1, 2) 
 

Imposing Eq. (a-1) on Eq. (b) gives 
 

 (1) (2)
1

1 1 1
cos( ) cos( )

0 1 1
A A 2φ φ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭ ⎩ ⎭

−

2

 (d) 

 
which, when expanded and noting that cos(−φ) = cos φ , takes the form 
 

 
(1) (2)

1
(1) (2)

1 2

1 cos cos

0 cos cos

A A
A A

φ φ

φ φ

= +

= −
 (e) 

 
Adding and subtracting Eqs. (e) with one another gives the alternate pair of 
equations 

 
(1)

1
(2)

2

1 2 cos

1 2 cos

A
A

φ

φ

=

=
 (f) 

 
If we next impose Eq. (a-2) on Eq. (b), and proceed in a similar manner, we ob-
tain 
 

 (1) (2)
1 2

0 1 1
(0) sin( ) 3 sin( )

0 1 1
kA A
m m

kφ φ
⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= = − − − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭ ⎩ ⎭
u�  (g) 

 
which, when expanded and noting that sin(−φ) = −sin(φ), takes the form 
 

 
(1) (2)

1

(1) (2)
1 2

0 sin 3 sin

0 sin 3 sin

A A

A A
2φ φ

φ φ

= +

= −
 (h) 

 
Adding and subtracting Eqs. (h) with one another gives the alternate pair of 
equations 

 
(1)

1
(2)

2

0 2 sin

0 2 sin

A
A

φ

φ

=

=
 (i) 
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The first of Eqs. (i) is satisfied if either A(1) = 0 or sinφ1 = 0. Since the first of 
Eqs. (f) cannot be satisfied if A(1) = 0, we conclude that 
 

 1sin 0φ =  
and hence that 

 1     ( 0,1,2,...)n nφ π= =  (j) 
 
Similarly, the second of Eqs. (i) is satisfied if either A(2) = 0 or sinφ2 = 0. How-
ever, the second of Eqs. (f) cannot be satisfied if A(2) = 0. We thus conclude that 
 

 2sin 0φ =  
and hence that 

 2     ( 0,1,2,...)n nφ π= =  (k) 
 
Substituting Eqs. (j) and (k) into Eqs. (f) we find that,  
 

 
(1) (2)

(1) (2)

1 2 ( 0, 2,4,...)
1 2 ( 1,3,5,...)

A A n
A A n

= = + =

= = − =
 (l) 

 
Substitution of Eqs. (l) and (c) into Eq. (b) gives the free vibration response of 
the system resulting from the given initial conditions as 
 

 1 3

2

( ) 1 11 1( ) cos cos
( ) 1 12 2

k
m

u t
t t k

mu t
⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭⎩ ⎭
u �t  (m) 

 
Equation (m) can also be expressed in the equivalent form 

 

 1 3

2

( ) 1 2 1 21 1( ) cos cos
( ) 2 21 2 1 2

k k
m m

u t
t t

u t
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎪ ⎪ ⎪ ⎪= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

−⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
u t  (m') �

 
for which the modal vectors have unit magnitude [that is they have the alternate 
forms stated by Eqs. (i') and (n') of Example 7.2)]. It may be seen from either 
Eq. (m) or Eq. (m') that, for the given initial conditions, the amplitudes of both 
modes are the same. Thus, the degree of participation of each mode is the same. 

 
 
 

Example 7.4 
Consider the system of the previous example when each mass is initially dis-
placed and held a unit distance from its equilibrium position and then both are 
released from rest simultaneously. That is, consider an initial displacement of 
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the system in the form of the first modal vector and let the system be released 
from rest from this configuration. 
 
Solution 
The initial conditions of the two-mass three-spring system for the present case 
are written in matrix form as 
 

 
1 0

(0)  ,     (0)
1 0

⎧ ⎫ ⎧
=

⎫
=⎨ ⎬

⎩ ⎭ ⎩ ⎭
�u u ⎨ ⎬  (a-1, 2) 

 
Recall from Eqs. (b) and (c) of Example 7.3 that the general form of the free 
vibration response of the system under consideration is 
 

 1 (1) (2)
1 1 2 2

2

( ) 1 1
cos( ) cos( )

( ) 1 1
u t

A t A t
u t

ω φ
⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭⎩ ⎭
ω φ−  (b) 

 
 where 
     1 2 ,     3k m k mω ω= =  (c-1, 2) 

 
 Imposing  Eq. (a-1) on Eq. (b) results in the pair of algebraic equations 

 

 
(1) (2)

1
(1) (2)

1 2

1 cos cos

1 cos cos

A A
A A

2φ φ

φ φ

= +

= −
 (d) 

 
Adding and subtracting Eqs. (d) with one another gives the alternate pair of al-
gebraic equations 

 
(1)

1
(2)

2

2 2 cos

0 2 cos

A
A

φ

φ

=

=
 (e) 

 
Similarly, imposing Eq. (a-2) on Eq. (b) and adding and subtracting the result-
ing expressions gives the pair of algebraic equations 
 

 
(1)

1
(2)

2

0 2 sin

0 2 sin

A
A

φ

φ

=

=
 (f) 

 
The first of Eqs. (f) is satisfied if either A(1) = 0 or sinφ1 = 0. Since the first of 
Eqs. (e) cannot be satisfied if A(1) = 0, we conclude that 
 

 1sin 0φ =  
 and hence that 
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 1     ( 0,1,2,...)n nφ π= =  (g) 
 
Substitution of Eq. (g) into the first of Eqs. (e) gives the amplitude of the first 
mode as 
 

 (1) 1 ( 0, 2, 4,...)1
1 ( 1,3,5,...)cos

n
A

nnπ
+ =⎧

= = ⎨− =⎩
 (h) 

 
Upon consideration of the second of Eqs. (e) and the second of Eqs. (f) it may 
be concluded that both equations are satisfied only if  
 

 (2) 0A =  (i) 
 
Substitution of Eqs. (g), (h) and (i) into Eq. (b) gives the free vibration response 
for the given initial conditions as 
 

 
1 1 2

( ) cos 2 cos
1 1 2

k k
m mt t

⎧ ⎫⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪⎩ ⎭

u t  (j) �

 
It is seen that when the initial displacement is in the form of the first mode, then 
the response of the system is solely comprised of that mode. The other mode 
does not participate. If the initial displacement was of the form of the second 
mode, the response of the system would be solely comprised of the second 
mode (see Problem 7.9).  

  
 
 

Example 7.5 
Consider the uniform double pendulum shown in 
Figure E7.5-1. (a) Determine the natural frequencies 
of the system. (b) Determine the corresponding natu-
ral modes, and sketch the mode shapes. (c) Deter-
mine the free vibration response of the pendulum. 
 
Solution 
The equations of motion for the double pendulum 
were derived in Chapter 6. (See Section 6.1.2 and 
Example 6.5.) The corresponding displacement ma-
trix is 
                                                                                                 Figure E7.5-1                                                                    
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 1

2

( )
( )

( )
t

t
t

θ
θ

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  

 
where θ1 and θ2 are measured from the vertical (rest) configuration, as indi-
cated. For the particular system shown the masses are of equal magnitude, as 
are the lengths of the rods. Thus, m1 = m2 = m and L1 = L2 = L. Substitution of 
these values into the mass and stiffness matrices of Eq. (6.18), or equivalently 
of Eq. (r) of Example 6.5, gives the mass and stiffness matrices for the present 
system as 
 

 
2

21 2 1 2 1 2
2

2 1 2 2 2

2 1( )
1 1

m m L m L L
mL

m L L m L
⎡ ⎤+ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

m  (a) 

 

 1 2 1 2

2 2

( ) 0 2 0
0 0

m m L g g L
mL

m L g g L
+⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

k  (b) 

 
 
(a) 
We first establish the frequency equation for the system. Hence, 
 

 
2 2

2 2
2 2

2( )
det 0

( )

g
L

g
L

mL
ω ω

ω
ω ω
− −

⎡ ⎤− = =⎣ ⎦ − −
k m  (c) 

 
Expanding the determinant in Eq. (c) and dividing through by mL2 gives the 
frequency equation 

 
2

2 2 2( ) 4 ( ) 2 0g g
L L

ω ω ⎛ ⎞− + ⎜ ⎟
⎝ ⎠

=  (d) 

 
The natural frequencies are next determined from this equation. Equation (d) is 
easily solved to give the two distinct roots 
 

 ( )2 2 2g
L

ω = ∓  

Thus, 
 1 20.765  ,     1.85g Lω ω= = g L  (e-1,2) 

 
(b) 
Substituting the mass and stiffness matrices given by Eqs. (a) and (b) into the 
equation 

  2 ( )    ( 1, 2)j
j jω⎡ ⎤− = =⎣ ⎦k m U 0
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gives the equations for the modal matrices as 
 

 
2 2 ( )

2 1
2 2 ( )

2

02( )
,    ( 1, 2)

0( )

g j
j jL

g j
j jL

mL j
ω ω θ

ω ω θ

⎡ ⎤ ⎧ ⎫− − ⎧ ⎫⎪ ⎪ = =⎢ ⎥ ⎨ ⎬ ⎨ ⎬− − ⎪ ⎪⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦
 (f) 

 
j = 1: 
Setting j = 1 in Eq. (f), substituting Eq. (e-1) and expanding the matrix equation 
gives two algebraic equations. The first is 
 

 (1) (1)
1 22 (2 2) (2 2) 0g g gU U

L L L
⎛ ⎞− − − − =⎜ ⎟
⎝ ⎠

 

 
which simplifies to the relation 
 

 (1) (1)
2 2U U= 1  (g) 

 
(Note that the second equation corresponding to the second row of Eq. (f) re-
duces to Eq. (g) as well. Why?) The modal matrix associated with frequency ω1 
is then 

 (1)
1

1

2
α

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

U  (h) 

 
where α1 is arbitrary. For definiteness we shall let α1 = 1. Thus 
 

 (1)
1

2

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

U  (h') 

j = 2: 
Following the same procedure for j = 2 as we did for j = 1, we obtain the alge-
braic equation 
 

 (2) (2)
1 22 (2 2) (2 2)g g gU U

L L L
⎛ ⎞− + − + =⎜ ⎟
⎝ ⎠

0  

 
which, upon performing the indicated additions, simplifies to the relation 
 

 (2) (2)
2 2U = − 1U  (i) 

It follows that  

 (2)
2

1

2
α

⎧ ⎫⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

U  (j) 



358 Engineering Vibrations 

 
where α2 is arbitrary. Setting α2 = 1 for definiteness gives the modal matrix as-
sociated with natural frequency ω2 as  
 

 (2)
1

2

⎧ ⎫⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

U  (j') 

 
The two mode shapes are depicted in Figure E7.5-2.  

 
         Figure E7.5-2  Natural modes for the double pendulum. 
(c) 
The general form of the free vibration response of the double pendulum is 
found by substituting the above natural frequencies and modal matrices into 
Eq. (7.11), with N = 2. This gives 
 

 ( ) ( )1 (1) (2)
1 2

2

1 1( )
cos 0.765 cos 1.85

( ) 2 2
g g
L L

t
A A

t
θ

φ φ
θ

⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎪ ⎪ ⎪ ⎪= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
−⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

−  (k) 

 
Hence, 
 

 
( ) ( )

( ) ( )
(1) (2)

1 1

(1) (2)
2 1

( ) cos 0.765 cos 1.85

( ) 2 cos 0.765 2 cos 1.85

g g
L L

g g
L L

t A A

t A A

θ φ 2

2

φ

θ φ φ

= − + −

= − − −
 (l) �

 
The values of the amplitudes, A(1) and A(2), and the phase angles, φ1 and φ2, are 
found from the specific initial conditions imposed on the system.  
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Example 7.6 
Determine the free vibration response associated with side-sway motion of the 
three-story building shown in Figure E7.6-1. The 3 floors are each of mass m, 
and the 12 identical elastic columns are each of length L and have bending 
stiffness EI. 

 
   Figure E7.6-1  Three-story building. 
 
Solution 

 

   Figure E7.6-2  Equivalent system. 
 

We first establish the equivalent discrete system shown in Figure E7.6-2. It is 
evident that the equivalent system has three degrees of freedom. The stiffnesses 
of the equivalent elastic springs can be obtained directly from Eq. (1.19) by set-
ting N = 3, E1I1 = E2I2 = E3I3 = EI and L1 = L2 = L3 = L. We thus have that 
  

 3
1 2 3 48k k k k EI L= = = =  (a) 

  
The discrete representation for this structure therefore consists of three masses 
(the floors and roof), each of mass m, connected by three identical springs 
whose stiffnesses are given by Eq. (a).  
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 The equation of motion for the equivalent system is easily determined by 
setting m1 = m2 = m3 = m, k1 = k2 = k3 = k and F1 = F2 = F3 = 0 in Eqs. (d)–(f) of 
Example 6.2 or Eq. (h) of Example 6.3. (Alternatively, the equation of motion 
could be derived directly using one of the methods discussed in Chapter 6.) Do-
ing this we arrive at the governing equation given by 
 

 + =��mu ku 0  (b) 
where 

 
1 0 0
0 1 0
0 0 1

m
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

m ,   
2 1 0
1 2 1

0 1 1
k

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

k  (c, d) 

 
The eigenvalue problem, 2 ,ω⎡ ⎤− =⎣ ⎦k m U 0  for the system under consideration 
is then 
 

 

2
1

2
2

2
3

(2 ) 0 0
(2 ) 0

0 ( )

k m k U
k k m k U

k k m U

ω
ω

ω

⎡ ⎤− −

0

⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − − =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− − ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (e)  

 
Since the numerical values of the parameters k and m are not specified it is 
convenient to express Eq. (e) in an alternate form by factoring out k. This gives  
 

 

2
1

2
2

2
3

(2 ) 1 0 0
1 (2 ) 1 0

0 1 (1 )

U
k

U

ω
ω

ω

⎡ ⎤− −

0
U

⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − − =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− − ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (f) 

where 

 
2

2

k m
ωω =  (g) 

 
Once the eigenvalues 2ω are determined, the corresponding natural frequencies 

2ω may be obtained using Eq. (g).  
 The characteristic equation (frequency equation) is found by requiring 
that the determinant of the square matrix of Eq. (f) vanish. Hence,  
 

 

2

2 2 2 3 2 2

2

(2 ) 1 0
( ) 1 (2 ) 1 ( ) 5( ) 6( ) 1 0

0 1 (1 )

ω
ω ω ω ω

ω

− −
= − − − = − + − + =

− −
F ω  (h) 

 
The roots of Eq. (h) may be found by classical means, or by using a root solv-
ing routine, or by using software that solves the complete eigenvalue problem 
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defined by Eq. (f) directly, such as the MATLAB function “eig.” We here use the 
MATLAB polynomial solver, “roots,”  to determine the zeros of the characteris-
tic equation. This is done by constructing the matrix of coefficients of the poly-
nomial appearing in Eq. (h), P = [−1, 5, −6, 1], and invoking the MATLAB com-
mand roots(P). We thus obtain the zeroes of Eq. (h), 
 
   2 0.1981,  1.555,  3.247ω =   (i) 
 
Substitution of each eigenvalue of Eq. (i) into Eq. (g) gives the corresponding 
natural frequencies for the three-story structure,  
 

 1 30.4451 3.08 EIk m
mL

ω = =  (j-1) 

 2 31.247 8.64 EIk m
mL

ω = =  (j-2) 

 3 31.802 12.5 EIk m
mL

ω = =  (j-3) 

 
To determine the associated modal vectors, we substitute a frequency from Eq. 
(j), or equivalently Eq. (i), into Eq. (f) and solve for the components of the cor-
responding modal vector. Since the matrix 2ω⎡ ⎤− =⎣ ⎦k m U 0  was rendered sin-
gular by requiring that its determinant vanish, (at most) only two of the three 
scalar equations of Eq. (f) will be independent. We shall choose to solve the 
first and third equations since they each have a vanishing term. Hence,  
 

 
2 ( ) ( )

1 2
( ) 2 ( )
2 3

 (2 ) 0

(1 ) 0

j j
i

j j
i

U U
U U

ω

ω

− −

− + − =

=
   ( 1,2,3)j =  (k) 

 
(1)U : 

Substitution of the first value of Eq. (i) into Eqs. (k), with j = 1, gives 
 

  (1) (1) (1) (1)
1 2 2 1(2 0.1981) 0    1.802U U U U− − = ⇒ =

  (1) (1) (1) (1) (1)
2 3 3 2(1 0.1981) 0    1.247 2.247U U U U− + − = ⇒ = = 1U

 
Hence, 

 (1)
1

1
1.802
2.247

α
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (l) 

 
where α1 is an arbitrary scalar. The scalar multiplier can be chosen as anything 
we like, such as unity as was done in prior examples. For this case, however, 
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we shall choose α1 so that U(1) has unit magnitude in the conventional sense 
(i.e., we shall divide the above vector by its magnitude). Thus, let 
 

   1 2 2

1

1 1.802 2.247
α =

+ + 2
 

 
 This gives the first natural mode as the normal mode 
 

 (1)

0.328
0.591
0.737

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (l') 

 
(2)U : 

Proceeding as for the first modal vector, 
  

   (2) (2) (2) (2)
1 2 2 1(2 1.555) 0    0.4450U U U U− − = ⇒ =

  (2) (2) (2) (2) (2)
2 3 3 2(1 1.555) 0    1.802 0.8019U U U U− + − = ⇒ = − = − 1U

.737

 
Hence, 

 (2) (2)
2

1 0
0.4450         0.328
0.8019 0.591

α
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪= → = ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪− −⎩ ⎭ ⎩

U U
⎪
⎭

1

 (m) 

 
(3)U : 

The third modal vector is obtained in the same manner as the first two. Thus, 
 

   (3) (3) (3) (3)
1 2 2 1(2 3.247) 0    1.247U U U U− − = ⇒ = −

  (3) (3) (3) (3) (3)
2 3 3 2(1 3.247) 0    0.4450 0.5550U U U U U− + − = ⇒ = =

 
Solving the above system gives 

 (3) (3)
3

1 0.591
1.247         0.737

0.5550 0.328
α

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪= − → = − ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

U U
⎪

 (n) 

 
Depictions of the three-story structure in each of its three natural modes are dis-
played in Figures E7.6-3 (a)–(c). We are now ready to determine the general 
response of the structure. 
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           Figure E7.6-3  Natural modes of three-story building. 
 

 
 The general form of the free vibration response of a three degree of free-
dom system is given by Eq. (7.11) with N = 3. Hence, 
 

 
3

( )

1

( , ) cos( )j
j j

j

x t tω φ
=

= −∑u U  

 
Substituting the calculated frequencies and modes into the above expression 
gives the free vibration response of the three-story building as 
 

 

( )

( )

1
(1)

2 0 1

3

(2)
0 2

( , ) 0.328
( , ) 0.591 cos 3.08
( , ) 0.737

0.737
                              0.328 cos 8.64

0.591

0.5
                                                

u x t
u x t A t
u x t

A t

ω φ

ω φ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

⎧ ⎫
⎪ ⎪+ −⎨ ⎬
⎪ ⎪−⎩ ⎭

+ ( )(3)
0 3

91
0.737 cos 12.5

0.328
A tω φ

⎧ ⎫
⎪ ⎪− −⎨ ⎬
⎪ ⎪
⎩ ⎭

 (o) 

where 

 0 3

EI
mL

ω =  (p) 
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It is seen that, from a vibrations perspective, the particular system is defined by 
the single parameter ω0. The amplitudes and phase angles, A(j) and φj, (j = 1, 2, 
3) are determined from the specific initial conditions imposed on the structure.  

 
 
 

Example 7.7 
Consider free vibrations of the tram system of Example 6.6. (a) Determine the 
frequency equation for the general system. (b) 
Independent measurements of the natural fre-
quency of the frame and spring alone, and of 
the barrow and support rod when attached to a 
fixed frame, are found to yield identical val-
ues. Determine the natural frequencies and 
modes of the coupled tram system if the mass 
of the barrow is twice that of the frame. (c) 
Determine the free vibration response for the 
system of part (b). Express your answers to (b) 
and (c) in terms of the common natural fre-
quency measured for the detached subsystems.                  Figure E7.7-1 
 
 
Solution 
(a) 
Setting F = 0 in Eq. (i) of Example 6.6 gives the pertinent equation of motion, 

 

 1 2 2
2

2 2 2

( ) 0 0
0 0

m m m L ku u
m L m L m gLθ θ
+⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫

+
⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

��
�� ⎨ ⎬  (a) 

 
The corresponding eigenvalue problem, 2ω⎡ ⎤− =⎣ ⎦k m U 0 , is then 
 

 
{ }

{ }

2 2
1 2 2 1

2 2 2
22 2 2

( ) 0
0

k m m m L U
Um L m gL m L

ω ω

ω ω

⎡ ⎤− + − ⎧ ⎫ ⎧ ⎫⎢ =⎥ ⎨ ⎬ ⎨ ⎬⎢ − − ⎩ ⎭⎩ ⎭⎣ ⎦
⎥

 (b) 

 
Setting the determinant of the square matrix of Eq. (b) to zero and rearranging 
terms gives the frequency equation for the system as  
 

 ( )22 2 2

1 1 1

1 0
m g k k g
m L m m L

ω ω
⎡ ⎤⎛ ⎞

− + + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

=  (c) �
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(b) 
Let ω0 be the measured natural frequency of the detached subsystems. Hence, 
  

 2
0 1g L k mω = =  (d) 

 
Substituting Eq. (d) and the given mass ratio into Eq. (c) renders the frequency 
equation to the form 
 

 ( )22 24 1ω ω 0− + =   (e) 
 where 
 0ω ω ω=  (f) 

 
The roots of Eq. (e) are easily found to be  
 

 2 2 3 0.268,  3.73ω = =∓  (g) 
 
Substituting these roots into Eq. (f) gives the natural frequencies, 
 

 1 0 20.518 ,   1.93 0ω ω ω ω= =  (h) �
 
To determine the natural modes let us expand Eq. (b) and divide the second 
equation by m2L. This gives the relation 
 

 ( )2 2
1 1U LUω ω 2 0− + − =  (i) 

 
Substituting the first root stated in Eq. (g) into Eq. (i) and solving for  in 
terms of  gives the first natural mode as 

(1)
2U

(1)
1U

 

 (1)
1 2

0

11 1
0.3660.366 0.366 gL L

α
ω

⎧ ⎫⎧ ⎫ ⎧ ⎫
= → =⎨ ⎬ ⎨ ⎬ ⎨

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
U ⎬  (j) �

 
where we have chosen the arbitrary scalar multiple α1 to have unit value. Sub-
stituting the second root stated in Eq. (g) into Eq. (i) and proceeding in a similar 
manner gives the second natural mode as 
 

 (2)
2 2

0

11 1
1.371.37 1.37 gL L

α
ω

⎧ ⎫⎧ ⎫ ⎧ ⎫
= → =⎨ ⎬ ⎨ ⎬ ⎨−− −⎩ ⎭ ⎩ ⎭ ⎩ ⎭

U ⎬  (k) �

 
The natural modes for the system are depicted in Figure E7.7-2. 
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   Figure E7.7-2  Natural modes of tram system. 
 
(c) 
Substitution of Eqs. (h), (j) and (k) into Eq. (7.11) with N = 2 results in the free 
vibration response of the system, 
 

 

(1)
0 12

0

(2)
0 22

0

1( , )
( , ) cos(0.518 )

0.366( , )

1
                                              cos(1.93 )

1.37

u x t
x t A t

gx t

A t
g

ω φ
ωθ

ω φ
ω

⎧ ⎫⎧ ⎫
= = −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
⎧ ⎫

+ −⎨ ⎬−⎩ ⎭

u
 (l) �

 
where the amplitudes and phase angles are found from the particular initial con-
ditions imposed on the system. 

 
 
 
 

Example 7.8 
Determine the free vibration response for the motorcycle frame of Example 6.7 
for the case where the stiffness supplied by each wheel is identical and the rider 
sits over the center of mass. The 
mass of the rider is 1/3 the mass of 
the bike, and the stiffness of the 
seat assemblage is 2/3 the effec-
tive stiffness of the tire and sus-
pension system combination. For 
simplicity, assume that the frame 
can be treated as uniform.                                                                           
                                                                                                  
                                                                                 Figure E7.8-1 
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   Figure E7.8-2  Equivalent system. 
 
Solution 
For the given frame and rider, k1 = k2 = k, kb = 2k/3, mb = m/3, ℓ = 0 and L1 = L2 
= L/2. The moment of inertia about an axis through the center of mass of the 
uniform frame (Figure E7.8-2) is then IG = mL2/12.   
 Recall that the vertical displacement of the center of mass of the frame, 
yG, the rotational displacement, θ, and the vertical displacement of the rider, yb, 
are chosen as the generalized coordinates. The corresponding displacement ma-
trix is then 

 
( )

( ) ( )
( )

G

b

y t
t t

y t
θ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

u  (a) 

 
For the given parameters, the system matrices of Example 6.7 reduce to 
 

 2

8 3 0 2 3
0 2 0

2 3 0 2 3

k k
kL

k k

−⎡ ⎤
⎢ ⎥→ ⎢ ⎥
⎢ ⎥−⎣ ⎦

k  (b) 

  

 
0 0

0 0
0 0 3

G

m
I

m

⎡ ⎤
⎢ ⎥→ ⎢ ⎥
⎢ ⎥⎣ ⎦

m  (c) 

 
The corresponding eigenvalue problem is then 
 

 

( )
( )

( )

2

1
2 2

2

2 3

8 3 0 2 3 0
0 2 0

02 3 0 2 3

G

k m k U
kL I U

Uk k m

ω

ω

ω

⎡ ⎤− −

0
⎧ ⎫ ⎧ ⎫⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭− −⎣ ⎦

 (d) 
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We next determine the frequency equation for the system. Hence, 
 

 

( )
( )

( )

2

2 2

2

8 3 0 2 3

0 2 0

2 3 0 2 3

G

k m k

kL I

k k

ω

ω

ω

− −

0

m

− =

− −

 (e) 

 
Expanding the above determinant gives the desired frequency equation, 
 

 ( )2 2 2 2 2 2 22 12 4 ( ) 3 ( )GkL I k k m mω ω ω⎡− −1 +⎣ 0⎤ =⎦  (f) 
 
Equation (f) is easily factored to yield the natural frequencies, 
 

 2 2 2 2
1 2 31.132 ,     3.535 ,     2 6Gk m k m kL I k mω ω ω= = = =  (g) �

 
We next determine the associated modal vectors. Substituting the first fre-
quency into the first row of Eq. (d) gives 

 

 8 1.132
3

kk
m

− m (1) (1) (1) (1)
1 3 3

2 0        2.303
3

U kU U U
⎛ ⎞

− = ⇒ =⎜ ⎟
⎝ ⎠

1  (h) 

 
[The third row of Eq. (d) gives the identical relation.] Substituting the first 
natural frequency into the second row of Eq. (d) gives 
 

 2 k 2 1.132 kL −
m

m (1) (1)
2 0        0U U

⎛ ⎞
2= ⇒ =⎜ ⎟

⎝ ⎠
 (i) 

 
Combining Eqs. (h) and (i) in matrix form gives the modal vector associated 
with the first natural frequency, 
 

 (1)

1
0

2.303

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (j) �

 
A physical depiction of the modal vector is shown in Figure E7.8-3a. Similar 
calculations give the modal vector associated with the second natural fre-
quency. Hence,  
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 8 3.535
3

kk
m

− m (2) (2) (2) (2)
1 3 3

2 0        1.303
3

U kU U U
⎛ ⎞

− = ⇒ = −⎜ ⎟
⎝ ⎠

1  (k) 

 
and 
 

 2 k 2 3.535 kL −
m

m (2) (2)
2 0        0U U

⎛ ⎞
2= ⇒⎜ ⎟

⎝ ⎠
=  (l) 

 
which, when combining in matrix form gives the modal vector associated with 
the second natural frequency, 
 

 (2)

1
0

1.303

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎩ ⎭

U  (m) �

 
A physical depiction of the modal vector is shown in Figure E7.8-3b. To obtain 
the third modal vector we substitute the third natural frequency into the first 
and third rows of Eq. (d) to get 
 

 
2

(3) (3)
1 32

8 2 2 0
3 312

kLk U kU
mL

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
=  (n)   

and 
 
 

 
 Figure E7.8-3  Natural modes of motorcycle frame. 
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2

(3) (3)
1 2

2 22
3 12

mLkU U
mL

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠
3 0=  (o) 

 
These two equations may be solved to give 
 

 (3) (3)
1 3 0U U= =  (p) 

 
Since Eqs. (n) and (o) yielded definite values, the second row of Eq. (d) will re-
flect the lack of determinacy. Substituting the third natural frequency into the 
second row of Eq. (d) gives the relation 
 

 
2

2 22
G

kLkL
I

− GI (3) (3) (3)
2 2 20        0 0        U U U anything

⎛ ⎞
⎜ ⎟ = → ⋅ = ⇒ =
⎜ ⎟
⎝ ⎠

 (q) 

 
as we would expect since the square matrix of Eq. (d) must be singular. [For 
this frequency, all elements of the second row of the square matrix of Eq. (d) 
vanish.] The third modal vector is thus of the form 
 

 (3)

0
1
0

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (r) �

 
As seen in the depiction of the mode shown in Figure E7.8-3c, the third mode 
corresponds to pure rotation. Finally, the free vibration response of the motor-
cycle frame is 
 

 

( )

( )

(1)
0 1

(2)
0 2

(3)
0

( ) 1
( ) 0 cos 1.06
( ) 2.30

1
                             0 cos 1.88

1.30

0
                                                 1 cos 2.45

0

G

b

y t
t A t

y t

A t

A t

θ ω φ

ω φ

ω

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

⎧ ⎫
⎪ ⎪+ −⎨ ⎬
⎪ ⎪−⎩ ⎭

⎧ ⎫
⎪ ⎪+ −⎨ ⎬
⎪ ⎪
⎩ ⎭

( )3φ

 (s) �

where 
 0 k mω =  (t) 
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             Figure 7.1  Examples of unrestrained (semi-definite) systems. 
 

7.2 UNRESTRAINED SYSTEMS 

Systems such as an aircraft in flight or a railroad train in transit are said to be unre-
strained in the sense that they are free to translate and, in the case of the airplane, free 
to rotate. Even though the systems are not restrained in an overall sense, we know 
that such systems exhibit vibrations and we must be able to understand, predict and 
characterize their motions for engineering and performance purposes. Systems that 
are not fixed with respect to translation or rotation at one or more points are referred 
to as unrestrained, or semi-definite, systems. (Simple examples of such systems in-
clude the multiple mass-spring system of Figure 7.1a or the rotating elastic system 
depicted in Figure 7.1b.) With regard to vibrations, such systems have specific char-
acteristics associated with them. The lack of constraint manifests itself as a set of 
“rigid body modes” for which there is no oscillatory behavior, together with the pure 
vibration modes that we have studied to this point. The occurrence of rigid body 
modes, their properties and implications, is best demonstrated by example.  
 

Example 7.9 
Consider rectilinear motion of the sys-
tem comprised of two identical masses 
of mass m connected by a single linear 
spring of stiffness k, as shown in Figure 
E7.9-1. Determine (a) the natural fre-
quencies, (b) the natural modes, and (c) 
the free vibration response of the system.                      Figure E7.9-1 
 
Solution 
(a) 
The equation of motion and mass and stiffness matrices may be found directly 
from Eqs. (b)–(e) of Example (6.1), with m1 = m2 = m, k2 = k, k1 = k3 = 0 and F 
= 0. This gives 
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 + =��mu ku 0  (a) 

where 
 

 
0

0
m

m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

m     and    
k k
k k

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

k  (b, c) 

 
Note that the second row of the stiffness matrix is simply the negative of the 
first row, and hence that the matrix k is singular. This is characteristic of unre-
strained systems. Next, assuming a solution of the form 
 

 i te ω=u U  (d) 
 
and substituting into Eq. (a) results in the eigenvalue problem 
 

 
2

12
2

2

0( )
0( )

Uk m k
Uk k m

ω
ω

ω
⎡ ⎤ ⎧ ⎫ ⎧ ⎫− −⎡ ⎤− = =⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦ − − ⎩ ⎭⎩ ⎭⎣ ⎦

k m U  (e) 

 
The frequency equation is then 
 

 
2

2
2

( )
( ) ( ) ( ) 0

( )
k m k

k m k
k k m

ω
ω ω

ω
− −

= = −
− −

F 2 2 2− − =

0

 (f) 

 
which, when expanded, takes the form 
 

 2 2 2m m kω ω⎡ ⎤− =⎣ ⎦  (g) 
 
The roots of Eq. (g) may be read directly as 
 

 2 0, 2k mω =  (h) 
 
from which we obtain the natural frequencies 
 

 1 2
20,   k
m

ω ω= =  (i-1, 2) 

 
We see that the first natural frequency is zero, indicating no oscillation for that 
mode. This is due to the lack of constraint of the system. We shall see its impli-
cations in what follows. Let us first determine the associated natural modes.  
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(b) 
(1)U :  

Substitution of Eq. (i-1) into Eq. (e) gives the algebraic relation 
 

  (j) 2 (1) (1) (1) (1)
1 2 1( 0 ) 0    k m U kU U U− − = ⇒ = 2

 
Hence,  

 (1)
1

1 1
1 1

α
⎧ ⎫ ⎧ ⎫

= →⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

U  (k) 

 
where α1 is any scalar and we have chosen its value to be unity. Note that this 
is the “rigid body” mode seen in Example 7.2. However, in this case there is no 
oscillation (ω1 = 0) for the rigid body mode due to the lack of constraint. Thus, 
the first mode simply corresponds to a rigid body translation of the entire sys-
tem. (See Figure E7.9-2a.) 
 

(2)U : 
Substitution of Eq. (i-2) into Eq. (e) gives the algebraic relation 
 

 (2) (2) (2) (2)
1 2 2

2 0    kk m U kU U U
m

⎛ ⎞− − = ⇒ = −⎜ ⎟
⎝ ⎠

1  (l) 

 
Hence, 

 (2)
2

1 1
1 1

α
⎧ ⎫ ⎧ ⎫

= →⎨ ⎬ ⎨ ⎬− −⎩ ⎭ ⎩ ⎭
U  (m) 

 
where α2 is arbitrary and we have chosen it to have unit value. This is the ac-
cordion mode discussed in Example 7.2, but with the oscillations now at the 
frequency given by Eq. (i-2). (See Figure E7.9-2b.) 

 
    Figure E7.9-2  Natural modes of system. 
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 (c) 

Substitution of the roots 1,2ω±  given by Eqs.(i) and the associated modal matri-
ces given by Eqs. (k) and (m) into Eq. (d) and superposing these solutions gives 
the solution of Eq. (a) for the unstrained system. Note that both ω = + 0 and 
ω = − 0 give the same solution, a constant. In addition, note that multiplying a 
constant by t also yields a solution corresponding to vanishing ω. The free vi-
bration response of the unrestrained two-mass one-spring system is thus 
  

 ( ) ( )1 (1) (1) (2) 2
1 2 2

2

( ) 1 1
( ) cos

( ) 1 1
k

m

u t
t A A t A t

u t
φ

⎧ ⎫ ⎧ ⎫ ⎧
= = + + −⎨ ⎬ ⎨ ⎬ ⎨

⎫
⎬−⎩ ⎭ ⎩ ⎭⎩ ⎭

u  (n) 

 
Consideration of Eq. (n) shows that the free vibration response of the unre-
strained system consists of a rigid body displacement of the entire system, with 
the corresponding rigid body displacement increasing linearly with time, to-
gether with the two masses moving harmonically relative to the center of the 
translating spring and 180 degrees out of phase with one another (i.e., moving 
toward and away from one another at the same rate). The rigid body translation 
is a result of the lack of restraint. Note that since the system is constrained to 
translate in one dimension there is only one rigid body mode. Thus, imagine 
that the mass spring system is sitting on a frictionless surface or track when it is 
suddenly tossed, or struck with a baseball bat or a golf club. Equation (n) tells 
us that, after being released (or struck), the system will move off in the direc-
tion of the initial velocity and will vibrate relative to the position of the center 
of the spring (the center of mass of the system) with frequency 2 2 /k mω = . 
(See Figure E7.9-3.) 
 

 
   Figure E7.9-3  Motion of system. 

  
 
 

7.3 PROPERTIES OF MODAL VECTORS 

In this section we shall study the general properties of the modal vectors of discrete 
multi-degree of freedom systems. These properties will be central to our study of 
forced, as well as free, vibrations of mechanical systems. We first introduce the con-
cept of the scalar product of two modal vectors. 
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7.3.1 The Scalar Product 

Fundamental to the characterization of the natural modes of a system is the scalar 
product of two modal vectors. We introduce this concept in the present section. 
Though we are interested in general N-degree of freedom systems, and hence in N-
dimensional space, it is instructive to first discuss vectors in three-dimensional space 
since such vectors are familiar to us and easier to visualize. 
 Consider the Cartesian reference frame with axes (x1, x2, x3) in three-
dimensional space, and let 1 2 3, ,e e eG G G  be corresponding unit vectors directed along 
these axes, as shown in Figure 7.2. Further, let uG and vG  be two vectors in that space 
as indicated. The two vectors may be expressed in terms of their components with 
respect to the particular coordinate system chosen as follows; 
 

 1 1 2 2 3 3

1 1 2 2 3 3

u u e u e u e
v v e v e v e

= + +

= + +

G G G G
G G G G  (7.17) 

 
Taking the scalar dot product of  uG  and vG  results in the familiar relation 
 
 1 1 2 2 3 3u v u v u v u v v u= + + =

G Gi G Gi

2v

 (7.18) 
 
Let us next construct two column matrices, u and v, whose elements correspond to 
the components of  and , respectively. Hence, let uG vG

 

 
1 1

2

3 3

 ,     
u v
u
u v

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪= = ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

u v
⎪

 (7.19) 

 
We shall define the scalar product of u and v as follows; 
 

v

u

x
2

e
2

e
1

x
1

e
3

x
3

 
 Figure 7.2  Vectors and coordinate system. 



376 Engineering Vibrations 

 [ ]
1

1 2 3 2 1 1 2 2 3 3

3

, ,
v

u u u v u v u v u v
v

⎧ ⎫
⎪ ⎪≡ = = + + = =⎨ ⎬
⎪ ⎪
⎩ ⎭

u v u v v u v uT T  (7.20) 

 
Comparison of Eqs. (7.20) and (7.18) shows the two to be equivalent statements. 
 

Orthogonality 
The basic definition and geometric interpretation of the scalar dot product between 
two vectors is given by the relation 
 
 cosu v u v θ=

G G G Gi  (7.21) 
 
where θ is the angle between the vectors. It follows that 
 
 if   0   then   u v u v= ⊥

G G Gi G  (7.22) 
 
Likewise, we say that,  
 
    if  , 0=u v  then ⊥u v . 

 

The Weighted Scalar Product 
It is useful for our study of vibrations, as well as for fundamental purposes, to extend 
the concept of the scalar product beyond the elementary definition and operation dis-
cussed above. Therefore, let us consider some square symmetric matrix A = AT and 
two column matrices u and v. The weighted scalar product of u and v with respect to 
the weight matrix A is defined as 
 
 , ≡

A
u v u AvT  (7.23) 

  
The operation described by Eq. (7.23) may be interpreted algebraically as taking a 
scalar product of the two vectors u and v, but weighting the contributions of the vari-
ous products of the elements (components) differently according to the weight matrix 
A. The operation may be interpreted geometrically as first stretching and rotating the 
vector v to obtain a new vector ,=

�v Av  then taking the conventional dot product 
between the vectors u and .

�v  Orthogonality of two vectors with respect to the weight 
matrix is defined accordingly. 
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Orthogonality 
If the weighted scalar product of u and v vanishes, then u and v are said to be or-
thogonal (with respect to A). Stated symbolically, 
 
    if 0=

A
u,v  then ⊥

A
u v   

 
 All of the concepts and operations discussed above for three-dimensional vec-
tors are applicable to vectors of any dimension, say N. Hence, 
 

 
1

,
N

j j
j

u v
=

≡ = =∑u v u v v uT T  (7.24) 

and 

 
1 1 1 1

,
N N N N

l lj j l jl j
l j l j

u a v u a v
= = = =

≡ = = =∑∑ ∑∑A
u v u A v v AuT T  (7.25) 

where 

    ,    
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u
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u

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
u

1

2

N

v
v

v

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
v  ,     

11 12 1

21 22 2

1 2

N

N

N N NN

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # % #
"

A AT  

 
It may be seen that the conventional scalar product corresponds to the weighted scalar 
product with A = I (the N N identity matrix). With the scalar product and orthogo-
nality defined, we are now ready to establish the properties and characteristics of the 
normal modes. 

×

 

7.3.2 Orthogonality 

The mutual orthogonality of the modal vectors for multi-degree of freedom systems is 
an important property that is central to the understanding and solution of vibration 
problems. In this section we establish the mutual orthogonality of the modes associ-
ated with distinct roots of the frequency equation, and examine the characteristics of 
the modes associated with repeated roots of the frequency equation and the manner in 
which they can be rendered mutually orthogonal. 
 Consider a set of frequency-mode pairs, { }2 ( ), | 1,2,...,j

j jω =U N  for a given 
N-degree of freedom system. Let us focus our attention on two generic frequency-
mode pairs, say the lth and jth, and recall that each pair satisfies Eq. (7.3). Hence, 
 

 
( ) 2 ( )

( ) 2 ( )

l l
l

j j
j

ω

ω

=

=

kU mU
kU mU

 (7.26) 
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Pre-multiplying the first equation by ( )jU T results in the equality 
 
 ( ) ( ) 2 ( ) ( )j l j

lω=U kU U mUT T l  (7.27) 
 
Taking the transpose of the second of Eqs. (7.26) gives 
 
  ( ) 2 ( )j j

jω=U k U mT T T T

 
Now, post-multiplying the above expression by U(l) and using the fact that the mass 
and stiffness matrices are symmetric (m = mT, k = kT) results in the equality 
 
 ( ) ( ) 2 ( ) ( )j l j

jω=U kU U mUT T l  (7.28) 
 

Distinct Frequencies 
Subtracting Eq. (7.28) from Eq. (7.27) results in the relation 
 
 2 2 ( ) ( )0 ( ) ,j l

l jω ω= −
m

U U  (7.29) 

where 
 ( ) ( ) ( ) ( ),j l j l=

m
U U U mUT  (7.30) 

 
is the weighted scalar product of the lth and jth modal vectors with respect to the mass 
matrix m. It is seen from Eq. (7.29) that that the modal vectors are mutually orthogo-
nal with respect to the mass matrix provided that the corresponding frequencies are 
distinct (i.e., they are not equal). Thus, 
 
     provided that  ( ) ( )l ⊥

m
U U j 2

j
2

lω ω≠  (7.31) 

 
It may be seen from Eq. (7.27) that if the scalar product of the two modal vectors with 
respect to m vanishes, then it also vanishes with respect to k. Thus,  
 
    provided that  ( ) ( )l ⊥

k
U U j 2

j
2

lω ω≠  (7.32) 

 
We have thus proven the following theorem: modal vectors associated with distinct 
natural frequencies are mutually orthogonal with respect to both the mass matrix and 
the stiffness matrix. 
 

Example 7.10 
Verify that the natural modes for the double pendulum of Example 7.5 are mu-
tually orthogonal.  
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 Solution 

From the solution of Example 7.5, the natural frequencies and associated modal 
matrices for the double pendulum are 
 

 ( )2 (1)
1

1
2 2  ,    

2
g
L

ω
⎧ ⎫⎪ ⎪= − = ⎨ ⎬
⎪ ⎪⎩ ⎭

U  (a-1, 2) 

and 

 ( )2 (2)
2

1
2 2  ,    

2
g
L

ω
⎧ ⎫⎪ ⎪= + = ⎨ ⎬

−⎪ ⎪⎩ ⎭
U  (b-1, 2) 

 
Clearly 2

1 2
2ω ω≠  and so, from the theorem of this section, we know that U(1) 

and U(2) are mutually orthogonal with respect to both the mass matrix for the 
system and the stiffness matrix for the system. This may be verified by direct 
substitution of the modal matrices and mass and stiffness matrices into the cor-
responding weighted scalar products. Upon carrying through the calculations, 
we see that 
 

 (1) (2) (1) (2) 2
12 1

, 1 2
1 1 2

mL
⎧ ⎫⎡ ⎤ ⎪ ⎪⎡ ⎤= = ⎨ ⎬⎢ ⎥⎣ ⎦ −⎪ ⎪⎣ ⎦ ⎩ ⎭m

U U U mUT 0=  (c) 

therefore, 
   (1) (2)⊥

m
U U �

Similarly, 
 

 (1) (2) (1) (2) 2
12 0

, 1 2
0 2

g L
mL

g L
⎧ ⎫⎡ ⎤ ⎪ ⎪⎡ ⎤= = ⎨ ⎬⎢ ⎥⎣ ⎦ −⎪ ⎪⎣ ⎦ ⎩ ⎭k

U U U kUT 0=  (d) 

 
which implies that 
 

   (1) (2)⊥
k

U U �

  
Equations (c) and (d) verify that the modal vectors are mutually orthogonal 
with respect to both the mass and the stiffness matrices. 

 
     

Repeated Frequencies 
Suppose now that two roots of the frequency equation are repeated. For example, for 
a three degree of freedom system the frequency equation would take the form 
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 2 2 2 2 2 2 2 2 2( ) ( ) ( ) 0 , , 2ω ω α ω β ω α α β= − − = ⇒ =F  
 
For the purpose of this discussion, and  ease of visualization, let us consider such a 
case for a three degree of freedom system. The corresponding results and interpreta-
tions can then be abstracted to systems with any number of  degrees of freedom. 
 Consider a three degree of freedom system with two repeated frequencies, as 
discussed above. Thus, let  
 
    2 2

1 2
2ω ω α= = , and 2 2

3ω β=  
 
Then, from the theorem of the previous section, we know that U(3) is orthogonal (with 
respect to both m and k) to the modal vectors associated with the repeated frequency. 
We therefore know that the latter vectors lie in the plane whose normal is parallel to 
U(3), as depicted in Figure 7.3). However, the aforementioned theorem gives us no 
further information about the modal vectors associated with the repeated frequencies. 
Nevertheless, we do know that the repeated frequencies and associated modal vectors 
must satisfy Eq. (7.3). Hence, 
 

  (7.33) 
(1) 2 (1)

(2) 2 (2)

α

α

=

=

kU mU
kU mU

 
where U(1) and U(2) are two such vectors. Let us multiply the first equation by a scalar 
constant a, and the second equation by a scalar constant b, where a and b are other-
wise arbitrary, and add the resulting equations. We then have that 
 
  (7.34) 2α=�kU mU�
where 
  (7.35) (1) (2)a b= +�U U U
 
 

U(1)

U(2)

U(3)

 
Figure 7.3  Vectors associated with repeated roots (lying in horizontal plane) and vector asso-
ciated with differing root (perpendicular to plane). 
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It is seen that if U(1) and U(2) are modal vectors associated with the repeated frequency 
α then, since a and b are arbitrary, any linear combination of them is also a modal 
vector. Therefore, any vector that is orthogonal to U(3), and hence lies in the plane 
whose normal is parallel to U(3), is a modal vector associated with the repeated fre-
quency. This lack of determinacy is explained algebraically by recalling the nature of 
the matrix . Recall that this matrix is singular – that is, at least one 
row of the matrix can be expressed as a linear combination of the other rows. How-
ever, when two roots are repeated it implies that two rows are linear dependent on the 
other rows. This adds an additional degree of indeterminacy. For a three degree of 
freedom system there are thus at most two independent rows of 

2ω⎡ ⎤−⎣ ⎦k m U = 0

2ω⎡ ⎤− =⎣ ⎦k m U 0 , but 
this is reduced to one when two frequencies are repeated. This lack of determinacy is 
reflected in the result that any vector orthogonal to the third modal vector is a modal 
vector associated with the repeated frequency. The above discussion is readily ex-
tended to N-degree of freedom systems. Therefore, for systems possessing N degrees 
of freedom, any vector lying in the hyperplane that is orthogonal to the remaining 
modal vectors is a modal vector corresponding to the repeated frequency. For the 
purpose of analysis, it is convenient to choose two mutually orthogonal vectors lying 
in that hyperplane as the modal vectors for the repeated frequency. 
 

Example 7.11 
A floating platform is comprised of a board of length L that sits atop two iden-
tical floats, each of mass m/2 and cross-sectional area A, as indicated. The mass 
of the board is negligible compared with the mass of the floats and the mass 
density of the fluid is ρf. 
Determine the natural fre-
quencies and natural 
modes for the floating 
platform. Assume small 
rotations of the platform.                    Figure E7.11-1  Floating platform.                                              
 
Solution 
The effects of buoyancy may be accounted for through equivalent springs of 
stiffness k = ρf gA, as shown in Figure E7.11-2, where g is the gravitational ac-
celeration (see Section 1.2.4). The equations of motion for the equivalent sys-
tem can then be derived by direct application of Newton’s Laws, or by using 
Lagrange’s Equations. As the present system is a simple one, the former ap-
proach is easily implemented. In either case, let us choose the centerspan verti-
cal deflection, yG (positive downward), and the rotational displacement, θ (posi-
tive clockwise), as the generalized coordinates to describe the motion of this 
system. Νewton’s Second Law and the corresponding angular momentum prin-
ciple are then, respectively, expressed for the current system as 
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 Figure E7.11-2  Equivalent system. 

 
 

 ,    G G GF m y M I θ= =∑ ∑ ����  (a-1, 2) 
 
The kinetic diagram for the deflected system is shown in Figure E7.11-3. Upon 
implementing Eq. (a-1), we have 
 

 sin sin
2 2G G
L Lk y k y myθ θ⎛ ⎞ ⎛ ⎞− + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
��G  

 
which simplifies to the standard form 
 

 2 0G G
ky y

m
+ =��  (b) 

 
Taking moments about point G and implementing Eq. (a-2) gives the relation 
 

 
2

sin cos sin cos 2
2 2 2 2 2 2G G
L L L L m Lk y k yθ θ θ θ⎛ ⎞ ⎛ ⎞ ⎛+ − − = −⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝
��θ⎞

⎟
⎠

 

 
which, after regrouping terms, reduces to the form   
 

 2 sin cos 0m kθ θ θ+ =��  (c) 
 
For small angle motions of the platform, we may linearize Eq. (c). The equation 
for rotational motion then simplifies to the standard form 
 

 2 0k
m

θ θ+ =��  (d) 

 
Equations (b) and (d) may be expressed in matrix form as 
 

 
0 2 0

0 0 2
G Gm y k y

m kθ θ
⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧

+
0
0

⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩

��
�� ⎨ ⎬

⎭
 (e) 
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   Figure E7.11-3  Kinetic diagram. 
 
 
A comparison of the equations for translational and rotational motion, Eqs. (b) 
and (d), reveals two interesting properties of the system. First, we may note that 
the two equations are uncoupled for the chosen generalized coordinates. (Coor-
dinates which have this property are referred to as principal, or modal, coordi-
nates and will be discussed formally in the next chapter.) Second, it is readily 
seen that 

 1 2
2k
m

ω ω= =  (f) 

 
That is, the natural frequencies for the two motions are the same. Formally, the 
eigenvalue problem for this system takes the form 
 

 
2

2

0(2 ) 0
00 (2 )

Yk m
k m

ω
ω

⎡ ⎤ ⎧ ⎫ ⎧ ⎫−
=⎨ ⎬ ⎨ ⎬⎢ ⎥ Θ− ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (g) 

 
The corresponding frequency equation is then 
 

 2 2 2( ) det (2 ) 0k mω ω ω⎡ ⎤ 2= − = − =⎣ ⎦k mF  (h) 
 
which yields the roots 

 2 2 2,k k
m m

ω =  (i) 

 
 
 
The roots of the frequency equation are clearly repeated (not distinct) and, of 
course, yield the identical frequencies stated in Eq. (f). 
 To determine the modal matrices we substitute the frequencies into Eq. 
(g) and solve for U(j) = [Y(j) Θ(j)]T  (j = 1, 2). Since the roots are repeated (the 
two natural frequencies are the same) this gives, for both modes, 
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(1,2) (1,2)

(1,2) (1,2)

22 0

20 2

kk m Y
m

kY k m
m

⎛ ⎞ 0

0

− + ⋅Θ =⎜ ⎟
⎝ ⎠

⎛ ⎞
⋅ + − Θ =⎜ ⎟

⎝ ⎠

 (j) 

  
 Each of which reduces to 
 
 (1,2) (1,2)0 0Y 0⋅ + ⋅Θ =  (k) 
 

It is seen from Eq. (k) that both of the components of the modal vectors can 
take on any value. Thus, any 2 row column matrix will satisfy Eq. (g) and, 
therefore, correspond to a modal matrix. Two convenient pairs are given by 
 

 (1) (2)1 0
,   

0 1
⎧ ⎫ ⎧

= =
⎫

⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭

U U ⎬  

or 

 (1) (2)1 11 1,   
1 12 2

⎧ ⎫ ⎧
= =

⎫
⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭

U U  

 
Physical depictions of each of the two pairs of modal vectors are sketched in 
Figure E7.11-4. 

 
  Figure E7.11-4  Natural modes for floating platform. 

 
 

7.3.3 Normalization 

It was shown in Section 7.1 that the modal matrices are determined to within, at most, 
a scalar multiple. One way to introduce definiteness to the modal matrix is to set an 
element of the matrix, typically the first element, to one. Alternatively, we can nor-
malize the corresponding vector so that its magnitude is unity. That is, we can render 
the modal vectors unit vectors. When this is done to a set of modal vectors, the modes 
are said to be normalized and the resulting vectors are referred to as the normal 
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modes of the system. In the present section, we shall discuss several options for con-
structing a set of normal modes.  
 A unit vector is a vector whose scalar product with itself is one. In this regard, 

 

the scale or metric may be defined in several ways. We can set the conventional sca-
lar product of a modal vector with itself to unity, or we can set a weighted scalar 
product of the modal vector with itself to unity. For the latter case we have two obvi-
ous candidates for the weight matrix; the mass matrix or the stiffness matrix. The 
problem may be stated mathematically as follows; since a modal matrix is determined 
to within a scalar multiplier, a typical modal vector for an N-degree of freedom sys-
tem will be of the form 
 

1

2

N

U
U

U

α

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
U  (7.36) 

 
here α is arbitrary. To construct the corresponding normal mode, we take the scalar 

Conventional Scalar Product 
 in terms of the conventional scalar product, we take 

w
product of this vector with itself, set the resulting expression to one and solve for α. 
Then, substitute the calculated value of α back into Eq. (7.36) to obtain the corre-
sponding normal mode. 

To normalize the modal vector
the product as 
 
 , 1= =U U U UT  (7.37) 
r 

 

o

[ ]
1

2
1 2 1N

N

U
U

U U U

U

α α

⎧ ⎫
⎪ ⎪
⎪ ⎪ =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

"
#

 

 
olving for α  and substituting this value back into Eq. (7.37) gives the corresponding 

 

S
normal mode as 

1

2

2 2 2
1 2

1

... N

N

U
U

U U U
U

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬

+ + + ⎪ ⎪
⎪ ⎪⎩ ⎭

#
U  (7.38) 
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It may be seen that this result would be obtained by simply dividing the original vec-
tor by its magnitude. (See Example 7.6.) Equivalently, the arbitrary multiplier, α, is 
eliminated if we simply divide U by its magnitude (the square root of the scalar prod-
uct of the modal vector with itself). Thus, 
 

 1
,

= =
UU
U U U

U  (7.39) 

Weighted Scalar Product 
The modal vectors may also be normalized in terms of a weighted scalar product. The 
arbitrary scalar multiplier is eliminated for a given modal vector if we normalize with 
respect to some weight matrix, say the mass matrix or the stiffness matrix. Hence, 
 

 1 1
,

= = =
m m

UU U
U U U U mUT

U  (7.40) 

or 

 1 1
,

= = =
k k

UU U
U U U U kUT

U  (7.41) 

 
Normalizing the modal vectors in a consistent manner allows for the evaluation of the 
relative contribution of each mode in a given response. For the analysis of forced 
vibrations, it is often convenient to normalize with respect to the mass matrix as de-
scribed by Eq. (7.40). 
 

Example 7.12 
Determine the normal modes for the two-mass three-spring system of Exam-
ples 7.1 and 7.2. Use the mass matrix as the weighting measure. 
 
Solution 
The modes for the system of interest were determined in Example 2.2 to be 
 

 (1) (2)1
 ,    

1 1
1⎧ ⎫ ⎧

= =
⎫

⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭
U U  (a-1, 2) 

 
The corresponding scalar products with respect to the mass are then 
 

 [ ](1) (1) 0 1
, 1 1

0 1
m

m
m

⎡ ⎤ ⎧ ⎫
= ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭m
U U 2=  (b) 
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 [ ](2) (2) 0 1
, 1 1

0 1
m

m
m

⎡ ⎤ ⎧ ⎫
= − =⎨ ⎬⎢ ⎥ −⎣ ⎦ ⎩ ⎭m

U U 2  (c) 

 
Substituting Eqs. (a-1) and (b), and Eqs. (a-2) and (c), into Eq. (7.40) gives the 
desired normal modes, 
 

 (1) (2)1 11 1 ,    
1 12 2m m

⎧ ⎫ ⎧
= =

⎫
⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭

U U  (d-1,2) �

 
 
 

7.4 SYSTEMS WITH VISCOUS DAMPING 

To this point, we have considered the fundamental problem of free vibrations of 
multi-degree of freedom systems without damping. The problem is an important one, 
both as a basis for analysis and because we know from our discussions of single de-
gree of freedom systems that damped oscillations eventually die out. Nevertheless, 
there are situations in which the effects of damping are important and/or the under-
standing of these effects is germane. We now consider free vibrations of multi-degree 
of freedom systems with viscous damping.  
 Recall from Chapter 6 that the equation of motion for an N-degree of freedom 
system with viscous damping is of the general form 
 
 + + =�� �mu cu ku 0  (7.42) 
 
We shall first obtain the free vibration response of an arbitrary N-degree of freedom 
system by solving Eq. (7.42) directly. We will then gain further insight by consider-
ing the system response in state space. 
 

7.4.1 System Response 

We shall here approach the problem for damped systems in a manner similar to that 
for undamped systems. We thus assume a solution of the form 
 
 ( ) tt eα=u U  (7.43) 
 
where α and the elements of U are constants to be determined. Substituting Eq. (7.43) 
into Eq. (7.42) results in the characteristic value problem 
 
 2α α⎡ ⎤+ + =⎣ ⎦m c k U 0  (7.44) 
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The free vibration problem is thus reduced to finding (α, U) pairs that satisfy Eq. 
(7.44). For nontrivial solutions we require that 
 
 2det ( ) 0α α α⎡ ⎤+ + = =⎣ ⎦m c k F  (7.45) 
 
which, when expanded, results in a characteristic equation for the unknown exponent 
α in the form of a polynomial of order 2N. For dissipative systems, the roots of the 
characteristic equation will be complex with negative real parts or, for large damping, 
they will be real and negative. That is  
 
    ( 1, 2,..., )j j ji j Nα µ ω= − ± =  (7.46) 
 
or, for large damping, 
 
    ( 1, 2,..., 2 )j j j Nα µ= − =  (7.47)  
 
where µj > 0. The characteristic equation could also yield roots of both of the afore-
mentioned types. We shall first consider the case of complex roots of the characteris-
tic equation.  
 For each complex αj there corresponds a U(j) which will, in general, be com-
plex. That is, 
  
  (7.48) ( ) ( ) ( )    ( 1, 2,..., )j j j

R Ii j= ± =U U U N
 
[For the conjugate root, the matrix operator in Eq. (7.44) is the complex conjugate of 
the original operator. The corresponding vector is then the complex conjugate of the 
original vector.] Substitution of Eqs. (7.46) and (7.48) into Eq. (7.43) gives the corre-
sponding solution 
 
 { } { }( ) (( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ( ) j j j ji t i tj j j j j j j

R I R It i A e i B eµ ω µ ω− + − −= + + −u U U U U )

j t

 (7.49) 
 
which, after using Euler’s Formula, takes the alternate form 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) cos sin

                                       cos sin

j

j

tj j j j
R j j

t j j j
I j

t e A t B t

e B t A

µ

µ

ω ω

ω ω

−

−

⎡ ⎤= +⎣ ⎦
⎡ ⎤+ −⎣ ⎦

� �

��
u U

U
 (7.50)  

where  
 ( )( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ  ,    ˆj j j j j jA A B B i A B= + = −

� �
  

 
Proceeding as in Section 2.1 renders the solution to the form 
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 { }( ) ( ) ( ) ( )( ) cos( ) sin( )j tj j j j
R j j I j jt A e t tµ ω φ ω−= − + φ−

�
u U U  (7.51)  

where 

 ( )2 2( ) ( ) ( ) 1 ( ) ( ) ,    tanj j j j
jA A B B Aφ −= + = j

� �� �
  

 
 ( )1 ( ) ( )tan 2j j

j A B jφ φ π−= − = −
� � �

   

 
The general free vibration response is comprised of a linear combination of all solu-
tions of the above form. Hence, 
 

 

{ }

( )

1

( ) ( ) ( )

1

( ) ( )

      cos( ) sin( )j

N
j

j

N
tj j j

R j j I j
j

t t

A e t tµ
jω φ ω

=

−

=

=

= − +

∑

∑

u u

U U φ−

jU

 (7.52) 

 
where the constants A(j) and φj are determined from the initial conditions. It may be 
seen that the motion of the system at a given frequency consists of two motions that 
are out of phase with one another. It is also seen that a separate rate of decay is asso-
ciated with each (damped) natural frequency. 
  For large damping the characteristic values are all real and negative and the 
corresponding response is of the form 
 

  (7.53) 
2

( ) ( )

1

( ) j

N
tj

j

t A e µ−

=

= ∑u

 
More generally, the response of a damped system may be comprised of some combi-
nation of the elemental solutions stated in Eqs. (7.52) and (7.53).  
 The analysis and behavior of viscously damped systems that are free from ex-
ternal forces is demonstrated by the following example. 
 
 

Example 7.13 
Consider the uniform frame of mass m and length L supported at its ends as 
shown. (a) Determine the free vibration response of the frame if k1 = k2 = k , 
and no damping exists, and (b) when the stiffnesses and dampers are such that 
k1 = k2 = k , c2 = 2c1 and 1 2 0c km = .1 . (c) Repeat part (b) if c2 = 2c1 and 

1 2 1.c km = 0 . (d) Obtain the characteristic values and the general form of 
the free vibration response if c2 = 2c1 and 1 2 0c km = .1 . 
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                 Figure E7.13  Uniform frame with viscoelastic supports. 
 
Solution 
The equation of motion for the system is obtained by including the damping 
forces in the development of Section 6.1.3. This gives, for the system under 
consideration, 
 

 

1 2 2 1
2

2 1 1 2

2

0 ( ) ( ) 2
0 ( ) 2 ( ) 4

2 0 0
                                                          

0 2

G G

G

G

m c c c c Ly y
I c c L c c L

k y
kL

θ θ

θ

+ −⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− +⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦

0
⎡ ⎤ ⎧ ⎫ ⎧ ⎫

+ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭ ⎩ ⎭

�� �
�� �

 (a) 

 
where, for a uniform frame, IG = mL2/12. The system is seen to be coupled 
through the damping matrix. 
 
(a) 
For vanishing damping (c1 = c2 = 0) the natural frequencies and modal vectors 
are easily seen to be 
 

 (1)
1

1
2  ,    

0
k mω

⎧ ⎫
= = ⎨ ⎬

⎩ ⎭
U  (b-1, 2) 

 

 2 (2)
2

0
2 6  ,    

1GI L k mω
⎧ ⎫

= = = ⎨ ⎬
⎩ ⎭

U  (b-3, 4) 

 
Note that the second natural frequency and mode shape correspond to the third 
mode of Example 7.8 since in that example the rider was over the center of 
mass of the frame and so did not influence the rotation of the system. The re-
sponse of the system is then 
 

 ( ) ((1) (2)2
1

1 1
cos cos

0 0
G k

m

y
A t A )6

2
k

m tφ φ
θ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
−  (c) 
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(b) 
The characteristic value problem for the damped system takes the form 
 

 
{ }

{ }

2
1 2 2 1 1

2 2 2
22 1 1 2

( ) 2 ( ) 2 0
0( ) 2 ( ) 4 2G

m c c k c c L U
Uc c L I c c L kL

α α α

α α α

⎡ ⎤+ + + − ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥− + + + ⎩ ⎭⎩ ⎭⎣ ⎦
 (d) 

 
Setting the determinant of the square matrix of Eq. (d) to zero (and dividing the 
resulting equation by mIGω0

4) gives the characteristic equation 
 

[ ] [ ] [ ]4 3 2
1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ( ) 4( ) 4(1 3 ) 6( ) 3 0α α α η η α η η α η η= + + + + + + + =F  (e) 

 
where 

 0α̂ α ω=  (f) 
  
 0 2k mω =  (g) 
 
 1 1 2 22  ,    2c mk c mη η= = k  (h-1, 2) 

 
For η2 = 2η1 and η1 = 0.1 we find, using the MATLAB solver “roots,” that  

 

  (i)  
(1)
,

(2)
,

ˆ 0.1499 0.9964

ˆ 0.4501 1.6590
a b

a b

i

i

α

α

= − ±

= − ±
 
The first row of Eq. (d) gives, for 2 1c c≠ ,
 

 ( )
2 ( ) ( )( )

( ) ( )1 2 1
2 1( )

2 1

( ) 2
2

( )

j jj
j j

j

m c c k UU P
Lc c

α α
α
+ + +

= − = − +
−

iQ U L  (j) 

 
where 

 

2( )
1 2( )

2( )
2 1

ˆ ˆ ˆ( )
2

ˆ ( )

j
jj

j
P jα µ η η µ

α η η

⎡ ⎤− + + −⎣=
−

⎦  (k) 

 

 

2( )

( )
2( )

2 1

ˆ ˆ2 1

ˆ ( )

j
j

j

j
Q

ω α

α η η

⎡ ⎤−⎢ ⎥⎣ ⎦=
−

 (l) 

 
 

2( ) 2 2ˆ ˆj ˆj jα µ ω= +  (m) 
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Substituting the given parameters and the first of Eq. (i) into Eqs. (j)–(l) gives, 
for j = 1, 
   

 ( )(1) (1)
2 0.0491 0.300U = − + 1i U L  (n) 

Hence,  

 (1) (1) (1) 0
0.0491 0.300R I

L
i i

⎧ ⎫ ⎧ ⎫
= + = +⎨ ⎬ ⎨ ⎬− −⎩ ⎭ ⎩

U U U
⎭

 (o) 

 
Similarly, for j = 2, 
 

 ( )(2) (2)
2 6.05 22.0U i= − 1U L  (p) 

and hence 
 

 (2) (2) (2) 0
6.05 22.0R I

L
i i

⎧ ⎫ ⎧ ⎫
= + = +⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩

U U U
⎭

 (q) 

 
Substituting Eqs. (o) and (q) into Eq. (7.52) gives the free vibration response of 
the system, 
 

 0

0

0.150(1)
0 1 0 1

0.450(2)
0 2 0 2

( )
( )

1 0
   cos(0.996 ) sin(0.996 )

0.0491 0.300

1 1
  cos(1.66 ) sin(1.66 )

6.05 22.0

G

t

t

y t L
t

A e t t

A e t t

ω

ω

θ

ω φ ω

ω φ ω φ

−

−

⎧ ⎫
=⎨ ⎬

⎩ ⎭
⎡ ⎤⎧ ⎫ ⎧ ⎫

− + −⎢⎨ ⎬ ⎨ ⎬ ⎥− −⎩ ⎭ ⎩ ⎭⎣ ⎦
⎡ ⎤⎧ ⎫ ⎧ ⎫

+ − +⎢⎨ ⎬ ⎨ ⎬ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦

φ

−

 

  � (r) 
 
where ω0 is defined by Eq. (g). The system is seen to move with damped har-
monic vibrations that decay exponentially with time. 
 
(c) 
Substituting η2 = 2.0 and η1 = 1.0 into Eq. (e) and finding the corresponding ze-
ros of the characteristic equation using the MATLAB solver “roots,” we obtain 
 

 ˆ 0.2611, 0.6470, 1.9406, 9.1514α = − − − −  (s) 
 
In this case the characteristic values are all real. To obtain the associated vec-
tors for  we have, from the first row of Eq. (d), 2c c≠ 1
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2 ( )( )

( ) ( )1 2
2 1( )

2 1

ˆ ˆ ( ) 1
   ( 1 4)

ˆ ( ) 2

jj
j

jU U
L

α α η η
α η η

+ + +
= − = −

−
j j

L ⎫
⎬
⎭

 (t) 

 
Substitution of each root listed in Eq. (s) into Eq. (t) gives the corresponding 
vectors 
 

  (u) (1) (2) (3) (4), , ,
2.182 1.615 1.088 12.52

L L L⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧
= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨− − −⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩

U U U U

 
Finally, we substitute each (α, U) pair into Eq. (7.53) to obtain the free vibra-
tion response 
 

 

0 0

0 0

0.261 0.647(1) (2)

1.94 9.15(3) (4)

1 1
2.18 1.61

1 1
                        

1.09 12.6

G t t

t t

y L
A e A e

A e A e

ω ω

ω ω

θ
− −

− −

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭ ⎩ ⎭

⎧ ⎫ ⎧
+ +

⎫
⎨ ⎬ ⎨− −⎩ ⎭ ⎩ ⎭

⎬

 (v) �

 
For this case we see that the system response is a purely decaying motion. 
    

 (d) 
Substituting η2 = 1.0 and η1 = 0.5 into Eq. (e) and finding the corresponding ze-
ros of the characteristic equation using the MATLAB solver “roots,” we obtain 

 
 ˆ 0.6129, 4.0251, 0.6810 0.8673α = − − − ±  (w) 

 
We see that for this case we have both real and complex roots. The free vibra-
tion response is then  
 

 

0 0

0

0.613 4.03(1) (2)

0.681(3)
0 3 0 3

1 1
2.98 11.1

1 0
  cos(0.867 ) sin(0.867 )

1.04 0.616

G t t

t

y L
A e A e

A e t t

ω ω

ω

θ

ω φ ω

− −

−

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
⎡ ⎤⎧ ⎫ ⎧ ⎫

+ − +⎢⎨ ⎬ ⎨ ⎬ ⎥− −⎩ ⎭ ⎩ ⎭⎣ ⎦
φ−

  �

  (x) 
 

where the corresponding vectors are obtained by substituting each of the two 
real roots listed in Eq. (w) into Eq. (t) and substituting the real and imaginary 
parts of the complex roots into Eq. (j). For this last case we see that the system 
response is comprised of a purely decaying motion together with decaying 
harmonic oscillations.  
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 To offset the lack of determinacy of the characteristic vectors, an element of the 
vector can be set to unity. However, as for undamped systems, it is often desirable to 
introduce a common scale and thus to normalize the vectors in some way. One ap-
proach is to extend the procedures employed for undamped systems. In this regard, 
complex characteristic vectors can be normalized by setting the Hermitian scalar 
product of the vector with itself to unity. That is we set the scalar product of a vector 
with its complex conjugate to unity. Stated mathematically, to normalize U(j) we may 
set 
  
 { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1j j j j j j j j j j

R I R I R R I Ii i⎡ ⎤= − + = + =⎣ ⎦U U U U U U U U U U
TC T T  (7.54) 

 
where UC represents the complex conjugate of U. Equivalently, to obtain the normal-
ized vector, the characteristic vector may be divided by the square root of the afore-
mentioned product (its Hermitian length). Hence, 
  

 
( )

( )

( ) ( ),

j
j

j j
=

UU
U UC

 (7.55) 

 
The characteristic vectors can be similarly scaled by dividing each by the square root 
of the corresponding weighted scalar product of the vector and its conjugate, taken 
with respect to a real symmetric system matrix such as m or k. Hence,   
 

 
( )

( )

( ) ( ),

j
j

j j
=

m

UU
U UC

 (7.56) 

 
Characteristic vectors associated with real characteristic values will be real and there-
fore can be normalized as discussed in Section 7.3.3. Other, means of normalization 
for damped systems are suggested in the next section. Finally, in contrast to the mo-
dal vectors of systems with no damping, the characteristic vectors associated with 
damped systems are generally not mutually orthogonal in the conventional sense. To 
understand their relation we next examine the corresponding problem in the context 
of its state space representation. This will yield more general orthogonality relations 
and also suggest procedures of normalizing vectors, both of which will be pertinent to 
forced vibration of damped systems.  

 

7.4.2 State Space Representation 

As an alternative to the approach of Section 7.4.1 we may consider the vibration 
problem in the context of its state space (the space of the generalized displacements 
and velocities). It will be seen that the two approaches lead to the same results and 
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that additional insight into the nature of the characteristic vectors is gained from the 
latter formulation.  

Formulation and Solution 
To formulate the problem in its state space let us first write the velocity matrix as 
 
 =� �u Iu  (7.57) 
 
where I represents the  identity matrix. Next, let us pre-multiply Eq. (7.42) by 
m

N N×
-1 and solve for . This gives ��u

 
  (7.58) 1 1− −= − −�� �u m ku m cu
 
Equations (7.57) and (7.58) may be combined in matrix form as 
 
 =�z Sz  (7.59) 
where 

 
⎧ ⎫

= ⎨ ⎬
⎩ ⎭�
u

z
u

 (7.60) 

is the  state vector, and 2N ×1
 

 1 1− −

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

0 I
S

m k m c
 (7.61) 

 
is the system matrix. (Note that, in general, S is not symmetric.) The free 
vibration problem is now recast in terms of the state vector z. We wish to solve Eq. 
(7.59).  

2 2N N×

 To solve for the state vector as a function of time let us seek solutions of the 
form 
 ˆ teα=z U  (7.62) 
where 

 ˆ ⎧ ⎫
= ⎨ ⎬

⎩ ⎭

U
U

V
 (7.63) 

 
is a  array of, as yet, unknown (complex) constants that we have partitioned 
into two  vectors U and V for convenience. It is evident that V = αU. We next 
substitute Eq. (7.62) into Eq. (7.59) and arrive at the (complex) eigenvalue problem 

2N ×1
1N ×

 
 ˆ ˆα⎡ ⎤− =⎣ ⎦S I U 0  (7.64) 

 
where 
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 ˆ ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

I 0
I

0 I
 

 
is the identity matrix. The characteristic equation for the above eigenvalue 
problem is then 

2 2N N×

 
 ˆdet ( ) 0α α⎡ ⎤− = =⎣ ⎦S I F  (7.65) 

 
which yields 2N roots, α = α1, α2, ... α2N. For each eigenvalue αj (j = 1, 2, …, 2N) 
there is an associated eigenvector ( )ˆ .jU  More precisely, ( )ˆ jU  is said to be the right 
eigenvector of the nonsymmetric matrix S. The solution of Eq. (7.59) is then com-
prised of a linear combination of all such solutions. Hence, 
 

 
2

( ) ( )

1

ˆ( ) j

N
tj j

j

t A eα

=

= ∑z U

jU

 (7.66) 

 
It follows from Eqs. (7.60), (7.63) and (7.66) that 
 

  (7.67) 
2

( ) ( )

1

( ) j

N
tj

j

t A eα

=

= ∑u

 
The response corresponding to complex roots with negative real parts or to negative 
real roots follows directly from the development of the preceding section beginning 
with Eqs. (7.46) and (7.47), and leading to Eqs. (7.52) and (7.53). It is pertinent to 
note that the eigenvalues, αj (j = 1, 2, …, 2N), and the associated subeigenvectors, 
U(j), of S correspond directly with the roots and vectors of the solution described in 
Section 7.4.1. This may be seen by utilizing the identity  
 

 11 12 1
11 22 21 11 12

21 22

−= −
A A

A A A A A
A A

 (7.68) 

 
for the determinant of a partitioned matrix in Eq. (7.65) and noting that 
[ ] 1 1 .α α− −=I I  Doing this results in a characteristic equation that is identical to Eq. 
(7.45). The roots of Eq. (7.45) therefore correspond to the eigenvalues of S. It follows 
that the vector comprised of the first N rows of the eigenvector of the system matrix 
S, the subvector U appearing in Eq. (7.63), corresponds to the characteristic vector U 
of Eq. (7.44) for the same value of α. The various forms of Eq. (7.67) for complex 
and real eigenvalues therefore correspond directly to the forms derived in the previ-
ous section by way of direct solution of the equation of motion, Eq. (7.42).  
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Example 7.14 
Determine the response of the system of Example 7.13(d) using the approach of 
this section. 
 
Solution 
It is convenient to nondimensionalize the equations of motion before begin-
ning. (We effectively did this for Example 7.13 when we expressed the charac-
teristic equation in terms of ratios of the system parameters and divided the 
translation of the center of mass by the length of the frame.) Formally, let us in-
troduce the normalized displacement 
 

 G Gy y L=  (a) 
 
and the normalized timescale 
 

 0
2kt
m

τ ω= = t  (b) 

 
It follows that for any function f, 
  

 0
df df d df
dt d dt d

τ ω
τ τ

= =  (c) 

 
Introducing Eqs. (a)–(c) into Eq. (a) of Example 7.13 and dividing the first row 
by m and the second row by IG = mL2/12 renders the equation of motion to the 
nondimensional form 
 

 

2 2

2 2

1 2 2 1

2 1 1 2

1 0
0 1

( ) ( ) 2 1 0 0
6( ) 3( ) 0 3 0

G

G G

d y d
d d

dy d y
d d

τ
θ τ

η η η η τ
η η η η θ τ θ

⎧ ⎫⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

+ −⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
+ + =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− + ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩⎣ ⎦

⎨ ⎬
⎭

 (d) 

 
We next construct the pertinent system matrix S by substituting the nondimen-
sional mass, damping and stiffness matrices into Eq. (7.61). Hence, 
 

 
1 2 2 1

2 1 1 2

0 0 1 0
0 0 0 1
1 0 ( ) ( ) 2
0 3 6( ) 3( )

η η η η
η η η η

⎡ ⎤
⎢ ⎥
⎢=
⎢− − + − −
⎢ ⎥

− − − − +⎣ ⎦

S ⎥
⎥

 (e) 

 
The eigenvalue problem for the free vibration problem is then 
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1

2

11 2 2 1

22 1 1 2

ˆ 0 1 0
ˆ0 0 1

ˆ1 0 ( ) ( ) 2 0
ˆ0 3 6( ) 3( ) 0

U
U
V
V

α
α

η η α η η
η η η η α

−⎡ ⎤ ⎧ ⎫ 0
0

⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥− − + + − − ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − − − + − ⎩ ⎭⎩ ⎭⎣ ⎦

 (f) 

 
We next require that the determinant of the square matrix of Eq. (f) vanishes. 
This results in the characteristic equation 
 

 [ ] [ ] [ ]4 3 2
1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ( ) 4( ) 4(1 3 ) 6( ) 3 0α α α η η α η η α η η= + + + + + + + =F  (g) 

 
which is seen to be identical to the characteristic equation of Example 7.13, as 
it should be. The roots of the characteristic equation, for η2 = 1.0 and η1 = 0.5, 
are then   

 
 ˆ 0.6129, 4.0251, 0.6810 0.8673α = − − − ±  (h) 

 
Substituting the first row of Eq. (f) into the third row and solving the resulting 
expression for U2 in terms of U1 gives, for each respective characteristic value, 
 

  (i) (1) (2) (3,4)1 1 1
, ,

2.98 11.1 1.04 0.616i
⎧ ⎫ ⎧ ⎫ ⎧

= = =⎨ ⎬ ⎨ ⎬ ⎨−⎩ ⎭ ⎩ ⎭ ⎩ ∓
U U U ⎫

⎬
⎭

  
The response of the system is then 
 

 

0 0

0

0.613 4.03(1) (2)

0.681(3)
0 3 0 3

1 1
2.98 11.1

1 0
  cos(0.867 ) sin(0.867 )

1.04 0.616

G t t

t

y L
A e A e

A e t t

ω ω

ω

θ

ω φ ω

− −

−

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
⎡ ⎤⎧ ⎫ ⎧ ⎫

+ − +⎢⎨ ⎬ ⎨ ⎬ ⎥− −⎩ ⎭ ⎩ ⎭⎣ ⎦
φ−

  �

  (j) 
 

 
 

Orthogonality 
The (right) eigenvectors (j = 1, 2, …, 2N) of the system matrix S are not, in gen-
eral, mutually orthogonal in the conventional sense. However, a broader view of the 
problem reveals an orthogonality relation between the right eigenvectors and the cor-
responding members of a related set of vectors, the left eigenvectors of S. We estab-
lish this relation in the following development. Toward this end, let us consider the 
eigenvalue problem 

( )ˆ jU
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  (7.69) ˆ α=W S WT ˆ T

1

 
where S is the system matrix defined by Eq. (7.61) and we wish to determine 

 pairs that satisfy this equation. The 2ˆ( , )α W N ×  (complex) vector is referred 
as the left eigenvector of S, due to its positioning in Eq. (7.69). Taking the transpose 
of Eq. (7.69) gives the equivalent relation 

Ŵ

 
 ˆ ˆα=S W WT    
 
which may also be written in the form 
 
 ˆ ˆα⎡ ⎤− =⎣ ⎦S I WT 0  (7.70)  

 
The problem is therefore equivalent to the determination of the eigenvalues and ei-
genvectors of ST. Since the determinant of a matrix is equal to the determinant of its 
transpose, we have that 
 
 ˆ ˆ ( ) 0α α α− = − = =S I S I FT  (7.71)  

 
Thus, the eigenvalues of ST are the same as those of S (α = α1, α2, ... α2N ). Substitu-
tion of each eigenvalue into Eq. (7.64) and solving for the corresponding vector com-
ponents generates the associated right eigenvectors ( )ˆ jU (j = 1, 2, …, 2N). Likewise, 
substitution of each eigenvalue into Eq. (7.70) and solving for the corresponding vec-
tor components generates the associated left eigenvectors ( )ˆ jW (j = 1, 2, …, 2N). It 
follows that and respectively satisfy the equations ( )ˆ jU ( )ˆ lW
 
  (7.72) ( ) ( )ˆ j

jα=SU Û j

ˆ l T

 
  (7.73) ( ) ( )ˆ l

lα=W S WT

 
Let us multiply Eq. (7.72) on the left by and multiply Eq. (7.73) on the right by ( )ˆ lW T

( )ˆ ,jU and then subtract the latter from the former. Doing this gives the relation 
 
  (7.74)  ( ) ( )ˆ ˆ0 ( ) l

j lα α= − W UT j

 
It follows that if j lα α≠  then 
 
  (7.75) ( ) ( )ˆ ˆ0 l= W UT j
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Hence, for distinct eigenvalues, the left eigenvectors of S are mutually orthogonal to 
the right eigenvectors and vice versa. The modal vectors are thus orthogonal in this 
sense. In addition, it follows from Eq. (7.72) or (7.73) that 
 
 ( ) ( )ˆ ˆ 0l j =W S UT  (7.76)  
 
That is, for distinct eigenvalues, the weighted scalar product with respect to S of the 
left eigenvectors with the right eigenvectors vanishes. Thus, for distinct eigenvalues, 
the left and right eigenvectors are orthogonal to one another in this sense as well. The 
above orthogonality relations will prove useful when considering forced vibration of 
damped systems.  
 

Normalization 
The othogonality relations of Eqs. (7.75) and (7.76) suggest normalization of the ei-
genvectors by setting 
 
 ( ) ( )ˆ ˆ 1j j =W UT  (7.77)  
or by setting 
 ( ) ( )ˆ ˆ 1j j =W S UT  (7.78)  

 
The state space formulation and the associated orthogonality conditions and normali-
zation procedure will prove useful when considering forced vibration of damped 
multi-degree of freedom systems. 
 
 

7.5  EVALUATION OF AMPLITUDES AND PHASE ANGLES 

It was shown in this chapter that the free vibration response of discrete systems con-
sists of a linear combination of the modal vectors with harmonic time signatures (un-
damped systems), or exponentially decaying time signatures – harmonic or otherwise 
(damped systems), the amplitudes and phase angles of which are evaluated by impos-
ing the initial conditions. For an N-degree of freedom system this results in a system 
of 2N equations in the 2N unknowns A(j), φj (j = 1, 2, …, N), which may be solved by 
conventional algebraic means as demonstrated in Examples 7.3 and 7.4. As an alter-
native to solving simultaneous algebraic equations, whether for numerical reasons or 
for fundamental purposes, the amplitudes and phase angles can be evaluated explic-
itly by exploiting the mutual orthogonality of the modal vectors. This procedure is 
discussed in the present section. We will first discuss this for undamped systems. 
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7.5.1 Undamped Systems 
Consider an N-degree of freedom system which is in the initial configuration 
 
 0(0) , (0) 0= =�u u u v   
 
at the instant it is released. Let us recall the general forms of the free vibration re-
sponse for N-degree of freedom systems without damping, Eqs. (7.10) and (7.11): 
 

 ( ) ( ) ( ) ( ) ( )
1 2

1 1

( ) cos sin cos( )
N N

j j j j j
j j

j j

t A t A t A tj jω ω ω φ
= =

⎡ ⎤= + =⎣ ⎦∑ ∑u U U −   

 
where 
 2 2( ) ( ) ( )

1 2
j jA A A= + j  

 
 ( )1 ( ) ( )

2 1tan j j
j A Aφ −=  

 
and ωj and U(j) correspond to the jth frequency-mode pair of the undamped system. 
Imposing the initial conditions on the above modal expansion results in the identities 
 

 ( ) ( )
0

1

N
j j

j
1A

=

= ∑u U   

 

 ( ) ( )
0

1

N

2
j j

j
j

Aω
=

= ∑v U   

 
When expanded, the above equalities represent 2N equations in 2N unknowns that 
may be solved for the indicated amplitudes and phase angles. Let us next multiply the 
above relations by  Hence, ( ) .lU mT

 

 ( ) ( ) ( ) ( )
0

1

N
l l

j
1

j jA
=

= ∑U mu U mUT T   

 

 ( ) ( ) ( ) ( )
0

1

N
l l j

j
j

2
jAω

=

= ∑U mv U mUT T   

 
Exploiting the mutual orthogonality of the modal vectors, Eq. (7.29), renders the 
above expressions to the forms 
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 ( ) ( )
1

j jA = X  (7.79) 
and 
 ( ) ( )

2
j jA = Y  (7.80) 

where 

 
( )

( ) 0
2( )

j
j

j
=

m

U mu

U

T

X  (7.81)  

 

 
( )

( ) 0
2( )

j
j

j
jω

=

m

U mv

U

T

Y  (7.82) 

 
In doing this we have decoupled the modes, and have thus reduced the problem to 
evaluating the above expressions. It should be noted that if the above development is 
paralleled with the mass matrix replaced by the stiffness matrix, we again arrive at 
Eqs. (7.79) and (7.80) but with the equivalent statements 
 

 
( )

( ) 0
2( )

j
j

j
=

k

U ku

U

T

X  (7.83) 

 

 
( )

( ) 0
2( )

j
j

j
jω

=

k

U k v

U

T

Y  (7.84) 

 
Either form, Eqs. (7.81) and (7.82) or Eqs. (7.83) and (7.84) may be used. The former 
form would evidently be advantageous when the particular system is coupled through 
the stiffness matrix while the latter form would be advantageous when the system is 
coupled through the mass matrix. The amplitudes and phase angles are then respec-
tively evaluated as 
 

 2( ) ( ) ( )j jA = +X Y 2j  (7.85) 
and 
 ( )1 ( ) ( )tan j j

jφ −= Y X  (7.86) 

 
Finally, for a system that is released from rest, v0 = 0. It follows that φj = 0 (j = 1, 2, 
…, N) and   
 

 
( ) ( )

( ) ( ) 0 0
2 2( ) ( )

( 1, 2,..., )
j j

j j

j j
A j= = = =

m k

U mu U ku

U U

T T

X N  (7.87) 
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The expressions established in this section allow for the direct evaluation of the am-
plitudes and phase angles for any and all modes of a given N-degree of freedom sys-
tem in free vibration. 
 
 

7.5.2 Systems with General Viscous Damping 

The evaluation of the amplitudes and phase angles for systems with general (linear) 
viscous damping is achieved in an analogous manner to that for undamped systems. It 
is convenient to consider the evaluation in state space. Toward this end, consider a 
damped N-degree of freedom system that is in the initial configuration  
 
 0(0) =z z   
where 

 0
0

0

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

u
z

v
  

 
is the state vector at t = 0. Let us next recall the general form of the response in state 
space given by Eq. (7.66). Hence, 
 

   
2

( ) ( )

1

ˆ( ) j

N
tj

j

t A eα

=

= ∑z jU

 
where αj and ( )ˆ jU correspond to the jth (complex) eigenvalue and corresponding 
(complex) right eigenvector of the system matrix S and A(j) is a complex amplitude. 
Imposing the initial conditions on the above expansion yields the identity 
 

   
2

( ) ( )
0

1

ˆ
N

j j

j

A
=

= ∑z U

ˆ jT

 
When expanded, the above equality represents 2N equations in 2N unknowns that 
may be solved for the indicated (complex) amplitudes. Let us next multiply the above 
expression on the left by the product  where is the l( )ˆ ,lW ST ( )ˆ lW th right eigenvector 
of S. This results in the identity 
 

   
2

( ) ( ) ( ) ( )
0

1

ˆ ˆ
N

l j l

j

A
=

= ∑W Sz W SUT

 
Exploiting the statement of orthogonality of the left eigenvectors of S with the corre-
sponding right eigenvectors of S, Eq. (7.76), and solving for A(j) gives the relation 
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( )

( ) 0
( ) ( )

ˆ
( 1, 2,..., 2 )ˆ ˆ

j
j

j j
A j= =

W Sz
W S W

T

T
N  (7.88) 

 
The expressions established in this section allow for the direct evaluation of the com-
plex amplitudes, and hence of the amplitudes and phase angles associated with any 
and all modes of a given viscously damped N-degree of freedom system in free vibra-
tion. 
 
 

7.6 CONLUDING REMARKS 

The vibration of multi-degree of freedom systems is germane to a variety of applica-
tions and engineering systems. In this chapter we laid the groundwork for the study of 
such systems by considering the motion of systems when they are free from exter-
nally applied dynamic forces and moments. It was seen that the free vibration prob-
lem reduces to the solution of an eigenvalue problem, the eigenvalues of which corre-
spond to the squares of the natural frequencies for an undamped system and the ei-
genvectors of which correspond to the associated natural modes (modal matri-
ces/vectors). The characteristic equation for such problems is therefore referred to as 
the frequency equation for the system. Through this analysis it was seen that a dis-
crete system will possess the same number of natural frequencies and modes as de-
grees of freedom, with their values and form dependent upon the values of the physi-
cal parameters that describe the system. Each mode represents a natural motion of the 
system that oscillates at the corresponding natural frequency, and the individual ele-
ments of the modal vector physically represent the relative amplitudes of the motions 
of the individual members that comprise the system when vibrating in that mode. The 
free vibration response of a discrete system is comprised of a linear combination of 
the natural modes undergoing harmonic vibration. The degree of participation of the 
various modes is measured by their amplitudes and associated phase angles, which 
depend on the specific initial conditions imposed on the system. For systems with 
viscous damping the characteristic values and associated vectors are generally com-
plex, with the imaginary part of each eigenvalue corresponding to a (damped) natural 
frequency and the (negative) real part of the eigenvalue being an associated damping 
factor. A discussion of the general properties of modal vectors, including normaliza-
tion and orthogonality, was presented. These properties will be central to the under-
standing of vibrations of discrete systems subjected to applied dynamic loading, 
which is studied in the next chapter. 
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PROBLEMS 

7.1 Consider the constrained hook and ladder system of Problem 6.7 when kT = kL2 
and mc = 10mL = 10m. (a) Determine the natural frequencies and modal vectors 
for the system. (b) Sketch and label the physical configuration of the system for 
each mode. (c) Establish the free vibration response of the system.  

     

 
                                         Fig. P7.1                                                 Fig. P7.2 
 
7.2 Consider the tram of Problem 6.8 when mC = 5mF. (a) Determine the natural 

frequencies and modal vectors for the system. (b) Sketch and label the physical 
configuration of the system for each mode. (c) Establish the free vibration re-
sponse of the system. 
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7.3 Consider the coupled pendulums of Problem 6.9. (a) Determine the natural 
frequencies and modal vectors for the system. (b) Sketch and label the physical 
configuration of the system for each mode. (c) Establish the free vibration re-
sponse of the system. 

 
    Fig. P7.3 
 
7.4 Consider the special case where the pendulum system of Problem 7.3 has the 

property that k m g L� . If the pendulums are released from rest when in the 
configuration θ1(0) = θ0 and θ2(0) = 0, show that the response is of the form 

 

 1 1 0

2 2 0

( ) ( ) cos cos cos
( ) ( )sin sin sin

a b

a b

t A t t t t
t A t t t t

a

a

θ ω θ ω ω
θ ω θ ω ω

≅ =
≅ =

  

where 
 2 1 2 1( ) 2, ( )a b 2ω ω ω ω ω ω= + = −   

 
 Plot the response. What type of behavior does the pendulum system exhibit? 
 
7.5 Consider the system of Problem 6.15. 

(a) Determine the natural frequencies 
and modal vectors for the system if 
the wheel is of radius R and I = 2mR2. 
(b) Sketch and label the physical con-
figuration of the system for each 
mode. (c) Establish the free vibration 
response of the system. 

 
 
 
                                                                                                         Fig. P7.5 
 
7.6 Suppose each mass of the system of Problem 7.5 is displaced a distance u0 and 

held in that position. If the masses are subsequently released from rest, what is 
the response of the system? 
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7.7 The brakes of the truck of Problem 7.1 are engaged and hold it stationary while 
a fireman slowly mounts the ladder, bringing it to equilibrium at an angle of de-
flection θ0. At a certain instant, the fireman jumps off the ladder and the brakes 
are simultaneously released by the driver. Determine the response of the sys-
tem. 

 
7.8 The coupled pendulums of Problem 7.3 are at rest when the right bob is struck, 

giving it a velocity v0. Determine the response of the system. 
 
7.9 Consider the two-mass three-spring system of Example 7.2. Suppose a rigid 

brace is slowly inserted between the two masses so that one mass is displaced a 
distance u0 to the left and the other a distance u0 to the right. Determine the re-
sponse of the system if the brace is suddenly removed. 

 
7.10 Consider the inverted pendulum of Problem 6.14. (a) Determine the natural 

frequencies and modal vectors for the system if m1 = 5m2 and the length of the 
massless rod is L. (b) Sketch and label the physical configuration of the system 
for each mode. (c) Establish the free vibration response of the system. 

 
                       Fig. P7.10                                                                Fig. P7.11 
 
7.11 Consider the system of Problem 6.16. (a) Determine the natural frequencies 

and modal vectors for the system if I2 = 2I1= 2mR2. (b) 
Sketch and label the physical configuration of the system for 
each mode. (c) Establish the free vibration response of the 
system.  

 
 
7.12 Consider the system of Problem 6.17 (R2 = 2R1 = 2R, I0 = 

mR2). (a) Determine the natural frequencies and modal vec-
tors for the system. (b) Sketch and label the physical con-
figuration of the system for each mode. (c) Establish the free 
vibration response of the system.                                                         Fig. P7.12                                                           
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                                          Fig. P7.13 
 
7.13 Consider the elastically restrained fan belt of Problem 6.18, with k2 = 2k1 = 2k, 

m2 = m1 = m. (a) Determine the natural frequencies and modal vectors for the 
system. (b) Sketch and label the physical configuration of the system for each 
mode. (c) Establish the free vibration response of the system.              

 
7.14 Consider the system of Problem 6.19 when mb = 2ma = 2m and kT = kL2. (a) 

Determine the natural frequencies and modal vectors for the system. (b) Sketch 
and label the physical configuration of the system for each mode. (c) Establish 
the free vibration response of the system. 

 
                 Fig. P7.14                                                        Fig. P7.15                                                
 
7.15 Consider the offshore platform of Problem 6.20. (a) Determine the natural fre-

quencies and modal vectors for the platform when L = 10R. (b) Sketch and la-
bel the physical configuration of the system for each mode. (c) Establish the 
free vibration response of the platform. 

 
7.16 Consider the linked system of Problem 6.22 when k1 = k2 = k and 2m2 = m1= m. 

(a) Determine the natural frequencies and modal vectors for the system. (b) 
Sketch and label the physical configuration of the system for each mode. (c) 
Establish the free vibration response of the system. 
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                     Fig. P7.16                                              Fig. P7.17 
 
7.17 Consider the mechanism of Problem 6.23 when mw = 3m and kT = kR2 and R = 

L (the unstretched spring length). (a) Determine the natural frequencies and 
modal vectors for the system. (b) Sketch and label the physical configuration of 
the system for each mode. (c) Establish the free vibration response of the sys-
tem. 

 
7.18 Consider the floating system of Problem 6.24 when mb = ma /2 and k = ρf gR2 /2, 

(a) Determine the natural frequencies and modal vectors for the system. (b) 
Sketch and label the physical configuration of the system for each mode. (c) 
Establish the free vibration response of the system. 

 

          Fig. P7.18 
 
7.19 Consider the shaft system of Problem 6.25. (a) Determine the natural frequen-

cies and modal vectors for the system. (b) Sketch and label the physical con-
figuration of the system for each mode. (c) Establish the free vibration response 
of the system. 

 
   Fig. P7.19 
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7.20 Consider the triple pendulum of Problem 6.26. (a) Determine the natural fre-
quencies and modal vectors for the system. (b) Sketch and label the physical 
configuration of the system for each mode. (c) Establish the free vibration re-
sponse of the system. 

 

 
                      Fig. P7.20                                                       Fig. P7.21 
 
7.21 Consider the system of Problem 6.27, when mb = mw = 3m and kT = kR2 and R = 

L. (a) Determine the natural frequencies and modal vectors for the system. (b) 
Sketch and label the physical configuration of the system for each mode. (c) 
Establish the free vibration response of the system. 

 
7.22 Consider the coupled pendulums of 

Problem 6.29. (a) Determine the natu-
ral frequencies and modal vectors for 
the system. (b) Sketch and label the 
physical configuration of the system 
for each mode. (c) Establish the free 
vibration response of the system. 

 
                                                                                                  Fig. P7.22 
 
7.23 Consider the frame system of Problem 6.30 with mb/ma = 0.25. (a) Determine 

the natural frequencies and modal vectors for the system. (b) Sketch and label 
the physical configuration of the system for each mode. (c) Establish the free 
vibration response of the system. 

         
7.24 Consider the conveyor belt system of Problem 6.10 with m2 = m1 = m and R1 = 

R2 = R. (a) Determine the natural frequencies and modal vectors for the system. 
(b) Sketch and label the physical configuration of the system for each mode. (c) 
Establish the free vibration response of the system. 
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                                                           Fig. P7.23 
 
 

 
                                                            Fig. P7.24 
 
 
7.25 Consider the dumbbell satellite of Problem 6.13, where the undeformed length 

of the access tube is L. (a) Determine the natural frequencies and modal vectors 
for two dimensional motion of the system. (b) Sketch and label the physical 
configuration of the system for each mode. (c) Establish the free vibration re-
sponse of the system. 

 
   Fig. P7.25 
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7.26 The submarine of Problem 6.21 is modeled as shown, for simple calculations of 

 

 
   Fig. P7.26 

.27 Consider the elastically coupled two wheel system of Problem 6.28. The vehi-

 

 
  Fig. P7.27 

longitudinal motion. The mass of the hull and frame structure is 2ms and that of 
the interior compartment is mc = 0.5ms. The hull and interior compartment are 
separated by springs of stiffness k, and the longitudinal stiffness of the hull is ks 
(= 2k) as indicated. (a) Determine the natural frequencies and modes for the 
boat. (b) Sketch and label the physical configuration of the structure for each 
mode. (c) Establish the free (longitudinal) vibration response of the submarine. 

 
 
 
7

cle is comprised of two wheels, each of mass m and radius rw, that are con-
nected by an elastic coupler of effective stiffness k and undeformed length L. 
The system rolls without slip around a circular track of radius R, as shown. (a) 
Determine the natural frequencies and modal vectors for the specific vehicle 
where L = 4rw and R = 20rw. (b) Determine the small angle motion of the vehi-
cle if it is released from rest when the front wheel is in the position θ01 and the 
rear wheel is in the position θ02, where the angles are measured from the bot-
tom of the valley. 
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7.28 Consider the aircraft of Problem 6.31 where the wings are modeled as equiva-
lent rigid bodies with torsional springs of stiffness kT at the fuselage wall, each 
wing possesses moment of inertia Ic about its respective connection point and 
the fuselage has moment of inertia Io = Ic about its axis. Determine the natural 
frequencies and modal vectors for pure rolling motion of the fuselage of radius 
R.  

 

 
   Fig. P7.28 
 
7.29 Normalize the modes for the hook and ladder system of Problem 7.1, (a) in the 

conventional sense and (b) with respect to the mass matrix. 
 
7.30 Normalize the modes for the tram system of Problem 7.2, (a) in the conven-

tional sense and (b) with respect to the mass matrix. 
 
7.31 Normalize the modes for the conveyor belt system of Problem 7.24, (a) in the 

conventional sense and (b) with respect to the mass matrix. 
 
7.32 Normalize the modes for the shaft system of Problem 7.19, (a) in the conven-

tional sense and (b) with respect to the mass matrix. 
 
7.33 Verify that the modes computed in Problem 7.1 are mutually orthogonal with 

respect to both m and k. 
 
7.34 Verify that the modes computed in Problem 7.2 are mutually orthogonal with 

respect to both m and k. 
 
7.35 Verify that the modes computed in Problem 7.24 are mutually orthogonal with 

respect to both m and k. 
 
7.36 Verify that the modes computed in Problem 7.19 are mutually orthogonal with 

respect to both m and k. 
 
7.37 Determine the general free vibration response of a two-mass three-spring three-

damper system where m1 = m2 = m, k1 = k2 = k3 = k, c1 = c2 = c3 = c and c2/km = 
0.04. 
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7.38 Determine the general free vibration response of the system of Problem 6.32 
when mb

 = 2ma = 2m, kT = kL2 and c2/km = 0.04.  
 

 
                    Fig. P7.38                                                         Fig. P7.39 
 
7.39 Determine the general free vibration response of the system of Problem 6.34 

when m1 = m2 = m3 = m, k1 = k2 = k3 = k4 = 0.5 k5 = k and c2/km = 0.04. 
  
 
7.40 Determine the general free 

vibration response of the sys-
tem of Problem 6.36 for 
c2/km = 0.04 and I = 2mR2. 

    
 
 

 
                                                                     
                                        Fig. P7.41                                                         Fig. P7.40 
 
7.41 Determine the general free vibration response of the submarine of Problem 

6.37 when ks = 2k, cs = 2c, ms = 2mc and c2/kmc = 0.01. 
   



   

8 
Forced Vibration of Multi-Degree of 
Freedom Systems 

 
 
 
 
 
 

 
Mechanical systems are generally subjected to a variety of forces and force types 
during the course of their operation. Such forces may cause desirable or undesirable 
motions of the system, with the former required for its effective operation and the 
latter having detrimental, if not catastrophic, consequences. In any event, it is clearly 
of interest to understand and predict the effects that time dependent forces have on 
mechanical and structural systems. In the previous chapter we discussed the motion 
of discrete multi-degree of freedom systems when they are free to move under their 
own volition. It was seen therein that each system has fundamental motions associ-
ated with it called modes, and that each mode oscillates at its own natural frequency. 
It was also shown that any free vibration of the system is comprised of some combi-
nation of these fundamental motions. In this chapter we will examine the behavior of 
discrete multi-degree of freedom systems that are subjected to external forces. It will 
be seen that, as for free vibrations, the response of such systems to time dependent 
forcing is described by a combination of the basic motions, or modes, as well. In this 
light, the general approach that we shall take to study the behavior of multi-degree of 
freedom systems to forces of all types will be via the fundamental method known as 
Modal Analysis. This approach not only provides a vehicle for solving forced vibra-
tion problems for any type of excitation but it also unveils important physical charac-
teristics of the excited system and the basic mechanisms involved. After an extensive 
discussion for undamped systems, the procedure is extended to systems possessing a 
restricted type of viscous damping (Rayleigh Damping). The chapter finishes with an 
abstraction of modal analysis to state space for multi-degree of freedom systems with 
general linear viscous damping. To prepare for our study, we introduce the concept of 

 415 



416 Engineering Vibrations 

modal coordinates in Section 8.2. We begin, however, with a simple solution for the 
steady state response of undamped systems subjected to harmonic excitation, and a 
discussion of the vibration absorber for elementary systems.  
 

8.1 INTRODUCTION 

In this section we present a simple solution for the steady state response of undamped 
multi-degree of freedom systems subjected to external excitations possessing a (syn-
chronous) harmonic time signature. The same approach is then employed to examine 
a simple application — that of a vibration absorber appended to a single degree of 
freedom system. 
 

8.1.1  Steady State Response to Harmonic Excitation 

Consider an N-degree of freedom system subjected to external forces, all of which 
possess the same harmonic time signature. The equation of motion for such a system 
will be of the general form 
 
 ( ) ( ) i tt t e Ω+ =��

0mu ku F  (8.1) 
 
where Ω is the excitation frequency. We wish to obtain the particular solution to Eq. 
(8.1). Toward this end, let us assume a solution of the form 
 
 ( ) i tt e Ω=pu H  (8.2) 
 
Substituting Eq. (8.2) into Eq. (8.1) and solving for H gives 
 
  (8.3) 

12 −
⎡ ⎤= − Ω⎣ ⎦ 0H k m F

 
We now substitute Eq. (8.3) into Eq. (8.2) to obtain the steady state response, 
 
 

12( ) i tt
−

e Ω⎡ ⎤= − Ω⎣ ⎦pu k m F0  (8.4) 
 
Employing Kramer’s Rule results in the equivalent form 
 

 
2

2

adj
( )

det
i tt e Ω

⎡ ⎤− Ω⎣ ⎦=
⎡ ⎤− Ω⎣ ⎦

p

k m
u

k m 0F  (8.5) 

 
(A similar solution is found for damped systems in Section 8.8.1.) We know from our 
discussions of free vibrations (Chapter 7) that 2det 0ω⎡ ⎤− =⎣ ⎦k m  is the characteristic 
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equation that yields the natural frequency of the system. We thus see that when Ω = ω 
we have a resonance condition and the above solution is no longer valid. (Calculation 
of the resonance solution will be demonstrated in Example 8.6b-ii of Section 8.5.)  
The solution defined by Eq. (8.4) or Eq. (8.5) is mathematically equivalent to that 
which would be obtained using modal analysis (Sections 8.2–8.5), though it does not 
reveal the fundamental characteristics of the response to the extent that modal analy-
sis does. It is simple to apply in principle, but requires computation of the inverse of 
an N× N matrix. This can prove cumbersome for large scale systems. The response is, 
however, readily obtained for simple systems as seen in the following example.     
 
 
 

Example 8.1 
Consider the two-mass three-spring system of Example 6.1. (a) Determine the 
steady state response of the system when each mass is subjected to a force that 
varies harmonically in time with frequency Ω and the corresponding magni-
tudes are and 2 , respec-0

1F 0F
tively. (b) Use the results from 
Part (a) to evaluate the response 
of a system for which k1 = k2 = 
k3 = k and m1 = m2 = m, when the 
excitation is such that F2 = 0 and 

1( )F t 0 sin .F t= Ω  
                                                                                         

 
Solution 

stituting the specific force system under consideration into Eq. (b) of Ex-

 

(a) 
Sub
ample 6.1, gives the equation of motion for the system as 
 

0
1 2 21 1 1 1

0
2 2 32 2 2 2

0
0

i tk k km u u F
e

k k km u u F
Ω⎧ ⎫+ −⎡ ⎤⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ − + ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎩ ⎭

��
��

 (a) 

 
ow, the determinant and the adjoint for the simple two degree of freedom sys-

 2  (b) 
and 

1)m

N
tem under consideration are easily computed as  
 

2 2 2
1 2 1 2 3 2 2det ( )( )k k m k k m k⎡ ⎤− Ω = + − Ω + − Ω −⎣ ⎦k m

 
2

2 2 3 2 2
2

2 1 2

( )
adj

(
k k m k

k k k
⎡ ⎤+ − Ω

⎡ ⎤− Ω = ⎢ ⎥⎣ ⎦ + − Ω⎣ ⎦
k m  (c) 

 
ubstitution of Eqs. (b) and (c) into Eq. (8.5) gives the steady state response S
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2 0 0

2 3 2 1 2 2
1 2 2

1 2 1 2 3 2 2

( )
( )

( )( )
i tk k m F k F

u t e
k k m k k m k 2

Ω+ − Ω +
=

+ − Ω + − Ω −
 � (d-1) 

 
0 2 0

2 1 1 2 1 2
2 2 2

1 2 1 2 3 2 2

( )
( )

( )( )
i tk F k k m Fu t e

k k m k k m k 2
Ω+ + − Ω

=
+ − Ω + − Ω −

 � (d-2) 

 
) 

the case where k1 = k2 = k3 = k and m1 = m2 = m and F2 = 0 the response of 

 

(b
For 
the system simplifies to the form 
 

( )

( ) ( )

( ) ( )

2
1

0
1 2 2

1 2

0
2 2 2

1 2

2
( ) sin

3 1 1

1( ) sin
3 1 1

Fu t t
k

Fu t t
k

ω

ω ω

ω ω

⎡ ⎤− Ω⎣ ⎦= Ω
⎡ ⎤ ⎡ ⎤− Ω − Ω⎣ ⎦ ⎣ ⎦

= Ω
⎡ ⎤ ⎡ ⎤− Ω − Ω⎣ ⎦ ⎣ ⎦

 � (e) 

where 
 1 2 ,     3k m k mω ω= =  (f) 

 
re the natural frequencies of the system (see Example 7.1).  

 
a

 

8.1.2  The Simple Vibration Absorber 

t when an undamped system is excited 

 

It was seen in Sections 3.3.2 and 8.1.1 tha
harmonically at one of its natural frequencies a resonance condition occurs whereby 
large amplitude vibrations occur. It was also seen that if the excitation frequency of a 
single degree of freedom system is sufficiently above (or below) the natural fre-
quency then the oscillations are well behaved. In fact, when operating at excitation 
frequencies sufficiently above the resonance frequency the amplitude of the steady 
state oscillations are lower then the deflection that would be induced by a static load 
of the same magnitude. If vibrations are to be avoided then the system can be de-
signed to operate in this range. (It then becomes a practical issue as to how to ramp 
up an initially quiescent system past the resonance frequency to the desired operating 
range.) Suppose, however, that the normal operating range is at, or near, the reso-
nance frequency. In addition, suppose that the machine or device cannot be redes-
igned. That is, we wish to use the system as is. How may we resolve this issue? We 
know from our studies of free vibrations in Chapter 7 and related discussions of the 
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present chapter that a multi-degree of freedom system will have the same number of 
natural frequencies, and hence the same number of resonance conditions, as the num-
ber of degrees of freedom. Therefore, one practical solution is to add an extra degree 
of freedom to the system. This will shift the natural frequencies and hence the condi-
tions for resonance. Alternatively, we may wish to induce large motions of the added 
mass, leaving the original mass undergoing relatively small motions, in effect isolat-
ing it from vibration. We examine this situation for an originally single degree of 
freedom system in the present section. 
 Consider a single degree of freedom system represented as the mass-spring 
system shown in Figure 8.1a. Suppose the system operates in an environment where 
it is subjected to a harmonic force F(t), as indicated. Let us further suppose that the 
operating frequency is close to the natural frequency of the system. One approach to 
remedy the situation is to change the mass or stiffness. However, suppose that this is 
not an option, say for reasons of functionality, practicality, economics or aesthetics. 
As an alternative, let us attach a spring of stiffness kab and mass mab to the original 
system of mass m and stiffness k as shown in Figure 8.1b. Let us examine the re-
sponse of the augmented system compared with that of the original system. 
 The equation of motion for the augmented system is easily derived, or is ob-
tained directly from Eq. (b) of Example 6.1 by setting m1 = m, m2 = mab, k1 = k, k2 = 
kab, k3 = 0, F1 = F(t) and F2 = 0. Hence, 
 

 1 1

2 2

0 ( )( ) ( ) ( )
0 ( ) ( ) 0

ab ab

ab ab ab

m k k ku t u t F t
m k ku t u t

+ −⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥− ⎩ ⎭⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

��
�� ⎬  (8.6) 

 
We seek the steady state response (i.e., the particular solution) of the augmented, now 
two degree of freedom, system for excitations of the form 
 
 0( ) i tF t F e Ω=  (8.7) 
 
 

 
Figure 8.1  Single degree of freedom system and vibration absorber: (a) the system alone, (b) 
system with absorber. 
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For the purposes of the present discussion we bypass modal analysis for this very 
simple system and loading, and seek a particular solution to Eq. (8.6) of the form 
 

 1 1

2 2

( )
( )

i t

p

u t H
e

u t H
Ω⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 (8.8) 

 
where H1 and H2 are to be determined. Substituting Eqs. (8.7) and (8.8) into Eq. (8.6) 
results in the pair of equations   

 

 
2

1 2

2
1 2

( )

0

ab ab

ab ab ab

k k m H k H F

k H k m H

⎡ ⎤ 0+ − Ω − =⎣ ⎦
⎡ ⎤− + − Ω =⎣ ⎦

 (8.9)  

 
which are easily solved for the unknown amplitudes H1 and H2. Hence, 
 

 
( )

( )( )
22

0
1 2 221

f
H

k

ω

ω

− Ω
=

2− Ω − Ω − Ω
 (8.10)  

and 

 
( )( )

2
0

2 2 221
f

H
k

ω
ω

=
2− Ω − Ω − Ω

 (8.11)  

where 
 0 0f F k=  (8.12) 

 
 ωΩ = Ω  (8.13) 
 
 2 k mω =  (8.14)  

 
 2 k mω =  (8.15) 
 
 abk k k=  (8.16)  

 
 abm m m=  (8.17) 
  
Substituting Eqs. (8.10) and (8.11) into Eq. (8.8) gives the steady state response of the 
system as 
 

 
( )( )

22
1 0

22 2 22
2

( )
( ) 1

i tu t f e
u t k

ω
ωω

Ω ⎧ ⎫⎧ ⎫ − Ω⎪ ⎪=⎨ ⎬ ⎨
− Ω − Ω − Ω

⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

 (8.18)  



8│ Forced Vibration of Multi-Degree of Freedom Systems 421 

Now, we are interested in the effect of the added mass and spring on the steady state 
response of the original (base) mass. The augmented magnification factor for the mo-
tion of the base mass is then 
 

 
( )

( )( )
22

1
2 22

0 1

H
f k

ω

ω

− Ω
Γ = =

− Ω − Ω − Ω

�
2  (8.19)  

 
When the augmented magnification factor is expressed in the above form it is seen 
that the added mass and spring modify the original magnification factor, and hence 
influence the steady state response of the system, through the ratios of the added mass 
to the original mass and the added stiffness to the original stiffness. (It is readily seen 
that the magnification factor for the original single degree of freedom system is re-
covered when 0kω = = .)  
 The augmented magnification factor is displayed along with the original mag-
nification factor in Figure 8.2 for the case where 0.2k =  and .1ω =  It is seen from 
the figure that the resonance condition at 1Ω =  has been removed and that there is no 
motion of the base mass at this excitation frequency. Furthermore, there is a finite 
range of excitation frequencies near 1Ω =  for which the amplitude of the displace-
ment of the base mass is less than that which would be induced by a static load of the 
same magnitude. The drawback is, of course, that since the augmented system has 
two degrees of freedom there are now two resonance conditions as indicated by the 
two peaks appearing in the figure. The practical problem of passing through the lower 
resonance frequency to get to the operating range when starting up an initially quies-
cent system would still have to be addressed.  

     Figure 8.2  Augmented magnification factor .( 0.2, 1)k ω= =  
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Figure 8.3  Vector shown with various coordinate systems: (a) arbitrary, (b) vector lies in a 
coordinate plane, (c) vector parallel to a coordinate axis. 
 

8.2  MODAL COORDINATES 

To study the forced vibration of multi-degree of freedom systems it is often conven-
ient, as well as informative, to express a given problem in terms of its most funda-
mental set of coordinates known as modal coordinates. We introduce the definition 
and nature of these coordinates in the present section. 
 Let us consider a vector vG  in some three-dimensional space. If we express the 
vector in terms of its components with respect to some coordinate system then the 
vector will generally have three nonvanishing components (Figure 8.3a). If the coor-
dinate system is chosen so that the same vector lies in a coordinate plane, then the 
vector will generally have only two nonvanishing components (Figure 8.3b). Lastly, 
if the coordinate system is chosen so that one of the axes is aligned with the vector, 
then the vector will have only one nonvanishing component (Figure 8.3c). This prop-
erty will also be true for a vector in a space of any number of dimensions, say N. 
Suppose now that we have a set of mutually orthogonal vectors of a given dimension 
(say N) in some space. If we choose a coordinate system whose axes are parallel to 
the vectors of the given set then each of the mutually orthogonal vectors will possess 
only one nonvanishing component, the one corresponding to the coordinate axis 
aligned with the vector. Such coordinates are referred to as principal coordinates and 
find application in many fields. From our study of free vibrations, we know that the 
modal vectors for an undamped system form a mutually orthogonal set of vectors. 
The corresponding principle coordinates for this case are referred to as modal coordi-
nates. These concepts may be generalized for the case of damped systems. In the pre-
sent section we introduce modal coordinates and examine their important implica-
tions. 
 

8.2.1 Principal Coordinates 

The following discussion is presented for vectors in three dimensions for ease of 
visualization. However, the concepts and results are readily extended to N-
dimensional space and are thus applicable to systems with any number of degrees of 
freedom. With this in mind, let us consider a Cartesian reference frame with axes (x1, 
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x2, x3) in three-dimensional space and let (1) (2) (3), and e e eG G G  represent the correspond-
ing unit vectors directed along these axes as shown in Figure 8.4a. Consider, also, 
three mutually orthogonal, but otherwise arbitrary, vectors ,  and u v wG G G , as indicated. 
The three vectors may be expressed in terms of their components with respect to the 
given set of axes in the form  
 

 

(1) (2) (3)
1 2 3

(1) (2) (3)
1 2 3

(1) (2) (3)
1 2 3

u u e u e u e
v v e v e v e
w w e w e w e

= + +

= + +

= + +

G G G G
G G G G
G G G G

 

 
The corresponding matrices of the components of these vectors with respect to the 
given coordinate system are then 
 

 
1 1

2 2

3 3

 ,     ,    
u v
u v
u v

1

2

3

w
w
w

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪= = = ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

u v w
⎪

 

 
Consider next a second set of coordinate axes 1 2 3( , , )x x x� � �  that are obtained from the 
first set of axes (x1, x2, x3) by a rotation about some axis through the origin, and that 
are aligned with the three orthogonal vectors as shown in Figure 8.4b. Consider also, 
the same mutually orthogonal vectors expressed in terms of their components with 
respect this second set of axes. Hence, 
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Figure 8.4  Three mutually orthogonal vectors: (a) shown with arbitrary coordinate system, 
(b) shown with principal coordinate system. 
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Figure 8.5  Vector displayed with two coordinate systems. (Unit basis vectors for each system 
shown at left.) 
 
 
where  represent the unit vectors along the second set of axes, as 
shown. The corresponding matrices of components of these vectors expressed with 
respect to the coordinates 

(1) (2) (3), and n n nG G G

1 2 3( , , )x x x� � �  are then 
 

 
0 0

0  ,     ,    0
0 0

u
v

w

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪= = = ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

� � �u v w
⎪

 

 
In this context the coordinates 1 2 3( , , )x x x� � �  are referred to as the principal coordinates 
for the given set of vectors. The obvious advantage of choosing to express the vectors 
in terms of the principle coordinates is that the associated matrices have only one 
nonzero element. The matrices are thus decoupled in this sense. 
 

8.2.2 Coordinate Transformations  

The components of a vector expressed in terms of one set of coordinates can be re-
lated to the components of that same vector expressed in terms of another set of coor-
dinates by a system of linear equations whose coefficients are dependent on the an-
gles between the two sets of axes. This is readily seen when we consider a three-
dimensional vector  and the two coordinate systems (xuG 1, x2, x3) and 1 2 3( , , )x x x� � � , as 
depicted in Figure 8.5. Hence,   
 

 
(1) (2) (3)

1 2 3
(1) (2) (3)

1 2 3

u e u e u e
u

u n u n u n
⎧ + +⎪= ⎨

+ +⎪⎩

G G G
G

G G G� � �
 

 
Taking the successive scalar products of the unit vectors of the second coordinate 
system with the first equation gives the set of linear equations 
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 Figure 8.6  Vector under coordinate transformation. 
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2 21 1 22 2 23 3

3 31 1 32 2 33 3

u r u r u r u
u r u r u r u
u r u r u r u

= + +

= + +

= + +

�
�
�

 

 
where  is the cosine of the angle between the ( ) ( ) cos( , )  ( , 1 3)l j

j l jlr n e x x l j= = =
G G �i −

lx� axis and the xj axis. This system of linear equations can be expressed in matrix 
form as 
 
 =�u Ru  (8.20) 
 
where { }lu=� �u   and ljr⎡ ⎤= ⎣ ⎦R { }.ju=u  In the matrix equation, the column matrix 

 corresponds to the matrix of components of vector �u uG  obtained by rotating and 
stretching the original vector, as shown in Figure 8.6a. (If the columns/rows of R are 
orthonormal, then the length of the vector is preserved during the operation and R 
represents a pure rotation.) Alternatively, the operation defined by Eq. (8.20) repre-
sents a rotation (and stretch) of the axes, as shown in Figure 8.6b, and  corresponds 
to the matrix of components of the same vector expressed with respect to the set of 
coordinates obtained by rotation (and stretch) of the original set of coordinates as 
discussed earlier. The above discussion can be extended to vectors of any dimension, 
say N. 

�u

 
 

Example 8.2 
The vector shown in Figure E8.2-1 is of magni-
tude A, lies in the x2 x3-plane and makes equal an-
gles between these two axes.  
 
 
 

                                                                                                      

x
3

x
2

A

x
1

                                                                                                             Figure E8.2-1 
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Determine the components of the vector A
G

 with respect to the given coordi-
nate system, and also with respect to a coordinate system related to the first by 
the transformation  
 

    

1 0 0

0 2 2 2 2

0 2 2 2 2

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

R  

 
How is the second coordinate system aligned?                                         

 
 Solution 
 The given vector may be expressed in matrix form as 
 

 

0

1 2

1 2

A
⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

v  (a) 

 
Thus, 1 2 30,  2v v v A= = = . To determine the components of the vector with 
respect to the second system we employ the coordinate transformation defined 
by Eq. (8.20). Hence, 
 

 

1 0 0 0 0
0 2 2 2 2 2 1

00 2 2 2 2 2

A A

A

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨⎢ ⎥ ⎬

⎪ ⎪ ⎪⎢ ⎥− ⎩ ⎭⎣ ⎦ ⎩ ⎭

�v R v
⎪

v

 (b) 

 
The components of the same vector with respect 
to the new coordinates are thus 1 0,=� 2 ,v A=�  
and 3  The new coordinates for this particu-
lar case are evidently principle coordinates and 
correspond to a set of axes oriented with respect 
to the original coordinate axes as shown in Figure 
E8.2-2. It is seen that the given coordinate trans-
formation, R, corresponds to a 45˚ rotation of the 
x

0.v =�

2 and x3 axes about the x1 axis. 

x
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x
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~

~

A

45

x
1
,x

1

45

 
                                                                                                 Figure E8.2-2 
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8.2.3 Modal Coordinates 

In the previous section it was seen that the components of a vector expressed in two 
different coordinate systems are related by a simple matrix operation. We next con-
sider a particular transformation based on the modal vectors of an undamped multi-
degree of freedom system, and the coordinates associated with this transformation. 
 Consider the set of modal vectors of an N-degree of freedom system, and let us 
extend the interpretation of Eqs. (8.20) to N-dimensional space. Further, let us con-
struct a particular matrix B such that the elements of each column correspond to the 
components of a modal vector for the system of interest. Hence, let 
 

 

(1) (2) ( )
1 1 1
(1) (2) ( )

(1) (2) ( ) 2 2 2

(1) (2) ( )

N

N
N

N
N N N

U U U
U U U

U U U

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥≡ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

"
"

"
# # % #

"

B U U U  (8.21) 

 
The matrix B is called the modal matrix of the given system. It follows that the rows 
of the transpose of the modal matrix correspond to the transposes of the modal vec-
tors. Hence,   
 

 

(1)

( )N

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

#
U

B
U

T

T

T

 (8.22)  

 
Equivalently, 
 
  (8.23) ( ) ( ),     ( , 1,2,..., )j l

lj l lj jb U b U l j N= = =T

 
 Let us now consider the motion of an N-degree of freedom system and the 
transformation 
 ( ) ( )t t= ηu B  (8.24) 

 
where u(t) is some matrix that characterizes the motion, say the displacement matrix, 
and B is the modal matrix for the system as defined by Eq. (8.21). The inverse trans-
formation follows directly as 
 
   1( ) ( )t −=η B u t
 
It is seen, upon comparison with Eq. (8.20), that Eq. (8.24) represents the relation 
between the displacements of the system expressed in two different coordinate sys-
tems. Since the elements of the matrix u(t) correspond to the physical displacements 
of the system expressed in terms of the (generalized) physical coordinates chosen to 
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describe the motion, then the elements of the matrix η(t) correspond to the displace-
ments expressed in terms of a different set of coordinates. These latter coordinates are 
referred to as the modal coordinates for the system. It will be seen that modal coordi-
nates are, in fact, principal coordinates for a multi-degree of freedom system and that 
the implications of transforming to modal coordinates are profound. 
 

Example 8.3 – Free Vibration of an N-Degree of Freedom System 
Express the general form of the free vibration response of a discrete N-degree 
of freedom system in the form of Eq. (8.24) and identify the modal coordinates 
for this case. 

 
 Solution 

The general form of the free vibration response for the system under considera-
tion is given by Eq. (7.11) as 
 

 ( ) ( )

1

( ) cos( )
N

j j
j j

j

t A tω φ
=

= ∑u U −  (a) 

 
The summation appearing in Eq. (a) may be written as the product of a square 
matrix and a column vector as follows: 

 

 

(1)
1 1 1

(2)
2 (1) (2) ( ) 2 2

( )

( ) cos( )
( ) cos( )

( ) cos( )

N

N
N N N

u t A t
u t A t

u t A t

ω φ
ω φ

ω φ

⎧ ⎫⎧ ⎫ −
⎡ ⎤ ⎪ ⎪⎪ ⎪ −⎢ ⎥⎪ ⎪ ⎪=⎨ ⎬ ⎨⎢ ⎥

⎪ ⎪ ⎪⎢ ⎥
⎣ ⎦⎪ ⎪ ⎪ −⎩ ⎭ ⎩ ⎭

"
# #

U U U ⎪
⎬
⎪
⎪

1

2

N

φ
φ

φ

 (b) 

 
If we compare Eq. (b) with Eq. (8.24) we see that the square matrix is the mo-
dal matrix for the system and 
 

 

1 1 1

2 2 2

( ) cos( )
( ) cos( )

( )

( ) cos( )N N N

t A t
t A t

t

t A t

η ω
η ω

η ω

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩

η
# #

⎭

 (c) 

 
It follows from Eq. (c) that the time dependent coefficients 
 
     (d) ( )( ) cos( )  ( 1, 2,..., )j

j j jt A t j Nη ω φ= − =
  
correspond to the modal displacements for the free vibration problem. 
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Example 8.4 
Consider the floating platform of Example 7.11. Suppose the platform is im-
pacted in such a way that a downward directed impulse of magnitude I is im-
parted to the left edge of the platform. Determine the motion of the platform.  

 
Solution 
For this case, we chose the vertical deflection of the center, yG(t) (positive 
downward), and the rotation of the float, ( ) ,tθ as our generalized coordinates to 
describe the motion of the system. If we include the force F1(t) (positive 
downward) applied at the left edge of the float in the derivation of the govern-
ing equations in Example 7.11 we obtain the equations of motion 
 

  (a) 1

2 2
1

2 ( )

2 (
G Gm y k y F t

mL k L L F tθ θ

+ =

+ =

��
�� )

  
 which may be stated in matrix form as 

 
 

 1
2 2

1

( )0 2 0
( )0 0 2

G G F tm y k y
LF tmL kLθ θ

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

��
�� ⎬  (a') 

 
where, for the given loading, 
 

 1( ) ( )F t tδ= I  (b) 
 
It is easily shown from the above equations (as was done in Example 7.11) that 
the natural frequencies and modes for the system are 

 
 1 2 2k mω ω= =  (c) 
 and 

 (1) (2)1 0
,

0 1
⎧ ⎫ ⎧

= =
⎫

⎨ ⎬
⎩ ⎭ ⎩ ⎭

U U ⎨ ⎬  (d) 
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Now, it is seen that the governing equations (a) or (a') are uncoupled. This al-
lows us to solve for each coordinate separately. In this regard, the solution of 
each equation follows directly from Eq. (4.22). The response of the impacted 
platform is thus 
 

 
( )
( )

2

2

( ) sin ( )
2

( ) sin ( )
2

k
G m

k
m

y t t
km

t t
L km

θ

=

=

I

I

H

H

t

t
 (e) 

 
For this particular problem the governing equations were very easy to solve be-
cause they were uncoupled. They were uncoupled because of the particular set 
of coordinates that we chose to describe the motion of the platform. Let’s ex-
amine this a bit more closely. 
 Let us form the modal matrix B from the modal vectors stated in Eq. (d). 
Hence, 

 
1 0
0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
B  (f) 

 
That is, the modal matrix is simply the identity matrix. Let us next apply the 
transformation defined by Eq. (8.24) to the chosen coordinates. Doing this we 
see that 

 

  (g) 1

2 2

( ) ( ) ( )( ) 1 0
( ) ( ) ( )( ) 0 1

GG t y ty t
t tt

η η
η θ ηθ

=⎧ ⎫⎧ ⎫ ⎡ ⎤
= ⇒⎨ ⎬ ⎨ ⎬⎢ ⎥ =⎩ ⎭ ⎣ ⎦ ⎩ ⎭

1 t
t

 
It is seen that the chosen set of coordinates yG(t) and ( )tθ  are, in fact, the mo-
dal (principal) coordinates for the system. We could have deduced this at the 
outset since the governing equations are completely decoupled. In this example 
we  formulated the problem in terms of modal coordinates by “chance.” A 
natural choice of displacement measures happened to correspond to modal co-
ordinates. This is not usually the case. In general, the equations of motion for 
multi-degree of freedom systems are coupled and it is generally desirable to 
transform to the modal coordinates for a given system. The modal coordinates 
are not typically obvious or necessarily physical displacements. A rational pro-
cedure for transforming a given problem to modal coordinates is presented in 
the next section. 

  
 
 
In general, a mapping of the form of Eq. (8.24) corresponds to a transformation from 
modal coordinates to physical coordinates. The transformation to modal coordinates 
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and its inverse is central to the solution and fundamental understanding of forced vi-
bration problems. We discuss this process and its ramifications in detail in the next 
section. 
 

8.3  GENERAL MOTION IN TERMS OF THE NATURAL MODES 

When the N vectors that comprise a set in some N-dimensional space are linearly 
independent and mutually orthogonal then any vector in that space can be expressed 
as a linear combination of the vectors of that set. This is, in fact, what is done when 
we express a three-dimensional vector in terms of the unit vectors aligned with the 
coordinate axes. From a vibrations perspective, this means that if the modal vectors 
for a given system are linearly independent then the response of the system under any 
loading (the solution for any problem) can be expressed as a linear combination of the 
modal vectors for that system. This property of the modal vectors will be central to 
the analysis of forced vibration problems. In this section we show that the modal vec-
tors for an undamped system are indeed linearly independent and, therefore, that any 
displacement array is comprised of a linear combination of the natural modes of the 
system. 
 

8.3.1 Linear Independence of the Set of Modal Vectors 

The vectors of a given set are said to be linearly independent if no vector of that set 
can be expressed as a linear combination of the other vectors of that set. Equivalently, 
the vectors of a given set, say the set of modal vectors {U(1), U(2), …, U(N)} for an 
undamped system, are linearly independent if the equation 
 

 ( )

1

N
l

l
l

a
=

=∑ U 0  (8.25) 

 
can only be satisfied if all of the scalar coefficients al  (l = 1, 2, …, N) vanish. That is, 
if . We must show that this is the case for a set of modal vec-
tors. To do this, let us first premultiply each term of Eq. (8.25) by U

0 ( 1,2,..., )la l∀ = = N
(j)Tm. This gives 

 

 ( ) ( )

1

0
N

j l
l

l

a
=

=∑ U mUT  (8.26) 

  
Recall from Section 7.3.2 that the modal vectors corresponding to distinct natural 
frequencies of an undamped system are mutually orthogonal with respect to the mass 
matrix. Hence, 
 
 ( ) ( ) 0   for all j l l j= ≠U mUT  (8.27) 
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Substitution of Eq. (8.27) into Eq. (8.26) results in the simple statement 
 
 ( ) ( ) 0j j

ja =U mUT  (8.28) 
Now, 

 
2( ) ( ) ( ) ( ) ( ), 0j j j j j= = ≠

m m
U mU U U UT  

 
It follows from Eq. (8.28) that aj = 0. Since Eqs. (8.26)–(8.28) hold for each and 
every mode U(j) (j = 1, 2, …, N)  then  
 
 0ja =  for all  j = 1, 2, …, N (8.29) 
 
The modal vectors are therefore linearly independent. 
 

8.3.2 Modal Expansion 

It was shown in Section 8.3.1 that the mutually orthogonal modal vectors of an un-
damped system are linearly independent. This suggests that the modal vectors form a 
basis in their vector space in much the same way as the standard unit vectors along a 
set of coordinate axes do in three-dimensional physical space. It follows that, just as a 
physical vector can be expressed as a linear combination of the basis vectors in physi-
cal 3-D space, the N 1 displacement vector (matrix of displacements) for a given 
system may be expressed as a linear combination of its modal vectors in the corre-
sponding N-dimensional space. The response of an undamped system may therefore 
be expressed in the general form 

×

 

  (8.30) ( )

1

( ) ( )
N

j
j

j

t η
=

= ∑u U t

 
where u is the array of displacements, U(j) is the jth modal vector and ηj is a corre-
sponding time dependent coefficient. Equation (8.30) basically tells us that the mo-
tion of an undamped system, whether free or forced, is comprised of some combina-
tion of the natural modes. If we expand Eq. (8.30) and regroup terms we see that the 
series representation can be written in matrix form as 
 

  

1

2(1) (2) ( ) (1) (2) ( )
1 2

( )
( )

( ) ( ) ( ) ( )

( )

N N
N

N

t
t

t t t y

t

η
η

η η η

η

⎧ ⎫
⎡ ⎤ ⎪ ⎪
⎢ ⎥ ⎪ ⎪= + + + = ⎨ ⎬⎢ ⎥

⎪ ⎪⎢ ⎥
⎣ ⎦ ⎪ ⎪⎩ ⎭

… "
#

u U U U U U U
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The square matrix in the above representation is seen to be the modal matrix defined 
by Eq. (8.21). The modal expansion, Eq. (8.30), can thus be written in the equivalent 
form  
 ( ) ( )t t= ηu B  (8.31) 
where 

 

1

2

( )
( )

( )

( )N

t
t

t

t

η
η

η

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

η
#

 (8.32) 

 
It may be seen that Eq. (8.31) is identical to Eq. (8.24). It follows that the coefficients 
of the modal expansion correspond to the modal coordinates of the system. The ele-
ments of η are then the modal displacements. With Eq. (8.30), and equivalently Eq. 
(8.31), established we now proceed to the problem of forced vibrations of discrete 
systems. 
 

8.4 DECOMPOSITION OF THE FORCED VIBRATION PROBLEM 

In this section, the forced vibration problem for an a general undamped N-degree of 
freedom system expressed in terms of the physical displacements of the mass ele-
ments is transformed to its statement in terms of modal coordinates. We will see that, 
when this is done, the governing system of equations decouples into a system of N 
uncoupled equivalent single degree of freedom systems.   
 Consider an undamped N-degree of freedom system. It was seen in Chapter 6 
that the equation of motion for any system of this class is of the general form  
 
 + =��mu ku F  (8.33) 
where 

 

1

2

( )
( )

( )

( )N

u t
u t

t

u t

⎧ ⎫
⎪ ⎪
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
u u  (8.34) 

 
is the displacement matrix, 
 

 

1

2

( )
( )

( )

( )N

F t
F t

t

F t

⎧ ⎫
⎪ ⎪
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
F F  (8.35) 
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is the force matrix, 
 

  (8.36) 

11 12 1

21 22 2

1 2

N

N

N N NN

m m m
m m m

m m m

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

"
"

# # % #
"

m T⎥ =
⎥

m

⎥

 
is the mass matrix, and 
 

 

11 12 1

21 22 2

1 2

N

N

N N NN

k k k
k k k

k k k

⎡ ⎤
⎢ ⎥
⎢= =
⎢
⎢ ⎥
⎣ ⎦

"
"

# # % #
"

k T

⎥
k

T

 (8.37) 

 
is the stiffness matrix. In general, we wish to determine the response, u(t), due to a 
given system of generalized forces F(t). In order to do this we shall take advantage of 
the properties of the modes associated with the system as discussed in Sections 7.3, 
8.2 and 8.3. Using these properties, we will transform the governing equation so that 
it is expressed in terms of the modal (principal) coordinates. In doing so, we shall 
decouple the individual equations from one another, effectively isolating a set of un-
coupled single degree of freedom systems each of which corresponds to an individual 
mode. The response of these effective 1 d.o.f. systems will be seen to correspond to 
the response of the individual modes. Once the responses of these effective 1 d.o.f. 
systems are determined, we can transform back to the original coordinates and obtain 
the displacements of the system as a function of time.   
 Recall from our discussions in Section 8.2.3 that the modal expansion de-
scribed by Eq. (8.31) is equivalent to a transformation between the displacements 
described by the physical coordinates of the system and the displacements expressed 
in terms of the modal coordinates of the system. It will be seen that writing the forced 
vibration problem in terms of the modal coordinates greatly simplifies the analysis 
and offers insight into the nature of the response. With this in mind, let us substitute 
Eq. (8.31) into Eq. (8.33), and then multiply the resulting equation on the left by BT. 
This gives the equation 
 
   + =η η��B mB B kB B FT T

 
which may be written in the familiar form 
 
 + =η η�� ��m k �F  (8.38) 
where 
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  (8.39) ≡�m B mBT

 
  (8.40) ≡�k B kBT

and 
  (8.41) ≡�F B FT

 
Equation (8.38) is the equation of motion expressed in terms of modal coordinates. 
The matrices  and  shall be referred to as the associated (modal) mass and (mo-
dal) stiffness matrices, respectively, and  as the corresponding (modal) force ma-
trix. We next examine their form and their implications. 

�m �k
�F

 Consider the transformed mass matrix defined by Eq. (8.39) and let us express 
it in expanded form by substituting Eqs. (8.21),  (8.22) and (8.36). Hence, 
 

 

(1)
11 1

(1) ( )

( )
1

N
N

N
N NN

m m

m m

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

"
� # # % # "

"

U
m U

U

T

T

U

N

 

 
which, after multiplying through, gives 
 

   (8.42) 

(1) (1) (1) (2) (1) ( )

(2) (1) (2) (2) (2) ( )

( ) (1) ( ) (2) ( ) ( )

N

N

N N N

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"�

# # % #
"

U mU U mU U mU
U mU U mU U mUm

U mU U mU U mU

T T T

T T T

T T T

 
Let us next recall that the modal vectors are mutually orthogonal with respect to the 
mass and stiffness matrices. (See Section 7.3.2.) That is, 
 
 ( ) ( ) 0l j =U mUT  
                                                                                     2 2

l jω ω≠  ( , 1,2,..., )l j N=  

    ( ) ( ) 0l j =U kUT  
 
Upon incorporating these properties into Eq. (8.42), it may be seen that the trans-
formed mass matrix takes the diagonal form 
  

 

1

2

0 0
0 0

0 0 N

m
m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

� "
� "�

# # % #
�"

m  (8.43) 

where 
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  (8.44) ( ) ( ) ( 1, 2,..., )j j
jm j= =� U mUT N

 
The modal mass matrix is seen to be diagonal due to the mutual orthogonality of the 
modal vectors as discussed in Section 7.3. It is useful to note that if we choose to nor-
malize the modal vectors with respect to m, as discussed in Section 7.3.3, then all of 
the nonvanishing elements of the transformed mass matrix are unity. That is, if we 
normalize the modal vectors such that 
 
 ( ) ( ) ( ) ( ), 1    ( 1,2,... )j j j j j N≡ = =

m
U U U mUT  

then 

 
1 0

0 1
N N×

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

"
� # % #

"
m I  

 
Consider next the transformed stiffness matrix defined by Eq. (8.40). Paralleling the 
discussion for the mass matrix, we find that  
 

   

(1)
11 1

(1) ( )

( )
1

N
N

N
N NN

k k

k k

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

"
� # # % # "

"

U
k U

U

T

T

U   (8.45) 

 
Performing the indicated multiplications and incorporating the mutual orthogonality 
of the modal vectors gives the modal stiffness matrix as 
 

 
1 0

0 N

k

k

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

� …
� # % #

�"

k  (8.46) 

where 
  (8.47) ( ) ( )    ( 1,2,..., )j j

jk j= =� U kUT N
 

  
The transformed stiffness matrix is thus seen to be diagonal as well. Further, if we 
choose to normalize the modal vectors such that 
 
 ( ) ( ) ( ) ( ), 1    ( 1,2,..., )j j j j j N≡ = =

k
U U U kUT  

 
(i.e., with respect to k rather than with respect to m), then 
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1 0

0 1
N N×

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

"
� # % #

"
k I  

 
The choice of normalization is at the discretion of the analyst. Each form may offer 
certain advantages when performing modal analysis for a particular system.  
 Now that we have established that the modal mass and modal stiffness matrices 
are of diagonal form we return to our discussion of the transformed equation of mo-
tion, Eq. (8.38).  Substituting Eqs. (8.43) and (8.46) into Eq. (8.38), gives 
 

 
1 1 1 10 0

0 0N N N NN

m k

m Fk

η η

η η

⎡ ⎤
1F⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎧ ⎫

⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ + =⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

� ���� " "
# % # # # % # # #

�����" " ⎪ ⎪

t

  

 
which, when expanded, results in the (uncoupled) system of equations of the form 
 

  (8.48) 

1 1 1 1 1

2 2 2 2 2

( )

( )

( )N N N N N

m k F t

m k F t

m k F

η η

η η

η η

+ =

+ =

+ =

� ����
� ����
#
� ����

 
Recall that each frequency-mode pair satisfies Eq. (7.3). Therefore, for the jth mode,  
 
 ( ) 2 ( )j j

jω=kU mU   
It follows that 
 
 ( ) ( ) 2 ( ) ( )j j j

jω=U kU U mUT T j

N

 
 
Incorporating the definitions of Eqs. (8.44) and (8.47) into the above identity gives 
the relation, 
  (8.49) 2    ( 1,2,..., )j j jk m jω= =� �
Hence, 
  (8.50) = Λ� �k m
where 

 

2
1

2

0

0 N

ω

ω

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
"

# % #
"

 (8.51) 
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  Figure 8.7  Equivalent system of uncoupled single degree of freedom systems. 
 
 
With the aid of Eq. (8.49), the transformed system of equations (8.48) may be ex-
pressed in the “standard form”  
 

 

2 2
1 1 1 1 1

2 2
2 2 2 2 2

2 2
1

                    

N N N N

f

f

f

η ω η ω

η ω η ω

η ω η ω

+ =

+ =

+ =

���
���

# # #
���

 (8.52) 

where 

 2

( ) ( )
( )    ( 1, 2,..., )j j

j
j jj

F t F t
f t j

mk ω
= = =
� �

�
� �

N  (8.53) 

 
The above system may also be written in the matrix form 
 
  (8.54) + =η Λη Λ ��� f
where 

 

1

11 2

( )

( )

( )N

f t

f t

f t

−−

⎧ ⎫
⎪ ⎪
⎪ ⎪= = =⎡ ⎤ ⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪
⎩ ⎭

Λ

�

�� � � ��
#
�

f k F m F  (8.55) 

 
 It may be seen that Eqs. (8.48), and equivalently Eqs. (8.52), are completely 
decoupled. Each individual equation therefore corresponds to the response of each 
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individual mode acting as an independent single degree of freedom system of mass 
jm�  and stiffness jk�  subjected to the force ( )jF t� . A physical representation of this 

equivalence is depicted in Figure 8.7. Since the quantities ηj (j = 1, 2, …, N) are seen 
to correspond to the displacements of the modal masses, the corresponding forces 
may be interpreted as the portion of the external forces that is distributed to the par-
ticular mode indicated. This occurs since each modal vector is aligned with its corre-
sponding coordinate (as in Figure 8.4b) when the problem is expressed in terms of the 
modal coordinates. Each of Eqs. (8.48) may be solved using the techniques estab-
lished in Chapters 3, 4 and 5 for single degree of freedom systems. Once the response 
for each mode is determined, these values comprise the matrix η(t), which may be 
substituted back into Eq. (8.31) to give the desired physical response. 
 

Example 8.5 
Consider the double pendulum of Example 7.5. (a) 
Compute the modal mass matrix and modal stiffness 
matrix for the system. (b) Use Eq. (8.49) to compute 
the corresponding natural frequencies and compare 
them with those computed in Example 7.5.   

 
 Solution 

From Examples 6.5 and 7.5, the mass, stiffness and 
displacement matrices for the double pendulum are 
 

 12 2

2

( )2 1 2 0
, , ( )

( )1 1 0 1
tgmL mL t
tL

θ
θ

⎧ ⎫⎡ ⎤ ⎡ ⎤
= = = ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎩ ⎭
m k u  (a) 

 
The corresponding modal vectors were calculated to be 
 

 (1) (2)
1 1

 ,    
2 2

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪= = ⎪
⎨ ⎬ ⎨

−
⎬

⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
U U

⎪
 (b) 

 
(a) 
Substituting the modal vectors into Eq. (8.21), with N = 2, gives the modal ma-
trix for the pendulum as 

 

 
1 1

2 2

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
B  (c) 

 
We next compute the transformed mass and stiffness and matrices for the dou-
ble pendulum by incorporating the pertinent system matrices stated in Eq. (a) 
and the modal matrix (c) into Eqs. (8.39) and (8.40), respectively. We thus find 
the modal mass and stiffness matrices 
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 2 2
1 11 2 2 1 2 2 0

2
1 1 2 21 2 0 2 2

mL mL
⎡ ⎤ ⎡⎡ ⎤ +⎡ ⎤

= =⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ −⎢ ⎥− −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
�m

⎤
⎥
⎥⎦

 (d) 

 

 2
1 11 2 2 0 1 0

4
0 1 0 12 21 2

gmL mL
L L

⎡ ⎤ ⎡ ⎤ 2 g⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎡ ⎤
⎢ ⎥ −⎢ ⎥−⎢ ⎥

⎢ ⎥
⎣ ⎦ ⎣⎣ ⎦⎣ ⎦

�k
⎦

 (e) 

 
(b) 
We see that both and  are diagonal as they should be. The natural frequen-
cies of the uncoupled equivalent single degree of freedom systems are then, 
from Eq. (8.49), 

�m �k

 

 
( )

2
1

1 2
1

4 / 2 0.765
2 22 2 2

k mL g L g g
m LmL

ω = = = =
++

�

� L
 √ (f-1) 

 

 
( )
2

2
2 2

2

4 / 2 1.85
2 22 2 2

k mL g L g g
m LmL

ω = = = =
−−

�

� L
 √ (f-2) 

 
It may be seen that the frequencies computed above are identical with those 
computed in Example 7.5, as they should be. 

 
 

8.5  SOLUTION OF FORCED VIBRATION PROBLEMS 

It was shown in Section 8.4 that the forced vibration problem may be mapped to mo-
dal coordinates and stated in the form of Eqs. (8.48), or equivalently Eqs. (8.52) or 
(8.54). We next establish an algorithm for the solution of such problems based on this 
transformation. The resulting procedure is referred to as modal analysis. In this re-
gard, we first identify the generalized coordinates to describe the motion of the par-
ticular system of interest and then derive the corresponding equations of motion. We 
next solve the free vibration problem for the system and determine the natural fre-
quencies and the associated natural modes. Once the set of modal vectors is deter-
mined we then form the modal matrix and compute its transpose. The transformed 
mass, stiffness and force matrices may then be determined using Eqs. (8.39)–(8.41). 
It should be noted that Eq. (8.49) may be substituted for either Eq. (8.39) or Eq. 
(8.40) to render the computation more efficient. At this point the problem is ex-
pressed as a system of uncoupled single degree of freedom systems as defined by 
Eqs. (8.48), or equivalently by Eqs. (8.52) or (8.54). The associated modal forces 
correspond to the portions of the external forces distributed to the individual modes.  
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Identify the generalized coordinates that will be used to 
describe the motion of the system.  
Derive the equations of motion for the system.

Solve the free vibration problem (eigenvalue problem) 
to obtain the natural frequencies and modal vectors. 
 
    2 2 ( )   ,  ( 1, 2,..., )j

j j Nω ω− = ⇒ =⎡ ⎤k m U 0 U⎣ ⎦  

Form the modal matrix. 

(1) ( )N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"B U U  
Determine  

     B  T

       Evaluate the transformed (modal) mass, stiffness and force matrices. 
 
                    m B  1 ;   ;   ;  −= = = = =�� �� � � �mB k B kB m F B F f k FT T TΛ

Solve the uncoupled equations (for the effective 1 d.o.f. systems) using 
the methods discussed in Chapters 3–5 as appropriate, or other methods of 
choice, to obtain the modal response.  

  
   Figure 8.8  Recipe for modal analysis of discrete systems subjected to external forcing. 
 

 
  2 2 ( )      ( )  ( 1, 2,..., )j j j j j jf t t j Nη ω η ω η+ = ⇒ =���

 

Transform back to obtain the physical response. 
 
  ( ) ( )t t= ηu B  
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These equations can be solved for the modal displacements directly, using the meth-
ods of Chapters Three and Four, as appropriate. Once the modal displacements have 
been determined, we may substitute them into Eq. (8.31) to obtain the physical re-
sponse of the system. The recipe for this procedure is summarized in the flow chart 
displayed in Figure 8.8. 
 

Example 8.6 
Consider the system comprised of two identical masses and three identical 
springs of Examples 7.1 and 7.2. (a) Determine the steady state response of the 
system if the left mass is subjected to a harmonic force a1( ) sinaF t F t= Ω . (b) 
Evaluate the motion of the forced system (i) when 4a k mΩ = , (ii) when 

3a k mΩ =  and (iii) when 2a k mΩ = . 
 
Solution 
(a) 
For the given two degree of freedom system, we have from Example 7.1, 
 

 1

2

( )0 2
, , ( )

( )0 2
u tm k k

t
u tm k k

− ⎧ ⎫⎡ ⎤ ⎡ ⎤
= = = ⎨ ⎬⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎩ ⎭

m k u  (a) 

 
For the present problem the force array is of the form 
 

   1

2

( ) sin
( )

( ) 0
a aF t F t

t
F t

Ω⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
F  (b) 

 
To solve the problem using modal analysis we must first determine the natural 
frequencies and modal vectors for the system in question. Fortunately we have 
already determined these quantities in Examples 7.1 and 7.2, respectively. 
Thus, 

 (1)
1

1
,    

1
k
m

ω
⎧ ⎫

= =⎨ ⎬
⎩ ⎭

U  (c-1, 2) 

and 

 (2)
2

1 3,    
1

k
m

ω
⎧ ⎫

= =⎨ ⎬−⎩ ⎭
U  (d-1, 2) 

 
The modal matrix for the current system is obtained by substituting the above 
modes into Eq. (8.21) (with N = 2). This gives the modal matrix as 
 

 
1 1
1 1

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

B  (e) 
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Note that BT = B for the present case. We next compute the modal force ma-
trix, modal mass and modal stiffness matrices. The modal force matrix is found 
by substituting Eqs. (b) and (e) into Eq. (8.41). This gives 
 

 
sin1 1 sin
sin1 1 0

a aa a

a a

F tF t
F t

ΩΩ ⎧ ⎫⎡ ⎤ ⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬⎢ ⎥ Ω−⎣ ⎦ ⎩ ⎭ ⎩ ⎭
�F B FT  (f) 

 
It is seen from Eq. (f) that the applied force is distributed equally between the 
two modes. We next evaluate the modal mass and modal stiffness matrices by 
substituting Eq. (e) together with the pertinent matrices of Eq. (a) into Eqs. 
(8.39) and (8.40), respectively. We then get 
 

 
1 1 0 1 1 2 0
1 1 0 1 1 0 2

m m
m m

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�m B mBT  (g) 

and 

 
1 1 2 1 1 2 0
1 1 2 1 1 0 6

k k k
k k k

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
�k B kBT  (h) 

 
Alternatively, we can compute the modal stiffness using Eqs. (8.50) and (8.51). 
Hence,  
  

 
0 2 0 2 0

0 3 0 2 0 6
k m m k

k m m k
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Λ� �k m  (h') 

 
It is seen that the latter computation of  is simpler since, for the present sys-
tem, m is diagonal. Note that both  and  are diagonal, as they should be 
according to Eqs. (8.43) and (8.46). The modal equations are then obtained by 
substituting the elements of the matrices of Eqs. (f), (g) and (h) into Eqs. (8.52) 
and (8.53). Doing this results in the uncoupled pair of equations 

�k
�m �k

 

 
2 2

1 1 1 1 1

2 2
2 2 2 2 2

sin

sin
a a

a a

f t

f t

η ω η ω

η ω η ω

+ = Ω

+ = Ω

���
���

 (i-1, 2) 

 
where ω1 and ω2 are given by Eqs. (c-2) and (d-2), and  
 

 1
1 2

1 2

    and     
2 6

a
a a

2 aF FFf f
k kk k

= = = =
� �� �
�

F
�  (j-1, 2) 

 
It may be seen that Eq. (i-1) corresponds to an effective single degree of free-
dom system whose mass is 2m and whose spring stiffness is 2k, while Eq. (i-2) 
represents a single degree of freedom system whose mass is 2m and whose 
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spring stiffness is 6k. In each case the mass is subjected to a force sina aF tΩ . 
We now proceed to obtain the modal responses. 
 The steady state response of each effective single degree of freedom (mo-
dal) system may be obtained by direct application of the solution for harmonic 
excitation given by Eq. (3.28). We thus have that  
 

 
( ) ( )

( ) ( )

1
1 2 2

1

2
2 2 2

2

2
( ) sin sin

11

6
( ) sin sin

1 31

a a
a a

aa

a a
a a
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f F k
t t

m k

f F kt t
m k

η
ω

η
ω

= Ω =
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= Ω =
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�

�

t

t

Ω

Ω

 (k) 

 
The matrix of modal displacements is then  
 

 
( )

( )

2

2

1
1

( ) sin
1/ 32

1 3

aa
a

a

m kF
t t

k
m k

⎧ ⎫
⎪ ⎪− Ω⎪ ⎪= Ω ⎨ ⎬
⎪ ⎪
⎪ ⎪− Ω⎩ ⎭

η  (l) 

 
Finally, the steady state response of the two degree of freedom system of inter-
est is obtained by transforming back to physical coordinates using Eq. (8.31). 
Substituting the modal matrix, Eq. (e), into Eq. (8.31) and carrying through the 
indicated multiplication gives the relation between the physical displacements 
and the modal coordinates for the given system as   
 

  (m) 1 1 1

2 2 1

( ) ( ) ( ) ( )1 1
( ) ( ) ( ) ( )1 1

u t t t t
u t t t t

η η η
η η η

+⎧ ⎫ ⎧ ⎫ ⎧⎡ ⎤
= =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ −−⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩

2

2

⎫
⎬
⎭

 
Inserting the specific values of the modal displacements from Eqs. (k) or (l) 
gives the explicit form of the response, 
 

 
( ) ( )

( ) ( )

1 2 2

2 2 2

1 1/ 3( ) sin
2 1 1

1 1/ 3( ) sin
2 1 1

a
a

a a

a
a

a a

F
u t t

k m k m k

F
u t t

k m k m k

3

3

⎡ ⎤
⎢ ⎥= Ω +
⎢ ⎥− Ω − Ω⎣ ⎦
⎡ ⎤
⎢ ⎥= Ω −
⎢ ⎥− Ω − Ω⎣ ⎦

 (n) �

 
It is easily verified that the responses given by Eq. (e) of Example 8.1 and by 
Eq. (n) of the present example are identical as, of course, they should be. 
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(b-i) 
Substituting 4a k mΩ =  into Eq. (n) gives the motion of the system for this 
excitation frequency as 
 

 
( ) ( )

( )

4 4
1

4
2

2 2( ) sin sin
3 3

( ) sin
3

a ak k
m m

a k
m

F Fu t t t
k k

Fu t t
k

π= − = −

=
 (o) �

 
The motion of the first mass is seen to be 180˚ out of phase with the applied 
force, while the motion of the second mass is seen to be in phase with the exci-
tation. 
 
(b-ii) 
For this case 23a k m ωΩ = = . This evidently corresponds to a resonance con-
dition and the solution for the second modal displacement given by Eq. (k) is 
not valid. For this excitation frequency Eq. (i-2) takes the form 
 

 2 2
2 2 2 2 2 2sinaf tη ω η ω ω+ = ���  (p) 

 
The resonance solution for this case follows directly from Eq. (3.34). Hence, 
 

 ( 3
2 2 2 2

1( ) sin( / 2) cos
2 12

a k
a m

F kt f t t t
k m

η ω ω π= − = −� )3 t  (q) 

 
Substituting Eqs. (k-1) and (q) into Eq. (m) gives the motion of the system for 
this excitation frequency as 
 

 
( ) ( )

( ) ( )

3 3
1

3 3
2

( ) cos sin
4 3

( ) cos sin
4 3

a k k
m m

a k k
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F ku t t t t
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⎢ ⎥⎣ ⎦

 (r) �

 
(b-iii) 
Substituting 2a k mΩ =  into Eq. (n) gives the motion of the system for this 
excitation frequency as 
 

 ( ) ( )
1

2 2
2

( ) 0

( ) sin sina ak k
m m

u t
F F

u t t t
k k

π

=

= − = −
 (s) �
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It is seen that for this excitation frequency the first mass remains stationary and 
is, in effect, “isolated” from the influence of the applied force. In addition, the 
motion of the second mass is 180˚ out of phase with the applied force. 

 
 
 

Example 8.7 
Consider the two degree of freedom system of Example 8.6 when the left and 
right masses are subjected to the forces F1(t) and F2(t), respectively. Determine 
the steady state response of the system if (a) F1(t) = 0 and 2 ( ) sinb bF t F t= Ω  
and (b) 1( ) sina aF t F= Ω t  and 2 ( ) sinb bF t F t= Ω . 
 
Solution 
(a) External force applied to right mass. 
Since the system under consideration is the same as the system of Example 8.6, 
the natural frequencies and modal vectors, and the mass and stiffness matrices 
are those identified in that example. It also follows that the modal matrix, and 
hence the modal mass and modal stiffness matrices are those computed in Ex-
ample 8.6. The problem differs only in the force matrix. For the present prob-
lem, 
 

 
0

( )
sinb

t
F t

⎧ ⎫
= ⎨ ⎬Ω⎩ ⎭

F  (a) 

 
The modal force matrix is then 
 

 
0 sin1 1
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 (b) 

and hence, 
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1/ 32
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t
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��
�
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The equations that govern the modal displacements are then  
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2 2 2 2 2
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η ω η ω

η ω η ω
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where 

 1
1 2

1 2

    and    
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2 bF FFf f
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F
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The solutions to Eqs. (d) are obtained by direct application of Eq. (3.28). This 
gives the modal response as 
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( )

2

1

2
2

1
1( )

( ) sin
( ) 1/ 32

1 3

bb
b
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m kt F
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The physical displacements are next found by substituting Eq. (f) into Eq. (m) 
of Example (8.6). Doing this, we obtain the displacements 
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(b) External forces applied to both masses. 
Since the governing equations are linear, the response to the combined loading 
may be superposed. Thus, adding Eq. (n) of Example 8.6 and Eq. (g) of the 
present example gives the response to the combined loading as 
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Example 8.8 
Consider the three-story building 
comprised of 12 identical columns, 
each of length L and bending stiff-
ness EI shown in the figure. The 
three floors supported by the col-
umns are each of mass m as indi-
cated. Determine the steady state 
response of the structure if the base 
is excited harmonically in the form 

0 0( ) sinu t h t= Ω . 
 
 
 
 
 
 
                                                                                     Figure E8.8-1 
Solution 

   Figure E8.8-2 
 

This is the structure of Example 7.6 subjected to base excitation. As such, the 
three story building under consideration may be represented as the equivalent 
three-mass three-spring system shown in Figure 8.8-2, where the stiffness of 
each equivalent spring is obtained directly from Eq. (1.19) as 
 

 348k EI L=  (a) 
 
The equivalent discrete system corresponds to the system considered in Exam-
ple 6.2. Hence, the equations of motion that govern the equivalent system are, 
from Eq. (c) of Example 6.2,  

 

 
1 1 0

2 2

3 3

0 0 2 0 ( ) sin
0 0 2 0 0
0 0 0 0 0

m u k k u k u t k h
m u k k k u

m u k k u

0 t− Ω⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ − − = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

��
��
��

 (b) 
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The governing equations could have also been obtained by direct application of 
Eqs. (6.2)–(6.7) for N = 3, with m1 = m2 = m3 = m,  k1 = k2 = k3 = k  and k4 = 0. 
 The natural frequencies and corresponding modes for the system under 
consideration are, from Example 7.6, 
  

 (1)
1 0

0.328
0.445 3.08  ,     0.591

0.737
k mω ω

⎧ ⎫
⎪ ⎪= = = ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (c) 

 (2)
2 0

0.737
1.25 8.64  ,     0.328

0.591
k mω ω

⎧ ⎫
⎪ ⎪= = = ⎨ ⎬
⎪ ⎪−⎩ ⎭

U  (d) 

 (3)
3 0

0.591
1.80 12.5  ,     0.737

0.328
k mω ω

⎧ ⎫
⎪ ⎪= = = −⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (e) 

 where 

 0 3

EI
mL

ω =  (f) 

 The modal matrix is then 
 

 
0.328 0.737 0.591
0.591 0.328 0.737
0.737 0.591 0.328

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

B  (g) 

 
 and the modal mass, stiffness and force matrices are computed as follows. 
 The modal mass matrix is computed directly as 
  

 
1 0 0
0 1 0
0 0 1

m
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

�m B mBT  (h) 

 
Since the mass matrix m is diagonal, and the stiffness matrix k is full (stiffness 
coupling), the computation of the modal stiffness matrix for this system is sim-
plified somewhat by using Eq. (8.50). Hence,  
  

 
0.198 0 0 1 0 0 0.198 0 0

  0 1.56 0 0 1 0 0 1.56 0
0 0 3.25 0 0 1 0 0 3.25

k m k
m

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Λ� �k m

 (i) 
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The modal force matrix is easily computed as 
 

 0

0.328
sin 0.737

0.591
kh t

⎧ ⎫
⎪ ⎪= = Ω ⎨ ⎬
⎪ ⎪
⎩ ⎭

�F B FT  (j) 

 
Having computed the modal mass, modal stiffness and modal force matrices, 
the modal equations for the three-story building are then 
 

 1 0.198 0.328 sinm k k h0 tη η+ =�� Ω
t

 (k-1)
 2 2 01.56 0.737 sinm k k hη η+ =�� Ω

t
 (k-2) 

 3 3 03.25 0.591 sinm k k hη η+ =�� Ω  (k-3) 
 
or, in standard form, 

  

 2 2 (1) (1) 0
1 1 1 1 0 0

0.328
sin  ;   1.66

0.198
k h

f t f
k

η ω η ω+ = Ω = =� ��� 0h  (l-1) 

 2 2 (2) (2) 0
2 2 2 2 0 0

0.737
sin  ;   0.472

1.56
k h

f t f
k

η ω η ω+ = Ω = =� ��� 0h  (l-2) 

 2 2 (1) (3) 0
3 3 3 3 0 0

0.591
sin  ;   0.182

3.25
k h

f t f
k

η ω η ω+ = Ω = =� ��� 0h  (l-3) 

 
The steady state response for each mode [i.e., the solutions to Eqs. (l-1)–(l-
3)] can be written directly from Eq. (3.28). Hence, letting j jωΩ ≡ Ω (j = 1, 
2, 3), we obtain 

 

 
( )

(1)
0 0

1 2 2 2
1 0

1.66
( ) sin sin

1 1 0.105
f h

t tη
ω

= Ω =
− Ω − Ω

�
tΩ  (m-1) 

 
( )

(2)
0 0

2 2 2 2
2 0

0.472
( ) sin sin

1 1 0.0134
f h

t tη
ω

= Ω =
− Ω − Ω

�
tΩ  (m-2) 

 
( )

(3)
0 0

3 2 2 2
3 0

0.182
( ) sin sin

1 1 0.00640
f h

t tη
ω

= Ω =
− Ω − Ω

�
tΩ  (m-3) 

 
Finally, the response of the structure is obtained by transforming back to physi-
cal coordinates using Eq. (8.30). Hence, 
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Figure E8.8-3  Normalized amplitudes of side-sway motion for each floor of three-story 
building. 
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3

( )

1

( ) ( )j
j

j

t tη
=

= ∑u U

 
which gives the steady state response of the three story building as 
 

 
( )1 1 0 0

02 2 2
0 0 0

( ) sin

0.544 0.348 0.106       sin
1 0.105 1 0.0134 1 0.00640

u t h t

h t

χ= Ω Ω

⎛ ⎞
= + +⎜ ⎟− Ω − Ω − Ω⎝ ⎠

Ω
 (n-1) �

 

 
( )2 2 0 0

02 2 2
0 0 0

( ) sin

0.981 0.155 0.134       sin
1 0.105 1 0.0134 1 0.00640

u t h t

h t

χ= Ω Ω

⎛ ⎞
= + −⎜ ⎟− Ω − Ω − Ω⎝ ⎠

Ω
 (n-2) �

 

 
( )3 3 0 0

02 2 2
0 0 0

( ) sin

1.22 0.279 0.0597       sin
1 0.105 1 0.0134 1 0.00640

u t h t

h t

χ= Ω Ω

⎛ ⎞
= − +⎜ ⎟− Ω − Ω − Ω⎝ ⎠

Ω
 (n-3) �

 
 where 
 0 0ωΩ = Ω  (o) 

 
and ω0 is given by Eq. (f). It may be seen that the amplitude of the response of 
each mass is dependent upon the normalized forcing frequency, 0.Ω  Plots of 
the normalized amplitudes χj (j = 1, 2, 3) as a function of the normalized excita-
tion frequency are displayed in Figure E8.8-3. 

 
 
 

Example 8.9 
Two identical railroad cars, each of mass m, are attached by an elastic coupler 
of effective stiffness k, as shown. The cars are initially at rest when a third car  
collides with the system and imparts an impact of magnitude I to the left car, as 
indicated. Determine the motion of the coupled cars following impact. 
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Solution 
The equation of motion for the system is easily derived, or may be found di-
rectly from Eq. (b) of Example 6.1 by setting m1 = m2 = m, k2 = k, k1 = k3 = 0, 
F2 = 0 and 1( ) ( )F t tδ=

�
I . The resulting equation is 

 

 1 1

2 2

( ) ( )0 ( )
( ) ( )0 0

u t u tm k k t
u t u tm k k

δ⎧ ⎫−⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥− ⎬
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

���
��

I  (a) 

 
The free vibration problem for the system corresponds to that for the unre-
strained system of Example 7.9. The natural frequencies and modal vectors 
were computed therein as 
 

 (1)
1

1
0,

1
ω

⎧ ⎫
= = ⎨ ⎬

⎩ ⎭
U  (b) 

 

 (2)
2

1
2 ,

1
k mω

⎧ ⎫
= = ⎨ ⎬−⎩ ⎭

U  (c) 

 
Recall that the first mode corresponds to a rigid body mode. The modal matrix 
follows directly as 
 

  (d) 
1 1
1 1

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

B TB

⎤
⎥
⎦

⎤
= ⎥

⎦

I t

 
We next compute the modal mass, stiffness and force matrices. Hence, 
 

  (e) 
1 1 0 1 1 2 0
1 1 0 1 1 0 2

m m
m m

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

�m

 

  (f) 
1 1 1 1 0 0
1 1 1 1 0 4

k k
k k k

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
�k

and 

 
ˆ1 1 1( ) ˆ( ) ( )

1 1 10
I tt δ δ

⎧ ⎫⎡ ⎤ ⎧⎪ ⎪= =
⎫

⎨ ⎬ ⎨⎢ ⎥− ⎪ ⎪
⎬

⎣ ⎦ ⎩⎩ ⎭ ⎭

� ��F  (g) 

 
It is seen from Eq. (g) that the applied force excites both modes. Note also, 
from Eq. (f), that the equivalent 1 d.o.f. system associated with the first mode 
(i.e., the rigid body mode) possesses vanishing stiffness. The corresponding 
modal equations are 
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 1

2 2

2 ( ) ( )

2 ( ) 4 ( ) (

m t t

m t k t t

η δ

)η η δ

=

+ =

�
��

�
��

I

I
 (h) 

 
Integrating the first of Eqs. (h) and incorporating Eq. (4.21) gives 
 

 1( ) ( )
2

t t
m

η =
I

H t  (i-1) 

 
It is seen that the first modal displacement corresponds to a rectilinear motion 
at constant velocity. The solution to the second of Eqs. (h) is found by direct 
application of Eq. (4.22). We thus obtain the second modal displacement as 
 

 2
2 ( ) sin ( )

8
k

mt
km

η =
I

Ht t

2

2

⎫
⎬
⎭

 (i-2) 

 
Mapping back to physical space gives the response of the system as 
 

  (j) 1 1 1

2 2 1

( ) ( ) ( ) ( )1 1
( ) ( ) ( ) ( )1 1

u t t t t
u t t t t

η η η
η η η

+⎧ ⎫ ⎧ ⎫ ⎧⎡ ⎤
= =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ −−⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩

 
Substituting the Eqs. (i-1) and (i-2) into Eq. (j) gives the motion of the railroad 
cars as 

 

2
1

2
2

1( ) sin ( )
2 2

1( ) sin ( )
2 2

k
m

k
m

u t t t t
m k m

u t t t t
m k m

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

I

I

H

H

⎠  (k) 

 
The motion of the system is seen to be comprised of a rigid body translation of 
both cars traveling together at constant speed 0 2v = I m  combined with the 
two cars vibrating relative to one another in an “accordion mode” at frequency  

2 .k mω =  
 
 

 
 

Example 8.10 
Determine the response of the double pendulum of Examples 6.5 and 7.5 if the 
bottom mass is subjected to the horizontally directed triangular pulse indicated. 
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    Figure E8.10-1  Double pendulum subjected to triangular pulse. 
 
 
 Solution 

From the development in Section 6.1.2, and from Examples 6.5 and 7.5, the 
governing equations for the pendulum are  
 

 + =��mu ku F  
where 

 1

2

( )
( )

( )
t

t
t

θ
θ

⎧ ⎫
= = ⎨ ⎬

⎩ ⎭
u u   

 
and the system matrices for the uniform pendulum are 
 

 2 22 1 2 0
 ,    

1 1 0 1
gmL mL
L

⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

m k
⎦

 (a, b) 

 
Further, the natural frequencies and associated modal vectors are, from Exam-
ple 7.5, 

 (1)
1

1
0.765 /  ,  

2
g Lω

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

U  (c-1, 2) 

 (2)
2

1
1.85 /  ,  

2
g Lω

⎧ ⎫⎪ ⎪= = ⎨ ⎬
−⎪ ⎪⎩ ⎭

U  (c-3, 4) 

 
For the present problem, the force matrix is  
 

 1 2 1

2 2

( ) ( ) 1
( ) ( )

( ) 1
F F L P t L

t
F L P t L
+⎧ ⎫

P t L
⎧ ⎫ ⎧

= → =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩⎩ ⎭

F ⎫
⎨ ⎬

⎭
 (d) 

 
 It follows from Eqs. (c-2) and (c-4) that the modal matrix for the system is 
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1 1

2 2

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
B  (e) 

 
The modal mass, modal stiffness and modal force matrices are next obtained 
using Eqs. (8.39), (8.40) and (8.41), respectively. Hence, 
 

 2 2
1 11 2 2 1 2 2 0

2
1 1 2 21 2 0 2 2

mL mL
⎡ ⎤ ⎡⎡ ⎤ +⎡ ⎤

= =⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ −⎢ ⎥− −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
�m

⎤
⎥
⎥⎦

 (f) 

 

 2
1 11 2 2 0 1 0

4
0 1 0 12 21 2

gmL mL
L L

⎡ ⎤ ⎡ ⎤ 2 g⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎡ ⎤
⎢ ⎥ −⎢ ⎥−⎢ ⎥

⎢ ⎥
⎣ ⎦ ⎣⎣ ⎦⎣ ⎦

�k
⎦

 (g) 

 
Since the present system has only two degrees of freedom, is was simple 
enough to compute the modal mass matrix directly. It may be seen, however, 
that the stiffness matrix for this system is diagonal while the mass matrix is full 
(inertia coupling). The computation of the modal mass matrix for systems of 
this type is generally simplified by using Eq. (8.50). Thus, we may also com-
pute the modal mass as follows: 
 

 

1 2

2

1 (2 2) 0 1 0
4

0 10 1 (2 2)

2 2 0
               2

0 2 2

L gmL
g L

mL

−
⎡ ⎤− ⎡ ⎤

= = ⎢ ⎥ ⎢ ⎥
+ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤+
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

Λ ��m k

 

 
Finally, the modal force matrix is computed as 
 

 1

2

1 2 ( )
( ) ( )

( )1 2

P t L Lt
P t L L

⎡ ⎤
P t

⎧ ⎫⎧ ⎫ ⎪ ⎪= =⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎪ ⎪−⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

��
�F  (h) 

where 
 ( ) ( )1 21 2  ,    1 2L L L L= + = −� �  (i) 

 
With the modal mass, modal stiffness and modal force matrices for the system 
established, the transformed (modal) equations for the double pendulum take 
the specific form 

  1 1 1 1 1

2 2 2 2 2

( )

( )

m k P t L

m k P t

η η

η η

+ =

+ =

� ����
� ���� L
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Figure E8.10-2  Decomposition of triangular pulse into the sum of three pulses. 
 
 
 
or 

 
2 2

1 1 1 1 1

2 2
2 2 2 2 2

( )

( )

f t

f t

η ω η ω

η ω η ω

+ =

+ =

���
���

 (j) 

where 

 
2

1 1 1

2
2 2 2

( ) ( )

( ) ( )
1

2

f t P t L k

f t P t L

ω

ω

=

=

� ��

� � k�
 (k) 

 
Equations (j) may be solved for the modal displacements once we establish an 
analytical form for the pulse P(t). Toward this end, the given triangular pulse 
may be constructed as the sum of two ramp loads and a step load as shown in 
Figure E8.10-2. Mathematically, 
 

  (l) ( ) ( ) ( )( ) ( ) ( ) ( )a b cP t P t P t P t= + +
where 

 ( ) 0

0

( ) ( )a P
P t t t

t
= H  (m-1) 

 ( )( )
0 0( ) 1 ( )bP t P t t t t⎡ ⎤ 0= −⎣ ⎦ H −

0

 (m-2) 
 

 ( )
0( ) ( )cP t P t t= − −H  (m-3) 

 
The response of each 1 d.o.f. system [the solutions to Eqs. (j)] is then the sum 
of the responses to the individual pulses (m-1), (m-2) and (m-3).  From the dis-
cussions of Sections 4.4, 4.5 and 4.6 we thus have that 
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[ ]

( ) ( ) ( )
1 1 1 1

0 1 1 0 1
1 1 0 1

0 1

( ) ( ) ( ) ( )

       ( ) ( ) ( )

a b ct t t t

P L k P L
t t t t t

t k

η η η η= + +

= − − −
��

�R R S 0−
�  (n-1) 

and 
 

        
[ ]

( ) ( ) ( )
2 2 2 2

0 2 2 0 2
2 2 0 2

0 2

( ) ( ) ( ) ( )

       ( ) ( ) ( )

a b ct t t t

P L k P L
t t t t

t k

η η η η= + +

= − − −
��

�R R S 0t−
�  (n-2) 

 
where, from Eqs. (4.32) and (4.39), 
 

 
sin

( ) ( )   ( 1, 2)j
j

j

t
t t t j

ω
ω

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
R H  (o) 

 
  (p) 0 0 0( ) 1 cos ( ) ( )   ( 1,2j jt t t t t t jω⎡ ⎤− = − − − =⎣ ⎦S H )

 
The response of the double pendulum to the triangular pulse imparted on the 
bottom mass is then found by substituting Eqs. (e) and (n) into Eq. (8.31). Do-
ing this, we find that 
 

 
( )

( )
1 21 1

2 2 1 2

1 1( ) ( )
( ) ( ) 22 2
t t
t t

η ηθ η
θ η η η

⎧ ⎫+⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎪ ⎪= =⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨
−−⎢ ⎥⎩ ⎭ ⎩ ⎭

⎬
⎪ ⎪⎣ ⎦ ⎩ ⎭

 (q) 

 
and hence that 
 

 

0 1 2 1 1 2 2
1

0 1 21 2 1 2

0 1 0 21 2 1 2
0 0

0 1 21 2 1 2

1 2
0

1 2

sin sin
( ) ( )

sin ( ) sin ( )
          ( ) ( )

           

P L L L t L tt t t
t k k k k

P t t tL L L Lt t t t
t k k k k

L LP
k k

ω ω
θ

ω ω

ω ω
ω ω

⎡ ⎤⎛ ⎞
= + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ − −
− − + − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− + −

� � � �
� � � �

� � � �
� � � �

� � �
� �

H

H0t

1 2
1 0 2 0 0

1 2

cos ( ) cos ( ) ( )
L Lt t t t t t
k k

ω ω
⎡ ⎤

− − − −⎢ ⎥
⎢ ⎥⎣ ⎦

�
� � H

  

  (r-1) 
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0 1 2 1 1 2 2
2

0 1 21 2 1 2

0 1 0 21 2 1 2
0 0

0 1 21 2 1 2

1 2
0

1 2

sin sin
( ) ( )

sin ( ) sin ( )
          ( ) ( )

           

P L L L t L tt t t
t k k k k

P t t tL L L Lt t t t
t k k k k

L LP
k k

ω ω
θ

ω ω

ω ω
ω ω

⎡ ⎤⎛ ⎞
= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ − −
− − − − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− − −

� � � �
� � � �

� � � �
� � � �

� � �
� �

H

H0t

1 2
1 0 2 0 0

1 2

cos ( ) cos ( ) ( )
L Lt t t t t t
k k

ω ω
⎡ ⎤

− + − −⎢ ⎥
⎢ ⎥⎣ ⎦

�
� � H

 

     (r-2) 
 
Finally, upon substituting Eqs. (g) and (i) into Eqs. (r-1) and (r-2), we have 
 

 

( ) ( )

( )

( )

0
1 1 2

0 1 0 2 0

0 1 0
1 0

0 1 0

2 0
2 0

2 0

1 2 1 2
( ) sin sin ( )

2 2 2

1 2 sin ( )
          cos ( )

2 2

1 2 sin ( )
                            cos ( )

2

P tt t t t
mg t t t

P t tt t t
mg t t

t t
t t

t

θ ω ω
ω ω

ω
ω

ω

ω
ω

ω

⎡ ⎤+ −
⎢ ⎥= − −
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ + ⎧ ⎫−⎪ ⎪⎢− − + −⎨ ⎬⎢ ⎪ ⎪⎩ ⎭⎢⎣
⎤− ⎧ ⎫−⎪ ⎪⎥− + −⎨ ⎬⎥⎪ ⎪⎩ ⎭⎥⎦

H

H 0( )t t−

 

     (s-1) �

 

( ) ( )

( )

( )

0
2 1 2

0 1 0 2 0

0 1 0
1 0

0 1 0

2 0
2 0

2 0

1 2 1 2
( ) sin sin ( )

2 2 2

1 2 sin ( )
          cos ( )

2 2

1 2 sin ( )
                            cos ( )

2

P tt t t t
mg t t t

P t tt t t
mg t t

t t
t t

t

θ ω ω
ω ω

ω
ω

ω

ω
ω

ω

⎡ ⎤+ −
⎢ ⎥= − +
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ + ⎧ ⎫−⎪ ⎪⎢− − + −⎨ ⎬⎢ ⎪ ⎪⎩ ⎭⎢⎣

⎤− ⎧ ⎫−⎪ ⎪⎥+ + −⎨ ⎬⎥⎪ ⎪⎩ ⎭⎥⎦

H

H 0( )t t−

  

    (s-2) �
where ω1 and ω2 are given by Eqs. (c-1) and (c-3) respectively.  
 It may be seen from Eqs. (s-1) and (s-2) that once the pulse subsides (i.e., 
when t > t0) the linear time dependence in the response cancels. It may be noted 
that this also occurs for the sine terms in the expression for either θ1 or θ2 if the 
duration of the pulse, t0, is a multiple of the corresponding natural period. That 
is, Eq. (s-1) or Eq. (s-2) will simplify to the indicated cosine terms if t0 = 
2nπ/ω1 or if t0 = 2nπ/ω2, respectively, where n is any integer.  
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 Example 8.11 
The tram of Examples 6.6 and 7.7 is shut down and at rest and, as a conse-
quence, the cable is slack and the controller is off when a wind gust strikes the 
structure. Determine the motion of the tram if the effect of the wind gust may 
be modeled as a rectangular pulse of magnitude F0 and duration τ. 

 
   Figure E8.11  Tram subjected to wind load. 
 
Solution 
For the specific system in question, the mass of the barrow is twice the mass of 
the frame. That is, m2 = 2m1 = 2m. Further, for the present conditions, F1 = 0, M 
= 0 and  
 

 [ ]2 0( ) ( ) ( )F F t F t t τ= = − −H H  (a) 
 
 The equation of motion of the system is then, from Example 6.6, 
 

 2

3 2 0 ( )
2 2 0 2 ( )

m mL u k u F t
mL mL mgL L F tθ θ

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧
+ =

⎫
⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩

��
�� ⎬

⎭
 (b) 

 
The natural frequencies and modes for this system were computed in Example 
7.7 as 

 (1)
1 0 2

0

1
0.518 ,

0.366 g
ω ω

ω
⎧ ⎫

= = ⎨ ⎬
⎩ ⎭

U  (c-1, 2) 

 

   (2)
2 0 2

0

1
1.93 ,

1.37 g
ω ω

ω
⎧ ⎫

= = ⎨ ⎬−⎩ ⎭
U  (d-1, 2) 

 
where the properties of the particular system under consideration are such that 
  

 2
0 k m g Lω = =  (e) 
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 The corresponding modal matrix is then 
  

 2
0 0

1 1
0.366 1.37 2g gω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

B  (f) 

 
With the modal matrix established, we next compute the modal stiffness and 
modal force matrices. Hence, 
 

 
2

0
22

0 00

1 101 0.366
0.366 1.370 21 1.37

kg
2g gmgLg

ω
ω ωω

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −− ⎣ ⎦ ⎣ ⎦⎣ ⎦
�k   

 

 
1.27 0

0 4.76
k

k
⎡ ⎤

⇒ = ⎢ ⎥
⎣ ⎦

�k  (g) 

 and 

 
2

0
2

0

( ) 1.37 ( )1 0.366
( ) 0.366 ( )1 1.37

F t F tg
L F t F tg

ω
ω

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬⎢ ⎥ −− ⎩ ⎭ ⎩⎣ ⎦
�F

⎭
 (h) 

 
The modal equations are then 
 

 
[ ]
[ ]

2 2 (1)
1 1 1 1 0

2 2 (2)
2 2 1 2 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t f t t

t t f t t

η ω η ω τ

η ω η ω τ

+ = − −

+ = − −

���
���

H H

H H
 (i) 

where 

 
(1) (1)

0 0 1 0

(2) (2)
0 0 2 0

1.08

0.0769

f F k F k

f F k F k

= =

= = −

� ��

� ��
 (j) 

 
The solutions to equations (i) follow directly from Eq. (4.43). The modal dis-
placements are therefore 
 

 
[ ] [ ]{ }
[ ] [ ]{ }

(1)
1 0 1 1 1 1

(2)
2 0 2 2 2 2

( ) 1 cos( ) ( ) 1 cos{ ( ) } ( )

( ) 1 cos( ) ( ) 1 cos{ ( ) } ( )

t f t t t t

t f t t t t

η ω φ ω τ φ τ

η ω φ ω τ φ τ

= − − − − − − −

= − − − − − − −

�

�
H H

H H
 (k) 

 
 Transforming back to physical space gives the desired response. Hence, 
 

 

1
2 2

0 0

1 2
2

1 2 0

1 1( )
0.366 1.37 ( )( )

( ) ( )
(0.366 1.37 )

tu t
g gt

t t
g

η
ω ω ηθ

η η
η η ω

⎡ ⎤

2

( )
t

⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨⎢ ⎥−⎩ ⎭ ⎩⎣

+⎧ ⎫
= ⎨ ⎬−⎩ ⎭

⎬
⎭⎦  (l) 
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 Finally, 
 

 

[ ]

[ ]

[ ]

0

0
0 1 0 1

0
0 1 0 1

( ) ( ) ( )

1.08cos(0.518 ) 0.0769cos(1.93 ) ( )

1.08cos{0.518 ( ) } 0.0769cos{1.93 ( ) } ( )

F
u t L t t

mg
F

t t t
mg
F

t t
mg

τ

ω φ ω φ

tω τ φ ω τ φ τ

= − −

− − − −

+ − − − − −

H H

H

H −

  

    (m-1) �

 

[ ]

[ ]

[ ]

0

0
0 1 0 1

0
0 1 0 1

( ) ( ) ( )
2

0.395cos(0.518 ) 0.105cos(1.93 ) ( )

0.395cos{0.518 ( ) } 0.105cos{1.93 ( ) } ( )

F
t t t

mg
F t t t
mg
F t t
mg

θ τ

ω φ ω φ

tω τ φ ω τ φ τ

= − −

− − + −

+ − − + − −

H H

H

H −

  

   (m-2) �
 

 
 

Example 8.12 
The motorcycle of Examples 6.7 and 7.8 is traveling at constant speed v0 on a 
horizontal road when it encounters a small depression in the road. If the depres-
sion is described by the function [ ]0( ) 1 cos(2 )y hξ πξ λ= − , determine the re-
sponse of the motorcycle that results from riding through the dip. 

 
      Figure E8.12-1  Motorcycle approaching depression in road. 

 
Solution 
The problem is similar to Example 4.7, but now for a three-degree of freedom 
system with two wheels (Figure E8.12-2). The spatial equation that describes 
the geometry of the depression is given as 
 

[ ]0( ) 1 cos(2 )y hξ πξ λ= −  (a) 
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here h0 is the depth of the depression and λ is the corresponding length as 

 

   Figure E8.12-2  Equivalent system. 
 
 
w
shown. Since the motorcycle moves at constant speed v0 the problem may be 
viewed as if the vehicle is fixed and each base undergoes a prescribed vertical 
motion, where the motion of the second base lags the first by the time incre-
ment 

0lagt v L=     (b) 
 

 the first wheel encounters the depression at t  0 then, while passing through 

 (c) 

ssing through the de

    lag

ubstituting Eq. (c) into Eq. (a) gives the vertical motion of the front wheel as, 

 

If =
the dip, the horizontal motion of the first wheel is 
 

  v tξ =   0

 
imilarly, while pa pression, the horizontal motion of the S

second wheel is  
( )v t v t tξ ′= = −  (d) 0 0

 
S
 

[ ][ ]01 0( ) 1 cos ( ) ( )y t h t t t t= − Ω − −H H  (e) λ

where 
 2 tλπΩ =  (f) 

 
and 

0t vλ λ=  (g) 

 the time it takes for the wheel to traverse th

 ) ( )lag lag lagt t t tλ ⎤− − −⎣ ⎦ ⎣ ⎦  (h) 
 

 
is e depression. Likewise, the verti-
cal motion of the second wheel is given by  
 

( ) 1 cos ( ) (y t h t t t⎡ ⎤ ⎡= − Ω − −H H02 0
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Now, the equations of motion for the particular system under consideration are 
found by substituting the given system parameters into Eq. (h) of Example 6.7. 
We then have 
 

 
01 02

2
01 02

0 0 8 3 0 2 3 ( )
0 0 0 2 0 ( )
0 0 3 2 3 0 2 3 0

G G

G

b b

m y k k y k y y
I kL kL

m y k k y
θ θ

− +⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩

��
��

��
2y y

⎫
−

⎭

 (i) 

 
where 

 2 12GI mL=  (j) 
 
We wish to solve Eq. (i) subject to the base motions defined by Eqs. (e) and 
(h). To do this we first recall the natural frequencies and modal vectors that 
were computed in Example 7.8. Thus, 
 

 2 (1)
1

1
1.132 , 0

2.303
k mω

⎧ ⎫
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (k) 

 

 2 (1)
2

1
3.535 , 0

1.303
k mω

⎧ ⎫
⎪ ⎪= = ⎨ ⎬
⎪ ⎪−⎩ ⎭

U  (l) 

 

 2 (1)
3

0
6 , 1

0
k mω

⎧ ⎫
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎩ ⎭

U  (m) 

 
The corresponding modal matrix is then 
 

 
1 1
0 0

2.303 1.303 0

0
1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

B  (n) 

 
We next compute the modal mass, modal stiffness and modal force matrices. 
Hence, 
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2

1 0 2.303 0 0 1 1 0
1 0 1.303 0 0 0 0 1
0 1 0 0 0 3 2.303 1.303 0

2.768 0 0
0 1.566 0
0 0 12

G

m
I

m

m
m

mL

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�m
⎤
⎥
⎥
⎥⎦  (o) 

 

 

2

1.132 0 0 2.768 0 0
0 3.535 0 0 1.566 0
0 0 6 0 0

3.133 0 0
0 5.536 0
0 0 2

G

m
k m
m

I

k
L

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Λ� �k m

 (p) 

 
and 
 

 
01 02 01 02

01 02 01 02

01 02

1 0 2.303 ( ) ( )
1 0 1.303 ( ) 2 ( )
0 1 0 0 ( ) 2

k y y k y y
kL y y k y y

kL y y

+ +⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= − − = +⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ −⎣ ⎦ ⎩ ⎭ ⎩

�F

⎭

 (q) 

 
It is seen from Eq. (q) that all three modes are excited. Substituting the above 
values into Eq. (8.52) gives the corresponding equations for the modal dis-
placements, 
 

 { }2 2 2
1 1 1 1 1 1 01 02( ) ( ) ( ) 0.3192 ( ) ( )t t f t y t y tη ω η ω ω ⎡ ⎤+ = = +⎣ ⎦

���  (r-1) 
 

 { }2 2 2
2 2 2 2 2 2 01 02( ) ( ) ( ) 0.1806 ( ) ( )t t f t y t yη ω η ω ω t⎡ ⎤+ = = +⎣ ⎦

���  (r-2) 
 

 { }2 2 2
3 3 3 3 3 3 01 02( ) ( ) ( ) ( ) ( )t t f t y t y tη ω η ω ω L⎡ ⎤+ = = −⎣ ⎦

���  (r-3) 
 
where y01(t) and y02(t) are given by Eqs. (e) and (h), respectively. Equations (r-
1), (r-2) and (r-3) can be solved using the methods of Chapter 4. For this par-
ticular case, we can simplify our analysis by taking advantage of calculations 
already performed in a previous example and using superposition. In this re-
gard, the solution to Example 4.7 can be utilized by incorporating the current 
values of the parameters. Doing this we obtain 
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( )

( )

( )

( )

2(1)
1 1 1 1 1

2(1)
1 1 1 1

2(1)
1 1 1 1

2(1)
1 1 1 1

( ) 1 cos cos ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) (

lag lag lag

lag lag la

t h t t t

h t t t t t t

h t t t t t t

h t t t t t t

λ λ λ

λ λ

η ω β ω β

ω β ω β

ω β ω β

ω β ω β

⎡ ⎤= + Ω − Ω⎣ ⎦
⎡ ⎤− + Ω − − Ω − −⎣ ⎦
⎡ ⎤+ + Ω − − Ω − −⎣ ⎦
⎡ ⎤− + Ω − − − Ω − − −⎣ ⎦

H

H

H

H )g tt t λ−

 

   (s-1) 
 

 

( )

( )

( )

( )

2(2)
2 2 2 2 2

2(2)
2 2 2 2

2(2)
2 2 2 2

2(2)
2 2 2 2

( ) 1 cos cos ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) (

lag lag lag

lag lag la

t h t t t

h t t t t t t

h t t t t t t

h t t t t t t

λ λ λ

λ λ

η ω β ω β

ω β ω β

ω β ω β

ω β ω β

⎡ ⎤= + Ω − Ω⎣ ⎦
⎡ ⎤− + Ω − − Ω − −⎣ ⎦
⎡ ⎤+ + Ω − − Ω − −⎣ ⎦
⎡ ⎤− + Ω − − − Ω − − −⎣ ⎦

H

H

H

H )g tt t λ−

 

   (s-2) 
 

( )

( )

( )

( )

2(3)
3 3 3 3 3

2(3)
3 3 3 3

2(3)
3 3 3 3

2(3)
3 3 3 3

( ) 1 cos cos ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) (

lag lag lag

lag lag la

t h t t t

h t t t t t t

h t t t t t t

h t t t t t t

λ λ λ

λ λ

η ω β ω β

ω β ω β

ω β ω β

ω β ω β

⎡ ⎤= + Ω − Ω⎣ ⎦
⎡ ⎤− + Ω − − Ω − −⎣ ⎦
⎡ ⎤+ + Ω − − Ω − −⎣ ⎦
⎡ ⎤− + Ω − − − Ω − − −⎣ ⎦

H

H

H

H )g tt t λ−

 

   (s-3) 
 where 

 
( )2

1 ( 1, 2,3
1

j

j

jβ
ω

=
− Ω

)=  (t) 

 
 (1) (2) (3)

0 00.3192 , 0.1806 ,h h h h h= = 0h L=

tη
⎫
⎪
⎬
⎪
⎭

 (u-1, 2, 3) 
 
The physical displacements are finally obtained by transforming back to the 
original coordinates using Eq. (8.31). Hence, 
 

  (v) 
1

2

3

( ) 1 1 0 ( )
( ) 0 0 1 ( )
( ) 2.303 1.303 0 ( )

G

b

y t t
t

y t t

η
θ

η

⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩

 
which when expanded gives 
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 1 2( ) ( ) ( )Gy t t tη η= +  (w-1) �
 

 3( ) ( )t tθ η=  (w-2) �
 

 1 2( ) 2.303 ( ) 1.303 ( )by t t tη η= −  (w-3) �
 
where η1(t), η2(t) and η3(t) are given by Eqs. (s-1), (s-2) and (s-3), respectively. 
It is seen that the rotational coordinate is a modal coordinate. Let’s examine the 
motion of the rider in detail. 
 The detailed response of  the rider is found by substituting Eqs. (s-1) and 
(s-2) into Eq. (w-3) and evaluating the resulting expression when the front 
wheel is rolling through the depression (0 < t < tλ), after it passes the dip but be-
fore the second wheel encounters the depression (tλ < t < tlag), when the second 
wheel rolls through the depression (tlag < t < tlag + tλ) and after the second wheel 
passes the dip (t > tlag). The explicit forms are detailed below. 
 
0 < t < tλ :  
During the interval when the first wheel is going through the depression, the 
motion of the rider is 
 

 
( ) ( ) ( )

( ) ( )

0 02 2
0 0 0

2 2
0 0

0 02 2
0 0

( ) 1 0.7351 0.2353 cos 2
2 1 34.87 1 11.17

25.63 2.628
cos(1.064 ) cos(1.880 )

1 34.87 1 11.17

by t
v t

h v v

v v
t t

v v

π ω

ω ω

⎡ ⎤
⎢ ⎥= + −
⎢ ⎥− −⎣ ⎦

+ −
− −

  

    (x-1) �
where 

 0
0

0

v
v

ω λ
=  (y)  

and 
 0 k mω =  (z)  

 
tλ < t < tlag : 
After the first wheel has gone through the depression, but before the second 
wheel begins its transversal, the motion of the rider is 
   

 
( ) [ ]

( ) [ ]

2
0

0 02
0 0

2
0

0 02
0

( ) 25.63
cos(1.064 ) cos{1.064 ( )}

1 34.87

2.628
cos(1.880 ) cos{1.880 ( )}

1 11.17

by t v
t t

h v

v
t t

t

v

λ

λ

ω ω

ω ω

= − −
−

− − −
−

�
t

 (x-2) 
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tlag < t < tlag + tλ : 
As the second wheel rolls through the depression the motion of the rider is 
given by 
 

 

( ) ( )

( )

( )

0 02 2
0 0 0

2
0

0 0 02
0

2
0

0 02
0

( ) 1 0.7351 0.2353 cos{2 ( )}
2 1 34.87 1 11.17

25.63
cos(1.064 ) cos{1.064 ( )} cos{1.064 ( )}

1 34.87

2.628
cos(1.880 ) cos{1.880 ( )} c

1 11.17

b
lag

lag

y t
v t t

h v v

v
t t t t

v

v
t t t

v

λ

λ

π ω

ω ω ω

ω ω

⎡ ⎤
⎢ ⎥= + − −
⎢ ⎥− −⎣ ⎦

⎡ ⎤+ − − +⎣ ⎦−

− − − +
−

0os{1.880 ( )}lagt tω⎡ ⎤−⎣ ⎦

t−   

   (x-3) �
 
t > tlag : 
After the second wheel has passed the depression the motion of the rider is 
 

 

( ) [ ]{

}

( ) [ ]{

2
0

0 02
0 0

0 0

2
0

0 02
0

0 0

( ) 25.63
cos(1.064 ) cos{1.064 ( )}

1 34.87

cos{1.064 ( )} cos{1.064 ( )}

2.628
cos(1.880 ) cos{1.880 ( )}

1 11.17

cos{1.880 ( )} cos{1.880 (

b

lag lag

lag lag

y t v
t t t

h v

t t t t t

v
t t t

v

t t t t t

λ

λ

λ

ω ω

ω ω

ω ω

ω ω

= − −
−

⎡ ⎤+ − − − −⎣ ⎦

− − −
−

+ − − − − })}λ⎡ ⎤⎣ ⎦

  

   (x-4) �
 
    
 

8.6 MODE ISOLATION 

In certain situations it may be desirable to excite one particular mode of a system, but 
none of the other modes. In the present section we examine how this may be accom-
plished. 
 Recall from Section 8.2.2 that when a vector v is operated on by a linear trans-
formation R, it results in a vector such that ,�v
 
 =�v R v  
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As discussed earlier, the matrix v may be considered to be the matrix of components 
of a vector with respect to a certain set of coordinates, and the matrix  may be 
thought of as the matrix of components of that same vector expressed in terms of a 
different set of coordinates. With this in mind let us consider an N-degree of freedom 
system with mass matrix m and stiffness matrix k, and let us focus on a particular 
modal matrix, say U

�v

(j). Further, let us consider the transformed modal vector ( ) ,j�U  
where either 
 ( ) ( )j j=�U mU  (8.56) 
or 
 ( ) ( )j j=�U kU  (8.57) 
 
Next, let us consider the specific class of force systems whose matrices are propor-
tional to the transformed modal vector. That is, let us consider force matrices of the 
form 
 ( )( ) ( ) jt tλ= �F U  (8.58) 
 
where λ(t) is a scalar function with appropriate units. The corresponding matrix of 
modal forces is then obtained by substituting Eq. (8.58) into Eq. (8.41) to obtain 
 
 ( )( ) ( ) jt tλ=�F BT �U  (8.59) 
 
Recalling the definition of the modal matrix B, Eq. (8.21), and expressing this in Eq. 
(8.59), we see that 
 

 

(1) (1) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

j

j

N N j

t t tλ λ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥

= = ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥

⎣ ⎦ ⎩ ⎭

�
� �#

�

U U
F U

U U U

T T

T T

#
U

m

 (8.60) 

 
If the transformation defined by Eq. (8.56) is used in Eq. (8.60), and if we exploit the 
mutual orthogonality of the modal vectors and also incorporate Eq. (8.44), then  
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Similarly, if the transformation defined by Eq. (8.57) is used and we incorporate Eq. 
(8.47), then 

 

(1) ( )

( ) ( )

( ) ( )

0 0

0 0
( ) ( ) ( ) 1

00

00

j

j j
jj

N j

t t tkλ λ λ

⎧ ⎫

k

⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪⎧ ⎫ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨

⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭

⎬
⎪
⎪
⎪

⎪ ⎪ ⎪
⎩ ⎭⎪ ⎪

⎩ ⎭

# #
#

� ��

#
##

U kU

F U kU

U kU

T

T

T

⎪

 (8.62) 

 
In each case, it may be seen that the matrix of modal forces has only one nonvanish-
ing component; that corresponding to the jth mode. It is thus seen, from (8.48), that 
when the matrix of applied forces is of the form of Eq. (8.58), with ( )j�U  given by 
either Eq. (8.56) or Eq. (8.57), then only the jth mode is excited by the given set of 
forces. Finally, it may be seen that for those systems for which the mass matrix or the 
stiffness matrix is a scalar matrix (a matrix that is proportional to the identity matrix) 
then a single mode will be excited if the force matrix is directly proportional to that 
mode. 
 
 

Example 8.13 
Consider a system that may be modeled as 
the double pendulum of Examples 7.5 and 
8.10. Suppose that we wish to examine the 
response of the system to impulses applied to 
the masses of the system, as indicated. In ad-
dition, suppose that it is desired to observe 
the motion of each mode individually, and 
that we have a mechanism that will pulse 
each mass simultaneously. (a) How should 
we choose the relative magnitudes of the pulses so that the system responds in 
the first mode only? (b) Demonstrate that the forcing chosen does, in fact, acti-
vate the desired mode in each case. (c) determine the response of the system to 
the chosen forcing function.  
 
Solution 
This is evidently a mode isolation problem. We would therefore configure the 
forcing mechanism to apply the pulses so that, in each case, the matrix of ap-
plied forces is proportional to either Eq. (8.56) or Eq. (8.57).  
 Let us recall from Example (7.5) that the two modes for this system are 
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 (1) (2)
1 1

 ,    
2 2
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and hence that the modal matrix is 
  

 
1 1

2 2

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
B  (b) 

 
Let us also recall that the mass and stiffness matrices for the system are, respec-
tively, 

 2 2 1 2 0
 ,    

1 1 0 1
mL mgL

⎡ ⎤ ⎡
= =

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

m k
⎦

t

 (c-1, 2) 

 
For the loading under consideration, the time dependence of the forces corre-
sponds to an impulse. Hence, 
 

 0( ) ( )tλ δ
� �

∼ I  (d) 
 
(a)  
Since, for this particular system, the stiffness matrix is diagonal, let’s design 
our forcing using Eq. (8.57). Hence, 
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where, from Eq. (d), we have taken 0( ) ( ) .t t mλ δ= gL

� �
I  

  
(b)  
Now, to demonstrate that the pair of pulses given by Eq. (e) will excite only the 
first mode let us compute the corresponding modal forces. Thus, 
 

 0 0

21 2 1
( ) ( ) ( ) 4 ( )

021 2
t t t tδ δ
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It is seen from Eq. (f) that only the first element of the modal force matrix, that 
corresponding to the first mode, is nonzero. Therefore, only the first mode is 
excited.  
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(c) 
Paralleling the analysis of Example 8.10 for the present loading, the modal 
equations for this system are   
 

 1 1 1 1 0

2 2 2 2 2

4 ( )

0  ( ) 0

m k t

m k t

η η δ

η η η

+ =

+ = ⇒ =

� �����
����

I
 (g) 

 
where the modal mass and modal stiffness matrices for the double pendulum 
are given by Eqs. (f) and (g) of Example 8.5. Equation (g-2) clearly yields the 
trivial solution since the second mode is not forced as concluded in Part (b). 
The solution to Eq. (g-1) is obtained directly from Eqs. (4.22) and (4.23). Iden-
tifying 04=

�
I I , ζ = 0, and the mass and stiffness as the modal mass and mo-

dal stiffness for the mode in question gives 
 

 0
1 1
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m
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Transforming to physical coordinates gives the response of the pendulum as 
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 and finally, 

 

 1 0

3
2

1( ) 5.23
sin(0.765 ) ( )

( ) 2
t

g L t t
t m gL

θ
θ

⎧ ⎫⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

�
I

H  (j) �

 
 
 

 Example 8.14 
Consider the two degree of freedom mass-spring system of Example 8.7(b) for 
the case where Ωa = Ωb = Ω. (a) Determine the relative amplitudes of the ap-
plied forces, Fa and Fb, if we 
wish to excite (i) the first mode 
alone or (ii) the second mode 
alone. (b) Determine the corre-
sponding response for each case. 
 
Solution 
(a) 
For the loading under consideration,  the force system is of the form 
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 ( ) sina

b

F
t

F
⎧ ⎫

t= Ω⎨ ⎬
⎩ ⎭

F  (a) 

Hence  
 0( ) sint tλ λ= Ω  (b) 

 
where the amplitude λ0 may be any scalar. Since, for this particular system, the 
mass matrix is diagonal we shall choose to construct the force matrix using Eq. 
(8.56) for ease of computation. 
 
(i) Response in the form of Mode 1: 
For this case, 
 

 (1) 1 0 1 1
( ) ( ) ( ) ( )

0 1 1 1
t t t tλ λ λ

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= = =⎨ ⎬ ⎨⎢ ⎥ ⎬
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We thus see that only the first mode will be excited if we apply a force system 
that is proportional to the first mode. For the particular case of harmonic load-
ing described by Eq. (a), we see from Eqs. (b) and (c) that 
 

 0a bF F λ= =  (d) 
 
and any force system such that 
 
    1b aF F =  
 
will accomplish our objective. 
 
(ii) Response in the form of Mode 2: 
For this case, 
 

 (2) 1 0 1 1
( ) ( ) ( ) ( )

0 1 1 1
t t t tλ λ λ

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
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It is seen that, as for the previous case, the second mode alone will be excited if 
the force matrix is constructed to be proportional to the second mode. For the 
particular loading under consideration it is seen that  
 

 0b aF F λ= − = −  (f) 
 
and any force system such that 
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   1b aF F = −  
 
will achieve the desired response. The results for this system should have been 
anticipated since the mass matrix for the system is a scalar matrix. That is, it is 
proportional to the identity matrix. 
 
(b)  
The response to the harmonic loadings described by Eqs. (c) and (d), and by 
Eqs. (e) and (f), may be found directly from the solution of Example 8.7 by set-
ting Ωa = Ωb = Ω, and also setting 0a bF F λ= = or 0b aF F λ= − = −  accord-
ingly. Thus, for the first case, 
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where we recall from Example 8.6 that 1 .k mω =  For the second case, 
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where 2 3 .k mω =  

 
 
  

8.7 RAYLEIGH DAMPING 

To this point we have restricted our attention to the ideal case of undamped systems 
subjected to external dynamic loading. In this and the next section we relax this re-
striction and consider the behavior of systems that possess viscous damping. We de-
fer our discussion of the general case to Section 8.8 and presently consider a specific 
class of systems with viscous damping, those for which the damping matrix is propor-
tional to the mass and/or stiffness matrices. Damping of this type is known as 
Rayleigh Damping, and is also referred to as proportional damping. It will be seen 
that damping of this type allows decoupling of the equations of motion through mo-
dal analysis of forced systems, based on the natural modes of the corresponding un-
damped systems. We first recall the general equations of motion for damped systems.  
 Systems with linear damping are governed by equations of the form of Eq. 
(6.2). We repeat them here for clarity of the present discussion. Hence, 
 
 + + =�� �mu cu ku F  (8.63) 
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We next introduce proportional damping, that is damping where the matrix of damp-
ing coefficients (the damping matrix), c, is linearly proportional to the mass and stiff-
ness matrices. We thus consider systems for which 
 
 α β= +c m k

T

 (8.64) 
 
where α and β are scalar material constants. We shall seek a solution in the form of 
an expansion in terms of the modal vectors of the undamped system. That is we as-
sume a solution in the form of Eq. (8.31). Substituting Eq. (8.31) into Eq. (8.63) and 
pre-multiplying the resulting expression by BT results in the transformed equation of 
motion 
  ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦η η η�� �B mB B cB B mB B FT T T

 
which may be written as 

 
 + + =mη cη k η F�� �� � � �  (8.65) 
 
where, from the development in Section 8.4, 
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is the modal mass matrix, 
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is the modal stiffness matrix and  
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is the modal force matrix. Further, incorporating Eq. (8.64) into the transformation of 
the damping matrix gives  
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 α β α= = + = + ��c B cB B mB B kB m kT T T β�  (8.66) 
  
Thus, the modal damping matrix for a system with proportional damping takes the 
diagonal form 
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where 
  (8.68)    ( 1, 2,..., )j j jc m k j Nα β= + =�� �
 
Since the damping matrix is a linear combination of the mass and stiffness matrices 
of the system, the transformed damping matrix is diagonal like the modal mass and 
modal stiffness matrices. Therefore, the transformed equations of motion for systems 
with Rayleigh Damping are decoupled in the same way as those for undamped sys-
tems. Expanding Eq. (8.65) gives the system of N uncoupled differential equations 
for the modal displacements ηj  (j = 1, 2, …, N), 
 

  (8.69) 
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which may be thought of as corresponding to the governing equations of the N 
equivalent single degree of freedom systems shown in Figure 8.7, with damping. 
These equations may be put in the standard form, 
 

  (8.70) 

2 2
1 1 1 1 1 1 1 1

2 2
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where 
 2j j jc mζ ω=� � j�  (8.71) 
and 
 ( ) ( )j jf t F t k=� �

j
�  (8.72) 

 
For given forcing, each of Eqs. (8.70) may be solved using the techniques already 
discussed for single degree of freedom systems in Chapters 3–5. Once the modal dis-
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placements (the solutions to the above equations) have been obtained, they may be 
mapped back to physical coordinates using Eq. (8.31). This gives the forced  response 
of the proportionally damped system. 
 
 

Example 8.15 
Consider the system of Example 8.6, but let it 
now possess three identical viscous dampers 
with coefficient 0.2c m= k as shown. De-
termine the steady state response of the system 
if the left mass is subjected to the harmonic 
force 1 .( ) sina aF t F t= Ω  
 
Solution 
The equation of motion for the system is easily derived directly, or by using Eq. 
(6.2) with N = 2, k1 = k2 = k3 = k , c1 = c2 = c3 = c and m1 = m2 = m. Hence, 
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and 
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where 

 0.20, c
k k m

α β= = =  (c) 

 
This is clearly a system with Rayleigh (Proportional) Damping. 
 The analysis for the present system is identical to that for the undamped 
system of Example 8.6 up to Eq. (h) of that example. Thus, the modal mass, 
modal stiffness and modal force matrices remain the same. However, the modal 
equations must now be modified to include the effects of proportional damping. 
For the present system we have, after substituting the given and calculated ma-
terial parameters into Eq. (8.67),  
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Hence, 
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Applying Eqs. (8.70) to the present problem gives the equations governing the 
modal displacements, 
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where 21, ζ ζ� � and 1 2, ω ω are respectively given by Eqs. (e-1) and (e-2) above, 
and Eqs. (c-2) and (d-2) of Example 8.6, respectively. The solutions of Eqs. (f) 
are obtained by direct application of Eqs. (3.54), (3.50) and (3.51) for each 
case. We thus obtain 
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Mapping back to physical coordinates gives the desired steady state response. 
Hence, 

  (1) (2)
1 2( ) ( )t tη η= = +ηu B U U

 
which, after substituting Eqs. (g), gives 
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Expanding Eq. (k) and substituting Eqs. (e) and (h) gives the explicit form of 
the displacements as functions of time, 
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8.8 SYSTEMS WITH GENERAL VISCOUS DAMPING 

To this point we have considered forced vibration of undamped systems and the spe-
cial case of systems with proportional damping. It was seen that the modal vectors 
were linearly independent and mutually orthogonal and therefore that any response is 
comprised of a linear combination of the modal vectors. This property formed the 
basis of modal analysis, which we proceeded to apply to problems of forced vibra-
tion. Because of the special property of the damping matrix for systems with 
Rayleigh Damping, we were able to apply the same approach to these systems as 
well. That is, we were able to determine a solution in terms of the modal vectors for 
the undamped system. It was seen in Section 7.4 that the characteristic vectors for a 
system with viscous damping, are not, in general, mutually orthogonal in the conven-
tional sense.  However, when the motion of such systems is represented in state space 
then the right eigenvectors of the 2N × 2N  system matrix S are mutually orthogonal 
with respect to their counterparts, the left eigenvectors of S. It is this property that 
will allow us to establish a generalization of modal analysis for damped systems. We 
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first show that the response of any N-degree of freedom system can be expressed as a 
linear combination of the right eigenvectors of the system matrix S. Before proceed-
ing to the general problem in state space, we first determine a simple solution for 
damped multi-degree of freedom systems subjected to harmonic excitation. 
 

8.8.1  Steady State Response to Harmonic Excitation 

In this section we determine a simple solution for damped multi-degree of freedom 
systems. To accomplish this we shall parallel the related development for undamped 
systems discussed in Section 8.1.1. Toward this end, let us consider an N-degree of 
freedom system with general linear viscous damping subjected to external forces, all 
of which possess the same harmonic time signature. The equation of motion for such 
a system is of the general form 
 
 ( ) ( ) ( ) i tt t t e Ω+ + =�� �

0mu cu ku F  (8.73)  
 
where Ω is the excitation frequency. We wish to obtain the particular solution to Eq. 
(8.73). Let us therefore assume a solution of the form 
 
 ( ) i tt e Ω=pu H  
 
and substitute it into Eq. (8.73). Solving the resulting expression for H gives the par-
ticular solution, and hence the steady state response,  
 
 

12( ) i tt i
−

e Ω⎡ ⎤= − Ω + Ω⎣ ⎦pu k m c F0  (8.74)  
 
or, equivalently,  
 

 
2

2

adj
( )

det
i t

i
t

i
e Ω

⎡ ⎤− Ω + Ω⎣ ⎦=
⎡ ⎤− Ω + Ω⎣ ⎦

p

k m c
u

k m c 0F  (8.75)  

 
The use of the above solution is demonstrated in by the following example. We then 
proceed to a more general technique, applicable to any type of excitation. 
 
 

Example 8.16 
Consider the elastically supported frame of mass m and length L of Examples 
7.13(d) and 7.14 , where the stiffnesses of the two identical springs at each end 
of the frame have the magnitude k = mg/L, and the damping coefficients have 
the values c2 = 2c1 and 1 2 0.1c km = .  Let a force 0( ) sinF t F t= Ω  (positive 
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downward) be applied to 
the left edge of the frame, 
as shown. Determine the 
steady state motion of the 
frame when F0 = 2mg and 

1.5 2g LΩ = . 
 
 Solution 

We shall describe the motion of the system in terms of the rotation of the 
frame, θ (t) (positive clockwise), and the transverse deflection of the center of 
mass, yG(t) (positive downward). To solve the problem, we shall normalize the 
deflection and the time, and hence the system parameters and equations of mo-
tion, as we did in Example 7.14. We thus introduce the normalized deflection 
of center of mass, 
 

 G Gy y L=  (a) 
 
and the normalized timescale 
 

 0
2kt
m

τ ω= = t  (b) 

where,  
 2

0 2 2k m g Lω = =  (c) 
 
Hence, for any function f, 
  

 0
df df d df
dt d dt d

τ ω
τ τ

= =  (d) 

 
Introducing Eqs. (a)–(d) into Eq. (a) of Example 7.13 and dividing the first row 
by m and the second row by IG = mL2/12 renders the equation of motion to the 
nondimensional form 

 

 

2 2

2 2

1 2 2 1

2 1 1 2

1 0
0 1

( ) ( ) 2 1 0
6( ) 3( ) 0 3

G

G G

G

d y d
d d

dy d y F
d d M

τ
θ τ

η η η η τ
η η η η θ τ θ

⎧ ⎫⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

⎧ ⎫+ −⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥− + ⎬
⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭

 (e)  

 
where 

 2
0( ) ( ) sin(1.5 )F F mLτ τ ω τ= =  (f-1)  

and 
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 2 2 2
0 0( ) ( ) 12 ( ) 6sin(1.5 )G G G GM M I M mLτ τ ω τ ω τ= = =  (f-2)  

 
are the normalized resultant applied force and moment about an axis through G. 
For the particular system in question, η1 = 0.5 and η2 = 1.0. It then follows that, 
for the system in question, the complex form of the normalized force vector is 
 

 1.51
( )

6
it e τ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

F  (g) 

 
Further, for the given parameters, 
 

 2 ( 1.25 2.25 ) 0.375
4.5 (0.75 6.75 )

i i
i

i i
− +⎡ ⎤⎡ ⎤− Ω + Ω = ⎢ ⎥⎣ ⎦ +⎣ ⎦

k m c  (h) 

 
We next compute the inverse of the above matrix using the MATLAB “inv” fa-
cility. Hence, 
 

 
12 (0.2220 0.3637 ) (0.0100 0.0213 )

(0.1196 0.2558 ) (0.0113 0.1611 )
i i

i
i i

− − + +⎡ ⎤⎡ ⎤− Ω + Ω = ⎢ ⎥⎣ ⎦ + −⎣ ⎦
k m c  (i) 

 
The complex form of the response is then found by substituting Eqs. (g) and (i) 
into Eq. (8.74). Doing this we obtain 
 

 

1.5

1.5

( ) (0.2220 0.3637 ) (0.0100 0.0213 ) 1
( ) (0.1196 0.2558 ) (0.0113 0.1611 ) 6

(0.1622 0.2358 )
(0.1871 0.7109 )

G i

i

y t i i
e

t i i

i
e

i

τ

τ

θ
− + +⎧ ⎫ ⎡ ⎤ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥+ −⎩ ⎭ ⎣ ⎦ ⎩ ⎭
− +⎧ ⎫

= ⎨ ⎬−⎩ ⎭

 (j) 

 
Restating the exponential using Euler’s Formula and carrying through the indi-
cated multiplications gives 
 

 
( ) [ 0.1622cos(1.5 ) 0.2358sin(1.5 )]

[0.2358cos(1.5 ) 0.1622sin(1.5 )]
Gy t

i
τ τ

τ τ
= − +

− +
 (k-1) 

 

 
( ) [0.1871cos(1.5 ) 0.7109sin(1.5 )]

[ 0.7109cos(1.5 ) 0.1871sin(1.5 )]
t

i
θ τ τ

τ τ
= +

+ − +
 (k-2) 

 
Since the excitation is a sine function, the imaginary part of the above solution 
corresponds to the response of the system. The steady state response of the sys-
tem is then 
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 0( ) / [0.2358cos(1.5 ) 0.1622sin(1.5 )]Gy t L t t0ω ω= − +  (l-1) �
 

 0( ) 0.7109cos(1.5 ) 0.1871sin(1.5 )t t 0tθ ω= − + ω  (l-2) �
 
 

 

8.8.2 Eigenvector Expansion  

The solution presented in Section 8.8.1 is restricted to harmonic excitation. In this 
section we develop a procedure for damped systems that is a generalization of modal 
analysis, and is applicable to any type of loading. To accomplish this we must repre-
sent the forced vibration problem in its corresponding state space, as we did for free 
vibrations of damped systems in Section 7.4.2. We then seek to express the response 
of the forced system in terms of the (right) eigenvectors of the state space system 
matrix computed for the associated free vibration problem.   
 In order to express the state vector in terms of the right eigenvectors of the sys-
tem matrix S defined by Eq. (7.61) we must first show that the vectors are linearly 
independent. This is done by generalizing the development of Section 8.3.1 in the 
context of the state space representation. Toward this end, let us consider the sets of 
2N  1 (complex) right and left eigenvectors of the (nonsymmetric) system matrix S, ×
 

 { } { }( ) ( )ˆ ˆ1,2,..., 2 and 1,2,..., 2j jj N j= =U W N   

 
respectively, where S is defined by Eq. (7.61) and  and are defined by Eqs. 
(7.63), (7.64) and (7.69). If the right eigenvectors are linearly independent then the 
equation 

Û Ŵ

 
2

( )

1

ˆ 0
N

j
j

j

a
=

=∑ U  (8.76)  

 
is satisfied only if all aj = 0 (j = 1, 2, …, N) . We proceed to show that this is the case. 
Let us next multiply Eq. (8.76) by  This gives ( )ˆ .lW T

 

 
2

( ) ( )

1

ˆ ˆ 0
N

l j
j

j

a
=

=∑ W UT  (8.77)  

 
We next incorporate the orthogonality relation stated by Eq. (7.75) into Eq. (8.77). 
This results in the statement 
 
 ( ) ( )ˆ ˆ 0l l

la =W UT  (8.78) 
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from which we conclude that al = 0 for all l = 1, 2, …, 2N. The right eigenvectors are 
therefore linearly independent. The linear independence of the right eigenvectors and 
their orthogonality with the left eigenvectors suggests that a 2N ×  1 complex vector z 
defined in the same vector space may be expressed as a linear combination of the 
eigenvectors of S. That is, 
 

  (8.79)  
2

( )

1

ˆ ˆ( ) ( )
N

j
j

j

t η
=

= ∑z U t

 
where the time dependent coefficients of the eigenvectors are, in general, complex. 
We shall use such an expansion in the following development. 
 

8.8.3  Decomposition of the Forced Vibration Problem 

Let us consider the forced vibration problem  
 
 + + =�� �mu cu ku F  (8.80)  
 
for a damped N-degree of freedom system, where m, c and k are the N N mass, 
damping and stiffness matrices of the system and u and F are the N 

×
× 1 displacement 

and forces matrices, respectively. We shall approach the problem by consideration of 
the corresponding representation in state space. Hence, paralleling the development 
of Section 7.4.2, we first write  
 
 =� �u Iu  (8.81)  
 
where I is the N N  identity matrix. Multiplying Eq. (8.80) by m× -1 and solving for 

 gives ��u
  (8.82)  1 1− − −= − − +�� �u m ku m cu m F1

  
We next combine Eqs. (8.81) and (8.82) in matrix form giving the state space repre-
sentation of the forced vibration problem as 
 
 ˆ− =�z Sz F  (8.83)  

 
where 

 
( )

( )
( )
t

t
t

⎧ ⎫
= ⎨ ⎬

⎩ ⎭�
u

z
u

 (8.84)   

 
is the 2N ×  1 state vector, 
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 1
ˆ

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0
F

m
F  (8.85)  

 
is the corresponding 2N ×  1 force vector and 
 

 1 1− −

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

0 I
S

m k m c
 (8.86)    

 
is the 2N × 2N  system matrix. In the remainder of this development we shall normal-
ize the eigenvectors according to Eq. (7.77). That is, we shall eliminate a degree of 
indeterminacy of the eigenvectors by enforcing the relation 
  
  (8.87)  ( ) ( )ˆ ˆ 1 ( 1, 2,..., 2 )j j j= =W UT N

N

 
It then follows, from either Eq. (7.72) or Eq. (7.73), that 
 
  (8.88)  ( ) ( )ˆ ˆ ( 1, 2,..., 2 )j j

j jα= =W SUT

 
where αj is the jth eigenvalue of S. Let us next introduce the 2N × 2N  right and left 
“modal” matrices 
 

  (8.89)  (1) (2 ) (1) (2 )ˆ ˆ ˆ ˆ ˆ ˆ  and  N

⎡ ⎤ ⎡
⎢ ⎥ ⎢

= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

"B U U A W W N

⎤
⎥
⎥
⎥
⎦

"

 
respectively. With the aid of these matrices and the orthogonality relations, Eqs. 
(7.75) and (7.76), Eqs. (8.87) and (8.88) can be expressed in the equivalent matrix 
forms 
 ˆ ˆ ˆ=A B IT  (8.90)  
and 
 ˆ ˆ ˆ= ΛA SBT  (8.91)  
where 

 
1

2

0
ˆ

0 N

α

α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Λ %  (8.92)  

 
is the 2N ×  2N diagonal matrix of eigenvalues and 
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 ˆ ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

I 0
I

0 I
  

 
is the 2N  2N identity matrix. It follows from Eq. (8.90) that, for the adopted nor-
malization, 

×

 1ˆ ˆ −=A BT  (8.93) 
 

 With the above established, we shall seek a solution to Eq. (8.83) as an expan-
sion of the right eigenvectors of S. Hence, let 
 

 
2

( )

1

ˆ ˆˆ ˆ( ) ( ) ( )
N

j
j

j

t tη
=

= =∑z U B tη  (8.94) 

where 

 

1

2

2

ˆ ( )
ˆ ( )ˆ ( )

ˆ ( )N

t
t

t

t

η
η

η

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
η   

 
is the 2N  1 matrix of the, as yet unknown, time dependent coefficients of the ei-
genvectors. Let us next substitute Eq. (8.94) into Eq. (8.83) and multiply the resulting 
expression on the left by  This results in the relation 

×

ˆ .AT

 
   ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )t t− =� �A B A S B A FT T Tη η t

t

t

t

 
Substituting Eqs. (8.90) and (8.91) into the above identity reduces the transformed 
equation of motion to the form 
 
  (8.95)  ˆˆˆ ˆ( ) ( ) ( )t t− =η Λη� f
where 
  (8.96)  -1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )t t= =f A F B FT

 
Recall that  is diagonal. We thus see that the transformed (“modal”) equations of 
motion are decoupled. If we expand Eq. (8.95) we have the 2N uncoupled first order 
ordinary differential equations 

Λ̂

 

  (8.97) 

1 1 1 1

2 2 2 2

2 2 2 2

ˆˆ ˆ( ) ( ) ( )
ˆˆ ˆ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( )N N N N

t t f t

t t f t

t t f

η α η

η α η

η α η

− =

− =

− =

�

�

#
�
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where  is the jˆ ( )jf t th element of  Each equation of the above system can be 
solved directly for the corresponding transformed (“modal”) displacement 

ˆ( ).tf
ˆ ( ).j tη   

Once these have been found for a given system with specified forcing, their values 
can be substituted back into Eq. (8.94) to obtain the state vector as a function of time. 
The physical displacements of the system are then the first N elements of z(t). The 
last N rows of z(t) are the corresponding velocities.  
 

8.8.4 Solution of Forced Vibration Problems 

The decomposition developed in the previous section allows for solution of forced 
vibration problems of damped N-degree of freedom systems. The general procedure 
is summarized below. 
 

1. Identify a system of generalized coordinates to describe the motion of the 
system. Derive the equations of motion in terms of these coordinates. 

2. Construct the system matrix S from the mass, damping and stiffness matri-
ces. Solve the (right) eigenvalue problem to obtain the associated eigenval-
ues and corresponding (right) eigenvectors of S. 

3. Formulate the (right) “modal matrix”  from the eigenvectors and compute 
its inverse. The latter corresponds to the transpose of the left “modal matrix” 
of S. That is  

B̂

-1ˆ ˆ .=B AT

4. Evaluate the state space force vector  from the physical force array and 
then determine the transformed forces . Solve the un-
coupled transformed equations of motion to obtain the corresponding trans-
formed state variables 

ˆ ( )tF
ˆ ( ) ( 1,2,..., 2 )jf t j N=

ˆ ( ).j tη   
5. Map back to the state space to obtain the state vector z(t). The first N rows 

of z(t) correspond to the physical displacements u(t). 
 
The complementary solutions of Eq. (8.97) correspond to the free vibration solution 
discussed in Section 7.4. The particular solutions to Eq. (8.97) depend, of course, on 
the specific form of the transformed force. The above procedure is applicable to any 
type of dynamic loading. We consider impulse loading and general harmonic forcing 
below. 
 

Impulse Loading 
Let us take the Laplace Transform of the jth equation of Eq. (8.97). Doing this, using 
Eq. (5.18) and solving for { }ˆ ( )j tηL  gives 
 

 { } { }ˆ ˆ( ) (0)
ˆ ( )

j j

j
j

f t
t

s

η
η

α

+
=

−

L�
L  (8.98) 

 



488 Engineering Vibrations 

For a system that is initially at rest, ˆ (0) 0jη = . Now, let us suppose that the system is 
subjected to impulse loading. We therefore consider forces of the form 
 
 0ˆ ˆ( ) ( )j jf t f tδ=

�
 (8.99) 

 
where ( )tδ

�
 is the Dirac Delta Function. The Laplace transform of this force is, from 

Eq. (5.3), 
 { } { }0 0ˆ ˆ( ) ( )j

ˆ
j jf t f tδ= f=
�

L� L�  (8.100) 

 
Substituting this specific force into Eq. (8.98) gives the Laplace transform of the 
“modal” displacement as 

 { }
0ˆ ˆ (0)

ˆ ( ) j j
j

j

f
t

s
η

η
α

+
=

−
L�  (8.101) 

 
Equation (8.101) is inverted by direct application of Eq. (5.8) to give 
 
  (8.102) ( )0 0ˆ ˆˆ ˆ ˆ( ) (0) ( ) (0) ( )j t t

j j j j jt f e t f e tαη η η − ±⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦H Hj jµ ω

 
where  is the Heaviside Step Function. Mapping back to the state space using 
Eq. (8.94) gives the general form of the state vector as 

( )tH

 

  (8.103) 
2

0

1

ˆ ˆ ˆ( ) (0) ( ) ( 1, 2,..., 2 )j

N
t

l lj j j
j

z t b f e t l Nαη
=

⎡ ⎤= + =⎣ ⎦∑ H

 
The physical displacements of the system correspond to the first N elements of the 
state vector. That is, uj(t) = zj(t) (j = 1, 2, …, N). 
 

Example 8.17 
Consider the elastically supported frame of mass m and length L of Examples 
7.13d, 7.14 and 8.16, where the stiffnesses of the two identical springs at each 
end of the frame have the magnitude k = mg/L and the damping coefficients 
have the  values c2 = 2c1 and 

1c t the 2 0.1km = . Le
frame be struck above the 
left support in such a way 
that an impulse of magni-
tude 02mg ω=I im- is 
parted to the upper surface, 
as shown. Determine the re-
sponse of the frame. 
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 Solution 

In keeping with our prior analyses of this system we choose the rotation of the 
frame, θ (t) (positive clockwise), and the transverse deflection of the center of 
mass, yG(t) (positive downward) as our generalized coordinates and normalize 
them accordingly. The equations of motion are then  

 

 

2 2

2 2

1 2 2 1

2 1 1 2

1 0
0 1

( ) ( ) 2 1 0
6( ) 3( ) 0 3

G

G G

G

d y d
d d

dy d y F
d d M

τ
θ τ

η η η η τ
η η η η θ τ θ

⎧ ⎫⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

⎧ ⎫+ −⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥− + ⎬
⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭

 (a)  

 
where 

 G Gy y L=  (b) 
 

 0
2kt
m

τ ω= = t  (c) 

 
 2

0 2 2k m g Lω = =  (d) 
 
For the present loading condition, 
 

 2
0( ) ( ) ( )F F mL 0τ τ ω δ τ ω= =

�
 (e-1)  

and 
 

 2 2 2
0 0( ) ( ) 12 ( ) 6 ( )G G G GM M I M mL 0τ τ ω τ ω δ τ ω= = =

�
 (e-2)  

 
are the normalized resultant applied force and moment about an axis through 
point G. We next construct the pertinent system matrix S by substituting the 
nondimensional mass, damping and stiffness matrices into Eq. (7.61). For the 
particular system in question, η1 = 0.5 and η2 = 1.0. Hence, 
 

 
1 2 2 1

2 1 1 2

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 ( ) ( ) 2 1 0 1.5 0.25
0 3 6( ) 3( ) 0 3 3.0 4.5

η η η η
η η η η

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − + − − − − −
⎢ ⎥ ⎢ ⎥

− − − − + − − −⎣ ⎦⎣ ⎦

S  (f)  

 
The state space force vector is then 
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0

00 0 0
00 0 0( ) ( )ˆ ( )
( )1 0 1( )
( )0 1 6

G

G

F
FM

M

τ δ ττ
τ ωτ
τ

⎧ ⎫⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭

�
F  (g)  

 
With the problem formulated, we next proceed to calculate the response. Using 
the MATLAB “eig” routine to solve the eigenvalue problem gives the eigenval-
ues of S, 
 

 ˆ 4.035, (0.6810 0.8673 ), (0.6810 0.8673 ), 0.6129i iα = − − − − + −  (h) 
 
and the corresponding matrix of (right) eigenvectors 
 

  (i) 

0.0216 (0.4001 0.1545 ) (0.4001 0.1545 ) 0.2714
0.2401 (0.3193 0.4066 ) (0.3193 0.4066 ) 0.8082ˆ
0.0871 (0.4065 0.2418 ) (0.4065 0.2418 ) 0.1664
0.9666 0.5701 0.5701 0.4954

i i
i i
i i

+ −⎡ ⎤
⎢ ⎥− + − −⎢ ⎥=
⎢ ⎥− − − − + −
⎢ ⎥

− −⎣ ⎦

B

 
[Note that MATLAB normalizes the eigenvectors in the conventional sense, as 
per Eq. (7.39).] We next compute the inverse of the “modal matrix” using the 
MATLAB “inv” routine. Hence,  

 

    

1

0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

ˆ

i i i

i i i i

−

− − − −

− − + − + +

+ − + − + −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

i

   (j) 
 
With the above established, we now compute the “modal” forces, using Eq. 
(8.96). Hence, 
 

 
0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

ˆ( )
0
0
1
6

i i i i

i i i i

t
− − − −

− − + − + +

+ − + − + −

=

⎧⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎨⎢ ⎥
⎢ ⎥
⎣ ⎦

f

0

( )δ τ
ω

⎫
⎪ ⎪
⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

�   

     
 which, after carrying through the indicated multiplications gives 
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0

8.0839
0.6381 0.2929 ( )ˆ( )
0.6381 0.2929

2.1925

i
t

i
δ τ
ω

−⎧ ⎫
⎪ ⎪− −⎪= ⎨− +⎪ ⎪
⎪ ⎪⎩ ⎭

⎪
⎬

�
f  (k) 

 
The “modal” displacements are next found by substituting Eq. (k) into Eq. 
(8.102). Hence,  

 

 

4.035
0 1

(0.6381 0.2929 )
0 2

(0.6381 0.2929 )
0 3

0.6129
0 4

ˆ ( ) 8.084 ( )
ˆ ( ) (0.6381 0.2929 ) ( )
ˆ ( ) (0.6381 0.2929 ) ( )
ˆ ( ) 2.193 ( )

i

i

e

i e
i e

e

τ

τ

τ

τ

ω η τ τ

ω η τ τ

ω η τ τ

ω η τ τ

−

− +

− −

−

= −

= − +

= − −

=

H

H

H

H

 (l) 

 
To obtain the physical displacements, we map back to the state space as fol-
lows:  
 

 

4

0 0 1
1

4.035

(0.6381 0.2929 )

(0.6381 0.2929 )

0.6129

ˆ ˆ( ) ( )

0.02160( 8.084) ( )
(0.4001 0.1545 )(0.6381 0.2929 ) ( )
(0.4001 0.1545 )(0.6381 0.2929 ) ( )

0.2714(2.193) ( )

G j j
j

i

i

y b

e
i i e
i i e
e

τ

τ

τ

τ

ω τ ω η τ

τ

τ

τ

τ

=

−

− +

− −

−

=

= −

− + +

+ − −

+

∑ H

H

H

H

H

  

 

 

4

0 0 2
1

4.035

(0.6381 0.2929 )

(0.6381 0.2929 )

0.6129

ˆ ˆ( ) ( ) ( )

0.2401( 8.084) ( )
(0.3193 0.4066 )( 0.6381 0.2929 ) ( )
(0.3193 0.4066 )( 0.6381 0.2929 ) ( )
0.8082(2.193) ( )

j j
j

i

i

b

e
i i e
i i e

e

τ

τ

τ

τ

ω θ τ ω η τ τ

τ

τ

τ

τ

=

−

− +

− −

−

=

= −

− + − −

− − − +

+

∑ H

H

H

H

H

 

   
Carrying through the indicated multiplication gives the response of the frame as 
 

 
[ ]

0 0

0

4.035 0.6129
0

0.6810
0 0

( ) 0.1746 ( ) 0.5952 ( )

0.4200cos(0.8673 ) 0.4316sin(0.8673 ) ( )

t t
G

t

y t L e t e t

e t

ω ω

ω

ω

ω ω

− −

−

= − +

− −

H H

Ht t
  

   (m-1) �
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 (m-2)  
[ ]

0 0

0

4.035 0.6129
0

0.6810
0 0

( ) 1.941 ( ) 1.772 ( )

0.1612cos(0.8673 ) 0.7060sin(0.8673 ) ( )

t t

t

t e t e t

e t

ω ω

ω

ω θ

ω ω

− −

−

= − +

+ −

H H

Ht t
�

 
 

Arbitrary Loading 
The response of a system to arbitrary loading is found by paralleling the arguments of 
Section 4.3 and incorporating the impulse response defined above to obtain the corre-
sponding “modal displacements.” Doing this we find that, for a system initially at 
rest,  

  (8.104) ( )

0

ˆˆ ( ) ( ) ( )j
t

t
j jt f e dα τη τ τ−= ∫ H t

 
The above expression may be evaluated for any given ˆ ( ).jf τ  Once the “modal dis-
placements” are determined for a given set of forces, they may be mapped back to the 
state space using Eq. (8.94) to obtain the state vector z(t). The physical displacements 
of the system then correspond to the first N elements of this vector. Equation (8.94) is 
evaluated for step loading and ramp loading below. 
 

Step Loading 
Consider forces of the form 
 

  (8.105) 0ˆ ˆ( ) ( )j jf t f t= H
 
where (complex) constant. Substituting the above step load function into 
Eq. (8.104) and evaluating the resulting integral gives the corresponding dis-
placements  

0ˆ
jf =

 

 
0ˆ

ˆ ( ) 1 ( )j tj
j

j

f
t eαη

α
⎡ ⎤= −⎣ ⎦ H t  (8.106) 

 

Ramp Loading 
Consider forces of the form 
 

  (8.107) 0ˆ ˆ( ) ( )j jf t f t t= H
 
where (complex) constant. Substituting the above ramp load function into 
Eq. (8.104) and evaluating the resulting integral gives the corresponding dis-
placements 

0ˆ
jf =
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0

2

ˆ
ˆ ( ) (1 ) ( )j tj

j
j

f
t e tαη α

α
⎡ ⎤= − +⎣ ⎦ Hj t  (8.108) 

 
 

Harmonic Excitation 
We close out the section by considering the state space representation of damped 
systems subjected to harmonic excitation. Since such an analysis involves inversion 
of the matrix of (right) eigenvectors of the system matrix it does not have the compu-
tational advantage over the procedure of Section 8.8.1 for large systems as does mo-
dal analysis over the approach of Section 8.1.1 for undamped systems in this regard. 
Further, since the eigenvectors are complex, the procedure does not offer the physical 
interpretation of its counterpart for undamped systems either. It is nevertheless in-
structive to apply this approach to harmonic loading of damped systems for the pur-
poses of continuity and comparison, as well as for utility.  
 Suppose a multi-degree of freedom system is subjected to a system of general-
ized forces that vary harmonically in time with the same excitation frequency. Let the 
“modal” forces be of the form 
 
 0ˆ ˆ( ) i t

j jf t f e Ω=  (8.109)  
 
where 0ˆ

jf  = complex constant. The corresponding differential equation is then, from 
Eq. (8.97), 
 
 0ˆˆ ˆ( ) ( ) i t

j j j jt t fη α η e Ω− =�  (8.110)  
 
To obtain the particular solution, let us assume a solution of the form 
 
 0ˆ ( ) i t

j jt H eη Ω=  (8.111) 
 
Substituting the above form into Eq. (8.110) and solving for 0

jH  gives 
 

 
0

0
ˆ

j
j

j

f
H

iα
= −

− Ω
 (8.112)  

Thus, 

 
0ˆ

ˆ ( ) j i t
j

j

f
t

i
η

α
e Ω= −

− Ω
 (8.113)  
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As discussed in Section 7.4, for dissipative systems, the eigenvalues of S will be ei-
ther negative and real or complex with negative real parts. We thus consider eigen-
values of the general form 
 
 j j i jα µ ω= − ±  (8.114)  
 
where ωj is a damped natural frequency. Further, the magnitude of the “modal” force 
will generally be complex. Let us therefore write the complex magnitude of the trans-
formed force in terms of its real and imaginary parts as 

 
 0 0 0ˆ ˆ ˆR I

j jf f i f= + j  (8.115) 
 
Substituting Eqs. (8.114) and (8.115) into Eq. (8.113) gives the solution 
 
 0 ( )ˆ ( ) i t

j jt H eη Ω +Ψ=  (8.116)  
where 
 ( ) ( )220 R I

j jH H H= +
2

j  (8.117)  
 
 ( )1tan I R

j jH H−Ψ =  (8.118)  
 

 
0 0

2

ˆ ˆ( )
( )2

R I
j j j jR

j
j j

f f
H

µ ω
µ ω

− Ω ±
=

+ Ω ±
 (8.119)  

 

 
0 0

2

ˆ ˆ( )
( )2

I R
j j j jI

j
j j

f f
H

µ ω
µ ω

+ Ω ±
=

+ Ω ±
 (8.120)  

 
We may then transform back to the state space using Eq. (8.94). The first N rows of 
the resulting state vector correspond to the physical displacements uj(t) (j = 1, 2, …, 
N). Euler’s Formula can then be used to express the displacements in terms of har-
monic functions. Then, as per the related discussions of Section 3.3.3, if the time de-
pendence of the applied force F(t) is a cosine function, then the displacements due to 
this force correspond to the real part of the solution. That is, uj(t) = Re zj(t) (j = 1, 2, 
…, N). Likewise, if the same applied force is a sine function, then the displacements 
due to that force correspond to the imaginary part of the solution. That is, uj(t) = Im 
zj(t) (j = 1, 2, …, N). When considering force systems with multiple time dependen-
cies, the results for each may be superposed. 
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Example 8.18 
Consider once again the elastically supported frame of Examples 8.16 and 8.17. 
The frame of mass m and length L is supported at each edge by identical 
springs and disparate dampers. The springs each possess stiffness k = mg/L and 
the dampers have the properties c2 = 2c1 and 1 2 0.c km = 1.  If a force 

0( ) sinF t F t= Ω  (positive downward) is applied to the left edge of the frame, 
as shown in Figure E8.16, determine the steady state motion of the frame when 
F0 = 2mg and 1.5 2g LΩ = . 

 
 Solution 

The formulation of the problem is identical to that for Example 8.17 except for 
the time dependence of the excitation. Hence, 
 

 

2 2

2 2

1 2 2 1

2 1 1 2

1 0
0 1

( ) ( ) 2 1 0
6( ) 3( ) 0 3

G

G G

G

d y d
d d

dy d y F
d d M

τ
θ τ

η η η η τ
η η η η θ τ θ

⎧ ⎫⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

⎧ ⎫+ −⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥− + ⎬
⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭

 (a)  

 
where 

 G Gy y L=  (b) 
 

 0
2kt
m

τ ω= = t  (c) 

 
 2

0 2 2k m g Lω = =  (d) 
 
For the present loading condition, 
 

 2
0( ) ( ) sin(1.5 )F F mLτ τ ω τ= =  (f-1)  

and 
 

 2 2 2
0 0( ) ( ) 12 ( ) 6sin(1.5 )G G G GM M I M mLτ τ ω τ ω τ= = =  (f-2)  

 
are the normalized resultant applied force and moment about an axis through G. 
The state space force vector is then 
 

 1.5

00 0 0
00 0 0( )ˆ ( )
( )1 0 1( )
( )0 1 6

i

G

G

F
e

FM
M

ττ
τ

ττ
τ

⎧ ⎫⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭

F  (g)  
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where we have adopted the exponential form for the harmonic time dependence 
to facilitate the calculation. We will extract the appropriate portion of the solu-
tion at the end of our computations. For the particular system in question, 
η1 = 0.5 and η2 = 1.0. Hence, the system matrix is 
 

 
1 2 2 1

2 1 1 2

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 ( ) ( ) 2 1 0 1.5 0.25
0 3 6( ) 3( ) 0 3 3.0 4.5

η η η η
η η η η

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − + − − − − −
⎢ ⎥ ⎢ ⎥

− − − − + − − −⎣ ⎦⎣ ⎦

S  (h)  

 
as computed in Example 8.17. Now that the problem has been formulated, we 
proceed to calculate the response. 
 The eigenvalues of S, the matrix of the associated right eigenvectors  
and its inverse were computed in Example 8.17 as  

B̂

 
 ˆ 4.035, (0.6810 0.8673 ), (0.6810 0.8673 ), 0.6129i iα = − − − − + −  (i) 

 

  (j) 

0.0216 (0.4001 0.1545 ) (0.4001 0.1545 ) 0.2714
0.2401 (0.3193 0.4066 ) (0.3193 0.4066 ) 0.8082ˆ
0.0871 (0.4065 0.2418 ) (0.4065 0.2418 ) 0.1664
0.9666 0.5701 0.5701 0.4954

i i
i i
i i

+ −⎡ ⎤
⎢ ⎥− + − −⎢ ⎥=
⎢ ⎥− − − − + −
⎢ ⎥

− −⎣ ⎦

B

 
and  

 

    

-1

0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

ˆ

i i i

i i i i

− − − −

− − + − + +

+ − + − + −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

i

   (k) 
 
respectively. The “modal” forces for the present loading are computed using 
Eq. (8.96). Thus,  
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0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

ˆ( )
0
0
1
6

i i i i

i i i i

t
− − − −

− − + − + +

+ − + − + −

=

⎧⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎨⎢ ⎥
⎢ ⎥
⎣ ⎦

f

1.5ie τ

⎫
⎪ ⎪
⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

  

 
 which, after carrying through the indicated multiplications gives 
 

 1.5

8.0839
0.6381 0.2929ˆ( )
0.6381 0.2929

2.1925

ii
t

i
e τ

−⎧ ⎫
⎪ ⎪− −⎪= ⎨− +⎪ ⎪
⎪ ⎪⎩ ⎭

f ⎪
⎬

e

 (l) 

 
 Substituting Eq. (l) into Eq. (8.113) gives the matrix of modal displacements 
 

 1.5

1.7635 0.6572
0.7174 0.2364

( )
0.0427 0.2818
0.5118 1.2525

i

i
i

t
i
i

τ

− −⎧ ⎫
⎪ ⎪− −⎪= ⎨ −⎪ ⎪
⎪ ⎪+⎩ ⎭

η ⎪
⎬  (m) 

 
We next map back to the state space to obtain the state vector as a function of 
time. Substituting Eqs. (j) and (m) into Eq. (8.94) gives 
 

 

0.0216 (0.4001 0.1545 ) (0.4001 0.1545 ) 0.2714
0.2401 (0.3193 0.4066 ) (0.3193 0.4066 ) 0.8082

( )
0.0871 (0.4065 0.2418 ) (0.4065 0.2418 ) 0.1664
0.9666 0.5701 0.5701 0.4954

1.7635 0.6572
0.

i i
i i

t
i i

i

+ −⎡ ⎤
⎢ ⎥− + − −⎢ ⎥=
⎢ ⎥− − − − + −
⎢ ⎥

− −⎣ ⎦
− −
−

i

z

1.57174 0.2364
0.0427 0.2818
0.5118 1.2525

ii
e

i
i

τ

⎧ ⎫
⎪ ⎪−⎪ ⎪
⎨ ⎬−⎪ ⎪
⎪ ⎪+⎩ ⎭

  

  
Carrying through the indicated matrix multiplication results in the state vector 
 

 1.5

0.1622 0.2358
0.1871 0.7109

( )
0.3538 0.2433
1.0663 0.2807

i

i
i

t
i
i

e τ

− +⎧ ⎫
⎪ ⎪−⎪= ⎨ −⎪ ⎪
⎪ ⎪+⎩ ⎭

z ⎪
⎬  (n) 
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We now extract the first two rows of the state vector to obtain the displace-
ments 

 1.5( ) 0.1622 0.2358
( ) 0.1871 0.7109

G iy t i
e

t i
τ

θ
− +⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭
 (o) 

 
Expanding Eq. (o) and using Euler’s Formula gives the complex response of 
the system, 
 

 
[ ]

[ ]
( ) 0.1622cos(1.5 ) 0.2358sin(1.5 )

0.2358cos(1.5 ) 0.1622sin(1.5 )
Gy

i

τ τ τ

τ τ

= − +

− +
  (p-1) 

 and 

 
[ ]

[ ]
( ) 0.1871cos(1.5 ) 0.7109sin(1.5 )

0.7109cos(1.5 ) 0.1871sin(1.5 )i

θ τ τ τ

τ τ

= +

+ − +
  (p-2) 

 
Finally, since the excitation is a sine function, the physical response corre-
sponds to the imaginary part of the computed displacements. The steady state 
motion of the frame is thus 
 

 [ ]0( ) 0.2358cos(1.5 ) 0.1622sin(1.5 )G 0y t L t tω= − + ω

0t

 (q-1) �
 

 0( ) 0.7109cos(1.5 ) 0.1871sin(1.5 )t tθ ω= − + ω  (q-2) �
 
The response calculated above compares exactly with the response calculated 
in Example 8.16 as, of course, it should. 

 
 

   

8.9 CONCLUDING REMARKS 

In this chapter we have considered the vibration of systems possessing multiple de-
grees of freedom when they are subjected to a variety of dynamic load conditions. 
We studied the behavior of systems with no damping, systems with a special type of 
viscous damping known as Rayleigh Damping and systems with general viscous 
damping. For the undamped case we began by developing a simple solution for sys-
tems subjected to harmonic loading. The advantage of such an approach was in its 
conceptual simplicity. Its implementation, however, requires the inversion of an 
N× N matrix, which may be computationally intensive for large systems. In addition, 
while this approach provides a convenient mathematical solution, little is gained in 
the way of detailing the fundamental mechanisms involved when a system is forced. 
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The concepts of coordinate transformations, principal coordinates and specifically 
modal coordinates were introduced. A fundamental approach called modal analysis 
was developed based on these ideas. In this approach, the response of the system is 
expressed as a linear combination of the corresponding modal vectors. Such an ap-
proach may be applied to study systems subjected to any type of forcing, including 
but not limited to harmonic excitation. The governing equations are transformed so 
that they are expressed in terms of modal coordinates (the time dependent coefficients 
of the modal vectors). When this is done, the governing equations map to a system of 
uncoupled ordinary differential equations of the individual modal coordinates and 
time. In the process, the manner in which the applied load is distributed to the indi-
vidual modes is revealed and the modal coordinates are seen to correspond to the 
displacements of equivalent single degree of freedom systems associated with each 
mode. These equations may be solved by established methods and then mapped back 
to the physical space yielding the time response of the system. In this form the contri-
bution of each individual mode to the overall response is unveiled. It is also seen how 
particular modes may be excited individually. In addition to the obvious physical 
significance of this procedure, the computations do not involve matrix inversion but 
rather involve simple matrix multiplication. Modal analysis was extended to systems 
with Rayleigh damping. In this case the damping matrix is proportional to the mass 
and stiffness matrices of the system, the constants of proportionality being properties 
of the system. Because of this special form, the response of such systems to forcing 
may be expressed in terms of the modal vectors for the corresponding undamped sys-
tem. As a consequence of this, the analysis and results maintain all the benefits seen 
for the undamped systems. The chapter finished with a discussion of forced multi-
degree of freedom systems possessing general viscous damping. For these systems a 
solution for harmonic excitation was first presented. This approach was seen to pos-
sess the simplicity and convenience, as well as the drawbacks, of the corresponding 
analysis for undamped systems considered in the introduction. For general loading, 
the concept of modal analysis was generalized and applied to the case of damped 
systems. To do this, the equations of motion were represented in the corresponding 
state space. Though analogous to that for undamped systems, the analysis for damped 
systems is much more cumbersome. The system matrix for the N-degree of freedom 
system in this case is not symmetric and the associated (right) eigenvectors of the 
associated 2N× 2N system matrix are not mutually orthogonal. They are, however, 
orthogonal to their counterparts — the left eigenvectors of the system matrix. Further, 
the procedure involves the inversion of a 2N× 2N matrix of eigenvectors.  
 To this point we have studied discrete systems. That is, systems with a discrete 
distribution of mass. In the remaining chapters we abstract the present discussion to 
infinite degree of freedom systems possessing a continuous distribution of mass.       
 
 
 



500 Engineering Vibrations 

BIBLIOGRAPHY 

Ginsberg, J.H., Mechanical and Structural Vibrations: Theory and Applications, Wiley, New 
York, 2001. 

Hildebrand, F.B., Methods of Applied Mathematics, 2nd ed., Prentice-Hall, Englewood Cliffs, 
1965. 

Meirovitch, L., Elements of Vibration Analysis, 2nd ed., McGraw-Hill, New York, 1986. 
Meirovitch, L., Fundamentals of Vibrations, McGraw-Hill, Boston, 2001. 
Rayleigh, J.W.S., The Theory of Sound, Vol.1, Dover, New York, 1945. 
Thomson, W.T., Theory of Vibration with Applications, 4th ed., Prentice-Hall, Englewood 

Cliffs, 1993. 
 
 

PROBLEMS 

8.1 Consider the system of Problems 6.15 and 7.5. Use the method of Section 8.1.1 
to determine the steady state response of the system if 0 .( ) cosF t F t= Ω  

 

                                 Fig. P8.1                                                  Fig. P8.2 

.2 Consider the system of Problems 6.19 and 7.14 when mb = 2ma = 2m and kT = 

 
  
 
8

kL2. Use the method of Section 8.1.1 to determine the steady state response of 
the system for small angle motion of the rod if a force 0( ) sinF t F t= Ω is ap-
plied to the base mass. 

 
.3 Design a vibration absorber for the beam and mass structure of Example 3.4. 

.4 A machine is placed on the pontoon of Problem 3.4. At its operating frequency, 

the mass of the float. 

8
 
8

the machine excites the pontoon near its resonance frequency. Design a vibra-
tion absorber for the pontoon. The mass of the machine is small compared with 
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8.5 
 

system of Problems 6.7 and 7.1 when kL  = 

 
8.7 ine the re-

sponse of the system if, when at rest, a horizontal impulse of magnitude I 

 
                                     Fig. P8.7                       

 
the steady 

ate response of the system when the left mass is subjected to the horizontal 

 
8.9  Problem 6.15, 7.5 and 8.1. Use modal analysis to de-

termine the steady state response of the system when 

Show that the results of Examples 8.1b and 8.6a are the same. 

8.6 Consider the constrained hook and ladder 
2

kT and m1 = 10m2 = 10m. Determine the re-
sponse of the system when a fireman of 
weight W suddenly mounts the end of the lad

Consider the tram of Problems 6.8 and 7.2 when m

der.                Fig. P8.6 

C = 5mF. Determ

strikes the bottom of the car as shown. 

                              Fig. P8.8 

8.8 Consider the coupled pendulums of Problems 6.9, 7.3. Determine 
st
force F(t) = F0sinΩt. 

Consider the system of
0 .( ) cosF t F t= Ω  

 
An automobile is traveling at constant speed v8.10  buckled road. Determine 
the motion of the car if the buckle is described as 

0 over a
( )0( ) sin 2y x h xπ λ=  where 

d length L and the co

 
             

λ is the wavelength of the buckle and h0 is its rise. Assume that the frame of the 
car may be modeled as a uniform rod of mass m an mbined 
stiffness of the tires and suspension in both the front and the back is k. 
 

   Fig. P8.10 
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8.11 n automobile is traveling at constant speed v  along a flat road when it en-
 as ed bump descri

A 0

( )1 cos 2h( )y ξcounters spe bed by 0 πξ λ⎡ ⎤= − −⎣ ⎦
the wavelength of the bump and h

 where λ is 

at the frame of the car may 

                                       
 

 system of P 0 and 7.24 (m1 = m2 = m, R1 = R2 = 
R) is at rest when a constant torque M0 is suddenly applied to the left flywheel. 

 
     

stem o nd 7.24 (m1 = m2 = m, R1 = R2 = 
R) is at rest when it is loaded by a torque applied to the right flywheel. Deter-

0 is the height. Determine the motion of the 
car as it traverses the bump. Assume th be modeled 
as a uniform rod of mass m and length L and the combined stiffness of the tires 
and suspension in both the front and the back is k.  

Fig. P8.11 

8.12 The conveyor belt roblems 6.1

Determine the response of the system. 

Fig. P8.12/P8.13 
 
8.13 The conveyor belt sy f Problems 6.10 a

mine the motion of the system if the magnitude of the applied torque is in-
creased at the constant rate M� to the level M0 where it remains thereafter. 

Consider the offshore platf  of Problems 6.20 and 7.15. Each side o
 
8.14 orm f the 

square platform of mass m has length L = 10R. The cable of a small crane is 
fixed to the center of the platform and is attached to a diving bell of mass mb 
that floats on the calm surface of the ocean. If the hoist suddenly engages and 
lifts the bell at constant speed, determine the motion of the platform. The boom 
of the crane is aligned so that its horizontal projection is of length L and coin-
cides with the central axis of the platform. The dominant motion of the plat-
form may, therefore, be considered planar. Assume that the effects of small an-
gle motion of the bell on the tension in the cable can be neglected and that the 
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mass of the boom and cable is negligible compared with the mass of the plat-
form and crane base. 

 

 
  Fig. P8.14 

 

 
8.15 7 and 7.12 when R2 = 2R1 = 2R and 

I0 = mR . Determine the steady state response of the system if the block is sub-

 
8.16 

mass of the hull and frame structure be 2ms and the mass of the internal com-

 
 

                                                   Fig. P8.15 

Consider the pulley system of Problems 6.1
2

jected to the periodic rectangular pulse of magnitude F0 and duration TF shown. 

Consider the simple model of the submarine of Problems 6.21 and 7.26. Let the 

partment be mc = ms/2. In addition, let the stiffness of each of the elastic mounts 
between the internal compartment and the frame be k, and let the longitudinal 
stiffness of the hull be ks = 2k. The propeller exerts a force F0 that is sufficient 
to overcome the drag force and maintain the constant speed v0. An imperfection 
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in the propeller shaft induces a small harmonic perturbation in the thrust of fre-
quency Ω. The actual thrust applied is then of the form 0 0( ) [1 sin ]F t F tε= + Ω  
where 0 1ε � . If we neglect the corresponding perturbation of the drag force, 
determine the response of the submarine.  

 

 
                                      

  
 7.28 where the wings are modeled 

as equivalent rigid bodies with torsional springs of stiffness kT at the fuselage 

 
8.18 d 7.25 spins about its axis at the 

constant rate ϖ0 as it travels in a fixed orbit at constant speed v0, as shown. The 

 Fig. P8.16 
 

                                                              Fig. P8.17 

8.17 Consider the aircraft of Problems 6.31 and

wall, each wing possesses moment of inertia Ic about its respective connection 
point and the fuselage of radius R has moment of inertia Io = Ic about its axis. 
Let the plane be traveling at constant altitude and speed as it undergoes a ma-
neuver inducing a tight periodic rolling motion of the fuselage with the 
sawtooth time history shown. Determine the (perturbed) steady state motion of 
the aircraft under these conditions.  

The dumbbell satellite of Problems 6.13 an

orbit is maintained such that spin axis is always perpendicular to the surface of 
the earth during the orbit. The two compartments are each of mass m and an 
elastic access tube of undeformed length L, effective stiffness k and negligible 
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mass connects them. To prepare for a docking maneuver thrusters are suddenly 
activated applying a couple of magnitude M0 for time duration τ and are then 
suddenly shut off. Determine the motion of the satellite during this maneuver. 
Assume that deformations of the access tube do not significantly alter the mo-
ment inertia of the system about the spin axis.  

                                                                                                   
Fig. P8.18                                                           

.19 Consider the elastically restrained conveyor belt of Problems 6.18 and 7.13 
when k  = 2k and m1 = m2 = m. Determine the steady state response if a torque 

 
 
8

2

0( ) sinM t M t= Ω is applied to the right flywheel as shown. 

                                                Fig. P8.19 
 

.19 and 7.14 when 
mb = 2ma = 2m and kT = kL . Use modal analysis to de-

8.20 Consider the system of Problems 6
2

termine the steady state response of the system if a 
force 0( ) sinF t F t= Ω is applied to the base mass.                                              

Fig. P8.20 
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8.21 1 = k2 = k and 2m

n 

 

 

 
.22 Consider the mechanism of Problems 6.23 and 7.17 when mw = 3m, kT = kR2 

ls the radius of the disk (i.e., L = R). 
Determine the steady state response of the system if the end of the arm is ex-

Consider the linked system of Problems 6.22 and 7.16 when k 2 
= m1 = m. Determine the response of the system if the upper link is subjected to 
a (temporally) symmetric triangular pulse of magnitude F0 and duratio
τ 2 = m/k.  

                                                             Fig. P8.21 

8
and the undeformed length of the coil equa

cited by the transverse harmonic load 0 .( ) sinF t F t= Ω  
 

 
 
 

 
   Fig. P8.23 

                                         Fig. P8.22 
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8.23 Actuators apply torques to each wheel of the conveyor belt system of Problems 
6.10 and 7.2 rques that should 

 of the sec-
ond m  frequency. 

 
8.24 Consid m  = ma /2 and 

k = ρf gR2 /2. Determine the response of the system if

4 (m2 = m1 = m and R2 = R1 = R). Determine the to
be applied if, in the steady state, the system is to vibrate in the form

ode, but oscillate at 1.5 times the corresponding natural

er the floating platform of Problems 6.24 and 7.18 when b

0 .( ) sinF t F t= Ω   
 

 

n it is suddenly t sted by 
a constant torque of magnitude M0. 

.26 Consider the triple pendulum of Problems 6.26 and 7.20. Determine the re-

                                                      Fig. P8.27  

  Fig. P8.24 
 
8.25 Consider the shaft system of Problems 6.25 and 7.19. Determine the response 

of the system if the center disk is initially at rest whe wi

   Fig. P8.25 
 
8

sponse of the system if it is initially at rest when the bottom most bob is im-
pacted horizontally by an impulse of magnitude I. 

 
                        Fig. P8.26        
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8.27 onsider the mechanism of Problems 6.27 and 7.21 (Figure P8.27) when mw = 
he radius 

C
mb = 3m, kT R2 = kb = k and the undeformed length of the coil equals t
of the disk (i.e., L = R). Determine the steady state response of the system if the 
end of the arm is excited by the transverse harmonic load 0 .( ) sinF t F t= Ω  

Consider the coupled pendulums 
 
8.28 

of Problems 6.29 and 7.22. De-
termine the response of the system 
when the leftmost bob is subjected 
to a horizontally directed rectan-
gular pulse of magnitude F0 and 
duration 2L g . 

 
                                                                                                  Fig. P8.

 
6.30 and 7.23, where mb/ma = 0.25. 

Determine the motion of the system when 1

28 
 

                                                            Fig. P8.29 

8.29 Consider the frame system of Problems 
 1 01( ) sinF t F t= Ω  (and F2 = 0). 

   Fig. P8.30 
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8.30 Consider the system of Problems 6.36 and 7.40 (c2/km = 0.04, I = 2mR2). De-
termine the steady state response of the system if 0 .( ) cosF t F t= Ω  

          
mine the response of the two-mass three-spring three-damper system of 8.31 Deter

Problem 7.37 when the left mass is subjected to the pulse ( ) ( ).F t tδ=
�
I  

 
.32 Consider the system of Problem 6.32 and 7.38 8

when mb = 2ma = 2m, kT = kL2 and c2/km = 
0.04. Determine the steady state response of 
the system if a force 0( ) sinF t F t= Ω is ap-
plied to the base mass. 

 

                                                                      Fig. P8.32 
 
.33 Repeat Problem 8.16, this time taking into account the effect of the perturbation 

 
.34 Consider the simple model of the submarine of Problem 6.37, where the mass 

 
 
 
 
 

8
on the drag force where the corresponding coefficient is cd = c. 

8
of the internal compartment is mc, the mass of the hull and frame structure is 
ms = 2mc, the stiffness of each of the elastic mounts between the internal com-
partment and the hull frame is k, the damping factor for each of the mounts is 

0.1 ,cc km=  the longitudinal stiffness of the hull is ks = 2k and the effective 
r of the hull is cdamping facto s = 2c. The propeller exerts a force F0 that is suf-

ficient to overcome the drag force and maintain the constant speed v0. An im-
perfection in the propeller shaft induces a small harmonic perturbation in the 
thrust of frequency Ω. The actual thrust applied is then of the form 

0 0( ) [1 sin ]F t F tε= + Ω  where 0 1ε � . If we neglect the corresponding pertur-
, determin  response of the submarine. bation of the drag force e the

 

 Fig. P8.34 
                                                          
                                                           



510 Engineering Vibrations 

 
8.35 Determine the response of the frame of Example 8.17 if it is struck at the left 

 

.36 The conveyor belt system of Problem 6.35 has the properties m1 = m2 = m, R1 = 

 

 
     Fig. P8.36 

                                                 

support by a rectangular pulse of amplitude F0 and duration tp. 

 
8

R2 = R and c2/km = 0.16. It is at rest when a constant torque M0 is suddenly ap-
plied to the left flywheel. Determine the response of the system. 

  
            



   

9 
Dynamics of One-Dimensional 
Continua 

 
 
 
 
A material continuum is a medium or body that possesses a continuous, not necessar-
ily uniform, distribution of mass and other material properties over its domain of 
definition. At the macroscopic scale many engineering systems lie in this category. 
One-dimensional continua are the simplest types of continua and correspond to bod-
ies whose deformations are determined in terms of one spatial variable and time. 
Such bodies include elastic rods, strings and cables, and elastic beams and columns. 
To this point we have restricted our attention to systems for which an elastic rod or 
beam was a part, and for which the mass of the rod or beam was negligible compared 
with other mass measures of the total system. In this and subsequent chapters we 
shall study the motion of the elastic body itself. It will be seen that much, if not all, of 
the capabilities that were developed for discrete systems can be abstracted and gener-
alized for continuous systems with the introduction of a few new concepts. As such, 
the study of vibrations of continuous systems will be seen to be completely analogous 
to that of discrete systems. In this chapter we derive the equations of motion of the 
systems of interest using elementary means. We begin by discussing the correlations 
between the mathematical representations of discrete systems and mathematically 
one-dimensional continua. 
 

9.1 MATHEMATICAL DESCRIPTION OF 1-D CONTINUA 

In the previous three chapters it was seen that the properties, external forces and mo-
tion of discrete systems are described by matrices. In contrast, the properties, external 
forces and behavior of continuous systems are naturally described by continuous 
functions. The purpose of this section is to provide a smooth and logical segue from 
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discrete to continuous systems. In this section we view discrete and continuous sys-
tems from a unified perspective, with one being viewed as a limiting case of the 
other. This correlation will allow for a smooth extension of previously established 
concepts that will aid in the transition to, and in our interpretation of the behavior of, 
continuous systems. 
 

9.1.1 Correspondence Between Discrete and Continuous Systems 

Consider the discrete system of masses and springs aligned in series as shown in Fig-
ure 9.1a, and let the coordinate xj (j = 1, 2, …, N) correspond to the equilibrium posi-
tion of mass mj (j = 1, 2, …, N) as indicated. The coordinate, x, originates at the left 
boundary of the system, and the system is defined on the domain 0 x L≤ ≤ . Let uj (j 
= 1, 2, …, N) correspond to the displacement of the indicated mass and let Fj (j = 1, 2, 
…, N) be the corresponding external force acting on that mass as defined in the pre-
vious three chapters. With the introduction of the coordinate system x, the displace-
ments and external forces may be thought of as values of the functions u(x,t) and 
F(x,t) defined at the discrete equilibrium coordinates as follows: 
 
  (9.1) ( , ) ( ) ,    ( , ) ( )    ( 1, 2,..., )j j j ju x t u t F x t F t j N= = =

 
The forms displayed in Eq. (9.1) are thus alternative forms of the matrix representa-
tions 

 

1 1

2

( ) ( )
( ) ( )

( )  ,    ( )

( ) ( )N N

u t F t
u t F t

t t

u t F t

2

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪= = ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩

# #
u F

⎪⎭

0

 (9.2) 

 
 Let us next consider the system to be comprised of a progressively increasing 
number of masses distributed over the fixed domain defined earlier. It follows that the 
distance between adjacent masses, 
 
  (9.3) 1      ( 0,1, 2,..., ;  0)j j jx x x j N x+∆ ≡ − = ≡

 
decreases accordingly. Let ℓ denote the average axial length of the masses. It then 
follows that, in the limit as  and N → ∞ jx dx∆ →   (j = 0, 1, 2, …, N),  
 
 ( ) ( , )    and    ( ) ( , )t u x t t p x t→ Au F →  (9.4) 
 
where is the applied force per unit length of the continuous body. ( , )p x t
 Let us next consider the stiffness matrix for the system of Figure 9.1a and the 
product ku as appears in the corresponding equation of motion, Eq. (8.33). In the 
spirit of Eq. (9.1), let us introduce the notation 
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Figure 9.1  Discrete and continuous systems exhibiting longitudinal motion: (a) N-degree of 
freedom system, (b) continuous rod. 
 
 
 ( )     ( 1, 2,..., )j jk x k j N= =A  (9.5) 
and 
  (9.6) 1    ( 1, 2,..., )j j jk k k j N+∆ ≡ − =

 
Now, let us consider the jth row of the matrix product ku. Noting that 
 
    1( ) ( ) ( ) ( )j j j j jk x k x x k x k x+ = + ∆ = + ∆  (9.7) 
 
and substituting Eqs. (9.5)–(9.7) into the jth row of ku gives 
 

 
{ } 1 1( ) ( ) ( ) ( ) ( ) ( )

                                      ( ) ( ) ( ) ( )

j j j j jj

j j j

k x u x u x k x k x u x

k x k x u x u x

− +⎡ ⎤ ⎡= − − ∆ + +⎣ ⎦ ⎣ j

j

⎤⎦

⎡ ⎤ ⎡ ⎤− + ∆ + ∆⎣ ⎦ ⎣ ⎦

A ku
 

 
which, after rearranging terms, takes the form  
 

   { }
( ) ( )

1 1( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j ju x k x

j j j j j jj

j j j j

k x u x u x k x k x u x

k x u x k x u x

∆∆ ∆

− +⎡ ⎤ ⎡= − ∆ − ∆ + −⎣ ⎦ ⎣
− ∆ − ∆ ∆

�������� ������
A ku ⎤⎦

j

,

Hence, 
  (9.8) { } ( ) ( ) ( ) ( )j j jj

k x u x k x u x= − ∆∆ − ∆ ∆A ku
 
Dividing Eq. (9.8) by ℓ 2, and multiplying and dividing by gives 2( )jx∆
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 { }
2

2

( ) ( ) ( )1 ( )
( )

j j j
jj

j jj

x u x k x u
k x

x xx
jx⎧ ⎫∆ ∆∆ ∆ ∆⎛ ⎞ ⎪ ⎪= − +⎜ ⎟ ⎨ ∆ ∆∆

⎬
⎪ ⎪⎝ ⎠ ⎩ ⎭A A

ku   

 
Letting  and  simultaneously, N → ∞ 0jx∆ → 1jx∆ →A  and we find that 
 

 1 ( , ) ( ) ( , )u x t k x u x t
x x

∂ ∂
→ = −

∂ ∂A
ku k  (9.9) 

 
where ku(x,t) is read “k operating on u(x,t).” It follows that 
 

 1 ( )k x
x x

∂ ∂
→ = −

∂ ∂A
k k  (9.10) 

 
It is thus seen that, in the limit, the stiffness matrix tends to the differential stiffness 
operator k. With the limit of the stiffness matrix established, we next evaluate the 
limit of the mass matrix. 
 It was seen in Section 6.1.1 that the mass matrix for the system of Figure 9.1a 
is of diagonal form. If we write the masses of the system as 
 
 ( )    ( 1, 2,..., )j jm x j N= =Am  (9.11) 
 
then the corresponding mass matrix takes the form 
 

  (9.12) 

1 1

2 2

0 0 ( ) 0 0
0 0 0 ( )

0 0 0 0 ( )N N

m x
m x

m x

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

" "

A
# % # # % #

" "

m
m

m

m
0

⎤
⎥
⎥
⎥
⎥
⎦

 
It is seen that the elements of m are such that 
 
  (9.13) ˆ( )     ( , 1,2,..., )lj j ljm x l j Nδ= =Am
 
where l̂jδ  is known as Knonecker’s Delta and has the property that 
 

    
1    (when )ˆ
0    (when )lj

l j
l j

δ
=⎧

= ⎨ ≠⎩
 (9.14) 

 
In the limit, 
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1 1 1

2 2 2

( ) ( , )
( ) ( , )1  ( , ) ( ) ( , )

( ) ( , )N N N

m x u x t
m x u x t

u x t m x u x t

m x u x t

⎧ ⎫
⎪ ⎪
⎪ ⎪= → =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

��
��

�� �� ��
#A
��

mu m  (9.15) 

 
Hence, for the present system, 
 

 1 ( )m x→ =
A

m m  (9.16) 

 
where m(x) is interpreted as the mass per unit length of the structure. In general, the 
mass matrix for a discrete system will not be diagonal. For such systems, the limit of 
the mass matrix will be a differential operator, m, in the spirit of the stiffness opera-
tor.  
 With the above limits established, the limit of the matrix equation that governs 
the system of Figure 9.1a, Eq. (8.33), takes the form 
 
 ( , ) ( , ) ( , )u x t u x t p x t+ =��m k  (9.17) 
 
We thus see that, in the present context, a function is simply a limiting case of a col-
umn matrix or vector. We also see that the limiting case of a matrix operator (square 
matrix) is a differential operator. The limiting case of the discrete system of Figure 
9.1a corresponds to the representation that describes longitudinal motion of an elastic 
rod (Figure 9.1b) and will be considered in detail in Section 9.3. The correlation be-
tween certain other discrete systems and their continuous counterparts discussed in 
later sections is described below. 
 
 

 
 
Figure 9.2  Discrete and continuous systems exhibiting torsional motion: (a) N-degree of 
freedom system, (b) continuous rod. 
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 Suppose now that the masses of the discrete system of Figure 9.1a are replaced 
by rigid disks of known mass moment of inertia that are attached to massless rigid 
axles that are connected in series by torsional springs that rotate about the axis of the 
collinear axles as shown in Figure 9.2a. Correspondingly, let the linear displacements, 
uj(t), of the original system be replaced by angular displacements, θj(t), and let the 
external forces Fj(t) be replaced by externally applied torques, Tj (t). If we then pro-
ceed as we did for the original system, we arrive at a representation for the torsion of 
elastic rods in terms of the angular displacement field ( , )x tθ  and the applied distrib-
uted torque ( , )x tµ  shown in Figure 9.2b. This system will be considered in detail in 
Section 9.4.  
 Finally, consider a system of collinear rigid rods of known length and mass 
density, whose centers are located at the coordinates xj, and let the rods be connected 
in series by torsional springs, as shown in Figure 9.3a. For this system, the torsional 
springs rotate about axes that are perpendicular to the axes of the rods as indicated. 
Let the rods be subjected to externally applied transverse forces, Qj(t), (forces that act 
perpendicular to the axis of the rods) and let us use the transverse displacement wj(t) 
= ∆xj sinψj, as the measure of displacement, where ψj(t) is the angle of rotation of 
the rod, and ∆xj is defined by Eq. (9.3). If we proceed as we did for the two systems 
discussed previously we arrive at the representation for flexure of elastic beams in 
terms of the transverse displacement field w(x,t) and the distributed transverse load 
q(x,t) (Figure 9.3b). This system will be considered in detail in Sections 9.6–9.8. 
 To conclude, it is seen that, in the limit, column matrices tend to functions and 
the corresponding matrix operators tend to differential operators. The detailed deriva-
tion of the mathematical models for the systems discussed above and others, includ-
ing the associated mass and stiffness operators, will be considered in later sections of 
this chapter. 
 

 
Figure 9.3  Discrete and continuous systems exhibiting flexural motion: (a) N-degree of free-
dom system, (b) continuous beam. 
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9.1.2 The Scalar Product and Orthogonality 

It was seen in Chapter 8 that the orthogonality of the modal vectors is central to the 
analysis and comprehension of forced vibration of discrete systems. Since continua 
and their motions are described by continuous functions, and since it was shown in 
the previous section that functions are generalizations of column matrices and vec-
tors, it may be anticipated that the orthogonality of functions will be important in our 
study of continuous systems and that the definitions and operations pertaining to sca-
lar products and orthogonality, etc., can be abstracted/extended to functions. We next 
establish the corresponding definitions and operations. Other properties, such as nor-
malization, will be established in later chapters as needed. 

The Conventional Scalar Product 
Consider two vectors u and v expressed in the forms of Eqs. (9.1) and (9.2). It fol-
lows from Eq. (7.24) that the scalar product of u and v is given by 
 

 
1 1

, ( ) ( ) ( , )
N N

j j j j
j j

u t v t u x t v x t
= =

= = =∑ ∑u v u vT ( , )  (9.18) 

 
We next expand Eq. (9.18), multiply by ℓ, note that u(xj+1) = u(xj + ∆xj) and take the 
limit as N and ∆x→ ∞ j → dx. Recognizing that in the limit summation becomes inte-
gration, we see that the scalar product of two functions defined on the domain 
0 x L≤ ≤  is given by 
 

 
0

, ( , ) ( ,
L

u v u x t v x t dx= ∫ )  (9.19) 

 
As for the case of discrete vectors, two functions are said to be mutually orthogonal if 
their scalar product vanishes. Stated mathematically, 
 
 if , 0  then  ( , ) ( , )u v u x t v x t= ⊥  (9.20) 

 
 

Example 9.1 
Determine the scalar product of the functions f(x) = sin(2nπx/L) and g(x) = 
sin(2pπx/L) on the domain 0 x L≤ ≤ , where n p≠ are positive integers 
greater than zero. 
 
Solution 

 From Eq. (9.19), 
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( ) ( )

{ } { }
0 0

, ( ) ( ) sin 2 sin 2

sin 2 ( ) sin 2 ( )
          0 0 0

2 ( ) 2 ( )

L L

f g f x g x dx n x L p x L

n p n p
n p L n p L

π π

π π
π π

= =

− +
= − = − =

− +

∫ ∫ dx
  �

 
Thus, on [0, L].  f g⊥
 Note that the given functions would be orthogonal on the domain [−L, L] 
as well. Compare the above functions with the functions used as the basis for 
conventional Fourier Series (Section 3.6). It may be seen that a Fourier Series is 
an expansion in terms of a set of mutually orthogonal functions.   

 

 

The Weighted Scalar Product 
It follows from Eq. (7.25), that the weighted scalar product of two vectors u and v 
with respect to a matrix m is given by 
 

 
1 1 1 1

, ( ) ( ) ( ,
N N N N

l lj j l lj j
l j l j

u t v t u x t v x t
= = = =

= = =∑∑ ∑∑m
u v u mvT m m) ( , )  (9.21) 

 
It is seen, upon incorporating Eq. (9.13) into Eq. (9.21), that the weighted scalar 
product with respect to a diagonal mass matrix simplifies to the form  
 

 
1

, ( , ) ( ) (
N

j j j
j

u x t m x v x t
=

= ∑Am
u v , )  (9.22) 

 
Taking the limit as  and N → ∞ , jx dx∆ →A  gives the scalar product of the two 
functions u(x,t) and v(x,t) with respect to the weight function m(x). Hence,  
 

 
0

, ( , ) ( ) ( ,
L

m
u v u x t m x v x t dx= ∫ )  (9.23) 

 
If the weighted scalar product vanishes, the functions u(x,t) and v(x,t) are said to be 
orthogonal with respect to the weight function m(x). Stated mathematically, 
 
 if  , 0    then    ( , ) ( , )

m m
u v u x t v x t= ⊥  (9.24) 

 
 The weighted scalar product of two vectors, u and v, with respect to the stiff-
ness matrix k is defined as discussed in Section 7.3.1. Hence, 
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1 1 1 1

, ( ) ( ) ( ,
N N N N

l lj j l lj j
l j l j

u t v t u x t v x t
= = = =

= = =∑∑ ∑∑k
u v u k vT k k) ( , )  (9.25) 

 
It follows from prior discussions that taking the limit as  and ∆xN → ∞ j → dx gives 
the weighted scalar product of the two functions u(x,t) and v(x,t) with respect to the 
stiffness operator k. Hence, 
 

 
0

, ( , ) ( ,
L

u v u x t v x t dx≡ ∫k
k )  (9.26) 

 
If the weighted scalar product vanishes, the functions u(x,t) and v(x,t) may be said to 
be orthogonal with respect to the stiffness operator k. Stated mathematically, 
 
    if  , 0    then    ( , ) ( , )u v u x t v x t=

k k
⊥  (9.27) 

 
The general case of the scalar product and corresponding statement of orthogonality, 
with respect to a differential mass operator follows as for the stiffness, with the mass 
function being the operator as a special case as discussed below.  
 In general, the scalar product of two functions u(x,t) and v(x,t) with respect to 
some linear differential operator d is defined in an analogous fashion to that for the 
case above. The mutual orthogonality of the two functions with respect to the differ-
ential operator follows directly. Thus, in general, the weighted scalar product of two 
functions, u(x,t) and v(x,t), with respect to a differential operator 
 

 ( )
n p

n S x px x
∂ ∂

=
∂ ∂

d  (9.28) 

  
where S(x) represents some system property, is defined as 
 

 
0

, ( , ) ( ,
L

u v u x t v x t dx≡ ∫d
d )  (9.29) 

 
The corresponding statement of orthogonality follows directly. Hence, 
 
    if  , 0    then    ( , ) ( , )u v u x t v x t=

d d
⊥  (9.30) 

 
It is seen that the scalar product and orthogonality with respect to weight functions 
follows directly from Eqs. (9.28)–(9.30) for operators where the order of the spatial 
derivatives is reduced to zero (i.e., when n = p = 0). Finally, it is evident that 

, ,u v u v=d d . 
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Vector Functions and Differential Matrix Operators 
For more complex systems the above definitions may be generalized. For certain 
types of structures the displacement field may be described by more than one scalar 
function. In this case the displacement is described by a vector (matrix) function of 
the form 

 

1

2

( , )
( , )

( , )

( , )N

u x t
u x t

x t

u x t

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

#
u  

 
and the corresponding mass and stiffness operators are of the general form 
 

 

11 12 1

21 22 2

1 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # % #
"

d

d d d

d d d

d d d

 

 
where dlj (l,j = 1, 2, …, N) are differential operators. For such systems we extend the 
definition of scalar product between two vector functions. In this case we define the 
scalar product between two vector functions u(x,t) and v(x,t) as 
 

 
0

,
L

dx≡ ∫d
u v u dvT  (9.31) 

 
Correspondingly the vector functions are said to be orthogonal with respect to the 
differential operator if the scalar product vanishes. That is 
  

 
0

if   , 0    then    
L

dx≡ =∫d d
u v u dv u vT ⊥  (9.32) 

 
Finally, it is evident that , ,=du v u dv .  The above definitions can be extended to 
include multi-dimensional domains as well.  
 
 

9.2 CHARACTERIZATION OF LOCAL DEFORMATION 

To study the motion of continua, in particular the vibrations of continua, we are inter-
ested in the relative motion of adjacent material particles. Such relative motion is 
generally termed deformation of a material body. In the present and the next two 
chapters we shall be concerned with one-dimensional continua. Such systems typi-
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cally correspond to continua that are geometrically long and thin. More precisely, we 
shall consider structures for which one dimension, the axial, is much larger than the 
others. We shall herein be interested in two types of deformation, stretching and dis-
tortion, and shall limit our discussion to those measures pertinent to one-dimensional 
continua. 
 

9.2.1 Relative Extension of a Material Line Element 

One mode of deformation can be characterized by examination of the relative exten-
sion/contraction of a line element in a continuous medium or body. This measure is 
often referred to as the normal strain. When the strain is measured in a direction par-
allel to the major axis of a long thin body, the normal strain is also referred to as the 
axial strain. In all of our discussions we shall consider infinitesimal strains. That is, 
we shall consider strains whose magnitudes are small compared with unity. 

Pure Translation 
We first consider an element of a material line that is originally aligned parallel to a 
coordinate axis, say the x-axis, and remains oriented parallel to that axis throughout 
its motion. Thus, let us consider a line element of initial length dx emanating from 
coordinate x, as shown in Figure 9.4. During the course of its motion, the element 
translates and stretches so that the left end of the element is currently located at coor-
dinate x  and the current length of the element is dx  as indicated. Let u(x,t) corre-
spond to the displacement of the left end of the element. For continuous displace-
ments of the material line, the right end then displaces an amount ( )u u x dx+ ∂ ∂ , as 
shown. It then follows, as may be seen from Figure 9.4, that 
 

 udx dx dx
x

∂
= +

∂
 

 
The relative extension, εxx, is then 
 

 xx
dx dx u

dx x
ε − ∂

= =
∂

 (9.33) 

 
and is typically referred to as the normal strain. 
 

Translation and Local Rotation 
Let us now consider the same material line initially emanating from coordinate (x,z)  
and of initial length dx as shown in Figure 9.5. However, we now remove the restric-
tion of motions of pure translation and allow small rotations in a plane, say the xz-
plane, as well as extension and contraction. Let  u and w respectively correspond to 
the displacements in the x and z directions of the left end of the element as shown.  
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         Figure 9.4  Deformation of material line element in pure translation. 
 
 
The right end then displaces correspondingly, as indicated. Since the element is no 
longer parallel to the x-axis when in the current configuration, let the current length of 
the element be denoted as ds, and the projections of ds onto the coordinate axes be 
denoted as dx  and dz , respectively. We wish to evaluate the relative extension of 
the line element in terms of the displacements and their spatial gradients. It may be 
seen from Figure 9.5 that 
 

 
2 2 2

2 2 1 2u w u uds dx dz dx dx dx dx
2w

x x x x
∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= + = + + = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ x

⎞
⎟
⎠

 

 
which, after expressing the radical by its series expansion gives the relation 
 

 
2 21 11

2 2
u u wds dx
x x x

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
…  (9.34) 

 

 
        Figure 9.5  Deformation of material line element in translation and local rotation. 
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The relative extension of the material line element is then, to second order, 
 

 
2 21 1 1

2 2 2
ds dx u u w u w

dx x x x x x
− ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + ≅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

 (9.35)  

 
where, for small displacement gradients, the square of a quantity is neglected when 
compared with that quantity to the first power. We shall consider two classifications 
of infinitesimal strain: small strain with “moderate” rotations, and small strain with 
“small” rotations. 

 

Small Strain, Moderate Rotations 
We here consider infinitesimal extension ratios. We, therefore, consider defor-
mations where the magnitude of each term in Eq. (9.35) is small compared with 
unity. If  

    
2w uO

x x
∂ ∂⎛ ⎞ ⎛

⎜ ⎟ ⎜
⎞
⎟∂ ∂⎝ ⎠ ⎝

∼
⎠

  

 
then the nonlinear term must be retained and the infinitesimal strain εxx is given 
by 

 
21

2xx
u w
x x

ε ∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂⎝ ⎠
 (9.36) 

 
The nonlinear term in the above expression may be identified as the angle of 
rotation of the line element in the xz-plane since, for small angles, the tangent is 
approximated by the angle itself and vice-versa. It is seen that the axial motion 
and transverse motion are coupled through this term. If we considered the ele-
ment to move out of the plane as well as in it, and we paralleled the above de-
velopment, an analogous nonlinear term corresponding to out of plane rotation 
would be added to the right hand side of Eq. (9.36). 
 

Small Strain, Small Rotations 
When the nonlinear term in Eq. (9.36) is small compared to the first, the rota-
tions are said to be “small.” In this case the nonlinear term is often neglected, 
resulting in a common definition of infinitesimal strain. Stated mathematically, 
if  

    w uO
x x

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

∼   

 
 then the infinitesimal strain is often taken as 
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 xx
u
x

ε ∂
≈

∂
 (9.37) 

 
This is the common form of infinitesimal normal strain used in linear problems. 
It may be seen that, for this case, the current length, ds, is approximated by its 
projection, dx  (Figure 9.5). When this approximation is made, all coupling be-
tween axial and transverse motion is ignored. The modeler should be aware of 
this limitation as such omissions can have significant ramifications in certain 
settings, even for small rotations. 

 

9.2.2 Distortion 

Consider a differential element whose faces are initially parallel to the coordinate 
planes. In particular, let us focus on the face parallel to the xz-plane, as shown in Fig-
ure 9.6. During motion, the element will generally translate rotate, stretch and distort. 
We shall here be concerned with the distortion of the face shown. Thus, let the edges 
of the element, originally perpendicular to one another, be currently oriented at angles 
φxz and ψxz with respect to the coordinate planes as indicated. We shall label the cor-
responding subtended angle as θxz. For small angle changes, 1xzφ � and , it 
follows that 

1xzψ �

 

 tan     and    tanxz xz xz xz
w u
x z

φ φ ψ ψ∂ ∂
≈ = ≈ =

∂ ∂
 (9.38) 

 
The change in angle parallel to the xz-plane is then 
 

 
2xz xz

w u
x z

πγ θ ∂ ∂
= − ≈ +

∂ ∂
 (9.39) 

 
 
 
 

   
          Figure 9.6  Distortion of differential material element. 
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The corresponding shear strain is formally defined as half the angle change, hence 
 

 1
2xz

w u
x z

ε ∂ ∂⎛= +⎜
⎞
⎟∂ ∂⎝ ⎠

 (9.40) 

 
Analogous measures are defined for distortion on other planes. With the relation be-
tween discrete and continuous systems understood, and the measures of characteriz-
ing deformation established, we now examine several models for studying various 
motions of one-dimensional continua. 
 
 

9.3 LONGITUDINAL MOTION OF ELASTIC RODS 

In this section we derive the equation of motion, and the general boundary and initial 
conditions that govern the longitudinal motion of elastic rods. That is, we shall here 
be interested in motions of material particles whose directions parallel that of the axis 
of the rod. For small deformations of thin rods, rods whose axial deformations as well 
as lateral dimensions are small compared with the overall length of the rod, the axial 
motion and associated stress may be considered to be approximately uniform over a 
given cross section. Similarly, the Poisson effect (the lateral contraction/extension 
that accompanies axial stretching/compression) may also be neglected, rendering the 
problem mathematically one-dimensional in nature. In what follows, we shall con-
sider a moderately general case, where the material properties of the rod may vary 
smoothly along its length but are invariant over a given cross section. We thus con-
sider an orthotropic rod in this sense. Similarly, the shape of the rod is arbitrary and 
the cross-sectional area may vary in the axial direction. The case of a uniform iso-
tropic rod is thus recovered as a special case.  
 Consider an elastic rod of length L and cross-sectional area A(x), where the 
coordinate x parallels the axis of the rod and originates at its left end as shown in Fig-
ure 9.7a. Let the rod be comprised of material of mass density ρ(x) and elastic 
modulus E(x). The mass per unit length of the rod is then m(x) = ρ(x)A(x). In addition, 
let the rod be subjected to the externally applied distributed axial force p(x,t) as de-
picted in Figure 9.1b. As discussed in the preceding paragraph, we assume that the 
stress and deformation is uniform over a cross section and, therefore, that they each 
are a function of the axial coordinate x and time t only. Since we neglect the Poisson 
effect as well, the axial stress σ(x,t) is solely dependent on the axial strain ε(x,t) 
through the elementary form of Hooke’s Law. Hence, 
 

 ( , ) ( ) ( , ) ( ) ux t E x x t E x
x

σ ε ∂
= =

∂
 (9.41) 
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Figure 9.7  Longitudinal motion of rod: (a) kinematical description, (b) kinetic diagram of 
differential rod element.  
 
 
where u(x,t) corresponds to the axial displacement of the cross section located at 
coordinate x when in the rest configuration. Since the stress is assumed to be uniform 
over a cross section, the resultant membrane force, N(x,t), acting on a cross section is 
then 

 ( , )( , ) ( )a
u x tN x t k x

x
∂

=
∂

 (9.42) 

where 
 ( ) ( ) ( )ak x E x A x=  (9.43) 
 
is identified as the axial stiffness (per unit length) of the rod. 
 With the internal force measure for the rod established, we now proceed to 
derive the equation of motion. Toward this end, we first examine the kinetic diagram 
for a generic differential element of the rod shown in Figure 9.7b. We next apply 
Newton’s Second Law to the element, which takes the form 
 

 
2

2

( , )( , ) ( , ) ( , ) ( )N x t up x t dx N x t dx N x t m x dx
x t

∂ ∂⎡ ⎤+ + − =⎢ ⎥∂ ∂⎣ ⎦
  

 
Rearranging terms and incorporating Eq. (9.42) gives the local form of the equation 
of motion for the rod as 
 

 
2

2

( , )( ) ( ) ( , ) ( , )a
u x tm x k x u x t p x t

x xt
∂ ∂ ∂

−
∂ ∂∂

=  (9.44) 

 
Equation (9.44) is seen to be a second order partial differential equation for the axial 
displacement and may be identified as the one-dimensional wave equation. As such, 
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the solution of this equation requires the specification of two boundary conditions and 
two initial conditions. We consider the boundary conditions first. 
 To obtain a solution to the equation of motion, one term (but not both terms) of 
the work W = Nu must be prescribed at two points on the structure, typically at the 
boundaries. (Note that if one term is prescribed then its conjugate represents the cor-
responding response or reaction and therefore cannot be specified independently.) 
The general forms of the boundary conditions for the elastic rod are stated below. At 
the left edge of the rod, we must specify either 
 

 0
0

(0, ) ( )    or    (0, ) ( )a
x

uN t k t u t t
x =

∂
= = =

∂
N 0h  (9.45) 

 
where N0(t) is a prescribed edge load or h0(t) is a prescribed edge displacement. Simi-
larly, at the right edge of the rod, we must specify either 
 

 ( , ) ( )    or    ( , ) ( )a L
x L

uN L t k t u L t t
x =

∂
= = =

∂
N Lh  (9.46) 

 
where NL(t) is a prescribed edge load or hL(t) is a prescribed edge displacement. 
 In addition to the boundary conditions, the initial displacement and initial ve-
locity of each material point in the rod must be specified as well. The solution of the 
equation of motion therefore requires the initial conditions 
 
 0( ,0) ( )u x u x=  (9.47) 
and 

 0
0

( )
t

u v x
t =

∂
=

∂
 (9.48) 

 
where u0(x) and v0(x) are prescribed functions that describe the initial state of the rod. 
The boundary value problem corresponding to longitudinal motion of an elastic rod is 
defined by Eqs. (9.44)–(9.48). 
 Before leaving our discussion of elastic rods it is useful to rewrite the equation 
of motion, Eq. (9.44), in operator form. This will aid in the comparison of various 
systems as well as with the interpretation and solution in this and subsequent chap-
ters. Hence, let us define the stiffness operator for the rod as 
 

 ( )ak x
x x

∂ ∂
= −

∂ ∂
k  (9.49) 

 
Comparison of Eq. (9.49) with Eq. (9.10) shows the stiffness operator for the rod to 
be of the identical form as that via the limiting process of Section 9.1. For complete-
ness, let us similarly define the mass operator m for the present system as 
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 ( )m x=m  (9.50) 
 
Incorporating Eqs. (9.49) and (9.50) into Eq. (9.44) gives the equation of motion for 
the rod in operator form. The alternate form of the equation of motion governing lon-
gitudinal motion of elastic rods is then 
  

 
2

2 ( , )u u p x t
t

∂
+ =

∂
m k  (9.51) 

 
where k and m for the rod are defined above. Comparison of Eq. (9.51) with Eq. 
(8.33) shows the mass and stiffness operators to be completely analogous to the mass 
and stiffness matrices for discrete systems. In fact, the operators for longitudinal mo-
tion of a rod were shown to be limiting cases of these matrices in Section 9.1. 
 
 

Example 9.2 
State the boundary conditions 
for longitudinal motion of an 
elastic rod for the two cases 
shown. 
 
 
 
Solution  
In both case (i) and case (ii) the left end of the rod is fixed. Thus, for both 
cases, 

 (0, ) 0u t =  (a) 
 
For case (i) the right end of the rod is subjected to the force 0( ) sin .F t F t= Ω  
Hence, 

 0( , ) sin         sin
x L

uN L t F t EA F t
x =

∂
= Ω ⇒ =

∂ 0 Ω  (b) 

 
For case (ii) the right end of the rod is free. That is the applied load is zero on 
this edge. Since the right edge is stress free, the  boundary condition is 
 

 0
x L

uEA
x =

∂
=

∂
 (c) 
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Example 9.3 
Determine the boundary conditions 
for an elastic rod contained between 
two elastic walls of stiffness kw. 
 
 
Solution 
To establish the boundary conditions for this system, consider the displace-
ments at the edges of the rod to be positive. Then, the spring at the left edge of 
the rod is extended and the spring at the right end of the rod is compressed. It 
follows that a tensile load is applied at x = 0 while a compressive load is ap-
plied to the rod at x = L. The boundary conditions are then 
 

 
0

(0, ) (0, )        (0, )w
x

uN t k u t EA k u t
x =

∂
= ⇒ =

∂ w  (a) 

and 

 ( , ) ( , )        ( , )w
x L

uN L t k u L t EA k u L t
x =

∂
= − ⇒ = −

∂ w  (b) 

 

 
 

Example 9.4 
Determine the boundary conditions for 
the elastic rod shown, if the support un-
dergoes the horizontal motion ∆0sinΩt 
and a rigid block of mass m is attached 
to the right end. 

                                                          
 
                                                                                                   Figure E9.4-1 

Solution 
The left edge of the rod is affixed to the support. Therefore, the displacement at 
the left edge is prescribed. The corresponding boundary condition is then 
 

 0(0, ) sinu t t= ∆ Ω  (a) 
 
To establish the boundary condition at the right edge of the rod, it is helpful to 
consider the kinetic diagram for the mass and rod (Figure E9.4-2). From New-
ton’s Third Law, the force acting on the rigid mass is equal and opposite to the 
resultant membrane force acting on the edge of the rod, as indicated.  
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    Figure E9.4-2  Kinetic diagram of end mass. 
 
 
Applying Newton’s Second Law to the rigid mass gives  
 

 
2

2( , )
x L

uN L t
t

=

∂
− =

∂
�m  

Hence, 

 
2

2
x L x L

u uEA
x t= =

∂ ∂
− =

∂ ∂
m  (b) 

 
  
 

9.4 TORSIONAL MOTION OF ELASTIC RODS 

In this section we derive the equation of motion and general boundary and initial con-
ditions that govern the torsional motion of solid elastic rods of circular cross section. 
The small strain theory of torsion of elastic rods attributed to St. Venant predicts that 
no warping of cross sections or axial extension accompanies twisting of rods with 
circular cross sections. Though we restrict our attention to rods of circular cross sec-
tion we shall, however, allow the radius, mass density and shear modulus of the rod 
to vary in the axial direction.  
 Consider the circular elastic rod of length L, radius R(x), shear modulus G(x), 
and mass density ρ(x), where the axial coordinate x originates at the left end of the 
rod as shown in Figure 9.8a. In addition, let the rod be subjected to the distributed 
twisting moment (torque per unit length) µ(x,t) as indicated. The St. Venant assump-
tion holds that a cross section rotates uniformly about its axis. The angular displace-
ment of a cross section is then simply a function of the axial coordinate and time, 
while the axial and radial displacements vanish identically. It follows that the linear 
displacement, uφ , of a material particle in the plane of the cross section varies linearly 
with the radial coordinate r measured from the axis of the rod (Figure 9.8b). Hence, 
 
    ( , , ) ( , )u x r t r x tφ θ=  (9.52) 
  
 ( , , ) 0,     ( , , ) 0x ru x r t u x r t≡ ≡  (9.53) 
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Figure 9.8  Torsional motion of circular rod: (a) deformation and loading, (b) rotation of cross 
section, (c) kinetic diagram of differential rod element. 
 
 
where ( , )x tθ  is the angular displacement of the cross section and r is the radial coor-
dinate measured from the axis of the rod. 
 With the linear displacement defined in terms of the rotational displacement, 
the shear stress, ( , )x tτ , acting on the cross section is readily obtained in terms of the 
rotation of the cross section using Hooke’s law. Hence, 
 

 1 (( , , ) 2 x
r

u u , )x tx r t G G Gr
x r x
φ

θ
θτ ε

φ
∂⎛ ⎞∂ ∂

= = + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (9.54) 

 
Multiplying the shear stress by rdA, where dA is the differential area on the cross 
section, substituting Eq. (9.54), and integrating the resulting expression over the area 
of the cross section gives the resultant torque, T (x,t) (positive counterclockwise), 
that acts on the cross section. We thus obtain the constitutive relation  
 

 ( , ) ( )Tx t k x
x
θ∂

=
∂

T  (9.55) 

where 
 ( ) ( ) ( )Tk x G x J x=  (9.56) 

 
is the torsional stiffness (per unit length) of the circular rod and  
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 2 1
2

( )
( ) ( )

A x

4J x r dA Rπ≡ =∫ x  (9.57) 

 
is the geometric polar moment of inertia of the cross section. In this sense, the rod is 
defined in terms of the parameters kT, ρ and L. With the constitutive relation for the 
rod established, we now proceed to derive the equation of torsional motion for elastic 
rods of circular cross section.  
 We first consider the kinetic diagram of a differential element of the rod shown 
in Figure 9.8c. Note that the mass polar moment of inertia of the uniform circular 
cross section is simply 
 
 ( ) ( ) ( )J x x Jρ xρ=  (9.58) 

 
We now express Eq. (1.162) for the element and obtain 
 

 
2

2( , ) ( , ) ( , ) ( )x t dx x t dx x t J x
x tρ

θµ ∂ ∂⎡ ⎤+ + − =⎢ ⎥∂ ∂⎣ ⎦

T
T T  

 
Rearranging terms and incorporating Eq. (9.55) gives the local equation of motion for 
the rod as 

 
2

2

( , )( ) ( ) ( , ) ( , )T
x tJ x k x x t

x xtρ
θ θ µ∂ ∂ ∂

−
∂ ∂∂

x t=  (9.59) 

 
which is seen to correspond to the one-dimensional wave equation in terms of the 
rotational displacement. As for the case of longitudinal motion, the solution requires 
the specification of two boundary conditions and two initial conditions. 
 To obtain a solution to the equation of motion we must specify one term of the 
torsional work W = Tθ at two points along the rod, typically at the boundaries. Thus, 
at the left edge, we must specify either 
 

 0
0

(0, ) ( )    or    (0, ) ( )T
x

t k t t t
x
θ θ

=

∂
= = =

∂
hT T 0  (9.60) 

 
where T0(t) is a prescribed torque or h0(t) is a prescribed rotation. Similarly, at the 
right edge of the rod, we must specify either 
 

 ( , ) ( )    or    ( , ) ( )T L
x L

L t k t L t t
x
θ θ

=

∂
= = =

∂
hT T L  (9.61) 

 
where TL(t) is a prescribed torque or hL(t) is a prescribed rotation. 
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 The solution of the equation of motion also requires the specification of the 
initial angular displacement and initial angular velocity of each cross section of the 
rod. The initial conditions for torsional motion of the rod are thus of the form 
 
 0( ,0) ( )x xθ θ=  (9.62) 
and 

 0
0

( )x
t θ

θ χ
=

∂
=

∂
 (9.63) 

 
where θ0(x) and χ0(x) are prescribed functions that describe the initial state of the rod. 
It may be see that the problem of torsional motion defined above is directly analogous 
to the problem of longitudinal motion defined in Section 9.2, with the axial displace-
ment replaced by the rotation θ(x,t), the axial force replaced by the resultant torque 
T (x,t) and the distributed axial load replaced by the distributed twisting moment 
µ(x,t). 
 To complete our discussion, we rewrite the equation of motion in operator 
form. We thus identify the stiffness operator and mass operators, k and m, for the 
present system as 

 ( )Tk x
x x

∂ ∂
= −

∂ ∂
k  (9.64) 

and 
 ( )J xρ=m  (9.65) 

 
Incorporation of the above relations into Eq. (9.59) gives the alternate form of the 
equation of torsional motion, 
 

 
2

2 ( , )x t
t
θ θ µ∂

+ =
∂

m k  (9.66) 

 
The correspondence between Eq. (9.66) and its associated operators with the equation 
of motion for discrete systems and its associated matrices is evident. 
 

Example 9.5 
Determine the boundary conditions for the 
rod supported by identical torsional springs 
of stiffness kθ at each edge. 

 
Solution 
Recall that the torques are taken as positive 
in the counterclockwise sense. Thus, if the 
angle of rotation is positive at the left end of the rod, then the restoring torque 
applied by the spring is positive. In contrast, if the angle of rotation at the right 
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end of the rod is positive, then the restoring torque produced by the spring is 
negative. (Compare with the extension/compression of the linear springs in Ex-
ample 9.3.) It follows that the boundary conditions for this system are then 
 

 
0

(0, )
x

GJ k t
x θ
θ θ

=

∂
=

∂
 (a) 

and 

 ( , )
x L

GJ k L t
x θ
θ θ

=

∂
= −

∂
 (b) 

 
  
 

9.5 TRANSVERSE MOTION OF STRINGS AND CABLES 

Strings and cables are employed in musical instruments and many engineering sys-
tems where flexible tension carrying members are needed. Strings and cables are long 
thin continua possessing negligible resistance to bending compared with their resis-
tance to axial deformation. As such, they are idealized mathematically as structures 
with vanishing bending stiffness and hence with no global resistance to axial com-
pression. Correspondingly, the stress distribution over a cross section is characterized 
by the resultant axial force. From a vibrations perspective, we are primarily interested 
in the dominant transverse motion of these systems. Since strings and cables are ex-
tremely flexible, their transverse motion and axial effects are coupled, primarily 
through the axial tension. We must therefore examine the equation of axial motion as 
well as the equation of transverse motion for these systems. As for the elastic rods 
discussed earlier, we shall consider the properties of the string to be uniform through 
a cross section, but allow them to vary along the axis of the structure. We shall ne-
glect the Poisson effect as well. 
 Consider a string of length L, cross-sectional area A(x) and mass density ρ(x), 
where the coordinate x originates at the left end of the structure as shown in Figure 
9.9a. Let the string be subjected to the external distributed transverse force (force per 
unit length) q(x,t) and external distributed axial force p(x,t). In addition, let w(x,t) 
represent the transverse displacement of a material particle originally located at coor-
dinate x when the string is undeformed, as indicated, and let N(x,t) 0 represent the 
internal tension acting on the corresponding cross section. The kinetic diagram for a 
representative differential element of the string is depicted in Figure 9.9b. We shall 
apply Newton’s Second Law to the generic string element shown, first in the trans-
verse direction and then in the axial direction. In what follows, we restrict our atten-
tion to smooth motions of the string with “moderate rotations” of the cross section. 
That is, we restrict our attention to motions for which the angle of rotation, ϕ (Figure 
9.9b), at any cross section is such that  

≥
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Figure 9.9  Transverse motion of a string: (a) deformation and loading, (b) kinetic diagram of 
differential element. 
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Applying Newton’s Second Law of Motion in the transverse direction then gives 
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2

( , ) ( , )

             ( )

w wq x t dx p x t dx N
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N w wN dx dx m x dx
x x x x t

∂ ∂
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∂ ∂
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w
∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (9.68) 

where 
 ( ) ( ) ( )m x x A xρ=  (9.69) 
 
is the mass per unit length of the string. Expanding Eq. (9.68), neglecting terms of 
order (dx)2 compared with dx and rearranging the resulting expression gives the equa-
tion of transverse motion for the string as 
 

 
2 2

2 2 ( , ) ( , )w w N wm N p x t q x
x xt x

∂ ∂ ∂ ∂⎡ ⎤− − + =⎢ ⎥∂ ∂∂ ∂ ⎣ ⎦
t  (9.70) 

 
Insight into the internal tension is obtained by considering the equation of motion for 
the axial direction. Newton’s Second Law gives 
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 x
Npdx N dx N mdx a
x

∂⎛ ⎞+ + − =⎜ ⎟∂⎝ ⎠
 (9.71) 

 
which, after rearranging terms, takes the form 
 

 ( , )x
Nma p x t
x

∂
− =

∂
 (9.72) 

 
where ax represents the axial acceleration of a material particle originally located at 
coordinate x. Since the string has negligible bending stiffness, it may be anticipated 
that the transverse motion of a given point on the string will be much greater than the 
axial motion of that point. If, for example, we consider the motion of a guitar string 
during a cycle, the distance traversed in the transverse direction by a material particle 
will be much larger than the distance traveled in the axial direction by that same par-
ticle. The particle will necessarily travel much more rapidly in the transverse direc-
tion. It follows that the kinetic energy of transverse motion is much greater than the 
kinetic energy of axial motion. Likewise, the axial component of the acceleration will 
be negligible compared with the corresponding transverse component. If we neglect 
the kinetic energy of axial motion and, equivalently, the axial component of the ac-
celeration in our formulation, then Eq. (9.72) reduces to the statement 
 

 N p
x

∂
≅ −

∂
 (9.73) 

  
Incorporation of Eq. (9.73) into Eq. (9.70) reduces the equation of transverse motion 
of the string to the form 
 

 
2 2

2 2 ( , )w wm N q x
t x

∂ ∂
− =

∂ ∂
t  (9.74) 

 
It is seen from Eq. (9.73) that the tension in the string is effectively a spatial integral 
of the axial body force p(x,t). It is further seen that if the distributed axial load is in-
dependent of time then the tension in the string is effectively independent of time as 
well. That is, 
 if    ( )    then    ( )p p x N N x= =  
 
It follows, as a special case, that if the axial body force is uniform, as well as inde-
pendent of time then the internal tension is effectively constant.  
 The equation of transverse motion for strings and cables, Eq. (9.74), is seen to 
be of the same form as the equations that govern longitudinal motion and torsional 
motion of uniform elastic rods, the one-dimensional wave equation. It is also seen 
that the internal tension supplies the stiffness per unit length of the string. Regardless, 
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we must specify two boundary conditions and two initial conditions to complete our 
formulation. For the highly flexible string under consideration, the internal force act-
ing in the transverse direction is the projection of the corresponding internal tension 
in that direction (see Figure 9.9b). We must therefore specify one term of the trans-
verse work, (N w x w= ∂ ∂W ) ,  at two points of the string. The boundary conditions 
for the string are thus 
 

 0
0

( )    or    (0, ) ( )
x

wN Q t w t
x =

∂
=

∂
h0 t=  (9.75) 

and 

 ( )    or    ( , ) ( )L
x L

wN Q t w L t
x =

∂
=

∂
hL t=  (9.76) 

 
where Q0(t) and QL(t) are prescribed transverse edge loads, and h0(t) and hL(t) are 
prescribed edge displacements. To finish our formulation for transverse motion we 
must specify the initial transverse displacement and the initial transverse velocity for 
each point on the string. The corresponding initial conditions thus take the form 
 
 0( ,0) ( )w x w x=  (9.77) 
and 

 0
0

( )
t

w v x
t =

∂
=

∂
 (9.78) 

 
where w0(x) and v0(x) are prescribed functions that describe the initial state of the 
string. 
 We complete our discussion by writing the equation of motion in operator 
form. We thus introduce the stiffness and mass operators 
 

 
2

2N
x

∂
= −

∂
k  (9.79) 

and 
 ( )m x=m  (9.80) 
 
respectively, into Eq. (9.74). This results in the familiar form 
 

 
2

2 ( , )w w q x t
t

∂
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∂
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Example 9.6 
A sign of mass m hangs from a uniform chain of length L and mass per unit 
length .m�m L  Determine the explicit form of the transverse equation of 
(small) motion for the cable. Also determine the associated boundary condi-
tions if (i) the lateral motion of the sign is restricted as shown, and (ii) if the 
sign hangs freely (Figure E9.6-1). Assume that the weight of the sign is much 
greater than the weight of the chain.                                                 

                              Figure E9.6-1                                                 Figure E9.6-2 
 
 Solution 

The tension in the cable is easily obtained by considering the kinetic diagram of 
a section of the cable and sign (Figure E9.6-2). In keeping with earlier discus-
sions, we assume that the axial acceleration of the system is negligible. Fur-
thermore,  and hence p = mg is negligible. We thus have that ( )m L x− �m
 

  N g= m  (a) 
 
Substitution of Eq. (a) into Eq. (9.79) gives the stiffness operator as 
 

   
2

2g
x

∂
= −

∂
mk  (b) 

 
Equation (9.74), or equivalently Eq. (9.81), gives the explicit form of the equa-
tion of motion as 
 

 
2 2

2 2 0w wm g
t x

∂ ∂
− =

∂ ∂
m  (c) 

 
For both case (i) and case (ii), the boundary condition at the fixed support at x = 
0, is  

 (0, ) 0w t =  (d) 
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The boundary condition at the end of the chain that is attached to the sign de-
pends on the restraints on the sign.  
 
Case (i): 
For this case the sign cannot move laterally. Hence, the boundary condition for 
the string is 

 ( , ) 0w L t =  (e-i) 
 
Case (ii): 
In this case, the sign is free to move laterally. The corresponding boundary 
condition is thus  
 

 0    0
x L x L

w wg
x x= =

∂ ∂
= ⇒

∂ ∂
m =  (e-ii) 

 
Therefore, for small motions the sign may swing laterally, but any rotation of 
the sign is neglected. 

 
 
 

9.6 TRANSVERSE MOTION OF ELASTIC BEAMS 

Long thin structural elements that are primarily excited by end moments and/or trans-
verse loading are encountered in many practical situations. Unlike strings and cables, 
such bodies possess substantial resistance to bending and are utilized for this purpose. 
These objects are referred to as beams and their mathematically one-dimensional 
representations are referred to as beam theories. In this section we develop and dis-
cuss several fundamental beam theories often employed in linear vibration analysis. 
The section also includes discussions of geometrically nonlinear beam theory and 
translating beams. We begin with an account of the basic geometrical assumptions 
and material relations.  
 

9.6.1 Kinematical and Constitutive Relations 

A beam theory is a mathematically one-dimensional representation of a long and thin 
three-dimensional body that undergoes flexure. Such a theory is developed by ex-
ploiting the fact that the thickness and width of the beam are small compared with the 
overall length of the beam. Standard theories incorporate a linear variation of the 
strain and stress through the thickness that is strictly true for pure bending (i.e., when 
the structure is subjected to stress distributions applied at its edges that are statically 
equivalent to only a moment). The beam theory similarly incorporates the assumption 
that the variations of the stress, strain and displacement through the width of the beam 
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are negligible. Such theories have been quite successful in predicting the behavior of 
these structures for many other loading conditions, when the stresses acting on sur-
faces with normals perpendicular to the axis of the beam are small compared with the 
stresses acting on the cross sections of the beam. With the variation through the 
thickness and width assumed apriori, the problem is reduced to finding the deflection 
of the neutral axis of the beam and is thus transformed into a mathematically one-
dimensional boundary value problem as discussed below.  
 Consider an elastic beam, and let the x-axis coincide with the centroid of the 
beam in the rest configuration, as shown in Figure 9.101. In addition, let the z-axis 
originate at the x-axis, and run perpendicular to it in the thickness direction. Let 

 and respectively correspond to the axial and transverse dis-
placements of the material particle originally located at the indicated coordinates. 
Further, let u(x,t) and w(x,t) represent the corresponding displacements of the mate-
rial particles on the neutral surface z = 0. We next assume the kinematical relations 
attributed to Kirchhoff, 

( , , )xu x z t ( , , )zu x z t

 
 ( , , ) ( , ) ( , )xu x z t u x t z x tϕ= −  (9.82) 
 
 ( , , ) ( , )zu x z t w x t≅  (9.83) 
 
where ( , )x tϕ represents the in-plane rotation of the cross section of the beam origi-
nally located at coordinate x (Figure 9.102). An analogous relation between the infini-
tesimal axial strain ( , , ) ,xx x z tε  where 
 

 ( , , ) x
xx

ux z t
x

ε
∂

=
∂

 (9.84) 

 
and its counterpart at the neutral surface 
 

 ( , ) ux t
x

ε ∂
=

∂
 (9.85) 

 
is found by substituting Eq. (9.82) into Eq. (9.84). This gives the strain distribution  
 
 ( , , ) ( , ) ( , )xx x z t x t z x tε ε κ= −  (9.86) 
where 

 ( , )x t
x
ϕκ ∂

=
∂

 (9.87) 

 
is the curvature of the neutral axis of the beam at the point originally located at coor-
dinate x. (In future we shall simply say the displacement, strain, curvature, etc., “at 
x,” with the interpretation being taken to mean at the point originally located at coor-
dinate x.)  
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       Figure 9.10  Kinematical measures of the motion of a beam. 

 
 
 With the basic kinematical assumptions established we next introduce alternate 
measures of the internal stress distribution. Based on the Kirchhoff assumptions, we 
implicitly neglect the Poisson effect in the beam. The axial stress, ,( , , )xx x z tσ σ=  is 
therefore related to the strain by the one-dimensional statement of Hooke’s Law, 
 
 ( , , ) ( ) ( , , )xxx z t E x x z tσ ε=  (9.88) 
 
Since we wish to construct a mathematically one-dimensional theory, we shall ex-
press the stress distribution acting on a cross section by statically equivalent forces 
and moments. In this regard, the normal stress distribution acting on a cross section is 
statically equivalent to a resultant normal force and moment, while the associated 
shear stress distribution is statically equivalent to a resultant transverse shear force. 
The resultant membrane (axial) force, N(x,t), acting on the cross section at x is found 
by integrating the axial stress over the area of the cross section. Hence, 
 

 ( , ) ( , , )
A

N x t x z t dAσ= ∫  (9.89) 

 
Substituting Eq. (9.86) and (9.88) into Eq. (9.89) gives 
 

  ( , ) ( ) ( , , ) ( ) ( , ) ( ) ( , )xx
A A

N x t E x x z t dA E x x t dA E x x t z dAε ε κ= = −∫ ∫ A∫
 
Recall that z originates at the x-axis, the area centroid. Therefore, by definition of the 
area centroid,  

 
( )

0
A x

z dA =∫  (9.90) 

 
The resultant membrane force is thus given by the constitutive relation 
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 ( , ) ( , ) uN x t EA x t EA
x

ε ∂
= =

∂
 (9.91) 

 
The resultant moment produced by the axial stress field about an axis that passes 
through the centroidal axis and is perpendicular to it is obtained by taking the mo-
ment of each individual differential force, σ dA, and summing all such moments. The 
resultant moment, referred to as the bending moment, acting on cross section x is then 
 

 ( , ) ( , , )
A

M x t x z t z dAσ= ∫  (9.92) 

 
Substituting Eqs. (9.86) and (9.88) into Eq. (9.92) gives the relation 
 

 2( , ) ( ) ( , ) ( ) ( , )
A A

M x t E x x t z dA E x x t z dAε κ= −∫ ∫  

 
Substituting Eq. (9.90) into the above expression gives the bending moment about the 
axis perpendicular to the neutral axis as 
 
 ( , ) ( , )M x t EI x tκ= −  (9.93) 
where 

 2

( )
( )

A x
I I x z dA= ≡ ∫  (9.94) 

 
The resultant shear force, Q(x,t), on cross section x is simply 
 

  (9.95) 
( )

( , ) ( , , )
A x

Q x t x z t dAτ= ∫
 
where τ (x,z,t) is the transverse shear stress acting on that cross section. With the 
kinematical assumptions and force measures introduced in this section, the descrip-
tion of the beam is given in terms of the displacements and strains of the centroidal 
surface and the resultant forces and moments at a cross section, all of which are func-
tions of one spatial variable and time. We now derive the equations of motion in 
terms of these variables.   

        

 
       Figure 9.11  Beam with distributed transverse force and body couples. 
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9.6.2 Kinetics 

Consider a beam that is loaded by both normal and shear stresses over its upper and 
lower surfaces. In keeping with the resultant internal forces and moments discussed 
in the previous section, the external forces may be expressed as distributed transverse 
loads and distributed (body) couples, the latter taken about axes that go through the 
neutral surface and are perpendicular to the xz-plane (i.e., that are parallel to the y-
axis). The distributed transverse forces, q(x,t), may be considered to be the sum of 
any body forces acting in the transverse direction and the difference (jump) in the 
normal stresses applied on the outer surfaces, while the body couples, b(x,t), may be 
considered as the moments about the y-axis of the shear stresses acting on the outer 
surfaces of the beam plus any intrinsic body couples (see Figure 9.11). To derive the 
equations of motion for the beam let us consider a generic differential element of 
length dx. The corresponding kinetic diagram is expressed in terms of the displace-
ment and force parameters defined in the previous section and is depicted in Figure 
9.12. We consider both translation in the transverse direction and rotation of the ele-
ment. Since the bending stiffness for beams is finite, as is the resistance to shear, the 
corresponding rotations and distortions are relatively small. Because of this, the pro-
jection of the membrane force in the transverse direction is generally much smaller 
than the resultant transverse shear and is neglected in elementary (linear) beam the-
ory. Recall that the reverse was true for strings and cables. The reader should be 
aware, however, that such terms must be retained in situations where the coupling of 
axial and transverse motions is important, such as for predicting dynamic, as well as 
static, buckling. For the present theories, the statement of Newton’s Second Law in 
the transverse direction may be written directly from the kinetic diagram as   
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which reduces to 
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   Figure 9.12  Kinetic diagram for beam element. 
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The pertinent statement of Eq. (1.162) about an axis through the center of the element 
follows from the kinetic diagram as well. Hence, assuming the right hand rule, 
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which, neglecting terms of O(dx)2, reduces to 
 

 
2

2( , ) ( ) ( , )MQ x t I x x t
x tρ

ϕ∂ ∂
= + −
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b  (9.97) 

where 
 ( ) ( ) ( )I x x Iρ xρ=  (9.98) 
 
is typically referred to as the rotatory inertia of the beam and corresponds to the mass 
moment of inertia of the element per unit length about an axis perpendicular to the 
neutral axis. Substitution of Eq. (9.97) into Eq. (9.96), and incorporating Eqs. (9.87) 
and (9.93), eliminates the internal forces and moments and results in the single equa-
tion 

 
2 2

2 2( , ) ( ) wq x t EI m x I
x x x

2

2x t tρ
ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂

− − = −
∂ ∂ ∂∂ ∂ ∂

b  (9.99) 

 
expressed in terms of the transverse displacement w and in-plane rotation ϕ. The par-
ticular form of this equation depends upon further kinematical assumptions. 
 

9.6.3 Euler-Bernoulli Beam Theory 

The simplest and most common beam theory is that attributed to Euler and Bernoulli. 
For this model the assumptions and developments of Sections 9.6.1 and 9.6.2 are 
incorporated, with the exception that the rotatory inertia is not taken into account. 
That is, the effects of the rotatory inertia are neglected compared with those of the 
linear inertia (the mass per unit length). This omission, in effect, treats the mass dis-
tribution as if it is concentrated along the neutral axis of the beam. The deformations 
associated with transverse shear are not included as well. These assumptions are rea-
sonable provided that the beam is thin and, for vibratory behavior, that the effective 
wave lengths of the individual modes are sufficiently large compared with the thick-
ness.  
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Kinematics and the Equation of Motion 
For small and smooth deflections, the angle of rotation (the tangent angle) of the neu-
tral axis may be approximated by the tangent itself (the small angle approximation). 
We thus have that 

 ( , ) wx t
x

ϕ ∂
≅

∂
 (9.100) 

from which it follows that 
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and 
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w
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ϕ
2

w∂ ∂ ∂ ∂ ∂
≅ =
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Substituting Eqs. (9.100)–(9.103) into Eq. (9.99), and setting Iρ = 0 gives the equation 
of motion for Euler-Bernoulli Beams,  
 

 
2 2 2

2 2 2( ) ( ) ( , )b
wm x k x w q x t

xt x x
∂ ∂ ∂ ∂

+ = −
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b  (9.104) 

where 
 ( ) ( ) ( )bk x E x I x=  (9.105) 
 
is the bending stiffness of the beam. It may be seen that the governing equation is 
expressed solely in terms of the transverse displacement, the external distributed load 
and the properties of the beam. Equation (9.104) is known as the Euler-Bernoulli 
Beam Equation. 

Boundary and Initial Conditions 
The equation of motion is seen to be a fourth order partial differential equation in 
space and second order in time. A solution will therefore require the specification of 
four boundary conditions and two initial conditions.  
 For the boundary conditions, we must specify one term from the work of trans-
verse translational motion and one term from the work of rotational motion at two 
points on the beam. That is, we must specify one term from each of the work func-
tionals WQ = Qw and WM = Mϕ. The boundary conditions at the left end of a beam of 
length L are thus 
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∂∂
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where Q0(t) or h0(t), and M0(t) or f0(t) are prescribed functions. Similarly, the bound-
ary conditions at the right end of the beam are 
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where QL(t) or hL(t), and ML(t) or fL(t) are prescribed functions. 
 In addition to the boundary conditions, the initial transverse displacement and 
transverse velocity of each point in the beam must be specified. The initial conditions 
therefore take the form 
 
 0( ,0) ( )w x w x=  (9.110) 
and 

 0
0

( )
t

w v x
t =

∂
=

∂
 (9.111) 

 
where w0(x) and v0(x) are prescribed functions that describe the initial state of the 
beam. Note that when the initial transverse displacement, w0(x), is specified for each 
point on the beam then the initial rotation, w0'(x), of each point is specified as well. 
Similarly, when the initial transverse velocity, v0(x), is specified for each point on the 
beam than the initial angular velocity, v0'(x), of each point is also specified. 
 

Mass and Stiffness Operators 
The equation of transverse motion for Euler-Bernoulli beams can be written in com-
pact form by introducing the stiffness and mass operators, k and m respectively, as 
follows 

 
2 2

2 ( )bk x 2x x
∂ ∂

=
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k  (9.112) 

 
 ( )m x=m  (9.113) 
 
Incorporating the above operators into Eq. (9.104) renders the equation of transverse 
motion for elementary beams to the familiar form 
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2 ( , )w w q x t
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∂∂
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Example 9.7 
State the boundary conditions for a cantilever beam that is fixed at its left end, 
as shown, if the beam is modeled using Euler-Bernoulli Theory.  

  
Solution 
The left end of the beam is fixed with regard to both translation and rotation. 
Therefore, the corresponding boundary conditions at the support are 
 

 
0

(0, ) 0    and    0
x

ww t
x =

∂
= =

∂
 (a-1,2) 

 
Since the right end of the beam is unsupported and no external load acts on that 
edge, the exposed cross section is stress free. It follows that the bending mo-
ment and resultant transverse shear force both vanish on this surface. The 
boundary conditions at the right end of the beam are therefore 
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Example 9.8 
The beam shown is pinned at its left end and is embedded in an elastic wall of 
rotational stiffness kϕ and translational stiffness kw. Deduce the boundary condi-
tions for the beam if it is modeled using Euler-Bernoulli Beam Theory.  
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Solution 
The support at the left edge is such that the beam is free to rotate about an axis 
through that point, but it cannot translate in the transverse direction. The corre-
sponding boundary conditions are thus 
 

 
2

2
0

0    and    (0, ) 0
x

wEI w t
x

=

∂
− =

∂
=  (a-1,2) 

 
The elastic wall exerts a restoring moment and restoring force on the right end 
of the beam. The latter is in the form of a transverse shear force. Therefore, the 
corresponding boundary conditions are 
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and 
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Example 9.9 
State the boundary conditions for the 
problem of flexural motion of a uniform 
beam supporting a small block of mass 
m at its edge if the support undergoes the 
prescribed lateral motion indicated. The 
dimensions of the block and the weight of 
the beam may be neglected.  
 
                                              Figure E9.9-1 
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Solution 
ary conditions at the support follow directly as 

 

The bound
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ince the dimensions of the block may be neglected, the moment of inertia of 

 

S
the block is neglected as well. The edge of the beam is thus free to rotate. 
Hence, 
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he last boundary condition follows directly from the kinetic diagram of the 

 

T
supported mass (Figure E9.9-2) and gives 
 

3 2

3 2( , )
x L

w wQ L t EI
x t x L= =

∂ ∂
− = =

∂ ∂
m  (b-2) 

 

   

   
 

 
 
 

Figure E9.9-2  Kinetic diagram of supported mass. 

 

 

9.6.4  Rayleigh Beam Theory 

ributed to J. W. S. Rayleigh. This model incorpo-

Equation of Motion 
To derive the equation of motion for Rayleigh Beams, we parallel the development of 
the previous section but now include the effects of rotatory inertia. Substituting Eqs. 

 

We next study the beam theory att
rates the rotatory inertia into the model already established for the Euler-Bernoulli 
Beam Theory.  
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(9.100)–(9.103) into Eq. (9.99) and retaining the rotatory inertia gives the equation of 
motion for Rayleigh Beams as 
 

 
2 2 2 2

2( ) ( ) ( ) ( , )b
w wm x I x k x w q x t2 2 2x x xt x x∂ ∂∂ ∂ ∂

 

oundary and Initial Conditions 
he equation of transverse motion for Rayleigh Beams is a fourth order partial differ-

ential equation in space and second order in time. Therefore, as for Euler-Bernoulli 
 from the work of transverse translational motion 

t ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂

− + = −
∂∂

b  (9.115) 

 
 

B
T

Beams, we must specify one term
and one term from the work of rotational motion at two points on the beam. That is, 
we must specify one term of each of the work functionals WQ = Qw and WM = Mϕ. 
For Rayleigh Beams, however, we must be careful to account for the rotatory inertia 
in these conditions. Specifically, the rotatory inertia enters the condition for trans-
verse shear through Eq. (9.97). The remaining conditions are the same as for Euler-
Bernoulli Beams. Hence, the boundary conditions for a Rayleigh Beam of length L 
are thus, at the left end of the beam, 
 

         
2 3

2 2(0, ) ( )    or    (0, ) ( )w wQ t EI I t w t t
x x tρ

⎡ ⎤
0 0

0xx
=

∂ ∂
∂

∂
= − − + = =⎢ ⎥∂ ∂ ∂⎣ ⎦

Q hb  (9.116) 

 
2

0 02
00

(0, ) ( )    or    ( )
xx

w wM t EI t t
xx ==

∂ ∂
= − = =

∂∂
M f  (9.11

nd, at the right end of the beam, 

7) 

 
a
 

2 3

        2( , )Q L t EI I
x x ρ= − −⎢ ∂ ∂ 2 ( )    or    ( , ) ( )L L

x L

w w t w L t t
t x

=

⎡ ⎤∂ ∂ ∂
+ = =⎥∂ ∂⎣ ⎦

Q hb  (9.118) 

 
2

2( , ) ( )    or    ( )L L
x Lx L

w wM L t EI t t
xx ==

∂ ∂
= − = =

∂∂
M f  

here Q0(t) or h0(t), M0(t) or f0(t), QL(t) or hL(t), and ML(t) or fL(t
ions. 
The initial conditions are of the form 

(9.119) 

 
w ) are prescribed 
funct
 
 
 0( ,0) ( )w x w x=  (9.120) 
and 
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0
0

( )
t

w v x
t =

∂
=

∂
  (9.12

w0(x) and v0(x) are prescribed functions that de
eam. As for Euler-Bernoulli Beams, when these two functions are specified, the 

ass and Stiffness Operators 
The equations of transverse motion for Rayleigh beams can be written in compact 

ss and mass operators, k and m respectively, as fol-

1) 

 
where scribe the initial state of the 
b
initial rotations and rotation rates are specified as well. 
 

M

form by introducing the stiffne
lows 

 
2 2

( )k x2 2bx x
∂ ∂

=
∂ ∂

k  (9.122) 

 

( ) ( )m x I x
x xρ

∂ ∂
= −

∂ ∂
m  (9.123) 

corporating the above operators in Eq. (9.115) rend
otion for elementary beams to the familiar form 

 

 
In ers the equation of transverse 
m
 

 
2

( , )w w q x t2 xt
∂ ∂

−+ =
∂∂

b  (9.124) 

Example 9.10 

m k

 
 

Deduce the boundary conditions for the beam of Example 9.9 if it has local 
mass moment of inertia Iρ and is modeled using Rayleigh Beam Theory. 
 
Solution 
The boundary conditions for displacement and moment are the same as for 

noulli Theory. The first three conditions, Eqs. (a), (b) and (c), estab-

 

Euler-Ber
lished in Example 9.9 hold for the present model as well. The condition for 
transverse shear does, however, differ. The last boundary condition of Example 
9.9, Eq. (d), is replaced by the condition 
 

3 3 2

( , ) 3 2 2
x L x L

w
x t x tρ
w wQ L t EI I

= =

⎤ ∂
=

∂ ∂ ∂ ∂⎣ ⎦
m  (d)  

⎡ ∂ ∂
− = −⎢ ⎥ �
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 he beam theories presented herein are predicated on the assumption that the 
ickness deformations are negligible. The transverse deflections therefore arise from 
e ro

.6.5 Timoshenko Beam Theory 

4 are very successful at pre-
es whose thicknesses are very small compared 

mation. This 
ay b

orrection for Transverse Shear 
σxz = τ (x,z,t), acting on a cross section, 

x,z,t), where 

T
th
th tations of the cross sections. In the next section we consider modifications of 
the current beam theory to include a measure of deformation due to transverse shear. 
 
 

9

The beam theories discussed in Sections 9.6.3 and 9.6.
dicting the flexural behavior of structur
with their lengths. From a vibrations perspective, such beam theories yield satisfac-
tory results for situations where the wave lengths of the deformation are relatively 
large compared with the thickness of the beam. For shorter beams, or for situations 
where we are interested in vibrations whose wavelengths are not so restricted, a 
modified beam theory is needed. Alternatively, or if the behavior of interest was such 
that the thickness vibrations and associated behavior is pertinent, we would investi-
gate the problem from the much more complex two or three-dimensional elastody-
namics point of view. We here present the former approach, and include the effects of 
transverse shear as a correction to classical beam theory consistent with the desired 
mathematically one-dimensional representations discussed to this point. 
 Both the Euler-Bernoulli and the Rayleigh beam theories discussed in Sections 
9.6.3 and 9.6.4, respectively, each neglect the contribution of shear defor
m e seen by substituting Eqs.(9.82) and (9.83) into Eq. (9.39), which yields van-
ishing angle of distortion, identically. This omission is satisfactory provided the ratio 
of the flexural wave length to the thickness of the vibrating structure is sufficiently 
large. (For static problems the critical ratio is less acute and corresponds to the ratio 
of the overall length of the beam to its thickness.) Typically, the shear stresses and 
transverse normal stresses in the structures of interest are much smaller than the axial 
normal stress, which justifies the basic assumptions of the elementary beam theories. 
However, a static analysis of a cantilever beam of rectangular cross section shows 
that the maximum value of the average shear stress acting on a cross section becomes 
the same order of magnitude as the corresponding maximum normal stress when the 
length to thickness ratio is less than about three.  On this basis, we anticipate that 
shear deformation will become important in vibration problems for which the wave 
length is sufficiently small as well. The following theory adds a correction for shear 
deformation to the basic beam theories discussed to this point. 
 

C
Let us consider the transverse shear stress, 
and the associated shear strain, εxz(
 
    ( , , ) ( ,xz xz , ) 2x z t x z tε γ=   (9.125) 
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       Figure 9.13  Transver ions of beam element. se shear stress distribution on cross sect
 
 
nd ( , , )xz x z tγ  represents the corresponding angle change (shear distortion) as dia s-
ussed in Section 9.2.2. Hooke’s Law for shear then gives the relation c

 
 ( , , ) 2 ( ) ( , , ) ( ) ( , , )xz xzx z t G x x z t G x x z tτ ε γ= =  (9.126) 
 
w rises the beam. The here G(x) is the shear modulus of the elastic material that comp

ear stress acting on a cross section of a beam will generally vary through the thick-sh
ness, as suggested by the partial kinetic diagram for the beam element shown in Fig-
ure 9.13. It follows that the associated shear distortion will be nonuniform over a 
cross section as well. Nevertheless, since a beam theory is a mathematically one-
dimensional representation of a three-dimensional body, we shall represent the effects 
of shear distortion by a single “shear angle” associated with transverse shear for a 
given cross section. We thus define the shear angle for a beam as 
 

 
( )

1( , ) ( , , )xz( ) A x
x t x z t dAγ γ= ∫  

A xk
(9.127) 

here k is a “shape factor” that depends on the geometry o
metimes referred to as the Timoshenko Shear Coefficient. (Specific values of the 

  
w f the cross section and is 
so
shape factor may be determined, for example, by matching results predicted by the 
above beam theory with results predicted by an “exact” three-dimensional elastody-
namics analysis, deduced from a static elasticity solution, or measured from experi-
ments. The value k = 2/3 is often associated with rectangular cross sections, while the 
value k = 3/4 is similarly associated with circular cross sections.) The shear angle 
defined above is seen to correspond to a weighted average of the shear strain over the 
cross section. 
 To incorporate the above shear description into a mathematically one-
dimensional theory we express the shear stress τ  distribution acting on the cross sec-
tion in terms of the corresponding resultant transverse shear force Q and the shape 
factor k . Substitution of Eqs. (9.126) and (9.127) into Eq. (9.95) results in the consti-
tutive relation 
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Figure 9.14  Rotation of element due to transverse shear and bending.  
 
 

( , ) ( ) ( , )sQ x t k x x tγ=  (9.128) 
here 

 
w

( ) ( ) ( )sk x A x G x= k  

 the shear stiffness of the beam. With the introduct
ribed above, the total angle of rotation, ψ, of the centroidal axis is now comprised 

(9.129)  
 
is ion of the shear deformation de-
sc
of that due to bending, ϕ, and that due to shear, γ (Figure 9.14). Hence, 
 

 ( , ) ( , ) ( , ) wx t x t x t
x

ϕ γ ψ ∂
+ = ≅

∂
 (9.130) 

 
ubstitution of Eq. (9.130) into Eq. (9.128) gives the usefu

 
S l identity 

 ( , )( , ) ( , )w Q x tx t x t
( )sx k x∂

(9.131) 

bstitution of Eqs. (9.130) and (9.131) into Eq. (9.93) giv

γ ϕ∂
= − =  

 
Su es the constitutive relation 
 

 
2

( , ) ( , ) 2
s

w w QM x t EI x t EI
x x x kx

γ
⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤= − − = − −⎢ ⎥⎢ ⎥∂ ∂ ∂∂⎣ ⎦ ⎣ ⎦

The constitutive relation for the membrane force for the present case remains the 
me as for the beam theories discussed previously, and is given by Eq. (9.91). With 

overning Equations, Boundary Conditions and Initial Conditions 
Substitution of Eqs. (9.128), (9.131) and (9.132) into Eqs. (9.96) and (9.97) gives the 
equations of motion 

 (9.132) 

 

sa
the kinematical and constitutive relations established, we may now derive the equa-
tions of motion. 
 

G
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2

( ) ( ) ( , ) ( , )w wm x k x x t q x tϕ
⎡ ⎤

2 sx xt
∂ ∂ ∂⎧ ⎫− −

∂ ∂∂ ⎩ ⎭⎣ ⎦
=⎨ ⎬⎢ ⎥  (9.133) 

 
2

2 ( ) ( , ) ( , )s
wI k x x t EI x
x x xtρ

ϕ ϕϕ∂ ∂ ∂ ∂⎧ ⎫− − − =⎨ ⎬∂ ∂ ∂∂ ⎩ ⎭
b

he above equations can be written in operator/matrix form as follow

t  (9.134) 

 
T s 
 

2

2t
∂

+ =
∂

m ku F  (9.13u 5) 

here 

 

w
0

0
m

Iρ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
m  (9.136)  

 

s s

s s

k k
x x x

k k EI
x x x

∂ ∂ ∂⎡ ⎤−⎢ ⎥
 ∂ ∂ ∂= ⎢ ⎥

∂ ∂ ∂⎢ ⎥− −⎢ ⎥∂ ∂ ∂⎣ ⎦

k  (9.137) 

 

 
( , )
( , )

w x t
x tϕ

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  (9.138) 

 
( , )
( , )

q x t
x t

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
F

b
 (9.139)  

 
B r correction and rotatory inertia are 
re  descriptions include the shear cor-

eams whose descriptions include both the shea
ferred to as Timoshenko Beams. Beams whose
ction but neglect the rotatory inertia are generally referred to as shear beams.  re

 By incorporating the shear angle into the mathematical model, we have added 
an additional degree of freedom at each cross section. Consequently, the governing 
equations, Eqs. (9.133) and (9.134), are seen to be coupled second order partial dif-

renfe tial equations of two dependent variables, the transverse displacement w and the 
bending rotation (of the cross section) ϕ. The associated boundary conditions follow 
from the work of rotation and the work of transverse translation as discussed for the 
elementary beam theories. For the present beam theory, the boundary conditions take 
the general forms 
 

 0 0
0

(0, ) ( )    or    (0, ) ( )
x

M t EI t t tϕ ϕ∂
= − = =

x =∂
M f  (9.140) 
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0
0

(0, ) ( )    or    (0, ) ( )s
x

wQ t k t w t t
x

ϕ
=

∂⎡ ⎤= − = =⎢ ⎥∂⎣ ⎦
Q 0h

 

 (9.141) 

( , ) ( )    or    ( , ) ( )L
x L

LM L t EI t L t t
x
ϕ ϕ

=

∂
= − = =

∂
M f  (9.142) 

 

( , ) ( )    or    ( , ) ( )s L
x L

wQ L t k t w L t t
x

ϕ
=

∂⎡ ⎤= − = =⎢ ⎥∂⎣ ⎦
Q Lh

 
M0(t) or f0(t), Q0(t) or h0(t), ML(t) or fL(t), and QL(t) or hL(t) are 

nctions.  
Since the governing equations are both second order in time, and since we now 

c

 (9.143) 

where prescribed 
fu
 
have two dependent variables, we must independently spe ify two initial conditions 
for each variable. In particular, we must specify the initial transverse displacement 
and velocity for each particle on the centroidal surface and the initial rotation and rate 
of rotation of each cross section. The initial conditions thus take the general forms 
 

 0 0
0

( ,0) ( ) ,    ( )
t

ww x w x v x
t =

∂
= =

∂
 (9.144) 

 

0
0

( ,0) ( ) ,    ( )
t

0x x
t
ϕϕ ϕ χ

=

∂
=

∂
 x=

where 

 (9.145) 

 
0 0 0 0( ),  ( ),  ( ) and ( )w x v x x xϕ χ are prescribed functions. 

xample 9.11 

 
 

E
Deduce the boundary conditions for the beam of Example 9.8 if it has local 
mass moment of inertia Iρ , shape factor k , and is modeled using Timoshenko 
Beam Theory. 
 
Solution 
To determine the appropriate  boundary conditions, we parallel the discussion 
of the beam of Example 9.8, but now apply Eqs. (9.140)–(9.143). Doing this 

 conditions at the left end of the beam as 

 

gives the boundary
 

0

0    and    (0,t)=0
x

EI w
x
ϕ

=

∂
− =

∂
 (a-1,2) 

 
Similarly, the boundary conditions at the elastic wall are then 
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 ( , )
x L

EI k L t
x ϕ
ϕ ϕ

=

∂
− =

∂
 (b-1) 

 

and 

( , )w
x L

wAG k
x

ϕ
=

∂⎡ ⎤− = −⎢ ⎥∂⎣ ⎦
k w L t  (b-2) 

 
 
 

niform Beams 
The coupled equations of motion, Eqs. (9.133) and (9.134), or the equivalent matrix 
form, Eq. (9.135), correspond to the fundamental description for Timoshenko Beams. 
It is readily solved for uniform beams, and it is this form that will be employed in the 

. The governing equations can, however, be simplified to a sin-

U

remainder of this text
gle equation. We therefore present the following development for completeness.  
 For beams whose material properties are constant, the equations of motion, 
Eqs. (9.133) and (9.134), can be consolidated and simplified to some degree. Toward 
this end, for b = 0, let us first substitute Eq. (9.134) into Eq. (9.133) to get  
 

2 2 2

 2 2 2( ) ( , )wm x I EI q x t
x xt t xρ

ϕ ϕ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞− + =⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂ ⎝ ⎠⎝ ⎠

hich may replace either equation in the general formulation. Next, for uniform 
s (beams whose material properties are independent of x), Eq. (9.1

written in the form 

 (9.146) 

 
w
beam 46) may be 
re
 

 
2 2 2

2 2 2 ( , )wm EI I q x t
xt x tρ
ϕ⎛ ⎞∂ ∂

olving Eq. (9.133) fo

∂ ∂
+ − =⎜ ⎟ ∂∂ ∂ ∂⎝ ⎠

 (9.147) 

 
r xϕ∂ ∂S  gives  

 

 
2

2 2

( , )

s s

q x t w m w
x k k

2

x t
ϕ∂ ∂ ∂

= + −
∂ ∂ ∂

 (9.148) 

ubstituting Eq. (9.148) into Eq. (9.147) gives a single equation of motion in terms of 
e deflection. Hence, 

 
S
the transvers
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2 2 2 2 2 2 2

2 2 2 2 2 2 2

2

2 2                                                       ( , )

s s

s s

I mw w mEI wm I EI
k kt t t x t x x

I q EI qq x t
k kt x

ρ
ρ

ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + +⎜ ⎟

∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
2

w

∂ ∂
= + −

∂ ∂

  (9.149) 

 
quation (9.149) is often referred to as the Timoshenko Beam Equation. Once this 

eam Equation, Eq. (9.149), is written in operator form as  

E
equation is solved and w(x,t) is determined, the resulting function can be substituted 
into Eq. (9.148) and integrated to give the corresponding rotations due to bending. 
The bending moments and shear forces can then be calculated using previously de-
fined formulae. 
 The Timoshenko B
 

 
2

2 ( , )w w F x t
t

∂
+ =

∂
m k  (9.150) 

 

where 
2 2

2
s s

mImEIm I
k k 2x t

ρ
ρ

⎛ ⎞ ∂ ∂
= − + +⎜ ⎟

∂ ∂⎝ ⎠
m  (9.151) 

 

 
4

4EI
x

∂
=

∂
k  (9.152) 

and 
2 2

2 2( , ) ( , )
s s

I q EI qF x t q x t
k kt

ρ

x
∂ ∂

= + +
∂ ∂

  (9.153) 

 

s discussed earlier, the coupled equations presented in matrix form correspond to 

9.7 GEOMETRICALLY NONLINEAR BEAM THEORY 

In many situations, the coupling between the transverse motion and axial motion of a 

 
A
the fundamental description for Timoshenko Beams and is readily solved for uniform 
systems. The reduced form for uniform systems discussed above allows an alternate 
approach and is presented here for completeness.  
 
 

beam is important. This may occur in problems of static or dynamic buckling, or sim-
ply when the rotations of the beam’s axis are sufficiently large as described in Section 
9.2. Thin straight structures that carry compressive axial loads as well as transverse 
loads are referred to as beam-columns. For problems of this nature, the linear beam 
theories discussed in Sections 9.6.3–9.6.5 are inadequate. In fact, linear beam theory 
cannot predict buckling behavior at all. We must therefore construct, or extend the 
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beam theories discussed in prior sections to include the effects of geometric nonlin-
earities. For simplicity, compactness and utility, we shall neglect the effects of shear 
deformation and rotatory inertia. Those effects may be added on directly if desired. 
 To derive the geometrically nonlinear beam theory we must incorporate the 

 

strain-displacement relation for moderate rotations, Eq. (9.36) into our development. 
We next parallel the development presented in Section 9.6.1, proceeding exactly as 
we did for linear beam theory. Everything then follows identically as in Section 9.6.1, 
with the exception that the constitutive relation for the membrane force given by Eq. 
(9.91) is now replaced by the constitutive relation 
 

21( , ) ( , )
2

u wN x t EA x t EA
x x

ε
⎡ ⎤∂ ∂⎛ ⎞= = +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

 (9.154) 

 
e next derive the equations of motion for the beam based on the kinetic diagram for W

a generic beam element shown in Figure 9.11. To derive the equation of transverse 
motion, we parallel the corresponding development in Sections 9.6.2 and 9.6.3. How-
ever, for the present case, we include the projections of the membrane force in the 
transverse direction as was done for strings and cables in Section 9.5. This is neces-
sarily consistent with Eq. (9.154). Adding the contribution of the membrane force to 
the equation of transverse of motion, Eq. (9.96), and to the equation of rotational mo-
tion, Eq. (9.97), respectively gives the relations 
 

2

2( , ) ( , ) ( )w Q wq x t p x t m x
x x t

∂ ∂ ∂
+ + =

∂ ∂ ∂
  (9.155) 

 

 ( , ) M wQ x t N
x x

∂ ∂
= +

∂ ∂
 (9.156) 

ubstituting Eqs. (9.102) and (9.156) into Eq. (9.155) and paralleling the rest of the 

 

 
S
development of Section 9.6.2 gives the equation of transverse motion for the structure 
as 

2 2 2 2

2 2 2 2( ) ( ) ( , )

                                        ( , ) ( , )

b
w w wm x k x N x t

t x x x
N wp x t q x t
x x

∂ ∂ ∂ ∂
+ −

∂ ∂ ∂ ∂
∂ ∂⎡ ⎤− + =⎢ ⎥∂ ∂⎣ ⎦

 (9.157) 

 
here N(x,t) is given by Eq. (9.154). Application of Newton’s Second Law in the w

axial direction gives the equation of longitudinal motion 
 

 
2

2( ) ( , )u Nm x p x t
xt

∂ ∂
− =

∂∂
 (9.158) 
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which is of the same form as for strings and cables (Section 9.5). Paralleling the ar-
guments made for strings and cables, in many situations, the longitudinal component 
of the acceleration may be neglected compared with the transverse component. In this 
case, Eq. (9.158) simplifies to the form   
 

 ( , )N p x t
x

∂
≈ −

∂
 (9.159) 

ubstitution of Eq. (9.159) into Eq. (9.157) renders the equation of transverse motion 
 
S
to the form 
 

 
2 2 2 2

2 2 2 2( ) ( ) ( , ) ( , )b
w wm x k x w N x t q x t

t x x x
∂ ∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂

 (9.160) 

he boundary conditions follow as 

 

 
T
 

2

0 02
00

(0, ) ( )  or   (0, ) ( )
xx

w wQ t EI N t w t t
x xx ==

∂ ∂ ∂
= − + = =

∂ ∂∂
Q h  (9.161)  

 

 
2

0 02
00

(0, ) ( )    or    ( )
xx

w wM t EI t t
xx ==

∂ ∂
= − = =

∂∂
M f  (9.162)  

 

 
2

2( , ) ( )  or   ( , ) ( )L L
x Lx L

w wQ L t EI N t w L t t
x xx ==

∂ ∂ ∂
= − + = =

∂ ∂∂
Q h  (9.163)  

 

 
2

2( , ) ( )    or    ( )L L
x Lx L

w wM L t EI t t
xx ==

∂ ∂
= − = =

∂∂
M f  (9.164)  

 
here Q0(t) or h0(t), M0(t) or f0(t), QL(t) or hL(t), and ML(t) or fL(t) are prescribed w

functions. As for Euler-Bernoulli Beams, the initial conditions are of the form 
 
 0( ,0) ( )w x w x=  (9.165) 
nd a

0
0

( )
t

w v x
t =

∂
=

∂
  (9.166) 

 
If no distributed axial load (axial body force) acts on the structure (p = 0) then, 

om 
 
fr Eq. (9.159), 
 

0 constantN N= =  (9.167)  



9│ Dynamics of One-Dimensional Continua 561 

 
or this case, Eq. (9.160) may be written in the form of Eq. (9.124) with m = m(x) F

and 

 
2 2 2

02 2 2EI N
x x x

∂ ∂ ∂
= −

∂ ∂ ∂
k  (9.168) 

hus, if N0 is prescribed, the motion of the geometrically nonlinear beam is seen to be 

xample 9.12 

 
T
governed by a linear differential equation of standard operator form. 
 

 

E
Determine the equation of motion and associated boundary conditions for the 
uniform beam-column subjected to a compressive edge load, P(t), as shown.  

 
Solution 

oblem at hand, q = p = 0. The membrane force may be determined by 

 

 
For the pr
consideration of the kinetic diagram for the beam element at the loaded edge. If 
we neglect the axial component of the acceleration, the membrane force in the 
beam is simply 
 

( )N P t= −  (a) 
 

serting Eq. (a) into Eq. (9.160) gives the explicit form of the equation of 

 

In
transverse motion as 
 

4 2 2

4 2 2( ) 0w w wEI P t m
x x t

∂ ∂ ∂
+ + =

∂ ∂ ∂
 � (b) 

 
 is seen that, in this problem, the forcing function enters the equation as a pre-

 

It
scribed time dependent coefficient of the second term of the governing differ-
ential equation. The boundary conditions follow directly from Eqs. (9.161)–
(9.164) as 
 

2

2
0

(0, ) 0 ,    0
x

ww t EI
x

=

∂
= − =

∂
 � (c-1,2) 
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2

2( , ) 0 ,    0
x L

ww L t EI
x

=

∂
= − =

∂
 (d-1,2) �

 
 
 

9.8 TRANSLATING 1-D CONTINUA 

In many situations, a structure or device is in overall motion and that motion, as well 
as other sources, induces vibrations of the system. Such situations include vehicular 
structures, support excited structures and parts of mechanisms, to name but a few. 
When the base motion of a structure is in the transverse direction alone, the base mo-
tion may be introduced as a boundary condition as discussed earlier. However, when 
the support motion includes motion in the axial direction, the reference frame for 
measuring deformation in the conventional sense is accelerating, or is at least translat-
ing with constant velocity. This is so since it is natural to choose a coordinate system 
that travels with the moving base so that the deformation measures defined in Section 
9.2 may be employed directly. When this is done, the motion of the reference frame 
must be accounted for when evaluating time rates of change. This alters the form of 
the kinematical measures that describe the motion of a material particle and, ulti-
mately, the equations of motion. In this section we examine the motion of a geometri-
cally nonlinear beam-column that is translating in a given plane. The case of a mov-
ing string or cable is obtained as a special case by letting the bending stiffness vanish, 
and so is treated in this context. We begin by establishing a description of velocity 
and acceleration with respect to a translating reference frame, for material particles 
that comprise a translating beam-column. 
 

9.8.1 Kinematics of a Material Particle 

Consider the translating elastic beam-column of initial length L, shown in Figure 
9.15. Let a point on the structure, say at its base, be moving with the prescribed mo-
tion in the xz-plane described by χ(t) = (χx ,χ z), where χx(t) and χz(t) respectively cor-
respond to the longitudinal and transverse components of the displacement, as indi-
cated. Let each particle along the axis of the structure be labeled by its coordinates in 
the rest configuration, X = (X ,0) . To describe the motion of the individual particles 
of the structure, let us follow a generic material particle X as the structure translates 
and deforms. Let the particle X move to its present position ξ = (ξx ,ξ z) at time t. 
Hence, 
  
 ( ,0) ( , )x zX ξ ξ= → =X ξ  
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           Figure 9.15  Deformation of translating beam-column. 
 
 
To measure the deformation, let us introduce the (fictitious) intermediate configura-
tion corresponding to the rigid body translation of the entire undeformed structure. 
[Since the structure is elastic, its deformation is independent of the deformation his-
tory and thus independent of the path traversed by a material particle as it moves from 
the point (X ,0)  to the point (ξ x ,ξ z ) . Deformations can then be measured relative to 
this convenient configuration.] Let the point x = (x,z) correspond to the location of 
the image of particle X in the intermediate configuration at time t. The coordinates x 
thus correspond to the projection of ξ onto the rigidly displaced image of the rod at 
time t. Hence, 
 
 = +x X χ  (9.169) 
or, in component form, 
 

 
( )

( )
x

z

x X t
z t

χ
χ

= +
=

 (9.170) 

 
The relative deflection, the displacement of particle X at time t measured relative to 
the intermediate configuration, is then 
 
 ( , )u w= = −u ξ x  (9.171) 
 
The velocity of particle X is then 
 

 
t t t

∂ ∂ ∂
≡ = +

∂ ∂ ∂X X

ξ x uv
X

 (9.172) 

 
Now, from Eq. (9.169), 
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 ( )t
t

∂
=

∂ X

x χ�  (9.173) 

In component form, 
 

 ( ) ,    ( )x
x zt
t t

χ∂ ∂
= =

∂ ∂
� z tχ�  (9.174) 

 
Further, applying the chain rule to the second term on the right-hand side of Eq. 
(9.172) and incorporating Eq. (9.173), we have that 
 

 xt t
χ

x
∂ ∂ ∂

= +
∂ ∂X x

u u �
∂
u  (9.175) 

 
In Eq. (9.175), t∂ ∂u  corresponds to the time rate of change of u for any material 
particle as seen by an observer fixed at x, while 
 

 xt x
χ∂ ∂

+
∂ ∂
u u�  

 
corresponds to the velocity of a material particle as seen by an observer translating 
with the support. The convective term, x xχ ∂ ∂u�  accounts for the fact that the particle 
at point x is changing, and we are following the particular particle X. 
 Substituting Eqs. (9.173) and (9.175) into Eq. (9.172) gives the velocity in 
terms of the intermediate coordinates as 
 

 ( , ) ( ) xx t t
t

χ
x

∂ ∂
= + +

∂ ∂x

u uv χ ��  (9.176) 

In component form,  

 ( , )z z x
w wv x t
t

χ χ
x

∂ ∂
= + +

∂ ∂
� �  (9.177) 

 

 ( , )x x x x
u uv x t
t x

χ χ χ u
t

∂ ∂ ∂
= + + ≅ +

∂ ∂
� � �

∂

t

 (9.178) 

 
If the kinetic energy of relative axial motion is small compared with the kinetic en-
ergy of transverse motion, or if it is small compared with the bulk kinetic energy of 
axial motion, then we may make the approximation that 
 
 ( )x xv χ≈ �  (9.179) 
 
which is consistent with similar approximations discussed for strings and cables in 
Section 9.5 and for geometrically nonlinear beams in Section 9.7.  
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 To evaluate the acceleration, we proceed in an analogous fashion to the evalua-
tion of the velocity. Thus, taking the time derivative of the velocity of a material par-
ticle, holding the particle constant and employing the chain rule, we obtain the accel-
eration of particle X as 
   

 xt t
χ

x
∂ ∂

≡ = +
∂

∂ ∂ ∂X x

v va � v  (9.180) 

 
The transverse and axial components of the acceleration are then, respectively, 
 

 
2 2

2
2 2z z x x x
w w wa

x x tt x
χ χ χ χ

2

2

w∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂∂ ∂
�� �� � �  (9.181) 

 

   

2 2
2

2 2

2 2 2
2

2 2

1 2

    2

x x x x

x x x

u u ua
x x tt

u u u
x tt x

χ χ

χ χ χ

2u
x

χ∂ ∂ ∂⎛ ⎞= + + + +⎜ ⎟∂ ∂ ∂
∂

∂ ∂⎝ ⎠
∂ ∂ ∂

≅ + + +
∂ ∂∂ ∂

�� � �

�� � �
 (9.182) 

 
If the axial acceleration relative to the support is neglected, in keeping with approxi-
mations made in Sections 9.5 and 9.7, then the axial component of the acceleration 
simplifies to 
 x xa χ≈ ��  (9.183)  
 
Now that the expressions for velocity and acceleration of a material particle have 
been established, we may proceed to derive the equations of motion of the translating 
structure. 
 

9.8.2 Kinetics 

To derive the equations of motion, we consider the kinetic diagram of a generic ele-
ment at the current time t and parallel the development of Section 9.7 (Figure 9.12). 
Application of Newton’s Second Law in the coordinate directions gives the equations 
 

 

2 2 2

2 2 2( , ) ( ) ( , )

                                    ( , ) ( ) ( , )

b

z

w wq x t k x N x t
x x x

N wp x t m x a x t
x x

∂ ∂ ∂
− +

∂ ∂ ∂
∂ ∂⎡ ⎤+ + =⎢ ⎥∂ ∂⎣ ⎦

 (9.184) 

 

    ( , ) ( ) ( , )x
Np x t m x a x t
x

∂
+ =

∂
 (9.185) 
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where N is given by Eq. (9.154). Substituting Eqs. (9.181) and (9.182) into Eqs. 
(9.184) and (9.185) and rearranging terms gives the equations of transverse and longi-
tudinal motion, respectively, as 
 

 
( )

2 2 2
2

2 2 2

2 2

2      ( , ) 2 ( , ) ( )

x

x x

wEI w N m
x x x

N w w wp x t m m q x t m t
x x x tt

χ

χ χ

∂ ∂ ∂
− −

∂ ∂ ∂
⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤− + − + + = −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂∂⎣ ⎦ ⎣ ⎦

�

�� � ��zχ
 (9.186) 

and 

 
2 2 2

2
2 22x x x

N u u um p
x x tt x

χ χ χ
⎡ ⎤∂ ∂ ∂ ∂

− + + + + =⎢∂ ∂ ∂∂ ∂⎣ ⎦
�� � � ( , )x t⎥  (9.187) 

 
If the longitudinal motion relative to the support is neglected, then the longitudinal 
equation of motion simplifies to the form 

 

 ( , )x
N m p x
x

χ∂
− ≈ −

∂
�� t  (9.188) 

 
Incorporating Eq. (9.188) into Eq. (9.186) renders the equation of transverse motion 
to the form 

 

 
( )

2 2 2
2

2 2 2

2 2

2                     2 ( , ) ( )

x

x z

w wEI N m
x x x

w wm q x t
x tt

χ

χ χ

∂ ∂ ∂
− −

∂ ∂ ∂
⎛ ⎞∂ ∂

+ + = −⎜ ⎟∂ ∂∂⎝ ⎠

�

� �m t�
 (9.189) 

 
If we consider an observer moving with a beam element, then the above equation 
may be thought of as representing an equivalent beam with stationary supports sub-
jected to the effective distributed transverse load 
 
 ˆ( , ) ( , ) ( )xq x t q x t m tχ= − ��  
 
and effective membrane force 
 
  2ˆ ( , ) ( , ) ( )xN x t N x t m tχ= − �
 
The quantity  may be viewed as an analog of the “stagnation pressure” in fluid 
mechanics, with 

N̂
2

xmχ�  the analog of the “dynamic pressure” and N the analog of the 
“static pressure.” For an observer moving with the beam element, and thus rotating 
with it as the beam bends, the second term in the effective acceleration, 
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2

2 2x x
w

x t t
ϕχ χ∂ ∂

=
∂ ∂ ∂

� �  

 
may be interpreted as a Coriolis-like acceleration.    

Boundary Conditions 
The boundary conditions follow from the interpretation of the effective membrane 
force. (A derivation using the Calculus of Variations and Hamilton’s Principle yields 
the above equations of motion and the boundary conditions below, and thus gives 
credence to this interpretation.) The associated boundary conditions are thus 
 

 ( )
2

2
02 ( )  or   0

x

x

x x
x

w wEI N m Q t w
x xx χ

χ

χ
=

=

⎡ ⎤⎛ ⎞∂ ∂ ∂
− + − =⎢ ⎥⎜ ⎟∂ ∂∂⎢ ⎥⎝ ⎠⎣ ⎦

� =  (9.190) 

 

 
2

02 ( )    or    0
xx xx

wEI M t
xx χχ ==

∂ ∂
− =

∂∂
w

=  (9.191) 

 

 ( )
2

2
2 ( )  or   0

x

x

x L x L
x L

w wEI N m Q t w
x xx χ

χ

χ
= +

= +

⎡ ⎤⎛ ⎞∂ ∂ ∂
− + − =⎢ ⎥⎜ ⎟∂ ∂∂⎢ ⎥⎝ ⎠⎣ ⎦

� =  (9.192) 

 

 
2

2 ( )    or    0
xx

L
x Lx L

w wEI M t
xx χχ = += +

∂ ∂
− =

∂∂
=  (9.193) 

 
where Q0(t), M0(t), QL(t) and ML(t) are prescribed functions. For the special case of 
strings and cables,  in Eq. (9.189) and the boundary conditions for shear, 
Eqs. (9.190) and (9.192), while the boundary conditions defined by Eqs. (9.191) and 
(9.193) are omitted.  

0EI →

 

Example 9.13 
Consider a fan belt operating at steady state as shown in the figure. If the con-
stant speed of the belt is v0 and the constant tension in the belt is N0, establish 
the governing equation and boundary conditions for the upper straight segment 
of the belt between the rollers. 
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Solution 
For the present problem, EI = 0, 0zχ ≡  and 0 .x vχ =�  Substituting these values 
into Eq. (9.189) gives the equation of motion of the belt as 
 

 ( )
2 2 2

2
0 0 02 22 0w w wm v N mv

x tt x
⎛ ⎞∂ ∂ ∂

+ − − =⎜ ⎟∂ ∂∂ ∂⎝ ⎠
 (a) �

 
  The boundary conditions are simply 
 

 (0, ) 0    and    ( , ) 0w t w L t= =  (b-1,2) �
 
 
 

Example 9.14 
Determine the equation of motion and associated boundary conditions for a 
uniform cantilevered beam-column supporting a large point mass  if mL�m
the support undergoes the elliptical motion described parametrically by the 
equations 0 0( ) (1 cos )u t tα= ∆ − Ω  and 0 0 sin ,w t= ∆ Ω  where 0 1L∆ �  and 
α < 1. 
 
Solution 
For the problem at hand, p = q = 0. The  kinetic diagram and associated equa-
tion of motion for the point mass show that 
 

 [ ]
x

xL
N g

χ
χ

+
≅ + ��m  (a) 

 
Integrating the equation of longitudinal motion, Eq. (9.188), and incorporating 
Eq. (a) gives the membrane force as 
 

 

[ ]

[ ] [ ]( ) [
2

0

( , )

cos

x

x
x

L

xL

]x x x x

N x t N m g a dx

g m g L x g

g t

χ

χ
χ

χ χ χ χ

α

+

+
= + +

≅ + + + + − ≈ +

⎡ ⎤= + Ω ∆ Ω⎣ ⎦

∫
�� �� ��m m

m

 (b) 

or 
 0 0( , ) cosN x t N n t= + Ω

g

 (c) 
where 

 0N = m  (d) 
and 

 2
0 0n α= ∆ Ω  (e) 

 Next, 
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0 0
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              cos sin

              sin

xN m g t m t

L g L L t mL L t
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α α
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⎡ ⎤= + Ω ∆ Ω − ∆ Ω⎣ ⎦
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m

m

2 2 Ω  (f) 

 
 Substituting Eq. (f) into Eq. (9.189) gives the desired equation of motion, 
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                 2 sin cos
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9.9 CONCLUDING REMARKS 

In this chapter we defined measures to characterize the local behavior of continua and 
developed a number of representations that describe the motion of mathematically 
one-dimensional continua. These mathematical models pertain to long, thin bodies. 
That is, they represent structures where one characteristic length is much larger than 
the others. We studied both linear and geometrically nonlinear structures. These in-
cluded longitudinal motion of elastic rods, torsional motion of rods of circular cross 
section, the motion of strings and cables, and several representations for flexural mo-
tion of elastic structures possessing various degrees and types of complexity, includ-
ing the coupling of flexural and axial motions. The linear systems of Sections 9.3– 
9.6 were seen to each be described by equations of motion of the general form 
 

 
2

2 ( , )F x t
t

∂
+ =

∂
m k

u u  (9.194) 

 
where m and k are differential (or scalar) operators, u(x,t) is a displacement function 
that characterizes the motion of the body and F(x,t) corresponds to an appropriate 
distributed external force. For Timoshenko Beam Theory, a matrix equation of the 
same general form governs the motion of the structure. For this case, the mass and 
stiffness operators are  matrices of differential operators, the motion is charac-
terized by a  matrix of displacement functions and the applied force is character-
ized by a 

2 2×
2 1×

2 1×  matrix of force distributions. The mathematical representation of each 
linear system is summarized in Table 9.1. It was seen that the parameters and opera-
tors that describe the motion of continuous systems are abstractions of those that de-
scribe discrete systems, and that both classes of systems lie within the same general 
framework. 
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    Table 9.1  Parameters for Various 1-D Continua
         ( , )x tu                  k                  m ( , )F x t  
Longitudinal Motion of 
Rods: 
              ( , )u x t

    EA
x x

∂ ∂
= −

∂ ∂
k  

 
     ( ) ( ) ( )m x x A xρ=  

 
( , )p x t  

 
Torsional Motion of   
Rods: 
            ( , )x tθ  
 

     GJ
x x

∂ ∂
= −

∂ ∂
k  

 
     ( ) ( ) ( )J x x Jρ ρ= x  

 
( , )x tT  

Transverse Motion of 
Strings and Cables: 
          ( , )w x t
 

     
2

2
N

x
∂

= −
∂

k  
 
     ( ) ( ) ( )m x x A xρ=  

 
( , )q x t  

Euler-Bernoulli Beams: 
          ( , )w x t      

2 2

2 2
EI

x x
∂ ∂

=
∂ ∂

k  
 
     ( ) ( ) ( )m x x A xρ=  

( , )q x t
x− ∂ ∂b

 
Nonlinear E.-B. Beams 
with const. axial force: 
          ( , )w x t
 

2 2

02 2
EI N

2

2x x x
∂ ∂ ∂

= −
∂ ∂ ∂

k  
 
     ( ) ( ) ( )m x x A xρ=  

( , )q x t     
(p = 0) 

Rayleigh Beams: 
          ( , )w x t      

2 2

2 2
EI

x x
∂ ∂

=
∂ ∂

k   ( ) ( )m x I x
x xρ

∂ ∂
= −

∂ ∂
m  

 

( , )q x t
x− ∂ ∂b

 

Timoshenko Beams: 

    
( , )

( , )

w x t

x tϕ
=

⎧ ⎫
⎨ ⎬
⎩ ⎭

u  

   lj= ⎡ ⎤⎣ ⎦kk where  

   11 12 x= − ∂ ∂k k  
   12 21 sk x= − = ∂ ∂k k  

   22 sk EI
x x

∂ ∂
= −

∂ ∂
k  

 
 

   
( ) 0

0 (

m x

I xρ

=
)

⎡ ⎤
⎢ ⎥
⎣ ⎦
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q
=
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PROBLEMS 

9.1 Determine the scalar product of the functions ( )( ) cos 2f x n xπ= L  and 
( )( ) cos 2g x p xπ= L  on the domain 0 x L≤ ≤ , where n p≠ are positive in-

tegers greater than zero.  
 
9.2 Determine the scalar product of the functions ( )( ) sin 2f x n xπ= L and 

(( ) cos 2 )g x p xπ= L  on the domain 0 x L≤ ≤ , where n p≠ are positive in-
tegers greater than zero. 

 
9.3 State the equation of motion and deduce the boundary conditions for longitudi-

nal motion of the rod shown in Figure P9.3. 
 

                                  Fig. P9.3                                                  Fig. P9.4                          

.4 State the equation of motion and deduce the boundary conditions for longitudi-

                                                                                                    
ons for longitudi-

                                                   Fig. P9

.6 State the equation of motion and deduce the boundary conditions for longitudi-

 
.7 State the equation of motion and deduce the boundary conditions for torsional 

 

  
 
9

nal motion of the rod shown in Figure P9.4. 

9.5 State the equation of motion and deduce the boundary conditi
nal motion of the rod shown in Figure P9.5. 

.6                                    Fig. P9.5
 
9

nal motion of the rod shown in Figure P9.6. 

9
motion of the rod shown in Figure P9.7. 

                                                    Fig. P9.8                                    Fig. P9.7
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ate the equation of motion and deduce the boundary conditions for torsional 

 
.9 State the equation of motion and deduce the boundary conditions for torsional 

e equation of motion and boundary conditions for torsional motion of 

 
.11 State the governing equation and boundary conditions for transverse motion of 

 
.12 State the governing equation and boundary conditions for transverse motion of 

 
.13 State the equation of motion and deduce the boundary conditions for flexural 

 

.14 State the equation of motion and deduce the boundary conditions for flexural 

 
 

9.8 St
motion of the rod shown in Figure P9.8. 

9
motion of the rod shown in Figure P9.9. 

                                               Fig. P9.10                                 Fig. P9.9   
                      
9.10 State th

an elastic rod that is fixed at on end and is attached to a rigid disk of mass mo-
ment of inertia ID at its free end.  

9
the active segment of a guitar string of mass density ρ and cross-sectional area 
A that is under static tension N, when a musician presses on the string with his 
finger at a fret located a distance L from the bridge. The stiffness of the musi-
cian’s finger is k.  

9
a cable of mass density ρ and cross-sectional area A that is under static tension 
N and is adhered to elastic mounts of stiffness k at each end. 

9
motion of the simply supported beam shown when it is modeled mathemati-
cally using Euler-Bernoulli Beam Theory. 

                         Fig. P9.14                                   Fig. P9.13                       

motion of the cantilevered beam shown when it is modeled mathematically us-
ing Euler-Bernoulli Beam Theory. 

 
9
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9.15 State the equation of motion and deduce the boundary conditions for flexural 

motion of the beam supported by elastic hinges at each end, as shown, when it 

 

  
 

tion a undary conditions for flexural 
motion of the elastically clamped beam shown when it is modeled mathemati-

 

  
 

tion a undary conditions for flexural 
motion of the beam supported at one end by an elastic clamp and at the other by 
an elastic mount, as shown, when the structure is modeled mathematically us-

 

  
 

is modeled mathematically using Euler-Bernoulli Beam Theory. 

 Fig. P9.15 

9.16 State the equation of mo nd deduce the bo

cally using Euler-Bernoulli Beam Theory. 

 Fig. P9.16 

 
9.17 State the equation of mo nd deduce the bo

ing Euler-Bernoulli Beam Theory. 

 Fig. P9.17 
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9.18 State the equation of motion and deduce the boundary conditions for flexural 

 

  

.19 State the equation of motion and deduce the boundary conditions for flexural 

 

  

.20 Repeat Problem 9.13 for a beam of local mass moment of inertia Iρ if the struc-

 
.21 Repeat Problem 9.14 for a beam of local mass moment of inertia Iρ if the struc-

 
.22 Repeat Problem 9.15 for a beam of local mass moment of inertia Iρ if the struc-

 
.23 Repeat Problem 9.16 for a beam of local mass moment of inertia Iρ if the struc-

 
.24 Repeat Problem 9.17 for a beam of local mass moment of inertia Iρ if the struc-

ture is modeled using Rayleigh Beam Theory. 

motion of the beam supported by elastic mounts at each end, as shown, when it 
is modeled mathematically using Euler-Bernoulli Beam Theory. 

 Fig. P9.18 
 
9

motion of the an elastic beam that is embedded in a rigid wall at one and sits on 
an elastic foundation at the other when the structure is modeled mathematically 
using Euler-Bernoulli Beam Theory. 

 Fig. P9.19 
 
9

ture is modeled using Rayleigh Beam Theory. 

9
ture is modeled using Rayleigh Beam Theory. 

9
ture is modeled using Rayleigh Beam Theory. 

9
ture is modeled using Rayleigh Beam Theory. 

9
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9.25 Repeat Problem 9.18 for a beam of local mass moment of inertia Iρ if the struc-
ture is modeled using Rayleigh Beam Theory. 

 
Repeat Problem 9.19 for a beam of local mass 9.26 moment of inertia Iρ if the struc-
ture is modeled using Rayleigh Beam Theory. 

9.27  moment of inertia Iρ and shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.28 d shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.29 d shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.30 d shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.31 d shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.32 d shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.33 d shear 
stiffness ks if the structure is modeled using Timoshenko Beam Theory. 

9.34 ditions 
for the elastic beam-column shown in Figure P9.34. The mass of the movable 

 

  
 

ssociated boundary conditions 
for the beam-column with elastic 

 
 

                          Fig. P9.35 

 
Repeat Problem 9.13 for a beam of local mass

 
Repeat Problem 9.14 for a beam of local mass moment of inertia Iρ an

 
Repeat Problem 9.15 for a beam of local mass moment of inertia Iρ an

 
Repeat Problem 9.16 for a beam of local mass moment of inertia Iρ an

 
Repeat Problem 9.17 for a beam of local mass moment of inertia Iρ an

 
Repeat Problem 9.18 for a beam of local mass moment of inertia Iρ an

 
Repeat Problem 9.19 for a beam of local mass moment of inertia Iρ an

 
State the equation of transverse motion and the associated boundary con

support is negligible. 

 Fig. P9.34 

9.35 State the equation of transverse motion and the a

clamp shown in Figure P9.35.  
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9.36 Determine the equation of lateral motion and establish the corresponding 
bound er segments of cable of the pulley system 

 

 
  

.37 Determine the equation of lateral motion for the inner segments of cable of the 
pulley system of Problem 9.36 after the left most segment of the cable is cut 

 
9.38 am, the linearized 

version of Eq. (9.189) converges to Eq. (9.104) for proper change of variables. 

 
9.39 ing 

beam shown in Figure P9.39. 

  
 

f mo  conditions for the translating 
beam shown in Figure P9.40. 

 
 

ary conditions for the inn
shown, if the cable has mass per unit length m and the mass of the pulley 
wheels is negligible compared with that of the suspended weight. 

 Fig. P9.36 
 
 
9

and before its free end passes through the first pulley wheel. 

Show that, for the case of lateral motion of the support of a be

(Hint: Note that in Example 9.9 w corresponds to “absolute displacement.”) 

Determine the equation of motion and boundary conditions for the translat

 

 Fig. P9.39 

9.40 Determine the equation o tion and boundary
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f mo  conditions for the translating 
beam shown in Figure P9.41. 

 
  
 

 Fig. P9.40 

 
9.41 Determine the equation o tion and boundary

 

 Fig. P9.41 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  



   

10 
Free Vibration of One-Dimensional 
Continua 

 
 
 
 
 

 
 
One-dimensional continua are three-dimensional bodies or media whose deforma-
tions and motions are described mathematically as functions of a single spatial vari-
able. In this chapter we consider the motion of mathematically one-dimensional con-
tinua when they are free from externally applied dynamic forces. That is, we examine 
free vibrations of one-dimensional continua. The study of free vibrations reveals fun-
damental characteristics of the system, as well as behavior that is of interest in its 
own right. The presentation and discussion will parallel earlier discussions pertaining 
to discrete systems. We specifically consider the behavior of linear continua, includ-
ing longitudinal motion of elastic rods, torsional motion of elastic rods, transverse 
motion of strings and cables, and the flexural motion of elastic beams based on Euler-
Bernoulli, Rayleigh and Timoshenko theories. We also study the free vibrations of 
geometrically nonlinear beams and beam-columns with constant axial load. We begin 
with a discussion of the general free vibration problem for mathematically one-
dimensional continua. 
 

10.1 THE GENERAL FREE VIBRATION PROBLEM 

The equations of motion for linear one-dimensional continua are described by the 
general form of Eq. (9.194). For free vibrations, the distributed external load vanishes 
and the equations of motion take the general form  
 

 579 
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2

2 0
t

∂
+ =

∂
m k

u u  (10.1) 

 
where u(x,t) represents the appropriate displacement field, m is a scalar or differen-
tial mass operator and k is a differential stiffness operator. The motion of Ti-
moshenko Beams is governed by a matrix equation of the form of Eq. (10.1), where 
the displacement measure consists of a column matrix whose two elements are func-
tions that correspond to the transverse displacement and the rotation of the cross sec-
tion, respectively. In addition, the mass and stiffness operators for Timoshenko 
Beams are each 2 by 2 matrices whose elements are scalar and differential operators, 
respectively.  
 Equation (10.1), together with an appropriate set of boundary and initial condi-
tions, defines the free vibration problem. To solve this problem, we proceed in an 
analogous fashion to that for discrete systems. We thus seek a response of the form 
 
 ( , ) ( ) i tx t x e ω=u U  (10.2) 
 
Note that the spatial function U(x) is completely analogous to the corresponding col-
umn vector for discrete systems introduced in Eq. (7.2). Substituting the assumed 
form, Eq. (10.2), into the general equation of motion, Eq. (10.1), and recalling that m 
and k operate only on the spatial variable x, gives 
 
 2 ( ) i tx e ωω− mU ( ) i tx e ω+ kU 0=   
 
 which results in the eigenvalue problem 
 
 2 ( ) 0xω⎡ ⎤− =⎣ ⎦k m U  (10.3) 
 
The free vibration problem is thus reduced to the determination of { }2 , ( )xω U  pairs 
that satisfy Eq. (10.3), where the parameter 2ω  is identified as the eigenvalue and the 
function U(x) is identified as the corresponding eigenfunction. Since deformable con-
tinua possess an infinite number of degrees of freedom, the eigenvalue problem 
yields an infinity of frequency-modal function pairs. It may be seen from Eq. (10.3) 
that the modal functions are unique to within, at most, a constant multiplier. The 
value of this constant is arbitrary and is typically chosen as unity, or it is chosen so as 
to render the magnitude of the modal function unity. The latter option is discussed in 
Section 10.7 and the mutual orthogonality of the modal functions is discussed in Sec-
tion 10.8.  
 The solution of the eigenvalue problem depends on the specific stiffness and 
mass operators, as well as the boundary conditions, for a particular system under con-
sideration. Each frequency-mode pair,{ }( )2 , ( ) | ( 1,2,...)j

j x jω =U , obtained in this 
way corresponds to a solution of Eq. (10.1) in the form of Eq. (10.2). The general 
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solution then consists of a linear combination of all such solutions. Thus, the free 
vibration response takes the general form 
 

 ( ) ( ) ( ) ( )

1 1

( , ) ( ) ( ) cos( )ji tj j j j
j j

j j

x t C x e x A tω ω φ
∞ ∞

= =

= =∑ ∑u U U −  (10.4) 

 
where the modal amplitudes and associated phase angles, A(j) and φj (j = 1, 2, …) re-
spectively, are determined from the initial conditions. In the next five sections we 
consider various second order and fourth order systems and analyze the correspond-
ing types of motion.  
 

10.2 FREE VIBRATION OF UNIFORM SECOND ORDER SYSTEMS 

We next consider the free vibration problem for systems with a second order stiffness 
operator. In particular, we consider longitudinal motion of uniform rods, torsional 
motion of uniform rods with circular cross sections and the transverse motion of uni-
form strings and cables under constant tension. As all of these systems are governed 
by the same differential equation, the one-dimensional wave equation, the general 
solution is the same. We therefore consider the common problem first and then pre-
sent specific results for each case.  
 

10.2.1 The General Free Vibration Problem and Its Solution 

For systems with uniform properties the local mass and stiffness measures, m and k, 
are constants. The stiffness operator then takes the form 
 

 
2

2k
x

∂
= −

∂
k  (10.5)  

 
and the equation of motion is given by the one-dimensional wave equation, 
 

 
2 2

2
2 2 0c

t x
∂ ∂

− =
∂ ∂

u u  (10.6) 

where 
 2c k m=  (10.7) 
 
is a characteristic wave speed. Substitution of Eq. (10.2) into Eq. (10.6), or equiva-
lently substituting Eq. (10.5) into Eq. (10.3), results in the eigenvalue problem de-
fined by the ordinary differential equation 
 
 2( ) ( ) 0x xβ′′ + =U U  (10.8) 
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where 

 
2 2

2
2 k mc

ω ωβ = =  (10.9) 

 
and superposed primes denote total differentiation with respect to x. Equation (10.8) 
is seen to correspond to the harmonic equation in space. It therefore yields the solu-
tion 
 1 2( ) cos sinx A x A xβ β= +U  (10.10) 
 
which corresponds to the general form of the modal functions for uniform second 
order systems. The parameter β is referred to as the wave number and is interpreted 
as a spatial frequency. To complement this parameter we introduce the corresponding 
wave length  
 
 2λ π β=  (10.11) 
 
which is interpreted as the corresponding spatial period. The parameter β, and hence 
ω, as well as the integration constants A1 and A2 depend on the specific boundary 
conditions for the particular system under consideration. In general there will be an 
infinite number of values of β, and hence of ω. Once these values have been deter-
mined, each may be substituted into Eq. (10.10) to give the associated modal func-
tion. The resulting expression may then be substituted back into Eq. (10.2) to give the 
corresponding solution. The sum of all such solutions, Eq. (10.4), then corresponds to 
the free vibration response of the given system. In the remainder of this section we 
shall apply the above results to study three types of vibratory motion of second order 
one-dimensional continua.  

 
 

10.2.2 Longitudinal Vibration of Elastic Rods 

Consider a uniform elastic rod of length L, mass per unit length m = ρA and axial 
stiffness ka = EA. For longitudinal motion (Section 9.3) the displacement measure is 
the axial displacement u(x,t) (Figure 10.1) and, from Eq. (9.44) or (9.51), the equa-
tion of motion for free vibrations is 

 

 
2 2

2 2 0u um EA
t x

∂ ∂
− =

∂ ∂
 (10.12) 

 
Letting u(x,t) u(x,t), U(x) U(x), k k→ → → a = EA and m = ρA (Section 9.3) in the 
general analysis of Sections 10.1 and 10.2.1 gives the free vibration response for lon-
gitudinal motion of rods as   
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 Figure 10.1  Longitudinal motion of a thin rod. 

 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

u x t U x A tω φ
∞

=

= ∑ −  (10.13) 

 
where  
 ( ) ( ) ( )

1 2( ) cos sinj j j
j jU x A x A xβ β= +  (10.14) 

 
is the jth modal function and  

 
2 2

2
2

j j
j

a ak m c
ω ω

β = =  (10.15) 

and 

 a
EA Ec
m ρ

= =  (10.16) 

 
are, respectively, the jth wave number and wave speed for axial motion. (The axial 
wave speed is the speed of a longitudinal wave in an elastic medium with vanishing 
Poisson’s ratio.) The specific wave numbers, and hence the specific natural frequen-
cies and corresponding modal functions, are determined by the particular boundary 
conditions imposed on a given structure as demonstrated in the following examples. 
 
 

Example 10.1 
Consider a uniform elastic rod of length L, 
membrane stiffness EA and mass per unit 
length m. (a) Determine the natural frequen-
cies and modal functions for when the struc-
ture is fixed at its left end as shown. (b) Plot 
and label the first three modal functions. (c) 
Determine the general form of the free vibra-
tion response of the rod.                                                     Figure E10.1-1 
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 Solution 
 (a) 
 The physical boundary conditions for this rod are, from Example 9.2-ii,  
 

 (0, ) 0 ,    0
x L

uu t EA
x =

∂
= =

∂
 (a-1,2) 

 
To obtain the boundary conditions for the modal functions we substitute the as-
sumed harmonic response,  
 

 ( , ) ( ) i tu x t U x e ω=  
 
as per Eq. (10.2), into Eqs. (a-1) and (a-2) to get 
 

 (0) 0    (0) 0i tU e Uω = ⇒ =  (b-1) 
 

 ( ) 0    ( ) 0i tEA U L e U Lω′ ′= ⇒ =

1A

 (b-2) 
 
To determine the natural frequencies and modal functions, we next impose 
conditions (b-1) and (b-2) on the general form of the modal function given by 
Eq. (10.14) to get 
 

 1 2(0) 0 cos(0) sin(0)U A A= = + =  (c-1) 
and 

 1 2( ) 0 sin cosU L A L A Lβ β β β′ = = − +  (c-2) 
 
Substituting Eq. (c-1) into Eq. (c-2) results in the identity  
 

 2 cos 0A Lβ β =  (d) 
 
It is seen from Eq. (d) that if either β = 0 or A2 = 0 then Eq. (10.14) yields the 
trivial solution. Hence, for vibratory motion, we must have that 2 0Aβ ≠ . 
Equation (d) then reduces to the frequency equation for the given rod,  
 

 cos 0Lβ =  (e) 
 
It is seen that any value of β such that 
 

 (2 1) 2   ( 1, 2,...)L j jβ π= − =  (f) 
 
satisfies Eq. (e). We thus have an infinite number of wave numbers, 
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 (2 1) ( 1, 2,...)
2j j j

L
πβ = − =  (g) 

 
The corresponding frequencies are found from Eq. (10.15) and Eq. (g) as 
 

 0(2 1) ( 1,2,...)
2j j jπω ω= − =  (h) 

where 

 0 2
acEA

LmL
ω ≡ =  (i) 

 
Substituting Eqs. (c-1) and (g) into Eq. (10.14) gives the corresponding modal 
functions as 
 

 { }( ) ( ) ( )
2 2( ) sin sin (2 1) 2 ( 1, 2,...)j j j

jU x A x A j x L jβ π= = − =   
 
The value of the integration constant ( )

2
jA is arbitrary so we shall set it equal to 

one. (Alternatively, we can normalize the modal functions so that their magni-
tudes are one.) The modal functions for the rod under consideration are then 

 
 { }( ) ( ) sin sin (2 1) 2 ( 1, 2,...)j

jU x x j x L jβ π= = − =  (j) 
 
The first three modal functions are displayed in Figure E10.1-2 and are dis-
cussed below. 
 
(b) 
The graphs depicted in Figure E10.1-2 are plots of the axial deformation as a 
function of x. Since the wave number, βj, for a given mode is the spatial fre-
quency for that mode, the corresponding wave length, λj, (the spatial period) is 
found by substituting Eq. (g) into Eq. (10.11) giving 
 

 2 4   ( 1, 2,...
2 1j

j

L j
j

πλ
β

≡ = =
−

)  (k) 

 
To interpret these results we note, from Eq. (9.37), that the slopes of these 
curves at any point correspond to the axial modal strain at that point. Let us 
consider the first mode, U(1), displayed in Figure E10.1-2. Since the wavelength 
for the first mode is greater than the length of the rod (λ1 = 4L), the entire rod 
will be either in tension or compression when oscillating in that mode. It is seen 
that the maximum deformation occurs at the origin and the strain vanishes at 
the free end of the rod, x = L. It follows from Eq. (h), that the rod oscillates at 
the rate ω1 = πω0/2 in this mode. Let us next consider the second mode. For this 
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case the wavelength is calculated to be λ2 = 4L/3, which is slightly larger than 
the length of the rod. It is seen that a “node” occurs (U(2) = 0) at x = 2L/3. It is 
observed from Figure E10.1-2 that the slope, and hence the axial strain for the 
second mode, is positive (negative) for 0 < x < L/3 and therefore that the rod is 
in tension (compression) in this region, with the maximum extension (contrac-
tion) occurring as we approach the origin. Conversely, the rod is seen to be in 
compression (extension) on L/3 < x < L with the maximum deformation occur-
ring as we approach the node. (Note that an inflection point of the U vs. x curve 
occurs at the node.) The magnitude of the deformation is seen to decrease 
monotonically as x L/3 and as x L. It follows from Eq. (h) that, in the sec-
ond mode, the rod oscillates at the frequency ω

→ →
2 = 3πω0/2 with the regions of 

the structure alternating between tension and compression as indicated. For the 
third mode displayed in Figure E10.1-2, U(3), the wave length is calculated as 
λ3 = 4L/5 and is seen to be less than the total length of the rod. For this case we 
observe nodes at two points, x = 2L/5 and x = 4L/5, and inflection points at both 
locations. In this mode, the structure is seen to be in tension (compression) on 0 
< x < L/5, in compression (tension) on L/5 < x < 3L/5, and in tension (compres-
sion) on 3L/5 < x < L. It is also seen that the maximum deformation occurs as x 
approaches the origin and as x approaches the nodes, and that the minimum de-
formation occurs at the relative maxima and minima at x =  L/5, 3L/5 and L. In 
this mode the structure oscillates at the frequency ω3 = 5πω0/2, with the regions 
defined earlier alternating between tension and compression as indicated. 
 
 
 

0 0.2 0.4 0.6 0.8 1
0

1

0 0.2 0.4 0.6 0.8 1
−1

0

1

0 0.2 0.4 0.6 0.8 1
−1

0

1

U 
(1) 

U 
(2) 

U 
(3) 

x/L 
  
 Figure E10.1-2  The first three longitudinal modes of an elastic rod with one edge fixed. 
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(c) 
Substituting each mode defined by Eq. (j) into Eq. (10.13) gives the free vibra-
tion response of the rod as 
 

 { }( )

1

( , ) sin (2 1) 2 cos( )j
j j

j

u x t A j x L tπ ω φ
∞

=

= −∑ −  (l) 

 
where ωj is given by Eq. (h) and the amplitudes and phase angles, A(j) and φj (j 
= 1, 2, …), are determined from the initial conditions. The calculation of the 
amplitudes and phase angles is facilitated by the mutual orthogonality of the 
modal functions, which is discussed in Section 10.8. We therefore defer discus-
sion and implementation of this calculation to Section 10.9.        

 
 
 

Example 10.2 
Consider the elastic rod of length 
L, axial stiffness EA and mass per 
unit length m that is fixed at its 
left end and is attached to a block 
of mass mLα=m  on its right 
end  as shown, where α is a di-
mensionless number. (a) Deter-
mine the frequency equation and 
the general form of the corresponding mode shapes for the structure. (b) Evalu-
ate the first three frequencies for a structure with mass ratio 2α = . (c) Evaluate 
the general free vibration response of the rod for the structure of case (b). 
 
Solution 
(a) 
The left end of the rod is fixed. Hence, 
 

 (0, ) 0 (0)     (0) 0i tu t U e Uω= = ⇒ =  (a) 
 
The boundary condition at the right end follows directly from Eq. (b) of Exam-
ple 9.4. Substitution of the assumed form of the response, ( , ) ( ) i tu x t U x e ω= , 
into that boundary condition gives the modal boundary condition. Hence, 
 

 
2

2
2    ( ) ( )i t i t

x L x L

u uEA EAU L e U L e
x t

ω ωω
= =

∂ ∂ ′− = ⇒ − = −
∂ ∂

m m  

 
or 
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 2( ) ( ) 0U L U L
m

β′ − =
m  (b) 

  
Now that the boundary conditions for the modal functions have been estab-
lished, the frequencies and modal functions can be determined by imposing 
them on the general form of the modal function given by Eq. (10.14). Imposing 
condition (a) gives 
 

 1(0) 0U A= =  (c) 
 
After substituting back into the general form of Eq. (10.14) we have that 
 

 2( ) sinU x A xβ=  (d) 
 
Imposing condition (b) on Eq. (d) results in the statement 
 

 2 cos sin 0A L L
m

β β β β⎡ ⎤− =⎢⎣ ⎦

m
⎥   

 
It is evident from Eq. (d) that both β = 0 and A2 = 0 result in the trivial solution. 
Hence, for nontrivial solutions 2 0 ,Aβ ≠  which gives the frequency equation 
as 

 cos sin 0L L Lβ α β β− =  (e) 
 
The roots of Eq. (e) can be determined numerically for a given value of the 
mass ratio α. The corresponding mode shapes are then of the form 
 

   ( ) ( )
2( ) sin   ( 1, 2,...)j j

jU x A x jβ= =
 
where βj corresponds to the jth root of Eq. (e). Since ( )

2
jA is arbitrary we shall 

set it equal to one, rendering the modal function for the rod to the form 
 

  (f) ( ) ( ) sin   ( 1, 2,...)j
jU x x jβ= =

 
(b) 
The first three roots of Eq. (e) for α = 2 are obtained using the MATLAB routine 
“fzero.” Hence, 

 0.6533, 3.292, 6.362, ...Lβ =  (g) 
 
The natural frequencies then follow from Eq. (10.15) as 
 

 2
j j L EA mLω β=  (h) 
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from which we obtain 
 

 1 0 2 0 3 00.6533 , 3.292 , 6.362 , ...ω ω ω ω ω ω= = =  (i) 
 
where 

 2
0 EA mLω =  (j) 

 
(c) 
The general free vibration response is found by substituting Eq. (f) into Eq. 
(10.13). This gives the response of the rod as 
 

 

( )

1

(1)
0 0

(2)
0 0

(3)
0 0

( , ) sin cos( )

sin(0.6533 )cos(0.6533 )

sin(3.292 )cos(3.292 )

sin(6.362 )cos(6.362 )
...

j
j j j

j

u x t A x t

A x L t
A x L t

A x L t

β ω φ

ω ω

ω ω
1

2

3

φ

φ

ω ω φ

∞

=

= −

= −

+ −

+ −

+

∑

 (k) 

 
where A(j) and φj (j = 1, 2, …) are determined from the specific form of the ini-
tial conditions. 

 
 
 

Example 10.3 
Evaluate the first three natural frequencies for the rod structure of Example 
10.2 for the mass ratios α = 1, 2, 5, 10, 20 and 50. Use these results to assess 
the validity of the equivalent single degree of freedom system described in Sec-
tion 1.2.1 to model structures of this type.  
 
Solution 
The stiffnesses of the “massless” springs of the equivalent single degree of 
freedom systems introduced in Chapter 1 were based on the assumption that 
the mass of the elastic body, in this case a uniform rod, is small compared with 
the mass of the attached body. They were then calculated using a static analysis 
(i.e., neglecting the inertia of the structure). It was argued, on physical grounds, 
that the behavior predicted by such simple mathematical models should ap-
proximate the fundamental mode of the elastic structure. We here assess the 
applicability of such a simplified model by comparing the natural frequencies 
computed using the 1 d.o.f. model with those computed by using the rod solu-
tion of Example 10.2. We first interpret the parameters of the equivalent single 
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degree of freedom system of Section 1.2.1 in the context of the present struc-
ture. 
 From Eq. (1.8), the stiffness of the equivalent single degree of freedom 
system is eqk EA= L . It follows that the natural frequency, *,ω  of the equiva-
lent mass-spring system is 
 

 0* EA
L

ω
ω

α
= =

m
 (a) 

where  

 0 2

EA
mL

ω =  (b) 

 
With the above established, we next compute the values of the natural frequen-
cies, for different mass ratios, for the simple model and for the rod model of 
Example 10.2. A comparison of the two will allow us to assess to what extent 
the simple model represents the rod model.  
 The first three natural frequencies are computed for the given values of 
the mass ratio α by calculating the roots of Eq. (e) of Example 10.2 using the 
MATLAB routine “fzero.” These values are displayed in the Table E10.3 along 
with the corresponding values of the approximate single degree of freedom sys-
tem. It is seen that the frequency predicted by the simple single degree of free-
dom model approximates that of the first mode of the rod system and con-
verges to within two significant figures when the attached mass is twenty times 
larger than the mass of the rod. It is further seen that the frequency predicted by 
the single degree of freedom system model converges to within three signifi-
cant figures of the rod model when the attached mass is fifty times the mass of 
the structure. 

 
  
   Table E10.3  
The first three natural frequencies of an elastic rod with a concentrated end mass for 
various values of the mass ratio together with the natural frequencies of the correspond-
ing “equivalent” single degree of freedom systems 

mLα = m        0*ω ω       1 0ω ω        2 0ω ω       3 0ω ω  
        1        1.000      0.8603        3.426       6.437 
        2        0.7071      0.6533        3.292       6.362 
        5        0.4472      0.4328        3.204       6.315 
       10        0.3162      0.3111        3.173       6.299 
       20        0.2236      0.2218        3.157       6.291 
       50        0.1414      0.1410        3.148       6.286 

 *equivalent 1 d.o.f. system 
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10.2.3 Torsional Vibration of Elastic Rods 

Consider a uniform elastic rod of circular cross section, length L, polar moment of 
inertia Jρ = ρJ and torsional stiffness kT = GJ. For torsional motion of rods (Section 
9.4) the displacement measure is the cross-sectional rotation ( , )x tθ (Figure 10.2) and,  
from (Eq. 9.59), the equation of motion for free vibrations is given by 
  

 
2 2

2 2 0J GJ
t xρ
θ θ∂ ∂

− =
∂ ∂

 (10.17) 

 
Letting ( , ) ( , )x t x tθ→u ( ) ( )x x→ ΘU,  and Jm → ρ = ρJ in the general analysis of 
Sections 10.1 and 10.2.1 gives the free vibration response for torsional motion of rods 
as 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

x t x A tθ ω φ
∞

=

= Θ −∑  (10.18) 

where 
 ( ) ( ) ( )

1 2( ) cos sinj j j
j jx A x A xβ βΘ = +  (10.19) 

 
is the jth modal function. Furthermore, 
 

 
2 2

2
2

j j
j

T Tk J cρ

ω ω
β = =  (10.20) 

and  

 T
GJ Gc
Jρ ρ

= =  (10.21) 

 
are, respectively, the jth wave number and wave speed for torsional motion. (It may 
be noted that the torsional wave speed corresponds to the speed of shear waves in an 
elastic body.) The specific wave numbers, and hence the specific natural frequencies 
and corresponding modal functions, are determined by the particular boundary condi-
tions imposed on a given structure as demonstrated in the following example. 
 

    Figure 10.2  Torsional motion of a thin circular rod. 
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Example 10.4 
Consider torsional motion of a uniform elastic rod of circular cross section, 
stiffness GJ, length L and mass density ρ, when it is fixed at its right end and is 
supported at its left end by a torsional spring of stiffness kθ = αGJ/L, where α is 
a dimensionless number, as shown. (a) Derive the frequency equation and gen-
eral form of the mode shapes for the rod, and establish the general free vibra-
tion response of the structure. (b) Deter-
mine the first three natural frequencies for 
the case where α = 1 and plot the corre-
sponding modes. (c) Evaluate the general 
free vibration response of the rod of part 
(b). 

 
                                                                                                  Figure E10.4-1 
 Solution 

(a) 
Substituting the value of the spring stiffness into Eq. (a) of Example 9.5 gives 
the boundary condition at the left end of the rod as 

 

 
0

(0, )
x

L
x
θ αθ

=

∂
=

∂
t  (a-1) 

 
Since the right end of the rod is fixed, the corresponding boundary condition is 
then 

 ( , ) 0L tθ =  (a-2) 
 
Substitution of the assumed form of the solution for free torsional vibrations,  
 

 ( , ) ( ) i tx t x e ωθ = Θ  
 
as per Eq. (10.2), into Eqs. (a-1) and (a-2) gives the boundary conditions for the 
modal functions as 
 

  (b-1) (0) (0)     (0) (0)i t i tL e e Lω ωα′Θ = Θ ⇒ Θ = Θα′
and 

 ( ) 0    ( ) 0i tL e LωΘ = ⇒ Θ =  (b-2) 
 
To obtain the natural frequencies and corresponding modal functions we im-
pose the boundary conditions on the general form of the modal function given 
by Eq. (10.19). Imposing condition (b-1) gives the relation 
 

 2 1L A Aβ α=  (c) 
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Imposing condition (b-2) on the general form of the modal function and substi-
tuting Eq. (c) into the resulting expression gives 
 

 [ ]2 cos sin 0
A L L Lβ β α β
α

+ =  

 
It may be seen from Eq. (10.19) and Eq. (c) that A2 = A1 = 0 yields the trivial 
solution, as does β = 0. Hence, for nontrivial solutions, the expression within 
the brackets must vanish. We thus obtain the frequency equation for the rod in 
question, 
 

 cos sin 0L L Lβ β α β+ =  (d) 
 
Equation (d) may be solved numerically to obtain the natural frequencies of the 
rod. Substituting Eq. (c) into Eq. (10.19) gives the modal function associated 
with the  jth natural frequency as  
 

 
( )
2( ) ( ) cos sin

j
j

j j j

A
x L xβ β α β

α
x⎡ ⎤Θ = +⎣ ⎦   

 
Since the value of ( )

2
jA is arbitrary we shall set ( )

2 .jA α=  The jth modal function 
is then 
 

 ( ) ( ) cos sinj
j j jx L x xβ β α βΘ = +  (e) 

 
With the frequencies determined from Eq. (d), substituting Eq. (e) into Eq. 
(10.18) gives the free vibration response of the rod as 
 

 ( )

1

( , ) cos sin cos( )j
j j j j

j

x t A L x x t jθ β β α β ω φ
∞

=

⎡ ⎤= +⎣ ⎦∑ −  (f) 

 
(b) 
The first three roots of Eq. (d) are determined numerically using the MATLAB 
routine “fzero,” which gives, for systems with 1α = , 
 

 1 2 32.029 ,    4.913 ,    7.979, ...L L Lβ β β= = =  (g) 
 
The associated natural frequencies are obtained by substituting the above roots 
into Eq. (10.20). Hence, 
 

 1 0 2 0 3 02.029 , 4.913 , 7.979 , ...ω ω ω ω ω ω= = =  (h) 
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Figure E10.4-2  The first three torsional modes of elastic rod with one elastic support 
and one fixed support. 
 
 
where 

 0 2T
Gc L
L

ω
ρ

= =  (i) 

 
The first three modes are displayed in Figure E10.4-2. The values shown corre-
spond to the rotational displacement as a function of x and are interpreted in 
this context. The wave lengths for the first three modes are calculated as 
 

 1 2 3
2 2 23.097 , 1.279 , 0.7875
2.029 4.913 7.979

L L LL Lπ π πλ λ λ= = = = = = L   (j) 

 
The displacement measure is the rotation of the cross section located at coordi-
nate x, measured positive counterclockwise. The first mode then corresponds to 
deformations of the rod where all rotations are in the same sense. The sense of 
the motions alternate between positive and negative as the structure oscillates at 
the first natural frequency, but maintains the same proportion of the relative ro-
tations of the cross sections throughout the motion. The second mode is seen to 
correspond to deformations where part of the rod, say that adjacent to the left 
support, rotates in the positive (negative) sense while the remaining segment of 
the structure rotates in the negative (positive) sense. The deformations alternate 
in direction as the rod oscillates at the second natural frequency, with the pro-
portions of the relative rotation of the cross sections maintained throughout the 
motion. Lastly, the third mode consists of three regions, with the middle seg-
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ment deformed in the opposite sense of the outer segments. The sense of the ro-
tation of each segment alternates between positive and negative as the structure 
oscillates at the third natural frequency and maintains the same relative propor-
tions throughout the motion. 

 
 (c) 

The free vibration response of the structure with stiffness ratio 1α =  is then 
determined by substituting the wave numbers and natural frequencies stated in 
Eqs. (g) and (h) into Eq. (f). We thus have that 
 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

(1)
0 1

(2)
0 2

(3)
0 2

( , ) 2.029cos 2.029 sin 2.029 cos 2.029

4.913cos 4.913 sin 4.913 cos 4.913

7.979cos 7.979 sin 7.979 cos 7.979

...

x t A x L x L t

A x L x L

A x L x L t

θ ω φ

ω φt

ω φ

⎡ ⎤= + −⎣ ⎦
⎡ ⎤+ + −⎣ ⎦

⎡ ⎤+ + −⎣ ⎦
+

(k) 

 
 
 

 

10.2.4 Transverse Vibration of Strings and Cables 

Consider a string or cable of length L and mass per unit length m = ρA. In addition,  
let the string be under uniform tension N0. For these systems (Section 9.5) the dis-
placement measure is the transverse displacement w(x,t) (Figure 10.3) and, from Eq. 
(9.74), the equation of motion for free vibrations is  
  

 
2 2

02 2 0w wm N
t x

∂ ∂
− =

∂ ∂
 (10.22) 

 
 
 

 
   Figure 10.3  Transverse motion of a string. 
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Letting u(x,t)  w(x,t), U(x)  W(x), and k →  N→ → 0 in the analysis of Sections 10.1 
and 10.2.1 gives the free vibration response of the string or cable as 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= ∑ −  (10.23) 

where 
 ( ) ( ) ( )

1 2( ) cos sinj j j
j jW x A x A xβ β= +  (10.24) 

 
is the jth modal function. In addition, 
  

 
2 2

2
2

0

j j
j k m c

ω ω
β = =  (10.25) 

and 
 2

0 0c N m=  (10.26) 
 
are, respectively, the jth wave number and the wave speed of a transverse disturbance 
propagating along the length of the string. The specific wave numbers, and hence the 
specific natural frequencies and corresponding modal functions, are determined by 
the particular boundary conditions imposed on a given structure as demonstrated in 
the following example. 
 
 

Example 10.5 
Consider a string that is under uniform tension and is fixed at both ends, as 
shown. (a) Determine the natural fre-
quencies and corresponding modes. (b) 
Plot the first three modes. (c) Establish 
the general free vibration response of 
the string. (d) Apply the results of part 
(c) to the chain of Example 9.6-i. 
                                                                                    Figure E10.5-1 
Solution  
(a) 
We first determine the boundary conditions for the modal functions from the 
physical boundary conditions. Since the string is fixed at both ends, the bound-
ary conditions for the transverse displacement are simply  
 

 (0, ) 0,     ( , ) 0w t w L t= =  (a-1, 2) 
 
Substitution of the assumed form of the solution, 
 

 ( , ) ( ) i tw x t W x e ω=  
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as per Eq. (10.2), into Eqs. (a-1) and (a-2) gives the modal boundary conditions 
as follows, 

 (0) 0        (0) 0i tW e Wω = ⇒ =  (b-1) 
 

 ( ) 0        ( ) 0i tW L e W Lω = ⇒ =  (b-2) 
 
To determine the natural frequencies and the corresponding modal functions 
we impose the boundary conditions on the general form of the modal function 
given by Eq. (10.24). Imposing Eq. (b-1) gives 
 

 1 0A =  (c) 
  
 Imposing Eq. (b-2) yields the relation 

 
 1 2cos sin 0A L A Lβ β+ =  

 
which, upon incorporating Eq. (c), becomes 
 

 2 sin 0A Lβ =  (d) 
 
It may be seen from Eq. (10.24) and Eq. (d) that A2 = 0 yields the trivial solu-
tion. Thus, for nontrivial solutions, we require that 
 

 sin 0Lβ =  (e) 
 
This is the frequency equation for the string which has the roots 
 

  ( 1, 2,...j L j j )β π= =  (f) 
 
Substitution of Eq. (f) into Eq. (10.25) gives the natural frequencies for the 
string as 

 0
2  ( 1, 2,...j

Nj j
mL

ω π= = )  (g) 

 
Substitution of Eq. (f) into Eq. (10.24) gives the corresponding modal functions 
 

   ( ) ( )
2( ) sin   ( 1,2,...)j j

jW x A x jβ= =
 
Since the value of ( )

2
jA is arbitrary we shall set it equal to one. The modal func-

tions then take the form 
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 ( ) ( ) sin( )   ( 1, 2,...)jW x j x L jπ= =  (h) 
 
 (b) 

The first three mode shapes are displayed in Fig. E10.5-2. The corresponding 
wave lengths are calculated from Eq. (f) and Eq. (10.11) to be, λ1 = 2L, λ2 = L 
and λ3 = 2L/3, respectively. Since the deflections are in the transverse direction 
the plots displayed in the figure are, in fact, physical depictions of the first three 
modes. Each mode oscillates at the associated frequency, ω1 = πω0, ω2 = 2πω0 
and ω3 = 3πω0, with the deflections alternating over the corresponding period 
T1 = 2/ω0, T2 = 1/ω0 and T3 = 2/3ω0. 
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    Figure E10.5-2  The first three modes for a string that is fixed at both ends. 
 
 
(c) 
Substitution of Eq. (h) into Eq. (10.23) gives the free vibration response 
 

 ( )( ) 2
0

1

( , ) sin( ) cosj
j

j

w x t A j x L j N mL tπ π φ
∞

=

= −∑  (i) 

 
(d) 
For the system of Example 9.6 the tension in the cable is due to the weight of 
the hanging sign. Hence, N0 = mg, where  is the mass of the sign. It 
then follows from Eq. (g) that 

mLm
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 0j jω π ω=  (j) 
where 

 0 g Lω α=  (k) 
and 

 1mLα = m  (l) 
 
The free vibration response of the chain is then, from Eq. (i), 
  

 (( )

1

( , ) sin( ) cosj
j

j

w x t A j x L j g L t )π π α φ
∞

=

= −∑  (m) 

 
 
 
 

10.3 FREE VIBRATION OF EULER-BERNOULLI BEAMS 

Consider a uniform Euler-Bernoulli Beam (Section 9.6.3) of length L, bending stiff-
ness EI and mass per unit length m = ρA. For this structure the displacement measure 
is the transverse displacement w(x,t) (Figure 10.4) and the stiffness operator is a 
fourth order differential operator. For uniform beams the stiffness operator takes the 
form 

 
4

4EI
x

∂
=

∂
k  

 
The equation of motion for an unforced beam follows from Eq. (9.104) as 
 

 
2 4

2 4 0w wm EI
t x

∂ ∂
+ =

∂ ∂
 (10.27) 

 
Further, for these structures, u(x,t)  w(x,t) in the analysis of Section 10.1. We thus 
seek solutions of the form 

→

 

 
   Figure 10.4  Transverse motion of a beam. 
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 ( , ) ( ) i tw x t W x e ω=  (10.28) 
 
as per Eq. (10.2). Substituting Eq. (10.28) into Eq. (10.27) results in the specific form 
of the eigenvalue problem for Euler-Bernoulli Beams defined by the differential 
equation 
 4( ) ( ) 0W x W xβ′′′′ − =  (10.29) 
where 
 4 2 m EIβ ω=  (10.30) 
 
To solve Eq. (10.29) we assume a solution of the form 
 
 ( ) sxW x Ae=  (10.31) 
 
where the constants A and s are to be determined. Substituting Eq. (10.31) into Eq. 
(10.29) and solving the resulting equation for s gives the values 
 
 ,  s iβ β= ± ±  (10.32) 
 
where β is defined by Eq. (10.30). Each value of s corresponds to a solution of the 
form of Eq. (10.31). The general solution of Eq. (10.29) is then comprised of a linear 
combination of all such solutions. Summing these solutions and using Eqs. (1.61) and 
(1.63) gives the general form of the modal functions for uniform Euler-Bernoulli 
Beams, 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xβ β β β= + + +  (10.33) 
 
The integration constants and the parameter β, and hence the frequency ω, are deter-
mined from the specific boundary conditions for a given system. As for the second 
order systems discussed in Section 10.2, the modal functions are seen to be unique to 
within a constant multiplier. This constant is typically set to one, or chosen so as to 
render the magnitude of the modal function unity (Section 10.7). Once the specific 
frequencies are determined they may be substituted into Eq. (10.33) to evaluate the 
corresponding modal functions, with each frequency-mode pair yielding a solution of 
the form of Eq. (10.28). The sum of these solutions, as per Eq. (10.4), corresponds to 
the free vibration response of the beam given by 
  

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= ∑ −  (10.34) 
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Example 10.6 
Consider the simply supported uniform beam of Figure E10.6-1 and its repre-
sentation using Euler-Bernoulli Theory. Determine the frequency equation, the 
natural frequencies, the natural modes and the general free vibration response.  

 

    
   Figure E10.6-1  Simply supported beam. 
 
Solution 
The boundary conditions for the modal functions are determined by substitut-
ing the assumed form of the solution, Eq. (10.28), into the physical boundary 
conditions. Hence, 
 

 (0, ) 0 (0)     (0) 0i tw t W e Wω= = ⇒ =  (a-1) 
 

 
2

2
0

( , ) 0 (0)     (0) 0i t

x

wM L t EI EIW e W
x

ω

=

∂ ′′ ′′= − = = − ⇒ =
∂

 (a-2) 

 
 ( , ) 0 ( )     ( ) 0i tw L t W L e W Lω= = ⇒ =  (a-3) 
 

 
2

2( , ) 0 ( )     ( ) 0i t

x L

wM L t EI EIW L e W L
x

ω

=

∂ ′′ ′′= − = = − ⇒ =
∂

 (a-4) 

 
Imposing the above boundary conditions on the general form of the modal 
function, Eq. (10.33), gives the following system of algebraic equations for the 
integration constants: 
 

 1 3 0A A+ =  (b-1) 
 

 ( )2
1 3 0A Aβ − =  (b-2) 

 
 1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β+ + + =  (b-3) 
 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (b-4) 
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It is seen from Eq. (10.33) that β = 0 corresponds to the trivial solution. It fol-
lows from Eqs. (b-1) and (b-2) that, for nontrivial solutions ( 0),β ≠  
 

 1 3 0A A= =  (c-1, 2) 
 
Substituting Eqs. (c-1) and (c-2) into Eqs. (b-3) and (b-4) and adding and sub-
tracting the resulting expressions gives the relations 
 

 22 sinh 0A Lβ =  (d-1) 
 

 42 sin 0A Lβ =  (d-2) 
 
 It follows from Eqs. (d-1) and (d-2) that, for nontrivial solutions ( 0),β ≠  
 

 2 0A =  (e) 
and  

 sin 0Lβ =  (f) 
 
Equation (f) is the frequency equation for the simply supported Euler-Bernoulli 
beam and yields the roots 
 

 ( 1, 2,...)j L j jβ π= =  (g) 
 
It follows from Eq. (10.30) that 
 

 2
0( )j jω π ω=  (h) 

where 

 0 4

EI
mL

ω =  (i) 

 
Substitution of Eqs. (c-1), (c-2), (e) and (g) into Eq. (10.33) gives 
 

 ( ) ( )
4( ) sin ( )j jW x A j x Lπ=  (j) 

 
Since ( )

4
jA is arbitrary we shall set it equal to one. Alternatively, we could 

choose 4
( )jA so that the modal function has unit magnitude (Section 10.7). The 

modal functions for the simply supported Euler-Bernoulli Beam are seen to be 
of identical form with those of the string of Example 10.5 (though the natural 
frequencies of the beam and string, of course, differ). The plots of the first three 
modes of the simply supported beam are shown in Figure 10.6-2 for the benefit 
of the reader. Since the deflections are transverse to the axis of the beam, the 
plots displayed in the figure correspond to physical depictions of the first three 
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mode shapes. The free vibration response is obtained by substituting each of 
the modes and frequencies into Eq. (10.34). Doing this gives the response as 
 

 {( ) 2
0

1

( , ) sin( )cos ( )j
j

j

w x t A j x L j t }π π ω φ
∞

=

= ∑ −  (k) 

 
where ω0 is given by Eq. (i) and the amplitudes and phase angles A(j) and φj  (j 
= 1, 2, …) are determined from the initial conditions. 
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       Figure E10.6-2  The first three modes for a simply supported Euler-Bernoulli Beam. 
 
 
 

Example 10.7 
Consider the uniform cantilever beam of Figure E10.7-1 and its representation 
using Euler-Bernoulli Theory. Determine the frequency equation, the first three 
natural frequencies, the natural modes and the general free vibration response 
for the structure. Plot and label the first three modes of the beam. 

   Figure E10.7-1  Cantilevered beam.
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Solution 
The boundary conditions for the modal functions are determined by substitut-
ing the assumed form of the solution, Eq. (10.28), into the physical boundary 
conditions established in Example 9.7. Hence, 
 

 (0, ) 0 (0)     (0) 0i tw t W e Wω= = ⇒ =  (a-1) 
 

 
0

0 (0)     (0)i t

x

w W e W
x

ω

=

∂ ′ ′ 0= = ⇒
∂

=  (a-2) 

 

 
2

2( , ) 0 ( )     ( ) 0i t

x L

wM L t EI EIW L e W L
x

ω

=

∂ ′′ ′′= − = = − ⇒ =
∂

 (a-3) 

 

 
3

3( , ) 0 ( )     ( ) 0i t

x L

wQ L t EI EIW L e W L
x

ω

=

∂ ′′′ ′′′= − = = − ⇒ =
∂

 (a-4) 

 
Imposing the above boundary conditions on the general form of the modal 
function, Eq. (10.33), gives the following system of algebraic equations for the 
integration constants: 
 

 1 3 0A A+ =  (b-1) 
 

 ( )2 4 0A Aβ + =  (b-2) 

 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (b-3) 
 

 ( )3
1 2 3 4sinh cosh sin cos 0A L A L A L A Lβ β β β β+ + − =  (b-4) 

 
Upon noting Eq. (b-1), it is seen from Eq. (10.33) that β = 0 corresponds to the 
trivial solution. We are therefore interested in nonvanishing values of β and can 
divide Eqs. (b-2), (b-3) and (b-4) by β, β 2 and β 3, respectively. The remainder 
of the analysis is simplified if we eliminate A3 and A4 for the above system. 
Substituting Eqs. (b-1) and (b-2) into Eqs. (b-3) and (b-4) results in the pair of 
algebraic equations 
 

 1 2(cosh cos ) (sinh sin ) 0A L L A L Lβ β β β+ + + =  (c-1) 
 

 1 2(sinh sin ) (cosh cos ) 0A L L A L Lβ β β β− + + =  (c-2) 
 
or, in matrix form, 
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 1

2

(cosh cos ) (sinh sin ) 0
(sinh sin ) (cosh cos ) 0

AL L L L
AL L L L

β β β β
β β β β

+ + ⎧ ⎫⎡ ⎤
=

⎧ ⎫
⎨ ⎬ ⎨ ⎬⎢ ⎥− +⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (d) 

 
For nontrivial solutions, we require that the determinant of the square matrix in 
Eq. (d) vanish. This gives the transcendental equation 
 

 2 2 2(cosh cos ) (sinh sin ) 0L L L Lβ β β β+ − − =  
 
Expanding the above relation and utilizing simple trigonometric identities re-
sults in the frequency equation for the uniform cantilever beam, 
 

 cosh cos 1 0L Lβ β + =  (e) 
 
which may be solved numerically for βL. The values of the first three roots are 
found using MATLAB’s “fzero” routine to be 
 

 1 2 31.875,   4.694,   7.855, ...L L Lβ β β= = =  (f) 
 
Substituting each root into Eq. (10.30) and solving for ω gives the first three 
natural frequencies, 
 

 4 4
1 2 33.516 ,  22.03 ,   61.70 , ...EI mL EI mL EI mLω ω ω= = = 4  (g) 

 
Solving Eq. (c-1) for A2 and substituting the result, along with Eqs. (b-1), (b-2) 
and (e), into Eq. (10.33) gives the corresponding modal functions 
 

 
( ){ }

( ){ }

( ) ( )
1( ) sinh sin cosh cos

               cosh cos sinh sin   ( 1, 2,...)

j j
j j j j

j j j j

W x A L L x x

L L x x j

β β β β

β β β β

⎡= + −⎣
⎤− + − =⎦

  

where 

 1( )
1 sinh sin

j A
A

L Lβ β
=

+
  

 
Since the value of A1 is arbitrary it may be set equal to one. When this is done, 
the jth modal function for the uniform cantilevered beam takes the form 
 

 
( ){ }
( ){ } ( )

( ) ( ) sinh sin cosh cos

cosh cos sinh sin sinh sin

j
j j j j

j j j j j

W x L L x x

L L x x L

β β β β

β β β β β β

⎡= + −⎣
⎤− + − +⎦ j L

  

  (h) 
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The first three modal functions are displayed in Figure E10.7-2. Since the de-
flections are transverse to the axis of the beam the plots displayed in the figure  
are, in fact, physical depictions of the first three mode shapes. 
 The free vibration response is obtained by substituting each of the modes 
and frequencies into Eq. (10.34). This gives 
 

( ){ }

( ){ } ( )

1

( )

( , ) sinh sin cosh cos

cos( )
                cosh cos sinh sin

sinh sin

j j j j
j

j
j j

j j j j
j j

w x t L L x x

A t
L L x x

L L

β β β β

ω φ
β β β β

β β

∞

=

⎡= + −⎣

−
⎤− + − ⎦ +

∑
  

    (i) 
 
where βj and ωj (j = 1, 2, …) are given by the roots of Eq. (e) together with Eq. 
(10.30). 
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     Figure E10.7-2  The first three flexural modes for a cantilevered Euler-Bernoulli Beam  
      (shown scaled by their maximum values).  

 
 
 

Example 10.8 
Consider a uniform cantilever beam of length L, bending stiffness EI and mass 
per unit length m that supports a concentrated mass m = α mL at its free end, 
as shown, using Euler-Bernoulli Theory. (a) Determine the frequency equation 



10│ Free Vibration of One-Dimensional Continua 607 

and the general form of the mode shapes for the structure. (b) Evaluate the first 
three natural frequencies for a structure with mass ratio α = 2. (c) Establish the 
general free vibration response of the beam for α = 2. 
   

 
Solution 
(a) 
The boundary conditions for the modal functions are determined by substitut-
ing the assumed form of the solution, Eq. (10.28), into the physical boundary 
conditions established in Examples 9.9 and 10.7. The two boundary conditions 
at the support follow from Example 10.7. If the physical dimensions of the con-
centrated mass are negligible, the boundary condition for moment at the far end 
of the beam is also the same as for Example 10.7. The fourth boundary condi-
tion, the condition for shear at the far end of the beam, is obtained by inspec-
tion of the kinetic diagram of the concentrated mass (see Example 9.9) and 
proceeding as for the others. Hence, 
 

 (0) 0, (0) 0, ( ) 0W W W L′ ′′= = =  (a-1, 2, 3) 
 

From Eq. (b-2) of Example 9.9, the boundary condition for transverse shear in 
the rod is 
 

 
3 2

3 2     ( ) i t

x L x L

w wEI EI W L e
x t

ω

= =

∂ ∂ ′′′= ⇒
∂ ∂

m 2 ( ) i tW L e ωω= − m   

 
The frequency appears explicitly in the above condition due to the presence of 
the inertia of the concentrated mass in the boundary condition. However, the 
frequency and wave number are directly related through Eq. (10.30). Incorpo-
rating this relation into the right hand side of the last boundary condition ren-
ders the boundary condition for transverse shear to the form 
 

 4( ) ( ) 0W L LW Lβ α′′′ + =  (a-4) 
  
Imposing the above boundary conditions on the general form of the modal 
function, Eq. (10.33), gives the following system of algebraic equations for the 
integration constants:  
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 1 3 0A A+ =  (b-1) 
 

 ( )2 4 0A Aβ + =  (b-2) 

 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (b-3) 
 

 
( )

( )

3
1 2 3 4

3
1 2 3 4

sinh cosh sin cos

cosh sinh cos sin 0

A L A L A L A L

L A L A L A L A L

β β β β β

β αβ β β β β

+ + −

− + + + =
 (b-4) 

 
As for the previous example, it is seen from Eqs. (b-1) and (10.33) that β = 0 
corresponds to the trivial solution. We can therefore divide Eqs. (b-2), (b-3) 
and (b-4) by β, β 2 and β 3, respectively. Eliminating A3 and A4 in the above 
system by substituting Eqs. (b-1) and (b-2) into Eqs. (b-3) and (b-4) results in 
the pair of algebraic equations 
 

 1 2(cosh cos ) (sinh sin ) 0A L L A L Lβ β β β+ + + =  (c-1) 
 

 
[ ]

[ ]
1

2

(sinh sin ) (cosh cos )

(cosh cos ) (sinh sin ) 0

A L L L L L

A L L L L L

β β αβ β β

β β β β β

− + −

+ + + − =
 (c-2) 

 
Arranging Eqs. (c-1) and (c-2) in matrix form and, since we are interested in 
nontrivial solutions, setting the determinant of the coefficients of the integra-
tion constants to zero results in the frequency equation 
 

 ( ) ( )1 cosh cos sinh cos cosh sin 0L L L L L L Lβ β αβ β β β β+ + − =  (d) 
 
The roots of the above equation yield the wave numbers, and hence the natural 
frequencies, for the given structure. 
 Equation (c-1) gives A2 in terms of A1. Substituting this expression into 
Eqs. (b-1) and (b-2) gives the remaining constants, A3 and A4, in terms of A1. 
Substituting the resulting expressions into Eq. (10.33) then gives modal func-
tions for the structure. We thus obtain,  
 

 
{ }

{ }

( ) ( )
1( ) (sinh sin ) cosh cos

(cosh cos ) sinh sin

j j
j j j j

j j j j

W x A L L x x

L L x

β β β β

β β β β

⎡= + −⎣
⎤− + − ⎦x

  

  ( 1   , 2,...j = )
where 

 ( ) ( )
1 1 (sinh sin )j j

j jA A Lβ β= + L   
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Since ( )
1

jA is arbitrary we shall choose it equal to one. The jth modal function for 
the structure is then 
 

 
{ }

{ }

( ) ( ) (sinh sin ) cosh cos

(cosh cos ) sinh sin (sinh sin )

j
j j j j

j j j j j

W x L L x x

L L x x L

β β β β

β β β β β β

⎡= + −⎣
⎤− + − +⎦ j L

 

  (e) 
 
The general form of the response of the Euler-Bernoulli Beam with tip mass 
then follows as 
 

 

{ }

{ } ( )

( )

1

( )

( , ) (sinh sin ) cosh cos

cos( )
(cosh cos ) sinh sin

sinh sin

j
j j j j

j

j
j j

j j j j
j j

w x t A L L x x

A t
L L x x

L L

β β β β

ω φ
β β β β

β β

∞

=

⎡= + −⎣

−
⎤− + − ⎦ +

∑
 (f) 

 
It is seen that the form of the modal functions for the present case is the same 
as for the cantilevered beam without the tip mass. This is because the two 
boundary conditions at the support are the same for both structures. The differ-
ence in the two structures, that is the effect of the tip mass, is manifested 
through Eq. (d) and hence through the natural frequencies and wave numbers 
which we calculate next. 
 
(b) 
The first three roots of Eq. (d) are obtained for a structure with α = 2 using the 
MATLAB routine “fzero” as 
 

 1.076, 3.983, 7.103, ...Lβ =  (g) 
 
From Eq. (10.30),  

 ( )2

0 ( 1,2,...j j L jω β ω= = )  (h) 
where 

 4
0 EI mLω =  (i) 

 
The natural frequencies corresponding to the roots stated in Eq. (g) are then 
 

 0 0 01.158 , 15.86 , 50.45 , ...ω ω ω ω=  (j) 
 
The first three modal functions follow from Eq. (e) as 
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( ) ( ){ }

( ) ( ){ }

(1) ( ) cosh 1.076 cos 1.076

0.971 sinh 1.076 sin 1.076

W x x L x L

x L x

= −

− − L
 (k-1) 

 

 
( ) ( ){ }

( ) ( ){ }

(2) ( ) cosh 3.983 cos 3.983

sinh 3.983 sin 3.983

W x x L x L

x L x

= −

− − L
 (k-2) 

 

 
( ) ( ){ }

( ) ( ){ }

(3) ( ) cosh 7.103 cos 7.103

sinh 7.103 sin 7.103

W x x L x L

x L x

= −

− L
 (k-3) 

 
 (c) 

The response of the structure with α = 2 is found by substituting the computed 
frequencies and modes into Eq. (f). Thus, 
 

 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( )

(1)

0 1

(2)

0 2

(3)

( , ) cosh 1.076 cos 1.076

0.971 sinh 1.076 sin 1.076 cos(1.158 )

cosh 3.983 cos 3.983

sinh 3.983 sin 3.983 cos(15.86 )

cosh 7.103 cos 7.103

sinh 7.103 sin 7.10

w x t A x L x L

x L x L t

A x L x L

x L x L t

A x L x L

x L

ω φ

ω φ

⎡= −⎣
⎤− − ⎦

⎡+ −⎣
⎤− − ⎦

⎡+ −⎣

− −

−

−

( ){ } 0 33 cos(50.45 )

...

x L tω φ⎤ −⎦
+

  

   (l) 
 

  
 
 

Example 10.9 
Evaluate the first three natural frequencies for the beam structure of Example 
10.8 for the mass ratios α = 1, 2, 5, 10, 20, 50 and 100. Use these results to as-
sess the validity of the equivalent single degree of freedom system described in 
Section 1.2.2 to model beam structures of this type.  
 
Solution 
The stiffnesses of the “massless” springs of the equivalent single degree of 
freedom systems introduced in Chapter 1 were based on the assumption that 
the mass of the elastic body, in this case a uniform beam, is small compared 
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with the mass of the attached body. They were then calculated using a static 
analysis (i.e., neglecting the inertia of the structure). It was argued, on physical 
grounds, that the behavior predicted by such simple mathematical models 
should approximate the fundamental mode of the elastic structure. We here as-
sess the applicability of such a simplified model by comparing the natural fre-
quencies computed using the 1 d.o.f. model with those computed by using the 
cantilever beam solution of Example 10.8. We first interpret the parameters of 
the equivalent single degree of freedom system of Section 1.2.2 in the context 
of the present structure. 
 From Eq. (1.14), the stiffness of the equivalent single degree of freedom 
system is 3 .3eqk EI L=  It follows that the natural frequency, ω∗, of the 
equivalent mass-spring system is 
 

 03

3* EI
L

ω ω 3
α

= =
m

 (a) 

where  

 0 4

EI
mL

ω =  (b) 

Hence, 
 0* 3ω ω = α  (c) 

 
With the above established, we next compute the values of the natural frequen-
cies, for different mass ratios, for the simple model and for the beam model of 
Example 10.8. A comparison of the two will allow us to assess to what extent 
the simple model represents the beam model.  
 The first three natural frequencies are computed for the given values of 
the mass ratio α by calculating the roots of Eq. (d) of Example 10.8 using the 
MATLAB routine “fzero.” These values are displayed in Table E10.9 along with 
the corresponding values of the approximate single degree of freedom system. 
It is seen that the frequency predicted by the simple single degree of freedom 
model approximates that of the first mode of the beam system and converges to 
within two significant figures when the attached mass is ten times larger than 
the mass of the beam. It is further seen that the frequency predicted by the sin-
gle degree of freedom system model converges to within three significant fig-
ures of the beam model when the attached mass is one hundred times the mass 
of the column. 
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    Table E10.9  
 The first three natural frequencies of a uniform cantilevered beam with a concentrated 

end mass for various values of the mass ratio, and the natural frequency predicted for the 
“equivalent” 1 d.o.f. system

mLα = m        0*ω ω       1 0ω ω        2 0ω ω       3 0ω ω  
        1        1.732      1.558        16.25       50.89 
        2        1.225      1.158        15.86       50.45 
        5        0.7746      0.7569        15.60       50.16 
       10        0.5477      0.5414        15.52       50.07 
       20        0.3873      0.3850        15.46       50.01 
       50        0.2449      0.2443        15.43       49.98 
      100        0.1732      0.1730        15.43       49.97 

 *equivalent 1 d.o.f. system 
 
 
 

Example 10.10 
Consider the (transversely) free-free beam shown in Figure E10.10-1. (a) Es-
tablish the modal boundary conditions, determine the frequency equation and 
the general form of the modal functions, and the general free vibration re-
sponse. (b) Determine the first three natural frequencies and corresponding 
modal functions. Plot the first three modes. 
 

   Figure E10.10-1  A (transversely) free-free beam.
 
Solution 
The structure is evidently an unrestrained system in that it can move freely in 
the vertical direction. From our discussion of unrestrained discrete systems 
(Section 7.2) we anticipate the existence of a “rigid body mode” along with 
modes that describe the deformation of the beam. 
  
(a) 
The beam is clearly free to rotate and free to translate in the vertical direction at 
the end points x = 0 and x = L. The support therefore exerts no moment or 
transverse force at these points. Therefore, the bending moment and transverse 
shear in the beam must vanish at the boundaries. Hence, 
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2 3

2 3
0 0

0 , 0
x x

w wEI EI
x x

= =

∂ ∂
− = −

∂ ∂
=  (a-1, 2) 

and 

 
2 3

2 30 , 0
x L x L

w wEI EI
x x

= =

∂ ∂
− = −

∂ ∂
=  (a-3, 4) 

 
Substitution of the harmonic form 
 

 ( , ) ( ) i tw x t W x e ω=   
 
into Eqs. (a-1)–(a-4) and dividing through by i te ω gives the modal boundary 
conditions 
 

 (0) 0, (0) 0W W′′ ′′′= =  (b-1, 2) 
and 

 ( ) 0, ( ) 0W L W L′′ ′′′= =  (b-3, 4) 
 
Imposing Eqs. (b-1)–(b-4) on the general form of the modal function, Eq. 
(10.33), results in the system of equations 
 

 ( )2
1 3 0A Aβ − =  (c-1) 

 
 ( )3

2 4 0A Aβ − =  (c-2) 
 

 ( )2
1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (c-3) 

 
 ( )3

1 2 3 4sinh cosh sin cos 0A L A L A L A Lβ β β β β+ + − =  (c-4) 
 
In each of Eqs. (c-1)–(c-4), either β = 0 or the terms in parentheses vanish. 
Let’s consider each case.  

  
 0 :β =  

For this case, Eqs. (10.30) and (10.33) give the corresponding natural fre-
quency and associated mode as 
 

 0RBω ω= =  (d-1) 
 
  (d-2) ( )

1 3( ) constantRBW x W A A= = + =
 
This is evidently the rigid body mode and corresponds to a rigid body dis-
placement with no oscillations. 
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0 :β ≠  

For this case, Eqs. (c-1) and (c-2) yield 
 

 3 1 4, 2A A A A= =  (e-1, 2) 
 
Substituting Eqs. (e-1) and (e-2) into Eqs. (c-3) and (c-4) and arranging the re-
sulting expressions in matrix form gives 
 

 ( ) ( )
( ) ( )

1

2

cosh cos sinh sin 0
sinh sin cosh cos 0

L L L L A
L L L L A

β β β β
β β β β

⎡ ⎤− − ⎧ ⎫ ⎧ ⎫
=⎢ ⎥ ⎨ ⎬ ⎨ ⎬+ −⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦

 (f) 

 
For nontrivial solutions, we require that the determinant of the square matrix of 
Eq. (f) vanish. Imposing this condition yields the frequency equation, 
 

 cosh cos 1L Lβ β =  (g) 
 
Equation (g) yields an infinite number of roots βj (j = 1, 2, …) and hence, via 
Eq. (10.30), an infinite number of frequencies 
 

 ( )2

0j j Lω ω β=  (h) 
where 

 4
0 EI mLω =  (i) 

 
Substituting Eqs. (e-1), (e-2) and the first row of Eq. (f) into Eq. (10.33) gives 
the corresponding modal functions for the beam as 
 

 ( ) ( )
( ) ( )

( )

( )

( )

sinh sin
cosh cos sinh sin

cosh cos

( 1, 2,...)

j

j

W x

L L
A x x x x

L L

j

β β
β β β β

β β

=

⎡ ⎤+
+ − +⎢ ⎥

−⎢ ⎥⎣ ⎦
=

 (j) 

 
The value of ( )jA is arbitrary. We shall set it equal to one. The free vibration 
response is then given by 
 

 ( ) ( )
0 0

1

( , ) ( ) cos( )j j
j j

j

w x t A t B W x A tω φ
∞

=

= + + −∑  (k) 

 
where the constants A0, B0, A(j) and φj (j = 1, 2, …) are determined from the ini-
tial conditions (Section 10.9). 
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(b) 
Since the first mode is the rigid body mode described earlier, the second and 
third modes will correspond to the first two roots of Eq. (g). These are found 
using the MATLAB routine “fzero” and give 
 

 1 24.730, 7.853L Lβ β= =  (l) 
 
The corresponding natural frequencies are then computed using Eq. (h) to give 
 

 1 0 222.37 , 61.67 0ω ω ω ω= =  (m) 
 
where ω0 is defined by Eq. (i). The first three modes — the rigid body mode, 
W(RB), and the first two deformation modes, W(1) and W(2) — are displayed in 
Figure E10.10-2.  
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          Figure E10.10-2  The first three natural modes of the free-free beam. 
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    Figure 10.5  Beam on an elastic foundation. 
 

Beam on Elastic Foundation 
In certain situations a beam rests on a support throughout its span, such as when a 
railroad track sits on soil or other deformable media. The simplest mathematical 
model that accounts for the elastic compliance of the supporting media is the repre-
sentation of the foundation as a continuous distribution of elastic springs, as shown in 
Figure 10.5. For such a model, let the stiffness per unit surface area of the elastic 
foundation be denoted as kf. If we include the restoring force imparted on a deflected 
beam in the development of Sections 9.6.1–9.6.3, the corresponding equation of mo-
tion for free vibration of a uniform Euler-Bernoulli Beam on a uniform elastic foun-
dation takes the form 
 

 
2 4

2 0f
w wm k w EI

t
∂ ∂

4x
+ +

∂ ∂
=  (10.35) 

 
To solve the free vibration problem we proceed as for prior structures and assume a 
solution in the form 
 
 ( , ) ( ) i tw x t W x e ω=   
 
and substitute it into the equation of motion. This results in the identical eigenvalue 
problem as that for all other Euler-Bernoulli Beams considered to this point, 
 
 4( ) ( ) 0W x W xβ′′′′ − =   
but now, 

 4 2 fkm
EI EI

β ω= −  (10.36) 

 
The corresponding modal functions are therefore of the general form given by Eq. 
(10.33). Thus, for a given beam and set of boundary conditions the roots βj 

 of the characteristic equation, and the corresponding modal functions 
W
( 1,2,...j = )

(j)(x), will be identical to their counterparts for beams without foundation. Similarly, 
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the free vibration response of the structure is given by Eq. (10.34). However, from 
Eq. (10.36), the natural frequencies associated with each mode for the present type of 
structure are given by 
 

 ( ) ( )4 4
0 ( 1, 2,...j j fL k L EI jω ω β= + = )  (10.37) 

where  

 4
0 EI mLω =  (10.38) 

 
Comparing Eq. (10.37) with Eq. (10.30) we see that the effect of the presence of the 
elastic foundation is to raise the natural frequencies of the beam. In addition, if we 
consider a beam with free-free edges, such as that of Example 10.10, we see that the 
added constraints imposed by the foundation render the rigid body mode (β = 0) 
bounded and oscillatory ( RB 0)ω ≠ , as may be anticipated on physical grounds. Thus, 
a beam on an elastic foundation, that possesses the same material properties and the 
same boundary conditions as its counterpart without the foundation, will freely vi-
brate in the same forms as its less constrained counterpart, but at higher natural fre-
quencies. 
 
 

10.4 FREE VIBRATION OF EULER-BERNOULLI BEAM-COLUMNS  

In this section we consider the free vibrations of uniform Euler-Bernoulli Beam-
Columns. These are beams for which the geometrically nonlinear term in the strain-
displacement relation, Eq. (9.36), is retained. This causes the membrane force to ap-
pear in the equation of motion as well, thus accounting for bending-stretching cou-
pling effects. As discussed at the end of Section 9.7, the membrane force may be 
treated as constant when no body force acts on the structure in the axial direction. If 
we consider the case where the membrane force is compressive, N0 = −P0, then the 
structure is referred to as a beam-column and, from Eq. (9.160), the equation of mo-
tion is  

 
2 4 2

02 4 2 0w w wm EI P
t x x

∂ ∂ ∂
+ +

∂ ∂ ∂
=  (10.39) 

 
As for the linear beam of the previous section, we seek a solution of the form of Eq. 
(10.28) and substitute that expression into Eq. (10.39). Doing this results in the ei-
genvalue problem defined by the differential equation 
 
 2

0 0EI W PW mWω′′′′ ′′+ − =  (10.40) 
 
To solve the above equation we proceed as for the linear Euler-Bernoulli Beam prob-
lem and assume a solution of the form of Eq. (10.31). We then substitute that expres-
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sion into Eq. (10.40) and solve the resulting equation for s. Summing solutions for 
each root gives the general form of the modal function for Euler Beam-Columns as 
 
 1 2 3 3( ) cosh sinh cos sinW x A x A x A x A xα α β β= + + +  (10.41) 
where 

 ( )1
02 a P EIα ⎡ ⎤= −⎣ ⎦  (10.42) 

 

 ( )1
02 a P EIβ ⎡ ⎤= +⎣ ⎦  (10.43) 

and 

 ( ) ( )2 2
0 4a P EI m EIω= +  (10.44) 

 
The integration constants and the natural frequencies are found by imposing the 
boundary conditions for the particular structure in question on Eq. (10.41). Once the 
specific frequencies are determined they may be substituted into Eq. (10.41) to evalu-
ate the corresponding modal functions. Each frequency-modal function pair evaluated 
in this way yields a solution of the form of Eq. (10.28). The sum of these solutions, as 
per Eq. (10.4), is the free vibration response of the beam-column given by 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= ∑ −  (10.45) 

 
 

Example 10.11 
Consider the cantilevered beam-column subjected to a constant compressive 
load of magnitude P0 at its free end, as shown, where P0 is less than the critical 
static buckling load. (a) Determine the frequency equation, general form of the 
mode shapes and general free vi-
bration response of the structure. 
(b) Assess the effects of the axial 
load on the natural frequencies of 
the structure. (c) Plot the first 
three modes for the case where the 
applied load is half the static 
buckling load.                                                     Figure E10.11-1 
 
Solution 
(a) 
The boundary conditions for the beam-column follow from Eqs. (9.161)–
(9.164) as 
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0

(0, ) 0,     0
x

ww t
x =

∂
= =

∂
 (a-1, 2) 

 

 
2 3

02 30,     0
x L x L

w w wEI EI P
xx x

= =

⎡ ⎤∂ ∂ ∂
− = − +⎢ ⎥∂∂ ∂⎣ ⎦

=  (a-3, 4) 

 
Substituting Eq. (10.28) into the above conditions gives the corresponding 
boundary conditions for the modal functions as 
 

 (0) 0,     (0) 0W W ′= =  (c-1, 2) 
 

 0( ) 0,     ( ) ( ) 0W L EIW L PW L′′ ′′′ ′= + =  (c-3, 4) 
 
We next impose the modal boundary conditions, Eqs. (c-1)–(c-4), on Eq. 
(10.41). This gives the following system of algebraic equations for the integra-
tion constants: 

 1 3 0A A+ =  (d-1) 
 

 2 4 0A Aα β+ =  (d-2) 
 

  (d-3) 2 2 2 2
1 2 3 4cosh sinh cos sin 0A L A L A L A Lα α α α β β β β+ − − =

 
 [ ] [ ]2 2

1 2 3 4sinh cosh sin cos 0A L A L A L A Lαβ α β α β β β+ + − =  (d-4) 
 
The computations can be simplified somewhat by substituting Eqs. (d-1) and 
(d-2) into Eqs. (d-3) and (d-4) and writing the resulting equations in matrix 
form as 

 

 
2 2 2

1
2 2 2 3

2

0( cosh cos ) ( sinh sin )
0( sinh sin ) ( cosh cos )

AL L L L
AL L L L

α α β β α α αβ β
αβ α α β β αβ α α β

⎡ ⎤ ⎧ ⎫ ⎧ ⎫+ +
=⎨ ⎬ ⎨ ⎬⎢ ⎥

− + ⎩ ⎭⎩ ⎭⎣ ⎦
 (e) 

 
For nontrivial solutions we require that the determinant of the matrix of coeffi-
cients in Eq. (e) vanish. This results in the frequency equation for the beam-
column, 
 

 
( ) ( )

( )

2 4 4

2
0

2 cosh cos

                                  sinh sin 0

m EI L L

P EI L L

αω α α β α β

α β α β

+ +

− =
 (f) 

 
which may be solved numerically to obtain the associated set of natural fre-
quencies.  
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 Solving the first of Eqs. (e) for A2 in terms of A1 and substituting the re-
sulting expression, along with equations (d-1) and (d-2), into Eq. (10.41) gives 
the modal functions for the beam-column as 

 

 
( ){ }

( ) ( ){ }

( ) ( ) 2
1

2 2

( ) sinh sin cosh cos

                   cosh cos sinh sin

j j
j j j j j j j

j j j j j j j j

W x A L L x x

L L x

α α α β β α β

α α β β α α β β

⎡= + −⎣
⎤− + − ⎦x

  

 where 
 ( )1

( ) ( ) 2
1 sinh sinj j

j j j j jA A Lα α α β β= + L   
 
and αj and βj correspond to the values of α and β, Eqs. (10.42) and (10.43), 
evaluated at the  jth natural frequency ωj. Since its value is arbitrary we shall set 

. The modal function for the beam-column is then  ( )
1 1jA =

 

 

{ }
( )
( ) ( ){ }

( )

2 2

2

( ) cosh cos

cosh cos
              sinh sin

sinh sin

j
j j

j j j j
j j j j

j j j j j

W x x x

L L
x x

L L

α β

α α β β
α α β β

α α α β β

= −

+
− −

+

 (g) 

 
Substitution of Eq. (g) into Eq. (10.45) gives the free vibration response of the 
beam-column as 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j
w x t W x A tω φ

∞

=

= −∑  (i) 

  
where W(j) is given by Eq. (g) and ωj is the jth root of Eq. (f). The modal ampli-
tudes, A(j), and corresponding phase angles, φj, depend on the specific initial 
conditions imposed on the structure. 
 
(b) 
For a cantilevered beam-column, the critical load is 
  

 
2

24crP E
L

π
= I  

 
We thus consider applied loads, P0, for which 
 

 
2

0
2 ( 1

4
P
EI L

πλ λ )= <     (j) 

 
where λ (< 1) is a constant.  
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    Table E10.11  
The first three natural frequencies of a cantilevered beam-column for various values 
of the axial loading parameter 

        λ       1 0ω ω      2 0ω ω      3 0ω ω  
         0       3.516      22.03      61.70 
      0.005       3.508      22.03      61.69 
      0.01       3.500      22.02      61.68 
      0.05       3.433      21.94      61.62 
      0.10       3.348      21.85      61.54 
      0.20       3.168      21.67      61.39 
      0.50       2.535      21.11      60.92 
      0.99       0.3662      20.15      60.15 

 
 
 
 The frequency equation, Eq. (f), can now be rewritten in the form  
 

 
( ) ( ) ( )

( ) ( )( )

2 4 4
0

2 2

2 cosh c

                                  4 sinh sin 0

L L L L L L

L L L L

α ω ω α α β α β

α β λπ α β

⎡ ⎤+ +⎣ ⎦ os

− =
  (k) 

 
with 

 ( )2 21
2 4L aLα λπ⎡ ⎤= −⎣ ⎦  (l-1) 

 

 ( )2 21
2 4L aLβ λπ⎡ ⎤= +⎣ ⎦  (l-2) 

and 

 ( ) ( )
2 22 2

04 4aL λπ ω ω= +  (l-3) 

 
The first three roots of Eq. (k) are evaluated for a range of values of λ using the 
MATLAB routine “fzero.” The results are summarized in Table E10.11. It is 
seen that the compressive load makes the structure more flexible. (Conversely, 
a tensile load makes the structure stiffer – that is, it makes it more resistant to 
bending.) We also remark that for compressive loads greater than or equal to 
the static buckling load ( 1)λ ≥ , the branch corresponding to the first natural 
frequency disappears. 
 

 (c) 
The first three natural modes of an elastic beam-column are displayed in Figure 
E10.11-2, for the case where the applied load is half the static buckling load. 
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 Figure E10.11-2  The first three modes for a cantilevered beam-column with λ = 0.5. 
 
 
 
 

10.5 FREE VIBRATION OF RAYLEIGH BEAMS 

Rayleigh Beam Theory adds a correction to Euler-Bernoulli Beam Theory to account 
for the effects of rotatory inertia on the motion of a beam. The governing equation for 
free vibration of Rayleigh Beams (Section 9.6.4) is obtained by letting the right-hand 
side of Eq. (9.115) vanish. In this section we consider the motion of uniform 
Rayleigh Beams (beams whose material and geometric properties are invariant 
throughout the length of the beam). The corresponding equation of motion is then 
 

 
2 4 4

2 2 2 4 0w w wm I EI
t x t xρ

∂ ∂ ∂
− +

∂ ∂ ∂ ∂
=  (10.46) 

 
where Iρ = ρI is the mass moment of inertia of the cross section. All other parameters 
are the same as those for Euler-Bernoulli Beams. We remark that, for the general 
analysis of Section 10.1, u(x,t) → w(x,t), U(x) W(x)  and →
 

 
2

2m I
xρ

∂
= −

∂
m  

 
For free vibrations, we seek solutions of the form 
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 ( , ) ( ) i tw x t W x e ω=  (10.47) 
 
Substituting the assumed form of the response, Eq. (10.47), into the equation of mo-
tion, Eq. (10.46), results in the eigenvalue problem defined by the differential equa-
tion 
 ( )2 2 2 0GW W r Wϖ ϖ′′′′ ′′+ − =  (10.48) 
where 
 2 2

acϖ ω≡ 2  (10.49) 
 
 2

ac E ρ=  (10.50) 
from Eq. (10.16),  
 2

Gr I= A  (10.51) 
 
is the radius of gyration of the cross section and ρ is the mass density. A comparison 
of Eq. (10.48) with Eq. (10.40) shows that the eigenvalue problem for Rayleigh 
Beams is governed by the same equation as that for Euler Beam-Columns, with suit-
able changes in parameters. We could therefore write the solution directly from Eq. 
(10.41). However, to keep the section self contained, it is useful to establish the solu-
tion once again. Hence, we assume a solution of the form 
 
 ( ) sxW x Ae=  (10.52) 
 
and substitute the above form into Eq. (10.48). This results in the characteristic equa-
tion 
 ( )4 2 2 2 2 0Gs s rϖ ϖ+ − =  (10.53) 
which yields the roots 
 ,s iα β= ± ±  (10.54) 
where 
 ( 1) 2Rα ϖ= −  (10.55) 
 
 ( 1) 2Rβ ϖ= +  (10.56) 
and 

 ( )2 21 4 GR ϖ= + r  (10.57) 

 
Each root corresponds to a solution to Eq. (10.48) of the form of Eq. (10.52). Sum-
ming all four solutions and employing the trigonometric identities introduced in Sec-
tion 1.4 gives the general form of the modal functions for uniform Rayleigh Beams as 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xα α β β= + + +  (10.58) 



624 Engineering Vibrations 

 
Note the similarity with the modal functions for Euler-Bernoulli Beams and Beam-
Columns. The integration constants and the natural frequencies are found by impos-
ing the boundary conditions for the particular structure in question on Eq. (10.58). 
Once the specific frequencies are determined they may be substituted into Eq. (10.58) 
to evaluate the corresponding modal functions. Each frequency-mode pair evaluated 
in this way yields a solution of the form of Eq. (10.47). The sum of these solutions, as 
per Eq. (10.4), corresponds to the free vibration response of the beam-column given 
by 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= ∑ −  (10.59) 

 
  
 

Example 10.12 
Consider a uniform cantilevered elastic beam and its representation using 
Rayleigh Beam Theory. (a) Determine the frequency equation for a uniform 
beam that is supported at its left end. (b) Evaluate the first five values of the 
natural frequency of the beam for various values of the rotatory inertia (ex-
pressed in terms of its radius of gyration) and compare the results with those 
computed in Example 10.7 using Euler-Bernoulli Beam Theory.  

 
Solution 
(a) 
The boundary conditions for a beam that is fixed at the origin and is completely 
free at x = L follow from Eqs. (9.116)–(9.119) as 
 

  
0

(0, ) 0,     0
x

ww t
x =

∂
= =

∂
 (a-1, 2) 

 

 
2 3 3

2 3 20,     0
x L x L

w w wEI EI I
x x tρ

= =

⎡ ⎤∂ ∂ ∂
− = − −⎢∂ ∂ ∂ ∂⎣ ⎦x

=⎥  (a-3, 4) 
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Substituting Eq. (10.47) into the above conditions gives the corresponding 
boundary conditions for the modal functions, 
 

 (0) 0,     (0) 0W W ′= =  (b-1, 2) 
 

 2( ) 0,     ( ) ( ) 0W L W L W Lϖ′′ ′′′ ′= + =  (b-3, 4) 
 

Note that since the rotatory inertia is included in the present model, the fre-
quency appears in the boundary condition for shear, Eq. (b-4), through the pa-
rameter ϖ. Imposing conditions (b-1)–(b-4) on Eq. (10.58) results in the system 
of algebraic equations for the integration constants given by 
 

 1 3 0A A+ =  (c-1) 
 

 2 4 0A Aα β+ =  (c-2) 
 

  (c-3) 2 2 2 2
1 2 3 4cosh sinh cos sin 0A L A L A L A Lα α α α β β β β+ − − =

 
 [ ] [ ]2 2

1 2 3 4sinh cosh sin cos 0A L A L A L A Lαβ α β α β β β+ + − =  (c-4) 
 

The ensuing computations are simplified somewhat by substituting Eqs. (c-1) 
and (c-2) into Eqs. (c-3) and (c-4) and writing the resulting equations in matrix 
form as 
 

 
2 2 2

1
2 2 2 3

2

0( cosh cos ) ( sinh sin )
0( sinh sin ) ( cosh cos )

AL L L L
AL L L L

α α β β α α αβ β
αβ α α β β αβ α α β

⎡ ⎤ ⎧ ⎫ ⎧ ⎫+ +
=⎨ ⎬ ⎨ ⎬⎢ ⎥

− + ⎩ ⎭⎩ ⎭⎣ ⎦
 (d) 

 
For nontrivial solutions we require that the determinant of the matrix of coeffi-
cients in Eq. (d) vanish. This results in the frequency equation for the Rayleigh 
Beam, 
 

 ( )
2

4 4 2 2
22 cosh cos sinh sin 0

G

L L L L
r
ϖα α α β α β α βϖ α β+ + − =  (e) 

 
Equation (e) may be solved numerically to obtain the set of natural frequencies 
for the Rayleigh Beam. The modal function for the beam is then  
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{ }
( )
( ) ( ){ }

( )

2 2

2

( ) cosh cos

cosh cos
              sinh sin

sinh sin

j
j j

j j j j
j j j j

j j j j j

W x x x

L L
x x

L L

α β

α α β β
α α β β

α α α β β

= −

+
− −

+

 (f) 

 
where and αj and βj correspond to the values of α and β, Eqs. (10.55) and 
(10.56), evaluated at the jth natural frequency ωj. Substitution of Eq. (f) into Eq. 
(10.59) gives the free vibration response of the cantilevered Rayleigh Beam as 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j
w x t W x A tω φ

∞

=

= −∑  (g) 

  
where W(j) is given by Eq. (f) and ωj is the jth root of Eq. (e). The modal ampli-
tudes, A(j), and corresponding phase angles, φj, depend on the specific initial 
conditions imposed on the beam. 

 
(b) 
The frequency equation for the cantilevered beam, Eq. (e), can be rewritten in a 
form convenient for computation by multiplying it by L5 and grouping terms 
accordingly. Doing this renders the frequency equation to the form 

  

 
( ) ( )

( )

4 42

2 2 2

2 cosh c

sinh sin 0G

L L L L L L

L L r L L

α ω α α β α β

α β ω α β

⎡ ⎤+ +⎣ ⎦ os

− =
 (h) 

 
where 

 0ω ω ω=  (i-1) 
 

 G Gr r L=  (i-2) 
 

 ( )1 2GL r Rα ω= −  (j-1) 
 

 ( )1 2GL r Rβ ω= +  (j-2) 
 

 2 41 4 GR ω r− −= +  (j-3) 
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     Table E10.12 

 The first five natural frequencies of a uniform cantilevered Rayleigh Beam for various 
values of rotatory inertia (radius of gyration) 
 G Gr r L=     1 0ω ω     2 0ω ω     3 0ω ω    4 0ω ω  5 0ω ω  
    0.000*     3.516*     22.03*     61.70*    120.8*   199.7* 
    0.010     3.515     22.00     61.46    120.0   197.6 
    0.050     3.496     21.19     56.48    103.8   159.7 
    0.100     3.437     19.14     46.49    78.21   111.8 
    0.150     3.344     16.75     37.81    60.20   82.92 
    0.200     3.226     14.58     31.38    48.27   65.15 

 *Euler-Bernoulli Theory 
 
 
The first five natural frequencies of the cantilevered Rayleigh Beam, the first 
five roots of Eq. (h), are evaluated using the MATLAB “fzero” routine for vari-
ous values of the normalized radius of gyration. The results are tabulated in 
Table E10.12 and are compared with the first five natural frequencies com-
puted using Euler-Bernoulli Beam Theory ( 0Gr )=  as per Example 10.7.  It is 
seen that the rotatory inertia influences the higher modes significantly, within 
the range of inertias considered.  

 
 
 

10.6  FREE VIBRATION OF TIMOSHENKO BEAMS 

In this section we discuss the vibration of Timoshenko Beams when moving under 
their own volition. Recall from Section 9.6.5 that Timoshenko Beams include a cor-
rection for transverse shear deformation in an average sense through the thickness 
and also include the effects of rotatory inertia as for Rayleigh Beams. Beams that 
include the correction for transverse shear but not the effects of rotatory inertia are 
referred to as shear beams.  
 Timoshenko Beams and Shear Beams differ from Euler-Bernoulli Beams and 
Rayleigh Beams in that there is an additional set of degrees of freedom corresponding 
to the shear deformations. Two of the three displacement measures (transverse dis-
placement, rotation due to bending and distortion due to shear deformation) are inde-
pendent. We shall use the transverse displacement, w(x,t), and the cross-sectional 
rotation, ( , )x tϕ , to describe the motion of the beam. For free vibrations, the govern-
ing equations for Timoshenko Beams, Eq. (9.135), reduce to the form 
 

 
2

2t
∂

+ =
∂

0um ku  (10.60) 

where 
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0

0
m

Iρ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
m  (10.61) 

 

 
s s

s s

k k
x x x

k k EI
x x x

∂ ∂ ∂⎡ ⎤−⎢ ⎥∂ ∂ ∂= ⎢ ⎥
∂ ∂ ∂⎢ ⎥− −⎢ ⎥∂ ∂ ∂⎣ ⎦

k  (10.62) 

 

 
( , )
( , )

w x t
x tϕ

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
u  (10.63) 

 
and, recalling Eq. (9.129), 
 
 sk AG= k  (10.64) 
 
where k is a shape factor (see Section 9.6.5). For free vibrations we seek solutions to 
Eq. (10.60) of the form 
 
 ( , ) ( ) i tx t x e ω=u U  (10.65) 
where 

 
( )

( )
( )

W x
x

xϑ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

U  (10.66) 

 
Substitution of Eq. (10.65) into Eq. (10.60) gives the corresponding eigenvalue prob-
lem 
 2ω⎡ ⎤− =⎣ ⎦ 0k m U  
or, in explicit form, 
 

 

2
2

2

2
2

2

( ) 0
( ) 0

s s

s s

d dk m k
dxdx W x

xd dk k EI I
dx dx ρ

ω

ϑ
ω

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎧ ⎫ ⎧ ⎫⎝ ⎠⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥⎛ ⎞ ⎩ ⎭ ⎩⎢ ⎥− − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎭

0

 (10.67) 

 
which, after expanding, yields the coupled equations 
  

  (10.68) 
2

2

0

( )
s s

s s

k W mW k
k W EI k Iρ

ω ϑ

ϑ ω ϑ

′′ ′− − + =

′ ′′− − + − =

 
To solve the above system let us assume a solution of the form 
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 ( ) sx A sxx e
B

e
⎧ ⎫

= = ⎨ ⎬
⎩ ⎭

U A  (10.69) 

 
Substitution of Eq. (10.69) into Eq. (10.67) gives the algebraic equation 
 

 
2 2

2 2

( )
( )

s s sx

s s

k s m k s A
e

k s k EIs I Bρ

ω
ω

⎡ ⎤− + ⎧ ⎫
⎢ ⎨ ⎬− − −⎢ ⎥ ⎩ ⎭⎣ ⎦

⎥
0
0

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (10.70) 

 
For nontrivial solutions we require that the determinant of the square matrix in the 
above equation vanish. This results in the characteristic equation for s, 
 
 ( ) ( )4 2 2 2 2 21 Gs E s E rϖ ϖ ϖ −+ + + − = 0  (10.71) 

where 

 EE
G

=
k

 (10.72) 

 
and ϖ and rG are as defined in Eqs. (10.49) and (10.51) respectively. Solving Eq. 
(10.71) for s gives the roots 
 
 ,s iα β= ± ±  (10.73) 
where 

 { }
1

21
2 (1 )R Eα ϖ ⎡ ⎤= − +⎣ ⎦  (10.74) 

 

 { }
1

21
2 (1 )R Eβ ϖ ⎡ ⎤= + +⎣ ⎦  (10.75) 

 

 ( ) ( )2 2 21 4 GR E rϖ= − +  (10.76) 

 
Note that for infinite shear modulus 0E → , and the characteristic equation and the 
parameters α, β and R reduce to the corresponding expressions for Rayleigh Beams, 
as they should. Substituting each root back into Eq. (10.69) and summing all such 
solutions gives the general form of the modal functions as 
 
 * * * *

1 2 3 4( ) x x i x iW x A e A e A e A e xα α β−= + + + β−  (10.77) 
 
 * * * *

1 2 3 4( ) x x i x i xx B e B e B e B eα α βϑ −= + + + β−  (10.78) 
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The constants of integration of the modal rotation, ϑ(x), are related to the constants of 
integration of the associated modal deflection, W(x), through Eq. (10.70). Since the 
matrix of coefficients was rendered singular, both rows of that matrix equation yield 
the same information. From the first row we find that 
  

 
2

* EB s A
s

ϖ⎛
= +⎜

⎝ ⎠
*⎞

⎟  (10.79) 

 
Evaluating Eq. (10.79) for each root of the characteristic equation for s gives the cor-
responding relations 

 
2

*
1,2 1,2

EB ϖα
α

⎛ ⎞
= ± +⎜ ⎟

⎝ ⎠
*A  (10.80) 

and 

 
2 2

* *
3,4 3,4 3,4

iE EB i A e Aπϖ ϖβ β
β β

±⎛ ⎞ ⎛ ⎞
= ± − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2 *  (10.81) 

 
Substituting Eqs. (10.80) and (10.81) into Eq. (10.78) gives the modal rotation as 
 

 
( )

( ) ( ) ( )

2 2 * *
1 2

2 22 2 * *
3 4

1( )

1                           

x x

i x i x

x E A e A e

E A e A e

α α

β π β π

ϑ α ϖ
α

β ϖ
β

−

+ − +

⎡ ⎤= + −⎣ ⎦

⎡ ⎤+ − +⎣ ⎦

 (10.82) 

 
Using Eqs. (1.61) and (1.63) in Eqs. (10.77) and (10.82) renders the modal functions 
to the forms 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xα α β β= + + +  (10.83) 
and 
 [ ] [ ]1 2 3 4( ) sinh cosh sin cosx g A x A x g A x A xα βϑ α α β= + − − β  (10.84) 
 
where 

 ( ) (2 2 2 21 1 ,     )g E g Eα βα ϖ β ϖ
α β

= + = −  (10.85) 

and 
 ( )* * * * * * * *

1 1 2 2 1 2 3 3 4 4 3 4,   ,   ,   A A A A A A A A A A i A A= + = − = + = −  (10.86) 
 
The remainder of the analysis proceeds as for the free vibration analysis of Euler-
Bernoulli Beams, etc. and depends upon the particular support conditions imposed on 
the structure. Once the natural frequencies are obtained they are substituted into Eqs. 
(10.83) and (10.84) for each mode. The general response is then found by substituting 
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the modes and corresponding frequencies into Eq. (10.65) and summing over all such 
solutions. The free vibration response of the Timoshenko Beam is then 
 

 
( )

( )
( )

1

( , ) ( )
( , ) cos( )

( , ) ( )

j
j

j jj
j

w x t W x
x t A t

x t x
ω φ

ϕ ϑ

∞

=

⎧ ⎫⎧ ⎫ ⎪ ⎪= = −⎨ ⎬ ⎨ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭

∑u  (10.87) 

  
 

Example 10.13 
Consider a uniform cantilevered elastic beam and its representation using Ti-
moshenko Beam Theory. (a) Determine the frequency equation for a uniform 
beam that is supported at its left end. (b) Evaluate the first five values of the 
natural frequency of a beam with 0.1Gr L = , for various values of the  
modulus ratio 0.1E G =k . Compare the results with those computed in Exam-
ple 10.12 using Rayleigh Beam Theory. 
 

Solution 
(a) 
The boundary conditions follow from Eqs. (9.140)–(9.143) as 
 

  (0, ) 0,     (0, ) 0w t tϕ= =  (a-1, 2) 
 

 0,     0s
x L x L

wEI k
x x
ϕ ϕ

= =

∂ ∂⎡ ⎤− = −⎢ ⎥∂ ∂⎣ ⎦
=  (a-3, 4) 

 
Substitution of Eq. (10.65) into Eqs. (a-1)–(a-4) gives the corresponding 
boundary conditions for the modal functions, 
 

 (0) 0,     (0) 0W ϑ= =  (b-1, 2) 
 

 ( ) 0,     ( ) ( ) 0L W L Lϑ ϑ′ ′= − =  (b-3, 4) 
 
We next impose Eqs. (b-1)–(b-4) on the general form of the modal functions 
given by Eqs. (10.83) and (10.84). This gives the set of algebraic equations  
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 1 3 0A A+ =  (c-1) 
 

 2 4 0g A g Aα β+ =  (c-2) 
 

 [ ] [ ]1 2 3 4cosh sinh cos sin 0g A L A L g A L A Lα βα α α β β β+ − + =  (c-3) 
 

 [ ] [ ]1 2 3 4( ) sinh cosh ( ) sin cos 0g A L A L g A L A Lα βα α α β β β− + − − − =  (c-4) 
 
where gα and gβ are given by Eqs. (10.85). Substituting Eqs. (c-1) and (c-2) into 
Eqs. (c-3) and (c-4) simplifies the calculation and gives two algebraic equations 
in the two constants A1 and A2. The equations are expressed in matrix form as 
 

 11 12 1

21 22 2

0
0

H H A
H H A

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦ ⎩ ⎭
 (d) 

where 
 11 cosh cosH g L gα β Lα α β β= +  (e-1) 

 
 ( )12 sinh sinH g Lα Lα α β β= +  (e-2) 

 
 21 ( ) sinh ( ) sinH g L gα β Lα α β β= − + −  (e-3) 

 
 22 ( ) cosh ( )( ) cosH g L g g gα β α β Lα α β β= − − −  (e-4) 

 
Now, for nontrivial solutions the determinant of the matrix of coefficients of 
Eq. (d) must vanish. This results in the frequency equation, 
 

 11 22 12 21( ; ) 0E H H H Hϖ = −F =  (f) 
  
which, after expanding, takes the form 
 

 
( ) ( ) ( )

( )

2 2 21 cosh cos

                                          2 sinh sin 0

g g E g g g g L L
g

g g g L

α β β α α β
β

α α β

ϖ β α α β α β

αβ β α α β

⎡ ⎤− + + − − −⎣ ⎦

⎡ ⎤ L− − + =⎣ ⎦

 (f΄) 

 
Equation (f) may be solved numerically for ϖ, for given material and geometric 
parameters. Then, for each root ϖj (j = 1, 2, …) of the frequency equation, the 
natural frequencies are found from Eq. (10.49) as 
  

  ( 1, 2,...)j j ac jω ϖ= =  (g) 
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The first row of Eq. (d) gives A2 in terms of A1 as 
  

 11
2

12

H
1A A

H
= −  (h) 

 
Now, substituting Eq. (h) into Eq. (c-2) gives A4 in terms of A1. Hence,  
 

 11
4

12

g H
1A A

g H
α

β

=  (i) 

  
Incorporating Eqs. (c-1), (h) and (i) into Eqs. (10.83) and (10.84) gives the mo-
dal functions for the cantilevered Timoshenko Beam in the form 
 

 ( ){ }
( )

( ) ( ) ( ) ( )11
1 ( )

12

( ) cosh cos sinh sin
j

j j j j
j j j jj

HW x A x x x g g x
H α βα β α β

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
 (j-1) 

 

 { }
( )

( ) ( ) ( ) ( ) ( ) 11
1 ( )

12

( ) sinh sin cosh cos
j

j j j j j
j j jj

H
jx A g x g x g x x

Hα β αϑ α β α
⎡ ⎤

= + − −⎢ ⎥
⎣ ⎦

β  (j-2) 

 
where we will choose ( )

1 1jA =  when 1R E> +  and ( )
1

jA i=  when 1R E< + . 
 
(b) 
The frequency equation, Eq. (f), can be rewritten in a form convenient for com-
putation by multiplying the first row of Eq. (d) by L2 and the second row by L 
and noting that 
 

 { }
1

21
2 (1 )GL r R Eα ω ⎡ ⎤= − +⎣ ⎦  (k-1) 

 

 { }
1

21
2 (1 )GL r R Eβ ω ⎡ ⎤= + +⎣ ⎦  (k-2) 

 

 ( ) ( )2 2 41 4 GR E rω= − +  (k-3) 

where 
 0ω ω ω=  (l-1) 

 

 4
0 EI mLω =  (l-2) 

and 
 G Gr r L=  (m) 
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The first five roots of the frequency equation are computed for various values 
of E using the MATLAB routine “fzero.” The results are summarized in Table 
E10.13. It is seen that the inclusion of transverse shear deformation lowers the 
predicted natural frequencies of the structure and that the effects are significant 
for frequencies other than the fundamental frequency, even for moderate values 
of the modulus ratio. It is also seen that the fundamental frequency predicted 
when the shear deformation is neglected (Rayleigh Theory) differs from that 
predicted by the Timoshenko Theory by 20% when the elastic modulus is lar-
ger than the effective shear modulus by a factor of ten. The data for the case 
study of a uniform cantilevered beam, contained in Tables E10.12 and E10.13, 
when taken together, provides a characterization of the influence of the rotatory 
inertia and shear deformation.  
 
 
   Table E10.13 
The first five natural frequencies of a uniform cantilevered Timoshenko Beam with 

0.1Gr = , for various values of the modulus ratio   

E E G= k     1 0ω ω     2 0ω ω     3 0ω ω      4 0ω ω     5 0ω ω  
       0.0*     3.437*     19.14*     46.49*      78.21*     111.8* 
       0.1     3.430     18.92     45.73      76.73     109.7 
       1.0     3.366     17.23     39.79      64.35     89.89 
       5.0     3.116     12.90     27.41      40.38     50.75 
     10.0     2.864     10.48     21.46      30.52     37.29 
*Rayleigh Theory 

 
 
 

10.7 NORMALIZATION OF THE MODAL FUNCTIONS 

It was seen in Section 10.1 that the modal functions are unique to within a constant 
multiplier. In prior sections we implicitly set the constant equal to one. To alleviate 
this arbitrariness, and to allow for a uniform measure of the modal functions, we may 
choose to normalize the modal functions in a fashion that is analogous to that used for 
discrete modal vectors. That is, we shall divide the functions by their magnitudes thus 
rendering them unit functions. As for the discrete case, this may be done in the con-
ventional sense or in the weighted sense as delineated below. 
 

Conventional Scalar Product as Metric 
To render a modal function a unit function (a function of unit magnitude) in the con-
ventional sense, we divide the function by its magnitude as measured by the square 
root of its conventional scalar product with itself. Thus, when defined in this manner, 
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the corresponding normal mode is related to the original modal function by the rela-
tion 

 
( ) ( )

( )
( ) ( ) ( )

( ) ( )( )
( ) ,

j j
j

j j j

xx
x

= =
U UU
U U U

x
 (10.88) 

 
where, from Eq. (9.19), the conventional scalar product of the original modal func-
tion with itself is given by 
 

 2( ) ( ) ( )

0
,

L
j j j ( )x dx= ∫U U U  (10.89) 

 
It is customary to drop the over-bar when consistently using normal modes. 
 

Weighted Scalar Product as Metric 
It is often convenient to choose the weighted scalar product to provide the metric 
(i.e., “length scale”) of a function. If this is done, then the corresponding normal 
mode is given by 

 
( ) ( )

( )
( ) ( ) ( )

( ) ( )( )
,

j j
j

j j j

x xx = =
U UU
U U Um m

 (10.90) 

 
where, from Eq. (9.29), the scalar product of the modal function with itself, measured 
with respect to the mass operator m, is given by 
  

 ( ) ( ) ( ) ( )

0
, ( )

L
j j j j ( )x x dx= ∫U U U U

m
m  (10.91)  

 
As for the conventional case discussed earlier, it is customary to drop the over-bar 
when consistently using normal modes.  
 
 

Example 10.14 
Determine the normal modes for the elastic rod of Example 10.1, (a) by nor-
malizing in the conventional sense and (b) by normalizing with respect to the 
mass. 
 
Solution 
From Example 10.1, the modal functions for the rod are 
 

  (a) ( ) ( )
2( ) sin    ( 1, 2,...)j j

jU x A x jβ= =
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(a) 
We first compute the magnitude of the jth modal function. Hence, 
 

 
( )22( ) ( )2 ( )2 2 2

2
0 0

( ) sin
2

jL L
j j j

j
A LU U x dx A x dxβ= = =∫ ∫  (b) 

 
We next divide the modal function of Eq. (a) by its magnitude to obtain the jth 
normal mode, 
 

 
( )
2( )

( )2
2

sin 2( ) sin
2

j
jj

jj

A x
U x x

LA L

β
β= =   (c) 

 
(b) 
Computing the magnitude of the jth modal function using the weighted scalar 
product gives 
 

 
( )22( ) ( ) ( ) ( )2 2 2

2
0 0

( ) ( ) sin
2

jL L
j j j j

jm

A mLU U x mU x dx A m x dxβ= =∫ ∫ =  (d) 

 
The jth normal mode is then 
 

 
( )
2( )

( )2
2

sin 2( ) sin
2

j
jj

jj

A x
U x

mLA mL

β
xβ= =  (e) 

 
 
 

10.8 ORTHOGONALITY OF THE MODAL FUNCTIONS 

The modal functions for a given system correspond to fundamental motions that con-
stitute the response of that system. It will be seen that any motion, forced or free, can 
be described as a linear combination of the modal functions. To establish this we 
must first establish the mutual orthogonality, as defined in Section 9.1.2, of the modal 
functions for the systems of interest. In particular, we shall consider the class of one-
dimensional continua that includes the mathematical models for longitudinal motion 
of elastic rods, torsional motion of elastic rods, transverse motion of flexible strings 
and cables, transverse motion of Euler-Bernoulli Beams and Beam-Columns, 
Rayleigh Beams and Timoshenko Beams. 
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10.8.1 Systems Whose Mass Operators Are Scalar Functions 

In this section we establish the general condition of orthogonality of the modal func-
tions for continuous systems whose mass operator corresponds to a single scalar 
function of the spatial coordinate. These systems include the mathematical models for 
longitudinal motion of elastic rods, torsional motion of elastic rods, transverse motion 
of strings and cables, and transverse motion of Euler-Bernoulli Beams.  

Systems Described by a Smooth Mass Distribution 
To establish the conditions for the mutual orthogonality of the modal functions for 
the class of systems under consideration we proceed in a fashion analogous to that 
which was done in Section 7.3.2 for discrete systems.  
 It was seen in Section 10.1 that the general free-vibration problem is reduced to 
finding the frequency-mode pairs that satisfy the eigenvalue problem defined by Eq. 
(10.3). Let us consider the lth and jth natural frequencies and corresponding modal 
functions 
 
 2 ( ) 2 ( ), ( )   and    , (l j

l j )x xω ωU U  
 
Each pair represents a solution to Eq. (10.3). Therefore 
 
 ( ) 2 ( )( ) ( )l

l
lx xω=U Uk m  (10.92) 

and 
 ( ) 2 ( )( ) ( )j

j
jx xω=U Uk m  (10.93) 

 
Let us multiply Eq. (10.92) by U(j)(x)dx and Eq. (10.93) by U(l)(x)dx. Integrating the 
resulting expressions over [0, L] results in the identities 
 

  (10.94) ( ) ( ) 2 ( ) ( )

0 0

L L
j l j l

ldx dxω=∫ ∫U U U Uk m

m

and 

  (10.95) ( ) ( ) 2 ( ) ( )

0 0

L L
l j l j

jdx dxω=∫ ∫U U U Uk

 
Subtracting Eq. (10.95) from Eq. (10.94) gives 
 

  (10.96) 

( ) ( ) ( ) ( )

0 0

2 ( ) ( ) 2 ( ) ( )

0 0
                

L L
j l l j

L L
j l l j

l j

dx dx

dx dxω ω

−

= −

∫ ∫
∫ ∫

U U U U

U U U U

k k

m m

where 
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  (10.97) ( ) ( ) ( ) ( ) ( )

0 0

L L
jl j l l jB dx≡ −∫ ∫U U U Uk k k dx

x dx

 
will depend on the boundary conditions for the modal functions. The development to 
this point applies to systems with differential mass operators as well as scalar func-
tion mass operators. In the remainder of this section we restrict our attention to sys-
tems whose mass operators are single scalar functions. More complex systems are 
considered in Sections 10.8.4 and 10.8.5. 
 For systems whose mass operator is given by a smooth scalar function, 
m = m(x), Eq. (10.96) reduces to the form 
 

  (10.98) ( )( ) 2 2 ( ) ( )

0
( ) ( ) ( )

L
jl j l

l jB x m xω ω= − ∫k U U

 
where ( )jlBk is defined by Eq. (10.97). Therefore, if 
 
    ( ) 0jlB =k  (10.99) 
 
then, for distinct frequencies ( 2 2

l jω ω≠ ),  
 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) (

L
l j l j

m
x m x x dx) 0≡ =∫U U U U  (10.100) 

and 
 ( ) ( )( ) ( )l j

m
x x⊥U U  

 
It follows from Eq. (10.94) that if Eq. (10.100) holds then 
 

 ( ) ( ) ( ) ( )

0
,

L
l j l j dx 0≡ =∫U U U U

k
k  (10.101) 

and 
 ( ) ( )( ) ( )l jx x⊥U U

k

 

 
as well. The question of mutual orthogonality of the modal functions is thus reduced 
to demonstrating that the boundary conditions for a given system satisfy Eq. (10.99).  

Continuous Systems with One or More Concentrated Mass Points 
The conditions for, and statements of, orthogonality described above hold equally 
well for one-dimensional continua that are described by a smooth mass distribution 
except at one or more isolated points, and require only minor differences in represen-
tation and interpretation. To demonstrate this consider a continuous structure such as 
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a rod or beam whose mass distribution is smooth except at a single point, say at x = L, 
where the mass at that point is  This situation corresponds to a smooth structure 
with a point mass attached to its edge (Figure 10.6). For this case the mass operator 
may be expressed in the form 

.m

 
 ( ) ( ) ( )x m x x Lδ= = + −mm m  (10.102) 
 
where m(x) is the mass distribution of the structure on 0 < x < L and ( )xδ  is the 
Dirac Delta Function (see Chapter 4). Substitution of Eq. (10.102) into Eq. (10.100)
gives the evaluation of the scalar product and corresponding statement of orthogonal-
ity for a structure possessing a point mass as 
 

 

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

, ( )

                   ( ) ( ) ( ) 0

L
l j l j

L
l j l j

x dx

m x dx L L

≡

= +

∫
∫

m
U U U m U

U U U Um =
 (10.103) 

 
Thus, for such situations, all prior discussions concerning the conditions of orthogo-
nality hold, with the scalar product taken with respect to the mass distribution being 
interpreted in this sense. Similar statements may be made if the concentrated mass is 
located at an interior point of the structure. 
 The above development is applied to second order systems and to Euler-
Bernoulli Beams and Beam-Columns in Sections 10.8.2 and 10.8.3. The conditions 
for, and interpretation of, the mutual orthogonality of the modes for systems with 
more complex mass operators, specifically Rayleigh Beams and Timoshenko Beams, 
are developed separately in Sections 10.8.4 and 10.8.5.  
 
 

10.8.2  Second Order Systems 

In this section we examine the mutual orthogonality of the modal functions corre-
sponding to the longitudinal motion of elastic rods, torsional motion of elastic rods 
and transverse motion of flexible strings and cables. In each case, the mass operator 
is a scalar function of the axial coordinate, and the weighted scalar product with re-
spect to the stiffness operator is of the form 
 

          Figure 10.6  Smooth structure with attached mass. 
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( )

( ) ( ) ( )

0 0
( )

lL L
j l j d ddx k x dx

dx dx
= −∫ ∫ UU U Uk  (10.104) 

 
Integrating by parts twice gives the relation 
 

 ( ) ( ) ( ) ( ) ( )

0 0

L L
j l l jdx dx B=∫ ∫U U U U kk k jl+  (10.105) 

where 

 
( ) ( )

( ) ( ) ( )

0 0

L L
l j

jl j ld dB k k
dx dx

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫
= −⎢ ⎥ ⎢⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

U UUk ⎥U  (10.106) 

 
It follows from Eqs. (10.99) and (10.106) that the modal functions for the continuous 
systems under consideration are mutually orthogonal if the boundary conditions are 
such that the terms in brackets of Eq. (10.106) sum to zero. The problem of orthogo-
nality is thus reduced to properties of the boundary conditions for a given system. We 
next examine these conditions for individual types of motion. 
 

Longitudinal Motion of Elastic Rods 
Let us recall from Section 9.3 that, for axial motion of elastic rods, u(x,t) u(x,t), 
U(x) → U(x), k k

→
→ a = EA and m = m(x) = ρA. Let us also recall that the membrane 

force, N, is related to the displacement gradient as 
 

    a
uN k EA u
x x

∂ ∂
= =

∂ ∂
 (10.107) 

 
Further, from our discussions in this chapter, the free vibration response is of the 
form 

 ( )

1

( , ) ( ) ji tj

j

u x t U x e ω
∞

=

= ∑  (10.108) 

 
It follows, upon substitution of Eq. (10.108) into Eq. (10.107), that 
 

 ( )

1

( , ) ( ) ji tj

j

N x t N x e ω
∞

=

= ∑  (10.109) 

where 

 
( )

( ) ( )
j

j
a

dUN x k
dx

≡  (10.110) 
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will be referred to as the modal membrane force. Incorporating this identification into 
Eqs. (10.99) and (10.106) gives the condition for the mutual orthogonality of the mo-
dal functions for longitudinal motion of elastic rods as 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

                         (0) (0) (0) (0) 0

j l l j

j l l j

N L U L N L U L

N U N U

⎡ ⎤−⎣ ⎦
⎡ ⎤− − =⎣ ⎦

 (10.111) 

 
It may be seen that Eq. (10.111) will be satisfied if, at each boundary, the work of the 
modal membrane force of the jth mode going through the deflections of the lth mode is 
equal to the work of the modal membrane force of the lth mode going through the 
deflections of the jth mode. It is readily seen that this condition is satisfied trivially for 
the homogeneous boundary conditions 
  
 (0) 0  or  (0) 0U N= =  (10.112) 
and 
 ( ) 0  or  ( ) 0U L N L= =  (10.113) 
 
In summary, if the boundary conditions of an elastic rod are such that Eq. (10.111) is 
satisfied, then the modal functions are orthogonal as follows: 
 

 ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) ( ) 0    (

L
l j l j

l jm
U U U x m x U x dx )ω ω= =∫ ≠  (10.114) 

 

 { }( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    (

L
l j l j

l j
dU U U x EAU x dx
dx

ω ω′= =∫k
)≠  (10.115) 

  
 
 

Example 10.15 
Consider the elastic rod with a concentrated mass at its free end discussed in 
Example 10.2. Show that the modal functions for longitudinal motion of the 
rod are mutually orthogonal. 
 
Solution 
To establish the othogonality of the modal functions we must show that the 
bracketed terms of Eq. (10.111) sum to zero. For the given support condition 
 
 U(0) = 0 (a) 
 
so the second bracketed expression of Eq. (10.111) is seen to vanish identi-
cally. If we consider the concentrated mass to be part of the rod, as discussed at 
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the end of Section 10.8.1, then the mass operator and distribution is given by 
Eq. (10.102). Viewing the structure in this sense, the boundary condition at the 
right of the point mass (at x L+= ) is then 
 

 ( ) 0N L+ =  (b) 
 
The first bracketed expression of Eq. (10.111) is thus seen to vanish as well.  
The modal functions are therefore mutually orthogonal with respect to the mass 
in the sense of Eq. (10.103), and are therefore orthogonal with respect to the 
stiffness operator in this sense as well. 
 Suppose, instead, that we had considered the rod and point mass as sepa-
rate structures. From Eq. (10.107) and Eq. (b) of Example 10.2, the boundary 
condition at x = L−  is now 
 

 2 2( ) ( ) ( ) ( )a aN L k U L k U L U L
m

β ω′= = =
m

m  (c) 

 
Substitution of Eqs. (a) and (c) into Eq. (10.111) results in the statement  
 

 2 2 ( ) ( )( ) ( ) ( ) 0j l
j l U L U Lω ω− =m  (d) 

 
which is not generally satisfied if the tip mass is free to move. On this basis, we 
might conclude that the modal functions are not mutually orthogonal. How-
ever, this simply means that the modal functions do not satisfy Eq. (10.100) on 
the interval 0 < x < L−. We would find, by direct calculation, that the modal 
functions do satisfy Eq. (10.103) and are thus mutually orthogonal on the do-
main [0, L+] in that sense. 

 
 
 

Torsional Motion of Elastic Rods 
For the case of torsional motion of rods, the vibration problem is described by the 
angular displacement and the internal torque. We recall from Section 9.4 that, for 
such motion, k = kT = GJ and m = Jρ . Thus, in the conditions for general and second 
order systems described in Section 10.1 and at the beginning of this section, u(x,t) 

θ(x,t), U(x)  Θ(x), and m  J→ → → ρ = ρJ. Recall from Section 9.4 that the internal 
torque, ( , )x tT , is related to the gradient of the angular displacement, ( , )x tθ , by the 
relation 

 ( , ) Tx t k GJ
x x
θ θ∂ ∂

= =
∂ ∂

T  (10.116) 

 
Further, from earlier discussions, the free vibration response is of the general form 
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 ( )

1

( , ) ( ) ji tj

j

x t x ωθ
∞

=

= Θ∑ e  (10.117) 

 
It is seen, upon substitution of Eq. (10.117) into Eq. (10.116), that 
 

 ( )

1

( , ) ( ) ji tj

j

x t x ω
∞

=

= ∑T T e  (10.118) 

where 

 
( ) ( )

( ) ( )
j j

j
T

d dx k GJ
dx dx
Θ Θ

≡ =T  (10.119) 

 
will be referred to as the modal torque. Incorporating this identification into Eqs. 
(10.99) and (10.106) gives the condition for the mutual orthogonality of the modal 
functions for torsional motion of elastic rods as 
 

      
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

                        (0) (0) (0) (0) 0

j l l j

j l l j

L L L L⎡ ⎤Θ − Θ⎣ ⎦
⎡ ⎤− Θ − Θ =⎣ ⎦

T T

T T
 (10.120) 

 
It is seen that Eq. (10.120) will be satisfied if, at each boundary, the work of the mo-
dal torque of the jth mode going through the rotations of the lth mode is equal to the 
work of the modal torque of the lth mode going through the rotations of the jth mode. 
The condition of orthogonality, Eq. (10.120), is satisfied trivially for the homogene-
ous boundary conditions 
  
 (0) 0  or  (0) 0Θ = T =  (10.121) 
and 
 ( ) 0  or  ( ) 0L LΘ = T =  (10.122) 
 
In summary, if the boundary conditions of an elastic rod are such that Eq. (10.120) is 
satisfied, then the modal functions are mutually orthogonal as follows: 
 

  ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    (

L
l j l j

l jm
x J x dx )ρ ω ωΘ Θ = Θ Θ = ≠∫  (10.123)  

 

 { }( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    (

L
l j l j

l j
dx GJ x dx
dx

ω ω′Θ Θ = Θ Θ = ≠∫k
)  (10.124)  
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Example 10.16 
Show that the modal functions corresponding to the system of Example 10.4 
are mutually orthogonal. 
 
Solution 
From Eq. (a-1) of Example 10.4, the boundary condition at the elastic wall 
gives 

 
0

0 (0) (0)i t i t

x

L L e
x

eω ωθ αθ α
=

∂⎡ ⎤ ′− = = Θ − Θ⎢ ⎥∂⎣ ⎦
  

  
The corresponding modal boundary condition at the left end of the rod is thus 
 

 (0) (0)L α′Θ = Θ  (a) 
 
From condition (a-2) of Example 10.4, the boundary condition arising from the 
presence of the rigid wall at the right end of the rod follows as 
 

 ( , ) 0 ( )     ( ) 0i tL t L e Lωθ = = Θ ⇒ Θ =  (b) 
 
Substituting Eq. (a) into Eq. (10.119) gives the relation 
 

 ( ) ( )(0) (0)j j
Tk Lα= ΘT  (c) 

 
Finally, substituting of Eqs. (b) and (c) into the left hand side of Eq. (10.120) 
gives 
 

 [ ] ( ) ( ) ( ) ( ) ( )0 0 (0) (0) (0) (0) 0j i i j
Tk Lα ⎡− − Θ Θ − Θ Θ =⎣ ⎤⎦  (d) 

 
It is seen that Eq. (10.120) is satisfied, and thus that the modal functions are 
mutually orthogonal with respect to both m and k. 

 
 
 

Transverse Motion of Strings and Cables 
When considering the transverse motion of flexible strings and cables, the motion is 
characterized by the transverse displacement and the mass by the mass per unit 
length. Hence, for these systems, u(x,t) w(x,t), U(x)  W(x) and m = m(x) in the 
general statements of Section 10.1. We also recall from Section 9.5 that the trans-
verse shear force, Q, is related to the displacement gradient by the relation 

→ →

 



10│ Free Vibration of One-Dimensional Continua 645 

 ( , ) wQ x t N
x

∂
=

∂
 (10.125) 

 
where N is the tension (tensile membrane force). Substituting the free vibration re-
sponse 

 ( )

1

( , ) ( )j i

j

w x t W x e tω
∞

=

= ∑  (10.126) 

 
into Eq. (10.125) gives the transverse shear force as 
 

  (10.127) ( )

1

( , ) ( ) ji tj

j

Q x t Q x e ω
∞

=

= ∑
where 
 ( ) ( )( ) ( )j jQ x N W x′=  (10.128) 
 
will be referred to as the modal shear force. Incorporating this identification into Eqs. 
(10.99) and (10.106) gives the condition for the mutual orthogonality of the modal 
functions for transverse motion of strings and cables as 
 

       
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

                        (0) (0) (0) (0) 0

j l l j

j l l j

Q L W L Q L W L

Q W Q W

⎡ ⎤−⎣ ⎦
⎡ ⎤− − =⎣ ⎦

 (10.129) 

 
It is seen that this condition will be satisfied if, at each boundary, the work of the 
modal shear force of the jth mode going through the deflections of the lth mode is 
equal to the work of the modal shear force of the lth mode going through the deflec-
tions corresponding to the jth mode. Equation (10.129) is satisfied trivially for the 
homogeneous boundary conditions 
 
 (0) 0  or  (0) 0W Q= =  (10.130) 
and 
 ( ) 0  or  ( ) 0W L Q L= =  (10.131) 
 
In summary, if the boundary conditions of an elastic rod are such that Eq. (10.129) is 
satisfied, then the modal functions are mutually orthogonal as follows 
 

 ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) ( ) 0    (

L
l j l j

l jm
W W W x m x W x dx )ω ω= =∫ ≠  (10.132) 
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  ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    (

L
l j l j

l jW W W x N W x dx )ω ω′′= =∫k
≠  (10.133) 

 

Example 10.17 
Show that the modal functions for the system of Example 9.6-ii are mutually 
orthogonal. 
 
Solution 
From Eq. (10.125) and (10.128), and Eqs. (d) and (e-ii) of Example 9.6, 
 

 (0, ) 0 (0)     (0) 0i tw t W e Wω= = ⇒ =  (a) 
 

 ( , ) 0 ( )     ( ) 0i tQ L t Q L e Q Lω= = ⇒ =  (b) 
 
Conditions (a) and (b) respectively correspond to the first condition of  Eq. 
(10.130) and the second condition of Eq. (10.131). It is readily seen that Eq. 
(10.129) is satisfied. This in turn shows that Eq. (10.99) is satisfied and, there-
fore, that Eqs. (10.100) and (10.101) are satisfied. Hence, 
 

 ( ) ( ) ( ) ( )

0
, 0  ( , 1, 2,3,...)

L
j l j l

m
W W W mW dx l j≡ = =∫  (c) 

 
 ( ) ( )    ( ) ( )   ( , 1, 2,3,...)j l

m
W x W x l j⇒ =⊥  

and 

 ( ) ( ) ( ) ( )

0
, 0  ( , 1, 2,3,...)

L
j l j lW W W W dx l j≡ = =∫k

k  (d) 

 
 ( ) ( )  ( ) ( )   ( , 1, 2,3,...)j lW x W x l j⇒ =⊥

k

  

 

 
 

10.8.3  Euler-Bernoulli Beams and Beam-Columns 

The flexural motion of beams and beam-columns is characterized by the transverse 
displacement of the neutral axis of the structure. In this section we consider the mu-
tual orthogonality of the modal functions for Euler-Bernoulli Beams and Euler-
Bernoulli Beam-Columns with constant axial load. For these systems, u(x,t) → w(x,t) 
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and U(x) W(x) in the general statements of Section 10.1 and the mass distribution 
is characterized by the mass per unit length, m(x). 

→

Euler-Bernoulli Beams 
For Euler-Bernoulli Beams the local stiffness corresponds to the bending stiffness k = 
kb = EI  and the stiffness operator is the fourth order differential operator defined by 
  

 
2 2

2 EI 2x x
∂ ∂

=
∂ ∂

k   

 
Therefore, the weighted scalar product taken with respect to the stiffness operator is 
given by 

 
2 2

( ) ( ) ( ) ( )
2 2

0 0

L L
l j l j

b
d dW W dx W k W dx
dx dx

=∫ ∫k  (10.134) 

 
Integrating Eq. (10.134) by parts four times results in the identity 
 

  (10.135) ( ) ( ) ( ) ( ) ( )

0 0

L L
l j j lW W dx W W dx B=∫ ∫ kk k lj+

where 

 
{ }

{ }

( ) ( ) ( ) ( ) ( )

00

( ) ( ) ( ) ( )

0 0

                            

L L
lj l j l j

LL
l j j l

dB W EI W W EI W
dx

dEI W W W W EI
dx

⎡ ⎤ ⎡ ⎤′′ ′ ′′= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤′′ ′ ′′+ − ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

k

 (10.136) 

 
From the discussion of Section 10.8.1 for systems with a scalar mass operator, we 
need only show that ( ) 0ljB =k  to establish the mutual orthogonality of the modal 
functions for Euler-Bernoulli Beams. Recall from Section 9.6 that for Euler-Bernoulli 
Beams the bending moment and transverse shear force are related to the transverse 
displacement by the identities 
 

 
2

2( , ) wM x t EI
x

∂
= −

∂
 (10.137) 

 

 
2

2( , ) M wQ x t EI
x x x

⎧ ⎫∂ ∂ ∂
= = − ⎨ ⎬

∂ ∂ ∂⎩ ⎭
 (10.138) 

 
Further, the free vibration response is of the general form 
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  (10.139) ( )

1

( , ) ( ) j

N
i tj

j

w x t W x e ω

=

= ∑
 
where W(j)(x) corresponds to the jth modal function. Substitution of Eq. (10.139) into 
Eqs. (10.137)  and (10.138) results in the relations 
 

 ( )

1

( , ) ( ) ji tj

j

M x t M x e ω
∞

=

= ∑  (10.140) 

and 

  (10.141) ( )

1

( , ) ( ) ji tj

j

Q x t Q x e ω
∞

=

= ∑
where 
 ( ) ( )( ) ( )j jM x EI W x′′= −  (10.142) 
 
is the modal bending moment and 
 

 { }( ) ( ) ( )( ) ( ) ( )j j jdQ x M x EI W x
dx

′= = − ′′

=

 (10.143) 

 
is the modal shear force. Incorporating Eqs. (10.142) and (10.143) into Eqs. (10.136) 
and (10.99) yields the condition for orthogonality, 
 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
0

lj j i i j j i i j

x L x

j i i j j i i j

x L x

B Q W Q W Q W Q W

M W M W M W M W

= =

= =

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′ ′ ′ ′− − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k

  (10.144) 
 
The modal functions for an Euler-Bernoulli Beam are mutually orthogonal if Eq. 
(10.144) is satisfied. It may be seen that this is so if the work of the modal shear and 
modal moment for the lth mode going through the deflections and rotations for the jth 

mode is equal to the work of the modal shear and moment for the jth mode going 
through the deflections and rotations for the lth mode. It is observed that Eq. (10.144) 
is identically satisfied for the homogeneous boundary conditions 
 
 (0) 0  or  (0) 0W Q= =  (10.145) 
 
 (0) 0  or  (0) 0W M′ = =  (10.146) 
 
 ( ) 0  or  ( ) 0W L Q L= =  (10.147) 
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 ( ) 0  or  ( ) 0W L M L′ = =  (10.148) 
 
Structures with other boundary conditions must be considered individually.  
 In summary, if the boundary conditions of an Euler-Bernoulli Beam are such 
that Eq. (10.144) is satisfied, then the modal functions are mutually orthogonal as 
follows: 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) (

L
l j l j

m
W W W x m x W x dx) 0= =∫  (10.149) 

                                                                                          ( )  2 2
l jω ω≠

  { }
2

( ) ( ) ( ) ( )
2

0
, ( ) (

L
l j l jdW W W x EI W x dx

dx
′′= ∫k

) 0=  (10.150) 

 
 

Example 10.18 
Consider an Euler-Bernoulli Beam that is clamped-fixed on its left edge and 
sits on an elastic foundation of stiffness kL at its right edge as shown. Show that 
the modal functions are mutually orthogonal. 

 

 
Solution 
The physical boundary conditions for the beam are  
 

 
0

(0, ) 0 ,    0
x

ww t
x =

∂
= =

∂
 (a-1, 2) 

 
 ( , ) 0 ,    ( , ) ( , )LM L t Q L t k w L t= = −  (a-3, 4) 

 
The spring force imparted by the deflected spring on the right edge of the beam 
is equivalent to an applied shear force. The last condition then follows from the 
sign convention introduced in Section 9.6 (Figure 9.12). This condition also 
arises for the structure of Example 9.8. The boundary conditions for the modal 
functions are determined by substituting the assumed form of the solution, Eq. 
(10.28), into the physical boundary conditions established above. Hence,  
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  (b-1) (0)     (0) 0i tW e Wω ⇒ =

=
 

  (b-2) (0)     (0) 0i tW e Wω′ ′⇒
 

 ( , ) 0 ( )     ( ) 0i tM L t M L e M Lω= = ⇒ =

L

 (b-3) 
 

  (b-4) ( ) ( )     ( ) ( )i t i t
LQ L e k W L e Q L k W Lω ω= − ⇒ = −

 
Substituting Eqs. (b-1)–(b-4) into the left hand side of Eq. (10.144) gives 
 

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

0 0

                0 0 0 0 0

l j l j j l
L Lx x L

j l l j

xx L

Q Q k W W k W W

W W M M

= =

==

⎡ ⎤⎡ ⎤⋅ − ⋅ − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤′ ′ ⎡ ⎤+ ⋅ − ⋅ − ⋅ − ⋅ =⎣ ⎦⎢ ⎥⎣ ⎦

 (e) 

 
The left-hand side of Eq. (e) clearly vanishes. Equation (10.144) is therefore 
satisfied and the corresponding modal functions are thus mutually orthogonal 
with respect to both m and k. 

   
 
 

Beam-Columns with Constant  Membrane Force 
We next consider geometrically nonlinear beams with constant membrane force. 
(Structures for which the membrane force is negative are typically referred to as 
beam-columns.) For structures of this type, the coupling between the axial forces and 
transverse motion is accounted for, though the axial motion is considered much 
smaller than the transverse motion as discussed in Section 9.7. For these structures, 
the stiffness operator for the linear beam is augmented by the contribution of the 
component of the constant membrane force, N0, in the transverse direction (Section 
9.7). From Eq. (9.168), the stiffness operator for the geometrically nonlinear beam is 
 

 
2 2

02 2EI N
2

2x x x
∂ ∂

= −
∂

∂ ∂ ∂
k   

 
Using this operator in Eq. (10.135) and integrating by parts adds the following terms 
to Eq.(10.136), 
 

  (10.151) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

0 0

LL
l j l j l jW N W W N W W N W dx⎡ ⎤′ ′ ′′− +⎢ ⎥⎣ ⎦ ∫

 
For the nonlinear beam, the transverse shear is given by 
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2

02( , ) wQ x t EI N w
x xx

∂ ∂
= − −

∂
∂ ∂∂

  (10.152) 

 response, Eq. (10.139) into Eq. 
0.152) gives the corresponding modal shear force 

 

 
(See Section 9.7.) Substitution of the free vibration
(1
 

{ }( ) ( ) ( )
0( ) ( ) ( )j jdQ x EI W x N W x

dx
j′′ ′= − −  (10.153) 

his also applies to the homogeneous conditions defined by Eqs. (10.145) –  
0.14

0.144) is satisfied, then the modal functions are mutually orthogonal as follows: 

 

 
The modal moment remains as given by Eq. (10.142). Paralleling the remainder of 
the development for linear beams yields the identical form for the modal moment 
given by Eq. (10.142) and the corresponding condition for orthogonality, Eq. 
(10.144). However, it is understood that the modal shear is now given by Eq. 
(10.153). T
(1 8). 
 In summary, if the boundary conditions of a beam-column are such that Eq. 
(1
 

( ) ( ) ( ) ( )

0m
, ( ) ( ) ( ) 0

L
l j l jW W W x m x W x dx= =∫  (10.154)  

                                                                                          

 

2 2( )l jω ω≠  

{ }
2

( ) ( ) ( ) ( ) ( )
02

0
, ( )

L
l j l j jdW W W x EI W N W dx

dx
⎡ ′′ ′′= +⎢ ⎥
⎣ ⎦∫k

0
⎤

=  (10.155)  

 
 

Example 10.19 
Let the simply supported beam-column 
of Example 9.12 be subjected to the 
static compressive load P0 as indicated. 
Show that the corresponding modal 
functions are mutually orthogonal. 
 
Solution 
To obtain the modal boundary conditions we substitute the general form of the 
free vibration response of the beam-column into Eqs. (c-1)–(d-2) of Example 
9.12. Hence, 
 

 (0, ) 0 (0)     (0) 0i tw t W e Wω= = ⇒ =  (a) 
 
 (0, ) 0 (0)     (0) 0i tM t M e Mω= = ⇒ =  (b) 
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 ( , ) 0 ( )     ( ) 0i tw L t W L e W Lω= = ⇒ =  (c) 
 
 ( , ) 0 ( )     ( ) 0i tM L t M L e M Lω= = ⇒ =  (d) 
  

Upon substitution of Eqs. (a)–(d) into Eq. (10.144) it is seen that the identity is 
satisfied. Therefore, the modal functions are mutually orthogonal in the sense 
of Eqs. (10.154) and (10.155). 

 
 
 
 

10.8.4 Rayleigh Beams 

In this section we establish the definitions of, and conditions for, the mutual orthogo-
nality of the modal functions for Rayleigh Beams. Since the mass operator for these 
structures is a differential, rather than a scalar, operator we must also establish the 
explicit condition for the corresponding scalar product to be commutative. From Sec-
tion 9.6.4 we have that the mass operator for Rayleigh Beams is 
  

 ( ) ( )m x I x
x xρ

∂ ∂
= −

∂ ∂
m  (10.156) 

 
The weighted scalar product of the lth and jth modal functions taken with respect to the 
mass operator is then 
 

 ( )( ) ( ) ( ) ( ) ( ) ( )

0 0 0

L L L
l j l j l jW W dx W mW dx W I W dxρ

′′= −∫ ∫ ∫m  (10.157) 

 
Integrating the second expression on the right hand side by parts gives the identity 
 

 

( ) ( ) ( ) ( )

00

( ) ( ) ( ) ( )

0
                                   

L L
l j l j

L
l j l j

W W dx W I W

W mW W I W dx

ρ

ρ

⎡ ⎤′= − ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′+ +⎢ ⎥⎣ ⎦

∫
∫

m
 (10.158) 

Similarly, 

 

( ) ( ) ( ) ( )

00

( ) ( ) ( ) ( )

0
                                   

L L
j l j l

L
j l j l

W W dx W I W

W mW W I W dx

ρ

ρ

⎡ ⎤′= − ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′+ +⎢ ⎥⎣ ⎦

∫
∫

m
 (10.159) 
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The bending moment for a Rayleigh Beam is given by the same constitutive relation 
as for Euler-Bernoulli Beams, Eq. (10.137). Recall from Section 9.6.2, however, that 
the constitutive relation for the transverse shear force is modified due to the effects of 
the rotatory inertia. Rewriting Eq. (9.97) we have 
 

 
2

2

( , )( , ) M x t wQ x t I
x xtρ

∂ ∂ ∂
= +

∂ ∂∂
 (10.160) 

 
Substituting the general form of the free vibration response, Eq. (10.139), into Eq. 
(10.160) results in a relation of the form of Eq. (10.141), where now 
 

 ( ) ( ) 2 ( )( ) ( ) ( )j j j
jQ x M x I W xρω′ ′= −  (10.161) 

 
and ( )jM is defined by Eq. (10.142). Substituting Eqs. (10.135), (10.136), (10.158) 
and  (10.159) into Eq. (10.96) and incorporating Eqs. (10.142) and (10.161) results in 
the identity 
  

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

2 2 ( ) ( ) ( ) ( )

0
                   

LLj l l j j l l j

L
j l j l

j l

Q W Q W M W M W

W mW W I W dxρω ω

⎡ ⎤′ ′⎡ ⎤− − + −⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′= − +⎢ ⎥⎣ ⎦∫
 (10.162) 

 
It may be seen that if  
 

  (10.163) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00
0

L Lj l l j j l l jM W M W Q W Q W⎡ ⎤′ ′ ⎡− − −⎣⎢ ⎥⎣ ⎦
⎤ =⎦

⎤ =⎥⎦

⎤

 
where the modal shear force is defined by Eq. (10.161), then Eq. (10.162) reduces to 
the statement 
 

   ( )2 2 ( ) ( ) ( ) ( )

0
0

L
j l j l

j l W mW W I W dxρω ω ⎡ ′ ′− +⎢⎣∫
 
It then follows that, for distinct natural frequencies,  
 

 ( ) ( ) ( ) ( )

0
0

L
j l j lW mW W I W dxρ

⎡ ′ ′+ =⎢⎣∫ ⎥⎦
 (10.164) 

 
The modal functions for Rayleigh Beams are mutually orthogonal with respect to the 
mass in this sense. It is convenient to express Eq. (10.164) in the equivalent matrix 
form 
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 ( ) ( ) ( ) ( )

0
,

L
j l j l dx 0= =∫m

W W W mWT  (10.165) 

where 

 
0

0
m

Iρ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
m  (10.166) 

and 

 
( )

( )

( )

( )

( )

j
j

j

W x

W x

⎧ ⎫⎪ ⎪= ⎨ ⎬
′⎪ ⎪⎩ ⎭

W  (10.167) 

 
The matrix form reveals the general nature of the statement of orthogonality with 
respect to the mass for Rayleigh Beams. The corresponding statement of orthogonal-
ity with respect to the stiffness operator is obtained next.  
 The eigenvalue problem for Rayleigh Beams may be stated in the form 
 
 ( ) 2 ( )j j

jW ω=k mW  (10.168) 
where 

 
2 2

2 EI 2x x
∂ ∂

=
∂ ∂

k  (10.169) 

 
and m is given by Eq. (10.156). Multiplying Eq. (10.168) by W(l) and integrating over 
the domain of definition of the beam gives the identity  
 

  (10.170) ( ) ( ) 2 ( ) ( )

0 0

L L
l j l j

jW W dx W W dxω=∫ ∫k m

 
Integrating the left-hand side of the equation by parts twice results in the relation  
 

 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

0 0

L L
l j lj j l j l

jW EI W dx B W mW W I W dxρω ⎡ ⎤′′ ′′ ′ ′+ = +⎢ ⎥⎣ ⎦∫ ∫k  

  (10.171) 
where 

 ( ) ( ) ( ) ( ) ( )

0

L
lj l j l jB W Q W M⎡ ⎤′= +⎢ ⎥⎣ ⎦k   

 
Now, the condition for the modal functions to be orthogonal with respect to the mass, 
Eq. (10.163), is equivalent to the statement ( ) 0ljB =k . Furthermore, when this condi-
tion holds, the right hand side of Eq. (10.171) vanishes by virtue of Eq. (10.164). 
Equation (10.171) therefore reduces to the statement 
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 ( ) ( )

0
0

L
l jW EI W dx′′ ′′ =∫  (10.172) 

 
The modal functions of Rayleigh Beams are mutually orthogonal with respect to the 
stiffness in this sense. Specifically, the modal curvatures are seen to be mutually or-
thogonal with respect to the bending stiffness of the beam. In summary, if the bound-
ary conditions of a given beam are such that Eq. (10.163) is satisfied, where the mo-
dal shear force is given by Eq. (10.161), then the modal functions are mutually or-
thogonal with respect to the mass in the sense of Eq. (10.164), or equivalently Eq. 
(10.165), and with respect to the stiffness in the sense of Eq. (10.172). 
 
 

Example 10.20 
Consider a Rayleigh Beam that is clamped-fixed at its left edge and sits on an 
elastic mount of stiffness kL at its right edge as shown. Show that the modal 
functions are mutually orthogonal. 
 

 
Solution 
The analysis directly parallels that of Example 10.18. We first obtain the 
boundary conditions for the modal functions from the physical boundary condi-
tions. Hence,  
 

 (0, ) 0 (0)     (0) 0i tw t W e Wω= = ⇒ =  (a) 
 

 
0

0 (0)     (0)i t

x

w W e W
x

ω

=

∂ ′ ′ 0= = ⇒
∂

=  (b) 

 
 ( , ) 0 ( )     ( ) 0i tM L t M L e M Lω= = ⇒ =

L

 (c) 
 

  (d) ( , ) ( , )   ( ) ( )   ( ) ( )i t i t
L LQ L t k w L t Q L e k W L e Q L k W Lω ω= − → = − ⇒ = −

 
Substituting Eqs. (a)–(d) into the left-hand side of Eq. (10.163) gives 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

0 0

                0 0 0 0 0

l j l j j l
L Lx x L

j l l j

xx L

Q Q k W W k W W

W W M M

= =

==

⎡ ⎤⎡ ⎤⋅ − ⋅ − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤′ ′ ⎡ ⎤+ ⋅ − ⋅ − ⋅ − ⋅ =⎣ ⎦⎢ ⎥⎣ ⎦

 (e) 

 
Equation (10.163) is clearly satisfied, therefore the corresponding modal func-
tions for the Rayleigh Beam are mutually orthogonal in sense of Eqs. (10.164) 
and (10.172). 

   
 
 
 

10.8.5  Timoshenko Beams 

The motion of Timoshenko Beams is characterized by the displacement function ma-
trix defined by Eq. (10.63) whose elements correspond to the transverse displacement 
function and the cross section rotation function. The corresponding mass operator is 
the diagonal matrix operator defined by Eq. (10.61) and the stiffness operator is the 
differential matrix operator defined by Eq. (10.62). Establishment of the definitions 
and conditions for orthogonality of the modal functions therefore requires a generali-
zation of the concepts introduced to this point, in the spirit of those introduced for 
Rayleigh Beams.  
 The eigenvalue problem for Timoshenko Beams defined by Eq. (10.67) may be 
written in the compact form 
  
 2 ( )xω⎡ ⎤− =⎣ ⎦ 0k m U  (10.173) 
 
where m, k and U are defined by Eqs. (10.61), (10.62) and (10.63), respectively. Let 
us consider any two frequency-mode pairs for a generic Timoshenko Beam. Since 
they correspond to solutions of the eigenvalue problem, the lth and jth frequency-mode 
pairs must each satisfy Eq. (10.173). Hence, 
 
 ( ) 2 ( )( ) ( )l

l
lx xω=kU mU  (10.174) 

and 
 ( ) 2 ( )( ) ( )j

j
jx xω=kU mU  (10.175) 

 
Multiplying Eq. (10.174) by , Eq. (10.175) by  and integrating the result-
ing expressions over [0, L] results in the identities 

( )jU T ( ) ,lU T

  

  (10.176) ( ) ( ) 2 ( ) ( )

0 0

L L
j l j l

ldx dxω=∫ ∫U kU U mUT T

and 
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  (10.177) ( ) ( ) 2 ( ) ( )

0 0

L L
l j l j

jdx dxω=∫ ∫U kU U mUT T

 
Note that, since m is a diagonal matrix it follows that 
 
  (10.178) ( ) ( ) ( ) ( )l j j=U mU U mUT T l

 
Subtracting Eq. (10.177) from Eq. (10.176) and incorporating Eq. (10.178) results in 
the identity 

  (10.179) 
( )

( ) ( ) ( ) ( )

0 0

2 2 ( ) ( )

0
                          

L L
j l l j

L
j l

l j

dx dx

dxω ω

−

= −

∫ ∫
∫

U kU U kU

U mU

T T

T

It may be seen that if 
 

  (10.180) ( ) ( ) ( ) ( )

0 0

L L
j l l jdx dx=∫ ∫U kU U kUT T

 
then Eq. (10.179) reduces to the statement 
 

 ( )2 2 ( ) ( )

0
0

L
j l

l j dxω ω− =∫ U mUT  (10.181) 

 
Thus, for distinct frequencies, 
 

 ( ) ( ) ( ) ( )

0
,

L
j l j l dx 0≡ =∫m

U U U mUT  (10.182) 

 
and the modal functions are mutually orthogonal with respect to the mass operator in 
this sense. Substitution of Eq. (10.182) into Eq. (10.176) results in the related state-
ment 

 ( ) ( ) ( ) ( )

0
,

L
j l j l dx 0≡ =∫k

U U U kUT  (10.183) 

 
Hence, if Eq. (10.180) is satisfied then, the modal functions are mutually orthogonal 
with respect to the stiffness operator in the above sense as well. To examine the de-
tails and implications for specific systems we next evaluate the above conditions for 
the pertinent mass and stiffness operators. 
 Substitution of Eqs. (10.61) and (10.66) into Eq. (10.182) and substituting Eqs. 
(10.62) and (10.66) into Eq. (10.183) and carrying through the matrix multiplication 
in each gives the explicit forms of the statements of orthogonality for the modal func-
tions of Timoshenko Beams as 
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    ( ) ( ) ( ) ( ) ( ) ( )

0
, ( ) ( ) ( ) ( ) ( ) ( )

L
l j l j l jW x m x W x x I x x dxρϑ ϑ⎡ ⎤= +⎣ ⎦∫m

U U 0=  (10.184) 

 
and 

 
( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

( ) ( ) ( ) ( )

0
                         + 0

L L
l j l j j

s s

L
l j j j

s

dx W k k W dx

k W EI dx

ϑ

ϑ ϑ ϑ

⎧ ⎫′⎪ ⎪′ ′= −⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫′⎪ ⎪′ ′− − =⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫

∫

U kU
 (10.185) 

 
From Eqs. (9.130, (9.131) and (9.132) the constitutive relations for the bending mo-
ment and the transverse shear force for a Timoshenko Beam are respectively given by 
the relations 

 ( , )M x t EI
x
ϕ∂

= −
∂

 (10.186) 

and 

 ( , )( , ) ( , )s
w x tQ x t k x t

x
ϕ∂⎡ ⎤= −⎢ ⎥∂⎣ ⎦

 (10.187) 

 
From Eq. (10.65), the free vibration response is of the form 
 

 
( , ) ( )
( , ) ( )

i tw x t W x
e

x t x
ω

ϕ ϑ
⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 (10.188) 

 
Substitution of the above form into Eqs. (10.186) and (10.187) gives 
 
 ( , ) ( ) i tM x t M x e ω=  (10.189) 
and 
 ( , ) ( ) i tQ x t Q x e ω=  (10.190) 
where 
 ( ) ( )M x EI xϑ′= −  (10.191) 
is the modal moment, and 
 
 [ ]( ) ( ) ( )sQ x k W x xϑ′= −  (10.192) 
 
is the modal shear force. With the modal moment and modal shear established, we 
may proceed to evaluate the explicit form of the condition for the modes to be mutu-
ally orthogonal. Substitution of Eqs. (10.62) and (10.66) into Eq. (10.180), integrat-
ing the resulting expression by parts and incorporating Eqs. (10.191) and (10.192) 
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renders the explicit condition for mutual orthogonality of the modal functions for 
Timoshenko Beams to the familiar form 
 

  (10.193) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00
0

L Ll j l j l j l jW Q Q W M Mϑ ϑ⎡ ⎤ ⎡− − −⎣⎣ ⎦ ⎤ =⎦
 
If the boundary conditions for a Timoshenko Beam are such that Eq. (10.193) is satis-
fied, then the corresponding modal functions are mutually orthogonal in the sense of 
Eqs. (10.182) and (10.183), or equivalently Eqs. (10.184) and (10.185). 
 
 

Example 10.21 
Consider a Timoshenko Beam supported as in Examples 10.18 and 10.20. 
Show that the modal functions for the beam are mutually orthogonal. 

 
 Solution 

Proceeding identically as in Examples 10.18 and 10.20 we first state the physi-
cal boundary conditions for the beam. They are 
 

 (0, ) 0 ,    (0, ) 0w t tϕ= =  (a-1, 2) 
 

 ( , ) 0 ,    ( , ) ( , )LM L t Q L t k w L t= = −  (a-3, 4) 
 
The boundary conditions for the modal functions are obtained by substituting 
the assumed form of the modal functions, Eq. (10.188), into Eqs. (a-1)–(a-4). 
We thus have the corresponding conditions 
 

 (0) 0 ,    (0) 0W ϑ= =  (b-1, 2) 
 

 ( ) 0 ,    ( ) ( )LM L Q L k W= = − L  (b-3, 4) 
 
Substituting Eqs. (b-1)–(b-4) into the left-hand side of Eq. (10.193) results in 
the statement 
 

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

0 0

                0 0 0 0 0

l j l j j l
L Lx x L

j l l j

x L x

Q Q k W W k W W

M Mϑ ϑ
= =

= =

⎡ ⎤⎡ ⎤⋅ − ⋅ − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤+ ⋅ − ⋅ − ⋅ − ⋅ =⎣ ⎦ ⎣ ⎦

  

 
Equation (10.193) is clearly satisfied. The corresponding modal functions of 
the Timoshenko Beam are therefore mutually orthogonal with respect to both 
m and k. 
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10.9  EVALUATION OF AMPLITUDES AND PHASE ANGLES 

The free vibration response of one-dimensional continua was seen to be expressed as 
a series of the modal functions with harmonic time signatures. In each case the ampli-
tudes and phase angles are a function of the specific initial conditions imposed on the 
particular system under consideration. In this section we establish the relations be-
tween the amplitudes and phase angles for the systems considered in this chapter. We 
begin by establishing the relations for systems with a single scalar mass operator. 
These systems include second order systems and Euler-Bernoulli Beams and geomet-
rically nonlinear beams with constant axial loads. We then establish the conditions 
for Rayleigh Beams and Timoshenko Beams in separate sections. 
 

10.9.1 Systems Possessing a Single Scalar Mass Operator 

We here consider systems whose mass description corresponds to a single scalar 
function. These include mathematical models that describe the longitudinal and tor-
sional motion of elastic rods, the transverse motion of strings and cables, and the flex-
ural motion of Euler-Bernoulli Beams and geometrically nonlinear beams with con-
stant membrane force. In each case, the free vibration response is of the general form 
  

 

( ) ( ) ( )
1 2

1

( ) ( )

1

( , ) ( ) cos sin

( ) cos( )

j j j
j j

j

j j
j j

j

x t x A t A

x A t

ω ω

ω φ

∞

=

∞

=

t⎡ ⎤= +⎣ ⎦

= −

∑

∑

u U

U

 (10.194) 

where 

 ( )2 2( ) ( ) ( ) 1 ( ) ( )
1 2 2 1, tanj j j j

jA A A A Aφ −= + = j  (10.195) 

 
u(x,t) is the pertinent displacement measure, ωj and U(j)(x) respectively correspond to 
the jth natural frequency and modal function, and A(j) and φj are the associated ampli-
tude and phase angle.  
 

General Initial Conditions 
We wish to evaluate the amplitudes and phase angles in terms of the initial conditions 
 

 0
0

( ,0) ( ) and ( )
t

0x x
t =

∂
=

∂
uu u v x=  (10.196) 

 
Imposing the initial conditions on the general form of the response gives the relations 
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 ( ) ( )
0

1

( ) ( )j

j
1

jx x A
∞

=

= ∑u U   

 

 ( ) ( )
0

1

( ) ( ) 2
j j

j
j

x x Aω
∞

=

= ∑v U   

 
Let us next multiply the above relations by the product of the lth modal function, 
U(l)(x), and the scalar mass operator, m(x), and integrate the resulting expressions 
over the domain of definition of the structure [0, L]. Doing this yields the identities 
 

 ( ) ( ) ( ) ( )
0 1

0 01

( ) ( ) ( ) ( ) ( ) ( )
L L

l l

j

j jx m x x dx x m x x dx A
∞

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭∑∫ ∫U u U U   

 

 ( ) ( ) ( ) ( )
0 2

0 01

( ) ( ) ( ) ( ) ( ) ( )
L L

l l j
j

j

jx m x x dx x m x x dx Aω
∞

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭∑∫ ∫U v U U  

 
In each of the above identities, the term in brackets may be recognized as the scalar 
product of the lth and jth modal functions. If the modal functions are mutually or-
thogonal, that product vanishes for all terms in the series except for the term where j 
= l. The nonvanishing term is the square of the magnitude of the modal function. The 
above identities therefore reduce to the relations 
 
 ( ) ( )

1
j jA = Λ  (10.197) 

 
 ( ) ( )

2
j jA = Χ  (10.198) 

where 

 ( ) ( )
02( ) 0

1 ( ) ( ) ( )
L

j j

j

m

x m x x dxΛ = ∫ U u
U

 (10.199) 

 

 ( ) ( )
02( ) 0

1 ( ) ( ) ( )
L

j j

j
j m

x m x x dx
ω

Χ = ∫ U v
U

 (10.200) 

and 

 
2( ) ( ) ( )

0
( ) ( ) ( )

L
j j j

m
x m x x dx= ∫U U U  (10.201) 

 
Substituting Eqs. (10.197) and (10.198) into Eqs. (10.195) gives the amplitudes and 
phase angles as 
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 2( ) ( ) ( )j jA = Λ + Χ 2j  (10.202) 
and 
 ( )1 ( ) ( )tan j j

jφ −= Χ Λ  (10.203) 

 
where Λ(j) and Χ(j) are defined by Eqs. (10.199) and (10.200), and are evaluated for 
given initial displacements and velocities u0(x) and v0(x). 
 

Systems Released from Rest 
As a special case, let us consider systems that are initially at rest. For this 
case 0 and thus, from Eq. (10.200), Χ( ) 0x =v (j) = 0 (j = 1, 2, …). We then have, from 
Eqs. (10.202) and (10.203) that 
 

 ( ) ( ) ( )
02( ) 0

1 ( ) ( ) ( ) ( 1,2,...)
L

j j j

j

m

A x m x x dx= Λ = =∫ U u
U

j  (10.204) 

and 
 0jφ =  (10.205) 

 
Substituting these expressions into Eq. (10.194) gives the free vibration response of a 
system released from rest as 
 

 ( ) ( )

1

( , ) ( ) cosj j
j

j

x t U x tω
∞

=

= Λ∑u  (10.206) 

 

Systems Initially in Motion at the Reference Configuration 
Let us next consider the special case where the system is initially in motion while in 
the reference (undeformed) configuration. This may correspond to the situation 
where we start monitoring the motion at an instant when the body is in motion as it 
passes through the undeformed configuration, or when the system is “launched” from 
the this initial configuration. The latter may occur, for example, when a javelin is 
thrown, when a rocket is launched or when a vehicle is impacted and we monitor the 
motion of the body from the instant after it is released. In the present context, we thus 
consider a continuous system for which the initial displacement vanishes but the ini-
tial velocity is finite. For this case, u0(x) = 0. It then follows from Eqs. (10.197) and 
(10.199) that and hence, from Eqs. (10.194), (10.198) and (10.200), 
that the free vibration response of the structure is given by 

( ) ( )
1 0j jAΛ = =

  

  (10.207) ( ) ( ) ( ) ( )

1 1

( , ) ( ) sin ( ) cos( / 2)j j j j
j j

j j

x t x t x tω ω
∞ ∞

= =

= Χ = Χ −∑ ∑u U U π
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It is seen that, for this case, ( ) ( )j jA = Χ and 2 ( 1, 2,...).j jφ π= =  
 
 

Example 10.22 
Determine the amplitudes and phase angles for the rod of Example 10.1 if it is 
released from rest from the configuration 0( ,0)u x xε= , where 0 0P EAε =  is 
the uniform axial strain. This initial state corresponds to the deformation in-
duced by a static tensile load of magnitude P0 at the free end of the rod. 
 
Solution  
From Example 10.1, the modal functions for the rod are 
 

  (a-1) ( ) ( ) sin ( 1,2,...)j
jU x x jβ= =

where 
 (2 1) 2 ( 1, 2,...)j j L jβ π= − =  (a-2) 

 
Further, the magnitude of the modal function was computed in Example 10.14 
as 

 
2( ) ( 1, 2,...)

2
j mLU j= =  (b) 

 
Now, the initial conditions for the present case are 
 
   0 0 0( ) , ( ) 0u x x v xε= =  (c-1, 2) 
 
It follows from Eqs. (10.204) and (10.205) that 
 

 0 ( 1, 2,...)j jφ = =  (d) 
 and 
 

 ( ) 0
0 2

0

22 sin sin cos
L

j
j j

j
j jA x m x dx L L L

mL L
ε

β ε β β β
β

⎡ ⎤= = −⎣ ⎦∫   

 
The above expression is simplified when we recall the frequency equation for 
the rod, Eq. (e) of Example 10.1, 
 

 cos 0j Lβ =   
 
The amplitudes of the vibrating rod are then  
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 ( ) 0
2

2
sin ( 1,2,...)j

j
j

A L j
L

ε
β

β
= =  (e) 

 
 
 
 

Example 10.23 
Determine the amplitudes and phase angles for the cantilevered Euler-Bernoulli 
beam of Example 10.7 if it is released from rest from the configuration 

2
0( ,0) 2w x xκ= − . Evaluate the resulting free vibration response. This initial 

configuration corresponds to the deflections produced by a bending moment, 
M0, applied to the free end of the beam. The parameter 0 0M EIκ =  is the uni-
form curvature of the beam. 
 
Solution 
The modal functions for the beam were determined in Example 10.7 to be  
 

 ( ) ( ) cosh cos sinh sinj
j j j jW x x x Y x xβ β β β j⎡ ⎤= − − −⎣ ⎦  (a) 

 
where 

 
cosh cos
sinh sin

j
j

j j

L L
Y

L L
jβ β

β β
+

=
+

 (b) 

 
The initial conditions are 
  

 21
0 0 02( ) , ( ) 0w x x v xκ= − =  (c-1, 2) 

 
Since the structure is initially at rest, we have from Eq. (10.205) that 
 

 0jφ =  (c) 
  

Further, substituting Eq. (c-1) into Eq. (10.204) gives 
 

 { }( ) 2 ( )1
022( ) 0

1 ( )
L

j

j

m

jA x mW x dx
W

κ= −∫   

 
The amplitudes of the vibrating cantilevered beam are then 
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2 ( )

0( ) 0

2( )

0

( )
( 1,2,...)

2 ( )

L
j

j
L

j

x W x dx
A j

W x dx

κ
= − =

∫
∫

 (d) 

where 
 

 

( )

{ }
{ }

3 2 ( ) 3 2 ( )

0

2

( ) ,

sinh sin

2 cosh cos

2 cosh cos

2 1 sinh sin

L
j j

j j

j j j

j j j

j j j j

j j j j

x W x dx x W

L L L

Y L L

L Y L L

LY L L

β β

β β β

β β

β β

β β

=

⎡ ⎤= −⎣ ⎦
⎡ ⎤− −⎣ ⎦

β

β

⎡ ⎤− + +⎣ ⎦
⎡ ⎤+ + +⎣ ⎦

∫

 (e) 

and 
 
 

 

22( ) ( )

0

2

4 ( ) 4

sinh 2 sin 2 12

2 cos 2 cosh 2 4sinh sin

sinh 2 sin 2 4sinh 2 cos 2

2cosh 2 sin 2

L
j j

j j

j j j

j j j j j

j j j j

j j

W x dx W

L L L

Y L L L

Y L L L

L L

β β

β β β

β β β β

β β β β

β β

=

= + +

j

L

L

⎡ ⎤+ − +⎣ ⎦
⎡+ − +⎣

⎤− ⎦

∫

 (f) 

 
Let us now evaluate the response of the beam. To do this we recall that the first 
three roots of the frequency equation were computed in Example 10.7 to be 
 

 1.875, 4.695, 7.855, ...Lβ =  
 
Substitution of these values into Eqs. (e) and (f) and then substituting the re-
sulting numbers into Eq. (d) gives the corresponding amplitudes 
 

   (1) 2 (2) 2 (3) 2
0 00.1581 , 0.0039 , 0.0001881 , ...A L A L Aκ κ= − = = 0 Lκ

 
The explicit form of the free vibration response of the beam is then 
 

 ( ) ( )2 2
0 0 0 0( , ) 0.1581 cos 3.516 0.0039 cos 22.03 ...w x t L t L tκ ω κ ω= − + +  (g) 
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10.9.2  Rayleigh Beams 

The free vibration response for Rayleigh Beams, and the associated initial conditions, 
are of the same general form as for the systems considered thus far. Hence, 
  

 ( ) ( ) ( ) ( ) ( )
1 2

1 1

( , ) ( ) cos sin ( ) cos( )j j j j j
j j j

j j

w x t W x A t A t W x A t jω ω ω φ
∞ ∞

= =

⎡ ⎤= + =⎣ ⎦∑ ∑ −   

 
where w(x,t) is the transverse displacement, ωj and W(j)(x) are the jth natural fre-
quency and modal function, and A(j) and φj are the associated amplitude and phase 
angle. We wish to evaluate the amplitudes and phase angles in terms of the initial 
conditions 
 

 0
0

( ,0) ( ) and ( )
t

ww x w x v x
t =

∂
=

∂ 0=   

 
For these structures, however, we have the added mass measure of the rotatory inertia 
as well as the mass per unit length of the beam. Because of this, it is convenient to 
describe the mass operator in the matrix form of Eq.(10.166), and to express the ini-
tial conditions in a similar form. Let us therefore introduce the displacement matrix 
 

 
( , )

( , )
w x t

x t w
x

⎧ ⎫
⎪ ⎪= ∂⎨ ⎬
⎪ ⎪∂⎩ ⎭

w  (10.208) 

 
and the corresponding statement of the initial conditions 
 

 0
0

0

( )
( )

( )

w x
x

w x

⎧ ⎫⎪ ⎪= ⎨ ⎬
′⎪ ⎪⎩ ⎭

w  (10.209) 

and 

 0
0

0

( )
( )

( )

v x
x

v x

⎧ ⎫⎪ ⎪= ⎨ ⎬
′⎪ ⎪⎩ ⎭

v  (10.210)  

 
where ( ) ( ) .d dx′ =  The free vibration response of the beam is expressed in matrix 
form as 

 ( )

1

( , ) ( ) cos( )j
j j

j

x t x tω φ
∞

=

= ∑w W −  (10.211) 

 
where the matrix W(j) is defined by Eq. (10.167). Imposing the initial conditions on 
the matrix form of the free vibration response gives the relations 
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 ( ) ( )
0

1

( ) ( )j

j
1

jx x A
∞

=

= ∑w W   

and 

 ( ) ( )
0

1

( ) ( ) 2
j j

j
j

x x Aω
∞

=

= ∑v W   

 
Let us next multiply the above equations by the matrix product ( ) ( ) ( )l x xTW m and 
integrate the resulting expressions over the domain of definition of the beam. Doing 
this and utilizing the orthogonality relation, Eq. (10.165), results in the relations 
 
 ( ) ( )

1
j jA = Λ  (10.212) 

 
 ( ) ( )

2
j jA = Χ  (10.213) 

where 
 

 

{ }

( ) ( )
02( ) 0

( ) ( )
0 02( ) 0

1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

L
l l

l

L
l l

l

x x x dx

W x m x w x W x I x w x dxρ

Λ =

′ ′= +

∫

∫
m

m

W m w
W

W

 (10.214) 

 

 

{ }

( ) ( )
02( ) 0

( ) ( )
0 02( ) 0

1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

L
l l

l
l

L
l l

l
l

x x x dx

W x m x v x W x I x v x dxρ

ω

ω

Χ =

′ ′= +

∫

∫
m

m

W m v
W

W

 (10.215) 

and 

 

{ }

2( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L
l l l

L
l l l l

x x x dx

W x m x W x W x I x W x dxρ

=

′ ′= +

∫
∫
m

W W m W
 (10.216) 

 
The amplitudes and phase angles are then given by the relations 
 
 2( ) ( ) ( )j jA = Λ + Χ 2j  (10.217) 
and 
 ( )1 ( ) ( )tan j j

jφ −= Χ Λ  (10.218) 
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and may be evaluated for given initial displacements and velocities w0(x) and v0(x).  
 For Rayleigh Beams that are released from rest it follows, from the pertinent 
arguments of the previous section, that 
 
 0 ( 1, 2,...)j jφ = =  (10.219) 
and 
 

 { }( ) ( ) ( )
0 02( ) 0

1 ( ) ( ) ( ) ( ) ( ) ( )
L

j l l

l
A W x m x w x W x I x w x dxρ

′ ′= +∫
m

W
 (10.220) 

 
The free vibration response for a Rayleigh Beam released from rest is then 
 

 ( ) ( )

1

( , ) ( ) cosj j
j

j

w x t W x tω
∞

=

= Λ∑  (10.221) 

 
 

Example 10.24 
Determine the amplitudes and phase angles for the cantilevered beam of Ex-
ample 10.12 if it is released from rest from the configuration 

2
0( ,0) 2w x xκ= − . As for the Euler-Bernoulli Beam of Example 10.23, this 

initial configuration corresponds to the deflections produced by a bending mo-
ment, M0, applied to the free end of the beam and the parameter 0 0M EIκ =  
corresponds to the uniform curvature of the structure. 
 
Solution 
The modal functions for the beam were determined in Example 10.12 to be  

 
 ( ) ( )( ) cosh cos sinh sinj j

j j j j jW x x x Y x xα β β α α β j⎡ ⎤= − − −⎣ ⎦  (a) 
 
where 

 
( )
( )

2 2
( )

2

cosh cos1
sinh sin

j j j jj

j j j j j j

L L
Y

L L

α α β β

β α α α β β

+
=

+
 (b) 

 
The initial conditions are 
  

 21
0 0 02( ) , ( ) 0w x x v xκ= − =  (c-1, 2) 

 
Since the structure is initially at rest, we have from Eq. (10.219) that 
 

 0jφ =  (d) 
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Further, substituting Eq. (c-1) into Eq. (10.220) gives 

 

 { } { }( ) 2 ( ) ( )1
0 022( ) 0 0

1 ( ) ( )
L L

j j

j

jA x mW x x I W x dx dxρκ κ⎡ ⎤′= − + −⎢ ⎥
⎣ ⎦∫ ∫

m
W

  

 
The amplitudes of the freely vibrating cantilevered Rayleigh Beam are then 
 

 

2 ( ) 2 ( )1
2

0( )
0

2 2( ) 2 ( )

0

( ) ( )
( 1, 2,...)

( ) ( )

L
j j

G
j

L
j j

G

x W x r xW x dx
A j

W x r W x dx
κ

⎡ ⎤′+⎢ ⎥⎣ ⎦
= − =

⎡ ⎤′+⎢ ⎥⎣ ⎦

∫
∫

 (e) 

 
where W(j) is given by Eq. (a) and rG is the radius of gyration of the cross sec-
tion. The integrals can be evaluated analytically to give the explicit forms of 
the amplitudes. 

 
 
 

10.9.3  Timoshenko Beams 

The development for Timoshenko Beams is similar to that for Rayleigh Beams. 
However, for the present case, the motion is characterized by two displacement func-
tions. Recall that the displacement matrix for Timoshenko Beams is  
   

 
( , )

( , )
( , )

w x t
x t

x tϕ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

u  (10.222) 

 
where  and ( , )w x t ( , )x tϕ , correspond to the transverse deflection and cross section 
rotation respectively. Since we now have two displacement functions, we must spec-
ify two initial conditions for each. Hence,  
 

 0
0

( ,0) ( ), ( )
t

ww x w x v t
t =

∂
=

∂ 0=   

 

 0
0

( ,0) ( ), ( )
t

0x x
t
ϕϕ ϕ χ

=

∂
= =

∂
x   

 
which is written in matrix form as 
 



670 Engineering Vibrations 

 0
0

0

( )
( ,0) ( )

( )
w x

x x
xϕ

⎧ ⎫
= = ⎨ ⎬

⎩ ⎭
u u  (10.223) 

and 

 0
0

00

( )
( )

( )t

v x
x

xt χ=

⎧ ⎫∂
= = ⎨ ⎬

∂ ⎩ ⎭

u v  (10.224)  

 
Now, the free vibration response of the beam is of the general form 
 

 

( ) ( ) ( )
1 2

1

( ) ( )

1

( , ) ( ) cos sin

( ) cos( )

j j j
j j

j

j j
j j

j

x t x A t A

x A t

ω ω

ω φ

∞

=

∞

=

t⎡ ⎤= +⎣ ⎦

= −

∑

∑

u U

U
 (10.225) 

 
Imposing the initial conditions on the time history of the response results in the iden-
tities   

 ( ) ( )
0

1
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Paralleling the development for Rayleigh Beams with the present displacement vari-
ables, modal matrices and initial conditions gives the relations 
 
 ( ) ( )

1
j jA = Λ  (10.227) 

 
 ( ) ( )

2
j jA = Χ  (10.228) 

 
where, for Timoshenko Beams, 
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and 
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The amplitudes and phase angles are then given by 
 
 2( ) ( ) ( )j jA = Λ + Χ 2j  (10.232) 
and  
 ( )1 ( ) ( )tan j j

jφ −= Χ Λ  (10.233) 
 
and may be evaluated as described above for given initial displacements, rotations, 
velocities and rotation rates, w0(x), ϕ0(x), v0(x) and χ0(x). It follows from the same 
reasoning as for the other structures considered in this chapter that, for Timoshenko 
Beams that are released from rest, 
 
 0jφ =  (10.234) 
and 
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The free vibration response of a Timoshenko Beam released from rest then follows as 
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Example 10.25 
Determine the amplitudes and phase angles for the cantilevered beam of Ex-
ample 10.13 if it is released from rest from the configuration 

2
0( ,0) 2 ,w x xκ= −  0( , 0) .x xϕ κ= −  As for the beams of Examples 10.23 and 

10.24, this initial configuration corresponds to the deflections produced by a 
bending moment, M0, applied to the free end of the beam and the parameter 

0 0M EIκ =  corresponds to the uniform curvature of the structure. [Note that, 
for this particular case, 0 0( ) ( )x dw x dxϕ =  since there is no transverse shear in 
the structure initially (it is loaded in pure bending) and hence no shear deforma-
tion in the beam at that time. See Section 9.6.5,  Eq. (9.131).] 
 
Solution 
The modal functions for the beam were determined in Example 10.13 to be  
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and gα and gβ are defined by Eqs. (10.85). The initial conditions are 
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Since the beam is initially at rest we have from Eqs. (10.234) and (10.235)  that 
 

 0 ( 1, 2,...)j jφ = =  (d) 
and 
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The amplitudes of the freely vibrating cantilevered Timoshenko Beam are then 
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where W(j) and ϑ(j) are given by Eq. (a) and rG is the radius of gyration of the 
cross section. The integrals can be evaluated analytically to give the explicit 
forms of the amplitudes.  

 
 
 

10.10 CONCLUDING REMARKS 

In most engineering systems the components are effectively continuous distributions 
of matter at the macroscopic level. In earlier chapters mechanical systems were 
treated as discrete systems, typically based on the assumption that the mass of the 
structure was negligible when compared with “dominant” mass concentrations at-
tached to the body, and the focus was on the corresponding “dominant” motions as-
sociated with these conditions. The legitimacy of the assumptions and the accuracy of 
the predicted motions were, to this point, accepted on the basis of the aforementioned 
physical arguments. In the discrete models the inertia of the structure is neglected and 
the application of such models is limited in this regard. When the mass of the struc-
ture is comparable with other mass measures, when the assumption of vanishing mass 
of the structure is relaxed, or when the detailed motion of the structure itself is of 
interest, representation of the physical system as a continuum is warranted. Case 
studies for the longitudinal motion of elastic rods and the flexural motion of elastic 
beams were performed and the corresponding results give quantitative assessments of 
the limitation of the discrete model as an approximation to the first mode of the con-
tinuum. One-dimensional continua are mathematical representations of three-
dimensional bodies or media for which one spatial dimension, the axial dimension, is 
large compared with the other two. Mathematical models for various types of motion 
of such structures were developed and discussed in detail in Chapter 9. In all, the 
thinness of the structures was central to the simplifications adopted. In the present 
chapter we studied the motion of various one-dimensional continua under their own 
volition. It was seen that the description of the system, and of the corresponding mo-
tion, is an abstraction of the parallel representations of discrete systems. In this regard 
it was seen that, for one-dimensional continua, the displacement and force matrices 
become functions of a single spatial variable and time, and the mass and stiffness 
matrix operators become differential operators. In one of the theories considered, 
“Timoshenko Beam Theory,” the motion of the structure is described by two “dis-
placement” functions that comprise a 2 1×  displacement  matrix and, correspond-
ingly, a  force matrix whose elements are comprised of forcing functions. In 
addition, the mass and stiffness operators each take the form of 

2 1×
2 2×  matrices of 

scalar functions and differential operators respectively.  
 The free vibration problem for one-dimensional continua was seen to reduce to 
an eigenvalue problem, where the infinity of eigenvalues correspond to the squares of 
the natural frequencies of the structure and the eigenfunctions are the associated mo-
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dal functions. The fundamental motions of one-dimensional continua were seen to be 
described by a linear combination of the infinity of modal functions. Since, as men-
tioned above, one-dimensional continua are mathematically one-dimensional repre-
sentations of three-dimensional bodies as described in Chapter 9, the accuracy of the 
results predicted by these models is limited by the geometrical restrictions implicit to 
these models. From a vibrations perspective, these simplifications restrict the suitabil-
ity of the predicted results to those modes for which the “wavelength” (the distance 
between nodes) is large compared with the thickness of the body. This, in turn, re-
stricts the accuracy to the lowest modes of the system predicted by these mathemati-
cal models. To extend these models to a wider range of frequencies and modes for the 
case of flexural motion of beams, “corrections” are made to the basic Euler-Bernoulli 
Theory to account for the effects of rotatory inertia of the cross section (Rayleigh 
Theory) and deformation due to transverse shear in an average sense (shear beam 
theory) and to both transverse shear deformation and rotatory inertia (Timoshenko 
Theory). It was demonstrated by comparative studies for the case of the cantilevered 
beam that the inclusion of the shear deformation has the most pronounced contribu-
tion. If Timoshenko Beam Theory is taken to be the most accurate of those consid-
ered, the limitations of the results of the simpler models is demonstrated and quanti-
fied by the results of those examples. 
 The modal functions for a given structure were shown to be mutually orthogo-
nal, with the interpretation being a clear extension of earlier definitions in terms of 
the scalar product of the modal functions. The basic definitions were abstracted for 
the Rayleigh and Timoshenko Beam Theories. Regardless of the model, in each case, 
the mutual orthogonality of the modal functions was seen to be a function of the 
boundary conditions imposed on the structure. The general response of a freely vi-
brating structure was shown to correspond to a linear combination of the modal func-
tions with harmonic time signatures. The corresponding amplitudes and phase angles 
are computed by imposing the initial conditions on the general form of the response, 
and are simplified by capitalizing on the mutual orthogonality of the modal functions. 
In the next chapter we consider the response of one-dimensional continua to external 
dynamic forcing. The mutual orthogonality of the modal functions will be seen to be 
important in the corresponding analysis and response of any given system. 
 
 
 
 
 
 
 
 
 



10│ Free Vibration of One-Dimensional Continua 675 

BIBLIOGRAPHY 

Ginsberg, J.H., Mechanical and Structural Vibrations: Theory and Applications, Wiley, New 
York, 2001. 

Hildebrand, F.B., Methods of Applied Mathematics, 2nd ed., Prentice-Hall, Englewood Cliffs, 
1965. 

Meirovitch, L., Elements of Vibration Analysis, 2nd ed., McGraw-Hill, New York, 1986. 
Meirovitch, L., Fundamentals of Vibrations, McGraw-Hill, Boston, 2001. 
Rayleigh, J.W.S., The Theory of Sound, Vol.1, Dover, New York, 1945. 
Thomson, W.T., Theory of Vibration with Applications, 4th ed., Prentice-Hall, Englewood 

Cliffs, 1993. 
Weaver, W. Jr., Timoshenko, S.P. and Young, D.P., Vibration Problems in Engineering, 5th 

ed., Wiley-Interscience, 1990. 
 
 

PROBLEMS 

10.1 Consider free longitudinal vibration of the elastic rod that is attached to an 
elastic wall, as shown. (a) Establish the modal boundary conditions for the 
structure. (See, also, Problem 9.4.) (b) Derive the frequency equation for the 
rod. (c) Determine the first three natural frequencies and modal functions for 
a system where 0.5k kL EA= = . Plot the modal functions.                                                                  

   Fig. P10.1 
 
 
10.2 Consider free longitudinal vibration of the elastic rod with rigid and elastic 

supports, as shown. (a) Establish the modal boundary conditions for the struc-
ture. (See, also, Problem 9.5.) (b) Derive the frequency equation for the rod. 
(c) Determine the first three natural frequencies and modal functions for a 
system where 0.5k kL EA= = . Plot the modal functions.        

  

    Fig. P10.2                                          
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10.3 Consider free longitudinal vibration of a uniform elastic rod of length L, 
membrane stiffness EA and mass per unit length m, that is constrained by 
elastic walls of stiffness k at each end. (a) Establish the modal boundary con-
ditions for the structure. (Hint: See Example 9.3.) (b) Derive the frequency 
equation for the rod. (c) Determine the first three natural frequencies and mo-
dal functions for a structure where 0.5wk k L EA= = . Plot the modal func-
tions. 

   Fig. P10.3 
 
10.4 Case Study. Perform a parameter study for the rod of Problem 10.3 in which 

you compare the first three natural frequencies for various values of the stiff-
ness ratio .k  

 
10.5 Consider longitudinal vibrations of the free-free uniform elastic rod of length 

L, membrane stiffness EA and mass per unit length m shown in the figure. (a) 
Establish the modal boundary conditions for the structure. (b) Derive the fre-
quency equation for the rod. (c) Determine the first three natural frequencies 
and modal functions. Plot the first three modes.            

 

                                  Fig. P10.5                                                 Fig. P10.6 

0.6 Consider free torsional vibration of a uniform circular elastic rod of length L, 

 
0.7 Consider free torsional vibrations of a uniform circular elastic rod of length L, 

first three natural frequencies and modal functions. Plot the first three modes. 

  
 
1

torsional stiffness GJ and mass per unit length m, that is free at its left end and 
fixed at its right end. (a) Establish the modal boundary conditions for the 
structure. (b) Derive the frequency equation for the rod. (c) Determine the 
first three natural frequencies and modal functions. Plot the first three modes. 

1
torsional stiffness GJ and mass per unit length m, that is free at its left end and 
embedded in an elastic wall of stiffness kθ = GJ/L at its right end, as shown. 
(a) Establish the modal boundary conditions for the structure. (Hint: See 
Problem 9.8). (b) Derive the frequency equation for the rod. (c) Determine the 
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rod of length 
L, torsional stiffness GJ , mass density ρ and cross-sectional area A, that has a 

 
10.9 uct a comparative study of the rod of Problem 10.8 and its 

“equivalent” single degree of freedom model of Section 1.2.3, in the spirit of 

 
10.10 ii. (a) Determine 

the natural frequencies and modal functions for the system. (b) Plot the first 

 
10.11 ulley system of Prob-

lem 9.36. (a) Determine the natural 

 
 

   
                                                                                               Fig. P10.11 

                                                                                         

                               Fig. P10.7  Fig. P10.8 

10.8 Consider free torsional vibrations of the uniform circular elastic 

rigid disk of mass moment of inertia ID attached to its free end, as shown in 
Figure P10.8. (a) Establish the modal boundary conditions for the structure. 
(Hint: See Problem 9.10.) (b) Derive the frequency equation for the rod in 
terms of the inertia ratio α = ID/Jρ L. (c) Determine the first three natural fre-
quencies and modal functions for the case where α = 2. Plot the first three 
modal functions. 

Case Study. Cond

Example 10.3. Which mode does the 1 d.o.f. system simulate? At what value 
of the inertia ratio does the 1 d.o.f. system simulate the continuous system to 
within 2 significant figures? To within 3 significant figures? 

Consider free lateral vibrations of the chain of Example 9.6-

three modes. 

Consider the p

frequencies and modal functions for 
the free lateral vibration of the inner 
sections of the cable. (b) Plot the 
first three modes. 
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10.12 Consider the free flexural vibrations of a uniform elastic beam of length L, 
bending stiffness EI and mass per unit length m that is clamped at both edges, 

 
 of length L, 

bending stiffness EI and mass per unit length m that is clamped at its left edge 

 
  
0.14 Consider the free flexural vibrations of the uniform elastic beam of length L, 

bending stiffness EI and mass per unit length m that is supported by elastic 

as shown, and is represented mathematically using Euler-Bernoulli Theory. 
(a) Establish the modal boundary conditions for the structure. (b) Derive the 
frequency equation for the beam. (c) Determine the first three natural fre-
quencies and modal functions. Plot the modal functions.  

                      Fig. P10.13                                  Fig. P10.12                       

10.13 Consider the free flexural vibrations of a uniform elastic beam

and is pin-free supported at its right edge, as shown. Let the beam be repre-
sented mathematically using Euler-Bernoulli Theory. (a) Establish the modal 
boundary conditions for the structure. (b) Derive the frequency equation for 
the beam. (c) Determine the first three natural frequencies and modal func-
tions. Plot the modal functions. 

1

clamps of (rotational) stiffness kϕ at each end, as shown. Let the beam be rep-
resented mathematically using Euler-Bernoulli Theory. (a) Establish the mo-
dal boundary conditions for the structure. (Hint: See Problem 9.15.) (b) De-
rive the frequency equation for the beam. (c) Determine the first three natural 
frequencies and modal functions for the case where 1k k L EIϕ ϕ= = . Plot the 
modal functions. 

 

 
   Fig. P10.14 
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10.15 Consider the free flexural vibrations of the uniform elastic beam of length L, 
bending stiffness EI and mass per unit length m that is supported by an elastic 
clamp of (rotational) stiffness kϕ at one end, as shown. Let the beam be repre-
sented mathematically using Euler-Bernoulli Theory. (a) Establish the modal 
boundary conditions for the structure. (Hint: See Problem 9.16). (b) Derive 
the frequency equation for the beam. (c) Determine the first three natural fre-
quencies and modal functions for the case where 1k k L EIϕ ϕ= = . Plot the 
modal functions. 

  
 

al vi iform elastic beam of length L, 
bending stiffness EI and mass per unit length m that is supported by an elastic 

 Fig. P10.15 

10.16 Consider the free flexur brations of the un

clamp at one end and an elastic mount at the other, as shown. Let the beam be 
represented mathematically using Euler-Bernoulli Theory. (a) Establish the 
modal boundary conditions for the structure. (Hint: See Problem 9.17) (b) De-
rive the frequency equation for the beam. (c) Determine the first three natural 
frequencies and modal functions if the supports are such that 

1k k L EIϕ ϕ= =  and 3 1wwk k L EI= = . Plot the modal functions. 

  
 

al vi iform elastic beam of length L, 
bending stiffness EI and mass per unit length m that is supported by linear 

 Fig. P10.16 

10.17 Consider the free flexur brations of the un

springs of stiffness kw at each end, as shown. Let the beam be represented 
mathematically using Euler-Bernoulli Theory. (a) Establish the modal bound-
ary conditions for the structure. (Hint: See Problem 9.18.) (b) Derive the fre-
quency equation for the beam. (c) Determine the first three natural frequen-
cies and modal functions for the case where 3 1wwk k L EI= = . Plot the mo-
dal functions. 
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10.18 Consider t  elastic beam 

fness h m that is supported 
by an elastic mount of stiffness kw at its free end, as shown. Let the beam be 

 Fig. P10.17 

he free flexural vibrations of the cantilevered uniform
of length L, bending stif  EI, and mass per unit lengt

represented mathematically using Euler-Bernoulli Theory. (a) Establish the 
modal boundary conditions for the structure. (Hint: See Problem 9.19.) (b) 
Derive the frequency equation for the beam. (c) Determine the first three 
natural frequencies and modal functions for the case where 3

wwk k L EI= = 1. 
Plot the modal functions. 

 

  
 
10.19 Consider form elastic 

 L, b , and mass per unit length m 
that is subjected to a constant compressive end load P0. (See Example 9.12.) 

   
 
10.20 Case Study. e 10.10 for the simply 

 of Proble

 Fig. P10.18 

the free flexural vibrations of a simply supported uni
beam-column of length ending stiffness EI

Determine the first three natural frequencies and modal functions for the case 
where the applied load is half the static buckling load. Plot the modal func-
tions. 

 Fig. P10.19 

 Parallel the parameter study of Exampl
supported structure m 10.19. 
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10.21 Consider the free flexural vibrations of the uniform elastic beam-column of 

d at its right end, as 
shown. The structure is subjected to a constant compressive end load P0, as 

   
 
10.22 Consider ed uniform elastic 

beam of le  and mass per unit 
 be repres atically using Rayleigh Beam The-

ory. (a) Establish the modal boundary conditions for the structure. (b) Derive 

length L, bending stiffness EI, and mass per unit length m that is pinned-fixed 
supported at its left end and is clamped-free supporte

indicated. (a) Establish the modal boundary conditions for the structure. 
(Hint: See Problem 9.34.) (b) Derive the frequency equation for the beam. (c) 
Determine the first three natural frequencies and modal functions for the case 
where the applied load is half the static buckling load. Plot the modal func-
tions. 

 Fig. P10.21 

the free flexural vibrations of a simply support
ngth L, bending stiffness EI, radius of gyration rG

length m, and let it ented mathem

the frequency equation for the beam. (c) Determine the first three natural fre-
quencies and modal functions for a beam with 0.1Gr L = . Plot the modal 
functions. 

Case Study. Parallel the study of Example 10.12 for the simply supported 
beam of Problem 10.22. 

 
10.23 

 
0.24 Solve Problem 10.12 if the beam is modeled as a Rayleigh Beam with  

 
0.25 Solve Problem 10.13 if the beam is modeled as a Rayleigh Beam with 

 
0.26 Solve Problem 10.22 if the beam is modeled as a Timoshenko Beam with 

 
0.27 Solve Problem 10.12 if the beam is modeled as a Timoshenko Beam with 

 
0.28 Solve Problem 10.13 if the beam is modeled as a Timoshenko Beam with 

 
0.29 The elastic rod of Problem 10.6 is twisted and held in place such that 

1
rG/L = 0.1. 

1
rG/L = 0.1. 

1
rG/L = 0.1 and E/kG = 5. 

1
rG/L = 0.1 and E/kG = 5. 

1
rG/L = 0.1 and E/kG = 5. 

1
0 ( )x axθ =  where a is a constant. Determine the amplitudes and phase angles 
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for the free vibration response if the rod is released from rest when in this 
configuration. 

 
10.30 A string of mass per unit length m and length L is under tension N0 and held 

the configuration 0 ( ) ( )w x ax L xin place in = −  where 0 02a q N=  is a con-
stant. Determine the amplitudes and phase angles for the free vibration re-
sponse of the string if the string is released from rest. 

x , where c0 is a . 
 
10.32 L, bending stiffness EI 

and mass per unit length m is deflected by a static load and held in the con-

 
10.31 Solve problem 10.30 if the string is released from the given configuration 

with the velocity 0 0 0( )v x c w=  constant

A simply supported Euler-Bernoulli Beam of length 

( )

figuration ( )3 2 3
0 ( ) 2w x ax L Lx x= − + , where 0 24a q EI=  is a constant. 

Determine the am ase angles for the free viplitudes and ph bration response of 
the structure if it is released from rest when in this configuration.  

10.33 
eam of Problem 10.32 if th  represented 

 
0.34 The cantilevered Timoshenko Beam of Example 10.12 is released from rest 

  
 

 
Determine the amplitudes and phase angles for free vibration of the simply 
supported b e beam is using Rayleigh 
Theory.  

1
from the configuration 

2 21 1
0 0 0 06 2( ) , ( ) s

1x Q x L x x Q x Lx kϕ −w ⎡ ⎤= − = − −⎡ ⎤⎣ ⎦ ⎣ ⎦   

e beam. 
 

 
where Q0 is constant. Determine the amplitudes and phase angles for the free 
vibration response of th

 
 



   

11 
Forced Vibration of One-Dimensional 
Continua 

 
 
 
 
 
 
 
The dynamic response of mechanical and structural systems to external loads is of 
primary importance in a variety of applications. Excessive vibrations of a structure 
such as an airplane wing or a highway overpass can lead to catastrophic failure, while 
the bowing of a violin string, the plucking of a guitar string or the pounding of a drum 
head can produce desirable effects. The controlled vibration of structures is germane 
to the performance of telephones, stereo speakers and SONAR, to name but a few 
examples. The behavior of continua under dynamic loading is central to the under-
standing and implementation in all of these applications. It is therefore of interest to 
study the vibrations of continua under applied dynamic forcing. In this chapter we 
study the forced vibration of the mathematically one-dimensional continua discussed 
in Chapters 9 and 10. Specifically, we discuss the forced longitudinal and torsional 
motions of elastic rods, the transverse motion of externally excited strings and cables, 
and the transverse motion of Euler-Bernoulli Beams, Rayleigh Beams and Ti-
moshenko Beams to dynamic transverse loads and applied moments.   
 It was shown in Chapter 9 that the mathematical description of a continuous 
system is an abstraction of the description of a discrete system. This abstraction was 
utilized in Chapter 10 to study the free vibrations of one-dimensional continua, and 
the concepts of normalization and mutual orthogonality of the modes were similarly 
advanced. In a similar manner, the modal decomposition introduced to study the 
forced vibration of discrete systems can be extended to continuous systems, allowing 
for a fundamental and comprehensive approach to forced vibration problems for one-
dimensional continua. Modal analysis of forced vibration problems is based on an 
expansion of the displacement function in terms of the modal functions found for the 
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corresponding free vibration problem. The justification for such a modal expansion is 
discussed in the next section. The methodology and applications to the various sys-
tems considered to this point follow in subsequent sections of this chapter. 
    

11.1 MODAL EXPANSION 

In order to solve forced vibration problems it is of fundamental, as well as practical, 
interest to first express the displacements in terms of the fundamental motions of the 
system described by the modal functions. The advantage of this approach was clearly 
seen when we studied forced vibration of discrete systems in Chapter 8. As discussed 
at the beginning of Section 8.3, a vector may be expressed as a linear combination of 
other vectors provided those vectors are linearly independent. It was demonstrated in 
Chapters 9 and 10 that a function is an abstraction of a finite dimensional vector. That 
is, functions may be viewed as vectors with an infinite number of components or 
elements that are densely packed and continuously distributed. To show that a set of 
functions forms a basis for a given space, and hence that any other function in that 
space can be expressed as a linear combination of the functions of the given set, we 
must show that the functions that comprise the set are linearly independent. We do 
this for the class of modal functions described in the previous chapter.   
 

11.1.1 Linear Independence of the Modal Functions 

We wish to establish the linear independence of the modal functions for the class of 
continua discussed in Chapters 9 and 10. To accomplish this we must show that, for a 
given structure, no one modal function can be expressed as a linear combination of 
the other modal functions. The mutually orthogonality of the modal functions, as dis-
cussed in Section 10.8, is central to establishing this property. 
 The motion of each of the systems discussed in Chapters 9 and 10 was seen to 
be described by a displacement function or functions and the governing equation or 
equations by the associated mass and stiffness operators. Since the case of a single 
displacement function and scalar mass and stiffness differential operators is a special 
case of multiple displacement functions and corresponding mass and stiffness opera-
tors, we shall establish the desired condition for the more general case. Let us, there-
fore, consider continuous systems for which the displacements are described by the 
column array, u(x,t) with corresponding modes U(j)(x) (j = 1, 2, …) and associated 
mass and stiffness operators described by the square matrices m and k, respectively. 
For the case of a single displacement function, the column arrays reduce to single 
element arrays (functions) u(x,t) and U(x), and the square matrices reduce to single 
element operators m and k.  
 The functions that comprise the set of modal functions {U(1)(x), U(2)(x), …} are 
linearly independent if no function of that set can be expressed as a linear combina-
tion of the other functions of the set. Equivalently, the modal functions for a given 
structure are linearly independent if the equation 
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 ( )

1

( )l
l

l

a x
∞

=

=∑ 0U  (11.1) 

 
is satisfied when all al = 0 (l = 1, 2, …). We shall show that this is the case for a set of 
mutually orthogonal modal functions. To do this, we first multiply the above equation 
by U(j)Tmdx and integrate the resulting expression over the domain [0, L]. Hence, 
 

 ( ) ( )

0 1

( ) ( ) 0
L

j l
l

l

a x x dx
∞

=

=∑∫ U mUT  

 
We next interchange the order of summation and integration in the above expression 
to obtain 

 ( ) ( )

01

( ) ( ) 0
L

j l
l

l

a x x dx
∞

=

=∑ ∫ U mUT  (11.2) 

 
Now, if the modal functions are mutually orthogonal then 
 

 ( ) ( ) ( ) ( )
2( )

0

0 (
( ) ( ) ,

( )

L
j l j l

j

l j
x x dx

l j

)≠⎧⎪= = ⎨
=⎪⎩

∫ m
m

U mU U U
U

T  

 
Accounting for the mutual orthogonality of the modal functions in Eq. (11.2) reduces 
that statement to the form 
 
 

2( ) 0     ( 1, 2,...)j
ja j= =

m
U  (11.3) 

 
Since the square of the magnitude of a modal function does not vanish we have that 
 
 0     ( 1,2,...)ja j= =  (11.4) 
 
which is what we set out to show. The modal functions for a given structure are thus 
linearly independent if they are mutually orthogonal. 
 

11.1.2 Generalized Fourier Series 

Since the mutually orthogonal modal functions of a given set are linearly independ-
ent, any function u(x,t) defined on the domain of definition of the modal functions 
can be expressed as a linear combination of these functions. That is, 
 



686 Engineering Vibrations 

    ( )

1

( , ) ( ) ( )j
j

j

x t tη
∞

=

= ∑u xU  (11.5) 

 
where the time dependent coefficients, ηj (j = 1, 2, …) depend upon the particular 
loading applied to the system and the parameters that define the system. Note that if 
the set of functions corresponds to a sequence of harmonic functions whose wave 
numbers differ by multiples of 2π then Eq. (11.5) reduces to a standard Fourier series, 
Eq. (3.163). A general expansion of the form of Eq. (11.5) is thus referred to as a 
generalized Fourier Series. The modal expansion tells us that the response of a given 
system to external forcing is comprised of a linear combination of the responses of 
the individual modes. 
 
 

11.2 DECOMPOSITION OF THE FORCED VIBRATION PROBLEM 

The solution of forced vibration problems for one-dimensional continua is facilitated 
by the results of the last section. It was seen therein that the response of a given struc-
ture may be expressed as a linear combination of the modal functions. It will be 
shown in the present section that the governing equations for a given structure can be 
decomposed into the governing equations for an infinite system of uncoupled single 
degree of freedom systems whose displacements correspond to the modal coordi-
nates.  As in the previous section, we carry out the development for the general case 
where several displacement functions may characterize the motion of the system. 
Structures for which a single displacement function characterizes the motion are in-
terpreted as a special case.  
 The governing equation for the class of structures under consideration takes the 
general form   

 
2

2t
∂

+ =
∂

um ku F  (11.6) 

 
where F = F(x,t) represents the distributed external loads applied to the structure (see 
Chapter 9). Let us express the array of displacement functions as a linear combination 
of the arrays of the corresponding modal functions. Upon substituting Eq. (11.5) into 
Eq. (11.6) we have 
 

 ( ) ( )

1

( ) ( ) ( ) ( ) ( , )j j
j j

j

x t x tη η
∞

=

⎡ + =⎣∑ mU kU F x t⎤⎦  (11.7) 

 
Multiplying (11.7) on the left by U(l)Tdx and integrating over [0, L] then results in the 
identity  
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( ) ( ) ( ) ( )

0 1

( )

0

( ) ( ) ( ) ( ) ( ) ( )

                                                       ( ) ( , )

L
l j l j

j j
j

L
l

x x t x x t dx

x x t dx

η η
∞

=

⎡ ⎤+⎣ ⎦

=

∑∫

∫

U mU U kU

U F

T T

T

 (11.8) 

 
Let us now interchange the order of integration and summation in Eq. (11.8) and note 
the relations for the mutual orthogonality of  the modal functions, 
 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) 0    

L
l j l j ( )x x dx j l≡ = ≠∫m

U U U mUT  

 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) 0    

L
l j l j ( )x x dx j l≡ = ≠∫k

U U U kUT  

 
After doing this, Eq. (11.8) reduces to the system of uncoupled ordinary differential 
equations in ηj, 
 
  (11.9) ( ) ( ) ( )    ( 1, 2,...)j j j j jm t k t F t jη η+ = =
where 

 
2( ) ( ) ( )

0
( ) ( )     ( 1, 2,...)

L
j j j

jm x x dx= = =∫m
U U mUT j  (11.10) 

 

 
2( ) ( ) ( )

0
( ) ( )     ( 1, 2,...)

L
j j j

jk x x dx= = =∫k
U U kUT j  (11.11) 

and 

 ( ) ( )

0
( ) , ( ) ( , )     ( 1, 2,...)

L
j j

jF t x x t dx j= = =∫U F U FT  (11.12) 

 
respectively correspond to the modal mass, modal stiffness and modal force for the jth 
mode. Note that if we choose to normalize the modal functions with respect to the 
mass, then the modal masses are all equal to one. Equations (11.9) are seen to corre-
spond to the equations of motion for an infinite number of uncoupled single degree of 
freedom systems whose displacements are the modal coordinates ηj(t) (Figure 8.7). 
Each equation describes the amplitude of an individual mode. The corresponding 
masses and stiffnesses of these single degree of freedom systems are the modal 
masses and modal stiffnesses defined by Eqs. (11.10) and (11.11). The modal forces 
(the forces acting on the modal masses) defined by Eq. (11.12) correspond to the por-
tion of the applied force distributed to the individual mode. Before proceeding it is 
useful to identify the natural frequencies for each of the equivalent single degree of 
freedom systems.     



688 Engineering Vibrations 

 Recall from Chapter 10 that natural frequencies and modal functions for a 
given structure each satisfy the relation 
 
  (11.13) ( ) 2 ( ) ( 1, 2,...j j

j jω− = =kU mU 0 )
 
where ωj is the jth natural frequency of the structure. If we multiply Eq. (11.13) on the 
left by U(j)Tdx and integrate the resulting expression over the domain of definition of 
the structure [0, L] we arrive at the identity 
 
   (11.14) 2 0    ( 1, 2,...)j j jk m jω− = =
 
With the relation between the frequencies of the equivalent single degree of freedom 
systems seen, perhaps not surprisingly, to correspond to the natural frequencies of a 
given structure we return to the problem defined by Eq. (11.9). 
 Dividing Eq. (11.9) by  and incorporating Eq. (11.14) puts the uncoupled 
system of equations for the modal coordinates in the standard form (Chapter 3)  

jm

 
  (11.15) 2 2( ) ( ) ( )    ( 1,2,...)j j j j jt t f t jη ω η ω+ = =
where 

 2

( ) ( )
( ) j j

j
j jj

F t F t
f t

mk ω
≡ =  (11.16) 

 
The equations are seen to be a system of uncoupled forced harmonic equations which 
may be solved for ηj(t) using the methods of Chapters 3–5. The solutions correspond 
to the displacements of effective single degree of freedom systems and are the modal 
coordinates. Once these modal displacements are determined for a given system and 
applied forces, they may be substituted into Eq. (11.5) giving the forced vibration 
response in the form 
 

 ( )

1

( , ) ( ) ( )j
j

j

x t tη
∞

=

= ∑u U x  

 
The above development may be applied to the various one-dimensional continua dis-
cussed in Chapter 10. In particular, the modal analysis described above may be ap-
plied directly to problems concerning the longitudinal motion of elastic rods, tor-
sional motion of elastic rods, transverse vibration of strings and cables, flexural mo-
tion of Euler-Bernoulli Beams and Beam-Columns, and Timoshenko Beams, with 
proper identification of the mass and stiffness operators and structural parameters for 
the system of interest. The general procedure holds for Rayleigh Beams as well, 
though the definitions for modal mass and modal stiffness differ slightly from those 
stated above and will be introduced in Section 11.3.5. In the next section we use mo-
dal analysis to solve forced vibration problems for various one-dimensional continua. 
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Identify mass and stiffness operators and b.c.s.  
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2 ( , ) ;   [0, ]x t x L
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∂
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∂
um k  u F

Solve the free vibration problem (eigenvalue problem) 
to obtain natural frequencies and modal functions. 
     2 2 ( )   , ( )  ( 1,2,...j

j x jω ω⎡ ⎤− = ⇒ =⎣ ⎦ 0k m U U )

 
 
 
 
        Figure 11.1 Recipe for modal analysis of 1-D continua subjected to external forcing. 

Normalize the modal functions (optional). 
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( ) ( ) 1

L
j j jx x dx= =∫m

U U  mUT

Solve the modal equations using the methods discussed in Chapters 3–5 
or a method of choice to obtain the modal displacements.  
  2 2 ( )      ( )  ( 1, 2,...)j j j j j jf t t jη ω η ω η+ = ⇒ =

Confirm that the pertinent orthogonality condition is 
satisfied by the given boundary conditions. 

Evaluate the modal masses and modal forces. 
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j jm F t x= =
m
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   ( ) ( )j j jf t F t mω= 2
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Substitute the modal displacements into the modal 
expansion to obtain the physical response. 
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11.3 SOLUTION OF FORCED VIBRATION PROBLEMS 

The forced vibration problem for any of the one-dimensional continua described in 
Chapters 9 and 10 can be solved by way of the modal decomposition discussed in the 
previous section. This procedure is referred to as modal analysis. To perform such an 
analysis for a given structure we must first solve the corresponding free vibration 
problem, confirm that the modal functions are mutually orthogonal by checking that 
the boundary conditions satisfy the requisite conditions defined in Section 10.8, and 
then computing the modal masses and/or modal stiffnesses for the system and the 
modal forces for the particular forces applied to the structure. We then solve the sys-
tem of differential equations for the modal displacements. Once the modal displace-
ments are determined we substitute them, along with the corresponding modal func-
tions, into the modal expansion defined by Eq. (11.5) to obtain the forced response of 
the structure. The general procedure is outlined in Figure 11.1.  
 Examples pertaining to each of the structures discussed in Chapters 9 and 10 
are presented in the remainder of this section. 
   

11.3.1 Axially Loaded Elastic Rods 

We first consider the longitudinal vibrations of elastic rods due to applied forces. 
Recall the equation of longitudinal motion, Eq. (9.44), 
 

    
2

2 ( , )um EA u p
x xt

∂ ∂ ∂
− =

∂ ∂∂
x t  

 
where u(x,t) is the axial displacement of the cross section originally at x and p(x,t) is 
the distributed axial load applied to the rod. Thus, for the present type of structure, 
u(x,t)  u(x,t), F(x,t)  p(x,t) and m → m(x)  in the development and formulation 
presented in Sections 11.1–11.2. 

→ →

 
 
 

Example 11.1 
A uniform elastic rod of mass 
density ρ, Young’s Modulus E, 
cross-sectional area A and length 
L is fixed at its left end and free to 
translate at its right end as shown. 
Determine the steady state re-
sponse of the rod if a harmonic 
force P(t) = P0sinΩt is applied at 
its free end as indicated. 
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Solution 
The natural frequencies and modal functions for this structure were determined 
in Example 10.1 to be 
 

 0(2 1)     ( 1, 2,...)
2j j jπω ω= − =  (a-1) 

where 

 0 2 a
EA c L

mL
ω = =  (a-2) 

 
  (b-1) ( ) ( ) sin     ( 1, 2,...)j

jU x x jβ= =
where 

 (2 1) 2j j Lβ π= −  (b-2) 
 

The applied force may be represented as a distributed axial force with the aid of 
the Dirac Delta Function (Chapter 4) as 
 

 0( , ) sin ( )p x t P t x Lδ= Ω −  (c) 
 
To determine the response of the rod, u(x,t), in the form of Eq. (11.5) we must 
determine the modal displacements, ηj(t), which are solutions to Eq. (11.15) 
evaluated for the present system. To determine the modal displacements, we 
must first calculate the modal masses (or modal stiffnesses) and the modal 
forces. Substituting Eq. (b-1) into Eq. (11.10) and performing the indicated in-
tegration gives the modal masses as 
 

 ( ) ( ) 2 1
2

0 0
( ) ( ) sin

L L
j j

jm U m x U x dx m x dx mβ= =∫ ∫ j L=  (d) 

 
The corresponding modal forces are determined by substituting Eqs. (c) and (b-
1) into Eq. (11.12). Doing this we find that 
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L
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∫
∫

  

Thus, 
 0( ) sinj jF t F t= Ω  (e-1) 

where 
 0

0 sin ( 1) j
j j

1
0F P Lβ += = − P  (e-2) 
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Hence, for the present system, Eq. (11.15) takes the specific form 
 

  (f) 2 2 0( ) ( ) sin t    ( 1, 2,...)j j j j jt t f jη ω η ω+ = Ω =
where 

 
0 1

0 0
2 2

8 ( 1)
(2 1)
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j
j j

F P L
f

EAm jω π

+−
= =

− 2  (g) 

 
The solutions to Eq. (f) may be written directly from Eq. (3.28). In this way, the  
jth modal displacement is found to be  
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0 1
0

2 22 2
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8( 1)( ) sin sin
(2 1) 41

j
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j

f P L
t t

EAj
η

π ωω
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= Ω =
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tΩ  (h) 

  
where 0ω  is given by Eq. (a-2). Substitution of Eq. (h) into Eq. (11.5) gives the 
steady state response of the rod to the harmonic edge load as 
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{ }
1

0
22 2

1 0

8 ( 1)( , ) sin sin (2 1) 2
(2 1) 4

j

j

P L
u x t t j x L

EA j
π

π ω
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−
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∑  (i) 

 
 
  
 

11.3.2 Torsion of Elastic Rods 

We next consider the vibrations of elastic rods due to applied torques. Recall that for 
a rod of circular cross section with polar moment of inertia J(x), the equation of tor-
sional motion, Eq. (9.59), is 
 

    
2

2 ( , ) ( , )J GJ x t x t
x xtρ

θ θ µ∂ ∂ ∂
− =

∂ ∂∂
 

 
where θ (x,t) is the rotational displacement of the cross section at coordinate x. Corre-
spondingly µ (x,t) represents the distributed (body) torque applied along the axis of 
the rod. Thus, for the present type of structure, u(x,t)  θ(x,t) , F(x,t)  µ(x,t) and 
m(x)  J

→ →
→ ρ(x) = ρ(x) J(x)  in the development and formulation presented in Sections 

11.1–11.2.  
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Example 11.2 
 A sleeve of negligible mass fits around a 

circular elastic rod of length L, radius R, 
shear modulus G and mass density ρ. The 
structure is fixed at its right end as shown. 
At a certain instant the sleeve is quickly ro-
tated such that it exerts a sudden uniformly 
distributed torque of magnitude µ0 along 
the shaft. Determine the response of the shaft and the reaction at the support.    
 
Solution 
The frequency equation, natural frequencies and modal functions for a rod 
fixed at its right end are determined by solving the corresponding free vibration 
problem (Problem 10.6). These quantities may also be determined from the cor-
responding expressions of Example 10.4 by setting α = 0. The natural frequen-
cies and modal functions for the shaft are thus, respectively, 
 

 (2 1) 2    ( 1,2,...)j Tc j L jω π= − =  (a-1) 
and 

  (a-2) ( ) ( ) cos    ( 1, 2,...)j
jx x jβΘ = =

where 
 (2 1) 2    ( 1,2,...)j j L jβ π= − =  (a-3) 

 
and Tc G ρ= . The modal masses are then calculated as 
 

 

( ) ( )
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2 1
2

0

( ) ( )

    cos    ( 1, 2,...)

L
j j

j

L

j

m x J x dx

J x dx JL j

ρ

ρ β ρ

= Θ Θ

= =

∫
∫ =

 (b) 

 
For the given problem, the applied torque takes the form 
 

 0( , ) ( )x t tµ µ= H  (c) 
 
The modal forces are then 
 

 ( ) 0

0

2 ( 1)( ) ( ) ( , ) ( )
(2 1)

jL
j

j
LF t x x t dx t

j
µ

µ
π

−
= Θ =

−∫ H  (d) 

 
Hence, 
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where 
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16 32( 1) ( 1)
(2 1) (2 1)

j j

j
L Lf
GJ j R G j

µ µ
π π

+ +−
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− − 3

−  (f) 

 
 Thus, for the present problem, Eq. (11.15) takes the form 
 

    (g) 2 2 0 ( )j j j j jf tη ω η ω+ = H
 
The solution of Eq. (g) follows directly from Eqs. (4.31) and (4.32) as 
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j j j j
L

t f t
R G j

µ
tη ω

π
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= =

−
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The response is then obtained by summing the contributions of each of the 
modes, as per Eq. (11.5). We thus have 
 

 
2 1

( ) 0
4 3

1 1

32 ( 1)( , ) ( ) ( ) cos cos
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j
j

j j j
j j

L
x t t x x t

R G j
µ
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−
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The reaction at the support is equal to the internal torque at x = L. Hence, from 
Eq. (9.55) and Eq. (i), 
 

 
2

0
3 2

1

16 1( , ) cos
(2 1)L j

x L j

LL t GJ t
x j

µθ ω
π

∞

= =

∂
= = = −

∂ −∑T T  (j) 

 

 

 

11.3.3 Strings and Cables 

We now apply the formulation presented in Sections 11.1 and 11.2 to the forced vi-
bration of strings and cables. The corresponding equation of motion, Eq. (9.74), is 
 

 
2 2

2 2 ( , )w wm N q x
t x

∂ ∂
− =

∂ ∂
t  
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where w(x,t) is the transverse displacement of the point on the axis of the string origi-
nally at x and q(x,t) represents a distributed transverse load. Thus, for the present 
class of structure, u(x,t)  w(x,t), F(x,t)  q(x,t) and m → m(x) in the develop-
ment and formulation presented in Sections 11.1–11.2.  

→ →

 
 

Example 11.3 
The cable and sign system of Example 
9.6-(i) undergoes a sudden wind load that 
varies parabolically along the length as 

( )2ˆ( , ) ( )q x t q t x L= ⋅ and then abruptly 
dies off. Determine the motion of the ca-
ble if the time dependent amplitude of the 
wind load may be represented by a half 
sine wave of magnitude q0 and duration 
t*. 
 
 
 
 
Solution 
The wind load is represented mathematically as 
 

 ( )2ˆ( , ) ( )q x t q t x L= ⋅  (a-1)  
where 

 [ ]0ˆ( ) sin( *) ( ) ( *)q t q t t t t tπ= −H H −  (a-2) 
 
The natural frequencies and modal functions for a cable under uniform tension 
and fixed at its ends were determined in Example 10.5. Setting in 
those results gives the frequencies and modal functions for the present system 
as 

N g= m

 2j
gj

mL
ω π=

m  (b-1) 

and  
   ( )( ) ( ) sinjW x j x Lπ=  (b-2) 
 
The modal mass is then 
 

 ( )( ) ( ) 2

0 0
( ) ( ) cos

2

L L
j j

j
mLm W x mW x dx m j x L dxπ= =∫ ∫ =  (c) 

 
The corresponding modal forces are calculated as 
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from which it follows that 
 

 [ ]0( ) sin( *) ( ) ( *)j jf t f t t t t tπ= −H H −  (e-1) 
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Therefore, for the present problem, Eq. (11.15) takes the form 
 

 [ ]2 2 0( ) ( ) sin( *) ( ) ( *)j j j j jt t f t t t tη ω η ω π+ = − −H H t  (f) 
 

The solution to Eq. (f) is obtained by direct application of Eq. (3.28) with 
Ω = π /t* giving 
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The response of the cable is then  
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 ( , ) 0    ( *)w x t t t= >   
 
 
 
 

11.3.4 Euler-Bernoulli Beams 

We now apply the formulation presented in Sections 11.1 and 11.2 to determine the 
dynamic response of Euler-Bernoulli Beams to externally applied forces. The corre-
sponding equation of motion, Eq. (9.104), is 
 

 
2 2 2

2 2 2 ( , )w wEI m q x t
xx x t

∂ ∂ ∂ ∂
+ = −

∂∂ ∂ ∂
b  

 
where w(x,t) is the transverse displacement of the point on the axis of the beam origi-
nally at x, q(x,t) represents a distributed transverse load and b(x,t) is a distributed cou-
ple. Thus, for the present type of structure, u(x,t)  w(x,t), F(x,t)  q(x,t) − ∂b/∂x 
and m(x) → m(x) in the development and formulation of Sections 11.1 and 11.2.  

→ →

 
 

Example 11.4 
Consider the simply supported uniform Euler-Bernoulli Beam shown in the fig-
ure. Determine the response of the beam if 
a distributed transverse load that varies 
linearly along the length of the beam is 
suddenly applied, maintained at a constant 
level over a time duration t*, and is then 
suddenly unloaded. Also, compute the reac-
tions of the supports during the time that 
the distributed load is present. 
 
Solution 
The free vibration problem for a simply supported beam was considered in Ex-
ample 10.6. The corresponding natural frequencies and normal modes are 
found to be  

 2
4( )j

EIj
mL

ω π=  (a-1) 

and 

 (( ) 2( ) sinjW x j x L
mL

π= )  (a-2) 
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respectively, where we have normalized the latter as described in Section 10.7. 
To solve the problem using modal analysis we seek a solution in the form 
 

  ( )

1

( , ) ( ) ( )j
j

j

w x t t W xη
∞

=

= ∑
 
where the modal displacements ηj(t) are solutions to the problems 
 

  2 2 ( )j j j j jf tη ω η ω+ =
 
To solve for the modal displacements we must first determine the modal forces. 
The applied loading may be expressed mathematically as 
 

 0( , ) ( )xq x t q t
L

= g  (b-1) 

where,  
 ( ) ( ) ( *)t t t t= − −g H H  (b-2) 

 
is a rectangular pulse (Section 4.6.1) and H (t) is the Heaviside Step Function 
(Section 4.1.2). The modal force is then determined using Eq. (11.12). Hence, 
 

 ( )( )
0

0 0

2( ) ( ) ( , ) sin ( )
L L

j
j

xF t W x q x t dx j x L q t
mL L

π= =∫ ∫ g dx  

 
Performing the integration gives the jth modal force as 
 

 
1

0
2 ( 1)( ) ( ) cos( ) ( )

2

j

j
L

0
2LF t q t j q t

mL j m
π

π π

+−
= − ⋅ =g g  (c) 

 
Since the modal functions have been normalized with respect to m, the modal 
masses are equal to one. Therefore 
 

 2 2
4    ( )

1
j j

j j j
j

k k EIk j
m m

ω ω= = ⇒ = = 2

L
π  (d) 

 
It then follows that, 

 0( )
( ) ( )j

j
j

F t
f t f t

k
≡ = j g  (e-1) 

where 
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 0
03

( 1) 2
( )

j

j
Lf q

mj

π

π
−

=  (e-2) 

 
To determine the modal displacements, we must solve the problem 

 
 [ ]2 2 0 ( ) ( *)j j j j jf t t tη ω η ω+ = − −H H  (f) 
 

Each mode is seen to behave as a single degree of freedom system subjected to 
a step load (Section 4.6.1). The solution of Eq. (f) follows directly from Eqs. 
(4.41)–(4.43) giving the modal displacements as 
 

  (g) 0 0
1( ) 1 cos ( ) 1 cos ( ) ( *)j j j j jt f t t f t t t tη ω ω⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦ ⎣ ⎦H H

 
Hence,  

 
1

0 2

2 ( 1)( ) 1 cos     (0 *)
j

j j
j

Lt q t t t
m j

η ω
π ω

+− ⎡ ⎤= −⎣ ⎦ ≤ <  (h-1) 

 

 
1

0 2

2 ( 1)( ) cos ( *) cos     ( *)
j

j j
j

Lt q t t t t t
m j

η ω ω
π ω

+− ⎡ ⎤= − −⎣ ⎦j ≥  (h-2) 

 
The forced response of the beam is then 
 

 ( )
4 1

0 5
1

( 1)( , ) 1 cos sin     (0 *)
( )

j

j
j

mLw x t q t j x L t t
EI j

ω π
π

∞ +

=

− ⎡ ⎤= − ≤ <⎣ ⎦∑  (i-1) 

 

 (
4 1

0 5
1

( 1)( , ) cos ( *) cos sin
( )

j

j j
j

mLw x t q t t t j x L
EI j

ω ω π
π

∞ +

=

− ⎡ ⎤= − −⎣ ⎦∑ )   

  ( * (i-2) )   t t≥
  

To determine the reactions we must first determine the transverse shear in the 
beam. This is accomplished by substituting Eqs. (i-1) and (i-2) into Eqs. (9.102) 
and (9.97). Hence, 
 

 
( )

3

3

1

0 2
1

( , )

( 1)          1 cos cos   (0 *)
( )

j

j
j

wQ x t EI
x

mLq t j x L
EI j

ω π
π

∞ +

=

∂
= −

∂

− ⎡ ⎤= −⎣ ⎦∑ t t≤ <
 (j-1) 
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( )

3

3

1

0 2
1

( , )

( 1)    cos ( *) cos cos   ( *)
( )

j

j j
j

wQ x t EI
x

mLq t t t j x
EI j

ω ω π
π

∞ +

=

∂
= −

∂

− ⎡ ⎤= − −⎣ ⎦∑ L t t≥
 (j-2) 

 
We can compute the reactions during the first phase of the loading using Eq. (j-
1) as follows:  
 

 
1

0 0 2
1

( 1)( ) (0, ) 1 cos     (0 *)
( )

j

j
j

mLR t Q t q t t t
EI j

ω
π

∞ +

=

− ⎡ ⎤= − = − ≤ <⎣ ⎦∑  (k-1) 

 

 
3

0 2
1

( 1)( ) ( , ) 1 cos     (0 *)
( )

j

L j
j

mLR t Q L t q t t t
EI j

ω
π

∞ +

=

− ⎡ ⎤= = − ≤ <⎣ ⎦∑  (k-2) 

 
 
 

 

Example 11.5 
A simply supported Euler-Bernoulli Beam 
is impacted from above at a point located a 
distance a from the left support as shown. 
Determine the response of the beam if the 
magnitude of the impact is I0. 
 
 
Solution 
The impact force may be expressed as an equivalent distributed load by using 
the Dirac Delta Function (Section 4.1.1) in space as well as in time. The ap-
plied force is then 
 

 0( , ) ( ) ( )q x t t x aδ δ= − −I  (a) 
 
The frequencies and normal modes were presented in Eqs. (a-1) and (a-2) of 
Example 11.4. Since the modes were normalized with respect to the mass, the 
modal masses are all equal to one. The modal forces for the present problem 
are computed as follows: 
 

 ( )( )
0

0 0

2( ) ( ) ( , ) sin ( ) ( )
L L

j
jF t W x q x t dx j x L t x a

mL
π δ δ= = −∫ ∫ dx−I  (b) 

 



11│ Forced Vibration of One-Dimensional Continua 701 

Hence, 
 ( ) ( )j jF t tδ= I  (c-1) 

where 

 (0
2 sinj j a L

mL
π= −I I )  (c-2) 

 
Since the modal masses are unity, Eq. (11.9) takes the form 
 

 
1

( )j j j j jm k tη η δ+ = I  (d) 
 
The modal response follows directly from Eq. (4.22) as 
 

 ( )0
2( ) sin ( ) sin sin (j

j j
j j

Lt t t j a L
m EI

η ω π ω
ω

= = −H H
I

I )j t t  (e) 

 
The response of the beam is then 
 

 

( ) ( )

( )

1

0

1

( , ) ( ) ( )

2
          sin sin sin( ) ( )

j
j

j

j
j

w x t t W x

j a L j x L t t
mEI

η

π π ω

∞

=

∞

=

=

= −

∑

∑I
H

 (f) 

 
 

 

Example 11.6 
Consider a simply supported Euler-
Bernoulli Beam subjected to a moving 
point load of magnitude Q0 that is directed 
downward as shown. Determine the re-
sponse of the beam if the load moves with 
velocity cQ. 
 
 
Solution 
The point load may be represented as a distributed load by using the Dirac 
Delta Function in space, as in Example 11.5, and letting a = cQt. Hence, 
 

  (a) 0( , ) ( )Qq x t Q x c tδ= − −
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The modal forces are then, 
 

 ( ) ( )
0

0
( ) ( ) ( ) ( )

L
j

j Q 0
j

QF t Q W x x c t dx Q W cδ= − − = −∫ t  (b) 

 
The normalized modal functions and natural frequencies are, from Example 
11.4, 

 ( )( ) 2
4

2( ) sin  ,     ( )j
j

EIW x j x L j
mL mL

π ω π= =  (c-1, 2)  

Thus, 

 ( ) 2( ) sinj
QW c t

mL jt= Ω  (d) 

where 
 j Qj c LπΩ =  (e) 

 
Then, for the present problem, Eq. (11.15) takes the form 
 

 2 2 0 sinj j j j j jfη ω η ω t+ = Ω  (f) 
where 

 
3

0 0
4

2
( )j

Q L mLf
EI jπ

= −  (g) 

 
The solution to Eq. (f) is written directly from Eq. (3.28) as 
 

 ( )0 0( ) sin sinj j j j j j Qt f t f j c t Lη = Γ Ω = Γ π  (h) 
where 

 
( ) ( )

2

2 2

1 ( )

1 ( )
j

j j Q G

j

j c r

π

ω π
Γ = =

− Ω −
2  (i) 

 
 Q Qc c ca=  (j) 

 
 G Gr r L=  (k) 

and 
 2

Gr I= A  (l) 
 
The response of the beam to the moving point load is then 
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( )

( ) ( )
3

0
22 2

1

2 1( , ) sin sin
( ) ( )

Q
j Q G

Q L
w x t j x L j c t L

EI j j c r
π π

π π

∞

=

= −
⎡ ⎤−⎢ ⎥⎣ ⎦

∑   

   
It is seen that a resonance condition exists when 0Qc j Lπω=  or, equivalently, 
when Q Gc j rπ= . 

 
 

 

Example 11.7 
A cantilevered Euler-Bernoulli 
Beam is loaded by a time de-
pendent moment, ML(t), at its 
free end. Determine the steady 
state response of the beam if the 
applied moment is of the form 
ML(t) = M0 cos Ωt. 
 
Solution 
The frequencies for a uniform cantilevered beam are, from Example 10.7, 
 

 1 0 2 0 33.516 ,    22.03 ,    61.70 , ...0ω ω ω ω ω ω= = =  (a) 
 
where 

 0 4
a Gc rEI

mL L
ω = = 2

j

 (b) 

 
The corresponding modal functions were found to be 
 

 ( ) ( ) cosh cos sinh sinj
j j j jW x x x Y x xβ β β β⎡ ⎤= − − −⎣ ⎦  (c) 

 
where 

 ( ) ( )cosh cos sinh sinj j j jY L L Lβ β β β= + + j L

 

 (d)  

and 
 1 2 31.875,  4.695,  7.855, ...L L Lβ β β= = =  (e) 

 
The loading for the present problem, the applied moment at x = L, may be ex-
pressed as a distributed moment with the aid of the Dirac Delta Function. The 
corresponding body couple is then 

 
 ( , ) ( ) ( )Lx t M t x Lδ= −b  (f) 
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Since there is no distributed transverse load, we have that 
 

 ( , ) ( , )F x t q x t=
x x

∂ ∂
− = −

∂ ∂
b b  (g) 

 
The modal forces for the cantilever beam are then found as 
 

 ( ) ( )
0

0 0

( , )( , ) ( ) cos ( ) ( )
L L

j j
j

x tF x t W x dx M t W x x L d
x

δ∂ ′= − = − Ω −
∂∫ ∫ xb  

 
 The integral in the above expression is evaluated using Eq. (4.8) to give 
  

 ( )
0 0

sinh sin
( ) cos ( ) 2 cos

sinh sin
j j jj

j
j j

L L
F t M tW L M t

L L
β β β

β β

⎡ ⎤
′= − Ω = − Ω ⎢ ⎥

+⎢ ⎥⎣ ⎦
 (h) 

 
Hence, 

 0
2

( )
( ) cosj

j j
j j

F t
f t f t

mω
= = Ω  (i-1) 

where 

 
( )

0 0
3

sinh sin12
sinh sin

j j
j

j jj j

L LMf
EI L Lm m

β β
β ββ

⎡ ⎤
= − ⎢ ⎥

+⎢ ⎥⎣ ⎦
 (i-2) 

and 
 

 
( )

2( ) ( ) ( )

0

2

0

( ) ( )

    cosh cos sinh sin

L
j j j

j

L

j j j j j

m W x mW x dx m W

m x x Y x xβ β β β

= =

⎡ ⎤= − − −⎣ ⎦

∫
∫ dx

t

 (j) 

 
 Thus, for the present problem, Eq. (11.15) takes the form 
 
 2 2 0( ) ( ) cosj j j jt t fη ω η ω+ = Ω  (k) 

 
where 0

jf  is given by Eq. (i-2). The solution is then written directly from Eq. 
(3.27) as 

 
( )

3
0

2

( )2
( ) cos

1

j
j

j

LM Lt
EI

β
η

ω
t= −

⎡ ⎤− Ω⎢ ⎥⎣ ⎦

G
Ω  (l) 

where 
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( ) ( )2 3( )

sinh sin
( )

sinh sin
j j

j j
j j

L L
L

W L L

β β
β

β β β
=

+
G

j L
 (m)  

 and 
 

 

2( )

2

4 sinh 2 sin 2 12

2 cos 2 cosh 2 4sinh sin

sinh 2 sin 2 4sinh 2 cos 2

2cosh 2 sin 2

j
j j j j

j j j j j

j j j j

j j

W L L L

Y L L L L

Y L L L

L L

β β β β

β β β β

β β β β

β β

= + +

j L

⎡ ⎤+ − +⎣ ⎦
⎡+ − +⎣

⎤− ⎦

 (n) 

 
The steady state response of the beam is then 
 

( )
( )

2
0

2
1

( )
( , ) 2 cos

1

                 cosh cos sinh sin

j

j j

j j j j j

LM Lw x t t
EI

x x Y x x

β

ω

β β β β

∞

=

= − Ω ⋅
⎡ ⎤− Ω⎢ ⎥⎣ ⎦
⎡ ⎤− − −⎣ ⎦

∑ G

  

  (o) 
We now compute ( L)βG for the first three modes using Eqs. (m) and (n) to get 

 
  (p-1) 1( ) (1.875) 0.0527Lβ = =G G

 6
2( ) (4.695) 7.210 10Lβ −= = ×G G  (p-2) 

 7
3( ) (7.855) 4.887 10Lβ −= = − ×G G  (p-3) 

 
from which it is seen that the first mode is dominant (except near resonance 
conditions other than Ω = ω1). Substitution of Eqs. (p) into Eq. (o) gives the 
explicit steady state response 

 

 

( )

( ) ( )
( ) ( ){ }

2
0

2
0

0.1055( , ) cos
1 0.08089

cosh 1.875 cos 1.875

0.7351 sinh 1.875 sin 1.875 ...

M L
w x t t

EI

x L x L

x L x L

ω
= − Ω ⋅

⎡ ⎤− Ω⎣ ⎦
⎡ −⎣

⎤− − +⎦

  

  (q) 
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Example 11.8 
The support of a uniform cantilevered elastic beam of bending stiffness EI, 
length L, and mass per unit length m undergoes the prescribed lateral motion 
h(t) = h0sinΩt, where h0 is a constant. Determine the steady state motion of the 
beam when modeled using Euler-Bernoulli Theory. 
 

Solution 
The equation of motion for the beam can be written directly from Eq. (9.186) 
with χz(t) = h(t). For the present problem, N = χx = p = 0. We also have no dis-
tributed transverse load or body couple as well (q = b = 0), so that the equation 
of transverse motion takes the form 
 

 
4 2

4 2 ( )w wEI m m t
x t

∂ ∂
+ = −

∂ ∂
h  (a) 

 
where w(x,t) represents the displacement relative to the support. It should be 
pointed out that if we neglect geometric nonlinearities, as is done for Euler-
Bernoulli Theory (presently) and for the Rayleigh and Timoshenko theories, 
then the nonlinear terms appearing in Eqs. (9.184) and (9.185) are neglected 
even when they do not vanish, and the equation of motion takes the form of Eq. 
(a), but with nonvanishing q when appropriate. That is, the equations for trans-
verse and longitudinal motion decouple. Equation (a) could also be derived di-
rectly for this relatively simple problem by replacing w(x,t) with the total de-
flection ξz(x,t) = h(t) + w(x,t) in Eq. (9.104) (which was restated in the begin-
ning of the current section). That is, Eq. (9.104) is derived with respect to a 
fixed reference frame. Thus, if ξz(x,t) measures the absolute displacement then 
Eq. (9.104) takes the form 
 

 
2 22

2 2 2
z zEI m q

x x t
ξ ξ∂ ∂∂

+ =
∂ ∂ ∂ x

∂
−

∂
b   

 
Substituting ξz(x,t) = h(t) + w(x,t) into the above equation, with EI = constant, 
results in Eq. (a). 
 Now, for the given excitation, 
 

 ( , )F x t q=
x

∂
−

∂
b

0 sinm F t− =h Ω  (b-1) 

where 
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 2
0 0F mh= Ω  (b-2) 

 
From this point on, the problem proceeds as for a fixed beam subjected to a 
uniformly distributed harmonic excitation. The natural frequencies and modal 
functions for the structure were established in Example 10.7 and employed in 
Example 11.7. We employ these same functions for the present problem. The 
modal forces are then 
 

 
{ }

( ) ( )
0

0

0

( ) ( ) sin

sin
sinh sin cosh cos

L
j j

j j j j j
j

F t W x F t dx

F t
x x Y x xβ β β β

β

= Ω

Ω ⎡ ⎤= − − +⎣ ⎦

∫
 (c) 

Let 
 

 { }1( ) sinh sin cosh cosj j j j j j jx x x Y xβ β β β β β− ⎡ ⎤= − − +⎣ ⎦J x

t

 (d) 

 
It follows that 

 ( ) 0( ) sinj
jf t f= Ω  (e-1) 

where 

 
0

00
2 4 ( )

( )j
j j

j j

F F L
f

m EI W

β
ω β

= =
J

2
j  (e-2) 

 
and 

2( )jW is given by Eq. (n) of Example 11.7. For the present system, Eq. 
(11.15) takes the form 
 

  (f) 2 2 0( ) ( ) sin t    ( 1, 2,...)j j j j jt t f jη ω η ω+ = Ω =
 
The modal displacements are written directly from Eq. (3.28) as 
 

 
( )

0

2( ) sin
1

j
j

j

f
tη

ω
t= Ω

− Ω
 (g) 

 
The steady state response of the beam then follows from Eq. (11.5) as 
 

 
( )

( )4
2

0 22 4 ( )
1

( ) ( )
( , ) sin

1

j
j

j
j j j

L W xmLw x t h t
EI W

β

ω β

∞

=

= Ω Ω
⎡ ⎤− Ω⎢ ⎥⎣ ⎦

∑ J
 (h) 
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Recall that w(x,t) is measured relative to the support. The motion of the beam 
measured with respect to a fixed coordinate system is then 
  

 

( )

( )4
2

0 22 4 ( )
1

( , ) ( ) ( , )

( ) ( )
sin 1

1

z

j
j

j
j j j

x t t w x t

L W xmLh t
EI W

ξ

β

ω β

∞

=

= +

⎧ ⎫
⎪ ⎪

= Ω + Ω⎨ ⎬
⎡ ⎤⎪ ⎪− Ω⎢ ⎥⎣ ⎦⎩ ⎭

∑ J

h

 (i) 

 
 

 

11.3.5 Rayleigh Beams 

In this section we apply the formulation presented in Sections 11.1 and 11.2 to deter-
mine the dynamic response of Rayleigh Beams to externally applied forces. For this 
model there are slight differences in the form of the statements for orthogonality of 
the modal functions, and hence for the definitions of the modal mass and modal stiff-
ness, from those pertaining to the other systems considered in this chapter. We there-
fore parallel the development and formulation of Section 11.1 in detail for the par-
ticular case of Rayleigh Beams. 
 The equation of motion for these structures, Eq. (9.115), is 
 

 
2 4 2 2

2 2 2 2 2 ( , )w w wm I EI q x t
xt x t x xρ

∂ ∂ ∂ ∂
− + = −

∂
∂∂ ∂ ∂ ∂ ∂

b  

 
where Iρ is the rotatory inertia and, as for Euler-Bernoulli Beams, w(x,t) is the trans-
verse displacement of the point on the axis of the beam originally at x, q(x,t) repre-
sents a distributed transverse load, b(x,t) is a distributed couple and m(x) is the mass 
per unit length. 
 We seek a solution in the form of an expansion in terms of the modal functions. 
For the present case, Eq. (11.5) takes the explicit form 
 

  ( )

1

( , ) ( ) ( )j
j

j

w x t t W xη
∞

=

= ∑
 
Substituting the above modal expansion into the equation of motion, multiplying the 
resulting expression by W(l)dx and integrating over the domain of definition of the 
beam gives 
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  (11.17) 

( ) ( ) ( ) ( )

01

( ) ( ) * ( )

0 01

( )

            ( ) ( ) ( , )

L
l j l j

j
j

L L
l j l

j l
j

t W mW W I W dx

t W EI W dx B W x F x t d

ρη

η

∞

=

∞

=

′ ′⎡ ⎤+⎢ ⎥⎣ ⎦

′′ ′′+ + =

∑ ∫

∑ ∫ ∫ x

where 

 ( , ) ( , )F x t q x t
x

∂
= −

∂
b  (11.18) 

and 

 * ( ) ( ) ( )

01
( ) ( ) ( , ) ( ) ( , )

L
lj l l

l j
j

B t B W x Q x t W x M x tη
∞

=

⎡ ⎤′= = +⎢ ⎥⎣ ⎦∑ k  

 
If the boundary conditions are such that  
 
 ( ) 0 ( )ljB j l= ≠k  (11.19) 
 
which is consistent with the conditions for orthogonality, Eq. (10.163), and we ex-
ploit the mutual orthogonality of the modal functions as per Eqs. (10.164) and 
(10.172), Eq. (11.17) reduces to the familiar system of uncoupled differential equa-
tions for the modal displacements 
 
  (11.20) ( ) ( ) ( ) ( 1, 2,...)j j j j jm t k t F t jη η+ = =
 
where, for Rayleigh Beams, 
 

   (11.21) 2 2( ) ( )

0
( ) ( ) ( ) ( )   ( 1, 2,...)

L L
j j

jm m x W x dx I x W x dx jρ
0

′= +∫ ∫ =

 

  (11.22) 2( ) ( )

0
   ( 1,2,...)

L
j jj

jk EI W dx B j′′= + =∫ k

and 

 [ ]( )

0
( ) ( ) ( , )     ( 1,2,...)

L
j

jF t W x q x t x dx j= − ∂ ∂∫ b =  (11.23) 

 
Now, it follows from Eqs. (10.171), (11.21) and (11.22) that 
 
  (11.24) 2    ( 1, 2,...)j j jk m jω= =
 
Equations (11.20) can thus be rewritten in the standard form of Eqs. (11.15) and 
(11.16), 
   2 2 ( )    ( 1, 2,...)j j j j jf t jη ω η ω+ = =
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where 

 2

( ) ( )
( )     ( 1, 2,...)j j

j
j jj

F t F t
f t j

mk ω
= = =   

 
At this stage the analysis proceeds as for previous systems.  
 
 

Example 11.9 
Set up the solution for a uniform cantilevered Rayleigh Beam of bending stiff-
ness EI, mass m, rotatory inertia Iρ and length L, that is loaded by a moment on 
its free edge as in Example 11.7. 
 
Solution 
From Example 10.12, the modal functions for the beam are of the form  

 
 { } ( ){ }( ) ( )( ) cosh cos sinh sinj j

j j j j jW x x x h x xα β α α β β= − − − j  (a) 

 
where  

 
2 2

( )
2

cosh cos
sinh sin

j j jj

j j j j

L L
h

L L
α α β β j

jα α α β β
+

=
+

 (b) 

 
In the above expressions, αj and βj correspond to the values of the parameters 
defined by Eqs. (10.55) and (10.56) evaluated at the  jth natural frequency ωj, 
which corresponds to the jth root of Eq. (e) of Example 10.12. Next, substituting 
Eq. (a) into Eq. (11.21) allows for the evaluation of the  jth modal mass. Hence, 
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∫
∫ dx

  

  (c) 
The corresponding modal force for the cantilever beam is calculated as  
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L
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j
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∂
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∫
∫
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 Hence, 
 



11│ Forced Vibration of One-Dimensional Continua 711 

{ } { }( )
0( ) cos sinh sin cosh cosj

j j j j j j j jF t M t x x h x xα α β β α α β⎡ ⎤= − Ω + − −⎣ ⎦   

    (d) 
It follows that 

 0( ) cosj jf t f t= Ω  (e-1) 
where 
 

 
{ } { }( )

00
2

sinh sin cosh cosj
j j j j j j j

j
j j

M L L h L
f

m

α α β β α α β

ω

⎡ ⎤+ − −⎣ ⎦= −
L

t

 (e-2) 

 
 Thus, for the present problem, Eq. (11.15) takes the form 
 
 2 2 0( ) ( ) cosj j j jt t fη ω η ω+ = Ω  (f) 

 
where 0

jf  is given by Eq. (e-2). The solution to this equation is then written di-
rectly from Eq. (3.27) as 
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L L h L
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m
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ω
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Ω −

L

}

  

  (g) 
The steady state response of the beam then follows as 
 

 { } {
( )

0

( )

( )
2 2

1
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sinh sin cosh cos
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j
j j j j j j j j

j j j

w x t M t
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W x

m

α α β β α α β

ω

∞

=

= Ω ⋅

⎡ ⎤+ − −⎣ ⎦
Ω −∑

  

  (h) 
where W(j)(x) is given by Eq. (a). 
 

 
 

11.3.6 Timoshenko Beams 

We now apply the formulation presented in Sections 11.1 and 11.2 to determine the 
dynamic response of Timoshenko Beams to externally applied forces. The corre-
sponding equation of motion is, from Eq. (9.135), 
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2 2

2 2

0 ( , )
0 ( , )
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∂ ∂⎪ ⎪ ⎩ ⎭ ⎩ ⎭⎩ ⎭⎣ ⎦ ⎢ ⎥
⎣ ⎦

b ⎬

=

 

 
where w(x,t) is the transverse displacement of the point on the axis of the beam origi-
nally at x, ϕ(x,t) is the rotation of the cross section at x, q(x,t) represents a distributed 
transverse load and b (x,t) is a distributed couple. Thus, for the present type of struc-
ture, u  [w ϕ]→ T, F [q b ]→ T, and m and k are given by the square matrices in the 
above equation of motion. 

Inserting the mass and displacement matrices for the Timoshenko Beam into 
Eq. (11.10) gives the explicit expression for the modal masses as   
 

  (11.25) 2 2( ) ( )

0
( ) ( ) ( ) ( )     ( 1, 2,...)

L L
j j

jm m x W x dx I x x dx jρ ϑ
0

= +∫ ∫
 
Note that if we normalize with respect to the mass operator this quantity is one for 
each mode. Likewise, inserting the force and displacement matrices for the Ti-
moshenko Beam into Eq. (11.12) gives the explicit expression for the modal forces as 
 

 ( ) ( )

0 0
( ) ( ) ( , ) ( ) ( , )

L L
j j

jF t W x q x t dx x x tϑ= +∫ ∫ b dx  (11.26) 

 
 

Example 11.10 
Set up the solution for a uniform cantilevered Timoshenko Beam of bending 
stiffness EI, modulus ratio E/kG, mass per unit length m, rotatory inertia Iρ and 
length L, that is loaded by a moment on its free edge as in Examples 11.7 and 
11.9. 
 
Solution 
From Example 10.13, the modal functions for the beam are of the form 
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⎡ ⎤ ⎡ ⎤+ − −⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

U

 

    (a) 
where ( ) ( )( ) and ( )j j

j jg gα βω ω are defined by Eqs. (10.85), the natural frequen-
cies are the roots of Eq. (f) of Example 10.13 and the values of ( ) ( )j

nl jH ω (n,l = 
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1, 2, …) are defined by Eqs. (e-1)–(e-4) of that example. The modal masses for 
the uniform beam are then, from Eq. (11.25), 
 

 
2 2( ) ( )    ( 1,2,...)j j

jm m W I jρ ϑ= + =  (b) 
 
where W(j)(x) and ϑ(j)(x) are given by the first and second rows of Eq. (a), re-
spectively. 
 For the problem at hand, ( , ) 0q x t =  and 0( , ) sin ( ).x t M t x Lδ= Ω −b  
Hence, for a Timoshenko Beam loaded in this manner, 
 

 
0

0
( , )

sin ( )
x t

M t t Lδ

⎧ ⎫⎪ ⎪= ⎨ ⎬
Ω −⎪ ⎪⎩ ⎭

F  (c) 

 
 Substituting Eq. (c) into Eq. (11.26) gives the modal force for the jth mode as 
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It follows that 
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m ω
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f
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ϑ ω

ϑ
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+
2

t

 (e-2) 

 
For the present problem, Eq. (11.15) thus takes the form 
 

 2 2 0 sinj j j jfη ω η ω+ = Ω  (f) 
 
The particular solution to Eq. (f), and hence the steady state amplitude for the 
jth mode, follows directly from Eq. (3.28) as 
 

 
( )

0

2( ) sin
1

j
j

j

f
tη

ω
t= Ω

− Ω
 (g) 

 
Substituting Eq. (g) into Eq. (11.5) gives the steady state response of the canti-
levered Timoshenko Beam subjected to a harmonic edge moment as 
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∑
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where W(j)(x) and ϑ(j)(x) are respectively given by the first and second rows of 
Eq. (a). 

 
 

11.4 CONCLUDING REMARKS 

In this chapter the response of one-dimensional continua to time dependent forcing 
was studied. It was shown that the response of such systems is comprised of the sum 
of the modal functions with time dependent amplitudes. In this context, the modal 
expansion corresponds to a generalized Fourier Series. It was further shown that, 
when expressed in terms of such an expansion, the equations of motion reduce to a 
system of uncoupled forced harmonic equations in time for each mode. The depend-
ent variables in these equations correspond to the modal displacements which, in turn, 
correspond to the coefficients of the modal expansion. The decomposition for con-
tinua was seen to be a generalization of the modal analysis introduced in Chapter 8 
for discrete systems and offers the same interpretation. Namely, that each of the un-
coupled harmonic equations corresponds to an effective single degree of freedom 
system for which the modal displacement is the displacement of the effective (modal) 
mass and the modal force measures the degree and manner in which the applied 
forces are distributed to the individual mode. The procedure applies to all continua 
considered in Chapters 9 and 10 and may be extended to more general continua.   
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PROBLEMS 

11.1 Solve the problem of Example 11.1 using the normal modes computed in 
Example 10.14(b). 

 
11.2 Compare the magnitude of the edge deflection computed in Example 11.1 and 

Problem 11.1 with the corresponding edge deflection due to a static load of 
the same magnitude as discussed in Section 1.2. 

 
11.3 Determine the response of the rod of Example 11.1 if it is struck on its right 

end by an impulse of magnitude I0. 
 
11.4 A rocket lies at rest on a frictionless bed when the thruster is activated. The 

resultant thrust acts at a distance a from the nozzle, as shown, and the geomet-
rical and material properties of the structure may be treated as approximately 
uniform. The casing is of effective length L, 
effective area A, and is made of elastic mate-
rial of Young’s modulus E and mass density 
ρ. Determine the motion of the rocket if the 
engine is ramped up to a constant thrust of 
magnitude P0 over the time interval τ.                              Fig. P11.4 

 
11.5 An external field exerts the body force ( , ) ( )sinp x t mg L x t= − Ω  on the uni-

form rod of Problem 10.2. Determine the steady state response of the struc-
ture. 

                           Fig. P11.5                                                             Fig. P11.6 

1.6 A uniform elastic rod of length L, membrane stiffness EA and mass per unit 
 
1

length m is attached to a rigid base at its left end, as shown. Determine the 
steady state motion of the rod if a motor causes the base to undergo the pre-
scribed motion 0 .( ) sinx t h tχ = Ω  

 

1.7 A torque of magnitude T0 is sud-

                                                                                                     Fig. P11.

 
1

denly applied to the free end of the 
elastic rod shown. Determine the 
response of the rod. 

7 
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11.8 Determine the response of the fixed-free rod shown in Figure P11.8 if the 

 

1.9 A piano wire of length L, cross-sectional area A and mass density ρ is tuned to 

 
1.10 A simply supported uniform beam of length L, bending stiffness EI and mass 

 
1.11 The end of a seven foot diving board is bolted to the support as shown. The 

   

base suddenly undergoes a rotation of magnitude θ0 as shown. 

                                                 Fig. P11.9                                 Fig. P11.8 
 
1

a tension of magnitude N0. Determine the response of the wire if the string is 
struck at its quarter point by a hammer that imparts an impulse of magnitude 
I0.  

1
per unit length m is subjected to the uniform distributed load p(x,t) = q0sinΩt. 
Determine the bending moment at the center of the span if the behavior of the 
beam is predicted using Euler-Bernoulli Theory.   

1
board is 2 feet wide and 1.5 inches thick, has a specific weight of 36 lb/ft3 and 
an elastic modulus of 106 psi. A 200 lb man stands at the edge of the board 
preparing for a dive, and then jumps once before leaving the board. If the time 
history of the jump is as described in the figure, use Euler-Bernoulli Theory to 
determine the response of the board after the dive has ensued.  

 Fig. P11.11 



11│ Forced Vibration of One-Dimensional Continua 717 

11.12 The clamped-clamped beam shown is sub jected to a concentrated load P(t) = 

 

    

1.13 The beam shown is subjected to the time dependent moment M(t) = M0sinΩt 

 

   

1.14 The beam shown in Figure P11.14 is subjected to the time dependent body 

 
                               Fig. P11.14                                                   Fig. P11.15 

1.15 A concentrated load of magnitude P0 is suddenly applied to the right edge of 

 

P0 that is suddenly applied to the center of the span. Determine the response 
of the beam after the load is suddenly removed. 

Fig. P11.12 
 
1

applied at its right end. Determine the steady state response of the beam. 

 Fig. P11.13 
 
1

couple distribution whose magnitude varies linearly over the span from 0 to 
b0, as shown. Determine the steady state response of the structure if the body 
couple distribution varies harmonically in time with an excitation frequency 
that is twice the fundamental frequency of the beam.  

  
 
1

the beam of Figure P11.15. Determine the response of the structure.  
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11.16 The beam shown in Figure P11.16 is subjected to a concentrated harmonic 
load at its right end. If the magnitude of the applied load is P0 and its fre-
quency is equal to half of the fundamental frequency of the structure, deter-
mine the transverse shear at the left edge of the beam.    

                                    Fig. P11.16 
 
 
11.17 The beam shown in Figure P11.17 is impacted at its left end. If the magnitude 

of the impulse imparted to the structure is I0, determine the response of the 
beam.  

    Fig. P11.17 
 
 
11.18 The beam shown in Figure 11.18 is impacted at its right end. If the magnitude 

of the impulse imparted to the structure is I0, determine the reactions of the 
beam. 

 
    Fig. P11.18 
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11.19 A simply supported uniform beam of length L, bending stiffness EI and mass 
per unit length m is subjected to the uniform distributed load p(x,t) = q0sinΩt. 
Determine the bending moment at the center of the span if the behavior of the 
beam is predicted using Rayleigh Beam Theory with rG/L = 0.1. 

   
11.20 Let the clamped-clamped beam of Problem 11.12 possess radius of gyration 

rG/L = 0.1. Determine the response of the beam if its behavior is now repre-
sented using Rayleigh Beam Theory. 

 
11.21 Let the clamped-pinned beam of Problem 11.13 possess radius of gyration 

rG/L = 0.1. Determine the response of the beam if its behavior is now repre-
sented using Rayleigh Beam Theory. 

 
11.22 A simply supported uniform beam of length L, bending stiffness EI and mass 

per unit length m is subjected to the uniform distributed load p(x,t) = q0sinΩt. 
Determine the bending moment at the center of the span if the behavior of the 
beam is predicted using Timoshenko Beam Theory for a structure where 
rG/L = 0.1 and E/kG = 5. 

 
11.23 Let the clamped-clamped beam of Problem 11.12 possess radius of gyration 

rG/L = 0.1 and modulus ratio E/kG = 5. Determine the response of the beam if 
its behavior is now represented using Timoshenko Beam Theory. 

 
11.24 Let the clamped-pinned beam of Problem 11.13 possess radius of gyration 

rG/L = 0.1 and modulus ratio E/kG = 5. Determine the response of the beam if 
its behavior is now represented using Timoshenko Beam Theory. 
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Archimedes’ principle, 21   
Augmented magnification 

factor, 421 
Augmented system, 419–421 
Average power, 175–176 
 
B 
Banding, 295 
Bandwidth, 175–178 
Base vectors, 34–36 
Beam-columns, 
 see Euler-Bernoulli beam- 
  columns 
Beams, 
 cantilever, 7–9, 547–549,  
  603–612, 618–622,  
  624–627, 631–634,  
  664–669, 703–714 
 Euler-Bernoulli, 544–549, 
  589–617, 647–650, 
  697–708 
 kinematics, 539–542 
 kinetics, 543–545 
 on elastic foundation, 616–617 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Rayleigh, 549–552, 622–627, 

  708–711 
 simply supported, 13–16, 
  561–562, 601–603,  
  697–703 
 Timoshenko, 552–558, 
  627–634, 656–659, 
  669–673, 711–714 
Beating, 160–162 
Bending stiffness, 545 
 
C 
Canonical equations, 306–309 
Center of mass, 50, 203–204,  
 207–208, 301–302 
Central force, 48 
Characteristic equation,  

see frequency equation 
Complete elliptic integral 

of the first kind, 108                            
Complex elastic modulus, 187–189 
Complex numbers, 28–30 
Complex shear modulus, 188–189 
Compliance, 

complex, 187 
loss, 187–188 
storage, 187–188 

 721 



722 Index 

Compliance matrix, 324                  
Conservation, 
 angular momentum, 48 

linear momentum, 47 
mechanical energy, 44,  
105–107 

Conservative forces, 39, 40, 307–308 
Constraints, 304, 371 
Continuum, 511 
Convolution integral, 186, 240–241, 
 246 
Coordinate systems, 

Cartesian, 34 
cylindrical polar, 36 
path, 35 
spherical, 37 

Coordinate transformation, 424–427 
Critically damped systems, 121–126 

response, 121 
overshoot, 122 

Creep function, 185 
 
D 
Damped natural frequency, 111, 389 
Damping, 

aero/hydrodynamic, 24–25       
 coefficient, 24 
 Coulomb, 127–133 

factor, 110, 209–210 
force, 24 
proportional, 
 see Rayleigh damping 
structural, 184–192, 206, 209 
viscous, 109–126 

Damping matrix, 295, 303, 328–329, 
 475–476, 484 
Datum, 40, 106 
Decomposition, 433–440, 484–487, 

686–689  
Degrees of freedom, 2–7, 287–289, 
 296, 341–342    589–617, 647–650, 697–708 
Differential matrix operators, 520, 
 580 
Dirac delta function, 229–239, 274, 

488, 639 
Displacement matrix, 291, 295, 299, 

 341, 433, 484 
Distinct frequencies, 378–379 
Distortion, 524–525 
Double pendulum, 296–299 
Drag, 

see damping 
aero/hydrodynamic 

Dynamic free body diagram, 
see kinetic diagram 

Dynamics, 30–66 
 
E 
Eigenfunction, 580 
Eigenvalue, 342, 344, 396, 403, 405, 
 580 
Eigenvalue problem,  342, 395, 487, 
 580, 637 
Eigenvector, 342, 345–346, 396–400, 
 403, 483–487 
Eigenvector expansion, 483–484 
Elastic rods, 

longitudinal motion,  525–530, 
 582–591, 640–642, 
 690–692 
torsional motion, 17, 530–534, 
 591–595, 642–644, 
 692–694 

Elastic spring potential energy, 42–43 
Elliptic integral of the first kind, 108 
Equilibrium configuration, 77 

stable, 105 
unstable, 104 

Equivalent systems, 
elastic beam,  8–16 
elastic rod, 6–7, 16–19 
single degree of freedom, 
 439–440, 476, 687–688 

Euler-Bernoulli beam-columns, 
 617–622, 650–652 
Euler-Bernoulli beams, 544–549,  

Euler’s formula, 30, 150, 350, 
 388, 494 
Euler’s theorem, 59 
Excitation frequency, 147, 209–210 

 



Index     723 

F 
Flexibility matrix, 324 
Floating bodies, 20–22 
Follower force, 42 
Force matrix, 291, 295, 299,  
 434–440, 475–476, 484 
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Phase angle, 78, 400–404, 660–673 
Poisson effect, 525, 534, 541 
Potential energy, 39–40, 44, 93–94, 
 104, 106, 308–310 
Pressure, 21, 22, 566 
Principal coordinates, 422–424, 
 428, 434; see also Modal  
 coordinates 
Principle of angular-impulse 
 momentum, 47, 50, 53-54, 
 64–65 
Principle of linear-impulse 
 momentum, 46, 50, 52–53, 
 64 
Principle of work-energy, 38, 40, 
 50–52, 62–64, 106 
 
Q 
Quality factor, 177–178 
 
R 
Radius of curvature, 35 
Ramp loading, 246–247, 492–493, 
 284–285 
Rayleigh beams, 549–552, 622–627, 
 652–656, 666–669, 708–711 
Rayleigh damping, 474–479 
Rayleigh dissipation function,  
 321–323 
Rectangular pulse, 249–255 
Relative motion, 33–34, 109 
Relaxation function, 186 
Repeated frequencies, 379–384 
Resonance, 154–160, 417, 419, 421 
Resonance peak, 174–179 
Restoring force, 22 
Reynolds number, 24 
Rigid body mode, 371 
Rigid body motion, 56–66 
Rotatory inertia, 544, 549, 555, 622 
 

S 
Scalar product, 375–376, 385–387, 
 517–520, 634–635 
Semi-definite systems, 
 see unrestrained systems 
Series representation, 29, 96, 522 
 cosine, 29 
 sine, 29, 96 
Shear angle, 553 
Shear beams, 555, 627 
Shear modulus, 188–189 
Shear stiffness, 554 
Shear strain, 525 
Shock spectra, 257–268 
Side-sway of structures, 10–13 
Simple pendulum, 94–109 
Simple vibration absorber, 
 418–422 
Singular matrix, 343, 345 
Springs, 
 linear, 7 
 parallel, 15, 18, 25–26 
 series, 16, 19, 25–28 
Standard form, 143–144, 438, 476 
State space representation, 394–400, 
 403, 484, 493 
State vector, 395, 483–484, 487–488 
Static deflection, 87–88 
Static limit, 165 
Steady state response, 
 during general periodic loading,  
 213–215 
 of hereditary materials, 
 186–192 
 of multi-degree of freedom 
 systems, 416–417, 480–483 
 using operational methods, 
 282–283 
 of viscously damped systems, 
  162–174 
 for unbalanced motor, 203–204 
 of undamped systems, 148–157 
Step loading, 241–242, 492 
Stick-slip condition, 127–128, 131 
Stiffness coupling, 290 
Stiffness matrix, 291, 294, 303, 
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 324–327, 341, 378, 434–437, 
 440, 475–476, 484, 512 
Stiffness operator, 514, 519, 527, 532, 
 537, 546, 551, 555, 581, 684 
Structural loss factor, 189, 191 
St. Venant assumption, 530 
Superposition, 144–147, 249–257 
Symmetry of system matrices,  
 324–329  
Synchronous whirling, 206–211 
 
T 
Timoshenko beams, 552–558, 
 627–634, 656–659, 669–673 
 711–714 
Timoshenko shear coefficient, 553 
Torsional stiffness, 531 
Transient excitation, 229 
Transmissibility, 181–183 
Transverse motion of strings and  
 cables, 534–539, 595–599, 
 644–646, 694–697 
Transverse shear, 552–554 
Trivial solution, 77 
 
U 
Unbalanced motor, 201–206 
Underdamped systems,111–115 
 damped natural frequency, 111 
 general solution, 111–112 
 period, 112 
 phase lag, 112 
Unit impulse, 
 see Dirac delta function 
Unit step, 
 see Heaviside step function 
Unrestrained systems, 371–374 
 
V 
Vector functions, 520 
Velocity, 32–34 
Vibration isolation, 179–184 
Virtual displacements, 304–309 
Virtual work, 304–309, 321 
Viscoelastic materials, 
 see hereditary materials 

Viscous damper, 22–24 
 
W 
Wave length, 582 
Wave number, 582–583, 591, 596 
Wave speed, 581, 583, 591, 596 
Weighted scalar product, 376–377, 
 386, 518–520, 635 
Weight function, 518–519 
Weight matrix, 376 
Work,  38–39, 51–52, 62–64, 93–94, 
 325 
 
Y 
Young’s modulus, 158, 189 
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